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CHAPTER   1 

INTRODUCTION 
 

 
 
 
 

This thesis deals with two but closely related topics: Robust utility maximization problem and 

multivariate risk measures. More precisely, in the first part, we address a utility maximization 

problem under model uncertainty in a jump setting. In the second part, we are interested in 

systemic risk measures and their numerical approximation using stochastic algorithms. 

In the first section of this introduction, we start by giving a general background on the utility 

maximization theory and explain how these problems can be solved with the help of BSDEs. 

We then expose the extension of these problems into robust ones where the uncertainty in 

choosing the pricing probability is taken into account. Our main contribution consists in extend- 

ing the work of Bordigoni et al. [18] in which they work under continuous filtration, into a model 

that allows for jumps. 

The second section is concerned with the problem of numerical approximation of systemic risk 

measures. More precisely, we are interested in the numerical approximation of the multivariate 

shortfall risk measures (MSRM) that were introduced in Armenti et al. [4]. Being inspired by 

the work of Bardou et al. [6] on the approximation of VaR and CVaR, we show how stochastic 

algorithms can be an efficient tool to estimate MSRM and propose estimators for the latters 

with the corresponding central limit theorems. 

Lastly, we propose in the third section an extension into a multivariate setting of Optimized Cer- 

tainty Equivalent (OCE) risk measures. The framework of OCE risk measure allows to retrieve 

most of the classical risk measures such as CVaR, entropic risk measure, etc. We then study 

the properties of this new type of multivariate risk measures and propose stochastic algorithms 

to approximate them. 
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1.1 Robust Utility Maximization Problems 

 
1.1.1 Utility maximization theory 

 
In a complete market, under assumptions of no arbitrage, there exists a unique probability 

measure, often called the risk neutral probability or the equivalent martingale measure (see 

Harrison and Pliska [64] and Delbaen and Schachermayer [37]), such that the price of any 

claim at a future time T  is the expectation under this unique probability of its discounted payoff. 

Moreover, every claim can be hedged perfectly using an auto-financing portfolio composed of 

tradeable assets available in the market. However, in the case of constrained markets, where 

for instance, the agent cannot have a negative number of shares or the agent’s investment in 

risky assets is not allowed to exceed a certain threshold, perfect hedging is no longer possible. 

Therefore, one cannot define in a proper way the price of a given contingent claim. Superhedg- 

ing is one of the possible solutions in this case. The superreplicating price of a claim is defined 

as the minimal investment that an agent has to put in order to find a strategy that dominates the 

payoff of the claim. El Karoui and Quenez [45] characterized this superreplicating price as the 

essential supremum over the set of equivalent martingale measures of the expectation of the 

discounted payoff. In Cvitanić  and Karatzas [34], it has been proved that the superreplicating 

price is actually bounded between two values hlow and hup and that any price in the open in- 

terval (hlow, hup) is arbitrage free. However, superreplicating price approach suffers from giving 

high prices. Another approach that provides a satisfactory answer to this problem was proposed 

in Hodges and Neuberger [66] and Clewlow and Hodges [31] and is based on maximizing the 

expected utility of the agent. Since then, many authors have used this approach usually with 

the exponential utility function (see for instance, Rouge and El Karoui [116], Delbaen et al. [36], 

Becherer [9], Musiela and Zariphopoulou [102] and Mania and Schweizer [93]). In their ap- 

proach, an agent who has sold a vanilla option C(ST ) is trying to replicate the outcomes from 

this claim at a future date T  . Therefore, the agent is trying to solve the following optimization 

problem: 

V (x) := sup E [U (Xπ,x − C(ST ))] ,  (1.1) 
π∈ffi 

where Xπ,x is an auto-financing hedging portfolio having the initial value x. The expectation is 

taken under the reference/historical probability denoted P  , ffi is the set of admissible strategies 

and U  is a utility function. They also defined two types of prices in their setting: the selling price 

and the buying price. The selling price is defined as the smallest price required to provide the 

same expected utility as not selling the option. In the same way, the buying price is defined as 

the maximum price worth paying to buy the option. These prices are called indifference prices 

and were studied in depth in Carmona [24]. The value function of their problem is obtained 

by the application of the dynamic programming principle which lead them to solving a partial 
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derivative equation (PDE). In the literature, we can find also another type of problems related 

to maximizing expected utility from terminal wealth and consumption. These problems are by 

now well known, understood and take in general the following form: 

 
V (x) =  sup 

"∫ T 
 

U1(t, c(t))dt

#
  + E[U2(Xπ,c,x)],  (1.2) 

(π,c)∈ffi 0 

where U2(.), U1(t, .) are utility functions for each t ∈ [0, T ], c(.) is the consumption rate and 

(Xt) is the wealth process. The first term reflects the utility coming from the consumption and 

the second one from the terminal wealth. For the case where the portfolio is constrained to 

take values in a given closed convex set, we refer to the work of Cvitanić  and Karatzas [33] 

and for the unconstrained one, see Karatzas et al. [76], Karatzas [75], Cox and Huang [32] and 

Harrison and Pliska [63]. 

Utility maximization problems have been extensively studied by numerous authors. In the frame- 

work of a continuous-time model, they were studied for the first time by R. Merton in two seminal 

papers Merton [96] and Merton [97] in complete markets. Using techniques of stochastic con- 

trol, a nonlinear PDE/Bellman equation for the value function was derived and closed formulas 

were given for special cases of utility function such as the power, logarithm, and the exponential 

case. The PDE method relies mainly on the assumption of Markov state processes. However, 

when this is not the case, there exists two approaches to solve utility maximization problems 

in the literature. The first one goes back to Bismut [17] and is based on duality and convex 

optimization (see also Deelstra et al. [35], Karatzas et al. [77], Schied and Wu [120], Källblad 

et al. [74] or Žitković [133]). The second approach is based on stochastic control and the pow- 

erful tool of BSDEs. BSDEs were introduced the first time in Bismut [17] for the case with linear 

generator, but the real starting point of the theory as it is known today is the article of Pardoux 

and Peng [106]. According to these authors, a solution of a BSDE consists in a pair of adapted 

processes (Y, Z) which satisfies: 

dYt = −f (t, Yt, Zt)dt + ZtdWt,   YT  = ξ,  (1.3) 

where f  is called the generator and ξ  the terminal condition. The pair (f, ξ) is usually called 

the data of the BSDE (for an overview on BSDEs, see Zhang [132]). This type of equations 

naturally appears in many problems in financial mathematics. One of the first applications of 

BSDE is the hedging problem of a contingent claim ξ  at future time T . In a complete market, it 

is possible to construct a replication portfolio Y  whose final value is ξ such that the dynamics of 

Y are given by a BSDE with a linear generator f and the price of the claim at time t is given by 

Yt by non-arbitrage conditions. In incomplete markets, as said before, it is not always possible 

to construct a portfolio who have a the same value as the payoff ξ. El Karoui and Quenez [46] 

E
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considered superhedging strategies and defined the upper price as the smallest investment 

that allows to superhedge the claim ξ. Although the upper price itself does not verify a BSDE, 

they showed that it can be written as the increasing limit of solutions of nonlinear BSDEs. 

When it comes to utility maximization problems, BSDEs can be of a great help. In fact, duality 

methods relies on the assumption that the trading strategies take values in a convex set, so 

if we do not want to restrict our strategies to convex sets, one might use BSDEs techniques 

and Bellman Optimality Principle to solve the problem. Duffie and Epstein [40] presented a 

stochastic differential formulation of recursive utility as the objective function of a problem of 

investment-consumption. Recursive utility is an extension of standard utility where the instan- 

taneous utility does not depend only on the consumption rate (ct) but also on the future utility. 

Besides, problems with standard utilities correspond to linear BSDEs whereas recursive ones 

correspond to nonlinear BSDEs. For the particular case of exponential utility function, Rouge 

and El Karoui [116] addressed the problem of hedging for an investor who is selling a claim 

while performing maximization of his expected utility and applied dynamic control techniques to 

obtain explicit representation of the optimal wealth and portfolios through solutions to a BSDE 

with quadratic growth. More recently, by assuming the trading strategies to take values only in 

a closed set, Hu et al. [68] used rather a simpler approach (not relying on Bellman Optimality 

Principle): In order to obtain the value function and optimal strategy, they constructed a process 

Rπ such that for each π, Rπ  is a supermartingale with terminal value equals to the utility of the 

trader’s terminal wealth. They also showed that there exists at least one particular strategy π∗ 
such that Rπ∗ 

is a martingale and of course this particular strategy must be the optimal one. 

Their work was taken under the Brownian setting and therefore they used BSDEs to construct 

the optimal strategy π∗. As to problems with jumps, we can cite for instance Morlais [100], 

Morlais [98] and Becherer [8] who solved the standard utility maximization problem in a jump 

setting using dynamic programming. However, one should note that these works assumed a 

final wealth that is bounded. 
 

1.1.2 Robust utility maximization problems 

All the papers mentioned above considered a model where beliefs are represented by a single 

probability, the reference probability P  . This supposes the perfect knowledge of the probability 

distribution governing the market evolution which is obviously something not true in practice. 

In fact, agents have different models, each of them being only an approximation of the “true” 

underlying one. Therefore, we need a novel approach that accounts for the possibility that 

a specific probabilistic model may not be correct but only an approximation. In these cases, 

before solving his utility maximization problem, the agent has to solve an intermediate problem 

of choosing the pricing probability for his expected utility. In other words, the agent tries to take 

into account all possible scenarios he might face and among these, he maximizes his utility 
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under the “worst” one. The problems where the agent is facing some uncertainty in choosing 

his pricing probability are called Robust Utility Maximization Problems or Utility Maximization 

Problems with Ambiguity. The optimization problem the agent need to solve becomes: 

 
sup inf EQ [U (Xπ − F )] ,  (1.4) 

T 
π  Q∈Q 

 

where π runs through a set of strategies and Q ∈ Q through a set of appropriate models. The 

case of the non robust optimization problem in (1.1) is obtained by taking the set Q = {P }. In 

Quenez [109], they studied the sup-inf problem above, and showed that, under some suitable 

conditions, there exists a saddle point for this problem using a duality approach. A complete 

solution in a complete market was given in Schied [119] under the condition that the set Q ad- 

mits the so-called “least-favorable” measure Q0 and that the probabilities in Q are all equivalent 

to P  . In this setting, the sup-inf problem becomes then equivalent to the standard utility maxi- 

mization problem under Q0. Schied and Wu [120] solved the problem without assuming that the 

priors are equivalent to the reference probability P which allows to handle many robust utility 

functional such as AVaR. However, this comes with a price: dropping the equivalence of prior 

models may lead to arbitrage strategies under the “least favorable” model. For more references 

on utility maximization problems of type (1.4), see Talay and Zheng [128], Föllmer and Gun- 

del [49] and Hernández-Hernández and Schied [65] among many others. 

Robust decision makers might want their decisions to be insensitive to specification errors, 

whereas in the optimization problem in (1.4), we are not taking them into account. Motivated by 

this, Maccheroni et al. [91] suggested modeling agent preferences by adding a relative entropy 

penalty function γ  to the problem in (1.4), that is, 

 
sup inf EQ [U (Xπ − F )] + γ(Q).  (1.5) 

T 
π  Q∈Q 

More generally, the penalty term γ(Q) measures a “distance” between the probability Q and the 

reference probability P and will penalize certain scenarios against others. In Anderson et al. [3] 

and Hansen et al. [62], discounted entropic penalty was used in a Markovian setting and hence 

Hamilton-Jacobi-Bellman (HJB) equations were derived to solve the problem. In Bordigoni et 

al. [18], they addressed the robust utility maximization problem in a continuous setting which is 

non Markovian by using stochastic control techniques and BSDEs. More precisely, they studied 

the following problem: 
sup inf U(π, Q),  (1.6) 
π  Q∈Q 
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where again π  runs through a set of strategies and Q ∈ Q through a set of appropriate models, 

and the process U  is defined as follows: 

 
U(π, Q) := EQ[U0,T  + βR0,T (Q)], 

 
where the first term in the expectation corresponds to the utility term coming from consumption 

and final wealth and the second term is the entropic penalty term. The factor β might be seen 

as a parameter that measures the degree of confidence of the reference probability P : The 

higher β  is, the more confident we are in P . The main novelty in the work of Bordigoni et al. [18] 

is that they only assumed the utility term to be only exponentially integrable and not bounded 

as it is assumed usually. In Faidi et al. [47], they generalized the work of Bordigoni et al. [18] to 

other types of penalty terms by using f-divergence penalties and time-consistent penalties in a 

Brownian filtration. 

 

1.1.3 Main contributions 
 

Motivation. There are few works studying robust utility maximization problems in a jump set- 

ting. First, there is the work of Jeanblanc et al. [72] in which they solve the same problem as 

in Bordigoni et al. [18] in a discontinuous filtration with a one-point jump distribution and an 

entropic penalty. Also, Laeven and Stadje [84] addressed a robust utility maximization problem 

in a jump setting with general penalty but they assumed the payoffs to be bounded. The bound- 

edness condition might be very restrictive. Indeed, payoffs as simple as (WT )+ or |WT |, where 

W  is a Brownian motion and T  is a final time, do not verify this condition. In our first work, in 

e estimate mn from (�� HYPERLINK \l "_bookmark165" �4.20) to have a good approximation of m∗ 

tion to be bounded but to only be exponentially integrable. This obviously comes with a price: 

before proving the existence of an optimal pricing probability, we first need to establish some 

estimates. This is crucial to prove the well-posedeness of the problem and to show that some 

key quantities of the problem are well controlled (see section 2.3 for more details). 

Now, we start by introducing the setting of our work and some notations. Let (Ω, F, F, P ) be a fil- 

tered probability space with finite time horizon T < ∞ and a filtration F satisfying the usual con- 

ditions of right continuity and completeness, in which all semimartingales are taken to have right 

continuous paths with left limits. We assume that F0 is trivial and F = FT . On this stochastic ba- 

sis, let W be a d-dimensional standard Brownian motion and let µ(dt, dx) = (µ(w, dt, dx)|w ∈ Ω) 

denote an integer-valued random measure on ([0, T ] × E, B([0, T ]) ⊗ E) with E  := Rd\{0} 

equipped with its Borel σ− field E := B(E). Let Ω̃  := Ω × [0, T ] × E  and P̃ := P ⊗ E where P 
is the predictable σ− field on Ω × [0, T ]. We say that a function on Ω is predictable if it is P− 

measurable. We denote by ν := νP (w, dt, dx) the compensator of µ under P . We will assume 

that the compensator is absolutely continuous with respect to λ × dt with a density ξ. More 
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precisely, we assume that, 
 

ν(w, dt, dx) = ξt(w, x)λ(dx)dt,  (1.7) 

where λ  is a σ− finite measure on (E, E), that satisfies the following condition:   E  1∧|x|2λ(dx) < 

∞ and the density ξ  is positive and bounded: 

0 < ξt(w, x) ≤ Cν  < ∞,  P × λ(dx)dt − a.e.  for some constant Cν.  (1.8) 

Let µ denote the compensated measure of µ: 

µ := µ(w, dt, dx) − ν(w, dt, dx).  (1.9) 

To alleviate the notation, the stochastic integrals with respect to W , µ  and ν  will be denoted as 
 

follows: 

 ( )  := 
∫ t

  ( )  := 
∫ t ∫

 

 
 ( ) ( 

 
 

)  ( ) 

˜ 

:= 
∫ t ∫ 

 
 ( ) ( ) 

η · W  t  ηsdWs, 
0 

ψ � µ  ψ    x  µ  ds, dx  , 
0 E 

ψ � ν  t  ψs  x  ν  ds, dx  , 
0 E 

for η progressively measurable process and ψ a predictable process verifying T |ηs|2ds < ∞ 

and (|ψ|2 �  ν)T  <  ∞, P  −a.s. We will also assume that W  and µ  satisfy the following weak 

representation property with respect to P and F: Every local martingale M with respect to 

(F, P ) admits the following decomposition: 

 
Mt = M0 + (η · W )t + (ψ � µ)t,   ∀t ≥ 0, P − a.s.  (1.10) 

As mentioned previously, we will work in a more flexible framework under which we assume 

that the final wealth is only exponentially integrable and not necessarily bounded. We introduce 

the following spaces: 

• Lexp is the space of all FT -measurable random variables X  such that: 

 
E[exp(γ|X|)] < ∞,  ∀γ > 0. 

• Dexp is the space of progressively measurable processes (Xt)0≤t≤T with 

E 

"
exp

 

γ ess sup|Xt|

!# 
< ∞,  ∀γ > 0. 

• Dexp is the space of progressively measurable processes (Xt)0≤t≤T with 

E 

"
exp

 

γ 

∫

0

T 

|Xs|ds

!# 
< ∞,  ∀γ > 0. 
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• H2,p  is the space of predictable processes ψ such that 
 

・ " # p ・ 1 
 

 ∫ T 
2 

2 p 

 

 
where 

・E 
0    

|ψ|s,λds  ・  , 

|ψ|s,λ := |ψs(x)| ξs(x)λ(dx). 
 

 
 

• H2,p  is the set of all predictable processes η such that 
 

・ ∫ ! p ・ 1 

E ・ 
0   

|ηs| ds  ・ < ∞. 

 
 
 

Now that we have introduced all the notations, we can state our robust optimization problem. 

Given a probability Q ≪ P  on FT , we denote by D = (Dt)0≤t≤T  its Radon-Nikodym density 

with respect to P , that is, 
D  = E

  
dQ . F

  
,  t ≥ 0. 

t 
dP .  t 

We will identify the probability Q ≪ P  with the density process (Dt). (Dt) is càdlàg nonnegative 

P − martingale and we can show that it can be represented as exponential martingale, i.e., there 

exists predictable processes η and ψ such that, 

 
Dt = E ((η · W ). + (ψ � µ).)t ,   t ≥ 0, Q − a.s.  (1.11) 

The case η ≡ 0 and ψ ≡ 0 corresponds to the reference probability P . We will be penalizing 

the probability Q through the processes η and ψ, that is we consider a time-consistent penalty 

function of the following form: 

 ( ) := 
" ∫ T   

(

 )ds. F 
#

 
 

 
 (1.12) 

γt Q  EQ  r  s, w, ηs, ψs  , 
t  . 

 

where r : [0, T ] × Ω × Rd × L2(E, λ; R) → [0, ∞] is a suitable function that is convex and lower- 

semicontinuous in (η, ψ) and such that r(t, 0, 0) = 0. The latter condition is natural since the 

“distance” of P from P is supposed to be zero. In the following, we will work with probabilities 

that have a finite penalty, i.e., we consider Q ∈ Qf  where 

Qf  := {Q ≪ P, γ0(Q) < ∞}.  (1.13) 

t

E



Introduction

15 

 

 

dP 

h    i 

2

 

2
・ 
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S

Sδ

2 
+ f (ψt(x))ξt(w, x)λ(dx) dt

Q s r  s, ηs, ψs  ds,
t

 

In order to solve the optimization problem with the help of BSDE, we need to introduce some 

growth condition on the penalty function. In a Brownian setting, Faidi et al. [47] assumed the 

penalty function to be bounded from below by the relative entropy. We will keep this condition 

and will assume that there exists K̃1, K̃2  > 0 such that, 

   γ0(Q) ≥ −K̃2  + K̃1H(Q|P ), 

where H(Q|P ) = EQ   log    dQ       is the entropy of Q with respect to P . A sufficient condition on 

the function r that guarantees that the above inequality is verified is the following: ∃K1, K2 > 0 

such that for all w ∈ Ω, t ∈ [0, T ], η ∈ Rd and ψ ∈ L2(E, λ; R), we have, 

 
(ffir) There exists K1, K2 > 0 such that for all w ∈ Ω, t ∈ [0, T ], η ∈ Rd and ψ ∈ L2(E, λ; R), we 

have, 

r(t, w, η, ψ) ≥ −K2 + K1 
 

|η|2 
+ 
∫ 
f (ψ(x))ξt(w, x)λ(dx)

!
 

 
where f  is the function defined as follow: 

f (x) = 

・
(1 + y) log(1 + x) − x,  if x ≥ −1, 
・∞ otherwise. 

 
 

(1.14) 

 

With a particular choice of the function r, we can retrieve the case of relative entropy penalty. 

In fact, letting r(t, η, ψ) = 1 |η|2 + E  f (ψ(x))ξt(x)λ(dx), we show in Proposition 2.5.2 in Chapter 

2, that with this choice, the penalty γ0 corresponds to the entropy penalty, i.e., 

" ∫ T  |ηt|2 ∫ ! # 
 

 

  
 

Now that we have introduced all the notations, we introduce the optimization problem we solve 

in a jump setting. Given a positive adapted process δ, we define the discounting process: 

δ  := exp
 ∫ t 

0 

 
 

and the quantities: 

St  − δsds   , 
0 

≤ t ≤ T, 

 

Uδ  := α 
T  δ s Usds + 

 

 

  

Sδ     α   T UT , 
 

 

0 ≤ t ≤ T,   α, α ≥ 0 

t,T  δ  δ 
t  t 

(   ) := 
∫ T  Sδ   

( ) 0 

SSt

E0

R

γ0(Q) = EQ  = H0(Q|P ). 

δ 
t,T 

t
≤ t ≤ T,

E
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We consider the cost functional c defined as: 

 
c(w, Q) := Uδ 

 
 
(w) + βR0,T (Q)(w),  (1.15) 

 

which consists of two terms. The first one is a utility term that itself consists of the sum of the 

discounted utility over [0, T ] with a utility rate (Us) and a final discounted utility. The second term 

of the cost functional is simply a penalty term. Our goal is to solve the following optimization 

problem: 

Minimize the functional Q ›→ Γ(Q) := EQ[c(., Q)],  (1.16) 

over the set Qf . As said before, we will need some exponential integrability assumptions on the 

utility rate process (Us) and the final utility UT . Namely, we will assume that: 

 
(ffiu)    i. The discounting process is bounded by some constant ||δ||∞; 

ii. The process U belongs to Dexp; 
 

iii. The terminal utility UT belongs to Lexp. 

 
Existence of an optimal probability : In order to show the existence of an optimal probability 

Q∗ ∈  Qf , the starting point is to consider a minimizing sequence of probabilities Qn  and the 

associated densities Dn. Since each Dn  is nonnegative, using a Komlòs-type argument, we can 

construct a sequence Q
n 

that is a convex combination of the minimizing sequence (Qn) such 

that D
n 

convergence almost surely to some D
∞

. Next, by viewing the cost functional Q ›→ Γ(Q) 

as a function g of the whole density process (Dt), it is easy to see that this function g is convex. 

If it was moreover lower-semicontinuous with respect to P  -almost surely convergence, then the 

optimality of Q
∞ 

follows immediately. However, the lower-semicontinuity of g is not obvious at 

all and we must use some estimates of the functional Γ to show the optimality of Q
∞

. This is 

done in the section 2.3 in chapter 2. 

Link with BSDEs: We now explicit the BSDE with jumps that is verified by the dynamic value 

process associated with our optimization problem. By denoting S the set of stopping times with 

values in [0, T ], we define the value of the control problem started at time τ ∈ S instead of 0 and 

assuming one has used the model Q up to time τ : 
 

V (Q, τ ) := Q  ess inf 
Q ∈D(Q,τ ) 

Ṽ (Q , τ ), 

Ṽ (Q , τ ) := EQ  [Uδ    |Fτ ] + βEQ  [Rδ    (Q )|Fτ ], 
 

where D(Q, τ )  :=  {Q   ∈  Qf ,  Q   =  Q  on Fτ }. The key point to derive the BSDE verified by 
the dynamic value process is to use Bellman Optimality Principle from stochastic control. More 
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t

τ

˜

Jτ  = Sτ V (τ ) + α  St Utdt + β
0 0   

St r(t, ηt, ψt)dt, dt × dP − a.e.  (1.17) 

 
 

precisely, we define as in Karoui [78] the minimal conditional cost at time τ by 
 

 
 

where, 

J(Q, τ ) := Q  ess inf 
Q ∈D(Q,τ ) 

Γ(Q , τ ), 

Γ(Q, τ ) := EQ[c(·, Q)|Fτ ]. 

Then, the Bellman Optimality Principle states the following: 
 

1. The family {J(Q, τ )|τ  ∈ S, Q ∈ Qf } is a submartingale system, that is for any Q ∈ Qf  and 

stopping times σ ≤ τ , we have, 

EQ[J(Q, τ )|Fσ] ≥ J(Q, σ)  Q − a.s. 
 

2. Q ∈ Qf  is optimal if and only if the family {J(Q, τ )|τ  ∈ S} is a Q-martingale system which 

means that for any stopping times σ ≤ τ 
 

E
Q・[J(Q・, τ )|Fσ] = J(Q・, σ)  Q・ − a.s. 

 

3. For each Q ∈ Qf , there exists an adapted RCLL process JQ = (JQ)t∈[0,T ] which is a right 
closed Q-submartingale such that for every stopping time τ 

 
JQ = J(Q, τ ) Q − a.s. 

Then, we use the relationship between the minimal conditional cost and the process V . Indeed, 

by Bayes’ formula and the definition of Rτ,T (Q ), it is easy to see that V (Q , τ ) depends only on 

the values of the density process D  on [τ, T ] and is therefore independent of Q. Hence, we can 

denote V (Q, τ ) by V (τ ). From the third point of martingale optimality principle, there exists an 

adapted RCLL process denoted (JQ)t∈[0,T ] such that J(Q, τ ) = JQ, Q − a.s for every stopping 
t  τ 

time τ . Comparing V (τ )  and JQ  for Q  ∈  Qe   :=  {Q  ∈  Qf , Q  ∼  P }  leads us to the following 

relation: 
Q  δ 

τ 

∫ τ 
δ
 

f 

∫ τ 
δ
 

 

Choosing Q  = P  in the above equation, from the Bellman optimality principle, JP  is a P  − 

submartingale and thus we deduce that V  is a P  -special martingale, i.e. its canonical decom- 

position can be written as: 

V = V0 + MV  + AV , 

where MV  is a local martingale and AV  is a predictable finite variation process. By the weak 

representation assumption, the local martingale part can be expressed as two integrals with 
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respect to the Brownian motion and the compensated random measure. The two first point of 

the Bellman optimality principle and (1.17) can tell us more about the finite variation part. This 

is shown in the next theorem. 

 
Theorem 1.1.1. Assume assumptions (ffiu) and (ffir) hold. If the optimal probability Q

∞ 
is 

2,p 

equivalent to P , then (V, Z, Z̃) is solution in D0 × H × Hλ     of the following BSDE: 
・
・・dV   = 

 
δ V  − αU  + βr∗ 

 
t, 
Zt 

, ξ  
Z̃t 
!! 

dt − Z dW  − 
∫
 

 
 

Z̃ (x)µ̃(dx, dt), 

・ 
VT = αUT 

where r∗ is the Fenchel conjugate of r defined as: 

r∗(t,  ,  ) = sup 
η∈Rd,ψ∈L2(λ) 

(  · η + 
∫
 (x)ψ(x)λ(dx) − r(t, η, ψ)). 

 

Note that thanks to (ffi ), denoting f (t, v,  ,  ) the driver of the above BSDE, we have, 
r       

 
( ) + + + 

| |2    
+

 ∫ 
∗ 
  ̃

(x) 
  

  

 
( )  ( ) 

where f ∗ the Fenchel conjugate of f is given by, f ∗( ) = e  −  −1. This is why this type of BSDE 

is called Quadratic-Exponential BSDEs with jumps. In Karoui et al. [79] existence of solution 

of this type of BSDEs is shown by constructing a sequence of exponential semimartingales 

which converges and using stability results to prove the convergence of the finite variation and 

martingale parts. The unicity in their work was proved only in the case of bounded terminal 

condition. We close this section by stating a comparison result which is needed to prove unicity 

(see Proposition 2.4.4). 
 
 

Proposition 1.1.2. Assume that for k  = 1, 2,  (V k, Zk, Zk) is a solution of the BSDE (??) in 
Dexp × H2,p × H2,p associated with (Uk, U

k 
). If (U 1, U 

1 
) ≤ (U 2, U 

2 
), then, 

0 λ  T  T  T 

  1 2 

∀t ∈ [0, T ],   Vt   ≤ Vt  P − a.s. 

Comparison results are usually obtained through an estimate of the quantity ((V 1 − V 2)+)2 

and use Itô-Tanaka’s formula. In contrast, in our case, even though the terminal condition is 

not bounded, we were able to show the unicity of the solution of our BSDE by making use of 

the convexity property of the generator and estimating the quantity V 1 − θV 2 for θ ∈ (0, 1). Our 

result is an extension of the work of Briand and Hu [20] in a discontinuous setting. 

1βKE

E

E (1.18) 

|f  α|Ut| βK1
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1.2 Systemic Risk Measures and their Estimation using Stochas- 

tic Algorithms 

Univariate risk measures are widely used in the finance and insurance industry and the theory 

behind is now well known and developed. Risk measures can be seen as a mapping that links 

each risk factor X (a random variable) to a real number representing the risk associated with 

this risk factor. Now, from the point of view of a risk manager of an insurance company, who 

observes the losses of different contracts (or the losses of different lines of business), how the 

global and individual risks can be assessed ? In fact, the risk factor X, which represents the 

losses, is no longer a single random variable but a random vector. In this case, what could be 

the risk of it ? Should it be a single amount ? or a real vector ? How can we compute it ? In 

this section, we try to give answers to this questions. We first start by recalling the basics of 

univariate risk measures. 

 

1.2.1 Univariate Monetary Risk Measures 
 

Since the seminal paper of Hodges and Neuberger [66] in 1989, pricing using utility criterion 

has been a popular approach to price claims in incomplete markets. Let’s consider the simple 

case of an agent with a utility function u  who wants to buy a claim X. The agent is willing to 

pay the maximal amount π(X) such that the expected utility if he enters into the transaction 

remains the same as if does not, that is: 

 
E[u(X − π(X))] = u(0). 

The price π(X), which is called the indifference price (see Carmona [24] or Munk [101]), is 

not a transaction price but only an upper bound to the price of this claim. Let’s be more 

explicit and suppose that the agent’s utility is an exponential one with the following form: 

u(x) = −γ exp(− 1 x) where γ  is the risk tolerance of the agent. In order to decide whether 

to buy the claim or not, the agent will try to find the indifference price π(X) by solving the above 

equation and will obtain that, 

π(X) = −γ ln E 
 

exp 
 

− 
1 
X

   

. 

This indifference price π(X) actually verifies some desirable and intuitive properties: it is in- 

creasing, convex and translation invariant in the sens that π(X + m) = π(X) + m. These 

properties are known in the literature as axioms and constitute the basis of the modern theory 

of risk measure. 

This axiomatic approach of pricing rule was first introduced in insurance under the name of 
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convex premium principle (see Deprez and Gerber [38]) and was then developed in the finance 

context (see El Karoui and Quenez [45]). To summarize, when adopting the exponential utility 

framework, we end up with a functional π, which is nothing but the well known entropic risk 

measure (see for instance Föllmer and Knispel [50]). It is therefore possible to adopt a pricing 

approach based on risk measures which provides a suitable framework with a desirable set of 

properties mentioned above. This method consists in replacing the maximization utility criterion 

by minimizing risk exposure. The risk measure approach is the natural extension of the hedging 

and pricing problem in complete markets. Indeed, in a complete market, in the Black-Scholes 

world, there is a unique risk-neutral measure, such that with delta-hedging, the agent ends with 

no risk and no profit. In an incomplete market, an extension of this idea would be that the agent 

charges a price such that with dynamic hedging, he minimizes his risk exposure. Therefore, 

given a vanilla option C(ST ), the problem in (1.1) is replaced by the following one: 

V (x) := inf 
π∈ffi 

η(C(ST ) − Xπ,x),  (1.19) 

where η is a risk measure. Note that the utility maximization problem in (1.1) can also be 

retrieved with the risk minimizing approach. Indeed, for a financial loss X, taking η(X) = 

E[−U (−X)], then it is easy to see that, 

minimizing η(C(ST ) − Xπ,x) ⇔ maximizing E[U (Xπ,x − C(ST )]. 

Univariate monetary risk measures have been introduced for the first time in the seminal paper 

of Artzner et al. [5] and have been the subject of intensive developments since then (see Frittelli 

and Gianin [54], Frittelli and Gianin [53], Jouini et al. [73], Acharya et al. [1] among many others). 

In their paper, risk measures are introduced through the Acceptance Sets that verifies certain 

axioms: Denoting L0(R) the space of random variables, a monetary risk measure is a map 

η  : L0(R) ›→ R that is defined as the minimal cash amount that needed to be added to a 

financial position X ∈ L0(R) to make the resulting payoff “acceptable”, i.e, 

η(X) := inf{m ∈ R, X + m ∈ A},  (1.20) 

where A ⊂ L0(R) is the acceptance set, is assumed to be monotone decreasing. One charac- 

terizing feature of the risk measure defined in (1.20) is the cash additivity property: 

 
η(X + m) = η(X) − m. 

In addition, the risk measure in (1.20) is said to be positively homogeneous if it verifies the 

following property: 

η(λX) = λη(X). 
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Subadditivity is also one important desirable property as it reflects the fact that the risk of a di- 

versified portfolio X +Y is always less or equal to the sum of the individual risks. Risk measures 

verifying all the properties above are called coherent risk measure. In many situations, the risk 

of a financial position might increase in a nonlinear way (think of a liquidity risk that might arise 

if a position is multiplied by a large factor). This led Föllmer and Schied [57] to relax the sub- 

additivity and positive homogeneity conditions and to require the weaker condition of convexity 

which reflects the effect of diversification on the risk. The corresponding risk measures are 

called convex risk measures. In Frittelli and Maggis [56], the mathematical interpretation of “di- 

versification should not increase the risk” is translated by the weaker quasiconvexity property: 

 
η(λX + (1 − λ)Y ) ≤ max(η(X), η(Y )). 

Therefore, they introduced the quasiconvex risk measures by only assuming monotonicity and 

quasiconvexity. 

Risk measures are widely used in the financial industry for risk management purposes. For 

instance, insurance underwriters use risk measures to compute (extra) capital allocations for 

their different lines of business. On the other hand, regulators use risk measures to set capital 

requirements for all market participants in a financial system. If there was one risk measure 

to cite, it would be definitely Value-at-Risk (VaR shortly) and its convex version Conditional 

Value-at-Risk (CVaR). This risk measure that finds its origins in the insurance industry, was 

introduced in the financial markets in the late 80s. Its popularity is due to its simplicity and its 

easy interpretation: It corresponds to the maximal loss that a portfolio can have with a fixed 

probability in a given time horizon. 

Other risk measures used by practitioners include utility-based shortfall risk measures (SR 

shortly) introduced by Föllmer and Schied [57] or Optimized Certainty Equivalent (OCE) risk 

measures introduced by Ben-Tal and Teboulle [10]. Given a loss function and a threshold, the 

shortfall risk of a financial position is defined as the minimal capital to add to the position such 

that the expected loss of the new position is below the threshold. It can be actually seen as a 

risk measure with the following acceptance set: 

A := {X ∈ L∞, E[l(−X)] ≤ λ}, 

where L∞ is the set of bounded variables, λ  is a threshold and l  is a loss function. In order 

to define a proper convex risk measure, the loss function l  must be increasing, convex and 

not identically constant. Moreover, The restriction to bounded variable is not necessary and we 

can allow for more general space. We will see in chapter 3 that Orlicz spaces are the natural 

spaces to work under. The framework of SR is very flexible because one can choose his own 

loss function according to his risk aversion. As for the OCE risk measures, we will discuss them 
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and their multivariate extension in the third section of this introduction. 
 

1.2.2 Multivariate risk measures 

When it comes to a system of financial institutions or portfolios, the question about the global 

risk carried by the system as a whole entity arises. For instance, the risk manager of a diversi- 

fied investment firm has to assess and control the collective risk of all the desks within the firm. 

An insurance company who provides risk transfers for its clients, needs to evaluate the risks of 

its contracts in order to set up an adequate risk sharing mechanism. From a regulatory point 

of view, the supervising authority of a financial market wishes to have a global view of the risk 

and the distribution of profits and losses of all market participants. Following the 2008 financial 

逤Ęisis, the traditional approach of measuring risk, that consists in considering each financial in- 

stitution as a single entity isolated from other institutions, has shown its limits. This has brought 

awareness of the need of new approach that first models the complex structure of a financial 

system and provides a metric of the global risk carried by the system. Many researchers have 

studied the structure of financial networks and the analysis of the contagion and the spread of 

a potential exogenous shock into the system. Among the many contributions on this subject, 

we mention the contagion model in Eisenberg and Noe [44] (see also Aït-Sahalia et al. [2]) and 

the liquidity cascade model in Hurd et al. [69] and Lee [86]. Much of the existing literature on 

the systemic risk has been focused on the study of risk of firms in isolation from each other and 

without taking into account any dependence structure. Indeed, to assess the risk of a system 

of portfolios X = (X1, ..., Xd), the traditional approach consisted in applying a univariate risk 

measure to each component, that is, the systemic risk measure R(X) can be written as: 
 

d 

R(X) = ηi(Xi),  (1.21) 
i=1 

where ηi is a univariate risk measure. Then, Chen et al. [27] proposed an approach that is very 

close in spirit to the axiomatic framework initiated by Artzner et al. [5]. They showed that any 

systemic risk measure verifying their axioms is the composition of a univariate risk measure 

η  and an aggregation function Λ. More precisely, if X  = (X1,  ...,  Xd) is a random vector of 

losses/profits, then any function R : L0(Rd) ›→ R verifying their axioms is the composition of a 

univariate risk measure η and an aggregation function Λ, i.e., 

 
R(X) = (η ◦ Λ)(X) = inf{m ∈ R, Λ(X) + m ∈ A}.  (1.22) 

The representation in (1.22) is known as the “Aggregate then Add Cash” approach as it consists 

to first, to aggregate the outcomes X1, ..., Xd  through the aggregation function Λ and to apply 

a univariate risk measure. One of the most common ways to aggregate multivariate risk is 
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to simply sum the risk factors, that is to take Λ(x) = 
Σd  xi. It is worth noticing that, while 

summing up profit and losses might seem reasonable from the point of view of a portfolio 

manager because portfolios profits and losses compensate each other, this aggregation rule 

seems inadequate from the point of view of a regulator where cross-subsidization between 

institution is not realistic since no institution will be willing to pay for losses of another one. The 

same argument is also valid in insurance where the principle of mutualization is flawed in the 

presence of heterogeneous clients. Moreover, this approach does not give the individual risk 

contribution of each institution in the systemic risk, preventing the regulator from taking action 

on the level of risky institutions. 

Motivated by these considerations, Biagini et al. [15] proposed another approach to measure 

the systemic risk. They first considered the systemic risk as the minimal capital that secures the 

system by injecting capital into the single institutions, before aggregating the individual risks: 
 

d 

R(X) := inf mi,  Λ(X + m) A .  (1.23) 
i=1 

This approach, known as “Add Cash then Aggregate” consists in adding the amount mi  to the 

financial position Xi  before the corresponding total loss Λ(X + m) is computed. The systemic 

risk is then measured as the minimal total amount 
Σd  mi injected into the institutions to 

make it acceptable. With this approach, a joint measure of total risk as well as individuals risk 

contributions to systemic risk is obtained. If m∗ = (m∗
1, ..., m∗

d) is an optimum, that is R(X) = 

Σd  m∗ and Λ(X + m∗) ∈ A, one could order the m∗ and hence be able to say that institution i 
requires more cash allocation or is riskier that institution j  if m∗

i   ≥ m∗
j . Another main novelty in 

Biagini et al. [15] is that they allow adding to X not only a vector of cash m but a random vector 

Y ∈ C ⊂ L0(Rd), which will represent admissible asset with random payoffs. 

Motivated by the use of risk measures in practice, Armenti et al. [4] suggested an extension of 

univariate SR risk measures by taking the aggregation function in (1.23) Λ(x) = lS(−x) where 

lS is a multivariate loss function (see below) and the acceptance set A = {X ∈ L0(R), E[X] ≤ 

0}. In the multidimensional setting, a multivariate loss function is defined in Armenti et al. [4] as 

follow: 

Definition 1.2.1. A function lS  : Rd  ›→ (−∞, ∞] is called a loss function if 

1. lS  is increasing, that is lS(x) ≥ lS(y) if x ≥ y; 

2. lS  is convex, lower semicontinuous with inf lS < 0; 

3. lS(x) ≥ xi − c for some constant c. 

A loss function lS is permutation invariant if lS(x) = lS(π(x)) for every permutation π of its 

components. 
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The first and second properties express the classical properties of preference and diversifica- 

tion in risk measure. The third one expresses a form of risk aversion: the loss function must 

put more weights on losses than a risk neutral evaluation. The permutation invariance property 

expresses the fact that the loss function should treat each component in the same way, the risk 

components being of the same type (think of banks or portfolios in a trading floor). One simple 

example of exponential loss function is the following: 
 

lS(x1, ..., xd ) = 
   1   d 

i=1 

 
eβxi 

 
+ αeβ 

 
d 

i=1 
α + d 
α + 1 

 
,  (1.24) 

where β > 0 is a risk aversion coefficient. α is what we call the systemic weight since by setting 

it to 0, the loss function becomes just a sum of individual losses. 

For integrability reasons, Armenti et al. [4] worked under the Orlicz heart, that is they considered 

loss vectors X (that is negative values of X corresponds to actual profits) that belong to: 

 
Mθ  := {X ∈ L0(Rd) : E[θ(λX)] < ∞, ∀λ ∈ R+}, 

where θ(x) = lS(|x|), x ∈ Rd. Now, for X  ∈ Mθ a loss vector, multivariate shortfall risk measures 

were defined as: 

 
Definition 1.2.2. The multivariate shortfall risk of X ∈ Mθ  is 

 
R(X 

 

) := inf  
d 

i=1 

 
: E[lS (X − m)] ≤ 0

)
 
 
.  (1.25) 

 

Armenti et al. [4] also showed that the risk measure in (1.25) verifies all the classical properties 

of the univariate shortfall risk measure including its dual representation. Besides, they proved 

that optimal allocations exists and characterized them through the first order conditions as 

shown in the next theorem. 

 
Theorem 1.2.3. [Theorem 3.4 in Armenti et al. [4]]. If lS  is a permutation invariant loss function, 

then for every X ∈ Mθ, risk allocations m∗ exist. They are characterized by the first order 
conditions: 

1 ∈ λ∗E[𝖮lS(X − m∗)]  and  E[lS(X − m∗)] = 0,  (1.26) 

where λ∗ is a Lagrange multiplier. Moreover, if lS(x + ·) is strictly convex along zero-sums 
allocations for every x with lS(x) ≥ 0, then the risk allocation is unique. 

In the next subsection, we discuss the numerical approximations of risk measures. In par- 

ticular, we are interested in the computational aspects of multivariate shortfall risk measures. 

# 
−

mi
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1.2.3 Numerical approximations for risk measures 

Motivations. In the financial industry, measuring financial risk relies on the availability of effi- 

cient algorithms for the estimation of risk measures and is one of the key issues for financial 

institutions and regulatory authorities. More precisely, we would like to approximate the infin- 

imum m∗  =  (m1
∗, ..., md

∗). The vector m∗ could have different interpretations: In insurance, it 

could for example serve as provisions/capital allocations for each line of business. We can also 

see m∗ as the vector of new premiums that the insurance would require for its clients in case of 

a renewal after observing the losses. 

In Armenti et al. [4], to obtain the optimal allocations in (1.26), they used a two-steps algorithm: 

1. For each m ∈ Rd, given a sample of X, approximate E[lS(X − m)] using Monte Carlo, 

Fourier or Chebyshev methods. 

2. Use a deterministic algorithm to find the infimum. 
 

The deterministic algorithm used to find the infimum is the sequential least squares program- 

ming algorithm (SLSQP). Even though this approach has the merit to be fast sometimes, it still 

has some disadvantages. First, the deterministic search algorithm for the minimum is sensitive 

to the starting point and one needs to be careful when setting it. Second, with this methods, we 

have no control over the error in the approximations and no confidence intervals are available 

to us. 

We propose here an alternative to the above method that is based on Stochastic Algorithms 

(SA) by taking advantage of the characterizing equations in (1.26). Stochastic algorithms, which 

we discuss briefly in the next paragraph, are efficient tools whenever we are looking for the 

zeros of a function that can be expressed as an expectation, see Duflo [42] and Shapiro et 

al. [122]. 

Many practical and theoretical problems in diverse areas can be reduced to finding the zeros 

of a certain function. Indeed, it suffices to notice that solving many problems consists at the 

end in optimizing some function F (.). If F (.) is differentiable, the optimization problem reduces 

to finding the root of h( ) = dF  ( ) . In the case where the function F or its derivatives can be 

observed directly without any errors, one could use many numerical methods for solving the 

problem such as deterministic gradient descent. In contrast, stochastic algorithms were moti- 

vated by problems when the function h is unknown explicitly but can be estimated. The basic 

paradigm in its simplest form is the following stochastic differential difference equation: 

 
Zn+1 = Zn + γnYn,  (1.27) 

 
where Yn is the noisy observable variable and γn is the step size sequence that must be chosen 

such as 
Σ 
γn   =  ∞  and 

Σ 
γ2  <  ∞. In the particular case, where h( )  =  E[H(X,  )], the 
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stochastic algorithms take the following form: 

 
Zn+1 = Zn + γnYn = Zn + γnH(Xn+1, Zn), 

where (Xn) is a sequence of i.i.d random variables having the same law as X. There exists 

many results on the almost surely convergence of (Zn) towards the zero ∗ of h under various 

conditions. Robbins and Monro [111] were the first ones to establish almost surely conver- 

gence results of stochastic algorithms, hence the name Robbins-Monro (RM) algorithm for the 

equation (1.27). In many cases, the analysis of these algorithms uses the so-called Ordinary 

Differential Equation (ODE) method introduced by Ljung [90]. The main idea is to show that in 

the long run, the noise is eliminated. Asymptotically, the behavior of the algorithm is the same 

as that of the “mean” ODE: 

˙ = h( ). 

However, the algorithm can show bad behavior as soon as the function h grows rapidly. More 

precisely, the almost surely convergence result (see for instance Duflo [42]) relies on the as- 

sumption that h has a sub-linear growth reducing drastically the scope of application of these 

algorithms. To fix this, Kushner and Sanvicente [81] introduced projection techniques to prevent 

the algorithm from explosion. This consists in projecting the sequence Zn into a compact set K 

that contains the zeros of h each time it goes outside of K. An excellent survey on projection 

techniques and their links with ODE can be found in Kushner and Yin [83]. 

Once the almost surely convergence is established, we are interested in the rate of conver- 

gence of the sequence (Zn − ∗) in order to establish Central Limit Theorems (CLT). It has 

been showed under different assumptions that the sequence (Zn − ∗)/
√
γn  converges in dis- 

tribution to a normal distribution (see Kushner and Yin [83], Ljung [90] or Ruppert [117]). In fact, 

with the choice of γn = c/n with c sufficiently large, a convergence rate of 
√
n can be obtained. 

But, this has a price: choosing c too large may lead to slower convergence as the effects of 

large noises early in the procedure might be hard to overcome later. To avoid this, one can 

think of moving average techniques as they allow to have smoother behavior and also to “for- 

get” the first terms of the sequence if the average window is chosen appropriately. Averaging 

algorithms were introduced in Polyak and Juditsky [108] and Ruppert [117] and then widely 

investigated by many researchers. Kushner and Yang [82] and Kushner and Yin [83] studied 

averaged algorithms in combination with projection and proved a CLT for them. 

In the context of risk measures, the stochastic algorithms framework can be very useful. Bardou 

et al. [6] use SA to estimate both VaR and CVaR. Their idea to compute both VaR and CVaR 

comes from the fact that they appear as the solutions and the value of the same optimization 

problem as pointed out in Rockafellar and Uryasev [113]. Moreover, both the objective function 

of the optimization problem and its gradient read as an expectation. This led them to define 
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σ2( ) = E[||H(X,  ) − h( )||2];
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consistent and asymptotically normal estimators for both quantities by using stochastic algo- 

rithms. Since VaR and CVaR are closely related to the simulation of rare events, they propose 

a parallel recursive variance reduction method based on importance sampling. In Dunkel and 

Weber [43], stochastic approximation algorithms are presented for the estimation of SR in the 

univariate case. The authors show that the estimators are consistent and approximately nor- 

mal, and they provide formulas for their rate convergence and their asymptotic variance. The 

performance of the proposed stochastic algorithms was investigated for various loss functions 

and P&L distributions. 

 
 

1.2.4 Main contributions 
 

Being motivated by the usefulness of stochastic algorithms, the results in Chapter 3 show how 

stochastic algorithms can be used to approximate multivariate shortfall risk measures intro- 

duced recently in Armenti et al. [4]. We first introduce consistent estimators and we then give 

central limit theorems for the study of their rate of convergence. This allow us to have con- 

fidence intervals, which was not the case with the two-steps algorithms proposed in Armenti 

et al. [4]. 

More specifically, let lS be a multivariate loss function and a vector of losses X ∈ Mθ. Under the 

assumptions of Theorem 1.2.3, there exists a unique risk allocation m∗ such that ∗ = (m∗, λ∗) 
is the unique root of the function h( ) = E[H(X,  )], where, 

H(X,  ) = 

 
λ∂mlS (X − m) − 1

! 
,  X  ∈ Mθ.  (1.28) 

As pointed out before, it is not possible to use the classical Robbins-Monro algorithm, as it 

requires the sub-linearity of the function h. Instead, we use the projected Robbins-Monro algo- 

rithm: 

Zn+1 = ΠK [Zn + γnH(Xn+1, Zn)],  Z0 = 0 ∈ K.  (1.29) 

We assume that K is a hyperrectangle such that ∗ is in the interior of K and that γn  c 

where c is a positive constant and γ ∈ ( 1 , 1]. To prove the convergence of Zn toward ∗, we use 

the ODE approach. This approach consists in showing first that ∗ is an asymptotically stable 

equilibrium point for the associated ODE with algorithm (3.5). This is done in Proposition 3.3.3 

in Chapter 3. Next, we introduce the following quantities: 
 
 

m2+p( ) = E[  H(X,  ) h( ) 2+p]; 
・・ Σ( ) = E[(H(X,  ) − h( ))(H(X,  ) − h( ))⊺], 
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and the following assumptions: 
 

(ffia.s.) i. h is continuous on K; 

ii. sup σ2( ) <  . 
∈K 

In the next theorem, we state the consistency result of the estimator in (3.5). 
 

Theorem 1.2.4. Assume that the sequence (Zn) is defined by algorithm (3.5) and that as- 

sumptions (ffia.s.) holds. Then, Zn → ∗ P −a.s. as n → ∞. 

Under the following stronger conditions (ffia.n.), Theorem 3.3.5 in Chapter 3 shows that the 

sequence (Zn) is asymptotically normal. 

(ffia.n.) i. m ›→ E[𝖮lS(X − m)] is continuously differentiable. Let A := Dh( ∗); 

ii. (Yn1|Zn− ∗|≤ρ) is uniformly integrable for small ρ > 0; 

iii. For some p > 0 and ρ > 0,  sup 
| − ∗|≤ρ 

m2+p( ) < ∞; 

iv. Σ(·) is continuous at ∗. Let Σ∗ := Σ( ∗). 

Theorem 1.2.5. Assume that γ  ∈ ( 1 , 1) and that assumptions (ffia.s.) and (ffia.n.) hold. Then, 

√
nγ (Zn − ∗) → N 

 
0, c2 

∫ ∞ 
ecAt Σ∗ ecA

⊺tdt

  

. 
 

If furthermore, cA + I is a Hurwitz matrix and cI − P  is positive definite with P solution to the 

Lyapunov’s equation: A⊺P  + PA = −I, then, 

√
n(Z  − ∗) → N 

 
0, c2 

∫ ∞ 
e(cA+ I )t Σ∗ e(cA⊺+ I )tdt

   

. 

 

From the above theorem, we can see the key role played by the constant c. In order to have 

the best rate of convergence, c must be sufficiently large but as said before, this can lead to 

slower convergence (note that c appears also in the asymptotic covariance matrix). In order to 

circumvent this problem, we are led to modify our algorithm by using averaging procedures. 

The following theorem describes the Polyak-Ruppert (PR) algorithm that we have used to ap- 

proximate optimal allocations. 

Theorem 1.2.6. Assume γ  ∈ ( 1 , 1) and that assumptions (ffia.s.) and (ffia.n.) hold. For any 

arbitrary t > 0, let  
Z̄n 

 

= 
γn 

t 

n+t/γn−1 

i=n 

 

Zi,  (1.30) 

n
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where any upper summation index u  ∈ R+ is interpreted as its integer part. If Σ∗ is positive 

definite, then we have the following CLT: 

 
 
 

where V  = A−1Σ∗(A−1)⊺. 

 
 

γ   

 
Z̄n

 

− Z∗
  

→ N 
 
0, V  + O 

  
1 

     
,  (1.31) 

 

The previous CLT asserts that under some conditions, the PR estimator is asymptotically 

normal. The asymptotic variance V depends on the quantities Σ∗ and A. In practice, these 

quantities are unknown and need also to be approximated in order to derive confidence inter- 

vals for our estimators. In Proposition 3.3.9 in Chapter 3, we provide consistent estimators of 

these two quantities. The proof relies mainly on the Martingale Convergence Theorem. 
 

Proposition 1.2.7. Assume (ffia.s.) and (ffia.n.) hold. 

If  → E[||H(X,  )||4] is locally bounded around ∗, then, 
 

n 

n  H Xk 
k=1 

, Zk−1 )
⊺H(Xk , Zk−1 ) → Σ∗ a.s.  (1.32) 

Let Aϵ  the matrix whose elements Aϵ (i, j) for i, j  ∈ {1, ..., d + 1} are defined as follows: 
 

Aϵ (i, j) :=
 1 Σ 

H (X  , Z 
i 

+ ϵej) − Hi(X  , Z  ), 

 
then, 

ϵn 
k=1 

k  k−1 k  k−1 

lim lim Aϵ  = A a.s.  (1.33) 
ϵ→0 n→∞ n 

 

By using the estimators for the matrices Σ∗ and A above, we are able to derive confidence 

intervals in one run. 

In Chapter 3, we test the RM and PR algorithms on different loss functions and different loss 

distributions. We started by a constructive and simple example in the case of the exponential 

loss function in (1.24) and a normal loss distribution. In the case d = 2, we can solve explicitly, 

in the same way as in Armenti et al. [4], the first order conditions and obtain closed formulas 

for optimal allocations: 

2 i  ,   if α = 0, 

m∗
i   = 

・
 

・・ 

2 
βσ2 

 
 

2 

 
+ 

1 
SRC(ρ, σ1, σ2, α, β),  if α > 0, 

β 

s

n
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where σ1, σ2 are the standard deviation of X1 and X2 and ρ their correlation. The Systemic Risk 

Contribution (SRC) is given by the following formula: 
・ 

αeρβ
2σ1σ2 

・
 

 SRC(ρ, σ1, σ2, α, β) = ln ・ 

1 + 
q

1 + 
( + 2) 

ρβ2σ  σ   

・ .
 

This shows that the optimal allocations are the sum of two components: an individual contribu- 

tion σ2 and a systemic contribution SRC. To push the analysis further, we consider a second 

loss function that is given by: 
 

S  1 

Σ 
i  1 Σ 

+ 2 
 

 

Σ 
+  + 

l  (x  , ..., xd) = x 
i=1 + 

i=1 
(xi ) + α 

i<j 
xi xj , 

and because we want to model the losses of insurance contracts, we consider a multivariate 

Compound Poisson distribution for the loss vector distribution with d = 10. We implement the 

estimators and provide confidence intervals using Python. Detailed results can be found in 

section 3.4.2 of Chapter 3). 

 

 
1.3 Multivariate Optimized Certainty Equivalent Risk Measures 

 
In this section, we present a new class of multivariate risk measures inspired from Optimized 

Certainty Equivalent (OCE). 

 
 

1.3.1 Univariate Optimized Certainty Equivalent Risk Measures 
 

In their classical work, Von Neumann and Morgenstern [131] have developed a set of axioms 

concerning preferences over random payoffs. Under these axioms, a random variable X  is 

preferred against a random variable Y  if and only if there exists a utility function u, unique up 

to a monotone increasing affine transformation, such that E[u(X)] ≥ E[u(Y  )]. Moreover, the 

Certainty Equivalent (CE) of a random variable X is defined by: 

Cu(X) := u−1(E[u(X)]).  (1.34) 

It is the sure amount for which the decision maker is indifferent to the random payoff X, that is, 

u(Cu(X)) = E[u(X)]. When u is strictly increasing, the preference order in terms of expected 

utility is equivalent to, 

X ≥ Y  if and only if Cu(X) ≥ Cu(Y ). 

2

− e
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Bühlmann [23] introduced another certainty equivalent called u-mean. It is defined for any ran- 

dom variable X by Mu(X) satisfying 

E[u(X − Mu(X))] = 0.  (1.35) 

The last equation is also know as the principle of zero utility. 

For arbitrary utility functions, the certainty equivalent does not have the additivity property, 

except for the exponential case. This has led the authors in Ben-Tal and Teboulle [11] to suggest 

a new certainty equivalent that possesses many of the properties that the classical certainty 

equivalent in (1.34) possesses only for the exponential utilities. They considered a decision 

maker expecting to receive a payoff X  in the future and has the possibility to consume part of 

it at present. Let u denotes his utility. If he chooses to consume η amount of cash, the resulting 

“present value” of X is then η + E[u(X − η)]. Here the utility function can be interpreted as a 

discounting function. Hence, the sure present value of X denoted Su(X), which is called the 

Optimized Certainty Equivalent (OCE) in Ben-Tal and Teboulle [11], is the result of an optimal 

allocation of X between present and future consumption, i.e., 

 
Su(X) := sup  η + E[u(X  η)] .  (1.36) 

η∈R 

There exists a strong relationship between certainty equivalents and risk measures. In fact, any 

certainty equivalent inducing a preference order on random variables generates a correspond- 

ing risk measure ρ, and vice versa: 
 

ρ(X) = −CE(X), 

where CE(X) is any certainty equivalent in (1.34) or (1.35). One important example is given by 

the relationship between shortfall risk measures and the u-mean certainty equivalents. Indeed, 

if the utility function is strictly increasing, it is easy to see that, 

 
ρ(X) := inf{η, E[u(X − η)] ≥ 0} = −Mu(X). 

Inspired by this, Ben-Tal and Teboulle [10] re-examined the OCE, extended its main properties 

and put it in perspective of the recent theory of risk measure. They showed that, 

 
ρu(X) = −Su(X),  (1.37) 

is a convex risk measure under some reasonable conditions on the utility function u. More 

precisely, let U denote the set of utility functions u  : R ›→ [−∞, ∞) that are proper, closed, 

concave and nondecreasing functions. Furthermore, assume that u(0) = 0 and 1 ∈ ∂u(0). 
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Then, it is easy to show that ρu  is a convex risk measure. 

The OCE provides also a simple way to generate classical risk measures via particular choices 

of a utility function. We give here some interesting choices of utility functions that allow to 

retrieve some of the classical risk measures. 

Example 1.3.1. (Exponential Utility Function) 

Let u(x) = 1 − e−x. By solving (1.36), we get, 

Su(X) = − log E[e−X ]. 

By taking the negative of Su, we obtain the classical entropy risk measure. 

Example 1.3.2. (Quadratic Utility) 

Let 
・
・・ x − 

1 
x2    if x < 1, 

2 
otherwise. 

Let X be a bounded random variable. A direct computation from (1.36) yields, 

Su(X) = µ − 
1 
σ2, 

where µ := E[X] and σ2 is the variance. The corresponding risk measure ρ(X) = −Su(X) is 

know as the mean-variance risk measure. 

In the next example, we show that the risk measures in Pflug and Ruszczynski [107] and 

the popular risk measure CVaR is just a special case of the OCE via piecewise linear utility 

functions. 

Example 1.3.3. (Piecewise Linear Utility) 

Let 

u(t) = 

・
・γ2x    if x ≤ 0, 

where 0 ≤ γ1 < 1 < γ2. By rewriting the utility function u as: 

u(x) = γ1x+ − γ2x−, 

we therefore obtain the following convex risk measure: 

 
ρ(X) = inf {η − γ2E[(−η − X)+] − γ1E[(η + X)+]. 

With the special case of γ1 = 0 and α := 1/γ2, we retrieve the case of CVaRα(see Rockafellar 

u(t) = 
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and Uryasev [113]), i.e., 
 
 

CV aR = inf  η + 
η∈R 

 
1 
E[(η + X)−] , 

α 
 

More recently, Drapeau et al. [39] studied OCE risk measures from the perspective of loss 

functions and under Orlicz spaces (instead of L∞). In their work, a function l : R ›→ R is called 
a loss function if 

 
1. l is increasing and convex; 

 
2. l(0) = 0 and l(x) ≥ x; 

3. l(x) > x for all x such that |x| is large enough. 

In the following, we give a summary of the properties of OCE risk measures in the univariate 

case. First, let (Ω, F, P ) be probability space and l∗ denote the convex conjugate of l, i.e., 

l∗(y) = supx∈R{xy − l(y)}, a financial position X  is assumed to belong to the Orlicz heart, 

Xl  := {X ∈ L0, E[l(c|X|)] < ∞ for all c > 0}, 

and the corresponding Orlicz space is given by 
 

X∗
l   := {Y  ∈ L0, E[l∗(c|X|)] < ∞ for some c > 0}. 

For X ∈ Xl, the OCE risk measure is then obtained from (1.36) by taking u(x) = −l(−x): 

ρ(X) = inf {η + E[l(−X − η)]}.  (1.38) 

They showed that ρ is a well defined risk measure taking values in R and derived a dual repre- 

sentation. We summarize this in the following proposition: 

 
Proposition 1.3.1. [Proposition 1.3 in Drapeau et al. [39]] Let l be a loss function. Then the 

Optimized Certainty Equivalent on Xl  is a lower semicontinuous cash additive risk measure 

taking values in R. 

In addition, for any X  ∈ Xl, there exists an optimal allocation η∗ = η∗(X) ∈ R such that, 

ρ(X) = η∗ + E[l(−X − η∗)], 

and this optimal allocation η∗ satisfies 
 

E[l  (−X − η∗)] ≤ 1 ≤ E[l  (−X − η∗)].  (1.39) 
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Finally, the OCE has the representation, 

 
ρ(X) = max 

Q∈M1,l∗ 

 
EQ

 

[−X] − EP 
 
l∗

  
dQ 

       

, X ∈ X , 
 

where M1,l∗ is the set of probabilities measures which are absolutely continuous with respect 

to P  and whose densities are in X∗
l . 

 
1.3.2 Main contributions 

From a practical point of view, the approach of Armenti et al. [4] on systemic risk measures 

based on multivariate loss function constitutes one of the major works that can find applications 

in the real world. Nevertheless, the choice of the multivariate loss function and its interpretation 

remains one of main challenges in practice. Univariate OCE risk measures does not have this 

flaw. In fact, even though it is also based on loss functions, with the OCE framework, one can 

retrieve the classical risk measures such as CVaR, mean-variance, entropic risk measure, etc. 

This allows the practitioner to have a financial interpretation when using OCE risk measures. 

Moreover, as stated in Theorem 1.2.3, the existence of optimal allocations in Armenti et al. [4] 

requires the permutation invariance of the multivariate loss function. We shall see that, with 

our new class of multivariate risk measures, this is no longer needed allowing us to deal with 

heterogeneous risk factors. 

Motivated by this, the objective of Chapter 4 is twofold: First, we extend the OCE risk measure 

to a multivariate setting where the system is allowed to be heterogeneous. Second, we use 

stochastic algorithms to approximate the multivariate OCE risk measures. To the best of our 

knowledge, there are only few works on the numerical approximation of univariate OCE risk 

measures (Drapeau et al. [39]). Since the optimal allocations are characterized as a zero of 

a function that can be expressed as an expectation, Drapeau et al. [39] proposed to use a 

deterministic root finding algorithm combined with Fourier method for the computation of the 

expectations. As mentioned in the previous section, this type of methods does not provide 

any control over the error of the estimations (no confidence intervals) and remains sensitive 

to the initial point of the deterministic root finding algorithm used. This is why we propose to 

use stochastic algorithms to circumvent these type of problems. We start by extending the 

definition of an OCE loss function in the multivariate case which is slightly different from the 

one introduced in Armenti et al. [4] and the multivariate OCE risk measure. 

Definition 1.3.2. A function lC : Rd ›→ (−∞, ∞] is called a multivariate OCE loss function, if it 

satisfies the following properties: 

1. lC  is nondecreasing, that is if x ≤ y componentwise, then lC(x) ≤ lC(y); 

2. lC  is lower-semicontinuous and convex; 
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dP 

(Σ

+ αe  i=1 λixi,  λi > 0,  α ≥ 0,  (1.40) 

C
θi θi θj

dP 
d

 

3. lC(0) = 0 and lC(x) > 
Σd  xi,  ∀x  ̸= 0. 

Note that in our definition of the loss function lC, we do not require permutation invariant 

property as it was the case in the previous section with the loss function lS. Next, we give 

examples of loss functions lC  that are used in the Section 4.3 in Chapter 4: 
 

Σ eλixi   − 1 Σd 

   d  +  θi  +  θi  +  θj 

l   (x) = 
Σ ([1 + xi]   ) − 1 

+ α 
Σ ([1 + xi]   )    ([1 + xi]   )    

,  θ
 

 

 

> 1,  α ≥ 0.  (1.41) 

 

For integrability reasons, we will work in the multivariate Orlicz heart Mθ  that was introduced 

previously in (1.2.2). On this space, we define the Luxembourg norm as: 

||X||θ  := 
  
λ > 0, E 

 

θ 

   
X 
    

≤ 1
  
. 

 

Under the Luxembourg norm, Mθ  is a Banach lattice and its dual with respect to this norm is 

given by the Orlicz space Lθ∗ 
: 

Lθ∗  
:= {X  ∈ L0, E[θ∗(λX)] < ∞,  for some λ > 0}. 

We also introduce the set of d-dimensional measure densities in Lθ∗ 
, that is: 

Qθ∗  
:= 
  
dQ  

:= (Z1, ..., Z  ),  Z  ∈ Lθ∗ 
, Z  ≥ 0 and E[Z  ] = 1

   
. 

 

Note that for Q ≪ P a vector of probabilities such that dQ ∈ Qθ∗ 
and a random vector X ∈ Mθ, 

dQ · X ∈ L1 thanks to Fenchel inequality and for the sake of simplicity, we will write EQ[X] := 

E[dQ/dP  · X]. 

Definition 1.3.3. Assume lC is a multivariate OCE loss function. The multivariate OCE is 

defined for every X ∈ Mθ as: 

 
R(X) = inf 

w∈Rd 

 

d 
 

i=1 

wi + E[lC(−X − w)]

)
 
 
.  (1.42) 

 

In the next theorem, we show that the multivariate OCE is a convex risk measure as defined 

in Föllmer and Schied [51] and gives its dual representation. The proof uses results of risk 

measures on Orlicz spaces in Cheridito and Li [29] and convex analysis in Rockafellar [114]. 

The univariate version of this theorem can be found in Drapeau et al. [39]. 

Theorem 1.3.4. The function R  in (1.42) is real valued, convex risk, monotone and cash 

i<j

λi i=1 
lC(x) = 

i=1 
i

k k
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dP

{ − − }

Σ
−E · 𝖮 − − − 

 EC   Q

i=1

 
 

invariant1, and in particular, is continuous and subdifferentiable. If lC  is positive homogeneous, 

then R is too. Furthermore, it admits the following representation: 

 
R(X) =  max   EQ[   X] α(Q) ,  (1.43) 

Q∈Dl∗ 

where the penalty function α  is defined for Q  =  (Q1, ..., Qd)  ≪  P  by: α(Q)  =  E 
h
lO
∗ 
CE  

  
dQ 

 i
 

and DlC
∗   

= {Q ≪ P,  α(Q) < ∞} := dom(α). 

Definition 1.3.5. A risk allocation is any minimizer of (1.42). When it is uniquely determined, 

we denote it RA(X). 

The next theorem states that the set of risk allocations is non empty and gives its charac- 

terization. 

Theorem 1.3.6. Let lC be a multivariate OCE loss function. Then, for every X ∈ Mθ, the set 

of risk allocations is non empty and bounded. Furthermore, risk allocations are characterized 

by the following first order condition: 

 

1 ∈ E[∂lC(−X − m∗)].  (1.44) 

Moreover, the supremum in (1.43) is attained for D∗ such that D∗ ∈ ∂lC(−X − m∗) a.s. and 

E[D∗] = 1. 

In Chapter 4, sensitivity results are also obtained for our multivariate risk measure. We first 

give the definition of the marginal risk contribution of a random vector Y ∈ Mθ  to X ∈ Mθ. 

Definition 1.3.7. For X,  Y  ∈ Mθ, we define the marginal risk contribution of Y  to X  as the 

sensitivity of the risk associated to X when an impact Y  is applied as 

R(X, Y ) := lim sup 
R(X + ϵY ) − R(X) 

.  (1.45) 
ϵ↘0 ϵ 

If R(X + ϵY ) admits a unique risk allocation RA(X + ϵY ) for small enough ϵ ≥ 0, then we define 

the risk allocation martingales of X with respect to the impact of Y  as: 

RA (X; Y ) : lim sup 
RAi(X + ϵY ) − RAi(X) 

,  i = 1, ..., d.  (1.46) 

ϵ↘0 ϵ 
 

Theorem 1.3.8. Let X, Y  ∈ Mθ and assume that l  is differentiable. Then, 

d 

R(X, Y ) = [Y  l  (   X  m∗)] = n [Y n],  (1.47) ∗ 

1. In the following sens: R(X + m) = R(X) − 
Σd  mi 

n=1 

i
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dP 

n

i=1 

・
・
H1(X, m) := 𝖮lC(−X − m) − 1,

・ m
2+p(m) := E[||H1(X, m) − h1(m)||2+p||,  p > 0, 

 

where m∗ is such that, E[𝖮lC(−X − m∗)] = 1, i.e. an infinimum for (4.1) and dQ∗ := 𝖮lC(−X − 

m∗). 
If furthermore, lC  is twice differentiable and such that we can interchange the differentiation and 

expectation of m ›→ E[𝖮lC(−X − m)] and M  := E[𝖮2lC(−X − m∗)] is invertible, then, 

• There exists a unique mϵ optimum of R(X + ϵY ) for small enough ϵ ≥ 0. 

• As a function of ϵ, mϵ  is differentiable and we have 
 

RA(X, Y ) = M −1V,  V   := −E[𝖮2lC(−X − m∗)Y ].  (1.48) 

Finally, we obtain in Section 4.3 estimators for the optimal allocations as well as the risk 

measure R(X). Because we do not assume growth conditions on the multivariate OCE loss 

function lC, we use projection techniques as in the previous section of this introduction. More 

precisely, let lC be a multivariate OCE loss function and let K be a hyperrectangle such that 

m∗ ∈ K. We define for X ∈ Mθ and m ∈ Rd: 
 
 

h1(m) := E[H1(X, m)], 
・・ 

σ2(m) := E[||H1(X, m) − h1(m)||2], 

 

・・ 
Σ(m) := E[(H1(X, m) − h1(m))(H1(X, m) − h1(m))⊺]. 

 

We introduce the following set of assumptions: 

(ffia.s.) i.  
Σ

n≥0 γn = +∞ and  
Σ

n≥0 γ2 < ∞. Namely, γn = c/nγ, where c > 0 and γ ∈ (1/2, 1]. 

ii. h1 is continuous on K; 

iii. sup 
m∈K 

σ2(m) < ∞. 

Theorem 1.3.9. Let (Xn) a sequence of random variables having the same law as X ∈ Mθ 

and define the sequence (mn) as follows: 

 
mn+1 = ΠK [mn + γnH1(Xn+1, mn)] ,  m0 ∈ L0,  (1.49) 

where ΠK  is the projection into K. Under (ffia.s.) we have, mn → m∗ a.s. as n → ∞. 

Once an estimator of m∗ is obtained, it comes the question of estimating the multivariate OCE 

R(X) = 
Σd  m∗

i   + E[lC(−X − m∗)]. A naive way consists in estimating R(X) in a two steps 
procedure: 

• Step 1: Use the estimate mn from (1.49) to have a good approximation of m∗. 
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  Σ 

2

Σ

d
 

i=1

n
 

n 
k=1

H2 x, R,m  R − F  x,m R− mi
lC −x −m

i

n

i=1

 

 
• Step 2: Use another sample of X to approximate R(X) using Monte Carlo: 

 

R(X) ≈ 
Σ 

m∗ + 
1 Σ 

lC(−X  − m∗).  (1.50) 
 

An alternative way to avoid this two steps procedure is to use a companion procedure (CP) of 

the algorithm (1.49) and to replace the quantity m∗ in (1.50) by its estimate at step k − 1, that 

is, 

1 n 
Rn 

n 
k=1 

( 
d 

i=1 
k−1) + 

lC(−Xk − mk−1)

! 
. 

Note that Rn is a sequence of empirical means of non i.i.d. random variables that can be written 
also as:     1 0 

 

where 

Rn+1 = Rn − 
n + 1 

H2(Xn+1, Rn, mn),  n ≥ 0,  R0 ∈ L  ,  (1.51) 

( ) := ( ) := 

 
Σd 

+ ( )

!
 

In Theorem 4.3.2, we prove the consistency of Rn using the step sequence (γn) instead of 

(1/(n + 1))n: 

Rn+1 = Rn − γnH2(Xn+1, Rn, mn),  n ≥ 0,  R0 ∈ L0.  (1.52) 

We need the following assumption: 

(ffiCP) i. m → E[lC(−X − m)] is continuous on K; 

ii. ∀m ∈ K lC(−X − m) ∈ L2 and m → E[|lC(−X − m)|2] is bounded around m∗. 

Theorem 1.3.10. Assume that both assumptions (ffia.s.) and (ffiCP) hold and let (mn) be given 

by (1.49) and (Rn) by (1.52). Then Rn → R(X) a.s. 

Finally, we give the CLT theorem using averaging techniques to avoid problems related to the 

specifications of the constant c. We introduce the following assumptions: 

(ffia.n.) i. h1 is continuously differentiable and let A := Dh1(m∗); 

ii. (H1(Xn+1, mn)1|mn−m∗|≤ρ) is uniformly integrable for small ρ > 0; 

iii. For some p > 0 and ρ > 0,  sup 
|m−m∗|≤ρ 

m2+p(m) < ∞; 

iv. Σ(·) is continuous at m∗ and Σ∗ := Σ(m∗) is positive definite. 

Theorem 1.3.11. Assume γ ∈ ( 1 , 1) and that assumptions (ffia.s.) and (ffia.n.) hold. For any 

arbitrary t > 0, we define the (PR) sequence (mn) as: 
 

   

m   :=
 γn

 

t 

n+t/γn−1 

 
i=n 

 
mi,  (1.53) 

m

k

. 

=
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γn  t

 
 

where any upper summation index is interpreted as its integer part. Then, we have 

s
 t 

(m
 

− m∗) → N 
 

0, A−1Σ∗(A−1)⊺ + O 

  
1 
   

.  (1.54) 
 

Note that in order to be able to derive confidence intervals for the estimators, we need to 

estimate the matrices A and Σ∗. This is done using the same method used in the previous 

section of the introduction. In section 4.3, we analyze and test the numerical methods above 

for the estimation of optimal allocations and the risk measure. We start by a bidimensional 

case with exponential loss function and a Gaussian distribution for which closed solutions are 

available. We then test our algorithms with a polynomial loss function and Multivariate Normal 

Inverse Gaussian distribution in a trivariate case. Finally, we compare our approach with the 

Monte Carlo method in terms of precision and computational time (see section 4.4 for more 

details). 
 
 

1.4 Future research perspectives 
 

We present here some future research perspectives regarding the three works in this thesis. 
 

• In the first part of this thesis (Chapter 2), we derive the BSDE characterizing the value 

process associated to our optimization problem under the assumption that the optimal 

probability Q∗ is equivalent to the reference probability P  . Therefore, one possible di- 

rection of future research is to see if this assumption always holds. This was proven in 

Bordigoni et al. [18] for the special case of an entropic penalty. 

Moreover, we are also exploring the numerical approximation of the solution of the QBS- 

DEJ in (1.18) as an extension of the work of Chassagneux and Richou [26] in the contin- 

uous case. 

• In the second work, we proposed stochastic algorithms to approximate multivariate Short- 

fall risk measures. This can find applications in the insurance industry: Current work is in 

progress to apply this framework to the construction insurance within the “Chair Risques 

Émergents en Assurance” under the aegis of Fondation du Risque, a joint initiative by Le 

Mans Université and Covéa. Another potential application of multivariate risk measures 

is in cyber insurance by using compound multivariate Hawkes processes for the vector 

of losses (see Bessy-Roland et al. [14]). Finally, a future direction of research concerns 

including variance reduction techniques in parallel with our stochastic algorithms. 

• In the last work, we introduced the multivariate extension of the OCE risk measures and 

proposed stochastic algorithms to approximate them. In Buehler et al. [22], univariate 

n
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OCE risk measures are used to solve a hedging problem by using deep learning (deep 

hedging). Now, suppose that a vector of future payoffs need to be hedged. Instead of 

hedging each single portfolio, an alternative would be to use using multivariate OCE risk 

measures to take into account the dependence structure between the payoffs. This might 

give better hedging errors for the vector of payoffs. 
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CHAPTER   2 

ROBUST UTILITY MAXIMIZATION 

PROBLEM IN A JUMP SETTING 
 
 

 
 
 

 

Abstract 
 

We study a robust utility maximization problem in the unbounded case with a general penalty 

term and information including jumps. We focus on time consistent penalties and we prove that 

there exists an optimal probability measure solution of the robust problem. Then, we charac- 

terize the dynamic value process of our stochastic control problem as the unique solution of a 

Quadratic-Exponential BSDE. 

 
2.1 Introduction 

 
One of the major problems in asset pricing is the valuation in incomplete markets. In such 

markets, the decision maker/agent could use the well known utility maximization approach and 

the literature is particularly rich on the subject (see for example Rouge and El Karoui [116], 

Hu et al. [68] Morlais [99] and Carmona [24] among many others). However, in many cases, 

the decision maker does not know the probability distribution (also called prior or model) gov- 

erning the stochastic nature of the problem she/he is facing. Thus, before solving the utility 

maximization problem, the decision maker is faced with an intermediate problem of choosing 

an “optimal” probability. This type of problems are called robust utility maximization problems 

or utility maximization problems under model uncertainty. In the mathematical finance litera- 

ture, we can find two types of approaches to solve robust utility maximization problems. The 

first one relies on convex duality methods which are presented in Quenez [109], Gundel [61], 

Schied [118] and Schied and Wu [120]. The second one, which we will follow in this article, is 

based on a stochastic control approach and the powerful tool of BSDEs. 

In this article, this uncertainty is captured by considering a set of plausible probability measures 

that will be penalized through a penalty functional. This penalty functional will measure the dis- 

tance between any plausible probability Q  and the reference/historical one denoted P  . In An- 

derson et al. [3] and Hansen et al. [62] for example, a hedging problem was addressed by using 

the classical entropic penalty under a Markovian setting and hence Hamilton-Jacobi-Bellman 
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(HJB) equations were derived in order to characterize the optimal strategies. The authors in 

Skiadas [126] have followed the same point of view and obtained a BSDE that coincides with 

the one describing a stochastic differential utility (see also Duffie and Epstein [40] and Duffie 

and Skiadas [41] for more about stochastic differential utilities). 

More recently, Bordigoni et al. [18] addressed a robust problem in a more general setting which 

is non Markovian by using stochastic control techniques. More precisely, they studied the fol- 

lowing robust maximization problem: 
 

sup 
π 

inf U(π, Q) (2.1) 
Q∈Q 

 

where π  runs through a set of strategies and Q ∈ Q through a set of models. The simplest 

case corresponds to the case where the set Q is the singleton {P } and U(π, P ) is simply the 

P -expected utility from a non bounded terminal wealth and consumption/investment portfolio. 

The term U(π, Q) is the sum of Q-expected utility and an entropic penalization term. The set 

Q is assumed to have certain properties and usually does not need to be specified in any de- 

tail. Their work is cast in the case of a continuous filtration and the first minimization problem 

was solved by proving the existence of a unique optimal probability Q∗. They also character- 

ized the value process of the stochastic control problem as the unique solution of a Quadratic 

BSDE (QBSDE). In the same spirit, Faidi et al. [47] studied the same problem using two type of 

penalties: the first one is the f  -divergence penalties in the general framework of a continuous 

filtration and the second one is the time-consistent penalties studied in the context of a Brown- 

ian filtration. For the latter, they also characterized the value process as the unique solution of 

a QBSDE. 

In this paper, we study the first minimization problem in (2.1) in the case of discontinuous fil- 

tration (where the information includes jumps) using time consistent penalties. Note that in our 

framework, the relative entropic penalty, as we will see further, is a special case of the class of 

time-consistent penalties. We first start by showing that the minimization problem in (2.1) is well 

posed and we prove the existence of an optimal probability Q∗ using a Komlós-type argument. 

Second, we prove that the value process of the minimization problem is described by a class of 

Quadratic-Exponential BSDE with jumps (QEBSDEJ) with unbounded terminal condition. We 

stress that for a given unbounded terminal condition, the study of Quadratic BSDEs is a difficult 

problem, see for instance Briand and Hu [19], Briand and Hu [20] and Barrieu and El Karoui [7] 

in the continuous framework and we emphasize that adding jumps to our optimization problem 

involves significant difficulties in solving the related BSDEs. Karoui et al. [79] have obtained 

existence result for this new class of BSDEs with jumps with unbounded terminal condition. 

However, they have showed uniqueness only in the bounded case. In this paper, we use the 

convexity of the generator of our BSDE to show the uniqueness of solution of the BSDE by 
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extending the work of Briand and Hu [20] in the Brownian setting. 

The paper is structured as follows. Section 2.2 establishes the general framework, in which we 

assume the existence of a stochastic basis carrying a Brownian motion and a compensated 

integer-valued random measure that possesses a weak predictable representation property. In 

section 2.3, we give a number of estimates for subsequent use. We then prove with the help 

of Komlòs theorem that there exists an optimal probability Q∗. Finally, in section 2.4, we treat 

our optimization problem from a stochastic control point of view, and show, thanks to Bellman 

Optimality Principle, that the corresponding value process is the unique solution of a QEBSDEJ. 
 
 
 
 

2.2 Framework of the optimization problem 

 
2.2.1 Setting and notations 

 
This section sets out the notation and the assumptions that will be assumed to hold in the 

sequel. Let (Ω, F, F, P ) be a filtered probability space with a finite time horizon T < ∞ and a 

filtration F = (Ft)t∈[0,T ] satisfying the usual conditions of right continuity and completeness, in 

which all semimartingales are taken to have right continuous paths with left limits. We assume 
that that F0 is trivial and F = FT . On this stochastic basis, let W be a d-dimensional standard 

Brownian motion and let µ(dt,  dx) = (µ(w,  dt,  dx)|w ∈ Ω) denote an integer-random valued 

measure on ([0, T ] × E, B([0, T ]) ⊗ E) with compensator ν  := νP (w, dt, dx) under P , where 

E := Rd\{0} is equipped with its Borel σ-field E := B(E). 

On (Ω̃, F̃) := (Ω × [0, T ] × E, F ⊗ B[0, T ] ⊗ E), we define the measure P  × ν by 

P  × ν(B̃) = E 

"∫

[0    ] 
1 ̃ (w, t, x)ν(w, dt, dx)

# 
,  B̃ ∈ F̃.  (2.2) 

 

We denote by P := P ⊗ E where P is the predictable σ-field on Ω ×[0, T ]. We say that a function 

on Ω is predictable if it is P-measurable. 

We will assume that the compensator ν  is absolutely continuous with respect to the λ ⊗ dt with 

a density ξ: 

ν(w, dt, dx) = ξt(w, x)λ(dx)dt,  (2.3) 

where λ is a σ-finite measure on (E, E), that satisfies the following condition: 
・
E  1 ∧ |x|2λ(dx) < 

∞ and the density ξ  is P̃-measurable, positive and bounded: 

0 < ξt(w, x) ≤ Cν < ∞,  P × λ(dx) × dt − a.e.    for some constant Cν.  (2.4) 
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˜
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2 2

ψ � µ  t  ,t ,t

 

Note that, thanks to (2.3), we have that ν({t} × E) = 0 for all t, and ν([0, T ] × E) ≤ CνTλ(E). 

For ψ a predictable function on Ω̃, we define its integral process with respect to µ as: 

( )  := 

・
・・ 
∫

[0   ]× ψt(x)µ(w, ds, dx)   if 
∫

[0  ]×
 |ψt(w, x)|µ(w, ds, dx) < ∞, 

 
 

(2.5) 
・ 

+ ∞ otherwise. 

In the same way, we define the integral process with respect to ν. 

Let µ be the compensated measure of µ 
 

µ(w, dt, dx) = µ(w, dt, dx) − ν(w, dt, dx).  (2.6) 

To alleviate the notations, we will omit the dependence on w in the different stochastic quanti- 

ties. In the following, we recall some properties that can be found in Becherer [8] or Jacod and 

Shiryaev [70]. First, for any predictable function ψ, the process ψ � ν is a predictable process 

whereas ψ  � µ  is an optional process. We recall that E[|ψ| �  µT ] = E[|ψ| �  νT ]. If (|ψ|2 �  µ)1/2 is 

locally integrable, then ψ  is integrable with respect to µ and ψ �  µ  is defined as the purely 

discontinuous local martingale (under P  ) with jump process E  Uµ({t},  dx). If the increasing 

process |ψ| � µ (or equivalently, |ψ| � ν) is locally integrable, then again, ψ  is integrable with 

respect to µ and is the purely discontinuous local martingale as in the first case and we have 

ψ  �  µ  = ψ 

˜
� µ − ψ  �  ν. Finally, if the process |ψ|2 �  ν  is integrable, then U  is integrable with respect to µ and Z � µ is a square integrable martingale, purely discontinuous, with predictable 

quadratic variation ⟨ψ � µ⟩ = |ψ|2 � ν. These properties and their proofs can be found in Section 

II.1.d of Jacod and Shiryaev [70]. 

We will assume that W and µ satisfy the following weak representation property with respect to 

P  and F: Every local martingale M with respect to (F, P ) admits the following decomposition: 
 

Mt = M0 + ( η · W )t + (ψ � µ)t  := M0 
t 

+ ηsdWs 
0 

+ (ψ � µ)t,  ∀t ≥ 0,  P − a.s.  (2.7) 

where η is a progressively measurable process and ψ a predictable process such that 

T 

0   
|ηs| ds < ∞,   (|ψ|  � ν)T  < ∞,  P − a.s.  (2.8) 

We introduce the following spaces: 
 
 
 

• Lexp is the space of all FT -measurable random variables X  such that: 

 
E[exp(γ|X|)] < ∞,  ∀γ > 0. 

E E
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0≤t≤T

λ

" ∫ !#

2
∫
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˜
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t t t t

 

• Dexp is the space of progressively measurable processes (Xt)0≤t≤T with 

E 

"
exp

 

γ ess sup|Xt|

!# 
< ∞,  ∀γ > 0. 

• Dexp is the space of progressively measurable processes (Xt)0≤t≤T with 
 

T 

E   exp   γ  
0   

|Xs|ds  < ∞,  ∀γ > 0. 

• H2,p  is the space of predictable processes ψ such that 
 

・ " # p ・ 1 
 

 ∫ T 
2 

2 p 

 

 
where 

・E 
0    

|ψ|s,λds  ・  , 

|ψ|s,λ := |ψs(x)| ξs(x)λ(dx). 
 

• H2,p  is the set of all predictable processes η such that 
 

・ ! p ・ 1 
 

 ∫ T 
2 

2  p 

E ・ 

2.2.2 The optimization problem 

0    
|ηs| ds  ・ < ∞. 

 

For every probability Q  ≪ P on FT , we denote by D = (Dt)0≤t≤T  its Radon-Nikodym density 
with respect to P , that is, 

D  = E
  
dQ . F

  
,   t ≥ 0. 

t 
dP .  t 

D  is a càdlàg nonnegative P -martingale. Let τn  := inf{t ≥ 0, Dt  ≤ 1/n} and consider the local 

martingale Mn  = 
・ t∧τn  D−1dDs. Thanks to the weak representation property, there exist two 

predictable processes (ηn) and (ψn), s ≤ τn, such that, 
・ t∧τn  |ηn|2ds < ∞ and (|ψ)|2 � ν)t∧τ    < 

s  s  0 s  n 

∞ and 
Dt∧τ  = E ((ηn · W ). + (ψn � µ).)t∧τ  ,   t ≥ 0,   P − a.s. 

n  ˜ n 

 
Consistency requires that we should have ηn  = ηn+1 dt ⊗ dP -a.e and ψn(x) = ψn+1(x) ν(dx) ⊗ 
dt ⊗ dP -a.e on {t ≤ τn ∧ T }. By the fact that τn  ↗ ∞ Q-a.s., we obtain the existence of Q-a.s. 

defined predictable processes η and ψ such that, 

 
Dt = E ((η · W ). + (ψ � µ).)t ,   t ≥ 0,   Q − a.s.  (2.9) 

E
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0
・ 

2

˜ ˜

・∞ otherwise;

2

2

 

where T |ηs|2ds < ∞ and (|ψ|2 � ν)T < ∞ Q − a.s.. Note that since for all t ∈ [0, T ], Dt > 0 Q- 

a.s., then we must have for every t ∈ [0, T ], ψt(x) > −1 dQ × ν(dx, dt)-a.e. and we can rewrite 

(Dt) as in the following: 

 Dt = exp (η · W )t + (ψ � µ)t − 1 ∫ t  |ηs|  ds + ((ln(1 + ψ) − ψ) � µ)t  Q − a.s.  (2.10) 
˜ 

2 0
 

 

We now introduce the following time consistent penalty for a probability Q ≪ P  on FT : 

 ( ) := 
" ∫ T   

(

 )ds. F 
#

 
 

 

 (2.11) 
γt Q  EQ  r  s, w, ηs, ψs  , 

t  . 
 

where r : [0, T ] × Ω × Rd × L2(E, λ) → [0, +∞] is a suitable measurable function that is con- 

vex and lower-semicontinuous in (η, ψ) and such that r(t, 0, 0) = 0. Note that, since r  is non- 

negative, r  is minimal at η = 0 and ψ = 0 and this corresponds to the probabilistic model P  . 

Therefore, the reference probability has the highest plausibility. In the following, we will consider 

probabilities Q ∈ Qf  where 

Qf  = {Q ≪ P, γ0(Q) < ∞}.  (2.12) 

In order to solve the stochastic control problem with BSDEs, we need to impose some regularity 

and growth conditions on the penalty function. In a Brownian setting, Faidi et al. [47] assumed 

the penalty function to be bounded from below by the relative entropy. In the same way, we will 

assume that there exists K̃2, K̃1  > 0 such that, 

γ0(Q) ≥ −K2 + K1H(Q|P ). 

Let f be the function defined as follow: 

f (x) = 
・
・
(1 + x) log(1 + x) − x,   if x ≥ −1; 

For the latter inequality to be verified, a sufficient condition on r will be the following: 

 

(2.13) 

(ffir) There exists K1, K2 > 0 such that for all w ∈ Ω, t ∈ [0, T ], η ∈ Rd and ψ ∈ L2(E, λ; R), we 

have, 

r(t, w, η, ψ) ≥ −K2 + K1 
 

|η|2 
+ 
∫ 
f (ψ(x))ξt(w, x)λ(dx)

! 
. 

 

 
The following proposition shows that the entropic penalty can be retrieved with a special choice 

for r. A detailed proof is given in the Appendix 2.5. 

Proposition 2.2.1.  Let r(t, η, ψ) =  1 |η|2 + 
・
E  f (ψ(x))ξt(x)λ(dx) and Q ∈ Qf . Then, the penalty 

t

E
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˜

˜
˜ ∗

∫ 
S

Sδ

0,T

Q s r  s, ηs, ψs  ds,
t

∫

 
 

function corresponds to the relative entropy, that is 

"∫ T     |ηt|2 ∫ ! # 
 

 
where, 

γ0(Q) = EQ 
(∆) 0 2 

+  
E   

( ( ))  ( ) ( ) f ψt x   ξt x λ dx  dt   = H0(Q|P ), 

H  (Q|P ) = E   
 

log 
   
dQ 

  
. F

  
.  (2.14) 

t  Q 
dP  .  t 

Moreover, we have for a general r verifying (ffir), 

γ0(Q) TK2 
H(Q|P ) ≤ 

In particular, H(Q|P ) is finite for all Q ∈ Qf . 

+ .  (2.15) 
K1 K1 

Remark 2.2.2.   Let r∗(t,  ,  ) = sup 
η∈Rd,ψ∈L2(λ) 

(  · η + 
・
E  ̃ (x)ψ(x)λ(dx) − r(t, η, ψ)) the Fenchel 

conjugate r. Assumption (ffir) implies that, for w ∈ Ω,  ∈ Rd, t ∈ [0, T ] and  ∈ L2(E, λ; R), 

 
r∗(t, w,  ,  ) ≤ K2 + 

 
| |2 

 
 

2K1 

 

+ K1 f 
E 

 
   (x)  
K1ξt(x) 

˜ 

ξt(x)λ(dx),  (2.16) 

where f ∗(x) := ex − x − 1 is the Fenchel conjugate of the function f. 

Now, given a positive adapted process δ, we define the discounting process: 

δ  := exp
 ∫ t 

0 

 St 
 

and the auxiliary quantities, 

δsds   , 0 ≤ t ≤ T, 

 

Uδ  := α 
T  δ s Usds + 

 

 

  

Sδ     α   T UT , 
 

 

0 ≤ t ≤ T,   α, α ≥ 0, 

t,T  δ  δ 
t  t 

(   ) := 
∫ T  Sδ   

( ) 0 

Now we consider the cost functional 

 
c(w, Q) := Uδ 

 
 

(w) + βR0,T (Q)(w),  (2.17) 
 

which consists of two terms. The first one is a discounted utility term that is the sum of a final 

utility UT  and a continuous utility with utility rate (Us). For instance, (Us) can be seen as the 

utility coming from investing/consuming and UT as the utility coming from the terminal wealth. 

The second term is simply the penalty term and measure the “distance” between the probability 

Q and the reference probability P . The parameter β might be viewed as measuring the degree 

SSt

−

Rδ 
t,T 

t
≤ t ≤ T.
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1

" ∫ !#
+

  

exp
0    

|Us|ds + µUT  exp
2 

× 2λ
0    

|Us|ds + 
2 

× 2µUT

≤ E 
2 

exp 2λ
0   

|Us|ds + 
2 

exp 2µ|UT | 

2 
E λ

0   
|Us|ds

2
E µ|UT | 

 
 

of confidence of the reference probability P . The higher β  is, the more confident we are in P , 

with the limiting case β ↑ ∞ (respectively β  ↓ 0) corresponding to full degree of confidence 

(respectively distrust). 

Our objective is to solve the following optimization problem: 

 
Minimize the functional Q ›→ Γ(Q) := EQ[c(., Q)],  (2.18) 

over the set Qf . To guarantee the well-posedeness of the problem, we will assume the following: 

(ffiu) i. The discounting process is bounded by some constant ||δ||∞; 

ii. The process U belongs to Dexp; 
 

iii. The terminal utility UT belongs to Lexp. 

Remark 2.2.3. Under assumption (ffiu), we have 
 

T 

E   exp   λ  
0    

|Us|ds + µ|UT | < ∞,   ∀λ, µ ∈ R  .  (2.19) 

Indeed, using the convexity of the exponential function, we get, 

" ∫ T  !# 
  

" 
1 

∫ T  1 
!# 

" 
1 

∫ T  ! 
1    # 

 

= 
1 

"
exp

 

2  
∫ T

 

!# 
+ 

1
 h

exp 
 
2 

i 

 
where the finiteness of the two last expectations is due to assumption (ffiu). 

 

2.3 Some helpful estimates and existence of optimal probability 

2.3.1 Auxiliary estimates 

The main objective of this section is to prove the existence of an optimal probability Q∗ that 

minimizes the functional Γ. To achieve this, we start by proving some useful auxiliary estimates. 

We will adapt the steps in Bordigoni et al. [18] and the inequalities therein into our setting. 

Proposition 2.3.1. Under assumption (ffir) and (ffiu), there exists a constant C  ∈ (0,  ∞) which 

depends only on α, α, β, δ, T, U, UT such that 

 
Γ(Q) ≤ EQ[|c(·, Q)|] ≤ C(1 + γ0(Q)),  for all Q ∈ Qf .  (2.20) 

λ E  = E 

< ∞,
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0 

λ 

0,T

0    
|Ut|dt + α|UT | + βEQ r(t, ηt, ψt)dt 

0 

dP dP

Q
K1 K1

K1 K1 

Q

t

 

In particular, this shows that Γ(Q) is well defined and finite for every Q ∈ Qf .    

Proof. The first inequality is obvious. As for the second, denoting U := α 
・ T |Ut|dt + α|UT |, we 

 

have for Q ∈ Qf , using the fact that, 0 ≤ Sδ  ≤ 1, 
" ∫ T  # "∫ T  # 

  

 

= EQ[U] + βγ0(Q).  (2.22) 

 
Fenchel inequality applied to x ›→ x log(x), gives 

xy ≤  
1 

(x log(x) + eλy−1),   ∀(x, y, λ) ∈ R∗+ × R∗+ 

Therefore, using this inequality with λ = 1, we get, 

× R∗.  (2.23) 

 

E [U] = E 
  dQ 

U 
dP 

≤ E 
  
dQ 

log 
  
dQ 

   

+ E[eU−1] 

= H(Q|P ) + E[eU−1] 

≤ 
γ0(Q) 

+ 
TK2 + e−1E[eU], 

K1 K1 
 

where we used (2.15) in the last inequality. Going back to (2.21), we obtain, 

E   [|c(·, Q)|] ≤  
  
β +

  1  
  
γ0(Q) + 

  
TK2 + e−1E[eU]

   
, 

 

where the term E[eU] is finite as pointed out in remark 2.2.3. We then conclude by setting 

C  := max 
 
β +   1   , T K2  + e−1E[eU]

 
. 

The next result shows that Γ is bounded from below by γ0(Q). This will be very useful for 

proving the existence of an optimal probability. 

Proposition 2.3.2. Assume (ffir) and (ffiu) hold. Then, there exists C  ∈ (0, ∞) depending on 

α, α, β, δ, T, U, UT  such that for all Q ∈ Qf 

γ0(Q) ≤ C(1 + Γ(Q)).  (2.24) 
 

In particular, we have inf 
Q∈Qf 

Γ(Q) > −∞ 

Proof. Using the same notation as in the proof of the previous proposition, we have, 
 

EQ[Uδ  ] ≥  −EQ[U]. 

αEQ[|c(·, Q)|] ≤ EQ  (2.21) 
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0,T 
γ0(Q)

≤ 
λ
  +

K1 
E[e

λ

0,T  (∆) 
EQ

  0    
St r  t, ηt, ψt  dt  ≥ e ∞ r t, ηt, ψt dt

0 
∞ γ0 Q  .

Q EQ U0,T βR0,T  ∞ −
λK1

γ0 Q −
λK1

− E e 
λ 

µ λK1 λ

EQ[|U0,T |1A] ≤ + 
λK 

E
λ

1A exp(λα
0     

|Us|ds + λα|UT |) 

0,T  λ dP dP
A

 
 

For every λ ∈ R∗, using the inequality (2.23), we get, 

EQ[U] ≤  
1 
H(Q|P ) + 

1 
E[eλU−1] 

λ 
1 

  
γ0(Q) 

λ 
TK2 

  
 

 
e−1 

λU
 

 

where we used (2.15) in the last inequality. On the other hand, since the discounting process is 

bounded from above, we have 

 
[R ] = 

"∫ T 
δ  (

 

)   

# 
−||δ|| T 

"∫ T   
(

 
)  

# 
= 

 
−||δ||  T  (  ) 

 
Combining the two previous inequalities leads to the following, 

 
Γ(  ) = 

 
[ δ  + δ      ] 

 
−||δ|| T     1

 
(  )

 
 
TK2 e−1 

 
 

 
[ λU ] 

 

Choosing λ large enough such that µ := βe−||δ||∞T −   1  
 
> 0, we get the desired result by 

setting C  :=  1  max 
 

1, T K2  + e
−1 
E[eλU ]

 
. 

 

The following is a direct consequence of the previous proposition and inequality (2.15). 

 
Corollary 2.3.3. Under assumptions (ffir) and (ffiu), there exists K ∈ (0, ∞) such that for every 

Q ∈ Qf , we have the following 
 

H(Q|P ) ≤ K(1 + Γ(Q)).  (2.25) 

In the same spirit of the proof of the above proposition, we have the following estimate that 

is crucial in proving the existence of an optimal probability Q∗ ∈ Qf . 

Lemma  2.3.4.  For any λ > 0 and any measurable set A ∈ FT , we have for every Q ∈ Qf 

δ  γ0(Q) 
 

 

 
TK2 

 

 

e−1 
" ∫ T  # 

 
 

 

Proof.  Using inequality (2.23), we have for every λ > 0 and Q ∈ Qf , 
 

dQ  δ 
|U |1 ≤ 

1 
  
dQ 

log 
  
dQ 

  

+ e−1eλU

   
1 . 

 

Taking the expectation under P and using (2.15), we consequently get, EQ[|Uδ   |1A] ≤  λK  + 1 TK2  + e
−1 
E[1  exp(λU)]. 

λK1 λ  A 

11λK 

λK1

K1
+ ],

EQ  EQ e 

≥ βe

+ .  (2.26) 

dP
A
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˜

˜ ˜

D

D

˜

t t E t

|ψt  (x)|  1|ψn(x)|≥ϵ|ν(dt, dx) 
n→→∞ 0,   in P  − Probability 

t λ
t−

Dλ >0
t− 

t λ
t−

Dλ >0
t− 

t t− t t t

following Linderberg condition: 

 

2.3.2 Existence of optimal probability 

 
In this subsection, we prove the existence of an optimal probability Q∗ ∈  Qf  using a standard 

Komlòs-type argument, but before let us show two important properties of the functionals Γ and 

γ0. We will introduce the following Linderberg condition on sequences of martingales converg- 

ing almost surely to 0. This technical assumption is needed to prove the lower-semicontinuity 

of γ0: 

 
 

(ffiL) Every sequence (Mn) of locally square integrable martingales with the representation 

dMn  = ηndWt + 
・  

ψn(x)µ(dt, dx) converging P -a.s. to 0 for each t  ∈ [0, T ], verifies the 

∫ T ∫ 
n 2 

   

 
 
 
 

Proposition 2.3.5. Under the assumption (ffiL), we have the following: 

 
 

1. Qf  is a convex set and the functional Q ∈ Qf  ›→ Γ(Q) is convex. 

 
2. γ0 is lower-semicontinuous for L1(P ) convergence. 

 
 

Proof. 1.  Let λ  ∈  (0, 1), Q, Q̃  ∈  Qf  and Qλ  :=  λQ + (1 − λ)Q̃. Let D  and D̃  denote the 

corresponding density processes and (η, ψ), (η, ψ) the associated processes via (2.9). 

Consider the following processes: 

ηλ  :=  
λDt− ηt + (1 − λ)D̃t− η̃t 

1 ,
 

 

ψλ  :=  
λDt− ψt + (1 − λ)D̃t− ψ̃t 

1 ,
 

 

where Dλ  := λD + (1 − λ)D  is the density process of Qλ with respect to P . It is easy to 

see that the density Dλ satisfies the following SDE: 

 
dDλ = Dλ 

 
ηλdW  + 

∫
 ψλ(x)µ̃(dt, dx)

  
, t ∈ [0, T ], Qλ − a.s. 

tE0
∀ϵ ∈ (0, 1], 

E
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˜t  t

D  D

− 

˜

T

t

t

) = EQλ r(t, ηt  , ψt )dt

D    > 
t 

E  D r t, η , ψ r t, η , ψ
λ

T
0

λ 
t− 

λ
t−

˜t

D    >0 
t 

) ≤ E  Dt  λ λ
r(t, ηt, ψt) 1 λ 0dt ˜ D    > 

t 

) = E 
λ

r(t, ηt, ψt)

t τn τn
− τn

T

t s

 
 

Hence, using the convexity assumption of r, we have, 

λ 

"∫ T 
 

 

λ  λ 

#
 "∫ T    λDt−   

(
 

 

  
) + 

(1 − λ)D̃t−    
(
 

 
 

 

 
˜ )
! # 

 

 
≤ EQλ 

λ    r  t, ηt, ψt  λ  r  t, η  , ψ  1 λ  0dt 

= 

"  
λ 
∫ T     λDt−   

(
 ) + 

(1 − λ)D̃t−    
(
 

˜ )
! # 

 

 
 

Using Fubini’s Theorem to interchange integral and expectation followed by conditioning 

on Ft and the martingale property of the density process Dλ, yields, 

λ 

"∫ T 
 

 

λ 

   

λDt− 
 

 
(1 − λ)D̃t− ˜  

! #
 

 

Since Dλ  is right continuous, the set {t ∈ [0, T ], Dλ  ̸= Dλ  } is countable. Therefore, we 

have, 
t  t− 

λ 

"∫ T 
λ    

  

λDt− 

  

(1 − λ)D̃t− ˜  
! #

 

0 
t 

"∫ T 
Dt− 

(  ) + (1 
Dt− 

) ̃  ( 

 ̃) 

˜
#
 D    >0 t 

≤ E 
0    
λDt− r  t, ηt, ψt  − λ  Dt− r  t, η̃t, ψt  dt 

= λγ0(Q) + (1 − λ)γ0(Q) < ∞. 

We have showed then that Qf  is convex. The convexity of the functional Γ follows readily 

by using the same arguments used above. 

 
 

2. Let (Qn) be a sequence of probability measures that converges to Q  in L1(Ω, P ), i.e., 
n    →  DT   in L1(Ω, P ) where Dn  and D  the corresponding densities processes. Let 

(ηn, ψn) and (η, ψ) (resp.) be the processes given by (2.9) of Dn and D (resp.). Since 

we know that Dn  converges to DT in L1(P ), the maximal Doob’s inequality 

n  1 n 
  P ( sup 

0≤t≤T |Dt  − Dt| ≥ ϵ) ≤ 
ϵ 
E[|DT  − DT |],   ∀ϵ > 0, 

implies that ( sup 
0≤t≤T 

|Dn − Dt|) converges to 0 in P -probability. By passing by a subse- 

quence, we can assume that ( sup 
0≤t≤T 

|Dn − Dt|) converges to 0 P − a.s. 

We denote Mn  := sup |Dn − Ds| and introduce the following stopping time τn  := inf{t ∈ 
0≤s≤t 

[0, T ], Mn ≥ 1} ∧ T . We have Mn  ≤ Mn  + |Dn  − D  | and by taking expectation in the 

λ
D − 

− Dt− 0

− 

− Dt−

Dt−0 

0 

D

γ0(Q 

1
dt  .

t t

t

γ0(Q  r(t, ηt, ψt) + .
Dt−

γ0(Q  r(t, ηt, ψt) + 1 λ dt 

τn
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→∞ 

τ−

τn

τn

n

t

τn τn
− τn

− D⟩T = 
0    

|Dt− ηt   − Dt− ηt|  dt + |Dt− ψt  (x) − Dt− ψt(x)|  ν(dt, dx).

t− t t t

0 E

 
 

latter we get  
E[Mn  ] ≤ E[Mn 

 
] + E[|Dn  − D 

 
|].  (2.27) 

Recall that Mn   →  0 and since (Mn)t  is a nondecreasing process we have M  −  ≤ Mn 
T  n→∞ t  τn  T 

so that Mn  −→ 0. We also have by the definition of the stopping time τ  that Mn   ≤ 1. 
τn
−  

n 

Hence, by the dominated convergence theorem, we obtain that 
n  τn

− 

 

 
 

Furthermore, 

E[Mn 
n 

] → 0 as n → ∞.  (2.28) 

 

E[|Dn  − Dτ  |] = E[|E[Dn |Fτ  ] − E[DT |Fτ  ]|] = E[|E[Dn − DT |Fτ  ]|] 
τn  n  T  n  n 

T  n 
(2.29) 

≤ E[E[|Dn − DT ||Fτ ]] = E[|Dn − DT |] −→ 0. 
T  n  T 

n→∞ 

Combining (2.27), (2.28) and (2.29), we deduce that Mn  converges to 0 in L1(P ). Then, 
1 

 
 

by Burkholder-Davis-Gundy’s inequality, we get that [Dn − D] 2 converges to 0 in L1(P ) 

and a fortiori in P -probability. Now, as [Dn − D]T  = [Dn − D]τ  1τn =T + [Dn − D]T 1τ  <T , 
then for every ϵ > 0, 

 
P ([Dn − D]T  ≥ ϵ) ≤ P ([Dn − D]τ 

 
 

1τn 

 
=T ≥ ϵ) + P ([Dn − D]T 1τ 

 
<T ≥ ϵ) 

 

 
and 

≤ P ([Dn − D]τ   ≥ ϵ) + P (τn < T ), 

 
P (τn < T ) = P (∃t ∈ [0, T ] s.t. Mn ≥ 1) ≤ P (Mn ≥ 1) −→ 0. 

t  T  n→∞ 
So, we get that [Dn  − D]T  converges to 0 in P -probability. On the other hand, since 

Dn − Dt → 0, thanks to the assumption (ffiL), we get from Corollary 1 in Shiryayev [125] 

that ⟨Dn − D⟩T converges to 0 in P  -probability and by passing to a subsequence while 

keeping the same notation, we may say that ⟨Dn − D⟩T converges to 0 P − a.s.. But, we 

know that, 

n 
∫ T 

n  n  2 
∫ T ∫ 

n  n 2 

Therefore, we immediately obtain that Dn  ηn → D − η   dP × dt − a.e. and dP × dt − a.e., 
Dn ψn(x) → D − ψ (x) in L2(E, λ). Next, we will show that γ  (Q) ≤ lim inf γ  (Qn). As- 
t−   t  t  t  0 0 

n→∞ 
sume by way of contradiction that γ0(Q) >  l  := lim inf γ0(Qn). By passing to a sub- 
sequence, we may assume that γ  (  n) n→∞:=  inf [0 ] =  0 and 

0 Q  →  l. Let ζ  {t  ∈ , T  , Dt  } 
ζn  := inf{t ∈ [0, T ], Dn = 0}. Since Dn = 0 on {t  >  ζn}, we must have ζ  ≤ lim inf ζn. 

t  t  n→∞ 

n n

n n

τn

⟨D 
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2

0

T

f

≤

E 
0 

g  t, Dt− , Dt− ηt, Dt− ψt dt

lim inf E
n≥k  0 

g(t, Dt− , Dt− ηt, Dt− ψt)dt 

0 
g(t, Dt− , Dt− ηt  , Dt− ψt )dt 

T T T T

T T

T f T

E

≤ E 
0

 
Hence, for ϵ := γ0(Q)−l , there is k ∈ N such that for Tk  := ζ ∧ {ζk, ζk+1, ...}, we have 

 
γ0(Q) = EQ 

"∫ T 
 

 
r(t, ηt, ψt)dt

#
 = 

"∫ ζ 
Dt− r(t, ηt, ψt)dt

#
 

"∫ Tk  # 

= 

"∫ Tk     
( )  

# 
+ 

 

where g(t, x, y,  ) := xr(t,  y ,   ). Clearly, since r  is lower-semicontinuous in (η, ψ), we get 
x  x 

that also g is also lower-semicontinuous. Hence, by Fatou’s lemma, we obtain 

"∫ Tk 

 
 

# "∫ Tk 

 

n  n  n 

#
 

"∫ ζk  

 

n  n  n  n  n 

#
 

= lim inf γ0(Qn) = l, 
n≥k 

so that we have γ0(Q) ≤ l + ϵ < γ0(Q) which is a contradiction. 

 

In the next theorem, we show the existence of an optimal probability Q∗ ∈ Qf . 

Theorem 2.3.6. Assume (ffir), (ffiu) and (ffiL) hold. Then there exists a probability measure Q∗ 
minimizing Q ›→ Γ(Q) over Qf . 

Proof.  Let Qn a minimizing sequence in Qf  such that 
 

Γ(Qn) ↘↘ inf Γ(Q), 
n→∞ Q∈Qf 

and we denote by Dn  the corresponding density process. Since we have Dn  ≥ 0, it follows from 

Komlòs’ lemma that there exists a sequence denoted D
n  

such that D
n  

∈ conv(Dn, Dn+1, ...) 
  

for each n  ∈ N and (D
n 

) converges P  − a.s.  to a random variable D
∞

. Now, we will show 
   

that D
∞
T     is associated with a probability measure Q

∞
. First, we have D

∞
T     is nonnegative as 

the P  − a.s.  limit of the nonnegative sequence (D
n 

)n. Second, since Q is convex, each D
n 

is 

associated with a probability measure Q
n 

∈ Q . Now, thanks to the convexity of Γ and the fact 
that (Γ(Qn))n  is decreasing, we have the following, 

 
Γ( n 

 
 

n  n 1 

Q  ) sup Γ(Q 
m≥n 

) = Γ(Q  ) ≤ Γ(Q  ).  (2.30) 

≤

≤
0

E 

0

Dt− r(t, ηt, ψt)dt + ϵ

ϵ,

g(t, Dt− , Dt− ηt, Dt− ψt)dt

lim inf E
n≥k 
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T

≤

T

0,T 0 t

Q 0,T
n→∞ 0,T Q

n→∞    n→∞ Q 0,T Q

n→∞    
0,T Q

 
 

Consequently, using (2.25), we get, 
 

sup E[D
n 

log(D
n 

)] = sup H(Q
n
|P ) ≤ K(1 + sup Γ( 

   

 
n
)) ≤ K(1 + Γ(Q1)) < ∞. 

T  T 
n∈N 

Q 
n∈N 

By Vallée-Poussin’s criterion, the sequence (D
n 

) is P - uniformly integrable and therefore con- 
verges to D

∞  
in L1(P ). Hence, we have, E[D

∞
]  =   lim E[D

n 
]  =  1 since E[D

n 
]  =  1 for 

T         T  n→∞ T        T 

all  n  ∈  N.  This  shows  that  D
∞
T     can  be  associated  with  a  probability  Q

∞  
on  FT   such  that 

dQ
∞  

=  DT
∞
dP . Our next step is to prove that this probability Q

∞  
belongs to Qf . By Propo- 

sition 2.3.5, we know that γ0 is lower-semicontinuous with respect to L1(Ω, P ) convergence. 

Therefore, we get since D
n L1 

D
∞

, 
T  → T 

γ0(Q
∞

) ≤ lim inf γ0(  n). 
   

Q 
n→∞ 

But, thanks to (2.24), we know that γ0(Q) ≤ C(1 + Γ(Q)). Consequently, we obtain that, 
 

lim inf γ0(Q
n
) ≤ C(1 + supΓ( 

 

n)). 

n→∞ 
Q 

n∈N 

The RHS of the last inequality is finite thanks to (2.30). We then conclude that γ0(Q
∞

) < ∞, 

i.e., Q
∞  

∈  Qf . It remains to show that Q
∞  

is optimal. Note that using the same arguments 

in the proof of Proposition 2.3.5, the function Q  ›→  EQ[Rδ    (Q)]  =  EQ[
・ T  Sδr(t, ηt, ψt)dt]  is 

 

E  ∞ 
h
Rδ  (Q

∞
)
i 

≤ lim inf E  n 

h
Rδ

 

(   n)
i 
. 

 

We denote Y 
n  := D

n Uδ  and Y 
∞ := D

∞Uδ  . If we prove that we also have 
T    0,T  T  0,T 

 

 

 
then we would have 

E[Y 
∞

] lim inf E[Y 
n
],  (2.31) 

n→∞ 

 
Γ(Q

∞
) = E[Y 

∞
] + E  ∞ [Rδ  (Q

∞
)] 

 
 

Q  0,T 

≤ lim inf E[Y 
n
] + lim inf E  n 

h
Rδ

 
(  n)

i
 

≤ lim inf E[Y 
n
] + E  n 

h
Rδ

 
(  n)

i
 

= lim inf Γ(Q
n
) =  inf  Γ(Q), 

n→∞ Q∈Qf 
 

which proves that indeed Q
∞ 

is optimal. Although Y 
n 

is linear in D
n 
, we cannot use Fatou’s 

lower-semicontinuous for L1(Ω, P ) convergence and therefore we get immediately that, 

Q

Q
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0,T 

U

˜ ≤

U

U

T 0,T  DT R T 0,T δ
0,T <−m

 
 

lemma since ther term Uδ  has no lower bound. To remediate this, we introduce the following: 
 

R̃m  := Uδ    1 δ  ≥ −m,   m ∈ N. 
0,T    U0,T ≥−m 

Hence, we have for n ∈ N ∪ {∞}, 

Y 
n 

= D
n Uδ  = n ˜m + D

n Uδ   1 . 
 

Because now R̃m  is bounded below by −m, we can use Fatou’s lemma to get, 
 

E[D
∞

 Rm] lim inf E[D
n
 

n→∞ 
 

 

R̃m]. 

Consequently, by adding and subtracting E[D
n Uδ    1 ], we obtain, 
T    0,T 

  ∞ n  n 
 

     

δ 
0,T 

  δ 

<−m 

E[Y  ] ≤ lim inf E[D  R̃m] + E[DT U0,T 1 δ  −m] 
n→∞    

≤ lim inf E[Y 
n
] + 2 sup 

U0,T < 
E[Dn |Uδ    |1 ]. 

 

 
n→∞ n∈N ∪{∞} 

T  0,T  δ 0,T 
<−m 

 

The desired inequality (2.31) will follow once we prove that 
 

lim sup E[Dn |Uδ  |1 δ  ] = 0, 
m→∞ 

n∈N ∪{∞} 
T  0,T  U0,T <−m 

 

and this is where we use Lemma 2.3.4. Indeed, thanks to this lemma, we have, 
 

E[Dn |Uδ  |1 δ 
 

] = E  n [|Uδ  |1 δ 
γ0(Q

n
) ≤ 

 
 + 

TK2 
+ 
e−1 

 
 

E[exp(λU)1 δ  ] 
T  0,T  U0,T <−m  Q  0,T  U0,T <−m  λK1 λK1 λ  U0,T <−m 

C(1 + Γ(Q
n
)) ≤ 

λK 
  + 

TK2 
+

 
λK 

1 
E[exp(λU)1 δ  ]. λ 

1 1 
U0,T <−m 

 
Using (2.30), we deduce that 

 

sup n  δ
  C(1 + max(Γ(Q1), Γ(Q

∞
))) 

 
 

TK2 e−1 
 

E[DT |U0,T |1 δ  <−m] ≤ 
λK  + + E[exp(λU)1 δ λK  λ  <−m]. 

n∈N ∪{∞} 0,T 
1 1 

U0,T 
 

By the dominated convergence theorem, the third term in the RHS of the previous inequality 

goes to 0 as m → ∞. Hence, we for all λ > 0, we have 

 lim  sup  [   n  δ  ] 
C(1 + max(Γ(Q1), Γ(Q

∞
))) 

+ 
TK2 

 
 E DT |U0,T |1 δ 

<−m  ≤ 
λK  λK  

.
 

m→∞ 
n∈N ∪{∞} 

0,T  1 1 

Sending λ to ∞, we finally obtain the desired result. 

U

U

−e

]
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τ,T τ,T

−
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t

 

2.4 Related BSDE with jumps 

This section is devoted to the study of the dynamic value process V associated to the opti- 

mization problem (2.18) using stochastic control techniques. More precisely, we prove that the 

dynamic process is the unique solution of a certain QEBSDEJ. This extends the previous work 

by Schroder and Skiadas [121], Skiadas [126] and Lazrak and Quenez [85]. 

We first introduce some notations that we will use below. Let S denote the set of all stopping 

time τ  with values in [0, T ] and D the space of all density processes DQ with Q ∈ Qf . We also 

define, 
 

D(Q, τ ) := {Q  ∈ Qf ,  Q  = Q on Fτ }, 
Γ(Q, τ ) := EQ[c(·, Q)|Fτ ]. 

As in Karoui [78], we define the minimal conditional cost at time τ by 
 

J(Q, τ ) := Q  ess inf 
Q ∈D(Q,τ ) 

Γ(Q , τ ). 
 

For Q ∈ Qf  and τ  ∈ S, we now define the value of the control problem starting at time τ  instead 

of 0 and assuming one has used the model Q up to time τ , 
 

Ṽ (Q , τ ) := EQ  [Uδ    |Fτ ] + βEQ  [Rδ  (Q )|Fτ ], 
V (Q, τ ) := Q  ess inf 

Q ∈D(Q,τ ) 
Ṽ (Q , τ ). 

 

The following martingale optimality principle is a consequence of Theorems 1.15, 1.17 and 1.21 

in Karoui [78]. It is the analogue of Proposition 3.4 in Faidi et al. [47] in a Brownian setting but 

the proofs also hold in our setting with obvious modifications. 

Proposition 2.4.1. Under (ffiu) and (ffir), we have: 

• The family {J(Q, τ )|τ  ∈ S, Q ∈ Qf } is a submartingale system, that is for any Q ∈ Qf  and 

stopping times σ ≤ τ, we have, 

EQ[J(Q, τ )|Fσ] ≥ J(Q, σ)  Q − a.s.  (2.32) 
 

• Q ∈ Qf  is optimal if and only if the family {J(Q, τ )|τ  ∈ S} is a Q-martingale system which 

means that for any stopping times σ ≤ τ 
 

E
Q・[J(Q・, τ )|Fσ] = J(Q・, σ)  Q・ − a.s. 

 

• For each Q ∈ Qf , there exists an adapted RCLL process JQ = (JQ)t∈[0,T ] which is a right 
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τ

˜  ̃

˜ ˜
˜

˜

f

f

f

−
Q

−
Q

˜

t t t t
β

t
β t t t

 
 

closed Q-submartingale such that for every stopping time τ 

 
JQ = J(Q, τ ) Q − a.s. 

 
Before stating the BSDE verified by the value process V , we will need to define a strong 

order relation on the set of increasing processes defined below. 

 

Definition 2.4.2. Let X and Y  two increasing processes. We say that X ⪯ Y  if the process 

Y − X is increasing. 

 
Theorem 2.4.3. Assume assumptions (ffir), (ffiu) and (ffiL) hold. If the optimal probability Q

∞ 

in Theorem 2.3.6 is equivalent to P, then there exists Z and Z such that (V, Z, Z) is solution in 

Dexp × H2,p × H2,p of the following BSDE: 0 λ 

・
・・dV   = 

 
δ V  − αU  + βr∗ 

 
t, 
Zt 

, ξ  
Z̃t 
!! 

dt − Z dW  − 
∫   
Z̃ (x)µ̃(dx, dt), 

 
・・ 
VT  = αUT . 

Proof. We will split the proof into three steps: First, we will prove that the value process V is a 

P -special martingale, that is it can be decomposed as V = V0 + MV + AV , where MV  is a local 

martingale that can be written as MV = (Z  · W  ) + (Z � µ) and AV a predictable finite variation 

process. Then, we will show that (V, Z, Z) is a solution of the BSDE. Finally, we will prove that 

(V, Z, Z) is in the required spaces. 

Step 1: First, note that since we assumed that Q
∞ 

∼ P , then, 
 

inf 
Q∈Qf 

Γ(Q) =  inf 
Q∈Qe 

Γ(Q), 

 

where Qe  := {Q ∈ Qf ,  Q ∼ P } and we define De(Q, τ ) accordingly. Hence, we will restrict our 

attention to probabilities Q ∈ Qe and all essential infinimums can be taken with respect to P in 

the expression of V (Q, τ ) and J(Q, τ ), i.e., 
 

J(Q, τ ) = P  ess inf 
∈De(Q,τ 

V (Q, τ ) = P  ess inf 
∈De(Q,τ 

Γ(Q , τ ), 
) 

) Ṽ (Q , τ ). 
 

By Bayes’ formula and the definition of Rτ,T (Q ), it is easy to see that V (Q , τ ) depends only on 

the values of the density process D  of Q  on [τ, T ] and is therefore independent of Q. Hence, 

E (2.33) 
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t,T t,T

f

f

s

˜

˜ ˜

0,T  Q
0

St r t, qt, ψt  dt τ τ,T Q

0,T
0  

St Utdt τ,T .

J(Q, τ ) = Sτ V (τ ) + α St Utdt + β
0 

t τ

Jt    = St Vt + α  Ss Usds + β
0 0  

Ssr(s, ηs, ψs)dt,  dt × dP − a.e.  (2.35) 

t t t t t

have, dWt     = dWt − ηtdt  is a Q Brownian motion and νQ(dx, dt) = (1 + ψt(x))ν(dt, dx) is the 

 
 

we can denote V (Q, τ ) by V (τ ). From the definition of Rδ  (Q ) and Uδ 

 
, we have 

Rδ    (   ) = 
∫ τ 

δ   ( 

 
  ) 

 
+ SδRδ 

 

(   ) 

Uδ  = 
∫ τ 

δ
 

+ Uδ 
 

Comparing V (τ ) and J(Q, τ ) yields for Q ∈ Qe with density process DQ = E((η · W ) + (ψ � µ)), 
f 

δ 
∫ τ 

δ  ∫ τ 
δ 

˜ 

 
From the martingale optimality principle in Proposition 2.4.1, there exists an adapted RCLL 

process denoted JQ  = (JQ)t∈[0,T ] such that JQ  = J(Q, τ ), Q − a.s. From (2.34), we deduce 

that we can choose an adapted RCLL process (Vt)t∈[0,T ] such that Vτ  = V (τ ),  P  − a.s.  for all 
τ ∈ S. We can then rewrite (2.34) for every Q ∈ Qe as, 

 

Q  δ 
∫ t     

δ 
∫ t     

δ
 

 

As the probability P  ∈ Qe  corresponds to η = 0 and ψ = 0 and r(t, 0, 0) = 0, we get in particular 

for Q = P  in (2.35) that JP  = SδV +α 
・

0 S
δUsds. By Proposition 2.4.1, JP  is a P - submartingale 

and thus we deduce that V  is a P -special semimartingale, i.e. its canonical decomposition can 

be written as 

V  = V0 + MV  + AV ,  (2.36) 

where MV  is a local martingale and AV  is a predictable finite variation process. By the weak 

representation assumption, the local martingale MV  can be written as: 

 
MV  = −(Z · W ) − (Z � µ). 

Step 2: We now prove that (V, Z, Z) is a solution of QEBSDEJ in (2.33). Plugging (2.36) into 

(2.35) yields 

dJQ = −δtSδVtdt + αSδUtdt + Sδ 

 
βr(t, ηt, ψt)dt − ZtdWt − 

∫   
Z̃t(x)µ̃(dx, dt) + dAV 

  
. 

 
For each Q ∈ Qe , we have, DQ = E((η · W ) + (ψ � µ)), P − a.s. and by Girsanov’s theorem, we 

Q 
f  ˜ 

,

α

0   
St r(t, ηt, ψt)dt,  P − a.s.  (2.34) 

E
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E

f

t
E

t

f

f

t t
˜

˜

t t

t

t t

t t
E 

t t t t

t t t t t t

= βr∗(t, 
1 
Zt, 

1 
ξtZ̃t)dt + δtVtdt − αSδUtdt

β β
t t t

 
compensation of µ under Q. Rewriting the dynamic of JQ, we obtain, 

dJQ = −δtSδVtdt + αSδUtdt + Sδ  
  

βr(t, ηt, ψt)dt − Ztηtdt − 
∫

 Z̃t(x)ψt(x)ν(dx, dt) + dAV 

 
 

t  t  t  t 

− Sδ 
  

ZtdWQ + 
∫

 

t 
 

Z̃t(x)µ̃Q(dx, dt)
  
.    (2.37) 

 
 

But, we know thanks to Proposition 2.4.1, that for every Q ∈ Qe , JQ  is a Q- submartingale and 
 

JQ
∞ 

is a Q
∞

-martingale. This means that we should have, 
 

dAV 

dAV 

≥ Ztηtdt + 
∫

 

= Ztη∞dt + 
∫

 

Z̃t(x)ψt(x)ν(dx, dt) − βr(t, ηt, ψt)dt + δtVtdt − αSδUtdt,  dt × dQ − a.e. 

Z̃t(x)ψ
∞

(x)ν(dx, dt) − βr(t, η∞, ψ
∞

) + δtVtdt − αSδUtdt,  dt × dQ
∞ 

− a.e. 

Note that the above inequality and equality are verified dt × dP − a.e. since Q ∈ Qe  and by the 

assumption that Q
∞ 

∈ Qe , in which case they become equivalent to, 

 
dAV 

 
ess sup 

ηt∈Rd,ψt∈L2(λ) 

 
Ztηtdt + 

∫   
Zt(x)ψt(x)ν(dx, dt) − βr(t, ηt, ψt)dt

    

+ δtVtdt − αSδUtdt,  dt × dP  − a.e. 
 

(2.38) 

dAV  = Ztη∞dt + 
∫

 Z̃t(x)ψ
∞

(x)ν(dx, dt) − βr(t, η∞, ψ
∞

) + δtVtdt − αSδUtdt,  dt × dP  − a.e. 
 

 
 

By denoting  
 

r∗(t,  ,  ) = sup 
η∈Rd,ψ∈L2(λ) 

(  · η + 
∫
 

 
(x)ψ(x)λ(dx) − r(t, η, ψ)), 

 

the Fenchel conjugate of r, equation (2.38) implies that dt × dP  − a.e., 

 
dAV 

 
= ess sup 

ηt∈Rd,ψt∈L2(λ) 

 
Ztηtdt + 

∫
 Z̃t(x)ψt(x)ν(dx, dt) − βr(t, ηt, ψt)dt

  
+ δtVtdt − αSδUtdt 

 

β 

= Ztη∞t   dt + 
∫
 
β  t 

Z̃t(x)ψ
∞
t   (x)ν(dx, dt) − βr(t, ηt

∞, ψt
∞

) + δtVtdt − αSδUtdt. 
E 

 
This shows in particular that 

(2.40) 

  
Zt 

, 
Z̃t 
ξ 

! 
∈ ∂r(t, η∞, ψ

∞
),   dt × dP  − a.e.  (2.41) 

(2.39) 

E 

E

≥

E

E

E 
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˜

∫ 
( + ) +

∫

t

∫ 
( + ) +

∫

K1β 

t̃ 

t t t t
β

t
β t t

t t t t t 2
β

t
β t t

E

t

CK2β − Cβr  t, 
β 
, ξt 

β 2 E
CZt x ξt x λ dx  dt  Cδt  |Vt| − Vt dt

 
 

Going back to equation (2.36) and replacing the finite variation process AV by its expression in 

(2.40), it follows that (V, Z, Z̃) is solution of the following equation, 

・
・・dV   = 

 
δ V  − αU  + βr∗ 

 
t, 
Zt 

, ξ  
Z̃t 
!! 

dt − Z dW  − 
∫   
Z̃(x)µ̃(dx, dt), 

 
・・ 
VT  = αUT . 

 
exp 

 
2,p 

 
2,2 

 
exp 

Step 3: In this step, we show that the (V, Z, Z̃) ∈  D0 × Hλ     × H . V   ∈  D0 follows as in 
Faidi et al. [47]. As for Z and Z, the proof will lean on some exponential transform. We introduce 

the following processes defined for t ∈ [0, T ] as: 
 

Yt
− = −CVt + C 

t 

0   
α|Us| K2β  ds  C 

t 

0 
δs|Vs|ds, 

Y + = CVt + C 
t 

0   
α|Us| K2β  ds  C 

t 

0 
δs|Vs|ds, 

Kt
− = exp(Yt

−),  K+ = exp(Y +), 
t  t 

 

where C =   1 . For any p ≥ 1, we have 
 

sup  ( ±)p =  sup exp( ±)  sup   exp( + 
∫ t

( + ) + 
∫ t 

) 
Kt 

t∈[0,T ] t∈[0,T ] 
 

 

pYt 
≤ 

t∈[0,T ] 

∫ T 
pC|Vt| pC   

0    
α|Us| K2β  ds  pC  

0  
δs|Vs|ds 

exp(pC  sup t∈[0,T ] 
|Vt| + pCα 

0    
|Us|ds + pCK2βT  + pC||δ||∞T   sup |Vt|). 

Since V ∈ Dexp and U  ∈ Dexp, from the above inequality we deduce that  sup  Kt
± ∈ Lp(Ω). 

0 1 
t∈[0,T ] 

We turn our attention to the process Y −. Using (2.33), the process Y − verifies: 

dYt
− = −CdVt + C(α|Ut| + K2β)dt + Cδt|Vt|dt 

= C 

 
δ (|V  | − V ) + α(|U  | + U ) + K  β − βr∗ 

 
t, 
Zt 

, ξ  
Z̃t 
!! 

dt + CZ dW  + 
∫
 

 
CZ̃ (x)µ̃(dt, dx) 

=

 
∗ 

     
Zt

 

Z̃t 
! 

+ 
|CZt|2  

+ 
∫ ∗( ˜ (  )) (  )  ( )

! 
+ ( ) 

 + ( + ) + |CZt|2 
+ 
∫ 

 
 

˜ (  )  ( ) 
∫ 

∗( ˜ (  ))  (  )  ( ) 

 
Cα  |Ut| Ut dt 

= dIt
− + dL−t  , 

CZtdWt − 
2 

dt  CZ   x  µ  dt, dx  f E  E  CZt x  ξt  x  λ dx dt 

−

≤
t∈[0,T ] 

E

f
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∧ | ≤

t t t 2 t t t

−Cβr  t, 
β 
, ξt 

β
  + CK2β + 

2 
+ f (CZt(x))ξt(x)λ(dx) ≥ 0,   dt × dP − a.e.

t t

0 s− 

K K σ KT ∧Tn − Kσ Kt− dIt 

Since 
・ Tn (K− )2dIt

− ≥ 0, by taking conditional expectations on both sides, we obtain, 

 
 

where 

・

・ −
 

∗ 
     

Zt
 

Z̃t 
! 

 
 

|CZt|2 
!
 

 
dIt  = 

・ Cδt(|Vt| − Vt) + Cα(|Ut| + Ut) + CK2β + Cβr  t, 
β 
, ξt 

β 
+ 

2
 dt, 

+ 
∫   
f ∗(CZ̃t(x))ξt(x)λ(dx)dt 

 
 

E 

・ 2 ∫ ∫ 

dL− = CZ dW 
− 

|CZt| 
dt + 

CZ̃ (x)µ̃(dt, dx) − f ∗(CZ̃ (x))ξ (x)λ(dx)dt. 

Thanks to inequality given in (2.16), we have the following: 

∗ 
     

Zt
 

Z̃t 
! |CZt|2 ∫ 

∗ ˜ 

It is also easy to see, by the definition of Doléans-Dade’s exponential, that exp(L−t  ) = E(M −)t 
where, dMt

− = CZtdWt + 
・
E (e

CZ̃t(x)  − 1)µ̃(dt, dx). Therefore, we obtain, 
Kt
− = (∆) 

exp(Yt
−) = exp(V0) exp(It

−) exp(L  ) = exp(V0) exp(It
−)E(M −)t. 

Using the integration by part formula, we get, dKt
− = Kt

−
− (dMt

− + dIt
−), which implies, that the 

predictable quadratic variation of K− verifies, d⟨K−⟩t = (Kt
−
− )2d⟨M −⟩t and as a consequence, 

d⟨M −⟩t = 
(
 

1 
K− ) 
t− 

⟨M −⟩T  ≤  sup (  
1 

) 

! 
× ⟨K−⟩T .  (2.42) 

 

t∈[0,T ] Kt
− 2 

 

Now, we need to have an estimate for ⟨K−⟩ in order to get one for ⟨M −⟩. Itô’s formula yields, 

d(Kt
−)2  = 2K−− dKt

− + d[K−]t = 2(K−− )2(dMt
− + dIt

−) + d[K−]t. 

Taking a sequence of stopping times (Tn) such that for each n  ∈  N, (
・ t∧Tn  2(K− )2dMs

−)t  is 

a uniformly integrable martingale and integrating the above equation between a stopping time 

σ ≤ T and T ∧ Tn, we get, 

 
[ −] 

 
[ −]   = ( − 

 
)2 ( 

 
−)2 2 

∫ T ∧Tn 
(
 

 

 
− )2( 

 
− + −) 

 

0 

 

E[⟨K−⟩T ∧Tn 

t− 

 

− ⟨K−⟩σ|Fσ] = E[[K−]T ∧Tn 

 
− [K−]σ|Fσ] ≤ E[(KT

−  
Tn

 

 
)2 Fσ] E[ sup 

t∈[0,T ] 

 
(Kt
−)2|Fσ]. 

σ

d⟨ −K   ⟩ . 
Hence

E E

E

T ∧Tn  − − dMt .
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⟨ ⟩  − ⟨ ⟩ | ≤

≥

T

T

t

(x)

+ p

˜

˜

t t t 2 t t t

t t E 

1)µ(dt, dx). Going through the same lines as with Y −, we obtain, 

E 
0

|CZt| dt +
0 E

(eCZt x − 1) ν(dt, dx) < ∞,  p ≥ 1, 

|CZt| dt + (e−CZt  x − 1) ν(dt, dx) < ∞,  p ≥ 1. 

˜

 

 
Finally, passing to the limit as n → +∞ and using the Monotone Convergence theorem, we 

have, 

E[ K− T  K− σ Fσ] E[ sup 
t∈[0,T ] 

(Kt
−)2|Fσ]. 

Now, since for every p  1, sup 
t∈[0,T ] 

Kt
− ∈ LP (Ω), it follows from Garcia and Neveu Lemma (see 

for example Lemma 4.3 in Barrieu and El Karoui [7] or Neveu [104]) that 
 

E[⟨K−⟩p ] < ∞,   ∀p ≥ 1.  (2.43) 
 

With the same arguments used to show that sup Kt
− ∈ Lp(Ω), we have also that  sup    1    ∈ 

t∈[0,T ] t∈[0,T ] Kt
−

 

Lp(Ω) for any p ≥ 1. From (2.42) and (2.43) together with Cauchy-Schwartz inequality, we 

deduce that 

E[⟨M −⟩p ] < ∞,   ∀p ≥ 1.  (2.44) 

As for the process Y +, it verifies, dY + = dI+ + dL+ where, 
t  t  t 

 
  + 

∗ 
     

Zt
 

Z̃t 
! 

 
 

|CZt|2 
!
 

 
dIt  = 

・ Cδt(|Vt| + Vt) + Cα(|Ut| − Ut) + CK2β + Cβr  t, 
β 
, ξt 

β 
+ 

2 
dt 

+ 
∫   
f ∗(−CZ̃t(x))ξt(x)λ(dx)dt, 

 
 

E 

・ 2 ∫ ∫ 

dL+ = −CZ dW 
− 

|CZt| 
dt − 

CZ̃ (x)µ̃(dt, dx) − f ∗(−CZ̃ (x))ξ (x)λ(dx)dt. 

As r∗ and f ∗ are positive functions, the process I+ is increasing and as previously, by easy 

calculations, we can see that exp(L+) = E(M +)t  where dM + 

= −CZtdWt + 
・
 (e−CZ̃t  − 

E[⟨M    ⟩T ] < ∞,   ∀p ≥ 1.  (2.45) 

But, expressing the expression of predictable quadratic variation of M + and M −, we get, 

" ∫ T 
2 

∫ T ∫ 

E E

E 
0 0 E
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(  ) 2 

!p# 

" ∫ T 
2 

∫ T ∫ 

(  ) 2 

!p# 

This implies from one hand that, 

E 

" ∫

0

T  

|Zt|2dt

!p# 
< ∞,   p ≥ 1, 
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˜

T

−αUθ + β  r∗ 
t,

t , ξt
   t

− θr∗ t,    t , ξt
   t

β β

t t
E

t t

t t t t t t

where, to alleviate the notations, we have denoted, r∗,i  = r∗(t, Z
i 

, ξ  Z̃
i 

). Now, since r∗ is con- 

t  , ξt
     t 

≤ θr∗ t,    t  , ξt
   t t, t , ξt

t 

t
2 2 K1

t ξt x λ dx . 
K1β  (1 − θ)

E

 

and from the other hand, using the fact that |y|2 ≤ 2(|ey − 1|2 + |e−y − 1|2),  y ∈ R, we get that, 
" ∫ T  ∫ 

2 

!p# 
 

E 
0 

|Z̃t(x)|  ν(dt, dx) 

2,p 

< ∞,  p ≥ 1. 
2,p 

In conclusion, we have showed that Z  ∈ H and Z̃ ∈ Hλ    . 

In the next proposition, we establish a comparison theorem for the class of BSDEs in (2.33). 

For two random variables, we write A ≤ B if A ≤ B P − a.s. and for two processes X and Y , 

we write X  ≤ Y  if ∀t ∈ [0, T ], Xt ≤ Yt P  − a.s. Finally, we write (A, X) ≤ (B, Y ) if A ≤ B and 

X ≤ Y . 

Proposition 2.4.4. Assume that for k  = 1, 2, (V k, Zk, Zk) is a solution of the BSDE (2.33) in 
Dexp × H2,p × H2,p associated with (Uk, U

k 
). If (U 1, U 

1 
) ≤ (U 2, U 

2 
), then, 

0 λ  T  T  T 

  1 2 

∀t ∈ [0, T ],   Vt   ≤ Vt  P − a.s. 

Proof. In general, establishing comparison theorems for BSDEs is obtained through an esti- 

mate of the quantity ((V  1 − V 2)+)2. Here, in order to take advantage of the convexity of the 

finite variation part of the BSDE, we will rather estimate V 1 − θV 2 for each θ ∈ (0, 1). Similar 

idea was used in Briand and Hu [20] for the continuous case. 

Let θ ∈ (0, 1) and V θ  = V 1 − θV 2. We define accordingly Z θ , Z̃θ , Uθ  and U
θ 

. From (2.33), the 
 

 
 

" 
Z1 Z・1 

! Z2 Z・2 
!!# 

 

  

− SδZθdWt − 
∫   

SδZ̃θ (x)µ̃(dx, dt) 

= Sδ(−αUθ + β(r∗,1 − θr∗,2))dt − SδZθdWt − 
∫

 
SδZ̃θ (x)µ̃(dx, dt), 

 

t  t 

β  t  β 

vex, the term r∗,1 − θr∗,2 can be bounded from above. Indeed, 

Z1 Z・1 
! 

Z2 Z・2 
! 

 
 

 

    
Zθ  Z̃θ 

! 

   
:= θr∗,2 + (1 − θ)r∗,θ. 

Moreover, thanks to (2.16), we have 

|Zθ|2 
+ 

∫ Z̃θ (x) 
! 

( ) ( ) 
 E

(2.46) β(1 − θ) β(1 − θ)ββββ

ββ

dynamics of the process V θ discounted are given by 

dSδV θ = Sδ  dt t t t t

E

r∗,1 = r∗ 
t,  + (1 − θ)r∗

r∗,θ ≤ K2 + 
2

 f∗
K1β(1 − θ)
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t

t

t

t

t

t K  β(1−θ)1

t +K1β(1−θ) t  

and set Pt = exp(cSδV θ), Qt = cSδPt− Zθ  and Q̃t  = cSδPt− Z̃θ  . Using Itô formula, we deduce, 

cd(St Vt  ) + 
2 
d⟨S  V ⟩t + f (−cSt Zt (x))µ(dx, dt)

t t t t
E

t t

2 t t c E
t t

t t− t 2 t t cSδ E
t t t

E E
t t

E  E
t t

t cSδ t

−θ

E

 
 

Using this last inequality in (2.46), we get that, 

|Zθ|2 ∫ 

 

Z̃θ (x) 
!

 

 
To get rid of the quadratic and exponential terms in the inequality above, we will use an expo- 

nential change of variables. More precisely, let c be a negative constant (to be specified later), 

t    t  t  t  t  t 

" 
δ      θ  c2 

δ      θ 
∫ 

∗ δ ˜θ 

#
 

= cPt− 

 
Sδ(−αUθ + β(r∗,1 − θr∗,2))dt − SδZθdWt − 

∫   
SδZ̃θ (x)µ̃(dx, dt) 

+ 
c 

|SδZθ|2dt + 
1 
∫   
f ∗(−cSδZ̃θ (x))µ(dx, dt)

 
 

= cSδP 

"
−αUθ + β(r∗,1 − θr∗,2) + 

c 
Sδ|Zθ|2  + 

  1   
∫   
f ∗(−cSδZ̃θ (x))ξ (x)λ(dx))

# 
dt 

− QtdWt − 
∫   

Q̃t(x)µ̃(dx, dt) + Pt− 

∫   
f ∗(−cSδZ̃θ (x))µ̃(dx, dt) 

:= Gtdt − QtdWt − 
∫   

Q̃t(x)µ̃(dx, dt) + Pt− 

∫   
f ∗(−cSδZ̃θ (x))µ̃(dx, dt). 

Thanks to equation (2.47), the Gt  term is bounded from above, 

 
Gt ≤ cSδPt− 

"
−αUθ + K2β(1 − θ) + |Zθ|2 1  

 
 

 
+ cSδ 

t  t 2 K1β(1 − θ) t 
+ 
∫ 

(1 ) 
 

 

Z̃θ (x) 
!

 
 

 

    1 
(
 

 

 

(  ))

!
 

 

  

( )  ( )

#
 

K1β  − θ  f ∗ t 
− f ∗ −cSδZ̃θ   x 

ξt x λ dx := cSδPt− "
−αU 

+ K2β(1 ) + 
|Zθ|2 1 

+
 cSδ 

t  t  2 K1β(1 − θ) t 

+ 
∫    

h(K1β(1 − θ), Z̃θ (x)) − h( 
−1 

, Z̃θ (x))

! 
ξt(x)λ(dx)

# 
, 

where h  : R × Rd → R defined as h(x,  ) := xf ∗( /x) = xe /x − x − . We need to choose c 
such that the term next to |Zθ|2 is negative, that choose c such that, 

1 δ 

K1β(1 − θ) 
≤ −cSt . 

Since Sδ  ≥  e||δ||∞T , it is sufficient to set c(θ) := − e
−||δ||∞T  

. Computing the derivative of h 

with respect to x, we get, ∂xh(x,  ) = e /x − ( /x)e /x − 1. Studying the sign of the function 

x → ex − xex − 1 by calculating its derivative, we obtain that ex − xex − 1 ≤ 0, ∀x ∈ R. Therefore, 

tt−cSδK1β(1 − θ)E

K1β(1 − θ) K1β(1 − θ)

θ 

t

β(r∗,1−θr∗,2) ≤ K2β(1−θ)+ 
2

 f∗ ξt(x)λ(dx).  (2.47) 
E

dPt = Pt− 

(2.48) 

E 
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˜ ˜

∞ .

.

.

t t t 2 t K1β
t K1 

t t t t t t t

0 s K1β t K1 t

QD  := QtDt and Q̃D  := Q̃tDt. Using again Itô’s formula, for any stopping time 0 ≤ t ≤ τ  ≤ T , 

K1β 
Ut  − K

ds

PT exp −e 
K1β 

Ut  − K
Ft

. 

 

 
we deduce that ∂xh(x,  ) ≤ 0, ∀x ∈ R, that h is decreasing. Hence, going back to (2.48), we get 

that, 

G  ≤ c(θ)SδP  (−αUθ + K  β(1 − θ)) ≤ SδP  e−||δ||∞T 
   
      α  U 1 − 

K2 
    

,  (2.49) 
 

where we have used, in the second inequality, the fact that, 

 
Uθ = U 1 − θU 2 = θ(U 1 − U 2) + (1 − θ)U 1 ≤ (1 − θ)U 1. 

Finally, denoting Dt  = exp 
 
−e−||δ||∞T 

・ t Sδ
  
    α    U 1 − K2 

   

ds
  

, and introducing PD 

 
:= DtPt, 

 
t  t 

D  D 
∫ τ 

D 
 

 

∫ τ   ˜D
  ∫ τ ∫ 

 

 

∗ δ ˜θ 

Pt  Pτ  + 
t 
Qs dWs + 

t 
Qs  (x)µ(dx, ds) 

t 
Ps− Dsf 

E 
(−cSs Zs (x))µ(dx, ds). 

Considering a localizing sequence of stopping time τn, such that the local martingales, in the 

above inequality, stopped in τn are martingales, we obtain, 

−||δ|| T 
∫ τn

 
 

 

  
   α  1 K2

 
.
 

 
In view of the integrability assumptions on U 1 and on V , by the dominated convergence theo- 

rem, we can deduce that, 
" 

−||δ|| T 
∫ T 

 

 

  
   α  1 K2 

  
 

 

!
. 

# 

 

But by definition of P , PT  = exp(c(θ)Sδ V θ) = exp(c(θ)Sδ (U 
1  

− θU 
2 

)), and because U 
1  

≤ U 
2

 

and c(θ) is negative, we get, 
T    T  T  T  T  T  T 

 
 

δ  θ  e−||δ||∞T 
δ  1 

 
 

 
 

 

Therefore, we have, 

c(θ)ST VT  ≥ − 
K1β 

ST UT . 

" 
−||δ|| 

T   

     
Sδ        1 

∫ T 
 

 

  
   α 

1 K2 
  !!

. 
# 

Pt ≥ E 

 
which implies that, 

exp  −e  ∞ T 

K1β 
UT + Ss 

t  K1β Ut  − 
K1 

ds 
Ft   , 

. 

θ  K1β(1 − θ)e||δ||∞T 
"
 

 
 

  

 −||δ|| T   

     
Sδ        1 

∫ T 
 

 

  
   α 

1 K2 
  !!

. 
# 

Vt   ≤ − ln E t  exp  −e  ∞ T 

K1β 
UT + Ss 

t 

K1β 
Ut  − 

K1 
ds  Ft   . . 

θ S

1t

t

−≥

t− t−

Pt ≥ E  Pτn exp −e  Ss
1

Ft  .

Pt ≥ E  ∞ Ss ds .
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exp H . 

2 

6

t t

r(t, ηt, ψt)dt 
0 

= EQ
2 

|ηt| + f (ψt(x))ξt(x)λ(dx) dt 

0 2

∫ 

0 E

 
Taking the limit when θ ↗ 1, we finally get, 

V 1 ≤ V 2. 

 

 

The following corollary is a direct consequence of the comparison result above. 
 

Corollary 2.4.5. Under assumptions (ffir) and (ffiu), the BSDE (2.33) has a unique solution 

(V, Z, Z̃) D0 × H 2,p 
2,p 

× λ 
 

 

2.5 Appendix 

Lemma  2.5.1.  Let r(t, η, ψ) =  1 |η|2  + 
・
E  f (ψ(x))ξt(x)λ(dx) and Q  ∈  Qf . Then, the following 

processes,  
t M  = η dW 

 
Q,   M   
 

 = 
∫ t ∫  log(1 + ψ  (x))µQ 

 (ds, dx), 
t 

 

are Q-martingales. 
0 

s  s 
0 E 

s  ˜
 

 

Proof.  Since Q ∈ Qf , we have, 

"∫ T  # "∫ T      1 2 
∫ # 

In particular, EQ 
h・ T  1 |ηt|2dt

i 
< ∞, which implies that M  is Q- martingale. Now, we prove that 

M   is also a Q-martingale. First, note that, 

f (x) = (1 + x) log(1 + x) − x ≥ 
1 

(1 + x) log2(1 + x) ≥ 0,  for − 1 ≤ x ≤ e2 − 1. 

Hence, as the RHS of (2.50) is finite, we get that 

 
log(1 + ψs(x))1ψs(x)≤e2−1 ∈ L2(dQ × νQ(ds, dx)).  (2.51) 

Moreover, for x > e2 − 1, we have, 

(1 + x) log(1 + x) ≤ 2((1 + x) log(1 + x) − x). 

Again, as the RHS of (2.50) is finite, we get that, 

 
log(1 + ψs(x))1ψs(x)>e2−1 ∈ L1(dQ × νQ(ds, dx)).  (2.52) 

t

EQ  < ∞.  (2.50) 
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2

˜

˜

r(t, ηt, ψt)dt 
0 

= EQ
2 

|ηt| + f (ψt(x))ξt(x)λ(dx) dt 

m→∞ 0  
ηsdWs − 

2
 

0   
|ηs| ds

0
ψm,s x µ ds, dx

0 E
ψm,s x  −ψm,s x µ ds, dx

−ψm,s  x 

ψ

˜

˜

t

0 E

0 E

 
 

From (2.51) and (2.52), and using Theorem 1.8(i) in Jacod and Shiryaev [70], we obtain that 

M   is Q-martingale. 

Proposition 2.5.2.  Let r(t, η, ψ) =  1 |η|2  + 
・
E  f (ψ(x))ξt(x)λ(dx) and Q ∈ Qf . Then, we have, 

"∫ T  # "∫ T      1 2 
∫ # 

 

Proof.  Let Q ∈ Qf  with corresponding (η, ψ). We introduce the following sequence of processes 

(ψm)m∈N∗ defined as: 

ψm,s(x) = ψs(x)1ψs(x)≤m1|x|≥1/m. 

It is clear that ψm  ∈ L2(dQ×νQ(ds, dx)). Developing the logarithm of Radon-Nikodym derivative 

of Q w.r.t P  gives Q-a.s.: 

log 
  
dQ 

  

=  lim log 

(
E 
 ∫ T

 

+ 
∫ T ∫  ( ) ( 

 )

!) 

dP  m→∞ s  s 
0 0 E 

m,s  ˜ 
 

= lim 

(∫ T  1 ∫ T 
 

 

2 + 
∫ T ∫  

( )  ( ) 

+ 
∫ T ∫  

(log(1 + 
 

( )) 

E 

(  ))  ( )

)
 

 = lim 
(∫ T 

Q + 
1 ∫ T 

 
 

2 + 
∫ T ∫  (  )  Q( ) 

 
m→∞ 
∫ T ∫ 0   

ηsdWs  2  0   
|ηs| ds 

 

 

0 E    
m,s   ̃ ds, dx 

+ (log(1 + ψm,s(x)) ψm,s(x))µQ(ds, dx) 
0 E  ) 

+ 
∫ T ∫  

[
 

( ) ( ) + (1 + ( )) (log(1 + ( )) ( ))  ( )] 

= lim (∫ T 
Q + 

1 ∫ T  2 + 
∫ T ∫ log(1 + (  ))  Q( ) 

 
m→∞ 

0    
ηsdWs  2   0    

|ηs| ds 
0

 ψm,s x 
) 

ds, dx 

+ 
∫ T ∫ [(1 + ( )) log(1 + ( )) (  )]  ( ) 

ψs x 
0 E 

ψm,s x  − ψm,s  x  ν  ds, dx  ,  
(2.54) 

where we used from the second to the third inequality that, by the definition of the process 
ψm, (1 + ψs)(log(1 + ψm,s) − ψm,s) ∈  L1(ν(ds, dx)) and ψmψ  ∈  L1(ν(ds, dx)). In particular, 
・ t  ・ 

 

 (log(1 + ψm,s(x)) − ψm,s(x)µQ(ds, dx) is a well defined. Lemma 2.5.1 above insures that 

the following processes: 

:= 
∫ t

 

 
Q   := 

∫ t ∫ 
  

 log(1+ 
 

( ))  Q( 
  

 
)  

:= 
∫ t ∫  log(1+ 

 
(  ))  Q( ) 

   t 
0 

s  s 
0 E 

s  ˜ m,t 
0 E

  m,s  ˜ 
 

are  Q-martingales.  Moreover,  we  also  have  that  Mm
  
,T    converges  to  MT

   in  L1(Q).  Indeed, 

ds, dx ,µxµx,  M η dW M

E 

µ

−

ψ x µ

ψ

0

H(Q|P ) = EQ  .  (2.53) 

η dW  x µ ds, dx

ψm,s x ψs x  ψs x ψm,s x ν  ds, dx 

ds, dx , M
ψ 

E
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・

1

0

Mm,t 
0

ψs,m x  Mm,t
0

ψs,m x 

E

˜

 
 

decomposing M  and Mm 

 
 

where, 

as in Lemma 2.5.1 in the following way, 
 

Mm
  
,t  = M・m,t  + M̃m,t, 

・ := 
∫ t ∫  

log(1 + 
 

( )) ˜ := 
∫ t ∫  

log(1 + 
 

( )) 
  

 

We have the positive (resp. negative) part of log(1 + ψm,s(x))1 2 increases (resp. 
ψs,m(x)≤e −1 

decreases) to the positive (resp. negative) part of log(1 + ψs(x))1 2 as m goes to infinity 
ψs(x)≤e −1  

ˆ 1
 

and by the monotone convergence we deduce that Mm,T convergence to MT  in L  (Q). Using 

the same argument, we have also M̃m,T  converges to M̃T  in L  (Q) as m goes to infinity. Hence, 

we obtain that Mm
  
,T   converges to MT

   as m  →  ∞. By passing to a subsequence, we may 
assume that Mm

  
,T   converges to MT

   Q-a.s. Finally, by Monotone convergence theorem, the 

last term in (2.54) also converges to 
・ T  ・ f (ψs(x))ν(ds, dx). Consequently, (2.54) becomes, 

log 
  
dQ 

   

= 
∫ T

 
Q + 

1 ∫ T  2 + 
∫ T ∫ log(1 + (  ))  Q( ) 

 
dP 0 

∫ 
ηsdWs 

T ∫ 2   0    
|ηs| ds 

0
 ψs x  ds, dx 

+ f (ψs(x))ν(ds, dx). 
0 E 

 

Taking the expectation under Q and using the fact that M and M   are martingales yields (2.53). 

µ

EE 
1 ,2 1 .2ψs,m(x)≤e −1 ψs,m(x)>e −1

E
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CHAPTER   3 

ESTIMATION OF SYSTEMIC SHORTFALL 

RISK MEASURES USING STOCHASTIC 

ALGORITHMS 
 
 
 

 
 
 

 
Abstract 

 
Systemic risk measures were introduced to capture the global risk and the corresponding con- 

tagion effects that is generated by an interconnected system of financial institutions. To this 

purpose, two approaches were suggested. In the first one, systemic risk measures can be 

interpreted as the minimal amount of cash needed to secure a system after aggregating indi- 

vidual risks. In the second approach, systemic risk measures can be interpreted as the minimal 

amount of cash that secures a system by allocating capital to each single institution before 

aggregating individual risks. Although the theory behind these risk measures has been well 

investigated by several authors, the numerical part has been neglected so far. In this paper, we 

use stochastic algorithms schemes in estimating MSRM and prove that the resulting estimators 

are consistent and asymptotically normal. We also test numerically the performance of these 

algorithms on several examples. 

 
 

3.1 Introduction 
 

The axiomatic theory of risk measures, first initiated by the seminal paper of Artzner et al. [5], 

has been widely studied during the last years. Value-at-Risk(VaR) is one of the most known and 

common risk measures used by practitioners and regulation authorities. However, VaR lacks 

one important property: it does not take into account the diversification effect. To circumvent this 

problem, the VaR was replaced by the Conditional Value-at-Risk (CVaR) and a more general 

framework of improved risk measures has been introduced: Utility-based Shortfall Risk (SR). 

Nevertheless, when it comes to a system of financial institutions or portfolios, the question 

about how to assess the global risk as well as individual risks arise. Following the 2008 crisis, 

the traditional approach of measuring systemic risk that consists in considering each institution 
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as a single entity isolated from other institutions, has shown its own limits. Indeed, with this 

approach, the risk associated to a vector of positions X  = (X1, ..., Xd) can be written as: 
 

d 

R(X) := ηi(Xi), 
i=1 

 
where each ηi is a univariate risk measure. Then, Chen et al. [27] proposed an approach that 

is very close in spirit to the axiomatic framework initiated by Artzner et al. [5]. They showed 

that any systemic risk measure verifying certain axioms is the composition of a univariate risk 

measure η and an aggregation Λ, i.e., 
 

R(X) = η(Λ(X)). 

The previous representation is known as the “Aggregate then Add Cash” approach as it consists 

first in aggregating the positions X1,  ...,  Xd    through the aggregation function Λ and then to 

apply a univariate risk measure. One of the most common ways to aggregate the outcomes 

Xi is to simply take the sum, that is to consider, Λ(x) = 
Σd  xi. It is worth noticing that, 

while summing up profit and losses might seem reasonable from the point of view of a portfolio 

manager because portfolios profits and losses compensate each other, this aggregation rule 

seems inadequate from the point of view of a regulator where cross-subsidization between 

institutions is not realistic since no institution will be willing to pay for the losses of another one. 

Motivated by these considerations, Biagini et al. [15] proposed another approach to measure 

the systemic risk. They first considered the systemic risk as the minimal capital that secures the 

system by injecting capital into the single institutions, before aggregating the individual risks: 
 

d 

R(X) := inf mi,  Λ(X + m) A ,  (3.1) 
i=1 

where A is an acceptance set. This approach, known as “Add Cash then Aggregate” consists in 

adding the amount mi  to the financial position Xi before the corresponding total loss Λ(X + m) 

is computed. The systemic risk is then measured as the minimal total amount 
Σd  mi injected 

into the institutions to make it acceptable. With this approach, a joint measure of total risk as 

well as individuals risk contributions to systemic risk is obtained. If m∗ = (m∗
1, ..., m∗

d) is an opti- 

mum, that is R(X) = 
Σd  m∗ and Λ(X + m∗) ∈ A, one could order the m∗’s and hence be able 

to say that institution i requires more cash allocation or is riskier that institution j  if m∗
i   ≥ m∗

j . 

In this article, we are interested in the numerical approximation of the multivariate shortfall risk 

measure (MSRM) that was introduced in Armenti et al. [4]. They are an extension of univariate 

SR and can be obtained by taking the aggregation function Λ(x) = lS(−x) where lS is a multi- 

variate loss function (see Section 3.2) and the acceptance set A = {X ∈ L0(R), E[X] ≤ 0}. 
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To meet the regulatory requirements, financial institutions need to develop a reliable risk man- 

agement framework to face all kind of financial risks associated to their portfolios. Most of 

the time, financial institutions use the standard VaR and CVaR although it suffers from some 

deficiencies. The most common method used to compute VaR is the inversion of the simu- 

lated empirical P&L distribution function using Monte Carlo or historical simulation tools (see 

Glasserman [58] and Glasserman et al. [59]). Another idea to compute VaR and CVaR comes 

from the fact that they are solutions and the value of the same convex optimization problem 

as pointed out in Rockafellar and Uryasev [113]. Moreover, as they can be expressed as an 

expectation, this led Bardou et al. [6] to define consistent and asymptotically normal estimators 

of both quantities using a classical Robbins-Monro (RM) procedure. Since VaR and CVaR are 

both related to the simulation of rare events, they also introduced a recursive and adaptive vari- 

ance method based on importance sampling paradigm. 

RM algorithms have been the subject of an enormous literature, both theoretical and ap- 

plied. The basic paradigm in its simplest form is the following stochastic difference equation: 

Zn+1 = Zn + γnYn, where Zn takes its values in some Euclidean space, Yn  is a noisy observ- 

able variable, and γn > 0 is the step size that goes to zero as n → ∞. The original work was 

motivated by the classic problem of finding a root of a continuous function  → g( ), which is un- 

known but such that, we are able to take only “noisy” measurements at any desired value . This 

is the case when the function g can be expressed as an expectation, that is g( ) = E[G(X,  )], 

where X  is some random variable. In such situation, the noisy observation variable is simply 

Yn = G(Xn+1, Zn), where (Xn) is a sequence of i.i.d random variables with the same law as X. 

If moreover, the random variable X  is not directly simulatable, but can only be approximated by 

another easily simulatable random variable, Frikha [52] recently extended the scope of multi- 

level Monte Carlo to the framework of stochastic algorithms and proved central limit theorems. 

In many cases, the analysis of these algorithms uses the so-called ODE (Ordinary Differential 

Equation) method introduced by Ljung [90]. The main idea is to show that, in the long run, the 

noise is eliminated so that, asymptotically, the behaviour of the algorithm is determined by that 

of the “mean” ODE: ˙ = g( ). An introductory approach to RM algorithms and their convergence 

rate can be found in Duflo [42] and Benveniste et al. [12]. To ensure the convergence of RM 

algorithms to the root of the function g, it does not require too restrictive assumptions except 

for one: the sub-linear growth of the function g. One way to deal with restrictive assumption is 

to use projection techniques. This consists in using the projection into a compact K each time 

the sequence Zn goes out of K. This procedure was first introduced by Kushner and Sanvi- 

cente [81] in order to deal with problems of convex optimization with constraints. Another way 

to deal with this constraint in the framework of variance reduction using importance sampling 

method was proposed in Lemaire and Pagès [87]. They have showed that under some regular- 

ity assumption on the density of the law of X, we can obtain almost-surely convergence result 
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and central limit theorems. In this paper, for the sake of simplicity, we will rather use projection 

techniques. An excellent survey on projection techniques, their links with ordinary differential 

equation (ODE) and stochastic algorithms can be found in Kushner and Yin [83]. 

SR can be characterized as the unique root of a function g : R ›→ R that is expressed as an 

expectation. Therefore, a straightforward approach for estimating SR consists in, first, using a 

deterministic root finding algorithm that would converge to the root, and second, designing an 

efficient Monte Carlo procedure that estimates g(s) at each given argument s ∈ R. One could 

also use variance reduction techniques in order to accelerate the estimation of the function 

g at each argument s ∈ R. This idea is very close to sample average methods in stochastic 

programming. For more details, see, for example, Kleywegt et al. [80], Linderoth et al. [89], 

Mak et al. [92], Shapiro and Nemirovski [123], Verweij et al. [129] and Verweij et al. [130]. An 

alternative to this combination of Monte Carlo method and deterministic root finding schemes 

is to use stochastic algorithm as presented in Dunkel and Weber [43]. In their work, they did 

not assume the sub-linear growth of the function g, and therefore used projection techniques to 

prevent the algorithm from explosion. 

In this paper, we will see that the optimal allocations of multivariate shortfall risk measures can 

also be characterized as the root of a function that is expressed as an expectation. More pre- 

cisely, the optimal allocations are characterized as the solution of the first order condition of 

the Lagrangian associated to the multivariate risk measure. Again, because we do not want to 

reduce drastically the scope of application, we will use stochastic algorithms with projection to 

approximate the optimal allocations. 

The paper is organized as follows. The next section, is dedicated to MSRM and the defini- 

tions related to them. The main theorem that characterizes the optimal allocations for MSRM 

is presented. In Section 3.3, we explain the ODE method and recall some stability results that 

we will use later to establish convergence results. Finally, section 3.4 is devoted to some nu- 

merical experiments of our procedures. We present a first testing example with an exponential 

loss function, where we have a closed formula for optimal allocations. We also give a second 

example using a loss function with a mixture of positive part and quadratic functions. 

 
 

3.2 About Multivariate Risk Measures 

Let (Ω, F, P) be a probability space, and denote by L0(Rd) the space of F-measurable d-variate 

random variables on this space with d ≥ 2. For x, y  ∈ Rd, we say that that x  ≥ y  ( x  > y  resp.) 

if xk ≥ yk (xk > yk resp.) for every 1 ≤ k ≤ d. We denote by || · || the Euclidean norm, and 

x · y  =     xkyk. For a function f  : Rd  ›→  [−∞, ∞], we denote by f ∗(y) = supx{x · y − f (x)} 

the convex conjugate of f . The space L0(Rd) inherits the lattice structure of Rd and therefore, 

we can use the classical notations in Rd  in a P-almost-sure sens. We say, for example, for 
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X, Y ∈ L0(Rd), that X ≥ Y  (or X > Y    resp.) if P(X ≥ Y  ) = 1 (or P(X > Y  ) = 1 resp.). To 

simplify the notation, we will simply write L0 instead of L0(Rd). Now, let X = (X1, ..., Xd) ∈ L0 

be a random vector of financial losses, i.e., negative values of Xk represents actually profits. 

We want to assess the systemic risk of the whole system and to determine a monetary risk 

measure, which will be denoted R(X), as well as a risk allocation RAk(X), k = 1, ..., d  among 

the d risk components. Inspired by the univariate case introduced in Föllmer and Schied [51], 

Armenti et al. [4] introduced a multivariate extension of shortfall risk measures by the means of 

loss functions and sets of acceptable monetary risk allocations. 
 

Definition 3.2.1. A function l  : Rd ›→ (−∞, ∞] is called a loss function if: 

(A1) l is increasing, that is l(x) ≥ l(y) if x ≥ y; 

(A2) l  is convex and lower-semicontinuous with inf l < 0; 

(A3) l(x) ≥ 
Σ 
xk − c for some constant c. 

Furthermore, a loss function l is said to be permutation invariant if l(x) = l(π(x)) for every 

permutation π of its components. 

Comment: The property (A1) expresses the normative fact about the risk, that is, the more 

losses we have, the riskier is our system. As for (A2), it expresses the desired property of 

diversification. Finally, (A3) says that the loss function put more weight on high losses than a 

risk neutral evaluation. 

Example 3.2.1. Let h : R ›→ R be one dimensional loss function satisfying condition (A1), (A2) 

and (A3). We could build a multivariate loss function using this one dimensional loss function in 

the following way: 

(C1) l(x) = h(
Σ 
xk); 

(C2) l(x) = 
Σ 
h(xk); 

(C3) l(x) = αh(
Σ 
xk) + (1 − α) 

Σ 
h(xk) for 0 ≤ α ≤ 1. 

More specifically, in (C1), we are aggregating losses before evaluating the risk, whereas 

in (C2), we evaluate individual risks before aggregating. The loss function in (C3) is a convex 

combination of those in (C1) and (C2). 

One of the main examples we will be studying in this paper are the two following ones: 

h(x) =  
    1  

(
Σ 

eβxi   + αeβ 
Σ 

xi ) − 
α + d

,   h(x) = 
Σ 

x  + 
1 Σ

(x+)2  + α 
Σ 

x+x+, 
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where the coefficient α > 0 is called the systemic weight and β > 0 is a risk aversion coefficient. 

In the following, we will consider multivariate risk measures defined on Orlicz spaces (see Rao 

and Ren [110] for further details on the theory of Orlicz spaces). This has several advantages. 

From a mathematical point of view, it is a more general setting than L∞, and in the same time, 

it simplifies the analysis especially for utility maximization problems. Therefore, we will consider 

loss vectors in the following multivariate Orlicz heart: 

 
Mθ = {X ∈ L0 : E[θ(λX)] < ∞, ∀λ > 0}, 

where θ(x) = l(|x|),  x ∈ Rd. See Appendix in Armenti et al. [4] for more details about Orlicz 

spaces. 

Next, we give the definition of multivariate shortfall risk measures as it was introduced in Ar- 

menti et al. [4]. 

 
Definition 3.2.2. Let l be a multivariate loss function and X ∈ Mθ, we define the acceptance 

set ffi(X) by: 

ffi(X) := {m ∈ Rd  :  E[l(X − m)] ≤ 0}. 

The multivariate shortfall risk of X ∈ Mθ  is defined as: 

R(X) := inf 
,Σ 

mk  :  m ∈ ffi(X)
, 

= inf 
,Σ 

mk  :  E[l(X − m)] ≤ 0
, 
.  (3.2) 

Remark 3.2.3. When d = 1, the above definition corresponds exactly to the univariate shortfall 

risk measure in Föllmer and Schied [57]. 

 
The following theorem from Armenti et al. [4] shows that the multivariate shortfall risk mea- 

sure has the desired properties and admits a dual representation as in the case of univariate 

shortfall risk measure. We introduce Qθ∗  
the set of measure densities in Lθ∗ 

, the dual space of 

Mθ: 

Qθ∗  
:= 
  
dQ  

:= (Z1, ..., Z  ),  Z  ∈ Lθ∗ 
,  Z   ≥ 0 and E[Z  ] = 1 for every k

  
. 

 

 
Theorem 3.2.4. [Theorem 2.10 in Armenti et al. [4]] The function 

R(X) := inf 
,Σ 

mk  :  m ∈ ffi(X)
, 
, 

is real-valued, convex, monotone and translation invariant. Moreover, it admits the dual repre- 

sentation: 
R(X) =  max  EQ[X] α(Q) ,  X  Mθ, 

Q∈Qθ∗ 
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where the penalty function is given by 

 
α(Q) = inf 

λ>0 
E 

 

λl∗ 
  
dQ 

     

,   Q ∈ Qθ∗ 
. 

 

Now, we address the question of existence and uniqueness of a risk allocation which are 

not straightforward in the multivariate case. Armenti et al. [4] showed that if the loss function 

is permutation invariant, then risk allocations exist and they are characterized by Kuhn-Tucker 

conditions. We denote by Z = {m ∈ Rd, mi = 0} the zero-sum allocations set. 

Definition  3.2.5.  A risk allocation is an acceptable monetary risk allocation m  ∈  ffi(X) such 

that R(X) = mk. When a risk allocation is uniquely determined, we denote it by RA(X). 

We make the following assumption on the loss function l and the vector of losses X ∈ Mθ: 

(ffil) i. For every m0, m ›→ l(X − m) is differentiable at m0 a.s.; 

ii. l is permutation invariant. 

Theorem 3.2.6. [Theorem 3.4 in Armenti et al. [4]] Let l be a loss function and X ∈ Mθ such 

that assumption (ffil) holds. Then, risk allocations m∗ ∈ Rd exists and they are characterized by 
the first order conditions: 

 

1 = λ∗E[𝖮l(X − m∗)],  E[l(X − m∗)] = 0, 

where λ∗ ≥ 0 is a Lagrange multiplier. If moreover l(x + ·) is strictly convex along zero sum 
allocations for every x such that l(x) ≥ 0, the risk allocation is unique. 

Comment: Let f0(m) = 
Σd  mi and f1(m) := E[l(X − m)], for m ∈ Rd  and X ∈ Mθ. The 

assumption (ffil)-i. together with the convexity of the function m  ›→ l(X − m), we have that, by 

Theorem 7.46 in Shapiro et al. [124], f1 is differentiable at every m ∈ Rd and that, 

𝖮f1(m) = −E[𝖮l(X − m)],  m ∈ Rd. 

Therefore, the first order conditions given in the above theorem are equivalent to : 
 

𝖮f0(m∗) + λ∗𝖮f1(m∗) = 0, 

λ∗f1(m∗) = 0. 

Furthermore, we also know, thanks to Theorem 28.3 in Rockafellar [115], that the above con- 

ditions are equivalent to saying that (m∗, λ∗) is a saddle point of the Lagrangian associated to 
the problem in (3.2), i.e., 

 

d 

L(m, λ) := f0(m) + λf1(m) = mi + λE[l(X  m)].  (3.3) 
i=1 
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Under the assumptions of the above theorem ∗ := (m∗, λ∗) is the unique solution of h( ) = 0, 
where: 

h( ) := 

・
λE[𝖮l(X − m)] − 1

・ 

,   = (m, λ) ∈ Rd × [0, ∞[. 
・ 

E[l(X − m)] 
・

 

Thus, in order to find the unique risk allocation m∗, we can look for the zeros of the function 
h. We suggest here to use stochastic algorithms as they present the advantage of being in- 

cremental, less sensitive to dimension, and offer a flexible framework that can be conveniently 

combined with features such as importance sampling (see Dunkel and Weber [43])and model 

uncertainty. 

 

3.3 Multivariate Systemic Risk Measures and Stochastic Algorithms 
 

Let l be a loss function satisfying assumption (ffil) and a vector of losses X ∈ Mθ. We recall 

that in order to have the uniqueness of risk allocations, we need to add the convexity condition: 

(ffi l)      i.  For every m0, m ›→ l(X − m) is differentiable at m0 a.s.; 

ii. l is permutation invariant; 

iii. m ›→ E[l(X − m)] is strictly convex. 

Under  (ffi l),  Theorem  3.2.6  ensures  that  there  exists  a  unique  risk  allocation  m∗ such  that 
∗ = (m∗, λ∗) is the unique root of the function h( ) := E[H(X,  )], where we set 

H(X,  ) = 

 
λ𝖮ml(X − m) − 1

! 
,  X  ∈ Mθ.  (3.4) 

In all the following, we will work under the assumption (ffi l). The aim of this section is to con- 

struct an algorithm that converges to the root ∗ = (m∗, λ∗) under some suitable assumptions. 

As pointed out in the introduction, we will not use a regular Robbins-Monro algorithm as it re- 

quires the sublinearity of the function h, and consequently will not offer a general framework 

that is flexible enough to cover a wide range of loss functions. In order to be able to use the ODE 

method (see Section 3.5.1 for more details), we suggest instead the projected Robbins-Monro 

(RM) Algorithm: 

Zn+1 = ΠK [Zn + γnH(Xn+1, Zn)],  Z0 = 0 ∈ K 

= ΠK [Zn + γnh(Zn) + γnδMn], 
(3.5) 

where δMn  = H(Xn+1, Zn) − h(Zn). In the sequel, we denote Fn  = σ(Z0, Xi, i ≤ n). δMn  is 

a martingale difference sequence with respect to the filtration F = (Fn). We assume that K  is 

hyperrectangle such that ∗ is in the interior of K: K  = {m ∈ Rd, ai ≤ mi ≤ bi} × [0, A]. (Xn)n≥1 



  Estimation of Systemic Shortfall Risk Measures using Stochastic Algorithms

79 

 

 

n

2

 
 

is an i.i.d sequence of random variables with the same distribution as X, independent of Z0 

and (γn)n≥1 is a deterministic step sequence decreasing to zero and satisfying: 

Σ 
γn = +∞ and 

Σ 
γ2 < +∞.  (3.6) 

 

In the sequel, we will take γn 

n≥1 

  c 
nγ 

n≥1 

where c  is a positive constant and γ  ∈] 1 , 1]. 
 
 

 

3.3.1 Properties of z∗ 
 

Before giving the results about the almost surely convergence, let us give some properties of 

∗. From paragraph 3.5.1 in Section 3.5, we know that (3.5) is associated with the following 
ODE: 

˙ = h( ) + C( ),  C( ) ∈ −C( ),  (3.7) 

where C( ) is the convex cone determined by the outer normals to the faces that need to be 

truncated at  and C( ) is the minimum force needed to bring back   to K (For more details 

about concepts related to the ODE method and stability results, see Section 3.5). Now, since 

∗ is interior to K and h( ∗) = 0, ∗ is an equilibrium point for the projected ODE 3.7. In order to 

study the asymptotic stability of the equilibrium ∗, one needs to find some convenient Lyapunov 

function V . A natural and classical choice for this type of problems is V ( ) = ||  − ∗||2. It is 
obvious that V  is positive definite. The following proposition shows that its derivative along any 

state trajectory is negative semi-definite on K. 
 

Proposition 3.3.1. The function V ( ) = ||  − ∗||2 is such that  → V˙ ( ) = ⟨𝖮V ( ), h( ) + C⟩ 
is negative semi-definite on K with the respect to the ODE in (3.7). 

 

Proof. First, let  = (m, λ) ∈ int(K) so that V˙ ( ) = ⟨𝖮V ( ), h( )⟩ = 2⟨  − ∗, h( )⟩, and define 
L the Lagrangian as defined in (3.3). We have: 

 
⟨  − ∗, h( )⟩ = ⟨m − m∗, λE[𝖮l(X − m)] − 1⟩ + (λ − λ∗)E[l(X − m)] 

= −⟨m − m∗, ∂mL(m, λ)⟩ + (λ − λ∗)∂λL(m, λ). 

Now, thanks to the convexity of L  with respect to m, we have: L(m∗, λ)  ≥  L(m, λ) + ⟨m∗ − 
m, ∂mL(m, λ)⟩. This in turn implies that 

L(m∗, λ) − L(m, λ) + (λ − λ∗)∂λL(m, λ) ≥ ⟨m∗ − m, ∂mL(m, λ)⟩ + (λ − λ∗)∂λL(m, λ). 

=
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dt

− ≥

 
 

But, we also have, 

L(m, λ) = 
Σ 

mi + λE[l(X − m)] = 
Σ 

mi + λ∗E[l(X − m)] + (λ − λ∗)E[l(X − m)] 

= L(m, λ∗) + (λ − λ∗)∂λL(m, λ). 

The previous inequality becomes then 
 

⟨m − m∗, ∂mL(m, λ)⟩ − (λ − λ∗)∂λL(m, λ) ≥ L(m, λ∗) − L(m∗, λ) 

The RHS of the last inequality is non-negative, because, (m∗,  λ∗) is a saddle point, that is 

L(m∗, λ) ≤  L(m∗, λ∗) ≤  L(m, λ∗). Moreover, because L  is strictly convex with respect to m, it 

is also negative if m  ̸= m∗. Therefore, we get that, 

⟨  − ∗, h( )⟩ ≤ 0.  (3.8) 

Note that this is true irrespective of whether   ∈  int(K) or not. Now, if i  =  bi  and hi( )  >  0 

for some i, then Ci  = −hi( ), and hence ( i − i
∗)Ci  ≤ 0. This shows that in this case, V̇ ( ) is 

less than the LHS of 3.8 and it is in turn negative. This can be easily generalized for all other 

boundary cases. As a conclusion, we have shown that V˙ is negative semi-definite on K. 

Remark 3.3.2. We cannot conclude that V˙ is negative definite on K, because   ̸= ∗ does not 

imply that m  m∗. Besides, if  = (m∗, λ) such that λ ≠ λ∗, we have V̇ ( ) = 0 and   ̸= ∗. 
 

Proposition 3.3.3. The equilibrium point ∗ of the ODE (3.7) is asymptotically stable. 

Proof. A direct application of Theorem 3.5.8, allows us to conclude that ∗ is stable. Still, due 

to the previous remark, we cannot say that it is asymptotically stable. This is where the use of 

the invariant set Theorem 3.5.11 and its Corollary 3.5.12 come in. Indeed, by taking Ω = K 

in Corollary 3.5.11, we deduce that, provided that the largest invariant set M in R = {   ∈ 

K, V˙ ( ) = 0} is the singleton { ∗}, every trajectory originating in K converges to ∗ and hence 

the asymptotic stability of ∗. Now, we need to explore the set R and find the largest invariant 

set M  in R. Let   = (m, λ) ∈ M  ⊆ R  ⊆ K. As discussed in the proof of Proposition 3.3.1, if 

  = (m, λ) ∈  K  such that V˙ ( ) = 0, then necessarily m = m∗, that is R  ⊆  I  := {   = (m, λ) ∈ 

K, m = m∗}. Since M is an invariant set, every trajectory originating in M should remain in 

M  for all future times, and therefore in I. In other words, if (0) = (m∗, λ) for some λ ≥ 0, then 

(t) = (m(t), λ(t)) = (m∗, λ(t)) for all t ≥ 0. Furthermore, (·) is solution of the following ODE, 

dm(t) 
= λ(t)E[𝖮l(X − m(t))] − 1 + C(m(t)),  t ≥ 0, 

dλ(t) 
= E[l(X  m(t)] + C(λ(t)),  t  0. 

dt 

 
 

(3.9) 
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dt

dt 

dt

∞

σ2( ) = E[||H(X,  ) − h( )||2];

 

Now, since ∀t ≥ 0, m(t) = m∗ and ∗ ∈ int(K), we get that, C(m(t)) = 0 and dm(t) = 0, ∀t ≥ 0. 

Moreover, we have ∀t ≥ 0, E[l(X − m(t))] = E[l(X − m∗)] = 0 (recall that h( ∗) = 0), we obtain 
again that C(λ(t)) = 0 and dλ(t) = 0 and consequently t → λ(t) is a constant function, i.e., 

λ(t) = λ, ∀t  ≥ 0 . But we also know that, dm(t) = 0,  ∀t  ≥ 0 which implies that the right hand 

side of the first equation in (3.9) is 0, i.e. λE[𝖮ml(X − m∗)] − 1 = 0. Finally, we deduce that 

λ = λ∗ given that (m∗, λ∗) is the unique  such that h( ) = 0. 

We have then showed that the largest invariant set is simply { ∗} and therefore ∗ is asymptot- 
ically stable equilibrium for the ODE (3.7). 

 

3.3.2 Almost Surely Convergence 

In the current section, we prove consistency of the algorithm (3.5). Let σ2(·), Σ(·) and m2+p(·), 

for p > 0, be defined as follows: 

 
・

m2+p( ) = E[||H(X,  ) − h( )||2+p]; 
・ 

Σ( ) = E[(H(X,  ) − h( ))(H(X,  ) − h( ))⊺]. 

We make the following assumption: 

(ffia.s.) i. h is continuous on K; 

ii. sup σ2( ) <  . 
∈K 

Theorem 3.3.4. Assume that the sequence (Zn) is defined by the algorithm (3.5) and that 

assumptions (ffi l) and (ffia.s.) hold. Then, Zn → ∗ P- almost surely as n → ∞. 

Proof. We already know that, because ∗ is asymptotically stable, the trajectory given by the 

ODE (3.7) converges to ∗. Thus, ∗ is the only limiting for the ODE. Theorem 5.2.1 in Kushner 

and Yin [83] implies that Zn → ∗ as n → ∞ if we can verify their conditions (A2.1)-(A2.5). 

(A2.1) is guaranteed by the second assumption in (ffia.s.). (A2.2), (A2.3), (A2.4) and (A2.5) are 

verified thanks to the first point in (ffia.s.) and (3.6). 

 

3.3.3 Asymptotic normality 

(ffia.n.) i. m ›→ E[𝖮l(X − m)] is continuously differentiable. Let A := Dh( ∗) (Jacobian matrix 

of h at ∗); 

ii. (Yn1|Zn− ∗|≤ρ) is uniformly integrable for small ρ > 0; 

iii. For some p > 0 and ρ > 0,  sup 
| − ∗|≤ρ 

m2+p( ) < ∞; 

iv. Σ(·) is continuous at ∗. Let Σ∗ := Σ( ∗) . 
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Theorem   3.3.5.  Assume that γ  ∈  ( 1 , 1) and that assumptions (ffi l), (ffia.s.) and (ffia.n.) hold. 
Then, 

 
 

If furthermore, cA + I 

√
nγ (Zn − ∗) → N 

 
0, c2 

∫ ∞ 
ecAt Σ∗ ecA

⊺tdt

   

. 

is a Hurwitz matrix and cI − P  is positive definite with P solution to the 

Lyapunov’s equation: A⊺P  + PA = −I, then, 

√
n(Z  − ∗) → N 

 
0, c2 

∫ ∞ 
e(cA+ I )t Σ∗ e(cA⊺+ I )tdt

   

. 

 

Proof. We will verify that the assumptions (A2.0)-(A2.7) in Theorem 10.2.1 in Kushner and 

Yin [83] hold. First, let us start with the case γ ∈ ( 1 , 1). Assumption (A2.0) is automatically 

verified. (A2.1) is satisfied by assumption (ffia.n.)-ii.. (A2.2) is a consequence of Theorem 3.3.4 

and the fact that ∗ is stable as shown in Section 3.3.1. (A2.4) follows from Taylor’s expansion 

and (ffia.n.)-i.. (A2.5) follows from the fact that h( ∗) = 0. The first and second parts of (A2.7) 

are guaranteed thanks to (ffia.n.)-iii. and (ffia.n.)-iv.. (A2.3) follows easily from Theorem 10.4.1 of 

Kushner and Yin [83] since all their assumptions (A4.1)-(A4.5) are satisfied. It remains to show 

that (A2.6) hold, that is the matrix A is a Hurwitz matrix. In fact, we have: 

 
λ∗DE[𝖮l(X − m∗)] E[𝖮l(X − m∗)]  

・

・
 ・

・ 

Â

 

−  1    

・

・ 
 

 
A = ・ = − ・       λ∗ −E[𝖮l(X − m∗)] 

0 

・
・ 

1

 
 

 

where Â  :=  −λ∗DE[𝖮l(X  − m∗)] corresponds to the second derivative of the Lagrangian L 

with respect to m. Note that L is strictly convex with respect to m due to the strict convexity 

of m  ›→  E[l(X − m)]. This implies that Â is positive definite matrix. Thanks to Theorem 3.6 in 

Benzi et al. [13], we deduce that A is a Hurwitz matrix. 

For the case γ = 1, we need to verify some extra conditions related to assumptions (A2.3) and 

(A2.6). Indeed, the additional condition that appears in (A2.6) is satisfied since we assumed 

that cA + I   is a Hurwitz matrix. The condition cI − P  is positive definite guarantees that the 

condition (A4.5) in Theorem 10.4.1 in Kushner and Yin [83] is satisfied so that the assumption 

(A2.3) is still verified in this case. 
 

Remark 3.3.6. 
 

1. Note that, for convex optimization problems, where the matrix A  is symmetric negative 

definite, the two additional conditions reduce to the classical condition cA + I is negative 

λ∗

,

n

・  
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definite. Indeed, in this case, the solution of the Lyapunov’s equation A⊺P + PA = −I  is 

simply P = −A−1/2 and the condition cI − P  is positive definite, becomes equivalent to 
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cA + I  is negative definite. 

2. From a formal point of view, the choice γ = 1 gives the best rate of convergence. The 

asymptotic variance in this case depends on the constant c. We need to choose it such 

that cA + I is a Hurwitz matrix and cI − P is positive definite. Setting c too small may lead 

to no convergence at all, while setting it too large, may lead to slower convergence as the 

effects of large noises early in the procedure might be hard to overcome in a reasonable 

period of time. 
 

3. The choice of the constant c is a burning issue. One way to bypass this problem is to 

premultiply A by a conditioning matrix Γ, nonsingular, that will make A close to a constant 

times the identity. This can be done by considering γn = Γ/n and we can draw the same 

conclusions as in Theorem 3.3.5 as soon as ΓA + I  is a Hurwitz matrix. This will lead to 

the following asymptotic behaviour: 

√
n(Z  − ∗) → N 

 
0, 
∫ ∞ 

e(ΓA+ I )t  ΓΣ∗Γ⊺ e(A⊺Γ⊺+ I )tdt

   

. 

 

The optimal choice of the conditioning matrix Γ, which is also called the gain matrix, is 

the one that will minimize the trace of asymptotic covariance: 

∫ ∞ 
e(ΓA+ I )t  ΓΣ∗Γ⊺ e(A⊺Γ⊺+ I )tdt. 

 

This is done by taking Γ = −A−1 which yields the asymptomatic optimal covariance: 
A−1Σ∗(A−1)⊺. 

4. The optimal choice of Γ depends on the function h and the equilibrium point ∗ which are 

unknown to us. Adaptive procedures that choose the matrix Γ dynamically by estimating 

Dh( ∗) adaptively have been suggested in the literature (see for example Ruppert [117]), 

but are generally not as efficient as the Polyak-Ruppert averaging estimators discussed 

in the following section. 

 

3.3.4 Polyak-Ruppert Averaging principle 
 

In order to ease the tuning of the step parameter which known to monitor the numerical effi- 

ciency of RM algorithms, we are led to modify our algorithm and to use an averaging procedure. 

Averaging algorithms were introduced by Ruppert (see Ruppert [117]) and Polyak (see Polyak 

and Juditsky [108]) and then widely investigated by many authors. Kushner and Yin [83] and 

Kushner and Yang [82] studied these algorithms in combination with projection and proved a 

Central Limit Theorem (CLT) for averaging constrained algorithms. 

n
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The following theorem describes the Polyak-Ruppert algorithm for MSRM and states its asymp- 

totic normality. It is a direct consequence of theorem 11.1.1 in Kushner and Yin [83]. 

Theorem  3.3.7.  Assume γ ∈ ( 1 , 1) and that assumptions (ffi l), (ffia.s.) and (ffia.n.) hold. For any 

arbitrary t > 0, we define  
Z̄n 

 

= 
γn 

t 

n+t/γn−1 

i=n 

 

Zi,  (3.10) 

where any upper summation index u  ∈ R+ is interpreted as its integer part. If Σ∗ is positive 

definite, then we have the following CLT: 
 

  t 
Z   − ∗

  
→ N 

 
0, V  + O 

   
1 

     
,  (3.11) 

where V  = A−1Σ∗(A−1)⊺. 

Remark 3.3.8. 
 

1. In (3.10), the window of averaging is t/γn for any arbitrary real t > 0. Equivalently, γn× 

(size of window) does not go to infinity as n → ∞, hence the name “minimal window” of 

averaging. In contrast, the “maximal window” of averaging allow to take a window size qnt 

such that γnqn → ∞. A natural and a classical choice is taking γn = c/nγ and qn = n. 

In the case of maximal window of averaging, under some extra conditions, we are able 

to achieve the optimal asymptotic variance without an extra term O(1/t)(see Theorem 

11.3.1 in Kushner and Yin [83]). 
 

2. Two sided averages can also be used instead of the one-sided average in (3.10). 
 

3.3.5 Estimator of asymptotic variance 

The previous CLT theorems assert that, under some suitable conditions, our RM and PR algo- 

rithms converge to the root ∗ with a corresponding rate. More specifically, in Theorem 3.3.7, 

the asymptotic variance V  depends on Σ∗ and A. In practice, these two quantities are unknown 

and need to be approximated in order to derive confidence intervals for our estimators. In The- 

orem 3.3.5, in both cases, γ = 1 and γ ∈ ( 1 , 1), the asymptotic variance is expressed as an 

infinite integral that involves Σ∗ and A. The numerical evaluation of these integrals is a non- 

trivial exercise even when Σ∗ and A are known. In Hsieh and Glynn [67], they described an 

approach that produces confidence regions and that avoids the necessity of having to explicitly 

estimate these integrals. 

In the following proposition, we provide consistent estimators of these two quantities. The proof 

relies mainly on the Martingale Convergence Theorem. 

s

n
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Proposition 3.3.9.  Assume (ffi l), (ffia.s.) and (ffia.n.) hold. 

If  → E[||H(X,  )||4] is locally bounded around ∗, then, 
 

n 

n  H 
k=1 

(Xk , Zk−1)⊺H(Xk , Zk−1) → Σ∗ a.s.  (3.12) 

Let Aϵ  the matrix whose elements Aϵ (i, j) for i, j  ∈ {1, ..., d + 1} are defined as follows: 
 

 
 

 
then, 

ϵ (i, j) := 
 1

 
n  ϵn 

n 

Hi(Xk 
k=1 

, Zk−1 + ϵej) − Hi(Xk , Zk−1), 

lim  lim Aϵ  = A a.s.  (3.13) 
ϵ→0 n→∞ n 

Proof. Let (Sn)n∈N∗ be the sequence defined as: 

Sn = H(Xn, Zn−1)⊺H(Xn, Zn−1) − Σ(Zn−1) − h(Zn−1)⊺h(Zn−1),  n ≥ 1 

(Sn)n∈N∗ is a martingale difference sequence adapted to F and consequently the following 

sequence (Mn)n∈N∗  defined as: 
n 

Mn = i ,   n  1, 
i=1 i 

is a F-martingale. Moreover, the boundedness of   → E[||H(X,  )||4] around ∗ and assump- 
tions (ffia.s.)-i. and (ffia.n.)-iv. imply that: 

 
sup E[||Sn||2|Fn−1] < ∞ a.s. 

Thus, the martingale convergence theorem ensures the existence of a finite random variable 
M∞ such that Mn → M∞ a.s. Kronecker’s lemma then guarantees that 1 

Σn  Si → 0. Now, 
 

since, 
n 

  Σn =  
1 Σ 

Si +  
1 Σ 

Σ(Zi−1) +  
1 Σ 

h(Zi−1)⊺h(Zi−1), 
i=1 

 
we deduce that Σn → Σ∗. 

n 
 

n 
i=1 

n 
 

n 
i=1 

n 
 

n 
i=1 

The proof of (3.13) follows using the same arguments above. 
 

Remark 3.3.10. 
 

1. Instead of averaging on all observations, one could modify the estimators above and 

average only on recent ones. This might improve the behaviour of these estimators. 

2. If we denote Vn  := An
−1Σn(A   1)⊺, then we obtain an approximate confidence interval for 

A
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PR estimator with a confidence of 1 − α in the following form: 

 
Z̄j,n 

 
 

Vjj,n q 
tnγ    

α
 

 
, Z̄j,n 

 
 

Vjj,n 

tnγ    
α
 

・

・ 

, j ∈ {1...d},  γ ∈ (0, 1),  (3.14) 

 

where qα is the 1 − α quantile of a standard normal random variable. Note that this con- 

fidence interval has the advantage of being obtained with one simulation run. For RM 

estimators, confidence intervals could be estimated empirically. 

 

 
3.4 Numerical examples 

 
In this section, we test the performance of the proposed stochastic algorithms schemes for 

MSRM. In Armenti et al. [4], the optimal allocations were estimated by using a combination 

of Monte Carlo/Fourier method to estimate the expectation in (3.2) and deterministic built-in 

search algorithm in Python to find the optimal allocations. Although their method provides good 

approximations, it does not provide any rate of convergence and therefore one cannot say 

anything about the confidence interval of their estimations. In this section, we will first test the 

consistency properties of the different estimators and then their normal asymptotic behaviour 

with and without averaging. Two examples are considered. In the first one, we consider a loss 

function of an exponential type coupled with a normal distribution. This example is relevant for 

our numerical analysis as we can explicitly express the optimal allocations in a closed form. 

In the second example, we consider a loss function that involves positive part function with a 

Gaussian and a compound Poisson distributions. 

In the following, n will denote the number of steps in one simulation run and N the number of 

simulations. We introduce the following sequences: 

D̄ 
n  := 

√
tnγ (Z̄n  − ∗)  γ ∈ ( 

1 
, 1),  (3.15) 

Dn  := 
√
nγ (Zn − ∗),  γ ∈ ( 

1 
, 1].  (3.16) 

 
3.4.1 Toy example 

 
As a first simple example, we will consider a exponential loss function of the following form: 

 

l(x1, ..., xd ) = 
   1   d 

i=1 

 
eβxi 

 
+ αeβ 

 
d 

i=1 
α + d 

− 
α + 1 

 
(3.17) 

− 

s 

#
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We will set d = 2 and consider a bivariate normal vector X  = (X1, X2) ∼ N(0, M ) with M = 
    

σ2
 

ρσ1σ2

!
. α

 
 
is a systemic weight parameter taken to be non negative and β  > 

 
0 is 

ρσ1σ2 σ2 

the risk aversion coefficient. In this case, we can explicitly solve the first order conditions and 

derive closed formulas for optimal allocations (see Section 3.5.2). This will be useful to test our 

algorithms: 
2 i  ,   if α = 0, 

m∗
i   = 

・
 

・・ 

2 
βσ2 

 
 

2 

 
+ 

1 
SRC(ρ, σ1, σ2, α, β),  if α > 0. 

β 

This shows that, in the case α > 0, the risk allocations are disentangled into two components: 

an individual contribution βσ
2 

and a Systemic Risk Contribution (SRC) given by: 
2 

・ 
αeρβ

2σ1σ2 
・
 

 SRC(ρ, σ1, σ2, α, β) = ln ・ 

1 + 
q

1 + 
( + 2) 

ρβ2σ  σ   

・ .
 

Note that taking α → 0 makes the SRC null as expected because, the systemic weight α  is 

responsible of the systemic contribution in the loss function l. One can also show, by easy 

calculations, that the SRC is increasing with respect to ρ: the higher the correlation is, the more 

costly the acceptable monetary allocations are. This could be explained by the fact that, with 

a higher correlation between the two components, the losses of one will induce the loss of the 

other and consequently the system will become riskier. Note also that we could also express in 

a closed form the Jacobian matrix A and Σ∗. 

In all this example, we fix α = 1, β  = 1 and σ1 = σ2 = 1. With ρ ∈ {−0.5, 0, 0.5}, we obtain the 

exact values in the table below. Note that since we have X1 ∼ X2 ∼ N(0, 1) and l is permutation 

invariant, it follows that m∗
1  = m∗

2. 

 
ρ  m∗

1 = m∗
2 

−0.5 0.3868 

0 0.5 

0.5 0.6364 

Table 3.1: Exact optimal risk allocations. 
 

For RM/PR algorithms, we used a number of steps n = 105. As for the compact K, we took 

K = [0, 2]3 and Z0 was taken uniformly on K. We run the different algorithms for γ  = 1 and 

γ = 0.7. We chose an averaging parameter t = 10 and we set c = 2 in a first step. Figure 3.1 

shows that, for different values of ρ ∈ {−0.5, 0, 0.5}, our RM algorithm with γ = 1 converges 

relatively quickly to the optimal allocations, whereas when γ = 0.7, noise is still persisting. This 

− e
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c = 2 
=    0.5 

           RM(  = 0.7) 
PR( = 0.7, t = 10)

           RM(  = 1) 
           m  

1 

 
 

is due to the step parameter c as discussed in the previous section. In order to get a smoother 

numerical behaviour, two solutions are available to us: either we use PR averaging (c.f. Figure 

3.1), or we reduce the value of the parameter c. This is shown in Figure 3.2. 
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Figure 3.1: Consistency of RM/PR estimators with for different values of ρ. 
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Figure 3.2: Consistency of RM estimators with c = 0.1 for different values of ρ. 

 
Note that we can easily verify that all conditions in (ffia.s.) and (ffia.n.) hold. We can also verify 

thanks to the exact formula of Σ∗, that this matrix is positive definite for the different values of ρ 
used. This is a condition needed in Theorem 3.3.7. 

For any random estimator, constructing confidence intervals is important to assess the error 

in the estimation. For PR estimator, confidence interval can be obtained in one simulation run 

after estimating matrices Σ∗ and A and hence the asymptotic variance matrix V . Figure 3.3 

shows the convergence, in the case ρ  =  0, of the estimator of Vn  =  A−n 1Σn(A−n 1)⊺  where An 

and Σn are as introduced in Proposition 3.3.9. 
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Figure 3.3: Convergence of the estimator Vn. 
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In the following table, we give the estimated confidence interval for PR estimator with a 

confidence coefficient of 95%: As for RM estimators, it is difficult to estimate the asymptotic 

 
 
 
 

ρ  CI for m∗
1 CI for m∗

2 

−0.5 

0 

[0.3772,  0.4047] 

[0.4962,  0.5259] 

[0.3679,  0.3949] 

[0.4912,  0.5213] 

0.5 [0.6194, 0.6629] [0.6203, 0.6665] 
 

Table 3.2: Confidence intervals for PR estimators. 
 
 

 
covariance matrix due to its complexity. In order to visualize the normal behaviour of these 

estimators, we give the empirical probability density function (EPDF) in both cases γ  = 1 and 

γ = 0.7. To this end, we use again a number of steps n = 100000 and we repeat the procedure 

N  = 10000 times. We restrict our attention to the case ρ = 0. Figure 3.4 shows that Dn,i = 
√
nγ (mn,i − mi

∗), i ∈ {1, 2} are very close to a normal distribution. 
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Figure 3.4: Empirical cumulative density function of mn − m∗. 

 
 
 

In order to appreciate the quality of convergence of RM estimators, we also give the empir- 

ical cumulative density function (ECDF) of the error mn − m∗. 
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Figure 3.5: Empirical cumulative density function of mn − m∗. 

 

From the two figures above, the width of the 90% confidence interval of the RM estimator 

for the case γ = 0.7 is approximately 8% and for the case γ = 1 is roughly 2%. 

 
 
 
 

3.4.2 Second example 

 
As a second example, we will consider consider the following loss function used in Armenti 

et al. [4]: 

l(x1, ..., x  ) = 
Σ 

xi + 
1 Σ

(x+)2  + α 
Σ 

x+x+. 

 
First case: Gaussian distribution and d = 2 

 

We start by a simple case where we fix d = 2 and use standard two dimensional Gaussian 

distribution for the loss vector X. We take K  = [0, 2]3, n  = 105, t  = 10, α  = 1 and c  = 6. Again, 

we compare RM and PR estimators for different values of ρ. The following figure 3.6 allows us 

to draw the same conclusions as in the previous example: RM estimator with γ = 1 and PR 

estimator are better than RM estimator with γ = 0.7. RM estimator with γ = 0.7 is noisy and 

one can remediate to this by choosing a smaller value of c as we did in the first example. 

     ecdf of m1, 
n

m *1

     ecdf of m2, n 2m *
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Figure 3.6: Consistency of RM/PR estimators with for different values of ρ. 
 
 
 
 
 

In order to assess the accuracy of our PR estimator, we give the confidence interval with a 

95% confidence coefficient, using the estimators of Proposition 3.3.9. For RM estimator, we 
 
 
 
 

ρ  m1
∗ = m∗

2 CI for m∗
1 CI for m∗

2 

−0.5 

0 

0.188 

0.21 

[0.1790,  0.2089] 

[0.1963,  0.2303] 

[0.1746,  0.2045] 

[0.2044,  0.2385] 

0.5 0.25 [0.2415, 0.2769] [0.2424, 0.2777] 
 

Table 3.3: Confidence intervals for PR estimators. 
 
 

 
plotted the EPDF of Dn,i, i ∈ {1, 2} as well as the ECDF of the error mn − m∗ for the case ρ = 0 

and γ = 1. These figures shows that the length of the confidence interval of 90% in the case 
γ = 0.7 is much higher that in the case γ = 1 (approx 0.2 against 0.04). 
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Figure 3.7: Empirical cumulative density function of mn − m∗. 
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Figure 3.8: Empirical cumulative density function of mn − m∗. 

 
Second case: Compound Poisson Distribution and higher dimensions 

 
In this section, we propose to use compound Poisson processes to model the loss vector X. 

The scope of application of compound Poisson processes is very wide. It ranges from statisti- 

cal physics and biology to financial mathematics. In biology, they are used to study dynamics 

of populations. In the modern financial modeling, compound Poisson processes are used to 

describe dynamics of risk factors such as interest rates (see for instance Li et al. [88]), for- 

eign exchange rates and option pricing (see Jaimungal and Wang [71]). In actuarial science, 

compound processes are extensively used to model claims sizes and to compute the ruin prob- 

ability, i.e. the probability that the initial reserves increased by premiums received from clients 

and decreased by their claims, drops below zero. 

More precisely, given a final time T , we consider a multivariate Poisson random vector NT  = 
(N1

T , ..., NT ), where each NT  ∼ P(λiT ) and the loss corresponding to the ith  component is 
d 

X  = 
ΣNT

 

 
 

Gk and (Gk) 
i 

is an i.i.d sequence representing the jump sizes and independent of 

i  k=1 i  i  k NT . We will take two examples for the distribution of the jumps sizes: One with a Gaussian dis- 
tribution and another one with an exponential one. The correlation between the different compo- 

i
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m n l

Σ Σ √

m−1 m n−1 n

m−1 m n−1 n

m n m−1 n m n−1 m−1 n−1 

k l

 
 

nents of X will be done through the correlations between components of NT  . In what follows, 

we detail the method of generating a multivariate Poisson random vector, N  = (N1, ..., Nd) 

with a vector of corresponding intensities (λ1,  ...,  λd). To do so, we will use a method that is 

based on the Gaussian vectors. More precisely, denote η = (η1, ..., ηd) to be a Gaussian ran- 

dom vector having a centered normal distribution with correlation matrix R = (ρkl) and Φ to 

be the standard normal cdf. Then, the random vector ξ  = (Φ(η1), ..., Φ(ηd)) has a multivari- 

ate distribution with standard uniform marginal distributions. Let Pλ(x)  =  
Σ[x]   (λj/j!)e−λ  be 

the cdf of the Poisson distribution with parameter λ. Now, consider the vector ζ  = (ζ1, ..., ζd) 

where ζk  = Pλ
−1(Φ(ηk)), k  = 1, ..., d. ζ  has therefore Poisson marginal distributions with inten- 

sities (λ1, ..., λd). We can express the correlation coefficient ρ∗kl   =  corr(ζk, ζl) as a function of 
ρkl = corr(ηk, ηl): 

 
ρ∗kl  =  

E(ζkζl) − E(ζk)E(ζl) 

σ(ζk)σ(ζl) 
E(ζkζl) − λkλl 

= √
λ  λ 

. 

We need to express the expectation E(ζkζl) as a function of ρkl. We have: 

E(ζkζl) = E 
h
Pλ
−1(Φ(ηk))Pλ

−1(Φ(ηl))
i
 

k  l 

∞ ∞ 
= mn P(ζk = m, ζl = n) 

m=1 n=1 ∞ ∞ 

= 
Σ Σ 

mn P(uk 
 

≤ Φ(ηk) ≤ uk  , ul  ≤ Φ(ηl) ≤ ul ), 

 

where ui = Pλ  (j), i, j  = 1, ..., d. It remains to explicit the probabilities in the last equality. If we 
j i 

denote Φ2(·, ·, ρkl) the bivariate Normal distribution function, we get finally that, 
 

Zmn(ρkl) := P(uk  ≤ Φ(ηk) ≤ uk  , ul  ≤ Φ(ηl) ≤ ul ) 

= Φ2(Ak , Bl , ρkl) − Φ2(Ak  , Bl , ρkl) − Φ2(Ak  , Bl  , ρkl) + Φ2(Ak  , Bl  , ρkl) 
 

where Ak  = Φ−1(Pλ  (m)) and Bl  = Φ−1(Pλ (n)). As a conclusion, we obtain, 
 

∞ ∞ 
mnZmn(ρkl) = λkλl + ρk

∗
l  λkλl.  (3.18) 

m=1 n=1 

The equation (3.18) gives an implicit relation between ρk
∗
l  and ρkl. It also involves two infinite 

sums which makes it hard to solve. In practice, one needs to truncate this sum and choose 

some appropriate upper-limits M  ∗ and N  ∗. We are then able to compute the elements of the 

correlation matrix  ρ of  the  Gaussian vector  given  the  correlation matrix  ρ∗ of the  vector  N . 

m=1 n=1 

k
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i

i

kl kl kl

 

 
 

However, there is a problem of sufficient conditions for a given positive semi-definite matrix to 
be a correlation matrix of a multivariate Poisson random vector. This issue is tackled in Griffiths 

et al. [60] where it is shown that each ρ∗kl  has to be in a certain range, 

−1 < ρmin ≤ ρ∗ ≤ ρ  ≤ 1.  (3.19) 
 

Algorithm 1: Algorithm for generating a sample of X with Compound Poisson Distri- 

bution 
 

Input: (λi)i=1,...,d, (σi)i=1,...,d, T   , and ρ∗ correlation matrix of NT ; 

Ensure: For each k > l, ρk
∗
l  verifies the inequality in (3.19); 

1 Solve the equation (3.18) to find ρ the correlation of the Gaussian vector η = (η1, ..., ηd); 

2 Generate a sample of Gaussian vector η with correlation matrix ρ and for i = 1, ..., d; 

3 for i = 1, ..., d do 
4 Set NT = P −1 (Φ(ηi)); 

i  λiT 
5 Generate a i.i.d sample of Gk of size NT ; 

i i 

6 Set Xi = 
Σ
k=1 G

k. 

Output: X; 

The following figure shows the covariance matrix for the loss vector X of dimension d = 10 

obtained by generating a random correlation matrix (ρkl) and using a Gaussian distribution for 

the jump sizes, i.e. Gk ∼ N(1, 1). The intensity vector was taken uniformly in [1, 3]10. 
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Figure 3.9: Correlation matrix of the vector loss X with Gaussian jump sizes with means and 
variances equal to 1. 
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Setting K = [−20, 20]10 × [0, 20], the averaging parameter t = 10 and c = 6, γ = 0.7 and the 

number of steps n = 100000, we obtain the following optimal allocations for both cases α = 0 

and α = 1. 
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Figure 3.10: PR estimators for optimal allocations. 

 

The above figure shows that there are components with the same optimal allocations for 

the case α = 0. This is something we expect to see, since with α = 0, correlations between 

components are not involved, so components with the same variance should have the same 

optimal allocations. This is the case for components 4 − 5 and components 9 − 10. However, 

once α is taken non null, we see that the same components have no longer the same optimal 

allocations. For instance, component 10 has higher optimal allocation than 9 when α = 1. This 

could be explained by the fact that component 10 is more correlated with other components 

that have high variances, such as components 4 and 5, than component 9. We now consider an 

exponential distribution for jump sizes as a second example, i.e. Gk  ∼ E(ai). The parameters 

ai  were generated randomly in [0.2,  1.2]. As for the other paramaters in this example, we took 

again K = [−20, 20]10 × [0, 20], c  = 6, t  = 10 and γ  = 0.7. Covariance matrix of the loss vector 

X in this case and estimators of the optimal allocations obtained through PR algorithms with a 

number of steps n = 100000 together with corresponding confidence intervals are given in the 

following figures. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PR(  = 0.7, t = 10, = 1) 
PR(  = 0.7, t = 10, = 0) 
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Figure 3.11: Correlation matrix of the vector loss X with exponential distribution for the law of 
jump sizes . 
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Figure 3.12: PR estimators for optimal allocations together with bounds of CI. 
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3.5 Appendix 
 

3.5.1 ODE method and related concepts 

Suppose we want to find the zeros of a function h. If we had a closed formula for h, under some 

classical conditions, we could use the following algorithm that ensures that at each step, we are 

going in the right direction: Zn+1 = Zn ± γnh(Zn), where (γn) could be a constant sequence or 

decreasing toward 0. However, if we do not have access to h, but only to random estimates Yn 

that are close to h on average, then we could replace h(Zn) by Yn: Zn+1 = Zn + γnYn. This is 

typically the case when h is expressed as an expectation: h( ) = E[H(X,  )] with X is a random 

variable. An estimate of h at step n + 1, given all the (Zi)i=0,..,n, is Yn = H(Xn+1, Zn), where 

Xn+1 is a random variable that haves the same law as X. Then we could write the algorithm 

as: 

Zn+1 = Zn + γnH(Xn+1, Zn).  (3.20) 

If we denote by (Fn) the following filtration: 

 
Fn = σ(Z0, Xi, i ≤ n), 

 

and rewrite:  
Yn = h(Zn) + δMn, 

where δMn = Yn − h(Zn). Observe that h(Zn) = E[Yn|Fn] implies that δMn  is a martingale 

difference sequence. Therefore, another way to write the (3.22) is as the following: 

 
Zn+1 = Zn + γnh(Zn) + γnδMn. 

The algorithm (3.20) is the regular Robbins-Monro (RM) procedure with mean function h. In 

order, to obtain a.s. convergence of the algorithm toward the ∗, one crucial condition among 

others, is the sublinearity of h, which is very constraining on the type of functions h we can use. 

Consequently, we will drop the classical version of RM and will adopt the ordinary differential 

equation (ODE) point of view which offers more flexibility. The ODE method has its own draw- 

backs: it requires the sequence (Zn)n≥1 to be in a compact set K for non-explosion reasons. 

Still, this is not very constraining: In fact, each time Zn goes out of K, we will replace it by the 

closest point to Zn in K, using projection. 

To get the intuition behind the ODE method, we will assume that δMn have bounded variances. 

First, note that since γn → 0, for large n the values of Zn change slowly. For small ∆, define 

m∆ such that: 
n+m∆−1 

i=n 

γi ≈ ∆. 
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n

Σn

Σn  Σn Σn

n

= E[γi δMi  ] = O(γi ) = O(∆)γn. 
−

 
 

Then,  
Zn+m∆ − Zn ≈ ∆h(Zn) + ”error” (3.21) 

where the error term is given by 
n+m∆−1 

i=n 

 

 
γiδMi. 

Now, since (δMn)  is a martingale difference sequence, this implies that E[δMiδMj ]  =  0  for 

i  ̸= j. Thus, the variance of the error term is 

・
n+m∆−1 

・2 
n+m∆−1 

 
n+m∆ 1 

2 2 2 
 

   
 

This bound and equation (3.21) show that, over the time interval [n, n + m∆] for small ∆ and 

large n, the change in the value of Zn  is actually due to the mean term more than the error 

term or noise term. Then, at least formally, the equation (3.21) suggests that the asymptotic 

behaviour of the algorithm can be approximated by the asymptotic behaviour of the solution to 

the ODE: 

˙ = h( ). 

As said before, in order to be able to use the ODE method, we need to make sure that the terms 

Zn are in some compact set K. This will be done using projection on a fixed compact set K. 

We will assume that K  is a hyperrectangle, i.e. K  = { ,  ai  ≤ i  ≤ bi} (more general compact 

sets have been studied in Kushner and Yin [83]), and we consider the following algorithm: 

 
Zn+1 = ΠK [Zn + γnYn],  Z0 ∈ K,  (3.22) 

where (Xn)n≥1 is an i.i.d sequence of random variables with the same distribution as X, inde- 

pendent of Z0 and (γn)n≥1 is a deterministic step sequence. The previous algorithm in (3.22) 
could be rewritten using the correction term Cn defined as: 

Zn+1 = Zn + γnYn + γnCn.  (3.23) 

Thus γnCn = Zn+1 − Zn − γnYn; it is the vector of shortest Euclidean length needed to take 

Zn + γnYn back to the hyperrectangle K  if it is not in K. 

To get a geometric feeling for the correction term Cn, refer to the figures 3.13 and 3.14. In 

situations such as Figure 3.13, where only one component is being truncated, Cn points inward 

and is orthogonal to the boundary. If more that one component needs to be truncated, as in 

figure 3.14, Cn again points inward but toward the corner, and it is proportional to a convex 

combination of the inward normals at the faces that border that corner. In both cases, we have 

i=ni=ni=n 

E ・ γiδMi
・ 
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i=0

 
 

Cn ∈ −C(Zn+1), where C(Z) is the convex cone determined by the outer normals to the faces 

that need to be truncated at Z. 

 
 

Figure 3.13: A projection with one violated constraint. 
 
 

 
Figure 3.14: A projection with two violated constraints. 

 
Constant-wise Interpolation 

 
The ODE method uses a continuous-time interpolation of the sequence (Zn). More precisely, 

define t0 = 0 and tn = 
Σn  γi. For t ≥ 0, let m(t) be the unique value of n such that tn ≤ t < 

tn+1. Let Z0(t) be the continuous time interpolation defined for t ≥ 0 by: 

Z0(t) = Zn,  for tn ≤ t < tn+1. 

Since the step sequence decreases to 0, the process Z0(.) becomes more regular, so it is 

natural to introduce the shifted version Zn(t) defined by: 

Zn(t) = Z0(t + tn),  t ≥ 0. 

For the correction term, we define C0(t) as: 

m(t)−1 

C0(t) = 
Σ

i=0 
γiCi,   t ≥ 0, 
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Σ

Σ Σ

Zn h Z 
0 

s  ds t t t ,  t ≥

 
 

and  
Cn(t) = C0(tn + t) − C0(t) = 

m(tn+t)−1 

i=n 

 
γiCi,  t ≥ .0 

Define δMn(t) in the same way as Cn(t). By all the definitions above: 
 

 
Zn(t) = Zn + 

m(tn+t)−1 

 
i=n 

 
γi[Yi + Ci] = Zn + 

m(tn+t)−1 

 
i=n 

 
γi[h(Zi)) + δMi + Ci] 

 
 

(3.24) 

= + 
∫ t

  (  n( )) + n( ) + n( ) + n( ) 0 
 

where, ρn(t) is is due to the replacement of the first sum by an integral. ρn(·) converges to 0 

uniformly in t when n → ∞. Formally, the tail behaviour of the sequence Zn is equivalent to that 

of the process Zn(·) under some broad conditions. Thanks to the previous equation, we see 

that the process Zn(·) is close to the solution of the ODE: 

˙ = h( ) + C, where C(t) ∈ −C( (t)),  (3.25) 

where C(·) is again the minimum force needed to keep (·) in K. More closely, if (·) is in int(K) 

on some time interval, then C(·) is zero on that interval. If, for some i, i(t) = ai  (or i(t) = bi 

resp.) and hi( (t)) > 0 (or hi( (t)) < 0 resp.), then Ci(t) = −hi( (t)). More generally, if (t) is 

on an edge or a corner of K, with h( (t)) pointing “out” of K, then C(t) point inward and takes 

values in the convex cone generated by the inward normals on the faces impinging on the edge 

or corner, i.e. C(t) takes its values in −C( (t)). 

 
Concepts of stability of an ODE 

 
As we have seen in the previous section, to study the behaviour of the sequence (Zn), we need 

to study the behaviour of the associated ODE. In this section, we recall some key concepts of 

the stability of an ODE ˙ = h( ). We start by giving the definition of an equilibrium point for the 

ODE. 

Definition 3.5.1. A state ∗ is an equilibrium of the ODE if h( ∗) = 0. In other words, this 

means that once (t) is equal to ∗ it remains equal to ∗ for all future times. 

To describe the behaviour of the system around the equilibrium, a number of stability con- 

cepts are needed. Let us first introduce the basic concepts of stability. To alleviate the notations, 

we will take 0 as an equilibrium state. 

Definition 3.5.2. The equilibrium ∗ = 0 is said to be stable, if for any R > 0, there exists r > 0 
such that if || (0)|| < r, then || (t)|| < R  for all t ≥ 0. Otherwise, the equilibrium is unstable. 

δM C ρ ,
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˙ = ..∂

A = ∂h 

 
 

Essentially, this means, the system can be kept arbitrarily close to the origin by starting 

sufficiently close to it. This is also know as Lyapunov stability. In some applications, Lyapunov 

stability is not enough: we not only want the system to remain in a certain range but we also 

want it to converge to the equilibrium. This behaviour is captured by the concept of asymptotic 

stability. 

Definition 3.5.3. An equilibrium point ∗ = 0 is asymptotically stable if it is stable, and if in 

addition, there exists some r > 0 such that || (0)|| < r implies that (t) → 0 as t → ∞. The ball 

Br is called a domain of attraction of the equilibrium point. 

The above definitions are formulated to characterize the local behaviour of the system, i.e., 

how the state evolves after starting near the equilibrium point. Local properties tell little about 

how the system will behave when the initial state is some distance away from the equilibrium. 

Global concepts are required for this purpose. 

Definition 3.5.4. If asymptotic stability holds for all initial states, the equilibrium is said to be 

globally asymptotically stable. 

In the case of a linear system, i.e. described by ˙ = A , where A is a Rd × Rd non-singular 

matrix, the solution is given by: ∀t ≥ 0,  (t) = (0) exp(tA). Therefore, the stability behaviour of 

the equilibrium point ∗ = 0 is stated by the eigenvalues of A. More precisely, the equilibrium 

point ∗ = 0 is globally asymptotically stable if and only if all eigenvalues of A have negative 

real parts. Moreover, if at least one eigenvalue of A has positive real part, then the equilibrium 

is unstable. 

For nonlinear systems, Lyapunov’s linearization method states that a nonlinear system should 

behave similarly to its linearized approximation locally around the equilibrium. For instance, 

consider the system ˙ = h( ) where h : Rd ›→ Rd is supposed to be continuously differentiable. 

Then, the system dynamics can be rewritten as: 
 

∂h 
 

=0 
 + h 

 

h.o.t ( ), 

where hh.o.t stands for higher-order terms in . Let us denote A the Jacobian matrix of h at 0, 

∂  .  =0 . Then, the system ˙ = A   is called the linearization of the original system at the 

equilibrium point 0. The following result (see Theorem 3.1 in Slotine and Li [127]) establishes 

the relationship between the stability of the linear system and that of the original nonlinear 

system. 

Theorem 3.5.5 (Theorem 3.1 in Slotine and Li [127]). 
 

• If all eigenvalues of A, the Jacobian matrix at 0, have negative real parts, then the equi- 

librium point is asymptotically stable for actual nonlinear system. 
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dt

 
 

• If at least one eigenvalue of A has positive real part, then the equilibrium is unstable for 

the nonlinear system. 

The linearization method tells little about the global behaviour of stability of nonlinear sys- 

tems. This motivates a deeper approach, known as Lyapunov’s direct method. 

 
Lyapunov’s Direct Method 

 
The intuition behind Lyapunov’s direct method is a mathematical extension of a fundamental 

physical observation: if the total energy of a mechanical or electrical system is continuously 

dissipated, then the system must eventually settle down to an equilibrium point. The basic pro- 

cedure of Lyapunov is to generate an energy-like scalar function for the system and examine 

the time variation of that scalar function. This way, we may draw conclusions on the stability 

of differential equations without using the difficult stability definitions or requiring explicit knowl- 

edge of solutions. 

The first property that need to be verified by this scalar function is positive definiteness. 

Definition 3.5.6. A scalar continuous function V ( ) is said to be locally positive definite if 

V (0) = 0 and in around 0, we have,   ̸= 0 ⇒ V ( ) > 0. 

If the above property holds over the whole state space, then V ( ) is said to be globally positive 

definite. 

The above definition implies that the function V has a unique minimum at the origin 0. 

Actually, given any function having a unique minimum point in a certain ball, we can construct 

a locally positive definite function by simply adding a constant to that function. 

Next, we define the “derivative of V” with respect to time along the system trajectory. Assuming 

that V is differentiable, this derivative is defined as: 

V˙ ( ) = 
dV ( ) 

= 𝖮V,  ˙ = 𝖮V  · h( ). 

Definition 3.5.7. Let V  be a positive definite function and continuously differentiable. If its time 

derivative along any state trajectory is negative semi-definite, i.e., 

V˙ ( ) = 𝖮V  · h( ) ≤ 0,  ∀ , 

then V is said to be a Lyapunov function for the system. 

 
Equilibrium Point Theorems 

 
The relations between Lyapunov functions and the stability of systems are made precise in a 

number of theorems in Lyapunov’s direct method. Such theorems usually have local and global 
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versions. The local versions are concerned with stability properties in the neighborhood of 

equilibrium point and usually a locally positive definite function. The next theorem (see Theorem 

3.2 in Slotine and Li [127]) gives a precise relation between Lyapunov function and stability. 
 

Theorem 3.5.8 (Theorem 3.2 in Slotine and Li [127]). If, around 0, there exists a scalar function 

V  with continuous derivative such that: 
 

• V is locally positive definite; 

• V̇ 
 
is locally negative semi-definite. 

Then, the equilibrium point 0 is stable. Moreover, if V˙ 

bility is asymptotic; 

 
is locally negative definite, then the sta- 

The above theorem applies to the local analysis of stability. In order to assess the global 

asymptotic stability of a system, one might expect naturally that the local conditions in the 

above theorem has to be expanded to the whole state space. This is indeed necessary but not 

enough. An additional condition on the function V has to be satisfied: V must be coercive. We 

give more details in the following theorem (See Theorem 3.3 in Slotine and Li [127]). 

Theorem 3.5.9 (Theorem 3.3 in Slotine and Li [127]). Assume that there exists a scalar func- 

tion V continuously differentiable such that: 

• V is positive definite; 

• V̇ 
 
is negative definite; 

 

• V ( ) → ∞ when || || → ∞. 

Then, the equilibrium at origin is globally asymptotically stable. 

Note that the coercive condition along with the negative definiteness of V˙ , implies, that given 

any initial condition 0, the trajectories remain in the bounded region defined by V ( ) ≤ V ( 0). 

 
Invariant Set Theorems 

 
It is important to realize that the theorems in Lyapunov analysis are all sufficiency theorems. If 

for a particular choice of Lyapunov function candidate V , one of the conditions is not met, one 

cannot draw any conclusions on the stability of the system. In this kind of situations, fortunately, 

it is still possible to draw conclusions on asymptotic stability, with the help of the invariant set 

theorems introduced by La Salle. The central concept in these theorems is that of invariant set, 

a generalization of the concept of equilibrium point. 
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Definition 3.5.10. Let (·) be a solution of some ODE. A set G is said to be an invariant set 

for this ODE if (0) ∈ G implies that (t) ∈ G,  ∀t ≥ 0. 

For instance, the singleton { ∗} where ∗ is an equilibrium point is an invariant set. Its 

domain of attraction is also an invariant set. One other trivial invariant set is the whole state- 

space, ∪
0
{ (t),  t > 0,   (0) = 0}. We first discuss the local version of the invariant set theorems 

as follows(see Theorem 3.4 of Slotine and Li [127]). 

 
Theorem 3.5.11 (see Theorem 3.4 of Slotine and Li [127]). Consider the following ODE: ˙ = 

h( ) and assume that h  is continuous. Let V be a scalar function continuously differentiable 

such that: 

 
• For some l > 0, the region Ωl  := { , V ( ) < l} is bounded. 

 

• V˙ ( ) ≤ 0 for all  ∈ Ωl. 
 

Let R be the set of all points within Ωl where V˙ ( ) = 0 and M  be the largest invariant set in R. 

Then, every solution (·) originating in Ωl tends to M as t → ∞. 

Note that La Salle’s invariance theorem is only about convergence and not stability. The 

stability will be guaranteed once the condition of positive definiteness of V  is satisfied. However, 

La Salle’s theorem allow us to draw conclusions about the asymptotic behaviour of the system 

when Lyapunov’s direct method cannot be applied. 

 
Corollary 3.5.12. Let V be a scalar function continuously differentiable and assume that in a 

certain neighborhood Ω of the origin: 

 
• V is locally positive definite; 

 

• V̇ is negative semi-definite; 
 

• The largest invariant set in R := {  ∈ Ω, V˙ = 0} is reduced to {0}. 
 

Then, the equilibrium point 0 is asymptotically stable. 
 

The above corollary replaces the negative definiteness condition on V˙ in Lyapunov’s local 

asymptotic stability theorem by a negative semi-definiteness condition on V˙ , combined with a 

third condition on the trajectories within R. 

The above invariant set theorem and its corollary can be easily extended to a global result by 

requiring again the radial unboundedness of the scalar function V . 
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i

1 + α  α + 1

1

1 + α  α + 1 

2

αeρβ2σ1σ2

 
 

3.5.2 Closed Formulas for the first example 

In this subsection, we give the closed formulas obtained for the optimal risk allocations in the 

first example when α > 0. Recall that d = 2 and 

l(x1, x2) =  
    1  h

eβx1  + eβx2  + αeβ(x1+x2)
i 

− 
α + 2

 
 

and the loss vector X  is taken to follow a centered normal distribution with a covariance matrix     
σ2 ρσ1σ2

!
 

ρσ1σ2 σ2 

conditions given in Theorem 3.2.6, i.e. 

・
・・

 λ∗ 
 

 

1 + α E 
h
eβ(Xi−m∗

i )  + αeβ(X1+X2−m1
∗−m2

∗)
i 

= 1,   i = 1, 2, 

    1  
E 

h
eβ(X1−m∗1 )  + eβ(X2−m∗2 )  + αeβ(X1+X2−m1

∗−m∗2 )
i 

− 
α + 2  

= 0. 
 

The two first equations implies that E[eβ(X1−m1
∗)] = E[eβ(X2−m∗

2 )], which in turn gives that, 
 

βσ2 

2    
− m∗1  = 

βσ2 

2    
− m∗2.  (3.26) 

 

β2σ2 
 

 

β2σ2 ∗ ∗ 
 

 

2 β2 2 2 ∗ ∗ 
 

The third equation gives e  2 1 −βm1 +e 
β2σ2 

2 2 −βm2 +αeρβ   σ1σ2+ 2 (σ1 +σ2 )−β(m1 +m2 ) = 2+α. Thanks 

to (3.26) and denoting Q  =  e   2 
i  −βm∗

i  , we get that, αeρβ
2σ1σ2 Q2 + 2Q − (2 + α)  =  0. Taking 

 the positive solution of the last equation gives Q  = −1+

√
1+α(α+2)eρβ   σ1σ2 

. Now, denoting by 
2 

SRC = − log(Q), we obtain that m∗ = βσ
2 

+ 1 SRC. 
 

i  2 β 

M  = .  The  optimal  risk  allocations  mi
∗  are  characterized  by  the  first  order 
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CHAPTER   4 

MULTIVARIATE OPTIMIZED CERTAINTY 

EQUIVALENT RISK MEASURES AND 

THEIR NUMERICAL COMPUTATION 
 
 

 
 
 

 
Abstract 

 
We present a framework for constructing multivariate risk measures that is inspired from uni- 

variate Optimized Certainty Equivalent (OCE) risk measures. We show that this new class of 

risk measures verifies the desirable properties such as convexity, monotonocity and cash in- 

variance. We also address numerical aspects of their computations using stochastic algorithms 

instead of using Monte Carlo or Fourier methods that do not provide any error of the estimation. 

 

4.1 Introduction 
 

One of the major concerns in finance is how to assess or quantify the risk associated with a 

random cashflow in the future. Starting with the pioneering work of Markowitz [94], the risk 

associated with a random outcome was quantified by its variance. Then, Artzner et al. [5] pub- 

lished their famous seminal paper in which they introduce the theory of risk measures. In their 

paper, risk measures were defined as a map verifying certain properties, which are called “ax- 

ioms”, namely: Subadditivity, translation invariance, monotonocity and positive homogeneity. 

Such risk measures are called coherent risk measures. Many extensions have been proposed 

and studied in the literature after the introduction of the axiomatic approach. One important 

extension is the notion of convex risk measure developed by Föllmer and Schied [57] and Frit- 

telli and Gianin [55] where the subadditivity and positive homogeneity properties were replaced 

by the weaker property of convexity. The latter reflects the fact that diversification decreases 

the risk. In the banking industry, one of the most popular risk measures is the Value at Risk 

(VaR in short). This is due first, to its financial interpretation and second, to its easy and fast 

implementation. Indeed, VaR is defined as the minimal cash amount that needed to be added 

to a financial position in order to have a probability of losses below a certain threshold. Its 



108 

Multivariate Optimized Certainty Equivalent Risk Measures and their Numerical Computation 
 

 

u (x) 

i=1 

i=1 
Σ

e 0
0

 
 

computation amounts to the calculation of a quantile of the portfolio distribution. Nevertheless, 

VaR suffers from one drawback: it does not verify the convexity property. This has prompted 

the search for new examples of risk measures, the most prominent being the Conditional Value 

at Risk (CVaR), the entropic risk measure and the utility based risk measure (also known as 

shortfall risk measure). 

Some decision making problem based on utility functions are closely related to risk measures. 

One can cite the optimized certainty equivalent (OCE) that was first introduced by Ben-Tal and 

Teboulle [11]. The idea behind the definition of OCE is as follows: Assume that a decision 

maker, with some normalized utility function u (i.e., u(0) = 0 and u (0) = 1), is expecting a ran- 
dom income X in the future and can consume a part of it at present. If he chooses to consume 

m dollars, the resulting present value of X is then P (X, m) := m + E[u(X − m)]. This might 

be very surprising in a first glance because P (X, m) is the sum of cash term and a utility term. 

However, in Ben-Tal and Teboulle [11], they defined OCE for normalized utilities functions that 

are twice continuously differentiable. More precisely, in this case, we can show that u can be 
rewritten as, 

∫ x  − 
・ y 

r(u)du 

where r(x)  :=  − u (x)   is the measure of local risk aversion. Thanks to this formula, u  can be 

interpreted as a discount function. Moreover, we can see that we no longer have this problem 

of units since the u is the “sum” (integral) of “discounted” (the exponential term) of infinitesimal 

wealth dy. 

We can define the sure present value of X (i.e., its certainty equivalent) as the result of an 

optimal allocation of X between present and future consumption, that is the decision maker will 

try to find m that maximizes P (X, m). The main properties of the OCE were studied in Ben-Tal 

and Teboulle [10] where it is showed that the opposite of the OCE provides a wide family of risk 

measures that verifies the axiomatic formalism of convex risk measures. They also proved that 

several risk measures, such as CVaR and the entropic risk measure, can be derived as special 

cases of the OCE by using particular utility functions (see also Cherny and Kupper [30]). 

From a systemic point of view, the financial crisis of 2008 has demonstrated the need for novel 

approaches that capture the risk of a system of financial institutions. More precisely, given a 

network/system of d  ∈ N different but dependent portfolios X  := (X1, ..., Xd), we are interested 

in measuring/quantifying the risk carried by this system of portfolios. A classical approach con- 

sists in first aggregating the portfolios using some aggregation function Λ : Rd → R and then 

apply some univariate risk measure applied to the aggregated portfolio. In practice, most of the 
times the aggregation function is just the sum of the components, i.e., Λ(x) = d

 

result in having a systemic risk measure of the form: R(X) = η(Λ(X)) = η(
Σd

 

xi. This will 

Xi), where 

η is a univariate risk measure, such as the VaR, CVaR, entropic risk measure, etc. The mech- 

u(x) = dy,
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anism behind this approach is also known as “Aggregate then Inject Cash” mechanism (see 

Biagini et al. [15]). However, this approach suffers from one major drawback: While it quantifies 

the systemic risk carried by the whole system, it does not provide risk levels of each portfolio, 

and thus, one could not have a ranking of portfolios in terms of their systemic riskiness. One 

way to remediate to this, is to consider the reverse mechanism, that is to “Inject Cash then 

Aggregate”. This consists in associating to each portfolio a risk measure and summing up the 

resulting risk levels. This results in considering systemic risk measures R(X) of the following 

form: R(X) = 
Σd  ηi(Xi), where ηi’s are the univariate risk measures associated to each port- 

folio. Obviously, one could use the same univariate for all portfolios, that is ηi = η, ∀i ∈ {1, ..., d}. 

However, by doing so, we are assuming that the system is made of “isolated” portfolios with no 

interdependence structure, and hence, we might be overestimating or underestimating the sys- 

temic risk. This led several authors to look for approaches that address simultaneously the 

design of an overall risk measure and the allocation of this risk measure among the different 

components of the system. In this spirit, an extension of shortfall risk measures, introduced 

in Föllmer and Schied [51], has been studied in Armenti et al. [4] based on multivariate loss 

functions. However, one should note that, to ensure the existence of optimal allocation problem, 

these loss functions must verify a key property: permutation invariance. In other words, each 

component of the system is treated as if it has the same risk profile as all the other compo- 

nents and thus one cannot discriminate a particular component against one another. Moreover, 

classical risk measures such that the CVaR and the entropic risk measure cannot be recovered 

using multivariate shortfall risk measures, which limit their use in practice. We will see that, 

with our multivariate extension of OCE risk measure, the permutation invariance condition is 

no longer needed and by choosing the appropriate loss functions, we can retrieve most of the 

classical risk measures. 
One of the major issues that arises when studying risk measures is their numerical approxi- 

mation. The standard VaR can be computed by inverting the simulated empirical distribution 

of the financial position using Monte Carlo (see Glasserman [58] and Glasserman et al. [59]). 

An alternative method for computing VaR and CVaR is to use stochastic algorithms (SA). The 

rational idea behind this perspective comes from the fact that both VaR and CVaR are the so- 

lutions and the value of the same convex optimization problem as pointed out in Rockafellar 

and Uryasev [112] and the fact that the objective function is expressed as an expectation. This 

was done in Bardou et al. [6], where they prove the consistency and the asymptotic normality 

of the estimators. In the same direction, in Chapter 3, we extended the work of Dunkel and 

Weber [43] to approximate multivariate shortfall risk measures using stochastic algorithms. In 

Neufeld [103], they developed numerical schemes for the computations of univariate OCE us- 

ing Fourier transform methods. 

The outline of this paper is as follows: in section 4.2, we give the definition of multivariate OCE 
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by introducing first the class of appropriate loss functions. Then, we show that this class of risk 

measures verifies the desirable properties. We also characterize the optimal solutions, give a 

dual representation and study the sensitivity with respect to external shocks. Finally, section 

4.3 treats the computational aspects of approximating multivariate OCE using a deterministic 

scheme and a stochastic one. 

 
 

4.2 Multivariate OCE 

Let (Ω, F, P ) a probability space and we denote by L0(Rd) the space of F- measurable random 

vectors taking values in Rd. For x, y in Rd, we denote by || · || the Euclidean norm and x  · 

y  =     xiyi. For a function f   : Rd   →  [−∞, ∞], we define f ∗ the convex conjugate of f  as 

f ∗(y) = supx{x · y − f (x)}. The space L0(Rd) inherits the lattice structure of Rd  and hence, 

we can use the classical notations in Rd  in a P -almost-surely sens. We will say for example, 

for X, Y  ∈ L0(Rd) that X  ≥ Y  if P (X  ≥ Y ) = 1. To alleviate the notations, we will drop 

the reference to Rd  in L0(Rd) whenever it is unnecessary. For Q  = (Q1,  ...,  Qd) a vector of 

probabilities, we will write Q ≪ P  if for all i = 1,  ...,  d, we have Qi ≪ P  . In this section, we 

introduce the notion of multivariate Optimized Certainty Equivalent (OCE) and give its main 

properties. The latter is an extension of univariate OCE that was introduced and studied in 

details in Ben-Tal and Teboulle [10]. First, we start by giving the definition of a multivariate loss 

function that will be used in the rest of the paper. For the rest of the paper, the random vector 

X = (X1, ..., Xd) ∈ L0 represents profits and losses of d portfolios. 

Definition 4.2.1. A function l  : Rd  ›→ (−∞,  ∞] is called a loss function, if it satisfies the 

following properties: 

 
1. l is nondecreasing, that is if x ≤ y componentwise, then l(x) ≤ l(y). 

2. l is lower-semicontinuous and convex. 
 

3. l(0) = 0 and l(x) > 
Σd  xi, ∀x  ̸= 0. 

 

For integrability reasons, we will work in the multivariate Orlicz heart defined as: 

 
Mθ := {X ∈ L0 : E[θ(λX)] < ∞, ∀λ > 0}, 

where θ(x) = l(|x|), x ∈ Rd. On this space, we define the Luxembourg norm as: 

 
||X||θ  := 

  
λ > 0, E 

 

θ  

  
|X|

    
≤ 1

   
. 
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Under the Luxembourg norm, Mθ  is a Banach lattice and its dual with respect to this norm is 

given by the Orlicz space Lθ∗ 
: 

Lθ∗  
:= {X  ∈ L0, E[θ∗(λX)] < ∞,  for some λ > 0}. 

We also introduce the set of d-dimensional measure densities in Lθ∗ 
, that is: 

Qθ∗  
:= 
  
dQ  

:= (Z1, ..., Z  ), Z  ∈ Lθ∗ 
, Z  ≥ 0 and E[Z  ] = 1

   
. 

 

Note that for Q ∈ Qθ∗ 
and X ∈ Mθ, dQ · X ∈ L1, thanks to Fenchel inequality and for the sake 

of simplicity, we will write EQ[X] := E[dQ/dP · X]. We refer to Appendix B in Armenti et al. [4] 

for more details about multivariate Orlicz spaces. 

Definition 4.2.2. Assume l  is a loss function. The multivariate OCE risk measure is defined 

for every X ∈ Mθ as: ( ) 
R(X) = inf 

w∈Rd 

wi + E[l(  X  w)] 
i=1 

.  (4.1) 

Example 4.2.1. When d  = 1, we can recover some important convex risk measures such CVaR 

(also called Expected Shortfall or Average Value at Risk) and Entropic risk measure. 

1. CVaR: Let α  ∈ (0, 1) and take l(x) = 
1  x+, then the associated risk measure is the 
−α 

CVaR (see Rockafellar and Uryasev [112]). 

2. Polynomial loss function: For an integer γ > 1, the polynomial loss function is defined 

by: l(x) = ([1+x]
+)γ −1 . When γ = 2, the corresponding risk measure is the Monotone Mean-

Variance (see Č ernỳ et al. [25]). 

3. Entropic risk measure: Fix λ  >  0 and let l(x) := exp(λx)−1 . Then, the problem in (4.1) can 

be explicitly solved and the optimal w∗ and R(X) are given by: 

w∗ =  
1 

log(E[e−λX ]),  R(X) = w∗ =  
1 

log(E[e−λX ]). 
λ  λ 

 

Using univariate loss functions, we can construct multivariate loss functions in the following way: 

Given l1, ..., ld univariate loss functions and a nonnegative, convex and lower-semicontinuous 

function Λ : R → R+ with Λ(0) = 0, one can define a multivariate loss function as follows: 

d 

l(x) := li(xi) + Λ(x).  (4.2) 
i=1 

 
It is easy to see that l verifies all the conditions in the definition 4.2.1. Note that by taking Λ 

the null function, the corresponding multivariate OCE boils down to a sum of univariate OCE. 

1

k k
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d

dP 

{ − − }

i=1 i=1 

i=1

+ αe  i=1 λixi,  λi > 0,  α ≥ 0,  (4.3) 

1 − βi 1 − βi 1 − βj

 

 
It is in this function Λ where the dependence between the different components in the system 

is taken into account. In this paper, we will focus on the following multivariate loss functions 

inspired from the univariate risk measures above: 

Σ eλixi   − 1 Σd 

   d  +  θi  +  θi  +  θj 

l(x) = 
Σ ([1 + xi]   ) − 1 

+ α 
Σ ([1 + xi]   )    ([1 + xi]   )    

,  θ
  > 1,  α ≥ 0,  (4.4) 

i=1 θi 
d  + 

i<j 
θi 

+ + 

θj  
i
 

l(x) = 
Σ xi

 

 

+ α 
Σ xi

 
 

 

xj 
, 0 < β  < 1,  α ≥ 0.  (4.5) 

 

In the next theorem, we show that the multivariate OCE is a convex risk measure as defined 

in Föllmer and Schied [51]. 

 
 

Theorem 4.2.3. The function R in (4.1) is real valued, convex, monotone and cash invariant1 

risk measure. In particular, it is continuous and subdifferentiable. If l is positive homogeneous, 

then R is too. Furthermore, it admits the following representation: 

 
R(X) =  max   EQ[   X] α(Q) ,  (4.6) 

Q∈Dl∗ 

where the penalty function α  is defined for Q = (Q1, ..., Qd) ≪ P  by: α(Q) = E 
h
l∗

  
dQ 

  i 
and 

Dl∗ 
= {Q ≪ P, α(Q) < ∞} := dom(α). 

 
Proof. 

 

 
• R(X) ∈ R for all X ∈ Mθ: Since Mθ ⊆ L1, by the third property of loss functions, we 

have for every X  ∈  Mθ  and w  ∈  Rd: 
Σd  wi + E[l(−X − w)] ≥  E[−sumd    Xi] >  −∞. 

R(X) < +∞ since for w = 0, we have E[l(−X)] < ∞. 

 
• Monotonicity: Let X, Y ∈ Mθ such that X ≤ Y . Since l is non-decreasing, then E[l(−X − 

w)] ≥ E[l(−Y − w)] for every w ∈ Rd, which in turn implies R(X) ≥ R(Y ). 
 

1. In the following sens: R(X + m) = R(X) − 
Σd  mi 

i<j i=1 

λii=1 
l(x) = 

i
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(Σ

(Σ

wi  + E[l((−X − w wi  + E[l((−X − w )])

wi + E[l(−X − m − w)]

i=1
λE l −X −

λ

λ
w∈Rd λ

E l −X −
λ

i=1

 

• Convexity: Let X, Y ∈ Mθ and λ ∈ [0, 1]. We have thanks to the convexity of l: 

R(λX + (1 − λ)Y ) =   inf
d
{
Σ 

wi + E[l(−X − w)]} 
w∈R 

 = inf 

i=1 

(Σd 
  1 + (1 

 
)  2 +  [ (  ( 

 1) + (1 )( 
2))]

)
 

w1,w2∈Rd 

 

  

 
i=1 
( 

λwi 

 

Σ 

− λ wi 

 
1 

E l λ −X − w 

 
1 

− λ   −Y  − w 

Σ 
2 2 

)
 

 

 
= λR(X) + (1 − λ)R(Y ). 

 
• Cash Invariance: Let m ∈ Rd, we have: 

(Σd  ) 
 

= inf 
w∈Rd 

d 
 

i=1 

(wi + mi) − 

 

 

mi 
i=1 

+ E[l(−X − m − w 
)]

)
 

d 

= R(X) mi 
i=1 

 

• Continuity and subdifferentiability: Since (Mθ,  || · ||θ) is a Banach space, this is a direct 

consequence of Theorem 4.1 in Cheridito and Li [29] or Theorem 1 in Biagini and Frit- 

telli [16]. 

 
• Positive homogeneity: If l is positive homogeneous, then by the definition of R(X), we 

have for λ > 0: 

 
R(λX) = inf 

w∈Rd 

 

d 
 

i=1 

wi + E[l(−λX − w)]

)
 

 
= inf 

(Σd  + [ ( 
w 

)]

)
 

 
= inf 

(Σd  wi  + [ ( 
w 

)]

)
 

 
= λ inf 

w∈Rd 

 
d 

wi 
i=1 

 
+ E[l(−X − w )]

) 
= 

 
λR(X). 

 

• Representation: First, because R  is convex and continuous, Fenchel-Moreau theorem 

i=1

d

i=1 

inf 
1∈Rd 

≤ 
w
 

d

inf 
w2∈Rd

λ(
i=1

)] + (1 − λ)( 

R(X + m) = inf 
w∈Rd

w∈Rd
wi
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Y ∈  θ∗L

λ>0

λ>0

Q∈Dθ∗ 

 
 

implies that:  
 
R(X) =  sup 

Y ∈Lθ∗ 

 
{E[X · Y ] − R∗(Y )} =  max {E[X · Y ] − R∗(Y )} (4.7) 

where R∗(Y )  =  sup{E[X  · Y ] − R(X), X  ∈  Mθ}, Y   ∈  Lθ∗ 
. Now, if Y   ≰  0, then by the 

bipolar theorem, there exists X1 ∈ Mθ  such that X1 ≥ 0 and E[X1 · Y  ] > 0. Using the 

definition of R∗(Y ), we get the following: 

R∗(Y ) =  sup {E[X · Y ] − R(X)} 
X∈Mθ 

≥ sup{λE[X1Y ] − R(λX1)} 

≥ sup{λE[X1Y ]} − R(0)} = +∞, 

where the last inequality is due to the monotonicity of R. Therefore, the maximum can be 

taken over Y ≤ 0. For k ∈ {1,  ..., d}, let X = (0,  ...,  x,  ...) and x > 0. By the translation 

invariance property, we have R(Xk) = R(0) − x. Consequently, 

R∗(Y ) =  sup {E[X · Y ] − R(X)} 
X∈Mθ 

≥ xE[Yk] − R(0) + x = x(E[Yk] + 1) − R(0). 
 

If E[Yk] −1, then by sending x to infinity, we get that R∗(Y ) = ∞. Finally, this shows 
that the maximum in (4.7) could be taken over Dθ∗ 

, i.e., R(X) =   max {E[− dQ  · X] − 
Q∈Dθ∗ dP

 

R∗(−Q)} =  max {EQ[−X]−R∗(−Q)}. Let us now explicit more the expression of R∗(−Q) 
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dP

d

d

(Σ 
·

dP

dP 

dPΣ Σ 

dP

E  − 
dP

· X
−

m∈Rd
i=1

E l −X − m 

X∈Mθ 

E  − 
dP

· X
m∈Rd

− mi − E l −X − m 

E −
dP

· X −
i=1

mi − E l −X − m 

m∈RdX∈Mθ 

E −
dP

· X −
i=1

mi − E l −X − m 

− mi E −
dP

· X
− E l −X − m 

m∈Rd 

−
i=1 

mi E −
dP

· − E l −W 

− E
dP

· m E −
dP

· W  − E l −W

dP  · W − l(W ) . 

 

for Q ∈ Dθ∗ 
: 

R∗(−Q) = sup 
X∈Mθ 

 
 
E 

 

− 
dQ 

· X
  

− R(X)
 

 

= sup 

( 
dQ

 

  

   
inf  
Σ
 
 

+ [ ( )]

!) 

= sup 

( 
dQ 

+ sup 
Σ
 [ ( )]

!)
 

= sup  sup 

( 
dQ  Σ

 
 

[ ( )]

)
 

= sup  sup 

( 
dQ  Σ

 [ ( )]

)
 

= sup 

( 
Σ 

+ sup 
dQ

 

     

[ ( )]
  )

 

= sup 

( 
Σ 

+ sup 
dQ  

( )
 

[ ( )]
  )

 

= sup 

( 
Σ
 

 
+ 

dQ 
  

+  sup 
dQ

 

 

[ ( )]
  )

 

= sup 
m∈Rd 

d 
 

i=1 
−mi + miE 

dQi    +  sup 
dP  W ∈Mθ 

E 
 dQ  

W
 

dP 
− E[l(W 

)]
 )

 

= sup 
m∈Rd 

0 +  sup 
W ∈Mθ E

  
dQ 

· W − l(W )
 )

 

= sup 
W ∈Mθ 

E 

  
dQ 

· W − l(W )
 
 

Note that, for W  ∈ Mθ, we have for Q  ∈ Dθ∗ 
, dQ  · W  ∈ L1, thanks to Fenchel inequal- 

ity. Furthermore, since     Wi  ≤ l(W ) ≤ θ(W ) and both θ(W ) and      Wi  are in L1, we 

have l(W ) ∈ L1. This allows us to write in the lines above E[ dQ  · W ] − E[l(W )] = 
h 
dQ 

i dP 

 

Now, we would like to interchange the expectation with the supremum. To this end, we 

use Corollary on page 534 of Rockafellar [114] with L = Mθ, L∗ = Lθ∗  
and F (x) = l(x). 

Note that l is a lower-semicontinuous proper convex function, and it is easy to verify that 

Mθ  and Lθ∗   
are decomposable in their sens, so that all the conditions needed to apply 

this Corollary are satisfied. We get finally that, 

R∗(−Q) = E 
 

l∗
  
dQ 

   

:= α(Q). 

E 

W ∈Mθm∈Rd 

X∈Mθi=1 m∈Rd 

X∈Mθm∈Rd 

θX∈M 

d

d

d

d

d

( 

mi

i=1

W ∈Mθ

W −m

i=1 

mi
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i=1 

λ

r→∞ r

r→∞ r

i
r→∞ r

i
r→∞ r

 

Finally, since R(X) is finite, then the maximum can be taken over Dl∗ 
instead of Dθ∗ 

. 
 

 

Definition 4.2.4. A risk allocation is any minimizer of (4.1). When it is uniquely determined, 

we denote it RA(X). 

Theorem 4.2.5. Let l be a loss function. Then, for every X ∈ Mθ, the set of risk allocations is 

non empty and bounded. Furthermore, risk allocations are characterized by the following first 

order condition: 

1 ∈ E[∂l(−X − m∗)].  (4.8) 

Moreover, the supremum in (4.6) is attained for Z∗ such that Z∗ ∈ ∂l(−X − m∗) a.s. and 

E[Z∗] = 1. 

Proof. The arguments used in this proof are an extension of the univariate case. To prove that 

the set of risk allocations is non empty and bounded, it is sufficient to show that the objective 

function has no direction of recession thanks to Theorem 27.1(d) in Rockafellar [115]. Let w  ̸= 0 

and let f (w) := 
Σd  wi + E[l(−X − w)]. We have, 

f 0+(w) =  lim 
f (m + rw) − f (m) 

r→∞ r 

= lim 
Σ 
mi + r 

Σ 
wi + E[l(−X − m − rw)] − 

Σ 
mi − E[l(−X − m)] 

r→∞ 

= 
Σ 

w 

r 

+ lim 
E[l(−X − m − rw)] − E[l(−X − m)] 

= 
Σ 

w  + lim 
E[l(−X − m − rw)] 

.
 

 
 

 
Now, since l  is convex and l(0) = 0, for λ  > 1 we have 1 l(λx) ≥ l(x). This implies, together 

with Lebesgue’s dominated convergence theorem and lower-semicontinuity of l 

f 0+(w) ≥ 
Σ 
w  + lim E 

 

l 

 
−X − m 

− w
  

 

= 
Σ 

w  + E 
 

lim inf l 
 
−X − m 

− w
  

 

≥ 
Σ 

wi + l(−w) > 0. 

The last strict inequality is a consequence of the third property of l. So we have shown that 

for every w  ̸= 0, f 0+(w) >  0, i.e., f has no direction of recession. We conclude that the set 

of minimizers is non empty bounded set. Moreover, we have m∗ ∈ argminf  if and only if m∗ 
satisfies 0 ∈ ∂f (m∗). Using Theorem 4.47 in Shapiro et al. [124], we can interchange the partial 

i

i
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i=1 

 
 

operator and the expectation sign leading to the following characterization of minimizers: 
 

m∗ is a minimizer of f ⇔ 1 ∈ E[∂l(−X − m∗)]. 

In the following, we prove that the maximum in (4.6) is attained for Z∗ ∈ ∂l(−X − m∗) a.s. and 

E[Z∗] = 1. We start by proving the existence of such Z∗. Let m∗ be such that 1 ∈ E[∂l(−X − 

m∗)]. Note that, for each  ∈ Rd, if ν ∈ ∂l( ), then ν is nonnegative. In fact, by definition, we 

have, l(x) ≥ l( ) + 
Σd  νi(xi − i), ∀x ∈ Rd. So, if for some k ∈ 1, ..., d, νk  < 0, then choosing 

x =  − nek <   where ek is the k-th standard unit vector, we get that −nνk ≤ l(x) − l( ) ≤ 0. 

By sending n to +∞, we get a contradiction. Therefore, since 1 ∈ E[l(−X − m∗)], there exists 

a random variable Z∗ such that Z∗ ≥ 0 and Z∗ ∈ ∂l(−X − m∗) a.s. and E[Z∗] = 1. 

Next, we will show that Z∗ ∈ Dθ∗ 
, that is E[l∗(Z∗)] < ∞. Note that since Z∗ ∈ ∂l(−X − m∗), we 

have that, 

l∗(Z∗) = Z∗ · (−X − m∗) − l(−X − m∗),  a.s.  (4.9) 

First, we will start by proving that Z∗ · X  ∈ L1. Thanks to (4.9), we have X  · Z∗ + l∗(Z∗) = 

−m∗ · Z − l(−X − m∗). Because X ∈ Mθ, the right term of the previous equality is in L1. So, 

this shows that X · Z∗ + l∗(Z∗) ∈ L1. Recall that l∗( ) ≥ 0 for all   ∈ Rd  so that we have 

(X · Z∗)+ ∈ L1. It remains to show that (X · Z∗)− ∈ L1. Using the convexity of l, we have the 
following inequality: 

 

l(2(−X − m∗)) ≥ l(−X − m∗) + Z∗ · (−X − m∗),  a.s. 

This in turn implies that X · Z ≥ l(−X − m∗) − l(2(−X − m∗)) − Z∗ · m∗. The RHS of this 

inequality is in L1 as X ∈ Mθ. Hence, we get that (Z∗ · X)− ∈ L1. We are now able to say that 

all the terms in the RHS of (4.9) are in L1. We conclude that l∗(Z∗) ∈ L1. Moreover, we have, 

E[−X · Z∗] − E[l∗(Z∗)] = E[−X · Z∗] − E[Z∗ · (−X − m∗) − l(−X − m∗)] 

= E[−X · Z∗ − Z∗ · (−X − m∗) + l(−X − m∗)] = E[Z∗ · m∗ + l(−X − m∗)] 

= R(X), 
 

where we used the optimality of m∗ in the last equality. This completes the proof. 
 
 
 
 

Example 4.2.2. The following example with a bidimensional loss function of exponential type 

as in Example 4.2.1, that is: 

eλ1x1 − 1 eλ2x2 − 1 
 

  

 λ1x1+λ2x2 

l(x1, x2) = + + αe 
λ1 λ2 

, where λ1 > 0,  λ2 > 0,  α ≥ 0. 
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・

・ λiσ 

i

− 
Σ

∈ ∈

X ∼ N , 1
2

 

If (0  Σ) with Σ = 

    
σ2 ρσ1σ2

!
, then we can solve explicitly the optimal risk alloca- 

 
tions in (4.8) and to obtain 

ρσ1σ2 σ2 

 

2 i  ,  if α = 0, 
 

 

m∗
i   = 

・
 

・・ 

2 
λiσ2 
 

 

2 

1 
− 
λi

 

 
ln(SCij ),  j  ̸= i,  if α > 0, 

(4.10) 

 

where the term SCij, i ̸= j, is the positive solution to the following second order equation: 

αλj exp(ρσiσjλiλj)X2 + (1 + α(λi − λj) exp(ρσiσjλiλj)) X − 1 = 0 

The risk measure could also be derived in explicit form: 

R(X) = m1 + m2 + 
2 − α 

(SC12 − 1) = m1 + m2 + 
2 − α 

(SC21 − 1),  (4.11) 
∗ ∗ λ1 

∗ ∗ λ2
 

 
 

Remark 4.2.6. The formula obtained in (4.10) is close to the one in Example 3.12 in Armenti 

et al. [4]. It shows that the optimal allocations are disentangled into two components: the first 

one is an individual contribution which takes the form of the entropic risk measure of Xi and the 

second one is a systemic contribution which involves correlations between the two components 

of the system. This formula shows also an interesting feature: the partial differential of SRC with 

respect to ρ is always positive. This can be interpreted in the following way: the more correlated 

the system is, the riskier is. Note that this is not true in general and depends on the loss function 

l used. 

 
 
 

Corollary 4.2.7. Let l a strictly convex loss function. Then, 
 

d 

RA(X + r) = RA(X) ri,  for every X  Mθ and r  Rd. 
i=1 

 
If l is additionally positive homogeneous, then 

 
RA(λX) = λRA(X),  for every X ∈ Mθ and λ > 0. 

 
Proof. Let X ∈ Mθ and r ∈ Rd. m : RA(X + r) is the unique solution of 1 ∈ E[∂l(−X − r − m)]. 

Setting w = r + m, we obtain that w satisfies 1 ∈ E[∂l(−X − w)], which by uniqueness implies 
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(Σ

Σ
− · 𝖮   − − − 

 EQ

dP 

i=1

λE l −X −
λ

λ
λE l −X −

λ

λ 

 

that w = RA(X), that is RA(X + r) = RA(X) − r. Let λ > 0, we have, 

RA(λX) = argmin 
,Σ 

wi + E[l(−λX − w)]
,

 
 

= argmin 

(
Σd

 
+ ( w 

)
 ) 

= argmin 

(
Σd    wi  + 

  
( 

  

w 
)
 ) 

= argmin 
d

 

w 
i=1 

+ E[l(−X − w)]

) 
= 
λRA(X). 

 
 

 

Now, we focus on the study of the sensitivity of our multivariate risk measure. We first give 

the definition of the marginal risk contribution of Y ∈ Mθ  to X ∈ Mθ. 

Definition 4.2.8. For X, Y ∈ Mθ, we define the marginal risk contribution of Y  to X as the 

sensitivity of the risk associated to X when an impact Y  is applied as 

R(X, Y ) := lim sup 
R(X + ϵY ) − R(X) 

.  (4.12) 
ϵ↘0 ϵ 

If R(X + ϵY ) admits a unique risk allocation RA(X + ϵY ) for small enough ϵ ≥ 0, then we define 

the risk allocation marginals of X with respect to the impact of Y  as: 

RA (X; Y ) : lim sup 
RAi(X + ϵY ) − RAi(X) 

,  i = 1, ..., d.  (4.13) 

ϵ↘0 ϵ 
 

Theorem 4.2.9. Let X, Y  ∈ Mθ and assume that l  is differentiable. Then, 

d 

R(X, Y ) = E[Y  l(   X  m∗)] = n [Y n],  (4.14) ∗ 
i=1 

 

where m∗ is such that, E[𝖮l(−X−m∗)] = 1, i.e. an infinimum for (4.1) and dQ∗  := 𝖮l(−X−m∗). 
If furthermore, l is twice differentiable such that we can interchange the differentiation and 

expectation of m ›→ E[𝖮l(−X − m)] and M := E[𝖮2l(−X − m∗)] is invertible, then we have, 

• There exists a unique mϵ optimum of R(X + ϵY ) for small enough ϵ ≥ 0. 

• As a function of ϵ, mϵ  is differentiable and we have 
 

RA(X, Y ) = M −1V,  V   := −E[𝖮2l(−X − m∗)Y ].  (4.15) 

i=1w

w

w

wi

wi

i
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i=1 

ϵ

2

≤
1

d

− 
Σ

−

l(|X| + |m  | + |Y |) + Xi + mi 

dP  dP dP

i=1

 

Proof. Take X, Y   ∈ Mθ  and let m∗ be an infinimum for R(X). We have R(X) = 
Σd

  m∗
i   + 

E[l(−X − m∗)] and E[𝖮l(−X − m∗)] = 1. By the definition of R(X + ϵY ), we have 

R(X + ϵY ) − R(X)  
≤  
Σ 

mi
∗ + E[l(−X − ϵY  − m∗)] − 

Σ 
m∗
i  − E[l(−X − m∗)] 

ϵ  ϵ 

= E
  
l(−X − ϵY − m∗) − l(−X − m∗)

  
.
 

 

Using the convexity, monotonocity of l and the fact that −l(x) ≥ − 
Σ 
xi, x ∈ Rd, for 0 < ϵ <  1 , 

we get that, 
 

l(−X − ϵY − m∗) − l(−X − m∗) 
≤ 
l(−X − m∗ − (1 − ϵ)Y ) − l(−X − m∗) 

ϵ  1 − ϵ 
l(|X| + |m∗| + (1 − ϵ)|Y |) − l(−X − m∗) 

− ϵ 

∗ Σ ! 
 

Since X and Y are in Mθ, the last term is bounded from above by a random variable which is 

in L1. Therefore, using Fatou’s lemma, we obtain that, 

lim sup 
R(X + ϵY ) − R(X) 

≤ E[−Y  · 𝖮l(−X − m∗)]. 
ϵ↘0 ϵ 

Now, using the representation given in Theorem 4.2.5 R(X + ϵY ) =  max 
Q∈Dl∗ 

EQ[−(X + ϵY )] − 

E[l∗( dQ )], and that R(X) = EQ∗ [−X] − E[l∗( dQ
∗ 

)] with dQ
∗ 

= 𝖮l(−X − m∗), we get, 

R(X + ϵY ) ≥ E 
 

−(X + ϵY ) · 
dQ∗ 

− l∗
  
dQ∗     

= R(X) − ϵE[Y  · 𝖮l(−X − m∗)], 
dP  dP 

 

Consequently, the other inequality follows: 
 

lim sup 
R(X + ϵY ) − R(X) 

≥ −E[Y  · 𝖮l(−X − m∗)]. 
ϵ↘0 ϵ 

 

Second assertion is a direct application of Theorem 6 pp 34 in Fiacco and McCormick [48]. 
 

In the following Corollary, we explicit the impact of an independent exogenous shock in the 

case X and Y are independent. 

Corollary 4.2.10. If X and Y are independent, then under assumptions of Theorem 4.2.9, we 

have, 
d 

R(X, Y ) = E[Yi],  RA(X, Y ) = E[Y ].  (4.16) 
i=1 

≤ 2 .
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1 1 , V 1 1

 
 

Remark 4.2.11. 

 
1. The equations in (4.14) and (4.15) are very interesting and show the relevance of the 

dual optimizer Q∗. More precisely, (4.14) shows that the marginal risk contribution can be 

quantified thanks to the optimal probability Q∗. 

2. If only the value of portfolio i changes by a cash amount, that is Y i  = ci  and Y j  = 0 

for j  ̸= i, then the marginal risk contribution R(X, Y  ) = −ci  is exactly covered by the 

marginal risk allocation RAi(X, Y ) = −ci of portfolio i, whereas marginal risk allocations 

of other portfolios remain unchanged, i.e. RAj(X, Y ) = 0 for j  ̸= i. This property of full 

responsibility for one’s own changes in financial position is known as causal responsibility 

(see Brunnermeier and Cheridito [21]). In general, this is no longer true if Y i is a random 

variable, but in the particular case when Y  i  is independent of X, this property remains 

true as suggested by equation (4.16). 

 
3. Equation (4.16) shows an interesting feature: Assume that two institutions i  ≠     j  change 

their positions in opposite direction, that is Y i  = −Y j , then the marginal risk contribution 

is zero, as if the portfolios compensate each other and a risk sharing mechanism take 

place. 

Example 4.2.3. In this example, we illustrate the impact of an exogenous shock that may de- 

pend on X. More specifically, we consider a system with two portfolios X = (X1, X2), an exoge- 

nous shock Y = (Y1, 0) impacting the first component only and a loss function of exponential 

type as in (4.3): 

l(x1, x2) = 
eλ1x1 − 1 

 
 

λ1 
+ 
eλ2x2 − 1 

λ2 
+ αeλ1x1+λ2x2 . 

As per Theorem 4.2.5, there exists a unique risk allocations m∗. To alleviate the expressions, 
we denote the following: 

 

CX1  := E[eλ1(−X1−m∗
1 )],  CX2  := E[eλ2(−X2−m2

∗)], 

CX  := E[eλ1(−X1−m∗1 )+λ2(−X2−m2
∗)], 

CX1Y   := E[Y1e
λ1(−X1−m1

∗)],  CX2Y   := E[Y1e
λ2(−X2−m2

∗)], 

・
・

CXY   := E[Y1e
λ1(−X1−m∗1 )+λ2(−X2−m2

∗)]. 

The matrix M and vector V in Theorem 4.2.9 can be expressed thanks to the quantities above 

after some simple but lengthy computations (omitted here): 

= 

  
λ1CX  + αλ2CX  αλ1λ2CX 

! 
= 

  
−λ1CX Y − αλ2CXY 

!
 

 αλ1λ2CX  λ2CX2  + αλ2CX  −αλ1λ2CXY 
2M .



Multivariate Optimized Certainty Equivalent Risk Measures and their Numerical Computation 

122 

 

 

  !
RA  X, Y  × 

 
 

The risk contribution marginal and risk allocations marginals follows: 

 
R(X, Y ) = −CX1Y  − αλ1CXY ,  (4.17) 

( ) = Common Factor 
−CX2 CX1Y   − α(λ1CX2 CXY   + λ2CXCX1Y  )) (4.18) 

−α(λ1CX1 CXY  − λ1CXCX1Y ). 
 

We notice the following: 
 

• R(X, Y ) is disentangled into two components. The first one is the contribution of the first 

component in the risk contribution marginal and the second is a systemic contribution that 

is proportional to α. This same remark holds for RA1(X, Y ). 

• The asymmetry of the shock on X1 can be seen in the systemic contribution in RA1(X, Y ) 

and RA2(X, Y ). Indeed, we notice that both components are impacted by the shock and 

this is reflected by the term −αλ1CX2 CXY  for the first component and −αλ1CX1 CXY  for 

the second. However, there is a correction term proportional to λ2 that is subtracted from 

the first component whereas another correction term proportional to λ1 is added to the 

second component. 

• In the case α = 0, i.e. without a systemic component, the risk marginal of the second 

portfolio is zero. This something we would expect as we applied a shock only on the first 

component. In other words, the first component takes full responsibility in this case. 

In the rest of the paper, for every X ∈ Mθ, we will assume the following: 

(ffil) i. For every m0 ∈ Rd, m ›→ l(−X − m) is differentiable at m0 a.s.; 

ii. m ›→ E[l(−X − m)] is strictly convex. 

Under assumption (ffil), there exists a unique risk allocation m∗ that is characterized through 
the following equation: 

1 = E[𝖮l(−X − m∗)]. 

 
4.3 Computational aspects 

In this section, we develop numerical schemes to compute the optimal risk allocations m∗ and 

R(X) using stochastic algorithms (SA). This is because the optimal allocations are solutions of 

a convex optimization problem whose objective function can be expressed as an expectation. 

Stochastic algorithms are generally used to find zeros of a certain function h that is unknown 

but could be approximated using some estimate. More specifically, SA algorithms take the 

following form: Zn+1 = Zn ± γnYn, where Yn  is a noisy estimate of h(Zn) and (γn) is a step 
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n

・ m
2+p(m) := E[||H1(X, m) − h1(m)||2+p||,  p > 0, 

 

 
sequence decreasing toward 0. This algorithm is known as Robbins-Monro algorithm (RM). 

For an overview of SA algorithms, we refer to Duflo [42]. However, in order to be able to use 

classical convergence results of SA, we need a sub-linear growth over the function h (see for 

example condition (8) of Theorem 2.2 in Bardou et al. [6]), which in our case, considerably 

limits the choice of loss functions. To circumvent this condition, we will use a “constrained” 

variant where we force the iterations of the (RM) algorithm to remain in a certain compact K 

set that contains the optimal allocations. One could also use the well-known projection “à la 

Chen” algorithm based on reinitializations of the algorithm and taking larger compact sets each 

time the iteration goes out of the compact set (cf. Chen and Zhu [28]). For the sake of simplicity, 

we will use the classical “constrained” version with a fixed compact set K as it has the same 

asymptotic behaviour as the one with projection “à la Chen”. In Armenti et al. [4], numerical 

schemes were developed to find optimal allocations for multivariate shortfall risk measures. 

They first estimated the different expectations using Monte Carlo/Fourier methods and then a 

root finding algorithm was used to find the optimum. Although this method shows good results 

of convergence and is quite fast, it has several drawbacks: It is sensitive to the starting point of 

the root finding algorithm and one has no control over the error of estimation. With SA, there 

is one major advantage over the former method: One could derive Central Limits Theorems 

(CLT) for the estimation and therefore obtain confidence intervals could be obtained for the 

estimators. 

We will study the behaviour of SA algorithms for the different loss functions in example 4.2.1. 
Recall that, for X ∈ Mθ and under the assumption (ffil), there exists a unique risk allocation 

m∗ solution of 1 = E[𝖮l(−X − m∗)]. We fix K a hyperrectangle such that m∗ ∈ int(K) and we 
define for X ∈ Mθ and m ∈ Rd: 

 
 

h1(m) := E[H1(X, m)], 
・・ 

σ2(m) := E[||H1(X, m) − h1(m)||2], 

 

(4.19) 
 

・・ 
Σ(m) := E[(H1(X, m) − h1(m))(H1(X, m) − h1(m))⊺]. 

 

We introduce the following set of assumptions: 
 

(ffia.s.) i.  
Σ

n≥0 γn = +∞ and  
Σ

n≥0 γ2 < ∞; 

ii. h1 is continuous on K; 

iii. sup 
m∈K 

σ2(m) < ∞. 

 

Theorem 4.3.1. Let (Xn) a sequence of random variables having the same law as X ∈ Mθ 

H1(X, m) := 𝖮l(−X − m) − 1,
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i=1 

Σ 
  Σ

d
 

i=1

n
 

n 
k=1

H2 x, R,m  R − F  x,m R− mi l −x −m

i

i=1

 

and define the sequence (mn) as follows: 

 
mn+1 = ΠK [mn + γnH1(Xn+1, mn)] ,  m0 ∈ L0,  (4.20) 

where ΠK  is the projection into K. Under (ffil) and (ffia.s.) we have, mn → m∗ a.s. as n → ∞. 

Proof. Following the same arguments of Theorem 3.3.4 in chapter 3, the only limit point of the 

projected ODE associated to the algorithm in (4.20) is m∗. Thus, we can use Theorem 2.1 in 

Kushner and Yin [83] that argues that mn will converge to the limit point m∗ if we can verify their 

assumptions (A2.1)-(A2.5). Indeed, (A2.1) is guaranteed thanks to the assumption (ffia.s.)-iii.. 

The other assumptions are verified thanks to (ffia.s.)-ii.. 
 

Once we have an estimator of m∗, it comes the question of estimating the multivariate OCE 

R(X)  =  
Σd  m∗

i   + E[l(−X  − m∗)]. A naive way consists in estimating R(X) in a two steps 
procedure: 

 

• Step 1: Use the estimate mn from (4.20) to have a good approximation of m∗. 

• Step 2: Use another sample of X to approximate R(X) using Monte Carlo: 
 

R(X) ≈ 
Σ 

m∗ + 
1 Σ 

l(−X  − m∗).  (4.21) 
 
 

A natural way to avoid this two steps procedure is to use a companion procedure (CP) of the 

algorithm (4.20) and to replace the quantity m∗ in (4.21) by its estimate at step k − 1, that is, 

1 n 
Rn 

n 
k=1 

( 
d 

i=1 
k−1) + l(−Xk − mk−1)

! 
. 

Note that Rn is a sequence of empirical means of non i.i.d. random variables that can be written 
also as:     1 0 

 

where 

Rn+1 = Rn − 
n + 1 

H2(Xn+1, Rn, mn),  n ≥ 0,  R0 ∈ L  ,  (4.22) 

( ) := ( ) := 

 
Σd 

+  ( )

!
 

We are now facing two procedures with different time steps: one for the estimation of m∗ and 

the other one for the estimation of R(X). In the following theorem, we prove the consistency of 
the second procedure using the same time step as the first one (γn), namely, 

Rn+1 = Rn − γnH2(Xn+1, Rn, mn),  n ≥ 0,  R0 ∈ L0.  (4.23) 

m

k

.

=
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1 1

Σ

Σ 
S

Σ

k=0 
Σ

k=0 k=0

 
 

To this purpose we need the following assumption: 
 
 

(ffiCP) ∀m ∈ K,  l(−X − m) ∈ L2 and m → E[|l(−X − m)|2] is bounded around m∗. 

Theorem 4.3.2. Assume that assumptions (ffil), (ffia.s.) and (ffiCP) hold and let (mn) be given 

by (4.20) and (Rn) by (4.23). Then Rn → R(X) a.s. 

Proof. For n ∈ N, define the sequence (Sn) as: 

1 
Sn = 

・n−1(1 − γ 
) 
,  S0 = 0. 

 
We have, 

k=0 k 

 

Sn+1 = 
Sn 

− γn 
= Sn  1 + 

γn
 

− γn 

  
= Sn + γn 

 

Sn+1 .  (4.24) 

Therefore using (4.23), we have, 

 
Sn+1Rn+1 = Sn+1(Rn − γnH2(Xn+1, Rn, mn)) 

= SnRn + γnSn+1Rn − γnSn+1H2(Xn+1, Rn, mn) 

= SnRn + γnSn+1Rn − γnSn+1Rn + γnSn+1F (Xn+1, mn) 

= SnRn + γnSn+1F (Xn+1, mn). 
 

This implies for n ∈ N∗,  
 
Rn = S 

 

 
R0 + S 

 

n−1 

γkSk+1F (Xk+1, mk).  (4.25) 
 

First, we have 

n  n k=0 

 
n−1 

 
n−1 

log(Sn) = − 
Σ 

log(1 − γk) ≥ 
Σ 

γk, 

and since by assumption, the RHS of the last inequality goes to ∞ as n → ∞, we deduce 

that Sn → ∞ as n → ∞ and we get immediately that the first term of the RHS of (4.25) goes 

to 0 as n goes to ∞. Rewriting (4.25) by introducing f  (m) := E[F  (X, m)] and the martingale 

difference sequence δMk+1 = F (Xk+1, mk) − f (mk) with respect to the natural filtration Fk := 

σ(m0, X1, ..., Xk), we obtain, 

1 1  n−1 1 n−1 

Rn = 
Sn 

R0 + 
S 

γkSk+1δMk+1 + 
n k=0 

γkSk+1f (mk).  (4.26) 
n k=0 

Thanks to (4.24), we have n−1 γkSk+1 = Sn. Because f is convex (assumption (ffil)-ii.) and 

therefore continuous at m∗, Cesaro’s Lemma implies that the third term in the previous equality 

1 1
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Σ
M    =  γ

δMk−1 k

n

Σ
γ    2  2⟨M   ⟩ =  γ 

E[|δM | |F ].∞ n

n−1

n

n≥1 

2

Σ

a.s. n nγ 2

n

 

converges to f (m∗) = R(X). The a.s. convergence of Rn will follow from the a.s. convergence 
of the second term toward 0. Indeed, let us denote, 

 

n 
γ 
n 

k=1 
 

Note that (Mγ) is a F-martingale such that 
 

∞ 
n 

 
But we also have, 

n=0 

 
 

E[|δMn|2|Fn−1] ≤ E[|l(−X − m)|2]|m=m  , 

and assumption (ffiCP)-ii. implies that 
 

sup E[|δMn|2|Fn−1] < ∞,  a.s. 

Using the martingale convergence theorem, we get that (Mγ) converges to some random vari- 

able. Finally, by Kronecker’s Lemma we deduce that the second term of (4.26) converges to 0. 

This completes the proof. 
 

The step sequence in (ffi )-i. is typically of the following form γ  =   c  , where γ  ∈ ( 1 , 1] and 

c  is a positive constant. The choice of c plays a key role in the rate of convergence of SA 

algorithms. In order to circumvent problems related to the specification of the constant c, which 

are classical, we will use “averaging” techniques introduced by Ruppert [117] and Polyak and 

Juditsky [108]. We introduce the following assumptions: 

(ffia.n.) i. h1 is continuously differentiable and let A := Dh1(m∗); 

ii. (H1(Xn+1, mn)1|mn−m∗|≤ρ) is uniformly integrable for small ρ  > 0; 

iii. For some p > 0 and ρ > 0,  sup 
|m−m∗|≤ρ 

m2+p(m) < ∞; 

iv. Σ(·) is continuous at m∗ and Σ∗ := Σ(m∗) is positive definite. 

The next theorem states the rate convergence of the average of the iterates of (RM) algorithm. 
 

Theorem 4.3.3. Assume γ  ∈ ( 1 , 1) and that assumptions (ffil), (ffia.s.) and (ffia.n.) hold. For any 

arbitrary t > 0, we define the (PR) sequence (mn) as: 
 

   

m   :=
 γn

 

t 

n+t/γn−1 

 
i=n 

 
mi,  (4.27) 
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Σ ⊺(  ) (   ) 

→ Σ → ∞k k k  k 

n n

n−1

γn  t

1

 
 

where any upper summation index is interpreted as its integer part. Then, we have 

s
 t 

(m
 

− m∗) → N 
 

0, A−1Σ∗(A−1)⊺ + O 

  
1 
   

.  (4.28) 
 

Proof. This is a consequence of Theorem 1.1 chapter 11 page 377 in Kushner and Yin [83] 

if we could verify their assumption (A1.1). Thanks to Theorem 2.1 of chapter 10 in Kushner 

and Yin [83], the condition (A1.1) is satisfied as soon as their conditions (A2.0)-(A2.7) hold. 

Assumption (A2.0) is automatically verified. (A2.1) is satisfied by (ffia.n.)-ii.. (A2.2) is a conse- 

quence of Theorem 4.3.1. (A2.4) follows from Taylor’s expansions and (ffia.n.)-i.. (A2.5) follows 

from the fact that h1(m∗) = 0. (A2.6) is satisfied since m∗ is the optimum of a convex optimiza- 

tion problem. The first part and second parts of (A2.7) are guaranteed thanks to (ffia.n.)-iii. and 

(ffia.n.)-iv.. Finally, (A2.3)follows easily from Theorem 4.1 chapter 10 page 341 in Kushner and 

Yin [83] since all their assumptions (A4.1)-(A4.5) are satisfied. 
 

Remark 4.3.4. The previous CLT theorem states that under suitable conditions our average 

sequence is asymptotically normal with a corresponding covariance matrix that depends on 

Σ∗ and A. These quantities are unknown to us because, first, in general, they cannot be ex- 

pressed in a closed form and second they depend on the optimum m∗. So, in practice, these 

two quantities need to be approximated in order to derive confidence intervals. In the following 

proposition, we provide consistent estimators of these two quantities. 

 
Proposition 4.3.5. Suppose (ffil), (ffia.s.) and (ffia.n.) hold. If m → E[||H1(X, m)||4] is bounded 

around m∗, then, 

 
Σn := 

1 n−1 

H1 X  +1, m  H1 X  +1, m  ∗ a.s. as n  .  (4.29) 
n 

k=0 

Let Aϵ  be the matrix whose elements Aϵ (i, j) for i, j  ∈ {1, ..., d} are defined as follows: 
 

Aϵ (i, j) := 
Σ 

Hi(Xk+1, mk + ϵej) − Hi(Xk+1, mk), 
 

then, 

n  ϵn 
1 1 

k=0 

lim lim Aϵ  = A a.s.  (4.30) 
ϵ→0 n→∞ n 

 

Proof. The proof of this proposition relies mainly on the martingale convergence theorem. Let 

(δMk)k∈N be the sequence defined as: 

δMk  := H1(Xk+1, mk)⊺H1(Xk+1, mk) − Σ(mk) − h1(mk)⊺h1(mk),  k ≥ 0. 

n
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Σ δM 
≥

k≥1 

Σ 
+
n

  Σ 
Σ( ) +

n
 
Σ ⊺( ) ( 

)k

   

2

variable M∞ such that Mn → M∞. We then apply Kronecker’s Lemma to get that 1 
Σn−1 δMk+1 →

 

(δMk)k≥0 is a martingale difference sequence adapted to F and therefore the following se- 

quence (Mk)k∈N∗ defined as: 
k 

Mk := i ,  k  1, 
i=1 i 

is a F-martingale. Furthermore, the boundedness of m → E[||H1(X, m)||4] around m∗, as- 
sumptions (ffia.s.)-ii. and (ffia.n.)-iv. imply that: 

 
supE[||δMn||2|Fn] < ∞ a.s. 

Consequently, the martingale convergence theorem implies the existence of a finite random 

 
0. Since, 

 
 

Σn = 

 

1 n−1 

δMk 
k=0 

 

1 n−1 

mk 
k=0 

 

1 n−1 
h1 m  h1 m   , 

n 
k=0 

n  k=0 

we deduce that Σn → Σ∗. The proof of (4.30) follows using the same arguments above. 
 
 

Remark 4.3.6. 

 
1. Instead of averaging on all observations for the estimators above, we could average using 

only recent ones. This might improve the behaviour of these estimators. 

2. If we denote V ϵ  = (Aϵ )−1Σn((Aϵ )−1)⊺, then we can obtain an approximate confidence 
n  n  n 

interval for m∗ with a confidence level of 1 − α in the following form: 
・ s 

V ϵ,jj         
s 
V ϵ,jj 

・ 
1 

    
・mn  − 

tcnγ  
qα, mn  − 

tcnγ  
qα・ ,  j ∈ {1, ..., d}, γ ∈ ( 

2 
, 1),  (4.31) 

 

where qα  is the 1 − α quantile of a standard random variable. 

 
4.4 Numerical Analysis and Examples 

 
In this section, we analyze and test the numerical methods developed in the previous section 

for the estimation of optimal allocations given by (4.27) and risk measures given by (4.23). 

The implementation was done on a standard computer using Python and we write CT for com- 

putational time. All the computations were run on a standard laptop with a processor Intel(R) 

Core(TM) i7-9850H CPU @ 2.60GHz. The common parameters used in the computations are 

summarized in the following table: 

njnj
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d 

+ αe i=1 λixi,  λi > 0,  α ≥ 0. 
i=1 λi

 
 

Parameters Values 

n  500000 

γ  0.8 

t  10 

c  1 

ϵ  10−6 

 

Table 4.1: Set of common parameters. 
 
 

4.4.1 A first example 

We start here by estimating optimal allocations and multivariate OCE for the first loss function 

in (4.3), that is: 
Σ eλixi   − 1 Σd 

We denote by λ the vector of λi, i ∈ {1, ..., d}. First, we test our algorithms in the case d = 2 and 

the vector X having a Gaussian distribution, as optimal allocations are expressed in a closed 

form in this case (see (4.10)). This will allow us to test the efficiency of our algorithms. Three 

cases are considered: In the first case, we take α = 0 and λ = (1,  2), which as previously 

mentioned, corresponds to the entropic risk measure, a second one with α = 1 and λ = (1, 1), 

and finally a third one with α = 1, λ = (1, 2). As for the parameters for the normal distribution of 

X, we fix σ1 = σ2 = 1 and we take ρ ∈ {−0.9, −0.5, 0, 0.5, 0.9} for each of the three cases. The 

compact set K was set to [0, 3]2 and the initial term m0 = (0, 0). 
 

ρ  Rn  m1 
n  m2 

n  CI1 CI2 R(X) m1 
∗ m

2 
∗ CT(s) 

−0.9 

−0.5 

0 

1.5133 

1.5220 

1.5054 

0.4987 

0.4964 

0.4999 

0.9983 

1.0010 

1.0022 

[0.4945,  0.5030]

[0.4922,  0.5007]

[0.4956,  0.5042]

[0.9874,  1.0093]

[0.9908,  1.0112]

[0.9888,  1.0156]

1.5 

1.5 

1.5 

0.5 

0.5 

0.5 

1 

1 

1 

68.8087

68.5388

69.1064

0.5 1.5147 0.5049 0.9906 [0.5006, 0.5092] [0.9803, 1.0009] 1.5 0.5 1 70.0251

0.9 1.5264 0.5031 0.9970 [0.4988, 0.5074] [0.9867, 1.0073] 1.5 0.5 1 70.8549

Table 4.2: Numerical results: α = 0 and λ = (1, 2). 

 
The table above summarizes the numerical results for the first case. The two columns CI1 

and CI2 represent the confidence intervals of the (PR) estimators with a confidence level of 

95%. Since α = 0, the exact optimal allocations do not depend on the correlation coefficient ρ. 

l(x) = 
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∗

 
 

This explains why we obtain the same values for m∗ for different values of ρ. The same remark 

goes for the estimators mn. Since λ2 > λ1, we expect as per formula (4.10) that m2 
 

 

> m1. 
∗ 

These numerical results suggest that the (PR) estimators mn as well as the (RM) estimator Rn 

approximate very well the exact optimal allocations m∗ and the risk measure R(X). The width 

of the first confidence intervals (resp. second confidence intervals) is approximately 0.008 (resp. 

0.02) which gives an accuracy of 1.5% (resp. 2%) for the first estimator m1 (resp. m2 ). 
n  n 

 

ρ  Rn  m1 
n  m2 

n  CI1 CI2 R(X) m1 
∗ m2 

∗ CT(s) 

−0.9 

−0.5 

0 

1.3139 

1.4198 

1.5897 

0.7689 

0.8511 

0.9827 

0.7704 

0.8552 

0.9801 

[0.7651,  0.7728]

[0.8471,  0.8550]

[0.9782,  0.9873]

[0.7665,  0.7742]

[0.8512,  0.8592]

[0.9755,  0.9846]

1.3036

1.4105

1.5804

0.7702 

0.8545 

0.9812 

0.7702 

0.8545 

0.9812 

69.1816

73.6128

69.8510

0.5 1.8171 1.1368 1.1280 [1.1307, 1.1430] [1.1220, 1.1339] 1.7928 1.1301 1.1301 71.4592

0.9 2.0305 1.2697 1.2651 [1.2612, 1.2782] [1.2568, 1.2734] 1.9932 1.2636 1.2636 73.0060

Table 4.3: Numerical results: α = 1 and λ = (1, 1). 

 
When taking the same values for λ1 and λ2, the system becomes symmetric and we obtain 

the same optimal allocations for the first and second component. We also notice that optimal 

allocations and their estimators increase with the correlation coefficient ρ as it was expected 

from remark 4.2.6. Again, the estimators approximate well the optimal allocations and the risk 

measure. The accuracy of all confidence intervals is around ≈ 1%. 
 

ρ  Rn  m1 
n  m2 

n  CI1 CI2 R(X) m1 
∗ m2 

∗ CT(s) 

−0.9 

−0.5 

0 

1.6477 

1.7734 

2.0148 

0.6194 

0.7045 

0.8479 

1.1275 

1.2366 

1.4449 

[0.6152,  0.6237]

[0.7001,  0.7089]

[0.8421,  0.8538]

[1.1184,  1.1366]

[1.2280,  1.2452]

[1.4309,  1.4588]

1.6354

1.7544

1.9943

0.6202 

0.7071 

0.8465 

1.1285 

1.2344 

1.4406 

79.6036

81.1432

76.7199

0.5 2.3749 0.9922 1.7260 [0.9844, 1.0001] [1.7044, 1.7476] 2.3354 0.9859 1.7344 80.4979

0.9 2.7790 1.0812 2.0416 [1.0710, 1.0914] [1.9981, 2.0850] 2.6652 1.0728 2.0285 81.1827

Table 4.4: Numerical results: α = 1 and λ = (1, 2). 

 
In this final case, we take different values for λ1 and λ2. Table 4.4 shows that the optimal 

allocations can be well approximated by the estimator in (4.27). This is also the case for the 

estimator Rn. Again, the optimal allocations as well as the risk measure increase with the 

correlation coefficient (see Figure 4.1). All confidence intervals have an accuracy between 1% 

and 2% except the second confidence interval in the case ρ = 0.9 where the accuracy is a bit 

higher and is approximately around 4%. 
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Figure 4.1: Rn, m1 and m2 as a function of ρ. 

n  n 

 

 

4.4.2 Second example 
 

Simulated data 
 

In this example, we will be working with a Multivariate Normal Inverse Gaussian (MNIG) dis- 

tribution for the vector X instead of a Gaussian distribution. The MNIG distribution yields a 

more flexible family of distributions that can be skewed and have fatter tails than the Gaussian 

distribution. For a fixed d, a MNIG distributed random variable is a variance-mean mixture of a 

d-Gaussian random variable Y with a univariate inverse Gaussian distributed mixing variable 

Z. The MNIG distribution has five parameters αMNIG > 0, β ∈ Rd, δ > 0, µ ∈ Rd and Γ ∈ Rd×d 

and can be constructed as follows: 

X = µ + ZΓβ + 
√
ZΓ1/2Y,  (4.32) 

 

where Z  ∼ IG(δ2, α2 − β⊺Γβ) and IG(χ, ψ) denotes the Inverse Gaussian distribution with 

parameters χ, ψ > 0 and Y ∼ N(0, Id). Note that the random variable X|Z ∼ N(µ + ZΓβ, ZΓ), 

hence the name variance-mean mixture. The parameters of the MNIG distribution have natural 

m1 
n 

n 

    Rn 

m2 
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interpretations. The parameter αMNIG is a shape parameter and controls the heaviness of the 

tails. The parameter β is a skewness vector parameter, δ is a scale parameter and µ is a vector 

translation parameter. Finally, the matrix Γ is assumed to be a positive semidefinite symmetric 

matrix and controls the degree of correlations between components and assumed to be such 

that det(Γ) = 1. In order for the MNIG to exist, the inequality α2 > β⊺Γβ must be satisfied. 
The cumulant generating function of the MNIG could be derived easily in a closed form of the 

parameters: 

ΦX(t) = δ 
  q

α2 − β⊺Γβ − 
q
α2 − (β + it)⊺Γ(β + it)

   
+ it⊺µ. 

 

This shows that the MNIG is infinitely divisible. Thus, we can easily evaluate the moments of 

this distribution. The mean vector and the covariance matrix Σ of X are given in the following: 

δΓβ 
E[X] = µ + 2 

MNIG − β⊺Γβ 
,  (4.33) 

Σ = δ 
 
α2 − β⊺Γβ

  −1/2 
  

Γ + 
  
α2 − β⊺Γβ

  −1 
Γββ⊺Γ

  
.  (4.34) 

 

Note that due to the parameter β, even when µ = 0 (and Γ = Id resp.), the mean of the MNIG 

distribution is not null (the covariance matrix is not diagonal resp.). For more details about 

MNIG, we refer to Oigård et al. [105]. 

In order to make the numerical analysis more realistic, we fitted, the parameters of the MNIG 

distribution on the daily log-return of three European indices: CAC 40, BEL 20 and AEX. The 

estimated parameters obtained using the Expectation Maximization (EM), explained in details 

in Section 4.5, are summarized in the first column of the following table 4.5. 
 
 

Parameters MNIG 

αMNIG 365.78 

δ 0.00373 

β  (−64.28, 41.45, 7.35) 
 

µ  (0.00084, 0.00024, 0.00055) 
・
2.338 1.796   2.080

・
 

Γ 1.796   2.327   2.088 

2.080   2.088   2.555 

Table 4.5: Parameters sets for the MNIG. 
 
 

The covariance matrix obtained from the MNIG calibrated distribution is given in the follow- 
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・ ・
×

 × ×・
・
・ 

・
・

θi θi θj

 
 

ing:  
2.45 10−5 1.86 10−5 2.16 10−5 

Σ = 1.86 × 10−5 2.40 × 10−5 2.16 × 10−5 . 

2.16 × 10−5 2.16 × 10−5 2.65 × 10−5 

This shows that the log-returns of the three indices over the period considered are barely cor- 

related. The following figure shows also that they almost have the same distribution: 
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80 
 
 

60 
 
 

40 
 
 

20 
 
 

0 
0.04 0.02 0.00 0.02 0.04 

 
 

Figure 4.2: Densities of the log-returns of the three indices. 
 
 

Numerical Results 
 

We will test our SA algorithms with a trivariate MNIG distribution for the polynomial loss func- 

tions. We recall that the polynomial loss function is given by: 
d  +  θi  +  θi  +  θj 

l(x) = 
Σ ([1 + xi]   ) − 1 

+ α 
Σ ([1 + xi]   )    ([1 + xi]   )    

,  θ
 

 

 

> 1,  α ≥ 0. 

 

Since no closed formula is available to us in this case, we decided to use a Monte Carlo scheme 

as a benchmark to the SA method. This scheme consists in approximating the expectation in 

i<j

AEX 
BEL 20 
CAC 40 

D
en

si
ty

 

i=1
i
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(4.11) by the corresponding Monte Carlo estimator and then to use Nelder-Mead algorithm as 

a minimization algorithm to find the optimal allocations. The compact set K for the SA method 

was set to [0, 2]3 and α was taken to be equal to 1. First, we compare both methods in the case 

where the parameter θ  was taken to be equal to θ  = (2, 2, 2). Then, in a second case, we test 

both algorithms with the parameter θ = (1, 2, 3). 
 
 

SA CI-SA Monte Carlo 

m∗1 0.31747 [0.31746, 0.31749] 0.31748 

m∗2 0.31748 [0.31746, 0.31750] 0.31745 

m∗3 0.31742 [0.31740, 0.31743] 0.31737 

R(X) 0.31336 0.31332 

CT(s) 141.20 28.07 

Table 4.6: Numerical results: Polynomial loss function with θ = (2, 2, 2) and MNIG distribution. 

 
 

The table 4.6 show that both methods give approximately the same values for the optimal 

allocations m∗ as well as the risk measure R(X). The values of the optimal allocations are 

approximately the same among the three components. This could be explained by the fact that 

the three components have almost the same distribution as shown in the figure 4.2 and the fact 

that we have taken θ = (2, 2, 2), so that the system becomes nearly symmetric. The Monte Carlo 

method is seven times faster that the SA method. However, with the Monte Carlo method, we do 

not have any confidence intervals and hence no control over the error of estimation. Moreover, 

since in the Monte Carlo method, we are using a deterministic minimization algorithm, it is 

sensitive to the initial values (Recall that we do not have this problem with the SA method). We 

do not have this problem with the SA method. 
 
 

SA CI-SA Monte Carlo 

m∗1 0.21996 [0.21995, 0.21998] 0.21994 

m∗2 0.25127 [0.25125, 0.25129] 0.25130 

m∗3 0.29929 [0.29927, 0.29931] 0.29926 

R(X) 0.37532 0.37529 

CT(s) 98.48 9.85 

Table 4.7: Numerical results: Polynomial loss function with θ = (1, 2, 3) and MNIG distribution. 
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Q(θ|θn) = − 
2 

log(det(Γ)) − 
2

ϕn(Xi − µ)⊺Γ−1(Xi − µ) + ζnβ⊺Γβ − 2(Xi − µ)⊺β

1

i=1
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4.5 Appendix: Estimation of MNIG parameters 
 

4.5.1 Computational aspects 

In this section, we give more details about the estimation of the MNIG parameters. The most 

conventional way to estimate the latters is the maximum likelihood estimation method. However, 

in the case of MNIG, this method shows slow convergence due to the complexity of the likeli- 

hood. We therefore, propose here to use the Expectation Maximization (EM) algorithm which 

is known to be fast and accurate. The EM algorithm is a powerful tool that is used for maxi- 

mum likelihood estimation for data containing “missing” values. This is suitable for distributions 

arising as mixtures which is the case of MNIG distributions where the mixing variable Z is un- 

observed. The EM algorithm is an iterative algorithm that consists of two steps at each iteration. 

Denoting θ = (δ, µ, β, αMNIG, Γ), X = (X1, ..., XN ) the observed data and Z = (Z1, ..., ZN ) the 

unobserved one, L(X, Z, θ) = log(P(X, Z)|θ) the complete data likelihood and θn the estimate 

of θ at step n, we repeat the two following steps until some convergence criteria is verified: 

 
• E-step : Compute Q(θ|θn) := EZ|X,θn [L(X, Z, θn)]. 

• M-step : choose θn+1 = argmax Q(θ θn). 
θ 

 

Next, we explicit the calculations of Q(θ|θn) in the E-step for the MNIG distribution. We have, 

by taking the constants away, 

 
L(X, Z, θ) = log (P(X, Z|θ)) 

= log (P(X|Z, θ)) + log (P(Z|θ)) 

= 
d Σ 

log(Z ) − 
N 

log(det(Γ)) − 
1 Σ 1 

(X  − µ − Z Γβ)⊺Γ−1(X  − µ − Z Γβ)+ 
 

N 
q
δ2 

 
2 
MNIG 

⊺Γ  ) + log(  ) 
3 ΣN

  log( ) 
1 ΣN

  δ2 1 

Zi 
+ (α2 − β ⊺Γβ)Zi    . 

 

Taking the conditional expectation on the both sides and denoting ζn = (ζn)i=1,...,N  and ϕn = 

(ϕn)i=1,...,N , where ζn  :=  EZ|X,θn [Zi]  and ϕn  :=  EZ|X,θn [  1  ], we get, again by removing the 
quantities that does not depend on θ, 

 

N  1 ΣN 

+ N 
q
δ2(α2 − β⊺Γβ) + N 

N 
log(δ) − 

2
 ϕnδ2 

+ ζn(α2 
− β⊺Γβ)

  
. 

MNIG  i 
i=1 

i  MNIG 

i=1 i=1
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δ

− δ

ϕn Xi − µ 

・ 

・ 

N

 
 

The quantities ϕn and ζn can be derived from the fact that Z|X, θ follows a Generalized Inverse 
  

Gaussian distribution, i.e., Z|X, θ ∼ GIG 
 
− d+1 , q(X), αMNIG

  
, where q  is given as: 

q(x) = 
q
δ2 + (x − µ)⊺Γ−1(x − µ).  (4.35) 

More precisely, they are given by, 
 

ζ := E 
[Z ] =  

q(Xi) K(d−1)/2(αq(Xi)) 
,  (4.36)

 
i  Zi|Xi,θ  i  α  K( d+1)/2 (αq(Xi)) 

ϕ  := E [1/Z ] = 
   α  K(d+1)/2(αq(Xi)) 

,  (4.37) 
i  Zi|Xi,θ  i  q(Xi) K( d+3)/2 (αq(Xi)) 

 

Kv  is the modified Bessel function of the second kind with index v ∈ R. Having calculated 

Q(θ|θn), we now need to calculate the next term θn+1 := argmaxQ(θ|θn). This will be done by 

first calculating the gradient of Q. 

・

・ 
∂Q  

= 
q 

Γ  + 
N  Σ 

 
 

   ∂Q      Nδα    Σ n 
 

∂αMNIG 
q 

2 ⊺ 
−

 α 
 

 
 

ζi , 

αMNIG − β  Γβ 
 

 

i=1 
・・ ∂Q  

= Γ−1 
Σ 

( ) i=1    ・ 
・ ∂Q 

= 
Σ 

 
 

  NδΓβ   

∂β 
Xi − Nµ − q 

2 ⊺ 
, 

i=1 

・ 

αMNIG − β  Γβ 
   

・ ∂Q  
=  

1 
・

Γ−1 
ΣN  

( ( )( 

)⊺Γ−1 Γ−1 
Nδββ⊺ 

・

 

∂Γ 2 
・
 ϕi   Xi − µ 

Xi − µ 

− N  − q 
2

 

⊺ 
・ . 

n

  

i

N
  

N

i=1

ii

θ

N

  

2 n

・ 
αMNIG − β  ϕi ,

∂µ 
− Nβ,

i=1 αMNIG − β  Γβ 
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α  − β 

− −
α

α −β

−

µϕ .

N i=1 i N i=1 i

Γ 2 
MNIG

− β⊺Γβ 
= 0.  (4.42) 

N i=1 i i i

q

q

 

To alleviate the expressions, we will denote 
 

 

n   :=  1 ΣN  ϕn, ζ
n    :=   1  ΣN

  ζn, Xϕ
n    := 

1  ΣN  ϕnXi and X := 1 ΣN
  Xi  . Setting the previous set of equations to 0, we obtain, 
 
 

N  i=1   i  N  i=1 1 
−   n  + 

q
α2 

− β⊺Γβ = 0,  (4.38) 
 
 

δ 
ϕ  δ  MNIG 

δ 

n = 0,  (4.39) 

2 
MNIG 

 
 

ζ 
⊺Γβ 

 

Γ−1Xϕ
n 

− 
nΓ−1 µ − β = 0,  (4.40) 

 
 

X − µ − 
α2 

δΓβ 
= 0,  (4.41) 

− β⊺Γβ 
  

 1 Σ 
 

 

MNIG 

⊺
! 

δΓββ⊺Γ 

 

From the second equation we deduce that, 

δ 
=  n  

 
 

 

  (4.43) 
2 
MNIG 

ζ  . 
⊺Γβ 

 

Plugging this into the first equation gives us, 

=
 1  

 
 

 

 (4.44) 
δ 

 
 

Thanks to the third equation, we have, 

n  1  
.
 

n 
ζ 

 

Γβ = Xϕ
n 

− n  (4.45) 

Using this in the fourth equation, we obtain, 
 
 

  X − ζ  Xϕ
n
 

µ = 
1 − ζ

n
 

n   .  (4.46) 
ϕ 

Now that µ and Γβ are explicitly known, denoting R := 1  ΣN
 

 

 

ϕ  (X  −µ)(X  −µ)⊺ −ζ
n
Γβ(Γβ)⊺, 

 
 

Going back to (4.45), we get, 

Γ = 
R
 

det(R)1/d 
.  (4.47) 

β = Γ−1(Xϕ
n 

− ϕ
n
µ).  (4.48) 

we get from the fifth equation, 

N 

N

ϕ

i=1 

ϕi(Xi − µ)(Xi − µ)

−

ϕ 

q
ϕ

n
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n + β

 

 
 

Finally, using (4.43), αMNIG can be deduced as: 

‚
.,
  

δ2 
! 

⊺
 

 
 

In the following, we summarize the EM algorithm for the parameters estimation of MNIG distri- 

bution: The convergence properties of the EM algorithm are discussed in details in McLachlan 
 
 

Algorithm 2: EM algorithm for parameters estimation of MNIG distribution 
 

Input: Observations (X1, ..., XN ), initial value θ0, tolerance tol and M number of 
iterations; 

1 Set θn = θ0 and compute ϕn, ζn with (4.36) and (4.37); 
2 Compute θn+1 using in order (4.44), (4.46), (4.45), (4.47), (4.48) and (4.49); 
3 n = 0; 
4 while  θn+1 θn  tol and n < M do 
5 E-step: θn  θn+1 and compute the new ϕn and ζn with (4.36) and (4.37); 
6 M-step: Compute θn+1 using in order (4.44), (4.46), (4.45), (4.47), (4.48) and (4.49); 
7 n ← n + 1; 

Output: Estimated parameters θˆ; 

 

 
and Krishnan [95]. However, to avoid getting stuck in a local maximum, we will need to run the 

algorithm from several starting points to ensure that the obtained maximum is the global one. 

We can also combine the algorithm with other numerical methods, such as Newton-Raphson 

algorithm, to speed up the convergence. 

 
 
 
 

4.5.2 Numerical aspects 

 
We applied the EM algorithm described in the above subsection to a data set of daily log return 

of three European stock indices (CAC 40, BEL 20 and AEX) for a period from 12/05/2020 to 

10/05/2022 obtained from the website of Euronext. The data set consisted of 514 observations. 

In order to test the behavior of the algorithm, several initial values were considered. Note that 

the conditional expectations in the E-step do not involve the parameters β and hence the con- 

vergence of the algorithm will not depend on the initial value of β. We fixed β = (0, 0, 0) and we 

stopped the iterations when ||θn+1 − θn|| < tol for tol = 10−5 and tol = 10−10. The values of the 

ζ
α = Γβ.  (4.49) 
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・

 
 

estimates of estimates for initial values were the same and are given in the following: 

 
α̂ = 365.78, 

δˆ = 0.00373, 

β̂ = (−64.28, 41.45, 7.35), 

µ̂ = (0.00084, 0.00024, 0.00055), 

ˆ 

・
2.338 1.796  2.080

・
 

Γ = 1.796  2.327  2.088 . 

2.080 2.088   2.555 
 

The number of iterations needed until convergence along with the computational (CT) time can 

be seen in 4.8. 

Initial Values tol = 10−5 tol = 10−10 
 

α  δ  µ  Γ Iterations CT(ms) Iterations CT(ms) 

1 0 (0, 0, 0) I3 93 1267 164 2175 

20 0 (0, 0, 0) I3 93 1174 164 2139 

1 2 (0, 0, 0) I3 194 2428 265 3377 

20 2 (0, 0, 0) I3 453 5543 524 6471 

1 0 (1, 1, 1) I3 189 2425 260 3391 

20 0 (1, 1, 1) I3 410 5058 481 5898 

1 2 (1, 1, 1) I3 206 2563 217 3393 

20 2 (1, 1, 1) I3 558 6658 629 7644 

1 0 (0, 0, 0) 2I3 94 1237 165 2078 

20 0 (0, 0, 0) 2I3 94 1154 165 2100 

1 2 (0, 0, 0) 2I3 194 2383 265 3315 

20 2 (0, 0, 0) 2I3 453 5536 524 6558 

1 0 (1, 1, 1) 2I3 177 2160 248 3032 

20 0 (1, 1, 1) 2I3 328 3947 399 4876 

1 2 (1, 1, 1) 2I3 201 2468 272 3282 

20 2 (1, 1, 1) 2I3 509 6208 580 7118 

Table 4.8: Number of iterations and computational time for various initial values and stopping 
criteria. 
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Résumé : Cette thèse est constituée de trois 
chapitres portant sur la maximisation d'utilité en 
présence d’incertitude, ainsi que l’étude et 
l’approximation numérique des mesures de 
risque systémiques. 
Le premier chapitre est consacré à l’étude d’un 
problème de maximisation d'utilité avec 
incertitude, en considérant une filtration 
discontinue et une condition terminale non 
bornée. L’incertitude sur le modèle est prise en 
compte dans le problème d’optimisation par 
l’ajout d’une pénalité générale incluant le cas 
entropique. Nous montrons l’existence d’un 
modèle optimal et ensuite nous caractérisons le 
processus valeur comme la solution unique 
d'une Equation Différentielle Stochastique 
Rétrograde Quadratique-Exponentielle avec 
sauts. 
Dans le deuxième chapitre, nous étudions 

l’approximation numérique des mesures de 
risque systémiques de type Shortfall par des 
algorithmes  stochastiques. Nous montrons 
dans un premier temps la convergence 
presque-sûre des  estimateurs proposés. Des 
théorèmes centrales limites sont également 
obtenus permettant d’avoir des intervalles de 
confiance pour les estimateurs. Enfin, nous 
implémentons les différents schémas à travers 
plusieurs exemples. 
Enfin dans le dernier chapitre, une nouvelle 
classe de mesures de risque est introduite, 
généralisant dans le cadre multivarié les 
mesures de risque dites Optimized Certainty 
Equivalent. Nous proposons des algorithmes 
stochastiques pour l’approximation de ces 
mesures de risque et nous comparons nos 
résultats avec ceux obtenus par la méthode 
Monte Carlo. 
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Abstract : This thesis is split into three parts 
and deals with a robust utility maximization 
problem, systemic risk measures and their 
numerical approximation. 
In the first part, a utility maximization problem 
under model uncertainty is addressed in a 
discontinuous filtration and unbounded terminal 
condition. The model uncertainty is taken into 
account in our optimization problem through a 
general penalty that includes the entropic one. 
We show the existence of an optimal model and 
we characterize the value process as the unique 
solution of an Exponential-Quadratic Backward 
Stochastic Differential Equation. 
In the second part, we are interested by the 

numerical approximation of multivariate 
Shortfall risk measures with stochastic 
algorithms. We first start by showing the 
consistency of the estimators. Central limits 
theorems are also obtained providing us with 
confidence intervals for the estimators. Lastly, 
we implement and test our numerical schemes 
with different examples. 
In the last chapter, a new class of risk 
measures is introduced, generalizing in the 
multivariate case the Optimized Certainty 
Equivalent risk measures. We propose 
stochastic algorithms for the approximation of 
these risk measures and compare our results 
with those obtained by the Monte Carlo 
method. 


