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Résumé

Dans le milieu de la propulsion aéronautique, les premières étapes de conception des compresseurs demandent des outils très rapides de prédiction des performances qui vont servir à fixer les principales caractéristiques de la machine pour qu'elle puisse satisfaire les contraintes imposées par le cycle thermodynamique du turboréacteur. Directement après les outils 0D/1D, ce sont les solveurs méridiens qui permettent un nombre d'itérations important avant d'aboutir à une première géométrie acceptable qui sera ensuite optimisée avec des méthodes plus précises, mais beaucoup plus couteuses. Il est donc important que ces solveurs méridiens soit fiables et évoluent avec les capacités informatiques actuelles. La problématique associée à ces outils est que pour être rapides, ils ne peuvent résoudre les équations de la mécanique des fluides et doivent faire appel à des modélisations pour simuler l'écoulement très complexe dans un compresseur multi-étage. La plupart du temps, ce sont plus des corrélations basées sur une expérience de l'existant que des modélisations physiques qui sont utilisées par les motoristes, ce qui freine et complexifie le développement de nouveaux concepts. L'objectif de cette thèse est de poser les nouvelles bases pour le développement d'un solveur méridien en privilégiant une modélisation physique des phénomènes associés aux écoulements rencontrés dans les compresseurs. Au vu du large spectre que cela représente, la thèse débute cette étude en se focalisant sur les écoulements subsoniques. Le solveur ASTEC, développé par Safran Tech, a été choisi pour implémenter les modélisations. Dans cette thèse, ASTEC résout les équations d'Euler de la mécanique des fluides moyennées dans la direction circonférentielle, s'appuyant le solveur elsA développé par l'ONERA couplé à avec un module externe dans lequel sont implantés des termes sources servant à modéliser la présence d'aubages et les effets visqueux du fluide initiallement omis. Le domaine de calcul est décomposé en un empilement de surface aube-à-aubes qui interagissent entre elles via ASTEC. Le calcul des forces d'aubages repose sur la détermination de l'écoulement incompressible dans une grille d'aubes de compresseur en utilisant la méthode potentielle de Hess & Smith, auquel est associée l'influence des effets visqueux des couches limites obtenue par la méthode intégrale de Von Kármán. Une modélisation des effets de sillages basée sur la même ix équation couplée à une corrélation d'évolution de facteur de forme dans le sillage est proposée dans les zones inter roues. Les pertes induites par les écoulements de jeu sont calculées en améliorant le modèle de Denton par la prise en compte des distributions de vitesses sur l'intrados et l'extrados de l'aubage, obtenues par la méthode potentielle. Les écoulements secondaires proches moyeu restent à être modélisés dans le futur de ces travaux. Plusieurs configurations d'écoulements ont été confrontées à des expériences et des outils éprouvés (corrélations de Lieblein, code MISES, calculs RANS) et montrent un accord remarquable sur les configurations 2D de type grille d'aubes et des résultats très prometteurs pour une machine réelle, le compresseur CME2, à différent points de fonctionnement. L'approche utilisée a l'avantage de pouvoir prendre en compte les propriétés locales de l'écoulement pour une meilleure modélisation des phénomènes, à la différence des outils de type ligne-de-courant basés sur des corrélations entrée-sortie.
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Context

The global emission reduction objective: to achieve "net zero" CO 2 emissions in 2050 on planetary scale, from the United Nations, set the future road-maps of the global industrial world. The next milestone, ratified by 196 countries in 2015 during the COP21, is the Paris Agreement. It imposes a reduction of the global emissions of at least 40% in 2030. This close objective is supported by the GIEC and is required to follow the scenario of a 2°C maximum rise of the average global temperature by the end of the century. The air transportation industry is clearly involved in these reduction of emission objective. It alone represents 2 % to 3 % of the global emissions. Evaluations of the recent impact of the growing flight traffic showed that it reaches 6% of the human recent emissions. In Europe it is situated just after the road transportation sector. Indeed, the International Air Transport Association (IATA) states that the flight traffic has retrieved in 2023 its level pre-COVID19, and projects at least 4% of traffic growth annually.

In this context, engine manufacturers seek for drastic improvement of the propulsion efficiency. This leads to new designs with larger technological steps from the previous proven engine generation, such as the actual UHBR engine family or other disruptive proposals, such as the recent but very serious re-interest in the open-rotor concept. Following these perspectives, the design numerical methodologies must adapt to these new concepts. Even if the numerical computational power accessible to the industry has increased, the cost to achieve a new design using high fidelity methods remains, by far, too high. This applies to aircraft engine compressors design. Compressor aerodynamic engineers, still today, mainly rely on low-fidelity methods in a daily basis.

The historical low-fidelity method for compressor design is the throughflow method. It solves the axisymmetric flow inside the compressor and relies on empirical models to simulate the turbulent tri-dimensional flow within the compressor stages. This method, still widely used by engine manufacturers, owes its success to its suitability for multistage compressor applications with a characteristic low response time. In aeronautics, increased efficiency, often means less involved mass. The compressors do not break the rule and recent design trends showed more compact architectures with fewer stages to 1 save mass. This leads to more loaded compressor blades and consequently more severe flow conditions even near design operating points. The problematic is that the historical throughflow, with its mainly empirical flow model, is poorly adapted to this new design context. This observation is shared with the rest of the scientific community who demonstrates in the literature a recent re-interest in throughflow modeling.

Thesis objectives

Regarding the context problematic, the main objective of this thesis is to develop throughflow modeling for axial compressors with limited amount of empiricism. This means using a local approach based on the compressor blades geometry instead of the legacy usage of inlet-outlet flow modeling. A secondary objective is to bring these throughflow models into a modern throughflow solver. The choice was made to use a CFD-based throughflow solver as it allows multi-fidelity and can be integrated in the current design framework. A third objective is to keep the historical appeal of throughflow solvers: having return times as small as possible.

Thesis outline

The thesis is organized as follows:

• Chapter 1: A literature review of the throughflow solvers and recent modeling attempts in the context of axial compressor is presented. Then the modeling philosophy and methodology, consistent with the thesis objectives, are introduced.

• Chapter 2: The CFD-based throughflow solver chosen to host the thesis developments is presented. The baseline source terms, pre-existing this thesis and useful for the proposed modelings, are detailed.

• Chapter 3: A blade-to-blade potential solver have been developed to provide local flow information for further viscous modeling. The compressor inviscid blade force is also estimated using the potential flow. It is described and validated against bi-dimensional inviscid cases in this chapter. T his first chapter gives the keys for understanding the objectives addressed in this work. After giving some basis about ususal concepts for axial compressor design, the chapter details the historical methodological advances leading to the use of throughflow solvers. As a result of the underlying simplification hypotheses on the resolved flow in such throughflow methods, additional flow models must be considered. Some of them are then presented. This finally leads to the introduction of the thesis methodology, followed by the presentation of test cases from previous research projects, used to support the development and validation of the proposed methodology.

Axial compressor

Axial compressors for aeronautics applications mostly develop their pressure rise by a dynamic transfer of energy to a flowing stream within the compressor annulus. This is effectively done through several blade rows, that can be split into two categories. The rotating blade rows are called rotors and the static blade rows are called stators. The role of the rotors is to transfer the energy coming from the compressor shaft, itself rotating thanks to the turbines that harness energy from gas burned in the combustion chamber, into kinetic energy to the fluid. The role of the stators is to convert this kinetic energy of the swirling flow into static pressure in order to maximize the potential energy that will be released in the combustion chamber. This corresponds to the Brayton cycle.

Axial compressor stage velocity triangles

A pair composed of a rotor and a stator is called a stage and is the elementary brick of a multistage compressor. A schematic of the velocity triangles of such a stage is described in figure 1.1, which simply describes the principle of a compressor stage. For simplicity, in figure 1.1, the stage blade-to-blade view is taken at constant radius meaning that the rotational velocity U = rΩ is constant from leading edge to trailing edge of the rotor blades. The relative to the blade velocity vectors are represented with W, making relative flow angles β with the shaft axis and the absolute velocity vectors are denoted with V, making absolute flow angles α with the shaft axis. From the velocity triangles of the rotor (from station 1 to 2), the increase in tangential velocity ∆V θ appears in the center at the bottom of the figure. Then the reduction of tangential velocity at the outlet of the stator (station 3) evidences the conversion of kinetic energy to pressure.
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Axial compressor thermodynamics

The first principle of thermodynamics applied to a stage writes:

∆h 1-2 t = Q th + W i (1.1)
where h t is the total specific enthalpy, Q th is the specific external thermal energy received by the fluid and W i is the specific work input from the rotor provided to the fluid. In axial compressor, the fluid is often considered adiabatic: Q th = 0.

The energy brought by the rotor to the fluid is described by the Euler equation of turbomachinery, that can be written in its most general form per unit massflow rate as follows:

W i = ∆h 1-2 t = Ω(r 2 V θ 2 -r 1 V θ 1 ) = U 2 V θ 2 -U 1 V θ 2 (1.2)
Using eq. (1.2) together with the velocity composition V θ = W θ + U yields: 1952) suggested that eq. ( 1.3) expresses the conservation of the quantity named rothalpy defined as:

h 2 + W 2 2 /2 -U 2 2 /2 = h 1 + W 2 1 /2 -U 2 1 /2 (1.3) Wu ( 
I = h + W 2 /2 -U 2 /2 = h rel t -U 2 /2 (1.4)
Where h rel t is the specific total enthalpy in the blade row relative frame of reference, sum of the specific static enthalpy h and the specific kinetic energy W 2 /2 in the relative frame of reference. [START_REF] Cumpsty | Compressor Aerodynamics[END_REF] summarized the properties of the rothalpy. It behaves just like the total enthalpy in a fixed blade row, which means that the rothalpy is conserved in a moving blade row provided:

• The flow is on average steady in the rotating frame of reference;

• No work is done on the flow in the rotating frame (for example by friction from the casing);

• Their is no thermal energy coming to (or from) the flow.

The goal of a compressor is to raise the static pressure and so to raise the static enthalpy. Using the thermodynamic relation dh = dp/ρ + T ds integrated between two states:

∆h 1-2 = 1→2 dp ρ + 1→2 T ds (1.5)
which, applied to a compressor stage (with the same hypothesis as in figure 1.1, where

U 1 = U 2 )
gives the following enthalpy diagram:

p 1 p 2 p 2 is p 3 s h p 3 is h 3 h 2 h 1 0.5W 1 2 h t1 rel =h t2 rel P t1 rel P t2 rel 0.5W 2 2 0.5V 3 2 P t3 0.5V 2 2 P t2 h t2 =h t3 Δh rotor Δh stator U 1 =U 2 Figure 1.2. Enthalpy diagram for a compressor stage with U 1 = U 2 .
The rothalpy conservation in the rotor (or relative total enthalpy conservation since U 1 = U 2 in this particular case) as well as the total enthalpy conservation in the stator can be seen in figure 1.2. Here ∆h rotor = ∆h stator which means that both the rotor and the stator contribute the same way to the desired increase in pressure p 3 -p 1 . This corresponds to a stage with a degree of reaction of 0.5. Compared to an ideal case (without dissipative phenomena such as losses), the real compression process creates entropy leading to a reached lower p 3 < p 3 is for the same work input provided to the fluid.

Axial compressor performances maps

The compressor performances are habitually visualized on compressor maps that plot the increase in pressure or the compressor efficiency versus the massflow rate through the machine. The plotted iso-speed lines are limited by two limits at low and high massflow rate. At lower massflow rates, the incidence on the blades increases, leading to the separation of the boundary layers on the blades as the loading rises. This correspond to stall or sometimes surge, a complex ensemble of phenomena that are mainly unsteady, sometimes coupled with the structure and the acoustics in the machine, that finally may lead to the destruciton of the compressor. On the other hand through higher massflow rates there is a point where no more fluid can flow through the compressor annulus as sonic conditions are reached in one or more rows. The flow is then choked, leading to rapid decrease of the compressor efficiency.

A schematic compressor map is visible in figure 1.3, showing the evolution of the pressure ratio obtained in a compressor along the iso-speed lines denoted as a fraction of the nominal rotation speed (Nn), for example 75%Nn correspond to 75% of the nominal rotation speed. It also superposes the iso-efficiency lines evidenced by the η symbol.

The efficiency previously mentioned can simply be defined as follows:

η = useful work work input = work input -losses work input (1.6)
For example for a compressor stage, the contribution to the losses of the stator, due to viscous dissipation and mixing, is visible in the enthalpy diagram figure 1.2, when the total pressure evolves from P t 2 at the exit of the rotor to P t 3 at the exit of the stator with P t 3 < P t 2 , alongside an increase of entropy.

In terms of useful thermodynamic quantities, the isentropic efficiency η is is often used to assess the performances of compressors. It can be related to the compressor pressure ratio. Here η is is given as a function of the total-to-total pressure ratio Π t-t (or total pressure ratio) for the same compressor stage as earlier. The following definition of both η is and Π t-t are used in this work:

η stage is = h t 3is -h t 1 h t 3 -h t 1 = T t 1 T t 3 -T t 1 Π stage t-t γ-1 γ -1 with Π stage t-t = P t 3 P t 1 (1.7)
where T t is the total temperature and γ is the adiabatic exponent of the air considered to be thermally perfect.

Experimentally, since the measurement conditions are often not fixed between two measurement campaigns, the compressor characteristics are usually plotted using a standardized massflow rate with the inlet flow conditions ṁstd , instead of the measured massflow rate ṁ to ensure the comparability between the different campaigns. 

ṁstd = ṁ

Axial compressor design

From the needs of aircraft engine manufacturers, an aimed pressure ratio to achieve is specified at the inlet of the combustion chamber ≈ at the outlet of the last stage of the compressor. All the work of compressor designers is to distribute this pressure ratio between the different stages (which number is to be determined during the design process), with a maximization of the efficiency and mass limitation as additional constraints. This problem is not trivial at all since a compromise is to be found between the loading per stage and so the stage number that will directly influence the mass of the compressor, the operating range, i.e. the position of the operating range limits, and finally the overall efficiency of the compressor.

Historically, to tackle this optimization problem, engineers developed numerical tools that allowed them to consider the multi-stage design of axial compressors. Progressively leading to the advent of one of the most used method by aircraft engine manufacturer for compressor design: the throughflow solver [START_REF] Horlock | A Review of Some Early Design Practice Using Computational Fluid Dynamics and a Current Perspective[END_REF].

Throughflow in literature

Throughflow origins

In order to compute the flow through turbomachinery stages, the rigorous approach is to use unsteady full 3D simulations, with a suitable model for the simulation of viscous effects developing inside the blade rows [START_REF] Meauzé | Turbomachines : Calcul Des Écoulements Compressibles[END_REF]. Even today, with the constant increase of computing power available for turbomachinery simulations, it is not possible to say that this rigorous 3D approach is dominant. Instead, assumptions on the nature of the flow through the blade rows are made to save time and computational cost. It is common to suppose the flow to be steady and to show a circumferential periodicity. Simulations on circumferentially reduced geometries are often encountered in academic and industrial methodologies, providing a good approximation of the real 3D flow for a reduced cost. But that cost is still too high for the design process of a new machine. Indeed, an iterative design procedure is common in such application, especially if the number of stage increases, requiring the introduction of additional assumptions on the flow allowing simpler simulations. It is admitted that the concept of mean flow developed by [START_REF] Wu | A General Theory of Three-Dimensional Flow in Subsonic, and Supersonic Turbomachines of Axial, Radial and Mixed-Flow Types[END_REF] lays the foundations of the streamsurfaces description of turbomachinery, providing theoretical support to several reduced fidelity methods that appeared in the history. Among them, the throughflow method.

From streamsurfaces to throughflow

As developed by [START_REF] Wu | A General Theory of Three-Dimensional Flow in Subsonic, and Supersonic Turbomachines of Axial, Radial and Mixed-Flow Types[END_REF], the flow inside a turbomachinery blade row can be analyzed considering two families of surfaces: S 1 and S 2 as shown in figure 1.4. The latter refers to streamsurfaces of second kind, joining the hub to the casing whereas the former refers to streamsurfaces of first kind, made up of fluid coming from a constant radial position upstream the blade. A particular S 2 surface, S 2,m is approximately dividing the blade channel in two parts of equal massflow rate and is called the mean streamsurface.

The throughflow methodology admits that the flow remains, on average, axisymmetric as it travels through the blade rows which action on the flow can be modeled by body forces. This suppose the periodicity of S 1 surfaces and is only acceptable if the blade number is sufficiently high in the stages, which is often the case in turbomachinery applications. Therefore, throughflow solvers calculate a bi-dimensional flow as the mean flow field in the whole turbomachinery (often assimilated to the flow on S 2,m ), providing the flow properties radial evolution as we go through the peridiodic S 1 surfaces. 

Throughflow solvers

In the following, a short review of the history of throughflow methods is provided, from crescent order of complexity.

Radial equilibrium

The radial equilibrium constitute the simplest approach for the meridional flow i.e. the flow in S 2 streamsurfaces. The principle is to set a priori the conicity and the curvature of the S 1 streamsurfaces in an axisymmetric flow [START_REF] Meauzé | Turbomachines : Calcul Des Écoulements Compressibles[END_REF].

The momentum equation projected in the radial direction for a steady and axisymmetric flow, where viscous forces have been omitted yields:

1 ρ ∂p ∂r = V 2 θ r - ∂V m ∂r sinϕ - V 2 m r m cosϕ (1.9)
where the left-hand side is the radial equilibrium of the pressure in the compressor, equal to the sum of three terms displayed in eq. (1.9). On the right-hand side from left to right: the first one is related to the flow turning, the second and third ones represent the conicity and the curvature of the meridional streamlines with r m the radius of curvature, V m the meridional velocity and ϕ the angle between the meridional streamline and the shaft axis.

The simplified radial equilibrium (see figure 1.5), which consists in neglecting the last two terms, is often used as it allows analytic solution for simple cases:

1 ρ ∂p ∂r = V 2 θ r .
(1.10) 

Streamline Curvature Method

With the advent of computational abilities, the numerical application of the radial equilibrium to several successive planes in the compressor channel was possible. Actually, this methodology is one of the first to have been coded for turbomachinery application and evolutions of it are still in use today in the industry. One of the first publication about this method is the work of Smith (1966a), but the methodology took its name from [START_REF] Novak | Streamline Curvature Computing Procedures for Fluid-Flow Problems[END_REF]. The principle of the Streamline Curvature Method (SCM), illustrated in figure 1.6 is to use the radial equilibrium equation eq. (1.9), keeping all the terms on the right hand side of the equation, applied in successive planes called quasiorthogonals (the e vector in figure 1.6 (b)) that are fixed a priori before the calculation.

The flow is taken uniform in the θ direction and a common position for the hub-casing S 2 streamsurface (where e lies) is near the mid distance pitch-wise between two blades, making an angle ϵ with the radial direction. A radial discretization is then performed in the quasi-orthogonals to solve the radial equilibrium for several radial position, leading to the determination of the successive position of the streamlines, visible in the meridional plane (ABC in figure 1.6 (a)). The streamline tangent vector m makes an angle ϕ with the shaft axis and n is the normal vector to the streamline in the meridional plane. The method iteratively determines the curvature of the streamlines in the quasi-orthogonals streamsurfaces, hence its name. At convergence, there is no a priori reason for the projection of the quasi-orthogonal vector e in the meridional plane q, to be effectively aligned with the streamline normal vector n. It would be problematic for convergence properties of the method to use the true normal to the streamlines as the quasi-orthogonals since that direction is not knwon a priori and changes during the convergence process. That is why the quasi-orthogonals are chosen before the calculation, roughly the direction normal to the streamlines. The SCM, thanks to the use of local coordinate system for description of the flow, is suitable for radial machine calculation. The inclination angle γ between e and the r -θ plane goes from nearly zero in an axial compressor to nearly 90 • at the exit of a radial compressor. The SCM finally adds, at the right hand side of eq. (1.9), a loss term used to model the viscous effects developing in the compressor annulus. The flow is then determined from the inlet to the outlet, successively from one quasi-orthogonal to another, from the specification of the dynamic quantities at the inlet and from the blade geometry (used to determine the flow turning term in eq. (1.9)). This corresponds to an analysis use of SCM or off-design mode. But this is not the most useful usage of SCM since it can be used in design mode, determining the geometry of the blades at several radial position (mainly the inlet and outlet flow angles) from the specification of the performances (pressure rise and losses) of each stage from the design objectives.

Due to the success of the Streamline Curvature Method, many publications followed, from [START_REF] Denton | The Use of a Distributed Body Force to Simulate Viscous Effects in 3D Flow Calculations[END_REF] to more recent ones with, for example, the work of Casey and (2010) for radial flow. The topic of the research efforts mainly focuses on the modeling of the additional viscous loss terms in order to better asses compressor performances and to provide better geometry insights in design mode.

Robinson

Matrix method

Another method, that deserves to be mentioned in this literature review, similar to the SCM in terms of flow hypotheses but different in the resolution, is based on the analysis of the meridional flow using a stream function ψ. The streamfunction is defined as follows, regarding the coordinate system of figure 1.7:

       - ∂ψ ∂p = rρbV q ∂ψ ∂q = rρbV p (1.11)
where b is the blockage factor due to the presence of the blade rows. It is positive and equal to 1 outside of the blade rows and is inferior to 1 within a blade passage. Also, the pressure gradient in the direction of the quasi-orthogonal q writes from momentum equation:

- 1 ρ ∂p ∂q = a q + a θ tanϵ (1.12)
where ϵ is defined in figure 1.6, a q and a θ are the accelerations in the direction of the quasi-orthogonal and in the tangential direction respectively. Also from momentum equations, in their respective directions, the accelerations reads:

       a q = V q ∂V q ∂q + V p ∂V p ∂p - V 2 θ r cosγ a θ = V m r ∂rV θ ∂m (1.13)
where γ is defined in figure 1.6. The pressure gradient rewritten with the enthalpy and the entropy yields:

-

1 ρ ∂p ∂q = T ∂s ∂q - ∂h ∂q = T ∂s ∂q - ∂h t ∂q + 1 2 ∂(V 2 m + V 2 θ ) ∂q (1.14)
Then combining eqs. (1.11) to (1.14), on obtains a partial derivative equation for ψ. After discretization in the meridional plane, this equation can be solved iteratively, from a first guess or a previous solution, using matrix inversion routines as in the work of [START_REF] Marsh | A Digital Computer Program for the Through-Flow Fluid Mechanics in an Arbitrary Turbomachine Using a Matrix Method[END_REF], giving its name to the method. A modern usage of the matrix method is developed in [START_REF] Petrovic | Development and Validation of a New Universal Through Flow Method for Axial Compressors[END_REF] showing very good results in multistage compressor applications.

Even if there appears to be little relative advantage between the SCM and the Matrix method, the SCM does appear to have spreads much more in the engineers design toolbox. According to [START_REF] Cumpsty | Compressor Aerodynamics[END_REF], despite no difference in the physic solved, some facts can explain the observed usage tendency. First, the physical meaning of the SCM equations are more obvious. The second main reason is that SCM accommodates better to flow with local Mach number close to sonic or supersonic since it solves the continuity equation on several streamlines in the radial direction allowing the presence of supersonic patch without destabilizing the whole solving procedure as it is observed in the system resolution of the Matrix method. Still, SCM method abilities to predict shocks remains limited according to [START_REF] Cumpsty | Compressor Aerodynamics[END_REF].

Euler and Navier-Stokes throughflow

With the continuous advances in computer science and the emergence of what can be called modern Computer Fluid Dynamics (CFD), a time marching method was first used by [START_REF] Spurr | The Prediction of 3D Transonic Flow in Turbomachinery Using a Combined Throughflow and Blade-to-Blade Time Marching Method[END_REF] for throughflow simulation. This kind of solvers rely on finite element or finite volume techniques, resolving Euler or Navier-Stokes equations on a fixed mesh (whereas in the SCM for example, the position of the streamlines change during the convergence process). He combined a time marching Euler throughflow with a blade-to-blade solver to build a quasi-3D approach (see figure 1.8). He showed good agreement between his method and a 3D Euler simulation of a transsonic nozzle test case. It is to be noted that there is no particular restriction on the Mach number in Euler solvers and they are able to predict shocks even if the predicted shocks must be taken with caution as demonstrated by [START_REF] Baralon | Validation of a Throughflow Time-Marching Finite-Volume Solver for Transonic Compressors[END_REF]. They showed that a modification of the blockage factor due to the presence of the blades, calculated in the direction normal to the flow path instead of with respect to the azimuthal direction, brings better results for transsonic flows (more details in chapter 2). Earlier, [START_REF] Sayari | A New Throughflow Approach for Transonic Axial Compressor Stage Analysis[END_REF] managed to have very good results compared to 3D Navier-Stokes simulations for a transsonic stage when they used a blade-to-blade characteristic method to predict the shock position and losses coupled to an Euler throughflow. If they manually add the measured experimental losses they also compared very well to experimental data. They also used a normal blockage approach called "mechanical blockage" schematized in figure 1.9.

The history showed that there were more 3D Euler solvers developed than Euler throughflow. As a results, attempts were made to transform 3D Euler solvers into "CFD-based" Euler throughflow such as the work of [START_REF] Yao | Throughflow Model Using 3D Euler or Navier-Stokes Solver[END_REF] at NASA. Especially for two additional reasons. The first one is that this allows to conduct multi-fidelity simulation, for example, the blade rows in a multi-stage machine may be calculated using 3D Navier-Stokes simulations and the information from one blade row to another may be transferred in a circumferential averaged way using the throughflow mode of the solver, decreasing the calculation time compared to a full multistage 3D simulation. At École Centrale de Lyon, this methodology was implemented during the thesis of [START_REF] Heront | Simulation de l'écoulement Dans Les Turbomachines Multiétagées Par Couplage d'un Calcul Méridien et d'un Calcul 3D : Contribution Au Développement d'un Outil Numérique[END_REF] on multiple turbomachinery cases and also by [START_REF] Orcel | Contribution Au Developpement d'une Méthode de Calcul Multiétagé. Application Au Dernier Étage d'une Turbine Basse Pression[END_REF] on a turbine case. A little bit earlier, different types of simulations between the blade rows were conducted by [START_REF] Dawes | Toward Improved Throughflow Capability: The Use of Three-Dimensional Viscous Flow Solvers in a Multistage Environment[END_REF] on a two-stage axial turbine and a single stage transsonic compressor. The aim of the paper was to determine the influence of the other rows on a particular row in the multi-stage environment. The row of interest was 3D simulated and the other rows were predicted by the throughflow mode of the solver (see figure 1.10). The second advantage is that because the method relies on a mesh with finite element or volume technique, particular modeling can be added everywhere in the domain. [START_REF] Liu | A Primary Variable Throughflow Code and Its Application to Last Stage Reverse Flow in LP Steam Turbine[END_REF] managed to capture the recirculation of a steam turbine that occurred within and downstream of a rotor in his simulation using a finite volume Eu-1.2. Throughflow in literature ler throughflow with friction and losses source terms. It also should be noted the work of the university of Florence, [START_REF] Pacciani | A CFD-Based Throughflow Method with Three-Dimensional Flow Features Modelling[END_REF][START_REF] Pacciani | A CFD-based Throughflow Method with an Explicit Body Force Model and an Adaptive Formulation for the S2 Streamsurface[END_REF] and [START_REF] Ricci | Computational Fluid Dynamics-Based Throughflow Analysis of Transonic Flows in Steam Turbines[END_REF] about the development of a CFD-based Euler throughflow solver using TRAF code [START_REF] Arnone | Viscous Analysis of Three-Dimensional Rotor Flow Using a Multigrid Method[END_REF]. This solver belongs to external CFD-based throughflow family where the source terms are calculated outside the main CFD solver kernel and strongly coupled to it afterward. They developed, in their work, secondary flow models based on local velocity estimations for turbines application, giving good accuracy results compared to 3D simulations (see figure 1.11). 2021) used an external CFD-based throughflow solver newly developped by Safran Tech using elsA developed by ONERA [START_REF] Cambier | The Onera elsA CFD Software: Input from Research and Feedback from Industry[END_REF] for the axisymmetric resolution of the flow equations and coupled with additional blade force source terms in Python. The code is called ASTEC for Aerodynamic Source Term for Efficient Computation and can solve the Euler or axisymmetric RANS version of the flow equations using turbulence models for the last mode. Running viscous, the objective of his work was to evaluate the predictability of such coupling on a modern turbofan booster. The results were good once the losses from 3D RANS simulations were added in the calculation via the source terms. However, improvements were required if the viscous source terms were set using classical correlations from the literature.

Axial compressors flow features modeled in throughflow solvers

Since the axisymmetry hypothesis in the throughflow solver framework can be considered as quite restrictive compared to the real compressor flow, throughflow codes accuracy mainly rely on their flow model package to account for the neglected flow features during the circumferential averaging process (more details in chapter 2). From figure 1.12 it can be qualitatively observed the complexity of the flow through a compressore blade row. Hence, it was not realistic to provide a detailed literature review on each relevant flow features to be modeled for throughflow application in this chapter. Then, this section focuses on their brief introduction with a presentation of the modeling choices from recent throughflow modeling efforts for each introduced flow feature. The modeling choices made in this thesis, are justified in the corresponding chapters. • The inviscid blade force: the first effect of a compressor blade on the flow passing around is to create flow deflection and static pressure rise. This can be assessed through the velocity difference between the suction and the pressure sides of the blade that will create a circulation Γ around the blade. From the Kutta-Joukowski lift theorem, the blade lift per unit of span reads:

L = ρ ∞ V ∞ Γ with Γ = - C V • dl (1.15)
where the ∞ symbol stands for the onset flow conditions. In throughflow application, most of the time the detailed geometry, and so the flow velocities on the suction and pressure surfaces of the blades are not known. In the wide spread streamline curvature method, only leading edge and trailing edge blade angles were required to calculate the blade force from the Euler equation of turbomachinery. With the advent of the body force modeling [START_REF] Gong | A Computational Model for Short-Wavelength Stall Inception and Development in Multistage Compressors[END_REF], the blades are replaced with force fields and the inviscid blade force may be calculated either explicitly or implicitly. In the explicit approach a local lift is calculated in each fraction of the blade camber-line, depending on the local flow field [START_REF] Hall | Analysis of Civil Aircraft Propulsors with Boundar Ingestion[END_REF][START_REF] Thollet | Body-Force Modeling for Aerodynamic Analysis of Air Intake -Fan Interactions[END_REF]. In the implicit approach the local flow direction is imposed a priori and the local blade force is deduced from the local flow turning.

In the throughflow literature both methodologies are represented even if the second one is more robust since the flow is force to converge to the prescribed flow angle.

A recent throughflow solver using the explicit inviscid blade force is described in the work of [START_REF] Pacciani | A CFD-based Throughflow Method with an Explicit Body Force Model and an Adaptive Formulation for the S2 Streamsurface[END_REF]. For the use of implicit formulation, the work of [START_REF] Baralon | Validation of a Throughflow Time-Marching Finite-Volume Solver for Transonic Compressors[END_REF] and [START_REF] Simon | Contribution to Throughflow Modelling for Axial Flow Turbomachines[END_REF] are references.

• Viscous loss and deviation from profile boundary layers: the building pressure around the blades of a compressor row and the no-slip condition at the blade walls lead to the development of viscous boundary layers. These boundary layers provoke a loss of momentum and reduce the flow deflection achieved by the blade, in other words, they create flow deviation. This leads to a reduction of the compressor performances. The famous historical work on profile loss modeling of Lieblein, in order to provide reliable relations for compressor design, was extensively used in throughflow modeling. His work is declined in a large number of publications but the following papers, [START_REF] Lieblein | Loss and Stall Analysis of Compressor Cascades[END_REF][START_REF] Lieblein | Incidence and Deviation-Angle Correlations for Compressor Cascades[END_REF], deal with the generated loss and deviation angles in a compressor blade row, through empirical correlations for compressor cascades. † With the same will to build correlations for compressor design König et al. (1996a,b) proposed improved correlations for both subsonic and supersonic flows. More from theoretical aspects of the boundary layer developing on the blades, [START_REF] Papailiou | Boundary Layer Optimization for the Design of High Turning Axial Flow Compressor Blades[END_REF] proposed to use an inversed integral boundary layer method in design mode for a highly loaded compressor blade. Giving the inlet and outlet flow conditions i.e. the diffusion, their procedure converged to a blade design realizing that diffusion with minimum loss generation.

The Lieblein correlations were used in the recent work of Budo et al. ( 2021) for the simulation of a modern multistage booster, but with mitigated success. In the work of [START_REF] Petrovic | Development and Validation of a New Universal Through Flow Method for Axial Compressors[END_REF] for the development of a throughflow solver for axial compressors, the Lieblein correlations were used for off-design predictions whereas other models such as the one proposed in [START_REF] Koch | Loss Sources and Magnitudes in Axial-Flow Compressors[END_REF] are used for on-design predictions

• The corner flow: the presence of the hub and the casing in a compressor leads to the development of end-wall boundary layers. These boundary layers may interact with the blade boundary layer near the end-walls creating a particular flow pattern: the corner secondary flow. This corner flow is an area of low momentum were the fluid accumulates thanks to the pressure gradient existing in the blade passage. This phenomenon creates flow blockage, additional losses and change in the local velocity triangles, reducing its performances. With increase of incidence and so blade loading, the corner flow may separate as shown in [START_REF] Taylor | Competing Three-Dimensional Mechanisms in Compressor Flows[END_REF].

Despite the objective complexity of these flows [START_REF] Denton | Loss Mechanisms in Turbomachines[END_REF], some modeling attempts from the literature are used in throughflow modeling. In the work of [START_REF] Banjac | Secondary Flows, Endwall Effects, and Stall Detection in Axial Compressor Design[END_REF] for the throughflow simulation of realistic multistage compressors, the end-wall models of [START_REF] Aungier | Axial-Flow Compressors[END_REF], [START_REF] Hirsch | End-Wall Boundary Layers in Axial Compressors[END_REF], and [START_REF] Mellor | An Axial Compressor End-Wall Boundary Layer Theory[END_REF] were used. Mellor and Wood developed an end-wall set of equation based on integral boundary layer theory, the passage vortex created by the blade-to-blade pressure gradient and the turbulent equations of motion. The hypothesis of a constant shape factor in the end-wall boundary layer is made.

Hirsch applied this theory on a single stage compressor and declared that the shape factor must be variable to improve the precision of the model. The end-wall model of Aungier is used here for deviation modeling based on tangential force deficit insight from [START_REF] Koch | Loss Sources and Magnitudes in Axial-Flow Compressors[END_REF]. In the throughflow model of Pacciani et al. ( 2017) a novel approach is proposed with a description of the end-wall secondary flow with a transverse velocity field in the blade passage using a Lamb-Oseen vortex. They managed with this model to capture the deviation velocities coming from the region of low momentum with reduced empiricism. The loss are then estimated using empirical correlations of [START_REF] Kacker | A Mean Line Prediction Method for Axial Flow Turbine Efficiency[END_REF] or [START_REF] Benner | An Empirical Prediction Method for Secondary Losses in Turbines-Part I: A New Loss Breakdown Scheme and Penetration Depth Correlation[END_REF].

• The tip leakage flow: rotating blade rows involve a functional tip gap above each moving blades. This tip gap induces the creation of a leakage flow known to be critical for the performance of the whole compressor [START_REF] Cumpsty | Compressor Aerodynamics[END_REF].

Hunter and Cumpsty (1982) provided experimental measurements downstream of an isolated rotor showing the complex nature of the downstream flow. The modeling literature on the tip leakage flow is mainly divided into three approaches: the vortex approach, the blockage approach and the jet approach.

The vorticity-based modeling assumes that the tip leakage flow generates a vortex. The losses are estimated using two main parameters: the axial vorticity and the radius of the vortex core. For example, from the tip leakage vortex circulation, [START_REF] Lakshminarayana | Methods of Predicting the Tip Clearance Effects in Axial Flow Turbomachines[END_REF] managed to estimate the loss and the deviation coming from the tip leakage flow. The circulation at the blade tip is either estimated using the lifting line theory of Prandlt or using a more advanced blade-toblade model proposed by the same author. The initial radius of the vortex core is estimated using correlations. Then using the conservation of the circulation, the evolution of the vortex circulation convected downstream of the rotor blade is linked to the vortex radius and position in the blade-to-blade streamsurface.

Another interesting attempt is proposed by [START_REF] Chen | Similarity Analysis of Compressor Tip Clearance Flow Structure[END_REF]. They proposed a temporal evolution of the tip leakage flow using a reduced timescale as it is convected in the blade passage. The position of the tip leakage vortex is then correlated to this time scale using a very simple multiplicative constant. The input of the model is the initial vortex intensity estimated using a potential panel method and the output of the model is the tip leakage trajectory and thus, its angle in the blade to blade plane.

The blockage-based modeling, as decribed by [START_REF] Smith | Casing Boundary Layers in Multistage Axial-Flow Compressors[END_REF], starts with the observation that the tip leakage flow has a direct impact on the growth of the boundary layer at the casing. [START_REF] Koch | Loss Sources and Magnitudes in Axial-Flow Compressors[END_REF] managed to estimate the casing boundary layer displacement thickness and the associated tangential force deficit (leading to flow deviation) in a compressor. [START_REF] Khalid | Endwall Blockage in Axial Compressors[END_REF] from the turbulent wake model of [START_REF] Hill | Turbulent Wakes in Pressure Gradients[END_REF], assimilated the tip leakage flow to a wake in the crossflow plane. Using this approach, they managed to estimate the total pressure losses and their mixing.

The jet-based modeling from [START_REF] Storer | Tip Leakage Flow in Axial Compressors[END_REF] considered the tip leakage flow as a jet in a crossflow producing mixing losses. From the tip leakage flow angle and the ratio of the tip clearance area over the blade channel area, the total pressure loss are estimated. In Storer and Cumpsty approach, the leakage velocity was assumed constant all over the blade chord. [START_REF] Denton | Loss Mechanisms in Turbomachines[END_REF] proposed an approach based on the one dimensional thermodynamic analysis of two mixing flows proposed by [START_REF] Shapiro | The Dynamics and Thermodynamics of Compresible Fluid Flow[END_REF]. Denton does not make any assumption on the blade tip velocity distribution and the tip leakage flow angle is not required. The entropy generated by the tip leakage flow is mainly dependent on the local blade velocities at the tip, roughly estimated from inlet-outlet considerations in [START_REF] Denton | Loss Mechanisms in Turbomachines[END_REF].

In the recent throughflow modeling literature [START_REF] Petrovic | Development and Validation of a New Universal Through Flow Method for Axial Compressors[END_REF] used the model of Lakshminarayana. Banjac et al. (2015) and Pacciani et al. ( 2017) used Denton's approach in their throughflow solver. In his thesis, Simon (2007) used the empirical correlations of [START_REF] Roberts | Modeling the 3-D Flow Effects on Deviation Angle for Axial Compressor Middle Stages[END_REF][START_REF] Roberts | Design Point Variation of Three-Dimensional Loss and Deviation for Axial Compressor Middle Stages[END_REF] for the estimation of the tip leakage flow additional deviation angles. These correlations were built from middle compressor stage measurements, up to high subsonic Mach number.

• Multistage interactions & radial mixing: as the flow goes through the multiple stages of an axial compressor, blades boundary layers develop, creating wakes as they are convected downstream, eventually impacting a downstream blade row. Smith (1966b) showed the importance of the role of the sliced wakes in the observed turbulence level in the downstream blade row passage. These sliced wakes can lead to a known phenomenon called "wake recovery" by Smith. Wake recovery is the attenuation (or amplification) of the wake velocity profile by processes other than viscous dissipation occurring inside a blade row. For a two dimensional rotor wake passing through a compressor stator row, wake recovery leads the rotor wake to decay through a reversible process. In this way, the wake decay do not increases the loss level. [START_REF] Van Zante | Wake Recovery Performance Benefit in a High-Speed Axial Compressor[END_REF] proposed a model to determine the fraction of the wake mixing that actually produces loss considering that some recovery could occur in the downstream row. To the knowledge of the author, there is no recent throughflow modeling that try to take into account this particular effect.

As it was previously introduced, different loss sources exist in the compressor channel, from profile boundary layers to secondary flows. The rotor blade rotation combined with the evolution of the casing and hub radii leads to a distribution of loss in the radial direction. In throughflow modeling, since a major part of the included loss comes from one dimensional models, radial mixing arbitrary functions are often used. Sometimes empirical radial distribution laws are applied. However, in the literature an actual contest was raging between two schools of thought for the modeling of the radial mixing. The earlier approach was initiated by [START_REF] Adkins | Spanwise Mixing in Axial-Flow Turbomachines[END_REF] that considered the mixing as a results of convective flow from the end-wall to the center of the compressor channel. The second one from [START_REF] Gallimore | Spanwise Mixing in Multistage Axial Flow Compressors: Part II-Throughflow Calculations Including Mixing[END_REF] and [START_REF] Gallimore | Spanwise Mixing in Multistage Axial Flow Compressors: Part I-Experimental Investigation[END_REF] modeled the span-wise mixing with a turbulent diffusion approach. They tested their model using a throughflow solver with quit a success. Soon after, [START_REF] Wisler | Secondary Flow, Turbulent Diffusion, and Mixing in Axial-Flow Compressors[END_REF], somewhat closed the debate with experimental data using ethylene tracer-gas in a low speed compressor test case. The conclusion is that even if the turbulence play a role in the mixing of the flow quantities, secondary flow convective effects are at least of the same importance. More precisely, the dominance of the turbulent diffusion occurs in the free stream region and the secondary flow convective effect is dominant near the end-walls.

In his Navier-Stokes throughflow, [START_REF] Simon | Contribution to Throughflow Modelling for Axial Flow Turbomachines[END_REF] based his radial mixing in the turbulent approach of Gallimore. In their respective attempts, Casey and Robinson (2010) and [START_REF] Ricci | Secondary Flow and Radial Mixing Modelling for CFD-based Through-Flow Methods: An Axial Turbine Application[END_REF] used the model of Lewis (1993a,b), that uses both approaches: a convective mixing from secondary flows superimposed to a background diffusion due to turbulence.

• High Mach number effects: as the Mach number increases at the inlet of a compressor blade row, several phenomena occur. First the pressure around the blade increases, as well as the blade loading. This was early demonstrated by [START_REF] Glauert | The Effect of Compressibility on the Lift of an Aerofoil[END_REF] following Prandlt potential theory. The pressure coefficient around an isolated airfoil at high Mach number can be deduced from the pressure coefficient at low Mach number using the simple rule:

C p = C 0 p √ 1 -M 2 (1.16)
where C 0 p is the pressure coefficient at low Mach number.

Another consequence of the rising Mach number is that the flow may become partly transsonic or even supersonic. This creates a shock system in which one can find blade-to-blade passage shocks, leading edge shocks, that can be attached or detached depending on the operating condition of the compressor. Experimental work on high velocity flows interesting for understanding these shock systems can be found in [START_REF] Bailey | The Shock Shape and Shock Detachment Distance for Spheres and Flat-Faced Bodies in a Low-Density, Hypervelocity, Argon Flow[END_REF] and [START_REF] Leyva | Shock Detachment Process on Cones in Hypervelocity Flows[END_REF]. If one of the shocks interacts with the surface of the next blade, it can create huge loss from profile boundary layer separation, exceeding loss from secondary flows. This is a major concern for transsonic compressor design and a lot of efforts were made to build empirical correlations such as in Çetin et al. (1989), [START_REF] Denton | Loss Mechanisms in Turbomachines[END_REF], [START_REF] Koch | Loss Sources and Magnitudes in Axial-Flow Compressors[END_REF], König et al. (1996a), [START_REF] Lieblein | Aerodynamic Design of Axial-Flow Compressors 6 -Experimental Flow in Two-Dimensional Cascades[END_REF][START_REF] Swan | A Practical Method of Predicting Transonic-Compressor Performance[END_REF]. When a shock is attached to the leading edge in choking condition the "unique incidence" phenomenon occurs. Since the geometry is periodic, the pattern must repeat and the flow into each blade passage is exposed to exactly the same number of shocks and expansions. The estimation of that unique incidence is due to [START_REF] Moeckel | Approximate Method for Predicting Form and Location of Detached Shock Waves Ahead of Plane or Axially Symmetric Bodies[END_REF]. Also, concerning supersonic blades, [START_REF] Miller | Shock Losses in Transonic Compressor Blade Rows[END_REF] were probably the first to describe a method specifically addressing the loss of them. In a recent throughflow modeling attempt on multiple test cases, [START_REF] Petrovic | Development and Validation of a New Universal Through Flow Method for Axial Compressors[END_REF] used the empirical loss correlations from Çetin et al. (1989), [START_REF] Koch | Loss Sources and Magnitudes in Axial-Flow Compressors[END_REF], König et al. (1996a), and[START_REF] Swan | A Practical Method of Predicting Transonic-Compressor Performance[END_REF], showing that the choice of one model more than another is case sensitive. Also, for high velocity flows, [START_REF] Baralon | Validation of a Throughflow Time-Marching Finite-Volume Solver for Transonic Compressors[END_REF] and [START_REF] Sayari | A New Throughflow Approach for Transonic Axial Compressor Stage Analysis[END_REF] showed that the blockage approach consistent with the circumferential average process of the throughflow is not valid and a blockage normal to the flow path allows to improve the results compared to measurements on transsonic compressors.

• Technological effects on end-wall boundary layers: most of the time in axial compressors, the rotors are fixed to the rotating shaft and a functional tip gap exists between the tip of the rotor and the casing. At the hub it is reversed since the stators are fixed to the casing. In most machines the stators are shrouded, meaning that there exists a functional seal under the stator platforms. As a consequence, there is a leakage recirculation, from the outlet to the inlet of the stator. Recently [START_REF] Babin | Leakage Flow Impact on Shrouded Stator Cavity Flow Topology and Associated High Speed Axial Compressor Stage Performance[END_REF], in their experimental study of the flow inside a realistic cavity under a high pressure compressor stator, showed that the recirculation increased the loss generated in the stator by changing the skewness of the inlet boundary layer and the inlet total temperature. Earlier, Wellborn and Okiishi (1999) explicitly recommended to include these effects at early design steps. To do so, they proposed a quite advanced seal model in Wellborn et al. (1999) showing good results in their multi-stage design tool applied to a 12 stage axial compressor.

Even if these detrimental flows have been known for a long time in the literature, their effects are most of the time not included in throughflow simulation or roughly absorbed into the empirical correlations for the end-wall hub secondary flow losses.

In the recent throughflow publication of [START_REF] Banjac | Secondary Flows, Endwall Effects, and Stall Detection in Axial Compressor Design[END_REF], they extended the empirical correlation of [START_REF] Morris | Secondary Loss Measurements in a Cascade of Turbine Blades With Meridional Wall Profiling[END_REF] initially used for turbines to multistage compressor cases for the end-wall secondary loss of shrouded blades. However, in their paper, they developed a simple model estimating the entropy rise due to the leakage recirculation in shrouded blades based on the leakage massflow rate in the seals. These shroud leakage losses are added to the shroud secondary losses in their methodology, with good results.

In a general manner, the adopted ensemble of models by the recent attempts in throughflow modeling strongly depend on the application case and remain mainly empirical. There does not seem to be a converged methodology for the viscous flow modeling among the literature. Therefore a local modeling methodology based on low/no empiricism models is adopted in this thesis and presented hereafter.

Adopted methodology

In this section, the global thesis methodology is introduced to answer the objectives detailed in the context. After that, validation test cases from literature previous work are introduced.

Philosophy & methodology

After the previous literature review, the present thesis methodology choices are presented.

Philosophy

The overall philosophy adopted in this work is to provide throughflow modeling with a step by step methodology, from the less complicated compressor flow features to realistic modeling needs. Also, a major guideline was to reduce the level of empiricism in the modeling compared to what is commonly visible from the throughflow literature. Thus, a local modeling approach is privileged compared to classical modeling based on blades inlet and outlet information or empirical correlations. As the fast calculation ability for multistage application of the legacy throughflow was the feature that made it so widespread, an additional constraint is to keep low computation return times.

Throughflow solver family

The privileged choice to enable local modeling with a step by step methodology is to rely on a CFD-based throughflow. The mesh of the CFD solver allows to simulate the blades body forces by locally adding flow models (with source terms) in the whole compressor domain. Thanks to a newly established partnership between Safran Tech and l'École Centrale de Lyon (ECL) during the thesis, it was possible to access to the recently developed external CFD-based throughflow solver called ASTEC (Aerodynamic Source Term for Effcient Computation). The code was and is still in development at Safran Tech and so the present contribution started with a minimum code state, only including an inviscid blade force model and the blockage term due to the presence of the blades in the compressor annulus. ASTEC code will be detailed chapter 2.

Moreover, ASTEC is based on elsA, a CFD solver developed by ONERA, which is used in 3D simulation methodologies at Safran Tech and at ECL. In this way, the multi-fidelity objective is facilitated. Also, since ASTEC is externally based on elsA and written in Python, the implementation of models is less cumbersome and easy to update with new research advances.

Blade-to-blade modeling

It has been seen in the literature review that many phenomena are 3D in compressors. The flow undergoes acceleration and pressure gradients in the axial and circumferential direction, leading to the development of secondary flows, wakes, shocks in the blade passage. A method has been sought to provide the blade-to-blade flow but in a time efficient manner. A quasi-3D approach, based on the potential calculation of the flow in the blade-to blade streamsurfaces was adopted and constitute the major contribution of this work. The details of such a potential method are described in chapter 3.

Adopted methodology

Viscous modeling

In the literature, its seems that modeling attempts based on the calculation of the boundary layers developing on the blade using integral boundary layer theory has proven to be accurate in order to capture the correct levels of viscous effects. In addition such methods do not rely on much empiricism except for the wall friction laws (sometimes used in higher fidelity methodologies) and the boundary layer shape factor. Hence, a turbulent boundary layer solver has been developed, using the blade-to-blade predictions from the potential flow, to model the effect of the blade boundary layers on the axisymmetric throughflow. Wakes were also calculated and propagated downstream of the blade rows using the same theory.

In addition, the pressure difference predicted by the potential flow at rotor blade tips encouraged the implementation of a local tip leakage flow model for loss predictions which does not use any empiricism. The details on viscous modeling are presented in chapter 4.

What is out of this thesis scope ?

Even if the blade-to-blade vision for modeling is suitable for shock modeling, the potential methodology used in this work prevent the inlet Mach number to exceed ∼ 0.7 to 0.8. Hence, no transsonic or supersonic flows has been tested in the present methodology.

Hub secondary flows are considered as one of the most complex flow feature to model. The literature for modeling them mainly relies on empirical data even if there were interesting proposals in the recent work of the university of Florence [START_REF] Pacciani | A CFD-Based Throughflow Method with Three-Dimensional Flow Features Modelling[END_REF][START_REF] Pacciani | A CFD-based Throughflow Method with an Explicit Body Force Model and an Adaptive Formulation for the S2 Streamsurface[END_REF][START_REF] Ricci | Secondary Flow and Radial Mixing Modelling for CFD-based Through-Flow Methods: An Axial Turbine Application[END_REF][START_REF] Ricci | Computational Fluid Dynamics-Based Throughflow Analysis of Transonic Flows in Steam Turbines[END_REF]. The lack of modeling maturity on this topic of the present work prevented to show results using hub secondary flow empriciscim-free models but it is believed that the blade-to-blade pressure gradient provided in the proposed methodology will greatly help to build a secondary flow model with low empiricism in the future. However, thanks to higher fidelity data, their influence are discussed in chapter 5, were the proposed methodology is confronted to experimental cases from the literature and higher fidelity simulations. For the same reason, technological effects on secondary flows are not addressed in this thesis either.

Conclusion on methodology

The usage of a quasi-3D approach aims to lay a solid base for accurate and local compressor flow modeling as it will be seen in the next chapters. The limits and the perspective of the adopted methodology will be addressed in the conclusion & perspectives.

Validation test cases

In order to validate the implemented models within the scope of this work, three test cases were used.

The first two are compressor cascades, both tested in previous research separate projects at ECL in the subsonic wind tunnel facility. The blade profile shape types are the following: a NACA 65 009 profile and a Controled Diffusion Arc profile (CDA). In addition, the NACA cascade will be used to test and illustrate intermediate methodological results in the following chapters 3 and 4.

The last test case is a single stage low speed research compressor CME2. It will be used to confront the developed methodology against a realistic compressor test case.

NACA 65 009 cascade Extensive data about the NACA 65 009 cascade are available in [START_REF] Zambonini | Corner Separation Dynamics in a Linear Compressor Cascade[END_REF], who studied the corner separation, but the most important information for the scope of this work are recalled here after.

The cascade is mounted on a test rig that delivers an inlet velocity of 40 m s -1 or an inlet Mach number of 0.117. The blade chord is 150 mm corresponding to a Reynolds number of 385 000. The geometry of the cross section of the blade is visible in figure 1.14a and more data are visible in table 1.1. To trigger turbulence for RANS calculation comparison in his work, the experimental cascade leading edge were covered with trips as shown in figure 1.14b.

In the scope of this thesis, experimental pressure coefficient data from pressure taps measurements, at mid-span, were used. Also experimental total pressure loss coefficient and flow velocities deduced from five holes probes measurements in a plane situated 36.3% of axial chord downstream of the blade were used. The developed methodology and the experimental data of [START_REF] Zambonini | Corner Separation Dynamics in a Linear Compressor Cascade[END_REF] 

CDA cascade

The CDA cascade is a recent test case designed by the The Whittle Laboratory at the University of Cambridge. Extensive information concerning this cascade are available in the thesis of [START_REF] Dawkins | The Unsteady Topology of Corner Separations[END_REF], who studied the unsteady topology of the corner separation, but the most important information for the scope of this work are recalled here after.

The cascade is mounted on the same test rig as the NACA 65 009 cascade, that delivers an inlet velocity of 40 m s -1 or an inlet Mach number of 0.117. The blade chord is 125 mm corresponding to a Reynolds number of 320 000. The geometry of the cross section of the blade is visible in figure 1.16 and more data are visible in table 1.2. There was no trips at the leading edge of this cascade, allowing the observation of a separation bubble at transition as shown in [START_REF] Dawkins | The Unsteady Topology of Corner Separations[END_REF].

Another project used the CDA cascade at ECL. The thesis of [START_REF] Mondin | Assessment and optimisation of guide fins for corner separation control in a compressor cascade[END_REF]. He proposed an optimization methodology for controlling the corner flow separation using additional little blades, at the hub of the blade passage, called "guide fins".

In the scope of this thesis, experimental pressure coefficient data from pressure taps measurements at mid-span were used. Also experimental total pressure loss coefficient and flow velocities deduced from five holes probes measurements in a plane situated 20% of chord in the axial direction downstream of the blade. The developed methodology and the experimental data of [START_REF] Mondin | Assessment and optimisation of guide fins for corner separation control in a compressor cascade[END_REF], gathered with the reference configuration without additional guide fins are compared in chapter 5.
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ASTEC: a CFD-based throughflow solver

Overview 

T

his chapter presents ASTEC, the throughflow solver, in which modeling efforts have been implemented during this thesis. After a brief recall of the origin of Navier-

Stokes throughflow equations, it details the underlying equations solved in ASTEC and the baseline models pre-existing those that will be introduced in the next chapters.

Navier-Stokes throughflow

Navier-Stokes throughflow distinguishes itself, among the previously presented throughflow methodologies in literature, by averaging, in time and in the circumferential direction, the complete set of flow motion Navier-Stokes equations. At this stage, no additional assumptions on the nature of the flow are made. The exact averaging procedure to obtain the throughflow equations for multistage turbomachinery, often denominated as the Adamczyk cascade, is described by [START_REF] Adamczyk | Model Equation for Simulating Flow in Multistage Turbomachinery[END_REF][START_REF] Adamczyk | Aerodynamic Analysis of Multistage Turbomachinery Flows in Support of Aerodynamic Design[END_REF].

Adamczyk cascade

Starting from the real 3D flow in a turbomachinery it is necessary to follow a rigorous sequence of averaging steps to obtain its equivalent 2D throughflow description. It consists first in the application of the Reynolds ensemble-averaging that transforms the chaotic nature of turbulent flow into an unsteady mean flow with deterministic turbulent fluctuations. Then, the effects of the fluctuation unsteadiness linked to the blade rotation, for example, unsteadiness related to impacts of wakes on a downstream row, are removed with a time averaging operation. At this point the 3D flow is described by the well known steady RANS equations. The following step described by

Adamczyk is a passage-to-passage averaging, allowing the description of the flow as pitchwise periodic in each blade row. To obtain the 2D throughflow description of the flow an additional circumferential averaging step is necessary [START_REF] Adamczyk | Aerodynamic Analysis of Multistage Turbomachinery Flows in Support of Aerodynamic Design[END_REF]Budo et al., 2021;[START_REF] Simon | Contribution to Throughflow Modelling for Axial Flow Turbomachines[END_REF]. Each averaging steps produce terms † that allow to sequentially reconstruct the original flow. The whole averaging procedure is schematized in figure 2.1, showing the averaging steps finally reducing the flow to be bi-dimensional and the terms produced by the pictured averaging process. Those terms are, by order of apparition as the process unfolds: † Complete mathematical derivation for each steps of the complete averaging process, as well as explicit detailing of created terms arising from it, are described in details in [START_REF] Simon | Contribution to Throughflow Modelling for Axial Flow Turbomachines[END_REF], Appendix B, p. 173.

Reynolds stresses;

2. unsteady stresses and terms assimilated to blade force terms;

3. aperiodic stresses and terms assimilated to blade force terms;

4. circumferential stresses and terms assimilated to blade force terms. 

Navier-Stokes throughflow equations

The level of fidelity represented by the last square in figure 2.1 is the Navier-Stokes throughflow fidelity level. The rigorous use of Navier-Stokes throughflow requires the modeling of all the additional terms stemming from the previously described averaging process. Individually, those terms are difficult to model due to the complexity of mechanisms that govern their interaction with the 2D axisymmetric flow [START_REF] Simon | Contribution to Throughflow Modelling for Axial Flow Turbomachines[END_REF].

Thus, it is usual to regroup the terms resulting from the previous averaging process into useful categories:

1. inviscid blade force; 2. viscous blade force;

3. circumferential stresses.

The first two are easily understood, by analogy with external aerodynamic lift and drag forces, and the third can be equated with stresses that are similar to the Reynolds stresses but representing the transfer of energy and momentum between the 3D and the 2D throughflow field. According to Jennions and Stow (1985a), due to the magnitude of these terms they should not be simply neglected. One strategy may be the use of blade-to-blade calculation to have an estimation of those stresses before reintroducing them into a throughflow solver as proposed in Jennions and Stow (1985a,b). This strategy belongs to the high-order throughflow topic where higher-fidelity simulations are used to estimate terms arising from the Adamczyk cascade. Other occurrences are encountered in the work of [START_REF] Simon | Contribution to Throughflow Modelling for Axial Flow Turbomachines[END_REF] or Thomas and Léonard (2010a,b). However, in throughflow application, it is still common to omit those circumferential stresses providing reliable models to estimate their effects. The use of reduced semiempirical models accounting for more macroscopic flow characteristics, such as losses, deviations and blockage levels is dominant. That is the reason why it is usual to say that the predictive ability of throughflow methods highly rely on the capacity of their embedded models to reproduce 3D flow characteristics inside methods providing circumferentially averaged flow description.

The Navier-Stokes throughflow equations in cylindrical coordinates, with the circumferential stresses omitted, are detailed in vector form hereafter [START_REF] Simon | Contribution to Throughflow Modelling for Axial Flow Turbomachines[END_REF]:

∂bU ∂t + ∂b(F -F v ) ∂x + ∂b(G -G v ) ∂r = b(S + S v + S bi + S bv ) (2.1)
with: 

U t = ρ ρV x ρV r ρV θ ρe t F =         ρV x ρV x V x + p ρV x V r ρV x V θ ρV x h t         G =         ρV r ρV r V x ρV r V r + p ρV r V θ ρV r h t         S = 1 r         -ρV r -ρV r V x ρV θ V θ -ρV r V r -2ρV r V θ -ρV r h t         F v =         0 τ xx τ xr τ xθ τ xk V k -q x         G v =         0 τ xr τ rr τ rθ τ rk V k -q r         S v = 1 r         0 τ xr τ rr -τ θθ 2τ rθ τ rk V k -q r         S bi = 1 θ ss -θ ps                  0 -p ∂θ
                S bv = 1 θ ss -θ ps                  0 τ xk ∂θ ∂x k ps ss τ rk ∂θ ∂x k ps ss τ θk ∂θ ∂x k ps ss Ωr τ θk ∂θ ∂x k ps ss -q k ∂θ ∂x k ps ss                 
In the above expressions, the Einstein summation convention applied to repeated k indices and in the components of S bv , ∂θ ∂x k is ∂θ ∂x , ∂θ ∂r or -1, respectively for k = 1, 2 or 3. In this system, U is the vector of conservative variables. The advective and viscous flux vectors are F and G, F v and G v respectively. Also a blockage factor b appears, defined by:

b = N (θ ss -θ ps ) 2π (2.2)
where N is the number of blades for a given blade row. In the right-hand size of eq. ( 2.1), the sources terms S and S v arise from the expression of the fluxes in cylindrical coordinates. Also, the blade force source term is divided into two parts: the inviscid part S bi and the viscous part S bv . In them, terms in brackets are evidences of the circumferential averaging of the 3D Navier Stokes equations in presence of blades, making appear the pressure and suction sides of the two blades involved (see figure 2.2).

In details, for a given variable g, its circumferential average is defined as: quantity, at the origin of the circumferential stresses but neglected in the obtaining of eq. ( 2.1), as already discussed. But in the blade rows, for

g θ = 1 θ ss -θ ps θss θps gdθ (2.3) So that g = g θ + g ′ ,
x k = x, r or θ, ∂g ∂x k θ ̸ = ∂g θ ∂x k .
Using the Leibniz rule for differentiation under the integral sign, the origin of blade force terms appears:

∂g ∂x k θ = 1 θ ss -θ ps θss θps ∂g ∂x k dθ = 1 θ ss -θ ps ∂ ∂x k θss θps gdθ - 1 θ ss -θ ps g ∂θ ∂x k ss ps (2.4)
which can be written using the blockage factor definition in eq. ( 2.2):

∂g ∂x k θ = 1 b ∂bg θ ∂x k - 1 θ ss -θ ps g ∂θ ∂x k ss ps
(2.5)

The system eq. ( 2.1) can be written in a conservative form using three equations:

∂bρ ∂t + div bρV = 0 ∂bρV ∂t + div b(ρVV t -τ + pI) = bf b ∂bρe t ∂t + div b(ρh t V -τ • V + q) = bf b • Ωr (2.6)
where f b = f bi + f bv constitute the volumic blade force vector, composed of inviscid and viscous components: f bi and f bv .

f bi = 1 θ ss -θ ps          -p ∂θ ∂x ps ss -p ∂θ ∂r ps ss p r ps ss          f bv = 1 θ ss -θ ps          τ xk ∂θ ∂x k ps ss τ rk ∂θ ∂x k ps ss τ θk ∂θ ∂x k ps ss          (2.7)
In both systems represented by eqs. (2.1) and (2.6), the circumferential averaging operator has been omitted for the sake of readability and the variable must be understood as the circumferential average version of themselves.

ASTEC governing equations

ASTEC throughflow solver is based on the previously introduced Navier-Stokes throughflow equations. As it couples elsA CFD solver to external source terms, modifications on eq. (2.6) occur and are presented in the following section.

Non-invasive coupling with elsA

elsA is a finite volume CFD solver, using second order schemes to integrate the 3D RANS equations in space with an implicit time marching convergence procedure. The system of equations integrated by elsA in this case is:

∂ρ ∂t + div ρV = 0 ∂ρV ∂t + div (ρVV t -τ + pI) = 0 ∂ρe t ∂t + div (ρh t V -τ • V + q) = 0
(2.8)

A thermally perfect gas description is chosen, bringing the state equation p = ρr gas T . Where r gas = c P -c V , is the specific gas constant, c P and c V are the specific heat at constant pressure and volume respectively with c P /c V = γ as the adiabatic exponent. To close the system, various turbulence models are available for the estimation of the viscous tensor components under Boussinesq assumption [START_REF] Cambier | The Onera elsA CFD Software: Input from Research and Feedback from Industry[END_REF].

The Navier-Stokes throughflow system eq. (2.6) can be rewritten using properties of the divergence operator. For a vector field g and a scalar function a:

div(ag) = a div g + g • ∇a (2.9)
Stating that b is independent of time and applying eq. (2.9) to eq. (2.6) yields:

∂ρ ∂t + div ρV = - 1 b (ρV • ∇b) ∂ρV ∂t + div (ρVV t -τ + pI) = f b - 1 b (ρV • ∇b)V ∂ρe t ∂t + div (ρh t V -τ • V + q) = f b • Ωr - 1 b (ρh t V • ∇b)
(2.10)

In this system the conservative variables are, again, the circumferentially averaged version of themselves. So the left-hand side of eq. (2.10) is not directly identical to the left-hand side of elsA system eq. (2.8). The only difference is the nature of the variables. The trick here is to set up the elsA calculation with a mesh having a single cell in the circumferential direction (see figure 2.3). Setting periodicity conditions by rotation on both side of the unique cell in the circumferential direction leads to the computation of a circumferentially averaged flow by elsA.

About the right-hand side of eq. (2.10), new terms appeared. They constitute the components of the blockage source term. As these components cannot be expressed in a divergence form, the blockage source term make the system eq. ( 2.10) non-conservative. It is a well known drawback of an external, or non-invasive, coupling for CFD-based throughflow solvers. The advantages are the plug and play nature of external coupling preventing to alter the CFD solver kernel for fluxes involving the blockage factor and the fact that the choice of the CFD solver remain free. This problem is in practice attenuated with a particular treatment where the blockage source term is the more important, that is, where the gradients of blockage factor are steeper, for example at the leading and trailing edge of a blade row. There is no particular a priori rule for the refinement of the mesh, as blockage factor depends on the blade thickness law and the stagger angle, but the discrepancies are easily visible by comparing the computed massflow rate at the exit of the domain compared to the one at the entrance since the blockage source term intervenes in the mass conservation equation. A mesh that is too coarse will lead to mass creation or suppression. The procedure is to enforce refinement where high blockage factor gradients are supposed to appear until both entrance and exit massflow rates are consistent. A satisfactory axial refinement, for the NACA 65 009 cascade with the flow entrance situated on the left, is shown in figure 2.3: Axial expansion ratios of 1.2 are used before the leading edge and after the trailing edge until the boundary of the computational domain. The radial discretization can be uniform as shown in the figure or refined at the hub and casing for modeling purposes or end-wall boundary layer calculations. Within the blade domain, an automatic meshing procedure sets the axial number of points to respect a maximum axial expansion ratio of 1.2 provided the size of the first cells at leading and trailing edges. For this case to avoid blockage source term discrepancies, the required first cell size is about 0.2% of the axial chord leading to 65 points in the axial direction for the bladed region. For the record, the mesh visible in figure 2.3 totals 1380 cells.

👁

The new system eq. (2.10) obtained constitute the coupling governing system of equations in ASTEC, the left-hand side is calculated by elsA. The use of a particular mesh configuration allows the calculation of the circumferentially averaged RANS equations of fluid motion. In presence of blades rows, source terms appears on the right handside of eq. (2.10), the blockage source term and the blade force source term. They are externally added at cell centers as volumetric source terms and integrated by elsA to constitute a CFD-based throughflow solver. For simplicity, this ensemble, [elsA + external source terms], refers to ASTEC in the following.

As a side remark, being a finite volume based throughflow solver using elsA, ASTEC is therefore fully parallelized. The mesh used presents a structured block topology. Each blade row is given a block as well as each inlet, inter-blade or outlet region. Thus, one processor can be used per block making ASTEC return times nearly independent of blade row number.

Flow simplification hypothesis

With the previously presented set of equations, ASTEC is defined as a CFD-based throughflow solver with external coupling. It is then possible to run viscous simulations with available turbulence model in elsA. Since the blades are fictitious in ASTEC simulation, the only walls in the simulation are the hub and casing. The computed viscous effects are consequently annulus turbulent boundary layers developing on these end-walls. For the computation of inlet boundary layers the choice to run viscous seems appropriate. But questions arise as soon as the flow passes through the first blade row. In blade hub or tip region, the turbulent boundary layers show 3D features and at the hub of a multistage compressor, it does not behave as a classical turbulent boundary layer in an annulus channel. [START_REF] Smith | Casing Boundary Layers in Multistage Axial-Flow Compressors[END_REF] showed that after several stages, the hub boundary layers demonstrate increasing similarities and introduced the concept of repeating stage conditions in axial compressors. At the casing, the tip-leakage flow studied in [START_REF] Storer | Tip Leakage Flow in Axial Compressors[END_REF] plays a primary role in the loss generation and the operability of the compressor. Also, the study of [START_REF] Auchoybur | Design of Compressor Endwall Velocity Triangles[END_REF] illustrated the effects of the hub secondary flows on the velocity triangles at the hub in order to propose a method for better design practices to reduce their magnitude. These studies prove that a simple axisymmetric annulus boundary layer is not sufficient. It is necessary to use additional secondary flow models, but the superposition with the axisymmetric turbulent boundary layer computed by a turbulence model seems not clear. In addition, running viscous implies the use of a refined mesh at the end-walls leading to heavier computation For the purpose of this work, the choice is made to run ASTEC with the Euler version of eq. ( 2.10) as the extra cost for the simulation of annulus turbulent boundary layers seems dubious in a turbomachinery application. Also, the widely spread adiabatic flow hypothesis for compressor simulation is used. Indeed, most of the time, the heat exchange between the flow and the exterior is negligible considering the high massflow rate combined with the small exchange surface available usually observed in axial compressors. It would not be the case for small fans or in centrifugal compressors. This lead to the following form of ASTEC equations used in the following work:

∂ρ ∂t + div ρV = - 1 b (ρV • ∇b) ∂ρV ∂t + div (ρVV t + pI) = f b - 1 b (ρV • ∇b)V ∂ρe t ∂t + div ρh t V = f b • Ωr - 1 b (ρh t V • ∇b) (2.11)
where the heat transfer flux vector q and the viscous stress tensor τ have consequently been removed. Also in the blade force source term f b , with all rigor, the contribution of f bv fall to zero according to eq. (2.7). However, in this work, viscous effects still are accounted for through f bv modeling, detailed in chapter 4 and discussed from source term point of view in section 2.3.3.

Baseline source term models in ASTEC

This section aim to take stock of the baseline situation of ASTEC before further modeling effort in the next chapters. According to ASTEC system eq. (2.11), two source terms allows the modeling of the action of the blade rows on the fluid, the blade force source term and the blockage source term. The first is then decomposed into two parts the inviscid part and the viscous part. In the following, baseline models that drive the blockage source term and the inviscid blade force are presented. Theoretical considerations on the modeling of the blockage and the viscous part are then provided allowing to generalize the concept of blockage and viscous blade force to the whole compressor channel

Blockage source term

Circumferential blockage model

The blockage model used is mathematically coherent with the circumferential averaging process leading to ASTEC governing equations and so, to the blockage source term expression. The blockage factor used in the blockage source term of eq. ( 2.11) is calculated as follows:

b = 1 - N ε 2πr (2.12)
where N is the blade number in the considered blade row, r the local radius and ε the local circumferential thickness as defined in figure 2.4:

rθ x ε Figure 2.4.
Blade circumferential thickness for a given streamsurface.

In practice, the coordinates of the suction and pressure surfaces of the blade are known. ε is then calculated from the difference of the two surfaces location in the circumferential direction, leading to a circumferential thickness function ε = f (x, r). This function is then interpolated on ASTEC calculation mesh for the estimation of the blockage factor at cell centers.

Normal blockage model

As already discussed in the previous chapter, other models for the blockage factor exist in the literature. An example is the normal blockage factor, of [START_REF] Baralon | Validation of a Throughflow Time-Marching Finite-Volume Solver for Transonic Compressors[END_REF], which is a successful attempt to provide better estimation of choke massflow rate in a transsonic compressor. The normal blockage factor is calculated considering the distance between the pressure and suction side of a blade passage but in the direction perpendicular to the mean flow path. A simple equivalent definition of the normal blockage is given bellow and illustrated in figure 2.5:

b n = L n L n + ε n ss + ε n ps (2.13)
where b n is the normal blockage factor, L n is the width of the passage (the black dashed line) measured perpendicularly to the mean flow path, ε n ss and ε n ps are the distances from the point of intersection of the dashed line perpendicular to the mean flow path to the camber line on suction and pressure sides respectively. However, this definition is not valid for axial position where only one blade among the two involved intersects the direction perpendicular to the mean flow path. Baralon et al. resolved the problem with linear extrapolations symbolized by the red colored areas. For subsonic cases, this definition brings discrepancies in the meridional velocity increase due to blade thickness compared to higher fidelity methods such as RANS simulations. Besides, the methodology presented in chapter 3 presents high Mach number restriction and the validation cases presented in chapter 5 remain subsonic. These considerations make the formulation of Baralon et al. not to be retained in this work which concerns only subsonic flows.

Aerodynamic blockage

It has been discussed, in chapter 1, the concept of aerodynamic blockage in compressors. As viscous effects develop on the end-walls and on the blade surface, turbulent boundary layers increase in size, leading to an increased velocity defect area. As a result, a reduction of the free-stream effective area is observed and should be taken into account in ASTEC throughflow equations for a correct estimation of the mean free-stream flow.

In ASTEC viscous aerodynamic blockage is then taken into account by an additional circumferential aerodynamic thickness, analogous to the one-dimensional boundary layer displacement thickness in the circumferential direction, so that the blockage model of eq. (2.12) becomes:

b = 1 - N (ε + ε 1 ) 2πr (2.14)
where ε 1 is the aerodynamic circumferential thickness that is then added to the local blade circumferential thickness ε in bladed regions. Outside bladed region ε falls to zero and N from the upstream blade row is used to estimate the propagating blockage in wakes or downstream of secondary flows. In practice, for a given viscous effect developing on the blade wall, it is possible to define its local displacement thickness δ 1 by analogy with boundary layer displacement thickness:

δ 1 = ∞ 0 1 - ρU ρ e U e dy (2.15) 
where ρ e and U e are external to the local viscous effect quantities. This viscous displacement thickness is defined in a local coordinate system perpendicular to the wall on which it develops, and then it is projected on the circumferential direction to obtain ε 1 . As shown in figure 2.6, ε 1 can be decomposed in two parts ε 1 ss and ε 1 ps that are aerodynamic circumferential thicknesses developing on the suction and pressure sides of the blade passage respectively, such that ε 1 = ε 1 ss + ε 1 ps . The suction and pressure side boundary layer displacement thicknesses δ 1 ss and δ 1 ps , defined in a direction normal to blade surface are also visible. This implementation is a circumferential application of the method proposed by [START_REF] Khalid | Endwall Blockage in Axial Compressors[END_REF] to estimate viscous aerodynamic blockage from secondary flows or blade boundary layers. In their works, for a given blade row, they considered the whole span of the blade passage leading to the introduction of a blocked area due to viscous effects. In the proposed approach this blocked area is thus taken into account circumferentially for each blade streamsurface through the circumferential blockage model (more details in chapter 4).

Also, aerodynamic blockage can refer to blockage induced by blade potential effect on the flow. This blockage effect, visible in the blade-to-blade plane, tends to smoothly bend the streamlines upstream of the blade as the pressure locally increases at the leading edge of the blade. This is seen in chapter 3 in figure 3.18 for example. However, the circumferential averaging of this potential effect gives zero outside the blades, and thus it is not relevant to introduce it into the blockage source term.

Blockage source term generalization

The blockage created in compressor blades comes from multiple sources. The hub and casing boundary layers, the secondary flows (corner flow, tip leakage flow) and the blade boundary layers. The blockage created by those sources, provided suitable modeling using the circumferential description of eq. (2.14), may be added in ASTEC. Also, the viscous blockage persists downstream of the blade rows. In the same manner, providing a suitable blockage propagation model downstream of the blade rows, it is possible to set the blockage source term outside of the blades rows in ASTEC.

Inviscid blade force source term

The inviscid part of the blade force does not create entropy. Then the inviscid component of the blade force vector, f bi must be in the direction perpendicular to the mean flow direction whereas its viscous counterpart f bv must be opposed to the flow direction as illustrated in figure 2.7.

Implicit procedure

ASTEC uses an implicit blade force formulation for the modeling of the inviscid blade force. In other words, the blade-to-bade flow direction in a given stream surface is supposed to be known a priori. An orthogonality condition between the relative mean flow velocity W and f bi is thus imposed:

W • f bi = 0 (2.16) rθ x f bv f bi n W Figure 2.7.
Blade force component definition illustrated on blade passage for a given stream surface.

The baseline procedure is to impose the flow to follow the camber line of the profile and an orthogonality condition between the normal to the camber line vectors and the relative mean flow velocity is imposed. In practice, the procedure is iterative and, in fact, it drives ASTEC convergence as illustrated in figure 2.8. Following figure 2.7 outward convention for orientation of normal vectors:

f bi = -|f bi | n (2.17)
where |f bi | is the modulus of the inviscid blade force calculated as follows:

|f bi | = k |df bi | k with |df bi | k = -K(W k x n x + W k r n r + W k θ n θ ) (2.18)
|df bi | k is the contribution obtained at iteration k to total inviscid blade force modulus |f bi |, required to effectively produced the desired flow turning, during ASTEC convergence process. The minus sign is due to the outward orientation of normal vectors. The constant K can be interpreted as a mean to adjust the rate of response to a violation of orthogonality condition [START_REF] Simon | Contribution to Throughflow Modelling for Axial Flow Turbomachines[END_REF]. If the value selected for K is too small, the convergence will be reached but in an ineffective manner. If the value chosen for K is too large, the calculation become unstable. Practically, K ∼ 10 4 N s m -4 is a good compromise. Persico and Rebay (2012) proposed a scalable value for K with the solver iterations to reach the maximum K = 10 4 N s m -4 value, ensuring stability at the beginning of the calculation procedure and speeding up the convergence when the orthogonality condition is nearly satisfied. In ASTEC, K grows linearly during the first few iterations of the calculation until its final value. Figure 2 

Error k = -(W k x n x + W k r n r + W k θ n θ ) (2.19)

Deviation handling

As the angle instruction can be anything in the implicit inviscid blade source term, the formulation can be used to simulate viscous effects deviation. In practice, viscous models can give the distribution of deviation angles locally or with an inlet/outlet formulation such as the well known [START_REF] Lieblein | Incidence and Deviation-Angle Correlations for Compressor Cascades[END_REF] correlations. In the first case, the normal vectors n of eq. (2.18) are simply rotated to be consistent with the deviation angles estimated by viscous models, in the second case, semi-empirical redistribution of the estimated deviation along the axial chord is required to set up the normal vectors. Anyhow, deviation modeling and handling are necessary to simulate the correct amount of flow turning in compressor stages as well as the correct amount of work input to the flow from the rotors.

Viscid blade force source term

The rich and diversified nature of viscous flow phenomena, in compressor applications, is detailed in chapter 1. This section introduces the used methodology to bring the effects of viscosity into ASTEC. With more details, the effective viscous models used in the present work, are introduced in chapter 4.

Modeling viscous effects

The estimation of f bv (see figure 2.7) can be done in several ways, and it will be achieved in this work with the use of 2 concepts:

1. The concept of drag from Von Kármán;

2. The concept of entropy creation.

The first concept links the boundary layer momentum thickness δ 2 developing on a flat plate in uniform flow to the drag at a given station on the flat plate. It was first introduced by Von Kármán (1921). Considering the general case of a compressible boundary layer, the total loss of momentum flux is equivalent to the removal of momentum through a distance δ 2 , which can be written for a given station on the flat plate:

∞ 0 ρu(U e -u)dy = ρ e U 2 e δ 2 (2.20) that is: δ 2 = ∞ 0 u U e (1 - ρu ρ e U e
)dy (2.21) Also, the total loss of momentum flux integrated from the leading edge to this given station on the flat plate is equal to the total drag per unit of span f d measured at the same station, then:

f d = ρ e U 2 e δ 2 (2.22)
This relation is helpful when U e is known over the flat plate. It allows the estimation of the local viscous force resulting from the friction over the flat plate providing an estimation of the local boundary layer momentum thickness with a classical integral boundary layer method or semi-empirical correlations for example. In the case of the boundary layer developing on a blade profile eqs. (2.20) and (2.22) can be used considering U e at the edge of the boundary layers at suction and pressure sides respectively, providing that the way δ 2 is estimated takes into account pressure gradient effects [START_REF] Houghton | Aerodynamics for Engineering Students[END_REF].

The second concept is to consider the viscous effect as sources of irreversibility as discussed in [START_REF] Denton | Loss Mechanisms in Turbomachines[END_REF]. Thus, viscous processes will produce entropy as the flow goes by the blade rows, for example in the profile boundary layers, the corner separation phenomenon or within the tip leakage flow. For a flow with constant total enthalpy, this specific entropy creation ds can be related to a volumic viscous force f v locally acting on the fluid in the direction opposite to the flow so that [START_REF] Denton | The Calculation of Three-Dimensional Viscous Flow Through Multistage Turbomachines[END_REF]:

f v = -ρT ds dl W |W| (2.23)
where T is the local static temperature and l is the distance on the flow streamline in the blade relative frame of reference.

Viscid source term generalization

Both concepts previously introduced allow the local modeling of f bv for ASTEC viscous source term in the blade rows but also in the rest of the compressor where viscous effects occur. The viscous source term of ASTEC is then extended to zones outside the blade rows to allow the modeling of loss sources such as wakes, hub and casing boundary layers between blade rows coming from secondary flow development. What is left to do, as the main active research topic of throughflow simulation, is to provide accurate modeling to cover the largest range of possible viscous flow effects.

Conclusion on ASTEC

The origins of ASTEC, as an elsA-based throughflow solver were presented in details.

Additional hypotheses are made in this thesis framework: the flow is considered adiabatic and the underlying equations resolved are the Euler equations of motion. The first is well justified for steady simulation of compressors but begin to be irrelevant for small compressors and is invalid for turbines or transitional regime. The second is justified by considerations on the actual boundary layer developing across a repeating stage compressor.

The baseline source term models of ASTEC have been presented. The blockage source term model used includes geometric and aerodynamic blockage within the whole compressor. The inviscid blade force formulation is implicit and therefore requires the flow direction as an input. The viscous source term is finally generally introduced and gen- T he following chapter presents the implementation in ASTEC of the reference method of Hess & Smith, consisting in the calculation of a bi-dimensional blade-to-blade potential flow. In the upcoming developments, its origin, called the singularity method, suitable for flow over an isolated profile, is presented as it greatly facilitates the exposure of Hess & Smith method principles. Then, applied to an axial compressor radially discretized blade passage, the method leads to the calculation of the potential flow in the blade-to-blade streamsurfaces. As a new useful resource in ASTEC, it allows the local modeling of the inviscid blade force source term and constitute additional flow data for viscous modeling needs.

Profile singularity method

In order to establish the potential flow over a cascade or airfoils, the singularity method, first introduced by Smith and Pierce (1958) in the simple case of an isolated airfoil, is detailed in this section. An isolated airfoil is schematized in figure 3.1. The angle of attack, α is the angle formed by the onset flow velocity V ∞ relative to the chord c of the profile. 

Potential flow over an isolated airfoil

In the case of a bi-dimensional incompressible, steady, irrotational and inviscid flow, the flow motion is fully described by:

divV = 0 rotV = 0 (3.1)
The nullity of the flow rotational implies that the velocity vector field, V t = u v , is conservative and derive from a scalar potential function ϕ : (x, y) → ϕ(x, y) such that:

V = ∇ϕ ; u = ∂ϕ ∂x ; v = ∂ϕ ∂y (3.2)
Combining eq. (3.2) with the mass conservation equation in incompressible flow gives that the flow potential is solution of Laplace equation:

∆ϕ = 0 (3.3)
The considered potential flow can also be expressed in terms of a scalar stream function ψ : (x, y) → ψ(x, y) as explained in Batchelor (2010):

u = ∂ψ ∂y ; v = - ∂ψ ∂x (3.4)
The system eq. (3.1) can be rewritten considering eqs. (3.2) and (3.4):

       ∂ϕ ∂x - ∂ψ ∂y = 0 ∂ϕ ∂y + ∂ψ ∂x = 0 (3.5) (3.6)
One can recognize, in eqs. (3.5) and (3.6), the Cauchy-Riemann equations applied to the real and imaginary parts of a complex potential function ω : z → ω(z) defined by:

ω(z) = ϕ(x, y) + jψ(x, y) where z : x + jy ∈ C and j ∈ C | j 2 = -1 (3.7)
The complex potential decomposes into ϕ, the already introduced potential function, as its real part, and ψ, the stream function of the flow, as its imaginary part. Each complex-valued function of the single variable z that satisfies the eqs. (3.5) and (3.6) conditions is holomorphic and so, complex-differentiable. The derivation of ω with respect to z gives:

dω dz = ∂ω ∂x = 1 j ∂ω ∂y (3.8) ⇔ dω dz = ∂ϕ ∂x + j ∂ψ ∂x = 1 j ∂ϕ ∂y + ∂ψ ∂y (3.9) ⇔ dω dz = u -jv (3.10)
The first equation eq. (3.8) expresses that in the complex plane, if ω is differentiable then the differentiation gives the same result whether the differentiation take place with respect to the real direction x or with respect to the imaginary direction y. It is then obtained in eq. (3.10) that any bi-dimensional incompressible, steady, irrotational and inviscid flow can be described by a complex potential scalar function ω, whose derivative with respect to the single variable z = x + jy gives the complex conjugate velocity V * = u -jv. It is easily demonstrated that ψ also satisfies Laplace equation by differentiating eq. (3.5) with respect to y and so, by linearity, ω satisfies it as well.

In addition, using the Cauchy-Riemann conditions: which means physically that the equipotential lines, on which ϕ is constant, are orthogonal to the streamlines, on which ψ is constant, provided the velocity is not the zero vector.

∇ϕ • ∇ψ =
To summarize, any incompressible potential flow described by:

∆ϕ = 0 ∇ϕ = V is equivalent in C ∼ R 2 to:    ∆ω = 0 dω dz = V * (3.12)
In the following the potential problems will be addressed with the complex formalism as it greatly simplifies the expressions of the complex potential and the associated complex conjugate velocity.

Small perturbations & superposition principle

The backbone of the singularity method is to take advantage of the linearity of Laplace equation. A small perturbation hypothesis is made, which implies that the flow direction remains near the onset flow V ∞ . The potential flow is then decomposed into two parts, the onset flow and a perturbation couple ( ω, V) induced by the presence of the profile:

ω = ω ∞ + ω ; ω/ω ∞ ≪ 1 (3.13) V = V ∞ + V ; | V/V ∞ | ≪ 1 (3.14)
Since ω satisfies the Laplace equation, ω satisfies it also. Laplace equation possesses particular analytical solutions, the so-called singularities, and so, the principle of the singularity method is to use those particular analytical solutions to estimate the perturbation potential ω and then the perturbation velocity V. In practice, the profile is materialized with an ensemble of singularities which can be potential sources, doublets, vortices or also polynomial functions, all solutions of Laplace equation. The perturbation potential and velocity are then approached using the superposition principle:

ω = k ω k (3.15) V = k v k (3.16)
As stated by [START_REF] Katz | Low-Speed Aerodynamics[END_REF], the predicted solution is not unique as it depends on the choice of the singularities, their distribution on the frontier of the obstacle and their number. Then, one of the drawback of the method is that there is no a priori good choice of singularities for a particular case. Each potential problem is different and the choice of the singularities rely on the experience of which singularities give the best results for the expected flow behavior. The advantage is that the method simply rely on the discretization of the objects in the onset flow instead of a meshed domain, granting singularity method its characteristic implementation lightness and consequently widespread usage. †

Choice of singularities

In the case of the potential flow around a profile, the modeled effects must be the curvature of the streamlines caused by the profile thickness and eventually the lift generated by the profile if the camber of the profile is non-zero and/or in the case of non-zero angle of attack α (see figure 3.1).

In 2D, at least three well-known singularities are able to reproduce those effects: † The reader may found extensive applications of the singularity method in the reference work of [START_REF] Hess | Calculation of Potential Flow about Arbitrary Bodies[END_REF] in addition to the already mentioned book of [START_REF] Katz | Low-Speed Aerodynamics[END_REF].

1. The point source of intensity Q;

2. The point vortex of circulation Γ;

3. The point doublet of intensity vector µ.

X X Y Y Figure 3
.2. Iso-potential lines and streamlines for a point source s, a point vortex v and a x-oriented point doublet µ, in two dimensions.

The streamlines and equipotential lines of these elementary solutions of Laplace equation are shown in figure 3.2. The point source singularity emits flow radially from its center. It is then predisposed to model the impermeable wall effect of the obstacle surface on the onset flow. The point vortex concentrate a circulation at its center, it is then suitable to model tangential acceleration of the fluid passing near by. For example at the suction side of a lifting profile. Finally, the point doublet is a combination of a point source singularity and a point sink singularity (negative source). It is obtained by letting the point source and the point sink approach each other. A point doublet can fulfill both modeling needs for the flow past a profile and, according to [START_REF] Katz | Low-Speed Aerodynamics[END_REF], the simplest bi-dimensional singularity method is based on doublets as it allows a simple handling of the profile wake to produce lift. In the singularity method that has been implemented in ASTEC, a more elaborated combination of sources and vortices was chosen to model the influence of a blade on the onset flow, following the recommendations of [START_REF] Hess | Calculation of Potential Flow about Arbitrary Bodies[END_REF].

A point of space M is defined as M (x, y) in the real plane and as M (z) in the complex plane. The real and complex bi-dimensional potential function ϕ and ω as well as real and complex conjugate velocity V and V * induced at M associated to a point source or a point vortex located at z 0 = x 0 + jy 0 are:

ϕ Q = Q 2π ln r ; V Q = Q 2πr e r ; ω Q = Q 2π ln (z -z 0 ) ; V * Q = Q 2π(z -z 0 )
(3.17)

ϕ Γ = Γ 2π θ ; V Γ = Γ 2πr e θ ; ω Γ = -jΓ 2π ln (z -z 0 ) ; V * Γ = -jΓ 2π(z -z 0 ) (3.18)
where subscripts Q and Γ refer to the point source and point vortex expressions respectively. The distance between M (x, y) and M 0 (x 0 , y 0 ) is r = |z -z 0 | and the local reference (e r , e θ ) are the radial and tangential directions in 2D real polar coordinates.

It can be noticed regarding eqs. (3.17) and (3.18) that, in the real plane, the expression for induced velocity by a point vortex is the direct rotation of the velocity induced by a point source for a quarter circle † . This is also seen in figure 3.2 where streamlines and iso-potential lines are "swapped" when switching from a point source to a point vortex singularity. In the complex plane, this results in the following rule: the complex conjugate velocity induced by a point vortex is obtained by an indirect orthogonal rotation of the complex conjugate velocity induced by a point source.

Profile discretization & constant lineic density of singularities

A profile is defined as a continuous smooth shape. Numerically, this smooth shape is discretized in N elem elements to form a polygon approaching the real profile surface as shown in figure 3 The expressions of the complex conjugate velocities induced by this element possessing lineic densities of singularity intensities is then obtained by integration on the length of the element |dz k | = dz k e -jα k of complex conjugate velocities using eqs. (3.17) and (3.18):

α k dz k x y n k z k+1 z k z k-1 c k c k-1 α > 0 Figure 3.3. Complex element dz k definition. z k+1 n k z k c k 𝜎 k , 𝛾 k y x
v * σ k (z) = z k+1 z k σ k e -jα k 2π(z -z k ) dz k = σ k e -jα k 2π ln z -z k z -z k+1 (3.19) v * γ k (z) = z k+1 z k γ k e -j(α k + π 2 ) 2π(z -z k ) dz k = γ k e -j(α k + π 2 ) 2π ln z -z k z -z k+1 (3.20)
Again the complex potential velocity induced by a vorticity element γ is the indirect rotation of the complex potential velocity induced by a lineic source density element σ. Using eqs. (3.19) and (3.20) and following eq. (3.10), the components of the real perturbation velocity induced at M (x, y) are the sum of the contribution of the source and circulation densities lying on the element dz k :

v k (x, y) = v σ k (x, y) + v γ k (x, y) = Re v * σ k (z) -Im v * σ k (z) + Re v * γ k (z) -Im v * γ k (z) (3.21)
Then, writing the superposition principle, the velocity field around the profile is:

V = V ∞ + N elem k v k (3.22)
As illustrated in figure 3.4, there seem to be special locations on the blade where higher singularity resolution is observed. The influence of the resolution of the discretization, N elem , as well as the distribution of the singularities over the pressure and suction side will be addressed in section 3.1.8 and later in section 4.3.6.

Boundary & trailing edge conditions

At this point, the flow past the profile can be determined providing the knowledge of the singularities densities σ k and γ k . In order to determine them, two boundary conditions are applied. The first is an impermeability condition, also defined as a Neumann boundary condition, on the surface of the profile, which is enforced at each control points c k = (x k , y k ) resulting in the following N elem equations:

∀k ∈ [1, N elem ], V(c k ) • n k = 0 (3.23) ⇔ N elem i v i (c k ) • n k = -V ∞ • n k (3.24) ⇔ N elem i [σ i v σ i =1 (c k ) + γ i v γ i =1 (c k )] • n k = -V ∞ • n k (3.25)
In eq. (3.25), the singularities densities have been taken out of their respective expression by rewriting eqs. (3.19) to (3.21) as:

v * σ k (z) = σ k v * σ k =1 (z) v σ k (x, y) = σ k v σ k =1 (x, y) (3.26) v * γ k (z) = γ k v * γ k =1 (z) v γ k (x, y) = γ k v γ k =1 (x, y) (3.27)
This allows to clearly make appear the singularity densities σ k , γ k as the unknowns of the linear problem represented by the following matrix equation involving 2N elem unknowns:

AX = B (3.28)
where A matrix coefficients are defined as:

† A =     v σ 1 =1 (c 1 ) • n 1 . . . v σ N =1 (c 1 ) • n 1 v γ 1 =1 (c 1 ) • n 1 . . . v γ N =1 (c 1 ) • n 1 . . . . . . . . . . . . . . . . . . v σ 1 =1 (c N ) • n N . . . v σ N =1 (c N ) • n N v γ 1 =1 (c N ) • n N . . . v γ N =1 (c N ) • n N     (3.29)
The unknown singularity transposed vector is:

X t = σ 1 . . . σ N elem γ 1 . . . γ N elem (3.30)
and the second member B is:

B t = -V ∞ • n 1 . . . -V ∞ • n N elem (3.31)
So far, the system eq. (3.28) involves N elem equations with 2N elem unknowns. As a first step to close the system, the second boundary condition used is the well known Kutta-Joukowski condition. It states that the flow must leave the trailing edge of the profile smoothly as it is observed experimentally. This condition reads in terms of pressure: p(te ss ) = p(te ps )

(3.32)

The pressure at the trailing edge must be the same whether it is measured on the suction side or on the pressure side. Using Bernoulli theorem for incompressible flow gives for the velocity magnitude at the trailing edge:

|V(te ps )| = |V(te ss )| (3.33)
If the elements of the profile are placed end to end from trailing edge at the pressure side to trailing edge at the suction side through the leading edge, the trailing edge element at the pressure side is the first element and the one at the suction side is the last. The previous equation can be written in terms of potential velocities at the trailing edge control points as:

-(V ∞ + v(c 1 )) • t 1 = (V ∞ + v(c N elem ) • t N elem (3.34)
Where t k is the tangent vector to the profile at the control point c k . The minus sign for the left-hand side comes from the traveling direction around the profile leading to trailing edge tangent vector and velocity to have an opposite direction at the pressure side. The number of equations then passes from N elem to N elem + 1.

The second step to close the system is the following hypothesis [START_REF] Mason | Applied Computational Aerodynamics[END_REF]:

∀k, γ k = γ (3.35)
Physically this means that the circulation around the profile is homogeneously distributed. The number of unknowns then passes from 2N elem to N elem + 1 and the system is now closed.

Linear system solved

The Kutta-Joukowski condition combined with the hypothesis of homogeneous circulation distribution lead to a modification of the system eq. (3.28). First, the unknown vector become:

X t = σ 1 . . . σ N elem γ (3.36)
Then the A matrix passes from 2N elem to N elem + 1 columns and thus equating its number of rows. Its coefficients are updated as follows:

A =       v σ 1 =1 (c 1 ) • n 1 . . . v σ N =1 (c 1 ) • n 1 N i v γ i =1 (c 1 ) • n 1 . . . . . . . . . . . . v σ 1 =1 (c N ) • n N . . . v σ N =1 (c N ) • n N N i v γ i =1 (c N ) • n N v σ 1 =1 (c 1 ) • t 1 + v σ 1 =1 (c N ) • t N . . . v σ N =1 (c 1 ) • t 1 + v σ N =1 (c N ) • t N A KJ      
(3.37) The last line of A corresponds to the Kutta-Joukowski condition and the term A KJ is detailed bellow:

A KJ = N elem i v γ i =1 (c 1 ) • t 1 + N elem i v γ i =1 (c N ) • t N elem (3.38)
Finally, a last line is added to the last member B:

B t = -V ∞ • n 1 . . . -V ∞ • n N elem -V ∞ • (t 1 + t N elem ) (3.39)
The system established can be solved with conventional linear algebra solver in order to obtain the singularities vector X. Its components are the singularity densities placed on the profile and according to eqs. (3.21) and (3.22), it is then possible to calculate the flow velocity everywhere around the profile including on the profile surface.

Trailing edge considerations

Some considerations about the particular treatment of the trailing edge are given hereafter. The Kutta-Joukowski condition used in the establishment of the singularity method expresses the fact that no flow must go from pressure side to suction side or vice-versa at the trailing edge. If it was the case, the circulation Γ around the profile would be zero and so the lift. Indeed, from Kutta-Joukowski theorem, the lift per unit of span L of a profile in a bi-dimensional flow reads:

L = ρ ∞ V ∞ Γ (3.40)
So the correct estimation of the circulation of the profile drives the correct estimation of the lift force acting on the blade. The circulation Γ of eq. (3.40) is positive in the clockwise direction. This convention if set to bring a positive lift when the flow is accelerated on the suction side compared to the flow at the pressure side. The circulation is linked with the vorticity γ such that Γ =profile γdl. The minus sign is due to the opposite orientation between the directly oriented vortices on the profile and the indirectly oriented profile circulation. In the discretized singularity method previously presented this gives:

Γ = - N elem k γ k |dz k | Γ = -γ N elem k |dz k | (3.41)
Also, the vorticity γ is only determined by the equation translating the Kutta-Joukowski condition, namely eq. (3.34), which is applied at the two control points of the two elements defining the trailing edge. It is then obvious that, since the condition expresses zero pressure difference between the suction and the pressure side, the two control points involved in the numerical expression of the condition must be as close as possible. That means that the trailing edge must be sharp in order to have a realistic estimation of the circulation on the profile and then the lift acting on it.

If the analyzed profile has a round trailing edge, it must be cut and closed for Kutta-Joukowski condition requirements. The process, applied to the NACA 65 009 cascade profile, presented in chapter 1, is illustrated in figure 3.5. The sides of the truncated trailing edge are jointed using a function that distributes half of the trailing edge thickness over the whole suction and pressure sides. An attempt is made here to build a generic function applicable to multiple kind of profiles. The truncated trailing edge thickness can be described with a gap vector [dx, dy] t . The thickness of the trailing edge is then distributed on the pressure and suction side with the help of a power-law applied to the normalized curvilinear abscissa s * such that:

     x closed = x open ± dx 2 s P * (x open , y open ) y closed = y open ± dy 2 s P * (x open , y open ) (3.42)
where s * ∈ [0, 1] and the exponent P is chosen to be the ratio between the maximum thickness, and the trailing edge thickness dx 2 + dy 2 of the profile. The higher the ratio, the more concentrated near trailing edge will the deformation be, due to the closing operation. This ratio allows getting satisfactory closed shapes for the several profiles studied in this work and introduced with the validation cases in chapter 1. In addition, the closing operation conserves the original chord of the profile.

Clo 

Validation for 2D profiles

Profile pressure coefficient

As a first step toward validation of the implemented singularity method in ASTEC, it is compared against [START_REF] Mason | Applied Computational Aerodynamics[END_REF] Panel program on the prediction of the profile incom-pressible pressure coefficient C p . According to Bernoulli theorem for incompressible flow, the incompressible pressure coefficient on the profile reads:

C p = p -p ∞ 1 2 ρ ∞ V 2 ∞ = 1 - V 2 V 2 ∞ (3.43)
Panel is an implementation of the same singularity method as the one that has been implemented in ASTEC. It uses the same implementation of the Kutta-Joukowski condition. The incompressible pressure coefficients, with respect to the axial chord normalized axial position x/c ax , of a NACA 4412 profile at α = 6 • of angle of attack are visible in figure 3.6 for both methodologies. † The implemented method shows very good agreement against the reference method. Panel results where obtained with 78 control points nearly equally divided between suction and pressure sides. In the implemented singularity method 39 control points on each suction and pressure sides were used. Mason used a widely used cosine distribution for the abscissa of the profile elements such that:

∀k ∈ [1, N elem + 1], x k c = 1 2 1 -cos (k -1)π N elem (3.44) †
For the whole manuscript, the pressure coefficients are displayed with the y-coordinate axis inverted, showing suction side values on the curve top part and inversely for pressure side values.

In the proposed implementation, the cosine distribution is effectively applied on the normalized curvilinear abcissa s * , defined between 0 (at leading edge) and 1 (at trailing edge), of the suction and pressure side respectively. This is done by anticipation of the use of the method on staggered blades for cascade application later in section 3.2. The NACA 4412 point distribution in ASTEC calculation is visible in figure 3.7: The interest of the symmetric cosine distribution is that it concentrates points around the leading and trailing edges, allowing to capture the strong acceleration on both sides of the stagnation point materialized by a C p = 1 value. It also allows satisfying the application of the Kutta-Joukowski condition, with trailing edge control points that are close to each other. Some testings are presented in the following with an alteration of the distribution compared to the same results of Mason. The effects of a reduction of the number of control points per side to 30 with cosine distribution is visible in figure 3.8a and the results with a linear distribution from leading edge to trailing edge with 39 control points per side is visible in figure 3.8b

For both tested alteration of the distribution, the axial position and the magnitude of the peak acceleration on the suction side are predicted with less precision compared to previous results in figure 3.6. In addition about the linear distribution, the method does not capture very well the behavior of the trailing edge deceleration compared to the cosine distribution, altered or not. Also, with linear distribution, the axial position of the data for leading and trailing edges are shifted towards the center of the profile since the leading and trailing edges control points are calculated at the center of larger elements due to the linear distribution. This shifting is less visible in the cosine distribution. These testings evidence that the leading edge and the vicinity of the trailing edge are areas where a high density of points are required in the singularity method, for both accuracy and consistency between the calculation location and the real geometry, of the flow velocities. 

Profile point distribution function

In order to try to find an optimal distribution, a modified cosine distribution is proposed in eq. (3.45). This distribution takes values from 0 to 1 and is used to drive the position of points located at the suction and pressure side respectively through the normalized curvilinear abscissa s * .

dist(k) =                                                • If N elem is odd:            1 -cos tan -1 tan (k-1)π N elem S 2 def = d 1 (k) k ∈ [1, N elem + 1 2 ] 1 -d 1 (N elem + 2 -k) k ∈ [ N elem + 3 2 , N elem + 1] • If N elem is even:              d 1 (k) k ∈ [1, N elem 2 ] 1 2 k = N elem 2 + 1 1 -d 1 (N elem + 2 -k) k ∈ [ N elem 2 + 2, N elem + 1] (3.45)
The positive parameter S allows controlling the spread of the points on the profile. If S is set to 1, then the distribution is equivalent to the regular cosine distribution.

Samples of dist distribution for several values of S parameter are shown in figure 3.9 as well as the regular cosine distribution. Using this distribution allows reducing the number of points for comparable accuracy (showed by figure 3.10) and allows over refinement at the leading and trailing edges if S > 1 compared to the simple cosine distribution. On the contrary, using values of S < 1 leads to an inverted tendency which linearize the distribution (except at the leading and trailing edges) and eventually overpopulates the middle of the distribution as S tends to 0.

The effects of the improved cosine distribution, on the pressure coefficient prediction, are visible in figure 3.10. For these results, only 30 control points per side with S = 1.65 were used in the improved cosine distribution compared to the regular cosine distribition with 39 control points per side. The choice of the paramter S = 1.65 was determined iteratively to provide better refinement in the leading edge region without depopulating the center of the profile too much as visible in figure 3.11. The agreement continues to be very good with 25% of control point saving thanks to the improved cosine distribution.

Obviously, the choice of S may depend on the shape of the considered profile. And the thinner the profile, the better the importance of having multiple points, particularly at the leading edge. The value of S = 1.65 has been tested on the various test cases presented in chapter 1 showing good results. Consequently, the improved cosine distribution was used with value of S = 1.65 instead of the classical cosine distribution in the following. 

Comparison to XFoil

To complete the validation of the implemented singularity method, it is confronted against the well-known code XFoil. † The incompressible pressure coefficients of a NACA 4412 profile for several incidences are displayed in figure 3.12.

XFoil use a singularity method coupled to viscous models for the estimation of the profile lift and drag coefficients, including boundary layer predictions supporting transition. For the comparison in figure 3.12, the viscous models of XFoil are disabled.

The standard simulation in XFoil involves a total of 159 elements around the profile. The results obtained with ASTEC involve a total of 60 control points, 30 per side with the improved cosine distribution (S = 1.65). In figure 3.12d, the already seen results from Mason Panel program has been recalled to situate the three codes. Although the agreement between the two methods is very good, the singularity method developed in this work shows slight differences with XFoil near x/c ax = 30%. In addition, it seems closer to Mason method than XFoil singularity method. As a matter of fact, the method described by Mason is very close to the one described in this chapter: the same singularity elements where used and the hypothesis about the homogeneously distributed circulation around profile is also made. The differences with XFoil might be due to the usage of different singularity elements and other techniques for the Kutta-Joukowski condition enforcement. Nonetheless, these results validates the proposed method for isolated profiles allowing extension to cascade and then axial compressor simulations in the next section.

2D streamlines & pressure coefficient field

The implemented singularity method allow the calculation of the small perturbation potential flow everywhere in the (x, y) plane. The corresponding potential flow around the NACA 4412 profile for the angle of attack range of the onset flow corresponding to the one of figure 3.12 are plotted in figure 3.13. It can be seen, from the streamlines, evidences of the Kutta-Joukowski escaping flow condition, with a smooth flow departure from trailing edge with the same pressure on both suction and pressure sides. Also, the streamlines illustrate the level of perturbation that the profile is bringing to the onset flow. The more the profile is inclined with respect to the onset flow direction, the more perturbation, especially near the leading edge for the NACA 4412 profile.

The field of incompressible pressure coefficient evidences the potential effect of the profile on the onset flow that has influence in the vicinity of the profile. The effect is stronger as the incidence moves from the reference incidence of the profile, which is near α = 0 • , or in other words, as the profile is less aligned with the onset flow. From the expression of induced velocities from the singularities used in section 3.1.4, the perturbation potential effects on the onset flow have an influence roughly inversely proportional to the distance relative to the profile (for incompressible flow).

Finally, it can be seen that the position of the maximum pressure coefficient C p = 1 evolves with the incidence, it materializes the position of the stagnation point where the flow velocity vanishes. The implemented singularity method successfully predicts the leading edge stagnation point since the flow is stopped against the profile through the impermeability boundary condition. Towards positive incidences, the leading edge stagnation point is located on the pressure side of the profile and a stronger acceleration on the suction side is observed associated with negative values of C p , translating more lift generated. On the contrary, towards negative incidences, the profile possesses multiple accelerated zones of smaller intensity, near the leading edge on the pressure side due to the negative incidence effect and later on the suction side due to camber effects.

Hess & Smith method for compressor flows

The Hess & Smith method extends the previously introduced singularity method to the case of cascades of airfoils. The method is adapted in section 3.2.5 for the use in axial machines such as compressors. Even though the implemented Hess & Smith method in ASTEC has been improved to deal with increasing Mach numbers of the onset flow in section 3.2.6, the overall methodology presented in this section remains only suitable for subsonic regimes as the results may be questionable as soon as strong compressible effects occurs.

Flow over a bi-dimensional cascade of airfoils

Hess and Smith (1967) considered the bi-dimensional cascade of airfoils as an infinite repetition, perpendicular to the axial direction, of airfoils of chord c, spaced from each other by a pitch s and presenting a stagger angle λ between the chord and the axial direction as schematized in figure 3.14. It defines the inlet and outlet relative to the blades velocities, W 1 and W 2 , as well as their angles with respect to the axial direction in the blade-to-blade plane β 1 and β 2 . In addition, the presence of the airfoils induces a circulation Γ over each one of them, counted positively in the clockwise direction. The fictitious mean cascade velocity W ∞ is, after [START_REF] Lewis | Vortex Element Methods for Fluid Dynamic Analysis of Engineering Systems[END_REF]:

y x s c W 1 W 2 Γ W ∞ W 2 W 1 Γ/2s Γ/2s
W ∞ = W 1 + W 2 2 (3.46)
This velocity is obtained from large distance point of view, considering the cascade as the superposition of an onset flow W ∞ and a line array of vortices, each vortex inducing a circulation Γ. Thus, this large array of vortices creates two velocity components in the cascade direction, v -∞ and v +∞ :

at x = -∞, v -∞ = +Γ 2s e y at x = +∞, v +∞ = -Γ 2s e y (3.47)
where e y is the direction aligned with y coordinate. It is then possible to write:

at x = -∞, W 1 = W ∞ + Γ 2s e y at x = +∞, W 2 = W ∞ - Γ 2s e y (3.48)
In cascade numerical simulations or experiments, it is more likely W 1 or W 2 to be known. The mean cascade velocity, that is relevant for the singularity method, can be deduced from eq. (3.48) knowing the circulation of the cascade airfoils Γ and either W 1 or W 2 .

Induced complex conjugate velocities for cascades

The cascade of airfoil is considered to be an infinite repetition of the same profile, separated by a pitch distance s in the direction perpendicular to the axial direction.

Then, the expression of the complex conjugate velocity induced by the whole cascade can be deduced from the expression of the complex conjugate velocity induced by all the corresponding elements dz j . If each infinitely repeated element is equipped with a lineic source density then using the same procedure leading to eq. (3.19) yields, for the induced complex conjugate velocity induced at a point M (z) of the complex plane:

v * σ k (z) = z k+1 z k σ k e -jα k 2π(z -z k ) + σ k e -jα k 2π(z -z k + js) + σ k e -jα k 2π(z -z k -js) + σ k e -jα k 2π(z -z k + 2js) + σ k e -jα k 2π(z -z k -2js) + • • • dz k (3.49)
The expression in the brackets regroups to the alternate series decomposition of coth(z) in C. Using again the fact that the complex conjugate velocity induced by a lineic density of circulation is the indirect rotation of the one induced by a lineic source density, the complex conjugate velocities induced by an infinite repetition of an element dz k equipped with source and circulation densities are:

v * σ k (z) = z k+1 z k σ k e -jα k 2s coth π z -z k s dz k = σ k e -jα k 2π ln sinh π z-z k s sinh π z-z k+1 s (3.50) v * γ k (z) = z k+1 z k γ k e -j(α k +π/2) 2s coth π z -z k s dz k = γ k e -j(α k +π/2) 2π ln sinh π z-z k s sinh π z-z k+1 s (3.51)
The A matrix coefficients in the system resolved in the previously detailed singularity method visible in section 3.1.6 are thus calculated with eqs. (3.50) and (3.51) in the case of a cascade simulation.

Implicit onset flow condition for cascades

In the system established in section 3.1.6, the onset flow influence is materialized by the velocity V ∞ . In a cascade case, from a potential point of view, it is replaced by the fictitious mean cascade velocity W ∞ . But from real flow over a cascade point of view, such a velocity does not exist and may be deduced from the inlet or outlet cascade velocities and airfoil circulation Γ as detailed in section 3.2.1. In the case of a compressor, the usual known relative to the blade velocity is W 1 , then according to eq. (3.48):

W ∞ = W 1 - Γ 2s e y (3.52)
As previously asserted in the singularity method for the isolated profile case, the hypothesis of a homogeneously distributed circulation over the airfoils composing the cascade is made, allowing to estimate the circulation of the airfoils with eq. (3.41), leading to the following expression for W ∞ :

W ∞ = W 1 + γ N elem i |dz i | 2s e y (3.53)
Thus, the use of eq. (3.53) in place of V ∞ in the linear system of section 3.1.6 leads to an implicit onset flow condition. Indeed, the onset flow condition for cascades depends on the circulation of the profile through γ, which is, a priori, unknown. The second member B is updated such that:

B t = -W 1 • n 1 . . . -W 1 • n N elem -W 1 • (t 1 + t N elem ) (3.54)
And the last column of A is updated as follows:

† A (N +1) = N i v γ i =1 (c 1 ) + γ N i |dz i | 2s e y • n 1 . . . . . . N i v γ i =1 (c N ) + γ N i |dz i | 2s e y • n N A KJ t (3.55)
Where A KJ is updated from eq. (3.38):

A KJ = N i v γ i =1 (c 1 ) + γ N i |dz i | 2s e y • t 1 + N i v γ i =1 (c N ) + γ N i |dz i | 2s e y • t N (3.56)
To summarize, the Hess & Smith method for potential flow over cascades of airfoils † Again in eqs. (3.55) and (3.56), N elem has been replaced by N for readability.

simply modifies the onset flow condition as well as the expressions of the velocities induced by the chosen singularities. It does not change the size of the linear system resolved switching from isolated to cascade mode. This last point constitute the major asset of the method.

Validation for 2D cascades

Pressure coefficient & comparison to MISES

The Hess & Smith cascade potential method implemented in ASTEC is confronted to the also well known code MISES. The incompressible pressure coefficients on the NACA 65 009 cascade, presented in chapter 1, are compared in figure 3.17 for several inlet flow incidences and an inlet Mach number of 0.117. As presented before, pressure coefficients for incompressible flow, are deduced from the relative velocities:

C p = 1 - W 2 W 2 1 (3.57)
MISES is a bi-dimensional compressible Euler solver coupled with boundary layer calculation for the viscous part of the flow developing on the blade walls. It supports laminar and turbulent flow regimes and boundary layer transition. MISES was developed for turbomachinery design by Mark Drela, like its companion XFoil, and Harold Youngren. There is no reference publication about MISES, but more information on the solver can be found in its manual. † For comparison purposes in figures 3.17 and 3.18, MISES is used in inviscid mode.

Compared to the isolated case, the flow incidence i is defined relative to the cascade leading edge angle denoted κ 1 such that the relative inlet flow angle β 1 = i + κ 1 . The data for the NACA 65 009 cascade are a leading edge angle κ 1 = 54.31 • . The same number of element (located on the profile) for both methodologies is used, involving a total of 160 elements. They are equally distributed between the pressure and the suction sides for the singularity method (visible in figure 3.15) in ASTEC and the automatic grid used by MISES is visible in figure 3.16. As a first comment, the agreement between both methods is excellent for the whole range of incidences.

In regard to the increase of the resolution compared to the isolated profile case, the onset flow condition for the cascade Hess & Smith method depends on the implicit estimation of the circulation around the cascade airfoils, and, the estimation of the circulation accuracy is governed by the correct resolution of the Kutta-Joukowski implemented method for cascades.

2D streamlines & pressure coefficient field

The streamlines and the pressure coefficient field computed by the implemented Hess & Smith method for the associated range of incidences of figure 3.17 are showed in figure 3.18.

As the incidence increases, the evolution of the incompressible pressure coefficient around the blade evidences the increasing loading of the NACA 65 009 compressor cascade. Also, the streamlines show that, even if the incidence is increasing, the outlet angle β 2 remains constant, since the flow is purely potential. In fact the blade loading, and so the circulation around the blade, gets stronger in as the inlet angle β 1 increases. This is a behavior different from the real viscous case where the boundary layer on the profile would induce a deviation angle that would temper the performance of the cascade. This increase in blade loading goes together with a back pressure increase, evidencing the role of the compressor cascade.

Flow over an axial compressor blade row

The bi-dimensional infinite cascade definition is applied to the compressor case using two hypotheses:

1. Passage-to-passage periodicity: the compressor blade-to-blade potential flow is assumed to be the same in each blade channel;

2. Flow simplification: the flow within a blade row is described with a stack of blade-to-blade periodic S 1 streamsurfaces initially independent of each other.

In ASTEC, each blade slice defined in the (x, r) meridional plane, as shown infigure 3.19, leads to the definition of an axisymmetric S 1 streamsurface. Since ASTEC resolves the flow at cell centers, the potential calculations have to be performed on periodic S 1 streamsurfaces intersecting blade mesh at cell centers. In addition, the periodic S 1 streamsurfaces are tri-dimensional, they need to be flattened to allow the potential description of the blade-to-blade flow of Hess & Smith method. These surfaces are transformed in the classical (m ′ , θ) coordinate system using the following definition:

m ′ = dm r = √ dx 2 + dr 2 r (3.58)
where m and m ′ are the classic and normalized meridional coordinates. This transformation is conformal and thus conserves the angles. The coordinate θ of the blade profile in the cylindrical coordinate system is left unchanged. To summarize, an axial compressor blade slice in the (x, r) plane leads, after transformation to a bi-dimensional blade profile in the (m ′ , θ) coordinate system as schematized in figure 3.20:

Practically, the overall procedure for the bi-dimensional potential description of the flow past a cascade of airfoils is applied in the (m ′ , θ) coordinate system and all the results are then transposed to the original blade geometry on the S 1 streamsurfaces. In the literature the work of McFarland (1984) describes, for example, the usage of this conformal transformation. 

Compressibility effects

Full potential equation

To establish the steady compressible potential flow equation, also known as full potential equation, one must write the Euler equations for a steady flow (here in nonconservative form):

divρV = 0 ρ [V • ∇(V)] = -∇p (3.59) (3.60)
In an isentropic flow, the sound velocity a is linked to the pressure such that:

a 2 = ∂p ∂ρ s (3.61)
Rewriting eqs. (3.59) and (3.60) with eq. (3.61) using Einstein convention for repeated indices:

       v i ∂ρ ∂x i + ρ ∂v i ∂x i = 0 ρv j ∂v i ∂x j + a 2 ∂ρ ∂x i = 0 (3.62) (3.63) where V t = v x v y v z .
Then by multiplying the newly obtained momentum equation eq. (3.62) by v i and using eq. (3.62) gives:

ρv i v j ∂v i ∂x j -ρa 2 ∂v i ∂x i = 0 (3.64)
after rearrangement it yields:

∂v i ∂x i - v i v j a 2 ∂v i ∂x j = 0 (3.65)
At this point, no additional hypothesis has been made since that of a steady flow. Then, if the flow is assumed irrotational, the velocity can be expressed as the gradient of a potential function (see section 3.1.1) so that:

v i = ∂ϕ ∂x i M i = 1 a ∂ϕ ∂x i (3.66)
where M i is the i th component of the local Mach number vector

M t = M x M y M z .
Then, the compressible full potential equation, rewritten with components, develops as:

(1 -M 2 x ) ∂ 2 ϕ ∂x 2 + (1 -M 2 y ) ∂ 2 ϕ ∂y 2 + (1 -M 2 z ) ∂ 2 ϕ ∂z 2 -2 M x M y ∂ 2 ϕ ∂x∂y + M y M z ∂ 2 ϕ ∂y∂z + M z M x ∂ 2 ϕ ∂z∂x = 0 (3.67)

Linearized bi-dimensional potential equation

In the case of small perturbation hypothesis, eq. (3.67) can be linearized using order of magnitude considerations. The whole demonstration is well explained in [START_REF] Anderson | Modern Compressible Flow: With Historical Perspective[END_REF]. The flow potential and velocity under the small perturbation hypothesis are written assuming an onset flow aligned with the x-axis (the bi-dimensional case is detailed here after, without any loss of generality):

ϕ = ϕ ∞ + ϕ = V ∞ x + ϕ (3.68) V = V ∞ + V = V ∞ + ∂ ϕ ∂x ∂ ϕ ∂y t (3.69)
Under the small perturbation hypothesis, it is possible to write: (

∂ ϕ ∂x ≪ V ∞ ∂ ϕ ∂y ≪ V ∞ ∂ ϕ ∂x 2 ≪ V 2 ∞ ∂ ϕ ∂y 2 ≪ V 2 ∞ ( 3 
1 -M 2 ∞ ) ∂ 2 ϕ ∂x 2 + ∂ 2 ϕ ∂y 2 = 0 (3.71)
The magnitude of the neglected terms of eq. (3.67) is effectively negligible in specific ranges of onset Mach numbers, in particular:

• for subsonic flows: 0 ≤ M ∞ ≲ M crit inf ;

• for supersonic flows:

M crit sup ≲ M ∞ ≲ 5.
where M crit inf and M crit sup are the critical Mach numbers of the considered blade, respectively inferior (subsonic) and superior (supersonic). The first one corresponds to the highest Mach number at which the flow over the blade remains inferior or equal to the speed of sound. The second one correspond to the lowest Mach number at which the flow over the blade is superior or equal to the speed of sound. The transonic domain comprised between M ∞ = M crit inf and M ∞ = M crit sup as well as the hypersonic domain M ∞ > 5 are excluded in this simple small perturbation approach. Still, other small disturbance theories exists for potential hypersonic flows and this topic is addressed in [START_REF] Anderson | Modern Compressible Flow: With Historical Perspective[END_REF] for example. The compressible potential approach, proposed in the following, based on eq. (3.71) is then suitable for compressor flows without transsonic areas as hypersonic flow are commonly not encountered in aeronautic compressor applications.

Prandtl-Glauert affine transformation

The compressibility effects accounting used in this thesis rely on the fact that eq. ( 3.71) for compressible potential flow can be transformed to an incompressible potential flow description such as the one obtained in section 3.1.1. This is done by performing the following affine transformation of the original 2D space (x, y) to the resultant one (ξ, η):

ξ = x ∂ξ ∂x = 1 ∂ξ ∂y = 0 (3.72) η = 1 -M 2 ∞ y ∂η ∂x = 0 ∂η ∂y = 1 -M 2 ∞ (3.73)
and:

ϕ i (ξ, η) = 1 -M 2 ∞ ϕ(x, y) (3.74)
where ϕ i is the incompressible perturbation potential in the transformed plane (ξ, η) corresponding to the original compressible potential flow in the (x, y) plane. Indeed, using eqs. (3.72) to (3.74) with eq. (3.71) shows that ϕ i is solution of the following Laplace equation:

∂ 2 ϕ i ∂ξ 2 + ∂ 2 ϕ i ∂η 2 = 0 (3.75)
This affine transformation is the well known Prandtl-Glauert transformation, allowing the estimation of a compressible flow from the calculation of an incompressible one, providing the respect of the previously discussed Mach number restrictions. In the following, the incompressible flow is denoted with an i subscript.

In the small perturbation hypothesis, the relative to the blade angle of the bidimensional flow β is defined in the (x, y) plane by:

tan β = ∂ ϕ ∂y V ∞ + ∂ ϕ ∂x ≃ ∂ ϕ ∂y V ∞ (3.76)
and in the transformed (ξ, η) plane it yields:

tan β i = ∂ ϕ i ∂η V ∞ + ∂ ϕ i ∂ξ ≃ ∂ ϕ i ∂η V ∞ (3.77)
in addition:

∂ ϕ ∂y = 1 √ 1 -M ∞ ∂ ϕ i ∂y = ∂ ϕ i ∂η (3.78)
Considering eqs. (3.76) to (3.78), it is possible to write that β(x, y) = β i (ξ, η). This means that the streamlines respectively in the (x, y) and (ξ, η) planes are the same. Also, according to the non-penetration condition on the profiles, the potential flow is tangent to the profile so the shape of the profile in both planes is the same. Hence, the Prandtl-Glauert transformation relates the compressible flow over airfoils in (x, y) plane to the incompressible flow in (ξ, η) plane over the same airfoils.

For cascades and compressors cases, the reference potential onset flow Mach number is fictitious and, from cascades considerations of section 3.2.1, is equal to the average Mach number between the inlet and the outlet of the row:

M ∞ = M 1 + M 2 2 (3.79)
Then the small perturbation analysis and so the Prandtl-Glauert transformation must be done from this reference direction even if it is usually M 1 that is known for compressors. That means that x and the transformed abscissa axis ξ must be aligned with M ∞ . The onset Mach number vector M ∞ can be estimated from a previous incompressible potential calculation giving the onset relative velocity W ∞ from the cascade circulation according to eq. (3.52). Once W ∞ is known then the infinite flow direction for the transformation is known.

The transformation is illustrated in figure 3.21 for the NACA 65 009 cascade for an inlet Mach number M 1 = 0.5, where the original and the transformed cascade leading edges are aligned with the normal direction of the global cascade frame (c ∥ , c ⊥ ) after the transformation.

According to Hawthorne (1964), the incompressible flow past a cascade equivalent to the compressible flow past the original cascade, is described by the following parameter relations defined in the global cascade frame (c ∥ , c ⊥ ):

• Stagger angle λ: tan λ i = tan λ √ 1-M 2 ∞ ; • Inlet angle β 1 : tan β i1 = tan β 1 √ 1-M 2 ∞ ; • Blade thickness t: t i = t √ 1-M 2 ∞ ; • Pitch s: s i = s 1 -cos 2 λ M 2 ∞ .
In conclusion, the transformation leads to the construction of a fictive cascade which makes the profile to be thicker and the pitch smaller in the transformed case compared to the original cascade geometry. As a consequence, the distance between the streamlines in the blade-to-blade plane is reduced. The fictive cascade stagger angle is increased and the incidence of the inlet flow is adapted. In the case of an axial compressor the transformation is applied after the streamsurface flattening operation presented in section 3.2.5.

Pressure coefficient & comparison to MISES

A comparison is made between the implemented Hess & Smith method with the Prandtl-Glauert compressibility transformation and the compressible Euler solver of MISES on the NACA 65 009 cascade. The incompressible pressure coefficients, defined in eq. (3.57), for the same incidences presented in section 3.2.4 at an inlet Mach number of 0.5 are visible in figure 3.22. The case of low Mach number is also reproduced to illustrate the compressible effects. The overall compressible effects on the pressure coefficient are well captured by the geometrical affine transformation of Prandtl-Glauert for an inlet Mach number M 1 up to 0.5 as shown in figure 3.22. Only small discrepancies in the modeled compressible pressure coefficient levels are observed. For higher inlet Mach numbers, the observed discrepancies get stronger. Eventually, for an inlet Mach number of 0.7 at i = 5 • of incidence for example, the Euler solver of MISES would predict a shock at the suction side evidenced in figure 3.23 with the spike at x/c ax ≃ 5%. Naturally, the accuracy of the Prandtl-Glauert transformation for higher Mach numbers depends on the shape of the profile as well as the original cascade parameters. It will lead to better results if the analyzed cascade supports higher Mach numbers before the appearance of transsonic effects. First, has expected, there is no influence of the compressibility effects on the streamlines because they are kept the same. Then the compressibility effects increase the overall pressure around the cascade compared to the low Mach number case. The cascade back pressure increase is also clearly visible, evidencing the fact that higher inlet Mach numbers allows reaching higher pressure rise at the compressor cascade exit, which is used in compressor design trends. Indeed, when the flow in considered compressible, the density rises as the Mach number rises and, considering a thermally perfect gas, the pressure rises as well.

c ∥ M 1 M i1 s i s λ β 1 β i1 λ i M ∞ M ∞ c ⟂ y x ξ η
3.2.7. Inviscid blade force source term modeling ASTEC f bi source term update It has been seen that the implemented Hess & Smith method allows computing the streamlines in the blade-to-blade periodic streamsurfaces S 1 of compressor cascades or compressor blade rows. This can be used to set the flow angle, for ASTEC calculation, in the inviscid blade force source term model detailed in eqs. (2.17) and (2.18) of section 2.3.2. In details, the circumferentially averaged flow angle on each streamsurfaces is calculated from the circumferential averaged potential flow velocity in the considered streamsurfaces (applying the circumferential averaging defined eq. ( 2.3) on the potential streamsurfaces). Then the orthogonality condition of eqs. (2.17) and (2.18) is performed on the camber-line normal vectors updated to follow the circumferential averaged flow angle using the Euler-Rodrigues formula for vector rotation in 3D:

n new = n old cos β + e ∧ n old sin β + (e • n old )(1 -cos β)e (3.80)
where e is the rotation direction used to rotate n old by an angle β. The rotation direction is defined in the cylindrical coordinates to be normal to the local meridional velocity vector V t m = V x V r 0 taken from ASTEC:

e t = -Vr Vm Vx Vm 0 ; V m = V 2 x + V 2 r (3.81)
The prescribed β is the difference between the local current orientation of the velocity vector and the desired orientation deduced from potential calculation on each streamsurfaces. Thus, ASTEC calculation converges towards a flow direction in the blade rows consistent with the flow direction predicted by the potential calculation instead of the direction of the blade camber surface after f bi source term update.

Leading edge incidence adaptation

The use of potential prescribed instead of camber-line prescribed flow direction in ASTEC is illustrated in figure 3.25 for the NACA 65 009 cascade case. The first row of figures show the difference on the blade relative angle β whether it is driven by the potential calculation or by the camber-line direction in the inviscid blade force source term for 0 • or 5 • of incidence. The second row of figures show the axial evolution of the entropy loss coefficient based on the relative inlet velocity W 1 for both angle imposition method and both incidences. For the comparisons, ASTEC calculation runs in Euler mode and no loss models were activated. It can be seen by comparison of figures 3.25a and 3.25b that when the flow crosses the cascade, the relative angle evolution is smoother from the inlet incidence angle in the case of a potential driven inviscid blade force compared to the case of a camberline driven inviscid blade force when the incidence increases. It can also be seen that, for each incidence, the angle evolution are not the same between potential or camberline driven approach, which is normal. Indeed, the potential flow that would predict blade-to-blade and cascade exit angles equal to the camber-line ones is the flow over an infinite solidity cascade. The difference between the angles obtained at the trailing edges between the two approaches correspond to the potential flow deviation. Also, figures 3.25c and 3.25d show that crossing the leading edge plane, spurious entropy creation occurs. This is due to high intensity of the invicid blade force source term concentrated in the first cells after the leading edge to make the flow to follow the imposed angle from the very beginning of the bladed region. This leads, for 0 • of incidence, to numerical loss lower than 0.05% for both ways of angle imposition. However, as the incidence increase and move apart from the adaptation angle, the numerical loss rises to 1.8% for camber-line imposed angle whereas it remains contained under 0.13% for the potential driven approach. The fact that the potential flow smoothly adapt the flow angle from the inlet incidence at the leading edge highly reduces the numerical errors occurring when the difference between the inlet incidence and the camber-line angle at leading edge become larger. This incidence adaptation is a known problem relative to CFD-based throughflow solvers. It is usually treated by altering the blade geometry in the leading edge region to manually adapt the camber-line to the inlet flow incidence (Budo et al., 2021;[START_REF] Persico | A Penalty Formulation for the Throughflow Modeling of Turbomachinery[END_REF][START_REF] Simon | Contribution to Throughflow Modelling for Axial Flow Turbomachines[END_REF]. In the developed methodology, regarding the benefits of the potential approach about the incidence adaptation, no additional method to bend the camber-line has been used.

Conclusion on potential flow theory

This chapter introduces the Hess & Smith potential method, derived from the well known singularity method, and applied it to compressor cascades. Only the blade geometry and the upstream cascade flow velocity vector are required to calculate the potential flow in each blade-to-blade streamsurface. The first results presented showed excellent agreement with the Euler solver of MISES. The method can be used on compressor blade rows by a flattening technique of the blade-to-blade streamsurfaces to be analyzed. As it will be seen in the next chapter, the aim of the development of such a method in a throughflow solver is to access additional inviscid data in the blade-to-blade streamsurfaces, such as the flow velocity, to provide for an ensemble of viscous models for compressors.

The abilities of the method to deal with compressible flows was also introduced by the Prandtl-Glauert transformation. The flow is therefore limited to subsonic domain up to theoretical Mach number of 0.8. By using an a priori transformation of the geometry, the value of the potential velocity affected by compressibility is accessible in the whole studied streamsurface. This constitutes an asset compared to widely used scalar compressibility corrections for pressure coefficients, such as the Prandtl-

Conclusion on potential flow theory

Glauert or Kármán-Tsien rules, since it is not clear how to access the flow velocity from corrected pressure coefficient afterward and also how they apply to cascade cases.

Another important point is that the potential flow can be used to drive the inviscid blade force source term by calculating the mean blade-to-blade flow angle in each streamsurface. This brings a more realistic distribution of the flow angle in the blade channel than the traditional camber-line angle and allows to reduce related to incidence non-physical behavior of the CFD-based throughflow solver, as experienced in the literature.

As a conclusion, fast calculating 2.5D features for compressors were brought to ASTEC throughflow solver in this chapter.

I

n the previous chapter ASTEC was given additional blade-to-blade calculation abilities thanks to the implementation and application of the Hess & Smith method to the blade row S 1 streamsurfaces. In this chapter, this inviscid flow calculation is used to build a set of viscous models to account for profile loss and deviation, wake decay and tip leakage loss in the case of a rotor.

Profile boundary layer

As the flow crosses a blade row, the viscosity of the fluid leads to the development of boundary layers on the blade pressure and suction surfaces. The development of the respective boundary layers starts at the stagnation point located near the leading edge towards the trailing edge. The position of the stagnation point depends on the blade loading, i.e. the relative incidence of the flow relative to the blade, and high incidence can make the boundary layer to enter stall regime due to strong adverse pressure gradients on the blade surfaces. High loads also lead to the development of end-wall secondary flows, even corner separation for critical loading cases. These secondary flows come from the interaction of the incoming end-wall boundary layer upstream of the blade row with the blade boundary layer, as mentioned by [START_REF] Schlichting | Application of Boundary-Layer Theory in Turbomachinery[END_REF] and discussed in chapter 1, leading to radial flow migration due to increasing blockage effects. In this section only the boundary layers far from the end-walls are considered so that they can be considered as nearly bi-dimensional. A bi-dimensional profile boundary layer, as illustrated in figure 4.1, is included in ASTEC with the help of an Integral Boundary Layer Method (IBLM) detailed hereafter. 

Integral boundary layer method

Boundary layer equations

The velocity vector in the turbulent boundary layer, V = u v t , can be decomposed into a statistical average value and a fluctuation such that V = U + u ′ V + v ′ t . The boundary layer equations, obtained by Prandtl in 1904, for a steady bi-dimensional incompressible turbulent flow are:

         ∂U ∂x + ∂V ∂y = 0 U ∂U ∂x + V ∂U ∂y = - 1 ρ ∂P ∂x + ν ∂ 2 U ∂y 2 - ∂ ∂y < u ′ v ′ > (4.1) (4.2) with: - 1 ρ ∂P ∂x = U e ∂U e ∂x
where ν is the kinematic viscosity. As well P is the statistic average value of the pressure. The term < u ′ v ′ > constitutes the turbulent Reynolds tensions, which are absent in laminar flows. On the edge of the boundary layer U = U e , equals to the asymptotic velocity immediately outside the boundary layer. At the wall, due to no slip condition on the surface, U = V = 0. The turbulent Reynolds tensions < u ′ v ′ > vanish at the wall and at the edge of the boundary layer y = δ. Conventionally, the integration takes place in the direction perpendicular to the blade surface and the corresponding local coordinate notations are introduced in figure 4.2. [START_REF] Prandtl | The Mechanics of Viscous Fluids[END_REF] showed in "The Mechanics of Viscous Fluids" that there is no significant effects of the wall radius of curvature on the integration, provided it is large compared to the boundary layer thickness. This boundary layer approximation breaks down near the stagnation point i.e. near the leading edge since pressure variation in the wall-normal direction are no longer negligible. However, [START_REF] Cantwell | A New Boundary Layer Integral Method Based on the Universal Velocity Profile[END_REF] demonstrated that for a Joukowski 0012 profile, the degree of error committed was acceptable when they applied their IBLM all the way from the stagnation point to the trailing edge.

Integral boundary layer equations

For profile boundary layer calculations, the equations used in this work are the reference equation of Von Kármán eq. ( 4.3), obtained after integrating eqs. (4.1) and ( 4.2) in the y-direction, and the Head (1958) equation eq. ( 4.4): 4.4) with: The displacement thickness:

Von Kármán: dδ 2 dx = C f 2 -(H 12 + 2) δ 2 U e dU e dx (4.3) Head: d(δ -δ 1 ) dx = F(H δ-δ 1 ) - δ -δ 1 U e dU e dx ( 
H δ-δ 1 = δ -δ 1 δ 2 = G(H 12 ) (4.5) V ∞ U e (x) y y x x δ(x) δ 1 (x) U e (x) U e (x) U(x)
δ 1 = δ 0 1 - U U e dy (4.6) 
The momentum thickness:

δ 2 = δ 0 U U e 1 - U U e dy (4.7)
with the shape factor:

H 12 = δ 1 δ 2 (4.8)
The first one traduces the effect of the boundary layer on the external flow streamlines. It is the normal distance of which the wall must be displaced to have a hypothetical inviscid flow of uniform velocity U e , having a massflow rate identical to the one obtained for the viscous flow. The second one is directly linked to the loss of momentum occurring in the boundary layer due to viscous effects. Similarly, it is the normal distance by which the wall must be displaced to have a hypothetical inviscid flow of uniform velocity U e having the same momentum flow rate of the flow obtained with the boundary layer.

The shape factor determines the nature of the flow. For a typical turbulent boundary layer (TBL), H 12 ∼ 1.3 to 1.4 while for a typical laminar flow H 12 ∼ 2.59. The value of H 12 , is strongly dependent on the adverse pressure gradient.

The equations eqs. (4.3) and (4.4) are suitable for fully turbulent flow in presence of † There is several ways to define the boundary layer thickness as it is a vague concept. Since the boundary layer thickness is not directly used in the following thesis, the reader may consider the simple but commonly accepted definition as the thickness corresponding to a velocity equals to 99% of the asymptotic velocity at the outer edge of the boundary layer.

adverse pressure gradients since the F and G functions, parts of the Head auxiliary equation, are determined experimentally from turbulent flows over flat plates in presence of adverse pressure gradients. F model the entrainment of fluid from the external flow toward the boundary layer, due to the turbulence as a function of the convenient velocity profile shape factor H δ-δ 1 . Head supposed that G only depends of the boundary layer shape factor H 12 . Their expressions are:

F(H δ-δ 1 ) = 0.0306(H δ-δ 1 -3) -0.653 (4.9) G(H 12 ) = H δ-δ 1 = 1.535(H 12 -0.7) -2.715 + 3.3 (4.10)
In turbomachinery applications, the incoming flow is often sufficiently turbulent to trigger the transition near the leading edge. The experimental annular cascade study of [START_REF] Schulz | Three-Dimensional Separated Flow Field in the Endwall Region of an Annular Compressor Cascade in the Presence of Rotor-Stator Interaction: Part 1-Quasi-Steady Flow Field and Comparison With Steady-State Data[END_REF] showed that the incoming wakes of an upstream rotor create enough turbulence to make a by-passed transition appear at the leading edge of the tested cascade blades. The choice of fully turbulent boundary layer equations is made to simulate the compressor stages of a modern turbofan engine. This simplification is no longer valid for the boundary layer developing on the fan rotor, especially at part speed where a transition may occur with the possible presence of a laminar separation bubble. In similar cases, the boundary layer model would need to be extended to deal with laminar flow and boundary layer transition complex phenomenon.

To close this set of integral equations, the local wall friction coefficient C f must be estimated. In the present methodology, the reference flat plate friction law for turbulent flow of [START_REF] Ludwieg | Investigations of The Wall-Shearing Stress in Turbulent Boundary Layers[END_REF] is used:

C f = τ w 1 2 ρ e U 2 e = 0.24610 -0.678H 12 Re -0.268 δ 2 (4.11)
with:

τ w = µ ∂U ∂y y=0 (4.12)
where τ w is the stress at the wall, µ is the fluid dynamic viscosity, Re δ 2 is the local

Reynolds number based on the momentum thickness and ρ e is the local density of the free-stream.

To compute the boundary layer on a surface, the outer velocity U e is required. In this work the potential methodology developed in chapter 3 is used to provide velocities on the suction and pressure sides of the blade rows for each streamsurface as it is defined in the same chapter. Then a space-marching procedure is achieved on the suction and pressure sides respectively, from the stagnation point to the trailing edge for an explicit computation of the boundary layer:

δ 2 | x i+1 = δ 2 | x i + ∆x dδ 2 dx x i (4.13) (δ -δ 1 )| x i+1 = (δ -δ 1 )| x i + ∆x d(δ -δ 1 ) dx x i (4.14)
where ∆x = x i+1 -x i . First values of δ 2 and δ -δ 1 as well as C f are required to start the calculation. They are estimated from Blasius turbulent laws for pipe flow, extended for flat plate. [START_REF] Cousteix | Aérodynamique: Turbuence et couche limite[END_REF] admitted that the agreement was surprising good for the flat plate applications even if there is remarkable differences between the pipe flow and the flat plate flow. The laws are slightly adapted by R. Michel † for turbulent flow with Reynolds number up to 10 8 . Also the following modified Blasius turbulent laws show a nearly constant boundary layer shape factor H 12 of 1.4 for Reynolds numbers from 10 6 to 5 × 10 6 . They read:

δ 1 /x = 0.0309Re -1 6 x (4.15) δ 2 /x = 0.0221Re -1 6 x (4.16) C f = 0.0368Re -1 6 x (4.17)
Practically, the initial calculation is only done for the very first point after the stagnation point, then x = x 1 -x 0 = x 1 . Thus the Reynolds number Re x is evaluated with x 1 . It is also possible to initialize the calculation from external values at a given x i position, coming from experimental results or higher fidelity methods.

The method showed stability issues for the boundary layer calculation over a profile, due to high variation of U e near the leading edge. In response, an implicit formulation of eqs. (4.13) and (4.14) was successfully tested in this region:

δ 2 | x i+1 = δ 2 | x i + ∆x dδ 2 dx x i+1 (4.18) (δ -δ 1 )| x i+1 = (δ -δ 1 )| x i + ∆x d(δ -δ 1 ) dx x i+1 (4.19)
In practice, the boundary layer calculation is started implicitly on the first 10% of the suction side and pressure side respectively using standard non-linear optimization routines and then continued explicitly to save calculation time.

Boundary layer separation handling

In presence of a strong pressure gradient, the turbulent boundary layer may eventually separate. In the litterature, the point where this separation occurs is sometimes called the Goldstein's singularity from an extension of his reference work on laminar flows [START_REF] Goldstein | On Laminar Boundary-Layer Flow Near a Position of Separation[END_REF]. The IBLM method previously presented does not handle separated cases since the used friction law of [START_REF] Ludwieg | Investigations of The Wall-Shearing Stress in Turbulent Boundary Layers[END_REF] predicts the cancellation of the friction coefficient for an infinite value of H 12 , which is not supported by the empirical functions F and G. In the literature reviewed by [START_REF] Cousteix | Aérodynamique: Turbuence et couche limite[END_REF], experimental data on flat plates leads to a measured shape factor from 2.5 to 4.0 at turbulent separation. [START_REF] Schlichting | Application of Boundary-Layer Theory in Turbomachinery[END_REF] fixed the value of H 12 at 2.0 at separation in his application of an IBLM to turbomachinery cases. In the present implementation, first testings on the bi-dimensional NACA 65 009 case already introduced in the previous chapter, revealed that the IBLM fails when H 12 ≳ 2.4. A simple procedure is then adopted to avoid the method to fail in stalled cases. In a physical point of view, when separation appears, for example on the suction side of a cascade, the blade is no longer able to provide deflection to the flow. The following assumption is thus made: in case of separation, the flow will not be deflected anymore and its streamlines will be straight from the point of detected separation until the trailing edge. A separated enlarged profile is thus obtained and δ 1 in separated region can be deduced geometrically as the distance from the extrapolated streamline to the profile in direction normal to the profile (the blue line in figure 4.3). The shape factor growth rate start to become exponential when the turbulent boundary layer enters a separated regime. Thus, H 12 is exponentially extrapolated on the blade surface from the point of detected stall until the profile trailing edge allowing to deduce δ 2 in separated region. In practice, the separated threshold value of H 12 is fixed to 2.0 in order to perform extrapolations right before the boundary layer, predicted by the IBLM, enters exponential growth regime. The friction coefficient is still estimated using eq. ( 4.11) past the shape factor threshold value.

Flat plate validations

First validations of the implemented IBLM are carried out on flat plate experimental data coming from two different experiments. The first experiment results were presented at the Stanford Conference of 1968 (Coles andHirst, 1968;[START_REF] Kline | Computation of Turbulent Boundary Layers: Methods, Prediction, Evalutation and Flow Structure[END_REF]) by Wieghardt and do not involve any pressure gradient over the plate. The second experiment is detailed in [START_REF] Spalart | Experimental and Numerical Study of a Turbulent Boundary Layer with Pressure Gradients[END_REF] and this time, the flow over the plate is accelerated (favorable pressure gradient) and then decelerated (adverse pressure gradient).

Zero pressure gradient

The first experiment chosen for validation is a simple flow over a 5 m long flat plate at constant U e = 33 m s -1 and was conducted by Wieghardt. The boundary layer formed from the leading edge of the flat plate quickly became turbulent after the leading edge. The friction coefficient and the shape factor from the IBLM are compared against the experimental results (adapted from [START_REF] Kline | Computation of Turbulent Boundary Layers: Methods, Prediction, Evalutation and Flow Structure[END_REF] by [START_REF] Cousteix | Aérodynamique: Turbuence et couche limite[END_REF] pp. 176-178) in figure 4.4.

In the IBLM method, the calculation is started at x = 0 m with the turbulent Blasius relations eqs. (4.15) to (4.17). Thus the expected value of H 12 = 1.4 is predicted for the initial value (see figure 4.4b). A high initial value of the friction coefficient is also predicted by the initial correlations (see figure 4.4a), leading to a rapid growth of the shape factor before returning to more conventional turbulent values between 1.3 and 1.4 as the friction coefficient rapidly decreases. From x ≈ 1 m, the characteristic slow evolution for both turbulent boundary layer coefficients predicted by the IBML agrees well with the experimental results. In fact, [START_REF] Cousteix | Aérodynamique: Turbuence et couche limite[END_REF] suggests that the rapid evolution near the leading edge, as well as the relatively high value of H 12 , evidence a not fully turbulent boundary layer near the leading edge of the flat plate. This leads to the mentioned discrepancies since the implemented IBLM assumes full turbulent boundary layer development. However, the predicted trend is very good after the leading edge region for the friction coefficient. The predicted shape factor levels inherit the initial discrepancies but in the full turbulent region x ≳ 1 m, the turbulent slow decrease is captured.

Positive and negative pressure gradients

The capability of the implemented IBLM to deal with turbulent flows in presence of pressure gradients is validated against the experimental results of [START_REF] Spalart | Experimental and Numerical Study of a Turbulent Boundary Layer with Pressure Gradients[END_REF]. The experiment consists in a flat plate flow at reference Reynolds number of 4.28 × 10 5 . The pressure gradient is provided by a contouring in the experimental wind tunnel as illustrated in figure 4.5. Values for both axis x and y are in meters.

The authors also conducted a Direct Numerical Simulation (DNS) simulation in the paper for comparisons (not discussed here), then the Fringe and Period indicators (visible in figure 4.5) are related to it. The measured boundary layer was fully turbulent thanks to the presence of trips. The contouring shape leads to an accelerated flow until

x ∼ 0.6 m. After that position the flow is decelerated by the adverse pressure gradient materialized by the measured pressure coefficient shown in figure 4.6. 1993).

The predictions of the IBML are compared against the experimental results from the paper of Spalart and Watmuff in figure 4.7. For this analysis, the IBLM is initialized with the experimental values. The measurements started at x = 0.4 m. The calculation predictions show an excellent agreement with the experimental results on the friction coefficient C f (figure 4.7c) as well as on the boundary layer momentum thickness δ 2 (figure 4.7d). This illustrates the accuracy of the Ludwieg and Tillmann turbulent flat plate correlation for the friction coefficient for favorable or not favorable pressure gradient. However, the experimental boundary layer shape factor H 12 as well as the displacement thickness δ 1 , respectively figures 4.7a and 4.7b are slightly underestimated by the IBLM compared to the experiment. As a first try to explain the mentioned differences, the higher values for H 12 and δ 1 in the experiment results may be explained by the influence of the trips that may have thicken the boundary layer (in particular the displacement thickness). Indeed, according to [START_REF] Cousteix | Aérodynamique: Turbuence et couche limite[END_REF], the experimental values of H 12 of figure 4.7a at the entrance of the accelerated part of the plate seems a bit large (H 12 ≈ 1.49) compared to the literature which indicates H 12 ∼ 1.3 to 1.4 for a TBL. Nonetheless, the trends for both H 12 and δ 1 are very well captured by the IBLM for that case, validating the implemented method for non separated flow for now. 

Wake integral quantities

From the previously presented IBLM, the boundary layer integral quantities can be estimated on the suction and pressure side of a compressor blade from the stagnation point to the trailing edge. The objective of this section is to estimate the bi-dimensional wake integral quantities (shape factor, displacement and momentum thicknesses) from the estimated bi-dimensional boundary layer at the trailing edge of the blade.

Wake calculation principle

The principle of the implemented wake calculation is based on the estimation of the decay of the blade bi-dimensional boundary layers characteristics from the trailing edge to the next blade row. In a compressor row, the adverse pressure gradient leads the blade boundary layers to thicken. The blockage increment materialized by the growing displacement thickness on the suction and pressure sides of the blade is maximal at the trailing edge. Then just after the trailing edge, the suppression of trailing edge thickness leads to a rapid increase of the effective area. In a bi-dimensional wake, without axial change of the compressor duct downstream of the considered row, the massflow rate is constant. Thus, the asymptotic wake velocity U w e decreases. This behavior is explained on the base of the continuity equation eq. ( 4.20) and illustrated in figure 4.8:

ρ e U w e (s n -δ w 1 ) = const. (4.20)
where δ w 1 is the displacement thickness of the wake and s n = s cos β 2 is the wake center line spacing. At the trailing edge, the wake displacement thickness is equal to the trailing edge thickness added to the suction and pressure side displacement thicknesses. The Von Kármán equation applied to the wake with C f = 0 (due to no wall) reads: Since U w e rapidly decreases in the wake after the trailing edge, the momentum thickness of the wake δ w 2 will rapidly increase after the trailing edge. In this manner, the maximum of mixing losses takes place in the vicinity of the trailing edge.

In figure 4.8, the stations a and b represent the velocity profiles associated with measurement stations in a typical cascade experiment. As the location of measurement plane moves farther away from the trailing edge, the observed wake width becomes larger and the velocity deficit in the wake reduces as a result of the turbulent wake mixing. This mixing phenomena is related to loss production in the wake and thus, U w e (b) < U w e (a). [START_REF] Raj | Characteristics of the Wake behind a Cascade of Airfoils[END_REF].

Wake decay model

The wake study throughout the literature is very rich. In the present work, two different models were tested to close eqs. (4.20) and (4.21). They are based on the Von Kármán description of the wake, similarly to the implemented IBLM in ASTEC:

• The decay model of Lakshminarayana and Davino, 1980;

• The shape factor correlation of [START_REF] Spence | Growth of the Turbulent Wake Close Behind an Aerofoil at Incidence[END_REF].

The first tested model comes from the work of [START_REF] Lakshminarayana | Mean Velocity and Decay Characteristics of the Guidevane and Stator Blade Wake of an Axial Flow Compressor[END_REF] and it is interesting because it explains clearly what phenomenon are occurring in the wake, with notably the presence of near and far wake regions. It considers the velocity deficit in the wake v w = U w e -U w that can be linked to the wake displacement thickness δ w 1 : 4.22) where L w is the local wake width as illustrated in figure 4.8. They correlated the evolution of the velocity deficit at the center of the wake v w c to the axial downstream distance normalized by the blade chord z/c: Two distinct regions appears: near wake and far wake. The reduction of velocity deficit is rapid in the first region and much slower in the second region, traducing a high mixing intensity near the trailing edge and then a lower one as the flow leaves the trailing edge region. The frontier between near and far wake is located at x/c = 0.4.

δ w 1 = L w 1 - U w U w e dy = L w v w U w e dy ( 
Lakshminarayana and Davino (1980) stated that it is not expected that the wake velocity deficit evolves the same way for two different cascades. That is why the correlations eqs. (4.23) and ( 4.24) introduce a normalization by the cascade drag coefficient

C D based on the mean cascade velocity ( W 1 +W 2 2
). In this way, Lakshminarayana and Davino fitted their correlations on two different cases: an Inlet Guide Vane (IGV) with a relative large drag coefficient C D = 2.4% and a stator with a lower drag coefficient

C D = 1.72%.
The influence of the shape of the blade on the flow (i.e. the loading) is thus taken into account through the drag coefficient in the correlations. The complete details of the experimental set up are available in the referred paper.

In order to compute the wake displacement thickness, it is required to know the velocity deficit in the complete width of the wake and not only at the center line. Lakshminarayana and Davino managed to build another relation between the velocity deficit v w and its value at the center line v w c . The idea is to assume a Gaussian evolution of the speed deficit from the center line to the edge of the wake and this for the suction and pressure sides respectively, such that (see figure 4.9):

v w v w c = e -ln2η 2 (4.25)
where η = y/L is the normal to the wake center line distance normalized by the length scale L which is equal to the distances at suction side and pressure side, L ss and L ps respectively, where the speed deficit v w = v w c /2.

Also, by assuming that the total width of the wake L w to be equal to 2L ss + 2L ps , the paper proposes the following correlations for the wake width over the cascade pitch s: Far wake:

y η v w v w v c /2 L ss L ps -3 -1 1 3 0 wake normalization w v c /2 w η ss η ps
L w /s √ C D = 1.18 z c + 0.688 (4.27)
Again, the drag coefficient normalizes the correlations and there is near and far wake regions. Now, it is possible to calculate the wake displacement thickness δ w 1 from the properties of Gaussian functions. The integration formally writes:

δ w 1 = L w v w U w e dy = v w c U w e L w
e -ln2η2 dy (4.28)

For any Gaussian function eq. ( 4.25), the full width at half maximum is 2σ √ 2ln2, where σ is the standard deviation of the Gaussian function. Thus, in the previous particular case where the half widths at half maximum are L ss and L ps , σ ss = L ss / √ 2ln2 and

σ ps = L ps / √ 2ln2.
In addition, the area under the Gaussian curve e -ln2η 2 is finite and equals to σ √ 2π. Then the wake displacement thickness is half the area under the pressure side Gaussian curve added to half the area under the suction side one:

δ w 1 = L w v w U w e dy = v w c U w e σ ps √ 2π + σ ss √ 2π 2 = v w c U w e (L ss + L ps ) √ 2π 2 √ 2ln2 = v w c U w e L w √ 2π 4 √ 2ln2 (4.29)
In practice the use of eq. ( 4.29) together with eqs. Lakshminarayana and Davino correlations started for x/c > 0.06. Before that position the measurements were not possible and so, for the evaluation, the correlation validation domain was simply extended. For using this model, it is necessary to check that the velocity deficit at the trailing edge predicted by the correlation eq. ( 4.23) is compatible with the displacement thickness at the trailing edge predicted by the IBLM added to the trailing edge thickness. If there is no consistency (i.e. no continuity of the blockage), the consequence may be spurious massflow rate behavior due to ASTEC blockage source term.

The second model, the correlation of [START_REF] Spence | Growth of the Turbulent Wake Close Behind an Aerofoil at Incidence[END_REF], for the wake shape factor H w 12 , as a function of the distance after the trailing edge, is visible in eqs. (4.30) and ( 4.31): 4.30) where:

1 - 1 H w 12 = 1 - 1 H w 12, te 40 x c + 1 -0.5 ( 
H w 12, te = ϵ te + δ 1, ss + δ 1, ps δ 2, ss + δ 2, ps te (4.31)
and H w 12, te is the wake shape factor at the trailing edge. Its calculation involve the boundary layer quantities of blade suction and pressure sides respectively as well as the blade trailing edge thickness ϵ te . The x-coordinate represents the local direction of the wake, starting from the trailing edge as shown in figure 4.8. Raj and Lakshminarayana (1973) showed that even if Spence originally established this correlation for an isolated profile, it successfully fitted several experimental cascade wake shape factor evolution studied in their work. In practice, eqs. (4.30) and ( 4.31) are closed with eq. ( 4.30), with H w 12, te initialized using the predictions of the IBLM at the trailing edge. The constant value for the massflow rate is deduced from the the trailing edge values of U w e and δ w 1 , which are set equal to the known trailing edge values also coming from the IBLM. Similarly to the previous model, the procedure allows estimating the axial evolution of the wake displacement thickness δ w 1 and the wake momentum thickness δ w 2 for the source terms after the trailing edge, but the blockage continuity with the bladed region is naturally ensured.

Another limitation, this time applying to both wake decay models, is that they suppose the development of the wake in zero pressure gradient (no convergent nor divergent duct) and so, they necessarily predict a wake decay. More elaborated wake modeling can be found in the literature, for example the work of [START_REF] Hill | Turbulent Wakes in Pressure Gradients[END_REF], that considers axial pressure gradients in the wake (negative or positive) as well as a local eddy viscosity. These effects, lead to either a decay or a growth of the wake, depending on the intensity and the sign of the pressure gradient. But again, special care must be provided if this model is to be used in the vicinity of the trailing edge. Indeed, some simplifications are made with the consideration of a wake far from the considered blade trailing edge: a wake shape factor close to one and small wake velocity deficit.

Considering that the desired wake model must satisfy the blockage continuity from blade to wake regions, added to the objective of limited usage of correlations in this work, the second model was adopted in ASTEC. Nevertheless, it uses the same base equations of more complex wake models, facilitating future improvements to take into account the discussed pressure gradient effects.

The validation of the implemented wake model using [START_REF] Spence | Growth of the Turbulent Wake Close Behind an Aerofoil at Incidence[END_REF] wake shape factor correlation will be done in section 4.3.5 together with the validation of the IBLM applied to a cascade case.

Tip leakage flow

In the case of an unshrouded compressor rotor, the functional tip gap leads to a tip leakage flow over the rotor blade tip. This leakage flow coming from the pressure side of the blade to the suction side is the place for important loss, blockage and flow deviation, reducing the compressor operability. Following the literature review of chapter 1, the choice is made to base the future development of tip leakage flow modeling on Denton's model. Indeed, it involves no empirical correlations and the input of the model are the blade tip velocities that are available through the implemented Hess & Smith method.

Tip leakage loss model

The tip leakage loss model implemented is an improved version of the one-dimensional model of [START_REF] Denton | Loss Mechanisms in Turbomachines[END_REF]. This model is based on the steady one-dimensional precise thermodynamic mixing analysis of gases injected into a main stream first established by [START_REF] Shapiro | The Dynamics and Thermodynamics of Compresible Fluid Flow[END_REF]. The theory allows to take into account area change, wall friction, drag of internal bodies, chemical reactions and heat exchange with possible phase change in the mixing process. For a compressor rotor application, Denton stated that the flow at the blade tip pressure side crosses over the blade tip to mix with the blade tip suction side flow, as illustrated in figure 4.10.

In this way, it is assumed that the free-stream flow has a velocity magnitude W ss and the injected flow has a parallel to the free stream flow component W ps and a perpendicular to the camber-line leakage component W l . This is slightly different from the description of Denton (1993) since he assumed the pressure side flow W ps to be parallel to the blade chord for simplicity. The present less simplified assumption states that the pressure and suction side flows follow closely the blade camber-line. It is valid for thin blades, which is often the case at tip rotor compressor blades.

The local leakage massflow rate, dm l , crossing the blade tip along a fraction of the camberline dc l writes:

dm l = C d ρW l g dc l (4.32)
where g is the local tip gap height and C d is the discharge coefficient coming from the particular geometry of the blade tip gap region. This coefficient comes from the vena contracta theory and, in this particular implementation of the model, the analytic value of [START_REF] Moore | Tip Leakage Flow in a Linear Turbine Cascade[END_REF] obtained from potential flow, is used:

C d = σ 1 -2(σ -σ 2 ) (4.33) with: σ = π 2 + π (4.34)
which gives C d = 0.8436. For incompressible flow, the normal to the camber-line leakage component W l can be estimated assuming bi-dimensionality and applying the momentum equation in the direction perpendicular to the blade camber-line. The local leakage massflow rate eq. ( 4.32) become:

dm l = C d 2ρ∆p g dc l (4.35)
and from incompressible Bernoulli equation ∆p = ρ(W 2 ss -W 2 ps )/2:

dm l = C d ρ W 2 ss -W 2 ps g dc l (4.36)
Shapiro's theory, applied to the previously described compressor rotor blade row by [START_REF] Denton | Loss Mechanisms in Turbomachines[END_REF], gives for the entropy created by the irreversible mixing process:

ds = c P (γ -1)M 2 1 - W ps W ss dm l m c (4.37)
where c P is the specific heat at constant pressure of the fluid, γ is the adiabatic perfect gas exponent, M is the local Mach number at which the mixing takes place and m c is the massflow rate in the blade channel, which is equal to the compressor total massflow rate divided by the blade number in the considered row. The expression eq. ( 4.37) is rearranged by stating that the suction side Mach number is considered for the mixing:

T ds = W 2 ss 1 - W ps W ss dm l m c (4.38)
where T is the compressor inlet reference static temperature. Integrating on the blade camber-line finally gives:

T ∆s = ρgC d m c c l W 2 ss 1 - W ps W ss W 2 ss -W 2 ps dc l (4.39)
In practice, the blade tip suction and pressure sides velocities are locally known thanks to the implemented Hess & Smith method of chapter 3. This local calculation of the leakage massflow together with the usage of local blade velocities constitutes the improved implementation of the legacy proposition of [START_REF] Denton | Loss Mechanisms in Turbomachines[END_REF], where the blade suction and pressure sides velocities where roughly estimated using inlet and outlet knowledge. The blade channel massflow rate is available in ASTEC calculation and so the tip leakage flow loss for rotor blade rows are then calculated. The leakage massflow rate calculation from eq. ( 4.35) can be extended to compressible flow but it is not implemented yet.

Limitations

Radial mixing

The implemented tip leakage flow model benefits from the availability of the blade surface velocities, in particular in the blade tip streamsurface, thanks to the implemented

Hess & Smith method. However, eq. ( 4.39) represents the total loss due to the leakage massflow rate for the entire considered blade row. It is thus suitable for the building of a loss coefficient for one-dimensional analysis. Saying that the blade passage mass flow rate m c = ρ W 1 S 1 cosβ 1 and dividing eq. ( 4.39) by W 2 1 /2, the tip leakage loss coefficient reads:

ξ tip = 2gC d S 1 cosβ 1 c l W ss W 1 3 1 - W ps W ss 1 - W 2 ps W 2 ss dc l (4.40)
where S 1 is the blade passage upstream surface area, W 1 is the average inlet velocity and β 1 is the relative to the blade row upstream flow angle. The present implementation lacks a radial mixing model to distribute the tip leakage loss along the blade span.

Still, to predict compressor characteristics, homogeneous loss distribution, as a first approach, is used in this work.

Blockage and deviation induced by the tip leakage flow

In addition, the tip leakage flow development induces additional aerodynamic blockage and deviation angle compared to the ideal non-viscous case. That would have an influence on the predicted throughflow. Additional deviation angles due to tip leakage secondary flow and their radial distribution would reduce the useful work of the rotor row and then, the overall performance of the compressor, based, for example, on work of [START_REF] Lakshminarayana | Methods of Predicting the Tip Clearance Effects in Axial Flow Turbomachines[END_REF]. The increased blockage would help to predict the stability limit of the compressor as it is throttled since higher loading leads to higher tip leakage flow blockage effects. This could be done in the future using the work of [START_REF] Khalid | Endwall Blockage in Axial Compressors[END_REF].

The present implementation of the tip leakage flow belongs to a first modeling component of compressor secondary flow based on the local knowledge of the blade-to-blade potential flow and can be improved by or coupled with additional models in the future. The results of the tip-leakage flow implemented model and the lack of tip leakage secondary flow deviation model are discussed in the next chapter 5 with the studied compressor stage.

ASTEC viscous-inviscid coupling

This section presents the implemented coupling in ASTEC between the Euler througflow simulation presented in chapter 2, the blade-to-blade streamsurface using a potential calculation presented in chapter 3, the previously introduced bi-dimensional blade boundary layer method with wake mixing and the tip gap flow loss estimation from sections 4.1 and 4.2 respectively.

Viscous-inviscid framework

The chapter 3 presented the Hess & Smith method for cascades and its adaptation for subsonic compressor cases. The implementation of this method in ASTEC yields the knowledge of the potential flow in each blade row streamsurface. The only data required are the blade geometry and the upstream flow conditions. The prediction of the blade suction and pressure side potential velocities (i.e. U e in the boundary layer notations) makes possible the calculation of profile boundary layer and wakes integral characteristics as well as tip leakage flow loss in the case of a rotor. But what are the effects of this developing profile boundary layer on the potential flow? The pressure gradient on the blade surface tends to be reduced as well as the flow deflection by the blades.

Historically, efforts for the modeling of this interaction, first for wing flow analysis, were made from the very beginning of the advent of the singularity methods and boundary layer equation solvers. But, since the potential calculation only depends on the geometry and the upstream conditions, there is no evident means to take into account the viscous effects developing along the blade calculated with a separate viscous solver on the potential flow.

The present implemented hierarchy consists in the boundary layer solver requiring the potential flow solver output. In the past literature briefly summarized by Veldman (2005), this hierarchy is called the direct method and was extensively studied by [START_REF] Goldstein | On Laminar Boundary-Layer Flow Near a Position of Separation[END_REF], revealing a complete collapse of the method at the separation point, the so-called Goldstein's singularity. He indicated that the possible cause for this was a problem in the pressure gradient used. After that, research work in order to build a method able to resist the singularity has lead to several resolution schemes. [START_REF] Catherall | The Integration of the Two-dimensional Laminar Boundary-Layer Equations Past the Point of Vanishing Skin Friction[END_REF] showed that prescribing the displacement thickness makes the method to resist through the separation point. Soon after, [START_REF] Messiter | Boundary-Layer Flow Near the Trailing Edge of a Flat Plate[END_REF], [START_REF] Neiland | Towards a Theory of Separation of the Laminar Boundary Layer in a Supersonic Stream[END_REF][START_REF] Stewartson | On the Flow near the Trailing Edge of a Flat Plate II[END_REF] came up with the concept of boundary layer triple deck theory, whose most important property does not assume hierarchy between the external potential and the boundary layer flows. This means that a strong interaction exists between the two flow regions. On the basis of these works, successful developments appeared such as the simultaneous method of [START_REF] Veldman | Numerical Method for the Calculation of Laminar Incompressible Bounday Layers with Strong Viscous-inviscid Interaction[END_REF] or its quasi-simultaneous derivation [START_REF] Veldman | New, Quasi-Simultaneous Method to Calculate Interacting Boundary Layers[END_REF] which solve a simplified inviscid flow. The last one was motivated by the memory issues computers had in those days. These methods, and the others that followed, rely on the resolution of additional interaction equations involving the potential velocity and the boundary layer displacement thickness together with the general boundary layer and inviscid flow equations. These interaction equations are based on the transpiration velocity, eq. ( 4.41), first introduced by [START_REF] Lighthill | On Displacement Thickness[END_REF] and schematized in figure 4.11, as a new boundary condition equation in the inviscid solver.

V 0 = 1 ρ e d dx (ρ e U e δ 1 ) (4.41) 
where V 0 is the transpiration velocity blowing in the direction normal to the blade. The quasi-simultaneous method was finally adapted to singularity method and an

Euler solver by [START_REF] Drela | XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils[END_REF] in XFoil and later in MISES respectively. † The drawback of the use of these methods in a compressor throughflow solver convergence scheme is their relative complexity. Since the methods consist in the solving of a quite large non-linear system at each iteration it can take time if the analyzed blade show complex shape that requires refined radial discretization (i.e. a high number of streamsurfaces). The computational cost if such a viscous-inviscid strong coupling is used may not be compatible with the fast calculation throughflow solver philosophy. The implemented IBLM, involves the empirical turbulent entrainment equation of Head, which includes turbulent interaction at the edge of the boundary layer through the entrainment function F of eq. ( 4.9), thus it only remains to model the influence of the developed boundary layer on the inviscid potential flow.

The following section introduces the simple approach used in this work for the modeling of the developed profile boundary layer effects on the associated bi-dimensional potential flow. The proposed interaction is based on the ASTEC blockage factor coming from turbomachinery throughflow theory rather than boundary layer theory. It consists in the increase of the blockage factor (in the blockage source term of the solver) by the computed additional aerodynamics blockage of the developing viscous effects and a feedback of the inviscid troughflow. This constitutes the viscid-inviscid coupling implemented in ASTEC and it is detailed in the next section.

Viscous blockage coupling

Axial Velocity Density Ratio

The viscous effects developing in the compressor blade channel are presented in chapter 1. They introduce aerodynamic viscous blockage coming from the hub, casing and blade boundary layers. [START_REF] Khalid | Endwall Blockage in Axial Compressors[END_REF] defines this aerodynamic viscous blockage as a reduction of the effective free-stream area due to local velocity defects. Indeed the blocked area can be deduced by analogy with the boundary layer displacement thickness such that:

A b = 1 - ρu m ρ e U e dA (4.42) 
where u m is the component of the velocity in the main flow direction. This reduction of the effective area leads to an increased free-stream velocity similarly to a convergent channel. In axial compressors, the axial massflow rate is conserved and so, the blocked area leads to an increase of the axial momentum. This effects is quantified by the Axial Velocity Density Ratio (AVDR) in the literature:

AVDR = ρV x | 2 ρV x | 1 (4.43)
where the subscript 1 and 2 denotes two different axial stations in the compressor channel. In presence of additional aerodynamic blockage, AVDR > 1. One of the first experimental study on the AVDR comes from [START_REF] Pollard | A Theoretical Investigation of the Effect of Change in Axial Velocity on the Potential Flow through a Cascade of Aerofoils[END_REF]. Using their results together with additional cascades cases, [START_REF] Starke | The Effect of the Axial Velocity Density Ratio on the Aerodynamic Coefficients of Compressor Cascades[END_REF] established simple correlations between the AVDR and compressor cascade aerodynamic coefficient at midspan. He noticed significant effects on the turning angle, the reference minimum-loss inlet angle (as defined by [START_REF] Lieblein | Incidence and Deviation-Angle Correlations for Compressor Cascades[END_REF], see appendix A), and the losses.

Local Meridional Velocity Ratio

In ASTEC, the reduction of a blade passage effective area by the blade thickness is taken into account by the blockage factor b introduced in chapter 2. Thus in case of additional blockage coming from viscous effects, this blockage factor can be increased proportionally to the viscous displacement thickness developing on the blade, hub and casing walls.

In the throughflow equations, since the definition of the blockage factor comes from the circumferential averaging process, the blockage factor including the additional viscous blockage effects is defined with an additional thickness in the circumferential direction (see figure 2.6). This blockage model is already introduced in details in chapter 2. The equation for the blockage factor is recalled here together with the associated schematic: where ε and ε 1 = ε 1 ss + ε 1 ps are the blade and viscous circumferential thickness respectively. In this manner the axisymmetric Euler calculation of ASTEC integrates local blockage variations due to viscous effects through the blockage source term that may come from the modeling of profile boundary layer, wakes or secondary flows. † Then, after integration, the ASTEC predictions of the throughflow local velocities take into account additional viscous blockage effects. In order to bring these effects back to the inviscid blade-to-blade potential flow the following ratio is calculated:

b = 1 - N (ε + ε 1 ) 2πr (4.44) ε ε 1ss ε 1ps rθ x δ 1ss δ 1ps
LMVR = V m V p m (4.45)
where LMVR stands for Local Meridional Velocity Ratio and represents the local ratio between the meridional velocity coming from ASTEC calculation V m and the meridional velocity coming from the potential calculation V p m . Since the potential calculation are performed in blade streamsurfaces, it is assumed that the axial velocity component predicted by the potential calculation is analogous to the meridional velocity in the meridional plane. This ratio is calculated for each streamsurfaces and at each axial position in the meridional plane. By construction it includes local radial effects caused by radial gradient of blockage and wall contractions through V m , but does not includes local change in density due to compressibility effects. Indeed, the implemented Prandlt-Glauert geometric transformation for the potential calculation already handles com- † Even if eq. ( 4.44) allows the introduction of aerodynamic blockage from any source, the present work does not include modeling for aerodynamic blockage coming from hub or casing secondary flows.

pressibility effects (see chapter 3). In presence of additional viscous blockage, LMVR > 1.

By assuming an homogeneous increase of the meridional velocity in the blade-to-blade streamsurfaces due to additional viscous blockage effects, the relative velocity predicted by the potential calculation on the blade suction and pressure sides respectively are updated as follow:

W viscous ps = LMVR × W inviscid ps (4.46) W viscous ss = LMVR × W inviscid ss (4.47)
This constitutes the viscous-inviscid blockage coupling implemented in ASTEC. In summary it uses the blockage factor of the throughflow model including viscous blockage effects to modify the inviscid potential velocity predictions. The modified velocities are then used for the next profile boundary layer, wake and tip leakage flow calculations.

Deviation modeling

In addition to additional blockage effects, the development of viscous effects in compressors leads to additional deviation angles. They prevent the blade to provide the optimal amount of flow turning (or deflection). This is considered as work loss, and can be deduced from the Euler equation of turbomachinery:

∆h t = ∆ (rΩV θ ) (4.48)
where the change of total enthalpy, ∆h t is related to the the flow deflection. In this equation a lack of flow turning means a reduced ∆V θ and so a decrease in the enthalpy variation.

In the present work, only the profile boundary layer deviation effect is taken into account. The idea is to consider the curves constructed of the suction and pressure sides of the profile increased with the boundary layer displacement thicknesses, as new inviscid streamlines. By this way, a thick open profile is build as seen in blue in figure 4.13. From this thick profile an associated camber-line is calculated and the thickness law from the original profile is applied to this new camber-line giving the modified new profile in black on the figure. This modified profile is used for the next potential calculation, however it is always the original profile that is used for the development of the profile boundary layer with the IBLM. Compared to the original profile, the circumferential average of the potential velocity is modified due to the modified geometry, so is the blade-to-blade mean flow angle β and finally so is the inviscid blade force source term f bi following the procedure introduced in section 3.2.7 of chapter 3. The flow deflection granted by the blade rows now includes deviation effects from the profile boundary layers. It is important to note that since the previously introduced viscous blockage coupling modifies the potential flow output and, as a consequence, the profile boundary layer results, the proposed deviation model includes viscous blockage effects.

Viscous blade force modeling

After the previously introduced viscous blockage coupling and deviation implementation, the viscous blade force source term f bv is updated in the whole ASTEC compressor simulation. Following the concepts introduced in section 2.3.3 of chapter 2, a viscous blade force is locally calculated on each streamsurface.

Profile boundary layer loss

For the profile boundary layers losses, a drag force per unit of span is calculated along the pressure and suction side respectively using the Von Kármán drag equation:

f d (x) = (ρU 2 e δ 2 )(x) (4.49)
Since f d is the total drag force measured from the stagnation point to the station x, eq. ( 4.49) is discretized on the pressure and suction surface to obtain the local drag force per unit of span:

df d = d ρU 2 e δ 2 (4.50)
To obtain the contribution of both the pressure and the suction side to the local viscous blade force source term for a particular calculation cell, eq. ( 4.50) is integrated along the blade pressure and suction surface between the two involved axial positions as shown in figure 4.14 and both contribution are summed. The obtained local viscous blade force per unit of span is then divided by the local blade-to-blade surface dS to have a local volumic viscous force for profile boundary layers f bl v . Then, the viscous blade force source term f bv can be set. The local integration formulas to compute the local viscous force acting on a ASTEC cell, using figure 4.14 notations are:

f ps d, i = dl ps i df ps d, i (4.51) 
f ss d, i = dl ss i df ss d, i (4.52) 
f bl v, i = - 1 dS i f ps d, i t ps i + f ss d, i t ss i (4.53)
where t ss and t ps are the leading edge to trailing edge oriented tangent vectors and dl ps and dl ss are the integrating length on the suction and pressure sides respectively and the subscript i refers to the i th cell in ASTEC mesh axially (see figure 4.14). The procedure is applied on each blade streamsurface for f bv set up.

Wake mixing loss

For the loss occurring in the wake, the same principle previously presented for the suction and pressure side boundary layers is applied. A drag force is calculated with eq. ( 4.49) applied to the wake. The volumic wake drag force is obtained by dividing by the local surface based on the pitch of the upstream blade row dS w :

f w d (x) = (ρ(U w e ) 2 δ w 2 )(x) (4.54) df w d = d ρ(U w e ) 2 δ w 2 (4.55) f w d, i = dl w i df w d, i (4.56) 
f w v, i = - 1 dS w i f w d, i t w i (4.57)
where t w is the tangent vector to the wake center line direction and dl w is the integrating distance on the wake center line. The viscous blade force source term is then used to apply the calculated viscous force on each streamsurface downstream of the considered blade.

Tip leakage flow loss

The implemented tip leakage flow loss model calculates an entropy increment due to the mixing of the tip leakage flow from one side of the rotor blade to the other. From [START_REF] Denton | The Calculation of Three-Dimensional Viscous Flow Through Multistage Turbomachines[END_REF], the specific entropy increment along a streamline is linked to a volumic dissipative force oriented in the direction opposite to the free-stream flow such that:

f v = -ρT ds dl W |W| (4.58)
For the implemented model, using eq. ( 4.38) with eq. ( 4.36) gives the following expression for the local volumic viscous friction force where the distance along the streamline is assimilated to the distance on the camber-line:

f v = ρT ds dc l = ρ ρgC d m c W 2 ss 1 - W ps W ss W 2 ss -W 2 ps (4.59)
The implemented tip leakage flow model calculates the amount of entropy created in the flow for the whole blade row, so, in absence of additional radial mixing distribution model of the created tip leakage loss, f v is applied on each meridional streamline without distinction. In practice, eq. ( 4.59) is axialy discretized coherently with ASTEC mesh (see figure 4.15). To update the viscous blade force source term f bv , the local viscous forces are then oriented in the opposite direction of the relative to the rotor inviscid flow W:

f tip v, i = -ρ ρgC d m c W 2 ss 1 - W ps W ss W 2 ss -W 2 ps W |W| i (4.60)
where the subscript i denotes ASTEC axial cell discretization. 

Validation for 2D cascades

An additional set of results for the bi-dimensional NACA 65 009 cascade case already studied in chapter 3 are presented in this section. First, the implemented viscousinviscid coupling is validated against MISES for three incidences: 0 • 4 • and 6 • . In details, the pressure coefficients, the blockage factor (in the sense of throughflow blockage factor) as well as boundary layer integral characteristics resulting from the coupling are compared in figures 4.16 to 4.20. The behavior of the predictions with the boundary layer separation handling procedure activated can be appreciated in the 6 • case and is discussed below. Then, the pressure coefficients are compared to bi-dimensional RANS simulations in figure 4.21. Finally all methods are compared to the well established

Lieblein correlations for cascades (described in appendix A), that predicts the total pressure loss coefficient and and the cascade exit flow angle in table 4.1.

Validation against MISES

The same grid parameters used for MISES inviscid simulation done in section 3.2.4 of chapter 3 are selected for this validation. This time, the viscous solver is activated.

The experimental value of the Reynolds number, Re = 385 000 is used for the viscous solver requirements. For comparison purposes, since the implemented IBLM calculates a fully turbulent boundary layer on the blade surfaces, trips are added at the leading edge in MISES simulation to trigger the boundary layer transition, at suction and pressure sides. Three incidences are tested, 0 • 4 • and 6 • , the last one demonstrates a separated substantial part of the suction side. The observation of figure 4.16 shows an overall good agreement between MISES and ASTEC on the prediction of the blade pressure coefficient when the viscous coupling is activated. It can be seen from the MISES results of the i = 6 • case that the suction side boundary layer enters separated regime, evidenced by the plateau starting at x/c ≃ 0.8. The only region where the agreement deteriorates is in the vicinity of the trailing edge. For all three incidences, this can be explained by the fact that in the potential flow the used geometry presents a sharp trailing edge that increases the predicted pressure gradient at the trailing edge. The coupling is not able to compensate this increase in pressure predicted by the inviscid potential calculation on the suction side. However, the coupling manage to capture the effect of viscosity on the pressure coefficient in the other regions of the blade for all incidences. This can also be studied through figure 4.17: The blockage factor comes from the thickening of the original profile with the local displacement thickness and is calculated in both methods using the definition eq. (4.44). For axial position 0 < x/c < 1, the agreement on the blockage factor predictions is good but tends to deteriorate arriving at the trailing edge location x/c = 1. This indicates that even for small incidences, the growth of the boundary layer predicted by the IBLM tends to be smaller than in MISES in the vicinity of the trailing edge. The phenomenon tends to increases with the incidence, i.e. when the suction side boundary layer growth rate increase. This will be discussed with the help of figures 4.18 to 4.20 in the following. About the blockage factor in the wake, there is obviously an offset due to the condition of the boundary layer at the trailing edge for all incidences. However, the slope of the decay of the blockage in the wake is also quite well captured by ASTEC compared to MISES, which means that the loss generated in the wake region are of similar levels. It must be noticed however a slightly higher velocity defect decay in the implemented wake model of Spence compared to the one observed on MISES. This last observation is easily visible in figure 4.17a when the blockage levels at the trailing edge from both methods are close. Then looking at the far wake region, the observed gap between both methods blockage prediction has grown, evidencing that the wake predicted by the wake model mixed more rapidly than the one predicted by MISES.

In details, the boundary layer characteristics predicted by both methods are compared for all three incidences in figures 4.18 to 4.20. The abscissa axis of all plots is the normalized length l * , on suction and pressure sides respectively, starting from the stagnation point. The trends of the boundary layer integral characteristics on both suction and pressure sides are quite well predicted for all incidences compared to MISES simulations. However, for all cases, the suction side boundary layer predicted by MISES seems larger and this is accentuated as the incidences grow, evidenced by the observation of δ 1 and δ 2 on the suction side. Regarding the shape factor H 12 , its behavior at the leading edge is different comparing the two methods. In the IBLM, the flat plate turbulent value of H 12 ≈ 1.4 calculated with eqs. (4.15) and (4.16) and used for initialization is retrieved in the showed results. It is followed by a rapid increase due to the accelerated portion of the suction and pressure side near the stagnation point visible in figures 4.18c, 4.19c and 4.20c. In MISES, despite the placing of trips at the leading edge, the shape factor initial value is much higher. Indeed, even if the trips are placed at the very beginning of the leading edge, MISES calculates a laminar to turbulent transition from this point, which causes the prediction of a shape factor value coherent with laminar flow and so a delay in the establishment of a value in the expected TBL range under the influence of the adverse pressure gradient (H 12 ∼ 1.4 to 1.6 for non separated TBL with adverse pressure gradient). The consequence is the early excess in increase of the boundary layer characteristics thicknesses, more visible on the suction side near l * ss ∼ 0.03, compared to IBLM predictions. This can partially explain the differences for displacement and momentum thickness levels observed at the trailing edge, and so, the differences observed in the blockage factor of figure 4.17, since the boundary layer predicted by MISES inherits this early additional growth. Another complementary explanation can be deduced from the observation of the i = 0 • case. For this case, the pressure coefficients predictions are very close and at l * ≈ 0.5, the boundary layer predictions are nearly matching. Still after that position, the boundary layer growth rate calculated in MISES is greater than the IBLM. This could be caused by the higher prediction of the friction coefficient in the first percent of the blade by MISES, probably coming from the transition at the leading edge, inducing a more important growth rate of the boundary layer compared to the full turbulent IBLM. Nevertheless, after these leading edge different behaviors, the predicted shape factor, friction coefficient and boundary layer characteristic thicknesses trends in the decelerated region show quite good agreement allowing the implemented IBLM to capture a correct growing of the TBL even when the algorithm switch to separation handling mode when H 12 > 2.0. 

Validation against RANS results

In order to add a fidelity level comparison with the predicted results by ASTEC, bidimensional RANS calculations were carried out for the NACA 65 009 case for the previously tested incidences. The simulations present the same Reynolds number as in MISES simulations i.e. Re = 385 000. The two equation turbulence model of [START_REF] Smith | A near Wall Model for the k -l Two Equation Turbulence Model[END_REF] is used for full turbulent boundary layer calculation. More details, on the numerical setup for these simulations are availlable in appendix B. The blade pressure coefficient predicted by ASTEC simulations are compared to RANS results in figure 4.21.

The results from MISES are also recalled for the comparison. In figure 4.21, the respective pressure coefficient are:

C ASTEC/Mises p = 1 - W 2 W 2 1 (4.61) C RANS p = p -p 1 1 2 ρ 1 W 2 1 (4.62)
The pressure coefficient from ASTEC agrees well with the RANS predictions. Again the major gap between the two methodologies lies in the trailing edge region, and it may be explained, the same way than the comparison with MISES results, by the sharp trailing edge in the potential method. Also, MISES nearly matches the RANS results. One can however note the slight larger estimation of the growth of the boundary layer predicted by MISES compared to the RANS simulations, particularly evidenced by a larger plateau visible at the trailing edge of figure 4.21c in the case of stall. Again this can be explained by the fact the turbulence model of the RANS simulation do not include any transition calculation, thus, the boundary layer predicted starts less thick than the one predicted by MISES, leading to the observed differences.

Validation against Lieblein correlations

The Lieblein correlations were fitted by [START_REF] Aungier | Axial-Flow Compressors[END_REF]. This version of the laws were implemented for the comparison and are explained and visible in appendix A.

The principle of the Lieblein correlations is the estimation of a minimum-loss (or ondesign) incidence as well as a minimum-loss deviation angle as a function of the cascade geometry. Then the loss and deviation angle at off-design conditions are correlated to the previously optimal parameters, the cascade geometry and the equivalent diffusion factor D eq established in [START_REF] Lieblein | Diffusion Factor for Estimating Losses and Limiting Blade Loadings in Axial-Flow-Compressor Blade Elements[END_REF] reflecting the cascade loading:

D eq = 1 - W 2 W 1 + ∆W θ 2σW 1 (4.63)
where σ = chord/pitch is here the solidity of the cascade.

The predicted bi-dimensional cascade total pressure loss coefficient ω t and exit angle β 2 predicted by the correlations are compared to the previously introduced methods in table 4.1 and are visible in figure 4.22. The plane of analysis is situated 0.5c ax after the trailing edge, taking into account the major part of the wake mixing losses in the trailing edge region as well as the changes in mean flow angle that would occur from the rapid diminution of blockage in this area. It is also in this region that the measurements for the Lieblein correlations were conducted. ASTEC agree very well with the MISES and RANS results for all incidences. Compared to other methods, the correlations seems to under-predict the effect of the boundary layer for the first two incidences. For the last incidence however, the loss level predicted by the correlations exceeds the level predicted by all other methods. This change of behavior may be due to the fact that for this particular case, the computed D eq by the correlations is D eq = 2.2 and the correlations must be treated with caution for 2 < D eq < 3 and are non-applicable for D eq > 3 (see appendix A). For the last incidence excepted for the Lieiblein correlations, the compared methods prediction order of magnitudes are very close. It must be noted that even if the loss levels predicted by ASTEC are in a good agreement with MISES and RANS results, the implemented deviation model based on the geometry deformation of the potential geometry tends to slightly over-estimate the deviation angle, especially when the boundary layer enters separated regime as it can be seen for the last tested incidence. 

Lieblein ASTEC MISES RANS i 0 • 4 • 6 • 0 • 4 • 6 • 0 • 4 • 6 • 0 • 4 • 6 • β 2 37.

About the potential method discretization

With the objective of limiting computational time, it has been found that the precision achieved with the implemented potential method may be kept acceptable with much fewer involved points. In this section, some testings and good practices obtained empirically are presented regarding the potential method discretization. The testings were conducted on the NACA 65 009 case for several incidences at Mach number equal to 0.117 and consisted in adjusting the S parameter of the dist function eq. (3.45) of section 3.1.8. The results for a reduced number of points of 60 points in total (30 points at suction and pressure sides) are compared, qualitatively in figure 4.23 and quantitatively in figure 4.24, against the reference, already introduced in the previous section, of 160 points in total (80 at suction and pressure sides).

Summary of good practices

A summary of discovered good practices in order to keep the same level of accuracy but with a reduced number of points is first provided. The illustration of the obtained results following these recommendations are then presented.

• The points distribution should be as homogeneous as possible in order to correctly capture the local blade circulation (characterized by the local level of the pressure coefficient) and is interpreted as a consequence of the homogeneous circulation distribution hypothesis in the Hess & Smith method. This is achieved by reducing the S parameter. A value of S = 0.8 appears to be suitable for this constraint as shown in figure 4.23;

• A slight over-refinement at the leading edge is recommended to keep capturing the strong pressure gradients in this area;

• Both elements constituting the trailing edge must be small enough for a correct enforcement of the Kutta-Joukowski condition testings with asymmetric distribution evidenced that there is no particular need for over refinement approaching the trailing edge contrary to the leading edge region. Although, in this work, the used dist function is symmetrical so the refinement at the trailing edge is the same as the one at the leading edge.

Qualitative comparison

Regarding figures 4.23a and 4.23b, the reduction of the S parameter of the dist function to the value of 0.8 allows to bring a quasi-linear evolution of the distribution in a large part of the blade but still have more points very close to the leading and trailing edges. 

Quantitative comparison

The predicted incompressible pressure coefficients on the bi-dimensional NACA 65 009 profile for two incidences are shown in figure 4.24. The reference case of 160 control points and the proposed reduced distribution of 60 control points are compared.

It can be seen that the agreement between both distributions is excellent and the main results of this study is that with only 60 control points the new usage of the dist function allows to keep a very good level of accuracy comparable to the reference case of 160 control points that was validated earlier against MISES. This allows to divide by a factor of three the user time resolution of the potential linear system. It is theoretically possible to reduce even more the number of control points and keeping an excellent estimation of the pressure coefficient, i.e. the blade loading, at even lower cost but there is a risk of loss of precision of the position of the stagnation point or on the magnitude of the peak acceleration on the suction side. This behavior is sensitive to the incidence and for robustness, one should consider letting enough points in the leading edge region. These results can also be observed through the calculated boundary layers based on these pressure coefficients. The displacement and the momentum thicknesses predicted by the IBLM for the new distribution compared to the reference distribution are visible in figure 4.25 for both incidences. The agreement on the predicted boundary layer characteristics between the reduced and the reference distribution is near matching, for both suction and pressure side and for both tested incidences. As the number of point is decreased and the dist function adjusted, this results indicates a very similar level of blockage and loss obtained between the reduced and reference distributions, and thus similar cascade performances using the former or the latter. However, since the IBLM calculates the growing boundary layer with less control points, slight differences accumulates towards the trailing edge. This problem can easily been addressed using another more refined discretization for the boundary layer calculation method, that interpolates the velocities predicted by the potential method. It would be done at a relatively low cost since the IBLM uses a simple first order space marching integration scheme.

As is will be discussed in the conclusion & perspectives, these results encourage the use of ASTEC with this new potential discretization method, in blade geometry optimization process for a future usage of the code, involving a large number of calculations. Note: in the following of the manuscript, the original discretization of 80 control points on suction and pressure sides was used for the presented results (160 control points in total), these findings on the potential discretization having been available late in the thesis project.

About coupling & limitations

In this section, additional information and testings on the coupling are given. In particular, some limitations are evidenced by the convergence history of ASTEC.

Initialization & convergence

The convergence histories of bi-dimensional NACA 65 009 ASTEC calculation for i = 2 • , 4 The first thing to notice regarding the left column is that the overall convergence of the calculations is excellent except for the stalled case i = 6 • where it is quite poor. The second thing to notice is the obvious strong link between the inviscid source term blade force convergence and the overall convergence of the CFD calculation.

That being said and before addressing the poor convergence case, one must notice the overshoot at iteration 500 for each cases in both columns. This is the signature of an imposed delay before activating the viscous-inviscid coupling. Indeed, during the first 500 iterations the calculation is performed without any additional models than the inviscid blade force source term f bi , imposing the camber-line angle, and the metallic blockage included by the blockage source term. Doing this allows the time-marching procedure of elsA solver to establish the upstream conditions before the blade rows consistently with the inlet boundary conditions of the calculation.

For the considered bi-dimentional NACA 65 009 cascade cases of this chapter, elsA boundary conditions are the imposition of a massflow rate representative of a Reynolds number of 385 000 at the inlet. The static pressure equal to 1 atm. is imposed at the outlet. After that delay, the potential calculations are done at each iteration for each streamsurface as well as the ensemble of viscous models through the previously presented coupling. Since a new blade-to-blade angle is imposed using the potential calculation from iteration 500, the observed spike comes from a brutal error in the inviscid blade force source term. The convergence procedure then continues. Not doing this initialization procedure leads to bad convergence behavior or no convergence at all.

For the last case showing separation in the trailing edge, it can be seen that the convergence process stops progressing after roughly 1200 iterations. After that the calculation seems to oscillate between the iterations with a highly repetitive pattern visible on both column of figure 4.26c. In fact, through the oscillation of the inviscid blade force source term error, in the right column, it can be seen that the blade-toblade angle set-point coming from the deviation model oscillates, finally evidencing the oscillation of the predicted suction side boundary layers while handling separation during the convergence with the viscous-inviscid coupling.

A first reaction to this observation is to try to add some damping in the coupling. To do so a relaxation constant C is added to the coupling equation eqs. (4.46) and (4.47):

LMVR k+1 = LMVR k + C LMVR k+1 -LMVR k (4.64)
In this way, the calculation is fully coupled when C = 1 and the coupling is disabled after the first potential call when C = 0. Unfortunately this had no substantial positive effect as demonstrated by figure 4.27 where several values for C were tested. The conclusion is that the implemented coupling is fundamentally unstable in the case of stalled profile boundary layer, provoking it to oscillate with a stagnation of the residuals mean magnitude as the iterations take place. That shows that the modeling of the separated state of the boundary layer has to be improved. Nevertheless, it will be seen in the following that, although this instability can not be completely removed, the reachable convergence level can be extended thanks to coupling frequency adjustments.

Computational performances & coupling frequency

One aspect of the implemented coupling not yet discussed, is the calculation performance. In the global implemented framework (visible in figure 4.30) the most timeconsuming operation is the calculation of the potential flow on a given streamsurface.

Even if particular care about the code optimization has been taken in the development process, the construction of the A matrix and the routines that invert the potential system in eq. (3.28) visible in chapter 3 are time consuming. In the showed results, 80 control points were used per blade side totaling 161 unknowns in the resolved system (160 source lineic densities + 1 lineic vortex), the size of A is then 161 × 161.

The real user computation time needed for the potential solver to do all his tasks, i.e. build and solve the system as well as calculate the mean average blade-to blade angle, is about 0.10 s for one streamsurface on a single processor of a HPC calculator. † For non bi-dimensional cases the number of streamsurfaces situates between ∼ 10 for cases without refinement at the end-walls and ∼ 25 for cases such as the compressor CME2 case, presented in the next chapter, that require a streamsurface at the rotor blade tip at a distance from the wall equal to the tip gap height. In a 10-streamsurface case, the calculation cost of the potential tasks for one iteration is then ∼ 1 s. ‡ As a consequence, during a convergence process involving 2300 iterations such as in figure 4.26, the global return time of ASTEC reaches 45 min. This is far from the usual response time order of magnitude of classical streamline curvature throughflow solvers usually situated under 1 min.

As a reaction to these calculation time order of magnitudes, a reduction of the frequency call of the coupling (and so the potential solver) is considered. The figure 4.28 presents the convergence history of the same cases as figure 4.26 but with a reduced coupling call frequency. The period between two calls is τ c = 100 ASTEC solver iterations. materialized by the regular vertical overshoots. Reducing the coupling call frequency slightly reduced the speed of convergence for the first two cases since the achieved convergence level after 2300 iterations is one order of magnitude larger. Also it improved the convergence for the stalled case i = 6 • since the residual levels are on average lower.

In addition the global calculation time for these simulations reduced to ∼ 1 min, which is a great improvement in performance without deteriorating significantly the convergence level of the already well converged cases i = 0 • and i = 4 • . About the convergence history of the last stalled case i = 6 • visible in figure 4.28c, it shows greater convergence speed until the 1700 th iteration. After that, the calculation seems to start oscillating. In order to understand better the behavior of such a case with the variation of τ c , other values are tested on long runs with 100 coupling calls visible in figure 4.29. According to the presented convergence results, the default setting in ASTEC is set to τ c = 100 iterations. The ASTEC results previously showed in section 4.3.5 were obtained with the following coupling settings C = 1 and τ c = 100 with a total of 2300 iterations, which means 18 coupling calls during the convergence process, which is visible for each incidence in figure 4.28.

Flow chart

As a visual aid for better understanding the relations between the several implemented methods and models in ASTEC, a simplified flow chart of the present work developments follows in figure 4.30.

Conclusion on chapter 4

This chapter presented in details the loss models implemented in ASTEC in order to control the viscous source term f bv . The included loss sources are the profile boundary layers, the associated wakes and the tip leakage flow loss. The first rely on an integral boundary layer method (IBLM) using the blade velocities predicted by the potential calculation introduced in the previous chapter. From the IBLM predicted momentum thickness, a local drag force is calculated and used to set the viscous source term.

The displacement thickness is used to update the blockage source term with additional aerodynamic blockage coming from the computed boundary layer. The state of the boundary layer at the trailing edge is used to predict the loss and aerodynamic blockage evolution in the wake thanks to a decay model coupled with the classic boundary layer

Von Kármán equation applied to the wake. The tip leakage loss are also estimated thanks to the use of the blade tip pressure coefficient predicted by the potential solver. An entropy increase is then calculated to compute the local force associated.

The interactions between the potential solver, the IBLM together with the wake decay model and, in a case of a rotor, the tip leakage loss model, are governed by a coupling process. This coupling process transcripts the effects of developing viscous flow on the potential prediction using the local ratio of the meridional velocity, predicted by the troughflow solver ASTEC, over the blade-to-blade mean potential meridional velocity. This ratio, called LMVR for Local Meridional Velocity Ratio, is calculated on each streamsurface and take a value larger than the one in presence of additional viscous aerodynamic blockage. Thus, the estimated potential pressure coefficient as well as the predicted deviation angles are corrected to take into account the viscous flow developing on the blade.

The results predicted by ASTEC under such a coupling are validated against MISES, RANS and Lieblein correlations on a bi-dimensional NACA 65 009 case. The predicted results are good even if additional care must be taken if the case presents a separated boundary layer. This is evidenced by the analysis of the convergence history which shows particular oscillation patterns and their consequences on the performance of the CME2 compressor (introduced in chapter 1) will be observed in chapter 5. Also this analysis allowed to tune the coupling parameters in order to keep acceptable convergence properties with an usual ASTEC return time of 1 min.

In the next chapter ASTEC will be confronted to real cascades cases where end-wall secondary flows develops as well as a realistic subsonic compressor stage. T his last chapter confronts the ensemble of implemented models previously presented in the chapters 3 and 4 to three realistic configurations with experimental data. † The first case is the NACA 65 009 linear cascade already introduced in the previous chapters for development of the ensemble of bi-dimensional methods. This time, the predictions of the code are compared to the experimental results of Zambonini (2016) at mid-span for 4 • of incidence carried out in the ECL wind tunnel facility. The second case is a linear cascade, newly designed for corner separation study by the Whittle Laboratory during Dawkins (2021) thesis. The profile type is Controlled Diffusion Arc denoted the CDA cascade in the following. Dawkins also tested his configuration at the ECL wind tunnel facility during his thesis. This configuration was afterward used by [START_REF] Mondin | Assessment and optimisation of guide fins for corner separation control in a compressor cascade[END_REF] for the testing of guide fins (additional small blades located at the hub of the blade channel for control of hub secondary flows). In this chapter, the implemented methodology is compared to experimental reference measurements from Mondin on the CDA cascade, without any additional guide fins, at several incidences for the same quantities of interest. Finally the last case is the subsonic single stage research compressor CME2 designed by Safran Aircraft Engines. Two iso-speeds are investigated: 100% and 50% of the nominal rotation speed, respectively denoted 100%Nn and 50%Nn in the following. For the 100%Nn iso-speed the experimental results comes from the thesis of [START_REF] Gourdain | Simulation Numérique des Phénomènes de Décollement Tournant dans les Compresseurs Axiaux[END_REF] (the measurements were carried out by Miton [START_REF] Michon | Experimental Study of the Unsteady Flows and Turbulence Structure in an Axial Compressor from Design to Rotating Stall Conditions[END_REF] and used as reference in the thesis). For the 50%Nn iso-speed, they come from [START_REF] Rannou | Effect of the Axial Compressor Tip Clearance Size: Performance and Transition to Rotating Stall[END_REF]. For comparison purpose, additional RANS simulations of the CME2 were carried out in this chapter. The data generated are numerical iso-speeds at 100%Nn and at 50%Nn. The numerical setup of the RANS simulations is available in appendix B.

Linear compressor cascades

Both cascade studied in the following show the development of hub secondary flows. These secondary flows induce fluid migration from the hub to the center of the blade channel due to blockage effects of the low velocity zones near the hub [START_REF] Auchoybur | Design of Compressor Endwall Velocity Triangles[END_REF]. The present ASTEC methodology lacks hub secondary flow modeling. That is why it is necessary to account for their effects for comparison with the experiment.

Experimental end-wall blockage

For both cascades measurements downstream the blades are available. For the NACA 65 009 case, the plane of measurements is situated at x = 0.363c ax after the trailing edge. For the CDA cascade, the plane of measurement is situated at x = 0.2c after the trailing edge. In particular, five-hole probe measurements grant access to total pressure loss coefficient and velocity components downstream of the cascades. In order to estimate the experimental blockage effects downstream of the cascades, a local approximate axial displacement thickness is calculated in the downstream plane of measurement. Using the axial velocity experimental measures, visible in figures 5.3a, 5.4a, 5.4c, 5.4e and 5.4g for NACA 65 009 and CDA cascade respectively, this displacement thickness is calculated by pitch-wise integration of the local axial velocity defect at each span-wise position z using eq. ( 5.1) and are visible in figures 5.3b, 5.4b, 5.4d, 5.4f and 5.4h:

δ 1, x (z) = s 1 - U x max(U x )| z dy (5.1)
where max(U x )| z is the maximal value of the axial velocity at considered span-wise coordinate z.

Using the wake axial displacement thickness, the experimental end-wall axial displacement thickness of both cascade is estimated by subtracting the value obtained at mid-span:

δ EW 1, x (z/h) = δ 1, x (z/h) -δ 1, x (0.5) (5.2) 
The experimental end-wall axial displacement thickness value at mid-span is by construction zero and it can be deduced from figures 5.3b, 5.4b, 5.4d, 5.4f and 5.4h . There are span-wise positions were δ EW 1, x is negative since values of δ 1, x are inferior to the midspan value. This is an evidence of the blockage effects of the end-walls on the boundary layer developing on the blade just above. As the flow migrates to avoid the blocked area, it accelerates the adjacent blade boundary layer leading to a reduced observed wake axial displacement thickness at these locations compared to mid-span. 

End-wall Axial Velocity Density Ratio

Establishment of End-wall Axial Velocity Density Ratio

The AVDR in the literature is written with the help of the mass flow conservation between two stations in a compressor channel:

(ρV x S)| 1 = (ρV x S)| 2 (5.3)
It links the ratio of effective flowing surfaces S i to the ratio of axial momentum at the two stations: 

∀ x/c ax ∈ [0, 1] AVDR EW (x/c ax ) = AVDR EW × x/c ax (5.9)
With eq. ( 5.9) the mid-span blade pressure coefficient as well as the mid-span profile boundary layer and wake take into account the influence of the end-wall secondary flow development, allowing to compare mid-span ASTEC predictions to the cascade experimental results in the next section.

Cascades measurements at mid-span

The blade pressure coefficient at mid-span predicted by ASTEC with the potential methodology (using 80 control points at suction and pressure sides) is compared to the experimental blade incompressible static pressure coefficient obtained on both cascades blades with pressure taps by [START_REF] Mondin | Assessment and optimisation of guide fins for corner separation control in a compressor cascade[END_REF] and [START_REF] Zambonini | Unsteady Dynamics of Corner Separation in a Linear Compressor Cascade[END_REF].

Blade measurements: C p = p s -p s∞ p t∞ -p s∞ (5.10) Also the experimental pitch-wise mass-averaged total pressure loss coefficient and the experimental mean blade exit angle at mid-span are compared to ASTEC predictions. They come from the already introduced plane of measurements 0.363c ax and 0.2c after the trailing edge in the axial direction for the NACA 65 009 and CDA cases respectively. Since the inlet conditions of the cascades are homogeneous in the pitch-wise direction, the measured total pressure loss coefficient is mass-averaged in the pitch-wise direction (the mass averaging operator is denoted • q ). For the experimental flow angles, the velocity components are also mass averaged in the pitch-wise direction and the flow angles are deduced afterward from the averaged quantities. The end-wall coupling gives a very good match between the experimental results and the predictions of the blade pressure coefficient, visible in figure 5.5. Also, the agreement observed between the mid-span experimental results in table 5.1 and the present methodology predictions is verry good both for the mid-span flow angle and the mid-span total pressure loss coefficient. The evolution from the purely bi-dimensional predictions obtained in chapter 4 (table 4.1) to these predictions accounting for the hub secondary flow effects follows the following a priori physical insight: it is anticipated that the acceleration of the mid span velocity due to end-wall flow effects would reduce the characteristic thicknesses of the mid-span profile boundary layer, and as a consequence, reduce the total pressure loss and the deviation compared to bi-dimensional calculation.

CDA cascade mid-span results

The blade pressure coefficients prediction from ASTEC for several incidences are compared to the baseline measurements of Mondin (2022) in figure 5.6. The agreement between the experimental measurements and the present method prediction is excellent. One can however notice the slight steeper deceleration at the suction side in the experiment, visible for each tested incidence.

The cascade performances prediction from ASTEC for several incidences are compared to the baseline measurements of Mondin (2022) in figure 5.7. The exit fow angle and total pressure loss coeffcient are plotted against the incidence variation. There are discrepancies between the levels of loss and slight differences between the deviation predicted by ASTEC and the experimental averaged values at mid-span evidenced in figure 5.7. The differences in loss levels may be explained by the nature of the profile boundary layer itself developing on the blades. In fact the CDA cascade does not present trips at the leading edge (contrary to the NACA 65 009 case) and the boundary layer developing on the blade surface presents a laminar transition separation as shown in figure 5.8. As a consequence the loss levels in the experiment are not supposed to be similar to the ones predicted by the full turbulent IBLM implemented in ASTEC, even with the very good agreement of the blade pressure coefficients granted by the end-wall coupling.

β 2 [ • ] ASTEC exp. Mondin (a) β 2 = f (i) 0 1 2 3 4 5 i [ • ] 2.0 2.2 2.4 2.6 2.8 3.0 3.2 ω t [%] (b) ω t = f (i)
Concerning the deviation angles differences, they are of second order and the predicted tendency, except for i = 2.3 • is captured by the model. 

Conclusion on cascades

The previously presented results from ASTEC compared to the experiment of Mondin (2022) and Zambonini (2016) evidenced the importance to take into account the endwall secondary flow for the prediction of mid-span pressure coefficient and cascade performances. The implemented methodology, extended in this chapter for end-wall secondary flow handling using the AVDR EW from experimental measurements, allows to correctly predict performances of the cascades at mid-span. There is a particularly good agreement for the pressure coefficients, giving credit to the methodology presented previously (potential method coupled with the boundary layer integral method) for both cascades.

Low speed CME2 compressor

The section confronts the present work methodology to a realistic compressor test case. The studied configuration is the single stage low speed research compressor CME2, already introduced in chapter 1. The rotor and the stator are composed of 30 and 40 blades respectively. The nominal rotor rotation speed, denoted 100%Nn, is 6300 rpm.

In the following, 50%Nn refers to 3200 rpm corresponding to nearly 50 % of the nominal rotation speed. The nominal tip gap height is 0.5 mm (0.8 % of blade height).

After the presentation of the numerical ASTEC setup, performance predictions at 50%Nn are compared to experimental measurements of [START_REF] Rannou | Effect of the Axial Compressor Tip Clearance Size: Performance and Transition to Rotating Stall[END_REF] and single passage RANS simulations. Then performance predictions at 100%Nn are compared to experimental measurements realized by Miton [START_REF] Michon | Experimental Study of the Unsteady Flows and Turbulence Structure in an Axial Compressor from Design to Rotating Stall Conditions[END_REF] used as reference in the thesis of [START_REF] Gourdain | Simulation Numérique des Phénomènes de Décollement Tournant dans les Compresseurs Axiaux[END_REF] as well as RANS simulations uses the same numerical setup. For both iso-speeds, pressure coefficient comparisons between ASTEC and RANS simulations, as well as tip leakage mass flow rate comparisons, for several operating points, are provided in order to validate the implemented local methodology.

The importance of the blockage generated by the secondary flows was evidenced in the previous cascade study. There was not experimental data suitable to estimate the AVDR EW for the complete iso-speeds. Hence, the following results coming from ASTEC do not include blockage effect from secondary flow but only from the profile boundary layers predicted by the IBLM.

CME2 numerical simulations

ASTEC mesh

The mesh, colored by static pressure rise at 100%Nn near design conditions, is displayed in figure 5.9. It is composed of ∼ 6100 cells. The radial discretization is constructed on the basis of a radially equally spaced mesh with 10 cells. Then a progressive refinement using a reducing ratio of ≈ 1.15 is used starting from the blade hub to the blade tip to reach the tip gap height for the first layer of cells, totaling 24 cells in the radial direction. In this manner, the blockage source term is not applied on this last layer of cells corresponding to the real rotor tip gap. Also the penultimate mesh line corresponds to the real rotor blade tip. The geometry obtained in the streamsurface defined by this mesh line is used to calculate the blade velocities required by the tip leakage flow model in ASTEC with the potential method.

Note: In absence of hub secondary flow modeling in the actual methodology, no re-finement is performed at the hub. This can easily be changed for future needs of hub secondary flow model developments. 

Simulation parameters

The ASTEC parameters used for the simulations in this chapter are visible in table 5.2.

For ASTEC and RANS simulations, the compressor is throttled using a valve law at the outlet of the domain. The outlet pressure is relaxed using the laws below:

in ASTEC: 5.12) in RANS: 5.13) where the superscript k stand for the k th solver iteration. The reference values of the pressure and the massflow rate ṁ are taken near design conditions. V is the valve law relaxation constant and is set to 0.5 in ASTEC and 0.01 in RANS simulation. The choice for ASTEC simulations was determined as the most stable valve law for convergence.

p k+1 = p k + V • p ref ṁk ṁref -p k ( 
p k+1 = p k + V • p ref ṁk ṁref -1 ( 
For RANS simulations, no particular convergence issues where observed as the machine was throttled so it was not necessary to use a more sophisticated valve law (such as quadratic laws for example). The full numerical setup for RANS simulations is detailed in appendix B.

50%Nn from Rannou et al. ( 2022) † but a relative comparison between RANS results and ASTEC is given in figure 5.10b for the isentropic efficiency η is . The definition used for the numerical calculation of the isentropic efficiency was introduced in chapter 1, eq. (1.7). This efficiency presentation just compares the results of ASTEC with a better fidelity approach (RANS) that gives a reference for this work. The numerical peak efficiency is deduced from RANS results in figure 5.10b. The pair of operating points, RANS and ASTEC are denoted OP1. In figure 5.10a, the RANS predictions agree well with the experimental measurements near OP1 until the highest massflow rate experimental measure denoted OP2. Below Φ ∼ 0.45, the RANS simulation results deviate from the experimental data, delaying the entry in stalled regime.

Concerning ASTEC predictions, the loading coefficient characteristic is very close the the RANS results and experimental measurements from OP1 to OP2. But the peak of loading comes sooner (Φ ASTEC ≈ 0.475 vs Φ exp ≈ 0.42) as the machine is throttled compared to the experiment and no more stable point was achieved bellow Φ ≈ 0.45 for ASTEC calculations. This likely stems from an early entry in separated state of the predicted profile boundary layers in ASTEC compared to experimental measurements, explained by the AVDR EW not taken into account.

Looking at figure 5.10b, the higher position of the predicted efficiency compared to the RANS results indicates, considering first order influences, a lack in the present methodology of loss generated by corner secondary flows in the rotor and in the stator.

Blades pressure coefficients at 50%Nn

The blade pressure coefficients calculated by ASTEC using the incompressible equation eq. (5.16) are compared to the static pressure coefficients (see eq. ( 5.17)) extracted from the RANS simulations, at several reduced blade heights, h/H, identical for both simulation, for OP1 and OP2.

C ASTEC p = 1 - W 2 W 2 ref (5.16) C RANS p = p -p ref 1 2 ρ ref W 2 ref (5.17)
The reference quantities are taken in the relative frame of reference for each h/H in the same plane for RANS and ASTEC simulations, situated close to the rotor and the stator leading edges. The pressure coefficients for the CME2 stage are plotted in figure 5.11 and figure 5.12 for OP1 and OP2 respectively. Regarding these results, there is a very good match between RANS and ASTEC predictions for OP1, i.e. near design conditions, for all stage blade heights.

For OP2, the matching is also very good except at the very top of the rotor and stator blades (h/H = 0.98) were the influence of the tip leakage flow on the RANS pressure coefficient is evidenced (see figures 5.12g and 5.12h). Even if the losses induced by the rotor tip leakage flow are calculated, the associated localized decrease in the momentum is not implemented yet in ASTEC. Consequently the angle of incidence at the stator tip is lower (because of higher relative volocities) and the C p distribution shows a less loaded profile compared to the RANS predictions.

Also there is a slight offset regarding the rotor pressure coefficient for all blade heights at OP2. This is not due to a possible undesirable effect of the Prandlt-Glauert compressibility transformation performed in ASTEC since the relative Mach number at rotor blade tip is about 0.3 in OP1 and OP2 and this is not observed at OP1. As it will be discussed in section 5.2.3, this offset, more visible in the results of the 100%Nn iso-speed, is the evidence of the influence of the blockage coming from secondary flows in the rotor. Finally, the good agreement on the pressure coefficients between ASTEC and RANS predictions results in close inlet flow incidences, close blade loadings and so close flow deflection between the two methodologies from OP1 to OP2. These observations are consistent with the good agreement observed for the loading characteristic in figure 5.10a.

Tip leakage flow model evaluation at 50%Nn

The prediction of the local tip leakage massflow rate, implemented in ASTEC following eq. ( 4.36) of chapter 4, is compared against the leakage massflow rate extracted from the RANS calculation. To extract the latter, a simple surface integration of the flow momentum through the surface defined by the camber-line at the rotor blade tip extruded through the tip gap height is calculated in the RANS domain. An axial discretization corresponding to ASTEC mesh axial discretization at rotor blade tip is used in the RANS simulation post-treatment, allowing to compare locally the evolution of the tip leakage massflow rate. The comparative results from both simulations are visible in figure 5.13 for OP1 and OP2, against the axial position normalized by the blade tip axial chord. The local leakage massflow rate predicted by the model follows closely the local leakage massflow coming from the RANS simulation for OP1. The difference in the trends, mostly a steeper slope in ASTEC, is explained by the slight difference in the C p distributions at the tip. There is first, a bit more loading close to the leading edge and second, less loading at the trailing edge (the shape of the blade trailing edge being mandatorily sharp for ASTEC). The local tip leakage massflow is directly linked to the blade loading. Nevertheless the relative difference between the integrated leakage massflows is small: about 1.5 %. Concerning OP2, additional differences in trends are also explained by the differences in the blade tip pressure coefficient visible in figure 5.12g. It explains the shift in the axial direction of the local maximum leakage massflow rate. The relative difference in the integrated leakage massflow rate is very small, close to 0.5 %. Looking closely, near the leading edge (x/c cax ≈ 0), there is a locally negative massflow predicted by ASTEC. It is related to the blade tip pressure coefficient in figure 5.12g with a characteristic negative incidence shape, changing the sign of the modeled local leakage massflow rate and finally compensating the higher local leakage massflow rate near x/c cax = 0.2. Nevertheless, these local results are very encouraging for the use of the proposed method to estimate the local velocities required for local tip leakage loss modeling and in particular the model of Denton used here.

In addition, the losses produced by the tip leakage model for the whole 50%Nn isospeed are normalized by the amount produced at OP1. The evolution of entropy created coming from eq. ( 4.39) of chapter 4 is plotted against the flow coefficient Φ in figure 5.14: The tip leakage flow model predicts a high increase, about 40 %, of the tip leakage loss as the machine is throttled from OP1 (near design conditions) to lower massflow rates. Also the curve in figure 5.14 inversely shows that at OP2 the loss produced by the tip leakage flow is reduced by nearly 50 % compared to design loss. Considering these variations, figure 5.14 shows the importance of accurate modeling of the tip leakage flow in throughflow modeling and more generally in compressor design as it can be found in the literature.

100%Nn analysis

The performance map of the CME2 at 100%Nn predicted by ASTEC is compared to the experimental measurements obtained by Miton [START_REF] Michon | Experimental Study of the Unsteady Flows and Turbulence Structure in an Axial Compressor from Design to Rotating Stall Conditions[END_REF]. The performances are estimated experimentally using the total pressure ratio Π t-t against the standard massflow rate ṁstd (defined in chapter 1).

Note: as before, the stage numerical performances analysis is effectively done at the same locations, in the compressor channel, as in the experimental measurements.

As for the previous iso-speed, after the performances comparison, more local observations of the blade pressure coefficients in ASTEC and RANS simulations are proposed together with the evaluation of the tip leakage flow model.

Performances characteristics at 100%Nn

The total pressure ratio predicted by ASTEC is compared to RANS results and experimental measurements in figure 5.15a against the standard massflow rate for the 100%Nn iso-speed. A comparison between RANS results and ASTEC is given in figure 5.15b for the isentropic efficiency η is (defined in eq. (1.7)). There is only one experimental point for the efficiency of the CME2 at 100%Nn at design conditions. The experimental efficiency point in figure 5.15b at design conditions was effectively measured using a torque meter since there is a very low total temperature rise in the low speed compressor CME2. Its relative position compared to RANS and ASTEC predictions is dubious and is not used for comparison purpose, but only for design massflow rate indication. The closest numerical operation points (RANS and ASTEC) to the design conditions are called OP3 in figure 5.15.

As a first comment regarding figure 5.15a, the RANS predictions agree well with the experimental data near OP3 and for a massflow rate range of 10 kg s -1 to 12.5 kg s -1 at OP4. However, in a general manner, the RANS simulations tend to have a higher total pressure ratio than in the experimental measurements. This is slightly visible near OP4 and more accentuated as the stage is throttled towards OP5. The total pressure ratio peak is achieved at lower massflow rate than in the experiment ( ṁRANS std ≈ 8.7 kg s -1 vs ṁexp.

std ≈ 9.0 kg s -1 ), indicating that the RANS calculation loses its accuracy when getting close to the stability limit of the compressor.

Concerning ASTEC predictions, again, the evidence of the lack of hub secondary flow loss modeling in the present methodology is visible in figure 5.15b with a higher efficiency than predicted by the RANS results. It is also visible in the total pressure ratio where the ASTEC characteristic is above the RANS characteristic. In terms of total pressure ratio, the results are very good compared to the RANS predictions from OP3 to OP4 but slightly above the experimental results. As it will be shown later, the observation of the blade pressure coefficient at OP6 evidences slightly higher blade loadings in ASTEC compared to RANS. This, with the lack of hub secondary loss, explain the position of ASTEC prediction compared to RANS and experimental measurements OP6.

As in the 50%Nn iso-speed, ASTEC tends to predicts an earlier entry in stalled regime than in experimental results, with a total pressure ratio peak situated at lower massflow rate ( ṁ ASTEC std ≈ 9.7 kg s -1 vs ṁexp. std ≈ 9.0 kg s -1 ). It was then not possible for ASTEC to reach acceptable convergence levels below the point at the left of OP5. As for the previous iso-speed, this is due to the AVDR EW not taken into account in ASTEC.

These global performances observations are discussed in terms of blade pressure coefficient in section 5.2.3.

ASTEC low massflow rate coupling oscillation at 100%Nn

For the 50%Nn iso-speed, ASTEC simply diverged as Φ < 0.45 in figure 5.10. For the 100%Nn iso-speed at massflow rates lower than OP5, the calculations did not diverged but oscillated as it was already seen in chapter 4 for the NACA 65 009 case. The following figure 5.16 shows the effects of the present methodology coupling oscillations on the predicted total pressure ratio of the CME2 stage at 100%Nn. In the figure, points without errors bars present no oscillation patterns. The visible effect on the performance predictions indicates that once this oscillation in the coupling occurs, the results predicted by ASTEC should not be exploited. Blades pressure coefficients at 100%Nn

Miton

The rotor and stator blades pressure coefficients comparison, between ASTEC and RANS predictions, for OP3, OP4, OP5, OP6 are visible on figure 5.17, figure 5.18, figure 5.19, figure 5.20 respectively. As before, several reduced blade height h/H are displayed.

Starting with OP3, the results in figure 5.19 show a very good agreement on the stator pressure coefficient for all reduced blade heights. One can notice however the slight effect of the tip leakage flow in the RANS simulation at h/H = 0.98 coming from the rotor. For the stator and the rotor the shape of the pressure coefficients are very close, indicating close incidence conditions between both simulations. Also, for the 100%Nn iso-speed, the relative inlet Mach number at rotor blade tip is about 0.6. The matching deceleration slopes, between ASTEC and RANS predictions, at the suction side of the rotor shows that the compressibility is correctly taken into account with the implemented Prandlt-Glauert geometrical transformation. This also applies for all other operation points (figure 5.18, figure 5.19, figure 5.20).

In addition, the already noticed (at 50%Nn) offset in the rotor between ASTEC and RANS predictions is here for 100%Nn clearly visible at each operating point and results from the blockage from the hub and casing secondary flows developing in the RANS simulation in the rotor and not taken into account in the present ASTEC results. This will be evidenced with more details in the next section 5.2.3.

Regarding OP4, an additional comment is the clear visible effect of the tip leakage flow on the blade pressure coefficient in the RANS simulation compared to ASTEC prediction, as the compressor massflow rate is increased (i.e. the tip leakage flow inclination is closer to the rotor blade chord direction). This is visible both in the rotor and the stator at h/H = 0.98 in figures 5.18g and 5.18h. As explained before, at 50%Nn, in ASTEC, the losses induced by the rotor tip leakage flow are calculated but the associated localized decrease in the momentum is not implemented. Consequently the angle of incidence at the stator tip is lower (because of higher relative volocities) and the C p distribution shows a less loaded profile compared to the RANS predictions.

About OP5, the points in figure 5.15a, are close, evidencing a similar blade loading. This is also visible in figure 5.19 where the pressure coefficient shapes are similar between ASTEC and RANS simulation. However at this point, the influence of the secondary flows in the rotor are stronger than in OP3 leading to higher incidences in the stator for ASTEC compared to RANS predictions.

Finally, the pressure coefficients in OP6 are this time, not well matching. From the observation of figure 5.20, there are for this point slightly much higher incidences in ASTEC predictions compared to the RANS results. This is visible in the rotor and more importantly in the stator. In fact, the deviation model based on the boundary layer calculation in ASTEC induces more deviation than in the RANS simulation. As a consequence, the stator in ASTEC is over loaded compared to the RANS, explaining the gap between both total pressure ratio predictions in figure 5.20. Then the evolution against the reduced blade height h/H of averaged quantities in the same plane of analysis (at the rotor trailing edge) are compared with ASTEC predictions for both operating points. First the averaged axial momentum is compared in figure 5.22. The average relative flow angle β is obtained from the mass averaged relative velocities in the RANS simulation and compared with ASTEC predictions in figure 5.23. Finally the blockage coming from the viscous effects in the RANS simulations is estimated using the same procedure used in the cascade analysis. For each h/H position in the radial direction, an axial displacement thickness is estimated from pitch-wise integration: 5.18) In ASTEC simulations, δ 1, x is directly taken from the IBLM. The figure 5.24 compares the blockage coming from the profile boundary layers in ASTEC to the blockage including all viscous sources in RANS simulations at the rotor trailing edge. The observation of the radial evolution in figure 5.22 of the averaged axial momentum between ASTEC and RANS simulation clearly shows the influence of the tip leakage flow at the tip and the presence of the hub secondary flows with a thicker wake close to the hub for both operating points. Also, the RANS result in figure 5.22b shows more important axial momentum decrease compared to the data for OP3 regarding the respective position of ASTEC radial profile in OP3 and OP5.

δ 1, x (h/H) = s 1 - ρU x max(ρU x )| h/H ds ( 
As a reminder, the blockage source term in ASTEC is not activated in the tip leakage zone. This explains the value of the ASTEC radial profile close to the casing in figures 5.22 to 5.24.

The observation of the radial evolution in figure 5.23 of the averaged relative flow angle shows, excepted in the secondary flow influence areas near hub and tip, a very good agreement between ASTEC and RANS predictions for OP1. At OP5, the trend is also very good but there is a slight offset in the predicted angle by ASTEC. As already mentioned in chapter 4 the separation procedure in the IBLM tends to slightly overestimate the predicted deviation angle and it is observed here all along the blade span. This over-deviation means that the rotor produces less work, which is coherent with a lower total pressure ratio compared to RANS prediction at OP5 in figure 5.15a (even if the losses are lower in ASTEC). Regarding the axial blockage from both calculations in figure 5.24 the influence of sec-ondary flows is clearly visible in the RANS simulations. The radial profile from ASTEC is quite straight for OP3, showing a span-wise near constant incidence at the inlet of the rotor at design conditions. The profile is less continuous for OP5. Interestingly, the IBLM seems to capture the beginning of the radial profile RANS shape for OP5 as the incidence increases.

This blockage coming from the secondary flows in the RANS simulation leads to an increase of the axial velocity density ratio in the rotor blade channel. The contribution of the rotor secondary flows to this increase can be roughly estimated by spanwise integration of the difference between the RANS curve and the ASTEC curve in figures 5.24a and 5.24b for OP3 and OP5 respectively. As it was previously done for the cascades cases in section 5.1.2, this yields an AVDR EW ≈ 7% for both OP3 and OP5. Using the end-wall coupling equations eqs. (5.7) and (5.8) with a constant AVDR EW = 7%, the pressure coefficient predictions of ASTEC at OP3 and OP5 are modified in figures 5.25 and 5.26 respectively: In figure 5.25 the AVDR EW seems to make the RANS results and ASTEC predictions to be near matching for OP1 except for the first 20% of axial chord were a 7% AVDR EW application is visibly too high. In figure 5.26, the correction is a little less efficient especially near the hub of the rotor blade where the RANS predicts a large plateau from

x/c ax = 0.4 to the trailing edge, not well captured by the methodology. Nevertheless the origin of the differences between ASTEC and RANS predictions on the rotor blade pressure coefficients seems to effectively be the blockage level observed in the rotor blade channel coming from the secondary flows, modeled in the RANS simulation but absent in ASTEC. The local modeling of this blockage level constitutes a major axis of improvement for the method. rotor blade is generally more loaded at the leading edge in ASTEC than in RANS simulations, explaining the higher local massflow rate near the leading edge for all displayed operating points.

In addition, the tip leakage losses predicted by ASTEC tip leakage model for the whole 100%Nn iso-speed is shown in figure 5.28: The behavior of the predicted losses at 100%Nn is very similar to that at 50%Nn with some differences though. The increase of generated loss from near design condition (OP3) to OP5 is greater, reaching nearly 60 %. On the contrary, the reduction compared to design conditions towards high massflow rates is less important than at 50%Nn. This evidences that the higher the involved velocities in the dynamic of the tip leakage flow the higher are the loss produced. This behavior is physically coherent regarding the literature.

Conclusion & perspectives

This thesis was dedicated to axial compressor throughflow modeling with a reduced use of empiricism as a guideline. This was achieved with the implementation of a bladeto-blade cascade potential flow solver, providing the flow velocity in the compressor blade channel as useful data for further viscous modeling. The local coupling of the axisymmetric flow, the blade-to-blade potential flow and the viscous models is facilitated thanks to the use of a CFD-based throughflow solver, ASTEC. The historical fast calculation feature of the legacy throughflow solvers is respected with return times bellow 3 minutes for a compressor case using few processors on modern HPC.

Conclusion

The main contribution of this thesis is the implementation of the cascade potential theory of Hess & Smith to a throughflow solver. This potential flow solver is locally applied on the compressor periodic streamsurfaces S 1 from Wu historical theory. The Hess & Smith theory has been extended to deal with onset flow Mach numbers up to theoretically 0.8 with an a priori geometrical transformation of the S 1 streamsurfaces.

The obtained pressure gradients on the blades are coupled with the calculation of the profile boundary layers using an integral boundary layer method. Flow angles on S 1 streamsurfaces are deduced from the blade-to-blade averaged potential flow velocities and used to drive the throughflow inviscid blade force model, suppressing the known leading edge spurious entropy generation inherent to classical approach based on the blade camber-line angle. Wakes are taken into account with a decay model since boundary layer quantities are well estimated at the trailing edge. The estimation of the tip leakage loss benefits from the blade tip pressure distribution, allowing accurate local predictions. The losses induced by the hub secondary flows have not yet been implemented in the solver.

Bi-dimensional full turbulent results agree very well with data from MISES and RANS simulations. Moreover, the proposed method showed better results than empirical correlations of Lieblein on these cases.

Comparison with realistic experiments (two cascades and a low speed single stage axial compressor) have shown encouraging results for pressure coefficient distributions on the blades once the influence of the end-wall viscous blockage is taken into account.

For the cascades, the pressure coefficient comparison is excellent leading to near matching exit flow angles. For cascade downstream loss levels, the results are very good provided that the used turbulent integral boundary layer method is compatible with the nature of the developing profile boundary layer.

For the compressor stage (showing non-negligible end-wall viscous blockage effect in the rotor), the overall performance predictions of two iso-speeds (50%Nn and 100%Nn) are well captured from design operating points towards higher massflow rates. As the compressor is throttled, the stage stability limit predicted by ASTEC is reached before the experimental data for both iso-speeds. It is caused by early separation of the profile boundary layers in the rotor due to the absence of a model for end-wall blockage effects in the code. At 100%Nn, the relative inlet Mach number is about 0.6 at the rotor tip and the shape of the predicted pressure coefficients is very close to RANS data, validating the implemented compressible improvement of the Hess & Smith method on a realistic case. The comparison of the predicted rotor and stator blade pressure coefficient with the RANS results showed a very encouraging stage matching, demonstrating the ability of the method to capture the stage velocity triangles, making a first step towards multistage readiness. The tip leakage local massflow rate is accurately predicted and the tip leakage loss evolution, as the machine is throttled, shows physical evolution for both iso-speeds.

Taking a step back, these encouraging results have been obtained using only two empirical laws: the wall friction law, for the profile turbulent boundary layer, and the wake velocity deficit decay, as a function of the axial distance and the blade loading. Also the return time could be even better since the model heavier computational tasks (the potential linear system matrix filling and solving) are still written in Python.

Perspectives

The analysis results evidenced that, for a particular compressor flow feature, it is required to model three major effects on the axisymmetric throughflow: additional losses, additional blockage and additional deviation angles. In a close perspective, some recommendations for the future of ASTEC are given in the following.

The implemented tip leakage flow model, even if it relies on local pressure difference across the blade tip, only accounts for the one-dimensional loss generated by the leakage which are currently homogeneously redistributed. The local blockage and deviation from the tip leakage flow should be implemented. Together with a low empiricism model for the radial influence zone of the tip leakage flow in the meridional plane, the local effects of the tip leakage flow would be predicted.

Along with the tip leakage flow model improvement, ASTEC next feature would be to include a complete hub secondary flow model, that will provide additional losses, blockage and deviation angles to the throughflow. It is believed that the use of the blade-to-blade potential pressure gradient, at the origin of the passage vortex, will be of great use for the modeling of hub flow deviation. In the same manner as the proposed improvement of the tip leakage flow, the spatial expansion of the hub secondary flow in the meridional plane should be modeled.

With the previous recommendations achieved, performances predictions as well as low massflow rate operating range predicted by ASTEC would be improved. Thanks to secondary flow blockage reducing the pressure gradients on the blades, blade profile boundary layers outside of the end-walls would be stabilized. However, it is believed that the handling of the Goldstein singularity should be improved. The challenge is to do it at reasonable complexity cost. Then a more elaborated wake model supporting compressor convergent duct should be incorporated as the current implemented model is quite restrictive.

In the long term, the proposed throughflow methodology should be suitable to address more complicated flows. As CFD-based throughflow models are only able to predict axisymmetric shocks (which is not physical), a suitable shock model in the periodic S 1 streamsurfaces should be implemented (for example, based on the method of characteristics). It would allow calculating the flow angle through the shock systems, the unique incidence for choked conditions and the shock loss and pressure rise. Concerning the already implemented subsonic potential flow solver, it is still possible to use a potential approach at high mach number, for example considering the full potential equation. The interaction with the profile boundary layer model would have to be addressed as it constitutes a major source of losses.

The implementation of these previous recommendations would make to code ready for realistic multistage compressor simulation as an ultimate objective.

The philosophy of the proposed improvements relies on a step by step, flow feature after flow feature, implementation and their physical effects on each others. To supports these developments, it is believed that the use of precise experimental data, or high fidelity simulations, on simplified test cases addressing these flow features in an isolated way could be of great help. It would allow understanding the influence of the inviscid flow dynamic (the inviscid blade force) on the considered flow features.

Finally, it seems difficult or nearly impossible to enable a design mode in this future modeling context. Together with the relatively small achieved response time of the code, it is believed that the future of ASTEC lies in a design optimization framework. As the blade geometry is specified from hub to tip for each stream surfaces S 1 , a detailed blade design could be achieved. 

Overall diffusion factor

However, W max is not convenient to predict and in the view of building design criteria, an overall diffusion factor D based on overall velocities, has also been proposed by [START_REF] Lieblein | Aerodynamic Design of Axial-Flow Compressors 6 -Experimental Flow in Two-Dimensional Cascades[END_REF]. The analysis of D evolution shows that the rapid increase of wake momentum thickness (and so the pre-stall behavior of the profile boundary layer) occurs for D > 0.6.

D = 1 - W 2 W 1 + ∆W θ 2σW 1 (A.19)

Equivalent diffusion factor

With the objective to provide for the community design and analysis loss correlations, [START_REF] Lieblein | Analysis of Experimental Low-Speed Loss and Stall Characteristics of Two-Dimensional Compressor Blade Cascades[END_REF] constructed the following diffusion ratio W max /W 0,2 . Where W 0,2 is the outlet cascade velocity in the free stream. It can be decomposed as follows: In this work, D eq is corrected to take into account non-constant axial velocity in W 1 /W 0,2 :

W max W 0,2 = W max W 1 × W 1 W 0,2 = W max W 1 × cosβ 2 cosβ 1 (A.
W 1 W 0,2 = cosβ 2 cosβ 1 × W x1 W x2 (A.23)
Following the remark of [START_REF] Klapproth | Discussion: "Loss and Stall Analysis of Compressor Cascades[END_REF] to take into account changes in radius or axial velocity as well as the effect of rotation in a blade row on W max /W 1 , eq. (A.21) becomes: .24) where V θ denotes the absolute tangential velocity and V m the absolute meridional velocity.

W max W 1 = 1.12 + a(i -i * ) b + 0.61 cos 2 β 1 σ r 1 V θ 1 -r 2 V θ 2 r 1 V m1 (A
The final equation for D eq is:

D eq = 1.12 + a(i -i * ) b + 0.61 cos 2 β 1 σ

r 1 V θ 1 -r 2 V θ 2 r 1 V m1 × cosβ 2 W x1 cosβ 1 W x2 (A.25)
Figure A.9. Wake momentum thickness over chord ratio against the equivalent diffusion factor D eq for several cascades at incidence greater than design conditions. From Lieblein, 1959.

It can be seen from figure A.9 that the diffusion limit occurs for D eq ≳ 2.4 -2.6 and the correlation lacks precision for D eq > 2.0 and fails for D eq > 3.0.

A.2.2. Total pressure loss coefficient

From [START_REF] Lieblein | Theoretical Loss Relations for Low-Speed Two-Dimensional-Cascade Flow[END_REF], the total pressure loss coefficient downstream of a cascade, based on inlet dynamic head, is expressed as :

ω t = 2 δ 2 c 2 σ cosβ 2 cos 2 β 1 cos 2 β 2      2H w 12 3H w 12 -1 1 -δ 2 c 2 σH w 12 cosβ 2 3      (A.26)
where δ 2 and H w 12 are the momentum thickness and the shape factor of the wake respectively. The term in brackets is often close to unity, giving the approximate expression for the total pressure loss coefficient: .27) 

ω t ≈ 2 δ 2 c 2 σ cosβ 2 cos 2 β 1 cos 2 β 2 (A
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 26 Figure 2.6. Viscous aerodynamic blockage from viscous boundary layer displacement thickness on blade surfaces.
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. 4 .
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 34 Figure 3.4. Typical discretization of a NACA 4412 profile for the use of the singularity method. Each element dz k holds a lineic source σ k and a lineic circulation density γ k .
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 35 Figure 3.5. Trailing edge closing procedure illustrated on the NACA 65 009 cascade profile. Overview and zoom in trailing edge region.
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 36 Figure 3.6. Comparison of ASTEC and Panel incompressible C p on a NACA 4412 profile at α = 6 • of angle of attack as a function of x/c ax .
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 3 Figure 3.7. NACA 4412 cosine distribution with 39 control points per side in ASTEC.
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 38 Figure 3.8. Comparison of ASTEC and Panel incompressible C p on a NACA 4412 profile at α = 6 • of angle of attack as a function of x/c ax with altered control points distribution.
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 39 Figure 3.9. Evaluation of distribution function dist for several values of S.
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 3 Figure 3.10. Comparison of ASTEC and Panel incompressible C p on a NACA 4412 profile at α = 6 • of angle of attack as a function of x/c ax using distribution function dist with S = 1.65.
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 3 Figure 3.11. NACA 4412 improved cosine distribution with S = 1.65 using 30 control points per side in ASTEC.
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 3 Figure 3.12. NACA 4412 incompressible C p comparisons between ASTEC and XFoil for angle of attack range of -3 • ≤ α ≤ 6.
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 3 Figure 3.13. NACA 4412 streamlines and incompressible C p levels for angle of attack range of -3 • ≤ α ≤ 6 • prediected by ASTEC.
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  Figure 3.14. Definition of an infinite cascade of airfoils.
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 3 Figure 3.17. NACA 65009 incompressible C p comparisons between ASTEC and MISES for M 1 = 0.117 and for inlet incidence range of -2.5 • ≤ i ≤ 5 • .
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 5 Figure 3.18. NACA 65 009 streamlines and incompressible C p levels for inlet flow incidence range of -2.5 ≤ i ≤ 5 and for M 1 = 0.117, from ASTEC.

  Figure 3.19. Definition of a blade slice in ASTEC, radial mesh lines have been omitted.
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 320 Figure 3.20. Conformal transformation of S 1 streamsurfaces in ASTEC, N is the number of blades in the considered blade row.

  .70) Finally, eqs. (3.68) and (3.69) are inserted in the bi-dimensional version of eq. (3.67), considering the relations of eq. (3.70), leading to the bi-dimensional linearized equation for the perturbation potential:
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 3 Figure 3.21. Prandtl-Glauert transformation illustrated on the NACA 65 009cascade case for M 1 = 0.5 at i = 0 • of incidence.
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 33 Figure 3.22. NACA 65 009 incompressible C p comparisons between ASTEC and MISES for M 1 = 0.5 and incidence range of -2.5 • ≤ i ≤ 5 • .

  Figure 3.25. NACA 65 009 cascade relative flow angle (a) and (b) with entropy loss coefficient (c) and (d). Comparisons for potential or camberline driven inviscid f bi for 0 • and 5 • of incidence, from ASTEC.
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 41 Figure 4.1. Sketch of bi-dimensional profile boundary layers.

  All the integral boundary layer methods rely on the theory developed by Von[START_REF] Von Kármán | Über Laminare Und Turbulente Reibung[END_REF] which introduce the Von Kármán equation obtained by integrating the boundary layer equations eqs. (4.1) and (4.2) over the height of the boundary layer. Over the years, many integral methods have come to be proposed. It is important to mention the reference works of[START_REF] Thwaites | Approximate Calculation of the Laminar Boundary Layer[END_REF] and[START_REF] Pohlhausen | Zur näherungsweisen Integration der Differentialgleichung der Iaminaren Grenzschicht[END_REF] for laminar flows as well as[START_REF] Head | Entrainment in the Turbulent Boundary Layer[END_REF] who obtained the boundary layer auxiliary entrainment equation for turbulent flows. Sometimes, a third equation is used, derived from the energy equation from the Navier-Stokes equations. The topic is still an active research with for example the recent work of[START_REF] Cantwell | A New Boundary Layer Integral Method Based on the Universal Velocity Profile[END_REF] who attempted to reduce the level of empiricism in a classical IBLM for turbulent flows using universal velocity profiles for flow over airfoil applications.
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 42 Figure 4.2. Boundary layer coordinate notation for curved surface showing boundary layer thickness and the displacement thicknesses, δ and δ 1 respectively.
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 43 Figure 4.3. Sketch of profile boundary layer separation handling procedure. The blue line is the suction side enlarged with displacement thickness.
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 44 Figure 4.4. Comparison of IBLM predictions against Wieghardt experimental results (exp. results from Cousteix, 1989).

Figure 4 . 5 .Figure 4 . 6 .

 4546 Figure 4.5. Sketch of the experimental setup. From Spalart and Watmuff, 1993.
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 47 Figure 4.7. Comparison of IBLM predictions against experimental measurments from Spalart and Watmuff, 1993.
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 48 Figure 4.8. Sketch of cascade wake evolution with notations (adapted from Raj and Lakshminarayana, 1973).
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 49 Figure 4.9. Lakshminarayana and Davino wake normalization.

  (4.23),(4.24), (4.26) and (4.27) allow the closure of eqs. (4.20) and(4.21). The results are the knowledge of δ w 1 and δ w
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 4 Figure 4.10. Sketch of rotor blade tip leakage flow with notations (adapted from Denton, 1993).
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 4 Figure 4.11. Sketch of boundary layer transpiration velocity concept.
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 4 Figure 4.12. Viscous aerodynamic blockage from viscous boundary layer displacement thickness on blade walls.
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 4 Figure 4.13. Sketch illustrating the principle of the geometrical deviation model.
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 4 Figure 4.14. Sketch illustrating the principle of the profile boundary layer viscous force integration.
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 415 Figure 4.15. Sketch illustrating the application of the local tip leakage viscous force on the streamsurfaces of a rotor blade.
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 4 Figure 4.16. NACA 65 009 comparison of viscous-inviscid coupling on pressure coefficient. ASTEC predictions against MISES for i = 0 • , 4 • and 6 • .
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 4 Figure 4.17. NACA 65 009 comparison of viscous-inviscid coupling on blockage factor predictions against MISES for i = 0 • , 4 • and 6 • .
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 444 Figure 4.18. NACA 65 009 comparison of viscous-inviscid coupling on boundary layer characteristics predictions against MISES for i = 0 • .

Figure 4 .

 4 Figure 4.21. NACA 65 009 comparison of viscous-inviscid coupling on pressure coefficient predictions against RANS simulations for i = 0 • , 4 • and 6 • .

  Cosine dist S = 1.0 Ref. dist S = 1.65 Reduced dist S = 0.8 (b) dist function comparison.
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 4 Figure 4.23. NACA 65 009 distributions comparison: reduced distribution with 60 control points and S = 0.8 compared to reference distribution with 160 control points and S = 1.65.
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 4 Figure 4.24. NACA 65 009 pressure coefficient comparison: reduced distribution with 60 control points and S = 0.8 compared to reference distribution with 160 control points and S = 1.65, for two incidences i = 0 • and i = 4 •
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 4 Figure 4.25. NACA 65 009 displacement and momentum thicknesses comparison: reduced distribution with 60 control points and S = 0.8 compared to reference distribution with 160 control points and S = 1.65, for two incidences i = 0 • and i = 4 •
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 4 Figure 4.26. NACA 65 009 comparison of viscous-inviscid coupling convergence history for α = 2 • , 4 • and 6 • . Left: elsA residuals. Right: blade force source term error.
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 4 Figure 4.27. NACA 65 009 comparison of viscous-inviscid coupling on inviscid blade force source term error varying the relaxation constant C for α = 6 • .

  (a) τ c = 50 iterations. (b) τ c = 100 iterations. (c) τ c = 200 iterations. (d) τ c = 400 iterations.
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 4 Figure 4.29. NACA 65 009 comparison of viscous-inviscid coupling on inviscid blade force source term error varying the coupling period τ c for i = 6 • .

  Tip leakage flow model evaluation at 100%Nn . . . . . . . . . . 185 5.2.4. Conclusion on CME2 . . . . . . . . . . . . . . . . . . . . . . . . 187

Figure 5 . 1 .

 51 Figure 5.1. Sketch of the downstream plane of measurement on NACA 65 009 cascade.From Zambonini, 2016.

Figure 5 . 2 .
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 5354 Figure 5.3. Levels of U x /max(U x )| z and wake axial displacement thickness normalized by pitch against span-wise coordinate downstream of NACA 65 009 cascade for i = 4 • . Adapted from Zambonini, 2016.
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 55 Figure 5.5. NACA 65 009 comparison of mid-span blade pressure coefficient for i = 4 • of incidence, at x/c ax = 1.363, with measurements from Zambonini, 2016.
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 56 Figure 5.6. CDA comparison of mid-span blade pressure coefficient with end-wall coupling for 0 • ≤ i ≤ 5.4 • of incidence, with measurements from Mondin, 2022.
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 57 Figure 5.7. CDA cascade exit flow angle β 2 and total pressure loss coefficient ω t for 0 • ≤ i ≤ 5.4 • of incidence, at x = 0.2c after trailing edge. Comparison with experimental measurements from Mondin, 2022.
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Figure 5 .
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 5 Figure 5.25. CME2 OP3 ASTEC rotor blade pressure coefficients for several reduced blade heights corrected by RANS AVDR EW . Comparison against RANS simulations at 100%Nn.

Figure 5 .
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Table 1 .

 1 are compared in chapter 5. 1. NACA 65 009 cascade parameters.

		1.4. Adopted methodology
	Parameter	Value
	chord	150 mm
	axial chord	110.24 mm
	span	370 mm
	pitch	134 mm
	stagger angle	42.7 •
	camber angle	23.22 •
	solidity	1.12
	free stream turbulence level	0.8 %

  .8 shows an example of ASTEC convergence history calculated on the whole flow domain for the simple linear cascade case presented in section 2.2.1. It compares the root mean squared (RMS) dimensional residuals of the conservatives variables and the blade source term error of eq. (2.19) convergence histories, for L ∞ and L 2 norms. A good global convergence of the Euler throughflow simulation is achieved when the inviscid blade force source term also converges.
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Table 4 .

 4 8 • 38.2 • 38.40 • 38.8 • 39.8 • 41.2 • 38.7 • 39.6 • 40.5 • 38.6 • 39.5 • 40.3 • 1. Bi-dimensional NACA 65 009 performances comparison 0.5 c ax after trailing edge for i = 0 • , 4 • and 6 • .Figure 4.22. Bi-dimensional NACA 65 009 β 2 and ω t comparison 0.5 c ax after trailing edge as a function of incidence.

	ω t 1.5% 2.1% 3.3% 2.1% 2.4% 3.0% 2.0% 2.3% 3.0% 2.1% 2.4% 2.8%

  • and 6 • are visible in figure4.26. The left column displays the conservative variable residuals calculated by elsA. The right column shows the calculated norms L 2 and L ∞ of the error on the inviscid blade force source term as explained in eq. (2.19) of chapter 2. The same number of iterations, 2300, has been performed for all cases for comparison.

Table 4 .

 4 Although increasing τ c shows an improvement in the reached mean convergence level compared to what was observed in figure4.26c, it does not solve the oscillation of the blade force inviscid source term in the case of a separated boundary layer. However, the reachable average convergence level is now quite acceptable for a throughflow solver simulating a separated case.The respective global calculation times ∆t conv for these simulations are visible in table 4.2. † For τ c ≥ 200, the number of global iterations is too high to reach acceptable convergence levels (see figures4.29c and 4.29d). The values of τ c = 50 or τ c = 100 iterations are both suitable but on the basis of the comparison of the mean value of the inviscid source term errors, there is a slight advantage for τ c = 100 iterations (see figures 4.29a and 4.29b). 2. NACA 65 009 comparison of viscous-inviscid coupling on global calculation time ∆t conv varying the coupling period τ c for α = 6 • .

	τ c	50 it.	100 it.	200 it.	400 it.
	∆t conv ∼ 4 min ∼ 6 min ∼ 11 min ∼ 22 min

  The values at mid-span are given in table 5.1 and figure 5.7. † Pitch-wise mass averaged ω t : ω t q = s ρU x ω t dy s ρU x dyIn this section the mid-span predictions of ASTEC for the NACA 65 009 cascade are compared against the experimental results from[START_REF] Zambonini | Unsteady Dynamics of Corner Separation in a Linear Compressor Cascade[END_REF]. The cascade performances at mid-span are visible in table5.1 and the predicted mid-span pressure coefficient, taking into account AVDR EW from experimental data, compared to experimental measurements is visible in figure5.5.

			(5.11)
	5.1.4. NACA 65 009 cascade mid-span results
	mid-span exp. Zambonini ASTEC
	β 2	38.5 •	38.9 •
	ω t	2.3%	2.2%

Table 5 .

 5 1. NACA 65 009 comparison of mid-span exit flow angle β 2 and total pressure loss coefficient ω for i = 4 • of incidence, at x/c ax = 1.363, with results from[START_REF] Zambonini | Unsteady Dynamics of Corner Separation in a Linear Compressor Cascade[END_REF] 

† The Lieblein correlations application to throughflow modeling is detailled in appendix B.

† direct here refers to counterclockwise convention orthogonal rotation of the induced velocity by a point source (see figure3.3).

† In eqs. (3.29) and (3.37) N elem has been replaced by N for readability.

† XFoil is an interactive program for the design and analysis of subsonic isolated airfoils. It is released under the General Public License (GNU) and was first developed by Mark Drela at Massachusetts Institute of Technology (MIT). https://web.mit.edu/drela/Public/web/xfoil/

† A User's Guide to MISES 2.63, accessible at http://web.mit.edu/drela/Public/web/mises/

† See Cousteix (1989) pp. 187-195 for reference.

in the entire wake, i.e. the blockage and loss axial evolution. As concluding remarks,

† XFoil and MISES are introduced in chapter 3.

[m] (b) Momentum thickness δ 2

† Reminder: the dist distribution function is applied on normalized curvilinear abscissa s * of suction and pressure sides respectively, from leading edge to trailing edge.

† The presented results are obtained using HPC ECL Newton calculator, see https://pmcs2i. ec-lyon.fr/ ‡ For the recall, this elapsed time is nearly independent from the number of blade rows since the calculations of the source-terms are fully parallelized with one processor per blade row.

† Again, the presented results are obtained using HPC ECL Newton calculator, see https://pmcs2i. ec-lyon.fr/

† More information on the evoked experimental validation configurations are available in chapter 1.

† In table 5.1 and figure 5.7, the averaging operator has been omitted.

† Due to the effective experimental complexity to measure a total temperature rise in low speed compressors, this is a common case.

Remerciements

Elements Control points

condition at the trailing edge. Then, the optimal number of points on the profile is increased for the cascade case as it is more sensible to the trailing edge resolution.

After 80 control points points per side, no more improvements are observed for the prediction of the incompressible pressure coefficient compared to the results of MISES.

In the following, the number of control points for the implemented Hess & Smith method is fixed at 80.

There are slight differences between both methods on the incompressible pressure coefficient at the very end of the profile, where x/c ax ≥ 90%. This is due to the different treatment of the trailing edge Kutta-Joukowski condition between the two methodologies. Indeed, the profile is left open in MISES whereas it is closed in the implemented Hess & Smith method. Otherwise, the presented results validate the Looking at the convergence histories, it is easy to detect the moment where the potential calculation gives another instruction for the blade force inviscid source-term, 

The AVDR is positive for the case of a convergent compressor blade channel.

As viscous effects develop on the blade and on the end-walls, the effective flowing area is decreased by the viscous effect displacement thickness. In ASTEC, the local blockage effects of the profile boundary layers are already taken into account by the IBLM that provides the profile boundary layer thickness used in the blockage source-term and coupled through the LMVR to adjust the blade pressure coefficient in the blade-toblade potential method (see chapter 4). Then, to take into account the tri-dimensional blockage effects of the end-wall secondary flows on the blade pressure coefficient at midspan, the flowing surface is calculated using measurements at the inlet of the cascade before the leading edge as well as the experimental end-wall axial displacement thickness from eq. ( 5.2):

where h is the blade span. An end-wall Axial Velocity Density Ratio is then defined: 5.6) by taking S 1 as the reference surface of the cascade without viscous effects, S 1 = hs. Thus AVDR EW > 1. Considering both flows in the experiments to be incompressible (M 1 = 0.117 for both cascades) and in regard of eq. ( 5.4), AVDR EW is representative of the mean acceleration of the axial velocity due to the development of end-wall secondary flows.

In practice for the considered cascade cases, the reduction of the flowing surface S EW compared to S 1 is due to the blockage induced by the inlet boundary layer developing on the end-walls before the leading edge that will eventually merge with the blockage induced by the corner flow at hub and tip.

End-wall coupling

In order to correct the velocities predicted by the potential method to take into account the AVDR EW , its value, measured downstream of the cascade, is linearly axially redistributed from trailing edge to leading edge where its value is zero. By assuming an homogeneous acceleration of the fluid in the blade-to-blade plane, the coupling equations of section 4.3, eqs. (4.46) N elem potential 80 on ss. and on ps. 

50%Nn analysis

The performance map of the CME2 at 50%Nn predicted by ASTEC is compared to the experimental measurements obtained by [START_REF] Rannou | Effect of the Axial Compressor Tip Clearance Size: Performance and Transition to Rotating Stall[END_REF]. The performances are estimated experimentally using the loading coefficient Ψ plotted against the flow coefficient Φ. They are defined as follows: 5.15) where ρ ref = 1.225 kg m -3 , A is the annulus area at the inlet of the rotor and U is the rotor blade velocity at mid-span. ṁstd is the compressor standard massflow rate (defined in chapter 1).

Note: the stage numerical performance analysis is effectively done at the same locations, in the compressor channel, as in the experiment.

Performance characteristics at 50%Nn

The loading coefficient predicted by ASTEC is compared to RANS results and experimental measurements in figure 5.10a against the compressor flow coefficient for the 50%Nn iso-speed. There is no experimental data for the efficiency of the CME2 at

Tip leakage flow model evaluation at 100%Nn

As for the previous iso-speed, a comparison of the local tip leakage massflow rate predicted by the tip leakage flow model in ASTEC and the extracted one in from the RANS simulations for the considered operating points is visible in figure 5.27. The general observation made in section 5.2.2 for the 50%Nn iso-speed remains valid observing the predictions for OP3 and OP4. However interestingly, from OP3 to OP6, the integrated leakage massflow rate is nearly constant in the RANS simulations. This behavior is also captured by the model but with a slight relative difference, overestimating the leakage massflow rate by ≈ 3.5 %. The difference in the slope of the local massflow rate distribution for OP3, OP5 and OP6, is explained near the trailing edge by the shape of the profile in ASTEC as already discussed for the 50%Nn iso-speed. As seen from the previous pressure coefficient comparison of section 5.2.3, the tip of the

Conclusion on CME2

The prediction of ASTEC for the single stage low speed compressor CME2 were evaluated at both 50%Nn and 100%Nn iso-speeds. In a general manner, the prediction of the compressor performances with the proposed methodology is very encouraging compared to RANS data and experimental measurements.

The rotor and stator blade pressure coefficient shapes are well predicted by ASTEC compared to RANS results for both 50%Nn and 100%Nn. For the 100%Nn iso-speed the potential compressibility geometric transformation of Prandlt-Glauert showed good results with an inlet Mach number of 0.6 at rotor blade tip.

A good prediction of the mean flow angle and velocity downstream of the rotor makes the stator to be correctly adapted to the flow for both iso-speeds. This is an encouraging result for future application of the present methodology to multi-stage machines.

An evaluation of the tip leakage local massflow and produced loss was provided showing, again, quite good matching with the data of the RANS simulations for several operating points. Also a coherent evolution as the machine is throttled is observed for both iso-speeds.

A major axis of improvements lies in the correct estimation of the blade passage blockage level. The majority of the slight observed and discussed discrepancies between ASTEC and RANS simulations of the CME2 flow are due to a lower viscous blockage predicted by the ASTEC in the rotor.

Secondly, the improvement of the separation model for the IBLM would help to throttle the machine towards lower massflow rates.

Appendix A.

Lieblein correlations

For comparison purpose, correlations from the literature originally coming from the work of [START_REF] Lieblein | Aerodynamic Design of Axial-Flow Compressors 6 -Experimental Flow in Two-Dimensional Cascades[END_REF][START_REF] Lieblein | Analysis of Experimental Low-Speed Loss and Stall Characteristics of Two-Dimensional Compressor Blade Cascades[END_REF][START_REF] Lieblein | Loss and Stall Analysis of Compressor Cascades[END_REF][START_REF] Lieblein | Incidence and Deviation-Angle Correlations for Compressor Cascades[END_REF] and [START_REF] Lieblein | Diffusion Factor for Estimating Losses and Limiting Blade Loadings in Axial-Flow-Compressor Blade Elements[END_REF] have been implemented in ASTEC during this thesis. The correlations were obtained from experiments on NACA 65 series and C4 cascades and they allow the estimation of the total pressure loss coefficient ω t as well as the cascade exit flow angle β 2 in the wake including deviation from profile boundary layers. The principle of calculation is the same as in the present thesis developed methodology since blade streamsurfaces are considered and loss and deviation angles from the correlations are computed from the obtained cascade configuration in the considered streamsurface (see figure A.1). [START_REF] Aungier | Axial-Flow Compressors[END_REF] summarized the improvements made during the decades following the extensive usage of these classical correlations, in particular, to take into account Axial Velocity Density Ratio (AVDR) effects, change in hub or casing radius and their application to compressor rotor rows. In the following, the fitted equations from Aungier used in the comparison of chapter 4 are given together with the detailed logical procedure to obtain ω t and β 2 for a given streamsurface.

A.1. Flow angle calculation

A.1.1. Design inlet and outlet flow angles

The first step for the analysis of a cascade using Lieblein correlations is to determine its design inlet and outlet flow angles, β * 1 and β * 2 respectively.

Design inlet angle

The design inlet flow angle is linked to the design incidence angle i * through the blade angle at leading edge κ 1 :

Lieblein (1960) correlated i * to the camber of the profile ϕ c :

where i * 0 is the design incidence angle for a profile with zero camber, and n corrects it for cambered NACA 65A10 profiles as a function of β 1 and the solidity σ of the cascade. The fitting performed by Aungier is used here:

In eq. (A.3) β * 1 is in degrees and σ = c/s. The design incidence at zero camber i * 0 was also correlated by Lieblein for NACA 65A10 profile such that

where (i * 0 ) 10 is the design incidence obtained for NACA 65A10 profiles with zero camber. (K i ) s and (K i ) t are corrective factors to take into account profile thickness distribution and maximum thickness respectively. For NACA 65A10, (K i ) t = 1, and the fitting, performed by Aungier, as a function of the maximum thickness normalized by the chord t for other profile families, is used in this work: Knowing the blade leading edge and trailing edge metal angle κ 1 and κ 2 , the camber ϕ c = κ 2 -κ 1 can be deduced. Then combining eqs. (A.1) to (A.6) in a small iterative procedure leads to the determination of β * 1 and so i * .

Design outlet angle

The design outlet flow angle is linked to the design deviation angle δ * through the blade angle at trailing edge κ 2

Lieblein (1960) correlated δ * to the camber of the profile ϕ c :

where δ * 0 is the design deviation angle for a profile with zero camber, and m corrects it for cambered NACA 65A10 profiles as a function of β 1 and the solidity σ of the cascade.

where m σ=1 is the corrective factor obtained for a 1.0 solidity NACA 65A10 cambered cascade. The fittings with the design inlet flow angle β * 1 (in degrees) from Aungier are used:

The design deviation angle at zero camber δ * 0 was also correlated by Lieblein for NACA 65A10 profile such that: .12) where (δ * 0 ) 10 is the design deviation angle obtained for NACA 65A10 profiles with zero camber. (K δ ) s and (K δ ) t are corrective factors to take into account profile thickness distribution and maximum thickness respectively. For NACA 65A10, (K δ ) t = 1, and the fitting, performed by Aungier, as a function of the maximum thickness over chord t for other profile families, is used in this work:

(K δ ) t = 6.25t + 37.5t 2 (A.13) About (K δ ) s , the available values are linked to the profile family: 1.0 for zero camber NACA 65A10, 1.1 and 0.7 for C4 and CDA respectively. For the comparisons made in this work, the NACA family value was used.

Finally Lieblein correlated (δ * 0 ) 10 with the solidity of the NACA 65A10 cascades as a function of the inlet flow angle β 1 . In this work the polynomial fitting performed by Aungier is used (β 1 is in degrees):

(δ * 0 ) 10 = 0.001σβ 1 + (0.74σ 1.9 + 3σ)(β 1 /90) 1.67+1.09σ (A.14)

Knowing the blade trailing edge metal κ 2 and the camber ϕ c , β * 2 and so δ * can be deduced from eqs. (A.7) to (A.14) directly.

A.1.2. Off-design outlet flow angle

At this point, the nominal operating conditions of the cascade are known. In case of off-design operation of the cascade, Lieblein (1960) assumed a linear increase of the deviation with the incidence such that:

Lieblein correlated the rate of increase of deviation angle from design condition with respect to inlet flow angle β 1 and the cascade solidity σ. In this work the fitting performed by Aungier is used (β 1 is in degrees):

(A.16)

The deviation for off-design conditions is easily deduced from eqs. (A.15) and (A.16) knowing the previously estimated cascade on-design parameters.

The final form of the off-design formulation used in this work adds the axial velocity ratio correction from the work of [START_REF] Pollard | Some Experiments at Low Speed on Compressor Cascades[END_REF] such that:

A.2. Loss calculation

The increase of loss generation in a compressor blade row is linked to the increasing blade loading, which, in incomprehensible flow, is related to the ratio of the cascade inlet and outlet velocities, i.e., the cascade diffusion.

A.2.1. Diffusion factors

Local diffusion factor

This increment of loss had been correlated to the local diffusion factor D l of NACA 65A10 cascade by [START_REF] Lieblein | Aerodynamic Design of Axial-Flow Compressors 6 -Experimental Flow in Two-Dimensional Cascades[END_REF]:

where W max is the local maximum velocity on the blade.

Lieblein (1957) correlated the wake momentum thickness to the equivalent diffusion factor D eq and the expression fitted by Aungier is:

Using eqs. (A.27) and (A.28), it is possible to estimate the total pressure loss in a blade row.

On-design Mach number effect

The original correlation proposed by [START_REF] Lieblein | Aerodynamic Design of Axial-Flow Compressors 6 -Experimental Flow in Two-Dimensional Cascades[END_REF] proposes a correction factor as a function of the outlet Mach number for the estimation of the wake momentum thickness at design conditions taking into account compressible effects. A fit of these measurements follows:

Off-design Mach number effect

From the work of Lieblein, Swan (1961) proposed off-design corrections of the wake momentum thickness taking into account compressible effects:

31) with eqs. (A.27), (A.28), (A.30) and (A.31), it is now possible to calculate the total pressure loss coefficient of blade rows, for various inlet conditions and onset Mach numbers.

Note: in eq. (A.31), δ 2 c * 2 is used and not δ 2 c * ,comp 2 from eq. (A.30).

A.2.3. Friction force in ASTEC

The general total pressure loss coefficient written for a compressor row (rotating or not) writes: .32) where P tr is the relative total pressure, p the static pressure and the subscript i denotes the ideal case without viscous losses. Rearranging eq. (A.32) (note that P tr 1 | i = P tr 1 ):

From rhothalpy conservation of a rotating blade row the first term of eq. (A.33) is:

From isentropic pressure relations:

Using the Gibbs thermodynamic equation for the transformation at constant temperature from state 2 i to state 2, the specific entropy increment due to irreversibilities writes: ∆s = -r gas ln P tr 2 (P tr 2 ) i (A.36)

Using the estimated total pressure loss coefficient together with eqs. (A.34) to (A.36) leads to the estimation of the specific entropy increment due to profile loss:

The viscous volumic blade force f v to set ASTEC viscous source term f bv is then calculated classically using the link between the specific entropy creation along a streamline and the volumic blade force acting on the fluid along this streamline:

In a case of a static blade row, the ratio in eq. (A.34) reduces to unity, (P tr2 ) i = P tr1 in eq. (A.36) and eq. (A.37) applies as well.

Appendix B.

RANS simulation parameters

For comparison purposes, RANS simulations with elsA [START_REF] Cambier | The Onera elsA CFD Software: Input from Research and Feedback from Industry[END_REF] were carried out in this thesis. First bi-dimensional NACA 65 009 cascade simulations and then simulations of the CME2 compressor, a single stage low-speed compressor designed by SAE. In the following, the RANS simulation parameters are presented for both cases. 

B.1.2. Numerical simulation parameters

The simulation parameters are summarized in the following 

B.2.1. Mesh

The mesh is generated using Autogrid 5™ from Numeca. It