I

Humans can visually approximate the number of items without the need for counting, a process known as numerosity perception. It has been suggested that numerosity perception is either the result of a dedicated system to estimate the number of items, or is due to the exploitation of various visual properties of the presented items. There are many limitations of our spatial vision that may be related to numerosity perception. For example, visual crowding is the difficulty of identifying targets in cluttered environments, and it is especially pronounced in peripheral vision. Recently, it has been discovered that individuals often fail to detect identical items when they are presented in small clusters in the visual periphery, a phenomenon referred to as redundancy masking. The influence of these and related limits of spatial vision on numerosity perception have yet to be extensively explored. In the current thesis, we aim to investigate how crowding and redundancy masking modulate numerosity perception. In Chapter 1, existing theories of numerosity perception are reviewed, and the potential confounding factors, such as density and convex hull on numerosity perception, are discussed. These factors have been previously shown to impact numerosity perception, and it is important to consider their potential effects in studies on numerosity perception. The concept of crowding and redundancy masking as specific forms of limits of spatial vision, and their potential influence on numerosity perception are introduced. To investigate these effects, a series of experiments were conducted, as discussed in chapters 2 to 4 of the thesis. In Chapter 2, we present the results of the investigation into the impact of the topology of spatial vision on numerosity perception. Specifically, we examined the effects of the radialtangential anisotropy that radially arranged items were found to interfere more with target perception than tangentially arranged items on numerosity perception. The results demonstrated that numerosity estimates were lower when target discs on displays were predominantly arranged in a radial direction compared to a tangential direction. These findings provide evidence that the radial-tangential anisotropy of spatial vision modulates numerosity perception and highlights the importance of considering visual field asymmetries when studying numerosity perception. Observers reported radial displays as less numerous compared to tangential displays, regardless of how the radial-tangential arrangements of displays were manipulated (Chapter 3). Our results were consistent across experiments, including when manipulation of the radial and tangential arrangement of displays was weak (Experiment 3.1), strong (Experiment 3.2), or modulated with mixed contrast polarity (Experiment 3.3 and Experiment 3.4). We proposed that crowding and redundancy masking modulate numerosity perception. Next, two more experiments were conducted to investigate redundancy masking with faces using a typical redundancy masking paradigm (Chapter 4). Faces are of great social importance and are usually processed quickly. The results showed that observers often failed to detect faces when presented in small groups, with the number of reported items frequently lower than the number of presented items. The results showed that redundancy masking occurs with highly complex stimuli such as faces, and that it is a key mechanism for compressing redundant visual information. In Chapter 5, we discussed and elucidated all experiments in the pervious chapters and the observed results. Overall, our results demonstrated how crowding and redundancy masking possibly modulate numerosity perception.

ABSTRACT II Mensen kunnen het aantal visueel gepresenteerde objecten schatten zonder te tellen, een proces dat bekend staat als numerositeitsperceptie. Eerder werd gesuggereerd dat numerositeitsperceptie ofwel het resultaat is van een gespecialiseerd numeriek systeem. Een alternatieve visie is dat dit het gevolg is van het gebruik van verschillende visuele, nietnumerieke eigenschappen van de visuele stimulus (bv. totale oppervlakte).

Er zijn echter ook verschillende beperkingen van onze spatiale perceptie die een impact kunnen hebben op numerositeitsperceptie. Bijvoorbeeld, visuele "crowding" is de moeilijkheid om objecten te identificeren in een "crowded" omgeving en treed vooral op in perifere visie. Onlangs werd duidelijk dat mensen vaak identieke objecten niet kunnen detecteren als ze in kleine clusters in de visuele periferie worden gepresenteerd, een fenomeen dat "redundancy making" wordt genoemd. De invloed van deze en gerelateerde beperkingen op de spatiale perceptie van numerositeitsperceptie is vooralsnog een open vraag.

In dit proefschrift willen we onderzoeken hoe crowding en redundancy masking numerositeitsperceptie beïnvloeden. In Hoofdstuk 1 worden bestaande theorieën over numerositeitsperceptie besproken en de mogelijke verstorende factoren, zoals dichtheid en oppervlakte op numerositeitsperceptie. Van deze factoren is eerder aangetoond dat ze invloed hebben op numerositeitsperceptie, en het is belangrijk om rekening te houden met hun mogelijke effecten in studies naar numerositeitsperceptie. Ook worden de concepten crowding en redundancy masking, als specifieke vormen van limitaties van spatiale perceptie, en hun mogelijke invloed op numerositeitsperceptie worden geïntroduceerd. Om deze effecten te onderzoeken is een reeks experimenten uitgevoerd, zoals besproken in de hoofdstukken 2 tot en met 4 van dit proefschrift. In Hoofdstuk 2 onderzochten we de effecten van de radiaal-tangentiële anisotropie: De resultaten toonden aan dat numerositeitsschattingen lager waren wanneer de targets voornamelijk in radiale richting waren geplaatst in vergelijking met tangentiële richting. Deze bevindingen leveren het bewijs dat de radiaal-tangentiële anisotropie in spatiale perceptie de numerositeitsperceptie beïnvloed en benadrukt het belang van van visuele veld asymmetrieën bij van numerositeitsperceptie. Hoofdstuk 3 bouwt verder op de bevindingen van Hoofdstuk 2 en en toont aan dat radiale displays van objecten als minder talrijk worden geschat dan tangentiële displays, ongeacht de specifieke manipulatie (Hoofdstuk 3). De resultaten waren consistent in alle experimenten, inclusief wanneer manipulatie van de radiale en tangentiële rangschikking van displays beperkt was (Experiment 3.1), sterk was (Experiment 3.2), of wanneer er sprake was van contrastpolariteit (Experiment 3.3 en Experiment 3.4). We stelden voor dat crowding en redundantie masking de numerositeitsperceptie moduleren. In Hoofdstuk 4 werden nog twee experimenten uitgevoerd om redundancy masking bij kleine aantallen van gezichten te onderzoeken. Gezichten zijn van groot sociaal belang en worden meestal snel verwerkt. De resultaten toonden aan dat participanten de gezichten vaak niet allemaal detecteerden als ze in kleine groepen werden gepresenteerd, waardoor het aantal gerapporteerde items vaak lager was dan het aantal gepresenteerde items. De resultaten toonden aan dat redundancy masking optreedt bij zeer complexe stimuli zoals gezichten, en dat het een belangrijk mechanisme is voor het comprimeren van redundante visuele informatie. Het afsluitend Hoofdstuk 5 bevat een samenvatting van de resultaten en een integratie ervan in de bestaande literatuur. In het algemeen toonden onze resultaten aan hoe crowding en redundantie masking numerositeitsperceptie beïnvloeden. SAMENVATTING III L'être humain est capable d'estimer visuellement le nombre d'objets sans avoir à les compter, c'est un processus connu sous le nom de perception de la numérosité. Il a été suggéré que cette perception relève soit d'un système dédié à l'estimation du nombre d'objets, soit de l'exploitation de diverses propriétés visuelles des objets présentés. Il existe de nombreuses limitations de notre vision spatiale qui peuvent être liées à la perception de la numérosité. Par exemple, l'encombrement visuel est la difficulté d'identifier des cibles dans des environnements encombrés, et il est particulièrement prononcé dans la vision périphérique. Une découverte récente montre que les individus ne parviennent pas à détecter des éléments identiques lorsqu'ils sont regroupés dans la vision périphérique, un phénomène appelé masquage de redondance. L'influence des limites de la vision spatiale sur la perception de la numérosité n'a pas encore été explorée en profondeur. Dans cette thèse, nous cherchons à étudier comment l'encombrement visuel et le masquage de redondance modulent la perception de la numérosité. Dans le chapitre 1, les théories existantes de la perception de la numérosité sont passées en revue, et les facteurs de confusion potentiels tels que la densité et l'enveloppe convexe sur la perception de la numérosité sont discutés. Il a été démontré que ces facteurs ont un impact sur la perception de la numérosité, et il est important de prendre en compte leurs effets potentiels dans les études sur la perception de la numérosité. Les concepts d'encombrement visuel et de masquage de redondance, en tant que limites spécifiques de la vision spatiale, et leur influence potentielle sur la perception de la numérosité sont présentés. Pour étudier ces effets, une série d'expériences a été menée, comme discuté dans les chapitres 2 à 4 de la thèse. Dans le chapitre 2, nous présentons les résultats concernant l'exploration en fonction de la topologie de la vision spatiale sur la perception de la numérosité. Plus précisément, nous avons examiné les effets de l'anisotropie radiale-tangentielle : il a été constaté que les éléments disposés radialement interféraient davantage avec la perception de la cible tandis que éléments disposés tangentiellement interfèrent davantage avec la perception de la numérosité. Les résultats ont démontré que les estimations de la numérosité étaient plus faibles lorsque les disques cibles sur les écrans étaient principalement disposés dans une direction radiale par rapport à une direction tangentielle. Ces résultats prouvent que l'anisotropie radiale-tangentielle de la vision spatiale module la perception de la numérosité et souligne l'importance de prendre en compte les asymétries du champ visuel lors de l'étude de la perception de la numérosité. Les observateurs ont signalé que les affichages radiaux étaient moins nombreux que les affichages tangentiels, quelle que soit la façon dont la disposition radiale-tangentielle des affichages était manipulée (chapitre 3). Nos résultats étaient cohérents d'une expérience à l'autre, y compris lorsque la manipulation de la disposition radiale et tangentielle des affichages était faible (expérience 3.1), forte (expérience 3.2) ou modulée par une polarité de contraste mixte (expérience 3.3 et expérience 3.4).Nous avons proposé que l'encombrement visuel et le masquage redondance modulent la perception de la numérosité. Ensuite, deux autres expériences ont été menées pour étudier le masquage de redondance avec des visages en utilisant un paradigme typique de masquage de redondance (chapitre 4). Les visages ont une grande importance sociale et sont généralement traités rapidement. Les résultats ont montré que les observateurs ne parvenaient pas à détecter les visages lorsqu'ils étaient présentés en petits groupes, le nombre d'éléments rapportés étant souvent inférieur au nombre d'éléments présentés. Les résultats ont montré que le masquage de redondance se produit avec des stimuli très complexes tels que les visages, et qu'il s'agit d'un mécanisme clé pour la compression des informations visuelles redondantes. Enfin, dans le chapitre 5, nous avons discuté et élucidé toutes les expériences des chapitres précédents et les résultats observés. Dans l'ensemble, nos résultats ont démontré comment l'encombrement visuel et le masquage de redondance peuvent moduler la perception de la numérosité. My thanks also go to Laurent Madelain and Solène, my CST members. Thank you for your valuable advice on each of my progress reports.
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Humans can estimate the number of visually displayed items. For example, when we are in a crowded hall, we can quickly estimate the approximate number of people without having to count them. Although the estimation is not precise, estimating the number of items in a given set is known as numerosity perception. Having the ability to discern numerosity offers an evolutionary advantage, as it allows one to select an area with a greater quantity of sustenance and to determine which group has fewer adversaries [START_REF] Gómez-Laplaza | Can angelfish (Pterophyllum scalare) count? Discrimination between different shoal sizes follows Weber's law[END_REF][START_REF] Mccomb | Roaring and numerical assessment in contests between groups of female lions, Panthera leo[END_REF][START_REF] Nieder | Evolution of cognitive and neural solutions enabling numerosity judgements: lessons from primates and corvids[END_REF][START_REF] Wilson | Does participation in intergroup conflict depend on numerical assessment, range location, or rank for wild chimpanzees?[END_REF].

The Innate Numerosity

It is frequently suggested that numerosity, as other primary features of objects such as orientation, color, size, etc., is another primary feature of objects [START_REF] Ross | Vision senses number directly[END_REF]. Our ability to process numerosity or to estimate quantities has been suggested to be innate in our visual brain and driven by an approximate number system (ANS, also known as the "number sense" [START_REF] Anobile | Separate mechanisms for perception of numerosity and density[END_REF][START_REF] Arrighi | A generalized sense of number[END_REF][START_REF] Burr | Psychophysical evidence for the number sense[END_REF][START_REF] Chen | Spontaneous summation or numerosity-selective coding?[END_REF][START_REF] Dehaene | Varieties of numerical abilities[END_REF][START_REF] Dehaene | Development of Elementary Numerical Abilities: A Neuronal Model[END_REF][START_REF] Dehaene | Abstract representations of numbers in the animal and human brain[END_REF][START_REF] Feigenson | Core systems of number[END_REF][START_REF] Halberda | Developmental change in the acuity of the" Number Sense": The Approximate Number System in 3-, 4-, 5-, and 6-year-olds and adults[END_REF][START_REF] Lipton | Origins of number sense: Large-number discrimination in human infants[END_REF][START_REF] Stoianov | Emergence of a 'visual number sense' in hierarchical generative models[END_REF][START_REF] Xu | Number sense in human infants[END_REF]. The number sense account suggests that numerosity perception is spontaneously processed and not depending on other physical properties (e.g., size, convex hull, density, etc., [START_REF] Castaldi | The pupil responds spontaneously to perceived numerosity[END_REF][START_REF] Cicchini | Spontaneous perception of numerosity in humans[END_REF][START_REF] Cicchini | Spontaneous representation of numerosity in typical and dyscalculic development[END_REF]. Some evidence was shown to support the idea. For example, [START_REF] Izard | Newborn infants perceive abstract numbers[END_REF] showed that newborn infants spontaneously associated visual displays that contained a different number of items (4 -12) with auditory events on the basis of numbers, demonstrating that the ability to abstract number information is innate, and occurs at the start of life (see also, [START_REF] De Hevia | Perceiving numerosity from birth[END_REF]. In the visual domain, adaptation is evident in color perception (which can differ significantly depending on the previous color seen, Webster, 2011), orientation (which can be altered after viewing tilted lines, Gibson & Radner, 1937), and movement (where the perception of stationary objects can be changed after viewing moving ones, [START_REF] Nashner | Adaptation of human movement to altered environments[END_REF]. One of the strong indications that the ANS is an innate system is its sensitivity to adaptation [START_REF] Mollon | After-effects and the brain[END_REF][START_REF] Thompson | Visual aftereffects[END_REF]. [START_REF] Burr | A visual sense of number[END_REF] showed that the perceived CHAPTER 1: GENERAL INTRODUCTION number of items in displays that were viewed after adaptation shifted drastically in the opposite direction of the adapted displays; that is, after viewing a dense (sparse) display, the subsequent display appeared to be less (more) numerous.

Numerosity perception Based on Other Physical Properties

However, the ANS view that numerosity perception is innate has been challenged. One of the arguments is that numerosity co-varies with many other nonnumerical physical properties. For example, given a fixed size of each item on display, the total surface area increases as the numerosity increases. The convex hull (the smallest convex shape that contains all items in a set) also correlates positively with the numerosity. More items on display result in a denser display than the display with fewer items given the same item size. It is impossible to create two displays with a different number of items but keep other nonnumerical physical properties unchanged [START_REF] Leibovich | The symbol-grounding problem in numerical cognition: A review of theory, evidence, and outstanding questions[END_REF]. Therefore, abstracting only the numerosity independent from other co-varied physical properties from a display seems to be impossible (Gebuis & Reynvoet, 2012a[START_REF] Gebuis | The interplay between nonsymbolic number and its continuous visual properties[END_REF], 2012c). Several studies showed that numerosity perception is influenced by other physical properties of the displays [START_REF] Allik | Occupancy model of perceived numerosity[END_REF][START_REF] Sophian | How do people apprehend large numerosities?[END_REF]. For example, [START_REF] Clearfield | Amount Versus Number: Infants' Use of Area and Contour Length to Discriminate Small Sets[END_REF] showed that infants respond to the length of displays' contour instead of numerosity. [START_REF] Ginsburg | Perceived numerosity as a function of item size[END_REF] demonstrated that perceived numerosity negatively correlated with item size (see also, [START_REF] Tokita | How might the discrepancy in the effects of perceptual variables on numerosity judgment be reconciled? Attention[END_REF], cf., Allik et al., 1991;[START_REF] Hurewitz | Sometimes area counts more than number[END_REF]. It was observed that the occupancy area (overall area occupied by items on displays), which is closely linked to item sizes, and convex hull have an effect on numerosity perception [START_REF] Binet | LA PERCEPTION DES LONGUEURS ET DES NOMBRES CHEZ QUELQUES PETITS ENFANTS[END_REF][START_REF] Gilmore | Congruency effects in dot comparison tasks: convex hull is more important than dot area[END_REF][START_REF] Katzin | Convex hull as a heuristic[END_REF][START_REF] Shilat | Shaping the way from the unknown to the known: The role of convex hull shape in numerical comparisons[END_REF][START_REF] Taves | Two mechanisms for the perception of visual numerousness[END_REF][START_REF] Vos | Interactions between area and numerosity[END_REF]. For example, [START_REF] Gilmore | Congruency effects in dot comparison tasks: convex hull is more important than dot area[END_REF] asked participants to ignore either the dot area information or the convex hull information while doing a numerosity perception task. They found that participants were able to ignore the dot area, and the ability improved with increasing age. However, the convex hull information was not easy to be ignored while performing dot comparison tasks, suggesting the convex hull's crucial role in numerosity perception. The occupancy model posits that the perceived numerosity in a relatively sparse random pattern of items is related to the area occupied by all items, which is determined by the size of the items and their fixed radius of influence. [START_REF] Allik | Occupancy model of perceived numerosity[END_REF]. [START_REF] Allik | Occupancy model of perceived numerosity[END_REF] proposed that the area collectively occupied by items on displays, rather than the number of items per se, determines the perceived numerosity. This model explained the underestimation observed in many numerosity studies well. Particularly, when items were positioned close to each other, the occupied regions overlapped, thus perceived to be less numerous.

When other physical properties of displays (e.g., total surface area, size, convex hull) were manipulated to be congruent or incongruent with the number, the numerosity judgment was impacted [START_REF] Gebuis | The interplay between nonsymbolic number and its continuous visual properties[END_REF], 2012c;[START_REF] Hurewitz | Sometimes area counts more than number[END_REF]. For example, [START_REF] Hurewitz | Sometimes area counts more than number[END_REF] presented displays where numerosity and dot size were manipulated to be congruent or incongruent. In the congruent condition, displays contain more dots composed of large dots or large total surface area, whereas, in the incongruent condition, displays contain more dots composed of small dots or small total surface area. They observed that participants made more errors and performed slower in a numerosity comparison task in the incongruent compared to the congruent condition.

Numerosity perception is also suggested to be influenced by clustering [START_REF] Bertamini | The effect of clustering on perceived quantity in humans (Homo sapiens) and in chicks (Gallus gallus)[END_REF][START_REF] Bertamini | Spatial clustering and its effect on perceived clustering, numerosity, and dispersion[END_REF][START_REF] Chakravarthi | Clustering leads to underestimation of numerosity, but crowding is not the cause[END_REF][START_REF] Frith | The Solitaire Illusion An Illusion of numerosity[END_REF][START_REF] Sophian | Measuring Spatial Factors in Comparative Judgments About Large Numerosities[END_REF]. [START_REF] Frith | The Solitaire Illusion An Illusion of numerosity[END_REF] first demonstrated that numerosity perception is impacted by how items are spatially arranged and that a large cluster appeared to be more numerous than several small clusters, known as the solitaire illusion. When items on displays are arranged into clusters, displays appear to be less numerous. An extreme case is the random-regular numerosity illusion [START_REF] Cousins | Subjective correlation and the regular-random numerosity illusion[END_REF][START_REF] Ginsburg | The Regular-Random Numerosity Illusion: Rectangular Patterns[END_REF]: items arranged into a regular pattern (e.g., on intersections of the grid) were judged as more numerous compared to items in a random, clustering pattern. One explanation is that when items on displays are arranged into "good" Gestalt (e.g., the whole central cluster of the solitaire illusion), the perceived numerosity was affected with this higher-order unit and appeared to be more numerous compared with items arranged into "bad" Gestalt (e.g., four corner clusters of the solitaire illusion, [START_REF] Frith | The Solitaire Illusion An Illusion of numerosity[END_REF]. Nevertheless, an early study on how clustering impact numerosity perception showed contradictory results [START_REF] Taves | Two mechanisms for the perception of visual numerousness[END_REF]. [START_REF] Taves | Two mechanisms for the perception of visual numerousness[END_REF] showed that a regularly arranged 20 items were perceived as less numerous than a cluster of 20 irregularly placed items. He suggested that displays with "good" Gestalt have fewer separate effects than the irregular pattern on the perception, and therefore, the regular pattern appeared to be more numerous than the irregular pattern. Inter-item spacing and regularity determine the spatial proximity of displays and results in different level of clustering of displays. [START_REF] Bertamini | Spatial clustering and its effect on perceived clustering, numerosity, and dispersion[END_REF] first used different measures of the structural configurations of displays (e.g., the distribution, local clustering, overall convex set, etc.) to quantify items on displays that link to numerosity, clustering, and dispersion. [START_REF] Bertamini | Spatial clustering and its effect on perceived clustering, numerosity, and dispersion[END_REF] presented displays that always contained the same number of items but varied in terms of clustering and dispersion.

They concluded that no matter how clustering was quantified, the increase in clustering is linked to the decrease in perceived numerosity (see also, [START_REF] Bertamini | The effect of clustering on perceived quantity in humans (Homo sapiens) and in chicks (Gallus gallus)[END_REF]. This evidence suggested that clustering could underline numerosity perception [START_REF] Anobile | Mechanisms for perception of numerosity or texture-density are governed by crowding-like effects[END_REF][START_REF] Chakravarthi | Clustering leads to underestimation of numerosity, but crowding is not the cause[END_REF]. [START_REF] Gebuis | Sensory-integration system rather than approximate number system underlies numerosity processing: A critical review[END_REF] proposed a more comprehensive explanation that there could be a sensory-integration system that evaluates large approximate numerosities by combining the various sensory cues that constitute number stimuli. They suggest that a combination of sensory inputs is used to create a unified representation of numerosity.

The model suggested that salient visual cues are typically weighted heavily when doing numerosity perception. The sensory-integration model's predictions are in agreement with a number of earlier results, including the numerical distance effect (a decrease in the difference between two numerosities is associated with an increase in reaction time, [START_REF] Piazza | Tuning Curves for Approximate Numerosity in the Human Intraparietal Sulcus[END_REF][START_REF] Sasanguie | The reliability of and the relation between non-symbolic numerical distance effects in comparison, same-different judgments and priming[END_REF], the varying congruency effects (congruency effects scaled with the number of manipulated visual cues, [START_REF] Gebuis | The interplay between nonsymbolic number and its continuous visual properties[END_REF], and the opposite congruency effect (e.g., trials with a larger number of smaller dots have yielded better performance than those with a smaller number of larger dots, [START_REF] Ginsburg | Perceived numerosity as a function of item size[END_REF][START_REF] Sophian | Measuring Spatial Factors in Comparative Judgments About Large Numerosities[END_REF]. Importantly, Gebuis and Reynvoet (2012c) controlled the nonnumerical physical properties of displays so that these visual cues were manipulated to be uncorrelated with numerosity. They found that participants reported the displays to be more numerous when displays had smaller average diameter, aggregate surface or density, but a larger convex hull. They suggested that numerosity perception is performed by weighing and integrating multiple nonnumerical physical properties of displays (see also, [START_REF] Gebuis | The interplay between nonsymbolic number and its continuous visual properties[END_REF]. The sensory integration account showed the importance of physical properties of displays in numerosity perception and challenged the existence of the ANS. In a recent review, [START_REF] Lourenco | A Theory of Perceptual Number Encoding[END_REF] proposed that numerosity is more than just a consequence of other magnitudes; it is its own distinct dimension that is not completely separate from the other magnitudes. A new model of numerosity perception was suggested by [START_REF] Lourenco | A Theory of Perceptual Number Encoding[END_REF], in which the perception of nonnumerical magnitude is integrated with the perception of numerosity throughout the entire perception process.

Intertwined Density and Numerosity

Numerosity and density are physically indivisible as density is calculated by dividing numerosity by the total area [START_REF] Tibber | Number and density discrimination rely on a common metric: Similar psychophysical effects of size, contrast, and divided attention[END_REF]. [START_REF] Burr | A visual sense of number[END_REF] demonstrated that numerosity is subject to adaptation and claimed that it is an independent visual property (from other visual properties, including density), further corroborated by [START_REF] Ross | Vision senses number directly[END_REF]. [START_REF] Anobile | Separate mechanisms for perception of numerosity and density[END_REF] found evidence that discrimination thresholds of high and low-density displays followed two distinct psychophysical functions, suggesting separate mechanisms for numerosity and density.

However, [START_REF] Dakin | A common visual metric for approximate number and density[END_REF] suggested that numerosity perception and density perception share a similar mechanism, and therefore, they cannot be clearly distinguished by the visual system (see also, [START_REF] Tibber | Number and density discrimination rely on a common metric: Similar psychophysical effects of size, contrast, and divided attention[END_REF]. Many empirical studies support this idea. For example, [START_REF] Durgin | Texture density adaptation and visual number revisited[END_REF] claimed that the "adaptation on numerosity" described by [START_REF] Burr | A visual sense of number[END_REF] was actually based on texture density. [START_REF] Durgin | Texture density adaptation and visual number revisited[END_REF] presented two adapting displays: one contained more items than the other one, and the other's texture was denser, allowing dissociation between numerosity and density during the adaptation. The results showed that greater adaptation was produced by the region of greater density instead of higher numerosity. Similarly, [START_REF] Dakin | A common visual metric for approximate number and density[END_REF] showed that both numerosity and density were biased by item size, suggesting a common visual metric between numerosity and density. Numerosity studies sometimes even indicated that although the task was formulated in terms of numerosity, the results and conclusions were equally applied to both numerosity and density since they are not dissociable (e.g., [START_REF] Valsecchi | Perceived numerosity is reduced in peripheral vision[END_REF]. Nevertheless, [START_REF] Ross | Vision senses number directly[END_REF] provided further evidence that numerosity perception is not dependent on the densities of displays. They presented three types of displays to participants: a constant numerosity, a constant area, and a constant density, where one of the three parameters was kept constant in the experiment. Participants made comparisons on numerosity and density in separate blocks. Their results showed that density did not play a role in numerosity judgment as the performance of the constant density condition was not worse compared to the other two conditions. In another experiment, [START_REF] Ross | Vision senses number directly[END_REF] showed that the perceived numerosity but not the density was modulated by luminance. Hence, it is unclear whether density and numerosity are independent of each other. This poses certain difficulties for future research on numerosity perception, as we must consider whether density plays a role or to what extent density plays a role in perceived numerosity.

Numerosity Perception in the Periphery

Investigations into numerosity perception generally involve displays that span a significant portion of the visual field, including the fovea, the parafovea, and often the periphery. However, there are substantial differences between different areas of the visual field [START_REF] Rosenholtz | Capabilities and Limitations of Peripheral Vision[END_REF][START_REF] Simpson | Mini-review: Far peripheral vision[END_REF]. For example, visual performance declines with increasing eccentricity; i.e., the performance is usually worse in the peripheral visual field compared to that in the central visual field [START_REF] Gurnsey | Crowding is size and eccentricity dependent[END_REF][START_REF] Levi | Spatial scale shifts in peripheral vernier acuity[END_REF][START_REF] Livne | Configuration influence on crowding[END_REF][START_REF] Meinecke | Detection performance in Pop-Out tasks: nonmonotonic changes with display size and eccentricity[END_REF][START_REF] Wolford | Retinal location and string position as important variables in visual information processing[END_REF][START_REF] Zahabi | A crowdful of letters: Disentangling the role of similarity, eccentricity and spatial frequencies in letter crowding[END_REF]. Previous research also investigated numerosity perception in the periphery. For example, [START_REF] Mengal | Judging relative numerosity: foveal and peripheral vision[END_REF] presented small green and red LED lights to participants. Participants needed to discriminate which color (green or red) of the lights was more. Results showed that the performance decreased from the fovea to the periphery, and the reaction time increased with increasing eccentricity. Following a lack of research investigating how eccentricity modulates numerosity perception (at least with relatively large numbers), [START_REF] Valsecchi | Perceived numerosity is reduced in peripheral vision[END_REF] conducted an experiment in which participants performed a numerosity comparison task. For this purpose, two displays were simultaneously presented on either side of the monitor, and participants were cued to look at the center of one of the displays, so that the other display appeared in the periphery. The task was to indicate which displays appeared to be more numerous. Results showed that the peripheral presented displays needed to contain a greater number of dots to be judged as the equivalent of the displays that were looked at, indicating numerosity is perceived as less numerous in the periphery compared to in the fovea. [START_REF] Valsecchi | Perceived numerosity is reduced in peripheral vision[END_REF] suggested that crowding (see section 1.5) is the key mechanism of the observed underestimation in the periphery.

Visual input from the fovea and the periphery contribute to numerosity perception differently (Cheyette & Piantadosi, 2019). For example, [START_REF] Cheyette | A primarily serial, foveal accumulator underlies approximate numerical estimation[END_REF] revealed that an increase in foveation leads to an increase in numerosity estimation. They speculated that items in the foveal vision have twice the influence on numerosity estimation than those in the peripheral vision. Therefore, taking into account the presentation of items in different visual fields is pivotal for the comprehension of numerosity perception, as the peripheral vision is distinct from the fovea. Further exploration into the constraints of the visual periphery is essential.

Crowding and Redundancy Masking in Numerosity Perception

Spatial vision is strongly limited by crowding: the inability of target perception in cluttered environments [START_REF] Bouma | Interaction Effects in Parafoveal Letter Recognition[END_REF]Bouma, 1973;Levi, 2008;[START_REF] Pelli | Crowding is unlike ordinary masking: Distinguishing feature integration from detection[END_REF]Pelli & Tillman, 2008;[START_REF] Strasburger | Seven myths on crowding and peripheral vision[END_REF]. It was proposed that crowding is a fundamental limit of spatial vision (Levi, 2008), and it is particularly strong in the visual periphery [START_REF] Bouma | Interaction Effects in Parafoveal Letter Recognition[END_REF]Bouma, 1973;[START_REF] He | Attentional resolution and the locus of visual awareness[END_REF][START_REF] Levi | Suppressive and facilitatory spatial interactions in peripheral vision: Peripheral crowding is neither size invariant nor simple contrast masking[END_REF][START_REF] Levi | Vernier acuity, crowding and cortical magnification[END_REF][START_REF] Pelli | Crowding is unlike ordinary masking: Distinguishing feature integration from detection[END_REF]. Crowding is contingent on the spacing between the target and its flankers (e.g., elements that flank the target): a decrease in the spacing between the target and its flankers leads to an increase in crowding [START_REF] Bouma | Interaction Effects in Parafoveal Letter Recognition[END_REF]Toet & Levi, 1992). For targets in the periphery, there is an elongated interference region where flankers interfere with the target perception (Toet & Levi, 1992). It has been shown that flankers positioned outside the region do not impede the target's perception (Toet & Levi, 1992). Target-flanker similarity impacts crowding: the more alike they are, the more crowding is experienced [START_REF] Chakravarthi | Temporal properties of the polarity advantage effect in crowding[END_REF][START_REF] Chung | [END_REF][START_REF] Kooi | The effect of similarity and duration on spatial interaction in peripheral vision[END_REF]Rummens & Sayim, 2019, 2021;[START_REF] Sayim | Contrast polarity, chromaticity, and stereoscopic depth modulate contextual interactions in vernier acuity[END_REF]; but see, [START_REF] Rummens | Broad attention uncovers benefits of stimulus uniformity in visual crowding[END_REF].

Crowding was also suggested to be a contributing factor to numerosity perception, resulting in an underestimation [START_REF] Anobile | Mechanisms for perception of numerosity or texture-density are governed by crowding-like effects[END_REF][START_REF] Valsecchi | Perceived numerosity is reduced in peripheral vision[END_REF].

The crowding hypothesis in numerosity perception is corroborated by the fact that both crowding and numerosity perception are eccentricity-modulated. There is increasing crowding and stronger underestimation with increasing eccentricity. [START_REF] Dakin | A common visual metric for approximate number and density[END_REF]Toet & Levi, 1992;[START_REF] Valsecchi | Perceived numerosity is reduced in peripheral vision[END_REF].

It is commonly thought that crowding only affects target identification but not target detection [START_REF] Levi | Suppressive and facilitatory spatial interactions in peripheral vision: Peripheral crowding is neither size invariant nor simple contrast masking[END_REF][START_REF] Pelli | Crowding is unlike ordinary masking: Distinguishing feature integration from detection[END_REF]but see, Allard & Cavanagh, 2011). However, the observed underestimation of numerosity perception implies that some detection errors may have taken place. [START_REF] Chakravarthi | Clustering leads to underestimation of numerosity, but crowding is not the cause[END_REF] manipulated target-letter similarity (similar vs. dissimilar) and the minimal item spacing (near vs. far) that were shown to impact both crowding and numerosity perception and investigated if similarity and spacing had a comparable effect on numerosity perception.

The results revealed that item spacing and item similarity showed different effects on the crowding task and the numerosity comparison task, demonstrating that crowding does not modulate numerosity perception.

Recent research has put forward a concept akin to visual crowding: when three or more identical elements, such as lines and letters, are presented in the periphery, individuals report fewer items than presented, which is termed redundancy masking [START_REF] Sayim | Letters lost: capturing appearance in crowded peripheral vision reveals a new kind of masking[END_REF][START_REF] Yildirim | Redundancy masking: The loss of repeated items in crowded peripheral vision[END_REF][START_REF] Yildirim | Hidden by bias: how standard psychophysical procedures conceal crucial aspects of peripheral visual appearance[END_REF][START_REF] Yildirim | Atypical visual field asymmetries in redundancy masking[END_REF]. Redundancy masking occurred as soon as three items were presented. For example, when three radially aligned lines were presented in the visual periphery, participants usually indicated that they perceived two lines [START_REF] Yildirim | Redundancy masking: The loss of repeated items in crowded peripheral vision[END_REF][START_REF] Yildirim | Hidden by bias: how standard psychophysical procedures conceal crucial aspects of peripheral visual appearance[END_REF]. Therefore, redundancy masking suggests a detection error, and thus possibly linking to the underestimation in numerosity perception.

Impact of Visual Field Asymmetries on Numerosity Perception

The visual performance demonstrated a wide range of variation throughout the visual field, revealed by several ubiquitous asymmetries of the visual field, including horizontal-vertical anisotropy (superior performance along the horizontal compared to the vertical meridian at a fixed eccentricity, [START_REF] Barbot | Asymmetries in visual acuity around the visual field[END_REF][START_REF] Carrasco | The eccentricity effect: Target eccentricity affects performance on conjunction searches[END_REF][START_REF] Carrasco | Characterizing visual performance fields: effects of transient covert attention, spatial frequency, eccentricity, task and set size[END_REF][START_REF] Corbett | Visual Performance Fields: Frames of Reference[END_REF][START_REF] Mackeben | Sustained focal attention and peripheral letter recognition[END_REF][START_REF] Rovamo | An estimation and application of the human cortical magnification factor[END_REF], vertical asymmetry (better performance in the lower compared to the upper visual field, [START_REF] Barbot | Asymmetries in visual acuity around the visual field[END_REF][START_REF] Carrasco | Characterizing visual performance fields: effects of transient covert attention, spatial frequency, eccentricity, task and set size[END_REF][START_REF] Corbett | Visual Performance Fields: Frames of Reference[END_REF][START_REF] Rubin | Enhanced Perception of Illusory Contours in the Lower Versus Upper Visual Hemifields[END_REF] in a range of vision tasks such as visual acuity, orientation discrimination.

In crowding, radially placed flankers have a more pronounced effect on target perception compared to tangentially placed flankers, given an equal target-flanker spacing [START_REF] Kwon | Radial-tangential anisotropy of crowding in the early visual areas[END_REF]Toet & Levi, 1992), which refers to as radial-tangential anisotropy. While there are several distinctions between redundancy masking and crowding, both demonstrate an evident radial-tangential anisotropy. In redundancy masking, the reduction of reporting the number of items occurs when they are arranged radially but not tangentially. [START_REF] Yildirim | Redundancy masking: The loss of repeated items in crowded peripheral vision[END_REF][START_REF] Yildirim | Atypical visual field asymmetries in redundancy masking[END_REF].

It is surprising that not many studies have investigated how visual field asymmetries impact numerosity perception. Only in a recent study, [START_REF] Chakravarthi | Visual field asymmetries in numerosity processing[END_REF] revealed that a small number of items can produce a variety of visual field asymmetries in numerosity perception by presenting 1-9 small squares to one of four locations (upper, lower, left, or right visual field). They showed that numerosity performance was more effective along the horizontal meridian than the vertical meridian, in the lower visual field than the upper visual field, and on the left horizontal meridian than the right horizontal meridian. The results pointed to the potential influence of visual field asymmetries on numerosity perception.

The Current Thesis

In the current thesis, we aim to explore how crowding and redundancy masking modulate numerosity perception with a relatively wide range of numerosities. We tested the numerosity estimations (in a range between 21 and 58) with displays whose discs' interference was either strong or weak (Chapter 2). Discs on displays were predominantly arranged in a radial and a tangential direction for the strong and weak interference conditions, respectively (Experiment 2.1). Our results showed that estimates were lower in the strong compared to the weak interference conditions. We suggest that numerosity perception is a radial-tangential anisotropy of numerosity perception. Next, we asked participants to encircle the items perceived as a group (Experiment 2.2). The results indicated that the number of perceived groups was higher in the weak compared to the strong interference condition, showing an opposite trend with the estimation task. Therefore, grouping among discs may not explain the observed numerosity estimation results that radial displays were presented as less numerous compared to tangential displays. Next, crowding, redundancy masking, and radialtangential anisotropy were further examined with four experiments (Chapter 3).

Numerosities between 31 -99 were tested. We observed that radial displays were reported as less numerous compared to tangential displays, no matter whether the radial-tangential arrangements of displays were weak, strong, or modulated with mixed contrast polarity. Our results demonstrated that the radial-tangential anisotropy of numerosity perception persists in all conditions. We suggest that crowding and redundancy masking modulate the numerosity perception. Then, redundancy masking was particularly tested in a typical redundancy masking paradigm (Chapter 4). We used human faces as stimuli in two experiments. Detection-like errors in redundancy masking in both multi-feature stimuli (faces) and low-level stimuli (luminance-and shape-matched outlines and noise patches) were examined. Faces are of great social significance and are typically processed rapidly. The results showed that redundancy masking not only occurred with simple stimuli (e.g., lines and letters) but also with faces. The occurrences of redundancy masking in faces reveal the stability and strength of redundancy masking across low-and high-level features. In Chapter 5, we discussed all experiments conducted in the preceding chapters, along with the observed results.

Abstract

Humans can estimate the number of visually displayed items without counting. This capacity of numerosity perception has often been attributed to a dedicated system to estimate numerosity, or alternatively to the exploitation of various stimulus features, such as density, convex hull, the size of items, and occupancy area. The distribution of the presented items is usually not varied with eccentricity in the visual field. However, our visual fields are highly asymmetric. To date, it is unclear how inhomogeneities of the visual field impact numerosity perception. Besides eccentricity, a pronounced asymmetry is the radial-tangential anisotropy. For example, in crowding, radially placed flankers interfere more strongly with target perception than tangentially placed flankers. Similarly, in redundancy masking, the number of perceived items in repeating patterns is reduced when the items are arranged radially but not when they are arranged tangentially. Here, we investigated whether numerosity perception is subject to the radial-tangential anisotropy of spatial vision to shed light on the underlying topology of numerosity perception. In Experiment 2.1, observers were presented with varying numbers of discs, predominantly arranged radially or tangentially, and asked to report their perceived number. In Experiment 2.2, observers were presented with the same displays as in Experiment 2.1, and were asked to encircle items that were perceived as a group. We found that numerosity estimation depended on the arrangement of discs, suggesting a radial-tangential anisotropy of numerosity perception. Grouping among discs did not seem to explain our results. We suggest that the topology of spatial vision modulates numerosity estimation and that asymmetries of visual space should be taken into account when investigating numerosity estimation.

Introduction

Humans can perform numerosity estimations without counting. When the number of items is small -usually up to 4 items -people apprehend the number of items rapidly and without errors (i.e., subitizing, [START_REF] Atkinson | The magic number 4 +/-0: a new look at visual numerosity judgements[END_REF][START_REF] Kaufman | The discrimination of visual number[END_REF].

However, estimating higher numbers of objects is usually imprecise compared with subitizing. Different mechanisms have been proposed to underlie numerosity estimation. A prominent account of numerosity perception suggests that it is accomplished by a dedicated system -the approximate number system (ANS, also known as the "number sense"). The ANS has been suggested to extract the numerosity independently from other physical properties of the stimulus [START_REF] Barth | The construction of large number representations in adults[END_REF][START_REF] Burr | Psychophysical evidence for the number sense[END_REF][START_REF] Dehaene | Varieties of numerical abilities[END_REF][START_REF] Dehaene | Varieties of numerical abilities[END_REF][START_REF] Dehaene | Abstract representations of numbers in the animal and human brain[END_REF][START_REF] Feigenson | Core systems of number[END_REF][START_REF] Gilmore | Measuring the approximate number system[END_REF][START_REF] Halberda | Developmental change in the acuity of the" Number Sense": The Approximate Number System in 3-, 4-, 5-, and 6-year-olds and adults[END_REF][START_REF] Lipton | Origins of number sense: Large-number discrimination in human infants[END_REF][START_REF] Xu | Number sense in human infants[END_REF].

Other accounts suggest that numerosity perception is not performed by independent mechanisms dedicated to numerosity but by exploiting stimulus properties such as item density [START_REF] Dakin | A common visual metric for approximate number and density[END_REF][START_REF] Durgin | Texture density adaptation and visual number revisited[END_REF], occupancy area (Allïk & Tuulmets, 1991), or by combining and weighting multiple visual cues [START_REF] Gebuis | The interplay between nonsymbolic number and its continuous visual properties[END_REF], 2012c). Studies investigating the role of density in numerosity perception have shown diverging results. [START_REF] Burr | A visual sense of number[END_REF] demonstrated that numerosity, just like other primary visual properties, is subject to adaptation, and the effect was dependent on the number of items but not on other properties such as size or density. Hence, the authors suggested that numerosity is an independent visual property (see also, [START_REF] Ross | Vision senses number directly[END_REF]. [START_REF] Anobile | Separate mechanisms for perception of numerosity and density[END_REF] also suggested separate mechanisms for numerosity and density, supported by evidence that discrimination thresholds of high and low-density displays followed two distinct psychophysical functions (Weber's law and a square root function for low-and high-density displays, respectively). However, density and numerosity are physically indivisible, as density is calculated by dividing numerosity by the total area [START_REF] Tibber | Number and density discrimination rely on a common metric: Similar psychophysical effects of size, contrast, and divided attention[END_REF]. [START_REF] Dakin | A common visual metric for approximate number and density[END_REF] showed that both numerosity and density judgments were biased by the size of the stimulus, which was interpreted to imply that numerosity perception and density perception share a common metric (see also, [START_REF] Tibber | Number and density discrimination rely on a common metric: Similar psychophysical effects of size, contrast, and divided attention[END_REF].

In addition to density, several other physical properties of displays have been shown to affect numerosity perception. For example, in the occupancy model, Allïk and Tuulmets (1991) proposed that each presented item occupies a given circular region, and the total area collectively occupied by items (instead of the number of items per se) determined the perceived numerosity: When items are positioned too close to each other, the occupied regions overlap, resulting in lower perceived numerosity ( see also [START_REF] Allik | Proximity model of perceived numerosity[END_REF]. While proximity according to the occupancy model yields underestimation, varying proximity between subgroups of displayed items can yield more accurate performance. Specifically, when the presented items could be perceptually separated into subgroups, the number of items was enumerated more accurately and quickly ("groupitizing", Anobile et al., 2020;[START_REF] Ciccione | Grouping Mechanisms in Numerosity Perception[END_REF][START_REF] Maldonado Moscoso | Grouping strategies in number estimation extend the subitizing range[END_REF][START_REF] Pan | Grouping strategies in numerosity perception between intrinsic and extrinsic grouping cues[END_REF]. Hence, the spatial organization and perceptual grouping of items can modulate perceived numerosity. A similar effect of grouping has been shown with uniform versus regular patterns: Uniform patterns are often perceived to be more numerous than patterns that can be grouped into clusters [START_REF] Frith | The Solitaire Illusion An Illusion of numerosity[END_REF][START_REF] Ginsburg | Effect of Item arrangement on perceived numerosity: randomness vs regularity[END_REF][START_REF] Taves | Two mechanisms for the perception of visual numerousness[END_REF]. [START_REF] Chakravarthi | Clustering leads to underestimation of numerosity, but crowding is not the cause[END_REF] investigated numerosity estimation and crowded target discrimination using identical stimulus configurations, varying spacing and similarity among items that are both known to affect numerosity perception and crowding (see below). Based on their results that spacing and similarity impacted crowded discrimination and numerosity estimation differently, they suggested that underestimation in numerosity perception was not due to crowding but due to clustering among items, and that grouping may moderate both.

Similarly, [START_REF] Im | Grouping by proximity and the visual impression of approximate number in random dot arrays[END_REF] found that the number of perceived groups predicted perceived numerosity, with smaller numerosity estimates when items were arranged in subgroups (yielding fewer perceived groups), suggesting that grouping between items plays a role in numerosity perception.

Another suggestion for factors modulating or determining numerosity estimates is that observers combine (and weight) information from various visual cues (including item size, aggregate surface, convex hull, and density) to estimate numerosity [START_REF] Gebuis | The neural mechanism underlying ordinal numerosity processing[END_REF][START_REF] Gebuis | The interplay between nonsymbolic number and its continuous visual properties[END_REF], 2012c, 2013). What most experiments on numerosity perception have in common is that they usually apply stimulus features homogenously to the entire display, independent of stimulus locations in the visual field. However, our visual field has strong inhomogeneities [START_REF] Abrams | Isoeccentric locations are not equivalent: The extent of the vertical meridian asymmetry[END_REF][START_REF] Carrasco | Characterizing visual performance fields: effects of transient covert attention, spatial frequency, eccentricity, task and set size[END_REF][START_REF] Greenwood | Variations in crowding, saccadic precision, and spatial localization reveal the shared topology of spatial vision[END_REF] which are likely to affect numerosity perception.

One of the key factors that modulates perception is the eccentricity in the visual field.

For example, a decrease in performance with increasing eccentricity has been shown for various tasks, including letter recognition [START_REF] Gurnsey | Crowding is size and eccentricity dependent[END_REF][START_REF] Wolford | Retinal location and string position as important variables in visual information processing[END_REF][START_REF] Zahabi | A crowdful of letters: Disentangling the role of similarity, eccentricity and spatial frequencies in letter crowding[END_REF], conjunction search [START_REF] Carrasco | The eccentricity effect: Target eccentricity affects performance on conjunction searches[END_REF][START_REF] Scialfa | Response times and eye movements in feature and conjunction search as a function of target eccentricity[END_REF], target detection [START_REF] Meinecke | Detection performance in Pop-Out tasks: nonmonotonic changes with display size and eccentricity[END_REF], and vernier offset discrimination [START_REF] Harris | Differences between fovea and periphery in the detection and discrimination of spatial offsets[END_REF][START_REF] Levi | Spatial scale shifts in peripheral vernier acuity[END_REF]. How eccentricity modulates numerosity perception has also been investigated [START_REF] Mengal | Judging relative numerosity: foveal and peripheral vision[END_REF][START_REF] Valsecchi | Perceived numerosity is reduced in peripheral vision[END_REF]. For example, it was found that the perceived number of items was lower when stimuli were presented in the periphery compared to central vision [START_REF] Valsecchi | Perceived numerosity is reduced in peripheral vision[END_REF]. The authors suggested that the underestimation in the periphery could have been due to crowding where targets that are easily identified in isolation become difficult to discern when flanked by other items (Figure 2.1a, b;[START_REF] Bouma | Interaction Effects in Parafoveal Letter Recognition[END_REF]Levi, 2008;Pelli & Tillman, 2008;[START_REF] Strasburger | Contrast thresholds for identification of numeric characters in direct and eccentric view[END_REF][START_REF] Strasburger | Peripheral vision and pattern recognition: A review[END_REF][START_REF] Whitney | Visual crowding: a fundamental limit on conscious perception and object recognition[END_REF]. As crowding occurs when multiple objects interact, it is a plausible mechanism that could underlie underestimation in numerosity perception where multiple -often close-by -items are presented. Importantly, while crowding is usually assumed to affect target identification but not detection [START_REF] Livne | Configuration influence on crowding[END_REF][START_REF] Pelli | Crowding is unlike ordinary masking: Distinguishing feature integration from detection[END_REF], recent studies showed that target parts were often unnoticed under crowding [START_REF] Coates | Diagnosing the periphery: Using the Rey-Osterrieth Complex Figure Drawing Test to characterize peripheral visual function[END_REF][START_REF] Sayim | Letters lost: capturing appearance in crowded peripheral vision reveals a new kind of masking[END_REF]Sayim & Wagemans, 2017). A particularly strong case of such 'omission errors' occurred when flankers and the target were the same. For example, when presenting three identical letters Ts in the periphery, observers frequently reported only 2 letters (see also, [START_REF] Sayim | Letters lost: capturing appearance in crowded peripheral vision reveals a new kind of masking[END_REF]. This effect was termed "redundancy masking": The reduction of the number of perceived items in repeating patterns [START_REF] Sayim | Letters lost: capturing appearance in crowded peripheral vision reveals a new kind of masking[END_REF][START_REF] Yildirim | Redundancy masking: The loss of repeated items in crowded peripheral vision[END_REF][START_REF] Yildirim | Hidden by bias: how standard psychophysical procedures conceal crucial aspects of peripheral visual appearance[END_REF][START_REF] Yildirim | Atypical visual field asymmetries in redundancy masking[END_REF].

Redundancy masking has been shown to occur when as few as 3 items were presented [START_REF] Sayim | Letters lost: capturing appearance in crowded peripheral vision reveals a new kind of masking[END_REF][START_REF] Yildirim | Redundancy masking: The loss of repeated items in crowded peripheral vision[END_REF][START_REF] Yildirim | Hidden by bias: how standard psychophysical procedures conceal crucial aspects of peripheral visual appearance[END_REF][START_REF] Yildirim | Atypical visual field asymmetries in redundancy masking[END_REF]. Notably, redundancy masking -as crowding -has a pronounced radial-tangential anisotropy: In crowding, radially placed flankers interfere more strongly with target perception than tangentially placed flankers (see Figure 2.1c, Greenwood et al., 2017;[START_REF] Kwon | Radial-tangential anisotropy of crowding in the early visual areas[END_REF]Toet & Levi, 1992); redundancy masking is strong with radially arranged lines and absent with tangentially arranged lines (Figure 2.1d, e, f;[START_REF] Yildirim | Redundancy masking: The loss of repeated items in crowded peripheral vision[END_REF]. As performance in most tasks deteriorates with increasing eccentricity (even if no contextual elements are presented), anisotropies such as the radial-tangential anisotropy are better suited to investigate to what extent numerosity perception is determined by similar contextual interactions as crowding and redundancy masking.

Here, we investigated whether numerosity perception is subject to a radialtangential anisotropy to shed light on the underlying topology of numerosity perception. Specifically, we created displays that favored or did not favor these effects to occur (in 2 different alignment conditions: tangential and radial). We presented two types of arrangements of discs to produce weak or strong interference among the presented discs.

To obtain a weak interference condition, close-by discs were predominantly arranged tangentially (tangential condition; Figure 2.2a); to obtain strong interference, they were predominantly arranged radially (radial condition; Figure 2.2b). In the tangential condition, elliptical zones around each disc that were expected to yield strong interference from neighboring discs within the zones ("crowding" zones) were "protected" by preventing discs from being positioned in these regions (hence, allowing tangential arrangements of discs, radial "protection zones" were used). In the radial condition, "protection zones" were perpendicular to these interference regions (i.e., tangential oriented), allowing discs to fall into other discs' interference regions (Figure 2.2e). We varied the size of the interference and protection zones as a function of eccentricity. Other physical properties (convex hull, occupancy area, density etc.) did not differ in the two conditions. In two experiments, participants viewed tangential and radial displays and were asked to perform the numerosity estimation task (Experiment 2.1) and the grouping task (Experiment 2.2). In Experiment 2.1, we tested whether the alignment condition (radial vs. tangential) influenced the perceived numerosity.

Observers were asked to indicate the number of discs on each display. We found that the estimates of the number of discs were lower in the radial (strong interference) compared to the tangential (weak interference) condition. In Experiment 2.2, we tested whether there were any differences in the perceived number of groups in the two conditions, and thereby whether grouping could underlie the observed results in Experiment 2 1. For that aim, we asked participants to encircle the discs that they perceived to form groups. Interestingly, the results of Experiment 2.2 showed the opposite effect of the alignment condition on the perceived number of groups than Experiment 2.1: The average number of groups reported by observers was larger in the radial compared to the tangential condition. This result suggests that the relatively lower estimates in the radial condition compared to the tangential condition (Experiment 2.1) was not likely caused by factors related to perceptual grouping as tested in Experiment 2.2. Overall, our results showed a pronounced radial-tangential anisotropy of numerosity perception, suggesting a similar underlying topology of spatial vision as in other types of contextual interactions. masking was weaker with large compared to small (d) spacings [START_REF] Yildirim | Redundancy masking: The loss of repeated items in crowded peripheral vision[END_REF].

(f) There was no redundancy masking when lines were arranged tangentially.

Method Experiment 2.1: Numerosity estimation

In Experiment 2.1, we tested whether the radial-tangential anisotropy of visual space impacted perceived numerosity.

Participants

Twenty-one healthy participants (7 males, 14 females; mean age: 24.1 years, ranging from 19 to 31) participated in the experiment. All participants were naïve as to the purpose of the study. Participants either received monetary compensation or participated without compensation. All participants reported normal or corrected-tonormal visual acuity and signed informed consent prior to the experiment. The experiment was approved by the ethics committee of the Ulille SHS, University of Lille.

Apparatus

The experiment was programmed in PsychoPy coder v3.1.2 [START_REF] Peirce | Generating stimuli for neuroscience using PsychoPy [Original Research[END_REF] and ran on a desktop PC. All stimuli were presented on a Vision Master Flat Square CRT monitor (Iiyama MS103DT), with a resolution of 1280 × 1024 pixels (refresh rate was set at 100 Hz). During the experiment, participants sat in front of the monitor with a chin rest at a distance of 57 cm from the monitor. All experiments were conducted in a dim experimental room.

Stimuli

Stimuli consisted of black discs (0.9 cd/m 2 ; radius: 0.25°) presented on a gray background (25 cd/m 2 ). In five numerosity range conditions, discs were presented within rectangular regions of different sizes (width × height: 19.5 × 11.5; 21.5 × 13.5; 25 × 16.5; 27 × 18.5; 30 × 21 degrees of visual angle that occupy 30%, 40%, 50%, 60%, and 70% of the screen, respectively), each corresponding to one of the 5 different numerosity ranges (21 -25; 31 -35; 41 -45; 49 -53; 54 -58). No discs were presented within a circular region (radius: 3.8°) around fixation. There were two types of disc arrangements: tangential and radial, illustrated in Figure 2.2. We surrounded each disc with a virtual "protection zone" free of any other disc. The size of the "protection zone" was based on common estimates of the size of the interference region in crowding (e.g., [START_REF] Bouma | Interaction Effects in Parafoveal Letter Recognition[END_REF]Toet & Levi, 1992). Both the major axis and the minor axis of the "protection zone" were determined by target eccentricity: the major axis was set to 0.25 × eccentricity and the minor axis to 0.1 × eccentricity (corresponding to a minimum distance of 0.2 and 0.5 × eccentricity when two discs were tangentially or radially aligned). To generate a tangential display (Figure 2.2a, c and f), a random position was chosen to place the first disc with its corresponding (radially extended) "protection zone." All the other discs were added with their "protection zones" iteratively on the displays with the constraint not to overlap with any of the "protection zones" of other discs, until no disc could be positioned onto the display without overlapping "protection zones." In the radial condition (Figure 2.2b, d, and g), displays were generated the same way as the tangential displays, except that the "protection zones" were rotated by 90° compared to the tangential condition. Therefore, in the radial condition, "protection zones" were orthogonal to the major axis of the interference region (Figure 2.2d, e). For each numerosity range, we generated 5000 displays for each condition (tangential and radial). We calculated convex hull, occupancy area, average spacing, average eccentricity, and density for each generated display and selected displays from the tangential and radial conditions that matched their physical properties (see Supplementary Table S2.1). The density was measured by dividing numerosity by occupancy area, excluding the central region where no discs were presented. As an insufficient number of displays in the smallest numerosity range could be matched, we generated an additional 5700 radial displays to obtain the required matches. (f) and (g) illustrate radial-tangential alignment scores for the tangential and radial conditions, respectively.

Design and Procedure

At the start of each trial, a black fixation cross (0.75° × 0.75°) was presented at the center of the screen. Observers initiated each trial by pressing the spacebar. The stimulus display was presented for 150 ms. Participants were instructed to respond by entering their best estimation of the number of presented discs with the numeric keypad.

No feedback was provided. There was no time limit for participants to respond.

Participants were not informed about the numerosity ranges prior to the experiment.

Prior to each experimental block, participants viewed 5 reference displays in random order. The numerosities of the 5 reference displays were equally distributed around the averaged numerosity of the block (± 0.125 and ± 0.25 times of the mean numerosity of the block). Each reference display was presented for 150 ms, and participants were informed about the actual numerosity of the display after the reference display offset.

There were two factors: Alignment condition (tangential vs. radial) and numerosity range (5 levels: 21-25, 31-35, 41-45, 49-53, and 54-58; for convenience, we use the first numerosity of each numerosity range to denote the actual numerosity range, i.e., N21, N31, N41, N49 and N54 denote numerosity range 21-25, 31-35, 41-45, 49-53, and 54-58, respectively). Each participant performed 10 blocks of 50 trials each. Within each block, each numerosity was presented 10 times (5 different displays, each repeated twice). Participants first completed each of the 5 numerosity ranges (in random order), followed by 5 blocks in the opposite order. The dependent variable was the deviation score (DV) of participants, calculated by subtracting the actual numerosity from participants' estimation for each trial. Hence, positive DVs represent overestimation; negative DVs represent underestimation. We also calculated the relative estimation error by dividing the DV by the numerosity of the display.

Data Analysis

We conducted a within-subject ANOVA on DV scores with alignment condition and numerosity range as within-subject factors. We expected lower DVs in the radial compared to the tangential condition. The ANOVA and pairwise analysis were performed with an open-source Python package, Pingouin version 0.5.1 [START_REF] Vallat | Pingouin: statistics in Python[END_REF]. Estimates outside of 3 standard deviations around the mean were discarded independently for each numerosity range (0.4% of all trials). The same analyses were conducted on relative estimation error.

Radial alignment scores (RAs).

We calculated RAs as measures of how well discs were radially aligned in a display. RAs were calculated individually for each display by rotating a circle sector with an angle of 6° (half the angle of the minor axis of the protection zones) around fixation for a complete rotation and counting the number of discs falling in the sector at each location a new disc fell into the trailing edge of the sector (i.e., when the edge of the circle sector aligned with a disc center; Figures 2.2f, g). Neighboring circle sectors ("alignment regions") did not overlap. The procedure was repeated with each disc in the display as starting disc, always performing a complete rotation. For each rotation, the proportion of the circle sectors that contained 3 (the minimum number of items to obtain redundancy masking) or more discs was calculated. For example, if there were 20 circle sectors in one rotation and 10 of them contained 3 (or more) discs, the proportion would be 0.5. The RA of that display was the averaged proportion across all rotations for that display.

Crowding strength.

The number of discs that was positioned in other discs' interference regions varied in the radial condition but not in the tangential condition since no discs could be positioned into the interference region of other discs (Figure 2.2c; by definition, what we denote as the "crowding strength" was 0 in all tangential displays). To quantify "crowding strength" in the radial condition, we calculated the number of discs per display that were positioned in other discs' interference regions. The average crowding strength was 1. 3 ± 1.1, 2.6 ± 1.3, 4.8 ± 2.4, 6.6 ± 2.9, and 7.1 ± 3.1 for N21, N31, N41, N49, and N54, respectively.

Partial correlations.

We calculated partial correlations between (1) RAs and DVs and (2) crowding strength and DVs, controlling for numerosity. To ensure that RAs, crowding strength, and DVs were comparable across numerosity ranges, they were normalized in the linear regression to predict numerosity.

Experiment 2.2: Grouping into clusters

In Experiment 2.2, we tested whether the number of perceived groups in the radial and tangential conditions differed. If the number of perceived groups was lower in the radial than in the tangential condition, grouping among discs could be a factor contributing to the effect found in Experiment 2.1. If the number of perceived groups was similar in the radial and the tangential displays, the results would suggest that grouping is an unlikely factor underlying the effect observed in Experiment 2.1.

Participants

Thirty healthy participants (4 males, 26 females; mean age: 19.7 years, ranging from 18 to 24) participated in Experiment 2.2. All participants were students at the University of Lille or the KU Leuven, and naïve as to the purpose of the study. All participants received course credits for their participation. All participants reported normal or corrected-to-normal visual acuity and signed informed consent prior to the experiment.

Apparatus

The experiment was programmed in PsychoPy coder v2.1.0 [START_REF] Peirce | Generating stimuli for neuroscience using PsychoPy [Original Research[END_REF] and ran on a desktop PC. All stimuli were presented on an LCD display with a resolution of 1960 × 1080 pixels. During the experiment, participants sat in front of the monitor with a chin rest at a distance of 57 cm from the monitor.

Stimuli

The stimuli were identical to the stimuli in Experiment 2.1.

Design and Procedure

The design and procedure were identical to Experiment 2.1 except for the following changes: Participants were asked to encircle the discs that they perceived as a group, using the mouse (as a 'pen'). Each display was presented until participants had finished the trial (unlimited viewing time). Participants were presented with the same displays that were used in Experiment 2.1. Each participant was presented with onethird of the total number of displays (250 displays) of Experiment 2.1 to limit the duration of the experiment (about 100 minutes per participant). There were 30 participants (hence, 10 responses per display).

Data Analysis

The analyses were identical to the ANOVA analysis in Experiment 2.1, except that the dependent variable was the number of perceived groups. The number of groups that participants encircled for each display corresponded to the number of perceived groups in the analysis. = .17). A significant interaction between alignment condition and numerosity range (F(4, 80) = 2.68, p < .05 , ηp 2 = .12) indicated that the difference between the tangential and the radial conditions increased with larger numerosities. Figure 2.3b shows the average relative estimation error for each condition. We also conducted a repeated measures ANOVA on average relative estimation error with alignment condition and numerosity range as within-subject factors. We observed a main effect of alignment condition (F(1, 20) = 8.79, p < .01, ηp 2 = .31) on relative estimation errors. No other significant effect was observed (ps > .05).

Results

Experiment 2.1: Numerosity estimation

To test whether radial alignment predicted DVs, we correlated radial-alignment scores (RAs) and DVs while controlling for numerosity (partial correlation, Figure 2.3b). For all numerosity ranges combined, the partial correlation was r = -0.40 (p < .0001, CI 95% [-0.50 -0.29]), showing higher deviation scores with increasing RAs.

Except for N21, the partial correlation between DVs and RAs showed a clear negative correlation when controlling for the effect of numerosity. These results showed that estimates were smaller when discs were more strongly radially aligned, at least for larger numerosities (N31 and above). The averaged RAs for separate numerosity ranges for both tangential and radial displays are shown in Supplementary Table S2.2. The partial correlations for the separate numerosity ranges are shown in Supplementary Table S2.3.

To test whether "crowding strength" predicted DVs, we correlated crowding strength and DVs while controlling for numerosity (partial correlations, Figure 2.3c).

Results showed that the overall partial correlation coefficient was r = -0.40 (p < .0001, CI 95% [-0.50 -0.29]). Hence, there was a clear negative correlation between the number of discs falling into the interference zone of other discs and numerosity judgments: The more discs were presented in other discs' interference zones, the lower the numerosity judgments. Supplementary Table S2. [START_REF] Levi | Vernier acuity, crowding and cortical magnification[END_REF] shows the partial correlations analysis of each numerosity range separately. Unsurprisingly, there was also a main effect of numerosity range on the perceived number of groups (F(4, 36) = 101.94, p < .001, ηp 2 = .92), showing that more groups were perceived with larger numerosities. No interaction between alignment condition and numerosity range was observed (F(4, 36) = 0.58, p = .68, ηp 2 = .06). Supplementary Table S2.4 summarizes the average perceived number of groups for each numerosity range in the tangential and the radial condition. Importantly, the two alignment conditions affected numerosity estimations (Experiment 2.1) and the perceived number of groups (Experiment 2.2) differently: numerosity estimation was lower and the perceived number of groups higher in the radial compared to the tangential condition. 

Experiment 2.2: Grouping into clusters

Discussion

We investigated to what extent the topology of spatial vision determined numerosity estimation. In particular, based on the radial-tangential anisotropy of spatial interactions in the peripheral visual field, we sought to investigate if numerosity estimation was subject to a similar radial-tangential anisotropy as crowding and redundancy masking. For that aim, we created displays in which neighboring items were predominantly arranged in either tangential or radial directions while keeping other features of the two types of displays, such as inter-item spacing, average eccentricity, convex hull, and density as similar as possible. In Experiment 2.1, we asked participants to report the number of discs they perceived. We found that numerosity estimates were lower in the radial compared to the tangential condition.

The analysis of radial alignment scores (RAs) showed that higher RAs yielded lower numerosity estimates. In the radial condition, the number of items falling into the interference regions of other items was taken as a measure of "crowding strength." We found that crowding strength predicted deviation scores (DVs): high crowding strength was associated with smaller numerosity estimates and vice versa. Grouping among items is a good predictor of crowding strength [START_REF] Livne | Configuration influence on crowding[END_REF][START_REF] Manassi | Grouping, pooling, and when bigger is better in visual crowding[END_REF][START_REF] Sayim | Gesstalt factors modulate basic spatial vision[END_REF][START_REF] Sayim | Quantifying target conspicuity in contextual modulation by visual search[END_REF]; but see [START_REF] Melnik | Emergent features in the crowding zone: When target-flanker grouping surmounts crowding[END_REF]Rummens & Sayim, 2019a). Grouping has also been shown to modulate numerosity perception [START_REF] Chakravarthi | Clustering leads to underestimation of numerosity, but crowding is not the cause[END_REF][START_REF] Ciccione | Grouping Mechanisms in Numerosity Perception[END_REF][START_REF] Im | Grouping by proximity and the visual impression of approximate number in random dot arrays[END_REF][START_REF] Pan | Grouping strategies in numerosity perception between intrinsic and extrinsic grouping cues[END_REF]. To test whether the number of perceived groups was related to the relative underestimation in the radial compared to the tangential condition, we asked observers in Experiment 2.2 to encircle the discs they perceived as a group. We used the same displays in the grouping task as in Experiment 2.1. The results showed that the number of perceived groups in the radial condition was higher than in the tangential condition, i.e., the opposite pattern of results compared to Experiment 2.1: lower estimations (Experiment 2.1) and higher number of groups (Experiment 2.2) in the radial compared to the tangential condition. Hence, the perceived number of groups and the perceived numerosity were affected by alignment conditions differently. These results indicate that grouping is unlikely the cause for the different numerosity estimates in the radial and the tangential condition.

Crowding strongly limits peripheral vision [START_REF] Bouma | Interaction Effects in Parafoveal Letter Recognition[END_REF][START_REF] He | Attentional resolution and the locus of visual awareness[END_REF][START_REF] Levi | Suppressive and facilitatory spatial interactions in peripheral vision: Peripheral crowding is neither size invariant nor simple contrast masking[END_REF][START_REF] Pelli | Crowding is unlike ordinary masking: Distinguishing feature integration from detection[END_REF], and was proposed to play a role in numerosity estimates [START_REF] Anobile | Mechanisms for perception of numerosity or texture-density are governed by crowding-like effects[END_REF][START_REF] Valsecchi | Perceived numerosity is reduced in peripheral vision[END_REF]. In particular, the relative underestimation of numerosities in dot displays presented in the fovea compared to the periphery suggested that mechanisms related to crowding might be an important factor in numerosity perception [START_REF] Valsecchi | Perceived numerosity is reduced in peripheral vision[END_REF]. A potential role of crowding was also shown when varying eccentricity: Numerosity estimates varied with eccentricity similar to crowding, with stronger interference (lower estimates) farther in the periphery [START_REF] Valsecchi | Perceived numerosity is reduced in peripheral vision[END_REF]. However, performance in most tasks deteriorates with increasing eccentricity. For example, besides crowding (Levi, 2008;[START_REF] Pelli | Crowding is unlike ordinary masking: Distinguishing feature integration from detection[END_REF][START_REF] Strasburger | Seven myths on crowding and peripheral vision[END_REF]Toet & Levi, 1992), performance in other tasks, including letter recognition [START_REF] Gurnsey | Crowding is size and eccentricity dependent[END_REF][START_REF] Wolford | Retinal location and string position as important variables in visual information processing[END_REF][START_REF] Zahabi | A crowdful of letters: Disentangling the role of similarity, eccentricity and spatial frequencies in letter crowding[END_REF], conjunction search [START_REF] Carrasco | The eccentricity effect: Target eccentricity affects performance on conjunction searches[END_REF][START_REF] Scialfa | Response times and eye movements in feature and conjunction search as a function of target eccentricity[END_REF], target detection [START_REF] Gruber | Effects of age and eccentricity on visual target detection [Original Research[END_REF][START_REF] Meinecke | Detection performance in Pop-Out tasks: nonmonotonic changes with display size and eccentricity[END_REF], visual search [START_REF] Carrasco | Cortical magnification neutralizes the eccentricity effect in visual search[END_REF][START_REF] Carrasco | Feature asymmetries in visual search: Effects of display duration, target eccentricity, orientation and spatial frequency[END_REF] and vernier offset discrimination [START_REF] Harris | Differences between fovea and periphery in the detection and discrimination of spatial offsets[END_REF][START_REF] Levi | Spatial scale shifts in peripheral vernier acuity[END_REF] deteriorates with increasing eccentricity. Hence, eccentricity dependence is not sufficient to conclude that crowding-like mechanisms underlie numerosity estimation. In a recent study, crowding and numerosity perception were directly compared using identical stimulus configurations [START_REF] Chakravarthi | Clustering leads to underestimation of numerosity, but crowding is not the cause[END_REF]. Inter-item spacing and item similarity (same or opposite contrast polarity), both known to modulate crowding as well as numerosity estimates were varied. The results showed that spacing and similarity affected numerosity perception (in a 2AFC numerosity comparison task) and crowding (in an identification task) differently, suggesting a dissociation between numerosity perception and crowding.

However, the different tasks and different task-relevancy of the presented items -a single relevant target or many relevant targets -render definite conclusions about the dissociation of crowding and numerosity perception difficult. For example, whether items are task-relevant or not has recently been shown to strongly modulate crowding, inverting the similarity rule of crowding (Rummens & Sayim, 2019b): When all items were task-relevant, performance was superior with target and flankers of the same compared to opposite contrast polarity. Similarly, small spacing between target and flankers does not always yield stronger crowding: Emergent features between the target and a flanker improved performance at small compared to larger distances in a crowding task [START_REF] Melnik | Emergent features break the rules of crowding[END_REF]. Importantly, crowding is usually assumed to impair target identification but not target detection [START_REF] Andriessen | Eccentric vision: Adverse interactions between line segments[END_REF]Levi, 2008;[START_REF] Pelli | Crowding is unlike ordinary masking: Distinguishing feature integration from detection[END_REF]; but see [START_REF] Pelli | Cependant, la sous-estimation observée de la perception de la numérosité implique que certaines erreurs de détection ont pu se produire[END_REF]Sayim & Wagemans, 2017). As underestimation in numerosity perception implies failures of detection, not discrimination, it might be suggested that crowding is an unlikely candidate to play a role in numerosity perception in general. However, recently it was shown that parts of the targets are often lost in crowding (Sayim & Wagemans, 2017). Such "omission errors" may well be due to the recently discovered phenomenon of redundancy masking, the reduction of the number of perceived items in repeating patterns [START_REF] Sayim | Letters lost: capturing appearance in crowded peripheral vision reveals a new kind of masking[END_REF][START_REF] Yildirim | Redundancy masking: The loss of repeated items in crowded peripheral vision[END_REF][START_REF] Yildirim | Hidden by bias: how standard psychophysical procedures conceal crucial aspects of peripheral visual appearance[END_REF]. Although related to crowding, a key difference is that redundancy masking, unlike crowding, impairs the perception of the number of items (not their identity). As in numerosity estimation, a typical task to investigate redundancy masking is to ask participants to report the number of perceived items (however, see [START_REF] Sayim | Letters lost: capturing appearance in crowded peripheral vision reveals a new kind of masking[END_REF], for a free verbal report and drawing task). Hence, there are obvious parallels between redundancy masking and numerosity perception, and redundancy masking could underlie underestimation in numerosity perception. Importantly, redundancy masking occurs for as few as three presented items, i.e., in the subitizing range [START_REF] Yildirim | Redundancy masking: The loss of repeated items in crowded peripheral vision[END_REF] where reports are usually accurate [START_REF] Atkinson | The magic number 4 +/-0: a new look at visual numerosity judgements[END_REF][START_REF] Jensen | The subitizing and counting of visually presented fields of dots[END_REF][START_REF] Kaufman | The discrimination of visual number[END_REF]. Although clearly present for larger numbers of items, redundancy masking does not scale linearly with the number of items. For example, with three presented items of which only two are reported, one-third of all items are lost due to redundancy masking. While the absolute number of items lost due to redundancy masking increases with the number of presented items, the ratio decreases [START_REF] Yildirim | Redundancy masking: The loss of repeated items in crowded peripheral vision[END_REF]. Hence, the exact relation between redundancy masking and numerosity estimation still needs to be investigated, with future studies closing the gap between the paradigms typically used in numerosity perception and in redundancy masking, and shedding light on the extent of their similarities. Importantly, redundancy masking -as crowding -has a pronounced radial-tangential anisotropy: When peripherally presented lines were arranged radially, redundancy masking was strong; when they were arranged tangentially, there was no redundancy masking [START_REF] Yildirim | [END_REF]. Here, we used this radial-tangential anisotropy to manipulate displays where discs were predominantly arranged tangentially or radially to test if radial arrangements would yield lower estimates than tangential arrangements. As expected, radial arrangements yielded lower estimates than tangential arrangements. Taken together, contextual interactions subject to radial-tangential anisotropy, and in particular redundancy masking, are promising phenomena that share characteristics with numerosity perception beyond eccentricity dependence.

Many physical characteristics of displays used in experiments on numerosity perception are potentially confounded with numerosity per se (Gebuis & Reynvoet, 2012c). Importantly, in our tangential and radial arrangements, we kept physical properties of the displays that have been shown to play a role in numerosity estimation as similar as possible, matching them in regard to items size [START_REF] Allik | Occupancy model of perceived numerosity[END_REF][START_REF] Ginsburg | Perceived numerosity as a function of item size[END_REF], occupancy area (Allïk & Tuulmets, 1991), convex hull [START_REF] Gilmore | Congruency effects in dot comparison tasks: convex hull is more important than dot area[END_REF][START_REF] Katzin | Convex hull as a heuristic[END_REF], regularity [START_REF] Franconeri | Number estimation relies on a set of segmented objects[END_REF][START_REF] Ginsburg | Effect of Item arrangement on perceived numerosity: randomness vs regularity[END_REF][START_REF] Liu | Regular distribution inhibits generic numerosity processing[END_REF][START_REF] Zhao | Statistical regularities reduce perceived numerosity[END_REF], spatial clustering [START_REF] Bertamini | The effect of clustering on perceived quantity in humans (Homo sapiens) and in chicks (Gallus gallus)[END_REF][START_REF] Bertamini | Spatial clustering and its effect on perceived clustering, numerosity, and dispersion[END_REF][START_REF] Chakravarthi | Clustering leads to underestimation of numerosity, but crowding is not the cause[END_REF][START_REF] Koesling | When more seems less-non-spatial clustering in numerosity estimation[END_REF], and texture density [START_REF] Dakin | A common visual metric for approximate number and density[END_REF]. Controlling for these possibly confounding physical properties in the two conditions minimized the probability of factors related to these properties to account for the effect of our manipulation. Given the predominantly tangential or radial arrangements in the two conditions, some systematic structural differences are unavoidable. In particular, the discs in the tangential displays tend to be arranged into concentric patterns around fixation and in the radial displays into ray patterns. Importantly, while these structural differences between the displays may be a variable that modulates numerosity estimates, the findings in redundancy masking show strong differences between tangential and radial arrangements without any global, structural differences between tangential and radial arrangements. Moreover, redundancy masking has been shown to increase -not decrease -with diffused compared to focused attention (Yildirim et al., in preparation). As focused spatial attention is considered not required in numerosity estimation (at least with relatively sparse displays; Anobile et al., 2020;[START_REF] Burr | Subitizing but not estimation of numerosity requires attentional resources[END_REF], redundancy masking would not be expected to cease in displays with larger numerosities.

While the number of discs, average eccentricity, average spacing, convex hull, and density were matched in the tangential and radial conditions, all displays contained density gradients with higher density in more central regions and decreasing density with increasing eccentricity. Hence, differences of the spatial distributions of the discs as a function of eccentricity in the two conditions were possible. For example, relatively more discs could be close to the center in one display, forming a higher local density region, compared to fewer discs close to the center in another display (with the same number of discs). The local density as a function of eccentricity (Supplementary Figure S2.1) captures such variations of display density. Differences in local densities could be a factor influencing numerosity estimates, for example, by yielding higher numerosity estimates for displays with high local densities compared to displays with low local densities. Such an effect would be expected if central regions were weighted more strongly than peripheral regions (Cheyette & Piantadosi, 2019; see also, [START_REF] Dandan | Foveal vision determines the perceived emotion of face ensembles[END_REF]. A small subset of displays in the tangential condition had relatively high local densities compared to the average (Supplementary Figure S2.1). However, the majority of these displays were not judged as more numerous than displays with lower local density, suggesting that local density differences between the tangential ('concentric') and the radial ('ray') conditions did not underlie differences of numerosity estimates. Note that relatively low density (due to relatively larger item size or smaller convex hull) has also been reported to yield higher numerosity estimates compared to displays with relatively high densities (Gebuis & Reynvoet, 2012c), however, in relatively uniform displays, without any systematic density variation with eccentricity as in our displays. If the structural differences per se irrespective of other variables (e.g., local density, overall density, convex hull, etc.) modulated numerosity perception, with generally lower estimates in ray compared to concentric patterns, radial-tangential anisotropies may well underlie such a difference. Systematic investigations to explore if -and how -such structural differences and local density differences modulate numerosity estimations will shed light on their role in numerosity perception.

Our results showed that the relative underestimation in the radial compared to the tangential condition was primarily driven by larger numerosities, with significant differences observed in N31 to N54 but not for N21. Consistently, in the partial correlation analysis, we found that both RAs and crowding strength negatively correlated with estimations with large numerosities but not small numerosities (see Supplementary Table S2. 3). The pronounced effect on large but not small numerosity ranges is not surprising as the radial-tangential manipulation of displays did not yield strong differences in the smallest numerosity (N21, see RAs, Supplementary Table S2.2). While density did not differ between the radial and tangential conditions within each numerosity range, densities did vary between numerosity ranges: Relative higher density in N21 compared to the other numerosity (see Supplementary Table S2.1). [START_REF] Anobile | Separate mechanisms for perception of numerosity and density[END_REF] suggested that numerosity discrimination and judgments based on density depend on the density of the displayed items, with numerosity discrimination occurring when display densities are less than 0.25 items/deg 2 and judgments based on density with larger densities of the displays. In our displays, the densities in the large numerosity ranges (N41, N49, and N54) where we found differences between the radial and tangential displays fell into the 'numerosity judgment' range suggested by [START_REF] Anobile | Separate mechanisms for perception of numerosity and density[END_REF]. Hence, it is unlikely that judgments in these conditions were based on density (but see [START_REF] Dakin | A common visual metric for approximate number and density[END_REF][START_REF] Durgin | Texture density adaptation and visual number revisited[END_REF].

In contrast to smaller numerosities (N21) where the number of discs was rather accurately estimated, it was overestimated with larger numerosities (N31 and more).

The overestimation with larger numerosities diverged from the general underestimation found in most numerosity studies (Anobile et al., 2020;[START_REF] Au | Numerosity underestimation with item similarity in dynamic visual display[END_REF][START_REF] Chakravarthi | Clustering leads to underestimation of numerosity, but crowding is not the cause[END_REF][START_REF] Krueger | Single judgments of numerosity[END_REF][START_REF] Krueger | Perceived numerosity: a comparison of magnitude production, magnitude estimation, and discrimination judgments[END_REF][START_REF] Liu | Distinct mechanisms in the numerosity processing of random and regular dots[END_REF][START_REF] Liu | Regular distribution inhibits generic numerosity processing[END_REF].

The direct estimation task, in contrast to the typical discrimination task, could be one reason for the overestimation in our study. Similar overestimations were found when presenting regular and irregular dots array (28 -46 dots), asking observers to estimate the number of dots [START_REF] Alam | Regularity, exposure time and perception of numerosity[END_REF]. Also, when asking participants to report the number of items, Gebuis and Reynvoet (2012c) found that half of the participants overestimated and the other half underestimated the numerosities. We can exclude that the overestimation was due to the overall distribution of numerosities in different blocks as the same pattern of results also occurred in the first block that observers completed.

Importantly, irrespective of the overall overestimation, which suggests a general bias, it is the relative underestimation in the radial compared to the tangential condition that shows the key estimation difference between the two conditions.

Perceptual grouping has been shown to modulate perceived numerosity [START_REF] Chakravarthi | Clustering leads to underestimation of numerosity, but crowding is not the cause[END_REF][START_REF] Im | Grouping by proximity and the visual impression of approximate number in random dot arrays[END_REF][START_REF] Mazza | Perceptual Grouping and Visual Enumeration[END_REF]. When items were arranged into clusters [START_REF] Chakravarthi | Clustering leads to underestimation of numerosity, but crowding is not the cause[END_REF][START_REF] Frith | The Solitaire Illusion An Illusion of numerosity[END_REF], perceived to contain a larger number of groups [START_REF] Im | Grouping by proximity and the visual impression of approximate number in random dot arrays[END_REF], were grouped by connectedness [START_REF] Franconeri | Number estimation relies on a set of segmented objects[END_REF] or by similarity grouping (connectedness, shape, proximity, and common region [START_REF] Yu | Similarity grouping as featurebased selection[END_REF], observers tended to underestimate the numerosity compared to similar displays with weaker grouping. Hence, grouping among items may have modulated the perceived numerosity in the present study as well.

For example, the relative underestimation in the radial compared to the tangential condition could have been driven by more grouping (and therefore fewer groups) in the radial compared to the tangential displays. In Experiment 2.2, we investigated how the discs in our displays were perceived to groups and whether grouping differences between the conditions could underlie the pattern of results in Experiment 2.1. Interestingly, the average number of perceived groups was higher in the radial than in the tangential condition, in contrast to number estimates which were lower in the radial compared to the tangential condition. Hence, this result shows that displays with low (high) numbers of perceived groups did not yield low (high) numerosity estimates.

These results suggest that the relative underestimation in the radial compared to the tangential displays was not due to a smaller number of groups in the radial compared to the tangential condition: Grouping into clusters seems unlikely to play an important role in our results. However, while the same stimuli were used in the estimation (Experiment 2.1) and the grouping task (Experiment 2.2), viewing conditions were different: peripheral viewing with limited presentation time (150 ms) in the estimation task and free viewing with unlimited presentation time in the grouping task. Hence, retinal stimulus locations and presentation time could have influenced the results in the two experiments. For example, different sets of discs could have appeared to group when viewed peripherally compared to when viewed freely. However, as proximity was the principal grouping factor, differences that would systematically reverse grouping strength of the same displays in the two experiments are implausible. Rather, proximity as a grouping factor should be stable and maintain the ordinal relationships among displays across eccentricities. Importantly, in the realm of contextual interactions, i.e., crowding, the very same effects of grouping (and ungrouping) have been observed in the fovea [START_REF] Sayim | Contrast polarity, chromaticity, and stereoscopic depth modulate contextual interactions in vernier acuity[END_REF][START_REF] Sayim | Gesstalt factors modulate basic spatial vision[END_REF] and in the periphery [START_REF] Manassi | Grouping, pooling, and when bigger is better in visual crowding[END_REF][START_REF] Rosen | Crowding by a repeating pattern[END_REF]. Similarly, variations of presentation time should maintain the order of grouping strengths across displays [START_REF] Haladjian | A snapshot is all it takes to encode object locations into spatial memory[END_REF].

Interestingly, investigations of grouping and ungrouping in a backward masking paradigm showed that complex Gestalts needed more time to yield ungrouping compared to basic features; however, presentation times were very short (20ms), and no modulation occurred beyond the presentation time in our Experiment 2.1 (150 ms, Sayim et al., 2014;see also, Feldman, 2007;[START_REF] Kimchi | Uniform connectedness and grouping in the perceptual organization of hierarchical patterns[END_REF]. One possible explanation for the divergent numerosity estimation results of Experiment 2.1 and grouping results of Experiment 2.2 is that only single -or subsets of -grouped discs were sampled in a given trial in Experiment 2.1. As the number of (perceived) groups was larger in the radial compared to the tangential condition (Experiment 2.2), and therefore the average number of discs per group was smaller, numerosity estimates based on single (or a few) groups would be lower. However, given the frequent overestimation in the current study, it is unlikely that such sub-sampling (without overcompensation) has occurred. Another factor that could underlie the diverging results in Experiments 2.1 and 2.2 is that different groups of observers participated in the two experiments. In recent experiments with similar stimuli (including the radial-tangential manipulation), we found similar results with a different group of observers (66 participants), providing further evidence that numerosity estimates depend on the (radial or tangential) arrangement of items. In Experiment 2.2 of the current study, 87% of the observers indicated more groups in the radial than in the tangential condition (on average for all numerosities), while only 13% showed the opposite pattern, indicating a robust pattern of results across participants.

Hence, it is unlikely that a different group of observers would show the opposite pattern of results, i.e., higher numerosity estimates and a larger number of perceived groups in the radial condition compared to the tangential condition.

Overall, we demonstrated that numerosity perception was anisotropic in regard to radial versus tangential arrangements. We suggest that redundancy masking is one of the potential determining factors in numerosity estimation. Going beyond purely physical stimulus descriptions by taking into account asymmetries of the visual field in spatial vision will help to shed light on the underlying mechanisms of numerosity perception.

Abstract

Humans can estimate the number of visually presented items without counting. This ability refers as to numerosity perception. In most numerosity studies, items are uniformly distributed across displays, with identical distributions in central and eccentric parts. However, our visual performance differs between the fovea and the periphery, and the visual field is highly asymmetric in regard to interferences between items. One of such asymmetries is the radial-tangential anisotropy: items arranged radially interfere more strongly with each other than those arranged tangentially. This has been shown for crowding (the deleterious effect when identifying targets in clutter) and redundancy masking where items in repeating patterns are not detected. In the present studies, we tested how the radial-tangential anisotropy of spatial vision impacts numerosity perception. In four experiments, we presented participants with displays containing 34-99 discs, predominantly arranged radially or tangentially, forming strong and weak interference conditions, respectively. Participants were required to report the number of discs. We found that observers reported the radial displays as less numerous than the tangential displays for all radial-tangential manipulations: weak (Experiment 3.1), strong (Experiment 3.2), and modulated with mixed contrast polarity (Experiments 3.3 and 3.4). Our results showed a radial-tangential anisotropy of numerosity perception. We suggested that crowding and redundancy masking modulate the numerosity perception.

Introduction

Humans are endowed with the competence to estimate the number of visually presented items without counting. It has been proposed that a dedicated system, the approximate number system (ANS, also known as "number sense") underlies such numerosity perception [START_REF] Burr | A visual sense of number[END_REF][START_REF] Castaldi | The pupil responds spontaneously to perceived numerosity[END_REF][START_REF] Dehaene | Towards an anatomical and functional model of number processing[END_REF][START_REF] Dehaene | Abstract representations of numbers in the animal and human brain[END_REF][START_REF] Feigenson | Core systems of number[END_REF]. The ANS was proposed to be independent of other visual properties [START_REF] Burr | A visual sense of number[END_REF]. However, it was also suggested that visual properties of the displays (e.g., item size, density, convex hull length: the smallest convex set that contains all items, and occupancy area: the encloser area of convex hull length, etc.) determine numerosity estimates [START_REF] Allik | Occupancy model of perceived numerosity[END_REF][START_REF] Aulet | Numerosity and cumulative surface area are perceived holistically as integral dimensions[END_REF][START_REF] Dakin | A common visual metric for approximate number and density[END_REF][START_REF] Gilmore | Congruency effects in dot comparison tasks: convex hull is more important than dot area[END_REF][START_REF] Hurewitz | Sometimes area counts more than number[END_REF][START_REF] Shilat | Shaping the way from the unknown to the known: The role of convex hull shape in numerical comparisons[END_REF]. Stimulus properties that are correlated with numerosity [START_REF] Leibovich | Magnitude processing in non-symbolic stimuli [Mini Review[END_REF] are important factors in numerosity estimates. For example, varying the number of items often goes hand in hand with changes of other visual properties of the display, such as the occupancy area [START_REF] Allik | Occupancy model of perceived numerosity[END_REF], and the convex hull [START_REF] Gilmore | Congruency effects in dot comparison tasks: convex hull is more important than dot area[END_REF][START_REF] Katzin | Putting the world in mind: The case of mental representation of quantity[END_REF][START_REF] Katzin | Holistic processing of numerical arrays[END_REF][START_REF] Shilat | Shaping the way from the unknown to the known: The role of convex hull shape in numerical comparisons[END_REF], both of which have been shown to play an important role in numerosity perception. When multiple visual cues that may contain information about the number of items in a display were present, observers weighed the cues to perform a numerosity comparison task [START_REF] Gebuis | The interplay between nonsymbolic number and its continuous visual properties[END_REF], suggesting that multiple visual cues were integrated during numerosity perception (Gebuis & Reynvoet, 2012a[START_REF] Gebuis | The interplay between nonsymbolic number and its continuous visual properties[END_REF]. In particular, Gebuis and Reynvoet (2012a) presented two displays sequentially in each trial and asked participants to judge which display contained more discs. They manipulated displays in a way that visual properties were fully or partially (un-)correlated with numerosity. For example, in the partial congruent condition, a larger numerosity display has a larger density but a smaller convex hull. In fully congruent or incongruent conditions, all visual properties positively or negatively correlated with numerosity, respectively. Importantly, in the correlated and uncorrelated displays, visual cues were informative and not informative about the numerosity of the displays, respectively. In partial congruent displays, some visual cues were informative, and others were not informative about the numerosity of the displays. They observed that performance was worst in the partial congruent condition. They suggested that participants integrated both the informative and the uninformative visual cues on partial congruent conditions so that the performance declined.

Recently, it was proposed that the topology of spatial vision, especially asymmetries of visual space and the radial-tangential anisotropy of contextual interferences, should be considered when investigating numerosity perception (L-Miao et al., 2022). In particular, it was shown that the arrangement of items predominantly radially or tangentially modulated numerosity estimates, with lower estimates in radial than tangential arrangements (L-Miao et al., 2022). This result has been attributed to the radial-tangential asymmetry of spatial vision, reported for crowding [START_REF] Kwon | Radial-tangential anisotropy of crowding in the early visual areas[END_REF]L-Miao et al., 2022;Toet & Levi, 1992) and redundancy masking [START_REF] Yildirim | [END_REF][START_REF] Yildirim | [END_REF]; see below).

Studies investigating numerosity perception usually use displays that consist of multiple items that cover a relatively large area of the visual field, including the fovea, parafovea, and often the periphery (e.g., [START_REF] Anobile | Mechanisms for perception of numerosity or texture-density are governed by crowding-like effects[END_REF][START_REF] Chakravarthi | Clustering leads to underestimation of numerosity, but crowding is not the cause[END_REF][START_REF] Mengal | Judging relative numerosity: foveal and peripheral vision[END_REF][START_REF] Valsecchi | Perceived numerosity is reduced in peripheral vision[END_REF]. However, there are important differences between foveal, parafoveal, and peripheral vision [START_REF] Rosenholtz | Capabilities and Limitations of Peripheral Vision[END_REF][START_REF] Simpson | Mini-review: Far peripheral vision[END_REF]. For example, crowding, the interference of neighboring objects on target perception [START_REF] Bouma | Interaction Effects in Parafoveal Letter Recognition[END_REF] occurs over much larger distances in the periphery than in the fovea [START_REF] Andriessen | Eccentric vision: Adverse interactions between line segments[END_REF][START_REF] Bouma | Interaction Effects in Parafoveal Letter Recognition[END_REF][START_REF] He | Attentional resolution and the locus of visual awareness[END_REF]Levi, 2008;[START_REF] Levi | Vernier acuity, crowding and cortical magnification[END_REF][START_REF] Pelli | Crowding is unlike ordinary masking: Distinguishing feature integration from detection[END_REF]Pelli & Tillman, 2008;Sayim et al., 2014;Sayim & Wagemans, 2017;[START_REF] Strasburger | Peripheral vision and pattern recognition: A review[END_REF][START_REF] Whitney | Visual crowding: a fundamental limit on conscious perception and object recognition[END_REF]. Recently, it was suggested that crowding plays a role in numerosity perception [START_REF] Anobile | Mechanisms for perception of numerosity or texture-density are governed by crowding-like effects[END_REF]L-Miao et al., 2022;[START_REF] Valsecchi | Perceived numerosity is reduced in peripheral vision[END_REF]. For example, [START_REF] Valsecchi | Perceived numerosity is reduced in peripheral vision[END_REF] presented two adjacent dot arrays. Participants were asked to fixate the center of one of the dot arrays so that the other dot array appeared in participants' periphery. In a twoalternative forced choice task (where participants needed to indicate which of the arrays contains more dots), they found that the perceived numerosity of peripherally presented arrays was lower compared to foveally presented arrays. The underestimation in the periphery increased with increasing eccentricity. Based on these results, Valsecchi et al. (2013) suggested that the underestimation in peripherally presented displays was due to crowding (see also, [START_REF] Anobile | Mechanisms for perception of numerosity or texture-density are governed by crowding-like effects[END_REF].

However, the role of crowding in numerosity perception has been questioned.

Recently, [START_REF] Chakravarthi | Clustering leads to underestimation of numerosity, but crowding is not the cause[END_REF] tested whether crowding modulated numerosity perception. They used displays with configurations that affect both crowding and numerosity perception. They found that item spacing and item similarity affected the performance in crowding and numerosity estimation differently. Based on these results, they suggested that crowding does not modulate numerosity perception.

Instead, it was proposed that clustering among items, independent of crowding, modulates numerosity perception and contributes to the underestimation of peripherally presented items (see also, [START_REF] Bertamini | The effect of clustering on perceived quantity in humans (Homo sapiens) and in chicks (Gallus gallus)[END_REF][START_REF] Bertamini | Spatial clustering and its effect on perceived clustering, numerosity, and dispersion[END_REF]. How crowding or mechanisms related to crowding, such as redundancy masking (see below), would yield systematic underestimation of peripherally presented items is still unclear. One of the earliest models to explain underestimation is the occupancy model. In the occupancy model, each item occupies a circular area, and people estimate the numerosity base on the total occupied area. If items are close to each other, the occupied areas overlap, therefore resulting in underestimations [START_REF] Allik | Occupancy model of perceived numerosity[END_REF].

Studies also suggested that the capacity of object individuation is limited, thus forming a bottleneck that restricts the number of items that can be encoded in numerosity perception [START_REF] Mazza | Simultanagnosia and object individuation[END_REF]. Additionally, research showed that when the target and flankers are grouped together, crowding is stronger, whereas when they are not grouped together, crowding is weaker [START_REF] Herzog | Crowding, grouping, and object recognition: A matter of appearance[END_REF][START_REF] Manassi | When crowding of crowding leads to uncrowding[END_REF]. Therefore, the lack of segmentation between items (due to crowding) may lead to an underestimation of numerosity perception.

While the typically found underestimation in numerosity studies suggests a detection-like error -some items are not detected and are missing from the estimate-crowding is usually assumed to interfere with target identification but not target detection [START_REF] Levi | Suppressive and facilitatory spatial interactions in peripheral vision: Peripheral crowding is neither size invariant nor simple contrast masking[END_REF][START_REF] Pelli | Crowding is unlike ordinary masking: Distinguishing feature integration from detection[END_REF]. Alternatively, the crowded items could be missing from numerosity estimates because they were merged, i.e., not segmented from neighboring items [START_REF] Balas | A summary-statistic representation in peripheral vision explains visual crowding[END_REF][START_REF] Levi | Suppressive and facilitatory spatial interactions in peripheral vision: Peripheral crowding is neither size invariant nor simple contrast masking[END_REF][START_REF] Parkes | Compulsory averaging of crowded orientation signals in human vision[END_REF][START_REF] Pelli | Crowding is unlike ordinary masking: Distinguishing feature integration from detection[END_REF]. Recently, a new phenomenon named 'redundancy masking' that could underlie underestimation in numerosity perception was discovered [START_REF] Sayim | Letters lost: capturing appearance in crowded peripheral vision reveals a new kind of masking[END_REF][START_REF] Yildirim | Redundancy masking: The loss of repeated items in crowded peripheral vision[END_REF][START_REF] Yildirim | Hidden by bias: how standard psychophysical procedures conceal crucial aspects of peripheral visual appearance[END_REF][START_REF] Yildirim | Atypical visual field asymmetries in redundancy masking[END_REF]. In redundancy masking, the number of perceived items in repeating patterns is lower than the number of presented items: For example, when presenting an array of identical, radially arranged lines in the visual periphery, observers usually reported fewer lines than were presented, even with as few as three lines [START_REF] Yildirim | Redundancy masking: The loss of repeated items in crowded peripheral vision[END_REF][START_REF] Yildirim | Hidden by bias: how standard psychophysical procedures conceal crucial aspects of peripheral visual appearance[END_REF]. Redundancy masking, in contrast to crowding, is characterized by detection-like errors (see also, [START_REF] Coates | Diagnosing the periphery: Using the Rey-Osterrieth Complex Figure Drawing Test to characterize peripheral visual function[END_REF]Sayim & Wagemans, 2017 for 'diminishment' or detection-like errors in crowding). With frequent reports of only two items when three items are presented, the error in redundancy masking is profound: one-third of the presented items are not reported.

Redundancy masking has recently been suggested to underlie underestimation in numerosity perception (L-Miao et al., 2022).

Both crowding and redundancy masking are subject to a strong radial-tangential anisotropy [START_REF] Kwon | Radial-tangential anisotropy of crowding in the early visual areas[END_REF]Toet & Levi, 1992;[START_REF] Yildirim | Redundancy masking: The loss of repeated items in crowded peripheral vision[END_REF][START_REF] Yildirim | Atypical visual field asymmetries in redundancy masking[END_REF]. In crowding, radially placed flankers interfere more strongly with target perception than tangentially placed flankers (Figure 3.1a;[START_REF] Feng | Horizontal and vertical asymmetry in visual spatial crowding effects[END_REF][START_REF] Greenwood | Variations in crowding, saccadic precision, and spatial localization reveal the shared topology of spatial vision[END_REF][START_REF] Kwon | Radial-tangential anisotropy of crowding in the early visual areas[END_REF]Toet & Levi, 1992). Similarly, redundancy masking has been shown for radially arranged but not tangentially arranged items (Figure 3.1b; [START_REF] Yildirim | Atypical visual field asymmetries in redundancy masking[END_REF]. Recently, testing several large numerosities (from 21 to 58), we used displays whose discs were predominantly arranged in radial and tangential directions and demonstrated that numerosity estimation was subject to a radial-tangential anisotropy:

Estimates were systematically lower when items were arranged radially compared to tangentially (L-Miao et al., 2022). These visual field asymmetries in numerosity estimation suggest that numerosity perception is modulated by the asymmetries of spatial vision.

Crowding has been shown to depend on target-flanker similarity, with higher target-flankers similarity usually yielding stronger crowding (and vice versa; [START_REF] Chakravarthi | Temporal properties of the polarity advantage effect in crowding[END_REF][START_REF] Chung | Spatial-frequency characteristics of letter identification in central and peripheral vision[END_REF][START_REF] Chung | Spatial-frequency and contrast properties of crowding[END_REF][START_REF] Chung | [END_REF][START_REF] Kooi | The effect of similarity and duration on spatial interaction in peripheral vision[END_REF]Rummens & Sayim, 2019b, 2021). For example, crowding was stronger when the target and the flankers shared the same contrast polarity (e.g., both black or both white on a gray background) compared to opposite contrast polarity, crowding [START_REF] Chakravarthi | Temporal properties of the polarity advantage effect in crowding[END_REF][START_REF] Chung | [END_REF][START_REF] Sayim | Contrast polarity, chromaticity, and stereoscopic depth modulate contextual interactions in vernier acuity[END_REF]Figure 3.1c). Interestingly, there was no such 'polarity advantage' in crowding when reporting all three displayed items, suggesting that attentional selection can modulate similarity effects in crowding [START_REF] Rummens | Multidimensional feature interactions in visual crowding: When configural cues eliminate the polarity advantage[END_REF]. Importantly, a similar polarity advantage as in crowding has been found in RM (Hansmann-Roth & Sayim, 2022). They presented 3-5 radially arranged lines in peripheral vision. The lines were either uniform (all black or all white) or alternating in contrast polarity (e.g., black, white, black). Participants reported the number of lines they perceived and indicated the perceived color of each line afterward. Mixed contrast polarity did not prevent RM: two lines were frequently reported compared to three lines, and even the triplets were in mixed contrast polarity. However, the features of mixed contrast polarity were well preserved when RM occurred: participants usually indicated that the perceived two lines were of opposite contrast polarity. Contrast polarity seems to be another common factor that modulates both crowding and RM.

In the realm of standard numerosity studies, divergent results on how contrast polarity impacts numerosity perception have been found. In particular, some studies showed that contrast polarity has no impact on numerosity perception, while others revealed the opposite. For example, in a two-alternative forced-choice task, [START_REF] Tibber | Number and density discrimination rely on a common metric: Similar psychophysical effects of size, contrast, and divided attention[END_REF] presented test (64-265 items) and reference (128 items) displays to the left and the right of the central fixation. There were three contrast polarity conditions: both test and reference displays were of mixed contrast polarity (mixed with black and white), both test and reference displays were of uniform contrast polarity (all items were either white or black), and either test or reference displays were of mixed contrast polarity (and the other display was uniform). They did not find any advantage of mixed contrast polarity in numerosity perception: all three contrast polarity conditions showed similar patterns of results (see also, [START_REF] Dakin | A common visual metric for approximate number and density[END_REF]. However, [START_REF] Chakravarthi | Clustering leads to underestimation of numerosity, but crowding is not the cause[END_REF] found that contrast polarity modulated numerosity perception in low-but not high-density displays: When the displays were of low density (0.08 -0.24 items/deg2), mixed contrast polarity increased underestimation compared to uniform displays; however, this effect was not observed when the displays were of high density (approximately seven times higher than the low density).

In the presented study, we investigated how limits of spatial vision, i.e., crowding and RM, impact numerosity perception. First, we systematically varied the degree of radial-tangential arrangements, including displays that maximized the probability of being affected by RM. Second, we varied the contrast polarity of the items to (1) break visual configurations that emerge when grouping items of the same contrast polarity, and (2) investigate if mixed contrast polarity displays modulate numerosity estimation. The radial-tangential arrangements of displays were similar to our previous study, where we used the radial-tangential anisotropy of contextual interferences to create displays with different levels of interference by presenting -or not presenting any --discs inside the interference zones of other discs (L-Miao et al., 2022). The shape of the interference zone can be approximated by an ellipsis with its long axis along the radial direction; its size increases with increasing eccentricity (Figure 3.1d). Items that fall into the interference zone are expected to yield interference with target perception; items that fall outside the interference zone are not expected to yield interference with target perception. We created two conditions: weak and strong interference. In the weak interference condition, no discs were placed in the interference zones of any other discs, and in the strong interference condition, around 10% of discs (range 1.8% -26.8%, average 10.5%) were placed in other discs' interference zones (L-Miao et al., 2022). We found the numerosity estimations were systematically lower in the strong than in the weak interference condition. However, even in the strong interference condition, the majority of discs did not contain any discs in their interference region, and hence, underestimation driven by these configurations was not expected to be substantial.

Here, we sought to maximize interference (and underestimation) by increasing the number of discs in the interference zones of other discs. In particular, we maximized the potential of interference among discs by creating displays with at least 50% of the discs falling into other discs' interference zones. Our displays were composed of 'base' discs and 'flanking' discs. In radial displays, flanking discs were added into the interference zone of the base discs, and in tangential displays, flanking discs were added at (on average) the same distance to the base discs as in the tangential direction; however, outside of the interference zone of the base discs (Figure 3.2a). In Experiment 3.1 and Experiment 3.2, we varied the radial-tangential arrangements of displays (weak and strong): In weak radial-tangential arrangements, we ensured that there were at least 50% of base discs that were paired with one flanking disc, while at the same time avoiding strong structural differences between radial and tangential displays due to grouping among close-by items. In strong radial-tangential arrangements, each base disc was paired with two flanking discs, forming a disc triplet. The strong radialtangential arrangement of displays were expected to have the highest probability of being affected by RM. To reduce perceived grouping among discs, we used mixed contrast polarity displays, i.e., the base and flanking discs were black and white, respectively (Experiments 3.3 and 3.4). As crowding is reduced when the target and flankers are with mixed contrast polarity, the flanking discs that were of the opposite contrast polarity of the base discs were expected to result in less interference with the base discs. Code #B6B6B6) background. Discs (radius: 9 pixels) were presented within an imaginary rectangular region that occupied 40% (Experiment 3.1a) or 60% (Experiment 3.1b) of the screen. No disc was presented within a circular region (radius: 100 pixels, around 4 degrees of visual angle) around fixation (see Figure 3.3). Discs were either base discs or flanking discs (Figure 3.2a). To create predominantly radially or tangentially arranged displays, each base disc was surrounded by a radially orientated and a tangentially oriented elliptical interference zone (Figure 3.2a; these zones were only used to construct the displays and were never shown to participants). The major and the minor axis of the elliptical interference zone were 0.25 × eccentricity and 0.1 × eccentricity, respectively (see also, L-Miao et al., 2022). The size of the zones was determined based on common estimates of the size of the interference zone in crowding (Toet & Levi, 1992), and used to control for the distance among discs in the displays.

The two zones were free from other base discs. The flanking discs were placed into the radially or tangentially orientated zones to form radial (strong interference) or tangential (weak interference) displays, respectively. No flanking disc was added to the overlap area of the radial and rotated (tangentially elongated) interference zone. In Experiment 3.1, the radial-tangential display manipulation was weak. Each base disc was either presented without any flanking disc (remaining a single disc), paired with one flanking disc (forming a disc pair), or paired with two flanking discs (forming a disc triplet, Figure 3.2b). We varied the percentage of single discs, disc pairs, and disc triplets to reduce the probability that participants estimated the number of discs by multiplication of the number of estimated disc pairs and/or triplets. The percentage of disc pairs varied between 0 and 100% in steps of 25%. For example, the percentage of disc pairs in a display was 50% when 50% of the base discs (randomly selected) were paired with one extra disc. The remaining base discs were presented with two flanking discs forming disc triplets (25%) and without flanking discs (single base discs; 25%).

To generate a display, a random position was selected to place the first base disc with its corresponding interference zones (Figure 3.2c). Additional discs were added iteratively on the displays with the constraint that no interference zones overlapped with the interference zones of any other base disc. Base discs were positioned on the display until no disc without overlapping interference zones could be added anymore. Flanking discs were added into the interference zones or the rotated interference zones (excluding the central, overlapping zone) to form radial and tangential displays, respectively. All discs on the displays were presented within a rectangular region. The size of the rectangular was either small (21.5˚ width × 13.5˚ height, occupying 40% of the entire screen, Experiment 3.1a,3.2a,3.3a,and Experiment 3.4: small numerosities) or large (27.0 ˚ width × 18.5˚, occupying 60% of the entire screen, Experiment 3.1b, 2b, 3b, and Experiment 3.4: large numerosities). The size of the rectangular region determined the maximum number of base discs that could be presented. For each percent of disc pairs condition, we generated 10000 displays (5000 radial and tangential displays each). We selected displays with the same numerosity so that radial and tangential displays matched in regard to average eccentricity, average spacing, convex hull length, occupancy area, and density (see Supplementary Table S2.1). The possible numbers of base discs was 17 -22 and 27-32 for small and large displays, respectively. The numerosities were 34, 36, 38, 40, 42, and 44 for Experiment 3.1a (small numerosities), and 54, 56, 58, 60, 62, and 64 for Experiment 3.1b (large numerosities). 

Design and Procedure

Each trial started with a red fixation cross (5 pixels × 5 pixels) presented at the center of the screen. Observers initiated each trial by pressing the spacebar. The display was presented for 150 ms. Participants were required to enter their best estimation of the number of discs on the presented display using the number keys on the keyboard.

The estimates entered by participants were displayed on the screen for each trial. There was no feedback in the experiment, and there was no time limit for participants to respond. Participants were not informed about the numerosity ranges prior to the experiment. Prior to the experiment, participants viewed 5 reference displays. The numerosities of the 5 reference displays were equally distributed around the mean numerosity of the experiment (0.125 and 0.25 times the mean numerosity of all displays). Each reference display was presented for 150 ms, and participants were informed about the actual number of the reference display after the offset of the reference display. Each participant performed 300 trials (50 trials for each numerosity in random order). The experiment was interspersed with 30 trials with numerosities in the subitizing range (2-4 discs) for attentional control (participants with incorrect responses in these trials of 10 percent or more were to be excluded from the experiment).

Data analysis

We calculated the deviation score (DV) by subtracting the actual numerosity of the display from the reported numerosity. The raw data were tidied up (including combining all raw data into an intact file, and removing extraneous information) with the tidyverse library [START_REF] Wickham | tidyverse: Easily install and load the "Tidyverse[END_REF]) in R 3.6.3 (R Core Team, 2020) and RStudio [START_REF] Team | RStudio: Integrated Development Environment for R[END_REF]. Linear mixed-effect analyses were conducted using the lme4 package [START_REF] Bates | Fitting linear mixed-effects models using lme4[END_REF]. The Emmeans package [START_REF] Lenth | Emmeans: Estimated marginal means, aka least-squares means[END_REF] was used for estimation statistics and post-hoc comparisons on the full model. The analysis codes and data are available at https://github.com/miaoli-psy/numerosity_exps/tree/master/src/stat_tests.

In the models, we standardized the dependent variable deviation score (DV) so that DV has a mean of zero and a standard deviation of one, ensuring that the estimated coefficients were of the same scale in all analyses. To examine the DV differences between the radial and tangential conditions, we entered the alignment condition as a fixed factor. Numerosity was submitted as a random factor (DV differences between numerosities, for example, between displays with 34 and 36 were not analyzed). Using the model comparison method, first, we constructed a full model (that successfully converged) with the alignment condition as a fixed factor and a reduced model without the alignment condition as a fixed factor. We used the random slope model, assuming that the effect of the alignment condition differed among participants, and the difference between numerosities (participants and numerosity had different intercepts and different slopes for the effect of DV in the model). As random effects, we had intercepts for participants and intercepts for numerosity. P-values were obtained by likelihood ratio tests between the full model (with alignment condition as a fixed factor) and the reduced model (without alignment condition as a fixed factor). Visual inspection of all residual plots did not reveal any obvious deviations from homoscedasticity or normality. 3.1a: small numerosities (34 -44) Figure 3.4a shows the deviation scores (DV) for the radial and tangential alignment conditions in Experiment 3.1a (see Supplementary Figure S3.1 for deviation scores as a function of numerosity). Comparing the full model (including alignment condition as a fixed factor) with the reduced model (excluding alignment condition as a fixed factor) revealed no difference between the radial and the tangential displays (DV; χ2(1) = 1.98, p = .16). There was a trend for lower estimates in the radial compared to the tangential condition: β = -0.06 ± 0.14. 

Results

Experiment

Experiment 3.3: Radial-tangential arrangements with mixed contrast polarity

In Experiment 3.3, we investigated if differences between the radial and the tangential alignment conditions were impacted when using mixed contrast polarity displays.

Method

Participants

Data from 29 participants (20 females, 8 males, and 1 participant who did not indicate any sex, mean age = 25.4 years, ranging from 19 to 38 years) were submitted for analysis for Experiment 3.3a. Forty participants who were naïve as to the study were recruited. We removed 11 participants: 10 did not complete the study, and 1 failed the subitizing attention check (performance in subitizing trials was lower than 90%). For Experiment 3.3b, data from 28 participants (19 females and 9 males, mean age: 27.3 years, ranging from 19 to 40 years) were submitted for analysis. Forty naïve participants were recruited. We removed 12 participants: 2 did not complete the study, and 10 failed the subitizing attention check.

Apparatus and stimuli

The apparatus was identical to Experiment 3.1a. The stimuli used in Experiment 3.3a and Experiment 3.3b were identical to Experiment 3.1a and Experiment 3.1b, respectively, except that the displays were mixed contrast polarity (black and white discs) (Figure 3.7; all base discs were black, all flanking discs were white). 

Experiment 3.4: Radial-tangential arrangements with uniform and mixed contrast polarity

In Experiment 3.4, we compared the uniform and mixed contrast polarity displays with a within-subject design where participants viewed both types of displays.

Method

Participants

Nineteen participants (14 females, 5 males, mean age = 20.1 years, range from 18 to 24 years). All participants were undergraduate psychology students at KU Leuven.

They received course credits after their participation. All participants had more than 95% correct in performing subitizing trials. Therefore, no data was removed from the analysis.

Apparatus and stimuli

The apparatus was identical to Experiment 3.2. The stimuli in Experiment 3.4 included displays used in all the previous experiments, excluding the percentage of disc pairs of 25% and 75% (Figure 3.9). This is to reduce the number of presented displays in each block to control for the experiment duration (less than 120 min). The mixed contrast polarity displays used in Experiment 3.4 were identical in Experiment 3.3. Half of the uniform contrast polarity displays in Experiment 3.3 were identical to displays in Experiment 3.1. To balance the overall luminance between uniform displays and mixed contrast polarity displays, the other half of the uniform displays were identical to displays in Experiment 3.1 but contained white discs. 

Discussion

In the current study, we sought to understand the role of crowding and redundancy masking in numerosity perception and how they contribute to the radialtangential anisotropy of numerosity perception. We investigated how the topology of our spatial vision, especially how the radial-tangential anisotropy modulates numerosity perception. We varied displays, arranging discs predominantly radially or tangentially. Other physical properties (e.g., convex hull, occupancy area, density etc.) of the displays were kept as similar as possible between the radial and the tangential displays (Supplementary Table S3.1). In four experiments, we asked participants to report the number of presented discs. We found that the estimates were lower when discs were arranged radially compared to when discs were arranged tangentially . The relative underestimation in the radial compared to tangential condition occurred when the radial-tangential manipulation of displays was weak (Experiment 3.1 with large numerosities) and strong (Experiment 3.2 with both small and large numerosities). Importantly, also when using mixed contrast polarity displays, radial displays were reported as less numerous than tangential displays (Experiments 3.3 and 3.4).

In Experiment 3.1, numerosity estimates were lower in the radially compared to tangentially arranged displays when the number of presented discs was high (54-64), but not when it was low (34)(35)(36)(37)(38)(39)(40)(41)(42)(43)(44). The results seem to indicate that the radial-tangential arrangements of displays impact large but not small numerosities. However, there are other potential differences between the large and small numerosities in the current study.

In particular, the small numerosity displays have an overall shorter convex hull and higher density compared to large numerosity displays (see Supplementary Table S3.1).

We cannot rule out that the absence of DV differences between the radial and tangential conditions in the small numerosity condition in Experiment 3.1 was a result of possible variations due to the online, unsupervised data collections. In both numerosity ranges in Experiment 3.1, there were either 0, 1, or 2 flanking discs in the interference regions of the base discs, resulting in displays with at least 50% (50 % to 100 %) of base discs flanked by discs within the interference zone (radial condition) or the rotated interference zone (tangential condition). This manipulation was implemented to raise the probability of interference among discs in the radial condition, thus increasing the probability of observing lower estimates in the radial compared to the tangential condition. Compared to an earlier study in which we observed a radial-tangential anisotropy of numerosity estimation (L-Miao et al., 2022), the proportion of flanking discs in the interference zones was more than doubled. We expected more interference among discs in the current radial displays compared to those of L-Miao et al. ( 2022)'s study.

In Experiment 3.2, we investigated how numerosity estimation was impacted if discs' mutual influences on radial displays were enlarged. To this end, two flanking discs (instead of one) were placed into the interference zone of the base discs in radial displays, which resulted in an increasing probability of displays being affected by redundancy masking (RM) in radial displays. Importantly, RM does usually not occur with two items; for example, participants were able to accurately report two items even when items were aligned radially [START_REF] Yildirim | Hidden by bias: how standard psychophysical procedures conceal crucial aspects of peripheral visual appearance[END_REF]. RM was strong when three items (e.g., letters and lines) were presented radially (one-third of the items are missing in the enumeration task; [START_REF] Sayim | Letters lost: capturing appearance in crowded peripheral vision reveals a new kind of masking[END_REF][START_REF] Yildirim | Redundancy masking: The loss of repeated items in crowded peripheral vision[END_REF][START_REF] Yildirim | Hidden by bias: how standard psychophysical procedures conceal crucial aspects of peripheral visual appearance[END_REF], and the report number of items were accurate when items were arranged tangentially [START_REF] Yildirim | Redundancy masking: The loss of repeated items in crowded peripheral vision[END_REF]. Several studies show that redundancy masking is different from crowding [START_REF] Sayim | Letters lost: capturing appearance in crowded peripheral vision reveals a new kind of masking[END_REF][START_REF] Yildirim | Redundancy masking: The loss of repeated items in crowded peripheral vision[END_REF]. One of the major differences is that crowding is usually assumed to not impact target detection [START_REF] Levi | Suppressive and facilitatory spatial interactions in peripheral vision: Peripheral crowding is neither size invariant nor simple contrast masking[END_REF]Pelli et al., 2004), whereas in RM, entire items go unnoticed, that is, they are not detected. Here, when displays were of high probability to be affected by RM, we observed similar results as in Experiment 3.1, that radial displays were estimated as less numerous compared to tangential displays. The results of the study indicated that displays with a high likelihood of RM were perceived as having a lower number compared to displays with a low likelihood of RM. We suggest that RM plays an important role in numerosity perception.

Interestingly, our results did not show consistent underestimation. We previously suggested that the occurrence of the overestimation may be driven by the task that requires participants to report the number of items instead of making comparisons between two or more displays (L-Miao et al., 2022). In the current experiments, the overestimations or underestimations were inconsistent across the different experiments. In Experiments 3.1 and 3.3, the estimates for both small and large numerosities were underestimations (see Figure 3.4,Figure 3.8,Supplementary Figure S3.1,and Supplementary Figure S3.3). However, in Experiments 3.2 and 3.4, the estimates within blocks (small numerosities or large numerosities) showed both under-and overestimations, and were centered approximately on the median numerosity within each block. One possible explanation is that the direct estimation triggered a central response tendency where stimuli tend to be misperceived and biased towards the mean of the distribution [START_REF] Hollingworth | The Central Tendency of Judgment[END_REF]. [START_REF] Anobile | Near optimal encoding of numerosity in typical and dyscalculic development[END_REF] further suggested a Bayesian model of the central tendency of numerosity perception that observers based on the performance on a distribution that consists of both sensory estimates and a priori hypothesis about the stimuli. Here, our results of numerosity estimation captured the central tendency trend within a block (see Supplementary Figure S3.1-S3.4).

In Experiment 3.3, we used mixed contrast polarity displays with the same radial-tangential arrangement displays as in Experiment 3.1. The mixed contrast polarity displays, compared to the uniform contrast polarity displays, were expected to break visual structures (see L-Miao et al., 2022) that emerge when items are perceived to be grouped together (see L-Miao et al., 2022). Moreover, flanking discs with opposite contrast polarity were expected to interfere less with the base discs compared to the same contrast polarity discs in the radial condition. In crowding, when the target and flankers are distinct from each other (e.g., with opposite contrast polarity), the target identification performance is better than when the target and flankers are similar [START_REF] Chung | [END_REF][START_REF] Kooi | The effect of similarity and duration on spatial interaction in peripheral vision[END_REF][START_REF] Rosen | Crowding by a repeating pattern[END_REF]Rummens & Sayim, 2019a). In this regard, adding opposite contrast polarity flanking discs into the interference zone of the base disc in radial displays should result in less interference compared to when adding the same contrast polarity flanking discs into the interference zone of the base disc. Therefore, we speculated that the radial mixed contrast polarity displays reduced the overall interference level among discs. Hence, a reduction of the difference between the radial and the tangential conditions was expected. However, we found that the estimates for radial displays were still lower than for tangential displays, as in Experiment 3.1, showing the radial-tangential anisotropy persisted with mixed contrast polarity displays. Critically, it has been shown that opposite contrast polarity did not result in improved performance in full report tasks of peripherally presented targets [START_REF] Rummens | Broad attention uncovers benefits of stimulus uniformity in visual crowding[END_REF]. Specifically, [START_REF] Rummens | Broad attention uncovers benefits of stimulus uniformity in visual crowding[END_REF] conducted an identification task on crowding. They presented three orientated letters T and asked participants to either report the orientation of one of the letters or the orientation of all the letters. The stimuli were either of the mixed contrast polarity or of the uniform contrast polarity. They found that mixed contrast polarity improved the orientation identification performance when participants reported the single letter orientation and reduced the performance when participants reported all letters' orientations. The findings of our study are in line with these results, as the numerosity estimation employed in our study bears a resemblance to full report tasks. Therefore, we suggest that the effect of mixed contrast polarity displays on numerosity estimation performance could be similar to [START_REF] Rummens | Broad attention uncovers benefits of stimulus uniformity in visual crowding[END_REF]. Moreover, research showed that when the target was surrounded by multiple equidistant flankers that were in alternating contrast polarity, crowding increased [START_REF] Rosen | Crowding by a repeating pattern[END_REF][START_REF] Sayim | Contrast polarity, chromaticity, and stereoscopic depth modulate contextual interactions in vernier acuity[END_REF]. The authors suggested that multiple mixed contrast polarity flankers override the local dissimilarity (e.g., one target with neighboring opposite contrast polarity flankers) by grouping with the target and producing more crowding.

In Experiment 3.4, participants completed the numerosity estimation task with both the uniform and mixed contrast polarity displays, which allowed us to disentangle DV differences between these two types of displays. We replicated the results of Experiment 3.3 that radial displays were estimated to be less numerous compared to tangential displays. Interestingly, in Experiment 3.4 (within-subject design), we found an advantage of mixed contrast polarity: the DV of mixed contrast polarity displays was lower (and closer to DV of 0, the correct estimates) than uniform contrast polarity displays.

Our findings indicated a radial-tangential anisotropy of numerosity perception, with radially arranged items being perceived as less numerous compared to tangentially arranged items. Mixed contrast polarity has been demonstrated to modulate crowding and redundancy, but it does not seem to reduce the difference between the radial and tangential displays. We suggest that the radial-tangential anisotropy of contextual interference plays a role in numerosity perception, possibly mediated by crowding and RM.

Introduction

Humans are capable of swiftly processing faces [START_REF] Reddy | Face identification in the near-absence of focal attention[END_REF][START_REF] Ro | Changing Faces: A Detection Advantage in the Flicker Paradigm[END_REF] and facial information, including gaze direction [START_REF] Chen | Look into my eyes and I will see you: Unconscious processing of human gaze[END_REF], gender [START_REF] Chen | Look into my eyes and I will see you: Unconscious processing of human gaze[END_REF], and emotion [START_REF] Yang | Fearful expressions gain preferential access to awareness during continuous flash suppression[END_REF]. It is generally accepted that humans possess a remarkable ability to identify faces [START_REF] Besson | From face processing to face recognition: Comparing three different processing levels[END_REF][START_REF] Boucart | Finding faces, animals, and vehicles in far peripheral vision[END_REF][START_REF] Carey | Becoming a face expert[END_REF][START_REF] Carey | From Piecemeal to Configurational Representation of Faces[END_REF][START_REF] Crouzet | Fast saccades toward faces: Face detection in just 100 ms[END_REF][START_REF] Tanaka | Expertise in object and face recognition[END_REF]. For example, [START_REF] Besson | From face processing to face recognition: Comparing three different processing levels[END_REF] found that accurately reporting whether a shortly presented face (100ms) belonged to a target person was remarkably fast, with reaction times as fast as 260 ms. In another face categorization task, participants needed to find a human face among other objects. [START_REF] Besson | From face processing to face recognition: Comparing three different processing levels[END_REF] showed that participants could perform the task correctly and with reaction times as fast as 240 ms. Recent research conducted by [START_REF] Crouzet | Fast saccades toward faces: Face detection in just 100 ms[END_REF] revealed that saccades towards faces could be executed within 100 ms (on average 147 ms) in a two-alternative forced-choice task. Research showed that making a decision and a motor response (e.g., bringing the hand close to a target object) took approximately 110 ms [START_REF] Kalaska | Cerebral Cortical Mechanisms of Reaching Movements[END_REF], while processing a complex natural image (e.g., deciding whether a natural image was previously seen) required 150 ms [START_REF] Thorpe | Speed of processing in the human visual system[END_REF].

Comparatively, the processing of faces by human observers is highly remarkable.

Studies that investigate face detection are usually focused on the perception of single faces, although faces are often perceived in groups. How the perception of faces is modulated when they are presented in groups has been investigated, for example, in experiments using visual crowding paradigms [START_REF] Fischer | Object-level visual information gets through the bottleneck of crowding[END_REF][START_REF] Louie | Holistic crowding: Selective interference between configural representations of faces in crowded scenes[END_REF][START_REF] Westheimer | Visual acuity and hyperacuity[END_REF]. In crowding, visual items are usually presented in the periphery, and performance on a target surrounded by flankers is measured. Crowding has been shown for a large range of stimuli, such as letters [START_REF] Bouma | Interaction Effects in Parafoveal Letter Recognition[END_REF]Bouma, 1973;[START_REF] Grainger | A Vision of Reading[END_REF][START_REF] Pelli | Crowding is unlike ordinary masking: Distinguishing feature integration from detection[END_REF][START_REF] Winsler | On letter-specific crowding and reading: Evidence from ERPs[END_REF], Gabor patches [START_REF] Livne | Configuration influence on crowding[END_REF], 2011;[START_REF] Parkes | Compulsory averaging of crowded orientation signals in human vision[END_REF] and verniers [START_REF] Levi | Vernier acuity, crowding and cortical magnification[END_REF][START_REF] Manassi | Grouping, pooling, and when bigger is better in visual crowding[END_REF][START_REF] Manassi | When crowding of crowding leads to uncrowding[END_REF][START_REF] Sayim | Contrast polarity, chromaticity, and stereoscopic depth modulate contextual interactions in vernier acuity[END_REF]. Importantly, there is some evidence that crowding occurs on multiple processing levels [START_REF] Whitney | Visual crowding: a fundamental limit on conscious perception and object recognition[END_REF], including between complex stimuli such as faces. For example, [START_REF] Fischer | Object-level visual information gets through the bottleneck of crowding[END_REF] presented two groups of faces, each with one central face and six flanking faces to the right and left visual fields of participants, and asked them to compare the facial expressions of the two central faces. Results showed that the performance significantly deteriorated when the two target faces were surrounded by flankers compared to the performance without any flankers. This is a typical crowding effect: Flankers deteriorate performance on a target. Crowding of faces has also been shown when discriminating emotion (To et al., 2019), identity [START_REF] Louie | Holistic crowding: Selective interference between configural representations of faces in crowded scenes[END_REF], when categorizing [START_REF] Sun | Face features and face configurations both contribute to visual crowding[END_REF], and with Mooney faces [START_REF] Farzin | Holistic crowding of Mooney faces[END_REF].

Importantly, crowding is usually assumed not to influence detection [START_REF] Levi | Suppressive and facilitatory spatial interactions in peripheral vision: Peripheral crowding is neither size invariant nor simple contrast masking[END_REF][START_REF] Livne | Configuration influence on crowding[END_REF][START_REF] Pelli | Crowding is unlike ordinary masking: Distinguishing feature integration from detection[END_REF]; but see, [START_REF] Pelli | Cependant, la sous-estimation observée de la perception de la numérosité implique que certaines erreurs de détection ont pu se produire[END_REF].

However, recent studies demonstrated that there is a loss of information in crowding [START_REF] Coates | Diagnosing the periphery: Using the Rey-Osterrieth Complex Figure Drawing Test to characterize peripheral visual function[END_REF]Sayim & Wagemans, 2017) akin to failures of detection. For example, when asking participants to draw peripherally presented crowded letters, observes often underreport the number of elements ('omission' errors) or their size ('truncation' errors; Sayim & Wagemans, 2017). Such errors in crowding may well be due to the recently discovered phenomenon of redundancy masking (RM), which has been proposed to underlie detection-like errors in peripheral vision [START_REF] Sayim | Letters lost: capturing appearance in crowded peripheral vision reveals a new kind of masking[END_REF][START_REF] Yildirim | Redundancy masking: The loss of repeated items in crowded peripheral vision[END_REF]. In RM, the number of perceived items in repeating patterns is lower than the presented number for as few as three presented items [START_REF] Sayim | Letters lost: capturing appearance in crowded peripheral vision reveals a new kind of masking[END_REF][START_REF] Yildirim | Redundancy masking: The loss of repeated items in crowded peripheral vision[END_REF][START_REF] Yildirim | Hidden by bias: how standard psychophysical procedures conceal crucial aspects of peripheral visual appearance[END_REF][START_REF] Yildirim | Atypical visual field asymmetries in redundancy masking[END_REF]. For example, when three radially arranged letters T were presented in the visual periphery, observers often reported only two letters, using a free verbal report and a drawing task [START_REF] Sayim | Letters lost: capturing appearance in crowded peripheral vision reveals a new kind of masking[END_REF]. RM has been shown for simple stimuli, such as lines [START_REF] Yildirim | Redundancy masking: The loss of repeated items in crowded peripheral vision[END_REF][START_REF] Yildirim | Hidden by bias: how standard psychophysical procedures conceal crucial aspects of peripheral visual appearance[END_REF][START_REF] Yildirim | Atypical visual field asymmetries in redundancy masking[END_REF] and dots [START_REF] Hansmann-Roth | One less is enough: Evidence for redundancy masking in the fovea[END_REF], and more complex stimuli, such as letters [START_REF] Sayim | Letters lost: capturing appearance in crowded peripheral vision reveals a new kind of masking[END_REF]. Recent findings suggest that RM goes hand in hand with the compression of visual space [START_REF] Yildirim | Atypical visual field asymmetries in redundancy masking[END_REF]. Further characteristics of RM include its dependence on stimulus regularity (with high regularity yielding strong RM, [START_REF] Rummens | Multidimensional feature interactions in visual crowding: When configural cues eliminate the polarity advantage[END_REF][START_REF] Yildirim | Redundancy masking: The loss of repeated items in crowded peripheral vision[END_REF] and spacing (decreasing RM with increasing spacing; [START_REF] Yildirim | Redundancy masking: The loss of repeated items in crowded peripheral vision[END_REF]. RM was also shown to be dependent on the spatial layout of the stimuli [START_REF] Yildirim | Redundancy masking: The loss of repeated items in crowded peripheral vision[END_REF][START_REF] Yildirim | Atypical visual field asymmetries in redundancy masking[END_REF]. For example, RM occurred more often when items were arranged radially compared to tangentially, i.e., RM is subject to a radial-tangential anisotropy. RM was found to have atypical visual field asymmetries; e.g., it was stronger on the horizontal meridian compared to the vertical meridian [START_REF] Yildirim | Redundancy masking: The loss of repeated items in crowded peripheral vision[END_REF][START_REF] Yildirim | Atypical visual field asymmetries in redundancy masking[END_REF]. Taken together, RM demonstrates a substantial failure to detect parts of a stimulus, often failing to detect one-third of the presented items when observers report only two out of the three presented items.

Here, we investigated if the detection of faces was impacted when they were presented in small groups of 3-6 faces. In Experiment 4.1, we presented multiple identical faces, luminance-matched noise patches, and shape-matched outlines in the visual periphery. Participants reported the number of perceived items. In Experiment 4.2, both upright and upside-down faces were presented. Participants reported the face orientation and the number of faces they perceived on a trial basis. Given the usual high performance for detecting faces, it is expected that face detection in small groups is intact and overcomes RM. However, we found that the detection of faces was impaired: participants reported fewer faces than the actual number of faces for both upright and upside-down faces, although the effect was less strong compared to the low-level matching noise patches and outlines. Importantly, performance was good in the face orientation discrimination task, both when the correct and erroneous numbers of faces were reported, indicating that sufficient features of faces (at least for orientation discrimination) were preserved in RM. Our results showed a substantial failure to detect faces presented in groups. It seems that the visual system's sensitivity to detect the presence of highly relevant stimuli does not hold for the number of exemplars. Instead, the visual system appears to be insensitive when detecting the number of faces in small groups.

Experiment 4.1: Enumeration task

In Experiment 4.1, we tested RM with multi-featured, complex stimuli: human faces. Two control stimuli: luminance-matched noise patches and shape-matched outlines, were also presented.

Method

Participants

Thirteen participants (1 male, 12 females; mean age: 19.5 years, ranging from 18 to 21) participated in Experiment 4.1. All participants were naive as to the purpose of the study. All participants were undergraduate psychology students at KU Leuven.

They received course credits for their participation. All participants reported normal or corrected-to-normal visual acuity and signed informed consent prior to the experiment. 

Design and procedure

Each trial started with a fixation dot presented at the center of the screen. Three to six items were presented for 150 ms to the left or the right of fixation. Participants were required to indicate the number of items they perceived with a key press on the numeral keypad. Responses from 0-9 were allowed. The stimuli location (left or right visual field), the number of stimuli (3 -6), and the four edge-to-edge spacings were randomized within each block. Stimulus types (faces, noise patches, and outlines) varied across blocks. Participants performed 9 blocks (3 blocks of each stimulus) in total. There were 288 trials per block. Experiment 4.1 is a 3 (set size: 3-6) × 3 (stimulus type: face, noise patch, outline) × 3 (stimulus size: small, medium, small) within-subject design. A schematic depiction of Experiment 4.1 is shown in Figure 4.1d. We calculated the deviation score (DV) using the reported number minus the actual number of presented stimuli [START_REF] Yildirim | Redundancy masking: The loss of repeated items in crowded peripheral vision[END_REF]. Therefore, negative DVs represent underestimation where redundancy masking occurs. DV magnitude represents the strength of RM: the more negative the DV, the stronger RM. The precision of the response was measured by the coefficient of variation (CV) using the standard deviation of the responses divided by the actual set size. CV is a classical psychophysical parameter in numerosity perception that allows cross-numerical comparison of average performance, and higher CV represents more sensory noise, therefore, less precise estimation.

After the experiment, a two-stimulus discrimination task for each stimulus type was performed. This was to ensure that the stimuli were above the observers' visual resolution limit. In the discrimination task, either 1 item or 2 items were presented at the farthest eccentricities of the main experiment (13.2˚, 14.1˚, and 14.9˚ for small, medium, and large stimuli, respectively). Stimulus types were blocked as in the main experiment. Participants were asked to indicate whether they perceived 1 or 2 items.

Each participant performed 36 trials in a block that contained 6 repetitions per condition (108 trials in total). Performance was equal to or above 93.2% correct in all conditions.

Data analysis

All analyses were conducted in R (v 3.6.3), RStudio (R Core Team, 2020) and Python on a local laptop. The data was preprocessed with the Python Pandas tool (https://pandas.pydata.org/) and tidied up with "tidyverse" package [START_REF] Wickham | tidyverse: Easily install and load the "Tidyverse[END_REF] in R. We conducted a 3-way within-subjects repeated measures ANOVA on both DVs and CVs with set size (3 -6), stimulus size (small, medium and large), and stimulus type (face, noise patch, and outline) as within-subject factors. In the analysis, as planned, we collapsed over spacing as spacing showed no effect of either DV or CV. The ANOVA and the follow-up comparisons were performed using "rstatix" package (Alboukadel [START_REF] Kassambara | rstatix: Pipe-Friendly Framework for Basic Statistical Tests[END_REF]. Normality assumption was checked with Shapiro-Wilk tests for each combination of factor levels. The DV was normally distributed in all factor levels except for the factor combination of outline, set size 3 and large stimuli (p = .02). Therefore, we assumed the normal distribution of the DV for all the other factor combinations (except for the combination of outline, set size 3 and large stimuli) as assessed by Shapiro-Wilk test of normality (ps > .05). The CV was normally distributed in all factor levels except for the factor combination of noise patch, set size 3 and small stimuli (p = .03) and the factor combination of face, set size 3 and middle stimuli (p = .04). Thus, we assume that the distributions of the CV for all the other factor combinations were normally distributed (Shapiro-Wilk test showed ps > .05).

The data violated the sphericity assumption, and thus we reported the Greenhouse-Geisser sphericity corrections. The code of data analysis is available at https://github.com/miaoli-psy/RM_face/tree/main/src.

Results

Deviation score (DV)

Figure 4.2a shows deviation scores (DVs) for each condition. The average DV (mean ± SD) for outlines, noise patches, and faces were -0.84 ± 0.47, -0.78 ± 0.49, and -0.60 ± 0.56, respectively. A three-way within-subjects repeat measures ANOVA on DVs revealed a significant main effect of stimulus type (F(1.29, 14.08) = 7.55, p < .05, η 2 =.41). Pairwise comparison for stimulus type with Holm corrections showed that the DVs for noise patches were significantly lower than the DVs for faces (t(429) = 3.05, p < .001). DVs for outlines were significantly lower than the DVs for faces (t(429) = 3.98, p < .0001). There was no significant DV difference between noise patches and outlines (t(429) =0.93, p = .35). These results showed that RM for faces was less strong compared to noise patches and outlines. We observed a significant two-way interaction between set size and stimulus size (F(6, 66) = 2.41, p < .05, η 2 = .18). No other significant main, two-way interaction or three-way interaction effect was observed (ps > .05).

Coefficient of variation (CV)

Figure 4.2b shows the coefficient of variation (CV) for each condition. The average CV (means ± SD) for outlines, noise patches, and faces were 0.15 ± 0.07, 0.15 ± 0.07, and 0.17 ± 0.08, respectively. A 3 -way within-subject repeat measure ANOVA on CV revealed that all three main effects were significant: stimulus type: F(2, 22) = 5.31, p < .05, η 2 = .31; stimulus size: F(2, 22) = 5.73, p < .05, η 2 = .34; set size: F(1.51, 16.66) = 4.04, p < .05, η 2 = .27. Pairwise comparison with Holm corrections for stimulus type showed that the CVs for noise patches, outlines, and faces were comparable (ps > .05). Pairwise comparisons with Holm corrections for set size showed that the CVs of set size 3 were significantly higher compared to set size 5 (t(428) = 2.78, p < .05), and set size 6 (t(428) = 4.49, p < .0001), and the CV of set size 4 was significantly higher than set size 6 (t(428) = 3.08, p < .05). We did not observe any significant twoway or three-way interaction effect (ps > .05). 

Data analysis

Number task

The analysis was identical to Experiment 4.1 except for the following changes: the three within-subject factors are face orientation, set size, and face size. Normality assumption was checked with Shapiro-Wilk tests for each combination of factor levels.

The DV was normally distributed for all factor levels except for the factor combinations, including set size 3, the combination of upright face, set size 4, small size, the combination of upside-down face, set size 4, small size, and the combination of upright face, set size 5, medium size (ps < .05). All the other 18 factor combinations were normally distributed. The CV was normally distributed in all factor levels except for the following factor combinations: upright face, set size 4, large size, the combination of upside-down face, set size 5, large size, the combination of upright face, set size 5, medium size, the combination upright face, set size 6, medium size, and upside-down face, set size 6, small size (ps < .05). Thus, we assume that the distributions of the CV for all the other 19 factor combinations were normally distributed (Shapiro-Wilk test showed ps > .05). The sphericity assumption of the data is met.

Orientation task.

We used signal detection theory to determine the sensitivity of orientation discrimination. We defined upright faces reported as upright as "hits", upright faces reported as upside-down as "misses", upside-down faces reported as upside-down as "correct rejections", and upside-down faces reported as upright as "false alarms". Sensitivity (d') was calculated using the z-transforms of the hit rate minus the ztransforms of the false alarm rate. We compared trials when redundancy masking occurred (reported a smaller number of faces than presented), with trials when the number of faces was correctly reported. After excluding trials that were overestimated (7.4%), a three-way within-subject repeat measure ANOVA on sensitivity with set size (3 -6), face size (small, medium, and large), and trial type (RM or correct) as withinsubject factors. Normality assumption was checked with Shapiro-Wilk tests for each combination of factor levels. All the factor combinations were normally distributed (ps > .05). The sphericity assumption of the data is satisfied.

Results

Number task

Figure 5a shows the deviation score (DV) as a function of the set size separated for each stimulus size. A 3-way within-subjects repeated measures ANOVA on DV revealed a significant main effect of face size (F(2, 22) = 12.40, p < .05, η 2 =.53). The DVs (± SD) for large, medium, and small faces are -0.54 ± 0.47, -0.59 ± 0.48 and -0.69 ± 0.49. We observed a significant interaction between set size and stimulus size (F(6, 66) = 2.91, p < .05, η 2 =.21). Pairwise comparison for stimulus size with Holm corrections showed that the DV for set size 3 was significantly lower than set size 4 when stimulus size was small (p < .05) but not when stimulus size was medium or large.

The results showed that RM for faces was strong when three faces were presented, particularly with small face sizes. We did not observe a significant main effect on face orientation (F(1, 11) = 0.22, p = .65, η 2 =.02), showing the DV for upright and upsidedown faces were comparable. The ANOVA did not reveal other significant two-way interactions or three-way interactions (ps > .05).

Coefficient of variation (CV)

Figure 4.3b shows the coefficient of variation (CV) as a function of set size, plotting separately for each stimulus size. A 3-way within-subject repeat measure ANOVA on CV revealed that there was a significant main effect of set size (F(3, 33) = 33.25, p < .0001, η 2 = .75). The CVs (± SD) were 0.19 ± 0.05, 0.16 ± 0.05, 0.14 ± 0.03 and 0.12 ± 0.04 for set size 3, 4, 5, and 6, respectively. We observed a significant main effect of face size (F(2, 22) = 4.63, p < .05, η 2 = .30). The CVs (± SD) were 0.16 ± 0.05, 0.15 ± 0.05 and 0.15 ± 0.05 for the small, medium and large face size, respectively. The CV results revealed that when three faces were presented, the detection of all faces was weakened, particularly when the face size was small. There was no significant main effect of face orientation (F(1, 11) = 0.01, p = .94, η 2 < .01). No other significant twoway or three-way interactions as observed. Orientation task Figure 4.4 shows the sensitivity (d') against the set size for large, medium, and small faces for both RM trials (59.8%) and correct trials (32.8%). A three-way withinsubjects repeated measures ANOVA on sensitivity revealed a significant interaction effect between set size and trial type (F(3, 21) = 3.56, p < .05, η 2 = .33). We did not observe any other main effects, two-way interactions, or three-way interactions.

Pairwise comparisons with Holm correction showed that the sensitivity for small faces in correct response trials (1.68 ± 1.03) was slightly higher compared to RM trials (1.29 ± 0.87; p = .0495). The sensitivity for large and medium faces in correct response trials and RM trials was comparable (ps > .05). 

Discussion

Faces are of great importance in social contexts and are usually detected quickly [START_REF] Reddy | Face identification in the near-absence of focal attention[END_REF][START_REF] Ro | Changing Faces: A Detection Advantage in the Flicker Paradigm[END_REF]. They are essential for identifying individuals, perceiving emotional states, and evaluating social situations. Despite the high importance of faces, in the current study, we report a substantial inability to detect faces.

We examined the ability to detect the presence of faces in small groups in the visual periphery. Usually, very few features are necessary to report the presence of a target face. Here, when reporting fewer faces, in particular, two instead of three presented faces, it seems that none of these features was perceived to a sufficient extent to make participants report the additional face(s). Previous studies showed that human adults have a remarkable ability to detect faces even when some of the facial features were absent [START_REF] Moscovitch | What Is Special about Face Recognition? Nineteen Experiments on a Person with Visual Object Agnosia and Dyslexia but Normal Face Recognition[END_REF], and when the perception of individual features of faces were transformed to Mooney face [START_REF] Kanwisher | The effect of face inversion on the human fusiform face area[END_REF]. In peripheral vision, results demonstrated that sparse depictions of a few facial features (eyes, nose, and mouth) were recognized as a face [START_REF] Brown | Face Detection in Peripheral Vision: Do Faces Pop Out?[END_REF]: Simple features on faces, without a face outline, were sufficient for observers to correctly report the presence of a face. In general, the criterion to report the presence of a face is liberal, as minimal information is required to report that a face is "present". However, it remains unclear how faces in groups of faces are detected, particularly in the visual periphery. In Experiment 4.1, identical faces and two types of control stimuli (noise patches and outlines) were used.

We found that, when performing an enumeration task, observers reported fewer faces than the actual number of faces presented, showing that redundancy masking (RM) occurred with faces. Experiment 4.2 replicated the main finding of Experiment 4.1.

Participants were required to report both the number and the orientation of faces. Our results showed that the detection of faces was inaccurate: RM with faces occurred as soon as there were three faces presented in the periphery, and observers frequently failed to detect at least one of the presented faces regardless of the face orientations.

Our results demonstrated a massive failure in detecting faces in the visual periphery.

As faces convey a wide range of socially relevant characteristics, it is surprising that there is a significant failure in detecting faces in small groups.

Many visual tasks showed a deterioration of performance with increasing eccentricity [START_REF] Gurnsey | Crowding is size and eccentricity dependent[END_REF][START_REF] Valsecchi | Perceived numerosity is reduced in peripheral vision[END_REF][START_REF] Wolford | Retinal location and string position as important variables in visual information processing[END_REF]. A prominent example of this decline in performance is crowding, the deleterious effect when presenting items in clutter [START_REF] Bouma | Interaction Effects in Parafoveal Letter Recognition[END_REF][START_REF] Herzog | Crowding, grouping, and object recognition: A matter of appearance[END_REF]Levi, 2008;[START_REF] Pelli | Crowding is unlike ordinary masking: Distinguishing feature integration from detection[END_REF]Pelli & Tillman, 2008;[START_REF] Strasburger | Seven myths on crowding and peripheral vision[END_REF]. Crowding has been suggested to be a fundamental limit of our periphery vision (Levi, 2008). Crowding is usually assumed to affect target identification but not detection [START_REF] Livne | Configuration influence on crowding[END_REF][START_REF] Pelli | Crowding is unlike ordinary masking: Distinguishing feature integration from detection[END_REF]. In RM, by contrast, items are lost, which points to detection errors.

RM also differs from crowding in several other characteristics. For example, evidence showed that the upper-lower visual field asymmetry that was found for crowding [START_REF] Fortenbaugh | Individual differences in visual field shape modulate the effects of attention on the lower visual field advantage in crowding[END_REF][START_REF] Greenwood | Variations in crowding, saccadic precision, and spatial localization reveal the shared topology of spatial vision[END_REF][START_REF] He | Attentional resolution and the locus of visual awareness[END_REF] did not occur with RM [START_REF] Yildirim | Atypical visual field asymmetries in redundancy masking[END_REF]. And the horizontal-vertical asymmetry occurs for crowding but not for RM [START_REF] Greenwood | Variations in crowding, saccadic precision, and spatial localization reveal the shared topology of spatial vision[END_REF][START_REF] Yildirim | Atypical visual field asymmetries in redundancy masking[END_REF]. The failure to detect faces in the present study seems to be due to RM [START_REF] Yildirim | Redundancy masking: The loss of repeated items in crowded peripheral vision[END_REF][START_REF] Yildirim | Atypical visual field asymmetries in redundancy masking[END_REF].

While RM was strong with faces, it was even stronger with the control stimuli (luminance-matched noise patches and shape-matched outlines), and -in other studies with different observers -simple stimuli such as lines [START_REF] Yildirim | Redundancy masking: The loss of repeated items in crowded peripheral vision[END_REF]. Previous studies have found that RM is more likely to occur with simple stimuli such as lines or the letter "I" and "T" which have relatively low stimulus complexly (Yildirim et al., in preparation). This suggests that the complexity of the stimuli may be an important factor in determining the likelihood of RM and may contribute to the relatively weaker RM in faces compared to noise patches and outlines.

The observed detection errors with faces are different from the established understanding of the visual system's proficiency in processing small numerical information. Particularly, people are fast and accurate in enumerating small sets of visual items (1-4), known as subitizing [START_REF] Jensen | The subitizing and counting of visually presented fields of dots[END_REF][START_REF] Trick | Why are small and large numbers enumerated differently? A limited-capacity preattentive stage in vision[END_REF].

When the number of items exceeds four, the performance of enumeration drops dramatically [START_REF] Jensen | The subitizing and counting of visually presented fields of dots[END_REF]. Importantly, studies tested the ability to subitize usually presented items in central vision, where the subitizing range is more accurate than in peripheral vision. Recently, the subitizing capacity in the periphery was estimated to be significantly lower: Presenting 1-6 tiny lines (1˚ height and 0.25˚ width) concentrically in the visual periphery showed that the capacity of fast and errorless enumerating the number of items can be limited to just two items [START_REF] Chakravarthi | Visual field asymmetries in numerosity processing[END_REF], see also, Chakravarthi & Herbert, 2019;[START_REF] Chakravarthi | Visual field asymmetries in numerosity processing[END_REF]. One hypothesis of subitizing is that the spatial arrangement of items forms familiar shapes (e.g., two dots as a line and three dots as a triangle), and the process of these shapes involves pattern recognition [START_REF] Mandler | Subitizing: An analysis of its component processes[END_REF]. This is further supported by evidence that participants enumerate the dots that formed a regular shape faster than the ones that formed an irregular shape [START_REF] Wender | Subitizing and its subprocesses[END_REF]. RM seems to be a failure of object individuation with a small number of items where additional shape information is not helpful.

In Experiment 4.2, participants were able to correctly discriminate the face orientations, both when RM occurred and when it did not occur. This suggests that the extraction of facial features was sufficient to at least discriminate between the orientations of faces. It could be argued that the high performance in the face orientation task would also be obtained if observers only attended to the innermost face, and attention to the innermost face with an increase of RM (as not the entire array was attended). In this case, better performance in orientation discrimination would have been expected for RM than non-RM trials. However, the observed results show that this was not the case.

Overall, we found RM with complex, multi-features objects: human faces. The results of the current study indicate a substantial failure in detecting faces in groups, with observers frequently failing to detect at least one of the presented faces. We provided new insights into the limitation of humans' ability to detect faces in small groups. Our results underscore the need for future research to investigate the mechanisms of RM and its potential implications in situations where the capability to accurately perceive and process faces is critical.

In the current thesis, we investigated numerosity perception in the visual periphery by conducting multiple psychophysical experiments. The research objectives were to determine the role of crowding and redundancy masking in numerosity perception by manipulating the spatial arrangement of items on displays. Crowding is the deterioration effect on target identification when the target is flanked by other objects [START_REF] Bouma | Interaction Effects in Parafoveal Letter Recognition[END_REF][START_REF] Manassi | Grouping, pooling, and when bigger is better in visual crowding[END_REF][START_REF] Pelli | Crowding is unlike ordinary masking: Distinguishing feature integration from detection[END_REF][START_REF] Strasburger | Seven myths on crowding and peripheral vision[END_REF]Toet & Levi, 1992). Recently, a crowding-like phenomenon r, termed redundancy masking --the perceived number of multiple identical items is largely reduced --has been reported [START_REF] Sayim | Letters lost: capturing appearance in crowded peripheral vision reveals a new kind of masking[END_REF][START_REF] Yildirim | Redundancy masking: The loss of repeated items in crowded peripheral vision[END_REF][START_REF] Yildirim | Hidden by bias: how standard psychophysical procedures conceal crucial aspects of peripheral visual appearance[END_REF][START_REF] Yildirim | Atypical visual field asymmetries in redundancy masking[END_REF]. For example, when three identical letters T were aligned and presented in the visual periphery, participants often reported that only two Ts were perceived [START_REF] Sayim | Letters lost: capturing appearance in crowded peripheral vision reveals a new kind of masking[END_REF]. The set of experiments was designed to provide a deeper understanding of the processes involved in peripheral numerosity perception and the factors that influence it. The findings of these studies contribute to the current understanding of the mechanisms of numerosity perception.

In Experiment 2.1, we employed the radial-tangential anisotropy observed in crowding and redundancy masking. Specifically, in crowding, radially placed flankers interfere with the target perception more than tangentially arranged flankers [START_REF] Kooi | Rummens & Sayim[END_REF]Toet & Levi, 1992). In redundancy masking, the reduction of reporting the number of items occurred when items were arranged radially but not tangentially. We created displays consisting of discs that were arranged either predominantly radially or tangentially. Through this manipulation, we aimed to induce interference among discs in the radial displays and to induce no (or at least reduced) interference in the tangential displays. Participants were presented with displays of discs (between 21 -58) and asked to report the estimates of the number of discs presented (Experiment 2.1). The results indicated that numerosity estimates were lower for the radial displays compared to the tangential displays. These results showed that numerosity perception is subject to a radial-tangential anisotropy. In the next experiment (Experiment 2.2), we aim to investigate whether the numerosity estimation differences between the radial and tangential conditions were due to perceived grouping differences. Participants who did not perform Experiment 2.1 were presented with the same set of displays as in CHAPTER 5: GENERAL DISCUSSION arranged in the radial direction and weak when items were arranged in the tangential direction [START_REF] Yildirim | Redundancy masking: The loss of repeated items in crowded peripheral vision[END_REF]. Therefore, the observed relative underestimation in radial displays compared to tangential displays in the strong manipulation in Experiment 2 may well be due to redundancy masking.

Next, the contrast polarity of items on displays was varied (Experiments 3.3 and 3.4). Mixed contrast polarity has been shown to reduce crowding [START_REF] Chung | [END_REF][START_REF] Sayim | Contrast polarity, chromaticity, and stereoscopic depth modulate contextual interactions in vernier acuity[END_REF]. For example, in crowding, a higher similarity between the target and flankers usually results in a stronger crowding effect [START_REF] Chakravarthi | Temporal properties of the polarity advantage effect in crowding[END_REF][START_REF] Chung | Psychophysics of reading. XVIII. The effect of print size on reading speed in normal peripheral vision[END_REF][START_REF] Kooi | The effect of similarity and duration on spatial interaction in peripheral vision[END_REF][START_REF] Rosen | Crowding by a repeating pattern[END_REF]Rummens & Sayim, 2019b, 2021;[START_REF] Sayim | Contrast polarity, chromaticity, and stereoscopic depth modulate contextual interactions in vernier acuity[END_REF]. Therefore, the mixed contrast polarity of the items was thought to disrupt the visual structures that could induce by grouping among the items on uniform contrast polarity displays. Thus, the perceived structural difference between the radial and the tangential displays with mixed contrast polarity was small compared to uniform contrast polarity displays. However, estimation results showed that radial displays with mixed contrast polarity were still perceived as fewer compared to tangential displays with mixed contrast polarity. The results with mixed contrast polarity displays mirrored those of the uniform contrast polarity displays, indicating that the mixed contrast polarity had no effect on the radial-tangential differences.

Experiments described in Chapters 2 and 3 demonstrated that numerosity estimation is subject to a radial-tangential anisotropy. Therefore, the topology of our spatial vision seems to be relevant in numerosity perception. The relative estimation difference between radial and tangential displays was consistent and stable (e.g., not impacted by how strong the radial-tangential arrangement was nor by uniform/mixed contrast polarity). Nevertheless, mixed contrast polarity may not always reduce crowding, especially when asking observers to make a full report of the peripherally presented stimuli [START_REF] Rummens | Broad attention uncovers benefits of stimulus uniformity in visual crowding[END_REF]. In their study, [START_REF] Rummens | Broad attention uncovers benefits of stimulus uniformity in visual crowding[END_REF] presented three letters to participants' visual periphery and asked them to either report the central letter or all presented letters. The letters' contrast polarity was either uniform or mixed. They observed that performance in the mixed contrast polarity condition was better in the single report task than in the full report task. They concluded that the uniformity of stimuli enhances the perception of crowded objects. Our numerosity estimation tasks (Experiment 2.1, Experiments 3.1-3.4) required participants to attend to and report all discs. Determined by the characteristics of the task instructions, our tasks are similar to a full report task, as participants need to attend to the entire display to report the number of items.

Displays of composite discs were generally used in our numerosity estimation experiments (Experiments 2.1,. These displays were all meaningless patches.

Two additional experiments were conducted to investigate redundancy masking with a typical redundancy masking paradigm (Chapter 4). Here, we presented grey-scaled human face stimuli instead of discs in the visual periphery. Humans have the capability to rapidly detect faces [START_REF] Reddy | Face identification in the near-absence of focal attention[END_REF][START_REF] Ro | Changing Faces: A Detection Advantage in the Flicker Paradigm[END_REF], even when a single face is presented in the visual periphery, although the detection is deleterious with increasing eccentricity [START_REF] Farzin | Holistic crowding of Mooney faces[END_REF]. Correctly identifying faces is crucial to us. However, in a typical redundancy masking paradigm, we observed a considerable failure to detect faces appearing in groups. We reported that redundancy masking occurred with multifeatured faces: people often miss one or more faces with identical faces that were aligned and presented in the periphery (Experiment 4.1). Despite redundancy masking of faces, observers were still able to accurately discern the orientation information from them (Experiment 4.2), demonstrating that despite the omitted face(s) in redundancy masking, feature extraction (at least to the degree that allowed discriminating between upright and upside-down faces) was intact.

In the current thesis, we examined the effects of crowding and redundancy masking on numerosity perception. One of the major differences between crowding and redundancy masking is that crowding is assumed to deteriorate target identification but not target detection, whereas redundancy masking affects target detection as one or more items were missed [START_REF] Levi | Suppressive and facilitatory spatial interactions in peripheral vision: Peripheral crowding is neither size invariant nor simple contrast masking[END_REF][START_REF] Pelli | Crowding is unlike ordinary masking: Distinguishing feature integration from detection[END_REF][START_REF] Taylor | Redundancy masking and the identity crowding debate[END_REF] but see [START_REF] Pelli | Cependant, la sous-estimation observée de la perception de la numérosité implique que certaines erreurs de détection ont pu se produire[END_REF]. Our results indicated that crowding and redundancy masking could significantly modulate numerosity perception. The results also provided insights into the underlying mechanisms of numerosity perception. Importantly, we showed that radial-tangential anisotropy has a significant impact on numerosity perception. These findings provided evidence for the role of visual field asymmetries in shaping numerosity perception and suggested that the topology of spatial vision plays a crucial role in numerosity perception. In order to further comprehend how crowding and redundancy masking modulate numerosity perception, it is crucial not to solely focus on the physical attributes of the stimulus (e.g., the displays used in numerosity studies) but also to incorporate characteristics of the visual system, e.g., visual field asymmetries, within the context of spatial vision. Several limitations exist in our studies. One such limitation is the use of a similar algorithm for display generation in Experiment 2.1 and Experiments 3.1-3.4. Although the algorithm ensures the radial and tangential displays differ in terms of the radialtangential arrangement, it results in displays that were only available in limited numerosity ranges. In order to preserve the minimum differences in physical properties between the radial and tangential displays, the selecting displays required limiting the numerosities available, leading to a trade-off where both too-small and too-large numerosities were sacrificed and could not be tested. A potential solution to address the limitations of our study is to split the existing displays. Particularly, the condition where redundancy masking is expected to have a high probability of occurring (Experiment 3.2) could be split into several equal parts while preserving the locations of the discs.

In this way, displays are retained with the original radial-tangential manipulation while exploring the effects of redundancy masking on numerosity estimation over a smaller range of numerosities. Another limitation of our experiments is the use of only one type of face in Experiments 4.1 and 4.2, where face redundancy masking was investigated. This limited our ability to determine the extraction of other local features, such as eyes and mouth, as well as global information, such as emotion and identity, during redundancy masking. Thus, our results can only provide insight into the extent to which the orientation discrimination of faces is preserved in redundancy masking. Future studies can examine the retention or suppression of other features and information in redundancy masking. S2 [START_REF] Gómez-Laplaza | Can angelfish (Pterophyllum scalare) count? Discrimination between different shoal sizes follows Weber's law[END_REF][START_REF] Mccomb | Roaring and numerical assessment in contests between groups of female lions, Panthera leo[END_REF][START_REF] Nieder | Evolution of cognitive and neural solutions enabling numerosity judgements: lessons from primates and corvids[END_REF][START_REF] Wilson | Does participation in intergroup conflict depend on numerical assessment, range location, or rank for wild chimpanzees?[END_REF].

Supplementary Table

Il est souvent suggéré que la numérosité, comme d'autres caractéristiques primaires des objets telles que l'orientation, la couleur, la taille, etc., est une autre caractéristique primaire des objets [START_REF] Ross | Vision senses number directly[END_REF]. Il a été suggéré que notre capacité à traiter la numérosité ou à estimer des quantités était innée dans notre cerveau visuel et qu'elle était pilotée par un système de numérosité approximative (également connu sous le nom de "sens du nombre", [START_REF] Anobile | Separate mechanisms for perception of numerosity and density[END_REF][START_REF] Burr | Psychophysical evidence for the number sense[END_REF][START_REF] Chen | Spontaneous summation or numerosity-selective coding?[END_REF][START_REF] Dehaene | Varieties of numerical abilities[END_REF][START_REF] Dehaene | Development of Elementary Numerical Abilities: A Neuronal Model[END_REF][START_REF] Dehaene | Abstract representations of numbers in the animal and human brain[END_REF][START_REF] Feigenson | Core systems of number[END_REF][START_REF] Halberda | Developmental change in the acuity of the" Number Sense": The Approximate Number System in 3-, 4-, 5-, and 6-year-olds and adults[END_REF][START_REF] Lipton | Origins of number sense: Large-number discrimination in human infants[END_REF][START_REF] Stoianov | Emergence of a 'visual number sense' in hierarchical generative models[END_REF][START_REF] Xu | Number sense in human infants[END_REF]. La notion de sens du nombre suggère que la perception de la numérosité est traitée spontanément et ne dépend pas d'autres propriétés physiques (par exemple, la taille, la coque convexe, la densité, etc., [START_REF] Castaldi | The pupil responds spontaneously to perceived numerosity[END_REF][START_REF] Cicchini | Spontaneous perception of numerosity in humans[END_REF][START_REF] Cicchini | Spontaneous representation of numerosity in typical and dyscalculic development[END_REF] 
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sensibilité à l'adaptation [START_REF] Mollon | After-effects and the brain[END_REF][START_REF] Thompson | Visual aftereffects[END_REF] [START_REF] Leibovich | The symbol-grounding problem in numerical cognition: A review of theory, evidence, and outstanding questions[END_REF]. Par conséquent, il semble impossible de faire abstraction de la seule numérosité, indépendamment des autres propriétés physiques co-variées d'un affichage (Gebuis & Reynvoet, 2012a[START_REF] Gebuis | The interplay between nonsymbolic number and its continuous visual properties[END_REF], 2012c). Plusieurs études ont montré que la perception de la numérosité est influencée par d'autres propriétés physiques des écrans [START_REF] Allik | Occupancy model of perceived numerosity[END_REF][START_REF] Sophian | How do people apprehend large numerosities?[END_REF]. Par exemple, [START_REF] Clearfield | Amount Versus Number: Infants' Use of Area and Contour Length to Discriminate Small Sets[END_REF] ont montré que les enfants réagissaient à la longueur du contour des écrans plutôt qu'à la numérosité. [START_REF] Ginsburg | Perceived numerosity as a function of item size[END_REF] ont démontré que la numérosité perçue est en corrélation négative avec la taille de l'objet (voir également [START_REF] Tokita | How might the discrepancy in the effects of perceptual variables on numerosity judgment be reconciled? Attention[END_REF], cf. Allik et al., 1991 ;[START_REF] Hurewitz | Sometimes area counts more than number[END_REF]. Il a été observé que la zone d'occupation (zone globale occupée par les éléments sur les présentoirs), qui est étroitement liée à la taille des éléments, et la coque convexe ont un effet sur la perception de la numérosité [START_REF] Binet | LA PERCEPTION DES LONGUEURS ET DES NOMBRES CHEZ QUELQUES PETITS ENFANTS[END_REF][START_REF] Gilmore | Congruency effects in dot comparison tasks: convex hull is more important than dot area[END_REF][START_REF] Katzin | Convex hull as a heuristic[END_REF][START_REF] Shilat | Shaping the way from the unknown to the known: The role of convex hull shape in numerical comparisons[END_REF][START_REF] Taves | Two mechanisms for the perception of visual numerousness[END_REF][START_REF] Vos | Interactions between area and numerosity[END_REF] [START_REF] Allik | Occupancy model of perceived numerosity[END_REF]. [START_REF] Allik | Occupancy model of perceived numerosity[END_REF] Il est également suggéré que la perception de la numérosité est influencée par le regroupement [START_REF] Bertamini | The effect of clustering on perceived quantity in humans (Homo sapiens) and in chicks (Gallus gallus)[END_REF][START_REF] Bertamini | Spatial clustering and its effect on perceived clustering, numerosity, and dispersion[END_REF][START_REF] Chakravarthi | Clustering leads to underestimation of numerosity, but crowding is not the cause[END_REF][START_REF] Frith | The Solitaire Illusion An Illusion of numerosity[END_REF][START_REF] Sophian | Measuring Spatial Factors in Comparative Judgments About Large Numerosities[END_REF]. [START_REF] Frith | The Solitaire Illusion An Illusion of numerosity[END_REF] ont démontré pour la première fois que la perception de la numérosité est influencée par la façon dont les éléments sont disposés dans l'espace et qu'un grand groupe semble être plus nombreux que plusieurs petits groupes, ce que l'on appelle l'illusion du solitaire.

Lorsque les éléments d'un affichage sont disposés en grappes, les affichages semblent moins nombreux. Un cas extrême est l'illusion de la numérosité aléatoire-régulière [START_REF] Cousins | Subjective correlation and the regular-random numerosity illusion[END_REF][START_REF] Ginsburg | The Regular-Random Numerosity Illusion: Rectangular Patterns[END_REF] : les éléments disposés selon un schéma régulier (par exemple, aux intersections de la grille) sont jugés plus nombreux que les éléments disposés selon un schéma aléatoire, en grappes. L'une des explications est que, lorsque les éléments sont disposés dans une "bonne" Gestalt (par exemple, l'ensemble de la grappe centrale de l'illusion du solitaire), la numérosité perçue est affectée par cette unité d'ordre supérieur et semble plus importante que celle des éléments disposés dans une "mauvaise" Gestalt (par exemple, les quatre grappes de coins de l'illusion du solitaire, [START_REF] Frith | The Solitaire Illusion An Illusion of numerosity[END_REF]. Néanmoins, une première étude sur l'impact du regroupement sur la perception de la numérosité a donné des résultats contradictoires [START_REF] Taves | Two mechanisms for the perception of visual numerousness[END_REF]. [START_REF] Taves | Two mechanisms for the perception of visual numerousness[END_REF] certain nombre de résultats antérieurs, y compris l'effet de distance numérique (une diminution de la différence entre deux nombres est associée à une augmentation du temps de réaction, [START_REF] Piazza | Tuning Curves for Approximate Numerosity in the Human Intraparietal Sulcus[END_REF][START_REF] Sasanguie | The reliability of and the relation between non-symbolic numerical distance effects in comparison, same-different judgments and priming[END_REF], les effets de congruence variables (effets de congruence mis à l'échelle avec le nombre de repères visuels manipulés, [START_REF] Gebuis | The interplay between nonsymbolic number and its continuous visual properties[END_REF], et l'effet de congruence opposé (par exemple, les essais avec un plus grand nombre de petits points ont donné de meilleures performances que ceux avec un plus petit nombre de gros points, [START_REF] Ginsburg | Perceived numerosity as a function of item size[END_REF][START_REF] Sophian | Measuring Spatial Factors in Comparative Judgments About Large Numerosities[END_REF]. Fait important, Gebuis et Reynvoet (2012c) ont contrôlé les numerosity, the results and conclusions were equally applied to both numerosity and density since they are not dissociable (e.g., [START_REF] Valsecchi | Perceived numerosity is reduced in peripheral vision[END_REF]. Nevertheless, [START_REF] Ross | Vision senses number directly[END_REF] provided further evidence that numerosity perception is not dependent on the densities of displays. They presented three types of displays to participants: a constant numerosity, a constant area, and a constant density, where one of the three parameters was kept constant in the experiment. Participants made comparisons on numerosity and density in separate blocks. Their results showed that density did not play a role in numerosity judgment as the performance of the constant density condition was not worse compared to the other two conditions. In another experiment, [START_REF] Ross | Vision senses number directly[END_REF] showed that the perceived numerosity but not the density was modulated by luminance. Hence, it is unclear whether density and numerosity are independent of each other. This poses certain difficulties for future research on numerosity perception, as we must consider whether density plays a role or to what extent density plays a role in perceived numerosity.

La numérologie et la densité sont physiquement indivisibles car la densité est calculée en divisant la numérologie par la surface totale [START_REF] Tibber | Number and density discrimination rely on a common metric: Similar psychophysical effects of size, contrast, and divided attention[END_REF]. [START_REF] Burr | A visual sense of number[END_REF] Les études sur la perception de la numérosité impliquent généralement des affichages qui couvrent une partie importante du champ visuel, y compris la fovéa, la parafovéa et souvent la périphérie. Cependant, il existe des différences substantielles entre les différentes zones du champ visuel [START_REF] Rosenholtz | Capabilities and Limitations of Peripheral Vision[END_REF][START_REF] Simpson | Mini-review: Far peripheral vision[END_REF]. Par exemple, les performances visuelles diminuent avec l'augmentation de l'excentricité, c'est-à-dire que les performances sont généralement moins bonnes dans le champ visuel périphérique que dans le champ visuel central [START_REF] Gurnsey | Crowding is size and eccentricity dependent[END_REF][START_REF] Levi | Spatial scale shifts in peripheral vernier acuity[END_REF][START_REF] Livne | Configuration influence on crowding[END_REF][START_REF] Meinecke | Detection performance in Pop-Out tasks: nonmonotonic changes with display size and eccentricity[END_REF][START_REF] Wolford | Retinal location and string position as important variables in visual information processing[END_REF][START_REF] Zahabi | A crowdful of letters: Disentangling the role of similarity, eccentricity and spatial frequencies in letter crowding[END_REF]. Des recherches antérieures ont également porté sur la perception de la numérosité en périphérie. Par exemple, [START_REF] Mengal | Judging relative numerosity: foveal and peripheral vision[END_REF] ont présenté de petites lumières LED vertes et rouges à des participants. Les participants devaient déterminer quelle couleur (verte ou rouge) était la plus importante. Les résultats ont montré que les performances diminuaient de la fovéa à la périphérie et que le temps de réaction augmentait avec l'excentricité. En raison du manque de recherches sur la façon dont l'excentricité module la perception de la numérosité (du moins avec des nombres relativement importants), [START_REF] Valsecchi | Perceived numerosity is reduced in peripheral vision[END_REF] ont mené une expérience dans laquelle les participants ont effectué une tâche de comparaison de la numérosité.

le long du méridien horizontal par rapport au méridien vertical à une excentricité fixe, [START_REF] Barbot | Asymmetries in visual acuity around the visual field[END_REF][START_REF] Carrasco | The eccentricity effect: Target eccentricity affects performance on conjunction searches[END_REF][START_REF] Carrasco | Characterizing visual performance fields: effects of transient covert attention, spatial frequency, eccentricity, task and set size[END_REF][START_REF] Corbett | Visual Performance Fields: Frames of Reference[END_REF][START_REF] Mackeben | Sustained focal attention and peripheral letter recognition[END_REF][START_REF] Rovamo | An estimation and application of the human cortical magnification factor[END_REF], l'asymétrie verticale (meilleure performance dans le champ visuel inférieur par rapport au champ visuel supérieur, [START_REF] Barbot | Asymmetries in visual acuity around the visual field[END_REF][START_REF] Carrasco | Characterizing visual performance fields: effects of transient covert attention, spatial frequency, eccentricity, task and set size[END_REF][START_REF] Corbett | Visual Performance Fields: Frames of Reference[END_REF][START_REF] Rubin | Enhanced Perception of Illusory Contours in the Lower Versus Upper Visual Hemifields[END_REF] dans une série de tâches visuelles telles que l'acuité visuelle, la discrimination de l'orientation. Dans les foules, les flankers placés radialement ont un effet plus prononcé sur la perception de la cible que les flankers placés tangentiellement, à distance égale entre la cible et le flanker [START_REF] Kwon | Radial-tangential anisotropy of crowding in the early visual areas[END_REF]Toet & Levi, 1992), ce que l'on appelle l'anisotropie radiale-tangentielle. Bien qu'il existe plusieurs distinctions entre le masquage de redondance et le crowding, tous deux présentent une anisotropie radialetangentielle évidente. Dans le cas du masquage de la redondance, la réduction du nombre d'éléments rapportés se produit lorsqu'ils sont disposés radialement mais pas tangentiellement. [START_REF] Yildirim | Redundancy masking: The loss of repeated items in crowded peripheral vision[END_REF][START_REF] Yildirim | Atypical visual field asymmetries in redundancy masking[END_REF].

Il est surprenant que peu d'études aient étudié l'impact des asymétries du champ visuel sur la perception de la numérosité. Ce n'est que dans une étude récente, 
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 21 Figure 2.1. Illustration of crowding and redundancy masking. (a) When fixating the cross, identifying the target "T" that is surrounded by 2 flankers "F", is usually difficult when flankers are positioned inside the interference ("crowding") region (indicated by the dashed ellipse). (b) The interference region is eccentricity-dependent: increasing target eccentricity increases the size of the interference region. (c) The interference region is anisotropic: Flankers cease to interfere at smaller distances in tangential (c) compared to radial (b) directions. (d) Redundancy masking is the reduction of the number of perceived items in repeating patterns. When presenting 3 close-by aligned vertical lines in the periphery, most observers reported only 2 lines. (e) Redundancy
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 22 Figure 2.2. Illustration of displays in the (a) tangential and (b) radial conditions. (c) and (d): Illustration of the geometric principles of the tangential and radial conditions. (c) In the tangential condition, each disc is surrounded by a "protection zone" (indicated by the ellipses), allowing predominantly tangential alignments of discs. No discs were positioned into any other disc's interference region zones. (d) Rotated protection zones in the radial condition, favoring stronger interference. Here, a certain number of discs was positioned inside other discs' interference regions. (e): Detail of the radial display, illustrating discs (shown in red for illustration) in the interference region of other discs.

Figure 2 .

 2 Figure 2.3a shows the average deviation scores (DVs) for the tangential and the radial condition separately for each numerosity range. A repeated measures ANOVA with alignment condition (tangential and radial) and numerosity range (N21, N31, N41, N49, and N54) as factors showed a main effect of alignment condition (F(1, 20) = 13.45, p < .005, ηp 2 = .40) on DVs. Participants reported fewer discs in the radial (DV = 1.64 ± 8.65) compared to the tangential condition (DV = 2.66 ± 8.78). Pairwise comparisons with Hochberg FDR correction showed significant differences between the tangential and the radial conditions in all numerosity ranges (N31: t(20) = 2.66, p < .05, Cohen's d = 0.12; N41: t(20) = 2.32, p < .05, Cohen's d = 0.10; N49: t(20) = 3.43, p < .005, Cohen's d = 0.15; N54: t(20) = 3.55, p = .005, Cohen's d = 0.16), except for the smallest one (N21: (t(20) = 0.85, p = .40, Cohen's d = 0.04). We also found a main effect of numerosity range with lower DVs for small numerosities. (F(4, 80) = 3.96, p < .05, ηp 2

Figure 2 .

 2 Figure 2.4 illustrates the task and response format in the grouping task for tangential and radial displays, respectively. A repeated measures ANOVA with alignment condition and numerosity range as factors showed a main effect of alignment condition (F(1, 9) = 6.91, p < .005, ηp 2 = .43) on the perceived number of groups. Participants reported more groups in the radial (13.0 ± 4.25) compared to the tangential condition (11.4 ± 3.78). Pairwise comparisons with Hochberg FDR correction showed significant differences between the tangential and the radial conditions in N21 (t(9) = 4.11, p < .01, Cohen's d = 1.10), but not in the other numerosity ranges (N31: t(9) = 2.08, p = .09, Cohen's d = 0.70; N41: t(9) = 2.08, p =.09, Cohen's d = 0.67; N49: t(9) = 1.58, p = .15, Cohen's d = 0.40, N54: t(9) = 2.07, p = .09, Cohen's d = 0.58).
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 2324 Figure 2.3. Results of Experiment 2.1. (a): Deviation score (DV) as a function of numerosity. DVs of 0 represent no deviation from correct responses, negative DVs represent underestimations, and positive DVs represent overestimations. Error bars indicate (+/-1) standard errors of the mean. Significant pairwise comparisons are indicated with asterisks. Each data point shows the average scores for one observer. (b): Relative estimation error as a function of numerosity. Error bars indicate (+/-1) standard errors of the mean. Each data point represents the average percent changes of one observer. (c): Partial correlation between DVs and radial alignment scores (RAs). when controlling for the effect of numerosity. (d): Partial correlation between DVs and crowding strength when controlling for the effect of numerosity. (*p < .05. **p < .005. ***p < .001. ****p < .0001.)

Figure 3 . 1 .

 31 Figure 3.1. Illustration of the radial-tangential anisotropy of crowding (a) and redundancy masking (b), the effect of same vs. opposite contrast polarity in crowding (c), and interference zones of crowding (d). (a): When fixating the fixation cross, the identification of the target "T" (left) in the visual periphery is usually strongly impaired by flankers that are radially positioned in the interference zone (indicated by the shaded ellipse). Flankers cease to interfere with target perception at smaller target-flanker spacing when placed tangentially (outside of the interference zone; right). (b): When a line triplet is arranged radially (left), most observers report a line pair. When the line triplet is arranged tangentially (right), participants usually do not report lower numbers of lines (Yildirim et al., 2020). (c): The identification of the target "T" (left) is strongly impaired by flankers of the same contrast polarity compared to flankers of opposite contrast polarity (right). (d): The size of the interference zone increases with the eccentricity, often estimated to be around 0.5 x eccentricity in radial directions, and significantly less (e.g., around 0.2 × eccentricity; Toet & Levi, 1992) in tangential directions.
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 32 Figure 3.2. a) Illustration of display construction. In radial displays, flanking discs were added into the interference zone of the base discs. In tangential displays, flanking discs were added in the rotated interference zone of the base discs. b) Possible disc configurations.
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 33 Figure 3.3. Illustration of displays in the radial and tangential conditions (the first and the third row) and their geometric principles (the second and the last row) in Experiment 3.1. Note that all displays in the figure share the same base discs for illustration purposes (in the experiments, no display shared the same base discs as each display was generated independently).

Experiment 3 .Figure 3 .

 33 Figure 3.4b shows the DV for the radial and tangential alignment conditions in Experiment 3.1b (see Supplementary Figure S3.1 for deviation scores as a function of numerosity). Comparing the full model (including alignment condition as a fixed factor)and the reduced model (excluding alignment condition as a fixed factor) revealed significant differences between the radial and the tangential displays(DV; χ2(1) = 12.20, p < .001). Estimates in the radial condition were lower compared to the tangential condition: β = -0.08 ± 0.02, p < .0001.
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 3435 Figure 3.4. Results for Experiment 3.1a (a) and Experiment 3.1b (b). Deviation score (DV) for the radial and tangential conditions. DVs of 0 represent correct estimates, negative DVs underestimations, and positive DVs overestimation. Error bars indicate (+/-1) standard errors of the mean. Significant post-hoc pairwise comparisons on the full model are indicated with asterisks. *p < .05, **p < .01, ***p < .001

Figure 3 . 6 .

 36 Figure 3.6. Results for Experiment 3.2. Deviation score (DV) as a function of numerosity. DVs of 0 represent correct responses, negative DVs underestimations, and positive DVs overestimation. Error bars indicate (+/-1) standard errors of the mean. Significant post-hoc pairwise comparisons on the full model are indicated with asterisks. *p < .05, **p < .01, ***p < .001
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 37 Figure 3.7. Illustration of displays in the radial and tangential conditions (the first and the third row, respectively) and their geometric principles (the second and the last row) in Experiment 3.3. Note that all displays in the figure share the same base discs for illustration purposes (in the experiments, no display shared the same base discs as each display was generated independently).
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 38 Figure 3.8. Results for Experiment 3.3a (a) and Experiment 3.3b (b). Deviation scores (DV) for the radial and tangential conditions. DVs of 0 represent correct estimates, negative DVs underestimations, and positive DVs overestimations. Error bars indicate (+/-1) standard errors of the mean. Significant post-hoc pairwise comparisons on the full model are indicated with asterisks. *p < .05, **p < .01, ***p < .001
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 39 Figure 3.9. Illustration of displays in the radial and tangential conditions (the first and the third row) and their geometric principles (the second and the last row) in Experiment 3.4. Note that all displays in the figure share the same base discs for illustration purposes (in the experiments, no display shared the same base discs as each display was generated independently).

Figure 3 .

 3 Figure 3.10. Results for Experiment 3.4. Deviation scores (DV) for mixed and uniform displays in the radial and the tangential conditions. DVs of 0 represent correct estimates, negative DVs underestimations, and positive DVs overestimations. Error bars indicate (+/-1) standard errors of the mean. Significant post-hoc pairwise comparisons on the full model are indicated with asterisks. *p < .05, **p < .01, ***p < .001

Figure 4 .

 4 Figure 4.1. (a) Illustration of the stimuli. Each stimulus type had 3 sizes (small: 0.7° width × 1.0° height; medium: 0.9° width × 1.3° height and large: 1.1° width × 1.6° height). (b) Illustration of matching the spacing. Black placeholders indicate the stimuli with 'original' spacings, and gray placeholders indicate the matching stimuli. (c) Illustration of RM with faces, outlines, and noise patches (Experiment 4.1) and with upside-down faces (Experiment 4.2). (d) Schematic depiction of the experiment procedure for Experiment 4.1. (e) Schematic depiction of the experiment procedure for Experiment 4.2 (stimuli and background are not scaled to the actual sizes in the experiments).
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 42 Figure 4.2. Results of Experiment 4.1. Deviation scores (a) and Coefficients of variation (b) for large, medium, and small stimuli, separated for each set size (3-6). Dark data points represent the group average, and light data points represent individual data. Error bars represent standard errors of the mean.
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 43 Figure 4.3. Results of Experiment 4.2 number task. Deviation score (a) and coefficient of variation (b) as a function of set size. Dark data points represent the group average, and light data points represent individual data. Error bars represent the standard error of the means.
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 44 Figure 4.4. Results of Experiment 4.2 orientation task. Sensitivity as a function of set size. Dark data points represent the group average, and light data points represent individual data. Error bars represent the standard error of the mean.

  ont proposé que la zone occupée collectivement par les éléments sur les présentoirs, plutôt que le nombre d'éléments en soi, détermine la numérosité perçue. Ce modèle explique bien la sousestimation observée dans de nombreuses études sur la numérosité. En particulier, lorsque les éléments sont placés à proximité les uns des autres, les zones occupées se chevauchent et sont donc perçues comme moins nombreuses. Lorsque d'autres propriétés physiques des présentoirs (par exemple, la surface totale, la taille, la coque convexe) étaient manipulées pour être congruentes ou incongrues avec le nombre, le jugement de la numérosité était affecté[START_REF] Gebuis | The interplay between nonsymbolic number and its continuous visual properties[END_REF], 2012c ;[START_REF] Hurewitz | Sometimes area counts more than number[END_REF]. Par exemple,[START_REF] Hurewitz | Sometimes area counts more than number[END_REF] ont présenté des affichages où la numérosité et la taille des points étaient manipulées pour être congruentes ou incongrues. Dans la condition congruente, les affichages contiennent plus de points composés de gros points ou d'une grande surface totale, tandis que dans la condition incongrue, les affichages contiennent plus de points composés de petits points ou d'une petite surface totale. Ils ont observé que les participants commettaient plus d'erreurs et étaient plus lents dans une tâche de comparaison de la numérosité dans la condition incongrue que dans la condition congruente.

  a montré qu'un groupe de 20 objets disposés régulièrement était perçu comme moins nombreux qu'un groupe de 20 objets placés de manière irrégulière. Il a suggéré que les affichages présentant une "bonne" Gestalt ont moins d'effets distincts que le motif irrégulier sur la perception et que, par conséquent, le motif régulier semble être plus nombreux que le motif irrégulier. L'espacement entre les éléments et la régularité déterminent la proximité spatiale des affichages et se traduisent par différents niveaux de regroupement des affichages.[START_REF] Bertamini | Spatial clustering and its effect on perceived clustering, numerosity, and dispersion[END_REF] ont d'abord utilisé différentes mesures des configurations structurelles des affichages (par exemple, la distribution, le regroupement local, l'ensemble convexe global, etc.) pour quantifier les éléments sur les affichages qui sont liés à la numérosité, au regroupement et à la dispersion.[START_REF] Bertamini | Spatial clustering and its effect on perceived clustering, numerosity, and dispersion[END_REF] ont présenté des affichages qui contenaient toujours le même nombre d'éléments, mais qui variaient en termes de regroupement et de dispersion. Ils ont conclu que, quelle que soit la manière dont le regroupement était quantifié, l'augmentation du regroupement était liée à la diminution de la numérosité perçue (voir également[START_REF] Bertamini | The effect of clustering on perceived quantity in humans (Homo sapiens) and in chicks (Gallus gallus)[END_REF]. Ces données suggèrent que le regroupement pourrait souligner la perception de la numérosité[START_REF] Anobile | Mechanisms for perception of numerosity or texture-density are governed by crowding-like effects[END_REF][START_REF] Chakravarthi | Clustering leads to underestimation of numerosity, but crowding is not the cause[END_REF]. Gebuis et al. (2016) ont proposé une explication plus complète selon laquelle il pourrait y avoir un système d'intégration sensorielle qui évalue les grandes numérosités approximatives en combinant les différents indices sensoriels qui constituent les stimuli des nombres. Ils suggèrent qu'une combinaison d'entrées sensorielles est utilisée pour créer une représentation unifiée de la numérosité. Le modèle suggère que les indices visuels saillants sont généralement fortement pondérés lors de la perception de la numérosité. Les prédictions du modèle d'intégration sensorielle sont en accord avec un

  ont démontré que la numérosité est sujette à adaptation et ont affirmé qu'il s'agit d'une propriété visuelle indépendante (d'autres propriétés visuelles, y compris la densité), ce qui a été corroboré par[START_REF] Ross | Vision senses number directly[END_REF].[START_REF] Anobile | Separate mechanisms for perception of numerosity and density[END_REF] ont trouvé des preuves que les seuils de discrimination des affichages à haute et à faible densité suivaient deux fonctions psychophysiques distinctes, suggérant des mécanismes séparés pour la numérologie et la densité. Cependant, Dakin et al. (2011) ont suggéré que la perception de la numérosité et la perception de la densité partagent un mécanisme similaire et que, par conséquent, elles ne peuvent pas être clairement distinguées par le système visuel (voir également Tibber et al., 2012). De nombreuses études empiriques soutiennent cette idée. Par exemple, Durgin (2008) a affirmé que l'"adaptation sur la numérologie" décrite par Burr et Ross (2008) était en fait basée sur la densité de la texture. Durgin (2008) a présenté deux écrans d'adaptation : l'un contenait plus d'éléments que l'autre, et la texture de l'autre était plus dense, ce qui permettait de dissocier la numérosité de la densité pendant l'adaptation. Les résultats ont montré qu'une plus grande adaptation était produite par la région de plus grande densité plutôt que par celle de plus grande numérosité. De même, Dakin et al. (2011) ont montré que la numérosité et la densité étaient toutes deux biaisées par la taille de l'objet, ce qui suggère l'existence d'une métrique visuelle commune entre la numérosité et la densité.Les études sur la numérosité ont même parfois indiqué que, bien que la tâche ait été formulée en termes de numérosité, les résultats et les conclusions s'appliquaient également à la numérosité et à la densité, puisqu'elles ne sont pas dissociables (par exemple,[START_REF] Valsecchi | Perceived numerosity is reduced in peripheral vision[END_REF]. Néanmoins,[START_REF] Ross | Vision senses number directly[END_REF] ont fourni d'autres preuves que la perception de la numérosité ne dépend pas de la densité des affichages.Ils ont présenté trois types d'affichage aux participants : une numérosité constante, une surface constante et une densité constante, l'un des trois paramètres étant maintenu constant au cours de l'expérience. Les participants ont effectué des comparaisons sur la numérosité et la densité dans des blocs séparés. Leurs résultats ont montré que la densité ne jouait pas un rôle dans le jugement de la numérosité, car les performances de la condition de densité constante n'étaient pas plus mauvaises que celles des deux autres conditions. Dans une autre expérience,[START_REF] Ross | Vision senses number directly[END_REF] ont montré que la numerosité perçue, mais pas la densité, était modulée par la luminance. Il n'est donc pas certain que la densité et la numérologie soient indépendantes l'une de l'autre. Cela pose certaines difficultés pour les futures recherches sur la perception de la numérosité, car nous devons déterminer si la densité joue un rôle ou dans quelle mesure la densité joue un rôle dans la numérosité perçue.

  [START_REF] Chakravarthi | Visual field asymmetries in numerosity processing[END_REF] ont révélé qu'un petit nombre d'éléments peut produire une variété d'asymétries du champ visuel dans la perception de la numérosité en présentant 1 à 9 petits carrés à l'un des quatre emplacements (champ visuel supérieur, inférieur, gauche ou droit). Ils ont montré que les performances de numérosité étaient plus efficaces le long du méridien horizontal que le méridien vertical, dans le champ visuel inférieur que dans le champ visuel supérieur et sur le méridien horizontal gauche que le méridien horizontal droit. Les résultats ont mis en évidence l'influence potentielle des asymétries du champ visuel sur la perception de la numéroté. Dans la présente thèse, nous visons à explorer comment l'encombrement visuel et le masquage de redondance modulent la perception de la numérosité avec une gamme relativement large de numérosités. Nous avons testé les estimations de numéroté (dans une fourchette comprise entre 21 et 58) avec des écrans dont l'interférence des disques était forte ou faible (Chapitre 2). Les disques sur les écrans étaient principalement disposés dans une direction radiale et tangentielle pour les conditions d'interférence forte et faible, respectivement (expérience 2.1). Nos résultats ont montré que les estimations étaient plus faibles dans les conditions d'interférence forte que dans les conditions d'interférence faible. Nous suggérons que la perception de la numérorité est une anisotropie radiale-tangentielle de la perception de la numéroté. Ensuite, nous avons demandé aux participants d'encercler les items perçus comme un groupe (Expérience 2.2). Les résultats ont indiqué que le nombre de groupes perçus était plus élevé dans la condition d'interférence faible par rapport à la condition d'interférence forte, montrant une tendance opposée avec la tâche d'estimation. Par conséquent, le regroupement des disques peut ne pas expliquer les résultats d'estimation de la numérosité observés selon lesquels les affichages radiaux étaient présentés comme moins nombreux que les affichages tangentiels. Ensuite, l'encombrement visuel, le masquage de redondance et l'anisotropie radiale-tangentielle ont été examinés plus en détail avec quatre expériences (chapitre 3). Des numéros compris entre 31 et 99 ont été testés. Nous avons observé que les affichages radiaux étaient signalés comme moins nombreux que les affichages tangentiels, que les arrangements radiaux-tangentiels des affichages soient faibles, forts ou modulés avec une polarité de contraste mixte. Nos résultats ont démontré que l'anisotropie radiale-tangentielle de la perception de la numéroté persiste dans toutes les conditions. Nous suggérons que l'encombrement visuel et le masquage de redondance modulent la perception de la numéroté. Ensuite, le masquage de redondance a été particulièrement testé dans un paradigme typique de masquage de redondance (Chapitre 4). Nous avons utilisé des visages humains comme stimuli dans deux expériences. Les erreurs de type détection dans le masquage de redondance dans les stimuli multi-fonctions (visages) et les stimuli de bas niveau (contours et patchs de bruit assortis à la luminance et à la forme) ont été examinées. Les visages ont une grande importance sociale et sont généralement traités rapidement. Les résultats ont montré que le masquage de redondance se produisait non seulement avec des stimuli simples (par exemple, des lignes et des lettres), mais également avec des visages. Les occurrences de masquage de redondance dans les visages révèlent la stabilité et la force du masquage de redondance sur les fonctionnalités de bas et de haut niveau. Dans le chapitre 5, nous avons discuté de toutes les expériences menées dans les chapitres précédents, ainsi que des résultats observés.

  .1 A summary of physical properties for the radial and the tangential displays across all numerosity ranges. Note. Tan: Tangential displays; Rad: Radial displays. SD: Standard deviation. Convex hull and occupancy area were computed using the Qhull library[START_REF] Barber | The quickhull algorithm for convex hulls[END_REF] with Python. Density was calculated using the numerosity divided by occupancy area, excluding the empty central region (46.28 deg 2 ).A summary of physical properties for the radial and tangential displays across tested numerosity ranges.Note. Tan: Tangential displays; Rad: Radial displays. SD: Standard deviation. Convex hull and occupancy area were computed using the Qhull library[START_REF] Barber | The quickhull algorithm for convex hulls[END_REF] with Python. Density was calculated using the numerosity divided by occupancy area, excluding thee fovea zone where no disc were presented(24.3 deg 2 ). Note that display properties of Experiment 4 displays also account for Experiment 1 and 3 (online) if participants correctly follow the experiment instructions (i.e., using a 24-inch monitor and sitting 45 cm away from the screen.)

			APPENDIX L'être humain est capable d'estimer visuellement le nombre d'objets sans avoir		
		Supplementary Table S3.1 à les compter, c'est un processus connu sous le nom de perception de la numérosité.		
			Par exemple, lorsque nous nous trouvons dans une salle bondée, nous pouvons		
			rapidement estimer le nombre approximatif de personnes sans avoir à les compter. Bien		
			Numerosity range 21-25 Numerosity range 31-35 que l'estimation ne soit pas précise, l'estimation du nombre d'éléments dans un Numerosity range 41-45 Numerosity range 49-53	Numerosity range 54-58
	Average spacing (°)	Tan(SD) ensemble donné est connue sous le nom de perception de la numérosité. La capacité à Rad(SD) Tan(SD) Rad(SD) Tan(SD) Rad(SD) Tan(SD) Experiment 2 displays 6.80(0.07) 6.74(0.06) 7.93(0.07) 7.91(0.05) 9.16(0.09) 9.16(0.08) 10.41(0.09) 10.37(0.09) 11.44(0.09) Rad(SD) Tan(SD) Experiment 4 displays Numerosity (51-72) Numerosity (78-99) Numerosity (34-44) Numerosity (54-64) discerner la numérosité présente un avantage évolutif, car elle permet de choisir une	Rad(SD) 11.38(0.09)
	Convex hull (°) Average	35.47(1.04) 36.57(0.98) 48.28(0.78) 48.49(0.67) 60.93(0.98) 61.49(0.96) 73.78(1.12) 74.29(0.96) 84.43(1.39) Tan(SD) Rad(SD) Tan(SD) Rad(SD) Tan(SD) Rad(SD) Tan(SD) Rad(SD) zone où la quantité de nourriture est plus importante et de déterminer quel groupe a 85.38(0.98) 51.77 (1.84) 52.95(2.11) 78.27(2.73) 79.74(2.17) 49.95(2.35) 50.66(2.57) 76.29(2.43) 77.33(2.94) Convex hull moins d'adversaires (
	eccentricity	5.07(0.05) 5.03(0.05) 5.88(0.05) (°))	5.86(0.04)	6.71(0.07)	6.72(0.06)	7.54(0.07)	7.54(0.06)	8.21(0.06)	8.20(0.07)
	(°)	Occupancy						
	Occupancy area(Convex						
	area		186.16(12.06) 186.28(12.70) 431.60(19.01) 430.34(25.81) 170.38(15.03) 170.46(15.04) 400.72(23.33) 400.20(23.51)
	(Convex		88.83(3.60) 90.81(3.22) 157.45(4.04) 156.30(4.05) 249.79(4.69) 251.38(5.06) 367.54(6.48) 368.95(6.79) 482.35(10.79) 485.45(8.17) hull 2D
	hull 2D		volume)						
	volume)		Density						
	Density (item/deg 2 ) (item/deg 2 ) 0.54(0.02) 0.52(0.01) 0.31(0.01) 0.38(0.02) 0.38(0.02)	0.30(0.01) 0.22(0.01)	0.21(0.01) 0.22(0.01)	0.21(0.01) 0.27(<0.01) 0.16(<0.01) 0.16(<0.01) 0.13(<0.01) 0.27(<0.01) 0.16(<0.01) 0.16(<0.01) 0.13(<0.01)

  . Certains éléments sont venus étayer cette idée. Par exemple, Izard

	et al. (2009) ont montré que les nouveau-nés associaient spontanément des affichages
	visuels contenant un nombre différent d'éléments (4 -12) à des événements auditifs sur
	la base des nombres, ce qui démontre que la capacité d'abstraire des informations sur
	les nombres est innée et apparaît dès le début de la vie (voir également de Hevia et al.,
	2017). Dans le domaine visuel, l'adaptation est évidente dans la perception des couleurs
	(qui peut différer de manière significative en fonction de la couleur vue précédemment,
	Webster, 2011), de l'orientation (qui peut être modifiée après avoir vu des lignes

inclinées,

Gibson & Radner, 1937)

, et du mouvement (où la perception d'objets stationnaires peut être modifiée après avoir vu des objets en mouvement,

[START_REF] Nashner | Adaptation of human movement to altered environments[END_REF]

. L'une des principales indications que le SNA est un système inné est sa

  .[START_REF] Burr | A visual sense of number[END_REF] ont montré que le nombre perçu d'éléments dans des affichages visualisés après adaptation changeait radicalement dans la direction opposée des affichages adaptés ; c'est-à-dire qu'après avoir visualisé un affichage dense (peu dense), l'affichage suivant semblait être moins (plus) nombreux.Cependant, le point de vue de l'ANS selon lequel la perception de la numérosité est innée a été remis en question. L'un des arguments avancés est que la numérosité covarie avec de nombreuses autres propriétés physiques non numériques. Par exemple, pour une taille fixe de chaque objet exposé, la surface totale augmente à mesure que la numérosité augmente. La coque convexe (la plus petite forme convexe qui contient tous les éléments d'un ensemble) présente également une corrélation positive avec la numérosité. À taille égale, un plus grand nombre d'objets exposés donne un étalage plus dense qu'un étalage comportant moins d'objets. Il est impossible de créer deux présentoirs avec un nombre différent d'objets tout en conservant les autres propriétés physiques non numériques

  d'éléments relativement clairsemés est liée à la zone occupée par tous les éléments, qui est déterminée par la taille des éléments et leur rayon d'influence fixe.

	. Par exemple, Gilmore
	et al. (2016) ont demandé à des participants d'ignorer soit l'information sur la surface
	du point, soit l'information sur la coque convexe lors d'une tâche de perception de la
	numérosité. Ils ont constaté que les participants étaient capables d'ignorer la surface du
	point, et que cette capacité s'améliorait avec l'âge. Cependant, il n'était pas facile

d'ignorer les informations relatives à la coque convexe lors de tâches de comparaison de points, ce qui suggère le rôle crucial de la coque convexe dans la perception de la numérosité. Le modèle d'occupation part du principe que la numérosité perçue dans un ensemble aléatoire
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FUNDING

Experiment 3.1: Weak radial-tangential arrangements

In Experiment 3.1, we tested how the radial-tangential anisotropy modulated numerosity estimation by presenting displays to participants that were arranged predominantly radially or tangentially. We refer the manipulation in Experiment 3.1 weak (in compared to the manipulation in Experiment 3.2: strong). In Experiment 3.1a, we tested numerosity 34-44 and in Experiment 3.1b, we tested numerosities 54-64.

Method

Participants

Participants were recruited online using Prolific (www.prolific.co). Experiment 3.1a was completed by 34 participants (16 males, 18 females; mean age: 25.3 years, ranging from 18 to 38). Six of the forty recruited participants were removed: 4 participants did not complete the study, 1 participant had more than 5% of invalid responses (e.g., meaningless numbers such as '000', and 1 participant failed the attentional check (performance in subitizing trials were lower than 90%, details see below). Experiment 3.1b was completed by 32 participants (11 males, 21 females, mean age 25.7 years, ranging from 19 to 39). Forty participants who did not participate in Experiment 3.1a were recruited online using Prolific in Experiment 3.1b. We removed 8 participants: 2 participants did not complete the study, and the other 6 participants failed the subitizing attention check. All participants were naïve as to the purpose of the study. All participants received monetary compensation (7.5 £/hour). All participants reported normal or corrected-to-normal visual acuity, and the informed consent was solicited prior to the experiment. All experiments were approved by the ethics committee of the Ulille SHS, University of Lille.

Apparatus and stimuli

The experiment was created using Psychopy coder v3.1.2 [START_REF] Peirce | Generating stimuli for neuroscience using PsychoPy [Original Research[END_REF] and hosted by Pavlovia (www.pavlovia.org). In the online experiments (Experiments 1a, 1b, Experiment 3.3a,3.3b), participants were instructed to do the experiment with a 24inch monitor with a vertical resolution of 1080 pixels, and to sit at a distance of about 45 cm in front of the monitor (1 pixel = 0.04 visual degree).

Stimuli consisted of black (Hex Code #000000) discs presented on a gray (Hex

Experiment 3.2: Strong radial-tangential arrangements

In Experiment 3.2, we created displays to maximize the probability of interference among discs (in the radial condition). Unlike in Experiment 3.1 where (on average) one flanking disc was placed in the (rotated) interference zone of the base disc, in Experiment 3.2, two flanking discs were placed around each base disc, forming "disc triplets" (Figure 3.5).

Method

Participants

Sixteen participants (13 females, 3 males, mean age = 20.4 years, range from 19 to 23 years). All participants were undergraduate psychology students at KU Leuven.

They received course credits for their participation. All participants had more than 95% correct in performing the subitizing trials; therefore, no data was removed from the analysis.

Apparatus and stimuli

The experiment was created using Psychopy coder v3.1.2 [START_REF] Peirce | Generating stimuli for neuroscience using PsychoPy [Original Research[END_REF] and run on a Desktop PC. All stimuli were presented on an LED 24-inch display, with a resolution of 1920 × 1080 pixels and a refresh rate of 60 Hz. During the experiment, participants sat in front of the screen at approximately 45 cm (1 pixel corresponds to 0.04 visual degree angles). The experiments were conducted in a dim experiment room. Figure 3.5 illustrates the display used in Experiment 3.2. As in Experiment 3.1, the base discs were surrounded by a radially arranged interference zone and a tangentially arranged rotated interference zone for radial and tangential displays, respectively. The stimuli were identical to the displays used in Experiment 3.1, except that all base discs were paired with two flanking discs, forming "disc triplets" (see Figure 3.2b). The numerosities were 51, 54, 57, 60, 63, 69, and 72 in the small displays, and 78, 81, 84, 87, 90, 93, 96, and 99 in the large displays.

Design and Procedure

The design and procedure were identical to Experiment 3.1 except that participants performed a within-subject design experiment where each participant viewed both small (51-72) and large (87-99) numerosity displays. Each participant performed 6 blocks (3 large numerosities and 3 small numerosities) of 80 trials, each in random order.

Data analysis

Data analysis was identical to Experiment 3.1a, except for the following changes. We submitted numerosity (small vs. large) as a fixed factor in the model to compare DV between small and large numerosities. Using the model comparison method, first, we examined whether there was an interference effect between the alignment condition and the numerosity on deviation scores (DV). For that aim, we constructed a full model with the interference effect between the alignment condition and the numerosity as a fixed factor and a reduced model without the interference effect as a fixed factor. We used the random slope model, assuming that the effect of the alignment condition differed between participants (participants had different intercepts and different slopes for the effect of DV in the model). As fixed factors, we entered alignment condition, numerosity, and the interaction between them. As random effects, we had intercepts for participants. We constructed a reduced model without interaction between the alignment condition and the numerosity as a fixed factor. P-values were obtained by likelihood ratio tests of the full model with the interaction against the model without the interaction. In case of a significant interaction effect, the DV differences under each numerosity (small or large) with a contrast comparison would be examined.

In case of a non-significant interaction effect, the interaction factor would be removed from the full model, examining the effect of alignment condition and numerosity on DV separately (with the same model comparison method). Visual inspection of all residual plots did not reveal any obvious deviations from homoscedasticity or normality.

Results

Figure 3.6 shows the deviation score (DV) for the radial and the tangential alignment conditions for Experiment 3.2 (see Supplementary Figure S3.2 for deviation scores as a function of numerosity). The model comparison between the full model (including the interaction between alignment condition and numerosity as a fixed factor) and the reduced model (excluding the interaction as a fixed factor) revealed no difference χ 2 (1) = 0.96, p = .33. There was no significant interaction effect between alignment condition and numerosity on DV. There was a significant main effect of the alignment condition: χ 2 (1) = 8.48, p < .005. The main effect of numerosity was significant, revealed by the model comparison result: χ 2 (1) = 75.20, p < .0001. For small numerosities: the DV in the radial condition (β = --0.15 ± 0.12) was lower compared to the tangential condition (β = -0.02 ± 0.13), p < .005. For large numerosities: the DV in the radial condition (β = 0.02 ± 0.12) was also lower compared to the tangential condition (β = 0.19 ± 0.13), p < .005.

Design and Procedure

Identical to Experiment 3.1.

Data analysis

Identical to Experiment 3.1.

Results

Experiment 3.3a: small numerosities (34 -44) 

Design and Procedure

The design and procedure were identical to Experiment 3.1 except for the following changes: 1) participants viewed both small (34-44) and large (54-64) numerosities displays, as well as both uniform display and mixed displays in separate blocks in random orders (within-subject design). 2) Each participant completed 8 blocks (4 large numerosities blocks and 4 small numerosities blocks) of 144 trials in random orders.

Data analysis

We performed a linear mixed effects analysis on the obtained data. As in Experiment 3.2, we submitted numerosity (small vs. large) as a fixed factor in the model. First, we examined whether there was a three-way interaction effect among alignment condition, numerosity, and contrast polarity on DV. For that aim, we constructed a full model including the three-way interaction among alignment condition, numerosity, and contrast as a fixed factor, as well as a reduced model without the three-way interaction as the fixed factor. We constructed a random slope model as we assumed that the effect of the alignment condition was different for different participants. Therefore, participants had different intercepts and slopes for the effect of DV in the model. As fixed factors, we entered alignment condition, numerosity, contrast polarity, the three two-way interactions, and the three-way interaction. As random effects, we had intercepts for participants. Then, we constructed a reduced model without three-way interaction as a fixed factor. P-values were obtained by likelihood ratio tests of the full model and the reduced model. If a three-way interaction effect is observed, the contrast will be applied to the model to examine whether there is a significant two-way interaction, and a simple contrast will be applied to examine the (simple) main effect of alignment condition, contrast polarity, and numerosity if any significant two-way interaction is observed. If no significant three-way interaction is observed, the same model comparison method as in Experiment 3.2 will be used to examine two-way interactions and main effects: including the factor that we examined in the full model and excluding it in the reduced model. Visual inspection of all residual plots did not reveal any obvious deviations from homoscedasticity or normality.

Results

Figure 3.10 shows the deviation scores (DV) as a function of tested numerosity for the radial and tangential alignment conditions for Experiment 3.4 (see Supplementary Figure S3.4 for deviation scores as a function of numerosity). Mixed and uniform contrast polarity conditions were plotted separately in the subplots. The model comparison between the full model (including the three-way interaction as a fixed factor) and the reduced model (excluding the three-way interaction as a fixed factor) showed that there was no significant three-way interaction among numerosity, alignment condition, and contrast polarity χ2(1) = 0.05, p = .83. The interaction between numerosity and contrast polarity was significant: χ2(1) = 9.20, p < .01. No other significant two-way interaction was observed (interaction between numerosity and alignment condition: χ2(1) = 2.63, p = .11; interaction between contrast polarity and alignment condition: χ2(1) = 0.25, p = .62). Post-hoc pairwise analysis on the full model with Tukey adjustments showed the DV differences between mixed contrast polarity and uniform contrast polarity conditions were significant: (β = -0.21 ± 0.02, p < .0001 and β = -0.14 ± 0.02, p < .0001 for small and large numerosities). The existence of an interaction effect between numerosity and contrast polarity prevents us from examining the main effect with the model comparison method. Therefore, we report the pairwise differences of the alignment condition (radial -tangential): β = -0.12 ± 0.03, p < .0005 and β = -0.15 ± 0.02, p < .0001.

Abstract

Faces are socially highly relevant stimuli that are usually detected rapidly and accurately. For example, it was shown that faces were accurately detected with presentation times as short as 100 ms, and when embedded in highly noisy contexts.

Strong performance in face detection tasks highlights the importance of faces as an important stimulus for human observers. Here we show that face detection frequently failed when faces were presented in small groups. In Experiment 4.1, 3-6 identical upright faces, shape-matched outlines of the faces, and luminance-matched noise patches were presented at 10° eccentricity, randomly to the left or right of fixation. In Experiment 4.2, three to six identical upright or upside-down faces were presented.

Participants were asked to indicate the number of items (1-9) in Experiment 4.1 and to indicate both the number of faces and their orientation (upright or upside-down) in Experiment 4.2. In both experiments, we found that the number of reported items was frequently lower than the number of presented items. Importantly, people showed substantial failures to report all presented faces, even with only three presented faces.

Face orientations were reported highly accurately in Experiment 4.2. We suggest that redundancy masking, the reduction of the number of perceived items in repeating patterns, occurs with highly complex, socially relevant stimuli and that RM is a key mechanism for compressing redundant visual information.

Keywords: redundancy masking, crowding, spatial vision

CHAPTER 4: REDUNDANCY MASKING OF FACES REVEALS A SUBSTANTIAL FAILURE TO DETECT SOCIALLY RELEVANT INFORMATION

Apparatus and stimuli

The experiment was programmed in PsychoPy builder [START_REF] Peirce | PsychoPy2: Experiments in behavior made easy[END_REF] and ran on a Desktop PC (refresh rate: 60hz). The experiment was conducted in a dimly lit room. Participants viewed the monitor from a distance of 57 cm with a chinrest. A fixation that was comprised of a black fixation dot (diameter = 0.14°, luminance: < 0.5 cd/m2) and two concentric circles (diameter = 0.32° and 0.40°) was presented at the center of the monitor throughout the experiment. Three types of stimuli were used: faces, noise patches, and face outlines. All stimuli were gray-scaled (luminance: ~34 cd/m 2 ) and were presented on a white background (luminance: ~104 cd/m2). There were three sizes of each type of stimulus (small: 0.7° width × 1.0° height; medium: 0.9° width × 1.3° height and large: 1.1° width × 1.6° height, as demonstrated in Figure 3.1a).

The edge-to-edge spacing of adjacent items was uniform and varied across trials (small stimuli: 0, 0.2°, 0.4°; medium stimuli: 0, 0.2°, 0.5°; large stimuli: 0, 0.2°, 0.6°). We also included a spacing for each stimulus size to match the width of the stimuli arrays (to match the width for set sizes 3-5, another set of stimuli with varying spacing, set sizes 3-6, were used, illustrated in Figure 3.1b). Hence, the matched spacing varied across stimulus sizes and set sizes. This is to prevent participants from taking the width of the array of items as a cue to estimate the number of items in the enumeration task (see below). The stimuli were randomly presented in the right or the left visual field, centered at an eccentricity of 10°. The first three panels of Figure 3.1c show sample trials with faces, outlines, and noise patches, respectively.

Experiment 4.2: Enumeration and orientation task

In Experiment 4.1, we found redundancy masking for faces, luminance-matched noise patches, and shape-matched outlines. However, what information was extracted from the faces is unclear. In Experiment 4.2, we presented upright and upside-down faces. There were two tasks: Reporting the number of faces as in Experiment 4.1, and additionally, the orientation of the faces (upright or upside-down). The orientation task was used to investigate whether sufficient information was extracted from the faces to perform this task. 

Method

Apparatus and stimuli

The apparatus was identical to Experiment 4.1. In Experiment 4. 

Design and procedure

The procedure of Experiment 4.2 was identical to Experiment 4.1 except for the following changes: (1) only face stimuli were presented, (2) faces were presented in two possible orientations (upright or upside-down), and (3) participants performed two tasks (indicate the number of faces and the orientation of faces). The order of the two tasks was counterbalanced between subjects. Participants used the numerical keypad (0 -9) to perform the number task and used "z" and "x" (on a Dutch keyboard layout) to Experiment 2.1. They were asked to encircle discs that were perceived as a group. If the number of perceived groups in radial displays is fewer than in tangential displays, we can anticipate that the perceived number of groups has an impact on the numerosity estimation. The results from Experiment 2.2 provided insight into whether grouping among the discs plays a role in the effect, i.e., the relative underestimation in the radial compared to the tangential condition observed in Experiment 2.1. However, the number of perceived groups in the radial displays was higher compared to the tangential displays, showing an opposite pattern from the numerosity estimation task. This result indicates that grouping is not the factor that confounds the numerosity estimation results.

Our results from the two experiments indicated that numerosity perception may vary depending on the spatial arrangements of the items (either radial or tangential).

Crowding and redundancy masking, the limits of our spatial vision that are subject to a radial-tangential anisotropy, may impact numerosity perception.

Results from a new set of four experiments provided further evidence that crowding and redundancy masking may be related to numerosity perception (Chapter 3). A new set of displays were created into varied degrees of radial-tangential arrangements, both weak and strong interference conditions. Displays contained base and flanking discs. Specifically, displays used in Experiment 3.1 and Experiment 3.2

were manipulated in a weak and strong manner, respectively. In the weak manipulation (Experiment 3.1), base discs, on average, had one flanking disc that was placed to either interfere (radial condition) or not interfere (tangential condition) with the base disc. In the strong manipulation (Experiment 3.3.), two flanking discs (instead of one) were again placed to interfere or to not interfere with the base disc to form radial and tangential conditions, respectively. Three close-by discs (one base and two flanking discs) in radial arrangements are highly similar to typical stimuli that yield redundancy masking. Importantly, the phenomenon of redundancy masking is generally not observed when only one or two items are presented -three items seem to be the minimum to obtain redundancy masking [START_REF] Yildirim | Hidden by bias: how standard psychophysical procedures conceal crucial aspects of peripheral visual appearance[END_REF]. The results were consistent with those reported in Chapter 2, where participants perceived the displays comprising of radially arranged discs to be fewer in number compared to displays comprising of tangentially arranged discs. Observers frequently reported perceiving three presented lines as two in redundancy masking paradigms [START_REF] Yildirim | Redundancy masking: The loss of repeated items in crowded peripheral vision[END_REF][START_REF] Yildirim | Hidden by bias: how standard psychophysical procedures conceal crucial aspects of peripheral visual appearance[END_REF]. Previous research provided clear evidence that the spatial arrangement of items impacts redundancy masking: redundancy masking was strong when items were Supplementary Table S2 of 6°, we varied the size of the sectors from 1° to 12°, following the same method as described above in Method. Too small and too large angles were expected to yield weaker (or no) correlations with RAs as alignments would be rare (when angles were very small) or counted when far beyond plausible interference zones (when angles were large). The results showed that this was the case, with overall higher correlations for medium angle sizes (from about 5° to 9°). S2 Numerosity and density are physically indivisible as density is calculated by dividing numerosity by the total area [START_REF] Tibber | Number and density discrimination rely on a common metric: Similar psychophysical effects of size, contrast, and divided attention[END_REF]. [START_REF] Burr | A visual sense of number[END_REF] demonstrated that numerosity is subject to adaptation and claimed that it is an independent visual property (from other visual properties, including density), further corroborated by [START_REF] Ross | Vision senses number directly[END_REF]. [START_REF] Anobile | Separate mechanisms for perception of numerosity and density[END_REF] found evidence that discrimination thresholds of high and low-density displays followed two distinct psychophysical functions, suggesting separate mechanisms for numerosity and density.

Supplementary Table

However, [START_REF] Dakin | A common visual metric for approximate number and density[END_REF] suggested that numerosity perception and density perception share a similar mechanism, and therefore, they cannot be clearly distinguished by the visual system (see also, [START_REF] Tibber | Number and density discrimination rely on a common metric: Similar psychophysical effects of size, contrast, and divided attention[END_REF]. Many empirical studies support this idea. For example, [START_REF] Durgin | Texture density adaptation and visual number revisited[END_REF] claimed that the "adaptation on numerosity" described by [START_REF] Burr | A visual sense of number[END_REF] was actually based on texture density. [START_REF] Durgin | Texture density adaptation and visual number revisited[END_REF] presented two adapting displays: one contained more items than the other one, and the other's texture was denser, allowing dissociation between numerosity and density during the adaptation. The results showed that greater adaptation was produced by the region of greater density instead of higher numerosity. Similarly, [START_REF] Dakin | A common visual metric for approximate number and density[END_REF] showed that both numerosity and density were biased by item size, suggesting a common visual metric between numerosity and density. Numerosity studies sometimes even indicated that although the task was formulated in terms of