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Real-time systems birth dates back to the early days of computing, when the

first computers have been used to perform a variety of functionalities that required

immediate processing and response. One of the earliest examples of a real-time

system has been the SAGE (Semi-Automatic Ground Environment) air defense

system developed by the U.S. military in the 1950s. This system used a network

of computers to track and identify incoming aircrafts, and was able to provide a

rapid response to potential threats. In the 1960s and 1970s, the development of

minicomputers and microprocessors led to the creation of a wide range of real-time

systems, including process control systems in factories, medical monitoring systems,

and traffic control systems. In the 1980s and 1990s, the widespread adoption of

computers in a variety of industries and applications led to the development of

1



2 1. Introduction

more advanced real-time systems. These systems often used distributed computing

architectures and advanced networking technologies to enable the timely processing

and exchange of data. In recent years, the increasing use of sensors, Internet

of Things (IoT) devices, and other types of connected systems has led to the

development of even more sophisticated real-time systems, including those used

in autonomous vehicles, smart cities, and industrial automation. These systems

rely on advanced technologies such as machine learning and artificial intelligence

to enable real-time decision making and response.

In the 2010s, multiprocessor systems have made their entry in Commercial

Off The Shelf (COTS) processors, and have been widely used since, which led

to a bigger capacity to compute faster. Moreover, in what we define as critical

systems1 (avionics, automotive, space), a safe utilization of multiprocessor systems

remains an open problem [Reilly, 2020]. Furthermore, the use of autonomous driving

based on machine learning algorithms is challenging. For example, showing that

computer vision is safe at any circumstance when controlling a car is still an open

problem [Dixit et al., 2021]. Indeed, due to the pioneer utilization of multiprocessor

systems by the smartphone market as well as the impressive expansion of this

later market, the microprocessor industry has evolved towards general purpose

processors with complex architectures that are not time predictable. Their lack of

time predictability is due to features like several cores, multiple levels of caches and

pipelines, speculative branching, communicating through shared memory or/and

through a network on chip, etc.. Smartphone users are willing to charge their phones

or to restart regularly their applications to compensate a bad design of the phones on

multiprocessor systems. However, the rest of the real-time system industry is facing

the open problem of time predictability of programs on multiprocessor systems

in order to provide stable and low-energy consumption applications. Bounding

execution times of a program on multiprocessor systems is known to be an open

problem [Wilhelm et al., 2008,Maiza et al., 2019,Davis and Cucu-Grosjean, 2019]. In

this thesis, the complexity of such system is considered as impossible to describe in

1Throughout the thesis, concepts formally defined after being mentioned are written in italic.



1. Introduction 3

a deterministic manner, such that statistical methods provide a suitable estimation

of time behaviors of the studied system.

1.1 Context

A real-time system is a computer system in interaction with an environment and

users [Harel and Pnueli, 1984]. Sensors and programs are typically triggered

periodically in order for the system to constantly interact with its environment. In

order to make this interaction possible, it must satisfy temporal constraints. These

temporal constraints can be more or less strict, depending on what functionality is

asked from the system. We say that programs of a real-time system must meet their

deadlines. We can classify deadlines according to the importance of functionalities

associated to their associated programs:

(i) hard deadlines for programs such that a deadline miss consequence is not

acceptable for either economic, human or ecological reasons, e.g., the braking

system of a car.

(ii) soft deadlines for programs such that a deadline miss consequence is a delayed

output of a program also known as a task, e.g., a sensor adjusting the

temperature of a room.

Real-time systems consist in both hard and soft time constrained programs,

and the analysis of their interference due to shared resources is a challenging open

problem. Designing such system ensures that all programs meet their deadlines

at a given rate. In practice, certification processes expect failure rates, e.g., 10´12-

frequency associated to failures within one hour of functioning-, for hard deadlines

and less restrictive rates for soft deadlines [Gumzej and Halang, 2010, Fault

Forecasting, p. 64]. For this reason, in this thesis we use the concept of deadlines

with a permitted failure rate and make no formal difference between hard and soft.

There is a wide range of research areas related to real-time systems and we

present below those that we consider the most relevant:
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(i) scheduling: a scheduling algorithm is responsible for ensuring that each pro-

gram is allocated sufficient processing resources to meet its timing constraints.

It determines how to allocate resources among the programs, and may use a

variety of factors, such as task priority, task execution time, order of arrival,

and processor utilization, to make this decision. Scheduling plays a critical

role in the performance and reliability of a real-time system, and must be

carefully designed and implemented to ensure that the system meets its timing

requirements.

(ii) timing analysis: it is used to determine the Worst-Case Execution Time

(WCET) of a program. The WCET is the maximum amount of time a task

is expected to take to complete its execution. There are several techniques to

estimate the WCET of a program. The static analysis is based on the code

inspection, and modeling. The Measurement-based analysis involves collecting

data on the program’s time behavior. This can be done by instrumenting

the system’s code to measure the execution time of each program, or by

using hardware performance counters to monitor the system’s performance.

Measurement-based analysis may provide less perssimistic results than static

analysis, but it requires that the system is operational and may not be feasible

for systems difficult to test or measure.

(iii) real-time architectures: it is the study of both hardware and software compo-

nents that are optimized for speed and accuracy, such as specialized processors,

algorithms, and communication protocols e.g.,Graphical Processing Units

(GPU) or Field Programmable Gate Arrays (FPGA).

(iv) real-time operating systems (RTOSs): a RTOS is an operating system that is

designed to ensure a certain level of processing capacity for a deterministic

response to events occurring within a fixed time interval. It is typically used

for time-critical applications that require a more predictable response than a

non-real-time operating system can provide.

(v) fault-tolerance of real-time systems: it is a measure of the system’s ability
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to continue operating, even when one or more of its components fail. Fault-

tolerance is achieved by creating redundancy in the system’s components,

programs, and data, so that if one component fails, the system can still operate.

Fault-tolerance also includes the ability to detect and respond quickly and

effectively to a failure. This ensures that the system can continue to meet its

real-time requirements, even when a failure occurs.

(vi) real-time networks: they are networks designed to transmit data with strict

timing requirements. These types of networks are used in a variety of

applications where the timely delivery of data is critical, such as in industrial

automation, avionics, and automotive systems. In Time Sensitive Network

(TSN) for example, the transmission of data is synchronized to a common

clock, and the network is designed to minimize the amount of delay and other

types of variability in the transmission of data. TSNs may use a variety of

technologies and protocols to ensure the timely delivery of data, including

deterministic Ethernet.

(vii) real-time oriented machine learning: recently, there has been an increasing use

of machine learning methods, e.g., in the automotive industry, particularly

for tasks such as autonomous driving, predictive maintenance, and traffic

prediction. These methods often involve solving optimization problems with

timing constraints, which are requirements that specify how long a task or

operation is allowed to take. By incorporating these constraints into the

optimization problem, it is possible to ensure that the system meets its timing

requirements and performs reliably under all operating conditions.

In order to be safe, programs must meet their timing constraints. Real-time

scheduling theory provides methods that orders the execution of programs over

a finite or periodic number of time instances. A set of programs is considered

schedulable for a given processing unit if it can be proven that each instance of a

program has enough time to execute before its deadline. Scheduling is therefore

mainly an optimization problem involving the allocation of limited resources,
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(a) Deadlines are met.
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(b) Deadline of τ1 is missed.

Figure 1.1: Example of a scheduling algorithm decision on a single processor. The
up-arrow represents the activation of a task, the down-arrow a deadline. The black circle
means that the task has finished its execution. The gray-squared areas indicates that a
task awaits for processing resources

including hardware and time, to programs. Since the 2000s, several studies have been

focused on probabilistic analyses to compute the probability of missing a deadline.

There are sources of uncertainties in every aspect of a real-time system, as it is

by definition an object in continuous interaction with an unpredictable environment

and users. One of the main goal of a real-time design is to minimize the impact

of those uncertainties by construction and to ensure that the system is resilient to

its environment. The purpose of using probability theory in real-time systems is

to quantify those uncertainties. Solving this problem involves being able to adapt

the system’s decisions and, quantify and predict deadline misses.

1.2 Motivation

In a real-time system, it is common to deliberately over-dimension the system to

ensure its ability to be reactive. However, this may lead to a large amount of wasted

computing resource. The variability of the execution times is the degree to which

the execution time of a task varies over time. There are several factors that can

contribute to the variability of execution times in a real-time system, including:

(i) resource contention: if multiple programs are competing for the same resource
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(e.g., memory, pipelines, I/O devices), the execution time of each task may

be affected.

(ii) unpredictable environment: sensors provide the input data for the system’s

programs. The execution time of these programs depends on values of input

data that may trigger different branches of a program.

This variability can have serious consequences in a real-time system, as it

may impact the ability of the system to meet its deadlines and fulfill its real-

time requirements.

For embedded systems with low energy and computing resources, designing

real-time systems means associating a suited micro-controller architecture to a set of

programs. A key part of this design is to chose the appropriate processing unit (such

as a CPU) for a given task set. To ensure that every task is executed within their

specified timing constraints, the CPU and other computing resources are allocated

to different programs, for example, according to their priority. During the run-time,

each instance of programs competes for processing time. Timing correctness of real-

time systems is traditionally guaranteed by a separate schedulability analysis and a

WCET analysis. Classical techniques for WCET analyses aim at finding an upper-

bound on execution times. The time taken by a program to respond to an input

and provide the output or display the updated information is known as the response

time. After determining the WCET, the Worst-Case Response Time (WCRT)

is calculated by aggregating the WCET of programs in the worst-case scenario,

i.e., the scenario that produces the longest response times. However, this method

[the worst-case reasoning] is sufficient to make schedulable task sets and it forces

designers to over-estimate the quantity of processing unit necessary to run a task set.

In order to decrease the pessimism associated to this over-estimation, a significant

amount of research in real-time systems focuses on statistical analyses (as discussed

in Section 1.3.2).
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1.3 State-of-the-art

In this section, we present existing work relevant for this thesis, to the best

of our knowledge. That is to say, applied probabilities on real-time scheduling

algorithms, timing analysis and shared resources modeling, and results on real-time

multiprocessor scheduling. There are multiple sources of inter-core interference for

a given architecture: shared caches, shared buses, memory and scheduling policies.

Existing results mainly address issues related to the system stability, computational

algorithm designs, optimal scheduling, allocation, or performance analysis. This

first Section 1.3.1 contains a brief presentation of the two most known preemptive

scheduling algorithms. We provide then a review of existing results on the use

of stochastic processes in real-time systems and a brief review of static-priority

preemptive scheduling on multiprocessor systems.

Definition 1.1. Static priority algorithms are such that for any couple of tasks,

whenever both are activated simultaneously, the same task always have priority.

Finally, we conclude this section by discussing the link between Mixed-Criticality

(MC) systems and probabilistic approaches.

1.3.1 Deterministic analyses

We understand by testing the schedulability of a system that we assert that by

construction the system cannot fail. Several schedulability tests are based on

the utilization of the system, which is the sum of the ratios between the units of

time required by the programs to execute and the time separating two instances

of this same program. Other schedulability tests are based on the worst-case

reasoning, i.e., finding the scenario producing the largest response times for every

program. In the remainder of this thesis, a program is called a task and a job

is an instance of a task.

We say that a scheduling policy is work-conserving, i.e., does not idle when

there is work to do. Moreover, we say that a scheduling policy is preemptive,
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i.e., a job may be preempted before the end of its complete execution, and its

execution can be resumed with no cost.

Single processor scheduling: Rate Monotonic and Earliest Deadline First

The Rate Monotonic (RM) scheduling policy is a static-priority scheduling algorithm,

i.e., it assigns priorities by task. RM assigns to each task a priority relatively to

its rate of occurrence - the larger the rate, the higher the priority.

Theorem 1.1 (Theorem 2 [Liu and Layland, 1973]). RM is optimal for single

processor systems with implicit deadlines in the domain of static-priority preemptive

scheduling policies.

The Earliest Deadline First (EDF) algorithm is a deadline-driven scheduling

policy, giving a priority to each job relatively to its absolute deadline - the smaller

the absolute deadline, the higher the priority. We call dynamic any scheduling

policy giving priorities at job boundaries. Once the priority is assigned to one job

it does not change until the completion of this job.

Both RM and EDF are the most used scheduling algorithms of their own (static

and dynamic) class because of their efficiency. Hence, we chose to restrict the

state-of-the-art section to those two algorithms. In [Liu and Layland, 1973], authors

prove that in single processor preemptive scheduling, the worst-case scenario occurs

in a critical instant, which is the simultaneous activation of all tasks. This reasoning

leads to the results in [Joseph and Pandya, 1986], where the response times are

proven to satisfy a fixed-point equation. However, those two reasoning hold only

for single processor preemptive scheduling.

Other schedulability tests focus on Time Demand Analysis (TDA) of the critical

instant, which is the analysis of the workload sequence of jobs that produces the

largest response time, i.e., the time between the activation and the end of a job.

This worst-case reasoning is based on the fact that a system is schedulable if the

worst-case is schedulable. This property is called sustainability [Baruah and Burns,

2006] (or predictability [Ha and Liu, 1994]).
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Definition 1.2 (Sustainability [Baruah and Burns, 2006]). A schedulability test for a

scheduling policy is sustainable if any system deemed schedulable by the schedulability

test remains schedulable when the parameters of one or more individual jobs are

changed in any, some, or all of the following ways: decreased execution requirements;

later arrival times; and larger relative deadlines.

Multiprocessor scheduling

The problem of priority-driven scheduling on multiprocessor systems consists in

two decision problems: the allocation and the priority assignment of tasks.

(i) Allocation: Jobs are allocated to processors. The allocation decision is a load-

balancing problem in which jobs are distributed among multiple processors.

(ii) Priority assignment: Priorities are assigned to tasks or jobs.

To the best of our knowledge, there are few results using probabilistic methods in

multiprocessor scheduling. The main results using stochastic analysis are focused on

shared resources quantification in multiprocessor systems, which is not what we focus

on in this thesis. We present these results in the following, as well as deterministic

results that we either extend or use as a baseline for a stochastic analysis.

Homogeneous and heterogeneous multiprocessor systems We divide mul-

tiprocessor systems into three different categories based on the speeds of the

individual processors.

• homogeneous multiprocessor systems: all processor speeds are the same across

all processors. Usually the speed is set to one cycle per unit of time.

• uniform heterogeneous multiprocessor systems: the processing speed depends

on the processor. Each processor has its own constant speed. Each processor

in an uniform multiprocessor system is characterized by a speed or computing

capacity, with the interpretation that a job executing on a processor with

speed s for t units of time completes s ˆ t cycles.
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• unrelated heterogeneous multiprocessor systems: processing units have dedi-

cated speeds according to the tasks to be scheduled. We do not cover this

case in this thesis.

We cover in this thesis uniform heterogeneous multiprocessor systems that we

call for more readability uniform multiprocessor systems.

Multiprocessor static-priority online scheduling Offline scheduling algo-

rithms determine decisions before the system starts its execution. These scheduling

algorithms select jobs to execute according to predetermined priorities. Usually,

schedules are repeated after a specific time period [Cucu and Goossens, 2007],

and the specificity of offline scheduling is that one should be able to tell a priori

from what time this repetition begins.

Online scheduling algorithms select jobs by examining properties of active jobs.

They can be more flexible than offline algorithms since they can adapt their decision

depending on the state at instant t of the system. For example, the system must use

an online scheduling algorithm if the set of tasks includes tasks with unpredictable

inter-arrival times that join and leave the system at undetermined times.

For a given class of multiprocessor scheduling algorithms, some are optimal in

the sense that if they do not satisfy all deadlines, then no algorithm from this class

can. However, satisfying deadlines in theory is not always the main goal in practice.

For instance, preemptions have a cost and one may want to optimize this cost.

An important result of online multiprocessor scheduling algorithm is provided

in the seminal paper of [Hong and Leung, 1992].

Theorem 1.2 (Theorem 1 in [Hong and Leung, 1992]). There is no optimal online

multiprocessor scheduling algorithm for real-time systems with two or more distinct

deadlines.

While optimal algorithms can be built for the multiprocessor scheduling problem

under certain conditions, there cannot be one optimal scheduling algorithm for
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Figure 1.3: Partitioned scheduling policy

different instances of the multiprocessor scheduling problem as strong as RM and

EDF are for the single processor case. However, there are some important results

that we discuss below. Several multiprocessor scheduling algorithms have been

proposed [Funk and Meka, 2009,Funk and Nanadur, 2009,Baruah et al., 1993,Levin

et al., 2010,Srinivasan and Anderson, 2005,Anderson et al., 2008,Baruah and Fisher,

2005,Brandenburg and Gül, 2016,Fan and Quan, 2012,Hobbs et al., 2019,Anderson

et al., 2016,Kato and Yamasaki, 2009,Bastoni et al., 2011,Anderson et al., 2008].

An important layer of complexity are the migrations and preemptions of

jobs between processors. With different levels of migrations (full, restricted

or none), we define three main classes of multiprocessor scheduling algorithms

[Carpenter et al., 2004]:

• full migration: the scheduling algorithm is global. In global scheduling each

task can be executed on any processor in the system. This type of process

migration can maximize system utilization and provide an effective load
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balance. The main problem that global scheduling encounters is the cost of

migrations and preemptions. For instance, in [Andersson and Tovar, 2006] the

authors focus on global scheduling with the goal of minimizing preemptions,

see Figure 1.2 and [Bertogna et al., 2008,Bertogna and Cirinei, 2007].

• no migrations: the system is partitioned, i.e., each task is assigned to a

processor. Partitioned scheduling divides the available computing resources

into distinct partitions and assigns tasks to the appropriate partition. While

this approach can be useful for organizing workloads, it does not always use

the computing resources of a system in an efficient manner. For example,

if the workloads assigned to each partition are not evenly balanced, then

one partition may become overloaded while other partitions remain idle.

Additionally, if a task requires more resources than what is available in its

assigned partition, then the task may not be able to complete in a timely

manner. Partitioned scheduling also does not allow dynamic load balancing,

meaning that the system cannot adjust to variable workloads or resource

availability, see Figure 1.3 and [Andersson and Jonsson, 2000,Andersson et al.,

2003].

• restricted migrations: tasks are dynamically assigned to processor during run-

time. With restricted scheduling each task can be executed on any processor,

but each of its jobs has to finish executing its workload on this same processor.

Restricted migration can provide a more efficient load balancing while still

allowing for some degree of task migration, see Figure 1.4 and [Baruah and

Carpenter, 2005, Anderson et al., 2008, Goossens et al., 2012, Brandenburg

and Gül, 2016].

1.3.2 Stochastic analyses

As discussed in the previous section, the sustainability [Baruah and Burns, 2006]

permits to extend directly deterministic single processor results to the probabilistic

approach, because what is valid for the worst-case scenario is proven valid for all
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scenarios. We list and discuss in this section some of the results using statistics

and probabilities for the analysis of single and multiprocessor systems. Some

of the challenges of the stochastic analysis of real-time systems are detailed

in [Quinton et al., 2012].

Single processor scheduling

Statistical timing analysis For a task and a given processor, we call timing

analyses, the methods determining the largest workload required for the execution

of this task on that processor. In [Davis and Cucu-Grosjean, 2019], one can find

a survey that details probabilistic timing analyses developed until 2018.

In [Edgar and Burns, 2001], the authors present Extreme Value Theory (EVT)

as a candidate for estimating WCET and WCRT with random variables (also

known as probabilistic WCET and probabilistic WCRT), followed by [Lu et al.,

2011,Cucu-Grosjean et al., 2012,Lima et al., 2016,Cazorla et al., 2013,Santinelli

et al., 2014,Wartel et al., 2013,Lu et al., 2012], finding the best-fitted parameters for

extreme value distributions [Basrak, 2011,Hansen et al., 2009], computing maximum

likelihood estimators and non-parametric tests to do so, and finally compute the

Deadline Miss Probability (DMP). The EVT method is called a measurement-based

method, as it infers knowledge on execution times. One may find a complete survey of

these results in [Davis and Cucu-Grosjean, 2019], while open problems are underlined

in [Gil et al., 2017]. According to these authors, deterministic WCET estimation

of a task is often pessimistic, i.e., unlikely to occur and often larger than most
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execution times of that task. In fact, EVT has been used in several papers [Lu et al.,

2012,Wartel et al., 2013,Liu et al., 2013,Lima et al., 2016,Lima and Bate, 2017].

In [Maxim et al., 2017a] the authors discuss the reproducibility of a measurement

protocol and the representativity of the data used to estimate WCETs. Nevertheless,

EVT has some limitations as it is too sensitive to outliers of the provided data.

Some other limitations are pointed in [de Barros Vasconcelos and Lima, 2022]. A

comparison with the deterministic approach is provided in [Abella et al., 2014].

Probabilistic schedulability tests of single processor systems One of the

important part of a processor is the order in which it runs the tasks. There are

several ways to schedule a task set. Some scheduling algorithms can be developed

in order to schedule large sets of tasks, others can be energy optimized.

One may look at [Davis and Burns, 2011] for an exhaustive survey on the

scheduling problem on multiprocessor processors. It reviews the first notions to

know when we speak about task scheduling as allocation or priority problems. It

also explains all the different notions needed to understand real-time scheduling,

as schedulability, comparability, predictability and sustainability, and presents the

main results from the late 1960’s until 2009.

In [Díaz et al., 2002,Kim et al., 2005], the authors calculate the exact distribution

of response times of periodic tasks with probabilistic execution times. They also

prove that the backlog, i.e., the remaining workload at each beginning of each hyper-

period, can be modeled with a Markov chain, and they are the first to consider

the computation of the exact deadline miss probabilities from a set of execution

time distributions. Finally they prove that the backlog of periodic systems converge

to some steady-state distribution and they approximate this distribution. This

method can be used to quantify deadline miss probabilities for a given task set in

periodic systems. However, the complexity of this proposed solution is exponential,

even if some studies solve partially the issue [Marković et al., 2021,Maxim et al.,

2012] by subsampling the execution times distributions. This is where analytical

approximations make their entry.
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Analytical methods for measuring deadline miss probabilities have been studied

recently. In [von der Brüggen et al., 2018], the authors are interested in the

DMP and overload probability introduced in [Chen and Chen, 2017], and provide

both analytical and combinatorial descriptions of how to compute them. Their

contribution relies on what they call the multinomial approach to compute deadline

miss probabilities more efficiently. This work is then extended for EDF in [von der

Brüggen et al., 2021]. In [Palopoli et al., 2012,Palopoli et al., 2015,Abeni et al.,

2017], authors bring the idea of what they call probabilistic deadlines (also known

as DMP). Around this concept, they build the backlog analysis introduced in

[Díaz et al., 2002, Kim et al., 2005] with a Birth-Death process, and quantify

the deadline miss probabilities for a reservation based schedule algorithm for

periodic systems. In [Villalba Frias, 2018], the author implemented in his thesis

the PROSIT tool, a simulation framework computing deadline miss probabilities

for a given task set, with independent and non independent execution times, using

the backlog as a Birth-Death process, and an Hidden Markov Model to model

the dependencies between execution times.

Scheduling theory is mathematically not that far from queuing theory. In

[Lehoczky, 1996, Lehoczky, 1997a], the authors add to queuing theory timing

constraints. They use a Markov process to model the lead-time profile of all the

jobs in the queue. The main result provided in [Lehoczky, 1997b] is that the

multivariate queue length process converges to a Brownian network, assuming the

heavy-traffic condition. In [Doytchinov et al., 2001], the authors apply real-time

queueing networks to EDF.

Multiprocessor scheduling

A current trend in real-time systems is the application of statistical learning methods

in order to find optimal schedules [Plassart, 2020, Mao et al., 2019, ul Islam and

Lin, 2015,Lee et al., 1997,Kadaba et al., 1991]. In scheduling theory, the inference

of scheduling knowledge [Shaw et al., 1992] is a natural step into the application

of the parametric method provided in this thesis. The parametric estimation of
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new parameters such as deadlines can improve scheduling decisions, see [Aytug

et al., 1994] for a review in this field.

In [Manolache et al., 2002], the authors speak about the heavy-traffic assumption,

saying that it fails yet to handle systems where a task has more than one immediate

successor task and hence leads to high deadline miss ratio, which is unacceptable

for critical real-time systems. They use Coxian distributions to model execution

times, and use Stochastic Petri Networks to describe the dynamic of multiprocessor

scheduling. They prove that under the Coxian distribution assumption, there

exists a system steady-state.

In [Kim and Shin, 1996], the authors provide a model for execution time

distribution including communication between sub-tasks with a queuing model

and Markov chains, taking account of blocking time between sub-tasks induced

by the parallelism of multiprocessor systems using the First-In-First-Out (FIFO)

policy. It provides a closed Markov chain representing step-by-step the number of

sub-tasks being computed at the same time, with m ` 1 states, state 0 being the

communicating/synchronization state, m being the number of cores available.

Shared cache interference Shared cache interference (see Figure 1.5) is one of

the reasons why migrations and preemptions are important metrics in scheduling

algorithms performances, as they quickly add overheads into the process. Those

overheads are usually ignored, but in multiprocessor scheduling they are crucial.

In [Davis et al., 2013], the authors list different problems encountered in
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multiprocessor systems with shared caches. They provide a static probabilistic

timing analysis method on evict-on-miss random replacement cache policy single-

core systems, based on geometric distribution with a missing rate, and give some

clues on how to model cache miss latency and memory use in multiprocessor

architectures, but with no actual results. It is actually based on the analysis

provided in [Altmeyer et al., 2015a], where the authors provide an analysis of how

cache misses occur with a random replacement policy in a cache dedicated to one

CPU, and express execution times as a sequence of cache accesses, missed or not.

WCET are then computed by adding all the delays induced by cache hit/misses.

In [Jalle et al., 2014,Fernandez et al., 2014], the authors go further in the analysis

of cache misses and focus on the bus contention. The goal of both papers is to

provide a probability of cache miss due to shared hardware. In contrast to [Altmeyer

et al., 2015a], where the authors provide an analysis of how cache misses occur

with a random replacement policy in a cache dedicated to one processing unit.

The authors points have already been partially answered in [Yan and Zhang, 2008]

where a non-preemptive model is provided to describe access interference between

instructions in a second-level shared cache but deterministic.

However, we do not model the shared cache interference in this thesis. Never-

theless, the number of preemptions have an important cost when resources are

shared [Phavorin and Richard, 2015]. This cost is a metric used in the simulations

presented in Chapter 6, and migrations are restricted within the heuristics proposed

for the same reason.

Machine learning in multiprocessor scheduling Techniques that address

the multiprocessor scheduling problem are developed in papers like [Nakasuka

and Yoshida, 1992, Kadaba et al., 1991, Lee et al., 1997, Ahmad and Dhodhi,

1996, Gupta et al., 2010, Padmajothi et al., 2022]. There are not many studies

from real-time researchers using stochastic analysis, nor analytical approximations

of the DMP in multiprocessor scheduling allowing inference, and, as we discuss

in the last chapter, machine learning.
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In Chapter 6 we focus on restricted multiprocessor scheduling algorithms.

1.3.3 Mixed-Criticality

Different values of execution times may correspond to various modes of a real-

time system. Detecting modes changes in critical systems can be crucial and

contribute to soften timing constraints. Such detection serves a higher-level objective:

characterizing a functional mode that may be a normal, exceptional or degraded, in

order to increase the reactivity of these systems and to predict mode transitions [Real

and Crespo, 2004]. Indeed, by adapting the reaction of the system with respect

to a given mode, an optimized utilization of resources is possible, which becomes

another commercial trend within the time critical systems industry. Sometime the

mode is obvious, such as a drone in a take-off mode for example, but tasks often

depend of unobserved latent variables such as environmental variables. The MC

model considers worst-case scenarios per mode [Vestal, 2007]. MC models have

been widely studied recently [Altmeyer et al., 2015b,Guo et al., 2017,Baruah et al.,

2011,Gettings et al., 2015,Baruah et al., 2012,Guo et al., 2015,Burns, 2014]. One

may see a review of MC systems in [Burns and Davis, 2017]. We do not use the

MC model in this thesis. However, we emphasize the link between probabilistic

approaches and MC models as discussed in [Maxim et al., 2017b,von der Brüggen

et al., 2022,Abdeddaïm and Maxim, 2017], and how probabilistic approaches can

contribute to better define and understand how MC models can be used in practice.

The introduction of MC systems in [Vestal, 2007] is concluded in those terms:

An interesting theoretical question we encountered was: What is a good
multi-criticality utilization metric? We considered computing a vector
of utilizations (one per design assurance level), computing a utilization
using for each task the compute time associated with its own criticality,
and computing a utilization using the compute time associated with
the highest criticality of any task of equal or lower priority. A vaguely
troublesome property of all these metrics is that some workloads may
be feasibly scheduled at higher than 100% utilization.

This is exactly the problem probabilistic approaches solve: what can we say

when the maximal utilization is higher than 100% ? The MC model is a theoretical
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model that is based on several levels of criticality (e.g., high or low), which are

different modes of the system that can provide different execution times of tasks.

According to those modes, different quantities such as response times or deadline

miss probabilities are computed. In [Draskovic et al., 2021] for example, authors

provide the deadline miss probabilities for the MC model with the probabilistic

approach and show the link there can be between the MC model [Vestal, 2007]

and the stochastic analysis of real-time systems. However, as discussed in [Esper

et al., 2015], certifications of real-time systems look for levels of confidence, that

is to say a quantification of the failure rate of a given function (i.e., the real-time

task, the sensors it uses and the actuators it may communicate with) of a system.

Furthermore, computing deadline miss probabilities is necessary, but to the best of

our knowledge, the state-of-the-art results do not provide the appropriate granularity,

as the certification requirements are placed at functionalities level. Sensors and

actuators (the hardware part) is often not taken into account. In this perspective,

a model allowing the inference of data from sensors and actuator to consider a level

of confidence of the functionality of a system would be an improvement. In that

regard, probabilities may play a crucial role but the lack of probabilistic models

allowing such inference makes it not yet possible. Numerous papers try to generalize

deterministic results to the probabilistic approach without succeeding to redefine the

domain of application of such methods, which prevents the industry to actually trust

such analyses. We use the MC model as our main motivation to define properly

the domain of applicability of stochastic analyses.

1.4 Reader guidelines

In this thesis, we aim to approximate response times of real-time systems and

provide statistical analyses for adaptive scheduling decisions. We propose a method

for estimating the response time distribution and its a priori distribution. Finally,

we apply this method by introducing a new class of allocation algorithms that we

refer to as DMP-driven. The manuscript is composed of three main parts:
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(i) Approximation: chapters 2, 3 and 4,

a. in chapter 2, the mathematical model used to describe real-time systems

is introduced,

b. in chapter 3, the necessary conditions for the statistical analysis are

built,

c. in chapter 4, real-time systems are described with queueing theory results,

(ii) Estimation: chapter 5, the statistical analysis itself: a parametric estimation

adapted for response times,

(iii) Optimization: chapters 6 and 7,

a. in chapter 6, an online deadline miss probability-driven processor alloca-

tion,

b. in chapter 7, future potential work for more optimization.

The dependencies between chapters are illustrated in Figure 1.6.

1.5 Publications

The contributions presented in this thesis are published or under submission within

the following four papers:

(i) Identification of Execution Modes using Cluster Analysis. Kevin Zagalo,

Liliana Cucu-Grosjean and Avner Bar-Hen, ETFA 2020, [Zagalo et al., 2020],

(ii) Response Time Stochastic Analysis for Stable Fixed-Priority Real-Time Sys-

tems. Kevin Zagalo, Yasmina Abdeddaïm, Avner Bar-Hen and Liliana

Cucu-Grosjean, IEEE Transactions on Computers, Special issue on Real-

time Systems, 2023, [Zagalo et al., 2022a],

(iii) Response Time Parametric Estimation of Real-Time Systems. Kevin Zagalo,

Olena Verbytska and Avner-Bar-Hen, Arxiv Preprint, 2022, [Zagalo et al.,

2022b],
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Chapter 2: Model

Chapter 3: Fluid
model

Chapter 5: Response
time estimation

Chapter 4: Response
time approximation

Inference of  
scheduling knowledge

Chapter 6: Optimization
of multiprocessor

scheduling

Chapter 7: Future work

Figure 1.6: Manuscript structure and reading dependencies

1.6 Software

Numerical evaluations are implemented within three frameworks:

(i) Probabilistic SimSo: an adapted version of SimSo using probabilistic execution

times [Zagalo and Auvray, 2022].

(ii) rInverseGaussian: a Python library for the re-parameterized inverse Gaus-

sian distribution [Zagalo and Verbytska, 2022].

(iii) Hypoexponential: a Python library for the hypoexponential distribution

[Zagalo, 2022].
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Probabilistic approaches for real-time systems are based on the fact that the

worst-case execution times and minimal inter-arrival times can be weighted by their

probability of occurrence. The analysis induced by these approaches consists in

23
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quantifying the probability that timing constraints may not be satisfied: the goal

being to soften the description of timing variables as considering worst-case values

may lead to an over-dimensioning of the processor. This over-dimensioning brings

pessimism that may be measured as defined in [Díaz et al., 2004].

Utilization-based conditions of schedulability are well known. Indeed, the seminal

work of Liu and Layland [Liu and Layland, 1973] introduces a sufficient condition

for the feasibility of a real-time system using its maximal utilization. However,

in probabilistic real-time systems, each value of execution times and inter-arrival

times are weighted by a probability. Furthermore, the deterministic critical instant

defined in [Liu and Layland, 1973], i.e., the worst-case scenario in single processor,

cannot be extended to the probabilistic case directly [Chen et al., 2022].

In this chapter, we introduce a new type of real-time tasks that we call stationary.

2.1 Probabilistic Real-Time Systems

In this first section we formalize the use of the probability theory in real-time

systems and define the theoretical notions used by many studies.

2.1.1 Environment and probability space

Let Q be the set of possible states of the hardware, I the set of all possible

input values of tasks. As explained in [Axer et al., 2014], Q and I are usually

unknown and/or too large, thus

Timing predictability [. . . ] is incomputable for most systems. So, it
is not possible to construct a general procedure that, given a system,
computes its predictability exactly. [. . . ] However, it is possible to
develop procedures that compute approximations, that is, upper and/or
lower bounds on a system’s predictability.

We call the product space Ω0 “ Qˆ I the environment space, representing all

possible values of all inputs of the tasks, the exact state of the processor, or any

information that varies during the execution of tasks, the physical properties in
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which the system interacts. We suppose Ω0 finite, i.e., |Ω0| ă 8. For example,

let Cpq, iq be the execution time of a task computed in an environment pq, iq P

Ω0. In a perfect world, by knowing all possible states of a system, the system

would be time predictable, in the sense that we can in fact predict the worst-case

environment in Ω0 for a given task. In [Axer et al., 2014], authors define the

timing predictability of a task with

PrpΩ0q “ min
q1,q2PQ

min
i1,i2PI

Cpq1, i1q

Cpq2, i2q
(2.1)

which measures the ratio between the minimum and the maximum execution time

of this task. A concept similar to the timing predictability can be measured by

enumerating the subsets of Ω0 that satisfy the occurrence of specific events. Let

us call any subset A Ă Ω0 an event, and A the set of all possible events, such

that the empty space H P A and Ω0 P A.

Finally, let P be a probability measure on the environment space Ω0, i.e., a

function mapping A to r0, 1s such that

(i) PpΩ0q “ 1,

(ii) P is σ-additive, i.e., for any collection pAnqn of pairwise disjoint events in A,

P p
Ť

nAnq “
ř

n PpAnq.

The uniform probability P of an event A P A is the frequency of occurrence

of this events in Ω defined by

PpAq “
|A|

|Ω0|
(2.2)

For example, let c P N. If A “ tpq, iq P Ω0 : Cpq, iq “ cu its associated

probability according to P is the frequency of occurrence of the equality Cpq, iq “ c

in Ω0, i.e., PpAq “

ř

qPQ

ř

iPI 1tcupCpq,iqq

|Q|ˆ|I|
where

1Apxq “

$

&

%

1 if x P A

0 otherwise.
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Definition 2.1 (Probability space). Let Ω0 be an environment space, A the sets of

all events of Ω0 and P the uniform probability measure on A defined in Eq. (2.2).

We call pΩ0,A,Pq a probability space.

In the remainder of this thesis, Q and I are considered unknown.

Definition 2.2. Let pΩ0,A,Pq be a probability space and A P A. We say A holds

if PpAq “ 1.

The application of this definition is as follow: every equality X “ Y (resp.

inequality X ď Y ) is defined by P pX “ Y q “ 1 (resp. PpX ď Y q “ 1).

2.1.2 Timing variables

A task is instantiated at a given time, for a given sequence of environments. In this

section we provide a formal definition of the instance of a task, and its associated

execution time, inter-arrival time and deadline.

Tasks and jobs

We call task a tuple of timing variables τ “ pX1, . . . , Xnq mapping the environment

set Ω0 to the product space J Ă Rn
`. We call job an instance of a task τassociated

to an environment ω0 denoted τpω0q, such that a task τ is the function

τ : ω0 P Ω0 Ñ τpω0q P J

where J is the set of all jobs. We say that a job is released when its associated

task is activated. When a job is released, several variables are released with it.

Let Γ “ tτ1, τ2, . . . u be a task set.

Let X be a mapping from Ω0 to R`, and X´1 be the inverse image of X in Ω0.
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Let BX “ tX´1pAq : A P Au. We define the probability distribution of X

PXpAq “ P ˝ X´1
pAq

“ P
`

X´1
pAq

˘

“ Ppω0 P Ω0 : Xpω0q P Aq

for A P BX .

Lemma 2.1. pR`,BX ,PXq is a probability space.

Proof. First, X´1pR`q P BX , and PXpR`q “ 1. Let pBpqp be a sequence of

pairwise distinct elements of BX . Let p ‰ q and ω0 P X´1pBpq X X´1pBqq. Then

Xpω0q P Bp X Bq “ H. Hence the pX´1pBpqqp are pairwise disjoints events of R`,

and thus PXpYpBpq “ PpYpX
´1pBpqq “

ř

p PXpBpq.

We call timing variables the variables characterizing tasks.

Definition 2.3 (Timing variable). A timing variable on pΩ0,Aq is a mapping

X : pΩ0,Aq Ñ pR`,Bq such that for each B P B there exist A P A such that

B “ XpAq.

Let X be a timing variable. We define the distribution function of X as

FXpxq “ PXpp´8, xsq

“ Ppω0 P Ω0 : Xpω0q ď xq

also called cumulative distribution function and is such that FXp`8q “ 1 and

FXp´8q “ 0. The function

1 ´ FX

is called the exceedence function of X.



28 2.1. Probabilistic Real-Time Systems

Execution times

The execution time of a job is the amount of workload (or processor cycles) it

needs to finish. For a given environment ω0 P Ω0, and a task τi P Γ. Let Ci
be a timing variable such that the job τipω0q has an execution time Cipω0q. We

consider through this work that execution times are bounded, i.e., for all τi P Γ,

there exist cmini and cmaxi such that

@ω0 P Ω0, Cipω0q P
“

cmini , cmaxi

‰

We denote by Fi the distribution function of Ci, and its mean value by ErCis

and its second order moment E rC2
i s.

Inter-arrival times

For a given environment ω0 P Ω0, let Ti be a timing variable such that the inter-

arrival time Tipω0q is the elapsed time between the release (or activation) of the

job τipω0q and the release of the previous one. We denote by Gi the distribution

function of Ti. We call λi “ ErTis
´1 the rate of τi.

Deadlines

For a given environment ω0 P Ω0, Let Di be a timing variable such that the

relative deadline Dipω0q is the time given to the job τipω0q to execute. We say

that the relative deadline Di is

• constrained if any job of τi must complete its execution before the release

of the next job of the same task in a deterministic fashion, i.e., there exists

0 ă di such that @ω0 P Ω0, Dipω0q “ di ď Tipω0q,

• implicit if it is equal to the inter-arrival time between a job and its next job

of the same task,

• arbitrary if there is no relation with inter-arrival times.
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2.1.3 Properties of timing variables

The expectation operator E of a probability measure P is defined by

ErgpXqs “

ż

Ω0

gpXpω0qqPpdω0q (2.3)

for any function g : R` Ñ R. In order to estimate the distribution of a timing

variable, we need to express (2.3) in terms of its possible values instead of the

possible values in the hardware states in Q and inputs in I.

Lemma 2.2 (Transfer theorem). Let X be a timing variable and g : R` Ñ R. Then

ErgpXqs “

ż

R`

gpxqPXpdxq

Proof. Take x “ Xpω0q in Eq. (2.3), thus dω0 “ X´1pdxq. Furthermore, by

definition XpΩ0q P BX because Ω0 P A.

We use the notation PXpdxq “ dFXpxq. A consequence of this last lemma

is that for any A P BX ,

PXpAq “

ż

R`

1ApxqPXpdxq

Definition 2.4 (Independence). Let X and Y be two timing variables. We say that

X and Y are independent if and only if @B1 P BX , @B2 P BY ,

Ppω0 P Ω0 : Xpω0q P B1, Y pω0q P B2q “ PXpB1qPY pB2q

Definition 2.5 (Identically distributed). Let X and Y be two timing variables. We

say that X and Y are identically distributed if and only if @B P BX Y BY ,

PXpBq “ PY pBq
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and equivalently, @x P R`,

FXpxq “ FY pxq

and we write X pdq
“ Y or equivalently X „ dFY . Particularly X „ dFX .

Definition 2.6 (Conditional probability). Let X and Y be two timing variables.

The conditional timing variable X given Y “ y is written X|Y “ y and is such that

PXpAq “

ż

PpX P A|Y “ yqdFY pyq

for all x ą 0.

Definition 2.7 (Convolutions). Let X and Y be independent timing variables and

Z “ X ` Y . Then the distribution function of Z is the convolution FZ “ FX ˚ FY

defined by

FZpzq “

ż

FXpz ´ yqdFY pyq “

ż

FY pz ´ xqdFXpxq

2.1.4 Common distributions

We define in this section the distributions used in the remainder of this thesis.

Definition 2.8 (Uniform distribution). The uniform distribution function on the

interval r0, ts is defined by

Gpxq “
minpx, tq

t
, x ě 0

Definition 2.9 (Exponential distribution). The exponential distribution of mean

1{λ is characterized by the distribution function

Gpxq “ 1 ´ e´λx, x ě 0

Definition 2.10 (Standard Gaussian distribution). The standard Gaussian distri-
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bution is characterized by the distribution function Φ defined by

Φpxq “
1

?
2π

ż x

´8

exp
`

´y2
{2
˘

dy, x P R (2.4)

Definition 2.11 (Gaussian distribution). The Gaussian distribution of mean m P R

and variance v2 ą 0 is characterized by the distribution function Φm,v2pxq “ Φpx´m
v

q.

Definition 2.12 (Inverse Gaussian distribution). Let µ ą 0 and λ ą 0. The inverse

Gaussian distribution of mean µ and shape λ has a probability function ψ defined by

ψ pt;µ, λq “

c

λ

2πt3 exp
ˆ

´
λpt ´ µq2

2µ2t

˙

(2.5)

for t ą 0. Its mean is µ and variance µ3{λ. Its cumulative distribution function is

given by

Ψpt;µ, λq “ Φ
˜

c

λ

t

ˆ

t

µ
´ 1

˙

¸

` exp
ˆ

2λ
µ

˙

Φ
˜

´

c

λ

t

ˆ

t

µ
` 1

˙

¸

where Φ is defined in (2.4).

The inverse Gaussian family is a natural choice for a statistical modelling of

positive and right-skewed distributions, see [Folks and Chhikara, 1978, Tweedie,

1957]. It is used in many fields, such as industrial degradation modelling [Ye and

Chen, 2014], psychology [Schwarz, 2001,Palmer et al., 2011], and many others like

hydrology, market research, biology, ecology, and so on c.f., [Seshadri, 2012].

The tuple pCi, Ti, Diq varies depending on which environments τi is activated.

This means that when a job τipω0q is released, it is after Tipω0q units of time

after the previous job of τi. Its execution time is Cipω0q and it should be over

before Dipω0q units of time.

In the remainder of this thesis, we consider implicit deadlines.
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Server

distribution G1

distribution G2

distribution Gn

distribution
F1F2, ..., Fn

priority

Figure 2.1: Scheme of a
ř

i Gi{
ř

i Gi{1{SP system. The sorted queue (by priority) is
the queue wrapped with dots

2.1.5 Kendall’s notation

In queueing theory, Kendall’s notation [Kendall, 1953] is the standard notation to

describe a queueing system, i.e., arrival and service times, processing units and

scheduling policies. In our case, jobs arrive at a certain rate, and leave the system

after the processor treats their execution time. So the general standard model

for single processor scheduling is written G{G{1 and when written like this, the

first G stands for general inter-arrival time distributions, the second G for general

execution time distribution, the 1 refers to the single processor and implicitly we

suppose that FIFO is used to schedule jobs. In the remainder of this thesis,

• D stands for deterministic,

• G for general,

• M for memoryless.

For example, a D{D{1 queue is a periodic system with only one value of

execution time. It corresponds to the periodic worst-case analysis widely studied

in real-time systems.



2. Stationary Real-Time Systems 33

Each task generates its own queue. As we work under the assumption of

memoryless inter-arrival times, each task is associated to a M{G{1 queue. Fur-

thermore, as we work under a static-priority scheduling policy, and exponential

inter-arrival distributions with several tasks (or priority classes), we write the model
ř

iMi{
ř

iGi{1{SP, which is described on Figure 2.1.

2.2 Stationarity

Let T ą 0 and 0 “ t0 ă t1 ă t2 ă ¨ ¨ ¨ ă tk “ T and the finite sequence of

environments ω “ pωt0 , . . . , ωtkq. More generally, we define the space ΩT “ pΩ0qr0,T s

as the space of all functions mapping the interval of time r0, T s to the environment

space Ω0, such that ω P ΩT can be written ω “ pωt, t P r0, T sq. When T goes

to infinity, we denote Ω “ pΩ0qR` .

We call canonical process the operator θt : Ω Ñ Ω0 such that

θtpωq “ ωt

is the projection of a sequence of environments to the associated environment at time

t ą 0. It makes the link between processes evaluated on sequences of environments

and timing variables evaluated on given environments.

2.2.1 Task model

We consider a finite task set Γ “ tτ1, . . . , τnu of n tasks. A task τi is characterized by:

• Ci ą 0 its execution time,

• Oi ě 0 its offset, the time of its first activation,

• Ti ą 0 its inter-arrival time,

• Di ą 0, its relative deadline,
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• αi P r0, 1q, its permitted failure rate.

Ci, Oi, Ti and Di have their distributions, as αi is deterministic. The task set Γ

is ordered by decreasing priority order, i.e., τi has priority over τi`1.

Arrival times Let τi P Γ and ωpiq “ pω
piq
0 , ω

piq
t1 , . . . q P Ω be a sequence of

environments. We call arrival time of the j-th activation of τi the variable defined by

Ai,jpω
piq

q “ Oipω
piq
0 q `

j´1
ÿ

k“1
Tipω

piq
tk q (2.6)

such that Ai,1pωpiqq “ Oipω
piq
0 q is the first activation of τi. Arrival times have the

property of satisfying the relation Ai,jpω
piqq ´ Ai,j´1pωpiqq “ Tipω

piq
tj q.

Job sequences The j-th job of the task τi is denoted τi,j and defined by

τi,j “ τi ˝ θAi,j

such that the job τi,j is mapping Ω to J . Its execution time is

Ci,j “ Ci ˝ θAi,j

and the inter-arrival time between the jobs τi,j´1 and τi,j is

Ti,j “ Ti ˝ θAi,j´1

There are two types of inter-arrival times:

(i) stationary: A task τi P Γ is said stationary if the sequence Ti,j, j P N is

identically distributed with distribution function Gi. There are three sub-

classes widely studied of stationary inter-arrival times:

• periodic: A task τi P Γ is said periodic if Ti is deterministic, i.e., there

exists ti ą 0 such that Gipxq “ 1rti8q. In that case, we call Ti the period
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of the task τi. A periodic task is stationary. In real-time systems, it

models time-triggered programs, i.e., each ti units of time, the task τi is

activated.

• memoryless: Let T be an inter-arrival time. T is said memoryless if

PpT ą t ` s | T ą sq “ PpT ą tq, which can be rewritten as the

differential equation fpt ` sq “ fptqfpsq, @t, s ą 0. The solution to this

equation belongs to the family of exponential functions. In this case,

Giptq “ 1 ´ e´λit.

• sporadic: A stationary task τi is said sporadic if there exists a bound

tmini such the inter-arrival time Ti,j, j P N is greater than tmini . We call

λmaxi “ 1{tmini

the maximum rate of τi.

(ii) non-stationary: A task τi P Γ is said non-stationary if there exists a positive

function Λ such that a job released at the instant t ą 0 is released with a rate

Λptq. Thus, the sequence Ti,j, j P N is not identically distributed and their

distributions depend on the release time of their associated jobs. There are

two sub-classes of non-stationary inter-arrival times:

• sporadic: A non-stationary task τi is said sporadic if there exists a

bound tmini such the inter-arrival time Ti,j, j P N are greater than tmini .

Without more information on the individual distributions of Ti,j, j P N,

the analyses of sporadic non-stationary tasks can be done only in the

worst-case where they are bounded by periodic inter-arrival times of rate

λmaxi . This leads to suppose periodic inter-arrival times with Gmax
i ptq “

1rtmin
i ,8qptq.

• aperiodic: If inter-arrival times of a given task are non-stationary and

not sporadic.

Equivalently, we may write Eq. (2.6) as Ai,j “ Oi ˝ θ0 `
řj´1
k“1 Ti,k.
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Finally, the relative deadline of the job τi,j is the inter-arrival time between

τi,j and τi,j`1 i.e.,

Di,j “ Ti,j`1

because we consider that deadlines are implicit. A consequence of this is that the

deadline Di is with distribution function Gi.

The canonical process tθtut permits to write timing variables for any sequence

of environments, without specifying the environment they are evaluated on.

2.2.2 Renewal theory

Let Ai,j, i “ 1, . . . , n, j P N be a sequence of arrival times of the tasks in Γ as

previously defined, i.e., with Oi “ Ai,1 called its offset and Ai,j`1 ´ Ai,j „ dGi

for all j ě 1. We define the renewal process Ni

Niptq “

8
ÿ

j“1
1r0,tspAi,jq (2.7)

as the number of jobs of τi released before the instant t. We call

λi “ ErNip1qs

the intensity of Ni.

Definition 2.13 (Stationary renewal process). A renewal process N is said sta-

tionary if Npt ` sq ´ Npsq
pdq
“ Nptq for any t, s ą 0.

Theorem 2.1 (Section 1.4 [Sigman, 2009], [Sigman, 2006]). A renewal process N

with an inter-arrival time distribution G of mean λ´1 is stationary when its offset

O is distributed with

G0
pxq “ λ

ż x

0
p1 ´ Gpyqqdy (2.8)

where G0 is called the recurrence distribution of the renewal process N .
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Definition 2.14 (Stationary queueing model). We call a
ř

iGi{
ř

iGi{1{SP

queueing model stationary when its offsets Oi, i “ 1, . . . , n satisfy (2.8).

Corollary 2.1 (Periodic arrivals). In the deterministic case, i.e., PpTi “ λ´1
i q “ 1,

if Oi has a uniform distribution between 0 and λ´1
i , i.e., G0

i pxq “ λi minpx, λ´1
i q,

Ni is stationary.

Proof. According to Theorem 2.1, in order for Ni to be stationary, is that the

distritbution of Oi is G0
i pxq “ λi

şx

0 p1 ´ Gipyqqdy. In a periodic system, we have

1 ´ Gipxq “ 1r0,λ´1
i qpyq. However,

G0
i pxq “ λi

ż x

0
1r0,λ´1

i spyqdy

“

$

&

%

λi
şx

0 1dy if x ď λ´1
i

λi
şλ´1

i

0 1dy ` λi
şx

λ´1
i

0dy if x ą λ´1
i

“

$

&

%

λix if x ď λ´1
i

1 if x ą λ´1
i

“ λi minpx, λ´1
i q

which is the uniform distribution function according to Definition 2.8

Theorem 2.2 (p.394 [Stirzaker and Grimmett, 1992]). Let N be a stationary

renewal process of intensity λ. Then,

Nptq

t
Ñ
tÑ8

λ (2.9)

Poisson process

The increments Npt ` sq ´ Npsq of a stationary renewal process N only depend

on the value of t ą 0, where t ą s ą 0. However, any inter-arrival time is

dependent on the history of the process, i.e., all the information about past arrival

times. Only one family of renewal processes is memoryless, i.e., not dependent

on the past: the Poisson processes.
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Definition 2.15 (Poisson point process). Let N be a stationary renewal process of

intensity λ. N is called a Poisson point process if ErNptqs “ λt, and we have

P pNptq “ kq “ e´λ pλtqk

k!

i.e., Nptq is a Poisson variable of mean λt. Furthermore, the inter-arrival times

are exponentially distributed with mean 1{λ. We say that λ is the intensity of N .

Corollary 2.2. Poisson point processes are stationary.

Proof. According to Theorem 2.1, in order for a renewal process N of inter-arrival

distribution G to be stationary, the distritbution of its offset is G0pxq “ λ
şx

0 p1 ´

Gpyqqdy. However in the case of a Poisson process of intensity λ, Gpxq “ 1 ´ e´λx,

hence

G0
pxq “ λ

ż x

0
e´λydy “ 1 ´ e´λx

which means that the offset is distributed as all inter-arrival times.

Remark. Poisson point processes are the only memoryless renewal processes,

i.e., the probability that at a time t, the next arrival is at time t` s only depends

on s. In other words, the arrival times probabilities do not depend on the past at

any instant t. We classify exponential inter-arrival in the stationary context as

memoryless inter-arrival times. Indeed, the exponential distribution is the only

distribution having the property of not depending on the arrival times of jobs: for

any renewal process, the probability that the inter-arrival time T of a job exceeds

a value t ` s given that an interval of time of length s as past since the arrival of

this job, i.e., PpT ą t ` s | T ą sq depends on t and s, except of the exponential

distribution where PpT ą t ` s | T ą sq “ PpT ą sq. This is why this property is

called memoryless: it does not need to know anything from the past. In general, this

is not the case, and we discuss the general case in the end of the next chapter.

Poisson processes are renewal processes with many interesting properties that

we use throughout this thesis.
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Theorem 2.3 (Superposition, Section 1.4.2 [Baccelli and Brémaud, 2013]). Let N1

and N2 be two independent Poisson point processes of respective intensities λ1 and

λ2. Then N1 ` N2 is a Poisson process of intensity λ1 ` λ2.

Proof. Since N1 and N2 are both stationary, the stationarity of N1 `N2 comes from

the fact that its jumps are also i.i.d. For this, we need to show that minpO1, O2q is

exponentially distributed with parameter λ1 ` λ2. We have

PpminpO1, O2q ą tq “ PpO1 ą t, O2 ą tq

“ PpO1 ą tqPpO2 ą tq (Oi’s are independent)

“ e´λ1te´λ2t

then we conclude with Corollary 2.2,i.e., the fact that Oi
pdq
“ Ti.

Lemma 2.3 (Marked Poisson process). Let N be a Poisson point process counting

the arrivals of the jobs of n different tasks respectively arriving at a rate λ1, . . . , λn.

Let Īk,l be the index of the task of the l-th job of level k, i.e., the job of arrival time

Āk,l “ inftt ą 0 :
řk
i“1 Niptq “ lu. Then

PpĪk,l “ iq “
λi

řk
i“1 λi

(2.10)

In other words, the probability that this job is from task τi, i “ 1, . . . , n is

λi{
řk
i“1 λi.

Proof. The Īk,l are independent from the Ck,l, Tk,l and a fortiori of Ak,l. Hence, we

can use [Baccelli and Brémaud, 2013, Remark 1.4.2.] for each level of priority k

which gives us immediately (2.10).

Definition 2.16 (Poisson arrival). Let Γ be a stationary task set. We say that Γ

has Poisson arrivals if the inter-arrival times of tasks are exponentially distributed.

Definition 2.17 (Stationary Real-time System). Let pΩ,A,Pq a probability space,

and tθtu be a sequence of projections on pΩ,A,Pq. Let Γ be a task set such that all
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the couples pCi,j, Ti,jq, j P N are independent and identically distributed (i.i.d.), and

pOi, i “ 1, . . . , nq satify (2.8). We call pΩ,P,Γ, tθtuq a stationary real-time system.

We say that such system is deterministic if the timing variables in Γ do not depend

on the sequence of environments in Ω.

Demand process

Let N be a stationary renewal processes of intensity λ, and X1, X2, . . . an i.i.d.

sequence of bounded execution times of a task τ P Γ. We define the demand

process of the task τ as

W ptq “

Nptq
ÿ

j“1
Xj (2.11)

the accumulation of execution times required by the task τ until the instant t ą 0.

Lemma 2.4 (Wald’s lemma [Wald, 1944]). Let N be a positive integer-valued

variable independent from the i.i.d. timing variables X,X1, X2, . . . . Then for any

t ą 0,

E

«

N
ÿ

j“1
Xj

ff

“ ErN sErXs

Lemma 2.5 (Law of large numbers). Let X1, X2, . . . be an i.i.d. sequence of timing

variables such that Er|X1|s ă 8. Then

1
n

n
ÿ

i“1
Xi Ñ

nÑ8
ErX1s

Theorem 2.4. Let W be defined as in (2.11). Then

W ptq

t
Ñ λErXs (2.12)

Proof. We have W ptq
t

“
Nptq
t

1
Nptq

řNptq
j“1 Xj. Theorem 2.9 gives us Nptq

t
Ñ
tÑ8

λ and as

Nptq Ñ
tÑ8

8 the law of large numbers (Lemma 2.5) gives us 1
Nptq

řNptq
j“1 Xj Ñ ErXs

since the Xj’s are i.i.d. and bounded, we have Er|X|s ă 8.
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Until Chapter 6, we consider the stationary real-time system pΩ,P,Γ, tθtuq.

2.3 Time demand analysis

Due to the static-priority policy, the response times of a task τk depend only those

of higher priority tasks. We call job of level k any job of a task of higher or

equal priority than τk, i.e., any job τi,j, 1 ď i ď k, j P N. We suppose that

priorities are distinct. Let

ūk “

k
ÿ

i“1
λiErCis

be the k-level mean utilization of Γ, the total mean utilization ū “ ū|Γ|, and the

maximum utilization of level k,

ūmaxk “

k
ÿ

i“1
λic

max
i

Definition 2.18. Let pΩ,P,Γ, tθtuq be a stationary real-time system with total

mean utilization ū. Γ is said stable if ū ă 1.

Many schedulability tests rely on the utilization of the system, that is, sufficient

conditions that ensure that the system is indeed schedulable. However, those

schedulability tests are not suited for probabilistic real-time systems, as they do

not take advantage of the entire distributions of execution times and inter-arrival

times. Hence, the domain of feasibility of probabilistic real-time systems is yet to

be defined and is an active topic as presented in Section 1.3.2. In Chapter 3, we

prove that systems such that ū ą 1 are not feasible.

In the remainder of this thesis, all variables written with a bar, i.e., x̄ refer

to a priority level.

Let us define the three following stochastic processes:

(i) Nkptq “
ř8

l“1 1r0,tspAk,lq as the number of jobs of τk released before t ą 0,
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(ii) the k-level demand W̄kptq as the accumulation of the execution times required

by jobs of priority higher or equal than τk, regardless of potential deadline

misses, released before the instant t to complete,

W̄kptq “

k
ÿ

i“1

Niptq
ÿ

j“1
Ci,j

(iii) the k-level backlog βkptq as the remaining workload of level k at t ě 0, defined

by

βkptq “ W̄kptq ´

ż t

0
1tβkpsqą0uds

The demand represents the workload required by the jobs arriving over time.

The goal of schedulability tests is then to check in which proportion of Ω this

demands fits the processor time (otherwise called budget) given to those jobs.

2.3.1 Pessimism

In probabilistic systems, some authors like Diaz [Díaz et al., 2004] introduced the

concept of pessimism for probabilistic systems in a formal way, which is itself called

stochastic dominance in the probability field.

Definition 2.19 (Pessimism [Díaz et al., 2004]). We say that X is more pessimistic

than Y if and only if PpY ą tq ď PpX ą tq for all t ą 0, and we write Y ďst X.

This property is also called stochastic dominance. Pessimism is a weaker kind of

dominance than the usual inequality operator, as shown in the following lemma.

Lemma 2.6. Let X and Y be two timing variables. If X ď Y , then X ďst Y .

Proof. First of all, since X ď Y , we get for all t ą 0 that PpY ą t | X ą tq “ 1

which implies that

@t ą 0,PpX ą t, Y ą tq “ PpX ą tq (2.13)
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Then

PpX ą t | Y ą tq “
PpX ą t, Y ą tq

PpY ą tq
“

PpX ą tq

PpY ą tq
(according to (2.13))

Hence @t ą 0, PpXątq
PpY ątq

ď 1 and we have the result.

2.3.2 Blocking time

We denote Ci,Niptq the execution time of the last job released before the instant

t ą 0. Depending on the discarding policy, jobs wait a certain amount of time

between their release and their actual execution. For a task τi, we call blocking

time the process defined for all t ą 0 by

$

&

%

B0ptq “ 0

Bkptq “
řk
i“1 minpβiptq ´ Bi´1ptq, Ci,Niptqq

as the amount of time the most recent job before t ą 0 τi,Niptq has to wait before its

execution. In Figure 2.3 for example, the dotted area represents the blocking time

of τ2.

In opposition to the backlog, the blocking time takes into account the discarding

policy. Note that the following inequality allows us to bound the blocking time,

which we do in the next chapter.

Proposition 2.1. For all t ą 0,

Bkptq ď min
˜

βkptq,
k
ÿ

i“1
Ci,Niptq

¸

(2.14)

Proof. First of all, since B0ptq “ 0, we have B1ptq “ minpβ1ptq, C1,N1ptqq. Then, by



44 2.3. Time demand analysis

induction, suppose that (2.14) holds. Bk`1ptq is such that

Bk`1ptq “ Bkptq ` minpβk`1ptq ´ Bkptq, Ck`1,Nk`1ptqq

ď min
`

βk`1ptq, Bkptq ` Ck`1,Nk`1ptq

˘

ď min
˜

βk`1ptq,
k`1
ÿ

i“1
Ci,Niptq

¸

thus we have (2.14)

Hence we have the two following variable that are more pessimistic than Biptq

thanks to the following proposition.

Corollary 2.3. For all t ą 0, Bkptq ďst βkptq.

Proof. Apply Lemma 2.1 and Lemma 2.6.

Corollary 2.4. For all t ą 0, Bkptq ď
řk
i“1 c

max
i .

Proof. Apply Lemma 2.1 and the fact that the execution time Ci is bounded by

cmaxi .

2.3.3 Response times

Due to the static-priority policy, the response time of task τi depends on those

of higher priority tasks.

Definition 2.20 (Response time). The response time Rk,l of a job τk,l is the size

of the smallest interval after its arrival time Ak,l where the blocking time of level i

is zero, i.e.,

Rk,l “ inf tt ą 0 : BkpAk,l ` tq “ 0u (2.15)

Example 2.1. Consider a task set tτ1, τ2u, and that τ2 is activated at t “ 0,

i.e., O2 “ 0, and C2,1 “ y “ 3. Let PpC1 “ 1q “ 1{2,PpC1 “ 2q “ 1{2,

PpT1 “ 2q “ 1{2, PpT1 “ 4q “ 1{2, and suppose B1p0q “ x ` y “ 8, C1,1 “ 1,
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0 2 4 6 8 10

τ1

τ2

Figure 2.2: τ2,1 is the first job of τ2 and is released at time 0. Its response time is equal
to 8. It starts executing at 1, its blocking time is 1 as it is blocked by the job τ1,1 also
released at time 0. It is preempted by τ1,2 at time 3, and τ1,3 at time 6.

C1,2 “ 2, C1,3 “ 2, and O1 “ 2, A1,2 “ 6, A1,3 “ 10 and A1,4 “ 14. Then the

response time R2,1 is the first instant t when B1ptq “ 0:

B1p1q “ W1p0q “ x ` y

B1p3q “ W1p0q ` C1,1 ´ 3 “ x ` y ´ 2

B1p7q “ W1p0q ` C1,1 ` C1,2 ´ 7 “ x ` y ´ 4

B1p11q “ W1p0q ` C1,1 ` C1,2 ` C1,3 ´ 11 “ x ` y ´ 6

B1p13q “ W1p0q ` C1,1 ` C1,2 ` C1,3 ´ 13 “ x ` y ´ 8 “ 0

Hence R2,1 “ 13. This is illustrated in Figure 4.2. To build all possible values of R2,1,

one must do the same for all combinations of possible values of pA1,1, A1,2, A1,3, A1,4q

and pC1,1, C1,2, C1,3, C1,4q.

The discarding policy of a scheduling policy is the decision taken when a deadline

is missed. When firm deadlines are missed, jobs are instantly discarded. Thus,

for example, a job can be discarded when it misses its deadline. This is the

most common discarding policy. However, others can be imagined: no discarding

from a certain amount of time, discard the next job, etc. This is illustrated in
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0 2 4 6

τ1

τ2

(a) The job of τ1 is discarded.

0 2 4 6

τ1

τ2

(b) The job of τ1 is not discarded.

Figure 2.3: Example of a schedule with the discarding policy and without. The down-
arrow represents the deadline of a task. The black circle means that the task has finished
its execution. The gray-squared areas indicates that a task awaits for processing resources

Figure 2.3. Pessimism has been introduced to demonstrate that response time

analyses only depend on the blocking times.

Theorem 2.5 (Theorem 1 in [López et al., 2008]). Let R be the response time of a

job with blocking time b and R1 be the response time of this same job with blocking

time b1. Then if b1 ě b, R ďst R
1,i.e., R1 is more pessimistic than R.

Proof. We have R “ b ` X and R1 “ b1 ` X. If b1 ě b, we get R ď R1, hence

applying Lemma 2.6 gives us the result.

Corollary 2.5. Response time analyses considering a non-discarding policy are

more pessimistic than any other discarding policy.

Proof. Direct application of Theorem 2.5, since non-discarding schedule provide the

largest possible blocking times when no job discarding is applied.

Pessimist response time analysis

As introduced in [Joseph and Pandya, 1986], the response time Rk,l of a job τk,l

is the smallest instant after its arrival time Ak,l lower than the time it is given

to run the level k demand. The point of the following theorem is to provide a
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more pessimistic variable than Rk,l. A formal translation of this definition couples

with Corollary 2.5 gives us the following results.

Theorem 2.6 (Response time bound). Let pΩ,P,Γ, tθtuq follow a
ř

iMi{
ř

iGi{1{SP

queueing model. The response time Rk,l is such that

Rk,l ďst inftt P p0, Tkq : βkpAk,lq ` W̄kptq ´ W̄kp0q ď tu (2.16)

Proof. First of all, Bkptq ď βkptq for all t ą 0 according to Proposition 2.1. Hence

according to Definition 2.20,

Rk,l ď inftt P p0, Tk,l`1q : βkpAk,l ` tq “ 0u

Then for any a ą 0,

βkpt ` aq “ W̄kpt ` aq ´ W̄kpaq ` W̄kpaq ´

ż a

0
1tβkpsqą0uds ´

ż a`t

a

1tβkpsqą0uds

“ βkpaq ` W̄kpt ` aq ´ W̄kpaq ´

ż a`t

a

1tβkpsqą0uds

thus according to Definition 2.20, Rk,l can be stochastically dominated by

inf
#

t P p0, Tk,l`1q : βkpAk,lq ` W̄kpAk,l ` tq ´ W̄kpAk,lq ď

ż Ak,l`t

Ak,l

1tβkpsqą0uds

+

(2.17)

since Rk,l is the first instant after Ak,l that the backlog βk,l is null, it means that

on the interval s P rAk,l, Ak,l ` Rk,ls we have 1tβkpsqą0u “ 1, which allows to rewrite

(2.17) as

Rk,l “ inftt ą 0 : βkpAk,lq ` W̄kpAk,l ` tq ´ W̄kpAk,lq ď pAk,l ` t ´ Ak,lqu (2.18)
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Furthermore,

W̄kpa ` tq ´ W̄kpaq “

k
ÿ

i“1

Nkpt`aq
ÿ

j“Nkpaq`1
Ci,j

and since the Ni’s are renewal processes and the pCi,jqj are i.i.d., we get

W̄kpa ` tq ´ W̄kpaq
pdq
“ W̄kptq ´ W̄kp0q (2.19)

Finally with (2.18), (2.19) and the fact that Tk,l`1 is independent from Ak,l, βk and

Wk, and is with the same distribution as Tk we get the result.

This last theorem allows to consider the simultaneous activation of tasks as

the worst-case as we see in the following.

Theorem 2.7 (WCRT). Consider a stationary real-time system and let Rmax
k “

inftt P p0, Tkq :
řk´1
i“1 c

max
i ` W̄kptq ď tu. Then,

@l P N, Rk,l ďst R
max
k

Proof. With the discarding policy, the blocking time of level i is always bounded

by
ři
k“1 c

max
k . Hence applying Theorem 2.6 with βipAi,jq “

ři
k“1 c

max
k gives the

result.

This method is called TDA. TDA holds for any static-priority preemptive single-

processor model with the discarding policy discussed in Section 2.3.3, thanks

to the following theorem.

Theorem 2.8 (Theorem 3 in [Burns and Baruah, 2008]). Deterministic TDA

of static-priority preemptive single processor systems with independent tasks is

sustainable.

This last theorem is the reason why the probabilistic analysis is possible for

real-time systems and that TDA works on stationary real-time systems just like

any periodic deterministic real-time system.
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2.3.4 Deadline miss probabilities

The DMP of a job τk,l is the probability that its response time is greater than its

deadline on any possible sequence of environments. In order to compute it, we

compute the exceedence function of the response time Rk,l

Hk,lptq “ P pRk,l ą tq (2.20)

Computing this exceedence functions requires to know the distribution of all the

variables that it involves. For this matter, we build a pessimistic approximation

of the response time of the task τi denoted Rmax
i in Chapter 3 with a fluid model.

With Hi,j we can tell if the job τi,j is schedulable or not. Although, computing all

the Hi,j, j P N is difficult. In order to be safe, i.e., make a pessimist analysis, we

define the WCRT as a bound Rmax
i such that for all j P N, Ri,j ďst R

max
i , i.e.,

sup
jPN

Hi,jptq ď P pRmax
i ą tq

Without further information we cannot say if such bound exists and is finite.

However, if we can compute the distribution of the WCRT Rmax
i , we then have

a bound of deadline miss probabilities.

Definition 2.21. Γ is said feasible if and only if there exists at least one scheduling

policy such that the WCRT Rmax
i is finite and such that all tasks τi P Γ satisfy

pmaxi “ P pRmax
i ą Diq ď αi (2.21)

In those terms, checking if a task is schedulable is checking if the WCRT Rmax
i

is finite and pmaxi ď αi for all tasks τi P Γ is the goal of Chapters 3 and 4.
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2.4 Processor model

A uniform multiprocessor system is a set of processors Π “ tκ1, . . . , κmu composed of

processors κ P Π of respective speed spκq P r1, smaxs, i.e., κ can process spκq workload

units in one unit of time. We consider Π ordered by decreasing speeds, i.e., spκiq ą

spκjq if i ă j. Let κ P Π be a processor at a given state in time and a task τi P Γ.

We denote the local mean utilization of the task τi on the processor κ by

uipκq “
λiErCis

spκq
(2.22)

and suppose for all 1 ď i ď n and 1 ď j ď m that uipκjq ă 1. We define Γ`
i pκq

(resp. Γ´
i pκq) to be the set of tasks of priority higher (resp. lower) or equal to the

priority of τi active on the processor κ at a given time, and let

ūipκq “
ÿ

τjPΓ`
i pκq

uipκq (2.23)

be the local mean utilization of level i in the processor κ and, respectively, let

v̄ipκq “
1

spκq

¨

˝

ÿ

τjPΓ`
i pκq

λjErC2
j s

˛

‚

1{2

be the local deviation of level i on the processor κ, that is the sum of the utilization

(resp. deviation) of the tasks in Γ`
i pκq. Let

ūmaxi pκq “
1

spκq

ÿ

τjPΓ`
i pκq

λjc
max
j

be the local maximum utilization of level i of κ and

v̄maxi pκq “
1

spκq2

ÿ

τjPΓ`
i pκq

λjpc
max
j ´ cminj q

2

the local maximum deviation of level i in κ.
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Definition 2.22 (Stationary Multiprocessor system). Let pΩ,P,Γ, tθtuq be a

stationary real-time system as defined in Definition 2.17, and Π be a multiprocessor

system. We call pΩ,P,Γ,Π, tθtuq a stationary multiprocessor system. Without any

loss of generality, we refer to it as a stationary real-time system.

2.5 Rate Monotonic

Real-time scheduling is the decision process deciding which job should be executed.

Online priority-driven scheduling algorithms are typically implemented as follows:

at each time instant, they allocate an available processor to the highest-priority

job. Static-priority algorithms satisfy the property that for two tasks τi and τj,

whenever τi and τj are both have active, it is always the case that the jobs of one

task have priority over the other. With dynamic priority algorithms in the other

hand, it is possible that some tasks τi and τj both have active jobs simultaneously,

but in some case the job of τi has a higher priority than the job of τ2 and in

other cases the opposite. Scheduling algorithms that allow such “switching” of

priorities between jobs are known as dynamic-priority algorithms. We cover in

this thesis only static-priority policies.

The two famous and widely used scheduling policies RM and EDF are proven

optimal in some well defined models. RM is a scheduling algorithm used to

prioritize the scheduling of processes based on their relative rate in the case of

periodic systems. The algorithm assigns higher priority to a tasks that are given

higher maximum rates, meaning that the most important processes are scheduled

more often than lower rate processes. Meaning that τi has priority over τj if λi ą λj .

This type of scheduling algorithm is useful for ensuring that the most important

tasks are completed on time and with minimal delays. EDF is used for its dynamic

computation of priorities : each instance of a program has its own priority as a

function of its deadline. It is also shown optimal in the non preemptive single

processor case for example, and many of its variants are studied in [Liu and Layland,

1973, Baruah and Baker, 2008, Baruah and Goossens, 2008].
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0 2 4 6 8 10 12 14 16 18

τ1

τ2

Figure 2.4: Two tasks with implicit deadline using the RM policy

Theorem 2.9 (Hyperbolic bound [Bini et al., 2003]). In the case of a single

processor preemptive RM scheduling, with periodic inter-arrival times and implicit

deadlines, if
n
ź

i“1
pλic

max
i ` 1q ď 2 (2.24)

the system is schedulable with a permitted failure rate equal to zero.

In the case of multiprocessor scheduling, i.e., m ě 2, the RM policy is verified

schedulable for identical multiprocessor systems global scheduling when

ūmaxn ď
m2

3m ´ 1 ; @τi P Γ, λicmaxi ď
m

3m ´ 2 (2.25)

and by allocating jobs to any available processor, all tasks are schedulable with

a permitted failure rate equal to zero [Andersson et al., 2001]. In [Baruah and

Goossens, 2003] authors extend this result to uniform heterogeneous multiprocessor

systems. The system is schedulable with permitted failure rates equal to zero when

ūmaxn ď
1
2

˜

ÿ

κPΠ
spκq ´ p1 ` Λq max

τiPΓ
tλic

max
i u

¸

(2.26)

where Λ “ maxκjPΠ
1

spκjq

řm
i“j`1 spκiq measures the degree by which Π differs from

an identical multiprocessor system.

Finally, for the restricted migration the utilization bound of RM on a multiproces-
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sor system with identical processors of speed s is proven [Goossens et al., 2012] to be

ūmaxn ď ms ´ pm ´ 1q max
τiPΓ

tλic
max
i u
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Utilization-based schedulability conditions for single-core static-priority preemp-

tive scheduling policies are widely studied [Davis et al., 2016]. The seminal work

of Liu and Layland [Liu and Layland, 1973] introduces a sufficient condition for

the feasibility of a real-time system using its maximal utilization. Nevertheless,

a real-time system not satisfying this sufficient condition may remain schedulable

with a given probability (see Eq. (2.21) in Section 2). Moreover, while probabilistic

methods have been focused towards fitting in this sufficient condition by providing

less pessimistic analyses, their domain of feasibility needs to be defined as well. In
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this thesis, we build necessary feasibility conditions for static-priority scheduling

policies based on the mean utilization of the real-time system. We demonstrate

that a mean utilization smaller than 1 is mandatory for response times to be finite,

c.f., Propositions 4.2 and 4.4. We call systems with a mean utilization smaller

than 1, stable real-time systems.

3.1 Stochastic analysis background

The elements presented in this chapter are widely inspired from the books of François

Baccelli and Pierre Brémaud, Elements of queueing theory, [Baccelli and Brémaud,

2013] and, Hong Chen and David D. Yao, Fundamentals of queueing networks:

Performance, asymptotics, and optimization, [Chen and Yao, 2001].

3.1.1 Brownian motions

In order to statistically describe the behavior of real-time systems we use a process

called Brownian Motion. It allows to provide theorems similar to the central

limit theorem for stochastic processes. All definitions and results presented in this

section can be found in [Le Gall, 2016].

Definition 3.1 (Standard Brownian motion). A standard Brownian Motion is a

process B “ pBptq, t ą 0q such that

• Bp0q “ 0,

• Bpt ` sq ´ Bpsq „ Φ0,t, for t, s ą 0,

• Bptq ´ Bpsq is independent of Bpuq ´ Bpvq for t ą s ą u ą v ą 0,

• B is continuous.

Lemma 3.1 (Re-scaling property of Brownian motions). Let B be a standard

Brownian motion. For any a ą 0, a´1{2Bpatq
pdq
“ Bptq.
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This is an important property that we use in the next section when introducing

the heavy-traffic theorem.

Definition 3.2 (Brownian motion). A Brownian motion of drift u and deviation

v ą 0 is a process W such that there exists a standard Brownian motion B such

that

W ptq ´ W p0q “ ut ` vBptq (3.1)

for all t ą 0. For each t ą 0, the distribution function of W ptq ´ W p0q is Φut,v2t.

Theorem 3.1 (First-passage time of a Brownian motion, [Abundo, 2016]). Let

W be a Brownian motion of drift u ą 0 and deviation v ą 0. Let Ipxq be the

first-passage time of W on 0 when W p0q “ x ą 0, i.e.,

Ipxq “ inftt ą 0 : W ptq “ 0u

Then Ipxq has an inverse Gaussian distribution of mean x{u and shape px{vq2.

Definition 3.3 (Reflected Brownian motion, Theorem 6.1 [Chen and Yao, 2001]).

A process β is called a reflected Brownian motion of drift u and deviation v ą 0 if

there exists a Brownian motion W of drift u and deviation v ą 0 such that for all

t ą 0,

βptq “ W ptq ` sup
sPr0,ts

p´W psqq
`

Theorem 3.2 (Theorem 6.2 [Chen and Yao, 2001]). Let β be a reflected Brownian

motion of drift u and deviation v ą 0. If u ă 0, then the distribution of limtÑ8 βptq

is an exponential distribution of parameter

η “ ´
2u
v2

and is called the steady-state distribution of β.
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3.1.2 Backlog process

We now consider the evolution of the execution of tasks and the demand. Let

W be a demand process. We introduce the backlog process as the remaining

demand at a given instant

βptq “ W ptq ´

ż t

0
1tβpsqą0uds (3.2)

describing the remaining demand at the instant t ą 0, after having been executed

at most t units of time. The term
şt

0 1tβpsqą0uds is stochastic and represents the

amount of time the system is not idle considering the work-conserving assumption.

This backlog process satisfies the relation

βpan`1q “ pβpanq ` cn`1 ´ tn`1q
` , @n P N (3.3)

where the panq, pcnq, ptnq are respectively sequences of arrival times, execution

times and inter-arrival times. Eq. (3.3) is at the basis of the shrink and convolve

method used by many, e.g., [Díaz et al., 2004, Kim et al., 2005, Palopoli et al.,

2012, Villalba Frias, 2018, von der Brüggen et al., 2021]. Under some conditions,

this backlog process has asymptotic properties according to the following theorem.

Theorem 3.3 (Steady-state backlog [Loynes, 1962]). Let β be the backlog process

of a M{G{1 queueing model as defined in (3.2). If Erc0s ă Ert0s, the limit β̃ “

limtÑ8 βptq exists, is finite and is equal to

β̃ “

˜

sup
n

n
ÿ

j“1
cj ´ tj

¸`

In the next section, we use this backlog process at priority levels, i.e., by

considering the demand of not only a task but also of higher priority tasks. This

allows to model the arrival of jobs of a static-priority scheduling policy. Indeed,

at priority level, we know that while there is workload from higher priority, it is

sufficient to check the workload of priority level k and the time that passed between



3. Fluid model 59

Table 3.1: Task set used in the simulations of the experimental results of Section 4.4

τk λ´1
k rcmink , cmaxk s dFk ūk ūmaxk

τ1 4 p1, 2q p0.5, 0.5q 0.375 0.5
τ2 6 p1, 2q p0.5, 0.5q 0.625 0.833
τ3 8 p1, 2, 3q p0.5, 0.3, 0.2q 0.838 1.208
τ4 10 p1, 2, 3q p0.6, 0.2, 0.2q 0.998 1.508
τ5 12 p1, 2, 3, 4q p0.5, 0.3, 0.1, 0.1q 1.148 1.841

two arrival times of jobs of level k. In the end of this chapter, we focus on idle

times, the times where the backlog is 0, and it is important to remark that any

scheduling policy considering priority levels instead of specific tasks will provide

the same idle times. The reason of this is that what is important at the end is the

amount of workload demanded to the system and the amount of time that passes

between job arrivals. In other words, for a sorted queue, i.e., by priority level, we

can use FIFO results on priority level backlog in the next section. See Figure 2.1.

3.2 Memoryless backlog

In this chapter, we present an analytical approximation of the demand of probabilistic

real-time systems, using a fluid model associated to the actual demand of the system.

Fluid models are widely used in queueing theory [Baccelli and Brémaud, 2013] in

order to determine asymptotic results. In real-time systems, a famous example is the

DP-FAIR scheduling algorithm [Levin et al., 2010], that uses the fluid model of the

backlogs to determine scheduling decisions for homogeneous multiprocessor systems.

Let pΩ,P,Γ, tθtuq be a stationary real-time system following the queueing model
ř

iMi{
ř

iGi{1{SP, such that Γ is ordered by decreasing priority order, i.e., τi has

priority over τi`1. Let us remind the three following stochastic processes:

(i) Nkptq “
ř8

l“1 1r0,tspAk,lq as the number of jobs of τk released before t ą 0, of

mean ErNkptqs “ λkt, see Definition 2.15. Nk is right-continuous with left

limit (RCLL) and integer-valued.

(ii) the k-level demand W̄kptq as the workload required by jobs of priority higher
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Figure 3.1: Level 3 demand of 1 000 instances of the Diaz and Kim (DK) model, the
heavy-traffic demand process and the classical deterministic worst-case analysis (WCET)
considering only the maximal execution time for each task, for ū “ 0.838 and ūmax “ 1.208
and hyper-period T̄ , for Γ defined in Table 3.1

or equal than τk, regardless of potential deadline misses, released before the

instant t to complete, W̄kp0q ě 0,

W̄kptq “

k
ÿ

i“1

Niptq
ÿ

j“1
Ci,j

of mean ErW̄kptqs “
řk
i“1 ErNiptqsErCis “ ūkt, see [Janssen and Manca,

2006, (6.53)]. W̄k is RCLL and positive.

(iii) the k-level backlog βkptq as the remaining workload of level k at t ě 0 when

Γ is ordered in a decreasing priority order and scheduled with a preemptive
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static-priority scheduling policy, defined by

βkptq “ W̄kptq ´

ż t

0
1tβkpsqą0uds (3.4)

where
şt

0 1tβkpsqą0uds is the total busy time of level k [Lehoczky, 1990, p. 2]

before t ą 0. βk is RCLL and positive.

The backlog process βi is such that for t P rAi,j, sq and s ă inftAp,l : Ap,l ą Ai,ju,

βkptq “ pβkpAi,jq ` Ci,j ´ pt ´ Ai,jqq
`

which is known as Lindsley’s equation [Lindley, 1952]. βk is not a Markovian process

in general, but a stochastic recurrence [Baccelli and Brémaud, 2013].

Example 3.1 (Backlog). Let us consider the task set tτ1, τ2u, with PpC1 “ 1q “ 1,

PpT1 “ 2q “ 1, PpC2 “ 1q “ 1{2, PpC2 “ 2q “ 1{2, PpT2 “ 3.1q “ 1{2,

PpT2 “ 4q “ 1{2. Suppose both tasks τ1 and τ2 are activated at time t “ 0 and

T2,2 “ 3.1, C2,1 “ 2, C2,2 “ 1. Then, W̄2p0q “ 1 ` 2,

β2p2q “ W̄2p2q ´
ş2

0 1tβ2psqą0uds

“ p1 ` 2 ` 1q ´ 2 “ 2

β2p3q “ W̄2p3q ´
ş3

0 1tβ2psqą0uds

“ p1 ` 2 ` 1q ´ 3 “ 1

β2p3.1q “ W̄2p3.1q ´
ş3.1

0 1tβ2psqą0uds

“ p1 ` 2 ` 1 ` 1q ´ 3.1 “ 1.9

β2p3.2q “ W̄2p3.2q ´
ş3.2

0 1tβ2psqą0uds

“ p1 ` 2 ` 1 ` 1q ´ 3.2 “ 1.8

At the instant t “ 3.2, the backlog of level 2 is 1.8.

The process βk describes the remaining demand without considering deadline

misses, i.e., while jobs are discarded their demand remains in the backlog analysis.

Thus, the process βk is an upper-bound of the blocking time, see Eq. (4.4), i.e., the
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response time analysis that we provide in Chapter 4 is pessimistic as defined

in [Díaz et al., 2004].

We express in the following the backlog process in a more convinient way.

Lemma 3.2 (Theorem 6.1 [Chen and Yao, 2001]). For any right-continuous with

left limits process X, there exists a unique pair of processes pZ, Y q such that

(S1) Z “ X ` Y ě 0,

(S2)
ş8

0 ZptqdY ptq “ 0,

(S3) dY ptq ě 0, Y p0q “ 0.

Furthermore, Y ptq “ supsPr0,tsp´Xpsqq`.

Lemma 3.2 solves a reflexion mapping problem called the One dimensional

Skorokhod problem. We use is in the following to express the right limit of

the backlog process.

Theorem 3.4 (Section 6.2 [Chen and Yao, 2001]). The backlog of level k is such

that

βkptq “ W̄kptq ´ t ` sup
sPr0,ts

ps ´ W̄kpsqq
` (3.5)

for all t ą 0.

Proof. Let Xptq “ W̄kptq ´ t and Y ptq “
şt

0 1βkpsq“0ds. Clearly, βkptq “ Xptq `Y ptq.

We call Y the idle time process. The following relations must hold: For all t ą 0,

(i) βk ě 0,

(ii)
ş8

0 βkptqdY ptq “ 0,

(iii) dY ptq ě 0, Y p0q “ 0.

In other words, dY ptq ě 0 means that Y is nondecreasing, since the idle time process

is measured as a cumulation of a positive quantity over time; and
ş8

0 βkptqdY ptq “ 0

reflects the fact that the idle time cannot cumulate when the backlog is positive.

From Lemma 3.2, we check the pS1q ´ pS3q conditions, hence we know that Y ptq “

supsPr0,tsps ´ W̄kpsqq` and we get Eq. (3.5).
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3.2.1 The Loynes theorem

In this section, we define the domain of the steadiness, provide an expression of

the instant when the system goes from transient to steady, and prove that this

time instant exists and is finite under some conditions.

Definition 3.4 (Steady-state backlog). For a stable real-time system Γ, the steady-

state backlog is defined by

β̃k “ lim
tÑ8

βkptq

and we denote

πkpxq “ P
`

β̃k ď x
˘

the distribution function of the steady-state backlog of level k.

We use background results of queueing theory presented in 3.2.1 and 3.2.2,

provide the exact formulation of the steady-state backlog distribution πk and

illustrate this result in the deterministic inter-arrival case already studied by Diaz

et al. [Díaz et al., 2002] in Section 3.3.

As the demand and backlog processes W̄k and βk are well studied in queueing

theory [Baccelli and Brémaud, 2013,Chen and Yao, 2001,Jeanblanc et al., 2009],

we provide the formula of the steady-state of the system, by adapting Theorem 3.1

for the
ř

iMi{
ř

iGi{1{SP queueing model.

Proposition 3.1. Let pΩ,P,Γ, tθtuq follow a
ř

iMi{
ř

iGi{1{SP queueing model.

Let

Āk,l “ inftt ą 0 :
k
ÿ

i“1
Niptq “ lu

be the activation time of the l-th job of level k, and Īk,l the index of the task of the

l-th job of level k, and let

C̄k,l “ CĪk,l,NĪk,l
pĀk,lq

be the execution time of the l-th job of level k. Then,
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• if ūk ă 1 the steady-state backlog β̃k exists, is finite and is equal to

β̃k “

˜

sup
n

n
ÿ

l“1
C̄k,l ´ pĀk,l`1 ´ Āk,lq

¸`

(3.6)

where x` “ maxp0, xq, c.f., [Baccelli and Brémaud, 2013, Property 2.2.1]

and Theorem 3.3. In addition, there is an infinite number of idle times,

c.f., [Baccelli and Brémaud, 2013, Property 2.2.5],

• if ūk “ 1, then the existence of a finite steady-state β̃k is uncertain,

• If ūk ą 1, there exists a finite number of idle times of level k and no finite

steady-state, c.f., [Baccelli and Brémaud, 2013, Property (2.2.2)], backlogs

are always transient.

Proof. First of all, the Example 3.1.3 [Baccelli and Brémaud, 2013] shows that a

stationary point process with priority class jobs is still associated to a point process

of intensity ūk. According to Theorem 2.3, the superposition of Poisson point

processes is still a Poisson process, hence, the superposition of the arrival of all jobs

of level k is a stationary point process. Let Āk,l “ inftt ą 0 :
řk
i“1 Niptq “ lu be

the activation time of the l-th job of level k, and Īk,l the index of the task of the

l-th job of level k, and let

C̄k,l “ CĪk,l,NĪk,l
pĀk,lq

be the execution time of the l-th job of level k. In that way, the arrival of jobs of

level k form a M{G{1 model. We use the property of marked Poisson processes

shown in Lemma 2.3:

@l,PpĪk,l “ iq “
λi

řk
i“1 λi

(3.7)

The Īk,l are independent from the Ci,j, j ě 1 (not C̄k,l!), Ti,j, j ě 1 and a fortiori

of Ai,j, j ě 1. Then we have for any A Ă R`
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PpC̄k,l P Aq “

k
ÿ

i“1
PpCi,NipĀk,lq

P A | Īk,l “ iqPpĪk,l “ iq

“

k
ÿ

i“1
PpCi P A | Īk,l “ iqPpĪk,l “ iq

“
1

řk
i“1 λi

k
ÿ

i“1
λiPpCi P Aq

Then we use Theorem 3.3 on this superposed process with the execution times

C̄k,l and inter-arrival times Āk,l`1 ´ Āk,l
pdq
“ mini“1,...,k Ti which is exponential of

parameter
řk
i“1 λi, marked by the Īk,l. C̄k,l and Āk,l`1 ´ Āk,l are dependent through

the mark Īk,l, but this independence is not required in the proof of Theorem 3.3,

c.f., Example 1.4.4 [Baccelli and Brémaud, 2013].

Our goal is to find the distribution of the steady-state backlog β̃k. However,

given the generality of this model, we cannot provide an exact description of the

process βk. The heavy-traffic assumptions allows us to find an approximation for

the distribution of the steady-state backlog β̃k when the system utilization gets

close to 1, c.f., Figure 3.2, i.e., we build a process β
p8q

k such that its steady-

state approximates β̃k.

3.2.2 The heavy-traffic theorem

A first step in the approximation of the backlog process βk is the approximation

of the demand process W̄k. The following theorem provides a fluid model, that

is a continuous version of the backlog process using asymptotic results. Fluid

models are widely used in queueing theory [Chen and Yao, 2001] in order to

determine asymptotic results. In real-time systems, a famous example is the DP-

FAIR scheduling algorithm [Levin et al., 2010], that uses the fluid model of the

backlogs to determine optimal decisions for homogeneous multiprocessor systems

that we discuss in more details in Chapter 6. The idea behind heavy-traffic, is

that we look at the workload processes in the long time, i.e., we put the processes
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in a limit situation, and analyze this limit.

Let us define the sequence of re-scaled processes

$

&

%

W̄
pnq

k ptq “ W̄kp0q ` n´1W̄kpntq ` n´1{2pW̄kpntq ´ ūkntq

β
pnq

k ptq “ βkp0q ` n´1βkpntq ` n´1{2pβkpntq ´ pūk ´ 1qntq
(3.8)

and look for their limit.

Theorem 3.5. Let Γ be a stationary task set as defined in Section 2.1.2. The

re-scaled demand process sequence W̄ pnq

k , n ě 0 is such that for all t ą 0,

lim
nÑ8

W̄
pnq

k ptq
pdq
“ W̄

p8q

k ptq

where W̄
p8q

k is a Brownian motion of drift ūk “
řk
i“1 λiErCis and deviation

v̄2
k “

řk
i“1 λiErC2

i s. See Figure 3.1 for an illustration.

Proof. The proof is based on the Laplace transform of the demand process. Let Ni

be the associated Poisson process of arrivals of τi. Let Wiptq “
řNiptq
j“1 Ci,j where

Ci, Ci,1, . . . are the i.i.d. execution times of τi, and its Laplace transform

EreξWiptq
s “ E

”

eξ¨
řNptq

j“1 Ci,j

ı

“
ÿ

ně0
E
”

eξ¨
řn

j“1 Ci,j |Niptq “ n
ı

PpNiptq “ nq

The Poisson processes Ni and the execution times are independent, and Niptq is a

Poisson variable of parameter λit, i.e.,PpNiptq “ nq “ e´λit pλitq
n

n! , which leads us to

EreξWiptq
s “

ÿ

ně0
E
”

eξ¨
řn

j“1 Ci,j

ı

e´λit
pλitq

n

n!

“ e´λit
ÿ

ně0

pλitq
n

n!

n
ź

j“1
EreξCi,j s

Finally, the variables Ci, Ci,1, Ci,2 . . . are identically distributed, hence
śn

j“1 EreξCi,j s “
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EreξCisn, which leads to

EreξWiptq
s “ e´λit

ÿ

ně0
EreξCis

n pλitq
n

n!

“ eλitpEreξCi s´1q (3.9)

In order to find the variance of Wiptq we use the following lemma:

Lemma 3.3 (Eve’s law [Blitzstein and Hwang, 2019]). Let X and Y be variables

with finite variance. Then,

VarpY q “ ErVarpY | Xqs ` VarpErY | Xsq

Applying this last lemma to Y “ Wiptq and X “ Niptq gives us

VarpWiptqq “ ErVarpWiptq | Niptqqs ` VarpErWiptq | Niptqsq

“ ErNiptqVarpCiqs ` VarpNiptqErCisq

“ VarpCiqErNiptqs ` ErCis
2VarpNiptqq

“ VarpCiqλit ` ErCis
2λit

(Because Niptq is a Poisson variable of mean λi)

“ λitErC2
i s

let ui “ λiErCis, v2
i “ λiErC2

i s and W̃iptq “
Wiptq´uit?

tv2
i

. By noticing that

EreξW̃iptq
s “ EreξWiptq{

?
tv2

i se´ξtui{
?
tv2

i

The Taylor expansion on eξCi when t Ñ
tÑ8

8 is well defined as Ci is bounded. Then

EreCiξ{
?
tv2

i s “ Er1 `
ξ

a

tv2
i

Ci `
ξ2

2tv2
i

C2
i ` ˝pξ2

qs

which leads with Eq. (3.9) to the convergence EreξW̃iptqs Ñ
tÑ8

eξ
2{2, where we

recognize the Laplace transform of a Gaussian variable N p0, 1q. Which means
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(a) ū “ 0.625, ūmax “ 0.833 (b) ū “ 0.838, ūmax “ 1.208

(c) ū “ 0.998, ūmax “ 1.508 (d) ū “ 1.018, ūmax “ 1.608

Figure 3.2: The backlog process of systems with different mean utilization, initialized
with W̄ p0q “

ř

τiPΓ Ci

that limtÑ8
Wiptq´uit?

t
„ Φ0,v2

i
. Taking nt instead of t gives us the result. Finally, we

conclude with (2.12) that gives us n´1Wipntq “ tWipntq
nt

Ñ
nÑ8

ut. Combine those two

to get

W
p8q

i ptq ´ W
p8q

i p0q
pdq
“ uit ` viBptq

where B is a standard Brownian motion.

The demand processesW p8q

1 , . . . ,W p8q
n are independent, thus we get that W̄ p8q

k “

řk
i“1 W

p8q

i is the sum of k independent Brownian motions, which is also a Brownian

motion. Finally we get that for each t ą 0, W̄ p8q

k ptq ´ W̄
p8q

k p0q „ Φūkt,v̄
2
k
t.

In [Lehoczky, 1996], the author uses the heavy-traffic approximation providing the

distribution of the lateness of jobs in a system with exponential inter-arrival times.

To illustrate the heavy-traffic approximation, one can think of water continuously

flowing into a sink at a rate λi and the execution times as the rate 1{ErCis the water
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leaves the sink. It is usually understood as true when the system is at full processor

utilization, because the theorems of heavy-traffic theory are exact when ū Ñ 1.

However we use it as a way to build an upper-bound of the backlog process. Indeed,

the heavy-traffic assumption should be seen as a bound, or more specifically, a way

to suppose that the system utilization is at its maximum (i.e., ū “ 1), providing

upper-bounds that are exact when the processor utilization at 100%. Figure 3.3b

illustrates this upper-bound becoming exact in Figure 3.3c and Figure 3.3d.

In this section, we use the heavy-traffic assumption to find the steady-state

backlog β̃k as an approximation upper-bounding the blocking time of the system

in its steady-state, see Eq. (4.4). The approximation in Theorem 3.5 leads to the

standard Brownian motion which is continuous. It means that instead of looking

at the demand for a large amount of time, we consider a re-scaled version of the

demand in order to build a good approximation. Theorem 3.5 can be written as

W̄
p8q

k ptq “ W̄kp0q ` ūkt ` v̄kBptq (3.10)

where B is a standard Brownian motion, as defined in Eq. (3.1).

In order to find the steady-state backlog β̃k, we work with the heavy-traffic de-

mand W̄
pnq

k .

Proposition 3.2. The rescaled backlog process of level k is defined by

β
pnq

k ptq “ W̄
pnq

k ptq ´ t ` sup
sPr0,ts

ps ´ W̄
pnq

k psqq
` (3.11)

Proof. From its definition in Eq (3.8), we have

β
pnq

k ptq “ W̄kp0q `
W̄kpntq

n
´

1
n

ż nt

0
1βkpsqą0ds `

1
?
n

ˆ

W̄kpntq ´

ż nt

0
1βkpsqą0ds ´ pūk ´ 1qnt

˙

“ W̄kp0q `
W̄kpntq

n
´

1
n

ż nt

0
1βkpsqą0ds `

?
n

ˆ

W̄kpntq

n
´ ūkt

˙

´
1

?
n

ż nt

0
1βkpsqą0ds `

?
nt

“ W̄
pnq

k ptq ´
1
n

ˆ

nt ´

ż nt

0
1βkpsq“0ds

˙

´
1

?
n

ˆ

nt ´

ż nt

0
1βkpsq“0ds

˙

`
?
nt

“ W̄
pnq

k ptq ´ t ` p1 `
1

?
n

q
1

?
n

ż nt

0
1βkpsq“0ds (3.12)
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Then let Xpnqptq “ W̄
pnq

k ptq´t and Y pnqptq “ p1` 1?
n

q 1?
n

şnt

0 1βkpsq“0ds. βpnq

k , Xpnq

and Y pnq should satisfy pS1q ´ pS3q, thus by applying Lemma 3.2 to Xpnq wet get

that the pair pβ
pnq

k , Y pnqq is unique and Y pnqptq “ supsPr0,tsps ´ W̄
pnq

k psqq`.

Theorem 3.6. Consider the same hypotheses as Theorem 3.5 and let ūk ă 1. The

heavy-traffic backlog process βp8q

k “ limnÑ8 β
pnq

k is a reflected Brownian motion of

drift ūk ´ 1 and deviation v̄k, and

β
p8q

k ptq “ W̄kptq ´ t ` sup
sPr0,ts

ps ´ W̄
p8q

k psqq
`

Proof. We have

β
p8q

k ptq “ lim
nÑ8

W̄
pnq

k ptq ´ t ` lim
nÑ8

p1 `
1

?
n

q
1

?
n

ż nt

0
1βkpsq“0ds (From Eq. (3.12))

“ W̄
p8q

k ptq ´ t ` lim
nÑ8

1
?
n

ż nt

0
1βkpsq“0ds

Finally, let Y ptq “ limnÑ8
1?
n

şnt

0 1βkpsq“0ds. pβ
p8q

k , Y q satisfy pS1q ´ pS3q from

Lemma 3.2, hence Y ptq “ supsPr0,tsps ´ W̄
p8q

k psqq`. W̄
p8q

k ptq ´ t, t ě 0 being a

Brownian motion of drift ūk ´ 1 and deviation v̄k, we conclude with Definition 3.3.

It is shown in [Chen and Yao, 2001, Remark 6.17, p. 148], that the error of

the estimation stated in Eq. (3.11) is

sup
sPr0,ts

|βkpsq ´ β
p8q

k psq| “ O
`

pt log log tq1{4
plog tq1{2˘ (3.13)

Proposition 3.3. Consider the same hypotheses as Theorem 3.5, with exponential

inter-arrival times of rates λi, i “ 1, . . . , k. Let ūk ă 1. Consider the parameter

ηk “
2p1 ´ ūkq

v̄2
k

(3.14)

Then, the distribution function πk of the steady-state backlog β̃k is defined for x ą 0
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Figure 3.3: Steady-state backlog simulations with different mean utilizations in the Diaz
and Kim model. In black the histogram of simulations of βpnq{

?
n for n “ 10000, in red

the probability function of β̃.

by

πkpxq “ 1 ´ exp p´ηkxq (3.15)

Proof. Apply Theorem 3.2 and Theorem 3.6.

3.3 Periodic backlog

We consider in this section a stationary real-time system pΩ,P,Γ, tθtuq following

the
ř

iDi{
ř

iGi{1{SP queueing model. In opposition to memoryless scheduling,

periodic systems use knowledge of the past to take scheduling decisions. In the

previous section do not treat the periodic case, although we show in this section

some exisiting results and build heuristics for the periodic case in the next chapter.
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For the case where the tasks of the real-time system Γ are periodic and have

deterministic deadlines, i.e., Tk “ λ´1
k P N and Gkpxq “ 1rλ´1

k
,8qpxq for all τk P Γ

and x ą 0, also known as the Diaz and Kim (DK) model [Díaz et al., 2002,Kim

et al., 2005,Díaz et al., 2004], the authors approximate the distribution function

πk, resolving linear system equations and compute response times distributions

with the help of convolutions.

The fastest computational complexity of convolutions is OpN logNq when N is

the number of values that a probabilistic variable can take. Computing the exact

values of πk quickly becomes an expensive operation when the number of tasks

or the number of possible execution times gets larger, even with methods that

soften those computations like Markovic et al. [Marković et al., 2021], Milutinovic

et al. [Milutinovic et al., 2015] or Maxim et al. [Maxim et al., 2012] for example.

Moreover, the computation of response times has the same problem, as the number

of possible values of β̃k quickly becomes large. With Eq. (3.16) we have an explicit

formula of the distribution of β̃k, with Eq. (3.13) we know the error of the heavy-

traffic approximation, and with Theorem 3.1 we have an analytical expression of

the backlog in the deterministic case.

Indeed, let T̄k “ lcm
`

λ´1
1 , . . . , λ´1

k

˘

be the hyper-period of level k of Γ. In the

DK model [Díaz et al., 2002, Kim et al., 2005], the authors consider the k-level

backlog βkptT̄kq, t P N, i.e., the remaining demand of level k at the beginning

of the t-th hyper-period. Diaz et al. [Díaz et al., 2002] have proven that the

sequence
`

βk
`

tT̄k
˘˘

tPN is a stationary Markov chain when ūk ă 1. The sequence
`

βkptT̄kq
˘

tPN is defined by W̄kp0q ě 0 and

βk
`

pt ` 1qT̄k
˘

“
`

βkptT̄kq ` W̄kpT̄kq ´ T̄k
˘`

for t P N.

Similarly to memorlyess systems, we get the asymptotic backlog as follows.

Proposition 3.4. Let pΩ,P,Γ, tθtuq follow a
ř

iDi{
ř

iGi{1{SP stationary queue-
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ing model. Let T̄k “ lcm
`

λ´1
1 , . . . , λ´1

k

˘

be the hyper-period of level k of Γ. Let

Wk,l “

k
ÿ

i“1

NiplT̄kq
ÿ

j“Nippl´1qT̄kq

Ci,j

be the demand of level k released during the l-th hyperperiod, i.e., the interval

rpl´ 1qT̄k, lT̄ks. Then if ūk ă 1 ´ k
2T̄k

the steady-state backlog β̃k exists, is finite and

is equal to

β̃k “

˜

sup
n

n
ÿ

l“1
Wk,l ´ nT̄k

¸`

(3.16)

where x` “ maxp0, xq, c.f., [Baccelli and Brémaud, 2013, Property 2.2.1] and

Theorem 3.3. In addition, there is an infinite number of idle times, c.f., [Baccelli

and Brémaud, 2013, Property 2.2.5].

Proof. First of all, the Example 3.1.3 [Baccelli and Brémaud, 2013] shows that a

stationary point process with priority class jobs is still associated to a point process

of intensity ūk. Next, we observe that for periodic systems, the workload released

in the intervals rpl ´ 1qT̄k, lT̄ks, l P N are i.i.d.. Indeed,

Wk,l “

k
ÿ

i“1

NiplT̄kq
ÿ

j“Nippl´1qT̄kq

Ci,j

pdq
“

k
ÿ

i“1

NiplT̄kq´Nippl´1qT̄kq
ÿ

j“1
Ci,j (Ci,j, j ě 1 are i.i.d.)

pdq
“

k
ÿ

i“1

NipT̄kq
ÿ

j“1
Ci,j (Ni’s are stationary)

pdq
“ Wk,1

Then, in order to use Theorem 3.3 "at hyperperiod level" with the Wk,l as

execution times and T̄k as inter-arrival times, we need to check ErWk,1s ă T̄k. We
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have

ErWk,1s “

k
ÿ

i“1
ErNipT̄kqsErCis (According to Lemma 2.4)

“

k
ÿ

i“1
ErtλipOi ` TkqusErCis

ď

k
ÿ

i“1
p
1
2 ` λiT̄kqErCis (Because Oi is uniform in r0, λ´1

i s)

“
k

2 ` ūkT̄k

which leads to the condition k
2p1´ūkq

ă T̄k. We conclude with Theorem 3.3.

The representation in Eq. (3.16) is an efficient method to approximate the

stationary distribution πk of the backlog process βk. Indeed, let us take an integer

n ą 0, and generate a sample pWk,lq
n
l“1 independent and identically distributed

sequence with the distribution of W̄k

`

T̄k
˘

. Eq. (3.16) provides the variable of

distribution πk found in Diaz et al. [Díaz et al., 2002] and Kim et al. [Kim et al., 2005].

It also means that the variable max1ďjďn

´

řj
l“1

`

Wk,l ´ T̄k
˘

¯`

is an approximation

of β̃k when n is large enough. This method is not expensive in complexity as it

requires only to build the distribution function of W̄k

`

T̄k
˘

once.

In the periodic case, we are able to find a bound of deadline miss probabilities

of the RM policy with the following.

Proposition 3.5 (Hoeffding DMP for periodic inter-arrival times with Rate

Monotonic). Suppose that jobs of τi arrive periodically with rate λi. If ūk ă 1

and 1{λk ą
řk

i“1 ErCis

2p1´ūkq
then

PpRmax
k ą 1{λkq ď exp

ˆ

´
p1 ´ ūkq2

λkv̄maxk

˙

where ūk “
řk
i“1 λiErCis is the mean utilization of level k and v̄maxk “

řk
i“1 λipc

max
i ´

cmini q2 is the maximum deviation of level k.

Proof. Suppose the system is periodic with rate λi. According to [von der Brüggen
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et al., 2018, Theorem 6], the Hoeffding inequality applied to a static-priority policy

gives us

PpRmax
k ą 1{λkq ď inf

tPp0,1{λkq

tąErW̄kptqs

exp
˜

´2 pt ´ ErW̄kptqsq2
řk
i“1pcmaxi ´ cmini q2Niptq

¸

(3.17)

where Niptq “ rλits is the number of jobs of the task τj released before t ą 0

when all tasks are activated at t “ 0, i.e., Oi “ 0, i “ 1, . . . , k. According to

Lemma 2.4 we have ErW̄iptqs “
ři
j“1 ErNjptqsErCjs. Since

λit ď ErNiptqs ď λit `
1
2 (3.18)

and ūk ă 1, we have the relation ūkt ` 1
2
řk
i“1 ErCis ě ErW̄kptqs ě ūkt.

Hence, t ą
řk

i“1 ErCis

1´ūk
implies t ą ErW̄kptqs. Suppose 1{λk ą

řk
i“1 ErCis

2p1´ūkq
and

t P p
řk

i“1 ErCis

2p1´ūkq
, 1{λkq. With Eq. (3.18) we get

pt ´ ErW̄kptqsq2
řk
i“1pcmaxi ´ cmini q2Niptq

ě
tp1 ´ ūkq2

v̄maxk ` t´1
řk
i“1pcmaxi ´ cmini q2

(3.19)

Finally the infinimum in Eq. (3.17) is reached for t “ 1{λi, and we are using

the RM policy, thus we have λi ď λj for j ď i since we assume working under the

RM policy, hence we get

v̄maxk ` λk

k
ÿ

i“1
pcmaxi ´ cmini q

2
ď 2v̄maxk (3.20)

which gives us the result with Eq. (3.19).

3.4 Schedulability test

The difference between a non-discarding schedule and a discarding one is significant.

Indeed, the analysis provided in this chapter is agnostic from discarding jobs.
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However, the non-discarding and the discarding schedule of a schedulable task set Γ

are the same, because all deadlines are satisfied a schedulable task set. Based on

this fact, the appropriate way to test if there will be discarded jobs in steady-state

is to check if the worst-case blocking time and the steady-state backlogs satisfy

@i,P

˜

β̃i ď

i
ÿ

j“1
cmaxj

¸

ą 1 ´ ε

for a small enough ε, which means that the discarding policy and the non-discarding

policies are equivalent for all tasks.
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3.5 Potential extensions

3.5.1 Extension to EDF and FIFO

The first step into dynamic scheduling, as for example EDF is to study the backlog

processes considering that the priority is at the job level (in opposition to task

level). Indeed, for static-priority policies, those variables are simply the backlog

and demand of the lowest priority level. However, for EDF, levels of priority need

to be defined not only for tasks but for jobs. In [Díaz et al., 2002], authors use

the concept of ground jobs which are jobs released at an instant where the system

is idle, and as shown in the Loynes theorem, when ū ă 1, idle times are finite.

This means that an analysis mixing the concept of ground jobs and idle times as

defined in this thesis can provide an extension of our results for dynamic-priority

scheduling. In [Lehoczky, 1996] authors show that if ū ă 1, βp8q

k is a reflected

Brownian motion of drift ´γ and deviation 2
ř

i λi where 0 ă γ ă 1 is such that for

each n ą 0, the utilization of the process pβkpntq{
?
nqt can be written 1 ´ γ{

?
n,

for the EDF and FIFO policies. This means that even without showing the exact

parameters of the first-passage time distributions, we can assume that response

times belong in the same domain of distribution functions.

3.5.2 Extension to general stationary inter-arrival times

We studied two types of stationary task sets with static priorities: periodic and

memoryless. However, considering renewal processes with other distributions than

exponential for inter-arrival times is challenging. The main reason being that the

superposition of stationary renewal processes are not renewal processes in general

because inter-arrival times of each task become inter-dependent. We present in

this section some theoretical background that could help generalize the results

of this chapter. Let us recall that the stationary renewal process Ni counts the

number of jobs of τi through time, and N “
ř

iNi counts all jobs regardless

of which task those jobs are.
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Palm-Khintchin theorem The first property of renewal processes that could

be use to generalize the results of this chapter is the equivalent of the central

limit theorem for renewal processes.

Theorem 3.7 (Palm-Khintchine). Let N1, . . . , Nn be n independent renewal pro-

cesses with distinct inter-arrival rates λi. Then the superposition N “
řn
i“1 Ni is

asymptotically a Poisson process when n Ñ 8, if the following assumptions hold:

(i)
řn
i“1 λi ă 8 when n Ñ 8,

(ii) λi ď 1
n

řn
i“1 λi, @i

Then N converges to a Poisson process of inter-arrival rate λ “ λ̄8 when n Ñ 8.

However this convergence can occur very slowly and might not be suited for

all systems. This property is used in telecommunications and IoT, e.g., [Metzger

et al., 2019], and is the reason why Poisson processes are a widely used and

studied renewal process.

Approximating the superposition with a stationary renewal processes

A result from 2001 [Torab and Kamen, 2001] shows that approximating the

superposition N of renewal processes by supposing that inter-arrival are indeed

independent is possible and that there is a method that can minimize the error of

such hypotheses. What we look for is preserve the stationarity of renewal processes

when they are superposed. One property of renewal processes is that any renewal

process can be modified to be stationary by adding a delay, or as we call it an

offset, with a very specific distribution.

We denote by Ḡk the distribution function of the first arrival of the superposed

process N . First of all, we know from [Baccelli and Brémaud, 2013, Example

1.4.1, p.35] and [Lawrance, 1973] that

Ḡkpxq “ 1 ´

k
ÿ

i“1

λi

λ̄k
p1 ´ Gipxqq

ź

j‰i

p1 ´ G0
jpxqqdx
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where G0
jpxq “ λj

şx

0 p1 ´ Gjpxqqdx is the distribution of the offset of τj as defined

in (2.8). We call G0
j the distribution of the recurrent time of the process Nj,

and suppose that the superposition is still stationary, hence characterizing the

distribution of this first job arrival is enough to characterize all jobs arrivals.

The intensity used to approximate the distribution of N in [Torab and Kamen,

2001] comes from the recurrent times instead of the inter-arrival times. By remarking

that d
dt
G0
j “ λjp1 ´ Gjq, and setting gi “ d

dt
Gi we get the intensity

νi “ λi
1 ´ Gi

1 ´ G0
j

instead of µi “
gi

1´Gi
. Finally, this new intensity is actually shown to minimize

to quadratic error, and is of the form

ν˚
ptq “

ř

i νiptqpµiptq `
ř

j‰i νjptqq
ř

i νiptq

The mean of the first arrival time is

m̄k “ ErĀk,1s “

ż

p1 ´ Ḡkptqqdt

“

k
ÿ

i“1

λi

λ̄k

ż

p1 ´ Giptqq
ź

j‰i

p1 ´ G0
jptqqdt

and by noticing that

d

dt
Ḡk “

k
ÿ

i“1

λi

λ̄k
p1 ´ Giq

ź

j‰i

p1 ´ G0
jq

˜

gi
1 ´ Gi

`
ÿ

j‰i

λj
1 ´ Gj

1 ´ G0
j

¸

its variance is
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VarpĀk,1q “

ż

px ´ m̄kq
2dḠkptq

“

k
ÿ

i“1

λi

λ̄k

ż

px ´ m̄kq
2
p1 ´ Giptqq

ź

j‰i

p1 ´ G0
jptqq

˜

giptq

1 ´ Giptq
`
ÿ

j‰i

λj
1 ´ Gjptq

1 ´ G0
jptq

¸

dt

which leads to the squared coefficient of variation γ2
a,k equal to

k
ÿ

i“1

λi

λ̄k

ż

p
x

m̄k

´ 1q
2
p1 ´ Gipxqq

ź

j‰i

p1 ´ G0
jpxqq

˜

gipxq

1 ´ Gipxq
`
ÿ

j‰i

λj
1 ´ Gjpxq

1 ´ G0
jpxq

¸

dx

which would allow to provide an approximation for any stationary task set.

We test the hypotheses that we can actually use this same method in the fol-

lowing chapter.
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Probabilistic methods for the analysis of response times have many applications in

real-time systems [Davis and Cucu-Grosjean, 2019]. Two main directions have been

explored: static methods for the exact computation and approximation of response

time distributions [Díaz et al., 2002,Kim et al., 2005,Maxim and Cucu-Grosjean,

2013,Manolache et al., 2001] a priori, and the measurement-based application of the

EVT method [Liu et al., 2013,Lu et al., 2012] approximating the distribution of the

maximum values of response times a posteriori. Often, probabilities are considered

for execution times and few papers consider probabilistic inter-arrival times and

81
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deadlines [Maxim and Cucu-Grosjean, 2013,Lehoczky, 1996,Gaujal et al., 2020b].

Moreover, the method introduced in [Díaz et al., 2002,Kim et al., 2005] requires a

large amount of convolutions which have a high space and time complexity, and the

analysis provided by Lehoczky [Lehoczky, 1996] is not suited to express response

time distributions of static-priority scheduling.

The contributions of this chapter are based on queueing theory results [Sparaggis

and Towsley, 1994,Huang et al., 2015,Sethuraman and Squillante, 1999,Baccelli

and Brémaud, 2013,Chen and Yao, 2001]. To the best of our knowledge, no result

from the queueing theory is focused on general execution times and inter-arrival

times, multi-class clients (i.e., different tasks) and the quantization of deadline

misses of such systems. The only results based on queueing theory for real-time

systems have been published within the thread of papers related to [Lehoczky, 1996],

where the author approximates the number of simultaneously activated jobs by a

reflected at the origin Brownian motion. There is a proportional relation between

the number of activated jobs and the workload of a system by applying the Little

formula [Baccelli and Brémaud, 2013, Eq. (3.1.16)].

However, the author makes strong hypotheses restricting the model. The

exponential distribution of inter-arrivals and execution times suggested in [Lehoczky,

1996] is a strong hypothesis. Furthermore, his model has another important

limitation as it considers systems of jobs of only one task, which does not allow

a response time analysis. To overcome this limitation, we consider a multi-class

analysis describing tasks with parameters with different distributions. Thus, we

extend the model proposed by [Lehoczky, 1996] and consider a more general case: all

jobs are instances of various independent tasks scheduled with a static-priority policy.
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Figure 4.1: Trajectories of W̄ p8q and average of the first idle time for ū “ 0.838 and
x “ 4.85.

4.1 Heavy-traffic approximation

In the following, we consider the conditional probability that the system starts

with a level k demand x ě 0 and the job τk,1,

Px
kp¨q “ Pp¨ | W̄kp0q “ x,Ok “ 0q

Whenever we need to suppose W̄kp0q “ x,Ok “ 0, we say that we work under

the probability Px
k.

As previously defined, response times are idle times. We use this representation

of response times to provide an approximation using the fluid model introduced

in the previous chapter.

Definition 4.1 (Heavy-traffic response time). Let Rpnq

k,l be the first idle time after
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the arrival of the l-th job of the task τk in the sequence of M{G{1 queues defined in

Eq. (3.8), i.e.,

R
pnq

k,l “ inftt ą 0 : βpnq
pAk,l ` tq “ 0u

The heavy-traffic response time does not take discarding into account, but as

shown in the following, it bounds the response times of each M{G{1 queue of

the rescaled sequence of queueing models.

Lemma 4.1 (Heavy-traffic response time bound). Let pR
pnq

k,l qn be the sequence of

response times defined in Definition (4.1). Let pB
pnq

k,l qn be the associated sequence of

blocking time processes. Then,

inftt ą 0 : Bpnq
pAk,l ` tq “ 0u ďst R

pnq

k,l

Now that we know that the sequence of response times considering the discarding

policy are bounded by the heavy-traffic response time sequence, we look in the

following at the limit of this sequence in order to use the Brownian approximation

introduced in Chapter 3.

4.1.1 First idle time

We study in this section the first idle time of the limit demand process, i.e.,the

first-passage to 0 of a Brownian motion.

Definition 4.2 (Idle time). Let Ikpxq be the first idle time of level k, i.e.,

Ikpxq “ inf
!

t ą 0 : βp8q

k ptq “ 0
)

(4.1)

when the initial demand of level k is equal to x ą 0.

Lemma 4.2. The distribution of Ikpxq is an inverse Gaussian distribution with

probability function

ψkpt, xq “ ψ

ˆ

t; x

1 ´ ūk
,
x2

v̄2
k

˙

, t ą 0 (4.2)
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where ψ is given in Definition 2.12, and exceedence function

Ψkpt, xq “ PpIkpxq ą tq “ Ψpx, t; ūk, v̄kq

where

Ψpx, t;u, vq “ Φ
ˆ

´
p1 ´ uqt ´ x

v
?
t

˙

´ e´2x 1´u

v2 Φ
ˆ

´
p1 ´ uqt ` x

v
?
t

˙

(4.3)

Proof. The idle time Ikpxq defined in Eq. (4.1) is a quantity called first-passage

time of a Brownian motion [Molini et al., 2011, Eq. (28)]. Until the first idle time,

we know that βp8q

k ptq “ x` W̄
p8q

k ptq ´ t, because 1βkpsqą0 “ 1 for 0 ď s ă t ď Ikpxq.

Then from Eq. (3.10) we have Ikpxq „ inf tt ą 0 : Bptq “ tp1 ´ ūkq{v̄k ´ x{v̄ku

where B is a standard Brownian motion. When W̄kp0q “ x, the distribution of Ikpxq

is an inverse Gaussian distribution of mean x{p1 ´ ūkq and shape x2{v̄2
k according

to Theorem 3.1. See Figure 4.1 and [Jeanblanc et al., 2009, p. 146], for more

details.

4.1.2 Heavy-traffic time demand analysis

Response times depend on properties of real-time systems such as the scheduling

policy, the preemptiveness, etc.. Our motivation is to exploit those properties leading

response times to the domain of a certain probability distribution. In this section,

the inverse Gaussian distribution is emphasized as the appropriate distribution

for an approximation of response times in the context of static-priority scheduling

policies, using asymptotic results of queueing theory, c.f., Propositions 4.7. We

propose two different approximations, a worst-case approximation before the system

is in its steady-state (c.f., Proposition 4.5, see Definition 3.4) and another one when

the system is steady, c.f., Propositions 3.3 and 4.6.

Let pΩ,P,Γ, tθtuq be a stationary real-time system, with Γ ordered by decreasing

priority order, i.e., τi has priority over τi`1.
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According to Proposition 2.1, the blocking time is such that

Bkptq ď min
˜

βkptq,
k
ÿ

i“1
Ci,Niptq

¸

(4.4)

for all t ą 0, which makes our TDA build upper-bounds of response times according

to Theorem 2.5. This property is used in Lemma 4.1 to provide a sequence of

pessimistic response time analysis. We now look at the limit of those.

Proposition 4.1. For all x ą 0,

P
´

R
pnq

k,l ą t | β
pnq

k pAk,lq “ x
¯

Ñ
nÑ8

PpIkpxq ą tq (4.5)

Proof. We have shown in Theorem 3.6 that βpnq converges in distribution to βp8q,

thus we conclude that conditionnaly to W̄kp0q “ x and Ok “ 0,

R
pnq

k,1 “ inftt ą 0 : βpnq

k ptq “ 0u

converges in distribution to Ikpxq. Then from Eq. (4.8), any job τk,l has a heavy-

traffic response time distribution that can be expressed from the response time

R
p8q

k,1 ,
P
´

R
p8q

k,l ą t | β
p8q

k pAk,lq “ x
¯

“ Px
k

´

R
p8q

k,1 ą t
¯

(4.6)

Let us condition this probability for specific values of execution times. As stated

in Eq. (4.6), the proper conditioning on backlogs provides the distribution of the

response time of τk,1. Furthermore, when the backlog βp8q

k pAk,lq “ x, the response

time Rp8q

k,l is the time it takes for all level k jobs to finish plus the time it takes for

level k to stay idle for x instants in the interval rAk,l, Ak,l `Rk,ls. It means that we

can artificially set the initial demand to x and look at Ikpxq, the first idle time of

level k, as represented in Figure 4.2. In other words,

Px
k

´

R
p8q

k,1 ą t
¯

“ Px
k

˜

sup
sPr0,ts

s ´ W̄
p8q

k psq ă 0
¸

“ P pIkpxq ą tq (4.7)

which is sufficient to conclude.
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t

β1ptqx ` y

A1,1 A1,2

C1,2

A1,3

R2,1 “ I1px ` yq

Figure 4.2: Representation of the response time R2,1 as an idle time when O2 “ 0, C2,1 “

y and β1p0q “ x, in Example 2.1

Proposition 4.1 provides an analytical expression of this result for the heavy-

traffic response time R
p8q

2,1 .

The heavy-traffic demand W̄
p8q

k is a Brownian motion, hence W̄ p8q

k pt` Ak,lq ´

W̄
p8q

k pAk,lq
pdq
“ W̄

p8q

k ptq ´ W̄
p8q

k p0q. Furthermore, W̄ p8q

k is continuous. Thus we

define the heavy-traffic response time of a job τk,l as

R
p8q

k,l “ inf
!

t ą 0 : βp8q

k pAk,lq ` W
p8q

k ptq ´ W̄
p8q

k p0q “ t
)

(4.8)

The Markovian property of Brownian motions allows to approximate the distribution

of any response time Rk,l in terms of the backlog βp8q

k pAk,lq and the first response

time Rp8q

k,1 , thus response times will be conditioned to backlogs and execution times,

and represented as idle times following the inverse Gaussian distribution. In a second

part, we provide an analytical expression of the heavy-traffic WCRT distribution,

and in a third part we do the same for the steady-state heavy-traffic response time

distribution. Finally, we explain how to simulate heavy-traffic response times of

a task τk from the distribution functions Fk and Gk.

4.1.3 Conditioning response times

In this section we use the Markovian property of stationary renewal processes and

Brownian motions in order to characterize the distribution of Rp8q

k,l .
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From Eq. (4.8) and Proposition 4.1 we establish a necessary condition of the

feasibility of Γ.

Proposition 4.2. A non-stable stationary real-time system with implicit deadlines

is not feasible under a static-priority scheduling policy.

Proof. Let τk P Γ be such that ūk ą 1. The Loynes theorem 3.1 states that there is a

finite number of idle times of level k, which implies with Eq. (4.8) that heavy-traffic

response times get infinite at some point, i.e.,for all t ą 0, P
´

R
p8q

k,l ą t
¯

“ 1 for an

infinite number of jobs. In other words, there is no permitted failure rate αk P p0, 1q

such that τk is schedulable as defined in Eq. (2.21). As we consider a static-priority

scheduling policy, then the lowest level backlog is larger than all k-level backlogs

βkptq at any time t ą 0.

Remark. The probabilistic approach has some subtleties that need to be emphasized.

Proposition 4.2 is a strong result. However, one can be tempted to build a counter

example showing that with a mean utilization greater than 1, there are actually

some jobs that are schedulable. The fact that jobs are discarded when they miss

their deadline is confusing for the probabilistic approach, as some could say that if

we discard, then we go back to a backlog equal to zero, hence the analysis restarts

again just like any other jobs. This is wrong. In order to understand better what we

mean here, we should consider the system without job discarding. Then the good

translation of Proposition 4.2 is as follow:

There is a strictly positive probability that only a finite number of
jobs satisfy their deadlines if there is no discarding policy. While this
probability exists, the system is not feasible.

Now if we see schedulability as the measure of how far the discarding system is from

the non discarding system as proposed in Section 3.4, we see that the probability

Ppβ̃k ď
řk
i“1 c

max
i q is 0 when the mean utilization is greater than 1, because β̃k “ 8

in that case.

In the rest of this thesis, the central quantity is the DMP of a task. We have

seen that the backlog process is the main process to look at in our model for an
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end-to-end analysis. Conditioning response times to their associated backlog is

the natural step in our analysis. We define

pkpxq “ Px
k

´

R
p8q

k,1 ą Dk

¯

(4.9)

as the DMP of τk conditioned to an initial demand x ě 0.

Proposition 4.3. Let ūk ă 1, 0 ă v̄k ă 8 and γk “

´

v̄k

1´ūk

¯2
. Then

pkpxq “ 1 ´ exp
ˆ

´x

?
1 ` 2λkγk ´ 1
γkp1 ´ ūkq

˙

(4.10)

is the DMP of any job of τk released with an initial demand of level k equal to x.

Proof. We have

pkpxq “ P

˜

sup
tPp0,Tkq

t ´ W̄
p8q

k ptq ď x

¸

(with (4.7))

“

ż

PpIkpxq ą tqdGkptq

“

ż

Ψk pt, xqλke
´λktdt

Since ūk ă 1 for all x ą 0, we have

lim
tÑ8

Ψkpt, xq “ Px
k

´

R
p8q

k,1 “ 8

¯

“ 0 (4.11)

Furthermore, since 1 ´ e´λkt “ 0 when t “ 0, we get by integration by parts that

ż

Ψk pt, xqλke
´λktdt “ lim

tÑ8
Ψk´1pt, xqp1 ´ e´λktq´Ψkp0, xqp1 ´ e´λkˆ0

q

`

ż

ψk pt, xq p1 ´ e´λktqdt

because d
dt

Ψkpt, xq “ ´ψkpt, xq. Finally since
ş

ψk pt, xq dt “ 1 because ψkp¨, xq is a
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probability function for all x ą 0, we get

pkpxq “ 1 ´

ż

ψk pt, xq e´λktdt

where we recognize the Laplace transform of Ikpxq, i.e.,

Lpsq “ Erexp p´sIkpxqqs “

ż

ψk pt, xq e´stdt

we conclude by developing this Laplace transform of an inverse Gaussian distribution

of mean ξ “ x
1´ūk

and shape δ “ x2

v̄2
k

Lpsq “ exp
«

´
δ

ξ

˜

c

1 ` 2sξ
2

δ
´ 1

¸ff

we conclude with s “ λk.

In Sections 4.1.4 and 4.1.5, we prove that the proper initialization of the system

puts the system in two specific cases: the worst-case and the steady-state.

4.1.4 Worst-case response time

Before the system reaches its steady-state, we say it is transient. In that case we

cannot provide the exact distribution of the backlog in an analytical formulation.

However, we can bound it by using the worst-case blocking time. We define

the WCRT of the task τi as the heavy-traffic response time Rp8q

i,1 initialized with

the worst-case blocking time.

In the following we approximate the WCRT Rmax
k by the heavy-traffic WCRT

Ik
´

řk
i“1 c

max
i

¯

.

Proposition 4.4. If ūk ă 1, for all l P N we have

inftt ą 0 : BkpAk,lq ` W̄
p8q

i ptq ´ W̄ p8q
p0q ď tu ďst Ik

˜

k
ÿ

i“1
cmaxi

¸

(4.12)
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Proof. First, let us consider ūk ă 1, as stated in Theorem 3.1 the backlog process

converges to β̃k which is finite. Jobs are discarded if they miss their deadlines, and

as we consider implicit deadlines, there can be at most one job per task activated

simultaneously. Indeed, at any instant and for any task τk, Bkptq ď
řk
i“1 c

max
i . This

leads into considering a job τk,l with blocking time BkpAk,lq “
řk
i“1 c

max
i as the

maximum backlog of level k, c.f., Eq. (4.4), and use the property stated in Eq. (4.6)

with an initial demand W̄kp0q “ cmaxk . According to Theorem 2.6, the solution of

inftt ą 0 : βkpAk,lq ` W̄kptq ´ W̄kp0q ď tu

is more pessimistic. Hence we set Rmax
k as defined in (4.12) as the WCRT of τk.

When ūk “ 1, idle times of level k may or may not be finite, thus we cannot

conclude anything on the distribution of response times, i.e., PpDl : βkpAk,lq “ 8q ą

0.

When ūk ą 1, the largest response time does not come from the synchronous

activation and is in fact 8. As we have already demonstrated in the proof of

Proposition 4.2, response times of the task τk increase to 8, due to the absence of

idle times of level k. Then we conclude that the heavy-traffic WCRT is 8. In this

case, a full example is detailed in [Chen et al., 2022].

We set the heavy-traffic WCRT as the heavy-traffic response time with a backlog

equal to
řk´1
i“1 c

max
i . Hence we get the approximation

PpRmax
k ą tq « Hmax

k ptq

that we develop in the following proposition.

Proposition 4.5. Let τk P Γ, ūk ă 1 and let Ψk be as defined in (4.3). The
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exceedence function of the heavy-traffic WCRT of τk is

Hmax
k ptq “ Ψk

˜

t,
k´1
ÿ

i“1
cmaxi

¸

(4.13)

Proof. From Proposition 4.4 we know that when ūk ă 1, the heavy-traffic WCRT

of τk P Γ is Rp8q

k,1 under Pbk´1
k with bk´1 “

řk´1
i“1 c

max
i .

Corollary 4.1. Let τk P Γ, γk “

´

v̄k

1´ūk

¯2
and suppose ūk ă 1. The worst-case

DMP of τk is

pmaxk “ 1 ´ exp
˜

´

k
ÿ

i“1
cmaxi

?
1 ` 2λkγk ´ 1
γkp1 ´ ūkq

¸

(4.14)

Proof. Direct consequence of pmaxk “ pk

´

řk
i“1 c

max
i

¯

and Proposition 4.5.

4.1.5 Steady-state response time

Let us denote the conditional probability that the distribution of the initial demand

W̄kp0q is the probability dµ and the first job released is τk,1,

Pµ
kp¨q “ Pp¨ | W̄kp0q „ dµ,Ok “ 0q “

ż

Px
kp¨qdµpxq

The backlog process of level k being stationary and with a stationary distribution

πk, in the steady-state Eq. (4.6) becomes

Pπk
k

´

R
p8q

k,l ą t
¯

“ Pπk
k

´

R
p8q

k,1 ą t
¯

(4.15)

for any l P N. Then if it holds for any l P N, it holds for the all response

times after the convergence of the backlog process. This is why in the steady-

state, the distribution of heavy-traffic response times is unique. Consider the

steady-state response time

R̃k “ inf
!

t ą 0 : β̃k ` W̄
p8q

k ptq “ t
)

(4.16)
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As in Section 4.1.4, we get the distribution function of steady-state response

times.

Proposition 4.6. Let τk P Γ, ūk ă 1, H̃k be the exceedence function of the steady-

state response time of τk, and let ηk be as defined in Proposition 3.3 and Ψk as

defined in (4.3). Then for all t ą 0,

H̃kptq “ ηk

ż 8

0
Ψkpt, xqe´ηkxdx

Proof. We know from Proposition 3.3 that the steady-state level pk ´ 1q backlog

distribution is πk´1. We know from Proposition 4.1 that the stead-state response

time R̃k is the first idle time with an initial demand of β̃k. Finally by definition of

conditional probabilities we have H̃kptq “
ş

Ψk pt, zq dπkpzq, and dπkpzq “ ηke
´ηkzdz.

Corollary 4.2. Let τk P Γ, γk “

´

v̄k

1´ūk

¯2
and suppose ūk ă 1. The steady-state

DMP of τk is

p̃k “ 1 ´

ˆ

1 `

?
1 ` 2λkγk ´ 1

2v̄k

˙´1

(4.17)

Proof. It is a direct consequence of Proposition 4.6 and

p̃k “ Erpkpβ̃kqs

“ 1 ´ E
„

exp
ˆ

´β̃k

?
1 ` 2λkγk ´ 1
γkp1 ´ ūkq

˙ȷ

(with (4.10))

β̃k being an exponential variable of parameter ηk, we conclude by identifying the

Laplace transform of a exponential variable,

Lpsq “ Erexp
`

´sβ̃k
˘

s “

ˆ

1 `
s

ηk

˙´1

Then with s “

?
1`2λkγk´1
γkp1´ūkq

and γkηkp1 ´ ūkq “ 2v̄k we get the result.



94 4.2. Simulations

4.2 Simulations

In Proposition 4.1 we prove that response times Rk,l can be simulated from a sample

of idle times of level k´ 1, a sample of execution times and the proper initialization

backlog sample, the steady-case or the worst-case.

The procedure is as follows:

• Generate a backlog b equal to
řk
i“1 c

max
i (resp. with the distribution function

πk),

• Generate the response time Rk “ Ibk.

See Figure 4.2 and Figure 4.3a.

Proposition 4.7. The distribution function of Rk is Hmax
k (resp. H̃k).

Proof. We can see that by construction Eq. (4.13) and Eq. (4.6) come from

conditional probabilities. The representation in Proposition 4.1 indicates that

the distribution of response times is conditioned by the values of the backlog and

the execution time.

4.3 Stability

The first idle time is also a probabilistic variable, but we can build an instant

tidlepε, xq such that for any ε ą 0 and all t ą tidlepε, xq, the probability that the

first idle time of the lowest priority level is greater than t is less than ε. We call

first ε-idle time the instant tidlepε, xq from which we can guarantee the system is

steady with probability 1 ´ ε and initial backlog x ą 0. We know that βp8q

k is a

reflected Brownian motion reflected. This means that until it reaches zero, i.e., an

idle time, it is a simple Brownian motion. In fact, between two consecutive idle

times the backlog process has the same dynamic. Thus, we define the stability

of a real-time system according to its response times.
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Definition 4.3 (Stability). A real-time system is said steady when its response times

are stationary, i.e., there exists a sequence of exceedence functions Hk,l1 , . . . , Hk,lk

repeating indefinitely for any task τk P Γ.

The following proposition bounds with a given probability the first idle time

and the instant the system gets stable.

Proposition 4.8. Let n “ |Γ|, ε P p0, 1q and x ě 0. If ūn ă 1, the system of initial

demand x is stable with probability at least 1 ´ ε at the instant

tidlepε, xq “

¨

˚

˚

˝

q1´ε `

c

q2
1´ε ` 4

´

1´ūn

v̄n

¯

x

2
´

1´ūn

v̄n

¯

˛

‹

‹

‚

2

(4.18)

where q1´ε “ Φ´1p1 ´ εq is the p1 ´ εq-quantile of a standard normal distribution.

Proof. First of all, between two idle times of the same level, say I and I 1, the

backlog processes βp8q

k , k “ 1, . . . , n make excursions between passages to 0, i.e., idle

times. As it is a reflected Brownian motion, those excursions between idle times are

i.i.d., since the distribution only depends on the intial value, which is 0 at each idle

time. Furthermore, there is a finite number of possible jobs realed in the interval

rI, I 1s. Hence, a finite number of reponse time distributions that repeat on every

excursion. According to Definition 4.3, this makes the system stable when the

backlog of each priority level reaches 0. According to static priority scheduling,

I1pxq ď ¨ ¨ ¨ ď Inpxq where Inpxq represents the first idle time of the lowest priority

level initialized with a demand W̄ p8q
n p0q “ x. Hence, after the instant Inpxq, all

tasks have response times distributions that repeat according to the excursions of

the backlog of their associated priority level. Let us now bound the probability that

the idle time Inpxq exceeds a given value t ą 0. Note that

PpInpxq ą tq “ Px
n

ˆ

inf
sPr0,ts

βp8q
n psq ą 0

˙

“ Px
n

˜

sup
sPr0,ts

s ´ W̄ p8q
n psq ď 0

¸

(According to Theorem 3.6)
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According to Theorem 3.5, W̄ p8q
n is a Brownian motion of drift ūn and deviation

v̄n, there exists a standard Brownian motion B such that W̄ p8q
n ptq ´ W̄ p8q

n p0q “

ūnt ` v̄nBptq. Hence

PpInpxq ą tq “ P

˜

sup
sPr0,ts

p1 ´ ūnqs ´ v̄nBpsq ď x

¸

(4.19)

ď P
ˆ

Bptq ą t
1 ´ ūn
v̄n

´
x

v̄n

˙

“ 1 ´ Φ
ˆ

p1 ´ ūnqt ´ x

v̄n
?
t

˙

Note that this inequality is also found in [Markovic et al., 2022]. Let us define

tidlepε, xq such that

1 ´ Φ
˜

p1 ´ ūnqtidlepε, xq ´ x

v̄n
a

tidlepε, xq

¸

ď ε

which implies that for t ą tidlepε, xq we should have

t ą ūt ` Φ´1
p1 ´ εqv̄n

?
t ` v̄nx (4.20)

see Figure 4.4. This is a second order polynomial equation, which admits no solution

when ū ą 1, and, when ū ď 1 and ε P p0, 1q, the smallest solution of Eq. (4.20) is

Eq. (4.18).

Remark. Two important remarks:

(i) When ū ă 1, the excursions of the processes pβ
p8q

k pt ` Ikpxqqq, t ą 0 between

two passages at 0 are the longest excursions possible. Indeed, the trajectories

of Brownian motions are continuous, which means that, with a intermediate

value theorem argument, an excursion between two passages on x is necessarily

smaller than the excursion of the same trajectory between passages through 0 .

(ii) To go deeper into the theory of excursions, Îto proves [Itô, 1972] that the

sequences of idle times also forms a Poisson point process in certain conditions.
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Note that for all x ě 0, limεÑ0 tidlepε, xq “ 8, limεÑ1 tidlepε, xq “ 0, and

• ūn ă 1 ùñ tidlepε, xq ă 8,

• ūn “ 1 ùñ tidlepε, xq “ 8,

• ūn ą 1 ùñ tidlepε, xq is not defined.

Remark. We provide the analysis for the lowest priority level, but in fact each

priority level has its own first ε-idle time.

Finally we consider the maximum first ε-idle time tmaxidle pεq by considering a

synchronous activation, i.e., W̄np0q “
ř

τiPΓ c
max
i . See Proposition 4.4 for a more

detailed explanation. The maximum first ε-idle time is then

tmaxidle pεq “ tidle

˜

ε,
ÿ

τiPΓ
cmaxi

¸

(4.21)

We can now say that, with a level of confidence ε, that the system is steady

at time tmaxidle pεq in the worst-case.

4.4 Experimental results

The purpose of this section is to illustrate that the response times generated from

Proposition 4.7 provide a good approximation, by comparing distribution functions

of simulations and its associated EVT estimation, and generated heavy-traffic

response times distributions. Closer are the curves, better is the estimation. Those

results are not exhaustive and are an illustration, we do not cover in this work the

sensitivity of the model for different values of ū. We use the data generated by SimSo

to apply EVT on response times (using the Scipy framework1 on Python). Finally

we compare our results with SimSo simulations and EVT estimations. Without

loss of generality the periods are deterministic in these simulations.
1https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gereme.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gereme.html
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In order to illustrate the stability described in this thesis, we use the task set Γ

provided in Table 3.1. The level 2 maximum utilization is smaller than 1, hence

backlogs of level 2 converge quickly to 0, see Figure 3.3a. The level 3 maximum

utilization is greater than 1 and the level 3 mean utilization is smaller than 1.

Thus, τ3 is the task of interest, see Figure 3.2b and Figure 3.3b. The level 4 mean

utilization is close to 1, hence Figure 3.2c and Figure 3.3c illustrate the behavior of

backlogs when the utilization approaches its phase transition. The level 5 mean

utilization is greater than 1, which illustrates the explosion (infinite response times)

of the system, see Figure 3.2d and Figure 3.3d.

In Figure 3.2 we observe that the demand W ptq follows the line ūt`x (its mean).

In Figure 3.2 and 3.3 we see what happens when the system mean utilization is

smaller, close and greater than 1 : for smaller values of ū the system stays with zero

backlog at some point, see Figure 3.2b, but for values greater than 1 the system

explodes, see Figure 3.2d and 3.3d. In Figure 3.2c and 3.3c we see that even for

ū close to 1, the system always admits finite idle times. Most importantly, we

see in Figure 3.2b and 3.3b that when ū ă 1 and ūmax ą 1, the analysis holds

and provides quantifiable response times.

In Figure 4.4, we see to what corresponds idle times and ε-idle times graphically.

In Figure 4.1 the average idle time corresponds to the point where the line t and

ūt ` x meet, and the distribution of the idle times correspond to the frequency

the demand process meets the line t for each instant t ą 0.

Finally, in Figure 4.3a, we can see the simulations presented in Section 4.2 and a

comparison with response times simulated via SimSo [Chéramy et al., 2014]. The two

ground truth samples are the two subsets SimSo-transient and SimSo-steady, which

are composed respectively of simulated response time released before and after the

maximum ε-idle time tmaxidle pεq “ 154 where ε “ 10´6. The maximum idle time tmaxidle pεq

is computed via Monte-Carlo approximations with the representation in Eq. (4.21).

The EVT estimation (green curve) from these SimSo simulations and the steady-

state and WCRTs suggested in this thesis are compared via their distribution

functions in Figure 4.3b. In this case, where ū is not too close to 1 and ūmax
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greater than 1, we can see that the Worst-case response times, the EVT estimation

and the steady-state response times are greater (in the stochastic sense [Díaz

et al., 2004]) than the true response times simulated with SimSo. The heavy-

traffic Worst-case response time seems to be an upper-bound in practice, and the

Steady-state response time is quite accurate.

Closer is the Steady-state to the SimSo-steady curve, more accurate the ap-

proximation is. We can see a big difference between the Worst-case curve and the

Steady-state curve. However the proposed analysis does not permit to quantify

analytically this difference.

4.5 Conclusion

We have seen that real-time systems can reach steadiness over a finite and quantifi-

able amount of time, and that a necessary condition to assure this stability is that

the mean utilization is lower than 1. In practice, systems with a mean utilization

ū ą 0.9 have many deadline misses, which requires from system designers to

quantify deadline miss probabilities carefully by using the distributions of response

times provided in this chapter.

No schedulability tests considering the steadiness of response times exist. This

is a natural step in our opinion for the use of the analysis provided in this work.

For example, the approach we have presented in this chapter is well suited for an

application of a Monte-Carlo response time analysis [Bozhko et al., 2021] which

has recently been proven efficient.

We have expressed the probability function of response times in a specific family

of distributions and provided a method to generate them. However, the distribution

functions of execution time are usually unknown. The methods built in this chapter

could be used in empirical and measurement-based methods, for example using

clustering methods [Friebe et al., 2020, Zagalo et al., 2020].

Yet these deadline miss probabilities depend on the Brownian approximation
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which converges slowly. A next step in this analysis would be to check the sensibility

to the size of the task set.
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Figure 4.3: Simulations of a 10 000 instances for the SimSo simulations, steady and
transient, EVT estimation of the WCRT of the SimSo simulations and simulations of
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3 ) and steady-state response-time (H̃3) when ū “ 0.838
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Concentration inequalities have been widely studied these last years to bound

DMP [von der Brüggen et al., 2021,Palopoli et al., 2012,Chen et al., 2018]. Currently,

the most efficient bound is the Hoeffding DMP [von der Brüggen et al., 2018]. These

bounds compute DMP only from the parameters of the studied task set. The

method built in this chapter uses knowledge on the task set and infers response

time data to compute the Maximum Likelihood Estimate (MLE).
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We justify in Chapter 4 that response times are first-passage times of Brownian

motion, and hence the inverse Gaussian family is proposed as the appropriate

family for response time approximations. Thus, the inverse Gaussian family is a

natural choice for a statistical modelling of positive and right-skewed distributions,

see [Folks and Chhikara, 1978,Tweedie, 1957]. It is used in many research fields,

such as industrial degradation modelling [Ye and Chen, 2014], psychology [Schwarz,

2001,Palmer et al., 2011], and many others like hydrology, market research, biology,

ecology, and so on c.f., [Seshadri, 2012].

In this chapter, we propose a suited parameterization of the inverse Gaussian

distribution in Section 5.1, using an adapted Expectation-Maximization (EM)

algorithm, we estimate the parameters of a mixture of inverse Gaussian distributions.

This allows to estimate response times and allows parametric inference. Finally

in Section 5.2.1 we illustrate the convergence of the EM algorithm and compare

it to the Hoeffding DMP (see Lemma 3.5) with simulations, compare it to the

classic EM algorithm in terms of computation time.

As we proved in the previous chapter, response times can be approximated

with inverse Gaussian distributions as long as inter-arrival times are exponential.

In this chapter we test the assumption that bounds on response times may be

approximated by inverse Gaussian distributions for periodic inter-arrival times.

Thus, we test this assumption in this chapter. Let pΩ,P,Γ, tθtutq be a stationary

real-time system following a
ř

iDi{
ř

iGi{1{SP queueing model.

5.1 Inverse Gaussian mixture model for response

times

Let Ri be the response time of ūi. Its distribution function is the mixture of the

distribution functions of the response times Ri,j . The distribution of Ri is composed

of ki components. Formally, this means that we approximate the probability density
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function of the response time Ri with a variable Ri of probability density function

hipx; πi,θiq “

ki
ÿ

k“1
πi,kψi px; θi,kq (5.1)

where ψipx, θq is the inverse Gaussian probability function of mean θ{p1 ´ ūiq

and shape θ2{v̄2
i .

In real-time systems, the interest of the analytical approach is to measure

the DMP pi with a closed expression. For example, a task τi should not miss

its deadline with a permitted failure rate αi, and the inequality in Eq. (2.21) is

approximated with the mixture Eq. (5.1).

5.1.1 Re-parameterized inverse Gaussian distribution for

response times

The purpose of this section is to provide the efficient distribution family for an

approximation of response times and an adapted EM algorithm to estimate the

parameters of this approximation. This adapted re-parameterization of the inverse

Gaussian distribution reduces the number of parameters of the model. Furthermore,

as underlined in [Punzo, 2019], the log-likelihood of the inverse Gaussian distribution

has flat regions, thus the EM algorithm has tiny variations. Reducing the number

of parameters addresses a part of this problem. A second reduction of this problem

is the use of the Aitken acceleration procedure [Aitken, 1926].

In [Punzo, 2019], the author introduces a modified version of the inverse Gaussian

distribution of parameters pξ, δq, using its mode

µ “

ˆ

ξ2
`

9ξ4

4δ2

˙1{2

´
3ξ2

2δ

and its variability coefficient

γ “
ξ2

δ
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instead of the mean and shape. This re-parameterized inverse Gaussian distribution

of parameters pµ, γq is defined by the probability density function

ψ̃px;µ, γq “

d

µp3γ ` µq

2πγx3 exp
#

´

`

x ´
a

µp3γ ` µq
˘2

2γx

+

(5.2)

With the re-parameterized inverse Gaussian distribution applied to the form

that takes the parameters of the distributions of response times, one can see that

only the mode is sensitive to the mixture provided in Eq. (5.1). The variability

coefficient of an inverse Gaussian distribution of mean θ{p1´ ūiq and shape pθ{v̄iq
2 is

γi “
v̄2
i

p1 ´ ūiq2 (5.3)

and its mode is

µipθq “

d

ˆ

θ

1 ´ ūi

˙2

`
9γ2

i

4 ´
3γi
2 (5.4)

such that ψipx; θq is the probability density function of a re-parameterized inverse

Gaussian distribution of mode µipθq and variability γi.

5.1.2 Maximum likelihood estimation of response time dis-

tributions

In this section we present an adaptation of the MLE proposed by [Punzo, 2019] for

real-time systems. We have implemented both methods in the Python language

in the library rInverseGaussian [Zagalo and Verbytska, 2022].

When ki “ 1, we have the follwing proposition.

Proposition 5.1. Let pRi,jqj“1,...,N be a N-sample of response times of the task

τγ P Γ. When ki “ 1, πi,1 “ 1 and we have the MLE

θ̂i “
1 ´ ūi
N

N
ÿ

j“1
Ri,j (5.5)
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Proof. See [Folks and Chhikara, 1978] for the classical MLE of IG distributions. We

know from [Folks and Chhikara, 1978, Eq. (10)] that the mean of an IG distribution

is the empirical mean 1
N

řN
j“1 Rγ,j. Furthermore, we are looking for estimating the

mean θ
1´uγ

. Since we already know uγ, we get the result by estimating θ
1´uγ

with
1
N

řN
j“1 Rγ,j.

The complete-likelihood of mixture models [McLachlan et al., 2019,Bouveyron

et al., 2019] can be written as

LcpZi,πi,θiq “

n
ź

j“1

ki
ź

k“1
rπi,kψiprj; θi,kqs

Zi,j,k (5.6)

and the complete log-likelihood ℓc “ logLc is

ℓcpZi,πi,θiq “ ℓc1pZi,πiq ` ℓc2pZi,θiq (5.7)

where

ℓc1pZi,πiq “

n
ÿ

j“1

ki
ÿ

k“1
Zi,j,k log πi,k (5.8)

and

ℓc2pZi,θiq “

n
ÿ

j“1

ki
ÿ

k“1
Zi,j,k logψiprj; θi,kq (5.9)

which leads to the following EM algorithm:

E-step For the ps ` 1qth step of the EM algorithm, z
psq

i the conditional

expectation of Zi given pπi,θiq “

´

π
psq

i ,θ
psq

i

¯

is given by

z
psq

i,j,k “
π

psq

i,kψi

´

rj; θpsq

i,k

¯

hi

´

rj; π
psq

i ,θ
psq

i

¯ (5.10)

M-step For the ps` 1qth step of the EM algorithm, ℓc1pz
psq

i , ¨q is maximized by

π
ps`1q

i,k “
1
n

n
ÿ

j“1
z

psq

i,j,k, k “ 1, . . . , ki (5.11)
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and maximizing ℓc2 with respect to θ is maximizing each of the ki expressions

n
ÿ

j“1
z

psq

i,j,k logψiprj; θi,kq, k “ 1, . . . , ki (5.12)

using Newton-like algorithms to solve

∇ℓc “ 0 (5.13)

Then with B logψi

Bθ
px; θq “

Bµi

Bθ
pθq

B log ψ̃
Bµ

px;µipθq, γiq and the derivatives

B log ψ̃
Bµ

px;µ, γq “ ´ 3
2x ´

µ
xγ

` 1
3γ`µ

`
3γ

2µp3γ`µq
`

?
µ

2γ
?

3γ`µ
`

?
3γ`µ

2γ?
µ

Bµi

Bθ
pθq “ θ

p1´ūiq
2

ˆ

´

θ
1´ūi

¯2
`

9γ2
i

4

˙´1{2 (5.14)

Eq. (5.13) is equivalently solved by Eq. (5.11) and the solutions of

n
ÿ

j“1
z

psq

i,j,k

B logψi
Bθ

prj; θkq “ 0, @k “ 1, . . . , ki (5.15)

In order to stop the algorithm, the author in [Punzo, 2019] proposes the Aitken

acceleration. The Aitken acceleration at iteration s ` 1 is given by

aps`1q
“
ℓps`2q ´ ℓps`1q

ℓps`1q ´ ℓpsq
(5.16)

where ℓpsq is the observed-data log-likelihood from iteration s. The limit ℓ8 of

the sequence of values of the log-likelihood is

ℓps`2q
8 “ ℓps`1q

`
ℓps`2q ´ ℓps`1q

1 ´ aps`1q
(5.17)

The EM algorithm is considered to have converged if

|ℓps`2q
8 ´ ℓps`1q

8 | ă ε (5.18)

with a tolerance ε ą 0.
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Figure 5.1: Computation time of the EM algorithm with the knowledge of ūi and v̄i
(fixed gamma) and without (non-fixed gamma)

Finally, we initialize the algorithm with a k-means clustering for θp0q and πp0q “

1{n.

5.1.3 Bayesian information criteria

The Bayesian information criteria (BIC, [Schwarz, 1978]) is used to chose the

number of components of the mixture, which has been proven consistent for mixture

models [Raftery, 1995,Fraley and Raftery, 2002,Dasgupta and Raftery, 1998]. The

number of parameters of a mixture of k components being 2k ´ 1, the number

of components chosen is equal to

ki “ argmax
k

2ℓnpπi,θiq ´ p2k ´ 1q log n (5.19)

where ℓn is the observed-data log-likelihood. The number of parameters being

reduced from 3ki ´ 1 to 2ki ´ 1, the computation time of this EM algorithm is

also reduced (see Figure 5.1).
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5.1.4 Model validation

We use the relation of inverse Gaussian distributions with the χ2
1 distribution

to check the quality of the MLE. Indeed, if X is an inverse Gaussian variable

of mean ξ and shape δ, then

δpX ´ ξq2

ξ2X

is distributed as a Chi-squared distribution of one degree of freedom [Tweedie, 1957].

Let PIG
k be the probability conditionally that the response time Ri is in the k-th

component in the inverse Gaussian estimation, and

gipx; θq “

´

x ´ θ
1´ūi

¯2

γix
, x ą 0 (5.20)

In our case, for each component k “ 1, . . . , ki of the mixture Eq. (5.1), after

classification we should have that

gi

´

Ri; θ̂i,k
¯

„ χ2
1 (5.21)

under the probability PIG
k . Therefore, we use Eq. (5.21) to validate the MLE,

and provide the DMP we are looking for. The larger quantiles values are the

ones that real-time designers are interested in to determine whether a task is

schedulable or not, see Eq. (2.21). We use Eq. (5.21) to determine whether a task

is schedulable in its transient state or not.

5.1.5 Deadline miss probability

Proposition 5.2. The deadline miss probability of the inverse Gaussian estimation

is

pIG
i “

ki
ÿ

k“1
πi,kΨp1{λi, θi,k; ūi, v̄iq (5.22)
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where

Ψpt, b;u, vq “ Φ
ˆ

´
p1 ´ uqt ´ b

v
?
t

˙

´ e´2b 1´u

v2 Φ
ˆ

´
p1 ´ uqt ` b

v
?
t

˙

(5.23)

and Φ is the standard normal distribution function.

Proof. We have pIG
i “

řki

k“1 πi,kPIG
k pRi ą Diq and since gip¨; θq is positive and,

decreasing for x ď θ
1´ūi

and increasing for x ą θ
1´ūi

, we obtain the result.

One may see in Figure 5.2 a comparison between the empirical DMP, the inverse

Gaussian method in Eq. (5.22) and the Hoeffding DMP.

In the following, we test by simulation if pIG
i is a good estimation of pi and if the

Hoeffding DMP is a safe bound of the inverse Gaussian estimation, i.e., pIG
i ď pH

i .
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5.2 Experimental results

The seminal work of Liu and Layland [Liu and Layland, 1973] provides a sufficient

condition for the schedulability of any system with finite supports of execution

times using the maximal utilization ūmaxi , i ě 1. Whenever

ūmaxn ă np21{n
´ 1q (5.24)

the task set Γ is proven schedulable for α1 “ ¨ ¨ ¨ “ αn “ 0 [Liu and Layland, 1973,

Theorem 5]. Moreover, while ūmaxn ă 1 there exists a dynamic-priority scheduling

policy that can satisfy the schedulability of the system [Liu and Layland, 1973].

Hence there are two phase transitions, one at ūmaxn ą logp2q “ limn np21{n´1q where

deadline misses can happen, and one at ūmaxn ą 1 where deadline misses must happen.

As proven in [Zagalo et al., 2022a], the necessary condition for the schedulability

of a task ūi Eq. (2.21) is that ūi ă 1. Hence, there is a gap to fill in the theory

between the necessary condition ūi ă 1 and the sufficient condition ūmaxi ă logp2q.

In particular in the case where ūi ă 1 and ūmaxi ą 1 as we see in Figure 5.2.

5.2.1 Simulations

In this section, we verify our method with simulated data. The simulated data are

generated using SimSo [Chéramy et al., 2014], a Python framework used to generate

arrival times of jobs and scheduling policies. A modified version of SimSo [Cheramy,

2014] generates random inter-arrival times and random execution times [Zagalo and

Auvray, 2022]1. We study the quality of the estimation as a function of utilization

level. We show that the larger the utilization, the better the estimation. We also

measure by how much the inverse Gaussian bound is larger than the empirical DMP,

p
pnq

i “
1
n

n
ÿ

j“1
1Ri,jąTi,j`1 (5.25)

1https://github.com/kevinzagalo/simso/blob/main/generator/task_generator.py

https://github.com/kevinzagalo/simso/blob/main/generator/task_generator.py
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MLE distribution, of 1000 instances of the schedule, for the task set shown in Table 5.1.
In solid line the average value, and the colored area represents the values between the
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We consider a task set where the probability density functions pfiqi of the

execution times pCiqi are known, see Figure 5.4. From SimSo we generate the

response times of tasks with the RM scheduling policy from the probability functions

pfi, i “ 1, . . . , 28q. Their parameters are given in Table 5.1. The distributions of

execution times used in the simulations are generated with UUnifast [Bini and

Buttazzo, 2005], to emphasize the fact that fi can be any distribution (D{G{1 queue).

Two methods are used: one with a finite support where the maximal utilization ūmaxi

is finite, and another one with an infinite support with exponential distributions

where the maximal utilization is not defined. This schedule is instantiated 100 times,

thus in Figure 5.3(a), the box-plots of each task are based on 100 estimators. Also

note in Figure 5.3 that the variability of the estimates decreases with the priority

level. Because of the static-priority structure of RM, we can see in Figure 5.3 that

the error of the estimation decreases with the priority level. The first task is never

preempted, so its response time is always equal to its execution time. Therefore
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the estimation of its response time cannot be accurate in general.

In a second step, a task set with exponentially distributed execution times is

simulated for comparison (D{M{1 queue), as it is a special case widely studied

in queueing theory [Pack, 1977]. This is a baseline for determining the rate of

convergence of the response times estimation as a function of priority levels. This

baseline confirms that the rate of convergence depends on the type of distributions

used for execution times, but that there is a phase transition at ūmaxi ą 1,

independent from the type of distribution used for execution times. The parameters

of the task set are given in Table 5.1.

In Figure 5.2, we have the mean utilization pūiqi on the x-axis and pp
pnq

i , pH
i , p

IG
i qi

on the y-axis. We can see that when ūmaxi ă logp2q, it is useless to compare

the methods because they have already been proved schedulable in Eq. (5.24).

Moreover, all DMP increase when ūmaxi ą 1.
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5.2.2 Data

In this section we use the inverse Gaussian method on real data. We use a real case

of 9 programs of an autopilot of a drone, PX4-RT [Khazen et al., 2022,Ntaryamira,

2021], a modified version of PX4 [Meier et al., 2015] with a real-time behavior, and

a clock measuring preempting the operating system itself. PX4-RT is run on an

ARM Cortex M4 CPU clocked at 180 MHz with 256 KB of RAM using a simulated

environment from Gazebo [Koenig and Howard, 2004]. PX4-RT allows to measure

execution times (Figure 5.5 and Table 5.2) and response times during the flight

of a drone. It runs on top of NuttX, a Unix-like operating system. It provides

an infrastructure for internal communications between all programs and off-board

applications. Each task is a NuttX task launched at the beginning of the PX4

program. The tasks read data from sensors (snsr), estimate positions and attitudes

using a Kalman filter (ekf2), control the position (pctl) and the attitude (actl) of

the drone, the flight manager (fmgr), the hover thrust estimator (hte), handle the

navigation (navr), command the state of the drone (cmdr), and the rate controller

(rctl), which is the inner-most loop to control the body rates. These tasks are in

continuous interference with the operating system NuttX. Because the operating

system has the highest priority, the nine tasks studied are constantly preempted

by NuttX. Unfortunately, it is difficult to have information about the interfering

operating system programs. Unlike the simulation in Section 5.2.1, PX4-RT runs

concurrently with other tasks which do not have timing requirements, making it a

complex system with many unknown variables. We test in this section whether and

when the proposed parametric estimation is suitable for such complex system.

In this case, the distribution functions of execution times cannot be provided.

Therefore, we use the empirical distributions shown in Figure 5.5. Thus, the mean

utilization ûi is computed with the empirical means of execution times, and the

maximal utilization ûmaxi with the empirical maximum of execution times, see

Table 5.2 for a full description of the parameters. As shown in the previous section,

the response times of the highest priority task snsr are not estimated.
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Figure 5.5: Execution time empirical probability functions of the 9 studied tasks of the
drone autopilot PX4-RT

These programs generate response times shown in Figure 5.6, on which we

use the mixture model proposed in Eq. (5.1) with the EM algorithm provided

in Section 5.1.2, see [Khazen et al., 2022] for a full description of the data. The

QQplots in Figure 5.6 show that the estimation is good for the large quantiles, which

is what is important to determine the schedulability of a system, c.f., Eq. (2.21).

We can identify in Figure 5.6 that for the cmdr and fmgr tasks the estimation

is not good, which means that we do not have sufficient information about the

programs interfere with them (operating system etc.), and that a schedulability

test on this task would not be suitable with the method built in this chapter.

Nevertheless, for the other tasks the approximation is appropriate and can therefore

be used for a schedulability analysis.
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Figure 5.6: Response times empirical distributions of the PX4-RT autopilot and QQplots
with the χ2

1 quantiles from Eq. (5.21) for each component (c.f.,the different colors) of the
estimated mixtures
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Figure 5.7: The response time MLEs and the histogram of simulations from SimSo, see
Section 5.2.1
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(l) Task set 11

Figure 5.8: DMP for 12 randomly generated task sets. The estimation is always below
the Hoeffding DMP, and the differences between the minimum and maximum DMP of
the inverse Gaussian estimation are small. In solid line the average value, and the colored
area represents the values between the 25%-percentile and the 75%-percentile.



6 | DMP-driven online partition-

ing

Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . 129

6.1.2 Local TDA . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.2 DMP-RAA bin-packing . . . . . . . . . . . . . . . . . . . 132

6.2.1 Forward induction . . . . . . . . . . . . . . . . . . . . . 133

6.2.2 State space . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.2.3 Reward function . . . . . . . . . . . . . . . . . . . . . . 137

6.2.4 Action space . . . . . . . . . . . . . . . . . . . . . . . . 138

6.2.5 Transition matrix . . . . . . . . . . . . . . . . . . . . . . 139

6.3 Using analytical DMP . . . . . . . . . . . . . . . . . . . 141

6.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.4.1 DMP-First-Fit vs. DMP-First-Fit with the Hoeffding DMP144

6.4.2 RM-DMP-First-Fit on periodic vs. stationary task sets 146

6.4.3 DMP-RAA vs RAA . . . . . . . . . . . . . . . . . . . . 146

6.4.4 RM-DMP-RAA vs. others . . . . . . . . . . . . . . . . . 151

6.5 Potential extension to unrelated heterogeneous multi-

processor systems . . . . . . . . . . . . . . . . . . . . . . 154

123



124 6. DMP-driven online partitioning

In this chapter we propose an application of the stochastic analyses proposed in

the previous chapters to build a new class of allocation algorithms that use DMP-

driven bin-packing that we define in Section 6.1. Let pΩ,P,Γ,Π, tθtutq be a stationary

multiprocessor real-time system following a
ř

iDi{
ř

iGi{m{SP queueing model.

We define DMP-driven bin-packing algorithms, which are allocation algorithms

allowing to extend single processor scheduling policies to a restricted migration

algorithm for multiprocessor systems that are DMP-aware. We restrict DMP-

driven algorithms to the RM policy in this study. The bin-packing problem is

NP-hard. For this reason, we build in this chapter an online processor allocation

based on forward induction and use the results of previous chapters ensuring this

allocation maintains the system stable.

The considered scheduling policy is work-conserving, i.e., does not idle when there

is workload to be executed, and preemptive, i.e., a job may be preempted before

the end of its complete execution, and its execution can be resumed with no cost.

The problem of the restricted scheduling on a multiprocessor system consists

in two decisions: the dynamic allocation of processors and the static-priority

assignment of tasks.

(i) Allocation: jobs are allocated to processors online; i.e., immediately upon

arrival, a job is assigned to a processor based on its expected DMP. The

allocation decision is a global load-balancing optimization problem in which

jobs are distributed among multiple identical processors by minimizing their

DMP. Tasks migrations are allowed, i.e., all jobs of a same task do not need

to be executed on the same processor. However, we require in this study that

a job that is allocated to one and only processor, and must finish its execution

on the same processor. This is called restricted migration, see Figure 1.4. The

restricted migration strategy provides a good compromise between the full

migration and the partitioning strategies [Carpenter et al., 2004].

(ii) Priority assignment: the priority assignment is local and consists of solving a
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Table 6.1: Maximum utilization bounds for migration strategies of the multiprocessor
Rate-Monotonic with reasonable bin-packing

full migrations restricted migrations no migrations

identical
processors

”

m2

3m´1 ,
m`1

2

ı

ms ´ pm ´ 1q maxτiPΓ λic
max
i

„

mp21{m ´ 1q, m`1
1`2

1
m`1

ȷ

uniform
processors

Eq. (6.3) –
řm
j“1 spκjqnjp2

1{nj ´ 1q

sequencing problem. In this chapter, RM is applied.

The offline and online allocation differ in their complexity. Furthermore, in

the case of a stationary system, offline and online allocation become significantly

different. Offline allocation involves estimating or averaging arrival times, while

online allocation uses the exact arrival time for each job.

6.1 Introduction

The RM scheduling policy is a static-priority scheduling algorithm which assigns

each task a priority relatively to its periods - the smaller the period, the higher

the priority. Let umaxi “ λic
max
i be the maximum utilization of the task τi P Γ.

In the case of multiprocessor scheduling, i.e., m ě 2, the RM policy is extended

in [Andersson et al., 2001] to identical multiprocessor systems global scheduling when

ūmaxn ď
m2

3m ´ 1; @τi P Γ, umaxi ď
m

3m ´ 2 (6.1)

and by allocating jobs to any available processor, all tasks are schedulable with a

permitted failure rate equal to zero. In the case of restricted scheduling on identical

processors of speed s, authors in [Goossens et al., 2012] prove that if

ūmaxn ď ms ´ pm ´ 1q max
τiPΓ

umaxi (6.2)

the system is schedulable with permitted failure rates equal to zero.
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In [Baruah and Goossens, 2003] authors extend this result to uniform multi-

processor systems with global scheduling static-priority policies. The system is

schedulable with permitted failure rates equal to zero when

ūmaxn ď
1
2

˜

ÿ

κPΠ
spκq ´ p1 ` Λq max

τiPΓ
umaxi

¸

(6.3)

where Λ “ maxκjPΠ
1

spκjq

řm
i“j`1 spκiq measures the degree by which Π differs

from an identical multiprocessor systems. However, this bound Eq. (6.3) is not

proven sustainable according execution times and inter-arrival times as discussed

in this same paper.

Finally, for partitioned scheduling algorithms, the task set Γ should be partitioned

into m tasks subsets of respectively n1, . . . , nm tasks such that for any κj P Π,

ūmaxn pκjq ď njp21{nj ´ 1q (6.4)

However anomalies can be found in such partitioning, which can be corrected by

giving priorities according to decreasing utilizations [Andersson and Jonsson, 2002],

i.e., τi has priority over τj on κ if umaxi ą umaxj . This priority assignment is not only

the appropriate way to partition a static-priority task set, but it is also sustainable if

execution times are decreased and inter-arrival times are increased, which is suited for

stationary real-time system. For the sake of simplicity, we keep referring to it by RM.

No bound still exists for the uniform restricted case. However, we use the

global uniform bound as a baseline, knowing that there exists deadlines misses,

while the system is feasible. Quantifying the deadline misses probabilities is the

purpose of the first section of this chapter.

Let pΩ,P,Γ,Π, tθtuq be a stationary real-time system, with the uniform multipro-

cessor Π “ tκ1, . . . , κmu composed of the processors κ P Π of speed spκq P r1, smaxs,

i.e., κ can process spκq workload units in one unit of time. We consider Π ordered

by decreasing speeds, i.e., spκiq ą spκjq if i ă j. We consider also the task set

Γ “ tτ1, . . . , τnu with stationary inter-arrival times and implicit deadlines, ordered
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by decreasing utilization, i.e., τi has priority over τj if umaxi ą umaxj . We suppose

for all 1 ď i ď n and 1 ď k ď m that λiErCis ă spκkq. We define Γ`
i pκq (resp.

Γ´
i pκq) to be the set of tasks of priority higher (resp. lower) or equal to the priority

of τi active on the processor κ at a given time, and let

ūipκq “
1

spκq

ÿ

τjPΓ`
i pκq

λjErCjs (6.5)

be the local mean utilization of level i in the processor κ and, respectively, let

v̄ipκq “
1

spκq

¨

˝

ÿ

τjPΓ`
i pκq

λjErC2
j s

˛

‚

1{2

be the local deviation of level i on the processor κ, that is the sum of the utilization

(resp. deviation) of the tasks in Γ`
i pκq. Let umaxi “ cmaxi {tmini be the maximum

utilization of τi,

ūmaxi pκq “
1

spκq

ÿ

τjPΓ`
i pκq

umaxi

be the local maximum utilization of level i of κ and

v̄maxi pκq “
1

spκq2

ÿ

τjPΓ`
i pκq

pcmaxj ´ cminj q2

tminj

the local maximum deviation of level i in κ. Finally, we suppose that ū ă
řm
j“1 spκjq

and uipκjq ă 1 for all i “ 1, . . . , n, j “ 1, . . . ,m. We remind that we say that a task

τi is schedulable if its DMP is lower than its permitted failure rate αi. We suppose

the task set Γ “ tτ1, . . . , τnu is ordered such that umax1 ą ¨ ¨ ¨ ą umaxn .

Bin-packing

The goal of bin-packing in multiprocessor scheduling is to assign a set of tasks

to a set of processors online. It is used to solve one of the two sub-problems of

multiprocessor scheduling listed above. The goal is to assign the tasks to the
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processors in a way that the utilization is either increased or decreased. In bin-

packing, each processor is viewed as a "bin" and the tasks are viewed as items that

need to be placed into the bins. The problem is to find the optimal assignment

of tasks to bins such that the total execution time is minimized. The choice of

algorithm depends on the specific characteristics of the problem, such as the size of

the task set and the number of processors available. In real-time systems, the three

most used heuristic approaches are Reasonable Best-Fit (Algorithm 1), Reasonable

Worst-Fit (Algorithm 2) and Reasonable First-Fit (Algorithm 3). In the Best-Fit

algorithm, the tasks are iterated through and each task is assigned to the processor

with the smallest amount of remaining capacity. In the Worst-Fit algorithm, the

tasks are iterated through and each task is assigned to the processor with the most

remaining capacity. In the Next-Fit algorithm, the tasks are iterated through and

each task is assigned to the next available processor. The First-Fit algorithm differs

from the Best-Fit and the Worst-Fit algorithms, in that it does not consider an

optimization problem when making assignment decisions. The specific algorithm

used to solve the bin-packing problem depends on the characteristics of the problem,

such as the size of the task set and the number of processors available. A full

review on utilization bounds RM and EDF combined with different bin-packing

algorithms can be found in [Davis and Burns, 2011].

Anomalies in multiprocessor scheduling and sustainability

In order to generalize results of the deterministic analysis of periodic real-time

systems to a probabilistic approach, we assert that a variation on the execution

times of jobs and their inter-arrival times does not affect the scheduling process. A

scheduling algorithm not sustainable has scheduling anomalies [Andersson and Jons-

son, 2002], e.g., Figure 6.1, i.e., scenarios where the optimality of the single processor

algorithms does not hold in the multiprocessor scheduling. This phenomenon has to

be taken into account in order to use a stochastic analysis and in general to propose

a multiprocessor scheduling policy. Unfortunately, online restricted scheduling

algorithms are not sustainable with respect to the execution times [Ha and Liu,
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0 2 4 6 8 10

τ1

τ2

τ3

(a) T1 “ 4

0 2 4 6 8 10

τ1

τ2

τ3

(b) T1 “ 5

Figure 6.1: Illustration of the non-sustainability of a static-priority scheduling algorithm
using the Best-Fit bin-packing algorithm, a set of tasks Γ “ tτ1, τ2, τ3u such that
C1 “ 1, D1 “ 3; C2 “ 3, T2 “ 5, D2 “ 5; C3 “ 7, T3 “ 20, D3 “ 8, and an identical
multiprocessor Π “ tκ1, κ2u (one in grey, one in black).

1994]. Hence our goal is to decrease as much as possible the number of anomalies

leading to deadline misses. In order to use results on deterministic anomaly-free

bin-packing algorithms, we provide a heuristic of a reasonable allocation algorithm.

Definition 6.1 (From [Lopez et al., 2004]). A Reasonable Allocation Algorithm

(RAA) is one which fails to allocate a task only when there is no processor in the

system which can hold the task.

Since the restricted strategy proposed in this chapter is an online partitioning

of the system, we can say that that a bin-packing strategy combined with the

utilization-bound in Eq. (6.4) provides a restricted scheduling algorithm. There

are bin-packing analyses providing solutions to the anomalies they can contain

e.g., [Murgolo, 1988]. The specific case of the RM policy with First-Fit is studied

in [Andersson and Jonsson, 2002]. The purpose of this chapter is to build such

bin-packing algorithm based on DMP that is reasonable.

6.1.1 Problem statement

We suppose a task τi is activated. When it is activated, it is potentially delayed

by a backlog of distribution µij in each processor κj, that is the workload of the
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Algorithm 1 Reasonable Best-Fit when the task τi is activated
q “ 1
for κ P Π do

nκ “ |Γ`
n pκq| Ź The current number of tasks activated on κ

uκ “ ūmaxn pκq ` umaxi {spκq

if uκ ă pnκ ` 1qp2
1

nκ`1 ´ 1q and q ą 1 ´ uκ then
q Ð 1 ´ uκ
a Ð pτi, κq

if q “ 1 then
return H Ź Discard τi

else
return a

Algorithm 2 Reasonable Worst-Fit when the task τi is activated
q “ 0
for κ P Π do

nκ “ |Γ`
n pκq| Ź The current number of tasks activated on κ

uκ “ ūmaxn pκq ` umaxi {spκq

if uκ ă pnκ ` 1qp2
1

nκ`1 ´ 1q and q ą uκ then
q Ð uκ
a Ð pτi, κq

if q “ 0 then
return H Ź Discard τi

else
return a

Algorithm 3 Reasonable First-Fit when the task τi is activated
for κ P Π do

nκ “ |Γ`
n pκq| Ź The current number of tasks activated on κ

uκ “ ūmaxn pκq ` umaxi {spκq

if uκ ă pnκ ` 1qp2
1

nκ`1 ´ 1q then
return pτi, κq

return H Ź Discard τi
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unfinished jobs of higher priority tasks activated before τi. We denote the action

of allocation τi on κj as the couple a “ pτi, κjq. For all j “ 1, . . . ,m, let tµ1
kjuk be

the sequence of backlog distribution of jobs of level k activated on the processor

κj induced by the allocation a. The goal of the allocation is then to focus not

only the DMP pipa, µijq of τi conditionally to the backlog µij, but also the DMP

tpkpa, µ1
kjqukąi of the tasks blocked by τi induced by the choice of κj for the task

τi. Thus the allocation problem is to find the processor κ˚ minimizing both the

probability pipa, µijq
ś

kąi pkpa, µ1
kjq and a quantity qRAApaq of a given RAA that

should be maximized, at each activation of the task τi, i.e.,

κ˚
“ argmaxa“pτi,κq ´ log pipa, µijq ´

ÿ

kąi

log pipa, µ1
kjq ´ log qRAApaq (6.6)

which does not mean that we minimize the DMP of a particular task, but overall the

metric is the DMP to decrease the number of deadline misses as much as possible.

DMP-driven decisions are not based in fact on the quality of the estimation

of DMP, but more in the order induced by those. As in the priority assignment

problem, the allocation problem builds some kind of hierarchy to decide which

processor to allocate to which task. This is important to understand, and this is

how probabilities can play a central role even in critical applications.

6.1.2 Local TDA

In Chapter 4 we used queueing theory arguments that any set of tasks active on

a processor with a local mean utilization greater than 1 is not schedulable with a

static-priority scheduling algorithm. Similarly, we use the fact that ūnpκq ă spκq

for every processor κ P Π at any time, is a necessary condition for the schedulability

of any global static-priority scheduling policy, and develop a allocation policy using

forward induction to allocate jobs to processors by minimizing their DMP. The

problem is stated as follows: find an optimal allocation policy with RM priorities

focused on the DMP in the worst-case scenario.

Let κ be a processor at given instant in time, βipκq be the local backlog of level
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i allocated to κ and Ŵiptq the demand of level i at this same time. Suppose a job

τi,j is allocated to a processor κ. According to Chapter 4, the TDA of this job is

R̂i,j “ inf
!

t ą 0 : βi´1pκq ` Ci,j ` Ŵ j
i´1ptq ď spκqt

)

(6.7)

where the Ŵ j
i , j P N are independent copies of Ŵi, itself a Brownian motion of

drift ūi and deviation v̄i, c.f., Chapter 3. This analysis is possible thanks to

the following theorem.

Theorem 6.1 (Theorem 1 in [Andersson and Jonsson, 2002]). The deterministic

TDA of RM is sustainable according to execution times and periods if the local

priority assignment is such that it orders tasks by decreasing local maximum

utilization.

Just like in the single processor case, this last theorem is the reason TDA holds

as a probabilistic analysis. Any non-sustainable analysis in the deterministic case

cannot be extended to a stochastic version.

Remark. There are two differences with the single processor TDA:

(i) the time budget of the processor κ is t Ñ spκqt rather than t Ñ t,

(ii) it is more pessimistic because considering the local demand Ŵi´1 as the

interference of tasks of level i is equivalent to assume that all jobs of higher

priority tasks are going to be allocated in κ. This is false, but it gives us a safe

bound to work with. The online method that we build in the next section is

non-clairvoyant, one cannot say when and where future jobs will run, i.e., jobs

released after this activation of τi. Hence, at this stage we cannot do better

than over-estimate the local demand.

6.2 DMP-RAA bin-packing

The online allocation has the benefit over the offline method to be adaptive. However,

as explained in the previous section, online allocation for restricted scheduling
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policies in not sustainable, in the sense that it generates anomalies with the variation

of execution times. The goal of this section in to provide a penalty to a RAA such

that not only the bin-packing decision is made according to RAA, but also adapting

the decision to the induced DMP. We use this adaptive property to reward the good

decisions of the scheduling algorithm with the forward induction method. Forward

induction is a method of solving a decision problem by breaking it down into a

sequence of decisions and working forward in time. This process begins with the

first decision in the sequence and then continues to the next decision, considering

the outcomes of the previous decision. The process ends when all decisions in the

sequence have been evaluated. In order to do so, we define the good metric and

provide a method to compute it. The DMP are our metric, although it does not

mean that these decisions are optimal according to DMP. Although, we see that

such decisions have the benefit of reducing the number of preemptions.

6.2.1 Forward induction

We suppose that we have a system with states µ “ pµ1, . . . , µnq P M, possible

actions a P A, an immediate reward rpµ, aq of taking the action a in the state µ with

a RAA. The goal of forward induction is to find a policy κ˚ : M Ñ A maximizing

n
ÿ

i“1
rpµi, κ

˚
pµiqq (6.8)

where M is the set of possible states, and A the set of actions. This policy can be

achieved online by satisfying the Bellman equation [Bellman, 1957]:

cipµq “ max
aPAi

rpµi, aq ` ci`1pgapµqq (6.9)

at each iteration, where Ai is the set of available actions; rpµ, aq is the expected

immediate reward of the action a taken on state µ, ci`1pgapµqq is the cost of getting

to the state gapµq “ pµ1P
1
a , . . . , µnP

n
a q on the next iteration, where µkP k

a is the
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next backlog distribution of level k if the action a is taken, with

µP pxq “

ż

µpdyqP py, xq

and P k
a py, xq is the probability to transition from a level k backlog y to x when

taking the action a.

The optimal decision κ chooses the action that maximizes both the immediate

expected reward and the expected reward further in time, i.e.,

κ˚
pµq “ argmaxaPAipµq rpµi, aq ` ci`1pgapµqq (6.10)

From the Bellman equation [Bellman, 1957], we know that satisfying Eq. (6.6) for

all tasks minimizes all the DMP. In our case, the reward of a particular action

(assigning a task to a specific processor) provides the asset to be optimized (DMP

minimized). The allocation is the response to a specific state of backlogs distributed

in several processors based on the DMP induced by the previous backlogs. In

order to use forward induction, we formalize:

(i) A set of actions,

(ii) A set of states,

(iii) A reward function to evaluate the taken action at a specific state,

(iv) A transition probability for each action.

As only one job per task can be allocated to a processor (because of the

discarding policy), we refer only to tasks and not to jobs. The jobs are referred to

as activated tasks at a given time on a given processor. Another abuse of notation

we use in the following, is that every time we mention a processor κ P Π, we

mean a processor at a given time. Since we are only interested in transitions of

backlogs at a time t to the backlog induced by an allocation, there is no need

to make all variables dependent on t ą 0 for the sake of simplicity, when in the
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end everything is characterized by transitions. Hence, we choose not to index every

variable on time, and warn the reader that everything is presented conditionally

to the state of processors at the activation dates of the tasks.

6.2.2 State space

The worst-case reasoning is the paradigm used in real-time systems in order to be

safe, i.e., make decisions according the worst-case scenario. We call critical instant

of level i the scenario providing the worst-case blocking time of the task τi, i.e., the

largest backlog that can interfere with a job of τi. The scheduling policy is then

adapted for this critical instant. We use in the following the result of the Chapter 4

on the critical instant of stationary real-time systems.

In single processor systems, the critical instant comes in the scenario of a

simultaneous activation of all tasks. In multiprocessor systems however, the critical

instant of level i is not always the simultaneous activation of all tasks [Guan and

Yi, 2012], because of the fact that tasks can be activated on different processors. To

address this problem, we think locally, i.e., by processor, and use the information

on the local utilization of each processor.

Proposition 6.1 (Local critical instant). Let κ P Π and τi P Γ`
n pκq. If ūipκq ă 1,

the worst-case blocking time of level i in κ is

Bmax
i pκq “

ÿ

τjPΓ`
i pκq

Cj (6.11)

thus the simultaneous activation of all tasks of lower priority than τi on κ. We

call this scenario the local critical instant of level i of κ. Bipκq is the sum1 of

the worst-case blocking time of the tasks of higher or equal priority than τi on the

processor κ, i.e., the remaining workload to process by the processor κ before letting

any job of τi`1, τi`2, . . . execute.

Proof. We suppose τi P Γ`
n pκq, i.e., τi is active on κ, and ūipκq ă 1 and let

1With
ř

xPH x “ 0.
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Γ`
i pκq “ tτi1 , . . . , τipu. Since the processor κ is fixed we can use the single processor

reasoning introduced in Chapter 4. Thus the critical instant of level i is when all

tasks activated on κ are released at the same time. Then the worst-case blocking

time is

Bmax
i “

p
ÿ

k“1
Cik (6.12)

c.f., Proposition 4.4. Thus the simultaneous activation of all tasks active on κ of

lower priority than τi. For a speed greater than 1, it is sufficient to divide every

execution time by the speed of the processor. Thus we have the result.

Remark. We cannot conclude as we did in Chapter 4 that the WCRT comes from

this critical instant. However, we use the local critical instant to bound the demand

at each allocation time.

Let µpκq “ pµ1pκq, . . . , µnpκqq be the vector of backlog distributions on a

processor κ at a given time. In order to use forward induction, we exhibit an

iterative behavior of the transitions of µpκq over time. Furthermore, backlogs

cannot be measured in real-time, as execution times jobs are unknown until they

finish. t ą 0. Instead of looking at the exact values of the backlogs, we look

at how the distribution of Bipκq goes over time. Hence, the states considered

for our decision are the distributions

M “ tµpκjq : @i “ 1, . . . , n, ūipκjq ă 1, j “ 1, . . . ,mu

In order to take online decisions, all possible worst-case blocking time distribu-

tions must be computed offline, before the run time scheduling. However, there

is no need to do it for each processor.

Algorithm 4 Offline computation of the worst-case blocking time distributions
for k P t1, . . . , nu do

for pτi1 , . . . , τikq P Γk do
µi1,...,ik “ fi1 ˚ ¨ ¨ ¨ ˚ fik

This offline computation is exponential in complexity. Saving those distributions,
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and refer to them in a table online allows to bypass the complexity of this problem

for online decisions.

6.2.3 Reward function

In order to build an allocation decision that based on the DMP, we use the

representation We adapt this method for each processor by summing only the

utilizations of the tasks that are allocated to a processor κj. This representation

permits in a two-step allocation to (i) approximate the local worst-case blocking

time of a given processor, (ii) approximate the distribution of the future backlog,

(iii) optimize the distribution of the future backlog of higher priority tasks allocated

on the same processor by minimizing DMP, (iv) include the minimal DMP in the

allocation of a bin-packing algorithm RAA.

As we want a policy minimizing DMP, conditionally to the worst-case blocking

times of the system. We set the immediate expected reward function for the

allocation a and backlog distribution µ P M as

ripµi, aq “ ´ log pipa, µiq (6.13)

where pipa, µq is the DMP of τi induced by the allocation a in the state µ, and

qRAApaq P p0, 1s depends on the criteria of the bin-packing RAA to be minimized.

For the action a, the tasks τk with k ď i are not considered, as they cannot be

preempted or interfered by tasks with a lower priority.

Let µ pκq P M be the state of the backlog distributions at a time t ą 0. The

immediate expected reward of an allocation a “ pτi, κq is ri pµipκq, aq and the cost

of the allocation a “ pτi, κq on Γ´
i pκq is

ci`1 pgapµpκqqq “
ÿ

τkPΓ´
i pκq

rk
`

µkpκqP k
a , a

˘

Lemma 6.1. The DMP induced by the allocation a “ pτi, κq, where the backlog
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distribution of level i in κ is µ is

pipa, µq “

ĳ

pκi pt, xqdGkptqdµpxq (6.14)

where pκi pt, xq “ Ψpx, t; ūi´1pκq, v̄i´1pκqq and Ψ is as defined in Eq. (4.3).

Proof. We suppose the processor κ is fixed, and let a “ pτi, κq. With the approxi-

mation of response times proposed in Chapter 4, we get the DMP conditionally to

a backlog of level i fixed to a value x:

pκi pT, xq “ P
ˆ

inf
tPr0,T s

W κ
i´1ptq ´ spκqt ą ´x

˙

(6.15)

where W κ
i´1 is a Brownian motion such that W κ

i´1p0q “ 0, of drift ūi´1pκq and

deviation v̄i´1pκq. Furthermore, we know from [Jeanblanc et al., 2009, p. 147] that

for a given T ą 0,

P
ˆ

inf
tPr0,Tis

Wi´1ptq ´ spκqt ą ´x

˙

“

ż

pκi pt, xqdGiptq (6.16)

for any static-priority preemptive policy and any processor κ P Π.

Finally, the DMP is computed by integrating on x the backlog distribution

function µ.

6.2.4 Action space

The global action space is A “ Γ ˆ Π, i.e., an action is determined by a task and

a processor. However, the system decides which task is allocated. The decision

taken by the allocation is then to choose the right processor. As the state space, we

reduce the action space by allowing only actions keeping the utilization of processors

under one, and the DMP of each active task under its permitted failure rate. Hence,
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when a task τi arrives, the set of possible actions is

Ai “
␣

κ P Π :a “ pτi, κq P A, u
max
i

spκq
ă 1 ´ ūmaxn pκq,

@τk P Γ´
i pκq, rkpµkpκqP k

a , aq ą ´ logαk
(

We note that the bound used to define the set of actions is an heuristic that we

propose without proof but with extensive numerical evaluations against the state-

of-the-art algorithms. The idea behind this bound is that as we ensure that there

is no deadline misses with a maximum local utilization of κ lower than

`

|Γ`
n pκq| ` 1

˘

ˆ

2
1

|Γ`
n pκq|`1 ´ 1

˙

and that the system is feasible with a maximum local utilization lower than 1, then we

quantify the number of deadline misses for an utilization between those two bounds.

6.2.5 Transition matrix

Transitions between states in M are driven by execution times distributions.

Whenever a task is allocated to a processor, regardless of the current backlog

of this processor, the DMP induced by the allocation of a task takes its execution

time distribution into account by convolving it to the current worst-case blocking

time distribution.

Proposition 6.2. Let τi be a pending task, κ P Ai and a “ pτi, κq.

(i) If τk P Γ`
i pκq, the probability of transitioning from a backlog of level k equal to

b, to b1 by taking the action a is

P k
a pb, b1

q “ δbpb
1
q (6.17)
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Figure 6.2: Scheme of the RM-DMP-RAA algorithm

where δx is the Dirac measure on x, i.e.,

δxpAq “

$

’

&

’

%

1 if x P A

0 otherwise

(6.18)

(ii) if τk P Γ´
i pκq, the probability that backlog of level k goes from b to b1 by taking

the action a is

P k
a pb, b1

q “ fi pspκqpb1
´ bqq (6.19)

where fi “ dFi{dx is the probability function of Ci.

Proof. Let τi be activated on the processor κ.

• First, if τk P Γ`
i pκq, the allocation a “ pτi, κq does not affect the active job

of τk. Hence the backlog of level k denoted b remains the same and the only

transition possible is from b to itself.

• Secondly, if τk P Γ´
i pκq, the execution time of τi is added to the backlog of

level k on the processor κ. Hence, the transition probability from a backlog of

level k denoted b and a backlog b1 is Ppb1 “ Ci{spκq ` bq “ fi pspκqpb1 ´ bqq.
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Algorithm 5 DMP-RAA when the task τi is activated
c Ð 0
for κ P Ai do

a Ð pτi, κq

if c ă ripµipκq, aq ` ci`1pgapµpκqqq ´ log
`

qRAApaq
˘

then
c Ð ripµipκq, aq ` ci`1pgapµpκqqq

a˚ Ð a
if c “ 0 then

return H Ź Discard τi
else

return a˚

6.3 Using analytical DMP

The DMP-driven algorithms takes any analysis providing a DMP for each tasks,

and arranges jobs in a certain order based on the probability of missing a deadline.

This means that, any approximation of deadline miss probability could supposedly

work, whatever the quality of the approximation or the the fact that it bounds or

not the exact DMP. What is important is the order provided by those DMP. The

analytical approximation of the DMP is useful as it is easy and fast to compute, and

the error is not, necessarily, a problem. However, the DMP model chosen must have

strong mathematical background and be sustainable to small variations in the task

set parameters. This is provided by the Hoeffding bound that we use in this section.

Proposition 6.3 (Local Hoeffding DMP). Let κ P Π, τi P Π and a “ pτi, κq. We

suppose ūipκq ă 1, and let

pHi pκq “ exp
ˆ

´tmini

p1 ´ ūipκqq2

v̄maxi pκq

˙

(6.20)

be the Hoeffding DMP of τi on κ, where v̄maxi pκq “
ř

τjPΓ`
i pκq

pcmaxj ´ cminj q2{tminj is

the local maximum deviation of τi in κ.

If tmini ą 1
1´ūipκq

ř

τjPΓ`
i pκq

ErCjs{spκq, then

pipa, µipκqq ď pHi pκq
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Proof. We use the same proof as in Proposition 3.5 with W̄ κ
i as a Brownian motion

of drift ūipκq and deviation v̄ipκq, hence for t P p0, tmini q, we obtain that

ūipκqt `
ÿ

τjPΓ`
i pκq

ErCjs

spκq
ą ErW̄ κ

i ptqs

for all t ą 0. Thus, t ą 1
1´ūipκq

ř

τjPΓ`
i pκq

ErCjs

spκq
implies that t ą ErW̄ κ

i ptqs. Finally

we get the same inequality with ūipκq and v̄maxi pκq. For a more detailed proof one

may see the proof of Proposition 3.5.

Algorithm 6 DMP-RAA with Hoeffding DMP when the task τi is activated
c Ð 0
for κ P Π do

if κ P AH
i then

if c ă tmini
p1´ūipκqq2

v̄max
i pκq

`
ř

τkPΓ´
i pκq

tmink
p1´ūkpκq´λiErCis{spκqq2

v̄max
k

pκq`vmax
i {spκq2 ´log qRAApaq then

c Ð tmini
p1´ūipκqq2

v̄max
i pκq

`
ř

τkPΓ´
i pκq

tmink
p1´ūkpκq´λiErCis{spκqq2

v̄max
k

pκq`vmax
i {spκq2 ´ log qRAApaq

a Ð pτi, κq

if c “ 0 then
return H Ź Discard τi

else
return a

Thus, we can use the stateless immediate reward of the allocation a “ pτi, κq

rpaq “ ´ log pHi pκq ´ log qRAApaq “ tmini

p1 ´ ūipκqq2

v̄maxi pκq
´ log qRAApaq

for the allocation a “ pτi, κq, and the cost of a on higher priority tasks would be

ÿ

τkPΓ´
i pκq

tmink

p1 ´ ūkpκq ´ λiErCis{spκqq2

vmaxk pκq ` vmaxi {spκq2

where vmaxi “ pcmaxi ´ cmini q2{tmini is the maximum deviation of τi. This is where

analytical approximation of DMP shines: their complexity is Op1q, hence the

scheduling policy is as simple as it can be. We adapt RM-DMP-RAA with the

Hoeffding DMP in Algorithm 6.

In order to make this algorithm reasonable, we add a rule coming from this
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last theorem: for an allocation a “ pτi, κq, we require that τi satisfies tmini ą

1
1´ūipκq

ř

τjPΓ`
i pκq

ErCjs

spκq
and all tasks τk P Γ´

i pκq satisfy

tmink ą
1

1 ´ ūkpκq ´ λiErCis{spκq

¨

˝

ErCis

spκq
`

ÿ

τjPΓ`
k

pκq

ErCjs

spκq

˛

‚

Hence we redefine the set of possible actions for the Hoeffding DMP

AH
i “

#

κ P Ai : tmini ą
1

1 ´ ūipκq

ÿ

τjPΓ`
i pκq

ErCjs

spκq
,

@τk P Γ´
i pκq, tmink ą

1
1 ´ ūkpκq ´ λiErCis{spκq

¨

˝

ErCis

spκq
`

ÿ

τjPΓ`
k

pκq

ErCjs

spκq

˛

‚

+

(6.21)

in order to keep it reasonable. Any new DMP approximation used with DMP-RAA

should provide its own rules to be reasonable.

6.4 Simulations

The RM-DMP-RAA (Algorithm 5) algorithms are compared in the next section

to other comparable scheduling policies. The task set used in these simulation

is stationary, with parameters shown in Table 6.2. The performance of DMP-

RAA with Hoeffding DMP is shown in Figure 6.3, and a comparison in the

periodic and stationary case is shown in Figure 6.5. The task set is such that

ūmaxn ă
ř

κPΠ spκq and maxκPΠ maxτiPΓ
umax

i

spκq
ă 1. First, we compare the full DMP

and the DMP using Heoffding DMP. Then we compare the stationary and the

periodic cases, i.e., considering only tmini as inter-arrival times, with DMP-First-Fit

(qRAApaq “ 1). Then we compare DMP-RAA with RAA for the Best-Fit and

Worst-Fit algorithms. Finally we compare DMP-Best-Fit with some state-of-the-art

global scheduling algorithms.
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column the accumulation of all processors. In solid line the average value and the colored
area represent the values between the 25%-percentile and the 75%-percentile.

6.4.1 DMP-First-Fit vs. DMP-First-Fit with the Hoeffding

DMP

We see in Figure 6.3 that, as the full DMP-First-Fit (qRAApaq “ 1) method has a

lower deadline miss ratio, at the end both algorithms provide equivalent metric.

This means that the using an approximation of DMP, such as the Hoeffding bound,

is a good tradeoff in performance/complexity.
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6.4.2 RM-DMP-First-Fit on periodic vs. stationary task

sets

We see in Figure 6.4 a comparison of RM-DMP-First-Fit, where

qRFF paq “ 1

with the Hoeffding DMP between the stationary and periodic inter-arrival times

with the same inter-arrival rates. We see that its performance are quite equivalent.

This justifies that inter-arrival times act on the response times distributions only

through its rate, e.g., Eq. (4.7).

6.4.3 DMP-RAA vs RAA

We test DMP-RAA against RAA on the two bin-packing algorithms Reasonable

Best-Fit (RBF), where

qRBF ppτi, κqq “ 1 ´
umaxi

spκq
´ ūmaxn pκq

see Figure 6.6 and Reasonable Worst-Fit (RWF) where

qRWF
ppτi, κqq “

umaxi

spκq
` ūmaxn pκq

see Figure 6.7, on a task set and a processor set shown in Tables 6.2. On both

figures we can see a slight improvement of the proportion of deadline misses (first

row). The number of preemptions (second row) and the number of migrations (third

row) stay equivalent to the original RAA P {RBF, RWF} allocation algorithm.
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6.4.4 RM-DMP-RAA vs. others

We see in Figure 6.8 and Figure 6.9 that DMP-driven algorithms are not systemati-

cally the scheduling algorithms with less deadline misses. Indeed, LLREF [Funk

and Meka, 2009], DP-WRAP [Baruah and Carpenter, 2005, Levin et al., 2010],

U-EDF [Baruah and Goossens, 2008] are proven optimal in some cases. For

comparison we add global EDF and global RM. Those are global scheduling

algorithms, hence the preemption and migration metric are not relevant for a

comparison to a restricted migration scheduling. However, we see that RM-DMP

has a good performance compared to global scheduling policies. Moreover, DP-

WRAP (which is a Pfair-based algorithm) is optimal in the periodic case, see

Figure 6.8. DP-WRAP is presented as a baseline.

The performances of DMP-driven bin-packing is quite limited. However, we

provide it as a simple method to implement with not much overhead than a classical

bin-packing algorithm, that slightly improves the metrics used in this thesis.
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6.5 Potential extension to unrelated heteroge-

neous multiprocessor systems

Time demand analysis in the form presented in Eq. (4.8) is flexible and can easily

adapt to speeds changing over time. Indeed, with the more general relation

R̂i,j “ inf
!

t ą 0 : β̂i´1pAi,jq ` Ci,j ` W κ
i´1pt ` Ai,jq ´ W κ

i´1ptq ď sκptq
)

(6.22)

where sκ is a non-linear function providing the speed of a processor κ P Π over time.

In that case, Brownian motion have many properties of reaching times that can

be used to quantify such response time. It could also be modeled with Brownian

motion evolving in random environments [Karandikar and Kulkarni, 1995]. One

can also use sκ as a stochastic process, and Branching Brownian motions seem

to be the appropriate object to use in that case.
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In the scheduling theory, the inference of scheduling knowledge [Shaw et al.,

1992] is a natural step into the application of the parametric method provided in this

paper. The parametric estimation of new parameters, such as new virtual deadlines,

may improve the scheduling decisions, see [Aytug et al., 1994] for a review in this

field. Based on this thesis, we identify three possible directions to be explored in

the short-mid-long term with the scheduling knowledge notion.

7.1 Short-term

A current trend in real-time systems is the application of statistical learning methods

in order to find optimal schedules [Plassart, 2020,Mao et al., 2019,ul Islam and Lin,

2015,Lee et al., 1997,Nakasuka and Yoshida, 1992,Kadaba et al., 1991,Lee et al.,

1997,Ahmad and Dhodhi, 1996,Gupta et al., 2010,Padmajothi et al., 2022].

As the worst-case reasoning is sustainable, methods that can reduce pessimism

are still possible. We introduce the notion of scheduling knowledge [Shaw et al.,

1992,Powner and Walburn, 1990,Yih and Thesen, 1991,Piramuthu et al., 1993,Mao

et al., 2019] as a way to reduce the pessimism using an estimated knowledge
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of finished jobs. In this section we use the parametric estimation of backlogs

proposed in Chapter 5 to improve the scheduling decisions, see [Aytug et al.,

1994] for a review in this field.

An a priori distribution is the distribution of the parameters of a given variable.

For the response time Ri of the task τi running on a processor κ, i.e.,considering

the allocation a “ pτi, κq we see in Chapter 5 that a suited approximation of the

distribution of response time takes the form

hiprq “

ż

ψ

ˆ

r; θ

1 ´ ūipκq
,
θ2

v̄2
i pκq

˙

pµi´1pκqPaqpθqdθ (7.1)

where we recognize the parameter θ to be the backlog referred to in Section 3.2, and

ψpr; θ
1´u

, θ
2

v2 q “ d
dt

Ψpθ, u, v, tq is the inverse Gaussian probability function of mean
θ

1´u
and shape θ2

v2 . The distribution µi´1pκq ˚Fip¨ ˆ spκqq is the a priori distribution

of the response times of τi. An estimation of this distribution proposed in Chapter 5

ĥipr; πi,θiq “

ki
ÿ

j“1
ψ

ˆ

r; θi,j
1 ´ ūipκq

,
θ2
i,j

v̄2
i pκq

˙

πi,j (7.2)

Definition 7.1. Let µ be a probability function and the shrink operator µ Ñ µ`

defined by

µ`
pxq “ µpxq1xą0 ` 1x“0

ż x

´8

µpyqdy (7.3)

The shrink operator, used in several studies [Díaz et al., 2002,Kim and Shin,

1996], is used to describe the transition of the backlog distribution after an interval

of time ∆. For example for a variable X of distribution µ and scalar ∆ ě 0,

pµ ˚ δ´∆q` is the distribution of pX ´ ∆q` “ maxp0, X ´ ∆q.

Lemma 7.1. After an interval of time ∆ with no allocation of level k or higher,

the backlog distribution µ of level k is pµ ˚ δ´∆q`

Proof. This is a consequence of the work-conserving property of processors. If no

higher priority jobs arrives, then it must have executed some work of level k during

the interval ∆. If the workload is less than ∆, then it is at zero.
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Proposition 7.1 (Local backlog). Let t ą 0 and consider a processor κ at the

instant t ą 0. Let k P t1, . . . , nu and let wipκq be the workload already executed on

the active job of the task τi P Γ`
k pκq on the processor κ. The current - i.e., at the

instant t ą 0 - local backlog of level k in the processor κ is

¨

˝Bmax
k pκq ´

ÿ

τiPΓ`
k

pκq

spκqwipκq

˛

‚

`

(7.4)

with distribution function
ˆ

µkpκq ˚ δ´
ř

τiPΓ`
k

pκq
spκqwipκq

˙`

.

Proof. With Lemma 7.1, we should conclude by induction that the current backlog

of level k is

p. . . ppµkpκq ˚ δ´spκqwi1
q

`
˚ δ´spκqwi2

q
`

¨ ¨ ¨ ˚ δ´spκqwip
q

`

However we know that spκq
řp
k“1 wik is necessarily lower than the workload of their

associated jobs, otherwise it would not belong to Γ`
i pκq.

Now let us suppose we measure a response time Ri of the lastly executed task

τi on κ and suppose the last taken action is a. Estimating its a priori parameter

θ̂ “ argmaxθ,πPtθi,j ,πi,juj
ψ

ˆ

Ri;
θ

1 ´ ūi´1pκq
,

θ2

v̄2
i´1pκq

˙

π (7.5)

provides the previous backlog of τi. Hence, having the estimator θ̂ provides an

estimator of the current distribution of the backlog of level i

ˆ

δθ̂Pa ˚ δ´
ř

τkPΓ`
i

pκq
spκqwkpκq

˙`

In [Plassart, 2020, Gaujal et al., 2020a], the authors use statistical learning

methods in order to find optimal speeds for a low-energy-oriented scheduling for

Dynamic Voltage and Frequency Scaling (DVFS). A Markov Decision Process is built

in order to adapt the processor speed (which is the action of the process) between
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lists of potential instances of programs to run, in which the most energy efficient

are chosen by the scheduler. The proposed method is similar to that approach.

7.2 Mid-term

Exploiting the data flow between sensors and tasks to make better predictions is

not new [Melani et al., 2013]. However, it can be combined with the potential

extension explained in Section 7.1. We discuss here without providing proofs how

this information can be inferred into the estimation of execution times distributions.

We also introduce the formalization making this estimation well defined in the

context of stationary real-time systems.

Let τk P Γ. We look at variables Ckp¨, iq, i P I. Let the projection operator

ρQ be the projection of Ω0 to Q, such that for ω0 “ pq0, i0q P Ω0, we have

ρQpω0q “ q0. We can write

Ckpω0q “ pCkp¨, i0q ˝ ρQqpω0q

More generally, let us define P˚ the conditional probability over the inputs space

I, i.e.,

P˚
“ Pp¨ | Iq

where execution times Ckp¨, i0q are well defined. This new probability P˚ is such that

pQ,P˚q is a probability space, depending only on hardware uncertainties. Inferring

the data of sensors and other sources could be a new source of scheduling knowledge.

7.3 Long term

The multiprocessor scheduling problem of stationary real-time systems stays an open

problem, and deterministic methods appear to fail in providing a simple and efficient
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solution. More generally, limit theorems in stochastic analysis offer a large panel

of possibilities. Conditional probabilities are a powerful object that has not been

explored yet in the real-time systems analysis. In the previous chapter, we give hints

on how those conditional probabilities could be used in order to potentially improve

DMP-driven bin packing. The relation between the mixed-criticality model and the

probabilistic approach has been discussed often in this thesis, and is more explicit

as the probabilistic approach provides answers that deterministic approaches cannot

provide. It also allows to define and generalize deterministic results. Finally, we

open the possibility to use machine learning with a parametric estimation method,

as well as the possibility to define a new type of real-time scheduling yet to be built.
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