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Real-time systems birth dates back to the early days of computing, when the
first computers have been used to perform a variety of functionalities that required
immediate processing and response. One of the earliest examples of a real-time
system has been the SAGE (Semi-Automatic Ground Environment) air defense
system developed by the U.S. military in the 1950s. This system used a network
of computers to track and identify incoming aircrafts, and was able to provide a
rapid response to potential threats. In the 1960s and 1970s, the development of
minicomputers and microprocessors led to the creation of a wide range of real-time
systems, including process control systems in factories, medical monitoring systems,
and traffic control systems. In the 1980s and 1990s, the widespread adoption of

computers in a variety of industries and applications led to the development of



2 1. Introduction

more advanced real-time systems. These systems often used distributed computing
architectures and advanced networking technologies to enable the timely processing
and exchange of data. In recent years, the increasing use of sensors, Internet
of Things (IoT) devices, and other types of connected systems has led to the
development of even more sophisticated real-time systems, including those used
in autonomous vehicles, smart cities, and industrial automation. These systems
rely on advanced technologies such as machine learning and artificial intelligence

to enable real-time decision making and response.

In the 2010s, multiprocessor systems have made their entry in Commercial
Off The Shelf (COTS) processors, and have been widely used since, which led
to a bigger capacity to compute faster. Moreover, in what we define as critical
systems' (avionics, automotive, space), a safe utilization of multiprocessor systems
remains an open problem [Reilly, 2020]. Furthermore, the use of autonomous driving
based on machine learning algorithms is challenging. For example, showing that
computer vision is safe at any circumstance when controlling a car is still an open
problem [Dixit et al., 2021]. Indeed, due to the pioneer utilization of multiprocessor
systems by the smartphone market as well as the impressive expansion of this
later market, the microprocessor industry has evolved towards general purpose
processors with complex architectures that are not time predictable. Their lack of
time predictability is due to features like several cores, multiple levels of caches and
pipelines, speculative branching, communicating through shared memory or/and
through a network on chip, etc.. Smartphone users are willing to charge their phones
or to restart regularly their applications to compensate a bad design of the phones on
multiprocessor systems. However, the rest of the real-time system industry is facing
the open problem of time predictability of programs on multiprocessor systems
in order to provide stable and low-energy consumption applications. Bounding
execution times of a program on multiprocessor systems is known to be an open
problem [Wilhelm et al., 2008, Maiza et al., 2019, Davis and Cucu-Grosjean, 2019]. In

this thesis, the complexity of such system is considered as impossible to describe in

!Throughout the thesis, concepts formally defined after being mentioned are written in italic.
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a deterministic manner, such that statistical methods provide a suitable estimation

of time behaviors of the studied system.

1.1 Context

A real-time system is a computer system in interaction with an environment and
users [Harel and Pnueli, 1984]. Sensors and programs are typically triggered
periodically in order for the system to constantly interact with its environment. In
order to make this interaction possible, it must satisfy temporal constraints. These
temporal constraints can be more or less strict, depending on what functionality is
asked from the system. We say that programs of a real-time system must meet their
deadlines. We can classify deadlines according to the importance of functionalities

associated to their associated programs:

(i) hard deadlines for programs such that a deadline miss consequence is not
acceptable for either economic, human or ecological reasons, e.g., the braking

system of a car.

(ii) soft deadlines for programs such that a deadline miss consequence is a delayed
output of a program also known as a task, e.g., a sensor adjusting the

temperature of a room.

Real-time systems consist in both hard and soft time constrained programs,
and the analysis of their interference due to shared resources is a challenging open
problem. Designing such system ensures that all programs meet their deadlines
at a given rate. In practice, certification processes expect failure rates, e.g., 10712
frequency associated to failures within one hour of functioning-, for hard deadlines
and less restrictive rates for soft deadlines [Gumzej and Halang, 2010, Fault
Forecasting, p. 64]. For this reason, in this thesis we use the concept of deadlines

with a permitted failure rate and make no formal difference between hard and soft.

There is a wide range of research areas related to real-time systems and we

present below those that we consider the most relevant:



1.1. Context

(i)

(ii)

(iii)

(iv)

(v)

scheduling: a scheduling algorithm is responsible for ensuring that each pro-
gram is allocated sufficient processing resources to meet its timing constraints.
It determines how to allocate resources among the programs, and may use a
variety of factors, such as task priority, task execution time, order of arrival,
and processor utilization, to make this decision. Scheduling plays a critical
role in the performance and reliability of a real-time system, and must be
carefully designed and implemented to ensure that the system meets its timing

requirements.

timing analysis: it is used to determine the Worst-Case Execution Time
(WCET) of a program. The WCET is the maximum amount of time a task
is expected to take to complete its execution. There are several techniques to
estimate the WCET of a program. The static analysis is based on the code
inspection, and modeling. The Measurement-based analysis involves collecting
data on the program’s time behavior. This can be done by instrumenting
the system’s code to measure the execution time of each program, or by
using hardware performance counters to monitor the system’s performance.
Measurement-based analysis may provide less perssimistic results than static
analysis, but it requires that the system is operational and may not be feasible

for systems difficult to test or measure.

real-time architectures: it is the study of both hardware and software compo-
nents that are optimized for speed and accuracy, such as specialized processors,

algorithms, and communication protocols e.g.,Graphical Processing Units

(GPU) or Field Programmable Gate Arrays (FPGA).

real-time operating systems (RTOSs): a RTOS is an operating system that is
designed to ensure a certain level of processing capacity for a deterministic
response to events occurring within a fixed time interval. It is typically used
for time-critical applications that require a more predictable response than a

non-real-time operating system can provide.

fault-tolerance of real-time systems: it is a measure of the system’s ability
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(vi)

(vii)

to continue operating, even when one or more of its components fail. Fault-
tolerance is achieved by creating redundancy in the system’s components,
programs, and data, so that if one component fails, the system can still operate.
Fault-tolerance also includes the ability to detect and respond quickly and
effectively to a failure. This ensures that the system can continue to meet its

real-time requirements, even when a failure occurs.

real-time networks: they are networks designed to transmit data with strict
timing requirements. These types of networks are used in a variety of
applications where the timely delivery of data is critical, such as in industrial
automation, avionics, and automotive systems. In Time Sensitive Network
(TSN) for example, the transmission of data is synchronized to a common
clock, and the network is designed to minimize the amount of delay and other
types of variability in the transmission of data. TSNs may use a variety of
technologies and protocols to ensure the timely delivery of data, including

deterministic Ethernet.

real-time oriented machine learning: recently, there has been an increasing use
of machine learning methods, e.g., in the automotive industry, particularly
for tasks such as autonomous driving, predictive maintenance, and traffic
prediction. These methods often involve solving optimization problems with
timing constraints, which are requirements that specify how long a task or
operation is allowed to take. By incorporating these constraints into the
optimization problem, it is possible to ensure that the system meets its timing

requirements and performs reliably under all operating conditions.

In order to be safe, programs must meet their timing constraints. Real-time

scheduling theory provides methods that orders the execution of programs over

a finite or periodic number of time instances. A set of programs is considered

schedulable for a given processing unit if it can be proven that each instance of a

program has enough time to execute before its deadline. Scheduling is therefore

mainly an optimization problem involving the allocation of limited resources,
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71 T
T2 T2
0 2 4 0 2 4
(a) Deadlines are met. (b) Deadline of 7y is missed.

Figure 1.1: Example of a scheduling algorithm decision on a single processor. The
up-arrow represents the activation of a task, the down-arrow a deadline. The black circle
means that the task has finished its execution. The gray-squared areas indicates that a
task awaits for processing resources

including hardware and time, to programs. Since the 2000s, several studies have been

focused on probabilistic analyses to compute the probability of missing a deadline.

There are sources of uncertainties in every aspect of a real-time system, as it is
by definition an object in continuous interaction with an unpredictable environment
and users. One of the main goal of a real-time design is to minimize the impact
of those uncertainties by construction and to ensure that the system is resilient to
its environment. The purpose of using probability theory in real-time systems is
to quantify those uncertainties. Solving this problem involves being able to adapt

the system’s decisions and, quantify and predict deadline misses.

1.2 Motivation

In a real-time system, it is common to deliberately over-dimension the system to
ensure its ability to be reactive. However, this may lead to a large amount of wasted
computing resource. The variability of the execution times is the degree to which
the execution time of a task varies over time. There are several factors that can

contribute to the variability of execution times in a real-time system, including:

(i) resource contention: if multiple programs are competing for the same resource
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(e.g., memory, pipelines, I/O devices), the execution time of each task may

be affected.

(ii) unpredictable environment: sensors provide the input data for the system’s
programs. The execution time of these programs depends on values of input

data that may trigger different branches of a program.

This variability can have serious consequences in a real-time system, as it
may impact the ability of the system to meet its deadlines and fulfill its real-

time requirements.

For embedded systems with low energy and computing resources, designing
real-time systems means associating a suited micro-controller architecture to a set of
programs. A key part of this design is to chose the appropriate processing unit (such
as a CPU) for a given task set. To ensure that every task is executed within their
specified timing constraints, the CPU and other computing resources are allocated
to different programs, for example, according to their priority. During the run-time,
each instance of programs competes for processing time. Timing correctness of real-
time systems is traditionally guaranteed by a separate schedulability analysis and a
WCET analysis. Classical techniques for WCET analyses aim at finding an upper-
bound on execution times. The time taken by a program to respond to an input
and provide the output or display the updated information is known as the response
time. After determining the WCET, the Worst-Case Response Time (WCRT)
is calculated by aggregating the WCET of programs in the worst-case scenario,
i.e., the scenario that produces the longest response times. However, this method
[the worst-case reasoning] is sufficient to make schedulable task sets and it forces

designers to over-estimate the quantity of processing unit necessary to run a task set.

In order to decrease the pessimism associated to this over-estimation, a significant
amount of research in real-time systems focuses on statistical analyses (as discussed

in Section 1.3.2).
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1.3 State-of-the-art

In this section, we present existing work relevant for this thesis, to the best
of our knowledge. That is to say, applied probabilities on real-time scheduling
algorithms, timing analysis and shared resources modeling, and results on real-time
multiprocessor scheduling. There are multiple sources of inter-core interference for
a given architecture: shared caches, shared buses, memory and scheduling policies.
Existing results mainly address issues related to the system stability, computational
algorithm designs, optimal scheduling, allocation, or performance analysis. This
first Section 1.3.1 contains a brief presentation of the two most known preemptive
scheduling algorithms. We provide then a review of existing results on the use
of stochastic processes in real-time systems and a brief review of static-priority

preemptive scheduling on multiprocessor systems.

Definition 1.1. Static priority algorithms are such that for any couple of tasks,

whenever both are activated simultaneously, the same task always have priority.

Finally, we conclude this section by discussing the link between Mixed-Criticality

(MC) systems and probabilistic approaches.

1.3.1 Deterministic analyses

We understand by testing the schedulability of a system that we assert that by
construction the system cannot fail. Several schedulability tests are based on
the wutilization of the system, which is the sum of the ratios between the units of
time required by the programs to execute and the time separating two instances
of this same program. Other schedulability tests are based on the worst-case
reasoning, i.e., finding the scenario producing the largest response times for every
program. In the remainder of this thesis, a program is called a task and a job

is an instance of a task.

We say that a scheduling policy is work-conserving, i.e., does not idle when

there is work to do. Moreover, we say that a scheduling policy is preemptive,
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i.e., a job may be preempted before the end of its complete execution, and its

execution can be resumed with no cost.

Single processor scheduling: Rate Monotonic and Earliest Deadline First

The Rate Monotonic (RM) scheduling policy is a static-priority scheduling algorithm,
i.e., it assigns priorities by task. RM assigns to each task a priority relatively to

its rate of occurrence - the larger the rate, the higher the priority.

Theorem 1.1 (Theorem 2 [Liu and Layland, 1973]). RM is optimal for single
processor systems with implicit deadlines in the domain of static-priority preemptive

scheduling policies.

The Earliest Deadline First (EDF) algorithm is a deadline-driven scheduling
policy, giving a priority to each job relatively to its absolute deadline - the smaller
the absolute deadline, the higher the priority. We call dynamic any scheduling
policy giving priorities at job boundaries. Once the priority is assigned to one job

it does not change until the completion of this job.

Both RM and EDF are the most used scheduling algorithms of their own (static
and dynamic) class because of their efficiency. Hence, we chose to restrict the
state-of-the-art section to those two algorithms. In [Liu and Layland, 1973], authors
prove that in single processor preemptive scheduling, the worst-case scenario occurs
in a critical instant, which is the simultaneous activation of all tasks. This reasoning
leads to the results in [Joseph and Pandya, 1986], where the response times are
proven to satisfy a fixed-point equation. However, those two reasoning hold only

for single processor preemptive scheduling.

Other schedulability tests focus on Time Demand Analysis (TDA) of the critical
instant, which is the analysis of the workload sequence of jobs that produces the
largest response time, i.e., the time between the activation and the end of a job.
This worst-case reasoning is based on the fact that a system is schedulable if the

worst-case is schedulable. This property is called sustainability [Baruah and Burns,

2006] (or predictability [Ha and Liu, 1994]).
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Definition 1.2 (Sustainability [Baruah and Burns, 2006]). A schedulability test for a
scheduling policy is sustainable if any system deemed schedulable by the schedulability
test remains schedulable when the parameters of one or more individual jobs are
changed in any, some, or all of the following ways: decreased execution requirements;

later arrival times; and larger relative deadlines.

Multiprocessor scheduling

The problem of priority-driven scheduling on multiprocessor systems consists in

two decision problems: the allocation and the priority assignment of tasks.

(i) Allocation: Jobs are allocated to processors. The allocation decision is a load-

balancing problem in which jobs are distributed among multiple processors.

(ii) Priority assignment: Priorities are assigned to tasks or jobs.

To the best of our knowledge, there are few results using probabilistic methods in
multiprocessor scheduling. The main results using stochastic analysis are focused on
shared resources quantification in multiprocessor systems, which is not what we focus
on in this thesis. We present these results in the following, as well as deterministic

results that we either extend or use as a baseline for a stochastic analysis.

Homogeneous and heterogeneous multiprocessor systems We divide mul-
tiprocessor systems into three different categories based on the speeds of the

individual processors.

o homogeneous multiprocessor systems: all processor speeds are the same across

all processors. Usually the speed is set to one cycle per unit of time.

« uniform heterogeneous multiprocessor systems: the processing speed depends
on the processor. Each processor has its own constant speed. Each processor
in an uniform multiprocessor system is characterized by a speed or computing
capacity, with the interpretation that a job executing on a processor with

speed s for ¢ units of time completes s x t cycles.
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o unrelated heterogeneous multiprocessor systems: processing units have dedi-
cated speeds according to the tasks to be scheduled. We do not cover this

case in this thesis.

We cover in this thesis uniform heterogeneous multiprocessor systems that we

call for more readability uniform multiprocessor systems.

Multiprocessor static-priority online scheduling Offline scheduling algo-
rithms determine decisions before the system starts its execution. These scheduling
algorithms select jobs to execute according to predetermined priorities. Usually,
schedules are repeated after a specific time period [Cucu and Goossens, 2007],
and the specificity of offline scheduling is that one should be able to tell a priori

from what time this repetition begins.

Online scheduling algorithms select jobs by examining properties of active jobs.
They can be more flexible than offline algorithms since they can adapt their decision
depending on the state at instant t of the system. For example, the system must use
an online scheduling algorithm if the set of tasks includes tasks with unpredictable

inter-arrival times that join and leave the system at undetermined times.

For a given class of multiprocessor scheduling algorithms, some are optimal in
the sense that if they do not satisfy all deadlines, then no algorithm from this class
can. However, satisfying deadlines in theory is not always the main goal in practice.

For instance, preemptions have a cost and one may want to optimize this cost.

An important result of online multiprocessor scheduling algorithm is provided

in the seminal paper of [Hong and Leung, 1992].

Theorem 1.2 (Theorem 1 in [Hong and Leung, 1992]). There is no optimal online
multiprocessor scheduling algorithm for real-time systems with two or more distinct

deadlines.

While optimal algorithms can be built for the multiprocessor scheduling problem

under certain conditions, there cannot be one optimal scheduling algorithm for



12 1.3. State-of-the-art

Processor 1 |

Processor 2

Global

Jobs ”| Scheduler

Processor m

Figure 1.2: Global scheduling policy

Task subset Local scheduler > Processor 1

Y

Y

Task subset Local scheduler > Processor 2

Tasks

Task subset Local scheduler Processor m

Y
Y

Figure 1.3: Partitioned scheduling policy

different instances of the multiprocessor scheduling problem as strong as RM and
EDF are for the single processor case. However, there are some important results
that we discuss below. Several multiprocessor scheduling algorithms have been
proposed [Funk and Meka, 2009, Funk and Nanadur, 2009, Baruah et al., 1993, Levin
et al., 2010, Srinivasan and Anderson, 2005, Anderson et al., 2008, Baruah and Fisher,
2005, Brandenburg and Giil, 2016, Fan and Quan, 2012, Hobbs et al., 2019, Anderson
et al., 2016, Kato and Yamasaki, 2009, Bastoni et al., 2011, Anderson et al., 2008].

An important layer of complexity are the migrations and preemptions of
jobs between processors. With different levels of migrations (full, restricted
or none), we define three main classes of multiprocessor scheduling algorithms

[Carpenter et al., 2004]:

o full migration: the scheduling algorithm is global. In global scheduling each
task can be executed on any processor in the system. This type of process

migration can maximize system utilization and provide an effective load
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balance. The main problem that global scheduling encounters is the cost of
migrations and preemptions. For instance, in [Andersson and Tovar, 2006] the
authors focus on global scheduling with the goal of minimizing preemptions,

see Figure 1.2 and [Bertogna et al., 2008, Bertogna and Cirinei, 2007].

e no migrations: the system is partitioned, i.e., each task is assigned to a
processor. Partitioned scheduling divides the available computing resources
into distinct partitions and assigns tasks to the appropriate partition. While
this approach can be useful for organizing workloads, it does not always use
the computing resources of a system in an efficient manner. For example,
if the workloads assigned to each partition are not evenly balanced, then
one partition may become overloaded while other partitions remain idle.
Additionally, if a task requires more resources than what is available in its
assigned partition, then the task may not be able to complete in a timely
manner. Partitioned scheduling also does not allow dynamic load balancing,
meaning that the system cannot adjust to variable workloads or resource
availability, see Figure 1.3 and [Andersson and Jonsson, 2000, Andersson et al.,

2003].

 restricted migrations: tasks are dynamically assigned to processor during run-
time. With restricted scheduling each task can be executed on any processor,
but each of its jobs has to finish executing its workload on this same processor.
Restricted migration can provide a more efficient load balancing while still
allowing for some degree of task migration, see Figure 1.4 and [Baruah and
Carpenter, 2005, Anderson et al., 2008, Goossens et al., 2012, Brandenburg
and Gil, 2016].

1.3.2 Stochastic analyses

As discussed in the previous section, the sustainability [Baruah and Burns, 2006]
permits to extend directly deterministic single processor results to the probabilistic

approach, because what is valid for the worst-case scenario is proven valid for all
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Figure 1.4: Restricted scheduling policy

scenarios. We list and discuss in this section some of the results using statistics
and probabilities for the analysis of single and multiprocessor systems. Some
of the challenges of the stochastic analysis of real-time systems are detailed

in [Quinton et al., 2012].

Single processor scheduling

Statistical timing analysis For a task and a given processor, we call timing
analyses, the methods determining the largest workload required for the execution
of this task on that processor. In [Davis and Cucu-Grosjean, 2019], one can find

a survey that details probabilistic timing analyses developed until 2018.

In [Edgar and Burns, 2001], the authors present Extreme Value Theory (EVT)
as a candidate for estimating WCET and WCRT with random variables (also
known as probabilistic WCET and probabilistic WCRT), followed by [Lu et al.,
2011, Cucu-Grosjean et al., 2012, Lima et al., 2016, Cazorla et al., 2013, Santinelli
et al., 2014, Wartel et al., 2013,Lu et al., 2012], finding the best-fitted parameters for
extreme value distributions [Basrak, 2011, Hansen et al., 2009], computing maximum
likelihood estimators and non-parametric tests to do so, and finally compute the
Deadline Miss Probability (DMP). The EVT method is called a measurement-based
method, as it infers knowledge on execution times. One may find a complete survey of
these results in [Davis and Cucu-Grosjean, 2019], while open problems are underlined
in [Gil et al., 2017]. According to these authors, deterministic WCET estimation

of a task is often pessimistic, .e., unlikely to occur and often larger than most
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execution times of that task. In fact, EVT has been used in several papers [Lu et al.,
2012, Wartel et al., 2013, Liu et al., 2013, Lima et al., 2016, Lima and Bate, 2017].
In [Maxim et al., 2017a] the authors discuss the reproducibility of a measurement
protocol and the representativity of the data used to estimate WCETs. Nevertheless,
EVT has some limitations as it is too sensitive to outliers of the provided data.
Some other limitations are pointed in [de Barros Vasconcelos and Lima, 2022]. A

comparison with the deterministic approach is provided in [Abella et al., 2014].

Probabilistic schedulability tests of single processor systems One of the
important part of a processor is the order in which it runs the tasks. There are
several ways to schedule a task set. Some scheduling algorithms can be developed

in order to schedule large sets of tasks, others can be energy optimized.

One may look at [Davis and Burns, 2011] for an exhaustive survey on the
scheduling problem on multiprocessor processors. It reviews the first notions to
know when we speak about task scheduling as allocation or priority problems. It
also explains all the different notions needed to understand real-time scheduling,
as schedulability, comparability, predictability and sustainability, and presents the

main results from the late 1960’s until 2009.

In [Diaz et al., 2002, Kim et al., 2005], the authors calculate the exact distribution
of response times of periodic tasks with probabilistic execution times. They also
prove that the backlog, i.e., the remaining workload at each beginning of each hyper-
period, can be modeled with a Markov chain, and they are the first to consider
the computation of the exact deadline miss probabilities from a set of execution
time distributions. Finally they prove that the backlog of periodic systems converge
to some steady-state distribution and they approximate this distribution. This
method can be used to quantify deadline miss probabilities for a given task set in
periodic systems. However, the complexity of this proposed solution is exponential,
even if some studies solve partially the issue [Markovié et al., 2021, Maxim et al.,
2012] by subsampling the execution times distributions. This is where analytical

approximations make their entry.
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Analytical methods for measuring deadline miss probabilities have been studied
recently. In [von der Briiggen et al., 2018], the authors are interested in the
DMP and overload probability introduced in [Chen and Chen, 2017], and provide
both analytical and combinatorial descriptions of how to compute them. Their
contribution relies on what they call the multinomial approach to compute deadline
miss probabilities more efficiently. This work is then extended for EDF in [von der
Briiggen et al., 2021]. In [Palopoli et al., 2012, Palopoli et al., 2015, Abeni et al.,
2017], authors bring the idea of what they call probabilistic deadlines (also known
as DMP). Around this concept, they build the backlog analysis introduced in
[Diaz et al., 2002, Kim et al., 2005] with a Birth-Death process, and quantify
the deadline miss probabilities for a reservation based schedule algorithm for
periodic systems. In [Villalba Frias, 2018], the author implemented in his thesis
the PROSIT tool, a simulation framework computing deadline miss probabilities
for a given task set, with independent and non independent execution times, using
the backlog as a Birth-Death process, and an Hidden Markov Model to model

the dependencies between execution times.

Scheduling theory is mathematically not that far from queuing theory. In
[Lehoczky, 1996, Lehoczky, 1997al, the authors add to queuing theory timing
constraints. They use a Markov process to model the lead-time profile of all the
jobs in the queue. The main result provided in [Lehoczky, 1997b] is that the
multivariate queue length process converges to a Brownian network, assuming the
heavy-traffic condition. In [Doytchinov et al., 2001], the authors apply real-time

queueing networks to EDF.

Multiprocessor scheduling

A current trend in real-time systems is the application of statistical learning methods
in order to find optimal schedules [Plassart, 2020, Mao et al., 2019, ul Islam and
Lin, 2015, Lee et al., 1997, Kadaba et al., 1991]. In scheduling theory, the inference
of scheduling knowledge [Shaw et al., 1992] is a natural step into the application

of the parametric method provided in this thesis. The parametric estimation of
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Figure 1.5: Level 2 shared cache

new parameters such as deadlines can improve scheduling decisions, see [Aytug

et al., 1994] for a review in this field.

In [Manolache et al., 2002], the authors speak about the heavy-traffic assumption,
saying that it fails yet to handle systems where a task has more than one immediate
successor task and hence leads to high deadline miss ratio, which is unacceptable
for critical real-time systems. They use Coxian distributions to model execution
times, and use Stochastic Petri Networks to describe the dynamic of multiprocessor
scheduling. They prove that under the Coxian distribution assumption, there

exists a system steady-state.

In [Kim and Shin, 1996|, the authors provide a model for execution time
distribution including communication between sub-tasks with a queuing model
and Markov chains, taking account of blocking time between sub-tasks induced
by the parallelism of multiprocessor systems using the First-In-First-Out (FIFO)
policy. It provides a closed Markov chain representing step-by-step the number of
sub-tasks being computed at the same time, with m + 1 states, state 0 being the

communicating/synchronization state, m being the number of cores available.

Shared cache interference Shared cache interference (see Figure 1.5) is one of
the reasons why migrations and preemptions are important metrics in scheduling
algorithms performances, as they quickly add overheads into the process. Those

overheads are usually ignored, but in multiprocessor scheduling they are crucial.

In [Davis et al., 2013], the authors list different problems encountered in
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multiprocessor systems with shared caches. They provide a static probabilistic
timing analysis method on evict-on-miss random replacement cache policy single-
core systems, based on geometric distribution with a missing rate, and give some
clues on how to model cache miss latency and memory use in multiprocessor
architectures, but with no actual results. It is actually based on the analysis
provided in [Altmeyer et al., 2015a], where the authors provide an analysis of how
cache misses occur with a random replacement policy in a cache dedicated to one
CPU, and express execution times as a sequence of cache accesses, missed or not.

WCET are then computed by adding all the delays induced by cache hit/misses.

In [Jalle et al., 2014, Fernandez et al., 2014], the authors go further in the analysis
of cache misses and focus on the bus contention. The goal of both papers is to
provide a probability of cache miss due to shared hardware. In contrast to [Altmeyer
et al., 2015a], where the authors provide an analysis of how cache misses occur
with a random replacement policy in a cache dedicated to one processing unit.
The authors points have already been partially answered in [Yan and Zhang, 2008|
where a non-preemptive model is provided to describe access interference between

instructions in a second-level shared cache but deterministic.

However, we do not model the shared cache interference in this thesis. Never-

theless, the number of preemptions have an important cost when resources are
shared [Phavorin and Richard, 2015]. This cost is a metric used in the simulations
presented in Chapter 6, and migrations are restricted within the heuristics proposed

for the same reason.

Machine learning in multiprocessor scheduling Techniques that address
the multiprocessor scheduling problem are developed in papers like [Nakasuka
and Yoshida, 1992, Kadaba et al., 1991, Lee et al., 1997, Ahmad and Dhodhi,
1996, Gupta et al., 2010, Padmajothi et al., 2022]. There are not many studies
from real-time researchers using stochastic analysis, nor analytical approximations
of the DMP in multiprocessor scheduling allowing inference, and, as we discuss

in the last chapter, machine learning.
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In Chapter 6 we focus on restricted multiprocessor scheduling algorithms.

1.3.3 Mixed-Criticality

Different values of execution times may correspond to various modes of a real-
time system. Detecting modes changes in critical systems can be crucial and
contribute to soften timing constraints. Such detection serves a higher-level objective:
characterizing a functional mode that may be a normal, exceptional or degraded, in
order to increase the reactivity of these systems and to predict mode transitions [Real
and Crespo, 2004]. Indeed, by adapting the reaction of the system with respect
to a given mode, an optimized utilization of resources is possible, which becomes
another commercial trend within the time critical systems industry. Sometime the
mode is obvious, such as a drone in a take-off mode for example, but tasks often
depend of unobserved latent variables such as environmental variables. The MC
model considers worst-case scenarios per mode [Vestal, 2007]. MC models have
been widely studied recently [Altmeyer et al., 2015b, Guo et al., 2017, Baruah et al.,
2011, Gettings et al., 2015, Baruah et al., 2012, Guo et al., 2015, Burns, 2014]. One
may see a review of MC systems in [Burns and Davis, 2017]. We do not use the
MC model in this thesis. However, we emphasize the link between probabilistic
approaches and MC models as discussed in [Maxim et al., 2017b, von der Briiggen
et al., 2022, Abdeddaim and Maxim, 2017], and how probabilistic approaches can
contribute to better define and understand how MC models can be used in practice.

The introduction of MC systems in [Vestal, 2007] is concluded in those terms:

An interesting theoretical question we encountered was: What is a good
multi-criticality utilization metric? We considered computing a vector
of utilizations (one per design assurance level), computing a utilization
using for each task the compute time associated with its own criticality,
and computing a utilization using the compute time associated with
the highest criticality of any task of equal or lower priority. A vaguely
troublesome property of all these metrics is that some workloads may
be feasibly scheduled at higher than 100% utilization.

This is exactly the problem probabilistic approaches solve: what can we say

when the maximal utilization is higher than 100% ? The MC model is a theoretical
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model that is based on several levels of criticality (e.g., high or low), which are
different modes of the system that can provide different execution times of tasks.
According to those modes, different quantities such as response times or deadline
miss probabilities are computed. In [Draskovic et al., 2021] for example, authors
provide the deadline miss probabilities for the MC model with the probabilistic
approach and show the link there can be between the MC model [Vestal, 2007]
and the stochastic analysis of real-time systems. However, as discussed in [Esper
et al., 2015], certifications of real-time systems look for levels of confidence, that
is to say a quantification of the failure rate of a given function (i.e., the real-time
task, the sensors it uses and the actuators it may communicate with) of a system.
Furthermore, computing deadline miss probabilities is necessary, but to the best of
our knowledge, the state-of-the-art results do not provide the appropriate granularity,
as the certification requirements are placed at functionalities level. Sensors and
actuators (the hardware part) is often not taken into account. In this perspective,
a model allowing the inference of data from sensors and actuator to consider a level
of confidence of the functionality of a system would be an improvement. In that
regard, probabilities may play a crucial role but the lack of probabilistic models
allowing such inference makes it not yet possible. Numerous papers try to generalize
deterministic results to the probabilistic approach without succeeding to redefine the
domain of application of such methods, which prevents the industry to actually trust
such analyses. We use the MC model as our main motivation to define properly

the domain of applicability of stochastic analyses.

1.4 Reader guidelines

In this thesis, we aim to approximate response times of real-time systems and
provide statistical analyses for adaptive scheduling decisions. We propose a method
for estimating the response time distribution and its a priori distribution. Finally,
we apply this method by introducing a new class of allocation algorithms that we

refer to as DMP-driven. The manuscript is composed of three main parts:



1. Introduction 21

(i) Approximation: chapters 2, 3 and 4,
a. in chapter 2, the mathematical model used to describe real-time systems
is introduced,

b. in chapter 3, the necessary conditions for the statistical analysis are

built,

c. in chapter 4, real-time systems are described with queueing theory results,

(ii) Estimation: chapter 5, the statistical analysis itself: a parametric estimation

adapted for response times,
(iii) Optimization: chapters 6 and 7,

a. in chapter 6, an online deadline miss probability-driven processor alloca-

tion,

b. in chapter 7, future potential work for more optimization.

The dependencies between chapters are illustrated in Figure 1.6.

1.5 Publications

The contributions presented in this thesis are published or under submission within

the following four papers:

(i) Identification of Execution Modes using Cluster Analysis. Kevin Zagalo,
Liliana Cucu-Grosjean and Avner Bar-Hen, ETFA 2020, [Zagalo et al., 2020],

(ii) Response Time Stochastic Analysis for Stable Fized-Priority Real-Time Sys-
tems. Kevin Zagalo, Yasmina Abdeddaim, Avner Bar-Hen and Liliana
Cucu-Grosjean, IEEE Transactions on Computers, Special issue on Real-

time Systems, 2023, [Zagalo et al., 2022a,

(iii) Response Time Parametric Estimation of Real-Time Systems. Kevin Zagalo,
Olena Verbytska and Avner-Bar-Hen, Arziv Preprint, 2022, [Zagalo et al.,
2022b],
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Figure 1.6: Manuscript structure and reading dependencies

1.6 Software

Numerical evaluations are implemented within three frameworks:

(i) Probabilistic SimSo: an adapted version of SimSo using probabilistic execution

times [Zagalo and Auvray, 2022].

(ii) rInverseGaussian: a Python library for the re-parameterized inverse Gaus-

sian distribution [Zagalo and Verbytska, 2022].

(iii) Hypoexponential: a Python library for the hypoexponential distribution
[Zagalo, 2022].
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Probabilistic approaches for real-time systems are based on the fact that the
worst-case execution times and minimal inter-arrival times can be weighted by their

probability of occurrence. The analysis induced by these approaches consists in

23
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quantifying the probability that timing constraints may not be satisfied: the goal
being to soften the description of timing variables as considering worst-case values
may lead to an over-dimensioning of the processor. This over-dimensioning brings

pessimism that may be measured as defined in [Diaz et al., 2004].

Utilization-based conditions of schedulability are well known. Indeed, the seminal
work of Liu and Layland [Liu and Layland, 1973] introduces a sufficient condition
for the feasibility of a real-time system using its maximal utilization. However,
in probabilistic real-time systems, each value of execution times and inter-arrival
times are weighted by a probability. Furthermore, the deterministic critical instant
defined in [Liu and Layland, 1973], i.e., the worst-case scenario in single processor,

cannot be extended to the probabilistic case directly [Chen et al., 2022].

In this chapter, we introduce a new type of real-time tasks that we call stationary.

2.1 Probabilistic Real-Time Systems

In this first section we formalize the use of the probability theory in real-time

systems and define the theoretical notions used by many studies.

2.1.1 Environment and probability space

Let () be the set of possible states of the hardware, I the set of all possible
input values of tasks. As explained in [Axer et al., 2014, @ and [ are usually
unknown and/or too large, thus

Timing predictability [...] is incomputable for most systems. So, it

is not possible to construct a general procedure that, given a system,

computes its predictability exactly. [...] However, it is possible to

develop procedures that compute approximations, that is, upper and/or
lower bounds on a system’s predictability.

We call the product space Q¢ = @) x I the environment space, representing all
possible values of all inputs of the tasks, the exact state of the processor, or any

information that varies during the execution of tasks, the physical properties in
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which the system interacts. We suppose € finite, i.e., || < o0. For example,
let C'(q,7) be the execution time of a task computed in an environment (gq,i) €
Q. In a perfect world, by knowing all possible states of a system, the system
would be time predictable, in the sense that we can in fact predict the worst-case
environment in Qy for a given task. In [Axer et al., 2014], authors define the

timing predictability of a task with

Pr(Q) = min_ min 70@1721)

2.1
q1,92€Q i1,i2€l C(QQ, ig) ( )

which measures the ratio between the minimum and the maximum execution time
of this task. A concept similar to the timing predictability can be measured by
enumerating the subsets of {2y that satisfy the occurrence of specific events. Let
us call any subset A < )y an event, and A the set of all possible events, such

that the empty space & € A and Q4 € A.

Finally, let P be a probability measure on the environment space {2y, i.e., a

function mapping A to [0, 1] such that

(ii) P is o-additive, i.e., for any collection (A,), of pairwise disjoint events in A,

P (U, An) = 2., P(An).

The uniform probability P of an event A € A is the frequency of occurrence
of this events in 2 defined by
A
P(A) = — 2.2
=g 22)
For example, let ¢ € N. If A = {(q,i) € Qy : C(q,i) = ¢} its associated

probability according to P is the frequency of occurrence of the equality C'(q,7) = ¢

in Qq, i.e., P(A) = ZqEQZTglii?‘(c(q’i)) where

1a() 1 ifzeA
alz) =
0 otherwise.
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Definition 2.1 (Probability space). Let €y be an environment space, A the sets of
all events of Qo and P the uniform probability measure on A defined in Eq. (2.2).
We call (Q, A, P) a probability space.

In the remainder of this thesis, () and I are considered unknown.

Definition 2.2. Let (,.A,P) be a probability space and A e A. We say A holds
if P(A) = 1.

The application of this definition is as follow: every equality X = Y (resp.
inequality X < Y') is defined by P(X =Y) =1 (resp. P(X <Y) =1).

2.1.2 Timing variables

A task is instantiated at a given time, for a given sequence of environments. In this
section we provide a formal definition of the instance of a task, and its associated

execution time, inter-arrival time and deadline.

Tasks and jobs

We call task a tuple of timing variables 7 = (X, ..., X,,) mapping the environment
set €y to the product space J < R’;. We call job an instance of a task Tassociated

to an environment wy denoted 7(wyp), such that a task 7 is the function

T:WOEQOHT(UJ(])EJ

where J is the set of all jobs. We say that a job is released when its associated
task is activated. When a job is released, several variables are released with it.

Let T' = {r,7,...} be a task set.

Let X be a mapping from Qg to R, and X ! be the inverse image of X in €.
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Let Bx = {X!(A) : Ae A}. We define the probability distribution of X

Px(A) =Po X 1(A)
=P (X7'(4))
=P(wo e Q: X(wpy) € A)

for A € By.

Lemma 2.1. (R, By, Px) is a probability space.

Proof. First, X 'Y(R;) € By, and Px(R;) = 1. Let (B,), be a sequence of
pairwise distinct elements of Bx. Let p # ¢ and wy € X *(B,) n X~'(B,). Then
X (wo) € B, n B, = &. Hence the (X'(B,)), are pairwise disjoints events of R,
and thus Px(u,B,) = P(U,X(B,)) = 2, Px(B,). O

We call timing variables the variables characterizing tasks.

Definition 2.3 (Timing variable). A timing variable on (Qo,.A) is a mapping
X : (20, A) — (Ry,B) such that for each B € B there exist A € A such that
B = X(A).

Let X be a timing variable. We define the distribution function of X as

Fx(z) = Px((=,z])
=P(wp € N : X(wp) < )

also called cumulative distribution function and is such that Fy(4+00) = 1 and

Fx(—) = 0. The function
1—-Fx

is called the exceedence function of X.
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Execution times

The execution time of a job is the amount of workload (or processor cycles) it
needs to finish. For a given environment wy € €2y, and a task 7, € I'. Let C;
be a timing variable such that the job 7;(wp) has an execution time C;(wp). We
consider through this work that execution times are bounded, i.e., for all 7; € T,
there exist ¢ and ¢ such that

Ywo € Qo, Ci(wp) € [cmm cm“x]

7 )Y

We denote by F; the distribution function of C;, and its mean value by E[C}]

and its second order moment E [C?].

Inter-arrival times

For a given environment wy € 2y, let T; be a timing variable such that the inter-
arrival time T;(wp) is the elapsed time between the release (or activation) of the
job 7;(wp) and the release of the previous one. We denote by G; the distribution
function of T;. We call \; = E[T;]™! the rate of 7.

Deadlines

For a given environment wy € €y, Let D; be a timing variable such that the
relative deadline D;(wp) is the time given to the job 7;(wy) to execute. We say

that the relative deadline D, is

o constrained if any job of 7, must complete its execution before the release
of the next job of the same task in a deterministic fashion, i.e., there exists

0 < d; such that Ywg € Qo, D;(wo) = d; < T;(wo),

o implicit if it is equal to the inter-arrival time between a job and its next job

of the same task,

o arbitrary if there is no relation with inter-arrival times.
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2.1.3 Properties of timing variables

The expectation operator E of a probability measure P is defined by

Blo(¥)] = | o(X () Pdi) 23)

for any function g : R, — R. In order to estimate the distribution of a timing
variable, we need to express (2.3) in terms of its possible values instead of the

possible values in the hardware states in () and inputs in /.

Lemma 2.2 (Transfer theorem). Let X be a timing variable and g : R, — R. Then

E[g(X)] = j 9(2)Px (da)

Proof. Take x = X(wp) in Eq. (2.3), thus dwy = X !(dz). Furthermore, by
definition X () € Bx because Qg € A. O

We use the notation Py(dz) = dFx(z). A consequence of this last lemma

is that for any A € By,

Py(4) = f 14(2)Px (dz)

Ry

Definition 2.4 (Independence). Let X and Y be two timing variables. We say that
X and Y are independent if and only if VB, € Bx,VBy € By,

P(wo € Qo : X(wo) € Br, Y (wo) € Bs) = Py (B1)Py(By)

Definition 2.5 (Identically distributed). Let X and Y be two timing variables. We
say that X and Y are identically distributed if and only if VB € Bx U By,

Px(B) = Py(B)
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and equivalently, Vx € R,
Fx(x) = Fy(%‘)

and we write X LY or equivalently X ~ dFy. Particularly X ~ dFx.

Definition 2.6 (Conditional probability). Let X and Y be two timing variables.

The conditional timing variable X given' Y =y is written X|Y =y and is such that
Px(d) = [ P(X € AY = )dFr(y)
for all x > 0.

Definition 2.7 (Convolutions). Let X and Y be independent timing variables and
Z =X +Y. Then the distribution function of Z is the convolution Fy; = Fx = Fy
defined by

Fy(z) — f Fy(z — y)dFy(y) = J Fy (> — 2)dFy (x)

2.1.4 Common distributions

We define in this section the distributions used in the remainder of this thesis.

Definition 2.8 (Uniform distribution). The uniform distribution function on the

interval [0,t] is defined by

Definition 2.9 (Exponential distribution). The exponential distribution of mean

1/X is characterized by the distribution function
Gr)=1—e*2=0

Definition 2.10 (Standard Gaussian distribution). The standard Gaussian distri-
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bution is characterized by the distribution function ® defined by

O(x exp (—y°/2) dy,z e R (2.4)

==
T .
Definition 2.11 (Gaussian distribution). The Gaussian distribution of mean m € R

and variance v* > 0 is characterized by the distribution function ®,, ,»(x) = ®(21).

Definition 2.12 (Inverse Gaussian distribution). Let g > 0 and A > 0. The inverse

Gaussian distribution of mean p and shape \ has a probability function i defined by

Y (tp,A) = \/;exp (—W) (2.5)

fort > 0. Its mean is u and variance p®/\. Its cumulative distribution function is

given by

won=o (V3 (1)) o (2)o (3 G)

where ® is defined in (2.4).

The inverse Gaussian family is a natural choice for a statistical modelling of
positive and right-skewed distributions, see [Folks and Chhikara, 1978, Tweedie,
1957]. Tt is used in many fields, such as industrial degradation modelling [Ye and
Chen, 2014], psychology [Schwarz, 2001, Palmer et al., 2011}, and many others like

hydrology, market research, biology, ecology, and so on c.f., [Seshadri, 2012].

The tuple (C;, T;, D;) varies depending on which environments 7; is activated.
This means that when a job 7;(wp) is released, it is after T;(wp) units of time
after the previous job of 7;. Its execution time is Cj;(wy) and it should be over

before D;(wp) units of time.

In the remainder of this thesis, we consider implicit deadlines.
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priority T H :
distribution G4 —> T14 [T13 [ T12 T
distribution
F4Fo, ..., Fy
distribution G, — ™ T
\ 4 distribution G, —>|Th 3 Tni

Figure 2.1: Scheme of a Y}, G;/ >, G;/1/SP system. The sorted queue (by priority) is
the queue wrapped with dots

2.1.5 Kendall’s notation

In queueing theory, Kendall’s notation [Kendall, 1953] is the standard notation to
describe a queueing system, i.e., arrival and service times, processing units and
scheduling policies. In our case, jobs arrive at a certain rate, and leave the system
after the processor treats their execution time. So the general standard model
for single processor scheduling is written G/G/1 and when written like this, the
first G stands for general inter-arrival time distributions, the second G for general
execution time distribution, the 1 refers to the single processor and implicitly we

suppose that FIFO is used to schedule jobs. In the remainder of this thesis,

e D stands for deterministic,
o @ for general,

o M for memoryless.

For example, a D/D/1 queue is a periodic system with only one value of
execution time. It corresponds to the periodic worst-case analysis widely studied

in real-time systems.
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Each task generates its own queue. As we work under the assumption of
memoryless inter-arrival times, each task is associated to a M/G/1 queue. Fur-
thermore, as we work under a static-priority scheduling policy, and exponential
inter-arrival distributions with several tasks (or priority classes), we write the model

2. M/ >, Gi/1/SP, which is described on Figure 2.1.

2.2 Stationarity

Let T > 0and 0 =ty < t; < ty < --- < t,, = T and the finite sequence of
environments w = (wy, . . .,wy, ). More generally, we define the space Q7 = (€)1
as the space of all functions mapping the interval of time [0, 7] to the environment
space ), such that w € Qr can be written w = (w;,t € [0,7]). When T goes
to infinity, we denote Q = (g)%+.

We call canonical process the operator 6; : 2 — )y such that
Qt(w) = Wt

is the projection of a sequence of environments to the associated environment at time
t > 0. It makes the link between processes evaluated on sequences of environments

and timing variables evaluated on given environments.

2.2.1 Task model

We consider a finite task set I' = {71,...,7,} of n tasks. A task 7; is characterized by:

C; > 0 its execution time,

O; = 0 its offset, the time of its first activation,

T; > 0 its inter-arrival time,

D; > 0, its relative deadline,
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o «; €[0,1), its permitted failure rate.

C;, O;,T; and D; have their distributions, as «; is deterministic. The task set I"

is ordered by decreasing priority order, i.e., 7; has priority over 7;,.

Arrival times Let 7, € T' and w® = (w(()i),wg),...) € Q be a sequence of

environments. We call arrival time of the j-th activation of 7; the variable defined by

Ay (@) = 0i(w§) + 3 Ti(wi?) (2.6)

k=1

such that A;;(w®) = O, (w((]i)) is the first activation of 7;. Arrival times have the

property of satisfying the relation 4; ;(w®) — A;;_;(w®) = Ti(wt(:)).

Job sequences The j-th job of the task 7; is denoted 7; ; and defined by
Tij = Tio0a,,

such that the job 7;; is mapping €2 to J. Its execution time is
Cz',j =Cj;o GAM

and the inter-arrival time between the jobs 7; ;-1 and 7, ; is

Ti,jZTiOQA

i,j—1
There are two types of inter-arrival times:

(i) stationary: A task 7, € I' is said stationary if the sequence T;;,7 € N is
identically distributed with distribution function G;. There are three sub-

classes widely studied of stationary inter-arrival times:

o periodic: A task 7; € I' is said periodic if T; is deterministic, i.e., there

exists ¢; > 0 such that G;(z) = 1p,«). In that case, we call T; the period
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of the task 7;. A periodic task is stationary. In real-time systems, it
models time-triggered programs, i.e., each ¢; units of time, the task 7; is

activated.

o memoryless: Let T" be an inter-arrival time. T is said memoryless if
PT'>t+s| T >s)=P((T > t), which can be rewritten as the
differential equation f(t+ s) = f(t)f(s),Vt,s > 0. The solution to this
equation belongs to the family of exponential functions. In this case,
Gi(t) =1 —e Nt

o sporadic: A stationary task 7; is said sporadic if there exists a bound

7™ such the inter-arrival time T} ;, j € N is greater than ¢/*". We call
A\mar 1/tmm
7 (2

the mazimum rate of 7;.

(ii) non-stationary: A task 7; € I' is said non-stationary if there exists a positive
function A such that a job released at the instant ¢ > 0 is released with a rate
A(t). Thus, the sequence T;;,j € N is not identically distributed and their
distributions depend on the release time of their associated jobs. There are

two sub-classes of non-stationary inter-arrival times:

o sporadic: A non-stationary task 7; is said sporadic if there exists a

bound " such the inter-arrival time T; ;, 7 € N are greater than ¢/,

iG>
Without more information on the individual distributions of T; ;, j € N,
the analyses of sporadic non-stationary tasks can be done only in the
worst-case where they are bounded by periodic inter-arrival times of rate
A - This leads to suppose periodic inter-arrival times with G["**(t) =
Lymin o) (t).

o aperiodic: If inter-arrival times of a given task are non-stationary and

not sporadic.

Equivalently, we may write Eq. (2.6) as A;; = O; 0 6y + Z;;ll T k-
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Finally, the relative deadline of the job 7;; is the inter-arrival time between

Ti,j and Tij+1 7:.6.,
Dij =Tijn

because we consider that deadlines are implicit. A consequence of this is that the

deadline D; is with distribution function G;.

The canonical process {6;}; permits to write timing variables for any sequence

of environments, without specifying the environment they are evaluated on.

2.2.2 Renewal theory

Let A;;,1 = 1,...,n,7 € N be a sequence of arrival times of the tasks in I' as
previously defined, i.e., with O; = A;; called its offset and A, ;11 — A;; ~ dG;

for all j > 1. We define the renewal process N;
e}
Ni(t) = D, o (As) (2.7)
j=1

as the number of jobs of 7; released before the instant t. We call

the intensity of Nj.

Definition 2.13 (Stationary renewal process). A renewal process N is said sta-

tionary if N(t + s) — N(s) @ N(t) for any t,s > 0.

Theorem 2.1 (Section 1.4 [Sigman, 2009], [Sigman, 2006]). A renewal process N
with an inter-arrival time distribution G of mean \=' is stationary when its offset

O 1is distributed with

T

G%@=Afu—awmw (2.8)

0

where G° is called the recurrence distribution of the renewal process N.
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Definition 2.14 (Stationary queueing model). We call a ), Gi/>,. Gi/1/SP

queueing model stationary when its offsets O, i = 1,...,n satisfy (2.8).

Corollary 2.1 (Periodic arrivals). In the deterministic case, i.e., P(T; = A1) =1,
if O; has a uniform distribution between 0 and \;', i.e., G(z) = \jmin(x, \; 1),

N; is stationary.

Proof. According to Theorem 2.1, in order for IN; to be stationary, is that the
distritbution of O; is GY(z) = A; §;(1 — Gi(y))dy. In a periodic system, we have
1= Gi(z) = 1 \-1)(y). However,
GY(x) = /\iL 1[07,\;1](y)dy
Aifyldy if x< At
NG ddy+ AT 0dy if x> AT
Nroif x <At
1 if o>\1

= \;min(x, A1)

which is the uniform distribution function according to Definition 2.8 [

Theorem 2.2 (p.394 [Stirzaker and Grimmett, 1992]). Let N be a stationary

renewal process of intensity A\. Then,
— A (2.9)

Poisson process

The increments N(t + s) — N(s) of a stationary renewal process N only depend
on the value of t > 0, where t > s > 0. However, any inter-arrival time is
dependent on the history of the process, i.e., all the information about past arrival
times. Only one family of renewal processes is memoryless, .e., not dependent

on the past: the Poisson processes.



38 2.2. Stationarity

Definition 2.15 (Poisson point process). Let N be a stationary renewal process of

intensity A. N is called a Poisson point process if B[N (t)] = At, and we have

i.e., N(t) is a Poisson variable of mean At. Furthermore, the inter-arrival times

are exponentially distributed with mean 1/X. We say that X is the intensity of N.

Corollary 2.2. Poisson point processes are stationary.

Proof. According to Theorem 2.1, in order for a renewal process N of inter-arrival

distribution G to be stationary, the distritbution of its offset is G°(z) = A {{(1 —

G(y))dy. However in the case of a Poisson process of intensity A\, G(z) = 1 — e,
hence
GOx) = )\J e Ndy =1—e
0
which means that the offset is distributed as all inter-arrival times. ]

Remark. Poisson point processes are the only memoryless renewal processes,
i.e., the probability that at a time t, the next arrival is at time t + s only depends
on s. In other words, the arrival times probabilities do not depend on the past at
any instant t. We classify exponential inter-arrival in the stationary context as
memoryless inter-arrival times. Indeed, the exponential distribution is the only
distribution having the property of not depending on the arrival times of jobs: for
any renewal process, the probability that the inter-arrival time T of a job exceeds
a value t + s given that an interval of time of length s as past since the arrival of
this job, i.e., P(T'>t+ s | T > s) depends on t and s, except of the exponential
distribution where P(T' >t + s |T > s) = P(T > s). This is why this property is
called memoryless: it does not need to know anything from the past. In general, this

is not the case, and we discuss the general case in the end of the next chapter.

Poisson processes are renewal processes with many interesting properties that

we use throughout this thesis.
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Theorem 2.3 (Superposition, Section 1.4.2 [Baccelli and Brémaud, 2013]). Let Ny
and Ny be two independent Poisson point processes of respective intensities Ay and

Aa2. Then N1+ Ny is a Poisson process of intensity Ay + As.

Proof. Since N7 and Ny are both stationary, the stationarity of Ny + Ny comes from
the fact that its jumps are also i.i.d. For this, we need to show that min(Oy, Os) is

exponentially distributed with parameter A\; + Ay. We have

P(min(Ol, 02) > t) = P(Ol > {, 02 > t)

=P(O; > t)P(Oy > t) (O;’s are independent)
— ef)\ltef)\gt
then we conclude with Corollary 2.2;i.e., the fact that O; @) T;. O]

Lemma 2.3 (Marked Poisson process). Let N be a Poisson point process counting
the arrivals of the jobs of n different tasks respectively arriving at a rate Ay, ..., \,.
Let I_k;J be the index of the task of the [-th job of level k, i.e., the job of arrival time
Ay =inf{t > 0: 35 | Ni(t) = I}. Then

N
Zf:l )‘i

In other words, the probability that this job is from task 7;,i = 1,...,n is

)‘i/ Zf;:l Ai-

P(ly, =1i) =

Proof. The I k., are independent from the Cy, Ty, and a fortiori of Ay;. Hence, we
can use [Baccelli and Brémaud, 2013, Remark 1.4.2.] for each level of priority k
which gives us immediately (2.10). O

Definition 2.16 (Poisson arrival). Let I' be a stationary task set. We say that T’

has Poisson arrivals if the inter-arrival times of tasks are exponentially distributed.

Definition 2.17 (Stationary Real-time System). Let (2, A, P) a probability space,
and {0,} be a sequence of projections on (2, A, P). Let I be a task set such that all
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the couples (C;;,T;;),7 € N are independent and identically distributed (i.i.d.), and
(O, =1,...,n) satify (2.8). We call (2, P,I',{0:}) a stationary real-time system.
We say that such system is deterministic if the timing variables in I' do not depend
on the sequence of environments in 2.

Demand process

Let N be a stationary renewal processes of intensity A, and Xi, Xs,... an i.i.d.
sequence of bounded execution times of a task 7 € I'. We define the demand

process of the task 7 as

N(t)
W)= > X; (2.11)
j=1
the accumulation of execution times required by the task 7 until the instant ¢ > 0.

Lemma 2.4 (Wald’s lemma [Wald, 1944]). Let N be a positive integer-valued

variable independent from the i.i.d. timing variables X, X1, Xo,.... Then for any
t>0,
N
E ZXj] — E[N|E[X]
j=1
Lemma 2.5 (Law of large numbers). Let X1, Xo,... be an i.i.d. sequence of timing

variables such that E[|X;|] < co. Then

1 n
Y X; > E[X|]
n n—00

i=1
Theorem 2.4. Let W be defined as in (2.11). Then

Wt(t) L AB[X] (2.12)

Proof. We have WT(” = NTt)ﬁ Zjvz(? Xj. Theorem 2.9 gives us @ e A and as

N(t) @ the law of large numbers (Lemma 2.5) gives us ﬁ Zj\/:(? X; — E[X]

since the X;’s are i.i.d. and bounded, we have E[|X|] < o0. O
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Until Chapter 6, we consider the stationary real-time system (2, P, T", {6;}).

2.3 Time demand analysis

Due to the static-priority policy, the response times of a task 7, depend only those
of higher priority tasks. We call job of level k any job of a task of higher or
equal priority than 7, i.e., any job 7;;,1 < i < k, 7 € N. We suppose that

priorities are distinct. Let

k
iy, = » ME[C]
=1

be the k-level mean utilization of T, the total mean utilization u = u, and the

maximum utilization of level k,

k
aznaz _ Z /\ic'z(nar
=1

Definition 2.18. Let (0, P,T,{0;}) be a stationary real-time system with total

mean utilization u. I' is said stable if u < 1.

Many schedulability tests rely on the utilization of the system, that is, sufficient
conditions that ensure that the system is indeed schedulable. However, those
schedulability tests are not suited for probabilistic real-time systems, as they do
not take advantage of the entire distributions of execution times and inter-arrival
times. Hence, the domain of feasibility of probabilistic real-time systems is yet to
be defined and is an active topic as presented in Section 1.3.2. In Chapter 3, we

prove that systems such that u > 1 are not feasible.

In the remainder of this thesis, all variables written with a bar, i.e., T refer

to a priority level.

Let us define the three following stochastic processes:

(i) Ne(t) =232, 1j0,9(Ak,) as the number of jobs of 7 released before ¢ > 0,
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(ii) the k-level demand Wy (t) as the accumulation of the execution times required
by jobs of priority higher or equal than 7, regardless of potential deadline

misses, released before the instant ¢ to complete,

(iii) the k-level backlog [ (t) as the remaining workload of level k at ¢ > 0, defined
by

_ t

Br(t) = Wi(t) — J L (s)>03ds
0

The demand represents the workload required by the jobs arriving over time.
The goal of schedulability tests is then to check in which proportion of €2 this

demands fits the processor time (otherwise called budget) given to those jobs.

2.3.1 Pessimism

In probabilistic systems, some authors like Diaz [Diaz et al., 2004] introduced the
concept of pessimism for probabilistic systems in a formal way, which is itself called

stochastic dominance in the probability field.

Definition 2.19 (Pessimism [Diaz et al., 2004]). We say that X is more pessimistic
than Y if and only if P(Y > t) < P(X > t) for allt >0, and we write Y <4 X.

This property is also called stochastic dominance. Pessimism is a weaker kind of

dominance than the usual inequality operator, as shown in the following lemma.

Lemma 2.6. Let X and Y be two timing variables. If X <Y, then X <4 Y.

Proof. First of all, since X <Y, we get forallt > 0 that P(Y >¢| X >1t) =1
which implies that

Vi > 0,P(X >¢,Y >t) =P(X > 1) (2.13)
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Then
PX>tY>t) PX>t) ,
PIX>t|Y>t) = = ding to (2.13
(X >t|Y >t PY 1) PY 1) (according to (2.13))
Hence Vt > 0, 2&>) < 1 and we have the result. O]

» P(Y>t)

2.3.2 Blocking time

We denote C; n,) the execution time of the last job released before the instant
t > 0. Depending on the discarding policy, jobs wait a certain amount of time
between their release and their actual execution. For a task 7;, we call blocking

time the process defined for all ¢ > 0 by

Bot) = 0
Bi(t) = Zle min(3;(t) — Bi—1(t), Cin, )

as the amount of time the most recent job before t > 0 7; n,) has to wait before its
execution. In Figure 2.3 for example, the dotted area represents the blocking time

of T2.

In opposition to the backlog, the blocking time takes into account the discarding
policy. Note that the following inequality allows us to bound the blocking time,

which we do in the next chapter.

Proposition 2.1. For allt > 0,

By(t) < min (51@(15)7 Z C'i,]\@(t)) (2.14)

Proof. First of all, since By(t) = 0, we have By (t) = min(f(t), C1 n,«)). Then, by
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induction, suppose that (2.14) holds. By.1(t) is such that

By (t) = By(t) + min(By41(t) — Be(t), Crr1ny ()

)
< min (6k+1 + Crt1 Nk+1(t))
k+1
< min (ﬁkH t), 2 Cz’,Ni(t)>
=1

thus we have (2.14)

]

Hence we have the two following variable that are more pessimistic than B;(?)

thanks to the following proposition.

Corollary 2.3. For allt > 0, Bg(t) <q Be(t).

Proof. Apply Lemma 2.1 and Lemma 2.6. O]

Corollary 2.4. For allt >0, By(t) < Zle cnax,

Proof. Apply Lemma 2.1 and the fact that the execution time C; is bounded by
cmee, O

(3

2.3.3 Response times

Due to the static-priority policy, the response time of task 7; depends on those

of higher priority tasks.

Definition 2.20 (Response time). The response time Ry, of a job 7y, is the size
of the smallest interval after its arrival time Ay, where the blocking time of level i
1S zero, 1.e.,

RkJ = inf {t >0: Bk(Ak,l + t) = 0} (2.15)

Example 2.1. Consider a task set {T, 72}, and that 1o is activated at t = 0,
e., O =0, and Cyy =y = 3. Let P(C, = 1) = 1/2,P(C, = 2) = 1/2,
P(Ty =2) =1/2, P(Ty = 4) = 1/2, and suppose B;(0) = x+y =8, C1; = 1,
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1

T2

0 2 4 6 8 10

Figure 2.2: 7o is the first job of 7 and is released at time 0. Its response time is equal
o 8. It starts executing at 1, its blocking time is 1 as it is blocked by the job 7 1 also
released at time 0. It is preempted by 712 at time 3, and 71 3 at time 6.

CLQ = 2, Cl’g = 2, and 01 = 2,A172 = 6,A1’3 = 10 and A1’4 = 14. Then the

response time Ray is the first instant t when By (t) = 0:

Bi(1) = Wi (0) =

By(3) =Wi(0)+Ci1—3=x+y—2
Bi(7)=Wi(0)+ C11+Cio—T=x+y—4

Bi(11) =Wy(0) + C11+ Ci2+ Cis— 11 =24+ y —6
Bi(13) =W (0)+ C11+ Cia+Ci3—13=2+y—8=0

Hence Ry = 13. This is illustrated in Figure 4.2. To build all possible values of Ry 1,
one must do the same for all combinations of possible values of (A1 1, A1, A13, A14)

and (C11,C12,Cr3,Cra).

The discarding policy of a scheduling policy is the decision taken when a deadline
is missed. When firm deadlines are missed, jobs are instantly discarded. Thus,
for example, a job can be discarded when it misses its deadline. This is the
most common discarding policy. However, others can be imagined: no discarding

from a certain amount of time, discard the next job, etc. This is illustrated in
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T T1

T2 T2

(a) The job of 71 is discarded. (b) The job of 7 is not discarded.

Figure 2.3: Example of a schedule with the discarding policy and without. The down-
arrow represents the deadline of a task. The black circle means that the task has finished
its execution. The gray-squared areas indicates that a task awaits for processing resources

Figure 2.3. Pessimism has been introduced to demonstrate that response time

analyses only depend on the blocking times.

Theorem 2.5 (Theorem 1 in [Lépez et al., 2008]). Let R be the response time of a
job with blocking time b and R’ be the response time of this same job with blocking

time /. Then if b’ = b, R <y R',i.e., R' is more pessimistic than R.

Proof. We have R = b+ X and R\ =V + X. If V/ > b, we get R < R/, hence
applying Lemma 2.6 gives us the result. O]

Corollary 2.5. Response time analyses considering a non-discarding policy are

more pessimistic than any other discarding policy.

Proof. Direct application of Theorem 2.5, since non-discarding schedule provide the

largest possible blocking times when no job discarding is applied. O]

Pessimist response time analysis

As introduced in [Joseph and Pandya, 1986], the response time Ry, of a job 74,
is the smallest instant after its arrival time Aj; lower than the time it is given

to run the level £ demand. The point of the following theorem is to provide a
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more pessimistic variable than Rj;. A formal translation of this definition couples

with Corollary 2.5 gives us the following results.

Theorem 2.6 (Response time bound). Let (2, P, T, {6,}) followa Y, M;/ >, G;/1/SP

queueing model. The response time Ry is such that

Rk,l <gt inf{t € (O,Tk) : 5k(Ak,l) + Wk(t) — Wk(O) < t} (2.16)

Proof. First of all, By(t) < Sk(t) for all ¢ > 0 according to Proposition 2.1. Hence

according to Definition 2.20,

Ry < inf{t € (0, Ty 41) : Bu(Arg +t) = 0}

Then for any a > 0,

B - B a a+t
Br(t + a) = Wi(t + a) — Wi(a) + Wi(a) — f Lig,(s)>0yds — f Ligi(s)>01ds
0 a
B a+t

= Bi(a) + Wi(t + a) — Wi(a) — f Lig,(s)>0yds

a

thus according to Definition 2.20, Ry; can be stochastically dominated by

_ _ Ag+t
inf {t IS (O, Tk,l+1) : ﬂk(Ak,l) + Wk(AkJ + t) — Wk(AkJ) < J 1{6k(5)>0}d8}
Apg,t
(2.17)

since Ry is the first instant after Ay, that the backlog 5 is null, it means that
on the interval s € [Ay;, Ap; + Rp] we have 1yg, (5)=0y = 1, which allows to rewrite

(2.17) as

Ry = inf{t > 0: Bp(Apy) + Wi(Apy +t) — Wi(Ary) < (Agg +t— Apy)} (2.18)
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Furthermore,

Wk(a + t) — Wk(a) = Z . Z CZ'J'

Wila + 1) — Wi(a) 2 Wi (t) — Wi(0) (2.19)

Finally with (2.18), (2.19) and the fact that T} ;. is independent from Ay, 5; and

Wi, and is with the same distribution as 7T} we get the result. O

This last theorem allows to consider the simultaneous activation of tasks as

the worst-case as we see in the following.

Theorem 2.7 (WCRT). Consider a stationary real-time system and let R'* =
inf{t € (0,Tx) : Y057 % + Wi(t) < t}. Then,

VieN, Ry <g R

Proof. With the discarding policy, the blocking time of level ¢ is always bounded
by 22:1 cpe®. Hence applying Theorem 2.6 with f;(4;;) = 2221 cper gives the
result. O

This method is called TDA. TDA holds for any static-priority preemptive single-
processor model with the discarding policy discussed in Section 2.3.3, thanks

to the following theorem.

Theorem 2.8 (Theorem 3 in [Burns and Baruah, 2008]). Deterministic TDA
of static-priority preemptive single processor systems with independent tasks is

sustainable.

This last theorem is the reason why the probabilistic analysis is possible for
real-time systems and that TDA works on stationary real-time systems just like

any periodic deterministic real-time system.
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2.3.4 Deadline miss probabilities

The DMP of a job 74, is the probability that its response time is greater than its
deadline on any possible sequence of environments. In order to compute it, we

compute the exceedence function of the response time Ry

Hk,l(t) =P (Rk,l > t) (220)

Computing this exceedence functions requires to know the distribution of all the
variables that it involves. For this matter, we build a pessimistic approximation
of the response time of the task 7; denoted R"** in Chapter 3 with a fluid model.
With H;; we can tell if the job 7, ; is schedulable or not. Although, computing all
the H;;,j € Nis difficult. In order to be safe, i.e., make a pessimist analysis, we

define the WCRT as a bound R;"** such that for all j € N, R; ; <, R"*, i.e.,

sup H; ;(t) < P (R"™ > t)
jeN
Without further information we cannot say if such bound exists and is finite.
However, if we can compute the distribution of the WCRT R["**, we then have

a bound of deadline miss probabilities.

Definition 2.21. T is said feasible if and only if there exists at least one scheduling
policy such that the WCRT R™* is finite and such that all tasks 1, € I' satisfy

prer — P (R > D)) < (2.21)

In those terms, checking if a task is schedulable is checking if the WCRT R}***
is finite and p"** < «; for all tasks 7; € I" is the goal of Chapters 3 and 4.

)
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2.4 Processor model

A uniform multiprocessor system is a set of processors Il = {k1, ..., kK, } composed of
processors € IT of respective speed s(k) € [1, s™**], i.e., k can process s(k) workload
units in one unit of time. We consider II ordered by decreasing speeds, i.e., s(k;) >

s(k;) if i < j. Let k € Il be a processor at a given state in time and a task 7; € I.

We denote the local mean utilization of the task 7; on the processor x by

ui(rk) = 2= (2.22)

and suppose for all 1 < i < nand 1 < j < m that u;(k;) < 1. We define I';" (k)
(resp. I'; (k)) to be the set of tasks of priority higher (resp. lower) or equal to the

priority of 7; active on the processor k at a given time, and let

(k) = > (k) (2.23)

TjeF;L (k)
be the local mean utilization of level i in the processor k and, respectively, let

1/
1
vi(k) = — NE[C?
v (’l{) S(/ﬁl) Z+ J [ ]]
Tj€l; (k)
be the local deviation of level 7 on the processor x, that is the sum of the utilization

(resp. deviation) of the tasks in T'j (k). Let

—max 1 maxr
U (H)ZT@ Z A€

TjEF;(H)
be the local mazimum utilization of level 7 of kK and

1
s(r)?

o (1) =

Z )‘j (CTaa: o C;nin>2

el (k)

the local mazimum deviation of level 7 in k.
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Definition 2.22 (Stationary Multiprocessor system). Let (Q,P,T',{6;}) be a
stationary real-time system as defined in Definition 2.17, and I1 be a multiprocessor
system. We call (2, P, T, 11,{60,}) a stationary multiprocessor system. Without any

loss of generality, we refer to it as a stationary real-time system.

2.5 Rate Monotonic

Real-time scheduling is the decision process deciding which job should be executed.
Online priority-driven scheduling algorithms are typically implemented as follows:
at each time instant, they allocate an available processor to the highest-priority
job. Static-priority algorithms satisfy the property that for two tasks 7; and 7,
whenever 7; and 7; are both have active, it is always the case that the jobs of one
task have priority over the other. With dynamic priority algorithms in the other
hand, it is possible that some tasks 7; and 7; both have active jobs simultaneously,
but in some case the job of 7; has a higher priority than the job of 7 and in
other cases the opposite. Scheduling algorithms that allow such “switching” of
priorities between jobs are known as dynamic-priority algorithms. We cover in

this thesis only static-priority policies.

The two famous and widely used scheduling policies RM and EDF are proven
optimal in some well defined models. RM is a scheduling algorithm used to
prioritize the scheduling of processes based on their relative rate in the case of

periodic systems. The algorithm assigns higher priority to a tasks that are given

higher maximum rates, meaning that the most important processes are scheduled
more often than lower rate processes. Meaning that 7; has priority over 7; if A\; > A;.
This type of scheduling algorithm is useful for ensuring that the most important
tasks are completed on time and with minimal delays. EDF is used for its dynamic
computation of priorities : each instance of a program has its own priority as a
function of its deadline. It is also shown optimal in the non preemptive single
processor case for example, and many of its variants are studied in [Liu and Layland,

1973, Baruah and Baker, 2008, Baruah and Goossens, 2008].
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S SES SES SES EaS

T2

0 2 4 6 8 10 12 14 16 18
Figure 2.4: Two tasks with implicit deadline using the RM policy

Theorem 2.9 (Hyperbolic bound [Bini et al., 2003]). In the case of a single
processor preemptive RM scheduling, with periodic inter-arrival times and implicit
deadlines, if

ﬁ()xic’;mx +1)<2 (2.24)

i=1

the system is schedulable with a permitted failure rate equal to zero.

In the case of multiprocessor scheduling, i.e., m > 2, the RM policy is verified

schedulable for identical multiprocessor systems global scheduling when

2
m m
mar ; Ve I e <

" 3m —1

I~

— 2.25
3m — 2 ( )
and by allocating jobs to any available processor, all tasks are schedulable with
a permitted failure rate equal to zero [Andersson et al., 2001]. In [Baruah and
Goossens, 2003] authors extend this result to uniform heterogeneous multiprocessor

systems. The system is schedulable with permitted failure rates equal to zero when

1
U, < 3 <,;[ s(k) — (1 +A) max {)wi"““’}) (2.26)
where A = max, en ﬁ > it s(k;) measures the degree by which II differs from

an identical multiprocessor system.

Finally, for the restricted migration the utilization bound of RM on a multiproces-
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sor system with identical processors of speed s is proven [Goossens et al., 2012] to be

ur <ms —(m—1) max {Nic
€

maa:}
n
i

7
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Utilization-based schedulability conditions for single-core static-priority preemp-
tive scheduling policies are widely studied [Davis et al., 2016]. The seminal work
of Liu and Layland [Liu and Layland, 1973] introduces a sufficient condition for
the feasibility of a real-time system using its mazimal utilization. Nevertheless,

a real-time system not satisfying this sufficient condition may remain schedulable

with a given

methods have been focused towards fitting in this sufficient condition by providing

less pessimistic analyses, their domain of feasibility needs to be defined as well. In

probability (see Eq. (2.21) in Section 2). Moreover, while probabilistic

59
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this thesis, we build necessary feasibility conditions for static-priority scheduling
policies based on the mean utilization of the real-time system. We demonstrate
that a mean utilization smaller than 1 is mandatory for response times to be finite,
c.f., Propositions 4.2 and 4.4. We call systems with a mean utilization smaller

than 1, stable real-time systems.

3.1 Stochastic analysis background

The elements presented in this chapter are widely inspired from the books of Francois
Baccelli and Pierre Brémaud, Elements of queueing theory, [Baccelli and Brémaud,
2013] and, Hong Chen and David D. Yao, Fundamentals of queueing networks:

Performance, asymptotics, and optimization, [Chen and Yao, 2001].

3.1.1 Brownian motions

In order to statistically describe the behavior of real-time systems we use a process
called Brownian Motion. It allows to provide theorems similar to the central
limit theorem for stochastic processes. All definitions and results presented in this

section can be found in [Le Gall, 2016].

Definition 3.1 (Standard Brownian motion). A standard Brownian Motion is a

process B = (B(t),t > 0) such that

e B(t+s)— B(s) ~ Py, fort,s>0,
o B(t) — B(s) is independent of B(u) — B(v) fort>s>u>uv >0,
» B is continuous.

Lemma 3.1 (Re-scaling property of Brownian motions). Let B be a standard

Brownian motion. For any a > 0, a~*B(at) @ B(t).
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This is an important property that we use in the next section when introducing

the heavy-traffic theorem.

Definition 3.2 (Brownian motion). A Brownian motion of drift u and deviation
v > 0 is a process W such that there exists a standard Brownian motion B such
that

W(t) —W(0) = ut + vB(t) (3.1)

for allt > 0. For each t > 0, the distribution function of W (t) — W(0) is Dy 2.

Theorem 3.1 (First-passage time of a Brownian motion, [Abundo, 2016]). Let
W be a Brownian motion of drift u > 0 and deviation v > 0. Let Z(x) be the

first-passage time of W on 0 when W(0) = x > 0, i.e.,

Z(z) = inf{t > 0: W(t) = 0}

Then Z(x) has an inverse Gaussian distribution of mean x/u and shape (z/v)%.

Definition 3.3 (Reflected Brownian motion, Theorem 6.1 [Chen and Yao, 2001]).
A process (B is called a reflected Brownian motion of drift u and deviation v > 0 if
there exists a Brownian motion W of drift u and deviation v > 0 such that for all
t>0,

Bt) = W(t) + sup (=W (s))"

s€[0,t]

Theorem 3.2 (Theorem 6.2 [Chen and Yao, 2001]). Let 5 be a reflected Brownian
motion of drift u and deviation v > 0. If u < 0, then the distribution of lim;_,, B(t)

is an exponential distribution of parameter

and is called the steady-state distribution of [3.



58 3.1. Stochastic analysis background

3.1.2 Backlog process

We now consider the evolution of the execution of tasks and the demand. Let
W be a demand process. We introduce the backlog process as the remaining

demand at a given instant

B(t) =W(t) - L Li5(5)>0yds (3.2)

describing the remaining demand at the instant ¢ > 0, after having been executed
at most ¢t units of time. The term S(t) 1(5(s)>01ds is stochastic and represents the
amount of time the system is not idle considering the work-conserving assumption.

This backlog process satisfies the relation

Blans1) = (B(an) + oyt —tns1) ", ¥neN (3.3)

where the (a,),(¢,), (t,) are respectively sequences of arrival times, execution
times and inter-arrival times. Eq. (3.3) is at the basis of the shrink and convolve
method used by many, e.g., [Diaz et al., 2004, Kim et al., 2005, Palopoli et al.,
2012, Villalba Frias, 2018, von der Briiggen et al., 2021]. Under some conditions,

this backlog process has asymptotic properties according to the following theorem.

Theorem 3.3 (Steady-state backlog [Loynes, 1962]). Let 3 be the backlog process
of a M/G/1 queueing model as defined in (3.2). If E[co] < E[to], the limit § =

limy_o, 5(t) exists, is finite and is equal to

n +
8= (sup cj — tj>
n i=1

In the next section, we use this backlog process at priority levels, 7.e., by
considering the demand of not only a task but also of higher priority tasks. This
allows to model the arrival of jobs of a static-priority scheduling policy. Indeed,
at priority level, we know that while there is workload from higher priority, it is

sufficient to check the workload of priority level k and the time that passed between
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Table 3.1: Task set used in the simulations of the experimental results of Section 4.4

Te AL [epin, ¢nas] dF, TP T
noo4 (1,2) (0.5, 0.5) 0.375 0.5
6 (1,2) (0.5,0.5) 0.625 0.833
o 8 (1,2,3) (0.5,0.3,0.2)  0.838 1.208
10 (1,2,3) (0.6,0.2,0.2)  0.998 1.508
12 (1,2,3,4) (05,0.3,0.1,0.1) 1.148 1.841

two arrival times of jobs of level k. In the end of this chapter, we focus on idle
times, the times where the backlog is 0, and it is important to remark that any
scheduling policy considering priority levels instead of specific tasks will provide
the same idle times. The reason of this is that what is important at the end is the
amount of workload demanded to the system and the amount of time that passes
between job arrivals. In other words, for a sorted queue, i.e., by priority level, we

can use FIFO results on priority level backlog in the next section. See Figure 2.1.

3.2 Memoryless backlog

In this chapter, we present an analytical approximation of the demand of probabilistic
real-time systems, using a fluid model associated to the actual demand of the system.
Fluid models are widely used in queueing theory [Baccelli and Brémaud, 2013] in
order to determine asymptotic results. In real-time systems, a famous example is the
DP-FAIR scheduling algorithm [Levin et al., 2010], that uses the fluid model of the

backlogs to determine scheduling decisions for homogeneous multiprocessor systems.

Let (2, P, T, {6;}) be a stationary real-time system following the queueing model
> M/ > Gi/1/SP, such that I' is ordered by decreasing priority order, i.e., 7; has

priority over 7;,1. Let us remind the three following stochastic processes:

(i) Ni(t) = 232, 1o4(Agy) as the number of jobs of 7 released before ¢ > 0, of
mean E[Ng(t)] = Ait, see Definition 2.15. Ny is right-continuous with left
limit (RCLL) and integer-valued.

(ii) the k-level demand Wj(t) as the workload required by jobs of priority higher
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Figure 3.1: Level 3 demand of 1000 instances of the Diaz and Kim (DK) model, the
heavy-traffic demand process and the classical deterministic worst-case analysis (WCET)
considering only the maximal execution time for each task, for « = 0.838 and u™** = 1.208
and hyper-period T, for ' defined in Table 3.1

or equal than 74, regardless of potential deadline misses, released before the

instant ¢ to complete, W (0) = 0,

- k Ni(t)
Wilt) =), > Ciy
i=1 j=1

of mean E[W,(t)] = I, E[N;(1)|E[C;] = xt, see [Janssen and Manca,
2006, (6.53)]. W; is RCLL and positive.

(iii) the k-level backlog (i () as the remaining workload of level k at ¢ > 0 when

I' is ordered in a decreasing priority order and scheduled with a preemptive
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static-priority scheduling policy, defined by

t
Bult) = Wilt) — f 150 (0y0y 5 (3.4)

where Sé 143, (s)=0yds is the total busy time of level k [Lehoczky, 1990, p. 2]
before t > 0. (5 is RCLL and positive.

The backlog process ; is such that for ¢ € [A4; ;,s) and s <inf{A,; : A,; > A;;},
Bi(t) = (Br(Aig) + Cij — (t = Aiy))”

which is known as Lindsley’s equation [Lindley, 1952]. fj is not a Markovian process

in general, but a stochastic recurrence [Baccelli and Brémaud, 2013].

Example 3.1 (Backlog). Let us consider the task set {T, 7}, with P(C; = 1) = 1,
P(T, =2) = 1, P(C, = 1) = 1/2, P(Cy, = 2) = 1/2, P(T, = 3.1) = 1/2,
P(T, = 4) = 1/2. Suppose both tasks 7y and 12 are activated at time t = 0 and
Too = 3.1, Cyy =2, Cop = 1. Then, W5(0) =1+ 2,

B52(2) = Wa(2) = §; Ligyo)=0)ds
= ﬂ+2+U—2=2
T 3
Fa(3) = Wa(3) = §g Liga(s)>0pds
= 1+2+1)-3=1
Ba(3.1) = Wa(3.1) = §o Lypyie)=0yds
= (1+2+1+1)-31=19
5(32) = Wa(3.2) — 37 Lysads
= (I14+2+1+1)-32=138

At the instant t = 3.2, the backlog of level 2 is 1.8.

The process (5 describes the remaining demand without considering deadline
misses, i.e., while jobs are discarded their demand remains in the backlog analysis.

Thus, the process [y is an upper-bound of the blocking time, see Eq. (4.4), i.e., the
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response time analysis that we provide in Chapter 4 is pessimistic as defined

in [Diaz et al., 2004].
We express in the following the backlog process in a more convinient way.

Lemma 3.2 (Theorem 6.1 [Chen and Yao, 2001]). For any right-continuous with

left limits process X, there exists a unique pair of processes (Z,Y') such that
(S1) Z=X+Y >0,

(S2) § Z(t)dY (t) =0,

(S3) dY(t) > 0,Y(0) = 0.

Furthermore, Y (t) = supepo (=X (s))*.

Lemma 3.2 solves a reflexion mapping problem called the One dimensional
Skorokhod problem. We use is in the following to express the right limit of
the backlog process.

Theorem 3.4 (Section 6.2 [Chen and Yao, 2001]). The backlog of level k is such
that

Br(t) = Wi(t) —t + sup (s — Wi(s))" (3.5)

s€[0,t]

for allt > 0.

Proof. Let X (t) = Wi(t) —t and Y (t) = Sé 1g,(s)—ods. Clearly, B (t) = X (t) + Y ().
We call Y the idle time process. The following relations must hold: For all t > 0,

(i) Br =0,
(i) §7 B0y (1) = 0.
(iii) dY(t) = 0,Y(0) = 0.

In other words, dY (¢) = 0 means that Y is nondecreasing, since the idle time process
is measured as a cumulation of a positive quantity over time; and SSO Br(t)dY (t) =0
reflects the fact that the idle time cannot cumulate when the backlog is positive.
From Lemma 3.2, we check the (S1) — (53) conditions, hence we know that Y (¢) =
SUDgefo, (8 — Wi(s))* and we get Eq. (3.5). O
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3.2.1 The Loynes theorem

In this section, we define the domain of the steadiness, provide an expression of
the instant when the system goes from transient to steady, and prove that this

time instant exists and is finite under some conditions.

Definition 3.4 (Steady-state backlog). For a stable real-time system I', the steady-
state backlog is defined by

Br = tli_{g Br(t)
and we denote

m(z) = P (B < x)

the distribution function of the steady-state backlog of level k.

We use background results of queueing theory presented in 3.2.1 and 3.2.2,
provide the exact formulation of the steady-state backlog distribution m; and
illustrate this result in the deterministic inter-arrival case already studied by Diaz

et al. [Diaz et al., 2002] in Section 3.3.

As the demand and backlog processes Wy, and ;. are well studied in queueing
theory [Baccelli and Brémaud, 2013, Chen and Yao, 2001, Jeanblanc et al., 2009],
we provide the formula of the steady-state of the system, by adapting Theorem 3.1
for the >, M;/ .. Gi/1/SP queueing model.

Proposition 3.1. Let (2, P, T, {6;}) follow a Y, M;/ .. Gi/1/SP queueing model.

Let
k

Apy = inf{t > 0: )" Ni(t) = 1}

i=1
be the activation time of the l-th job of level k, and fk,l the index of the task of the
l-th job of level k, and let

Ck,l = O]_k,lvakl(Ak,l)

be the execution time of the l-th job of level k. Then,
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e if Uy <1 the steady-state backlog By, exists, is finite and is equal to

n +

B = (SUPZ Crp— (Apas1 — Ak,l)) (3.6)
"=t

where + = max(0,x), c.f., [Baccelli and Brémaud, 2013, Property 2.2.1]

and Theorem 3.3. In addition, there is an infinite number of idle times,

c.f., [Baccelli and Brémaud, 2013, Property 2.2.5],
e if Uy =1, then the existence of a finite steady-state By, is uncertain,

o Ifu, > 1, there exists a finite number of idle times of level k and no finite
steady-state, c.f., [Baccelli and Brémaud, 2013, Property (2.2.2)], backlogs

are always transient.

Proof. First of all, the Example 3.1.3 [Baccelli and Brémaud, 2013] shows that a
stationary point process with priority class jobs is still associated to a point process
of intensity wug. According to Theorem 2.3, the superposition of Poisson point
processes is still a Poisson process, hence, the superposition of the arrival of all jobs
of level k is a stationary point process. Let Ay, = inf{t > 0 : Zle N;(t) =1} be
the activation time of the I-th job of level k, and I, r, the index of the task of the
[-th job of level k, and let

Crt = ChN; (A

be the execution time of the [-th job of level k. In that way, the arrival of jobs of
level k form a M/G/1 model. We use the property of marked Poisson processes

shown in Lemma 2.3:

Ai
k
Zz’:l Ai

VI,P(I, = i) = (3.7)

The I, are independent from the C; ;,5 = 1 (not Cy,!), T;;,7 = 1 and a fortiori

of A;;,7 = 1. Then we have for any A < R,
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-

-
I
—

P(C_'kJ € A) = P(C’,Ni(gk,z) €A | ]_k,l = Z')P(]_k’l = Z)

)

P(Cz e A | I_kJ = Z)P(I_kJ = Z)

I

S
Il
it

1 k
Zf:l Ai z=21 ( )

Then we use Theorem 3.3 on this superposed process with the execution times
C*k,l and inter-arrival times flmﬂ — flw @ min;—y; 7; which is exponential of
parameter Zf;l i, marked by the ]_kJ. C_’k,l and flk,lﬂ — flk,l are dependent through
the mark 1, k1, but this independence is not required in the proof of Theorem 3.3,

c.f., Example 1.4.4 [Baccelli and Brémaud, 2013]. O

Our goal is to find the distribution of the steady-state backlog ;. However,
given the generality of this model, we cannot provide an exact description of the
process [Oi. The heavy-traffic assumptions allows us to find an approximation for
the distribution of the steady-state backlog 3, when the system utilization gets
close to 1, c.f., Figure 3.2, i.e., we build a process B,EOO) such that its steady-

state approximates Bk

3.2.2 The heavy-traffic theorem

A first step in the approximation of the backlog process (. is the approximation
of the demand process Wj. The following theorem provides a fluid model, that
is a continuous version of the backlog process using asymptotic results. Fluid
models are widely used in queueing theory [Chen and Yao, 2001] in order to
determine asymptotic results. In real-time systems, a famous example is the DP-
FAIR scheduling algorithm [Levin et al., 2010], that uses the fluid model of the
backlogs to determine optimal decisions for homogeneous multiprocessor systems
that we discuss in more details in Chapter 6. The idea behind heavy-traffic, is

that we look at the workload processes in the long time, i.e., we put the processes
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in a limit situation, and analyze this limit.

Let us define the sequence of re-scaled processes

W) = Wi(0) + nWi(nt) + n="2(Wi(nt) — wnt)

(3.8)
Be(0) + n7 Be(nt) + n~(Be(nt) — (uy, — 1)nt)

x-ﬁz
3
N
S
~
SN—
|

and look for their limit.

Theorem 3.5. Let I' be a stationary task set as defined in Section 2.1.2. The

re-scaled demand process sequence W,in), n = 0 is such that for allt > 0,

lim W () € W 1)

n—0o0

where W,goo) is a Brownian motion of drift w, = Y MNE[C] and deviation

o2 = Y NE[C?]. See Figure 3.1 for an illustration.

Proof. The proof is based on the Laplace transform of the demand process. Let N;
be the associated Poisson process of arrivals of 7;. Let W;(t) = Zjvz(f) C;; where

Ci,Ciq, ... are the i.i.d. execution times of 7;, and its Laplace transform

E[efWi(t)] - E [65'2;\7:(? Ci,j:l

= DB [t

n=0

M@:ﬂmm@:m

The Poisson processes N; and the execution times are independent, and N;(t) is a

Poisson variable of parameter A;t, i.e., P(NV;(t) = n) = e”‘it%, which leads us to

Ep0) 3 B[ 0u] 0 0

n=0

Finally, the variables C;, C; 1, C; o . .. are identically distributed, hence ]_[?:1 EletCii] =
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E[ef“i]", which leads to

E[ EW; t) —AtZE 50

n=0

— Nit(B[efCi]-1) (3.9)

In order to find the variance of W;(t) we use the following lemma:

Lemma 3.3 (Eve’s law [Blitzstein and Hwang, 2019]). Let X and Y be variables

with finite variance. Then,

Var(Y) = E[Var(Y | X)] + Var(E[Y | X])

Applying this last lemma to Y = W;(t) and X = N;(t) gives us

Var(W;(t)) = E[Var(W;(t) | Ni(t))] + Var(E[W;(t) | Ni(t)])
= E[N;(t)Var(C;)] + Var(N;(H)E[Cy])
= Var(C;)E[N;(t)] + E[C;]*Var(N;(t))
= Var(Cy)\it + E[C]*\it
(Because N;(t) is a Poisson variable of mean \;)
= MtE[C?]

let u; = NE[Cy], v2 = NE[C?] and Wi(t) = % By noticing that

E[efW:)] = B[V (t)/4/to? le —€tui/A/tv?

The Taylor expansion on €% when ¢ P is well defined as C; is bounded. Then

2
Cié/A/tv?] _ 5 ) f 2 2
Ele |=E[1+ thCZ + QtUZCZ + o(&7)]

7 (2

which leads with Eq. (3.9) to the convergence E[efWi(®)] s &’/ where we

recognize the Laplace transform of a Gaussian variable N'(0,1). Which means
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Figure 3.2: The backlog process of systems with different mean utilization, initialized
with W(0) =>,_ _+C;

el

that lim;_, W ~ &y 2. Taking nt instead of ¢ gives us the result. Finally, we

conclude with (2.12) that gives us n='W;(nt) = t% — wut. Combine those two
n—o0

to get
W) = Wi (0) 2wt + v, B(t)

where B is a standard Brownian motion.

The demand processes Wl(oo), ..., W{*) are independent, thus we get that Wkoo) =

Zf;l W) is the sum of k independent Brownian motions, which is also a Brownian

()

motion. Finally we get that for each ¢ > 0, W (¢) — W (0) ~ Pt 21 O

In [Lehoczky, 1996], the author uses the heavy-traffic approximation providing the
distribution of the lateness of jobs in a system with exponential inter-arrival times.
To illustrate the heavy-traffic approximation, one can think of water continuously

flowing into a sink at a rate A; and the execution times as the rate 1/E[C;] the water
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leaves the sink. It is usually understood as true when the system is at full processor
utilization, because the theorems of heavy-traffic theory are exact when u — 1.
However we use it as a way to build an upper-bound of the backlog process. Indeed,
the heavy-traffic assumption should be seen as a bound, or more specifically, a way
to suppose that the system utilization is at its maximum (7.e., u = 1), providing
upper-bounds that are exact when the processor utilization at 100%. Figure 3.3b

illustrates this upper-bound becoming exact in Figure 3.3c¢ and Figure 3.3d.

In this section, we use the heavy-traffic assumption to find the steady-state
backlog By as an approximation upper-bounding the blocking time of the system
in its steady-state, see Eq. (4.4). The approximation in Theorem 3.5 leads to the
standard Brownian motion which is continuous. It means that instead of looking
at the demand for a large amount of time, we consider a re-scaled version of the

demand in order to build a good approximation. Theorem 3.5 can be written as

W (t) = Wi(0) + gt + v, B(t) (3.10)
where B is a standard Brownian motion, as defined in Eq. (3.1).
In order to find the steady-state backlog 3, we work with the heavy-traffic de-
mand W™.

Proposition 3.2. The rescaled backlog process of level k is defined by

BYV () = W (1) — t + sup (s — W (s))* (3.11)

s€(0,t]

Proof. From its definition in Eq (3.8), we have

5@uw:kmwﬁﬂmﬂ_1f”

1 _ nt ~
n - ]—ﬁk(s)>0d3 + — (Wk(nt) — J 15k(s)>0d8 — (uk — 1)nt)
0

0 Vn

- Wi(nt 1™ Wi(nt) ™
= k(O) + kn) — TLJ lﬁk(5)>0d8 + \/ﬁ < ké ) — ukt) - % lﬁk(5)>0d8 + \/ﬁt
0 0

1 nt 1 nt
—(nt—| 1g-0ds | ——= (nt— | 1s.9—0ds |+ /nt
" (n J; Br(s)=0 3> N (” J; Br(s)=0 S) Vn

@)y —t+ (1+

1 1 nt
%)% L g (s)=0ds (3.12)
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Then let X ((t) = W (t)—t and Y (t) = (1+ L) = {1 15, -0ds. ", X
and Y™ should satisfy (S1) — (S3), thus by applying Lemma 3.2 to X™ wet get
that the pair (3, Y ™) is unique and Y™ () = SUD sep0. (5 — WM (). O

Theorem 3.6. Consider the same hypotheses as Theorem 3.5 and let up, < 1. The
heavy-traffic backlog process 6,&00) = lim,, ﬁlin) is a reflected Brownian motion of

drift ux, — 1 and deviation vy, and

BE(t) = Wi(t) —t + sup (s — W (s)*

s€[0,t]

Proof. We have
B (t) = lim W () —t + lim (14— J
k N—00 k \/* \/>
_ 1 nt
= Wk(oo)(t) —t+ lim J 15k(5):0d8

n—0 \/ﬁ

15, (s)=0ds (From Eq. (3.12))

Finally, let Y'(t) = limp o 2= §' 15, 0—0ds. (87, satisfy (S1) — (S3) from
Lemma 3.2, hence Y (t) = supcp (s — Wkoo)(s))+. Wk(oo) (t) —t,t = 0 being a

Brownian motion of drift u; — 1 and deviation v, we conclude with Definition 3.3.

]

It is shown in [Chen and Yao, 2001, Remark 6.17, p. 148]|, that the error of
the estimation stated in Eq. (3.11) is

s%% 18x(s) — B (s)] = O ((tloglog t)Y*(log t)'?) (3.13)

Proposition 3.3. Consider the same hypotheses as Theorem 3.5, with exponential

inter-arrival times of rates \;,i = 1,... k. Let u, < 1. Consider the parameter
2(1—u
o = 2L T —~ ) (3.14)
Uk

Then, the distribution function ), of the steady-state backlog By, is defined for x > 0
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Figure 3.3: Steady-state backlog simulations with different mean utilizations in the Diaz
and Kim model. In black the histogram of simulations of 3(n)//n for n = 10000, in red
the probability function of 3.

by
() = 1 — exp (—mez) (3.15)

Proof. Apply Theorem 3.2 and Theorem 3.6.

3.3 Periodic backlog

We consider in this section a stationary real-time system (2, P, T, {6,}) following
the >,. D;/ >, G;/1/SP queueing model. In opposition to memoryless scheduling,
periodic systems use knowledge of the past to take scheduling decisions. In the
previous section do not treat the periodic case, although we show in this section

some exisiting results and build heuristics for the periodic case in the next chapter.
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For the case where the tasks of the real-time system I' are periodic and have
deterministic deadlines, i.e., T, = \;' € N and Gy(z) = 1t o) (x) for all 7, e T’
and = > 0, also known as the Diaz and Kim (DK) model [Diaz et al., 2002, Kim
et al., 2005, Diaz et al., 2004], the authors approximate the distribution function
Tk, resolving linear system equations and compute response times distributions

with the help of convolutions.

The fastest computational complexity of convolutions is O(N log N) when N is
the number of values that a probabilistic variable can take. Computing the exact
values of 7 quickly becomes an expensive operation when the number of tasks
or the number of possible execution times gets larger, even with methods that
soften those computations like Markovic et al. [Markovié¢ et al., 2021], Milutinovic
et al. [Milutinovic et al., 2015] or Maxim et al. [Maxim et al., 2012] for example.
Moreover, the computation of response times has the same problem, as the number
of possible values of §; quickly becomes large. With Eq. (3.16) we have an explicit
formula of the distribution of f, with Eq. (3.13) we know the error of the heavy-
traffic approximation, and with Theorem 3.1 we have an analytical expression of

the backlog in the deterministic case.

Indeed, let T; = lem (Afl, cee )\,;1) be the hyper-period of level k of I'. In the
DK model [Diaz et al., 2002, Kim et al., 2005], the authors consider the k-level
backlog B (tTx),t € N, i.e., the remaining demand of level k at the beginning
of the ¢-th hyper-period. Diaz et al. [Diaz et al., 2002] have proven that the
sequence (ﬁk (tTk)) oy 18 a stationary Markov chain when ug < 1. The sequence

(Bk(tfk))teN is defined by Wy(0) = 0 and

B ((t+ 1)Ty) = (Bu(tTy) + Wi(Ty) — Ti,)

for t € N.

Similarly to memorlyess systems, we get the asymptotic backlog as follows.

Proposition 3.4. Let (2, P,I',{0,}) follow a Y, D;/>.. Gi/1/SP stationary queue-
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ing model. Let T, = lem ()\1_1, ey )\,;1) be the hyper-period of level k of T'. Let

N; (ITy)

Wi = Z Z Cij

=1 j=N;((1-1)T})

be the demand of level k released dum’ng the [-th hyperperiod, i.e., the interval
[(1 = 1T, ITx]. Then if iy, < 1 — Sk - the steady-state backlog By, eists, is finite and

is equal to

By, = (SUPZ Wi — nTk;) (3.16)

=1
where xt = max(0,z), c.f., [Baccelli and Brémaud, 2013, Property 2.2.1] and
Theorem 3.3. In addition, there is an infinite number of idle times, c.f., [Baccelli

and Brémaud, 2013, Property 2.2.5].

Proof. First of all, the Example 3.1.3 [Baccelli and Brémaud, 2013] shows that a
stationary point process with priority class jobs is still associated to a point process
of intensity ug. Next, we observe that for periodic systems, the workload released

in the intervals [(I — 1)k, [T}],! € N are ii.d.. Indeed,

k Nz(l k)
Wkl = Z Z Cz]
=1 =N 1) T)
N;i(ITy,) = Ni((1=1)Tk)
() Z Cy (Cij,j =1 areiid.)
i=1 j=1
k Ni(Ty)
@ Z Ci; (N;’s are stationary)
i=1 j=1
@ Wia

Then, in order to use Theorem 3.3 "at hyperperiod level" with the W ; as

execution times and T} as inter-arrival times, we need to check E[W,.] < T;.. We
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have
k -
E[Wg,] = Z E[N:(Ty)|E[C;] (According to Lemma 2.4)
1=1
k
= Z E[|\:(O; + Ti)|]JE[Cy]
=1
Eoq -
< 2(5 + \Ty)E[C] (Because O; is uniform in [0, \; !])
i=1
k _
== 5 + ﬁka
which leads to the condition ﬁ < Ty.. We conclude with Theorem 3.3. O

The representation in Eq. (3.16) is an efficient method to approximate the
stationary distribution 7, of the backlog process ;. Indeed, let us take an integer
n > 0, and generate a sample (W), , independent and identically distributed
sequence with the distribution of W (T k) Eq. (3.16) provides the variable of
distribution 7, found in Diaz et al. [Diaz et al., 2002] and Kim et al. [Kim et al., 2005].
It also means that the variable max;<;<p (Z{Zl (WM - T k)>+ is an approximation
of 3, when n is large enough. This method is not expensive in complexity as it

requires only to build the distribution function of W, (T k) once.

In the periodic case, we are able to find a bound of deadline miss probabilities

of the RM policy with the following.

Proposition 3.5 (Hoeffding DMP for periodic inter-arrival times with Rate
Monotonic). Suppose that jobs of 1; arrive periodically with rate ;. If up < 1

St E[Ci]
and 1/, > Sa then

1—1 2
P(R;™ > 1/\;) < exp (—(_uk))
AR O

where uy, = Zle NE[C] is the mean utilization of level k and v;*** = Zle i —
min

min)2 s the maximum deviation of level k.

C

Proof. Suppose the system is periodic with rate \;. According to [von der Briggen
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et al., 2018, Theorem 6], the Hoeffding inequality applied to a static-priority policy

gives us

t(0,1/As) o (craz — cmin)2 N (¢)

= 7

PRI > 1/ ) < inf exp (—QZk (t — E[Wi(1)])* ) (3.17)
]

t>E[W(t)

where N;(t) = [Ait] is the number of jobs of the task 7; released before ¢ > 0
when all tasks are activated at t = 0, i.e., O; = 0,2 = 1,...,k. According to
Lemma 2.4 we have E[W;(t)] = 23:1 E[N;(t)]E[C;]. Since

1
At <E[N,()] < Mt + 5 (3.18)

and 4, < 1, we have the relation ugt + %Zf;lE[Ci] > E[Wi(t)] = gt

Hence, t > 2%177201] implies ¢t > E[W,(t)]. Suppose 1/\, > % and

te (B0 1)), With Eq. (3.18) we get
(t-—EW:@D* t(1 — ay)?
S0 (e — ENE) T T R (e —

)

(3.19)

Finally the infinimum in Eq. (3.17) is reached for ¢t = 1/);, and we are using
the RM policy, thus we have A\; < A; for j < ¢ since we assume working under the

RM policy, hence we get

k
DR A D (e — )2 < 20" (3.20)
i=1
which gives us the result with Eq. (3.19). O

3.4 Schedulability test

The difference between a non-discarding schedule and a discarding one is significant.

Indeed, the analysis provided in this chapter is agnostic from discarding jobs.
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However, the non-discarding and the discarding schedule of a schedulable task set I'
are the same, because all deadlines are satisfied a schedulable task set. Based on
this fact, the appropriate way to test if there will be discarded jobs in steady-state
is to check if the worst-case blocking time and the steady-state backlogs satisfy

Vi, P <ﬁ~l < Zc}””) >1—c¢
j=1

for a small enough ¢, which means that the discarding policy and the non-discarding

policies are equivalent for all tasks.
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3.5 Potential extensions

3.5.1 Extension to EDF and FIFO

The first step into dynamic scheduling, as for example EDF is to study the backlog
processes considering that the priority is at the job level (in opposition to task
level). Indeed, for static-priority policies, those variables are simply the backlog
and demand of the lowest priority level. However, for EDF, levels of priority need
to be defined not only for tasks but for jobs. In [Diaz et al., 2002], authors use
the concept of ground jobs which are jobs released at an instant where the system
is idle, and as shown in the Loynes theorem, when u < 1, idle times are finite.
This means that an analysis mixing the concept of ground jobs and idle times as
defined in this thesis can provide an extension of our results for dynamic-priority
scheduling. In [Lehoczky, 1996] authors show that if u < 1, 6,(:0) is a reflected
Brownian motion of drift —y and deviation 2 ) ; A\; where 0 < v < 1 is such that for
each n > 0, the utilization of the process (5x(nt)/4/n); can be written 1 — v/4/n,
for the EDF and FIFO policies. This means that even without showing the exact
parameters of the first-passage time distributions, we can assume that response

times belong in the same domain of distribution functions.

3.5.2 Extension to general stationary inter-arrival times

We studied two types of stationary task sets with static priorities: periodic and
memoryless. However, considering renewal processes with other distributions than
exponential for inter-arrival times is challenging. The main reason being that the
superposition of stationary renewal processes are not renewal processes in general
because inter-arrival times of each task become inter-dependent. We present in
this section some theoretical background that could help generalize the results
of this chapter. Let us recall that the stationary renewal process N; counts the
number of jobs of 7; through time, and N = } . N; counts all jobs regardless

of which task those jobs are.



78 3.5. Potential extensions

Palm-Khintchin theorem The first property of renewal processes that could
be use to generalize the results of this chapter is the equivalent of the central

limit theorem for renewal processes.

Theorem 3.7 (Palm-Khintchine). Let Ny,..., N, be n independent renewal pro-
cesses with distinct inter-arrival rates A;. Then the superposition N = 7" | N; is

asymptotically a Poisson process when n — oo, if the following assumptions hold:
(i) >y A <0 whenn — o,
(i) A< LY0 ALY

Then N converges to a Poisson process of inter-arrival rate X\ = Ao, when n — o0.

However this convergence can occur very slowly and might not be suited for
all systems. This property is used in telecommunications and 10T, e.g., [Metzger
et al., 2019], and is the reason why Poisson processes are a widely used and

studied renewal process.

Approximating the superposition with a stationary renewal processes
A result from 2001 [Torab and Kamen, 2001] shows that approximating the
superposition N of renewal processes by supposing that inter-arrival are indeed
independent is possible and that there is a method that can minimize the error of
such hypotheses. What we look for is preserve the stationarity of renewal processes
when they are superposed. One property of renewal processes is that any renewal
process can be modified to be stationary by adding a delay, or as we call it an

offset, with a very specific distribution.

We denote by G}, the distribution function of the first arrival of the superposed
process N. First of all, we know from [Baccelli and Brémaud, 2013, Example

1.4.1, p.35] and [Lawrance, 1973] that

Gk(ﬂj):l—Z)\

=1

S1 - Gil) [ [ - GY(a))dar

k j#i

>~
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where GY(z) = \; §;(1 — Gj(x))dx is the distribution of the offset of 7; as defined
in (2.8). We call GY the distribution of the recurrent time of the process Nj,
and suppose that the superposition is still stationary, hence characterizing the

distribution of this first job arrival is enough to characterize all jobs arrivals.

The intensity used to approximate the distribution of N in [Torab and Kamen,
2001] comes from the recurrent times instead of the inter-arrival times. By remarking

that %Gg = );(1 — Gy), and setting g; = %Gi we get the intensity

1 -G,
e

J

Vi:)\i

instead of y; = %-. Finally, this new intensity is actually shown to minimize

to quadratic error, and is of the form

25 Vi) (a(t) + 20 v5(1))
2 vi(t)

vi(t) =

The mean of the first arrival time is

and by noticing that

SHE

éZiAi(l—G-)n(l—GQ) gi | /\‘1—761]‘
S ' 7\1-6; 271-a9

k J#i J#i

>~

its variance is
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Var(f_lk,l) = f(l’ - mk)Qdék(t)

) ZH (z —m)*(1 = G [ [ - G (1)) ( RN e = ) dt

J#i J#i

which leads to the squared coefficient of variation +2, equal to

x
— —1)*(1-G; 1-GY Aj d
AJ RN ]<x>>( ok 1o GM) .
which would allow to provide an approximation for any stationary task set.
We test the hypotheses that we can actually use this same method in the fol-

lowing chapter.
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Probabilistic methods for the analysis of response times have many applications in
real-time systems [Davis and Cucu-Grosjean, 2019]. Two main directions have been
explored: static methods for the exact computation and approximation of response
time distributions [Diaz et al., 2002, Kim et al., 2005, Maxim and Cucu-Grosjean,
2013, Manolache et al., 2001] a priori, and the measurement-based application of the
EVT method [Liu et al., 2013, Lu et al., 2012] approximating the distribution of the
maximum values of response times a posteriori. Often, probabilities are considered

for execution times and few papers consider probabilistic inter-arrival times and

81
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deadlines [Maxim and Cucu-Grosjean, 2013, Lehoczky, 1996, Gaujal et al., 2020b].
Moreover, the method introduced in [Diaz et al., 2002, Kim et al., 2005] requires a
large amount of convolutions which have a high space and time complexity, and the
analysis provided by Lehoczky [Lehoczky, 1996] is not suited to express response

time distributions of static-priority scheduling.

The contributions of this chapter are based on queueing theory results [Sparaggis
and Towsley, 1994, Huang et al., 2015, Sethuraman and Squillante, 1999, Baccelli
and Brémaud, 2013, Chen and Yao, 2001]. To the best of our knowledge, no result
from the queueing theory is focused on general execution times and inter-arrival
times, multi-class clients (i.e., different tasks) and the quantization of deadline
misses of such systems. The only results based on queueing theory for real-time
systems have been published within the thread of papers related to [Lehoczky, 1996],
where the author approximates the number of simultaneously activated jobs by a
reflected at the origin Brownian motion. There is a proportional relation between
the number of activated jobs and the workload of a system by applying the Little
formula [Baccelli and Brémaud, 2013, Eq. (3.1.16)].

However, the author makes strong hypotheses restricting the model. The
exponential distribution of inter-arrivals and execution times suggested in [Lehoczky,
1996] is a strong hypothesis. Furthermore, his model has another important
limitation as it considers systems of jobs of only one task, which does not allow
a response time analysis. To overcome this limitation, we consider a multi-class
analysis describing tasks with parameters with different distributions. Thus, we
extend the model proposed by [Lehoczky, 1996] and consider a more general case: all

jobs are instances of various independent tasks scheduled with a static-priority policy.
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Figure 4.1: Trajectories of W(®) and average of the first idle time for @ = 0.838 and
x = 4.85.

4.1 Heavy-traffic approximation

In the following, we consider the conditional probability that the system starts

with a level & demand x > 0 and the job 7,
Pi(-) = P(- | Wk(0) = 2,0, = 0)

Whenever we need to suppose Wy (0) = z,0;, = 0, we say that we work under

the probability P7.

As previously defined, response times are idle times. We use this representation
of response times to provide an approximation using the fluid model introduced

in the previous chapter.

Definition 4.1 (Heavy-traffic response time). Let R,(:l) be the first idle time after
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the arrival of the l-th job of the task 7. in the sequence of M/G/1 queues defined in
FEq. (3.8), i.e.,
RY) = inf{t > 0: 8™ (A, + 1) = 0}

The heavy-traffic response time does not take discarding into account, but as
shown in the following, it bounds the response times of each M /G/1 queue of

the rescaled sequence of queueing models.

Lemma 4.1 (Heavy-traffic response time bound). Let (R,Efll))n be the sequence of
response times defined in Definition (4.1). Let (B,(fl))n be the associated sequence of

blocking time processes. Then,

inf{t > 0: B™ (A, + ) = 0} <y RV

Now that we know that the sequence of response times considering the discarding
policy are bounded by the heavy-traffic response time sequence, we look in the
following at the limit of this sequence in order to use the Brownian approximation

introduced in Chapter 3.

4.1.1 First idle time

We study in this section the first idle time of the limit demand process, i.e.,the

first-passage to 0 of a Brownian motion.

Definition 4.2 (Idle time). Let Zy(x) be the first idle time of level k, i.e.,
Ty(x) = inf {t > 0: 87 = o} (4.1)

when the initial demand of level k is equal to x > 0.

Lemma 4.2. The distribution of Ij(z) is an inverse Gaussian distribution with

probability function

Up(t,z) = (t; L_, i—i) >0 (4.2)
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where ¥ is given in Definition 2.12, and exceedence function
Wy(t,7) = P(Tile) > £) = U(a, b G, Ty)

where

U(z, t:u,v) = (—M)t_x) _ 2y <_(1_U“£”) (4.3)

Proof. The idle time Zy(x) defined in Eq. (4.1) is a quantity called first-passage
time of a Brownian motion [Molini et al., 2011, Eq. (28)]. Until the first idle time,
we know that 6,(:0) (t) =+ ka) (t) —t, because 1, (>0 = 1 for 0 < s <t < Zy(x).
Then from Eq. (3.10) we have Zy(z) ~ inf{t > 0:B(t) = t(1 — ux)/vx — x/0x}
where B is a standard Brownian motion. When W;,(0) = x, the distribution of Z ()
is an inverse Gaussian distribution of mean z/(1 — @) and shape z?/v7 according
to Theorem 3.1. See Figure 4.1 and [Jeanblanc et al., 2009, p. 146], for more
details. O

4.1.2 Heavy-traffic time demand analysis

Response times depend on properties of real-time systems such as the scheduling
policy, the preemptiveness, etc.. Our motivation is to exploit those properties leading
response times to the domain of a certain probability distribution. In this section,
the inverse Gaussian distribution is emphasized as the appropriate distribution
for an approximation of response times in the context of static-priority scheduling
policies, using asymptotic results of queueing theory, c.f., Propositions 4.7. We
propose two different approximations, a worst-case approximation before the system
is in its steady-state (c.f., Proposition 4.5, see Definition 3.4) and another one when

the system is steady, c.f., Propositions 3.3 and 4.6.

Let (2,P, T, {6;}) be a stationary real-time system, with I" ordered by decreasing

priority order, i.e., 7; has priority over 7; ;.
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According to Proposition 2.1, the blocking time is such that

By,(t) < min <5k(75)7 Z Ci,Ni(t)> (4.4)

for all t > 0, which makes our TDA build upper-bounds of response times according
to Theorem 2.5. This property is used in Lemma 4.1 to provide a sequence of

pessimistic response time analysis. We now look at the limit of those.

Proposition 4.1. For all x > 0,
P (R,Ejj} > t] B (Ayy) = x> > P(Zi(z) > 1) (4.5)

Proof. We have shown in Theorem 3.6 that 3™ converges in distribution to 3(*),

thus we conclude that conditionnaly to W;(0) = z and Oy, = 0,
Ry =inf{t > 0: 8" () = 0}

converges in distribution to Zy(z). Then from Eq. (4.8), any job 7, has a heavy-
traffic response time distribution that can be expressed from the response time
R

P (R > 1|87 (A = 2) = Pp (R > 1) (4.6)

Let us condition this probability for specific values of execution times. As stated
in Eq. (4.6), the proper conditioning on backlogs provides the distribution of the
response time of 7 ;. Furthermore, when the backlog B,EOO) (Ak;) = x, the response
time R,(gf) is the time it takes for all level k jobs to finish plus the time it takes for
level k to stay idle for x instants in the interval [Ay;, A, + R,]. It means that we
can artificially set the initial demand to x and look at Zy(x), the first idle time of

level k, as represented in Figure 4.2. In other words,

s€[0,t]

p: (R;f;) > t) — P (Sup s — W(s) < 0) —P(Zu(x)> 1) (47)

which is sufficient to conclude. O
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Figure 4.2: Representation of the response time R3 1 as an idle time when Oy = 0,C21 =
y and (31(0) = z, in Example 2.1

Proposition 4.1 provides an analytical expression of this result for the heavy-

traffic response time Réﬁ).

The heavy-traffic demand Wk(oo) is a Brownian motion, hence W,soo) (t+ Agy) —
Wkoo)(Ak’l) @ Wéw)(t) - W,C(OO)(O). Furthermore, Wk(oo) is continuous. Thus we

define the heavy-traffic response time of a job 73, as
LY = inf {t > 0: 7 (Ag) + W) — W (0) = ¢ (4.8)

The Markovian property of Brownian motions allows to approximate the distribution
of any response time Ry, in terms of the backlog ﬁ,ﬁ"o) (Ax,;) and the first response
time R,(ﬁ), thus response times will be conditioned to backlogs and execution times,
and represented as idle times following the inverse Gaussian distribution. In a second
part, we provide an analytical expression of the heavy-traffic WCRT distribution,
and in a third part we do the same for the steady-state heavy-traffic response time
distribution. Finally, we explain how to simulate heavy-traffic response times of

a task 7, from the distribution functions Fj, and Gy.

4.1.3 Conditioning response times

In this section we use the Markovian property of stationary renewal processes and

Brownian motions in order to characterize the distribution of R,(:l)).
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From Eq. (4.8) and Proposition 4.1 we establish a necessary condition of the

feasibility of I

Proposition 4.2. A non-stable stationary real-time system with implicit deadlines

is not feasible under a static-priority scheduling policy.

Proof. Let 1, € " be such that u; > 1. The Loynes theorem 3.1 states that there is a
finite number of idle times of level k, which implies with Eq. (4.8) that heavy-traffic
response times get infinite at some point, i.e..for all ¢t > 0, P (R,(g;) > t) =1 for an
infinite number of jobs. In other words, there is no permitted failure rate oy € (0, 1)
such that 73 is schedulable as defined in Eq. (2.21). As we consider a static-priority
scheduling policy, then the lowest level backlog is larger than all k-level backlogs
Bi(t) at any time ¢ > 0. O

Remark. The probabilistic approach has some subtleties that need to be emphasized.
Proposition 4.2 is a strong result. However, one can be tempted to build a counter
example showing that with a mean utilization greater than 1, there are actually
some jobs that are schedulable. The fact that jobs are discarded when they miss
their deadline is confusing for the probabilistic approach, as some could say that if
we discard, then we go back to a backlog equal to zero, hence the analysis restarts
again just like any other jobs. This is wrong. In order to understand better what we
mean here, we should consider the system without job discarding. Then the good

translation of Proposition 4.2 is as follow:

There is a strictly positive probability that only a finite number of
jobs satisfy their deadlines if there is no discarding policy. While this
probability exists, the system is not feasible.

Now if we see schedulability as the measure of how far the discarding system is from
the non discarding system as proposed in Section 3.4, we see that the probability
Py < X5, ™) is 0 when the mean utilization is greater than 1, because B = o0

in that case.

In the rest of this thesis, the central quantity is the DMP of a task. We have

seen that the backlog process is the main process to look at in our model for an
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end-to-end analysis. Conditioning response times to their associated backlog is

the natural step in our analysis. We define

pi(z) = P¥ (R,(jj) > Dk) (4.9)

as the DMP of 7, conditioned to an initial demand z > 0.

1—ug

N2
Proposition 4.3. Let up, <1, 0 < v, < 0 and v = ( Uk > . Then

< 1+ 2)\k")/k — 1)
pele) =1 —exp

V(1 — uy) (4.10)

is the DMP of any job of 1. released with an initial demand of level k equal to x.

Proof. We have

pr(z) =P ( sup ¢ — W\ P(t) < x) (with (4.7))
tG(O,Tk)

_ f P(Zy.(z) > t)dGy(t)

- fxyk (t, ) Ape Midt
Since uy < 1 for all x > 0, we have

lim U,,(t, z) = P? <R,(j§) - oo> —0 (4.11)

t—00

Furthermore, since 1 — e~ = 0 when t = 0, we get by integration by parts that

J\I/k (t, l’) )\k;e_)\ktdt = thr& \Ijk_l(lf, $><1 _ e—Akt)_\Ijk(O’ x)(l . e—AkXO)

+ ka (t,x) (1 — e M")dt

because $W,(t,2) = —1,(¢,z). Finally since vy, (¢, ) dt = 1 because ¢ (-, z) is a
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probability function for all x > 0, we get

pr(z) =1— f@/}k (t,z) e wtdt

where we recognize the Laplace transform of Zy(x), i.e.,

L(s) = Elexp (—sZy(x))] = Ji/)k (t,z) e dt

we conclude by developing this Laplace transform of an inverse Gaussian distribution

of mean § = == and shape § = %2
k
5 2
L(s) = exp [—5 (q/l + 23% — 1)]
we conclude with s = \. O

In Sections 4.1.4 and 4.1.5, we prove that the proper initialization of the system

puts the system in two specific cases: the worst-case and the steady-state.

4.1.4 Worst-case response time

Before the system reaches its steady-state, we say it is transient. In that case we
cannot provide the exact distribution of the backlog in an analytical formulation.
However, we can bound it by using the worst-case blocking time. We define
the WCRT of the task 7; as the heavy-traffic response time jof) initialized with

the worst-case blocking time.

In the following we approximate the WCRT R}*** by the heavy-traffic WCRT

Ao

Proposition 4.4. If u, < 1, for alll € N we have

i=1

k
inf{t > 0: By(Ap,) + W (1) = W*N0) < t} <o Ti <Z c;’m) (4.12)
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Proof. First, let us consider u; < 1, as stated in Theorem 3.1 the backlog process
converges to B which is finite. Jobs are discarded if they miss their deadlines, and
as we consider implicit deadlines, there can be at most one job per task activated
simultaneously. Indeed, at any instant and for any task 74, By (t) < Zle c®  This
leads into considering a job 74; with blocking time By(Ay;) = Zf;l ' as the

maximum backlog of level k, c.f., Eq. (4.4), and use the property stated in Eq. (4.6)

with an initial demand W;(0) = ¢***. According to Theorem 2.6, the solution of

inf{t >0: ﬁk(Ak,l) + Wk(t> - Wk<0) < t}
is more pessimistic. Hence we set R} as defined in (4.12) as the WCRT of 7.

When u;, = 1, idle times of level k£ may or may not be finite, thus we cannot
conclude anything on the distribution of response times, i.e., P(31 : fx(Ax,;) = 0) >

0.

When u; > 1, the largest response time does not come from the synchronous
activation and is in fact co. As we have already demonstrated in the proof of
Proposition 4.2, response times of the task 7, increase to oo, due to the absence of
idle times of level k. Then we conclude that the heavy-traffic WCRT is co. In this

case, a full example is detailed in [Chen et al., 2022].

We set the heavy-traffic WCRT as the heavy-traffic response time with a backlog

equal to Zf:_ll c"*. Hence we get the approximation
PRy > 1) ~ Hy"*(t)

that we develop in the following proposition.

Proposition 4.5. Let 7, € ', uy, < 1 and let Uy, be as defined in (4.3). The
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exceedence function of the heavy-traffic WCRT of 1y, is
i=1

HIMo(t) = 0, (t, kiqm) (4.13)

Proof. From Proposition 4.4 we know that when u; < 1, the heavy-traffic WCRT

of i, e I'is R,(ﬁ) under sz’l with by, = Zf;ll cnaz, O

N2
Corollary 4.1. Let 7, € I, 1 = (13%;@) and suppose u < 1. The worst-case
DMP of T, is

k
A/ 1+ 2)\ka —1
pmax =1— exp | — C;nax I 414
Proof. Direct consequence of p;*** = py (Zle c?"””) and Proposition 4.5. O

4.1.5 Steady-state response time

Let us denote the conditional probability that the distribution of the initial demand
W (0) is the probability du and the first job released is 71,

PL() = P(- | Wi(0) ~ du, Oy, = 0) = fPaz(-)du(m

The backlog process of level k being stationary and with a stationary distribution

Tk, in the steady-state Eq. (4.6) becomes
P+ (R,(j;’ > t) — P} (R,Sj‘;) > t) (4.15)

for any [ € N. Then if it holds for any [ € N, it holds for the all response
times after the convergence of the backlog process. This is why in the steady-
state, the distribution of heavy-traffic response times is unique. Consider the

steady-state response time

Ry = inf {t >0 F + WP(t) = t} (4.16)
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As in Section 4.1.4, we get the distribution function of steady-state response

times.

Proposition 4.6. Let 7, € I', 4, < 1, Hy be the exceedence function of the steady-
state response time of 1, and let np be as defined in Proposition 3.3 and ¥y as

defined in (4.3). Then for all t > 0,

0
H(t) = ka Uy(t, x)e” ™ dx
0

Proof. We know from Proposition 3.3 that the steady-state level (k — 1) backlog
distribution is m;_;. We know from Proposition 4.1 that the stead-state response
time Ry, is the first idle time with an initial demand of f;. Finally by definition of
conditional probabilities we have Hy(t) = { Wy, (¢, 2) dmi(2), and drm(2) = npe " *dz.

O

N2
Corollary 4.2. Let 7, € I', vy = (13’;%) and suppose ur < 1. The steady-state
DMP of 1, is

-1
=1 <1+ ”HQA’”‘“I) (4.17)

Pr = 2%

Proof. 1t is a direct consequence of Proposition 4.6 and

P = E[pr(Br)]

=1-E [eXp <—Bkm; 1)]

(with (4.10))

By being an exponential variable of parameter 7, we conclude by identifying the

Laplace transform of a exponential variable,

L(s) = Elexp (—s/)] = (1 " S) _1

Nk

Then with s = V2l

) and vne(1 — uy) = 205, we get the result. O
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4.2 Simulations

In Proposition 4.1 we prove that response times Rj; can be simulated from a sample
of idle times of level k — 1, a sample of execution times and the proper initialization

backlog sample, the steady-case or the worst-case.

The procedure is as follows:

k max

o Generate a backlog b equal to > | ¢

i1 ' (resp. with the distribution function

Wk):

o Generate the response time Ry = Z}.

See Figure 4.2 and Figure 4.3a.

Proposition 4.7. The distribution function of Ry is H"** (resp. Hy).

Proof. We can see that by construction Eq. (4.13) and Eq. (4.6) come from
conditional probabilities. The representation in Proposition 4.1 indicates that
the distribution of response times is conditioned by the values of the backlog and

the execution time. O

4.3 Stability

The first idle time is also a probabilistic variable, but we can build an instant
tiaie(, ) such that for any ¢ > 0 and all ¢ > t;4.(e, x), the probability that the
first idle time of the lowest priority level is greater than ¢ is less than €. We call
first e-idle time the instant t;4.(c, x) from which we can guarantee the system is
steady with probability 1 — ¢ and initial backlog x > 0. We know that 5,(;0) is a
reflected Brownian motion reflected. This means that until it reaches zero, i.e., an
idle time, it is a simple Brownian motion. In fact, between two consecutive idle
times the backlog process has the same dynamic. Thus, we define the stability

of a real-time system according to its response times.
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Definition 4.3 (Stability). A real-time system is said steady when its response times
are stationary, i.e., there exists a sequence of exceedence functions Hy,, ..., Hyy,

repeating indefinitely for any task 1, € .

The following proposition bounds with a given probability the first idle time
and the instant the system gets stable.

Proposition 4.8. Letn = |I'|, e € (0,1) and x = 0. If u, < 1, the system of initial

demand x is stable with probability at least 1 — € at the instant

q1—e + \/Q%E +4 (%::m) T

tidle(gax) = 5 (1711 )

Un

2

(4.18)

where q1_. = ®71(1 — €) is the (1 — €)-quantile of a standard normal distribution.

Proof. First of all, between two idle times of the same level, say Z and Z’, the
backlog processes 6}(:0)7 k =1,...,n make excursions between passages to 0, 7.e., idle
times. As it is a reflected Brownian motion, those excursions between idle times are
i.i.d., since the distribution only depends on the intial value, which is 0 at each idle
time. Furthermore, there is a finite number of possible jobs realed in the interval
[Z,Z']. Hence, a finite number of reponse time distributions that repeat on every
excursion. According to Definition 4.3, this makes the system stable when the
backlog of each priority level reaches 0. According to static priority scheduling,
Zy(z) < -+ < Z,(z) where Z,(z) represents the first idle time of the lowest priority
level initialized with a demand W(*)(0) = x. Hence, after the instant Z,(z), all
tasks have response times distributions that repeat according to the excursions of
the backlog of their associated priority level. Let us now bound the probability that
the idle time Z,(x) exceeds a given value ¢ > 0. Note that

P(Z,(x) >t) =P7 ( inf]ﬂfloo)(s) > O)

se[0,t

=P ( sup s — W\?)(s) < 0) (According to Theorem 3.6)

n
s€[0,t]
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According to Theorem 3.5, W(*) is a Brownian motion of drift %, and deviation
¥, there exists a standard Brownian motion B such that W () () — W/(®)(0) =

Unt + v, B(t). Hence

P(Z.,(z)>t) =P (i%%(l —Up)s — U, B(s) < a:> (4.19)
<P(B(t) >t1;“" —;>

Note that this inequality is also found in [Markovic et al., 2022]. Let us define
tigie (g, ) such that

Un, tidle (57 IL')

| & ((1 — Up ) tige (g, ) — x) <

which implies that for ¢ > t;4.(, z) we should have
t>at+ 01— e)v,Vt + vz (4.20)

see Figure 4.4. This is a second order polynomial equation, which admits no solution
when 4 > 1, and, when @ < 1 and € € (0, 1), the smallest solution of Eq. (4.20) is

Eq. (4.18). O

Remark. Two important remarks:

(i) When u < 1, the excursions of the processes (5,‘;”)@ + Zi(x))),t > 0 between
two passages at 0 are the longest excursions possible. Indeed, the trajectories
of Brownian motions are continuous, which means that, with a intermediate
value theorem argument, an excursion between two passages on x is necessarily

smaller than the excursion of the same trajectory between passages through O .

(ii) To go deeper into the theory of excursions, Ito proves [It6, 1972] that the

sequences of idle times also forms a Poisson point process in certain conditions.
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Note that for all x > 0, lim._,o t;ge(e, x) = 0, lim._,; t;g.(e,z) = 0, and

o U, <1 = tige(e,r) < w0,

* Uy = 1l = tidle(gaw) = 0,
o U, >1 = tige(e, ) is not defined.

Remark. We provide the analysis for the lowest priority level, but in fact each

priority level has its own first e-idle time.

Finally we consider the mazimum first e-idle time t3(¢) by considering a

synchronous activation, i.e., W,,(0) = >, ¢/"**. See Proposition 4.4 for a more

detailed explanation. The maximum first e-idle time is then

idie (€) = tidie <€7 Z C?”) (4.21)

T,el’

We can now say that, with a level of confidence ¢, that the system is steady

at time 77" (¢) in the worst-case.

4.4 Experimental results

The purpose of this section is to illustrate that the response times generated from
Proposition 4.7 provide a good approximation, by comparing distribution functions
of simulations and its associated EVT estimation, and generated heavy-traffic
response times distributions. Closer are the curves, better is the estimation. Those
results are not exhaustive and are an illustration, we do not cover in this work the
sensitivity of the model for different values of u. We use the data generated by SimSo
to apply EVT on response times (using the Scipy framework! on Python). Finally
we compare our results with SimSo simulations and EVT estimations. Without

loss of generality the periods are deterministic in these simulations.

lhttps://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gereme.html
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In order to illustrate the stability described in this thesis, we use the task set I'
provided in Table 3.1. The level 2 maximum utilization is smaller than 1, hence
backlogs of level 2 converge quickly to 0, see Figure 3.3a. The level 3 maximum
utilization is greater than 1 and the level 3 mean utilization is smaller than 1.
Thus, 73 is the task of interest, see Figure 3.2b and Figure 3.3b. The level 4 mean
utilization is close to 1, hence Figure 3.2c and Figure 3.3c illustrate the behavior of
backlogs when the utilization approaches its phase transition. The level 5 mean
utilization is greater than 1, which illustrates the ezplosion (infinite response times)

of the system, see Figure 3.2d and Figure 3.3d.

In Figure 3.2 we observe that the demand W (¢) follows the line ut + x (its mean).
In Figure 3.2 and 3.3 we see what happens when the system mean utilization is
smaller, close and greater than 1 : for smaller values of u the system stays with zero
backlog at some point, see Figure 3.2b, but for values greater than 1 the system
explodes, see Figure 3.2d and 3.3d. In Figure 3.2c¢ and 3.3c we see that even for
u close to 1, the system always admits finite idle times. Most importantly, we
see in Figure 3.2b and 3.3b that when u < 1 and «™* > 1, the analysis holds

and provides quantifiable response times.

In Figure 4.4, we see to what corresponds idle times and e-idle times graphically.
In Figure 4.1 the average idle time corresponds to the point where the line ¢ and
ut + = meet, and the distribution of the idle times correspond to the frequency

the demand process meets the line ¢ for each instant t > 0.

Finally, in Figure 4.3a, we can see the simulations presented in Section 4.2 and a
comparison with response times simulated via SimSo [Chéramy et al., 2014]. The two
ground truth samples are the two subsets SimSo-transient and SimSo-steady, which
are composed respectively of simulated response time released before and after the

mazx max

maximum e-idle time /3" (¢) = 154 where ¢ = 107%. The maximum idle time /% ()

is computed via Monte-Carlo approximations with the representation in Eq. (4.21).

The EVT estimation (green curve) from these SimSo simulations and the steady-
state and WCRT's suggested in this thesis are compared via their distribution

functions in Figure 4.3b. In this case, where u is not too close to 1 and u™**
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greater than 1, we can see that the Worst-case response times, the EV'T estimation
and the steady-state response times are greater (in the stochastic sense [Diaz
et al., 2004]) than the true response times simulated with SimSo. The heavy-
traffic Worst-case response time seems to be an upper-bound in practice, and the

Steady-state response time is quite accurate.

Closer is the Steady-state to the SimSo-steady curve, more accurate the ap-
proximation is. We can see a big difference between the Worst-case curve and the
Steady-state curve. However the proposed analysis does not permit to quantify

analytically this difference.

4.5 Conclusion

We have seen that real-time systems can reach steadiness over a finite and quantifi-
able amount of time, and that a necessary condition to assure this stability is that
the mean utilization is lower than 1. In practice, systems with a mean utilization
u > 0.9 have many deadline misses, which requires from system designers to
quantify deadline miss probabilities carefully by using the distributions of response

times provided in this chapter.

No schedulability tests considering the steadiness of response times exist. This
is a natural step in our opinion for the use of the analysis provided in this work.
For example, the approach we have presented in this chapter is well suited for an
application of a Monte-Carlo response time analysis [Bozhko et al., 2021] which

has recently been proven efficient.

We have expressed the probability function of response times in a specific family
of distributions and provided a method to generate them. However, the distribution
functions of execution time are usually unknown. The methods built in this chapter
could be used in empirical and measurement-based methods, for example using

clustering methods [Friebe et al., 2020, Zagalo et al., 2020].

Yet these deadline miss probabilities depend on the Brownian approximation
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which converges slowly. A next step in this analysis woul