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Introduction

Global containerized logistics had been growing every year along the ten year of 2010-

2019 due to market demand with the increased rate of 1.6% to 7.7% per year. Even in

2019, the growth rate was dropped for 3.1% lower than in 2018, the container usage

achieved 811 million TEUs of containers (twenty-foot equivalent unit). Nonetheless,

in 2020 and 2021 the coronavirus pandemic influenced several changes of global

consumption pattern in the whole supply chain including the maritime containerized

logistics. These changes show an example of uncertainty in the demand of logistics

operation. In addition, there are various more kinds of uncertainty such as machine

breakdown, dependency to partners’ operation and others unexpected events during

the logistics operation. Its effect has further influenced to the adjacent or downstream

operations including the container port. Among members of global supply chain,

container port is the point interchanging containers among several transportation

accesses e.g. trucks, trains, local barges, marine vessels and etc. Port is the point

receiving uncertainty from various external parties while it is also the point that has

potential to subsidize uncertainty in order to remain the logistics plan of containers.

The port operation is complex. The port system is connected by resource sharing

interdependently bonding the three container flows. When a resource proceeds a

container, the others containers in the same flow or in the connected flow have

to wait. When the resource is held, performance of the connected container flows

1



Introduction

are impacted. Specifically, the period that the port is influenced by disturbance or

uncertainty impact of both internal or external, performance of the container logistics

on the port can become vague due to the interdependency of operation. Due to the

complexity of the operational system, this study is then explored into the planning of

port resources to specify the critical point for monitoring the existence of uncertainty

in the port operational system.

Illustrated in the Figure 1.3, Bierwirth, Meisel proposed the flow of port resource

management, three areas of a port are divided as seaside, yard and hinterland for

resource management. The model defines the flow of operation planning in each port

area under the limitation scoped by the physical layout, location and equipment at

the strategic level. This implies differences of physical operation on each particu-

lar port such as route direction, container travelling distance and time. While, the

operation planning of each particular port is generally in the same/similar sequence

and dependence of procedure as defined in the model.

Uncertainty and resilience to changes has become a highlight in the industry per-

ception [116]. Global supply chain consists of various kinds of risk events such as

currency, transit time variability, accuracy of forecasts, dependency and etc. An

interesting of these risk events is that they are linked to each other in complex pat-

terns. For example, an error forecasting over an operation lead time causes a lost

and the management tends to overreact in the next plan resulting over consuming of

resources. Transportation transit time and prediction accuracy are in the top consi-

derations of risks among global supply chain managers due to the high variability of

operation lead time[69].

It is ambiguous to specify all factors relating the operation lead time, especially at

the port. Vessel liners believe that 90% of their schedule unreliability sources is the

unexpected waiting time and productivity at the port [81]. On the other hands, the

vessel liners have influences to the variability of turnaround time as well. Port is the

2



central spot switching containers among transportation modes on both seaside and

hinterland side and it interfaces to various logistics service operators. Each operator

has different perspective in keeping the schedule, some is oriented to the reliability

while some is more resilience to delay. Therefore, not only the containers that the

port has to handle with these operators but also uncertainty factors that made

the actual operation cannot be performed as planned. In addition to the external

uncertainties, inside the port itself, the operational uncertainty is also the case that

the port has to handle.

Threat and uncertainty exist in the supply chain. The global supply chain network

consists of various factors causing uncertainties. In the internationalization trading,

the exchange rate, competition and trading barriers are the major factors causing

uncertainties to demand, product pricing, costs and lead times. For the factors such

as natural disasters and terrorist attacks cause uncertainties to the operation capabi-

lity. The other factors such as health crises can influence the capability of operation

workforce as well. In addition, the operation itself, unexpected events/disturbances

can be exploded.

As well as the port, its challenge is to handle various of uncertainty factors which

are random in occurrence.

In 2020, the coronavirus pandemic (COVID-19) brought several changes affecting

maritime transport globally. Economic tensions drove the trade pattern to alterna-

tive markets and suppliers away from China e.g. South-East Asian countries. Then,

flows of the container volume were changed as consequence to the changes in de-

mand, as well as the vessel capacity managed by vessel liners[116]. In addition, ports

are directly impacted by the pandemic in the change of procedure that additional

operation policies for the COVID-19 outbreak were applied costing more operation

time [107]. Last, UK’s ports were attacked by severe weather [106]. Both the pande-

mic and the additional factors of congestion such as adverse weather and industrial

3



Introduction

action(strikes) contribute congestion to port operation directly and indirectly during

the pandemic period [35].

As a result of these threats, several UK’s ports were suspended. Later, they faced to

several operational difficulties which are high demand to process container volume,

shortage of haulage, 140-minute average truck turnaround time and etc. [106]. After

the situation had passed for a month, the status reports of the port showed decli-

ning of the traffic but the actual service time of vessels are still deviated from the

estimated time to arrival (ETA) and the estimated time to departure (ETD) even

the ETA-ETDs were rescheduled for a few times.

The proposed approaches in literature integrate only some parts of uncertainties.

Current knowledge of uncertainty that is used for the estimation of berth allocation

models is limited in the level of statistics at a particular point of port operation, not

involved with port interdependency. Meanwhile, uncertainty is not occurred to be

stabilized in one operation. Uncertainty magnitude is changed during a passing of

time and through the containers travelling in the chain of port operation. Therefore,

in order to quantify how much the uncertainties impacting the chain of port opera-

tion, the knowledge of uncertainty in dynamic changes impacting to each operation

of the port should be captured.

Due to the limitation of existing data to obtain information about uncertainty and it

is lacked of knowledge about operational uncertainty, we propose the global frame-

work based on digital twin of the port operation to model the virtual port operation.

The digital twin has a main purpose of port replicating to integrate uncertainty into

the operational data for later to construct the knowledge base of operational un-

certainty for supporting port manager’s decision. The framework consist of 3 main

stages to conduct the proposed approach. First, the Port Component Extraction

defines components for constructing the victual port operation based on the real-

world port. Second, the Microscopic Simulation builds the virtual operation based

4



on the extracted components. The operation is simulated with uncertainty. Last,

the Macroscopic Prediction receives the simulation output as the dataset for pre-

diction modelling. Linkages among port operations and uncertainty are explored to

construct as the knowledge base to predict port operation states.

Organization of the thesis

This thesis consists of 5 chapters. After a general introduction the rest of the content

organized as follows :

— Chapter 1 : description of the industrial context of this study, the maritime

port operations and resource management ; the industrial and scientific issues

are highlighted (uncertainty, data traceability, knowledge limitation, decision

toward uncertainty...) and the main research questions are defined.

— Chapter 2 : State of the Art. This chapter discusses the review methodology

that is related mainly to the knowledge for dealing with operational uncer-

tainty, traceability data in supply chains, digital twin and prediction models.

The advantages and limitations of some approaches are highlighted in this

chapter to introduce and justify our contributions.

— Chapter 3 : Methodology. This chapter discusses the proposed conceptual

framework. This framework defines the Digital Twin of the port and consists

on three main stages : port component extraction, microscopic simulation and

macroscopic prediction. The different steps of the modelling of the digital twin

is detailed in this chapter, and some validation scenarios are presented.

— Chapter 4 : Microscopic Simulation. This chapter discusses the proposed in-

frastructure and the simulation model used in the Digital Twin of the port.

The port operations are described and the uncertainty factors detailed. The

simulation model is calibrated based on these factors and validate using real

data. The results of the simulation are discussed at the end of the chapter.

5
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— Chapter 5 : Macroscopic prediction. This chapter presents the prediction mo-

del based on a Recurrent Neural Network (RNN) algorithm and the Long

Short-Term Memory (LSTM) architecture that we developed. Two experi-

mentation related to ... are described and the results are discussed.

— Chapter 6 : Conclusion and Perspective. This chapter summarizes the thesis

and research contributions. It highlights the challenges of this research, which

can be considered in the future to improve the findings.
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Chapitre 1

Context and Research Problem

1.1 Industrial contexts

Global containerized logistics had been growing every year along the ten year of 2010-

2019 due to market demand with the increased rate of 1.6% to 7.7% per year. Even in

2019, the growth rate was dropped for 3.1% lower than in 2018, the container usage

achieved 811 million TEUs of containers (twenty-foot equivalent unit). Nonetheless,

in 2020 and 2021 the coronavirus pandemic influenced several changes of global

consumption pattern in the whole supply chain including the maritime containerized

logistics. These changes show an example of uncertainty in the demand of logistics

operation. In addition, there are various more kinds of uncertainty such as machine

breakdown, dependency to partners’ operation and others unexpected events during

the logistics operation. Its effect has further influenced to the adjacent or downstream

operations including the container port. Among members of global supply chain,

container port is the point interchanging containers among several transportation

accesses e.g. trucks, trains, local barges, marine vessels and etc. Port is the point
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receiving uncertainty from various external parties while it is also the point that has

chances to subsidize uncertainty in order to remain the logistics plan of containers.

1.1.1 Maritime port operation

Container port is a part of global supply chain servicing as a connector point on

the logistics network. The logistics of containerized commodities via the maritime

involves three major logistics service providers ; vessel liner, container port and hin-

terland transportation. The logistics of container should be conducted based on the

arranged schedules committed by the shipper and every logistics service providers

along its travel route. As illustrated in 1.1, the logistics starts from the Point-of-

Origin(POO) ; the factory transports containers by the hinterland transportation

such as truck, train or barge to the Port-of-Loading (POL). At the POL, contai-

ners are loaded to the vessel liners according to the agreement on the bill of lading

(BoL) specifying the travelling route and schedule from the Port-of-Loading (POL)

to the Port-of-Transshipment (POT) and finally to the Port-of-Destination (POD).

At the Port-of-Transshipment, containers are unloaded from one vessel for transi-

ting to another vessel. Once they are reached to the Port-of-Destination, hinterland

transportation picks them to their destination on the land.

Figure 1.1 – Actors in maritime containerized logistics

The major role of container port is to transfer commodities among transportation

modes based on the pre-arranged schedule of transportation. When an unexpected

event occurred relating to the schedule such as the delay of a vessel, the port has

potential ability offering an adjustment on the configurations of port resources to
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accelerate/decelerate as a reactivity to the circumstance. Ultimately, the schedule of

upcoming vessels are maintained as planned without negative effect. However, due

to the interdependency of container flows within the port, an adjustment to a part

of port operations potentially effects the others parts of port operation.

Operation flows and interdependency

Container port logistics transfers both import, export and transshipment containers

between seaside and hinterland accesses in bidirectional flow using the same set of

port resources consisting of berth space, quay cranes, internal trucks, yard cranes,

reach stackers and yard storage space. Container is the microscopic element per-

forming port operation activities to achieve its logistics purpose. On each operation

activity, a container requires port resource(s) for a moving or storing activity. Figure

1.2 illustrates three connecting flows of containers in the chain of port operations as

follows :

Figure 1.2 – Flows of containers on port operation

1. Vessel-Berth loading/unloading : on vessel arrival (a marine vessel or

local barge), berth space, a number of quay cranes and a number of internal

truck are allocated. The vessel stowage plan provides the list of container

sequences for loading/unloading at the specific position on the vessel. Quay
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cranes are scheduled according to the stowage plan to transfer containers

onto/from internal trucks.

2. Berth-Yard transferring : internal trucks transfer containers between the

quay crane (Qcrane in the Figure 1.2) and the yard crane/stacker (Ycranes in

the Figure 1.2). At the transferring points that carrier resources are switched,

the container and the resource have to wait for each other. In addition, The

yard crane processes the container at the specific point in the yard stack. The

reshuffling of containers may be required and caused additional operation

time.

3. Yard-Hinterland pickup/discharging : external truck or train comes into

the port through the hinterland gate to pick up/discharge the container. Once

the external truck arrived the yard, it waits the yard crane/ stacker to transfer

the container to/from the specific point in the yard stack. The reshuffling of

containers may be required and caused additional operation time.

The port operation is complex. The port system is connected by resource sharing

interdependently bonding the three container flows. When a resource proceeds a

container, the others containers in the same flow or in the connected flow have

to wait. When the resource is held, performance of the connected container flows

are impacted. Specifically, the period that the port is influenced by disturbance or

uncertainty impact of both internal or external, performance of the container logistics

on the port can become vague due to the interdependency of operation. Due to the

complexity of the operational system, this study is then explored into the planning of

port resources to specify the critical point for monitoring the existence of uncertainty

in the port operational system.
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1.1.2 Maritime port resource management

Illustrated in the Figure 1.3, Bierwirth, Meisel proposed the flow of port resource

management, three areas of a port are divided as seaside, yard and hinterland for

resource management. The model defines the flow of operation planning in each port

area under the limitation scoped by the physical layout, location and equipment at

the strategic level. This implies differences of physical operation on each particu-

lar port such as route direction, container travelling distance and time. While, the

operation planning of each particular port is generally in the same/similar sequence

and dependence of procedure as defined in the model.

For the container service operation, the port plans the demand of container logistics

service receiving from the seaside and the hinterland. Berth on the seaside and

hinterland access gate are the first resource planned to handle container accesses

from the external of the port. Then, the other port resources such as quay crane,

yard crane and internal transportation are planned corresponding to the sequence

of port operation flow.

Figure 1.3 – Flow of port resource management, [9]
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On the seaside, before a vessel visit, the vessel liner usually informs the weekly

schedule to the port about three to seven days in advance for the first initial berth

allocation. During the time, there can be changes in the visit time or number of

containers, however, the vessel has to confirm its arrival information at least 24 hours

before the visit. The information includes the estimated of vessel arrival time(ETA)

, the estimated of vessel departure time(ETD), number of containers and others

vessel trip and container information. The port then considers the circumstance of

berth and quay crane availability and agreements made to vessel liners to confirm

the plan of berthing position and schedule.

On the hinterland side, external transportation such as the external truck and train

accessing to drop off or pickup containers. The accessing of transportation from

the hinterland side is related to the traffic of local road transportation. There are

two general approaches for hinterland access management ; transportation access

by schedule using reservation system or by stochastic arrival (no schedule). By the

reservation, the information regarding the container pickup/drop off is submitted in

advanced. The transportation can access the port at the appointed time, however,

there are cases that the transportation does not arrive at the appointed time. For

the stochastic arrival, the port services the arrival as first-come first-served (FCFS)

basis. There are queues for documentation process, for the yard entrances and for

the yard equipment to deliver operation service. The reservation approach offers

resource utilization for the port while the FCFS handles containers in stochastic

and the arrival of demand for port resources is uncertain.

In the yard, the port yard has to service container demands from both the seaside

and the hinterland side by managing a limit set of internal yard transportation and

yard cranes. Between the two sides, demand from the seaside is in a higher priority

for holding port resources. Vessel liners are direct customers of the port. The port

has a contractual agreement to the vessel liner in the service level e.g. the average
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of container throughput (transferring rate for loading/unloading containers to the

vessel). In addition, the volume of containers from a vessel is usually in a higher

number comparing to containers from the hinterland side at a time. The port has

to perform the operation as committed, otherwise, a penalty charge will be applied.

Therefore, among the set of sharing resources, planning of resources on the yard is

based on the priority of transportation. The lower priority transportation or even the

maintenance of equipment has to queue up, however, a long time of transportation

queuing can accumulate traffic inside the port and also the local road around the

port.

Among resource managements in the port operation flow (Figure 1.3), the berth

allocation is the critical point. It is the first operation on the port handling a large

volume of container from the seaside which is in a higher priority in holding resources.

A change to the berth allocation such as the time window of vessel visit, the others

resources in the management flow are in a risk of loosing balance of the operation

performance as defined in the original plan. For example, on an uncertain event such

as the delay of vessel, it directly impacts the starting time of berthing, however,

remaining the ETD as the original plan is desired as the best case scenario. So, the

vessel can continue its travelling to the next port as the vessel schedule. At the port

operation, it might require an accelerating of operation. As a consequence, resources

on the seaside through the yard operations are in priority to service the vessel. This

can further impact to the land gate operation, especially the reservation system of

the external truck visit.

In the other cases that the original ETD cannot be kept, the ETD must be extended

and this leads to a question : How much time that the vessel ETD will be

extended ? The answer of this question is used for further decision in the reacti-

vity to the plans that are impacted by the ETD extension such as the incoming

vessel berthing plans and port resource planning. However, the estimation of ETD
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extension can be difficult due to the complexity of the port operation system with

dependencies and combinations of various kinds of operation uncertainty.

1.2 Industrial issues

Uncertainty and resilience to changes has become a highlight in the industry per-

ception [116]. Global supply chain consists of various kinds of risk events such as

currency, transit time variability, accuracy of forecasts, dependency and etc. An

interesting of these risk events is that they are linked to each other in complex pat-

terns. For example, an error forecasting over an operation lead time causes a lost

and the management tends to overreact in the next plan resulting over consuming of

resources. Transportation transit time and prediction accuracy are in the top consi-

derations of risks among global supply chain managers due to the high variability of

operation lead time[69].

It is ambiguous to specify all factors relating the operation lead time, especially at

the port. Vessel liners believe that 90% of their schedule unreliability sources is the

unexpected waiting time and productivity at the port [81]. On the other hands, the

vessel liners have influences to the variability of turnaround time as well. Port is the

central spot switching containers among transportation modes on both seaside and

hinterland side and it interfaces to various logistics service operators. Each operator

has different perspective in keeping the schedule, some is oriented to the reliability

while some is more resilience to delay. Therefore, not only the containers that the

port has to handle with these operators but also uncertainty factors that made

the actual operation cannot be performed as planned. In addition to the external

uncertainties, inside the port itself, the operational uncertainty is also the case that

the port has to handle.
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1.2.1 Port uncertainties

Threat and uncertainty exist in the supply chain. The global supply chain network

consists of various factors causing uncertainties. In the internationalization trading,

the exchange rate, competition and trading barriers are the major factors causing

uncertainties to demand, product pricing, costs and lead times. For the factors such

as natural disasters and terrorist attacks cause uncertainties to the operation capabi-

lity. The other factors such as health crises can influence the capability of operation

workforce as well. In addition, the operation itself, unexpected events/disturbances

can be exploded.

As well as the port, its challenge is to handle various of uncertainty factors which

are random in occurrence. Consider the relationship of global uncertainty factors,

operational uncertainty and the port operation as illustrated in the Figure 1.4,

Figure 1.4 – Uncertainties and their impacts to the port operation
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— Inner ring : represents uncertainty factors at the level of global event or port

strategic/policy. These factors can cause operational uncertainties shown in

the outer ring.

— Outer ring : represents operational uncertainty occurred in the chain of lo-

gistics. At the port viewpoint, an uncertainty factors can cause operational

uncertainties in both the external uncertainty and the internal uncertainty.

For example, on days with severe weather, vessels are delayed accumulating

a long queue and few land trucks pickups the containers out of the port

resulting a high volume of import containers in the yard.

- The external uncertainty are uncertainty that occurs outside of the port

such as in vessels and trucks.

- The internal uncertainty are uncertainty that directly occurs inside of the

port such as uncertainty in the practice of port operation, uncertainty in the

number of containers holding on the port and uncertainty in the availability

of port facilities.

— The flow of port operation : on an occurrence of uncertainty factors and

operational uncertainties in logistics, the port has to hold these uncertainties

in its operations.

- The external uncertainty mostly involves the uncertain in the demand for

the port service ; the time and the amount container arrival. This kind of

uncertainty arrives to the port operation via transportation access channels ;

seaside and hinterland side. Uncertainty via the vessel is such as the vessel

arrival is different from the plan. Uncertainty via the external truck is such

as the pattern of truck arrival is different from the normal situation.

- The internal uncertainty is a more complicate in dependency involving seve-

ral elements of port operation ; number of containers, availability of resources

and operation practice. A different configuration of these three elements re-

sults a variability of port operation, especially the yard shuffling. For example,
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the higher number of containers on the stack leads to a longer time to shuffle

containers and retrieve the expected container.

Several of uncertainties and uncertainty factors can be exploded at the same time.

Their impacts can disrupt the port infrastructure and the operation performance.

The impacts can be remained/increased/decreased in the port operation for a during

of time. The combination of these uncertainties accrues a more complex to estimate

how much the uncertainties impact to the operation at a time.

1.2.2 Impact of uncertainties to the port operation

Researches in port resilience measured causes-effect of threats/uncertainty factors

and assessed how these impacted to the port in the dimension of resilience capa-

city. Hossain et al. [40] assessed the cause-effect of tornado to the resilience of port

capacity integrating with capacity enhanced factors such as maintenance, cyber in-

frastructure, additional equipment, and etc. They quantified resilience capacity in

absorptive, adaptive and restorative using Bayesian in order to suggest leading fac-

tors that potentially improve port flexibility in case of the tornado. Russell et al.

[90] examined uncertainty factors around port areas ; seaside access, yard platform,

hinterland access and port system-wide. They classified levels of capacity that im-

pacted to each uncertainty factors as static asset, adjustable operation or logistics

partner interaction. They proposed strategies to improve flexibility in the fluctuation

of container capacity, for example, committing contract agreements with shipping

partners, applying digitalization to obtain transparency in logistics platform and

extending infrastructure. These studies show that uncertainty factors and container

capacity have a significant relation to the port operational uncertainty. However,

these studies focused only on particular uncertainties. Further, the approaches in
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quantifying and to handling uncertainty are in the strategic level while the manage-

ment of uncertainty in the level of port operational system is rarely derived.

For researches that study in the port operational level with an interest in uncertainty,

the studies somehow specifically focus on particular parts of port operation such how

uncertainty impacts to the operation. Table 1.1 shows the summarized of the port

operation in various functions based on the literature. Port operation performance

is the major concern of these studies in uncertainties and their impact. For example,

in the berth allocation and quay crane (QC) assignment, several studies consider

the punctual of vessel arrival time since the vessel arrival affects the port in the

actual start time for vessel berthing [125]. In addition, the variation of berthing

time window can be affected by the traffic of internal truck operation [125], the

container volume on the port [137] and/or weather condition [61]. In reverse, the

internal trucks are affected by uncertainties in the queues of quay cranes and the

yard cranes (YC) [42]. Further, the YCs are impacted by uncertainties from the

stochastic arrivals of external trucks and from the variation of stowage planning

quality [133].

As a summarize for the handling of port uncertainty based on the literature, uncer-

tainty factors are studied to quantify port resilience capacity which are measured

on particular factors in the strategic level. For the studies in operational level, un-

certainties are measured on the impact to the operation performance, nevertheless,

only some uncertainties are studied at a particular part of port operations. While

the operation in the field consists of various types of uncertainties potentially affect

through the chain of logistics including the port operations. Therefore, the quan-

tified linkage of uncertainty impact from uncertainty factors to the port operation

performance currently seems to be limited.
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Table 1.1 – Port operations with uncertainties and their impacts

Port operation Uncertainty Impact

Tugboat - vessel arrival time shifting of others
operations- handling time

Berth and QC - vessel arrival time shifting of others
operations- handling time

- container volume
- internal truck

Internal truck - QC long queue extending operation time
- YC long queue

Storage space and YC - ex-truck arrival extra YC moves
- container sequence
- container volume
- container weight
- info of stowage

Intermodal - land gate arrival punctuality of
transportation

uncertain task for
YC

Intermodal - waterway deep-sea vessel arrival and
departure time

barge scheduling
and congestion

1.2.3 Knowledge limitation

Ports require to manage various kinds of unforeseen uncertainties to level up their

performance to the position of competitive excellence. Regarding the question noti-

ced in 1.1.2 that how much of the magnitude that uncertainties impact to the port

operations. In particular, the case of berth allocation which seems to be complicated

to quantify due to the number of uncertainty factors is enormous (some is unknown

or not possible to know). Moreover, the linkage between uncertainty factors to the

performance of port operation is ambiguous. Therefore, during the period of uncer-

tain circumstance, the estimation of the vessel berth time in the actual operation

can be difficult due to the lacking of knowledge of uncertain situation around the

port.
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In 2020, the coronavirus pandemic (COVID-19) brought several changes affecting

maritime transport globally. Economic tensions drove the trade pattern to alterna-

tive markets and suppliers away from China e.g. South-East Asian countries. Then,

flows of the container volume were changed as consequence to changes in demand,

as well as the vessel capacity managed by vessel liners[116]. In addition, ports are

directly impacted by the pandemic in the change of procedure that additional ope-

ration policies for the COVID-19 outbreak were applied costing more operation time

[107]. Last, UK’s ports were attacked by severe weather [106]. Both the pandemic

and the additional factors of congestion such as adverse weather and industrial ac-

tion(strikes) contribute congestion to port operation directly and indirectly during

the pandemic period [35].

As a result of these threats, several UK’s ports were suspended. Later, they faced to

several operational difficulties which are high demand to process container volume,

shortage of haulage, 140-minute average truck turnaround time and etc. [106]. After

the situation had passed for a month, the status reports of the port showed decli-

ning of the traffic but the actual service time of vessels are still deviated from the

estimated time to arrival (ETA) and the estimated time to departure (ETD) even

the ETA-ETDs were rescheduled for a few times.

A port in Southampton also affected from the occurred events as stated. The port

area is almost 1 square kilometers with 1.92 kilometers of deepwater quay and 17

super-post-Panamax quay cranes which are the largest modern type of crane. Even

the port is a most productive container port in UK, the port still had a difficulty

in estimating the ETA-ETD during the uncertain situation. As shown in the Figure

1.5, on Jan 12, 2021 at 14 :00, APL RAFFLES was estimated to depart on Jan

13, 2021 at 19 :30 but the estimation of ETD was delayed for 7 hours 40 minutes.

Even the vessel was already in berthing for about one day but the ETD could not

be certain due to the port congestion. So, we implied that the port was lacked of
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information/knowledge to estimate an accurate operation time during the congestion

circumstance. In addition, the situation combined with several uncertainty factors

which are unusual and the port operators might not have been experienced before.

Figure 1.5 – Effect of uncertainty to the berth allocation of vessels

Once an unexpected event has destructed the original plan, a new reactivity plan

is then expected. As the example shown in the Figure 1.5, the incoming vessels

were rescheduled with a longer wait for berthing. However, the reactivity should

be estimated based on a more recent information to gain more accuracy since the

berth allocation is the first port operation which has influenced to the planning

of the others port resources, the incoming vessels and the others transportation.

Therefore, the berth allocation planning (ETA-ETD) using updated information

based on the knowledge of port operation with uncertainty impact seems to be an

essential function supporting decisions in the planning of port resources.
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1.3 Scientific problem

From the above of this chapter, we discuss the contexts and issues of the port

operation in the industrial point of view. The following, viewpoints in scientific

are explored and presented in the relationship between uncertainties and the port,

current approaches for handling uncertainties and the research problem. Finally, the

research questions for this thesis are presented.

1.3.1 Uncertainties in container port

1.3.1.1 Uncertainties in maritime logistics

In the 1.2.1, various kinds of uncertainties and uncertainty factors are presented.

In the empirical literature, a number of uncertainties are studied in the maritime

container logistics as shown in the table 1.2. The table illustrates the list of un-

certainties involved with scientific issues in the maritime logistics. Information in

the table is acquired by a systematic literature review from the main bibliography

sources such Scopus and Web of Science. The data set is acquired by three group of

search terms : 1) container, 2) logistics, supply chain, multimodal or intermodal, 3)

uncertainty or delay. The search results 157 journal articles. Then, we review articles

to filter the final list of 99 articles including the studies that handle uncertainties

in the global containerized logistics. The excluded articles are such as uncertainty

studies in the other activity of supply chain (e.g. manufacturing, packing, warehou-

sing), in the other sector of logistics (e.g. logistics in general, logistics in the local

area, humanitarian logistics), and etc. The final result set ranges from the year 2001

to 2019.
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Table 1.2 – Issues of maritime logistics related to uncertainties studied in the
empirical researches

Each literature is then classified in two dimensional table by the actor viewpoint

and the managerial level of the scientific issue. The first dimension of actor view-

point separates stakeholders involving in the issue including 1)Global Chain, 2)Ship

Liner, 3)Port : Fundamental and 4)Port : Intermodal. The second dimension is the

managerial level of the issue that the literature is focusing on including strategical,

tactical or operational. In each boundary area of table 1.2 presents the number of

literature studied in the area, the list of interested issues and the list of uncertainties

involved in the issue.

1. Global Chain - This research set focuses on the global viewpoint considering

consider the overall performance and risks in the logistics network. The re-

search result can supports decisions of various stakeholders in the logistics

chain/network e.g. shipper/consignee, ship liner, port, government, etc. They

can consider the vulnerability, capacity traffic and risks of the chain/network.

About 71.4% of this research set supports the strategical decision and 28.6%
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evaluates operational risks in global logistics. There are no studies on the

tactical level due to there is no owner that manages problems at the chain

level.

(a) Issues at the strategical level : The problems majorly concerns in the

change of network stability as follows :

— Network vulnerability : influenced by severe threats such as economic

pressure, terrorism, natural disasters, security and safety of the route.

The studies only assess the impact of these uncertainties influencing

to the network, however, the treatment or improvement of resilience

depends on individual logistics agent.

— Network capacity flow : due to the uncertainty of demand, the change

of capacity results the container traffic that can influence the service

capabilities and competitive advantage of both transport carriers and

port [38, 54, 105]. For the shippers, traffic is analysed to identify the

potential changes in the flow such as disruptions, security, the trans-

ferring between each logistics agents [48].

(b) Issues at the tactical level : Not available due to no managerial ownership

in a global issue.

(c) Issues at the operational level : The uncertainty during the operation in

global view is identified to analyse the impact in time, cost and security.

For example, Arıkan et al. [6] analysed impact of transportation lead-time

variability to economic and environmental performance.

2. Ship Liner - the carrier who has to deliver demand of containers to ports

by the schedule. Profit and cost of Ship Liner are based on economies of

scale. Change of market and demand uncertainty is the major uncertainties

influencing its decisions on both strategical and tactical. About 28.6% of Ship

Liner research set supports strategic decisions in routing and pricing, 61.9%
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manages the demand of container capacity with the optimized vessel space

and 9.5% studies in the delay of the vessel operation.

(a) Issues at the strategical level : For carriers to develop shipping network,

pricing scheme and future investment, the market and logistics demand are

estimated to get the optimal economic advantage [52, 83]. Furthermore, in

order to maximize the profit, the others factors causing addition cost are

considered to prevent/control on the selected routing such as port choice

selection [132], port perturbation [1] and fuel cost [49].

(b) Issues at the tactical level : The demand uncertainty is also the main

influence to the planning of ship liners. In order to maximize the profit,

the demand capacity and the ship space should be in equal. Therefore,

the planning of ship size, a sequence of sail timing on the route, allocation

of container space on the ship (both full and empty container), and etc.

include the demand uncertainty into the planning model [22–24, 60, 123].

(c) Issues at the operational level : Shippers expect the shipping liner to

maintain the schedule reliability. Base on the result set of this study, Only

two researches study in the delay of the vessel, predicting the probability

of vessel delay [91, 109].

3. Port : fundamental - the port who fundamentally operates the container trans-

ferring between the port and vessels by considering the schedule of vessel is

the major priority. Demand uncertainty also influences to the port similarly

to the ship liner and together with the stochastic arrival of transportation.

Even with several kinds of uncertainties, port requires to deliver the contai-

ner transferring speed as contracted with the ship liners. Therefore, a major

challenge for the port is the operation time under various uncertainties.

(a) Issues at the strategical level : Coping with the capacity uncertainty to

improve stability for port service as follows :
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— Port competitiveness and connectivity : a port with stable processing

time and network connectivity for cargo distribution can attract ship-

per/ship liners. In order to improve its competitiveness, the assessment

of container flow proposed to handle with the uncertainty of congestion

and demand [28, 112].

— Port infrastructure : port service can be interrupted by the change of

climate, water level, demand. These uncertainties are considered in the

port infrastructure to improve flexibility of port service [98, 114, 131].

— Port resilience : hazardous and emergency events can harm port secu-

rity and cause disruption to the port. Safety policy and transportation

network proposed to reduce the vulnerability [15, 108].

(b) Issues at the tactical level : As mentioned that port operation time is

a significant index, therefore, the planning of the port involves the port

resource management synchronizing to meet the service level agreement.

The problems are such as berth allocation [26, 58, 117], crane scheduling

[2], container yard storage planning [74, 130]. These operations handles

with stochastic arrival of containers and reducing delay either from the

vessel or from the hinterland transportation [26, 72, 76].

(c) Issues at the operational level : Port operation is analysed to identify risk

and impact such as the lateness of container [103], the closure of port-of-

entry [59] and machine breakdown [70]. The impact results mainly in time

dimension.

4. Port : intermodal connectivity - the port who extends its functions to control

the flow of containers for various kinds of scheduled/non-scheduled transpor-

tation such as truck, train or airplane. This logistics role is the most interest

area in handling uncertainty. Quality of connectivity, transit time and cost

are priorities.

(a) Issues at the strategical level
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— Port competitiveness : researches analyse the risk in the quality of

connection to hinterland e.g. port throughput, travel time and cost

[27, 36, 99].

— Port infrastructure : the infrastructure models propose to cope with

congestion, transshipment time/delay, capacity expansion, etc. [7, 97,

111].

— Network flow : uncertainty in traffic congestion, disruption and transit

time are analysed to improve the hinterland network flow [8, 71, 86].

— Tracking policy : technology such as RFID proposes the visibility to

shipment delay and unexpected events in terminal operation [5, 16, 77].

(b) Issues at the tactical level : Concerning in the uncertainty of delay in

transferring, several studies propose models for the transferring under

the uncertainty of time and capacity, to allocate resources(staff, facilities,

inter-terminal transportation) [21, 68, 135, 136], to allocate transportation

slot [45, 65, 102, 120], to allocate space in real-time [25, 87] or to plan the

container move based on traffic flow [41, 101, 128].

(c) Issues at the operational level : The operation of container flow propose to

analyse flow timing [3, 57, 110], the delay and missing of transshipment[18],

port operation handling time [53, 67] in order to understand the time

constraint and minimize transfer time/delay.

Considering the number of studied literature, the trend increases from the upstream

actors to the downstream actors. The lowest is in the global chain viewpoint at 14

studies and the highest is in the port :intermodal viewpoint at 37 studies. Among

actors in the chain, from the global shippers to the port, the port is more interesting

for the further study into the problem according to the number of impact as reflected.

Further exploration into the list of issues and uncertainties, the uncertainty of the

upstream actor can cause the issue of the downstream actor at a higher managerial
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level. For example, delay time and stochastic arrival are uncertainties of the ship

liner at the operational level, however, these uncertainties becomes the causes of

uncertainty in planning the port resources at the tactical level. Furthermore, these

uncertainties in the operation time extend their impacts to the port intermodal

connectivity at the strategical level. The quality of connection, traffic flow and delay

become the major focus to improve the port strategy, however, uncertainty is a

major cause of these strategic index which occurs in the operational level. In the

other words, in order to improve the connectivity of the port, uncertainties should

be monitored and detected at the very early stage. Therefore, the port is the point

of interest to handle uncertainties occurred in the operation of maritime logistics.

1.3.1.2 Uncertainties in port operational functions

Further study into the current approaches how ports handle operational uncertain-

ties, it is rarely found the literature that includes operational uncertainty through

the chain of port operation even if there are some studies concerning in the operation

dependency. Table 1.3 shows the list of port decisions for resources management that

involves with the operational uncertainties.

At the berth, the planning of berth and quay crane are the core resource facility of

this area. The berth allocation plans the time window for vessels coming to the berth

for container loading/unloading. On the allocation decision, some works consider an

individual resource type separately ; the planning of berth[55, 118, 126] and the

planning of quay cranes [2]. Some solutions combines the berth together with other

resources in the consideration regarding that the performance of the berth has a

relationship with these resources ; with quay crane assignment [37, 64, 94] and with

yard allocation [66]. With a forethought of uncertainty the decisions include the

uncertainty in vessel arrival [37, 55, 66, 118, 126], the uncertainty of quay crane
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Table 1.3 – Area of information supporting port operational decisions

productivity [2, 64, 94] and the uncertainty of operational travelling distance between

the berth and the yard [66].

At the yard, there are two areas of decision for yard functions ; the first is the

container travelling route to/around the yard and the second is the container storage

space. Yard congestion and operational interdependency with interruptions from

external trucks are major concerns in these areas.

For the yard traffic, studies decide on the travelling distance between the vessel

and the yard by considering the yard template in order to minimizing the travelling

cost/time and the congestion [46, 47, 138, 139]. Some studies considers the flow

containers in between port operations. Niu et al. [79] manages uncertainty in the

operational interdependency by minimizing total delay for all schedule jobs of quay
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crane, yard crane and truck. Cavone et al. [13] optimizes container transferring speed

with the maximized container flow and minimized residual fluid container.

For the yard storage, yard crane is the main resource to stack/retrieve containers

at the allocated stack position. Several kinds of tasks hold the usage of yard crane ;

1) to service containers from vessels, 2) to service containers from hinterland truck,

3) to reshuffle containers preparing for fast retrieval while the crane is idle from the

service calling and 4) to maintain the yard crane.

— Servicing containers from vessels and hinterland trucks - container liners are

customers of the port. Motor vessel is usually in priority to hold resources for

container transferring within the vessel handling time. However, hinterland

trucks waiting for yard crane service can increase traffic in the yard. Moreo-

ver, vessel arrival can be delayed and truck arrival is generally stochastic.

Lin, Chiang [62] proposes to minimize the potential number of yard crane

movements by integrating tasks of the vessel handling with the possibility of

tasks of container retrieval for hinterland truck.

— Yard Reshuffling - containers are reshuffle on stacks to organize sequences for

the vessel loading, however, vessel can be delay or information of container

sequences is uncertain. Gharehgozli et al. [32] proposes to include the proba-

bility of vessel delay to the reshuffling algorithm. Le, Knust [56] minimizes

the number of used stacks for containers with unsure information. Covic [19]

includes the appointment of hinterland truck into the sequencing of reshuffle

function in order to reduce the number of shuffle moves.

— Yard crane maintenance - this task is in a lower priority comparing to the

others tasks of crane. The maintenance schedule is frequently shifted due

to uncertainties. Lacking of maintenance can lead to a problem during the

operation.
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At the Hinterland entrance gate, the gate is the checkpoint registering the external

transportation. Generally, the hinterland transportation arrives the port in random

as a stochastic service. Several studies proposes the queuing system or the appoint-

ment system to manage the arrivals. Chen, Jiang [14] proposes the truck scheduling

by time windows with the consideration of vessel arrival time. [55] points to mi-

nimizing the waiting time of the transportation. Roy et al. [89] uses truck queue

to control the flow of traffic from the external which minimizes the external truck

turnaround time in the port.

From decision functions along the chain of port operation described above, uncer-

tainty is scattered in every part of port functions. Uncertainty of each operation

section is handled separately. Several studies integrate multiple objectives into an

optimization for scheduling/allocation solution but not all tasks are integrated. In

addition, scheduling/allocation tasks of port resources are interdependent to each

others. Therefore, solutions currently proposed in the literature mostly focus on the

optimization of a particular task with particular uncertainty types. However, due to

the operation interdependence, optimizing a task may induce additional uncertainty

in the others task. Then, for considering the operational uncertainties on the port

in another systematic viewpoint, we proposes the classification of uncertainty types

in the following section.

1.3.1.3 Types of uncertainties in containerized logistics operation

At the operational level, in order to estimate the impact of uncertainty factor, cur-

rently the estimation considers only some kinds of uncertainty as shown in the table

1.3. However, measuring and considering the impact of all kinds of operational un-

certainties that are effecting the port operations is not rarely found in the literature.

Therefore, this study classifies types of port operational uncertainty based on the
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flow of relationship among uncertainty factors, operational uncertainty and port

operation functions as described in the section 1.2.1, in the Figure 1.4 and above

in this section 1.3.1. Three types of operational uncertainties in the containerized

logistics operation are as follows :

1. Uncertainty in demand : includes any possible changes of container capa-

city from the external to be serviced by the port, specifically the uncertain

to the number of container arriving/departing the port and their arrival/de-

parture time. This type of uncertainty effects the capacity load of containers,

balance of network flow and competitiveness of all logistics agent. It affects

the strategy of logistics agent to acquire the capacity load to gain profit from

the market. Then, it affects the tactical planning to allocate adequate facili-

ties for the logistics.

2. Uncertainty in resource availability : considers the change in the capabi-

lity of port facilities performing the operation, e.g. breakdown, in maintenance

and etc. This effects the rate of container throughput serviced by the facility.

3. Uncertainty in operation interdependency : includes any situation cir-

cumstance effecting the cooperation of several facilities in the port operation

network. An uncertain effecting an operation can spread its impact to the

others operations. This type of uncertainty occurs in daily stochastic during

the operation resulting an uncertain to the operation performance in meeting

the planned time and cost.

Instead of estimating each uncertainty factor one-by-one, this classification aims to

measure the impact of all uncertainty factors flowing at the operational level in the

port network. Generally in the operation, container throughput (number of procee-

ded container per a time unit ) is measured as an index of operation performance and

uncertainty is carried with the containers as an effect in the time unit. Therefore, the
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impact of uncertainties and the operation performance are reflecting in each other.

Uncertainty in demand represents uncertainty travelling with containers from the

external into the port operation. Uncertainty in resource availability represents the

capability rate of port facilities that process the container flow. Uncertainty in ope-

ration interdependency represents the transferring of performance and uncertainty

between the link of a couple of operations. These three types of uncertainties are

also connected in the container operation flow, therefore, measuring the operation

performance at the point of interest on the port reflects the performance calculated

based on all uncertainties influencing the port under the consideration of these three

uncertainty types.

An example map of port operations as shown in the Figure 1.6 presents the relations

of the three types of uncertainty. The dashed arrows represent the uncertainty in

demand from the external of port system. Uncertainty in demand enters into the

port through the container entrance channels such as vessels, the hinterland gates

and etc. Inside the port system, several port operation functions perform to transfer

containers from one to one another. The operation function requires resources for

container transferring, however, performance of each operation is depended on un-

certainty in resource availability as presented in the dashed circles. In addition, the

transferring of containers between each two operations is interdependence which is

represented in the dashed line of uncertainty in operation interdependency. These

three types of uncertainties are interconnected and influenced to one another. Thus,

the more complex of relationships, the more occurring of experiences and knowledge

to solve for supporting decisions. Further, the knowledge of relations among these

uncertainties is rarely found to be explored or to be measured in numerical.
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2. Time - the supply chain concerns the planning of warehouse, production and

time to market so the arrival time of material, parts or product effects to

the plan and value of the product. The estimated time of arrival (ETA) and

the estimated time of departure (ETD) are specified in every sector of supply

chain planning. Controlling the operation time as in the plan is efficient, not

to cause an extra cost.

3. Sustainability - every operation consumes fuel and emits pollution. This

raises the chance of higher cost in the future. Minimizing the emission in the

production is an approach for reducing the cost.

4. Robustness in delay - this criteria applies a configuration to the solution

preventing the chance of delay to impact the production. For example, a

buffer time is added in addition to the operation lead time. Then, the plan

of operation is minimized in chance and in the impact from delay.

5. Robustness in goods quality - this criteria applies to minimize the risk

that can damage goods and its value.

These criteria normally are a drawback to each other. Specifically, the case of hand-

ling delay by the robustness, the additional of buffer time can reduce chance of

penalty cost caused by a delay once in a while. However, it increases an addition

lead time in a regular basis which produces zero productivity. Moreover, in case that

the delay reaches over the buffer time, a reactivity to the impact of delay is necessary

to take into consideration.

The 2nd strategy – Reactivity

To enhance the drawback of the first strategy, this strategy aims to improve the

operation performance by minimizing the impact caused by uncertainty. On an event

occurs, the following procedure is conducted.
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1. Detection - a notification of event occurrence should be detected. Data/in-

formation signaling to the event should be observed and monitored.

2. Diagnosis - the root cause of the event should be diagnosis as information for

supporting the reactivity decision.

3. Prediction - the impact of event to the plan/operation should be specified in

order to make a decision on the reactivity planning precisely.

4. Reactivity - a decision is made to choose a reactivity that minimizes the

disruption impact.

1.3.2.1 The case of berth allocation with uncertainty

Berth allocation models also make decisions in the uncertainty handling in two

approaches. First, the proactive planning is planned ahead of the actual berthing.

The planning approaches are such as rolling-time horizon and robust buffer time

which are used to reduce/prevent the chance that the operation has to confront to an

uncertain circumstance. The rolling-time horizon plans the regular berth allocation

for vessels in a short period of time e.g. weekly under the basis that the shorter of

time the more certain of information [137]. The robust buffering allocates extra time

window in addition to the vessel handling time as a buffer. In case that the berthing

requires more time due to uncertainty, the delay is then not interfere plan of the

next vessel berthing [44].

Second, the reactive planning is conducted after an incident has disrupted the origi-

nal plan. For example, on the vessel arrival delay, Xiang et al. proposes an approach

searching the re-planning solution that minimizes the total impact of changes of all

effected vessels in delay time and recovery cost comparing to the baseline. However,

the information supporting the reactivity decision seems to be insufficient in the

36



knowledge about uncertainty. Tool for observing uncertainty from the recent opera-

tion is also limit. Therefore, the information about uncertainty type and its impact

is hardly assessed. Reactive planning currently uses the static set of data from the

historical statistic which is not compliance with the nature of dynamic uncertainty.

A determination set of uncertainty parameters such as vessel arrival time, handling

time of loading/unloading containers and/or the other specific uncertainty are com-

monly used in berth allocation models. The others unspecified uncertainty which

may also impact the berthing operation are not included in the planning models.

In several models, these uncertainty parameters are left as independent inputs assu-

ming that the information is precisely known in advance. The port operators have to

estimate based on their existing information and experiences in the situation which

may be erupted from others new factors. Some other models use the probability dis-

tribution as input parameter based on the past data which is static in range while

the magnitude of uncertainty can be evolved by the time and may exceed the range

of the static set. These uncertainty sets can be effective for the planning of regular

daily operation. However, in an abnormal situation such as the congestion which is

unknown in dynamic of uncertainties, it can be difficult to estimate the operation

performance purposely to support decisions on planning.

Few studies addressing the use of dynamic characteristics of uncertainty in the berth

allocation model. For the parameter of vessel arrival, [134] predicts uncertainty from

data mining to learn the ship arrival based on dynamic tracking of vessel AIS data.

For the vessel handling time is still limited in data range. [117] used a finite set of

dynamic model which has not yet reflected the actual operation situation. [12] uses

the actual states of vessel arrival and operational status concerning uncertainty in

the operational constraints but the collected dataset is still limit in a range of time.

In addition, as mentioned in the section 1.1.2 , each port operations cooperates
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in interdependency procedure and the trace of uncertainties are connected in the

operational performing.

The estimation of handling time is limit, [117] used a finite set of dynamic model

which has not yet reflected the actual operation situation. [12] uses the actual states

of vessel arrival and operational status concerning uncertainty in the operational

constraints but the collected dataset is still limit in a range of time. In addition,

as mentioned in the section 1.3.1.2, the port operation functions cooperate and

are interdependency. The trace of uncertainties are connected in the operational

performing.

The proposed approaches in literature integrate only some parts of uncertainties.

Given numbers of uncertainties presented above, it is difficult to develop a model

integrating all these uncertainties. Moreover, not all uncertainties are directly ob-

servable (e.g. human error) and therefore very difficult to model.

The incapacity to apply the current planning is the barriers to trigger event for the

reactivity. Our goal is to predict this incapacity as early as possible.

The usage of knowledge experiences to support the situation prediction is useful,

especially in a complex relationships of uncertainty impacts and port operation

functions. However, most literature are introduced just the statistics as the tools

to estimate uncertainties but have no linkage to apply knowledge (information) nor

considering in an overall impact to the system.

To conclude, the port decision toward operational uncertainty such the case of berth

allocation seems to be limited in knowledge about uncertainty for estimating the si-

tuation. Port managers consider the scenario individually based on their reasoning,

experience and received information. Literature researches propose the use of statis-

tics in uncertainties, however, the uncertainty statistics are measured at a specific

point which is represented as one uncertainty source. Meanwhile, uncertainties are
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from various sources and influence to the chain of operations. The usage of know-

ledge experiences to support the situation prediction is useful, especially in a complex

relationships of uncertainty impacts and port operation functions. However, most

literature are introduced just the statistics as the tools to estimate uncertainties but

have no linkage to apply knowledge (information) nor considering in an overall im-

pact to the system. Therefore, this study is interested in extracting knowledge from

activities of port operation functions for predicting situation based on the changes

of uncertainties.

1.3.3 Research questions

Based on the context and issues described in the Chapter 1 , the main research

question and sub-questions are as follows :

Main Question : How to predict the port operation performance under

uncertainty by integrating the knowledge base ?

Current knowledge of uncertainty used for the port operation planning is such as

the statistics of vessel delay time. Knowledge of uncertainty is collected as one kind

of operational uncertainty. Moreover, the distribution statistics is a static finite set

of historical data used as a representative of uncertainty in a future time while the

uncertainty can be changed. Last, the interdependency of operations is not included

to the port planning model, therefore, the linkage between knowledge of uncertainty

and the port operation is not explored.

To answer the main question, the following sub-questions are considered in the source

of knowledge, the process and the tool construct the knowledge :

Sub-question 1 : Which data to be collected from the physical port to support the

prediction of port operation performance ?
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This sub-question is for considering the source of knowledge which is eligible to sup-

port the prediction of port operation situation ; by considering in the variability and

nature of uncertainties, the interdependency of port operations and the availability

of data and information in the physical port system.

Sub-question 2 : How to acquire the data with operational uncertainty to support

the prediction of port operation performance ?

In the real-world operation in a period of time, the operation might face to a number

of uncertainties. However, sources of uncertainties tends to be unknown. The data

collection collected from the physical port is limit in terms of uncertainty variability

cases. Therefore, this sub-question specifies the approach for collecting data with

various kinds of operational uncertainty to construct the knowledge base.

Sub-question 3 : What is the appropriate tool for learning the data collection with

uncertainty to predict the operation performance ?

In order to construct the knowledge base for predicting the port operation perfor-

mance, this sub-question considers the tool for learning the collected data which

contains behavior of the port operation and operational uncertainties for transfor-

ming data and constructing the knowledge base for prediction.

1.3.4 Conclusion

By the maritime industry, UNCTAD highlights uncertainty and resilience to changes

in year 2020 due to its impact linked to the global network in complex pattern. Port

is a global network unit with high variability of uncertainty factors. Port challenge is

to handle various random kinds of uncertainty. Operation is changed by unknown of

uncertainty magnitude, by the taken reactivity and by operation interdependency,

so it is ambiguous to specify relationships between the operation lead time and
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impact influenced from all uncertainty. In addition, the uncertainty magnitude and

the operation lead time are changed overtime.

By the scientific literature, two structural literature reviews are conducted illustra-

ting that kinds of uncertainty are exploded and transferred through the chain of

maritime logistics, container carriers and port operational functions. They are in-

terrelated and uncertainty results in the performance of port operation functions.

However, researches study in the scope of particular port operation functions. Some

researches study in the scope of particular uncertainty sources. While the operation

in the field consists of various kinds of uncertainty affecting through the flows of

port operations. The quantitative relationships between uncertainty and the opera-

tion lead time are, therefore, limited.

The case of UK port congestion during the pandemic period in 2020 shows diffi-

culties in estimating the operation lead time caused by uncertainty. Dealing with

various uncertainties e.g. vessel traffic, container volume, haulage shortage and etc.,

the estimation of vessel lead time such as the ETAs and ETDs were recurrently

scheduled. According to the issue and limitations in literature as described, it seems

that the information and knowledge for supporting the estimation is limited.

The ability in estimation of port operation lead time to support decisions in port

resource management is critical, especially the berth allocation. The ETA and ETD

should be estimated at an accuracy, otherwise, the planning of the others resources

in the operation flows requires updates in accordance to the changes of ETA and

ETD. So, we are interested to use the knowledge of port operation with uncertainty

to support the reactivity decision for berth allocation as the case study.

Acquiring knowledge of port operation under uncertainty to construct a knowledge

base for later supporting the decisions of port operation is the key of this research

to solve described issue. Therefore, this research aims to answer the main question
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of ’How to predict the port operation status under uncertainty by integrating the

knowledge base ?’ with three sub-questions to support the answering of the main

question :

1. Which data to be collected from the port to support the prediction of port

operation performance ?

2. How to integrate uncertainty into the operational data to support the pre-

diction of port operation performance ?

3. What is the appropriate tool for learning the collected operational data with

uncertainty to predict the operation performance ?
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State of the Art

2.1 Knowledge for port decisions

The port operation performance depends on the relationships between the port ope-

ration and the event caused by uncertainties. However, due to the complexity of port

operation network and various kinds of operational uncertainties, their relationships

are dynamically changed by the circumstance of the port at the consideration time.

Therefore, estimating the operation performance for the operation planning in ad-

vance is a challenge and the knowledge of port operation relating to uncertainties is

required.

2.1.1 Conceptual of knowledge for dealing with uncertainty

Uncertainty is a topic for the debate in epistemology since the ancient Greek. In

modern history, a number of literature describes the definition of “uncertainty” as

inadequacy of knowledge. Knight [51] states how “uncertainty” is different from “risk"

by discussing in the field of science and economics. Uncertainty is broader than
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risk. Risk is calculable in terms of probability and impact loss so it is controllable

even it is unknowable. Uncertainty is in the remaining area that is incalculable and

uncontrollable. Risk can be a kind of uncertainty at a lower level which is quantified

by impact losses and probabilities. This definition is further adopt for the field of

decision making. Uncertainty is relevant not only to the future context but also to

the result of behavior after the decision is applied [85].

Model of uncertainty proposed by Van Asselt, Rotmans [119]

Van Asselt, Rotmans [119] points that uncertainty is not simply the lacking of know-

ledge based on the pluralism. Knowledge is not the truth or certainty. Uncertainty

still exists even information and knowledge is available. New information can in-

crease or decrease uncertainty. New knowledge may reveal the existence/behavior of

uncertainty that were unknown/misestimated. The author classifies two high-level

sources of uncertainty, variability and limited knowledge, with sub-level sources of

uncertainty on each. The typology is illustrated as in the Figure 2.1.

Uncertainty due to variability refers to factors that cause the behavior/value of the

system/process acting differently. It is also mentioned as primary uncertainty, objec-

tive uncertainty, external uncertainty, stochastic uncertainty or random uncertainty.

Sub-levels of variability considers dynamic and diversity of things including the sys-

tem/process itself, the nature/environment, human/social/culture and the relevant

to the context such as economic/technology.

Among the variability, lacking of resources/tools to observe and gather empirical in-

formation leads to unpredictability as another source of uncertainty ; limited know-

ledge. Limited knowledge is inherit from variability, however, deterministic know-

ledge can be incomplete that uncertain can be further explored. The continuum of

limited knowledge is then ranged from inexactness to irreducible ignorance.
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Figure 2.1 – Typology of sources of uncertainties

— Inexactness : refers to “the roughly known" that every physical quantity is

measured but can be affected by measuring errors of a random character.

— Lack of observations/ measurements : refers to the lacking data that

“could have been collected" but have not.

— Practically immeasurable : refers to the lacking data that can be measured

in the principle but not practical in the field. At this level, it is “known what

is not measured".

— Conflicting evidence : refers to sets of data that are different which requires

an interpretation. It is “unsure/uncertain in what is known".

— Reducible ignorance : refers to processes that are not observed by the

current theory but may by the future, considered as “inability to observe

now".

— Indeterminacy : refers to processes that is known by principles and laws

but can never been fully determined. It is considered as “will never know"
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such as weather dynamics.

— Irreducible ignorance : refers to processes or interactions between processes

that is ambiguous to determine by human. It is considered as "cannot know".

Uncertainties in the unreliability group are measurable or calculable from an un-

derstood system/process. They can be described by a principle in quantitative with

margins/patterns even the best end can somehow be as the roughly known. For un-

certainties in the group of structural uncertainty, they are more radical that their

existences can be perceived by the conflicting evidence, reducible ignorance, indeter-

minacy and irreducible ignorance regarding the uncertainty due to variability [119].

Model of uncertainty proposed by Walker et al. [122]

Another perspective to uncertainty proposed by Walker et al. [122], the authors

applies concept of uncertainty specifically for decision making in complex system.

They define uncertainty as “any deviation from the unachievable ideal of comple-

tely deterministic knowledge of the relevant system”. Based on this definition, four

involved elements are the system, uncertainty, outcome, and knowledge . A concep-

tual model is proposed to represent a system treating uncertainty that is driven

by cause-effect relationships of subjective components within the system. Existing

knowledge is used to determine decision focusing on the system performance in the

future context.

The conceptual model of uncertainty is proposed in three dimensions ; Location,

Level and Nature.

Location of uncertainty : involves uncertainty, outcome and the system. The

conceptual model represents uncertainty in the location of uncertainty. In other

words, once the location of uncertainty is specified, it can somehow be changed due

to an extent of uncertainty. Uncertainty driving the system is located in the following

parts of the system (consider with the Figure 2.2) :
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Figure 2.2 – Model illustrating location of uncertainty [122]

1. context boundary - scope of the interested system.

2. model structure - including system elements, behavior, cause-effect interrela-

tionship among elements and uncertainty correlated with relationships among

inputs, variables, outputs, behavior functions, system boundary, assumptions

and even mathematical algorithms.

3. input - referred to uncertainty driving force as input into the interested sys-

tem. Uncertainty force can be from both external input and internal system

data.

4. calibrated parameters - constant values of the model structured in the chosen

context and scenarios based on historical data. They represents relationship

between input and outcome of the model.

5. outcome - the estimated outcome resulted from the accumulation of all un-

certainties stated in 1) to 4).

Value/specification of uncertainty on each location can be changed and inevitable

for the outcome. The predicted outcome and the true value outcome can be a gap
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due to several uncertainties. The prediction error should be validated by comparing

values of these two outcome.

Level of uncertainty : To handle with uncertainty, the ultimate goal is to reduce

the surprise of unexpected impacts. Level of uncertainty is classified into a spec-

trum of knowledge level ranging from the determinism to the indeterminacy of total

ignorance as illustrated in the Figure 2.3. This spectrum represents the continual

degree of knowledge available for decision making between the well known and the

not known about the future situation or about the outcomes from changes.

Figure 2.3 – Spectrum of knowledge level [122]

— Level 1 : Statistical Uncertainty At any location of the model structure un-

certainty, the outcome can be measured or described in statistics including

probabilities in the stochastic model.

— Level 2 : Scenario Uncertainty Scenario is used as an analytical tool to des-

cribe uncertainties and unknown(able) future. A scenario determines key re-

lationships of system elements and driving factors based on a coherent and

consistent set of assumptions. The alternative scenario can be in the form

of alternative formulations and/or sets of input data. The prediction cannot

specified exactly what will happen ; rather it estimates what might happen.

— Level 3 : Recognised Ignorance System functions and mechanisms are studied

in fundamental but lacking of knowledge for developing scientific, statistics

or scenarios.

— Level 4 : Total Ignorance This uncertainty is at a deep level. The source or

impact of this uncertainty is inconsiderable.
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Discussion : knowledge for dealing with uncertainty in the port operation

Model of Van Asselt, Rotmans [119] and model of Walker et al. [122] classified

uncertainty into 2 major groups of uncertainties, uncertainty in the problem context

with variability and uncertainty in the knowledge level for dealing with uncertainty.

The models are presented differently.

In the problem context, Van Asselt, Rotmans describes the source of uncertainty as

factors while Walker et al. describes uncertainty at more fundamental perspective

considering uncertainty as forces that locate and influence to elements around the

system. The perception of the first model is similarly to the approach that current

literature of port operations reviewed in 1.3.1.2 considers the problem context toward

uncertainty, a limited kinds of uncertainty is included in the concern. The structure

of the latter model is consistent to the structure of uncertainty in the physical

port operation as discussed in Section 1.3.1 and as shown in Figure 1.6. Even the

Walker et al.’s model is specifically proposed for decision making in strategical policy

problems, however, its concept for modelling uncertainty in the system structure

seems to be compatible with the complex system of port operation with uncertainty.

1. context boundary - the port operation system is the scope.

2. model structure - the port operation system consists of several operations as

system elements. Each operation interacts to the others operations and has

interrelationship among operations in terms of operation performance and

uncertainty.

3. input - uncertainty input as the driving force of changes to the system is from

both the external partners such as vessels or from the internal operations such

as machine breakdown.

4. outcome - the estimated outcome, this research assumes that the result of

port operation performance as the outcome of all uncertainties.
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5. calibrated parameters - constant values representing relationship between in-

put of port operation uncertainty and outcome of port performance can be

specified by the calibration using historical data.

In the knowledge for dealing with uncertainty, at a first glace when forces of un-

certainty is affecting, the first step is to understand the context by estimating how

much the forces is going to affect the system and later to decide how to react to the

situation. Van Asselt, Rotmans’s model classify uncertainty by the availability of

knowledge such how much the context can be perceived, is it possible to be observed

or measured or is there a tool for the observation/measuring. While Walker et al.’s

model classifies the level of knowledge by the knowledge form such as in statisti-

cal, in scenario, in theoretical or inconsiderable. Both approaches are interested to

distinguish levels of knowledge for the port uncertainty.

2.1.2 Source of knowledge for dealing with operational un-

certainty

Acquiring knowledge of uncertainty in the context of port operation is complicated

due to uncertainty involves in several operations and moreover they are interconnec-

ted among operations in the system. Generally, the context of knowledge is discussed

as a resource of human while the knowledge as a part of system process is rarely

discussed.

The resource-based approach considers knowledge in the viewpoint that knowledge

is a resource remained and transferable among human such as SECI model [80]. The

learning of knowledge is via the transforming between tacit and explicit knowledge

and transferring from a person or a group of people to the others. Socialization, Ex-

ternalization, Combination, Internalization are activities that transform knowledge.
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The model justifies that human first learns new tacit knowledge from the interaction

with other people via the socialization activity. However, in the context of uncer-

tainty, a person can learn by the self analysis/synthesis, not limit to the learning

from others.

For the port operation during a new uncertain situation, port operators respond to

uncertainty based on their own tacit knowledge with/without discussion with the

port manager. Somehow, decision of port manager is also majorly based on own

tacit knowledge. To manage the organization knowledge, knowledge extraction can

be conducted in order to clarify for a better understanding into the situation of how

input of uncertainty forces affects the port operation and results the outcome of

operation performance. The extraction should transform the tacit to explicit know-

ledge from the group of staff who involved in the situation due to an action/decision

of individual has an direct/indirect effect to the others. However, the knowledge

extraction from several people takes time, especially in case that there is a conflict.

The situation can be concluded in the level of scenario. Statistics of operation per-

formance such as container throughput is normally measured but it is not identified

the relationships with uncertainty or with the others port operation. Moreover, these

relationships are too complex to be expressed by human using resource-based ap-

proach.

Another viewpoint of knowledge proposed by Spender [100] considers the knowledge

in dynamic process-based approach. Body of organization knowledge aligns in the

activity system which includes individual and collective knowledge, as well as explicit

and tacit knowledge similarly to the resource-based approach but the process-based

approach extends form of knowledge dynamically, not only from human. Activity re-

sulted in the system is produced by the combination of the learned such as tacit and

explicit knowledge and the unlearned such as some part of environment including
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uncertainty which is exist but not yet aware by human. Similarly to the transfor-

mation of human tacit to explicit, some area of the system which is autonomy by

the nature and unexplained, techniques, tools or technologies are used in somehow

to extract and transform tacit to explicit to gain more understanding in the system

context.

Technology regarding the socio-technical perspective is at first brought to change the

industrial practice by increasing knowledge and also improving work situations for

employees. The socio-technical involves the process and the principles of humanistic

that are associated to change and technology [75]. However, the technical should not

be limited only to serve on some specific tasks but also broaden to unexpected cases

as stated by Spender [100]. Such as examples of technology usage for extracting

knowledge, connectomic big data is used to represent brain connectivity networks

using graph theoretical approach. Also, using machine learning and statistical ana-

lytic to gain knowledge of brain functional architecture within the network. Xia,

He [124] uses big data of spatial and/or temporal precision, large and long-term

sample size recorded from brain activities along with other biological variables and

findings to acquire new knowledge of brain mechanism functions in various situa-

tions e.g. normal functional, aging functional, disorder functional and etc. In the

area of environmental science, Passalacqua [84] proposes the Delta Connectome as a

network-based framework to understand the formation and evolution of river deltas

processes and to response to perturbations. The network connects nodes of physical

attributes with the linkages of process coupling with the function of coastal systems ;

by the support of technology to collect data such as satellite image, remote geomor-

phic sensing tools and etc. The exchanges of energy and information are continuously

observed for the evolution over time .

For the context of port operation, the activity of each operation function and its

performance result can be perceived and considered as knowledge of the organization
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even some uncertain area behind it is unknown. Force of uncertainty is the input to

changes in the outcome of port operation performance. Connectivity among all port

operation has a kind of relationship which is currently complicate to be expressed

by human cognitive due to the unknown force. The uncertainty structure proposed

by Walker et al. classifies components involved with uncertainty in the system. The

model is adopt in this research to structure components of the port operation in

order to explicitly extract relationships of uncertainty and port operation based

on the system activities. Traceability data is collected as the dataset representing

activities in the port system.

2.1.3 Data of activity system

Uncertainty is dynamically evolved by the time. Collecting data of activity system

for chain/network analysis, continual of data is mandatory to retrieve the evolution

of uncertainty impact at each point of interest in the system. Traceability data is

generally used to control the quality of operation and logistics for organizations in

the supply chain. For this study, traceability data is collected during the operation

in the field in order to identify risk/event.

Traceability data

ISO 9000 :2015 defines traceability as “ability to trace the history, application, or lo-

cation of an object” while “object” means “anything perceivable or conceivable” such

as product, process, service, person, system, organization, or resource. Traceability

of a product or a service can also include the processing record, the distribution and

location after delivery [43]. In supply chain, traceability is distinguished by the part-

nership as internal traceability and chain traceability. Internal traceability collects

data within an organizational internally e.g. batch processing. Chain traceability
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collects data from continuous productions from several partners along the supply

chain ; from materials or resources, productions, distributors and/or others [73].

Data of chain traceability can be collected in two approaches as shown in the Figure

2.4.

1. Local collection - An identity(ID) such as barcode, QR code or RFID is

attached on the tracking product. Only the information of product ID is

passed through operations in the chain. ID data is collected in event-based

by a reader. Data is collected and stored separately based on the event type of

operation activity. Activities information of a product requires a cooperation

of involved organizations to aggregate pieces of product data through the

chain.

2. Unitary collection - The product has an ability to collect data and store on

the centralize data storage. In another words, activities information of each

product is attached to the product and visible through its travelling. Data

such as status of the product can be collected in periodic-based and/or event-

based depending on the configuration of data collection in the platform.

Currently, the local collection is the common approach for the chain traceability such

as the practice of Electronic Product Code Information Services (EPCIS). EPCIS is

the only global standard which uses barcode and/or RFID technologies to perform

four major activities for the traceability : (1) to identify traceable items, (2) to

capture events (date-time, location, event-type e.g. arrival, transfer, etc.) separately

by each partner using their own barcode or RFID reader, (3) to share business-critical

information with involved partners and (4) to trace the product flow among trading

partners [31]. However, the frequency of event capturing limits the visibility of event-

based. The tracing status in between reading points during logistics is invisible which

further restricts the awareness of uncertain situation. Moreover, due to the scattering

of data storage owned by different stakeholders, it requires extra efforts to qualify
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The visibility is then extended through the chain during transportation in real-time

by technologies of the Internet of Things (IoT), also the analysis of operation chain

which is currently limited.

Once the operational data is available, in order to explore the potential of how cur-

rent data is used to support decision in the activity system of the supply chain and

logistics, a study is conducted to observe the use of the traceability data to support

decisions of the supply chain. A literature review is conducted within main bibliogra-

phy sources ; Scopus, Web of Science and IEEE. First, major related keywords are

searched, “traceability” and “data”, and “supply chain” or “logistics”, and “decision”

or “performance”. After merging results from all databases to remove duplicated

papers, there are 142 publications from the year 1996 to 2017. Then, papers are

reviewed to exclude studies which have no usage of traceability data or the usage is

only for tracking and tracing or high-level usage concept without data parameters,

for example, studies of methods for tracing resource originality, studies of stakehol-

der’s perspective based on survey, studies that adopt technologies such as RFID for

traceability, conceptual papers and etc. The remained 31 publications are reviewed

again in detail and information is structured using mind mapping. The classifications

on mind map are structured in three major axes.

1. Acquisition of traceability Data : containing a list of data parameter and type

of the data (e.g. master data, transport condition, business transaction), the

acquisition tools and the frequency of traceability data acquisition : real-time/

event based/ batch/ offline.

2. Usage of Traceability Data for Decision Support : the use of traceability data

is classified into three levels : operational, tactical and strategical. The impact

of the decision is also classified into activities of the supply chain process with

supported data attributes.
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3. Issues : presenting issues of technical and business perspectives caused by

implementing current traceability system.

As results, 31 publications study in the use of traceability data are classified into

three axes as follows :

1. Acquisition of traceability data

Traceability data can be classified into three types by its characteristics as master

data, transaction data and condition status. Master data contains permanent or not

subject to frequent change data such as identifications, product information, loca-

tion information, etc. Transaction data contains events captured during the flow of

tracing object e.g. shipment information (date of dispatch/arrival, to/from, delivery

operator). Condition Status captures parameters related to the tracing object such

as the status of surrounding environment e.g. temperature, humidity, position, etc.

or the status of tracing object’s component e.g. nutrients of food product occurring

during the production in the field.

In the data acquisition, the availability of data and information is the major factor

for visibility of physical activities occurred in the process flow. Data acquisition

can be conducted by different tools e.g. RFID, sensor, GPS, Laboratory or Manual.

Data is captured in different frequency : real-time, batch or event-based. For the

real-time capturing, data is detected and transmitted immediately and continuously

to the information system. For the batch capturing, data is collected once in a time

interval or once in a production lot. For an event-based, data is collected by an

event action such as product arrival/depart time, recall, etc. The classification of

data acquisition of traceability data is as presented in Table 2.1 (note : one research

can acquire more than one type of traceability data).

On a traceability system, a combination set of various data types is used. Master

data is mandatory that every product tracing defines for the production in the field.
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the operational and tactical problems in real-time as shown in the Table 2.2

uses the real-time data acquisition as shown in the Table 2.1.

— Decision functions in tactical problems

’Position’ parameter plays an important role in supporting the planning and

scheduling of the manufacture [29, 50, 140] and to improve collaboration

among partners [4, 82, 88, 121]. The ‘position’ can be used for acknowledging

the position of a sharing object or can be mining for the knowledge of object

trajectory to support plan optimization.

— Decision functions in strategical problems

Traceability data is used as secondary information to support the strategi-

cal decision. Operational data is modelled to illustrate the big picture of the

process. The first usage is to measure the performance of the operation pro-

cess. A method is by integrating the Business Process Management Notation

(BPMN) to the process interaction model. KPIs are measured and analysed

for each activity performance along the chain process [30]. In the case of envi-

ronmental performance, traceability graph is mapped to environmental KPIs

e.g. CO2, CH4, N2O etc. [10, 95, 96]. The second usage is to model process

from historical data for simulating the process re-engineering. The process

model is constructed for the experiment of process change before the actual

implementation [63].

Overall, the usage of real-time data is important for the decision in operational and

tactical levels.

3. Issues of chain traceability implementation

Challenges which are preventing the estimation of operational uncertainty impact

by using the traceability data in current solutions are as follows :

1. Traceability data sharing
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Regarding that global traceability of event-based approach, only the relevant

data captured by each partner should be shared while respecting confidentia-

lity of all partners [88]. Only necessary interfaces among partners are limited.

However, partners are still lack of willingness to share due to concerning in

data security and reliability [30, 121] and some partner can choose not to

share access code of EPC on their sites [88].

Moreover, in addition to the selected 31 papers studying the use of traceability

data, it is interesting that there are 14 papers which propose data models to

aggregate data of the chain. These models tend to improve visibility and

consistency for real-time tracing, collaboration, and decision-making. By the

number of these studies, it is about half compared to the selected dataset. It

is assumed that currently there are requirements to improve the linkage of

data and information for sharing in the chain level.

2. Changes in business

There can be changes in business which cause uncertainty to practice, pro-

cess model [121] and decision-making procedure [82]. A dynamic information

system which is flexible to changes and enables real-time feedback for precise

adaptive decision is required [82].

To consider which approach of data acquisition is practical for using as data of acti-

vity system for constructing the knowledge base of port operation with uncertainty.

The unitary collection of UTO offers the continual of near real-time data visibility

through the chain while the local collection is limited in terms of data sharing and

acquiring information of uncertainty from the external partner.

According to Walker et al.’s model of uncertainty structure, data of port system

activities and uncertainty information from the external adjacent is essential as

an input for the knowledge base construction. UTo offers the real-time through the

operation chain which eliminates the process to collect external data. Further, several
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usage techniques of traceability data are beneficial for modelling the uncertainty

structure using UTO data. First, ’position’ and ’time’ parameters extends the data

integration with the external related data such as operation position, operation

performance, planning of the operation, weather and etc. The knowledge base for

prediction can be more informative. Second, the traceability data can also be used

to formulate the operation process model for simulating and predicting situation in

the future. Third, UTO allows the recursive monitoring in real-time. On any change

due to uncertainty, a reactivity decision or a business/process adjustment, UTO is

the microscopic element in the system which its acquisition process is not altered by

the operation changes. Inversely, all information of those changes in the operation

is embedded into UTO data of ’position’ and ’time’ parameters. Therefore, UTO is

a robust tool for observing operational data from the chain of port operation as the

activity system. The acquisition of UTO data is then be used in the next step of

prediction modelling.

2.2 Prediction based on port activity system

2.2.1 Knowledge Engineering

The knowledge-based system (KBS) consists of two main parts : the knowledge base

and the reasoning engine. Even, any normal software system can be considered as a

knowledge-based system since an extent of knowledge exists in every system, howe-

ver, knowledge of the knowledge-based system should be able to present explicitly.

[92]. The mandatory capability of knowledge-based system is that knowledge of the

system should be explicitly represented.

Process of Knowledge-Engineering consists of five major activities :
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1. Knowledge acquisition

Knowledge is generally acquired from the knowledge sources such as human

experts, documents, books, sensors and computer files. The knowledge may

be general knowledge (e.g. about business), or may be specific to the pro-

blem/solving procedures, or may be the knowledge about knowledge (metak-

nowledge).

2. Knowledge representation

Once the knowledge is acquired, it is organized and prepare as a knowledge

map to use for the encoding to the knowledge base.

3. Knowledge validation

This activity involves the validation and verification for ensuring the know-

ledge quality that they are accuracy and acceptable.

4. Inferencing

The inferencing involves the logical of software design enabling inferences to

the knowledge stored for the specific problem.

5. Explanation and justification

This activity involves the explanation to the capability of how the knowledge

base answer questions.

First, the knowledge from sources are collected in the knowledge acquisition stage.

Then, the acquired knowledge is coded into a scheme representing for knowledge base

construction. Once the knowledge base is created, it is verified and validated by test

cases or experts. Finally, it can be used as a knowledge-based system for solving

problems defined in machine inference and to explain the output recommendation

[115].

The process of knowledge engineering illustrated in 2.5 is adapted from Turban

et al. [115]. Regarding that the port operation activities can be changes by various
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sources of uncertainty and decisions from port planner. Moreover, these changes can

be acquired through port system activities which data can be collected by the UTOs

as a dynamic input to the source of knowledge. Then, the KE model is adapted to

align with the dynamic of port operation system and the knowledge base is modelled

for continual learning.

Figure 2.5 – Process of knowledge engineering in the port activity system

The activities of KE model are defined in the conceptual perception for knowledge

base construction. For the system perception, the flow of data and information for

machine learning is applied in the digital twin concept. Even the use of the UTOs

to directly collect data of system activity from the port operation, however, still a

limitation that all uncertainty cannot be directly observed from the real operation

in a short time. Thus, regarding to our research aim for predicting the incapacity

to apply the planning, the study proposes to apply a digital twin(DT) allowing to

generate in an accelerated way a sufficient volume of data to apply machine learning
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for predicting the port performance. Based on the behavior of port operation func-

tions extracted from the collectible set of system activity data, input of uncertainty

can be configured to observe the performance of port operation functions.

2.2.2 Digital twin

The term Digital Twin (DT) is defined as the mirroring space model or mirroring

product in the context of product life management (PLM) by the University of

Michigan in 2002 [34]. The model represents the visual of physical object through

its lifecycle. DT model facilitates the creation, building, testing, and monitoring

the product or process in ‘virtual’ offering the exploration into the product/process

without a risk in operation. The model composed of a real space containing physical

object(s), a virtual space containing virtual object(s) and a linkage of data flow

between the real space to the virtual space. Later, the term focus is shifted to the

area of complex systems such as aerospace, manufacturing, and production.

In the industry of port management, leading ports have implemented smart sensors

and communication technology, such as 5G network, camera, AR, VR and etc. to

support the digital twin of virtual port operation in real-time. The digital twin offers

a visual view similarly to the satellite with the real-time update elements in the port

spacing area promoting the accuracy in positioning the cargo element.

Among literature work in DT for the port operation, a few works were studied using

information from the DT to support a decision in the operation. [39] proposed a DT

to support truck dispatching operator. The IoT platform acquired input data for

the database. The simulate-based DT was then updated and provided information

of current system status to the integrated algorithm. The algorithm evaluated and

suggested the dispatching solution for the operator. [141] used information of DT as a

realistic prediction of port performance when the port was under possible disruptive
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events and the post-event recovery actions were taken. This work claimed to be the

first study applying granularity of uncertainties to the port operation digital twin.

It is not yet found the study of digital twin of the port operation system during the

confronting to uncertainty factors. Therefore, we are interested to apply the digital

twin by enabling the scalability of the real-world port performance and executing

the operation with interdependency and configured uncertainty several in times of

operation execution with interdependency and configurable uncertainty.

The digital twin enables to operate the port system for several of times. In addition,

performance with the with accelerate

2.2.3 Machine Learning

Machine learning is a area of Artificial Intelligence (AI) development. AI consists of

concepts and ideas from various domains to develop the intelligence system in various

areas. It focuses on the thought processes and it behavioral performance. Intelligence

systems are proposed to learn human thought process and duplicate the thought

process into the machine to solve the problem. The machine intelligence then applies

the thinking process for solving the problem with the change of environment or

dataset. The machine accelerates the logical thinking at a fine computation even that

human has never experienced the solving process with those changed environment

or dataset. It is defined as "activity devoted to making machines intelligent, and

intelligence is that quality that enables an entity to function appropriately and with

foresight in its environment." [78].

Characteristics of the port operation

The problem of port operational with uncertainties concerns changes in the port ope-

ration environment impacted by various kinds of uncertainties. This research aims
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to predict the port operation performance under uncertainties. According to the li-

terature discussed in the subsection 1.3.1 that the performance of port operation is

influenced by kinds of uncertainties. Three types of uncertainties in containerized

logistics operation summarized and classified in the subsection 1.3.1.3 leads to the

following three main characteristics of port operation which conveys a part of thin-

king process for the machine to learn the changes of port operation performance due

to uncertainties.

1. Time dependent - due to operations on the port are interdependency to

each others, this causes an amount of uncertainty force from an operation to

the adjacent operation. Even if no major change occurs in the port operation

environment, the port operation performance could be fluctuated by the time.

2. Resource dependent - flows of containerized operation on the port require

resources for the logistics activities. Changes in resource capacity result some

changes in performance in the logistics flow.

3. External transportation dependent - port operation activities are ma-

jorly motivated by demand from the external transportation. Port has to deal

with stochastic of the arrival time and the amount of containers to handle at

a time. The rate of operation performance is then depended on the service de-

mand from the external transportation. Additional concern to this point, the

pattern and the period of changes caused by vessels are considered. In 2018,

Sea-Intelligence Maritime Analysis reports the statistics of global container

vessel schedule reliability during the year 2012-2018 as shown in the Figure

2.6. Each year, the average of schedule reliability seems not aligning in the

same pattern. In some period such as Mar-June 2018, the change of reliabi-

lity pattern continues for a few months, coherently to the pattern of average

delay for late vessel arrival. While some others period, the changing patterns

are fluctuate in monthly. In addition, some trade lanes such as Asia to North
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1. Connectionists - based on the neuroscience, the learning of how neurons work

to encode knowledge. The backpropagation is developed as the neural-net

algorithm to learn from the sample dataset. Inputs are fed into layers of

artificial neuron network until the output is emitted. The final output is

compared to the output in the training data to validate the correctness.

2. Evolutionists - based on the evolutionary biology, despite of the connectionists

which the mimicry of non-human intelligence to structure in human neural

architecture is limit, the genetic algorithms is proposed to emulate and speed

up the natural selection. The algorithm is generally used for adaptive systems.

3. Bayesians - based on the computer science and logic, the algorithm works with

statistics on the Bayesian network by estimating the encoded probabilities

for several competing hypotheses. When a new information is available, the

probabilities is updated under a respective believe. It enhances the ability

and transparency of the decision making of the neural network.

4. Symbolists - the classic strand of knowledge-based AI. General-purpose lear-

ning algorithm freely combine rules and knowledge components. The learning

aims to mimic scientist’s thought process to formulate hypotheses and deduce

new knowledge.

5. Analogisers - based on human psychology, the algorithm searches for the most

similar situation encountered in the past to apply for solving problems in the

new cases.

The genetic algorithm of evolutionists appears to be used in the port operation pro-

blems in optimization such as berth and quay crane allocation. Bayesian network is

also used to solve the analysis of structure interdependency among port operations

to specify lateness in the operation [104]. For the problem of predicting the port ope-

ration performance, the learning aims to recognize the relationship patterns among

port operations and uncertainties over the time period. The learning is then from
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the dataset of port operational activities in temporal. Connectionists tend to be the

learning approach for this problem. AI neural network is the mathematics-based

model capable to model the prediction with continuous and complex data pattern.

2.2.3.2 Time-series prediction

In time-series forecasting domain, the parametric models such as ARIMA which are

based on linear statistical method has influenced for long time, however, they are not

well-adapted to stochastic applications. The others nonlinear time-series models such

as autoregressive conditional heteroscedastic (ARCH), the bi-linear model and the

threshold autoregressive model are proposed to deal with stochastic data. Recently,

the black-box data driven models such Artificial Neural Network(ANN) which are

also the nonparametric nonlinear models are in the highlight to learn stochastic

dependency from the past to the future. Only the historical data is required for the

extraction of nonlinear relationships between input and output of the black-box.

ANN outperforms the classical statistic approaches such as linear regression and

not require the mathematics expressions as generally used in the others time-series

models.

ANN is based on the neuroscience that mimic the behavior of the human brain.

The biological neurons which send signal to one another is transformed to artificial

nodes and layers of nodes as illustrated in the Figure 2.7. The ANN network com-

prises of input layer, hidden layer(s) and output layer. Each node connects to nodes

in the next layer with associated weight and threshold. Once an individual node

is activated by the input and the weight and reached the specified threshold, the

node then transmits data to the node in the next layer. ANN models of Multilayer

Perceptrons(MLP), Long Short-Term Memory Networks (LSTM), Gated Recurrent

Unit Networks (GRU) are discussed.
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In predicting the port operation performance, recognition of pattern that variables

are dependent in time is expected to learn from the time-series neural network. In

addition, the recognition of dependency pattern among port operations with the

flowing of uncertainty forces is also expected. Xu et al. [129] proposes a recurrent

network to predict the number of taxi calling in each local area with a condition

that each local area is dependence to one another e.g. If the number of taxi in a zone

is high, the nearby zone tends to be high as well. The study applies the multivariate

LSTM time-series model to recognize the dependency of taxi calling in each area.

The work shows that LSTM offers ability to learn dependency from both horizontal

and vertical variables, similarly require for the prediction problem of port operation

performance but the port problem has more variety of data type and ranges of data

value while the work of Xu et al. uses the number of taxi calling of each zone as the

main variables with a few additional factors such as weather, day of the week and

number of drop-off.

In addition, the time-series dataset contains sequence of historical data collection

of an observed feature in equal time intervals. It is used to learn knowledge of

the past in order to predict the future. [11] emphasize the size of prediction steps

that a single-output model overlooks dependency among future values while the the

multi-step forecasting causes the accumulation of errors, uncertainty and reduced

accuracy. In the context of port prediction, the learning and predicting tends to

be the multi-step model due to the period of operation learning and the period

of performance predicting are in the different ranges. The learning period length

should be in a shorter period adequately for the machine learning to perceive the

changes in operation states on each learning sequence. The predicting period length

is usually expected a farthest period at an acceptable accuracy. Therefore, at a

learning sequence, the number of input learning steps and output predicting steps

should be explored.
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2.3 Conclusion

This chapter, literature reviews are conducted to justify the research approaches in

order to define the structure of the knowledge model for port operation with uncer-

tainties, to specify the knowledge source and to specify the approach to construct

the knowledge.

To define the knowledge structure of port operation under uncertainty, two concep-

tual models of uncertainty proposed by Van Asselt, Rotmans [119] and Walker et al.

[122] are reviewed. Both models define their models in two parts ; the modelling of

uncertainty context and the modelling of knowledge for dealing with uncertainty.

Walker et al.’s model is adopted in the port of uncertainty context due to its

consistent to the physical port operation with its uncertainty. The model describes

uncertainty as the fundamental forces travelling around the system.

For the part of knowledge for dealing with uncertainty, Van Asselt, Rotmans men-

tions the availability of knowledge to be observed/measured by available tool. Walker

et al. classifies knowledge level by its form ; in statistical, in scenario, in theoretical

or inconsiderable.

Body of knowledge for dealing with port operational uncertainty is aligned in dyna-

mic process-based approach such the activity system [100] than the human resource-

based approach such the SECI model [80]. Due to the operational uncertainty dy-

namically flows in the environment in autonomy by the nature and unexplained,

human instant perception is limited.

The next step is to consider how to acquire knowledge from the port activity system.

Generally, traceability data is used to track activities of systems. A structural lite-

rature review of traceability data is analysed in acquisition approaches, data usages

and issues. As a result, the unitary traceability data (UTO) offers capability as the
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real-time microscopic data that allows visibility of operation movements through the

system. UTO is the eligible tool to acquire data for modelling the Walker et al.’s

uncertainty structure.

Knowledge Engineering (KE) is studied in the conceptual process to transform data

of activity system to construct the knowledge base of port operation with uncer-

tainties. Along with, Digital Twin(DT) is used to define the system implementation

process to transform data of activity system to construct the knowledge base in

practicable. DT offers the generation of a sufficient volume of data with configurable

cases of uncertainty scenarios.
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Methodology

3.1 Conceptual framework

3.1.1 Current limitations

Estimating the port operation performance interfered by uncertainty is in difficulty

due to limitations as follows :

1. Lacking of chain analysis - due to the research scope of literature (as

reviewed in 1.3.1) focus on a specific area of problems or uncertainty type,

this limits the analysis of uncertainty through the chain of port operation

functions. As a result, impact of uncertainty or the result of reactivity made

after the decision are not studied how their impact forces disperse to the rest

of port functions out of the scope.

2. Limited of human knowledge - human has a limitation in perceiving all

details of the happening around the environment. According that, uncertainty

and its impact can be noticeable or unnoticeable. Therefore, knowledge about
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force of uncertainty relating to the port operation functions is difficult for

human to specify in the level of statistical/numerical knowledge without a

tool.

3. Limited of knowledge level - human knowledge about uncertainty is li-

mited to the level of scenario. Statistical information such as the deviation

vessel arrival is frequently used in mathematical optimization formulas. The

statistical information is represented as a finite set of uncertainty occurred in

the past. However, the relationship of uncertainty information to the others

parameters such port operations are rarely constructed in the knowledgeable

method due to the equation formulas defines parameters in static relations.

Genetic algorithm is used in some studies to construct a knowledge base but

relationships of parameters are constructed by the random approach.

4. Inaccessible of all uncertainty - the variability of uncertainty is unlimi-

ted. Constructing knowledge requires the dataset containing various scenarios

for knowledge learning, however, collecting data from the real-world activity

system in a short time for the research experiment is inadequate.

5. Unknowable of uncertainty - Even the knowledge of port activity is

constructed, the input forces of uncertainty is continuously changed by un-

certainty force or by the activity made to the system after the decision. The-

refore, the estimation should be based on the updated information of port

activities. Data for constructing knowledge related to uncertainty should be

collected continuously.

6. Few use of updated data about uncertainty in decision support

- current solutions of port resource planning such as the berth allocation

usually apply historical statistics which can be deviated by the time inducing

a decrease in the planning performance. Genetic Algorithm(GA) is proposed

to integrate status of updated port condition into the planning. The GA
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mutation is based on the random approach to search for the optimal solution,

however, GA is limited in constructing a knowledge base.

The root problem is that the relationships between uncertainty and port system

components are not examined so the prediction of port situation under an uncer-

tain circumstance is limited. Extracting the relationships requires data of operational

activities for continual machine learning. The data extends the construction of know-

ledge about uncertainty which can be further used to support decisions in the chain

analysis of port operation functions.

Conceptual of smart container discussed in 2.1.3 offers capabilities to be used as a

tool for collecting port system activities. Port functions performance can be acquired

continuously in temporal and dynamically. So, the status of each port functions

can be captured explicitly at the same time for further examining the relationships

among port functions and uncertainty at the time.

3.1.2 Knowledge base framework

This research aims to overcome the limitations and constraints discussed above by

conducting experiments based on the following conceptual framework (Figure. 3.1).

The main goal of framework is to dynamically manage the flow of port knowledge

sourcing from port activity system with forces of uncertainty. Knowledge Enginee-

ring(KE) is used to control the process of knowledge construction. Digital Twin (DT)

supports the generating of synchronized temporal data of all activity instances. Ma-

chine Learning (ML) then transforms the data to construct relationships among

instances which represents the knowledge of port activity system under uncertainty
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model which is later constructed as the knowledge base by the machine learning

model. Information of these components are acquired from several sources not only

from the operation activities but also from the primary and secondary sources ; both

tacit and explicit.

The second stage of Microscopic Simulation has the role to transform the physi-

cal port operation into the DT virtual port operation. Due to uncertainty in the

real-world operation occurs in occasions limiting the size of dataset with traces of

uncertainty for building knowledge. Therefore, the virtual port is built from compo-

nents extracted from the previous stage. With the 3 kinds of classified uncertainties

influencing the port system ; uncertainty in demand, uncertainty in resource avai-

lability and uncertainty in operation interdependency, are simulated in the virtual

port to generate microscopic changes in port operations over the time. Also, the

synchronized temporal data of each port operation states and the external transpor-

tation states are explicitly generated as the nodes of Walker et al.’s model and as

the knowledge representation of port operation activities embedded with forces of

uncertainty. Then, these nodes are input for the next stage to explore the relation

linkage among the nodes.

The third stage of Macroscopic Prediction has the major role in machine learning

to construct the knowledge base of port activity system for the use of prediction.

Based on the input of temporal data nodes, data on each node presents a change

of its operation function by the time which might be related to the change of the

others nodes. The inference in the changes of operation activities over time and the

deviation time from the initial plan are applied for the machine to learn the opera-

tion logic and find inter-linkage among the nodes of port operation functions. The

knowledge base learns logical changes from the microscopic dataset of all port opera-

tions to predict the macroscopic outcome representing port operation performance.

The deviated time of operation activity in the coming hours visually presents how
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much uncertainty interferes the operation. The deviated time can be used to support

decisions of port reactivity plan on how much the deviated time will interfere the

next phase operations.

After the decision is applied to the system or not, activities of the system are still

continually changed and can be further used for continual learning and dynamic

prediction based on the flow of knowledge engineering.

3.1.2.2 Digital twin

DT is used to represent the port operation with uncertainty factors in the future

time space. By using data of a real port system, the virtual environment of port

operation is modelled. Data of container arrivals is used as input to proceed the

operation. The uncertainty factors are used to trigger operational interference. DT

then fast forwards the operation with these settings to the future space. Finally,the

vessel berthing time and departure time are observed as the output of DT. This

research studies the case of berth allocation on the port. Uncertainties are applied

to observe their impact on the berthing time ; specifically in the deviation of vessel

berthing time and the deviation of vessel departure time.

The digital twin proposes abilities to visualize the port operation, to apply scenarios

of uncertainty forces to the operation, to generate operational data and to estimate

the operation performance. These abilities not only perform in the real-time manner,

but the information further promotes an accuracy of the operation estimation in a

nearly coming time.

Modelling of digital twin

The virtual system of the DT generally represents the visual of physical object(s)

similarly to the simulation. However, in addition to the simulation capability, the
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virtual system must have the same behavior as the real system. The physical and

the virtual systems must be synchronized in all its life under two trading of data/in-

formation. First, on changes to the physical system, the virtual system must be able

to calibrate with the real situation. Second, the virtual system should be able to

generate useful output to act on the physical system. Modelling a DT model should

consider these synchronizations between the physical-virtual systems.

On the first synchronization of physical-to-virtual, the validation for ensuring vir-

tual operation behavior is conducted through operation output. By applying the

same set of input captured from the physical operation, the virtual system should

produce the same behavior of output comparing to the physical output. After the

Port Component Extraction extracts port physical objects and operation procedure

to sync with the Microscopic Simulation, the simulation model is validated to ensure

that the simulated output has the same behavior as the physical port operation and

is valid for knowledge construction by the machine learning.

On the second synchronization of virtual-to-physical, the Macroscopic Prediction

model generates the output of berth handling time and vessel departure time in the

future hours. They can be compared to the resource plan to specify the deviation

time and further impact on other vessels/resource plans. The generated information

is the feedback to the physical operation by supporting the reactivity decision which

includes impact of recent uncertainty factors into consideration.

3.2 Port Component Extraction

Components of port operation for implementing in the simulation does not serve the

physical-virtual replication of DT model. The output of the simulation must be ali-

gned with the Walker’s uncertainty model for knowledge structure. Data at certain
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locations of uncertainties must be available for collecting. Further, the rational of

uncertainty and operation activities must been included in the simulation data as

well. Therefore, extracting components for the port system has to adequately serve

the usage in three purposes ; 1)to replicate DT modelling, 2)to be knowledge repre-

sentation applied with Walker’s uncertainty structure and 3)to use for reasoning the

prediction model using machine learning.

3.2.1 For modelling the Digital Twin

On the first purpose for modelling DT, to simulate the port operation behavior

to be as same as the physical port operation. The simulation can modelled in three

methods by the level of problem abstraction ; macro, meso or micro level. The macro

level simulates minimum details of the problem in high abstract level such as the

system dynamics model using seasonal/annual statistics of vessel visits to estimate

container productivity. The meso level simulates in the intermediate abstraction

combining both the high level statistics and the low level of physical simulation.

Since this research is interested in constructing knowledge based on system activities

which can be collected from the UTOs such as smart container, therefore, the smart

container is the macro element interacting in the port system. The simulation is then

chosen to be developed in the micro level. Containers are simulated as the major

element with some statistical data which is currently limited in the acquisition such

as the statistics of external truck arrival.

To model the microscopic simulation to observe movements of containers in the

virtual world requires knowledge and information about the port infrastructure and

facilities, the port procedure, the plan of container arrivals and data of the smart

containers as the Unitary Traceability Object (UTO).
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3.2.2 For structuring the knowledge

On the second purpose for structuring the knowledge of uncertainty as knowledge

representation. To be more specific in the required data from the simulation, the

knowledge model is described based on the concept of activity system and uncer-

tainty modelling.

Knowledge structure

According to 2.1.2, data from the activity system can facilitate the construction

of knowledge for dealing with the operational uncertainty. By the consistence, the

structure of port activity system (Figure 1.6) has a similarity to Walker et al.’s

model which defines uncertainties in the component structure. The Walker et al.’s

model is adopted in the context of port operation activities as follows :

1. context boundary

The boundary of this uncertainty knowledge model is in the context of port

operation activity system. It includes container logistics operations that use

port resources to facilitate the transferring from/to the external transporta-

tion or the container movement within the port.

2. model structure

Port operation services consist of vessel berthing (BTH), quay crane loa-

ding/unloading (QC), internal truck transferring (ITT), yard crane stacking

(YC), external truck gate entrancing (GATE). Each service can have seve-

ral stations/units. Each operation unit is considered as an uncertainty node

with its own attribute(s) which is evolvable by the interdependency linkage

to the others nodes or by the input force of uncertainty. Therefore, the value

of node attributes and linkages are dynamically changed by the time. Figure

85







Chapitre 3 Methodology

more parameters to fit the calibration. Otherwise, using fewer parameters

leads chance of deviated prediction from the real value [122].

To construct the knowledge structure of port activity system, each node of the

operation service defined in the model structure should capture its value in the

form of performance capacity in temporal collection. The nodes when integrate

with input forces, they reflect the integrated results via the performance capacity

of the nodes as well. By the simulation, the input forces such as vessel arrival/

truck arrival/ machine breakdown can be configured and generate the dataset of

performance capacity of operation nodes. The internal port operation nodes are

stated in performance capacity such the number of proceeded containers while the

external input forces are stated as the number of queuing containers for BTH/GATE

nodes. The dataset is adequate for constructing the knowledge of port activity system

by the concept.

However, in the problem of prediction, the machine requires to learn logical of ope-

ration activities in order to explore the change pattern of activity occurrence for

estimating situation in the near future. The relationships of activities among port

operation nodes and the relationship of external activities and the port are dif-

ferent. Especially, the vessel arrival which is the main input force arriving into the

port system in stochastic as regular arrivals. Therefore, the prediction using ma-

chine learning requires another set of data components that state the happening of

external transportation activities (input forces).

3.2.3 For reasoning the machine learning

For the third purpose of prediction modelling using machine learning, the study

focuses on predicting the uncertainty outcome which are the vessel berthing time and

departure time. The knowledge structure defined above locates the port operation
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The stochastic of vessel arrival is ranged by various root factors which may

not be identified or quantified the impact at the operation time. The deviation

of berthing arrival can be by individual of the vessel itself or by pattern of

deviated vessel series e.g. a broken at the other port causes delay to vessels.

This kind of stochastic relationship, the machine can learn the evolving from

the changes of deviation to the arrival plan.

For the barge and the external truck, they visit the port based on the berthing

plan of their contact vessel. Each transportation visits the port in particu-

lar random time. Most of visit is ranged in 1 week before/after the vessel

berthing. On the arrival, the barge is queued for berthing activities and the

external truck is queued for loading/unloading service. The queue is in first-

come-first-serve. Statistic is used to support stochastic analysis, therefore,

the arrival rate is used to specify the relationship between the port and the

external transportation. On some ports, the appointment system is applied

to control the arrival rate of external truck visit reducing the stochastic. The

machine can learn this kind of stochastic relationship with the port system

by the evolving of the visit rate.

3. Dependency to time

Even there is no significant event happening to the port operation, the ope-

rational activities are eventually changed by the time. As the time pass, the

matter of all uncertainties that is influencing the port operation are evolved

dispersing/reducing on the port operation nodes by the time.

Theses changes are required as the signal to inform the machine learning how much

the operation is changed during the time. The required data/information is as fol-

lows :

— the performance capacity of each operation

— the berthing plan of vessels
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— the berthing activities of vessels

— the berthing activities of barges

— the arrival rate of external trucks

Port components

Constructing the knowledge base for predicting the operation capacity should in-

clude components to serve the three purposes as discussed above. Three dataset of

components are required as shown in the framework 3.1 ; infrastructure, information

and operation.

Infrastructure dataset is for constructing the virtual port operation environment

including, the physical layout, the number of port facilities, their capabilities and

operation policy.

Information dataset is the information for configuring the virtual port operation

such as procedure, policy, uncertainty and vessel arrival plan.

Operation dataset requires two set of data. One is generated from the virtual ope-

ration with configured environment. This dataset is used as input for the machine

learning to construct the prediction knowledge base. Another operation dataset cap-

tured from the UTOs is used in two roles, as input for the simulation and as baseline

for the simulation validation.

In the next stage, these components are extracted to construct the simulation, to

feed as the simulation input and to validate the simulation behavior.
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As a result, AnyLogic is the only tool that meets all criteria. AnyLogic provides the

development of simulation model in the microscopic level. The object-based simula-

tion considers port components as objects which can be configured and programmed.

The simulation is modelled in the following steps :

1. Data acquisition

2. Simulation modelling

3. Simulation validation

3.3.1 Data acquisition

Constructing the Microscopic Simulation uses data from both primary and secondary

sources as shown in the Figure 3.6. As the primary, core of the port system such the

port infrastructure and operation procedure are collected from the interview with

port operator. Others specific details for configuring the simulation are collected

via the secondary sources such as physical layout specification is measured from

the Google Earth. Types of the known uncertainty are aggregated and classified

from the literature. The information of operation plan can be acquired via the port

community system or the port website. Data of the vessel plan is captured by the

scheduled cron job from the port community system or the port website. The last

dataset of port system activities such as vessel berthing, external truck arrival and

activities of port operations are observed and transformed from the UTOs data.

3.3.2 Simulation modelling

The main role of the simulation is to generate the simulation data of port activities

for knowledge base construction. The simulation is modelled in the following parts :
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plans while local barges usually depend on the arrival of motor vessels. The

transferring rate of vessel containers depends on the committed speed/-

number of quay crane. The arrival rate of external truck is various by the

time of the day.

— Availability of port resource : consists uncertainty in the performance ca-

pacity. The availability/capability of port facility is configured by the

number decreasing/increasing. While the operational interdependency de-

pends on the whole operation condition, no direct configurable.

3. Operation output To collect generated data from each port operation, the

core of the container flow starts from the transportation arrival plan (vessel

or external truck) which contains uncertainties. Containers pass through fa-

cilities under the port environment with additional configured of uncertainty.

Finally, results of performance capacity on each port operations are captured

and exported to the file.

3.3.2.1 Usages of UTO operational dataset

UTO data represents the container transaction interact with operation activities in

the physical world. Changing of ’position’ and ’time’ of UTOs parameters can be

mapped with port operation position (Figure 3.7) to specify the container status re-

lated to its position (arrival, waiting and departure) and further to the operational

status (ATA, waiting queue, ATD and productivity rate). On the leave of an opera-

tion to another operation and the speed of movement can also be specify, however,

the move status is not applied in the proposed framework.

UTOs data from the real-world can be transformed and applied to the DT virtual

in 2 ways.
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Figure 3.7 – Mapping of smart container data to operation attributes

— as uncertainty of transportation input : UTOs data of vessel berthing activi-

ties and external truck arrivals can be configured to introduce containers into

the simulation. Then, each internal operation continues to handle containers

with simulation results as performance capacity of each operations.

— as DT validation baseline : in order to ensure that the real-world physical

and DT virtual have the same behavior, the performance capacity captured

from UTOs dataset such as the productivity rate can be used to compared

to the performance capacity generated from the simulation.
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3.3.3 Simulation validation

Since the Microscopic Simulation is in the middle stage transforming data from

the physical port to the virtual port. On the last step of simulation modelling,

the simulation is then validated to ensure that the model of virtual port has the

same behavior as the physical port and the simulated data is valid for knowledge

construction.

According to two physical-virtual synchronizations mentioned in the framework, two

sets of output generated for 1)validating the physical-to-virtual synchronization and

2)making use of output to feedback on the virtual-to-physical synchronization.

To validate the model applying DT, simulated output is used to compare with the

output of physical system under a condition that they must be from the same timing

or the same event. This experiment captured output for validation on events of vessel

arrival and departure.

For further analytic of virtual-to-physical, the pattern of simulated output depends

on the purpose of data usage. This DT model purposes to support the reactivity

and to aware the upcoming of uncertainty impact beforehand, the simulated output

should be executed continually in advance. Periodical data is chosen.

Ensuring that the virtual and the physical port operation generate the same be-

havior. After the operation with the same set of input, the process behavior and

system output are expected to be similar. The validation is separated to input and

output validations.

— Input validation : inputs (’truck arrival rates’ and ’vessel arrival deviation’)

are based on distributions, the validation ensures simulation input is similar

to the physical system.
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— Output validation : to compare ’vessel operation deviation’ and ’vessel de-

parture deviation’ validating the final output of the port system processing

under an uncertain environment.

3.4 Macroscopic Prediction

Figure 3.9 shows the process to model the knowledge base for prediction. The predic-

tion model receives input from the Microscopic Simulation to construct/update the

knowledge base of port operation system. The generated data from the simulation

is in the format of text, numerical and Boolean value. It requires a pre-processing

to prepare data type and format ready for the machine learning. Then, the machine

learning splits the input dataset for the training dataset and the testing dataset.

The training dataset is to train the machine learning in the inference of port acti-

vity system. Once the prediction model is train, the testing dataset is used to verify

the accuracy of prediction.

3.4.1 Inference for prediction modelling

As mentioned earlier in this chapter, the reasoning of port activity system involves

three kinds of dependency ; dependency to time, dependency to internal port re-

sources and dependency to external transportation. The first two kinds of depen-

dency are presented through the temporal data of each operation capacity. While the

last kind of dependency, especially the relationship between the vessel activity and

the port activity is more complicate due to the stochastic in vessel arrival. Therefore,

this study defines parameters of vessel berthing activities for the machine learning

to perceive in temporal data approach.
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On each phase of vessel berthing activities, there are attributes stating status of

vessels, port operation resources and external truck. Vessel activities are stated in

temporal signal attributes (0=no, 1=yes). Attributes of vessel plan inform the ma-

chine learning about the expectation of incoming vessels regarding the schedule ;

ETA_WZ = expected to arrive in WZ, ETA_BT = expected to arrive in BT,

ETD_BT = expected to depart from BT. Attributes of vessel plan can be compa-

red with attributes of vessel actual event for the machine learning to be notified the

delay of arrival/departure. Attributes of vessel actual event also inform the tempo-

ral signal to the machine learning about the actual arrival/departure of the vessel ;

ATA_WZ = actual arrival in WZ, ATA_BT = actual arrival in BT, ATD_BT =

actual departure from BT.

In addition to the vessel berthing states, the number of container boxes to load and

unload are informed for the machine learning to estimate the uncertainty impact

in the quantified of incoming/processing containers. Also, the states of others port

operations and external trucks are provided along the berthing activities as well.

These data attributes are feed into the machine learning in temporal time-series as

shown in the examples in the figure 3.10 and the figure 3.11. On the left side of the

prediction line, at each time temporal, the prediction model learns data attributes

related to the phase of vessel berthing. Both planning of activities and actual activi-

ties of vessel and others operations are feed as recent historical data. The prediction

model learns the inference of these activities and predicts the berthing time of vessels

in the near future.
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the virtual port of the Digital Twin. We analyse the requirement in the use of data

components for the proposed framework. Port components are used for modelling the

Digital Twin, for structuring the knowledge of port uncertainty and for reasoning the

machine learning. The required components are classified as Infrastructure, Infor-

mation and Operations. Data of port components are collected from the real-world

port system via the primary and secondary sources. Port manager of the case study

port in Thailand is interviewed. The case also provides historical data of container

transactions which is further used to extract the operation statistics such as vessel

transferring rate, visiting rate of external truck, the duration of container storage

at the yard and etc. The information of vessel berthing plan and berthing activities

are collected from the port website.
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Microscopic Simulation

The main roles of the Microscopic Simulation is first, to replicate the real-world

operation to operate the port activities in the DT. DT operation environment is

programmed using the AnyLogic simulation. Second, to integrate the cases of uncer-

tainty to the operational environment preparing for the knowledge base construction

since current data of the real world is limited in cases of uncertainty. Last, to gene-

rate the operational data in terms of performance capacity of each operation nodes

in parallel synchronizing with the data of external transportation activities (e.g. ves-

sel berthing). The simulated data is then as the input for the knowledge learning by

the Macroscopic Prediction model.

The DT is modelled in microscopic discrete event-based simulation by considering

containers as the microscopic object. Due to the research is interested in the lacked

knowledge of linkages among operation nodes which are related by movement beha-

vior of containers. Therefore, when the Microscopic Simulation transfers containers

between two operation nodes, it creates the relationship of operation time between

the two nodes. This operation-to-operation link is then bonded in a numeric form

of state-and-time changing.
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Further, the simulation applies the configuration of uncertainty as an event inter-

fering the operation time. As a consequence, it is assumed that the container is a

carrier transmitting an impact of uncertainty to operation nodes by changing state-

and-time of the operation. Then, by operating various of containers, performance

capacity of the operation reflects an evolving by uncertainty impact through a time

period.

Last, the performance capacity of every port operation is captured at the same

time in a series of time steps as representative values of uncertainty nodes in the

knowledge structure. The representative values of uncertainty nodes are then eligible

to explore the evolving of node relationships by the machine learning in the next

framework stage of Macroscopic Prediction.

For the case study of berth allocation problem, the performance capacity is measured

in terms of the operation time and the departure time of vessel comparing to the

berth plan. The deviation time delayed from the plan represents as an uncertainty

impact from the accumulated travelling of containers through the port uncertainty

structure.

4.1 Simulation modelling

According to the framework illustrated in the Figure 3.1 and the methodology of

data acquisition in the section 3.3.1, data and information are acquired from major

sources supporting in different purposes. 1)Literature review is the first study source

for exploring the port operation functions and port operational uncertainties in

general approaches as discussed in Chapter 1 and Chapter 2. 2)Interview of port

management is conducted to refine the specification of port functions for to configure

the simulation particularly for the case study of a port system in Thailand. Last,
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3)Observation of operations in the field is to collect the precised operational data

for the simulation to replicate the port operation behavior based on the real-world

operation activities.

Modelling the Macroscopic Simulation uses data elements extracted from the phy-

sical port components such infrastructure, information and operational data which

are collected from various sources. Information collected from the literature review

and the interview are applied directly to the simulation. The data source of 3)Ob-

servation of operations in the field should be collected from the UTOs. However,

due to the limitation of UTOs data availability, currently we cannot access those

data. Therefore, the historical data of container transactions is used to extract the

statistical of container movement behavior for configuring in the simulation.

4.1.1 Infrastructure

The simulation is first implemented with the port infrastructure. The information

is from the interview of port management used as the primary information. The

secondary is collected from the Google Earth for precising the port scale. The infra-

structure includes components as follows :

1. Port layout - The physical dimensions such as distances among port ope-

rations are measured by the Google Earth as shown in the Figure 4.1. In

addition, the port management system (Navis) which the port uses to ma-

nage container stacking in the yard. We uses its layout comparing to the

physical layout for implementing in the simulation. The Figure 4.2 shows the

layout of port yard configured on the port application (left) and the physical

yard layout (right).

Then, the physical port layout is scaled as the draft of port layout for the

simulation as illustrated in the Figure 4.3. Finally, the layout is transformed
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Figure 4.1 – Port measurement via Google Earth

Figure 4.2 – Port yard layout

to fit in the grid-based layout of AnyLogic simulation in the same scale as

shown in the draft.

2. Facility specification - Once, the port layout has allocated the areas for

operation facilities, then instances of facilities are specified into the simula-

tion. The number of facilities, capabilities of facilities and operational policy

are provided by the port management as shown in the Table 4.1
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Figure 4.3 – Draft of port layout for the simulation

Instances of quay cranes, yard cranes, container stacks in the yard, internal

truck and hinterland gates are created with the provided specification.

List of facilities components are defined as instances (Figure 4.4) in the simulation

located in the structure of port layout as shown in the Figure 4.5.

4.1.2 Information

After the infrastructure of port layout and facilities are prompt, then the simulation

is configured to link the procedure of port operations. Each operation is programmed

to handle containers. Starting from the vessel arrival by the information of berth

plan, then containers flows through the chain of operations. Also, the arrival of ex-

ternal trucks at the hinterland gate. Historical information of container transactions
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Figure 4.4 – Simulation : components

stacks for particular ship liners cannot be implemented due to limit of in-

formation. The reshuffling of containers requires the departure time of each

container and the reshuffling algorithm. Implementing the function consumes

both memory and computing which loads the execution of simulation. In ad-

dition, the port operations consists of several computational functions. The-

refore, the procedure of port functions is implemented in both deterministic

and stochastic.

Discrete events of container operation activities are implemented in four ma-

jor operation flows :

— Vessel unloading to import/export yard (SHUL)

— Vessel loading from export yard (SHLD)
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Figure 4.5 – Simulation : layout map

Figure 4.6 – Port procedure - vessel unloading

— External truck unloading to export yard (EXUL)

— External truck loading from import yard (EXLD)

On the arrival of vessel, the historical data of vessel arrival which includes

both the planning schedule and the actual arrival time is used as input for

the simulation. The stochastic of vessel arrival is then based on the historical.
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The Figure 4.14 shows the implementation of discrete events of the four flows

in the simulation. The simulation is defined with data list, variables and

functions (Figure 4.15). Each event and function are programmable to control

the process of operation handling containers in the flows (Figure 4.16).

Figure 4.14 – Simulation : Event-based container flows in the port operation

2. Planning of vessel arrival - The port procedure is executed by the mo-

vement of containers. Major volume of containers arrive/depart via vessels

which is planned on the berth allocation before its visit. The berth allocation

usually specifies the time window (arrival and departure) of each vessel visit.

The information of vessel berth plan and vessel berthing status is captured

from the port website of the case study. The example of port berth informa-

tion on the website is shown in the Figure 4.17. The port updates the berth

plan on the changes of planning or berthing status of each vessel.

In every hour, port berthing data on the website is collected. Chrome browser

is scheduled by the Task Scheduler on Windows10 to access the website. Then,

the data is collected by Table Capture extension on Chrome to capture table
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Figure 4.15 – Simulation : defined variables and functions

data on the website to excel file. The data is collected during 12-22 February

2021 as in the Figure 4.18 (note : due to technical problem, data of some hour

is not collected).

The Task Scheduler on Windows10 is scheduled to execute the Chrome brow-

ser every hour to access the port website. Then,the Table Capture extension

on the Chrome is used to capture data on website table of the port vessel

plan and status to the excel files. Further the dataset is sorted and filtered

to acquire the transition change of vessel plan and vessel status as shown in

the Figure 4.19. Finally, the schedule of vessel berthing is acquired to show

the transition difference between the planning period and the actual berthing

period(Figure 4.20).
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Figure 4.20 – Schedule of vessel berthing

Pattern 4 - Rushed MV operation with series of delayed LTs : on some de-

lay of MV arrival, the loading/unloading operation is accelerated to finish

by the allocated departure time. As an effect, the LTs are not in berthing

service right away after MV is departed. They are delayed for a while.

(This pattern is not implemented in the simulation due to inadequate

information of the reason and pattern of LT delay.)

Pattern 5 - Tight schedule of several MVs : some MVs is delayed on ATA

extending berthing hours and further delay the next MVs.

For the uncertain arrival of external trucks is calculated based on the

historical data which we will discuss later in the part of Operation com-

ponent.

— Uncertainty in resource availability : there is uncertainty in the level of

resource capacity due to resource breakdown or the configuration of ope-

ration facilities. In the simulation, we configure the resource capacity by

the change in percentage from 100% of full capacity, 75%, 50% and 0% of

breakdown service.

— Uncertainty in operation interdependency : this kind of uncertainty is
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already in the simulated operation regarding that we implement the in-

frastructure, operation procedure and operational activities based on the

real-world operation. Therefore, the operation interdependency of the vir-

tual DT is assumed to be replicated from the real-world.

4.1.3 Operation

Once the simulation is developed with port infrastructure and operation procedures

are defined. On execution of port activities, it starts by the arrival of external trans-

portation (vessels and external trucks) to drop or to pick up the containers. Then,

the activities of the internal operation are executed as the consequence of the im-

plemented procedural flows.

Based on the proposed framework, data of operational activities should be retrieved

from the UTOs, however, currently UTOs data is inadequate for the implementation.

Instead, historical data of vessel and external truck are collected and manipulated

to acquire the necessary data for implementation. Historical of container transaction

data is provided from the port case. 135,278 transaction records are extracted from

the year 2018, January to December in one week of each month. The historical data

is extracted for port activity statistical as follows :

1. Container input for the port operation : the port connects external access to

the seaside and to hinterland trucks. The information related to the flows of contai-

ners are extracted e.g. the ratio of each container types, the number of import/ex-

port container accessing on each transportation modes, frequency of transportation

arrival/departure and etc.

Additional information of vessel visit is collected through the port website. It pro-

vides information of the vessel plan and visiting status such as the estimated time
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to arrival (ETA), the estimated time to departure (ETD), the actual time to arrival

(ATA), the actual time to departure (ATD) and berth number. Patterns of vessel

visits are collected based on the information as illustrated in the Figure 4.21.

Further, the input number of container generated into the virtual operation should

have the similar pattern with the physical operation as well. Then, data distributions

are fitted to acquire statistics of external truck arrival rate and vessel transferring

rate.

Note for the input of vessel information for executing the DT model on this expe-

riment, the vessel arrival time is based on raw historical data while the number of

containers carried by the vessel is calculated based on the statistics of vessel trans-

ferring rate due to the limit of data acquisition. Therefore, the result of the operation

time and departure time of each vessel from the virtual operation cannot be compa-

red directly to the vessel result in the physical operation. The comparison is made

on the deviation of vessel operation time and the deviation of vessel departure time

instead.

2. Uncertainty factors triggering the operation : the vessel arrival pattern

shown in the Figure 4.21 representing the berthing plan of vessels on the top of the

figure and the actual berthing period of vessel on the bottom of the figure. Each box

represents a vessel, its left edge is arrival time and its right edge is departure time.

The same box id on the top section and the bottom section are compared to visual

the difference of the plan of vessel berthing and the actual of vessel berthing. Based

on this information, the deviation times to the plan of all vessels are specified and

fitted into distributions.

Figure 4.21 – Comparison of the plan and the actual pattern of vessel visits
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3. Output of port operation : as noted in ’2. Container input for the port

operation’ above, the output of ’vessel operation time’ and ’vessel departure time’

produced from the virtual operation should be compared to the physical operation in

order to validate the DT model. Due to the limitation, the deviation of results should

be used for the model validation instead. Therefore, dataset of the vessel information

from the physical system is calculated for the deviation of vessel operation time and

the deviation of vessel departure time (shown in the Figure 4.22) for later to compare

with the virtual operation output.

Figure 4.22 – Deviation of vessel operation time (left) and deviation of vessel
departure time (right)

Vessels and external trucks are input sources of the model. Vessels are generated

into the berth in the virtual space at the time of ETA plus an uncertainty of arrival

time. While the external trucks are generated at an arrival rate depending on the

day and the hour. Containers are then processed through the port operations as

programmed in the flows until loading and unloading of containers to/from the

vessel are complete. The vessel is then departed and the next vessel comes to the

port on its ETA schedule. Note that uncertainty is configurable to entities of the

simulation such external truck and port facility. The Figure 4.23 shows the 3D model

of port operation simulation.

126



Figure 4.23 – Simulation of port operation

4.2 Simulation calibration

A set of 28 input vessels was simulated for 16 days of the port operation. On the

arrival of each vessel to the virtual berth, the actual arrival time was recorded. Once

the loading and unloading operations are complete and vessel departed, the actual

departure time was recorded as the example shown in Table 4.2. The plan of the first

vessel arrival was Feb 12, 20 :00 :00 but it actually arrived the berth on the same

day 20 :58 :38 with 58 minutes delay. The vessel finished the operation of container

transferring and departed on Feb 13, 12 :02 :17.

The vessel operation time was calculated from ’actual departure’ - ’actual arrival’,

the first vessel operation time was 15 hours and 3 minutes. The vessel departure time

was the ’actual departure’. These two data parameters are the output of simulation

performed based on the port input such arrivals of vessels and external trucks and

the port operation process flows.
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Table 4.2 – Simulated result of vessel arrival and departure

Plan Arrival Actual Arrival Actual Departure

Feb12 20 :00 :00 Feb12 20 :58 :38 Feb13 12 :02 :17
Feb13 08 :00 :00 Feb13 16 :39 :22 Feb13 20 :25 :16
Feb14 00 :30 :00 Feb14 00 :47 :18 Feb14 04 :09 :41
Feb14 04 :12 :00 Feb14 04 :28 :00 Feb14 12 :22 :00
Feb14 11 :18 :00 Feb14 12 :36 :34 Feb14 15 :31 :25
Feb14 15 :24 :00 Feb14 15 :48 :20 Feb15 01 :04 :44
Feb15 08 :06 :00 Feb15 08 :21 :39 Feb15 10 :11 :21
Feb17 09 :18 :00 Feb17 09 :32 :35 Feb17 15 :14 :04
Feb17 15 :00 :00 Feb17 15 :30 :41 Feb18 01 :10 :14
Feb17 19 :42 :00 Feb18 01 :28 :03 Feb18 03 :12 :32

4.3 Simulation validation

The source of model input (’truck arrival rates’, ’vessel arrival deviation’) and model

output (’vessel operation deviation’, ’vessel departure deviation’) are historical data

from the physical operation that are validated.

Each model input constructs its statistic distribution. By comparing among distri-

bution shapes using Q-Q plot, the most fitted shape is selected, e.g. truck arrival rate

is in Weibull(19.271, 1.847) for weekdays and in Normal distribution(34.22, 14.266)

for the weekend. On virtual arrival of vessels, schedule is based on historical data

with a deviation time. The vessel arrival deviation is Gamma(0.7,5). The number of

vessel loading/unloading containers are calculated from the vessel transferring rate

of each vessel type. Simulation applies selected distributions into the model. Output

data generated by the simulation are later compare with the distribution shape such

as the Figure 4.24.

Different for the output validation, simulation output data records are compared

directly with historical data. Generally, about 43.5% of results, the difference of

vessel operation time are about ± 1 hour. In Figure 4.25, the average of operation

deviation time from the historical data and the simulated data are slightly different.

The local barge with the less number of containers (about 1-200 containers) spent
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Figure 4.24 – Input validation of vessel arrival deviation

less operation time than the physical system. While the motor vessel with a larger

number of containers (about 200-2000 containers) spent more operation time than

the physical system as shown in Figure 4.25.

4.4 Discussion and Conclusions

Adjusting the port operation plan under uncertain circumstance is challenged. Esti-

mating an uncertain situation of complex environment involving various stakeholders

and operation interdependency is limited. Currently, it is lacking of the model to

acquire information of port operation with uncertainty for operational decision. The-

refore, it is difficult for the port to manage uncertainty and make a precise decision

of the plan reactivity such the time when the original plan becomes incapacity.

The presented digital twin model was constructed based on the real physical port

infrastructure and the synchronization run was executed using historical data as

input to the model. The Results of the virtual and the physical system have similar

behavior excepts in the case of high volume of container arrival. The expansion of

difference in the two system could be wider than the small volume of container

arrival. The operation tuning in the virtual system may improve this. In addition,

the port consists of several operation components. This model did not use data of

the whole operation in the same time horizon.
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Figure 4.25 – Output validation of vessel operation time

The model is validated for physical-to-virtual synchronization. The usage of virtual

data for virtual-to-physical application can be explored. We aim at using periodic

data of port facility status to observe the ability in maintaining the berth planning

by predicting the estimated time to departure (ETD) of vessel in the future time

horizon.
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Macroscopic prediction

The Macroscopic Prediction is the last stage in the proposed framework. Earlier

stage, the Microscopic Simulation executes the movement of containers at the mi-

croscopic level. The results of all port operation nodes are collected as input for

the Macroscopic Prediction to learn and construct the knowledge base. The multi-

variate LSTM is used to model the machine to learn the port operation activities

under forces of uncertain changes and then to predict performance of the interested

operation as discussed in the section 2.2.3.2. Dataset receiving from the Microscopic

Simulation is transformed to be prepared for the input of machine learning as the in-

ference proposed in the section 3.4.1. The learning aims to construct the knowledge

base of the port operation with uncertainty as defined based on the uncertainty

structure of Walker et al. for performance prediction. The result of prediction is

finally presented.
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3. Output gate - the last gate to decide output using all information of pre-

vious step output h(t-1), current step input X(t) and updated cell states in

the memory C(t). The sigmoid neural network chooses which parameters are

the output. Then, the result is multiplied with the tanh of historical infor-

mation to identify the relevant among current information and the previous

information.

5.1.2 LSTM for knowledge learning

Based on the uncertainty structure proposed by [122], the knowledge of port ope-

ration with uncertainty should be constructed from uncertainty nodes of both the

internal operations and the external operations. Therefore, the machine learning of

LSTM should learn multiple data nodes at a time. Then, the multivariate stack

LSTM as shown in the Figure 5.3 is used to learn the operation states of all nodes

that happening at the same time in all at once. In addition, by this model approach,

the dependency of operation nodes is in the consideration [129]. In the next time

step, the LSTM learns the evolving of all nodes in all at once through the historical

memory storing information of nodes as well. In another words, by the multivariate

stack LSTM offers the port operation learning with data dependency in both the

horizontal dependency among port operation nodes and the vertical dependency

between port operation nodes and uncertainty changes through the time in short

term and long term.

The Figure 5.4 illustrates the example of multi-input and multi-output steps (MIMO)

of 3-step input and 2-step output. Each column represents the data collected at

timestep-n. At a timestep data of all features are collected at once. On the first

learning step, data of timestep-1 to timestep-3 are fed as input to predicts future
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5.1.3 Data preprocessing

The Microscopic Simulation executes the simulation and captures the temporal data-

set every 10 minutes consisting vessel berthing plan, vessel states and port operation

states. The simulated dataset consists 5 sets of information with the total of 22 pa-

rameters. Some parameters are in String format while the learning of LSTM works

with the metric of numerical data. Therefore, those features requires a transfor-

mation to numerical format and the formatted dataset should be consistent to the

learning inference. The list of simulated data features is as follows :

SET1 - Vessel berthing plan guiding LSTM

vessel_initial - The incoming vessel initiated to the simulation prior to its ETA

expected_tounload - Number of expected containers to unload from initialed vessels

expected_toload - Number of expected containers to load from initialed vessels

SET2 - Vessel states representing the berthing activities

ata_wz - The vessel that arrives into the wait zone

ata_berth - The vessel that arrives into the berth

atd_berth - The vessel that departs from the berth

SET3 - Vessel states representing expected and arrived queues

shipnum_exp_wz - Number of vessels expected to arrive in the wait zone

shipname_exp_wz - List of vessels expected to arrive in the wait zone

shipnum_exp_berth - Number of vessels expected to arrive in the berth

shipname_exp_berth - List of vessels expected to arrive in the berth

shipnum_wz - Number of vessels arrived in the wait zone

shipname_wz - List of expected arrived in the wait zone

shipnum_berth - Number of vessels arrived in the berth

shipname_berth - List of vessels arrived in the berth

SET4 - Operation states representing performance of facilities

Qcrane_time_SHUL - Avg. of Qcrane operation time to unload a container

Qcrane_time_SHLD - Avg. of Qcrane operation time to load a container

ICD1_Ycrane_time - Avg. of Ycrane operation time to process a container
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ICD2_Turnaround_time - Avg. of truck turnaround time to process a container

SET5 - Operation states representing number of handling containers

count_EXUL - Number of external truck to unload container

count_EXLD - Number of external truck to load container

SH_tounload - Number of containers to unload from the berthing vessel

SH_toload - Number of containers to load from the berthing vessel

The simulation records activities of port operations every 10 minutes. These para-

meters specifies states of activities occurred during each time step.

SET1 is the information of vessel berthing plan. Since the vessel arrival is in stochas-

tic even with the plan, the actual arrival can be deviated in early arrival or delay

arrival. This set of information has a purpose to reduce stochastic of the arrival by

informing the LSTM in advance that soon a vessel is visiting. The simulation ini-

tiates the vessel instance three hours in advance of the vessel ETA. Early of vessel

instantiation is for adhering to the next record of vessel actual arrival either early or

delay arrival. vessel_initial specifies the incoming vessel name. expected_tounload

and expected_toload specify the number of incoming containers to unload and to

load.

SET2 information is used to inform the LSTM about the actual occurrence of vessel

berthing activities during the time step. ata_wz, ata_berth and atd_berth records

the vessel name on its wait zone arrival, berth arrival and berth departure, respec-

tively. The information notifies the LSTM when the berthing activity of the vessel

is occurred. In addition, the deviation of vessel arrival from the plan can be implied

from the difference between time steps of SET1 and SET2 information.

SET3 information is to track the changes of vessel status. The vessel lists are updated

when a vessel changes its berthing activity. For example, when the vessel is initiated,

it is added to shipname_exp_wz and shipname_exp_berth lists implied that the
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vessel is expected to arrive to the wait zone and the berth in three hours. On the

arrival to the wait zone, the vessel is then removed from shipname_exp_wz and

added to shipname_wz notifying the change of activity. When the vessel moves into

the berth, the vessel is shifted from the shipname_wz to the shipname_berth. The

shipname_berth presents the vessel status when the vessel arrives or departs the

berth so this parameter is also used for the prediction output.

In addition to the information that parameters of SET1, SET2 and SET3 inform the

LSTM about the plan and the actual occurrence of berthing activities, the evolving

of data also shows the period of time between activity transitions. For example the

vessel arrival as a change of berthing activity, the deviation from the ETA is believed

to be implicated via the difference of time steps between vessel_initial and ata_wz

parameters. Further, the trend of vessel arrival is believed to be explored by the

LSTM.

SET4 is the information of performing time of port operations during the collecting

time step. The parameters shows changes of operation state in regard to the container

demand from both the vessel and the external truck. Qcrane_time_SHUL measures

the time from the container since it starts waiting for the quay crane on the vessel

until it is unloaded to the internal truck. Qcrane_time_SHLD measures the time

from the container since it starts waiting for the internal truck to pick up from the

stack until it is loaded to the vessel. ICD1_Ycrane_time measures the time that a

truck waits for the yard crane to pick up the container and place on the stack at the

ICD1 export yard. ICD2_Turnaround_time measures the time that the external

truck waits to pick up the container from the ICD2 import yard.

SET5 is the information to show how much containers that the port is operating

during the collecting time step. count_EXUL and count_EXLD shows the number

of external truck visiting to unload and to load containers, respectively. SH_tounload
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is then able to learn the port operational dataset in both vertical and horizontal by

using 3D data input.

5.2 Prediction result

Experiments on prediction model are conducted with purposes as follows :

1. to verify that the proposed inference with features derived from port operation

activities are eligible for the LSTM prediction modelling

2. the LSTM prediction model is capable to predict the state of port performance

using the dataset of real-world case of port operation with uncertainty

3. to explore how the behavior of prediction is changed due to the configuration

of MIMO steps

5.2.1 Scenarios

Experiments are conducted in 2 phases. The first phase is to use the mocked up

data and a simple simulation model to proof the concept of modelling approach.

The second phase is to use the dataset based on the real-world port activities to

verify the capability of the proposed model in prediction accuracy.

5.2.1.1 Set 1 : Mocked up data

The first set of experiments, the simple simulation model executes the mocked up

data of 5 vessels. Each vessel arrives to the port according to the plan. The external

trucks arrive the port at a fixed rate. It captures data of operation states in 10-

minute interval, so it generates 255 temporal data records. The dataset is split to

175 samples for LSTM training and 44 sample for the LSTM validation.
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The configurations of MIMO steps are applied on each LSTM execution. The results

are as shown in the Figure 5.6.

The prediction results are more accurate on the shorter steps of prediction output.

In addition, it is noticed that on the transition of the previous vessel departure to

the next vessel arrival, the prediction is more accurate when the time space between

the two vessel is wider.

For this dataset that seems not containing various impact from uncertainties, the

model is capable for predicting the port operation for 18 steps or 3 hours. At MIMO

steps of 36-36 or 6-hour input and output, the prediction tends to be impracticable

for distinguishing the arrival and the departure of vessels.

5.2.1.2 Set 2 : Real-world port data

The second experiment is conducted using data based on real-world port operation

generated from the configured digital twin. The DT simulation executes 30 vessels.

It generates 2,510 temporal data records. The dataset is split to 2,003 samples for

LSTM training and 507 sample for the LSTM validation. This dataset contains the

real-world stochastic of vessel arrival uncertainty as classified in the patterns of vessel

arrival and the stochastic of external truck arrival as discussed in the section 4.1.2.

The configurations of MIMO steps are applied on each LSTM execution. The predic-

tion results are as shown in the Figure 5.7 with the graph of model accuracy (Figure

5.8)and the graph of model loss (Figure 5.9).

The prediction model can learn and well predict the result with the MIMO : 1-1

step configuration (accuracy=87.38%). Even it is impractical for the prediction time

range, however, the result shows that the implication of proposed inference is appli-

cable for LSTM learning and construction of real-world port operation knowledge.
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For the dataset of this scenario is capable for predicting the port operation for 3

steps or 30 minutes which is far less than the set1 scenario of mocked up data. The

reason could be the stochastic in the operation resulting the variation of pattern in

the dataset. Notice the Figure 5.8 and 5.9, at MIMO 9-9, the testing accuracy is

dropped dramatically, also the testing loss. The gap between the training data loss

and testing data loss are expanded between these two lines, this is interpreted that

the more dataset is required for the model training, as well as, the others longer

prediction period.

5.3 Conclusion

Once the operational dataset is generated by the simulation, In the chapter 5, the

Macroscopic Prediction models the knowledge base based on the dataset using the

LSTM network. The LSTM is modelled as the multivariate stacked in order to be

conformed with the characteristic of port uncertainty. The port uncertainty is ho-

rizontally interdependence among operations and the is vertically changed by the

time. 3D temporal dataset is pre-processed by transforming simulated String data

to the binary format. Five sets of information which are inferred to port operation

activities, vessel berthing activities and vessel berthing plan are also the elements

of uncertainty structure. Two experiment sets are conducted to observe the fitting

accuracy of the dataset with the configuration of input learning steps and output

prediction steps. Results shows that the proposed inference and data features can

be trained by the LSTM to construct the knowledge base for port operation with

uncertainties. Even the prediction result of the current real-world dataset with un-

certainty forces cannot accurately predict the operation for long hours but training

the longer period of dataset might improve the prediction accuracy. Further, the
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testing of MIMO step is suggested for modelling the port operation prediction since

it would help verify the sensitivity of dataset to the operation change.
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Conclusion and Outlook

Contribution

By the maritime industry, UNCTAD highlights uncertainty and resilience to changes

in year 2020 due to its impact linked to the global network in complex pattern

[116]. Port is a global network unit with high variability of uncertainty factors. Port

challenge is to handle various random kinds of uncertainty. Operation is changed

by unknown of uncertainty magnitude, by the taken reactivity and by operation

interdependency, so it is ambiguous to specify relationships between the operation

lead time and impact influenced from all uncertainty. In addition, the uncertainty

magnitude and the operation lead time are changed overtime.

By the scientific literature, two structural literature reviews are conducted illustra-

ting that kinds of uncertainty are exploded and transferred through the chain of

maritime logistics, container carriers and port operational functions. They are in-

terrelated and uncertainty results in the performance of port operation functions.

However, researches study in the scope of particular port operation functions. Some

researches study in the scope of particular uncertainty sources. While the operation

in the field consists of various kinds of uncertainty affecting through the flows of

port operations. The quantitative relationships between uncertainty and the opera-

tion lead time are, therefore, limited.
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The case of UK port congestion during the pandemic period in 2020 shows diffi-

culties in estimating the operation lead time caused by uncertainty. Dealing with

various uncertainties e.g. vessel traffic, container volume, haulage shortage and etc.,

the estimation of vessel lead time such as the ETAs and ETDs were recurrently

scheduled. According to the issue and limitations in literature as described, it seems

that the information and knowledge for supporting the estimation is limited.

The ability in estimation of port operation lead time to support decisions in port

resource management is critical, especially the berth allocation. The ETA and ETD

should be estimated at an accuracy, otherwise, the planning of the others resources

in the operation flows requires updates in accordance to the changes of ETA and

ETD. So, we are interested to use the knowledge of port operation with uncertainty

to support the reactivity decision for berth allocation as the case study.

In the Chapter2, literature reviews are conducted to justify the research approaches

in order to define the sturcture of the knowledge model for port operation with un-

certainties, to specify the knowledge source and to specify the approach to construct

the knowledge.

To define the knowledge sturcture of port operation under uncertainty, two concep-

tual models of uncertainty proposed by Van Asselt, Rotmans [119] and Walker et al.

[122] are reviewed. Both models define their models in two parts ; the modelling of un-

certainty context and the modelling of knowledge for dealing with uncertainty. Wal-

ker et al.’s model is adopted in the port of uncertainty context due to its consistent

to the physical port operation with its uncertainty. The model describes uncertainty

as the fundamental forces travelling around the system. For the part of knowledge

for dealing with uncertainty, Van Asselt, Rotmans mentions the availability of know-

ledge to be observed/measured by available tool. Walker et al. classifies knowledge

level by its form ; in statistical, in scenario, in theoretical or inconsiderable.
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Body of knowledge for dealing with port operational uncertainty is aligned in dyna-

mic process-based approach such the activity system [100] than the human resource-

based approach such the SECI model [80]. Due to the operational uncertainty dy-

namically flows in the environment in autonomy by the nature and unexplained,

human instant perception is limited.

Next, shows the consideration of how to acquire knowledge from the port activity

system. Generally, traceability data is used to track activities of systems. A structural

literature review of traceability data is analysed in acquisition approaches, data

usages and issues. As a result, the unitary traceability data (UTO) offers capability as

the real-time microscopic data that allows visibility of operation movements through

the system. UTO is the eligible tool to acquire data for modelling the Walker et al.’s

uncertainty structure.

Knowledge Engineering (KE) is studied in the conceptual process to transform data

of activity system to construct the knowledge base of port operation with uncer-

tainties. Along with, Digital Twin(DT) is used to define the system implementation

process to transform data of activity system to construct the knowledge base in

practicable. DT offers the generation of a sufficient volume of data with configurable

cases of uncertainty scenarios.

Chapter 3 proposes the framework consisting of three stages ; Port Component Ex-

traction, Microscopic Simulation and Macroscopic Prediction. On the first stage,

Port Component Extraction should specifies components that requires for building

the virtual port of the Digital Twin. In the chapter 3, we analyse the requirement in

the use of data components for the proposed framework. Port components are used

for modelling the Digital Twin, for structuring the knowledge of port uncertainty

and for reasoning the machine learning. The required components are classified as

Infrastructure, Information and Operations. Data of port components are collec-

ted from the real-world port system via the primary and secondary sources. Port
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manager of the case study port in Thailand is interviewed. The case also provides

historical data of container transactions which is further used to extract the ope-

ration statistics such as vessel transferring rate, visiting rate of external truck, the

duration of container storage at the yard and etc. The information of vessel berthing

plan and berthing activities are collected from the port website.

In the chapter 4, the Microscopic Simulation constructs the digital twin model ba-

sed on data and information extracted from the physical port. The physical-virtual

synchronization run was executed using historical data as input to the model. The

Results of the virtual and the physical system have similar behavior excepts in the

case of high volume of container arrival. The expansion of difference in the two sys-

tem could be wider than the small volume of container arrival. The operation tuning

in the virtual system may improve this. In addition, the port consists of several ope-

ration components. This model did not use data of the whole operation in the same

time horizon. The model is validated for physical-to-virtual synchronization. The

usage of virtual data for virtual-to-physical application can be explored. We aim at

using periodic data of port facility status to observe the ability in maintaining the

berth planning by predicting the estimated time to departure (ETD) of vessel in the

future time horizon.

Once the operational dataset is generated by the simulation, In the chapter 5, the

Macroscopic Prediction models the knowledge base based on the dataset using the

LSTM network. The LSTM is modelled as the multivariate stacked in order to be

conformed with the characteristic of port uncertainty. The port uncertainty is ho-

rizontally interdependence among operations and the is vertically changed by the

time. 3D temporal dataset is pre-processed by transforming simulated String data

to the binary format. Five sets of information which are inferred to port operation

activities, vessel berthing activities and vessel berthing plan are also the elements

of uncertainty structure. Two experiment sets are conducted to observe the fitting
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accuracy of the dataset with the configuration of input learning steps and output

prediction steps. Results shows that the proposed inference and data features can

be trained by the LSTM to construct the knowledge base for port operation with

uncertainties. Even the prediction result of the current real-world dataset with un-

certainty forces cannot accurately predict the operation for long hours but training

the longer period of dataset might improve the prediction accuracy. Further, the

testing of MIMO step is suggested for modelling the port operation prediction since

it would help verify the sensitivity of dataset to the operation change.

Future work

The outlook of this research could be subjected in short term, middle term and long

term.

The digital twin on our experiment is developed based on the real physical port

system with real-world data input that stimulate uncertainty into the port system,

however, the acquisition of data is limit. It requires to collect data from various

sources and requires data manipulations.

Therefore, in short term, to improve this research. First, scaling up the data volume

would support the prediction modelling. The validation of prediction model would

be more precise. Second, the proposed pre-processing of data features is based on

one implication approach, the technique of feature selection could be applied. Once

the prediction model is solid, it further would be deployed in the real port with the

verification of decision support by the port manager.

In the middle term, the study may extend the experiment in the whole cycle of digital

twin. This research focus in the initializing of knowledge based prediction model by

using simulation to generate uncertainty and using data from several sources. If
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Chapitre 5 Macroscopic prediction

data is accessible directly from the real operation, the whole cycle of digital twin

that performs the real-time prediction to support the port manager. In addition, the

other techniques of prediction modelling such as the combination of recurrent model

with the other deep learning algorithm is also interested to improve the fitting of

port operational dataset.

Last, in the long term, it is interested to extend the operation dataset with the sur-

rounded environment such as weather and traffic. The data is available to aggregate

from the GPS. It would comprehend the operation situation.
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