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Title: Essays on monetary policy, inflation and financial markets in the euro area

Keywords: ECB monetary policy; Euro ara; Business cycle; Inflation; Macroeconomic risks;

Financial crises

Summary: This thesis is composed of three essays which analyze the implications of macroe-

conomic and financial risks for monetary policy, using the euro area as a laboratory.

Chapter 1 shows how the conduct of euro area monetary policy has evolved in the aftermath of

the Great Recession of 2007-09 with respect to that implemented in the U.S., and what have

been the macroeconomic effects of this shift. I use a vector autoregression with time-varying

parameters to estimate a monetary policy rule with drifting response coefficients to inflation

and real economic activity. The results show that the conduct of monetary policy in the euro

area has evolved differently than in the U.S. after the 2008 crisis. Whereas the estimated

U.S. policy rule does not suggest any significant change in the Fed’s systematic reaction to

macroeconomic fluctuations after 2008, euro area reaction function reveals important changes

in ECB’s monetary policy, which has considerably increased the weight it placed on stabilizing

inflation. A counterfactual analysis shows that the shift in ECB monetary policy appears to be

a key determinant of the level of inflation in the euro area at the ZLB, that would have suffered

successive deflationary episodes from 2014 onward.

Chapter 2 studies the role of the ECB in stopping the spread of the coronavirus pandemic to

financial markets in the euro area. We use non-linear local projections to measure the reaction

of sovereign spreads to new COVID cases and examine how it evolved around the dates of ECB

interventions in March 2020. The results show that despite the controversy generated by the

“we are not here to close spreads” declaration of Christine Lagarde, the ECB actually stopped

the spread of the pandemic-sparked crisis to the euro area sovereign debt markets on March

12, before the announcement of the PEPP and the conduct of market operations that occurred

on March 18, leading to the reversal of sovereign spreads. A counterfactual analysis indicates

that without ECB’s interventions, sovereign spreads in the euro area would have reached levels
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comparable to those observed during the 2010-12 sovereign debt crisis.

Chapter 3 assesses inflation differentials in the euro area, and how it should be assessed through

the lens of risk of inflation. We aim at providing a more complete picture of inflation differentials

across euro area countries by delivering time-varying measures of inflation risks dispersion. To

do so, we construct measures of risk of inflation dispersion based on the cross-country standard

deviation of predictive inflation distribution estimated with a quantile Phillips curve. We find

that whereas the dispersion was concentrated on upside inflation risks until 2008, it has been

stronger for the lower tail of the distribution after 2008. The results also show that inflation

dispersion has been driven by successive episodes of downside and upside inflation risks over

the post-COVID period. A counterfactual analysis highlights financial stress as being a key

determinant of the dispersion of downside inflation risks, and supply chains disruptions a being

an important driver of the dispersion of upside risk to inflation. Estimation results also reveal

noticeable Phillips curves heterogeneity across countries, and underline the role of heterogeneous

Phillips curve coefficients in the dispersion of inflation in the euro area.
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Titre: Essais sur la politique monétaire, l’inflation et les marchés financiers en zone euro

Mots clés: Politique monétaire de la BCE; Zone euro; Cycle économique; Inflation; Risques

macroéconomiques; Crises financières

Résumé: Cette thèse se compose de trois essais qui analysent les implications des risques

macroéconomiques et financiers pour la politique monétaire, en utilisant la zone euro comme

laboratoire.

Le chapitre 1 montre comment la conduite de la politique monétaire de la zone euro a

évolué au lendemain de la Grande Récession de 2007-09 par rapport à celle mise en œuvre

aux États-Unis, et quels ont été les effets macroéconomiques de cette évolution. J’utilise un

modèle vecteur autorégressif avec des paramètres variables dans le temps pour estimer une

règle de politique monétaire avec des coefficients dérivants de réponse à l’inflation et à l’activité

économique réelle. Les résultats montrent que la conduite de la politique monétaire dans la

zone euro a évolué différemment qu’aux États-Unis après la crise de 2008. Alors que la règle

de politique américaine estimée ne suggère aucun changement significatif dans la réaction sys-

tématique de la Fed aux fluctuations macroéconomiques après 2008, la fonction de réaction de

la zone euro révèle des changements importants dans la politique monétaire de la BCE, qui

a considérablement accru l’importance accordée à la stabilisation de l’inflation. Une analyse

contrefactuelle montre que le changement de politique monétaire de la BCE semble être un

déterminant clé du niveau d’inflation dans la zone euro en ZLB, qui aurait subi des épisodes

déflationnistes successifs à partir de 2014.

Le chapitre 2 étudie le rôle de la BCE dans l’arrêt de la propagation de la pandémie de

coronavirus sur les marchés financiers de la zone euro. Nous utilisons des projections locales

non-linéaires pour mesurer la réaction des spreads souverains aux nouveaux cas de COVID et

examinons son évolution autour des dates d’interventions de la BCE en mars 2020. Les résul-

tats montrent que malgré la controverse générée par la déclaration « nous ne sommes pas là

pour réduire les spreads » de Christine Lagarde, la BCE a effectivement stoppé la propagation
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de la crise déclenchée par la pandémie aux marchés de la dette souveraine de la zone euro le 12

mars, avant l’annonce du PEPP et la conduite des opérations de marché survenues le 18 mars,

conduisant au retournement des spreads souverains. Une analyse contrefactuelle indique que

sans les interventions de la BCE, les spreads souverains dans la zone euro auraient atteint des

niveaux comparables à ceux observés lors de la crise de la dette souveraine de 2010-12.

Le chapitre 3 évalue les écarts d’inflation dans la zone euro, et la manière dont ils devraient

être évalués à travers le prisme du risque d’inflation. Notre objectif est de fournir une image

plus complète des écarts d’inflation entre les pays de la zone euro en fournissant des mesures

variables dans le temps de la dispersion des risques d’inflation. Pour ce faire, nous construisons

des mesures du risque de dispersion de l’inflation sur la base de l’écart type entre pays de la

distribution prédictive de l’inflation estimée à l’aide d’une courbe de Phillips quantile. Nous

constatons que si la dispersion était concentrée sur les risques d’inflation à la hausse jusqu’en

2008, elle a été plus forte pour la queue inférieure de la distribution après 2008. Les résultats

montrent également que la dispersion de l’inflation a été alimentée par des épisodes successifs

de risques d’inflation à la baisse au début de la crise du COVID et des risques d’inflation à

la hausse au cours de la période post-COVID. Une analyse contrefactuelle souligne que les

tensions financières sont un déterminant clé de la dispersion des risques d’inflation à la baisse,

et que les perturbations des chaînes d’approvisionnement sont un facteur important de la dis-

persion des risques d’inflation à la hausse. Les résultats des estimations révèlent également

une hétérogénéité importante des courbes de Phillips entre les pays et soulignent le rôle des

coefficients hétérogènes de la courbe de Phillips dans la dispersion de l’inflation en zone euro.
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Introduction

The euro area has evolved considerably since its creation in 1999. As an important feature of

the Economic and Monetary Union (EMU), the euro—as a common currency—was initially

adopted by eleven countries to foster economic cooperation, facilitate firms’ cross-border trade,

bring economic stability, and improve consumers’ well-being. Since then, the euro area has

also greatly expanded through a series of enlargements to twenty countries as of January 2023.

However, along with the above-mentioned advantages offered by the adoption of a single cur-

rency and despite prolonged periods of economic expansion, the Eurozone has experienced an

increasing number of crises of various kinds over the last few years. The downturn in the U.S.

housing market and the collapse of Lehman Brothers in September 2008 led to the so-called

Global Financial Crisis—hereafter, GFC—characterized by unprecedented financial turmoil all

around the world, including the euro area. In early 2010, the sovereign debt crisis, triggered

by the Greek crisis, was marked by soaring borrowing costs in all euro area member countries,

threatening the European monetary union as a whole. Ten years later, in late 2019, the health

and sanitary crisis caused by the COVID-19 pandemic outbreak has generated a noticeable

episode of turbulences in the global, and inevitably, the European financial markets. More

recently, in 2021, the world economy has also faced a global energy crisis, resulting in record

high levels of inflation in the euro area.

Importantly, each of those crises has turned into substantial financial downturn, giving rise

to downward pressure on real economic activity, and sparking (a risk of) recession in the euro

area. In this context, both macroeconomic and financial risks had huge policy implications,

especially regarding monetary policy. To face new challenges posed by this risky and uncer-

tain economic environment, the European Central Bank (ECB) needed to adapt its policy

framework and hence reviewed its strategy in July 2021. The points discussed below closely

articulate with some of the key elements raised in ECB’s strategy review, namely the conduct
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of monetary policy at the zero lower bound—hereafter, ZLB—in an inflation targeting frame-

work, the importance of monetary policy communication and the inclusion of financial stability

considerations, or the need for a regular and robust assessment of the risks to price stability

and the macroeconomic outlook. Each of them is backed by seminal academic papers that gave

the ground for a new reflexion to help improving the conduct and the effectiveness of monetary

policy. More specifically, the aim is to use this literature to introduce the topics discussed in

this thesis, in line with the above-mentioned elements specified in the strategy review of 2021.

The present thesis addresses three distinct themes, each depicting a major turning point in

euro area monetary policy over the last years.

In the wake of periods of high macroeconomic and financial instability, lots of central banks

needed to adjust their policy framework. In the euro area, the deteriorating macroeconomic

environment during troubled times has forced the ECB to take major policy decisions in order

to fulfill its mandate of price stability. This has induced the implementation of accommodative

policies, mainly through lower interest rates, and non-standard monetary policy measures such

as asset purchases. A large part of academic research in monetary economics has been devoted

to studying the reaction of the central bank to macroeconomic fluctuations.

Evidence of central bank’s systematic response to economic conditions has been raised by

Professor John Taylor in his landmark paper of 1993 (see Taylor, 1993). Taylor proposes a

specification that describes U.S. monetary policy between 1987 and 1992. According to the

rule, the Federal Reserve (Fed) sets its policy rate in response to inflation rate and economic

activity measured as the percent deviation of real GDP from a long-term trend. Since then, the

Taylor rule has become a popular tool to gauge how central banks systematically respond to

inflation and output fluctuations. Furthermore, the systematic component of monetary policy

has been shown to change over time. Clarida et al. (2000) study how the estimated monetary

policy reaction function differed before and after Paul Volcker’s appointment as Fed Chair

in 1979. Their results suggests that the Volcker-Greenspan rule has been highly sensitive to

changes in inflation and then stabilizing, compared to the pre-Volcker rule.

The systematic component of monetary policy has been broadly used in multivariate analy-

sis such as Vector Autoregresssions (VARs) models. Estimating central banks’ reaction function

in such frameworks provides a broader and more accurate picture of the role of monetary policy

in macroeconomic fluctuations. In the spirit of the previous paper, the question of changes in
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systematic monetary policy over time has also been raised in VAR models, which bring con-

siderable flexibility regarding estimates of regime-dependent policy rule coefficients. Seminal

works using such methodologies include Cogley and Sargent (2005), Primiceri (2005), Sims and

Zha (2006a,b).

Previous literature underlines how changes in central banks’ systematic responses to macroe-

conomic conditions could avoid large fluctuations. However, the growing and evolving role of

monetary policy as a stabilization tool has also been widely studied through financial markets

reaction to central banks’ policies. Since financial markets have become the cornerstone of the

global economic development over the last decades, their fluctuations matter for the transmis-

sion of monetary policy. In this respect, central banks’ policy communication and their impact

on financial markets now represent a key feature of the conduct of monetary policy, especially

during financial downturns.

Most of this literature has been devoted to the analysis of asset price movements in a time

window around monetary policy announcements. The economists Timothy Cook and Thomas

Hahn were among the first to shed light on this topic in their benchmark paper of 1989 (see

Cook and Hahn, 1989). They measure the reaction of market interest rates on days of changes

in the Fed’s policy instrument in the period from September 1974 to September 1979, and

find that target changes significantly affect interest rates all along the yield curve, with larger

movements in short-term rates.

Then, the effects of monetary policy on asset prices has been widely studied in the literature

using high-frequency event-study analysis. A large strand of the literature started with Kuttner

(2001) and including Bernanke and Kuttner (2005) and Gürkaynak et al. (2005) assesses the

response of asset prices to financial market surprises around key monetary policy announce-

ments. These papers highlight the major role played by communication in monetary policy

making, mainly through its direct effect on financial markets.

Recent evidence of euro area monetary policy using these techniques include Altavilla et al.

(2019), Andrade and Ferroni (2021), Leombroni et al. (2021).

Assessing macroeconomic and financial risks is essential for central banks, whose policy

decisions mostly depend on current and future economic conditions. The successive crises that

have affected the world economy since 2008 have encouraged academics and policy-makers to
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rethink the role of monetary policy in business and financial cycles fluctuations. Precisely, it

aims at considering a new monetary policy framework based on the central bank’s assessment

of the risks to the economic outlook.

This relates to the concept of risk-management approach to monetary policy-making de-

veloped by the then Fed Chair, Alan Greenspan, in 2004 (see Greenspan, 2004). For the

policy-makers, it consists in identifying the sources of risk and uncertainty surrounding the

economy, quantifying those risks, and assessing the associated costs that are likely to threaten

central banks’ ability to achieve its goals. This concept has also been used in the context of

financial crises by Mishkin (2009), and in the context of ZLB on nominal interest rates Evans

et al. (2015). Interestingly, each of those papers define the risk-management approach as the

way the policy-maker takes into account all future possible outcomes in its decision.

Hence, measuring macroeconomic tail-risks by assessing the full distribution of future macroe-

conomic series is crucial for the policy-makers. The close interplay between growth vulnerability

and financial stress supports the view of central banks as risk managers, assessing the balance

of macroeconomic risks based on the range of possible outcomes. In this respect, Adrian et al.

(2019) use quantile regressions to measure the predictive power of financial conditions for real

economic activity. Their main results point a nonlinear relationship between financial condi-

tions and the conditional distribution of GDP growth. While the estimated upper quantiles of

distribution of future GDP growth are stable, the lower quantiles exhibit are strongly responsive

to current financial conditions.

Evidence on growth-at-risk in the euro area can be found in Figueres and Jarociński (2020),

Lhuissier (2022), and Ferrara et al. (2022).

Today, monetary policy is at the crossroads in the euro area, and its role as a stabilization

policy tool has never been so essential. Over the years, the ECB has shown its ability to

stimulate inflation in order to maintain its primary objective of price stability. Additionally,

ECB’s interventions has proved to be effective in fending off financial turmoil, especially since

the GFC. The growing link between financial stability and macroeconomic performance in the

euro area has also rationalized ECB’s increased emphasis on managing risks when it comes to

implementing monetary policy.

My thesis lies at the intersection of these three distinct facts and empirically shows the need

for the ECB to constantly adapt the design of its monetary policy operational framework to

23



face new challenges. The thesis is divided into three chapters. Each of the chapters illustrates

an episode which represented a challenge for the ECB with important implications for mone-

tary policy in the euro zone. Of course, this thesis does not cover all the challenges that the

ECB has faced in recent years. The first chapter studies the macroeconomic effects of changes

in the conduct of monetary policy in the U.S. and the euro area since the Great Recession.

The second chapter investigates the role of ECB’s announcements in the early stage of the

COVID-19 crisis in the evolution of the spread of the pandemic to the European sovereign debt

market. The third chapter assesses the extent to which inflation differentials in the euro area

should be addressed through the lens of inflation risks and its main determinants.

The first chapter is single-authored and is named ‘Evolving Monetary Policy in the After-

math of the Great Recession’. It raises the question of the evolution of monetary policy during

and after the Great Recession. Worsening macroeconomic conditions and inflation risks forced

central banks to decrease drastically their main policy rates after the GFC. Hitting the ZLB

on short-term nominal interest rates, lots of them decided to use a set of new tools, known as

unconventional monetary policies. The implementation of unconventional measures have been

justified by many central banks as a means to reach price stability and foster economic activity

by going beyond the traditional use of short-term interest rates as the main policy instrument.

In this context, this study attempts to address the challenge posed by the ZLB and focuses

on the evolution of monetary policy over a sample period including the post-GFC period, and

hence unconventional times. The evolution of monetary policy is captured by changes in central

banks’ rule-like behavior, determined by possible shifts in central banks’ reaction to inflation

and real activity. This Taylor rule-like behavior has been shown to constantly change over

time, and has been often used to describe the evolution of Federal Reserve’s behavior during

the Great Moderation and Volcker’s disinflation in the 1980s. However, there is little evidence

of shifts in monetary policies after the GFC, and especially in the euro area. Has the conduct

of Fed and ECB monetary policy evolved in the aftermath of the Great Recession? How has

it affected macroeconomic performances in the United States and the euro area? As a whole,

this chapter investigates the extent to which changes in central banks’ behavior may explain

monetary policy decisions since the Great Recession by comparing the ECB with the Fed, and

how it may have affected differently macroeconomic performances in the U.S. and the euro

area.
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To do so, I follow Belongia and Ireland (2016) and use a small-scale time-varying parameter

vector autoregressive (TVP-VAR) model with stochastic volatility combined with sign restric-

tions on impulse responses to estimate a Taylor-type rule with drifting coefficients. Thus,

time-variation in the parameters of the policy rule captures changes in the whole behavior of

the central bank. More precisely, it allows to assess expected changes in the conduct of mone-

tary policy through drifting response coefficients to inflation and real economic activity. Also,

and importantly, to get rid of flat rates challenging monetary policy rule estimations in the ZLB

era, I use an estimated shadow rate as a proxy for the short-term nominal interest rate that

captures the overall stance of monetary policy at the ZLB taking into account unconventional

policy actions. Hence, a shadow Taylor rule with time-varying parameters is estimated on a

sample period including the ZLB. The model is estimated on quarterly data starting from 1960

in the U.S., and 1971 in the euro area. The sample period of estimation ends before the COVID

crisis, in end-2019.

This paper is close to Debortoli et al. (2020) and Ellington (2022) who also estimate a

structural VAR with time-varying coefficients including a shadow rate to deal with the evolution

of monetary policy during the post-2008 decade. However, the present paper departs from

previous studies in several ways. Since Debortoli et al. (2020) and Ellington (2022) focus

exclusively on U.S. monetary policy, they do not compare the Fed and the ECB, as I do.

As a whole, the contribution of my paper mainly consists in providing further evidence of

the evolution of monetary policy in the U.S. and in the euro area before and after the Great

Recession. Surprisingly, and to my knowledge, no attempt has been made to try to compare

changes in U.S. and euro area monetary policies over a long period of time including the

ZLB. Moreover, the present paper investigates the evolution of (non)-systematic components

of ECB and Fed monetary policy, and hence provides further evidence on rule-based monetary

policy in the U.S. and in the euro area after 2008. Focusing on changes in the conduct of

monetary policy through the lens of time-varying reaction function allows to go further into

the empirical analysis. Indeed, another contribution of this paper also lies in the conduct of

an in-depth counterfactual analysis to gauge the macroeconomic effectiveness of changes in

monetary policies.

The results show that the conduct of monetary policy in the euro area has evolved differently

than in the U.S. after the 2007-08 financial crisis. Despite a slight decrease in the long-run

response to inflation, the estimated U.S. policy rule does not suggest any significant change
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in the Fed’s systematic reaction to macroeconomic fluctuations after 2008. The results rather

tend to highlight the role of the non-systematic component of Fed’s monetary policy: U.S.

monetary policy shocks explain a relatively small share of inflation and output fluctuations

but a non-negligible part of the evolution of the policy rate over the period. These departures

from the rule-based monetary policy are interpreted as Fed’s discretionary policy-making. On

the other hand, the estimated monetary policy rule in the euro area reveals that the ECB

has considerably increased the weight it placed on stabilizing inflation, and has also regularly

but briefly departed from the rule-like behavior since 2008. These results suggest important

changes in the conduct of ECB’s monetary policy, mainly through its systematic component.

A counterfactual analysis shows that this shift appears to be a key determinant of the level of

inflation in the euro area at the ZLB, that would have suffered successive deflationary episodes

from 2014 onward.

Those results raise some important policy implications. First, model-based inflation targets

highlight the need for adapting inflation targeting framework, especially in the euro area. Sec-

ond, counterfactual results highlight the benefits of adopting a rule-based approach to monetary

policy-making.

The second chapter of the thesis, ‘COVID-induced sovereign risk in the euro area: When did

the ECB stop the spread?’, is a joint work with my thesis supervisor Fabien Tripier, and studies

the role of ECB’s policy response to the coronavirus pandemic. Started officially in China in

end-December 2019, the COVID-19 virus pandemic reached Europe in early 2020. As a threat

to the economy, the rapid spread of the virus led to a sizeable financial turmoil, and especially

in Italy, the most heavily affected European country. On March 12, the ECB announced a set

of monetary policy measures to support the economy in the wake of the pandemic. The an-

nouncement of those measures gave rise to controversy over ECB president Christine Lagarde’s

announcement that the ECB would certainly use “all the flexibilities that are embedded in the

framework of the asset purchase programme”, but also that the central bank was “not here to

close spreads”. This last sentence has been widely cited as a communication failure, contrasting

with the famous “whatever it takes” of her predecessor Mario Draghi. On March 18, the ECB

conducted an exceptional longer-term refinancing operation (LTRO) to provide liquidity and

announced the launch of a massive intervention program known as the Pandemic Emergency

Purchase Programme (PEPP), which led to a turnaround in sovereign rates and a reboot in
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stock prices. While the COVID-19 pandemic continued to spread in Europe, its transmission

to financial markets stopped in Italy and the rest of the euro area. What was the role of these

successive ECB interventions in stopping the spread of the pandemic to financial markets?

What would have happened without these interventions? As a whole, this chapter investigates

how ECB’s policy announcements stopped the spread of the COVID-19 pandemic to the euro

area sovereign debt market.

To answer those questions, we measure the reaction of sovereign spreads to new COVID

cases and examine how it evolved around the time of ECB interventions. Using local projection

method developed by Jordà (2005), we measure the effect on impact and over a five-day ahead

horizon. We then use state-dependent local projections following Ramey and Zubairy (2018) by

splitting the sample period of estimation into two subsamples divided at a reference date falling

between March 5 and March 25. This state-dependent framework offers a flexible approach to

study possible non-linearities in the sovereign spread reaction to the pandemic. Importantly,

it allows to run split sample estimates according to dates which include key ECB’s policy

interventions of March 12 and March 18. We include national stock indices and both country

and time fixed effects to capture an unbiased measure of the time-varying impact of COVID-19

severity on euro area sovereign risk. Both linear and non-linear models are estimated on daily

data over the sample period from January 2 to May 29, 2020. Our panel includes fifteen euro

area countries: Austria, Belgium, Cyprus, Finland, France, Greece, Ireland, Italy, Lithuania,

Malta, Netherlands, Portugal, Slovakia, Slovenia, and Spain.

This paper provides empirical evidence of Arellano et al.’s (2023) theoretical insights on

the link between the severity of the pandemic and the increasing risk of default in emerging

economies. In the paper, we explore the effect of the pandemic outbreak on sovereign risk in

a panel of euro area countries. From this perspective, this paper is close to Augustin et al.

(2022) who study the sensitivity of sovereign default risk to the intensity of the coronavirus

pandemic in developed countries, including the euro area. However, we depart from the latter

paper by considering the dynamic response of the sovereign debt and the stock markets to the

pandemic. Moreover, our purpose is to assess the break in the transmission of the pandemic to

the euro area financial markets. More precisely, we track how financial markets’ reaction to the

COVID-19 pandemic has changed according to ECB’s policy decision timeline. Additionally,

we assess possible spillovers from the pandemic outbreak in Italy—the most affected European

country in the early stage of the pandemic—to domestic financial markets. Finally, based on
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our estimation, we provide a counterfactual analysis by simulating the path of sovereign spreads

that would have occurred without the change in the sensitivity of bond spreads to the COVID

crisis.

The results show that despite the controversy generated by the “we are not here to close

spreads” declaration of Christine Lagarde, the ECB actually stopped the spread of the pandemic-

sparked crisis to the euro area sovereign debt markets on March 12, before the announcement

of the PEPP and the conduct of market operations that occurred on March 18, leading to the

reversal of sovereign spreads. Our results support the view that ECB’s unprecedented monetary

policy responses to the COVID-19 pandemic were very effective in disrupting the explosive path

of sovereign default risk within eurozone countries. Indeed, a counterfactual analysis indicates

that without these interventions, sovereign spreads in the euro area would have reached levels

comparable to those observed during the 2010-12 sovereign debt crisis.

The results highlight some policy implications for central bankers, especially regarding the

effectiveness of central bank’s communication as a powerful tool to mitigate financial downturn.

However, the COVID crisis had huge and long lasting consequences for public finances, and

raised additional challenges for policy-makers in Europe and all around the world in managing

the public debt induced by the COVID crisis.

The third chapter is entitled ‘The Risk of Inflation Dispersion in the Euro Area’ and has

been co-written with Stéphane Lhuissier and Fabien Tripier. It investigates the topic of inflation

differentials in the euro area. With the return of global inflation in early 2021, euro area

inflation has hit all-time high levels month after month. This has been accompanied by large

heterogeneity of inflation rates across euro area countries. The dispersion of the conditional

mean of inflation across countries is a well-known phenomenon, but the study of the divergences

in the tails of inflation distribution remains completely unexplored. Looking at historical data,

we first document that the dispersion of inflation rates across euro area member states varies

over time. A second stylized fact indicates that the tails of inflation historical distribution

are more dispersed than the median. As for inflation itself, it is critical for the policy-makers

to know what type of tail risks (upside or downside) are causing the dispersion of inflation,

especially in a monetary union. The conduct of a single monetary policy, with a common

inflation target, could be costly for countries experiencing extreme inflation rates. From this

perspective, we think that inflation differentials in the euro area deserve further consideration,
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and we propose to go beyond the mean of inflation dispersion. We then try to answer the

following questions of interest for the policy-makers: Where does the dispersion of inflation

come from? What are the main determinants of the risk of inflation dispersion? In this paper,

we aim at providing a more complete picture of inflation differentials across euro area countries

by delivering time-varying measures of inflation dispersion associated to the different quantiles

of predictive inflation distributions, and at identifying their main drivers.

To construct our measures of risk of inflation dispersion, we proceed in two steps. First,

we compute the predictive inflation distribution at the country level by estimating a quantile

Phillips curve. The methodology employed closely follows López-Salido and Loria (2022), who

also use Phillips curve quantile regressions based on Adrian et al.’s (2019) seminal work dealing

with U.S. GDP growth. As in aforementioned papers, conditional quantiles vary over time

according to the evolution of key economic and financial variables considered as being inflation

predictors, including past and expected inflation rates, unemployment gap, financial stress,

oil inflation, and supply chain pressures. Second, for each date, we compute the standard

deviation of quantiles across countries as a measure of dispersion. By looking at the 10th and

the 90th quantiles, we can then evaluate the cross-country dispersion of inflation-at-risk at the

bottom (i.e., risk of low inflation or deflation) and at the top of the distribution (i.e., risk of

excessive inflation), respectively. The model is estimated on monthly data over the sample

period from January 1999 to January 2023. Our panel includes the twelve first euro area

countries: Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg,

Netherlands, Portugal, and Spain.

Our paper is thus close to López-Salido and Loria (2022) whose approach builds on the

concept of Inflation-at-Risk—thereafter, IaR—developed earlier by Andrade et al. (2014). In

the spirit of Adrian et al. (2019) who assess how financial conditions affect the predictive

distribution of real GDP growth in the U.S., López-Salido and Loria (2022) provide an in-

depth analysis of the evolution and the determinants of inflation tails both in the U.S. and

the euro area. However, we go further by running quantile Phillips curve estimates for each

euro area country included in our sample. We then compute the dispersion of inflation risks by

considering cross-country differences in the tails of national predictive inflation distribution.

Tracking the dispersion of inflation tail risks over the sample period of estimation, we find

that the dispersion was concentrated on upside inflation risks until 2008. Our measures of

dispersion then indicate that it has been stronger for the lower tail of the distribution after
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2008. The results show that inflation dispersion has been driven by successive episodes of

downside inflation risks at the early stage of the COVID crisis and upside inflation risks over

the post-COVID period. A counterfactual analysis highlights financial stress as being a key

determinant of the dispersion of downside inflation risks during the post-2008 decade. On

the other hand, the results also suggests that the disperison of upside inflation risks observed

during the post-COVID era would have been much lower without supply chains disruptions.

Estimation results also reveal huge Phillips curve heterogeneity across countries, and underline

the role of heterogeneous Phillips curve coefficients in the dispersion of inflation across euro

area countries.

Previous results stress the need for the policy-makers to take into account inflation-at-risk

when assessing inflation differentials across countries in a monetary union. The methodology

used in this paper is also useful for identifying the determinants of the evolution of inflation

dispersion over time, which are shown to be different from one tail of inflation distribution to

the other. Overall, disregarding the risk of inflation and its origins could seriously jeopardize

central bankers’ ability to face the challenge posed by inflation differentials in a monetary union.
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Chapter I

Evolving Monetary Policy in the

Aftermath of the Great Recession

Abstract. A Taylor-type rule is estimated using a time-varying parameter vector autoregres-

sive model to assess changes in the conduct of monetary policy since the Great Recession. Based

on U.S. and euro area data, the results suggest different evolution across monetary policies after

the 2007-08 financial crisis. Whereas the estimated U.S. policy rule tends to support the view

of a discretionary Fed’s policy, empirical investigation in the euro area reveals a more aggres-

sive monetary policy response towards inflation stabilization. A counterfactual analysis shows

that this shift in ECB’s systematic component has been crucial to avoid successive deflationary

episodes in the euro area.

“My colleagues on the FOMC and I are regularly reviewing the asset purchase program

in light of incoming information, and we will adjust the program as needed to

promote our statutory mandate of maximum employment and stable prices.”

Yellen (2011)

“As the scope for further interest rate cuts was now limited, it became increasingly clear

that our reaction function needed to evolve to address these new challenges.”

Draghi (2019)
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I.1 Introduction

Central banks are in the spotlight since the 2007-08 financial crisis and the resulting ‘Great

Recession’. The global economic downturn spurred the main central banks to take drastic de-

cisions, as cutting short-term interest rates to zero. Hitting the so-called zero lower bound

(hereafter ZLB) on nominal interest rates, lots of them decided to use a large set of new mone-

tary policy tools, including negative interest rate policy (NIRP), asset purchases from the open

market–known as quantitative easing (QE), lending facilities to financial institutions, or for-

ward guidance (FG) to communicate about the path of future short-term interest rates. Those

unconventional measures have been conducted to foster economic activity by going beyond the

traditional use of nominal short-term interest rates as the main policy instrument. By focusing

on the evolution of monetary policy over a sample period including unconventional times, this

study attempts to address the challenge posed by the ZLB and investigates how the conduct of

monetary policy has evolved in terms of reaction to its fundamental economic objectives and

discretionary decisions after the 2007-08 financial crisis.

As depicted in Figure I.1.1, policy rates and central banks’ balance sheets have experienced

tremendous changes since the pre-crisis era. Notwithstanding target nominal interest rates near

or at zero, explosive balance sheets show how the Federal Reserve and the European Central

Bank (hereafter Fed and ECB, respectively) kept acting strongly to lower long-term interest

rates during the ZLB, for the purpose of stimulating the real economy.1 However, this figure

also highlights the difference in the timing of monetary policy decisions between the U.S. and

the euro area. While the Fed has reacted quickly by continuously decreasing the fed funds

target rate from 5.25% in August 2007 to 0.125%–its lowest level–in December 2008, the ECB

decreased the main refinancing rate from 4.25% in September 2008 to reach zero only in March

2016, after having temporarily increased it in July 2008 and April 2011. The contrast is even

starker when comparing the path of balance sheets that mostly reflects the implementation of

unconventional monetary policies both in the U.S. and in the euro area.

Despite their exceptional nature, and as stated by then-Fed Vice-Chair Janet Yellen, these

policies have been launched in order to pursue the standard objectives of maximum employ-

ment and stable prices. However, worsening macroeconomic conditions and unprecedented

downside inflation risks have posed serious challenges for the conduct of monetary policy at

1The narrative and the timing of Fed and ECB unconventional monetary policies are detailed in Section I.3.
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Figure I.1.1 – Policy rates and balance sheets

Note: Both policy rates are given in percentage (left-hand side). Central banks’ total assets are given in billions
of U.S. dollars for the Federal Reserve, and in billions of euros for the Eurosystem (right-hand side).
Source: Monthly data from Federal Reserve and European Central Bank.

the ZLB. In the U.S., the Fed has taken a series of unconventional measures starting from

2008 and 2009 “to provide further support for the economic recovery while maintaining price

stability”.2 On the other hand, and despite growing concerns about economic growth, the focus

was more on inflation in the euro area. In 2015, the ECB has expanded the amount of asset

purchases mentioning that it will be conducted until reaching a “sustained adjustment in the

path of inflation”, consistent with ECB’s primary objective of price stability.3 Therefore, the

implementation of U.S. and euro area monetary policy may have evolved in a sense that both

central banks could have adapted their response to changing macroeconomic conditions after

the crisis, in line with the declaration of then-ECB President Mario Draghi reported above.

How has ECB monetary policy differed from that of the Fed since the Great Recession? How

has it affected macroeconomic performances in the U.S. and in the euro area?

The present paper draws on the seminal work of Taylor (1993) and the well-known ‘Taylor

rule’, according to which the central bank sets the policy rate considering inflation and output

fluctuations. Since then, a huge literature has emerged to give further insights into central

banks’ behavior.4 As a whole, this paper investigates to which extent changes in ECB and
2See Bernanke’s (2010) remarks at Jackson Hole.
3See the introductory statement to ECB’s January 22, 2015 Press Conference.
4Bernanke and Mishkin (1992) use the expression “central bank behavior” to mention both the conduct

and the effectiveness of monetary policy. In the spirit of the standard Taylor rule, central bank’s behavior may
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Fed’s behavior may have explained monetary policy decisions since the Great Recession, and

how it may have influenced inflation and economic growth. To do so, I use a small-scale

time-varying parameters vector autoregressive (TVP-VAR) model with stochastic volatility to

estimate a Taylor-type rule with drifting coefficients. Thus, time-variation in the parameters of

the policy rule captures changes in the whole behavior of the central bank. More specifically, it

allows to assess not only expected changes in the conduct of monetary policy through drifting

Taylor rule coefficients, but also unexpected changes of monetary policy through shifts in the

volatility of monetary policy shocks. Also, and importantly, to get rid of flat rates challenging

monetary policy rule estimations in the ZLB era, I use the shadow rate constructed by Wu and

Xia (2016) as a proxy for the short-term nominal interest rate that captures the overall stance

of monetary policy at the ZLB taking into account unconventional policy actions. Hence, a

shadow Taylor rule with time-varying parameters is estimated on a sample period including

the ZLB.5

Estimation results show that the conduct of monetary policy in the euro area has evolved

differently than in the U.S. after the 2007-08 financial crisis. Despite a slight decrease in the

long-run response to inflation, the estimated U.S. policy rule points no noticeable change in

the Fed’s reaction to macroeconomic fluctuations after 2008. In fact, the results highlight the

role of the non-systematic component of Fed’s monetary policy: U.S. monetary policy shocks

explain a relatively small share of inflation and output fluctuations but a non-negligible part of

the evolution of the policy rate over the period. These departures from the rule-based monetary

policy are interpreted as Fed’s discretion in policy making. On the other hand, the estimated

monetary policy rule in the euro area reveals that the ECB has considerably increased the

weight it placed on stabilizing inflation and has also regularly but briefly departed from the

rule-based behavior since 2008. These results suggest important changes in the conduct of

ECB’s monetary policy, mainly through its systematic component.

A counterfactual analysis shows that this shift in the systematic component of monetary

policy appears to be a key determinant of the level of inflation in the euro area at the ZLB,

be defined by its emphasis on stabilizing inflation and output, but also by its willingness to depart from the
behavior prescribed by the policy rule. More formally, the word “behavior” is used here to refer to Taylor rule
coefficients on the one hand, and to (the volatility of) monetary policy shocks on the other hand.

5See pioneering papers using shadow rates in VARs (Wu and Xia, 2016) or DSGE models (Wu and Zhang,
2019). Based on the latter paper, the relevance of shadow Taylor rules as a description of monetary policy at
the ZLB is discussed in Online Appendix I.B (Section I.3 contains more references). See also recent papers using
SVARs with an occasionally-binding constraint that generates a censored nominal interest rate as a dependent
variable (Aruoba et al., 2022, Mavroeidis, 2021, among others). More references are given below.
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that would have suffered deflationary episodes from 2014:3 to 2016:4 and starting from 2019:3

without any change in ECB’s response to macroeconomic conditions after the 2007-08 crisis.

However, the situation could have been even worse when ignoring the role of the non-systematic

component of ECB’s monetary policy, where the euro area would have experienced periods of

deflation from 2014:3 to 2016:4, from 2017:3 to 2018:1 and starting from 2019:1.

This paper is close to Debortoli et al. (2019) and Ellington (2022) who also estimate an

SVAR with time-varying coefficients including a shadow rate in the U.S., and contribute to

the literature by dealing especially with the post-2008 decade. However, the present paper de-

parts from previous studies in several ways. Since Debortoli et al. (2019) and Ellington (2022)

focus exclusively on U.S. monetary policy, they do not compare the Fed and the ECB, as I

do. As a whole, the contribution of my paper mainly consists in providing further evidence of

the evolution of monetary policy in the U.S. and in the euro area before and after the Great

Recession. Surprisingly, and to my knowledge, no attempt has been made to try to compare

changes in U.S. and euro area monetary policies over a long period of time including the ZLB.

Moreover, the present paper investigates the evolution of (non)-systematic components of ECB

and Fed monetary policy, and hence provides further evidence on rule-based monetary policy

in the U.S. and in the euro area after 2008. Focusing on changes in the conduct of monetary

policy through the lens of time-varying reaction function allows to go further into the empirical

analysis. Indeed, another contribution of this paper also lies in the conduct of an in-depth

counterfactual analysis to gauge the macroeconomic effectiveness of changes in monetary poli-

cies. Along with impulse responses and variance decomposition analyses, the paper therefore

compares the effectiveness of changes in the conduct of Fed’s and ECB’s monetary policy on

U.S. and euro area macroeconomic performances at the ZLB.

Related literature. The present paper relies on three different strands of the literature.

First, it supplements works assessing the effectiveness of the conduct of monetary policy through

reaction function estimates both in the U.S. and in the euro area. Second, the paper is in line

with the vast literature employing VARs for the purpose of empirical monetary analysis. Third,

it is related to the literature dealing with monetary policy shocks identification at the ZLB.

Monetary policy rules have been used to identify changes in Fed’s behavior across differ-

ent monetary policy regimes in the U.S., by disentangling pre-Volcker (before Paul Volcker’s
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appointment as Fed Chairman in 1979) and post-Volcker (including Paul Volcker’s tenure) pe-

riods. Clarida et al. (2000) advocate that a shift in the systematic component of monetary

policy has been the main source of macroeconomic stability during the post-Volcker period.

Lubik and Schorfheide (2004) conduct a test for indeterminacy in the pre-Volcker and Volcker-

Greenspan periods and confirm this result. Favero and Rovelli (2003), Ozlale (2003), Dennis

(2006), and Surico (2007a) provide additional support for these findings, with a specific atten-

tion on interest rate smoothing in the reaction function.6 Similarly, Stock and Watson (2002),

Galí et al. (2003) and Ahmed et al. (2004) support the view that better Fed’s performances

has considerably reduced macroeconomic volatility during the Great Moderation. Interestingly,

Coibion (2012) attributes a leading role to monetary policy shocks measured from estimated

Taylor rules in significantly contributing to real economic fluctuations during the 1970s and

early 1980s. Nikolsko-Rzhevskyy et al. (2014) identify monetary policy regimes according to

rules-based or discretionary eras. They provide further evidence of improving economic perfor-

mance when central banks adhere to a monetary policy rule.

Since all of the papers cited above focus on Fed’s behavior, other studies focus on the

ECB (Taylor, 1999, Gerlach and Schnabel, 2000).7 Relying on estimates of reaction functions,

Gerdesmeier and Roffia (2004), Garcia-Iglesias (2007) and Surico (2007b) find a stronger interest

rate response to inflation than to output fluctuations. However, other studies find a relatively

high contemporaneous coefficient on output stabilization in a Taylor rule applied to the eurozone

(see Fourçans and Vranceanu, 2007, Sauer and Sturm, 2007 for estimations on ex-post data, and

Castelnuovo, 2007 and Gorter et al., 2008 for forward-looking estimations of monetary policy

rules). Other papers do the same exercise including the ZLB and the financial crisis, as Gorter

et al. (2010), Gerlach (2011), and more recently Gerlach and Lewis (2014a,b). Hutchinson

and Smets (2017) advocate that the ECB has launched unconventional measures to respond to

its communicated reaction function and fulfill its mandate, that is a key point in the present

analysis using a simple estimated monetary policy rule. Recently, Coenen et al. (2021) highlight

the role of nonstandards monetary policy instruments in mitigating the costs caused by the

effective lower bound on macroeconomic performances in the euro area.

However, only a small strand of the literature proposes a comparative analysis of the conduct

6Higher persistence of lagged interest rate in the conduct of monetary policy can be justified by misspeci-
fications of the macroeconomic dynamics, as highlighted by Rudebusch (2001), Castelnuovo and Surico (2004),
Castelnuovo (2006) and Givens (2012).

7More recently, Hartmann and Smets (2018) look at the evolution of ECB’s behavior during its first twenty
years.
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of monetary policy between the U.S. and the euro area. Empirical estimates include Ullrich

(2005) and Belke and Polleit (2007). In the latter, the authors find that the standard Taylor rule

is a better tool for modelling Fed’s monetary policy than ECB’s. They also find a lower empha-

sis on inflation relative to the output gap in the euro area. Belke and Klose (2013) propose the

same exercise during the Great Recession. Nevertheless, vector autoregressive (VAR)-based

analyses such as the one conducted earlier in Peersman and Smets (2003) find similar euro

area macroeconomic effects of an area-wide monetary policy impulse to those estimated in

the U.S. Based on dynamic stochastic general equilibrium (DSGE) models and in accordance

with Smets and Wouters (2005), Christiano et al. (2008) and Sahuc and Smets (2008) show

that differences in shocks largely explain the gap between Fed’s and ECB’s interest rate setting.

A large set of VAR specification has been developed to capture the non-linear dynamics of

the whole central banks’ behavior over a given sample period, including vector autoregressions

with time-varying parameters and stochastic volatility (TVP-VAR).

TVP-VAR models allow for smooth and gradual changes in the parameters of the estimated

monetary policy rule. In a seminal paper, Primiceri (2005)8 wonders whether monetary policy

in the U.S. has been less active against inflationary pressure during the Martin-Burns period

than during the Volcker-Greenspan era. He finds that the non-systematic part of U.S. mone-

tary policy was higher in the 1960s and 1970s, although monetary policy was more systematic

under Greenspan in the U.S. Other influential studies such as Cogley and Sargent (2005),

Boivin (2006), Kim and Nelson (2006), Benati and Mumtaz (2007) use a VAR with drifting

coefficients and stochastic volatilities to analyze Fed’s behavior during the post-World War II

period in the U.S. Altogether, these papers agree on the improvement in the systematic com-

ponent of monetary policy after Volcker’s appointment. As a whole, time-varying parameters

VAR methodology has been widely employed in monetary policy analyses. Benati and Surico

(2008), Canova and Gambetti (2009), Cogley et al. (2010), Baxa et al. (2014) and Creel and

Hubert (2015) use TVP-VARs to examine the evolution of inflation persistence and predictabil-

ity. Mumtaz and Surico (2009) and Baumeister and Benati (2013) include the yield curve in

their model. Koop et al. (2009), Canova and Pérez Forero (2015), Amir-Ahmadi et al. (2016)

investigate possible structural breaks in the economy, and attribute large macroeconomic im-

plications to time-varying monetary policy shocks. Recently, Aastveit et al. (2021) also use a

8See Del Negro and Primiceri, 2015 for a corrigendum
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TVP-VAR with stochastic volatility and focus especially on the role of the systematic monetary

policy when including stock and house prices in the VAR-based policy rule.

The present paper firstly replicates the results raised in Belongia and Ireland (2016) on the

common sample period of estimation using U.S. data, according to which the Fed decreased

the weight it placed on stabilizing inflation from 2000 to 2007, and deviated persistently from

the estimated policy rule that had important implications for output and inflation. Then, it

brings new evidence on the evolution of monetary policy in the U.S. and in the euro area in

the wake of the Global Financial Crisis (GFC). From this point of view, it is close to Debortoli

et al. (2019) and Ellington (2022), who also estimate an SVAR with exogenous time-varying

coefficients and find no noticeable evidence that macroeconomic responses to monetary policy

shocks have been affected by the ZLB–known as the ZLB empirical ‘irrelevance hypothesis’.9

This paper employs an identification method based on sign restrictions on impulse responses

using Bayesian methods developed by Rubio-Ramirez et al. (2010) and Arias et al. (2018),

and applied in TVP-VARs by Benati (2011) and Belongia and Ireland (2016). The VAR

with time-varying coefficient includes a shadow rate to investigate possible differences between

macroeconomic responses to monetary policy shocks away and at the ZLB. As pointed out

by Rossi (2021), alternative identification schemes–including the use of shadow rate instead of

short-term interest rates–are suitable at the ZLB to overcome the problem of the zero bound

on nominal interest rates. For instance, Inoue and Rossi (2021) use a functional VAR to use

information contained in short- and long-term interest rates by directly capturing movements in

the whole-term structure. Note that shadow rate models and functional VARs are very similar,

in a sense that both methods use information contained in the term structure of interest rates.

Importantly, this paper also supplements the small, but burgeoning literature suggesting

that the use of shadow rate VARs to identify monetary policy shocks at a relatively low fre-

9They echo Swanson and Williams (2014) and Swanson (2018), who also support the view that macroe-
conomic performances were not affected by the binding ZLB constraint through the effectiveness of Fed’s un-
conventional monetary policy and its ability to influence interest rates all along the yield curve. Other recent
papers suggest that the ZLB was not such a constraint on policy, such as Garín et al. (2019), Wieland (2019),
Wu and Zhang (2019) and Lhuissier et al. (2020) for instance. This is consistent with earlier literature on un-
conventional monetary policy as a relatively effective substitute for the federal funds rate at the ZLB, including
Vissing Jorgensen and Krishnamurthy (2011) for QE and Campbell et al. (2012) for FG, among many others.
Recently, Kim et al. (2020) and Kortela and Nelimarkka (2020) use a structural VAR and support this view for
the U.S. and the euro area, respectively, while Sims and Wu (2020) use a DSGE approach. Kiley and Roberts
(2017) also use the Fed’s large scale econometric model FRB/US to investigate the frequency and the costs of
ZLB episodes in a low nominal interest rates era. In line with Reifschneider and Williams (2000), they advocate
that adjustments to monetary policy strategies based on simple policy rules are required to improve economic
performances when the equilibrium interest rate is low.
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quency provide crucial evidence of the propagation of monetary policy shocks and the role of

central banks in improving macroeconomic performances at the ZLB, and supporting Debortoli

et al.’s (2019) view that there is little empirical evidence against the irrelevance hypothesis.

In line with Iwata and Wu (2006), recent works including Aruoba et al. (2022), Ikeda et al.

(2020), Johannsen and Mertens (2021), and Mavroeidis (2021), employ quarterly multivariate

time series models with a censored interest rate variable to capture the ZLB constraint on short-

term nominal interest rates.10 The present paper is even more closely related to Aruoba et al.

(2022) and Mavroeidis (2021). Interestingly, the model used in the former paper allows the

coefficients to switch when the economy reaches the ZLB. Also, this paper is close to Johannsen

and Mertens (2021), in which monetary policy shocks are identified by short-run restrictions

on shadow-rate surprises.

Structure of the paper. The rest of the paper is organized as follows. Section I.2 describes

the methodology used for the modelling framework. Section I.3 presents the data used in the

benchmark model. Section I.4 is devoted to estimation results. Section I.5 contains policy

counterfactuals based on those results. Section I.6 examines the robustness of the findings to

various changes in the specification of the baseline model. Some policy implications of the

results are raised in Section I.7. Finally, Section I.8 concludes.

I.2 Methodology

The model. The methodology is close to Belongia and Ireland (2016). Indeed, a vector au-

toregressive model with time-varying parameters and stochastic volatility (TVP-VAR) is used

to study the evolution of monetary policy on the period of estimation.11 The empirical proce-

dure is reproduced in this section and detailed in Online Appendix I.A. As a whole, the model

is based on Primiceri (2005) and Cogley and Sargent (2005)12, and its baseline version can be
10Carriero et al. (2021) use monthly data to construct point and density forecasts for censored short- and

long-term interest rates from a shadow-rate VAR.
11Stability of the simple VAR model is checked in Online Appendix I.C. Aastveit et al. (2017) examine the

stability of VARs in the period since the Great Recession and provide evidence against stability of parameters.
12I am aware of Bognanni’s (2018) criticism that vector autoregressive time series models with time-varying

parameters and stochastic volatility developed by Primiceri (2005) and Cogley and Sargent (2005) could suffer
from a fundamental ordering problem that makes it ill-suited for the structural analysis. However, as shown
later in this section, the methodology employed in the present paper is slightly different. Following Benati
(2011) and Belongia and Ireland (2016), the choice of the calibration of prior distribution of coefficients and the
identification strategy of structural disturbances are different from that of the baseline methodology.
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written as follows:

yt =
[
Πt Gt Rs

t

]′
(1)

where Πt is the inflation rate, Gt is the output gap and Rs
t is the shadow rate at period t. The

analysis does not include financial measures that were likely to have played an important role

in the transmission of monetary policy during and in the aftermath of the Great Recession,

such as credit spreads (Caldara and Herbst, 2019). However, as raised above, the estimated

monetary policy rule of the original Taylor type only includes inflation and output objectives.

Under these circumstances, I assume that the Fed and the ECB eased monetary policy and

launched unconventional measures purely in order to trigger inflation and to boost economic

growth, according to their respective mandate.13 The three endogenous variables are collected

in the 3 × 1 vector yt. The model is assumed to follow a second-order vector autoregression

with time-varying parameters in the reduced form:

yt = bt + B1,tyt−1 + B2,tyt−2 + ut (2)

where bt is a 3 × 1 vector of time-varying intercepts, Bi,t for i = 1, 2 are 3 × 3 matrices of

time-varying autoregressive coefficients, and ut is a 3× 1 vector of heteroskedastic shocks with

time-varying covariance matrix Ωt, such that E{utu′t} = Ωt. The robustness of the results

when considering three lags in the estimates is checked in Online Appendix I.F.3.

Both intercepts and autoregressive coefficients in the 21× 1 vectorized form are obtained from

equation (2):

Bt = vec




b′t

B′1,t
B′2,t





and decompose the covariance matrix Ωt by applying a Cholesky factorization as

Ωt = A−1
t ΣtΣ′t(A′t)−1

13Gavin et al. (2015) and Debortoli et al. (2019) investigate the conduct and the effectiveness of U.S. monetary
policy through the lens of a dual mandate monetary policy rule. Moreover, along with its objective of price
stability, “the ECB typically should avoid generating excessive fluctuations in output and employment if this is
in line with the pursuit of its primary objective” (see ECB’s objective of monetary policy).
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where the 3×3 matrix At is lower triangular with ones along its diagonal, and the 3×3 matrix

Σt is diagonal.

Hence, the reduced form of equation (2) can be rewritten in a matrix form as:

yt = X′tBt + A−1
t Σtεt

where Xt = I3 ⊗
[
1 Πt−1 Gt−1 Rs

t−1 Πt−2 Gt−2 Rs
t−2

]
, and E{εtε′t} = I3, where I3 is a

3× 3 identity matrix.

Let αt =
[
αgπ,t αrπ,t αrg,t

]′
be 3× 1 vector containing the elements of At different from zero

or one, and σt =
[
σπ,t σg,t σr,t

]′
be 3 × 1 vector collecting diagonal elements of Σt. The

dynamics of the time-varying parameters are governed by the following process:

Bt = Bt−1 + νt

αt = αt−1 + ζt

and

log σt = log σt−1 + ηt,

where all the uncorrelated innovations are assumed to be jointly normally distributed, with the

following assumptions on the variance covariance matrix:

V = Var





εt

νt

ζt

ηt




=



I3 0 0 0

0 Q 0 0

0 0 S 0

0 0 0 W



where 0 denotes matrices of zeros, Q is 21× 21, S is 3× 3 and block-diagonal, and W is 3× 3

and diagonal with elements wi,i for i = 1, 2, 3.

As a whole, Q has 231 distinct elements, S has four distinct non-zero elements, and W has

three distinct non-zero elements.

Estimation strategy. Bayesian methods are often used to estimate large numbers of pa-

rameters in classical VAR models because of their strong explanatory and predictive powers.

In this paper, I follow the same approach than in Primiceri (2005) and Cogley and Sargent

(2005) to be able to deal with autoregressive models with time-varying coefficients. The aim
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of the estimation strategy is to assess the posterior distribution of the parameters, based on

prior distributions calibrated with simple estimates on a training sample period consisting of

the first ten years of data (equivalent to the first forty quarters) to a time-invariant coefficients

version of the reduced form model presented above. The, posterior distributions of parameters

can be simulated by Markov Chain Monte Carlo (MCMC) algorithm, as detailed in Primiceri

(2005), Cogley and Sargent (2005) and in Online Appendix I.A. Following the same approach,

prior distributions of parameters are obtained by running a constant-parameter version of the

model in the form:

yt = X′tB + A−1Σεt

Applying ordinary least squares (OLS) to each equation in this system, an estimate B̂ of the

parameter vector B is obtained, and the same Cholesky decomposition as shown previously

to the covariance matrix of least-squares residuals is used to obtain estimates α̂ and σ̂ of the

parameter vectors α and σ.

Then, normal priors for the initial values of the coefficients are given by:

B0 ∼ N (B̂, 4V̂B)

α0 ∼ N (α̂, 4V̂α)

and

log σ0 ∼ N (log σ̂, I)

based on those used by Primiceri (2005). For the block elements of the variance-covariance

matrix of innovations V, inverse Wishart priors are defined as follows:

Q ∼ IW(22k2
QV̂B, 22)

S1 ∼ IW(2k2
SV̂α,1, 2)

S2 ∼ IW(3k2
SV̂α,2, 3)

and

wi,i ∼ IW(2k2
w, 2)

for i = 1, 2, 3, where V̂α,1 and V̂α,2 are diagonal blocks of V̂α. Also, the settings are taken from

Belongia and Ireland (2016), where k2
Q = 0.00035, k2

S = 0.01 and k2
W = 0.0001. The robustness

of the results using different priors is checked in Online Appendix I.F.3. Then, a Metropolis-

within-Gibbs sampling algorithm is used on the remaining sample period starting from the

priors given previously to compute blocks of parameters from their conditional posterior distri-
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bution. Again, the subsequent steps to obtain estimations for each parameter are well-described

in Belongia and Ireland (2016) and in Online Appendix I.A. Draws for the parameters in Q, S

and W are taken from their inverse Wishart conditional posterior distribution.

This procedure is repeated 100,000 times in a burn-in period. The model is estimated with

50,000 draws of each parameter for the Gibbs sampling. To assess the convergence of the

Markov Chain, draws’ inefficiency factors are computed across the four blocks of parameters

in the sequences BT , AT , ΣT , and in the elements from V. For each individual parameter θ,

the ineffciency stastistic is defined as the inverse of the measure of relative numerical efficiency

following (Geweke, 1992). According to Primiceri (2005) and Benati (2011), inefficiency factors

are said acceptable at or below 20. The statistics for hyperparameters in V are slightly higher

than that upper bound, but those for the parameters and shock covariances and volatilities are

largely below it. Tables I.D.1 and I.D.2 containing the results are given in Online Appendix

I.D.

Structural shocks identification. An approach based on sign restrictions on impulse re-

sponses is applied to identify structural disturbances. The technique is based on Rubio-Ramirez

et al. (2010) and Arias et al. (2018), and has been applied to VAR models with time-varying

coefficients in Benati (2011). Sign restrictions on the impact of structural disturbances are

directly given in Table I.2.1. They are imposed on the impulse response of variables to each

structural shock: an aggregate supply shock, an aggregate demand shock, and a monetary

policy shock. Aggregate supply shock is assumed to be contractionary: inflation increases but

output decreases, and thus left the response of monetary policy unconstrained. Aggregate de-

mand shock is expansionary, and is associated to an increase in output, inflation and interest

rate. Finally, monetary policy (or interest rate) shock is assumed to be contractionary: it de-

creases inflation and output. The robustness of the results using different identification strategy

is checked in Online Appendix I.F.3.
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Table I.2.1 – Sign restrictions on the impact effects of structural shocks

Impact effect on Structural shocks

Aggregate Aggregate Monetary
supply demand policy

Inflation + + -
Output gap - + -
Shadow rate ? + +

Note: The symbol ? indicates that the response is left unconstrained.

As a result, the reduced form covariance matrix is factored as:

Ωt = C−1
t DtD′t(C′t)−1

where the 3× 3 matrix is no more lower triangular, but still with ones along its diagonal, and

the 3× 3 matrix is still diagonal.

Consequently, the structural model can be written is as:

Ctyt = γt + Γ1,tyt−1 + Γ2,tyt−2 + Dtξt

where γt = Ctbt, Γi,t = CtBi,t, for i = 1, 2, and ξt =
[
ξast ξadt ξmpt

]′
is a 3 × 1 vector

of structural disturbances to aggregate supply, aggregate demand and monetary policy, with

E{ξtξ′t} = I3, and I3 is a 3× 3 identity matrix.

Time-varying monetary policy rule. With above-described estimation strategy and sign

restrictions, the third row of the above-mentioned three-equation structural model is presented

as a Taylor-type monetary policy rule:

Rs
t = γr,t + crπ,tΠt + γ1,rπ,tΠt−1 + γ2,rπ,tΠt−2

+ crg,tGt + γ1,rg,tGt−1 + γ2,rg,tGt−2 + γ1,rr,tR
s
t−1 + γ2,rr,tR

s
t−2 + δr,tξ

mp
t (3)

This Taylor-type rule prescribes a setting for the policy rate regarding to changes in current

and lagged inflation and output gap variables. It also includes lagged values of interest rate

terms to capture central banks’ tendency to smooth short-term interest rates movements over

time. The time-varying estimation of the intercept γr,t and of the coefficients from matrices Γ1,t

44



and Γ2,t allows to assess changes in the conduct of monetary policy that might have occurred

on the sample period. ξmpt represents identified monetary policy shocks that capture devia-

tions in the actual policy rate from the value dictated by the estimated monetary policy rule.

Importantly, equation (3) allows for time-variation in all of the response coefficients but also

in the standard deviation δr,t of the monetary policy shocks. Hence, this estimation permits

disentangling changes in central bank’s responses to inflation versus output gap stabilization

and the extent to which the central bank departs from its rule-based behavior. As a whole, the

estimated monetary policy rule given in equation (3) may be decomposed into central banks’

response to macroeconomic conditions and smoothing behavior–i.e. the systematic component

of monetary policy–and monetary policy shocks–i.e. the non-systematic component of mone-

tary policy. The model is estimated with data described in the following section.

I.3 Data

Monetary policy rules in normal times. Using a TVP-VAR model, the present paper

tracks the evolution of U.S. and euro area monetary policies based on results derived from

historical data. U.S. quarterly data are extracted from the Federal Reserve Economic Data

(FRED) database, and run from 1960:1 to 2019:4. The nominal interest rate is the federal

funds rate. PCE price index is taken as a relevant measure of inflation in the estimation14, and

is given as a percentage annual change. The output gap is computed following the Congressional

Budget Office (CBO).15 Prior distribution of the coefficients is obtained from the training sample

period from 1960:1 to 1969:4. Then, the Taylor rule is estimated by the TVP-VAR model with

stochastic volatility from 1970:1 to 2019:4.

Concerning euro area data, interest rate, inflation and output gap quarterly series are from

14John Taylor claims that the Fed has not followed the prescription of the Taylor rule by keeping the interest
rate too low from 2003 to 2005 and hence generated the housing bubble in the U.S. Ben Bernanke disagreed
with that by justifying that the Fed set the interest rate according to the Taylor rule by targeting core PCE
inflation, and not GDP deflator as in Taylor’s estimations. For more details, see Bernanke’s Brookings post of
April 28, 2015 titled “The Taylor Rule: A benchmark for monetary policy?”. See also Janet L. Yellen’s speech
of March 27, 2015 on “Normalizing Monetary Policy: Prospects and Perspectives”, or Doko Tchatoka et al.
(2017) for additional evidence of Taylor-type policy rule estimated with headline or core PCE inflation.

15The output gap (in percentage) is constructed following the basic formula ygapt = 100 × Yt−Y ∗
t

Y ∗
t

that can
be approximated by ygapt = 100 × log(Yt) − log(Y ∗

t ), where Yt is the real output and Y ∗
t is the real potential

output at time t. In accordance with the original Taylor rule (Taylor, 1993), including the output gap rather
than real GDP growth in the estimates may help the TVP-VAR control for the effects of technology shocks
affecting both real and potential GDP, as discussed in Giordani (2004).
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two major sources. The first one is the Area-Wide Model database (AWM, Fagan et al., 2005)

that contains historical data from 1970:1 to 2017:4. Then, the data are updated to 2019:4 with

Eurostat. The main policy rate is the Euribor 3-month. Inflation is the Harmonized Index of

Consumer Prices (HICP), and the real potential GDP is estimated with the HP filter (Hodrick

and Prescott, 1997) to compute the output gap following the basic formula mentioned above.16

The period 1971:1 to 1980:4 is used as the training sample. The model is estimated from 1981:1

to 2019:4.

Figure I.3.2 – Inflation, output gap and policy rate

(a) U.S. (b) Euro area
Note: Grey bands represent NBER-dating recessions in the U.S. and CEPR-based recession dates in the euro
area. The U.S. shadow policy rate Rst is proxied by the federal funds rate and replaced by the shadow rate
from November 2008 to November 2015. In the euro area, it tracks the Euribor 3-month over the period and is
replaced by the shadow rate in July 2009. Shadow rates are from Wu and Xia (2016).

Figure I.3.2 shows the evolution of inflation, output gap and policy rates since 1960:1 in the

U.S. and 1971:1 in the euro area. Both interest rate and inflation have been lastingly decreasing

over the sample period in the U.S. and in the euro area. From a two-digit rate level around the

1970s, U.S. PCE inflation rate has substantially decreased to stabilize before the 2000s. The

federal funds rate has been evolving along a similar path over the sample period, before hitting

the ZLB at the end of 2008. The interpretation of the data is quite the same for the euro area,

where both the HICP and Euribor 3-month have been trending down since the 1980s. However,

Figure I.3.2 also shows that, unlike the U.S., the euro area has struggled to recover from the

2007-08 crisis, suffering another recession induced by the 2010-2012 sovereign debt crisis and

successive deflationary periods in 2015 and 2016.
16Following Hamilton’s (2018) recent criticism of the use of Hodrick-Prescott filter, real potential GDP in

the euro area is estimated with alternative filters to check the robustness of the results in Online Appendix
I.F.2.
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Unconventional monetary policies and shadow rates. Since the data cover the period

up to 2019:4, the estimation results capture both conventional and unconventional monetary

policies. Therefore, a major concern is the constrained policy rate at the zero level during

periods of unconventional measures. Because of flat interest rates at the ZLB, and along

with the launch of non-standard measures, traditional data on policy rate do not entirely

reflect central banks’ actions during unconventional times and may lead to biased monetary

policy rule estimation. Unconventional measures have been characterized by the use of ‘non-

standard’ instruments–i.e. other than the policy rate–consisting mainly in large-scale asset

purchases (LSAP) or forward guidance, to fulfill the main objectives stated in central banks’

mandate. Consequently, and to be able to estimate the Taylor-type rule up to 2019:4, the

policy rate instrument is proxied by the shadow rate from Wu and Xia (2016)17, constructed

as an extrapolation of the yield curve in the negative territory, and hence taking into account

unconventional measures that are likely to have affected interest rates at different maturities.

Table I.3.2 – Outlines of monetary policy since the Great Recession

United States Euro area

First asset purchase after the GFC Nov. 2008 July 2009
Tapering Dec. 2013 Dec. 2016
Period of ZLB Dec. 2008 - Dec. 2015 Mar. 2016 - —

Note: The symbol — means that the euro area is still stuck at the ZLB in December 2019.
Source: Federal Reserve, European Central Bank, Chen et al. (2017).

Table I.3.2 gives the outlines of U.S. and euro area monetary policies since the 2007-08

crisis.18 It shows periods when the Fed and the ECB have launched their main non-standard

measures, and periods during which they decided to reduce the magnitude of these measures.

The Fed has reacted quickly to the financial crisis by implementing its first assets purchases

programme (QE1, for ‘Quantitative easing 1’) of $600 billion. In the euro area, the ECB has

enhanced credit support in October 2008 and lengthened the maturity of its LTROs in June

2009. However, the ECB has implemented its first asset purchase programme in July 2009

17U.S. and euro area shadow rates data are available on Jing Cynthia Wu’s webpage.
18From 2008 to 2014, the Fed has implemented three successive QE programmes (Dec. 2008, Nov. 2010 and

Sep. 2012). In late 2015, it began to normalize U.S. monetary policy by raising the key policy rate, and by
reducing its balance sheet in late 2017. The ECB decided to improve credit support and bank lending (Oct.
2008 and June 2009), and launched its first asset purchase programme (APP) in July 2009. However, its balance
sheet expanded a lot in 2012 due to very longer-term refinancing operations (VLTROs), and especially in 2015
when it implemented an APP including both sovereign bonds and private-sector securities purchases.
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(CBPP1, for ‘Covered-bond purchase programme 1’). As of 2016, the ECB has gradually

lowered interest rates to their lowest level, while the Fed was keeping normalizing its monetary

policy at this time. Indeed, the Fed announced slowing down assets purchases in December

2013, before raising its policy rate in December 2015. On the other hand, the ECB announced

tapering in end-2016. But in late 2019, monetary policy in the euro area was still at the ZLB.

The shadow rate from Wu and Xia (2016) is used as a proxy for unconventional measures

of monetary policy in the TVP-VAR specification (Figures I.3.2 and I.3.3).19 Nominal interest

rates used as policy rates in the model are replaced by shadow rates at the ZLB to get a

consistent measure of the stance of monetary policy over the full sample period. In the U.S.,

the federal funds rate is replaced by the shadow rate from November 2008 to November 2015. In

the euro area, the Euribor 3-month is replaced by the shadow rate in July 2009. As mentioned

previously, the key policy rate cannot be proxied by the shadow rate only once the euro area

reached the ZLB in 2016, since the shadow rate starts to diverge from the Euribor 3-month in

mid-2009 due to the launch of unconventional measures. Both for the U.S. and the euro area,

these dates closely correspond to information reported in Table I.3.2. Moreover, regarding

Figure I.3.3, at least two comments can be made to compare the timeline of Fed’s and ECB’s

policy decisions. First, despite the fact that both the Fed and the ECB have simultaneously

adopted unconventional measures to face the Great Recession, the Fed was entering the ZLB

period while implementing its early non-standard policy, whereas the policy rate in the euro

area was around 1% at that time. Second, the Fed exited from the ZLB a couple of months

before the ECB finally entered the zero-rate era.

To fit the frequency of the shadow rate series with the rest of the data, quarterly rates are

constructed as a three-month average. Also, as discussed in Christensen and Rudebusch (2015),

Halberstadt and Krippner (2016), Bauer and Rudebusch (2016) and Krippner (2020), shadow

rate estimates are very sensitive to several factors, such as the calibration of the lower bound

19Several papers highlight the plausibility to use the shadow rate in a VAR model as a measure of the
stance of monetary policy at the ZLB. For instance, Wu and Xia (2016), Lombardi and Zhu (2018), Keating
et al. (2019), Krippner (2020) and Francis et al. (2020) show how shadow rate-based monetary policy shocks
provide a realistic picture of the post-crisis macroeconomic situation. Basu and Bundick (2017) and Caggiano
et al. (2017) investigate the macroeconomic effect of uncertainty at the ZLB. Forbes et al. (2018), Rogers et al.
(2018) and Pasricha et al. (2018) find empirical evidence of monetary policy effects at the international level.
Georgiadis (2016), Horvath and Voslarova (2016), Potjagailo (2017) focus on global spillovers of unconventional
monetary policies in the U.S. and in the euro area. Recently, Diegel and Nautz (2021) use a shadow rate in
a structural VAR to assess the role of long-term inflation expectations in the transmission of monetary policy
shocks. Plante et al. (2017), Caraiani and Călin (2018) and Crespo Cuaresma et al. (2019) incorporate shadow
rates in a TVP-VAR model. Similarly, shadow rates can also be used in estimated DSGE models, as in Mouabbi
and Sahuc (2019).
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Figure I.3.3 – Policy and shadow rates

(a) U.S.

(b) Euro area
Note: Shaded areas depict the ZLB periods. The U.S. shadow policy rate Rst is proxied by the federal funds
rate and replaced by the shadow rate from November 2008 to November 2015. In the euro area, it tracks the
Euribor 3-month over the period and is replaced by the shadow rate in July 2009. Shadow rates are from Wu
and Xia (2016).

or the range of rates included in the dataset. The robustness of the results using shadow short

rates from Krippner (2013, 2020) is checked in Online Appendix I.F.1.
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I.4 Results

Response coefficients of the time-varying reaction function. The baseline model is

estimated with the data mentioned previously.20 Figure I.4.4 compares the evolution of long-

run responses of the policy rate to macroeconomic fluctuations in the United States and the

euro area. Considering the dual-mandate reaction function, long-run response coefficients can

be interpreted as the response of the policy rate to a permanent increase in inflation or output.

In this regard, they correspond better to the parameters specified in the theoretical counterpart

of empirical monetary policy rules. Figure I.4.4a shows the evolution of long-run coefficients

on inflation from 1995:1 to 2019:4. The estimated coefficient in the U.S. has slightly decreased

during the Great Recession. The median coefficient on inflation dropped from 0.91 in 2009:1 to

0.34 in 2013:1, and stayed roughly at the same level thereafter (0.37 in 2017:1). The coefficient

also shows that the Fed’s long-run response to inflation became lower than the unit in the

early 2000s, and even non-significantly different from zero in 2008.21 This result suggests a

less aggressive response of U.S. monetary policy to inflation fluctuations over the last decades.

However, and importantly, this result does not provide evidence of a strong change in Fed’s

response to inflation after 2008. On the other hand, results in the euro area indicate that

ECB’s monetary policy has been much more aggressive towards inflation since 2008, where

the long-run response coefficient has considerably increased at the ZLB. Indeed, the median

response coefficient increased from 1.84 in 2009:1 to 2.13 in 2013:1 before reaching 3.15 in 2017:1.

Moreover, 68% credible intervals show significant difference between the long-run coefficient on

inflation in the U.S. and the euro area after the 2007-08 crisis. Figure I.4.4b tracks changes

in the long-run response to output gap over time. Estimated coefficients in the U.S. and in

the euro area overlapped after 2008 and show no significant change in the response of the

Fed and the ECB to output gap fluctuations during the Great Recession, despite a moderate

larger increase in the U.S. than in the euro area (the median coefficient in 2017:1 is at 2.14 in

the U.S. against 1.88 in the euro area). Moreover, very wide depicted 68% credible intervals

associated to the coefficients show how estimated long-run responses to output gap are subject

to uncertainty in the U.S. and in the euro area at the end of the sample period of estimation.

20Further measures of inflation and real economic activity are employed in the model to check the robustness
of the results. The response coefficients of these alternative specifications are shown in Online Appendix I.F.2.

21The fact that the Taylor principle is no more satisfied since the 2000s may have had huge implications
in terms of indeterminacy and volatilities of variables of interest. However, this analysis would have required
additional structure in the model and is beyond the scope of this paper.
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Nevertheless, there is no evidence of significant shifts in the long-run response coefficient on

output gap within and between the U.S. and the euro area.

Figure I.4.4 – Long-run coefficients from the estimated monetary policy rule

(a) Long-run coefficient on inflation (b) Long-run coefficient on output gap
Note: Long-run coefficients on inflation and output gap are respectively given by (crπ,t+ γ1,rπ,t+ γ2,rπ,t)/(1−
γ1,rr,t− γ2,rr,t) and (crg,t+ γ1,rg,t+ γ2,rg,t)/(1− γ1,rr,t− γ2,rr,t) in equation (3). Median (solid lines) and 68%
credible interval (shaded areas) of the posterior distribution of coefficients are plotted for each indicated variable.

Figure I.4.5 plots the time-varying standard deviations of structural monetary policy dis-

turbances in the U.S. and in the euro area. In the U.S., monetary policy shock volatility has

peaked when the Fed hit the ZLB and decreased immediately thereafter. Besides no noticeable

and significant changes in the long-run response to macroeconomic fluctuations, this spike in

the volatility of U.S. monetary policy shocks may be interpreted as an illustration of the ‘con-

strained discretion’ approach raised by Bernanke (2003) to describe Fed’s monetary policy.22

In the euro area, monetary policy shock volatility has increased with ECB’s early reaction to

the 2007-08 crisis. Once again, this figure underlines differences in the conduct of monetary

policy in the U.S. and the euro area. As a possible explanation, lags in the implementation

of unconventional monetary policy in the euro area compared to the U.S. may have led to a

gap between the timing of ECB’s and Fed’s monetary policy shock volatilities. The coefficient

from the ECB monetary policy rule reached an all-time high at the end of the period of esti-
22According to Bernanke, the Fed has adopted a flexible behavior such that the inflation targeting objective

may be de-emphasized in an output stabilization purpose under some circumstances. As he mentioned in his
speech, “under constrained discretion, the central bank is free to do its best to stabilize output and employ-
ment in the face of short-run disturbances, with the appropriate caution born of our imperfect knowledge of
the economy and of the effects of policy”. Contemporaneous coefficients depicted in Figure I.E.1 (see Online
Appendix I.E) show a small increase in Fed’s short-run response to output gap in 2008-2009 and support the
view of the constrained discretion approach to Fed’s monetary policy. However, the credible interval associated
to this coefficient does not provide any statistical evidence of any significant change in Fed’s contemporaneous
responses to real economic activity.
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mation, whereas it came back to a pre-crisis level in the U.S. This result may be interpreted as

the difference in the timing of policy normalization in the U.S. and in the euro area: the Fed

began normalizing the stance of monetary policy at a time when the ECB had not yet reached

the ZLB. Note that 68% Bayesian credible sets associated to δr,t coefficients highlight strong

significant changes in the volatility of monetary policy shocks over the sample period.

Figure I.4.5 – Monetary policy shock volatility from the estimated monetary policy rule

Note: The volatility of monetary policy shocks is captured by δr,t in equation (3). Median (solid lines) and 68%
credible interval (shaded areas) of the posterior distribution of coefficients are plotted for the indicated variable.

The evolution of monetary policy shocks volatility shows that unconventional monetary

policy decisions at the ZLB have been characterized by large departures of the Fed and the ECB

from the policy rate prescribed by the Taylor rule. QE has largely contributed to lower expected

future short-term rates through the signaling channel, that can be interpreted as additional

discretionary monetary policy, whereas FG is commonly defined as the commitment to deviate

from the monetary policy rule in the future, resulting in more discretionary policy.23 Based on

these results and on the whole influential related literature, Fed’s and ECB’s unconventional

monetary policy tools such as QE and FG may have undoubtedly led to statistically different

and persistent deviations from the baseline Taylor-type policy rule at the ZLB in the U.S.

and in the euro area. By definition, these departures from rule-like behavior are interpreted

as more discretionary policy at the ZLB. In that case, the central bank is not systematic–or
23See Vissing Jorgensen and Krishnamurthy (2011) and Bauer and Rudebusch (2014) for evidence of the

signaling role of QE, and Campbell et al. (2012) and Woodford (2012) for the effects of FG.
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predictable–in reacting to changes in the economy.

Macroeconomic effects of non-systematic monetary policy. Figure I.4.6 shows the

evolution of realized monetary policy shocks since 1995. It reveals that the Fed and the ECB

have departed a lot from the behavior prescribed by their estimated policy rule at the ZLB,

and that these monetary policy shocks have been considerably negative when the 2007-08 crisis

occurred. A negative monetary policy shock means that the central bank sets interest rate

at a level below the rate prescribed by the estimated monetary policy rule. In that case,

monetary policy is perceived as expansionary. However, it can be graphically deduced that

U.S. and euro area monetary policies have been mostly expansionary during the 2007-08 crisis,

describing potentially important deviations from estimated policy rules that also occurred with

the launch of unconventional measures at the ZLB.

Figure I.4.6 – Realized monetary policy shocks

(a) U.S. (b) Euro area
Note: Median (solid lines) and 68% credible interval (shaded areas) of the posterior distribution of the realized
monetary policy shock are plotted. A negative monetary policy shock is equivalent to an interest rate setting
below the rate prescribed by the estimated monetary policy rule (i.e. expansionary monetary policy).

Then, the purpose is to investigate changes in the macroeconomic impact of monetary policy

shocks. Figures I.4.7 and I.4.8 plot impulse responses of each observable variable to monetary

policy shocks over a 20 quarter horizon at different dates: 2007:4, 2011:1, and 2015:1. The

responses are computed based on draws from the posterior distributions of the parameters

estimated for each indicated period. They show how the economy responded to a monetary

policy shock at a given point in time. Overall, the signs of the impulse response functions of

the TVP-VAR variables to a monetary policy shock do not change at the ZLB.
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In the U.S., the responses of inflation and output gap to monetary policy shocks have

slightly decreased at the ZLB. However, the policy rate has strongly reacted to monetary policy

shocks in 2007:4 and 2015:1, suggesting an important role of the non-systematic component in

Fed’s monetary policy. In the euro area, the response of inflation to monetary policy shocks

has remained quite stable before and after the Great Recession. However, as in the U.S.,

the response of output gap has gradually decreased since 2007:4. Importantly, the policy

rate in the euro area has been more and more responsive to monetary policy shocks since

2007:4. This confirms the view that along with a stronger long-run response to inflation,

ECB’s monetary policy has been also characterized by a larger non-systematic response to

macroeconomic fluctuations during the Great Recession.

Figure I.4.7 – Impulse responses to monetary policy shocks in the U.S.
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Note: Impulse response of the indicated variable to a contractionary monetary policy shock at the indicated
date. Blue lines represent the median and grey shaded areas represent 68% credible intervals of the posterior
distribution of each impulse response.

Table I.4.3 reports the percentage share of forecast error variances in endogenous variables

attributable to monetary policy shocks for horizons up to 5 years (i.e. 20 quarters). Variance

decomposition is based on draws of the model’s parameters from their posterior distributions

for 2007:4, 2011:1 and 2015:1. As with impulse response functions, the dates are chosen such

that the analysis covers both pre-crisis and ZLB periods. The model estimated using U.S.

data attributes small fractions of inflation and output gap volatility to monetary policy shocks.
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Figure I.4.8 – Impulse responses to monetary policy shocks in the euro area
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Note: Impulse response of the indicated variable to a contractionary monetary policy shock at the indicated
date. Blue lines represent the median and grey shaded areas represent 68% credible intervals of the posterior
distribution of each impulse response.

This fraction is about 10% and is quite stable across the three periods. However, monetary

policy shocks considerably contribute to the variance of the policy rate in the U.S., confirming

previous results from the impulse response analysis of a strong non-systematic component in

U.S. monetary policy. In the euro area, monetary policy shocks explain a larger part of inflation

volatility than in the U.S., whereas the share of the forecast error variance of the output gap

is similar. The contribution of monetary policy shocks to the variance of inflation in the

euro area decreases when the economy moves from normal times to the ZLB, while monetary

policy shocks explain an increasing part of the variation in the policy rate across the periods.

However, this share is lower than in the U.S. These results are consistent with the higher long-

run response coefficient for inflation and the increasing role of non-systematic component of

monetary policy at the ZLB in the euro area. The 16th and 84th percentiles based on draws

from the posterior distributions for each date provide little evidence of significant changes in

forecast error variances due to monetary policy shocks. Only median coefficients are reported

here.

As a whole, the results presented above show that the ECB has considerably shifted its

behavior during the post-2008 decade by responding more aggressively to inflation fluctua-

55



Table I.4.3 – Variance decomposition

Horizon % of forecast error variance due to monetary policy shocks

U.S. Euro area

2007:4 2011:1 2015:1 2007:4 2011:1 2015:1

Inflation
1 7.72 9.49 7.49 16.14 14.71 12.78
2 7.78 9.65 7.66 15.08 13.63 11.95
3 8.87 9.98 8.62 14.62 13.63 12.30
4 9.78 10.22 9.39 14.40 13.84 12.86
5 10.33 10.38 10.02 14.29 14.12 13.27

Output gap
1 8.19 8.23 8.45 9.39 8.60 7.93
2 9.31 7.60 8.90 10.27 10.13 10.83
3 10.49 8.10 10.48 10.61 11.09 12.75
4 11.32 8.47 11.86 10.66 11.38 13.31
5 11.85 8.78 12.73 10.70 11.47 13.48

Policy rate
1 32.21 10.59 33.35 7.21 16.64 24.61
2 24.12 7.57 23.41 6.55 12.44 17.66
3 21.30 7.53 19.72 7.11 12.21 16.04
4 20.56 7.86 18.85 7.48 12.22 15.25
5 20.37 8.16 18.89 7.69 12.26 14.87

Note: Horizon is the number of years ahead. Variance decomposition is based on draws of the
median coefficients from their posterior distributions for 2007:4, 2011:1 and 2015:1.

tions, when its policy rate hit the effective lower bound and when a novel set of unconventional

measure was launched. However, the results do not reveal noticeable changes in the conduct

of Fed’s monetary policy at the ZLB, despite a slightly lower long-run response coefficient on

inflation at the ZLB. Nevertheless, estimated response coefficients also suggest dramatic shifts

in monetary policy shocks during and after the Great Recession. In the U.S., the volatility

of monetary policy shocks peaked when the Fed entered the ZLB and quickly went back to

pre-crisis levels, whereas it has slowly increased in the euro area to reach a high level due to

ongoing massive expansionary ECB’s monetary policy. Impulse response functions and variance

decomposition highlight the relative effectiveness of monetary policy shocks in both U.S. and

euro area macroeconomic performances at the ZLB. Although they explain a larger part of in-

flation fluctuations in the euro area than in the U.S., monetary policy shocks have been mostly

reflected in the variation of the policy rate in the U.S. and have even played an increasing role
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in the evolution of the policy rate in the euro area at the ZLB.

I.5 Policy counterfactuals

The estimated VAR model with time-varying coefficients is used to propose different coun-

terfactual scenarios. The first one focuses mainly on the coefficients of estimated monetary

policy rules. Then, the question raised by the second counterfactual scenario is more general

and is related to changes in the rest of the estimated model’s parameters and in the identified

structural shocks. The last counterfactual scenario consists in replacing euro area estimated

monetary policy rule coefficients in the model estimated with U.S. data and to study whether

U.S. macroeconomic conditions would have been better-off if the Fed followed ECB’s policy

rule and vice versa.

I.5.1 Do monetary policy changes matter?

The aim is to investigate how changes in the conduct of monetary policy may have affected

macroeconomic performances. This experiment gives the path that would have followed infla-

tion, output gap and the policy rate in the U.S. and in the euro area under some circumstances.

Counterfactual series for the U.S. and the euro area are presented in Figures I.F.7 and I.F.8,

respectively.

The first scenario consists in drawing the coefficients of the policy rule from the posterior

distribution from 2007:4. In the U.S., the levels of PCE inflation and output gap would have

been slightly lower than those observed after the crisis if the Fed had kept monetary policy rule

unchanged since 2007:4. Also, the simulated policy rate would have been only somewhat above

its actual level, meaning that monetary policy would have been constantly less accommodative

in that scenario than that has actually been over the period. Although they are not statistically

significant either, the results are much more striking concerning inflation in the euro area.

Changes in ECB’s monetary policy had a huge impact on HICP, especially during the Great

Recession: unconventional monetary policy has strongly reduced the deflationary risk in the

euro area. Overall, both Fed’s and ECB’s unconventional monetary policies have improved

inflation and real economic activity in the U.S. and the euro area.

In the second scenario, the Taylor rule parameters are also drawn from their 2007:4 posterior
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distribution, but monetary policy shocks are now assumed to be muted from 2007:4 forward. In

that case, counterfactual series also induced a shift in the non-systematic component of mon-

etary policy, and highlight the role of monetary policy shocks when compared to the previous

scenario. The interpretation of the results is similar to that has been observed in the first

scenario. However, changes in ECB’s systematic and non-systematic components of monetary

policy led to a significant gap between actual and counterfactual inflation path: without any

change in ECB’s behavior at the ZLB, the euro area would have suffered a prolonged period of

deflation from 2014:3 to 2016:4. In the U.S., this gap widened from 2007:4 onward, more than

that observed in the first scenario. But the results still do not suggest significant evidence of

the efficiency of Fed’s policy shifts on economic performances in the U.S.

Figure I.5.9 – Counterfactual simulations (U.S.)

Note: Median counterfactual path (red dashed lines) and 68% credible interval (red shaded areas) are plotted
for each indicated variable.

Other counterfactuals are shown in Figures I.E.4 and I.E.5 (see Online Appendix I.E), and

give further insights on the macroeconomic implications of changes in the non-systematic com-

ponent of monetary policy. The top panel reports results when monetary policy shocks are

turned off from 2007:4 onward. There is no noticeable difference between the actual and coun-

terfactual paths. Then, it appears that the role of monetary policy shocks considered separately

is negligible in the U.S. and the euro area compared to the role of changing policy parame-

ters in explaining macroeconomic performances. The bottom panel focuses on the volatility

of monetary policy shocks. The scenario consists in drawing the coefficient on monetary pol-
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Figure I.5.10 – Counterfactual simulations (Euro area)

Note: Median counterfactual path (red dashed lines) and 68% credible interval (red shaded areas) are plotted
for each indicated variable.

icy shocks volatility from the 2007:4 posterior distribution, and keeping it fixed from 2007:4

forward. Similarly, the results do not suggest any role of monetary policy shocks volatility in

macroeconomic performances in the U.S. and in the euro area.

I.5.2 Structure, shocks or policy?

Previous counterfactual results show that macroeconomic fluctuations are partially driven by

changes in Fed’s and ECB’s interest rate setting behavior. Whereas changes in Fed’s policy

hardly and non-significantly explain the evolution of U.S. inflation and output gap, empirical

results in the euro area highlight the role of changing ECB’s monetary policy in macroeco-

nomic fluctuations, especially regarding inflation. Those results are obtained by keeping the

coefficients of the estimated monetary policy rule, and by additionally muting monetary policy

shocks from 2007:4 onward, and therefore are subject to the Lucas critique (Lucas, 1976) ac-

cording to which the whole structure of the economy is affected by policy changes due to the

forward-looking behavior of rational private agents.

To deal with the Lucas critique, a first scenario consists in keeping all the response co-

efficients fixed from 2007:4 onward. Fixed coefficients now include parameters from the first

(“inflation equation”) and second (“output gap equation”) rows of the structural model pre-

sented in Section I.2. As for the so-called Taylor-type rule that stands for the “interest rate
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equation”, inflation equation is called “Phillips curve” and output gap equation is called “IS

curve” in the following exercise.24 The effect of monetary policy changes on macroeconomic

fluctuations is then assessed by comparing those results with previous counterfactual results,

where only policy parameters were kept fixed from 2007:4 onward. In a second scenario, all

structural shocks (supply, demand, and monetary policy) are then assumed to be muted from

2007:4 onward. The main idea is based on Smets and Wouters (2005), Christiano et al. (2008)

and Sahuc and Smets (2008) who show that the gap between the conduct of Fed and ECB mon-

etary policies comes from the difference in shocks hitting the U.S. and the euro area economies.

Therefore, in addition to fixed coefficients, all structural shocks are muted from 2007:4 onward.

While Figure I.E.6 in Online Appendix I.E reveals no noticeable change in inflation, output

gap and policy rate when keeping fixed all the structural parameters, the path of endogenous

variables is different when shocks are muted and coefficients are fixed from 2007:4 onward as

depicted in Figures I.E.7 and I.E.8. This is particularly obvious in the case of muted supply

shocks and fixed parameters in the inflation equation. Without negative supply shocks and

time-variation in the inflation equation’s parameters, inflation would have been much lower

and the output gap would have dropped less than what has been observed in the wake of the

2007-08 financial crisis, as indicated in Figure I.E.7. The sharp recovery of the U.S. economy

and the inflation rate at around its 2% target level would have encouraged the Fed to stop

monetary policy easing around 2011. Although they are less noticeable, the results also hold

in the case of fixed parameters and muted demand shocks in the output gap equation. Figure

I.E.8 reveals that strong negative demand shocks led to U.S. deflation in 2009. Without this

shock, the results shows that the Fed would have slightly postponed monetary policy easing,

entering the ZLB only around 2011. Although previous results tend to indicate that U.S.

macroeconomic fluctuations have been driven by structural shocks rather than changes in the

structure of the economy, it is worth mentioning that they should be interpreted cautiously due

to weak statistical evidence.

The story seems to be different in the euro area. Empirical results show that changes in the

structure of the economy have affected the path of inflation, output gap and hence the policy

rate after the 2007-08 crisis, as reported in Figure I.E.11 in Online Appendix I.E. As depicted

in Figure I.E.15, changes in the structure of the economy have been driven by changes in the
24Of course, the structural specification of the model does not allow to give an empirical estimation of both

the Phillips and the IS curves consistent with the literature. For instance, the empirical so-called Phillips curve
in this paper contains current and lagged values of the policy rate, which is not the case in any Phillips curve
specification from standard macroeconomic textbook models.
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parameters of the output gap equation to a great extent. This shift in the parameters of the

equation seems to have slightly worsened euro area macroeconomic performances. Without

any change in output gap equation’s parameters from 2007:4 onward, the output gap would

have been mostly positive and inflation would have constantly been on target, even increasing

after 2015 to reach around 4%. In this specific case, ECB’s monetary policy would have been

less accommodative than what has been experienced in the euro area, despite being still at

the ZLB. The results are more striking when demand shocks are muted in addition to fixed

parameters in the output gap equation from 2007:4 onward. Indeed, Figure I.E.13 shows tighter

credible intervals associated to simulated counterfactual series, and less volatile inflation and

output gap around demand shocks observed around 2009. Once again, previous results should

be interpreted with caution given the large uncertainty surrounding the results.

I.5.3 Should the ECB be a role model for the Fed and vice versa?

Previous results show how changes in the structure of the economy and shocks may have par-

tially explained macroeconomic fluctuations. Whereas structural shocks hitting the economy

appear to be a key feature of U.S. macroeconomic conditions, the path of euro area inflation

and output gap seems to have been moving in reaction to changes in the structure of the

economy. Those changes would have had huge monetary policy implications for both the Fed

and the ECB. However, those results are hardly interpretable, since they do not provide any

strong statistical evidence of the role of shocks and structures in U.S. and euro area macroe-

conomic fluctuations. Importantly, other previous counterfactual results show that changes in

the conduct of ECB’s monetary policy have been very effective in improving macroeconomic

performances and particularly inflation in the euro area, which is not as obvious regarding the

effectiveness of Fed’s time-varying systematic policy.

For this reason, the question raised in this subsection is now the following: what would

have happened to U.S. macroeconomic performances if the Fed had followed ECB’s monetary

policy rule? Based on Benati (2011), this counterfactual investigates whether the U.S. macroe-

conomic situation would have been better off when “bringing the ECB to the U.S.”. Inversely,

another counterfactual investigates what would have happened to euro area macroeconomic

performances when “bringing the Fed to the euro area”, i.e. if the ECB had adhered to Fed’s

monetary policy rule. To be able to construct these counterfactuals, response coefficients are

rescaled to get some consistency before and after 2007:4.
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Figure I.5.11 shows that the U.S. shadow policy rate would have been heavily negative in the

case where the Fed had adhered to ECB’s policy rule from 2007:4 onward, meaning that larger

unconventional measures would have been implemented in reaction to the financial crisis. As

a result, the U.S. economic recovery would have been sharper, but this strong accommodative

policy would have been very costly in terms of inflation that would have largely overshot its

target, reaching more than 7% in 2011.

Figure I.5.11 – Counterfactual simulations (U.S.)
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Note: Median counterfactual path (black dotted lines) are plotted for each indicated variable.

Figure I.5.12 shows that inflation in the euro area would have been much lower than what

has been observed if the ECB had followed the U.S. policy rule. However, still according to

this scenario, ECB monetary policy would have been more accommodative than that has been

observed between 2010 and 2017, slightly improving real economic activity and avoiding periods

of deflation in the euro area that would have been observed in the scenario with fixed policy

rule parameters from 2007:4 onward. Overall, following Fed monetary policy would have been

costly regarding ECB’s primary objective of price stability, leading to weak inflation in the euro

area.

I.6 Sensitivity analysis

I.6.1 Data choice

Shadow rate. The model is re-estimated with the shadow rate extracted from Krippner

(2013, 2020).25 Short- and long-run coefficients are given in Figures I.F.2 and I.F.3 in Online

Appendix I.F.1. Although the tables containing median coefficients across different post-crisis

25Shadow short rates data are available on Leo Krippner’s webpage.
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Figure I.5.12 – Counterfactual simulations (Euro area)
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periods are not reported, it can be graphically deduced that estimated coefficients using Kripp-

ner’s shadow short rate follow a similar path than those estimated with Wu and Xia’s shadow

rate. They also show that the ECB has been increasingly responsive to inflation fluctuations

after the 2007-08 crisis, whereas Fed’s systematic monetary policy has not changed significantly

over that period. However, impulse responses and variance decompositions highlight that the

U.S. shadow policy rate absorbs a large part of monetary policy shocks, providing evidence of

a strong non-systematic component in Fed’s monetary policy. Policy counterfactuals shed light

on these results: the euro area would have suffered deflation episodes without a more aggressive

ECB’s response to inflation, and U.S. monetary policy would have been less accommodative

without monetary policy shocks. Note that this tight Fed’s monetary policy would not even

have been noticeably costly for the U.S. macroeconomy.

Inflation and output series. Alternative specifications of the estimated monetary policy

rule using different series are run over the sample. The robustness of the results is tested

with different series of ex-post inflation and proxies for real activity. U.S. alternative series are

mostly chosen following FOMC’s historical prescriptions of targeted policy rules using various

economic series.26 First, the policy rule is assumed to be implemented as responding to the

growth rate of core PCE price index rather than to headline PCE inflation. The main reason

is that core PCE inflation seems to better predict the medium-term path of headline inflation

than headline PCE inflation. Another specification includes real GDP growth rather than the

CBO output gap. Also, following Okun’s law (Okun, 1962), real GDP growth and output gap

can be replaced by unemployment rate and unemployment gap, respectively.

26As recently and clearly explained is Part 2 of the Fed’s 2021 Monetary Policy Report.
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Euro area variables used in this paper are not as abundant as U.S. series, which reduces the

possibility to run alternative ECB’s reaction function estimates. This is especially true re-

garding inflation series. The benchmark ECB’s policy rule specification includes HICP as an

appropriate measure of the price index.27 However, the euro area policy rule can still be es-

timated according to different proxies for real activity. As for the U.S., these rules consist

in responding to real GDP growth or unemployment rate, rather than to output gap. Also,

in line with Hamilton’s (2018) criticism of the use of Hodrick-Prescott filter, euro area real

potential GDP used to construct the output gap is estimated with Christiano and Fitzgerald

(2003) bandpass filter.

As a whole, the results show that estimates of response coefficients are robust to these alter-

native inflation series and real activity proxies, especially regarding long-run coefficients and

the volatility of monetary policy shocks. The time-varying coefficients are depicted in Figures

I.F.11 to I.F.22 in Online Appendix I.F.2.

I.6.2 Choice of lag length

Three lags. Based on Primiceri (2005), Cogley and Sargent (2005), Benati and Mumtaz

(2007), Gambetti et al. (2008), Canova and Gambetti (2009), and Koop et al. (2009), the

baseline model is assumed to follow a second-order vector autoregressive model with time-

varying coefficients and a time-varying covariance matrix for its innovations in the reduced

form given in equation (2). More generally, the model follows a pth-order TVP-VAR model in

the following reduced form: yt = bt + B1,tyt−1 + . . .+ Bp,tyt−p + ut, where p is the number of

lags. The robustness of the results is checked when the number of lags is set at p = 3 instead

of p = 2. The results are shown in Figures I.F.23 and I.F.24 in Online Appendix I.F.3. The

interpretation is the same than that of the baseline model, concerning both long-term responses

and volatility of monetary policy shocks.

I.6.3 Prior distribution

Calibration. The interpretation of estimation results may depend on the calibration of prior

distribution. To test the sensitivity of the results to the specification of priors, the block element

Q of the variance-covariance matrix of innovations V is now defined as Q ∼ IW(dQk
2
QV̂B, dQ),

where k2
Q = 0.0001 instead of k2

Q = 0.00035 and dQ = 40 instead of dQ = 22, as specified
27As mentioned in the new monetary policy strategy of the ECB.
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in Primiceri (2005). Moreover, the first five years are used to calibrate the prior distribution

of coefficients, instead of using the first ten years. As a consequence, the sample period of

estimation is extended to 1965:1 in the U.S. and 1976:1 in the euro area, instead of 1970:1

and 1981:1 as in the benchmark specification, respectively. Results do not show any significant

difference with the benchmark results. They are reported in Figures I.F.25 and I.F.26 in Online

Appendix I.F.3.

Horseshoe priors. Another alternative to the baseline TVP-VAR specification à la Primiceri

(2005) consists in using different priors as recommended by Baumeister and Hamilton (2015,

2018). Since the calibration of the priors used in the traditional specification may suppress

some degree of time variation in the VAR coefficients, Prüser (2021) proposes a flexible global-

local prior allowing for abrupt rather than smooth changes in the parameters and in systematic

monetary policy, and follows the TVP-VAR specification developed in Chan and Eisenstat

(2018). Long-run response coefficients are depicted in Figure I.F.27 in the U.S. and Figure

I.F.29 in the euro area. Monetary policy shock volatilities are given in Figure I.F.28 in the

U.S. and Figure I.F.30 in the euro area in Online Appendix I.F.3. The results show that the

monetary policy shocks volatility remains unchanged in the framework using flexible global-local

priors.

I.6.4 Structural shocks identification

Cholesky factorization. Then, the robustness of the results is checked when monetary pol-

icy shocks are identified using the traditional Cholesky factorization of the variance-covariance

matrix. In that case, inflation and output are assumed to react to monetary policy shocks with

a one-period lag. The results are shown in Figures I.F.31 and I.F.32 in Online Appendix I.F.3.

Using this identification strategy allows reducing uncertainty surrounding long-run coefficients,

especially the response to output. As a consequence, long-term responses are more easily in-

terpretable than in the baseline identification scheme. The response coefficient on output is

even significantly different between the U.S. and the euro area after 2008, and suggests a much

stronger Fed’s response to output than before the financial crisis. On the other hand, the long-

term response coefficient on output has decreased since 2008, and even became non-significantly

different from zero when the crisis occurred.
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Unrestricted response of output to a monetary policy shock. As highlighted by Uhlig

(2005) and recently discussed by Arias et al. (2019) and Wolf (2020), the response of output

gap to a monetary policy shock is left unconstrained to assess the effect of monetary policy

on output.28 Response coefficients of estimated policy rules are shown in Figures I.F.33 and

I.F.34, and policy counterfactuals are shown in Figures I.F.35 and I.F.36 in Online Appendix

I.F.3. Long-run responses and policy counterfactuals show similar pattern than in the baseline

model.

I.7 Policy implications

Inflation targeting and monetary policy strategy. Previous results raise huge policy

implications. Figure I.7.13 plots the time-varying inflation targets defined as the stochastic

trend towards which inflation would have fluctuated based on draws of the model’s parameters

for each period, based on Cogley and Sargent (2005) and Cogley et al. (2010). U.S. estimates

show evidence of a decline in the inflation objective through the financial crisis, then a stabi-

lization at the 2% level consistent with the Fed’s mandate. Then, the estimated target starts

to increase just above 2% around the time of the main policy rate lift-off and Fed’s policy

normalization. Estimated inflation targets in the euro area shows unstable path of inflation

objective compared with Fed’s. While the ECB targeted a 2% level of inflation around 1999

and the launch of the euro, estimated targets have declined since the early 2000s in the euro

area and have sharply dropped around the 2010-2012 sovereign debt crisis. The targets then

rose due to strong ECB’s unconventional measures to reach the 2% targeted level after 2015,

before plummeted at the end of the sample period of estimation. Compared to the U.S., euro

area monetary policy did not manage to stabilize its targeted values for inflation around the

2% level as mentioned in its mandate, especially because of these two major shocks that hit the

economy in 2008 and 2010-2012. But this also raises the question of the anchoring of private

agents’ inflation expectations and of the credibility of the ECB to reach the 2% target over the

long-run.

Recent evidence of the role of inflation target adjustments as a tool to stabilize macroeco-

nomic fluctuations have been provided by Eo and Lie (2020).

28Uhlig (2005) finds no clear evidence of the effects of "contractionary" monetary policy shocks on real GDP.
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Figure I.7.13 – Estimated inflation target
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of the posterior distribution of the inflation target are plotted. Π∗ stands for the 2% inflation target.

Rules versus discretion. Empirical results of estimated time-varying reaction functions

also revive the debate over whether the central bank should adopt a rule-based approach to

monetary policy-making. Nikolsko-Rzhevskyy et al. (2014) investigate the cost of deviating

from Taylor-type policy rules and how it is related to discretionary monetary policy. They

consider three types of monetary policy rules: an original, a modified, and an estimated Taylor

rule. Interestingly, and in line with the results discussed above, they show that the overall

period starting from 1965 has been mostly dominated by discretionary eras in the case of an

estimated Taylor rule (from 1974 to 1987, and from 1995 until the end of their sample in 2013).

In the TVP-VAR framework used in the paper, deviations from the estimated U.S. monetary

policy rule are not caused by changes in the systematic component of monetary policy, which

are found to be not statistically significant over time.

I.8 Conclusion

The question of changes in central banks’ behavior can be explored by assuming that cen-

tral banks follow a standard Taylor-type rule to guide monetary policy decisions. According to

this framework, the central bank focuses attention on the evolution of macroeconomic funda-

mentals, such as inflation and output, to determine its target value for the interest rate. The

small-scale time-varying parameters vector autoregressive model used in this paper gives some

empirical assessments of time-variations in the estimated simple Taylor rule in the U.S. and in
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the euro area during the post-2008 decade. It allows a better understanding of monetary policy

implementations by assessing changes in Fed’s and ECB’s behavior over the post-crisis period.

Using a shadow rate to capture the stance of monetary policy at the ZLB, the empirical

analysis shows that the conduct of monetary policy in the euro area has evolved differently

than in the U.S. after the 2007-08 financial crisis. Despite a slight decrease in the response

to inflation, the estimated U.S. policy rule shows no noticeable change in the Fed’s reaction

to macroeconomic fluctuations after 2008. In fact, the results highlight the role of the non-

systematic component of Fed’s monetary policy. By reacting in an unpredictable manner to

changes in macroeconomic conditions, the Fed has largely departed from the rule-based policy

and hence used discretion in policy making. In the euro area, the estimated monetary policy

rule reveals that the ECB has been considerably more aggressive towards inflation stabiliza-

tion and has also regularly but briefly departed from the rule-based policy since 2008. These

results suggest important changes in the conduct of ECB’s monetary policy, mainly through

its systematic component. A counterfactual analysis shows that this shift in the systematic

component of monetary policy appears to be a key determinant of the level of inflation in the

euro area at the ZLB, that would have suffered deflationary episodes from 2014:3 to 2016:4

and starting from 2019:3 without any change in ECB’s response to macroeconomic conditions

after the 2007-08 crisis. The situation could have been even worse when ignoring the role of

the non-systematic component of ECB’s monetary policy.

Estimation results concerning changes in Fed’s and ECB’s behavior since the Great Reces-

sion therefore raise some potential policy implications. Among them, it highlights the need for

adapting inflation targeting framework, especially in the euro area.

Also, the shift in the conduct of U.S. and euro area monetary policies challenges the idea

of a monetary policy coordination.29 A cooperation between Fed and ECB monetary policies

should rely on strong assumptions, such as similar objectives, common aspects in the transmis-

sion mechanisms or synchronized business cycles. All these points could explain differences in

U.S. and euro area estimation results presented in this paper, and could also be considered as a

possible explanation for the gap in the timing of monetary policy decisions between the Fed and

the ECB. From this point of view, a two-country structural model allowing for international

spillovers would be welcomed to investigate the relationship between Fed’s and ECB’s behavior

and macroeconomic fluctuations at the ZLB, and to suggest a theoretical framework consistent

29See Cœuré (2014) for remarks on policy coordination.
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with the empirical findings. Such implications for the conduct of monetary policy are left for

future research.
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Appendix

Evolving Monetary Policy in the

Aftermath of the Great Recession

I.A TVP-VAR methodology

I.A.1 The model

The model is from Primiceri (2005), with the MCMC algorithm corrected as described by

Del Negro and Primiceri (2015). This section is a step-by-step guide to use the TVP-VAR

methodology, as described in details in Primiceri’s (2005) and Belongia and Ireland’s (2016)

corresponding appendices.

The baseline model is applied to quarterly data on the inflation rate (measured by the PCE

inflation rate in the U.S. and the HICP in the euro area), denoted Πt, output gap (estimated

using CBO formula for the U.S. and HP filter for the euro area), denoted Gt, and the short-term

shadow rate (federal funds rate in the U.S., 3-month Euribor in the euro area in normal times,

and shadow rates at the ZLB), denoted Rs
t . U.S. data run from 1960:1 to 2019:4. Euro area

data run from 1971:1 to 2019:4.

These observable endogenous series are combined into the 3× 1 vector

yt =
[
Πt Gt Rs

t

]′
, (I.1)

which is assumed to follow a second-order vector autoregression with time-varying coefficients
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and a time-varying covariance matrix for the innovations. Thus, the model’s reduced form is

yt = bt + B1,tyt−1 + B2,tyt−2 + ut (I.2)

where

bt =
[
bπ,t bg,t br,t

]′
is a 3× 1 vector of time-varying constant terms,

Bi,t =


bi,ππ,t bi,πg,t bi,πr,t

bi,gπ,t bi,gg,t bi,gr,t

bi,rπ,t bi,rg,t bi,rr,t

 ,

with i = 1, 2, are 3× 3 matrices of time-varying coefficients, and

ut =
[
uπ,t ug,t ur,t

]′

is a 3× 1 vector of heteroskedastic shocks with covariance matrix Ωt, such that E{utu′t} = Ωt.

Without loss of generality, Ωt can be decomposed as

Ωt = A−1
t ΣtΣ′t(A′t)−1 (I.3)

where At is the lower triangular matrix

At =


1 0 0

αgπ,t 1 0

αrπ,t αrg,t 1

 (I.4)

and Σt is the diagonal matrix

Σt =


σπ,t 0 0

0 σg,t 0

0 0 σr,t

 . (I.5)

The reduced form (I.2) can therefore be represented equivalently as

yt = bt + B1,tyt−1 + B2,tyt−2 + A−1
t Σtεt, (I.6)
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where E{εtε′t} = I3. Stacking all the coefficients into the 21× 1 vector

Bt = vec




b′t

B′1,t
B′2,t



 ,

(I.6) can be rewritten as

yt = X′tBt + A−1
t Σtεt, (I.7)

where

Xt = I3 ⊗
[
1 Πt−1 Gt−1 Rs

t−1 Πt−2 Gt−2 Rs
t−2

]
Let

αt =
[
αgπ,t αrπ,t αrg,t

]′
be the vector of non-zero and non-one elements of At and

σt =
[
σπ,t σg,t σr,t

]′

be the vector of diagonal elements of Σt. The dynamics of the time-varying parameters are

specified as

Bt = Bt−1 + νt, (I.8)

αt = αt−1 + ζt, (I.9)

and

log σt = log σt−1 + ηt. (I.10)

In (I.7)-(I.10), all of the innovations are assumed to be jointly normally distributed with

V = Var





εt

νt

ζt

ηt




= E





εt

νt

ζt

ηt


[
εt νt ζt ηt

]


=



I3 03,21 03,3 03,3

021,3 Q 021,3 021,3

03,3 03,21 S 03,3

03,3 03,21 03,3 W


, (I.11)

where Q is 21 × 21, S is 3 × 3, and W is 3 × 3 and diagonal, so that the standard deviations

in σt evolve as independent geometric random walks. Following Primiceri (2005), it will be
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assumed that S is block-diagonal, with one non-zero element in the first column of the first row

and three distinct non-zero elements in the second and third columns of the second and third

rows. Hence, Q has 231 distinct elements, S has 4 distinct elements and is block-diagonal in

the following form:

S =


s1,1 0 0

0 s2,2 s2,3

0 s3,2 s3,3



where si,j are non-zero elements on line-i and row-j of matrix S. Hence, the two diagonal

blocks are given by the following matrices:

S1 = s1,1 and S2 =

s2,2 s2,3

s3,2 s3,3

, where s2,3 = s3,2

Moreover, W is diagonal with elements wi,i for i = 1, 2, 3, and has three distinct elements.

In all that follows, let

ωτ =
[
ω′1 . . . ω′τ

]′
denote the history of a generic vector of variables ωt up to a generic time τ . And for a generic

matrix of variables and constant terms Mt, let

Mτ =
[
m′1 . . . m′τ

]′

where mt is a column vector constructed from the time varying elements of Mt.

I.A.2 Prior Distributions

Following Cogley and Sargent (2005) and Primiceri (2005), classical estimates of the pa-

rameters obtained by applying a training sample consisting of the first ten years of data to a

constant-parameter version of the model are used to calibrate the prior means and standard

deviations for the time-varying parameters when estimated with the rest of the sample. The
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constant-parameter version of the reduced form (I.2) is written as

yt = b + B1yt−1 + B2yt−2 + ut,

Hamilton (1994) and Lütkepohl (2005) show that estimates of the constant and slope coefficients

in b, B1, and B2 can be obtained by applying OLS separately to each equation. Stacking these

estimated coefficients into the 21× 1 vector

B̂ = vec




b̂′

B̂′1
B̂′2



 ,

and defining

xt =
[
1 Πt−1 Gt−1 Rs

t−1 Πt−2 Gt−2 Rs
t−2

]
,

standard errors can be computed using the formulas from Hamilton’s (1994) proposition on

maximum likelihood estimation of vector autoregressions:

Var(B̂) = Ω̂⊗
(

T∑
t=1

xtx′t

)−1

,

where

Ω̂ = 1
T

T∑
t=1

ûtû′t

is the estimated covariance matrix for the least squares residuals

ût = yt − b̂− B̂1yt−1 − B̂2yt−2

The initial states for the coefficients, covariances, and log volatilities as well as the hyper-

parameters in V are assumed to be all independent of each other. The priors for B0, α0, and

log σ0 are assumed to be normal and the priors for Q, W, and the blocks of S are assumed

to be distributed as independent inverse-Wishart. These assumptions together with (I.6)-(I.8)

imply normal priors on the entire sequences BT , αT , and ΣT .

Estimates Â and Σ̂ of A and Σ can then be obtained by decomposing Ω̂ as in (I.3):

Ω̂ = Â−1Σ̂Σ̂′(Â′)−1.
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Standard errors for the non-zero, non-one elements α̂ and σ̂ of Â and Σ̂ can be computed

using the formulas in Lütkepohl’s (2005) proposition on the properties of the structural VAR

maximum likelihood estimators. Start by rewriting

vec(A) = RAα + rA

and

vec(Σ) = RΣσ

with RA and RΣ are 9× 3 suitable fixed matrices of zeros and ones, where

RA =


0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0


′

and

RΣ =


1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1


′

and rA is a 9×1 vector of fixed parameters allowing for the normalization of diagonal elements

of matrix A.

rA =
[
1 0 0 0 1 0 0 0 1

]′
Next, let K9,9 be the commutation matrix that, for any 3× 3 matrix D, is such that

vec(D) = K9,9vec(D′).
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Then, in particular, K9,9 is a 9× 9 matrix of zeros and ones such that

K9,9 =



1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1



Following Lütkepohl’s (2005) proposition

√
T


α̂
σ̂

−
α
σ


→ N

0, Ia


α
σ



−1

and hence

Var


α̂
σ̂


 = 1

T

Ia

α
σ




−1

where Ia(.) is the is the asymptotic information matrix that has the form

Ia


α
σ


 =

R′A 03,9

03,9 R′Σ

 Ia

vec(A)

vec(Σ)



RA 09,3

09,3 RΣ

 ,
and

Ia


vec(A)

vec(Σ)


 =

A−1Σ⊗Σ′−1

−(I3 ⊗Σ′−1)

 (I9 + K9,9)
[
[Σ′A′−1]⊗Σ−1 −(I3 ⊗Σ−1)

]
,

Priors can now be selected along the same lines proposed by Cogley and Sargent (2005),

Primiceri (2005) and Benati (2011). Specifically, for B0, α0, and log σ0, it is assumed that

B0 ∼ N (B̂, k2
BVB),

76



α0 ∼ N (α̂, k2
αVα),

and

log σ0 ∼ N (log σ̂, k2
σI3),

where choices for the hyperparameters are tabulated below.

Training Sample Prior Hyperparameters

k2
B VB kα Vα k2

σ

Cogley and Sargent (2005) 1 Var(B̂) 10000 I3 10

Primiceri (2005) 4 Var(B̂) 4 Var(Â) 1

Benati (2011) 4 Var(B̂)
√

10 diag(α̂) 10

Training sample prior hyperparameters used in the TVP-VAR are calibrated according to

Primiceri (2005). Note that (I.8)-(I.10) imply that

Bt|Bt−1,Q ∼ N (Bt−1,Q),

αt|αt−1,S ∼ N (αt−1,S),

and

log σt|σt−1,W ∼ N (log σt−1,W).

Hence, priors for the entire sequences BT , αT , and ΣT are

p(BT |B0,Q) =
T∏
t=1

p(Bt|Bt−1,Q),

p(αT |α0,S) =
T∏
t=1

p(αt|αt−1,S),

and

p(ΣT |Σ0,W) =
T∏
t=1

p(log σt| log σt−1,W).

For Q and the two blocks of S, the inverse Wishart priors are calibrated as

Q ∼ IW(dQk
2
QVQ, dQ),

S1 ∼ IW(dS1k
2
SVS1, dS1),
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and

S2 ∼ IW(dS2k
2
SVS2, dS2).

Finally, for each diagonal element wi,i, i = 1, 2, 3, of W, the inverse Gamma prior used by

Cogley and Sargent (2005) and Benati (2011) can also be expressed as an inverse Wishart:

wi,i ∼ IG
(
dW

2 ,
dWk2

W
2

)
= IW(dWk2

W, dW).

Choices for the hyperparameters are tabulated below. Cogley and Sargent (2005) do not allow

for time-variation in the elements of A.

Time-Varying Parameter Prior Hyperparameters

k2
Q VQ dQ k2

S VS1 dS1 VS2 dS2 k2
W dW

Cogley and Sargent (2005) 0.00035 Var(B̂) 22 − − − − − 0.0001 1

Primiceri (2005) 0.0001 Var(B̂) 40 0.01 V 1,1
α 2 V 2:3,2:3

α 3 0.0001 2

Benati (2011) 0.00035 Var(B̂) 22 0.001 α̂1 2 diag(α̂2:3) 3 0.0001 1

where V 1,1
α is the element from the first row and first column of Vα, V 2:3,2:3

α is the matrix

formed from the last two rows and columns of Vα, and α̂1 and α̂2:3 correspond to the first

and the second through third elements of the vector α̂. Time-varying parameter model’s prior

hyperparameters are calibrated according to Cogley and Sargent (2005) and Benati (2011) for

matrix Q. Cogley and Sargent (2005) suggest to set out the degree of freedom of inverse Wishart

as dQ = dim(Bt) + 1. Otherwise, model’s prior hyperparameters are calibrated according to

Primiceri (2005).

I.A.3 The Markov Chain Monte Carlo Algorithm

The algorithm gets initialized by choosing initial draws for αT , σT , and V from the prior

distributions described above. The Gibbs sampling algorithm then loops through the following

steps.

Drawing the Coefficient States

Conditional on (αT , σT ,V), the observation equation (I.5) in linear and has Gaussian inno-

vations with known variance. As shown in Carter and Kohn (1994a) and Frühwirth-Schnatter
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(1994), the density can be factored as

p(BT |yT , αT , σT ,V) = p(BT |yT , αT , σT ,V)
T−1∏
t=1

p(Bt|Bt+1,yt, αT , σT ,V),

where

Bt|Bt+1,yt, αT , σT ,V ∼ N (Bt|t+1,Pt|t+1),

Bt|t+1 = E(Bt|Bt+1,yt, αT , σT ,V),

and

Pt|t+1 = Var(Bt|Bt+1,yt, αT , σT ,V).

The vector of Bs can be drawn easily because Bt|t+1 and Pt|t+1 can be computed using forward

and backward recursions on the Kalman filter as follows.

The measurement equation for this step is (I.7), rewritten as

yt = X′tBt + ut (I.12)

where ut = A−1
t Σtεt, E{utu′t} = Ωt and Ωt = A−1

t ΣtΣ′t(A−1
t )′, and the state transition

equation is given by (I.8) as

Bt = Bt−1 + νt

where E{νtν ′t} = Q. Let

Bt|s = E(Bt|ys,Xs,Ωs,Q)

and

Pt|s = Var(Bt|ys,Xs,Ωs,Q).

Then, given B0|0 = B̂ and P0|0 = k2
BVB, the Kalman filter implies

Bt|t−1 = Bt−1|t−1,

Pt|t−1 = Pt−1|t−1 + Q,

Kt = Pt|t−1Xt(X′tPt|t−1Xt + Ωt)−1,

Bt|t = Bt|t−1 + Kt(yt −X′tBt|t−1),
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and

Pt|t = Pt|t−1 −KtX′tPt|t−1.

The last elements from these recursions are BT |T and PT |T , which are the mean and variance

of the normal distribution used to make a draw for Bt. The draw for Bt and the output of the

filter can now be used for the first step of the backward recursions

Bt|t+1 = Bt|t + Pt|tP−1
t+1|t(Bt+1 −Bt|t) = Bt|t + Pt|t(Pt|t + Q)−1(Bt+1 −Bt|t)

and

Pt|t+1 = Pt|t −Pt|tP−1
t+1|tPt|t = Pt|t −Pt|t(Pt|t + Q)−1Pt|t,

which are the means and variances used to make the draws for Bt, t = T − 1, T − 2, . . . , 1.

Drawing Covariance States

The system of equations in (I.7) can be rewritten as

At(yt −X′tBt) = Atut = Σtεt, (I.13)

where, taking BT as given, ut is observable from (I.12). Since At is a lower triangular matrix

with ones on the main diagonal, (I.13) can be rewritten as

ut = Ztαt + Σtεt, (I.14)

where αt is defined in (I.9) and Zt is the following 3× 3 matrix:

Zt =


0 0 0

−uπ,t 0 0

0 −uπ,t −ug,t


The model given by (I.14) and (I.9) has a Gaussian but nonlinear state space representation.

The problem is that the dependent variable of the observation equation, ut, also appears on the

right-hand side in Zt. Therefore, the vector
[
ut αt

]
is not jointly normal and, as a consequence,

the conditional distributions cannot be computed using the standard Kalman filter recursions.

However, under the additional maintained assumption that S is block diagonal, this problem
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can be solved by applying the Kalman filter and the backward recursion equation by equation.

Thus, consider the second equation from (I.14), which can be written

ug,t = Z1tαgπ,t + σg,tεg,t, (I.15)

where Z1t = −uπ,t and εg,t ∼ iidN (0, 1). Taking BT and σT as given, ugt and Z1t are observable

and σg,t is given as well. Equation (I.15) can serve as the observation equation and the first

equation from (I.9),

αgπ,t = αgπ,t−1 + ζ1,t (I.16)

as the state transition equation, where ξ1,t ∼ N (0,S1), with S1 given as well.

Thus, given αgπ,0|0 = α̂gπ and P0|0 = k2
αV

1,1
α , the Kalman filter implies

αgπ,t|t−1 = αgπ,t−1|t−1,

Pt|t−1 = Pt−1|t−1 + S1,

Kt = Pt|t−1Z′1t(Z1tPt|t−1Z′1t + σ2
g,t)−1,

αgπ,t|t = αgπ,t|t−1 + Kt(ug,t − Z1tαgπ,t|t−1),

and

Pt|t = Pt|t−1 −KtZ1tPt|t−1.

The last elements from these recursions are αgπ,T |T and Pt|t, which are the mean and variance

of the normal distribution used to make a draw for αgπ,T . The draw for αgπ,T and the output

of the filter can now be used for the first step of the backward recursions

αgπ,t|t+1 = αgπ,t|t + Pt|tP−1
t+1|t(αgπ,t+1 − αgπ,t|t) = αgπ,t|t + Pt|t(Pt|t + S1)−1(αgπ,t+1 − αgπ,t|t)

and

Pt|t+1 = Pt|t −Pt|tP−1
t+1|tPt|t + Pt|t −Pt|t(Pt|t + S1)−1Pt|t,

which are the means and variances used to make the draws for αuπ,t, t = T − 1, T − 2, . . . , 1.

Now consider the third equation from (I.14), which can be written

ur,t = Z2tα2,t + σr,tεr,t, (I.17)
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where Z2t =
[
−uπ,t −ug,t

]
, α2,t =

[
αrπ,t αrg,t

]′
, and εr,t ∼ iidN (0, 1). Taking BT and σT

as given, urt and Z2t are observable and σr,t is given as well. Equation (I.17) can serve as the

observation equation and last two equations from (I.9),

α2,t = α2,t−1 + ξ2,t (I.18)

as the state transition equation, where ξ2,t ∼ N (0,S2), with S2 given as well.

Thus, given α2,0|0 =
[
α̂rπ α̂rg,t

]′
and P0|0 = k2

αV
2:3,2:3
α , the Kalman filter implies

α2,t|t−1 = α2,t−1|t−1,

Pt|t−1 = Pt−1|t−1 + S2,

Kt = Pt|t−1Z′2t(Z2tPt|t−1Z′2t + σ2
r,t)−1,

α2,t|t = α2,t|t−1 + Kt(ur,t − Z2tα2,t|t−1),

and

Pt|t = Pt|t−1 −KtZ2tPt|t−1.

The last elements from these recursions are α2,T |T and Pt|t, which are the mean and variance

of the normal distribution used to make draws for αrπ,T and αrg,T . The draw for α2,T and the

output of the filter can now be used for the first step of the backward recursions

α2,t|t+1 = α2,t|t + Pt|tP
−1
t+1|t(α2,t+1 − α2,t|t) = α2,t|t + Pt|t(Pt|t + S2)−1(α2,t+1 − α2,t|t)

and

Pt|t+1 = Pt|t −Pt|tP−1
t+1|tPt|t = Pt|t −Pt|t(Pt|t + S2)−1Pt|t,

which are the means and variances used to make the draws for αuπ,t, t = T − 1, T − 2, . . . , 1.

Drawing Volatility States

Consider next the system of equations

At(yt −X′tBt) = y∗t = Σtεt, (I.19)
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where, taking BT and αT as given, y∗t is observable. This is a system of nonlinear measurement

equations, but can be converted into a linear one by squaring and taking logs of every element

of (I.19). Due to the fact that y2
i,t can be very small, an offset constant can be used to make

the estimation procedure more robust. This leads to the following approximating state space

form:

y∗∗t = 2ht + et (I.20)

and

ht = ht−1 + ηt, (I.21)

where y∗∗i,t = log[(y∗i,t)2 + c̄], c̄ is the offset constant, set equal to 0.001, ei,t = log(ε2
i,t), and

hi,t = log σi,t. Observe e and η are not correlated, since ε and η are independent.

This system has a linear, but non-Gaussian, state space form because the innovations in the

measurement equations are distributed as logχ2(1). In order to further transform the system

into a Gaussian one, a mixture of normal approximations of the logχ2 distribution is used, as

described by Kim et al. (1998). This involves selecting a mixture of seven normal densities

with component probabilities qj, means mj − 1.2704 and variances v2
j , where the constants are

chosen to match a number of moments of the logχ2(1) distribution as reported in Kim et al.’s

(1998) paper:

Selection of the mixing distribution to be logχ2(1)

ω qj = Pr(ω = j) mj v2
j

1 0.00730 -10.12999 5.79596

2 0.10556 -3.97281 2.61369

3 0.00002 -8.56686 5.17950

4 0.04395 2.77786 0.16735

5 0.34001 0.61942 0.64009

6 0.24566 1.79518 0.34023

7 0.25750 -1.08819 1.26261

Define sT =
[
s1 . . . sT

]′
, the matrix of indicator variables selecting at every point in time

which member of the mixture of the normal approximation will be used for each element of e.

Given (y∗∗)T and hT , each si,t is sampled from the discrete density defined by

Pr(si,t = j|y∗∗i,t, hi,t) ∝ qjfN(y∗∗i,t|2hi,t +mj − 1.2704, v2
j ), i = 1, 2, ..., n j = 1, 2, ..., 7.
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j = 1, 2, . . . , 7, where fN(·|µ, v2) denotes the probability density function for a normal random

variable with mean µ and variance v2. Conditional on BT , AT , V and sT , the system has an

approximate linear and Gaussian state space form, where each element ei,t of et in (I.18) can

now be viewed as being distributed as normal with mean mj−1.2704 and variance v2
j if si,t = j.

For each t = 1, 2, . . . , T , let mt denote the 3×1 vector consisting of the means mj−1.2704 of

each element of et as determined above and let Vt denote the 3×3 matrix with the corresponding

variances v2
j along its diagonal. Finally, define Xt = y∗∗t − mt + 1.2704. Now (I.20) can be

rewritten as the observation equation

Xt = 2ht + et, (I.22)

where et ∼ N (0,Vt) and

ht = ht−1 + ηt

remains as the state transition equation given in (I.21), with ηt ∼ N (0,W).

Given h0|0 = log σ̂ and P0|0 = k2
σI3, the Kalman filter implies

ht|t−1 = ht−1|t−1,

Pt|t−1 = Pt−1|t−1 + W,

Kt = 2Pt|t−1(4Pt|t−1 + Vt)−1,

ht|t = ht|t−1 + Kt(Xt − 2ht|t−1),

and

Pt|t = Pt|t−1 − 2KtPt|t−1.

The last elements from these recursions are hT |T and PT |T , which are the mean and variance

of the normal distribution used to make a draw for hT . The draw for hT and the output of the

filter can now be used for the first step of the backward recursions

ht|t+1 = ht|t + Pt|tP−1
t+1|t(ht+1 − ht|t) = ht|t + Pt|t(Pt|t + W)−1(ht+1 − ht|t)

and

Pt|t+1 = Pt|t −Pt|tP−1
t+1|tPt|t = Pt|t −Pt|t(Pt|t + W)−1Pt|t,
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which are the means and variances used to make the draws for ht, t = T − 1, T − 2, . . . , 1.

Del Negro and Primiceri (2015) note that, strictly speaking, because the mixture of normal

distributions used in the Kim-Shephard-Chib algorithm is only an approximation to the true

distribution of the innovations in the measurement equation (I.20), each draw selected using

this algorithm should be used as a proposal in a Metropolis-Hastings step, following the general

analysis in Stroud et al. (2003). With y∗t and y∗∗i,t defined as above, let Σ̃t and Σold
t be the latest

and previous draws for the volatility state for period t = 1, 2, . . . , T , and let σ̃i,t and σoldi,t be

the ith diagonal elements of Σ̃t and Σold
t . Del Negro and Primiceri (2015) show that in the

Metropolis step, the new draw should be accepted with probability α, where

α =

[∏T
t=1 FN(y∗t |03,1, Σ̃tΣ̃′t)

] [∏T
t=1

∏3
i=1

∏7
j=1 qjfN(y∗∗i,t|2σoldi,t +mj − 1.2704, v2

j )
]

[∏T
t=1 FN(y∗t |03,1,Σold

t (Σold
t )′)

] [∏T
t=1

∏3
i=1

∏7
j=1 qjfN(y∗∗i,t|2σ̃i,t +mj − 1.2704, v2

j )
] ,

and FN(·|µ,V) is the probability density function for the multivariate normal distribution with

mean µ and covariance matrix V.

Drawing Hyperparameters

The hyperparameters are the diagonal blocks of V, each of which has an inverse-Wishart

posterior distribution. Conditional on BT , αT , σT , and yT , it is easy to draw from these

posteriors because the innovations are observable. Use (I.8) to compute

νt = Bt −Bt−1,

use (I.16) to compute

ζ1,t = αuπ,t − αuπ,t−1,

use (I.18) to compute

ζ2,t = α2,t − α2,t−1,

and use (I.10) to compute

ηt = log σt − log σt−1.

Then a new draw for Q can be taken from the inverse-Wishart posterior distribution with scale

matrix

dQk
2
QVQ +

T∑
t=1

νtν
′
t,
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and degrees of freedom dQ + T , a new draw for S1 can be taken from the inverse-Wishart

posterior distribution with scale matrix

dS1k
2
SVS1 +

T∑
t=1

ζ1,tζ
′
1,t,

and degrees of freedom dS1 + T , a new draw for S2 can be taken from the inverse-Wishart

posterior distribution with scale matrix

dS2k
2
SVS2 +

T∑
t=1

ζ2,tζ
′
2,t,

and degrees of freedom dS2 + T , and new draws for each diagonal element of W can be taken

from the inverse-Wishart posterior distributions with scale matrix

dWk2
W +

T∑
t=1

ηtη
′
t,

which in this case is a scalar, and degrees of freedom dW + T .

Assessing Convergence

To assess the convergence of the MCMC algorithm, Primiceri (2005) recommends initializing

the chain from different, randomly selected starting points, to verify that none of the results

is affected. A related but slightly more formal approach is suggested by Geweke (1992). For

any model statistic θ, which may be an element of BT , AT , ΣT , V, or any function of these

parameters, calculate the means θ̄A and θ̄B from two disjoint subsamples of the Gibbs sampling

output: Geweke (1992) suggests letting subsample A be formed from the first 10 percent of the

draws and subsample B from the last 50 percent of the draws. The numerical standard errors

of the means θ̄A and θ̄B are given by

( 1
NA

)
[2πSθ,A(0)] and

( 1
NB

)
[2πSθ,B(0)],

where Sθ,A(0) and Sθ,B(0) denote the spectral densities of θ̂A and θ̂B at frequency zero, which

can be estimated using Newey and West’s (1987) Bartlett weighting scheme as

Sθ,A(0) = 1
2π

υθ,A,0 + 2
m∑
j=1

(
1− j

m+ 1

)
υθ,A,j
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and

Sθ,B(0) = 1
2π

υθ,B,0 + 2
m∑
j=1

(
1− j

m+ 1

)
υθ,B,j

 ,
where υθ,A,j and υθ,B,j are the j-th autocovariances of the draws for θ in subsamples A and B.

Geweke’s (1992) convergence diagnostic

CD(θ) = θ̄A − θ̄B
{N−1

A [2πSθ,A(0)] +N−1
B [2πSθ,B(0)]}1/2 → N (0, 1),

which, as shown, has the standard normal distribution as NA →∞ and NB →∞.

To gauge the extent to which the chain mixes, Primiceri (2005) and Benati (2011) compute

inefficiency factors. The inefficiency factor for any individual statistic θ, which may again be

an element of BT , AT , ΣT , V, or any function of these parameters, is defined as the inverse of

Geweke’s (1992) measure of relative numerical efficiency:

IF (θ) = 2πSθ(0)
Var(θ) = 2πSθ(0)∫ π

−π Sθ(ω)dω ,

where Sθ(ω) is the spectral density of θ at frequency ω so that, in particular, Sθ(0) is the

spectral density of θ at frequency zero. Primiceri (2005) notes that

IF (θ) = 1 + 2
∞∑
j=1

ρθ,j,

where ρθ,j is the j-th autocorrelations of the draws for θ. Hence, IF (θ) will generally be larger

than one, and lower values of IF (θ) reflect less autocorrelation in the draws. In computing

IF (θ), Newey and West (1987) estimator

Sθ(0) = 1
2π

υθ,0 + 2
m∑
j=1

(
1− j

m+ 1

)
υθ,j


can be used for the numerator, while the denominator is simply the variance υθ,0 across all

draws for θ.

87



I.A.4 Identification of Monetary Policy Shocks

The Identification Problem

Two approaches can be taken to identify monetary policy shocks from the estimated reduced

form. The first uses assumptions about the timing with which monetary policy disturbances

affect inflation and the gap variable to re-interpret the triangular factorization of the reduced-

form covariance matrix shown in (I.3) as a mapping between the reduced-form and structural

models–an approach that dates back to Sims (1980). The second uses sign restrictions to

identify monetary policy shocks based on their implied impulse responses. Faust (1998), Canova

and De Nicolo (2002), and Uhlig (2005) propose and develop the idea that sign restrictions can

serve a source of identifying assumptions in VARs, and Benati (2011) implements the particular

scheme used here in a similar VAR framework with time-varying parameters.

Details on each of the two identification strategies follows, but each works to factor the

reduced-form covariance matrix as

Ωt = C−1
t DtD′t(C′t)−1, (I.23)

where Ct and Dt are 3× 3 matrices of the form

Ct =


1 −cπg,t −cπr,t
−cgπ,t 1 −cgr,t
−crπ,t −crg,t 1

 (I.24)

and

Dt =


δπ,t 0 0

0 δg,t 0

0 0 δr,t

 (I.25)

Equations (I.23)-(I.25) provide the general mapping between the reduced-form equation (I.2)

and the structural model, which can now be written as

Ctyt = γt + Γ1,tyt−1 + Γ2,tyt−2 + Dtξt, (I.26)

where γt = CtBt, Γi,t = CtBi,t for i = 1, 2, and ξt is a 3× 1 vector of structural disturbances,

normally distributed with zero mean and E{ξtξ′t} = I3. The third row from (I.26) takes the
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form of a monetary policy rule

Rs
t = γr,t + crπ,tΠt + γ1,rπ,tΠt−1 + γ2,rπ,tΠt−2

+ crg,tGt + γ1,rg,tGt−1 + γ2,rg,tGt−2 + γ1,rr,tR
s
t−1 + γ2,rr,tR

s
t−2 + δr,tξ

mp
t

(I.27)

The dual-mandate reaction function prescribes a setting for the policy rate regarding to changes

in current and lagged inflation and output gap variables. It also includes lagged values of interest

rate terms to capture central banks’ tendency to smooth short-term interest rates movements

over time. The time-varying estimation of the intercept γr,t and of the coefficients from matri-

ces Γ1,t and Γ2,t allows to assess changes to monetary policy that might have occurred on the

sample period. ξmpt represents identified monetary policy shocks that capture deviations in the

actual policy rate from the value dictated by the estimated monetary policy rule. Importantly,

equation (I.27) allows for time-variation in all of the response coefficients but also in the stan-

dard deviation δr,t of the monetary policy shocks. Hence, this estimation permits disentangling

changes in central bank’s responses to inflation versus output gap stabilization and the extent

to which the central bank departs from its rule-based monetary policy. As a whole, the esti-

mated monetary policy rule given in equation (I.27) may be decomposed into central banks’

response to macroeconomic conditions and smoothing behavior–i.e. the systematic component

of monetary policy–and monetary policy shocks–i.e. the non-systematic component of mone-

tary policy.

Equation (I.27) can then be decomposed and interpreted as follows

Rs
t =

systematic

γr,t + crπ,tΠt + γ1,rπ,tΠt−1 + γ2,rπ,tΠt−2︸ ︷︷ ︸
response to inflation

component of monetary policy

+ crg,tGt + γ1,rg,tGt−1 + γ2,rg,tGt−2︸ ︷︷ ︸
response to output gap

+ γ1,rr,tR
s
t−1 + γ2,rr,tR

s
t−2︸ ︷︷ ︸

interest rate smoothing

+

non-systematic comp.
of monetary policy

δr,t ξ
mp
t︸︷︷︸
MP

shocks

Comparing (I.4) and (I.5) to (I.24) and (I.25) highlights the identification problem: together,

the matrices At and Σt of reduced-form parameters contain 6 elements not equal to zero or

one, whereas the matrices Ct and Dt of structural parameters have 9 such elements. Each of

the two identification schemes described next imposes more structure on the matrix Ct to solve

this problem.
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Triangular Identification Based on Timing Assumptions

The factorization of the symmetric, positive definite reduced-form covariance matrix Ωt

shown in (I.3)-(I.5) always exists and is unique; hence, the model can be written in this form

without any loss of generality. However, under the additional assumptions–made throughout

much of the literature on VARs that builds on Sims (1980)–that inflation and the output gap

respond to monetary policy shocks only after a one-period lag, the reduced-form parameters

from the third rows of (I.3)-(I.5) are linked to structural parameters from the third rows on

(I.23)-(I.25) via

crπ,t = −αrπ,t,

crg,t = −αrg,t,

and

δr,t = σr,t

and the structural monetary policy shock ξmpt from (I.26) and (I.27) is identified as the third

element of the vector εt from (I.6).

Sign Restrictions for the Variables that Respond to Monetary Policy

An alternative approach to identification builds on work by Faust (1998), Canova and

De Nicolo (2002), and Uhlig (2005) by associating monetary policy shocks with the effects

they have on observable variables. Following Benati (2011), suppose that the first element of ξt
corresponds to a supply shock that moves inflation and the output gap in opposite directions or

inflation and the unemployment rate in the same direction. Suppose that the second element of

ξt is a non-monetary demand shock, that moves the short-term interest rate and inflation in the

same direction and the interest rate and the output gap in the same direction or the interest rate

and the unemployment rate in opposite directions. Finally, suppose that the third element of ξt
corresponds to a monetary policy shock that moves the short-term interest rate and inflation in

opposite directions and the interest rate and the output gap in opposite directions or the interest

rate and the unemployment rate in the same direction. Rubio-Ramirez et al. (2010) and Arias

et al. (2018) emphasize that sign restrictions of this form do not suffice to identify structural

disturbances in the classical sense, but develop a Bayesian algorithm for characterizing the set

of parameter values implying impulse responses that satisfy these restrictions.
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Let the index i = 1, 2, . . . , N keep track of the number of desired draws. For i = 1, 2, . . . , N ,

the algorithm loops through the following steps.

1. Draw (AT ,ΣT ) from their posterior distribution during the Gibbs sampling stage.

2. For each t = 1, 2, . . . , T , construct At and Σt based on the draw for (AT ,ΣT ). Then let

Lt = A−1
t Σt, so that the reduced-form error covariance matrix is given by Ωt = LtL′t.

3. Draw X̃, a 3 × 3 random matrix with each element having an independent standard

normal distribution. Then factor X̃ = QXRX, where QX is an orthogonal matrix and

RX is upper triangular with positive diagonal elements.

4. Let L̃t = LtQ′X, and note that

L̃tL̃′t = LtQ′XQXL′t = LtL′t = Ωt,

by virtue of the fact that QX is orthogonal. This highlights that multiplying the struc-

tural model (I.26) through by D−1
t and then QX results in an observationally-equivalent

rotation of the model’s three equations. Suppressing for convenience explicit reference

to the constant and lagged terms in (I.26), the candidate structural model based on the

specific draw for QX can be written as

yt = L̃tξt,

since

E[(L̃tξt)(L̃tξt)′] = E(L̃tξtξ
′
tL̃′t) = L̃tE(ξtξ′t)L̃′t = L̃tL̃′t = Ωt.

Thus, the matrix L̃t contains impact coefficients linking the structural shocks in ξt to the

observable variables in yt. The sign restriction used to identify the supply, demand, and

monetary policy shocks as the first, second, and third elements of ξt require the elements

of L̃t to have the sign patterns

L̃t =


(+) (+) (−)

(−) (+) (−)

(?) (+) (+)
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if the gap variable is measured by the output gap or the real GDP growth and

L̃t =


(+) (−) (−)

(+) (+) (+)

(?) (−) (+)


if the gap variable is measured by the unemployment gap or unemployment rate. If these

restrictions are not satisfied for any t = 1, 2, . . . , T , the draws for (AT ,ΣT ) and X̃ are

discarded and the algorithm returns to step one. If the restrictions are satisfied, then L̃t

is renormalized as L̃t = C−1
t Dt, where Ct and Dt have the forms shown in (I.24) and

(I.25), these draws are saved, and the Gibbs sampling algorithm moves on.

I.A.5 Impulse Response and Forecast Error Variances Decomposi-

tion

Once draws are obtained for the structural parameters using one of three identification

schemes, impulse responses can be generated from (I.26) after multiplying through by C−1
t .

These computations can be simplified by writing the system in companion form as

Yt − µ̄t = B12,t(Yt−1 − µ̄t) + Ftξt, (I.28)

where

Yt =

 yt
yt−1

 ,

B12,t =

B1,t B2,t

I3 03,3

 , (I.29)

µ̄t = (I6 −B12,t)−1

Bt

03,1

 , (I.30)

and

Ft =

C−1
t Dt

03,3

 . (I.31)

Following Cogley and Sargent (2005) and Cogley et al. (2010), the first element of the vector

µ̄t can be interpreted as the targeted level of inflation.
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Since (I.28) implies

Yt+k − EtYt+k = Ftξt+k + B12,tFtξt+k−1 + . . .+ Bk−1
12,tFtξt+1,

the k-step ahead forecast error variances for the elements of Yt are

E[(Yt+k −EtYt+k)(Yt+k −EtYt+k)′] = FtF′t + B12,tFtF′tB′12,t + . . .+ Bk−1
12,tFtF′t(Bk−1

12,t )′. (I.32)

Forecast error variances decomposition can be found by using (I.29), (I.31), and (I.32) to

compute the total variances and then by using these same equations with the first two diagonal

elements of Dt set equal to zero to find the variances attributable to monetary policy shocks

alone.

I.A.6 Counterfactual Monetary Policy Rules

The estimated VAR model with time-varying coefficients is used to propose different coun-

terfactual scenarios. The aim is to investigate how changes in the conduct of monetary policy

may have affected macroeconomic performances. Section I.5 gives some counterfactuals based

on empirical results. Counterfactual monetary policy rules R̃s
t are constructed according to

different assumptions on parameters or policy shocks listed below, from 2007:4 onward. Oth-

erwise, they follow the path of the estimated monetary policy rule given in equation (I.27).

Running the TVP-VAR over the full sample period gives the path that would have followed

inflation, output gap and the policy rate under these assumptions.

2007:4 policy rule. The first scenario consists in drawing the median of the policy rule

coefficients from the posterior distribution from 2007:4. Hence, both the time-varying intercept

and policy parameters of the systematic component of monetary policy are kept fixed from

2007:4 onward.

R̃s
t =



γ̄r,2007:4 + c̄rπ,2007:4Πt + γ̄1,rπ,2007:4Πt−1 + γ̄2,rπ,2007:4Πt−2

+c̄rg,2007:4Gt + γ̄1,rg,2007:4Gt−1 + γ̄2,rg,2007:4Gt−2

+ γ̄1,rr,2007:4Rt−1 + γ̄2,rg,2007:4Rt−2 + δr,tξ
mp
t

if t ≥ 2007 : 4

Rs
t from equation (I.27) otherwise
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2007:4 policy rule and no policy shocks. In the second scenario, the Taylor rule param-

eters are also drawn from their 2007:4 posterior distribution, and monetary policy shocks are

assumed to be muted from 2007:4 forward. Hence, compared to the previous scenario, it is

assumed that ξmpt = 0.

R̃s
t =



γ̄r,2007:4 + c̄rπ,2007:4Πt + γ̄1,rπ,2007:4Πt−1 + γ̄2,rπ,2007:4Πt−2

+c̄rg,2007:4Gt + γ̄1,rg,2007:4Gt−1 + γ̄2,rg,2007:4Gt−2

+ γ̄1,rr,2007:4Rt−1 + γ̄2,rg,2007:4Rt−2

if t ≥ 2007 : 4

Rs
t from equation (I.27) otherwise

No policy shocks. The third counterfactual scenario (Appendix I.E) reports results when

monetary policy shocks are turned off from 2007:4 onward. Parameters are not kept fixed from

2007:4 in this case. However, policy shocks ξmpt are still set to 0.

R̃s
t =



γr,t+ crπ,tΠt+ γ1,rπ,tΠt−1+ γ2,rπ,tΠt−2

+crg,tGt+ γ1,rg,tGt−1+ γ2,rg,tGt−2

+ γ1,rr,tR
s
t−1+ γ2,rr,tR

s
t−2

if t ≥ 2007 : 4

Rs
t from equation (I.27) otherwise

2007:4 volatility. Another counterfactual scenario shown in Appendix I.E gives counter-

factuals only in the case where the volatility coefficient δr,t is drawn from its 2007:4 posterior

distribution, allowing the rest of policy rule parameters to be time-varying from 2007:4 forward.

R̃s
t =



γr,t+ crπ,tΠt+ γ1,rπ,tΠt−1+ γ2,rπ,tΠt−2

+crg,tGt+ γ1,rg,tGt−1+ γ2,rg,tGt−2

+ γ1,rr,tR
s
t−1+ γ2,rr,tR

s
t−2+ δ̄r,2007:4ξ

mp
t

if t ≥ 2007 : 4

Rs
t from equation (I.27) otherwise
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I.B Shadow Taylor rules

Wu and Zhang (2019) argue that the shadow rate is a good proxy for monetary policy at

the ZLB. For this purpose, they estimate a simple ‘shadow Taylor rule’ for the U.S. using Wu

and Xia’s shadow rate (Wu and Xia, 2016).

This simple monetary policy rule takes the following form:

Rs
t = α + ρRs

t−1 + βΠΠt + βGGt + εt (I.33)

where Πt is the inflation rate, Gt is the output gap and Rs
t is the shadow rate at period t,

following the notation used in the TVP-VAR model. εt is the error term, and can be interpreted

as monetary policy shocks. α is an intercept. Also, and importantly, fixed parameters βΠ and

βG are the response coefficients on inflation and output gap, respectively. ρ is the partial

adjustment parameter that captures interest rate smoothing in central bank’s behavior.

OLS estimation of equation (I.33) is used to construct shadow Taylor rates shown below.

Figure I.B.1 – Shadow Taylor rules (Wu and Xia’s shadow rate)

(a) U.S. (b) Euro area
Note: Based on Wu and Zhang (2019). U.S. quarterly data from 1960:1 to 2019:4: Wu and Xia’s shadow rate,
GDP deflator, CBO output gap. Euro area quarterly data from 1971:1 to 2019:4 are Wu and Xia’s shadow
rate, HICP, estimated output gap.

As advocated by the authors, “the Taylor rule seems to be a good description of what

actually happens, including the ZLB period”. Using Wu and Xia’s shadow rate (Figure I.B.1),

the coefficient on inflation is 1.25 and the coefficient on output gap is 0.23 over the full U.S.

sample, consistent with the Taylor principle. For the euro area, the coefficient on inflation is

1.20 and the coefficient on output gap is 0.23.
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Figure I.B.2 – Shadow Taylor rules (Krippner’s shadow rate)

(a) U.S. (b) Euro area
Note: Based on Wu and Zhang (2019). U.S. quarterly data from 1960:1 to 2019:4 are Krippner’s shadow rate,
GDP deflator, CBO output gap. Euro area quarterly data from 1971:1 to 2019:4 are Krippner’s shadow rate,
HICP, estimated output gap.

Using Krippner’s shadow rate (Figure I.B.2), the coefficient on inflation is 1.29 and the

coefficient on output gap is 0.3 over the full U.S. sample. For the euro area, the coefficient on

inflation is 1.22 and the coefficient on output gap is 0.28.

These results show that (i) the simple Taylor is a good description of the shadow rate dynamics,

and that (ii) the response coefficients of the simple rule estimation seem to be robust to the

choice of the shadow rate, as raised later in Appendix I.F.1.
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I.C Stability check for simple VAR analysis

VAR stability

Times series models are usually assumed to be stable over time. Here, the stability of the

simple VAR model is checked. First, let us consider a simple VAR(2) model in the form:

yt = b + B1yt−1 + B2yt−2 + ut (I.34)

where yt = [Πt Gt Rs
t ]′. Then, the companion form of the model can be given as:

Ỹt = B12Ỹt−1 + νt (I.35)

where

Ỹt =

 ỹt
ỹt−1

 (I.36)

with ỹt the mean corrected element of yt,

B12 =

B1 B2

I3 03,3

 (I.37)

is the companion matrix, and

νt =

 ut
03,3

 . (I.38)

The determinant defining the characteristic equation is defined as
∣∣∣∣B12 − λI

∣∣∣∣ =
∣∣∣∣λ2I− λB1 −B2

∣∣∣∣ =

0.

Hence, the required condition for the stability of the system is that the roots of the previous

equation must lie inside the unit circle. The figures showing the results are given below. The

six roots lie inside the unit circle insuring the stability of the VAR.
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Figure I.C.1 – Roots of VAR(2) models

(a) U.S. data (b) Euro area data

Rolling-window analysis for stability of parameters

A common assumption in time series analysis is that the coefficients are constant with

respect to time. Checking for instability allows to assess whether the coefficients are time-

invariant. A rolling-window analysis is used to check the stability of the VAR(2) model de-

scribed above.

First, the size of the rolling window–the number of consecutive observations per rolling

window–is set tom = 40, that is consistent with the size of the training sample used in the TVP-

VAR (40 quarters, i.e. 10 years). Then, the number of increments between successive rolling

windows is set to one quarter, in a way that the entire sample is divided into N = T −m + 1

subsamples, where T is the sample size such that t = 1, ..., T .

Figure I.C.2 gives some insights on the path of coefficients running the VAR(2) with rolling-

windows. The coefficients are subject to a high instability.

The use of the VAR model with time-varying parameters is justified by the instability of the

coefficients from the VAR with rolling windows (i.e. fixed windows). More precisely, the first

difference of each coefficient follows a random walk, validating the assumptions of the process

that governs the dynamics of the time-varying coefficients in the TVP-VAR model. Moreover,

it seems to be tricky to disentangle regime switches regarding the path of these coefficients

on the estimation period. Hence, TVP-VAR estimation is an appropriate tool to investigate

changes in the conduct of monetary policy over time. Note that the coefficients are also unstable

when the monetary policy rule is estimated with OLS with rolling windows and sequential VAR

estimation with recursive windows (i.e. increasing windows). The results are not reported here

and are available upon request.
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Statistical tests for stability of parameters

Cogley and Sargent (2005) consider classical tests for variation in the parameters of their

model. The purpose of this section is to apply some of those tests to U.S. and euro area data

used previously to give further insights on the stability of parameters.

Hence, one of the most prominent tests that can easily be implemented after fitting a VAR

is the Wald test. It allows to compute the Wald lag-exclusion statistics to test the hypothesis

that the endogenous variables at a given lag are jointly zero for each equation and for all

equations jointly. Testing stability on an equation-by-equation basis, the hypothesis that all

three endogenous variables have zero coefficients at the first lag can be rejected at the 1% level

for the three equations. Similarly, we strongly reject the hypothesis that the coefficients on the

first and second lags of the endogenous variables are zero in all three equations jointly. The

results are not reported here and are available upon request.
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Figure I.C.2 – VAR(2) coefficients with rolling-windows

(a) U.S.

(b) Euro area
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I.D Tables

I.D.1 Inefficiency factors

Table I.D.1 – Inefficiency factors (U.S.)

Median Mean Min. Max. 10th percentile 90th percentile

3150 Coefficients BT 5.59 5.78 2.51 7.07 3.38 6.65
450 Covariances AT 3.15 3.35 1.65 3.87 2.06 3.60
450 Volatilities ΣT 6.81 7.24 5.06 7.70 5.60 7.39
238 Hyperparameters V 21.32 21.28 18.27 22.52 20.75 21.78

Table I.D.2 – Inefficiency factors (Euro area)

Median Mean Min. Max. 10th percentile 90th percentile

3150 Coefficients BT 5.17 5.57 2.10 10.53 3.00 8.26
450 Covariances AT 3.35 3.68 2.41 6.11 2.57 5.26
450 Volatilities ΣT 8.22 9.15 5.02 21.84 6.18 11.78
238 Hyperparameters V 21.14 21.14 19.99 22.40 20.68 21.60
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I.D.2 Descriptive statistics of the time-varying coefficients

Table I.D.3 – Monetary policy rule parameters in the U.S. (median coefficients)

2009:1 2013:1 2017:1

Impact coefficient on inflation 0.22 0.12 0.11
Impact coefficient on the output gap 0.50 0.28 0.31
Interest rate smoothing 0.92 0.95 0.97
Long-run coefficient on inflation 0.91 0.34 0.37
Long-run coefficient on the output gap 1.28 1.76 2.14
Monetary policy shock volatility 0.71 0.22 0.19

Table I.D.4 – Monetary policy rule parameters in the U.S. (mean of median coefficients)

1970:1 - 2019:4 1995:1 - 2019:4

Sample < 2008:1 Sample < 2008:1 ≥ 2008:1

Impact coefficient on inflation 0.52 0.64 0.24 0.32 0.16
Impact coefficient on the output gap 0.44 0.47 0.33 0.33 0.34
Interest rate smoothing 0.96 0.97 0.95 0.94 0.96
Long-run coefficient on inflation 1.10 1.28 0.84 1.10 0.55
Long-run coefficient on the output gap 1.12 0.92 1.48 1.22 1.75
Monetary policy shock volatility 0.64 0.74 0.29 0.29 0.29
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Table I.D.5 – Monetary policy rule parameters in the euro area (median coefficients)

2009:1 2013:1 2017:1

Impact coefficient on inflation 0.67 0.61 0.67
Impact coefficient on the output gap 0.57 0.82 1.07
Interest rate smoothing 0.92 0.93 0.96
Long-run coefficient on inflation 1.84 2.13 3.15
Long-run coefficient on the output gap 1.28 1.76 1.88
Monetary policy shock volatility 0.55 0.53 0.62

Table I.D.6 – Monetary policy rule parameters in the euro area (mean of median coefficients)

1981:1 - 2019:4 1995:1 - 2019:4

Sample < 2008:1 Sample < 2008:1 ≥ 2008:1

Impact coefficient on inflation 0.66 0.68 0.57 0.50 0.63
Impact coefficient on the output gap 0.65 0.56 0.71 0.58 0.85
Interest rate smoothing 0.91 0.90 0.92 0.91 0.94
Long-run coefficient on inflation 1.54 1.12 1.90 1.37 2.47
Long-run coefficient on the output gap 1.73 1.72 1.61 1.49 1.75
Monetary policy shock volatility 0.48 0.44 0.44 0.33 0.56
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I.E Figures

I.E.1 Interest rate smoothing, contemporaneous coefficients and full sample (baseline estimation)

Figure I.E.1 – Interest rate smoothing and contemporaneous coefficients from the estimated monetary policy rule

(a) Interest rate smoothing (b) Contemporaneous coefficient on inflation (c) Contemporaneous coefficient on output gap
Note: Interest rate smoothing is given by the sum γ1,rr,t+ γ2,rr,t, and contemporaneous coefficients on inflation and output gap are respectively given by crπ,t
and crg,t in equation (3). Median (solid lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients are plotted for each indicated
variable.
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Figure I.E.2 – Contemporaneous coefficients from the estimated monetary policy rule and monetary policy shock volatility (full sample)

(a) Contemporaneous coefficient on inflation (b) Contemporaneous coefficient on output gap (c) Monetary policy shock volatility
Note: Contemporaneous coefficients on inflation and output gap are respectively given by crπ,t and crg,t, and the volatility of monetary policy shocks is captured by δr,t in equation (3).
Median (solid lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients are plotted for each indicated variable.

Figure I.E.3 – Interest rate smoothing and long-run coefficients from the estimated monetary policy rule (full sample)

(a) Interest rate smoothing (b) Long-run coefficient on inflation (c) Long-run coefficient on output gap
Note: Interest rate smoothing is given by the sum γ1,rr,t+ γ2,rr,t, and long-run coefficients on inflation and output gap are respectively given by (crπ,t+ γ1,rπ,t+ γ2,rπ,t)/(1− γ1,rr,t− γ2,rr,t)
and (crg,t+ γ1,rg,t+ γ2,rg,t)/(1− γ1,rr,t− γ2,rr,t) in equation (3). Median (solid lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients are plotted for
each indicated variable.
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I.E.2 Counterfactual analysis (baseline estimation)

Figure I.E.4 – Counterfactual simulations (U.S.)

Note: Median counterfactual path (red dashed lines) and 68% credible interval (red shaded areas) are plotted
for each indicated variable.

Figure I.E.5 – Counterfactual simulations (Euro area)

Note: Median counterfactual path (red dashed lines) and 68% credible interval (red shaded areas) are plotted
for each indicated variable.
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Figure I.E.6 – Counterfactual simulations (U.S.)

Note: Median counterfactual path (green dashed lines) and 68% credible interval (green shaded areas) are
plotted for each indicated variable.

Figure I.E.7 – Counterfactual simulations (U.S.)

Note: Median counterfactual path (green dashed lines) and 68% credible interval (green shaded areas) are
plotted for each indicated variable.

Figure I.E.8 – Counterfactual simulations (U.S.)

Note: Median counterfactual path (green dashed lines) and 68% credible interval (green shaded areas) are
plotted for each indicated variable.
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Figure I.E.9 – Counterfactual simulations (U.S.)

Note: Median counterfactual path (green dashed lines) and 68% credible interval (green shaded areas) are
plotted for each indicated variable.

Figure I.E.10 – Counterfactual simulations (U.S.)

Note: Median counterfactual path (green dashed lines) and 68% credible interval (green shaded areas) are
plotted for each indicated variable.
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Figure I.E.11 – Counterfactual simulations (Euro area)

Note: Median counterfactual path (green dashed lines) and 68% credible interval (green shaded areas) are
plotted for each indicated variable.

Figure I.E.12 – Counterfactual simulations (Euro area)

Note: Median counterfactual path (green dashed lines) and 68% credible interval (green shaded areas) are
plotted for each indicated variable.

Figure I.E.13 – Counterfactual simulations (Euro area)

Note: Median counterfactual path (green dashed lines) and 68% credible interval (green shaded areas) are
plotted for each indicated variable.
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Figure I.E.14 – Counterfactual simulations (Euro area)

Note: Median counterfactual path (green dashed lines) and 68% credible interval (green shaded areas) are
plotted for each indicated variable.

Figure I.E.15 – Counterfactual simulations (Euro area)

Note: Median counterfactual path (green dashed lines) and 68% credible interval (green shaded areas) are
plotted for each indicated variable.
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Figure I.E.16 – Counterfactual simulations (U.S.)
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Figure I.E.17 – Counterfactual simulations (Euro area)
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I.F Robustness checks

I.F.1 Shadow rates

As discussed previously in this paper, this shadow rate follows a different path than the

shadow rate from Wu and Xia (2016) (see Figure I.F.1). Note that Leo Krippner has recently

revised its shadow rate estimates. Hence, “Krippner, 2016” refers to the first version, and

“Krippner, 2020” refers to the revised version of the shadow short rate.30

30Further details can be found in this note.
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Figure I.F.1 – Shadow rates

(a) U.S.

(b) Euro area
Note: U.S. shadow rate series are proxied by the federal funds rate and replaced by the different shadow rates
from November 2008 to November 2015. In the euro area, the series track the Euribor 3-month over the period
and are replaced by the different shadow rates in July 2009.
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Figure I.F.2 – Contemporaneous coefficients from the estimated monetary policy rule and monetary policy shock volatility (Krippner’s
(2016) shadow rate)

(a) Contemporaneous coefficient on inflation (b) Contemporaneous coefficient on output gap (c) Monetary policy shock volatility
Note: Contemporaneous coefficients on inflation and output gap are respectively given by crπ,t and crg,t, and the volatility of monetary policy shocks is captured by δr,t in equation (3).
Median (solid lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients are plotted for each indicated variable.

Figure I.F.3 – Interest rate smoothing and long-run coefficients from the estimated monetary policy rule (Krippner’s (2016) shadow rate)

(a) Interest rate smoothing (b) Long-run coefficient on inflation (c) Long-run coefficient on output gap
Note: Interest rate smoothing is given by the sum γ1,rr,t+ γ2,rr,t, and long-run coefficients on inflation and output gap are respectively given by (crπ,t+ γ1,rπ,t+ γ2,rπ,t)/(1− γ1,rr,t− γ2,rr,t)
and (crg,t+ γ1,rg,t+ γ2,rg,t)/(1− γ1,rr,t− γ2,rr,t) in equation (3). Median (solid lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients are plotted for
each indicated variable.
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Figure I.F.4 – Realized monetary policy shocks (Krippner’s (2016) shadow rate)

(a) U.S. (b) Euro area
Note: Median (solid lines) and 68% credible interval (shaded areas) of the posterior distribution of the realized
monetary policy shock are plotted. A negative monetary policy shock is equivalent to an interest rate setting
below the rate prescribed by the estimated monetary policy rule (i.e. expansionary monetary policy).
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Figure I.F.5 – Impulse responses to monetary policy shocks in the U.S. (Krippner’s (2016)
shadow rate)
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Note: Impulse response of the indicated variable to a contractionary monetary policy shock at the indicated
date. Blue lines represent the median and grey shaded areas represent 68% credible intervals of the posterior
distribution of each impulse response.
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Figure I.F.6 – Impulse responses to monetary policy shocks in the euro area (Krippner’s (2016)
shadow rate)
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Note: Impulse response of the indicated variable to a contractionary monetary policy shock at the indicated
date. Blue lines represent the median and grey shaded areas represent 68% credible intervals of the posterior
distribution of each impulse response.
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Table I.F.1 – Variance decomposition (Krippner’s (2016) shadow rate)

Horizon % of forecast error variance due to monetary policy shocks

U.S. Euro area

2007:4 2011:1 2015:1 2007:4 2011:1 2015:1

Inflation
1 6.83 5.30 5.88 14.68 13.37 10.76
2 7.07 6.71 6.39 13.51 12.25 10.66
3 8.05 8.91 7.62 12.99 12.12 11.92
4 8.93 10.87 8.65 12.76 12.22 12.87
5 9.50 12.28 9.47 12.65 12.31 13.52

Output gap
1 7.58 9.55 6.54 9.01 8.73 7.38
2 9.13 14.69 8.05 9.76 10.23 12.12
3 10.50 18.41 9.89 10.08 11.03 14.90
4 11.30 20.77 11.30 10.12 11.21 15.60
5 11.81 22.23 12.29 10.17 11.26 15.79

Policy rate
1 32.08 55.81 41.48 5.82 13.25 34.44
2 24.24 51.74 34.70 5.72 9.90 26.07
3 21.28 49.67 31.71 6.31 9.96 23.40
4 20.39 48.51 30.14 6.69 10.09 22.32
5 20.16 47.96 29.56 6.90 10.23 21.89

Note: Horizon is the number of years ahead. Variance decomposition is based on draws of the
median coefficients from their posterior distributions for 2007:4, 2011:1 and 2015:1.
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Figure I.F.7 – Counterfactual simulations (U.S., Krippner’s (2016) shadow rate)

Note: Median counterfactual path (red dashed lines) and 68% credible interval (red shaded areas) are plotted
for each indicated variable.

Figure I.F.8 – Counterfactual simulations (Euro area, Krippner’s (2016) shadow rate)

Note: Median counterfactual path (red dashed lines) and 68% credible interval (red shaded areas) are plotted
for each indicated variable.
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Figure I.F.9 – Contemporaneous coefficients from the estimated monetary policy rule and monetary policy shock volatility (Krippner’s
(2020) shadow rate)

(a) Contemporaneous coefficient on inflation (b) Contemporaneous coefficient on output gap (c) Monetary policy shock volatility
Note: Contemporaneous coefficients on inflation and output gap are respectively given by crπ,t and crg,t, and the volatility of monetary policy shocks is captured by δr,t in equation (3).
Median (solid lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients are plotted for each indicated variable.

Figure I.F.10 – Interest rate smoothing and long-run coefficients from the estimated monetary policy rule (Krippner’s (2020) shadow rate)

(a) Interest rate smoothing (b) Long-run coefficient on inflation (c) Long-run coefficient on output gap
Note: Interest rate smoothing is given by the sum γ1,rr,t+ γ2,rr,t, and long-run coefficients on inflation and output gap are respectively given by (crπ,t+ γ1,rπ,t+ γ2,rπ,t)/(1− γ1,rr,t− γ2,rr,t)
and (crg,t+ γ1,rg,t+ γ2,rg,t)/(1− γ1,rr,t− γ2,rr,t) in equation (3). Median (solid lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients are plotted for
each indicated variable.
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I.F.2 Alternative measures of inflation and real activity series

Alternative specifications of the estimated monetary policy rule using different series are

run over the sample. The robustness of the results are tested with different series of ex-post

inflation (CPI and core PCE price index for the U.S.) and ex-post real activity series (including

real GDP growth and unemployment rate for the U.S. and for the euro area, unemployment gap

for the U.S. and estimated output gap using Christiano and Fitzgerald (2003) bandpass filter

for the euro area). The path of estimated response coefficients are robust to other inflation and

real activity series, especially for the long-run coefficients and the volatility of monetary policy

shocks.

As made clear by Orphanides (2001, 2003, 2004), real-time and forecast data should also be

used in the estimates. Such data are available for the U.S. over a long time span.31 However,

estimates for the euro area with real-time and forecast data are hardly possible because of

the lack of observation due to the need for at least 10 years of training sample to calibrate

the prior distribution of the time-varying coefficients. This is incompatible with the relatively

short period of time covered by those datasets.32 Hence, to make the comparison between

Fed and ECB monetary policy possible, only historical ex-post data are used in the TVP-

VAR specification presented in this paper. Croushore and Evans (2006) show that the use of

revised data is not a serious limitation for the analysis of monetary policy shocks in recursively

identified VARs. However, note that Amir-Ahmadi et al. (2017) employ a TVP-VAR and

show that impulse responses to monetary policy shocks is stronger using final data instead of

real-time data.

Following Okun’s law (Okun, 1962), output gap or real GDP growth are replaced by unem-

ployment gap33 or simply unemployment rate in the estimate. As a consequence, the strategy

based on sign restriction on impulse responses used to identify structural shocks has to be

slightly modified as follows:

31Real-time data in the U.S. are reported by the Federal Reserve Bank of Philadelphia in the Real-Time
Data Set for Macroeconomists, and forecast data are reported in the Survey of Professional Forecasters.

32The ECB real-time database (RTD) begins in 1995:1, and the ECB Survey of Professional Forecasters
(SPF) only begins in 1999:1.

33Unemployment gap is constructed following the formula ugapt = ut − ūt , where ut is the unemployment
rate and ūt is the estimated non-accelerating inflation rate of unemployment (NAIRU) at time t.
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Table I.F.2 – Sign restrictions on the impact effects of structural shocks

Impact effect on Structural shocks

Aggregate Aggregate Monetary
supply demand policy

Inflation + + -
Unemployment rate + - +

Shadow rate ? + +

Note: The symbol ? indicates that the response is left unconstrained.

Measured by unemployment rate (or unemployment gap), real activity is assumed to react

positively to aggregate supply shocks, negatively to aggregate demand shocks and positively

to monetary policy shocks. Note also that sign restrictions on impulse responses are the same

than those presented in Table I.2.1 when considering real GDP growth instead of output gap

in the empirical procedure.
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Figure I.F.11 – Contemporaneous coefficients from the estimated monetary policy rule and monetary policy shock volatility (core PCE)

(a) Contemporaneous coefficient on inflation (b) Contemporaneous coefficient on output gap (c) Monetary policy shock volatility
Note: Contemporaneous coefficients on inflation and output gap are respectively given by crπ,t and crg,t, and the volatility of monetary policy shocks is captured by δr,t in equation (3).
Median (solid lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients are plotted for each indicated variable.

Figure I.F.12 – Interest rate smoothing and long-run coefficients from the estimated monetary policy rule (core PCE)

(a) Interest rate smoothing (b) Long-run coefficient on inflation (c) Long-run coefficient on output gap
Note: Interest rate smoothing is given by the sum γ1,rr,t+ γ2,rr,t, and long-run coefficients on inflation and output gap are respectively given by (crπ,t+ γ1,rπ,t+ γ2,rπ,t)/(1− γ1,rr,t− γ2,rr,t)
and (crg,t+ γ1,rg,t+ γ2,rg,t)/(1− γ1,rr,t− γ2,rr,t) in equation (3). Median (solid lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients are plotted for
each indicated variable.
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Figure I.F.13 – Contemporaneous coefficients from the estimated monetary policy rule and monetary policy shock volatility (real GDP
growth)

(a) Contemporaneous coefficient on inflation
(b) Contemporaneous coefficient on real GDP
growth (c) Monetary policy shock volatility

Note: Contemporaneous coefficients on inflation and real GDP growth are respectively given by crπ,t and crg,t, and the volatility of monetary policy shocks is captured by δr,t in equation
(3). Median (solid lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients are plotted for each indicated variable.

Figure I.F.14 – Interest rate smoothing and long-run coefficients from the estimated monetary policy rule (real GDP growth)

(a) Interest rate smoothing (b) Long-run coefficient on inflation (c) Long-run coefficient on real GDP growth
Note: Interest rate smoothing is given by the sum γ1,rr,t+γ2,rr,t, and long-run coefficients on inflation and real GDP growth are respectively given by (crπ,t+γ1,rπ,t+γ2,rπ,t)/(1−γ1,rr,t−γ2,rr,t)
and (crg,t+ γ1,rg,t+ γ2,rg,t)/(1− γ1,rr,t− γ2,rr,t) in equation (3). Median (solid lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients are plotted for
each indicated variable.
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Figure I.F.15 – Contemporaneous coefficients from the estimated monetary policy rule and monetary policy shock volatility (CPI/HICP
and unemployment rate)

(a) Contemporaneous coefficient on inflation
(b) Contemporaneous coefficient on unemployment
rate (c) Monetary policy shock volatility

Note: Contemporaneous coefficients on inflation and unemployment rate are respectively given by crπ,t and crg,t, and the volatility of monetary policy shocks is captured by δr,t in equation
(3). Median (solid lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients are plotted for each indicated variable.

Figure I.F.16 – Interest rate smoothing and long-run coefficients from the estimated monetary policy rule (CPI/HICP and unemployment
rate)

(a) Interest rate smoothing (b) Long-run coefficient on inflation (c) Long-run coefficient on unemployment rate
Note: Interest rate smoothing is given by the sum γ1,rr,t+ γ2,rr,t, and long-run coefficients on inflation and unemployment rate are respectively given by (crπ,t+ γ1,rπ,t+ γ2,rπ,t)/(1−
γ1,rr,t− γ2,rr,t) and (crg,t+ γ1,rg,t+ γ2,rg,t)/(1− γ1,rr,t− γ2,rr,t) in equation (3). Median (solid lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients
are plotted for each indicated variable.
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Figure I.F.17 – Contemporaneous coefficients from the estimated monetary policy rule and monetary policy shock volatility in the U.S.
(unemployment gap)

(a) Contemporaneous coefficient on inflation
(b) Contemporaneous coefficient on unemployment
gap (c) Monetary policy shock volatility

Note: Contemporaneous coefficients on inflation and unemployment gap are respectively given by crπ,t and crg,t, and the volatility of monetary policy shocks is captured by δr,t in equation
(3). Median (solid lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients are plotted for each indicated variable.

Figure I.F.18 – Interest rate smoothing and long-run coefficients from the estimated monetary policy rule in the U.S. (unemployment gap)

(a) Interest rate smoothing (b) Long-run coefficient on inflation (c) Long-run coefficient on unemployment gap
Note: Interest rate smoothing is given by the sum γ1,rr,t+ γ2,rr,t, and long-run coefficients on inflation and unemployment gap are respectively given by (crπ,t+ γ1,rπ,t+ γ2,rπ,t)/(1−
γ1,rr,t− γ2,rr,t) and (crg,t+ γ1,rg,t+ γ2,rg,t)/(1− γ1,rr,t− γ2,rr,t) in equation (3). Median (solid lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients
are plotted for each indicated variable.
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Estimating real potential GDP in the euro area with filters

Although it has been universally used in macroeconomics, the Hodrick-Prescott filter may

be subject to criticism. According to Hamilton (2018), the HP filter is not a reliable tool to

decompose series into a trend and a cycle component, because it introduces spurious dynamic

relations and have no basis in the true data-generating process. Therefore, I propose alternative

filtering methods commonly used in macroeconomics to estimate euro area real potential GDP.

For this purpose, real potential GDP in the euro area is estimated with filtering methods based

on Christiano and Fitzgerald (2003), Baxter and King (1999), and following Hamilton (2018)

more recently. As a reminder, I briefly give the conceptual framework of Hodrick and Prescott

(1997), and raise potential issues implied by the use of the HP filter. Then, other filters are

discussed and used to test the robustness of the results.

In accordance with Hodrick and Prescott’s (1997) notations, a given time series yt may be

decomposed into a growth (or trend) component gt and a cyclical component ct such that:

yt = gt + ct

for t = 1, . . . , T . As for any filtering methods, the aim of the HP filter is to give a measure

of smoothness of the {gt} path. In Hodrick and Prescott (1997), the growth component is

determined by the resolution of the following optimization program:

Min
{gt}Tt=−1


T∑
t=1

(yt − gt︸ ︷︷ ︸
=ct

)2 + λ
T∑
t=1

[(gt − gt−1)− (gt−1 − gt−2)]2
 (I.39)

where λ > 0 is a ‘smoothing parameter’ which penalizes variations in the growth component.

The larger the value of λ, the smoother is the trend. As a rule of thumb, it is commonly set to

1600 for quarterly data.

However, as highlighted by Hamilton (2018), the HP filter suffers from an end-point bias, and

filtered values at the end of the sample are also characterized by spurious dynamics. Also,

the author advocates that the value of λ should be data-consistent instead of being calibrated

to λ = 1600 for quarterly data. Hence, Hamilton (2018) suggests an alternative statistical

procedure, and proposes running an OLS regression of yt+h on a constant and on the four more

recent values as of date t to offer a robust alternative to HP filter:

yt+h = β0 + β1yt + β2yt−1 + β3yt−2 + β4yt−3︸ ︷︷ ︸
trend component

+ υt+h︸ ︷︷ ︸
cycle

component

(I.40)
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Hamilton (2018) advocates that for large samples, OLS estimates of equation (I.40) converge

to β1 = 1 and βi = 0 for i = 0, 2, 3, 4, and can therefore be written:

yt+h = yt︸︷︷︸
trend

component

+ υt+h︸ ︷︷ ︸
cycle

component

(I.41)

that gives how much the series yt+h change over a given h horizon.

Euro area output gaps implied by filtered real GDP based on Hamilton’s (2018) procedure are

presented in the following Figure I.F.19.

Figure I.F.19 – Regression and 8-quarter-change filters applied to euro area real GDP following
Hamilton (2018)

Note: Dashed line shows euro area output gap constructed with real potential GDP estimated by an Hodrick-
Prescott filter. Top: solid line plots υt = yt − β̂0 − β̂1yt−8 − β̂2yt−9 − β̂3yt−10 − β̂4yt−11, following equation
(I.40). Bottom: solid line plots υt = yt − yt−8, following equation (I.41).

Other filtering methods have been widely used in empirical macroeconomics, such as Baxter

and King (1999) or Christiano and Fitzgerald (2003) (see Figure I.F.20).
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Figure I.F.20 – Band-pass filters applied to euro area real GDP

Note: Dashed line shows euro area output gap constructed with real potential GDP estimated by an Hodrick-
Prescott filter. Top: solid line plots the cyclical component of euro area real GDP is obtained using a Baxter
and King (1999) filter. Bottom: solid line plots the cyclical component of euro area real GDP is obtained using
a Christiano and Fitzgerald (2003) filter.

129



Figure I.F.21 – Contemporaneous coefficients from the estimated monetary policy rule and monetary policy shock volatility in the euro
area (HICP and output gap)

(a) Contemporaneous coefficient on inflation
(HICP)

(b) Contemporaneous coefficient on output gap
(bandpass filter) (c) Monetary policy shock volatility

Note: Contemporaneous coefficients on inflation and output gap are respectively given by crπ,t and crg,t, and the volatility of monetary policy shocks is captured by δr,t in equation (3).
Median (solid lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients are plotted for each indicated variable.

Figure I.F.22 – Interest rate smoothing and long-run coefficients from the estimated monetary policy rule in the euro area (HICP and
output gap)

(a) Interest rate smoothing (b) Long-run coefficient on inflation (HICP)
(c) Long-run coefficient on output gap (bandpass
filter)

Note: Interest rate smoothing is given by the sum γ1,rr,t+ γ2,rr,t, and long-run coefficients on inflation and output gap are respectively given by (crπ,t+ γ1,rπ,t+ γ2,rπ,t)/(1− γ1,rr,t− γ2,rr,t)
and (crg,t+ γ1,rg,t+ γ2,rg,t)/(1− γ1,rr,t− γ2,rr,t) in equation (3). Median (solid lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients are plotted for
each indicated variable.
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I.F.3 Alternative TVP-VAR specifications

Further analysis is conducted to check sensitivity of the benchmark results to the VAR speci-

fication. As described in Section I.6, (i) the choice of lag length (three lags), (ii) the choice of

prior distributions (calibration and horseshoe priors), and (iii) the shocks identification strat-

egy (Cholesky factorization and unrestricted response of output to a monetary policy shock)

are modified to check the robustness of the results.
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Figure I.F.23 – Contemporaneous coefficients from the estimated monetary policy rule and monetary policy shock volatility (p = 3)

(a) Contemporaneous coefficient on inflation (b) Contemporaneous coefficient on output gap (c) Monetary policy shock volatility
Note: Contemporaneous coefficients on inflation and output gap are respectively given by crπ,t and crg,t, and the volatility of monetary policy shocks is captured by δr,t in equation (3).
Median (solid lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients are plotted for each indicated variable.

Figure I.F.24 – Interest rate smoothing and long-run coefficients from the estimated monetary policy rule (p = 3)

(a) Interest rate smoothing (b) Long-run coefficient on inflation (c) Long-run coefficient on output gap
Note: Interest rate smoothing is given by the sum γ1,rr,t+ γ2,rr,t, and long-run coefficients on inflation and output gap are respectively given by (crπ,t+ γ1,rπ,t+ γ2,rπ,t)/(1− γ1,rr,t− γ2,rr,t)
and (crg,t+ γ1,rg,t+ γ2,rg,t)/(1− γ1,rr,t− γ2,rr,t) in equation (3). Median (solid lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients are plotted for
each indicated variable.
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Figure I.F.25 – Contemporaneous coefficients from the estimated monetary policy rule and monetary policy shock volatility (calibration
of priors)

(a) Contemporaneous coefficient on inflation (b) Contemporaneous coefficient on output gap (c) Monetary policy shock volatility
Note: Contemporaneous coefficients on inflation and output gap are respectively given by crπ,t and crg,t, and the volatility of monetary policy shocks is captured by δr,t in equation (3).
Median (solid lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients are plotted for each indicated variable.

Figure I.F.26 – Interest rate smoothing and long-run coefficients from the estimated monetary policy rule (calibration of priors)

(a) Interest rate smoothing (b) Long-run coefficient on inflation (c) Long-run coefficient on output gap
Note: Interest rate smoothing is given by the sum γ1,rr,t+ γ2,rr,t, and long-run coefficients on inflation and output gap are respectively given by (crπ,t+ γ1,rπ,t+ γ2,rπ,t)/(1− γ1,rr,t− γ2,rr,t)
and (crg,t+ γ1,rg,t+ γ2,rg,t)/(1− γ1,rr,t− γ2,rr,t) in equation (3). Median (solid lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients are plotted for
each indicated variable.
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Figure I.F.27 – TVP-VAR long-run coefficients (Prüser, 2021)

(a) Long-run response of Rs to a permanent increase in inflation

(b) Long-run response of Rs to a permanent increase in output gap
Note: Median long-run coeffficients on inflation and output gap with 68% credible bands.

Figure I.F.28 – Monetary policy shock volatility (Prüser, 2021)

(a) Inverse Gamma prior (b) Horseshoe prior
Note: Median monetary policy shock volatility with 68% and 90% credible bands.

134



Figure I.F.29 – TVP-VAR long-run coefficients (Prüser, 2021)

(a) Long-run response of Rs to a permanent increase in inflation

(b) Long-run response of Rs to a permanent increase in output gap
Note: Median long-run coeffficients on inflation and output gap with 68% credible bands.

Figure I.F.30 – Monetary policy shock volatility (Prüser, 2021)

(a) Inverse Gamma prior (b) Horseshoe prior
Note: Median monetary policy shock volatility with 68% and 90% credible bands.
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Figure I.F.31 – Contemporaneous coefficients from the estimated monetary policy rule and monetary policy shock volatility (Cholesky
factorization)

(a) Contemporaneous coefficient on inflation (b) Contemporaneous coefficient on output gap (c) Monetary policy shock volatility
Note: Contemporaneous coefficients on inflation and output gap are respectively given by crπ,t and crg,t, and the volatility of monetary policy shocks is captured by δr,t in equation (3).
Median (solid lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients are plotted for each indicated variable.

Figure I.F.32 – Interest rate smoothing and long-run coefficients from the estimated monetary policy rule (Cholesky factorization)

(a) Interest rate smoothing (b) Long-run coefficient on inflation (c) Long-run coefficient on output gap
Note: Interest rate smoothing is given by the sum γ1,rr,t+ γ2,rr,t, and long-run coefficients on inflation and output gap are respectively given by (crπ,t+ γ1,rπ,t+ γ2,rπ,t)/(1− γ1,rr,t− γ2,rr,t)
and (crg,t+ γ1,rg,t+ γ2,rg,t)/(1− γ1,rr,t− γ2,rr,t) in equation (3). Median (solid lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients are plotted for
each indicated variable.
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Figure I.F.33 – Contemporaneous coefficients from the estimated monetary policy rule and monetary policy shock volatility (unrestricted
response to output)

(a) Contemporaneous coefficient on inflation (b) Contemporaneous coefficient on output gap (c) Monetary policy shock volatility
Note: Contemporaneous coefficients on inflation and output gap are respectively given by crπ,t and crg,t, and the volatility of monetary policy shocks is captured by δr,t in equation (3).
Median (solid lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients are plotted for each indicated variable.

Figure I.F.34 – Interest rate smoothing and long-run coefficients from the estimated monetary policy rule (unrestricted response to output)

(a) Interest rate smoothing (b) Long-run coefficient on inflation (c) Long-run coefficient on output gap
Note: Interest rate smoothing is given by the sum γ1,rr,t+ γ2,rr,t, and long-run coefficients on inflation and output gap are respectively given by (crπ,t+ γ1,rπ,t+ γ2,rπ,t)/(1− γ1,rr,t− γ2,rr,t)
and (crg,t+ γ1,rg,t+ γ2,rg,t)/(1− γ1,rr,t− γ2,rr,t) in equation (3). Median (solid lines) and 68% credible interval (shaded areas) of the posterior distribution of coefficients are plotted for
each indicated variable.
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Figure I.F.35 – Counterfactual simulations (U.S., unrestricted response to output)

Note: Median counterfactual path (red dashed lines) and 68% credible interval (red shaded areas) are plotted
for each indicated variable.

Figure I.F.36 – Counterfactual simulations (Euro area, unrestricted response to output)

Note: Median counterfactual path (red dashed lines) and 68% credible interval (red shaded areas) are plotted
for each indicated variable.
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Chapter II

COVID-induced sovereign risk in the

euro area: When did the ECB stop the

spread?

Abstract. This paper studies how the announcement of the ECB’s monetary policies stopped

the spread of the COVID-19 pandemic to the European sovereign debt market. We show that

up to March 9, the occurrence of new cases in euro area countries had a sizeable and persistent

effect on 10-year sovereign bond spreads relative to Germany: 10 new confirmed cases per

million people were accompanied by an immediate spread increase of 0.03 percentage points

(ppt) that lasted 5 days, for a total increase of 0.35 ppt. For periods afterwards, the effect falls

to near zero and is not significant. We interpret this change as an indicator of the success of the

ECB’s March 12 press conference, despite the “we are not here to close spreads” controversy.

Our results hold for the stock market, providing further evidence of the effectiveness of the

ECB’s March 12 announcements in stopping the financial turmoil. A counterfactual analysis

shows that without the shift in the sensitivity of sovereign bond markets to COVID-19, spreads

would have surged to 4.2% in France, 12.5% in Spain, and 19.5% in Italy by March 18, when

the ECB’s Pandemic Emergency Purchase Programme was finally announced.

“I can assure you on that page that first of all we will make use of all the flexibilities

that are embedded in the framework of the asset purchase programme, (...) but we
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are not here to close spreads.” Christine Lagarde, president of the ECB, press

conference, 12 March 2020.

“The ECB will ensure that all sectors of the economy can benefit from supportive

financing conditions that enable them to absorb this shock. This applies equally to

families, firms, banks and governments.” ECB Governing Council press release, 18

March 2020.

II.1 Introduction

The COVID-19 virus pandemic started on December 31, 2019, in China and reached Europe

almost one month later, according to the World Health Organization (WHO).1 As a serious

threat to the economy, the rapid spread of the virus led to sizeable financial turmoil in Europe.

The downturn was particularly strong in Italy, the most affected country in Europe, where the

interest rate spread vis-à-vis Germany rose sharply from 1.4% to 2.5% and the stock market

fell by 40% between February 19 and March 12 (Figure II.1.1). On March 12, the European

Central Bank (ECB) announced a set of monetary policy measures to support the economy in

the face of the pandemic. The announcement of these measures gave rise to controversy over

ECB president Christine Lagarde’s announcement that the ECB would certainly use “all the

flexibilities that are embedded in the framework of the asset purchase programme” but also

that the central bank was “not here to close spreads.” This last sentence has been widely cited

as a communication failure, contrasting with the famous “whatever it takes” of her predecessor

Mario Draghi.2 After a crash on March 12, the stock index plateaued, while the interest rate

spread kept soaring to reach more than 2.8% on March 17. On March 18, the ECB conducted

an exceptional longer-term refinancing operation (LTRO) to provide liquidity and announced

the launch of a massive intervention program known as the Pandemic Emergency Purchase

Programme (PEPP), which led to a turnaround in sovereign rates and a reboot in stock prices

(Figure II.1.1). While the COVID-19 pandemic continued to spread in Europe, its transmission

to financial markets stopped in Italy and the rest of the euro area. What was the role of these

successive ECB interventions in stopping the spread of the pandemic to financial markets?

What would have happened without these interventions?

1The WHO offers regular rolling updates on the coronavirus disease. See also its daily situation reports.
2The Bloomberg article “Christine Lagarde Does Whatever It Doesn’t Take” illustrates the reaction in the

press and social media to Christine Lagarde’s press conference.
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Figure II.1.1 – COVID-19 pandemic outbreak, government bond spread and stock market in
Italy
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Note: Vertical lines correspond to ECB announcement dates: March 12, 2020 (dashed), and March 18, 2020
(dot-dashed). LHS: Total COVID-19 confirmed cases are reported as the number of cases per million people.
RHS: 10-year government spread (in %) is computed relative to the yield on 10-year German bonds; the stock
market index is the FTSE MIB index.

To answer these questions, we measure the reaction of sovereign spreads to new COVID-

19 cases and examine how it evolved around the time of the ECB interventions. Using local

projection methods developed by Jordà (2005), we measure the reaction at the time of impact,

that is, on the day of the occurrence of COVID-19 cases, and in dynamics, that is, up to 5

days after the release of data on new confirmed COVID cases. We provide state-dependent

estimates of the sovereign spread reaction to COVID-19 by splitting our full sample (from

January 2, 2020, to May 29, 2020) into two subsamples divided at a reference date falling

between March 5 and March 25. We include national stock markets and both country and time

fixed effects to capture an unbiased measure of the time-varying impact of COVID-19 severity

on euro area sovereign risk.

We show that despite the controversy generated by the “we are not here to close spreads”
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declaration of Christine Lagarde (March 12),3 the ECB actually stopped the spread of the

pandemic-sparked crisis to the euro area sovereign debt markets on March 12, before the an-

nouncement of the PEPP and the conduct of market operations that occurred on March 18,

leading to the reversal of sovereign spreads (Figure II.1.1). Unfortunately, it should be stressed

that the methodology and the data used in this paper do not allow us to dissociate the effects of

ECB monetary policy announcements from those of Christine Lagarde’s statements at the press

conference. Indeed, these two events took place simultaneously on March 12, and it is quite

possible that Christine Lagarde’s statement substantially canceled out the effects of the ECB

announcements.4 Nevertheless, our study allows us to identify the effectiveness of ECB com-

munication since the announcements on March 12 were not accompanied by any major market

operations.5 In fact, the ECB’s balance sheet expansion in reaction to the COVID-19 pandemic

outbreak started the week after, on March 18, through substantial LTROs of AC109.1305 billion,

while the PEPP actually began on March 24.

At the start of the pandemic outbreak, the sovereign spread reaction to COVID-19 was

increasing in the time horizon: the occurrence of 10 new cases per million people was accom-

panied by an immediate spread increase of 0.03 percentage points (ppt), which lasted 5 days

for a total increase of almost 0.35 ppt. This explosive pattern is a hallmark of financial market

turmoil in times of sovereign debt crises. Thus, we support the view that the ECB’s unprece-

dented monetary policy responses to the COVID-19 pandemic were very effective in disrupting

the explosive path of sovereign default risk within eurozone countries.6 Indeed, our estimates

indicate that without these interventions, sovereign debt rates would have risen to 4.2% in

France, 12.5% in Spain, and 19.5% in Italy by March 18, which would have undoubtedly raised

the question of debt sustainability in these countries and potentially led to a sovereign debt

3Christine Lagarde walked back this spreads comment by stating in a CNBC interview after the press
conference, “I am fully committed to avoid any fragmentation in a difficult moment for the euro area. High
spreads due to the coronavirus impair the transmission of monetary policy. We will use the flexibility embedded
in the asset purchase programme, including within the public sector purchase programme. The package approved
today can be used flexibly to avoid dislocations in bond markets, and we are ready to use the necessary
determination and strength.”

4Our daily data do not allow us to identify the specific effects of each event, and our conclusions should
be interpreted as the global effect of all March 12 announcements. Further work should be carried out in the
future using intradaily data to dissociate the effects of the different announcements on the markets, taking into
account the television interview of Ms. Lagarde on CNBC.

5We are conscious of the above-described dramatic consequences of the March 12 statement on that day, in
particular for Italian financial markets. We consider that despite this crash, this ECB intervention could have
stopped the transmission of the pandemic outbreak to sovereign spreads and stock indices.

6The ECB was not the only European institution involved in the management of the crisis. However,
as explained in Section II.2, its interventions were earlier than those of other bodies such as the European
Commission and the European Council.
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crisis.

Our study provides empirical evidence for the theoretical framework developed in Arellano

et al. (2020) that clarifies the link between the ongoing COVID-19 pandemic and the increasing

probability of sovereign debt default in emerging economies. Introducing a standard epidemio-

logical methodology into a sovereign default model, the authors argue that lockdowns imposed

by governments in reaction to the pandemic-induced health crisis save lives but are costly in

terms of output and unemployment. They show how fiscal transfers engaged by governments

to smooth consumption are constrained by borrowing capacity and default risk, which, in turn,

increases the cost of lockdown. Hence, according to their model, the more severe the pandemic,

the higher the risk of default on sovereign debt. This argument holds for the euro area as well.

Indeed, ECB (2020a) indicates that the outbreak of the crisis led to an immediate increase in

direct costs, mainly to address the public health consequences, but that from a macroeconomic

perspective, much of the impact relates to the containment measures, which place a severe

economic burden on firms, workers and households, and the packages of fiscal measures imple-

mented in all euro area countries. As a result, the general government budget deficit in the euro

area was projected to increase significantly in 2020 to 8% of GDP, compared with 0.6% in 2019.

The risk of transmission to the banking sector through a worsening of bank balance sheets

was emphasized early by Schularick and Steffen (2020) and analyzed in Couppey-Soubeyran

et al. (2020), among others. In a recent publication, ECB (2020b) warns that banks in some

countries have indeed increased their domestic sovereign debt holdings, triggering concerns that

the sovereign-bank nexus could re-emerge in the euro area.

Our paper also supplements recent empirical works on the drivers of euro area sovereign

risk during the COVID-19 crisis. Among them, Delatte and Guillaume (2020) highlight the

heterogeneous effects of European policies on sovereign spreads: while the announcement of

the PEPP reduced spreads in the euro area, the contrary was true for the financial assistance

announced by the European Council. In regard to the direct impact of the COVID-19 crisis,

they report a nonlinear relationship between spreads and the logarithm of the number of deaths

per 100,000 people but do not consider the variation in the number of cases and deaths, as we do.

Augustin et al. (2020) and Klose and Tillmann (2021) are closer to our setup since they consider

the daily percentage change in COVID-19 cases. Augustin et al. (2020) use a large international

panel of developed countries (including European countries) and also report results for a set

of U.S. states. They show that countries’ sovereign risk reacts positively and significantly to
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the pandemic outbreak and that the strength of this reaction is conditional on initial fiscal

conditions. Klose and Tillmann (2021) consider both sovereign and equity markets in Europe

and conclude that monetary policy has been more effective in closing spreads. Finally, Andries

et al. (2020) measure the intensity of the pandemic as the day when the number of cases and

deaths reaches a threshold and do not consider the daily change, as we do. They study how

the intensity of the pandemic and policy measures explain the cumulative abnormal returns of

sovereign Credit Default Swap (CDS) spreads.

Our contribution with respect to these references is as follows. First, we go further by dealing

with the dynamic response of sovereign bond spreads to the COVID-19 pandemic outbreak in

the euro area. Our results demonstrate that these dynamics are a key feature of COVID-

induced sovereign risk, which is cumulative over days. Focusing on the sensitivity of spreads

to COVID-19 news at the time of impact leads to a sharp underestimation of the severity of

the issue. Second, by running a split sample analysis, we can identify when this sensitivity was

broken and interpret the results as being in line with the calendar of policy announcements.

Third, we apply our empirical procedure to the stock market to provide additional evidence on

the evolution of the nexus between the ongoing pandemic and financial markets. Fourth, we

assess possible spillovers from the spread of the pandemic in Italy that may have been at work

during the COVID crisis. Fifth, we provide a counterfactual analysis by simulating the path

of sovereign bond spreads that would have occurred without this change in the sensitivity of

bond spreads to the COVID-19 crisis.

Related literature. This paper is part of the burgeoning literature on the macroeconomic

effects of the COVID-19 crisis and policy responses to the pandemic outbreak, as studied in

Guerrieri et al. (2020), for instance. Atkeson (2020) and Eichenbaum et al. (2020) investigate

the economic impact of the spread of the pandemic using a simple SIR model.7 In the latter,

the severity of the pandemic is measured by the number of new deaths. This proxy has been

found to strongly affect macroeconomic aggregates such as GDP or consumption and rates of

return on stocks and government bills (Barro et al., 2020, Jordà et al., 2020b).

This paper also contributes to the extensive strand of literature using panel regression

to estimate the determinants of long-term government yields and sovereign bond spreads in

7SIR models are widely used in epidemiology and consist of studying the transmission of infectious diseases
through a population (SIR stands for three population categories: S=number of susceptible, I=number of
infectious and R=number of recovered–or deceased–individuals).
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European Monetary Union (EMU) countries, including Manganelli and Wolswijk (2009), Favero

and Missale (2012), Aizenman et al. (2013), Georgoutsos and Migiakis (2013), Costantini et al.

(2014), and Afonso et al. (2015b). Furthermore, Delatte et al. (2017) use a panel smooth

threshold regression model and show that EMU sovereign risk pricing is state dependent. Other

papers assess a time-varying relationship between EMU sovereign spreads and their fundamental

determinants such as liquidity or risk factors, as in Afonso et al. (2015a), Afonso et al. (2018)

or Afonso and Jalles (2019). The latter papers also highlight the role of ECB monetary policies

as an important driver of sovereign bond spreads.8

The methodology used in this paper is based on the growing literature employing local pro-

jection methods developed by Jordà (2005). Local projection methods have been employed to

conduct inference on dynamic impulse responses to address several issues in applied macroeco-

nomics.9 For instance, Ramey and Zubairy (2018), Auerbach and Gorodnichenko (2013), Born

et al. (2019) and Cloyne et al. (2020) use state-dependent local projections to examine fiscal

policy issues. Meanwhile, state-dependent aspects of monetary policy transmission are also

studied in Tenreyro and Thwaites (2016).10

Structure of the paper. The rest of the paper is organized as follows. Section II.2 presents

the data and the chronology of events related to COVID-induced sovereign risk in the euro area.

Section II.3 explains the methodology used in this paper. Section II.4 is devoted to the results.

Section II.5 is dedicated to several robustness checks. Section II.6 proposes an extension of our

baseline model, including an application to the stock market in the euro area, a cross-country

analysis, and a counterfactual exercise. Section II.7 concludes.

8Asset purchase and especially bond-buying programs have directly contributed to lowering bond spreads
within the euro area, as discussed by Falagiarda and Reitz (2015), Kilponen et al. (2015), Szczerbowicz (2015),
Eser and Schwaab (2016), Fratzscher et al. (2016), Gibson et al. (2016), Ghysels et al. (2017), Jäger and
Grigoriadis (2017), De Pooter et al. (2018), Krishnamurthy et al. (2018), and Pacicco et al. (2019). Casiraghi
et al. (2016) focus on the impact of the ECB’s unconventional monetary policy on Italian government bond
yields, Trebesch and Zettelmeyer (2018) emphasize the Greek case, and Lhuissier and Nguyen (2021) uses an
external instrument to estimate the impact of ECB’s APP on intra-euro area sovereign spreads.

9See the series of papers using local projections to assess the impact of credit expansion on business cy-
cle fluctuations (Jordà et al., 2013), equity and housing price bubbles on financial crisis risks (Jordà et al.,
2015, Jordà et al., 2016), austerity on macroeconomic performance (Jordà and Taylor, 2016), and monetary
interventions on exchange rates and capital flows (Jordà et al., 2020a). Recently, local projections have been
introduced for micro data as an alternative to vector autoregressive (VAR) models to avoid any distortion in
impulse responses in nonlinear frameworks (see Favara and Imbs, 2015, Crouzet and Mehrotra, 2020 and Cezar
et al., 2020).

10Similarly, local projection methods have been applied in other monetary analyses to investigate the yield
impact of unconventional monetary policy (Swanson, 2021) or uncertainty (Castelnuovo, 2019, Tillmann, 2020).
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II.2 Data sources and chronology

This section presents the sources of data and summarizes the main events of the COVID-19

outbreak in Europe. The data are given at a business daily frequency (5 days per week) and

run from January 2, 2020, to May 29, 2020. They come from different sources.

European sovereign debt and stock markets. Long-term interest rates and stock indices

are from Datastream via Thomson Reuters Eikon.11 Sovereign bond spreads are constructed as

the yield differentials between bonds issued by each euro area government and German bonds at

a given maturity. The 10-year spread is our benchmark, and we consider the 2-year spread for

robustness analysis. We restrict the sample to 15 euro area countries for which 10-year spreads

and stock market indices are available on a daily basis for this period: Austria, Belgium, Cyprus,

Finland, France, Greece, Ireland, Italy, Lithuania, Malta, Netherlands, Portugal, Slovakia,

Slovenia, and Spain.

Spreads are plotted for each country in Appendix II.B. The pattern highlighted above for

Italy in Figure II.1.1 is representative of most European countries, which experienced a sharp

increase in their government spreads when the pandemic spread to Europe.

Stock market indices are also plotted in Appendix II.B. The figures show that all the coun-

tries in our sample experienced an enormous drop in their main national stock market index.

This crash occurred at the same time that euro area government spreads started to skyrocket,

stressing how severe financial markets in the euro area interpreted the economic impact of the

pandemic to be.

Health statistics on the COVID-19 pandemic in Europe. COVID-19 data are ex-

tracted from the European Centre for Disease Prevention and Control (ECDC), an agency of

the European Union aimed at strengthening defenses against infectious diseases.12 Since the

beginning of the pandemic, the ECDC has been collecting the number of COVID-19 cases and

deaths on a daily basis based on reports from health authorities worldwide. To be consistent

11The Reuters identification codes (RICs) used to construct the dataset are listed in Appendix II.A.
12The complete COVID-19 dataset is updated daily by “Our World in Data” and is available in a CSV file

on the OWID webpage. We downloaded the dataset on May 30, 2020, and do not consider updated versions
since we are interested in the market reaction to the numbers of cases and deaths publicly available in real
time during the pandemic outbreak and not in the revised data reported afterwards. We have checked with
the ECDC Epidemic Intelligence team and the Head of Data of OWID that no major data retro-correction has
been recorded from January to May 2020 to make sure that our results are not affected by any COVID data
revision.
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with our financial series database, we discard observations for weekends to obtain a business

week database of COVID-19 cases and deaths. The main implication of this transformation is

that (business) daily variations in the number of cases and deaths on Monday are computed

with respect to the previous Friday and not to Saturday or Sunday, when financial markets are

closed. Total cases and deaths are plotted for each country of our sample in Appendix II.B.

Our database starts just after the report by the Wuhan Municipal Health Commission in

Wuhan City of a cluster of 27 pneumonia cases (December 31).13 The pandemic then spread to

Europe. The first European case was reported in France on January 24, but Italy was the most

heavily affected country in Europe. The Italian authorities reported clusters in Lombardy on

February 22 and implemented lockdown measures on March 8 at the regional level, which were

rapidly extended to the national level on March 11. The Director General of the WHO declared

COVID-19 a global pandemic on March 11 and said that Europe had become the epicenter of

the pandemic on March 13. All countries of the European Union were affected by March 25,

according to the ECDC.

ECB interventions. Central banks’ response to the COVID-19 crisis was quick and massive,

as documented by Cavallino et al. (2020) and Delatte and Guillaume (2020). Major central

banks across advanced economies launched new asset purchases and lending operations to

face the pandemic outbreak. Among them, the ECB reacted strongly to the COVID-induced

economic downturn by making substantial decisions during March 2020.14 On March 12, the

Governing Council decided on a package of policy measures providing (i) additional longer-term

refinancing operations (LTROs) to provide liquidity for the euro area financial system until June

2020, (ii)more favorable terms for the third series of targeted longer-term refinancing operations

(TLTRO III) from June 2020 to June 2021 to support bank lending to small and medium-sized

enterprises affected by the spread of the virus, and (iii) a temporary envelope of additional net

asset purchases of AC120 billion until the end of 2020 to support financing conditions under the

existing Asset Purchase Programme (APP). On March 18, the ECB announced the launch of a

new temporary asset purchase program called the Pandemic Emergency Purchase Programme

(PEPP) consisting of assets purchases of AC750 billion, including assets eligible for the APP,

until the end of 2020.15

13For additional information, see the ECDC timeline and WHO timeline.
14https://www.ecb.europa.eu/press/pr/html/index.en.html.
15Simultaneously, the ECB stated on March 18, “ The Governing Council was unanimous in its analysis

that in addition to the measures it decided on 12 March 2020, the ECB will continue to monitor closely the
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Figure II.2.2 shows the growth rate of ECB total assets (in percentage, at weekly frequency)

and the respective contribution of the two main open market operations: “LTROs” and “Se-

curities held for monetary policy purposes”. The category “Others” includes all other assets

on the ECB balance sheet. Unfortunately, these series are not available on a daily basis and

cannot be decomposed into national shares.16 However, they provide several helpful insights

for interpreting our results.

ECB interventions can be classified as only communication on March 12 and as a mix of

communication and market operations on March 18. Indeed, the ECB balance sheet expansion

started the week that ended on March 20 and not on March 13. Thus, the ECB intervention on

March 12 can be considered a communication policy only, without significant market operations.

This is not the case for the ECB press conference on March 18. On this date, the ECB provided

exceptional LTROs of AC109.1305 billion for 98 days,17 which implies an enormous increase of

17.73% for LTROs in comparison with their level in the previous week. Considering the full

balance sheet, this increase explains half of the 4.74% increase in total assets on March 20–with

increases of 2.31% from LTROs, 0.36% from securities held for monetary policy purposes, and

2.05% from other assets.18 Actually, the new PEPP was announced on March 18 by Christine

Lagarde but was only effective from March 24.19 As shown in Figure II.2.2, the rise in debt

securities held for monetary policy purposes (which include the PEPP) was gradual and became

predominant in the expansion of the ECB balance sheet only from April 2020. Thus, the ECB

intervention on March 18 was a mix of communication (mainly on the PEPP) and market

operations (through LTROs).

Additionally, it is important to mention that all European institutions were involved in man-

aging the crisis.20 On March 10, the members of the European Council and heads of European

institutions, including the ECB’s Christine Lagarde, held a video conference on COVID-19.

They discussed how to coordinate European Union efforts to respond to the pandemic out-

consequences for the economy of the spreading coronavirus and that the ECB stands ready to adjust all of its
measures, as appropriate, should this be needed to safeguard liquidity conditions in the banking system and to
ensure the smooth transmission of its monetary policy in all jurisdictions.”

16The ECB publishes a bimonthly breakdown of public sector securities under the PEPP.
17There was also an MRO of AC1.4699 billion for 7 days this day; see the calendar of open market operations.
18This was mainly due to the change in the net position of the Eurosystem in foreign currency, as explained

by the ECB (link).
19See the Q&A on PEPP. March 24 is the date of the publication of the ECB decision. In June 2020, monthly

net purchases under the PEPP reached a maximum with an amount of AC120,321 million, in comparison with
AC15,444 million in March 2020.

20See the “Timeline of EU action”.
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Figure II.2.2 – Growth of ECB balance sheet
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(LTROs+Securities held for monetary policy purposes). The gray shaded area covers the period from March
16, 2020, onward. Source: ECB.

break.21 We focus on the ECB interventions, which came earlier and were more commented on

in terms of their effects on sovereign debt markets. For example, the activation of the general

escape clause of the Stability and Growth Pact was proposed by the European Commission

on March 20 and agreed upon by the ministers of finance of the member states of the EU on

March 23, after the main ECB interventions.

The March 5-25 window. Based on the data and on the abovementioned events, we focus

on the March 5-25 period to identify when and how the sovereign interest rate response to the

spread of the COVID-19 pandemic changed. This choice is motivated by two considerations.

21Four priorities were identified at the end of the meeting: limiting the spread of the virus, providing medical
equipment, promoting research (including vaccine research), and dealing with the socioeconomic consequences.
For more details, see the dedicated meeting webpage.
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First, March 5 fell one business week before the first ECB intervention (March 12), and March

25 fell one week after the ECB decision of March 18. Thus, the window is large enough to

ensure that we do not miss any monetary policy effects in our analysis. Second, by March

5, only a few European countries had reported deaths (France, Italy, and Spain), while by

March 25, only Latvia, Malta and Slovakia had not reported deaths from COVID-19. Thus,

the window corresponds to the period of the generalization of the pandemic in Europe. In the

remainder of this paper, we take as our benchmark the series of COVID-19 cases and not that

of deaths. Since the number of confirmed cases leads the number of reported deaths, the series

of COVID-19 cases provides more data for the estimation at the beginning of the sample–by

March 5, only six countries had not reported cases, against fourteen that had not reported

deaths.

II.3 Methodology

Our primary interest is in the dynamic response of government spreads to the outbreak of the

COVID-19 pandemic. To obtain an estimate of the response, we rely on the local projection

method following Jordà (2005). Considering the whole sample period, we estimate:

∆si,t+h = αi,h + ηt,h + βh∆xi,t + Γh(L)si,t−1 + Θh(L)zi,t + εi,t+h (II.1)

for country i and horizon h = 0, 1, . . . , H as of time t, where εi,t+h is the error term. ∆si,t+h =

si,t+h − si,t−1 is the variation in the 10-year government bond spread at horizon h. ∆xi,t =

xi,t − xi,t−1 is the daily change in the number of total COVID-19 cases in country i as of time

t. We consider the change in the number of cases per 100,000 people. The main motivation for

this choice is that the attention of observers has been focused on the number of daily new cases

by population since the beginning of the pandemic, sometimes in absolute terms but never as

a percentage of the number of total cases already reported, as illustrated by the very popular

figures published and massively distributed by the Financial Times. However, we check the

robustness of our results by considering the daily change in the number of deaths per million

people due to COVID-19, the 3-day rolling average of new cases, new cases in absolute terms,

the lagged values of new cases, and the growth rate of total cases as the independent variable.

Additionally, other robustness checks involve separately adding the growth rate of total cases,

the logarithm of the total number of cases, the first difference of new cases, or the lagged values
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of new cases as control variables in the baseline specification. Tables and figures containing

the results are given in Appendices II.D and II.E. The coefficient of interest βh measures the

variation in government spreads h days after the release of data on new COVID-19 cases. A

series of regressions are estimated for each horizon h. Since the model is estimated on a business

daily basis, we assume that a one-week horizon is sufficiently long to capture the path of the

response coefficients βh. Then, we set H = 5.

To obtain an accurate estimate of these coefficients, we use a two-way fixed effects framework

and add a set of control variables as recommended by Herbst and Johannsen (2020).22 First,

country fixed effects αi,h take into account the structural differences between countries. Second,

time fixed effects ηt,h absorb features that are common across all countries but change over time,

including the global evolution of the COVID-19 pandemic. Third, the current value and the

first four lags of the log of the stock index zi,t control for the state of the economy and the

effects of other news that could have an impact on government spreads. Θh(L) is a polynomial

in the lag operator associated with the domestic stock markets, with Θh(L) =
N∑
n=0

θh,nL
n, where

N stands for the number of lags. Finally, it also includes the first four lags of the dependent

variable to control for any serial correlation in the error term through the polynomial in the

lag operator Γh(L), defined by Γh(L) =
N−1∑
n=0

γh,n+1L
n. We set N = 4 as the number of lags.

The linear local projection method described above can be transformed into a state-dependent

model. State-dependent local projection methods have been mainly applied to fiscal policy is-

sues by Auerbach and Gorodnichenko (2013) and Ramey and Zubairy (2018). For the linear

model, we estimate a series of regressions at each horizon h:

∆si,t+h = αi,h + ηt,h +Dt,t̄

[
βa,h∆xi,t + Γa,h(L)si,t−1 + Θa,h(L)zi,t

]
(II.2)

+(1−Dt,t̄)
[
βb,h∆xi,t + Γb,h(L)si,t−1 + Θb,h(L)zi,t

]
+ εi,t+h

where Dt,t̄ is a dummy variable that takes 0 before a given date t̄, that is, when t < t̄, and

1 thereafter, when t ≥ t̄. Equation (II.2) captures the dynamic response of government bond

spreads to new COVID-19 cases conditional on the ECB intervention through the coefficients

βa,h and βb,h. It is worth emphasizing that this response is different from the direct effect of a

policy intervention on sovereign rates, which is gauged by the time fixed effect ηt,h. Since we are

22Moreover, Herbst and Johannsen (2020) also suggest using large sample sizes to avoid bias in impulse
responses estimated by local projections. Our setup is in line with this recommendation since the size of our
subsample exceeds 500 observations.
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mostly interested in the βa,h and βb,h coefficients, responses in period t+ h to new information

on the severity of the COVID-19 situation at time t, conditional on the state of the economy,

are computed as in Born et al. (2019) by the following expression:

∂∆si,t+h
∂∆xi,t

∣∣∣∣
Dt,t̄

= Dt,t̄ × βa,h + (1−Dt,t̄)× βb,h (II.3)

which is a linear combination of impulse response coefficients. As our aim is to investigate

possible nonlinearities in the response coefficient βh according to the state of the economy

during the March 5-25 window (see Section II.2), event dummies are constructed according to

t̄ ∈ {3/5, ..., 3/25}.

II.4 Results

This section presents our main results to identify when the COVID-induced rise in sovereign

spreads was halted.

Results for the full sample. Let us start with equation (II.1) for the full sample of obser-

vations. Figure II.4.3 shows the path of the estimated coefficient βh and the 95% confidence

interval, and Table II.C.1 contains the estimation results. The response coefficient is slightly

negative at all horizons. However, the magnitude of the effect is very small: the change in the

interest rate spread is very close to zero at all horizons and reaches −0.002 ppt at horizon h = 3

for 10 new cases per million people. As shown by the confidence interval, the impact of new

cases is not significantly different from zero when we consider the full sample. As explained

above, this does not mean that policy interventions have no direct effects on sovereign inter-

est rates23 but that these rates do not react significantly to the occurrence of new COVID-19

cases. What happens, however, when the sample is split? In particular, we draw attention to

the period before ECB interventions.

The difference between the beginning and the end of the March 5-25 window.

Figure II.4.4 compares the response coefficients βb,h and βa,h of 10-year government spreads to

new COVID-19 cases before and after March 5 (t̄ = 3/5, the first date of our window). For

the period before March 5, without the ECB intervention, the response coefficient βb,h follows
23Indeed, as indicated in Figure II.C.1, the time fixed effects ηt,h are significantly negative around key ECB

intervention dates, namely, on March 12 and March 18.
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Figure II.4.3 – Impulse responses of 10-year government bond spreads to new COVID-19 cases
in the euro area
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Note: Impulse responses represent the βh coefficient from equation (II.1), and the gray shaded area represents
the 95% confidence interval.

an explosive path. Spreads on 10-year government bonds increase by more than 0.021 ppt for

10 new cases per million people on impact. This rise significantly accelerates to reach 0.240

ppt up to 5 business days. This explosive path severely threatened debt sustainability in the

euro area as the pandemic spread. On March 12, Italy reported 38.256 new cases per million

residents and Spain 24.66 and France 7.614 new cases. This βb,5 estimate considering only this

date would imply a cumulative increase in the spread over 5 days of 0.92 ppt in Italy, 0.59

ppt in Spain and 0.18 ppt in France for 10 new cases per million people. After March 5, the

estimates for this sample including the ECB interventions show a response coefficient βa,h that

is very close to zero and not significant.

Figure II.4.5 also compares the response coefficients βb,h and βa,h of bond spreads to new

COVID confirmed cases before and after March 25 (t̄ = 3/25, the last date of our window).

The response coefficient βb,h on impact (h = 0) is smaller (0.001 ppt against 0.021 for t̄ = 3/5)

and still not significantly different from zero. However, in this case, the coefficient no longer

follows an explosive path: the response of the interest rate spreads to new cases is even below

zero at a 3-day horizon and becomes slightly positive up to a 5-day horizon (reaching 0.002

instead of 0.240 for t̄ = 3/5). Note that the βb,h coefficient is not significant at any horizon.

Similarly, the response coefficient βa,h is muted when we consider the subsample after March

25. In the latter case, government bond spreads do not react to new cases at all. These results

indicate that a major change took place in the euro area sovereign debt market between March

5 and March 25. To identify when it occurred, we now consider various split dates t̄ falling
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Figure II.4.4 – Impulse responses of 10-year government bond spreads to new COVID-19 cases
in the euro area
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Note: Impulse responses are computed following equation (II.2). The left panel shows the coefficient βb,h (before
the split date), whereas the right panel shows the coefficient βa,h (after the split date). The gray shaded area
represents the 95% confidence interval.

within this time interval.

Time-varying split dates for the March 5-25 window. Figure II.4.6 depicts estimated

values of the coefficient βb,h at each horizon h based on various split dates t̄ ∈ {3/5, ..., 3/25}.

At horizon h = 0, the coefficient is positive and significantly different from zero up to March

9. After this date, βb,0 is not significantly different from zero when the estimation sample

includes the announcement of the ECB on March 12 and then decreases continuously with t̄.

This pattern is even more striking at horizons between h = 2 and h = 5, with βb,h first sharply

falling around t̄ = 3/9 and remaining positive afterwards but not significantly different from

zero and falling again around t̄ = 3/18, after which the coefficients are very close to zero.

Figure II.4.7 summarizes the three regimes of the response coefficients: highly significant

and explosive (in red, for t̄ = 3/5, ..., 3/9), low and not strongly significant (in blue, for t̄ =

3/10, ..., 3/16), and close to zero and not significant at all (in green, for t̄ = 3/17, ..., 3/25).

When we look at the calendar of (monetary) policy interventions in March 2020 in the euro area,

these coefficient regimes are identified according to break dates that coincide with dates around

the first ECB announcements. Moreover, it seems that the ECB intervention on March 12 (prior

to March 18) strongly contributed to lower COVID-induced sovereign risk in EMU countries

and broke the sovereign risk-pandemic outbreak dynamics within the euro area. To identify

more precisely when the ECB closed spreads, we implement a statistical test for structural

breaks.
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Figure II.4.5 – Impulse responses of 10-year government bond spreads to new COVID-19 cases
in the euro area
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Note: Impulse responses are computed following equation (II.2). The left panel shows the coefficient βb,h (before
the split date), whereas the right panel shows the coefficient βa,h (after the split date). The gray shaded area
represents the 95% confidence interval.

Testing for structural breaks in response coefficients. Table II.4.1 shows the results

of a Chow test (Chow, 1960) to confirm the existence of structural breaks in the estimated

response coefficients. It presents p-values from the Chow test at horizons ranging from h = 0

to h = 5 and for break dates t̄ between March 5 and March 25. We select March 9 as the

structural break date on which the βa,h and βb,h coefficients are no longer statistically equal at

each horizon simultaneously. Indeed, the p-value of the test implemented on the coefficients βa,h
and βb,h is lower than 5% at all horizons on March 9 only, which is not the case for any other

dates. In other words, the results suggest rejecting the null hypothesis that the βb,h and βa,h
coefficients are equivalent at the 5% level of significance after March 9. Figure II.4.8 shows the

path of the response coefficients associated with this reference date, and Table II.C.2 contains

the estimation results.

The Chow test results confirm the existence of a highly significant break in the dynamic

response of sovereign risk to the COVID-19 outbreak around the date of the first ECB in-

tervention on March 12. To link this date with the timeline of political events, it should be

emphasized that an impact response at a 3-day horizon on March 9 measures the effect of new

cases reported on March 9 on spreads 3 days later (i.e., March 12). Moreover, the March 10

video conference between the members of the European Council and heads of European insti-

tutions, including the ECB (see Section II.2), may have been perceived by financial markets as

a positive signal of future ECB decisions scheduled on March 12. Hence, it could explain our
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Figure II.4.6 – Evolution of impulse response coefficients by horizon
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Note: Impulse responses are computed following equation (II.2). Each panel shows the impulse response
coefficients βb,h estimated before split dates t̄ ∈ {3/5, ..., 3/25} at different horizons. The gray shaded area
represents the 95% confidence interval.

key finding of a break date on March 9 through market expectations.24 Overall, our results

indicate that the decision made by the ECB on March 12 was decisive in closing the spread of

the COVID-19-induced financial crisis to euro area sovereign bonds.

Although we believe that ECB interventions–particularly those on March 12–were effective

in controlling the COVID-induced sovereign risk in the euro area, we are fully aware that the

break around March 12 may be the consequence of the generalization of the pandemic and not

of ECB announcements. From this point of view, the strong relationship identified between

COVID-19 cases and sovereign spreads may have been relevant only at the beginning of the

pandemic, allowing financial markets to integrate the risk associated with the occurrence of a

pandemic before losing their sensitivity to the severity of the health crisis. Thus, it is crucial

24This point is discussed in detail in Section II.6.1. Note also that the meeting held on March 12 was
scheduled, which was not the case for the meeting of March 18 (see ECB’s March 2020 calendar).
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Figure II.4.7 – Impulse responses of 10-year government bond spreads to new COVID-19 cases
in the euro area
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Note: Impulse responses are computed following equation (II.2). The impulse response coefficients βb,h are
estimated before the following split dates: t̄ ∈ {3/5, ..., 3/9} in red, t̄ ∈ {3/10, ..., 3/16} in blue, and t̄ ∈
{3/17, ..., 3/25} in green. The shaded area represents the 95% confidence interval for each coefficient.

to check the robustness of our results to the modeling of the pandemic outbreak.

II.5 Robustness

This section is dedicated to alternative specifications of our model to test the robustness of

our results. First, alternative measures of pandemic dynamics are introduced as controls in the

specification to differently capture the evolution of the pandemic. Then, the sample countries

are divided into two subgroups according to their debt-to-GDP level to assess the role of initial

fiscal conditions in COVID-induced sovereign risk in the euro area. Additional robustness tests

are provided in Appendix II.D, where our baseline model is specified with alternative dependent

and independent variables.
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Figure II.4.8 – Impulse responses of 10-year government bond spreads to new COVID-19 cases
in the euro area
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Note: Impulse responses are computed following equation (II.2). The left panel shows the coefficient βb,h (before
the split date), whereas the right panel shows the coefficient βa,h (after the split date). The gray shaded area
represents the 95% confidence interval.

II.5.1 Controlling for the shape of the pandemic

Our baseline regression (II.2) is extended to include additional controls. Using the reference

date, we investigate whether these controls may alter our estimate of βa,h and βb,h for the

reference date t̄. The specification now takes the following form:

∆si,t+h = αi,h + ηt,h +Dt,t̄

[
βa,h∆xi,t + Ψa,h(L)Xi,t + Γa,h(L)si,t−1 + Θa,h(L)zi,t

]
(II.4)

+(1−Dt,t̄)
[
βb,h∆xi,t + Ψb,h(L)Xi,t + Γb,h(L)si,t−1 + Θb,h(L)zi,t

]
+ εi,t+h

where Ψ•,h(L) is a polynomial in the lag operator associated with the control variable Xi,t

defined hereafter. The results are reported in regression tables in Appendix II.E.25 The symbol

• indicates both before (b) and after (a) for estimated coefficients.

Growth rate of total cases. First, we control for the growth rate of the number of total

cases. The growth rate of total cases is measured as the first difference (daily change) of the

logarithm of the number of total cases. Hence, Xi,t = ∆ log xi,t. Moreover, since no lagged

value of controls is included in the estimate, we set Ψ•,h(L) =
N∑
n=0

ψ•,h,nL
n, with N = 0. Table

II.E.1 shows that including the growth rate of the number of total cases in the model does not

alter our baseline results. The ψb,h,0 coefficient is close to zero and not significant at all over
25March 9 is chosen as the break date in all the regression tables to allow for comparison with our baseline

results. Figures depicting the impulse response functions and Chow test tables are available upon request.
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Table II.4.1 – Chow test (p-values)

Horizon
h=0 h=1 h=2 h=3 h=4 h=5

March 5 0.17 0.50 0.74 0.00 0.00 0.00
March 6 0.01 0.79 0.00 0.00 0.00 0.00
March 9 0.03 0.01 0.00 0.00 0.00 0.00
March 10 0.10 0.11 0.42 0.03 0.01 0.01
March 11 0.20 0.50 0.30 0.06 0.03 0.07
March 12 0.37 0.49 0.40 0.21 0.34 0.49
March 13 0.28 0.51 0.68 0.68 0.90 0.87
March 16 0.27 0.56 0.84 0.94 0.78 0.94
March 17 0.61 0.97 0.65 0.79 0.31 0.19
March 18 0.77 0.73 0.51 0.29 0.09 0.09
March 19 0.99 0.90 0.45 0.18 0.08 0.08
March 20 0.50 0.75 0.36 0.15 0.08 0.09
March 23 0.75 0.48 0.26 0.10 0.04 0.06
March 24 0.62 0.28 0.22 0.06 0.10 0.72
March 25 0.22 0.53 0.30 0.29 0.41 0.44

Note: The table displays p-values of Chow statistics from the
test.

the horizon.

Logarithm of total cases. We also control for the logarithm of the number of total cases

to take into account the state of the ongoing pandemic in its effect on sovereign bond spreads.

Hence, Xi,t = log xi,t. As in the previous case, we set Ψ•,h(L) =
N∑
n=0

ψ•,h,nL
n, with N = 0. Table

II.E.2 shows that including the log of total cases by population in the model does not alter our

baseline results, even if the ψb,h,0 coefficient is significantly positive up to horizon h = 4.

Lagged values of new cases. Next, we control for lagged values of new COVID cases, and

we estimate equation (II.4) setting Ψ•,h(L) =
N−1∑
n=0

ψ•,h,n+1L
n, with N = 2. The control variable

is expressed as Xi,t = ∆xi,t−1, where ∆xi,t−1 = xi,t−1 − xi,t−2. The lagged values of new cases

are measured as the first and second lags of new cases per 100,000 people. Table II.E.3 reports

the results. The βb,h coefficient is not as strong and statistically significant as in our baseline

estimates. Note that both coefficients on the first and second lagged values of new cases, ψb,h,1
and ψb,h,2, respectively, are often significant over the horizon. This is especially true for the

ψb,h,2 coefficient. Thus, we capture the persistent effect of new confirmed COVID cases on

government bond spreads.
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First difference of new cases. Finally, we use the “variation of the variation” of new

COVID-19 cases to account for the stretched S-shaped dynamics of the pandemic. In this

case, Xi,t = ∆xi,t −∆xi,t−1, which is positive in the first phase of the pandemic outbreak and

negative at the end. The new cases variable (in its first difference) is now measured as the daily

change in the number of new cases per 100,000 people. Also, we set Ψ•,h(L) =
N∑
n=0

ψ•,h,nL
n,

with N = 0. We then estimate equation (II.4). The results in Table II.E.4 show that including

the first difference of new cases as a control variable does not change our baseline results much.

Note, however, that the ψb,h,0 coefficient is significantly positive on impact and turns out to be

negative over the horizon but is always lower than the estimated βb,h.

II.5.2 Public debt-to-GDP

Delatte and Guillaume (2020) and Augustin et al. (2020), among others, highlight the key role

of initial fiscal conditions in the sovereign debt market reaction to the pandemic outbreak.

To investigate the role of country fiscal conditions, we run the regressions defined by equation

(II.2) for two subsamples of countries. The first subsample refers to high debt-to-GDP countries

and consists of states for which the debt-to-GDP ratio is above the median calculated for the

full sample at the end of 2019: Belgium, Cyprus, Spain, France, Greece, Italy, and Portugal.

The second subsample refers to low debt-to-GDP states and includes countries with a ratio

below the median: Austria, Finland, Ireland, Lithuania, Malta, the Netherlands, Slovenia, and

Slovakia.

Estimation results are shown in Appendix II.F. Figure II.F.1 reports the results for our

benchmark split date, that is, March 9. Like Delatte and Guillaume (2020) and Augustin

et al. (2020), we observe substantial heterogeneity in the response of bond spreads to new

COVID-19 cases, which are positive and significant in the high debt-to-GDP subsample but

not significantly different from zero in the low debt-to-GDP subsample of countries. We then

investigate whether this heterogeneity alters our narrative of the crisis. To do so, we conduct

a Chow test to identify structural breaks between the coefficients βa,h and βb,h in high debt-

to-GDP countries only. The results are reported in Table II.F.1. The test results indicate that

the null hypothesis is now rejected at the 10% level of significance for the period after March 9.

For the full sample, March 9 turns out to be the key reference date after which the sovereign

debt markets no longer reacted to the development of the pandemic.
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II.6 Extensions

This section extends the analysis to three issues. First, we assess whether the ECB stopped

the euro area stock market crash. Second, we assess the existence of spillovers from the Italian

pandemic outbreak to other European sovereign markets. Third, and finally, we investigate

what would have happened without the structural break identified in the sovereign market

reaction to the occurrence of new COVID cases.

II.6.1 Did the ECB stop the euro area stock market crash?

In this section, we extend our empirical strategy to assess the dynamic effect of the COVID-

19 outbreak on stock markets in the euro area. Thus far, we have included equity market

data as a control variable in our regressions for sovereign spreads to measure their reaction

to the occurrence of new COVID-19 cases given all the information already anticipated by the

markets.26 Cox et al. (2020) find evidence that Federal Reserve announcements were decisive in

the reversal of the U.S. equity markets in March and April after the market crash in February.

At that time, only a tiny fraction of the credit announced had been distributed, leading the

authors to conclude that market movements were the outcome of a shift in investors’ risk

aversion.

To investigate the response of the stock market to new cases in the euro area, the model

defined by equation (II.1) now takes the form:

∆zi,t+h = αi,h + ηt,h + βh∆xi,t + Γh(L)zi,t−1 + Θh(L)si,t + εi,t+h (II.5)

with the notation described in Section II.3. The dependent variable is written ∆zi,t+h =

zi,t+h − zi,t−1 and is the variation of the log of the stock index (i.e., the cumulative logarithmic

return) at horizon h. The coefficient of interest βh is the response of the national stock index

to the pandemic outbreak. The model is still specified with country and time fixed effects and

a set of control variables including the first four lags of the dependent variable and the current

and four past values of 10-year sovereign bond spreads. The horizon is still 5 days, H = 5.

In the spirit of equation (II.2), the state-dependent local projection framework is now ex-

26Davis et al. (2021) shows that the stock market foreshadows workplace mobility.

161



Figure II.6.9 – Impulse responses of stock market indices (in logs) to new COVID-19 cases in
the euro area
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Note: Impulse responses represent the βb,h coefficient from equation (II.6). The impulse response coefficients βb,h
are estimated before split dates: t̄ ∈ {3/5, ..., 3/9} in red, t̄ ∈ {3/10, ..., 3/16} in blue, and t̄ ∈ {3/17, ..., 3/25}
in green. The shaded area represents the 95% confidence interval for each coefficient.

pressed as follows:

∆zi,t+h = αi,h + ηt,h +Dt,t̄

[
βa,h∆xi,t + Γa,h(L)zi,t−1 + Θa,h(L)si,t

]
(II.6)

+(1−Dt,t̄)
[
βb,h∆xi,t + Γb,h(L)zi,t−1 + Θb,h(L)si,t

]
+ εi,t+h

where Dt,t̄ is a dummy variable that takes 0 before a given date t̄, that is, when t < t̄, and 1

thereafter, that is, when t ≥ t̄. Here, again, these event dummies are constructed according

to t̄ ∈ {3/5, ..., 3/25}. We employ exactly the same procedure as that developed in Section

II.4: comparing the impulse response coefficients βa,h and βb,h with the split dates set on March

5 (t̄ = 3/5) and March 25 (t̄ = 3/25), focusing on the path of βb,h when the model runs

over various split dates t̄ ∈ {3/5, ..., 3/25}, and testing for structural changes in the response

coefficients over time.

The results are presented in Appendix II.G and summarized in Figure II.6.9, which replicates

Figure II.4.7 for the cumulated stock market return instead of the sovereign spread. For the
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period up to March 9, the stock market response to new COVID-19 cases is explosive, with a

cumulative fall of 11% in the stock market index 5 days after the occurrence of new cases.27

The response is no longer explosive thereafter (blue lines) and is completely muted when the

last dates of the window are considered (green lines). Hence, ECB interventions not only

closed spreads in the euro area but also prevented an even more dramatic stock market crash.

Given the timing of balance sheet expansion, these results also support the existence of the

communication channel linking the ECB intervention to stock markets–as reported in Cox

et al. (2020) for the U.S. economy–since there was no significant balance sheet expansion before

March 18.

II.6.2 Are there spillovers from the Italian pandemic outbreak?

As recalled in Section II.2, Italy was the first country in Europe to be severely affected by

the COVID-19 pandemic. It is interesting to assess the extent to which both sovereign debt

and stock markets in other European countries reacted to the health crisis in Italy, which may

indicate how the markets anticipated the spread of the pandemic and the economic crisis in

the rest of Europe. In this regard, we investigate potential spillovers from the Italian pandemic

outbreak on financial markets across the euro area. For the sake of clarity, it is noteworthy that

the notion of spillovers that is used hereafter refers to the effect of new COVID cases reported

in Italy on sovereign spreads and stock indices in the other countries of our sample. This

definition differs from the one employed in the literature on financial markets’ interdependence

following Diebold and Yilmaz (2009), which measures spillovers from one financial market to

others.28

To examine this issue, we adapt our empirical framework as follows. Instead of using panel

data regressions defined by equation (II.2), we estimate country by country29 the following

27Lucca and Moench (2015) and Cieslak et al. (2019) show that asset prices could be affected by central banks
outside of the public communication events. Interestingly, and as a possible explanation of our main results,
the former paper documents high stock excess returns in anticipation of monetary policy decisions made at
scheduled meetings of the Federal Open Market Committee (FOMC) in the U.S.

28Bostanci and Yilmaz (2020) recently applied this methodology to sovereign debt markets.
29Canova (2020) discusses the reliability of cross-sectional estimates and shows how their results could be

biased due to heterogeneity.
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series of regressions at each horizon h:

∆si,t+h = αi,h +Dt,t̄

[
βa,h,i∆xi,t + βIT

a,h,i∆xIT,t + Γa,h,i(L)si,t−1 + Θa,h,i(L)zi,t
]

(II.7)

+(1−Dt,t̄)
[
βb,h,i∆xi,t + βIT

b,h,i∆xIT,t + Γb,h,i(L)si,t−1 + Θb,h,i(L)zi,t
]

+ εi,t+h

with the notation described in Section II.3. There are a couple of differences with respect to

equation (II.2). First, we consider the occurrence of new COVID cases per 100,000 people as

explanatory variables both in country i (∆xi,t) and in Italy (∆xIT,t) simultaneously, βIT
•,h,i being

the response of sovereign spreads in country i to new COVID cases in Italy. Second, all other

estimated coefficients β•,h,i, Γ•,h,i, and Θ•,h,i are also now specific to country i. Third, there

are no longer time fixed effects, and αi,h denotes an intercept. Fourth, we drop Italy from the

sample of countries.

The aim of this estimation is to compare the distribution of βb,h,i, that is, the sensitivity

of sovereign spreads to domestic COVID cases, with βIT
b,h,i, that is, the sensitivity of sovereign

spreads to COVID cases in Italy, before the reference date t̄. A high value of βIT
b,h,i would suggest

strong spillovers from the pandemic outbreak in Italy to other European countries. Figure

II.6.10 shows the distribution of the estimated coefficients (the median and the interquartile

range) before t̄ using March 9 as the reference date.

Our main results are as follows. First, it can be seen that the median of the coefficients

βb,h,i estimated using the country-by-country regressions defined by equation (II.7) is not too

far from the average estimate βb,h using panel regressions. Interestingly, even if the interquartile

range is quite large, it does not include the zero value, which reinforces the robustness of our

main results described in Section II.4. Second, the median of the coefficients βIT
b,h,i is much

lower than βb,h,i at all horizons h, and the interquartile range of βIT
b,h,i includes the zero value at

horizon h ≤ 2. We thus conclude that national sovereign spreads are much more sensitive to the

COVID cases that occur domestically than to those in Italy. Considering that the health crisis

in Italy preceded those in other European countries, we conclude that the spillover effects of

the Italian crisis were fairly weak and did not lead to significant anticipation in other European

sovereign debt markets.

We replicate this country-by-country analysis for the stock markets by estimating the fol-
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Figure II.6.10 – Impulse responses of 10-year government bond spreads to new COVID-19 cases
in the euro area
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Note: Distribution of βb,h,i and βIT
b,h,i for COVID cases in Italy (IT). Impulse responses are computed following

equation (II.7) before the split date (March 9).

lowing regressions:

∆zi,t+h = αi,h +Dt,t̄

[
βa,h,i∆xi,t + βIT

a,h,i∆xIT,t + Γa,h,i(L)si,t−1 + Θa,h,i(L)zi,t
]

(II.8)

+(1−Dt,t̄)
[
βb,h,i∆xi,t + +βIT

b,h,i∆xIT,t + Γb,h,i(L)si,t−1 + Θb,h,i(L)zi,t
]

+ εi,t+h

where the dependent variable ∆zi,t+h is the variation of the log of the stock index (i.e., the

cumulative logarithmic return) at horizon h and the notation used is that described in Section

II.3 and Section II.6.1. Figure II.6.11 reports the results. They confirm the robustness of our

conclusions based on panel data regressions and show weak spillover effects from new COVID

cases reported in Italy to other European stock markets.

II.6.3 What would have happened without the structural breaks?

This section proposes a counterfactual analysis. We simulate the path of the spread between

March 9 and March 18 given the number of cases reported during this period using the estimated

coefficient βb,h for t̄ = {3/9} depicted in Figure II.4.8.30 We interpret this path as the spread

30The regression results are reported in Appendix II.C.
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Figure II.6.11 – Impulse responses of the stock market (in logs) to new COVID-19 cases in the
euro area
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Note: Distribution of βb,h,i and βIT
b,h,i for COVID cases in Italy (IT). Impulse responses are computed following

equation (II.8) before the split date (March 9).

induced by the COVID crisis that would have occurred without the break in the relationship

between the pandemic outbreak and sovereign risk that we attribute to policy interventions

during this period. New cases ∆xi,t in country i at time t induce a spread variation for the h

period ahead denoted ∆sxi,t+h that is defined as follows:

∆sxi,t+h = βb,h∆xi,t (II.9)

for h = 0, 1, ., H. The COVID-induced spread deviation as of time t is then the sum of the

values of new cases reported H periods before weighted by the coefficient βb,h:

∆sxi,t =
H∑
h=0

βb,h∆xi,t−h (II.10)

By definition, the spread at K periods ahead is equal to the initial value of the spread plus the

cumulative sum of spread variations. Then, the spread induced by the COVID crisis is given

by:

sxi,t+K = si,t−1 +
H∑
h=0

K∑
k=h

βb,h∆xi,t+k−h (II.11)
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where K = 0 on March 9. Also, we assume that new cases reported up to March 9 have no

impact on the predicted spreads series.

Figure II.6.12 shows the evolution of sxi,t+K between March 9 and March 18 for Italy, Spain,

and France. On March 6, the Italian government bond spread, denoted by si,t−1 in equation

(II.11), was at 1.807%, and the number of total confirmed cases per million people rose from

121.978 to 521.089 between March 9 and March 18 in Italy. Given the value of βb,h estimated

before March 9, the spread induced by the COVID crisis in Italy would have surged during this

week to reach 19.5% on March 18. We can then conclude that without any change in the effect

of new COVID cases on sovereign yields in Italy, a sovereign debt crisis may have occurred in

the middle of March. The pattern for Spain and France would have been less dramatic but still

dangerous with spreads of approximately 13% and 4%, respectively. Hence, this counterfactual

analysis shows that the earlier policy intervention of the ECB on March 12 seriously restrained

the spread of pandemic-induced crisis to sovereign debt markets.

II.7 Conclusion

The COVID-19 health crisis has revived fears of a sovereign debt crisis in Europe. The results

presented in this paper indicate that the first confirmed COVID-19 cases were at the origin

of an explosive increase in interest rate spreads on sovereign debt. The results also show that

this explosive dynamic broke around the time of the ECB’s intervention on March 12 and that

otherwise, there could have been a sudden surge in rates in the countries most affected by

COVID-19 (Italy, Spain, and France), reaching spread values close to those observed during

the 2010-2012 sovereign debt crisis in Europe within just a few days.

This conclusion rests on the study of sovereign debt markets during the first few months of

the sanitary crisis and is corroborated by the extension of our analysis to stock markets. The

duration of this health crisis is still uncertain given the state of medical knowledge. However, its

economic consequences for public finances will certainly be longer lasting and raise additional

challenges for public decision-makers in Europe and around the world in managing the public

debt induced by the COVID crisis.
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Figure II.6.12 – Counterfactual sovereign spreads
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Note: Counterfactual sovereign bond spreads (in %) are computed following equation (II.11). The historical
series are presented in Appendix II.B. The red shaded area represents the 95% confidence interval.
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Appendix

COVID-induced sovereign risk in the

euro area: When did the ECB stop the

spread?

II.A Thomson Reuters Eikon - Datastream
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Table II.A.1 – Government bond yields series in the euro area

Country (countrycode) Bond yield Datastream

Austria (AT)
2-year
10-year

AT2YT=RR
AT10YT=RR

Belgium (BE)
2-year
10-year

BE2YT=RR
BE10YT=RR

Cyprus (CY)
2-year
10-year

—
CY10YT=RR

Finland (FI)
2-year
10-year

FI2YT=RR
FI10YT=RR

France (FR)
2-year
10-year

FR2YT=RR
FR10YT=RR

Germany (DE)
2-year
10-year

DE2YT=RR
DE10YT=RR

Greece (GR)
2-year
10-year

—
GR10YT=RR

Ireland (IE)
2-year
10-year

IE2YT=RR
IE10YT=RR

Italy (IT)
2-year
10-year

IT2YT=RR
IT10YT=RR

Latvia (LV)
2-year
10-year

LV2YT=RR
—

Lithuania (LT)
2-year
10-year

—
LT10YT=RR

170



Table II.A.2 – Government bond yields series in the euro area (cont’d)

Country (countrycode) Bond yield Datastream

Malta (MT)
2-year
10-year

—
MT10YT=RR

Netherlands (NL)
2-year
10-year

NL2YT=RR
NL10YT=RR

Portugal (PT)
2-year
10-year

PT2YT=RR
PT10YT=RR

Slovakia (SK)
2-year
10-year

SK2YT=RR
SK10YT=RR

Slovenia (SI)
2-year
10-year

SI2YT=RR
SI10YT=RR

Spain (ES)
2-year
10-year

ES2YT=RR
ES10YT=RR

Note: “—” means not reported. Estonia and Luxembourg are missing
since neither 2-year nor 10-year government bond yields are reported.
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Table II.A.3 – Stock index series in the euro area

Country (countrycode) Stock index Datastream

Austria (AT) ATX .ATX
Belgium (BE) BEL 20 .BFX
Cyprus (CY) Cyprus Main Market .CYMAIN
Finland (FI) OMX Helsinki 25 .OMXH25
France (FR) CAC 40 .FCHI
Germany (DE) DAX .GDAXI
Greece (GR) Athens General Composite .ATG
Ireland (IE) ISEQ .ISEQ
Italy (IT) FTSE MIB .FTMIB
Latvia (LV) Riga Stock Exchange .OMXRGI
Lithuania (LT) Vilnius Stock Exchange .OMXVGI
Malta (MT) Malta Stock Exchange .MSE
Netherlands (NL) AEX .AEX
Portugal (PT) PSI 20 .PSI20
Slovakia (SK) SAX .SAX
Slovenia (SI) SBITOP .SBITOP
Spain (ES) IBEX 35 .IBEX

Note: Main national stock index for each euro area countries in the sample. Estonia
and Luxembourg are missing since neither 2-year nor 10-year government bond yields
are reported.
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II.B Figures: Raw data

Figure II.B.1 – Total number of COVID-19 cases
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Note: Total COVID-19 confirmed cases are reported as the number of cases per million people. Sources:
European Centre for Disease Prevention and Control (ECDC)



Figure II.B.2 – Total number of deaths due to COVID-19
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Figure II.B.3 – Government spreads (2- and 10-year maturity)

0
.2

.4
.6

Jan Mar May

Austria

0
.2

.4
.6

.8

Jan Mar May

Belgium

.5
1

1.
5

2
2.

5

Jan Mar May

Cyprus

0
.2

.4
.6

Jan Mar May

Finland
0

.2
.4

.6
.8

Jan Mar May

France
1.

5
2

2.
5

3
3.

5
4

Jan Mar May

Greece

0
.2

.4
.6

.8
Jan Mar May

Ireland

.5
1

1.
5

2
2.

5
3

Jan Mar May

Italy

.6
.7

.8
.9

1

Jan Mar May

Latvia

.6
.7

.8
.9

1
1.

1

Jan Mar May

Lithuania

.6
.8

1
1.

2

Jan Mar May

Malta

0
.1

.2
.3

.4

Jan Mar May

Netherlands

0
.5

1
1.

5
2

Jan Mar May

Portugal

.4
.6

.8
1

1.
2

1.
4

Jan Mar May

Slovakia

0
.5

1
1.

5

Jan Mar May

Slovenia

0
.5

1
1.

5

Jan Mar May

Spain

Note: 2- and 10-year government spread are computed relatively to the yield on 2- and 10-year German bunds,
respectively. Green line: 2-year government spread. Orange line: 10-year governmend spread.



Figure II.B.4 – Stock market indices
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II.C Baseline results

Figure II.C.1 – Time-fixed effects
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Note: Time-fixed effects ηt,h estimated using equation (II.1). Vertical lines correspond to ECB’s announcement
dates: March 12, 2020 (dashed) and March 18, 2020 (dashed-dot). Shaded area represents the 95% confidence
interval.
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Table II.C.1 – Dependent variable 10-year spread (full sample period)

Day 0 Day 1 Day 2 Day 3 Day 4 Day 5
new cases -0.000 -0.001 -0.001 -0.002∗ -0.001 -0.001

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
R2 0.477 0.516 0.545 0.558 0.562 0.577
Observations 1374 1349 1331 1316 1304 1291

Note: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Clustered standard errors by
country in parentheses. This table reports the coefficient βh introduced in the
regression equation (II.1). The new cases variable is measured as the daily
change in the number of total cases per 100,000 people.

Table II.C.2 – Dependent variable 10-year spread (before and after March 9)

Day 0 Day 1 Day 2 Day 3 Day 4 Day 5
new cases – before 0.029∗∗ 0.065∗∗∗ 0.124∗∗∗ 0.154∗∗∗ 0.225∗∗∗ 0.348∗∗∗

(0.01) (0.02) (0.03) (0.03) (0.03) (0.04)
new cases – after 0.000 -0.000 -0.001 -0.001 -0.000 0.000

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
R2 0.498 0.540 0.574 0.593 0.606 0.633
Observations 1374 1349 1331 1316 1304 1291

Note: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Clustered standard errors by country in parentheses.
This table reports the βb,h and βa,h coefficients introduced in the regression equation (II.2) for
t̄ = {3/9}. The new cases variable is measured as the daily change in the number of total cases
per 100,000 people.
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II.D Robustness: Alternative variables

This section replicates our baseline estimation for six alternative dependent and independent

variables. For each of them, it provides the equivalent of Figure II.4.7 for the impulse response

functions and of Table II.4.1 for the Chow test outcome.

Two-year government bond spreads. First, we run the model using 2-year government

bond spreads instead of the 10-year maturity for the dependent variable ∆si,t+h in equation

(II.2). Given the availability of the data presented in Appendices II.A and II.B, the list of

euro area countries in our sample is restricted to Austria, Belgium, Finland, France, Ireland,

Italy, Latvia, Netherlands, Portugal, Slovakia, Slovenia, and Spain. Moreover, some 2-year

government bond yield data are missing for Ireland and Slovakia at the beginning of the sample

period. However, those changes in the composition of our sample do not invalidate our main

results: the response coefficient of sovereign spreads to the pandemic outbreak is explosive

for the period before March 9, small between March 10 and March 16, and almost muted

thereafter, as shown in Figure II.D.1. According to the Chow test results in Table II.D.1, the

regime switches one day later (on March 10) than in our benchmark results.
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Figure II.D.1 – Impulse responses of 2-year government bond spreads to new COVID-19 cases
in the euro area
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Note: Impulse responses are computed following equation (II.2). Impulse response coefficients βb,h are estimated
before splitting dates: t̄ ∈ {3/5, ..., 3/9} in red, t̄ ∈ {3/10, ..., 3/16} in blue, and t̄ ∈ {3/17, ..., 3/25} in green.
Shaded area represents the 95% confidence interval for each coefficient.

Table II.D.1 – Chow test (p-values, using 2-year maturity)

Horizon
h=0 h=1 h=2 h=3 h=4 h=5

March 5 0.02 0.26 0.10 0.00 0.00 0.00
March 6 0.01 0.08 0.00 0.00 0.00 0.00
March 9 0.01 0.00 0.00 0.00 0.00 0.00
March 10 0.00 0.00 0.01 0.01 0.01 0.00
March 11 0.00 0.04 0.01 0.01 0.01 0.00
March 12 0.02 0.11 0.06 0.03 0.02 0.00
March 13 0.03 0.12 0.03 0.02 0.01 0.01
March 16 0.10 0.09 0.03 0.02 0.02 0.01
March 17 0.07 0.05 0.02 0.03 0.01 0.02
March 18 0.07 0.04 0.03 0.05 0.45 0.24
March 19 0.07 0.11 0.07 0.07 0.37 0.27
March 20 0.18 0.18 0.10 0.12 0.54 0.56
March 23 0.21 0.18 0.14 0.17 0.78 0.51
March 24 0.19 0.28 0.19 0.49 0.64 0.51
March 25 0.28 0.36 0.30 0.66 0.70 0.53

Note: p-values of Chow statistics from the test.
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New deaths. Next, we replace the number of new confirmed cases with the number of new

deaths due to COVID-19 as a relevant measure of the pandemic severity to be in line with

Eichenbaum et al. (2020) for the independent variable ∆xi,t in equation (II.2). The variable is

now constructed as the total number of new deaths per million inhabitants. Figure II.D.2 shows

that for the period before March 9, the response coefficient of sovereign spreads to new deaths

due to COVID-19 is steeper than that considering new cases in the baseline regression. The

value of βb,h with new deaths up to a 5-day horizon reaches 0.916. This is almost three times

the value of the response coefficient to new cases shown previously. After March 9, the βa,h
response coefficient is quite similar to that estimated in the baseline specification. However, it

is significantly different from zero at horizon 3 in the case where we consider new deaths instead

of new cases in the estimates. The results of the Chow test in Table II.D.2 suggest significant

differences in the response coefficients up to March 11.

Figure II.D.2 – Impulse responses of 10-year government bond spreads to new deaths due to
COVID-19 in the euro area
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Note: Impulse responses are computed following equation (II.2). Impulse response coefficients βb,h are estimated
before splitting dates: t̄ ∈ {3/5, ..., 3/9} in red, t̄ ∈ {3/10, ..., 3/16} in blue, and t̄ ∈ {3/17, ..., 3/25} in green.
Shaded area represents the 95% confidence interval for each coefficient.
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Table II.D.2 – Chow test (p-values, using new deaths)

Horizon
h=0 h=1 h=2 h=3 h=4 h=5

March 5 0.61 0.42 0.08 0.00 0.00 0.00
March 6 0.01 0.03 0.00 0.00 0.00 0.00
March 9 0.01 0.00 0.00 0.00 0.00 0.00
March 10 0.00 0.00 0.01 0.00 0.00 0.00
March 11 0.01 0.03 0.01 0.00 0.00 0.00
March 12 0.13 0.00 0.00 0.00 0.05 0.50
March 13 0.00 0.00 0.01 0.08 0.77 0.92
March 16 0.00 0.00 0.02 0.15 0.83 0.84
March 17 0.03 0.16 0.66 0.39 0.15 0.07
March 18 0.06 0.51 0.90 0.22 0.01 0.01
March 19 0.22 0.11 0.76 0.09 0.00 0.00
March 20 0.00 0.12 0.44 0.02 0.00 0.00
March 23 0.38 0.88 0.16 0.00 0.00 0.00
March 24 0.83 0.09 0.04 0.00 0.04 0.44
March 25 0.52 0.06 0.01 0.00 0.23 0.72

Note: p-values of Chow statistics from the test.
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Rolling average of new cases. We also consider the 3-day rolling average31 of new COVID-

19 cases as the independent variable ∆xi,t in equation (II.2). When the COVID-19 pandemic

is measured as the rolling average of new cases, the response coefficient βb,h rises from 0.051

on impact to 0.248 at h = 5. Figure II.D.3 plots the βb,h response coefficients associated with

the rolling average of new confirmed cases at each split date. Note that the regime of explosive

coefficients seems to include March 10 rather than March 9 as a break date in that specification.

According to the Chow test results in Table II.D.3, March 10 is the key date for the break in

response coefficients. The p-values are considerably higher than in our benchmark but still

below 10 percent, which can be explained by the smoothing effects of the rolling average.

Figure II.D.3 – Impulse responses of 10-year government bond spreads to new COVID-19 cases
(3-day rolling average) in the euro area
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Note: Impulse responses are computed following equation (II.2). Impulse response coefficients βb,h are estimated
before splitting dates: t̄ ∈ {3/5, ..., 3/10} in red, t̄ ∈ {3/11, ..., 3/16} in blue, and t̄ ∈ {3/17, ..., 3/25} in green.
Shaded area represents the 95% confidence interval for each coefficient.

31The 3-day rolling average is computed as a right-aligned moving average in the form 1
N

∑N−1
n=0 xi,t−n, with

N = 3.
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Table II.D.3 – Chow test (p-values, using new cases (3-day rolling average)

Horizon
h=0 h=1 h=2 h=3 h=4 h=5

March 5 0.97 0.58 0.11 0.00 0.00 0.00
March 6 0.12 0.13 0.00 0.00 0.00 0.00
March 9 0.11 0.00 0.00 0.00 0.00 0.00
March 10 0.08 0.04 0.09 0.01 0.00 0.00
March 11 0.56 0.95 0.16 0.06 0.02 0.17
March 12 0.58 0.30 0.14 0.14 0.37 0.98
March 13 0.50 0.26 0.27 0.54 1.00 0.77
March 16 0.50 0.48 0.64 0.92 0.86 0.67
March 17 0.73 0.91 0.86 0.92 0.54 0.28
March 18 0.98 0.71 0.64 0.31 0.15 0.12
March 19 0.45 0.56 0.23 0.08 0.06 0.06
March 20 0.70 0.50 0.17 0.08 0.07 0.10
March 23 0.41 0.30 0.16 0.07 0.04 0.07
March 24 0.60 0.26 0.18 0.05 0.07 0.34
March 25 0.98 0.59 0.33 0.25 0.75 0.37

Note: p-values of Chow statistics from the test.
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New cases in absolute terms. We use the number of new cases in absolute terms as a

proxy for pandemic severity. Figure II.D.4 shows that the evolution of the βb,h coefficient over

each indicated split date is very close to that observed in our baseline results, and March 9 is

the significant break date according to the Chow test results (see Table II.D.4).

Figure II.D.4 – Impulse responses of 10-year government bond spreads to new COVID-19 cases
(in absolute terms) in the euro area
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Note: Impulse responses are computed following equation (II.2). Impulse response coefficients βb,h are estimated
before splitting dates: t̄ ∈ {3/5, ..., 3/9} in red, t̄ ∈ {3/10, ..., 3/16} in blue, and t̄ ∈ {3/17, ..., 3/25} in green.
Shaded area represents the 95% confidence interval for each coefficient.
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Table II.D.4 – Chow test (p-values, using new cases in absolute terms)

Horizon
h=0 h=1 h=2 h=3 h=4 h=5

March 5 0.16 0.57 0.71 0.00 0.00 0.00
March 6 0.01 0.69 0.00 0.00 0.00 0.00
March 9 0.01 0.00 0.00 0.00 0.00 0.00
March 10 0.02 0.01 0.13 0.00 0.00 0.00
March 11 0.09 0.22 0.08 0.00 0.00 0.02
March 12 0.23 0.09 0.07 0.01 0.05 0.24
March 13 0.06 0.08 0.17 0.26 0.79 0.66
March 16 0.11 0.10 0.28 0.47 0.94 0.90
March 17 0.21 0.64 0.93 0.73 0.26 0.11
March 18 0.29 0.99 0.69 0.40 0.04 0.04
March 19 0.45 0.59 0.64 0.23 0.04 0.04
March 20 0.05 0.71 0.44 0.14 0.03 0.03
March 23 0.74 0.59 0.26 0.06 0.01 0.02
March 24 0.83 0.15 0.11 0.01 0.02 0.08
March 25 0.89 0.17 0.07 0.02 0.04 0.18

Note: p-values of Chow statistics from the test.
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Lagged new cases. We consider here the lags of the number of cases. Our reference variable

used in the baseline specification is measured by the number of COVID-19 cases published by

public health offices at time t. However, it is possible that these data are only available at the

end of the day, after the markets close, or even on the day after. In that case, it is the values

recorded on the day before that matters for the financial markets. To take into account these

delays, the first and second lagged values of new cases are used as independent variables ∆xi,t−1

or ∆xi,t−2 in equation (II.2). The results are reported only for the second lag of new cases in

Figure II.D.5–the βb,h coefficient is now the response of sovereign spreads to the second lag of

new COVID cases–and confirms our narrative of the crisis. In this context, we assume that at

time t, financial markets have information on COVID cases published the day before (t − 1)

containing the number of new COVID cases reported the day before that (t−2). The structural

break occurred later than March 9, our reference break date, which is consistent with the two

lags introduced in the independent variable and in line with the Chow test results reported in

Table II.D.5.

Figure II.D.5 – Impulse responses of 10-year government bond spreads to the second lagged
value of new COVID-19 cases in the euro area
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Note: Impulse responses are computed following equation (II.2). Impulse response coefficients βb,h are estimated
before splitting dates: t̄ ∈ {3/5, ..., 3/11} in red, t̄ ∈ {3/12, ..., 3/18} in blue, and t̄ ∈ {3/19, ..., 3/25} in green.
Shaded area represents the 95% confidence interval for each coefficient.
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Table II.D.5 – Chow test (p-values, second lagged value of new cases)

Horizon
h=0 h=1 h=2 h=3 h=4 h=5

March 5 0.01 0.00 0.00 0.00 0.00 0.00
March 6 0.00 0.00 0.00 0.00 0.00 0.00
March 9 0.00 0.00 0.00 0.00 0.00 0.00
March 10 0.00 0.00 0.00 0.00 0.00 0.00
March 11 0.17 0.05 0.00 0.00 0.00 0.00
March 12 0.01 0.01 0.03 0.03 0.55 0.69
March 13 0.54 0.01 0.07 0.21 1.00 0.52
March 16 0.55 0.18 0.49 0.72 0.87 0.49
March 17 0.73 0.48 0.87 0.82 0.72 0.31
March 18 0.98 0.84 0.99 0.82 0.34 0.18
March 19 0.11 0.34 0.04 0.07 0.07 0.05
March 20 0.46 0.22 0.03 0.06 0.07 0.07
March 23 0.13 0.06 0.06 0.05 0.10 0.07
March 24 0.12 0.12 0.08 0.03 0.13 0.17
March 25 0.19 0.41 0.16 0.11 0.53 0.75

Note: p-values of Chow statistics from the test.
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Growth rate of total cases. In our baseline estimation, we consider ∆xi,t as the daily

change in the number of total cases per million people between t and t− 1, denoted xi,t. Here,

we take the daily change in the logarithm of the number of cases per million people as an

alternative variable, that is, ∆ log xi,t. This specification takes into account the shape of the

pandemic by considering the relative instead of absolute change in xi,t. The results reported in

Figure II.D.6 and Table II.D.6 indicate that when we consider the log difference, the occurrence

of COVID-19 cases has no significant effects on the sovereign spreads, regardless of the break

date considered. Our model indicates that ∆xi,t has a strong and significant effect on sovereign

spreads, while ∆ log xi,t has no effect. Considering that the growth rate is the typical measure

used for economic variables with a trend (such as output or prices), it may not be relevant for

measuring the outbreak of a pandemic, which has a stretched S-shaped (or sigmoid) growth

curve. Indeed, at the start of the pandemic, the very small number of total cases made the

growth rate extremely high with each new confirmed case. Then, the growth rate sharply

decreased with the development of the pandemic. This may explain why sovereign markets did

not react to the growth rate of COVID-19 cases. Moreover, sovereign markets (and financial

markets in general) are well known to be highly sensitive to news published in the press and

social media. As mentioned before, the very popular figures published and massively distributed

by the Financial Times (among others) show the path of the number of total or new cases in

absolute terms but never in terms of the growth rate (as a percentage of the number of total

cases already reported). Since we focus on the first few weeks of the pandemic in Europe, we

keep the variation in the total number of cases as our benchmark. Moreover, we consider this

series in extra specifications to test whether the impact of new cases on sovereign spreads is

robust to the inclusion of various controls for the shape of the pandemic.
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Figure II.D.6 – Impulse responses of 10-year government bond spreads to the growth rate of
total COVID-19 cases in the euro area
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Note: Impulse responses are computed following equation (II.2). Impulse response coefficients βb,h are estimated
before splitting dates: t̄ ∈ {3/5, ..., 3/9} in red, t̄ ∈ {3/10, ..., 3/16} in blue, and t̄ ∈ {3/17, ..., 3/25} in green.
Shaded area represents the 95% confidence interval for each coefficient.

Table II.D.6 – Chow test (p-values, new cases growth rate)

Horizon
h=0 h=1 h=2 h=3 h=4 h=5

March 5 0.33 0.15 0.12 0.09 0.12 0.12
March 6 0.33 0.13 0.12 0.09 0.08 0.10
March 9 0.48 0.32 0.37 0.14 0.42 0.69
March 10 0.93 0.48 0.33 0.25 0.60 0.88
March 11 0.96 0.38 0.35 0.27 0.70 0.62
March 12 0.89 0.44 0.40 0.33 0.99 0.18
March 13 0.89 0.61 0.78 0.74 0.12 0.10
March 16 0.76 0.95 0.45 0.48 0.19 0.28
March 17 0.68 0.56 0.89 0.54 0.26 0.27
March 18 0.80 0.86 0.84 0.44 0.23 0.28
March 19 0.59 0.73 0.89 0.48 0.23 0.35
March 20 0.57 0.37 0.36 0.90 0.20 0.23
March 23 0.72 0.25 0.29 0.87 0.40 0.54
March 24 0.13 0.13 0.37 0.43 0.99 0.84
March 25 0.16 0.17 0.54 0.53 0.90 0.76

Note: p-values of Chow statistics from the test.
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II.E Robustness: Controlling for the shape of the pan-

demic
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Table II.E.1 – Dependent variable 10-year spread controlling for the growth rate of total cases
(before and after March 9)

Day 0 Day 1 Day 2 Day 3 Day 4 Day 5
new cases – before 0.057∗∗∗ 0.101∗∗∗ 0.164∗∗∗ 0.236∗∗∗ 0.268∗∗∗ 0.407∗∗∗

(0.02) (0.03) (0.04) (0.05) (0.06) (0.08)
new cases – after 0.000 -0.000 -0.001 -0.001 0.000 0.001

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
growth of total cases – before 0.006 0.002 -0.011 -0.004 -0.014 -0.020

(0.01) (0.01) (0.01) (0.01) (0.02) (0.02)
growth of total cases – after -0.042 -0.070 -0.089 -0.176 -0.115 -0.080

(0.06) (0.07) (0.08) (0.11) (0.11) (0.08)
R2 0.508 0.547 0.589 0.617 0.645 0.678
Observations 893 870 853 840 828 815

Note: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Clustered standard errors by country in parentheses. This table
reports the βb,h and βa,h coefficients introduced in the regression equation (II.4) for t̄ = {3/9}. The new cases
variable is measured as the daily change in the number of total cases per 100,000 people. The growth rate of
total cases is measured as the first-difference (daily change) of the logarithm of the number of total cases.

Table II.E.2 – Dependent variable 10-year spread controlling for the log of total cases (before
and after March 9)

Day 0 Day 1 Day 2 Day 3 Day 4 Day 5
new cases – before 0.019 0.023 0.092∗∗ 0.136∗∗∗ 0.180∗∗∗ 0.355∗∗∗

(0.01) (0.02) (0.04) (0.05) (0.05) (0.07)
new cases – after -0.000 -0.001 -0.001 -0.002∗∗ -0.001 -0.001

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
total cases (log) – before 0.011∗∗∗ 0.020∗∗ 0.021∗∗ 0.026∗∗ 0.027∗ 0.016

(0.00) (0.01) (0.01) (0.01) (0.01) (0.01)
total cases (log) – after 0.005 0.011 0.019 0.029 0.026 0.027

(0.01) (0.02) (0.03) (0.03) (0.03) (0.04)
R2 0.511 0.555 0.598 0.621 0.643 0.677
Observations 917 894 877 863 851 838

Note: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Clustered standard errors by country in parentheses. This
table reports the βb,h and βa,h coefficients introduced in the regression equation (II.4) for t̄ = {3/9}.
The new cases variable is measured as the daily change in the number of total cases per 100,000 people.
The log of total cases is measured as the logarithm of the number of total cases per 100,000 people.
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Table II.E.3 – Dependent variable 10-year spread controlling for lagged values of new cases
(before and after March 9)

Day 0 Day 1 Day 2 Day 3 Day 4 Day 5
new cases – before 0.057∗∗∗ -0.014 0.019 0.022 -0.018 0.225∗∗∗

(0.01) (0.02) (0.02) (0.03) (0.02) (0.04)
new cases – after 0.000 0.000 -0.000 -0.001 0.000 0.001

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
L1.new cases – before -0.097∗∗∗ -0.015 0.046∗∗ -0.042∗ 0.217∗∗∗ 0.139∗∗∗

(0.01) (0.02) (0.02) (0.02) (0.02) (0.02)
L2.new cases – before 0.059∗∗∗ 0.172∗∗∗ 0.153∗∗∗ 0.308∗∗∗ 0.222∗∗∗ 0.083∗∗

(0.01) (0.02) (0.03) (0.03) (0.03) (0.03)
L1.new cases – after -0.000 -0.000 -0.001 0.000 0.001 -0.000

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
L2.new cases – after -0.001 -0.001 -0.000 0.000 -0.001 -0.001

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
R2 0.497 0.540 0.577 0.607 0.627 0.644
Observations 1354 1329 1312 1298 1285 1273

Note: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Clustered standard errors by country in parentheses. This
table reports the βb,h and βa,h coefficients introduced in the regression equation (II.4) for t̄ = {3/9}.
The new cases variable is measured as the daily change in the number of total cases per 100,000
people. The lagged values of new cases are measured as the first and second lags of new cases per
100,000 people.
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Table II.E.4 – Dependent variable 10-year spread controlling for new cases in first-difference
(before and after March 9)

Day 0 Day 1 Day 2 Day 3 Day 4 Day 5
new cases – before -0.001 0.086∗∗∗ 0.166∗∗∗ 0.184∗∗∗ 0.352∗∗∗ 0.417∗∗∗

(0.01) (0.02) (0.03) (0.03) (0.04) (0.04)
new cases – after -0.000 -0.001 -0.001 -0.001 0.000 -0.000

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
D.new cases – before 0.073∗∗∗ -0.053∗∗∗ -0.104∗∗∗ -0.074∗∗ -0.311∗∗∗ -0.171∗∗∗

(0.01) (0.02) (0.02) (0.02) (0.03) (0.02)
D.new cases – after 0.000 0.001 0.001 -0.000 -0.000 0.001

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
R2 0.499 0.541 0.576 0.593 0.612 0.634
Observations 1374 1349 1331 1316 1304 1291

Note: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Clustered standard errors by country in parentheses. This
table reports the βb,h and βa,h coefficients introduced in the regression equation (II.4) for t̄ = {3/10}.
The new cases variable is measured as the daily change in the number of total cases per 100,000 people.
The new cases variable (in first-difference) is measured as the daily change in the number of new cases
per 100,000 people.
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II.F Robustness: Public debt-to-GDP

Figure II.F.1 – Impulse responses of 10-year government bond spreads to new COVID-19 cases
in the euro area
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Note: Impulse responses are computed following equation (II.2). Left panel shows coefficient βb,h for countries
with a high debt/GDP ratio, whereas right panel shows coefficient βb,h for countries with a low debt/GDP
ratio. Both panels show response coefficients estimated before the splitting date. Grey shaded area represents
the 95% confidence interval.
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Table II.F.1 – Chow test (p-values) for high debt/GDP subsample of countries

Horizon
h=0 h=1 h=2 h=3 h=4 h=5

March 5 0.17 0.55 0.89 0.11 0.05 0.02
March 6 0.08 0.83 0.11 0.06 0.05 0.01
March 9 0.06 0.03 0.04 0.08 0.03 0.02
March 10 0.13 0.38 0.89 0.22 0.18 0.19
March 11 0.46 0.87 0.96 0.39 0.39 0.56
March 12 0.68 0.81 0.95 0.54 0.73 1.00
March 13 0.51 0.84 0.78 0.86 0.55 0.66
March 16 0.46 0.74 0.99 0.88 0.58 0.63
March 17 0.88 0.63 0.39 0.63 0.31 0.14
March 18 0.93 0.40 0.28 0.33 0.13 0.09
March 19 0.57 0.46 0.26 0.18 0.13 0.11
March 20 0.50 0.42 0.19 0.20 0.17 0.17
March 23 0.54 0.27 0.18 0.18 0.21 0.20
March 24 0.98 0.28 0.38 0.72 0.94 0.94
March 25 0.80 0.48 0.79 0.93 0.84 0.69

Note: p-values of Chow statistics from the test.
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II.G COVID-induced stock market crash in the euro

area

Figure II.G.1 – Impulse responses of stock market indices (in log) to new COVID-19 cases in
the euro area
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Note: Impulse responses represent βb,h and βa,h coefficients from equation (II.6). Left panel shows coefficient
βb,h (before the splitting date), whereas right panel shows coefficient βa,h (after the splitting date). Grey shaded
area represents the 95% confidence interval.
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Figure II.G.2 – Impulse responses of stock market indices (in log) to new COVID-19 cases in
the euro area
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Note: Impulse responses represent βb,h and βa,h coefficients from equation (II.6). Left panel shows coefficient
βb,h (before the splitting date), whereas right panel shows coefficient βa,h (after the splitting date). Grey shaded
area represents the 95% confidence interval.

Figure II.G.3 – Evolution of impulse response coefficients by horizon
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Note: Impulse responses represent βb,h coefficients from equation (II.6). Each panel shows impulse response
coefficients βb,h estimated before splitting dates t̄ ∈ {3/5, ..., 3/25} at different horizon. Grey shaded area
represents the 95% confidence interval.
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Table II.G.1 – Dependent variable log of stock market indices (before and after March 9)

Day 0 Day 1 Day 2 Day 3 Day 4 Day 5
new cases – before -0.009∗∗ -0.031∗∗∗ -0.047∗∗∗ -0.057∗∗∗ -0.089∗∗∗ -0.107∗∗∗

(0.00) (0.01) (0.01) (0.02) (0.03) (0.04)
new cases – after -0.000 -0.000 -0.000 0.000 -0.000 -0.000

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
R2 0.719 0.732 0.764 0.794 0.816 0.831
Observations 1374 1350 1334 1320 1308 1294

Note: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Clustered standard errors by country in parentheses. This
table reports the βb,h and βa,h coefficients introduced in the regression equation (II.6) for t < {3/9}.
The new cases variable is measured as the daily change in the number of total cases per 100,000
people.
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Chapter III

The Risk of Inflation Dispersion in the

Euro Area

Abstract. We document the time-varying divergence of predictive inflation distributions across

euro area countries and explore their macroeconomic origins. While the dispersion of inflation

rates mainly concerns upside inflation risks during the first decade of the euro area, it shifted

to downside inflation risks during the second decade. The dispersion of downside and upside

risks to inflation reaches record levels in the wake of the COVID crisis. The main determinant

of the dispersion at the bottom of the distribution is the development of financial stress. In

the wake of the COVID crisis, value chain pressures drove the dispersion of upside inflation

risks. Overall, the dispersion of inflation rates is largely caused by heterogeneous Phillips curves

between countries rather than by different national economic contexts.

III.1 Introduction

Our objective in this paper is to document the time-varying divergence in the predictive inflation

distributions across euro area countries and explore their macroeconomic origins. Fluctuations

in the dispersion of the conditional mean of inflation between countries over time are a well-

known phenomenon. Average inflation differentials between countries show a clear cyclical

pattern, rising sharply in economic downturns and falling in booms, as shown in Figure III.1.1.

The literature has been widely devoted to studying the key drivers behind these cross-country
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differences. By contrast, the study of the divergences in the tails of the inflation distribution

remains completely unexplored. Yet, the dispersion of inflation in the euro area (both headline

and core) appears to be more pronounced in the tails of the distribution than in the middle,

as shown in Table III.1.1. The (unconditional) standard deviation across countries of inflation

(both headline and core) tends to be two to three times higher in the 10th and 90th quantiles

than that in the median. In this paper, we aim at providing a more complete picture of inflation

differentials across euro area countries by delivering measures of inflation dispersion over time

associated to the different quantiles of the predictive inflation distributions, and at identifying

their main drivers.

Our approach builds on the concept of inflation-at-risk developed by Andrade et al. (2014),

Banerjee et al. (2020), and López-Salido and Loria (2022), which is itself highly related to

that of Growth-at-Risk developed by Adrian et al. (2019).1 Inflation-at-risk approach aims at

forecasting shifts in the tails of inflation distribution. López-Salido and Loria (2022) provide

an in-depth analysis of inflation-at-risk in the euro area and the U.S. grounded on a quantile

Phillips curve. Here, we are not interested in the inflation risk for one country per see, but in

the dispersion of these inflation risks between euro area countries.

The literature on inflation-at-risk is relatively silent when it comes to the analysis of this risk

of inflation dispersion. However, as for inflation itself, it is critical for the policy maker to know

what type of tail risks (upside or downside) are causing the dispersion of inflation especially

in a monetary union. The conduct of a single monetary policy, with a common inflation

target, is indeed more difficult if countries have diverging inflation rates. Countries with high

inflation differentials will suffer from inappropriate monetary policy decisions with respect to

their specific economic context. Inflation dispersion at the bottom of the inflation distribution

exposes diverging economies to the risk of costly deflation due to nominal downward rigidity

while at the top of the distribution, diverging economies are exposed to the risk of inflationary

spirals.

To elaborate our measure of risk of inflation dispersion, we proceed as follows. Firstly, we

estimate a quantile Phillips curve based on López-Salido and Loria (2022) for each euro area

country and not for the euro area as a whole as done by these authors. We can then compute the

predictive inflation distributions by country. Conditional quantiles vary over time according to

the evolution of key economic and financial variables included in the Phillips curve (namely, past

1See also Plagborg-Møller et al. (2020) and Figueres and Jarociński (2020) for an application to the euro
area.
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Figure III.1.1 – Cross-sectional standard deviation of inflation rates in the euro area

2000 2005 2010 2015 2020
0

0.5

1

1.5

2

2.5

3

3.5

Note: π̄it,t−12 denotes the average over the last 12 months of the monthly inflation rate (core and headline
inflation rates, annualized) for the country i of the euro area (12 countries, fixed composition, Austria, Belgium,
Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, Netherlands, Portugal, Spain). The sample is
January 1999 to January 2023. The figure shows the cross-country unweighted standard deviation of annual
inflation rates in the euro area. See Section III.A in the online appendix for data description.

and expected inflation rates, unemployment gap, financial stress, oil inflation, and supply chain

pressures). Secondly, for each date, we compute the standard deviation across these national

quantiles of inflation. By looking at the different quantiles of the inflation distribution, we can

evaluate the cross-country dispersion of the inflation-at-risk at the bottom of the distribution

(i.e. the risk of low inflation or deflation) and at the top of the distribution (i.e. the risk

of excessive inflation). Third, we investigate the drivers of inflation dispersion by considering

various scenarios regarding the national economic series and the structure of the Phillips curve.
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Table III.1.1 – Moments of inflation by country

Core HICP HICP
Mean Median 10th 90th Mean Median 10th 90th

Germany 1.25 1.12 0.42 2.24 1.78 1.48 0.31 3.58
France 1.19 1.15 0.53 1.90 1.70 1.52 0.67 2.94
Italy 1.76 1.78 0.75 2.76 1.77 1.69 0.22 3.43
Spain 1.71 1.68 0.27 3.20 2.28 2.06 -0.12 4.98
Netherlands 1.72 1.43 0.60 3.14 2.23 1.78 0.43 4.50
Finland 1.44 1.30 0.48 2.57 1.81 1.50 0.28 3.68
Ireland 1.52 1.50 -0.88 3.98 1.88 1.66 -0.87 4.92
Austria 1.85 1.70 1.06 2.82 2.09 1.81 0.70 3.79
Portugal 1.66 1.47 -0.03 3.61 2.03 1.75 -0.13 4.55
Belgium 1.75 1.63 1.16 2.49 2.13 2.00 0.62 3.82
Luxembourg 1.80 1.70 1.13 2.58 2.55 2.33 0.49 4.88
Greece 1.44 1.48 -1.23 4.08 2.10 1.86 -0.87 5.42
Mean 1.59 1.50 0.36 2.95 2.03 1.79 0.14 4.21
Std. Dev. 0.22 0.22 0.75 0.68 0.25 0.25 0.55 0.77

Note: Mean, median, 10th and 90th quantiles for each country of the euro area (12 coun-
tries, fixed composition: Austria, Belgium, Finland, France, Germany, Greece, Ireland,
Italy, Luxembourg, Netherlands, Portugal, Spain). The sample is January 1999 to Jan-
uary 2023. The last two rows are the unweighted means and the standard deviations of
moments across countries. See Section III.A in the online appendix for data description.

We apply this framework to a euro area made from its first 12 member countries (Aus-

tria, Belgium, Finland, France, Germany, Greece2, Ireland, Italy, Luxembourg, Netherlands,

Portugal, Spain). We restrict ourselves to this euro area with fixed composition to avoid the

dispersion of inflation rates that would result from changes in the composition of the euro

area due to the more recent entry of countries. The analysis is done for the period starting in

January 1999, at the creation of the euro, to January 2023. Our main results are as follows.

1. There has been a shift in the nature of inflation dispersion in the euro area. While the

dispersion of inflation rates mainly concerns the top of the distribution during the first

decade of the euro area, it shifted to the bottom of the distribution during the second

decade of the euro area.

2. The dispersion of inflation-at-risk reaches record levels in the wake of the COVID crisis,

a period marked by international tensions on energy prices and supply chains.

3. The main determinant of this dispersion at the bottom of the distribution was the evolu-

tion of financial stress associated with the financial and sovereign debt crisis.
2We include Greece in our sample even though it officially adopted the euro in 2001, two years after its

creation.
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4. In the wake of the COVID crisis, value chain pressures drove the dispersion of inflation

at the top of the distribution.

5. Overall, the dispersion of inflation rates is largely caused by heterogeneous Phillips curves

between countries rather than by different national economic contexts.

Relation to other studies. Our paper contributes to the literature on inflation dynamics

in the euro area context. We contribute to the literature on inflation dispersion, which has been

a long-standing issue in the European Monetary Union. Inflation dispersion was an important

issue in defining the ECB’s strategy at its inception, see Issing et al. (2003), as well as in its

recent strategy review in 2021 as discussed in depth by Consolo et al. (2021) and Reichlin et al.

(2021). Recent papers show the renewed interest in inflation differentials in the euro area.

Among them, Checherita-Westphal et al. (2023) empirically study the role of fiscal policy on

inflation differentials in the EMU. It is also worth mentioning that inflation differentials per see

may not be detrimental to the monetary union if they reflect the process of nominal convergence

and economic development catch up. That being said, as highlighted by the ECB (2005),

it is necessary to assess the underlying causes of inflation differentials observed at the early

stage of the euro area to formulate the most appropriate monetary policy response.3 Inflation

differentials in the euro area has also been discussed in the academic literature. Angeloni and

Ehrmann (2007) investigate the sources of euro area inflation differentials from 1998 to 2003. As

a result, they identify that demand shocks have been the main source of inflation differentials

in the early years of the EMU, followed by cost-push shocks and exchange rate shocks. Beck

et al. (2009) decompose regional inflation rates into a common area-wide, a country-specific

and an idiosyncratic regional component. They warn of the potential high welfare costs that

may represents inflation differentials fueled by national economic distortions. Estrada et al.

(2013) explore the role of EMU in inflation convergence/divergence among euro area countries.

Despite persistent inflation differentials in the euro area, they do find any critical role for the

EMU in inflation convergence in the euro area. Haan (2010) offers a survey of this abundant

literature subsequent to the creation of the euro area. We revisit this literature by providing a

more complete picture of inflation differentials across euro area countries through measures of

inflation dispersion associated to the different quantiles of the predictive inflation distributions.

We also contribute to the literature on the estimation of the Phillips curve. Since recent

3Cœuré (2019) underlines how the ECB has always found a way to deal with the heterogeneity that could
have impaired the transmission of monetary policy across euro area countries.
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debates have focused on the death (and the revival) of the Phillips curve, and especially in the

U.S. (see Blanchard et al. (2015), Coibion and Gorodnichenko (2015), Coibion et al. (2019),

Del Negro et al. (2020) and Hazell et al. (2022), among others), little recent evidence have been

put forward regarding the Phillips curve in the euro area. Importantly, and in line with our

paper, Ball and Mazumder (2021) focus on an estimated Phillips curve using euro area core

inflation. Their results suggest a non-negligible role of inflation expectations and output gap in

driving core inflation fluctuations in the euro area. Eser et al. (2020) give a broad picture of the

implication of the Phillips curve analysis in the euro area for the conduct of ECB’s monetary

policy. The article of this literature that is closest to ours is López-Salido and Loria (2022)

who bring to this Phillips curve literature the quantile analysis to highlight the role of financial

conditions in the downside risk to inflation. Our contribution to this literature is to elaborate

cross-country measures of risk dispersion. Using national data of euro area members, we show

that there are contrasting responses to economic and financial variables between the inflation

tails and median.

The rest of the paper is organized as follows. Section III.2 describes the empirical strategy

to estimate the inflation-at-risk by country and then compute measures of inflation-at-risk

dispersion. Section III.3 examines the evolution of the risk of inflation dispersion in the euro

area. Section III.4 discusses the drivers of inflation dispersion. Section III.5 conducts robustness

checks by performing a Markov-switching approach. Section III.6 concludes.

III.2 Empirical Strategy

In the existing literature, the study of the determinants of cross-country dispersion of the

conditional mean of inflation has been an important step to assess the relevance of regional

divergence within the euro area for economic policies and the single monetary policy. To provide

a more complete picture, we examine the entire inflation distribution, with a particular focus

on the response of the tails of the predictive inflation distribution to economic and financial

developments.

This section presents the general methodology employed in this paper. Section III.2.1

discusses the baseline statistical model in which conditional inflation quantiles are expressed

as a function of economic and financial conditions for each country. By doing so, we are

able to study the reaction of each quantile of the distribution of future inflation as a function
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of the state of the economy, with a particular focus on lower and higher quantiles. Section

III.2.2 shows how to use the quantiles to approximate the entire inflation distribution using a

flexible yet parametric specification. This allows us to capture the first four moments and to

show probability density functions. Finally, Section III.2.3 describes our different measures of

cross-country dispersion of inflation risks.

We use augmented quantile Phillips curve models along the lines of López-Salido and Loria

(2022) to examine the effects of different factors on inflation differentials across euro area coun-

tries. That is, we extend the model by incorporating a measure of global supply chain pressure

to take into account supply chain disruptions that have harmed the global economy since the

start of the COVID-19 pandemic. Many commentators have perceived such disruptions as hav-

ing been a key driver of the rise and fall of inflation over the recent period. Once our augmented

model is estimated for each country, we are able to deliver measures of cross-country inflation

dispersion over time associated to the different quantiles of inflation distribution. By doing so,

we test the role of different risk factors on the inflation differentials of mean versus the tail risks

of the inflation distributions.

III.2.1 Phillips Curve Quantile Regressions

We rely on quantile regression models for studying the determinants of cross-country dispersion

of the entire distribution of inflation. Let us denote by π̄it+1,t+h the annualized average growth

rate of core Harmonized Index of Consumer Prices (HICP) between t+ 1 and t+ h for country

i, and by xit a 1 × k-dimensional vector containing the conditioning variables for country i,

including a constant. Our benchmark for the the horizon is h = 12, that is the average inflation

over the next year.

Following López-Salido and Loria (2022), we consider a linear model for the conditional

inflation quantiles whose predicted value:

Q̂τ (π̄it+1,t+h|xit) = xitβ̂
i
τ , (III.1)

is a consistent linear estimator of the quantile function of π̄it+1,t+h conditional on xit; where

τ ∈ (0, 1), β̂iτ is a k × 1-dimensional vector of estimated quantile-specific parameters.

Our model for conditional inflation quantile augments the Phillips curve model used in the
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literature as follows:

Q̂τ (π̄it+1,t+h|xit) = µ̂iτ +
(
1− λ̂iτ

)
π∗,it−1 + λ̂iτπ

LTE,i
t + θ̂iτ

(
uit − u

∗,i
t

)
+

γ̂iτ
(
πo,∗t − π∗,it

)
+ δ̂iτf

i
t + φ̂iτsct, (III.2)

where all variables are monthly time series covering January 1999 through January 2023. Data

sources are presented in Appendix III.A.

The variables π∗,it−1 and πLTE,it represent average inflation over the previous twelve months

and a measure of long-term inflation expectations, respectively. The relative importance of both

variables is determined by the parameter λiτ . We impose (1 − λiτ ) + λiτ = 1, 0 ≤ (1 − λiτ ) ≤ 1

and 0 ≤ λiτ ≤ 1, as in Blanchard et al. (2015) and López-Salido and Loria (2022)4, using

the inequality constrained quantile regression method developed by Koenker and Ng (2005).

We use six- to ten-year-ahead inflation expectations from Consensus Economics as long-term

inflation expectation series.

Our second risk factor is the unemployment gap measured as the difference between the

unemployment rate uit and the natural rate of unemployment u∗,it , which is obtained by applying

the HP filter to the unemployment rate with the smoothing parameter equal to 14,400. The

parameter θiτ captures the slope of the Phillips curve at various inflation quantiles. Following

Blanchard et al. (2015), we impose θiτ ≤ 0.

The third risk factor πo,∗t − π∗,it represents variations in relative oil price, where πo,∗t is the

average inflation over the previous twelve months of crude oil price. This allows to capture the

pass-through of oil prices into core inflation measures.5 The literature provides mixed evidence

of the role of energy price and import prices as a key inflation determinant. For instance,

Kilian and Zhou (2021) find that gasoline prices do not explain the improved fit of the Phillips

curve augmented by household inflation expectations during the years that followed the Great

Recession. On the other hand, Matheson and Stavrev (2013) find an increasing importance

of import-price in explaining inflation fluctuations, while Salisu et al. (2018) point a better

forecast performance when including oil prices into the Phillips curve. Based on an open-

economy New Keynesian framework applied to U.K. data, Batini et al. (2005) provide further

evidence of the benefits of augmenting the Phillips curve with oil price to fit the data. Our

4Hazell et al. (2022) impose λ = 1 to estimate U.S. regional Phillips curve.
5We also consider commodity and energy prices instead of oil price using the above-described specification

of the augmented quantile Phillips curve. The results are robust to the choice of the series and are not reported
here.
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approach captures the effects of oil prices not only on the conditional mean of inflation, but on

the entire inflation distribution. Cross-quantile and cross-country variations in the parameters

γiτ in Equation (III.2) capture its effects. Here again, we follow Blanchard et al. (2015) and

impose γiτ ≥ 0.6

The fourth risk factor f it represents financial conditions. The literature has documented

firms financing conditions also helps to explain inflation dynamics. Notable examples include

Del Negro et al. (2015), Christiano et al. (2015) and Gilchrist et al. (2017). More importantly,

López-Salido and Loria (2022) extend the analysis to consider the effect of financial conditions

on the inflation distribution, with a particular focus on downside risks to inflation. Following

these authors, we approximate f it by the Composite Indicator of Systemic Stress (CISS) de-

veloped by Kremer et al. (2012), except for Luxembourg for which we use the Country-Level

Index of Financial Stress (CLIFS) proposed by Peltonen et al. (2015). The CISS is a weekly

index maintained by the ECB. It includes 15 raw series, mainly market-based financial stress

measures that are split equally into five categories: financial intermediaries, money markets,

equity markets, bond markets and foreign exchange markets. The CLIFS follows the approach

of the CISS, but with slightly different market segments. The parameter associated with finan-

cial conditions in our empirical specification of the Phillips curve is δiτ . This coefficient is left

unconstrained in that case, since no consensus has been reached in the literature regarding the

effect of financial conditions on the overall inflation distribution.

Finally, the last risk factor we consider is related to global supply chain pressures. Since

the beginning of the COVID-19 pandemic, supply chain disruptions have become a major

challenge for the global economy. Moreover, recent research by Peersman (2022) suggests that

international food commodity prices explain a large part of variations in retail prices of food

in the euro area through the food supply chain. We thus allow for supply chain conditions

in Equation (III.2) to affect differently the conditional inflation quantiles. The variable sct is

the global supply chain pressure index proposed by Benigno et al. (2022) and updated on a

regular basis by the Federal Reserve Bank of New York. This series is built on variables that

are meant to capture factors that put pressure on the global supply chain, both domestically

and internationally. Its effects on the entire distribution of inflation is captured by the cross-

quantile and cross-country parameters φiτ . Following recent studies exploring the role of supply

chain pressures in large post-COVID inflation fluctuations (see for instance Amiti et al., 2021

6Blanchard et al. (2015) consider import-price inflation in their estimated Phillips curve, that is proxied by
oil price inflation at a monthly frequency in López-Salido and Loria (2022).
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and Di Giovanni et al., 2022), we impose φiτ ≥ 0.

III.2.2 The Conditional Inflation Distribution

We generally report the direct estimates from the quantile regressions for the 10th, the 50th, and

the 90th percentiles. We also map the quantile regression estimates into a skewed t-distribution

along the lines of Adrian et al. (2019) to recover and show a probability density function. The

skewed t-distribution was developed by Azzalini and Capitanio (2003) and has the following

form:

f(π̄it+1,t+h|xit, µit, σit, ηit, κit) = 2
σit
t(zit,t+h;κit)T

ηitzit,t+h
√√√√ κit + 1
κit + (zit,t+h)2 ;κit + 1

 (III.3)

where zit,t+h = π̄it+1,t+h(xt)−µit
σit

, and t and T represent the density and cumulative distribution

function of the student t-distribution, respectively. The four time-varying parameters of the

distribution pin down the location µit, scale σit, shape ηit, and fatness κit for each country i, where

ηit and κit parameters control the skewness and the kurtosis of the distribution, respectively.

For each month and each country, we choose the four parameters (µt, σt, ηt, κt) of the

skewed t-distribution to minimize the squared distance between our estimated quantile function

Q̂τ (π̄it+1,t+h|xit) obtained from the quantile Phillips curve model in Equation (III.2) and the

quantile function of the skew t-distribution to match the 5th, 25th, 75th and 95th quantiles.

III.2.3 Measuring Dispersion in Tail Risks

Using our estimated predictive densities, we can construct informative measures of downside

and upside risks. For each county, we define the concept of Inflation-at-Risk (IaR), the value

at risk of future inflation. As made clear in López-Salido and Loria (2022), estimating the xth

quantile of the predictive inflation distribution is similar to constructing IaR measures at x%.

Hence, we refer to IaR to measure the probability that inflation falls below or above a given

value in each country of our sample. IaR is defined by the quantiles of inflation rates for a

given probability α between periods t and t+ h given xit (the information set available at time

t for country i). To distinguish downside and upside risks, we define the downside IaR as

Pr
(
π̄it+1,t+h ≤ −IaR

i
t+h

(
α|xit

))
= α, (III.4)
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where −IaRi
t+h(α|xit) is the downside IaR for country i in hmonths in the future at α probability,

typically equal to 10% in our empirical application. The upside IaR is defined as follows

Pr
(
π̄it+1,t+h ≥ +IaRi

t+h

(
α|xit

))
= α, (III.5)

where +IaRi
t+h(α|xit) is the upside IaR for country i in h months in the future at α probability.

Alternatively, we also rely on expected shortfall and longrise measures, which capture the

severity of an event that occurs in either the left tail (for expected shortfall) or right tail (for

expected longrise) of the predictive distribution. These two measures can be written as follows:

SFit+h = 1
p

∫ p

0
F̂−1
πit+1,t+h|x

i
t
(τ |xit) dτ, LRi

t+h = 1
p

∫ 1

1−p
F̂−1
πit+1,t+h|x

i
t
(τ |xit) dτ, (III.6)

for a chosen target probability p, and where F̂−1(•) is the conditional inverse cumulative distri-

bution of average future inflation over horizon h in country i. To be consistent with our choice

for α = 0.10, we set p = 0.10 in our empirical application.

Once we have calculated risk measures, it is straightfward to obtain a measure of inflation

dispersion across countries. Our preferred measure of dispersion is the cross-country standard

deviation of risks at horizon h, according to:

σRISKit+h =

√√√√[ 1
N

N∑
i=1

(
RISKi

t+h − RISKt+h
)2
]

(III.7)

where RISKi
t+h = [−IaRi

t+h,
+IaRi

t+h, SFit+h,LRi
t+h], and RISKt+h is the mean of our risk mea-

sures across countries.

III.3 The Dispersion of Inflation-at-Risk

This section describes the dispersion of inflation-at-risk for the euro area using the different

metrics defined in Section III.2. Before focusing on the dispersion across countries, we discuss

some results of Phillips curve estimates for each country of the sample.

III.3.1 National Phillips Curve Estimates

This section presents the results of the quantile Phillips curve estimates by country. The results

are displayed in Tables III.B.1 to III.B.3 in Appendix III.B. Each table reports the estimated
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coefficients of the equation (III.2) for each country for quantiles τ = {0.1, 0.5, 0.9}, respectively.

The last two rows of the tables report the unweighted means and the standard deviations of

coefficients across countries.

First of all, the mean and the standard deviation of coefficient λiτ associated to long-term

inflation expectations across countries remain stable over the quantiles. Overall, the weight of

inflation expectations is greater than that of past inflation for all three quantiles. However,

the anchoring is not the same when looking at the weight of inflation expectations country-

by-country. For instance, the coefficient is equal to 1 in Germany in the middle or at the top

of the distribution (50th and 90th quantiles), whereas it is equal to 0.56 at the bottom of the

distribution (10th quantile). Inversely, the coefficient is equal to 1 in France at the bottom of

the distribution but decreases to 0.69 and 0.74 in the middle and at the top of the distribution,

respectively. Globally, inflation is weakly anchored in periphery countries (Italy, Spain, Ireland,

Portugal and Greece), regardless of the quantile.

Focusing on the θiτ coefficient (i.e. the slope of the Phillips curve), the magnitude of the

cross-sectional mean is twice higher for the 50th and 90th quantiles than for the 10th quantile,

though the coefficient is generally not significant from zero. Unemployment seems to affect

inflation much more at the top of the distribution than at the bottom in the euro area, on

average. This result suggests that labor market conditions matter more for upside risks to

inflation than for downside inflation risks. Such nonlinearities in the relationship between slack

and inflation corroborate those from Gagnon and Collins (2019) in which the Phillips curve

is normally steep but becomes nonlinear only when inflation is low. Once again, even if the

cross-sectional standard deviation does not change significantly from a quantile to another, the

estimated slope of the Phillips curve shows important disparities across countries within and

between quantiles. For instance, the coefficient is strongly negative in the Netherlands for the

10th as for the 50th quantile, but is null at the top of the distribution. This highlights important

disparities across countries for each quantile.

The cross-sectional mean of the coefficient associated with financial stress, δiτ , is still negative

with a magnitude almost seven times larger for the 10th quantile than in the 90th quantile (−1.29

against −0.19). This is consistent with the role of tighter financial conditions in the occurrence

of low inflation episodes in the euro area. Our results corroborate a vast literature maintaining

that there is a nonlinear relationship between financial sector and macroeconomy depending

on the state of the economy. Notable examples include He and Krishnamurthy (2012, 2013)
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and Brunnermeier and Sannikov (2014) for the theory, and Hubrich and Tetlow (2015) and

Lhuissier (2017) for the empirics. Since this coefficient is the only to be left unconstrained

in the benchmark specification of the augmented Phillips curve model, it shows important

disparities between euro area countries. The cross-sectional standard deviation is indeed very

high for the three quantiles (1.33 for the 90th quantile, 1.63 for the 50th quantile, and 2.34 for

the 10th quantile). However, as for the other estimated coefficients of the model, the effect of

financial stress on inflation varies across countries and over the quantiles. For instance, the

coefficient is positive at the top but negative at the bottom of the distribution in Austria (0.85

for the 90th quantile and −0.17 for the 10th quantile), whereas it is much higher (but always

negative) in Greece at the bottom of the distribution (−5.84 for the 10th quantile, −5.48 for

the 50th quantile, and −0.04 for the 90th quantile).

Capturing the effect of supply chain pressures on inflation, the φiτ coefficient is similar from

the 10th to the 50th quantile, but the mean and the standard deviation across countries is

interestingly and considerably larger for at the top of the distribution. In line with the recent

period, this suggests that tensions on global supply chain is a key feature of upside inflation

risks across euro area countries.

Finally, the cross-sectional mean of the γiτ coefficient is slightly higher for the 90th quantile,

suggesting that oil price affects upside risks to inflation more than downside inflation risks.

As a whole, and despite constrained coefficients (except on financial conditions), estimated

national Phillips curve results show important non-linearities across quantiles. Moreover, it is

worth noting that the non-linearities across quantiles are not the same for all countries, pro-

viding grounds for looking at the dispersion of conditional quantiles across euro area countries.

III.3.2 Conditional Quantiles

Figure III.3.2 depicts the standard deviation of inflation quantiles across countries for the one-

year forecast horizon. Panel A shows the evolution of the cross-sectional standard deviation of

the 50th quantile over time, i.e. the median of the predictive inflation distribution. The figure

indicates no clear pattern of the dispersion of the 50th quantile over the entire sample period.

Except for slight increases in troubled times — especially after the 2008 and the COVID crises,

inflation dispersion in the middle of the distribution across countries displays a relatively stable

evolution over time.

This is however not the case when looking at the tails of the dispersion of predictive inflation
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Figure III.3.2 – Dispersion of conditional quantiles
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Note: Standard deviation of conditional inflation quantiles Q̂τ (π̄it+1,t+h|xit) across country i, for quantiles
τ = {0.1; 0.5; 0.9} and forecast horizon h = 12. Panel A shows the standard deviation of the conditional
quantile τ = 0.5. Panel B shows the standard deviation of conditional quantiles τ = 0.1 and τ = 0.9. Conditional
quantiles Q̂τ (π̄it+1,t+h|xit) are simulated using the estimates of equation (III.2). Figures III.D.1 and III.D.2 in
Appendix III.D report the conditional quantiles by country.

distribution across countries. Panel B plots the time-varying evolution of the standard deviation

of the 10th and 90th quantiles of inflation distribution across countries. During the first decade

of the euro area, inflation dispersion is clearly higher for the 90th quantile associated with risk

of high inflation. Until the end of 2008, the standard deviation of the 90th quantile is always

higher than the standard deviations of the 10th quantile; its highest point is reached in 2003

during this period. Thereafter, until the Great Recession of 2008-2009, inflation dispersion is

relatively low regardless of the quantile considered. These findings are consistent with the fact

that the first decade of the euro area is still marked by the process of nominal convergence

of countries that entered the euro area with different initial conditions in terms of inflation.

In particular, some countries, such as Spain or Ireland, had inflation rates above the other

countries.

From the Great Recession (2008-09) to the COVID crisis, the situation is reversed. Highest

inflation dispersions concern the 10th quantile associated with low inflation risk. The dispersion
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Figure III.3.3 – Dispersion of conditional quantiles for out-of-sample forecasts
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Note: Standard deviation of conditional inflation quantiles Q̂τ (π̄it+1,t+h|xit) across country i, for quantiles
τ = {0.1; 0.5; 0.9} and forecast horizon h = 12. Solid lines are for the in-sample estimates: conditional quantiles
Q̂τ (π̄it+1,t+h|xit) are simulated using the estimates of equation (III.2) using all the sample of data. Dotted lines
are for the out-of-sample estimates: conditional quantiles Q̂τ (π̄it+1,t+h|xit) are simulated using a new estimate
of equation (III.2) for each new date t which is sequentially includes in the sample of data.

of the 90th quantile is overall lower than that of the 10th quantile, except in 2010 when all

dispersion measures are high and in the years before the COVID crisis characterized by low

dispersion both at the bottom and at the top of the distribution. The key highlight of the

post-crisis period is the spikes reached by the dispersion of the 10th quantile between 2008

and 2015. They largely exceed the dispersion levels observed during the first decade of the

euro area. The succession of financial and sovereign debt crises during this period has clearly

fueled the dispersion of inflation in the euro area through strong differentials in the risk of

low inflation between these countries. In Appendix III.C, we illustrate this fact by comparing

the full predictive inflation distribution of two polar economies of the euro area (Germany and

Greece) before and during the financial crisis.

In the recent period, the evolution of inflation dispersion shows a sharp increase in the

dispersion of the 90th quantile of the distribution, reaching an all-time high. This spike in

the dispersion of inflation at the top of the distribution is accompanied by a decrease in the

dispersion of the 10th quantile after the peak observed during the COVID crisis.

III.3.3 Out-of-Sample Analysis

In this section, we provide out-of-sample evidence of the results based on the quantile regression.

Following Adrian et al. (2019), we use data from January 1999 to December 2009, and we

estimate the predictive distribution of inflation for December 2010 (one-year-ahead). Then,

the procedure is repeated for each month until the end of the sample (i.e. January 2023). At

each iteration, the sample is expanded through the estimation steps described earlier in Section
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Figure III.3.4 – Dispersion of inflation expected shortfall and longrise
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Note: Standard deviation of expected shortfall and longrise SFit+h and LRit+h across country i, for p = 0.10
and forecast horizon h = 12. SFit+h and LRit+h are defined by equation (III.6). Figures III.D.3 and III.D.4 in
Appendix III.D report the expected shortfall and longrise by country.

III.2.

Results for the out-of-sample forecasting exercise are depicted in Figure III.3.3. The figure

shows that the in-sample and out-of-sample estimates of the quantiles are quite similar, except

during the post-2010 euro area sovereign debt crisis regarding the 90th quantile (Panel C). Out-

of-sample predictions also constantly overestimate the peak of the dispersion in the middle (50th

quantile) and the bottom (10th quantile) of the distribution of inflation during the COVID crisis

(Panels A and B). Otherwise, out-of-sample predictions for the selected quantiles of inflation

dispersion are shown to perform well in tracking the evolution of the full sample estimation of

this dispersion. Importantly, they exhibit good performance in predicting the recent increase in

the dispersion of the risk of high inflation driven by spikes in 50th and 90th conditional quantiles

(Panels B and C).

III.3.4 Expected Shortfall and Longrise

The dispersion of inflation quantiles is an interesting measure but it does not exploit all the

information of the predictive inflation distribution. Indeed, as explained earlier, the xth quantile

gives the value of inflation such that there is x% chance that inflation is below this value, but

it does not depend on the exact distribution of inflation below this threshold. The interest of

expected shortfall and longrise metrics developed by Adrian et al. (2019) for economic growth

is to exploit all this information. Following these authors, we apply these metrics to inflation
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Figure III.4.5 – Dispersion of conditional quantiles without financial stress
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Note: The case without financial stress corresponds to the standard deviation of conditional quantiles predicted
for f it = 0 in the quantile Phillips curve (III.2) for quantiles τ = {0.1; 0.5; 0.9} and forecast horizon h = 12.

differentials.

Figure III.3.4 depicts the standard deviations of the longrises and shortfalls associated with

the 10% risk level for the one-year ahead horizon. These figures confirm the pattern previously

described using the dispersion of inflation quantiles. During the first decade of the euro area,

the longrise outweighs the shortfall, while afterwards the shortfall is a more pronounced source

of inflation dispersion.

III.4 The Drivers of Inflation Dispersion

Having described the nature of the dispersion of the inflation in the euro area according to the

nature of the extreme risk, either upside or downside, we investigate in this section the drivers of

inflation dispersion. For this purpose, we elaborate counterfactual scenarios by muting selected

explanatory variables in the right-hand side of the estimated quantile Phillips curve.

III.4.1 Financial Stress

The first scenario assesses the role of financial conditions in the dynamics of inflation dispersion.

We predict for each country the conditional quantiles of inflation under the assumption that the

financial stress variable is set to zero for all countries at each date (f it = 0) in equation (III.2).

In this prediction, we keep the estimated values of the Phillips curve for each country and the

realizations of the other economic variables unchanged. Figure III.4.5 shows the results for the

forecast horizon h = 12, and the three quantiles of interest, τ = {0.1, 0.5, 0.9}. Each panel

compares the benchmark inflation dispersion (solid lines) and the dispersion without financial

stress (dashed lines).
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Up to the Great Recession of 2008-2009, the euro area was immune to financial stress and

therefore the predicted dispersion without this stress is very close to the benchmark. The role of

financial stress then takes on great importance. This is especially the case for the 10th quantile.

Looking at Panel A, the dispersion would have remained stable throughout the financial crisis

period between 2008 and 2015 at a level three times smaller than the observed peaks. It is

interesting to note that the absence of financial stress would also have led to less dispersion

in inflation for the 50th quantile (Panel B). The results are however less striking for the 90th

quantile, even if tighter financial conditions have still affected inflation dispersion.

These results are consistent with the common analysis of the role of financial crises in the

extreme risk of deflation that weighed on the euro area. Since then, the situation has changed.

International tensions in value chains and energy prices following the end of the COVID crisis

and the war in Ukraine have raised the specter of a return to the extreme inflation of the 1970s.

III.4.2 Pressures on Supply Chains and Energy Prices

To analyze this recent period, we develop two scenarios: the scenario without oil price for πo,it =

π∗,it and the scenario without supply chain pressures for sct = 0. As before, for these predictions,

we keep the estimated values of the Phillips curve for each country and the realizations of the

other economic variables unchanged. Figure III.4.6 shows the results for the three quantiles,

τ = {0.1, 0.5, 0.9} using core inflation. Each panel compares the benchmark inflation dispersion

(solid lines), the dispersion without oil price (dotted lines), and the dispersion without supply

chain pressures (dashed lines). We report results only for the period after 2018 to facilitate the

interpretation of the figure.

The results are reported for two forecast horizons, one year and one quarter (i.e. h = 12 and

h = 3, respectively). The one-year forecast is more informative of trends than the one-quarter

forecast. On the other hand, the advantage of the one-quarter forecast is that it provides

information at a higher frequency. For instance, the abruptness of the COVID crisis is more

accurately measured with the one-quarter forecast than with the one-year forecast, because

inflation series are averaged over a shorter period. The interest of the latter is also to be able

to include in the analysis the last nine months of observation during the recent period marked

by strong changes in the dynamics of inflation. More precisely, the one-quarter forecast has the

ability to portray the dispersion of inflation until October 2022 (in the case where h = 3, the last

point in October 2022 is the average of expected inflation between November 2022 and January
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Figure III.4.6 – Dispersion of conditional quantiles without oil price and supply chain pressures
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Note: The case without oil price corresponds to the standard deviation of conditional quantiles predicted for
πo,∗t = π∗,i

t in the quantile Phillips curve (III.2). The case without supply chain pressures corresponds to the
standard deviation of conditional quantiles predicted for sct = 0 in the quantile Phillips curve (III.2). The first
column of panels is for the one-year forecast (h = 12) and the second one is for the one-quarter forecast (h = 3).
The first row of panels is for the 10th quantile, the second one for the 50th quantile, and the third one for the
90th quantile.
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2023, the last observation of our sample, given the data observed in October 2022), whereas

the one-year forecast computes the dispersion of inflation based on data until January 2022

(recall that in the case where h = 12, the last point in January 2022 is the average of expected

inflation between February 2022 and January 2023, given the data observed in January 2022).

Therefore, looking at recent increase in oil price and supply chain pressures index over the last

months, we expect that estimating the model with h = 3 will allow to give new evidence on

the effects of the recent evolution of oil price and supply chain pressures on the dispersion of

inflation across euro area countries.

Supply chain tensions play a more prominent role than oil price in the dynamics of in-

flation dispersion. It is noteworthy that value chain pressures play a major role in the two

extreme quantiles of inflation (10th and 90th). For both quantiles, inflation dispersion would

have returned to pre-COVID values without the pressures on value chains.7

As a robustness check, we have also conducted those counterfactual exerises using HICP

instead of core HICP. Considering headline inflation in the analysis confirm the previous results

of the role of global supply chain in the evolution of inflation distribution. See Appendix III.E

for further details.

III.4.3 Structural Heterogeneity

We propose a last exercise of counterfactual scenarios to assess the role of economic structure

heterogeneity in inflation dispersion. Inflation may diverge between countries, either because

they are exposed to different economic events or because their different economic structures

lead them to react differently to these events. To assess the respective role of structures and

the economic context, we proceed as follows. We take France as a reference country. Then, we

simulate the conditional quantiles of inflation under two assumptions: (i) all countries share the

same Phillips curve coefficients as France, but are exposed to the economic variables actually

observed in their own country; (ii) all countries are exposed to the same economic variables as

France, but retain the estimated Phillips curve coefficients for each of them. Figure III.4.7 shows

the predicted inflation dispersion by quantiles under the two assumptions (we only consider in

this case the one-year forecast). The dispersion of inflation is clearly higher when common

7To check the robustness of our results, we also run the benchmark model considering energy price rather
than oil price. Despite differences in the two series over the last few months due to a record-high increase in
natural gas prices in Europe, the results are robust to the choice of the series (the correlation between energy
and oil prices is 0.96 from January 1999 to January 2023).
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Figure III.4.7 – Dispersion of inflation quantiles for common structure or common economic
series
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Note: Standard deviation of conditional inflation quantiles Q̂τ (π̄it+1,t+h|xit) across country i, for quantiles
τ = {0.1; 0.5; 0.9} and forecast horizon h = 12. Panel A shows the standard deviation of the conditional quan-
tiles assuming that all countries experienced the French economic series while preserving their own estimated
coefficients for the Phillips curve. Panel B shows the standard deviation of the conditional quantiles assum-
ing that all countries share the estimated coefficients for the French Phillips curve while preserving their own
national economic series.

economic series is considered (Panel A) than when we consider common structure (Panel B).

This result indicates that the great heterogeneity in the national Phillips curves is the main

driver of inflation dispersion in the euro area.

III.5 Robustness Analysis: a Markov-switching Approach

In the existing literature, Markov-switching models have been proposed as an alternative

method over quantile regressions to characterize business cycle variation in the probability

distribution and time-varying risks around GDP growth. Using a semi-structural model sub-

ject to Markov mean and variance shifts, Caldara et al. (2021) investigate the role of the

financial and real conditions to predict tail risks in the U.S. economy. Lhuissier (2022) pro-

poses a regime-switching skew-normal model to examine time variation in the third moment of
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the predictive distribution of euro area economic growth. López-Salido and Loria (2022) also

propose a Markov-switching framework as an alternative method to study time variation in the

predictive distribution of inflation in the U.S. This section follows this recent literature and

adopts a Markov-switching framework as a robustness analysis.

III.5.1 The Framework

We employ a statistical model in which the observation π̄it+1,t+h is generated as follows:

π̄it+1,t+h = µi(sit) +
(
1− λi(sit)

)
π∗,it−1 + λi(sit)π

LTE,i
t + θi(sit)

(
uit − u

∗,i
t

)
+

γi(sit)
(
πo,∗t − π∗,it

)
+ δi(sit)f it + φi(sit)sct + σi(sit)εit, (III.8)

where εit follows a standard normal distribution, and sit is an exogenous three-states first-order

Markov process with the following transition matrix Qi

Qi =


qi1,1 qi1,2 qi1,3

qi2,1 qi2,2 qi2,3

qi3,1 qi3,2 qi3,3

 , (III.9)

where qiu,v = Pr(sit = u|sit−1 = v) denote the transition probabilities that sit is equal to u given

that sit−1 is equal to v, with u, v ∈ {1, 2, 3}, qku,v ≥ 0 and ∑3
v=1 q

i
u,v = 1.

Our framework is subject to Markov mean and variance shifts over time. In particular,

we impose three regimes of inflation, which can be considered as regimes of low (Regime 1),

medium (Regime 2) and high (Regime 3) inflation. Both coefficients and standard deviations

can change over time according to the same Markov process, meaning that the time of changes

for coefficients is stochastically dependent of the times of changes for standard deviations.

We rely on Bayesian methods to estimate our Markov-switching model. When dealing with

a Markov-switching model, the likelihood can be evaluated according to the Hamilton (1989)’s

filter, and then combined with a prior distribution for the parameters. We use the idea of

Gibbs sampling to obtain the empirical joint posterior density by sampling alternately from

the following conditional posterior distribution. Our Gibbs sampler procedure begins with

setting parameters at the peak of the posterior density function. The Monte Carlo Markov

Chains (MCMC) sampling sequence involves a 4-block Gibbs sampler, in which we can generate

in a flexible and straightforward manner alternatively draws from full conditional posterior
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distributions. Overall, our procedure follows the MCMC approach proposed by Albert and

Chib (1993).

Regarding our prior, they are very dispersed and cover a large parameter space so that so

that the data, through the likelihood, dominate the posterior distribution. It may be worth

noting that we impose the exact same prior across regimes, so that the differences in parameters

between regimes result more from data (i.e., the likelihood) rather than priors. Moreover, we

impose the same restrictions on the coefficients as those imposed in the estimation of quantile

regressions.

The online appendix provides the computational details for our maximization and MCMC

procedures, as well as for the choice of the prior.

III.5.2 Empirical Results

Since we are studying whether a Markov-switching framework is able to produce quantita-

tively similar dispersion measures as those from a quantile regressions approach, we put in the

appendix the estimates of Markov-switching Phillips curves by country — see Tables III.F.1,

III.F.2, III.F.3 and III.F.4. However, it may worth saying that, in spite of differences in coeffi-

cients estimated at the country level, the results of cross-sectional mean and standard deviation

give similar interpretation than those from the quantile regression model: high and stable an-

choring of inflation expectations across inflation regimes (low, medium and high), steeper slope

of the Phillips curve in medium and high than in low inflation regimes, key role of financial

stress in low inflation regime with high dispersion across countries, and important role of global

supply chain in high inflation regime.

Figure III.5.8 reports the regime probabilities — evaluated at the mode — for each country.

We report the smoothed probabilities in the sense of Kim (1994); i.e., full sample information

is used in getting the regime probabilities at each date. One can see from the figure that each

euro area country has been characterized by numerous switches between regimes over time.

The times of changes are most of the time unsynchronized across countries, suggesting that the

dispersion across countries is very much in evidence. For example, during the sovereign debt

crisis in 2010-2012, countries most hit by the crisis like Portugal, Greece, Spain and Ireland,

experienced a regime of low inflation, while others like Germany, Finland, and Austria were in

a high or medium inflation regime. One exception regarding the divergence across countries is

during the recent period where the high inflation regime has been the predominant regime for
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Figure III.5.8 – Regime Probabilities
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Note: Probabilities are smoothed in the sense of Kim (1994), i.e., full sample information is used in getting the
regime probabilities at each date. The color code is as follows: blue (Regime 1, low inflation), red (Regime 2,
medium inflation), yellow (Regime 3, high inflation).

most of countries.

To provide a more formal analysis of inflation dispersion and, to be more in line with the

results of our quantile regressions, we also produce the cross-country dispersion of the expected

shortfall and longrise measures produced from our Markov-switching model, as shown in Figure

III.5.9. Following Lhuissier (2022), the calculation of these measures follows a simulation pro-

cedure. First, we recover the smoothed regime probabilities for each date. Second, we generate

our predictive distribution from the mixture of normal distributions using those probabilities

as weights. Third, we compute the individual metrics using the empirical distribution, and

then compute the dispersion measures. As shown by the figure, inflation dispersion is clearly

higher for upside risks (expected longrise) than for downside risks (expected shortfall) during

the first decade of the euro area. Thereafter, the pattern is reversed. The dispersion of down-

side risks prevails over upside risks since the Great Recession of 2008-2009. These findings are

thus consistent with the stylized facts produced from quantile regressions as shown in Figure

III.4.5.
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Figure III.5.9 – Dispersion of inflation expected shortfall and longrise from Markov-switching
model
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Note: Standard deviation of expected shortfall and longrise SFit+h and LRit+h across country i and for forecast
horizon h = 12. SFit+h and LRit+h are computed using the Markov-switching model.

Overall, our parametric Markov-switching framework is able to produce quantitatively sim-

ilar results to the more flexible approach of Quantile Regressions of Adrian et al. (2019). We

thus confirm the results of Caldara et al. (2021), that is, “the estimates of tail risk have robust

features that can be captured with multiple models”.

III.6 Conclusion

To study inflation differentials in the euro area, we have adopted a "beyond the mean" approach

by considering downside and upside inflation risks. This approach enabled us to identify three

phases in the euro area. The first decade of the euro area where the risk of inflation dispersion

in the euro area is associated with still significant upside risks despite the ongoing convergence

process. The second decade of the euro area during which the risk of dispersion comes from

downside risks to inflation or even deflation risks in a context of financial crises. The present

period, in the wake of the COVID crisis with pressures on oil price and value chains, where the

two risks, downside and upside, co-exist and feed the dispersion of inflation in the euro area.

Our results show that the high dispersion of extreme inflation risks described in this article

is more the consequence of heterogeneous economic structures than of exposure to different

national shocks. In this context, it is well known, at least since Benigno (2004), that targeting

an average inflation rate of the monetary union, weighted by the size of the economies, may

not be optimal when union’s members are heterogeneous. Instead, Benigno (2004) suggested
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targeting an average inflation rate using a weighting scheme that gives more weight to economies

with the highest degree nominal rigidities–recently, Kekre (2022) proposes a similar analysis

leading to giving greater weights to economies with more sclerotic labor markets. Future

research would be of interest in investigating optimal monetary policy rules in the context of

dispersed inflation tail risks.
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Appendix

The Risk of Inflation Dispersion in the

Euro Area

III.A Data

All variables are monthly time series covering January 1999 through January 2023. The fol-

lowing variables use data obtained directly from different sources:

• Harmonized Index of Consumer Prices

– Source: ECB - ICP (Indices of Consumer prices)

– Details: Monthly – Neither seasonally nor working day adjusted – HICP - All-items

excluding energy and food – Eurostat – Index

– Data transformation: Authors’ calculations using the x13 toolbox to get seasonally

adjusted series for each euro area member countries.

• Unemployment rate

– Source: Eurostat - Unemployment by sex and age – monthly data

– Details: Monthly – Seasonally adjusted data, not calendar adjusted data – Total –

Percentage of population in the labor force

• Natural Rate of Unemployment

– Source: Authors’ calculations
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– Details: HP-filtered trend (with smoothing parameter λ = 14, 400 of unemployment

rate).

• Oil Prices

– Source: U.S. Energy Information Administration - Spot Prices

– Details: Crude Oil Prices: Brent - Europe - Dollars per Barrel, Not Seasonally

Adjusted

• Supply Chain index

– Source: New York Fed’s website

– Details: Global Supply Chain Pressure Index (GSCPI)

• Financial conditions (CISS)

– Source: ECB - CISS

– Details: Daily – ECB – Economic indicator – New Composite Indicator of Systemic

Stress (CISS) – Index

– Data transformation: Authors’ calculations to get monthly average of the series.

• Financial conditions (CLIFS)

– Source: ECB - CLIFS

– Details: Monthly – ECB – Economic indicator – Country-Level Index of Financial

Stress (CLIFS) Composite Indicator – Index

• Long-Term Inflation Expectations

– Source: Consensus Economics

– Details: Six-to-ten-year-ahead mean CPI inflation forecasts.

– Data transformation: Euro area forecasts for Luxembourg (no forecast available),

spline interpolation for all missing data in April 1999.
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III.B National Phillips Curve Estimates (tables)

Table III.B.1 – Phillips curve estimates for the 10th quantile

µ̂iτ λ̂iτ θ̂iτ γ̂iτ δ̂iτ φ̂iτ
Germany −1.02

[−1.17;−0.88]
0.55

[0.30;0.81]
−0.00

[−0.13;0.13]
0.35

[0.15;0.54]
0.72

[0.29;1.15]
0.24

[0.09;0.38]
France −0.88

[−1.11;−0.66]
0.65

[0.42;0.88]
−0.00

[−0.16;0.16]
0.41

[0.19;0.64]
−0.72

[−1.34;−0.10]
0.21

[0.11;0.31]
Italy −0.95

[−1.16;−0.74]
0.56

[0.40;0.72]
−0.00

[−0.13;0.13]
0.00

[−0.22;0.22]
−0.70

[−1.70;0.29]
0.00

[−0.06;0.06]
Spain −0.94

[−1.36;−0.52]
0.49

[0.22;0.76]
−0.00

[−0.14;0.14]
0.68

[0.18;1.19]
−4.19

[−5.85;−2.53]
0.32

[0.13;0.51]
Netherlands −1.12

[−1.21;−1.03]
0.86

[0.77;0.94]
−0.74

[−0.94;−0.54]
0.36

[0.16;0.56]
0.36

[−0.16;0.87]
0.28

[0.15;0.40]
Finland −0.86

[−1.00;−0.72]
0.30

[0.15;0.45]
−0.17

[−0.28;−0.06]
0.45

[0.14;0.77]
0.67

[−0.04;1.38]
0.44

[0.30;0.58]
Ireland −1.29

[−1.56;−1.02]
0.79

[0.58;1.01]
0.00

[−0.05;0.05]
0.23

[−0.36;0.82]
−4.59

[−6.81;−2.36]
0.33

[0.11;0.56]
Austria −0.57

[−0.68;−0.47]
0.75

[0.62;0.89]
−0.01

[−0.05;0.04]
−0.00

[−0.06;0.06]
−0.15

[−0.59;0.30]
0.15

[0.06;0.25]
Portugal −1.24

[−1.47;−1.00]
0.51

[0.37;0.64]
−0.00

[−0.04;0.04]
0.40

[−0.03;0.83]
−0.67

[−1.49;0.15]
0.00

[−0.04;0.04]
Belgium −0.68

[−0.75;−0.62]
1.00

[0.90;1.10]
−0.01

[−0.11;0.08]
0.07

[−0.04;0.18]
0.43

[0.13;0.73]
0.07

[0.01;0.14]
Luxembourg −0.43

[−0.56;−0.31]
0.71

[0.49;0.92]
−0.00

[−0.17;0.16]
0.60

[0.42;0.78]
−0.34

[−1.05;0.37]
0.15

[0.05;0.25]
Greece −0.96

[−1.72;−0.20]
0.46

[0.30;0.61]
−0.14

[−0.33;0.05]
1.53

[0.27;2.80]
−6.03

[−7.92;−4.14]
0.04

[−0.15;0.24]

Mean -0.91 0.64 -0.09 0.42 -1.27 0.19
Std. Dev. 0.25 0.20 0.21 0.41 2.31 0.14

Note: Table III.B.1 displays the coefficients of the quantile Phillips curve defined by equation
(III.2): Q̂τ (π̄it+1,t+h|xit) = µ̂iτ +

(
1− λ̂iτ

)
π∗,i
t−1 + λ̂iτπ

LTE,i
t + θ̂iτ

(
uit − u

∗,i
t

)
+ γ̂iτ

(
πo,∗t − π

∗,i
t

)
+

δ̂iτf
i
t + φ̂iτsct estimated by country for the 10th quantile. The last two rows show the unweighted

means and the standard deviations of coefficients across countries.
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Table III.B.2 – Phillips curve estimates for the 50th quantile

µ̂iτ λ̂iτ θ̂iτ γ̂iτ δ̂iτ φ̂iτ
Germany −0.41

[−0.51;−0.32]
0.95

[0.88;1.02]
−0.17

[−0.33;−0.00]
0.15

[0.02;0.28]
−0.22

[−0.50;0.05]
0.40

[0.25;0.54]
France −0.06

[−0.23;0.11]
0.50

[0.34;0.66]
−0.21

[−0.41;−0.00]
0.34

[0.16;0.52]
−1.60

[−2.16;−1.05]
0.12

[0.02;0.22]
Italy 0.05

[−0.13;0.23]
0.34

[0.14;0.55]
−0.00

[−0.22;0.22]
0.10

[−0.17;0.37]
−0.97

[−2.03;0.10]
0.19

[0.06;0.32]
Spain −0.15

[−0.28;−0.03]
0.53

[0.39;0.67]
−0.00

[−0.06;0.06]
0.40

[0.14;0.66]
−1.10

[−2.13;−0.07]
0.00

[−0.17;0.17]
Netherlands −0.33

[−0.51;−0.15]
0.68

[0.53;0.83]
−0.77

[−1.08;−0.45]
0.62

[0.35;0.89]
0.62

[−0.64;1.88]
0.62

[0.38;0.86]
Finland 0.00

[−0.12;0.13]
0.10

[−0.05;0.24]
−0.00

[−0.07;0.07]
0.66

[0.33;0.99]
0.66

[−0.17;1.50]
0.55

[0.40;0.70]
Ireland −0.22

[−0.48;0.03]
0.49

[0.31;0.66]
−0.00

[−0.12;0.12]
1.15

[0.62;1.68]
−2.30

[−4.36;−0.23]
0.26

[0.02;0.50]
Austria −0.03

[−0.15;0.09]
0.97

[0.87;1.08]
−0.00

[−0.04;0.04]
0.19

[0.06;0.33]
0.02

[−0.59;0.64]
0.36

[0.16;0.56]
Portugal −0.18

[−0.42;0.05]
0.53

[0.34;0.71]
−0.07

[−0.23;0.09]
0.43

[−0.05;0.91]
−1.54

[−2.76;−0.31]
0.11

[−0.17;0.40]
Belgium −0.30

[−0.42;−0.17]
0.92

[0.78;1.07]
−0.04

[−0.15;0.08]
0.13

[0.01;0.26]
0.31

[−0.19;0.81]
0.10

[−0.06;0.25]
Luxembourg 0.01

[−0.10;0.12]
0.81

[0.66;0.95]
−0.38

[−0.56;−0.21]
0.49

[0.34;0.64]
−0.37

[−1.01;0.27]
0.25

[0.11;0.40]
Greece 0.34

[0.01;0.66]
0.47

[0.36;0.57]
−0.45

[−0.73;−0.17]
0.28

[−0.24;0.80]
−4.68

[−7.38;−1.99]
0.16

[−0.14;0.46]

Mean -0.11 0.61 -0.17 0.41 -0.93 0.26
Std. Dev. 0.20 0.27 0.24 0.30 1.51 0.19

Note: Table III.B.2 displays the coefficients of the quantile Phillips curve defined by equation
(III.2): Q̂τ (π̄it+1,t+h|xit) = µ̂iτ +

(
1− λ̂iτ

)
π∗,i
t−1 + λ̂iτπ

LTE,i
t + θ̂iτ

(
uit − u

∗,i
t

)
+ γ̂iτ

(
πo,∗t − π

∗,i
t

)
+

δ̂iτf
i
t + φ̂iτsct estimated by country for the 50th quantile. The last two rows show the unweighted

means and the standard deviations of coefficients across countries.
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Table III.B.3 – Phillips curve estimates for the 90th quantile

µ̂iτ λ̂iτ θ̂iτ γ̂iτ δ̂iτ φ̂iτ
Germany 0.55

[0.37;0.74]
1.00

[0.93;1.07]
−0.07

[−0.20;0.07]
−0.00

[−0.13;0.13]
−0.98

[−1.47;−0.49]
0.65

[0.43;0.86]
France 0.41

[0.29;0.53]
0.62

[0.52;0.72]
−0.39

[−0.59;−0.18]
0.04

[−0.06;0.15]
−1.54

[−1.96;−1.12]
0.33

[0.20;0.46]
Italy 0.91

[0.71;1.11]
0.50

[0.30;0.71]
−0.24

[−0.53;0.05]
0.42

[0.09;0.75]
1.14

[−0.27;2.56]
0.11

[−0.04;0.25]
Spain 1.01

[0.66;1.36]
0.58

[0.39;0.77]
−0.22

[−0.49;0.04]
0.28

[−0.11;0.68]
−0.93

[−2.15;0.28]
0.49

[0.22;0.75]
Netherlands 1.14

[0.73;1.56]
0.49

[0.25;0.74]
−0.99

[−1.76;−0.23]
1.80

[1.17;2.43]
0.57

[−2.52;3.66]
0.60

[0.29;0.90]
Finland 0.48

[0.31;0.65]
0.59

[0.43;0.76]
−0.00

[−0.08;0.08]
0.83

[0.62;1.03]
1.52

[0.25;2.79]
0.48

[0.31;0.66]
Ireland 1.87

[1.40;2.34]
0.25

[0.06;0.44]
−0.00

[−0.22;0.22]
0.91

[0.31;1.50]
−2.44

[−4.69;−0.19]
0.64

[0.35;0.93]
Austria 0.80

[0.60;1.00]
0.82

[0.68;0.97]
−0.33

[−0.47;−0.19]
0.29

[0.08;0.50]
0.68

[−0.04;1.40]
0.88

[0.61;1.14]
Portugal 1.94

[1.37;2.52]
0.18

[−0.05;0.40]
−0.33

[−0.72;0.05]
0.92

[0.48;1.35]
−1.80

[−3.79;0.18]
0.89

[0.49;1.29]
Belgium 0.71

[0.52;0.91]
0.78

[0.65;0.91]
−0.53

[−0.74;−0.32]
0.30

[0.11;0.49]
0.13

[−0.84;1.10]
0.59

[0.38;0.80]
Luxembourg 0.54

[0.38;0.70]
0.74

[0.61;0.86]
−0.37

[−0.64;−0.10]
0.35

[0.18;0.52]
0.50

[−0.20;1.21]
0.57

[0.37;0.77]
Greece 1.60

[1.14;2.05]
0.60

[0.43;0.77]
−0.61

[−0.96;−0.26]
1.00

[0.54;1.47]
−1.69

[−4.01;0.64]
0.84

[0.41;1.27]

Mean 1.00 0.60 -0.34 0.60 -0.40 0.59
Std. Dev. 0.54 0.23 0.28 0.51 1.31 0.23

Note: Table III.B.3 displays the coefficients of the quantile Phillips curve defined by equation
(III.2): Q̂τ (π̄it+1,t+h|xit) = µ̂iτ +

(
1− λ̂iτ

)
π∗,i
t−1 + λ̂iτπ

LTE,i
t + θ̂iτ

(
uit − u

∗,i
t

)
+ γ̂iτ

(
πo,∗t − π

∗,i
t

)
+

δ̂iτf
i
t+φ̂iτsct estimated by country for the 90th quantile. The last two rows show the unweighted

means and the standard deviations of coefficients across countries.
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III.C Case study: Germany and Greece during the Fi-

nancial Crisis

In this section, we propose a case study to illustrate the situation of increasing dispersion of

downside inflation risks. We compare the conditional distributions of predicted inflation for

two polar countries of the euro area, Germany and Greece, for two specific dates. The first

one, January 2006, reflects the quiet period of the euro area. The second, May 2012, is instead

in the period of financial turmoil. Figure III.C.1 shows the conditional distribution of inflation

forecast one year ahead (h = 12) using the estimated skewed t-density functions defined by

equation (III.3) for each country at these two dates.

In January 2006, predicted inflation is higher in Greece than in Germany. The distribution

for Greece is shifted to the right compared to Germany. For this date, the dispersion is homo-

geneous for the whole distribution (the differences between the quantiles are between 1.34 and

2.21 percentage points of inflation).

The situation is radically different in May 2012, mainly due to the change in the distribution

of inflation in Greece. Greece is then subject to a severe risk of deflation. The distribution of

inflation has shifted to the left but it has also flattened considerably giving rise to a high level

of downside inflation risk. There is then a 10% chance that inflation will be below -2.38% in the

coming year. In terms of dispersion, this is no longer homogeneous for the entire distribution

in May 2012, unlike January 2006. The 10th quantile for Greece is 3.17 percentage points lower

than that of Germany. This is almost twice as much as the gap in the 50th. Interestingly,

the gap in the 90th quantile is now very close to zero, meaning that the dispersion of inflation

rates between Germany and Greece in May 2012 has not been associated with the dispersion

of quantiles at the top of the distribution. May 2012 is thus a typical example of high risk of

inflation dispersion from the bottom of the distribution, i.e. associated with an extreme risk of

low inflation.
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Figure III.C.1 – Probability densities
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Note: Estimated skewed t-density functions defined by equation (III.3) for one-year-ahead (h = 12) inflation
rates for Germany and Greece in January 2006 (left panel) and May 2012 (right panel). Vertical lines represent
the respective quantiles extracted from the estimated distribution: dashed blue (red) lines represent quantile
τ = 0.1 for Germany (Greece), and dotted blue (red) lines represent quantile τ = 0.9 for Germany (Greece).
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III.D Conditional Quantiles, Expected Shortfall and
Longrise

Figure III.D.1 – Conditional quantiles by country
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Note: Conditional inflation quantiles Q̂τ (π̄it+1,t+h|xit) for country i, quantiles τ = {0.1; 0.5; 0.9} and forecast
horizon h = 12. Conditional quantiles Q̂τ (π̄it+1,t+h|xit) are simulated using the estimates of equation (III.2).
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Figure III.D.2 – Conditional quantiles by country
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Note: Conditional inflation quantiles Q̂τ (π̄it+1,t+h|xit) for country i, quantiles τ = {0.1; 0.5; 0.9} and forecast
horizon h = 12. Conditional quantiles Q̂τ (π̄it+1,t+h|xit) are simulated using the estimates of equation (III.2).
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Figure III.D.3 – Expected shortfall and longrise by country
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Note: Expected shortfall and longrise SFit+h and LRit+h for country i, p = 0.10 and forecast horizon h = 12.
SFit+h and LRit+h are defined by equation (III.6).
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Figure III.D.4 – Expected shortfall and longrise by country
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Note: Expected shortfall and longrise SFit+h and LRit+h for country i, p = 0.10 and forecast horizon h = 12.
SFit+h and LRit+h are defined by equation (III.6).
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III.E Counterfactual Exercises using HICP

Figure III.E.5 depicts the results using HICP instead of core HICP used in the benchmark

model. Considering headline inflation in the analysis confirms previous results of the role of

global supply chain in the evolution of inflation distribution. However, the results are even

more striking than in the case where core inflation is used, especially regarding the results for

h = 12 and the 90th quantile (Panel E). The dispersion peaks around March 2020 and at the

end of the sample period of estimation to reach levels almost thrice the one observed during

the COVID crisis. However, without supply chain pressures, the dispersion of inflation at the

top of the distribution would have been muted, or at least similar to the level observed before

the pandemic outbreak. From this point of view, tensions on global supply chain is a more

important feature of HICP dispersion than core inflation dispersion across euro area countries.

On the other hand, the results for h = 3 and the 90th quantile (Panel F) contrast a little with

the previous ones, at least regarding the last months of the estimation period. They suggest

that supply chain pressures have played a less prominent role in inflation dispersion during the

COVID crisis, and that this effect has been particularly decreasing over the last few months

of the sample period. Simulated series without supply chain seems to catch up the dispersion

series estimated with the benchmark model.

237



Figure III.E.5 – Dispersion of conditional quantiles without oil price and supply chain pressures
(HICP inflation)
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Note: The case without oil price corresponds to the standard deviation of conditional quantiles predicted for
πo,∗t = π∗,i

t in the quantile Phillips curve (III.2) estimated with HICP. The case without supply chain pressures
corresponds to the standard deviation of conditional quantiles predicted for sct = 0 in the quantile Phillips
curve (III.2). The first column of panels is for the one-year forecast (h = 12) and the second one is for the
one-quarter forecast (h = 3). The first row of panels is for the 10th quantile, the second one for the 50th quantile,
and the third one for the 90th quantile.
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III.F Markov-switching Procedure

III.F.1 The Posterior Density

Since the posterior density function of Markov-switching models is very non-Gaussian, it is

essential to find the posterior mode via an optimization routine prior to sample from the

posterior density. The estimate of the mode not only represents the most likely value, but also

serves as a crucial starting point for initializing different chains of Monte Carlo Markov Chains

(MCMC) draws.

The strategy to find the posterior mode is to generate a sufficient number of draws from

the prior distribution of each parameter. Each set of points is then used as starting points to

the CSMINWEL program, the optimization routine developed by Christopher A. Sims. Starting

the optimization process at different values allows us to correctly cover the parameter space

and avoid getting stuck in a “local” peak. Note, however, that we do not need to use a more

complicated method for finding the mode like the blockwise optimization method developed by

Sims et al. (2008). The authors employ a class of richly parameterized multivariate Markov-

switching models in which the parameters are break into several subblocks, and then apply a

standard hill-climbing quasi-Newton optimization routine to each block, while keeping the other

subblocks constant, in order to maximize the posterior density. The size of Markov-switching

univariate models remains relatively small and allows us to employ a more standard technique.

The posterior density is not of standard form, making it impossible to sample directly from

this probability distribution. One can, however, use the idea of Gibbs sampling to obtain the

empirical joint posterior density by sampling alternately from the following conditional posterior

distribution. Our Gibbs sampler procedure begins with setting parameters at the peak of the

posterior density function. The MCMC sampling sequence involves a 4-block Gibbs sampler,

in which we can generate in a flexible and straightforward manner alternatively draws from

full conditional posterior distributions. Overall, our procedure follows the MCMC approach

proposed by Albert and Chib (1993).

In the remainder of this section, we simplify the notation by suppressing the superscript i

denoting the country of interest. For 1 ≤ k ≤ H, let θ(k) = [µ(k), λ(k), θ(k), γ(k), δ(k), φ(k)]′,

St = [s1, . . . , st], and qk be the k-th column of Q. The objets θ(k) and qk are vectors of
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parameters. The prior on the set of parameters is given by:

p(θ(k)) = normal(θ(k)|θ̄1, θ̄2), (III.10)

p(σ(k)) = inv-gamma(σ(k)|σ̄1, σ̄2), (III.11)

p(qk) = dirichlet(qk|q̄1,k, q̄2,k, q̄3,k), (III.12)

where θ̄1, θ̄2, q̄1,j, q̄2,j, and q̄3,j are the hyperparameters; normal(x|.) denotes the multivariate

normal distribution; inv-gamma(x|.) denotes the inverse gamma distribution; and dirichlet(x|.)

denotes the dirichlet distribution.

In our empirical setting, our normal prior for θ(k) is very dispersed and cover a large

parameter space. We choose a prior with the mean 0.00 and the standard deviation 5.00,

except for the prior of λ(k), of which the mean 0.50 and the standard deviation 0.20, and

truncated to values between zero and one. The inverse-gamma prior for the scale parameter,

σ(k), are set as σ̄1 = 0.1938 and σ̄2 = 2.1551. It may be worth noting that we impose the

exact same prior across regimes and across countries, so that the differences in parameters

between regimes and countries result more from data (i.e., the likelihood) rather than priors.

We imply a prior belief that the average duration of staying in the same regime is about eleven

months. This means that, for example, the hyperparameters are q̄1,j = 20, q̄2,j = q̄3,j = 1 for

the first regime. See Sims et al. (2008) for further details on how to define prior beliefs about

the persistence of the regimes.

The MCMC sampling scheme at the (n)st iteration, for n = 1, . . . , N1 + N2, consists of

sampling from the following conditional posterior distributions

1. p
(
S

(n)
T |YT , θ(n−1), Q(n−1)

)
,

2. p
(
Q(n)|ST

)
,

3. p
(
θ(n)(k)|YT , S(n)

T , σ(n−1)
)
,

4. p
(
σ(k)(n)|YT , S(n)

T , θ(n)
)
,

where Yt are observed data, θ = θ(k)k∈H , and σ = σ(k)k∈H . Simulation from the conditional

posterior density p
(
S

(n)
T |YT , θ(n−1)

)
, given θ and Q, is standard and in closed form. Simulation

from the conditional posterior density p
(
Q(n)|ST

)
is of the dirichlet form. Simulations from the

conditional posterior densities p
(
θ(n)(k)|YT , S(n)

T , σ(n−1)
)
and p

(
σ(k)(n)|YT , S(n)

T , θ(n)
)
reduces

to Bayesian inference for Markov-switching models with known allocations, ST .
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The sampler begins with setting parameters at the peak of the posterior density function.

We generate N1 + N2 = 11, 000 draws, the first N1 = 1,000 are discarded as burn-in and of

the remaining N2 = 10, 000 draws, one of every 10 draws is retained to get 1, 000 draws of

parameters and sequences of regimes.

We now provide further details on each of these conditional density functions. In the

remainder of this section, we simplify the notation by suppressing the superscript n denoting

the n-th draws of the simulation.

Conditional posterior densities, p (ST |YT , θ, Q)

Following the Carter and Kohn (1994b)’s multi-move Gibbs-sampling procedure, one can stim-

ulate ST as a block. We begin with a draw from p(sT |YT , θ, Q) obtained with the Hamilton

(1989) basic filter, and then iterate recursively backward to draw sT−1, sT−2, . . . , 1 according to

p(st|YT , θ, Q) =
∑

st+1∈H
p(st|Yt, θ, Q, st+1)p(st+1|YT , θ, Q), (III.13)

where

p(st|Yt, θ, Q, st+1) = qst+1,stp(st|Yt, θ, Q)
p(st+1|Yt, θ, Q) (III.14)

Conditional posterior densities, p (Q|ST )

Given the historical path of regimes, the transition matrix can be directly simulate from the

Dirichlet distribution. For each column k ofQ, denoted qk, the conditional posterior distribution

is given by

p(qk|ST ) = dirichet(qk|q̄1,k + η1,k, q̄2,k + η2,k, q̄3,k + η3,k), (III.15)

where q̄1,k, q̄2,k and q̄3,k are the parameters describing the prior, and ηi,k denotes the numbers

of transitions from state k to state i.

Conditional posterior densities, p (θ(k)|YT , ST , σ)

Geweke (1996) implements a Gibbs sampling procedure for the problem of multiple linear

regression with a set of independent inequality linear constraints. We follow a similar procedure

for our Markov-switching model with known allocations ST .

The Markov-switching model in (III.8) can be rewritten in a compact as yt = θ(st)′xt +

σ(st)εt, where yt is our variable of interest, and xt contains the vectors of observed data at date

241



t. Let y∗t = yt
σst

, and x∗t = xt
σst

, we obtain an homoskedastic model as follows

y∗t = θ(st)′x∗t + νt, (III.16)

where νt follows a standard normal distribution. Then, simulation from the full conditional

distribution of Ψ, given YT , ST , and σ, becomes straightforward, given a conjugate prior dis-

tribution. For 1 ≤ k ≤ H, the posterior is defined as

p (θ(k)|YT , ST ) = truncated-normal (θ(k)|mµ,k,Mµ,k)a≤θ(k)≤b , (III.17)

where truncated-normal(x|x̄1, x̄2)a≤x≤b is the truncated multivariate normal distribution with

mean x̄1, variance-covariance x̄2, and inequality constraints a ≤ x ≤ b. The vector mµ,k and

matrix Mµ,k are defined as follows

mµ,k =
(
θ̄−1

2 + Σxx,k

)−1 (
θ̄−1

2 θ̄1 + Σxy,k

)
, (III.18)

Mµ,k =
(
θ̄−1

2 + Σxx,k

)−1
, (III.19)

with θ̄1 and θ̄2 are known hyperparameters of the prior distribution, and

Σxx,k =
∑

t∈{t:st=k}
x∗tx

∗′
t ,

Σxy,k =
∑

t∈{t:st=k}
x∗ty

∗
t .

This step implies a computational complication that requires the simulation from a trun-

cated multivariate normal distribution. We use the minimax tilting method proposed by Botev

(2017) for exact independently and identically distributed data simulation from the truncated

multivariate normal distribution.8 The method is an excellent algorithm designed for extremely

fast simulation.

8The Matlab function is available at https://fr.mathworks.com/matlabcentral/fileexchange/53792-
truncated-multivariate-normal-generator.
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Conditional posterior densities, p (σ(k)|YT , ST , θ)

Given Yt, ST , and θ, the scale parameter σ(k) can be drawn using the following inverse-gamma

distribution

p (σ(k)|YT , ST , θ) = inv-gamma(σ(k)|α̃, β̃), (III.20)

where

α̃ = σ̄1 +
∑

t∈{t:st=k}

(
yt − θ′stxt

)2
,

β̃ = σ̄2 + Tk,

with ∑t∈{t:st=k}

(
yt − θ′stxt

)2
is the sum of squared residual, Tk is the number of elements of t’s

such that st = k for k = 1, 2, 3, and σ̄1 and σ̄2 are the hyperparameters.

III.F.2 Additional Results

Tables III.F.1, III.F.2, III.F.3 and III.F.4 reports the posterior distribution of parameters for

each country.
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Table III.F.1 – Posterior Distributions - Markov-switching framework

µi(st = 1) λi(st = 1) θi(st = 1) γi(st = 1) δi(st = 1) φi(st = 1) σi(st = 1)
Germany −1.09

[−1.35;−0.81]
0.46

[0.20;0.75]
−0.50

[−1.52;−0.05]
0.46

[0.10;0.84]
1.29

[−0.21;3.83]
0.16

[0.02;0.53]
0.33

[0.26;0.44]
France −1.05

[−1.18;−0.90]
0.93

[0.78;0.99]
−0.07

[−0.22;−0.00]
0.15

[0.01;0.42]
−0.65

[−1.33;0.06]
0.11

[0.02;0.22]
0.21

[0.18;0.27]
Italy −0.81

[−1.15;−0.43]
0.66

[0.33;0.94]
−0.11

[−0.31;−0.01]
0.13

[0.01;0.36]
0.29

[−1.17;1.38]
0.07

[0.01;0.24]
0.28

[0.22;0.33]
Spain −1.78

[−2.05;−1.21]
0.90

[0.63;0.99]
−0.13

[−0.29;−0.01]
0.31

[0.03;0.86]
−0.56

[−2.38;0.32]
0.20

[0.04;0.40]
0.35

[0.26;0.50]
Netherlands −0.93

[−1.07;−0.79]
0.89

[0.77;0.98]
−0.69

[−1.02;−0.30]
0.32

[0.07;0.62]
0.31

[−0.34;0.92]
0.18

[0.03;0.37]
0.30

[0.25;0.36]
Finland −0.93

[−1.14;−0.70]
0.70

[0.49;0.89]
−0.12

[−0.27;−0.01]
0.12

[0.01;0.41]
0.56

[−1.23;2.00]
0.20

[0.03;0.38]
0.27

[0.23;0.32]
Ireland −1.55

[−1.95;−1.28]
0.96

[0.87;1.00]
−0.04

[−0.14;−0.00]
0.09

[0.01;0.32]
−4.30

[−5.09;−3.38]
0.24

[0.02;0.55]
0.56

[0.47;0.68]
Austria −0.62

[−0.82;−0.44]
0.81

[0.59;0.96]
−0.14

[−0.42;−0.01]
0.18

[0.02;0.55]
0.32

[−0.49;1.67]
0.25

[0.05;0.86]
0.27

[0.22;0.37]
Portugal −0.79

[−1.01;−0.61]
0.48

[0.36;0.59]
−0.04

[−0.16;−0.00]
0.30

[0.05;0.69]
−1.01

[−1.64;−0.30]
0.04

[0.00;0.14]
0.54

[0.48;0.60]
Belgium −0.54

[−8.36;−0.40]
0.81

[0.14;0.97]
−0.24

[−7.66;−0.03]
0.22

[0.02;801.67]
0.48

[−5.56;5.23]
0.14

[0.01;8.22]
0.21

[0.17;0.94]
Luxembourg −0.47

[−0.65;−0.29]
0.86

[0.56;0.99]
−0.12

[−0.40;−0.01]
0.28

[0.05;0.56]
0.03

[−0.92;0.96]
0.16

[0.02;0.35]
0.24

[0.20;0.29]
Greece −2.79

[−3.69;−1.96]
0.43

[0.04;0.99]
−0.10

[−0.38;−0.01]
1.99

[0.70;3.71]
0.17

[−5.26;3.82]
0.52

[0.08;1.10]
0.71

[0.51;1.03]

Mean −1.11 0.74 −0.19 0.38 −0.26 0.19 0.36
Std. Dev. 0.65 0.19 0.20 0.52 1.41 0.12 0.16

Note: Posterior median of Phillips curve’s parameters based on equation (III.8): π̄it+1,t+h = µi(sit) +(
1− λi(sit)

)
π∗,i
t−1 +λi(sit)π

LTE,i
t + θi(sit)

(
uit − u

∗,i
t

)
+ γi(sit)

(
πo,∗t − π

∗,i
t

)
+ δi(sit)f it +φi(sit)sct +σi(sit)εit. The

90% probability interval is indicated in brackets.
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Table III.F.2 – Posterior Distributions - Markov-switching framework

µi(st = 2) λi(st = 2) θi(st = 2) γi(st = 2) δi(st = 2) φi(st = 2) σi(st = 2)
Germany −0.45

[−0.57;−0.33]
0.92

[0.77;0.99]
−0.43

[−0.71;−0.13]
0.24

[0.04;0.47]
−0.26

[−0.66;0.26]
0.19

[0.06;0.31]
0.27

[0.23;0.31]
France −0.43

[−0.55;−0.28]
0.89

[0.76;0.98]
−0.30

[−0.55;−0.08]
0.11

[0.01;0.25]
−0.78

[−1.18;−0.35]
0.05

[0.01;0.16]
0.18

[0.15;0.22]
Italy 0.07

[−0.12;0.27]
0.76

[0.32;0.98]
−0.11

[−0.33;−0.01]
0.22

[0.04;0.50]
−0.35

[−1.66;1.42]
0.09

[0.01;0.22]
0.26

[0.20;0.32]
Spain −0.27

[−0.42;−0.08]
0.50

[0.38;0.66]
−0.06

[−0.18;−0.01]
0.11

[0.01;0.53]
−0.21

[−0.98;0.69]
0.04

[0.00;0.14]
0.30

[0.25;0.36]
Netherlands −0.18

[−0.43;0.01]
0.81

[0.63;0.96]
−0.91

[−1.49;−0.29]
0.36

[0.06;0.72]
0.35

[−1.01;2.85]
0.19

[0.03;0.59]
0.33

[0.25;0.45]
Finland −0.04

[−0.20;0.10]
0.73

[0.39;0.94]
−0.13

[−0.31;−0.01]
0.44

[0.12;0.88]
0.51

[−0.12;4.89]
0.24

[0.05;0.48]
0.25

[0.20;0.31]
Ireland −0.62

[−0.79;−0.45]
0.77

[0.67;0.89]
−0.08

[−0.26;−0.01]
0.41

[0.08;0.88]
−1.16

[−2.55;0.08]
0.10

[0.01;0.28]
0.38

[0.32;0.44]
Austria −0.07

[−0.21;0.06]
0.91

[0.74;0.99]
−0.10

[−0.32;−0.01]
0.23

[0.04;0.48]
0.32

[−0.51;1.97]
0.22

[0.06;0.37]
0.23

[0.19;0.27]
Portugal 0.04

[−0.20;0.38]
0.33

[0.21;0.46]
−0.30

[−0.65;−0.05]
1.13

[0.86;1.40]
2.03

[0.55;3.12]
0.16

[0.02;0.42]
0.39

[0.33;0.45]
Belgium 0.03

[−0.51;0.42]
0.89

[0.70;0.99]
−0.19

[−0.62;−0.02]
0.12

[0.01;0.41]
0.12

[−1.48;1.07]
0.12

[0.02;0.54]
0.22

[0.18;0.29]
Luxembourg 0.08

[−0.06;0.20]
0.85

[0.69;0.98]
−0.22

[−0.49;−0.04]
0.24

[0.05;0.49]
−0.20

[−0.93;0.62]
0.04

[0.00;0.14]
0.18

[0.15;0.21]
Greece −1.08

[−1.30;−0.81]
0.72

[0.58;0.93]
−0.48

[−0.74;−0.08]
0.19

[0.02;0.51]
0.64

[−0.67;1.84]
0.29

[0.05;0.54]
0.48

[0.37;0.57]

Mean −0.24 0.76 −0.28 0.32 0.08 0.14 0.29
Std. Dev. 0.35 0.18 0.24 0.28 0.81 0.08 0.09

Note: Posterior median of Phillips curve’s parameters based on equation (III.8): π̄it+1,t+h = µi(sit) +(
1− λi(sit)

)
π∗,i
t−1 +λi(sit)π

LTE,i
t + θi(sit)

(
uit − u

∗,i
t

)
+ γi(sit)

(
πo,∗t − π

∗,i
t

)
+ δi(sit)f it +φi(sit)sct +σi(sit)εit. The

90% probability interval is indicated in brackets.
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Table III.F.3 – Posterior Distributions - Markov-switching framework

µi(st = 3) λi(st = 3) θi(st = 3) γi(st = 3) δi(st = 3) φi(st = 3) σi(st = 3)
Germany 0.65

[0.41;0.95]
0.91

[0.71;0.99]
−0.15

[−0.65;−0.01]
0.21

[0.02;0.69]
−2.67

[−4.17;−0.79]
0.37

[0.19;0.56]
0.48

[0.38;0.62]
France 0.17

[0.02;0.33]
0.84

[0.61;0.98]
−0.57

[−0.93;−0.20]
0.13

[0.01;0.36]
−0.87

[−3.02;1.43]
0.30

[0.19;0.42]
0.21

[0.18;0.26]
Italy 0.78

[0.53;1.07]
0.58

[0.25;0.87]
−0.22

[−0.75;−0.03]
0.21

[0.02;0.59]
0.75

[−0.93;2.78]
0.08

[0.00;0.30]
0.33

[0.25;0.41]
Spain 0.97

[0.73;1.23]
0.90

[0.69;0.99]
−0.73

[−1.06;−0.41]
0.11

[0.01;0.39]
−2.55

[−3.82;−1.15]
0.45

[0.25;0.70]
0.44

[0.35;0.53]
Netherlands 1.24

[0.82;1.92]
0.91

[0.68;0.99]
−1.16

[−2.29;−0.37]
1.11

[0.40;1.70]
−0.17

[−2.85;3.35]
0.08

[0.01;0.30]
0.57

[0.40;0.73]
Finland 0.31

[0.01;0.81]
0.56

[0.18;0.89]
−0.18

[−0.51;−0.02]
0.73

[0.21;1.13]
1.42

[−1.06;4.59]
0.39

[0.13;0.57]
0.27

[0.21;0.36]
Ireland 1.68

[1.21;2.18]
0.68

[0.52;0.86]
−0.65

[−1.21;−0.16]
0.16

[0.02;0.53]
0.67

[−4.09;5.03]
0.71

[0.41;1.02]
0.84

[0.73;0.98]
Austria 0.61

[0.28;0.92]
0.80

[0.34;0.98]
−0.20

[−0.58;−0.02]
0.47

[0.10;0.95]
0.39

[−0.92;1.96]
0.60

[0.32;0.81]
0.30

[0.23;0.38]
Portugal 2.06

[1.62;2.51]
0.72

[0.29;0.96]
−2.02

[−2.89;−1.00]
1.54

[0.70;2.26]
0.66

[−4.27;5.26]
0.43

[0.08;1.01]
0.52

[0.39;0.71]
Belgium 0.64

[0.40;1.26]
0.87

[0.28;0.99]
−0.49

[−0.84;−0.10]
0.37

[0.05;0.90]
−0.36

[−2.20;1.48]
0.31

[0.07;0.52]
0.33

[0.24;0.42]
Luxembourg 0.63

[0.29;1.00]
0.59

[0.26;0.89]
−0.32

[−0.87;−0.03]
0.26

[0.03;0.64]
−0.30

[−2.89;2.00]
0.40

[0.24;0.55]
0.28

[0.20;0.40]
Greece 0.48

[0.21;0.73]
0.87

[0.73;0.97]
−0.35

[−0.70;−0.06]
0.66

[0.27;1.03]
1.55

[−0.26;3.65]
0.33

[0.03;0.65]
0.58

[0.49;0.67]

Mean 0.85 0.77 −0.59 0.50 −0.12 0.37 0.43
Std. Dev. 0.56 0.14 0.54 0.45 1.36 0.18 0.18

Note: Posterior median of Phillips curve’s parameters based on equation (III.8): π̄it+1,t+h = µi(sit) +(
1− λi(sit)

)
π∗,i
t−1 +λi(sit)π

LTE,i
t +θi(sit)

(
uit − u

∗,i
t

)
+γi(sit)

(
πo,∗t − π

∗,i
t

)
+δi(sit)f it +φi(sit)sct+σi(sit)εit. The

90% probability interval is indicated in brackets.

Table III.F.4 – Posterior Distributions - Transition Matrices

qi11 qi21 qi31 qi12 qi22 qi32 qi13 qi23 qi33
Germany 0.87

[0.80;0.93]
0.08

[0.03;0.15]
0.04

[0.01;0.10]
0.04

[0.02;0.07]
0.93

[0.88;0.96]
0.03

[0.01;0.07]
0.03

[0.01;0.07]
0.08

[0.04;0.15]
0.89

[0.82;0.94]
France 0.92

[0.85;0.96]
0.05

[0.01;0.11]
0.03

[0.01;0.08]
0.06

[0.02;0.13]
0.89

[0.80;0.94]
0.05

[0.02;0.12]
0.02

[0.00;0.07]
0.05

[0.01;0.10]
0.92

[0.87;0.96]
Italy 0.94

[0.89;0.98]
0.04

[0.01;0.09]
0.02

[0.00;0.04]
0.04

[0.02;0.10]
0.91

[0.84;0.95]
0.05

[0.02;0.09]
0.02

[0.00;0.06]
0.07

[0.03;0.13]
0.90

[0.84;0.95]
Spain 0.89

[0.82;0.94]
0.07

[0.03;0.14]
0.03

[0.01;0.09]
0.03

[0.01;0.06]
0.92

[0.88;0.96]
0.04

[0.02;0.08]
0.03

[0.01;0.07]
0.07

[0.03;0.13]
0.90

[0.84;0.95]
Netherlands 0.92

[0.87;0.95]
0.07

[0.03;0.11]
0.02

[0.00;0.04]
0.07

[0.03;0.12]
0.89

[0.83;0.94]
0.04

[0.01;0.09]
0.03

[0.01;0.09]
0.06

[0.02;0.12]
0.90

[0.83;0.96]
Finland 0.95

[0.91;0.98]
0.03

[0.01;0.06]
0.02

[0.00;0.05]
0.04

[0.01;0.08]
0.91

[0.84;0.95]
0.05

[0.02;0.11]
0.03

[0.01;0.08]
0.07

[0.03;0.13]
0.90

[0.82;0.95]
Ireland 0.91

[0.85;0.96]
0.06

[0.02;0.12]
0.02

[0.00;0.06]
0.04

[0.02;0.08]
0.93

[0.89;0.96]
0.02

[0.01;0.05]
0.02

[0.00;0.05]
0.04

[0.02;0.08]
0.94

[0.89;0.97]
Austria 0.88

[0.82;0.94]
0.09

[0.04;0.15]
0.03

[0.01;0.08]
0.05

[0.02;0.08]
0.90

[0.84;0.94]
0.05

[0.02;0.10]
0.02

[0.00;0.07]
0.09

[0.04;0.16]
0.88

[0.80;0.93]
Portugal 0.94

[0.90;0.97]
0.04

[0.01;0.07]
0.02

[0.00;0.04]
0.05

[0.02;0.09]
0.92

[0.88;0.96]
0.02

[0.01;0.05]
0.04

[0.01;0.10]
0.06

[0.02;0.13]
0.90

[0.81;0.96]
Belgium 0.91

[0.75;0.96]
0.06

[0.02;0.15]
0.03

[0.00;0.15]
0.06

[0.00;0.14]
0.89

[0.78;0.96]
0.06

[0.03;0.11]
0.02

[0.00;0.08]
0.08

[0.04;0.16]
0.89

[0.80;0.94]
Luxembourg 0.92

[0.88;0.96]
0.05

[0.02;0.10]
0.02

[0.00;0.06]
0.04

[0.02;0.08]
0.92

[0.88;0.96]
0.03

[0.01;0.07]
0.03

[0.01;0.09]
0.08

[0.03;0.16]
0.88

[0.79;0.94]
Greece 0.92

[0.86;0.96]
0.05

[0.02;0.11]
0.02

[0.01;0.07]
0.03

[0.01;0.07]
0.92

[0.88;0.96]
0.04

[0.02;0.08]
0.01

[0.00;0.04]
0.03

[0.01;0.06]
0.95

[0.92;0.98]

Note: Posterior median of transition matrices. The 90% probability interval is indicated in brackets.
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Conclusion

In this thesis, I have studied three different issues related to the topic of monetary policy,

inflation and financial markets in the euro area. Using empirical techniques, I tried to lay

the emphasis on the role of ECB’s monetary policy in stabilizing the economy and financial

markets, especially during macroeconomic or financial downturns. I also attempted to shed

light on how linkages between macroeconomic and financial risks matter for monetary policy.

This thesis is divided into three chapters. In the first chapter, I investigate possible changes

in the reaction of monetary policy to inflation and real economic activity in the wake of the

Great Recession, and how it may have affected macroeconomic performances. Using a time-

varying parameters vector autoregressive model, the results show that the conduct of monetary

policy in the euro area has evolved differently than in the U.S. after the 2008 crisis. Whereas

the estimated U.S. policy rule does not suggest any significant change in the Fed’s systematic

reaction to macroeconomic fluctuations after 2008, euro area reaction function reveals important

changes in ECB’s monetary policy, which has considerably increased the weight it placed on

stabilizing inflation. A counterfactual analysis shows that the shift in ECB monetary policy

appears to be a key determinant of the level of inflation in the euro area at the ZLB, that would

have suffered successive deflationary episodes from 2014 onward.

In the second part of the thesis, we study the role of the ECB during financial markets

downturn in the early stage of the COVID pandemic outbreak. Using state-dependent local

projections to measure the evolution of COVID-induced sovereign risk in the euro area around

major ECB interventions, estimation results show that despite the controversy generated by the

“we are not here to close spreads” declaration of Christine Lagarde, the ECB actually stopped

the spread of the pandemic-sparked crisis to the euro area sovereign debt markets on March

12, before the announcement of the PEPP and the conduct of market operations that occurred

on March 18, leading to the reversal of sovereign spreads. A counterfactual analysis indicates

that without ECB’s interventions, sovereign spreads in the euro area would have reached levels
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comparable to those observed during the 2010-12 sovereign debt crisis.

In the last part of the thesis, we explore the topic of inflation differentials in the euro area,

and focus especially on the dispersion of inflation risks among member countries. Constructing

measures of risk of inflation dispersion based on the cross-country standard deviation of predic-

tive inflation distribution, our results indicate that whereas the dispersion was concentrated on

upside inflation risks until 2008, it has been stronger for the lower tail of the distribution after

2008. The results also show that inflation dispersion has been driven by successive episodes

of downside and upside inflation risks over the post-COVID period. A counterfactual analysis

highlights financial stress as being a key determinant of the dispersion of downside inflation

risks, and supply chains disruptions a being an important driver of the dispersion of upside

risk to inflation. Estimation results also reveal noticeable Phillips curves heterogeneity across

countries, and underline the role of heterogeneous Phillips curve coefficients in the dispersion

of inflation in the euro area.

The first two chapters of this thesis deal with the role of ECB monetary policy in a context

of deflationary pressures, first during the Great Recession then in the early stage of the COVID

crisis. On the other hand, the last chapter raises some policy implications of the current context

marked by the return of high inflation. In this regard, the topic of the interplay between

monetary policy, inflation and financial markets—the core topic of this thesis—is more relevant

than ever since the ECB has recently entered a new phase of monetary policy. Figure 1 shows

how the ECB has successively raised its key policy rate since July 2022 in reaction to the

rapid surge in inflation of 2021. This increase in the main refinancing operations (MRO) rate

contrasts with the relatively long period of ZLB and weak inflation in the euro area. Through

these consecutive policy actions, the ECB has reaffirmed its determination to fight inflation

and achieve its primary objective of price stability.

This topic is even more important in a context of unprecedented pace of rate hikes in the

euro area. As depicted in Figure 2, the monetary tightening of 2022 has been stronger than

previous interest rates hikes of 1999 or 2005. Regarding the magnitude of the cumulative in-

crease since the first rate hike, the tightening cycle started in 2022 can be compared with the

monetary easing of 2008, despite being more gradual than ECB interest rates reaction to the

GFC.
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Figure 1 – MRO rate, inflation, and the interest rate cycle
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Note: The top panel shows the evolution of the main refinancing operations (MRO) rate and the annual growth
rate of Harmonised Index of Consumer Prices (HICP) from January 1999 to September 2023. The bottom panel
shows monthly changes in the MRO rate from January 1999 to September 2023.
Source: ECB and author’s calculations.

Figure 2 – Pace of interest rate hikes and cuts
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Note: The figure shows the evolution of the MRO rate since the first interest rate decision (interest rate hike
or cut). On the x-axis, 0 denotes the month before the first rate hike/cut.
Source: ECB and author’s calculations.
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Overall, the ECB has proved to be equipped to meet big challenges in the euro area over

the years. By using unconventional policies in reaction to the GFC and reviewing its strategy

in 2021, it has shown its ability to adapt in a timely manner to manage economic fluctuations

and provide financial assistance during downturns. Along with the current challenge posed by

the trade-off between price and financial stability, a crucial question concerns ECB’s ability to

adapt its policy to address issues related to climate change.
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