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 to calculate the Gerstenhaber bracket between elements of HH 1 (A) and elements of HH n (A) for any n ∈ N 0 and any algebra A over a field, as well as an elementary result that allows computing the remaining brackets from the previous ones. We also show that the Gerstenhaber bracket of the Hochschild cohomology of FK(3) over a field of characteristic different from 2 and 3 is not induced by any Batalin-Vilkovisky generator. We introduce a new construction of a projective resolution of the trivial module of a quadratic algebra satisfying some assumptions.

Après avoir rappelé les notions fondamentales en théorie des algèbres quadratiques, la homologie et cohomologie de Hochschild des algèbres associatives, les bases de Gröbner pour les algèbres non commutatives, et les algèbres de Fomin-Kirillov FK(n) sur un corps pour n ⩾ 2, on calcule la (co)homologie de Hochschild de l'algèbre de Fomin-Kirillov FK(3) à trois générateurs sur un corps de caractéristique différente de 2 et 3, et l'homologie cyclique de FK(3) dans le cas d'un corps de caractéristique nulle. De plus, nous calculons la structure algébrique et de Gerstenhaber sur la cohomologie de Hochschild de FK(3) pour un corps de caractéristique différente de 2 et 3. Le calcul de la structure de Gerstenhaber est en partie basée sur une méthode générale que nous introduisons pour calculer facilement la parenthèse de Gerstenhaber entre les éléments de HH 0 (A) et les éléments de HH n (A) pour tout n ∈ N 0 et toute algèbre A sur un corps, la méthode par M. Suárez-Álvarez dans [START_REF] Suárez-Álvarez | A little bit of extra functoriality for Ext and the computation of the Gerstenhaber bracket[END_REF] pour calculer la parenthèse de Gerstenhaber entre les éléments de HH 1 (A) et les éléments de HH n (A), ainsi qu'une résultat qui permet de calculer les cas restantes à partir des précédentes. Nous montrons aussi que le crochet de Gerstenhaber de la cohomologie de Hochschild de FK(3) sur un corps de caractéristique différent de 2 et 3 n'est induit par aucun générateur de Batalin-Vilkovisky. On introduit une résolution projective du module trivial de toute algèbre quadratique satisfaisant certaines hypothèses.

Mot-clés: Algèbre de Fomin-Kirillov, Cohomologie de Hochschild, Crochet de Gerstenhaber. v

Brève présentation

On sait que l'anneau de cohomologie H • (F l n ,Z) de la variété de drapeaux complète complexe F l n est isomorphe à Z[X 1 , . . . ,X n ]/I n , où I n est l'idéal engendré par les polynômes symétriques. La cohomologie H • (F l n ,Z) a une base formée par les classes de Schubert σ w , indexées par les éléments w du groupe symétrique S n . Sous l'isomorphisme ci-dessus, les polynômes de Schubert S w , w ∈ S n représentent les classes de Schubert. Pour étudier la combinatoire de l'anneau de cohomologie de la variété de drapeaux, S. Fomin et A. Kirillov ont introduit une famille d'algèbres quadratiques, maintenant appelée algèbres de Fomin-Kirillov FK(n), indexé par les entiers positifs n ∈ N (voir [START_REF] Fomin | Quadratic algebras, Dunkl elements, and Schubert calculus[END_REF][START_REF] Kirillov | On some quadratic algebras[END_REF][START_REF] Kirillov | On some quadratic algebras I 1 2 : combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss-Catalan, universal Tutte and reduced polynomials[END_REF]). Ils prouvent que le sous-anneau commutatif de FK(n) généré par les éléments de Dunkl θ i pour i ∈ 1,n est isomorphe à H • (F l n ,Z), et les évaluations des polynômes de Schubert S w (θ 1 , . . . , θ n ) aux éléments de Dunkl agissent sur l'anneau de cohomologie H • (F l n ,Z) par la multiplication à gauche de la classe de Schubert σ w . Ils conjecturent que chacune de ces évaluations est une combinaison linéaire non négative de monômes dans les générateurs x i,j , i < j de FK(n), et montrent que cette conjecture implique la non négativité des constantes c w uv , où σ u σ v = w∈Sn c w uv σ w . L'algèbre de Fomin-Kirillov FK(n) pour n ∈ 3,5 est une algèbre de Nichols de dimension finie (voir [START_REF] Graña | Nichols algebras of non-abelian group type: zoo examples[END_REF][START_REF] Milinski | Pointed indecomposable Hopf algebras over Coxeter groups, New trends in Hopf algebra theory[END_REF]), qui apparaît dans la classification des algèbres de Hopf pointées de dimension finie dont les groupes d'éléments de type groupe sont abéliens (voir [START_REF] Andruskiewitsch | On the classification of finite-dimensional pointed Hopf algebras[END_REF]). L'algèbre de Fomin-Kirillov FK(n) pour n ∈ 3,5 produit une algèbre de Hopf de dimension finie par bosonisation, avec un groupe non abélien d'éléments de type groupe. La conjecture de P. Etingof et V. Ostrik affirme que l'algèbre de Yoneda H • (H,k) = Ext • H (k,k) de toute algèbre de Hopf (tréssée) H de dimension finie est de type fini. N. Andruskiewitsch, I. Angiono, J. Pevtsova et S. Witherspoon ont prouvé la conjecture pour toute algèbre de Hopf complexe de dimension finie pointée avec un groupe abélien d'éléments de type groupe (voir [1]). L'algèbre de Yoneda de l'algèbre de Fomin-Kirillov FK(3) à trois générateurs a d'abord été calculée par D. Ştefan et C. Vay dans [START_REF] Ştefan | The cohomology ring of the 12-dimensional Fomin-Kirillov algebra[END_REF], à l'aide de plusieurs calculs assez lourds avec des séquences spectrales. L'algèbre de Yoneda de FK(3) a été plus récemment obtenue dans [START_REF] Herscovich | An elementary computation of the cohomology of the Fomin-Kirillov algebra with 3 generators[END_REF] par des méthodes plus directes, à savoir en calculant explicitement la résolution projective minimale du module trivial k dans la catégorie des modules graduées et inférieurement bornés.

Le but de cette thèse est de calculer explicitement la (co)homologie de Hochschild de FK(3) sur un corps k de caractéristique différente de 2 et 3 (voir [12,[START_REF]Gerstenhaber structure on Hochschild cohomology of the Fomin-Kirillov algebra on 3 generators[END_REF]). En utilisant la description explicite de la résolution projective minimale du bimodule standard de FK(3), nous calculons la dimension de la (co)homologie de Hochschild de FK(3) sur un corps k de caractéristique différente de 2 et 3, et l'homologie cyclique si le corps k est de caractéristique nulle. La structure algébrique (pour le produit cup) et le crochet de Gerstenhaber sur la cohomologie de Hochschild de FK(3) sont également entièrement calculés. Pour cela, on fournit une méthode générale de nature homologique pour calculer facilement le crochet de Gerstenhaber entre les éléments de HH 0 (A) et les éléments de HH n (A) pour tout n ∈ N 0 et toute algèbre A sur un corps k.

La thèse est organisée de la façon suivante. Dans le chapitre 1, nous rappelons les fondaments de la théorie des algèbres quadratiques et de l'homologie et cohomologie de Hochschild. On introduit une résolution projective du module trivial de toute algèbre quadratique satisfaisant certaines hypothèses (voir Théorème 1.2.5). Dans la Sous-section 1.4.1 nous introduisons une méthode générale pour calculer le crochet de Gerstenhaber entre les éléments de HH 0 (A) et les éléments de HH n (A) pour tout n ∈ N 0 et toute algèbre A sur un corps k (voir le Théorème 1.4.1). Dans la Sous-section 1.4.2 on rappelle brièvement la méthode introduite par M. Suárez-Álvarez dans [START_REF] Suárez-Álvarez | A little bit of extra functoriality for Ext and the computation of the Gerstenhaber bracket[END_REF] pour calculer la parenthèse de Gerstenhaber entre les éléments de HH 1 (A) et HH n (A) pour n ∈ N 0 . Dans le Chapitre 2, nous rappelons les notions fondamentales de la théorie de bases de Gröbner pour les algèbres non commutatives, ainsi que le lemme du losange de Bergman. Nous montrons également la base de Gröbner de FK(3) comme exemple. Au chapitre 3, nous rappelons les modules de Yetter-Drinfeld sur une algèbre de groupe et la définition des algèbres de Fomin-Kirillov FK(n) pour n ⩾ 2 sur un corps k, qui sont des modules de Yetter-Drinfeld sur l'algèbre de groupe kS n . Au chapitre 4, après avoir rappelé quelques résultats fondamentaux et la structure du module de Yetter-Drinfeld de l'algèbre de Fomin-Kirillov FK(3) à trois générateurs, nous construisons explicitement la résolution projective minimale du bimodule standard de FK(3) dans la catégorie des bimodules gradués et inférieurement bornés (voir la Proposition 4.1.15), en nous appuyant sur la résolution projective minimale du module trivial k dans la catégorie des bimodules gradués et inférieurement bornés dans [START_REF] Herscovich | An elementary computation of the cohomology of the Fomin-Kirillov algebra with 3 generators[END_REF]. En utilisant cette résolution nous calculons ensuite des bases explicites pour les groupes d'homologie et de cohomologie de Hochschild de FK(3) sur un corps k de caractéristique différente de 2 et 3. En particulier, on prouve le résultat suivant.

Proposition (voir Proposition 4.2.7). Soit A = FK [START_REF] Andruskiewitsch | On the classification of finite-dimensional pointed Hopf algebras[END_REF]. La dimension de HH n (A) est donnée par

dim HH n (A) =                6,
si n = 0, , si n = 4r + 1 pour r ∈ N 0 , On calcule aussi les séries de Hilbert par rapport au degré interne de FK(3) (voir Corollaire 4.2.8). De plus, la série de Hilbert de l'homologie cyclique est immédiatement obtenue à partir de l'homologie de Hochschild au moyen du théorème de Goodwillie (voir Corollaire 4.2.10) dans le cas où la caractéristique du corps est nulle. Nous calculons également des bases explicites pour les groupes de cohomologie de Hochschild de FK(3) sur un corps k de caractéristique différente de 2 et 3. En particulier, on prouve le résultat suivant. La série complète de Hilbert de la cohomologie de Hochschild par rapport au degré interne de FK(3) est dans le Corollaire 4.2.20. Dans le chapitre 5, en calculant les produits cup et en utilisant des techniques issues des bases de Gröbner, nous prouvons que la cohomologie de Hochschild de FK(3) sur un corps k de caractéristique différente de 2 et 3 est donné comme un quotient d'une algèbre commutative graduée libre (pour le degré cohomologique) avec 14 générateurs homogènes (voir Proposition 5.1.5) modulo l'idéal homogène engendré par les 63 relations listées dans (5.1.5) (voir Corollaire 5. 1.11). En utilisant les méthodes générales introduites dans la section 1.4, on calcule les crochets de Gerstenhaber sur la cohomologie de Hochschild de FK(3) sur un corps k de caractéristique différente de 2 et 3 entre éléments de degré de cohomologie m pour m ∈ 0,1 et éléments de degré de cohomologie n ∈ N 0 . Enfin, nous présentons un résultat simple qui nous permet de calculer les crochets de Gerstenhaber restants sous certaines hypothèses sur la structure algébrique de la cohomologie de Hochschild d'une algèbre (voir Lemme 5.2.12), qui sont vérifiées dans le cas de l'algèbre de Fomin-Kirillov FK(3) à trois générateurs sur un corps de caractéristique différente de 2 et 3. Nous résumons tous les crochets de Gerstenhaber de la cohomologie de Hochschild de FK(3) dans le tableau 5.2.1. En utilisant l'expression explicite ci-dessus du crochet de Gerstenhaber, nous montrons que la structure de Gerstenhaber sur la cohomologie de Hochschild de FK(3) n'est induite par aucun générateur de Batalin-Vilkovisky (voir la proposition 5.2.15). Le résultat principal du chapitre 6 est que FK(4) possède une donnée de résolution, ce qui nous permet de calculer une résolution projective du module trivial.

Proposition (voir Proposition 4.2.19)

Introduction

It is known that the cohomology ring H • (F l n ,Z) of the complex complete flag manifold F l n is isomorphic to Z[X 1 , . . . ,X n ]/I n , where I n is the ideal generated by symmetric polynomials.

The cohomology H • (F l n ,Z) has a basis formed by Schubert classes σ w , indexed by the elements w of symmetric group S n . Under the above isomorphism, the Schubert polynomials S w , w ∈ S n represent the Schubert classes. To study the combinatorics of the cohomology ring of the flag manifold, S. Fomin and A. Kirillov introduced a family of quadratic algebras, now called the Fomin-Kirillov algebras FK(n), indexed by the positive integers n ∈ N (see [START_REF] Fomin | Quadratic algebras, Dunkl elements, and Schubert calculus[END_REF][START_REF] Kirillov | On some quadratic algebras[END_REF][START_REF] Kirillov | On some quadratic algebras I 1 2 : combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss-Catalan, universal Tutte and reduced polynomials[END_REF]). They prove that the commutative subring of FK(n) generated by Dunkl elements θ i for i ∈ 1,n is isomorphic to H • (F l n ,Z), and the evaluations of Schubert polynomials S w (θ 1 , . . . , θ n ) at Dunkl elements acts on the cohomology ring H • (F l n ,Z) by the left multiplication of the Schubert class σ w . They conjecture that each of these evaluations is a nonnegative linear combination of monomials in the generators x i,j , i < j of FK(n), and show that this conjecture implies the nonnegativity of constants c w uv , where σ u σ v = w∈Sn c w uv σ w . The Fomin-Kirillov algebra FK(n) for n ∈ 3,5 is a finite-dimensional Nichols algebra (see [START_REF] Graña | Nichols algebras of non-abelian group type: zoo examples[END_REF][START_REF] Milinski | Pointed indecomposable Hopf algebras over Coxeter groups, New trends in Hopf algebra theory[END_REF]), which appears in the classification of finite-dimensional pointed Hopf algebras with abelian groups of group-like elements (see [START_REF] Andruskiewitsch | On the classification of finite-dimensional pointed Hopf algebras[END_REF]). The Fomin-Kirillov algebra FK(n) for n ∈ 3,5 produces a finite-dimensional Hopf algebra by bosonisation, with a non-abelian group of group-like elements. The conjecture by P. Etingof and V. Ostrik claims that the Yoneda algebra H • (H,k) = Ext • H (k,k) of every finite-dimensional (braided) Hopf algebra H is finitely generated. N. Andruskiewitsch, I. Angiono, J. Pevtsova and S. Witherspoon have proved the conjecture for finite-dimensional complex pointed Hopf algebra with an abelian group of group-like elements (see [1]). The Yoneda algebra of the Fomin-Kirillov algebra FK(3) on three generators was first computed by D. Ştefan and C. Vay in [START_REF] Ştefan | The cohomology ring of the 12-dimensional Fomin-Kirillov algebra[END_REF], using several calculations involving spectral sequences. The Yoneda algebra of FK(3) was more recently obtained in [START_REF] Herscovich | An elementary computation of the cohomology of the Fomin-Kirillov algebra with 3 generators[END_REF] by more direct methods, namely by explicitly computing the minimal projective resolution of the trivial module k in the category of bounded below graded modules.

The aim of this thesis is to explicitly compute the Hochschild (co)homology of FK(3) over a field k of characteristic different from 2 and 3 (see [12,[START_REF]Gerstenhaber structure on Hochschild cohomology of the Fomin-Kirillov algebra on 3 generators[END_REF]). Using the explicit projective bimodule resolution of FK(3), we compute the dimension of the Hochschild (co)homology of FK(3) over a field k of characteristic different from 2 and 3, and the cyclic homology if the field k has characteristic zero. The algebraic structure (for cup product) and Gerstenhaber bracket on the Hochschild cohomology of FK(3) are also entirely computed. To do this, we provide a general method of homological flavour to easily compute the Gerstenhaber bracket between elements of HH 0 (A) and elements of HH n (A) for any n ∈ N 0 and any algebra A over a field k.

The thesis is organised as follows. In Chapter 1, we recall the basics about quadratic algebras and Hochschild (co)homology. We introduce a new construction of a projective resolution of the trivial module of a quadratic algebra satisfying some assumptions (see Theorem 1.2.5). We also introduce a general method to compute the Gerstenhaber bracket between elements of HH 0 (A) and elements of HH n (A) for any n ∈ N 0 and any algebra A over a field k (see Theorem 1.4.1) in Subsection 1.4.1. We also briefly recall the method introduced by M. Suárez-Álvarez in [START_REF] Suárez-Álvarez | A little bit of extra functoriality for Ext and the computation of the Gerstenhaber bracket[END_REF] to compute the Gerstenhaber bracket between elements of HH 1 (A) and HH n (A) for n ∈ N 0 in Subsection 1.4.2. In Chapter 2, we recall the Gröbner bases and Bergman's diamond lemma for noncommutative algebras. We also show the Gröbner basis of FK(3) as an example. In Chapter 3, we recall the Yetter-Drinfeld modules over a group algebra and the definition of Fomin-Kirillov algebras FK(n) for n ⩾ 2 over a field k, which are Yetter-Drinfeld modules over the group algebra kS n . In Chapter 4, after recalling some basic facts and Yetter-Drinfeld module structure about the Fomin-Kirillov algebra FK(3) on three generators, we explicitly construct the minimal projective resolution of the FK(3) in the category of bounded below graded bimodules (see Proposition 4.1.15), building upon the minimal projective resolution of the trivial module k in the category of bounded below graded modules in [START_REF] Herscovich | An elementary computation of the cohomology of the Fomin-Kirillov algebra with 3 generators[END_REF]. Using this resolution we then compute explicit bases for the Hochschild homology groups of FK(3) over a field k of characteristic different from 2 and 3. In particular, we prove the following result.

Proposition (see Proposition 4.2.7). Let A = FK [START_REF] Andruskiewitsch | On the classification of finite-dimensional pointed Hopf algebras[END_REF]. The dimension of HH n (A) is given by

dim HH n (A) =                6,
if n = 0, , if n = 4r + 1 for r ∈ N 0 , We also compute their full Hilbert series with respect to the internal degree of FK(3) (see Corollary 4.2.8). Moreover, the Hilbert series of the cyclic homology is immediately obtained from the Hochschild homology by means of Goodwillie's theorem (see Corollary 4.2.10) in case the characteristic of the field is zero. We also compute explicit bases for the Hochschild cohomology groups of FK(3) over a field k of characteristic different from 2 and 3. In particular, we prove the following result.

Proposition (see Proposition 4.2.19). Let A = FK [START_REF] Andruskiewitsch | On the classification of finite-dimensional pointed Hopf algebras[END_REF]. The dimension of HH n (A) is given by

dim HH n (A) =      5 2 n + 4, if n = 4r for r ∈ N 0 , 5 2 n + 5, if n = 4r + 2 for r ∈ N 0 , 5n+9 2 , if n = 2r + 1 for r ∈ N 0 .
The full Hilbert series of the Hochschild cohomology with respect to the internal degree of FK( 3) is in Corollary 4.2.20. In Chapter 5, by computing the cup products and using techniques from Gröbner bases, we prove that the Hochschild cohomology of FK(3) over a field k of characteristic different from 2 and 3 is given as a quotient of a free graded-commutative algebra (for the cohomological degree) with 14 homogeneous generators (see Proposition 5.1.5) modulo the homogeneous ideal generated by the 63 relations listed in (5.1.5) (see Corollary 5.1.11). Using the general methods introduced in Section 1.4, we compute the Gerstenhaber brackets on Hochschild cohomology of FK(3) over a field k of characteristic different from 2 and 3 between elements of cohomology degree m for m ∈ 0,1 and elements of cohomology degree n ∈ N 0 . Finally, we present a simple result that allows us to compute the remaining Gerstenhaber brackets under some assumptions on the algebra structure of the Hochschild cohomology of an algebra (see Lemma 5.2.12), which are verified in the case of the Fomin-Kirillov algebra FK(3) on three generators over a field of characteristic different from 2 and 3. We summarize all Gerstenhaber brackets of Hochschild cohomology of FK(3) in Table 5.2.1. By using the above explicit expression of the Gerstenhaber bracket, we show that the Gerstenhaber bracket on the Hochschild cohomology of FK(3) is not induced by any Batalin-Vilkovisky generator (see Proposition 5.2.15). The main result of Chapter 6 is that the Fomin-Kirillov algebra FK(4) of index 4 has a resolving datum, which allows us to construct a projective resolution of the trivial module.

Notations

We denote by N (resp., N 0 ) the set of positive (resp., nonnegative) integers, and Z the set of integers. Given i ∈ Z, we will denote by Z ⩽i the set {m ∈ Z|m ⩽ i}. Given i,j ∈ Z with i ⩽ j, we will denote by i,j = {m ∈ Z|i ⩽ m ⩽ j} the integer interval, and we define χ n = 0 if n is an odd integer and χ n = 1 if n is an even integer. Moreover, given r ∈ R, we set ⌊r⌋ = sup{n ∈ Z|n ⩽ r} the usual floor function.

In the whole thesis, k is a field and k × = k \ {0}. All maps between k-vector spaces will be k-linear and all unadorned tensor products ⊗ will be over k.

To reduce space in the expressions of the article we will typically denote the composition f • g of maps f and g, the left action f • g, where f is an element in a group and g is an element in a set, or the right action f • g, where g is an element in a group and f is an element in a set, simply by their juxtaposition f g.

Chapter 1

Quadratic algebras and Hochschild (co)homology

In this chapter, we are going to recall the definitions and basic properties of quadratic algebras and modules, as well as the definition of Hochschild (co)homology. We also present a new construction of a projective resolution of the trivial module of a quadratic algebra satisfying some assumptions, and some methods to compute the Gerstenhaber bracket of Hochschild cohomology.

Koszul complex of quadratic algebras and modules

All the following results can be found in [START_REF] Polishchuk | Quadratic algebras[END_REF]. Let A be a unitary associative k-algebra. The field k embeds in A via the ring homomorphism η : k → A. Suppose that A has an augmentation, i.e. there is a ring homomorphism ϵ : A → k such that ϵη = id k . The field k is an A-module via the map ϵ. The algebra A is called graded if there are vector subspaces {A n |n ∈ Z} of A such that A = ⊕ n∈Z A n and A m • A n ⊆ A m+n for all m,n ∈ Z. A graded algebra A is called connected if A 0 = k, A n = 0 for n ∈ Z \ N 0 and Ker(ϵ) = ⊕ ∞ n=1 A n . We denote ⊕ ∞ n=1 A n by A + . A right module M over a graded algebra A = ⊕ n∈Z A n is called graded if there are vector subspaces {M n |n ∈ Z} of M such that M = ⊕ n∈Z M n and M n • A m ⊆ M n+m for all m,n ∈ Z. Analogously, we will have the definition of a graded left A-module. The elements of A n or M n are called homogeneous, and n is called the Adams degree or the internal degree of the elements in A n or M n . A graded A-module M is called bounded below if M n = 0 for n ≪ 0. A graded algebra A (resp., graded A-module M ) is called locally finite dimensional if every vector space A n (resp., M n ) for n ∈ Z is finite dimensional over k. For a graded A-module M and i ∈ Z, we denote by M (i) the same module with shifted grading M (i) n = M i+n for n ∈ Z. Given two graded A-modules M and N , a morphism f : M → N of A-modules is called homogeneous of degree d ∈ Z if f (M n ) ⊆ N n+d for all n ∈ Z. In particular, a morphism of graded modules will be a homogeneous morphism of A-modules of degree zero. We assume that all graded algebras are connected and locally finite-dimensional, and all graded modules M are bounded below and locally finite-dimensional.

Let V be a vector space. The tensor algebra T(V ) generated by V is given by T(V ) = ⊕ ∞ n=0 T n (V ) where T 0 (V ) = k and T n (V ) = V ⊗n for n ∈ N. The multiplication in T(V ) is given by the tensor product T m (V ) ⊗ T m (V ) ∼ = T m+n (V ) for m,n ∈ N 0 . The tensor algebra T(V ) is a graded algebra. Definition 1.1.1. A graded k-algebra A = ⊕ n∈N0 A n is called quadratic if A is generated by V = A 1 as a k-algebra and the kernel of the natural surjection T(V ) → A is generated as a two-sided ideal of T(V ) by a subspace R ⊆ T 2 (V ) = V ⊗ V .

More generally, given an integer N ⩾ 2, an algebra A is said to be N -homogeneous if it is of the form T(V )/(R), where V is a k-vector space and R ⊆ V ⊗N . An N -homogeneous algebra with N = 2 is quadratic.

For a graded algebra A = ⊕ n∈N0 A n , the quadratic part of A is a quadratic algebra q A = T(A 1 )/(I ∩ T 2 (A 1 )), where I is the kernel of the natural morphism T(A 1 ) → A. There is a morphism q A → A of algebras, which is bijective in degree 1 and injective in degree 2.

Let V * be the dual vector space of V and define the linear map γ n : (V * ) ⊗n ⊗ V ⊗n → k by

γ n (f 1 ⊗ • • • ⊗ f n , v 1 ⊗ • • • ⊗ v n ) = f 1 (v 1 ) . . . f n (v n ) (1.1.1)
for all f 1 , . . . , f n ∈ V * and v 1 , . . . , v n ∈ V . Let A = T(V )/(R) be a quadratic algebra. The quadratic dual algebra of A defined by A ! = T(V * )/(R ⊥ ) = ⊕ n∈N0 A ! -n is a quadratic algebra, where R ⊥ is the subspace of V * ⊗ V * defined by R ⊥ = {α ∈ V * ⊗ V * | γ 2 (α,r) = 0 for all r ∈ R}.

Note that A ! 0 = k, A ! -1 = V * , and the isomorphism (V * ) ⊗n ∼ = (V ⊗n ) * induced by γ n induces an isomorphism of vector spaces

A ! -n = (V * ) ⊗n n-2 i=0 (V * ) ⊗i ⊗ R ⊥ ⊗ (V * ) ⊗(n-2-i) ∼ -→ n-2 i=0 V ⊗i ⊗ R ⊗ V ⊗(n-2-i) *
for n ⩾ 2. The space A ! -n is concentrated in Adams degree -n for n ∈ N 0 , and we consider A ! to be Z-graded with A ! n = 0 for n ∈ N. Let e = i∈I e * i ⊗ e i ∈ A ! 1 ⊗ A 1 , where {e i |i ∈ I} is a basis of V and {e * i |i ∈ I} is the dual basis. Note that e 2 = 0 in the algebra A ! ⊗ A. Indeed, by the isomorphism of vector spaces Hom k (V 1 ,V 2 ) ∼ = V * 1 ⊗ V 2 for any finite dimensional vector spaces V 1 ,V 2 , the multiplication map (V * ⊗ V ) ⊗2 → A ! -2 ⊗ A 2 can be identified with the map Hom k (V ⊗2 ,V ⊗2 ) → Hom k (R,V ⊗2 /R). Then e ⊗ e corresponds to the identity element in Hom k (V ⊗2 ,V ⊗2 ), and above map sends it to zero. Definition 1.1.2. Let A = T(V )/(R) be a quadratic algebra. A graded right A-module M = ⊕ n∈Z M n is called quadratic if M n = 0 for n ∈ Z \ N 0 , M is generated by W = M 0 as a right A-module, and the kernel of the natural surjection W ⊗ A → M is generated as an A-submodule of W ⊗ A by a subspace J ⊆ W ⊗ V .

For a graded algebra A = ⊕ n∈N0 A n and a graded A-module M = ⊕ n∈N0 M n , the quadratic part of M is a quadratic module q M = (M 0 ⊗ q A)/(I ∩(M 0 ⊗A 1 )) over the quadratic algebra q A, where I is the kernel of the natural morphism M 0 ⊗ q A → M . There is a morphism q M → M of q A-modules, which is bijective in degree 0 and injective in degree 1.

Let M = (W ⊗ A)/(J) be a quadratic module over a quadratic algebra A. The quadratic dual module of M defined by

M !m = (W * ⊗ A ! )/(J ⊥ ) = ⊕ n∈N0 M !m
-n is a quadratic module over A ! , where J ⊥ is the subspace of W * ⊗ V * given by J ⊥ = {α ∈ W * ⊗ V * | γ ′ (α,r) = 0 for all r ∈ J}, and the linear map γ ′ :

W * ⊗ V * ⊗ W ⊗ V → k is defined by γ ′ (f 1 ⊗ f 2 , v 1 ⊗ v 2 ) = f 1 (v 1 )f 2 (v 2 ) for all f 1 ∈ W * , f 2 ∈ V * , v 1 ∈ W and v 2 ∈ V . Note that M !m 0 = W * , M !m -1
∼ = J * , and

M !m -n ∼ = J ⊗ V ⊗(n-1) ∩ n-2 ∩ i=0 W ⊗ V ⊗i ⊗ R ⊗ V ⊗(n-2-i) * (1.1.2)
for n ⩾ 2. The space M !m -n is concentrated in Adams degree -n for n ∈ N 0 , and we consider M !m to be Z-graded with M !m n = 0 for n ∈ N.

Proposition 1.1.3 ([22], Proposition 3.1 of chapter 1). For a graded algebra A and graded A-module M = ⊕ n∈N0 M n , the cohomology spaces Ext i,-j A (M,k) concentrated in homological degree i and internal degree -j are zero for all i > j. Moreover, the diagonal subalgebra i∈N0 Ext i,-i A (k,k) of the algebra i,j∈N0 Ext i,-j A (k,k) is always quadratic. The diagonal submodule i∈N0 Ext i,-i A (M,k) of the module i,j∈N0 Ext i,-j A (M,k) is always a quadratic module over i∈N0 Ext i,-i A (k,k). More precisely,

i∈N0 Ext i,-i A (k,k) ∼ = ( q A) ! , i∈N0 Ext i,-i A (M,k) ∼ = ( q M ) !m .
Lemma 1.1.4 ([22], Corollary 5.3 of chapter 1). Let A be a graded algebra and M = ⊕ n∈N0 M n a graded A-module.

(1) A is quadratic if and only if Ext i,-j A (k,k) = 0 for i < j and i = 1,2.

(2) Assume that A is quadratic. Then M is quadratic if and only if Ext i,-j A (M,k) = 0 for i < j and i = 0,1.

Let A = T(V )/(R) be a quadratic algebra and M = (W ⊗ A)/(J) a quadratic right module over A. The graded dual (M !m ) # = ⊕ n∈N0 (M !m -n ) * is a graded left A ! -module via the action (uf )(v) = f (vu) for u ∈ A ! , v ∈ M !m and f ∈ (M !m ) # . Then (M !m ) # ⊗ A is a graded left module over the algebra A ! ⊗ A by the above action and the multiplication in A. Let K n (M ) = (M !m -n ) * ⊗ A for n ∈ N 0 and the differential d n : K n (M ) → K n-1 (M ) for n ∈ N be the morphism defined by d n (u ⊗ v) = e(u ⊗ v) for u ∈ (M !m -n ) * and v ∈ A. Since e 2 = 0, we have d n+1 d n = 0 for n ∈ N. The complex (K • (M ),d • )

• • • -→ K 2 (M ) d2 -→ K 1 (M ) d1 -→ K 0 (M ) -→ 0
of free (bounded-below) graded right A-modules is called the (right) Koszul complex of the quadratic module M over A. As usual, we can consider the Koszul complex as a complex indexed by Z, with K n (M ) = 0 for n ∈ Z \ N 0 and d n = 0 for n ∈ Z \ N. By the composition of the canonical isomorphism V ⊗n ∼ → (V ⊗n ) * * and the dual of (1.1.2) for M !m -n , the differential d n : K n (M ) → K n-1 (M ) is the restriction of the map dn :

W ⊗ V ⊗n ⊗ A → W ⊗ V ⊗(n-1) ⊗ A determined by v 0 ⊗ (v 1 ⊗ • • • ⊗ v n ) ⊗ a → v 0 ⊗ (v 1 ⊗ • • • ⊗ v n-1 ) ⊗ v n a
for all v 0 ∈ W , v 1 , . . . , v n ∈ V , a ∈ A and n ∈ N. Let ϵ ′ : W ⊗ A → M be the natural surjection.

Fact 1.1.5. We have Ker(ϵ ′ ) = Im(d 1 ), and in fact (K • (M ),d • ) coincides with the minimal projective resolution of M in the category of bounded below graded right A-modules, up to homological degree 1.

Recall that the Koszul complex (K • (M ),d • ) is minimal, i.e. the induced map d n ⊗ id k : K n (M ) ⊗ A k → K n-1 (M ) ⊗ A k vanishes for all n ∈ N. Note that the trivial module k = (W ⊗ A)/(J) is a quadratic module over A with W = k and J = k ⊗ V . Since J ⊥ = 0, the quadratic dual module of k is k !m = k * ⊗ A ! ∼ = A ! . The (right) Koszul complex (K • (A),d • ) of a quadratic algebra A is defined as the Koszul complex of the trivial module k over A. Then K n (A) = (A ! -n ) * ⊗ A and (K • (A),d • ) has the following form

• • • -→ K 2 (A) d2 -→ K 1 (A) d1 -→ K 0 (A) -→ 0.
Fact 1.1.6. We have Ker(ϵ) = Im(d 1 ) and Ker(d 1 ) = Im(d 2 ), and in fact (K • (A),d • ) coincides with the minimal projective resolution of the trivial right A-module k in the category of bounded below graded right A-modules, up to homological degree 2.

Let A = T(V )/(R) be a quadratic algebra, and let M = (V M ⊗ A)/(R M ) and N = (V N ⊗ A)/(R N ) be two quadratic right A-modules. Let us denote by hom A (M,N ) the vector space formed by all homogeneous morphisms f : M → N of A-modules of degree zero, and by Hom((V M ,R M ),(V N ,R N )) the vector space formed by all linear morphisms g : V M → V N satisfying that (g ⊗ id V )(R M ) ⊆ R N . Then, it is clear that the map

hom A (M,N ) → Hom (V M ,R M ),(V N ,R N )
sending f to its restriction f | V M : V M → V N is an isomorphism. This tells us that f : M → N is a monomorphism (resp., epimorphism) in the category of quadratic right A-modules with homogeneous morphisms of A-modules of degree zero if and only if f | M0 : M 0 → N 0 is injective (resp., surjective). In particular, a morphism of the category of quadratic right A-modules with homogeneous morphisms of A-modules of degree zero is an epimorphism if and only if it is a surjection.

Remark 1.1.7. Assume the space of generators of the quadratic algebra A has a nonzero dimension. Then, the category of quadratic right A-modules with homogeneous morphisms of A-modules of degree zero is not abelian, since the canonical projection A → k is a monomorphism and an epimorphism but it is not an isomorphism. In particular, the example shows that monomorphisms of the category of quadratic modules are not necessarily injective. For a less trivial example, consider k of characteristic different from 2, A = k⟨x, y⟩/(xy -yx) = k[x,y], M = e.A, M ′ = (e 1 .A ⊕ e 2 .A)/(e 1 .x + e 2 .x, e 1 .y -e 2 .y) and the morphism f : M → M ′ of A-modules sending e to e 1 is a non-injective monomorphism of quadratic modules, since f (e.xy + e.yx) = (e 1 .

x + e 2 .x).y + (e 1 .y -e 2 .y).x

vanishes, but f | M0 and f | M1 are injective.

Given f ∈ hom A (M,N ), define the homogeneous morphism f !m : N !m → M !m of right A ! -modules of degree zero whose restriction to V * N is precisely the dual

(f | V M ) * of f | V M : V M → V N . Since ((f | V M ) * ⊗ id V * )(R ⊥ N ) ⊆ R ⊥ M
, the map f !m is well defined. By taking the graded dual (f !m ) # : (M !m ) # → (N !m ) # we obtain a homogeneous morphism of left A ! -modules of degree zero.

Let K • (M ) and K • (N ) be the Koszul complex of M and N respectively. We finally define the morphism

K • (f ) : K • (M ) → K • (N ) of complexes of right A-modules by K • (f ) = (f !m ) # ⊗ id A . It is clear that K • (f g) = K • (f )K • (g) and K • (id M ) = id K • (M )
, for f ∈ hom A (M,N ), g ∈ hom A (N ′ ,M ) and N ′ a quadratic right A-module.

Remark 1.1.8. If f is injective, then f | V M is also injective, which implies that its dual (f | V M ) * is surjective, so f !m is surjective as well, which in turn implies that (f !m ) # and K • (f ) are injective.

Definition 1.1.9. A graded algebra A is called Koszul if the following equivalent conditions hold:

(1) Ext i,-j A (k,k) = 0 for i ̸ = j. (2) A is quadratic and Ext

• A (k,k) ∼ = A ! . ( 3 
) k has a graded projective resolution (P • , d • ) such that P n as a graded A-module is generated by homogeneous elements of degree n. Definition 1.1.10. Let A be a Koszul algebra. A graded A-module M is called Koszul if the following equivalent conditions hold:

(1)

Ext i,-j A (M,k) = 0 for i ̸ = j. (2) M is quadratic and Ext • A (M,k) ∼ = M !m . ( 3 
) M has a graded projective resolution (P • , d • ) such that P n as a graded A-module is generated by homogeneous elements of degree n. Lemma 1.1.11 ([22], Corollary 3.2 of chapter 2). (1) A quadratic algebra A is Koszul if and only if its Koszul complex (K • (A),d • ) is exact in positive homological degrees.

(2) Let A be a Koszul algebra. A quadratic module M over A is Koszul if and only if its Koszul complex (K • (M ),d • ) is exact in positive homological degrees.

Resolving data on quadratic algebras

In this section, we introduce a new construction of a projective resolution of the trivial module of a quadratic algebra satisfying some assumptions (see Theorem 1.2.5) (see [START_REF]A projective resolution for the Fomin-Kirillov algebra FK[END_REF]).

A resolving datum on a quadratic algebra A is a finite set M = {M 0 , . . . , M N } of pairwise non-isomorphic quadratic (right) A-modules with N ∈ N 0 such that M 0 = k is the trivial module and a map h : 0,

N 2 × N 2 → N 2 0
such that (R.1) h has finite support, (R.2) there are short exact sequences of right A-modules

0 N j=0 ℓ∈N M j (-ℓ) π 1 (h(i,j,k,ℓ)) H k (K • (M i )) N j=0 ℓ∈N M j (-ℓ) π 2 (h(i,j,k,ℓ)) 0 (1.2.1)
with homogeneous morphisms of degree zero for all (i,k) ∈ 0, N × N, where π i : N 2 0 → N 0 is the canonical projection on the i-th component for i ∈ {1, 2}, (R.3) If (1.2.1) splits for some i 0 ∈ 0, N and k 0 ∈ N, then π 1 (h(i 0 ,j,k 0 ,ℓ)) = 0 for all j ∈ 0, N and ℓ ∈ N.

Recall that a quiver is the datum of a set Q 0 , called set of vertices, and set Q 1 , called set of arrows, together with maps s, t : Q 1 → Q 0 called the source and target maps of the quiver. We say the quiver is bigraded if we further have a map bideg : Q 1 → Z 2 . We will denote the bidegree of an arrow α of Q 1 by bideg(α) = (bideg 1 (α),bideg 2 (α)) ∈ Z 2 . The difference degree of an arrow α is defined as dfdeg(α) = bideg 2 (α) -bideg 1 (α) ∈ Z.

We also recall that, given a quiver with a set of vertices Q 0 and set of arrows Q 1 , a path of length n ∈ N 0 is a vertex if n = 0, and a tuple ᾱ = (α 1 , . . . , α n ) in Q n 1 for n ∈ N such that t(α i ) = s(α i+1 ) for all i ∈ 1, n-1 . As usual, we define s(e) = t(e) = e for any vertex e, s(α 1 , . . . , α n ) = s(α 1 ) and t(α 1 , . . . , α n ) = t(α n ) for every path ᾱ = (α 1 , . . . , α n ) of length n ∈ N. Furthermore, if the quiver is bigraded, given a path ᾱ = (α 1 , . . . , α n ) of length n ∈ N, we define its bidegree bideg(ᾱ) = (bideg

1 ( ᾱ),bideg 2 ( ᾱ)) ∈ Z 2 by ( n i=1 bideg 1 (α i ), n i=1 bideg 2 (α i )).
The bidegree of a path of length zero given by a vertex e is defined as bideg(e) = (bideg 1 (e),bideg 2 (e)) = (0,0). The difference degree of a path ᾱ is defined as

dfdeg(ᾱ) = bideg 2 ( ᾱ) -bideg 1 (ᾱ) ∈ Z.
Given a quadratic algebra together with a resolving data as in the first paragraph of this subsection, we define the associated resolving quiver RQ A as the unique bigraded quiver with set of vertices {M 0 , . . . , M N }, and whose set of arrows of degree

(d ′ ,d ′′ ) from M i to M j has cardinality π 1 (h(i,j,d ′ -1,d ′′ )) + π 2 (h(i,j,d ′ -1,d ′′ )).
To be able to manipulate these arrows, assume we have chosen a fixed set

Ar ′ i,j,d ′ ,d ′′ of arrows of degree (d ′ ,d ′′ ) from M i to M j of cardinality π 1 (h(i,j,d ′ -1,d ′′ )) and another fixed set Ar ′′ i,j,d ′ ,d ′′ of arrows of degree (d ′ ,d ′′ ) from M i to M j of cardinality π 2 (h(i,j,d ′ -1,d ′′ )), such that Ar ′ i,j,d ′ ,d ′′ and Ar ′′ i,j,d ′ ,d ′′ are disjoint.
For every i ∈ 0,N and d ′ ∈ N, we also set a strict partial order on the set of all arrows α of RQ A such that s(α) = M i and bideg 1 (α) = d ′ by setting precisely that every arrow of Ar ′′ i,j,d ′ ,d ′′ is strictly less than every arrow of Ar ′ i,j ′ ,d ′ ,d ′′′ for all j,j ′ ∈ 0,N and d ′′ ,d ′′′ ∈ N. Note that this quiver is finite by (R.1). We will say that the resolving datum is connected if the associated resolving quiver is connected.

As we will see, the resolving quiver RQ A contains some homological information about the algebra A. The first clues in this direction are given by the following results, the first of which is trivial.

Proposition 1.2.1.

A quadratic algebra A is Koszul if and only if the resolving quiver associated to a (equivalently, to every) connected resolving datum on A has no arrows.

Proposition 1.2.2. Let p, q ⩾ 2 be integers. A quadratic algebra A is (p,q)-Koszul (in the sense introduced by S. Brenner, M. Butler and A. King in [START_REF] Brenner | Periodic algebras which are almost Koszul[END_REF]) if and only if it is finite-dimensional with dim(A p ) ̸ = 0 and dim(A p+1 ) = 0, the Koszul complex of A has finite length q and the resolving quiver associated to a (equivalently, to every) connected resolving datum on A has only one vertex and dim(A p ) • dim(A ! q ) arrows of bidegree (q + 1,q + p). Proof. This is precisely Prop. 3.9 of [START_REF] Brenner | Periodic algebras which are almost Koszul[END_REF].

We also have the following two examples of resolving quivers.

Example 1.2.3. Let m ⩾ 5 be an integer and let C be the quadratic algebra defined in Section 2 of [START_REF] Cassidy | Quadratic algebras with Ext algebras generated in two degrees[END_REF], which depends on m. We will follow the notation of that article. Let M = {k, M 1 } where M 1 is the standard right module C, and let h : {0,1} 2 ×N 2 → N 2 0 be the map given by h(0,1,m-1,m+1) = (0,1) and h(i,j,k,ℓ) = (0,0) if (i,j,k,ℓ) ̸ = (0,1,m -1,m + 1). Then, [START_REF] Cassidy | Quadratic algebras with Ext algebras generated in two degrees[END_REF], Theorem 2.7, tells us that this gives us a connected resolving datum on C, whose associated resolving quiver is k C such that its arrow has bidegree (m,m + 1).

Example 1.2.4. Consider the Fomin-Kirillov algebra FK(3) on three generators. Let M = {k} and let h : {0} 2 × N 2 → N 2 0 be the map given by h(0,0,3,6) = (0,1) and h(i,j,k,ℓ) = (0,0) if (i,j,k,ℓ) ̸ = (0,0,3,6). Then, Proposition 3.1 of [START_REF] Herscovich | An elementary computation of the cohomology of the Fomin-Kirillov algebra with 3 generators[END_REF], tells us that this gives a resolving datum on FK(3) whose associated resolving quiver is k such that its unique arrow has bidegree [START_REF] Berger | Koszul and Gorenstein properties for homogeneous algebras[END_REF][START_REF] Cohen | GBNP -a GAP package[END_REF].

From the resolving quiver associated to a resolving datum of the form given in the first paragraph of this subsection, we can define the set of paths Pa M i given as the set formed by all paths ᾱ of the quiver RQ A such that s(ᾱ) = M i .

Moreover, we will define the following strict partial order on Pa M i for every i ∈ 0,N as follows. First, we set the vertex at M i to be strictly greater than any other path of Pa M i . Given ᾱ = (α 1 , . . . , α n ) and β = (β 1 , . . . , β m ) in Pa M i with n, m ∈ N, we say that ᾱ < β if α j = β j for all j ∈ 1,j 0 for some j 0 ∈ 0, min(n,m) , and one of the following possibilities holds:

(O.1) n,m > j 0 , bideg 1 (α j0+1 ) = bideg 1 (β j0+1 ) and α j0+1 < β j0+1 ; (O.2) n,m > j 0 , bideg 1 (α j0+1 ) < bideg 1 (β j0+1 ); (O.3) j 0 = m < n.
It is clear that this defines a strict partial order on Pa M i .

Given a connected resolving datum we have the following result, which gives a description of a projective resolution of every quadratic module M i . Theorem 1.2.5. Assume we have a connected resolving datum on a quadratic algebra A with a set of quadratic modules M = {M 0 , . . . , M N } and whose resolving quiver is denoted by RQ A . Then, there exists a projective resolution P M i • of M i in the category of bounded below graded right A-modules such that

P M i n = ᾱ ∈ Pa M i , bideg 1 ( ᾱ) ⩽ n ᾱ.K n-bideg 1 ( ᾱ) t(ᾱ) -bideg 2 (ᾱ) (1.2.2)
for all n ∈ N 0 and i ∈ 0,N , where the symbol ᾱ multiplying the Koszul complex on the left is only a formal symbol used as a simple bookkeeping device. Moreover, if

dfdeg(ᾱ) ̸ = dfdeg( β) -1 (1.2.3)
for all ᾱ, β ∈ Pa M i such that ᾱ < β (e.g. if dfdeg(α) is even for all arrows α of RQ A ), then the previous projective resolution is minimal.

Proof. We are going to use the following notation. Let

0 M ′ M M ′′ 0
be a short exact sequence of right A-modules and let P ′ • → M ′ and P ′′ • → M ′′ be two projective resolutions (resp., up to homological degree m ∈ N) with differentials d ′

• and d ′′ • , respectively. Then, we will note by

P • = P ′ • ↶ ⊕P ′′
• → M the projective resolution (resp., up to homological degree m ∈ N) given by the Horseshoe lemma (see [START_REF] Weibel | An introduction to homological algebra[END_REF], Lemma 2.2.8). We recall that P n = P ′ n ⊕P ′′ n for all n ∈ N 0 (resp., for all n ∈ 0,m ) with differential d • satisfying that d

• | P ′ • = d ′ • and d • | P ′′ • = d ′′ • +f • for some family {f n : P ′′ n → P ′ n-1 | n ∈ N} (resp., {f n : P ′′ n → P ′ n-1 | n ∈ 1,m }) of morphisms of A-modules. Given i ∈ 0, N , let m i ∈ N be the largest positive integer such that H mi (K • (M i )) ̸ = 0 and H k (K • (M i )) = 0 for all integers k > m i . If H k (K • (M i )) = 0 for all k ∈ N, then we set m i = 0.
We will denote by

d i k+1 : K k+1 (M i ) → K k (M i
) the differential of the Koszul complex of M i for k ∈ N 0 and i ∈ 0, N . For every i ∈ 0, N , we will construct a projective resolution P i

• of M i . By Fact 1.1.5 we will assume that P i n = K n (M i ) for i ∈ 0, N and n ∈ {0, 1}. In particular, P i n coincides with (1.2.2) for all i ∈ 0, N and n ∈ {0, 1}. We will in fact prove that P i n coincides with (1.2.2) for all i ∈ 0, N and n ∈ N 0 by induction on the homological degree n. If m i = 0, we set

P i • = K • (M i ) for all • ∈ N 0 .
It is straightforward to see that the resolutions P i • and (1.2.2) coincide.

We will now construct P i • for all • ∈ N 0 for i ∈ 0, N such that m i > 0. Let m ∈ N. Assume that we have defined P i n for all i ∈ 0, N such that m i > 0 and n ∈ 0, m such that P i n coincides with (1.2.2) for all n ∈ 0, m . Using the Horseshoe lemma for (1.2.1), we get a projective resolution of

H k (K • (M i )) of the form m Q i,k • = N j=0 ℓ∈N P j • (-ℓ) π1(h(i,j,k,ℓ)) ↶ ⊕ N j=0 ℓ∈N P j • (-ℓ) π2(h(i,j,k,ℓ))
defined for homological degrees • ∈ 0, m , i ∈ 1,N and k ∈ 1,m i . We will construct by induction on the index k ∈ 0, m i a family of complexes of right

A-modules m R i,k • for • ∈ 0, m + 1 such that m R i,k
• is a projective resolution of Im(d i mi-k+1 ) up to homological degree m + 1. For k = 0, we set m R i,0

• as the complex of right A-modules given by

(K •+mi+1 (M i ),d i •+mi+1 ) •∈N0 . Note that m R i,0
• is a projective resolution of Im(d i mi+1 ) for i ∈ 0, N such that m i > 0, and it is independent of m. Assume now we have defined a complex of right A-modules m R i,k-1

• for some k ∈ 1, m i and • ∈ 0, m + 1 such that m R i,k-1 • is a pro- jective resolution of Im(d i mi-k+2
) up to homological degree m + 1. Then, we define the complex of right A-modules m R i,k

• by

m R i,k 0 = K mi-k+1 (M i ) and m R i,k • = m R i,k-1 •-1 ↶ ⊕ m Q i,mi-k+1 •-1 for • ∈ 1, m + 1 , the differential d i,k • for • ⩾ 2 is induced by that of m R i,k-1 •-1 ↶ ⊕ m Q i,mi-k+1 •-1 and d i,k 1 : m R i,k 1 → m R i,k 0 is given as the composition of the augmentation m R i,k-1 • ↶ ⊕ m Q i,mi-k+1 • → Ker(d i mi-k+1
) and the inclusion Ker(d mi-k+1 ) → K mi-k+1 (M i ). Using the Horseshoe lemma for

0 Im(d i mi-k+2 ) Ker(d i mi-k+1 ) H mi-k+1 K • (M i ) 0
together with the projective resolutions m R i,k-1

• and m Q i,mi-k+1

• for for • ∈ 0, m , we obtain that the complex m R i,k-1

• ↶ ⊕ m Q i,mi-k+1 • for • ∈ 0, m is a projective resolution of Ker(d i mi-k+1
) up to homological degree m, and thus m R i,k

• for for • ∈ 0, m + 1 is a projective resolution of Im(d i mi-k+1 ) up to homological degree m + 1, as was to be shown. In particular, m R i,mi

• for • ∈ 0, m + 1 is a projective resolution of Im(d i 1 ) up to homological degree m + 1. Let m R i • = K 0 (M i ) and m R i • = m R i,mi •-1 for • ∈ 1,m + 2 . Then m R i • for • ∈ 0, m + 2 is a projective resolution of M i up to homological degree m + 2. A long but straightforward computation shows that m R i • coincides with (1.2.2) for • ∈ 0, m + 2
, and that we can take the complexes m R i

• and m-1 R i • to coincide up to homological degree m + 1. Hence, if i ∈ 0, N such that m i > 0, we define the complex P i

• to be equal to m R i • up to homological degree m + 2. Since this holds for every m ∈ N, the first part of the theorem is proved.

To prove the last one, let us denote by P i n, ᾱ the direct summand in (1.2.2) indexed by ᾱ ∈ Pa M i . The construction of the projective resolution P i

• given in the first part of the proof tells us that, given ᾱ, β ∈ Pa M i , if the component 

d ᾱ, β n+1 ⊗ A id k : P i n+1, ᾱ ⊗ A k → P i n, β ⊗ A k of the differential of P i • ⊗ A k is nonzero, then ᾱ < β and dfdeg(ᾱ) = dfdeg( β)-1.

Hochschild (co)homology

All the following results can be found in [START_REF] Witherspoon | Hochschild cohomology for algebras[END_REF]. Let A be a unitary associative k-algebra. We denote by A op the opposite algebra of A, which is the k-module A with the multiplication defined by a • A op b = ba for a,b ∈ A. An A-bimodule is a left and right A-module M satisfying (a 1 m)a 2 = a 1 (ma 2 ) for all a 1 ,a 2 ∈ A and m ∈ M , and the left and right actions of k agree. We recall that an A-bimodule M can be viewed as a left A e -module, where A e = A ⊗ A op is the enveloping algebra of A with the multiplication defined by tensor product (a 

1 ⊗b 1 )•(a 2 ⊗b 2 ) = a 1 a 2 ⊗ b 2 b 1 for all a 1 ,a 2 ,b 1 ,b 2 ∈ A,

The bar resolution (B

• (A), d • ) of A in the category of A-bimodules is given by B n (A) = A ⊗(n+2) for n ∈ N 0 , with the differentials d n : B n (A) → B n-1 (A) given by d n (a 0 | . . . |a n+1 ) = n j=0 (-1) j a 0 | . . . |a j-1 |a j a j+1 |a j+2 | . . . |a n+1
for a 0 , . . . ,a n+1 ∈ A and n ∈ N, and the augmentation π : B 0 (A) = A ⊗ A → A defined by the multiplication of A. We will typically use vertical bars instead of the tensor product symbols ⊗ for simplicity. The exactness of the bar resolution comes from the existence of the contracting homotopy given by the k-linear map s n (a 0 | . . . |a n+1 ) = 1|a 0 | . . . |a n+1 for a 0 , . . . , a n+1 ∈ A and n ⩾ -1.

Let M be an A-bimodule. There is an isomorphism of k-vector spaces

M ⊗ A e B n (A) ∼ -→ M ⊗ A ⊗n
given by m|a 0 | . . . |a n+1 → a n+1 ma 0 |a 1 | . . . |a n for m ∈ M and a 0 , . . . ,a n+1 ∈ A. The inverse isomorphism is given by m|a

1 | . . . |a n → m|1|a 1 | . . . |a n |1
for m ∈ M and a 1 , . . . ,a n ∈ A. Accordingly, we will get the induced differential on the complex

M ⊗ A ⊗• corresponding to the map id M ⊗ d n on M ⊗ A e B n (A).
There is also an isomorphism of k-vector spaces

F : Hom A e B n (A), M -→ Hom k (A ⊗n ,M ) given by F (f )(a 1 | . . . |a n ) = f (1|a 1 | . . . |a n |1) for f ∈ Hom A e (B n (A), M ) and a 1 , . . . ,a n ∈ A. The inverse map G : Hom k (A ⊗n ,M ) -→ Hom A e B n (A), M of F is explicitly given by G(g)(a 0 | . . . |a n+1 ) = a 0 g(a 1 | . . . |a n )a n+1 for g ∈ Hom k (A ⊗n ,M
) and a 0 , . . . ,a n+1 ∈ A. We will get the induced differential on the complex Hom k (A ⊗• ,M ) corresponding to the map d * n+1 on Hom A e (B n (A), M ). The Hochschild homology HH n (A,M ) is given by the homology

H n (M ⊗ A e B • (A)) ∼ = H n (M ⊗ A ⊗•
), and the Hochschild cohomology HH n (A,M ) is given by the cohomology

H n (Hom A e (B • (A),M )) ∼ = H n (Hom k (A ⊗• ,M )).
There are some interpretations for Hochschild (co)homology in low degrees (see [START_REF] Witherspoon | Hochschild cohomology for algebras[END_REF], Section 1.2).

Remark 1.3.2. (1) HH

0 (A,M ) ∼ = {m ∈ M | am =
ma for all a ∈ A}. In particular, HH 0 (A) ∼ = Z(A), the center of A.

(2) HH 1 (A,M ) ∼ = Der(A,M )/InnDer(A,M ), where

Der(A,M ) = {f : A → M | f (ab) = f (a)b + af (b) for all a,b ∈ A}
is the space of derivations from A to M , and

InnDer(A,M ) = {f : A → M | ∃m ∈ M such thatf (a) = am -ma for all a ∈ A}
is the space of inner derivations from A to M .

Definition 1.3.3. Let m,n ∈ N 0 , f ∈ Hom k (A ⊗m ,A) and g ∈ Hom k (A ⊗n ,A), the cup product f ⌣ g is the element of Hom k (A ⊗(m+n) ,A) defined by (f ⌣ g)(a 1 | . . . |a m+n ) = f (a 1 | . . . |a m )g(a m+1 | . . . |a m+n ) for a 1 , . . . ,a m+n ∈ A. If m = 0, then (f ⌣ g)(a 1 | . . . |a n ) = f (1)g(a 1 | . . . |a n ). Similarly if n = 0, then (f ⌣ g)(a 1 | . . . |a m ) = f (a 1 | . . . |a m )g(1)
.

Remark 1.3.4.

To avoid any confusion, we remark that the definition of cup product on Hochschild cohomology in the previous definition is the one given in [START_REF] Gerstenhaber | The cohomology structure of an associative ring[END_REF], Section 7. A different convention, in the spirit of Koszul's sign rule, includes a sign (-1) mn (see [START_REF] Witherspoon | Hochschild cohomology for algebras[END_REF], Definition 1.3.1 and Remark 1.3.3).

Let ∂ be the differential in the complex Hom k (A ⊗• ,A). Then

∂(f ⌣ g) = ∂(f ) ⌣ g + (-1) m f ⌣ ∂(g)
for f ∈ Hom k (A ⊗m ,A) and g ∈ Hom k (A ⊗n ,A). The cup product on the complex Hom k (A ⊗• ,A) induces a graded associative product ⌣: HH m (A) × HH n (A) → HH m+n (A) on Hochschild cohomology of A for all m, n ∈ N 0 , that we also call the cup product. The cup product on HH • (A) is graded commutative, i.e.

f ⌣ g = (-1) mn g ⌣ f for f ∈ HH m (A), g ∈ HH n (A) and m,n ∈ N 0 (see [START_REF] Witherspoon | Hochschild cohomology for algebras[END_REF], Theorem 1.4.4). Then the Hochschild cohomology with the multiplication given by the cup product is a graded commutative associative algebra.

We will use the following definition of cup product (see [START_REF] Witherspoon | Hochschild cohomology for algebras[END_REF], Sections 2.1 and 2.2) for later computations in Section 5.1. Let (P • ,∂ • ) be a projective bimodule resolution over A with augmentation µ : P 0 → A. Let f ∈ Hom A e (P m ,A) and g ∈ Hom A e (P n ,A) be cocycles for m,n ∈ N 0 . Extend g to a chain map {g i :

P n+i → P i } i∈N0 such that µg 0 = g and ∂ i g i = g i-1 ∂ n+i for n ∈ N.
The cup product f ⌣ g ∈ Hom A e (P m+n ,A) is defined by the composition

f ⌣ g = f g m .
This cup product at the chain level induces the cup product on the Hochschild cohomology. At the level of cohomology, this definition does not depend on the choice of resolution (P • ,∂ • ). If we take (P • ,∂ • ) to be the bar resolution (B • (A), d • ), this definition coincides with the Definition 1.3.3.

Definition 1.3.5. Let m,n ∈ N 0 , f ∈ Hom k (A ⊗m ,A) and g ∈ Hom k (A ⊗n ,A). The Gerstenhaber bracket [f,g
] is defined at the chain level as the element of Hom k (A ⊗(m+n-1) ,A) given by

[f,g] = f • G g -(-1) (m-1)(n-1) g • G f, where f • G g is defined by (f • G g)(a 1 | . . . |a m+n-1 ) = m i=1 (-1) (n-1)(i-1) f a 1 | . . . |a i-1 |g(a i | . . . |a i+n-1 )|a i+n | . . . |a m+n-1 .
Moreover, if m = 0, then f • G g = 0, while if n = 0, then the formula should be interpreted by taking the value g(1) in place of g(a i | . . . |a i+n-1 ).

Recall that there is an isomorphism

F : Hom A e B n (A), A -→ Hom k (A ⊗n ,A) (1.3.1)
given by

F (f )(a 1 | . . . |a n ) = f (1|a 1 | . . . |a n |1) for f ∈ Hom A e (B n (A), A) and a 1 , . . . ,a n ∈ A. The inverse map G : Hom k (A ⊗n ,A) -→ Hom A e B n (A), A (1.3.2) of F is explicitly given by G(g)(a 0 | . . . |a n+1 ) = a 0 g(a 1 | . . . |a n )a n+1 for g ∈ Hom k (A ⊗n ,A
) and a 0 , . . . ,a n+1 ∈ A. Using the isomorphisms F and G of chain complexes given above, one defines the Gerstenhaber bracket in Hom A e (B • (A),A) by

[f,g] = G([F (f ),F (g)]) ∈ Hom A e (B m+n-1 (A),A) for f ∈ Hom A e (B m (A),A), g ∈ Hom A e (B n (A),A) and m,n ∈ N 0 . Since ∂([f,g]) = (-1) n-1 [∂(f ),g] + [f,∂(g)]
for f ∈ Hom k (A ⊗m ,A) and g ∈ Hom k (A ⊗n ,A), the Gerstenhaber bracket given before induces a well-defined bilinear map

[ , ] : H m Hom A e (B • (A),A) × H n Hom A e (B • (A),A) → H m+n-1 Hom A e (B • (A),A)
for all m, n ∈ N 0 , that we also call the Gerstenhaber bracket. More generally, let (P • ,∂ • ) be a projective bimodule resolution over A with augmentation µ : P

0 → A. Let i • : P • → B • (A) and p • : B • (A) → P • be morphisms of complexes of A- bimodules lifting id A , so p • i • is homotopic to id P• and i • p • is homotopic to id B•(A)
. We also recall that the morphisms i • and p • induce the quasi-isomorphisms i *

• : Hom A e (B • (A),A) → Hom A e (P • ,A) and p * • : Hom A e (P • ,A) → Hom A e (B • (A),A) given by i * • (f ) = f i • and p * • (g) = gp • for f ∈ Hom A e (B • (A),A) and g ∈ Hom A e (P • ,A), respectively. Moreover, H(i * • ), H(p * • ) : HH • (A) → HH • (A) are independent of the choice of i • and p • . The Gerstenhaber bracket [ , ] : H m Hom A e (P • (A),A) × H n Hom A e (P • (A),A) → H m+n-1 Hom A e (P • (A),A)
for all m, n ∈ N 0 is then defined by transport of structures. More generally, given cocycles f ∈ Hom A e (P m ,A) and g ∈ Hom A e (P n ,A), we define the Gerstenhaber bracket

[f, g] ∈ H m+n-1 (Hom A e (P • ,A)) ∼ = HH m+n-1 (A) as the cohomology class of i * • ([p * • (f ), p * • (g)])
. The following properties of the Gerstenhaber bracket are classical (see for instance [START_REF] Gerstenhaber | The cohomology structure of an associative ring[END_REF], equation (2), cf. [START_REF] Witherspoon | Hochschild cohomology for algebras[END_REF], Lemmas 1.4.3 and 1.4.7). Lemma 1.3.6. Let k be a field and A a k-algebra. Then

[x,y] = -(-1) (m-1)(n-1) [y,x] and [x, [y,z]] = [[x,y],z] + (-1) (m-1)(n-1) [y,[x,z]], (1.3.3) 
and

[x ⌣ y,z] = [x,z] ⌣ y + (-1) m(p-1) x ⌣ [y,z] (1.3.4) 
for all x ∈ HH m (A), y ∈ HH n (A) and z ∈ HH p (A).

The previous result is typically rephrased by stating that the Hochschild cohomology is a Gerstenhaber algebra, i.e. a graded-commutative algebra H = ⊕ n∈N0 H n endowed with a bracket [ , ] : (1.3.4).

H ⊗ H → H satisfying [H m , H n ] ⊆ H m+n-1 for m,n ∈ N 0 , (1.3.3) and
Assume that A is a graded k-algebra. For graded A-modules M,N , let Hom A (M,N ) be the k-vector space consisting of all morphisms of A-modules from M to N . Let

Hom A (M,N ) = d∈Z Hom A (M,N ) d ,
be the graded k-vector space, where Hom A (M,N ) d is the subspace of Hom A (M,N ) consisting of all homogeneous morphisms of degree d.

The following result is classical (see [START_REF] Nȃstȃsescu | Methods of graded rings[END_REF], Corollary 2.4.4).

Lemma 1.3.7. If M is a finitely generated graded module over a graded algebra A, then Hom A (M,N ) = Hom A (M,N ).

Corollary 1.3.8. Let (P • ,∂ • ) • • • ∂3 -→ P 2 ∂2 -→ P 1 ∂1 -→ P 0 µ -→ A -→ 0
be a projective bimodule resolution of a graded k-algebra A, where P i is finitely generated as left A emodule for i ∈ N 0 , and µ and ∂ i are homogeneous of degree 0 for i ∈ N. Then Hom A e (P i ,A) = Hom A e (P i ,A) for i ∈ N 0 . Hence, the Hochschild cohomology HH

• (A) ∼ = ⊕ i∈N0 H i (Hom A e (P • ,A)) of
A is a bigraded algebra, for the cohomological degree i and the internal degree induced by that of A and P • . Moreover, the cup product and the Gerstenhaber bracket on HH • (A) preserve the internal degree.

Remark 1.3.9. The existence of a projective bimodule resolution of the graded k-algebra A satisfying the conditions of the previous corollary clearly holds if the graded k-algebra A e is noetherian (e.g. if A is finite-dimensional over k).

Methods computing the Gerstenhaber bracket on Hochschild cohomology

In this section, we will consider A to be a unital associative k-algebra. In this subsection, we introduce an elementary method to compute the Gerstenhaber bracket between the cohomology groups HH 0 (A) and HH n (A) for n ∈ N 0 of any algebra A using any projective bimodule resolution of A (see Theorem 1.4.1). We were unable to explicitly find this method in the existing literature (see Remark 1.4.6), although we suspect it could be wellknown to the experts. These results were published in [START_REF]Gerstenhaber structure on Hochschild cohomology of the Fomin-Kirillov algebra on 3 generators[END_REF].

Let ρ be an element of the center Z(A) ∼ = HH 0 (A) of A and ℓ ρ ∈ Hom A e (B 0 (A),A) be the morphism defined by ℓ ρ (1|1) = ρ. Let (P • ,∂ • ) be a projective bimodule resolution over A with augmentation µ : P 0 → A, and let i 0 : P 0 → B 0 (A) be the 0-th component of a morphism i • : P • → B • (A) of complexes of A-bimodules lifting id A . The main aim of this subsection is to prove the following theorem, which tells us that we can compute the Gerstenhaber bracket between HH 0 (A) and HH n (A) for n ∈ N 0 using a simple homological procedure on any projective bimodule resolution of A.

Theorem 1.4.1. Consider the same assumptions as in the previous paragraph. Let η n : P n → P n be the map given by η

n (v) = ρv -vρ for v ∈ P n and n ∈ N 0 . Since η • = {η n : P n → P n } n∈N0 is a lifting of the zero morphism from A to itself, η • is null-homotopic, i.e. there is a family h ρ • = {h ρ n : P n → P n+1 } n∈N0 of morphisms of A-bimodules such that η 0 = ∂ 1 h ρ 0 and η n = h ρ n-1 ∂ n + ∂ n+1 h ρ n (1.4.1)
for n ∈ N. Then, if ϕ ∈ Hom A e (P n ,A) is a cocycle for some n ∈ N, the Gerstenhaber bracket [ϕ, ℓ ρ i 0 ] ∈ HH n-1 (A) is given by the cohomology class of ϕh ρ n-1 . Remark 1.4.2. It is easy to see that if ϕ ∈ Hom A e (P n ,A) is a cocycle (resp., coboundary), then ϕh ρ n-1 is a cocycle (resp., coboundary) by applying (1.4.1). On the other hand, in general we have P 0 = B 0 = A ⊗ A and i 0 = id A⊗A , so we can forget about i 0 in Theorem 1.4.1.

The rest of this subsection is devoted to proving Theorem 1.4.1. In order to do that, we first need to prove some preliminary results.

Let t n : B n (A) → B n+1 (A) be the morphism of A-bimodules given by

t n (a 0 | . . . |a n+1 ) = n j=0 (-1) j a 0 | . . . |a j |ρ|a j+1 | . . . |a n+1 for a 0 , . . . ,a n+1 ∈ A and n ∈ N 0 . Let ξ • = {ξ n : B n (A) → B n (A)} n∈N0 be the family of morphisms of A-bimodules defined by ξ n (u) = ρu -uρ for u ∈ B n (A) and n ∈ N 0 . Lemma 1.4.3. We have that ξ 0 = d 1 t 0 and ξ n = t n-1 d n + d n+1 t n for n ∈ N.
Proof. For a 0 , . . . ,a n+1 ∈ A and n ∈ N,

d 1 t 0 (a 0 |a 1 ) = d 1 (a 0 |ρ|a 1 ) = a 0 ρ|a 1 -a 0 |ρa 1 = ρa 0 |a 1 -a 0 |a 1 ρ = ξ 0 (a 0 |a 1 ), and 
d n+1 t n (a 0 | . . . |a n+1 ) = d n+1 n j=0 (-1) j a 0 | . . . |a j |ρ|a j+1 | . . . |a n+1 = S 1 + S 2 ,
where

S 1 = n j=0 (-1) j (-1) j a 0 | . . . |a j-1 |a j ρ|a j+1 | . . . |a n+1 + (-1) j+1 a 0 | . . . |a j |ρa j+1 |a j+2 | . . . |a n+1 = a 0 ρ| . . . |a n+1 -a 0 | . . . |a n |ρa n+1 = ξ n (a 0 | . . . |a n+1 ),
and Proof. For a 0 , . . . ,a n ∈ A,

S 2 = n j=0 (-1) j j-2 r=0 (-1) r a 0 | . . . |a r-1 |a r a r+1 |a r+2 | . . . |a j |ρ|a j+1 | . . . |a n+1 + (-1) j-1 a 0 | . . . |a j-2 |a j-1 a j |ρ|a j+1 | . . . |a n+1 + (-1) j+2 a 0 | . . . |a j |ρ|a j+1 a j+2 |a j+3 | . . . |a n+1 + n r=j+2 (-1) r+1 a 0 | . . . |a j |ρ|a j+1 | . . . |a r-1 |a r a r+1 |a r+2 | . . . |a n+1 = n i=0 n j=i+2 (-1) j (-1) i a 0 | . . . |a i-1 |a i a i+1 |a i+2 | . . . |a j |ρ|a j+1 | . . . |a n+1 -a 0 | . . . |a i-1 |a i a i+1 |ρ|a i+2 | . . . |a n+1 + a 0 | . . . |a i-1 |ρ|a i a i+1 |a i+2 | . . . |a n+1 + i-2 j=0 (-1) j (-1) i+1 a 0 | . . . |a j |ρ|a j+1 | . . . |a i-1 |a i a i+1 |a i+2 | . . . |a n+1 = - n i=0 (-1) i i-2 j=0 (-1) j a 0 | . . . |a j |ρ|a j+1 | . . . |a i-1 |a i a i+1 |a i+2 | . . . |a n+1 + (-1) i-1 a 0 | . . . |a i-1 |ρ|a i a i+1 |a i+2 | . . . |a n+1 + (-1) i a 0 | . . . |a i-1 |a i a i+1 |ρ|a i+2 | . . . |a n+1 + n j=i+2 (-1) j-1 a 0 | . . . |a i-1 |a i a i+1 |a i+2 | . . . |a j |ρ|a j+1 | . . . |a n+1 = -t n-1 d n (a 0 | . . . |a n+1 ).
[φ, ℓ ρ ](a 0 | . . . |a n ) = a 0 [F (φ),F (ℓ ρ )](a 1 | . . . |a n-1 )a n = a 0 (F (φ) • G F (ℓ ρ ))(a 1 | . . . |a n-1 )a n = a 0 n i=1 (-1) i-1 F (φ)(a 1 | . . . |a i-1 |ρ|a i | . . . |a n-1 ) a n = a 0 n i=1 (-1) i-1 φ(1|a 1 | . . . |a i-1 |ρ|a i | . . . |a n-1 |1) a n = n i=1 (-1) i-1 φ(a 0 |a 1 | . . . |a i-1 |ρ|a i | . . . |a n-1 |a n ) = (φt n-1 )(a 0 |a 1 | . . . |a n-1 |a n ).
Hence, [φ, ℓ ρ ] = φt n-1 .

Lemma 1.4.5. We assume the same hypotheses as those of Theorem 1.4.1. Then, there exists a family

s • = {s n : P n → B n+2 (A)} n∈N0 of morphisms of A-bimodules such that i 1 h ρ 0 -t 0 i 0 = d 2 s 0 and i n+1 h ρ n -t n i n = d n+2 s n -s n-1 ∂ n for n ∈ N. Proof. Since d 1 (i 1 h ρ 0 -t 0 i 0 ) = i 0 ∂ 1 h ρ 0 -d 1 t 0 i 0 = i 0 η 0 -ξ 0 i 0 = 0,
where we used that i 0 is a morphism of A-bimodules in the last equality, there exists a morphism s 0 :

P 0 → B 2 (A) of A-bimodules such that d 2 s 0 = i 1 h ρ 0 -t 0 i 0 .
We now claim that there exists a family s • = {s n :

P n → B n+2 (A)} n∈N0 of morphisms of A-bimodules such that d n+2 s n = i n+1 h ρ n -t n i n + s n-1 ∂ n by induction on n ∈ N 0 (where s -1 = 0). Indeed, d n+1 (i n+1 h ρ n -t n i n + s n-1 ∂ n ) = d n+1 i n+1 h ρ n -d n+1 t n i n + (i n h ρ n-1 -t n-1 i n-1 + s n-2 ∂ n-1 )∂ n = i n ∂ n+1 h ρ n -(ξ n -t n-1 d n )i n + i n h ρ n-1 ∂ n -t n-1 i n-1 ∂ n = i n (∂ n+1 h ρ n + h ρ n-1 ∂ n ) -ξ n i n = i n η n -ξ n i n = 0
, where we used the inductive assumption in the first equality, Lemma 1.4.3 in the second equality, the definition of η n in the third equality and the fact that i n is a morphism of A-bimodules in the last equality. The result thus follows.

Proof of Theorem 1.4.1. Let φ = ϕp n ∈ Hom A e (B n (A),A). Then φ is a cocycle and [ϕ, i * • (ℓ ρ )] = i * • ([p * • (ϕ), ℓ ρ ]) = [φ, ℓ ρ ]i n-1 = φt n-1 i n-1 by Lemma 1.4.4. Since p • i • is homotopic to the identity of P • , there exists ϕ 1 ∈ Hom A e (P n-1 , A) such that ϕ -φi n = ϕ -ϕp n i n = ϕ 1 ∂ n . Then, ϕh ρ n-1 -φt n-1 i n-1 = (φi n + ϕ 1 ∂ n )h ρ n-1 -φt n-1 i n-1 = φ(d n+1 s n-1 -s n-2 ∂ n-1 ) + ϕ 1 (η n-1 -h ρ n-2 ∂ n-1 ) = -φs n-2 ∂ n-1 -ϕ 1 h ρ n-2 ∂ n-1 ∈ Hom A e (P n-1 , A
) is a boundary, where we used Lemma 1.4.5 and the definition of η n-1 in the second equality and the fact that ϕ 1 is a morphism of A-bimodules in the last identity. Hence, [ϕ, i * • (ℓ ρ )] ∈ HH n-1 (A) coincides with the cohomology class of ϕh ρ n-1 , as was to be shown. Remark 1.4.6. The homotopy maps h ρ

• in Theorem 1.4.1 are presumably homotopy liftings in the sense of [START_REF] Volkov | Gerstenhaber bracket on the Hochschild cohomology via an arbitrary resolution[END_REF]. However, our maps h ρ

• do not directly follow the scheme of that definition -as well as being far simpler, for they are restricted to a much easier situation-since they do not require the computation of any map ∆ : P • → P • ⊗ A P • lifting the isomorphism A → A ⊗ A A, which is also the case in [START_REF] Negron | An alternate approach to the Lie bracket on Hochschild cohomology[END_REF].

Method computing the bracket between HH 1 (A) and HH n (A) (after M. Suárez-Álvarez)

In this subsection, we will briefly recall the method introduced by M. Suárez-Álvarez in [START_REF] Suárez-Álvarez | A little bit of extra functoriality for Ext and the computation of the Gerstenhaber bracket[END_REF] to compute the Gerstenhaber bracket between HH 1 (A) and HH n (A) for n ∈ N 0 .

Recall that HH 1 (A) is isomorphic to the quotient of the space of derivations of A modulo the subspace of inner derivations. Let ρ : A → A be a derivation of A, i.e. ρ(xy) = ρ(x)y + xρ(y) for all x,y ∈ A. For a left A-module M , a ρ-operator on M is a map f : M → M such that f (am) = ρ(a)m + af (m) for all a ∈ A and m ∈ M . It is direct to see that the map ρ e = ρ ⊗ id A + id A ⊗ ρ : A e → A e defined by ρ e (x ⊗ y) = ρ(x) ⊗ y + x ⊗ ρ(y) for x,y ∈ A is a derivation of the enveloping algebra A e and ρ is a ρ e -operator on A.

Let (P • ,∂ • ) be a projective bimodule resolution over A with augmentation µ :

P 0 → A. A ρ e -lifting of ρ to (P • ,∂ • ) is a family of ρ e -operators ρ • = {ρ n : P n → P n } n∈N0 such that µρ 0 = ρµ and ∂ n ρ n = ρ n-1 ∂ n for n ∈ N. The morphism of complexes ρ ♯ •,P• : Hom A e (P • ,A) → Hom A e (P • ,A)
defined by ρ ♯ n,P• (ϕ) = ρϕ-ϕρ n for ϕ ∈ Hom A e (P n ,A) and n ∈ N 0 is independent of the ρ e -lifting up to homotopy (see [START_REF] Suárez-Álvarez | A little bit of extra functoriality for Ext and the computation of the Gerstenhaber bracket[END_REF], Lemma 1.6) and it thus induces a morphism on cohomology that we will denote by the same symbol. Let i • :

P • → B • (A) and p • : B • (A) → P • be morphisms of complexes of A-bimodules lifting id A . Then the diagram H n Hom A e (B • (A),A) H n Hom A e (B • (A),A) H n Hom A e (P • ,A) H n Hom A e (P • ,A) H(i * • ) H(ρ ♯ •,B• (A) ) H(i * • ) H(ρ ♯ •,P• ) (1.4.2)
commutes (see [START_REF] Suárez-Álvarez | A little bit of extra functoriality for Ext and the computation of the Gerstenhaber bracket[END_REF], Lemma 1.6). On the other hand, as noted in [START_REF] Suárez-Álvarez | A little bit of extra functoriality for Ext and the computation of the Gerstenhaber bracket[END_REF], Sections 2.1 and 2.2, using the ρ e -lifting of ρ to the bar resolution defined by

ρ n (a 0 | . . . |a n+1 ) = n+1 j=0 a 0 | . . . |a j-1 |ρ(a j )|a j+1 | . . . |a n+1
for a 0 , . . . ,a n+1 ∈ A and n ∈ N 0 , it is easy to check that the diagram

Hom A e B n (A),A Hom A e B n (A),A Hom k (A ⊗n ,A) Hom k (A ⊗n ,A) F ρ ♯ n,B• (A) F [ρ,-]
commutes. As a consequence, the Gerstenhaber bracket between the cohomology classes of G(ρ) ∈ Hom A e (B 1 (A),A) and φ ∈ Hom A e (B n (A),A) is given by the cohomology class of

[G(ρ), φ] = G([ρ,F (φ)]) = ρ ♯ n,B•(A) (φ)
. We finally recall one of the main results of [START_REF] Suárez-Álvarez | A little bit of extra functoriality for Ext and the computation of the Gerstenhaber bracket[END_REF], which tells us that we can compute the Gerstenhaber bracket between HH 1 (A) and HH n (A) for n ∈ N 0 using any projective bimodule resolution of A (see [START_REF] Suárez-Álvarez | A little bit of extra functoriality for Ext and the computation of the Gerstenhaber bracket[END_REF], Theorem A and Section 2.2). The proof just follows from observing that, on cohomology, (1.4.2) gives us the identities 

i * • (G(ρ)), ϕ = i * • [G(ρ),p * • (ϕ)] = i * • ρ ♯ n,B•(A) (p * • (ϕ)) = ρ ♯ n,P• (ϕ).

Gröbner bases

We will present in this chapter the basic theory of non-commutative Gröbner bases. We will mainly follow Ufnarovskij [START_REF] Ufnarovskij | Combinatorial and asymptotic methods in algebra[END_REF] and Varadarajan [START_REF] Varadarajan | Supersymmetry for mathematicians: an introduction[END_REF].

Normal words and Gröbner bases in noncommutative algebras

Let us first recall the definition of a totally ordered set.

Definition 2.1.1. Let X be a non-empty set. A binary relation ⪰ on X is called a total order on X if the following statements hold for all x,y,z ∈ X:

(1) Antisymmetry: if x ⪰ y and y ⪰ x, then x = y.

(2) Transitivity: if x ⪰ y and y ⪰ z, then x ⪰ z.

(3) Connexity: x ⪰ y or y ⪰ x.

Definition 2.1.2. Let (X, ⪰) be a totally ordered set. Then we define x ≻ y if x ⪰ y and x ̸ = y for x,y ∈ X. We define x ⪯ y if y ⪰ x and define x ≺ y if y ≻ x.

Definition 2.1.3. Let X be a non-empty set. A total order on X is called a well order on X if every non-empty subset of X has a least element in this ordering.

Remark 2.1.4. In a well-ordered set (X, ⪰), any sequence x 1 ⪰ x 2 ⪰ x 3 ⪰ • • • stabilises, i.e. there exists n ∈ N such that x m = x n for all m ⩾ n.

Lemma 2.1.5 (Transfinite induction). Let (X, ⪰) be a well-ordered set and x 0 ∈ X the least element of X. Let P (x) be a property defined for all elements x ∈ X. Assume that the following conditions hold:

(1) P (x 0 ) is true.

(2) Let x ∈ X. If P (y) is true for any x ≻ y, then P (x) is true. Then P (x) is true for all x ∈ X.

Proof. Suppose that the set A = {x ∈ X|P (x) is not true} is non-empty. Then there is the least element α ∈ A. We have α ̸ = x 0 . Then for any y ∈ X with α ≻ y, P (y) is true, which implies P (α) is true. Contradiction! Let X be a non-empty set whose elements are called letters and W the free non-commutative monoid with unit generated by X. Specifically, W is the set of all the finite sequences of zero or more elements from X with concatenation operation:

(x 1 • • • x m )•(y 1 • • • y n ) = x 1 • • • x m y 1 • • • y n ,
where x i ,y j ∈ X. The unique sequence of zero elements is the identity element 1 ∈ W . The elements of W are called words. The length of a word w ∈ W is the number of the letters inside w. The length of 1 ∈ W is zero. Definition 2.1.6. For w 1 ,w 2 ∈ W , we say w 2 is a subword of w 1 , denoted by

w 2 ⊆ w 1 , if w 2 = 1 or w 1 = x i1 x i2 • • • x im and w 2 = x i l x i l+1 • • • x ir for some 1 ⩽ l ⩽ r ⩽ m and x ij ∈ X. We define w 2 ⊊ w 1 if w 2 ⊆ w 1 and w 2 ̸ = w 1 .
We assume that the set X is well-ordered. We may define an order ⪰ on W , called homogeneous lexicographic order, as follows: for w 1 ,w 2 ∈ W , if the length of w 1 is strictly larger than w 2 , we define w 1 ≻ w 2 ; if the length of w 1 equals to w 2 , we sort them in lexicographic order induced by the well order on X. Then the homogeneous lexicographic order ⪰ is a well order on W . Remark 2.1.7. The homogeneous lexicographic order on W has the following properties:

(1) For every w ∈ W which is not 1, we have w ≻ 1.

(2) For all

w 1 ,w 2 ,u,v ∈ W , if w 1 ≻ w 2 , then uw 1 v ≻ uw 2 v.
Let k⟨X⟩ be the free (non-commutative) associative k-algebra generated by X. It is a fact that the algebra k⟨X⟩ is a k-vector space spanned by all words. For any non-zero element x in k⟨X⟩ with the form x = r i=1 c i w i where c i ∈ k \ {0}, w i ∈ W and w 1 ≻ w 2 ≻ • • • ≻ w r , we call c 1 w 1 the leading term of x, w 1 the leading word of x, and c 1 the leading coefficient of x.

Let I be a non-zero two-sided ideal of k⟨X⟩.

Definition 2.1.8. A word w ∈ W is called normal with respect to I if w is not the leading term of any element in I.

Theorem 2.1.9. Let N be the k-vector space spanned by all normal words. Then we have a decomposition k⟨X⟩ = N ⊕ I as vector spaces.

Proof. Since N ∩ I = 0, we only need to prove k⟨X⟩ = N + I. It is sufficient to prove that W ⊆ N + I. Let w ∈ W be a word. If the word w is normal, we have w = w + 0. Otherwise, w is the leading term of an element y in I. Let y = w + w 1 , where w 1 ∈ k⟨X⟩. Let w 1 = r1 i=1 a i w i1 , where a i ∈ k,w i1 ∈ W and w ≻ w i1 . We have w = -w 1 + y. If all w i1 are normal words, we obtain w ∈ N + I. Otherwise, say w 11 is not normal, w 11 is the leading term of an element z ∈ I.

Let z = w 11 + w 2 , where w 2 ∈ k⟨X⟩. Let w 2 = r2 i=1 b i w i2 , where b i ∈ k, w i2 ∈ W and w 11 ≻ w i2 .
If all w i2 are normal words, we have w 11 ∈ N + I. Otherwise, say w 12 is not normal, repeat the above process, then we get a sequence w ≻ w 11 ≻ w 12 ≻ • • • , which must be a finite sequence as W is well-ordered. Finally, we get w ∈ N + I.

Definition 2.1.10.

There is a natural projection map p : k⟨X⟩ → N . For every x ∈ k⟨X⟩, we call p(x) the normal form of x.

Remark 2.1.11. Let A = k⟨X⟩/I be the quotient algebra. Then A ∼ = N as vector spaces. Definition 2.1.12. A subset G of I is called a Gröbner basis of I in k⟨X⟩ if the leading word of any non-zero element in I contains the leading word of some element in G as a subword. Moreover, if we require that no proper subset of G is a Gröbner basis, G is called a minimal Gröbner basis. A Gröbner basis G is called reduced if it is minimal and every element x ∈ G has the form w -p(w), where w is the leading term of x and the coefficient of w is 1.

Remark 2.1.13. (1) Many Gröbner bases exist. For example, the ideal I itself is a Gröbner basis of I.

(2) A Gröbner basis G is minimal if and only if 0 / ∈ G and the leading word of any element in G doesn't contain the leading word of any other element in G as a subword. Proposition 2.1.14. Let G be a Gröbner basis of I in k⟨X⟩. Then the set G generates the twosided ideal I.

Proof. Since G ⊆ I, it is clear that (G) ⊆ I, where (G) is the two-sided ideal generated by G. We shall prove the converse. Let y be a non-zero element in I. We want to prove y ∈ (G). Let y = aw + z, where a ∈ k \ {0}, w ∈ W, z ∈ k⟨X⟩ and aw is the leading term of y. There exists x ∈ G with the leading term x 1 and exist c ∈ k \ {0}, u,v ∈ W such that aw = cux 1 v. Then y = cuxv + y 1 , where cuxv ∈ (G), y 1 = z -cu(x -x 1 )v. Let y 1 = a 1 w 1 + z 1 , where a 1 ∈ k \ {0}, w 1 ∈ W, z 1 ∈ k⟨X⟩ and a 1 w 1 is the leading term of y 1 . We have w ≻ w 1 . By repeating the above process for y 1 , y 2 ,y 3 , . . . , we get a sequence w ≻ w 1 ≻ w 2 ≻ • • • . As the set W is well-ordered, the process will be terminated in a finite number of steps. Finally, we obtain y ∈ (G). Theorem 2.1.15. Let G be a Gröbner basis of I in k⟨X⟩. Then a word w ∈ W is normal if and only if w doesn't contain the leading word of any element in G as a subword.

Proof. (⇒) Let w be a normal word. Suppose there exist x ∈ G with leading word x 1 and w 1 , w 2 ∈ W such that w = w 1 x 1 w 2 . Then w is the leading word of w 1 xw 2 ∈ I. Contradiction! (⇐) Suppose the word w ∈ W is not normal. Then w is the leading word of some element in I. By the definition of Gröbner basis, w contains the leading word of some element in G as a subword.

Bergman's diamond lemma

Now we introduce Bergman's diamond lemma according to Varadarajan [START_REF] Varadarajan | Supersymmetry for mathematicians: an introduction[END_REF], Section 7.2 and give an example from Ufnarovskij [START_REF] Ufnarovskij | Combinatorial and asymptotic methods in algebra[END_REF], Section 2.6 about how to find a Gröbner basis.

Let X be a well-ordered set and A = k⟨X⟩/I an associative k-algebra where I is a nonzero two-sided ideal of the free associative k-algebra k⟨X⟩. The free monoid W generated by X is equipped with the homogeneous lexicographic order ⪰ induced by the well order on X. Suppose that the ideal I is generated by the set

{w σ -f σ ∈ I|w σ ∈ W,f σ ∈ k⟨X⟩, σ ∈ Σ}.
(2.2.1)

We also assume that the following conditions hold:

(1) For any σ ̸ = τ in Σ, we have w σ ̸ = w τ .

(2) For all σ ∈ Σ, we have f σ = 0 or the leading word of f σ is strictly less than w σ in the homogeneous lexicographic order. Definition 2.2.1. A word w ∈ W is called standard with respect to (2.2.1) if w doesn't contain any word w σ (σ ∈ Σ) as a subword. Remark 2.2.2. Let S be the vector space spanned by all standard words with respect to (2.2.1), N the vector space spanned by all normal words with respect to I. Then N ⊆ S. Remark 2.2.5. The vector space S is exactly the set of elements which are fixed by all reduction operators in k⟨X⟩. Lemma 2.2.6. For every x ∈ k⟨X⟩ and reduction operator R, we have x -Rx ∈ I.

Proof. Let R = R n R n-1 • • • R 1
where R i are elementary reduction operators. We will prove the lemma by induction on n. When n = 1, R = R (u,wσ,v) is an elementary reduction operator, where σ ∈ Σ and u,v ∈ W , we write x = cuw σ v + x ′ , where c ∈ k and x ′ ∈ k⟨X⟩ is a linear combination of words not equal to uw σ v. Then we have Rx = cuf σ v + x ′ , so x -Rx = cu(w σf σ )v ∈ I. Suppose that x -Rx ∈ I for every x ∈ k⟨X⟩ and every reduction operator R which can be written as a composition of n -1 elementary reduction operators. Then for

R = R n R n-1 • • • R 1 , we have x -Rx = (x -R 1 x) + (R 1 x -R n R n-1 • • • R 2 R 1 x) ∈ I.
Definition 2.2.7. An element x ∈ k⟨X⟩ is called reduction finite if for every sequence {R i |i ∈ N} of elementary reduction operators, the sequence 

R 1 x, R 2 R 1 x, . . . , R i R i-1 • • • R 1 x, . . . stabilizes, i.e. there exists n ∈ N, such that R m R m-1 • • • R 1 x = R n R n-1 • • • R 1 x for all m ⩾ n. Let
x, R 2 R 1 x, . . . , R i R i-1 • • • R 1 x, . . . stabilizes.
Lemma 2.2.9. We have F = k⟨X⟩.

Proof. The set F is a vector space. It is sufficient to prove W ⊆ F . Suppose W \ F ̸ = ∅. Since W is well-ordered, we can take the least element w in W \ F . Let {R i |i ∈ N} be a sequence of elementary reduction operators. Assume without loss of generality R 1 w ̸ = w, then R 1 w is a linear combination of words strictly less than w in the homogeneous lexicographic order. Thus, R 1 w ∈ F . This implies that the sequence R 1 w, R 2 R 1 w, . . . stabilizes. Hence, w ∈ F . Contradiction! Remark 2.2.10. For every x ∈ k⟨X⟩, there exists a reduction operator R such that Rx ∈ S. Definition 2.2.11. We call Rx in last remark a reduced form of x. If all reduced forms of x are same, x is called reduction unique. Let U be the set of reduction unique elements. Remark 2.2.12. (1) We have S ⊆ U and U is a vector space which is stable under all reduction operators, i.e. R(U ) ⊆ U for every reduction operator R.

(2) We have a map R : U → S which maps x ∈ U to its reduced form. This is a linear map satisfying R(Rx) = R(x) for every x ∈ U and every reduction operator R. Moreover, R| S = id S . Definition 2.2.13. An overlap ambiguity is a triple (w 1 ,w 2 ,w 3 ), where w i ∈ W and there are σ, τ ∈ Σ such that w 1 w 2 = w σ , w 2 w 3 = w τ . An inclusion ambiguity is a triple (w 1 ,w 2 ,w 3 ), where w i ∈ W and there are σ,τ ∈ Σ such that w 2 = w σ , w 1 w 2 w 3 = w τ . An overlap ambiguity (w 1 ,w 2 ,w 3 ) is called resolvable if there are reduction operators

R 1 ,R 2 such that R 1 (f σ w 3 ) = R 2 (w 1 f τ ) ∈ S. An inclusion ambiguity (w 1 ,w 2 ,w 3 ) is called resolvable if there are reduction operators R 1 ,R 2 such that R 1 (w 1 f σ w 2 ) = R 2 (f τ ) ∈ S.
Theorem 2.2.14 (Bergman's diamond lemma). The following statements are equivalent:

(1) S = N .

(2) Every element in k⟨X⟩ is reduction unique.

(3) All ambiguities are resolvable.

(4) The set {w σ -f σ |σ ∈ Σ} is a Gröbner basis of I in k⟨X⟩.

Proof. (1) ⇒ (2) Let x be an element in k⟨X⟩ and s = Rx ∈ S a reduced form of x, where R is a reduction operator. Then x -s = x -Rx ∈ I by Lemma 2.2.6. Since S = N , we have k⟨X⟩ = S ⊕ I as vector spaces by Theorem 2.1.9. Then the decomposition x = s + (x -s) is unique. This implies that the reduced form of x is unique.

(2) ⇒ (1) Suppose U = k⟨X⟩. Then we have a linear map R : k⟨X⟩ → S. Let K be the kernel of R. Since R| S = id S , we obtain k⟨X⟩ = S ⊕ K. We want to prove I = K. Let x ∈ K. Then R(x) = 0. There is a reduction operator R such that Rx = R(x) = 0. By Lemma 2.2.6, we have x = x -Rx ∈ I. Conversely, let x ∈ I. Then x is a linear combination of elements of the form u(w σ -f σ )v, where σ ∈ Σ and u,v ∈ W . We have

R(u(w σ -f σ )v) = R(R (u,wσ,v) (u(w σ -f σ )v)) = R(0) = 0, which implies u(w σ -f σ )v ∈ K. Then x ∈ K.
We obtain k⟨X⟩ = S ⊕ I. Let s ∈ S. Then s = s + 0 = n + y for some n ∈ N and y ∈ I. As N ⊆ S, we get s = n. Hence, S = N .

(2) ⇒ (1) Suppose that (w 1 ,w 2 ,w 3 ) is an overlap ambiguity with w 1 w 2 = w σ , w 2 w 3 = w τ , σ,τ ∈ Σ and w 1 ,w 2 ,w 3 ∈ W . There are reduction operators R 1 , R 2 such that R 1 (f σ w 3 ) ∈ S and R 2 (w 1 f τ ) ∈ S. The elements R 1 (f σ w 3 ) and R 2 (w 1 f τ ) are both reduced forms of the word w 1 w 2 w 3 , hence they are same. For the same reason, all inclusion ambiguities are resolvable.

(3) ⇒ (2) We will prove that every word is reduction unique by transfinite induction. The least word 1 is reduction unique. Let w ∈ W . Suppose that all words strictly less than w are reduction unique. We want to prove that w is reduction unique. Let R 1 and R 2 be two elementary reduction operators such that R 1 w ̸ = w and R 2 w ̸ = w. It is sufficient to prove that R 1 w and R 2 w are reduction unique, and they have the same reduced form. Let R 1 = R (u1,wσ,v1) and R 2 = R (u2,wτ ,v2) , where σ, τ ∈ Σ and u 1 ,v 1 ,u 2 ,v 2 are words. There are three cases.

Assume first that w = uw 1 w 2 w 3 v, where

w 1 w 2 = w σ , w 2 w 3 = w τ , u = u 1 , w 3 v = v 1 , uw 1 = u 2 , v = v 2
and u,w 1 ,w 2 ,w 3 ,v ∈ W . Since all overlap ambiguities are resolvable, there are reduction operators L 1 and L 2 such that L 1 (f σ w 3 ) = L 2 (w 1 f τ ) ∈ S. By Remark 2.2.4, there exist reduction operators L 1 and L 2 such that L 1 (uf σ w

3 v) = uL 1 (f σ w 3 )v = uL 2 (w 1 f τ )v = L 2 (uw 1 f τ v).
The element uf σ w 3 v is a linear combination of words strictly less than w. Thus, uf σ w 3 v ∈ U . Similarly, uw 1 f τ v ∈ U , and R(uf σ w 3 v) = R(uw 1 f τ v). In other words, R 1 w and R 2 w are reduction unique, and they have the same reduced form.

Assume now that w = u 2 w 1 w σ w 2 v 2 , where w 1 w σ w 2 = w τ , u 2 w 1 = u 1 , w 2 v 2 = v 1 and w 1 , w 2 ∈ W . Since all inclusion ambiguities are resolvable, there are reduction operators L 1 and L 2 such that L 1 (w 1 f σ w 2 ) = L 2 f τ ∈ S. By Remark 2.2.4, there exist reduction operators

L 1 and L 2 such that L 1 (u 2 w 1 f σ w 2 v 2 ) = u 2 L 1 (w 1 f σ w 2 )v 2 = u 2 (L 2 f τ )v 2 = L 2 (u 2 f τ v 2 )
. By the induction hypothesis, u 2 w 1 f σ w 2 v 2 and u 2 f τ v 2 are reduction unique and have the same reduced form.

Assume finally that w = u 1 w σ ww τ v 2 , where ww τ v 2 = v 1 , u 1 w σ w = u 2 and w ∈ W . Then we have R 1 w = u 1 f σ ww τ v 2 and R 2 w = u 1 w σ wf τ v 2 . There exist reduction operators L 1 and L 2 such that L 1 R 1 w = u 1 f σ wf τ v 2 = L 2 R 2 w. Then R 1 w and R 2 w are reduction unique and have the same reduced form.

(1) ⇒ (4) The leading word of any element in I is not normal, hence not standard by S = N , then contains w σ as a subword for some σ ∈ Σ. Then {w σ -f σ |σ ∈ Σ} is a Gröbner basis.

(4) ⇒ (1) If {w σ -f σ |σ ∈ Σ} is a Gröbner basis, we have N = S by Theorem 2.1.15 and that's all.

Let G 0 be a generating set of the ideal I. In order to get a Gröbner basis starting from G 0 , we apply a procedure consisting of the following steps. Assume that G ′ is an intermediate set with G 0 ⊆ G ′ ⊆ I.

Step 1. (Normalization) By multiplying a non-zero coefficient, the leading coefficient of every element in G ′ becomes 1. Then we get a new intermediate set G ′ .

Step 2. (Reduction) Take two normalized elements x and y in G ′ and two words u,v ∈ W . Let y 1 be the leading word of y. Compute R (u,y1,v) (x). There are three cases: if

R (u,y1,v) (x) = 0, we remove x from G ′ ; if R (u,y1,v) (x) ̸ = 0 and R (u,y1,v) (x) ̸ = x, the leading word of R (u,y1,v) (x) = R (u,y1,v) (x ′ -uy ′ v
) is strictly less than the leading word of x in the homogeneous lexicographic order in which case we replace

x by R (u,y1,v) (x) in G ′ ; if R (u,y1,v) (x) = x, we do nothing. This process is denoted by x → R (u,y1,v) (x).
Repeat Step 1 and Step 2 until G ′ does not change. Then we go to Step 3.

Step 3. (Composition) Take two normalized elements x and y in G ′ with the leading words x 1 and y 1 respectively. If there is a triple (w 1 ,w 2 ,w 3 ), where w i ∈ W , such that x 1 = w 1 w 2 , y 1 = w 2 w 3 and w 2 ̸ = 1, we compute w 1 y -xw 3 . If w 1 y -xw 3 is not zero, it should be added to G ′ .

Repeat Step 1 to Step 3 until G ′ does not change, which may be an infinite number of repetitions. Finally, we obtain a set G, which is a minimal Gröbner basis.

Here we give an example of computing Gröbner bases in [START_REF] Ufnarovskij | Combinatorial and asymptotic methods in algebra[END_REF].

Example 2.2.15. Let A = k⟨x,y⟩/(x 2 -yx) be an algebra with the order x ≻ y. In order to get a Gröbner basis, we start from the set G ′ = {x 2 -yx}. Applying Step 1 to Step 3, we have

(x,x,x) : (x 2 -yx)x -x(x 2 -yx) = xyx -yx 2 → xyx -y 2 x.
The element xyx -y 2 x should be added to the set G ′ , so, G ′ = {x 2 -yx, xyx -y 2 x}. By the reduction

(x,x,yx) : (x 2 -yx)yx -x(xyx -y 2 x) = xy 2 x -yxyx → xy 2 x -y 3 x, we have G ′ = {x 2 -yx, xyx -y 2 x,xy 2 x -y 3 x}. By the reductions (xy,x,x) : (xyx -y 2 x)x -xy(x 2 -yx) = xy 2 x -y 2 x 2 → xy 2 x -y 3 x → 0, (xy,x,yx) : (xyx -y 2 x)yx -xy(xyx -y 2 x) = xy 3 x -y 2 xyx → xy 3 x -y 4 x,
we have G ′ = {x 2 -yx,xyx -y 2 x,xy 2 x -y 3 x,xy 3 x -y 4 x}. By the reductions

(x, x,y 2 x) : (x 2 -yx)y 2 x -x(xy 2 x -y 3 x) = xy 3 x -yxy 2 x → xy 3 x -y 4 x → 0, (xy 2 ,x,x) : (xy 2 x -y 3 x)x -xy 2 (x 2 -yx) = xy 3 x -y 3 x 2 → xy 3 x -y 4 x → 0, (xy,x,y 2 x) : (xyx -y 2 x)y 2 x -xy(xy 2 x -y 3 x) = xy 4 x -y 2 xy 2 x → xy 4 x -y 5 x, • • • • • •
Reasoning inductively, we claim that the set G = {xy n x -y n+1 x|n ∈ N 0 } is a Gröbner basis of the ideal (x 2 -yx) in k⟨x,y⟩. Indeed, for k,l ∈ N 0 we have

xy k • x • y l x : (xy k x -y k+1 x)y l x -xy k (xy l x -y l+1 x) = xy k+l+1 x -y k+1 xy l x → xy k+l+1 x -y k+l+2 x → 0.
This shows that all ambiguities are resolvable. Moreover, the set {y n , y n xy m |m,n ∈ N 0 } is a k-basis of A.

If we define y ≻ x, then {yx -x 2 } is a Gröbner basis of the ideal (x 2 -yx), and {x n y m |m,n ∈ N 0 } is a k-basis of A. 

+ bc + ab) -c 2 a = cbc + cab → (-ba -ac)c + (-bc -ab)b → bac + bcb → bac + b(-ba -ac) → 0, (c,c, b) : c(cb + ba + ac) -c 2 b = cba + cac → (-ba -ac)a + (-bc -ab)c → aca + abc → a(-bc -ab) + abc = -a 2 b → 0.
Now we check that all ambiguities with respect to G = {a 2 ,b 2 ,c 2 ,ca + bc + ab,cb + ba + ac,bab -aba} are resolvable. So, the set G = {a 2 ,b 2 ,c 2 ,ca+bc+ab,cb+ba+ac,bab-aba} is a minimal Gröbner basis of I. Moreover, a k-basis of A is {1,a,b,c,ab,bc,ba,ac,aba,abc,bac,abac}.

Chapter 3

Fomin-Kirillov algebras

In this chapter, we will recall the definitions of Yetter-Drinfeld modules and Fomin-Kirillov algebras.

Yetter-Drinfeld modules over a group algebra

Recall that a (linear) representation ρ of a group G on a vector space V over a field k is a group homomorphism ρ : G → Aut k (V ), where Aut k (V ) is the general linear group on V . The dimension of ρ is the dimension of V . Let G be a group and V a k-vector space. Then ρ : G → Aut k (V ) is a linear representation if and only if V is a kG-module, where kG is the group algebra. We also call V a (linear) representation of G if V is a kG-module. Let G be a group and X a finite set with #X = n. Assume that there is a left action of G on X. Let V be an n-dimensional k-vector space with a basis {e x |x ∈ X}. The permutation representation ρ : G → Aut k (V ) is given by ρ(g)(e x ) = e g(x) for g ∈ G and x ∈ X. In particular, let G = S n and X = 1,n , we get the permutation representation of S n . 

i : G → Aut k (k) ∼ = k × of dimension 1 given by ρ i (g) = ξ i-1 n for i ∈ 1,n
, where ξ n is a primitive root of unity of order n in k.

Example 3.1.4. Let G = S 3 . Assume that the characteristic of k is different from 2 and 3. The irreducible representations of S 3 are ρ i for i ∈ 1,3 , where ρ 1 is the trivial representation, ρ 2 : S 3 → k × is given by ρ 2 (σ) = 1 if σ is an even permutation, and ρ 2 (σ) = -1 if σ is an odd permutation, and ρ 3 is the unique 2-dimensional irreducible representation of S 3 . Recall that π ∼ = ρ 1 ⊕ ρ 3 , where π is the permutation representation of S 3 . Indeed, let π : S 3 → Aut k (V ) and {e 1 ,e 2 ,e 3 } is a basis of V , then the subspace spanned by e 1 + e 2 + e 3 is the trivial representation, and the subspace

span k { 3 i=1 k i e i | 3 i=1 k i = 0} is ρ 3 . Definition 3.1.5. A monoidal category is a category C together with a functor ⊗ : C × C → C, an object 1 (called unit), and natural isomorphisms a U,V,W : (U ⊗V )⊗W → U ⊗(V ⊗W ), r V : V ⊗1 → V and l V : 1 ⊗ V → V such that the diagrams ((U ⊗ V ) ⊗ W ) ⊗ X (U ⊗ (V ⊗ W )) ⊗ X U ⊗ ((V ⊗ W ) ⊗ X) U ⊗ (V ⊗ (W ⊗ X)) (U ⊗ V ) ⊗ (W ⊗ X) a U,V,W ⊗ id X a U,V ⊗W,X id U ⊗ a V,W,X a U ⊗V,W,X a U,V,W ⊗X and (V ⊗ 1) ⊗ W V ⊗ (1 ⊗ W ) V ⊗ W a V,1,W id V ⊗ l W r V ⊗ id W commute for objects U,V,W,X in C.
Definition 3.1.6. A braided monoidal category is a monoidal category C with a natural isomorphism c V,W : V ⊗ W → W ⊗ V , called braiding, such that the diagrams

(U ⊗ V ) ⊗ W U ⊗ (V ⊗ W ) (V ⊗ W ) ⊗ U V ⊗ (W ⊗ U ) V ⊗ (U ⊗ W ) (V ⊗ U ) ⊗ W a U,V,W c U,V ⊗W a V,W,U c U,V ⊗ id W a V,U,W id V ⊗ c U,V and U ⊗ (V ⊗ W ) (U ⊗ V ) ⊗ W W ⊗ (U ⊗ V ) (W ⊗ U ) ⊗ V (U ⊗ W ) ⊗ V U ⊗ (W ⊗ V ) a -1 U,V,W c U ⊗V,W a -1 W,U,V id U ⊗ c V,W a -1 U,W,V c U,W ⊗ id V commute for objects U,V,W in C.
Let G be a group. There are k-linear maps ∆ : kG → kG ⊗ kG given by ∆(g) = g ⊗ g for g ∈ G, and ε : kG → k given by ε(g) = 1 for g ∈ G. The group algebra kG is a Hopf algebra with the antipode S : kG → kG mapping g ∈ G to g -1 . We refer the reader to [START_REF] Montgomery | Hopf algebras and their actions on rings[END_REF] for more information on Hopf algebras. Definition 3.1.7. A left comodule over kG is a k-vector space M together with a linear map δ : M → kG ⊗ M , called coaction, such that (id kG ⊗ δ)δ = (∆ ⊗ id M )δ and (ε ⊗ id M )δ = id M , where we identify k ⊗ M with M in the second identity. Let M and N be two kG-comodules, a morphism of comodules is a k-linear map f : M → N such that (id kG ⊗ f )δ M = δ N f , where δ M and δ N are the coactions on M and N respectively. 

M → kG ⊗ M . A kG-subcomodule of M is a subspace N of M such that δ(N ) ⊆ kG ⊗ N . If N is a subcomodule of M , the quotient space M/N is also a comodule. Lemma 3.1.10. If M is a left kG-comodule, then there is a G-decomposition M = ⊕ g∈G M g , where M g = {m ∈ M |δ(m) = g ⊗ m} for g ∈ G.
Proof. The facts M g ∩ M h = 0 for g ̸ = h ∈ G and M ⊇ ⊕ g∈G M g are obvious. Let m ∈ M and δ(m) = n i=1 g i ⊗ m i , where n ∈ N, g i ∈ G distinct, and m i ∈ M for i ∈ 1,n . By the identities in Definition 3.1.7, we obtain

n i=1 g i ⊗ δ(m i ) = n i=1 g i ⊗ g i ⊗ m i , implying δ(m i ) = g i ⊗ m i for all i ∈ 1,n , and n i=1 m i = m. Thus, M ⊆ ⊕ g∈G M g .
Remark 3.1.11. If (M g ) g∈G is a family of k-vector spaces, then M = ⊕ g∈G M g is a left kG-comodule, where the coaction δ : M → kG ⊗ M is linearly extended by δ(m g ) = g ⊗ m g for all g ∈ G and m g ∈ M g . Hence, a left comodule over a group algebra kG is equivalent to a G-graded vector space. Remark 3.1.12. Given two comodules M and N over kG, the tensor product M ⊗ N of vector spaces is a comodule with the G-decomposition

(M ⊗ N ) g = ⊕ h∈G (M h ⊗ N h -1 g ) for g ∈ G.
Definition 3.1.13. A left Yetter-Drinfeld module M over a group algebra kG is a left kG-module and a left kG-comodule satisfying the compatibility condition δ(gm) = ghg -1 ⊗ gm for all g,h ∈ G and m ∈ M h . A morphism of Yetter-Drinfeld modules is a morphism of modules and comodules.

Given two Yetter-Drinfeld modules M and N over kG, the tensor product M ⊗ N is again a Yetter-Drinfeld module with the action given by g(x ⊗ y) = gx ⊗ gy for g ∈ G, x ∈ M and y ∈ N , and the coaction given by Remark 3.1.12. The category kG kG YD of left Yetter-Drinfeld modules over kG is a braided monoidal category, the unit of which is k with the trivial action and coaction, and the braiding c M,N :

M ⊗ N → N ⊗ M is given by m ⊗ n → (gn) ⊗ m for g ∈ G, m ∈ M g and n ∈ N . If a Yetter-Drinfeld module M is finite-dimensional, then the dual M * = Hom k (M,k
) is also a Yetter-Drinfeld module, where the action is given by gf (m) = f (g -1 m) for g ∈ G, f ∈ M * and m ∈ M , and the coaction is given by the G-decomposition M * = ⊕ g∈G (M * ) g with (M * ) g = (M g -1 ) * . Given two finite-dimensional Yetter-Drinfeld modules M and N , the isomorphism (M ⊗ N ) * ∼ = N * ⊗ M * , as Yetter-Drinfeld modules, is induced by the usual pairing.

Let G be a finite group with #G = n ∈ N, and k a field with char(k) ∤ n. Then all Yetter-Drinfeld modules over kG are semi-simple. The following classification of irreducible Yetter-Drinfeld modules is introduced in [2], Section 1.1. Remark 3.1.14. Any irreducible Yetter-Drinfeld module M (C,ρ) over kG is parameterized by pairs (C,ρ), where C is a conjugacy class in G and ρ is an irreducible representation of the isotropy subgroup

G s = {g ∈ G|gsg -1 = s} of a fixed point s ∈ C on a vector space V . A precise description is as follows. Let C = {t i |i ∈ 1,m } and s = t 1 . Let g i ∈ G such that g i sg -1 i = t i for i ∈ 1,m . Define M (C,ρ) = ⊕ i∈ 1,m g i ⊗ V . The action is given by g(g i ⊗ v) = g j ⊗ (γv)
, where gg i = g j γ for some unique j ∈ 1,m and γ ∈ G s . The coaction δ :

M (C,ρ) → kG ⊗ M (C,ρ) is given by δ(g i ⊗ v) = t i ⊗ (g i ⊗ v).
Let s,s ∈ C, and g ∈ G such that gsg -1 = s. Then φ : G s → G s given by ϕ(x) = g -1 xg for x ∈ G s is an isomorphism of groups. Let ρ = ρφ, the pull back of ρ, which is an irreducible representation of G s.

Then M (C,ρ) = M (C,ρ).

Fomin-Kirillov algebras

We refer the reader to [START_REF] Fomin | Quadratic algebras, Dunkl elements, and Schubert calculus[END_REF][START_REF] Milinski | Pointed indecomposable Hopf algebras over Coxeter groups, New trends in Hopf algebra theory[END_REF] for more information on Fomin-Kirillov algebras. Define the vector space

V n = k{x i,j |i ̸ = j ∈ 1,n }/k{x i,j + x j,i |i ̸ = j ∈ 1,n } for n ⩾ 2.
We denote the class of x i,j also by x i,j . Let S n be the group of permutations of {1, . . . ,n} and (i,j) ∈ S n the unique transposition interchanging i and j. There is a left action of kS n on V n given by σx i,j = x σ(i),σ(j) for σ ∈ S n , x i,j ∈ V n , and a left coaction δ :

V n → kS n ⊗ V n defined by δ(x i,j ) = (i,j) ⊗ x i,j for x i,j ∈ V n .
The space V n is a Yetter-Drinfeld module over S n for the previous structures. The braiding

V n ⊗ V n → V n ⊗ V n on V n is given by x i,j ⊗ x k,l → ((i,j)x k,l ) ⊗ x i,j for x i,j ,x k,l ∈ V n .
The dual V * n is also a Yetter-Drinfeld module over kS n . We denote by y i,j the dual element of x i,j . The left action of kS n on V * n is given by σy i,j = y σ(i),σ (j) , and the left coaction

δ ′ : V * n → kS n ⊗ V *
n is given by δ ′ (y i,j ) = (i,j) ⊗ y i,j . Definition 3.2.1. Let n ⩾ 2 be an integer. The Fomin-Kirillov algebra of index n, denoted as FK(n), is defined as the quotient of T(V n ) modulo the two-sided ideal (R n ) generated by R n , where R n is the subspace of V n ⊗ V n spanned by

x 2 i,j for i ̸ = j ∈ 1,n , x i,j x j,k + x j,k x k,i + x k,i x i,j for i,j,k ∈ 1,n with #{i,j,k} = 3, x i,j x k,l -x k,l x i,j for i,j,k,l ∈ 1,n with #{i,j,k,l} = 4.
Recall that the Hilbert series of a graded vector space

W = ⊕ i∈Z W i is the formal series h W (t) = i∈Z dim(W i )t i . Let [k] = k-1 i=0 t i for k ∈ N. The Hilbert series of FK(2) is [2], the Hilbert series of FK(3) is [2] 2 [3], the Hilbert series of FK(4) is [2] 2 [3] 2 [4] 2 ,
and the Hilbert series of FK( 5) 4) is 576, and the dimension of FK( 5) is 8294400. However, it is not known if FK( 6) is finite-dimensional.

is [4] 4 [5] 2 [6] 4 . Then, the dimension of FK(2) is 2, the dimension of FK(3) is 12, the dimension of FK(
The quadratic dual algebra FK(n

) ! of FK(n) is given as the quotient of T(V * n ) modulo the two-sided ideal (R ⊥ n ), where R ⊥ n is the subspace of V * n ⊗ V * n spanned by y i,j y j,k + y j,k y i,k for i,j,k ∈ 1,n with #{i,j,k} = 3, y i,j y k,l + y k,l y i,j for i,j,k,l ∈ 1,n with #{i,j,k,l} = 4.
The subspace k of FK(n) is the trivial Yetter-Drinfeld module. The spaces R n , R ⊥ n , and the algebras FK(n), FK(n) ! are all Yetter-Drinfeld modules over kS n . Note that the isomorphism (V * ) ⊗n ∼ = (V ⊗n ) * induced by γ n defined in (1.1.1) is not of kS n -comodules. So, we have the following remark.

Remark 3.2.2 ([11], Remark 2.6).

If M is a Yetter-Drinfeld module over kG, where G is a group, then the inverse Yetter-Drinfeld module M inv is given by the same action but the coaction is defined by the grading

(M inv ) g = M g -1 for g ∈ G. Let A be the Fomin-Kirillov algebra FK(3). Note that K i (A) = ((A ! -i ) * ) inv ⊗
A is a Yetter-Drinfeld module over kS n , and the differentials

d i : K i (A) → K i-1 (A)
in the Koszul complex are morphisms of Yetter-Drinfeld modules. We will omit the superscript inv from now on to simplify the notation. As a consequence, the homology

H • (K • (A)) is also a Yetter-Drinfeld modules over kS n .
Let us recall a result in [START_REF] Walton | On the quadratic dual of the Fomin-Kirillov algebras[END_REF].

Lemma 3.2.3 ([29], Lemmas 2.3 and 2.4). Order the generators y

i,j for i < j ∈ 1,n such that y i,j ≺ y k,l if j < l, or if j = l and i < k. Then every element in FK(n) ! is a linear combination of the monomials of the form y r1,2 1,2 y r1,3 1,3 y r2,3 2,3 y r1,4 1,4 • • • y rn-2,n n-2,n y rn-1,n n-1,n for r i,j ∈ N 0 . Moreover, the element y 2 i,j is central in FK(n) ! .
Finally, we recall that FK(n) is not Koszul for n ⩾ 3 (see [START_REF] Roos | Some non-Koszul algebras[END_REF]).

Chapter 4

Fomin-Kirillov algebra on 3 generators

For simplicity, we will denote the Fomin-Kirillov algebra FK(3) on 3 generators simply by A in this chapter. We will construct the minimal projective bimodule resolution of A, and compute the linear structure of Hochschild homology and cohomology using this resolution.

The projective bimodule resolution of FK(3)

In this section, we will explicitly construct the minimal projective resolution of the standard bimodule A in the category of bounded below graded A-bimodules.

Generalities

Let a = x 1,2 , b = x 2,3 , c = x 3,1
. By Definition 3.2.1, A is the quadratic k-algebra generated by the k-vector space V spanned by three elements a,b,c, modulo the ideal generated by the vector space R ⊆ V ⊗2 spanned by

{a 2 , b 2 , c 2 , ab + bc + ca, ba + ac + cb}.
This is a connected graded k-algebra by setting the generators a, b and c in internal degree 1. As usual, we will omit the tensor symbol ⊗ when denoting the product of the elements of the tensor algebra T(V ). Assume that the set {a,b,c} is equipped with an ordering by setting c ≻ b ≻ a. A Gröbner basis is given in Example 2.2.16. Recall that the set B = {1, a, b, c, ab, bc, ba, ac, aba, abc, bac, abac}

(4.1.1)
is a basis of A (see [START_REF] Fomin | Quadratic algebras, Dunkl elements, and Schubert calculus[END_REF]). Note that A = ⊕ m∈ 0,4 A m , where A m is the subspace of A concentrated in internal degree m. Given m ∈ 0,4 , we will denote by B m the subset of (4.1.1) that is a basis of A m .

Let us briefly denote by

B ! 1 = {A,B,C} the basis of V * dual to the basis B 1 = {a,b,c} of V ,
where the former are concentrated in internal degree -1. The quadratic dual

A ! = ⊕ n∈N0 A ! -n
of A is then given by

A ! = k⟨A,B,C⟩/(BA -AC, CA -AB, AB -BC, CB -BA), where A ! -n is the subspace of A ! concentrated in internal degree -n. Notice that A ! 0 = k and A ! -1 = V * .
By the relations in A ! , we immediately have the following fact. 

X 2n Y = Z 2n Y, X 2n+1 Y = Z 2n+1 X, B 2n+2 A = AB 2n+2 = A 2n+1 B 2 , AB 2n+1 = A 2n+1 B, B 2n+1 A = A 2n+1 C, C 2n+2 A = AC 2n+2 = A 2n+1 B 2 , AC 2n+1 = A 2n+1 C, C 2n+1 A = A 2n+1 B,
holds for n ∈ N 0 and {X,Y,Z} = {A,B,C} (see [START_REF] Herscovich | An elementary computation of the cohomology of the Fomin-Kirillov algebra with 3 generators[END_REF], Fact 3.6), and the identities

XY n = A n X and XA n = A n X, if n is even, A n Y, if n is odd, holds for n ∈ N and {X, Y } = {B, C} in A ! . Lemma 4.1.2. The set B ! n = {A n , B n , C n , A n-1 B, A n-1 C, A n-2 B 2 } is a basis of A !
-n for all integers n ⩾ 2, where we follow the convention that A 0 B 2 = B 2 (see [START_REF] Ştefan | The cohomology ring of the 12-dimensional Fomin-Kirillov algebra[END_REF], Lemma 4.4). Note that #B ! 2 = 5 and #B ! n = 6 for n ⩾ 3.

Let (A ! -n ) * be the dual space of A ! -n and B ! * n = {α n , β n ,γ n ,α n-1 β, α n-1 γ, α n-2 β 2 } \ {0} the dual basis to B !
n for n ∈ N, where we will follow the convention that if the index of some letter in an element of the previous sets is less than or equal to zero, this element is zero 0. We will omit the index 1 for the elements of the previous bases and write B ! * 0 = {ϵ ! }, where ϵ ! is the basis element of (A ! 0 ) * . The previous bases for the homogeneous components of A, A ! or

(A ! ) # = ⊕ n∈N0 (A ! -n ) * will be called usual. Recall that (A ! ) # is a graded bimodule over A ! via (uf v)(w) = f (vwu) for u,v,w ∈ A ! and f ∈ (A ! ) # .
Using this definition of action of A ! together with Fact 4.1.1, we immediately get

Aα = Bβ = Cγ = αA = βB = γC = ϵ ! , Aβ = Aγ = Bα = Bγ = Cα = Cβ = βA = γA = αB = γB = αC = βC = 0,
and

Aαn = αnA = αn-1, Aβn = βnA = Aγn = γnA = 0, Aαn-1β = χnγn-1 + αn-2γ, αn-1βA = χnβn-1 + αn-2β, Aαn-1γ = χnβn-1 + αn-2β, αn-1γA = χnγn-1 + αn-2γ, Aαn-2β2 = χn+1(βn-1 + γn-1) + αn-3β2, αn-2β2A = χn+1(βn-1 + γn-1) + αn-3β2, Bβn = βnB = βn-1, Bαn = αnB = Bγn = γnB = 0, Bαn-1β = αn-1 + χn+1γn-1 + αn-3β2, αn-1βB = γn-1 + χnαn-2γ + χn+1(αn-1 + αn-3β2), Bαn-1γ = χnγn-1 + αn-2γ, αn-1γB = χn+1αn-2β + χn(αn-1 + αn-3β2), Bαn-2β2 = αn-2β, αn-2β2B = χnαn-2β + χn+1αn-2γ, Cγn = γnC = γn-1, Cαn = αnC = Cβn = βnC = 0, Cαn-1β = χnβn-1 + αn-2β, αn-1βC = χn+1αn-2γ + χn(αn-1 + αn-3β2), Cαn-1γ = αn-1 + χn+1βn-1 + αn-3β2, αn-1γC = βn-1 + χnαn-2β + χn+1(αn-1 + αn-3β2), Cαn-2β2 = αn-2γ, αn-2β2C = χn+1αn-2β + χnαn-2γ, for integers n ⩾ 2.
Finally, the following elementary result, whose proof is immediate, will be useful in the sequel to establish the linear independence of several sets of (co)boundaries and (co)cycles.

Fact 4.1.3. Let V be a k-vector space of dimension n ∈ N and {v 1 , • • • , v n } a basis of V . Let r ⩽ n be a positive integer and U = { n j=1 c k j v j ∈ V |c k j ∈ k, k ∈ 1, r } a set of r elements. If there is an injective map φ : 1,r → 1, n such that for all k ∈ 1,r , c k φ(k) ̸ = 0, but c i φ(k) = 0 for i ∈ 1, k -1 , then the elements in U are linearly independent.
Instead of writing the specific map φ, in the cases of (ordered) sets U we will consider in the sequel we will simply underline the corresponding term c k φ(k) v φ(k) . This will be the case in particular in Subsubsections 4.2.1.3 -4.2.1.5 and 4.2.2.3 -4.2.2.5. In that situation, the basis {v 1 , • • • , v n } of the larger vector space will be a usual basis and the condition on φ is tantamount to the fact that the underlined term of an element does not appear (with nonzero coefficient) in the expressions of the previous elements of the same set.

The Yetter-Drinfeld structures

Let k be an algebraically closed field of characteristic different from 2 and 3, and G = S 3 in this subsection. We will introduce the Yetter-Drinfeld structures on A and (A ! ) * . First, we explicitly present the irreducible Yetter-Drinfeld modules over kS 3 by Remark 3.1.14.

Recall that the conjugacy classes in 12),( 23),( 13)} and 12)}, the cyclic group of order 2. Let ρ i for i ∈ 4,5 be the irreducible representations of the group {(1),( 12)}. Here ρ 4 is the trivial representation and ρ 5 : {(1),( 12)} → k × is given by ρ 5 ((12 123),(132)}, the cyclic group of order 3. Let ρ i for i ∈ 6,8 be the irreducible representations of the group {(1),( 123),(132)}. Here ρ 6 is the trivial representation, ρ 7 : {(1),( 123),(132)} → k × is given by ρ 7 ((123)) = w and ρ 8 : {(1),( 123),(132)} → k × is given by ρ 8 ((123)) = w 2 , where w is a primitive root of unity of order 3 in k. Note that w 2 + w + 1 = 0. Let M i = M (C j ,ρ i ) be the irreducible Yetter-Drinfeld modules over kG defined in Remark 3.1.14 parameterized by [START_REF] Fomin | Quadratic algebras, Dunkl elements, and Schubert calculus[END_REF]. A precise description of M i for i ∈ 1,8 is as follows. The module M 1 = k is the trivial Yetter-Drinfeld module, i.e. the action is given by gx = x for all g ∈ G and x ∈ M 1 , and the coaction

G = S 3 are C 1 = {(1)}, C 2 = {(
C 3 = {(123), (132)}. If s = (1) ∈ C 1 , then G s = S 3 . Let ρ i for i ∈ 1,3 be the irreducible representations given in Example 3.1.4. If s = (12) ∈ C 2 , then G s = {(1),(
)) = -1. If s = (123) ∈ C 3 , then G s = {(1),(
(C j ,ρ i ) for (j,i) ∈ ({1} × 1,3 ) ∪ ({2} × 4,5 ) ∪ ({3} × 6,
M 1 → G ⊗ M 1 is given by x → (1) ⊗ x for all x ∈ M 1 .
The action on M 2 = k is given by gx = x for g ∈ C 1 ∪ C 3 , and gx = -x for g ∈ C 2 and x ∈ M 2 . The coaction on M 2 is the trivial coaction. Let V be a 3-dimensional k-vector space with a basis {e 1 ,e 2 ,e 3 }. The action on

M 3 = V / span k {e 1 + e 2 + e 3 } is given by (12)ē 1 = ē2 , (12)ē 2 = ē1 , (23)ē 1 = ē1 , (23)ē 2 = -ē 1 -ē2 , (13)ē 1 = -ē 1 -ē2 , (13)ē 2 = ē2 , (123)ē 1 = ē2 , (123)ē 2 = -ē 1 -ē2 , (132)ē 1 = -ē 1 -ē2 and (132)ē 2 = ē1
, where ēi is the class of e i in the quotient space. The coaction on M 3 is the trivial coaction. The action on 12)⊗k is given by g((1) ⊗ x) = (12) ⊗ x, g(( 12) ⊗ x) = (1) ⊗ x for g ∈ {( 12),( 23),( 13)}, and g(( 1) 123),(132)} and x ∈ k. The action on

M 4 = (1) ⊗ k ⊕ (13) ⊗ k ⊕ (23) ⊗ k is given by (12)((1) ⊗ x) = (1) ⊗ x, ( 12 
)((13) ⊗ x) = (23) ⊗ x, ( 12 
)((23) ⊗ x) = (13) ⊗ x, (23)((1) 
⊗ x) = (23) ⊗ x, (23)((13) 
⊗ x) = (13) ⊗ x, (23)((23) 
⊗ x) = (1) ⊗ x, (13)((1) 
⊗ x) = (13) ⊗ x, (13)((13) 
⊗ x) = (1) ⊗ x, (13)((23) 
⊗ x) = (23) ⊗ x, (123)((1) ⊗ x) = (13) ⊗ x, (123)((13) 
⊗ x) = (23) ⊗ x, (123)((23) 
⊗ x) = (1) ⊗ x, (132)((1) 
⊗ x) = (23) ⊗ x, (132)((13) 
⊗ x) = (1) ⊗ x, (132)((23) 
⊗ x) = (13) ⊗ x, for x ∈ k. The action on M 5 = (1) ⊗ k ⊕ (13) ⊗ k ⊕ (23) ⊗ k is given by (12)((1) ⊗ x) = -(1) ⊗ x, ( 12 
)((13) ⊗ x) = -(23) ⊗ x, ( 12 
)((23) ⊗ x) = -(13) ⊗ x, ( 23 
)((1) ⊗ x) = (23) ⊗ x, ( 23 
)((13) ⊗ x) = -(13) ⊗ x, ( 23 
)((23) ⊗ x) = (1) ⊗ x, ( 13 
)((1) ⊗ x) = (13) ⊗ x, ( 13 
)((13) ⊗ x) = (1) ⊗ x, ( 13 
)((23) ⊗ x) = -(23) ⊗ x, (123) 
((1) ⊗ x) = -(13) ⊗ x, (123)((13) ⊗ x) = (23) ⊗ x, ( 123 
)((23) ⊗ x) = -(1) ⊗ x, (132) 
((1) ⊗ x) = -(23) ⊗ x, (132)((13) ⊗ x) = -(1) ⊗ x, (132) 
⊗ x) = (1) ⊗ x, g((12) ⊗ x) = (12) ⊗ x for g ∈ {(1),(
M 7 = (1) ⊗ k ⊕ (12) ⊗ k is given by (12)((1) ⊗ x) = (12) ⊗ x, ( 12 
)((12) ⊗ x) = (1) ⊗ x, ( 23 
)((1) ⊗ x) = (12) ⊗ wx, ( 23 
)((12) ⊗ x) = (1) ⊗ w 2 x, (13) 
((1) ⊗ x) = (12) ⊗ w 2 x, ( 13 
)((12) ⊗ x) = (1) ⊗ wx, (123)((1) ⊗ x) = (1) ⊗ wx, ( 123 
)((12) ⊗ x) = (12) ⊗ w 2 x, (132)((1) ⊗ x) = (1) ⊗ w 2 x, ( 132 
)((12) ⊗ x) = (12) ⊗ wx, for x ∈ k. The action on M 8 = (1) ⊗ k ⊕ (12) ⊗ k is given by (12)((1) ⊗ x) = (12) ⊗ x, ( 12 
)((12) ⊗ x) = (1) ⊗ x, (23) 
((1) ⊗ x) = (12) ⊗ w 2 x, ( 23 
)((12) ⊗ x) = (1) ⊗ wx, ( 13 
)((1) ⊗ x) = (12) ⊗ wx, ( 13 
)((12) ⊗ x) = (1) ⊗ w 2 x, (123)((1) ⊗ x) = (1) ⊗ w 2 x, ( 123 
)((12) ⊗ x) = (12) ⊗ wx, (132)((1) ⊗ x) = (1) ⊗ wx, (132)((12) ⊗ x) = (12) ⊗ w 2 x, for x ∈ k. The coaction on M i for i ∈ 6,8 is given by (1) ⊗ x → (123) ⊗ ((1) ⊗ x) and (12) ⊗ x → (132) ⊗ ((12) ⊗ x) for x ∈ k.
Recall that Yetter-Drinfeld modules over kG are semi-simple. The tensor product of two Yetter-Drinfeld modules is also a Yetter-Drinfeld module. Lemma 4.1.4. There are the following isomorphisms

M 5 ⊗ M 5 ∼ = M 1 ⊕ M 3 ⊕ M 6 ⊕ M 7 ⊕ M 8 , M 5 ⊗ M 7 ∼ = M 5 ⊗ M 8 ∼ = M 6 ⊗ M 5 ∼ = M 3 ⊗ M 5 ∼ = M 4 ⊕ M 5 , M 6 ⊗ M 7 ∼ = M 3 ⊕ M 8 , M 6 ⊗ M 8 ∼ = M 3 ⊕ M 7 , M 3 ⊗ M 7 ∼ = M 6 ⊕ M 8 , M 3 ⊗ M 8 ∼ = M 6 ⊕ M 7 ,
of Yetter-Drinfeld modules over kS 3 .

Proof. Let x = (1) ⊗ 1, y = (13) ⊗ 1 and z = (23) ⊗ 1 given in the definition of M 5 . The isomorphism M 5 ⊗ M 5 ∼ = M 1 ⊕ M 3 ⊕ M 6 ⊕ M 7 ⊕ M 8 comes from the obvious isomorphisms span k {x|x + y|y + z|z} ∼ = M 1 , span k {x|x -2y|y + z|z, x|x + y|y -2z|z} ∼ = M 3 , span k {-x|y + y|z -z|x, -x|z -y|x + z|y} ∼ = M 6 , span k {-w 2 x|y + wy|z -z|x, -w 2 x|z -y|x + wz|y} ∼ = M 7 and span k {-x|y + wy|z -w 2 z|x, -x|z -w 2 y|x + wz|y} ∼ = M 8
, where we use vertical bars instead of the tensor product symbols ⊗.

Let u = (1) ⊗ 1 and v = (12) ⊗ 1 given in the definition of M i for i ∈ 6,8 . Then M 5 ⊗M 7 ∼ = M 4 ⊕M 5 since span k {-w 2 y|v +w 2 z|u, -x|u-wz|v, x|v +wy|u} ∼ = M 4 and span k {w 2 y|v+w 2 z|u, x|u-wz|v, x|v-wy|u} ∼ = M 5 , M 5 ⊗M 8 ∼ = M 4 ⊕M 5 since span k {-wy|v+ wz|u, -x|u -w 2 z|v, x|v + w 2 y|u} ∼ = M 4 and span k {wy|v + wz|u, x|u -w 2 z|v, x|v -w 2 y|u} ∼ = M 5 , M 6 ⊗ M 5 ∼ = M 4 ⊕ M 5 since span k {-u|y + v|z, -v|x -u|z, u|x + v|y} ∼ = M 4 and span k {u|y + v|z, v|x -u|z, u|x -v|y} ∼ = M 5 , M 6 ⊗ M 7 ∼ = M 3 ⊕ M 8 since span k {w 2 v|u + u|v, v|u + w 2 u|v} ∼ = M 3 and span k {v|v,u|u} ∼ = M 8 , and M 6 ⊗ M 8 ∼ = M 3 ⊕ M 7 since span k {wv|u + u|v, v|u + wu|v} ∼ = M 3 and span k {v|v,u|u} ∼ = M 7 . Finally, M 3 ⊗ M 5 ∼ = M 4 ⊕ M 5 since span k {-ē 1 |x + ē2 |x, ē1 |y + 2ē 2 |y, -2ē 1 |z-ē 2 |z} ∼ = M 4 and span k {ē 1 |x+ē 2 |x, -ē 1 |y, -ē 2 |z} ∼ = M 5 , M 3 ⊗M 7 ∼ = M 6 ⊕M 8 since span k {-ē 1 |u + w 2 ē2 |u, w 2 ē1 |v -ē2 |v} ∼ = M 6 and span k {wē 1 |u -w 2 ē2 |u, -w 2 ē1 |v + wē 2 |v} ∼ = M 8 , and M 3 ⊗ M 8 ∼ = M 6 ⊕ M 7 since span k {w 2 ē1 |u -ē2 |u, -ē 1 |v + w 2 ē2 |v} ∼ = M 6 and span k {-ē 1 |u + w 2 ē2 |u, w 2 ē1 |v -ē2 |v} ∼ = M 7 .
Next, we decompose A and (A ! ) # as a direct sum of irreducible Yetter-Drinfeld modules. The coaction of G on A is given by the G-decomposition A = ⊕ g∈G A g , where A (1) is spanned by {1,abac}, A (12) is spanned by {a,bac}, A [START_REF] Roos | Some non-Koszul algebras[END_REF] is spanned by {b,abc}, A (13) is spanned by {c,aba}, and A (123) is spanned by {ab,bc}, A (132) is spanned by {ac,ba}. Lemma 4.1.6. We have

A ∼ = M ⊕2 1 ⊕ M ⊕2 5 ⊕ M 7 ⊕ M 8 as Yetter-Drinfeld modules.
Proof. By Fact 4.1.5, it is easy to check the following. The subspaces k and span k {abac} are trivial Yetter-Drinfeld modules. An isomorphism M 5 → span k {a,b,c} of Yetter-Drinfeld modules is given by (1)⊗1 → -a, (13)⊗1 → b and (23)⊗1 → c. An isomorphism M 5 → span k {aba,abc,bac} of Yetter-Drinfeld modules is given by (1) ⊗ 1 → bac, (13) ⊗ 1 → -abc and (23) ⊗ 1 → aba. An isomorphism M 7 → span k {w 2 ab -bc,ba -wac} of Yetter-Drinfeld modules is given by (1)⊗1 → w 2 ab-bc and (12)⊗1 → ba-wac. An isomorphism M 8 → span k {-w 2 ab+wbc,ac-wba} of Yetter-Drinfeld modules is given by (1) ⊗ 1 → -w 2 ab + wbc and (12) ⊗ 1 → ac -wba. We get the decomposition in this lemma immediately. 

(12)α n = (-1) n α n , (23)α n = (-1) n γ n , (13)α n = (-1) n β n , (123)α n = β n , (132)α n = γ n , (12)β n = (-1) n γ n , (23)β n = (-1) n β n , (13)β n = (-1) n α n , (123)β n = γ n , (132)β n = α n , (12)γ n = (-1) n β n , (23)γ n = (-1) n α n , (13)γ n = (-1) n γ n , (123)γ n = α n , (132)γ n = β n ,
for n ∈ N, and gξ = η, for g ∈ {( 12),( 23),( 13)} and {ξ,η}

= {α n-1 β, α n-1 γ}, gξ = ξ, for g ∈ G with ξ = α n-2 β 2 , or g ∈ {(123),(132)} with ξ ∈ {α n-1 β, α n-1 γ},
for n ⩾ 2 with n even, together with

(12)α n-1 β = -α n-1 γ, ( 12 
)α n-1 γ = -α n-1 β, ( 12 
)α n-2 β 2 = -α n-2 β 2 , ( 23 
)α n-1 β = -α n-1 β, ( 23 
)α n-1 γ = -α n-2 β 2 , ( 23 
)α n-2 β 2 = -α n-1 γ, ( 13 
)α n-1 β = -α n-2 β 2 , ( 13 
)α n-1 γ = -α n-1 γ, ( 13 
)α n-2 β 2 = -α n-1 β, ( 123 
)α n-1 β = α n-1 γ, ( 123 
)α n-1 γ = α n-2 β 2 , ( 123 
)α n-2 β 2 = α n-1 β, (132)α n-1 β = α n-2 β 2 , ( 132 
)α n-1 γ = α n-1 β, ( 132 
)α n-2 β 2 = α n-1 γ,
for n ⩾ 3 with n odd.

The coaction of G on (A ! ) # is given by the G-decomposition (A ! ) # = ⊕ g∈G ((A ! ) # ) g , where

((A ! ) # ) (1) = span k {1, αn, βn,γn, αn-2β2| n ⩾ 2 even}, ((A ! ) # ) (12) = span k {αn, αn-2β2| n ∈ N odd}, ((A ! ) # ) (23) = span k {βn, αn-1β| n ∈ N odd}, ((A ! ) # ) (13) = span k {γn, αn-1γ| n ∈ N odd}, ((A ! ) # ) (123) = span k {αn-1β| n ⩾ 2 even}, ((A ! ) # ) (132) = span k {αn-1γ| n ⩾ 2 even}.
Lemma 4.1.8. As Yetter-Drinfeld modules over kS 3 ,

(A ! -1 ) * ∼ = M 5 , (A ! -2 ) * ∼ = M 1 ⊕ M 3 ⊕ M 6 , and 
(A ! -n ) * ∼ = M 5 ⊕ M 5 , if n is odd, M ⊕2 1 ⊕ M 3 ⊕ M 6 , if n is even, for n ⩾ 3.
Proof. By Fact 4.1.7, it is to check the following statements. The subspace k and the subspace span k {α n-2 β 2 } for n ⩾ 4 even, are trivial Yetter-Drinfeld modules. An isomorphism

M 5 → span k {α n ,β n ,γ n } for n ∈ N odd is given by (1) ⊗ 1 → -α n , (13) ⊗ 1 → β n and (23) ⊗ 1 → γ n . An isomorphism M 5 → span k {α n-1 β,α n-1 γ,α n-2 β 2 } for n ⩾ 3 odd is given by (1)⊗1 → -α n-2 β 2 , ( 13 
)⊗1 → α n-1 β and (23)⊗1 → α n-1 γ. An isomorphism M 6 → span k {α n-1 β,α n-1 γ} for n ⩾ 2 even is given by (1) ⊗ 1 → α n-1 β and (12) ⊗ 1 → α n-1 γ. The subspace span k {α n ,β n ,γ n } for n ⩾ 2 even is the permutation representation of G. With the trivial coaction, span k {α n ,β n ,γ n } ∼ = M 1 ⊕ M 3 as Yetter-Drinfeld modules.

The projective bimodule resolution

In this subsection, we will explicitly describe the minimal projective resolution of A in the category of bounded below graded A-bimodules. These results were published in [12].

The bimodule Koszul complex

In the article [4] R. Berger and N. Marconnet introduced the bimodule Koszul complex for any N -homogeneous algebra. We will recall this for the special case of the Fomin-Kirillov algebra on 3 generators (so

N = 2). Given n ∈ N 0 , let K b n = A ⊗ (A ! -n
) * ⊗ A be the bimodule over A for the outer action. Define the maps

i l , i r : A ⊗ (A ! ) # ⊗ A → A ⊗ (A ! ) # ⊗ A given by i l (x ⊗ u ⊗ y) = xa ⊗ uA ⊗ y + xb ⊗ uB ⊗ y + xc ⊗ uC ⊗ y and i r (x ⊗ u ⊗ y) = x ⊗ Au ⊗ ay + x ⊗ Bu ⊗ by + x ⊗ Cu ⊗ cy for x,y ∈ A and u ∈ (A ! ) # . Note that i 2 l = 0, i 2 r = 0 and i l i r = i r i l .
Indeed, the first identity follows from the fact that

(a ⊗ A + b ⊗ B + c ⊗ C) 2 = ba ⊗ BA + ca ⊗ CA + ab ⊗ AB + cb ⊗ CB + ac ⊗ AC + bc ⊗ BC
is trivially zero by applying the relations in A and A ! and the fact that

i 2 l (x ⊗ u ⊗ y) = (x ⊗ u ⊗ y)(a ⊗ A ⊗ 1 + b ⊗ B ⊗ 1 + c ⊗ C ⊗ 1) 2 .
The identity i 2 r = 0 is proved in the same way. Since the left and right actions of A ! on (A ! ) # are compatible, the maps i l and i r commute. Fact 4.1.9. Take x, y ∈ A. To reduce space, we will typically use vertical bars instead of the tensor product symbols ⊗.

The map i l | A⊗(A ! -1 ) * ⊗A : A ⊗ (A ! -1 ) * ⊗ A → A ⊗ (A ! 0 ) * ⊗ A sends x|α|y to xa|ϵ ! |y, x|β|y to xb|ϵ ! |y, and x|γ|y to xc|ϵ ! |y. For n ⩾ 2, i l | A⊗(A ! -n ) * ⊗A : A ⊗ (A ! -n ) * ⊗ A → A ⊗ (A ! -(n-1) ) * ⊗ A is given by x|α n |y → xa|α n-1 |y, x|β n |y → xb|β n-1 |y, x|γ n |y → xc|γ n-1 |y, x|α n-1 β|y → xa|(χ n β n-1 + α n-2 β)|y + xb|(γ n-1 + χ n α n-2 γ + χ n+1 (α n-1 + α n-3 β 2 ))|y + xc|(χ n+1 α n-2 γ + χ n (α n-1 + α n-3 β 2 ))|y, x|α n-1 γ|y → xa|(χ n γ n-1 + α n-2 γ)|y + xb|(χ n+1 α n-2 β + χ n (α n-1 + α n-3 β 2 ))|y + xc|(β n-1 + χ n α n-2 β + χ n+1 (α n-1 + α n-3 β 2 ))|y, x|α n-2 β 2 |y → xa|(χ n+1 (β n-1 + γ n-1 ) + α n-3 β 2 )|y + xb|(χ n α n-2 β + χ n+1 α n-2 γ)|y + xc|(χ n+1 α n-2 β + χ n α n-2 γ)|y. The map i r | A⊗(A ! -1 ) * ⊗A : A ⊗ (A ! -1 ) * ⊗ A → A ⊗ (A ! 0 ) * ⊗ A sends x|α|y to x|ϵ ! |ay, x|β|y to x|ϵ ! |by, and x|γ|y to x|ϵ ! |cy. For n ⩾ 2, i r | A⊗(A ! -n ) * ⊗A : A ⊗ (A ! -n ) * ⊗ A → A ⊗ (A ! -(n-1) ) * ⊗ A is given by x|α n |y → x|α n-1 |ay, x|β n |y → x|β n-1 |by, x|γ n |y → x|γ n-1 |cy, x|α n-1 β|y → x|(χ n γ n-1 + α n-2 γ)|ay + x|(α n-1 + χ n+1 γ n-1 + α n-3 β 2 )|by + x|(χ n β n-1 + α n-2 β)|cy, x|α n-1 γ|y → x|(χ n β n-1 + α n-2 β)|ay + x|(χ n γ n-1 + α n-2 γ)|by + x|(α n-1 + χ n+1 β n-1 + α n-3 β 2 )|cy, x|α n-2 β 2 |y → x|(χ n+1 (β n-1 + γ n-1 ) + α n-3 β 2 )|ay + x|α n-2 β|by + x|α n-2 γ|cy.
Following [START_REF] Berger | Koszul and Gorenstein properties for homogeneous algebras[END_REF], we now set

d b n : K b n → K b n-1 by d b n = (-1) n i l + i r for n ∈ N. It is easy to see that d b n d b n+1 = -i 2 l + i 2 r = 0 for n ∈ N. Then (K b • , d b • ) is a complex in the category of bounded below graded A-bimodules, called the bimodule Koszul complex over A. It is clear that k ⊗ A (K b • , d b • ) ∼ = (K • ,d • ), where (K • ,d • ), introduced in Section 1.1, is the Koszul complex of the trivial right A-module k in the category of graded right A-modules. Remark 4.1.10. The bimodule Koszul complex (K b • , d b • ) is minimal, since the complex k⊗ A e (K b • , d b • ) ∼ = k ⊗ A (K b • , d b • ) ⊗ A k ∼ = (K • , d • ) ⊗ A k has zero differentials.
We recall the following result.

Proposition 4.1.11 ([4], Proposition 4.1). Let B be a nonnegatively graded connected k-algebra, and let

M 1 f -→ M 2 g -→ M 3
be a sequence of graded-free B-modules, with M 1 bounded below and gf = 0. Then this sequence is exact if

k ⊗ B M 1 id k ⊗ B f -----→ k ⊗ B M 2 id k ⊗ B g -----→ k ⊗ B M 3 is exact.
Corollary 4.1.12. We have [START_REF] Herscovich | An elementary computation of the cohomology of the Fomin-Kirillov algebra with 3 generators[END_REF], Proposition 3.1. Applying Proposition 4.1.11, we get the result.

H n (K b • , d b • ) = 0 for n different from 0 and 3. Proof. Recall that H n (K • ,d • ) = 0 for n ̸ = 0,3, by

The minimal projective bimodule resolution

We recall the following result (see [START_REF] Herscovich | An elementary computation of the cohomology of the Fomin-Kirillov algebra with 3 generators[END_REF], Proposition 3.3). Proposition 4.1.13. Let (K • ,d • ) be the Koszul complex of the trivial right A-module k in the category of graded right A-modules. The minimal projective resolution (P • ,δ • ) of k in the category of bounded below graded right A-modules is given as follows. For n ∈ N 0 , set

P n = i∈ 0,⌊n/4⌋ ω i K n-4i ,
where ω i is a symbol of internal degree 6i for all i ∈ N 0 , and the differential δ n :

P n → P n-1 for n ∈ N is given by δ n i∈ 0,⌊n/4⌋ ω i ρ n-4i = i∈ 0,⌊n/4⌋ ω i d n-4i (ρ n-4i ) + ω i-1 f n-4i (ρ n-4i ) , where ρ j ∈ K j for j ∈ N 0 , ω -1 = 0 and f j : K j → K j+3 are morphisms of graded right A-modules of internal degree 6 such that d j+4 f j+1 = -f j d j+1 for j ∈ N 0 , d 3 f 0 = 0 and Im(f 0 ) ⊈ Im(d 4 ).
This gives a minimal projective resolution of the trivial right A-module k by means of the augmentation ϵ : P 0 = K 0 → k of the Koszul complex. We usually omit ω 0 for simplicity. Furthermore, if the characteristic of k is different from 2 and 3, then the maps {f • } •∈N0 can further be chosen so that (P • ,δ • ) is a projective resolution of k in the category of bounded below graded A-modules provided with a Yetter-Drinfeld module structure over kS 3 .

We further provide an explicit family of morphisms {f • } •∈N0 satisfying the above conditions, since we will need it for the calculations. Indeed, a lengthy but straightforward computation shows that

f 0 (ϵ ! |1) = 2α 3 |bac + 2β 3 |abc -2γ 3 |aba -α 2 β|abc + α 2 γ|aba -αβ 2 |bac, f n (α n |1) = (2α n+3 -α n+1 β 2 )|bac + χ n β n+3 |abc -χ n γ n+3 |aba, f n (β n |1) = (2β n+3 -χ n α n+2 β -χ n+1 α n+1 β 2 )|abc + χ n α n+3 |bac -χ n γ n+3 |aba, f n (γ n |1) = (-2γ n+3 + χ n α n+2 γ + χ n+1 α n+1 β 2 )|aba + χ n α n+3 |bac + χ n β n+3 |abc, f n (α n-1 β|1) = (n -1)χ n+1 β n+3 |abc, f n (α n-1 γ|1) = -(n -1)χ n+1 γ n+3 |aba, f n (α n-2 β 2 |1) = ((n -2) + χ n+1 )α n+3 |bac + (n -2)χ n β n+3 |abc -(n -2)χ n γ n+3 |aba, (4.1.2)
for n ∈ N, satisfy the conditions of Proposition 4.1.13. Note that f 0 already appeared in [START_REF] Herscovich | An elementary computation of the cohomology of the Fomin-Kirillov algebra with 3 generators[END_REF].

Given n ∈ N 0 , we now define the morphisms of A-bimodules f b n :

K b n → K b n+3 by f b 0 (1|ϵ ! |1) = 2|α3|bac + 2|β3|abc -2|γ3|aba -1|α2β|abc + 1|α2γ|aba -1|αβ2|bac + a|α2β|(ba + ac) -c|α2β|ab -a|α2γ|bc -b|α2γ|ac + b|αβ2|(ab + bc) -c|αβ2|ba -2b|α3|(ab + bc) + 2c|α3|ba -2a|β3|(ba + ac) + 2c|β3|ab + 2a|γ3|bc + 2b|γ3|ac -bc|α2β|a -ba|α2β|c + (ab + bc)|α2γ|b + (ba + ac)|α2γ|a -ab|αβ2|c -ac|αβ2|b + 2ab|α3|c + 2ac|α3|b + 2bc|β3|a + 2ba|β3|c -2(ab + bc)|γ3|b -2(ba + ac)|γ3|a + 2bac|α3|1 + 2abc|β3|1 -2aba|γ3|1 -abc|α2β|1 + aba|α2γ|1 -bac|αβ2|1, f b n (1|αn|1) = 2|αn+3|bac + χn|βn+3|abc -χn|γn+3|aba -1|αn+1β2|bac -χnc|αn+2β|ab -χnb|αn+2γ|ac + χn+1b|αn+1β2|ac + χn+1c|αn+1β2|ab -χnb|αn+3|(ab + bc) + χnc|αn+3|ba + (-1) n 2c|βn+3|ab -χna|βn+3|ac -χna|γn+3|ab + (-1) n 2b|γn+3|ac -χnba|αn+2β|c + χn(ab + bc)|αn+2γ|b + χn+1(ab + bc)|αn+1β2|b -χn+1ba|αn+1β2|c + χnac|αn+3|b + χnab|αn+3|c + 2ba|βn+3|c + χn(ab + bc)|βn+3|a -χnba|γn+3|a -2(ab + bc)|γn+3|b + (-1) n 2bac|αn+3|1 + χnabc|βn+3|1 -χnaba|γn+3|1 + (-1) n+1 bac|αn+1β2|1, f b n (1|βn|1) = 2|βn+3|abc -χn|γn+3|aba + χn|αn+3|bac -χn|αn+2β|abc -χn+1|αn+1β2|abc -χna|αn+2γ|bc + (-1) n+1 c|αn+1β2|ba + χn+1a|αn+1β2|bc + χnc|βn+3|ab -χna|βn+3|(ba + ac) + (-1) n 2a|γn+3|bc -χnb|γn+3|ba -χnb|αn+3|bc + (-1) n 2c|αn+3|ba + χn(ba + ac)|αn+2γ|a -ab|αn+1β2|c + χn+1(ba + ac)|αn+1β2|a + χnba|βn+3|c + χnbc|βn+3|a -2(ba + ac)|γn+3|a -χnab|γn+3|b + χn(ba + ac)|αn+3|b + 2ab|αn+3|c + (-1) n 2abc|βn+3|1 -χnaba|γn+3|1 + χnbac|αn+3|1 -χnabc|αn+2β|1 + χn+1abc|αn+1β2|1, f b n (1|γn|1) = -2|γn+3|aba + χn|αn+3|bac + χn|βn+3|abc + χn|αn+2γ|aba + χn+1|αn+1β2|aba + χna|αn+2β|(ba + ac) -χn+1a|αn+1β2|(ba + ac) + (-1) n b|αn+1β2|(ab + bc) + χna|γn+3|bc + χnb|γn+3|ac + (-1) n+1 2b|αn+3|(ab + bc) + χnc|αn+3|(ba + ac) + χnc|βn+3|(ab + bc) + (-1) n+1 2a|βn+3|(ba + ac) -χnbc|αn+2β|a (4.1.3) -χn+1bc|αn+1β2|a -ac|αn+1β2|b -χn(ba + ac)|γn+3|a -χn(ab + bc)|γn+3|b + 2ac|αn+3|b -χnbc|αn+3|c -χnac|βn+3|c + 2bc|βn+3|a + (-1) n+1 2aba|γn+3|1 + χnbac|αn+3|1 + χnabc|βn+3|1 + χnaba|αn+2γ|1 -χn+1aba|αn+1β2|1, f b n (1|αn-1β|1) = χn+1[(n -1)|βn+3|abc + a|αn+3|ab -(n -2)c|αn+3|ba + c|αn+3|ac -a|βn+3|ab + c|βn+3|(ba + ac) -a|γn+3|ab -c|γn+3|(ba + ac) -(n -1)a|γn+3|bc -ba|αn+3|a + (n -1)ab|αn+3|c + bc|αn+3|c + ba|βn+3|a + bc|βn+3|c -(n -2)ba|γn+3|a -(n -1)ac|γn+3|a -bc|γn+3|c -(n -1)abc|βn+3|1], f b n (1|αn-1γ|1) = χn+1[-(n -1)|γn+3|aba + b|βn+3|bc + (n -1)a|βn+3|ba + (n -2)a|βn+3|ac -b|γn+3|bc -a|γn+3|ac + a|αn+3|ac + (n -1)b|αn+3|ab + (n -2)b|αn+3|bc + (ba + ac)|βn+3|b + (n -2)bc|βn+3|a -ab|βn+3|a -(ba + ac)|γn+3|b -(ab + bc)|γn+3|a + (n -2)ac|αn+3|b -ba|αn+3|b + (ab + bc)|αn+3|a + (n -1)aba|γn+3|1], f b n (1|αn-2β2|1) = χn+1[(n -1)|αn+3|bac -c|γn+3|(ab + bc) -(n -1)b|γn+3|ac -b|γn+3|ba + c|αn+3|(ab + bc) -b|αn+3|ba + b|βn+3|ba -(n -2)c|βn+3|ab + c|βn+3|bc -ac|γn+3|c -(n -1)bc|γn+3|b -(n -2)ab|γn+3|b + ac|αn+3|c + ab|αn+3|b + ac|βn+3|c + (n -1)ba|βn+3|c -ab|βn+3|b -(n -1)bac|αn+3|1] + χn(n -2)[1|αn+3|bac + 1|βn+3|abc -1|γn+3|aba -b|αn+3|(ab + bc) + c|αn+3|ba + c|βn+3|ab -a|βn+3|(ba + ac) + a|γn+3|bc + b|γn+3|ac + ac|αn+3|b + ab|αn+3|c + ba|βn+3|c + bc|βn+3|a -(ba + ac)|γn+3|a -(ab + bc)|γn+3|b + bac|αn+3|1 + abc|βn+3|1 -aba|γn+3|1],
where n ∈ N.

The proof of the following result is a tedious but straightforward computation, that we leave to the reader. 

0 = 0, d b n+4 f b n+1 + f b n d b n+1 = 0 and id k ⊗ A f b n = f n for n ∈ N 0 ,
where f n are the specific morphisms given in (4.1.2). Furthermore, {f b

• } •∈N0 preserves S 3 -action and coaction.

Using the previous lemma, we can now prove the main result of this section. • ,δ b • ) of A in the category of bounded below graded A-bimodules is given as follows. For n ∈ N 0 , set

P b n = i∈ 0,⌊n/4⌋ ω i K b n-4i = i∈ 0,⌊n/4⌋ ω i A ⊗ (A ! -(n-4i) ) * ⊗ A,
where ω i is a symbol of internal degree 6i for all i ∈ N 0 , the A-bimodule structure of P b n is given by

x ′ (ω i x ⊗ u ⊗ y)y ′ = ω i x ′ x ⊗ u ⊗ yy ′ for all x,x ′ ,y,y ′ ∈ A and u ∈ (A ! -(n-4i) ) * , and the differential δ b n : P b n → P b n-1 for n ∈ N is given by δ b n i∈ 0,⌊n/4⌋ ω i ρ n-4i = i∈ 0,⌊n/4⌋ ω i d b n-4i (ρ n-4i ) + ω i-1 f b n-4i (ρ n-4i ) ,
where ρ j ∈ K b j for j ∈ N 0 , ω -1 = 0 and f b j : K b j → K b j+3 are the morphisms in (4. 1.3). This gives a minimal projective resolution of A by means of the augmentation ϵ b :

P b 0 = A ⊗ (A ! 0 ) * ⊗ A → A, where ϵ b (x|ϵ ! |y) = xy for x,y ∈ A. Furthermore, if the characteristic of k is different from 2 and 3, then (P b • ,δ b • )
is a projective resolution of A in the category of bounded below graded A-bimodules provided with a Yetter-Drinfeld module structure over kS 3 .

Proof. It is clear that P b

• → A → 0 is a complex of graded-free (left) A-modules by Lemma 4.1.14,

(k ⊗ A P b • ,id k ⊗ A δ b • ) ∼ = (P • , δ • ) and id k ⊗ A ϵ b ∼ = ϵ. Proposition 4.1.13 tells us that k ⊗ A P b • → k ⊗ A A → 0 is exact. Proposition 4.1.11 in turn shows that the complex P b • → A → 0 is also exact. Moreover, the bimodule resolution (P b • ,δ b • ) is minimal since id k ⊗ A δ b • ⊗ A id k = 0.
We follow the convention that P b n = 0, K b n = 0 for n ∈ Z\N 0 , and δ b n = 0, d b n = 0 for n ∈ Z\N in the following sections.

Hochschild (co)homology and cyclic homology of FK(3)

In this section, we will compute the linear structure of Hochschild homology and cohomology of A. These results were published in [12].

Hochschild and cyclic homology

Using the minimal projective bimodule resolution (P b

• , δ b • ) of A in Proposition 4.1.15, we will compute the linear structure of the Hochschild homology

HH • (A) = Tor A e • (A,A) = H • (A ⊗ A e P b • ).
For further information about Hochschild and cyclic homology, we refer the reader to [START_REF] Loday | Cyclic homology[END_REF].

Recursive description of the spaces

Let Kn = A ⊗ (A ! -n ) * for n ∈ N 0 and Kn = 0 for n ∈ Z \ N 0 . We have A ⊗ A e P b n ∼ = Pn as k-vector
spaces, where Pn = ⊕ i∈ 0,⌊n/4⌋ ω i Kn-4i for n ∈ N 0 and Pn = 0 for n ∈ Z \ N 0 . We will denote by

∂ n : Pn → Pn-1 the differential id A ⊗ A e δ b n , ∂n : Kn → Kn-1 the differential id A ⊗ A e d b n for n ∈ Z, and fn the map id A ⊗ A e f b n for n ∈ N 0 . Then the differential ∂ n for n ∈ N is given by ∂ n i∈ 0,⌊n/4⌋ ω i ρ n-4i = i∈ 0,⌊n/4⌋ ω i ∂n-4i (ρ n-4i ) + ω i-1 fn-4i (ρ n-4i ) ,
where

ρ j ∈ Kj for j ∈ N 0 . Note that ∂ n = ∂n = 0 for n ∈ Z \ N.
The aim of this subsection is to compute the homology of the complex

( P• , ∂ • ). Let Kn,m = A m ⊗ (A ! -n ) * for (n, m) ∈ N 0 × 0, 4 and Kn,m = 0 for (n,m) ∈ Z 2 \ (N 0 × 0, 4 ). Let Pn,m = ⊕ i∈ 0,⌊n/4⌋ ω i Kn-4i,m-2i for m,n ∈ N 0 and Pn,m = 0 for (n,m) ∈ Z 2 \ N 2 0 ,
where the symbol ω i has homological degree 4i and internal degree 6i for i ∈ N 0 , and we usually omit 

B n,m = ω m-3 2 B n-2m+6,3 , if m is odd, ω m 2 -2 B n-2m+8,4 , if m is even, (4.2.1)
and

D n,m = ω m-3 2 D n-2m+6,3 , if m is odd, ω m 2 -2 D n-2m+8,4 , if m is even, (4.2.2)
where we follow the convention that ω i ω j = ω i+j for i,j ∈ N 0 and

ω i = 0 for i ∈ Z \ N 0 . Proof. Consider Pn,m = ⊕ i∈ 0,⌊n/4⌋ ω i Kn-4i,m-2i for m,n ∈ N 0 . For the index m -2i of Kn-4i,m-2i , we have m -2i ∈ 0, 4 . If m is odd, then m -2i = 1 or 3, i.e. i = (m -1)/2 or (m -3)/2. Since n -4i ∈ N 0 , we have Pn,m =      ω m-3 2 Kn-2m+6,3 ⊕ ω m-1 2 Kn-2m+2,1 , if n ⩾ 2m -2, ω m-3 2 Kn-2m+6,3 , if 2m -6 ⩽ n < 2m -2, 0, if 0 ⩽ n < 2m -6. If m is even, then m -2i = 0,2 or 4, i.e. i = m/2, m/2 -1 or m/2 -2. Then Pn,m =          ω m 2 -2 Kn-2m+8,4 ⊕ ω m 2 -1 Kn-2m+4,2 ⊕ ω m 2 Kn-2m,0 , if n ⩾ 2m, ω m 2 -2 Kn-2m+8,4 ⊕ ω m 2 -1 Kn-2m+4,2 , if 2m -4 ⩽ n < 2m, ω m 2 -2 Kn-2m+8,4 , if 2m -8 ⩽ n < 2m -4, 0, if 0 ⩽ n < 2m -8. (4.2.3) 
Hence,

Pn,m = ω m-3 2 Pn-2m+6,3 , if m ⩾ 3 is odd, ω m 2 -2 Pn-2m+8,4 , if m ⩾ 4 is even. (4.2.4)
Since the identities (4.2.1) and (4.2.2) for m = 3 are immediate, we suppose m ⩾ 4 from now on. Assume that m is even. Then (4.2.4) tells us that the sequence

Pn+1,m-1 ∂n+1,m-1 -------→ Pn,m ∂n,m ---→ Pn-1,m+1
of graded k-vector spaces is of the form

ω m 2 -2 Pn-2m+9,3 ∂n+1,m-1 ------→ ω m 2 -2 Pn-2m+8,4 ∂n,m ---→ ω m 2 -1 Pn-2m+3,3 .
Since Pn-2m+7,5 = ω 1 Pn-2m+3,3 by (4.2.4), the above sequence is of the form

ω m 2 -2 Pn-2m+9,3 ∂n+1,m-1 ------→ ω m 2 -2 Pn-2m+8,4 ∂n,m ---→ ω m 2 -2 Pn-2m+7,5 . Note further that ∂ n,m = ω m 2 -2 ∂ n-2m+8,4 and ∂ n+1,m-1 = ω m 2 -2 ∂ n-2m+9,3 , where the dif- ferential ω j ∂ n ′ ,m ′ : ω j Pn ′ ,m ′ → ω j Pn ′ -1,m ′ +1 maps ω j x to ω j ∂ n ′ ,m ′ (x) for all x ∈ Pn ′ ,m ′ and j,m ′ ,n ′ ∈ N 0 . Hence, B n,m = ω m 2 -2 B n-2m+8,4 and D n,m = ω m 2 -2 D n-2m+8,4
. Assume that m is odd (so m ⩾ 5). Then (4.2.4) tells us that the sequence

Pn+1,m-1 ∂n+1,m-1 ------→ Pn,m ∂n,m ---→ Pn-1,m+1 of graded k-vector spaces is of the form ω m-5 2 Pn-2m+11,4 ∂n+1,m-1 ------→ ω m-3 2 Pn-2m+6,3 ∂n,m ---→ ω m-3 2 Pn-2m+5,4 . Note that ∂ n,m = ω m-3 2 ∂ n-2m+6,3 and ∂ n+1,m-1 = ω m-5 2 ∂ n-2m+11,4 . Since Pn-2m+11,4 = ω 0 Kn-2m+11,4 ⊕ ω 1 Pn-2m+7,2 by (4.2.3), ∂ n-2m+11,4 (ω 0 x + ω 1 y) = ω 0 ∂n-2m+11,4 (x) + ω 1 ∂ n-2m+7,2 (y) 
for all x ∈ Kn-2m+11,4 and y ∈ Pn-2m+7,2 , and ∂n-2m+11,4 ( Kn-2m+11,4 ) = 0, it is sufficient to consider the following sequence

ω m-3 2 Pn-2m+7,2 ω m-3 2 ∂n-2m+7,2 -----------→ ω m-3 2 
Pn-2m+6,3

ω m-3 2 ∂n-2m+6,3 -----------→ ω m-3 2 Pn-2m+5,4 . Hence, B n,m = ω m-3 2 B n-2m+6,3 and D n,m = ω m-3 2 D n-2m+6,3
, as was to be shown.

Proposition 4.2.2. For n ∈ N 0 , we have D n,4 = Kn,4 ⊕ ω 1 D n-4,2 .
Proof. This follows directly from the facts that Pn,4 = Kn,4 ⊕ ω 1 Pn-4,2 , Pn-1,5 = ω 1 Pn-5,3 and ∂ n,4 ( Kn,4 ) = 0.

In order to compute B n,m and D n,m , it is sufficient to compute the case m ∈ 0,4 according to Proposition 4.2.1. First, we will compute the boundaries, and then we will compute the cycles. Since this will require handling elements of Kn,m and Pn,m for n ∈ N 0 and m ∈ 0, 4 , we will use the basis

{x ⊗ y|x ∈ B m , y ∈ B ! * n } of Kn,m and the basis {ω i x ⊗ y|i ∈ 0, ⌊n/4⌋ , x ∈ B m-2i , y ∈ B ! *
n-4i } of Pn,m , both of which will be called usual bases, constructed from the usual bases of the homogeneous components of A and (A ! ) # , introduced in Subsection 4.1.1.

Explicit description of the differentials

Recall the isomorphism

A ⊗ A e (A ⊗ (A ! -n ) * ⊗ A) → A ⊗ (A ! -n ) * given by x ⊗ A e (y|u|z) → zxy|u, and its inverse A ⊗ (A ! -n ) * → A ⊗ A e (A ⊗ (A ! -n ) * ⊗ A)
given by x|u → x ⊗ A e (1|u|1) for all x,y,z ∈ A, u ∈ (A ! -n ) * and n ∈ N 0 . We will use them together with Proposition 4.1.15 to explicitly describe ∂n and fn , which were defined at the beginning of Subsubsection 4.2.1.1.

Let x ∈ A. It is then straightforward to see that the differential ∂1 :

A ⊗ (A ! -1 ) * → A ⊗ (A ! 0 ) * is given by ∂1 (x|α) = (ax-xa)|ϵ ! , ∂1 (x|β) = (bx-xb)|ϵ ! and ∂1 (x|γ) = (cx-xc)|ϵ ! . Analogously, for n ⩾ 2 and n even, ∂n : A ⊗ (A ! -n ) * → A ⊗ (A ! -(n-1)
) * is given by

x|α n → (xa + ax)|α n-1 , x|β n → (xb + bx)|β n-1 , x|γ n → (xc + cx)|γ n-1 , x|α n-1 β → (xa + cx)|(β n-1 + α n-2 β) + (xb + ax)|(γ n-1 + α n-2 γ) + (xc + bx)|(α n-1 + α n-3 β 2 ), x|α n-1 γ → (xa + bx)|(γ n-1 + α n-2 γ) + (xb + cx)|(α n-1 + α n-3 β 2 ) + (xc + ax)|(β n-1 + α n-2 β), x|α n-2 β 2 → (xa + ax)|α n-3 β 2 + (xb + bx)|α n-2 β + (xc + cx)|α n-2 γ,
whereas, for n ⩾ 3 and n odd, ∂n :

A ⊗ (A ! -n ) * → A ⊗ (A ! -(n-1)
) * is given by

x|α n → (ax -xa)|α n-1 , x|β n → (bx -xb)|β n-1 , x|γ n → (cx -xc)|γ n-1 , x|α n-1 β → (cx -xa)|α n-2 β + (ax -xc)|α n-2 γ + (bx -xb)|(α n-1 + γ n-1 + α n-3 β 2 ), x|α n-1 γ → (ax -xb)|α n-2 β + (bx -xa)|α n-2 γ + (cx -xc)|(α n-1 + β n-1 + α n-3 β 2 ), x|α n-2 β 2 → (ax -xa)|(β n-1 + γ n-1 + α n-3 β 2 ) + (bx -xc)|α n-2 β + (cx -xb)|α n-2 γ.
For the reader's convenience, we list the images of the differentials ∂n evaluated at elements of the usual k-basis of the respective domain. In the following tables, ∂n,m (x|y) is the entry appearing in the column indexed by y and the row indexed by x, where m is the internal degree of x and n is the internal degree of y. The differential ∂1 is given by

x y α β γ 1 0 0 0 a 0 (ba -ab)|ϵ ! (-ab -bc -ac)|ϵ ! b (ab -ba)|ϵ ! 0 (-ba -ac -bc)|ϵ ! c (ab + bc + ac)|ϵ ! (ba + ac + bc)|ϵ ! 0 ab -aba|ϵ ! aba|ϵ ! (bac -abc)|ϵ ! bc (aba + abc)|ϵ ! bac|ϵ ! -bac|ϵ ! ba aba|ϵ ! -aba|ϵ ! (abc -bac)|ϵ ! ac abc|ϵ ! (aba + bac)|ϵ ! -abc|ϵ ! aba 0 0 -2abac|ϵ ! abc 0 2abac|ϵ ! 0 bac 2abac|ϵ ! 0 0 abac 0 0 0 Table 4.2.1: Images of ∂1.
For n ⩾ 2 and n even, ∂n is given by together with and as well as For n ⩾ 3 and n odd, ∂n is given by together with and as well as Let us now turn to the maps fn . Note first that the k-linear maps fn :

x y α n β n γ n 1 2a|α n-1 2b|β n-1 2c|γ n-1 a 0 (ab + ba)|β n-1 (ac -ab -bc)|γ n-1 b (ab + ba)|α n-1 0 (bc -ba -ac)|γ n-1 c (ac -ab -bc)|α n-1 (bc -ba -ac)|β n-1 0 ab aba|α n-1 aba|β n-1 (abc + bac)|γ n-1 bc (abc -aba)|α n-1 -bac|β n-1 -bac|γ n-1 ba aba|α n-1 aba|β n-1 (abc + bac)|γ n-1 ac -abc|α n-1 (bac -aba)|β n-1 -abc|γ n-1 aba 0 0 0 abc 0 0 0 bac 0 0 0 abac 0 0 0
x y α n-1 β 1 (a + c)|(β n-1 + α n-2 β) + (b + a)|(γ n-1 + α n-2 γ) + (c + b)|(α n-1 + α n-3 β 2 ) a -(ab + bc)|(β n-1 + α n-2 β) + ab|(γ n-1 + α n-2 γ) + (ba + ac)|(α n-1 + α n-3 β 2 ) b -ac|(β n-1 + α n-2 β) + ab|(γ n-1 + α n-2 γ) + bc|(α n-1 + α n-3 β 2 ) c -(ab + bc)|(β n-1 + α n-2 β) -ba|(γ n-1 + α n-2 γ) + bc|(α n-1 + α n-3 β 2 ) ab (aba + bac)|(β n-1 + α n-2 β) + (aba + abc)|(α n-1 + α n-3 β 2 ) bc (-aba -bac)|(β n-1 + α n-2 β) + (abc -bac)|(γ n-1 + α n-2 γ) ba abc|(β n-1 + α n-2 β) + 2aba|(γ n-1 + α n-2 γ) + bac|(α n-1 + α n-3 β 2 ) ac -2abc|(β n-1 + α n-2 β) -aba|(γ n-1 + α n-2 γ) + bac|(α n-1 + α n-3 β 2 ) aba abac|(-β n-1 -α n-2 β + α n-1 + α n-3 β 2 ) abc abac|(-γ n-1 -α n-2 γ + α n-1 + α n-3 β 2 ) bac abac|(-β n-1 -α n-2 β + γ n-1 + α n-2 γ) abac 0
x y α n-1 γ 1 (a + b)|(γ n-1 + α n-2 γ) + (b + c)|(α n-1 + α n-3 β 2 ) + (c + a)|(β n-1 + α n-2 β) a ba|(γ n-1 + α n-2 γ) -bc|(α n-1 + α n-3 β 2 ) + ac|(β n-1 + α n-2 β) b ba|(γ n-1 + α n-2 γ) -(ba + ac))|(α n-1 + α n-3 β 2 ) + (ab + bc)|(β n-1 + α n-2 β) c -ab|(γ n-1 + α n-2 γ) -(ba + ac)|(α n-1 + α n-3 β 2 ) + ac|(β n-1 + α n-2 β) ab 2aba|(γ n-1 + α n-2 γ) + bac|(α n-1 + α n-3 β 2 ) + abc|(β n-1 + α n-2 β) bc -aba|(γ n-1 + α n-2 γ) -2bac|(α n-1 + α n-3 β 2 ) + abc|(β n-1 + α n-2 β) ba (aba + abc)|(α n-1 + α n-3 β 2 ) + (aba + bac)|(β n-1 + α n-2 β) ac (bac -abc)|(γ n-1 + α n-2 γ) -(aba + abc)|(α n-1 + α n-3 β 2 ) aba abac|(-α n-1 -α n-3 β 2 + β n-1 + α n-2 β) abc abac|(γ n-1 + α n-2 γ -α n-1 -α n-3 β 2 ) bac abac|(-γ n-1 -α n-2 γ + β n-1 + α n-2 β) abac 0
x y α n-2 β 2 1 2a|α n-3 β 2 + 2b|α n-2 β + 2c|α n-2 γ a (ab + ba)|α n-2 β + (ac -ab -bc)|α n-2 γ b (ab + ba)|α n-3 β 2 + (bc -ba -ac)|α n-2 γ c (ac -ab -bc)|α n-3 β 2 + (bc -ba -ac)|α n-2 β ab aba|α n-3 β 2 + aba|α n-2 β + (abc + bac)|α n-2 γ bc (abc -aba)|α n-3 β 2 -bac|α n-2 β -bac|α n-2 γ ba aba|α n-3 β 2 + aba|α n-2 β + (abc + bac)|α n-2 γ ac -abc|α n-3 β 2 + (bac -aba)|α n-2 β -abc|α n-2 γ aba 0 abc 0 bac 0 abac 0
x y α n β n γ n 1 0 0 0 a 0 (ba -ab)|β n-1 (-ab -bc -ac)|γ n-1 b (ab -ba)|α n-1 0 (-ba -ac -bc)|γ n-1 c (ab + bc + ac)|α n-1 (ba + ac + bc)|β n-1 0 ab -aba|α n-1 aba|β n-1 (bac -abc)|γ n-1 bc (aba + abc)|α n-1 bac|β n-1 -bac|γ n-1 ba aba|α n-1 -aba|β n-1 (abc -bac)|γ n-1 ac abc|α n-1 (aba + bac)|β n-1 -abc|γ n-1 aba 0 0 -2abac|γ n-1 abc 0 2abac|β n-1 0 bac 2abac|α n-1 0 0 abac 0 0 0
x y α n-1 β 1 (c -a)|α n-2 β + (a -c)|α n-2 γ a -(ab + bc)|α n-2 β -ac|α n-2 γ + (ba -ab)|(α n-1 + γ n-1 + α n-3 β 2 ) b (-2ba -ac)|α n-2 β + (ab -bc)|α n-2 γ c (ab + bc)|α n-2 β + ac|α n-2 γ + (ba + ac + bc)|(α n-1 + γ n-1 + α n-3 β 2 ) ab (bac -aba)|α n-2 β -abc|α n-2 γ + aba|(α n-1 + γ n-1 + α n-3 β 2 ) bc (aba -bac)|α n-2 β + abc|α n-2 γ + bac|(α n-1 + γ n-1 + α n-3 β 2 ) ba abc|α n-2 β + (aba -bac)|α n-2 γ -aba|(α n-1 + γ n-1 + α n-3 β 2 ) ac (aba + bac)|(α n-1 + γ n-1 + α n-3 β 2 ) aba -abac|(α n-2 β + α n-2 γ) abc 2abac|(α n-1 + γ n-1 + α n-3 β 2 ) bac abac|(α n-2 β + α n-2 γ) abac 0
x y α n-1 γ 1 (a -b)|α n-2 β + (b -a)|α n-2 γ a -ab|α n-2 β + ba|α n-2 γ -(ab + bc + ac)|(α n-1 + β n-1 + α n-3 β 2 ) b ab|α n-2 β -ba|α n-2 γ -(ba + ac + bc)|(α n-1 + β n-1 + α n-3 β 2 ) c (2ac + ba)|α n-2 β + (ab + 2bc)|α n-2 γ ab (bac -abc)|(α n-1 + β n-1 + α n-3 β 2 ) bc (abc + bac)|α n-2 β + aba|α n-2 γ -bac|(α n-1 + β n-1 + α n-3 β 2 ) ba (abc -bac)|(α n-1 + β n-1 + α n-3 β 2 ) ac aba|α n-2 β + (abc + bac)|α n-2 γ -abc|(α n-1 + β n-1 + α n-3 β 2 ) aba -2abac|(α n-1 + β n-1 + α n-3 β 2 ) abc abac|(α n-2 β + α n-2 γ) bac abac|(α n-2 β + α n-2 γ) abac 0
x y α n-2 β 2 1 (b -c)|α n-2 β + (c -b)|α n-2 γ a (ba -ac)|α n-2 β -(2ab + bc)|α n-2 γ b (ab -ba)|(β n-1 + γ n-1 + α n-3 β 2 ) -bc|α n-2 β -(ba + ac)|α n-2 γ c (ab + bc + ac)|(β n-1 + γ n-1 + α n-3 β 2 ) + bc|α n-2 β + (ba + ac)|α n-2 γ ab -aba|(β n-1 + γ n-1 + α n-3 β 2 ) + (aba -abc)|α n-2 β + bac|α n-2 γ bc (aba + abc)|(β n-1 + γ n-1 + α n-3 β 2 ) ba aba|(β n-1 + γ n-1 + α n-3 β 2 ) -bac|α n-2 β + (abc -aba)|α n-2 γ ac abc|(β n-1 + γ n-1 + α n-3 β 2 ) + bac|α n-2 β + (aba -abc)|α n-2 γ aba -abac|(α n-2 β + α n-2 γ) abc abac|(α n-2 β + α n-2 γ) bac 2abac|(β n-1 + γ n-1 + α n-3 β 2 ) abac 0
A ⊗ (A ! -n ) * → A ⊗ (A ! -(n+3)
) * are homogeneous of homological degree 3 and internal degree 6. By degree reasons we see that fn (x|y) = 0 for all x ∈ A m , y ∈ (A ! -n ) * , with m ∈ 2,4 and n ∈ N 0 . A straightforward computation using (4.1.3) tells us that the map f0 is given by

f0 (1|ϵ ! ) = 12bac|α 3 + 12abc|β 3 -12aba|γ 3 -6abc|α 2 β + 6aba|α 2 γ -6bac|αβ 2 , f0 (a|ϵ ! ) = f0 (b|ϵ ! ) = f0 (c|ϵ ! ) = 0. (4.2.5) Analogously, if n ∈ N is odd, then fn (a|α n ) = fn (b|β n ) = fn (c|γ n ) = -4abac|α n+3 -4abac|β n+3 -4abac|γ n+3 + 6abac|α n+1 β 2 , fn (b|α n-1 β) = fn (c|α n-1 γ) = fn (a|α n-2 β 2 ) = -2(n -1)abac|α n+3 -2(n -1)abac|β n+3 -2(n -1)abac|γ n+3 ,
and fn (x) = 0 for

x ∈ 1|α n , 1β n , 1|γ n , 1|α n-1 β, 1|α n-1 γ,1|α n-2 β 2 ,b|α n , c|α n , a|β n , c|β n ,a|γ n , b|γ n ,a|α n-1 β,c|α n-1 β, a|α n-1 γ,b|α n-1 γ,b|α n-2 β 2 ,c|α n-2 β 2 . (4.2.6) Finally, if n ⩾ 2 is even, then fn (1|α n ) = fn (1|β n ) = fn (1|γ n ) = 8bac|α n+3 + 8abc|β n+3 -8aba|γ n+3 -2abc|α n+2 β + 2aba|α n+2 γ -2bac|α n+1 β 2 , fn (1|α n-1 β) = fn (1|α n-1 γ) = 0, fn (1|α n-2 β 2 ) = 6(n -2)(bac|α n+3 + abc|β n+3 -aba|γ n+3 ),
and fn (x) = 0 for x ∈ A 1 ⊗ (A ! -n ) * .
From now on, we assume that the characteristic of the field k is different from 2 and 3 in Subsection 4.2.1.

Computation of the boundaries

In this subsubsection, we will explicitly construct bases Bn,m and B n,m of the k-vector spaces Bn,m = Im( ∂n+1,m-1 ) and B n,m = Im(∂ n+1,m-1 ) for m ∈ 0,4 and n ∈ N 0 respectively, defined before Proposition 4.2.1. This will be done by simply applying the corresponding differential ∂n+1,m-1 or ∂ n+1,m-1 to the usual basis of its domain and extracting a linearly independent generating subset.

Computation of Bn,m

Recall that Bn,m = Im( ∂n+1,m-1 ) and ∂n,m :

Kn,m = A m ⊗ (A ! -n ) * → Kn-1,m+1 = A m+1 ⊗ (A ! -(n-1)
) * was defined in Subsubsection 4.2.1.1. Obviously, Bn,0 = Im( ∂n+1,-1 ) = 0 for n ∈ N 0 . Then we define Bn,0 = ∅ for n ∈ N 0 .

Suppose m = 1. Table 4.2.1 shows that ∂1,0 ( K1,0 ) = 0, so B0,1 = Im( ∂1,0 ) = 0. We define B0,1 = ∅. For n ∈ N with n odd, Tables 4.2.2 -4.2.5 show that

a|α n = (1/2) ∂n+1,0 (1|α n+1 ), b|β n = (1/2) ∂n+1,0 (1|β n+1 ), c|γ n = (1/2) ∂n+1,0 (1|γ n+1 ), (a + c)|(β n + α n-1 β) + (b + a)|(γ n + α n-1 γ) + (c + b)|(α n + α n-2 β 2 ) = ∂n+1,0 (1|α n β) = ∂n+1,0 (1|α n γ), a|α n-2 β 2 + b|α n-1 β + c|α n-1 γ = (1/2) ∂n+1,0 (1|α n-1 β 2 ).
These five elements are linearly independent if none of them vanishes, so they form a k-basis of Bn,1 . If n = 1, we define a basis of B1,1 by

B1,1 = a|α, b|β, c|γ, (a + c)|β + (b + a)|γ + (c + b)|α .
If n ⩾ 3 is odd, we define a basis of Bn,1 by

Bn,1 = a|α n , b|β n , c|γ n , (a + c)|(β n + α n-1 β) + (b + a)|(γ n + α n-1 γ) + (c + b)|(α n + α n-2 β 2 ), a|α n-2 β 2 + b|α n-1 β + c|α n-1 γ .
If n ⩾ 2 is even, Tables 4.2.6 -4.2.9 show that

0 = ∂n+1,0 (1|α n+1 ) = ∂n+1,0 (1|β n+1 ) = ∂n+1,0 (1|γ n+1 ), (c -a)|(α n-1 β -α n-1 γ) = ∂n+1,0 (1|α n β), (a -b)|(α n-1 β -α n-1 γ) = ∂n+1,0 (1|α n γ), (b -c)|(α n-1 β -α n-1 γ) = ∂n+1,0 (1|α n-1 β 2 ) = -∂n+1,0 (1|α n β) -∂n+1,0 (1|α n γ).
Since the elements (c-a)|(α n-1 β-α n-1 γ) and (a-b)|(α n-1 β-α n-1 γ) are linearly independent, we define a basis of Bn,1 by

Bn,1 = (c -a)|(α n-1 β -α n-1 γ), (a -b)|(α n-1 β -α n-1 γ) .
The dimension of Bn,1 is then given by 

dim Bn,1 =          0, if n = 0, 4, if n = 1, 2, if n ⩾ 2 is even, 5, if n ⩾ 3 is odd. (4.2.7) Suppose now m = 2.
(ab + bc + ac)|ϵ ! = (ab -ba)|ϵ ! + (ba + ac + bc)|ϵ ! , we see that B0,2 = (ab -ba)|ϵ ! , (ba + ac + bc)|ϵ ! is a basis of B0,2 . If n ∈ N is odd, let E n,2 = e 1,n,2 = (ab + ba)|α n = ∂n+1,1 (b|α n+1 ), e 2,n,2 = (bc -ba -ac)|α n = -∂n+1,1 (b|α n+1 ) -∂n+1,1 (c|α n+1 ), e 3,n,2 = (ab + ba)|β n = ∂n+1,1 (a|β n+1 ), e 4,n,2 = (bc -ba -ac)|β n = ∂n+1,1 (c|β n+1 ), e 5,n,2 = (ab + ba)|γ n = -∂n+1,1 (a|γ n+1 ) -∂n+1,1 (b|γ n+1 ), e 6,n,2 = (bc -ba -ac)|γ n = ∂n+1,1 (b|γ n+1 ), e 7,n,2 = bc|(α n + α n-2 β 2 ) -ac|(β n + α n-1 β) + ab|(γ n + α n-1 γ) = ∂n+1,1 (b|α n β) .
Then we define the set B1,2 = E 1,2 , and for n ⩾ 3 with n odd. We will show that Bn,2 is a basis of Bn,2 for n ∈ N with n odd. As noted before, Bn,2 ⊆ Bn,2 . Since 

Bn,2 = E n,2 ∪ e 8,n,2 = (ab + ba)|α n-1 γ = ∂n+1,1 (b|α n β) + ∂n+1,1 (a|α n γ) -e 5,n,2 , e 9,n,2 = (ab + ba)|(α n-1 β + α n-2 β 2 ) = ∂n+1,1 (a|α n-1 β 2 ) + ∂n+1,1 (b|α n-1 β 2 ) + e 8,
∂n+1,1 (a|α n+1 ) = ∂n+1,1 (b|β n+1 ) = ∂n+1,1 (c|γ n+1 ) = 0, ∂n+1,1 (b|α n+1 ) = e 1,n,2 , ∂n+1,1 (c|α n+1 ) = -e 1,n,2 -e 2,n,2 , ∂n+1,1 (a|β n+1 ) = e 3,n,2 , ∂n+1,1 (c|β n+1 ) = e 4,n,2 , ∂n+1,1 (a|γ n+1 ) = -e 5,n,2 -e 6,n,2 , ∂n+1,1 (b|γ n+1 ) = e 6,n,2 , ∂n+1,1 (a|α n β) = -e 2,
G n,2 = g 1,n,2 = (ba -ab)|α n = -∂n+1,1 (b|α n+1 ), g 2,n,2 = (bc + ba + ac)|α n = ∂n+1,1 (c|α n+1 ) -∂n+1,1 (b|α n+1 ), g 3,n,2 = (ba -ab)|β n = ∂n+1,1 (a|β n+1 ), g 4,n,2 = (bc + ba + ac)|β n = ∂n+1,1 (c|β n+1 ), g 5,n,2 = (ba -ab)|γ n = ∂n+1,1 (a|γ n+1 ) -∂n+1,1 (b|γ n+1 ), g 6,n,2 = (bc + ba + ac)|γ n = -∂n+1,1 (b|γ n+1 ), g 9,n,2 = ab|α n-1 β -ba|α n-1 γ = (1/3) ∂n+1,1 (2a|α n β + 2c|α n β + 3b|α n γ + b|α n-1 β 2 + c|α n-1 β 2 ) -2g 1,n,2 + g 2,n,2 + 2g 3,n,2 + 2g 4,n,2 -3g 6,n,2 , g 10,n,2 = ba|α n-1 β -ab|α n-1 γ = (1/3) ∂n+1,1 (a|α n-1 β 2 -b|α n β), g 11,n,2 = ac|α n-1 β + (ab + bc)|α n-1 γ = -(1/3) ∂n+1,1 (b|α n β + 2a|α n-1 β 2 ), g 12,n,2 = (ab + bc)|α n-1 β + ac|α n-1 γ = (1/3) ∂n+1,1 (c|α n β -2a|α n β -b|α n-1 β 2 -c|α n-1 β 2 ) + 2g 1,n,2 -g 2,n,2 -2g 3,n,2 + g 4,n,2 ,
Then we define B2,2 = G 2,2 , and

Bn,2 = G n,2 ∪ g 7,n,2 = (ba -ab)|α n-2 β 2 = (1/3)[ ∂n+1,1 (a|α n β + c|α n β -b|α n-1 β 2 -c|α n-1 β 2 ) -g 1,n,2 -g 2,n,2 -2g 3,n,2 + g 4,n,2 -3g 5,n,2 ], g 8,n,2 = (bc + ba + ac)|α n-2 β 2 = (1/3) ∂n+1,1 (2a|α n β + 2c|α n β + b|α n-1 β 2 + c|α n-1 β 2 ) -2g 1,n,2 -2g 2,n,2 + 2g 3,n,2 -g 4,n,2 -3g 6,n,2
for n ⩾ 4 with n even. We will show that Bn,2 is a basis of Bn,2 for n ⩾ 2 with n even. From the definition, we see that Bn,2 ⊆ Bn,2 . Since

∂n+1,1 (a|α n+1 ) = ∂n+1,1 (b|β n+1 ) = ∂n+1,1 (c|γ n+1 ) = 0, ∂n+1,1 (b|α n+1 ) = -g 1,n,2 , ∂n+1,1 (c|α n ) = g 2,n,2 -g 1,n,2 , ∂n+1,1 (a|β n+1 ) = g 3,n,2 , ∂n+1,1 (c|β n+1 ) = g 4,n,2 , ∂n+1,1 (a|γ n+1 ) = g 5,n,2 -g 6,n,2 , ∂n+1,1 (b|γ n+1 ) = -g 6,n,2 , ∂n+1,1 (a|α n β) = g 1,n,2 + g 5,n,2 + g 7,n,2 -g 12,n,2 , ∂n+1,1 (b|α n β) = -2g 10,n,2 -g 11,n,2 , ∂n+1,1 (c|α n β) = g 2,n,2 + g 6,n,2 + g 8,n,2 + g 12,n,2 , ∂n+1,1 (a|α n γ) = g 1,n,2 -g 2,n,2 + g 3,n,2 -g 4,n,2 + g 7,n,2 -g 8,n,2 -g 9,n,2 , ∂n+1,1 (b|α n γ) = -g 2,n,2 -g 4,n,2 -g 8,n,2 + g 9,n,2 , ∂n+1,1 (c|α n γ) = g 10,n,2 + 2g 11,n,2 , ∂n+1,1 (a|α n-1 β 2 ) = g 10,n,2 -g 11,n,2 , ∂n+1,1 (b|α n-1 β 2 ) = -g 3,n,2 -g 5,n,2 -g 7,n,2 + g 9,n,2 -g 12,n,2 , ∂n+1,1 (c|α n-1 β 2 ) = -g 3,n,2 + g 4,n,2 -g 5,n,2 + g 6,n,2 -g 7,n,2 + g 8,n,2 -g 9,n,2 + g 12,n,2 ,
the elements in Bn,2 span the space Bn,2 . By Fact 4.1.3, the elements in Bn,2 are linearly independent, so Bn,2 is a basis of Bn,2 , as claimed. The dimension of Bn,2 is thus given by 

dim Bn,2 =          2, if n = 0, 7, if n = 1, 10, if n = 2, 12, if n ⩾ 3.
(β n + α n-1 β) + aba|(γ n + α n-1 γ) = (1/3) ∂n+1,2 ((ba -ac)|α n β), e 8,n,3 = aba|(γ n + α n-1 γ) + bac|(α n + α n-2 β 2 ) = (1/3) ∂n+1,2 ((2ba + ac)|α n β) .
Then we define B1,3 = E 1,3 , and the elements in Bn,3 span the space Bn,3 . By Fact 4.1.3, the elements e ℓ,n,3 for ℓ ∈ 1,8 are linearly independent. The reader can easily verify that the elements e ℓ,n,3 for ℓ ∈ 9,12 are linearly independent. Since the underlined terms of e ℓ,n,3 for ℓ ∈ 1,8 do not appear in e ℓ,n,3 for ℓ ∈ 9,12 , the elements in Bn,3 are linearly independent. So Bn,3 is a basis of Bn,3 , as claimed. If n ⩾ 2 is even, let

Bn,3 = E n,3 ∪ e 9,n,3 = aba|α n-1 β + (abc + bac)|α n-1 γ + aba|α n-2 β 2 = ∂n+1,2 (ba|α n-1 β 2 ), e 10,n,3 = bac|α n-1 β + bac|α n-1 γ + (aba -abc)|α n-2 β 2 = -∂n+1,2 (bc|α n-1 β 2 ),
Bn,3 = g 1,n,3 = aba|α n = ∂n+1,2 (ba|α n+1 ), g 2,n,3 = abc|α n = ∂n+1,2 (ac|α n+1 ), g 3,n,3 = aba|β n = ∂n+1,2 (ab|β n+1 ), g 4,n,3 = bac|β n = ∂n+1,2 (bc|β n+1 ), g 5,n,3 = abc|γ n = -∂n+1,2 (ac|γ n+1 ), g 6,n,3 = bac|γ n = -∂n+1,2 (bc|γ n+1 ), g 7,n,3 = bac|(α n + α n-2 β 2 ) + aba|(γ n + α n-2 β 2 ) = ∂n+1,2 ((ab + bc)|α n β) -g 1,n,3 -g 6,n,3 , g 8,n,3 = abc|(β n + α n-2 β 2 ) + aba|(γ n + α n-2 β 2 ) = ∂n+1,2 ((ba + ac)|α n-1 β 2 ) -g 3,n,3 -g 5,n,3 , g 9,n,3 = bac|(α n-1 β + α n-1 γ -α n -α n-2 β 2 ) + aba|(γ n + α n-2 β 2 ) = ∂n+1,2 (ab|α n β + ac|α n γ) -e 1,n,3 + e 2,n,3 -e 7,n,3 + e 8,n,3 , g 10,n,3 = aba|(α n-1 β + α n-1 γ -2γ n -2α n-2 β 2 ) = -∂n+1,2 (ab|α n β + ba|α n-1 β 2 ) + g 1,n,3 + g 3,n,3 , g 11,n,3 = (bac -aba)|α n-1 β -abc|α n-1 γ + aba|(γ n + α n-2 β 2 ) = ∂n+1,2 (ab|α n β) -g 1,n,3 , g 12,n,3 = abc|α n-1 β + (aba -bac)|α n-1 γ -aba|(γ n + α n-2 β 2 ) = ∂n+1,2 (ba|α n β) + g 1,n,3 .
We then show that Bn,3 is a basis of Bn,3 . It follows from the definition that Bn,3 ⊆ Bn,3 . Since

∂n+1,2 (ab|α n+1 ) = -∂n+1,2 (ba|α n+1 ) = -g 1,n,3 , ∂n+1,2 (bc|α n+1 ) = g 1,n,3 + g 2,n,3 , ∂n+1,2 (ac|α n+1 ) = g 2,n,3 , ∂n+1,2 (ab|β n+1 ) = -∂n+1,2 (ba|β n+1 ) = g 3,n,3 , ∂n+1,2 (bc|β n+1 ) = g 4,n,3 , ∂n+1,2 (ac|β n+1 ) = g 3,n,3 + g 4,n,3 , ∂n+1,2 (ab|γ n+1 ) = -∂n+1,2 (ba|γ n+1 ) = g 6,n,3 -g 5,n,3 , ∂n+1,2 (bc|γ n+1 ) = -g 6,n,3 , ∂n+1,2 (ac|γ n+1 ) = -g 5,n,3 , ∂n+1,2 (ab|α n β) = g 1,n,3 + g 11,n,3 , ∂n+1,2 (bc|α n β) = g 6,n,3 + g 7,n,3 -g 11,n,3 , ∂n+1,2 (ba|α n β) = g 12,n,3 -g 1,n,3 , ∂n+1,2 (ac|α n β) = g 1,n,3 + g 6,n,3 + g 7,n,3 , ∂n+1,2 (ab|α n γ) = -g 2,n,3 + g 4,n,3 + g 7,n,3 -g 8,n,3 , ∂n+1,2 (bc|α n γ) = -g 4,n,3 + g 9,n,3 + g 12,n,3 , ∂n+1,2 (ba|α n γ) = g 2,n,3 -g 4,n,3 -g 7,n,3 + g 8,n,3 , ∂n+1,2 (ac|α n γ) = -g 2,n,3 + g 7,n,3 -g 8,n,3 + g 9,n,3 -g 11,n,3 , ∂n+1,2 (ab|α n-1 β 2 ) = -g 3,n,3 + g 10,n,3 -g 12,n,3 , ∂n+1,2 (bc|α n-1 β 2 ) = g 3,n,3 + g 5,n,3 + g 8,n,3 , ∂n+1,2 (ba|α n-1 β 2 ) = g 3,n,3 -g 10,n,3 -g 11,n,3 , ∂n+1,2 (ac|α n-1 β 2 ) = g 5,n,3 + g 8,n,3 + g 10,n,3 + g 11,n,3 ,
the elements in Bn,3 span the space Bn,3 . By Fact 4.1.3, the elements in Bn,3 are linearly independent, so Bn,3 is a basis of Bn,3 , as claimed. Hence, the dimension of Bn,3 is given by 

dim Bn,3 =      3, if n = 0, 8, if n = 1, 12, if n ⩾ 2.
Bn,4 = ∂n+1,3 (aba|α n β) = abac|(α n + α n-2 β 2 -β n -α n-1 β), ∂n+1,3 (aba|α n β) = abac|(α n + α n-2 β 2 -γ n -α n-1 γ) .
If n = 2, by Tables 4.2.6 -4.2.9, we define a basis of B2,4 by B2,4 = abac|α 2 , abac|β 2 , abac|γ 2 , abac|(αβ + αγ) .

If n ⩾ 4 is even, we note that abac|α n-2 β 2 = (1/2) ∂n+1,3 (abc|α n β -bac|α n+1 + aba|γ n+1 ). So we can define a basis of Bn,4 by

Bn,4 = abac|α n , abac|β n , abac|γ n , abac|(α n-1 β + α n-1 γ), abac|α n-2 β 2 .
In conclusion, the dimension of Bn,4 is given by Suppose m = 3.

dim Bn,4 =          1, if n = 0, 2, if n ∈ N is odd, 4, if n = 2, 5, if n ⩾ 4 is even.
Consider ∂ n+1,2 : Kn+1,2 ⊕ ω 1 Kn-3,0 → Kn,3 ⊕ ω 1 Kn-4,1 . If n = 3, the element 2bac|α 3 + 2abc|β 3 -2aba|γ 3 -abc|α 2 β + aba|α 2 γ -bac|αβ 2 = (1/6)∂ 4,2 (ω 1 1|ϵ ! )
is not in the space B3,3 . So we define a basis of B 3,3 by

B 3,3 = B3,3 ∪ 2bac|α 3 + 2abc|β 3 -2aba|γ 3 -abc|α 2 β + aba|α 2 γ -bac|αβ 2 .
If n = 5, we define the set

B 5,3 = B5,3 ∪ 4bac|α 5 + 4abc|β 5 -4abc|γ 5 -abc|α 4 β + aba|α 4 γ -bac|α 3 β 2 + ω 1 a|α = (1/2)∂ 6,2 (ω 1 1|α 2 ), 4bac|α 5 + 4abc|β 5 -4abc|γ 5 -abc|α 4 β + aba|α 4 γ -bac|α 3 β 2 + ω 1 b|β = (1/2)∂ 6,2 (ω 1 1|β 2 ), 4bac|α 5 + 4abc|β 5 -4abc|γ 5 -abc|α 4 β + aba|α 4 γ -bac|α 3 β 2 + ω 1 c|γ = (1/2)∂ 6,2 (ω 1 1|γ 2 ), ω 1 [(a + c)|β + (b + a)|γ + (c + b)|α] = ∂ 6,2 (ω 1 1|αβ) = ∂ 6,2 (ω 1 1|αγ) .
If n ⩾ 7 is odd, we define the set

B n,3 = Bn,3 ∪ 4bac|α n + 4abc|β n -4abc|γ n -abc|α n-1 β + aba|α n-1 γ -bac|α n-2 β 2 + ω 1 a|α n-4 = (1/2)∂ n+1,2 (ω 1 1|α n-3 ), 4bac|α n + 4abc|β n -4abc|γ n -abc|α n-1 β + aba|α n-1 γ -bac|α n-2 β 2 + ω 1 b|β n-4 = (1/2)∂ n+1,2 (ω 1 1|β n-3 ), 4bac|α n + 4abc|β n -4abc|γ n -abc|α n-1 β + aba|α n-1 γ -bac|α n-2 β 2 + ω 1 c|γ n-4 = (1/2)∂ n+1,2 (ω 1 1|γ n-3 ), ω 1 [(a + c)|(β n-4 + α n-5 β) + (b + a)|(γ n-4 + α n-5 γ) + (c + b)|(α n-4 + α n-6 β 2 )] = ∂ n+1,2 (ω 1 1|α n-4 β) = ∂ n+1,2 (ω 1 1|α n-4 γ), 3(n -5)(bac|α n + abc|β n -aba|γ n ) + ω 1 (a|α n-6 β 2 + b|α n-5 β + c|α n-5 γ) = ∂ n+1,2 (ω 1 1|α n-5 β 2 ) .
By Fact 4.1.3, the elements in B n,3 are linearly independent, so B n,3 is a basis of B n,3 for n ⩾ 5 with n odd. If n ⩾ 4 is even, then fn-3 ( Kn-3,0 ) = 0 since f vanishes on the elements given by (4.2.6). Hence, B n,3 = Bn,3 ⊕ ω 1 Bn-4,1 . We define a basis of B 4,3 by B 4,3 = B4,3 , and we define a basis of B n,3 by

B n,3 = Bn,3 ∪ ω 1 (c -a)|(α n-5 β -α n-5 γ),ω 1 (a -b)|(α n-5 β -α n-5 γ)
for n ⩾ 6 with n even. The dimension of B n,3 is then given by 

dim B n,3 =                        3, if n = 0, 8, if n = 1, 12, if n = 2,4, 13, if n = 3, 16, if n = 5, 14, if n ⩾ 6 is even, 17, if n ⩾ 7 is odd.
dim B n,4 =                              1, if n = 0, 2, if n = 1,3, 4, if n = 2, 7, if n = 4, 9, if n = 5, 15, if n = 6, 14, if n ⩾ 7 is odd, 17, if n ⩾ 8 is even.
(4.2.12)

Computation of the cycles

As one can remark rather easily, from the computations in the previous subsubsection we can already deduce the dimensions of the homogeneous components of the spaces of cycles and thus of the Hochschild homology groups. However, since having specific representatives of bases of homology classes is relevant for other computations involving the Hochschild homology groups, we will proceed to do so. More precisely, in this subsubsection, we will explicitly construct bases Dn,m and D n,m of the k-vector spaces Dn,m = Ker( ∂n,m ) and D n,m = Ker(∂ n,m ) for m ∈ 0,4 and n ∈ N 0 respectively, defined before Proposition 4.2.1.

Computation of Dn,m

Recall that Dn,m = Ker( ∂n,m ) and ∂n,m : Suppose m = 0. By (4.2.7), the dimension of Dn,0 is given by

Kn,m = A m ⊗ (A ! -n ) * → Kn-1,m+1 = A m+1 ⊗ (A ! -(n- 1 
dim Dn,0 =      3, if n = 1, 1, if n ∈ N 0 is even, 4, if n ⩾ 3 is odd. If n = 1, then D1,0 = K1,0 since dim D1,0 = 3 = dim K1,0 . If n ⩾ 3 is odd, we define the set Dn,0 = 1|α n ,1|β n ,1|γ n ,1|(α n-1 β + α n-1 γ + α n-2 β 2 ) .
If n ⩾ 2 is even, we define the set

Dn,0 = 1|(α n-1 β -α n-1 γ) .
Suppose m = 1. By (4.2.8), the dimension of Dn,1 is given by

dim Dn,1 =          3, if n = 0, 7, if n = 1, 8, if n = 2,3, 6, if n ⩾ 4.
We define the sets

D1,1 = a|α,b|β,c|γ, a|β + c|α -c|β,a|γ + c|α, b|α -c|α + c|β, b|γ + c|β ⊆ D1,1 , D2,1 = a|α 2 ,b|β 2 ,c|γ 2 , (c -a)|(αβ -αγ), (a -b)|(αβ -αγ), (a + c)|β 2 + a|αγ + c|αβ, (a + b)|γ 2 + a|αβ + b|αγ, (b + c)|α 2 + b|αγ + c|αβ ⊆ D2,1 , and 
D3,1 = a|α 3 , b|β 3 ,c|γ 3 , b|α 2 β + c|α 2 γ + a|αβ 2 , a|(β 3 + α 2 β) + b|(γ 3 + α 2 γ) + c|(α 3 + αβ 2 ), -a|(β 3 + γ 3 ) + b|(2α 3 + γ 3 -α 2 γ) + c|(α 2 β -αβ 2 -2α 3 ), a|(α 2 γ -β 3 ) + b|(α 2 γ -α 3 ) + 2c|(α 3 + β 3 ), 2a|(β 3 + γ 3 ) + b|(αβ 2 -γ 3 ) + c|(αβ 2 -β 3 ) ⊆ D3,1 . Moreover, if n ⩾ 4 is even, we define Dn,1 = a|α n ,b|β n ,c|γ n , (c -a)|(α n-1 β -α n-1 γ), (a -b)|(α n-1 β -α n-1 γ), (a + b + c)|(α n-1 β + α n-1 γ + α n-2 β 2 + α n + β n + γ n ) ⊆ Dn,1 , and if n ⩾ 5 is odd, we set Dn,1 = a|α n , b|β n , c|γ n , b|α n-1 β + c|α n-1 γ + a|α n-2 β 2 , a|(β n + α n-1 β) + b|(γ n + α n-1 γ) + c|(α n + α n-2 β 2 ), c|(β n + α n-1 β) + a|(γ n + α n-1 γ) + b|(α n + α n-2 β 2 ) ⊆ Dn,1 .
Suppose m = 2. By (4.2.9), the dimension of Dn,2 is given by

dim Dn,2 =      4, if n = 0, 9, if n = 1, 12, if n ⩾ 2.
We define the sets 

(bc + ba + ac)|γ 2 , ab|(αβ -2α 2 -β 2 ) + bc|(β 2 -α 2 ), ab|(β 2 -γ 2 ) + bc|(αβ -β 2 -2γ 2 ), ba|αβ -ab|αγ, ab|αβ -ba|αγ, ac|αβ + (ab + bc)|αγ, (ab + bc)|αβ + ac|αγ ⊆ D2,2 . Moreover, if n ⩾ 3 is odd, we define Dn,2 = (ab + ba)|α n , (bc -ba -ac)|α n , (ab + ba)|β n , (bc -ba -ac)|β n , (ab + ba)|γ n , (bc -ba -ac)|γ n , (ab + ba)|(α n-1 β + α n-2 β 2 ), (ab + ba)|α n-1 γ, (bc -ba -ac)|α n-2 β 2 , (ab + ba)|α n-1 β -(bc -ba -ac)|α n-1 γ, bc|(α n + α n-2 β 2 ) -ac|(β n + α n-1 β) + ab|(γ n + α n-1 γ), (bc -ba -ac)|α n-1 β -(ab + ba)|α n-2 β 2 ⊆ Dn,2 ,
(bc + ba + ac)|γ n , (ba -ab)|α n-2 β 2 , (bc + ba + ac)|α n-2 β 2 , ba|α n-1 β -ab|α n-1 γ, ab|α n-1 β -ba|α n-1 γ, ac|α n-1 β + (ab + bc)|α n-1 γ, (ab + bc)|α n-1 β + ac|α n-1 γ ⊆ Dn,2 .
Suppose m = 3. By (4.2.10), the dimension of Dn,3 is given by

dim Dn,3 =                3, if n = 0, 8, if n = 1, 13, if n = 2 or n ⩾ 5 is odd, 14, if n = 3, 16, if n ⩾ 4 is even.
We define the sets D1,3 = aba|α, abc|α, aba|β, bac|β, abc|γ, bac|γ, bac|α + aba|γ, abc|β + aba|γ ⊆ D1,3 , and

D3,3 = aba|α 3 , abc|α 3 , aba|β 3 , bac|β 3 , abc|γ 3 , bac|γ 3 , aba|α 2 β + bac|α 2 β, aba|α 2 β + abc|α 2 γ, aba|α 2 β + bac|α 2 γ, aba|α 2 β -aba|αβ 2 , aba|α 2 β + abc|αβ 2 , abc|α 2 β -bac|α 3 + aba|γ 3 , aba|α 2 γ + bac|α 3 + abc|β 3 , bac|αβ 2 -abc|β 3 + aba|γ 3 ⊆ D3,3 . Moreover, if n ⩾ 2 is even, let G n,3 = aba|α n , abc|α n , bac|α n , aba|β n , abc|β n , bac|β n , aba|γ n , abc|γ n , bac|γ n , aba|α n-1 β + (abc + bac)|α n-1 γ, abc|(α n-1 β + α n-1 γ), bac|(α n-1 β + α n-1 γ), aba|(α n-1 β + α n-1 γ) .
Then we define the set D2,3 = G 2,3 , and

Dn,3 = G n,3 ∪ aba|α n-2 β 2 , abc|α n-2 β 2 , bac|α n-2 β 2 ⊆ Dn,3
for n ⩾ 4 with n even. If n ⩾ 5 is odd, then we define Dn,3 = aba|α n , abc|α n , aba|β n , bac|β n , abc|γ n , bac|γ n , aba|α n-1 β + bac|α n-1 β,

aba|α n-1 β + abc|α n-1 γ, aba|α n-1 β + bac|α n-1 γ, aba|α n-1 β -aba|α n-2 β 2 , aba|α n-1 β + abc|α n-2 β 2 , abc|(β n + α n-1 β) + aba|(γ n + α n-1 γ), bac|(α n + α n-2 β 2 ) -abc|(β n + α n-1 β) ⊆ Dn,3 .
Finally, if m = 4, we immediately see that Dn,4 = Kn,4 . So we define the set Dn,4 by the usual basis of Kn,4 . The dimension of Dn,4 is given by

dim Dn,4 =          1, if n = 0, 3, if n = 1, 5, if n = 2, 6, if n ⩾ 3. Computation of D n,m Recall that D n,m = Ker(∂ n,m ) and ∂ n,m : Pn,m → Pn-1,m+1 . The isomorphism Pn,m /D n,m ∼ = B n-1,m+1 tells us that dim D n,m = dim Pn,m -dim B n-1,m+1 .
Hence, from the dimension of B n-1,m+1 computed in Subsubsection 4.2.1.3 as well as the dimension of Pn,m (see the last paragraph of Subsubsection 4.2.1.1), we deduce the value of the dimension of D n,m . We will present them explicitly in the computations below.

For integers (n,m) ∈ N 0 × 0,4 , we are going to provide a set D n,m ⊆ D n,m such that #D n,m = dim D n,m and the elements in D n,m are linearly independent. As a consequence, D n,m is a basis of D n,m . We leave to the reader the easy verification in each case that the set D n,m satisfies these conditions.

For either m = 0,1 and n ∈ N 

dim D n,2 =                    4, if n = 0, 9, if n = 1, 12, if n = 2,3,4, 15, if n = 5, 13, if n ⩾ 6 is even, 16, if n ⩾ 7 is odd. If n = 4, we define the set D 4,2 = D4,2 ⊆ D 4,2 . If n ⩾ 6 is even, we define D n,2 = Dn,2 ∪ ω 1 1|(α n-5 β -α n-5 γ) ⊆ D n,2 . If n ⩾ 5 is odd, we define D n,2 = Dn,2 ∪ ω 1 Dn-4,0 ⊆ D n,2 .
Suppose m = 3. By (4.2.12), the dimension of D n,3 is given by

dim D n,3 =                                  3, if n = 0, 8, if n = 1, 13, if n = 2, 14, if n = 3, 19, if n = 4 or n ⩾ 9 is odd, 20, if n = 5, 24, if n = 6, 21, if n = 7, 22, if n ⩾ 8 is even.
We define the sets

D 5,3 = D5,3 ∪ 5bac|α 5 + 2abc|β 5 -5aba|γ 5 -3abc|α 4 β + ω 1 a|α, 5bac|α 5 + 2abc|β 5 -5aba|γ 5 -3abc|α 4 β + ω 1 b|β, 5bac|α 5 + 2abc|β 5 -5aba|γ 5 -3abc|α 4 β + ω 1 c|γ, ω 1 (a|β + c|α -c|β), ω 1 (a|γ + c|α), ω 1 (b|α -c|α + c|β), ω 1 (b|γ + c|β) ⊆ D 5,3 , and 
D 7,3 = D7,3 ∪ 5bac|α 7 + 2abc|β 7 -5aba|γ 7 -3abc|α 6 β + ω 1 a|α 3 , 5bac|α 7 + 2abc|β 7 -5aba|γ 7 -3abc|α 6 β + ω 1 b|β 3 , 5bac|α 7 + 2abc|β 7 -5aba|γ 7 -3abc|α 6 β + ω 1 c|γ 3 , 6bac|α 7 + 6abc|β 7 -6aba|γ 7 + ω 1 (b|α 2 β + c|α 2 γ + a|αβ 2 ), ω 1 [a|(β 3 + α 2 β) + b|(γ 3 + α 2 γ) + c|(α 3 + αβ 2 )], ω 1 [-a|(β 3 + γ 3 ) + b|(2α 3 + γ 3 -α 2 γ) + c|(α 2 β -αβ 2 -2α 3 )], ω 1 [a|(α 2 γ -β 3 ) + b|(α 2 γ -α 3 ) + 2c|(α 3 + β 3 )], ω 1 [2a|(β 3 + γ 3 ) + b|(αβ 2 -γ 3 ) + c|(αβ 2 -β 3 )] ⊆ D 7,3 .
Moreover, if n ⩾ 4 is even, we define the set D n,3 = Dn,3 ∪ ω 1 Dn-4,1 ⊆ D n,3 , and if n ⩾ 9 is odd, we define the set

D n,3 = Dn,3 ∪ 5bac|α n + 2abc|β n -5aba|γ n -3abc|α n-1 β + ω 1 a|α n-4 , 5bac|α n + 2abc|β n -5aba|γ n -3abc|α n-1 β + ω 1 b|β n-4 , 5bac|α n + 2abc|β n -5aba|γ n -3abc|α n-1 β + ω 1 c|γ n-4 , 3(n -5)(bac|α n + abc|β n -aba|γ n ) + ω 1 (b|α n-5 β + c|α n-5 γ + a|α n-6 β 2 ), ω 1 [a|(β n-4 + α n-5 β) + b|(γ n-4 + α n-5 γ) + c|(α n-5 + α n-6 β 2 )], ω 1 [c|(β n-4 + α n-5 β) + a|(γ n-4 + α n-5 γ) + b|(α n-4 + α n-6 β 2 )] ⊆ D n,3 .
Suppose m = 4. The space D n,4 is given by Proposition 4.2.2. So D n,4 is given by the usual basis of Kn,4 and ω 1 D n-4,2 . The dimension of D n,4 is then given by

dim D n,4 =                                        1, if n = 0, 3, if n = 1, 5, if n = 2, 6, if n = 3, 10, if n = 4, 15, if n = 5, 18, if n = 6,7,8, 21, if n = 9, 19, if n ⩾ 10 is even, 22, if n ⩾ 11 is odd.

Hochschild homology

In this subsubsection, we will explicitly construct a subspace H n,m of D n,m such that D n,m = H n,m ⊕ B n,m for m,n ∈ N 0 , and we define H n,m = 0 for (n,m) ∈ Z 2 \ N 2 0 . By Proposition 4.2.1, we have the following similar recursive description.

Corollary 4.2.3. For integers m ⩾ 3 and n ∈ N 0 , we have

H n,m ∼ = ω m-3 2 H n-2m+6,3 , if m is odd, ω m 2 -2 H n-2m+8,4 , if m is even. So it is also sufficient to compute the case m ∈ 0,4 . Recall that dim H n,m = dim D n,m -dim B n,m = dim Pn,m -dim B n-1,m+1 -dim B n,m .
Hence, from the dimension of D n,m computed in Subsubsection 4.2.1.4 as well as the dimension of B n,m computed in Subsubsection 4.2.1.3, we deduce the value of the dimension of H n,m . We will present them explicitly in the computations below.

For every (n,m) ∈ N 0 × 0,4 , we are going to provide a set H n,m ⊆ D n,m such that #H n,m = dim H n,m and the elements in H n,m ∪ B n,m are linearly independent. As a consequence, the space H n,m spanned by H n,m satisfies D n,m = H n,m ⊕ B n,m . We leave to the reader the easy verification in each case that the set H n,m satisfies these conditions. Note that, unless stated otherwise, the linear independence of the elements in H n,m ∪ B n,m is from Fact 4.1.3, where we put the elements in H n,m before the elements in B n,m .

Suppose m = 0. We get immediately H n,0 = D n,0 since B n,0 = 0 for n ∈ N 0 . The dimension of H n,0 is given by

dim H n,0 =      1, if n ∈ N 0 is even, 3, if n = 1, 4, if n ⩾ 3 is odd. Suppose m = 1. The dimension of H n,1 is given by dim H n,1 =          3, if n = 0,1,3, 6, if n = 2, 4, if n ⩾ 4 is even, 1, if n ⩾ 5 is odd.
We define the sets H 0,1 = D 0,1 ,

H 1,1 = a|γ + c|α, b|α -c|α + c|β, b|γ + c|β , H 2,1 = D 2,1 \B 2,1 = a|α 2 , b|β 2 , c|γ 2 , a|(β 2 + αγ) + c|(β 2 + αβ), a|(γ 2 + αβ) + b|(γ 2 + αγ), b|(α 2 + αγ) + c|(α 2 + αβ) , and 
H 3,1 = a|(β 3 + α 2 β) + b|(γ 3 + α 2 γ) + c|(α 3 + αβ 2 ), a|(α 2 γ -β 3 ) + b|(α 2 γ -α 3 ) + 2c|(α 3 + β 3 ), 2a|(β 3 + γ 3 ) + b|(αβ 2 -γ 3 ) + c|(αβ 2 -β 3 ) .
Moreover, if n ⩾ 4 is even, we define the set

H n,1 = D n,1 \B n,1 = a|α n , b|β n , c|γ n , (a + b + c)|(α n-1 β + α n-1 γ + α n-2 β 2 + α n + β n + γ n ) ,
and if n ⩾ 5 is odd, we define

H n,1 = a|(β n + α n-1 β) + b|(γ n + α n-1 γ) + c|(α n + α n-2 β 2 ) . Suppose m = 2. The dimension of H n,2 is given by dim H n,2 =                2, if n = 0,1,2, 0, if n = 3,4, 3, if n = 5, 1, if n ⩾ 6 is even, 4, if n ⩾ 7 is odd.
We define the sets

H 0,2 = ab|ϵ ! , bc|ϵ ! , H 1,2 = (ba + ac)|(β + γ), ac|(α + γ) , H 2,2 = ab|(β 2 -γ 2 ) + bc|(αβ -β 2 -2γ 2 ), ab|(αβ -2α 2 -β 2 ) + bc|(β 2 -α 2 ) ,
and

H 3,2 = H 4,2 = ∅. Moreover, if n ⩾ 5 is odd, we define the set H n,2 = ω 1 D n-4,0 , and if n ⩾ 6 is even, we define H n,2 = ω 1 1|(α n-5 β -α n-5 γ) .
Suppose m = 3. The dimension of H n,3 is given by

dim H n,3 =                        0, if n = 0,1, 1, if n = 2,3, 7, if n = 4, 4, if n = 5,7, 10, if n = 6, 8, if n ⩾ 8 is even, 2, if n ⩾ 9 is odd.
We define the sets

H 0,3 = H 1,3 = ∅, H 2,3 = bac|α 2 , H 3,3 = aba|α 2 β + bac|α 2 β , H 4,3 = bac|α 4 , aba|α 2 β 2 , abc|α 2 β 2 , bac|α 2 β 2 , ω 1 a|ϵ ! , ω 1 b|ϵ ! , ω 1 c|ϵ ! , H 5,3 = (aba + bac)|α 4 β, ω 1 (a|γ + c|α), ω 1 (b|α -c|α + c|β), ω 1 (b|γ + c|β) , H 6,3 = bac|α 6 , aba|α 4 β 2 , abc|α 4 β 2 , bac|α 4 β 2 , ω 1 a|α 2 , ω 1 b|β 2 , ω 1 c|γ 2 , ω 1 [a|(β 2 + αγ) + c|(β 2 + αβ)], ω 1 [a|(γ 2 + αβ) + b|(γ 2 + αγ)], ω 1 [b|(α 2 + αγ) + c|(α 2 + αβ)] ,
and

H 7,3 = (aba + bac)|α 6 β, ω 1 [a|(β 3 + α 2 β) + b|(γ 3 + α 2 γ) + c|(α 3 + αβ 2 )], ω 1 [a|(α 2 γ -β 3 ) + b|(α 2 γ -α 3 ) + 2c|(α 3 + β 3 )], ω 1 [2a|(β 3 + γ 3 ) + b|(αβ 2 -γ 3 ) + c|(αβ 2 -β 3 )] .
Moreover, if n ⩾ 8 is even, we define

H n,3 = bac|α n , aba|α n-2 β 2 , abc|α n-2 β 2 , bac|α n-2 β 2 , ω 1 a|α n-4 , ω 1 b|β n-4 , ω 1 c|γ n-4 , ω 1 (a + b + c)|(α n-5 β + α n-5 γ + α n-6 β 2 + α n-4 + β n-4 + γ n-4 ) ,
and if n ⩾ 9 is odd, we define

H n,3 = (aba + bac)|α n-1 β, ω 1 [a|(β n-4 + α n-5 β) + b|(γ n-4 + α n-5 γ) + c|(α n-4 + α n-6 β 2 )] .
Moreover, the set H n,3 ∪ B n,3 for n ⩾ 3 and n odd is linearly independent. Indeed, Fact 4.1.3 tells us that the elements containing underlined terms do form a linearly independent set. It is then easy to prove that the elements of H n,3 ∪ B n,3 without any underlining are not a linear combination of the remaining elements, proving the claim. Suppose m = 4. The dimension of H n,4 is given by

dim H n,4 =                              0, if n = 0, 1, if n = 1,2,8, 4, if n = 3,7, 3, if n = 4,6, 6, if n = 5, 7, if n = 9, 2, if n ⩾ 10 is even, 8, if n ⩾ 11 is odd.
We define the sets H 0,4 = ∅, Moreover, if n ⩾ 9 is odd, we define the set

H 1,4 = abac|α , H 2,4 = abac|αβ , H 3,4 = abac|α 3 ,abac|α 2 β, abac|α 2 γ, abac|αβ 2 , H 4,4 = abac|α 3 β, ω 1 ab|ϵ ! , ω 1 bc|ϵ ! , H 5 
H n,4 = abac|α n , abac|α n-1 β, abac|α n-1 γ, abac|α n-2 β 2 ∪ ω 2 D n-8,0 ,
and if n ⩾ 10 is even, we define

H n,4 = abac|α n-1 β, ω 2 1|(α n-9 β -α n-9 γ) .
The previous results can be restated as follows. 

HH n (A) = m∈ 0,2⌊n/4⌋+4 H n,m = H n,0 ⊕ H n,1 ⊕ H n,2 ⊕ i∈ 0,⌊n/4⌋ ω i H n-4i,3 ⊕ i∈ 0,⌊n/4⌋ ω i H n-4i,4 = Hn,0 ⊕ Hn,1 ⊕ ( Hn,2 ⊕ ω 1 Hn-4,0 ) ⊕ i∈ 0,⌊n/4⌋ ω i ( Hn-4i,3 ⊕ ω 1 Hn-4i-4,1 ) ⊕ i∈ 0,⌊n/4⌋ ω i ( Hn-4i,4 ⊕ ω 1 Hn-4i-4,
dim HH n (A) =                6, if n = 0, 5 2 n + 5, if n = 4r for r ∈ N, 5n+13 2 
, if n = 4r + 1 for r ∈ N 0 ,

5 2 n + 6, if n = 4r + 2 for r ∈ N 0 , 5n+9 2 , if n = 4r + 3 for r ∈ N 0 .
The Hilbert series of HH n (A) is h n (t) = m∈N0 dim(H n,m )t m+n for n ∈ N 0 . Note that m + n is the internal degree of H n,m . Corollary 4.2.8. The Hilbert series h n (t) of HH n (A) is given as follows. Let n ⩾ 6. Then 

h n (t) = t n 1+3χ n+1 +(3χ n +1)t+(1+3χ n+1 )t 2 + µn i=0 (2+6χ n )t 3+2i +(2+6χ n+1 )t 4+2i +p n (t) , where p n (t) =          8t 2⌊ n 4 ⌋-1 + t 2⌊ n 4 ⌋ + 7t 2⌊ n 4 ⌋+1 + 3t 2⌊ n 4 ⌋+2 , if n ≡ 0 (mod 4), 2t 2⌊ n 4 ⌋-1 + 7t 2⌊ n 4 ⌋ + 4t 2⌊ n 4 ⌋+1 + 6t 2⌊ n 4 ⌋+2 + t 2⌊ n 4 ⌋+4 , if n ≡ 1 (mod 4), 10t 2⌊ n 4 ⌋+1 + 3t 2⌊ n 4 ⌋+2 + t 2⌊ n 4 ⌋+3 + t 2⌊ n 4 ⌋+4 , if n ≡ 2 (mod 4), 4t 2⌊ n 4 ⌋+1 + 4t 2⌊ n 4 ⌋+2 + t 2⌊ n 4 ⌋+3 + 4t 2⌊ n 4 ⌋+4 , if n ≡ 3 (

Cyclic homology

In this subsubsection, we assume that the characteristic of the field k is zero. Recall that the reduced Hochschild homology of A is given by

HH n (A) = HH 0 (A)/k, if n = 0, HH n (A), if n ∈ N,
and the reduced cyclic homology of A is given by

HC n (A) = HC n (A)/k, if n ∈ N 0 is even, HC n (A), if n ∈ N is odd,
where HC n (A) for n ∈ N 0 is the cyclic homology of A (see [START_REF] Loday | Cyclic homology[END_REF]). As a consequence of Goodwillie's Theorem (see [START_REF] Weibel | An introduction to homological algebra[END_REF], Thm. 9.9.1), we have the isomorphism of graded vector spaces for n ∈ N 0 . Then

HC n (A) ∼ = HH 0 (A), if n = 0, HH n (A)/HC n-1 (A), if n ∈ N. ( 4 
g 0 (t) = 3t + 2t 2 , g 1 (t) = t 2 + 2t 3 + t 5 , g 2 (t) = 4t 3 + 2t 4 + t 6 , g 3 (t) = t 4 + 4t 7 ,
and for n ⩾ 4,

g n (t) = t n+1 1 + 3χ n + ⌊ n 4 ⌋-2 i=0 (1 + 3χ n )t 2+2i + (1 + 3χ n+1 )t 3+2i + t 2⌊ n 4 ⌋ q n (t) ,
where

q n (t) =          3 + 3t, if n ≡ 0 (mod 4), 1 + 6t + t 3 , if n ≡ 1 (mod 4), 4 + 3t + t 3 , if n ≡ 2 (mod 4), 1 + 4t + 4t 3 , if n ≡ 3 (mod 4).
Proof. By (4.2.14), we have

g n (t) = h 0 (t) -1, if n = 0, h n (t) -g n-1 (t), if n ∈ N.
Then we get the result by induction. Remark 4.2.11. The cyclic cohomology of A is isomorphic to the dual space of the cyclic homology of A, so their Hilbert series coincide (see [START_REF] Loday | Cyclic homology[END_REF]).

Hochschild cohomology

In this subsection, we will compute the linear structure of the Hochschild cohomology

HH • (A) = Ext • A e (A,A)
by means of the complex H • (Hom A e (P b • ,A)). We refer the reader to [START_REF] Witherspoon | Hochschild cohomology for algebras[END_REF] for further information about Hochschild cohomology.

Recursive description of the spaces

Let K n = Hom k ((A ! -n ) * ,A) for n ∈ N 0 and K n = 0 for n ∈ Z \ N 0 . We have Hom A e (P b n ,A) ∼ = Q n as k-vector spaces, where Q n = ⊕ i∈ 0,⌊n/4⌋ ω * i K n-4i for n ∈ N 0 and Q n = 0 for n ∈ Z \ N 0 . We will denote by ∂ n : Q n → Q n+1 the differential (δ b n+1 ) * : Hom A e (P b n ,A) → Hom A e (P b n+1 ,A), by d n : K n → K n+1 the differential (d b n+1 ) * : Hom A e (K b n ,A) → Hom A e (K b n+1 ,A),
and by

f n : K n+3 → K n the map (f b n ) * : Hom A e (K b n+3 ,A) → Hom A e (K b n ,A)
for n ∈ Z. Then the differential ∂ n for n ∈ N 0 is given by

∂ n i∈ 0,⌊n/4⌋ ω * i ξ n-4i = i∈ 0,⌊n/4⌋ ω * i d n-4i (ξ n-4i ) + ω * i+1 f n-4i-3 (ξ n-4i ) , (4.2.15) 
where

ξ j ∈ K j for j ∈ N 0 . Note that ∂ n = ∂n = 0 for n ∈ Z \ N 0 .
Our aim is to compute the cohomology of (Q

• , ∂ • ). Let K n m = Hom k ((A ! -n ) * ,A m ) be the subspace of K n for (n,m) ∈ N 0 × 0,4 , and K n m = 0 for (n,m) ∈ Z 2 \ (N 0 × 0,4 ). Let Q n m = ⊕ i∈ 0,⌊n/4⌋ ω * i K n-4i m+2i for (n,m) ∈ N 0 × Z ⩽4 and Q n m = 0 for (n,m) ∈ Z 2 \ (N 0 × Z ⩽4 )
, where the symbol ω * i has cohomological degree 4i and internal degree -6i for i ∈ N 0 , and we usually omit ω * 0 for simplicity. The spaces K n m and Q n m are concentrated in cohomological degree n and internal degree m -n. We have

Q n = ⊕ m⩽4 Q n m . Let ∂ n m = ∂ n | Q n m : Q n m → Q n+1 m+1
, and

d n m = d n | K n m : K n m → K n+1 m+1 . Let D n m = Ker(∂ n m ), B n m = Im(∂ n-1 m-1 ) for (n,m) ∈ N 0 × Z ⩽4 , and Dn m = Ker(d n m ), Bn m = Im(d n-1 m-1 ) for (n,m) ∈ N 0 × 0,4 . Notice that D n m = B n m = 0 for (n,m) ∈ Z 2 \ (N 0 × Z ⩽4 ), and Dn m = Bn m = 0 for (n,m) ∈ Z 2 \ (N 0 × 0,4
). Remark 4.2.12. We have

Q n = ⊕ m∈ -2⌊n/4⌋,4 Q n m since the indices in Q n m = ⊕ i∈ 0,⌊n/4⌋ ω * i K n-4i m+2i
satisfy n -4i ∈ N 0 and m + 2i ∈ 0, 4 .

Proposition 4.2.13. For integers m ⩽ 1 and n ∈ N 0 , we have

B n m = ω * 1-m 2 B n+2m-2 1 , if m is odd, ω * -m 2 B n+2m 0 , if m is even, (4.2.16) 
and

D n m = ω * 1-m 2 D n+2m-2 1 , if m is odd, ω * -m 2 D n+2m 0 , if m is even, (4.2.17) 
where we follow the convention that

ω * i ω * j = ω * i+j for i,j ∈ N 0 and ω * i = 0 for i ∈ Z \ N 0 . Proof. Consider Q n m = ⊕ i∈ 0,⌊n/4⌋ ω * i K n-4i m+2i for integers m ⩽ 4 and n ∈ N 0 . If m is odd, then m + 2i = 1 or 3, i.e. i = (1 -m)/2 or (3 -m)/2. We have Q n m =        ω * 1-m 2 K n+2m-2 1 ⊕ ω * 3-m 2 K n+2m-6 3 , if n ⩾ 6 -2m, ω * 1-m 2 K n+2m-2 1 , if 2 -2m ⩽ n < 6 -2m, 0, if 0 ⩽ n < 2 -2m.
If m is even, then m + 2i = 0, 2 or 4, i.e. i = -m/2, 1 -m/2 or 2 -m/2. We have

Q n m =            ω * -m 2 K n+2m 0 ⊕ ω * 1-m 2 K n+2m-4 2 ⊕ ω * 2-m 2 K n+2m-8 4 , if n ⩾ 8 -2m, ω * -m 2 K n+2m 0 ⊕ ω * 1-m 2 K n+2m-4 2 , if 4 -2m ⩽ n < 8 -2m, ω * -m 2 K n+2m 0 , if -2m ⩽ n < 4 -2m, 0, if 0 ⩽ n < -2m. (4.2.18)
Hence, 

Q n m = ω * 1-m 2 Q n+2m-2 1 , if m ⩽ 1 is odd, ω * -m 2 Q n+2m 0 , if m ⩽ 0 is even. ( 4 
Q n-1 m-1 ∂ n-1 m-1 ---→ Q n m ∂ n m --→ Q n+1 m+1 of graded k-vector spaces is of the form ω * 1-m 2 Q n+2m-5 1 ∂ n-1 m-1 ---→ ω * -m 2 Q n+2m 0 ∂ n m --→ ω * -m 2 Q n+2m+1 1 . Since Q n+2m-1 -1 = ω * 1 Q n+2m-5
1 by (4.2.19), the above sequence is of the form

ω * -m 2 Q n+2m-1 -1 ∂ n-1 m-1 ---→ ω * -m 2 Q n+2m 0 ∂ n m --→ ω * -m 2 Q n+2m+1 1 . Note further that ∂ n m = ω * -m 2 ∂ n+2m 0 and ∂ n-1 m-1 = ω * 1-m 2 ∂ n+2m-5 1 = ω * -m 2 ∂ n+2m-1 -1
, where the

differential ω * j ∂ n ′ m ′ : ω * j Q n ′ m ′ → ω * j Q n ′ +1 m ′ +1 maps ω * j x to ω * j ∂ n ′ m ′ (x) for all x ∈ Q n ′ m ′ , j,n ′ ∈ N 0 and for all integers m ′ ⩽ 4. Hence, B n m = ω * -m 2 B n+2m 0 and D n m = ω * -m 2 D n+2m 0 .
Assume that m is odd (so m ⩽ -1). Then (4.2.19) tells us that the sequence

Q n-1 m-1 ∂ n-1 m-1 ---→ Q n m ∂ n m --→ Q n+1 m+1 of graded k-vector spaces is of the form ω * 1-m 2 Q n+2m-3 0 ∂ n-1 m-1 ---→ ω * 1-m 2 Q n+2m-2 1 ∂ n m --→ ω * -m+1 2 Q n+2m+3 0 . Note that ∂ n-1 m-1 = ω * 1-m 2 ∂ n+2m-3 0
. Moreover, we also have 

ω * -m+1 2 Q n+2m+3 0 = ω * -m+1 2 K n+2m+3 0 ⊕ ω * 1-m 2 Q n+2m-
Q n+2m-2 1 is contained in ω * 1-m 2 Q n+2m-1 2
by the explicit expression of the differential (4.2.15). Furthermore, the composition of

∂ n m with the canonical projection ω * -m+1 2 Q n+2m+3 0 -→ ω * 1-m 2 Q n+2m-1 2 induced by (4.2.20) is precisely ω * 1-m 2 ∂ n+2m-2 1
. It is thus sufficient to consider the sequence

ω * 1-m 2 Q n+2m-3 0 ω * 1-m 2 ∂ n+2m-3 0 ----------→ ω * 1-m 2 Q n+2m-2 1 ω * 1-m 2 ∂ n+2m-2 1 ----------→ ω * 1-m 2 Q n+2m-1 2 .
Hence,

B n m = ω * 1-m 2 B n+2m-2 1 and D n m = ω * 1-m 2 D n+2m-2 1
, as was to be shown.

Throughout the Subsection 4.2.2 and Section 5.1 we will use the symbol y|x, where x ∈ B m and y ∈ B ! * n , to denote the k-linear map in K n = Hom k ((A ! -n ) * ,A), which maps y to x and sends the other usual basis elements of (A ! -n ) * to zero. Even though one usually denotes the previous map by y||x, we will use y|x for the sake of reducing space in the expressions of the next subsubsection.

In order to compute B n m and D n m , it is sufficient to compute the case m ∈ 0,4 according to Proposition 4.2.13. First, we will compute the coboundaries, and then we will compute the cocycles. Since this will require handling elements of K n m and Q n m for n ∈ N 0 and m ∈ 0, 4 , we will use the basis

{y|x | x ∈ B m , y ∈ B ! * n } of K n m and the basis {ω * i y|x | i ∈ 0, ⌊n/4⌋ , x ∈ B m+2i , y ∈ B ! * n-4i } of Q n m
, both of which will be called usual bases, constructed from the usual bases of the homogeneous components of A and (A ! ) # , introduced in Subsection 4.1.1.

Explicit description of the differentials

Recall the isomorphism Hom

A e (A ⊗ (A ! -n ) * ⊗ A,A) ∼ = Hom k ((A ! -n ) * ,A
). We will use it together with Proposition 4.1.15 to explicitly describe d n and f n , which were defined at the beginning of Subsubsection 4.2.2.1.

Let x ∈ A. It is then straightforward to see that the differential

d 0 : Hom k ((A ! 0 ) * ,A) → Hom k ((A ! -1 ) * ,A) is given by d 0 (ϵ ! |x) = α|(xa -ax) + β|(xb -bx) + γ|(xc -cx). Analogously, for n ∈ N, d n : Hom k ((A ! -n ) * ,A) → Hom k ((A ! -(n+1) ) * ,A) is given by α n |x → α n+1 |[(-1) n+1 ax + xa] + α n β|(χ n+1 cx -χ n bx + xb) + α n γ|(χ n+1 bx -χ n cx + xc), β n |x → β n+1 |[(-1) n+1 bx + xb] + χ n+1 α n β|(ax + xc) + α n γ|[(-1) n+1 cx + χ n+1 xa + χ n xc] + χ n α n-1 β 2 |(xa -ax), γ n |x → γ n+1 |[(-1) n+1 cx + xc] + α n β|[(-1) n+1 bx + χ n+1 xa + χ n xb] + χ n+1 α n γ|(ax + xb) + χ n α n-1 β 2 |(xa -ax), α n-1 β|x → α n β|[(-1) n+1 ax + xc] + α n γ|(χ n+1 cx -χ n bx + xa) + α n-1 β 2 |(χ n+1 bx -χ n cx + xb), α n-1 γ|x → α n β|(χ n+1 bx -χ n cx + xa) + α n γ|[(-1) n+1 ax + xb] + α n-1 β 2 |(χ n+1 cx -χ n bx + xc), α n-2 β 2 |x → α n β|(χ n+1 cx -χ n bx + xb) + α n γ|(χ n+1 bx -χ n cx + xc) + α n-1 β 2 |[(-1) n+1 ax + xa].
The k-linear maps

f n : Hom k ((A ! -(n+3) ) * ,A) → Hom k ((A ! -n ) * ,A
) are homogeneous of cohomological degree -3 and internal degree 6. The map f 0 is given by

α 3 |x → ϵ ! |[2xbac -2bx(ab + bc) + 2cxba + 2abxc + 2acxb + 2bacx], β 3 |x → ϵ ! |[2xabc -2ax(ba + ac) + 2cxab + 2bcxa + 2baxc + 2abcx], γ 3 |x → ϵ ! |[-2xaba + 2axbc + 2bxac -2(ab + bc)xb -2(ba + ac)xa -2abax], α 2 β|x → ϵ ! |[-xabc + ax(ba + ac) -cxab -bcxa -baxc -abcx], α 2 γ|x → ϵ ! |[xaba -axbc -bxac + (ab + bc)xb + (ba + ac)xa + abax], αβ 2 |x → ϵ ! |[-xbac + bx(ab + bc) -cxba -abxc -acxb -bacx]. For n ∈ N, f n is given by αn+3|x → αn|[2xbac -χnbx(ab + bc) + χncxba + χnacxb + χnabxc + (-1) n 2bacx] + βn|[χnxbac -χnbxbc + (-1) n 2cxba + χn(ba + ac)xb + 2abxc + χnbacx] + γn|[χnxbac + (-1) n+1 2bx(ab + bc) + χncx(ba + ac) + 2acxb -χnbcxc + χnbacx] + χn+1αn-1β|[axab -(n -2)cxba + cxac -baxa + (n -1)abxc + bcxc] + χn+1αn-1γ|[axac + (n -1)bxab + (n -2)bxbc + (n -2)acxb -baxb + (ab + bc)xa] + αn-2β2|{χn+1[(n -1)xbac + cx(ab + bc) -bxba + acxc + abxb -(n -1)bacx] + χn(n -2)[xbac -bx(ab + bc) + cxba + acxb + abxc + bacx]}, βn+3|x → αn|[χnxabc + (-1) n 2cxab -χnaxac + 2baxc + χn(ab + bc)xa + χnabcx] + βn|[2xabc + χncxab -χnax(ba + ac) + χnbaxc + χnbcxa + (-1) n 2abcx] + γn|[χnxabc + χncx(ab + bc) + (-1) n+1 2ax(ba + ac) -χnacxc + 2bcxa + χnabcx] + χn+1αn-1β|[(n -1)xabc -axab + cx(ba + ac) + baxa + bcxc -(n -1)abcx] + χn+1αn-1γ|[bxbc + (n -1)axba + (n -2)axac + (ba + ac)xb + (n -2)bcxa -abxa] + αn-2β2|{χn+1[bxba -(n -2)cxab + cxbc + acxc + (n -1)baxc -abxb] + χn(n -2)[xabc + cxab -ax(ba + ac) + baxc + bcxa + abcx]}, γn+3|x → αn|[-χnxaba -χnaxab + (-1) n 2bxac -χnbaxa -2(ab + bc)xb -χnabax] + βn|[-χnxaba + (-1) n 2axbc -χnbxba -2(ba + ac)xa -χnabxb -χnabax] + γn|[-2xaba + χnaxbc + χnbxac -χn(ba + ac)xa -χn(ab + bc)xb + (-1) n+1 2abax] + χn+1αn-1β|[-axab -cx(ba + ac) -(n -1)axbc -(n -2)baxa -(n -1)acxa -bcxc] + χn+1αn-1γ|[-(n -1)xaba -bxbc -axac -(ba + ac)xb -(ab + bc)xa + (n -1)abax] + αn-2β2|{χn+1[-cx(ab + bc) -(n -1)bxac -bxba -acxc -(n -1)bcxb -(n -2)abxb] + χn(n -2)[-xaba + axbc + bxac -(ba + ac)xa -(ab + bc)xb -abax]}, αn+2β|x → αn|(-χncxab -χnbaxc) + βn|(-χnxabc -χnabcx) + γn|[χnax(ba + ac) -χnbcxa], αn+2γ|x → αn|[-χnbxac + χn(ab + bc)xb] + βn|[-χnaxbc + χn(ba + ac)xa] + γn|(χnxaba + χnabax), αn+1β2|x → αn|[-xbac + χn+1bxac + χn+1cxab + χn+1(ab + bc)xb -χn+1baxc + (-1) n+1 bacx] + βn|[-χn+1xabc + (-1) n+1 cxba + χn+1axbc -abxc + χn+1(ba + ac)xa + χn+1abcx] + γn|[χn+1xaba -χn+1ax(ba + ac) + (-1) n bx(ab + bc) -χn+1bcxa -acxb -χn+1abax].
For the reader's convenience, we list the images of the differentials d n and the maps f n evaluated at elements of the usual k-basis of the respective domain. In the following tables, d n m (y|x) is the entry appearing in the column indexed by x and the row indexed by y, where m is the internal degree of x and n is the internal degree of y.

If n ∈ N is odd, the differential d n is given by as well as If n ⩾ 2 is even, the differential d n is given by together with and Now we turn to the maps f n . Note that f n (u) = 0 for u ∈ K n+3 m , with m ∈ 2,4 and n ∈ N 0 by degree reasons. In the following tables, f n (y|x) is the entry appearing in the column indexed by x and the row indexed by y, where n is the internal degree of y. The map f 0 is given by If n ∈ N is odd, the map f n is given by where

y x abac aba abc bac α n 0 (α n γ -α n β)|abac (α n γ -α n β)|abac 0 β n 0 (α n β -α n γ)|abac 0 (α n β -α n γ)|abac γ n 0 0 (α n β -α n γ)|abac (α n γ -α n β)|abac α n-1 β 0 (α n β -α n γ)|abac 0 (α n β -α n γ)|abac α n-1 γ 0 0 (α n β -α n γ)|abac (α n γ -α n β)|abac α n-2 β 2 0 (α n γ -α n β)|abac (α n γ -α n β)|abac 0
+ bac) + α n-1 β 2 |aba α n β|abc -α n γ|(aba + bac) -α n-1 β 2 |bac α n-1 γ 2α n β|aba + α n-1 β 2 |(abc + bac) -α n β|aba + α n γ|(abc -bac) -α n-1 β 2 |bac α n-2 β 2 α n β|bac + α n γ|(aba + abc) + α n-1 β 2 |aba -2α n β|bac + α n-1 β 2 |(abc -aba)
+ bac) + α n γ|abc β n+1 |(bac -aba) -2α n γ|abc γ n γ n+1 |(abc + bac) + 2α n γ|aba -γ n+1 |abc + α n β|(bac -abc) -α n γ|aba α n-1 β α n β|(aba + bac) + α n γ|abc + α n-1 β 2 |aba -2α n γ|abc + α n-1 β 2 |(bac -aba) α n-1 γ 2α n γ|aba + α n-1 β 2 |(abc + bac) α n β|(bac -abc) -α n γ|aba -α n-1 β 2 |abc α n-2 β 2 α n β|(aba + abc) + α n γ|bac + α n-1 β 2 |aba -α n β|(aba + abc) + α n γ|bac -α n-1 β 2 |abc
y x a b α n -α n β|bc + α n γ|(ba + ac) α n+1 |(ab + ba) -α n β|(ba + ac) + α n γ|bc β n β n+1 |(ab + ba) + α n β|ac -α n γ|(ab + bc) α n β|(ab + bc) -α n γ|ac γ n γ n+1 |(ac -ab -bc) + α n β|ba + α n γ|ab γ n+1 |(bc -ba -ac) + α n β|ba + α n γ|ab α n-1 β α n β|ac -α n γ|(ab + bc) + α n-1 β 2 |(ab + ba) α n β|(ab + bc) -α n γ|ac α n-1 γ α n β|ba + α n γ|ab + α n-1 β 2 |(ac -ab -bc) α n β|ba + α n γ|ab + α n-1 β 2 |(bc -ba -ac) α n-2 β 2 -α n β|bc + α n γ|(ba + ac) -α n β|(ba + ac) + α n γ|bc + α n-1 β 2 |(ab + ba)
β + α n γ)|(b + c) β n β n+1 |(bc -ba -ac) + α n β|ac -α n γ|(ab + bc) 2β n+1 |b + (α n β + α n γ)|(a + c) γ n -α n β|ab -α n γ|ba 2γ n+1 |c + (α n β + α n γ)|(a + b) α n-1 β α n β|ac -α n γ|(ab + bc) + α n-1 β 2 |(bc -ba -ac) (α n β + α n γ)|(a + c) + 2α n-1 β 2 |b α n-1 γ -α n β|ab -α n γ|ba (α n β + α n γ)|(a + b) + 2α n-1 β 2 |c α n-2 β 2 -α n β|(ba + ac) + α n γ|bc + α n-1 β 2 |(ac -ab -bc) (α n β + α n γ)|(b + c) + 2α n-1 β 2 |a
y x abac aba abc bac α n 0 2α n γ|abac -2α n β|abac -2α n+1 |abac β n 0 2α n γ|abac -2β n+1 |abac -2α n-1 β 2 |abac γ n 0 2γ n+1 |abac -2α n β|abac -2α n-1 β 2 |abac α n-1 β 0 α n β|abac + α n-1 β 2 |abac -α n γ|abac -α n-1 β 2 |abac -α n β|abac -α n γ|abac α n-1 γ 0 α n β|abac + α n-1 β 2 |abac -α n γ|abac -α n-1 β 2 |abac -α n β|abac -α n γ|abac α n-2 β 2 0 2α n γ|abac -2α n β|abac -2α n-1 β 2 |abac
y x ab bc α n α n+1 |aba -α n β|aba + α n γ|(abc -bac) -α n+1 |(aba + abc) -α n β|bac + α n γ|bac β n -β n+1 |aba + α n γ|(abc -bac) + α n-1 β 2 |aba -β n+1 |bac + α n γ|bac -α n-1 β 2 |(aba + abc) γ n γ n+1 |(abc -bac) -α n β|aba + α n-1 β 2 |aba γ n+1 |bac -α n β|bac -α n-1 β 2 |(aba + abc) α n-1 β α n β|abc -α n-1 β 2 |bac -α n β|abc -α n γ|aba α n-1 γ α n β|(aba -bac) + α n-1 β 2 |(abc -aba) α n β|(bac -aba) -α n γ|(abc + bac) α n-2 β 2 -α n β|aba + α n γ|(abc -bac) + α n-1 β 2 |aba -α n β|bac + α n γ|bac -α n-1 β 2 |(aba + abc)
β n+1 |aba + α n γ|(bac -abc) -α n-1 β 2 |aba -β n+1 |(aba + bac) + α n γ|abc -α n-1 β 2 |abc γ n γ n+1 |(bac -abc) + α n β|aba -α n-1 β 2 |aba γ n+1 |abc -α n β|(aba + bac) -α n-1 β 2 |abc α n-1 β α n β|(bac -aba) + α n-1 β 2 |(aba -abc) -α n γ|(abc + bac) + α n-1 β 2 |(abc -aba) α n-1 γ -α n β|abc + α n-1 β 2 |bac -α n γ|aba -α n-1 β 2 |bac α n-2 β 2 α n β|aba + α n γ|(bac -abc) -α n-1 β 2 |aba -α n β|(aba + bac) + α n γ|abc -α n-1 β 2 |abc
+ ac + bc) + α n-1 β 2 |(ba -ab) γ n γ n+1 |(ab + bc + ac) + α n β|(ab -ba) γ n+1 |(ba + ac + bc) + α n-1 β 2 |(ba -ab) α n-1 β α n β|ac -α n γ|ba + α n-1 β 2 |(2ab + bc) α n β|(bc -ab) + α n γ|ba + α n-1 β 2 |(ba + ac) α n-1 γ α n β|(ab + bc) + α n γ|ab + α n-1 β 2 |(ac -ba) α n β|(2ba + ac) -α n γ|ab + α n-1 β 2 |bc α n-2 β 2 α n β|(ab -ba) + α n γ|(ab + bc + ac) α n γ|(ba + ac + bc) + α n-1 β 2 |(ba -ab)
y x c 1 α n -α n+1 |(ab + bc + ac) -α n β|(bc + ba + ac) 0 β n -β n+1 |(bc + ba + ac) -α n-1 β 2 |(ab + bc + ac) 0 γ n -α n β|(bc + ba + ac) -α n-1 β 2 |(ab + bc + ac) 0 α n-1 β -α n β|ac -α n γ|(ab + 2bc) -α n-1 β 2 |(ba + ac) α n β|(c -a) + α n γ|(a -b) + α n-1 β 2 |(b -c) α n-1 γ -α n β|(ab + bc) -α n γ|(ba + 2ac) -α n-1 β 2 |bc α n β|(a -c) + α n γ|(b -a) + α n-1 β 2 |(c -b) α n-2 β 2 -α n β|(bc + ba + ac) -α n-1 β 2 |(ab + bc + ac) 0
y x 1 a b c α 3 4ϵ ! |(bac -aba + abc) 0 0 0 β 3 4ϵ ! |(bac -aba + abc) 0 0 0 γ 3 4ϵ ! |(bac -aba + abc) 0 0 0 α 2 β 2ϵ ! |(aba -abc -bac) 0 0 0 α 2 γ 2ϵ ! |(aba -abc -bac) 0 0 0 αβ 2 2ϵ ! |(aba -abc -bac) 0 0 0
y x 1 a b c α n+3 0 f n (α n+3 |a) 2(α n-1 γ -α n-2 β 2 )|abac 2(α n-1 β -α n-2 β 2 )|abac β n+3 0 2(α n-1 γ -α n-1 β)|abac f n (β n+3 |b) 2(α n-2 β 2 -α n-1 β)|abac γ n+3 0 2(α n-1 β -α n-1 γ)|abac 2(α n-2 β 2 -α n-1 γ)|abac f n (γ n+3 |c) α n+2 β 0 0 0 0 α n+2 γ 0 0 0 0 α n+1 β 2 0 -2(α n + β n + γ n )|abac -2(α n + β n + γ n )|abac -2(α n + β n + γ n )|abac
f n (α n+3 |a) = [4α n + 4β n + 4γ n + 2(n -2)α n-1 β + 2(n -2)α n-1 γ + 2(n -1)α n-2 β 2 ]|abac, f n (β n+3 |b) = [4α n + 4β n + 4γ n + 2(n -1)α n-1 β + 2(n -2)α n-1 γ + 2(n -2)α n-2 β 2 ]|abac, f n (γ n+3 |c) = [4α n + 4β n + 4γ n + 2(n -2)α n-1 β + 2(n -1)α n-1 γ + 2(n -2)α n-2 β 2 ]|abac.
If n ⩾ 2 is even, the map f n is given by

f n (α n+3 |1) = 2α n |(2bac -aba + abc) + 2β n |(2abc + bac) + 2γ n |(bac -2aba) + 2(n -2)α n-2 β 2 |(abc -aba + bac), f n (β n+3 |1) = 2α n |(2bac + abc) + 2β n |(2abc -aba + bac) + 2γ n |(abc -2aba) + 2(n -2)α n-2 β 2 |(abc -aba + bac), f n (γ n+3 |1) = 2α n |(2bac -aba) + 2β n |(2abc -aba) + 2γ n |(abc -2aba + bac) + 2(n -2)α n-2 β 2 |(abc -aba + bac), f n (α n+2 β|1) = -2α n |bac -2β n |abc + 2γ n |aba, f n (α n+2 γ|1) = -2α n |bac -2β n |abc + 2γ n |aba, f n (α n+1 β 2 |1) = -2α n |bac -2β n |abc + 2γ n |aba,
and f n (x) = 0 for x ∈ K n+3 1 
. From now on, we assume that the characteristic of the field k is different from 2 and 3 in this subsection.

Computation of the coboundaries

In this subsubsection, we will explicitly construct bases Bn m and B n m of the k-vector spaces Bn m = Im(d n-1 m-1 ) and B n m = Im(∂ n-1 m-1 ) for m ∈ 0,4 and n ∈ N 0 respectively, defined before Remark 4.2.12. This will be done by simply applying the corresponding differential d n-1 m-1 or ∂ n-1 m-1 to the usual basis of its domain and extracting a linearly independent generating subset.

Computation of Bn

m Recall that Bn m = Im(d n-1 m-1 ) and

d n m : K n m = Hom k ((A ! -n ) * ,A m ) → K n+1 m+1 = Hom k ((A ! -(n+1) ) * ,A m+1 )
was defined in Subsubsection 4.2.2.1. Obviously, B0 m = Im(d -1 m-1 ) = 0 for m ∈ 0,4 , and Bn 0 = Im(d n-1 -1 ) = 0 for n ∈ N. Then we define B0 m = ∅ for m ∈ 0,4 , and Bn

0 = ∅ for n ∈ N. Suppose m = 4. If n = 1, since γ|abac = (1/2)d 0 3 (ϵ ! |aba), β|abac = -(1/2)d 0 3 (ϵ ! |abc), α|abac = -(1/2)d 0 3 (ϵ ! |bac),
we have B1 4 = K 1 4 . We define a basis of B1 4 by the usual basis of K 1 4 . If n ⩾ 3 is odd, Table 4.2.16 shows that 

α n |abac = -(1/2)d n-1 3 (α n-1 |bac), β n |abac = -(1/2)d n-1 3 (β n-1 |abc), γ n |abac = (1/2)d n-1 3 (γ n-1 |aba), α n-1 β|abac = -(1/2)d n-1 3 (α n-1 |abc), α n-1 γ|abac = (1/2)d n-1 3 (α n-1 |aba), α n-2 β 2 |abac = -(1/2)d n-1 3 (β n-1 |bac), so Bn 4 = K n 4 .
=          0, if n = 0, 3, if n = 1, 1, if n ⩾ 2 is even, 6, if n ⩾ 3 is odd. (4.2.21) Suppose m = 3. If n = 1, since (α -β)|aba + γ|(abc -bac) = d 0 2 (ϵ ! |ab) = -d 0 2 (ϵ ! |ba), α|(aba + abc) + (β -γ)|bac = -d 0 2 (ϵ ! |bc), -α|abc -β|(aba + bac) + γ|abc = d 0 2 (ϵ ! |ac) = d 0 2 (ϵ ! |ab) + d 0 2 (ϵ ! |bc),
we define a basis of B1 3 by B1 3 = α|(aba + abc) + (β -γ)|bac, (α -β)|aba + γ|(abc -bac) .

If n ⩾ 2 is even, we define the set

G n 3 = g n 1,3 = (α n-1 β -α n-1 γ)|aba = (1/2)d n-1 2 (γ n-1 |(ab -ba)), g n 2,3 = (α n-1 β -α n-1 γ)|abc = (1/2)d n-1 2 (β n-1 |(ab + bc + ac)), g n 3,3 = (α n-1 β -α n-1 γ)|bac = -(1/2)d n-1 2 (α n-1 |(bc + ba + ac)), g n 4,3 = α n |aba + α n-1 β|bac + α n-1 γ|(aba + abc) = d n-1 2 (α n-1 |ab), g n 5,3 = α n |abc -α n-1 β|bac + α n-1 γ|(aba + abc) = d n-1 2 (α n-1 |ab) + d n-1 2 (α n-1 |bc), g n 6,3 = β n |aba + α n-1 β|abc + α n-1 γ|(aba + bac) = d n-1 2 (β n-1 |ab), g n 7,3 = β n |bac -α n-1 β|abc + α n-1 γ|(aba + bac) = -d n-1 2 (β n-1 |bc), g n 8,3 = γ n |abc + α n-1 β|aba + α n-1 γ|(abc -bac) = d n-1 2 (γ n-1 |ab) + d n-1 2 (γ n-1 |bc), g n 9,3 = γ n |bac + α n-1 β|aba + α n-1 γ|(bac -abc) = -d n-1 2 (γ n-1 |bc) .
Then we define the set B2 3 = G 2 3 , and

Bn 3 = G n 3 ∪ g n 10,3 = α n-2 β 2 |aba + α n-1 γ|(aba + abc + bac) = d n-1 2 (α n-2 β|ab) -g n 2,3 , g n 11,3 = α n-2 β 2 |abc + α n-1 γ|(aba + abc -bac) = -d n-1 2 (α n-2 γ|ac) -g n 2,3 + g n 3,3 , g n 12,3 = α n-2 β 2 |bac + α n-1 γ|(aba -abc + bac) = -d n-1 2 (α n-2 β|bc) + g n 2,3
for n ⩾ 4 with n even. We will show that Bn 3 is a basis of Bn 3 for n ⩾ 2 with n even. From the definition, we see that Bn 3 ⊆ Bn 3 . Since

d n-1 2 (α n-1 |ab) = g n 4,3 , d n-1 2 (α n-1 |bc) = g n 5,3 -g n 4,3 , d n-1 2 (α n-1 |ba) = g n 1,3 + g n 2,3 + g n 4,3 -g n 3,3 , d n-1 2 (α n-1 |ac) = -g n 1,3 -g n 2,3 -g n 3,3 -g n 5,3 , d n-1 2 (β n-1 |ab) = g n 6,3 , d n-1 2 (β n-1 |bc) = -g n 7,3 , d n-1 2 (β n-1 |ba) = g n 1,3 -g n 2,3 + g n 3,3 + g n 6,3 , d n-1 2 (β n-1 |ac) = 2g n 2,3 -g n 6,3 + g n 7,3 , d n-1 2 (γ n-1 |ab) = g n 8,3 + g n 9,3 , d n-1 2 (γ n-1 |bc) = -g n 9,3 , d n-1 2 (γ n-1 |ba) = g n 8,3 + g n 9,3 -2g n 1,3 , d n-1 2 (γ n-1 |ac) = g n 1,3 -g n 2,3 + g n 3,3 -g n 8,3
for n ⩾ 2 with n even, and

d n-1 2 (α n-2 β|ab) = g n 2,3 + g n 10,3 , d n-1 2 (α n-2 β|bc) = g n 2,3 -g n 12,3 , d n-1 2 (α n-2 β|ba) = g n 1,3 + g n 3,3 + g n 10,3 , d n-1 2 (α n-2 β|ac) = g n 12,3 -g n 10,3 , d n-1 2 (α n-2 γ|ab) = g n 11,3 + g n 12,3 + 2g n 1,3 , d n-1 2 (α n-2 γ|bc) = -g n 1,3 -g n 12,3 , d n-1 2 (α n-2 γ|ba) = g n 11,3 + g n 12,3 , d n-1 2 (α n-2 γ|ac) = -g n 2,3 + g n 3,3 -g n 11,3 , d n-1 2 (α n-3 β 2 |ab) = g n 3,3 + g n 10,3 , d n-1 2 (α n-3 β 2 |bc) = g n 11,3 -g n 10,3 -2g n 3,3 , d n-1 2 (α n-3 β 2 |ba) = g n 1,3 + g n 2,3 + g n 10,3 , d n-1 2 (α n-3 β 2 |ac) = -g n 1,3 -g n 2,3 -g n 11,3
for n ⩾ 4 with n even, the elements in Bn 3 span the space Bn 3 . By Fact 4.1.3, the elements in Bn 3 are linearly independent, so Bn 3 is a basis of Bn 3 for n ⩾ 2 with n even. If n ⩾ 3 is odd, we define the set Then we define the set B3 3 = E 3 3 , and

E n 3 = e n 1,3 = (α n -α n-1 β)|aba + α n-1 γ|(abc -bac) = d n-1 2 (α n-1 |ab), e n 2,3 = α n |(aba + abc) + (α n-1 β -α n-1 γ)|bac = -d n-1 2 (α n-1 |bc), e n 3,3 = (α n-2 β 2 -β n )|aba + α n-1 γ|(abc -bac) = d n-1 2 (β n-1 |ab), e n 4,3 = (α n-1 γ -β n )|bac -α n-2 β 2 |(aba + abc) = d n-1 2 (β n-1 |bc), e n 5,3 = (γ n -α n-1 β)|bac -α n-2 β 2 |(aba + abc) = d n-1 2 (γ n-1 |bc), e n 6,3 = γ n |(abc -bac) + (α n-2 β 2 -α n-1 β)|aba = d n-1 2 (γ n-1 |ab),
Bn 3 = E n 3 ∪ e n 11,3 = (α n-2 β 2 -α n-1 β)|aba + α n-1 γ|(abc -bac) = d n-1 2 (α n-3 β 2 |ab), e n 12,3 = (α n-1 β -α n-1 γ)|bac + α n-2 β 2 |(aba + abc) = -d n-1 2 (α n-3 β 2 |bc)
for n ⩾ 5 with n odd. We will show that Bn 3 is a basis of Bn 3 for n ⩾ 3 with n odd. By definition, Bn 3 ⊆ Bn 3 . Since

d n-1 2 (α n-1 |ba) = -e n 1,3 , d n-1 2 (α n-1 |ac) = e n 1,3 -e n 2,3 , d n-1 2 (β n-1 |ba) = -e n 3,3 , d n-1 2 (β n-1 |ac) = e n 3,3 + e n 4,3 , d n-1 2 (γ n-1 |ba) = -e n 6,3 , d n-1 2 (γ n-1 |ac) = e n 5,3 + e n 6,3 , d n-1 2 (α n-2 β|ba) = e n 9,3 , d n-1 2 (α n-2 β|ac) = -e n 10,3 , d n-1 2 (α n-2 γ|bc) = e n 9,3 -e n 10,3 , d n-1 2 (α n-2 γ|ba) = -e n 7,3 , d n-1 2 (α n-2 γ|ac) = e n 7,3 -e n 8,3
for n ⩾ 3 with n odd, and 

d n-1 2 (α n-3 β 2 |ba) = -e n 11,3 , d n-1 2 (α n-3 β 2 |ac) = e n 11,
=                0, if n = 0, 2, if n = 1, 9, if n = 2, 10, if n = 3, 12, if n ⩾ 4.
+ bc + ac) = d 0 1 (ϵ ! |a), (α + β + γ)|(ab -ba) = d 0 1 (ϵ ! |(a -b)), (α + β + γ)|(ab + bc + ac) = d 0 1 (ϵ ! |(a -c)),
and these three elements are linearly independent, we define a basis of B1 2 by B1 2 = β|(ab -ba) + γ|(ab + bc + ac), (α + β + γ)|(ab -ba),(α + β + γ)|(ab + bc + ac) .

If n = 2, we define the set

B2 2 = g 2 1,2 = α 2 |(ab + ba) -αβ|(ba + ac) + αγ|bc = d 1 1 (α|b), g 2 2,2 = β 2 |(ab + ba) + αβ|ac -αγ|(ab + bc) = d 1 1 (β|a), g 2 3,2 = γ 2 |(bc -ba -ac) + αβ|ba + αγ|ab = d 1 1 (γ|b), g 2 4,2 = αβ|ab + αγ|ba = -d 1 1 (γ|c), g 2 5,2 = αβ|(ab + bc) -αγ|ac = d 1 1 (β|b), g 2 6,2 = α 2 |(2ab + bc + ba -ac) = d 1 1 (α|(b -c)), g 2 7,2 = β 2 |(ab -bc + 2ba + ac) = d 1 1 (β|(a -c)), g 2 8,2 = γ 2 |(ab + 2bc -ba -2ac) = d 1 1 (γ|(b -a)) .
By definition, B2 

= e n 1,2 = α n-1 β|(ab -ba) + α n-1 γ|(ab + bc + ac) = d n-1 1 (α n-1 |a), e n 2,2 = (α n-1 β + α n-1 γ + α n-2 β 2 )|(ab -ba) = d n-1 1 (α n-1 |a -β n-1 |b), e n 3,2 = (α n-1 β + α n-1 γ + α n-2 β 2 )|(ab + bc + ac) = d n-1 1 (α n-1 |a -γ n-1 |c), e n 4,2 = 2α n-1 β|bc + α n-1 γ|(ab + ba) + 2α n-2 β 2 |ac = d n-1 1 (α n-2 β|b + α n-2 γ|a), e n 5,2 = α n-1 β|ac -α n-1 γ|ba + α n-2 β 2 |(2ab + bc) = d n-1 1 (α n-2 β|a), e n 6,2 = α n-1 γ|(ab + bc -ac) + α n-2 β 2 |(ac -ab -bc) = e n 3,2 + d n-1 1 (α n-2 γ|c -α n-2 β|a), e n 7,2 = β n |(ab -ba) + α n-1 γ|(ab + bc + ac) = d n-1 1 (β n-1 |a), e n 8,2 = (β n + α n-1 γ + α n-2 β 2 )|(ab + bc + ac) = d n-1 1 (β n-1 |(a -c)), e n 9,2 = γ n |(ab + bc + ac) + α n-1 β|(ab -ba) = d n-1 1 (γ n-1 |a), e n 10,2 = (γ n + α n-1 β + α n-2 β 2 )|(ab -ba) = d n-1 1 (γ n-1 |(a -b)), e n 11,2 = (α n + β n + α n-1 γ)|(ab -ba) = d n-1 1 (β n-1 |a -α n-1 |b), e n 12,2 = (α n + γ n + α n-1 β)|(ab + bc + ac) = d n-1 1 (γ n-1 |a -α n-1 |c) .
By definition, Bn 2 ⊆ Bn 2 . Since for n ⩾ 3 with n odd, and

d n-1 1 (α n-2 β|a) = e n 5,2 , d n-1 1 (α n-2 β|b) = e n 1,
d n-1 1 (α n-3 β 2 |a) = e n 1,2 , d n-1 1 (α n-3 β 2 |b) = e n 1,2 -e n 2,2 , d n-1 1 (α n-3 β 2 |c) = e n 1,2 -e n 3,2
for n ⩾ 5 with n odd, the elements in Bn 2 span the space Bn 2 . The reader can easily verify that the elements e n ℓ,3 for ℓ ∈ 1,6 are linearly independent. By Fact 4.1.3, the elements e n ℓ,3 for ℓ ∈ 7,12 are linearly independent. Since the underlined terms of e n ℓ,3 for ℓ ∈ 7,12 do not appear in e n ℓ,3 for ℓ ∈ 1,6 , the elements in Bn 2 are linearly independent. So Bn 2 is a basis of Bn 2 . If n ⩾ 4 is even, we define the set

Bn 2 = g n 1,2 = α n |(ab + ba) = d n-1 1 (α n-1 |b) + g n 11,2 + g n 12,2 , g n 2,2 = α n |(ab + bc -ac) = -d n-1 1 (α n-1 |c) -g n 11,2 -g n 12,2 g n 3,2 = β n |(ab + ba) = d n-1 1 (β n-1 |a) -g n 12,2 , g n 4,2 = β n |(ab + bc -ac) = d n-1 1 (β n-1 |(a + c)) -2g n 12,2 , g n 5,2 = γ n |(ab + ba) = -d n-1 1 (γ n-1 |(a + b)) + 2g n 11,2 , g n 6,2 = γ n |(ab + bc -ac) = -d n-1 1 (γ n-1 |a) + g n 11,2 , g n 7,2 = α n-2 β 2 |(ab + ba) = (1/3)d n-1 1 (α n-2 β|(a -c) + α n-3 β 2 |(b -c)), g n 8,2 = α n-2 β 2 |(ab + bc -ac) = (1/3)d n-1 1 (2α n-3 β 2 |(b -c) -α n-2 β|(a -c)), g n 9,2 = α n-1 β|ab + α n-1 γ|ba = -d n-1 1 (γ n-1 |c), g n 10,2 = α n-1 β|(ab + bc) -α n-1 γ|ac = d n-1 1 (β n-1 |b), g n 11,2 = α n-1 β|ba + α n-1 γ|ab = d n-1 1 (α n-2 γ|a) + g n 8,2 , g n 12,2 = α n-1 β|ac -α n-1 γ|(ab + bc) = d n-1 1 (α n-2 β|a) -g n 7,2 .
By definition, Bn 2 ⊆ Bn 2 . Since 

d n-1 1 (α n-1 |a) = d n-1 1 (α n-3 β 2 |a) = g n 9,2 -g n 10,2 , d n-1 1 (α n-1 |b) = g n 1,2 -g n 11,2 -g n 12,2 , d n-1 1 (α n-1 |c) = -g n 2,2 -g n 11,2 -g n 12,2 , d n-1 1 (β n-1 |a) = g n 3,2 + g n 12,2 , d n-1 1 (β n-1 |b) = d n-1 1 (α n-2 β|b) = g n 10,2 , d n-1 1 (β n-1 |c) = g n 4,2 -g n 3,2 + g n 12,2 , d n-1 1 (γ n-1 |a) = -g n 6,2 + g n 11,2 , d n-1 1 (γ n-1 |b) = -g n 5,2 + g n 6,2 + g n 11,2 , d n-1 1 (γ n-1 |c) = d n-1 1 (α n-2 γ|c) = -g n 9,2 , d n-1 1 (α n-2 β|a) = g n 7,2 + g n 12,2 , d n-1 1 (α n-2 β|c) = -g n 7,2 + g n 8,2 + g n 12,2 , d n-1 1 (α n-2 γ|a) = g n 11,2 -g n 8,2 , d n-1 1 (α n-2 γ|b) = -g n 7,2 + g n 8,2 + g n 11,2 , d n-1 1 (α n-3 β 2 |b) = g n 7,2 -g n 11,2 -g n 12,2 , d n-1 1 (α n-3 β 2 |c) = -g n 8,
dim Bn 2 =          0, if n = 0, 3, if n = 1, 8, if n = 2, 12, if n ⩾ 3.
1 = α n-1 β|(c -a) + α n-1 γ|(a -b) + α n-2 β 2 |(b -c) . If n = 2,
= 2α n |a + (α n-1 β + α n-1 γ)|(b + c), 2β n |b + (α n-1 β + α n-1 γ)|(a + c), 2γ n |c + (α n-1 β + α n-1 γ)|(a + b), (α n-1 β + α n-1 γ)|(a + c) + 2α n-2 β 2 |b, (α n-1 β + α n-1 γ)|(a + b) + 2α n-2 β 2 |c, (α n-1 β + α n-1 γ)|(b + c) + 2α n-2 β 2 |a .
In conclusion, the dimension of Bn 1 is given by Suppose

dim Bn 1 =          0, if n = 0,1, 3, if n = 2, 1, if n ⩾ 3 is odd, 6, if n ⩾ 4 is even. (4.2.24) Computation of B n m Recall that B n m = Im(∂ n-1 m-1 ) and ∂ n m : Q n m → Q n+1 m+1 . Since d n m = ∂ n
m = 3. The differential ∂ n-1 2 : K n-1 2 ⊕ ω * 1 K n-5 4 → K n 3 maps the space ω * 1 K n-5 4 to zero, so B n 3 = Im(∂ n-1 2 ) = Im(d n-1 2 ) = Bn 3 . We define a basis of B n 3 by B n 3 = Bn 3 . Suppose m = 2. Consider ∂ n-1 1 : K n-1 1 ⊕ ω * 1 K n-5 3 → K n 2 ⊕ ω * 1 K n-4 4 . If n ⩾ 4 is even, we get B n 2 = Bn 2 ⊕ ω * 1 Bn-4 4 , since f n-4 (K n-1 1
) = 0 by the last identity of Subsubsection 4.2.2.2 for n > 4 and f 0 (K 3 1 ) = 0 by the last three columns of Table 4.2.21, as well as f n-8 (u) = 0 for u ∈ K 

dim B n 2 =                        0, if n = 0, 3, if n = 1, 8, if n = 2, 12, if n = 3,4, 15, if n = 5, 13, if n ⩾ 6 is even, 18, if n ⩾ 7 is odd. (4.2.25) Suppose m = 1. Consider ∂ n-1 0 : K n-1 0 ⊕ ω * 1 K n-5 2 ⊕ ω * 2 K n-9 4 → K n 1 ⊕ ω * 1 K n-4 3 . If n ⩾ 5 is odd, we have B n 1 = Bn 1 ⊕ ω * 1 B n-4 3 = Bn 1 ⊕ ω * 1 Bn-4 3 , since f n-4 (K n-1 0 ) = 0 by the second column of Table 4.2.22 and f n ′ (u) = 0 for u ∈ K n ′ +3 m
, with m ∈ 2,4 and n ′ ∈ N 0 , by degree reasons. Then we define a basis of B n 1 by

B n 1 = Bn 1 ∪ ω * 1 
Bn-4

3

. If n = 4, we define the set

B 4 1 = 2α 4 |a + (α 3 β + α 3 γ)|(b + c) + ω * 1 4ϵ ! |(bac -aba + abc) = ∂ 3 0 (α 3 |1), 2β 4 |b + (α 3 β + α 3 γ)|(a + c) + ω * 1 4ϵ ! |(bac -aba + abc) = ∂ 3 0 (β 3 |1), 2γ 4 |c + (α 3 β + α 3 γ)|(a + b) + ω * 1 4ϵ ! |(bac -aba + abc) = ∂ 3 0 (γ 3 |1), (α 3 β + α 3 γ)|(a + c) + 2α 2 β 2 |b + ω * 1 2ϵ ! |(aba -abc -bac) = ∂ 3 0 (α 2 β|1), (α 3 β + α 3 γ)|(a + b) + 2α 2 β 2 |c + ω * 1 2ϵ ! |(aba -abc -bac) = ∂ 3 0 (α 2 γ|1), (α 3 β + α 3 γ)|(b + c) + 2α 2 β 2 |a + ω * 1 2ϵ ! |(aba -abc -bac) = ∂ 3 0 (αβ 2 |1) .
Since these six elements are linearly independent by Fact 4.1.3, B 4 1 is a basis of B 4 1 . If n ⩾ 6 is even, we define the set

B n 1 = 2α n |a + (α n-1 β + α n-1 γ)|(b + c) + ω * 1 [2α n-4 |(2bac -aba + abc) + 2β n-4 |(2abc + bac) + 2γ n-4 |(bac -2aba) + 2(n -6)α n-6 β 2 |(bac -aba + abc)] = ∂ n-1 0 (α n-1 |1), 2β n |b + (α n-1 β + α n-1 γ)|(a + c) + ω * 1 [2α n-4 |(2bac + abc) + 2β n-4 |(2abc -aba + bac) + 2γ n-4 |(abc -2aba) + 2(n -6)α n-6 β 2 |(bac -aba + abc)] = ∂ n-1 0 (β n-1 |1), 2γ n |c + (α n-1 β + α n-1 γ)|(a + b) + ω * 1 [2α n-4 |(2bac -aba) + 2β n-4 |(2abc -aba) + 2γ n-4 |(bac -2aba + abc) + 2(n -6)α n-6 β 2 |(bac -aba + abc)] = ∂ n-1 0 (γ n-1 |1), (α n-1 β + α n-1 γ)|(a + c) + 2α n-2 β 2 |b + ω * 1 2(γ n-4 |aba -α n-4 |bac -β n-4 |abc) = ∂ n-1 0 (α n-2 β|1), (α n-1 β + α n-1 γ)|(a + b) + 2α n-2 β 2 |c + ω * 1 2(γ n-4 |aba -α n-4 |bac -β n-4 |abc) = ∂ n-1 0 (α n-2 γ|1), (α n-1 β + α n-1 γ)|(b + c) + 2α n-2 β 2 |a + ω * 1 2(γ n-4 |aba -α n-4 |bac -β n-4 |abc) = ∂ n-1 0 (α n-3 β 2 |1) ∪ ω * 1 Bn-4 3 . Since f n ′ (u) = 0 for u ∈ K n ′ +3 m
, with m ∈ 2,4 and n ′ ∈ N 0 , by degree reasons, the previous set is a system of generators of B n 1 . By Fact 4.1.3, the elements in B n 1 are linearly independent, so

B n 1 is a basis of B n 1 . The dimension of B n 1 is then given by dim B n 1 =                              0, if n = 0,1, 3, if n = 2,5, 1, if n = 3, 6, if n = 4, 15, if n = 6, 11, if n = 7, 18, if n ⩾ 8 is even, 13, if n ⩾ 9 is odd. (4.2.26) Suppose finally m = 0. Consider ∂ n-1 -1 : ω * 1 K n-5 1 ⊕ ω * 2 K n-9 3 → K n 0 ⊕ ω * 1 K n-4 2 ⊕ ω * 2 K n-8 4 . Note that B n 0 ⊆ ω * 1 K n-4 2 ⊕ ω * 2 K n-8 4 and B n 0 = Im(∂ n-1 -1 ) = Im(ω * 1 ∂ n-5 1 ) = ω * 1 B n-4 2 . We define a basis of B n 0 by B n 0 = ω * 1 B n-4 2
for n ⩾ 4. The dimension of B n 0 is thus given by

dim B n 0 =                        0, if n ∈ 0,4 , 3, if n = 5, 8, if n = 6, 12, if n = 7,8, 15, if n = 9, 13, if n ⩾ 10 is even, 18, if n ⩾ 11 is odd.

Computation of the cocycles

As one can remark rather easily, from the computations in the previous subsubsection we can already deduce the dimensions of the homogeneous components of the spaces of cocycles and thus of the Hochschild cohomology groups. However, since we will need specific representatives of the cohomology classes of bases of the Hochschild cohomology HH • (A) for computing its algebra structure, we will present them. More precisely, in this subsubsection, we will explicitly construct bases Dn m and D n m of the k-vector spaces Dn m = Ker(d n m ) and D n m = Ker(∂ n m ) for m ∈ 0, 4 and n ∈ N 0 , respectively, defined before Remark 4.2.12.

Computation of Dn

m Recall that Dn m = Ker(d n m ) and

d n m : K n m = Hom k ((A ! -n ) * ,A m ) → K n+1 m+1 = Hom k ((A ! -(n+1) ) * ,A m+1 )
was defined in Subsubsection 4. 

=          1, if n = 0, 3, if n = 1, 5, if n = 2, 6, if n ⩾ 3.
Suppose m = 3. By (4.2.21), the dimension of Dn 3 is given by

dim Dn 3 =                0, if n = 0, 8, if n = 1, 9, if n = 2, 17, if n ⩾ 3 is odd, 12, if n ⩾ 4 is even.
We define the sets D0 3 = ∅, D1 3 = α|bac, β|abc, γ|aba, α|(aba -abc), (α + β)|aba, α|aba + β|bac, α|aba + γ|abc, α|aba -γ|bac , and

D2 3 = (α 2 -β 2 )|aba, (α 2 -γ 2 )|abc, (β 2 -γ 2 )|bac, α 2 |abc + β 2 |bac + 2αβ|aba, α 2 |aba -β 2 |bac + 2αβ|abc, α 2 |(aba -abc) + 2αβ|bac, α 2 |abc + β 2 |bac + 2αγ|aba, α 2 |aba -β 2 |bac + 2αγ|abc, α 2 |(aba -abc) + 2αγ|bac .
Moreover, if n ⩾ 3 is odd, we define

Dn 3 = α n |bac, β n |abc, γ n |aba, α n-1 β|abc, α n-1 γ|aba, α n-2 β 2 |bac, α n |(aba -abc), (α n + β n )|aba, α n |aba + β n |bac, α n |aba + γ n |abc, α n |aba -γ n |bac, (α n + α n-1 β)|aba, α n |aba + α n-1 β|bac, α n |aba + α n-1 γ|abc, α n |aba -α n-1 γ|bac, (α n -α n-2 β 2 )|aba, α n |aba -α n-2 β 2 |abc ,
and if n ⩾ 4 is even, we set

Dn 3 = (α n -β n )|aba, (α n -γ n )|abc, (β n -γ n )|bac, α n |abc + β n |bac + 2α n-1 β|aba, α n |aba -β n |bac + 2α n-1 β|abc, α n |(aba -abc) + 2α n-1 β|bac, α n |abc + β n |bac + 2α n-1 γ|aba, α n |aba -β n |bac + 2α n-1 γ|abc, α n |(aba -abc) + 2α n-1 γ|bac, (α n-2 β 2 -α n )|aba, (α n-2 β 2 -α n )|abc, (α n-2 β 2 -β n )|bac .
Suppose m = 2. By (4.2.22), the dimension of Dn 2 is given by

dim Dn 2 =          2, if n = 0, 3, if n = 1, 10, if n = 2, 12, if n ⩾ 3.
We define the sets 

D0 2 = ϵ ! |(ab + ba), ϵ ! |(ab + bc -ac) ,
dim Dn 1 =          0, if n = 0, 1, if n = 1, 3, if n = 2, 6, if n ⩾ 3.
We define the sets D0 1 = ∅, and

D1 1 = α|a + β|b + γ|c .
Moreover, if n ⩾ 2 is even, we define Dn 1 = Bn 1 , and if n ⩾ 3 is odd, we define

Dn 1 = α n |a + β n |b + γ n |c, (β n -α n-1 β)|b, (γ n -α n-1 γ)|c, (α n -α n-2 β 2 )|a, α n-1 β|c + α n-1 γ|a + α n-2 β 2 |b, α n-1 β|a + α n-1 γ|b + α n-2 β 2 |c .
Suppose finally m = 0. By (4.2.24), the dimension of Dn 0 is given by

dim Dn 0 =          1, if n = 0, 0, if n ⩾ 1 is odd, 4, if n = 2, 5, if n ⩾ 4 is even.
We define the sets

D0 0 = ϵ ! |1 , and 
D2 0 = α 2 |1,β 2 |1, γ 2 |1,(αβ + αγ)|1 .
Moreover, if n ∈ N is odd, we define Dn 0 = ∅, and if n ⩾ 4 is even, we define

Dn 0 = α n |1,β n |1,γ n |1,(α n-1 β + α n-1 γ)|1,α n-2 β 2 |1 . Computation of D n m Recall that D n m = Ker(∂ n m ) and ∂ n m : Q n m → Q n+1 m+1 . The isomorphism Q n m /D n m ∼ = B n+1 m+1 tells us that dim D n m = dim Q n m -dim B n+1 m+1 .
Hence, from the dimension of B n+1 m+1 computed in Subsubsection 4. 

dim D n 2 =                              2, if n = 0, 3, if n = 1, 10, if n = 2, 12, if n = 3, 13, if n = 4, 15, if n = 5, 17, if n = 6, 18, if n ⩾ 7.
We define the sets

D 3 2 = D3 2 and D n 2 = Dn 2 ∪ ω * 1 Dn-4 4 
for n ⩾ 4. Suppose m = 1. By (4.2.25), the dimension of D n 1 is given by

dim D n 1 =                              0, if n = 0, 1, if n = 1, 3, if n = 2, 6, if n = 3,4, 14, if n = 5, 15, if n = 6, 23, if n ⩾ 7 is odd, 18, if n ⩾ 8 is even.
We define the set

D 3 1 = D3 1 . Moreover, if n ⩾ 4 is even, we define D n 1 = B n 1 , and if n ⩾ 5 is odd, we define D n 1 = Dn 1 ∪ ω * 1 Dn-4 3 
. Suppose finally m = 0. By (4.2.26), the dimension of D n 0 is given by We define the set

dim D n 0 =                                        1, if n = 0, 0, if n = 1,
D 3 0 = ∅. Moreover, if n ⩾ 4 is even, we define the set D n 0 = Dn 0 ∪ ω * 1 D n-4 2
, and if n ⩾ 5 is odd, we define

D n 0 = ω * 1 D n-4 2 .

Hochschild cohomology

In this subsubsection, we will explicitly construct a subspace

H n m ⊆ D n m such that D n m = H n m ⊕ B n m for (n,m) ∈ N 0 × Z ⩽4 , and we define H n m = 0 for (n,m) ∈ Z 2 \ (N 0 × Z ⩽4 )
. By Proposition 4.2.13, we have the following similar recursive description. Corollary 4.2.14. For integers m ⩽ 1 and n ∈ N 0 , we have

H n m ∼ = ω * 1-m 2 H n+2m-2 1 , if m is odd, ω * -m 2 H n+2m 0 , if m is even.
So it is also sufficient to compute the case m ∈ 0,4 . Recall that

dim H n m = dim D n m -dim B n m = dim Q n m -dim B n+1 m+1 -dim B n m .
Hence 

dim H n 4 =          1, if n = 0, 0, if n ∈ N is odd, 4, if n = 2, 5, if n ⩾ 4 is even.
We define the sets 

H 0 4 = ϵ ! |abac
H n 4 = α n |abac, β n |abac, γ n |abac, α n-1 β|abac, α n-2 β 2 |abac . Suppose m = 3. The dimension of H n 3 is given by dim H n 3 =          0, if n ∈ N 0 is even, 6, if n = 1, 7, if n = 3, 5, if n ⩾ 5 is odd.
We define the sets H 1 3 = α|bac, β|abc, γ|aba, α|(aba -abc), (α + β)|aba, α|aba + β|bac , and

H 3 3 = α 3 |bac, β 3 |abc, γ 3 |aba, α 2 β|abc, α 3 |(aba -abc), (α 3 + β 3 )|aba, α 3 |aba + β 3 |bac .
Moreover, if n ∈ N 0 is even, we define H n 3 = ∅, and if n ⩾ 5 is odd, we define the set

H n 3 = α n |bac, β n |abc, γ n |aba, α n-1 β|abc, α n |(aba -abc) .
The reader can easily verify that the set H n 3 ∪ B n 3 for n ⩾ 3 and n odd is linearly independent. Suppose m = 2. The dimension of H n 2 is given by

dim H n 2 =                2, if n = 0,2, 0, if n ∈ N is odd, 1, if n = 4, 4, if n = 6, 5, if n ⩾ 8 is even.
. We define the sets 

H 0 2 = ϵ ! |(ab + ba),ϵ ! |(ab + bc -ac) ,
HH n (A) = m∈ -2⌊n/4⌋,4 H n m = H n 4 ⊕ H n 3 ⊕ H n 2 ⊕ i∈ 0,⌊n/4⌋ ω * i H n-4i 1 ⊕ i∈ 0,⌊n/4⌋ ω * i H n-4i 0 = Hn 4 ⊕ Hn 3 ⊕ ( Hn 2 ⊕ ω * 1 Hn-4 4 ) ⊕ i∈ 0,⌊n/4⌋ ω * i ( Hn-4i 1 ⊕ ω * 1 Hn-4i-4 3 ) ⊕ i∈ 0,⌊n/4⌋ ω * i ( Hn-4i 0 ⊕ ω * 1 Hn-4i-4 2 ⊕ ω * 2 
Hn-4i-8 Using the previous remark, we get the dimension of HH n (A).

Proposition 4.2.19. The dimension of HH

n (A) is given by dim HH n (A) =      5 2 n + 4, if n = 4r for r ∈ N 0 , 5 2 n + 5, if n = 4r + 2 for r ∈ N 0 , 5n+9 2 , if n = 2r + 1 for r ∈ N 0 .

The Hilbert series of HH

n (A) is h n (t) = m⩽4 dim(H n m )t m-n for n ∈ N 0 . Note that m -n is the internal degree of H n m .
Corollary 4.2.20. The Hilbert series h n (t) of HH n (A) is given as follows. Let n ⩾ 8. Then h n (t) = t -n 5χ n t 4 + 5χ n+1 t 3 + 5χ n t 2 + 10

⌊ n 4 ⌋-3 i=0 t χn+1-2i + t -2⌊ n 4 ⌋ p n (t) ,
where

p n (t) =          6t 4 + 7t 2 + 1, if n ≡ 0 (mod 4), 10t 5 + 11t 3 + t, if n ≡ 1 (mod 4), 9t 4 + 7t 2 + 4, if n ≡ 2 (mod 4), 10t 5 + 12t 3 + 5t, if n ≡ 3 (mod 4).
Moreover,

h 0 (t) = t 4 + 2t 2 + 1, h 1 (t) = 6t 2 + 1, h 2 (t) = 4t 2 + 2 + 4t -2 , h 3 (t) = 7 + 5t -2 , h 4 (t) = 5 + t -2 + 7t -4 + t -6 , h 5 (t) = 5t -2 + 11t -4 + t -6 , h 6 (t) = 5t -2 + 4t -4 + 7t -6 + 4t -8 , h 7 (t) = 5t -4 + 12t -6 + 5t -8 .
Chapter 5

Algebraic structure and Gerstenhaber structure on Hochschild cohomology of Fomin-Kirillov algebra on 3 generators

In this chapter, we will explicitly determine the algebraic structure and Gerstenhaber structure of the Hochschild cohomology of Fomin-Kirillov algebra on 3 generators. The results of the first section were published in [12], whereas the results of the second section were published in [START_REF]Gerstenhaber structure on Hochschild cohomology of the Fomin-Kirillov algebra on 3 generators[END_REF].

Algebraic structure on Hochschild cohomology of FK(3)

In this section, let k be a field of characteristic different from 2 and 3, and A the Fomin-Kirillov algebra FK(3). We will explicitly determine the algebra structure of the Hochschild cohomology of A given by the cup product ⌣. To do so, we will first find a generating set of the k-algebra HH • (A) = ⊕ n∈N0 HH n (A) (see Proposition 5.1.4). Then, after extracting a minimal generating set from the previous set of generators, we will find an explicit presentation of the algebra HH • (A) as a quotient of a free algebra F by the ideal generated by an explicit set R of homogeneous relations. This is done by using a Gröbner basis of R, which allows us to compute the Hilbert series of the quotient F/(R), and then comparing the Hilbert series of the quotient and that of HH • (A). We refer the reader to Sections 2.1 and 2.2 of the very nice book [START_REF] Witherspoon | Hochschild cohomology for algebras[END_REF] for the usual method for computing the cup product. However, to reduce the amount of signs appearing in the computations below we will follow the original definition of cup product by M. Gerstenhaber in [START_REF] Gerstenhaber | The cohomology structure of an associative ring[END_REF], Section 7 (cf. [START_REF] Witherspoon | Hochschild cohomology for algebras[END_REF], Definition 1.3.1 and Remark 1.3.3). We will follow the notation in Subsection 4.2.2.

Remark 5.1.1. It is easy to see that f ⌣ g ∈ H n1+n2 m1+m2 for all f ∈ H n1 m1 , g ∈ H n2 m2
. Moreover, it is well-known that the cup product on Hochschild cohomology is graded commutative, i.e. f ⌣ g = (-1) mn g ⌣ f for f ∈ HH m (A), g ∈ HH n (A) (see [START_REF] Witherspoon | Hochschild cohomology for algebras[END_REF], Theorem 1.4.6).

Lemma 5.1.2. Let

g = ω * 1 ϵ ! |1 ∈ ω * 1 H0 0 = H 4 -2 . Then f ⌣ g = ω * 1 f for all f ∈ HH • (A).
Proof. The map g can be extended to a chain map g • :

P b • → P b • with g n (ω * i x) = ω * i-1 x for x ∈ K b n+4-4i and i ∈ 0,⌊n/4⌋ + 1 . Hence, given f ∈ HH m (A), we get f ⌣ g = f g m = ω * 1 f .
By Lemma 5.1.2 and Proposition 4.2.17, the set

m ∈ 0, 4 , n ∈ N 0 Hn m ∪ ω * 1 ϵ ! |1 \ ϵ ! |1
is a generating set of HH • (A) as k-algebra. Moreover, if n = 2, the chain map g • satisfies

g 2 (ω 1 x|ϵ ! |y) = x(2|αβ|ac + 1|αβ|ba + a|αβ|b -b|αβ|c + b|αγ|a -c|αγ|b -b|α 2 |b -3c|α 2 |c + a|β 2 |a + a|γ 2 |a + 2b|γ 2 |b -2bc|αγ|1 -ab|αγ|1)y.
If n = 4, the chain map g • satisfies

g 0 (ω 1 x|ϵ ! |y) = 0, g 1 (ω 1 x|α|y) = 2x(1|β|ac + b|α|c + ba|γ|1)y, g 1 (ω 1 x|β|y) = -2x(c|β|a + a|β|c + b|α|a + a|γ|a + a|α|b)y, g 1 (ω 1 x|γ|y) = -2x(b|γ|a + a|γ|b + a|β|a + a|α|c + c|α|a)y.
The map β n |1 can be extended to the chain map g • : Moreover, if n = 2, the chain map g • satisfies

P b • → P b • satisfying g 0 (x|β n |y) = x|ϵ ! |y, g 0 (x|α n |y) = g 0 (x|γ n |y) = g 0 (x|α n-1 β|y) = g 0 (x|α n-1 γ|y) = g 0 (x|α n-2 β 2 |y) = 0, g 1 (x|β n+1 |y) = x|β|y, g 1 (x|α n+1 |y) = g 1 (x|γ n+1 |y) = g 1 (x|α n β|y) = 0,
g 2 (ω 1 x|ϵ ! |y) = x(1|αβ|ba -1|αβ|ac + b|αβ|c -c|αβ|a + c|αγ|b -a|αγ|c -c|β 2 |c -3a|β 2 |a + b|γ 2 |b + b|α 2 |b + 2c|α 2 |c + 2ab|αγ|1 + bc|αγ|1)y.
If n = 4, the chain map g • satisfies

g 0 (ω 1 x|ϵ ! |y) = 0, g 1 (ω 1 x|α|y) = -2x(b|α|c + c|α|b + a|β|b + b|γ|b + b|β|a)y, g 1 (ω 1 x|β|y) = 2x(1|α|bc + a|β|c + ab|γ|1)y, g 1 (ω 1 x|γ|y) = -2x(a|γ|b + b|γ|a + b|α|b + b|β|c + c|β|b)y.
The map γ n |1 can be extended to the chain map g • :

P b • → P b • satisfying g 0 (x|γ n |y) = x|ϵ ! |y, g 0 (x|α n |y) = g 0 (x|β n |y) = g 0 (x|α n-1 β|y) = g 0 (x|α n-1 γ|y) = g 0 (x|α n-2 β 2 |y) = 0, g 1 (x|γ n+1 |y) = x|γ|y, g 1 (x|α n+1 |y) = g 1 (x|β n+1 |y) = g 1 (x|α n γ|y) = 0, g 1 (x|α n β|y) = x|β|y, g 1 (x|α n-1 β 2 |y) = x|α|y, g 2 (x|γ n+2 |y) = x|γ 2 |y, g 2 (x|α n+2 |y) = g 2 (x|β n+2 |y) = 0, g 2 (x|α n+1 β|y) = x|αβ|y, g 2 (x|α n+1 γ|y) = x|αγ|y, g 2 (x|α n β 2 |y) = x|(α 2 + β 2 )|y.
Moreover, if n = 2, the chain map g • satisfies

g 2 (ω 1 x|ϵ ! |y) = -x(1|αβ|ac + 2|αβ|ba + 2a|αβ|b + b|αγ|a + c|αγ|b -a|β 2 |a + 2a|γ 2 |a + 3b|γ 2 |b + ba|αβ|1 + ab|αγ|1)y.
If n = 4, the chain map g • satisfies

g 0 (ω 1 x|ϵ ! |y) = 0, g 1 (ω 1 x|α|y) = 2x(a|β|b + b|γ|b + b|β|a)y, g 1 (ω 1 x|β|y) = 2x(b|α|a + a|γ|a + a|α|b)y, g 1 (ω 1 x|γ|y) = -2x(1|α|ba + a|β|a + ab|α|1)y.
The map (α n-1 β + α n-1 γ)|1 can be extended to the chain map g • :

P b • → P b • satisfying g 0 (x|α n |y) = g 0 (x|β n |y) = g 0 (x|γ n |y) = g 0 (x|α n-2 β 2 |y) = 0, g 0 (x|α n-1 β|y) = g 0 (x|α n-1 γ|y) = x|ϵ ! |y, g 1 (x|α n+1 |y) = g 1 (x|β n+1 |y) = g 1 (x|γ n+1 |y) = 0, g 1 (x|α n β|y) = x|(α + γ)|y, g 1 (x|α n γ|y) = x|(α + β)|y, g 1 (x|α n-1 β 2 |y) = x|(β + γ)|y, g 2 (x|α n+2 |y) = g 2 (x|β n+2 |y) = g 2 (x|γ n+2 |y) = 0, g 2 (x|α n+1 β|y) = x|(αγ + α 2 + β 2 + γ 2 )|y, g 2 (x|α n+1 γ|y) = x|(αβ + α 2 + β 2 + γ 2 )|y, g 2 (x|α n β 2 |y) = x|(αβ + αγ)|y.
Moreover, if n = 2, the chain map g • satisfies

g 2 (ω 1 x|ϵ ! |y) = x[1|α 2 |(ba + ac) -1|α 2 |bc + 1|β 2 |(ab + bc) -1|β 2 |ac -1|γ 2 |ab -1|γ 2 |ba -b|α 2 |c -c|α 2 |b -a|β 2 |c -c|β 2 |a -a|γ 2 |b -b|γ 2 |a + (ba + ac)|α 2 |1 -bc|α 2 |1 -ac|β 2 |1 + (ab + bc)|β 2 |1 -ab|γ 2 |1 -ba|γ 2 |1]y.
If n = 4, the chain map g • satisfies Moreover, if n = 4, the chain map g • satisfies

g 0 (ω 1 x|ϵ ! |y) = 0, g 1 (ω 1 x|α|y) = g 1 (ω 1 x|β|y) = g 1 (ω 1 x|γ|y) = 0.
g 0 (ω 1 x|ϵ ! |y) = 0.
Let n ∈ N be odd, then the map α n |a + β n |b + γ n |c can be extended to the chain map g • : 

P b • → P b • satisfying g 0 (x|α n |y) = x|ϵ ! |ay, g 0 (x|β n |y) = x|ϵ ! |by, g 0 (x|γ n |y) = x|ϵ ! |cy, g 0 (x|α n-1 β|y) = g 0 (x|α n-1 γ|y) = g 0 (x|α n-2 β 2 |y) = 0, g 1 (x|α n+1 |y) = -x|α|ay, g 1 (x|β n+1 |y) = -x|β|by, g 1 (x|γ n+1 |y) = -
S = m ∈ 0, 4 , n ∈ 0, 3 Hn m ∪ ω * 1 ϵ ! |1 \ ϵ ! |1
is a generating set of the k-algebra HH • (A). Hence, HH • (A) is a finitely generated k-algebra.

Proof. We will prove the proposition by induction on n. Let n ⩾ 4. Assume that Hn ′ m for m ∈ 0, 4 and n ′ ∈ 0, n -1 is generated by the elements of S . We check that Hn m for m ∈ 0, 4 is generated by the elements of S . First, we suppose that n is even. Note that

Hn 0 = {α n |1, β n |1, γ n |1, (α n-1 β + α n-1 γ)|1, α n-2 β 2 |1}. By Fact 5.1.3, we have α 2 |1 ⌣ α n-2 |1 ∈ α n |1 + ω * 1 H n-4 2 , β 2 |1 ⌣ β n-2 |1 ∈ β n |1 + ω * 1 H n-4 2 , γ 2 |1 ⌣ γ n-2 |1 ∈ γ n |1 + ω * 1 H n-4 2 , γ 2 |1 ⌣ α n-2 |1 ∈ α n-2 β 2 |1 + ω * 1 H n-4 2 , (αβ + αγ)|1 ⌣ α n-2 |1 ∈ (α n-1 β + α n-1 γ)|1 + ω * 1 H n-4 2 .
Hence, the elements in Hn 0 are generated by the elements in S . Note that Hn 1 = Hn 2 = Hn 3 = ∅. Finally, we notice that Hn

4 = {α n |abac, β n |abac, γ n |abac, α n-1 β|abac, α n-2 β 2 |abac}. Since ϵ ! |abac ⌣ α n |1 = α n |abac, ϵ ! |abac ⌣ β n |1 = β n |abac, ϵ ! |abac ⌣ γ n |1 = γ n |abac, ϵ ! |abac ⌣ (α n-1 β + α n-1 γ)|1 = 2α n-1 β|abac, ϵ ! |abac ⌣ α n-2 β 2 |1 = α n-2 β 2 |abac,

the elements in Hn

4 are also generated by the elements of S . Next, we suppose that n is odd. Note first that Hn 0 = Hn 2 = Hn 4 = ∅, and

Hn 1 = α n |a + β n |b + γ n |c,(β n -α n-1 β)|b,(γ n -α n-1 γ)|c,(α n -α n-2 β 2 )|a, α n-1 β|c + α n-1 γ|a + α n-2 β 2 |b .
By Fact 5.1.3, we see that

(α|a + β|b + γ|c) ⌣ α n-1 |1 ∈ α n |a + α n-1 β|b + α n-1 γ|c + ω * 1 Hn-4 3 , (α|a + β|b + γ|c) ⌣ β n-1 |1 ∈ β n |b + α n-1 γ|c + α n-2 β 2 |a + ω * 1 Hn-4 3 , (α|a + β|b + γ|c) ⌣ γ n-1 |1 ∈ γ n |c + α n-1 β|b + α n-2 β 2 |a + ω * 1 Hn-4 3 , (α|a + β|b + γ|c) ⌣ (α n-2 β + α n-2 γ)|1 ∈ 2(α n-1 β|c + α n-1 γ|a + α n-2 β 2 |b) + ω * 1 Hn-4 3 , (α|a + β|b + γ|c) ⌣ α n-3 β 2 |1 ∈ α n-1 β|b + α n-1 γ|c + α n-2 β 2 |a + ω * 1 Hn-4 3 .
It is easy to see that the five elements

α n |a + α n-1 β|b + α n-1 γ|c, β n |b + α n-1 γ|c + α n-2 β 2 |a, γ n |c + α n-1 β|b + α n-2 β 2 |a, 2(α n-1 β|c + α n-1 γ|a + α n-2 β 2 |b) and α n-1 β|b + α n-1 γ|c + α n-2 β 2 |a
are linear combinations of elements of Hn 1 . Moreover, they form a basis of Hn 1 . The elements in Hn 1 , so a fortiori Hn 1 , are thus generated by the elements of S . Note finally that 

Hn 3 = {α n |bac, β n |abc, γ n |aba, α n-1 β|abc, α n |(aba -abc)}. Since α|bac ⌣ α n-1 |1 = α n |bac, β|abc ⌣ β n-1 |1 = β n |abc, γ|aba ⌣ γ n-1 |1 = γ n |aba, β|abc ⌣ α n-1 |1 = α n-1 β|abc, α|(aba -abc) ⌣ α n-1 |1 = α n |(aba -abc),
(α 3 + β 3 )|aba, α 3 |aba + β 3 |bac, α 3 |a + β 3 |b + γ 3 |c, (β 3 -α 2 β)|b, (γ 3 -α 2 γ)|c, (α 3 -αβ 2 )|a, α 2 β|c + α 2 γ|a + αβ 2 |b, ω * 1 ϵ ! |1
is a generating set of HH • (A). By Fact 5.1.3 and the computation of coboundaries in Subsubsection 4.2.2.3, we get Hence, the set S obtained from S by removing the nineteen elements in (5.1.2) is still a generating set. Similarly, it is easy to check that

α 2 |(ab + ba) = ϵ ! |(ab + ba) ⌣ α 2 |1, β 2 |(ab + ba) = ϵ ! |(ab + ba) ⌣ β 2 |1, α 2 |abac = ϵ ! |abac ⌣ α 2 |1, β 2 |abac = ϵ ! |abac ⌣ β 2 |1, γ 2 |abac = ϵ ! |abac ⌣ γ 2 |1, αβ|abac = (1/2)ϵ ! |abac ⌣ (αβ + αγ)|1, α 3 |bac = α|bac ⌣ α 2 |1, β 3 |abc = β|abc ⌣ β 2 |1, γ 3 |aba = γ|aba ⌣ γ 2 |1, α 2 β|abc = α|bac ⌣ β 2 |1, (α 3 -αβ 2 )|a = (1/2)[(α 3 |a + β 3 |b + γ 3 |c) + (α|a + β|b + γ|c) ⌣ (α 2 |1 -β 2 |1 -γ 2 |1)], (5.1.2) (β 3 -α 2 β)|b = (1/2)[(α 3 |a + β 3 |b + γ 3 |c) + (α|a + β|b + γ|c) ⌣ (β 2 |1 -α 2 |1 -γ 2 |1)], (γ 3 -α 2 γ)|c = (1/2)[(α 3 |a + β 3 |b + γ 3 |c) + (α|a + β|b + γ|c) ⌣ (γ 2 |1 -α 2 |1 -β 2 |1)], α 2 β|c + α 2 γ|a + αβ 2 |b = (1/2)(α|a + β|b + γ|c) ⌣ (αβ + αγ)|1, α 3 |(aba -abc) = α|(aba -abc) ⌣ α 2 |1, (α 3 + β 3 )|aba = γ|aba ⌣ (αβ + αγ)|1,
ϵ ! |(ab + ba) ⌣ ϵ ! |(ab + ba) = ϵ ! |(ab + bc -ac) ⌣ ϵ ! |(ab + bc -ac) = ϵ ! |(ab + ba) ⌣ ϵ ! |(ab + bc -ac) = 0.
(5.1.3) By Remark 5.1.1, Fact 5.1.3 and (5.1.3), it is easy to check that any one of the fourteen elements of S can't be generated by the other thirteen elements, so the generating set S is minimal.

Let us number the elements of the set S given in (5.1.1) by

X 1 = ϵ ! |(ab + ba), X 2 = ϵ ! |(ab + bc -ac), X 3 = ϵ ! |abac, X 4 = α|bac, X 5 = β|abc, X 6 = γ|aba, X 7 = α|(aba -abc), X 8 = α|a + β|b + γ|c, X 9 = α 2 |1, X 10 = β 2 |1, X 11 = γ 2 |1, X 12 = (αβ + αγ)|1, X 13 = α 3 |a + β 3 |b + γ 3 |c and X 14 = ω * 1 ϵ ! |1.
We define the well-ordered set {x i ,i ∈ 1, 14 } with x i ≻ x j for all i > j. Let F be the noncommutative associative free k-algebra generated by x i for i ∈ 1, 14 , with length-lexicographic order. We endow the algebra F with the unique grading over Z 2 given by setting the bidegree of x i to be the same as that of X i for i ∈ 1,14 . Let R 1 ⊆ F be the set consisting of the following 97 homogeneous elements

x 1 x 2 -x 2 x 1 , x 1 x 3 -x 3 x 1 , x 1 x 4 -x 4 x 1 , x 1 x 5 -x 5 x 1 , x 1 x 6 -x 6 x 1 , x 1 x 7 -x 7 x 1 , x 1 x 8 -x 8 x 1 , x 1 x 9 -x 9 x 1 , x 1 x 10 -x 10 x 1 , x 1 x 11 -x 11 x 1 , x 1 x 12 -x 12 x 1 , x 1 x 13 -x 13 x 1 , x 1 x 14 -x 14 x 1 , x 2 x 3 -x 3 x 2 , x 2 x 4 -x 4 x 2 , x 2 x 5 -x 5 x 2 , x 2 x 6 -x 6 x 2 , x 2 x 7 -x 7 x 2 , x 2 x 8 -x 8 x 2 , x 2 x 9 -x 9 x 2 ,
x 2 x 10 -x 10 x 2 , x 2 x 11 -x 11 x 2 , x 2 x 12 -x 12 x 2 , x 2 x 13 -x 13 x 2 , x 2 x 14 -x 14 x 2 , x 3 x 4 -x 4 x 3 , x 3 x 5 -x 5 x 3 , x 3 x 6 -x 6 x 3 , x 3 x 7 -x 7 x 3 , x 3 x 8 -x 8 x 3 , x 3 x 9 -x 9 x 3 , x 3 x 10 -x 10 x 3 , x 3 x 11 -x 11 x 3 , x 3 x 12 -x 12 x 3 , x 3 x 13 -x 13 x 3 , x 3 x 14 -x 14 x 3 , x 4 x 5 + x 5 x 4 , x 4 x 6 + x 6 x 4 , x 4 x 7 + x 7 x 4 , x 4 x 8 + x 8 x 4 , x 4 x 9 -x 9 x 4 , x 4 x 10 -x 10 x 4 , x 4 x 11 -x 11 x 4 , x 4 x 12 -x 12 x 4 , x 4 x 13 + x 13 x 4 , x 4 x 14 -x 14 x 4 , x 5 x 6 + x 6 x 5 , x 5 x 7 + x 7 x 5 , x 5 x 8 + x 8 x 5 , x 5 x 9 -x 9 x 5 , x 5 x 10 -x 10 x 5 , (5.1.4) x 5 x 11 -x 11 x 5 , x 5 x 12 -x 12 x 5 , x 5 x 13 + x 13 x 5 , x 5 x 14 -x 14 x 5 , x 6 x 7 + x 7 x 6 , x 6 x 8 + x 8 x 6 , x 6 x 9 -x 9 x 6 , x 6 x 10 -x 10 x 6 , x 6 x 11 -x 11 x 6 , x 6 x 12 -x 12 x 6 , x 6 x 13 + x 13 x 6 , x 6 x 14 -x 14 x 6 , x 7 x 8 + x 8 x 7 , x 7 x 9 -x 9 x 7 , x 7 x 10 -x 10 x 7 , x 7 x 11 -x 11 x 7 , x 7 x 12 -x 12 x 7 , x 7 x 13 + x 13 x 7 , x 7 x 14 -x 14 x 7 , x 8 x 9 -x 9 x 8 , x 8 x 10 -x 10 x 8 , x 8 x 11 -x 11 x 8 , x 8 x 12 -x 12 x 8 , x 8 x 13 + x 13 x 8 , x 8 x 14 -x 14 x 8 , x 9 x 10 -x 10 x 9 , x 9 x 11 -x 11 x 9 , x 9 x 12 -x 12 x 9 , x 9 x 13 -x 13 x 9 , x 9 x 14 -x 14 x , x 10 x 11 -x 11 x 10 , x 10 x 12 -x 12 x 10 , x 10 x 13 -x 13 x 10 , x 10 x 14 -x 14 x 10 , x 11 x 12 -x 12 x 11 , x 11 x 13 -x 13 x 11 , x 11 x 14 -x 14 x 11 , x 12 x 13 -x 13 x 12 , x 12 x 14 -x 14 x 12 , x 13 x 14 -x 14 x 13 , x 2 4 , x , x 2 6 , x 2 7 , x 2 8 , x 2 13 .

Remark 5.1.6. Note that the quotient of the free algebra F generated by x i for i ∈ 1, 14 modulo the (homogeneous) ideal generated by the previous set R 1 is precisely the free graded-commutative (for the homological grading) algebra C generated by the same generators x i for i ∈ 1, 14 .

Let R 2 ⊆ F be the set consisting of the following 63 homogeneous elements

x 2 1 , x 1 x 2 , x 1 x 3 , x 2 2 , x 2 x 3 , x 2 3 , x 1 x 4 , x 1 x 5 , x 1 x 6 , x 1 x 7 , x 2 x 4 , x 2 x 5 , x 2 x 6 , x 2 x 7 , x 3 x 4 , x 3 x 5 , x 3 x , x 3 x 7 , x 3 x 8 , x 4 x 5 , x 4 x 6 , x 4 x 7 , x 5 x 6 , x 5 x 7 , x 6 x 7 , x 1 x 11 -2x 1 x 9 -2x 1 x 10 , x 1 x 12 -x 1 x 9 -x 1 x 10 , x 2 x 9 + x 1 x 9 , x 2 x 10 -2x 1 x 10 , x 2 x 11 -x 1 x 9 -x 1 x 10 , x 2 x 12 -x 1 x 10 , x 3 x 9 + x 8 x 4 , x 3 x 10 + x 8 x 5 ,
x 3 x 11 -x 8 x 6 , x 3 x 12 -x 8 x 7 , x 9 x 5 + x 9 x 6 , x 9 x 5 -x 10 x 4 , x 9 x 5 + x 10 x 6 , x 9 x 5 -x 11 x 4 , x 9 x 5 -x 11 x 5 , x 12 x 4 -(1/3)x 9 x 7 + (4/3)x 10 x 7 , x 12 x 5 + (1/3)x 9 x 7 -x 12 x 6 + (5/3)x 10 x 7 ,

x 10 x 7 -x 11 x 7 , x 12 x 7 + 2x 9 x 5 -(1/3)x 9 x 7 -(2/3)x 10 x 7 , x 9 x 10 -x 9 x 11 , x 9 x 10 -x 10 x 11 , x 9 x 12 -x 12 x 12 + 2x 9 x 10 -3x 14 x 1 + 3x 14 x 2 , x 10 x 12 -x 12 x 12 + 2x 9 x 10 -3x 14 x 2 ,

(5.1.5) x 11 x 12 -x 12 x 12 + 2x 9 x 10 + 3x 14 x 1 , x 1 x 13 -4x 12 x 6 + 4x 10 x 7 , x 2 x 13 + (4/3)x 9 x 7 -4x 12 x 6 + (8/3)x 10 x 7 , x 3 x 13 , x 8 x 13 -6x 14 x 3 , x 13 x 4 + x 9 x 9 x 3 , x 13 x 5 + x 10 x 10 x 3 , x 13 x 6 -x 11 x 11 x 3 , x 13 x 7 -x 12 x 12 x 3 + 2x 9 x 10 x 3 , x 1 x 8 x 12 -2x 12 x 6 + 2x 10 x 7 , x 2 x 8 x 12 + (2/3)x 9 x 7 -2x 12 x 6 + (4/3)x 10 x 7 , x 9 x 13 -x 9 x 9 x 8 + 6x 14 x 4 , x 10 x 13 -x 10 x 10 x 8 + 6x 14 x 5 , x 11 x 13 -x 11 x 11 x 8 -6x 14 x 6 , x 12 x 13 -x 11 x 12 x 8 -6x 14 x 7 -3x 14 x 2 x 8 .

By abuse of notation, we will also identify R 2 with its image under the canonical projection

F → F/(R 1 ) = C.
The following theorem is the main result of this article. Before presenting the proof of the previous theorem, let us provide some auxiliary results. We refer the reader to [START_REF] Ufnarovskij | Combinatorial and asymptotic methods in algebra[END_REF] (see also [START_REF] Varadarajan | Supersymmetry for mathematicians: an introduction[END_REF]) for the theory of Gröbner bases, as well as the usual terminology we will follow. Using GAP (see [START_REF] Cohen | GBNP -a GAP package[END_REF]) we get a Gröbner basis G of I given by the following 184 elements

x 2 1 , x 1 x 2 , x 1 x 3 , x 1 x 4 , x 1 x 5 , x 1 x 6 , x 1 x 7 , x 1 x 11 -2x 1 x 10 -2x 1 x 9 , x 1 x 12 -x 1 x 10 -x 1 x 9 , x 2 x 1 -x 1 x 2 , x 2 2 , x 2 x 3 , x 2 x 4 , x 2 x 5 , x 2 x 6 , x 2 x 7 , x 2 x 9 + x 1 x 9 , x 2 x 10 -2x 1 x 10 , x 2 x 11 -x 1 x 10 -x 1 x 9 , x 2 x 12 -x 1 x 10 , x 3 x 1 -x 1 x 3 , x 3 x 2 -x 2 x 3 , x 2 3 , x 3 x 4 , x 3 x 5 , x 3 x 6 , x 3 x , x 3 x 8 , x 3 x 13 , x 4 x 1 -x 1 x 4 , x 4 x 2 -x 2 x 4 , x 4 x 3 -x 3 x 4 , x 2 
4 , x 4 x 5 , x 4 x 6 , x 4 x 7 , x 4 x 8 -x 3 x 9 , x 4 x 11 -x 4 x 10 , x 5 x 1 -x 1 x 5 , x 5 x 2 -x 2 x 5 , x 5 x 3 -x 3 x 5 , x 5 x 4 + x 4 x 5 , x 2 5 , x 5 x 6 , x 5 x 7 , x 5 x 8 -x 3 x 10 , x 5 x 9 -x 4 x 10 , x 5 x 11 -x 4 x 10 , x 5 x 12 -x 4 x 12 -(1/2)x 2 x 13 + (1/4)x 1 x 13 , x 6 x 1 -x 1 x 6 , x 6 x 2 -x 2 x 6 , x 6 x 3 -x 3 x 6 , x 6 x 4 + x 4 x 6 , x 6 x 5 + x 5 x 6 , x 2 6 , x 6 x 7 , x 6 x 8 + x 3 x 11 , x 6 x 9 + x 5 x 9 , x 6 x 10 + x 4 x 10 ,

x 6 x 12 + (1/2)x 5 x 12 + (1/2)x 4 x 12 -(3/8)x 1 x 13 , x 7 x 1 -x 1 x 7 , x 7 x 2 -x 2 x 7 , x 7 x 3 -x 3 x 7 ,
x 7 x 4 + x 4 x 7 , x 7 x 5 + x 5 x 7 , x 7 x 6 + x 6 x 7 , x 2 7 , x 7 x 8 + x 3 x 12 , x 7 x 9 -4x 6 x 12 -3x 4 x 12 + x 1 x 13 , x 7 x 10 -(1/4)x 7 x 9 + (3/4)x 4 x 12 , x 7 x 11 -x 7 x 10 ,

x 7 x 12 + x 4 x 12 + 2x 4 x 10 + (1/2)x 2 x 13 -(1/2)x 1 x 13 , x 8 x 1 -x 1 x 8 , x 8 x 2 -x 2 x 8 , x 8 x 3 -x 3 x 8 ,
x 8 x 4 + x 4 x 8 , x 8 x 5 + x 5 x 8 , x 8 x 6 + x 6 x 8 , x 8 x 7 + x 7 x 8 , x 2 8 , x 8 x 13 -6x 3 x 14 , x 9 x 1 -x 1 x 9 , x 9 x 2 -x 2 x 9 , x 9 x 3 -x 3 x 9 , x 9 x 4 -x 4 x 9 , x 9 x 5 -x 5 x 9 , x 9 x 6 -x 6 x 9 , x 9 x 7 -x 7 x 9 , x 9 x 8 -x 8 x 9 , x 9 x 11 -x 9 x 10 , x 10 x 1 -x 1 x 10 , x 10 x 2 -x 2 x 10 , x 10 x 3 -x 3 x 10 , x 10 x 4 -x 9 x 5 , x 10 x 5 -x 5 x 10 , x 10 x 6 + x 9 x 5 , x 10 x 7 -x 7 x 10 , x 10 x 8 -x 8 x 10 , x 10 x 9 -x 9 x 10 , x 10 x 11 -x 9 x 10 , x 10 x 12 -x 9 x 12 -6x 2 x 14 + 3x 1 x 14 , x 11 x 1 -x 1 x 11 , x 11 x 2 -x 2 x 11 , x 11 x 3 -x 3 x 11 , x 11 x 4 -x 9 x 5 , x 11 x 5 -x 9 x 5 , x 11 x 6 -x 6 x 11 , x 11 x 7 -x 10 x 7 , x 11 x 8 -x 8 x 11 , x 11 x 9 -x 9 x 11 , x 11 x 10 -x 10 x 11 ,

x 11 x 12 -x 10 x 12 + 3x 2 x 14 + 3x 1 x 14 , x 12 x 1 -x 1 x 12 , x 12 x 2 -x 2 x 12 , x 12 x 3 -x 3 x 12 , x 12 x 4 + (4/3)x 10 x 7 -(1/3)x 9 x 7 , x 12 x 5 -x 5 x 12 , x 12 x 6 -x 6 x 12 , x 12 x 7 -x 7 x 12 , x 12 x 8 -x 8 x 12 ,
x 12 x 9 -x 9 x 12 , x 12 x 10 -x 10 x 12 , x 12 x 11 -x 11 x 12 , x 2 12 -x 11 x 12 -2x 9 x 10 -3x 1 x 14 , x 13 x 1 -x 1 x 13 , x 13 x 2 -x 2 x 13 , x 13 x 3 -x 3 x 13 , x 13 x 4 + x 4 x 13 , x 13 x 5 + x 5 x 13 , x 13 x 6 + x 6 x 13 , x 13 x 7 + x 7 x 13 , x 13 x 8 + x 8 x 13 , x 13 x 9 -x 9 x 13 , x 13 x 10 -x 10 x 13 , x 13 x 11 -x 11 x 13 , x 13 x 12 -x 12 x 13 , x 2 13 , x 14 x 1 -x 1 x 14 , x 14 x 2 -x 2 x 14 , x 14 x 3 -x 3 x 14 , x 14 x 4 -x 4 x 14 , x 14 x 5 -x 5 x 14 , x 14 x 6 -x 6 x 14 , x 14 x 7 -x 7 x 14 , x 14 x 8 -x 8 x 14 , x 14 x 9 -x 9 x 14 , x 14 x 10 -x 10 x 14 , x 14 x 11 -x 11 x 14 , x 14 x 12 -x 12 x 14 , x 14 x 13 -x 13 x 14 , x 1 x 8 x 12 -2x 12 x 6 + 2x 10 x 7 , x 2 x 8 x 12 -2x 12 x 6 + (4/3)x 10 x 7 + (2/3)x 9 x 7 , x 3 x 2 9 -x 4 x 13 , x 3 x 9 x 12 + x 7 x 13 , x 3 x 2 10 -x 5 x 13 , x 3 x 2 11 + x 6 x 13 , x 8 x 2 9 -x 9 x 13 -6x 4 x 14 , x 8 x 9 x 12 + 6x 2 x 8 x 14 -6x 1 x 8 x 14 -x 12 x 13 + 6x 7 x 14 , x 8 x 2 10 -x 10 x 13 -6x 5 x 14 , x 8 x 2 11 -x 11 x 13 + 6x 6 x 14 , x

1 x 8 x 9 + (1/2)x 2 x 13 -(1/2)x 1 x 13 , x 1 x 8 x 10 + x 1 x 8 x 9 -(1/2)x 1 x 13 , x 1 x 8 x 11 -2x 1 x 8 x 10 -2x 1 x 8 x 9 , x 1 x 2 9 , x 1 x 9 x 10 + 2x 1 x 2 9 , x 1 x 9 x 12 + x 1 x 2 9 , x 1 x 9 x 13 , x 1 x 2 10 , x 1 x 10 x 13 , x 2 x 8 x 9 + x 1 x 8 x 9 , x 2 x 8 x 10 + 2x 1 x 8 x 9 -x 1 x 13 , x 2 x 8 x 11 -(1/2)x 1 x 13 , x 3 x 9 x 13 ,
x 3 x 10 x 13 , x 3 x 11 x 13 , x 3 x 12 x 13 , x 4 x 2 10 -x 4 x 9 x 10 , x 8 x 9 x 13 -6x 3 x 9 x 14 , x 8 x 10 x 13 -6x 3 x 10 x 14 , x 8 x 11 x 13 -6x 3 x 11 x 14 , x 8 x 12 x 13 -6x 3 x 12 x 14 , x 9 x 2 10 -x 2 9 x 10 , x 3 x 9 x 10 x 13 , x 8 x 9 x 10 x 13 -6x 3 x 9 x 10 x 14 .

We will now compute the standard words with respect to G, i.e. the monomials on the letters x i , i ∈ 1, 14 , that are not divisible by the leading terms of the elements of G. This is a direct but tedious computation. We recall that the set of standard words forms a k-basis S of D. Obviously, 1 ∈ S and x i ∈ S for i ∈ 1, 14 . The elements in S generated by 2 elements are given by the following 46 elements x 1 x 8 ,x 1 x 9 ,x 1 x 10 ,x 1 x 13 ,x 1 x 14 , x 2 x 8 ,x 2 x 13 ,x 2 x 14 , x 3 x 9 ,x 3 x 10 ,x 3 x 11 ,x 3 x 12 ,x 3 x 14 , x 4 x 9 ,x 4 x 10 , x 4 x 12 ,x 4 x 13 ,x 4 x 14 , x 5 x 10 ,x 5 x 13 ,x 5 x 14 , x 6 x 11 ,x 6 x 13 ,x 6 x 14 , x 7 x 13 ,x 7 x 14 , x 8 x 9 ,x 8 x 10 ,x 8 x 11 ,x 8 x 12 ,x 8 x 14 ,

(5.1.6)

x 2 9 ,x 9 x 10 ,x 9 x 12 ,x 9 x 13 ,x 9 x 14 , x 2 10 ,x 10 x 13 ,x 10 x 14 , x 2 11 ,x 11 x 13 ,x 11 x 14 , x 12 x 13 ,x 12 x 14 , x 13 x 14 , x 2 14 .

Analogously, the elements in S generated by 3 elements are given by the following 68 elements Finally, the elements in S generated by 4 elements are given by the following 89 elements 

x1x8x 2 14 , x1x9x
14 , x12x 3 14 , x13x 3 14 , x 4 14 .

Lemma 5.1.8. Let x be a word generated by r elements, where r ⩾ 5. Then the following statements are equivalent:

(1) x ∈ S.

(2) y ∈ S for any subword y ⊊ x.

(3) y ∈ S for any subword y ⊊ x generated by r -1 elements.

(4) y ∈ S for any subword y ⊊ x generated by 4 elements.

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) follow immediately from the definition of standard word. On the other hand, to prove the implication (4) ⇒ (1), it suffices to note that the leading word of any element in G is generated by at most than 4 elements.

Lemma 5.1.9. Let x be a word. Then x ∈ S if and only if xx 14 ∈ S.

Proof. To prove the direct implication, suppose that x ∈ S is generated by r elements. If r ∈ 0,3 , we get that xx 14 ∈ S directly from (5.1.6) -(5.1.8). If r ⩾ 4, write x = yz, where y,z are words and z is generated by 3 elements. Obviously, z ∈ S and zx 14 ∈ S. By Lemma 5.1.8, xx 14 = yzx 14 ∈ S. Finally, note that the converse follows from the definition of standard word.

The following result is a direct consequence of the previous lemma.

Corollary 5.1.10. Let S be the elements in S generated by x i for i ∈ 1,13 , and D the subspace of D generated by the elements in S. Then

D ∼ = D ⊗ k[x 14 ]
as graded k-vector spaces.

We are now ready to prove Theorem 5.1.7.

Proof of Theorem 5.1.7. It is easy to check that the morphism φ vanishes on the set R 1 since the algebra HH • (A) is graded commutative, and it also vanishes on the set R 2 , as the reader can check using Remark 5.1. 

HH • (A) ∼ = m ∈ 0, 4 , n ∈ N 0 Hn m ⊗ k[ω * 1 ϵ ! |1]
as graded k-vector spaces. Let S n m be the elements in S with cohomological degree n ∈ N 0 and internal degree m -n, where m ∈ Z. To prove that φ is an isomorphism, it is sufficient to prove that the cardinality of S n m is as same as the dimension of Hn m . Take x ∈ S n m . Since the words x i x j for i > j are leading terms of elements in G, we may assume that x is of the form

x r1 1 x r2 2 • • • x r13 13 
, where r i ∈ N 0 for i ∈ 1,13 . Since x 2 i for i = 1,2,3,4,5,6,7,8,12,13 are leading terms of elements in G, we assume r i ∈ 0,1 for i = 1,2,3,4,5,6,7,8,12,13. By degree reasons, we have r 4 + r 5 + r 6 + r 7 + r 8 + 2r 9 + 2r 10 + 2r 11 + 2r 12 + 3r 13 = n, (5.1.9) and 2r 1 + 2r 2 + 4r 3 + 2r 4 + 2r 5 + 2r 6 + 2r 7 -2r 9 -2r 10 -2r 11 -2r 12 -2r 13 = m -n.

Adding the two equations together, we get 2r 1 + 2r 2 + 4r 3 + 3r 4 + 3r 5 + 3r 6 + 3r 7 + r 8 + r 13 = m.

(5.1.10)

Note that the previous identity tells us that m ∈ N 0 . First, we will first prove that m ⩽ 4. If r 1 = 1, then r i = 0 for i = 2,3,4,5,6,7,11,12, since x 1 x i is the leading term of an element of the Gröbner basis G for i = 2,3,4,5,6,7,11,12. The equation (5.1.10) then shows that m = 2 + r 8 + r 13 ⩽ 4. Assume for the rest of the paragraph that r 1 = 0. If r 2 = 1, then r i = 0 for i = 3,4,5,6,7,9,10,11,12, since x 2 x i is the leading term of an element of the Gröbner basis G for i = 3,4,5,6,7,9,10,11,12. The equation (5.1.10) thus shows that m = 2 + r 8 + r 13 ⩽ 4. Suppose for the rest of the paragraph that r 2 = 0. If r 3 = 1, then r i = 0 for i = 4,5,6,7,8,13, since x 3 x i is the leading term of an element of the Gröbner basis G for i = 4,5,6,7,8,13. The equation (5.1.10) hence shows that m = 4. Assume for the rest of the paragraph that r 3 = 0. If r 4 = 1, then r i = 0 for i = 5,6,7,8,11, since x 4 x i is the leading term of an element of the Gröbner basis G for i = 5,6,7,8,11. Then, the equation (5.1.10) shows that m = 3 + r 13 ⩽ 4. Suppose for the rest of the paragraph that r 4 = 0. If r 5 = 1, then r i = 0 for i = 6,7,8,9,11,12, since x 5 x i is the leading term of an element of the Gröbner basis G for i = 6,7,8,9,11,12. The equation (5.1.10) thus shows that m = 3 + r 13 ⩽ 4. Assume for the rest of the paragraph that r 5 = 0. If r 6 = 1, then r i = 0 for i = 7,8,9,10,12, since x 6 x i is the leading term of an element of the Gröbner basis G for i = 7,8,9,10,12. The equation (5.1.10) then shows that m = 3 + r 13 ⩽ 4. Suppose further that r 6 = 0. If r 7 = 1, then r i = 0 for i = 8,9,10,11,12, since of the paragraph that r 1 = 0. If r 2 = 1, then r i = 0 for i = 3,4,5,6,7,9,10,11,12, and equation (5.1.13) shows r 8 = r 13 = 0, so x = x 2 . Suppose for the rest of the paragraph that r 2 = 0. If r 8 = 1, (5.1.13) shows r 13 = 1, which is impossible. Finally, if r 8 = 0, then r 13 = 2, which is also impossible. We thus have

S 0 2 = {x 1 ,x 2 }, S 2 2 = {x 1 x 9 ,x 1 x 10 },
and S n 2 = ∅ if n = 1 and n ⩾ 3. Suppose m = 1. Then (5.1.10) becomes 2r 1 + 2r 2 + 4r 3 + 3r 4 + 3r 5 + 3r 6 + 3r 7 + r 8 + r 13 = 1.

If r 8 = 1,r 13 = 0, then x = x 8 , x 8 x 9 , x 8 x 10 , x 8 x 11 , x 8 x 12 or x 8 x 9 x 10 . If r 8 = 0, r 13 = 1, then x = x 13 , x r9 9 x 13 , x r9 9 x 10 x 13 , x r9 9 x 12 x 13 , x r10 10 x 13 , x r11 11 x 13 or x 12 x 13 . We then get

S 1 1 = {x 8 }, S 3 1 = {x 13 , x 8 x 9 ,x 8 x 10 , x 8 x 11 , x 8 x 12 }, S 5 
1 = {x 9 x 13 , x 10 x 13 , x 11 x 13 , x 12 x 13 , x 8 x 9 x 10 },

S n 1 = {x (n-3)/2 9
x 13 , x

(n-5)/2 9

x 10 x 13 , x

(n-5)/2 9

x 12 x 13 , x

(n-3)/2 10

x 13 , x

(n-3)/2 11

x 13 }
if n ⩾ 7 is odd, and S n 1 = ∅ if n is even. Suppose m = 0. Then (5.1.10) becomes 2r 1 + 2r 2 + 4r 3 + 3r 4 + 3r 5 + 3r 6 + 3r 7 + r 8 + r 13 = 0.

Then r i = 0 for i = 1,2,3,4,5,6,7,8,13. If r i = 0 for all i ∈ 1,14 , then x = 1. Otherwise, x = x r9 9 , x r9 9 x 10 , x r9 9 x 12 , x r10 10 , x r11 11 or x 12 . We thus have

S 0 0 = {1}, S 2 0 = {x 9 , x 10 , x 11 , x 12 }, S n 0 = {x n/2 9 , x (n-2)/2 9 x 10 , x (n-2)/2 9 x 12 , x n/2 10 , x n/2 11 } 
if n ⩾ 4 is even, and S n 0 = ∅ if n is odd. Finally, we leave to the reader the easy task to check that the cardinality of S n m is as same as the dimension of Hn m .

As a direct consequence of Remark 5.1.6 and Theorem 5.1.7 we get the following result.

Corollary 5.1.11. Recall that C = F/(R 1 ) is precisely the free graded-commutative (for the cohomological degree) algebra generated by the elements x i for i ∈ 1, 14 , where R 1 is the set given in (5.1.4). Let D ′ = C/J, where J is the two-sided ideal of C generated by the elements in R 2 given in (5.1.5). Define the morphism φ ′ : C → HH • (A) of bigraded k-algebras by setting φ ′ (x i ) = X i for i ∈ 1,14 . It is easy to check that φ ′ is surjective and J ⊆ Ker(φ ′ ), so φ ′ induces the surjective morphism φ′ : D ′ → HH • (A). Moreover, φ′ is an isomorphism, i.e. Ker(φ ′ ) = J.

Gerstenhaber structure on Hochschild cohomology of FK(3)

In this section, let k be a field of characteristic different from 2 and 3, A the Fomin-Kirillov algebra on 3 generators and P b • the projective bimodule resolution constructed in Proposition 4.1.15. We will explicitly determine the Gerstenhaber structure of the Hochschild cohomology of A.

Recall that Corollary 5.1.11 gives the algebra structure of (HH • (A), ⌣). Given n ∈ N 0 , there is a canonical isomorphism

Hom A e (P b n ,A) ∼ = Q n (5.2.1)
of graded k-vector spaces, where

Q n = ⊕ i∈ 0,⌊n/4⌋ ω * i K n-4i and K n = Hom k ((A ! -n ) * ,A).
Recall that the fourteen generators of HH • (A) mentioned in Corollary 5.1.11 are represented in H • (Q • ) by the following cocycles:

X 1 = ϵ ! |(ab + ba), X 2 = ϵ ! |(ab + bc -ac), X 3 = ϵ ! |abac, X 4 = α|bac, X 5 = β|abc, X 6 = γ|aba, X 7 = α|(aba -abc), X 8 = α|a + β|b + γ|c, X 9 = α 2 |1, X 10 = β 2 |1, X 11 = γ 2 |1, X 12 = (αβ+αγ)|1, X 13 = α 3 |a+β 3 |b+γ 3 |c and X 14 = ω * 1 ϵ ! |1. Let Y i ∈ Hom A e (P b
n ,A) be the element associated to X i via the isomorphism (5.2.1) for i ∈ 1, [START_REF]A projective resolution for the Fomin-Kirillov algebra FK[END_REF] . In what follows and to simplify our notation, given a cocycle ϕ, we will use the same symbol ϕ for its cohomology class. To reduce space we will denote the cup product simply by juxtaposition.

Let i

• : P b • → B • (A) be a morphism of complexes of A-bimodules lifting id A . It is clear that i 0 : A ⊗ (A ! 0 ) * ⊗ A → A ⊗ A and i 1 : A ⊗ (A ! -1 ) * ⊗ A → A ⊗3 can be chosen as follows i 0 (1|ϵ ! |1) = 1|1, i 1 (1|α|1) = -1|a|1, i 1 (1|β|1) = -1|b|1, i 1 (1|γ|1) = -1|c|1.

Gerstenhaber brackets of HH

0 (A) with HH n (A)
In this subsection, we are going to use the method introduced in Subsection 1.4.1 to compute the Gerstenhaber bracket of X i for i ∈ 1, 14 with the elements X 1 , X 2 , X 3 in HH 0 (A). To wit, for every element X i with i ∈ 1, 3 , we find the associated element ρ in the center Z(A) such that ℓ ρ i 0 = X i , provide the corresponding self-homotopy h ρ • satisfying (1.4.1) and then compute the respective Gerstenhaber brackets by means of Theorem 1.4.1.

We remark first that [X i ,1] = 0 for i ∈ 1, 14 , since h 1 • = 0 gives [X i ,1] = 0 for i ∈ 4, 14 and the other follow from Definition 1.3.5. On the other hand, Definition 1.3.5 also tells us that [X i ,X j ] = 0 for i,j ∈ 1,3 . The proof of the following three results is a lengthy but straightforward computation. Fact 5.2.1. Let ρ = ab + ba ∈ Z(A). Then, there is a self-contracting homotopy h ρ

• satisfying (1.4.1) such that

h ρ 0 (1|ϵ ! |1) = -b|α|1 -a|β|1 -1|α|b -1|β|a, h ρ n (1|α n |1) = (-1) n+1 b|α n+1 |1 -1|α n+1 |b, h ρ n (1|β n |1) = (-1) n+1 a|β n+1 |1 -1|β n+1 |a
for n ∈ N, and

h ρ 1 (1|γ|1) = b|α 2 |1 + a|β 2 |1 + a|αβ|1 + b|αγ|1 -1|α 2 |b -1|β 2 |a -1|αβ|b -1|αγ|a, h ρ 2 (1|γ 2 |1) = a|γ 3 |1 + b|γ 3 |1 + c|α 2 β|1 + c|αβ 2 |1 + 1|γ 3 |a + 1|γ 3 |b + 1|α 2 β|c + 1|αβ 2 |c, h ρ 2 (1|αβ|1) = -b|α 3 |1 -c|β 3 |1 -a|α 2 γ|1 -1|α 3 |c -1|β 3 |a -1|α 2 γ|b, h ρ 2 (1|αγ|1) = -c|α 3 |1 -a|β 3 |1 -b|α 2 γ|1 -1|α 3 |b -1|β 3 |c -1|α 2 γ|a.
Fact 5.2.2. Let ρ = ab + bc -ac ∈ Z(A). Then, there is a self-contracting homotopy h ρ • satisfying (1.4.1) such that

h ρ 0 (1|ϵ ! |1) = c|α|1 + a|γ|1 + 1|α|c + 1|γ|a, h ρ n (1|α n |1) = (-1) n c|α n+1 |1 + 1|α n+1 |c, h ρ n (1|γ n |1) = (-1) n a|γ n+1 |1 + 1|γ n+1 |a
for n ∈ N, and

h ρ 1 (1|β|1) = -c|α 2 |1 -a|γ 2 |1 -c|αβ|1 -a|αγ|1 + 1|α 2 |c + 1|γ 2 |a + 1|αβ|a + 1|αγ|c, h ρ 2 (1|β 2 |1) = -a|β 3 |1 -c|β 3 |1 -b|α 2 γ|1 -b|αβ 2 |1 -1|β 3 |a -1|β 3 |c -1|α 2 γ|b -1|αβ 2 |b, h ρ 2 (1|αβ|1) = b|α 3 |1 + a|γ 3 |1 + c|α 2 β|1 + 1|α 3 |c + 1|γ 3 |b + 1|α 2 β|a, h ρ 2 (1|αγ|1) = c|α 3 |1 + b|γ 3 |1 + a|α 2 β|1 + 1|α 3 |b + 1|γ 3 |a + 1|α 2 β|c. Fact 5.2.3. Let ρ = abac ∈ Z(A).
Then, there is a self-contracting homotopy h ρ • satisfying (1.4.1) such that

h ρ 0 (1|ϵ ! |1) = -aba|γ|1 -ab|α|c -a|β|ac -1|α|bac, h ρ 1 (1|α|1) = aba|αβ|1 -ab|α 2 |b -ba|β 2 |c + c|α 2 |bc + b|β 2 |ac + b|αβ|bc -1|α 2 |bac -1|αβ|abc, h ρ 1 (1|β|1) = aba|αγ|1 -2ab|α 2 |c -ac|α 2 |a -ab|αβ|a + a|α 2 |bc -a|β 2 |ab -a|β 2 |bc + c|β 2 |ac + a|αγ|ac -1|αγ|bac, h ρ 1 (1|γ|1) = 2aba|γ 2 |1 -ba|αβ|c + b|α 2 |bc -a|γ 2 |ac -c|αβ|ac -1|αγ|abc, h ρ 2 (1|α 2 |1) = bac|α 3 |1 + bc|β 3 |a -ba|β 3 |c + ba|α 2 γ|a -b|α 3 |ab -b|α 3 |bc + c|α 3 |ba + a|β 3 |ac + c|β 3 |bc + a|α 2 γ|bc + b|α 2 γ|ba -2|α 3 |bac, for u ∈ B ! * 3 \ {γ 3 ,α 2 γ}. Then φ(1|u|1) = Y 14 h abac 3 (1|u|1) for u ∈ B ! * 3 is given by φ(1|α 3 |1) = (1/3)a, φ(1|β 3 |1) = (1/3)b, φ(1|γ 3 |1) = (1/3)c, φ(1|α 2 β|1) = -(4/3)b, φ(1|α 2 γ|1) = -(4/3)c, φ(1|αβ 2 |1) = -(4/3)a. Hence, [X 14 , X 3 ] = (1/3)(α 3 |a + β 3 |b + γ 3 |c) -(4/3)(α 2 β|b + α 2 γ|c + αβ 2 |a).
We now note the following identities,

α 2 |(ab + ba) = X 1 X 9 , β 2 |(ab + ba) = X 1 X 10 , α|aba + β|bac = (1/2)(X 1 X 8 -X 2 X 8 ), α 2 |abac = X 3 X 9 , β 2 |abac = X 3 X 10 , γ 2 |abac = X 3 X 11 , (5.2.4 
) and

(α 3 -αβ 2 )|a = (1/2){X 13 + X 8 (X 9 -X 10 -X 11 )}, (β 3 -α 2 β)|b = (1/2){X 13 + X 8 (X 10 -X 9 -X 11 )}, (γ 3 -α 2 γ)|c = (1/2){X 13 + X 8 (X 11 -X 9 -X 10 )},
given in (5.1.2). Using the previous equalities as well as the coboundaries g 2 j,2 ∈ B2 2 for j ∈ 1,8 \ {4,5} and e 1 1,3 = α|(aba

+ abc) + (β -γ)|bac ∈ B1 3 of the sets B2 2 and B1 3 given in Subsubsection 4.2.2.3, we get [X 13 ,X 1 ] = -(α 2 + β 2 + γ 2 )|(ab + ba) -αβ|ba -αγ|ab -3g 2 1,2 -3g 2 2,2 -2g 2 3,2 + g 2 8,2 = -4(α 2 + β 2 )|(ab + ba) = -4X 1 (X 9 + X 10 ), [X 13 ,X 2 ] = (α 2 + β 2 + γ 2 )|(ac -ab -bc) + αβ|ac -αγ|(ab + bc) -g 2 1,2 -2g 2 2,2 -g 2 3,2 + g 2 6,2 -g 2 7,2 + g 2 8,2 = -4β 2 |(ab + ba) = -4X 1 X 10 , [X 12 ,X 3 ] = α|(aba -abc) -β|bac -γ|bac -e 1 1,3 = 2α|(aba -abc) -2(α|aba + β|bac) = 2X 7 -X 1 X 8 + X 2 X 8 , [X 13 ,X 3 ] = -4(α 2 + β 2 + γ 2 )|abac = -4X 3 (X 9 + X 10 + X 11 ), [X 14 ,X 3 ] = (1/3)(α 3 |a + β 3 |b + γ 3 |c) -(4/3)(α 2 β|b + α 2 γ|c + αβ 2 |a) = X 13 -(2/3)X 8 (X 9 + X 10 + X 11 ).
The proposition is thus proved.

Gerstenhaber brackets of HH 1 (A) with HH n (A)

In this subsection, we are going to use the method recalled in Subsection 1.4.2 to compute the Gerstenhaber bracket of X i for i ∈ 4, 8 with the elements X j for j ∈ 1, 14 .

Let ρ : A → A be a derivation of A. By [START_REF] Suárez-Álvarez | A little bit of extra functoriality for Ext and the computation of the Gerstenhaber bracket[END_REF], Lemma 1.3, the ρ e -lifting ρ • = {ρ n :

P b n → P b n } n∈N0 of ρ to (P b • ,δ b •
) exists, and it can be chosen in such a way that

ρ 0 (x|ϵ ! |y) = ρ(x)|ϵ ! |y + x|ϵ ! |ρ(y) and ρ n (ω i x|u|y) = xq ωiu y + ω i ρ(x)|u|y + ω i x|u|ρ(y) (5.2.5)
for all x,y ∈ A, n ∈ N, i ∈ 0,⌊n/4⌋ and u ∈ B ! * n-4i , where q ωiu ∈ P b n satisfies that δ b n (q ωiu ) = ρ n-1 δ b n (ω i 1|u|1). To reduce space, we will usually write q u instead of q ω0u . As recalled in Subsection 1.4.2, given ϕ ∈ HH n (A), the Gerstenhaber bracket [G(ρ)i 1 ,ϕ] ∈ HH n (A) is given by the cohomology class of ρϕ -ϕρ n .

In what follows, we consider a set of derivations of A whose classes give a basis of HH 1 (A) and for each of them we will provide some of the corresponding elements q ωiu satisfying (5.2.5). Then, we shall compute the respective Gerstenhaber brackets by means of Theorem 1.4.7.

The proof of the following result follows immediately from the statement.

Proposition 5.2.5. Let ρ : A → A be the derivation of A defined by ρ

(x) = deg(x)x for x ∈ B. Then ρ • defined by ρ n (ω i x|u|y) = (deg(x) + deg(y) + n + 2i)ω i x|u|y for x,y ∈ B, i ∈ 0,⌊n/4⌋ , u ∈ B ! * ω i x|u|y. Since G(ρ)i 1 = -X 8 , the Gerstenhaber bracket [X 8 ,ϕ] ∈ HH n (A) for ϕ ∈ HH n (A)
is given by the cohomology class -a(ϕ)ϕ, where a(ϕ) is the internal degree of ϕ. Hence,

[X 8 ,X j ] =                -2X j , if j ∈ 1, 7 \ {3}, -4X 3 , if j = 3, 0, if j = 8, 2X j , if j ∈ 9, 13 , 6X 14 , if j = 14.
The proof of Facts 5.2.6, 5.2.7, 5.2.8 and 5.2.9 below is a lengthy but straightforward computation.

Fact 5.2.6. Let ρ = ρ 4 : A → A be the derivation of A defined by ρ 4 (a) = bac and ρ 4 (x) = 0 for x ∈ B \ {a}. Then the elements q ωiu = q 4 ωiu ∈ P b n in (5.2.5) can be chosen as follows. First, q 4 βn = q 4 γn = 0 for n ∈ N. Moreover, Then the elements q ωiu = q 5 ωiu ∈ P b n in (5.2.5) can be chosen as follows. First, q 5 αn = q 5 γn = 0 for n ∈ N. Moreover, Fact 5.2.8. Let ρ = ρ 6 : A → A be the derivation of A defined by ρ 6 (c) = aba and ρ 6 (x) = 0 for x ∈ B \ {c}. Then the elements q ωiu = q 6 ωiu ∈ P b n in (5.2.5) can be chosen as follows. First, q 6 αn = q 6 βn = 0 for n ∈ N. Moreover, 

q 4 α = ba|γ|1 + b|α|c + 1|β|ac, q 4 α2 = ba|αβ|1 -b|α 2 |b -c|α 2 |c -b|αβ|c + 1|αβ|ac, q 4 αβ = ab|γ 2 |1 -ab|α 2 |1 + ba|αγ|1 -2b|α 2 |c -c|α 2 |a -b|β 2 |c -a|αβ|c -b|αβ|a + 1|α 2 |bc -1|β 2 |ab + 1|αγ|ac, q 4 αγ = ba|γ 2 |1 + 1|β 2 |ac, q 4 α3 = bc|β 3 |1 + ba|α 2 γ|1 + b|α 3 |c + c|α 3 |b + b|β 3 |a -c|β 3 |c -a|α 2 γ|c + b|α 2 γ|b -1|β 3 |ac -1|α 2 γ|bc, q 4 α2β = ab|γ 3 |1 + ba|αβ 2 |1 -a|α 3 |b -2a|β 3 |c -c|β 3 |a -b|γ 3 |c -c|γ 3 |b -a|α 2 β|c -c|αβ 2 |c -b|α 2 γ|c -a|α 2 γ|a + 1|α 3 |bc + 1|γ 3 |ba -1|α 2 γ|ba -1|αβ 2 |bc, q 4 α2γ = ba|α 2 β|1 + ab|αβ 2 |1 -2ab|α 3 |1 -ba|β 3 |1 + a|α 3 |c + 2b|α 3 |b + c|α 3 |a + a|β 3 |a + b|β 3 |c + c|β 3 |b + a|α 2 γ|b + a|αβ 2 |c -1|α 3 |ba -2|β 3 |ab + 1|αβ 2 |ac,
q 5 β = ab|γ|1 + a|β|c + 1|α|bc, q 5 β2 = ab|αγ|1 -a|β 2 |a -c|β 2 |c -a|αγ|c + 1|αγ|bc, q 5 αβ = ab|γ 2 |1 + 1|α 2 |bc, q 5 αγ = ab|αβ|1 -bc|αβ|1 -2ba|β 2 |1 -a|α 2 |c -2a|β 2 |c + b|β 2 |a -c|β 2 |b + b|γ 2 |a + b|αβ|b -a|αγ|b + 1|β 2 |ac -1|α 2 |ba + 1|αβ|bc, q 5 β3 = (ba + ac)|α 3 |1 + ab|α 2 γ|1 + a|α 3 |b + b|α 3 |a + 2a|β 3 |c + c|β 3 |a + b|γ 3 |c + c|γ 3 |b + a|α 2 β|c + a|α 2 γ|a + c|αβ 2 |c -1|γ 3 |ba + 1|αβ 2 |bc, q 5 α2β = 2ab|γ 3 |1 -2(ba + ac)|α 3 |1 -(ab + bc)|α 2 γ|1 + (ba + ac)|αβ 2 |1 -a|α 3 |b -2b|α 3 |a -2c|β 3 |a -b|γ 3 |c -c|γ 3 |b -2a|α 2 γ|a -c|αβ 2 |c + 2|α 3 |bc + 1|γ 3 |ba -1|α 2 γ|ba, q 5 α2γ = ba|α 2 β|1 -2ba|β 3 |1 -ab|α 3 |1 + a|α 3 |c + b|α 3 |b + c|α 3 |a + 2a|β 3 |a + b|β 3 |c + c|β 3 |b + b|α 2 β|c + b|α 2 γ|a + b|αβ 2 |b -2|α 3 |ba -1|β 3 |ab + 1|α 2 β|bc, q 5 αβ2 = ba|γ 3 |1 + ab|α 2 β|1 -b|α 3 |c -c|α 3 |b -b|β 3 |a + c|β 3 |c -b|α 2 γ|b + b|αβ 2 |c + 2|β 3 |ac -1|α 2 γ|ab + 1|α 2 γ|bc, q 5 ω1ϵ ! = 4bac|α
q 6 γ = ab|α|1 + a|β|a + 1|α|ba, q 6 γ2 = ba|αβ|1 -b|α 2 |b + c|β 2 |c + a|γ 2 |a + c|αβ|a + a|αγ|c + 1|αγ|ab, q 6 αβ = 2ab|α 2 |1 + c|α 2 |a + b|β 2 |c + b|αβ|a + 1|β 2 |ab, q 6 αγ = ba|β 2 |1 + a|α 2 |c + c|β 2 |b + a|αγ|b + 2|α 2 |ba, q 6 γ3 = ab|αβ 2 |1 -ba|β 3 |1 + a|β 3 |a -a|γ 3 |b -b|γ 3 |a -b|α 2 β|c -c|α 2 β|b -b|αβ 2 |b -1|β 3 |ab + 1|αβ 2 |ba, q 6 α2β = ac|α 3 |1 + ab|α 2 γ|1 + 2c|α 3 |c + 2a|β 3 |c + 2c|β 3 |a + 2a|α 2 γ|a + b|α 2 γ|c + c|α 2 γ|b + a|αβ 2 |b + b|αβ 2 |a -1|α 3 |(ab + bc) + 1|α 2 γ|ba, q 6 α2γ = 3ab|α 3 |1 + 2ba|β 3 |1 -a|α 3 |c -c|α 3 |a -b|β 3 |c -c|β 3 |b + 3|α 3 |ba + 2|β 3 |ab, q 6 αβ2 = 2bc|β 3 |1 + 2ba|α 2 γ|1 + 3b|α 3 |c + 3c|α 3 |b + 3b|α 2 γ|b -2|β 3 |(ba + ac) + 2|α 2 γ|ab, q 6 ω1ϵ ! =
+ 2a|α 2 β 2 |bac + c|α 2 β 2 |aba -ω 1 a|ϵ ! |a.
Fact 5.2.9. Let ρ = ρ 7 : A → A be the derivation of A defined by ρ 7 (a) = aba-abc, ρ 7 (ab) = ρ 7 (ac) = abac, ρ 7 (ba) = -abac and ρ 7 (x) = 0 for x ∈ B \ {a,ab,ba,ac}. Then the elements q ωiu = q 7 ωiu ∈ P b n in (5.2.5) can be chosen as follows. First, q 7 βn = q 7 γn = 0 for n ∈ N. Moreover,

q 7 α = ab|α|1 -ab|γ|1 + a|β|a -a|β|c + 1|α|ba -1|α|bc, q 7 α2 = ab|α 2 |1 + ac|α 2 |1 -a|αβ|a -1|α 2 |bc + 2|α 2 |ba, q 7 αβ = ba|β 2 |1 -ba|γ 2 |1 + (ba + ac)|αβ|1 + a|α 2 |c + c|β 2 |b + c|β 2 |c -a|γ 2 |c + b|γ 2 |b -c|γ 2 |b + c|αβ|a -c|αβ|c + a|αγ|b + c|αγ|b + 1|α 2 |ba -1|γ 2 |ba + 1|αβ|(ba + ac), q 7 αγ = ab|α 2 |1 -ab|γ 2 |1 + c|α 2 |a -c|α 2 |c + b|β 2 |c + b|αβ|a -b|αβ|c + 1|β 2 |ab + 1|αβ|ac, q 7 α3 = ab|α 3 |1 + ac|α 3 |1 -1|α 3 |bc + 2|α 3 |ba, q 7 α2β = ab|α 3 |1 + 2ba|β 3 |1 + 2bc|β 3 |1 -ba|γ 3 |1 + 2ba|α 2 γ|1 -ab|αβ 2 |1 -a|α 3 |c + 3b|α 3 |c + c|α 3 |b -a|β 3 |a -a|β 3 |b + b|β 3 |a -b|β 3 |c -2c|β 3 |b + c|β 3 |c -a|γ 3 |b + a|γ 3 |c -b|γ 3 |b + 2c|γ 3 |a + c|α 2 β|c -a|α 2 γ|b + a|α 2 γ|c + b|α 2 γ|b -a|αβ 2 |c + b|αβ 2 |c -c|αβ 2 |b + 2|α 3 |ba + 1|β 3 |ab -3|γ 3 |ab -1|α 2 β|bc + 1|α 2 β|ba + 2|α 2 β|ac, q 7 α2γ = ac|α 3 |1 -ba|γ 3 |1 -(ab + bc)|α 2 β|1 + ba|αβ 2 |1 -b|α 3 |a + 3b|α 3 |c + 2c|α 3 |b + c|α 3 |c + a|β 3 |c + c|β 3 |a -a|γ 3 |a + 2a|γ 3 |c -2b|γ 3 |b + 2c|γ 3 |a + b|α 2 β|b -c|α 2 β|a + 2c|α 2 β|c + a|α 2 γ|a + b|α 2 γ|b + b|α 2 γ|c + c|α 2 γ|a + b|αβ 2 |a -2|γ 3 |ab + 2|α 2 β|ac, q 7 αβ2 = ab|α 3 |1 + ba|β 3 |1 -2ab|γ 3 |1 -a|α 3 |c -c|α 3 |a + 2c|α 3 |c -a|γ 3 |b + b|γ 3 |c + c|α 2 γ|b [-X 5 ,X 13 ] = -5α 2 β|abc + 3α 2 γ|aba -3e 3 8,3 = -8α 2 β|abc = -8X 4 X 10 , [-X 5 ,X 14 ] = (4/3)α 2 β 2 |1 -(1/3)β 4 |1 = (4/3)X 9 X 10 -(1/3)X 2 10 .
Moreover, using the coboundaries g 2 j,2 ∈ B2 2 for j ∈ 1,5 and e 3 k,3 ∈ B3 3 for k ∈ 7,8 given in Subsubsection 4.2.2.3, (5.2.4), (5.2.7) and the identity γ 4 |1 = X 2 11 given in Fact 5.1.3, we obtain [-X 6 , X 9 ] = αβ|(bc -ab) -αγ|(2ba

+ ac) + 2g 2 4,2 -g 2 5,2 = 0, [-X 6 ,X 10 ] = -αβ|(ab + bc) + αγ|ac + g 2 5,2 = 0, [-X 6 ,X 12 ] = γ 2 |(bc -ba -ac) -αβ|ba -αγ|ab -2g 2 1,2 -2g 2 2,2 -g 2 3,2 = -2(α 2 + β 2 )|(ab + ba) = -2X 1 (X 9 + X 10 ), [-X 6 ,X 13 ] = -10α 2 γ|aba -2αβ 2 |bac -2e 3 7,3 + 10e 3 8,3 = 8α 2 β|abc = 8X 4 X 10 , [-X 6 ,X 14 ] = (1/3)γ 4 |1 -(4/3)α 2 β 2 |1 = (1/3)X 2 11 -(4/3)X 9 X 10 .
Finally, using the coboundaries g 2 j,2 ∈ B2 2 for j ∈ 1,6 \ {3} and e 3 k,3 ∈ B3 3 for k ∈ 1,4 ∪ 9,10 given in Subsubsection 4.2.2.3, (5.2.4) and

α 3 |(aba -abc) = X 7 X 9 , α 3 |aba + β 3 |bac = X 7 (X 9 + X 10 ) -2X 6 X 12 , (α 3 + β 3 )|aba = X 6 X 12 , (α 3 β + α 3 γ)|1 + 3ω 1 ϵ ! |(ba -bc + ac) = X 9 X 12 ,
given in Fact 5.1.3, or in (5.1.2), together with the second element in the fifth and the eighth line, the first element in the ninth line of (5.1.5), we have that

[-X 7 , X 9 ] = α 2 |(bc -ab -ac -2ba) -αβ|(ba + ac) + αγ|bc -g 2 1,2 -g 2 6,2 = -4α 2 |(ab + ba) = -4X 1 X 9 , [-X 7 ,X 10 ] = αβ|ac -αγ|(ab + bc) -g 2 2,2 = -β 2 |(ab + ba) = -X 1 X 10 , [-X 7 ,X 11 ] = αβ|ba + αγ|ab + g 2 1,2 + g 2 2,2 = (α 2 + β 2 )|(ab + ba) = X 1 (X 9 + X 10 ), [-X 7 ,X 12 ] = (αβ + αγ)|(bc -ba -ac) -g 2 1,2 + g 2 4,2 -g 2 5,2 = -α 2 |(ab + ba) = -X 1 X 9 , [-X 7 ,X 13 ] = α 3 |(abc -2aba) + α 2 β|(2bac -6aba) -α 2 γ|(abc + 4bac) + 5αβ 2 |(abc -aba) -(1/3)(23e 3 1,3 + 11e 3 2,3 -32e 3 3,3 -16e 3 4,3 -5e 3 9,3 + 6e 3 10,3 ) = (8/3)α 3 |(aba -abc) -(32/3)(α 3 + β 3 )|aba -(16/3)(α 3 |aba + β 3 |bac) = -(8/3)X 7 (X 9 + 2X 10 ) = -4X 1 X 13 + 4X 2 X 13 + 8X 4 X 12 , [-X 7 ,X 14 ] = -(α 3 β + α 3 γ)|1 + 3ω * 1 ϵ ! |(bc -ba -ac) = -X 9 X 12 .
The proposition is thus proved. Remark 5.2.11. Note that vanishing of [X i ,X j ] for i ∈ 4, 7 and j ∈ 3, 7 in Proposition 5.2.10 also follows from a simple degree argument based on Corollary 1.3.8 and the Hilbert series of the Hochschild cohomology given in Corollary 4.2.20.

Gerstenhaber brackets

We will finally compute the remaining Gerstenhaber brackets. We start with the following result, which is a sort of descending argument. Lemma 5.2.12. Let H = ⊕ n∈N0 H n be a Gerstenhaber algebra with bracket [ , ]. Let x ∈ H n+1 , y ∈ H n , a x ∈ H 0 , a y ∈ H 1 and z ∈ H m satisfy that a x x = a y y, and there is a vector subspace M ⊆ H n+m-1 such that [y,z] ∈ M and the map µ ay : M → H n+m sending v ∈ M to a y v is injective. Then, [y,z] is the unique element v ∈ M satisfying that a y v coincides with

(-1) m-1 a x [x,z] + [a x ,z]x -[a y ,z]y .
(5.2.8)

Proof. By (1.3.4) we get that

[a x x,z] = [a x ,z]x + a x [x,z] and [a y y,z] = [a y ,z]y + (-1) m-1 a y [y,z].
These identities together with a x x = a y y imply

a y [y,z] = (-1) m-1 a x [x,z] + [a x ,z]x -[a y ,z]y .
Hence, the right member is in the image of the injective map µ ay , and the result follows.

Remark 5.2.13. We will apply the previous lemma to the case when H is the Hochschild cohomology of a graded algebra, so H is endowed with an extra grading, called internal (see Corollary 1.3.8), the elements x,y,z, a x , a y are homogeneous for both gradings and M ⊆ H n+m-1 is the subspace of internal degree equal to the sum of those of y and z. In this case, the methods given in Subsections 1.4.1 and 1.4.2 allow to compute the last two brackets of (5.2.8), whereas the first one will usually vanish by degree reasons.

Proposition 5.2.14. Let A = FK(3) be the Fomin-Kirillov algebra on 3 generators. Then, we have the Gerstenhaber brackets [X i ,X j ] = 0 for i,j ∈ 9,14 \ {13} and

[X 13 ,X j ] =          2X 2 j , if j ∈ 9,11 , -6X 1 X 14 + 6X 2 X 14 + 2X 9 X 12 , if j = 12, 0, if j = 13, 4(X 9 + X 10 + X 11 )X 14 , if j = 14.
Proof. Recall that, by Corollary 1.3.8, the Gerstenhaber bracket satisfies that [ , ] :

H n1 m1 × H n2 m2 → H n1+n2-1 m1+m2-1
, where H ni mi has internal degree m i -n i for i = 1,2. Using this degree argument together with the Hilbert series of the Hochschild cohomology computed in Corollary 4.2.20, we easily see that [X i ,X j ] = 0 for i,j ∈ 9,14 \ {13}. Moreover, [X 13 ,X 13 ] = 0 by (1.3.3).

It remains to compute [X 13 ,X j ] for all j ∈ 9, 14 \ {13}. Note first the identities

[X 8 ,X 9 ]X 13 -6[X 3 ,X 9 ]X 14 = 2X 9 X 13 + 12X 4 X 14 = 2X 8 X 2 9 , [X 8 ,X 10 ]X 13 -6[X 3 ,X 10 ]X 14 = 2X 10 X 13 + 12X 5 X 14 = 2X 8 X 2 10 , [X 8 ,X 11 ]X 13 -6[X 3 ,X 11 ]X 14 = 2X 11 X 13 -12X 6 X 14 = 2X 8 X 2 11 , [X 8 ,X 12 ]X 13 -6[X 3 , X 12 ]X 14 = 2X 12 X 13 -12X 7 X 14 + 6X 1 X 8 X 14 -6X 2 X 8 X 14 = 2X 8 X 11 X 12 + 6X 1 X 8 X 14 = 2X 8 X 2 12 -4X 8 X 9 X 10 = 2X 8 X 9 X 12 -6X 1 X 8 X 14 + 6X 2 X 8 X 14 ,
[X 8 ,X 14 ]X 13 -6[X 3 , X 14 ]X 14 = 4X 8 (X 9 + X 10 + X 11 )X 14 , (5.2.9)

where the first equality of the first fourth lines as well as that of the last line follows from Propositions 5.2.4 and 5.2.5, and we used the first element of the seventh and the eighth line of (5.1.5), as well as its last four elements, for the remaining equalities. The penultimate element of the ninth line of (5.1.5), also tells us that 6X 3 X 14 = X 8 X 13 ∈ HH • (A).

Notice now that, by degree reasons, [X 13 ,X j ] ∈ H 4 0 for j ∈ 9,12 and H 4 0 is precisely the subspace of HH 4 (A) spanned by the elements X 2 9 , X 2 10 , X 2 11 , X 9 X 12 -3X 1 X 14 +3X 2 X 14 , X 9 X 10 , X 1 X 14 and X 2 X 14 . On the other hand, [X 13 ,X 14 ] ∈ H 6 -2 = ω * 1 H 2 0 , by degree reasons, and

ω * 1 H 2 0
is the subspace of HH 4 (A) spanned by X 9 X 14 , X 10 X 14 , X 11 X 14 and X 12 X 14 . Let us denote by j M ⊆ HH 4 (A) the subspace given by H 4 0 if j ∈ 9, 12 and by H 6 -2 if j = 14. Since the elements X 8 X 2 9 , X 8 X 2 10 , X 8 X 2 11 , X 8 X 9 X 12 -3X 1 X 8 X 14 + 3X 2 X 8 X 14 , X 8 X 9 X 10 , X 1 X 8 X 14 , and X 2 X 8 X 14 are linearly independent, by the second equalities of the first four lines of (5.2.9) together with (5.1.6) and (5.1.7), the map j M → HH 5 (A) given by left multiplication by X 8 is injective for j ∈ 9, 12 . Similarly, the elements X 8 X 9 X 14 , X 8 X 10 X 14 , X 8 X 11 X 14 and X 8 X 12 X 14 are linearly independent, by (5.1.7), so the map 14 M → HH 7 (A) given by left multiplication by X 8 is also injective.

Finally, applying Lemma 5.2.12 to x = X 14 , y = X 13 , z = X j , a x = 6X 3 , a y = X 8 and M = j M for j ∈ 9,14 \ {13}, together with the fact remarked at the beginning of the proof that [X 14 ,X j ] = 0 and (5.2.9), the result follows.

We can summarize the calculations of the Gerstenhaber brackets on HH • (A) done in Propositions 5.2.4, 5.2.5, 5.2.10 and 5.2.14 in the following table, where the brackets strictly below the diagonal are not displayed since they can be obtained using Lemma 1.3.6. for all homogeneous elements x,y ∈ HH • (A), where |x| is the cohomological degree of x. In particular, there is no Batalin-Vilkovisky structure on HH • (A) inducing the Gerstenhaber bracket.

ρ ϕ X 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 X 9 X 10 X 11 X 12 X 13 X 14 X 1 0 0 0 0 0 0 0 2X 1 0 0 0 0 4X 1 (X 9 + X 10 ) 0 X 2 0 0 0 0 0 0 2X 2 0 0 0 0 4X 1 X 10 0 X 3 0 0 0 0 0 4X 3 -2X 4 -2X 5 2X 6 2X 7 -X 1 X 8 + X 2 X 8 4X 3 (X 9 + X 10 + X 11 ) X 13 -(2/3)X 8 (X 9 + X 10 + X 11 ) X 4 0 0 0 0 2X 4 0 0 0 2X 1 X 9 8X 4 X 10 (1/3)X 2 9 -(4/3)X 9 X 10 X 5 0 0 0 2X 5 0 0 0 2X 1 X 10 8X 4 X 10 (1/3)X 2 10 -(4/3)X 9 X 10 X 6 0 0 2X 6 0 0 0 2X 1 (X 9 + X 10 ) -8X 4 X 10 (4/3)X 9 X 10 -(1/3)X 2 11 X 7 0 2X 7 4X 1 X 9 X 1 X 10 -X 1 (X 9 + X 10 ) X 1 X 9 4X 1 X 13 -4X 2 X 13 -8X 4 X
Proof. Assume that (5.2.10) holds. Obviously, ∆(HH 0 (A)) = 0. Applying the results in Table 5.2.1 and (5.2.10), we get -4X 3 = [X 8 ,X 3 ] = ∆(X 8 )X 3 , and 0 = [X i ,X j ] = ∆(X i )X j for i ∈ 4,7 and j ∈ 1,3 , since X 8 X 3 = X i X j = 0 in that case (see the first two lines of (5.1.5)). Hence, ∆(X 8 ) ∈ -4

+ span k {X 1 ,X 2 ,X 3 } and ∆(X i ) ∈ span k {X 1 ,X 2 ,X 3 } for i ∈ 4,7 , where span k {X 1 ,X 2 ,X 3 } is the k-subspace spanned by {X 1 ,X 2 ,X 3 }. Moreover, -2X 4 = [X 3 ,X 9 ] = ∆(X 3 X 9 ) -X 3 ∆(X 9 ) = ∆(X 3 X 9 ), 2X 4 = [X 4 ,X 8 ] = -∆(X 4 X 8 ) + ∆(X 4 )X 8 -X 4 ∆(X 8 ) = -∆(X 4 X 8 ) + ∆(X 4 )X 8 + 4X 4 , (5.2.11) 
where we used that X 4 X i = X 3 X k = 0 for i ∈ 1, 3 and k ∈ 4,8 , by the first two lines of (5.1.5). Since X 3 X 9 = X 4 X 8 ∈ HH 2 (A) (see the penultimate element of the third line of (5.1.5)), adding the equations (5.2.11), we obtain ∆(X 4 )X 8 + 4X 4 = 0. The identity ∆(X 4 ) = k 1 X 1 + k 2 X 2 +k 3 X 3 for k 1 ,k 2 ,k 3 ∈ k, which we proved before, implies that k 1 X 1 X 8 +k 2 X 2 X 8 +4X 4 = 0. This is impossible since the elements X 1 X 8 ,X 2 X 8 and X 4 are linearly independent in HH 1 (A) (see (5.1.6)). The proposition thus follows.

Chapter 6

Fomin-Kirillov algebra of index 4

6.1 Resolving datum on FK(4)

We will compute a connected resolving datum on the Fomin-Kirillov algebra FK(4) of index 4 (see Theorem 6.1.5), then we obtain immediately a projective resolution of the trivial module in the category of bounded-below graded right FK(4)-modules by Theorem 1.2.5 (see [START_REF]A projective resolution for the Fomin-Kirillov algebra FK[END_REF]). In this section, k is a field of characteristic different from 2 and 3, and we will denote the Fomin-Kirillov algebra FK(4) of index 4 simply by A. For a set S, we denote by kS the kvector space spanned by all elements of S. Let I be the set {(i,j) ∈ 1,4 2 | i < j}, I 1 the set {(1,2), (1,3), (2,3)} and J the set {(i,j) ∈ 1,4 | i ̸ = j}.

Generalities

We recall that the Fomin-Kirillov algebra A of index 4 is the quadratic k-algebra generated by the k-vector space V spanned by X = {x i,j | (i,j) ∈ I}, modulo the ideal generated by the vector space R ⊆ V ⊗2 spanned by the following 17 elements

x 2 1,2 , x 2 1,3 , x 2 2,3 , x 2 1,4 , x 2 2,4 , x 2 3,4 , x 1,2 x 2,3 -x 2,3 x 1,3 -x 1,3 x 1,2 , x 2,3 x 1,2 -x 1,2 x 1,3 -x 1,3 x 2,3 , x 1,2 x 2,4 -x 2,4 x 1,4 -x 1,4 x 1,2 , x 2,4 x 1,2 -x 1,2 x 1,4 -x 1,4 x 2,4 , x 1,3 x 3,4 -x 3,4 x 1,4 -x 1,4 x 1,3 , x 3,4 x 1,3 -x 1,3 x 1,4 -x 1,4 x 3,4 , x 2,3 x 3,4 -x 3,4 x 2,4 -x 2,4 x 2,3 , x 3,4 x 2,3 -x 2,3 x 2,4 -x 2,4 x 3,4 , x 1,2 x 3,4 -x 3,4 x 1,2 , x 1,3 x 2,4 -x 2,4 x 1,3 , x 1,4 x 2,3 -x 2,3 x 1,4 .
Recall that the dimension of A is 576 and the Hilbert series of A is

[2] 2 [3] 2 [4] 2 = 1 + 6t + 19t 2 + 42t 3 + 71t 4 + 96t 5 + 106t 6 + 96t 7 + 71t 8 + 42t 9 + 19t 10 + 6t 11 + t 12 ,
where [n] = n-1 i=0 t i , for n ∈ N. Note that A = ⊕ m∈ 0,12 A m , where A m is the subspace of A concentrated in internal degree m.

If the free monoid generated by X is equipped with the homogeneous lexicographic order induced by the well order x 1,2 ≺ x 1,3 ≺ x 2,3 ≺ x 1,4 ≺ x 2,4 ≺ x 3,4 on X, then a Gröbner basis G A of the ideal (R) in the algebra T(V ) is given by the following 30 elements

x 2 1,2 , x 2 1,3 , x 2,3 x 1,2 -x 1,3 x 2,3 -x 1,2 x 1,3 , x 2,3 x 1,3 + x 1,3 x 1,2 -x 1,2 x 2,3 , x 2 2,3 , x 1,4 x 2,3 -x 2,3 x 1,4 , x 2 1,4 , x 2,4 x 1,2 -x 1,4 x 2,4 -x 1,2 x 1,4 , x 2,4 x 1,3 -x 1,3 x 2,4 , x 2,4 x 1,4 + x 1,4 x 1,2 -x 1,2 x 2,4 , x 2 2,4 , x 3,4 x 1,2 -x 1,2 x 3,4 , x 3,4 x 1,3 -x 1,4 x 3,4 -x 1,3 x 1,4 , x 3,4 x 2,3 -x 2,4 x 3,4 -x 2,3 x 2,4 , x 3,4 x 1,4 + x 1,4 x 1,3 -x 1,3 x 3,4 , x 3,4 x 2,4 + x 2,4 x 2,3 -x 2,3 x 3,4 , x 2 3,4 , x 1,3 x 1,2 x 1,3 + x 1,2 x 1,3 x 1,2 , x 1,4 x 1,2 x 1,4 + x 1,2 x 1,4 x 1,2 , x 1,4 x 1,3 x 1,2 -x 1,4 x 1,2 x 2,3 + x 2,3 x 1,4 x 1,3 , x 1,4 x 1,3 x 2,3 + x 1,4 x 1,2 x 1,3 -x 2,3 x 1,4 x 1,2 , x 1,4 x 1,3 x 1,4 + x 1,3 x 1,4 x 1,3 , x 2,4 x 2,3 x 1,4 + x 1,4 x 1,2 x 2,3 -x 1,2 x 2,4 x 2,3 , x 2,4 x 2,3 x 2,4 + x 2,3 x 2,4 x 2,3 , x 1,4 x 1,2 x 1,3 x 2,3 -x 2,3 x 1,4 x 1,2 x 2,3 , x 1,4 x 1,2 x 1,3 x 1,4 + x 1,3 x 1,4 x 1,2 x 1,3 + x 1,2 x 1,3 x 1,4 x 1,2 , x 1,4 x 1,2 x 2,3 x 1,4 + x 1,2 x 1,4 x 1,2 x 2,3 , x 1,4 x 1,2 x 1,3 x 1,2 x 2,3 + x 2,3 x 1,4 x 1,2 x 1,3 x 1,2 , x 1,4 x 1,2 x 1,3 x 1,2 x 1,4 x 1,2 -x 1,3 x 1,4 x 1,2 x 1,3 x 1,2 x 1,4 , Fact 6.1.3. Let d n : K n → K n-1
be the differential of the Koszul complex of A for n ∈ N. It can be explicitly described as follows. First, d 1 (z i,j |1) = ϵ ! |x i,j for (i,j) ∈ I, and d n (z i,j n-r z k,l r |1) = (-1) r z i,j n-r-1 z k,l r |x i,j + z i,j n-r z k,l r-1 |x k,l , (6.1.6)

for n ⩾ 2, r ∈ 0,n , (i,j) ∈ I 1 , (k,l) ∈ I with #{i,j,k,l} = 4, where we follow the convention that z i,j n z k,l 0 = z i,j n , z i,j 0 z k,l n = z k,l n , z i,j n z k,l -1 = 0 and z i,j -1 z k,l n = 0 for n ∈ N. Moreover, for n ⩾ 5, the differential d n+1 is given by (6.1.6) and

z 1,2 n z 1,3 |1 → -(z 1,2 n-1 z 2,3 + χn+1z 2,3 n )|x1,2 + (z 1,2 n + z 1,2 n-2 z 1,3 2 + χnz 2,3 n )|x1,3 + (z 1,2 n-1 z 1,3 + χn+1z 1,3 n )|x2,3, z 1,2 n z 2,3 |1 → -{z 1,2 n-1 z 1,3 + χn+1z 1,3 n }|x1,2 -{z 1,2 n-1 z 2,3 + χn+1z 2,3 n }|x1,3 + {z 1,2 n + z 1,2 n-2 z 1,3 2 + χnz 1,3 n }|x2,3, z 1,2 n z 1,4 |1 → -{z 1,2 n-1 z 2,4 + χn+1z 2,4 n }|x1,2 + {z 1,2 n + z 1,2 n-2 z 1,4 2 + χnz 2,4 n }|x1,4 + {z 1,2 n-1 z 1,4 + χn+1z 1,4 n }|x2,4, z 1,2 n z 2,4 |1 → -{z 1,2 n-1 z 1,4 + χn+1z 1,4 n }|x1,2 -{z 1,2 n-1 z 2,4 + χn+1z 2,4 n }|x1,4 + {z 1,2 n + z 1,2 n-2 z 1,4 2 + χnz 1,4 n }|x2,4, z 1,2 n-1 z 1,3 2 |1 → z 1,2 n-2 z 1,3 2 + χn(z 1,3 n + z 2,3 n ) |x1,2 + z 1,2 n-1 z 1,3 |x1,3 + z 1,2 n-1 z 2,3 |x2,3, z 1,2 n-1 z 1,3 z 1,4 |1 → {z 1,2 n-2 z 2,3 z 2,4 + χnz 2,3 n-1 z 2,4 }|x1,2 -z 1,2 n-3 z 1,3 2 z 3,4 + χn+1z 2,3 n-1 z 3,4 + ⌊ n 2 ⌋ s=1 z 1,2 n-2s+1 z 3,4 2s-1 |x1,3 -{z 1,2 n-2 z 1,3 z 1,4 + χnz 1,3 n-1 z 1,4 }|x2,3 + z 1,2 n-1 z 1,3 + z 1,2 n-3 z 1,3 z 1,4 2 + χn+1 n-1 2 s=1 z 1,3 n-2s z 2,4 2s |x1,4 -z 1,2 n-2 z 2,3 z 1,4 + χn n 2 s=1 z 2,3 n-2s+1 z 1,4 2s-1 |x2,4 + z 1,2 n-1 z 1,4 + z 1,2 n-3 z 1,3 2 z 1,4 + χn+1 n-1 2 s=1 z 2,3 n-2s+1 z 1,4 2s-1 |x3,4, z 1,2 n-1 z 1,3 z 2,4 |1 → z 1,2 n-2 z 2,3 z 1,4 + χn n 2 s=1 z 2,3 n-2s+1 z 1,4 2s-1 |x1,2 -{z 1,2 n-1 z 2,4 + z 1,2 n-3 z 1,3 2 z 2,4 + χn+1z 2,3 n-1 z 2,4 }|x1,3 -{z 1,2 n-2 z 1,3 z 3,4 + χnz 1,3 n-1 z 3,4 }|x2,3 + {z 1,2 n-2 z 2,3 z 2,4 + χnz 2,3 n-1 z 2,4 }|x1,4 + {z 1,2 n-1 z 1,3 + z 1,2 n-3 z 1,3 z 1,4 2 + χn+1z 1,3 n-2 z 1,4 2 }|x2,4 + z 1,2 n-2 z 1,3 z 2,4 + χn n 2 s=1 z 1,3 n-2s+1 z 2,4 2s-1 |x3,4, z 1,2 n-1 z 1,3 z 3,4 |1 → {z 1,2 n-2 z 2,3 z 3,4 + χnz 2,3 n-1 z 3,4 }|x1,2 -z 1,2 n-1 z 1,4 + z 1,2 n-3 z 1,3 2 z 1,4 + χn+1 n-1 2 s=1 z 2,3 n-2s+1 z 1,4 2s-1 |x1,3 -z 1,2 n-2 z 1,3 z 2,4 + χn n 2 s=1 z 1,3 n-2s+1 z 2,4 2s-1 |x2,3 -z 1,2 n-3 z 1,3 2 z 3,4 + χn+1z 2,3 n-1 z 3,4 + ⌊ n 2 ⌋ s=1 z 1,2 n-2s+1 z 3,4 2s-1 |x1,4 -{z 1,2 n-2 z 1,3 z 3,4 + χnz 1,3 n-1 z 3,4 }|x2,4 + z 1,2 n-1 z 1,3 + z 1,2 n-3 z 1,3 z 1,4 2 + χn+1 n-1 2 s=1 z 1,3 n-2s z 2,4 2s |x3,4, z 1,2 n-1 z 2,3 z 1,4 |1 → z 1,2 n-2 z 1,3 z 2,4 + χn n 2 s=1 z 1,3 n-2s+1 z 2,4 2s-1 |x1,2 + {z 1,2 n-2 z 2,3 z 3,4 + χnz 2,3 n-1 z 3,4 }|x1,3 -{z 1,2 n-1 z 1,4 + z 1,2 n-3 z 1,3 2 z 1,4 + χn+1z 1,3 n-1 z 1,4 }|x2,3 + {z 1,2 n-1 z 2,3 + z 1,2 n-3 z 2,3 z 1,4 2 + χn+1z 2,3 n-2 z 2,4 2 }|x1,4 -{z 1,2 n-2 z 1,3 z 1,4 + χnz 1,3 n-1 z 1,4 }|x2,4 -z 1,2 n-2 z 2,3 z 1,4 + χn n 2 s=1 z 2,3 n-2s+1 z 1,4 2s-1 |x3,4, z 1,2 n-1 z 2,3 z 2,4 |1 → {z 1,2 n-2 z 1,3 z 1,4 + χnz 1,3 n-1 z 1,4 }|x1,2 + {z 1,2 n-2 z 2,3 z 2,4 + χnz 2,3 n-1 z 2,4 }|x1,3 -z 1,2 n-3 z 1,3 2 z 3,4 + χn+1z 1,3 n-1 z 3,4 + ⌊ n 2 ⌋ s=1 z 1,2 n-2s+1 z 3,4 2s-1 |x2,3 + z 1,2 n-2 z 1,3 z 2,4 + χn n 2 s=1 z 1,3 n-2s+1 z 2,4 2s-1 |x1,4 + z 1,2 n-1 z 2,3 + z 1,2 n-3 z 2,3 z 1,4 2 + χn+1 n-1 2 s=1 z 2,3 n-2s z 1,4 2s |x2,4 + z 1,2 n-1 z 2,4 + z 1,2 n-3 z 1,3 2 z 2,4 + χn+1 n-1 2 s=1 z 1,3 n-2s+1 z 2,4 2s-1 |x3,4, z 1,2 n-1 z 2,3 z 3,4 |1 → {z 1,2 n-2 z 1,3 z 3,4 + χnz 1,3 n-1 z 3,4 }|x1,2 + z 1,2 n-2 z 2,3 z 1,4 + χn n 2 s=1 z 2,3 n-2s+1 z 1,4 2s-1 |x1,3 -z 1,2 n-1 z 2,4 + z 1,2 n-3 z 1,3 2 z 2,4 + χn+1 n-1 2 s=1 z 1,3 n-2s+1 z 2,4 2s-1 |x2,3 + {z 1,2 n-2 z 2,3 z 3,4 + χnz 2,3 n-1 z 3,4 }|x1,4 -z 1,2 n-3 z 1,3 2 z 3,4 + χn+1z 1,3 n-1 z 3,4 + ⌊ n 2 ⌋ s=1 z 1,2 n-2s+1 z 3,4 2s-1 |x2,4 + z 1,2 n-1 z 2,3 + z 1,2 n-3 z 2,3 z 1,4 2 + χn+1 n-1 2 s=1 z 2,3 n-2s z 1,4 2s |x3,4, z 1,2 n-1 z 1,4 2 |1 → z 1,2 n-2 z 1,4 2 + χn(z 1,4 n + z 2,4 n ) |x1,2 + z 1,2 n-1 z 1,4 |x1,4 + z 1,2
n-1 z 2,4 |x2,4, (6.1.7)

z 1,2 n-2 z 1,3 2 z 1,4 |1 → -z 1,2 n-3 z 1,3 2 z 2,4 + χn+1 z 2,3 n-1 z 2,4 + n-1 2 s=1 z 1,3 n-2s+1 z 2,4 2s-1 |x1,2 -z 1,2 n-2 z 1,3 z 3,4 |x1,3 -z 1,2 n-2 z 2,3 z 1,4 |x2,3 + z 1,2 n-2 z 1,3 2 + z 1,2 n-4 z 1,3 2 z 1,4 2 + χn z 2,3 n-2 z 2,4 2 + n-2 2 s=1 z 1,3 n-2s z 2,4 2s + ⌊ n-1 2 ⌋ s=1 z 1,2 n-2s z 3,4 2s |x1,4 + z 1,2 n-3 z 1,3 2 z 1,4 + χn+1 z 1,3 n-1 z 1,4 + n-1 2 s=1 z 2,3 n-2s+1 z 1,4 2s-1 |x2,4 + z 1,2 n-2 z 1,3 z 1,4 |x3,4, z 1,2 n-2 z 1,3 2 z 2,4 |1 → -z 1,2 n-3 z 1,3 2 z 1,4 + χn+1 z 1,3 n-1 z 1,4 + n-1 2 s=1 z 2,3 n-2s+1 z 1,4 2s-1 |x1,2 -z 1,2 n-2 z 1,3 z 2,4 |x1,3 -z 1,2 n-2 z 2,3 z 3,4 |x2,3 -z 1,2 n-3 z 1,3 2 z 2,4 + χn+1 z 2,3 n-1 z 2,4 + n-1 2 s=1 z 1,3 n-2s+1 z 2,4 2s-1 |x1,4 + z 1,2 n-2 z 1,3 2 + z 1,2 n-4 z 1,3 2 z 1,4 2 + χn z 1,3 n-2 z 1,4 2 + n-2 2 s=1 z 2,3 n-2s z 1,4 2s + ⌊ n-1 2 ⌋ s=1 z 1,2 n-2s z 3,4 2s |x2,4 + z 1,2 n-2 z 2,3 z 2,4 |x3,4, z 1,2 n-2 z 1,3 2 z 3,4 |1 → -z 1,2 n-3 z 1,3 2 z 3,4 + χn+1(z 1,3 n-1 z 3,4 + z 2,3 n-1 z 3,4 ) |x1,2 -z 1,2 n-2 z 1,3 z 1,4 |x1,3 -z 1,2 n-2 z 2,3 z 2,4 |x2,3 -z 1,2 n-2 z 1,3 z 3,4 |x1,4 -z 1,2 n-2 z 2,3 z 3,4 |x2,4 + z 1,2 n-2 z 1,3 2 + z 1,2 n-2 z 1,4 2 + z 1,2 n-4 z 1,3 2 z 1,4 2 + χn n-2 2 s=1 (z 1,3 n-2s z 2,4 2s + z 2,3 n-2s z 1,4 2s ) |x3,4, z 1,2 n-2 z 1,3 z 1,4 2 |1 → -z 1,2 n-3 z 2,3 z 1,4 2 + χn+1 z 2,3 n-2 z 2,4 2 + n-1 2 s=1 z 2,3 n-2s z 1,4 2s |x1,2 + z 1,2 n-2 z 1,4 2 + z 1,2 n-4 z 1,3 2 z 1,4 2 + χn z 2,3 n-2 z 2,4 2 + n-2 2 s=1 z 2,3 n-2s z 1,4 2s + ⌊ n-1 2 ⌋ s=1 z 1,2 n-2s z 3,4 2s |x1,3 + z 1,2 n-3 z 1,3 z 1,4 2 + χn+1 z 1,3 n-2 z 1,4 2 + n-1 2 s=1 z 1,3 n-2s z 2,4 2s |x2,3 + z 1,2 n-2 z 1,3 z 1,4 |x1,4 + z 1,2 n-2 z 1,3 z 2,4 |x2,4 + z 1,2 n-2 z 1,3 z 3,4 |x3,4, z 1,2 n-2 z 2,3 z 1,4 2 |1 → -z 1,2 n-3 z 1,3 z 1,4 2 + χn+1 z 1,3 n-2 z 1,4 2 + n-1 2 s=1 z 1,3 n-2s z 2,4 2s |x1,2 -z 1,2 n-3 z 2,3 z 1,4 2 + χn+1 z 2,3 n-2 z 2,4 2 + n-1 2 s=1 z 2,3 n-2s z 1,4 2s |x1,3 + z 1,2 n-2 z 1,4 2 + z 1,2 n-4 z 1,3 2 z 1,4 2 + χn z 1,3 n-2 z 1,4 2 + n-2 2 s=1 z 1,3 n-2s z 2,4 2s + ⌊ n-1 2 ⌋ s=1 z 1,2 n-2s z 3,4 2s |x2,3 + z 1,2 n-2 z 2,3 z 1,4 |x1,4 + z 1,2 n-2 z 2,3 z 2,4 |x2,4 + z 1,2 n-2 z 2,3 z 3,4 |x3,4, z 1,2 n-3 z 1,3 2 z 1,4 2 |1 → z 1,2 n-4 z 1,3 2 z 1,4 2 + χn z 1,3 n-2 z 1,4 2 + z 2,3 n-2 z 2,4 2 + n-2 2 s=1 (z 1,3 n-2s z 2,4 2s + z 2,3 n-2s z 1,4 2s ) |x1,2 + z 1,2 n-3 z 1,3 z 1,4 2 |x1,3 + z 1,2 n-3 z 2,3 z 1,4 2 |x2,3 + z 1,2 n-3 z 1,3 2 z 1,4 |x1,4 + z 1,2 n-3 z 1,3 2 z 2,4 |x2,4 + z 1,2 n-3 z 1,3 2 z 3,4 |x3,4, z 1,3 n z 1,4 |1 → -{z 1,3 n-1 z 3,4 + χn+1z 3,4 n }|x1,3 + {z 1,3 n + z 1,3 n-2 z 1,4 2 + χnz 3,4 n }|x1,4 + {z 1,3 n-1 z 1,4 + χn+1z 1,4 n }|x3,4, z 1,3 n z 3,4 |1 → -{z 1,3 n-1 z 1,4 + χn+1z 1,4 n }|x1,3 -{z 1,3 n-1 z 3,4 + χn+1z 3,4 n }|x1,4 + {z 1,3 n + z 1,3 n-2 z 1,4 2 + χnz 1,4 n }|x3,4, z 1,3 n-1 z 1,4 2 |1 → z 1,3 n-2 z 1,4 2 + χn(z 1,4 n + z 3,4 n ) |x1,3 + z 1,3 n-1 z 1,4 |x1,4 + z 1,3 n-1 z 3,4 |x3,4, z 2,3 n z 2,4 |1 → -{z 2,3
n-1 z 3,4 + χn+1z 3,4 n }|x2,3 + {z 2,3 n + z 2,3 n-2 z 2,4 2 + χnz 3,4 n }|x2,4 + {z 2,3 n-1 z 2,4 + χn+1z 2,4 n }|x3,4, z 2,3 n z 3,4 |1 → -{z 2,3 n-1 z 2,4 + χn+1z 2,4 n }|x2,3 -{z 2,3 n-1 z 3,4 + χn+1z 3,4 n }|x2,4

+ {z 2,3 n + z 2,3 n-2 z 2,4 2 + χnz 2,4 n }|x3,4, z 2,3 n-1 z 2,4 2 |1 → z 2,3 n-2 z 2,4 2 + χn(z 2,4 n + z 3,4 n ) |x2,3 + z 2,3 n-1 z 2,4 |x2,4 + z 2,3 n-1 z 3,4 |x3,4.
For a quadratic right A-module M , we write the quadratic dual module M !m simply by M ! , and let (K • (M ),d • (M )) be the Koszul complex of M in the category of bounded-below graded right A-modules, and

ϵ ′ : K 0 (M ) → M the canonical projection. Recall that K n (M ) = (M ! -n ) * ⊗ A for n ∈ N 0 , the map ϵ ′ is the surjective map W ⊗ A → M , and the differential d n (M ) : K n (M ) → K n-1 (M ) is given by d n (M )(u|v) = (i,j)∈I y i,j u|x i,j v for u ∈ (M ! -n ) * , v ∈ A and n ∈ N. Recall also that the complex K 1 (M ) d1(M ) -→ K 0 (M ) ϵ ′ -→ M -→ 0
is always exact for a quadratic module M . As usual, we can consider the Koszul complex as a complex indexed by Z, with K n (M ) = 0 for all n ∈ Z ⩽-1 , and d n (M ) = 0 for all n ∈ Z ⩽0 . Notice that the notation

(K • ,d • ) is exactly (K • (k),d • (k)).
Let M = ⊕ n∈Z M n be a graded right A-module such that dim(M n ) is finite for all n ∈ Z. Given j ∈ Z, we denote by M (j) the same underlying module with shifted (internal) grading given by M (j) i = M j+i for i ∈ Z. We remark that a morphism of graded right A-modules f : M → N is a homogeneous A-linear map of degree zero. Moreover, for a nonzero graded module M over A, if there exist integers s ⩽ t such that dim(M n ) = 0 for all n ∈ Z \ s,t and dim(M s ) • dim(M t ) ̸ = 0, then we say that the dimension vector of M is (dim(M s ), . . . , dim(M t )).

Resolving datum

We will now define some quadratic A-modules M i for i ∈ 1,3 . Let M 1 be the A-module generated by two homogeneous elements a 1 ,a 2 of degree zero, subject to the following 6 relations a 1 x 1,2 + a 2 x 1,2 , a 1 x 1,3 , a 2 x 2,3 , a 2 x 1,4 , a 1 x 2,4 , a 1 x 3,4 + a 2 x 3,4 .

(6.1.8)

Let M 2 be the A-module generated by the set {h i | i ∈ 1,7 } of seven homogeneous elements of degree zero, subject to the following 24 relations Theorem 6.1.5. Let M = {M 0 = k, M 1 ,M 2 , M 3 } be the family of quadratic A-modules introduced in the first paragraph of this subsection, and let h : 0, N 2 × N 2 → N 2 0 be the map given by h(0,2,3,6) = h(0,0,3,6) = h(1,2,1,4) = (1,0), h(0,0,3,8) = h(0,1,4,8) = h(0,0,5,16

h 1 x 1,2 , h 1 x 1,3 , h 1 x 2,3 , h 2 x 1,
) = h(1,0,1,6) = h(1,0,1,8) = h(2,0,1,4) = h(2,0,1,6) = h(2,1,2,6) = h(2,3,3,6) = h(3,3,3,6) = (0,1),
and h(i,j,k,ℓ) vanishes on other (i,j,k,ℓ). Then this gives a connected resolving datum on A, whose associated resolving quiver is given in Figure 6.1, where we denote by j α d ′ ,d ′′ i the unique arrow from M i to M j having bidegree (d ′ ,d ′′ ). In this case, the strict partial order on the arrows is given by 0 α 4,8 0 < 0 α 4,6 0 , 2 α 4,6 0 , and 0 α 2,6 1 , 0 α 2,8 1 < 2 α 2,4 1 . The arrows 1 α 5,8 0 and 1 α 3,6 2 of odd difference degrees appear in red.

Proof. Lemma 6.1.6, 6.1.7, 6.1.8 and 6.1.9, Corollary 6.1.11, Proposition 6.1.17, and Corollary 6.1.24 and 6.1.29 show that the homology of Koszul complex of k and M i for i ∈ 1,3 is given by and

H n (k) ∼ =      M 1 (-8), if n = 4, k(-16), if n = 5, 0, if n ∈ N \ {3, 4, 5}, and 
H n (M 1 ) = 0, if n ⩾ 2, M 1 M 2 M 3 k 0α 2,8 1 
H n (M 2 ) ∼ =          k(-4) ⊕ k(-6), if n = 1, M 1 (-6), if n = 2, M 3 (-6), if n = 3, 0, if n ⩾ 4,
together with

H n (M 3 ) ∼ = M 3 (-6), if n = 3, 0, if n ∈ N \ {3},
as well as the non-split short exact sequences of graded right A-modules The theorem is thus proved.

0 → M 2 (-6) ⊕ k(-6) → H 3 (k) → k(-8) → 0, ( 6 
For the quiver in Figure 6.1 we have an explicit description of the paths starting at k. Here we write a path (a 1 , . . . ,a n ) by a n • • • a 1 .

(P.1) the set of paths ending at k form the free monoid M k generated by the following 11 types of generators (P.4) the set of paths from k to M 3 are given by

0 α 4,6 0 , 0 α 4,8 0 , 0 α 2,4 2 ( 2 α 2,4 1 1 α 3,6 2 ) p 2 α 4,6 0 , 0 α 2,6 2 ( 2 α 2,4 1 1 α 3,6 2 ) p 2 α 4,6 0 , 0 α 2,6 1 1 α 3,6 2 ( 2 α 2,4 1 1 α 3,6 2 ) p 2 α 4,6 0 , 0 α 2,8 1 1 α 3,6 2 ( 2 α 2,4 1 1 α 3,6 2 ) p 2 α 4,6 0 , 0 α 2,6 1 ( 1 α 3,6 2 2 α 2,4 1 ) p 1 α 5,8 0 , 0 α 2,8 1 ( 1 α 3,
( 3 α 4,6 3 ) q 3 α 4,6 2 2 α 2,4 1 ( 1 α 3,6 2 2 α 2,4 1 ) p 1 α 5,8 0 ω, ( 3 α 4,6 3 ) q 3 α 4,6 2 ( 2 α 2,4 1 1 α 3,6 2 ) p 2 α 4,6 0 ω | ω ∈ M k , p, q ∈ N 0 .
Note also that 0 α 4,6 0 , 2 α 4,6 0 < 1 α 5,8 0 , and 0 α 2,4 2 < 1 α 3,6 2 , as well as

dfdeg( 0 α 4,6 0 ) = dfdeg( 2 α 4,6 0 ) = 2 = dfdeg( 1 α 5,8 0 ) -1, dfdeg( 0 α 2,4
2 ) = 2 = dfdeg( 1 α 3,6 2 ) -1.

Computation of the Koszul complex of some quadratic modules using GAP

Recall that (K • ,d • ) is the Koszul complex of the trivial module k in the category of bounded below graded right A-modules.

Let K n,m = (A ! -n ) * ⊗ A m , d n,m = d n | Kn,m : K n,m → K n-1,m+1 , B n,m = Im(d n+1,m-1 ), D n,m = Ker(d n,m ), H n,m = D n,m /B n,m for n ∈ N 0 and m ∈ 0,12 . Let H n = ⊕ m∈ 0,12 H n,m for n ∈ N 0 . For a quadratic A-module M , recall that (K • (M ),d • (M )) is the Koszul complex of M in the category of bounded below graded right A-modules. Let K n,m (M ) = (M ! -n ) * ⊗ A m , d n,m (M ) = d n (M )| Kn,m(M ) : K n,m (M ) → K n-1,m+1 (M ), B M n,m = Im(d n+1,m-1 (M )), D M n,m = Ker(d n,m (M )) and H n,m (M ) = D M n,m /B M n,m for n ∈ N 0 and m ∈ 0, 12 . Let H n (M ) = ⊕ m∈ 0,12 H n,m (M ) for n ∈ N 0 .
Using GAP, we can compute the dimension of the B M i n,m for n less than some arbitrary positive integer, m ∈ 1,12 and i ∈ 0,3 by using the code in Appendix A.4 together with the following simple routine.

for i in [0..3] do for j1 in [0..9] do for j2 in [1..12] do Print(i, " ", j1, " ", j2, " ", RankMat(FF(i,j1,j2)), "\n"); od; od; od;

For the rest of the section, we will only indicate the extra code added to the one in Appendix A.4 for every computation, and, for the reader's convenience, we will often indicate the output of many of the intermediate commands in the corresponding successive line and preceded by a pound sign #.

By above GAP code, the dimension of B n,m for n ∈ 0,9 and m ∈ 0,12 is given in Table 6 By above GAP code, we obtain the dimension of B M 1 n,m for n ∈ 0,9 and m ∈ 1,12 . The dimension of homology of the Koszul complex of M 1 for n ∈ 1,9 and m ∈ 0,12 is given in Table 6 By above GAP code, we obtain the dimension of B M 2 n,m for n ∈ 0,9 and m ∈ 1,12 . Then the dimension of H n,m (M 2 ) for n ∈ 1,9 and m ∈ 0,12 is given by Table 6 By above GAP code, we obtain the dimension of B M 3 n,m for n ∈ 0,9 and m ∈ 1,12 . Then the dimension of H n,m (M 3 ) is given by Table 6 On the other hand, it is direct to check that the generators a ′ 1 ,a ′ 2 of H 4 satisfy the quadratic relations (6.1.8) defining M 1 . Indeed, the following code shows that the dimension of the subspace generated by B 4,5 together with the elements of the form (6.1.8) with a ′ i instead of a i coincides with the dimension of B 4,5 .

gene:=geneMH(0,4,4);; Uh:=UU(gene,4);; Vh:=VV(gene,4);; Wh:=WW(gene,4);; hx:=HXR(0,Uh,Vh,Wh,4,4,1);; cc:=0 * [1..6];; cc [1]:=hx [1]+hx [START_REF] Cassidy | Quadratic algebras with Ext algebras generated in two degrees[END_REF];; cc [START_REF] Andruskiewitsch | On pointed Hopf algebras associated with unmixed conjugacy classes in Sm[END_REF]:=hx [START_REF] Andruskiewitsch | On pointed Hopf algebras associated with unmixed conjugacy classes in Sm[END_REF];; cc [START_REF] Andruskiewitsch | On the classification of finite-dimensional pointed Hopf algebras[END_REF]:=hx [START_REF] Brenner | Periodic algebras which are almost Koszul[END_REF];; cc [START_REF] Berger | Koszul and Gorenstein properties for homogeneous algebras[END_REF]:=hx [START_REF] Cohen | GBNP -a GAP package[END_REF]+hx [12];; cc [START_REF] Brenner | Periodic algebras which are almost Koszul[END_REF]:=hx [START_REF] Gerstenhaber | The cohomology structure of an associative ring[END_REF];; cc [START_REF] Cohen | GBNP -a GAP package[END_REF]:=hx [START_REF] Graña | Nichols algebras of non-abelian group type: zoo examples[END_REF];; Imm:=Im(0,4,5);; RankMat(Imm); # 1752 Append(Imm,cc); RankMat(Imm); # 1752

Hence, there is a surjective morphism M 1 (-8) → H 4 of graded A-modules. Since the dimension vector of M 1 is [START_REF] Andruskiewitsch | On pointed Hopf algebras associated with unmixed conjugacy classes in Sm[END_REF][START_REF] Cohen | GBNP -a GAP package[END_REF][START_REF] Herscovich | An elementary computation of the cohomology of the Fomin-Kirillov algebra with 3 generators[END_REF]12,[START_REF] Herscovich | An elementary computation of the cohomology of the Fomin-Kirillov algebra with 3 generators[END_REF][START_REF] Cohen | GBNP -a GAP package[END_REF][START_REF] Andruskiewitsch | On pointed Hopf algebras associated with unmixed conjugacy classes in Sm[END_REF] by Fact 6.1.4, we have H 4 ∼ = M 1 (-8) as graded A-modules, as claimed.

Let us now prove the existence of the short exact sequence (6.1.11). The following GAP code shows that the dimension vector of the submodule of H 3 generated by the basis elements c ′ i , i ∈ 1,8 of H 3,3 is [START_REF] Fomin | Quadratic algebras, Dunkl elements, and Schubert calculus[END_REF][START_REF] Milinski | Pointed indecomposable Hopf algebras over Coxeter groups, New trends in Hopf algebra theory[END_REF]32,42,40,[START_REF] Weibel | An introduction to homological algebra[END_REF][START_REF] Kirillov | On some quadratic algebras I 1 2 : combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss-Catalan, universal Tutte and reduced polynomials[END_REF][START_REF] Cohen | GBNP -a GAP package[END_REF]1).

Imm:=Im(0,3,3);; RankMat(Imm); # 515 gene:=geneMH(0,3,3);; Append(Imm,gene); RankMat(Imm); # 523 Uh:=UU(gene,3);; Vh:=VV(gene,3);; Wh:=WW(gene,3);; for r in [4..11] do hxr:=HXR(0,Uh,Vh,Wh,3,3,r-3); Im3r:=Im(0,3,r); Append(Im3r, hxr); Print(r, " ", RankMat(Im3r)-RankMat(Im(0,3,r)), "\n"); od; # [START_REF] Berger | Koszul and Gorenstein properties for homogeneous algebras[END_REF] Let M 4 be the quadratic module generated by the set {c i | i ∈ 1,8 } of eight homogeneous elements of degree zero, subject to the following 30 relations

c 1 x 1,2 , c 1 x 1,3 , c 1 x 2,3 , c 2 x 1,2 , c 2 x 1,4 , c 2 x 2,4 , c 3 x 1,3 , c 3 x 1,4 , c 3 x 3,4 , c 4 x 2,3 , c 4 x 2,4 , c 4 x 3,4 , c 5 x 1,3 -c 1 x 2,4 + c 3 x 2,4 , c 5 x 2,4 + c 2 x 1,3 -c 4 x 1,3 , c 6 x 2,3 + c 1 x 1,4 -c 4 x 1,4 , c 6 x 1,4 -c 2 x 2,3 + c 3 x 2,3 , c 7 x 1,2 + c 1 x 3,4 + c 2 x 3,4 , c 7 x 3,4 + c 3 x 1,2 + c 4 x 1,2 , c 5 x 1,2 + c 6 x 3,4 , c 5 x 3,4 -c 6 x 1,2 , c 6 x 1,3 -c 7 x 2,4 , c 6 x 2,4 + c 7 x 1,3 , c 5 x 1,4 + c 7 x 2,3 , c 5 x 2,3 -c 7 x 1,4 , c 8 x 1,2 , c 8 x 1,3 , c 8 x 2,3 , c 8 x 1,4 , c 8 x 2,4 , c 8 x 3,4 .
(6.1.13)

Using GAP we get that the dimension vector of M 4 is [START_REF] Fomin | Quadratic algebras, Dunkl elements, and Schubert calculus[END_REF][START_REF] Milinski | Pointed indecomposable Hopf algebras over Coxeter groups, New trends in Hopf algebra theory[END_REF]32,42,40,[START_REF] Weibel | An introduction to homological algebra[END_REF][START_REF] Kirillov | On some quadratic algebras I 1 2 : combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss-Catalan, universal Tutte and reduced polynomials[END_REF][START_REF] Cohen | GBNP -a GAP package[END_REF]1). It is direct to check that the elements c ′ i , i ∈ 1,8 of H 3 satisfy the quadratic relations (6.1.13). Indeed, the following code shows that the dimension of the subspace generated by B 3,4 together with the elements of the form (6.1.13) with c ′ i instead of c i coincides with the dimension of B 3,4 .

gene:=geneMH(0,3,3);; Uh:=UU(gene,3);; Vh:=VV(gene,3);; Wh:=WW(gene,3);; hx:=HXR(0,Uh,Vh,Wh,3,3,1);; cc:=0 * [1..30];; cc [1]:=hx [1];; cc [START_REF] Andruskiewitsch | On pointed Hopf algebras associated with unmixed conjugacy classes in Sm[END_REF]:=hx [START_REF] Andruskiewitsch | On pointed Hopf algebras associated with unmixed conjugacy classes in Sm[END_REF];; cc [START_REF] Andruskiewitsch | On the classification of finite-dimensional pointed Hopf algebras[END_REF]:=hx [START_REF] Andruskiewitsch | On the classification of finite-dimensional pointed Hopf algebras[END_REF];; cc [START_REF] Berger | Koszul and Gorenstein properties for homogeneous algebras[END_REF]:=hx [START_REF] Cassidy | Quadratic algebras with Ext algebras generated in two degrees[END_REF];; cc [START_REF] Brenner | Periodic algebras which are almost Koszul[END_REF]:=hx [START_REF] Graña | Nichols algebras of non-abelian group type: zoo examples[END_REF];; cc [START_REF] Cohen | GBNP -a GAP package[END_REF]:=hx [START_REF] Herscovich | An elementary computation of the cohomology of the Fomin-Kirillov algebra with 3 generators[END_REF];; cc [START_REF] Cassidy | Quadratic algebras with Ext algebras generated in two degrees[END_REF]:=hx [START_REF]A projective resolution for the Fomin-Kirillov algebra FK[END_REF];; cc [START_REF] Fomin | Quadratic algebras, Dunkl elements, and Schubert calculus[END_REF]:=hx [START_REF] Kirillov | On some quadratic algebras I 1 2 : combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss-Catalan, universal Tutte and reduced polynomials[END_REF];; cc [START_REF] Gerstenhaber | The cohomology structure of an associative ring[END_REF]:=hx [START_REF] Milinski | Pointed indecomposable Hopf algebras over Coxeter groups, New trends in Hopf algebra theory[END_REF];; cc [START_REF] Graña | Nichols algebras of non-abelian group type: zoo examples[END_REF]:=hx [START_REF] Negron | An alternate approach to the Lie bracket on Hochschild cohomology[END_REF];; cc [START_REF] Herscovich | An elementary computation of the cohomology of the Fomin-Kirillov algebra with 3 generators[END_REF]:=hx [START_REF] Roos | Some non-Koszul algebras[END_REF];; cc [12]:=hx [START_REF] Ştefan | The cohomology ring of the 12-dimensional Fomin-Kirillov algebra[END_REF];; cc [START_REF]Gerstenhaber structure on Hochschild cohomology of the Fomin-Kirillov algebra on 3 generators[END_REF]:=hx [START_REF] Brenner | Periodic algebras which are almost Koszul[END_REF]-hx [START_REF] Loday | Cyclic homology[END_REF]-hx [START_REF] Ufnarovskij | Combinatorial and asymptotic methods in algebra[END_REF];; cc [START_REF]A projective resolution for the Fomin-Kirillov algebra FK[END_REF]:=hx [START_REF] Fomin | Quadratic algebras, Dunkl elements, and Schubert calculus[END_REF]-hx [START_REF] Nȃstȃsescu | Methods of graded rings[END_REF]+hx [START_REF] Walton | On the quadratic dual of the Fomin-Kirillov algebras[END_REF];; cc [START_REF] Kirillov | On some quadratic algebras[END_REF]:=hx [START_REF] Weibel | An introduction to homological algebra[END_REF]-hx [START_REF] Witherspoon | Hochschild cohomology for algebras[END_REF];; cc [START_REF] Kirillov | On some quadratic algebras I 1 2 : combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss-Catalan, universal Tutte and reduced polynomials[END_REF]:=hx [START_REF] Berger | Koszul and Gorenstein properties for homogeneous algebras[END_REF]-hx [START_REF] Polishchuk | Quadratic algebras[END_REF] Hence, there is a morphism M 4 (-6) → H 3 of graded A-modules whose image is the submodule of H 3 generated by c ′ i , i ∈ 1,8 . Since the dimension vectors of M 4 and the submodule of H 3 generated by c ′ i , i ∈ 1,8 are the same, the previous morphism is injective. Moreover, the submodule of M 4 generated by c i ,i ∈ 1,7 is isomorphic to M 2 via the map given by c i → h i for i ∈ 1,7 , and the submodule of M 4 generated by c 8 is isomorphic to the trivial A-module k. It is direct to check that these submodules have trivial intersection, by degree reasons. By comparing the Hilbert series of M 4 , M 2 and k we obtain the isomorphism M 4 ∼ = M 2 ⊕ k of graded A-modules. In consequence, there is an injective morphism M 2 (-6) ⊕ k(-6) → H 3 . By a direct dimension and grading argument using Table 6.1.3, its cokernel is exactly k(-8).

Finally, we prove that the short exact sequence (6.1.11) is non-split. Let c i for i ∈ 1,33 be the basis elements of space H 3,5 and p : H 3 (k) → k(-8) the surjection in (6.1.11), satisfying that p(c i ) = 0 for i ∈ 1,32 , and p(c 33 ) = e 1 , where e 1 is the identity element of k(-8). The short exact sequence (6.1.11) is split if and only if there exists a morphism s : k(-8) → H 3 (k) of graded A-modules such that the composition ps is the identity map. Assume that there exists such a map s. Let m = s(e 1 ) ∈ H 3,5 . Then m is of the form 32 i=1 λ i c i + c 33 for λ i ∈ k, and m.x = s(e 1 ).x = s(e 1 .x) = s(0) = 0 for all x ∈ A + . In particular, 32 i=1 λ i c i x 1,2 + c 33 x 1,2 = 0 for some λ i ∈ k, i.e. c 33 x 1,2 is a linear combination of c i x 1,2 for i ∈ 1,32 . Using GAP, we choose suitable representative elements c ′ i ∈ D 3,5 of c i for i ∈ 1,33 , and get that the dimension of the space spanned by c ′ i x 1,2 for i ∈ 1,33 and elements in B 3,6 , is strictly larger than the dimension of the space spanned by c ′ i x 1,2 for i ∈ 1,32 and elements in B 3,6 , as the following code shows.

gene:=geneMH(0,3,3);; Uh:=UU(gene,3);; Vh:=VV(gene,3);; Wh:=WW(gene,3);; hx:=HXR(0,Uh,Vh,Wh,3,3,2);; hxx:=0 * [1..33];; hxx [1]:=hx [START_REF]A projective resolution for the Fomin-Kirillov algebra FK[END_REF];; hxx [START_REF] Andruskiewitsch | On pointed Hopf algebras associated with unmixed conjugacy classes in Sm[END_REF]:=hx [START_REF] Kirillov | On some quadratic algebras[END_REF];; hxx [START_REF] Andruskiewitsch | On the classification of finite-dimensional pointed Hopf algebras[END_REF]:=hx [START_REF] Kirillov | On some quadratic algebras I 1 2 : combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss-Catalan, universal Tutte and reduced polynomials[END_REF];; hxx [START_REF] Berger | Koszul and Gorenstein properties for homogeneous algebras[END_REF]:=hx [START_REF] Loday | Cyclic homology[END_REF];; hxx [START_REF] Brenner | Periodic algebras which are almost Koszul[END_REF]:=hx [START_REF] Milinski | Pointed indecomposable Hopf algebras over Coxeter groups, New trends in Hopf algebra theory[END_REF];; hxx [START_REF] Cohen | GBNP -a GAP package[END_REF]:=hx [START_REF] Montgomery | Hopf algebras and their actions on rings[END_REF];; hxx [START_REF] Cassidy | Quadratic algebras with Ext algebras generated in two degrees[END_REF]:=hx [START_REF] Suárez-Álvarez | A little bit of extra functoriality for Ext and the computation of the Gerstenhaber bracket[END_REF];; hxx [START_REF] Fomin | Quadratic algebras, Dunkl elements, and Schubert calculus[END_REF]:=hx [START_REF] Ufnarovskij | Combinatorial and asymptotic methods in algebra[END_REF];; hxx [START_REF] Gerstenhaber | The cohomology structure of an associative ring[END_REF]:=hx [START_REF] Varadarajan | Supersymmetry for mathematicians: an introduction[END_REF];; hxx [START_REF] Graña | Nichols algebras of non-abelian group type: zoo examples[END_REF]:=hx [START_REF] Walton | On the quadratic dual of the Fomin-Kirillov algebras[END_REF];; hxx [START_REF] Herscovich | An elementary computation of the cohomology of the Fomin-Kirillov algebra with 3 generators[END_REF]:=hx [START_REF] Witherspoon | Hochschild cohomology for algebras[END_REF];; hxx [12]:=hx[32];; hxx [START_REF]Gerstenhaber structure on Hochschild cohomology of the Fomin-Kirillov algebra on 3 generators[END_REF]:=hx[39];; hxx [START_REF]A projective resolution for the Fomin-Kirillov algebra FK[END_REF] This shows that c 33 x 1,2 ̸ = 0, and it is not a linear combination of c i x 1,2 for i ∈ 1,32 , which is a contradiction. So, (6.1.11) is non-split. Lemma 6.1.7. We have the non-split short exact sequence (6.1.12) of graded A-modules.

Proof. The following GAP code shows that the dimension vector of the A-submodule of H 1 (M Moreover, it is direct to check that the elements h ′ i , i ∈ 1,7 of H 1 (M 1 ) satisfy the quadratic relations (6.1.9) defining M 2 . Indeed, the following code shows that the dimension of the subspace generated by B M 1 1,4 together with the elements of the form (6.1.9) with h ′ i instead of h i coincides with the dimension of B M 1 1,4 .

gene:=geneMH(1,1,3);; Uh:=UU(gene,3);; Vh:=VV(gene,3);; Wh:=WW(gene,3);; hx:=HXR(1,Uh,Vh,Wh,1,3,1);; cc:=0 * [1..24];; cc [1]:=hx [1];; cc [START_REF] Andruskiewitsch | On pointed Hopf algebras associated with unmixed conjugacy classes in Sm[END_REF]:=hx [START_REF] Andruskiewitsch | On pointed Hopf algebras associated with unmixed conjugacy classes in Sm[END_REF];; cc [START_REF] Andruskiewitsch | On the classification of finite-dimensional pointed Hopf algebras[END_REF]:=hx [START_REF] Andruskiewitsch | On the classification of finite-dimensional pointed Hopf algebras[END_REF];; cc [START_REF] Berger | Koszul and Gorenstein properties for homogeneous algebras[END_REF]:=hx [START_REF] Cassidy | Quadratic algebras with Ext algebras generated in two degrees[END_REF];; cc [START_REF] Brenner | Periodic algebras which are almost Koszul[END_REF]:=hx [START_REF] Graña | Nichols algebras of non-abelian group type: zoo examples[END_REF];; cc [START_REF] Cohen | GBNP -a GAP package[END_REF]:=hx [START_REF] Herscovich | An elementary computation of the cohomology of the Fomin-Kirillov algebra with 3 generators[END_REF];; cc [START_REF] Cassidy | Quadratic algebras with Ext algebras generated in two degrees[END_REF]:=hx [START_REF]A projective resolution for the Fomin-Kirillov algebra FK[END_REF];; cc [START_REF] Fomin | Quadratic algebras, Dunkl elements, and Schubert calculus[END_REF]:=hx [START_REF] Kirillov | On some quadratic algebras I 1 2 : combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss-Catalan, universal Tutte and reduced polynomials[END_REF];; cc [START_REF] Gerstenhaber | The cohomology structure of an associative ring[END_REF]:=hx [START_REF] Milinski | Pointed indecomposable Hopf algebras over Coxeter groups, New trends in Hopf algebra theory[END_REF];; cc [START_REF] Graña | Nichols algebras of non-abelian group type: zoo examples[END_REF]:=hx [START_REF] Negron | An alternate approach to the Lie bracket on Hochschild cohomology[END_REF];; cc [START_REF] Herscovich | An elementary computation of the cohomology of the Fomin-Kirillov algebra with 3 generators[END_REF]:=hx [START_REF] Roos | Some non-Koszul algebras[END_REF];; cc [12]:=hx [START_REF] Ştefan | The cohomology ring of the 12-dimensional Fomin-Kirillov algebra[END_REF];; cc [START_REF]Gerstenhaber structure on Hochschild cohomology of the Fomin-Kirillov algebra on 3 generators[END_REF]:=hx [START_REF] Brenner | Periodic algebras which are almost Koszul[END_REF]-hx [START_REF] Loday | Cyclic homology[END_REF]-hx [START_REF] Ufnarovskij | Combinatorial and asymptotic methods in algebra[END_REF];; cc [START_REF]A projective resolution for the Fomin-Kirillov algebra FK[END_REF]:=hx [START_REF] Fomin | Quadratic algebras, Dunkl elements, and Schubert calculus[END_REF]-hx [START_REF] Nȃstȃsescu | Methods of graded rings[END_REF]+hx [START_REF] Walton | On the quadratic dual of the Fomin-Kirillov algebras[END_REF];; cc [START_REF] Kirillov | On some quadratic algebras[END_REF]:=hx [START_REF] Weibel | An introduction to homological algebra[END_REF]-hx [START_REF] Witherspoon | Hochschild cohomology for algebras[END_REF];; cc [START_REF] Kirillov | On some quadratic algebras I 1 2 : combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss-Catalan, universal Tutte and reduced polynomials[END_REF]:=hx [START_REF] Berger | Koszul and Gorenstein properties for homogeneous algebras[END_REF]-hx [START_REF] Polishchuk | Quadratic algebras[END_REF] Hence, there is a surjective morphism from M 2 (-4) to the submodule of H 1 (M 1 ) generated by h ′ i , i ∈ 1,7 , which is an isomorphism of graded A-modules since the dimension vector of M 2 is also [START_REF] Cassidy | Quadratic algebras with Ext algebras generated in two degrees[END_REF][START_REF] Milinski | Pointed indecomposable Hopf algebras over Coxeter groups, New trends in Hopf algebra theory[END_REF]32,42,40,[START_REF] Weibel | An introduction to homological algebra[END_REF][START_REF] Kirillov | On some quadratic algebras I 1 2 : combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss-Catalan, universal Tutte and reduced polynomials[END_REF][START_REF] Cohen | GBNP -a GAP package[END_REF]1). Namely, there is an injective morphism M 2 (-4) → H 1 (M 1 ) of graded modules. A simple argument using dimensions and grading together with Table 6.1.4 tells us that the cokernel of this injective morphism is exactly the graded A-module k(-6) ⊕ k(-8), as was to be shown. We finally show that (6.1.12) is non-split. Let c i for i ∈ 1,33 be the basis elements of space H 1,5 (M 1 ) and p : H 1 (M 1 ) → k(-6) ⊕ k(-8) the surjection in (6.1.12), satisfying that p(c i ) = 0 for i ∈ 1,32 , and p(c 33 ) = e 1 , where e 1 is the identity element of k(-6). The short exact sequence (6.1.12) is split if and only if there exists a morphism s : k(-6) ⊕ k(-8) → H 1 (M 1 ) of graded A-modules such that the composition ps is the identity map. Assume there is such a map s. Let m = s(e 1 ) ∈ H 1,5 (M 1 ). Then m is of the form 32 i=1 λ i c i + c 33 for λ i ∈ k, and m.x = s(e 1 ).x = s(e 1 .x) = s(0) = 0 for all x ∈ A + . In particular, [1]:=hx [START_REF]A projective resolution for the Fomin-Kirillov algebra FK[END_REF];; hxx [START_REF] Andruskiewitsch | On pointed Hopf algebras associated with unmixed conjugacy classes in Sm[END_REF]:=hx [START_REF] Kirillov | On some quadratic algebras[END_REF];; hxx [START_REF] Andruskiewitsch | On the classification of finite-dimensional pointed Hopf algebras[END_REF]:=hx [START_REF] Kirillov | On some quadratic algebras I 1 2 : combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss-Catalan, universal Tutte and reduced polynomials[END_REF];; hxx [START_REF] Berger | Koszul and Gorenstein properties for homogeneous algebras[END_REF]:=hx [START_REF] Loday | Cyclic homology[END_REF];; hxx [START_REF] Brenner | Periodic algebras which are almost Koszul[END_REF]:=hx [START_REF] Milinski | Pointed indecomposable Hopf algebras over Coxeter groups, New trends in Hopf algebra theory[END_REF];; hxx [START_REF] Cohen | GBNP -a GAP package[END_REF]:=hx [START_REF] Montgomery | Hopf algebras and their actions on rings[END_REF];; hxx [START_REF] Cassidy | Quadratic algebras with Ext algebras generated in two degrees[END_REF]:=hx [START_REF] Suárez-Álvarez | A little bit of extra functoriality for Ext and the computation of the Gerstenhaber bracket[END_REF];; hxx [START_REF] Fomin | Quadratic algebras, Dunkl elements, and Schubert calculus[END_REF]:=hx [START_REF] Ufnarovskij | Combinatorial and asymptotic methods in algebra[END_REF];; hxx [START_REF] Gerstenhaber | The cohomology structure of an associative ring[END_REF]:=hx [START_REF] Varadarajan | Supersymmetry for mathematicians: an introduction[END_REF];; hxx [START_REF] Graña | Nichols algebras of non-abelian group type: zoo examples[END_REF]:=hx [START_REF] Walton | On the quadratic dual of the Fomin-Kirillov algebras[END_REF];; hxx [START_REF] Herscovich | An elementary computation of the cohomology of the Fomin-Kirillov algebra with 3 generators[END_REF]:=hx [START_REF] Witherspoon | Hochschild cohomology for algebras[END_REF];; hxx [12]:=hx[32];; hxx [START_REF]Gerstenhaber structure on Hochschild cohomology of the Fomin-Kirillov algebra on 3 generators[END_REF]:=hx[39];; hxx [START_REF]A projective resolution for the Fomin-Kirillov algebra FK[END_REF] This shows that c 33 x 1,2 ̸ = 0, and it is not a linear combination of c i x 1,2 for i ∈ 1,32 , which is a contradiction. So, (6.1.12) is non-split. Lemma 6.1.8. We have the isomorphisms

32 i=1 λ i c i x 1,2 + c 33 x 1,2 = 0 for some λ i ∈ k, i.e. c
H 1 (M 2 ) ∼ = k(-4) ⊕ k(-6), H 2 (M 2 ) ∼ = M 1 (-6) and H 3 (M 2 ) ∼ = M 3 (-6) of graded A-modules.
Proof. A simple argument using dimension and grading together with Table 6.1.5 gives the isomoprhism H 1 (M 2 ) ∼ = k(-4) ⊕ k(-6).

We prove that the space H 2 (M 2 ) is a quadratic module, which is isomorphic to M 1 (-6). The following GAP code shows that the dimension vector of the submodule of H 2 (M [12];; cc [START_REF] Andruskiewitsch | On pointed Hopf algebras associated with unmixed conjugacy classes in Sm[END_REF]:=hx [START_REF] Cohen | GBNP -a GAP package[END_REF]-hx [START_REF] Cassidy | Quadratic algebras with Ext algebras generated in two degrees[END_REF];; cc [START_REF] Andruskiewitsch | On the classification of finite-dimensional pointed Hopf algebras[END_REF]:=hx [START_REF]Gerstenhaber structure on Hochschild cohomology of the Fomin-Kirillov algebra on 3 generators[END_REF]-hx [START_REF] Ştefan | The cohomology ring of the 12-dimensional Fomin-Kirillov algebra[END_REF];; cc [START_REF] Berger | Koszul and Gorenstein properties for homogeneous algebras[END_REF]:=hx [START_REF] Milinski | Pointed indecomposable Hopf algebras over Coxeter groups, New trends in Hopf algebra theory[END_REF]+hx [START_REF] Montgomery | Hopf algebras and their actions on rings[END_REF];; cc [START_REF] Brenner | Periodic algebras which are almost Koszul[END_REF]:=hx [START_REF] Nȃstȃsescu | Methods of graded rings[END_REF]+hx [START_REF] Herscovich | An elementary computation of the cohomology of the Fomin-Kirillov algebra with 3 generators[END_REF];; cc [START_REF] Cohen | GBNP -a GAP package[END_REF]:=hx [START_REF] Roos | Some non-Koszul algebras[END_REF]-hx [START_REF] Fomin | Quadratic algebras, Dunkl elements, and Schubert calculus[END_REF];; cc [START_REF] Cassidy | Quadratic algebras with Ext algebras generated in two degrees[END_REF]:=hx [START_REF]A projective resolution for the Fomin-Kirillov algebra FK[END_REF]+hx [START_REF] Brenner | Periodic algebras which are almost Koszul[END_REF];; cc [START_REF] Fomin | Quadratic algebras, Dunkl elements, and Schubert calculus[END_REF]:=hx [START_REF] Loday | Cyclic homology[END_REF]-hx [START_REF] Andruskiewitsch | On pointed Hopf algebras associated with unmixed conjugacy classes in Sm[END_REF];; cc [START_REF] Gerstenhaber | The cohomology structure of an associative ring[END_REF]:=hx[3]-hx [START_REF] Polishchuk | Quadratic algebras[END_REF];; cc [START_REF] Graña | Nichols algebras of non-abelian group type: zoo examples[END_REF]:=hx [START_REF] Berger | Koszul and Gorenstein properties for homogeneous algebras[END_REF]+hx [START_REF] Negron | An alternate approach to the Lie bracket on Hochschild cohomology[END_REF];; cc [START_REF] Herscovich | An elementary computation of the cohomology of the Fomin-Kirillov algebra with 3 generators[END_REF]:=hx [START_REF] Kirillov | On some quadratic algebras[END_REF]-hx [START_REF] Graña | Nichols algebras of non-abelian group type: zoo examples[END_REF];; cc [12]:=hx [START_REF] Kirillov | On some quadratic algebras I 1 2 : combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss-Catalan, universal Tutte and reduced polynomials[END_REF]+hx [START_REF] Gerstenhaber | The cohomology structure of an associative ring[END_REF];; cc [START_REF]Gerstenhaber structure on Hochschild cohomology of the Fomin-Kirillov algebra on 3 generators[END_REF]:=hx [START_REF] Suárez-Álvarez | A little bit of extra functoriality for Ext and the computation of the Gerstenhaber bracket[END_REF];; cc [START_REF]A projective resolution for the Fomin-Kirillov algebra FK[END_REF]:=hx [START_REF] Ufnarovskij | Combinatorial and asymptotic methods in algebra[END_REF];; cc [START_REF] Kirillov | On some quadratic algebras[END_REF]:=hx [START_REF] Varadarajan | Supersymmetry for mathematicians: an introduction[END_REF];; cc [START_REF] Kirillov | On some quadratic algebras I 1 2 : combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss-Catalan, universal Tutte and reduced polynomials[END_REF]:=hx [START_REF] Witherspoon | Hochschild cohomology for algebras[END_REF];; cc [START_REF] Loday | Cyclic homology[END_REF] Furthermore, it is direct to check that the generators e ′′ i , i ∈ 1,8 of H 3 (M 3 ) satisfy the quadratic relations (6.1.10). Indeed, the following code shows that the dimension of the subspace generated by B M 3 3,4 together with the elements of the form (6.1.10) with e ′′ i instead of e i coincides with the dimension of B M 3 3,4 .

Fixing the order x

1,2 ≺ x 3,4 ≺ x 1,3 ≺ x 2,3 ≺ x 1,4 ≺ x 2,4 (resp., x 1,3 ≺ x 2,4 ≺ x 1,2 ≺ x 2,3 ≺ x 1,4 ≺ x 3,4 , x 2,3 ≺ x 1,4 ≺ x 1,2 ≺ x 1,3 ≺ x 2,4 ≺ x 3,4
), the corresponding basis of A consisting of standard words will be denoted by W 1,2 (resp., W 1,3 , W 2,3 ). It can be explicitly computed using GAP (see Appendix A.3 for W 1,2 ). For (i,j) ∈ I 1 , let (k,l) ∈ I such that #{i,j,k,l} = 4, set W i,j m = W i,j ∩ A m . Set E i,j m as the subset of W i,j m containing elements whose first element is not x i,j , and set Ẽi,j m as the subset of W i,j m containing elements whose first element is neither x i,j nor x k,l . Let a i,j m = #E i,j m and b i,j m = # Ẽi,j m for m ∈ 0,11 . The integers a i,j m and b i,j m are easily computed from the explicit description of the bases W i,j m , they are independent of (i,j), so they will be denoted simply by a m and b m , respectively, and are given in Table 6 Lemma 6.1.12. We have C n,m = (i,j)∈I1 C i,j n,m and the dimension of C i,j n,m is given by

dim C i,j n,m =                                                n + 2, if m = 1, 5n + 9, if m = 2, 14n + 24, if m = 3, 28n + 46, if m = 4, 43n + 68, if m = 5, 53n + 81, if m = 6, 53n + 78, if m = 7, 43n + 61, if m = 8, 28n + 38, if m = 9, 14n + 18, if m = 10, 5n + 6, if m = 11, n + 1, if m = 12,
for all (i,j) ∈ I 1 and n ∈ N. Else dim C i,j n,m = 0.

Proof. Given (i,j) ∈ I 1 , fix (k,l) ∈ I such that #{i,j,k,l} = 4. Then, the maps kE i,j m-1 → A m and k Ẽi,j m-1 → A m given by left multiplication by x i,j and by left multiplication by x k,l , respectively, are injective for m ∈ 1,12 . Hence, using (6.1.6), we see that the set formed by the elements (-1) r z i,j n-r z k,l r |x i,j x + z i,j n-r+1 z k,l r-1 |x k,l x, for x ∈ E i,j m-1 and r ∈ 0, n , together with the elements z k,l n |x k,l y for y ∈ Ẽi,j m-1 gives a basis of C i,j n,m . Then, dim C i,j n,m = a m-1 (n + 1) + b m-1 , which together with Table 6.1.7 proves the claim.

U n,m ⊆ kQ n ⊗ A m and g n (U n,m ) = U n+2,m , giving an isomorphism U n,m ∼ = U n+2,m of vector spaces for n ⩾ 5 and m ∈ 1,12 . This proves the first part of the lemma.

Set F n,m = (kQ n ⊗ A m ) ∩ C n,m and define L i,j n,m = k{z i,j n ,z k,l n , u i,j n , v i,j n } ⊗ A m as the sub- space of k C i,j n ⊗ A m , where (i,j) ∈ I 1 , (k,l) ∈ I with #{i,j,k,l} = 4. It is clear that F n,m = ⊕ (i,j)∈I1 (L i,j n,m ∩ C i,j n,m ). Fix (i,j) ∈ I 1 , (k,l) ∈ I with #{i,j,k,l} = 4. Let ξ i,j ∈ C i,j
n,m . Then ξ i,j is of the form

ξ i,j = r ∈ 0, n , x ∈ E i,j m-1 λ r,x (-1) r z i,j n-r z k,l r |x i,j x + z i,j n-r+1 z k,l r-1 |x k,l x + y∈ Ẽi,j m-1 µ y z k,l n |x k,l y (6.1.15)
for λ r,x ,µ y ∈ k. If ξ i,j ∈ L i,j n,m , then ξ i,j is of the form

ξ i,j = w∈W i,j m (α w z i,j n |w + β w z k,l n |w + γ w u i,j n |w + η w v i,j n |w) (6.1.16)
for α w , β w , γ w , η w ∈ k. Comparing the coefficients in (6.1.15) and (6.1.16), we obtain α xi,j x = λ 0,x , α x k,l y = λ 1,y , β xi,j x = (-1) n λ n,x , β x k,l y = µ y , γ xi,j x = -λ p,x for p ∈ 1,n -1 with p odd, γ x k,l y = λ q,y for q ∈ 2,n with q even, η xi,j x = λ q,x for q ∈ 2,n -1 with q even, η x k,l y = λ p,y for p ∈ 3, n with p odd, where x ∈ E i,j m-1 and y ∈ Ẽi,j m-1 . Hence, if n is even, the space L i,j n,m ∩ C i,j n,m is spanned by

z i,j n |x i,j x, (v i,j n |x k,l -u i,j n |x i,j + z i,j n |x k,l )x for x ∈ E i,j m-1 , z k,l n |x k,l y, (u i,j n |x k,l + v i,j n |x i,j + z k,l n |x i,j )y for y ∈ Ẽi,j m-1 , v i,j n |x i,j w and z k,l n |x i,j w for w ∈ E i,j m-1 \ Ẽi,j m-1 . If n is odd, the space L i,j n,m ∩ C i,j n,m is spanned by z i,j n |x i,j x, (u i,j n |x k,l + v i,j n |x i,j )x for x ∈ E i,j m-1 , z k,l n |x k,l y, (v i,j n |x k,l -u i,j n |x i,j + z i,j n |x k,l -z k,l
n |x i,j )y for y ∈ Ẽi,j m-1 , u i,j n |x i,j w and z k,l n |x i,j w for w ∈ E i,j m-1 \ Ẽi,j m-1 . We finally note that U n,m ∩C n,m = U n,m ∩F n,m and g n (F n,m ) = F n+2,m . Hence, U n,m ∩C n,m ∼ = U n+2,m ∩C n+2,m as vector spaces. This proves the second part of the lemma.

Proof of Proposition 6.1.10. By Table 6.1.1, we obtain that (6.1.14) holds for (n,m) ∈ 5,6 × 0,12 . On the other hand, by Lemma 6.1.13, we get that dim B n+2,m -dim B n,m = dim C n+2,mdim C n,m for n ⩾ 5 and m ∈ 1,12 . The statement then follows.

Moreover, using GAP, the dimension of U n,m for n ⩾ 3 and m ∈ 1, 12 is given by Table 6 

C n ⊗ A of K n is exact for n ⩾ 2.

Homology of the Koszul complex of M 1

In this subsubsection, we compute H n (M 1 ) for all n ∈ N 0 .

Recall that M 1 = (W ⊗ A)/(I), where W is the 2-dimensional vector space spanned by a 1 ,a 2 , and I is the subspace of W ⊗V spanned by (6.1.8). The quadratic dual (M 

1 ) ! = ⊕ n∈N0 (M 1 ) ! -n = (U ⊗ A ! )/(J) of M 1 is an A ! -module,
! = ∪ n∈N0 B ! n is the basis of A ! . Let u,v ∈ B ! and Y 1,2 = {±y r1 1,2 y r2 3,4 |r 1 ,r 2 ∈ N 0 }, Y 1,3 = {±y r1 1,3 y r2 2,4 |r 1 ,r 2 ∈ N 0 }, Y 2,3 = {±y r1 2,3 y r2 1,4 |r 1 ,r 2 ∈ N 0 }. (6.1.18) If uv ∈ Y i,j for (i,j) ∈ I 1 , then u,v ∈ Y i,j .
Proof. We will prove the lemma by induction on the degree of v. Let u ∈ B ! m and v ∈ B ! n for m,n ∈ N 0 . Obviously, the lemma holds for n = 0 and m ∈ N 0 . Assume that v = v ′ y for y ∈ {y s,t |(s,t) ∈ I} and v ′ ∈ B ! n-1 . Note that uv ′ = ±c, where c ∈ B ! m+n-1 . By Tables A.1.1 -A.1.7 together with (6.1.2) and (6.1.3), cy ∈ Y i,j implies that c,y ∈ Y i,j . Then, by induction hypothesis we get that u, v ′ ∈ Y i,j . In consequence, v = v ′ y ∈ Y i,j , as was to be shown.

Lemma 6.1.16. Set T n = {b 1 y k 1,2 y n-k 3,4 , b 1 y k 1,3 y n-k 2,4 , b 2 y k 2,3 y n-k 1,4 | k ∈ 0, n } ⊆ (M 1 ) ! -n for n ∈ N 0 . Note that T n has cardinal 3(n + 1) for n ∈ N, and cardinal 2 for n = 0, since T 0 = {b 1 ,b 2 }. Then, T n is a basis of the space (M 1 ) ! -n for n ∈ N 0 .
Proof. Note that the space It is clear that T 0 is linearly independent. Next, we prove that the elements in T n are linearly independent for n ∈ N. Suppose that k∈ 0,n 

(M 1 ) ! -n is spanned by {b 1 y,b 2 y | y ∈ B ! n } for n ∈ N 0 . It is easy to check that b j y m 1,2 y 1,3 = χ m b 1 y m 2,3 y 1,3 -χ m+1 b 1 y m 2,3 y 1,2 = 0, b j y m 1,2 y 2,3 = χ m b 2 y m 1,3 y 2,3 -χ m+1 b 2 y m 1,3 y 1,2 = 0, b j y m 1,2 y 1,4 = χ m b 2 y m 2,4 y 1,4 -χ m+1 b 2 y m 2,4 y 1,2 = 0, b j y m 1,2 y 2,4 = χ m b 1 y m 1,4 y 2,4 -χ m+1 b 1 y m 1,4 y 1,2 = 0, b 1 y m 1,3 y 1,4 = χ m b 1 y m 3,4 y 1,4 + χ m+1 b 1 y m 1,4 y 3,4 = χ m b 2 y m 3,4 y 1,4 + χ m+1 b 1 y m 1,4 y 3,4 = χ m b 2 y m 1,3 y 1,4 + χ m+1 b 1 y m 1,4 y 3,4 = 0, b 1 y m 1,3 y 3,4 = χ m b 1 y m 1,4 y 3,4 -χ m+1 b 1 y m 1,4 y 1,3 = 0, b 2 y m 2,3 y 2,4 = χ m b 2 y m 3 
α k b 1 y k 1,2 y n-k 3,4 + k∈ 0,n β k b 1 y k 1,3 y n-k 2,4 + k∈ 0,n γ k b 2 y k 2,3 y n-k 1,4 = 0 in (M 1 ) ! -n , where α k ,β k ,γ k ∈ k for k ∈ 0,n . Then k∈ 0,n α k b 1 y k 1,2 y n-k 3,4 + k∈ 0,n β k b 1 y k 1,3 y n-k 2,4 + k∈ 0,n γ k b 2 y k 2,3 y n-k 1,4 = u∈B ! n-1 λ 1,u (b 1 y 1,2 -b 2 y 1,2 )u + u∈B ! n-1 λ 2,u b 2 y 1,3 u + u∈B ! n-1 λ 3,u b 1 y 2,3 u + u∈B ! n-1 λ 4,u b 1 y 1,4 u + u∈B ! n-1 λ 5,u b 2 y 2,4 u + u∈B ! n-1 λ 6,u (b 1 y 3,4 -b 2 y 3,4 )u ∈ U ⊗ A ! , where λ i,u ∈ k for i ∈ 1,6 and u ∈ B ! n-1 . So, k∈ 0,n γ k b 2 y k 2,3 y n-k 1,4 = - u∈B ! n-1 λ 1,u b 2 y 1,2 u + u∈B ! n-1 λ 2,u b 2 y 1,3 u + u∈B ! n-1 λ 5,u b 2 y 2,4 u - u∈B ! n-1 λ 6,u b 2 y 3,4 u ∈ k{b 2 } ⊗ A ! ∼ = A ! (6.1.19) and k∈ 0,n α k b 1 y k 1,2 y n-k 3,4 + k∈ 0,n β k b 1 y k 1,3 y n-k 2,4 = u∈B ! n-1 λ 1,u b 1 y 1,2 u + u∈B ! n-1 λ 3,u b 1 y 2,3 u + u∈B ! n-1 λ 4,u b 1 y 1,4 u + u∈B ! n-1 λ 6,u b 1 y 3,4 u ∈ k{b 1 } ⊗ A ! ∼ = A ! . ( 6 
γ k y k 2,3 y n-k 1,4 = u∈B ! n-1 ∩Y1,2 λ 1,u y 1,2 u + u∈B ! n-1 ∩Y1,2
λ 6,u y 3,4 u = 0 in A ! , whereas Lemma 6.1.15 and (6.1.20) imply that k∈ 0,n

α k y k 1,2 y n-k 3,4 = u∈B ! n-1 ∩Y1,2 λ 1,u y 1,2 u + u∈B ! n-1 ∩Y1,2 λ 6,u y 3,4 u, k∈ 0,n β k y k 1,3 y n-k 2,4 = 0 in A ! . Hence, α k = β k = γ k = 0 for k ∈ 0,n .
The lemma is thus proved.

Given n ∈ N, we will denote by

T * n = {x * | x ∈ T n } the dual basis of T n . Note that the differential d 1 (M 1 ) : K 1 (M 1 ) → K 0 (M 1 ) is given by (b 1 y 1,2 ) * |1 → b * 1 |x 1,2 + b * 2 |x 1,2 , (b 1 y 1,3 ) * |1 → b * 1 |x 1,3 , (b 1 y 2,4 ) * |1 → b * 1 |x 2,4 , (b 1 y 3,4 ) * |1 → b * 1 |x 3,4 + b * 2 |x 3,4 , (b 2 y 2,3 ) * |1 → b * 2 |x 2,3 , (b 2 y 1,4 ) * |1 → b * 2 |x 1,4 , where b s y i,j ∈ T 1 and (b s y i,j ) * ∈ T * 1 is the dual element of b s y i,j . The differential d n (M 1 ) : K n (M 1 ) → K n-1 (M 1 ) for n ⩾ 2 is given by (b s y n-r i,j y r k,l ) * |1 → (-1) r (b s y n-1-r i,j y r k,l ) * |x i,j + (b s y n-r i,j y r-1 k,l ) * |x k,l , where s ∈ 1,2 , r ∈ 0,n , (i,j) ∈ I 1 , (k,l) ∈ I with #{i,j,k,l} = 4, b s y n-r i,j y r k,l ∈ T n and x * ∈ ((M 1 ) ! -n ) * ∈ T * n is the dual element of x ∈ T n ⊆ (M 1
) ! -n . Proposition 6.1.17. We have dim H n (M 1 ) = 0 for integers n ⩾ 2.

Proof. It is clear that there is an isomorphism

((M 1 ) ! -n ) * ⊗ A → k C n ⊗ A of chain complex
of graded A-modules given by (b s y n-r i,j y r k,l ) * |x → z i,j n-r z k,l r |x, where x ∈ A and n ∈ N. So, dim B M 1 n,m = dim C n,m for m ∈ 0, 12 and n ∈ N, where dim C n,m is given by Lemma 6.1.12. The result now follows from the fact that the Koszul complex K Proof. The last row of Table 6.1.9 follows from Lemma 6.1.12, since dim B M 1 n,m = dim C n,m for n ∈ N and m ∈ 0, 12 , as explained in the proof of Proposition 6.1.17. For the remaining case, note that dim Hence, the dimension of H 1,m (M 1 ) for m ∈ 0,12 is exactly given in Table 6

• (M 1 ) is isomorphic to the complex k C • ⊗ A for • ∈ N
B M 1 0,m = dim D M 1 0,m = dim(((M 1 ) ! 0 ) * ⊗ A m ) -dim H 4,m+4 = 2 dim A m -dim H 4,
.1.4, by dim H 1,m (M 1 ) = dim D M 1 1,m -dim B M 1 1,m . In particular, dim H 1 (M 1 ) = 194. Proof. The result follows directly from dim D M 1 1,m = dim(((M 1 ) ! -1 ) * ⊗ A m ) -dim B M 1 0,m+1 = 6 dim A m -dim B M 1
0,m+1 for m ∈ 0, 12 , together with Corollary 6.1.18.

Homology of the Koszul complex of M 2

In this subsubsection, we show that H n (M 2 ) = 0 for n ⩾ 4.

Recall the definition of the quadratic module M 2 given in Subsection 6. Using GAP we get the basis of (M 2 ) ! -n for n ∈ 0,3 given in Appendix A.5. Let U !,M 2 n be the subset of (M 2 ) ! -n consisting of the following 24 elements

g 1 y n-1 1,2 y 1,3 , g 1 y n-1 1,2 y 2,3 , g 1 y n-1 1,2 y 1,4 , g 1 y n-1 1,2 y 2,4 , g 1 y n-2 1,2 y 2 1,3 , g 1 y n-2 1,2 y 1,3 y 1,4 , g 1 y n-2 1,2 y 1,3 y 2,4 , g 1 y n-2 1,2 y 1,3 y 3,4 , g 1 y n-2 1,2 y 2,3 y 1,4 , g 1 y n-2 1,2 y 2,3 y 2,4 , g 1 y n-2 1,2 y 2,3 y 3,4 , g 1 y n-2 1,2 y 2 1,4 , g 1 y n-3 1,2 y 2 1,3 y 3,4 , g 1 y n-3 1,2 y 1,3 y 2 1,4 , g 1 y n-3 1,2 y 2,3 y 2 1,4 , g 2 y n-1 1,2 y 1,4 , g 2 y n-1 1,2 y 2,4 , g 2 y n-2 1,2 y 2 1,4 , g 3 y n-1 1,3 y 1,4 , g 3 y n-1 1,3 y 3,4 , g 3 y n-2 1,3 y 2 1,4 , g 4 y n-1 2,3 y 2,4 , g 4 y n-1 2,3 y 3,4 , g 4 y n-2 2,3 y 2 2,4 , (6.1.22) 
and C !,M 2 n the subset of (M 

= U !,M 2 n ∪ C !,M 2 n is a basis of (M 2 ) ! -n for n ⩾ 4. Moreover, dim(M 2 ) ! 0 = 7, dim(M 2 ) ! -1 = 24, dim(M 2 ) ! -2 = 43 and dim(M 2 ) ! -n = 3n + 45 for n ⩾ 3.
Proof. We will prove that the set T M 2 n is a basis of (M 2 ) ! -n for n ⩾ 4. Firstly, using GAP, T M 2 n is a basis of (M 2 ) ! -n for n ∈ 4,7 . Note that the space (M 2 ) ! -n is spanned by {g i y | i ∈ 1,7 , y ∈ B ! n } for n ∈ N 0 . Moreover, the following identities are straightforward to verify and are left to the reader:

g 1 y n-3 1,2 y 2 1,3 y 1,4 = g 1 y n-3 1,2 y 1,4 y 2 1,3 = -χ n g 1 y n-3 2,4 y 1,2 y 2 1,3 + χ n+1 g 1 y n-3 2,4 y 1,4 y 2 1,3 = χ n g 5 y 1,3 y n-4 2,4 y 1,2 y 2 1,3 -χ n+1 g 5 y 1,3 y n-4 2,4 y 1,4 y 2 1,3 = -g 5 y 3 1,2 y 2,3 y n-4 2,4 = -g 6 y 3,4 y 2 1,2 y 2,3 y n-4 2,4 = g 6 y 2,3 y 2 1,2 y n-3 2,4 = g 1 y 1,4 y 2 1,2 y n-3 2,4 = g 1 y n-1 1,2 y 1,4 , g 1 y n-3 1,2 y 2 1,3 y 2,4 = g 1 y n-3 1,2 y 2,4 y 2 1,3 = -χ n g 1 y n-3 1,4 y 1,2 y 2 1,3 + χ n+1 g 1 y n-3 1,4 y 2,4 y 2 1,3 = -χ n g 6 y 2,3 y n-4 1,4 y 1,2 y 2 1,3 + χ n+1 g 6 y 2,3 y n-4 1,4 y 2,4 y 2 1,3 = χ n g 6 y 3 1,2 y 1,3 y n-4 1,4 -χ n+1 g 6 y n-2 1,2 y 1,3 y 1,4 = -χ n g 5 y 3,4 y 2 1,2 y 1,3 y n-4 1,4 + χ n+1 g 5 y 3,4 y n-3 1,2 y 1,3 y 1,4 = χ n g 5 y 1,3 y 2 1,2 y n-3 1,4 -χ n+1 g 5 y 1,3 y 1,4 y n-3 1,2 y 1,4 = -χ n g 1 y 2,4 y 2 1,2 y n-3 1,4 + χ n+1 g 1 y 2,4 y 1,4 y n-3 1,2 y 1,4 = g 1 y n-1 1,2 y 2,4 , g 1 y n-1 1,3 y 1,4 = -χ n g 1 y n-1 3,4 y 1,3 + χ n+1 g 1 y n-1 3,4 y 1,4 = -χ n g 7 y 1,2 y n-2 3,4 y 1,3 + χ n+1 g 7 y 1,2 y n-2 3,4 y 1,4 = -χ n g 7 y 2 1,4 y n-3 1,2 y 1,3 + χ n+1 g 7 y 2,3 y 1,2 y 3,4 y n-3 1,2 = χ n g 5 y 2,3 y 1,4 y n-3 1,2 y 1,3 + χ n+1 g 5 y 1,4 y 1,2 y 3,4 y n-3 1,2 = -χ n g 5 y 2 1,3 y 1,2 y 2,4 y n-4 1,2 -χ n+1 g 5 y 1,3 y 1,4 y n-2 1,2 = χ n g 1 y 2,4 y 1,3 y 1,2 y 2,4 y n-4 1,2 + χ n+1 g 1 y 2,4 y 1,4 y n-2 1,2 = χ n g 1 y n-2 1,2 y 1,3 y 1,4 + χ n+1 g 1 y n-1 1,2 y 1,4 , g 1 y n-1 1,3 y 3,4 = -χ n g 1 y 3,4 y 1,4 y n-2 1,3 + χ n+1 g 1 y 3,4 y n-1 1,3 = -χ n g 7 y 1,2 y 1,4 y n-2 1,3 + χ n+1 g 7 y 1,2 y n-1 1,3 = χ n g 7 y 2,4 y 1,2 y n-2 1,3 + χ n+1 g 7 y 2 1,3 y n-2 1,2 = -χ n g 6 y 1,3 y 1,2 y n-2 1,3 + χ n+1 g 6 y 2,4 y 1,3 y n-2 1,2 = -χ n g 6 y 3 2,3 y n-3 1,3 + χ n+1 g 6 y 2,3 y 1,3 y 1,4 y n-3 1,2 = -χ n g 1 y 1,4 y 2 2,3 y n-3 1,3 + χ n+1 g 1 y 1,4 y 1,3 y 1,4 y n-3 1,2 = χ n g 1 y n-2 1,2 y 1,3 y 3,4 + χ n+1 g 1 y n-3
1,2 y 2 1,3 y 3,4 , g 1 y n-1 2,3 y 2,4 = g 1 y 2,4 y n-1 3,4 = -g 5 y 1,3 y n-1 3,4 = χ n g 5 y 1,4 y n-1 1,3 -χ n+1 g 5 y 2 1,4 y n-2

1,3

= χ n g 7 y 2,3 y n-1 1,3 -χ n+1 g 7 y 2,3 y 1,4 y n-2 1,3 = -χ n g 7 y n-1 1,2 y 2,3 -χ n+1 g 7 y n-2 1,2 y 2,3 y 3,4 = -χ n g 1 y 3,4 y n-2 1,2 y 2,3 -χ n+1 g 1 y 3,4 y n-3 1,2 y 2,3 y 3,4 = χ n g 1 y n-2 1,2 y 2,3 y 2,4 + χ n+1 g 1 y n-3 1,2 y 2 1,3 y 2,4 = χ n g 1 y n-2 1,2 y 2,3 y 2,4 + χ n+1 g 1 y n-1 1,2 y 2,4 , g 1 y n-1 2,3 y 3,4 = (-1) n+1 g 1 y 3,4 y n-1 2,4 = (-1) n+1 g 7 y 1,2 y n-1 2,4

= -χ n g 7 y 2 2,4 y 1,2 y n-3 2,4 + χ n+1 g 7 y n-1 2,4 y 1,2 = χ n g 6 y 1,3 y 2,4 y 1,2 y n-3 2,4 -χ n+1 g 6 y 1,3 y n-2 2,4 y 1,2 = -χ n g 6 y 2,3 y 1,3 y 1,4 y n-3 2,4 + χ n+1 g 6 y 2,3 y n-2 1,3 y 1,4 = -χ n g 1 y 1,4 y 1,3 y 1,4 y n-3 2,4 + χ n+1 g 1 y 1,4 y n-2 1,3 y 1,4 = χ n g 1 y n-2 1,2 y 2,3 y 3,4 + χ n+1 g 1 y n-1 1,3 y 3,4 = χ n g 1 y n-2 1,2 y 2,3 y 3,4 + χ n+1 g 1 y n-3 1,2 y 2 1,3 y 3,4 , g 2 y 2 1,3 = g 5 y 2,4 y 1,3 = -g 5 y 1,3 y 2,4 = g 1 y 2 2,4 , g 2 y 2 2,3 = -g 6 y 1,4 y 2,3 = g 6 y 2,3 y 1,4 = g 1 y 2 1,4 , g 2 y n-1 1,2 y 1,3 = -χ n g 2 y 3 2,3 y n-3 1,2 + χ n+1 g 2 y 2 2,3 y 1,3 y n-3

1,2

= -χ n g 1 y 2 1,4 y 2,3 y n-3 1,2 + χ n+1 g 1 y 2 1,4 y 1,3 y n-3 1,2 = g 1 y n-3 1,2 y 1,3 y 2 1,4 , g 2 y n-1 1,2 y 2,3 = -χ n g 2 y 3 1,3 y n-3 1,2 + χ n+1 g 2 y 2 1,3 y 2,3 y n-3

1,2

= -χ n g 1 y 2 2,4 y 1,3 y n-3 1,2 + χ n+1 g 1 y 2 2,4 y 2,3 y n-3 1,2 = g 1 y n-3 1,2 y 2,3 y 2 1,4 , g 3 y 2

1,2 = g 7 y 3,4 y 1,2 = -g 7 y 1,2 y 3,4 = -g 1 y 2 3,4 , g 5 y 2 3,4 = -g 6 y 1,2 y 3,4 = g 6 y 3,4 y 1,2 = g 5 y 2 1,2 , g 5 y 2 1,4 = g 7 y 2,3 y 1,4 = -g 7 y 1,4 y 2,3 = g 5 y 2 2,3 , g 5 y n-1 1,2 y 1,3 = χ n g 5 y 1,3 y 2,3 y n-2 1,2 + χ n+1 g 5 y 1,3 y n-1 1,2 = -χ n g 1 y 2,4 y 2,3 y n-2 1,2 -χ n+1 g 1 y 2,4 y n-1

1,2 = χ n g 1 y n-2 1,2 y 2,3 y 3,4 -χ n+1 g 1 y n-1 1,2 y 2,4 , g 5 y n-1 1,2 y 2,3 = -χ n g 5 y 1,3 y n-1 1,2 + χ n+1 g 5 y 2 1,3 y 2,3 y n-3 = -χ n g 1 y n-3 1,2 y 1,3 y 2 1,4 + χ n+1 g 1 y n-2 1,2 y 1,3 y 2,4 , g 6 y 2

2,4 = g 7 y 1,2 y 2,4 = -g 7 y 2,4 y 1,3 = g 6 y 2 1,3 , g 6 y n-1 1,3 y 1,4 = -χ n g 6 y 3,4 y n-1 1,3 + χ n+1 g 6 y 1,4 y n-1 1,3 = -χ n g 5 y 1,2 y n-1 1,3 -χ n+1 g 2 y 2,3 y n-1

1,3

= -χ n g 1 y n-2 1,2 y 2,3 y 3,4 -χ n+1 g 1 y n-3 1,2 y 2,3 y 2 1,4 , g 6 y n-1 1,3 y 3,4 = -χ n g 6 y 1,4 y n-1 1,3 + χ n+1 g 6 y 3,4 y n-1 1,3 = χ n g 2 y 2,3 y n-1 1,3 + χ n+1 g 5 y 1,2 y n-1

1,3

= -χ n g 1 y n-3 1,2 y 2,3 y 2 1,4 + χ n+1 g 1 y n-2 1,2 y 2,3 y 1,4 , for n ⩾ 5. Using the previous identities together with (6.1.21) we see that the space (M 2 ) ! -n is spanned by T M 2 n for n ⩾ 8.

We will next prove that the elements in T M 2 n for n ⩾ 8 are linearly independent. Suppose that we have the identity i∈ 1,24 is the i-th element in the first line of (6.1.23), t 1,3 i is the i-th element in the second line of (6.1.23), and t 2,3 i is the i-th element in the last line of (6.1.23) for i ∈ 1, n + 7 , r i is the i-th element in (6.1.21), and α i ,α 1,2 i , α 1,3 i , α 2,3 i , λ i u ∈ k. We need to prove that the coefficients α i vanish for all i ∈ 1, 24 , as well as that α 1,2 i , α 

α i t i + i∈ 1,n+7
α i t i = i ∈ 1, 6 , u ∈ B ! n-1 \ Y 1,2 λ i u r i u + i ∈ 7, 12 , u ∈ B ! n-1 \ Y 1,3 λ i u r i u + i ∈ 13, 18 , u ∈ B ! n-1 \ Y 2,3
λ i u r i u, (6.1.28) in k{g i |i ∈ 1,7 } ⊗ A ! . By (6.1.25), we get α 1,2 i = 0 for i ∈ 1,n + 7 . Indeed, since there is no g 2 y n 1,2 , g 3 y n 3,4 , g 4 y n 3,4 on the right side of (6.1.25), we get that α 1,2 n+2 = α 1,2 n+4 = α 1,2 n+5 = 0. Furthermore, as there is no g 4 y n-r 1,2 y r 3,4 for n -r ∈ N on the left side of (6.1.25), we see that λ 2 u = 0 for u ∈ B ! n-1 ∩ Y 1,2 . Moreover, since there is no g 7 y n 3,4 on the left side of (6.1.25), we obtain that λ 6 f i y n-2 1,2 y 2 1,4 = f i y n-2 1,2 y 2 2,3 = f i y n-2 1,2 y 2 1,3 , f i y n-3 1,2 y 2 1,3 y 1,4 = f i y n-3 1,2 y 2 2,4 y 1,4 = f i y n-1 1,2 y 1,4 , f i y n-3 1,2 y 2 1,3 y 2,4 = f i y n-3 1,2 y 3 2,4 = f i y n-1 1,2 y 2,4 , f i y n-3 1,2 y 1,3 y 2 1,4 = f i y n-3 1,2 y 1,3 y 2 2,3 = f i y n-1 1,2 y 1,3 , f i y n-3 1,2 y 2,3 y 2 1,4 = f i y n-3 1,2 y 3 2,3 = f i y n-1 1,2 y 2,3 , f i y n-4 1,2 y 2 1,3 y 2 1,4 = f i y n-4 1,2 y 2 1,3 y 2 2,3 = f i y n-2 1,2 y 2 1,3 , f i y n-1 1,3 y 1,4 = χ n f i y 1,3 y n-2 2,4 y 1,4 + χ n+1 f i y n-1 2,4 y 1,4 = χ n f i y 1,3 y n-2 1,2 y 1,4 + χ n+1 f i y n-1 1,2 y 1,4 = χ n f i y n-2 1,2 y 1,3 y 1,4 + χ n+1 f i y n-1 1,2 y 1,4 , f i y n-1 1,3 y 3,4 = f i y n-3 1,3 y 2 2,4 y 3,4 = f i y n-3 1,3 y 2 2,3 y 3,4 = χ n f i y n-3 1,2 y 1,3 y 2,3 y 3,4 + χ n+1 f i y n-3 1,2 y 2 2,3 y 3,4 = χ n f i y n-2 1,2 y 1,3 y 3,4 + χ n+1 f i y n-3 1,2 y 2 1,3 y 3,4 , f i y n-1 2,3 y 2,4 = χ n f i y 2,3 y n-2 1,4 y 2,4 + χ n+1 f i y n-1 1,4 y 2,4 = χ n f i y 2,3 y n-2 1,2 y 2,4 + χ n+1 f i y n-1 1,2 y 2,4 = χ n f i y n-2 1,2 y 2,3 y 2,4 + χ n+1 f i y n-1 1,2 y 2,4 , f i y n-1 2,3 y 3,4 = f i y n-3 2,3 y 2 1,4 y 3,4 = f i y n-3 2,3 y 2 1,3 y 3,4 = -χ n f i y n-3 1,2 y 2,3 y 1,3 y 3,4 + χ n+1 f i y n-3 1,2 y 2 1,3 y 3,4 = χ n f i y n-2 1,2 y 2,3 y 3,4 + χ n+1 f i y n-3 1,2 y 2 1,3 y 3,4 .

Moreover, by the dual relation f 2 y 1,2 = -f 1 y 3,4 , and = -χ n f 2 y 2,3 y 1,2 y n-2 1,2 -χ n+1 f 1 y 1,3 y n-1 1,2 ,

f 3 y n-
for n ⩾ 3, the space N ! -n is spanned by T N n for n ⩾ 5. Next, we prove that the elements in T N n for n ⩾ 6 are linearly independent. Suppose that we have the identity i∈ 1,24 variables α i , λ j u for u ∈ U ! n-1 , a j 0 , a ′j 0 , a j 1 , a j 2 , b j 0 , b ′j 0 , b j 1 , b j 2 , c j 0 , c ′j 0 , c j 1 , c j 2 . Hence, the linear independence of T N n (or, equivalently, the fact that equation (6.1.35) implies that α i = 0 for all i ∈ 13, 24 ) is tantamount to the fact that the linear system E n implies that α i = 0 for all i ∈ 13, 24 . Furthermore, it is easy to see that E n has the same form as E n+2 . We then use GAP to check that the elements in T N n are linearly independent for n ∈ 6, 7 , and conclude that the lemma holds for all integers n ⩾ 6. Corollary 6.1.29. We have H n (M 3 ) = 0 for n ∈ N \ {3}.

Proof. By Tables A.1.6 and A.1.7, and the reductions in the proof of Lemma 6.1.28, the differential at homological degree n in the Koszul complex N or S k has the same form when n ⩾ 4 increases by 2. Then H n+2 (M 3 ) = H n (M 3 ) for n ⩾ 4. Using GAP, H n (M 3 ) = 0 for n ∈ 1,5 \{3}. By induction on n, H n (M 3 ) = 0 for n ∈ N \ {3}. 

A.3 A basis of FK(4)

We present here the GAP code as well the result to compute the basis W 1,2 (consisting of standard words) of A under the order x 1,2 ≺ x 3,4 ≺ x 1,3 ≺ x 2,3 ≺ x 1,4 ≺ x 2,4 .

LoadPackage("GBNP"); A:=FreeAssociativeAlgebraWithOne(Rationals,"x12","x34","x13","x23","x14","x24");; The basis W 1,2 is given by the following 576 elements 1, x 1,2 , x 3,4 , x 1,3 , x 2,3 , x 1,4 , x 2,4 , x 1,2 x 3,4 , x 1,2 x 1,3 , x 1,2 x 2,3 , x 1,2 x 1,4 , x 1,2 x 2,4 , x 3,4 x 1,3 , x 3,4 x 2,3 , x 3,4 x 1,4 , x 3,4 x 2,4 , x 1,3 x 1,2 , x 1,3 x 3,4 , x 1,3 x 2,3 , x 1,3 x 1,4 , x 1,3 x 2,4 , x 2,3 x 3,4 , x 2,3 x 1,4 , x 2,3 x 2,4 , x 1,4 x 1,2 , x 1,4 x 2,4 , x 1,2 x 3,4 x 1,3 , x 1,2 x 3,4 x 2,3 , x 1,2 x 3,4 x 1,4 , x 1,2 x 3,4 x 2,4 , x 1,2 x 1,3 x 1,2 , x 1,2 x 1,3 x 3,4 , x 1,2 x 1,3 x 2,3 , x 1,2 x 1,3 x 1,4 , x 1,2 x 1,3 x 2,4 , x 1,2 x 2,3 x 3,4 , x 1,2 x 2,3 x 1,4 , x 1,2 x 2,3 x 2,4 , x 1,2 x 1,4 x 1,2 , x 1,2 x 1,4 x 2,4 , x 3,4 x 1,3 x 1,2 , x 3,4 x 1,3 x 3,4 , x 3,4 x 1,3 x 2,3 , x 3,4 x 1,3 x 1,4 , x 3,4 x 1,3 x 2,4 , x 3,4 x 2,3 x 3,4 , x 3,4 x 2,3 x 1,4 , x 3,4 x 2,3 x 2,4 , x 3,4 x 1,4 x 1,2 , x 3,4 x 1,4 x 2,4 , x 1,3 x 1,2 x 3,4 , x 1,3 x 1,2 x 2,3 , x 1,3 x 1,2 x 1,4 , x 1,3 x 1,2 x 2,4 , x 1,3 x 3,4 x 2,3 , x 1,3 x 3,4 x 1,4 , x 1,3 x 3,4 x 2,4 , x 1,3 x 2,3 x 3,4 , x 1,3 x 2,3 x 1,4 , x 1,3 x 2,3 x 2,4 , x 1,3 x 1,4 x 1,2 , x 1,3 x 1,4 x 2,4 , x 2,3 x 3,4 x 1,3 , x 2,3 x 3,4 x 1,4 , x 2,3 x 3,4 x 2,4 , x 2,3 x 1,4 x 1,2 , x 2,3 x 1,4 x 2,4 , x 1,4 x 1,2 x 2,4 , x 1,2 x 3,4 x 1,3 x 1,2 , x 1,2 x 3,4 x 1,3 x 3,4 , x 1,2 x 3,4 x 1,3 x 2,3 , x 1,2 x 3,4 x 1,3 x 1,4 , x 1,2 x 3,4 x 1,3 x 2,4 , x 1,2 x 3,4 x 2,3 x 3,4 , x 1,2 x 3,4 x 2,3 x 1,4 , x 1,2 x 3,4 x 2,3 x 2,4 , x 1,2 x 3,4 x 1,4 x 1,2 , x 1,2 x 3,4 x 1,4 x 2,4 , x 1,2 x 1,3 x 1,2 x 3,4 , x 1,2 x 1,3 x 1,2 x 2,3 , x 1,2 x 1,3 x 1,2 x 1,4 , x 1,2 x 1,3 x 1,2 x 2,4 , x 1,2 x 1,3 x 3,4 x 2,3 , x 1,2 x 1,3 x 3,4 x 1,4 , x 1,2 x 1,3 x 3,4 x 2,4 , x 1,2 x 1,3 x 2,3 x 3,4 , x 1,2 x 1,3 x 2,3 x 1,4 , x 1,2 x 1,3 x 2,3 x 2,4 , x 1,2 x 1,3 x 1,4 x 1,2 , x 1,2 x 1,3 x 1,4 x 2,4 , x 1,2 x 2,3 x 3,4 x 1,3 , x 1,2 x 2,3 x 3,4 x 1,4 , x 1,2 x 2,3 x 3,4 x 2,4 , x 1,2 x 3,4 x 1,3 x 1,2 x 2,3 x 3,4 x 1,3 x 1,4 x 1,2 x 2,4 , x 1,2 x 3,4 x 1,3 x 3,4 x 2,3 x 3,4 x 1,3 x 1,4 x 1,2 x 2,4 , x 1,2 x 1,3 x 1,2 x 3,4 x 1,3 x 2,3 x 3,4 x 1,3 x 1,4 x 1,2 , x 1,2 x 1,3 x 1,2 x 3,4 x 1,3 x 2,3 x 3,4 x 1,3 x 1,4 x 2,4 , x 1,2 x 1,3 x 1,2 x 3,4 x 1,3 x 2,3 x 3,4 x 1,4 x 1,2 x 2,4 , x 1,2 x 1,3 x 1,2 x 3,4 x 2,3 x 3,4 x 1,3 x 1,4 x 1,2 x 2,4 , x 3,4 x 1,3 x 1,2 x 3,4 x 1,3 x 2,3 x 3,4 x 1,3 x 1,4 x 1,2 , x 3,4 x 1,3 x 1,2 x 3,4 x 1,3 x 2,3 x 3,4 x 1,3 x 1,4 x 2,4 , x 3,4 x 1,3 x 1,2 x 3,4 x 1,3 x 2,3 x 3,4 x 1,4 x 1,2 x 2,4 , x 3,4 x 1,3 x 1,2 x 3,4 x 2,3 x 3,4 x 1,3 x 1,4 x 1,2 x 2,4 , x 1,3 x 1,2 x 3,4 x 1,3 x 2,3 x 3,4 x 1,3 x 1,4 x 1,2 x 2,4 , x 1,2 x 3,4 x 1,3 x 1,2 x 3,4 x 1,3 x 2,3 x 3,4 x 1,3 x 1,4 x 1,2 , x 1,2 x 3,4 x 1,3 x 1,2 x 3,4 x 1,3 x 2,3 x 3,4 x 1,3 x 1,4 x 2,4 , x 1,2 x 3,4 x 1,3 x 1,2 x 3,4 x 1,3 x 2,3 x 3,4 x 1,4 x 1,2 x 2,4 , x 1,2 x 3,4 x 1,3 x 1,2 x 3,4 x 2,3 x 3,4 x 1,3 x 1,4 x 1,2 x 2,4 , x 1,2 x 1,3 x 1,2 x 3,4 x 1,3 x 2,3 x 3,4 x 1,3 x 1,4 x 1,2 x 2,4 , x 3,4 x 1,3 x 1,2 x 3,4 x 1,3 x 2,3 x 3,4 x 1,3 x 1,4 x 1,2 x 2,4 , x 1,2 x 3,4 x 1,3 x 1,2 x 3,4 x 1,3 x 2,3 x 3,4 x 1,3 x 1,4 x 1,2 x 2,4 .

A.4 Koszul complex of M i for i ∈ {0, 1, 2, 3}

We present here the GAP code for computing the differential of the Koszul complex of the quadratic modules M 0 = k and M i for i ∈ 1,3 defined in Subsection 6.1.2. We also present a basis of H n,m (M i ) for some pairs (n,m). In the following code, the matrix FF(i,n,m) represents the linear map d n+1,m-1 (M i ) : K n+1,m-1 (M i ) → K n,m (M i ), Im(i,n,m) is a basis of the space B M i n,m and Ker(i,n,m) is a basis of the space D M i n,m . Moreover, geneMH(i,n,m) are some elements in D M i n,m , and we can show that it represents a basis of H n,m (M i ) since the dimension of the space spanned by B M i n,m and geneMH(i,n,m) coincides with the dimension of D M i n,m .

LoadPackage("GBNP"); A:=FreeAssociativeAlgebraWithOne(Rationals,"x12","x13","x23","x14","x24 if n=-1 then return 0; elif n=0 then return f(0); elif n>0 then return Sum(List([0.

.n], s->f(s))); fi; end; # g(n)-g(n-1)=f(n). B:=FreeAssociativeAlgebraWithOne(Rationals,"y12","y13","y23","y14","y24","y34");; A.6 Right action of FK(4) ! on (M 2 ) ! We list below the right action of some elements of A ! on (M 2 ) ! , where M 2 is the quadratic right A-module defined at the beginning of Subsection 6.1.2. In Tables A.6.1-A.6.4, the entry appearing in the row indexed by y and the column indexed by y ′ is the product yy ′ . To reduce space, the integer m ∈ 1,24 , appearing in the third to fifth columns of Tables A.6.1-A. 

5 2 n + 5 ,

 55 si n = 4r pour r ∈ N, 5n+132

5 2 n + 6 , 2 ,

 562 si n = 4r + 2 pour r ∈ N 0 , 5n+9 si n = 4r + 3 pour r ∈ N 0 .

5 2 n + 4 , 5 2 n + 5 , 2 ,

 54552 Soit A = FK(3). La dimension de HH n (A) est donnée par dim HH n (A) = si n = 4r pour r ∈ N 0 , si n = 4r + 2 pour r ∈ N 0 , 5n+9 if n = 2r + 1 for r ∈ N 0 .

5 2 n + 5 ,

 55 if n = 4r for r ∈ N, 5n+132

5 2 n + 6 , 2 ,

 562 if n = 4r + 2 for r ∈ N 0 , 5n+9 if n = 4r + 3 for r ∈ N 0 .

Definition 1 . 3 . 1 .

 131 and the action of A e on M is (a ⊗ b)m = amb for a,b ∈ A and m ∈ M . Analogously, an A-bimodule M can also be regarded as a right A e -module, where the action is m(a ⊗ b) = bma for a,b ∈ A and m ∈ M . The tensor product A ⊗n of A for n ∈ N is an A-bimodule under left and right multiplications. Let M be an A-bimodule. The Hochschild homology HH • (A,M ) of A with coefficients in M is defined by HH n (A,M ) = Tor A e n (M,A) for n ∈ N 0 . The Hochschild cohomology HH • (A,M ) of A with coefficients in M is defined by HH n (A,M ) = Ext n A e (A,M ) for n ∈ N 0 . If M = A, we denote HH • (A,A) by HH • (A), and HH • (A,A) by HH • (A).

1 . 4 . 1

 141 Let (B • (A), d • ) be the bar resolution of A with the augmentation π : B 0 (A) → A defined in Section 1.3. We will typically write a 0 | . . . |a n+1 instead of a 0 ⊗ • • • ⊗ a n+1 for simplicity. The maps F and G are given in (1.3.1) and (1.3.2). Method computing the bracket between HH 0 (A) and HH n (A)

Hence, ξ n = t n-1 d n + d n+1 t n . Lemma 1 . 4 . 4 .

 144 The Gerstenhaber bracket [φ, ℓ ρ ] ∈ Hom A e (B n-1 (A),A) is given by [φ, ℓ ρ ] = φt n-1 for φ ∈ Hom A e (B n (A),A) and n ∈ N.

Definition 2 . 2 . 3 .

 223 For σ ∈ Σ and u,v ∈ W , we define the elementary reduction operator as the k-linear map R (u,wσ,v) : k⟨X⟩ → k⟨X⟩ which maps the word uw σ v to uf σ v, and fixes other words. The composition of finite elementary reduction operators is called a reduction operator. Remark 2.2.4. R (au,wσ,vb) (axb) = a(R (u,wσ,v) x)b for a,b ∈ W and x ∈ k⟨X⟩. Moreover, for any reduction operator R and a,b ∈ W , there exists a reduction operator R such that R(axb) = a(Rx)b for any x ∈ k⟨X⟩.

Example 2 . 2 . 16 .

 2216 Let A = k⟨X⟩/I, where the set X = {a,b,c} is equipped an ordering by setting c ≻ b ≻ a and I is a two-sided ideal of k⟨X⟩ generated by the elements a 2 ,b 2 ,c 2 ,ca+bc+ab,cb+ba+ac. This is the Fomin-Kirillov algebra on 3 generators introduced in Section 3.2. In order to get a Gröbner basis of A, we start from the set G ′ = {a 2 ,b 2 ,c 2 ,ca + bc + ab,cb + ba + ac}. By the reduction (c, a, a) : (ca + bc + ab)a -ca 2 = bca + aba → b(-bc -ab) + aba → bab -aba, the element bab -aba should be adjoined to G ′ . Do the following reductions (c, b,b) : (cb + ba + ac)b -cb 2 = bab + acb → bab + a(-ba -ac) → bab -aba → 0, (c, c,a) : c(ca

  (b, b, ab) : b 2 ab -b(bab -aba) = baba → (aba)a → 0, (ba, b, b) : bab 2 -(bab -aba)b = abab → a(aba) → 0, (c, b,ab) : (cb + ba + ac)ab -c(bab -aba) = ba 2 b + acab + caba → a(-bc -ab)b + (-bc -ab)ba → ab(ba + ac) + b(ba + ac)a → abac + ba(-bc -ab) → abac -babc → 0, (ba,b,ab) : (bab -aba)ab -ba(bab -aba) = ba 2 ba -aba 2 b → 0.

Example 3 . 1 . 1 .

 311 Let G be a group. The representation ρ : G → Aut k (k) given by ρ(g) = id k for all g ∈ G is the trivial representation. Example 3.1.2.

Example 3 . 1 . 3 .

 313 Let G be a cyclic group generated by g. Assume that #G = n ∈ N, and the field k is algebraically closed with char(k) ∤ n. Then G has n irreducible representations ρ

Remark 3 . 1 . 8 .Definition 3 . 1 . 9 .

 318319 If δ(m) = e ⊗ m for all m ∈ M , where e is the identity element of the group G, then the coaction δ is called trivial. Let M be a kG-comodule with the coaction δ :

Fact 4 . 1 . 1 .

 411 The identities

  ((23) ⊗ x) = (13) ⊗ x, for x ∈ k. The coaction on M 4 and M 5 is given by (1) ⊗ x → (12) ⊗ ((1) ⊗ x), (13) ⊗ x → (23) ⊗ ((13)⊗x) and (23)⊗x → (13)⊗((23)⊗x) for x ∈ k. The action on M 6 = (1)⊗k⊕(

Fact 4 . 1 . 5 .

 415 The action of G on A is given by(12)a = -a,(23)a = -c, (13)a = -b, (123)a = b, (132)a = c, (12)b = -c, (23)b = -b, (13)b = -a, (123)b = c, (132)b = a, (12)c = -b, (23)c = -a, (13)c = -c, (123)c = a, (132)c = b, and (12)ab = ac, (23)ab = -ba -ac, (13)ab = ba, (123)ab = bc, (132)ab = -ab -bc, (12)bc = -ba -ac, (23)bc = ba, (13)bc = ac, (123)bc = -ab -bc, (132)bc = ab, (12)ba = -ab -bc, (23)ba = bc, (13)ba = ab, (123)ba = -ba -ac, (132)ba = ac, (12)ac = ab, (23)ac = -ab -bc, (13)ac = bc, (123)ac = ba, (132)ac = -ba -ac, together with (12)aba = abc, (23)aba = bac, (13)aba = -aba, (123)aba = -bac, (132)aba = -abc, (12)abc = aba, (23)abc = -abc, (13)abc = -bac, (123)abc = -aba, (132)abc = bac, (12)bac = -bac, (23)bac = aba, (13)bac = -abc, (123)bac = abc, (132)bac = -aba, as well as g(abac) = abac for all g ∈ G.

Fact 4 . 1 . 7 .

 417 The action of G on (A ! ) # is given by

Lemma 4 . 1 . 14 .

 4114 The A-bimodule morphisms f b n : K b n → K b n+3 defined above are homogeneous morphisms of internal degree 6, such that d b 3 f b

Proposition 4 . 1 . 15 .

 4115 The minimal projective resolution (P b

  ω 0 for simplicity. The spaces Kn,m and Pn,m are concentrated in homological degree n and internal degree m + n. We have Pn = ⊕ m∈N0 Pn,m . Let ∂ n,m = ∂ n | Pn,m : Pn,m → Pn-1,m+1 , and ∂n,m = ∂n | Kn,m : Kn,m → Kn-1,m+1 . Let D n,m = Ker(∂ n,m ), B n,m = Im(∂ n+1,m-1 ) for m,n ∈ N 0 , and Dn,m = Ker( ∂n,m ), Bn,m = Im( ∂n+1,m-1 ) for (n,m) ∈ N 0 × 0,4 . Notice that D n,m = B n,m = 0 for (n,m) ∈ Z 2 \ N 2 0 , and Dn,m = Bn,m = 0 for (n,m) ∈ Z 2 \ (N 0 × 0, 4 ).

Proposition 4 . 2 . 1 .

 421 For integers m ⩾ 3 and n ∈ N 0 , we have

  n,2 , e 10,n,2 = (bc -ba -ac)|α n-2 β 2 = ∂n+1,1 (c|α n β) -∂n+1,1 (a|α n β) + e 8,n,2 + e 5,n,2 -e 2,n,2 , e 11,n,2 = (ab + ba)|α n-1 β -(bc -ba -ac)|α n-1 γ = ∂n+1,1 (a|α n-1 β 2 ) + e 8,n,2 , e 12,n,2 = (bc -ba -ac)|α n-1 β -(ab + ba)|α n-2 β 2 = ∂n+1,1 (c|α n-1 β 2 ) + e 10,n,2

  n,2 -e 3,n,2 -e 4,n,2 + e 7,n,2 -e 9,n,2 -e 10,n,2 -e 12,n,2 , ∂n+1,1 (b|α n β) = e 7,n,2 , ∂n+1,1 (c|α n β) = -e 3,n,2 -e 4,n,2 -e 5,n,2 + e 7,n,2 -e 8,n,2 -e 9,n,2 -e 12,n,2 , ∂n+1,1 (a|α n γ) = e 5,n,2 -e 7,n,2 + e 8,n,2 , ∂n+1,1 (b|α n γ) = -∂n+1,1 (c|α n β) + e 2,n,2 + e 10,n,2 , ∂n+1,1 (c|α n γ) = -∂n+1,1 (b|α n β) + e 2,n,2 + e 10,n,2 , ∂n+1,1 (a|α n-1 β 2 ) = -e 8,n,2 + e 11,n,2 , ∂n+1,1 (b|α n-1 β 2 ) = e 9,n,2 -e 11,n,2 , ∂n+1,1 (c|α n-1 β 2 ) = -e 10,n,2 + e 12,n,2 , the elements in Bn,2 span the space Bn,2 . By Fact 4.1.3, the elements in Bn,2 are linearly independent, so Bn,2 is a basis of Bn,2 , as claimed. If n ⩾ 2 is even, let

( 4 . 2 . 8 )

 428 Suppose now m = 3. Table4.2.1 shows that ∂1,2 is surjective. We thus define a basis of B0,3 by the usual basis of K0,3 . If n ∈ N is odd, letE n,3 = e 1,n,3 = aba|α n = ∂n+1,2 (ab|α n+1 ),e 2,n,3 = abc|α n = -∂n+1,2 (ac|α n+1 ), e 3,n,3 = aba|β n = ∂n+1,2 (ab|β n+1 ), e 4,n,3 = bac|β n = -∂n+1,2 (bc|β n+1 ), e 5,n,3 = abc|γ n = -∂n+1,2 (ac|γ n+1 ), e 6,n,3 = bac|γ n = -∂n+1,2 (bc|γ n+1 ), e 7,n,3 = abc|

e

  11,n,3 = (aba + bac)|α n-1 β + (bac -abc)|α n-1 γ = -∂n+1,2 (bc|α n β) -e 3,n,3 -e 4,n,3 + e 5,n,3 -e 6,n,3 , e 12,n,3 = (abc -bac)|α n-1 γ + (aba + abc)|α n-2 β 2 = ∂n+1,2 ((ab + bc)|α n β) -e 1,n,3 -e 2,n,3 -e 5,n,3 + e 6,n,3for n ⩾ 3 with n odd. We now show that Bn,3 is a basis of Bn,3 for n ∈ N with n odd. As noted before, Bn,3 ⊆ Bn,3 . Since∂n+1,2 (ab|α n+1 ) = ∂n+1,2 (ba|α n+1 ) = e 1,n,3 , ∂n+1,2 (bc|α n+1 ) = e 2,n,3 -e 1,n,3 , ∂n+1,2 (ac|α n+1 ) = -e 2,n,3 , ∂n+1,2 (ab|β n+1 ) = ∂n+1,2 (ba|β n+1 ) = e 3,n,3 , ∂n+1,2 (bc|β n+1 ) = -e 4,n,3 , ∂n+1,2 (ac|β n+1 ) = e 4,n,3 -e 3,n,3 , ∂n+1,2 (ab|γ n+1 ) = ∂n+1,2 (ba|γ n+1 ) = e 5,n,3 + e 6,n,3 , ∂n+1,2 (bc|γ n+1 ) = -e 6,n,3 , ∂n+1,2 (ac|γ n+1 ) = -e 5,n,3 , ∂n+1,2 (ab|α n β) = e 1,n,3 + e 2,n,3 + e 3,n,3 + e 4,n,3 + e 11,n,3 + e 12,n,3 , ∂n+1,2 (bc|α n β) = -e 3,n,3 -e 4,n,3 + e 5,n,3 -e 6,n,3 -e 11,n,3 , ∂n+1,2 (ba|α n β) = ∂n+1,2 (ab|α n γ) = e 7,n,3 + e 8,n,3 , ∂n+1,2 (ac|α n β) = -2e 7,n,3 + e 8,n,3 , ∂n+1,2 (bc|α n γ) = e 7,n,3 -2e 8,n,3 , ∂n+1,2 (ba|α n γ) = e 1,n,3 + e 2,n,3 + e 3,n,3 + e 4,n,3 + e 11,n,3 + e 12,n,3 , ∂n+1,2 (ac|α n γ) = -e 1,n,3 -e 2,n,3 -e 5,n,3 + e 6,n,3 -e 12,n,3 , ∂n+1,2 (ab|α n-1 β 2 ) = ∂n+1,2 (ba|α n-1 β 2 ) = e 9,n,3 , ∂n+1,2 (bc|α n-1 β 2 ) = -e 10,n,3 , ∂n+1,2 (ac|α n-1 β 2 ) = e 10,n,3 -e 9,n,3 ,

( 4 . 2 . 9 )

 429 Suppose now m = 4. Table4.2.1 tells us that the usual basis of K0,4 is a basis of B0,4 . If n ∈ N is odd, Tables4.2.2 -4.2.5 show that Bn,4 is spanned by ∂n+1,3 (aba|α n β), ∂n+1,3 (abc|α n β) and ∂n+1,3 (bac|α n β). Since ∂n+1,3 (bac|α n β) = ∂n+1,3 (aba|α n β) -∂n+1,3 (abc|α n β), and the elements ∂n+1,3 (aba|α n β) and ∂n+1,3 (abc|α n β) are linearly independent, we define a basis of Bn,4 by

( 4 . 2 . 10 )

 4210 Computation of B n,m Recall that B n,m = Im(∂ n+1,m-1 ) and ∂ n,m : Pn,m → Pn-1,m+1 . Since ∂ n,m = ∂n,m for either m = -1,0,1 and n ∈ N, or m = 2,3 and n = 1,2,3, we get B n,m = Bn,m for either m = 0,1,2 and n ∈ N 0 , or m = 3,4 and n = 0,1,2. So we define a basis of B n,m by B n,m = Bn,m for either m = 0,1,2 and n ∈ N 0 , or m = 3,4 and n = 0,1,2.

( 4 . 2 . 11 )

 4211 Suppose m = 4. Consider ∂ n+1,3 : Kn+1,3 ⊕ ω 1 Kn-3,1 → Kn,4 ⊕ ω 1 Kn-4,2 ⊕ ω 2 Kn-8,0 . If n = 3, then B 3,4 = B3,4 since f0 ( K0,1 ) = 0 by the second line of (4.2.5). So, we define B 3,4 = B3,4 . If n ⩾ 4 is even, since fn-3 ( Kn-3,1 ) ⊆ Bn,4 , we have B n,4 = Bn,4 ⊕ ω 1 B n-4,2 = Bn,4 ⊕ ω 1 Bn-4,2 . If n ⩾ 5 is odd, since fn-3 ( Kn-3,1 ) = 0 by the last identity of Subsubsection 4.2.1.2, we have B n,4 = Bn,4 ⊕ ω 1 Bn-4,2 . Hence, for n ⩾ 4, we define a basis of B n,4 by B n,4 = Bn,4 ∪ ω 1 Bn-4,2 . The dimension of B n,4 is then given by

  ) ) * was defined in Subsubsection 4.2.1.1. Since Kn,m / Dn,m ∼ = Bn-1,m+1 , we see that dim Dn,m = dim Kn,m -dim Bn-1,m+1 .Hence, from the dimension of Bn-1,m+1 computed in Subsubsection 4.2.1.3 as well as the dimension of Kn,m (see the last paragraph of Subsubsection 4.2.1.1), we deduce the value of the dimension of Dn,m . We will present them explicitly in the computations below.For every (n,m) ∈ N 0 × 0,4 , we are going to provide a set Dn,m ⊆ Dn,m such that # Dn,m = dim Dn,m and the elements in Dn,m are linearly independent. As a consequence, Dn,m is a basis of Dn,m . If Dn,m = Kn,m , we pick the usual basis of Kn,m , defined at the end of Subsubsection 4.2.1.1. We leave to the reader the easy verification in each case that the set Dn,m satisfies these conditions.Obviously, D0,m = K0,m for m ∈ 0,4 . Then we define the set D0,m by the usual basis of K0,m .

D1, 2 =

 2 (ab + ba)|γ, (bc -ba -ac)|γ, ac|(α + γ), (ba + ac)|(β + γ), bc|α -ac|β + ab|γ, (ab + ba)|β, (bc -ba -ac)|β, (bc -ba -ac)|α, (ab + ba)|α ⊆ D1,2 , and D2,2 = (ba -ab)|α 2 , (bc + ba + ac)|α 2 , (ba -ab)|β 2 , (bc + ba + ac)|β 2 , (ba -ab)|γ 2 ,

and if n ⩾ 4

 4 is even, we set Dn,2 = (ba -ab)|α n , (bc + ba + ac)|α n , (ba -ab)|β n , (bc + ba + ac)|β n , (ba -ab)|γ n ,

  0 , or m = 2,3,4 and n = 0,1,2,3, note that ∂ n,m = ∂n,m , then D n,m = Dn,m . So we define the basis of D n,m by D n,m = Dn,m . Suppose m = 2. By (4.2.11), the dimension of D n,2 is given by

, 4 =H 6 , 4 =H 7 , 4 =

 46474 abac|α 5 , abac|α 4 β, abac|α 4 γ, abac|α 3 β 2 , ω 1 (ba + ac)|(β + γ), ω 1 ac|(α + γ) , abac|α 5 β, ω 1 [ab|(β 2 -γ 2 ) + bc|(αβ -β 2 -2γ 2 )], ω 1 [ab|(αβ -2α 2 -β 2 ) + bc|(β 2 -α 2 )] , abac|α 7 , abac|α 6 β, abac|α 6 γ, abac|α 5 β 2 , and H 8,4 = abac|α 7 β .

Corollary 4 . 2 . 4 . 3 . 4 . 2 . 5 . 0 . 4 . 2 . 6 .

 42434250426 Let m ∈ 0,4 and n ∈ N 0 . Then H n,m = Hn,m ⊕ ω 1 H n-4,m-2 except for (n,m) = (4,2). Moreover, H 4,2 = H4,2 = 0. Here, Hn,m is the k-vector space spanned by the set Hn,m . The set Hn,m is defined as follows. If m = 0 or 1, we define the set Hn,m = H n,m for n ∈ N 0 . If m = 2, we define the sets H0,2 = ab|ϵ ! ,bc|ϵ ! , H1,2 = (ba + ac)|(β + γ), ac|(α + γ) ,H2,2 = ab|(αβ -2α 2 -β 2 ) + bc|(β 2 -α 2 ), ab|(β 2 -γ 2 ) + bc|(αβ -β 2 -2γ 2 ) ,and Hn,2 = ∅ for n ⩾ 3. If m = 3, we define the set H0,3 = ∅, and Hn,3 = (aba + bac)|α n-1 β for n ∈ N with n odd, together with Hn,3 = bac|α n , aba|α n-2 β 2 , abc|α n-2 β 2 , bac|α n-2 β 2 for n ⩾ 2 with n even. If m = 4, we define the set H0,4 = ∅, and Hn,4 = abac|α n , abac|α n-1 β, abac|α n-1 γ, α n-2 β 2 for n ∈ N with n odd, together with Hn,4 = abac|α n-1 β for n ⩾ 2 with n even. Furthermore, if we define Hn,m = 0 for (n,m) ∈ Z 2 \ (N 0 × 0,4 ), then H n,m = Hn,m ⊕ ω 1 H n-4,m-2 holds for (n,m) ∈ Z 2 \ {(4,2)} by applying Corollary 4.2.Remark The reader can easily check that Dn,m = Hn,m ⊕ Bn,m except the case m = n = 3. Recall that the Hochschild homology is decomposed as HH n (A) = ⊕ m∈N0 H n,m for n ∈ N Proposition Let n ∈ N. Then HH n (A) = i∈ 0,⌊n/4⌋ , m∈ 0,4 ω i Hn-4i,m for 4 ∤ n, and HH n (A) = i∈ 0,n/4-1 , m∈ 0,4 ω i Hn-4i,m ⊕ m∈ 1,4 ω n/4 H0,m for 4|n. Proof. By Corollary 4.2.4, we have H n,2 = Hn,2 ⊕ ω 1 Hn-4,0 for n ∈ N 0 \ {4}, H 4,2 = H4,2 , H n,3 = Hn,3 ⊕ ω 1 Hn-4,1 for n ∈ N 0 , H n,4 = Hn,4 ⊕ ω 1 Hn-4,2 ⊕ ω 2 Hn-8,0 for n ∈ N 0 \ {8}, H 8,4 = H8,4 ⊕ ω 1 H4,2 .

( 4 . 2 . 13 )

 4213 If 4 ∤ n, using Corollary 4.2.3 and (4.2.13), we get

2 ⊕ ω 2 3 ⊕ 4 ⊕ 0 =

 22340 Hn-4i-8,0 ) = Hn,0 ⊕ Hn,1 ⊕ Hn,2 ⊕ ω 1 Hn-4,0 ⊕ i∈ 0,⌊n/4⌋ ω i Hn-4i,i∈ 0,⌊n/4⌋ ω i+1 Hn-4i-4,1 ⊕ i∈ 0,⌊n/4⌋ ω i Hn-4i,i∈ 0,⌊n/4⌋ ω i+1 Hn-4i-4,2 ⊕ i∈ 0,⌊n/4⌋ ω i+2 Hn-4i-8,Hn,0 ⊕ Hn,1 ⊕ Hn,2 ⊕ ω 1 Hn-4,0 ⊕ i∈ 0,⌊n/4⌋

Table 4 . 2 . 13 :

 4213 Images of d n for n ∈ N and n odd, where the last three lines are for n ⩾ 3 and n odd.

Table 4 . 2 . 15 :

 4215 Images of d n for n ∈ N and n odd, where the last three lines are for n ⩾ 3 and n odd.

e n 7 , 3 = 2 (α n-2 β|ab), e n 8 , 3 = 2 (α n-2 β|bc), e n 9 , 3 = 2 (α n-2 γ|ab), e n 10 , 3 = 2 (α n- 2

 73283293210322 α n-1 β|abc -α n-2 β 2 |bac = d n-1 α n-1 β|abc + α n-1 γ|aba = -d n-1 α n-1 β|(bac -aba) + α n-2 β 2 |(aba -abc) = -d n-1 α n-1 γ|(abc + bac) + α n-2 β 2 |(aba -abc) = -d n-1 γ|(ab + bc)) .

( 4 . 2 . 22 )Suppose m = 2 .

 42222 If n = 1, since β|(ab -ba) + γ|(ab

( 4 . 2 . 23 ) 1 = 0 .

 422310 Suppose finallym = 1. If n = 1, since d 0 0 (ϵ ! |1) = 0, we have B1 We define B1 1 = ∅. If n ⩾ 3 is odd, by Table 4.2.20, the spaceBn 1 is spanned by the element α n-1 β|(c-a)+α n-1 γ|(ab) + α n-2 β 2 |(b -c). So we define a basis of Bn 1 by Bn

m for either m = 3

 3 and n ⩾ -1, or m, n ∈ -1,2 , we get B n m = Bn m for either m = 4 and n ∈ N 0 , or m, n ∈ 0,3 . So, we define a basis of B n m by B n m = Bn m for either m = 4 and n ∈ N 0 , or m, n ∈ 0,3 .

n- 5 3 1 Bn- 4 4, since Bn- 4 4= K n- 4 4 1 Bn- 4 4for all integers n ⩾ 4 .

 51444144 by degree reasons. If n ⩾ 5 is odd, we have B n 2 = Bn 2 ⊕ ω * as showed in the previous subsubsection. So, we define a basis of B n 2 by B n 2 = Bn 2 ∪ ω * The dimension of B n 2 is then given by

D1 2 =

 2 β|(ab -ba) + γ|(ab + bc + ac), (α + β + γ)|(ab -ba), α|(ab + bc + ac) + β|(bc + ba + ac) , D2 2 = α 2 |(ab + ba), α 2 |(ab + bc -ac), β 2 |(ab + ba), β 2 |(ab + bc -ac), γ 2 |(ab + ba), γ 2 |(ab + bc -ac), αβ|ba + αγ|ab, αβ|ab + αγ|ba, αβ|(ba + ac) -αγ|bc, αβ|(ab + bc) -αγ|ac , and Dn 2 = Bn 2 for n ⩾ 3. Suppose m = 1. By (4.2.23), the dimension of Dn 1 is given by

  2.2.3 as well as the dimension of Q n m (see the last paragraph of Subsubsection 4.2.2.1), we deduce the value of the dimension of D n m . We will present them explicitly in the computations below. For every (n,m) ∈ N 0 × 0,4 , we are going to provide a set D n m ⊆ D n m such that #D n m = dim D n m and the elements in D n m are linearly independent. As a consequence, D n m is a basis of D n m . We leave to the reader the easy verification in each case that the set D n m satisfies these conditions. For either m ∈ 3,4 and n ∈ N 0 , or m, n ∈ 0,2 , note that ∂ n m = d n m , then D n m = Dn m . So we define the basis of D n m by D n m = Dn m . Suppose m = 2. By B n 3 = Bn 3 and (4.2.22), the dimension of D n 2 is given by

Remark 4 . 2 . 18 .

 4218 Let Hn = ⊕ m∈ 0,4 Hn m for n ∈ N 0 . Proposition 4.2.17 shows thatHH n (A) = ⊕ i∈ 0,⌊n/4⌋ ω * i Hn-4i .Using Corollary 4.2.15, it is easy to compute that dim H0 = 4, dim H1 = 7, dim H2 = 10, dim H3 = 12 and dim Hn = 10 for n ⩾ 4.

Fact 5 . 1 . 3 .

 513 Assume x,y ∈ A. Let n ⩾ 2 be even. The map α n |1 can be extended to the chain map g • : P b • → P b • satisfying g 0 (x|α n |y) = x|ϵ ! |y, g 0 (x|β n |y) = g 0 (x|γ n |y) = g 0 (x|α n-1 β|y) = g 0 (x|α n-1 γ|y) = g 0 (x|α n-2 β 2 |y) = 0, g 1 (x|α n+1 |y) = x|α|y, g 1 (x|β n+1 |y) = g 1 (x|γ n+1 |y) = g 1 (x|α n-1 β 2 |y) = 0, g 1 (x|α n β|y) = x|β|y, g 1 (x|α n γ|y) = x|γ|y, g 2 (x|α n+2 |y) = x|α 2 |y, g 2 (x|β n+2 |y) = g 2 (x|γ n+2 |y) = 0, g 2 (x|α n+1 β|y) = x|αβ|y, g 2 (x|α n+1 γ|y) = x|αγ|y, g 2 (x|α n β 2 |y) = x|(β 2 + γ 2 )|y.

g 1 (

 1 x|α n γ|y) = x|γ|y, g 1 (x|α n-1 β 2 |y) = x|α|y, g 2 (x|β n+2 |y) = x|β 2 |y, g 2 (x|α n+2 |y) = g 2 (x|γ n+2 |y) = 0, g 2 (x|α n+1 β|y) = x|αβ|y, g 2 (x|α n+1 γ|y) = x|αγ|y, g 2 (x|α n β 2 |y) = x|(α 2 + γ 2 )|y.

Now let n ⩾ 4

 4 be even, then the map α n-2 β 2 |1 can be extended to the chain map g • : P b • → P b • satisfying g 0 (x|α n-2 β 2 |y) = x|ϵ ! |y, g 0 (x|α n |y) = g 0 (x|β n |y) = g 0 (x|γ n |y) = g 0 (x|α n-1 β|y) = g 0 (x|α n-1 γ|y) = 0, g 1 (x|α n+1 |y) = g 1 (x|β n+1 |y) = g 1 (x|γ n+1 |y) = 0, g 1 (x|α n β|y) = x|β|y, g 1 (x|α n γ|y) = x|γ|y, g 1 (x|α n-1 β 2 |y) = x|α|y.

Proposition 5 . 1 . 5 .

 515 the elements in Hn 3 are generated by the elements of S . The set of 14 elements given by S = {ϵ ! |(ab + ba), ϵ ! |(ab + bc -ac), ϵ ! |abac, α|a + β|b + γ|c, α|bac, β|abc, γ|aba, α|(aba -abc), α 2 |1, β 2 |1, γ 2 |1, (αβ + αγ)|1, α 3 |a + β 3 |b + γ 3 |c, ω * 1 ϵ ! |1} ⊆ HH • (A).

( 5 . 1 . 1 )

 511 is a minimal generating set of the k-algebra HH • (A). Proof. By Proposition 5.1.4, the 33 element set S = ϵ ! |(ab + ba), ϵ ! |(ab + bc + ac), ϵ ! |abac, α|bac,β|abc,γ|aba,α|(aba -abc),(α + β)|aba, α|aba + β|bac, α|a + β|b + γ|c, α 2 |abac,β 2 |abac,γ 2 |abac, αβ|abac, α 2 |(ab + ba), β 2 |(ab + ba), α 2 |1, β 2 |1, γ 2 |1, (αβ + αγ)|1, α 3 |bac,β 3 |abc,γ 3 |aba,α 2 β|abc,α 3 |(aba -abc),

α 3

 3 |aba + β 3 |bac = α|(aba -abc) ⌣ (β 2 |1 + α 2 |1) -2γ|aba ⌣ (αβ + αγ)|1, (α + β)|aba = (1/2)ϵ ! |(ab + bc -ac) ⌣ (α|a + β|b + γ|c) + α|(aba -abc), α|aba + β|bac = (1/2)[ϵ ! |(ab + ba) ⌣ (α|a + β|b + γ|c) -ϵ ! |(ab + bc -ac) ⌣ (α|a + β|b + γ|c)].

Theorem 5 . 1 . 7 .

 517 Let I be the two-sided ideal of F generated by the set R = R 1 ∪R 2 of 160 homogeneous elements and let D = F/I. Define the morphism φ : F → HH • (A) of bigraded k-algebras by setting φ(x i ) = X i for i ∈ 1,14 . It is easy to check that φ is surjective and I ⊆ Ker(φ), so φ induces the surjective morphism φ : D → HH • (A). Moreover, φ is an isomorphism, i.e. Ker(φ) = I.

q 4 αβ2 = 3ba|γ 3 Fact 5 . 2 . 7 .

 3527 |1 -(ab + bc)|β 3 |1 + (ab + bc)|α 2 β|1 -3c|α 3 |b -2a|β 3 |b -b|β 3 |a -c|β 3 |c -2a|γ 3 |c -2c|γ 3 |a -a|α 2 β|b -2c|α 2 β|c -2b|α 2 γ|b -c|α 2 γ|a -c|αβ 2 |b + 2|β 3 |ac + 1|γ 3 |ab -1|α 2 γ|ab, q 4 ω1ϵ ! = bac|α 4 |a + 4abc|β 4 |b -aba|γ 4 |c + 4ab|α 3 β|bc -4bc|α 3 β|ab + 2(ba + ac)|α 3 γ|ac + 2ba|α 3 γ|ba + ab|α 2 β 2 |ac + bc|α 2 β 2 |ba -2ba|α 2 β 2 |(ab + bc) -4ab|α 4 |ba -2bc|α 4 |ba + (ba + ac)|α 4 |bc + 4ab|α 4 |ac -2(ba + ac)|α 4 |ab + 8bc|β 4 |ac -10ba|β 4 |ab -2ac|β 4 |ab + 6ab|β 4 |ac + 4(ab + bc)|β 4 |ba -2ab|γ 4 |ba -4bc|γ 4 |ba + 6ab|γ 4 |ac -5ba|γ 4 |ab + 4ba|γ 4 |bc -6ac|γ 4 |ab + a|α 4 |bac + 4b|β 4 |abc -c|γ 4 |aba -ω 1 c|ϵ ! |c. Let ρ = ρ 5 : A → A be the derivation of A defined by ρ 5 (b) = abc and ρ 5 (x) = 0 for x ∈ B \ {b}.

Figure 6 . 1 :

 61 Figure 6.1: Resolving quiver of FK(4).

.1. 11 ) and 0 →

 110 M 2 (-4) → H 1 (M 1 ) → k(-6) ⊕ k(-8) → 0. (6.1.12) 

Lemma 6 . 1 . 15 .

 6115 where U is the 2-dimensional vector space spanned by b 1 ,b 2 (for {b 1 ,b 2 } the dual basis to {a 1 ,a 2 }), and J is the subspace of U ⊗ V * spanned by {b 1 y 1,2 -b 2 y 1,2 , b 2 y 1,3 , b 1 y 2,3 , b 1 y 1,4 , b 2 y 2,4 , b 1 y 3,4 -b 2 y 3,4 }.(6.1.17) Recall that B

,4 y 2 , 4 + χ m+1 b 2 y m 2 ,4 y 3 , 4 = χ m b 1 y m 3 ,4 y 2 , 4 + χ m+1 b 2 y m 2 ,4 y 3, 4 = χ m b 1 y m 2 ,3 y 2 , 4 + χ m+1 b 2 y m 2 ,4 y 3 , 4 = 0 , b 2 y m 2 ,3 y 3 , 4 = χ m b 2 y m 2 ,4 y 3 , 4 -χ m+1 b 2 y m 2 ,4 y 2 , 3 = 0 ,

 242343242422423402342342230 for j ∈ 1,2 and m ∈ N. Together with (6.1.17), we get that the space (M 1 ) ! -n is spanned by T n for n ∈ N 0 .

1 , 2 = χ n g 1 y 2 ,4 y n-1 1 , 2 -χ n+1 g 1 y 2 ,4 y 1 ,3 y 2 ,3 y n- 3 1, 2 = -χ n g 1 y n-1 1 ,2 y 1 , 4 -χ n+1 g 1 y n-2 1 ,2 y 1 ,3 y 3, 4 , g 5 y n-1 1 ,2 y 1 , 4 = χ n g 5 y 2 3 ,4 y n-3 1 ,2 y 1 , 4 = χ n g 5 y 2 1 ,3 y 1 ,4 y 2 ,4 y n-4 1 , 2 + χ n+1 g 5 y 2 1 ,3 y 1 ,4 y n- 3 1, 2 = -χ n g 1 y 2 ,4 y 1 ,3 y 1 ,4 y 2 ,4 y n-4 1 , 2 -χ n+1 g 1 y 2 ,4 y 1 ,3 y 1 ,4 y n- 3 1, 2 = χ n g 1 y n-3 1 ,2 y 2 ,3 y 2 1 , 4 + 1 ,2 y 2 , 4 = χ n g 5 y 2 3 ,4 y n-3 1 ,2 y 2 , 4 = -χ n g 5 y 2 1 ,3 y 1 ,4 y n-3 1 , 2 -χ n+1 g 5 y 2 1 ,3 y 1 ,4 y 2 ,4 y n- 4 1, 2 = χ n g 1 y 2 ,4 y 1 ,3 y 1 ,4 y n-3 1 , 2 + χ n+1 g 1 y 2 ,4 y 1 ,3 y 1 ,4 y 2 ,4 y n- 4 1, 2 = -χ n g 1 y n-2 1 ,2 y 1 ,3 y 1 , 4 + 4 2, 3 = 4 2, 3 = 3 2, 3 =

 122122123211411411431141121211322112122113212141243124111211242211122112421114434333 χ n+1 g 1 y n-2 1,2 y 2,3 y 2,4 , g 5 y n-1 χ n+1 g 1 y n-3 1,2 y 1,3 y 2 1,4 , g 5 y n-1 2,3 y 2,4 = g 5 y 2 1,4 y n-3 2,3 y 2,4 = χ n g 5 y 2 1,3 y 2,3 y 2,4 y n-4 2,3 -χ n+1 g 5 y 2 1,3 y 2,3 y 3,4 y n--χ n g 1 y 2,4 y 1,3 y 2,3 y 2,4 y n-4 2,3 + χ n+1 g 1 y 2,4 y 1,3 y 2,3 y 3,4 y n-χ n g 1 y n-2 1,2 y 1,3 y 3,4 + χ n+1 g 1 y n-3 1,2 y 1,3 y 2 1,4 , g 5 y n-1 2,3 y 3,4 = g 5 y 2 1,4 y n-3 2,3 y 3,4 = χ n g 5 y 2 1,3 y 2,3 y 3,4 y n-4 2,3 + χ n+1 g 5 y 2 1,3 y 3,4 y n--χ n g 1 y 2,4 y 1,3 y 2,3 y 3,4 y n-4 2,3 -χ n+1 g 1 y 2,4 y 1,3 y 3,4 y n-3 2,3

y n- 1 3, 4 = 0 . 2 i= 0 1 ,2 n+6 g 5 y n 1 , 2 + α 1,2 n+7 g 5 y n-1 1 ,2 y 3, 4 = r∈ 0 ,n- 1 a r (g 5 y 1 , 2 -g 6 y 3 , 4 )u + r∈ 0 ,n- 1 b r (g 5 y 3 , 4 + 3 yand b r = λ 4 yn+6 g 5 y n 1 , 2 + α 1,2 n+7 g 5 y n-1 1 ,2 y 3, 4 = a 0 g 5 y n 1 , 2 + 4 + b 0 g 6 y n 1 , 2 +

 1402011214011234013434121412412 This implies that α 1,2 n+3 = 0 and λ6 u = 0 for u ∈ B ! n-1 ∩ Y 1,2 .Finally, since there is no g 2 u and g 7 u for u ∈ B ! n on the left side of (6.1.25), we have thatλ 1 u = λ 5 u = 0 for u ∈ B ! n-1 ∩ Y 1,2 .In consequence, we get α 1,for i ∈ 1, n + 1 . Now, we have thatα g 6 y 1,2 )u in k{g i |i ∈ 1,7 } ⊗ A ! , where a r = λ r∈ 1,n-1 a r + (-1) r χ n + (-1) r-1 χ n+1 b r-1 g 5 y n-r1,2 y r 3,4 + b n-1 g 5 y n 3,r∈ 1,n-1 b r + (-1) r-1 χ n + (-1) r χ n+1 a r-1 g 6 y n-r 1,2 y r 3,4 -a n-1 g 6 y n 3,4

1 1 , 1 1, 2 = χ n f 2 y 1 ,4 y n-1 1 , 2 + 1 , 2 + χ n+1 f 3 y 2 ,3 y n- 1 1, 2 = χ n f 2 y 1 ,4 y 1 ,3 y n-2 1 , 2 - 1 , 2 + χ n+1 f 3 y 1 ,4 y n- 1 1, 2 = χ n f 1 y 1 ,3 y n-1 1 , 2 + 1 , 2 + χ n+1 f 3 y 2 ,4 y n- 1 1, 2

 1121121221211121211211212212 2 y 1,3 = χ n f 3 y 1,2 y 1,3 y n-2 1,2 + χ n+1 f 3 y 1,3 y n-1 1,2 = -χ n f 3 y 2,3 y 1,2 y n-2 1,2 + χ n+1 f 3 y 1,3 y n-χ n+1 f 1 y 2,4 y n-1 1,2 , f 3 y n-1 1,2 y 2,3 = χ n f 3 y 1,2 y 2,3 y n-2 1,2 + χ n+1 f 3 y 2,3 y n-1 1,2 = -χ n f 3 y 2,3 y 1,3 y n-2 χ n+1 f 2 y 1,4 y n-1 1,2 , f 3 y n-1 1,2 y 1,4 = χ n f 3 y 1,2 y 1,4 y n-2 1,2 + χ n+1 f 3 y 1,4 y n-1 1,2 = -χ n f 3 y 2,4 y 1,2 y n-2 χ n+1 f 2 y 2,3 y n-1 1,2 , f 3 y n-11,2 y 2,4 = χ n f 3 y 1,2 y 2,4 y n-2 1,2 + χ n+1 f 3 y 2,4 y n-1 1,2 = -χ n f 3 y 1,4 y 1,2 y n-2

yy

  ′ y 1,2 y 3,4 y 1,3 y 2,4 y 2,3 y 1,4
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  6.4 indicates the element b n+1 m , where b n m is the m-th element in (6.1.22) for n ⩾ 4 and m ∈ 1, 24 .

  y

4 χ r 14 -χ r+1 6 χ r 15 -χ r+1 10 g 1 y n 3 4 χ r 12 + χ r+1 9 (- 1 ) r g 1 y n-r+1 1 ,3 y r 2 , 4 χ r 15 -χ r+1 8 g 1 y n 2 , 4 12 g 1 y 1 ,3 y n 2 χ r 12 + χ r+1 7 χ r 14 + χ r+1 11 (- 1 ) r g 1 y

 4141534129112415241212141111 

4 χ r 3 -χ r+1 8 χ r 4 -χ r+1 11 g 1 y n-r 1 4 χ r 3 + χ r+1 10 g 1 y n-r 1 ,3 y r+1 2 , 4 χ r 13 + χ r+1 7 g 1 y n 2

 434143124132 

4 χ r 14 -χ r+1 6 χ r 15 -χ r+1 10 g 1 y n 3 , 4 -g 1 y 1 4 -χ r 15 -χ r+1 3 (- 1 ) r g 1 y n-r+1 1 4 χ r 14 -χ r+1 11 g 1 y n 2 4 -χ r 14 -χ r+1 4 -χ r 15 -χ r+1 8 (- 1 ) r g 1 yg 5 y n+1 2 , 3 g 5

 414153414153114142414415811235 y n-1 2,3 y 1,4 6 10 -g 5 y n 2,3 y 1,4

4 χ r 3 -χ r+1 8 χ r 4 -χ r+1 11 g 1 y n-r 1 4 χ r 6 -χ r+1 4 g 1 y n-r 1 ,3 y r+1 2 , 4 χ r 8 + χ r+1 10 g 1 y n 2 χ r 10 + χ r+1 3 χ r 11 + χ r+1 6 g 1 y n 1

 4341461248210111 

  

  The minimality result then follows. It is easy to check that conditions (1.2.3) are verified in the case of Proposition 1.2.2, as well as in Examples 1.2.3 and 1.2.4, so the corresponding projective resolution (1.2.2) is minimal, coinciding with the resolutions constructed in those references.

	Remark 1.2.6.

Theorem 1.4.7. Let

  (P • ,∂ • ) be a projective bimodule resolution over the algebra A with augmentation µ : P 0 → A, and let i 1 : P 1 → B 1 (A) be the first component of the morphism i • : P • → B • (A) of complexes of A-bimodules lifting id A . Given a cocycle ϕ ∈ Hom A e (P n ,A) and n ∈ N 0 , the Gerstenhaber bracket [G(ρ)i 1 , ϕ] ∈ HH n (A) is given by the cohomology class of ρ ♯ n,P• (ϕ).

Remark 1.4.8. Note

  that in our Theorem 1.4.1, as well as in the result proved in[START_REF] Suárez-Álvarez | A little bit of extra functoriality for Ext and the computation of the Gerstenhaber bracket[END_REF] that was recalled before as Theorem 1.4.7, we need at least some component(s) of the comparison map from the generic projective resolution (P • ,∂ • ) to the bar resolution.

	Chapter 2

Remark 2.2.8. An

  F be the set of all reduction finite elements. element x ∈ k⟨X⟩ is reduction finite if and only if for every sequence {R i |i ∈ N} of reduction operators, the sequence R 1
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 4 

2.2: Images of ∂n for n ⩾ 2 and n even.

Table 4 .

 4 

2.3: Images of ∂n for n ⩾ 2 and n even.

Table 4 .

 4 2.4: Images of ∂n for n ⩾ 2 and n even.

Table 4 .

 4 

2.5: Images of ∂n for n ⩾ 4 and n even.

Table 4 .

 4 

2.6: Images of ∂n for n ⩾ 3 and n odd.

Table 4 .

 4 2.7: Images of ∂n for n ⩾ 3 and n odd.

Table 4 .

 4 

2.8: Images of ∂n for n ⩾ 3 and n odd.

Table 4 . 2

 42 

.9: Images of ∂n for n ⩾ 3 and n odd.

Table 4 .

 4 2.1 shows that B0,2 is spanned by (ab -ba)|ϵ ! , (ba + ac + bc)|ϵ ! and (ab + bc + ac)|ϵ ! . Since (ab + ba)|ϵ ! and (ba + ac + bc)|ϵ ! are linearly independent, and

Table 4 .

 4 If 4|n, the proof is similar to above. Note that if n = 4, there is no term ω 1 H0,0 when decomposing H 4,2 , and if n ⩾ 8, there is no term ω n/4 H0,0 when decomposing ω n/4-2 H 8,4 .Here is a table of the dimensions of H n,m and HH n (A) for n ∈ 0, 19 and m ∈ 0, 12 .

	ω i Hn-4i,1
	i∈ 1,⌊n/4⌋

ω i Hn-4i,3 ⊕ 2.10: Dimension of Hn,m and HHn(A).

Proposition 4.2.7. The dimension of HH n (A) is given by

  As we mentioned at the beginning of Subsubsection 4.2.1.4, one can obtain Proposition 4.2.7 and Corollary 4.2.8 directly from the computations in Subsubsection 4.2.1.3 together with Corollary 4.2.3, but a specific choice of cycles for the Hochschild homology can be useful for later computations.

	and ⌊ n Remark 4.2.9. µ n =	mod 4),

  .2.19) Since the identities (4.2.16) and (4.2.17) for m = 1 are immediate, we suppose m ⩽ 0 from now on. Assume that m is even. Then (4.2.19) tells us that the sequence

Table 4 .

 4 

	together with		
	y	x	ab	bc
	α n	α		

2.11: Images of d n for n ∈ N and n odd, where the last three lines are for n ⩾ 3 and n odd. n+1 |aba + α n β|bac + α n γ|(aba + abc) α n+1 |(abc -aba) -2α n β|bac β n β n+1 |aba + α n β|abc + α n γ|(aba + bac) -β n+1 |bac + α n β|abc -α n γ|(aba + bac) γ n γ n+1 |(abc + bac) + 2α n β|aba -γ n+1 |bac -α n β|aba + α n γ|(abc -bac) α n-1 β α n β|abc + α n γ|(aba

Table 4 .

 4 

	and			
	y	x	ba	ac
	α n	α		

2.12: Images of d n for n ∈ N and n odd, where the last three lines are for n ⩾ 3 and n odd. n+1 |aba + α n β|(aba + abc) + α n γ|bac -α n+1 |abc -α n β|(aba + abc) + α n γ|bac β n β n+1 |aba + α n β|(aba

Table 4 .

 4 

	and

2.14: Images of d n for n ∈ N and n odd, where the last three lines are for n ⩾ 3 and n odd. n+1 |(ac -ab -bc) -α n β|(ba + ac) + α n γ|bc 2α n+1 |a + (α n

Table 4 .

 4 2.16: Images of d n for n ⩾ 2 and n even, where the last line is for n ⩾ 4 and n even.

Table 4 .

 4 

	and			
	y	x	ba	ac
	α n	-α		

2.17: Images of d n for n ⩾ 2 and n even, where the last line is for n ⩾ 4 and n even. n+1 |aba + α n β|aba + α n γ|(bac -abc) -α n+1 |abc -α n β|(aba + bac) + α n γ|abc β n

Table 4 .

 4 

	as well as		
	y	x	a	b
	α n	α		

2.18: Images of d n for n ⩾ 2 and n even, where the last line is for n ⩾ 4 and n even. n β|(ab -ba) + α n γ|(ab + bc + ac) α n+1 |(ba -ab) + α n γ|(ba + ac + bc) β n β n+1 |(ab -ba) + α n γ|(ab + bc + ac) α n γ|(ba

Table 4 .

 4 2.19: Images of d n for n ⩾ 2 and n even, where the last line is for n ⩾ 4 and n even.

Table 4 .

 4 

2.20: Images of d n for n ⩾ 2 and n even, where the last line is for n ⩾ 4 and n even.

Table 4 .

 4 2.21: Images of f 0 .

Table 4 .

 4 

2.22: Images of f n for n ∈ N and n odd.

  We define a basis of Bn 4 by the usual basis of K n 4 . If n ⩾ 2 is even, it is easy to see that Bn 4 is spanned by the element (α n-1 β -α n-1 γ)|abac from Table 4.2.11, so we define a basis of Bn

	4 by	Bn 4 = (α n-1 β -α n-1 γ)|abac .
	The dimension of Bn 4 is then given by
		dim Bn 4

  If n ⩾ 4 is even, by Table4.2.15, we define a basis of Bn 1 by

	Bn 1

by Table 4.2.15, we define a basis of B2 1 by B2 1 = 2α 2 |a + (αβ + αγ)|(b + c), 2β 2 |b + (αβ + αγ)|(a + c), 2γ 2 |c + (αβ + αγ)|(a + b) .

  and the elements in Dn m are linearly independent. As a consequence, Dn m is a basis of Dn m . If Dn m = K n m , we pick the usual basis of K n m , defined at the end of Subsubsection 4.2.2.1. We leave to the reader the easy verification in each case that the set Dn m satisfies these conditions. Obviously, Dn 4 = K n 4 for n ∈ N 0 . Then we define the set Dn 4 by the usual basis of K n

	dimension of Dn 4 is given by	4 . The
	dim Dn 4	
	2.2.1. Since K n m / Dn m	∼ = Bn+1 m+1 , we see that
	dim Dn	

m = dim K n m -dim Bn+1 m+1 .

Hence, from the dimension of Bn+1 m+1 computed in Subsubsection 4.2.2.3 as well as the dimension of K n m (see the last paragraph of Subsubsection 4.2.2.1), we deduce the value of the dimension of Dn m . We will present them explicitly in the computations below. For every (n,m) ∈ N 0 × 0,4 , we are going to provide a set Dn m ⊆ Dn m such that # Dn m = dim Dn m

  , from the dimension of D n m computed in Subsubsection 4.2.2.4 as well as the dimension of B n m computed in Subsubsection 4.2.2.3, we deduce the value of the dimension of H n m . We will present them explicitly in the computations below.For every (n,m) ∈ N 0 × 0,4 , we are going to provide a set H n

	m ⊆ D n m such that #H n m = m is linearly independent. As a consequence, the space H n m ∪ B n m and H n dim H n m spanned by H n m satisfies D n m = H n m ⊕ B n m . We leave to the reader the easy verification in each case that the set H n m satisfies these conditions. Note that, unless stated otherwise, the linear independence of the elements in H n m ∪ B n m follows from Fact 4.1.3, where we put the elements in H n m before the elements in B n m . Suppose m = 4. The dimension of H n 4 is given by

  , and H 2 4 = α 2 |abac,β 2 |abac,γ 2 |abac, αβ|abac . Moreover, if n ∈ N is odd, we define H n 4 = ∅, and if n ⩾ 4 is even, we define

  = ∅ for n ∈ N with n odd, together withHn 0 = α n |1,β n |1,γ n |1,(α n-1 β + α n-1 γ)|1,α n-2 β 2 |1for n ⩾ 4 with n even. Moreover, if we define Hnm = 0 for (n,m) ∈ Z 2 \ (N 0 × 0,4 ), then H n m = Hn m ⊕ ω * 1 H n-4 m+2 holds for m, n ∈ Z by applying Corollary 4.2.14. Remark 4.2.16. The reader can easily check that Dn m = Hn m ⊕ Bn m for m ∈ 0,4 and n ∈ N 0 . Recall that the Hochschild cohomology is decomposed as HH n (A) = ⊕ m⩽4 H n m for n ∈ N 0 .

	Proposition 4.2.17. For n ∈ N 0 ,						
			HH n (A) =		ω * i	Hn-4i m	.		
				i∈ 0,⌊n/4⌋ ,				
				m∈ 0,4				
	Proof. By Corollary 4.2.15, we have						
	H n 2 = Hn 2 ⊕ ω * 1	Hn-4 4	, H n 1 = Hn 1 ⊕ ω * 1	Hn-4 3	, H n 0 = Hn 0 ⊕ ω * 1	Hn-4 2	⊕ ω * 2	Hn-8 4	(4.2.27)
	for n ∈ N 0 . Using Corollary 4.2.14 and (4.2.27), we get				

and H 2 2 = α 2 |(ab + ba),β 2 |(ab + ba) . Moreover, if n ∈ N is odd, we define H n 2 = ∅, and if n ⩾ 4 is even, we define H n 2 = ω * 1 H n-4 4 . and Hn 0

  x|γ|cy, g 1 (x|α n β|y) = -x|α|by -x|β|cy -x|γ|ay, g 1 (x|α n γ|y) = -x|α|cy -x|β|ay -x|γ|by,g 1 (x|α n-1 β 2 |y) = 0, g 2 (x|α n+2 |y) = x|α 2 |ay, g 2 (x|β n+2 |y) = x|β 2 |by, g 2 (x|γ n+2 |y) = x|γ 2 |cy, g 2 (x|α n+1 β|y) = x|αβ|cy + x|αγ|ay + x|(α 2 + γ 2 )|by, 2 (ω 1 x|α|y) = 2x[-2|α 2 |bac + a|αγ|ab -c|α 2 |bc + c|β 2 |ab -b|γ 2 |ba -bc|αβ|c + ab|αγ|a -ac|α 2 |c -2ba|β 2 |c + ab|γ 2 |b -ba|γ 2 |c -abc|αγ|1 + bac|α 2 |1]y,g 2 (ω 1 x|β|y) = 2x[-2|β 2 |abc + b|αγ|bc + a|β 2 |(ab + bc) + a|γ 2 |bc + c|α 2 |(ba + ac) + (ab + bc)|αβ|a + bc|αγ|b -ba|β 2 |a + 2(ba + ac)|γ 2 |a + bc|α 2 |c + (ba + ac)|α 2 |a + aba|αγ|1 + abc|β 2 |1]y, g 2 (ω 1 x|γ|y) = 2x[2|γ 2 |aba -c|αγ|(ab + bc) -b|γ 2 |ab -b|α 2 |(ab + bc) -a|β 2 |ac -ab|αβ|b -(ab + bc)|αγ|c + (ba + ac)|γ 2 |b -2ac|α 2 |b -(ab + bc)|β 2 |a -ac|β 2 |b -bac|αγ|1 -aba|γ 2 |1]y.

	Proposition 5.1.4. The set

g 2 (x|α n+1 γ|y) = x|αβ|ay + x|αγ|by + x|(α 2 + β 2 )|cy, g 2 (x|α n β 2 |y) = x|αβ|by + x|αγ|cy + x|(β 2 + γ 2 )|ay. Moreover, if n = 3, the chain map g • satisfies g 1 (ω 1 x|ϵ ! |y) = 2x[1|α|bac + 1|β|abc -1|γ|aba + c|α|(ba + ac) -a|β|ac -b|γ|ba -(ba + ac)|γ|a + ac|α|b + ba|β|c]y, g

  1, Fact 5.1.3, (5.1.3) and the coboundaries in Subsubsections 4.2.2.3 and 4.2.2.3. Hence, I ⊆ Ker(φ). By Proposition 4.2.17, we have

  4 |a + abc|β 4 |b -aba|γ 4 |c + ab|α 3 β|ab + 5ab|α 3 β|bc -4bc|α 3 β|ab + 2(ba + ac)|α 3 γ|ac + 2ba|α 3 γ|ba -ac|α 3 γ|ba -ab|α 2 β 2 |ba + 2bc|α 2 β 2 |ba -2ba|α 2 β 2 |ab -ba|α 2 β 2 |bc + ac|α 2 β 2 |bc -11ab|α 4 |ba + 2ab|α 4 |ac + 6ba|α 4 |bc + ac|α 4 |ab + 9ac|α 4 |bc + 3ab|β 4 |ac + bc|β 4 |ac -6ba|β 4 |ab + ba|β 4 |bc -3ac|β 4 |ab -5ab|γ 4 |ba + 4ab|γ 4 |ac -4bc|γ 4 |ba -2bc|γ 4 |ac -3ba|γ 4 |ab + 6ba|γ 4 |bc -8ac|γ 4 |ab + 4a|α 4 |bac + b|β 4 |abc -c|γ 4 |aba -ω 1 c|ϵ ! |c.

  2bac|α 2 β 2 |a + aba|α 2 β 2 |c -5bac|α 4 |a -3abc|β 4 |b -2bac|α 3 β|b + 8ab|α 4 |ba -6ab|α 4 |ac + 6bc|α 4 |ba + 3ba|α 4 |bc + 3ac|α 4 |bc + 3ab|β 4 |ac + 3bc|β 4 |ac + 10ba|β 4 |ab -8ba|β 4 |bc + 8ac|β 4 |ab -4ab|γ 4 |ba -2ab|α 2 β 2 |ba -5a|α 4 |bac -3b|β 4 |abc -2b|α 3 γ|bac

Table 5 .

 5 2.1: Gerstenhaber brackets [ρ,ϕ]. There is no generator of the Gerstenhaber bracket on the Hochschild cohomology HH • (A) of A = FK(3), i.e. there is no map ∆ : HH • (A) → HH • (A) of degree -1 such that

	12	X 9 X 12

  2 , h 2 x 1,4 , h 2 x 2,4 , h 3 x 1,3 , h 3 x 1,4 , h 3 x 3,4 , h 4 x 2,3 , h 4 x 2,4 , h 4 x 3,4 ,h 1 x 2,4 -h 3 x 2,4 -h 5 x 1,3 , h 2 x 1,3 -h 4 x 1,3 + h 5 x 2,4 , h 5 x 3,4 -h 6 x 1,2 , h 1 x 1,4 -h 4 x 1,4 + h 6 x 2,3 , h 2 x 2,3 -h 3 x 2,3 -h 6 x 1,4 , h 5 x 1,2 + h 6 x 3,4 , h 1 x 3,4 + h 2 x 3,4 + h 7 x 1,2 , h 6 x 2,4 + h 7 x 1,3 , h 5 x 1,4 + h 7 x 2,3 , h 5 x 2,3 -h 7 x 1,4 , h 6 x 1,3 -h 7 x 2,4 , h 3 x 1,2 + h 4 x 1,2 + h 7 x 3,4 .(6.1.9)Finally, let M 3 be the A-module generated by the set{e i | i ∈ 1,8 } ofeight homogeneous elements of degree zero, subject to the following 24 relations e 1 x 1,2 + e 2 x 3,4 , e 1 x 3,4 -e 2 x 1,2 , e 3 x 1,2 -e 4 x 3,4 , e 3 x 3,4 + e 4 x 1,2 , e 4 x 1,3 + e 2 x 2,4 , e 4 x 2,4 -e 2 x 1,3 , e 3 x 1,3 + e 1 x 2,4 , e 3 x 2,4 -e 1 x 1,3 , e 1 x 2,3 -e 4 x 1,4 , e 1 x 1,4 + e 4 x 2,3 , e 3 x 2,3 -e 2 x 1,4 , e 3 x 1,4 + e 2 x 2,3 , e 5 x 1,2 , e 5 x 1,3 , e 5 x 2,3 , e 6 x 1,2 , e 6 x 1,4 , e 6 x 2,4 , e 7 x 1,3 , e 7 x 1,4 , e 7 x 3,4 , e 8 x 2,3 , e 8 x 2,4 , e 8 x 3,4 . (6.1.10) Since the previous modules are finite dimensional, we use GAP to obtain a homogeneous kbasis of M i , and in particular, the Hilbert series of M i , for i ∈ 1,3 . See Appendix A.2 for a basis of M 1 . Given i ∈ 1,3 , the Hilbert series h M i (t) of the quadratic A-module M i introduced in the previous paragraph is given by h M 1 (t) = 2 + 6t + 11t 2 + 12t 3 + 11t 4 + 6t 5 + 2t 6 , h M 2 (t) = 7 + 18t + 32t 2 + 42t 3 + 40t 4 + 30t 5 + 16t 6 + 6t 7 + 1t 8 , h M 3 (t) = 8 + 24t + 48t 2 + 72t 3 + 80t 4 + 72t 5 + 48t 6 + 24t 7 + 8t 8 .

	Fact 6.1.4.

  .1.1.

	n m 0 1	2	3	4	5	6	7	8	9	10	11 12
	0	0 6	19	42	71	96	106	96	71	42	19	6	1
	1	0 17 72 181 330	470	540	505	384	233 108 35	6
	2	0 30 142 384 737 1092 1297 1248 974	606 288 96 17
	3	0 38 186 515 1020 1550 1890 1866 1494 956 468 162 30
	4	0 42 207 576 1146 1752 2151 2142 1731 1122 558 198 38
	5	0 45 222 618 1230 1881 2310 2301 1860 1206 600 213 42
	6	0 48 237 660 1314 2010 2469 2460 1989 1290 642 228 45
	7	0 51 252 702 1398 2139 2628 2619 2118 1374 684 243 48
	8	0 54 267 744 1482 2268 2787 2778 2247 1458 726 258 51
	9	0 57 282 786 1566 2397 2946 2937 2376 1542 768 273 54

Table 6 .

 6 1.1: Dimension of Bn,m. By dim D n,m = dim K n,m -dim B n-1,m+1 and Table 6.1.1, we get the dimension of D n,m for n ∈ 0,5 and m ∈ 0,12 in Table 6.1.2.

	n m 0 1	2	3	4	5	6	7	8	9	10	11 12
	0	1 6	19	42	71	96	106	96	71	42	19	6	1
	1	0 17 72 181 330	470	540	505	384	233 108 35	6
	2	0 30 142 384 737 1092 1297 1248 974	606 288 96 17
	3	0 38 186 523 1038 1583 1932 1906 1524 972 474 163 30
	4	0 42 207 576 1148 1758 2162 2154 1742 1128 560 198 38
	5	0 45 222 618 1230 1881 2310 2301 1860 1206 600 214 42

Table 6 .

 6 1.2: Dimension of Dn,m.By dim H n,m = dim D n,m -dim B n,m , we get the dimension of H n,m for n ∈ 0,5 and m ∈ 0,12 in Table6.1.3. The dimensions that are not listed in the following table are zeros.

	n m 0 1 2 3 4	5	6	7	8	9 10 11 12
	0	1				
	3	8 18 33 42 40 30 16 6	1
	4	2	6 11 12 11 6	2
	5						1

Table 6 .

 6 1.3: Dimension of Hn,m.

Table 6 .

 6 .1.4. The dimensions that are not listed in the following table are zeros. 1.4: Dimension of Hn,m(M 1 ).

	n m 0 1 2 3 4	5	6	7	8	9 10 11 12
	1	7 18 33 42 41 30 16 6	1

  .1.5. The dimensions that are not listed in the following table are zeros.

	n m 0 1 2 3 4	5	6	7	8	9 10 11 12
	1	1	1			
	2	2	6 11 12 11 6	2
	3	8 24 48 72 80 72 48 24 8

Table 6 .

 6 1.5: Dimension of Hn,m(M 2 ).

  .1.6 for n ∈ 1,9 and m ∈ 0,12 . The dimensions that are not listed in the following table are zeros.

	n m 0 1 2 3 4	5	6	7	8	9 10 11 12
	3	8 24 48 72 80 72 48 24 8

Table 6 .

 6 1.6: Dimension of Hn,m(M 3 ). We haveH 4 (k) ∼ = M 1 (-8), H 5 (k) ∼ = k(-16) and the non-split short exact sequence (6.1.11) of graded A-modules.Proof. The isomorphism H 5 (k) ∼ = k(-16) follows immediately from Table6.1.3. Recall that we write H n instead of H n (k) for n ∈ N to simplify the notation. Let us prove the isomorphism H 4 (k) ∼ = M 1 (-8). The following GAP code shows that the dimension vector of the submodule of H 4 generated by two basis elements a ′ 1 ,a ′ 2 of H 4,4 is (2,6,11,12,11,6,2). So, Table 6.1.3 tells us that H 4 is generated by a ′ 1 ,a ′ 2 as an A-module.

	Lemma 6.1.6. Imm:=Im(0,4,4);;
	RankMat(Imm);
	# 1146
	gene:=geneMH(0,4,4);;
	Append(Imm,gene);

  33 x 1,2 is a linear combination of c i x 1,2 for i ∈ 1,32 . Using GAP, we choose suitable representative elements c ′ i ∈ D M 1 1,5 of c i for i ∈ 1,33 , and get that the dimension of the space spanned by c ′ i x 1,2 for i ∈ 1,33 and elements in B M 1 1,6 , is strictly larger than the dimension of the space spanned by c ′ i x 1,2 for i ∈ 1,32 and elements in B M 1 1,6 , as the following code shows.

gene:=geneMH(1,1,3);; Uh:=UU(gene,3);; Vh:=VV(gene,3);; Wh:=WW(gene,3);; hx:=HXR(1,Uh,Vh,Wh,1,3,2);; hxx:=0 * [1..33];; hxx

  2 ) generated by two basis elements a ′′ 1 ,a ′′ 2 of H 2,4 (M 2 ) is[START_REF] Andruskiewitsch | On pointed Hopf algebras associated with unmixed conjugacy classes in Sm[END_REF][START_REF] Cohen | GBNP -a GAP package[END_REF][START_REF] Herscovich | An elementary computation of the cohomology of the Fomin-Kirillov algebra with 3 generators[END_REF]12,[START_REF] Herscovich | An elementary computation of the cohomology of the Fomin-Kirillov algebra with 3 generators[END_REF][START_REF] Cohen | GBNP -a GAP package[END_REF][START_REF] Andruskiewitsch | On pointed Hopf algebras associated with unmixed conjugacy classes in Sm[END_REF]. So, H 2 (M 2 ) is generated by the two elements as an A-module.Furthermore, it is direct to check that the generators a ′′ 1 ,a ′′ 2 of H 2 (M 2 ) satisfy the quadratic relations (6.1.8) defining M 1 . Indeed, the following code shows that the dimension of the subspace generated by B M 2 2,5 together with the elements of the form (6.1.8) with a ′′ i instead of a i coincides with the dimension of B M 2 2,5 .Next, we prove that the space H 3 (M 2 ) is also a quadratic module, which is isomorphic to M 3 (-6). The following code shows that the dimension vector of the submodule of H 3 (M 2 ) generated by basis elements e ′ i ,i ∈ 1,8 of H 3,3 (M 2 ) is[START_REF] Fomin | Quadratic algebras, Dunkl elements, and Schubert calculus[END_REF][START_REF] Ştefan | The cohomology ring of the 12-dimensional Fomin-Kirillov algebra[END_REF]48,72,80,72,48,[START_REF] Ştefan | The cohomology ring of the 12-dimensional Fomin-Kirillov algebra[END_REF][START_REF] Fomin | Quadratic algebras, Dunkl elements, and Schubert calculus[END_REF]. So, H 3 (M 2 ) is generated by the eight elements e ′ i ,i ∈ 1,8 as an A-module.Moreover, it is direct to check that the generators e ′ i , i ∈ 1,8 of H 3 (M 2 ) satisfy the quadratic relations (6.1.10). Indeed, the following code shows that the dimension of the subspace generated by B M 2 3,4 together with the elements of the form (6.1.10) with e ′ i instead of e i coincides with the dimension of B M 2 3,4 .

	# 4 24
	# 5 48
	# 6 72
	# 7 80
	# 8 72
	# 9 48
	# 10 24
	# 11 8
	Imm:=Im(2,2,4);;
	RankMat(Imm);
	# 1474
	gene:=geneMH(2,2,4);;
	Append(Imm,gene);
	RankMat(Imm);
	# 1476 gene:=geneMH(2,3,3);;
	Uh:=UU(gene,4);; Vh:=VV(gene,4);; Wh:=WW(gene,4);; Uh:=UU(gene,3);; Vh:=VV(gene,3);; Wh:=WW(gene,3);;
	for r in [5..10] do hx:=HXR(2,Uh,Vh,Wh,3,3,1);;
	hxr:=HXR(2,Uh,Vh,Wh,2,4,r-4); cc:=0 * [1..24];; Im2r:=Im(2,2,r); cc[1]:=hx[1]+hx
	Append(Im2r, hxr);
	Print(r, " ", RankMat(Im2r)-RankMat(Im(2,2,r)), "\n");
	od;
	# 5 6
	# 6 11
	# 7 12
	# 8 11
	# 9 6
	# 10 2
	gene:=geneMH(2,2,4);;
	Uh:=UU(gene,4);; Vh:=VV(gene,4);; Wh:=WW(gene,4);;
	hx:=HXR(2,Uh,Vh,Wh,2,4,1);;
	cc:=0 * [1..6];;
	cc[1]:=hx[1]+hx[7];; cc[2]:=hx[2];; cc[3]:=hx[5];; cc[4]:=hx[6]+hx[12];;
	cc[5]:=hx[9];; cc[6]:=hx[10];;
	Imm:=Im(2,2,5);;
	RankMat(Imm);
	# 2244
	Append(Imm,cc);
	RankMat(Imm);
	# 2244
	Imm:=Im(2,3,3);;
	RankMat(Imm);
	# 786
	gene:=geneMH(2,3,3);;
	Append(Imm,gene);
	RankMat(Imm);
	# 794
	Uh:=UU(gene,3);; Vh:=VV(gene,3);; Wh:=WW(gene,3);;
	for r in [4..11] do
	hxr:=HXR(2,Uh,Vh,Wh,3,3,r-3);
	Im3r:=Im(2,3,r);
	Append(Im3r, hxr);
	Print(r, " ", RankMat(Im3r)-RankMat(Im(2,3,r)), "\n");
	od;

Hence, there is a surjective morphism M 1 (-6) → H 2 (M 2 ) of graded A-modules. Since the dimension vector of M 1 is

[START_REF] Andruskiewitsch | On pointed Hopf algebras associated with unmixed conjugacy classes in Sm[END_REF][START_REF] Cohen | GBNP -a GAP package[END_REF][START_REF] Herscovich | An elementary computation of the cohomology of the Fomin-Kirillov algebra with 3 generators[END_REF]12,[START_REF] Herscovich | An elementary computation of the cohomology of the Fomin-Kirillov algebra with 3 generators[END_REF][START_REF] Cohen | GBNP -a GAP package[END_REF][START_REF] Andruskiewitsch | On pointed Hopf algebras associated with unmixed conjugacy classes in Sm[END_REF]

, we have H 2 (M 2 ) ∼ = M 1 (-6) as graded A-modules, as claimed.

  The following GAP code shows that the dimension vector of the submodule of H 3 (M 3 ) generated by basis elements e ′′ i , i ∈ 1,8 of H 3,3 (M 3 ) is[START_REF] Fomin | Quadratic algebras, Dunkl elements, and Schubert calculus[END_REF][START_REF] Ştefan | The cohomology ring of the 12-dimensional Fomin-Kirillov algebra[END_REF]48,72,80,72,48,[START_REF] Ştefan | The cohomology ring of the 12-dimensional Fomin-Kirillov algebra[END_REF][START_REF] Fomin | Quadratic algebras, Dunkl elements, and Schubert calculus[END_REF]. So, H 3 (M 3 ) is generated by the eight elements as an A-module.

	:=hx[34];;
	cc[18]:=hx[35];; cc[19]:=hx[38];; cc[20]:=hx[40];; cc[21]:=hx[42];; cc[22]:=hx[45];;
	cc[23]:=hx[47];; cc[24]:=hx[48];;
	Imm:=Im(2,3,4);;
	RankMat(Imm);
	# 1566
	Append(Imm,cc);
	RankMat(Imm);
	# 1566
	Imm:=Im(3,3,3);;
	RankMat(Imm);
	# 672
	gene:=geneMH(3,3,3);;
	Append(Imm,gene);
	RankMat(Imm);
	# 680
	Uh:=UU(gene,3);; Vh:=VV(gene,3);; Wh:=WW(gene,3);;
	for r in [4..11] do
	hxr:=HXR(3,Uh,Vh,Wh,3,3,r-3);
	Im3r:=Im(3,3,r);
	Append(Im3r, hxr);
	Print(r, " ", RankMat(Im3r)-RankMat(Im(3,3,r)), "\n");
	od;
	# 4 24
	# 5 48
	# 6 72
	# 7 80
	# 8 72
	# 9 48
	# 10 24
	# 11 8

Hence, there is a surjective morphism M 3 (-6) → H 3 (M 2 ) of graded A-modules. Since the dimension vector of M 3 is (8,24,48,72,80,72,48,24,8), we have H 3 (M 2 ) ∼ = M 3 (-6) as graded A-modules, as claimed. Lemma 6.1.9. We have H 3 (M 3 ) ∼ = M 3 (-6) of graded A-modules.

Proof.

Table 6 .

 6 .1.7. 1.7: Values of am and bm.

	m 0 1 2	3	4	5	6	7	8	9 10 11
	a m	1 5 14 28 43 53 53 43 28 14 5	1
	b m	1 4 10 18 25 28 25 18 10 4	1	0

  .1.8.

	n	m	1	2	3	4	5	6	7	8	9	10	11 12
	3		23 138 422 896 1428 1800 1815 1468 947 466 162 30
	n ⩾ 4 with n even 24 136 408 850 1344 1690 1716 1406 924 466 168 34
	n ⩾ 5 with n odd 24 144 434 912 1452 1836 1872 1536 1008 504 180 36

Table 6 .

 6 1.8: Dimension of Un,m. By Lemma 6.1.12, the subcomplex k

	Remark 6.1.14.

Corollary 6.1.18. The

  and Remark 6.1.14. dimension of B M 1 n,m for n ∈ N 0 and m ∈ 0,12 is given by

	n m 0	1	2	3	4	5	6	7	8	9	10	11	12
	n = 0 0	6	27	72	131	186	210	192	142	84	38	12	2
	n ∈ N 0 3n + 6 15n + 27 42n + 72 84n + 138 129n + 204 159n + 243 159n + 234 129n + 183 84n + 114 42n + 54 15n + 18 3n + 3

Table 6 .

 6 1.9: Dimension of B M 1 n,m .

  m+4 for m ∈ 0, 12 . The result now follows.

	Corollary 6.1.19. The dimension of D M 1 1,m for m ∈ 0,12 is given by		
	m	0 1 2	3	4	5	6	7	8	9	10 11 12
	dim D M 1 1,m	0 9 42 121 240 366 444 434 342 214 102 34 6

Table 6 .

 6 

1.10: Dimension of D M 1 1,m .

  1.2. Let {g i | i ∈ 1,7 } be the dual basis to the basis {h i | i ∈ 1,7 } of the space of generators of M 2 . Then, it is easy to see that the A ! -module (M 2 ) ! is generated by g i ,i ∈ 1,7 , subject to the following 18 relations g 1 y 3,4 -g 2 y 3,4 , g 3 y 1,2 -g 4 y 1,2 , g 5 y 1,2 -g 6 y 3,4 , g 5 y 3,4 + g 6 y 1,2 , g 1 y 3,4 -g 7 y 1,2 , g 3 y 1,2 -g 7 y 3,4 , g 1 y 2,4 + g 3 y 2,4 , g 2 y 1,3 + g 4 y 1,3 , g 6 y 1,3 + g 7 y 2,4 , g 6 y 2,4 -g 7 y 1,3 , g 1 y 2,4 + g 5 y 1,3 , g 2 y 1,3 -g 5 y 2,4 , g 1 y 1,4 + g 4 y 1,4 , g 2 y 2,3 + g 3 y 2,3 , g 5 y 2,3 + g 7 y 1,4 , g 5 y 1,4 -g 7 y 2,3 , g 1 y 1,4 -g 6 y 2,3 , g 2 y 2,3 + g 6 y 1,4 .

	(6.1.21)

  in k{g i |i ∈ 1,7 } ⊗ A ! ,where t i is the i-th element in (6.1.22) for i ∈ 1,24 , t 1,2

	α 1,2 i t 1,2 i +	i∈ 1,n+7	α 1,3 i t 1,3 i +	i∈ 1,n+7	α 2,3 i t 2,3 i	=	n-1 u ∈ B ! i ∈ 1, 18 ,	λ i u r i u,	(6.1.24)
								i	

  vanish for all i ∈ 1, n + 7 . By Lemma 6.1.15, (6.1.24) implies that

	1,3 i	and α 2,3 i				
		i∈ 1,n+7	α 1,2 i t 1,2 i	=	n-1 u ∈ B ! i ∈ 1, 6 , ∩ Y 1,2	λ i u r i u,	(6.1.25)
		i∈ 1,n+7	α 1,3 i t 1,3 i	=	n-1 u ∈ B ! i ∈ 7, 12 , ∩ Y 1,3	λ i u r i u,	(6.1.26)
		i∈ 1,n+7	α 2,3 i t 2,3 i	=	n-1 u ∈ B ! i ∈ 13, 18 , ∩ Y 2,3	λ i u r i u,	(6.1.27)
	and					
	i∈ 1,24					

  Table A.1.8: Products y ′ y and n ⩾ 6 even. y y ′ y 1,2 y 3,4 y 1,3 y 2,4 y 2,3 y 1,4

	1 2 3 4 5 6 7 8 9 10 y n-3 y n-1 1,2 y 1,3 y n-2 1,2 y 2 1,3 y n-1 1,2 y 2,3 y n-1 1,2 y 1,4 y n-2 1,2 y 1,3 y 1,4 y n-3 1,2 y 2 1,3 y 1,4 y n-1 1,3 y 1,4 y n-2 1,2 y 2,3 y 1,4 y n-2 1,2 y 2 1,4 1,2 y 1,3 y 2 1,4 11 y n-4 1,2 y 2 1,3 y 2 1,4 12 y n-2 1,3 y 2 1,4 13 y n-3 1,2 y 2,3 y 2 1,4 14 y n-1 1,2 y 2,4 15 y n-2 1,2 y 1,3 y 2,4 16 y n-3 1,2 y 2 1,3 y 2,4 17 y n-2 1,2 y 2,3 y 2,4 18 y n-1 2,3 y 2,4 19 y n-2 2,3 y 2 2,4 20 y n-2 1,2 y 1,3 y 3,4 21 y n-3 1,2 y 2 1,3 y 3,4 22 y n-1 1,3 y 3,4 23 y n-2 1,2 y 2,3 y 3,4 24 y n-1 2,3 y 3,4	1 2 3 4 5 6 5 8 9 10 11 11 13 14 15 16 17 -13 5 21 17 20 -10 20 -12 -15 21 5 21 22 17 23 8 23 17 -19 11 24 20 -6 21 -11 -23 -5 -20 -17 3 20 -2 15 1 16 3 6 -2 8 -1 23 -8 -9 -5 14 6 -17 -8 21 -8 -11 -5 16 7 -17 -8 22 5 -23 6 -13 10 14 13 4 13 20 -11 15 10 16 13 6 12 16 13 7 -11 8 -10 23 -17 -4 -15 -9 16 -10 -17 20 -17 -6 -15 -11 15 21 16 5 15 24 18 5 10 18 19 6 21 -15 -23 -10 20 -7 22 -15 -23 -12 23 -16 20 -13 21 8 23 -18 20 -19 24 8

  Table A.1.9: Products y ′ y and n ⩾ 5 odd.

	# rel: current relation, lm: leading monomial of current relation rel
	p:=[];	
	ts:=[];	
	for rel in GAT do	
	# get leading monomial	
	lm := rel[1,1];	
	if Length(lm)>1 and lm[1]<0 then
	# module relations start with a negative generator.
	# if 1 is part of the GB then it does not have a generator,
	# furthermore it is two-sided.
	Add(p, rel);	
	else	
	Add(ts, rel);	
	fi;	
	od;	
	return rec(p:=p, ts:=ts);	
	end;;	
	split:=splitGAT(GAT);	
	GBR:=rec(p:=split.p, pg:=2, ts:=split.ts);
	BQM:=BaseQM(GBR,6,2,0);;	
	PrintNPList(BQM);	
	1 2 3 4 5 6 7 8 9 10 y n-3 y n-1 1,2 y 1,3 y n-2 1,2 y 2 1,3 y n-1 1,2 y 2,3 y n-1 1,2 y 1,4 y n-2 1,2 y 1,3 y 1,4 y n-3 1,2 y 2 1,3 y 1,4 y n-1 1,3 y 1,4 y n-2 1,2 y 2,3 y 1,4 y n-2 1,2 y 2 1,4 1,2 y 1,3 y 2 1,4 11 y n-4 1,2 y 2 1,3 y 2 1,4 12 y n-2 1,3 y 2 1,4 13 y n-3 1,2 y 2,3 y 2 1,4 14 y n-1 1,2 y 2,4 15 y n-2 1,2 y 1,3 y 2,4 16 y n-3 1,2 y 2 1,3 y 2,4 17 y n-2 1,2 y 2,3 y 2,4 18 y n-1 2,3 y 2,4 19 y n-2 2,3 y 2 2,4 20 y n-2 1,2 y 1,3 y 3,4 21 y n-3 1,2 y 2 1,3 y 3,4 22 y n-1 1,3 y 3,4 23 y n-2 1,2 y 2,3 y 3,4 24 y n-1 2,3 y 3,4	1 2 3 4 5 6 6 8 9 10 11 -21 -13 -6 -10 -16 -5 2 -15 -3 -20 -21 -3 -6 -1 -16 -17 1 -23 2 -8 -20 5 -14 8 9 10 8 -21 -6 17 -20 5 -16 8 11 -22 7 -16 8 12 15 -6 13 -5 23 -21 -13 -4 -10 -14 -5 11 -15 -13 -20 10 -7 12 -15 -13 -22 13 -17 10 -23 11 -8 14 -23 15 9 17 4 15 -8 17 -20 -16 10 16 -23 15 11 17 6 17 13 -16 -5 -15 -21 16 -24 15 19 18 6 13 -18 10 -24 19 -8 20 6 23 10 -21 15 21 11 20 17 23 5 21 12 22 17 23 7 23 16 -21 -8 -20 13 21 19 20 18 24 5

  Table A.6.1: Products yy ′ for n ⩾ 4 even.

		y	y ′	y 1,4	y 2,4	y 3,4
	1 2 3 4 5 6 7 8 9	g 1 y n-1 1,2 y 1,3 g 1 y n-1 1,2 y 2,3 g 1 y n-1 1,2 y 1,4 g 1 y n-1 1,2 y 2,4 g 1 y n-2 1,2 y 2 1,3 g 1 y n-2 1,2 y 1,3 y 1,4 g 1 y n-2 1,2 y 1,3 y 2,4 g 1 y n-2 1,2 y 1,3 y 3,4 g 1 y n-2 1,2 y 2,3 y 1,4 g 1 y n-2 1,2 y 2,3 y 2,4 g 1 y n-2 1,2 y 2,3 y 3,4 g 1 y n-2 1,2 y 2 1,4 g 1 y n-3 1,2 y 2 1,3 y 3,4 g 1 y n-3 1,2 y 1,3 y 2 1,4 g 1 y n-3 1,2 y 2,3 y 2 1,4 g 2 y n-1 1,2 y 1,4 g 2 y n-1 1,2 y 2,4 g 2 y n-2 1,2 y 2 1,4 g 3 y n-1 1,3 y 1,4 g 3 y n-1 1,3 y 3,4 g 3 y n-2 1,3 y 2 1,4 g 4 y n-1 2,3 y 2,4 g 4 y n-1 2,3 y 3,4 g 4 y n-2 2,3 y 2 2,4	6 9 12 -4 3 14 10 -13 15 7 11 3 -8 6 9 18 -17 16 21 -20 19 -7 -11 -3	7 10 3 12 4 -9 14 -8 -6 15 -13 4 -11 7 10 16 18 17 9 8 -4 24 -23 22	8 11 6 10 13 3 7 14 -9 4 15 13 12 8 11 6 10 13 19 21 20 22 24 23
		g 1 y n 1,2			
		g 2 y 2,3 y n-1 1,4 g 2 y n 1,4 g 3 y n 1,4 g 4 y n 2,3 g 5 y n 2,3 g 5 y n-1 2,3 y 1,4	12 7 18 -12 -12 9 -13		14 11 14 21 -14 -4 -6	g 1 y 2,3 y n 1,4 -g 1 y n+1 1,4 g 2 y 2,3 y n 1,4 -g 2 y 2,3 y n 1,4 g 4 y n+1 2,3 g 5 y n+1 2,3 -g 5 y n 2,3 y 1,4

Table A .

 A 6.2: Products yy ′ for n ⩾ 4 even.

		y	y ′	y 1,2	y 1,3	y 2,3
	1 2 3 4 5 6 7 8 9	g 1 y n-1 1,2 y 1,3 g 1 y n-1 1,2 y 2,3 g 1 y n-1 1,2 y 1,4 g 1 y n-1 1,2 y 2,4 g 1 y n-2 1,2 y 2 1,3 g 1 y n-2 1,2 y 1,3 y 1,4 g 1 y n-2 1,2 y 1,3 y 2,4 g 1 y n-2 1,2 y 1,3 y 3,4 g 1 y n-2 1,2 y 2,3 y 1,4 g 1 y n-2 1,2 y 2,3 y 2,4 g 1 y n-2 1,2 y 2,3 y 3,4 g 1 y n-2 1,2 y 2 1,4 g 1 y n-3 1,2 y 2 1,3 y 3,4 g 1 y n-3 1,2 y 1,3 y 2 1,4 g 1 y n-3 1,2 y 2,3 y 2 1,4 g 2 y n-1 1,2 y 1,4 g 2 y n-1 1,2 y 2,4 g 2 y n-2 1,2 y 2 1,4 g 3 y n-1 1,3 y 1,4 g 3 y n-1 1,3 y 3,4 g 3 y n-2 1,3 y 2 1,4 g 4 y n-1 2,3 y 2,4 g 4 y n-1 2,3 y 3,4 g 4 y n-2 2,3 y 2 2,4	-2 -1 -4 -3 5 10 9 11 7 6 8 12 -13 -15 -14 -17 -16 18 4 13 15 3 13 14	5 -2 -8 -7 1 -13 -4 -3 11 10 9 14 -6 12 -15 -8 -7 14 -20 -19 21 7 6 15	1 5 -9 -11 2 -6 -8 -7 -3 -13 -4 15 -10 14 12 -9 -11 15 9 10 -14 -23 -22 24
		g 1 y n 1,2		g 1 y n+1 1,2	
			g 4 y n 2,4 g 6 y n 1,3 g 6 y n-1 1,3 y 2,4	19 -3 -15 -8	-g 1 y n 1,3 y 2,4 g 4 y n+1 2,4 g 6 y n 1,3 y 2,4 g 6 y n+1 1,3	20 23 9 12
			g 1 y n 2,3 g 1 y n-r 2,3 y r 1,4 g 1 y n 1,4 g 2 y 2,3 y n-1 1,4 g 2 y n 1,4 g 3 y n 1,4 g 4 y n 2,3 g 5 y n 2,3 g 5 y n-1 2,3 y 1,4	g 1 y n 2,3 y 1,4 g 1 y n-r 2,3 y r+1 1,4 g 1 y n+1 1,4 g 2 y 2,3 y n 1,4 g 2 y n+1 1,4 g 3 y n+1 1,4 -g 1 y n 2,3 y 1,4 g 5 y n 2,3 y 1,4 g 5 y n+1 2,3	4 χ r 4 -χ r+1 6 χ r 13 -χ r+1 9 13 4 13 -6 -9 17 13 -4 20 22 23 14 7 -11 12

Table A .

 A 6.3: Products yy ′ for n ⩾ 5 odd.

		y	y ′	y 1,4	y 2,4	y 3,4
	1 2 3 4 5 6 7 8 9	g 1 y n-1 1,2 y 1,3 g 1 y n-1 1,2 y 2,3 g 1 y n-1 1,2 y 1,4 g 1 y n-1 1,2 y 2,4 g 1 y n-2 1,2 y 2 1,3 g 1 y n-2 1,2 y 1,3 y 1,4 g 1 y n-2 1,2 y 1,3 y 2,4 g 1 y n-2 1,2 y 1,3 y 3,4 g 1 y n-2 1,2 y 2,3 y 1,4 g 1 y n-2 1,2 y 2,3 y 2,4 g 1 y n-2 1,2 y 2,3 y 3,4 g 1 y n-2 1,2 y 2 1,4 g 1 y n-3 1,2 y 2 1,3 y 3,4 g 1 y n-3 1,2 y 1,3 y 2 1,4 g 1 y n-3 1,2 y 2,3 y 2 1,4 g 2 y n-1 1,2 y 1,4 g 2 y n-1 1,2 y 2,4 g 2 y n-2 1,2 y 2 1,4 g 3 y n-1 1,3 y 1,4 g 3 y n-1 1,3 y 3,4 g 3 y n-2 1,3 y 2 1,4 g 4 y n-1 2,3 y 2,4 g 4 y n-1 2,3 y 3,4 g 4 y n-2 2,3 y 2 2,4	6 9 12 -4 3 14 10 -13 15 7 11 3 -8 6 9 18 -17 16 21 -20 19 4 8 -9	7 10 3 12 4 -9 14 -8 -6 15 -13 4 -11 7 10 16 18 17 -3 11 -7 24 -23 22	8 11 6 10 13 3 7 14 -9 4 15 13 12 8 11 6 10 13 19 21 20 22 24 23
		g 1 y n 1,2			

Table A

 A 

.6.4: Products yy ′ for n ⩾ 5 odd.

⌋ -3, if n ≡ 0,1 (mod 4), ⌊ n 4 ⌋ -2, if n ≡ 2,3 (mod 4). Moreover, h 0 (t) = 1 + 3t + 2t 2 , h 1 (t) = 3t + 3t 2 + 2t 3 + t

, h 2 (t) = t 2 +

6t 3 + 2t 4 + t 5 + t 6 , h 3 (t) = 4t 3 + 3t 4 + t 6 + 4t 7 , h 4 (t) = t 4 + 4t 5 + 7t 7 + 3t 8 , h 5 (t) = 4t 5 + t 6 + 3t 7 + 4t 8 + 6t 9 + t 11 .

n-4i and n ∈ N 0 is a ρ e -lifting of ρ. Note that deg(x) + deg(y) + n + 2i is the internal degree of

2X i , if i ∈ 4,7 and j = 8, 4X 1 X 9 , if i = 7 and j = 9, X 1 X 10 , if i = 7 and j = 10, -X 1 (X 9 + X 10 ), if i = 7 and j = 11, 2X 1 X i+5 , if i ∈ 4,5 and j = 12, 2X 1 (X 9 + X 10 ), if i = 6 and j = 12, X 1 X 9 , if i = 7 and j = 12, τ i 8X 4 X 10 ,if i ∈ 4,6 and j = 13, 4X 1 X 13 -4X 2 X 13 -8X 4 X 12 , if i = 7 and j = 13, τ i (1/3)X 2
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Suppose m = 1. The dimension of H n 1 is given by

We define the sets H 1 1 = α|a + β|b + γ|c , and

Moreover, if n ∈ N 0 is even, we define H n 1 = ∅, and if n ⩾ 5 is odd, we define

3

.

Suppose finally m = 0. The dimension of H n 0 is given by

if n = 10, 10, if n ⩾ 12 is even.

We define the sets H 0 0 = ϵ ! |1 , and H 2 0 = α 2 |1, β 2 |1, γ 2 |1, (αβ + αγ)|1 . Moreover, if n ∈ N is odd, we define H n 0 = ∅, and if n ⩾ 4 is even, we set

The previous results can be restated as follows. x 7 x i is the leading term of an element of the Gröbner basis G for i = 8,9,10,11,12. The equation (5.1.10) shows that m = 3 + r 13 ⩽ 4. Finally, assume also that r 7 = 0. Then m = r 8 + r 13 ⩽ 2 ⩽ 4.

Then we suppose m = 4. The equation (5.1.10) then becomes 2r 1 + 2r 2 + 4r 3 + 3r 4 + 3r 5 + 3r 6 + 3r 7 + r 8 + r 13 = 4.

(5. 1.11) If r 1 = 1, then r i = 0 for i = 2,3,4,5,6,7,11,12, and equation (5.1.11) shows r 8 + r 13 = 2, which gives r 8 = r 13 = 1. This is impossible since x 1 x 8 can only be followed by x 14 by (5.1.7). Assume for the rest of the paragraph that r 1 = 0. If r 2 = 1, then r i = 0 for i = 3,4,5,6,7,9,10,11,12, and equation (5.1.11) shows r 8 + r 13 = 2. In the same way as before, this case is also impossible. Suppose for the rest of the paragraph that r 2 = 0. If r 3 = 1, then r i = 0 for i = 4,5,6,7,8,13. Then x = x 3 , x 3 x 9 , x 3 x 10 , x 3 x 11 , x 3 x 12 or x 3 x 9 x 10 . Suppose for the rest of the paragraph that r 3 = 0. If r 4 = 1, then r i = 0 for i = 5,6,7,8,11, and equation (5.1.11) shows r 13 = 1. By (5.1.9), n is even. Moreover, x = x 4 x r9 9 x 13 , x 4 x r9 9 x 10 x 13 or x 4 x r9 9 x 12 x 13 for r 9 ∈ N 0 . Suppose for the rest of the paragraph that r 4 = 0. If r 5 = 1, then r i = 0 for i = 6,7,8,9,11,12, and equation (5.1.11) shows r 13 = 1. Then n is even by (5.1.9), and x = x 5 x r10 10 x 13 for r 10 ∈ N 0 . Suppose for the rest of the paragraph that r 5 = 0. If r 6 = 1, then r i = 0 for i = 7,8,9,10,12, and equation (5.1.11) shows r 13 = 1. Then n is even by (5.1.9), and x = x 6 x r11 11 x 13 for r 11 ∈ N 0 . Suppose for the rest of the paragraph that r 6 = 0. If r 7 = 1, then r i = 0 for i = 8,9,10,11,12, and equation (5.1.11) shows r 13 = 1, which implies that x = x 7 x 13 . Finally, assume also that r 7 = 0. Then, equation (5.1.11) shows 4 = r 8 + r 13 ⩽ 2, which is impossible. To sum up, we have S 0 4 = {x 3 }, S 2 4 = {x 3 x 9 , x 3 x 10 , x 3 x 11 , x 3 x 12 }, S 4 4 = {x 4 x 13 , x 5 x 13 , x 6 x 13 , x 7 x 13 , x 3 x 9 x 10 }, S n 4 = {x 4 x

(n-4)/2 9

x 13 , x 4 x

(n-6)/2 9

x 10 x 13 , x 4 x

(n-6)/2 9

x 12 x 13 , x 5 x

(n-4)/2 10

x 13 , x 6 x

(n-4)/2 11

x 13 }

if n ⩾ 6 is even, and S n 4 = ∅ if n is odd. Suppose m = 3. Then (5.1.10) becomes 2r 1 + 2r 2 + 4r 3 + 3r 4 + 3r 5 + 3r 6 + 3r 7 + r 8 + r 13 = 3.

(5.1.12)

If r 1 = 1, then r i = 0 for i = 2,3,4,5,6,7,11,12, and equation (5.1.12) shows r 8 + r 13 = 1. Then r 8 + r 13 is odd. We have thus either r 8 = 1 and r 13 = 0, or r 8 = 0 and r 13 = 1. Both cases imply that n is odd by (5.1.9). If r 8 = 1 and r 13 = 0, then r 9 = 0 and r 10 = 0 by (5.1.7), so x = x 1 x 8 .

If r 8 = 0 and r 13 = 1, then x has the form x 1 x r9 9 x r10 10 x 13 . By (5.1.7), x 1 x 9 and x 1 x 10 can only be followed by x 14 , so x = x 1 x 13 . Now assume for the rest of the paragraph that r 1 = 0. If r 2 = 1, then r i = 0 for i = 3,4,5,6,7,9,10,11,12, and equation (5.1.12) shows r 8 + r 13 = 1. We have either r 8 = 1 and r 13 = 0, or r 8 = 0 and r 13 = 1. Moreover, n is odd. So, x = x 2 x 8 or x 2 x 13 . Suppose for the rest of the paragraph that r 2 = 0. Then r 3 = 0 by (5.1.12). If r 4 = 1, then r i = 0 for i = 5,6,7,8,11, and equation (5.1.12) shows r 13 = 0. Hence, n is odd by (5.1.9), and x has the form x 4 x r9 9 x r10 10 x r12 12 . If r 9 = 0, then x can only be x 4 , x 4 x 10 or x 4 x 12 . If r 9 ̸ = 0, then x = x 4 x r9 9 , x 4 x r9 9 x 10 or x 4 x r9 9 x 12 . Suppose for the rest of the paragraph that r 4 = 0. If r 5 = 1, then r i = 0 for i = 6,7,8,9,11,12. Then, equation (5.1.12) shows r 13 = 0. Then n is odd by (5.1.9) and x = x 5 x r10 10 . Suppose for the rest of the paragraph that r 5 = 0. If r 6 = 1, then r i = 0 for i = 7,8,9,10,12, and equation (5.1.12) shows r 13 = 0. So, n is odd by (5.1.9), and x = x 6 x r11 11 . Suppose for the rest of the paragraph that r 6 = 0. If r 7 = 1, then r i = 0 for i = 8,9,10,11,12, and equation (5.1.12) shows r 13 = 0. So, x = x 7 . Suppose for the rest of the paragraph that r 7 = 0. If r 8 = 1, then r 13 = 0, and equation (5.1.12) shows 1 = 3, which is impossible. Finally, assume also that r 8 = 0. Then equation (5.1.12) shows r 13 = 3, which is impossible. To sum up, we have S 1 3 = {x 4 , x 5 , x 6 , x 7 , x 1 x 8 , x 2 x 8 }, S 3 3 = {x 1 x 13 , x 2 x 13 , x 4 x 9 , x 4 x 10 , x 4 x 12 , x 5 x 10 , x 6 x 11 },

, x 4 x

(n-3)/2 9

x 10 , x 4 x

(n-3)/2 9

x 12 , x 5 x

(n-1)/2 10 , x 6 x

(n-1)/2 11

}

if n ⩾ 5 is odd, and S n 3 = ∅ if n is even. Suppose m = 2. Then (5.1.10) becomes 2r 1 + 2r 2 + 4r 3 + 3r 4 + 3r 5 + 3r 6 + 3r 7 + r 8 + r 13 = 2.

(5.1.13)

Then r i = 0 for i = 3,4,5,6,7. If r 1 = 1, then r i = 0 for i = 2,3,4,5,6,7,11,12, and equation (5.1.13) shows r 8 = r 13 = 0. Hence, n is even by (5.1.9), and x = x 1 , x 1 x 9 or x 1 x 10 . Assume for the rest

Using the previous results together with Theorem 1.4.1 we obtain the Gerstenhaber bracket between X i for i ∈ 1, 14 and X 1 ,X 2 ,X 3 . Proposition 5.2.4. The Gerstenhaber bracket on HH • (A) of X i for i ∈ 1, 14 with an element X j for j ∈ 1, 3 is given by

and

Proof. Note that ℓ ab+ba i 0 = Y 1 , ℓ ab+bc-ac i 0 = Y 2 and ℓ abac i 0 = Y 3 . Applying Theorem 1.4.1 together with Facts 5.2.1, 5.2.2 and 5.2.3, we get the brackets

and

Indeed, this was simply done by computing

, where h(Y i ) denotes the cohomological degree of Y i for i ∈ 1,13 , and by transport of structures. Note that the vanishing of [X i ,X 3 ] for i ∈ 4,7 also follows from a simple degree argument using Corollary 1.3.8 together with Corollary 4.2.20. The latter two results also tell us that [X 14 ,X j ] = 0 (or [Y 14 ,Y j ] = 0) for j = 1,2, by degree reasons. This result also follows from noting that h ab+ba 3 is of internal degree 2, so h ab+ba 

where B u ∈ K b 4 has internal degree 7 and λ u i ∈ k for i ∈ 1,6 . Therefore, where the left member is explicitly given by (5.2.2) and the right member is computed using (4.1.3), we obtain

Similarly, comparing the coefficients of aba|γ 3 |b and aba|α 2 γ|b in both sides of the equation (5.2.3), where the left member is explicitly given by (5.2.2) and the right member is computed using (4.1.3), we obtain

Comparing the coefficients of abc|β 3 |c and abc|α 2 β|c in both sides of the equation (5.2.3), where the left member is explicitly given by (5.2.2) and the right member is computed using (4.1.3), we obtain We will now apply the previous results to compute the Gerstenhaber brackets of X i for i ∈ 4,7 with all the other generators of the Hochschild cohomology of A. Proposition 5.2.10. The Gerstenhaber bracket [X i ,X j ] ∈ HH • (A) for i ∈ 4,7 and j ∈ 1,14 is given by 

and

Next, we will compute 

where

as well as

together with

, u is of the form q i u = B i u + λ u i ω 1 1|ϵ ! |1 by degree reasons, where B i u ∈ K b 4 , and we have by definition that δ b 4 (q i u ) = ρ i 3 δ b 4 (1|u|1), we see that 

, where τ i = 1 if i ∈ 4, 5 and τ 6 = -1. Hence, we obtain that

In consequence, we get

Using the coboundaries g 2 j,2 ∈ B2 2 for j ∈ 4,6 and e 3 k,3 ∈ B3 3 for k ∈ 7,8 given in Subsubsection 4.2.2.3, (5.2.4) as well as the identities

which follow from Fact 5.1.3 and (5.1.2), we can rewrite several brackets as

Analogously, using the coboundaries g 2 j,2 ∈ B2 2 for j ∈ {4,5,7} and e 3 8,3 ∈ B3 3 given in Subsubsection 4.2.2.3, (5.2.4), (5.2.7) and the identity β 4 |1 = X 2 10 given in Fact 5.1.3, we get that

which are obtained using the GAP code in Appendix A.4. The standard words with respect to G A form a k-basis of A. The classes in A of the standard words of T(V ) with respect to G A thus form a homogeneous k-basis B of A. We set B m = B ∩ A m for m ∈ 0, 12 .

We denote by {y i,j = x * i,j | (i,j) ∈ I} the basis of V * dual to the basis X of V . Then, the quadratic dual algebra of A is given by

, where the space R ⊥ ⊆ (V * ) ⊗2 is spanned by the following 19 elements y 1,2 y 2,3 + y 2,3 y 1,3 ,y 1,3 y 2,3 + y 2,3 y 1,2 ,y 1,2 y 2,3 + y 1,3 y 1,2 ,y 1,2 y 1,3 + y 2,3 y 1,2 ,y 1,2 y 2,4 + y 2,4 y 1,4 ,y 1,4 y 2,4 + y 2,4 y 1,2 ,y 1,2 y 2,4 + y 1,4 y 1,2 ,y 1,2 y 1,4 + y 2,4 y 1,2 ,y 1,3 y 3,4 + y 3,4 y 1,4 ,y 1,4 y 3,4 + y 3,4 y 1,3 ,y 1,3 y 3,4 + y 1,4 y 1,3 ,y 1,3 y 1,4 + y 3,4 y 1, Using the GAP code in Appendix A.4, we get a Gröbner basis G B of the ideal (R ⊥ ) in T(V * ) given by the following 31 elements 

The following result is proved directly from the explicit description of the Gröbner basis G B given in (6.1.1) for the ideal (R ⊥ ) ⊆ T(V * ) . -n for n ∈ N 0 , consisting of standard words with respect to the Gröbner basis G B . In consequence, #(B ! n ) = 3n + 27 for n ⩾ 5, and the Hilbert series h(t) of A ! is given by

The following result describes several identities expressing products of the generators of the quadratic dual algebra A ! in terms of the basis B ! = ∪ n∈N0 B ! n . The proof is a straightforward but rather lengthy verification. Fact 6.1.2. We have the following identities

and

Moreover, we also have the identities

1,2 y 2 1,3 y 2,4 , (6.1.3)

and

together with 

Recall that the graded dual 

. . ,n r ∈ N and (i 1 ,j 1 ), . . . , (i r ,j r ) ∈ I.

We will omit the index n j for j ∈ 1,r if n j = 1 in the element z i1,j1 n1 . . . z ir,jr nr or y n1 i1,j1 . . . y nr ir,jr . Obviously, y i,j z i,j = ϵ ! for (i,j) ∈ I and the other actions of B ! 1 on B ! * 1 vanish. Let (K • ,d • ) be the Koszul complex of k in the category of bounded below graded right Amodules and ϵ : K 0 → k the canonical projection. The differential d n : K n → K n-1 for n ∈ N is given by the multiplication of (i,j)∈I y i,j ⊗ x i,j on the left. As usual, we can consider the Koszul complex as a complex indexed by Z, with K n = 0 for all n ∈ Z ⩽-1 , and d n = 0 for all n ∈ Z ⩽0 . To reduce space, we will typically use vertical bars instead of the tensor product symbols ⊗.

The differential d • of the Koszul complex of A can be explicitly described in the following result. Its proof is a straightforward but lengthy verification, using the identities listed in Fact 6.1.2 and in Appendix A.1.

Homology of the Koszul complex of the trivial module

In this subsubsection, we will compute the homology of the Koszul complex of the trivial module. Proposition 6.1.10. For n ⩾ 5, the dimension of B n,m is given by In order to prove Proposition 6.1.10, we need some preparatory results. Let

for (i,j) ∈ I 1 and n ∈ N, and let

n+1 , x ∈ A m-1 } for (i,j) ∈ I 1 , and U n,m be the subspace of B n,m spanned by {d n+1 (z|x

for (i,j) ∈ I 1 , (k,l) ∈ I, #{i,j,k,l} = 4, and

Let U i,j n be the subset of U n consisting of elements whose first element is z i,j for (i,j) ∈ I 1 .

There is an isomorphism f n : kQ n → kQ n+2 of vector spaces defined by f n (z) = z i,j 2 z for z ∈ U i,j n and (i,j)

, and f n (z i,j n ) = z i,j n+2 for (i,j) ∈ I.

Then, the map

Comparing the coefficients, it is easy to see that α 1,2 n+6 = α 1,2 n+7 = 0 and a r = b r = 0 for r ∈ 0,n -1 . Similarly, (6.1.26) implies α 1,3 i = 0 for i ∈ 1,n + 7 , and (6.1.27) implies α 2,3 i = 0 for i ∈ 1,n + 7 . By regarding the coefficients of g i in (6.1.28) for i ∈ 1,7 , we get that (6.1.28) is tantamount to

n-1 \Y1,3 λ j u u for j ∈ 7,12 , ∆ j = u∈B ! n-1 \Y2,3 λ j u u for j ∈ 13,18 and Y i,j is defined in (6. 1.18). In consequence, we see that the elements in T M 2 n are linearly independent if and only if equation (6.1.29) implies that α i = 0 for i ∈ 1, 24 .

Let

, for i ∈ 7,18 , j ∈ 1,6 ∪ 13,18 and k ∈ 1,12 . From (6.1.29) as well as the products (6.1.4) and (6.1.5) in A ! , we get a system E n of linear equations in the field k, which contains 24 × 7 = 168 linear equations and 24 + 24

Moreover, the linear independence of T M 2 n (or, equivalently, the fact that (6.1.29) implies that α i = 0 for i ∈ 1, 24 ) is equivalent to the fact that the linear system E n implies that α i = 0 for i ∈ 1, 24 . Note that E n has the same form when n increases by 2. Using GAP, the elements in T M 2 n are linearly independent for n ∈ {8,9}, so the lemma holds for all integers n ⩾ 8.

the subspace of C M 2 n,m spanned by

for (i,j) ∈ I 1 , and U M 2 n,m the subspace of B M 2 n,m spanned by

Using the actions listed in Appendix A.6, it is direct but lengthy to check that the differential in the subcomplex k C 1,2,M 2 n+1 ⊗ A of the Koszul complex is given by ⊗ A is given by ⊗ A is given by

for n ⩾ 4.

Recall that the sets W i,j m , E i,j m and Ẽi,j m for (i,j) ∈ I 1 are defined in the paragraph before Table 6.1.7. For (i,j) ∈ I 1 , (k,l) ∈ I with #{i,j,k,l} = 4, let Êi,j m be the subset of W i,j m containing elements whose first element is x i,j and second element is not x k,l . Let E ′i,j m be the subset of W i,j m containing elements whose first element is x i,j and the second element is x k,l . The left multiplication of x k,l from k Êi,j m-1 to kE ′i,j m is isomorphic. It is easy to check that #( Êi,j m ∪ Ẽi,j m ) = a m , where a m is given in Table 6

is the i-th element in the following sequence

1,2 ) * , (g 1 y n+1-r 1,2 y r 3,4 ) * for r ∈ 1, n , (g 1 y n+1 3,4 ) * , (g 2 y n+1 1,2 ) * , (g 3 y 1,2 y n 3,4 ) * , (g 3 y n+1 3,4 ) * , (g 4 y n+1

3,4 ) * , (g 5 y n+1 1,2 ) * , (g 5 y n 1,2 y 3,4 ) * .

(6.1.30)

is the i-th element in the following sequence 

is the i-th element in the following sequence

, where a m and b m are given in Table 6.1.7. 

for (i,j) ∈ I 1 , where t i,j,n r = (g 1 y n-r+1 i,j

It is clear that there is an isomorphism f n : kQ n → kQ n+2 of vector spaces. Consider thus the linear isomorphism

for (i,j) ∈ I 1 . Then

n+2,m for (i,j) ∈ I 1 . This follows directly from the next simple facts, whose proof is left to the reader. If n is even, F i,j n,m is spanned by the elements

whereas, if n is odd, F i,j n,m is spanned by the elements

Here, t 1,2 r (resp., t 1,3 r , t 2,3 r ) is the r-th element in (6.1.30) (resp., (6.1.31), (6.1.32)),

)), and

Recall that B M 2 n,m (resp., D M 2 n,m ) is the image (resp., kernel) concentrated in homological degree n and internal degree m + n of the Koszul complex of M 2 . Proposition 6.1.23. The dimension of B M 2 n,m is given by for n ⩾ 3.

Proof. By Lemma 6.1.22, we have dim

n,m for n ⩾ 4 and m ∈ 1,12 . Using GAP we get the value of dim B M 2 n,m for n ∈ 3,5 and m ∈ 1,12 .

Corollary 6.1.24. We have

Proof. The result follows from dim

Homology of the Koszul complex of M 3

In this subsubsection, we show that H n (M 3 ) = 0 for n ∈ N \ {3}.

Note first that M 3 ∼ = N ⊕ (⊕ k∈ 1,4 S k ) as graded A-modules, where N is the submodule of M 3 generated by e i ,i ∈ 1,4 , and S k is the submodule generated by e k+4 for k ∈ 1,4 . Let

It is easy to see that the A ! -module (M 3 ) ! is generated by f i for i ∈ 1,8 , subject to the following 24 relations

Using GAP, a basis of (M 3 ) ! -1 is given by the 24 elements

and a basis of (M 3 ) ! -2 is given by the 40 elements 

s in A ! for (i 1 ,j 1 ), . . . , (i s ,j s ) ∈ J, 

where α i ,λ j u ∈ k, and q i is the i-th element of T S1 n . By Remark 6.1.26, the right side of the equation is a linear combination of elements of form f 5 y i1,j1 . . . y in,jn ∈ f 5 B ! n for 4 ∈ {i 1 ,j 1 , . . . , i n ,j n }. This implies α i = 0 for i ∈ 1,6 . Hence, T S1 n are linearly independent. The other cases are similar. Lemma 6.1.28. The set T N n consisting of the following 24 elements

is a basis of N ! -n for n ⩾ 3.

Proof. Firstly, using GAP, T N n is a basis of N ! -n for n ∈ 3,5 . Note that the space N ! -n is spanned by {f i y | i ∈ 1,4 , y ∈ B ! n } for n ∈ N 0 . By the dual relations, it is easy to see that N ! -n is spanned by

n and n ⩾ 2. Note that y 2 i,j is central in A ! and f s y 2 i,j = f s y 2 k,l for s ∈ 1,4 and (i,j),(k,l) ∈ I with #{i,j,k,l} = 4. For n ⩾ 5 and i ∈ 1,3 , in k{f 1 ,f 2 ,f 3 ,f 4 } ⊗ A ! , where α i , λ j u ∈ k, and t i is the i-th element in (6.1.33). We need to show that α i = 0 for all i ∈ 1, 24 . By inspecting the coefficients of the term f s y n-r i,j y r k,l for #{i,j,k,l} = 4, it is easy to see that α i = 0 for i ∈ 1, 12 . Then (6.1.34) is equivalent to

n-1 \Y2,3 λ j u u for j ∈ 9,12 and Y i,j is defined in (6.1.18). In particular, we see that the elements in T N n are linearly independent if and only if equation (6.1.35) implies that α i = 0 for all i ∈ 13, 24 . Let

for j ∈ 1,8 .

Using (6.1.35) together with the products (6.1.4) and (6.1.5), in A ! , we get a system of linear equations E n , which contains 24 × 4 = 96 linear equations and 12 + 24 × 12 + 4 × 8 × 3 = 396

Appendix A

Some computations

In this Appendix, we list some computations about the Fomin-Kirillov algebra FK(4) of index 4. We will denote FK(4) simply by A.

A.1 Products in FK(4)

It is easy to check the products in A ! , listed in Table A.1.1-A.1.4, by using GAP or by computing them directly, and to check the products listed in A.1.6-A.1.9 by induction on integers n ⩾ 5. In Tables A.1.1-A.1.4, A.1.6 and A.1.7, the entry appearing in the row indexed by y and the column indexed by y ′ is the product yy ′ . In Tables A.1.8 and A.1.9, the entry appearing in the column indexed by y ′ and the row indexed by y is the product y ′ y. To reduce space, in 

for n ⩾ 5 and m ∈ 1,24 . 

A.2 A basis of M 1

We present here the GAP code for computing a basis of the quadratic module M 1 , defined at the beginning of Subsection 6.1.2. The code was provided by J.W. Knopper. We present here the GAP code to compute a basis of (M 2 ) ! -n for n less than some positive integer, where the quadratic module M 2 is defined at the beginning of Subsection 6.1.2. We also list the basis of (M 2 ) ! -n for n ∈ 0,3 .

LoadPackage("GBNP"); B:=FreeAssociativeAlgebraWithOne(Rationals,"y12","y13","y23","y14","y24","y34");; y12:=B.y12 S:=B^7; ab:=GeneratorsOfLeftModule(S); g7:=ab [1]; g6:=ab [START_REF] Andruskiewitsch | On pointed Hopf algebras associated with unmixed conjugacy classes in Sm[END_REF]; g5:=ab [START_REF] Andruskiewitsch | On the classification of finite-dimensional pointed Hopf algebras[END_REF]; g4:=ab [START_REF] Berger | Koszul and Gorenstein properties for homogeneous algebras[END_REF]; g3:=ab [START_REF] Brenner | Periodic algebras which are almost Koszul[END_REF]; g2:=ab [START_REF] Cohen | GBNP -a GAP package[END_REF]; g1:=ab [START_REF] Cassidy | Quadratic algebras with Ext algebras generated in two degrees[END_REF]; modrels:=[g1 * y14+g4 * y14, g1 * y24+g3 * y24, g1 * y34-g2 * y34, g2 * y13+g4 * y13, g2 * y23+g3 * y23,