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Measured foliations at infinity and CMC foliations of quasi-Fuchsian manifolds near the Fuchsian locus

The main subject of this thesis are hyperbolic 3-manifolds homeomorphic to S × R, called quasi-Fuchsian manifolds, where S is a closed, oriented surface with genus g ≥ 2, i.e. a hyperbolic surface. We study two questions regarding them: one is on measured foliations at infinity and the other is on foliations by constant mean curvature surfaces.
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Chapter 1 Introduction

Let S be a closed, oriented surface with genus g ≥ 2 and let M be a 3-manifold homeomorphic to S × R. Since S has negative Euler characteristic, it is isometric to the quotient H 2 /Γ, where H 2 is the hyperbolic plane and Γ a discrete subgroup of P SL2(R) (see [START_REF] Ratcliffe | Foundations of hyperbolic manifolds[END_REF]). Consider now the hyperbolic 3-space H 3 and see Γ as before as a discrete subgroup of P SL2(C). The quotient H 3 /Γ is a hyperbolic 3-manifold M , which we call Fuchsian (see [START_REF]London mathematical society lecture note series: Fundamentals of hyperbolic manifolds: Selected expositions series number 328: Selected expositions[END_REF], [START_REF] Thurston | Three-dimensional geometry and topology[END_REF]). The limit set ΛΓ of Γ on the boundary at infinity ∂∞H 3 can be realised as the boundary of the totally geodesic copy of H 2 in H 3 preserved by the action and hence, is a circle. Call the space of isotopy classes of Fuchsian metrics on M the Fuchsian locus F(S) and note that it can also be identified with the Teichmüller space T (S) (see 2.4). Now, consider quasi-Fuchsian hyperbolic metrics on M (see [START_REF]London mathematical society lecture note series: Fundamentals of hyperbolic manifolds: Selected expositions series number 328: Selected expositions[END_REF], [START_REF] Thurston | Three-dimensional geometry and topology[END_REF]). That is, we identify M with the quotient H 3 /Γ where Γ is again a discrete subgroup of P SL2(C) and such that the limit set ΛΓ is a quasi-circle on ∂∞H 3 (see 2.3). Let QF(S) denote the space of isotopy classes of quasi-Fuchsian metrics on M .

In either scenarios, the boundary at infinity of M is the quotient of the domain of discontinuity (∂∞H 3 \ ΛΓ) under the action of Γ and by the Jordan curve Theorem it has two connected components denoted as ∂ + ∞ M and ∂ - ∞ M , both being homeomorphic to S. When M is quasi-Fuchsian, the components ∂ + ∞ M, ∂ - ∞ M carry complex structures denoted [c+], [c-] respectively upto equivalence, and in this regard we have the pioneering work of Bers (see [START_REF] Bers | Simultaneous uniformization[END_REF], Theorem 3.3.2) which asserts that a metric g ∈ QF(S) can be uniquely determined by the data ([c+], [c-]) ∈ T (S) × T (S), where S denotes S with the opposite orientation.

Measured foliations at infinity

Moreover, the boundary at infinity ∂∞H 3 is identified with the complex projective space CP 1 and there are unique holomorphic maps, well-defined up to right composition by Möbius transformations, from the universal covers ∂ + ∞M , ∂ - ∞M ⊂ CP 1 to the unit disc ∆ ⊂ C (see § §2.8, [START_REF] Dumas | Complex projective structures[END_REF], [START_REF] Schlenker | Notes on the schwarzian tensor and measured foliations at infinity of quasifuchsian manifolds[END_REF]) that we obtain by uniformising the respective complex structures. Let the Schwarzians at infinity σ+, σ-of M be the holomorphic quadratic differentials obtained on ∂ + ∞ M, ∂ - ∞ M by taking the Schwarzian derivative of these maps respectively and passing on to quotients. We define the measured foliations at infinity F+, Fof a quasi-Fuchsian manifold M as the horizontal measured foliations of the Schwarzians at infinity σ+, σ-on

(∂ + ∞ M, [c+]), (∂ - ∞ M, [c-]
) respectively. The measured foliations at infinity can be thought of as a natural analog at infinity to the measured bending lamination on the boundary of the convex core of a quasi-Fuchsian manifold, see §1.1.1 for further elaboration on this point. In fact, it is conjectured by Thurston that the data of the pair of measured bending laminations is enough to determine the quasi-Fuchsian metric on M (see Theorem 1.1.3). Let MF(S) denote the space of equivalence classes of measured foliations on S (see § §2.6, § §3.1, [START_REF] Fathi | Thurston's work on surfaces[END_REF]) and F+, F-∈ MF(S). Further, given a pair of measured foliations (F, G) ∈ MF(S) × MF(S) we have the notion of them being a pair which fills S. That is to say, any other measured foliations H has non-zero intersection with either F or G (see Definition 3.1.9 and § §3. 1.2). These leads to an intriguing question whether given any (F+, F-) ∈ MF (S)×MF (S), there exists a unique quasi-Fuchsian manifold M ∼ = S ×R with measured foliations at infinity F+ and F-?

Now let FMF(S) be space of all pairs of measured foliations that fill S, MF0(S) the subspace of measured foliations which are arational, i.e, all the prongs are of order 3 and there are no leaves joining the prongs (see Definition 2.6.4 and Lemma 3.1.8). Let FMF0(S) be the space of pairs of them which fill S. If the pair (F+, F-) belongs to FMF0(S), then so do the pair (tF+, tF-), for all t > 0 (see § §2.6). Note also that for a metric g ∈ F(S) the Schwarzians and don't carry any measured foliations at infinity (see § §2.8). The result of principal interest that answers the above question partially for quasi-Fuchsian manifolds near the Fuchsian locus is: Theorem 1.1.1. For every pair of measured foliations (F+, F-) which are arational and fill S, there exists an ϵ F ± > 0 such that for every t ∈ (0, ϵ F ± ) there exists a unique quasi-Fuchsian manifold close to the Fuchsian locus whose measured foliations at infinity are given by tF+ and tF-.

That is to say we have an unique solution g close to the Fuchsian locus to the equation F(g) = (tF+, tF-) when restricted to (F+, F-) ∈ FMF0(S) for t small. Next, we consider the case of quasi-Fuchsian half-pipe manifolds (see Definition 3.4.1, [START_REF] Danciger | A geometric transition from hyperbolic to anti-de Sitter geometry[END_REF], [START_REF] Fillastre | Spherical, hyperbolic, and other projective geometries: convexity, duality, transitions[END_REF]). These are intermediary geometric structures that arise naturally when we consider smooth transitions between hyperbolic and anti-de Sitter structures on M via the Fuchsian locus. We define an analogous notion for half-pipe Schwarzians in this situation (see Definition 3.4.6) and show: Theorem 1.1.2. Any pair of filling measured foliations F+, Fcan be realized uniquely as the horizontal measured foliations of the positive and negative half-pipe Schwarzians associated to a quasi-Fuchsian halfpipe manifold.

Note that here we do not need the hypothesis of arationality on the measured foliations realized.

Analogy between boundary at infinity and boundary of convex core

There are a few points of analogies between the data on the boundary at infinity and that on the boundary of the convex core of a quasi-Fuchsian manifold which makes Theorem 1.1.1 really interesting. We define the convex core of M , denoted CC(M ), as the smallest non-empty convex compact subset contained in M and it can be identified with the quotient of the convex hull in H 3 of the limit set ΛΓ under the action of Γ. When M / ∈ F (S), CC(M ) is homeomorphic to S × [-1, 1], it has two boundary components as well which we call ∂ + CC(M ) and ∂ -CC(M ). Note that when M ∈ F(S) then CC(M ) is a totally geodesic copy of S in M . Let the induced metric on ∂ + CC(M ) and ∂ -CC(M ) be called m+ and m-respectively and analogous to the Theorem of Bers there is a conjecture of Thurston regarding parametrization of quasi-Fuchsian metrics on M uniquely by the data (m+, m-) (see [START_REF]London mathematical society lecture note series: Fundamentals of hyperbolic manifolds: Selected expositions series number 328: Selected expositions[END_REF], [START_REF] Sullivan | Travaux de thurston sur les groupes quasi-fuchsiens et les variétés hyperboliques de dimension 3 fibrées sur s 1[END_REF], [START_REF] Labourie | Prescribed metrics on the boundary of hyperbolic manifolds of dimension 3[END_REF]). The components ∂ ± CC(M ) in turn carries two measured geodesic laminations λ+ and λ-∈ ML(S) where ML(S) is the space of measured geodesic laminations on S up to equivalence (see [START_REF] Bonahon | Kleinian groups which are almost Fuchsian[END_REF]). These are called the measured bending laminations and ∂ ± CC(M ) are bent along leaves of λ± respectively (see [START_REF]London mathematical society lecture note series: Fundamentals of hyperbolic manifolds: Selected expositions series number 328: Selected expositions[END_REF]).

The remarkable similarity between the variational formulae for the dual volume V * C (M ) of the convex core of M (see [START_REF] Krasnov | A symplectic map between hyperbolic and complex Teichmüller theory[END_REF]) and the renormalized volume VR of M (see [START_REF] Krasnov | On the renormalized volume of hyperbolic 3-manifolds[END_REF]) is motivating too in this regard. Suppose for 0 ≤ t < ϵ, we have a differentiable path of quasi-Fuchsian metrics on M given by t → Mt, then the formula for the first-order variation of the renormalized volume is given by (see [START_REF] Schlenker | Notes on the schwarzian tensor and measured foliations at infinity of quasifuchsian manifolds[END_REF])

d dt t=0 VR(Mt) = - 1 2 d(ext(F+))( d dt t=0 [c t + ]) (1.1)
where [c t + ] denotes the variation of the complex structure (up to equivalence) on ∂ + ∞ Mt and for a measured foliation F ∈ MF(S) we have the function ext(F) : T (S) → R sending a conformal class [c] ∈ T (S) to the extremal length ext [c] (F) of the foliation in that conformal class (see § §3.1.3). On the other hand, the first order variation of the dual volume, via an application of the Bonahon-Schläfli formula is expressed as ( [START_REF] Krasnov | A symplectic map between hyperbolic and complex Teichmüller theory[END_REF], [START_REF] Mazzoli | The dual Bonahon-Schläfli formula[END_REF]):

d dt t=0 V * C (Mt) = - 1 2 d(l(λ+))( d dt t=0 m t + ) (1.2)
where for a measured geodesic lamination λ ∈ ML(S) we have the function l(λ) : T (S) → R sending a hyperbolic metric m ∈ T (S) to the length of λ, denoted as lm(λ), measured with respect to this metric and m t + denotes the variation of the induced metric on the convex core boundary under the variation of the quasi-Fuchsian structure. Here, we note that for a given measured foliation F and measured lamination λ the derivatives d(ext(F+)), d(l(λ+)) : T T (S) → R are considered as elements in the cotangent space T * T (S). Moreover, we also have the upper bound from [START_REF] Bridgeman | Schwarzian derivatives, projective structures, and the Weil-Petersson gradient flow for renormalized volume[END_REF] that lm ± (λ±) ≤ 6π|χ(S)| whereas, from [START_REF] Schlenker | Volumes of quasifuchsian manifolds[END_REF] we have similar upper bounds on the extremal length ext [c ± ] (F±) ≤ 3π|χ(S)|, where χ(S) is the Euler characterisitic of S.

Further, there is a well-studied conjecture of Thurston which asks if the map B : QF(S) → ML(S) × ML(S), sending a quasi-Fuchsian metric g ∈ QF(S) to the data B(g) := (λ+, λ-) of measured bending laminations on the boundary of its convex core, is a homeomorphism onto its image. That is to say, whether quasi-Fuchsian metrics on M can be parametrized by the data of measured bending laminations (λ+, λ-) on the boundary of its convex core. Although the problem remains open in full generality (see also [START_REF] Bonahon | Measured pleated laminations of hyperbolic manifolds of dimension 3[END_REF], [START_REF] Lecuire | Pleating of hyperbolic 3-manifolds[END_REF], [START_REF] Series | Thurston's bending measure conjecture for once punctured torus groups[END_REF]) it can be seen from rather elementary arguments that the image of the map β(QF(S)) is contained in FML(S), the space of pairs of filling measured geodesic laminations on S, i.e, λ+ and λalways fill S for any quasi-Fuchsian manifold. Using this property Bonahon proves the following theorem to which we claim our Theorem 1.1.1 is an analog of when restricted to the case of measured foliations which are arational: Theorem 1.1.3. [START_REF] Bonahon | Kleinian groups which are almost Fuchsian[END_REF] There exists an open neighbourhood V of F(S) in QF(S), such that B : QF(S) → ML(S) × ML(S) is a homeomorphism between V \ F(S) and its image. Moreover, V can be chosen so that

B(V \ F(S)) = U is an open subset of FML(S) which intersects each ray (0, ∞)(λ+, λ-) in an interval (0, ϵ λ ± )(λ+, λ-).
A consequence of the theorem above is that the image B(U \ F (S)) are pairs of filling measured geodesic laminations (tλ+, tλ-), for t > 0 small enough and clearly, this inspires Theorem 1.1.1. Measured foliations at infinity of M can be thus thought of as a new invariant that provides coordinates for QF(S) near the Fuchsian locus in a fashion similar to that of measured bending lamination on the boundary of the convex core CC(M ) and we summarise the preceding discussion as Table 1.1. We conjecture that our current result can be extended to any pair (tF+, tF-) ∈ FMF(S) for t small enough.

On the convex core

On the boundary at infinity Thurston's conjecture on (m+, m-) Bers' Simultaneous Uniformisation Theorem [START_REF] Bers | Simultaneous uniformization[END_REF] Hyperbolic length lm ± (λ±)

Extremal length ext [c ± ] (F±) lm ± (λ±) ≤ 6π|χ(S)| ext [c ± ] (F±) ≤ 3π|χ(S)| Variational formula (1.2) for V * C
Variational formula (1.1) for VR Theorem 1 of [START_REF] Bonahon | Kleinian groups which are almost Fuchsian[END_REF] Theorem 1.1.1

Table 1.1

Method and Outline

The strategy of the proof of Theorem 1.1.1 is similar to that of [START_REF] Bonahon | Kleinian groups which are almost Fuchsian[END_REF]. The main goal is to construct small differentiable paths in QF(S) starting from the Fuchsian locus F(S) such that the measured foliations at infinity are given by (tF+, tF-) ∈ FMF0(S) and t > 0 is small enough. Key highlights of the paper are:

• In §3.2 we establish a necessary condition that infinitesimal deformations of quasi-Fuchsian metrics starting from the Fuchsian locus should satisfy if they have any pair of filling measured foliations (tF+, tF-) appearing as their measured foliation at infinity at first order at F(S) (Proposition 3.2.13).

Main idea is to use the fundamental forms at infinity of almost-Fuchsian manifolds in paths t → β ([c],q) (t) starting from the Fuchsian locus which are parametrized by the embedding data of the unique minimal surface they contain. An important characterisation used is that these paths start from p(F+, F-), where p(F, G) is the unique critical point of the function ext(F) + ext(G) : T (S) → R for a filling pair (F, G).

• In §3.3 we then use this condition to construct small differentiable paths gt of quasi-Fuchsian metrics starting from the Fuchsian locus which satisfies F(gt) = (tF+, tF-) ∈ FMF0(S) for 0 < t < ϵ F ± where ϵ F ± depends on (F+, F-). As in [START_REF] Bonahon | Kleinian groups which are almost Fuchsian[END_REF], an important step is to do a differential blow-up of QF(S) at F(S) in order to remove the degeneracy of the map F at the Fuchsian locus and lift the setting to the space QF(S), which is the blow-up of QF(S) at the Fuchsian locus. The paths β ([c],q) (t) being normal to the Fuchsian locus is important for this procedure to work.

• To this end, §3.1 serves as a tool to go back and forth between measured foliations and holomorphic quadratic differentials on S and their relations with the Teichmüller space T (S). In this context, important theorems of Hubbard-Masur in [START_REF] Hubbard | Quadratic differentials and foliations[END_REF] and Gardiner-Masur in [START_REF] Gardiner | Extremal length geometry of Teichmüller space[END_REF], [START_REF] Wentworth | Energy of harmonic maps and Gardiner's formula[END_REF] are recalled. The notion of extremal length of a foliation F ∈ MF(S) is discussed briefly in § §3.1.3 along with an important formula regarding derivatives of extremal lengths. An observation from this section which is crucial for the whole paper is that the t → p( √ tF, 1 √ t G), t > 0 is a geodesic line for the Teichmüller metric on T (S).

• Finally in §3.4 we interpret our results in half-pipe geometry using tools from the previous sections.

We define the notion of half-pipe Schwarzians (see § §3.4.1) once more by using the paths β ([c],q) (t) and as an application of intermediary results we claim Theorem 1.1.2.

CMC surfaces

In the next part of the thesis we continue the analytic study of quasi-Fuchsian manifolds, and in particular of foliations whose leaves are surfaces of constant mean curvature or CMC. Here, the image of an immersion S → M is a CMC H-surface if the trace of shape operator associated to the immersion is constant equal H, see 2. It is known that there exist quasi-Fuchsian manifolds containing several closed minimal surfaces homotopic to Σ × { * }, see [START_REF] Anderson | Complete minimal hypersurfaces in hyperbolic n-manifolds[END_REF] and [START_REF] Huang | Counting minimal surfaces in quasi-Fuchsian three-manifolds[END_REF]. In particular, this implies that there exist quasi-Fuchsian manifolds M that do not admit a global monotone CMC foliation. Indeed if M ∼ = Σ × R admits a monotone CMC foliation (as in Definition 1.2.1), then by a simple application of the geometric maximum principle, the closed embedded minimal surface in M homotopic to Σ × { * } would be unique.

Concerning the uniqueness of minimal surfaces, the work of Uhlenbeck [START_REF] Uhlenbeck | Closed minimal surfaces in hyperbolic 3-manifolds[END_REF] highlighted the importance of a class of quasi-Fuchsian manifolds, which has been later called almost-Fuchsian in [START_REF] Krasnov | Minimal surfaces and particles in 3-manifolds[END_REF], defined by the existence of a closed minimal surface with principal curvatures in (-1, 1). This condition actually implies that the minimal surface is unique and that the equidistant surfaces from the minimal surface provide a global foliation of M . However, the leaves of this equidistant foliation do not have constant mean curvature, except in the trivial case where M is Fuchsian.

Thurston conjectured that every almost-Fuchsian manifold is foliated by CMC surfaces. However, to the best of our knowledge, Fuchsian manifolds are so far the only known examples of quasi-Fuchsian manifolds that are (monotonically) foliated by CMC surfaces.

Before starting our result, let us turn our attention to some positive results in this direction. By a special case of the results of Mazzeo and Pacard in [START_REF] Mazzeo | Constant curvature foliations in asymptotically hyperbolic spaces[END_REF], each end of any quasi-Fuchsian manifold (namely, each connected component of the complement of a compact set homeomorphic to Σ × I for I a closed interval) is smoothly monotonically foliated by CMC surfaces, with mean curvature ranging in (-1, -1 + ϵ) and (1 -ϵ, 1). This result has been reproved by Quinn in [START_REF] Quinn | Asymptotically Poincaré surfaces in quasi-Fuchsian manifolds[END_REF], using an alternative approach that is extremely relevant to the present work. Moreover, the recent work of Guaraco-Lima-Pallete [START_REF] Guaraco | Mean curvature flow in homology and foliations of hyperbolic 3-manifolds[END_REF] showed that every quasi-Fuchsian manifold admits a global foliation in which every leaf has a constant sign of the mean curvature, meaning that it is either minimal or the mean curvature is nowhere vanishing on the entire leaf.

We also remark that existence results for CMC surfaces in the hyperbolic three-space with a given boundary curve at infinity, and in quasi-Fuchsian manifolds, have been obtained in [START_REF] Coskunuzer | Asymptotic H-Plateau problem in H 3[END_REF][START_REF] Coskunuzer | Embeddedness of the solutions to the H-Plateau problem[END_REF][START_REF] Coskunuzer | Embedded H-planes in hyperbolic 3-space[END_REF]. So the main result of this part of the thesis is: Theorem 1.2.2. Let Σ be a closed-oriented surface of genus ≥ 2. Then there exists a neighbourhood U of the Fuchsian locus in quasi-Fuchsian space QF(S) such that every quasi-Fuchsian manifold in U is smoothly monotonically foliated by CMC surfaces, with mean curvature ranging in (-1, 1).

Method and outline

The monotone CMC foliation of a quasi-Fuchsian manifold M ∼ = Σ × R, when it exists, is automatically unique by a standard application of the geometric maximum principle. More precisely, the leaf of the foliation with mean curvature H is the unique closed surface homotopic to Σ × { * } in M having mean curvature identically equal to H.

Observe that, if a quasi-Fuchsian manifold admits a monotone CMC foliation, then the mean curvature necessarily ranges in (-1, 1). Indeed, any leaf of the foliation must necessarily have mean curvature in (-1, 1), see [START_REF] Coskunuzer | Minimizing constant mean curvature hypersurfaces in hyperbolic space[END_REF]Lemma 2.2]. Moreover, by the aforementioned result of Mazzeo-Pacard, the mean curvature converges to -1 and 1 as the foliations approach the ends.

We remark that the methods of our proof, which we outline below, also provide a direct proof of the existence of closed embedded CMC surfaces of mean curvature H ∈ (-1, 1) in the quasi-Fuchsian manifolds M within the neighbourhood U . (See Theorem 4.2.8.) Our proof is independent of previous results in the literature and does not rely on geometric measure theory techniques.

The main idea of the proof of Theorem 1.2.2 is to combine the foliations of the ends, which have been provided in the works of Mazzeo-Pacard and Quinn for every quasi-Fuchsian manifold, with foliations of the compact part that we obtain by a "deformation" from Fuchsian manifolds.The main steps are

• For the foliations of the ends, we adapt the proof given by Quinn in [START_REF] Quinn | Asymptotically Poincaré surfaces in quasi-Fuchsian manifolds[END_REF], which relies on the Epstein map construction ( [START_REF] Dumas | Holonomy limits of complex projective structures[END_REF][START_REF] Epstein | Envelopes of horospheres and Weingarten surfaces in hyperbolic 3-space[END_REF]), that associates to a conformal metric defined in (a subset of) the boundary at infinity of H 3 an immersed surface in H 3 by "envelope of horospheres". One can then translate the condition of constant mean curvature into a PDE on the conformal factor, to which we apply an implicit function theorem method in an infinite-dimensional setting. The fact that the obtained solutions provide a smooth monotone foliation of the complement of a large compact set in the quasi-Fuchsian manifold M follows from another application of the implicit function theorem.

The main difference with respect to Quinn's proof is that we refine his method in order to achieve the existence of monotone foliations by CMC surfaces of mean curvature (-1, -1 + ϵ) ∪ (1 -ϵ, 1) for any quasi-Fuchsian manifold in a neighbourhood UM of a given M ∈ QF(S), where the constant ϵ is uniform over UM (Theorem 4.2.1).

• For the compact part, we again obtain the existence of CMC surfaces, for H ∈ (-1, 1), with an implicit function theorem method in infinite-dimensional spaces, using the Epstein construction. In this case, however, the initial solution to which we apply the implicit function theorem is not "at infinity"; it is instead the umbilical CMC surface in a Fuchsian manifold. In other words, we "deform" CMC surfaces in a Fuchsian manifold M ′ to nearby quasi-Fuchsian manifolds in a neighbourhood U M ′ . Similarly, as above, the main technical difficulty is to have a uniform control of the constants, which must not depend on the quasi-Fuchsian manifold as long as we remain in the neighbourhood U M ′ . See Theorem 4.2.7.

• The proof of Theorem 1.2.2 is then concluded by showing that these surfaces patch together to a global smooth monotone foliation (Section 4.3), by means of a combination of a careful analysis of the constructed open sets in QF(S) and of several geometric arguments, for instance, applications of the geometric maximum principle, relying on the observation that the CMC surfaces obtained as deformations from the Fuchsian locus can be assumed, up to restricting to smaller neighbourhoods, to have principal curvatures in (-1, 1).

Chapter 2 Preliminaries

Hyperbolic space

The upper half space model of the n-dimensional hyperbolic space is the set

{H n := (x1, x2, . . . , xn) ∈ R n |xn > 0}
with the metric

dx 2 1 + dx 2 2 + • • • + dx 2 n x 2 n
The boundary at infinity ∂∞H n in this model identified with R n-1 ∪ {∞} which is homeomorphic to the (n -1)-sphere S n-1 . We call Isom + (H n ) as the group of orientation preserving isometries of H n . The action extends uniquely to ∂∞H n via conformal diffeomorphisms of S n-1 . When n = 2, 3 it is identified with the group P SL2(R) and P SL2(C) respectively. We also note that in lower dimensions there is an interesting interplay between hyperbolic geometry and complex analysis in 1-dimension. In dimension 2, this can be seen by writing down the upper half plane model as H = {z ∈ C|z = x + i y, y > 0} with the metric given by |dz| 2 y 2 . Here again we see that Isom + (H 2 ) is identified with the group of biholomorphism of H. For all the thesis we will restrict to the case when n = 2, 3. For dimension 3, we see that every isometry of H 3 is uniquely determined by its conformal action of the sphere at infinity ∂∞H 3 , the latter being the complex projective space CP 1 . This is one way of seeing that Isom + (H 3 ) is identified with the group of Möbius transformations of the disc, which is P SL2(C).

Hyperbolic surfaces and 3-manifolds

We will consider S to be a closed surface of genus g ≥ 2 which we define as: Definition 2.2.1. A closed surface S is said to be a hyperbolic surface if we have an atlas (Ui, ϕi) on S where ϕi : Ui → H 2 are charts such that at each intersection Ui ∩ Uj, the composition ϕi • ϕ -1 j are local restrictions of elements of P SL2(R).

An alternative definition can be to say that S is a closed hyperbolic surface if it carries a complete Riemannian metric of constant sectional curvature -1. It follows from the Gauss-Bonnet theorem that S can carry such a metric only when g > 1, thus leading to our assumptions. In such a case, one can also state that S is isometric to the quotient of H 2 by Γ where Γ is a discrete subgroup of P SL2(R).

On the other hand, a complex structure c on S consists of an atlas {Uα, ϕα} on S where ϕα : Uα → C are holomorphic maps and the transition functions ϕi • ϕ -1 j are biholomorphic maps on ϕi(Ui ∩ Uj). Given a complex structure c, we consider its equivalence class under diffeomorphisms of S isotopic to the identity and denote it as [c]. Consider now a Riemannian metric g on S, we can define: Definition 2.2.2. A conformal class on a surface S is an equivalence class of Riemannian metrics [g], where

[[g]] = e 2u g|u ∈ C ∞ (S)
. When S is oriented there is a one-to-one correspondence between equivalence classes of complex structures on S under diffeomorphisms isotopic to the identity and conformal classes on S again up to diffeomorphisms isotopic to the identity. We will denote both a conformal and complex structure on S as c. A Riemannian metric on S in a conformal class has the local expression g(z) = ρ(z)dzdz where ρ(z) ≥ 0 is a smooth function on S → R>0.

We will recall now an important lemma concerning the change of Gaussian or intrinsic curvature Kg, associated to a Riemannian metric g under change of conformal factor in the same conformal class. See [START_REF] Krasnov | Minimal surfaces and particles in 3-manifolds[END_REF] among others for a reference: Lemma 2.2.3. Let g and g ′ be two Riemannian metrics on S in the same conformal class and let u : S → R be a function such that g ′ = e 2u g. Let Kg and K g ′ be the Gauss curvatures associated to g and g ′ respectively. Then K g ′ = e -2u (-∆gu + Kg), where ∆gu is the Laplace-Beltrami operator for the metric g.

Here we use the convention that ∆g is negative of the usual analysts Laplacian. That is with respect to the Levi-Civita connection ∇g on S, we define ∆gu = -tr(Hess(u)) = -tr(∇g∇gu) If we consider g to be a conformal metric, then the hyperbolic metric m in the conformal class of g is given by m = e 2u g where u solves:

-1 = e -2u (-∆gu + Kg) (2.1) 
So in dimension 2, corresponding to every conformal class on S, one has a unique hyperbolic metric and also an equivalence class of complex structures.

The definitions for hyperbolic structures on surfaces extend to that for 3-manifolds where we will call a 3-manifold hyperbolic if it carries a complete Riemannian metric with sectional curvature being -1.

Alternatively, we can identify it as the quotient of H 3 with a discrete subgroup of P SL2(C). We will note that such subgroups of P SL2(R) and P SL2(C) are called Fuchsian and Kleinian respectively.

Fuchsian and quasi-Fuchsian 3-manifolds

We will consider hyperbolic 3 manifolds M here which are quotient H 3 /Γ where Γ is a discrete subgroup of P SL2(C) isomorphic to π1(S). Associated to the action of Γ → H 3 one has the limit set ΛΓ which is the set of accumulation points of orbit of Γ, and it can so be shown that it is a subset of ∂∞H 3 . When Γ is a discrete subgroup of P SL2(R) ⊂ P SL2(C), we call M a Fuchsian manifold. In this case ΛΓ is a circle on ∂∞H 3 . This can be seen as the boundary of the totally geodesic copy of H 2 ⊂ H 3 preserved by the action.

We call a hyperbolic 3 manifold M to be quasi-Fuchsian if Γ < P SL2(C) is such that one has a quasiconformal map ϕ : CP 1 → CP 1 and a Fuchsian subgroup Γ0 such that Γ := ϕ -1 • Γ0 • ϕ. The limit set ΛΓ of Γ is a quasi-circle, which is the image under ϕ of the boundary S 1 of the copy of H 2 preserved by the action of Γ0. To simplify, we can consider Γ to be quasi-Fuchsian if ΛΓ is a Jordan curve on ∂∞H 3 . One more characteristic difference between Fuchsian and quasi-Fuchsian manifolds is by the different geometry of their convex hulls. Given the limit set ΛΓ as the setting above, we can consider its convex hull in H 3 . In the Fuchsian case, we recover the totally geodesic copy of H 2 preserved by the action as ΛΓ is a circle. In the quasi-Fuchsian case, we have that the convex hull is a closed, convex region which upon taking quotient becomes the convex core CC(M ). The convex core is the smallest-non empty convex submanifold contained in the quasi-Fuchsian manifold. When M is not Fuchsian, it is homeomorphic to S × [-1, 1] and has two boundary components. In the Fuchsian case, it is the totally geodesic copy of S preserved by the action of the Fuchsian group. Moreover, we have the boundary at infinity of Fuchsian or almost or quasi-Fuchsian manifolds. The action of Γ is free and properly discontinuous in the complement (∂∞H 3 \ ΛΓ), also called the domain of discontinuity, which has two connected components. The boundary at infinity of M , denoted as ∂ + ∞ M, ∂ - ∞ M , are the respective quotients of components of ∂∞H 3 \ ΛΓ, each being homeomorphic to S. Precise details can be found in many sources like [START_REF] Epstein | Envelopes of horospheres and Weingarten surfaces in hyperbolic 3-space[END_REF], [START_REF] Thurston | The geometry and topology of three-manifolds[END_REF].

Teichmüller space and quasi-Fuchsian space

We will now briefly introduce the Teichmüller space T (S) associated to a closed surface of genus g ≥ 2.

Definition 2.4.1. The Teichmüller space T (S) is the space of equivalence classes of complex structures on S under diffeomorphisms isotopic to the identity.

Owing to the presence of a unique hyperbolic metric in every conformal class or class of complex structure (see Equation 2.1) we can alternately define T (S) as the space of equivalence classes of hyperbolic metrics on S up to diffeomorphisms isotopic to the identity. Now recall that the boundary at infinity ∂ ± ∞ M is homeomorphic to S and they carry their respective complex structures. It so happens that when M is a Fuchsian manifold, it can be characterized by the unique geodesic copy of H 2 preserved by the action and if one defines F(S) as the equivalence class of Fuchsian metrics on M up to diffeomorphism isotopic to the identity, then F(S) ∼ = T (S). Likewise, call QF(S) to be the equivalence class of quasi-Fuchsian metrics on M up to diffeomorphism isotopic to the identity. By virtue of Bers' simultaneous Uniformization theorem one has that QF(S)

∼ = T (∂ + ∞ M ) × T (∂ - ∞ M
). Now, given two conformal structures c, c ′ we can define the notion of the quasi-conformal map between them.

Definition 2.4.2. Let Ω, Ω ′ ⊂ C be two domains and ϕ : Ω → Ω ′ be a homeomorphism with continuous partial derivatives with respect to z and z. We denote ϕ to be k-quasiconformal if

k ϕ (z) = | ∂ϕ ∂ z (z)| + | ∂ϕ ∂z (z)| | ∂ϕ ∂ z (z)| -| ∂ϕ ∂z (z)| ≤ k
for almost every z ∈ Ω.

We will denote the ∂ϕ ∂w as fw. The Beltrami differential µ associated to a quasi-conformal map ϕ is the ratio

µ ϕ = ϕz ϕz
which is defined almost everywhere, is measurable and satisfies ||µ||∞ < 1. Equivalently k ϕ has the expression 1+|µ| 1-|µ| , which is bounded above by k = 1+||µ||∞ 1-||µ||∞ and k ϕ is called the eccentricity coefficient of ϕ. We also note that a Beltrami differential on (S, [c]) is a tensor of type (-1, 1). We will use this to define the notion of holomorphic quadratic differentials on S and how it relates to the tangent and cotangent space of T (S).

Holomorphic quadratic differentials

A holomorphic quadratic differential q on (S, c) is a tensor of type (2, 0) which in local coordinates can be written as f (z)dz 2 , where f is a holomorphic function. The space of holomorphic quadratic differential denoted as Q(S) forms a bundle over T (S), where T (S) is seen as the space of complex structures on S up to diffeomorphisms isotopic to the identity. The fiber over an equivalence class [c] ∈ T (S), which is denoted as Q(S, [c]) is a vector space that can be shown to have real dimension 6g -6 (by, for example, the Riemann-Roch formula). Moreover, a holomorphic quadratic differential q has zeroes on S the degree of which is defined in terms of the degree of the zero of the holomorphic function f (z) defining q. To be precise, if q has a zero of order k at a point p ∈ S then this means that for all chart centered at p on S, q has the local expression f (z)z k dz 2 for some holomorphic function f (z) such that f (0) ̸ = 0. Moreover, it follows from, for example the Riemann-Roch theorem, that the sum of the degrees of all zeroes of q on S is 4g -4. The space Q(S) further carries a natural stratification depending on the order of the zeroes of q. Please consult, for example, [START_REF] Hubbard | Teichmüller theory and applications to geometry, topology, and dynamics[END_REF], [START_REF] Gardiner | Teichmüller theory and quadratic differentials[END_REF] for references on this topic. Definition 2.5.1. Let k be a n-tuple of integers (k1, k2, . . . , kn) such that n i ki = 4g -4. The stratum Q k (S) is the set of holomorphic quadratic differentials q such that the degrees of the zeroes of q are given by the ki. We say that q is generic if ki = 1 for all i.

Holomorphic quadratic differentials with only 4g -4 simple zeroes are termed as generic quadratic differentials and it is known that they form a dense open subset of Q(S) which will be denoted as Q0(S). (see [START_REF] Douady | On the density of Strebel differentials[END_REF]).

Notice that the product of a Beltrami differential and a holomorphic quadratic differential gives us a (1, 1) tensor. Let B(S, c) denote the vector space of measurable Beltrami differentials on (S, c) where an element is expressed locally as µ = b(z) dz dz . From here we have a natural complex pairing between µ ∈ B(S, c) and q ∈ Q(S, c) as:

⟨q, µ⟩ = (S,c) qµdzdz
It follows as a consequence, see [START_REF] Hubbard | Teichmüller theory and applications to geometry, topology, and dynamics[END_REF], that: Proposition 2.5.2. There is an isomorphism of vector spaces between

T [c] T (S) ∼ = B(S, c)/Q(S, c) ⊥ and T * [c] T (S) ∼ = Q(S, c)
where

Q(S, c) ⊥ = {µ ∈ B(S, c)| ⟨µ, q⟩ = 0, ∀q ∈ Q(S, c)}.
This allows us to define the Weil-Petersson metric on T * [c] T (S) as:

⟨q1, q2⟩ W P = S f1(z)f2(z) ρ(z) dzdz (2.2)
where the hyperbolic metric in the class [c] has the expression ρ(z)|dz| 2 and qi = fi(z)dz 2 for i = 1, 2 are two holomorphic quadratic differentials in Q(S, c). This also induces an inner product on the tangent space T [c] T (S) by duality. The Weil-Petersson metric gives T (S) the structure of a negatively curved Riemannian manifold. On the other hand, the L 1 -norm on the cotangent space T * [c] T (S) is defined as:

||q||1 = (S,c) |f (z)|dz ∧ dz.
This induces a Teichmüller norm on T T (S) via the duality between Beltrami differentials and holomorphic quadratic differentials. One way to express the associated metric, called the Teichmüller metric d T (S) , is:

d T (S) ([c], [c ′ ]) := 1 2 inf log k ϕ | ϕ : (S, [c]) → (S, [c ′ ]) quasiconformal isotopic to the identity (2.3)
One can consult, for example [START_REF] Matheus | The Teichmüller geodesic flow and the geometry of the Hodge bundle[END_REF], for further details in this topic.

Measured foliations on S and the space MF(S)

Following [START_REF] Hubbard | Quadratic differentials and foliations[END_REF] we define:

Definition 2.6.1. A smooth measured foliation F on S with singularities {p1, . . . , pn} of order {k1, . . . , kn} (respectively) is given by an open covering Ui of S \ {p1, . . . , pn} and open sets {V1, . . . , Vn} around {p1, . . . , pn} (respectively) along with smooth non-vanishing real valued 1-forms dϕi defined on Ui such that:

• dϕi = ±dϕj on Ui ∩ Uj • around each p l there is an open neighbourhood V l and a chart (x1, x2) : V l → R 2 such that dϕi = I(z k l 2 +1 dz) on Ui ∩ V l where z = x1 + ix2.
Immersed lines on S along which dϕi vanish give a foliation F on S \ (p1, . . . , pn) and we have a (kj + 2) pronged singularity at pj. Given an arc γ on S which avoids the zeroes (p1, p2, . . . , pn), a measured foliation F associates a transverse measure to γ defined as µ F (γ) = γ |dϕ|, where |dϕ| restricted on each Ui is given by |dϕi|.

This measure is invariant under isotopies that maintain the same end points of γ and the transversality of the intersection of γ with the given foliation. That is, if γ ′ is isotopic to γ with the same end points and maintaining the transversality at every time, then µ F (γ) = µ F (γ ′ ). So, given an isotopy class [γ], we define:

Definition 2.6.2. The intersection number of F with a isotopy class of closed curves [γ] avoiding the singularities of F is defined i([γ], F) = inf γ∈[γ] µ F (γ), where the infimum is taken over all γ ∈ [γ].
As we can see that the intersection number defines a function from the set of closed curves up to isotopy on S to R>0 and we define following, for example [START_REF] Fathi | Thurston's work on surfaces[END_REF]: Definition 2.6.3. Two measured foliations F and G on S are said to be equivalent if they define the same intersection number. The space of equivalence classes of measured foliations on S will be denoted as MF(S).

The space MF(S) can also be defined through a topological equivalence of two foliations which comes via Whitehead moves but we do not elaborate on that. Also it follows from Proposition 2.1 in [START_REF] Hubbard | Quadratic differentials and foliations[END_REF] that a measured foliation F can have 4g -4 pronged-singularities counted up to multiplicity.

There is also an action of R>0 on MF(S) defined as t.F → tF where the latter denotes the measured foliation obtained by multiplying t by the 1-forms dϕi which give us the measured foliation F as par Definition 2.6.1. The space (MF(S) \ 0)/R>0 is called the space of projectivised measured foliations, denoted as P MF(S) and it is identified with the Thurston boundary of T (S). We will denote by [F] as the equivalence class of F in P MF(S). Interested readers can consult, for example [START_REF] Fathi | Thurston's work on surfaces[END_REF], for further details in this topic. We also introduce the notion of arational measured foliations here as: Definition 2.6.4. A measured foliation is said to be arational if all its singularities have 3 prongs and if there are no leaves of the foliation joining the singularities.

We call leaves of the foliations joining prongs of the singularities as saddle connections.

Minimal and CMC surfaces in hyperbolic 3 manifolds

Let i : S → M be an immersion of S into M . Associated to this, we have the data of the first fundamental form denoted as I on S which is the induced metric on S inherited from the ambient space, and the second fundamental form denoted a II which is a symmetric bilinear form on the tangent bundle T S.

Associated to the couple (I, II) we have a unique self-adjoint operator B, called the shape operator, which satisfies the relation II(x, y) = I(Bx, y) = I(x, By) where x, y ∈ TpS, ∀p ∈ S. We can also define another quantity associated to the immersion called the third fundamental form III defined as III(x, y) = I(Bx, By) = I(B 2 x, y) for x, y, B as before. See [START_REF] Carmo | Geometria Riemanniana. Projeto Euclides[END_REF] for reference.

The eigenvalues of B give us the principal curvatures associated to the immersion. Since minimal immersions are those immersions for which the mean curvature of S is zero we can define as well that: Definition 2.7.1. An immersion is minimal if and only if B is traceless.

On the other hand, assume we are given a smooth Riemannian metric g on S and a symmetric bilinear form h on T S. The pair (g, h) will be associated to the data of an immersion of S if it satisfies the following:

1. The Codazzi equation, d ∇ h = 0, where ∇ is the Levi-Civita connection of g.

2.

The Gauss equation, KI = -1 + detg(h), where Kg denotes the Gaussian or intrinsic curvature of the metric g. Now we define the notion of an almost-Fuchsian manifold as:

Definition 2.7.2. A quasi-Fuchsian hyperbolic 3-manifold M ∼ = S × R is called almost-Fuchsian if it
contains a closed minimal surface homeomorphic to S with principal curvatures in (-1, 1).

Given an immersed surface in M , an outcome of the Codazzi equation is that the traceless part of the second fundamental form (II)0 is equal to the real part of a holomorphic quadratic differential q. Now, Corollary 2.9 of [START_REF] Krasnov | Minimal surfaces and particles in 3-manifolds[END_REF] asserts that if M is an almost-Fuchsian manifold then the closed minimal surface it contains is unique. This allows us to parametrize almost-Fuchsian hyperbolic manifolds by an open subset Ω in T * T (S), following [START_REF] Krasnov | Minimal surfaces and particles in 3-manifolds[END_REF], Theorem 2.12:

Theorem 2.7.3.
There exists an open subset Ω ⊂ T * T (S) such that we have the following bijection:

1. Given a point ([c], q) ∈ Ω, there exists a unique almost-Fuchsian metric on M such that the unique minimal surface has first fundamental form conformal to [c] and the second fundamental form II is R(q).

2. Given an almost-Fuchsian metric g ∈ AF(S) on M , the induced metric and second fundamental form of its unique minimal surface are specified by a point in Ω.

We will now recall another definition which is of a CMC H-surface.

Definition 2.7.4. An immersed surface S in M is called a CMC H-surface if tr(B) = H for all points on S.

We will recall now a tool that we use in all the chapters of this thesis:

Schwarzians at infinity of quasi-Fuchsian manifolds

Recall that the boundary at infinity ∂∞H 3 is identified with the complex projective space CP 1 . The components ∂ + ∞ M and ∂ - ∞ M are the quotient of domains in CP 1 under the action of Γ < P SL2(C) and so they carry canonical CP 1 -structure which is a (G, X) structure on S with G = P SL2(C) and X = CP 1 [START_REF] Dumas | Complex projective structures[END_REF]. That is to say we have an open covering of S by an atlas (Uα, ϕα) such that ϕα : Uα → CP 1 are charts to open domains in CP 1 and in the overlap Ui ∩ Uj of two charts the change of coordinate map ϕi • ϕ -1 j is locally a restriction of a Möbius transformations. Denote the space of equivalence classes of CP 1 -structures on S under diffeomorphisms isotopic to the identity as CP(S). Now, given a CP 1 -structure on S we have an underlying complex structure as Möbius transformations are biholomorphisms and for ∂ ± ∞ M it is precisely [c±] up to equivalence. This gives us a natural forgetful map CP(S) → T (S) mapping a CP 1 -structures to the underlying complex one. Now by the uniformisation theorem any complex structure c on S arises as the quotient of the action of some discrete subgroup Γc of P SL2(R) on H 2 . As Γc < P SL2(C) as well and H 2 can be seen as the unit disc ∆ ⊂ CP 1 , we have a canonical CP 1 -structure associated to a complex structure which we call the standard Fuchsian complex projective structure and this gives us a continuous section T (S) → CP(S).

The Schwarzian derivative yields a parametrisation of the fibers of the forgetful map CP(S) → T (S). In general, given a domain Ω ⊂ C, the Schwarzian derivative of a locally injective holomorphic map u : Ω → C is a holomorphic quadratic differential defined as:

σ(u) = (( u ′′ u ′ ) ′ - 1 2 ( u ′′ u ′ ) 2
)dz 2 One way to obtain the expression on the right hand side above is to consider the unique Möbius transformation Mu which matches with u up to second order derivative. The expression above is precisely the difference of the third order terms in the local Taylor series expansion of u and Mu (see Proposition 6.3.3 of [START_REF] Hubbard | Teichmüller theory and applications to geometry, topology, and dynamics[END_REF]). Further, they have two remarkable properties:

• For two locally injective holomorphic maps u, v : Ω → C we have σ(u • v) = v * σ(u) + σ(v) • σ(A) = 0 if and only if A is a Möbius transformation.
In particular, there is a unique holomorphic map between a given complex projective structure on S and the standard Fuchsian one and by virtue of the properties above, the Schwarzian derivative for this holomorphic map can be defined in a chart independent way. This is called the Schwarzian parametrisation of a complex projective structure on S with respect to the standard Fuchsian complex projective structure (see [START_REF] Dumas | Complex projective structures[END_REF], [START_REF] Schlenker | Notes on the schwarzian tensor and measured foliations at infinity of quasifuchsian manifolds[END_REF]). When M ∈ QF(S), the components of ∂∞H 3 \ ΛΓ have non-trivial Schwarzian derivatives associated to them by construction which descend to two holomorphic quadratic differentials on ∂ ± ∞ M upon taking quotients. So we define: Definition 2.8.1. The Schwarzians at infinity σ+ and σ-are the holomorphic quadratic differentials obtained on

(∂ + ∞ M, [c+]) and (∂ - ∞ M, [c-]
) by the Schwarzian parametrisation of the CP 1 structures on ∂ ± ∞ M with respect to the corresponding standard Fuchsian complex projective structure. Also note that when M ∈ F (S) due to the second property above the Schwarzians at infinity are zero. What is more important to us from this discussion is that due to this we get another parametrisation of quasi-Fuchsian manifolds by Q(S) by considering the Schwarzian derivative and complex structure appearing at one end at infinity. So we can therefore construct a well-defined map S : QF(S) → Q(S) .

(2.4)

Here Q(S) denotes the bundle of holomorphic quadratic differentials over T (S), whose fiber over a point (S, [h]) coincides with the vector space H 0 ((Σ, h), K 2 ), where K denotes the canonical divisor of (S, [h]). Consequently, the space Q(S) is a complex manifold of dimension 3g -3, where g denotes the genus of S. In fact, the map S turns out to be injective (see also the discussion below on the construction of its inverse) and, being QF(S) and Q(S) manifolds of the same real dimension, the invariance of domain theorem implies that its image is an open subset of Q(S).

Constructing the inverse

We will often use the the inverse map of S, defined on the image of QF(S). Hence it will be useful to quickly discuss its explicit construction. In general, given a holomorphic quadratic differential q on a connected open set Ω ⊂ C, there exists a locally injective holomorphic map fq : Ω → C such that σ(fq) = q, see [START_REF] Nehari | The Schwarzian derivative and schlicht functions[END_REF] and [START_REF] Hubbard | Teichmüller theory and applications to geometry, topology, and dynamics[END_REF]Proposition 6.3.7]. By the fundamental properties discussed above, fq is unique up to post-composition with a Möbius transformation. One can also see that fq, suitably normalized, depends smoothly on q.

To apply this in our setting, we consider a hyperbolic metric h on Σ and ϕ ∈ H 0 ((Σ, h), K 2 ), and realize (Σ, h) as the quotient of the Poincaré disc D by a discrete group Γ h of biholomorphisms. We can then lift ϕ to a Γ h -invariant holomorphic quadratic differential φ on D, and find a locally injective holomorphic map f φ : D → C whose Schwarzian derivative is equal to φ. Since φ is invariant under the action of Γ h , we have

σ(f • γ) = γ * σ(f ) = γ * φ = φ = σ(f )
for every γ ∈ Γ h . We deduce that for any γ ∈ Γ h there exists a Möbius tranformation

ζ = ζ(γ) such that f • γ = ζ(γ) • f , providing us with a representation ζ : Γ h → PSL(2, C
). This construction is exactly the inverse of the map S, in the sense that if f : D → Ω + is the biholomorphic map associated to a quasi-Fuchsian manifold H 3 /Γ as in Section 2.4, and h and ϕ are the induced hyperbolic metric and holomorphic quadratic differential on Σ, then f φ = f and the image of the representation ζ coincides with the quasi-Fuchsian group Γ.

Chapter 3

Measured foliation at infinity of quasi-Fuchsian manifolds near the Fuchsian locus

We will now focus on the first part of the thesis which is on realising measured foliations at the boundary at infinity of quasi-Fuchsian manifolds close to the Fuchsian locus.

3.1 The bundle Q(S) and measured foliations realised by holomorphic quadratic differentials.

Now, given q ∈ Q(S, c), away from its zeroes we can always perform a local change of coordinates z → w := √ q on S such that q = f (z)dz 2 has the local expression dw 2 with respect to this coordinate. If we write w = w1 + iw2 then the holomorphic quadratic differential dw 2 canonically equips C with two measured foliations:

• The horizontal measured foliation, which are immersed lines given by w2 = const., i.e the horizontal lines of C. Its transverse measure being given by |I √ dw 2 | = |dw2|.

• The vertical measured foliation, which are immersed lines along which w1 = const., i.e the vertical lines of C. Its transverse measure being given by |R √

dw 2 | = |dw1|.
Moreover, notice that the horizontal measured foliations (resp. vertical measured foliations) of quadratic differential dw 2 gives us all the horizontal lines (resp. vertical lines) on C, thus inspiring the nomenclature. So we define: Definition 3.1.1. The horizontal measured foliation hor [c] (q) (resp. vertical measured foliation ver [c] (q)) of q on (S, c) is a smooth singular measured foliation, with singularities at the zeroes of q, which is obtained locally by pulling back the horizontal measured foliations (resp. vertical measured foliation) of dw 2 under the change of coordinate z → w := √ q defined above. The transverse measure for the horizontal measured foliation (resp. vertical measured foliation) is given by |I √ q| (resp. |R √ q|).

If the measured foliation F is realised by a holomorphic quadratic differential q then F has a prong of order k + 2 at the point where q has a zero of order k. Also, if q is expressed as dw 2 in local coordinates then -q is nothing but the differential -dw 2 , whose horizontal (resp. vertical) foliations are given by the vertical lines (resp. horizontal lines) on C. We thus have the simple but important remark:

Remark 3.1.2. hor [c] (q) is measure equivalent to ver [c] (-q) in MF(S) for all holomorphic quadratic dif- ferential q ∈ Q(S, c).
Now we recall a well-known theorem of Teichmüller that enables us to interpret quasi-conformal deformations in terms of measured foliations (see for example [START_REF] Matheus | The Teichmüller geodesic flow and the geometry of the Hodge bundle[END_REF]): q for some unique holomorphic quadratic differential q ∈ T *

[c] T (S) with ||q||1 = 1 and for some k ∈ [0, 1). The quadratic differential q is denoted as the initial quadratic differential of the map. There is a quadratic differential q ′ ∈ T * [c ′ ] T (S) denoted as the terminal quadratic differential with the property that the map ϕ takes zeroes of q to zeroes of q ′ of the same order. In the natural local coordinates z = x + iy of q in the complement of its zeroes, and the natural coordinates w = x ′ + iy ′ for q ′ , we have:

x ′ = √ kx, y ′ = (1/ √ k)y
By virtue of the above, the metric d T (S) defined in Equation (2.3) is a metric on T (S). Further, we also have that given (S, c), a quadratic differential q ∈ T *

[c] T (S) with ||q||1 = 1 and t ≥ 0, there is a conformal class (S, [ct]), and a unique extremal map ϕt : (S, c) → (S, [ct]) such that:

d T (S) ([c], [ct]) = 1 2 log k ϕ t
Choosing log k ϕ t = 2t gives us that the image of the map R>0 → T * T (S) ∼ = Q(S) with t → [ct] is a properly embedded geodesic line in T (S) with respect to the metric d T (S) which is called the Teichmüller geodesic with initial quadratic differential q. This also makes the metric complete (see, for example [START_REF] Matheus | The Teichmüller geodesic flow and the geometry of the Hodge bundle[END_REF] for more further details).

3.1.1

The Theorem of Hubbard-Masur and the sections q F and q -F Define now a map hor : Q(S, c) → MF(S) which sends a holomorphic quadratic differential q to its horizontal measured foliation horc(q) and we consider its image in MF(S). Then we have from [START_REF] Hubbard | Quadratic differentials and foliations[END_REF] (see also [START_REF] Kerckhoff | The asymptotic geometry of Teichmüller space[END_REF], [START_REF] Wolf | On realizing measured foliations via quadratic differentials of harmonic maps to R-trees[END_REF]):

Theorem 3.1.4. The map horc : Q(S, c) → MF (S) is a homeomorphism.
Remark 3.1.5. Given any measured foliation F on Riemann surface, we may not find a holomorphic quadratic differential realising it as its horizontal measured foliation, for example notice the example in §2 of Chapter II of [START_REF] Hubbard | Quadratic differentials and foliations[END_REF]. However as noted in the paper, this issue can be taken care of as according to Proposition 2.2 of [START_REF] Hubbard | Quadratic differentials and foliations[END_REF] as in the equivalence class of F in MF(S) there exists a representative that can be realised by a holomorphic quadratic differential.

We will consider the inverse of this map for our purpose which will provide sections of T * T (S) for a fixed foliation F. This we define as follows: Definition 3.1.6. For a given equivalence class of foliation F ∈ MF (S), define q F : T (S) → T * T (S) to be the map, which associates to each equivalence class of complex structure [c] on S, the unique holomorphic quadratic differential q F c such that horc(q F c ) is measure equivalent to F.

We will denote the holomorphic quadratic differential associated to [c] as q F [c] . In fact, the theorem of Hubbard-Masur holds true if we consider vertical measured foliations instead of horizontal ones and thus we can consider the map

q -F : T (S) → T * T (S)
which associates to a complex structure [c] on S, the unique holomorphic quadratic differential q -F [c] , such that vertical measured foliation of q -F [c] on (S, [c]) is measure equivalent to F. We can thus reformulate Remark 3.1.2 as:

Remark 3.1.7. For a given measured foliation F ∈ MF (S), q -F [c] = -q F [c] for any [c] in T (S).
These sections are C 0 , in particular they fail to be C 1 (see main theorem of [START_REF] Royden | Automorphisms and isometries of Teichmüller space[END_REF]). It also follows from a result of Masur in [START_REF] Masur | The Teichmüller flow is Hamiltonian[END_REF] that when q is generic, then the sections q +F , q -F : T (S) → T * T (S) are real-analytic.

In fact we can state:

Lemma 3.1.8. A measured foliation is arational if and only if the holomorphic quadratic differential realising it as the horizontal measured foliation over each point in T (S) is generic (recall Definition 2.5.1). Moreover in this case the map q F : T (S) → T * T (S) is smooth.

One implication is obvious as if the quadratic differential is generic then the measured foliation it realises has three prongs at each zero and no saddle connections. The other side can be seen easily as if F is arational then any Whitehead equivalent measure foliation is isotopic to F (since by definition there are no saddle connections to collapse). We also denote the subset of arational measured foliations as MF0(S) and note that this is a dense subset of MF(S) as well.

Filling measured foliations and the theorem of Gardiner-Masur

First we recall that: Definition 3.1.9. A pair of measured foliations (F, G) is said to fill S if for any measured foliation H ∈ MF (S) on S we have,

i(H, F) + i(H, G) > 0 .
Recall that we denote the space of equivalence classes of pairs of filling foliations as FMF(S). Notice that the pair (hor(q), ver(q)) automatically satisfies the topological property of filling up S by the following Lemma 5.3 of [START_REF] Gardiner | Extremal length geometry of Teichmüller space[END_REF] (see [START_REF] Wright | Mirzakhani's work on earthquake flow[END_REF] as well): Lemma 3.1.10. Given a holomorphic quadratic differential q on a Riemann surface (S, [c]), the pair

(hor [c] (q), ver [c] (q)) fill S.
Given a pair (F, G) ∈ FMF(S) we can thus ask whether under a fixed complex structure up to equivalence, a pair (F, G) can be realized as the horizontal and vertical measured foliation of the same holomorphic quadratic differential q. The answers are affirmative and can be summarized as: Theorem 3.1.11. ( [START_REF] Gardiner | Extremal length geometry of Teichmüller space[END_REF], [START_REF] Wentworth | Energy of harmonic maps and Gardiner's formula[END_REF]) A pair (F, G) of measured foliations on S is filling if and only there is a complex structure c and a holomorphic quadratic differential q ∈ T *

[c] T (S) such that (F, G) are respectively measure equivalent to the vertical and horizontal foliations of q. Moreover, the class [c] up to diffeomorphism isotopic to the identity is determined uniquely and for each c ∈ [c] the quadratic differential q realising the filling pair (F, G) is also unique.

So, for a pair (F, G) that fill we have: Corollary 3.1.12. The sections q F and q -G intersect uniquely in T * T (S) at the point ([c], q) determined by Theorem 3.1.11. Moreover F = hor [c] (q) and G = hor [c] (-q) in MF(S) where q = q F = q -G = -q G .

Extremal lengths of measured foliations

Given a simple closed curve γ on (S, c) we define its extremal length as

extc(γ) = sup [[g]]=c l 2 g (γ) Area(g)
where lg(γ) is the length computed with respect to g and the supremum is taken over all Riemannian metrics in the conformal class c. This definition of extremal length on closed curve extends to that of a measured foliation (see [START_REF] Kerckhoff | The asymptotic geometry of Teichmüller space[END_REF]) where extremal length of a foliation F defines a continuous function on T (S)

ext(F) : T (S) → R [c] → ext [c] (F)
where ext [c] (tF) = t 2 ext [c] (F) for t > 0. Using the sections q F

[c] we can also express this as (see [START_REF] Hubbard | Quadratic differentials and foliations[END_REF]):

Lemma 3.1.13. For [c] ∈ T (S), the extremal length of F ∈ MF (S) is given by

ext [c] (F) = (S,c) |q F [c] |dz ∧ dz = ||q F [c] ||1 = ||q -F [c] ||1
Here ||q||1 = S |ϕ(z)|dz ∧ dz where q = ϕ(z)dz 2 . Another simple observation that follows from this is:

Corollary 3.1.14. ext [c] (F) = ext [c] (G) where [c] ∈ T (S) is determined by Theorem 3.1.11. Proof. As q = q F [c] = q -G [c] at [c]
where the sections q F and q -G intersect (see Remark 3.1.12), we get the result using Lemma 3.1.13.

We also have a well-known variational formula for extremal lengths originally due to Gardiner (see [START_REF] Gardiner | Measured foliations and the minimal norm property for quadratic differentials[END_REF], also [START_REF] Liu | Variation of extremal length functions on Teichmüller space[END_REF]) which states: Lemma 3.1.15. Let [ct] for 0 ≤ t < 0 be a smooth 1-parameter family of conformal classes and F be a smooth measured foliation in MF(S) then

(dext [c 0 ] F)(µ) = R q F [c 0 ] , µ
where µ ∈ T [c 0 ] T (S) is the Beltrami differential denoting the derivative d dt t=0

[ct].

Remark 3.1.16. It is known from [START_REF] Royden | Automorphisms and isometries of Teichmüller space[END_REF] that the extremal length function is not C 2 in general. The fact that the Hubbard-Masur map is not C 1 can be now seen from the above formula.

3.1.4 Intersection of q F and q -G in T * T (S)

Using the tools developed thus far we can state:

Proposition 3.1.17. Let (F, G) ∈ FMF(S) be a pair of measured foliations that fill S and q F , q -G : T (S) → T * T (S) be the associated sections defined before. Then their images in T * T (S) intersect uniquely and the projection of the intersection into T (S) is the unique critical point of the function ext(F) + ext(G) : T (S) → R. Moreover when (F, G) ∈ FMF0(S) then the sections intersect transversely.

Proof. Given, (F, G) ∈ FMF(S), the sections q F , q -G intersect if and only if q

F [c 0 ] = q -G [c 0 ] = -q G [c 0 ] from Remark 3.1.7. If µ is the Beltrami differential denoting d dt t=0
[ct], then we have from Lemma 3.1.15 that:

d dt t=0 ext [c t ] (F) = R(⟨q F [c 0 ] , µ⟩) = R(⟨q -G [c 0 ] , µ⟩), µ ∈ T [c] T (S).
We can also consider G to be a measured foliation realised as the horizontal measured foliation and consider

d dt t=0 ext [c t ] (G) = R(⟨q G [c 0 ] , µ⟩), µ ∈ T [c] T (S). Hence [c0] is a critical point of the function ext(F) + ext(G) if and only if q F [c 0 ] = -q G [c 0 ]
. The existence and uniqueness of the critical point follows from Theorem 3.1.11 and Corollary 3.1.12. Now assume (F, G) ∈ FMF0(S). If dq F , dq -G : T T (S) → T T * T (S) be the respective differentials then for transversality of intersection we need to show that if dq F (ν) = dq -G (ν) for ν ∈ T T (S) then ν = 0. Recalling the definitions of the sections q F , q -G this amounts to showing: Lemma 3.1.18. Consider a smooth deformation of the type (ct, qt), t ≥ 0 with (c0, q0) being the point of intersection of q F , q -G with (F, G) ∈ FMF0(S). Let Ft, Gt be the horizontal and vertical measured foliations Gt = 0. Then the deformation is trivial.

Proof. Recall that q F , q -G : T (S) → T * T (S) are smooth maps when (F, G) are arational. This can be seen by considering π : S → S to be the canonical double cover branched over the zeroes of q (see [START_REF] Lanneau | Hyperelliptic components of the moduli spaces of quadratic differentials with prescribed singularities[END_REF], Construction 1.2 and also [START_REF] Dumas | Skinning maps are finite-to-one[END_REF]) such that π * (q) = ω 2 q where ωq is a holomorphic 1 form on ( S, [ c]) where

[ c] = π * [c]. It follows from Lemma 2 of [45] that ([c], q) → ([ c], ω 2 
q ) is a local embedding, so a deformation ([ct], qt) in the generic stratum induces a deformation ([ ct], ω 2 q t ) ∈ Q( S) maintaining the same strata. Let Ft nd Gt be the horizontal and vertical foliations realised by ω 2 q t on ( S, [ ct]) with F0 = F (resp. G0 = G) being the lift of F (resp. G) in the double cover. Consider now γ to be a cycle in the relative homology group H - 1 ( S, Vω q ; C) where the latter is the eigenspace of H1( S, Vω q ; C) consisting of cycles invariant under the involution of S and the set Vω q denotes the set of zeroes of ωq. The real and imaginary part of the holonomy γ ωq are precisely the intersection number with the horizontal and vertical foliations of ω 2 q . This gives us Period coordinates

per : Q0(S) → H 1 -( S, Vω q ; C) ∼ = R 12g-12
per(q) → γ ωq which is well known to be a local immersion. Our assumption then translates to d dt t=0

i(γ, Ft) = 0 and (i(γ, Gt) + ii(γ, Ft)) = 0, where we can assume γ is fixed when one restricts to deformations maintaining strata. Since the period map is an immersion, it follows that this deformation is necessarily trivial. It is a simple observation from the definition that if the transverse measure of a foliation F is given by |R q F |, then the corresponding holomorphic quadratic differential realising the measured foliation tF over the same Riemann surface structure on S is nothing but t 2 q F since then the transverse measure is given by |R t 2 q F | which is equal to t|R q F |. In the notation of the critical point p(F, G) this implies that: Also we have the observation that this point is uniquely determined by the pair (F, G). That is:

Lemma 3.1.21. If p(F, G) = p(F ′ , G), then F = F ′ in MF(S).
Proof. Let p(F, G) = [c] be the unique point in T (S) and q ∈ Q(S, c) be the unique holomorphic quadratic differential realising (F, G) as its horizontal and vertical measured foliations respectively. For the pair (F ′ , G) we have that p(F ′ , G) = p(F, G) = [c]. Since on Q(S, c) the choice of q ′ realising G as its vertical measured foliation is unique from the theorem of Hubbard-Masur, we have that q ′ = q. But by definition

F ′ is measure equivalent to hor [c] (q ′ ) = hor [c] (q) = F.
3.1.5 Quotient of Q(S) under the action of R >0 and intersection of [q F ] and [q -G ]

There is a natural action of R>0 on (Q(S, [c]) -0) defined as (t, q) ∈ Q(S, [c]) → t 2 q,∀t ∈ (0, ∞). We can define Q 1 (S, c) to be quotient (Q(S, [c]) -0)/R>0 under this action. Clearly Q 1 (S, c) is isomorphic to U T * [c] T (S) from Proposition 2.5.2, where the latter denotes the unit cotangent space at a point [c] ∈ T (S). The next proposition is a similar result for the sections [q F ], which are the images of q F under the quotient map. We can now address the main proposition of this section involving the intersection of the equivalence classes [q F ] and [q -G ] in U T * T (S) for a filling pair (F, G): Proposition 3.1.22. Let (F, G) ∈ FMF (S) be a pair of filling measured foliations on S, then the projection of the intersection of the sections [q F ],[q -G ] in U T * T (S) onto T (S) is a geodesic line for the Teichmüller metric given by the image of the map t → p( √ tF, 1 √ t G) ∈ T (S) for t > 0. Moreover, when (F, G) ∈ F MF0(S) then the sections intersect transversely in U T * T (S).

Proof. We first note that if a pair (F, G) fill S then so do the pairs (tF, G),(tF, 1 t G) and (F, tG) for any t > 0. Let [ct] ∈ T (S) be an equivalence class of complex structures such that the two sections q tF , q -G meet over [ct]. Then by definition we have

t 2 q F [c t ] = q -G [c t ] which is equivalent to tq F [c t ] = 1 t q -G [c t ]
. Since the foliation tF is realised by t 2 q F [c t ] on the same complex structure, we have that q

√ tF [c t ] = q -1 √ t G [c t ]
for some t > 0 at the point [ct]. This is equivalent to the fact that [ct] is the unique critical point of the function ext(

√ tF) + ext( 1 √ t G) since ( √ tF, 1 √ t G) fill S. As [ct] is identified with p( √ tF, 1 √ t G
), the projection of the intersections is along the image of the map

R>0 → T (S) t → [ct] = p( √ tF, 1 √ t G)
So it now suffices to show that the path t → p(tF, G) is a geodesic for the Teichmüller metric d T (S) on T (S). We first note that [c] being the critical point ext(F) + ext(G) for a filling pair (F, G) also implies that [c] is the critical point for the function

ext(F)ext(G) : T (S) → R
where we use the fact that ext

[c] (F) = ext [c] (G) from corollary 3.1.14. So p( √ tF, 1 √ t G) is a critical point for ext( √ tF)ext( 1 √ t G) and since ext [c] (tF) = t 2 ext [c] (F) we also have as a consequence that the point p( √ tF, 1 √ t G
) is a critical point for the function ext(F)ext(G). Now it has been shown in [START_REF] Gardiner | Extremal length geometry of Teichmüller space[END_REF] that the set of critical points for the function ext(F)ext(G) is a Teichmüller geodesic line in T (S) when (F, G) fill S. Moreover, from Lemma 3.1.21 the map t → p(tF, G) ∈ T (S) is injective. Finally, we observe that every critical point of ext(F)ext(G) is also a critical point for ext(αF) + ext(βG) for some α, β > 0 and hence the image of the map t → p(tF, G) is the entire Teichmüller geodesic. For transversality we can use Proposition 3.1.17 as the pairs q tF and q -G intersect transversely, i.e, T ([c t ],q t ) T * T (S) = T ([c t ],q t ) (q tF (T (S)))

T ([c t ],q t ) (q -G (T (S)))

is true for all t ≥ 0 and (F, G) ∈ FMF0(S). The result follows when we take quotients.

For a given filling pair (F, G) we call the Teichmüller geodesic line t → p( √ tF, 1 √ t G) ∈ T (S) for t > 0 as P(F, G).

Necessary condition for paths with small filling measured foliations at infinity

The goal of this section is to establish a necessary condition that small differentiable paths in QF(S) starting from F(S) should satisfy if the measured foliations at infinity are given by a filling pair (tF+, tF-) ∈ F MF(S) at first order at F(S). For this reason following [START_REF] Uhlenbeck | Closed minimal surfaces in hyperbolic 3-manifolds[END_REF], we will study the curve β ([c],q) (t 2 ) ∈ QF(S), for t > 0 small enough, which is parametrised by the data of the unique minimal surface it contains, i.e, the first fundamental form I is in the conformal class [c] ∈ T (S) and the second fundamental form II is given by t 2 R(q) for some q ∈ T * [c] T (S). We will compute first-order estimates for Schwarzians at infinity for this path and determine that if the measured foliations at infinity for this path is indeed (tF+, tF-) at first-order at F(S) then [c] is indeed the unique critical point for the functions ext(F+) + ext(F-) : T (S) → R and q is the unique holomorphic differential we obtain from the theorem of Gardiner-Masur that realise (F+, F-) on [c]. To this end, we will begin by recalling the definition of the tools required to make the computations.

Fundamental forms at infinity

Given a minimal surface in an almost-Fuchsian manifold M , we can consider the surfaces equidistant from it in M at an oriented distance. These surfaces foliate the almost-Fuchsian manifold and we can then compute the associated first and second fundamental forms for these surfaces in terms of the data associated to the minimal embedding. We thus can formulate the following [START_REF] Krasnov | On the renormalized volume of hyperbolic 3-manifolds[END_REF] (see also [START_REF] Schlenker | The renormalized volume and the volume of the convex core of quasifuchsian manifolds[END_REF]): Lemma 3.2.1. Let S be a complete, oriented, smooth surface with principal curvatures in (-1, 1) immersed minimally into an almost-Fuchsian manifold homeomorphic to S × (-∞, ∞) and let (I, II, B) be the associated data of the immersion. Then for all r ∈ R the set of point Sr at an oriented distance r from S is a smooth embedded surface with data (Ir, IIr, Br) where :

1. Ir(x, y) = I((cosh(r)E + sinh(r)B)x, (cosh(r)E + sinh(r)B)y)

2. IIr = 1 2 dIr dr 3. Br = (cosh(r)E + sinh(r)B) -1 (sinh(r)E + cosh(r)B)
where E is the identity operator and Sr is identified to S through the closest point projection.

The fundamental forms at infinity denoted as I * , II * and introduced in [START_REF] Krasnov | On the renormalized volume of hyperbolic 3-manifolds[END_REF], quantify the asymptotic behaviour of the quantities described above as r → ∞. In particular, it estimates the data at the conformal class at infinity of an almost-Fuchsian manifold M with respect to the, unique minimal surface with principal curvature in (-1, 1) it contains.

Formally,

I * = lim r→∞ 2e -2r Ir II * = lim r→∞ (Ir -IIIr)
. However the lemma above gives us explicit formulae to express the same in terms of (I, II, III) and we use that to define: Definition 3.2.2. Adhering to the notations introduced above, the first fundamental form at infinity is given by the expression I * = 1 2 (I + 2II + III) and the second fundamental form at infinity is given by II * = 1 2 (I -III). Here we are implicitly identifying the metric at infinity and that of the minimal surface by the hyperbolic Gauss map G : S → ∂ ∞ ± M .

The pair (I * , II * ) satisfy a modified version of Gauss equation at infinity (see [START_REF] Schlenker | Notes on the schwarzian tensor and measured foliations at infinity of quasifuchsian manifolds[END_REF], [START_REF] Krasnov | Minimal surfaces and particles in 3-manifolds[END_REF]), i.e, tr(B * ) = -K * where B * is the shape operator associated to I * and II * . The Codazzi equation on the other hand, holds as it is by considering the Levi-Civita connection ∇ * compatible with I * . The thing for importance to us is the expression for curvature associated to I * which we call K * . [START_REF] Krasnov | On the renormalized volume of hyperbolic 3-manifolds[END_REF] further provide us with an expression for it using the data of the immersed minimal surface:

Lemma 3.2.3. With the notation as above,

K * = 2K det(E + B) = -1 + det(B) 1 + det(B)
where K is the Gaussian curvature of the minimal immersion of S.

Remark 3.2.4. The second equality follows from the fact that T r(B) = 0 the immersion being minimal and (I, II) satisfy the Gauss-Codazzi equations.

In general I * need not be a hyperbolic metric. In fact, [START_REF] Krasnov | On the renormalized volume of hyperbolic 3-manifolds[END_REF] note that when multiplied by the correct conformal factor to take I * to the unique hyperbolic metric in its conformal class, the corresponding change in II * is closely related to the Schwarzian derivative σ associated to that end. So we have the following accounting for the change in (II * )0 when we apply a conformal change to I * : Lemma 3.2.5. Let I * 1 and I * 2 be two metrics in the same conformal class at infinity such that I * 2 = e 2f I * 1 for some smooth function f , then the traceless parts (II * 1 )0 and (II * 2 )0 are related as:

(II * 2 )0 -(II * 1 )0 = Hess I * 1 (f ) -df ⊗ df + 1 2 ||df ||I * 1 - 1 2 (∆f )I * 1
In fact if we consider a holomorphic map u : Ω → C where Ω ⊂ C then R(σ(u)) is precisely the term on the right hand side of the above equation when we consider 2f = log( u ′ u ). We thus have the following (a geometric proof of which can also be found in Appendix A of [START_REF] Krasnov | On the renormalized volume of hyperbolic 3-manifolds[END_REF]): Theorem 3.2.6. If I * is hyperbolic, then (II * )0 = -R(σ), where (II * )0 denotes the traceless part of the second fundamental form at infinity and σ is the Schwarzian at infinity.

In the following sections we will use the parametrisation of almost-Fuchsian metric in terms of the data of I and II of its unique minimal surface and compute I * and II * at the two ends using Equations ??. For this, we will use the curve introduced by Uhlenbeck in [START_REF] Uhlenbeck | Closed minimal surfaces in hyperbolic 3-manifolds[END_REF] to prove that quasi Fuchsian metrics close enough to F(S) admit a minimal surface with data given by a point ([c], sq) ∈ T * T (S), for s > 0 sufficiently small.

The curve β

([c],q) (s) in QF(S)
Let ([c], q) be a point in T * T (S). As discussed in [START_REF] Uhlenbeck | Closed minimal surfaces in hyperbolic 3-manifolds[END_REF] we consider a smooth 1-parameter curve β ([c],q) (s) , s ∈ [0, ϵ) of almost-Fuchsian metrics starting from the Fuchsian locus which are given by the data

β ([c],q) : R>0 → T * T (S) ⊃Ω ∼ = AF(S) ⊂ QF(S) s → ([c], sR(q))
of the unique minimal surface such that I is e 2us h for some function us : S → R, where h denotes the unique hyperbolic metric in the conformal class c, and II = sR(q). At s = 0, we have us = 0 and β ([c],q) (0) ∈ F (S).

By the Gauss equation, the pair (e 2us h, sR(q)) is the data of the minimal immersion if and only if us is a solution for the following equation:

K e 2us h = -1 + det e 2us h (sR(q)) (3.1)
=⇒ e -2us (-∆ h us -1) = -1 + e -4us s 2 det h (R(q)) (3.2) Remark 3.2.7. This is a reformulation of the Gauss equation Kg = -1+det(B) for the pair (e 2us h, sR(q)).

The left hand side comes from Lemma 2.2.3. The right hand side comes by the formulae for change of basis for determinants.

It is then known from [START_REF] Uhlenbeck | Closed minimal surfaces in hyperbolic 3-manifolds[END_REF] (see also [START_REF] Trautwein | The hyperkähler metric on the almost-Fuchsian moduli space[END_REF]) that a unique solution exists for Equation 3.1 which in terms of almost-Fuchsian metrics can be formulated as: Proposition 3.2.8. For every pair ([c], q) ∈ T * T (S) there exists an ϵ, such that for all s ∈ (0, ϵ) there exists a unique almost-Fuchsian manifold with a unique minimal surface whose (I, II) is given by the pair ([c], sR(q)).

First order estimations of measured foliations at infinity for the path β

([c],q) (t 2 )
We will in fact do all the computations for the path β ([c],q) (s) and perform a change of variable of s to t 2 later on. This is done in order to account for the correct factor of the measured foliations at infinity at first order that we will compute eventually. Let us fix some notations: For a fixed s > 0, the data of the minimal surface S embedded into an almost-Fuchsian manifold M can be expressed as Is = e 2us h and IIs = sR(q). Since Bs = I -1 s IIs and IIIs(x, y) = Is(B 2 s x, y), a simple computation in local orthonormal coordinates for Is shows that IIIs is equal to -s 2 e -2us (detI s (R(q)))h. Let the associated fundamental forms at infinity for this manifold be I * s , II * s and the curvature at infinity be K * s . Further, let the Schwarzian at infinity associated to the two ends of β ([c],q) (s) be called σ s + and σ s -. Our goal first is to say that I * s is hyperbolic at first order at s = 0, so that we can apply a first order version of Theorem 3.2.6 relating the traceless part of II * s with the real part of σ s + . Lemma 3.2.9. I * s is hyperbolic at first order at F(S) i.e the derivative of the curvature K * s with respect to s vanishes at F(S) and K * 0 = -1 at s = 0. Moreover, for this path d ds s=0

(II * s )0 = -R(q) .
Proof. First we note that at s = 0 we are at the Fuchsian locus and from Lemma 3.2.3 we have K * 0 = -1. Now observe that d ds s=0

(det(Bs)) = d ds s=0 s 2 e -4us det h (R(q)) = 0 Therefore using Lemma 3.2.3

d ds s=0 K * s = d ds s=0 -1 + det(Bs) 1 + det(Bs) = 0
For the next part we first see that us solves:

e -2us (-∆ h us -1) = -1 + e -4us s 2 det h (R(q)) (3.3)
We define the non-linear map:

F : W (2,2) (S) × [0, ∞) → L 2 (S) (3.4) F (u, s) = -∆ h u -1 + e 2u -e -2u s 2 det h (R(q)) (3.5) 
where W (2,2) (S) is the classical Sobolev space. The Fréchet derivative is given by:

dF (u,s) ( u, ṡ) = -∆ u + 2 ue 2u + 2 ue -2u s 2 det h (R(q)) -2e -2u s ṡdet h (R(q))
It is clear that u = us solves relation (3.3) if and only if (us, s) is a solution for Equation (3.5). We now see the linearised operator with respect to u of the function F (u, s) which has the expression:

Lu( u) = -∆ h u + 2 u(e 2u + e -2u s 2 det h (R(q))
So, at the solution (0, 0) we have that

Lu : W (2,2) (S) → L 2 (S) u → -∆ h u + 2 u
is a linear isomorphism of vector spaces (see [START_REF] Choudhury | Quasi-fuchsian manifolds close to the fuchsian locus are foliated by constant mean curvature surfaces[END_REF], Lemma 3.4). So we can apply Implicit Function Theorem to get the solution curve γ : [0, ϵ) → W (2,2) (S) × [0, +∞) where γ(s) := (us, s) satisfies F (us, s) = 0, ∀s ∈ [0, ϵ) (see also Theorem 5.13 of [START_REF] Trautwein | The hyperkähler metric on the almost-Fuchsian moduli space[END_REF]). Now

dF (us,s) ( us, ṡ) = Lu s ( us) -2e -2us s ṡdet h (R(q))
We have that dF ( us, ṡ) = 0 for this path so,

us = L -1 us (2s ṡe -2us det h (R(q)) =⇒ d ds s=0 us = 0
Now recall that I * s = 1 2 (Is + 2IIs + IIIs) = 1 2 (e 2us h + 2sR(q) -s 2 e -2us detI s (R(q))h). So taking derivative at s = 0 gives us: is the Schwarzian at the positive end at infinity. Moreover if we parametrise the quasi-Fuchsian space by the data of hyperbolic metric and Schwarzian at infinity at one end at infinity:

d ds s=0 I * s = 1 2 (2 u0h + 2R(q) + 0) = R(q). ( 3 
A : QF(S) → T * T (∂ + ∞ M ) g → (I * h , (II * h )0)
then at the point [c] ∈ F(S) of the Fuchsian locus we have a canonical decomposition of the tangent space

T [c] (QF(S)) = T [c] T (S) T * [c] T (S)
where the first factor is the tangent to the Fuchsian locus denoting the derivative of the hyperbolic metric and the second factor is the derivative of the Schwarzian at infinity at the Fuchsian locus. When considering the path β ([c],q) (s) we have that d ds s=0

A(β ([c],q) (s)) = (R(q), -R(q)).
So a first order version of Theorem 3.2.6 gives: Lemma 3.2.10. For the path β ([c],q) (s), d ds s=0

σ s + = q Note that we have done all the computation at one boundary component at infinity of M , which is almost-Fuchsian. However, recall that M admits a foliation by surfaces "parallel" to the minimal surface, and the corresponding computation for the other component will differ by a sign. To be precise, I * s = 1 2 (Is -2IIs + IIIs) when we consider the component at the boundary at the other end at infinity (see [START_REF] Krasnov | Minimal surfaces and particles in 3-manifolds[END_REF]). The rest of the computation follows as it is. Keeping this in mind we have: Proposition 3.2.11. For the path β ([c],q) (s), d ds s=0

σ s ± = ±q .
Upon a change of variable from s to t 2 , we will now show that the path β ([c],q) (t 2 ) is indeed a candidate for a path of almost-Fuchsian metrics with measured foliations at infinity given by the pair (tF+, tF-) at first order. Denote the measured foliations at infinity for a metric in this path to be F(β

([c],q) )(t 2 ) = (F t + , F t -).
Here again a 1-parameter family of foliations F t is said to be equivalent to a foliation tF at first order, if for any given closed curve γ on S

d dt t=0 i(γ, F t ) = i(γ, F) =⇒ i(γ, F t ) = ti(γ, F) + o(t)
Note by Proposition 3.2.11 σ t 2 ± = ±t 2 q + o(t 2 ) at first order for the path β ([c],q) (t 2 ). So we need to show: Lemma 3.2.12. For any isotopy class of simple closed curve γ on S we have:

i(γ, F t ) -i(γ, hor [c] (t 2 q)) = o(t)
Proof. For this we notice that :

i(γ, F t ) -i(γ, hor [c] (t 2 q)) = inf γ γ |I √ σ t 2 |dz -inf γ γ |I t 2 q|dz = inf γ γ |I t 2 q + o(t 2 )|dz -inf γ γ |I t 2 q|dz = inf γ γ |I o(t 2 ) t 2 q + o(t 2 ) + t 2 q |dz = o(t)
.

Necessary conditions for paths with given small filling measured foliations at infinity at first order

So we see that for 0 < t < ϵ metrics in the path β ([c],q) (t 2 ) have the measured foliations at infinity (F t + , F t -) which at first order at the Fuchsian locus are given by the filling pair (tF+, tF-). Secondly, notice that the point ([c], q) is the unique point associated to the filling pair (F+, F-) via the Gardiner-Masur Theorem and β ([c],q) (0) = [c] = p(F+, F-) is the unique critical point for the functions ext(F+) + ext(F-) by Proposition 3.1.17. These two points will precisely help us to formulate the condition we want paths with given first order behaviour of measured foliations at infinity to satisfy. Proposition 3.2.13. Let (F+, F-) be a pair of measured foliations that fill S. Then there exists a differentiable curve of quasi-Fuchsian metrics t → β ([c],q) (t 2 ), for t ∈ [0, ϵ), starting from the Fuchsian locus such that the image F(β ([c],q) (t 2 )) ∈ FMF(S) is measure equivalent to (tF+, tF-) at first order at F(S). Moreover [c] ∈ T (S) is the unique critical point of the function ext(F+) + ext(F-) : T (S) → R and q ∈ T *

[c] T (S) is the unique holomorphic quadratic differential realising (F+, F-).

Proof. From Proposition 3.2.11 and Lemma 3.2.12 we have that measured foliations at infinity for this path are given by the pair (thor [c] (q), thor [c] (-q)) at first order at t = 0. The proposition is then a consequence of Proposition 3.1.17.

Uniqueness of Paths with Small Filling Foliations

The goal of this section is to construct differentiable paths realising small pairs of measured foliations at infinity which are arational and filling, utilising the condition proved in Proposition 3.2.13 that they should satisfy. To do that first we will introduce the blow-up space QF(S) which we obtain by replacing F(S) ⊂ QF(S) with its "unit normal bundle" U N F(S). Following the strategy of [START_REF] Bonahon | Kleinian groups which are almost Fuchsian[END_REF] we then consider subsets of QF(S) called W + F + (and W - F -), defined as: Definition 3.3.1. For F ∈ MF(S), define W + F ⊂ QF(S) (resp. W - F ) to be the set of quasi-Fuchsian metrics g such that the foliation at the end at +∞ (resp. -∞) is tF for any t ≥ 0.

Call W ±

F the image of W ± F under the lift QF(S) → QF(S). For (F+, F-) ∈ FMF 0(S) we will then show in the blow-up space W + F + and W - Fare submanifolds of QF(S) and that their boundaries ∂ W + F + and ∂ W - Fcontained and intersecting in ∂ QF(S) where ∂ W + F + ∩ ∂ W - Fintersect transversely and the intersection projects onto the Teichmüller geodesic line P(F+, F-) ∈ T (S) as defined in Proposition 3.1.22. We then consider the map π :

W + F + ∩ W - F -→ R 2 , sending g ∈ W + F + ∩ W - F -to (a, b)
where F(g) = (aF+, bF-) for some a, b ≥ 0 by definition and lift the setting to the blow-up π :

W + F + ∩ W - F -→ R 2
where the latter denotes the blow-up of R 2 at the origin. The existence of paths with given small foliations then follows as we show that π at ∂ W

+ F + ∩ ∂ W - F -is a local diffeomorphism.

The normal bundle N F(S) to F(S)

First, let us recall that the Weil-Petersson metric endows T (S) with a symplectic form ωW P which is defined on the cotangent space as ωW P (., .) = -I ⟨., .⟩ W P where ⟨., .⟩ W P is as Equation 2.2. Moreover, T (S) is endowed with an almost complex structure JW P such that ⟨q1, q2⟩ W P = ωW P (q1, JW P (q2)) defined by JW P (q2) = iq2. Further, recall the notion of the character variety χ P SL 2 (C) which is an irreducible affine variety of complex dimension 6g -6 ( [START_REF] Goldman | Topological components of spaces of representations[END_REF]) and can be expressed as the GIT quotient:

χ P SL 2 (C) := Hom(π1(S), P SL2(C))//P SL2(C)
As each hyperbolic structure on S is uniquely determined by the holonomy representation of π1(S) in to the group of orientation preserving isometries of H 2 , identified with P SL2(R), the Fuchsian locus F(S)( ∼ = T (S)) can be identified with a connected component of the set of real points in χ P SL 2 (C) ( [33]). Now, the group of orientation preserving isometries of H 3 is identified with P SL2(C) and so the space QF(S) is also identified with an open neighbourhood of F(S) in χ P SL 2 (C) ( [START_REF] Sullivan | Travaux de thurston sur les groupes quasi-fuchsiens et les variétés hyperboliques de dimension 3 fibrées sur s 1[END_REF]) via discrete faithful representations from π1(S) → P SL2(C) which we can associate to a quasi-Fuchsian metric. This provides QF(S) with a complex structure J 2 P SL 2 (C) = -1 which also gives a decomposition of the tangent space at a point [c] ∈ F(S) as

T [c] QF(S) = T [c] F(S) J P SL 2 (C) T [c] F(S)
. This enables use to recall Bers' Simultaneous Uniformisation Theorem:

Theorem 3.3.2 ( [3]
). The map B : QF(S) → T (S) × T (S) mapping a quasi-Fuchsian metric g ∈ QF (S) to the pair B(g) := ([c+], [c-]) is biholomorphic with respect to the complex structure J P SL 2 (C) of QF(S) coming from the character variety and the complex structure JW P on T (S).

It is also clear that F(S) is the pre-image of the diagonal. If v ∈ T [c] QF(S) is the tangent vector to the path t → gt of quasi-Fuchsian metrics for 0 ≤ t < ϵ at t = 0 such that g0 ∈ F(S) then the derivative of the Bers map at a point [g0] ∈ T (S) is given by d [g 0 ] B(v) := (q1, q2) where q1, q2 are two holomorphic quadratic differentials in Q(S, [g0]) denoting tangent vectors to T (S) associated to the variation of the complex structures at two ends at infinity corresponding to the vector v. We thus have that d [g 0 ] B(J P SL 2 (C) v) = (JW P (q1), -JW P (q2)) = (iq1, -iq2) where i 2 = -1 and the minus sign in the second factor is simply due to the opposite orientation of S.

As F(S) is identified with T (S) by considering the unique hyperbolic metric m in each conformal class [c], when we consider a deformation of hyperbolic structures on S the tangent vector TmF(S) ∼ = TmT (S) is given by R(q) for some q ∈ Q(S, c) (see [START_REF] Fischer | On the weil-petersson metric on teichmuller space[END_REF]). If one considers the variation of the hyperbolic metrics in the conformal classes associated to the two ends at infinity, then ,c). Now, let v ([c],q) be the vector tangent to the path β ([c],q) : [0, ϵ) → QF (S) at F(S). That is to say:

d [c] B(J P SL 2 (C) v) = (R(iq1), R(-iq2)) ∈ T [c] F(S) × T [c] F(S).

The fibers N [c] F(S) can be identified with

J P SL 2 (C) T [c] F(S) where J P SL 2 (C) is the almost complex structure of QF(S). So N [c] F(S) is the set of tangent vectors v ([c],q) such that dB(J P SL 2 (C) v ([c],q) ) = (R(iq), R(iq)) ∈ T T (S) × T T (S) for q ∈ Q(S
v ([c],q) = d ds s=0 β ([c],q) (s) ∈ T [c] QF(S)
So we formulate:

Proposition 3.3.4. The vector v ([c],q) ∈ T [c] QF(S)
is normal to the Fuchsian locus, i.e, it is an element of the normal bundle N [c] F(S).

Proof. It follows from Lemma 3.2.9 that the deformation of the hyperbolic metrics at the two ends at infinity are given at first order for the path β ([c],q) (s) as

dB(v ([c],q) ) = (R(q), -R(q))
Then, 

dB(J P SL 2 (C) v ([c],q) ) = (R(iq), R(iq)) So J P SL 2 (C) v ([c],q) ∈ T [c] F ( 

The blow-up QF(S) of QF(S) at F(S)

For constructing the blow-up QF(S) consider again the bundle N F(S) defined over F(S). So we take the quotient of N [c] F(S) \ 0 by the action of R>0, called the unit normal bundle U N [c] F(S), and let v ([c],q) be the image of v ([c],q) ∈ N [c] F(S). Consider now η(N F(S)) → U N F(S) to be the canonical differentiable line bundle and also we have a canonical map η(N F(S)) → N F(S). We can show now that η(N F(S)) \ (0 -section) ∼ = N F(S) \ F(S) is a diffeomorphism. Note that the zero section of η(N F(S)) is again U N F(S). Now let τ be a tubular map for F(S) in QF(S) and θ : η(N F(S)) → N F(S) be the canonical map.

The blow up QF(S) is the set (QF(S) \ F(S)) ∪ U N F(S) with the unique differential structure for which the inclusion map QF(S) \ F (S) ⊂ QF(S) and the map:

η(N F(S)) → QF(S) v → τ (θ(v)) when v ∈ η(N F(S)) \ (0-section) v → v otherwise
are embeddings (see, for example [START_REF] Bröcker | Introduction to differential topology[END_REF], pg. 128).

Moreover, it is a differentiable manifold with boundary ∂ QF(S), which can be identified with U N F(S). Recall now the spaces of QF(S), W + F and W - F for some F ∈ MF (S). Since F(S) ⊂ W ± F , we have the natural inclusion W ± F \ F (S) → QF(S) \ F (S), which again lifts to a unique embedding W ± F → QF(S) that is given by associating a point [c] ∈ F (S) ⊂ W ± F to the unique normal vector v

([c],q) ∈ U N [c] F(S) tangent to W ± F at [c].
So by construction of the blow-up, for t small enough (v ([c],q) , t) → ([c], t 2 R(q)) has F t ± given by tF at first order at F(S). By Lemma 3.2.10 and Theorem 3.1. [START_REF] Bonahon | Shearing hyperbolic surfaces, bending pleated surfaces and thurston's symplectic form[END_REF]

, v ([c],q ±F

[c] ) is indeed that vector. We thus define: Definition 3.3.5. W + F and W - F are the respective lifts of W + F and W - F into QF(S).

Having removed the Fuchsian locus which carry trivial Schwarzians from QF(S), we will now parametrise elements in QF(S) by the data of the holomorphic quadratic differential being realised as the Schwarzian derivatives at the boundaries at infinity to show that W + F and W - F are submanifolds with boundary of QF(S). For this we first recall that the Schwarzians at infinity parametrise the CP 1 -structures on ∂ + ∞ M and ∂ - ∞ M (see [START_REF] Dumas | Complex projective structures[END_REF]). More generally, if we denote the space of equivalence classes of CP 1 -structures on S under diffeomorphisms isotopic to the identity as CP(S), then the Schwarzian derivative provides us parametrisation of the fibers of the forgetful map CP(S) → T (S)( [START_REF] Dumas | Complex projective structures[END_REF]). So we formulate:

Lemma 3.3.6. The parametrisation S : QF(S) → T * T (∂ + ∞ M ) ( respectively for ∂ - ∞ M ) introduced in 2.4 is C 1 .
Proof. A quasi-Fuchsian metric on M can be uniquely determined by the data of induced metric and measured bending lamination in the boundary of the convex core from [START_REF] Bonahon | Shearing hyperbolic surfaces, bending pleated surfaces and thurston's symplectic form[END_REF] where we have that the map from QF(S) → T (S) × ML(S) that associates the data of the unique pleated surface to the data of the quasi-Fuchsian metric is biholomorphic and so, smooth. Consider now the data (m±, dm ± (l(λ±))) which gives us a point in T * T (S), dm ± (l(λ±)) being the derivative of the length function for the measured lamination λ± computed at m±. The claim is then a consequence of Theorem 4.1 of [START_REF] Dumas | Complex projective structures[END_REF], originally due to Thurston and the main theorem in [START_REF] Krasnov | A symplectic map between hyperbolic and complex Teichmüller theory[END_REF], which together state that the smooth Grafting map sending the data of the induced metric and measured bending lamination (m±, λ±) ∈ T (S) × ML(S) ∼ = T * T (S) → CP(S) on the boundary of the convex core ∂ ± ∞ CC(M ) to the data ([c±], σ±) ∈ T * T (∂ ± ∞ M ) at the boundary at infinity is a homeomorphism and C 1 .

Submanifolds

W + F+ , W - F-and the intersection ∂ W + F+ ∩ ∂ W - F-
As Lemma 3.3.6 allows us to parametrise quasi-Fuchsian structures uniquely by the data of Schwarzian derivatives at the boundaries ∂ ± ∞ M we can thus proceed to discuss the following: Proposition 3.3.7. For F ∈ MF 0(S), the set W + F (resp. W - F ) is a smooth submanifold with boundary of QF(S) of dimension dim(T (S)) + 1 with boundary F(S). In the blow-up QF(S), the lifts W + F + and W - F - are again smooth submanifolds with the boundary

∂ W + F (resp. ∂ W - F ) contained in ∂ QF(S).
Proof. We just treat the case of W + F as the same proof holds for W - F by symmetry. First we will show that W + F \ F(S) is a submanifold of QF(S) \ F(S). Note that when F is arational, we have the Schwarzian at infinity realising F will be generic. For a given [c+] appearing as the complex structure at positive end at infinity, we have a unique σ F

[c + ] ∈ T * T (∂ + ∞ M
) realising F as the horizontal measured foliation at ∂ + ∞ M . Further from Lemma 3.3.6we have that the Schwarzian parametrisation is C 1 . This gives us the map σ

F : T (∂ + ∞ M ) → T * T (∂ + ∞ M ) → Q0(S)
which is identified with the map q F . Recall now that over the same complex structure [c], tF is realised by

t 2 σ F [c] . We see that W + F \ F(S) is locally embedded as R>0 × σ F (T (∂ ± ∞ M )) in R 12g-12
via the period coordinates of σ F . In other words, it is the image of the embedding:

R ≥0 × T (∂ + ∞ M ) → Q0(∂ + ∞ M ) → R 12g-12
where the last inclusion is via the period coordinates associated to the dense stratum which gives us coordinate charts into R 12g-12 . Notice that the Fuchsian locus, corresponding to the zero section of T * T (S) has zero Schwarzian and thus the period associated is also zero. We also note that the smoothness of this submanifold is by virtue of the map q F being real analytic when restricted to arational measured foliations.

The dimension of the submanifolds being clearly dim(T (∂

± ∞ M )) + dim(R>0) = dim(T (S)) + 1. Consider now the blow-up Q(∂ + ∞M ) which is (Q(S) \ T (S)) ∪ Q 1 (S) with the C 1 structure described in § §3.3.2. Since (v [c],q F ) ∈ U N F(S) gets mapped to R([q]
) ∈ U T T (S) under the isomorphism U N F(S) ∼ = U T T (S) and R(q) again corresponds to [q] ∈ Q 1 (S) by Weil-Petersson duality, we have an open embedding

QF(S) → Q(∂ + ∞M ). Recall that [c] ∈ F (S) ⊂ W + F is associated to the unit normal vector v ([c],q F [c] ) in U N [c] F(S) ⊂ ∂ W + F since v ([c],q F [c] ) is realised by the path β ([c],q F [c] ) (t 2
), and σ t + for this path is indeed

t 2 q F [c]
at first order at F(S) by Lemma 3.2.10 and Lemma 3.2.12. So ∂

W + F is contained in Q 1 0 (S) ⊂ Q 1 (S), the boundary of Q0(S) ⊂ Q(S).
For modifying the argument for W - F we need to consider the vector q -F [c] at [c] ∈ F(S) ⊂ W - F , since the foliation at negative end at infinity for the path β ([c],q) (t 2 ) is given by hor [c] (-q) at first order at F(S) by Proposition 3.2.11 and Lemma 3.2.12. The rest of the argument follows as it is and we have our claim.

We can now claim the following:

Proposition 3.3.8. When (F+, F-) ∈ FMF0(S), ∂ W + F + and ∂ W - F -intersect transversely in ∂ QF(S). Moreover, their intersection is equal to (P(F+, F-), v ([c t ],q t ) ) ∋ U N F(S) where [ct] ∈ T (S) is the unique critical point of the function ext( √ tF+)+ext( 1 √ t F-) : T (S) → R and qt ∈ Q(S, ct) is the unique holomorphic quadratic differential realising them. Proof. At the point [c] ∈ F(S), ∂ W + F + is associated to v ([c],q F + [c] ) ∈ U N [c] F(S) and ∂ W - F -to v ([c],q F - [c] ) ∈ U N [c] F(S)
via the blow-up construction. We know from § §3.3.2 that dB(J P SL 2 (C) v

([c],q F ± [c] ) ) ∈ U T [c] QF(S)
is given by (R(i[q

F ± [c] ]), R(i[q F ± [c] ])) ∈ U T [c] F(S) × U T [c] F(S). So, ∂ W + F + intersects ∂ W - F -in T * T (S) over [c] ∈ F (S), if and only if the sections R([q F + ]) and R([q F -]) do in U T T (S). Again, for some [c] ∈ T (S), R([q F + [c] ]) = R([q F - [c] ]) if and only if [q F + [c] ] = [q F - [c]
] via the duality between T * T (S) and T T (S). So from Proposition 3. 

√ tF+, 1 √ t F-)
. The transversality of their intersection follows from that of the submanifolds [q F + ] and [q -F -] shown in Lemma 3.1.22.

Define now the map

π : W + F + ∩ W - F -→ R × R which sends g ∈ W + F + ∩ W - F -to the pair (a, b
) such that F(g) = (aF+, bF-) by definition of F. Observe that under this map, F(S) gets mapped to {0} := (0, 0) and for (F+, F-) ∈ FMF0(S) the map π is smooth. So, if R 2 is the blow-up of R 2 at the origin, then π lifts to a smooth map

π : W + F + ∩ W - F -→ R 2
Here R 2 is the set R 2 \ {0} ∪ U T {0} R 2 where U T {0} R 2 is the quotient of the tangent space at origin under the action of R>0. See that the image of a point [c] under the original map π, which was (0, 0) will get mapped to the vector ([F+], [F-]) which denote the projective classes of the respective foliations, computed by taking the integral with respect to ([|I q

F + [c 0 ] |], [|I q F - [c 0 ] |]
). Also owing to the smoothness of the map σ F ± which parametrise these submanifolds, the map is smooth. So we have Proposition 3.3.9. For a pair (F+, F-) ∈ FMF0(S), the map π is a local diffeomorphism near

∂ W + F + ∩ ∂ W - F -onto its image.
Proof. We want to show that the map π has a solution at the intersection of the boundaries, is invertible at that point and subsequently apply implicit function theorem. For this we show that π is a local immersion and local submersion at

p ∈ ∂ W + F + ∩ ∂ W - F -, i.e to prove that dp π : Tp W + F + ∩ Tp W - F -→ T π(p) R 2
is injective and surjective.

If for some v ∈ Tp W + F + ∩ Tp W - Fwe have that dp π(v) = 0 then we want to show first that v is in the intersection of the tangent spaces to the boundary Tp∂ W

+ F + ∩Tp∂ W - F -. Let m+ : W + F + → [0, ∞)
be the map such that m+(g) = t for any g ∈ W +

F + which has measured foliation at the boundary at infinity given by tF+. This induces a map m+ : W + F + → [0, ∞) in the blow-up space as well. Observe that if we analogously define a map m-: 

W - F -→ [0, ∞) then π := ( m+, m-). So if v ∈ Ker(d π) then v ∈ Ker(d m+) ∩ Ker(d m-) then this implies that v ∈ Tp∂ W + F + ∩ Tp∂ W - F -.
F(S) → U N F(S) sending P(F+, F-) ∋ [c] → ([c], v ([c],q F + [c] ) ) = ([c], v ([c],q -F - [c]
)

) ∈ U N [c] F(S). For a fixed t > 0, let [c] be the critical point of ext( √ tF+) + ext( 1 √ t F-) which is equivalent to being the critical point of ext(tF+) + ext(F-). Let s → gs ∈ W + F + ∩ W - F -be a differentiable path such that g0 is the ([c], v ([c],q F + [c] ) ) = ([c], v ([c],q -F - [c]
) 

) ∈ ∂ W + F + ∩ ∂ W - F -and
([c],q F + [c] ) = v ([c],q -F - [c]
) This brings us back to the case of Proposition 3.2.13 where we have a path starting from F(S), normal to F(S) and with specified first order behavior of the measured foliations at infinity given by a pair that fills S. Thus gs is a path of the type β ([c],q) (t 2 ) where g0 = [c] = p(a ′ (0)F+, b ′ (0)F-), the critical point for the function ext(a ′ (0)F+) + ext(b ′ (0)F-). Again by assumption [c] = p(tF+, F-); so a ′ (0) b ′ (0) = t, as p(F+, F-) is unique for a filling pair (F+, F-) up to scaling by t (see Remark 3.1.20). So we see that

κ • π([c], v ([c],q F + [c] ) ) = lim s→0 κ • π( gs) = lim s→0 κ • π(gs) = lim s→0 κ • (a(s), b(s)) = lim s→0 ( a(s) b(s) , b(s)) = (t, 0) This shows that if v ∈ Tp W + F + ∩ Tp W - F -with dp π(v) = 0 then v is zero. Hence dp π is injective at ∂ W + F + ∩ ∂ W - F -. So the map π is a local immersion into R 2 at the points p ∈ ∂ W + F + ∩ ∂ W - F -. Also dp π is surjective at ∂ W + F + ∩ ∂ W - F -because the domain is a 2 dimensional real manifold being the boundary of W + F ∩ W - F and the image is the boundary of the 2 dimensional real manifold R 2 being U T {0} R 2 . So we proved that π is a local diffemorphism in a neighbourhood of ∂ W + F + ∩ ∂ W - F -.
We can now address the main proposition of this section which proves Theorem 1.1.1:

Proposition 3.3.10. Let (F+, F-) be a pair of arational measured foliations that fill S and let p(F+, F-) ∈ F(S) be the critical point of the function ext(F+) + ext(F-). Then for t ∈ [0, ϵ) there exists a unique smooth curve t → gt ∈ QF (S), with g0 = p(F+, F-), such that the F(gt) = (tF+, tF-) for all t ∈ [0, ϵ).

Proof. By the preceding Proposition there exists a smooth curve t → gt ∈ W +

F + ∩ W - F -such that b • π • F( gt) = (t, t) for t in an open neighbourhood (0, ϵ) ∈ R with b being the blow-up map b : R 2 → R 2 mapping U T {0} (R 2 )
to the origin and identity on the rest. The result then follows as gt descends to gt ∈ QF (S) with F(gt) = (tF+, tF-) for t ∈ [0, ϵ). .

Interpretation in Half-Pipe Geometry

We will now give an interpretation of our result in quasi-Fuchsian Half pipe 3-manifolds that we describe following [START_REF] Danciger | A geometric transition from hyperbolic to anti-de Sitter geometry[END_REF]. To describe the space HP 3 , we will switch our viewpoint to the projective model for H 3 in this section. Consider RP 3 ⊂ R 4 with the group P GL4(R) being its isometry group. Consider now H 3 as a subset of RP 3 . To be precise, consider R 4 with the diagonal form given by the matrix

ηt =     -1 1 1 t 2    
where t ≥ 0. Each form ηt define a convex region in Xt ⊂ RP 3 given by the relation

x T ηtx = -x 2 1 + x 2 2 + x 2 3 + t 2 x 2 4 < 0
For each t, Xt is a homogeneous subspace of RP 3 which is preserved by the group Gt of linear transformations that preserve ηt. With these notations, H 3 = X+1 and G+1 = P O(3, 1) ∼ = P SL2(C).

Moreover, define Gt : X+1 → Xt as

    1 1 1 t -1    
and that gives an isomorphism between X+1 and Xt . Moreover Gt conjugates P O(3, 1) to Gt. Notice further the co-dimension 1 space P 3 defined by x4 = 0 and -x 2 1 + x 2 2 + x 2 3 < 0 is a totally geodesic copy of H 2 and is contained in Xt for all t and gt fixes P 3 pointwise.

For t > 0 we now consider a 1-parameter family of quasi-Fuchsian structures on M ∼ = S × R. So, we have a family of developing maps and holonomy representations given by:

Dt : S → H 3 ∼ = X+1 ρt : π1(S) → P O(3, 1) ∼ = P SL2(C)
Assume further that for t = 0, D0 gives us a submersion of S onto P 3 = H 2 . That is the coordinate x4 converges to a zero function. ρt then converges to ρ0 whose image lies in the subgroup P O(2, 1) ∼ = SL(2, R).

Apply now the rescaling map to obtain the developing map GtDt : S → Xt, so that the holonomy representation is given by GtρtG -1 t . Suppose that t → 0 then GtDt converges to a local diffeomorphism D : S → X0 and if ρD : π1(S) → P GL4(R) is the limit of the holonomy ρt as t → 0 then D is equivariant with respect to ρD . To be precise, for γ ∈ π1(S) if ρt is of the form:

ρt = A(t) w(t) v(t) a(t) (3.7) 
where A ∈ P O(2, 1) ∼ = P SL(2, R) and w(t), v(t) T ∈ R 3 , then we have

lim t→0 Gtρt(γ)G -1 t = lim t→0 A(t) tw(t) v(t)/t a(t) = A(0) 0 v ′ (0) 1 = ρD (3.8)
So we have the following: Definition 3.4.1. A half-pipe structure on S × R is a (G HP 3 , HP 3 ) structure where HP 3 = X0 and GHP is the subgroup of P GL4(R) of matrices with the form

A 0 v ±1
where A ∈ O(2, 1) and v T ∈ R 3 .

We also define: Definition 3.4.2. Any path ρt of representations into P SL2(C) satisfying Equation (3.8) is said to be compatible at first order at t = 0 with ρD.

As observed in [START_REF] Danciger | A geometric transition from hyperbolic to anti-de Sitter geometry[END_REF],

G HP 3 ∼ = R 2,1 ⋊ O(2, 1)
, where an element of the form A 0 v ±1 can be interpreted as an infinitesimal deformations of the the hyperbolic structure given by A ∈ P O(2, 1) and along the direction v normal to P O(2, 1) into P O(3, 1). Passing onto quotients, we see that quasi-Fuchsian halfpipe 3-manifolds are precisely obtained by infinitesimal deformations in QF(S) starting from the point

[c] ∈ F (S) along a direction v ([c],q) ∈ N [c] F(S)
. So we define:

Definition 3.4.3. M HP c,q is the half-pipe quasi-Fuchsian structures whose holonomy representation into P GL4(R) is compatible at first order at t = 0 with the holonomy ρt associated to quasi-Fuchsian metrics in β ([c],q) (t) in the sense of Definition 3.4.2.

Half-pipe Schwarzians and their measured foliations

Recall again that v ([c],q) is the tangent vector to the path β ([c],q) (t) ∈ QF(S) determined by the unique minimal immersions of S for each t < ϵ with immersion data It ∈ [c] and IIt = tR(q). So for each t we have a Dt and ρt in the sense above and a half-pipe structure as the limit when t goes to 0. There is also an analogous notion for half-pipe for the second fundamental form and shape operator in half-pipe geometry that follows from [START_REF] Fillastre | Spherical, hyperbolic, and other projective geometries: convexity, duality, transitions[END_REF]. So we want to study the limit of these immersion data as t → 0 and use the following lemma: Lemma 3. 4.4 ( [26]). Let σt be a C 2 family of minimal immersions in to H 2 into H 3 , such that σ0 is an embedding of H 2 . Let σ = limt→0 Gt • σt be the rescaled immersion in HP 3 . Then:

• The first fundamental form of σ coincides with the first fundamental form of σ0:

I(v, w) = lim t→0 It(v, w)
• The second fundamental form of σ is the first derivative of the second fundamental form of σt:

II(v, w) = lim t→0 IIt(v, w) t
• The shape operator B of σ is the first derivative of the shape operator Bt of σt:

B(v) = lim t→0 Bt t
We immediately have the following for M HP c,q . Proposition 3.4.5. The half-pipe manifold M HP c,q contains a smooth minimal surface with immersion data uniquely given by I ∈ [c] and II = R(q).

Proof. Since M HP c,q appears as a limit of the quasi-Fuchsian structures defines by the path β ([c],q) (t) we apply the lemma directly. The induced metric of the minimal immersion of S into M HP c,q is given by

I = limt→0 It ∈ [c]. So we see that II = limt→0 I I t t = R(q).
So we will introduce an analogous notion for Schwarzian at infinity for half-pipe manifolds that is quite natural with the tools we have developed so far and with our definition of M HP cq . Definition 3.4.6. The positive (resp. negative) half pipe Schwarzian at infinity associated to M HP cq is defined as the derivative at F(S) of the Schwarzian derivatives at the positive (resp. negative) end at infinity for quasi-Fuchsian metrics in the path β ([c],q) (t) for t small enough.

From Lemma 3.2.10 So we have Proposition 3.4.7. The positive and negative half-pipe Schwarzians at infinity for M HP c,q are q and -q.

We can now again consider the horizontal measured foliation ±F associated to ±q on [c] and obtain our Theorem 1.1.2 by an application of Theorem 3.1.11:

Theorem 3.4.8. Any pair (F+, F-) ∈ FMF (S) can be uniquely realised as the horizontal foliations of the positive and negative half pipe Schwarzians at infinity associated to quasi-Fuchsian half-pipe manifold. Moreover, M HP cq defined before is the unique one realising (F+, F-), where ([c], q) ∈ T * T (S) is the unique point realising (F+, F-).

This can be seen as a first-order interpretation of Theorem of Gardiner-Masur as half-pipe quasi-Fuchsian manifolds correspond to points in T * T (S) by Proposition 3.4.5 via the minimal surface they contain.

Chapter 4

Quasi-Fuchsian manifolds close to the Fuchsian locus are foliated by CMC surfaces One of the main idea of this chapter is to consider Epstein surfaces inside quasi-Fuchsian manifolds with respect to the data at the boundary at infinity to show the existence of CMC H-surfaces with H ∈ (-1, 1) in quasi-Fuchsian manifolds near the Fuchsian locus and then apply a maximum principle based argument to show it foliates the manifold. First we set the convention of the normal to an immersed surface in a quasi-Fuchsian manifold.

Remark 4.0.1. When S is an embedded surface in H 3 /Γ homotopic toS × {⋆} we will refer to the (unit) normal vector to S as the one chosen according to the following convention. We lift S to a surface S in the universal cover H 3 , whose asymptotic boundary is the limit set ΛΓ. Then S disconnects H 3 in two components. We declare that the unit normal vector to S lifts to the unit normal vector to S pointing towards the component whose closure contains Ω+, the positive end of the domain of discontinuity.

Epstein surfaces

In this subsection we describe a construction due to Epstein in [START_REF] Epstein | Envelopes of horospheres and Weingarten surfaces in hyperbolic 3-space[END_REF], which naturally associates to certain conformal metrics on a domain of CP 1 ∼ = ∂∞H 3 an immersion into H 3 , that we will call the Epstein surface.

The Epstein map

Given any point p ∈ H 3 , we define a map Gp : T 1 p H 3 → CP 1 , by sending (x, v) to the endpoint at infinity of the unique geodesic of H 3 starting at x with tangent vector v. Then we define the visual metric Vp as the metric obtained by pushforward via Gp of the canonical spherical metric of T 1 p H 3 . One can easily check that the metric Vp is conformal, namely compatible with the Riemann surface structure of CP 1 . Indeed, if o is the origin in the unit ball model, then Vo is just the usual spherical metric on the unit sphere. For the general case, if M is an isometry of H 3 sending o to p, then Vp = M * Vo and is therefore in the same conformal class, since M extends to a biholomorphism of CP 1 .

The fundamental result is the following: [START_REF] Dumas | Holonomy limits of complex projective structures[END_REF][START_REF] Epstein | Envelopes of horospheres and Weingarten surfaces in hyperbolic 3-space[END_REF]). Let Ω be a connected open domain in CP 1 and let φ : Ω → CP 1 be a locally injective holomorphic map. If σ is a C 1 conformal metric on Ω, then there exists a unique continuous map

Proposition 4.1.1 ( [
Eps (φ,σ) : Ω → H 3 such that (φ * V Eps (φ,σ) (z) )(z) = σ(z) for all z ∈ Ω. Moreover, if σ is C k , then Eps (φ,σ) is C k-1 .
We remark that Eps (φ,σ) is in general not an immersion. As an example, if σ is the standard spherical metric on the unit sphere, then the associated Epstein map is constantly equal to the origin o in the unit ball model.

In [START_REF] Dumas | Holonomy limits of complex projective structures[END_REF]Section 3] Dumas introduced an explicit formula for Eps (φ,σ) in the upper half-space model of H 3 , which will be useful for our purposes. Let p be the point in the geodesic joining 0 and ∞ in the upper half-space model such that the visual metric Vp at 0 equals |dz| 2 . Concretely, p = (0, 0, 2). If we write the conformal metric as σ = e 2η |dz| 2 , and to simplify the notation we let Ω be a connected open subset of C so as to take φ = id, then the expression for Eps (id,σ) : D → H 3 is the following:

Eps (id,σ) (z) = 1 z 0 1 1 0 ηz 1 e -η 2 0 0 e η 2
• p (4.1)

Schwarzian tensors

The last fundamental preliminary step that we will need in this chapter is an expression for the mean curvature of Epstein maps. For this purpose, we first need to introduce the notion of Schwarzian tensor, due to Osgood and Stowe [START_REF] Osgood | The Schwarzian derivative and conformal mapping of Riemannian manifolds[END_REF]. Given two conformal metrics σ1 = e 2η 1 |dz| 2 and σ2 = e 2η 2 |dz| 2 on a domain Ω ⊂ CP 1 , the Schwarzian tensor of σ1 with respect to σ2 is the quadratic differential (which is not necessarily holomorphic, in general) defined as

B(σ1, σ2) = ((η2)zz -(η2)z 2 -(η1)zz + (η1)z 2 )dz 2 (4.2)
This definition generalizes the classical Schwarzian derivative, in the sense that, if f : Ω → C is a locally injective holomorphic function, then

S(f ) = 2B(|dz| 2 , f * |dz| 2 ) . (4.3) 
Clearly B(σ2, σ1) = -B(σ1, σ2). Similarly to the Schwarzian derivative, the Schwarzian tensor has a number of naturality properties. For any metrics σ1, σ2, σ3 on Ω ⊂ CP 1 ,

• Given a locally injective holomorphic map f ,

f * B(σ1, σ2) = B(f * σ1, f * σ2) . (4.4) 
• The cocycle property holds:

B(σ1, σ3) = B(σ1, σ2) + B(σ2, σ3) . (4.5) 
In particular, (4.4) implies that if σ1 and σ2 are invariant by an automorphism of Ω, then so is the quadratic differential B(σ1, σ2). If a group Γ acts on Ω by biholomorphisms with Ω/Γ ∼ = Σ, thus inducing in quotient surface Σ a Riemann surface structure, and σ1, σ2 are Γ-invariant conformal metrics, then B(σ1, σ2) induces a well-defined quadratic differential in the quotient.

Möbius flat metrics

A conformal metric σ is said to be Möbius flat if B(σ, |dz| 2 ) = 0. From (4.3), for example, when f is itself a Möbius transformation, then the pull-back metric f * |dz| 2 is always Möbius flat. This is not the only case. Indeed, one can show that B(σ, |dz| 2 ) = 0 if and only if σ is the pull-back by a Möbius transformation of one of the following metrics:

• the flat metric |dz| 2 on C,

• a positive multiple of the Poincaré metric on D,

• a positive multiple of the spherical metric on CP 1 . Now, given a metric σ, we will denote by

B(σ) = B(g CP 1 , σ)
the Schwarzian tensor of σ with respect to a Möbius flat metric g Since both |ϕ| and σ follow the same transformation rule under a biholomorphic change of coordinates, ∥ϕ∥σ is as well-defined function, meaning that if f is a locally injective holomorphic function, then

∥f * ϕ∥ f * σ = ∥ϕ∥σ • f . (4.8)
In particular, if σ = e 2u h0 is a conformal metric on (Σ, h) and ϕ is a quadratic differential on (Σ, h), then ∥ϕ∥σ is a function on Σ. From (4.7), we also obtain:

∥ϕ∥ e 2t σ = e -2t ∥ϕ∥σ , (4.9) 
for any constant t ∈ R.

Mean curvature

We are now ready to provide the formula for the mean curvature of Epstein maps. Let σ be a C 2 conformal metric on an open set Ω. To simplify the notation, we first suppose φ = id. Assume moreover that Eps (id,σ) is an immersion. In this case, it turns out that Eps (id,σ) at z is tangent to the unique horosphere through Eps (id,σ) with point at infinity z. Then, the mean curvature of Eps (id,σ) equals the function

H(Eps (id,σ) ) = K(σ) 2 -1 -16∥B(σ)∥ 2 σ (K(σ) -1) 2 -16∥B(σ)∥ 2 σ , (4.10) 
where K(σ) denotes the curvature of σ. See [?, Equations 3.2, 3.3] and [START_REF] Quinn | Asymptotically Poincaré surfaces in quasi-Fuchsian manifolds[END_REF]Lemma 3.4]. Here the mean curvature is defined as one half the trace of the second fundamental form with respect to the first fundamental form. It is computed with respect to the unit normal vector pointing towards Ω. We will then apply the formula (4.10) when the Epstein map induces an embedded surface in H 3 /Γ for Γ a quasi-Fuchsian group, and for Ω = Ω + . Hence the convention of the mean curvature here is consistent with Remark 4.0.1.

To write the general formula for Eps (φ,σ) , since the computation is local, we may restrict to an open subset Ω on which φ is a biholomorphism onto its image. Let σ be a metric on Ω and σ be such that φ * σ = σ. Then we observe that K(σ) • φ = K(σ), whereas by (4.3), (4.4) and (4.5),

φ * B(σ) = B(φ * g CP 1 , σ) = B(φ * g CP 1 , g CP 1 ) + B(g CP 1 , σ) = B(σ) - 1 2 S(φ) .
Hence we can deduce the expression:

H(Eps (φ,σ) ) = K(σ) 2 -1 -16∥B(σ) -S(φ)/2∥ 2 σ (K(σ) -1) 2 -16∥B(σ) -S(φ)/2∥ 2 σ (4.11)

A technical point

The rough idea to prove the existence of CMC surfaces using the implicit function theorem is the following. Consider quasi-Fuchsian manifolds H 3 /Γ, where Ω ± are the connected components of the complement of the limit set ΛΓ. We would like to write the solutions of the CMC condition H = c, for c ∈ (-1, 1), as the level sets of a function G which depends on the hyperbolic metric h on S in the conformal class of Ω + /Γ (that is, it represents the first Bers parameter h + of M ), on a holomorphic quadratic differential ϕ on (S, h) which is (the quotient of) the Schwarzian derivative of the conformal isomorphism between D and Ω+, and finally on the conformal factor of a metric of the form e 2u h on S. This last function u is an element of the infinite-dimensional functional space C ∞ (S, R). A priori the pair (h, ϕ) varies in an infinitedimensional space as well, since h varies in the space M-1(S) of hyperbolic metrics. Although this is not really necessary, it will be convenient to use the action of Diff0(S) to reduce ourselves to representatives of pairs (h, ϕ), now varying in the finite-dimensional space Q(S). The following lemma will serve to formalize this approach.

Lemma 4.1.2. Let π : M-1(S) → T (S) be the quotient map by the action of Diff0(S) on M-1(S). There exists a smooth section s : T (S) → M-1(S) of π.

We remark that the section s that we are looking for is not "canonical" in any manner. There are actually several ways to achieve this; we will sketch one relying on the theory of harmonic maps of hyperbolic surfaces, see [START_REF] Wolf | The Teichmüller theory of harmonic maps[END_REF].

Sketch of proof of Lemma 4.1.2. Fix a hyperbolic metric h0 on S, and consider the vector space H 0 ((S, h0), K 2 ) of holomorphic quadratic differentials on (S, h0). Then for every q ∈ H 0 ((S, h0), K 2 ) there exists a unique hyperbolic metric hq such that id : (S, h0) → (S, hq) is harmonic, with hq depending smoothly on q. The correspondence q → hq therefore gives a map H 0 ((S, h0), K 2 ) → M-1(S) that, when post-composed with π, provides a homeomorphism from H 0 ((S, h0), K 2 ) to T (S). This proves the existence of the desired section.

Remark 4.1.3. Wolf 's approach via harmonic maps actually led to the construction of a global parameterization of T (S) by means of the space H 0 ((S, h0), K 2 ), once the metric h0 is fixed. This allows us to identify the space Q(S) with a very concrete finite-dimensional manifold of real dimension 12g -12, namely the total space of the smooth vector bundle E over H 0 ((S, h0), K 2 ) whose fiber over a quadratic differential q is equal to H 0 ((S, hq), K 2 ), the space of holomorphic quadratic differentials of the hyperbolic surface (S, hq). In rest of our exposition we will identify with abuse any pair (h, ϕ) with its corresponding point in the total space of E. (Notice that the identification with Q(S) heavily depends on the choice of the section s from Lemma 4.1.2.)

Existence of CMC surfaces

The purpose of this section is to prove two existence results for CMC surfaces, morally one (Theorem 4.2.1) "in the ends" and the other (Theorem 4.2.7) "in the compact part". Then in Theorem 4.2.8 we combine them to obtain the existence of CMC surfaces for h ∈ (-1, 1) for quasi-Fuchsian manifolds close to the Fuchsian locus, which is for the moment weaker than our main result, Theorem 1.2.2.

Existence in the ends

It has been proved in [START_REF] Mazzeo | Constant curvature foliations in asymptotically hyperbolic spaces[END_REF] that the ends of every quasi-Fuchsian manifold are monotonically foliated by CMC surfaces; another proof has been provided recently in [START_REF] Quinn | Asymptotically Poincaré surfaces in quasi-Fuchsian manifolds[END_REF]. Here we will need an improved statement, so as to have a local (in QF(S)) uniform control on the value of the mean curvature along the leaves of the foliation. Theorem 4.2.1. Let S be a closed oriented surface of genus ≥ 2 and m ∈ QF(S). Then there exists a neighbourhood U0 of m in QF(S) and a constant ϵ = ϵ(m, U0) such that the ends of every quasi-Fuchsian manifold in U0 are smoothly monotonically foliated by CMC surfaces whose mean curvature ranges in (-1, -1 + ϵ) and in (1 -ϵ, 1).

We say that the ends of M ∼ = S × R are the connected components of the complement of a compact submanifold with boundary in M homeomorphic to S × I for I a closed interval.

Outline of the CMC existence for a fixed manifold

We now quickly review, using our notation and set-up, the proof given in [START_REF] Quinn | Asymptotically Poincaré surfaces in quasi-Fuchsian manifolds[END_REF] and later we will explain how it adapts in order to prove Theorem 4.2.1. Roughly speaking, the proof of [START_REF] Quinn | Asymptotically Poincaré surfaces in quasi-Fuchsian manifolds[END_REF] is an application of the implicit function theorem to the equation of constant mean curvature from the mean curvature formula (4.10), with respect to a conformal metric at infinity.

More precisely, the idea of Quinn's proof is to consider Epstein maps defined on Ω+, with φ = id, associated to a conformal metric of the form σ(u) = e 2u h0 for h0 the conformal complete hyperbolic metric, and to study the following equation in u:

H(Eps (id,σ(u)) ) = H G(H, h, ϕ, v) := 1 -H -2HK(τ h (v)) + (-1 -H) K(τ h (v)) 2 -16∥B(τ h (v)) -ϕ/2∥ 2 τ h (v) = 0 , (4.18) 
where now τ h (v) = e 2v h. Now, fix a hyperbolic metric h0 on S and a holomorphic quadratic differential ϕ0 on (S, h). Similarly to Section 4.2.1, a solution to Equation (4.18) is given by (-1, h0, ϕ0, v0) where v0 denotes the constant null function, since τ h 0 (v0) = h0 has curvature -1. To apply the implicit function theorem, let us describe carefully the domain of definition of G. Recall from Remark 4.1.3 that the choice of a section as in Lemma 4.1.2 provides us with a diffeomorphism between Q(S) and R 12g-12 . We consider thus the open subset W of R 12g-12 that corresponds to the image of QF(S) under the map S introduced in (2.4). By a small abuse of notation, we will denote the elements of W as a pair (h, ϕ), where h is a hyperbolic metric and ϕ a holomorphic quadratic differential on (S, h). Then we consider G as a map

G : R × W × W 2,s (S, h0) → W 2,s-2 (S, h0)
for s ≥ 2, where W 2,s (S, h0) denotes the Sobolev space of real-valued functions on S that admit L 2integrable weak derivatives of order ≤ s (with respect to the standard Riemannian measure of h0), and W 2,0 (S, h0) := L 2 (S, h0). By direct inspection, G depends smoothly on all variables. We now need to show that the derivative dvG (-1,h 0 ,ϕ 0 ,v 0 ) is a bounded invertible operator, for any s ≥ 2. A simple computation gives:

dvG (-1,h 0 ,ϕ 0 ,v 0 ) ( v) = 2 d dv v=v 0 (K(e 2v h)) = 2 d dv v=v 0 (e -2v (-∆ h 0 v + K(h0)) = 2(2 v -∆ h 0 v) (4.19) 
It is well-known that such an operator is a continuous linear isomorphism; we provide here a sketch of proof for convenience of the reader.

Lemma 4.2.4. Let f be a smooth and strictly positive function, and let h be any Riemannian metric on a compact surface S. Then the operator u → f u -∆ h u is a positive definite and continuous linear isomorphism from W 2,s (S, h) to W 2,s-2 (S, h) for any s ≥ 2. In particular, for any smooth function λ on S, there exists a unique smooth function u satisfying ∆ h u -f u = λ.

Proof. Let T denote the continuous linear operator

T := f id -∆ h : W 2,s (S, h) → W 2,s-2 (S, h),
for some s ≥ 2. A simple integration by parts shows that T is a positive definite symmetric operator with respect to the L 2 -scalar product: indeed, for any v, w ∈ W 2,s (S, h), we have

⟨v, T w⟩ L 2 = S v T w da h = S (f vw + h(∇v, ∇w)) da h ,
where ∇v denotes the (weak) gradient of v with respect to the metric h, and da h is the standard Riemannian volume form. Since f is a strictly positive function, T satisfies ⟨v, T v⟩ L 2 ≥ 0 for any v ∈ W 2,s (S, h), with equality if and only if v = 0. To prove that T is surjective, let λ ∈ W 2,s-2 (S, h), and define the linear functional

φ(v) := Svλ d a h .
Notice that φ is continuous with respect to the L 2 -norm, and hence with respect to the Sobolev norm ∥ • ∥ W 2,s for any s ≥ 0. We now introduce the following bilinear symmetric form on W 2,1 (S, h):

a(v, w) := S (f vw + h(∇v, ∇w)) da h , If C ≥ 1 is some positive constant satisfying C -1 ≤ f ≤ C, then we have C -1 ∥v∥ 2 W 2,1 ≤ a(v, v) ≤ C∥v∥ 2 W 2,1 .
for any v ∈ W 2,1 (S, h). Therefore the bilinear form a is equivalent to the standard Hilbert scalar product of the Sobolev space W 2,1 (S, h), and therefore φ is continuous with respect to a as well. By Riesz representation theorem, we conclude that there exists a unique u ∈ W 2,1 (S, h) satisfying a(u, v) = φ(v) for any v ∈ W 2,1 (S, h). This proves the existence of a weak solution u ∈ W 2,1 (S, h) of the equation f u -∆ h u = λ.

A more delicate analysis is then required to show that the regularity of λ ∈ W 2,s-2 (S, h) is sufficient to "promote" u to a genuine element in W 2,s (S, h) satisfying T u = λ. This is the part of the argument where elliptic regularity theory is required, leading to controls of the form

∥u∥ W 2,s ≤ M (∥u∥ L 2 + ∥λ∥ W 2,s-2 ),
with the multiplicative constant M > 0 that depends only on s ≥ 2, the function f , and the compact Riemannian surface (S, h). We refer to [54, §10.3.2] (see in particular [54, Theorem 10.3.12]) for a detailed exposition of elliptic regularity results on smooth manifolds.

We have thus shown that dvG : W 2,s (S, h0) → W 2,s-2 (S, h0) is a linear isomorphism at the point (-1, h, ϕ, v0). We can now apply the implicit function theorem for Banach spaces, and deduce that there exist ϵ > 0, a neighbourhood U0 of (h0, ϕ0) and a function

v : [-1, 1 + ϵ) × U0 → W 2,s (S, h0)
such that all solutions of G = 0 in a neighbourhood of (-1, h0, ϕ0, v0) are of the form G(H, h, ϕ, v(H, h, ϕ)) = 0. Exactly as in [START_REF] Quinn | Asymptotically Poincaré surfaces in quasi-Fuchsian manifolds[END_REF], one can then apply elliptic regularity to show that the functions v(H, h, ϕ) are smooth and depend smoothly on (H, h, ϕ) (see e.g. [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]Lemma 17.16]).

Using (4.14), we then define the function u : Of course the same argument can be applied to the other end, namely for the component Ω -of the domain of discontinuity, and for H close to 1. This concludes the existence part in Theorem 4.2.1.

[-1, 1 + ϵ) × U0 → W 2,s (S, h) by u(H, h, ϕ) := v(H, h, ϕ) - 1 2 log 1 + H 1 -H . ( 4 

Foliations of the ends

We now discuss the foliation part of Theorem 4.2.1. For this purpose, let us first outline the proof given in [START_REF] Quinn | Asymptotically Poincaré surfaces in quasi-Fuchsian manifolds[END_REF], to show that the ends of a given quasi-Fuchsian manifold M are foliated by CMC surfaces; we will then adapt this proof in order to complete the proof of Theorem 4.2.1.

Outline of the foliation statement for a fixed manifold

In our notation from the previous section, Quinn's idea is to consider, for h0 and ϕ0 fixed, the map

Ψ : S × [-1, -1 + ϵ) → M ∪ ∂ + ∞ M
which is induced in the quotient by the map Ψ :

Ω + × [-1, -1 + ϵ) → H 3 ∪ Ω + : Ψ(z, H) = z if H = -1 Eps (id,e 2u(H) ) (z) if H > -1
Then one would like to show that Ψ is a local diffeomorphism at every (z, -1), and use a compactness argument to deduce that Ψ is a diffeomorphism from S × [-1, -1 + ϵ ′ ) onto its image, up to choosing ϵ ′ < ϵ sufficiently small.

Unfortunately, the differential of the map Ψ written above is not a injective at the points (z, -1). However, this is easily fixed by a reparameterization of the parameter H. Set t(H) = √ 1 + H, and write H(t) = -1 + t 2 for t > 0. Then we modify the map Ψ above to a new map, that we call again Ψ : Ω + × [0, δ) → H 3 ∪ Ω + with an abuse of notation, for δ = √ 1 + ϵ. It is defined by:

Ψ(z, t) = z if t = 0 Eps (id,e 2u(H(t)) ) (z) if t > 0 (4.21)
The map in (4.21) is now the expression that we would like to differentiate at points (z, t = 0). This is easily done using the following explicit expression for the Epstein map when φ = id and σ = e 2η |dz| 2 , which is a consequence of the formula (4.1):

Eps (id,σ) (z) = (z, 0) + 2 e 2η + 4|ηz| 2 (2ηz, e η ) .
We must apply this formula to the metric σ(u) = e 2η |dz| 2 = e 2u h0, for

u = u(H(t)) = v(H(t)) - 1 2 log 1 + H(t) 1 -H(t)
as in (4.20). Writing v = v(H(t)) and τ (v) = e 2v h0 = e 2λ |dz| 2 , we have

η = λ - 1 2 log 1 + H(t) 1 -H(t)
and therefore we obtain the expression: From here, one sees that the limit as t → 0 + (that is, as H → -1 + ) of Eps (id,σ(u(H(t)))) (z) equals z. Moreover, the derivative of Eps (id,σ(u(H(t))) with respect to t at t = 0 equals (0, √ 2e -ϱ ) where ϱ is the density of the hyperbolic metric on Ω + with respect to |dz| 2 . Therefore we have (in real coordinates on the upper half-space):

Eps (id,σ(u(H(t))) (z) = (z, 0) + 2 e 2λ + 4
dΨ (z,0) =   1 0 0 0 1 0 0 0 √ 2e -ϱ   (4.23)
which is clearly invertible.

Adaptation for Theorem 4.2.1

The above construction by Quinn is analogue to the one that we apply here, up to a modification in order to be able to choose ϵ ′ uniformly when the pair (h, ϕ) varies in a small neighbourhood of (h0, ϕ0). For this purpose, we modify the maps above (which we denote with the same symbol by a small abuse of notation) to:

Ψ : D × [0, δ) × U0 → H 3 ∪ ∂∞H 3 × U0
We are now ready to conclude the proof of Theorem 4.2.1. Indeed by Lemma 4.2.6 the map Ψ is an injective local diffeomorphism, if we restrict further its domain of definition, choosing smaller δ and U0. Hence it is a diffeomorphism onto its image. In particular, composing with the projection to the first factor M ∪ ∂ + ∞ M gives a diffeomorphism from S × [0, δ) to its image for all (h, ϕ) in U0. Since H(t) = -1 + t 2 is a diffeomorphism between (0, δ) and (-1, -1 + ϵ) for ϵ = -1 + δ 2 , we have that for every (h, ϕ) in U0 and every H ∈ (-1, -1 + ϵ) the Epstein maps Eps (f φ ,σ(u(H,h,ϕ)) induce a smooth family of embeddings in the quasi-Fuchsian manifold M corresponding to (h, ϕ) of constant mean curvature H.

Of course, the same argument can be repeated for H close to -1, obtaining a monotone CMC foliation of a neighbourhood of ∂ - ∞ M . Clearly, up to choosing a smaller ϵ and a smaller U0, we can assume that the regions of m ∈ U0 foliated by surfaces with CMC in (-1, -1 + ϵ) and in (1 -ϵ, 1) are disjoint. This means that for every m ∈ U0, these CMC surfaces foliate the complement of a compact set homeomorphic to S × I. This concludes Theorem 4.2.1.

Existence in the compact part

We now prove the existence of CMC surfaces, with mean curvature in (-1, 1), in a neighbourhood of any Fuchsian manifold. Again, we will need to have some (although very weak) local uniform control on the value of the mean curvature, as in the following statement. Theorem 4.2.7. Let S be a closed oriented surface of genus ≥ 2, H0 ∈ (-1, 1) and m ∈ F(S)(S). Then there exists a neighbourhood UH 0 of m in QF(S) and a constant ϵ = ϵ(m, UH 0 , H0) such that, for every H ∈ (H0 -ϵ, H0 + ϵ), every quasi-Fuchsian manifold in UH 0 contains CMC surfaces with mean curvature H, which vary smoothly with respect to H. Moreover, we can assume that all such CMC surfaces have principal curvatures in (-1, 1).

To prove Theorem 4.2.7, we will use a similar setting as in Section 4.2.1. Roughly, the main idea is to use the implicit function theorem in order to deform the solutions to the CMC problem in a Fuchsian manifold, which are given by umbilical surfaces equidistant from the totally geodesic surface, to solutions to the CMC problem in nearby manifolds and for nearby values of the mean curvature.

Proof. The proof is very similar to Section 4.2.1. After the change of variables from (H, h, ϕ, u) to (H, h, ϕ, v), where v is defined in Equation (4.14), the equation of constant mean curvature equal to H for the Epstein map Eps (f φ ,σ h (u)) is equivalent to Equation (4.18), which we rewrite here for the sake of convenience:

G(H, h, ϕ, v) := 1 -H -2HK(τ h (v)) + (-1 -H) K(τ h (v)) 2 -16∥B(τ h (v)) -ϕ/2∥ 2 τ h (v) = 0 ,
for τ h (v) = e 2v h. We consider again G as a map from R × W × W 2,s (S, h0) to W 2,s-2 (S, h0), where h0 is some fixed hyperbolic metric on S. One checks directly that, for any H0 ∈ (-1, 1), the point (H0, h0, ϕ0, v0) is a solution, where v0 ≡ 0 and ϕ0 ≡ 0. This uses that B(h0) = 0 because h0 lifts to the Poincaré metric on D, which is Möbius flat, as discussed in Section 4.1.2. Of course this solution corresponds geometrically to the umbilical CMC surface in the Fuchsian manifold, obtained as an equidistant surface from the totally geodesic surface. Hence to apply the implicit function theorem for Banach spaces, we differentiate G with respect to v. The differential of the term ∥B(τ h (v)) -ϕ/2∥ 

dvG (H 0 ,h 0 ,ϕ 0 ,v 0 ) = (-2H0 + 1 + H0) d dv v=v 0 (K(e 2v h)) = (1 -H0)(2 v -∆ h 0 v)
Since H0 ̸ = 1, dvG (H 0 ,h 0 ,ϕ 0 ,v 0 ) is invertible by Lemma 4.2.4, and we therefore obtain a family v : [-1, 1 + ϵ) × U0 → W 2,s (S, h0) of smooth solutions, depending smoothly on H.

Define u : [-1, 1+ϵ)×U0 → W 2,s (S, h0) as in (4.20). We claim that the Epstein map Eps ( fϕ 0 ,e 2u(H 0 ,h 0 ,ϕ 0 ) h 0 ) = Eps (id,e 2u 0 h 0 ) , where u0 = u(H0, h0, ϕ0) = -1 2 log 1 + H0 1 -H0 , is an immersion with first fundamental form equal to a multiple of the hyperbolic metric h0. This is of course what we expect since the geometric meaning of the solution (H0, h0, ϕ0, v0) is the umbilical CMC surface that descends to an equidistant surface from the totally geodesic surface in the Fuchsian manifold. The claim can actually be checked without any computation, because the Poincaré metric on D, the vanishing quadratic differential ϕ0 and the constant function u0 are all invariant under the group of biholomorphisms of D. Hence one can use the uniqueness property in Proposition 4.1.1 to deduce that there exists a surface S in H 3 , equidistant from the totally geodesic plane whose boundary coincides with ∂D, such that Epstein map Eps (id,e 2u 0 h 0 ) is the unique embedding ι :

D → S ⊂ H 3 satisfying ι • ζ = ζ • ι for every biholomorphism ζ of D.
Since being an immersion is an open condition, up to restricting the neighbourhood UH 0 and taking a smaller ϵ, we can therefore assume that all Epstein maps Eps (f φ,e 2u(H,h,ϕ) ) : D → H 3 are immersions, which have constant mean curvature equal to H by construction. Hence these Epstein maps induce CMC surfaces in the quotient quasi-Fuchsian manifolds corresponding to the points (h, ϕ) in a neighbourhood of (h0, ϕ0).

The "moreover" part of the statement follows again by continuity, up to restricting the neighbourhood UH 0 and taking a smaller ϵ, since the principal curvatures of the umbilical CMC surface with mean curvature H are both equal to H, and therefore smaller than one in absolute value.

Conclusion of existence in a small neighbourhood

Based on Theorems 4.2.1 and 4.2.7, we are now ready to prove the existence of CMC surfaces for each value of the mean curvature in (-1, 1), in a suitable neighbourhood of the Fuchsian locus. Theorem 4.2.8. Let S be a closed oriented surface of genus ≥ 2. Then there exists a neighbourhood U of the Fuchsian locus in quasi-Fuchsian space QF(S) such that, for every H ∈ (-1, 1), every quasi-Fuchsian manifold in U contains an embedded CMC surface of mean curvature H.

Proof. We will show that, for every m ∈ F (S)(S), there exists a neighbourhood V = V (m) of m in QF(S) such that every m ′ in V contains embedded CMC surfaces for all H ∈ (-1, 1). Taking the union of V (m) as m varies in F(S)(S) clearly provides the claimed neighbourhood of the Fuchsian locus.

Let us fix a convenient notation. For the sake of simplicity, we fix m in F(S)(S), and we will omit every dependence on m. Theorems 4.2.1 and 4.2.7 provide us with:

1. A neighbourhood U of m and a constant ϵ such that all quasi-Fuchsian manifolds in U contain embedded CMC surfaces with mean curvature H ranging in (-1, -1 + ϵ) ∪ (1 -ϵ, 1), and 2. For every H0 ∈ (-1, 1), a neighbourhood UH 0 of m and a constant ϵH 0 such that all quasi-Fuchsian manifolds in U contain immersed CMC surfaces with mean curvature H ranging in (H0 -ϵH 0 , H0 + ϵH 0 ) (clearly, ϵH 0 will be small enough so that (H0 -ϵH 0 , H0 + ϵH 0 ) ⊂ (-1, 1)).

Actually, in item (2), we can assume that the immersed CMC surfaces have principal curvatures in (-1, 1). This implies automatically that they are embedded, see item i) of Proposition 4. is an open neighbourhood of m in QF(S) with the property that for every H ∈ (-1, 1) and for every m ′ in U there exists an embedded CMC surface with constant mean curvature H. This concludes the proof.

In the next section, we will improve the proof of Theorem 4.2.8 in order to prove that the neighbourhood U can be taken so as to have the property that the embedded CMC surfaces of each quasi-Fuchsian manifold M in U constitute a smooth monotone foliation of M .

Foliations of quasi-Fuchsian manifolds

Having established the existence of embedded CMC surfaces, for H ∈ (-1, 1), in a quasi-Fuchsian manifold in a suitably small neighbourhood of the Fuchsian locus, we now refine the construction to show that, in a possibly smaller neighbourhood, there is a monotone smooth foliation by CMC surfaces.

Small principal curvatures and equidistant foliations

We will say that a C 2 immersion of a surface in H 3 has small principal curvatures if its principal curvatures are in (-1, 1). The following statement contains the fundamental properties that we will use on surfaces with small principal curvatures. iv) There exist differentiable functions f-, f+ : R → R satisfying f±(0) = H and f ′ ± (r) > 0 for all r, such that the mean curvature of ζ(S × {r}) is between f-(r) and f+(r).

We will refer to the function r : M → R as the signed distance from the embedded surface S = ι(S).

Proof. Points i) and ii) are well known. For point i), see [START_REF] Epstein | Envelopes of horospheres and Weingarten surfaces in hyperbolic 3-space[END_REF] or [START_REF] Emam | On the Gauss map of equivariant immersions in hyperbolic space[END_REF]Proposition 4.15,Remark 4.22]. Let S be the lift of S = ι(S) to the universal cover H 3 . To show point ii), the fundamental property is that S stays in the concave side of any tangent horosphere (see [START_REF] Emam | On the Gauss map of equivariant immersions in hyperbolic space[END_REF]Lemma 4.11]), hence a fortiori on the concave side of any tangent metric ball centered at a point P outside S. This implies that the geodesics orthogonal to S are pairwise disjoint and form a global foliation in lines of M . Moreover, the distance from S is realized along the orthogonal geodesic through P . Observe that if S = ι(S) has small principal curvatures, then all equidistant surfaces ζ(S × {r}) also have small principal curvatures ( [23, Chapter 3] or [START_REF] Emam | On the Gauss map of equivariant immersions in hyperbolic space[END_REF]Corollary 4.4]). Hence one can repeat the above argument replacing S with ζ(Σ × {r}), and conclude (4.25) for all r1, r2.

To prove points iii) and iv), observe that, with our convention on the mean curvature (see Section 4 Integrating g-and g+, which are both positive everywhere, from 0 to r, one obtains the functions f-and f+ as in point iv). We remark that g± are continuous, hence integrable: indeed, using continuity in p and r of the r-derivative of Hp(r), we see that if rn → r∞, then a sequence pn ∈ S of minimum points of (d/dr)H•(rn) converges up to a subsequence to p∞, which is necessarily a minimum point of (d/dr)H•(r∞). Hence g-(r∞) = limn g-(rn), and analogously for g+ by replacing minimum by maximum.

Maximum principle for CMC surfaces

In this section we apply Proposition 4.3.1 and the geometric maximum principle for mean curvature to achieve two properties which will play a fundamental role in the proof of the foliation result, Theorem 1.2.2. This implies that the restriction of r to S H ′ is at least rmin ≥ f -1 + (H ′ ), and at most rmax ≤ f -1 -(H ′ ), as claimed.

that SH has small principal curvatures, and the equidistant foliation from Proposition 4.3.1. Indeed, it is sufficient to show that d(r • ξ)(∂/∂H) does not vanish, where r is the signed distance from SH provided by Proposition 4. This concludes the proof.

Moreover investigating the existence of measured foliations at infinity or prescribing Schwarzians at infinity in convex-cocompact hyperbolic 3-manifolds or higher dimensional hyperbolic manifolds is something I aspire to do in the future.

One more question we can ask is about the limiting behavior of a sequence of quasi-Fuchsian manifolds gn based on their measured foliations at infinity (Fn, Gn). Recall here that there is a well-defined notion of convergence in the space of measured foliation where the limit of a sequence of measured foliations in MF(S) converge to a point in the space of projective measured foliations P MF(S). In particular, we want to ask the following question:

Question 5.0.4. Let (Fn, Gn) converge to the pair of filling projective measured foliations ([F], [G]). Then do gn have a converging subsequence? If so, is the limit the ending lamination for the sequence gn? Here by ending lamination we mean the limit of the measured bending lamination on the boundary of the convex core of gn and has been a very well-studied entity in recent times.

To finish, there is one more related problem I am interested in at the moment which concerns the intersection of the sections q F , q -G : T (S) → T * T (S) for a filling pair (F, G) and asking if the intersection of the sections is transverse in T * T (S)? It is clear that they intersect uniquely at the point ([c], q) ∈ T * T (S) which realize F and G as its horizontal and vertical measured foliations as par Gardiner-Masur theorem.

The transversality of their intersection on the other hand can be reformulated into the following question:

Question 5.0.5. Let (F, G) be a filling pair and ([c], q) ∈ T * T (S) be the unique holomorphic quadratic differential realising them. Consider a first-order deformation given by t → ([ct], qt), t ≥ 0 such that [c0] = [c] and q0 = q and which maintains (F, G) as its measured foliation at first-order at t = 0. Then, is this deformation necessarily trivial?

Here, we say t → Ft ∈ MF(S) with F0 = F is said to be equal to F at first order at t = 0 if d dt t=0

i(γ, Ft) = 0 for any simple closed curve γ on S and where i(γ, .) : MF(S) → R ≥0 is the intersection number of γ with a given measured foliation. The answer is positive when we restrict to holomorphic quadratic differentials in the dense generic stratum, i.e, when all the zeroes of qt are simple. Moreover, for genus 2 surface it can be shown that the question above has a positive answer. The main difficulty lies in analyzing deformations that collapse or join the zeroes of q for the arbitrary genus.

3

  Measured foliation at infinity of quasi-Fuchsian manifolds near the Fuchsian locus 3.1 The bundle Q(S) and measured foliations realised by holomorphic quadratic differentials. .3.1.1 The Theorem of Hubbard-Masur and the sections q F and q -F . . . . . . . . . . . . . 3.1.2 Filling measured foliations and the theorem of Gardiner-Masur . . . . . . . . . . . . 3.1.3 Extremal lengths of measured foliations . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.4 Intersection of q F and q -G in T * T (S) . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.5 Quotient of Q(S) under the action of R>0 and intersection of [q F ] and [q -G ] . . . . . 3.2 Necessary condition for paths with small filling measured foliations at infinity . . . . . . . . 3.2.1 Fundamental forms at infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.2 The curve β ([c],q) (s) in QF(S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.3 First order estimations of measured foliations at infinity for the path β ([c],q) (t 2 ) . . . 3.2.4 Necessary conditions for paths with given small filling measured foliations at infinity at first order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Uniqueness of Paths with Small Filling Foliations . . . . . . . . . . . . . . . . . . . . . . . . 3.3.1 The normal bundle N F(S) to F(S) . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.2 The blow-up QF(S) of QF(S) at F(S) . . . . . . . . . . . . . . . . . . . . . . . . .3.3.3 SubmanifoldsW + F + , W - Fand the intersection ∂ W + F + ∩ ∂ W - F -.. . . . . . . . . . . . 3.4 Interpretation in Half-Pipe Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.1 Half-pipe Schwarzians and their measured foliations . . . . . . . . . . . . . . . . . . 4 Quasi-Fuchsian manifolds close to the Fuchsian locus are foliated by CMC surfaces 4.1 Epstein surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.1 The Epstein map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.2 Schwarzian tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.3 Mean curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

 1 

7 .

 7 So we define: Definition 1.2.1. A Riemannian three-manifold M homeomorphic to Σ × R is (smoothly) monotonically foliated by CMC surfaces with mean curvature ranging in the interval (a, b) if there exists a diffeomorphism between Σ × (a, b) and M which, for every H ∈ (a, b), is an embedding of constant mean curvature H when restricted to Σ × {H}.

Theorem 3 . 1 . 3 .

 313 Given two conformal classes [c] and [c ′ ] in T (S), there exists an unique quasi-conformal map ϕ : [c] → [c ′ ] with minimal eccentricity coefficient among all quasi-conformal maps from [c] to [c ′ ]. The associated Beltrami differential µ is of the form k |q|

  realised by (ct, qt) and assume d dt t=0 Ft = d dt t=0

  , Gt) = 0. This gives d dt t=0 per(qt)(γ) = d dt t=0

Definition 3 . 1 . 19 .

 3119 For a pair (F, G) that fill S, we denote by p(F, G) the critical point in T (S) of the function ext(F) + ext(G) : T (S) → R.

Lemma 3 . 1 . 20 .

 3120 If (F, G) fill S, then p(tF, tG) = p(F, G) where t > 0. Proof. Observe that ext(tF) + ext(tG) = t 2 (ext(F) + ext(G)) from the definition of extremal length function and hence ext(tF) + ext(tG) and ext(F) + ext(G) have the same critical points.

  We can thus define: Definition 3.3.3. The normal bundle N F(S) → F(S) is the bundle whose fiber N [c] F(S) over each conformal class [c] ∈ T (S) is the vector space isomorphic to the quotient T [c] QF(S)/T [c] F(S).

  S), i.e, tangent to the Fuchsian locus. The decomposition of the tangent space T [c] QF(S) = T [c] F(S) JT [c] F(S) at the Fuchsian locus then implies that v ([c],q) ∈ N [c] F(S).

Figure 3 . 1 :

 31 Figure 3.1: Schematic diagram of the path β ([c],q) (s) leaving the Fuchsian locus F(S) from the point [c] along the direction of the normal vector v ([c],q) with W + F + and W - Fintersecting at F(S) ⊂ QF(S) prior to blow-up procedure for an arational pair (F+, F-) which fills S and the dashed line representing the Teichmüller geodesic P(F+, F-).

  suppose gs in turn descends to a curve gs ∈ QF (S) with g0 = [c] under the projection QF(S) → QF (S). As gs ∈ W + F + ∩ W - Fwe have that π(F( gs)) = ( a(s)F+, b(s)F-) which again descend to two smooth functions a(s), b(s) ∈ R ≥0 such that F(gs) = (a(s)F+, b(s)F-) and a(0) = b(0) = 0. Moreover by definition gs is normal to F(S) at g0 and along the direction v

CP 1 .

 1 By the definition of Möbius flat and the cocycle property (4.5), B(σ) is independent of the chosen Möbius flat metric g CP 1 . Hence if f is a Möbius transformation, then B(f * σ) = f * B(σ) (4.6) by (4.4). As another consequence of the independence of the definition of B(σ) from the choice of g CP 1 , together with the definition (4.2) applied to B(e 2t σ) = B(|dz| 2 , e 2t σ), we have that if e 2t is any positive constant then B(e 2t σ) = B(σ) .(4.7)Finally, given a quadratic differential ϕ = λ(z)dz 2 and a conformal metric σ = e 2η |dz| 2 , we define the norm of ϕ with respect to σ as: ∥ϕ∥σ(z) := e -2η(z) |λ(z)| .

  3.1 below. Now, the family of intervalsF := {[-1, -1 + ϵ)} ∪ {(1 -ϵ, 1]} ∪ {(H0 -ϵH 0 , H0 + ϵH 0 ) | H0 ∈ (-1, 1)}is an open covering of the compact interval [-1, 1], hence it admits a finite subcoverF ′ := {[-1, -1 + ϵ)} ∪ {(1 -ϵ, 1]} ∪ {(H0 -ϵH 0 , H0 + ϵH 0 ) | H0 ∈ {c1, . . . , cN }} .Therefore the intersection U := U ∩ Uc 1 ∩ . . . ∩ Uc N

Proposition 4 . 3 . 1 .

 431 Let S be a closed surface and let ι : S → M be an immersion with small principal curvatures in a quasi-Fuchsian manifold M homeomorphic to S × R. Then:i) The immersion ι is an embedding and a homotopy equivalence.ii) There is a diffeomorphismζ : S × R → M such that ζ(•, 0) = ι, ζ(p, •)is the unit speed geodesic intersecting ι(S) orthogonally at ι(p), and dM (ζ(p, r1), ζ(p, r2)) = dM (ζ(S × {r1}), ζ(p, r2)) = |r2 -r1| . (4.25) Let us choose such ζ so that ζ(•, r) approaches ∂ - ∞ M as r → +∞. If moreover ι has constant mean curvature H, then iii) The mean curvature of the surface ζ(S × {r}) is strictly larger than H if r > 0 and strictly smaller than H if r < 0.

  .1.3), the principal curvatures λ1(r), λ2(r) of the embedding ιr := ζ(•, r) : S → M at the point p satisfy the formula: λi(p, r) = tanh(µi(p) + r) , (4.26)which is monotone increasing in r, where λi(p, 0) = tanh µi(p) ∈ (-1, 1). Since the mean curvature of ιr at p equals (λ1(p, r) + λ2(p, r))/2, it follows that it is larger than H = (λ1(p, 0) + λ2(p, 0))/2 if r > 0 and smaller than H if r < 0, as claimed in point iii).More precisely, by a direct computation from Equation (4.26) one checks that the derivative of the mean curvature function r → Hp(r) = 1 2 (λ1(p, r) + λ2(p, r))takes value in (0, 1) for all r. If we fix r, using compactness of S we can define the functions g-(r0)

Proposition 4 . 3 . 2 .

 432 Let M ∼ = S × R be a quasi-Fuchsian manifold and let SH and S ′ H be closed embedded CMC surfaces in M homotopic to S × { * } with the same mean curvature H ∈ (-1, 1). If SH has small principal curvatures, then SH = S ′ H .Proof. Let r be the signed distance function from SH , given by the diffeomorphism ζ as in Proposition 4.3.1, applied to the inclusion ι of S with image SH . Since S ′ H is compact, the restriction of r to S ′ H has a maximum rmax = r(pmax) and a minimum rmin = r(pmin). By Remark 4.0.1, the normal vector to S ′ H coincides with minus the gradient of the function r at the points pmin and pmax.This implies that S ′ H is tangent to the equidistant surface ζ(S × {rmax}), and entirely contained in the side {r ≤ rmax}, towards which the normal vector is pointing by our convention. By the geometric maximum principle, the mean curvature of S ′ H , which equals H, is larger than the mean curvature of ζ(S × {rmax}) at pmax. By item iii) of Proposition 4.3.1, rmax ≤ 0. Repeating the argument for the minimum point, one obtains rmin ≥ 0. Hence r ≡ 0 on S ′ H . Since both SH and S ′ H are closed embedded surfaces, they must coincide.Let us now consider the case of two CMC surfaces with different values of the mean curvature.

Lemma 4 . 3 . 3 .

 433 Let M ∼ = S × R be a quasi-Fuchsian manifold and let SH and S H ′ be closed embedded CMC surfaces in M homotopic to S × { * }, with mean curvature H and H ′ respectively, for H ̸ = H ′ . If SH has small principal curvatures, then SH and S H ′ are disjoint, and moreover the signed distance of every point ofS H ′ from SH is between f -1 + (H ′ ) and f -1 -(H ′ ), where f± are the increasing functions introduced in Proposition 4.3.1.Proof. The proof is very similar to Proposition 4.3.2. Suppose H ′ > H, the other case being analogous. Consider the restriction to S H ′ of the signed distance function r with respect to SH . This functions admits a minimum rmin = r(pmin) and a maximum rmax = r(pmax). Hence S H ′ is tangent to ζ(S × {rmin}) at pmin and to ζ(S × {rmax}) at pmax, and contained in the region {rmin ≤ r ≤ rmax} between the two. The geometric maximum principle together with item iv) of Proposition 4.3.1 then implies that f-(rmax) ≤ H ′ ≤ f+(rmin) .

3 . 1 .

 31 But the last part of Lemma 4.3.3 tells us that r • ξ (which is a differentiable function) is larger than the function f -1 + , whose derivative is positive. Hence d dt t=H (r • ξ)(p, t) > 0 .
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  1.22 implies that [c] is the unique critical point p( : T (S) → R for some t > 0. From proposition 3.1.22 we see that the intersection of the boundaries ∂ W + F + and ∂ W - Fproject on the Teichmüller geodesic line t → p(

	ext(	√ tF+) + ext( 1 √ t F-)	√ tF+, 1 √ t F-) of the function
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for H ∈ (-1, 1) close to ±1. From (4.10), this gives the equation:

= H (4.12)

Remark 4.2.2. If we choose a metric σ invariant under the quasi-Fuchsian group Γ acting on Ω+ by biholomorphisms, then ∥B(σ(u))∥ 2 σ(u) is a well-defined invariant function on the quotient S, by (4.6) and (4.8). This shows that the equation (4.12) can be really thought as an equation for a function u on the quotient surface S, where σ(u) = e 2u h0 is a metric on S.

Remark 4.2.3. In the situation of Remark 4.2.2, the uniqueness property of the Epstein map as in Proposition 4.1.1 implies that the Epstein surface is invariant under the quasi-Fuchsian group Γ. More precisely, for any γ ∈ Γ, we have

(4.13)

Therefore Eps (id,σ(u)) induces a map from Ω + /Γ to the quasi-Fuchsian manifold H 3 /Γ. Now the trick consists in performing a renormalization to Equation (4.12), so as to obtain an equivalent equation, for which we can find an explicit solution for H = -1. This consists in the change of variables from (H, u) to (H, v), where

Let us now set τ (v) = e 2v h0, so that we have the identity:

A direct computation from (4.12) and (4.15) (and using also (4.9)) shows that u solves (4.12) for H ∈ (-1, 1) if and only if v solves the equation:

The big advantage is that now the choice v0 ≡ 0 satisfies G(-1, v0) = 0, since τ (v0) = h0 and K(h0) = -1. Hence we are in the right setting to apply the implicit function theorem near this solution (-1, v0) of the equation G = 0 (see e.g. [44, §I.5]). One must show that the derivative of G with respect of u is an invertible operator between suitable function spaces (see details below), and achieves a family of solutions v = v(H) of (4.16) depending smoothly on H, for H ∈ [-1, -1 + ϵ). This will provide CMC surfaces with mean curvature H close to -1 via the Epstein maps Eps (id,σ(u(H))) , where

Adaptation for Theorem 4.2.1

We will now describe the extension of this strategy in our setting. The difference is that we need to allow the quasi-Fuchsian manifold to vary as well, represented by a variation of a pair (h, ϕ), and thus of the holomorphic map f = f φ which gives a biholomorphism between D and the domain Ω + . Let us explain this in detail.

To make explicit the dependence on the hyperbolic metric h, we now denote σ h (u) := e 2u h. We need to replace Equation (4.12) by the condition that the mean curvature of the Epstein map Eps (f φ ,σ h (u)) equals H. From Equation (4.11), we see that such identity reads:

where we have used that the holomorphic quadratic differential induced in the quotient by S(f φ) equals ϕ by construction. This is again an equation on the closed surface S, and the same change of variables as in (4.14) leads to the equation: defined by (recall the definition of u(H, h, ϕ) in (4.20)):

The map Ψ therefore induces a continuous map

The first step consists in showing that the differential of Ψ (and therefore of Ψ) is invertible at the points (z, t = 0).

Lemma 4.2.5. For every z ∈ D and every pair (h, ϕ) ∈ U0, the differential at (z, 0, h, ϕ) of the map

Proof. We clearly have that the differential of Ψ is of the form

Hence it suffices to check that the differential of Ψ(•, •, h0, ϕ0) is invertible, namely, to compute the derivatives with respect to z and t keeping h and ϕ fixed. For this, we can actually reduce to the computation we performed to obtain (4.23). Indeed, since f φ0 is a locally injective holomorphic function, we can change variables from z to w := f φ0 (z) in a small open set on which f φ0 is a biholomorphism onto its image. We can then consider u, v, η and λ as functions of w instead of z, up to composing with a local inverse of f φ0 .

(Of course here u and v are functions not only of (z, H) but also of (h, ϕ), but since we are differentiating with (h, ϕ) fixed, the result will remain exactly the same.)

We then obtain, as in (4.22),

Differentiating as above, we obtain the same expression as in (4.23), which is invertible. Since w is a local coordinate and the choice of (h0, ϕ0) is arbitrary, the differential of Ψ is invertible at the point (z, 0, h, ϕ) for any z, h, ϕ.

Therefore, Ψ is a local diffeomorphism in a neighbourhood of every point (z, 0, h, ϕ). We now prove an easy topological lemma. Lemma 4.2.6. Let X be a metrizable compact topological space, Y any topological space and V an open subset of R n containing the origin. Let F : X × V → Y be a continuous map such that

Then there exists a neighbourhood V ′ ⊂ V of the origin such that F | X×V ′ is injective.

Proof. Assume that there exists no such neighbourhood V ′ where F | X×V ′ is injective. Then there exist sequences (xn, tn) n∈N and (

Since X is metrizable and compact, it is sequentially compact, and we can extract a convergent subsequence from both (xn) n∈N and (x ′ n ) n∈N . Let the respective limit points be x∞ and x ′ ∞ . By continuity of F we have that

But F is assumed to be locally injective in a neighbourhood of (x∞, 0), which means that for n large enough, (xn, tn) = (x ′ n , t ′ n ). This gives a contradiction.

Proof of Theorem 1.2.2

Let us now conclude the proof of the smooth monotone foliation result, by putting together all the ingredients. The aim is showing that, for M a quasi-Fuchsian manifold in a suitable neighbourhood U of the Fuchsian locus F(S)(S), there exists a diffeomorphism between S × (-1, 1) and M such that, restricted to each slice S × {H}, is an embedding of constant mean curvature H. The existence of such CMC surfaces has been proved in Theorem 4.2.8, so now the goal (up to choosing a smaller neighbourhood U of F(S)(S)) is achieving the diffeomorphism, thus proving the smooth foliation part.

Proof of Theorem 1.2.2. Recall that the proof of Theorem 4.2.8 produces, for every m in F(S)(S), a neighbourhood U in QF(S) as the intersection

where U is a neighbourhood of m in which the ends are monotonically foliated by CMC surfaces with mean curvature ranging in (-1, -1 + ϵ) ∪ (1 -ϵ, 1), and the Uc i are neighbourhoods of m obtained from the family UH 0 (by extracting a finite cover of the interval [-1, 1]). Hence for every i, in every quasi-Fuchsian manifold inside Uc i we have existence of CMC surfaces of mean curvature ranging in (ci -ϵc i , ci + ϵc i ). Now, let us provide a couple of preliminary observations. First, from Theorem 4.2.7, we can assume that the UH 0 have the property that the CMC surfaces of mean curvature (H0 -ϵH 0 , H0 + ϵH 0 ) have small principal curvatures. (In particular, they are embedded by i) of Proposition 4.3.1.) Hence in (4.27), we can assume that all the Uc i have this property. Second, it is harmless to assume that c1 < . . . < cN and that the corresponding intervals, namely (-1, -1 + ϵ), (c1 -ϵc 1 , c1 + ϵc 1 ), . . . , (cN -ϵc N , cN + ϵc N ), (1 -ϵ, 1) only intersect in pairs (that is, each interval intersects the previous and the next one, and no other), up to choosing smaller ϵ's.

Having made these assumptions, using Theorem 4.2.7 we can construct, for any quasi-Fuchsian manifold M in U , smooth maps ξi : S × (ci -ϵc i , ci + ϵc i ) → M having the property that ξc i (S × {H}) is an embedded CMC surface of mean curvature H. Similarly in the ends, from Theorem 4.2.1 we get smooth maps

satisfying the analogous property. By our previous assumption, all the ξi(S × {H}) have small principal curvatures, if i ∈ {1, . . . , N }. Hence by Proposition 4.3.2, we have ξi(S × {H}) = ξ i ′ (S × {H}) for every i, i ′ ∈ {0, . . . , N + 1}. Using our other assumption, namely that only consecutive intervals overlap, we can iteratively precompose each ξi, starting from ξ1, with smooth diffeomorphisms of the source that preserve each slice S × {H}, so that ξi(•, H) = ξi+1(•, H) as long as H is in the intersection of the corresponding intervals. Hence we can glue together the ξi's to obtain a smooth map ξ : S × (-1, 1) → M such that ξ(S × {H}) is an embedding of a CMC surface with mean curvature H, which we denote by SH .

We claim that ξ is injective. Indeed it is injective on every slice S × {H}, hence it suffices to show that the images of different slices are disjoint. We distinguish three cases. If H is in one of the intervals (ci -ϵc i , ci

, then SH and S H ′ are disjoint because the two neighbourhoods of the ends are disjoint. Finally, if both H and H ′ are in (-1, -1 + ϵ) or in (1 -ϵ, 1), then SH and S H ′ are disjoint by Theorem 4.2.1.

Moreover ξ is surjective by the intermediate value theorem, because it is a diffeomorphism onto a neighbourhood of the ends when restricted to S × (-1, -1 + ϵ) and S × (1 -ϵ, 1) by Theorem 4.2.1. Hence ξ is a homeomorphism. By the inverse function theorem, to prove that it is a diffeomorphism, and thus conclude Theorem 1.2.2, it suffices to show that its differential is injective at every (p, H) with H in one of the intervals (ci -ϵc i , ci + ϵc i ).

For this purpose, we know already that the differential of ξ is injective when restricted to TpS ⊂ T (p,H) (S × (-1, 1)), and dξ(TpS) is the tangent space to the CMC surface which we will call SH . Hence it suffices to show that dξ(∂/∂H) is a nonzero vector transverse to dξ (p,H) (TpS) = T ξ(p,H) SH . Here we use Chapter 5

Future research

A continuation of the project in [START_REF] Choudhury | Quasi-fuchsian manifolds close to the fuchsian locus are foliated by constant mean curvature surfaces[END_REF] is to consider the flow in T * T (S) that we obtain by considering the path (-1, 1) → T * T (S) given by t → ([ct], qt) where the first fundamental form of the CMC surface with mean curvature t is in the conformal class [ct] and the traceless part of the second fundamental form is given by the real part R(qt) (see [START_REF] Fischer | A new proof that Teichmüller space is a cell[END_REF] for example). The statement is: Theorem 5.0.1. The flow (-1, 1) : t → ([ct], qt) is a Hamiltonian flow on T * T (S) with respect to its natural symplectic structure and the Hamiltonian function is given by -1 2 times area of the CMC surfaces.

Also, as an extension of my Ph.D project, there is a related question that I will like to consider regarding prescribing Schwarzians at infinity of quasi-Fuchsian manifolds.

For a given measured foliation F we can consider the set O(F) ∈ MF(S) which consists of all measured foliations G ′ such that (F, G ′ ) fill for any G ′ ∈ O(F). We can then ask:

Question 5.0.2. Given a measured foliations F, does there exist a unique quasi-Fuchsian manifold with Schwarzians at infinity

) for some t > 0 where [c+], [c-] ∈ T (S) are the equivalence classes of complex structures appearing at the boundary at infinity and for any g ′ ∈ O(F) ?.

Recall here that q F

[c] , q -F [c] is the unique holomorphic quadratic differential realising F ∈ MF(S) as its horizontal and vertical measured foliation on S with complex structure [c] ∈ T (S) via Hubbard-Masur theorem. For t small enough Theorem 1.1.1 should provide an answer for quasi-Fuchsian manifolds near the Fuchsian locus although we do not show that the Schwarzians at infinity near the Fuchsian locus are only the ones coming from Hubbard-Masur differential. If one considers the case of almost-Fuchsian manifolds, then there are again some well-established results regarding the description of the complex structures at the ends of an almost-Fuchsian manifold in terms of the immersion data of the minimal surface which may be useful for this purpose, see for instance [START_REF] Trautwein | The hyperkähler metric on the almost-Fuchsian moduli space[END_REF] (Proposition 5.6) and also [START_REF] Krasnov | Minimal surfaces and particles in 3-manifolds[END_REF]. In fact, we have shown in [START_REF] Choudhury | Measured foliations at infinity of quasi-fuchsian manifolds near the fuchsian locus[END_REF] that for a quasi-Fuchsian manifold near the Fuchsian locus, the Schwarzians at infinity for the paths β ([c],q) (t) are in fact determined at first order by the holomorphic quadratic differential q ∈ T * T (S) such that the real part R(q) is equal to the second fundamental form II of the unique immersed minimal surface it contains.

Another aspect can be to consider a well-known result (see [START_REF] Sullivan | Travaux de thurston sur les groupes quasi-fuchsiens et les variétés hyperboliques de dimension 3 fibrées sur s 1[END_REF], [START_REF] Epstein | The logarithmic spiral: a counterexample to the k = 2 conjecture[END_REF], [START_REF] Sullivan | Travaux de thurston sur les groupes quasi-fuchsiens et les variétés hyperboliques de dimension 3 fibrées sur s 1[END_REF]) that the hyperbolic metric on the positive boundary component of CC(M ) and the conformal class at the boundary at positive infinity of a quasi-Fuchsian manifold are uniformly close in T (S), in fact quasi-conformal to each other by a factor ≤ 2.1 and ask a similar comparative question for measured foliations at infinity and measured bending lamination at infinity. We will denote the space of equivalence classes of measured laminations on S as ML(S) where we also have that MF(S) ∼ = ML(S) (see [START_REF] Mosher | Train track expansions of measured foliations[END_REF]). So we can ask: Question 5.0.3. Let λ+ and F+ be the measured bending lamination and the measured foliation at infinity at the positive ends of the boundary of CC(M ) and the boundary at infinity respectively. Then are they uniformly close in some sense in the space of equivalence class of measured geodesic lamination ML(S)?