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Chapter 1 Introduction 

1.1 Motivation 

The detection of molecules based on fluorescence or Raman scattering has been widely 

studied and is currently used in industry and laboratories. However, many organic molecules 

of interest are chiral, and their chemical and biological properties depend on their enantiomer 

as well as on the chirality of their secondary structure. The quantity and chirality of 

biomolecules are classically determined by measuring the differential absorption between the 

two opposite circular polarizations (chiroptic method). However, this method is limited by the 

low differential absorption of chiral molecules, which is of the order of 10-3 in the UV part of 

the spectrum. Plasmonic resonators have the ability to resonantly interact with light and are 

characterized by a moderate quality factor and a low effective volume. This resonant interaction 

allows (i) to increase the coupling between molecules and light and (ii) to control the 

polarization properties of light. So far, the latest advances concern the implementation of 

nanostructured chiral surfaces with gammadion-type resonators 1 , 2 , 3  or stacked twisted 

resonators4 that interact preferentially with a given helicity of light. However, the mechanism 

behind the differential response of biomolecules coupled to chiral resonators to circularly 

polarized light is still unclear, preventing the optimization of such detection. Moreover, in the 

research published so far, two different chiral sensors are needed to interact with right- and left-

handed circularly polarized light, which requires complex calibration procedures. During the 

course of my PhD, I have studied the use of anisotropic achiral nanostructures to interact with 

chiral molecules. Indeed, they have the significant advantage over chiral nanostructures of 

changing the sign of the circular dichroism by controlling the incident polarization or the 

direction of propagation. 5 , 6  Indeed, the symmetries of the electromagnetic field in close 

proximity to the resonators can be manipulated at will by changing illumination conditions 

hence providing a unique tool for studying the origin of the electromagnetic coupling between 

chiral biomolecule and nanoresonators.  

Consequently, in my PhD project I propose to use plasmonic nanoresonators to increase 

the light - “chiral matter” interactions in order to detect and study chiral molecules. I will use 

the concept of achiral plasmonic nanostructures (nanoslits) to develop innovative 

nanoresonators that will be used, once functionalized, to detect chiral biomolecules with 

enantiomer sensitivity. Indeed, achiral resonators can generate both signs of chiral fields as 
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opposed to chiral resonators which would make their use very flexible. This work implies 

characterizing, describing and understanding the origins of chiral fields and how to make them 

homogeneous. Through the study of nanoslits, I demonstrate numerically and theoretically how 

to design a nanosource of pure superchiral light, free of any background and for which the sign 

of the chirality is tunable on-demand in wavelength and polarization. In the perspective, I will 

present experimental methods that could monitor the CD via fluorescence emission (FDCD for 

Fluorescence Detected Circular Dichroism) in the case of light harvesting molecules for 

molecules that need to be excited in the UV, autofluorescence may be used in conjunction with 

aluminum resonators7. Without loss of generality, these considerations lead to the decision of 

investigating plasmonic resonators with resonance at 680 nm which correspond to the chiral 

absorption band of LHCII. The idea of blocking the excitation beam to collect only the emission 

of the chiral molecules leaded to the idea of investigating the resonances of openings in an 

opaque layer of gold.   

1.2 Thesis outline 

The manuscript is organized as follow: an Introduction Chapter, three Chapters and one 

Conclusion Chapter in which I will also present some perspective for this work.  

Chapter 2 serves as a comprehensive foundation for our exploration of the world of 

chirality and its detection. I begin by delving into the essence of chirality in Section 2.1. In 

Section 2.2, I shift the focus to the detection of chirality using light. Here I discuss polarized 

light and its characteristics: optical activity, circular dichroism, and optical chirality density. 

These concepts will be essential tools in my work. Section 2.3 brings into the realm of 

resonators and chiral media, explaining the critical role they play in harnessing and 

manipulating light at the nanoscale. This section explores plasmonic resonators, chiral/achiral 

resonators, and their applications in chiral sensing and spectroscopy. Finally, Section 2.4 

introduces the numerical methods, specifically finite-difference time-domain simulation 

techniques, which is the method I used for modeling and understanding these complex optical 

interactions.  

Chapter 3 presents the study of the localized surface plasmon resonances of nanoslits 

and the properties of the chirality density inside the open volume of the nanoslits. In Section 

3.1, I begin my investigation by exploiting the principle of Babinet and the behavior of achiral 

plasmonic nanoslits to unravel chiral light phenomena, offering a novel perspective on the 



CUI Lingfei – Chapter 1 Introduction 

- 9 - 
 

generation of chiral fields at the nanoscale. In Section 3.2, I delve deep into the intricacies of 

the nanoslit’s properties. The stage is set here with a comprehensive presentation of the setup 

parameters for FDTD simulations, from nanoslit structure to mesh accuracy as convergence is 

key to capture the essence of nanoslit plasmon resonances. In Section 3.3, I further explore the 

electromagnetic fields of nanoslits. This exploration allows the study of the distributions of 

electric and magnetic fields in nanoslits for different polarization states of the incident wave. 

These analyses will contribute to the subsequent analysis of chiral field distributions in 

nanoslits. Section 3.4 unravels the uniform chirality density exhibited by nanoslits. Here I 

explore how changes in polarization angle and wavelength can excite and manipulate this 

chirality density, opening the way to tailored optical responses. Section 3.5 compares nanoslits 

with their nanorod counterparts. This comparative analysis highlights the special features of 

nanoslits: unlike nanorods, they exhibit uniform chirality density. Section 3.6 introduces the 

point-like magnetic dipole model. As I study deeper into this model, it proves to be a powerful 

tool for accurately reproducing simulation results and providing insight into the uniform 

chirality density within nanoslits. Finally, in Section 3.7, I investigate the robustness of the 

chiral field exhibited by nanoslits. Through a careful parametric study, I uncover that nanoslits 

maintain their optical properties, in particular their uniform chirality, even in the face of shape 

variations. However, I also recognize the nuanced effects of size and rounded edges on 

wavelength shifts, underscoring the need for precision in the fabrication process. 

Chapter 4 provides a systematic approach to understanding the optical phenomena 

presented in Chapter 3. Section 4.1 presents an informative overview of multifaceted techniques 

for characterizing and optimizing nanostructures. These include traditional simulation methods, 

genetic algorithms, deep learning algorithms, and Jones matrix. In Section 4.2, I discuss a 

linkage between nearfield and far-field phenomena. Section 4.3 introduce into the behavior of 

the nanoslit by examining its resonant modes (longitudinal mode and transverse mode). These 

modes provide significant insights into the optical properties of nanoslits and broaden our 

understanding of their distinctive characteristics. I develop a hybrid method based on the 

relation between the excitation in the far-field and the distribution of the electromagnetic 

nearfield using a generalized Jones matrix formalism. In Section 4.4, a comparison is made 

between the hybrid method and FDTD simulations. The analysis of the results shows that the 

hybrid method accurately represents the polarization state and electromagnetic properties of 

light within nanoslits for any illumination condition. Section 4.5 presents an optimization study 

where I integrate the insights obtained from preceding sections with conventional optimization 
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algorithms, facilitating the expedient achievement of optimal conditions for maximizing 

chirality density within nanoslits. 
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2.1 Introduction to chirality 

Chirality is a fundamental concept in chemistry that deals with the asymmetry, or 

handedness, of molecules and objects. More than a century ago, Lord Kelvin8 conceptualized 

chirality, but it would be several decades before the term found its place as a central concept in 

chemistry textbooks. The term "chiral" comes from the Greek word "kheir," meaning "hand," 

which aptly reflects the idea that chirality is akin to the distinction between a left hand and a 

right hand which are mirror images of each other, but they cannot be superimposed. The two 

mirror images are named enantiomers. 

Chiral structures abound in nature at multiple hierarchical levels, ranging from chiral 

amino acid molecules to the double helix configuration of DNA biomacromolecules, enzyme 

at nanometer scale, and even observable phenomena such as plant tendrils and galaxies. (Figure 

1) 

 

Figure 1 Chiral architectures in nature at various scales, from enantiomeric molecule at sub-nanometer scale to 

DNA and enzyme at nanometer scale, further, to living system and galaxy at macroscopic scale. 

In chemistry, many organic molecules are chiral. For example, amino acids, which are 

the building blocks of proteins, can exist in chiral forms, the L- and D-enantiomers9. In the 

context of life sciences, the majority of amino acids are in the L configuration, with the notable 

exception of glycine which is achiral. Amino acids in the L-configuration play a crucial role in 

biological processes, serving as the building blocks of proteins and contributing to various 

biological functions. Conversely, when sugars are studied in the life sciences, they typically 

adopt the D configuration, which is important for understanding their biological roles and 

interactions in living organisms. Another example at a higher structural level concerns 

temporins which are antibacterial peptids. Their conformation in α-helix is associated with their 

anti-bacterial activity. 10 Biological structures such as DNA are also chiral11. The chirality of 
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DNA is not just a structural feature, but a fundamental aspect of its biological function. It 

influences processes such as replication, protein interactions, DNA packaging and repair, and 

may have played a role in the evolution of life as we know it. 

Chirality extends its influence on materials science and nanotechnology. Chiral 

materials can have unique optical properties that can be exploited in various applications, 

including sensors 12  and displays 13 . Chiral sensors can be designed to detect specific 

biomolecules with high selectivity. Cholesteric liquid crystals are chiral materials commonly 

used in displays such as e-readers and electronic shelf labels. They have the ability to reflect 

certain wavelengths of light due to their supramolecular chirality. By applying an electric field, 

the pitch of the chiral structure can be tuned to change the color reflected by the display. This 

allows the creation of low power, bistable, high contrast reflective displays.  

In summary, chirality is a fundamental concept that transcends chemistry and extends 

its influence into various scientific disciplines, from drug development to materials science to 

the search for the origin of life. This seemingly simple concept of handedness holds the key to 

a deeper understanding of the world around us. 

2.1.1 Conclusion 

In this section I have introduced the knowledge of chirality and enantiomers. Chirality, 

the property of asymmetry or handedness, was defined as the inability of a molecule or object 

to be superimposed on its mirror image. The importance of chirality in both chemistry and 

biology became clear as we delved into its meaning. The role of chirality in drug development, 

biomolecular interactions, nutrition, and materials science highlighted its multifaceted impact 

on our understanding of the natural world.  
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2.2 Detection of chirality using light 

2.2.1 Polarized light 

The description of the interaction of light with chiral objects can only be understood 

within the framework of electromagnetics. Light is described as the superposition of an electric 

field 𝑬𝑬 and a magnetic field 𝑩𝑩 related to one another through the Maxwell’s equations:  

𝜵𝜵 ∧ 𝑬𝑬 = −
∂𝑩𝑩
∂t

1) 

𝜵𝜵 ∧ 𝑩𝑩 = μ0𝑱𝑱 + μ0ε0
∂𝑫𝑫
∂t

2) 

𝜵𝜵.𝑬𝑬 = ρ/ε0 3) 

∇.𝑩𝑩 = 0 4) 

In the absence of sources, J and ρ are equal to zero. In linear media, the microscopic 

charges and currents are taken into account by defining the auxiliary fields 𝑫𝑫 = 𝜀𝜀0𝜀𝜀𝑟𝑟𝑬𝑬 and 𝑯𝑯 =

𝑩𝑩/𝜇𝜇0𝜇𝜇𝑟𝑟 , where 𝜀𝜀0  and 𝜇𝜇0  are permittivity and permeability of vacuum and 𝜀𝜀𝑟𝑟  and 𝜇𝜇𝑟𝑟  are 

relative permittivity and permeability which capture the response of matter to the electric and 

magnetic fields. At optical wavelength, 𝜇𝜇𝑟𝑟=1.  

Without going into detail, it can be shown that any electromagnetic field can be 

decomposed into an infinite number of monochromatic fields with an angular frequency ω, and 

each of these can be further decomposed into an infinite number of plane waves with a wave 

vector k. Mathematically, the Fourier integral theory expresses the above relationship: 

𝑬𝑬(𝒓𝒓, 𝑡𝑡) = � � 𝑬𝑬(𝒌𝒌,𝜔𝜔)𝑒𝑒−𝑖𝑖(𝜔𝜔𝜔𝜔−𝒌𝒌.𝒓𝒓)𝑑𝑑𝒌𝒌 𝑑𝑑𝜔𝜔
𝒌𝒌𝜔𝜔

5) 

To study the polarization of light, we need only consider one elementary component of 

this decomposition: the monochromatic plane wave, characterized by an angular frequency ω 

and a wave vector k.  
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In infinite media and in the case of homogeneous plane waves, the Maxwell equation 

𝑑𝑑𝑑𝑑𝑑𝑑𝑬𝑬 = 0 imposes the orthogonality of the vectors E and k. If Oz is the direction of wave 

propagation, 𝒌𝒌 = 𝑘𝑘𝒛𝒛�, the electric field vector E is expressed in complex notation with a time 

dependence such as 𝑒𝑒−𝑖𝑖𝜔𝜔𝜔𝜔 : 

𝑬𝑬(𝑧𝑧, 𝑡𝑡) = 𝑬𝑬𝟎𝟎𝑒𝑒−𝑖𝑖(𝜔𝜔𝜔𝜔−𝑘𝑘z) 6) 

with 𝑘𝑘 = 𝑛𝑛𝑘𝑘0 = 𝑛𝑛 𝜔𝜔
𝑐𝑐

, where 𝑛𝑛 = √𝜀𝜀𝑟𝑟  is the refractive index seen by the wave in the 

direction of propagation. c is the speed of light. 𝑬𝑬𝟎𝟎 is a complex vector, located in the wave 

plane, which characterizes the polarization state. In the orthonormal Cartesian frame Oxy of 

unit vectors 𝒙𝒙� and 𝒚𝒚�, we have: 

𝑬𝑬𝟎𝟎 = 𝐴𝐴𝑥𝑥𝑒𝑒i𝜙𝜙𝑥𝑥𝒙𝒙� + 𝐴𝐴𝑦𝑦𝑒𝑒i𝜙𝜙𝑦𝑦𝒚𝒚� 7) 

In this decomposition, 𝐴𝐴𝑥𝑥 and 𝐴𝐴𝑦𝑦 are positive real constants and the phases 𝜙𝜙𝑥𝑥 and 𝜙𝜙𝑦𝑦 

are also defined within 2𝜋𝜋. In a plane wave of equation 6), the real cartesian components of 

vector 𝑬𝑬(𝑧𝑧, 𝑡𝑡) can be written as: 

𝑬𝑬𝒙𝒙(𝑧𝑧, 𝑡𝑡) = 𝐴𝐴𝑥𝑥 cos(𝜔𝜔𝑡𝑡 − 𝑘𝑘𝑧𝑧 − 𝜙𝜙𝑥𝑥) 8) 

𝑬𝑬𝒚𝒚(𝑧𝑧, 𝑡𝑡) = 𝐴𝐴𝑦𝑦 cos�𝜔𝜔𝑡𝑡 − 𝑘𝑘𝑧𝑧 − 𝜙𝜙𝑦𝑦� 9) 

The time evolution of the vector 𝑬𝑬(𝑧𝑧, 𝑡𝑡) describes the polarization state of the optical 

wave under consideration. This state is fully characterized by the complex vector 𝑬𝑬𝟎𝟎. 

If we associate a point N with the extremity of the vector 𝑬𝑬(𝑧𝑧, 𝑡𝑡), this point generally 

describes an ellipse located in the wave plane. This is an ellipse composed of two oscillations 

of the same frequency, with different amplitudes and phases. Since the state of polarization is, 

by definition, related to the time evolution of the electric field vector, the most general state of 

polarization of a monochromatic plane wave in a homogeneous medium is an elliptic state of 

polarization.  

If 𝜙𝜙 = 𝜙𝜙𝑦𝑦 − 𝜙𝜙𝑥𝑥 is the phase shift between the orthogonal oscillations 𝑬𝑬𝒙𝒙(𝑡𝑡) and 𝑬𝑬𝒚𝒚(𝑡𝑡), 

the general expression for elliptical polarization is: 

𝑬𝑬𝒙𝒙(𝑡𝑡) = 𝐴𝐴𝑥𝑥 cos(𝜔𝜔𝑡𝑡) 10) 
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𝑬𝑬𝒚𝒚(𝑡𝑡) = 𝐴𝐴𝑦𝑦 cos(𝜔𝜔𝑡𝑡 − 𝜙𝜙) 11) 

The direction of rotation of the current point N on the ellipse naturally depends on the 

sign of the phase angle 𝜙𝜙. 

In addition, there are two special polarization states that will be present: linear 

polarization and circular polarization. Linear polarization refers to a state of polarization in 

which the electric field vector of an electromagnetic wave oscillates in a single, fixed direction 

as the wave propagates through space. Circularly polarized light is characterized by a constant 

magnitude of the electric field, but with its direction continuously changing in a circular motion. 

There are two forms of circular polarization: right-handed (clockwise rotation) and left-handed 

(counterclockwise rotation). Circular polarization occurs when the phase difference between 

the horizontal and vertical components is ±π/2 (-90 degrees or 90 degrees): 

𝑬𝑬𝒙𝒙(𝑡𝑡) = 𝐴𝐴𝑥𝑥 cos(𝜔𝜔𝑡𝑡) 12) 

𝑬𝑬𝒚𝒚(𝑡𝑡) = ±𝐴𝐴𝑦𝑦 sin(𝜔𝜔𝑡𝑡) 13) 

For convenience in describing a polarization state, we usually give parameters of an 

elliptic polarization state. Figure 2 shows the various parameters used to characterize the 

polarization state. In linear media, only the relative amplitudes of Equations 12) and 13) are 

useful and the polarization state can fully describe using angles.  

 

Figure 2 parameters of an elliptical polarization state 



CUI Lingfei – 2.2 Detection of chirality using light 

- 17 - 
 

The angles 𝜃𝜃  and 𝛿𝛿  characterize the orientation and ellipticity of the ellipse. The 

polarization angle 𝜃𝜃 represents the orientation or tilt of the ellipse with respect to a reference 

axis, usually the horizontal axis (x-axis). The angle 𝛿𝛿  characterizes the ellipticity of the 

polarization state. When δ is ±π/4, the ellipse is a perfect circle. When 𝛿𝛿 = −𝜋𝜋/4, left-handed 

circular polarization is formed. When 𝛿𝛿 = 𝜋𝜋/4, right-handed circular polarization is formed. 

The tilt angle 𝜒𝜒 is defined by the ratio of Ay to Ax. The relations among these quantities are:  

tan 2𝜃𝜃 =
2𝐴𝐴𝑥𝑥𝐴𝐴𝑦𝑦
𝐴𝐴𝑥𝑥2 − 𝐴𝐴𝑦𝑦2

cos𝜙𝜙 14) 

tan 𝛿𝛿 =
𝑏𝑏
𝑎𝑎

15) 

tan𝜒𝜒 =
𝐴𝐴𝑦𝑦
𝐴𝐴𝑥𝑥

16) 

2.2.2 Jones vector 

R. Clark Jones14 introduced in 1941 a formalism for describing the propagation of 

polarized light through anisotropic crystals. I will introduce this formalism here and will use it 

to express the polarization of light in Chapter 4. The Jones vector is a two-component column 

vector that represents the amplitude and phase of an electric field. In the Cartesian frame Oxy, 

according to Eq. 7), the general form of the Jones vector is: 

𝑽𝑽 = �
𝐴𝐴𝑥𝑥𝑒𝑒𝑖𝑖𝜙𝜙𝑥𝑥
𝐴𝐴𝑦𝑦𝑒𝑒𝑖𝑖𝜙𝜙𝑦𝑦

� 17) 

In general, a state of elliptical polarization can be represented by a normalized Jones 

vector dependent on two parameters: the tilt angle 𝜒𝜒  defined in Figure 2 and the phase 

difference 𝜙𝜙, as follows:  

𝑽𝑽(𝜒𝜒,𝜙𝜙) = �
cos𝜒𝜒

sin𝜒𝜒𝑒𝑒𝑖𝑖𝜙𝜙� 18) 

It is useful to represent any elliptical state using the polarization angle 𝜃𝜃  and the 

ellipticity 𝛿𝛿. In the proper frame of the ellipse, the Jones vector is written as follows:  
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𝑽𝑽 = �cos 𝜃𝜃 cos𝛿𝛿 − 𝑑𝑑 sin𝜃𝜃 sin 𝛿𝛿
sin𝜃𝜃 cos 𝛿𝛿 + i cos 𝜃𝜃 sin 𝛿𝛿� 19) 

The typical Jones vectors for linearly polarized light with a polarization angle θ, and the 

Jones vector can be represented as: 

𝑽𝑽 = �cos 𝜃𝜃
sin𝜃𝜃� 20) 

For circular polarization, Equations 12) and 13) can be presented as the Jones vector: 

𝑽𝑽 =
1
√2

� 1
i ∙ sign(𝛿𝛿)� 21) 

2.2.3 Jones matrix 

The Jones matrix is a fundamental concept in polarization optics used to describe the 

behavior of light as it passes through an optical element, such as a polarizer, a retarder, or a 

waveplate. It provides a mathematical representation of how the polarization state of light 

changes when it interacts with these elements. 

Let us consider an optical element that transforms the incoming Jones vector �
𝐸𝐸𝑖𝑖𝑖𝑖𝑐𝑐,𝑥𝑥
𝐸𝐸𝑖𝑖𝑖𝑖𝑐𝑐,𝑦𝑦

� , 

decomposed on x and y polarizations basis, into an outgoing Jones vector �
𝐸𝐸𝑜𝑜𝑜𝑜𝜔𝜔,𝑥𝑥
𝐸𝐸𝑜𝑜𝑜𝑜𝜔𝜔,𝑦𝑦

� . This 

transformation can be represented by a 2×2 matrix called the Jones matrix J defined as follows: 

𝐽𝐽 = �
𝐽𝐽𝑥𝑥𝑥𝑥 𝐽𝐽𝑥𝑥𝑦𝑦
𝐽𝐽𝑦𝑦𝑥𝑥 𝐽𝐽𝑦𝑦𝑦𝑦

� 22) 

Each element of the Jones matrix ( 𝐽𝐽𝑥𝑥𝑥𝑥 , 𝐽𝐽𝑥𝑥𝑦𝑦 , 𝐽𝐽𝑦𝑦𝑥𝑥  and 𝐽𝐽𝑦𝑦𝑦𝑦 ) represents the complex 

amplitude change and phase shift experienced by the corresponding polarization component as 

it passes through the optical element. The relation between the outgoing and incoming Jones 

vector is: 

�
𝐸𝐸𝑜𝑜𝑜𝑜𝜔𝜔,𝑥𝑥
𝐸𝐸𝑜𝑜𝑜𝑜𝜔𝜔,𝑦𝑦

� = 𝐽𝐽 �
𝐸𝐸𝑖𝑖𝑖𝑖𝑐𝑐,𝑥𝑥
𝐸𝐸𝑖𝑖𝑖𝑖𝑐𝑐,𝑦𝑦

� 23) 
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This transformation can be used to describe the effect of any optical element on the 

polarization state of light.  

In the next part I will discuss the interaction of matter with circularly polarized light. 

With that aim, it is convenient to express the Jones matrix in the circular polarization basis 

where the unit Jones vectors [1 0] and [0 1] actually represent right-circular polarization and 

left-circular polarization, respectively. For propagation along z in a medium of polarization 

dependent refractive index 𝑛𝑛�± = (𝑛𝑛± + 𝑑𝑑𝑘𝑘±) on the path of length 𝑙𝑙, 𝐽𝐽 can be written:  

𝐽𝐽 = �𝑒𝑒
𝑑𝑑𝑘𝑘+𝑙𝑙 0
0 𝑒𝑒𝑑𝑑𝑘𝑘

−𝑙𝑙
� = �𝑒𝑒

𝑑𝑑2𝜋𝜋𝜆𝜆 �𝑛𝑛
++𝑑𝑑𝑘𝑘+�𝑙𝑙 0
0 𝑒𝑒𝑑𝑑

2𝜋𝜋
𝜆𝜆 (𝑛𝑛−+𝑑𝑑𝑘𝑘−)𝑙𝑙

� = 𝑒𝑒𝑑𝑑
2𝜋𝜋
𝜆𝜆 𝑛𝑛

−𝑙𝑙 �𝑒𝑒
𝑑𝑑2𝜋𝜋𝜆𝜆 �𝑛𝑛

+−𝑛𝑛−�𝑙𝑙𝑒𝑒−
2𝜋𝜋
𝜆𝜆 𝑘𝑘

+𝑙𝑙 0
0 𝑒𝑒−

2𝜋𝜋
𝜆𝜆 𝑘𝑘

−𝑙𝑙
� 24) 

𝐽𝐽 = 𝑒𝑒𝑖𝑖
2𝜋𝜋
𝜆𝜆 𝑖𝑖−𝑙𝑙 �𝑒𝑒

𝑖𝑖𝑖𝑖𝑙𝑙𝑒𝑒−
2𝜋𝜋
𝜆𝜆 𝑘𝑘+𝑙𝑙 0

0 𝑒𝑒−
2𝜋𝜋
𝜆𝜆 𝑘𝑘−𝑙𝑙

� 25) 

Where 𝛼𝛼 = 2𝜋𝜋
𝜆𝜆

(𝑛𝑛+ − 𝑛𝑛−) = 2𝜋𝜋
𝜆𝜆
Δ𝑛𝑛. 

2.2.4 Chirality and optical activity 

The history of optical activity begins in the early 19th century, at a time when scientists 

were beginning to unravel the wavelike nature of light. In 1811, French physicist François Jean 

Dominique Arago15,16 observed that some substances could rotate the plane of polarized light 

as it passed through them. However, it was not until 1815 that the French physicist Jean-

Baptiste Biot17,18 made significant progress in understanding this puzzling behavior. Biot's 

investigations into the polarization of light led to the discovery that certain substances possess 

the remarkable ability to rotate the plane of polarized light. This peculiar property, first 

observed in naturally occurring substances such as quartz crystals and sugar solutions, marked 

the birth of optical activity as a distinct scientific field. The following decades witnessed a flurry 

of activity as scientists sought to understand the underlying principles of optical activity. 

Augustin-Jean Fresnel's19 wave theory of light and Jean-Baptiste Biot's collaboration with Félix 

Savart20 furthered the understanding of optical rotation. It was the pioneering work of French 

chemists Louis Pasteur 21 , 22  and Jean-Bernard-Léon Foucault in the mid-19th century that 

established the link between molecular asymmetry and optical activity in their studies of tartaric 

acid, a compound found in grape juice. 
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Optical Rotatory Dispersion (ORD) is a fundamental spectroscopic technique that plays 

a central role in the elucidation of the structural and chiral properties of organic molecules.23 

First introduced in the early 20th century, ORD measures the spectroscopic dependence of the 

rotation axis experienced by linearly polarized light as it passes through an optically active 

(chiral) substance. Linearly polarized light can be represented as a combination of left circularly 

polarized (LCP) and right circularly polarized (RCP) light, each of equal amplitude. Initially, 

before the linearly polarized light enters the chiral medium, there is no rotation in the orientation 

of the plane of polarization of the light. (Figure 3) When exposed to chiral substances, LCP and 

RCP light exhibit different refractive behavior. 

In a transparent material (Pasteur experiments), the absorption coefficient for any 

polarization state is zero which simplifies the Jones matrix of Equation 25) with 𝑘𝑘± = 0. If the 

incident polarization is linear, its expression in the RCP/LCP basis is 𝑽𝑽𝑳𝑳 = 1
√2
�11�. According 

to Equation 25) the transmitted Jones vector is 𝑒𝑒
𝑖𝑖2𝜋𝜋𝜆𝜆 𝑛𝑛−𝑙𝑙

√2
�𝑒𝑒

𝑖𝑖𝑖𝑖𝑙𝑙

1
�, which is a linear polarization 

rotated by α/2. The angle α is an intrinsic property of a chiral chemical compound, called 

specific rotation.24  

 

Figure 3 Schematics of ORD. The purple arrows represent linearly polarized light, the blue and red arrows represent 

left- and right-handed circularly polarized light, respectively, and α/2 is the angle of rotation after the polarized light 

has propagated through the chiral medium. 
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Values for specific rotation 𝛼𝛼 are reported in units of deg·mL·g−1·dm−1, which are often 

shortened to degrees, where in the other components of the unit are tacitly assumed. 25 If the 

wavelength of the light used is 589 nanometers (the sodium D line), the symbol “D” is used. 

The sign of the rotation (+ or −) is always given. Some common compound examples are given 

here (Table 1): 

Table 1 The measured specific rotation α for different compounds 

Compound name 𝛼𝛼𝐷𝐷20 (deg·mL·g−1·dm−1) Δn 

(S)-2-Bromobutane +23.1 7.6 10-5 

(R)-2-Bromobutane -23.1 -7.6 10-5 

D-Sucrose26 +66.37 2.2 10-4 

D-Lactose26 +52.3 1.7 10-4 

Taxol A27 -49 -1.6 10-4 

The sign of 𝛼𝛼 indicates the direction in which the compound rotates plane-polarized 

light, with a positive value indicating clockwise rotation (dextrorotary) and a negative value 

indicating counterclockwise rotation (levorotary). The Δn values presented in Table 1 are very 

small, as a result, the actual angular rotation of plane-polarized light caused by a low molecule 

concentration can be extremely small, making it difficult to measure accurately without 

specialized equipment and careful experimental techniques. For single molecules, direct 

detection of their specific rotation 𝛼𝛼 would be extremely challenging due to the minuscule 

angular changes involved. 

2.2.5 Circular Dichroism (CD) 

Like ORD, CD spectroscopy uses circularly polarized light, but it evaluates the 

difference in absorption23 of left- and right-handed circularly polarized light by a chiral sample 

over a range of wavelengths (Figure 4). This difference in absorption, known as the circular 

dichroism signal, provides insight into the secondary and tertiary structure of molecules, 

making CD a powerful tool for studying protein folding, DNA conformation, and molecular 

chirality.28,29 

https://en.wikipedia.org/wiki/Degree_(angle)
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Figure 4 Schematic representation of the Circular Dichroism instrument configuration.30 

In 2.2.2 and 2.2.3, we discussed the Jones vector and matrix, so we have the transmitted 

intensity is A=V*. V.  For incident right-handed circular polarization, the transmitted Jones 

vector is 𝑉𝑉+ = 𝑒𝑒𝑖𝑖
2𝜋𝜋
𝜆𝜆 𝑖𝑖

−𝑙𝑙 �𝑒𝑒𝑖𝑖𝑖𝑖𝑙𝑙𝑒𝑒
−2𝜋𝜋𝜆𝜆 𝑘𝑘

+𝑙𝑙

0
�;and for left-handed circular polarization, the transmitted 

Jones vector is 𝑉𝑉− = 𝑒𝑒𝑖𝑖
2𝜋𝜋
𝜆𝜆 𝑖𝑖

−𝑙𝑙 �
0

𝑒𝑒−
2𝜋𝜋
𝜆𝜆 𝑘𝑘

−𝑙𝑙�. We obtain then:  

𝐴𝐴± = �𝑒𝑒−
4𝜋𝜋
𝜆𝜆 𝑘𝑘±𝑙𝑙�  26) 

Consequently, the  CD = 2 𝐴𝐴+−𝐴𝐴−

𝐴𝐴++𝐴𝐴−
, depends only on the extinction coefficients for LCP 

and RCP of the material. However, the CD is generally reported in terms of ellipticity in 

millidegrees (𝛿𝛿).  

In biological research, it is important to remember that for most, if not all, the observed 

CD signals are extremely small. It is common to observe ellipticities of about 10 millidegrees 

(mdeg). This means that the difference in absorbance between the two circularly polarized 

components is approximately 3 × 10−4 absorbance units31. In addition, the different types of 

regular secondary structure found in proteins give rise to characteristic deep-UV CD spectra 

(Figure 5).  

The low values of the optical rotation and circular dichroism, associated with the small 

differences between the optical constants of most molecules for right and left circular 

polarizations hints towards the need of exacerbating the interaction between light and matter if 

one wants to reduce the quantity of matter needed to produce a detectable signal on small 

quantity of matter.  
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Figure 5 Far UV CD spectra associated with various types of secondary structure. Solid line, 𝛼𝛼-helix; long dashed 

line, anti-parallel 𝛽𝛽-sheet; dotted line, type I 𝛽𝛽-turn; cross dashed line, extended 31-helix or poly (Pro) II helix; short 

dashed line, irregular structure.31 

2.2.6 Chirality density 

Optical rotation dispersion and circular dichroism measure the chiral effects in the 

interaction of the optical field with the sample. However, it is of both fundamental and practical 

interest to introduce a measure of the chirality of the optical field itself. Tang and Cohen32 

introduced the local measure of the chirality of a nonparaxial monochromatic field. To 

emphasize its local nature, this is referred to here as optical “chirality density”. The chirality 

density C was first introduced by Lipkin33:  

𝐶𝐶 ≡
𝜀𝜀0
2
𝑬𝑬 ∙ ∇ × 𝑬𝑬 +

1
2𝜇𝜇0

𝑩𝑩 ∙ ∇ × 𝑩𝑩 27) 

The time average of C is generally also noted C and is equal to:  

< 𝐶𝐶 >𝜔𝜔≡ 𝐶𝐶 = −
𝜀𝜀0𝜔𝜔

2
𝐼𝐼𝐼𝐼�𝑬𝑬�∗ ∙ 𝑩𝑩�� 28) 
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For a monochromatic plane wave, the relationship between chirality density and 

ellipticity is: 34 

𝐶𝐶 ≃
𝑊𝑊
𝜔𝜔
𝛿𝛿 29) 

Where 𝑊𝑊 is the energy density of the light beam and ω is the angular frequency. This 

remarkably simple result would suggest that increasing the chirality density of light could be 

achieved by simply increasing the flux of photons or the ellipticity. However, we will see that 

in the evanescent fields, the relation is less simple.  

In a chiral field, the field lines wind around a central axis while also having a component 

that is parallel to this axis. The quantity 𝐶𝐶 , is the embodiment of this geometric picture. 

Subsequently, Tang and Cohen32 demonstrated that 𝐶𝐶 determines the degree of asymmetry in 

the excitation rate of a small chiral molecule by circularly polarized light. A chiral molecule 

exposed to the monochromatic EM field generates an electric dipole moment 𝒑𝒑� and magnetic 

dipole moment 𝒎𝒎� , which are given from: 

𝒑𝒑� = 𝛼𝛼�𝑬𝑬� − 𝑑𝑑𝐺𝐺�𝑩𝑩� 30) 

𝒎𝒎� = 𝜒𝜒�𝑩𝑩� + 𝑑𝑑𝐺𝐺�𝑬𝑬� 31) 

𝛼𝛼�，𝜒𝜒�  and 𝐺𝐺�  are frequency–dependent complex scalars, i.e., 𝛼𝛼� = 𝛼𝛼′(𝜔𝜔) + 𝑑𝑑𝛼𝛼′′(𝜔𝜔) . 

They denote the electric, magnetic, and magneto-electric coupling polarizabilities, respectively.  

By combining Eq. 30) and 31) with the rate of excitation of the molecule:   

𝐴𝐴± = ⟨𝑬𝑬 ∙ �̇�𝒑 + 𝑩𝑩 ∙ �̇�𝒎⟩ 32) 

Tang and Cohen have shown that the absorption by chiral materials for RCP (+) and 

LCP (−) polarized light, A±, was32: 

𝐴𝐴± =
𝜔𝜔
2
�𝛼𝛼′′�𝑬𝑬��

2
+ 𝜒𝜒′′�𝑩𝑩��

2
� ± 𝐺𝐺′′𝜔𝜔𝐼𝐼𝐼𝐼�𝑬𝑬�∗ ∙ 𝑩𝑩�� 33) 

We can see that the difference between 𝐴𝐴+  and 𝐴𝐴−  contains two components: one 

associated with the chiral molecule through the imaginary part of its magneto-electric 
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polarizability (𝐺𝐺′′ ) and one associated with the chirality of the light through the term 

𝜔𝜔(𝐼𝐼𝐼𝐼�𝑬𝑬�∗ ∙ 𝑩𝑩��) where we recognize the time-averaged chirality density of Eq. 28). Since the 

properties of the molecules are fixed, maximizing the chirality density will maximize the CD.  

Cohen have proposed the concept of "superchiral" (SC) fields that show chiral 

asymmetries hundreds of times larger than the asymmetries of circularly polarized light (Figure 

6) in small regions of space 35. The key is to set up an imperfect standing wave consisting of 

two counter-propagating CPL plane waves with slightly different amplitudes. An enhancement 

of the chiral asymmetry is predicted at the nodes of the standing wave. Near the superchiral 

nodes, the ratio of optical chirality (C) to electric energy density (Ue) is larger than in the 

incident light. In this plot, the ratio of the left- and right-field amplitudes is 2:1. In the 

experiment, the ratio was 1.17:1.35 

 

Figure 6 Electric field in LCP light (top) and SC light (bottom). In LCP light, the field has uniform optical chirality 

and energy density throughout space. Also plotted are projections of the field onto the xy, xz, and yz planes at a 

single point in time (dark blue). The arrows indicate the direction of propagation of the field. In SC light, the field line 

rotates about its axis but does not propagate. At any instant, the projection of the field along the propagation axis 

is an ellipse, but over time the field at each point traces out a circle. 

I will discuss in the following other solutions proposed to generate superchiral fields. 

However, it must be noted, that superchiral fields will be superchiral only due to the 

enhancement of the electromagnetic fields with respect to the incident field as can be inferred 

from Eq. 29), the ellipticity will always remain bounded between -1 and 1.36 
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2.2.7 Conclusion 

In this part, I have started with the basics of polarized light, exploring the concepts of 

the Jones vector and Jones matrix as essential tools for characterizing the properties of light. 

Building on this foundation, I then delve into the fascinating realm of optical activity and 

circular dichroism, highlighting their crucial role in chirality detection. Finally, I introduce the 

concept of optical chirality density, providing a comprehensive framework for understanding 

and quantifying chirality in the context of light interactions.  
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2.3 Resonators and chiral media 

2.3.1 Optical resonators 

Optical antennas are nanoscale structures designed to manipulate and enhance the 

interaction of light with matter. These tiny devices play a pivotal role in the field of optics by 

enabling precise control of light at the nanoscale. They are critical in applications such as 

nanophotonics, where they improve the efficiency of light-emitting devices and sensors. Optical 

antennas are also instrumental in the development of advanced imaging techniques, enabling 

super-resolution imaging and single-molecule detection. Optical antennas play a key role in 

plasmonics by focusing and amplifying electromagnetic fields at the nanoscale, enabling the 

manipulation of light-matter interactions. This capability is fundamental to plasmonics for 

applications ranging from high-resolution imaging to efficient energy harvesting and advanced 

sensing technologies.  

2.3.2 Plasmonic 

Plasmonics describes the interaction between light and free electrons within a metal, 

resulting in the creation of oscillating electron density waves known as plasmons. These 

plasmons can effectively enhance light-matter interactions. 

Localized Surface Plasmon Resonance (LSPR) enables a precise manipulation of 

electromagnetic fields at the nanoscale, resulting in highly sensitive and tunable sensors.37 

Their role in concentrating electromagnetic energy at specific locations on metallic surfaces 

enhances the detection capabilities, making them invaluable tools for applications such as 

biosensing and environmental monitoring. For the case of localized surface plasmons, light 

interacts with particles much smaller than the incident wavelength (Figure 7a). This leads to a 

plasmon that oscillates inside the nanoparticle at a given frequency known as the LSPR with a 

strong nearfield enhancement (Figure 7b).  
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Figure 7  a) Schematic diagrams illustrating a localized surface plasmon.37  b) repartition of the electric field intensity 

around a 5nm diameter gold nanoparticle in air at the LSPR. The black line delineates the contour of the 

nanoparticle.  

These resonances, which are intricately linked to the specific geometry and material 

composition of the nanostructures, 38 lead to the formation of exceptionally sharp spectral 

absorption and scattering peaks. One way to describe the spectral dependence of the interaction 

of light with a metallic nanoparticle which dimensions are smaller than the mean free path of 

the electrons is by writing the motion (Figure 7) of the electrons:  

𝐼𝐼𝑒𝑒
𝜕𝜕²𝑥𝑥
𝜕𝜕𝑡𝑡²

= −𝛾𝛾
𝜕𝜕𝑥𝑥
𝜕𝜕𝑡𝑡

− 𝑘𝑘𝑥𝑥 − 𝑞𝑞𝐸𝐸𝑒𝑒𝑖𝑖𝜔𝜔𝜔𝜔 34) 

Where 𝐼𝐼𝑒𝑒 is the mass of the electron, 𝛾𝛾 is a damping factor due to the scattering of the 

electrons by the surface or defects, k is the restoring force introduced by the surface limiting 

the movement of the electrons and 𝑞𝑞 is the charge of the electrons. The solutions of 𝑥𝑥 sought 

for are supposed to be harmonic solutions in time so that the amplitude of 𝑥𝑥 have a Lorentz line 

shape centered in ωo with a broadening of γ: 

𝑥𝑥 = −(
1

𝜔𝜔𝑂𝑂2 − 𝜔𝜔2 − 𝑑𝑑𝛾𝛾𝜔𝜔
)
𝑞𝑞
𝐼𝐼
𝐸𝐸𝑜𝑜 35) 

Where 𝜔𝜔𝑂𝑂
2 = 𝑘𝑘/𝐼𝐼𝑒𝑒 .The polarizability of the nanoparticle is 𝑷𝑷 = −𝑁𝑁𝑞𝑞𝑥𝑥 , with 𝑁𝑁  the 

density of electrons, and the electric displacement is 𝑫𝑫 = 𝜀𝜀0𝑬𝑬 + 𝑷𝑷 = 𝜀𝜀0𝜀𝜀𝑟𝑟𝑬𝑬. Inserting Eq. 35) 

yields the spectral dependence of the relative permittivity εr of a small plasmonic nanoparticle:  

𝜀𝜀𝑟𝑟 = 𝑛𝑛2 = (1 +
𝜔𝜔𝑝𝑝2

𝜔𝜔𝑂𝑂2 − 𝜔𝜔2 − 𝑑𝑑𝛾𝛾𝜔𝜔
) 36) 
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Where 𝜔𝜔𝑝𝑝2 = 𝑁𝑁𝑞𝑞2

𝑚𝑚𝜀𝜀0
 is the plasma frequency which for gold is in the UV part of the 

spectrum at approximately 137 nm. The frequency 𝜔𝜔0 of the LSPR of a sphere in a medium of 

permittivity 𝜀𝜀0  is related to the plasma frequency by 𝜔𝜔0 = 𝜔𝜔𝑝𝑝
√3� . 39  In air, a metallic 

nanoparticle with such plasma frequency should have a LSPR at 237 nm.  However, due to the 

presence of interband transitions, which modify the resonant behavior of electrons in the 

nanoparticles, the LSPR of a small gold nanoparticle in air is near 510 nm.  

2.3.3 Chiral resonators with chiral media 

Owing to the strong nearfield intensity generated, LSPR have been used in sensing 

applications, mostly to detect the presence of specific biomolecules. 40 , 41  Building on this 

expertise and having in mind the need of detecting the small signal of ORD and CD (see 

Sections 2.2.4 and 2.2.5), there has been a strong effort in the scientific community with the 

aim of introducing chirality sensitive detection based on plasmonics and superchiral fields. The 

published works can be separated in two categories as I will illustrate in this Section. The maybe 

first logical type of resonators are chiral resonators.  

Kadodwala 42 introduces superchiral polarimetry as a novel spectroscopic technique 

capable of rapidly detecting minute ligand-induced conformational changes in higher-order 

protein structures at the picogram level. (Figure 8) The experiment involved measuring ΔΔλ of 

two enantiomeric plasmonic chiral metasurfaces coupled to ligand solutions containing chiral 

molecules. The concept of ΔΔλ is that in the presence of a dielectric environment the LSPR of 

a chiral resonator is redshifted by Δλ. If the dielectric environment is chiral, the LSPR of a 

right-handed metasurface will be shifted by ΔλR while that of a left-handed metasurface will be 

shifted by ΔλL. If the LSPR is sensitive to the chirality of the environment ΔλR ≠ ΔλL which is 

characterized by ΔΔλ= ΔλR – ΔλL. In Ref 42, the chiral materials used were specifically 

shikimic acid, ADP, shikimate-3-phosphate, and glyphosate for Shikimate kinase (SK) and 5-

enolpyruvylshikimate 3-phosphate synthase (EPSPS) proteins. The ligands, even in the absence 

of proteins, exhibited small ΔΔλ values of opposite sign due to their inherent chirality, reflecting 

their limited interaction with the electromagnetic fields, while proteins inheriting chirality from 

their constituent amino acids exhibited strong ΔΔλ values as large as 16 nm for some proteins.2 

Unlike traditional chiral methods such as CD spectroscopy, superchiral polarimetry exploits 

enhanced chirality within evanescent fields to achieve remarkable sensitivity to mesoscale 
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chiral structures. This technology offers the potential for label-free biophysical measurements 

and, with specially designed cells, can be applied to nanoliter quantities of ligand solutions. In 

addition, the micron-scale nanopatterned surface (Shuriken) required for analysis allows 

unprecedented multiplexing capabilities, making it a promising tool for applications such as 

high-throughput drug screening. 

The chiral resonators used in Kadodwala’s study were fabricated using e-beam 

lithography and had slender arms that intentionally reduce its fineness. As a result, achieving 

precise reproducibility for these resonators proves challenging. These design choices, such as 

the slim arms, affect the fineness of the resonator and the reproducibility of the experimental 

setup. This is a strong limitation, as part of the ORD or CD measured on the bare resonators 

may be affected by linear dichroism and birefringence induced signals associated with residual 

asymmetries resulting from fabrication imperfections.43, 44 

 

Figure 8 Taken from ref [42] a) Graphical description of a single LH nanostructure in the TPS. b) SEM of a Shuriken 

nanostructure from a LH TPS (scale bar shows 250 nm). c) ORD spectra for LH (red) and RH (blue) TPS. d) ΔΔλ 

values for the data obtained from the ORD spectra. 

Chiral resonators have also been investigated in the group of R. Quidant45 .Chiral gold 

nanostructures (Gammadion) with zero intrinsic circular dichroism (CD) but chirality density 

and electric field enhancement were studied. (Figure 9) This was achieved by creating a 

‘racemic’ surface containing both right- and left-handed gammadions. In this work, chiral gold 

nanostructures were coated with a 150nm thin layer of molecular enantiomers of D-, L-

phenylalanine or a racemic mixture of D- and L-phenylalanine. While the metasurface exhibited 

nearly no CD, the presence of L- (D-)phenylalanine induced positive (negative) CD near the 

plasmon resonance of the metasurface. A racemic mixture of L- and D-phenylalanine deposited 

on the metasurface showed no CD. This innovative approach demonstrated that plasmonic 
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sensors can provide chiral selectivity without inherent macroscopic CD, a significant 

advancement in chiral detection technology. Because of the fabrication process, the chiral layer 

was a 150 nm thick dense layer.   

 

Figure 9 Taken from ref [45] Enantiomer detection in the visible spectral range using racemic gammadion arrays. 

a) The molecules were deposited on different sensor arrays, showing the corresponding b) extinction and c) CD 

spectrum. 

Quidant’s group extended their study with achiral dielectric resonators made of silicon 

cylinder arrays.46. (Figure 10) Although achiral, these simple dielectric resonators support 

electric and magnetic modes which overlap spectrally with presumably magneto-electric 

coupling in the overlap region.  The experiment involved measuring the induced CD for 

different molecular enantiomers, specifically L-, D-, and a racemic mixture of the amino acid 

phenylalanine. These sensors exhibited enantiomeric sensitive CD enhancements in the VIS-

NIR range near the resonance of the Si disks. However, the study found that the spectral position 

of the electric dipole (ED) and magnetic dipole (MD) resonances did not significantly affect 

the CD enhancement, with the ED contribution being the dominant factor. 
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Figure 10 Taken from Ref [46] a) Scanning electron micrograph of the transverse section of Si sensors (purple 

colored) coated with a ∼200 nm thick phenylalanine coating (red-colored). b) Experimental molecular UVCD (label 

as CDm) for L-, D-, and DL- (racemic mixture) coatings of phenylalanine on quartz (without sensors), in red, blue, 

and purple, respectively. c) Experimental extinction (top) and CD (bottom) spectra of the bare and coated sensors 

for a 120 × 120 μm2 cylinder array with 130 nm height, 160 nm diameter, and 420 nm period. The gray lines 

correspond to extinction and CD of the bare sensor before the molecular coating. The purple lines correspond to 

the extinction of the coated sensors. The green and yellow shaded areas indicate the position of ED and MD 

resonances, respectively. The red and blue curves in the CD plot correspond to the L- and D-enantiomers of 

phenylalanine coatings on sensors. The green and yellow vertical lines across the plots indicate the position of the 

ED and MD, respectively. 

2.3.4 Achiral resonators with chiral media 

Achiral plasmonic, resonators have been investigated. Achiral plasmonic structures, 

such as gold nanoparticles, nanodisks, and nanorods, do not exhibit CD when interacting with 

circularly polarized light: any measured CD is then presumably attributed to the presence of a 

chiral environment.  

Govorov47 explored the manipulation of ellipticity in nanomaterials in solution using 

chiral peptides adsorbed on non-chiral gold nanoparticles (Figure 11a). The interaction between 

these biomolecules and nanoparticles generated optical activity as confirmed by circular 

dichroism spectroscopy, with a distinct signal observed at the plasmon resonance frequency at 

approximately 520 nm.  
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Figure 11 Taken from Ref [47] a) Optical characterization of gold nanoparticles functionalized with the FlgA3 

peptide (8.6 μM) with 1.14×1013 particles/mL. CD spectra of UV region. b) taken from Ref [48] A scheme of the 

experiment, bare gold islands (lateral dimensions: 75 nm × 64 nm, average height ∼20 nm) are covered with a 19 

nm thick PMMA film which includes embedded riboflavin molecules. CD spectra of the Au nanodisk, molecule only 

and nanodisk with molecule. 

In a similar study, Markovich48 explored the same phenomenon of CD induced by chiral 

molecules in the vicinity of gold nanostructures (nanodisk), in contact with chiral molecules 

embedded in PMMA. (Figure 11b) His study showed that even the minimal presence of two 

monolayers of chiral molecules could induce measurable CD at the plasmonic resonance, while 

these molecules alone would not exhibit such properties. Importantly, the plasmonic substrates 

used in this research offer several advantages, including tunable surface plasmon bands 

spanning the visible to near-infrared region, reproducibility, cost-effectiveness, and robust 

stability against various environmental conditions. Consequently, this innovative approach 

represents a promising avenue for broad-spectrum molecular chirality sensing with potential 

applications in identifying the organic origin of test materials. The mechanism at the origin of 

transfer of chirality observed in these studies is still not perfectly clear. It should be noticed that 

the CD enhancement was large because it was compared to the zero-signal observed for the 

bare resonators, however the values remained in the mdeg range.  
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The effects observed experimentally were also investigated numerically49 (Figure 12). 

In Ref. 49, the study focuses on the electromagnetic interactions between a homogeneous chiral 

medium and plasmonic structures (nanorod) using the software COMSOL. The chiral medium 

was described by using bi-isotropic constitutive relations. The orientation of the incident 

circular polarization with resonantly enhanced field vectors in plasmonic hot spots is shown to 

be crucial, leading to a significant enhancement of the plasmon resonance by 3 orders of 

magnitude, although the CD signal remains small. These findings were in line with the 

experimental results described above.47 It was also shown that achiral plasmonic gap antennas 

outperformed their chiral counterparts, such as Born-Kuhn-type 50  plasmonic dimers, in 

enhancing CD signals. 

 

Figure 12 taken from Ref [49] a) Schematic of plasmon-enhanced circular dichroism (PECD) detection scheme. 

The inset shows the chiral material patches that are placed at the hot-spots of the plasmonic antennas. b) Optical 

responses of chiral medium patches located at the hot-spots of a plasmonic rod antenna array. Paler lines indicate 

the chiral response of the patches without antennas. (Black solid line) Absorption for linearly polarized normal 

incidence. (Orange solid line) Circular dichroism signal (absolute values). The scale on the right marks CD values 

as ellipticity in millidegrees. (Green solid line) Enhancement factor of the CD signal. (Blue solid line) Averaged 

electric field enhancement within the volume occupied by the chiral patches. 
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The same group has extended this study while developing a modal theory.51 This theory 

elucidates the intricate mechanisms underlying nanophotonic chiral sensing, including 

chirality-induced resonance shifts and changes in the excitation and emission efficiencies of 

resonator modes. Surprisingly, resonance shifts are often not the dominant source of signals, 

especially in achiral sensors where they are strictly zero to the first order. Instead, changes in 

excitation and emission efficiencies emerge as the primary driving force for improving circular 

dichroism spectroscopy. Even in the case of symmetric nanostructures (nanorod) exposed to 

linearly polarized light optical chirality can be observed as seen in Figure 13: it results from the 

superposition of the radiated fields and the incident fields.52  

 

Figure 13 Taken from Ref [52] a) Optical chirality induced by a linear plasmonic nanoantenna illuminated with light 

polarized parallel to the antenna axis under normal incidence at resonance (217 THz). The values have been 

normalized by the optical chirality of circularly polarized light. b) The fundamental antenna mode exhibits strongest 

intensity of the electric field at the ends of the rod. The distribution differs significantly from the regions with strongest 

optical chirality. 

However, the nanorod's chiral field exhibits simultaneous regions of opposite sign, 

resulting in a cancelling effect that significantly reduces the overall nanorod's chiral field. This 

intriguing finding highlights the need for a more comprehensive understanding of the complex 

interactions within the chiral nearfield, potentially opening avenues for further investigation 

and refinement of chiral field manipulation techniques. 
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2.3.5 Point like dipole model 

In analyzing the chiral field of the nanorod above, it can be observed that the mechanism 

for polarization control of the localized optical field generated by a single gold nanorod, as 

demonstrated by Giessen52, involves calculating the chirality density spatial distribution for 

illumination with light linearly polarized. The calculation is based on a simple model in which 

the longitudinal plasmon excited in the nanorod is approximated as an oscillating electric dipole 

p and the chirality density is obtained by adding the incident field to the field radiated by the 

electric dipole (Figure 14). 

 

Figure 14 taken from Re [52] Optical chirality of a Hertzian dipole illuminated with linearly polarized light at a 

distance of z = 0.02λ behind the dipole. The distribution changes with increasing polarization angle. The white 

dashed lines are guides to the eye to see the rotation of the initial lobes of optical chirality. 

This simple model was used by Okamoto53 to describe in an experimental study where 

the excitation was obtained in the nearfield with a polarization maintaining SNOM tip. (Figure 

15) The chirality of the nearfield was determined by measuring the ellipticity of the light 

radiated into the far-field for incident linear excitation. The pattern found agreed very well with 

the ones expected with the model assuming that the local field resulted from the superposition 

of the incident field and the field radiated by an electric dipole.  
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Figure 15 Taken from Ref [53] a) Strategy for introducing symmetry breaking in the system and active control of 

the local chiral optical field by adjusting the azimuth angle (θin) of the incident linearly polarized field relative to the 

axis of the nanorod, Inset: Scanning electron micrograph of a gold nanorod (160 nm × 40 nm × 55 nm) used in this 

study. Scale bar: 100 nm. b) Experimentally observed maps for the degree of circular polarization of the optical 

fields (PCP) near a single gold nanorod. 

2.3.6 Conclusion 

In summary, optical resonators play a key role in harnessing and manipulating light at 

the nanoscale, enabling a wide range of applications in photonics and nano-photonics. 

Plasmonic resonators use surface plasmon resonances to focus electromagnetic fields and 

enhance light-matter interactions. Chiral resonators, when coupled with chiral media, exhibit 

unique circular dichroism properties that are invaluable in chiral sensing and spectroscopy. In 

addition, achiral resonators in chiral environments allow tuning of optical properties by 

chirality, opening new avenues for versatile optical devices. Finally, the point-like dipole model 

has been used as a fundamental framework for understanding the behavior of these resonators, 

providing valuable insights for their design and optimization in various optical applications. 
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2.4 Numerical methods 

2.4.1 Introduction of FDTD 

The Finite-Difference-Time-Domain (FDTD) method is a powerful numerical 

technique widely used in the field of electromagnetic simulations. It allows accurate modeling 

and analysis complex optical resonator systems by discretizing both space and time. FDTD has 

gained popularity for its ability to solve Maxwell's equations in a straightforward and versatile 

manner, making it an indispensable tool for studying the behavior of light in various optical 

structures. The accuracy of the results is partly related to a proper definition of the cell 

containing the nanostructure (size, boundary conditions), of the definition of the excitation and 

of the mesh size. These parameters are also related to the wavelength domain sought for. In this 

work I have used the software Lumerical FDTD by ANSYS. I will provide a basic description 

of the calculation configuration I have used while explaining the reasons of the choices made. 

2.4.2 Unit cell 

The calculations were performed in a cubic unit cell as shown in Figure 16. I was 

interested mostly in the nearfield of isolated nanostructures which has implied some choices 

and constraints in the design parameters of the unit cell.  

 

Figure 16 Schematic diagram of FDTD simulation unit cell 
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1. Boundary Conditions: 

• The whole computational window was surrounded by a Perfectly Matching 

Layers (PMLs) to avoid unwanted reflections. 

The PMLs is a common absorbing boundary condition. PMLs are used to prevent 

unwanted reflections at the simulation boundaries. Without PMLs, reflections from the 

boundaries could interfere with the results and distort the behavior of the nano resonator. The 

PMLs allow describing single objects and semi-infinite media.  

2. Simulation Domain: 

• Calculation window size: 1 micrometer in all three spatial dimensions. 

The size of the simulation domain should be large enough to encompass several 

wavelengths of the electromagnetic waves being simulated. This is important to ensure that 

boundary effects do not significantly affect the results. Besides, the simulation region should 

be large enough to accommodate the placement of sources and structures of interest and make 

sure that the objects are far enough away from the boundaries to exhaust the nearfield. On the 

other hand, the simulation domain should be as small as possible to limit the computation time. 

A 1-micrometer domain minimization ensured that there was enough space to enclose the 

nanoslit and study its propagation and scattering without boundary effects affecting the 

simulation results.  

• The gold film is placed on a semi-infinite glass substrate. 

The use of a "semi-infinite" glass substrate in the simulation is a common approximation 

to mimic realistic experimental setups in which light does not undergo reflection at the back of 

the substrate. This was effectively ensured by the PML boundary at the bottom of the simulation 

cell. While this simplification is practical and computationally efficient, it is important to 

recognize that no substrate is truly infinite in reality.  

3. Optical Constants: 

• Optical constants were taken from the Lumerical database and correspond to the 

usual values for gold thin film [Johnson & Christy] and fused silica. 
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Accurate optical constants are essential for realistic simulation results. Gold has 

complex wavelength-dependent refractive indices and absorption coefficients and glass 

although transparent is dispersive too. Lumerical database contains the optical constants of 

these materials to accurately capture these properties. 

4. Excitation Source: 

• The source was a linearly or circularly polarized plane wave. 

The choice between linear and circular polarization allows studying how different 

polarization states of the incident light interact with the nano resonator. By using linear 

polarization, it is possible to study how the orientation of the incident electric field with respect 

to the geometry of the nanoslit affects its response.  

The polarization of the incident light for linear polarization is set by changing the 

polarization angle directly in the general menu of the total-field scattered-field (TFSF) source 

(see subsection 2.4.3), while the setting of the incident light for circular polarization is 

generated by adding two orthogonal linear polarizations with a phase difference of 90 degrees. 

The left- and right-handed are determined by the order of the phase difference. 

The excitation source positioned at -350 nm from the nano resonator, exciting the 

nanostructure from the substrate side. This positioning allows precise targeting of the nanoslit 

from one side of the substrate, which is a typical configuration in experiments. A distance of 

350nm is chosen to ensure that the distance is within the calculation window size, while 

ensuring that the incident light interacts effectively with the nanoslit.  

• The source was a short pulse with a duration of 2.66 fs. 

The use of a short pulse allows the study of ultrafast optical phenomena and the precise 

capture of rapid nano resonator interactions, which is particularly important when studying 

plasmon resonances and transient optical effects. I will go into more detail in the next subsection 

(2.4.4). However, in this work, the decision to use a short pulse of 2.66 fs duration, followed 

by Fourier analysis was driven by the need to broaden the spectrum and center it at 700 nm with 

a spectral width of 600 nm. This large spectral range allowed a comprehensive study of the 

response of the resonator in different wavelengths, facilitating the identification of resonant 

modes and spectral features.  
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5. Data Collection: 

• The electric and magnetic optical fields were then collected in a volume of 

50×110×50 nm3 enclosing the nano resonator by 1 nm mesh step. 

The specific dimensions here refer to the actual dimensions of the nanoslit that I have 

studied. The specific dimensions of the nanoslit will be given in Chapter 3, its electric and 

magnetic field analysis, and later the calculation of the chirality density throughout the nanoslit 

for all wavelengths contained in the optical pulse will also be shown in Chapter 3. The mesh 

will cover the entire calculation window, but we set the mesh region to cover the area we want 

to focus on, so mesh=1nm was used for this region.  

2.4.3 External sources 

The total-field scattered-field (TFSF) source is a technique commonly used in numerical 

simulations, particularly finite-difference time-domain (FDTD) and finite-element method 

(FEM) simulations, to separate incident and scattered fields for analysis. The TFSF source is 

used to inject a finite span plane wave into a computational region. Its primary purpose is to 

separate the incident and scattered fields within the region. The computational region is divided 

into two parts: inside the source region, both incident and scattered fields are present, while 

outside the source region, only the scattered fields are considered. The TFSF source subtracts 

all light directly transmitted through the source region or reflected from a flat substrate at its 

boundaries. This ensures that only scattered light from features inside the source region 

propagates to the outside. When a substrate is present, the TFSF source uses an edge as a 

reference and calculates the fields that would be directly reflected or transmitted by the 

reference refractive index profile. This information is subtracted at the boundaries. The 

injection power of the source depends on the size of the plane wave it injects. To obtain 

meaningful results, normalization by source intensity (in units of cross section) is often used 

instead of the standard method. There are specific rules for setting up TFSF sources, such as 

ensuring that the source does not extend into PMLs boundaries, and that the source injection 

axis is perpendicular to the substrate. 

Overall, TFSF sources are a valuable tool for computational electromagnetics, allowing 

the study of the behavior of electromagnetic waves in structures and materials. 
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2.4.4 The electromagnetic spectrum 

To simulate a wide spectral range, start with a broadband pulse source. This pulse source 

typically has a defined temporal shape (e.g., Gaussian or other waveform) and is centered at a 

specific frequency (or wavelength). After performing a broadband pulsed FDTD simulation, 

the electromagnetic field data are collected over time in the simulation domain. The time 

domain field data is then Fourier transformed to obtain the corresponding frequency domain or 

spectral information. The Fourier transform essentially decomposes the time-domain signal into 

its constituent frequency components, providing amplitude and phase information for each 

frequency component. Repeat this procedure for various center wavelengths or frequencies of 

interest. For each iteration, select a different center wavelength and adjust the characteristics of 

the broadband pulse source accordingly. While the excitation source is a pulse, the simulation 

is often run for a sufficient time until the pulse has passed through the domain and no longer 

interacts significantly with the structures. This allows to observe the stationary or steady-state 

response of the structures to the excitation. 

To account for the dispersion of optical constants, the complex refractive index of the 

materials in simulation (e.g., gold and glass) is often provided in a database as a function of 

wavelength. During simulation, the software interpolates or directly uses the appropriate optical 

constants corresponding to the current wavelength/frequency of the pulse. This accounts for 

dispersion and accurately models how the refractive index of the material changes with 

wavelength. 

2.4.5 Conclusions 

In this section, we have covered the basics of FDTD simulation techniques. Subsection 

2 explored various critical components, such as the simulation domain, optical constants, 

excitation source, boundary conditions, and data acquisition methods. In addition, subsections 

3 and 4 introduced two essential sources: the broadband pulse source and the TFSF source. 

  



CUI Lingfei – Chapter 3 

- 43 - 
 

Chapter 3  

Electromagnetic Field and Chiral 

Field in Nanoslits 

 

 3.1 Introduction      44 

 3.2 Simulation of nanoslit     47 

 3.3 Electromagnetic field of nanoslit   48 

 3.4 Chirality density of nanoslit    53 

 3.5 Comparison with nanorods    56 

 3.6 Point like dipole model     59 

 3.7 Robustness of the chiral field of nanoslit  65 

 3.8 Conclusion      73 

 

               



- 44 - 
 

3.1 Introduction 

In the study of nanorod in Section 2.3.4, we have seen that a chiral field can be formed 

by combining an achiral structure with an achiral incident field. However, we can still see that 

in the case of a nanorod, the chiral field always has both left- and right-hand properties54, and 

they cancel each other out in the unit cell around the nanorod, resulting in the reduction of the 

total chiral field. 

Here, we theoretically and numerically propose to generate a pure and nanoscale hot 

spot of chiral light in the nearfield by using a single achiral plasmonic nanoresonator based on 

a rectangular nanoslit55,56,57 behaving as a magnetic dipole (Figure 17b) in accordance with the 

Babinet principle63,58,59,60.  

 

Figure 17 Schematic representation of the structure of a) nanorod and b) nanoslit. nanorod is a rectangular body 

on a glass medium. Equivalent to an electric dipole, nanoslit is a rectangular slit, also on a glass medium, equivalent 

to a magnetic dipole. They are related by the Babinet Principle. 

The illustration of this principle can be seen in the field maps of the electric and 

magnetic field enhancements in the plane of observation, where the electric and magnetic fields 

are plotted at resonance for a nanoslit and a nanorod for excitation polarized along or 

perpendicular to the long edge of the resonator (Figure 18). We see, in good agreement with 

Babinet's principle, although I did not use an infinitely thin perfect conductor, that the 

distribution of the electric and magnetic fields are opposite with respect to an electric dipole 

antenna such as a plasmonic nanorod59,60. In particular, the E-field is concentrated 

homogeneously in the center of the nanoslit while the B-field is maximum at the edges. 
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Figure 18 Electromagnetic field distribution in the plane of observation of a nanoslit and a nanorod. Spatial 

distribution of a) electric and b) magnetic fields in an XY plane 5nm above nanorod in Z, at lambda=680 nm, and 

for a polarization angle θ = 90°. Spatial distribution of c) electric and d) magnetic fields in an XY plane at the center 

of the nanoslit in Z, at lambda=680 nm, and for a polarization angle θ = 0°.  

In this Chapter, I will be particularly interested in describing the behavior of the nanoslit. 

The idea is that the excitation wavelength may go through the liquid containing the chiral 

molecules (Figure 19). In the case of an experiment that would be based on Fluorescence-

Detected Circular Dichoism (FDCD), no contribution would be expected from the molecules 

in the liquid in the path of the linearly polarized excitation light and any measured dichroic 

signal would originate only from the interaction region defined by the volume of the nanoslit. I 

will explain in this Chapter why and how all the FDCD signal would only originate from the 

interaction volume contained in the nanoslit.   
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Figure 19 Principle of a Fluorescence-Detected Circular Dichroism (FDCD) experiment in the vicinity of a plasmonic 

nanoslit. Chiral molecules in solution are placed on the sample containing the nanoslits. Next, optical excitation is 

made from the substrate side to excite the nanoslits with different polarizations, creating different chirality densities. 

As a result, chiral molecules in solution can freely flow inside the nanoslits. The photons emitted during this 

interaction are then collected from the same side as the excitation so that only the fluorescence of the molecules 

inside the nanoslit is collected, not the reflection. This fluorescence is then used to measure the FDCD by estimating 

the difference in emitted fluorescence for both polarizations before normalizing this signal with respect to the sum 

of fluorescence intensities. This normalization procedure means that the sensitivity of the fluorescence signal to the 

quantum yield of the molecule and to the collection efficiency of the experimental setup cancels out, meaning that 

the FDCD signal is directly proportional to the change in excitation efficiency, namely the chirality density C. 

Plasmonic nanoholes in gold films have already been exploited for the detection of single molecules in solution 

thanks to their fluorescence signal. 
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3.2 Simulation of nanoslit 

3.2.1 Simulation parameters 

As I described at the end of Chapter 2, the simulations were performed with the FDTD 

commercial software Lumerical. All simulation parameter settings are summarized there. The 

rectangular nanoslit used in this study is schematically represented in Figure 20a. It is made in 

a thin gold layer of thickness H=40 nm deposited on a glass substrate. The width W of the 

nanoslit is fixed at 20 nm and its length L varies from 50 to 90 nm in steps of 10 nm. The 

excitation is performed from the glass substrate by a linearly polarized plane wave, with a 

polarization angle θ, and propagates along the positive Z axis (Figure 20a). θ was chosen with 

respect to the short axis of the nanoslit, light polarized at θ = 0° being along the X axis of the 

nanoslit (Figure 20b).  We mainly observe the distribution of electromagnetic fields in a plane 

within the rectangular nanoslit (XY plane when Z=20 nm) and for two points, point A is the 

geometric center (0,0) of the nanoslit and point B is 5 nm away from the short edge and on the 

y axis. These two points correspond to the positions of the maximum electric and magnetic 

fields in the nanoslit, respectively (Figure 18). 

 

Figure 20 Schematic representations of the magnetic dipolar nanoslit. a) 3D and b) 2D representation of the 

rectangular nanoslit in a thin gold layer of 40 nm. The vector k represents the direction of propagation of the linearly 

polarized incident plane wave, and θ, the angle of this polarization with respect to the nanoslit’s transverse axis 

(Ox). 
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3.3 Electromagnetic field of nanoslit 

3.3.1 Spectral responses of the nanoslit for different dimension 

Figure 21 shows the spectral responses of the nanoslit for different lengths L. These 

spectra represent the enhancement of the electric (Figure 21a) and magnetic (Figure 21c) fields 

normalized to the incident wave, in the center (point A) and side (point B) of the nanoslit, 20 

nm above the glass substrate and for θ = 45°, respectively. We observe resonant behaviours of 

the electric and magnetic fields with a linear red shift when the length of the nanoslit increases. 

In the following, we will focus on a nanoslit length of 80 nm, yielding a resonance at 680 nm. 

The reason for this is that we are mainly targeting visible applications and molecules that absorb 

in this wavelength range. The biomolecule that our team was considering was a light-harvesting 

complexes (LHCII) extracted from plants. These are chiral molecules that have been selected 

throughout evolution to harvest the energy of light extremely efficiently, which make them very 

interesting for photovoltaic technologies for instance. They also present model system for the 

study of quantum coherence in systems in contact with the environment. The Light Harvesting 

complexes present a strong absorption band in the red part of the visible spectrum associated 

with circular dichroism which make them ideal probes to study the electromagnetic coupling 

of chiral molecule to plasmonic resonators. 

However, as shown in Figure 21, by changing the length of the nanoslit, the entire 

spectrum is accessible. 

 

Figure 21 Spectral responses of the magnetic dipolar nanoslit. a) b) Electric and c) magnetic spectral responses 

for different lengths of the optical nanoslit shown in Figure 20a, for a width of 20 nm and θ = 45°. The spectra 

represent the electric and magnetic fields normalized by the incident wave, respectively, at points A (geometric 

center of the nanoslit in the three dimensions of space) and B (at the center of the nanoslit in XZ and 5 nm from the 

edge of the nanoslit in Y), as shown in the inset in Figure 20b. 
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The resonant behaviour of the electric and magnetic fields agrees well with the 

variations expected for a resonant object. A continuous variation of the resonance position with 

length was also observed as can be seen in the Figure 21b (for the lengths up to the IR). It is 

also noticeable in Figure 21 that the magnitude of the fields increases when the aspect ratio of 

the nanoslit increases. Another way of playing with the aspect ratio of the nanoslits can be 

achieved through the modification of the thickness of the gold layer (Figure 22). As can be 

seen, increasing thickness results in a shifting of the resonance towards the blue up to a 

saturation level associated with the presence of the inter-band transitions of gold.  

 

Figure 22 Spectral response in electric field enhancement for gold nanoslit of width 20 nm, length 80 nm, and 

different thicknesses.  

The amplitude variations are directly associated with the position of the resonance and 

the reduction of the ohmic losses in gold when the wavelength of light increases. At this stage, 

I have shown that nanoslit behave as plasmonic resonators with resonant properties all 

mirroring those of nanorods according to the Babinet’s principle.  
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3.3.2 Electric and magnetic energy density 

Figure 23a and Figure 23b display the time-average electric and magnetic energy 

density 𝑈𝑈𝑒𝑒 = 𝜀𝜀0
4

|𝑬𝑬|2 and 𝑈𝑈𝑏𝑏 = |𝑩𝑩|2

2𝜇𝜇0
 at the points A and point B of the nanoslit as a function of 

the wavelength of the incoming plane wave and of the angle of its linear polarization with 

respect to the nanoslit for angles comprised in the range [-90:15:90]. We see that 𝑈𝑈𝑒𝑒 and 𝑈𝑈𝑏𝑏 are 

maximum at λ = 680 nm for a polarization angle of 𝜃𝜃 = 0° corresponding to a polarization 

along the short axis of the nanoslit.60, 61 These observations support the hypothesis of a magnetic 

dipole character for the nanoslit. It is important to notice that the electric and magnetic energy 

densities are the same inside the nanoslit for opposite angles ±θ. 

 

Figure 23 Spectral responses of the a) electric energy densities 𝑈𝑈𝑒𝑒 and b) magnetic energy densities 𝑈𝑈𝑏𝑏 simulated 

by FDTD as a function of the incident polarization angle θ and wavelength respectively at points A and B (inset of 

Figure 20b) for nanoslit. 

A second mode is expected for the electric field of light polarized along the long axis of 

the nanoslit. In a nanorod it would correspond to the transverse mode (observed for light 

polarized perpendicularly to the short axis of the nanorod. This mode is expected to be around 

530 nm but is strongly damped by the inter-band transitions of gold and cannot be seen with 

the colour scale used in Figure 23. However, it can be observed in the plot of |𝑬𝑬| ∕ |𝑬𝑬𝟎𝟎| for a 

polarization angle of ±90° and is presented in Figure 24a. This mode will not contribute 

significantly to the chiral properties inside the nanoslit, and it will not be further discussed in 

this Chapter. However, its presence will be of major importance in the ellipticity of the fields 

and it will be discussed in the next Chapter.  
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Figure 24 Evolution for different θ angles of a) electric and b) magnetic field distributions at the Z-middle of a gold 

nanoslit 80 nm long, 20 nm wide, and 40 nm thick for wavelengths 645nm, corresponding to the chirality density 

maxima for linear excitation polarization as we will see in Section 3.4. 

Another comment concerns the uniformity of the fields inside the nanoslit near 

resonance. The field maps calculated using different incident linear polarizations are shown in 

Figure 24. The electric field enhancement remains very uniform inside the nanoslit up to very 

steep polarization angles (75° here). Its magnitude is only reduced constantly as can be inferred 

from Figure 23a. The magnetic field enhancement seems to be slightly more sensitive to the 

excitation field orientation although it remains confined at the ends of the nanoslits. We will 

see in the next paragraphs that these properties are very important to explain the uniformity of 

the chirality of the fields inside the nanoslit and their variations with wavelength. Obviously, 

for a polarization angle of 90°, the main resonance is no longer excited, and the field 

enhancement is much smaller and reflects the local polarizations at the edges of the nanoslit.  

In order to describe the electromagnetic behavior of this nanoslit further, Figure 25a and 

Figure 25b provide the spatial distributions of the electric and magnetic field enhancements in 

the observation plane of the nanoslit, and excited for θ=45° at the the resonant frequency (λ=680 

nm). Indeed, as we will see later, we found that the highest chiral density was under these 

illumination conditions. In particular, the E-field is concentrated homogeneously in the center 

of the nanoslit while the B-field is maximum at the edges. Also, these electric and magnetic 

fields are increased by a factor of about 13 and 6 with respect to the incoming light, respectively. 
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Figure 25 Electromagnetic field distribution and spectral energy responses. Spatial distribution of a) electric and b) 
magnetic fields in an XY plane at the center of the nanoslit in Z, at lambda=680 nm, and for a polarization angle θ 

= 45°. 

In the next sections I will address the chirality density of the electromagnetic field inside 

the nanoslit and propose an explanation for the properties observed. I will investigate then the 

robustness of the effects against variations in shape and organization of the nanoslits. 



CUI Lingfei – 3.4 Chirality density of nanoslit 

- 53 - 
 

3.4 Chirality density of nanoslit 

3.4.1 Spectral responses of the chirality density 

From the electromagnetic fields calculated and displayed in Figure 25a and Figure 25b, 

I have computed the chirality density enhancement 𝐶𝐶𝑒𝑒𝑖𝑖ℎ in the nanoslit, defined as 𝐶𝐶𝑒𝑒𝑖𝑖ℎ = 𝐶𝐶
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

, 

with 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 the chirality density of a circularly polarized light, without the aperture, carrying the 

same power as the linearly polarized excitation impinging on the nanoslit. Figure 26 presents 

𝐶𝐶𝑒𝑒𝑖𝑖ℎ  at the geometric center point A of the nanoslit as a function of the wavelength for two 

polarization angles (45° and -45°). The results are striking. As we can see, for opposite 

polarization angles θ=±45°, the sign of chirality density is reversed. Also, and surprisingly, the 

sign of the chirality density is changed when crossing the resonant frequency of 680 nm, 𝐶𝐶𝑒𝑒𝑖𝑖ℎ 

being close to 0 at the resonance. Two opposite extrema are then observed on each side of the 

resonance, one at 645 nm and the other at 718 nm, with chirality density enhancements of 

respectively 4.5 and 3.5, in absolute value. 

 

Figure 26 Spectral responses of the chirality density. Spectral responses in chirality density (blue and red lines) 

and intensity (purple line) for a nanoslit of length 80 nm, width 20 nm, for two opposite angles θ = ±45° and at point 

A (inset of Figure 20b).  

The enhancement of the chirality density 𝐶𝐶𝑒𝑒𝑖𝑖ℎ in the nanoslit was calculated at point A 

in the center of the nanoslit for any polarization angle θ and the wavelength range from 400 to 

1000 nm (Figure 27). This plot generalizes what was observed in Figure 26. The chirality 

density disappears when the incident polarization is along the short nanoslit axis (x-axis or 

θ=0°) or the long nanoslit axis (y-axis or θ=90°). 
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Figure 27 Variations of 𝐶𝐶𝑒𝑒𝑖𝑖ℎ as a function of the incident polarization angle θ and wavelength in the center of the 

nanoslit. 

For different polarization angles, we consider the average chiral density in the internal 

volume of the nanoslit, called the volumetric chirality density 𝐶𝐶𝑣𝑣𝑜𝑜𝑙𝑙. Indeed, as we can see, not 

only for opposite polarization angles θ=±45°, the sign of average chirality density is reversed, 

but also something that is true for any pairs of opposite angles θ but with a lower magnitude of 

𝐶𝐶𝑒𝑒𝑖𝑖ℎ (Figure 28).  

 

Figure 28 Volumetric chirality density inside the nanoslit for different angles θ of the linear polarization of the 

excitation light.  
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3.4.2 Spatial responses of the chirality density 

From these results, the spatial distributions of the chirality density in the observation 

plane and for the wavelengths of 645, 680 and 718 nm are shown in Figure 29a and Figure 29b, 

for θ = +45° and θ = -45°, respectively. Remarkably, while the local chirality density 

distributions around positive plasmonic antennas (disks, nanorods, gammadions…) have 

always been observed as non-uniform61, 62, in this case, they are perfectly homogeneous at the 

wavelengths of the two extrema (645 and 718 nm). Also, as we can see in Figure 29a and Figure 

29b, the sign of the chirality density changes altogether by switching the polarization from +45° 

to -45°. Therefore, the nanoslit provides a pure chiral light tunable using either the incoming 

wavelength or polarization and free of any background. Surprisingly, the chirality distribution 

averages 0 within the nanoslit at the resonance wavelength for a linearly polarized excitation. 

The spatial response of the chirality density in different planes is shown in Appendix 2.  

 

Figure 29 Spatial distribution of the chirality density in an XY plane within the nanoslit in Z, for three characteristic 

wavelengths and for a) θ = +45° and b) θ = -45°. 
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3.5 Comparison with nanorods 

3.5.1 Chirality density enhancement study for nanorod 

The chiral field around nanorods has been observed to exhibit significant 

inhomogeneity, as documented in references 61 and 62. This suggests that the chirality density 

distribution around nanorods is not uniform, which may affect their ability to consistently 

interact with chiral molecules. 

In contrast, nanoslits appear to offer a distinct advantage in terms of the homogeneity 

of their chiral field. The distribution of chiral field strength within the center plane of nanoslits 

is remarkably uniform, as I have shown. This homogeneity can be advantageous when probing 

the chirality of molecules in solution, especially when molecules flow within the confined space 

of the nanoslit. It implies that the chiral interaction experienced by molecules passing through 

nanoslits is relatively consistent throughout the volume, making it a practical choice for 

experiments involving the detection of chiral molecules in solution. 

However, it is important to note that in practical experiments, such as using resonators 

to probe the chirality of molecules in solution, the molecules themselves are in motion within 

the solution. This dynamic environment can introduce additional complexity into the 

assessment of chirality density. Therefore, to make a meaningful comparison between nanorods 

and nanoslits, it is critical to quantitatively assess and compare the magnitude of chirality 

density within the same volume when molecules are present and in motion. This will provide 

valuable insights into the practical effectiveness of nanorods and nanoslits in the detection of 

chiral molecules, taking into account both their intrinsic properties and the dynamic nature of 

the experimental setup. 

The volumetric chirality density 𝐶𝐶𝑣𝑣𝑜𝑜𝑙𝑙 generated by the nanoslit is compared to that of a 

gold nanorod, having the dimensions W=20 nm, H=40 nm and L=70 nm, and creating a 𝐶𝐶𝑒𝑒𝑖𝑖ℎ 

maximum at 𝜆𝜆 = 645 nm. 

I have numerically calculated the spectral variations of 𝐶𝐶𝑒𝑒𝑖𝑖ℎfor an incident polarization 

angle θ of 45° in the wavelength range 400-1000 nm for a nanorod consisting of gold deposited 

on glass. 𝐶𝐶𝑒𝑒𝑖𝑖ℎ values were monitored at point C located 5 nm from one end of the nanorod and 

20 nm above the glass substrate, where the increase in the electric field was most significant 
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(Figure 30a). I have first determined the dimensions of a nanorod that would have a 𝐶𝐶𝑒𝑒𝑖𝑖ℎ 

extremum at the same wavelength as that observed at the lowest nanoslit wavelengths, i.e., at 

645 nm (Figure 26). For this purpose, I have used a width (W) of 20 nm and a height (H) of 40 

nm and adjusted the length (L). It was found that 𝐶𝐶𝑒𝑒𝑖𝑖ℎ was maximum at 645nm for a length 

L=70 nm (Figure 30b). In contrast to the case of the nanoslit (Figure 27), we can see that the 

sign of the chirality density is always the same throughout the spectral range for a given 

polarization angle (Figure 30b). 49 

 
Figure 30 a) Schematic of the nanorod and position of the point C. b) Variations of 𝐶𝐶𝑒𝑒𝑖𝑖ℎ  as a function of the 

wavelength for a nanorod with dimensions W=20nm, H=40nm and L=70nm, and θ = ±45°.  

3.5.2 Volumetric chirality density 

The determination of 𝐶𝐶𝑣𝑣𝑜𝑜𝑙𝑙 shown in Figure 31a and Figure 31b was obtained with the 

dimensions mentioned above. I have simulated the electromagnetic response of both types of 

antennas (nanoslit and nanorod) supported by glass and excited by a plane wave propagating 

along the positive Z-axis from the substrate. The wavelength was set to 645 nm and the incident 

field was linearly polarized with an angle θ with respect to the short axis of the nanoslit and 

nanorod (Figure 31a and Figure 31b).  If we assume that such antennas could be exploited 

experimentally to study chiral molecules, in the case of the nanoslit, only the internal volume 

of the nanoslit should be considered useful in terms of nearfield light-matter interactions, and 

this volume is equal to 64000 nm3. On the other hand, only the part surrounding the nanorod 

would be accessible to potential chiral molecules, which, for a similar volume, corresponds to 

a thickness, of 6 nm around the nanorod (64704 nm3, when neglecting the plane on which the 

nanorod sits on the glass substrate).  Figure 31c plots 𝐶𝐶𝑣𝑣𝑜𝑜𝑙𝑙 for the nanoslit and nanorod as a 
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function of the angle θ. Several observations can be made. First, we see that for the same angle, 

the volumetric chirality densities have opposite signs. Second, in absolute value, the nanoslit 

featured 𝐶𝐶𝑣𝑣𝑜𝑜𝑙𝑙  values that are increased by a factor of 9 compared to the nanorod, for all 

polarization angles. This is due to the non-uniformity of the chirality density around the nanorod 

which decreases the volumetric average 𝐶𝐶𝑣𝑣𝑜𝑜𝑙𝑙, in contrast to the nanoslit which generates a pure 

chiral light as illustrated by the insets of Figure 31c. In the insets of Figure 31c, the chirality 

density distributions were calculated in middle plane of the nanoslit and 5 nm above the 

nanorod. Finally, the comparative advantage of the nanoslit is not limited to the increase of the 

chirality density in the nearfield but must also be highlighted with respect to the interaction 

volume that a far field excitation generates. Indeed, while the chiral signal provided by the 

nanoslit would be free of any background signal due to the opacity of the gold layer in the case 

of transmission measurements, the one generated by the nanorod would be added to background 

chiral light-matter interactions occurring during the propagation of the incoming plane wave 

far from the antenna. This is something that must be considered if one wants to use such achiral 

antennas experimentally.  

 
Figure 31 Comparison of gold nanoslit versus nanorod. Schematic representations of a) the nanoslit and b) the 

nanorod, excited by a plane wave linearly polarized by an angle θ with respect to the transverse axis of the antennas 

(Ox). The dotted lines determine the volume considered in the calculation of 𝐶𝐶𝑣𝑣𝑜𝑜𝑙𝑙. c) Volumetric chirality density 

inside the nanoslit and in the nearfield of the nanorod for different angles θ of the linear polarization of the excitation 

light. In the insets are represented the spatial distributions of the chirality density around these two antennas for θ = 

+45°, demonstrating the inhomogeneity of C in the case of the plasmonic nanorod. 
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3.6 Point like dipole model 

The Babinet Principle is a fundamental concept in electromagnetism that describes the 

relationship between the diffraction patterns produced by complementary infinitely thin and 

perfectly conducting objects. It states that the diffraction pattern produced by an object is 

complementary to the diffraction pattern produced by its aperture or negative counterpart. In 

other words, if you have two objects, one with an aperture (opening) and the other with a solid 

structure in place of the aperture, the sum of their diffraction patterns will produce a uniform 

plane wave. This principle is widely used in optics and electromagnetic theory to understand 

and design various optical devices, such as diffraction gratings, and to manipulate the behavior 

of light at the nanoscale, as in the case of nanorods and nanoslits. In addition, if the nanorod 

can be modelled by an electric dipole p, the nanoslit should be modelled by a magnetic dipole 

m.  

3.6.1 Equivalent to a magnetic dipole 

To describe the response of the nanoslit, I have used a 3x3 diagonal magnetic 

polarizability tensor 𝛼𝛼𝑚𝑚𝑚𝑚. In the Cartesian reference frame, with the nanoslit in the Oxy plane 

having its minor axis along x and neglecting the transverse mode because of the small field 

generated, only the first element 𝛼𝛼𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚(λ) = 𝛼𝛼′(λ) + 𝑑𝑑𝛼𝛼′′(λ) ≠ 0. I will describe its spectral 

dependence with a Lorentzian profile (Figure 32). The Lorentz oscillator is centered at 677 nm 

with a broadening of 67 nm and has an amplitude of unity. The spectral position and broadening 

were chosen so as to fit to the calculated field enhancements.  
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Figure 32 Spectral dependence of the real and imaginary parts of 𝛼𝛼𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚 

The magnetic moment m of the nanoslit is obtained as: 

𝒎𝒎 = 𝛼𝛼𝑚𝑚𝑚𝑚.𝑯𝑯𝒐𝒐 37) 

  

with 𝑯𝑯𝒐𝒐 = 𝑩𝑩𝒐𝒐/𝜇𝜇𝑜𝑜 with 𝑯𝑯𝒐𝒐 the magnetic field of the incident wave. The incident plane wave 

propagated along the z-axis and was linearly polarized with an angle 𝜃𝜃 with respect to the x-

axis. The normalized coordinates of the incident electric field were 𝑬𝑬𝒐𝒐 = (𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 , 𝑐𝑐𝑑𝑑𝑛𝑛 𝜃𝜃 , 0). The 

incident magnetic field was then obtained as 𝑩𝑩𝒐𝒐 = 1
𝑐𝑐
𝒌𝒌 × 𝑬𝑬𝒐𝒐  with 𝒌𝒌  the wavevector of the 

incident light. 

The total fields radiated by a point-like magnetic dipole with moment m, containing 

both nearfield and far-field contributions and decomposed in a magnetic field 𝑩𝑩𝑟𝑟𝑟𝑟𝑟𝑟  and an 

electric field 𝑬𝑬𝑟𝑟𝑟𝑟𝑟𝑟 contributions observed in the direction 𝑛𝑛 at a distance 𝑟𝑟 from the position of 

the dipole, are given by:63 

𝑩𝑩𝑟𝑟𝑟𝑟𝑟𝑟 =
1

4𝜋𝜋𝜇𝜇𝑜𝑜
�𝑘𝑘2(𝒏𝒏 × 𝒎𝒎) × 𝒏𝒏

𝑒𝑒𝑖𝑖𝑘𝑘𝑟𝑟

𝑟𝑟
+ [3𝒏𝒏(𝒏𝒏.𝒎𝒎) −𝒎𝒎] �

1
𝑟𝑟3
−
𝑑𝑑𝑘𝑘
𝑟𝑟2
� 𝑒𝑒𝑖𝑖𝑘𝑘𝑟𝑟� 38) 

𝑬𝑬𝑟𝑟𝑟𝑟𝑟𝑟 = −
𝑍𝑍𝑜𝑜
4𝜋𝜋

𝑘𝑘2(𝒏𝒏 × 𝒎𝒎)
𝑒𝑒𝑖𝑖𝑘𝑘𝑟𝑟

𝑟𝑟
�1 −

1
𝑑𝑑𝑘𝑘𝑟𝑟

� 39) 

with 𝑍𝑍𝑜𝑜 the impedance of vacuum. 



CUI Lingfei – 3.6 Point like dipole model 

- 61 - 
 

3.6.2 Chiral field calculation of magnetic dipoles 

We note that 𝑬𝑬𝑟𝑟𝑟𝑟𝑟𝑟  and 𝑩𝑩𝑟𝑟𝑟𝑟𝑟𝑟  are always orthogonal; therefore, the chirality density 

𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 = − 𝜀𝜀0𝜔𝜔
2
𝐼𝐼𝐼𝐼�𝑬𝑬�𝑟𝑟𝑟𝑟𝑟𝑟

∗ ∙ 𝑩𝑩�𝒓𝒓𝒓𝒓𝒓𝒓� is always equal to zero. This is exactly what was found for the 

electric dipole in the works published described above. This means that for the nanoslit, any 

chirality density will also result from the superposition of the incident field and the radiated 

field. In order to generate chirality, it is then necessary to add the contribution of the incident 

fields (𝑬𝑬𝑜𝑜, 𝑩𝑩𝑜𝑜) which are here linearly polarized.  

The superposition of the two linearly polarized transverse fields, incident and radiated, 

and the phase shift between them results in an elliptically polarized light. The phase shift 

reaches π/2 when the dipole is driven at resonance, and it varies gradually with frequency 

between 0 and π due to the broadening of the Lorentzian profile chosen here for the 

polarizability. The total chirality density is then obtained as:61,62,64 

𝐶𝐶𝜔𝜔𝑜𝑜𝜔𝜔 = −
𝜔𝜔𝜀𝜀0

2
𝐼𝐼𝐼𝐼((𝑬𝑬𝑟𝑟𝑟𝑟𝑟𝑟+𝑬𝑬𝑜𝑜)∗. (𝑩𝑩𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑩𝑩𝑜𝑜)) 40) 

A final important ingredient of the model was to consider the enhancement of the 

nearfields in the nanoslit, as suggested by the numerically calculated field maps (Figure 21a 

and Figure 25a). It can be seen from these distributions that the electric field is mainly enhanced 

by a factor 𝜉𝜉 , especially in the area where the chirality density is large, so that 𝜉𝜉 = 𝑬𝑬𝒕𝒕𝒐𝒐𝒕𝒕
𝑬𝑬𝑜𝑜

=

𝑬𝑬𝑟𝑟𝑟𝑟𝑟𝑟+𝑬𝑬𝒐𝒐
𝑬𝑬𝑜𝑜

. To reproduce this effect, I have applied a field enhancement factor 𝜉𝜉, to the radiated 

electric field only, so that 𝑬𝑬𝑟𝑟𝑟𝑟𝑟𝑟 → (𝜉𝜉 − 1)𝑬𝑬𝑟𝑟𝑟𝑟𝑟𝑟 while 𝑩𝑩𝑟𝑟𝑟𝑟𝑟𝑟 remained unchanged resulting in:  

𝐶𝐶𝜔𝜔𝑜𝑜𝜔𝜔 = −
𝜔𝜔𝜀𝜀0

2
𝐼𝐼𝐼𝐼([(𝜉𝜉 − 1)𝑬𝑬𝑟𝑟𝑟𝑟𝑟𝑟+𝑬𝑬𝑜𝑜]∗. (𝑩𝑩𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑩𝑩𝑜𝑜)) 41) 

The total chirality density was then calculated taking all these contributions into 

account. Finally, using Eq. 37), Eq. 38) and Eq. 39) of Chapter 3 in Eq. 41), the total chirality 

density is given by: 

𝐶𝐶𝜔𝜔𝑜𝑜𝜔𝜔 =
𝜔𝜔

8𝑍𝑍𝑜𝑜c²𝑟𝑟3
[𝑘𝑘. 𝑟𝑟. 𝜉𝜉(𝛼𝛼′ + 𝑘𝑘. 𝑟𝑟.𝛼𝛼′′) − 𝛼𝛼′′] . 𝑐𝑐𝑑𝑑𝑛𝑛(2𝜃𝜃)  42) 
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This relation explicitly shows the 𝑐𝑐𝑑𝑑𝑛𝑛(2𝜃𝜃)  dependence of the sign of the chirality 

density on the polarization angle and in particular the change in sign as the polarization angle 

changes from 𝜃𝜃 to −𝜃𝜃. Eq. 42) also shows that the chirality density should be maximal at ±45°. 

If we neglect the 𝑘𝑘. 𝑟𝑟.𝛼𝛼" which yields a (𝑘𝑘. 𝑟𝑟)2 term and use 45° for 𝜃𝜃, we find: 

𝐶𝐶𝜔𝜔𝑜𝑜𝜔𝜔 ≈
𝜔𝜔

8𝑍𝑍𝑜𝑜c²𝑟𝑟3
[𝑘𝑘. 𝑟𝑟. 𝜉𝜉.𝛼𝛼′ − 𝛼𝛼′′] 43) 

Figure 33a shows the spectral dependence of 𝐶𝐶𝜔𝜔𝑜𝑜𝜔𝜔 derived from Eq. 41), 20 nm above 

the dipole in z and for both polarization angles ±45°. The results observed are in excellent 

agreement with the spectral responses of the nanoslit (Figure 26). The sign of the chirality 

density changes with the angle of the polarization of the plane wave incident on the dipole. 

These observations are perfectly explained by Eq. 42) due to the 𝑐𝑐𝑑𝑑𝑛𝑛(2𝜃𝜃) term. An inversion 

of the sign of the chirality density is found at the resonance of the magnetic dipole, with two 

spectral extrema on each side of the resonance’s wavelength. This spectral dependence can be 

directly related to the large field enhancement factor which allows the term 𝑘𝑘. 𝑟𝑟. 𝜉𝜉.𝛼𝛼′ of Eq. 43) 

associated with real part of the magnetic dipole moment to dominate the 𝛼𝛼′′ term in the spectral 

variations of 𝐶𝐶𝜔𝜔𝑜𝑜𝜔𝜔 . One can expect the spectral variations of 𝐶𝐶𝜔𝜔𝑜𝑜𝜔𝜔  to be dominated by the 

imaginary part of the magnetic dipole moment for smaller electric field enhancements. 

 

 

Figure 33 Spectral and spatial chirality density responses obtained using a magnetic dipole model. a) Spectral 

chirality density and intensity responses 20 nm above a magnetic dipole interacting with a linearly polarized plane 

wave propagating along the positive Z axis and having a polarization angle relative to the dipole of θ = ±45°. Spatial 

distribution of the chirality density in an XY plane, 20 nm above the magnetic dipole, for the three characteristic 

wavelengths corresponding to the extrema and the resonance and for b) θ = +45° and c) θ = -45°. 
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Also using the expression of 𝐶𝐶𝜔𝜔𝑜𝑜𝜔𝜔 (Eq. 41)), the chirality density distributions in an Oxy 

plane 20 nm away from the dipole were calculated and are shown in Figure 33b. We used an 

incident polarization of 45° and -45°, a field enhancement 𝜉𝜉 = 13 and wavelengths of 645 nm, 

680 nm, and 718 nm. In addition to the sign change, another striking feature is that the 𝐶𝐶𝜔𝜔𝑜𝑜𝜔𝜔  

field distribution becomes very uniform. These field maps are in excellent qualitative agreement 

with those calculated numerically within the nanoslit in Figure 29. This confirms that the critical 

parameter for obtaining spatially uniform values for the total chirality density is to generate a 

strong electric field enhancement as spatially extended as possible. This feature is achieved in 

the nanoslit (Figure 25a), resulting in a uniform distribution of chirality density within the 

nanoslit volume.  

As presented in Figure 33, with a value of 𝜉𝜉 = 13, this model reproduces quite well the 

variation of 𝐶𝐶𝜔𝜔𝑜𝑜𝜔𝜔 as a function of wavelength and polarization angle. I present in Figure 34 the 

influence of the value of 𝜉𝜉 on the spectral dependence of 𝐶𝐶𝜔𝜔𝑜𝑜𝜔𝜔 for a polarization angle of 45° 

and at 20 nm above the point-like dipole. Using a polarization angle of -45° would give exactly 

opposite spectral variations, they are not shown here for clarity. 

 

Figure 34 Spectral variation of 𝐶𝐶𝜔𝜔𝑜𝑜𝜔𝜔 calculated for different values of the electric field enhancement factor 𝜉𝜉 for a) 

the dipolar model and b) the nanoslit. The values of 𝐶𝐶𝜔𝜔𝑜𝑜𝜔𝜔 were all normalized to the maximum value obtained (for 

𝜉𝜉 = 15 and wavelength = 646 nm). 

Figure 34a and Figure 34b compare the numerical calculations with the dipole model 

for different 𝜉𝜉 values to test the validity of Eq. 43). The smaller values 𝜉𝜉 were obtained in the 

nanoslit at different positions since the electric field enhancement can be reduced near the ends 

of the nanoslit while the magnetic field remains small as we have seen in Figure 34. It can be 

seen that excellent agreement is found between these two approaches, confirming that 
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increasing the electric field is indeed an important parameter in assessing the chirality density 

in the vicinity of a nano-antenna. 
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3.7 Robustness of the chiral field of nanoslit 

In this subsection, I will discuss how manufacturing defects affect the properties and 

response of the chiral field. Although manufacturing processes are advanced, they are not 

completely immune to defects and variations. These deviations from ideal geometry may 

introduce unexpected perturbations into the chiral field, which can alter its behavior and 

performance. To ensure the reliability and reproducibility of nanoslit, the effects of fabrication 

defects must be thoroughly investigated. I first attempted to process different sizes of nanoslit 

by e-beam lithography. Then I will use simulations to understand the relationship between 

fabrication errors and chiral field response using a parametric study. 

3.7.1 Fabrication processing 

The fabrication process I have described for creating nanoslits using e-beam lithography 

is a precise and complicated technique used in nanofabrication. Here's a step-by-step 

breakdown of the process (Figure 35): 

 

Figure 35 The process of creating nanoslits using e-beam lithography. 
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1. Surface Cleaning:  

The process starts with surface preparation. The substrate is cleaned to remove any 

contaminants. This is accomplished by a combination of an ultrasonic bath (37 kHz) in acetone 

for 1 minute and isopropanol solution rinsing, followed by an oxygen plasma treatment for 5 

minutes. The plasma treatment was used to further clean the surface and possibly modify its 

properties to make it more suitable for the subsequent steps. 

2. Metallization:  

In the second step, thin layers of materials are deposited on the cleaned surface. First, a 

5nm of adhesion layer of titanium (Ti) is deposited, followed by a 40nm thin film of gold (Au). 

This layer serves as the starting point for creating the nanoslit structure. 

3. Resist deposition:  

To create a protective layer and facilitate the subsequent patterning step, a 113 nm of 

polymethyl methacrylate (PMMA) is spin-coated onto the Au surface. The resist is then 

annealed on a hotplate at 180℃ for 1 minute to ensure a good polymerization. The PMMA 

layer will act as a resist material and its thickness is carefully controlled in this step.  

4. E-beam exposure:  

The desired pattern for the nanoslit is exposed to the PMMA-coated surface using e-

beam lithography. This involves directing a focused beam of electrons at an acceleration voltage 

of 20kV and a beam current of 20 nA onto the PMMA. Different doses multiple of 150µC were 

tested. This breaks the polymer in the exposed areas, allowing for the creation of the pattern of 

nanoslits in the development step. 

5. Development:  

After exposure, the PMMA layer is developed. This involves the selective removal of 

the PMMA affected by the e-beam exposure. The development is typically performed with a 

developer solution of methyl isobutyl ketone (MIBK) for 50 seconds and then isopropanol for 

30 seconds.  

6. Etching:  
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Etching was performed by an argon plasma through the exposed gold areas in the 

PMMA pattern. Importantly, the etch rate of the PMMA is slower than that of the gold, allowing 

selective etching of the gold while leaving the PMMA nearly intact in the areas where the 

nanoslits are defined. This selective etching process creates the nanoslits in the gold layer. 

7. Lift-Off:  

The final step is to remove any remaining PMMA from the substrate. This is done by 

washing the sample with an acetone solution at 40℃ for 15 minutes. The acetone dissolves the 

PMMA, leaving behind the nanoslit structures in the gold layer. 

3.7.2 Characterization of the nanoslit 

The experimental design for processing nanoslits includes a 2cm × 2cm glass substrate 

with a 100-micron square central area. (Figure 36) This are containing nine subarrays, each 

measuring 20µm × 20µm and spaced 1µm apart. These subarrays are labeled from 1 to 9, and 

within each subarray, nanoslits of varying dimensions are created. The nanoslit dimensions 

increase incrementally from 20nm × 80nm in subarray 1 to 120nm × 240nm in subarray 9, with 

a constant aspect ratio. The spacing between adjacent nanoslits in each subarray is 500 nm, 

which defines the lattice constant. This design allows the effects of nanoslit processing to be 

studied under different conditions. 

 

Figure 36 Nanofabrication design of nanoslits sample 
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In Figure 37, there are four sub-figures labeled a) – d). Sub-figures a) and b) represent 

patterns observed with an optical microscope. Sub-figure a) represents the entire region of the 

specimen and is taken in the BRIGHT-field, while sub-figure b) represents the entire region but 

is taken in the DARK-field. Subfigures c) and d) are scanning electron microscope (SEM) 

images. Sub-figure c) shows the entire region of the sample, while sub-figure d) specifically 

shows one of the sub-fields, providing a detailed SEM image of a specific portion of the sample. 

Some darker contrast can be observed in some areas, possibly originating from residual PMMA 

remaining on the surface.  

 

Figure 37 Observations and Imaging. a) Optical microscope: BRIGHT field. b) Optical microscope: DARK field. c) 
SEM image of the entire sample region. d) SEM image to reveal specific features within that subarray. 
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In Figure 38, higher magnification SEM patterns provide a closer examination of the 

nanoslits within different subarrays. Figure 38a, taken from a smaller size region, illustrates the 

challenges of maintaining a matrix shape as the nanoslit size decreases, resulting in irregular 

shapes within the nanoslits. In contrast, Figure 38b, taken from a larger size region, illustrates 

that a more distinct rectangular aperture shape emerges as the nanoslit size increases. However, 

a common observation persists across different sizes: the boundaries of each cell exhibit 

significant roughness, suggesting that the etching process reveals the grain structure of 

evaporated gold, regardless of nanoslit size. 

Following the initial observations in Figure 38, efforts were made to improve the 

boundary roughness, resulting in Figure 39, which shows two different treatments. In Figure 

39a, a different approach involving annealing was used, where the sample was placed on a 

180℃ hot plate for five minutes. Alternatively, in Figure 39a, the Focused Ion Beam (FIB) 

method was used, which significantly improved the boundary roughness of the samples. While 

both treatments contributed to the reduction of edge roughness to varied degrees, it is evident 

that the apertures obtained were not perfect, making them less rectangular and more rounded in 

appearance. 

 
Figure 38 SEM image of different size of nanoslits unit. 
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Figure 39 Boundary roughness enhancement. a) Annealing: 180℃ for 5min b) Focused Ion Beam method. 

Given the challenges encountered during the nanoslit fabrication process, a series of 

simulations were performed in next subsection to comprehensively evaluate the effects of size 

variations, shape variations, and cell spacing. These simulations were designed to determine 

whether the observed discrepancies, would significantly affect the chiral field. Such 

investigations are crucial to elucidate the practical implications of these variations and guide 

the optimization of nanoslit design to achieve desired results in chiral field applications. I will 

plot the spectral dependence of the chirality density for illumination with a linear polarization 

at 45° from the long axis of the nanoslits. We must keep in mind that all the other properties or 

the fields will vary accordingly.  

3.7.3 Influence of dimensions 

We have seen in Figure 21b that by changing the nanoslit's length, the full red part of 

the spectrum could be covered. It must be noted that the thickness of gold is a parameter which 

is well controlled by the evaporation process. Going further in the green, blue, or even UV part 

of the spectrum will require changing the material for silver or aluminium. When the length of 

the nanoslits increases from 60nm to 100nm for constant width, i.e. the aspect ratio increases, 
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the spectral dependence of the volumetric chirality density keeps its characteristic S-shape but 

it is shifted towards the near-infrared part of the spectrum as can be seen in Figure 40a. The 

amplitude of the S-shape increases too as a result of the decrease of the ohmic losses in gold 

when the wavelength increases as was stated in the description of Figure 21. I have plotted the 

chirality density map in the middle of the nanoslits for the characteristic wavelengths of the 

chirality density dispersion, i.e., at the two extrema and at the zero in between the extrema 

(Figure 40b). We can see that the increase of the amplitude of the S-shape reflects the increase 

in the chirality density everywhere inside the nanoslit while the distribution remains uniform.  

 

Figure 40 a) Spectral responses in volumetric chirality density for nanoslits of different lengths made in a gold layer. 

b) L=60nm c) L=100nm Spatial distribution of chirality density at the center of several representative nanoslits for 

linear polarization at 45° from the short axis of the nanoslits and wavelengths corresponding to different extrema.  

Another way of varying the aspect ratio is obtained by varying the thickness of the gold 

layer. As one can see, increasing thickness results in a shifting of the resonance towards the 

blue up to a saturation level as expected since increasing the thickness results in a decrease of 

the aspect ratio.  
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Figure 41 Spectral response in field enhancement and chirality density for gold nanoslits of width 20 nm, length 80 

nm, and different thicknesses. 

3.7.4 Influence of rounded edges 

In Figure 39 we have seen that the shape of the nanoslits were not perfect rectangles 

even when fabricated with FIB. I have modelled the rounded edges introduced by the 

fabrication as a nanoslit with full rounded corners. It can be seen in Figure 42a that although 

the lineshape of the spectral dependence of C is maintained, a blueshift of nearly 26nm is 

observed. This can be understood as an effective reduction of the aspect ratio of the nanoslit. 

This means that the exact resonance position of the nanoslit will have to be controlled and the 

fabrication process will need to be adapted if a particular wavelength is targeted. Concerning 

the distribution of the chirality density inside the nanoslit, the usual uniform distribution is 

observed.  

 
Figure 42 a) Spectral responses in volumetric chirality density for two types of nanoslit, one with 90° angled corners 

and the other with rounded corners. b) Spatial distribution of the chirality density at the center of the nanoslit with 

rounded corners for different polarization angles and wavelengths corresponding to different extrema of a). 
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3.8 Conclusion 

In conclusion, this chapter highlights four key findings about nanoslits. First, nanoslits 

exhibit plasmon resonances similar to magnetic dipoles. Second, unlike nanorods, nanoslits 

exhibit a uniform chirality density that can be excited and manipulated by changes in 

polarization angle and wavelength. Third, a point-like magnetic dipole model accurately 

reproduces the simulation results when incident field and electric field enhancement are 

considered, with a tentative explanation suggesting that the uniform C arises from the uniform 

electric field within nanoslits. Finally, a parametric study shows that the optical properties of 

nanoslits, in particular their uniform chirality, remain robust to shape variations. Size and 

rounded edges induce wavelength shifts, highlighting the importance of optimizing the 

fabrication process for precise control even if the broad spectral response reduces the criticality 

of these imperfections. Additionally, the possibility to play with the excitation polarization 

gives some flexibility, as we will see in the next Chapter. 
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4.1 Introduction 

I have shown numerically that a plasmonic resonator based on a rectangular nanoslit 

could be described as a magnetic dipole and was behaving as a tunable nanosource of purely 

chiral light. 

In Chapter 3, we have seen that for nanoslit, in the nearfield, the phenomena of chiral 

density and ellipticity have completely different spectral and polarization properties. By 

exploring the nanoslit for chirality density and ellipticity, I intend to explain mathematically 

why these two parameters behave so differently in the nearfield of the nanoslit.  

Recent advances in computational capabilities and numerical methods, including FDTD 

and finite-element methods (FEM), have greatly expanded the capabilities of nanophotonic 

device design 65 . Pure brute force involves exhaustively searching through all possible 

combinations of parameters to find the optimal solution. While it guarantees finding the global 

optimum (if the search space is discrete and finite), it becomes computationally infeasible for 

problems with a large parameter space. When dealing with physical simulations like FDTD or 

FEM, brute force can be impractical due to the computational cost, especially for high-

dimensional problems. 

Techniques such as parameter sweep or stochastic optimization methods such as genetic 

algorithms (GAs) are only suitable for problems with a limited number of design parameters 

and are effective when a good initial guess is available. While GAs has an advantage over pure 

brute force in terms of efficiency, they still lack a direct integration of physics into the 

optimization process. The physical insight comes only through the formulation of the objective 

function, which represents the fitness of the solutions based on the physical criteria. However, 

GAs themselves do not directly use any physics-based knowledge to guide the search. 

Deep learning algorithms are emerging as a promising alternative for inverse design in 

nanophotonics, but they require excessively large data sets for training and can be 

computationally expensive during both training and inference. When it comes to optimization, 

deep learning can be thought of as a way to learn and generalize patterns from a large library 

of data, but the process of generating this library can involve brute force or complex simulations. 

The underlying physics can be lost to some extent when using deep learning, especially if the 

neural network learns to approximate the underlying physics without fully understanding the 
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underlying principles. The challenge is to ensure that the deep learning model captures the 

essential physics, rather than memorizing specific cases from the training data. 

Gradient based methods (Levenberg-Marquardt, Newton-Gauss…) are fast converging 

techniques but they require the knowledge of an initial set of parameters that is close enough to 

the optimal set. This is an intrinsic limitation that I will not solve here. In addition, in the case 

of the spatial distribution of the fields inside the nanoslit, gradient-based methods require 

calculating the nearfield at each step of the optimization which can be handled using FDTD. 

This step would completely limit the interest of a gradient-based method unless it can be done 

in another faster way. This is the point I will address in this Chapter.  

By utilizing an extended Jones matrix formalism, I will show that it is possible to 

quantitatively relate the excitation to the fields inside the nanoslit for both the transverse and 

longitudinal modes providing valuable insights into their behavior in the optical nearfield. The 

nanoslit studied and analyzed will be based on the specific dimensions and materials of the 

nanoslit studied in the simulation mentioned in Chapter 3. The optimization method will allow 

quickly exploring and calculating any physical quantity related to the electromagnetic 

properties of the light in the nanoslit for any polarization state and any wavelength of the 

incident wave. In the longer term, the method developed in this Chapter would provide a fast 

mapping of the polarization-dependent nearfield properties of various resonators, which could 

be used in combination with GA or deep learning algorithms. 
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4.2 Nearfield to far-field Connection 

In classical optics, when studying the behavior of light interacting with objects or 

surfaces, there are typically two distinct regions: the nearfield and the far-field. The "nearfield" 

refers to the space close to an object or surface where the distance between the object and the 

observer is comparable to or less than the wavelength of light. 

In order to address the behavior of polarized light in the vicinity of objects and surfaces, 

diverse methods aimed at extending the principles and applications of polarization theory to the 

nearfield region have been developed.66,67 The limitation that requires the development of 

"polarization principles" relates to the behavior of polarized light in the nearfield region of 

objects and surfaces. In classical optics, the behavior of light is typically described by scalar 

wave equations that do not fully account for the polarization state of light and its interactions 

with materials in the nearfield. However, when light interacts with objects or surfaces at 

distances comparable to or smaller than the wavelength of light (i.e., in the nearfield region), 

traditional scalar wave equations are no longer sufficient to fully understand and model the 

complex polarization effects that occur. As a result, the nearfield requires alternative methods, 

such as those introduced by F. Nori 68, to accurately account for polarization phenomena, 

especially unconventional states such as spin angular momentum (AM) and orbital AM. 

Nanoantennas can support different resonant modes according to the structure geometry 

and material properties which can be excited depending on the polarization state of the incident 

field. In particular, the nanoslits support two modes as evidenced by the simulation with very 

different polarization properties. In this part, I will present how the polarization properties of 

the electromagnetic fields in the nanoslit can be obtained for any incident polarization using an 

extended Jones formalism. I will now describe how I will relate the incident excitation fields to 

the polarization properties in the nearfield maps. 
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4.3 Resonant modes of the nanoslit 

In the previous Chapters, I have investigated the resonant behavior of a nanoslit antenna 

using FDTD simulations. The nanoslit (Figure 43a), characterized by its sub-wavelength 

dimensions, exhibits intriguing dual-mode resonances when exposed to incident fields 

polarized at 𝜃𝜃 = 0°  and 𝜃𝜃 = 90° , corresponding to horizontal and vertical polarization, 

respectively. Figure 43b and Figure 43c recall the electric field amplitude distribution in the 

mid-plane of the nanoslit when the incident fields are polarized at 𝜃𝜃 = 0°  and 90° 

corresponding to the longitudinal and transverse modes, respectively.  

 

Figure 43 a) 3D representation of the rectangular nanoslit in a thin gold layer of 40 nm thick. The vector k represents 

the direction of propagation of the linearly polarized incident plane wave (𝑬𝑬𝑖𝑖𝑖𝑖𝑐𝑐), and θ, the angle of this polarization 

with respect to the nanoslit 's transverse axis (Ox). The field that has passed through the nanoslit is the local field 

(𝑬𝑬𝑙𝑙𝑜𝑜𝑐𝑐). b) Electric field amplitude distribution when the incident polarization angle is 0 degrees (longitudinal mode 

at 680nm), with strong electric field concentration at the nanogap center. c) Electric field amplitude distribution at a 

polarization angle of 90 degrees (transverse mode at 558nm), where the electric field is focused at both ends of the 

short edge of the nanogap, with relatively weaker regions.  
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Our primary focus is to characterize the amplitude and phase response of the two 

resonant modes in the nanoslit. The amplitude reflects the intensity of the electromagnetic field, 

while the phase describes the temporal and spatial orientation of the oscillating field 

components. By investigating these key parameters, I am aiming at unravelling the underlying 

physics governing the interaction of light with the nanoslit structure. 

Figure 44a and Figure 44b shows detailed visual representations of the amplitude and 

phase information at the center of nanoslit for the longitudinal and transverse resonant modes 

of nanoslit, respectively. The horizontal axis represents the wavelength, spanning from 400nm 

to 1000nm. On the left side of the vertical axis, we observe the normalized amplitude, calculated 

as the ratio of the amplitude at the center of nanoslit to the standard amplitude of the incident 

electric field. The right side of the vertical axis displays the phase information subtracted from 

the phase of the incident field, ranging from -90 degrees to 90 degrees. The solid line represents 

the amplitude, while the dashed line depicts the phase. Figure 44a presents the amplitude and 

phase data for the electric field in the nanoslit for incident light polarized along short side of 

nanoslit. It can observe a typical resonant behavior of the field inside the nanoslit with a 

maximum of amplitude at 680 nm associated with a field enhancement of 18, a full width at 

half maximum of 128nm (from 627nm to 755nm) and a phase crossing zero near resonance. In 

the following, I will call this resonance ‘longitudinal mode’. Figure 44b presents the amplitude 

and phase data for the electric field in the nanoslit for incident light polarized along long side 

of nanoslit. It can also observe a typical resonant behavior of the field inside the nanoslit with 

a maximum of amplitude at 558 nm associated with a field enhancement of 0.85, a full width 

at half maximum more than 447 nm (from 400nm to 847nm) and a phase of -41 degrees at 

resonance. In the following, I will call this resonance ‘transverse mode’. With the knowledge 

of the fields of the longitudinal and transverse modes only, I will now show how to calculate 

the total near field for any excitation polarization using the Jones formalism. 
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Figure 44 Amplitude and phase of the a) longitudinal mode and b) transverse mode, where the horizontal axis 

represents the wavelength (400 nm to 1000 nm), the left vertical axis shows the normalized amplitude, and the right 

vertical axis shows the phase information (-90 degrees to 90 degrees). The solid line represents the amplitude, and 

the dashed line represents the phase. The longitudinal mode is shown in light blue and the transverse mode is 

shown in orange. 

4.3.1 Formalism 

In Chapter 3, I have discussed the point-like dipole model, and the magnetic moment m 

of the dipole was obtained as 𝒎𝒎 = 𝛼𝛼𝑚𝑚𝑚𝑚.𝑯𝑯𝟎𝟎 (Eq. 37). The polarizability 𝛼𝛼𝑚𝑚𝑚𝑚 is a 3*3 diagonal 

tensor:  

𝛼𝛼𝑚𝑚𝑚𝑚 = �
𝛼𝛼𝑥𝑥𝑥𝑥 0 0

0 𝛼𝛼𝑦𝑦𝑦𝑦 0
0 0 0

� 44) 

Combined with Eq. 37) in Chapter 3, this gives: 

𝒎𝒎 = 𝑝𝑝𝑙𝑙𝐻𝐻,𝐶𝐶 ∗ 𝒎𝒎𝑳𝑳 + 𝑝𝑝𝑙𝑙𝐻𝐻,𝑇𝑇 ∗ 𝒎𝒎𝑻𝑻 45) 

Where: 

𝑝𝑝𝑙𝑙𝐶𝐶  and 𝑝𝑝𝑙𝑙𝑇𝑇  are the amplitudes of the incident magnetic field polarized in the 

longitudinal and transverse direction components (𝐻𝐻𝑦𝑦 and 𝐻𝐻𝑥𝑥). 𝒎𝒎𝑳𝑳 and 𝒎𝒎𝑻𝑻 are the magnetic 

moment vectors in the longitudinal and transverse components, where 𝒎𝒎𝑳𝑳 = �
𝛼𝛼𝑥𝑥𝑥𝑥

0
0
� and 𝒎𝒎𝑻𝑻 =

�
0
𝛼𝛼𝑦𝑦𝑦𝑦

0
�. 
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For a point-like dipole with moment m, the total radiation field includes contributions 

from both the near and far fields, as we discussed in Chapter 3, and Eq. 38)  and Eq. 39) have 

given the radiated magnetic field and the electric field contributions that are observed in the 

direction n at a distance r from the position of the dipole. All the operations involved in the 

calculation of the fields (rotational and dot product) are linear so the fields radiated and the 

derived quantities (chirality density, Ue…) can be calculated from the weighted superposition 

of the fields radiated by the longitudinal and transverse modes. The total electric and magnetic 

fields can be written: 

𝑬𝑬𝒕𝒕𝒐𝒐𝒕𝒕 = 𝑝𝑝𝑙𝑙𝐸𝐸,𝐶𝐶 ∗ 𝑬𝑬𝒍𝒍𝒐𝒐𝒍𝒍,𝑳𝑳 + 𝑝𝑝𝑙𝑙𝐸𝐸,𝑇𝑇 ∗ 𝑬𝑬𝒍𝒍𝒐𝒐𝒍𝒍,𝑻𝑻 46) 

𝑩𝑩𝒕𝒕𝒐𝒐𝒕𝒕 = 𝑝𝑝𝑙𝑙𝐻𝐻,𝐶𝐶 ∗ 𝑩𝑩𝒍𝒍𝒐𝒐𝒍𝒍,𝑳𝑳 + 𝑝𝑝𝑙𝑙𝐻𝐻,𝑇𝑇 ∗ 𝑩𝑩𝒍𝒍𝒐𝒐𝒍𝒍,𝑻𝑻 47) 

The weighting 𝑝𝑝𝑙𝑙𝐸𝐸,𝐶𝐶, 𝑝𝑝𝑙𝑙𝐸𝐸,𝑇𝑇, 𝑝𝑝𝑙𝑙𝐻𝐻,𝐶𝐶, 𝑝𝑝𝑙𝑙𝐻𝐻,𝑇𝑇 are the component of the incident field. From 

this relationship, we can deduce that for any polarized input field, as long as we know the 

longitudinal and transverse modes of the local field of the electric-magnetic fields, we can get 

the total field in any point of the nanoslit.  

I have described in Sections 2.2.2 and 2.2.3 of Chapter 2, how the Jones vector 

represents the amplitude and phase of the electric field components of the light, and the Jones 

matrix can be used to determine the polarization state of the incident field. Thus, we can easily 

obtain 𝑝𝑝𝑙𝑙𝐶𝐶 and 𝑝𝑝𝑙𝑙𝑇𝑇 by multiplying the incident fields 𝑬𝑬𝑖𝑖𝑖𝑖𝑐𝑐 and 𝑯𝑯𝑖𝑖𝑖𝑖𝑐𝑐 by the Jones matrix.  

The electric field numerically calculated in the nanoslit may be decomposed into x and 

y coordinate systems set by the nanoslit. So, the Jones matrix  𝑱𝑱𝐸𝐸  is given by: 

𝑱𝑱𝐸𝐸 = �
𝐽𝐽𝐸𝐸,𝑥𝑥𝑥𝑥 𝐽𝐽𝐸𝐸,𝑥𝑥𝑦𝑦
𝐽𝐽𝐸𝐸,𝑦𝑦𝑥𝑥 𝐽𝐽𝐸𝐸,𝑦𝑦𝑦𝑦

� 48) 

The 2x2 matrix 𝑱𝑱𝐸𝐸 is defined by 𝑬𝑬𝑙𝑙𝑜𝑜𝑐𝑐 = 𝑱𝑱𝐸𝐸𝑬𝑬𝑖𝑖𝑖𝑖𝑐𝑐 where 𝑬𝑬𝑙𝑙𝑜𝑜𝑐𝑐 and 𝑬𝑬𝑖𝑖𝑖𝑖𝑐𝑐 are the local and 

incident electric fields, respectively. The FDTD calculated Jones vector, 𝑬𝑬𝑙𝑙𝑜𝑜𝑐𝑐, is a 2x1 complex 

vector that describes the polarization state of the local field in the nanoslit. It must be noted that 

the local field contains the incident field as well. To define the Jones matrix JE, we need to 

know the specific values of the elements 𝐽𝐽𝑥𝑥𝑥𝑥, 𝐽𝐽𝑥𝑥𝑦𝑦, 𝐽𝐽𝑦𝑦𝑥𝑥, and 𝐽𝐽𝑦𝑦𝑦𝑦, which are determined by the 

properties of the nanoslit and its effect on the incident light's polarization state.  
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However, chiral density and ellipticity are not only related to electric field information 

only and we need to know the information about the magnetic field as well. This information 

was obtained through for the elements of  𝑱𝑱𝐻𝐻 the equivalent of 𝑱𝑱𝐸𝐸 but for the magnetic fields. 

The Jones matrix  𝑱𝑱𝐻𝐻 is given by: 

𝑱𝑱𝐻𝐻 = �
𝐽𝐽𝐻𝐻,𝑥𝑥𝑥𝑥 𝐽𝐽𝐻𝐻,𝑥𝑥𝑦𝑦
𝐽𝐽𝐻𝐻,𝑦𝑦𝑥𝑥 𝐽𝐽𝐻𝐻,𝑦𝑦𝑦𝑦

� 49) 

Similarly, to 𝑱𝑱𝐸𝐸, the 2x2 submatrix 𝑱𝑱𝐻𝐻 is defined by 𝑯𝑯𝑙𝑙𝑜𝑜𝑐𝑐 = 𝑱𝑱𝐻𝐻𝑯𝑯𝑖𝑖𝑖𝑖𝑐𝑐 with 𝑯𝑯𝑙𝑙𝑜𝑜𝑐𝑐 and 𝑯𝑯𝑖𝑖𝑖𝑖𝑐𝑐 

the local and incident magnetic fields, respectively. 

As discussed earlier, the longitudinal and transverse modes correspond to incident linear 

polarizations at θ=0° and θ=90°. The longitudinal mode is excited with a plane wave defined 

as 𝑬𝑬𝒊𝒊𝒏𝒏𝒍𝒍 = �1
0�  and 𝑯𝑯𝒊𝒊𝒏𝒏𝒍𝒍 = � 0

1/𝑍𝑍0
� . According to the relationships between the local and 

incident fields, these two illumination conditions were sufficient for the determination of the 

elements of 𝑱𝑱𝐸𝐸 and 𝑱𝑱𝐻𝐻. So, I developed a 4x4 block diagonal Jones matrix 𝑱𝑱𝐺𝐺𝐸𝐸𝑁𝑁 (Figure 45) that 

characterizes the nanoslit that contains the 2x2 𝑱𝑱𝐸𝐸, and the 2x2 𝑱𝑱𝐻𝐻 on its diagonal: 

𝑱𝑱𝐺𝐺𝐸𝐸𝑁𝑁 =   �𝑱𝑱𝐸𝐸 0
0 𝑱𝑱𝐻𝐻

� 50) 

The next step is to generalize this formalism to describe the 2D field repartition in the 

nanoslit as depicted in Figure 45. 

 

 

Figure 45 Jones matrix in relation to incident field and local field. Decomposition of the electric fields on the (x,y) 

coordinates, the incident field and local field are divided into 𝑬𝑬𝑖𝑖𝑖𝑖𝑐𝑐(𝑥𝑥,𝑦𝑦) and 𝑬𝑬𝑙𝑙𝑜𝑜𝑐𝑐(𝑥𝑥,𝑦𝑦). The middle plane represents 

a plane of the optical system, the solid blue lines represent the grid. In the plane divided by the grid there is the 

coordinate system (u, v), and  𝑱𝑱𝑮𝑮𝑬𝑬𝑮𝑮 represents the matrix of the two sets of 2x2 Jones matrices containing the 

electric and magnetic fields in the plane, and it is frequency dependent. 
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The electromagnetic field characteristics obtained by the FDTD simulation are shown 

in Figure 46. Figure 46a - Figure 46c shows the electric field enhancement, magnetic field 

enhancement and chirality density enhancement of the nanoslit at the resonance frequency (680 

nm) with the polarization angle of the incident field lines at 0 degree. Figure 46d - Figure 46f 

shows the electric field enhancement, magnetic field enhancement and chirality density 

enhancement of the nanoslit at the resonance frequency (558 nm) with the polarization angle of 

the incident field lines at 90 degrees.  

 

Figure 46 The distribution of electromagnetic field enhancement and chirality density enhancement in the center 

plane of the nanoslit obtained from FDTD simulations. a) electric field enhancement, b) magnetic field 

enhancement, c) chirality density enhancement of the nanoslit at the resonance frequency (680 nm) with the 

polarization angle of the incident field lines at 0 degree. d) electric field enhancement, e) magnetic field 

enhancement, f) chirality density enhancement of the nanoslit at the resonance frequency (558 nm) with the 

polarization angle of the incident field lines at 90 degrees.  
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With the knowledge of 𝑱𝑱𝐺𝐺𝐸𝐸𝑁𝑁 it is possible to calculate any electromagnetic property at 

any incident polarization or wavelength in the same plane as the nanoslit. Comparisons with 

the FDTD simulation are made here. Figure 47 presents the distribution of electromagnetic field 

enhancements and chirality density enhancements in the center plane of the nanoslit obtained 

from 𝑱𝑱𝐺𝐺𝐸𝐸𝑁𝑁(4,4,𝑢𝑢, 𝑑𝑑, 𝜆𝜆)  calculations. Figure 47a - Figure 47c shows the electric field 

enhancement, magnetic field enhancement and chirality density enhancement of the nanoslit at 

the resonance frequency (680 nm) with the polarization angle of the incident field lines at 0 

degree. Figure 47d - Figure 47f shows the electric field enhancement, magnetic field 

enhancement and chirality density enhancement of the nanoslit at the resonance frequency (558 

nm) with the polarization angle of the incident field lines at 90 degrees.  

 

Figure 47 The distribution of electromagnetic field enhancement and chirality density enhancement in the center 

plane of the nanoslit obtained from 𝑱𝑱𝐺𝐺𝐸𝐸𝑁𝑁(4,4,𝑢𝑢, 𝑑𝑑, 𝜆𝜆) calculations. a) electric field enhancement, b) magnetic field 

enhancement, c) chirality density enhancement of the nanoslit at the resonance frequency (680 nm) with the 

polarization angle of the incident field lines at 0 degree. d) electric field enhancement, e) magnetic field 

enhancement, f) chirality density enhancement of the nanoslit at the resonance frequency (558 nm) with the 

polarization angle of the incident field lines at 90 degrees.  
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By comparing Figure 46 (FDTD calculated fields) and Figure 47 (𝑱𝑱𝐺𝐺𝐸𝐸𝑁𝑁 calculated fields) 

we see noticeable differences for the magnetic field enhancement distribution (Figure 46b, 

Figure 46e and Figure 47b, Figure 47e). For the chirality density, a large difference is produced 

when the incident field polarization angle is 0 degrees; however, it is almost the same when the 

incident field polarization angle is 90 degrees. 

 

Figure 48 The distribution of the specific differences of electromagnetic field enhancement and chirality density 

enhancement in the center plane of the nanoslit obtained from each grid point within this plane, where the 

differences are calculated by FDTD simulation full-field results minus the results calculated by 𝑱𝑱𝐺𝐺𝐸𝐸𝑁𝑁(4,4,𝑢𝑢,𝑑𝑑, 𝜆𝜆). a) 

electric field enhancement, b) magnetic field enhancement, c) chirality density enhancement of the nanoslit at the 

resonance frequency (680 nm) with the polarization angle of the incident field lines at 0 degree. d) electric field 

enhancement, e) magnetic field enhancement, f) chirality density enhancement of the nanoslit at the resonance 

frequency (558 nm) with the polarization angle of the incident field lines at 90 degrees.  

Figure 48 illustrates the specific differences in these fields in each grid point by 

subtracting the fields of Figure 46 to those of Figure 47. We can see that for the electric field 

enhancement (Figure 48a and Figure 48d), the difference is of the order 1.3% and 1%, 
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respectively. In contrast, Figure 48b and Figure 48e shows that for the magnetic field 

enhancement distribution, the differences can be of the order of 100% and 10%, respectively. 

As a result, for the chirality density (Figure 48c and Figure 48f), the largest differences amount 

to 83% and 10% depending on the incident polarization. Up to now, all the results in Figure 47 

were based on only the two xy components of the fields while the FDTD simulation considered 

the three xyz components of the fields. The origin of these mismatches would be that the z-

component of the fields was not taken into account which seems to be particularly critical for 

the longitudinal mode of the nanoslit. Therefore, it is necessary to extend the 𝑱𝑱𝐺𝐺𝐸𝐸𝑁𝑁 matrix to 

three-dimensional components. 

The electric incident field is expressed as 𝑬𝑬𝒊𝒊𝒏𝒏𝒍𝒍 = �
𝐸𝐸𝑖𝑖𝑖𝑖𝑐𝑐,𝑥𝑥
𝐸𝐸𝑖𝑖𝑖𝑖𝑐𝑐,𝑦𝑦
𝐸𝐸𝑖𝑖𝑖𝑖𝑐𝑐,𝑧𝑧

� with the third coordinate 

being equal to zero. The magnetic incident field is expressed as 𝑯𝑯𝒊𝒊𝒏𝒏𝒍𝒍 = �
𝐻𝐻𝑖𝑖𝑖𝑖𝑐𝑐,𝑥𝑥
𝐻𝐻𝑖𝑖𝑖𝑖𝑐𝑐,𝑦𝑦
𝐻𝐻𝑖𝑖𝑖𝑖𝑐𝑐,𝑧𝑧

�. At the same 

time, 𝑱𝑱𝐸𝐸  and 𝑱𝑱𝑯𝑯 are expressed as 𝑱𝑱𝐸𝐸 = �
𝐽𝐽𝐸𝐸,𝑥𝑥𝑥𝑥 𝐽𝐽𝐸𝐸,𝑥𝑥𝑦𝑦 𝐽𝐽𝐸𝐸,𝑥𝑥𝑧𝑧
𝐽𝐽𝐸𝐸,𝑦𝑦𝑥𝑥 𝐽𝐽𝐸𝐸,𝑦𝑦𝑦𝑦 𝐽𝐽𝐸𝐸,𝑦𝑦𝑧𝑧
𝐽𝐽𝐸𝐸,𝑧𝑧𝑥𝑥 𝐽𝐽𝐸𝐸,𝑧𝑧𝑦𝑦 𝐽𝐽𝐸𝐸,𝑧𝑧𝑧𝑧

� and  𝑱𝑱𝑯𝑯 = �
𝐽𝐽𝐻𝐻,𝑥𝑥𝑥𝑥 𝐽𝐽𝐻𝐻,𝑥𝑥𝑦𝑦 𝐽𝐽𝐻𝐻,𝑥𝑥𝑧𝑧
𝐽𝐽𝐻𝐻,𝑦𝑦𝑥𝑥 𝐽𝐽𝐻𝐻,𝑦𝑦𝑦𝑦 𝐽𝐽𝐻𝐻,𝑦𝑦𝑧𝑧
𝐽𝐽𝐻𝐻,𝑧𝑧𝑥𝑥 𝐽𝐽𝐻𝐻,𝑧𝑧𝑦𝑦 𝐽𝐽𝐻𝐻,𝑧𝑧𝑧𝑧

�, 

respectively. 

The elements connecting the local fields to the z-components of the incident fields were 

set to zero because they could not be determined for normal incidence illumination. In the 

general case, this formalism would be able to handle oblique incidence illumination. However, 

the conditions used here emphasize the need of considering the z-component of the local fields 

even for normal incidence illumination. The Jones matrix 𝑱𝑱𝐺𝐺𝐸𝐸𝑁𝑁 that characterizes the nanoslit 

is now 6*6 elements of 𝑱𝑱𝐸𝐸 and 𝑱𝑱𝐻𝐻. (Figure 49) 



- 88 - 
 

 

Figure 49 Jones matrix in relation to incident field and local field.  Decomposition of the electric fields on the (x,y,z) 

coordinates, the incident field and local field are divided into  𝑬𝑬𝑖𝑖𝑖𝑖𝑐𝑐(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)  and 𝑬𝑬𝑙𝑙𝑜𝑜𝑐𝑐(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) . The middle plane 

represents a plane of the optical system, the solid blue lines represent the grid. In the plane divided by the grid 

there is the coordinate system (u, v), and  𝑱𝑱𝑮𝑮𝑬𝑬𝑮𝑮  represents the matrix of the two sets of 3*3 Jones matrices 

containing the electric and magnetic fields in the plane, and it is frequency dependent. 

Figure 50 presents the calculated electromagnetic field enhancement and chirality 

density enhancement distributions in the center plane of the nanoslit based on  𝑱𝑱𝐺𝐺𝐸𝐸𝑁𝑁(6,6,𝑢𝑢, 𝑑𝑑, 𝜆𝜆).  
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Figure 50 The distribution of electromagnetic field enhancement and chirality density enhancement in the center 

plane of the nanoslit obtained from 𝑱𝑱𝐺𝐺𝐸𝐸𝑁𝑁(6,6,𝑢𝑢, 𝑑𝑑, 𝜆𝜆) calculations. a) electric field enhancement, b) magnetic field 

enhancement, c) chirality density enhancement of the nanoslit at the resonance frequency (680 nm) with the 

polarization angle of the incident field lines at 0 degree. d) electric field enhancement, e) magnetic field 

enhancement, f) chirality density enhancement of the nanoslit at the resonance frequency (558 nm) with the 

polarization angle of the incident field lines at 90 degrees. 

By comparing the results of Figure 50 with the FDTD full-wave simulation (Figure 46), 

it can be seen that the electromagnetic properties obtained by  𝑱𝑱𝐺𝐺𝐸𝐸𝑁𝑁 calculations are in good 

agreement. Since each parameter calculated by  𝑱𝑱𝐺𝐺𝐸𝐸𝑁𝑁(6,6,𝑢𝑢, 𝑑𝑑, 𝜆𝜆) agrees with the results of the 

FDTD simulation, the results of the difference comparison will not be shown here. The method 

developed so far allows for characterizing the electromagnetic field properties of the light in 

the nanoslit for polarization angle at 0 and 90 degrees and any wavelength of the incident wave.  

Based on our discussion of coordinate transformations, we can conjecture that by using 

the Jones matrix characterization method we can calculate any physical quantity related to the 

electromagnetic properties of light in nanoslits for any incident wave wavelength but more 
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importantly for any polarization state (angle, ellipticity). This part of the discussion will be 

presented in the next subsection. 
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4.4 Comparison of Jones matrix and FDTD simulation 

Based on a point-like magnetic dipole model, I have discussed that the total near-field 

for any arbitrary polarization should be obtained by calculating the weighted superposition of 

the longitudinal and transverse mode radiation fields (Figure 51a – Figure 51c). I will check 

now that these considerations can be extended to the fields inside the nanoslit. Although we 

developed the Jones matrix to reproduce the FDTD simulation results, the elements of the Jones 

matrix are still derived from the FDTD simulation. In the previous section, I have compared the 

nearfields calculated in the same incident polarization angles of 0 and 90 degrees, respectively, 

which does not bring much improvement in term of computation time. Figure 51 schematizes 

the processus that I want to develop and compares the chirality density calculated by FDTD 

and using the JGEN based formalism with the knowledge of the spatial and spectral distributions 

of the nearfield inside the nanoslit for the longitudinal and transverse modes only.  

 

Figure 51 a) 3D representation of the rectangular nanoslit in a thin gold layer of 40 nm. The vector k represents the 

direction of propagation of the linearly polarized incident plane wave, and θ, the angle of this polarization with 

respect to the nanoslit transverse axis (Ox). b) Transverse mode and c) longitudinal mode spectral responses of 

the amplitude and phase obtained for θ = 90° and 0°. d) Variations of 𝐶𝐶𝑒𝑒𝑖𝑖ℎ as a function of the incident polarization 

angle θ and wavelength in the center of the nanoslit obtained from FDTD simulations (angle θ step by 15°). 𝐶𝐶𝑒𝑒𝑖𝑖ℎ 

defined as C/∣𝐶𝐶𝑐𝑐𝑝𝑝𝑙𝑙∣, with 𝐶𝐶𝑐𝑐𝑝𝑝𝑙𝑙 the chirality density of a circularly polarized light, without the aperture, carrying the 

same power as the linearly polarized excitation impinging on the nanoslit. e) Variations of 𝐶𝐶𝑒𝑒𝑖𝑖ℎ as a function of the 

incident polarization angle θ and wavelength calculated using the 𝑱𝑱𝐺𝐺𝐸𝐸𝑁𝑁 matrix. 
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Here I will present a full comparison of the fields averaged in the nanoslit calculated 

using the Jones matrix and FDTD. The comparison concerns 𝑈𝑈𝑒𝑒(Figure 52a, b), 𝑈𝑈𝑏𝑏( (Figure 

52c, d), chirality density (Figure 52e, f) and ellipticity (Figure 52g, h), which are several 

important physical quantities that can be obtained from the total electromagnetic near-field 

calculations.  

 

Figure 52 Spectral responses of the electric energy densities Ue simulated by a) FDTD and calculated by b) Jones 

matrix as a function of the incident polarization angle θ and wavelength respectively at point A (inset of Figure 20b) 

for nanoslit. Spectral responses of the magnetic energy densities Ub simulated by c) FDTD and calculated by d) 
Jones matrix as a function of the incident polarization angle θ and wavelength respectively at point B (inset of Figure 

20b) for nanoslit. Spectral responses of the chirality density enhancement Cenh simulated by e) FDTD and calculated 

by f) Jones matrix as a function of the incident polarization angle θ and wavelength respectively at point A. Spectral 

responses of the ellipticity simulated by g) FDTD and calculated by h) Jones matrix as a function of the incident 

polarization angle θ and wavelength, respectively at point A. 
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The four plots on the right side of Figure 52 are the results of all parameters obtained 

by Jones matrix calculations as the wavelength and the polarization angle of the incident field 

are varied. The polarization angle in the Jones-based calculation is 0.1 degree, while the results 

obtained by the FDTD simulation were obtained for step of the polarization angle of 15 degrees. 

By comparing the FDTD simulation results with the field results obtained by the Jones matrix, 

we can see that the Jones matrix not only restores the field results of the FDTD at the calculated 

position, but also complements the other results at the full polarization angle of the nanoslit 

without any dead angle. 

In terms of running time, FDTD required a total of 13 simulations, and the running time 

of each simulation varies depending on the mesh precision. For example, we use the same mesh 

precision as in Chapter 3: 1 nm, and the time to run a simulation is about 2 hours, so if we want 

to get the plots on the left side of Figure 52, it will take about 26 hours in total. In contrast, the 

Jones matrix requires any two simulations to obtain the 𝑱𝑱𝐺𝐺𝐸𝐸𝑁𝑁 matrix, and the program itself runs 

in 0.02 seconds, so the total time to obtain the field results is approximately equal to the time 

to run two simulations: 4 hours. 

The interest of having much better polarization angle resolution can be seen for the 

ellipticity (Figure 52g and Figure 52h). The Jones-based formalism reveals that pure circular 

polarization (ellipticity equal to -1 or 1) in the nanoslit could be obtained for polarization angles 

equal to plus or minus 71.6 degrees at a wavelength of 534nm and a polarization angle of plus 

or minus 87.9 degrees at a wavelength of 666nm, respectively (Figure 52h). These conditions 

would have been missed in the FDTD simulations.  

4.4.1 Circular polarization state exploration 

The point-like dipole model has given us an in-depth understanding of the origin and 

behavior, both angular and spectroscopic, of the chirality density inside the nanoslit. The 

ellipticity is a bit more difficult to understand. We can see in Figure 52g and Figure 52h that 

the maxima of ellipticity are obtained for wavelength and polarization angles much different 

from the ones yielding large chirality density. In addition, we can see that a finer polarization 

angle resolution (Figure 52h) reveals points of high ellipticity which were missed with the low 

polarization angle resolution obtainable with FDTD calculations (Figure 52g). This raises one 

question: are the particular points of high ellipticity real and were they missed by the FDTD 

calculations? To answer this question, we must then understand the origin of the large ellipticity 
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values in the nanoslit to confirm/infirm the interest of the Jones matrix formalism that I have 

developed. This will be the objective of this Section.  

From the previous discussion, it is clear that circular polarization can be formed by 

combining two orthogonal linearly polarized waves with a certain phase difference. For circular 

polarization, the amplitude and phase requirements for the longitudinal and transverse modes 

are as follows: 

1. Amplitude: The amplitudes of the T and L mode components should be equal.  

2. Phase Difference: The phase difference between the T and L mode components 

should be exactly 90 degrees.  

The combination of these two equal amplitudes, orthogonal, linearly polarized waves 

with the specified phase difference results in circular polarization. Figure 44 presented the 

amplitudes and phase of the radiated electric field in the center of the nanoslit for excitation of 

the longitudinal and transverse modes only. 
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Figure 53 a) the amplitude of the T and L modes (red and blue solid lines, referenced to the left axis) and the ratio 

of the amplitude of the T and L modes (black solid line, referenced to the right axis) as a function of frequency for 

the two modes, respectively, when the angle of polarization of the incident field is 71.6 degrees. b) the phase 

information of the T and L modes (blue and red solid lines, left axis) and the curves of the phase difference of the 

T and L mode phases (black solid line, right axis) versus frequency. c) the amplitude of the T and L modes (red and 

blue solid lines, referenced to the left axis) and the ratio of the amplitude of the T and L modes (black solid line, 

referenced to the right axis) as a function of frequency for the two modes, respectively, when the angle of 

polarization of the incident field is 87.9 degrees. 
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Figure 53b shows the phase information of the two modes (blue and red solid lines, left 

axis) and the curves of the phase difference between the two mode phases (black solid line, 

right axis) versus wavelength, as shown in Chapter 3. The green dashed line marks the reference 

when the phase difference is 90 degrees. It can be seen that there are two wavelength points at 

534 nm and 666 nm exhibiting a phase difference of 90 degrees in Figure 53b.  

To reproduce the effect of excitation by a linearly polarized light at an angle θ from the 

x axis, the amplitude of the longitudinal mode was multiplied by the cosine of θ and the 

amplitude of the transverse mode by the sine of θ. This effectively reproduces the excitation 

strength of the two modes. In particular, Figure 53a shows the amplitude of the two modes (red 

and blue solid lines, referenced to the left axis) and the ratio of the amplitude of the two modes 

(black solid line, referenced to the right axis) as a function of wavelength for the two modes, 

respectively, when the angle of polarization of the incident field is 71.6 °. The green dashed 

line marks the reference when the amplitudes of the two modes are equal (ratio equal to 1). 

Similarly, Figure 53c shows the curves of the amplitude and amplitude ratio of the two modes 

versus frequency when the angle of polarization of the incident field is 87.9 The two black 

vertical dotted lines show that at these two wavelengths (four if we consider negative 

polarization angles) the amplitude ratio are equal to 1 in the Figure 53a and Figure 53c plots 

while the phase differences are 90°. These points, correspond exactly to those observed in 

Figure 52h where values of ellipticity of +/-1 were obtained. We could note the wavelength 703 

nm in Figure 53c where the amplitude ratio is also 1, but the phase difference in Figure 53b is 

44°, so there is no incident linearly polarized wave that can induce a circular polarization 

through the excitation of the longitudinal and transverse modes at 703nm. It is clear here that 

the origin of the ellipticity inside the nanoslit lies in the coherent superposition of the fields 

radiated by the longitudinal and transverse modes. This supports the Jones based calculation as 

a fast calculation and accurate method to investigate the polarization properties of the light 

inside the nanoslit as a function of wavelength and polarization state of the excitation light. I 

will show now how the Jones based method can be used in optimization routines.  
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4.5 Optimization program 

When comparing the results of the FDTD simulations with those computed using the 

Jones matrix under identical lighting conditions, the Jones matrix approach was chosen because 

it provides results that are consistent with the FDTD simulations while significantly speeding 

up the computational process. In addition, the use of the Jones matrix method revealed 

previously unnoticed details and insights that were not readily apparent from simulation alone, 

adding a valuable dimension to our analysis.  

I will explain how an optimization procedure based on the Levenberg-Marquardt 

algorithm can be applied for the nanoslit (Figure 54). I will illustrate the optimization by 

maximizing the value of the chirality density inside the nanoslit and discuss the results obtained. 

The procedure could be used for searching any property of the field: specific superchiral field, 

circular polarization, intensity.... Three optimization parameters were then chosen, namely the 

polarization angle θ, the ellipticity δ, and the wavelength. The relation between the complex 

components of the Jones vector and the polarization angle and ellipticity were presented in 

Chapter 2 (Figure 2). Thus, we can define the polarization state of the incident field by these 

two input variables. The local field, on the other hand, can be related to the incident field by the 

generalized Jones matrix 𝑱𝑱𝐺𝐺𝐸𝐸𝑁𝑁.  

 

Figure 54 Optimization parameters of the optimization algorithm, where the type and dimension of the nanoslit are 

fixed. Instead, the parameters that can be adjusted are related to the incident field: polarization state and 

wavelength. Polarization state parameters include polarization angle θ and ellipticity δ. The methods used to 

optimize the incident field are FDTD and Matrix methods. Each has its own characteristics. 
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4.5.1 Logic diagram 

In this subsection, I study into the logics underlying the optimization algorithm designed 

to maximize the chirality density, which is a crucial aspect in various scientific and engineering 

domains, such as plasmonic, nanophononics, and materials science. The optimization code 

based on the Levenberg-Marquardt algorithm provided by the lsqnonlin.m function in Matlab 

works by manipulating two input variables: the polarization angle (θ) and the ellipticity (δ). The 

algorithm iteratively adjusts these input variables to determine the optimal conditions for 

achieving the maximum chirality density in a step-by-step process (Figure 55). 

 

Figure 55 Logic diagram of optimization code. 𝜃𝜃𝑖𝑖𝑖𝑖𝑐𝑐 and  𝛿𝛿𝑖𝑖𝑖𝑖𝑐𝑐 are the input values for the incident wave. 𝑱𝑱𝐺𝐺𝐸𝐸𝑁𝑁 is the 

Jones matrix imported from nanoslit. C is the chirality density. 𝜃𝜃𝑜𝑜𝑝𝑝𝜔𝜔 and  𝛿𝛿𝑜𝑜𝑝𝑝𝜔𝜔 are the optimized results for the input 

values. 

Step 1: Obtaining the Jones matrix of the incident field. The first step of the optimization 

algorithm is to compute the Jones matrix, which characterizes the incident electromagnetic field. 

This has been discussed in the previous Sections of this Chapter. 
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Step 2: Deriving the local field. To complete this step, the algorithm multiplies the 

electric and magnetic components of the incident field by the Jones matrix characterizing the 

nanoslit. 

Step 3: Chirality density calculation. With the electric and magnetic field components 

characterizing the local field, the algorithm can proceed to calculate the chirality density (Eq. 

28) in Chapter 2).  

Step 4: Optimization process. Optimization algorithms look for a minimum of an 

objective function. Here, to maximize the chirality density I have chosen 1|𝐶𝐶| as the objective 

function to minimize. The algorithm uses the least squares (function lsqnonlin) to adjust the 

input variables (θ and δ). The least squares method iteratively modifies these variables to 

approach the conditions that yield the highest chirality density. The process continues until the 

chirality density reaches its maximum possible value corresponding to the minimum of  1|𝐶𝐶|. The 

value of 1|𝐶𝐶| was decided as minimum for two exit possibilities: 1|𝐶𝐶| < 10−7 or ∆ 1
|𝐶𝐶| < 10−4 with 

∆ referring to the difference between two consecutive optimization steps. The first condition 

concerns value smaller than the accuracy on the calculated fields, the second the presence of a 

local minimum (horizontal tangent). We can see in Figure 52f and Figure 52h, that many local 

minima may be present. I have added a first parametric mapping of the values of 1|𝐶𝐶| for θ (from 

-90° to 90° in steps of 0.01°) and δ (from -45° to 45° in steps of 0.01°) to estimate a good 

starting point for the LM algorithm. The initial mapping adds 34 seconds to the optimization 

procedure. When comparing the results of the FDTD simulations with those computed using 

the Jones matrix under identical lighting conditions, the Jones matrix approach was chosen 

because it provides results that are consistent with the FDTD simulations while significantly 

speeding up the computational process. In addition, the use of the Jones matrix method revealed 

previously unnoticed details and insights that were not readily apparent from simulation alone, 

adding a valuable dimension to our analysis.  

When comparing the results of the FDTD simulations with those computed using the 

Jones matrix under identical lighting conditions, the Jones matrix approach was chosen because 

it provides results that are consistent with the FDTD simulations while significantly speeding 

up the computational process. In addition, the use of the Jones matrix method revealed 
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previously unnoticed details and insights that were not readily apparent from simulation alone, 

adding a valuable dimension to our analysis.  

I will explain how an optimization procedure based on the Levenberg-Marquardt 

algorithm can be applied for the nanoslit (Figure 54). I will illustrate the optimization by 

maximizing the value of the chirality density inside the nanoslit and discuss the results obtained. 

The procedure could be used for searching any property of the field: specific superchiral field, 

circular polarization, intensity.... Three optimization parameters were then chosen, namely the 

polarization angle θ, the ellipticity δ, and the wavelength. The relation between the complex 

components of the Jones vector and the polarization angle and ellipticity were presented in 

Chapter 2 (Figure 2). Thus, we can define the polarization state of the incident field by these 

two input variables. The local field, on the other hand, can be related to the incident field by the 

generalized Jones matrix 𝑱𝑱𝐺𝐺𝐸𝐸𝑁𝑁.  

However, the difficulties associated with possible local minima is a general problem of 

optimization procedures, the initial mapping will not solve the case of different true minima 

like for the ellipticity and each problem will require different optimization procedures.  

4.5.2 Optimization on chirality density 

4.5.2.1 Maximum chirality density 

Based on this optimization algorithm that I have set up; I am trying to find the 

illumination conditions that yield the maximum chirality density of the full band of visible light 

(~400nm-1000nm) anywhere in the central plane within the nanoslit. 

In my optimization program, I need to set an optimization objective function to properly 

express my optimization goal. I want to find the largest chirality density value that occurs at 

any position in the entire plane within the full wavelength. So, at this point my objective 

function can be expressed as: 

𝐶𝐶𝑚𝑚𝑟𝑟𝑥𝑥 = 𝐼𝐼𝑑𝑑𝑛𝑛 �
1

|𝐶𝐶|� 51) 

Figure 56 shows the optimization results for the maximum value of the chirality density 

obtained after running the program. We found the maximum chirality density value of 8.34 at 
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the corners within the nanoslit at a wavelength equal to 700nm. The input variables to obtain 

this maximum chirality density are: 𝜃𝜃𝑜𝑜𝑝𝑝𝜔𝜔  equal to ±8.6 degrees and 𝛿𝛿𝑜𝑜𝑝𝑝𝜔𝜔  equal to ±22.97 

degrees. The running time of the optimization procedure is related to the position of the input 

variables, and after a series of trials, the shortest optimization time recorded was 48.9 seconds. 

 

Figure 56 The chirality density maximum corresponds to the chirality density field distribution in the nanoslit center 

plane. The positive and negative signs of the input variables determine the left and right chiral signs of the chirality 

density. The shape of 𝐸𝐸0 shows these two opposite elliptically polarized incident waves. The positions of the chirality 

density maxima lie on a pair of diagonals in the mid-plane. 

4.5.2.2 Maximum chirality density averaged in center plane 

I have found the maximum chirality density achieved by nanoslit in the full frequency 

band based on a pair of special elliptically polarized incident wave. However, in this case, we 

can see that the chirality density is maximized only in the corners, but the magnitude of the 

chirality density in the whole plane is not kept very high and there is a small portion of chiral 

near field of opposite sign at the same time. Based on our desire to imagine a probe experiment 

for chiral molecules, which will be Brownian motion inside the nanoslit, we would prefer that 

the average chiral field in the nanoslit be homogeneous and maximal. So, I replaced my 

optimization objective with maximum average chirality density in the middle plane. 

At this point my objective function can be expressed as: 

< 𝐶𝐶𝑥𝑥𝑦𝑦 >=
1
𝑛𝑛
�(𝐶𝐶)
𝑙𝑙𝑜𝑜𝑐𝑐

52) 
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Where: < 𝐶𝐶𝑥𝑥𝑦𝑦 > is the chirality density averaged over the xy plane at the middle plane 

of the nanoslit. The number n corresponds to the number of mesh points in the middle plane of 

the nanoslit. 

Figure 57 shows the optimization results for the maximum average chirality density in 

the middle plane. I find the maximum average chirality density value of 5.65 in the middle 

plane within the nanoslit at a wavelength equal to 678nm. The input variables to obtain this 

maximum chirality density are: 𝜃𝜃𝑜𝑜𝑝𝑝𝜔𝜔 equal to ∓42.7 degrees and  𝛿𝛿𝑜𝑜𝑝𝑝𝜔𝜔 equal to ±40.99 degrees. 

The shortest optimization time recorded was 272 seconds after a series of mapping. In this 

figure, we can see that in the middle plane of the nanoslit we have a homogeneous and single-

signed chiral near-field, and that approximately the closer to the center of the nanoslit, the 

greater the chirality density. 

 

Figure 57 The maximum average chirality density corresponds to the chirality density field distribution in the whole 

center plane of nanoslit. The positive and negative signs of the input variables determine the left and right chiral 

signs of the chirality density. The shape of 𝐸𝐸0 shows these two opposite elliptically polarized incident waves.  

In addition, we found that the incident field for which we obtained the average chirality 

density maximum was closer to circular polarization, even though it was elliptically polarized. 

This result is in line with the observations made in Chapter 3, where we found that the chiral 

field was very uniform and strong when we set the incident field to be circularly polarized. So, 

is the chiral near field created by this particular elliptically polarized incident field stronger or 

is it circularly polarized? Here we have compared these two incident field situations (Figure 

58).  
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Figure 58 The maximum average chiral field distribution optimized by the optimization procedure in the nanoslit 

center plane versus the chiral field distribution when the incident field is circularly polarized. a) The profile of the 

plane-averaged chirality density versus frequency for the incident field with the following: line polarization angle of 

45 degrees (LPL), circular polarization (CPL), and elliptical polarization obtained by optimization (OPT). b) 
Elliptically polarized and c) circularly polarized incident fields generate a chiral field distribution in the center plane 

of the nanoslit. 

Figure 58a shows the results of the chirality density versus wavelength already shown 

in Chapter 3, when the incident field is linearly polarized at 45° (blue dashed line) and circularly 

polarized (green dashed line), respectively. They are not described here again. The chirality 

density versus wavelength for the best elliptical polarization obtained after optimization (red 

solid line) is also shown. The inset presents the values near the maximum value. In this case, 

the maximum average chirality density value obtained by the optimization (5.65 @678nm) is 

only slightly larger than the average chirality density obtained for circularly polarized incident 

light (5.62 @681nm). Figure 58b and Figure 58c shows the chiral field distribution in the 

middle plane when the incident field is elliptically and circularly polarized, respectively. It can 

be seen that they both display a homogeneous and single signed chiral field in the nanoslit. If 

we look for the maximum of chiral points in each case, we can find 8.06 in Figure 58b and 8.02 

in Figure 58c, respectively. 

With the above comparisons, we have sufficiently demonstrated that the optimization 

algorithm not only greatly outperforms the FDTD simulation in terms of speed in exploring the 

performance of the same nanostructures, but also reveals special results that we would not have 

known directly from the simulation. 
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4.6 Conclusion 

In conclusion, I have demonstrated that by using the Jones matrix-based method, we can 

quickly calculate any physical quantity related to the electromagnetic properties of light in the 

nanoslit for any polarization state and any wavelength of the incident wave. Furthermore, we 

have shown that for the chirality density and ellipticity in the nanoslit, the polarization state 

inside the nanoslit is well expressed by the Jones matrix, and the results are in complete 

agreement with the FDTD simulation results. Finally, we have demonstrated that by combining 

the Jones matrix-based method with the optimization algorithm, we can quickly find the results 

of the maximum chirality density in the middle plane of the nanoslit and find the incident wave 

conditions to achieve the maximum chirality density. This work provides a way to characterize 

any nanoantenna and quickly characterize any physical quantity related to the electromagnetic 

properties of light. The desired excitation condition can be quickly obtained by changing the 

optimization target. 
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Chapter 5 General Conclusions and Perspectives 

The focus of my Ph.D. thesis is on the enhancement of interactions between light and 

"chiral matter" using plasmonic nano-resonators, all with the primary goal of detecting and 

comprehensively studying chiral molecules. Within this overarching goal, my Ph.D. work can 

be distilled into two distinct areas of investigation. First, I set out to propose and test the chiral 

properties of the electromagnetic fields inside nanoslits, laying the theoretical groundwork for 

their importance in this context. Next, I delved into the intricacies of the chiral properties of the 

electromagnetic fields inside the nanoslits through rigorous mathematical analysis, gaining a 

deeper understanding of their behavior and capabilities.   

The study of the chiral nearfield of nanoslits is concentrated in Chapter 3. In summary, 

the results show that nanoslits generate strong and uniform chiral nearfields, quantified by 

chirality density or ellipticity, as demonstrated by the FDTD simulations. This chiral effect is 

observed with linear polarization excitation, and its sign can be externally controlled by 

adjusting the polarization angle and wavelength, providing flexibility in the accessible spectral 

range (650-750 nm). The phenomenon can be explained by the radiation of a magnetic dipole 

and suggests that the uniformity of this effect is related to the enhancement of a uniform electric 

field within the nanoslit. Importantly, this chiral effect remains robust to shape variations, 

further enhancing its attractiveness for practical applications. 

The analysis and study of the chiral nearfield of nanoslits is concentrated in Chapter 4. 

In summary, the conclusion highlights three key points. First, it is shown that chirality density 

can be optimized by a precise control of the polarization and wavelength. Second, a novel 

methodology has been developed that combines FDTD simulations, focusing on the nearfield 

for the eigenpolarization, with the Jones-based formalism. This innovative approach allows fast 

computations for any wavelength and polarization (reducing the computation time from hours 

to seconds) and opens new avenues for optimization. Finally, optimization is applied using a 

classical optimization method, the Levenberg-Marquardt method, to further improve the 

understanding and control of chiral near-fields in nanoslits.  

Starting in Chapter 4, the prospects include the creation of a library of different shapes 

using FDTD simulations, the implementation of genetic algorithms for optimization, and the 

integration of deep learning approaches for further advances in the understanding and control 



- 106 - 
 

of chiral nearfields. Together, these perspectives represent the potential for further research and 

practical applications in the field of chiral molecule detection and nanophotonics. The rapid 

verification of the chiral field properties of nanoslit at different frequencies and polarization 

states will be an important part of the future once we have established a complete and mature 

experimental detection equipment. In addition, the exploration of different resonators for chiral 

molecule detection will be an open topic for optimization. 

With regard to future prospects, I contributed to the experimental domain by optimizing 

the fabrication and calibrating a preliminary experimental setup, a critical start towards the 

practical realization of highly sensitive chiral molecule detection. With respect to fabrication, 

as I have shown in Chapter 3, it is based on the previous methods by electron lithography and 

dry etching in the clean room and annealing, which smoothed the boundary of nanoslits to some 

extent. For the preliminary experimental part, which I did not present in my thesis due to its 

complexity and long lead time, I did some calibration and validation work that will provide 

guidance to later Ph.D. students.  

The research results from Chapters 3 and 4 provide several promising perspectives. 

From Chapter 3, the potential applications include coupling with emissive biomaterials, 

demonstrating circular dichroism and absorption like LHCII (Figure 59), demonstrating 

fluorescence through nanoslits (Figure 60). LHCII presents a strong absorption band in the red 

part of the visible spectrum exhibiting circular dichroism. The fluorescence signal emitted in 

liquid is sufficient to verify that the signal can still be detected through nanoslits. These 

measurements are encouraging with the aim of studying the electromagnetic coupling of chiral 

molecules to plasmonic resonators. The measurement system would obtain the CD properties 

of chiral molecules by monitoring their PL intensity, technique referred to the literature as 

Fluorescence Detected Circular Dichroism (FDCD) (Figure 61).  
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Figure 59 b) CD and c) Absorption spectra of LHCII solubilized in a) 0.03% DDM with tricine buffer (PH=7.8). 

Measurements were performed in a standard glass cell of 1-cm optical path length using a Jasco spectropolarimeter. 

 
Figure 60 The fluorescence emission measurement of the LHCII through a) nanoslits fabcrited by e-beam 

lithography. The emission under unpolarized excitation at 473 nm. b) Fluorescence spectra of LHCII obtained 

through c.a. fivenanoslits. 

In parallel, I have started exploring the possibility of measuring of FDCD on highly 

luminescent CdSe nanoplatelets functionalized with tartrate derivatives (collab. B. Abécassis, 

ENS Lyon) showing a strong CD near 530 nm (Figure 61c). The incident light was a laser at 

532nm which polarization was modulated at 50kHz with a polarizer and a photo-elastic 

modulator (PEM). The detection was obtained with a photodiode and the signal was 

demodulated with a lock-in amplifier (EG&G 9210). A microscope objective (NA 0.42) has 
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been placed at 90° from the excitation path and to collect the photoluminescence, and the light 

was then filtered by a high pass filter to eliminate any spurious signal of the excitation that 

might have been scattered. The PL was collected with a photomultiplier tube (PMT) and 

demoludated to obtain the FDCD signal (Figure 61d).  

 
Figure 61 a) schematic and b) real of the experimental setup. c) CD measured on a JASCO polarimeter for 

rhodamine and functionalized nanoplatelets. d) Amplitude of the intensity modulated at 50 kHz measured on the 

PL signal. The insets show the PL in the cuvettes illuminated at 532 nm.   

This series of preliminary experiments demonstrate that chiral characterization at the 

molecular level can be achieved by detecting FDCD signals.  

Through all interrelated components, my Ph.D. research has advanced our knowledge 

in the field of chiral matter-light interactions and made valuable contributions to the broader 

pursuit of high-sensitivity detection techniques. 
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Appendix 

1. Convergence 

For the reliability and usefulness of FDTD simulations, the discretization of space, i.e., 

the mesh size, plays a critical role. As the mesh is refined, the simulation approaches the exact 

solution of Maxwell's equations, reducing errors and inaccuracies. However, mesh refinement 

is computationally expensive and, moreover, under some mesh size no further gain may be 

obtained in the accuracy of the data extracted by reducing the mesh size. Convergence tests 

help to find a balance between accuracy and computational resources by monitoring the value 

of some physical quantity as a function of mesh size. 

I will present below the convergence test that was performed for the nanoslits. The 

methodology involves a systematic investigation of simulation accuracy by varying at the mesh 

size at 1nm, 2nm, 4nm, 8nm, and 16nm. in identical nanoslits. The key parameter under 

investigation is the chirality density map in the middle plane of the nanoslit obtained (for an 

illumination at 20 nm with a linearly polarized light at 45° from the axis x. Obviously, the 

chirality density is an important parameter in this work, but it also contains the information 

about the complex vector elements of the electric and magnetic fields. The chirality density 

calculated for each mesh size n = 1, 2, 4, 8, 16 was interpolated on a grid m=1, 2, 4, 8, 16 and 

is noted Cnm. The convergence was tested by comparing the values of Cnm for two consecutive 

mesh sizes. For instance, the Cnm of the 2nm grid C22, was interpolated on the 1nm grid yielding 

C21. The values of C21 are then compared to those of C11 obtained for the chirality density 

calculated on the 1nm grid of calculations with a 1nm mesh size. For each point of the 2D map, 

the value ((C21-C11)/C21)2 was calculated. The square root of the sum of all these values is noted 

ΔV1, which quantifies the difference in accuracy between the 2nm and 1nm FDTD grids. The 

same approach was applied iteratively to evaluate the accuracy differences between the 2nm 

and 4nm, 4nm and 8nm, and 8nm and 16nm grids, yielding ΔVn (n=2, 4, 8) values, as shown 

in Figure 62. As can be seen, the mesh of 1nm brought an improvement of 0.21% as compared 

to the 2nm mesh. and the 8nm mesh, brought an improvement of 5.55% with respect to the 

16nm mesh. Reducing the mesh size in the FDTD simulation from 16nm to 1nm significantly 

increased the computation time, with run times ranging from 14 seconds to 1 hour 53 minutes, 

reflecting a trade-off between spatial resolution and computational efficiency. The choice of 

mesh size should be carefully balanced to meet simulation accuracy requirements while taking 
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into account available computational resources. In my study, although 2nm is not very different 

from 1nm, I will base all subsequent FDTD simulation calculations on a 1nm mesh. 

 

Figure 62 FDTD convergence study. The x-axis indicates mesh size. The y-axis gives the relative difference of the 

values of the chirality density maps inside the nanoslit between the mesh size at the x-axis and the larger mesh 

size (see text). 

 

2. Spatial response of the chirality density in different planes 

To visualize the uniformity of the chirality density within the nanoslit, three cross 

sections were selected: the xz plane when y is equal to 0 nm, the xy plane when z is equal to 20 

nm and the yz plane when x is equal to 0 nm (see Figure 63). Figure 64 displays the distribution 

of chirality density for these three planes at 645 nm wavelength and -45º of polarization angle. 

The first important conclusion that can be drawn from Figure 64 is that the sign of the chirality 

density remains the same with the full volume of the nanoslit. A closer inspection of Figure 64a 

and Figure 64c show that the chirality density is stronger near interface between glass and air 

inside the nanoslit. In contrast, in Figure 64b and Figure 64c we see that the chirality density 

decreases near the ends of the nanoslit or near the open surface. These plots confirm that 

nanoslits allow generating rather homogeneous pure chiral light. Similar observations would be 

made at +45° but with the opposite sign of the chirality density.  
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Figure 63 Schematic representation of three cross sections of nanoslit. 

 

Figure 64 Spatial distribution of the chirality density in a) the xz plane, b) the xy plane and c) the yz plane within 

the nanoslit, at the wavelength 645nm and for θ = -45°. 
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