
HAL Id: tel-04379539
https://theses.hal.science/tel-04379539

Submitted on 8 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algebraic and Numerical Algorithms for Symmetric
Tensor Decompositions

Subhayan Saha

To cite this version:
Subhayan Saha. Algebraic and Numerical Algorithms for Symmetric Tensor Decompositions. Com-
putational Complexity [cs.CC]. Ecole normale supérieure de lyon - ENS LYON, 2023. English. �NNT :
2023ENSL0093�. �tel-04379539�

https://theses.hal.science/tel-04379539
https://hal.archives-ouvertes.fr

THÈSE
en vue de l’obtention du grade de Docteur, délivré par

l’ÉCOLE NORMALE SUPERIEURE DE LYON

École Doctorale N◦512
InfoMaths

Discipline : Informatique

Soutenue publiquement le 08/12/2023, par :

Subhayan Saha

Algebraic and Numerical Algorithms for
Symmetric Tensor Decompositions

Algorithmes algébriques et numériques pour
la décomposition de tenseurs symétriques

Devant le jury composé de :

Beltrán Carlos, Professor, Universidad de Cantabria (Espagne) Rapporteur
Srinivasan Srikanth, Associate Professor, Aarhus University (Danemark) Rapporteur
Hubert Evelyne, Directrice de Recherche,
Centre Inria d’Université Côte d’Azur Examinatrice
Tavenas Sébastien, Chargé de Recherche CNRS, LAMA Examinateur

Koiran Pascal, Professeur, ENS de Lyon Directeur de thèse

iii

Abstract

A symmetric tensor is a multi-dimensional array with entries that are invariant under
all permutations of its indices and it is equivalent to a homogeneous polynomial with
degree equal to the order of the tensor. In this thesis, we study in the decomposition
of an order-d symmetric tensor T over C as a sum of symmetric rank-one tensors, that
is, decompositions of the form T =

∑r
i=1 u

⊗d
i where ui ∈ Cn. In order to obtain effi-

cient algorithms, it is necessary to add certain restrictions to these tensors. In most
of our algorithms throughout this thesis, we treat the case where the ui’s are linearly
independent and such a decomposition is essentially unique. This forces the number
of summands, r to be at most n and if r = n, then the tensor is called diagonalisable.
Given a tensor T , we are interested in the following two algorithmic questions: 1) is
it diagonalisable? and 2) if it is diagonalisable, output a decomposition. We give an
answer to the first question in the algebraic model of computation. More specifically,
given oracle access to a blackbox for the degree-d homogeneous polynomial equivalent
to an order-d tensor T ∈ Cn ⊗ ... ⊗ Cn, we can verify in polynomial (in n, d) time in
the Blum-Shub-Smale model of computation, whether the tensor is diagonalisable or
not. We also extend this to the case where the number of summands is strictly less
than n. We also give a numerically-stable algorithm that solves the second question
approximately. More formally, given an order-3 symmetric tensor T that is diago-
nalisable and a desired accuracy parameter ε, we give an algorithm that outputs a
decomposition which is ε-close (in the l2 norm) to the actual decomposition. It runs
in linear time and requires polylogarithmic bits of precision when run on a finite
precision machine.

iv

Résumé en français

Un tenseur symétrique est un tableau multidimensionnel dont les entrées sont invari-
antes sous toutes les permutations de ses indices et il est équivalent à un polynôme
homogène dont le degré est égal à l’ordre du tenseur. Dans cette thèse, nous étu-
dions la décomposition d’un tenseur symétrique d’ordre d, noté T , sur C en tant
que somme de tenseurs symétriques de rang un, c’est-à-dire des décompositions de
la forme T =

∑r
i=1 u

⊗d
i où ui ∈ Cn. Afin d’obtenir des algorithmes efficaces, il est

nécessaire d’ajouter certaines restrictions à ces tenseurs. Dans la plupart de nos al-
gorithmes, nous traitons le cas où les ui sont linéairement indépendants et une telle
décomposition est essentiellement unique. Cela implique que le nombre de termes
de la somme, r, soit au plus n, et si r = n, le tenseur est appelé diagonalisable.
Étant donné un tenseur T , nous nous intéressons aux deux questions algorithmiques
suivantes : 1) est-il diagonalisable ? et 2) s’il est diagonalisable, produire une dé-
composition. Nous répondons à la première question dans le cadre du modèle de
calcul algébrique. Plus précisément, en ayant accès à un oracle pour une boîte noire
représentant le polynôme homogène de degré d équivalent à un tenseur d’ordre d,
T ∈ Cn ⊗ . . .⊗ Cn, nous pouvons vérifier en temps polynomial (en n et d) dans le
modèle de calcul de Blum-Shub-Smale si le tenseur est diagonalisable ou non. Nous
étendons également cela au cas où le nombre de termes de la somme est strictement
inférieur à n. Nous donnons également un algorithme numériquement stable qui ré-
sout approximativement la deuxième question. Plus formellement, étant donné un
tenseur symétrique d’ordre 3, T , qui est diagonalisable, et un paramètre de préci-
sion souhaité ε, nous donnons un algorithme qui produit une décomposition qui est
ε-proche (au sens de la norme l2) de la décomposition réelle. Il s’exécute en temps
linéaire et nécessite un nombre de bits polylogarithmique de précision lorsqu’il est
exécuté sur une machine à précision finie.

v

Contents

Abstract iii

Résumé en français iv

1 Introduction 2
1.1 Tensors and polynomials . 3

1.1.1 Tensors . 3
1.1.2 Polynomials . 3
1.1.3 Tensor polynomial equivalence: 4

1.2 Models of computation . 4
1.2.1 Algebraic Models of Computations 4

The Blum-Shub-Smale Model: 5
Black-box model . 6

1.2.2 Finite precision arithmetic . 7
1.3 Numerical Algorithms and Condition Numbers 7

1.3.1 Contributions to Numerical Stability of Algorithms 9
1.4 Tensor Decompositions . 9

1.4.1 Symmetric tensor decomposition 11
1.4.2 Diagonalisable tensors: . 12
1.4.3 Approximate tensor decomposition 12
1.4.4 Algorithms for Tensor Decompositions 12
1.4.5 Contributions to tensor decomposition 14

Condition numbers for tensor decomposition 15
1.5 Reconstruction Algorithms . 16

1.5.1 Absolute reconstruction . 16
1.5.2 Polynomial equivalence testing: 16

Sums of powers of linear forms 17
1.5.3 Contributions to Absolute Reconstruction 18

2 Absolute Reconstruction for Sums of Powers of Linear Forms 20
2.1 Introduction . 20

2.1.1 Methods and proof strategies 20
Sums of cubes . 20
Extension to higher degree: . 21

2.1.2 Organization of this chapter 23
2.1.3 Notations . 23

2.2 Faster algorithm for sums of cubes . 23
2.2.1 Characterization of equivalence to P3 25
2.2.2 Analysis for positive inputs . 26
2.2.3 Failure of commutativity . 27
2.2.4 Failure of diagonalisability . 29
2.2.5 Analysis for negative inputs . 31

2.3 Equivalence to a linear combination of d-th powers 32

vi

2.3.1 The Algorithm . 32
2.3.2 Characterisation of equivalence to Pd 33
2.3.3 Analysis for positive inputs . 36
2.3.4 Analysis of negative inputs . 38

Failure of commutativity . 38
Failure of diagonalisability . 40
Finishing the analysis for negative inputs 42

2.4 Variable Minimization . 43
2.5 Reconstruction Algorithm for Pd . 45
2.6 Complexity analysis for equivalence to a sum of cubes 49
2.7 Complexity analysis for equivalence to some polynomial in Pd 52

2.7.1 Complexity Analysis in the algebraic model 52
2.7.2 Complexity analysis for the bit model 52

3 Numerical Linear Algebra 54
3.1 Preliminaries: Fast and Stable Linear Algebra 54

3.1.1 Finite precision arithmetic . 54
3.1.2 Matrix Multiplication and Inversion 55

3.2 Slices after a change of basis . 56
3.3 Diagonalisation algorithm for diagonalisable matrices 61

4 Numerical Algorithm for Tensor Decomposition 68
4.1 Introduction . 68

4.1.1 Simplified Algorithm . 68
4.1.2 Organization of the chapter 69
4.1.3 Ideas for algorithm design . 69

Trace of the slices after a change of basis 69
4.2 Tensor decomposition for complete symmetric tensors in exact arithmetic 70
4.3 Complete Decomposition of Symmetric Tensors in Finite Arithmetic . 73

4.3.1 Uniqueness of Tensor Decompositions 73
4.3.2 Finite-precision Jennrich’s Algorithm for Symmetric Tensors . 75
4.3.3 Proof Strategy of Theorem 4.3.4: 76

Proof ideas for probabilistic analysis in Chapter 6: 76
4.3.4 Proof Ideas of Theorem 4.3.6 77

Matrix diagonalisation . 77
Finite precision analysis of tensor decomposition: 77

5 Numerical Algorithms 79
5.1 Overview of the Chapter: . 79

5.1.1 Analysis of numerical stability of algorithms: 79
5.1.2 Application to the analysis of Algorithm 8: 79

5.2 Numerical Stability of Algorithms . 80
5.3 Defining functions and a robustness result 81

5.3.1 Step 1: . 82
5.3.2 Step 2: . 84
5.3.3 Step 3: . 86
5.3.4 Conclusion: . 87

5.4 Composition Theorem . 87
5.5 Algorithm 7 as a composition of simple functions 90
5.6 Error analysis of Algorithm 8: . 91

5.6.1 Writing Algorithm 8 as a composition of functions 91

vii

Rewriting Algorithm 8: . 92
5.6.2 Proof of Theorem 5.6.2: . 93

Starting with y1: . 94
Setting y2: . 95
Setting y3: . 96
Setting y4: . 97

5.6.3 Finishing the proof of Theorem 4.3.6 100

6 Probability Analysis of Condition Numbers and Gap 102
6.1 Introduction . 102
6.2 Some definitions and bounds on norms of polynomials 102
6.3 Towards a proof of Theorem 4.3.4 . 109

6.3.1 Finishing the proof of Theorem 4.3.4 112

A Appendix to Chapter 2 122
A.1 Computing the complexity of the randomized algorithm in [KS21] and

comparing it with our algorithm . 122
A.2 Complexity analysis for variable minimization 123

B Appendix to Chapter 3 125
B.1 Proof of Theorem 3.3.12 . 125

C Some omitted technical details from Chapter 5 128
C.1 Some technical lemmas . 128
C.2 Remaining proofs from Section 5.3 . 128

C.2.1 Step 4: . 128
C.2.2 Step 5: . 130
C.2.3 Step 6: . 130
C.2.4 Step 7: . 133

C.3 Diagonalisation is a (6n 3
2 , 4n)-continuous function 136

C.4 Appendix to Section 5.6.2 . 137
C.4.1 Setting y5: . 137
C.4.2 Setting y6: . 138
C.4.3 Setting y7: . 139

2

Chapter 1

Introduction

Tensors are important algebraic objects that appear in different branches of science
such as mathematics, physics, computer science and chemistry. For most of our
purposes, tensors can be viewed as a multi-dimensional array with entries from the
underlying field K. Following this, order-1 tensors are vectors and order-2 tensors are
essentially matrices.

One fundamental question that people have been interested in is the decomposi-
tion of tensors into its rank-one components. In this thesis, we look at the following
two algorithmic problems related to these decompostions:

• Decision problem: Given a tensor T and some fixed number r, does there
exist a decomposition of the tensor T as a sum of r rank-one components?

• Search problem: If it is given that such a decomposition exists, find such a
decomposition.

Tensor decompositions have generated significant interest in recent years due to their
applications in different fields such as signal processing, computer vision, chemo-
metrics, neuroscience and others (see [KB09] for a comprehensive survey on the ap-
plications and available software for this problem). In fact, a number of learning
algorithms for certain models have been developed through the fundamental ma-
chinery of tensor decompositions. Pure topic models ([AHK12]), blind source sep-
aration and independent component analysis ([DLCC07]), Hidden Markov Models
([MR05],[HKZ09]), mixture of spherical gaussians ([HK13],[GHK15]), Latent Dirich-
let Allocation ([AFH+12]). Numerous algorithms have been devised for solving the
tensor decomposition problem with different assumptions on the input tensor and
different efficiency and accuracy bounds [Har70, LRA93, BCMT09, BGI11, GVX14,
BCMV14, AGH+14, GM15, HSS15, MSS16, KP20, BHKX22, DdL+22].

In this thesis, we are interested in symmetric tensors that satisfy certain genericity
conditions (we refer to these as diagonalisable tensors) and we will see in Section 4.3.1
that such a decomposition is essentially unique. We consider the decision problem
from an algebraic complexity point of view - if an arbitrary symmetric tensor is given
succinctly, we give an algebraic algorithm that runs in polynomial time to verify if
it has a decomposition that satisfies the genericity conditions. Polynomials are the
main objects of study in algebraic complexity theory - in Section 1.1.3 we explore their
equivalence with tensors. We define the algebraic model of computation in Section
1.2.1 and discuss the relation of the decision problem with reconstruction algorithms
and the problem of polynomial equivalence testing in algebraic complexity theory in
Sections 1.5 and 1.5.2. We also consider the search problem but from the point of
view of numerical algorithms (we discuss this in more detail in Section 1.3). We fix
the standard finite-precision arithmetic to be the underlying model of computation.
This model is explained in more detail in Section 1.2.2. In this setting, if the order-3

1.1. Tensors and polynomials 3

symmetric tensor given explicitly as input has a decomposition that satisfies some
genericity conditions, then we give an algorithm that solves the search problem ap-
proximately - it outputs a solution which is close to the actual decomposition of the
tensor.

1.1 Tensors and polynomials

1.1.1 Tensors

From a mathematical point of view, tensors describe a (multi)-linear relationship
between products of vector spaces (and their duals). In linear algebra, a multilinear
map is a function of several variables that is linear separately in each variable. Let
V1, · · · ,Vd be vector spaces over the field K. Formally, an order d tensor is an element
of the set of all multilinear maps {ϕ : V ∗

1 × · · · ×V ∗
d −→ K} where V ∗

i denotes the dual
of the vector space Vi. When each of these Vi’s have a finite basis, then the tensors
can be written as a multi-dimensional array with entries from the underlying field K.
Following this definition, order-1 tensors are vectors and order-2 tensors are essentially
bilinear maps.

For the rest of this thesis, we will fix the underlying vector spaces to be either Rn

or Cn for some n and then we can consider tensors to be multi-dimensional arrays. If
T ∈ CI1 ⊗ · · · CId , then for a particular k ∈ [d], the k-th mode is CIk . The order of a
tensor is then the number of dimensions (also referred to as modes). Let a(1), · · · , a(k)
be vectors such that a(i) ∈ CIk . Then their tensor product (also, sometimes referred
to as the outer product) denoted by T = a(1) ⊗ · · · ⊗ a(k) is an element in the vector
space CI1 ⊗ · · · CIk . When written as a multi-dimensional array, for all it ∈ [It] for
t ∈ [k],

Ti1,··· ,ik
= a

(1)
i1
a
(2)
i2

· · · a(k)ik
.

An order-d tensor T ∈ CI1 ⊗ · · · CId is defined to be a rank-one tensor if there exist
vectors a(1), · · · , a(d) ̸= 0 where a(k) ∈ CIk for all k ∈ [d] such that

T = a(1) ⊗ · · · ⊗ a(d).

A tensor is called cubical if T ∈ CI×···I for a particular I (that is, every mode has
the same size.) A cubical tensor is called symmetric if its elements remain constant
under any permutation of indices. For example, T ∈ CI ⊗ CI ⊗ CI is symmetric if for
all i, j, k ∈ I

Tijk = Tikj = Tjik = Tjki = Tkij = Tkji.

1.1.2 Polynomials

A degree d polynomial in P ∈ F[x1, · · · ,xn] is called homogeneous if all monomials
have same total degree d, that is for m = xe1

1 · · ·xen
n , e1 + · · ·+ en = d. A polynomial

P ∈ F[x1, · · · ,xn] is said to be multilinear if for all monomialsm = xe1
1 ...xen

n such that
coeffm(f) ̸= 0, ei ≤ 1. A homogeneous polynomial P ∈ F[x1, · · · ,xn] of degree d is
said to be set-multilinear if there exists a partition of the set of variables {x1, · · · ,xd}
into sets S1, · · · ,Sd such that every monomial with a non-zero coefficient in P contains
exactly one variable from each Si. More formally, every monomial in P has the form∏d

i=1 x
(i) where x(i) ∈ Si.

4 Chapter 1. Introduction

1.1.3 Tensor polynomial equivalence:

We can associate to a symmetric tensor T of order d the homogeneous polynomial

f(x1, ...,xn) =
n∑

i1,··· ,id=1
Ti1,··· ,id

xi1xi2 · · ·xid
.

This correspondence is bijective, and the symmetric tensor associated to a homoge-
neous polynomial f can be obtained from the following relation: for i1, · · · , id ∈ [n],
the (i1, · · · , id)-th entry of the tensor can be extracted from the partial derivative of
the polynomial with respect to the monomial xi1 ...xid

.
To write the expression more formally, we will set up some notation. For a mono-

mial m = xe1
1 ...xen

n , we denote by ē = (e1, · · · , en) the tuple of indices of the respective
variables. Then we define ē! =

(
∑n

i=1 ei)!
e1!...en! .

Let us assume we want to extract the (i1, · · · , id)-th entry of the tensor Ti1,··· ,id
.

Using this notation, we can write the corresponding monomial xi1 ...xid
as m =

xe1
1 ...xen

n for some appropriate e1, · · · , en ≥ 0. Then we get that the corresponding
entry of the tensor is given by the following relation

1
ē!

∂df

∂xi1 ...xid

= Ti1,··· ,id
(1.1)

When the condition of symmetry is dropped from the tensor (often referred to as or-
dinary tensors), one can show similarly that an ordinary degree-d tensor is equivalent
to a homogeneous set-multilinear polynomial (defined in Section 1.1.2).

1.2 Models of computation
In computer science, the computational complexity or simply complexity of an algo-
rithm is the amount of resources (in terms of time taken and memory requirements)
required to run the algorithm. Alan Turing in his seminal paper [Tur36] introduced
the notion of Turing Machines which is a simple mathematical model that suffices for
studying many questions about computational tasks and efficiently solving them.

More concretely, let f be a function that takes in a string of bits (that is, the input
is in the set {0, 1}∗) and outputs 0 or 1. An algorithm for computing f is a fixed set
of instructions that on any input x ∈ {0, 1}∗ computes f(x). The Turing machine is
a formal definition of the mechanical rules that any algorithm must consist of, that
is, it can use only these fixed rules arbitrarily many number of times and nothing
else. These rules are elementary like reading a bit of the input, writing something or
reusing some already written symbols from the given working space or just stopping
and giving as output the desired value. The running time of an algorithm is defined
to be the number of times these elementary rules are used by the algorithm. (For a
more formal definition of Turing machines, refer to [Sip13]). Throughout the rest of
this thesis, this is what we will refer to as the bit model of computation.

1.2.1 Algebraic Models of Computations

An arithmetic circuit is a very natural and succinct way of representing polynomials.
In fact, it captures exactly the number of arithmetic operations required to evaluate
the polynomial on any input.

1.2. Models of computation 5

Definition 1.2.1. An arithmetic circuit C over the field F with parameters P =
{α1, · · · ,αp} ⊆ F and set of variables X = {x1, · · · ,xn} is a finite directed acyclic
graph where each vertex (gate) is one of the following:

• A vertex with in-degree 0 labelled by some variable xi or some element in P. If
the label is a variable, the vertex is called an input gate.

• A vertex with in-degree 2 labelled by either + or ×.

• An output gate with out-degree zero; we assume there is exactly one output gate.

C computes the polynomial in a natural way: every input gate computes a polynomial
in F ∪X. A vertex with label × (called the product gate) computes the product of
the polynomials computed by its children and a vertex with label + (called the sum
gate) computes the sum of the polynomials computed by its children. The output gate
outputs the polynomial computed by the circuit.

The size of a circuit is the number of vertices in the graph. For a fixed poly-
nomial p, size(p) denotes the minimum size of a circuit computing the polynomial.
There are other interesting models of computation as well such as arithmetic formu-
las (underlying acyclic graph in Definition 1.2.1 is a tree) and arithmetic branching
programs (refer to [SY10] for a good exposition of the different arithmetic models of
computation.)

The Blum-Shub-Smale Model:

The Blum-Shub-Smale model is a uniform model of computation due to [BSS89,
BCSS98]. It constitutes of a generalization of Turing Machines that perform compu-
tation over some arbitrary ring R. When R = F2, then the BSS model is equivalent
to the standard Turing machine model. Note that the definitions in this section are
mostly taken from [Koi00].

An algebraic circuit over C is an arithmetic circuit (following Definition (1.2.1))
where in addition to the × and + gates an equality test gate = is allowed. A test
gate takes in two elements α,β ∈ C and outputs 1 if α = β and 0 otherwise. Size
and depth of algebraic circuits are defined analogously. An algebraic circuit over R

can be defined similarly by replacing the equality test gate = by the order ≥ test
gate. It takes in two elements α,β ∈ R and outputs 1 if α ≥ β and 0 otherwise. The
following complexity classes can then be defined based on algebraic circuits

Complexity classes over R and C: A problem is essentially a subset of
C∞ =

⋃
n≥1 Cn. We denote by PC the class of all non-uniform polynomial time

problems over C. More formally, a problem X ⊆ C∞ is in PC if there exists a polyno-
mial p(n) and a family of algebraic circuits (Cn)n≥1 with parameters α1, · · · ,αp ∈ C

where Cn has n+ p inputs, size(Cn) ≤ p(n) and the following conditions are satisfied:

∀x ∈ Cn,x ∈ X ⇐⇒ Cn(α1, · · · ,αp,x1, · · · ,xn) = 1. (1.2)

A problem X is in the class PC of polynomial-time problems if X ∈ PC and the
corresponding circuit family (Cn) in (1.2) is uniform. More formally, there exists a
polynomial time Turing machine in the classical sense which on input n (in unary)
constructs Cn. One can similarly define complexity classes PR and PR using algebraic
circuits over R.

Note: This complexity class can also be defined using a generalization of Turing
Machines over C (with the added advantage that basic arithmetic operations (addi-
tion, subtraction, multiplication, division, and comparison) take a unit time step to

6 Chapter 1. Introduction

perform) [Poi95]. More generally, analogous complexity classes can be defined for any
arbitrary structures. A structure M is a set equipped with a finite set of functions
fi ∈ Mni −→ M and relations ri ⊆ Mmi .

One can also similarly define corresponding non-deterministic classes NPC and
NPC (Refer to [Koi00] for more formal definitions).

Black-box model

For a lot of algebraic problems, it is necessary to give a polynomial as input. and
one can study the different representations of these input polynomials. One simple
way to give the polynomial as input is to give a list of the coefficients of the different
monomials of the polynomial. But polynomials in n variables and degree d can have
(n+d

d) monomials (which is exponential in n, d).
Recall from Definition 1.2.1 that every polynomial can be represented by an arith-

metic circuit. And this representation is succinct in the following sense i.e. there exist
polynomials that have exponential in n, d monomials but have a circuit of size poly-
nomial in n, d. For example, the polynomial

p(x1, · · · ,xn) =
n∏

i=1
(1 + xi) (1.3)

has 2n monomials but it has an arithmetic circuit of size 2n. So, often circuits
computing a specific polynomial is given as input and this is referred to as the white-
box model of computation.

Another way of giving the polynomial as input is by black-box access, which is
defined as giving oracle access to the polynomial by evaluation at a certain point.
This can be stated more formally in the following way: Let f be a polynomial in
C[x1, · · · ,xn]. For any query (α1, · · · ,αn) ∈ Cn, the oracle returns f(α1, · · · ,αn) in
unit time.

The choice of models for representing the input polynomials can often affect
the hardness of the problem. We will illustrate this using the polynomial identity
testing (PIT) problem which is a fundamental problem in algebraic complexity the-
ory. The algorithmic problem is the following: Given a multivariate polynomial
P ∈ C[x1, · · · ,xn], determine whether P ≡ 0. If the input polynomial is given as a
list of coefficients, then PIT becomes trivially linear (in the input size) because one
just needs to check if the list has a non-zero element or not. For both the white-box
and the black-box model, the problem becomes significantly harder - no deterministic
subexponential time algorithms are known in the literature and solving this problem
would have major consequences in complexity theory (refer to [SY10] for a detailed
exposition).

Using the fact that the BSS model can be defined equivalently using generaliza-
tions of Turing machine model (refer to the note at the end of Section 1.2.1), one
can also consider looking at algorithms based on this model (refer to the beginning of
Section 1.2 for a discussion of algorithms and Turing machines). As discussed, they
can perform basic arithmetic operations (addition, subtraction, multiplication, divi-
sion, and comparison) as a unit time step irrespective of their size. In Chapter 2, we
will fix the underlying model of computation to be the BSS model with oracle access
to a black-box computing the polynomial and give certain algebraic algorithms based
on this model.

An algorithm is said to run in strongly polynomial time in the BSS model of
computation if the following properties are satisfied:

1.3. Numerical Algorithms and Condition Numbers 7

• The number of arithmetic operations is bounded by a polynomial in the size of
the input instance

• The bit-size of the numbers on which these arithmetic operations are performed
is also polynomial in the size of the input instance.

Any algorithm with these two properties can be converted to a polynomial time algo-
rithm (by replacing the arithmetic operations by suitable algorithms for performing
the arithmetic operations on a Turing machine) in the bit size model of computation
(refer to the beginning of Section 1.2 for a discussion.) The following is an example
of a situation where this is not satisfied: Given the integer 2n as input (requires O(n)
bits of input size in the bit model), one only requires n multiplications to compute
22n (via repeated squaring). But the size of the number of bits in this computation
is log(22n

) = 2n which is exponential in the input size and hence, this algorithm is
not strongly polynomial time.

In the algorithms presented in Chapter 2, if the polynomial given as input has
coefficients in Q, we show that our algorithms indeed run in strongly polynomial
time and by the previous discussion, we get polynomial time running bounds for our
algorithms even in the standard Turing machine model of computation. This will be
explained in more detail in Section 2.7.2 in Chapter 2.

1.2.2 Finite precision arithmetic

Another widely studied model of computation is the finite precision arithmetic model.
In this model, real numbers are rounded to a fixed number of bits which may depend
on the input size and accuracy. We use like [BGVKS22] the standard floating point
axioms from [Hig02]. This model can yield actual Boolean complexity bounds and
also helps to analyse the stability of the algorithm which we will see in more detail
in Chapter 3.

We now elaborate on this model for completeness of the exposition. It is assumed
that numbers are stored and manipulated up to some machine precision u which is a
function of n, the size of the input and δ which is the desired accuracy parameter. This
means that every number x ∈ C is stored as fl(x) = (1 + ∆)x for some adversarially
chosen ∆ ∈ C, satisfying |∆| ≤ u and each arithmetic operation ∗ ∈ {+, −, ×, ÷} is
guaranteed to yield an output satisfying

fl(x ∗ y) = (x ∗ y)(1 + ∆) where |∆| ≤ u (1.4)

It is also standard and convenient to assume that we can evaluate
√
x and x 1

3 for any
x ∈ C, where again fl(

√
x) =

√
x(1 + ∆) and fl(x 1

3) = y(1 + ∆) for |∆| ≤ u where y
is a cube root of x.

Thus, the outcomes of all operations are adversarially noisy due to roundoff. The
bit lengths of numbers stored in this form remain fixed at log(1

u). An iterative
algorithm that can be implemented in finite precision (typically, polylogarithmic in
the input size and desired accuracy) is called numerically stable. Note that in this
model it is not even assumed that the input is stored exactly.

1.3 Numerical Algorithms and Condition Numbers
Recall that we had described the model of finite precision arithmetic in Section 1.2.2.
An algorithm in this model cannot compute the desired function exactly, due to
the error that can creep in the computation at every step. Algorithms that are

8 Chapter 1. Introduction

mathematically equivalent (that is, they are designed to compute the same function)
can perform very differently in the finite precision model. In order to quantifiably
characterize these "differences in performance", the notion of numerical stability of
an algorithm was introduced. Without an attempt at being exhaustive, the following
are the different notions of stability:

• Forward stability: On some input, the algorithm outputs a solution that is
close to the exact solution on that input.

• Backward stable: We say f̃ is a backward stable algorithm for computing a
function f , if on input x, it outputs f(x̃) where x̃ is some point close to x.

In this section we also provide more background on condition numbers in numerical
computation. A book-length treatment of this subject can be found in [BC13]. There
is no universally accepted definition of a "condition number" in numerical analysis,
but a common one, is as follows. Suppose we wish to compute a map f : X → Y .
The condition number of f at an input x is a measure of the variation of the image
f(x) when x is perturbed by a small amount. This requires the choice of appropriate
distances on the spaces X and Y . The condition number is therefore a quantitative
measure of the continuity of f at x. In particular, it is independent of the choice of an
algorithm for computing f . In finite arithmetic, we cannot hope to approximate f(x)
with a low precision algorithm at an input x with a high condition number since we
do not even assume that the input is stored exactly. Moreover, designing algorithms
that work in low precision at well-conditioned inputs is often a challenging task.

This can be elucidated nicely with an example from [BNV23]. Let A ∈ Rm×n

where m ≥ n be a left-invertible matrix and b ∈ Rm. We consider the problem of
finding x ∈ Rn such that Ax = b (also known as the over-determined least squares
problem). One algorithm for this is to transform the system into a system of normal
linear equations which can be solved by Gaussian elimination with full pivoting.
But the algorithm is said to be somewhat numerically unstable since the condition
number of the Gram matrix ATA (which governs the stability of this algorithm) in
the intermediate step is (κ(A))2. Here κ(A) is the condition number of A, defined
as κ(A) = ||A||||A†|| where A† is the Moore-Penrose inverse of A. A more stable
algorithm is obtained by computing a reduced singular value decomposition of A =
USV T , solving the diagonal system Sy = UT b and computing x = V y. [Bjö14]

Sometimes, the above continuity-based definition of condition numbers is not suit-
able. This is for instance the case for decision problems, where the map f is boolean-
valued. A popular alternative is to use the inverse of the (normalized) distance to
the set of ill-posed instances [BC13, chapter 6]. One can sometimes show that these
two notions coincide [BC13, Section 1.3].

Another example that we would be looking at throughout this thesis is the problem
of designing numerical algorithms for matrix diagonalisation (which we will explore
in more detail in Section 3.3). Suppose for instance that we want to approximate
the eigenvectors of a matrix. In order to estimate the condition number in the above
sense, we need to understand how the eigenvectors evolve under a perturbation of
the input matrix. This is a relatively standard task in perturbation theory, see for
instance Appendix A of [BCMV14]1 or the proof of Proposition 1.1 in [BGVKS22].
However, until the recent breakthrough [BGVKS22] we did not have any efficient,
low-precision algorithm for this task (see Theorem 3.3.4 in Section 3.3 for a precise
statement of their result).

1This property is at the heart of their analysis of the robustness of Jennrich’s algorithm.

1.4. Tensor Decompositions 9

One can ask the following question: Is the composition of backward/forward stable
algorithms also a backward/forward stable algorithm for computing the composition
of the respective functions? The following is an example borrowed from [BNV23]
showing that it is not always true.

Example 1.3.1. Define the functions g : R −→ R as g(x) = x
3 and h : R −→ [1, ∞) as

h(x) = x2 + 1. Let g̃ and h̃ be the respective backward stable algorithms for computing
each of these functions in finite precision arithmetic.

Define the function f : R −→ [1
3 , ∞) as f(x) = 1

3 (x
2 + 1). Then it is easy to

check that f can be written as a composition of these functions, that is, f = g ◦ h.
Let us assume the rounding in this model is by rounding downward. More formally,
for any x ∈ R, the corresponding element in the finite precision arithmetic denote by
fl(x) ≤ x. Since g̃ ◦ h̃(0) = fl(1

3) <
1
3 , there is no x ∈ R such that g ◦ h(x) = fl(1

3).
Hence the algorithm g̃ ◦ h̃ for computing f in finite precision is not backward stable.

One can then attempt to characterize the exact conditions under which compo-
sition of stable algorithms yield stable algorithms. This question was studied for
the notion of backward stability in [Bor07] (also refer to Section 2 of [BNV23] for
a discussion). In [BNV23], the authors identified two sufficient conditions based on
condition numbers for a stable composition of forward stable algorithms.

1.3.1 Contributions to Numerical Stability of Algorithms

In Chapter 5, we introduce the notion of robust numerically stable algorithms - given
certain perturbations of the desired input, the algorithm outputs some solution close
to the actual solution on the desired input. This is related to the notion of mixed
stability in [BNV23]. We also show that if the function satisfies some continuity con-
ditions (based on the condition number of the problem) and the algorithm computing
it is forward stable, then the algorithm is also robust numerically stable. We apply
this to certain simple intermediate functions that occur in the numerical algorithm
for tensor decomposition (Algorithm 8).

We also define the notion of stable probabilistic algorithms for computing set-
valued functions and create a framework for analysing the stability of the composition
of these algorithms. More concretely, we show that if two functions satisfy some
compatibility criteria and have stable probabilistic algorithms computing them, then
the composition of those two algorithms will also be a stable probabilistic algorithm
for the composition of the functions.

We create this framework to perform a streamlined analysis of the numerical
algorithm for the tensor decomposition problem that we study in Chapter 4. We
break the algorithm down into several smaller steps (algorithms), show that each of
these steps are compatible and have stable probabilistic algorithms for computing
them and hence, their composition is a stable probabilistic algorithm as well.

1.4 Tensor Decompositions
Recall that we had defined rank-one tensors in Section 1.1.1. Given an order-d tensor,
we want to write it as a sum of rank-one tensors of order d. This is popularly
referred to as the CP decomposition with its name originating from the psychometrics
community. CP is short for CANDECOMP (canonical decomposition) introduced by
Carroll and Chang [CC70] and PARAFAC (parallel factors) introduced by Harshman
[Har70]. More formally, given an order-d tensor T ∈ Cn1 ⊗ ...Cnd (similarly for R),

10 Chapter 1. Introduction

we want to write it as
T =

r∑
i=1

a
(1)
i ⊗ ... ⊗ a

(d)
i (1.5)

where r is some positive integer and a
(j)
i ∈ Cnj for all i ∈ [r], j ∈ [d]. Firstly note,

that a decomposition of the tensor of this form always exists. In fact, for any tensor
T ∈ Cn1 ⊗ ...Cnd , it can be trivially written as

T =
∑

ij∈[nj] for all j∈[d]
Ti1,··· ,id

e
(1)
i1

⊗ ... ⊗ e
(d)
id

. (1.6)

where e(k)j is the j-th standard basis vector in Cnk .
The rank of a tensor, denoted by rank(T) is the smallest integer r such that T

can be written as a sum of rank-one tensors as in (1.5). From 1.6, we can conclude
that for any order-d cubical tensor T ∈ (Cn)⊗d, rank(T) ≤ nd. With a slightly clever
argument, one can show that for any such tensor T , rank(T) ≤ nd−1. (Lemma 16.9 in
[Sap15]). A major open question in this field is to find an explicit tensor T of order-3
with super-linear rank.

Example 1.4.1 (Jan Draisma’s talk in AG’23). Let T ∈ (R2)⊗3 such that T111 =
1,T2,1,1 = 2,T2,2,1 = 6,T1,2,2 = −1,Tijk = 0 otherwise. Then trivially it can be
written in the form of (1.5) using four summands

T = 1.(e1 ⊗ e1 ⊗ e1) + 2.(e2 ⊗ e1 ⊗ e1) + 6.(e2 ⊗ e2 ⊗ e1) + (−1)e1 ⊗ e2 ⊗ e2.

But there is a smaller decomposition with two summands

T = (e1 + 2e2) ⊗ (e1 + 3e2) ⊗ e1 + e1 ⊗ e2 ⊗ (−3e1 − e2).

Using the relation with polynomials, as described in Section 1.1.3, the the polynomial
fT corresponding to T can be equivalently written as

fT = x1y1z1 + 2x2y1z1 + 6x2y2z1 − x1y2z2

= x1y1z1 + 2x2y1z1 + 6x2y2z1 + 3x1y2z1 − 3x1y2z1 − x1y2z2

= (x1 + 2x2)(y1 + 3y2)x1 + x1y2(−3z1 − z2).

Again using the tensor polynomial equivalence, it follows that the tensor has the
smaller decomposition with two summands.

The definition of tensor rank is the exact analogue of matrix rank. However, one
key difference is that rank of a real-valued tensor can be different over R and C. One
example from [Kru77] will help illustrate this issue. Let us consider the following
tensor T ∈ (R2)⊗3 such that

T1,1,1 = T2,2,1 = T1,2,2 = 1 and T2,1,2 = −1.

This tensor has rank 3 over R [tB91] but has rank 2 over C.
Given an order-d tensor T ∈ Cn1 ⊗ ... ⊗ Cnd , one can ask the following natural

algorithmic questions:

1. Decision problem: Given r, does there exist sets of vectors {a(j)i }i∈[r] ∈ Cnj

for all j ∈ [d] such that T has a decomposition of the form (1.5)?

2. Search problem: If such a decomposition exists, find the decomposition.

1.4. Tensor Decompositions 11

The problem of determining the rank of a tensor T was shown to be NP-hard (even
for order d = 3) by Håstad [Hås89].

1.4.1 Symmetric tensor decomposition

Recall that we had defined symmetric tensors in Section 1.1.1. One can also extend
the notion of rank defined in Section 1.4 to the special case of symmetric tensors.
The order-d rank-1 symmetric tensors are now of the form T = u⊗d where Ti1,··· ,id

=∏
j∈[d] uij . Let T ∈ Cn ⊗ ... ⊗ Cn be an order-d symmetric tensor. Following (1.5), we

can define the symmetric tensor decomposition analogously as

T =
r∑

i=1
ui ⊗ ui ⊗ ... ⊗ ui where ui ∈ Cn. (1.7)

It is slightly more non-trivial than the general case to show that every symmetric
tensor has a decomposition of the form (1.7). We will include a proof sketch here for
completeness of this exposition.

Lemma 1.4.2. Every order-d symmetric tensor has a decomposition of the form 1.7.

Proof. From the tensor-polynomial equivalence in Section 1.1.3, we get that every
order-d symmetric tensor T ∈ (Cn)⊗d can be written as a homogeneous degree-
d polynomial fT ∈ C[x1, · · · ,xn]d. Hence, T has a decomposition of the form
(1.7) iff fT =

∑s
i=1 ℓ

d
i where ℓi are linear forms in C[x1, · · · ,xn]1. Let L be de-

fined as spanC{ℓd|ℓ is a linear form ∈ C[x1, · · · ,xn]1}. We want to show that L =
C[x1, · · · ,xn]d.

The space L is trivially contained in C[x1, · · · ,xn]d. For the opposite direction,
note that the set of monomials of degree-d given by {xe1

1 · · ·xen
n |e1 + ... + en = d}

forms a basis of C[x1, · · · ,xn]d. From [Fis94], we get that every degree-d monomial
can be written as a sum of d-th powers of linear forms. More formally, this follows
from the following expression

y1...yt =
1

2t−1t!

∑
e2∈{0,1},...,et∈{0,1}

(−1)e2+...+et

(
x1 +

∑
i∈{2,...,t}

(−1)eixi

)t

. (1.8)

Hence, C[x1, · · · ,xn]d = spanC{xe1
1 · · ·xen

n |e1 + · · · + en = d} ⊆ L and this gives us
the desired result.

We can then define the symmetric rank (over C) for any symmetric tensor T
similarly to be

rankS(T) = min
{
r : T =

r∑
i=1

ai ⊗ · · · ⊗ ai, where ai ∈ Cn
}

(1.9)

One can ask the following question: Is the symmetric rank of a tensor same as the
rank of the tensor? This was famously known as the Comon’s conjecture and was
resolved negatively by Yaroslav Shitov in [Shi16]. One can define the symmetric
decision problem and symmetric search problem in a similar way as in Section 1.4.
The symmetric tensor rank of T is NP-hard to compute even for d = 3 [Shi16] and
hence, the the symmetric decision problem is NP-hard as well.

12 Chapter 1. Introduction

1.4.2 Diagonalisable tensors:

We focus our attention on order-3 symmetric tensors. From (1.7), it has a decom-
position of the form T =

∑r
i=1 u

⊗3
i and in order to obtain efficient algorithms, one

can impose an additional linear independence condition on the ui. Note that such a
decomposition is essentially unique if it exists (up to a permutation of the ui’s and
scaling by cube roots of unity) [Kru77, Har70]. There is a traditional distinction be-
tween undercomplete decompositions, when the number of summands r ≤ n in (1.5),
and overcomplete decompositions, where r > n. We consider only undercomplete
decompositions because of the linear independence condition on the ui. Moreover,
we impose the additional condition that r is exactly equal to n, i.e., we focus on
complete decompositions. We say that a tensor is diagonalisable if it satisfies these
two conditions.

One can ask the following algorithmic question: Given a diagonalisable tensor
T ∈ Cn ⊗ Cn ⊗ Cn, recover the vectors u1, · · · ,un ∈ Cn such that T =

∑n
i=1 u

⊗3
i .

Note that, this is a special case of the search problem of tensor decomposition. One
of the first algorithms to give provable guarantees for this problem was Jennrich’s
algorithm [Har70, LRA93]. This algorithm depends on the method of simultaneous
diagonalisation and even works for more general settings such as ordinary tensors.

One can also study the decision version of the problem: Given an arbitrary order-
d symmetric tensor T , is T diagonalisable? Using the relation between tensors and
polynomials in Section 1.1.3, we can see that a homogeneous degree-d polynomial
f ∈ K[x1, · · · ,xn] can be written as a sum of d-th powers of linear forms over K

if and only if there exist vi ∈ K such that the corresponding symmetric tensor Tf

can be decomposed as Tf =
∑

i v
⊗d
i . In a joint work with Pascal Koiran [KS22a,

KS23] (which forms Chapter 2 of this thesis), we give a randomized polynomial-time
algorithm for this problem in the algebraic model of computation (refer to the BSS
model in Section 1.2.1) with oracle access to the black-box for the homogeneous degree-
d polynomial Tf . We also extend this to the case of undercomplete decompositions
(r ≤ n) via a reduction to the complete case.

1.4.3 Approximate tensor decomposition

As explained above, an order-3 symmetric tensor T ∈ Cn ⊗ Cn ⊗ Cn is called diago-
nalisable if there exist linearly independent vectors ui ∈ Cn such that T =

∑n
i=1 u

⊗3
i .

The objective of the ε-approximation problem for tensor decomposition is to find
linearly independent vectors u′

1, · · · ,u′
n such that there exists a permutation π ∈ Sn

where

||ωiuπ(i) − u′
i|| ≤ ε

with ωi a cube root of unity. Here ε is the desired accuracy parameter given as input.
Hence the problem is essentially that of approximating the vectors ui appearing in
the decomposition of T . Note that this is a forward approximation in the sense
of numerical analysis (refer to Section 1.3 for the discussion on different kinds of
numerical algorithms and compare with Definitions 3.3.2 and 3.3.3).

1.4.4 Algorithms for Tensor Decompositions

One of the central spectral algorithms for computing tensor decompositions is Jen-
nrich’s Algorithm [Har70, LRA93, Moi18]. This algorithm, also referred to in the
literature as the "simultaneous diagonalisation algorithm," was one of the first to give

1.4. Tensor Decompositions 13

provable guarantees for tensor decomposition. If an order-3 input tensor satisfies
certain genericity conditions this algorithm returns the unique decomposition (up to
permutation and scaling) almost surely. More formally, let T ∈ Cn1 ⊗ Cn2 ⊗ Cn3 be
an order-3 tensor of the form (1.5) with the following additional conditions on the
u
(j)
i

• The vectors u(1)i are linearly independent.

• The vectors u(2)i are linearly independent.

• The vectors u(3)i are pairwise linearly independent. Following the definition of
Kruskal rank from Section 4.3.1, this implies that k-rank({u(3)i }i∈[r]) ≥ 2.

We will refer to these conditions as the genericity conditions. Note that if a tensor has
such a decomposition, then it is unique (up to permutation and scaling by complex
numbers across each mode of a summand such that their product is 1) (refer to the
discussion in Section 4.3.1). Then Jennrich’s algorithm returns such a decomposition
exactly. This algorithm can also be generalized to higher order tensors which satisfy
similar genericity conditions. Moreover, it is shown in [BCMV14] that the algorithm
is robust to noise in the input. Namely, it was shown that for an input tensor
T̃ =

∑n
i=1 v

⊗3
i + E where E is some arbitrary inverse-polynomial noise, Jennrich’s

algorithm can also be used to output a decomposition ṽi such that ||vi − ṽi|| ≤ ε. At
the heart of the robustness analysis of the Jennrich’s Algorithm in [BCMV14] (refer
to their Appendix A) is the following statement about diagonalisability of perturbed
matrices: Let M be a diagonalisable matrix that can be written as M = UDU−1

where the condition number of U is bounded and let M̃ be another matrix such that
||M − M̃ || is small. Then M̃ is also diagonalisable, has distinct eigenvalues and the
eigenvectors of M and M̃ are close. This is similar in spirit to Proposition 1.1 in
[BGVKS22] (Theorem 3.3.11 in this thesis.)

Note that the genericity conditions restrict the number of summands in the de-
composition, r to be at most min{n1,n2,n3}. Another interesting line of research
has focussed on exploring the overcomplete regime, that is r > min{n1,n2,n3}. For
the rest of this section, to ease notation, we will restrict our attention to symmetric
tensors which forces r > n.

One can drop the genericity condition entirely and attempt to decompose an
arbitrary low-rank tensor given as input. For symmetric tensors with constant rank,
such an algorithm can be found in [BSV21a]. This algorithm was recently extended
to slightly superconstant rank in [PSV22].

One can also aim to decompose tensors under milder genericity conditions that
still preserve the uniqueness of the decomposition. For order-4 tensors, when T =∑

i∈[r] u
⊗4
i and the ui are in general positions, then the FOOBI (Fourth-Order-Only

Blind Identification) algorithm from [DLCC07] can recover the decomposition where
the number of summands r is at most O(d2). Still other algorithms for symmetric
tensor decomposition can be found in the algebraic literature, see e.g. [BCMT09,
BGI11]. These two papers do not provide any complexity analysis for their algorithms.

Furthermore, there are several algorithms for tensor decompositions which use
optimization techniques. One of the most notable algorithm for computing the CP
decomposition (refer to (1.5) for a definition) is the Alternating Least Squares (ALS)
algorithm [CC70, Har70], often referred to as the “workhorse" algorithm for comput-
ing a CPD. The key idea is to solve the least-squares optimization problem on a mode
of the tensor (refer to the beginning of Section 1.1.1 for a definition) while keeping

14 Chapter 1. Introduction

the other modes fixed and solving this optimization problem for all the modes. For a
more formal explanation, refer to [KB09].

1.4.5 Contributions to tensor decomposition

Recall that an order-3 tensor T ∈ (Cn)⊗3 is called diagonalisable if there exist linearly
independent vectors u1, · · · ,un ∈ Cn such that T can be decomposed as in (1.5).

Definition 1.4.3 (Condition number of a diagonalisable symmetric tensor). Let T be
a diagonalisable symmetric tensor over C such that T =

∑n
i=1 u

⊗3
i . Let U ∈ Mn(C)

be the matrix with rows u1, . . . ,un. We define the tensor decomposition condition
number of T as: κ(T) = ||U ||2F + ||U−1||2F .

We will show in Section 4.3 that κ(T) is well defined: for a diagonalisable tensor
the condition number is independent of the choice of U . Note that when U is close
to a singular matrix, the corresponding tensor is poorly conditioned, i.e., has a large
condition number. This is not surprising since our goal is to find a decomposition
where the vectors ui are linearly independent.

Our main result is a randomized polynomial time algorithm in the finite precision
model which on input a diagonalisable tensor, an estimate B for the condition number
of the tensor and an accuracy parameter ε, returns a forward approximate solution
to the tensor decomposition problem (following the definition in Section 1.4.3).

In the following, we denote by TMM (n) the number of arithmetic operations
required to multiply two n × n matrices in a numerically stable manner. If ω
denotes the exponent of matrix multiplication, it is known that TMM (n) = O(nω+η)
for all η > 0 (see Section 3.1 for details).

Theorem 1.4.4 (Main Theorem). There is an algorithm which, given a diagonalis-
able tensor T , a desired accuracy parameter ε and some estimate B ≥ κ(T), outputs
an ε-approximate solution to the tensor decomposition problem for T in

O(n3 + TMM (n) log2 nB

ε
)

arithmetic operations on a floating point machine with

O(log12(
nB

ε
) logn)

bits of precision, with probability at least
(

1 − 1
n − 12

n2

)(
1 − 1√

2n
− 1

n

)
.

The corresponding algorithm appears as Algorithm 8 in Section 4.3. A simplified
version of this algorithm is presented in Section 4.1.1. The following are the important
conclusions from the above theorem:

• The number of bits of precision required for this algorithm is polylogarithmic
in n, B and 1

ε .

• The running time as measured by the number of arithmetic operations is O(n3)
for all ε = 1

poly(n) , i.e., it is linear in the size of the input tensor. This requires
the use of fast matrix multiplication. With standard matrix multiplication, the
running time is quasilinear instead of linear (i.e., it is multiplied by a polylog-
arithmic factor). The bit complexity of the algorithm is also quasilinear.

• The algorithm can provide inverse exponential accuracy, i.e., it still runs in
polynomial time even when the desired accuracy parameter is ε = 1

exp (n) .

1.4. Tensor Decompositions 15

In order to obtain this result we combine techniques from algorithm design and al-
gorithm analysis; the main ideas are outlined in Sections 4.1.1, 4.1.3 and 4.3.4. To
the best of our knowledge, this is the first tensor decomposition algorithm shown to
work in polylogarithmic precision. Moreover, this algorithm is also the first to run
in a linear number of arithmetic operations (i.e., prior to this work no linear time
algorithm was known, even in the exact arithmetic model). This is based on joint
work with Pascal Koiran [KS23, KS22b].

The bounds on the number of bits of precision can be improved up to log4(nB
ε) logn.

A detailed proof of this can be found in [KS22b]. We lose out on some bits of precision
to give a simpler and more streamlined error analysis of the algorithm. Refer to the
discussions in Section 4.1.3 and Section 5.2 for more details.

Condition numbers for tensor decomposition

Recall that we had discussed the notion of numerical algorithms and the associated
notion of condition numbers in Section 1.3.

For the purpose of this thesis, we have worked with the somewhat ad-hoc choice
of κ(T) (refer to Definition 1.4.3) as our condition number because this parameter
controls the numerical precision needed for our main algorithm, as shown by The-
orem 4.3.42. In particular, we have found it more convenient to work with κ(T)
than with a quantity such as ||U ||.||U−1||, commonly used as a condition number in
numerical linear algebra.

The results presented in this thesis are in stark contrast with those of Beltrán et
al. [BBV19]. That paper analyzes a class of tensor decomposition algorithms related
to Jennrich’s algorithm. Their conclusion is that all these "pencil-based algorithms"
are numerically unstable.

A precise comparison of our results with the numerical instability result of [BBV19]
is delicate because we do not work in the same setting. In particular, they work with
ordinary instead of symmetric tensors; they do not work with the same condition
number; and their result is obtained for undercomplete rather than complete decom-
positions. We believe that the main reason why we obtain a positive result is due
to yet another difference, namely, the use of randomization in step (i) of our algo-
rithm. In the setting of [BBV19] one would have to take two fixed linear combinations
T (a),T (b) of the slices. Essentially, they show that for every fixed choice of a pair of
linear combinations, there are input tensors for which this choice is bad; whereas we
show that for every (well conditioned) input T , most choices of a and b are good.

Beltrán et al. conclude their paper with the following sentence: "We hope that
these observations may (re)invigorate the search for numerically stable algorithms for
computing CPDs."3 The algorithm presented in this thesis answers their call, at least
for the case of complete decomposition of symmetric tensors. We believe that our
techniques can also be applied to decomposition of ordinary tensors. We have chosen
to focus on symmetric tensors because this setting is somewhat simpler technically. In
future work, we plan to extend this work to the case of undercomplete decompositions.
Note that this will require a change in the definition of the condition number κ(T);
the role of U−1 will now be played by the Moore-Penrose pseudoinverse.

2κ(T) also appears in the sublinear term for the arithmetic complexity of the algorithm.
3CPD stands for Canonical Polyadic Decomposition, i.e., decomposition as a sum of rank-1 ten-

sors."

16 Chapter 1. Introduction

1.5 Reconstruction Algorithms
Arithmetic circuit reconstruction is the following algorithmic problem: For an input
polynomial f , typically given by a black box (refer to Section 1.2.1 for a definition),
the goal is to find the smallest circuit computing f within some class C of arithmetic
circuits. This problem can be divided in two subproblems: a decision problem (can
f be computed by a circuit of size s from the class C?) and the reconstruction
problem proper (the actual construction of the smallest circuit for f). The proper
reconstruction problem is an algebraic analogue of the exact learning problem for
Boolean circuits.

1.5.1 Absolute reconstruction

An interesting subclass of reconstruction algorithms is the problem of absolute re-
construction, namely, in the case where C is a class of circuits over the field of com-
plex numbers. The name is borrowed from absolute factorization, a well-studied
problem in computer algebra (see e.g. [CG05, CL07, Gao03, Sha09]). Most of the
existing reconstruction algorithms appeal to a polynomial factorization subroutine,
see e.g. [GMKP17, GMKP18, KS09, Kay11, KNST18, KS19, Shp09]. This typically
yields polynomial time algorithms over finite fields or the field of rational numbers.
However, in standard models of computation such as the unit-cost RAM or the Turing
machine this approach does not yield polynomial time algorithms for absolute recon-
struction. This is true even for the decision version of this problem. In the Turing
machine model, the difficulty is as follows. We are given an input polynomial f , say
with rational coefficients, and want to decide if there is a small circuit C ∈ C for f ,
where C may have complex coefficients. After applying a polynomial factorization
subroutine, a reconstruction algorithm will manipulate polynomials with coefficients
in a field extension of Q. If this extension is of exponential degree, the remainder of
the algorithm will not run in polynomial time. This point is explained in more detail
in [KS21] on the example of a reconstruction algorithm due to Neeraj Kayal [Kay11].
One way out of this difficulty is to work in a model where polynomial roots can be
extracted at unit cost, as suggested in a footnote of [GGKS19]. We will work instead
in more standard models, namely, the Turing machine model or the unit-cost RAM
over C with arithmetic operations only (an appropriate formalization is provided
by the Blum-Shub-Smale model of computation [BCSS98, BSS89], refer to Section
1.2.1).

1.5.2 Polynomial equivalence testing:

Definition 1.5.1. Two polynomial f , g ∈ K[x] (where x = {x1, · · · ,xn}) are said to
be equivalent over K, if there exists an invertible linear transformation A ∈ GLn(K)
such that f(x) = g(Ax).

Note that two polynomials can be equivalent over K but not over a subfield
K ⊂ K. The difference in the choice of fields can be illustrated by the following
example:

Example 1.5.2. Consider the rational polynomial

f(x1,x2) = (x1 +
√

2x2)
3 + (x1 −

√
2x2)

3 = 2x3
1 + 12x1x

2
2.

This polynomial is equivalent to P3(x1,x2) = x3
1 + x3

2 over R and C but not over Q.

1.5. Reconstruction Algorithms 17

An equivalence test for a family of polynomials C ⊆ K[x1, · · · ,xn] (where K is
some underlying field) is defined to be the following algorithmic task: Given poly-
nomial g, check if there exists some f ∈ C such that f and g are equivalent over K.
Note that this is a special case of the decision version of the reconstruction problem
for the circuit class C.

If the equivalence test succeeds, then another algorithmic question can be to
output the circuit f and the corresponding linear transformation A. Note again this
is a special case of the proper reconstruction problem.

The input polynomial g can be represented in two ways: either as a list of coeffi-
cients of the polynomial (referred to as the polynomial equivalence (PE) problem in
[Gup22]) or as a black-box (refer to Section 1.2.1).

Previous works: We define a few polynomial families before..

• Detn: The determinant polynomial takes in a matrix with variable entries X =
(xi,j)i,j∈[n] and computes the determinant of the matrix. More formally,

Detn =
∑

σ∈Sn

sign(π)
n∏

i=1
xi,σ(i).

• Permn: The permanent polynomial takes in a matrix with variable entries X =
(xi,j)i,j∈[n] and computes the permanent of the matrix. More formally,

Permn =
∑

σ∈Sn

n∏
i=1

xi,σ(i). (1.10)

• IMMn,d: The iterated matrix multiplication returns the (1, 1)-th entry of the
product of d matrices of variables of size n× n each. More formally, it returns
the (1, 1)-th entry of (X1 · · ·Xd), where for all i ∈ [d], Xi ∈ (K[x̄])n×n.

In [Kay11], randomized equivalence tests for the families Permn and Detn were given
and [KNST18] gave a randomized equivalence test for the family of IMMn,d. These
tests run in polynomial time in the standard Turing Machine model when the under-
lying field is Q ([KNST18] works over finite fields as well). But when the algorithm
is considered over C, they are not known to run in polynomial time in the stan-
dard BSS model of computation (refer to Section 1.2.1 and the discussion in Section
1.5.1). [KNST18] gave a randomized polynomial time equivalence test for the family
of IMMn,d over Q and finite fields. A polynomial time randomized equivalence test
for Detn over Q and finite fields was given in [GGKS19, KS19].

Sums of powers of linear forms

Let f(x1, . . . ,xn) be a homogeneous polynomial of degree d. In this thesis, we study
decompositions of the type:

f(x1, . . . ,xn) =
r∑

i=1
li(x1, . . . ,xn)

d (1.11)

where the li are linear forms. Such a decomposition is sometimes called a Waring
decomposition, or a symmetric tensor decomposition. The smallest possible value
of r is the symmetric tensor rank of f , and it is NP-hard to compute already for
d = 3 [Shi16]. One can nevertheless obtain polynomial time algorithms by restricting
to a constant value of r [BSV21b]. In this thesis, we assume instead that the linear

18 Chapter 1. Introduction

forms li are linearly independent (hence r ≤ n). This setting was already studied by
Kayal [Kay11]. It turns out that such a decomposition is unique when it exists, up to
a permutation of the li and multiplications by d-th roots of unity. This follows for in-
stance from Kruskal’s uniqueness theorem. For a more elementary proof, see [Kay11,
Corollary 5.1] and [KS21, Section 3.1].

Under this assumption of linear independence, the case r = n is of particular
interest. In this case, f is equivalent to the sum of d-th powers polynomial

Pd(x) = xd
1 + xd

2 + · · · + xd
n (1.12)

in the sense that f(x) = Pd(Ax) where A is invertible. (refer to Section 1.5.2) A
test of equivalence to Pd was provided in [Kay11]. The resulting algorithm provably
runs in polynomial time over the field of rational numbers, but this is not the case
over C due to the appeal to polynomial factorization. The first equivalence test to Pd

running in polynomial time over the field complex numbers was given in [KS21] for
d = 3. In a joint work with Pascal Koiran, we extend this result to arbitrary degree
[KS22a, KS23] and this forms a major chunk of Chapter 2 of this thesis. In the general
case r ≤ n we can first compute the number of essential variables of f [Car06, Kay11].
Then we can do a change of variables to obtain a polynomial depending only on its
first r variables [Kay11, Theorem 4.1], and conclude with a test of equivalence to Pr

(see [KS21, Proposition 44] for details).
Equivalence and reconstruction algorithms over Q are number-theoretic in nature

in the sense that their behavior is highly sensitive to number-theoretic properties of
the coefficients of the input polynomial. This point is clearly illustrated by Example
1.5.2

By contrast, equivalence and reconstruction algorithms over R and C are of a
more geometric nature.

1.5.3 Contributions to Absolute Reconstruction

Our main contributions are as follows: Recall that Pd is the sum of d-th powers poly-
nomials (1.12), and let us assume that the input f ∈ C[x1, . . . ,xn] is a homogeneous
polynomial of degree d.

(i) For d = 3, we improve by a factor of n on the running time of the test of
equivalence to P3 from [KS21] presented in Section 2.1.1. The price to be paid
for this improvement is that the algorithm now has two-sided error.

(ii) For d > 3, we provide the first blackbox algorithm for equivalence to Pd with
running time polynomial in n and d (more specifically, O(n2d) calls to the black-
box and O(n2d log2(d) log log(d) + nω+1) arithmetic operations) where ω is the
exponent of matrix multiplication, in an algebraic model where only arithmetic
operations and equality tests are allowed (i.e., computation of polynomial roots
is not allowed).

(iii) For d > 3, when f has rational coefficients this blackbox algorithm runs in
polynomial time in the bit model of computation. More precisely, the running
time is polynomial in n, d and the maximal bit size of any coefficient of f . This
yields the first test of equivalence to Pd over C with polynomial running time
in the bit model of computation.

As outlined in Section 1.5.2, these results have application to decomposition into
sums of powers of linearly independent linear forms over C. Namely, we can decide

1.5. Reconstruction Algorithms 19

whether the input polynomial admits such a decomposition, and if it does we can
compute the number of terms r in such a decomposition. The resulting algorithm
runs in polynomial time in the algebraic model of computation, as in item (ii) above;
when the input has rational coefficients it runs in polynomial time in the bit model
of computation, as in (iii) (refer to Appendix 2.7 for a detailed complexity analysis).
This is the first algorithm with these properties. It can be viewed as an algebraic,
high order, black box version of Jennrich’s algorithm.

Using the relation to tensor decomposition problem mentioned in Section 1.4.2,
if an order d-tensor T ∈ Kn×···×n is given as a blackbox, we give an algorithm that
runs in time poly(n, d) to check if there exist linearly independent vectors vi ∈ Kn

such that T =
∑t

i=1 αiv
⊗d
i for some t ≤ n. Note here that K ⊆ C and K = C or R.

As an intermediate result, we obtain a new randomized algorithm for checking that
k input matrices commute (for further details, see Lemma 2.1.3 and the discussion
related to matrix commutativity in Section 2.1).

Finally, we show that our linear algebraic approach can be extended to the compu-
tation of the actual decomposition. For instance, when f ∈ C[x1, . . . ,xn] is equivalent
to Pd, we can compute an invertible matrix A such that f(x) = Pd(Ax). We em-
phasize that for this result we must step out of our usual algebraic model, and allow
the computation of polynomial roots. The matrix A is indeed not computable from f
with arithmetic operations only, as shown by the example in Section 1.5.2. We there-
fore obtain an alternative to the algorithm from [Kay11] for the computation of A.
That algorithm relies on multivariate polynomial factorization, whereas our algorithm
relies on matrix diagonalization (this is not an algebraic task since diagonalizing a
matrix requires the computation of its eigenvalues).

20

Chapter 2

Absolute Reconstruction for
Sums of Powers of Linear Forms

In this chapter, we look at the following decision problem: If an arbitrary homoge-
neous degree-d polynomial over R or C is given as blackbox, can it be written as
sums of powers of linearly independent linear forms? This is related to the question
of absolute reconstruction of the same family of polynomials (as explained in Section
1.5.1) and the connection of this question to tensor decompositions has been explored
in detail in Section 1.4.2. This is based on joint work with Pascal Koiran and a pre-
liminary version of the results of this chapter appear in [KS22a]. The full version
appears in [KS23].

2.1 Introduction

2.1.1 Methods and proof strategies

Sums of cubes

For d = 3, the first test of equivalence to Pd running in polynomial time over C and
over R was given in [KS21]. There, the problem was treated as a tensor decomposition
problem which was then solved by methods from linear algebra. We briefly outline
this approach since the present chapter improves on it and extends it to higher degree.
Let f ∈ K[x1, . . . ,xn] be the input polynomial, where K is the field of real or complex
numbers. We can form with the coefficients of f a symmetric tensor1 of order three
T = (Tijk)1≤i,j,k≤n so that

f(x1, . . . ,xn) =
n∑

i,j,k=1
Tijkxixjxk.

This tensor can be cut into n slices T1, . . . ,Tn where Tk = (Tijk)1≤i,j≤n. Each slice is
a symmetric matrix of size n. By abuse of language we also say that T1, . . . ,Tn are
the slices of f . The equivalence test to P3 proposed in [KS21] works as follows.

1. On input f ∈ K[x1, . . . ,xn], pick a random matrix R ∈ Mn(K) and set h(x) =
f(Rx).

2. Let T1, . . . ,Tn be the slices of h. If T1 is singular, reject. Otherwise, compute
T ′

1 = T−1
1 .

3. If the matrices T ′
1Tk commute and are all diagonalizable over K, accept. Oth-

erwise, reject.
1Recall that a tensor of order d is symmetric it is invariant under all d! permutations of its indices.

2.1. Introduction 21

This simple randomized algorithm has one sided error: it can fail (with low probabil-
ity) only when f is equivalent to P3. Its analysis is based on the following character-
ization [KS21, Section 3.2]:

Theorem 2.1.1. A degree 3 homogeneous polynomial f ∈ K[x1, ...,xn] is equiva-
lent to P3 iff its slices T1, ...,Tn span a non-singular matrix space and the slices are
simultaneously diagonalisable by congruence, i.e., there exists an invertible matrix
Q ∈ Mn(K) such that QTTiQ is diagonal for all i ∈ [n].

Extension to higher degree:

In order to extend the approach of Section 2.1.1 to higher order, we associate to a
homogeneous polynomial of degree d the (unique) symmetric tensor T of order d such
that

f(x1, . . . ,xn) =
n∑

i1,...,id=1
Ti1...id

xi1xi2 . . . xid
.

A slice of T (or by abuse of language, a slice of f) is a matrix of size n obtained by
fixing the values of d− 2 indices. We show in Section 2.3.2 that Theorem 2.1.1 can
be generalized as follows:

Theorem 2.1.2. A degree d homogeneous polynomial f ∈ C[x1, . . . ,xn] is equivalent
to Pd =

∑n
i=1 x

d
i if and only if its slices span a nonsingular matrix space and the

slices are simultaneously diagonalizable by congruence, i.e., there exists an invertible
matrix Q ∈ Mn(C) such that for every slice S of f , the matrix QTSQ is diagonal.

This characterization is satisfactory from a purely structural point of view, but
not from an algorithmic point of view because the number of slices of a tensor of order
d is exponential in d. Recall indeed that a tensor of size n and order d has d(d−1)

2 nd−2

slices: a slice is obtained by fixing the values of d− 2 indices and hence, each slice is
a matrix of size n. The tensors encountered in this chapter are all symmetric since
they originate from homogeneous polynomials. Taking the symmetry constraints
into consideration reduces the number of distinct slices to (n+d−3

d−2) at most: this is
the number of multisets of size d− 2 in a set of n elements, or equivalently the number
of monomials of degree d− 2 in the variables x1, . . . ,xn. This number remains much
too large to reach our goal of a complexity polynomial in n and d. This problem has
a surprisingly simple solution: our equivalence algorithm needs to work with 3 slices
only! This is true already for d = 3, and is the reason why we can save a factor of n
compared to the algorithm of Section 2.1.1. More precisely, we can replace the loop
at line 3 of that algorithm by the following test: check that T ′

1T2 is diagonalizable,
and commutes with T ′

1T3 (recall that T ′
1 = T−1

1). It may be surprising at first sight
that we can work with the first 3 slices only of a tensor with n slices. To give some
plausibility to this claim, note that T1,T2,T3 are not slices of the input f , but slices of
the polynomial h(x) = f(Rx) obtained by a random change of variables. As a result,
each slice of h contains some information on all of the n slices of f . The algorithm
for order d > 3 is of a similar flavor, but one must be careful in the choice of the 3
slices from h.

Our algorithms are therefore quite simple (and the equivalence algorithm for d = 3
is even somewhat simpler than the algorithm from Section 2.1.1); but their analysis
is not so simple and forms the bulk of this chapter. In fact, analysing the case of
"negative" inputs, i.e. input polynomials that are not equivalent to any polynomial
in Pd, forms the bulk of this chapter. For d > 3, the notion of "weak-singularity"
of matrices (Definition 2.3.7) will be introduced which along with the notions of

22 Chapter 2. Absolute Reconstruction for Sums of Powers of Linear Forms

"commutativity property" and "diagonalisability property" helps us to give us another
equivalent criterion for testing equivalence to a polynomial in Pd in Theorem 2.3.8.
Finally, the crucial part of the proof (for d > 3, and already for d = 3) is to show that
testing commutativity of two matrices and diagonalisability of one matrix is enough
for testing these properties for any "symmetric family of symmetric matrices" (refer
to Definition 2.3.12) with high probability.

Note here that an arbitrary slice of the polynomial is hard to compute, when the
polynomial is given as blackbox (because that requires computing arbitrary degree-
d partial derivatives using the blackbox). Hence, this particular choice of slices is
crucial because they can be computed in polynomial time.

Real versus complex field. For K = R and even degree there is obviously
a difference between sums of d-th powers of linear forms and linear combinations of
d-th powers. In this chapter we wish to allow arbitrary linear combinations. For
this reason, in the treatment of the high order case (d > 3) we are not interested in
equivalence to Pd only. Instead, we would like to know whether the input is equivalent
to some polynomial of the form ∑n

i=1 αix
d
i with αi ̸= 0 for all i. We denote by Pd this

class of polynomials (one could even assume that αi = ±1 for all i). At first reading,
there is no harm in assuming that K = C. In this case, one can assume without loss
of generality that αi = 1 for all i. For K = R, having to deal with the whole of Pd

slightly complicates notations, but the proofs are not significantly more complicated
than for K = C. For this reason, in all of our results we give a unified treatment of
the two cases K = C and K = R.

Relation to matrix commutativity testing: As a byproduct of our analysis
of the degree 3 case, we obtain a randomized algorithm for testing the commutativity
of a family of matrices A1, . . . ,Ak. The naive algorithm for this would check that
AiAj = AjAi for all i ̸= j. Instead, we propose to test the commutativity of two
random linear combinations of the Ai. The resulting algorithm has one sided-error,
and its probability of error can be bounded as follows:

Lemma 2.1.3. Let A1, ...,Ak ∈ Mn(K). We take two random linear combinations
Aα =

∑
i∈[k] αiAi and Aβ =

∑
i∈[k] βiAi, where the αi and βi are picked independently

and uniformly at random from a finite set S ⊂ K. If {Ai}i∈[k] is not a commuting
family, then the two matrices Aα,Aβ commute with probability at most 2

|S| .

The resulting algorithm is so simple and natural that it may already be known
to some readers, but we could not find in the literature on commutativity testing.
Commutativity testing has been studied in particular in the setting of black box
groups, in the classical [Pak12] and quantum models [MN07]. Pak’s algorithm [Pak12]
is based on the computation of random subproducts of the Ai. In its instantiation to
matrix groups [Pak12, Theorem 1.5], Pak suggests as a speedup to apply Freivald’s
technique [Fre79] for the verification of matrix products. This can be done in the
same manner for Lemma 2.1.3. We stress that Pak’s algorithm applies only to groups
rather than semigroups; in particular, for the application to commutativity of matrices
this means that the Mi must be invertible.2 Note that there is no such assumption
in Lemma 2.1.3; compared to [Pak12] we therefore obtain a randomized algorithm
for testing matrix semigroup commutativity. We also note that the idea of testing
commutativity on random linear combinations is akin to the general technique for
the verification of identities in [RS00]. However, in the case of commutativity testing
that chapter does not obtain any improvement over the trivial deterministic algorithm

2Pak’s result is definitely stated only for groups, and it appears that its correctness proof actually
uses the invertibility hypothesis.

2.2. Faster algorithm for sums of cubes 23

(see Theorem 3.1 in [RS00]). In order to analyze the higher order case d > 3, we will
derive an appropriate generalization of Lemma 2.1.3 (to families of matrices satisfying
certain symmetry properties).

2.1.2 Organization of this chapter

In Section 2.2, we present a faster algorithm for equivalence to sum of cubes. We give
a detailed complexity analysis of our algorithm in Chapter 2.6 and compare it to that
of [KS21]. In Section 2.3, we extend our ideas for the degree-3 case to the arbitrary
degree-d case and give an algorithm for equivalence to sum of d-th powers (Algorithm
2). In fact our algorithm can test if the input polynomial is equivalent to some linear
combination of d-th powers (As explained in Section 1.4.5, these notions are different
over R when d is even). In Chapter 2.7.1, we give a detailed complexity analysis of
Algorithm 2. In Section 2.7.2, we show that when the input polynomial has rational
coefficients, Algorithm 2 runs in polynomial time in the bit model of computation, as
well. In Section 2.4, we give an algorithm to check whether the input polynomial can
be decomposed into a linear combination of d-th powers of at most n many linearly
independent linear forms. In Section A.2, we compute the number of blackbox calls
and arithmetic operations performed by this algorithm. In Section 2.5, we show how
we can modify our decision algorithm to give an algorithm that actually computes
the linear forms and their corresponding coefficients.

2.1.3 Notations

We work in a field K which may be the field of real numbers or the field of complex
numbers. Some of our intermediate results (in particular, Lemma 2.1.3) apply to other
fields as well. We denote by K[x1, . . . ,xn]d the space of homogeneous polynomials of
degree d in n variables with coefficients in K. A homogeneous polynomial of degree
d is also called a degree-d form. We denote by Pd the polynomial ∑n

i=1 x
d
i , and we

say that a degree d form f(x1, . . . ,xn) is equivalent to a sum of d-th powers if it is
equivalent to Pd, i.e., if f(x) = Pd(Ax) for some invertible matrix A. More generally,
we denote by Pd the set of polynomials of the form ∑n

i=1 αix
d
i with αi ̸= 0 for all i.

As explained in Section 1.4.5, for K = R we are not only interested in equivalence to
Pd: we would like to know whether the input is equivalent to one of the elements of
Pd.

We denote by Mn(K) the space of square matrices of size n with entries from K.
We denote by ω a feasible exponent for matrix multiplication, i.e., we assume that
two matrices of Mn(K) can be multiplied with O(nω) arithmetic operations in K.

We denote by M(d) the number of arithmetic operations required for multiplica-
tion of two polynomials of degree ≤ d and we will often refer to the O(d log d log log d)
bounds given by [SS71] for polynomial multiplication to give concrete bounds for our
algorithms.

Throughout the chapter, we will choose the entries rij of a matrix R independently
and uniformly at random from a finite set S ⊂ K. When we calculate the probability
of some event E over the random choice of the rij , by abuse of notation instead of
Prr11,...,rnn∈S [E] we simply write PrR∈S [E].

2.2 Faster algorithm for sums of cubes
In this section we present our fast algorithm for checking whether an input polyno-
mial f(x1, . . . ,xn) is equivalent to P3 = x3

1 + · · · + x3
n (see Algorithm 1 below). As

24 Chapter 2. Absolute Reconstruction for Sums of Powers of Linear Forms

explained in Section 1.5.2, this means that f(x) = P3(Ax) for some invertible matrix
A. In Section 2.1.1 we saw that a degree 3 form in n variables can be viewed as an
order 3 tensor, which we can be cut into n slices. All of our decomposition algorithms
build on this approach.

Algorithm 1: Randomized algorithm to check equivalence to P3

1 Input: A degree-3 homogeneous polynomial f
2 Let R ∈ Mn(K) be a matrix such that its entries rij are picked uniformly

and independently at random from a finite set S and set h(x) = f(Rx)
3 Let T1,T2,T3 be the first 3 slices of h.
4 if T1 is singular then
5 reject
6 else
7 compute T ′

1 = T−1
1

8 if T ′
1T2 and T ′

1T3 commute and T ′
1T2 is diagonalisable over K then

9 accept
10 else
11 reject
12 end
13 end

Recall from Section 2.1.1 that the equivalence algorithm from [KS21] needs to
check that the n matrices T ′

1Tk commute and are diagonalisable, where T1, . . . ,Tn

denote the slices of h(x) = f(Rx). Algorithm 1 is faster because it only checks
that T ′

1T2 and T ′
1T3 commute and that T ′

1T2 is diagonalisable. We do a detailed
complexity analysis of the two algorithms in Chapter 2.6. It reveals that the cost
of the diagonalisability tests dominates the cost of the commutativity tests for both
algorithms. Since we have replaced n diagonalisability tests by a single test, it follows
that Algorithm 1 is faster by a factor of n. More precisely, we show that the algorithm
from [KS21] performs O(nω+2) arithmetic operations when K = C, but Algorithm 1
performs only O(nω+1) arithmetic operations.

The remainder of this section is devoted to a correctness proof for Algorithm 1,
including an analysis of the probability of error. Our main result about this algorithm
is as follows.

Theorem 2.2.1. If an input f ∈ K[x1, ...,xn]3 is not equivalent to a sum of cubes,
then f is rejected by the algorithm with high probability over the choice of the random
matrix R. More precisely, if the entries ri,j are chosen uniformly and independently
at random from a finite set S ⊆ K then the input will be rejected with probability
≥ 1 − 2

|S| .
Conversely, if f is equivalent to a sum of n cubes then f will be accepted with high

probability over the choice of the random matrix R. More precisely, if the entries ri,j
are chosen uniformly and independently at random from a set S ⊆ K, then the input
will be accepted with probability ≥ 1 − 2n

|S| .

The second part of Theorem 2.2.1 is the easier one, and it already follows from [KS21].
Indeed, the same probability of error 2n/|S| was already given for the randomized
equivalence algorithm of [KS21], and any input accepted by that algorithm is also
accepted by our faster equivalence algorithm. Nevertheless, we give a self-contained
proof of this error bound in Section 2.2.2 as a preparation toward the case of higher
degree.

One of the reasons why the analysis is simpler for positive inputs is that there
is only one way for a polynomial to be equivalent to P3: its slices must satisfy all

2.2. Faster algorithm for sums of cubes 25

the properties of Theorem 2.2.8 (at the end of Section 2.2.1). By contrast, if a
polynomial is not equivalent to P3 this can happen in several ways depending on
which property fails. We analyze failure of commutativity in Section 2.2.3 and failure
of diagonalisability in Section 2.2.4. Then we tie everything together in Section 2.2.5.

2.2.1 Characterization of equivalence to P3

Toward the proof of Theorem 2.2.1 we need some results from [KS21], which we recall
in this section. We also give a complement in Theorem 2.2.7. First, let us recall how
the slices of a polynomial evolve under a linear change of variables.

Theorem 2.2.2. Let g be a degree-3 form with slices S1, ...,Sn and let f(x) = g(Ax).
The slices T1, ...,Tn of f are given by the formula:

Tk = ATDkA

where Dk =
∑

i=1 ai,kSi and the ai,k are the entries of A. In particular, if g =∑n
i=1 αix

3
i we have Dk = diag (α1a1,k, ...,αnan,k).

In Theorem 2.1.1 we gave a characterization of equivalence to P3 based on si-
multaneous diagonalisation by congruence. This characterization follows from The-
orem 2.2.2 and the next lemma. See [KS21, Section 3.2] for more details on Theo-
rem 2.2.2, Lemma 2.2.3 and the connection to Theorem 2.1.1.

Lemma 2.2.3. Let f be a degree 3 homogeneous polynomial such that f(x) = P3(Ax)
for some non-singular A. Let U and V be the subspaces of Mn(K) spanned by slices
of f and P3 respectively. Then the subspace V is the space of diagonal matrices and
U is a non-singular subspace, i.e., it is not made of singular matrices only.

Instead of diagonalisation by congruence, it is convenient to work with the more
familiar notion of diagonalisation by similarity, where an invertible matrix A acts by
S 7→ A−1SA instead of ATSA. We collect the necessary material in the remainder of
this section (and we refer to diagonalisation by similarity simply as diagonalisation).

The two following properties play a fundamental role throughout this chapter.

Definition 2.2.4. Let V be a non-singular space of matrices.

• We say that V satisfies the Commutativity Property if there exists an in-
vertible matrix A ∈ V such that A−1V is a commuting subspace i.e., PQ = QP
for any two matrices P ,Q ∈ A−1V

• We say that V satisfies the Diagonalisability Property if there exists an
invertible matrix B ∈ V such that all the matrices in the space B−1V are diag-
onalisable.

The next result can be found in [KS21, Section 2.2].

Theorem 2.2.5. Let V be a non-singular subspace of matrices of Mn(K). The
following properties are equivalent.

• V satisfies the commutativity property.

• For all non-singular matrices A ∈ V, A−1V is a commuting subspace.

Remark 2.2.6. Let V be a non-singular subspace of matrices which satisfies the
commutativity and diagonalisability properties. There exists an invertible matrix B ∈
V and an invertible matrix R which diagonalizes simultaneously all of B−1V (i.e.,
R−1MR is diagonal for all M ∈ B−1V).

26 Chapter 2. Absolute Reconstruction for Sums of Powers of Linear Forms

Proof. Pick an invertible matrix B ∈ V such that W = B−1V is a space of diagonaliz-
able matrices. By Theorem 2.2.5, W is a commuting subspace. It is well known that
a finite collection of matrices is simultaneously diagonalisable if and only if they com-
mute, and each matrix in the collection is diagonalisable. We conclude by applying
this result to a basis of W (any matrix R which diagonalises a basis will diagonalise
all of W).

We now give an analogue of Theorem 2.2.5 for the diagonalisability property.

Theorem 2.2.7. Let V be a non-singular subspace of matrices which satisfies the
commutativity property. The following properties are equivalent:

• V satisfies the diagonalisability property.

• For all non-singular matrices A ∈ V, the matrices in A−1V are simultaneously
diagonalisable.

Proof. Suppose that V satisfies the diagonalisability property. By the previous re-
mark, we already know that there exists some invertible matrix B ∈ V such that the
matrices in B−1V are simultaneously diagonalisable by an invertible matrix R. We
need to establish the same property for an arbitrary invertible matrix A ∈ V. For
any M ∈ V, A−1M = (B−1A)−1(B−1M). Hence A−1M is diagonalised by R since
this matrix diagonalises both matrices B−1A and B−1M . Since R is independent of
the choice of M ∈ V, we have shown that the matrices in A−1V are simultaneously
diagonalisable.

The importance of the commutativity and diagonalisability properties stems from
the fact that they provide a characterization of simultaneous diagonalisation by con-
gruence, which in turn (as we have seen in Theorem 2.1.1) provides a characterization
of equivalence to P3:

Theorem 2.2.8. Let A1, ...,Ak ∈ Mn(K) and assume that the subspace V spanned
by these matrices is non-singular. There are diagonal matrices Λi and a non-singular
matrix R ∈ Mn(K) such that Ai = RΛiR

T for all i ∈ [k] if and only if V satisfies
the Commutativity property and the Diagonalisability property.

For a proof, see [KS21, Section 2.2] for K = C and [KS21, Section 2.3] for K = R.

2.2.2 Analysis for positive inputs

In this section we analyze the behavior of Algorithm 1 on inputs that are equivalent
to P3. First, we recall the Schwartz-Zippel Lemma which we will be using throughout
this chapter.

Lemma 2.2.9 ([DL78][Zip79][Sch80]). Let P ∈ K[x1, ...,xn] be a non-zero polynomial
of total degree d ≥ 0 over a field K. Let S be a finite subset of K and let r1, ..., rn be
picked uniformly and independently at random from a finite set S. Then

Prr1,...,rn∈S [P (r1, ..., rn) = 0] ≤ d

|S|
.

Lemma 2.2.10. Let f be a degree-3 form with slices S1, ...,Sn such that the subspace
V spanned by the slices is non-singular. Let h(x) = f(Rx) where the entries ri,j are

2.2. Faster algorithm for sums of cubes 27

chosen uniformly and independently at random from a finite set S ⊆ K. Let T1, ...,Tn

be the slices of h. Then

PrR∈S [T1 is invertible] ≥ 1 − 2n
|S|

.

Proof. We can obtain the slices Tk of h from the slices Sk of f using Theorem 2.2.2
namely, we have Tk = RTDkR where Dk =

∑
i∈[n] ri,kSi and the ri,k are the entries

of R.
Therefore T1 is invertible iff R and D1 are invertible. Applying the Lemma 2.2.9 to
det(R) shows that R is singular with probability at most n/|S|. We will see that
D1 is singular also with probability at most n/|S|; the lemma then follows from the
union bound. Matrix D1 is not invertible iff det(D1) = 0. Since D1 =

∑
i∈[n] ri,1Si

det(D1) ∈ K[r1,1, ..., rn,1] and deg(det(D1)) ≤ n. Since, V is non-singular, there
exists some choice of α = (α1, ...,αn), such that S =

∑
i∈[n] αiSi is invertible. Hence

det(D1) is not identically zero, and it follows again from Lemma 2.2.9 that this
polynomial vanishes with probability at most n

|S| .

Lemma 2.2.11. Given A ∈ Mn(K), let T1, ...,Tn be the slices of h(x) = P3(Ax).
If T1 is invertible, define T ′

1 = (T1)−1. Then T ′
1T2 commutes with T ′

1T3, and T ′
1T2 is

diagonalisable.
Proof. By Theorem 2.2.2,

Tk = AT diag(A1k, ...,Ank)A = ATDkA.

If T1 is invertible, the same is true of A and D1. The inverse (D1)−1 is diagonal like
D1, hence (D1)−1D2 and (D1)−1D3 are both diagonal as well and must therefore
commute. Now,

T ′
1T2T

′
1T3 = A−1((D1)

−1D2(D1)
−1D3)A

= A−1((D1)
−1D3(D1)

−1D2)A

= T ′
1T3T

′
1T2.

Finally, T ′
1T2 = A−1((D1)−1D2)A so this matrix diagonalisable.

In the above lemma we have essentially reproved the easier half of Theorem 2.2.8.
We are now in position to prove the easier half of Theorem 2.2.1.
Proposition 2.2.12. If an input f ∈ K[x1, ...,xn]3 is equivalent to a sum of n
cubes then f will be accepted by Algorithm 1 with high probability over the choice of
the random matrix R. More precisely, if the entries ri,j are chosen uniformly and
independently at random from a set S ⊆ K, then f will be accepted with probability
at least 1 − 2n

|S| .

Proof. Suppose that f(x) = P3(Bx) for some invertible matrix B. By Lemma 2.2.3,
the space spanned by the slices of f is nonsingular. We can therefore apply Lemma 2.2.10:
the first slice T1 of h(x) = f(Rx) is invertible with probability at least 1 − 2n

|S| . More-
over, when T1 is invertible Lemma 2.2.11 shows that f will always be accepted (we
can apply this lemma to h since h(x) = P3(BRx)).

2.2.3 Failure of commutativity

In this section we first give the proof of Lemma 2.1.3. This is required for the analysis
of Algorithm 1, and moreover this simple lemma yields a new randomized algorithm

28 Chapter 2. Absolute Reconstruction for Sums of Powers of Linear Forms

for commutativity testing as explained in Section 1.4.5. We restate the lemma here
for the reader’s convenience:

Lemma 2.2.13. Let A1, ...,Ak ∈ Mn(K). We take two random linear combinations
Aα =

∑
i∈[k] αiAi and Aβ =

∑
i∈[k] βiAi, where the αi and βi are picked independently

and uniformly at random from a finite set S ⊂ K. If {Ai}i∈[k] is not a commuting
family, then the two matrices Aα,Aβ commute with probability at most 2

|S| .

Proof. We want to bound the probability of error, i.e., Prα,β [Aα,Aβ commute]. Let
us define

Pcomm(α,β) = AαAβ −AβAα

=
∑

i,j∈[k]
αiβj(AiAj −AjAi).

By construction, Aα commutes with Aβ if and only if Pcomm(α,β) = 0. Since {Ai}i∈[k]
is not a commuting family, there exists i, j ∈ [n] such that AiAj −AjAi ̸= 0. Hence
there exists some entry (r, s) such that

(AiAj −AjAi)r,s ̸= 0 (2.1)

Let us define P r,s
comm(α,β) = (AαAβ −AβAα)r,s. From (2.1) we have

P r,s
comm(ei, ej) ̸= 0

where ei is the vector with a 1 at the i-th position and 0’s elsewhere. In particular,
P r,s

comm is not identically zero. Since deg(P r,s
comm) ≤ 2, it follows from the Lemma 2.2.9

that

Prα,β∈S [P
r,s
comm(α,β) = 0] ≤ 2

|S|

and the same upper bound applies to Prα,β∈S [Pcomm(α,β) = 0].

The next result relies on the above lemma. Theorem 2.2.14 gives us a way to ana-
lyze the case when the slices of the input polynomial fail to satisfy the commutativity
property (recall that this property is relevant due to Theorem 2.2.8):

Theorem 2.2.14. Let f ∈ K[x1, ...,xn]3 be a degree 3 form such that the subspace V
spanned by its n slices is non-singular and does not satisfy the commutativity property.
Let h(x) = f(Rx) where the entries ri,j of R are chosen uniformly and independently
at random from a finite set S ⊂ K.Let T1, ...,Tn be the slices of h. If T1 is invertible,
define T ′

1 = T−1
1 . Then

Pr[T1 is invertible and T ′
1T2,T ′

1T3 commute] ≤ 2
|S|

.

2.2. Faster algorithm for sums of cubes 29

Proof. By Theorem 2.2.2 we know that Tk = RT (
∑n

i=1 ri,kSi)R where S1, . . . ,Sn are
the slices of f . Let us define D1 =

∑n
i=1 ri,1Si. Then we have:

T ′
1T2 = R−1(D1)

−1R−TRT (
n∑

i=1
ri,2Si)R

= R−1(
n∑

i=1
ri,2D

−1
1 Si)R.

Similarly, T ′
1T3 = R−1(

n∑
i=1

ri,3D
−1
1 Si)R. So T ′

1T2 commutes with T ′
1T3 iff R is invert-

ible and ∑n
i=1 ri,2D

−1
1 Si commutes with ∑n

i=1 ri,3D
−1
1 Si. Let E1 be the event that

T ′
1T2 commutes with T ′

1T3, and let E′
1 be the event that ∑n

i=1 ri,2D
−1
1 Si commutes

with ∑n
i=1 ri,3D

−1
1 Si. Let E2 be the event that {(D1)−1Si}i∈[n] is not a commuting

family. Since V does not satisfy the commutativity property, (D1)−1V is not a com-
muting subspace if D1 is invertible. Hence the event that D1 is invertible is the same
as E2. Setting Ai = (D1)−1Si, αi = ri,2, βi = ri,3 in Lemma 2.1.3 we obtain

PrR∈S

[
E′

1

∣∣∣E2
]

≤ 2
|S|

.

Note here that D1 depends only on the random variables ri,1 for all i ∈ [n] and
therefore is independent of rk,2 and rl,3 for all k, l ∈ [n], because we assume that the
entries of R are all picked uniformly and independently at random.

Now we know that T1 is invertible iff R and D1 are invertible. Let E3 be the event
that T1 is invertible, and E4 the event that R is invertible. We have E3 = E2 ∩E4,
and we have seen that E1 = E′

1 ∩E4. The probability of error can finally be bounded
as follows:

PrR∈S [E1 ∩E3] = PrR∈S [E
′
1 ∩E2 ∩E4] ≤ PrR∈S [E

′
1|E2] ≤ 2/|S|.

2.2.4 Failure of diagonalisability

Theorem 2.2.14 gives us a way to analyze the case when the slices of the input poly-
nomial fail to satisfy the commutativity property. With the results in the present
section we will be able to analyze the case where the commutativity property is satis-
fied, but the diagonalisability property fails (recall that these properties are relevant
due to Theorem 2.2.8).

Proposition 2.2.15. Let U ⊆ Mn(K) be a commuting subspace of matrices. We
define

M :=
{
M

∣∣∣∣M is diagonalisable and M ∈ U
}

.

Then M is a linear subspace of U . In particular, if there exists A ∈ U such that A is
not diagonalisable then M is a proper linear subspace of U .

Proof. M is trivially closed under multiplication by scalars. Let M ,N ∈ M. These
two matrices are diagonalisable by definition of M, and they commute since M ⊆ U .
Hence they are simultaneously diagonalisable. Thus M is closed under addition as
well, which implies that it is a linear subspace of U .

30 Chapter 2. Absolute Reconstruction for Sums of Powers of Linear Forms

Corollary 2.2.15.1. Let {Ai}i∈[n] be a commuting family of matrices such that Ai

is not diagonalisable for at least one index i ∈ [n]. Let S ⊂ Kn be a finite set.
Then D =

∑
i αiAi is diagonalisable with probability at most 1/|S| when α1, ...,αn

are chosen uniformly and independently at random from S.

Proof. We define U = span{A1, ...,An} and

M :=
{
M

∣∣∣∣M is diagonalisable and M ∈ U
}

.

So the probability of error is Prᾱ∈S

[
D ∈ M

]
. By Proposition 2.2.15 and the hy-

pothesis that there exists Ai ∈ U \ M, M is a proper linear subspace of U . So M
is an intersection of hyperplanes. Since Ai ̸∈ M, there exists a linear form lM(X)
corresponding to a hyperplane such that lM(M) = 0 for all M ∈ M and lM(Ai) ̸= 0.
This gives us that lM ̸≡ 0. We know that if D is diagonalisable then lM(D) = 0. By
the Lemma 2.2.9 the probability of error satisfies:

Prᾱ∈S

[
D ∈ M

]
≤Prᾱ∈S

[
lM(D) = 0

]
≤ 1

|S|

since deg(lM) = 1.

The last result of this section is an analogue of Theorem 2.2.14 for the diagonal-
isability property.

Theorem 2.2.16. Let f ∈ K[x1, ...,xn]3 be a degree 3 form such that the subspace V
spanned by its n slices is non-singular, satisfies the commutativity property but does
not satisfy the diagonalisability property. Let h(x) = f(Rx) where the entries ri,j of
R are chosen uniformly and independently at random from a finite set S ⊂ K. Let
T1, ...,Tn be the slices of h. If T1 is invertible, define T ′

1 = T−1
1 . Then

PrR∈S [T1 is invertible and T ′
1T2 is diagonalisable] ≤ 1

|S|
.

Proof. As in the proof of Theorem 2.2.14 we have

T ′
1T2 = R−1(

n∑
i=1

ri,2D
−1
1 Si)R

where D1 =
∑n

i=1 ri,1Si. So T ′
1T2 is diagonalisable iff R is invertible and M =∑

j∈[n] rj,2D
−1
1 Sj is diagonalisable. We denote by E1 be the event that T ′

1T2 is diag-
onalisable, and by E′

1 the event that M is diagonalisable.
Let E2 be the event that {(D1)−1Si}i∈[n] is a commuting family, but there exists

i ∈ [n] such that (D1)−1Si is not diagonalisable. Since V satisfies the commutativity
property and does not satisfy the diagonalisability property, by Theorem 2.2.7 the
event that D1 is invertible is the same event as E2.

Setting Ai = (D1)−1Si and αi = ri,2 in Corollary 2.2.15.1, we obtain

PrR∈S

[
E′

1

∣∣∣E2
]

≤ 1
|S|

.

Note here that D1 depends only on the random variables ri,1 for all i ∈ [n] and
therefore is independent of rk,2 for all k ∈ [n], because we assume that the entries of
R are all picked uniformly and independently at random.

2.2. Faster algorithm for sums of cubes 31

Now we know that T1 is invertible iff R and D1 is invertible. Let E3 be the event
that T1 is invertible, and E4 the event that R is invertible. We have E3 = E2 ∩E4,
and we have seen that E1 = E′

1 ∩E4. The probability of error can finally be bounded
as follows:

PrR∈S [E1 ∩E3] = PrR∈S [E
′
1 ∩E2 ∩E4] ≤ PrR∈S [E

′
1|E2] ≤ 1

|S|
.

2.2.5 Analysis for negative inputs

In this section we complete the proof of Theorem 2.2.1. The case of positive inputs
was treated in Section 2.2.2. It therefore remains to prove the following result.

Theorem 2.2.17. If an input f ∈ K[x1, ...,xn]3 is not equivalent to a sum of cubes,
then f is rejected by Algorithm 1 with high probability over the choice of the random
matrix R. More precisely, if the entries ri,j are chosen uniformly and independently
at random from a finite set S ⊆ K then the input will be rejected with probability at
least 1 − 2

|S| .

Proof. Let S1, ...,Sn be the slices of f and V = span{S1, ...,Sn}. From Theorem 2.1.1
and Theorem 2.2.8, we know that if f ̸∼ P3 there are three disjoint cases to consider:

(i) V is a singular subspace of matrices.

(ii) V is a non-singular subspace and does not satisfy the commutativity property.

(iii) V is a non-singular subspace, satisfies the commutativity property but does not
satisfy the diagonalisability property.

We will upper bound the probability of error in each case. In case (i), T1 =
∑

j∈[n] r1,jSj ∈
V is always singular for any choice of the r1,j . So f is rejected by the algorithm with
probability 1 in this case. In case (ii) we can upper bound the probability of error as
follows:

PrR∈S [f is accepted by the algorithm]

= PrR∈S [T1 is invertible, T ′
1T2,T ′

1T3 commute, T ′
1T2 is diagonalisable]

≤ PrR∈S [T1 is invertible, T ′
1T2,T ′

1T3 commute].

By Theorem 2.2.14, this occurs with probability 2/|S| at most. In case (iii) we have
the following bound on the probability of error:

PrR∈S [f is accepted by the algorithm]

= PrR∈S [T1 is invertible, T ′
1T2,T ′

1T3 commute, T ′
1T2 is diagonalisable]

≤ PrR∈S [T1 is invertible, T ′
1T2 is diagonalisable].

By Theorem 2.2.16 this occurs with probability 1/|S| at most. Therefore, in all three
cases the algorithm rejects f with probability at least 1 − 2

|S| .

32 Chapter 2. Absolute Reconstruction for Sums of Powers of Linear Forms

2.3 Equivalence to a linear combination of d-th powers
We can associate to a symmetric tensor T of order d the homogeneous polynomial

f(x1, ...,xn) =
∑

i1,...,id∈[n]
Ti1...id

xi1 ...xid
.

This correspondence is bijective, and the symmetric tensor associated to a homoge-
neous polynomial f can be obtained from the relation

Ti1...id
=

1
d!

∂df

∂xi1 ...∂xid

.

The (i1, ..., id−2)-th slice of T is the symmetric matrix Ti1...id−2 with entries (Ti1...id−2)id−1,id
=

Ti1...id

2.3.1 The Algorithm

Recall from Section 2.1.3, we denote by Pd, the set of polynomials of the form∑n
i=1 αix

d
i with αi ̸= 0 for all i ∈ [n]. In this section we present a poly-time al-

gorithm for checking whether an input degree d form in n variables f is equivalent to
some polynomial in Pd(see Algorithm 2 below). This means that f(x) = Pd(Ax) for
some Pd ∈ Pd such that A is invertible.

Recall from Section 2.2, that the equivalence algorithm for sum of cubes needs
to check if T ′

1T2 commutes with T ′
1T3 and if T ′

1T2 is diagonalisable, where T1, ...,Tn

are the slices of h(x) = f(Rx). Now, we prove a surprising fact that even for the
higher degree cases, checking commutativity of 2 matrices and the diagonalisability of
1 matrix is enough to check equivalence to sum of linear combination of d-th powers.

Recall the definition of the permanent polynomial from (1.10). Interestingly
though, arbitrary slices of a degree-d polynomial f are as hard to compute as the
permanent polynomial even if f has a small arithmetic circuit. This follows from the
following observation in [Val79] that the coefficient of the monomial y1...yn in the
polynomial ∏n

i=1
∑n

j=1 xijyj is the permanent of the n× n matrix X = (xij).
Let {Ti1,...,id−2}i1,...,id−2∈[n] be the slices of h(x) = f(Rx). We denote by Tī, the

corresponding slice Ti...i. Algorithm 2 checks if T ′
1̄T2̄ commutes with T ′

1̄T3̄ and if T ′
1̄T3̄

is diagonalisable. These particular slices are special because they can be computed
using small number of calls to the blackbox and in small number of arithmetic opera-
tions (due to the fact that they are essentially repeated partial derivatives with respect
to a single variable) and hence, help us give a polynomial time algorithm. More pre-
cisely, we show that if the polynomial is given as a blackbox, the algorithm requires
only O(n2d) calls to the blackbox and O(n2M(d) log d+ nω+1) many arithmetic op-
erations. We do a detailed complexity analysis of this algorithm in Appendix 2.7.

2.3. Equivalence to a linear combination of d-th powers 33

Algorithm 2: Randomized algorithm to check polynomial equivalence to
Pd

1 Input: A degree-d homogeneous polynomial f
2 Let R ∈ Mn(K) be a matrix such that its entries rij are picked uniformly

and independently at random from a finite set S and set h(x) = f(Rx).
3 Let {Ti1...id−2}i1...id−2∈[n] be the slices of h.
4 We compute the slices T1̄,T2̄,T3̄.
5 if T1̄ is singular then
6 reject
7 else
8 compute T ′

1̄ = (T1̄)
−1

9 if T ′
1̄T2̄ and T ′

1̄T3̄ commute and T ′
1̄T2̄ is diagonalisable over K then

10 accept
11 else
12 reject
13 end
14 end

The remainder of this section is devoted to a correctness proof for Algorithm 2,
including an analysis of the probability of error. Our main result about this algorithm
is as follows:

Theorem 2.3.1. If an input f ∈ F[x1, ...,xn]d is not equivalent to some polynomial
Pd ∈ Pd, then f is rejected by the algorithm with high probability over the choice of
the random matrix R. More precisely, if the entries ri,j of R are chosen uniformly
and independently at random from a finite set S ⊆ K, then the input will be rejected
with probability ≥ (1 − 2(d−2)

|S|).
Conversely, if f is equivalent to some polynomial Pd ∈ Pd, then f will be accepted with
high probability over the choice of the random matrix R. More precisely, if the entries
ri,j are chosen uniformly and independently at random from a finite set S ⊆ K, then
the input will be accepted with probability ≥ (1 − n(d−1)

|S|).

The proof structure of this theorem follows the one of Theorem 2.2.1. In Sec-
tion 2.3.3, we give a proof of the second part of theorem i.e. the behavior of Algo-
rithm 2 on the positive inputs. Here we require a stronger property of the subspace
spanned by the slices of these positive inputs. For this we define the notion of "weak
singularity" in Section 2.3.2 and prove an equivalence result related to it. On the
negative inputs i.e if a polynomial is not equivalent to some polynomial in Pd, this
can again happen in several ways depending on which property fails. We analyze the
failure of commutativity in Section 2.3.4 and failure of diagonalisability in Section
2.3.4. Then we collect everything together and prove the first part of the theorem in
Section 2.3.4.

2.3.2 Characterisation of equivalence to Pd

First, we show how the slices of a degree-d form evolve under a linear change of
variables. This result is an extension of Theorem 2.2.2 to the higher degree case.

Theorem 2.3.2. Let g be a degree-d form with slices {Si1...id−2}i1,...,id−2∈[n] and let
f(x) = g(Ax). Then the slices Ti1...id−2 of f , are given by Ti1...id−2 = ATDi1...id−2A
where Di1...id−2 =

∑
j1...jd−2∈[n] aj1i1 ...ajd−2id−2Sj1...jd−2 and ai,j are the entries of A.

If g =
∑n

i=1 αix
d
i , we have Di1...id−2 = diag(α1(

∏d−2
m=1 a1,im), ...,αn(

∏d−2
m=1 an,im)).

34 Chapter 2. Absolute Reconstruction for Sums of Powers of Linear Forms

Proof. By definition of the slices of a polynomial,

Si1...id−2 =
1
d!
H ∂d−2g

∂xi1∂xid−2

(x) and Ti1...id−2 =
1
d!
H ∂d−2f

∂xi1∂xid−2

(x)

where Hf (x) is the Hessian matrix of f at point x. Since f(x) = g(Ax), by differ-
entiating d times, we get that ∂df

∂xi1 ...∂xid
(x) =

∑
j1...jd∈[n] aj1i1 ...ajdid

∂dg
∂xj1 ...∂xjd

(Ax).

Putting these equations in matrix form, and using the fact that ∂dg
∂xj1 ...∂xjd

(Ax) =

∂dg
∂xj1 ...∂xjd

(x) we get the desired result.

The next lemma uses Theorem 2.3.2 to reveal some crucial properties about the
subspace spanned by the slices of any degree-d form which is equivalent to some
g ∈ Pd. It is an extension of Lemma 2.2.3 to the higher degree case.

Lemma 2.3.3. Let f(x1, ...,xn) and g(x1, ...,xn) be two forms of degree d such that
f(x) = g(Ax) for some non-singular matrix A.

1. If U and V denote the subspaces of Mn(K) spanned respectively by the slices of
f and g, we have U = AT VA.

2. V is non-singular iff U is non-singular.

3. In particular, for g ∈ Pd the subspace V is the space of diagonal matrices and
U is a non-singular subspace, i.e., it is not made of singular matrices only.

Proof. Theorem 2.3.2 shows that U ⊆ AT VA. Now since, g(x) = f(A−1x), same
argument shows that V ⊆ A−T UA−1. This gives us that U = AT VA.

For the second part of the lemma, let us assume that V is non-singular and MU be
an arbitrary matrix in U . Using the previous part of the lemma, we know that there
exists MV ∈ V such that MU = ATMVA. Since V is non-singular, det(MV) ̸= 0.
Taking determinant on both sides, we get that det(MU) = det(A)2det(MV) ̸= 0
(since A is invertible, det(A) ̸= 0). For the converse, assume that U is non-singular.
Following a similar proof, it can be shown that det(MU) ̸= 0.

For the third part of the lemma, let {Si1...id−2}i1...id−2∈[n] be the slices of g. If
g =

∑
i∈[n] αix

d
i , such that αi ̸= 0 for all i, Sī has αi in the (i, i)-th position and 0

everywhere. Also, Si1,...,id−2 = 0, when the ik’s are not equal. Hence, V is the space
of all diagonal matrices. Hence V is a non-singular space. Using the previous part of
the lemma, we get that U is a non-singular space as well.

The next lemma is effectively a converse of the second part of Lemma 2.3.3. It
shows that if the slices of f are diagonal matrices, then the fact that they effectively
originate from a symmetric tensor forces them to be extremely special.

Lemma 2.3.4. Let f ∈ K[x1, ...,xn]d be a degree-d form. If the slices of f are
diagonal matrices, then f =

∑
i∈[n] αix

d
i for some α1, ...,αn ∈ K.

Proof. Let Ti1,...,id−2 be the slices of f . Let I = {(iσ(1), ..., iσ(d))|σ ∈ Sd}. Now since
they are slices of a polynomial, we know that

(Ti1...id−2)id−1,id
= (Tiσ(1),...,iσ(d−2))iσ(d−1),iσ(d)

. (2.2)

We want to show that Ti1,...,id
̸= 0 only if i1 = i2 = ... = id. Using (2.2), it is sufficient

to show that (Ti1,...,id−2)id−1,id
̸= 0 only if id−1 = id. This is true since Ti1,...,id−2 are

diagonal matrices. This gives us that f =
∑

i∈[n] αix
d
i .

2.3. Equivalence to a linear combination of d-th powers 35

Now we are finally ready to prove a theorem that characterizes exactly the set
of degree-d homogeneous polynomials which are equivalent to some g ∈ Pd. This
is an extension of Theorem 2.1.1 to the degree-d case, and it already appears as
Theorem 2.1.2 in the introduction. We restate it now for the reader’s convenience.

Theorem 2.3.5. A degree d form f ∈ K[x1, ...,xn] is equivalent to some polynomial
Pd ∈ Pd if and only if its slices {Ti1,...,id−2}i1,...,id−2∈[n] span a non-singular matrix
space and the slices are simultaneously diagonalisable by congruence, i.e., there exists
an invertible matrix Q ∈ Mn(K) such that the matrices QTTi1...id−2Q are diagonal
for all i1, ..., id−2 ∈ [n].

Proof. Let U be the space spanned by {Ti1,...,id−2}i1,...,id−2∈[n] . If f is equivalent to
Pd, Theorem 2.3.2 shows that the slices of f are simultaneously diagonalisable by
congruence and Lemma 2.3.3 shows that U is non-singular.

Let us show the converse. Since the slices {Ti1,...,id−2}i1,...,id−2∈ [n] are simultane-
ously diagonalisable, there are diagonal matrices Λi1...id−2 and a non-singular matrix
R ∈ Mn(K) such that Ti1...id−2 = RΛi1...id−2R

T for all i1, ..., id−2 ∈ [n]. So now
we consider g(x) = f(R−Tx). Let {Si1,...,id−2}i1,...,id−2∈[n] be the slices of g. Using
Theorem 2.3.2, we get that

Si1...id−2 = (R−1)(
∑

j1...jd−2∈[n]
rj1i1 ...rjd−2id−2RΛj1...jd−2R

T)R−T

=
∑

j1...jd−2∈[n]
rj1i1 ...rjd−2id−2 Λj1...jd−2 .

This implies that Sj1...jd−2 are also diagonal matrices. By Lemma 2.3.4, g = ∑
i∈[n] αix

d
i .

It therefore remains to be shown that αi ̸= 0, for all i ∈ [n]. Let V be the subspace
spanned by the slices of g and the slices of f span a non-singular matrix space U .
Since, U is a non-singular subspace of matrices, using part (2) of Lemma 2.3.3, we
get that V is a non-singular subspace of matrices.

But if some αi vanishes, for all A ∈ V, Aī = 0. Hence V is a singular subspace,
which is a contradiction. This gives us that g =

∑n
i=1 αix

d
i where αi ̸= 0 for all i.

Hence, g ∈ Pd and f is equivalent to g.

Theorem 2.3.6. Let f ∈ K[x1, ...,xn] be a degree-d form. f is equivalent to some
polynomial Pd ∈ Pd iff the subspace V spanned by its slices {Ti1,...,id−2}i1,...,id−2∈[n] is
a non-singular subspace and V satisfies the Commutativity Property and the Diago-
nalisability Property.

Proof. This follows from Theorem 2.3.5 and Theorem 2.2.8 for k = nd−2 to get the
result.

We now introduce a weaker notion of singularity of a subspace spanned by a set of
matrices and using that we prove a stronger version of Theorem 2.3.6. More formally
we show that the characterization is valid even when the "non-singular subspace" cri-
terion imposed on the subspace V spanned by the slices of the polynomial is replaced
by the "not a weakly singular subspace" criterion.

Definition 2.3.7. (Weak singularity)
Let V be the space spanned by matrices {Si1,...,id−2}i1,...,id−2∈[n] . V is weakly singular
if for all α = (α1, ...,αn),

det(
∑

i1,...,id−2∈[n]
(
∏

k∈[d−2]
αik

)Si1...id−2) = 0.

36 Chapter 2. Absolute Reconstruction for Sums of Powers of Linear Forms

Notice here that the notion of weak-singularity is entirely dependent on the gen-
erating set of matrices. So it is more of a property of the generating set. But by
abuse of language, we will call the span of the matrices to be weakly singular. To put
it in contrast, refer to Section 2.1.1 where the notion of singularity is a property of
the subspace spanned by the matrices (irrespective of the generating set). It can be
further observed that for all n ≥ 2 and d ≥ 4, non-singular families of matrices can
be easily constructed which are weakly singular!

Theorem 2.3.8. Let f ∈ K[x1, ...,xn] be a degree-d form. f is equivalent to some
polynomial Pd ∈ Pd iff the subspace V spanned by its slices {Ti1,...,id−2}i1,...,id−2∈[n] is
not a weakly singular subspace, satisfies the Commutativity Property and the Diago-
nalisability Property.

Proof. First we show that if f = Pd(Ax) such that Pd ∈ Pd i.e. Pd(x) =
∑n

i=1 αix
d
i

where αi ̸= 0 for all i ∈ [n] and A is invertible, then V is not a weakly singular
subspace, satisfies the commutativity property and the diagonalisability property.
Let {Si1...id−2}i1,...,id−2∈[n] be the slices of Pd. Then Sī = αidiag(ei) where ei is the
i-th standard basis vector, and all other slices are 0. From Theorem 2.3.2,

Ti1...id−2 = ATDi1...id−2A = AT (
∑

k∈[n]
aki1 ...akid−2Sk̄)A.

Now we define

T (β̄) =
∑

i1,...,id−2∈[n]
(
∏

k∈[d−2]
βik

)Ti1...id−2

=
∑

i1,...,id−2∈[n]
(
∏

k∈[d−2]
βik

)AT (diag(α1(
∏

m∈[d−2]
a1im), ...,αn(

∏
m∈[d−2]

anim)))A

= AT diag(α1(
∑

i1,...,id−2∈[n]
(
∏

k∈[d−2]
βik
a1ik

)), ...,αn(
∑

i1,...,id−2∈[n]
(
∏

k∈[d−2]
βik
anik

)))A.

Taking determinant on both sides, det(T)(β̄) = det(A)2∏n
m=1 Tm(β̄) where Tm(β̄) =

αm(
∑

i1,...,id−2∈[n](
∏

k∈[d−2] βik
amik

)). Since, A is invertible, none of its rows are all
0. Hence for all m0 ∈ [n], there exists j0 ∈ [n], such that am0j0 ̸= 0. Then
coeffβd−2

j0
(Tm0) = ad−2

m0j0
̸= 0. Hence Tm0 ̸≡ 0 for all m0 ∈ [n] which implies that

det(T) ̸≡ 0. Therefore, there exists β̄0 such that det(T)(β̄0) ̸= 0. This proves that
det(∑i1,...,id−2∈[n](

∏
k∈[d−2] βik

)Ti1...id−2) ̸≡ 0.
Hence, V = span{Ti1...id−2}i1,...,id−2∈[n] is not weakly singular. Theorem 2.3.6 gives

us that the subspace spanned by the slices V satisfies the commutativity property and
the diagonalisability property.

For the converse, if V is not a weakly singular subspace, then it is a non-singular
subspace as well. And it satisfies the commutativity property and the diagonalisability
property. By Theorem 2.3.6, we get that f is equivalent to some polynomial in Pd.

2.3.3 Analysis for positive inputs

In this section we analyze the behavior of Algorithm 2 on inputs that are equivalent
to some polynomial in Pd (which we refer to as the positive inputs). We recall here
again that by T1̄, we denote the slice T11...1.

Lemma 2.3.9. Let f ∈ K[x1, ...,xn]d with slices {Si1,...,id−2}i1,...,id−2∈[n], such that
the subspace V spanned by the slices is not weakly singular. Let h(x) = f(Rx) where

2.3. Equivalence to a linear combination of d-th powers 37

the entries ri,j are chosen uniformly and independently at random from a finite set
S ⊆ K. Let {Ti1,...,id−2}i1,...,id−2∈[n] be the slices of h. Then

PrR∈S [T1̄ is invertible] ≥ 1 − n(d− 1)
|S|

.

Proof. We can obtain the slices Ti1...id−2 of h from the slices Si1...id−2 of f using
Theorem 2.3.2. Namely, we have

Ti1...id−2 = RTDi1...id−2R

where
Di1...id−2 =

∑
j1...jd−2∈[n]

(
∏

m∈[d−2]
rjm,im)Sj1...jd−2 .

Therefore T1̄ is invertible iff R and D1̄ are invertible. Applying Lemma 2.2.9 to
det(R) shows that R is singular with probability at most n

|S| . We will show that D1̄

is singular with probability at most n(d−2)
|S| . The lemma then follows from the union

bound. Matrix D1̄ is not invertible iff det(D1̄) = 0. Since,

D1̄ =
∑

j1...jd−2∈[n]
(
∏

m∈[d−2]
rjm,1)Sj1...jd−2 ,

det(D1̄) ∈ K[r1,1, ..., rn,1] and deg(det(D1̄)) ≤ n(d − 2). Since, V is not weakly
singular, there exists some choice of α = (α1, ...,αn), such that

S =
∑

i1,...,id−2∈[n]
(
∏

m∈[d−2]
αim)Si1...id−2

is invertible. Hence, det(S) ̸= 0. This gives us that det(D1̄)(α) ̸= 0. which gives us
that det(D1̄) ̸≡ 0. From the Lemma 2.2.9, it follows that

PrR∈S [det(D1̄) = 0] ≤ n(d− 2)
|S|

.

Recall here from Section 2.1.3, we define by Pd, the set of all polynomials of the
form ∑n

i=1 αix
d
i such that 0 ̸= αi ∈ K for all i ∈ [n].

Lemma 2.3.10. Given A ∈ Mn(K), let {Ti1,...,id−2}i1,...,id−2∈[n] be the slices of h(x) =
Pd(Ax) where Pd ∈ Pd. If T1̄ is invertible, define T ′

1̄ = (T1̄)
−1. Then T ′

1̄T2̄ commutes
with T ′

1̄T3̄ and T ′
1̄T2̄ is diagonalisable.

Proof. Let Pd =
∑n

i=1 αix
d
i where αi ̸= 0. By Theorem 2.3.2,

Ti1...id−2 = AT (diag(α1(
d−2∏
m=1

a1,im), ...,αn(
d−2∏
m=1

an,im)))A = ATDi1...id−2A.

If T1̄ is invertible, the same is true of A and D1̄. The inverse (D1̄)
−1 is diagonal like

D1̄, hence (D1̄)
−1D2̄ and (D1̄)

−1D3̄ are both diagonal as well and must therefore
commute. Now,

T ′
1̄T2̄T

′
1̄T3̄ = A−1((D1̄)

−1D2̄(D1̄)
−1D3̄)A = A−1((D1̄)

−1D3̄(D1̄)
−1D2̄)A = T ′

1̄T3̄T
′
1̄T2̄.

38 Chapter 2. Absolute Reconstruction for Sums of Powers of Linear Forms

Finally, T ′
1̄T2̄ = A−1((D1̄)

−1D2̄)A so this matrix is diagonalisable.

We are now in a position to prove the easier half of Theorem 2.3.1.

Theorem 2.3.11. If an input f ∈ K[x1, ...,xn]d is equivalent to some polynomial
Pd ∈ Pd then f will be accepted by Algorithm 2 with high probability over the choice
of the random matrix R. More precisely, if the entries ri,j are chosen uniformly and
independently at random from a finite set S ⊆ K, then the input will be accepted with
probability ≥ (1 − n(d−1)

|S|).

Proof. We start by assuming that f = Pd(Bx) for some Pd ∈ Pd where B is an
invertible matrix. By Theorem 2.3.8, we know that the subspace spanned by the
slices of f is not weakly singular. We can therefore apply Lemma 2.3.9, the first slice
T1̄ of h(x) = f(Rx) is invertible with probability at least 1 − n(d−1)

|S| . Moreover if T1̄
is invertible, Lemma 2.3.10 shows that, f will always be accepted. (We can apply
this lemma to h since h = Pd(RBx)).

2.3.4 Analysis of negative inputs

In this section, we analyse the behaviour of Algorithm 2 on the inputs that are not
equivalent to any polynomial in Pd (which we refer to as the negative inputs). The
main goal is to show that the algorithm rejects negative inputs with high probability.

Failure of commutativity

Definition 2.3.12. Let {Si1,...,id
}i1,...,id∈[n] be a family of matrices. We say that the

matrices form a symmetric family of symmetric matrices if each matrix in the family
is symmetric and for all permutations σ ∈ Sd, Si1,...,id

= Siσ(1)...iσ(d)
.

In the next lemma, we show that if a symmetric family of symmetric matrices
(this family has size nd) is not a commuting family, then two linear combinations of
these matrices formed by picking just 2n elements at random also do not commute
with high probability.

Lemma 2.3.13 (General commutativity lemma). Let {Si1,...,id
}i1,...,id∈[n] be a sym-

metric family of symmetric matrices in Mn(K) that do not form a commuting family.
Pick α = {α1, ...,αn} and α′ = {α′

1, ...,α′
n} uniformly and independently at random

from a finite set S ⊂ K. We define

Mα =
∑

i1,...,id∈[n]
(
∏

m∈[d]
αim)Si1,...,id

and Mα′ =
∑

j1,...,jd∈[n]
(
∏

m∈[d]
α′

jm
)Sj1,...,jd

.

Then, Prα,α′∈S

[
Mα,Mα′ don’t commute

]
≥
(

1 − 2d
|S|

)
.

Proof. We want to bound the probability of error, i.e

Prα,α′∈S

[
MαMα′ −Mα′Mα ̸= 0

]
.

The expression MαMα′ −Mα′Mα can be written as∑
i1,...,id∈[n]
j1,...,jd∈[n]

(
∏

m∈[d]
αimα

′
jm
)(Si1...id

Sj1...jd
− Sj1...jd

Si1...id
).

2.3. Equivalence to a linear combination of d-th powers 39

For a fixed r, s ∈ [n], we define the polynomial

P r,s
comm(α,α′) =

∑
i1,...,id,j1,...,jd∈[n]

(
∏

m∈[d]
αimα

′
jm
)mr,s

i1...idj1...jd

where mr,s
i1...idj1...jd

= (Si1...id
Sj1...jd

− Sj1...jd
Si1...id

)r,s.
First note that by construction Mα commutes with Mα′ if and only if for all

r, s ∈ [n] such that P r,s
comm(α,α′) = 0. Since, {Si1,...,id

} is not a commuting family,
there exists i01, ..., i0d, j0

1 , ..., j0
d ∈ [n], such that

Si0
1...i0

d
Sj0

1 ...j0
d

− Sj0
1 ...j0

d
Si0

1...i0
d

̸= 0.

Hence, there exists some entry (r0, s0) such that

(Si0
1...i0

d
Sj0

1 ...j0
d

− Sj0
1 ...j0

d
Si0

1...i0
d
)r0,s0 ̸= 0.

Now we claim that P r0,s0
comm(α,α′) ̸≡ 0. It is enough to show that the coefficient of

αi0
1
...αi0

d
α′

j0
1
...α′

j0
d

in P r0,s0
comm(α,α′) is non-zero. Let

I0 = {(i0σ(1), ..., i0σ(d))|σ ∈ Sd} and J0 = {(j0
σ(1), ..., j0

σ(d))|σ ∈ Sd}.

Then coeffα
i0
1

...α
i0
d

α′
j0
1

...α′
j0
d

(P r0,s0
comm) =

∑
ī∈I0,j̄∈J0 m

r0s0
īj̄

. The matrices Si1...id
form a sym-

metric family in the sense of Definition 2.3.12. Therefore, for all ī ∈ I0, j̄ ∈ J0, mr0s0
īj̄

are equal. This gives us that

coeffα
i0
1

...α
i0
d

α′
j0
1

...α′
j0
d

(P r0,s0
comm) = |I0||J0|(mr0,s0

i0
1...i0

d
j0

1 ...j0
d
) ̸= 0.

Hence P r0,s0
comm ̸≡ 0 and deg(P r0,s0

comm) ≤ 2d and using Lemma 2.2.9, we get that,
Prα,α′∈S [P

r0,s0
comm(α,α′) ̸= 0] ≥ 1 − 2d

|S| . Putting r = r0, s = s0, this gives us that

Prα,α′∈S

[
Mα,Mα′ don’t commute

]
≥
(

1 − 2d
|S|

)
.

The next result relies on the above lemma. Theorem 2.3.14 gives us a way to ana-
lyze the case when the slices of the input polynomial fail to satisfy the commutativity
property (recall that this property is relevant due to Theorem 2.3.8).

Theorem 2.3.14. Let f ∈ K[x1, ...,xn]d be a degree d form such that the sub-
space of matrices V spanned by its slices is not weakly singular and does not sat-
isfy the commutativity property. Let h(x) = f(Rx) where the entries (ri,j) of R
are chosen uniformly and independently at random from a finite set S ⊂ K. Let
{Ti1...id−2}i1,...,id−2∈[n] be the slices of h. If T1̄ is invertible, define T ′

1̄ = (T1̄)
−1. Then

Pr[T1̄ is invertible and T ′
1̄T2̄,T ′

1̄T3̄ commute] ≤ 2(d−2)
|S| .

Proof. Let {Si1...id−2}i1,...,id−2∈[n] be the slices of f . By Theorem 2.3.2, we know that

Ti1...id−2 = RT
(∑

j1...jd−2∈[n]
(
∏

m∈[d−2]
rjm,imSj1...jd−2)

)
R.

40 Chapter 2. Absolute Reconstruction for Sums of Powers of Linear Forms

Let us define Di1...id−2 =
∑

j1...jd−2∈[n](
∏

m∈[d−2] rjm,im)Sj1...jd−2 . Then we have for all
i ∈ {2, ...,n}:

T ′
1̄Tī = R−1(D1̄)

−1(R)−TRTDīR = R−1(
∑

j1...jd−2∈[n]
(
∏

m∈[d−2]
rjm,i)(D1̄)

−1Sj1...jd−2)R.

(2.3)
So, if T1̄ is invertible, T ′

1̄T2̄ commutes with T ′
1̄T3̄ iff (D1̄)

−1D2̄ commutes with (D1̄)
−1D3̄.

Let E1 be the event that T1̄ is invertible and T ′
1̄T2̄ commutes with T ′

1̄T3̄. Let E′
1

be the event that D1̄ is invertible and (D1̄)
−1D2̄ commutes with (D1̄)

−1D3̄. Let E4
be the event that R is invertible. Then we have that E1 = E′

1 ∩E4.
Let E2 be the event that D1̄ is invertible and {(D1̄)

−1Si1,...,id−2}i1,...,id−2∈[n] is not
a commuting family. Since V does not satisfy the commutativity property, (D1̄)

−1V
is not a commuting subspace if D1̄ is invertible. Hence, the event that D1̄ is invertible
is the same as the event E2. This also implies that E′

1 ⊆ E2. Setting Ai1...id−2 =
(D1̄)

−1Si1...id−2 ,αi = ri,2,α′
i = ri,3 and then using Lemma 2.3.13, we can conclude

that PrR∈S

[
E′

1|E2

]
≤ 2(d−2)

|S| .
Note here that D1̄ depends only on the random variables ri,1 for all i ∈ [n] and

therefore is independent of rk,2 and rl,3 for all k, l ∈ [n], because we assume that the
entries of R are all picked uniformly and independently at random.
Let E3 be the event that T1̄ is invertible. Now we know that T1̄ is invertible iff R and
D1̄ are invertible. Then, we have E3 = E2 ∩E4 Hence, the probability of error can
be bounded as follows:

PrR∈S [E1] = PrR∈S [E
′
1 ∩E2 ∩E4] ≤ PrR∈S [E

′
1|E2] ≤ 2(d− 2)

|S|
.

Failure of diagonalisability

Theorem 2.3.14 gives us a way to analyze the case when the slices of the input poly-
nomial fail to satisfy the commutativity property. With the results in the present
section we will be able to analyze the case where the commutativity property is satis-
fied, but the diagonalisability property fails (recall that these properties are relevant
due to Theorem 2.3.8).

Lemma 2.3.15. Let {Ai1...id
}i1,..,id∈[n] ∈ Mn(K) be a commuting family of symmetric

matrices. Let us assume that this family is symmetric in the sense of Definition 2.3.12
and there exists i01, ..., i0d ∈ [n] such that Ai0

1...i0
d

is not diagonalisable. Let S ⊂ K be a
finite set. Then D =

∑n
i1,...,id=1(

∏
m∈[d] αim)Ai1...id

is diagonalisable with probability
at most d

|S| when α1, ...,αn are chosen uniformly and independently at random from
S.

Proof. We define U = span{Ai1...id
}i1,..,id∈[n]. We also define the class of matrices

M :=
{
M

∣∣∣∣M is diagonalisable and M ∈ U
}

.

So, we want to show that Prα∈S

[
D ∈ M

]
≤ d

|S| .
Now using Proposition 2.2.15, and the hypothesis that there exists Ai0

1...i0
d

∈ U \
M, we get that M is a proper linear subspace of U . So M is an intersection of

2.3. Equivalence to a linear combination of d-th powers 41

hyperplanes. Since Ai0
1...i0

d
̸∈ M, there exists a linear form

lM(X) =
∑

i,j∈[n]
aijXij

corresponding to a hyperplane such that lM(M) = 0 for allM ∈ M and lM(Ai0
1...i0

d
) ̸=

0. We know that if D is diagonalisable, then lM(D) ̸= 0. We compute the polynomial

lM(D)(α) =
∑

i1,...,id∈[n]
(
∏

m∈[d]
αim)mi1...id

where mi1...id
= (

∑
k,l∈[n] akl(Ai1...id

)k,l).
Now we claim that lM(D) ̸≡ 0. We show this by proving that the coefficient of

αi0
1
...αi0

d
in lM(D)(α) is not equal to 0. Let I0 = {(i0σ(1), ..., i0σ(d))|σ ∈ Sd}. Then

coeffα
i0
1

...α
i0
d

(D) =
∑

ī∈I0 mī. Since the matrices Ai1...id
form a symmetric family, the

mī are equal for all ī ∈ I0. Also, since, lM(Ai0
1...i0

d
) ̸= 0, we get that

∑
k,l∈[n]

ak,l(Ai0
1...i0

d
)k,l ̸= 0.

This gives us that mi0
1...i0

d
̸= 0. Hence, we get that

coeffα
i0
1

...α
i0
d

(D) = |I0|mi0
1...i0

d
̸= 0.

Thus, lM(D) ̸≡ 0 and deg(lM(D)) ≤ d. From Lemma 2.2.9, we have

Prα∈S

[
D ∈ M

]
≤ Prα∈S [lM(D)(α) = 0] ≤ d

|S|
.

The last result for this section is an analogue of the Theorem 2.3.14 for the
diagonalisability property.

Theorem 2.3.16. Let f ∈ K[x1, ...,xn]d be a degree-d form such that the subspace
V spanned by its slices is a not weakly-singular subspace, satisfies the commutativity
property, but does not satisfy the diagonalisability property. Let h(x) = f(Rx) where
the entries ri,j of R are chosen uniformly and independently at random from a finite
set S ⊂ K, Let {Ti1...id−2}i1,...,id−2∈[n] be the slices of h. If T1̄ is invertible, define
T ′

1̄ = (T1̄)
−1. Then

Pr[T1̄ is invertible and T ′
1̄T2̄ is diagonalisable] ≤ d− 2

|S|
.

Proof. As in the proof of Theorem 2.3.14, we use the expression for T ′
1̄T2̄ which we

obtain from the definition of the slices i.e.

R−1(
∑

j1...jd−2∈[n]
(
∏

m∈[d−2]
rjm,2)(D1̄)

−1Sj1...jd−2)R

where D1̄ =
∑

j1...jd−2∈[n](
∏

m∈[d−2] rjm,1)Sj1...jd−2 . So if T1̄ is invertible, T ′
1̄T2̄ is diag-

onalisable iff M = (
∑

j1...jd−2∈[n](
∏

m∈[d−2] rjm,2)(D1̄)
−1Sj1...jd−2) is diagonalisable.

42 Chapter 2. Absolute Reconstruction for Sums of Powers of Linear Forms

We denote by E1 the event that T1̄ is invertible and T ′
1̄T2̄ is diagonalisable and by

E′
1 the event that D1̄ is invertible and M is diagonalisable. Let E4 be the event that

R is invertible. Hence, E1 = E′
1 ∩E4.

Let E2 be the event that D1̄ is invertible and {(D1̄)
−1Si1...id−2}i1,...,id−2∈[n] is a

commuting family and there exists j1...jd−2 ∈ [n] such that (D1̄)
−1Sj1...jd−2 is not

diagonalisable. Since V satisfies the commutativity property and does not satisfy the
diagonalisability property, by Theorem 2.2.7, the event that D1̄ is invertible is the
event same as E2. It can also be observed that E′

1 ⊆ E2.
Setting Ai1...id−2 = (D1̄)

−1Si1...id−2 and setting αi = ri,2 for all i ∈ [n] and using
Lemma 2.3.15, we get that PrR∈S

[
E′

1

∣∣∣E2
]

≤ d−2
|S| . Now we know that T1̄ is invertible

iff R and D1̄ is invertible. Let E3 be the event that T1̄ is invertible. Then, we
have E3 = E2 ∩ E4 . The probability of error can finally be bounded as follows:
PrR∈S [E1 ∩E3] = PrR∈S [E′

1 ∩E2 ∩E4] ≤ PrR∈S [E′
1|E2] ≤ d−2

|S| .

Finishing the analysis for negative inputs

In this section we complete the proof of Theorem 2.3.1. The case of positive inputs
was treated in Section 2.3.3. It therefore remains to prove the following result.

Theorem 2.3.17. If an input f ∈ K[x1, ...,xn]d is not equivalent to some polynomial
Pd ∈ Pd, then f is rejected by the algorithm with high probability over the choice of
the random matrix R. More precisely, if the entries ri,j are chosen uniformly and
independently at random from a finite set S ⊆ K, then the input will be rejected with
probability ≥ (1 − 2(d−2)

|S|).

Proof. Let {Si1,...,id−2}i1,...,id−2∈[n] be the slices of f and V = span{Si1,...,id−2}. From
Theorem 2.3.6 and Theorem 2.2.8, we know that if f ̸∼ Pd, then there are three
disjoint cases:

1. Case 1: V is a weakly singular subspace of matrices.

2. Case 2: V is not a weakly singular subspace and V does not satisfy the com-
mutativity property.

3. Case 3: V is not a weakly singular subspace, V satisfies the commutativity
property but does not satisfy the diagonalisability property.

Now we try to upper bound the probability of error in each case.
In case 1, T1̄ = RT (

∑
j1...jd−2∈[n] rj1,1...rjd−2,1Sj1...jd−2)R ∈ RT VR is always singular

for any choice of rj,1. So f is rejected with probability 1 in this case.
In case 2, we can upper bound the probability of error as follows:

PrR∈S [f is accepted by the algorithm]

= PrR∈S [T1̄ is invertible, T ′
1̄T2̄,T ′

1̄T3̄ commute ,T ′
1̄T2̄ is diagonalisable]

≤ PrR∈S [T1̄ is invertible, T ′
1̄T2̄,T ′

1̄T3̄ commute].

Using Theorem 2.3.14, we get that this occurs with probability at most 2(d−2)
|S| . In

Case 3, we have the following upper bound on the probability of error,

PrR∈S [f is accepted by the algorithm]

= PrR∈S [T1̄ is invertible, T ′
1̄T2̄,T ′

1̄T3̄ commute ,T ′
1̄T2̄ is diagonalisable]

≤ PrR∈S [T1̄ is invertible, T ′
1̄T2̄ is diagonalisable].

2.4. Variable Minimization 43

By Theorem 2.3.16, this occurs with probability ≤ d−2
|S| . Therefore in all these three

cases, the algorithm rejects f with probability at least 1 − 2(d−2)
|S| .

2.4 Variable Minimization
We first recall the notion of redundant and essential variables studied by Carlini
[Car06] and Kayal [Kay11].

Definition 2.4.1. A variable xi in a polynomial f(x1, ...,xn) is redundant if f does
not depend on xi , i.e., xi does not appear in any monomial of f .

Let f ∈ K[x1, ...,xn]. The number of essential variables is the smallest number t
such that there exists an invertible linear transformation A ∈ Kn×n on the variables
such that every monomial of f(Ax) contains only the variables x1, ...,xt.

In this section we propose the following algorithm for variable minimization.
Algorithm 3: Randomized algorithm for ≤ n linearly independent linear
forms
1 Input: A degree-d homogeneous polynomial P given by a blackbox
2 Pick (α1, ...,αn) where αj = (α

(1)
j , ...,α(n)

j) and α
(i)
j are picked uniformly and

independently at random from a finite set S ⊂ K

3 Compute M = (∂P
∂xj

(αi)), such that i, j ∈ [n]

4 Perform Gaussian elimination on M and define the basis of the kernel
B = {v1, ..., vn−t}

5 Add vectors u1, ...,ut to B to obtain a basis for Kn

6 Define n× n matrix A = (u1, ...,ut, v1, ..., vn−t) where ui and vj are the
columns of A

7 Let f(x) = P (Ax)
8 Run Algorithm 2 on f(x1, ...,xt, 0, ..., 0)
9 if Algorithm 2 accepts then

10 accept
11 else
12 reject
13 end

A randomized algorithm for minimizing the number of variables is given in ([Kay11],
Theorem 4.1). More precisely, if the input f has t essential variables the algorithm
finds (with high probability) an invertible matrix A such that f(Ax) depends on its
first t variables only. It is based on the observation that t = dim(∂f) where ∂(f)
denotes the tuple of n first-order partial derivatives ∂f

∂xi
(and dim(∂f) denotes the

dimension of the spanned subspace). [Kay11] then uses Lemma 2.4.3 along with
Theorem 2.4.4 to return the required invertible matrix.

We combine the algorithm for minimizing the number of variables along with
Algorithm 2 to check if there exists a decomposition of the polynomial into linear
combination of d-th powers of ≤ n many linearly independent linear forms. More
formally, Algorithm 3 decides in polynomial time over C or R whether the input f
which is given as blackbox can be written as ∑t

i=1 αil
d
i for some t ≤ n where li’s

are linearly independent linear forms and αi ̸= 0 for all i ∈ [t]. We do a detailed
complexity analysis of this algorithm in Appendix A.2.

Definition 2.4.2. Let f(x) = (f1(x), ..., fm(x)) ∈ (K[x])m be a vector of polynomials
over a field K. The set of K-linear dependencies in f, denoted by f⊥, is the set of all

44 Chapter 2. Absolute Reconstruction for Sums of Powers of Linear Forms

vectors v ∈ Km, whose inner product with f is the zero polynomial i.e

f⊥ := {(a1, ..., am) ∈ Km|
∑

i∈[m]

aifi(x) = 0}

This following lemma from [Kay11] gives a randomized algorithm to compute
the basis of linear dependencies of a vector of polynomials. We restate it here for
completeness and also calculate the probability bounds which we will need for our
correctness proof of Algorithm 3.

Lemma 2.4.3. Let f = (f1(X), ..., fm(X)) be a vector of m polynomial with deg(fi) ≤
d such that rank(f⊥) = t. Pick a1, ..., am where aj = (a

(1)
j , ..., a(m)

j) where the a(i)j ’s
are chosen uniformly and independently at random from a finite set S ⊆ K for all
i, j ∈ [m]. Define matrix

P (a1, ..., am) =

f1(a1) f2(a1) . . . fm(a1)
f1(a2) f2(a2) . . . fm(a2)

...
...

f1(am) f2(am) . . . fm(am)

Then

Pra∈S [rank(P (a1, ..., am)) = m− t] ≥ 1 − (m− t)d

|S|

Additionally, if rank(P (a1, ..., am)) = m− t, then ker(P (a1, ..., am)) = f⊥.

Proof. Without loss of generality, we assume that the polynomial f1, ..., fm−t are K-
linearly independent and the rest of the polynomials are K linear combinations of the
first m− t polynomials. So it is enough to prove that

Q(a1, ..., am) =

f1(a1) f2(a1) . . . fm−t(a1)
f1(a2) f2(a2) . . . fm(a2)

...
...

f1(am−t) f2(am−t) . . . fm(am−t)

has full rank, which is equivalent to proving that det(Q)(a1, ..., am) ̸= 0.
Now deg(det(Q)(x1, ...,xn)) ≤ (m− t)d. Claim 7 in [Kay11] shows that det(Q) ̸≡ 0.
Applying Lemma 2.2.9, we get that,

Pra∈S [rank(P (a1, ..., am)) = m− t] ≥ 1 − (m− t)d

|S|

Recall that we define ∂(f) = (∂f
∂x1

, ..., ∂f
∂xn

). Let b1, ..., bn−t be a basis for ∂(f)⊥.
Now there exists t independent vectors a1, ..., at such that the vector space Kn is
spanned by a1, ..., at, b1, ..., bn−t. We define Af to be the invertible matrix whose
columns are a1, ..., at, b1, ..., bn−t.

Theorem 2.4.4. [Car06] The number of redundant variables in a polynomial f(x)
equals the dimension of ∂(f)⊥. Furthermore, given a basis of ∂(f)⊥ , the polynomial
f(AfX) depends on only the first (n− dim(∂(f)⊥))) variables.

2.5. Reconstruction Algorithm for Pd 45

Lemma 2.4.5. If f can be written as a sum of r powers of linearly independent linear
forms, then the number of essential variables of f is equal to r.

Proof. Follows from Example 42 in [KS21].

We combine all the results in this section along with Theorem 2.3.1 to give a
correctness proof for Algorithm 3.

Theorem 2.4.6. If an input P ∈ K[x1, ...,xn]d can not be written as
∑t

i=1 αil
d
i ,

where li are linearly independent linear forms and αi ̸= 0 for all i ∈ [t], for any
t ≤ n, then P is rejected by Algorithm 3 with high probability over the choice of the
random matrix R and the points α1, ...,αn. More formally, if the entries αi

j and ri,j
are chosen uniformly and independently at random from a finite set S, then the input
will be rejected with probability ≥ (1 − 2(d−2)

|S|)(1 − n(d−1)
|S|).

Conversely, if P ∈ K[x1, ...,xn]d can be written as
∑t

i=1 αil
d
i where li are linearly

independent linear forms and αi ̸= 0 for all i ∈ [t], then P will be accepted by
Algorithm 3 with high probability over the choice of the random matrix R and the
points a1, ..., an. More formally, if the entries α(i)

j and ri,j are chosen uniformly and
independently at random from a finite set S, then the input will be accepted with
probability ≥ (1 − t(d−1)

|S|)2 .

Proof. Let us assume that P has t essential variables and we fix M as given by the
algorithm. Then using Lemma 2.4.3 for fi =

∂P
∂xi

and ai = αi, we get that

Prα[v1, ..., vn−t is a basis for ∂(P)⊥] ≥ 1 − t(d− 1)
|S|

.

The linear transformation A defined in the algorithm, satisfies the conditions of the
linear transformation defined in Theorem 2.4.4 with bi = vi and ai = ui with proba-
bility ≥ 1 − t(d−1)

|S| . Now, we define f(x) = P (Ax). This gives us that

Prα[f(x) depends only on the first t variables] ≥ 1 − t(d− 1)
|S|

≥ 1 − n(d− 1)
|S|

.

Using Theorem 2.3.1, we get that if f can not be written as a sum of t-many sum of
d-th powers of linear forms for any t ≤ n, then the algorithm rejects the polynomial
with probability ≥ (1 − 2(d−2)

|S|)(1 − n(d−1)
|S|).

For the converse, if f can be written as a sum of t-many sum of d-th powers of
linear forms, using Lemma 2.4.5, then the polynomial has t essential variables. Then
the algorithm accepts P with probability ≥ (1 − t(d−1)

|S|)2.

2.5 Reconstruction Algorithm for Pd

The general reconstruction problem for a special class of arithmetic circuits can be
stated as follows: Given a homogeneous degree-d polynomial, output the smallest
circuit that computes it. In this section, we look at the reconstruction problem for
linear combination of d-th powers of linearly independent linear forms. Notice that
Algorithm 2 already solves the decision version of this problem in polynomial time i.e.
Given a homogeneous degree-d polynomial, can it be written as a linear combination
of d-th powers of linearly independent linear forms?

46 Chapter 2. Absolute Reconstruction for Sums of Powers of Linear Forms

In terms of the polynomial equivalence problem, we have already shown that given
a homogeneous degree-d polynomial f , we can check in polynomial time if there exists
an invertible matrix A and some Pd ∈ Pd such that f(x) = Pd(Ax). We give an
algorithm (see Algorithm 4 below) that uses Algorithm 2 to check the existence of
such an A and then outputs the A and the corresponding Pd. When f ∈ C[x1, ...,xn]d,
this algorithm runs in polynomial time, if we allow the computation of polynomial
roots in our model.

Algorithm 4: Randomized Reconstruction Algorithm
Result: The algorithm checks if f is equivalent to some polynomial in Pd

and outputs {(α1, l1), ..., (αn, ln)} where 0 ̸= αi ∈ K and li’s are
linearly independent linear forms such that f =

∑n
i=1 αil

d
i

1 Input: A degree-d homogeneous polynomial f given as blackbox
2 Let R ∈ Mn(K) be a matrix such that its entries rij are picked uniformly

and independently at random from a finite set S and set h(x) = f(Rx)
3 Let Ti1,...,id−2 be the slices of h for all i1, ..., id−2 ∈ [n]
4 Compute T1̄,T2̄,T3̄
5 if T1̄ is singular then
6 reject
7 else
8 compute T ′

1̄ = T−1
1̄

9 if T ′
1̄T2̄ and T ′

1̄T3̄ commute and T ′
1̄T2̄ is diagonalisable over K then

10 diagonalise T ′
1̄T2̄ = PΛP−1

11 Let li be the i-th row of (R−1P−1) and let αi = f(PRx)(ei) where
ei ∈ Kn is the i-th standard basis vector for all i ∈ [n]

12 Output {(α1, l1), ..., (αn, ln)}
13 else
14 reject
15 end
16 end

Note that this output is unique up to the permutation and scaling of the linear
forms by a constant. If the linear form li is scaled by a constant c, then it is reflected
in the αi which becomes αi

cd .
A natural question is to study the approximate version for this reconstruction

problem i.e. if the input polynomial admits such a decomposition, the linear forms
which are returned by the algorithm are "arbitrarily close" to the required linear
forms. In this context, one should note that interestingly, the only non-algebraic
step in this algorithm is the step of matrix diagonalization. All other steps can be
computed exactly in polynomial time. Recently, [BGVKS22] gave a poly-time ran-
domized algorithm for the approximate version of matrix diagonalization problem.
Referring to that algorithm for our diagonalization step combined with our recon-
struction algorithm should effectively give a polynomial time randomized algorithm
for the approximate version of the reconstruction problem. A more precise analysis
is left for future work.

For the next lemma, we assume that the input polynomial f is equivalent to some
polynomial Pd ∈ Pd i.e. f(x) = Pd(Ax) where A is an invertible matrix. Take a
random change of variables and let T1̄ and T2̄ be two slices of the new polynomial.
Then, the eigenvalues of (T1̄)

−1T2̄ are distinct with high probability over the random
change of variables. Lemma 2.5.1 along with Corollary 2.5.1.1 ensures that just
diagonalization of a single (T1̄)

−1T2̄ is enough to recover the matrix A uniquely (up
to permutation and scaling of the rows).

2.5. Reconstruction Algorithm for Pd 47

Theorem 2.5.1. Let f(x) = Pd(Ax) for some Pd ∈ Pd where A is an invertible
matrix. Let h(x) = f(Rx) where the entries rij of R are chosen uniformly and inde-
pendently at random from a finite set S. Let the slices of h be {Ti1...id−2}i1,...,id−2∈[n].
If T1̄ is invertible, let T ′

1̄ = T−1
1̄ . Let λ1, ...,λn be the eigenvalues of T ′

1̄T2̄. Then

PrR∈S [There exists i, j ∈ [n] such that λi = λj and T1̄ is invertible]

≤
2(n

2)(d− 2)
|S|

.

Proof. Let us assume that Pd(x) =
∑n

i=1 αix
d
i where αi ̸= 0. We use the fact that

h(x) = Pd(RAx). Let {Si1...id−2}i1,...,id−2∈[n] be the slices of Pd. Then we know from
(2.3),

T ′
1̄T2̄ = (RA)−1(

∑
j1...jd−2∈[n]

∏
m∈[d−2]

(RA)jm,2(D1̄)
−1Sj1...jd−2)(RA)

where

D1̄ =
∑

j1...jd−2∈[n]
(
∏

m∈[d−2]
(RA)jm,1)Sj1...jd−2 .

Since Si1...id−2 are the slices of Pd, we know that

Si1...id−2 = αidiag(ei) if i1 = i2 = ... = id−2 = i

= 0 otherwise.

Since T1̄ is invertible, then R and D1̄ are invertible. Now

D1̄ = diag(α1((RA)1,1)
d−2, ...,αn((RA)n,1)

d−2).

Since D1̄ is invertible, this gives us that αi((RA)i,1)d−2 ̸= 0 for all i ∈ [n] and we
obtain

T ′
1̄T2̄ = (RA)−1

(
diag(((RA)1,2)d−2

((RA)1,1)d−2 , ..., ((RA)n,2)d−2

((RA)n,1)d−2)

)
RA (2.4)

This gives us that λi =
((RA)i,2)d−2

((RA)i,1)d−2 . We define

Pi,j(R) = ((RA)i,2(RA)j,1)
d−2 − ((RA)j,2(RA)i,1)

d−2.

We can see that λi ̸= λj iff Pi,j(R) ̸= 0. Also, deg(Pij) ≤ 2(d− 2). We can choose
R such that (RA)i,2 = 1, (RA)j,1 = 1, (RA)i,1 = 0, (RA)j,2 = 0, (If A is invertible,
there exists R such that RA = M for any matrix M). Hence, Pij ̸≡ 0. Using
Schwartz- Zippel Lemma, we get that

PrR∈S [Pij = 0] ≤ 2(d− 2)
|S|

.

This gives us that

PrR∈S [T1̄ is invertible and λi = λj] ≤ PrR∈S [Pij = 0] ≤ 2(d− 2)
|S|

.

48 Chapter 2. Absolute Reconstruction for Sums of Powers of Linear Forms

Taking the union bound over all possible pairs of i, j ∈ [n], we get that

PrR∈S [There exists i, j ∈ [n] such that λi = λj and T1̄ is invertible]

≤
2(n

2)(d− 2)
|S|

.

Corollary 2.5.1.1. Let f(x) be a degree-d form which is equivalent to some polyno-
mial in Pd. Let h(x) = f(Rx) where the entries rij of R are chosen uniformly and in-
dependently at random from a finite set S ⊂ K. Let the slices of h be {Ti1,...,id−2}i1,...,id−2∈[n].
If T1̄ is invertible, let T ′

1̄ = T−1
1̄ . Suppose T ′

1̄T2̄ can be diagonalised as PΛP−1. Let li
be the rows of R−1P−1. Define αi = f(PRx)(ei) where ei ∈ Kn is the i-th standard
basis vector for all i ∈ [n]. Then

PrR∈S [T1̄ is invertible and f(x) =
n∑

i=1
αil

d
i] ≥ 1 −

2(n
2)(d− 2)

|S|
.

Proof. By Theorem 2.5.1, we get that

PrR∈S [T1̄ is invertible and T ′
1̄T2̄ has distinct eigenvalues]

≥ 1 −
2(n

2)(d− 2)
|S|

.

We will now show that if T1̄ is invertible and T ′
1̄T2̄ has distinct eigenvalues, then f(x) =∑n

i=1 αil
d
i .

If the eigenvalues are distinct, then the rank of the eigenspaces corresponding to
each eigenvalue is 1. Hence, the eigenvectors of T ′

1̄T2̄ are unique (up to a scaling
factor). We already know that h(x) = Pd(Bx) for some Pd ∈ Pd such that B is
invertible. Then the columns of B−1 form the eigenvectors of T ′

1̄T2̄. We take the
diagonalization of T ′

1̄T2̄ into PΛP−1. Note here that the columns of P form the
eigenvectors for T ′

1̄T2̄. The uniqueness of eigenvectors of T ′
1̄T2̄ gives us that the set of

columns of P are essentially the set of columns of B−1 upto a scaling factor. So this
gives us that h(x) = P ′

d(P
−1x) for some P ′

d ∈ Pd. We know that f(x) = h(R−1x).
This gives us that f(x) = P ′

d(R
−1P−1)x. We define A = R−1P−1 and the i-th row of

A as li. This fixes the set of linear forms of the decomposition of the input polynomial
which are unique up to a scaling factor.
Taking Pd = f(A−1x) gives the corresponding polynomial in Pd such that f is equiv-
alent to Pd. Now Pd =

∑n
i=1 αix

d
i where αi ̸= 0. Evaluating Pd at ei ∈ Kn where ei

is the i-th standard basis vector, returns the corresponding αi. Hence,

PrR∈S [f(x) =
n∑

i=1
αil

d
i and T1̄ is invertible] ≥ 1 −

2(n
2)(d− 2)

|S|
.

We combine all the results in this section along with Theorem 2.3.1 to give a
correctness proof of Algorithm 4.

Theorem 2.5.2. If an input f ∈ K[x1, ...,xn]d is not equivalent to some polynomial
in Pd, then f is rejected by Algorithm 4 with high probability. More formally, if the
entries ri,j of R are chosen uniformly and independently at random from a finite set
S, then the input will be rejected with probability ≥ (1 − 2(d−2)

|S|).

2.6. Complexity analysis for equivalence to a sum of cubes 49

Conversely, if an input f ∈ K[x1, ...,xn]d is equivalent to some polynomial in Pd,
then Algorithm 4 outputs such a polynomial with high probability. More formally,if the
entries of a matrix R are chosen uniformly and independently from a finite set S, then
the algorithm outputs a set of linearly independent linear forms li and corresponding
coefficients αi ̸= 0 such that f =

∑n
i=1 αil

d
i with probability ≥ 1− (

2(n
2)(d−2)

|S| + n(d−1)
|S|).

Proof. From Theorem 2.3.17, we get that if f is not equivalent to any polynomial in
Pd, then f is rejected by Algorithm 4 with probability ≥ (1 − 2(d−2)

|S|).
For the converse, we start by assuming that f is equivalent to some polynomial in

Pd. We know that if the first slice T1̄ of h(x) = f(Rx) is not invertible, the Algorithm
always makes an error and rejects the input. From Theorem 2.3.8, we know that the
subspace spanned by the slices of f is not weakly singular. We can therefore apply
Lemma 2.3.9, we get that

PrR∈S [T1̄ is not invertible] ≤ n(d− 1)
|S|

. (2.5)

Moreover if T1̄ is invertible, Lemma 2.3.10 shows that f will always be accepted.
Let the output of the algorithm be {(αi, li)}i∈[n]. So the only possible error is when
f ̸=

∑
i∈[n] αil

d
i . From Corollary 2.5.1.1, we get that

PrR∈S [Algorithm makes an error and T1̄ is invertible] ≤
2(n

2)(d− 2)
|S|

. (2.6)

Combining (2.5) and (2.6), we get that if f is equivalent to some polynomial in Pd,
then Algorithm 4 returns a set of linearly independent linear forms li and correspond-
ing coefficients αi ̸= 0 (which are unique up to scaling and permutation) such that
f =

∑n
i=1 αil

d
i with probability ≥ 1 − (

2(n
2)(d−2)

|S| + n(d−1)
|S|).

We can also replace the call to Algorithm 2 in Algorithm 3 by a call to Algorithm
4 to similarly get a reconstruction algorithm for linear combination of powers of at
most n linearly independent linear forms. More specifically, given a polynomial f in
blackbox, it will check if there exists a decomposition of f =

∑t
i=1 αil

d
i for some t ≤ n

where li’s are linearly independent and αi ̸= 0 and outputs the decomposition, if it
exists.

2.6 Complexity analysis for equivalence to a sum of
cubes

We first explain how the diagonalizability of a matrix can be tested efficiently with
an algebraic algorithm. This can be done thanks to the following classical result from
linear algebra (see e.g. [HJ13], Corollary 3.3.8 for the case K = C).

Lemma 2.6.1. Let K be a field of characteristic 0 and let χM be the characteristic
polynomial of a matrix M ∈ Mn(K). Let PM = χM

gcd(χM ,χ′
M) be the square-free part of

χM . The matrix M is diagonalisable over K iff PM (M) = 0. Moreover, in this case
M is diagonalisable over K iff all the roots of PM lie in K.

We prove the following lemma which shows that each entry of the slices that we
need to compute can be computed using O(d) calls to the blackbox and O(d log3 d)
many arithmetic operations. This proof is motivated from the idea of polynomial

50 Chapter 2. Absolute Reconstruction for Sums of Powers of Linear Forms

interpolation and the proof strategy of Lemma 4 in [FGS18].Their algorithm gives a
poly(sd) runtime in our setting. In this section, we will require this lemma only for
d = 3, but we prove the general form so that we can use it later in Chapter 2.7.

Lemma 2.6.2. Let f ∈ K[x1, ...,xn] be a homogeneous polynomial of degree d where
|K| > d. If f is input as a blackbox C, then for some i ∈ [n] can compute the coef-
ficient of xd−2

i xkxj using O(d) many oracle calls to the blackbox and O(M (d) log d)
many arithmetic operations.

Proof. Here we use the standard trick of polynomial interpolation. Without loss of
generality, we assume that i = 1, that is we need to compute coeffxd−2

1 xjxk
(f). So we

can write,

C(x1, ...,xn) =
d∑

i=0
cix

i
1 where cj ∈ K[x2, ...,xn].

Now there are three cases:

• j = k = 1

• only one of j or k = 1

• j, k ̸= 1.

Case 1: Evaluate the polynomial at the point (1, 0, ..., 0) ∈ Kn. This gives us the
coefficient of xd

1 in f .
Case 2: Exactly one of j or k is 1. Without loss of generality, we assume j = 1
and k = 2. So we want to compute coeffxd−1

1 x2
(f). We evaluate the polynomial f

at the point t̄ = (t, 1, 0, ..., 0) ∈ Kn. Now it’s easy to check that coefftd−1(f(t̄)) =
coeffxd−1

1 x2
(f). So we need to only interpolate and calculate the coefficient of td−1 in

f(t̄).
Case 3: j, k ̸= 1.

Now in this, there are two cases :

• j = k = 2 : Here we take a similar strategy as Case 2. We evaluate f at
t̄ = (t, 1, 0, ..., 0) ∈ Kn. Then coefftd−2(f(t̄)) = coeffxd−2

1 x2
2
(f) So interpolate

and compute the coefficient of td−2 in f(t̄).

• The final case is when the indices are all distinct. Let j = 2 and k = 3 without
loss of generality. We evaluate the polynomial f at t̄ = (t, 1, 1, 0, ..., 0) ∈ Kn.
Now

coefftd−2(f(t̄)) = coeffxd−2
1 x2

2
(f) + coeffxd−2

1 x2x3
(f) + coeffxd−2

1 x2
3
(f)

Now, using the previous case, we compute coeffxd−2
1 x2

2
(f) and coeffxd−2

1 x2
3
(f),

subtract them from coefftd−2(f(t̄)) and return the answer.

Each case of this algorithm requires us to do univariate polynomial interpolation at
most constantly many number of times and this can be done in time O(M(d) log d)
[GG13] (Section 10.2) where M(d) is the number of arithmetic operations for polyno-
mial multiplication. Rest of the operations can be done in time O(1). It also requires
O(d) many oracle calls to the blackbox.
So the algorithm uses O(M(d) log d) many arithmetic operations and O(d) many
oracle calls to the blackbox.

2.6. Complexity analysis for equivalence to a sum of cubes 51

Theorem 2.6.3. If a degree 3 form f ∈ K[x1, ...,xn] is given in dense representation,
Algorithm 1 runs in time O(nω+1) where ω is the exponent of matrix multiplication.
If the degree 3 form f ∈ K[x1, ...,xn] is given as a blackbox then the algorithm makes
O(n2) many calls to the blackbox and O(nω+1) many arithmetic operations.

Proof. The following are the different stages of computation required in this algo-
rithm:

1. Recall from Theorem 2.2.2, the slices Ti of h = f(Rx) are given by the formula
Tk = RT (

∑
i∈[n] ri,kSi)R. If the polynomial is input in dense representation,

then the elements of Si can be computed from the coefficients of f . Then we
take linear combinations of the Si’s and computing T1,T2,T3 takes O(n3) many
arithmetic operations.
If the polynomial is given as a blackbox, we compute x′ = Rx and we call the
blackbox on this input.

2. Compute T1, T2, T3 We know

(Tk)ij =
1
3!
∂xixjxk

(h)

So we can extract each entry of Tk using constant many calls to the blackbox
and constantly many arithmetic operations using Lemma 2.6.2. There are in
total 3n2 such entries that we need to compute. So the total number of calls to
the blackbox is O(n2) and the number of arithmetic operations is O(n2).

3. Check if T1 is invertible. If invertible, compute T ′
1 = T−1

1 .
This can be done in time at most O(n3). (Faster algorithms exist [GG13] but
this bound is enough since it is not the most expensive step of the algorithm.)

4. Checking commutativity of T ′
1T2 and T ′

1T3.
Here we compute the product T ′

1T2T
′
1T3 and T ′

1T3T
′
1T2 and check if their differ-

ence is 0. This can be done in time O(nω).

5. Checking the diagonalisability of T ′
1T2:

Here we use Lemma 2.6.1. Hence there are four steps:

• Compute the characteristic polynomial of M i.e. χM . Owing to a recent
breakthrough by [NP21], there is a deterministic algorithm for this prob-
lem that runs in time O(nω). A randomized algorithm for this problem
with same running time was given by [PS07]. A more classical result is
a deterministic algorithm for this problem due to [KG85] which runs in
O(nω log(n)) number of arithmetic operations.

• Compute gcd(χM ,χ′
M ,). Since, deg(χM) ≤ n, this can be done in O(n2)

using Euclidean Algorithm. [GG13]
• Compute PM = χM

gcd(χM ,χ′
M) . This is can be computed in O(n2) using the

standard long-division algorithm.
• Check if PM (M) = 0. Using Horner’s Method, we can evaluate the poly-

nomial at M using n many matrix multiplications only. Hence, computing
PM (M) takes O(nω+1) time.

Hence, we can conclude that the diagonalisability of T ′
1T2 can be checked in

time O(nω+1). Note that this is the most expensive step of the algorithm!

52 Chapter 2. Absolute Reconstruction for Sums of Powers of Linear Forms

So we conclude that if the polynomial is given as an input in the dense representation
model, then the algorithm runs in time O(nω+1).
If the polynomial is given as a blackbox, then the algorithm makes O(n2) many oracle
calls to the blackbox and takes O(nω+1) many arithmetic operations.

2.7 Complexity analysis for equivalence to some polyno-
mial in Pd

2.7.1 Complexity Analysis in the algebraic model

In this section, we provide a detailed complexity analysis of Algorithm 2. We show
that if a degree d polynomial in n variables over C is given as a blackbox, the algorithm
makes poly(n, d) many calls to the blackbox and performs poly(n, d) many arithmetic
operations to decide if f is equivalent to some polynomial in Pd.

Theorem 2.7.1. If a degree-d form f ∈ C[x1, ...,xn] is given as a blackbox, then Algo-
rithm 2 makes O(n2d) many calls to the blackbox and requires O(n2d log2 d log log d+
nω+1) many arithmetic operations.

Proof. The following are the different stages of computation required in this algo-
rithm:

1. If the polynomial is given as a blackbox, we compute x′ = Rx. And we call the
blackbox on this input.

2. Compute T1̄,T2̄,T3̄. We know that (Tk̄)ij = 1
d!∂xixjxd−2

k
(h).So we can extract

each entry of Tī using O(d) many oracle calls to C ′ and O(M(d) log d) many
arithmetic operations using Lemma (2.6.2). There are in total 3n2 such entries
that we need to compute. So this entire operation can be done using O(n2d)
many oracle calls to the blackbox and O(n2M(d) log d) many arithmetic oper-
ations.

3. Check if T1̄ is invertible. If invertible, compute T ′
1̄ = (T1̄)

−1

4. Checking commutativity of T ′
1̄T2̄ and T ′

1̄T3̄.

5. Checking the diagonalisability of T ′
1̄T2̄:

Steps (3), (4) and (5) are exactly the same as Theorem 2.6.3. This is because they
don’t require any assumptions on T1̄,T2̄,T3̄ except for the fact that they are n× n
matrices. Thus, from the proof of Theorem 2.6.3, we get that these steps can be
checked in O(nω+1) many arithmetic operations.

So we conclude that if the polynomial is given as a blackbox, then the algorithm
makes O(n2d) many calls to the blackbox; the number of arithmetic operations re-
quired is O(n2M(d) log d+ nω+1).
SinceM (d) = O(d log d log log d), the number of arithmetic operations isO(n2d log2 d log log d+
nω+1).

2.7.2 Complexity analysis for the bit model

We look at the case where f ∈ Q[x1, ...,xn] is a degree-d form and we want to check if it
can be written as a linear combination of dth powers of linear forms over R or C. Our
algebraic algorithms run in polynomial time in the standard bit model of computation,
i.e., they are “strongly polynomial” algorithms (this is not automatic due to the issue

2.7. Complexity analysis for equivalence to some polynomial in Pd 53

of coefficient growth during the computation). For a detailed discussion of how the
previous algorithms fail to give a polynomial time algorithm for this problem in this
model, refer to Section 1.1 from [KS21].

We try to estimate the complexity of each step of the algorithm in the standard
bit model of computation, following the proof of Theorem 2.7.1. In Step (1), we
take a matrix R such that its entries ri,j are picked uniformly and independently at
random from a finite set S.Hence the bit size of the entries of R are bounded by
log(|S|) + 1. We define h = f(Rx). Recall from Theorem 2.3.2, that the slices Tī

of h can be written as RT (
∑

i1,...,id−2∈[n](
∏

m∈[d] rim,i)Si1...id−2)R. The entries of the
slices Si1...id−2 are essentially the coefficients of f . So they are bounded by the bit
size of the maximum coefficient in f which we define to be bf . Therefore, the bit size
of each element of Tī is b := poly(log(|S|), log(n), d, bf) for all i. Now the elements
of T1̄,T2̄,T3̄ are computed using Lemma 2.6.2 that uses polynomial interpolation and
hence, computing these matrices takes time poly(n, d, b). In Step (3), we check if the
slice T1̄ is invertible and if invertible, it is inverted. Since the bit-size of the inputs
of T1̄ are bounded by b, the matrix can be inverted using Bareiss’ Algorithm [Bar68]
in time poly(n, d, b). In Step (4), testing commutativity of T ′

1̄T2̄ and T ′
1̄T3̄ requires

only matrix multiplication which does not blow up the entry of the matrices and
hence, this step can be done in time poly(n, d, b). In Step (5), we need to check the
diagonalisability of M = T ′

1̄T2̄. Over the field of complex numbers it therefore suffices
to check that PM (M) = 0 which can be done in time poly(n, d, b). For the discussion
of how the same can be executed over R, refer to Section 4 of [KS21].

So the total time required for the entire computation in the bit model of complexity
is poly(n, d, log(|S|), bf) where bf is the bit size of the maximum coefficient in f and
S is the set from which the entries of R are picked uniformly and independently at
random.

54

Chapter 3

Numerical Linear Algebra

This chapter is dedicated to the study of different fundamental algorithms for linear
algebra, albeit in the finite precision arithmetic model of computation. In Section
3.1.1, we further explore the model of finite precision arithmetic (which we had al-
ready described in Section 1.2.2) and in Section 3.1, we present the error guarantees
for well-known fast algorithms for standard linear algebra problems like matrix mul-
tiplication and matrix inversion. Then, in Section 3.2, we give a linear time algorithm
for computing the trace of the slices of a symmetric tensor after a change of basis
operation. We also perform the error analysis of this algorithm in the finite precision
arithmetic model of computation. In Section 3.3, we prove some interesting prop-
erties of the fast and numerically stable diagonalisation algorithm from [BGVKS22].
These are key components of the numerical algorithm for tensor decomposition that
we will describe in Chapter 4.

3.1 Preliminaries: Fast and Stable Linear Algebra
In this section, we explore the computational model of finite precision arithmetic
that has already been introduced in Section 1.2.2 in greater detail. We present the
different estimates for various linear algebraic operations such as inner product of
vectors, matrix multiplication and matrix inversion. This is the main content of
Sections 3.1.1 and 3.1.2 and they have been taken from [Hig02] and [BGVKS22]. We
include these for completeness of the exposition.

3.1.1 Finite precision arithmetic

Recall that we had described the finite precision arithmetic model of computation in
Section 1.2.2. Every number x ∈ C is stored as fl(x) = (1+∆)x for some adversarially
chosen ∆ ∈ C, satisfying |∆| ≤ u where u is the precision of the finite arithmetic
machine.

Norms: We denote by ||x|| the ℓ2 (Hermitian) norm of a vector x ∈ Cn. For
A ∈ Mn(C), we denote by ||A|| its operator norm and by ||A||F its Frobenius norm:

||A||2F =
n∑

i,j=1
|Aij |2. (3.1)

We always have ||A|| ≤ ||A||F .
We’ll need to compute the inner product of two vectors x, y ∈ Cn. For this

purpose, we will assume that

|xT y− fl(xT y)| ≤ γn||x||||y|| (3.2)

3.1. Preliminaries: Fast and Stable Linear Algebra 55

where u is the machine precision and γn = nu
1−nu . For a proof, refer to the discussion

at the discussion in [Hig02], Section 3.1.
We will also assume similar guarantees for matrix-matrix addition and matrix-

scalar multiplication. More specifically, if A ∈ Cn×n is the exact output of such an
operation, then its floating point representation fl(A) will satisfy

fl(A) = A+A ◦ ∆ where |∆ij | < u.

Here A ◦ ∆ denotes the entry-wise product Aij∆ij . This multiplicative error can be
converted into an additive form i.e.

||A ◦ ∆|| ≤ u
√
n||A||. (3.3)

For more complicated linear algebraic operations like matrix multiplication and ma-
trix inversion, we require more sophisticated error guarantees which we now explain.

3.1.2 Matrix Multiplication and Inversion

The definitions we state here are taken from [BGVKS22]

Definition 3.1.1. A µMM(n)-stable multiplication algorithm MM(., .) takes as input
A,B ∈ Cn×n and a precision u > 0 and outputs C = MM(A,B) satisfying

||C −AB|| ≤ µMM(n) · u||A||||B||

on a floating point machine with precision u, in TMM(n) arithmetic operations.

Definition 3.1.2. A (µINV(n), cINV)-stable inversion algorithm INV(.) takes as in-
put A ∈ Cn×n and a precision u and outputs C = INV(A) satisfying

||C −A−1|| ≤ µINV(n).u.(κ(A))cINV log n||A−1||.

on a floating point machine with precision u, in TINV(n) arithmetic operations.

The following theorem by [DDHK07] gives a numerically stable matrix multipli-
cation algorithm which is used by [DDH07] to gives numerically stable algorithm for
matrix inversion and a numerically stable algorithm for QR factorization of a given
matrix. We use the presentation of these theorems from [BGVKS22].

Theorem 3.1.3. 1. If ω is the exponent of matrix multiplication, then for every
η > 0, there is a µMM(n)-stable matrix multiplication algorithm with µMM(n) =
ncη and TMM(n) = O(nω+η), where cη does not depend on n.

2. Given an algorithm for matrix multiplication satisfying part (1), there is a
(µINV(n), cINV)-stable inversion algorithm with

µINV(n) ≤ O(µMM(n)nlog 10) and cINV ≤ 8,

and TINV(n) = O(TMM)(n).
In particular, all of the running times above are bounded by TMM(n) for a n× n

matrix.

Instead of the fast matrix multiplication algorithm, one can also consider the
errors from the conventional computation. Let A,B be two matrices and let C = AB

56 Chapter 3. Numerical Linear Algebra

computed on a floating point machine with machine precision u. From (3.13) in
[Hig02], we have that

||C −AB|| ≤ 2nu||A||F ||B||F . (3.4)

We will use this bound in the next section, where (in contrast to Section 3.3) fast
matrix multiplication is not needed.

3.2 Slices after a change of basis
Given tensors T ,T ′ ∈ Cn×n×n, we say that there is a change of basis A ∈ Mn(C)
that takes T to T ′ if T ′ = (A⊗A⊗A).T . Written in standard basis notation, the
equality T ′ = (A⊗A⊗A).T corresponds to the fact that for all i1, i2, i3 ∈ [n],

T ′
i1i2i3 =

∑
j1,j2,j3∈[n]

Aj1i1Aj2i2Aj3i3Tj1j2j3 . (3.5)

Note that if T = u⊗3 for some vector u ∈ Cn, then (A⊗A⊗A).T = (ATu)⊗3.
The choice of making A act by multiplication by AT rather than by multipli-

cation by A is somewhat arbitrary, but it is natural from the point of view of the
polynomial-tensor equivalence in Section 1.1.3. Indeed, from the polynomial point
of view a change of basis corresponds to a linear change of variables. More pre-
cisely, if f(x1, . . . ,xn) is the polynomial associated to T (refer to Section 1.1.3)
and f ′(x1, . . . ,xn) is the polynomial associated to T ′ = (A ⊗ A ⊗ A).T , we have
f ′(x) = f(Ax).

In the present section we give a fast and numerically stable algorithm for com-
puting the trace of the slices after a change of basis. More formally, given a tensor T
and a matrix V , it computes Tr(S1), ...,Tr(Sn) where S1, ...,Sn are the slices of the
tensor S = (V ⊗ V ⊗ V).T with small error in O(n3) many arithmetic operations.
The following theorem was derived in Theorem 2.2.2 in the polynomial language of
Section 1.1.3.

Theorem 3.2.1. Let T ∈ (Cn)⊗3 be a tensor with slices T1, ...,Tn and let S =
(A⊗A⊗A).T where A ∈ Mn(C). Then the slices S1, ...,Sn of S are given by the
formula:

Sk = ATDkA

where Dk =
∑

i=1 ai,kTi and ai,k are the entries of A.

Corollary 3.2.1.1. Let S =
∑r

i=1 a
⊗3
i . Let A be the r×n matrix with rows a1, ..., ar.

Then the slices Sk of S are given by the formula

Sk = ATDkA where Dk = diag(a1,k, ..., ar,k).

Definition 3.2.2 (Tensor Norm). Given a tensor T ∈ (Cn)⊗3, we define the Frobe-
nius norm ||T ||F of T as

||T ||F =

√√√√ n∑
i,j,k=1

|Ti,j,k|2

3.2. Slices after a change of basis 57

Then if T1, ...,Tn are the slices of T , we also have that
n∑

i=1
||Ti||2F =

∑
j,k∈[n]

|(Ti)j,k|2 = ||T ||2F . (3.6)

Algorithm 5: Trace of the slices after a change of basis (TSCB)
Input: An order-3 symmetric tensor T ∈ Cn×n×n, a matrix
V = (vij) ∈ Cn×n.

Let T1, ...,Tn be the slices of T .
1 Compute W = V TV on a floating point machine.
2 Compute xm,k = (WTm)k,k on a floating point machine for all m, k ∈ [n].
3 Compute xm =

∑n
k=1 xm,k on a floating point machine for all m ∈ [n] .

4 Compute s̃i =
∑n

m=1 vm,ixm on a floating point machine for all i ∈ [n].
Output s̃1, ..., s̃n

Wherever we mention that the computation is done on a floating point machine,
we assume that there is an adversarial error associated with that computation. The
following is the main theorem of this section.

Theorem 3.2.3. Let us assume that a tensor T ∈ (Cn)⊗3 and a matrix V ∈ Mn(C)
are given as input to Algorithm 5. Set S = (V ⊗ V ⊗ V).T following the definition in
(3.5) and let S1, ...,Sn be the slices of S. Then the algorithm returns s̃1, ..., s̃n such
that

|s̃i − Tr(Si)| ≤ µCB(n) · u · ||V ||3F ||T ||F (3.7)

where µCB(n) ≤ 14n 3
2 . It performs TCB(n) = O(n3) operations on a machine with

precision u < 1
10n .

Proof. Let S′ ∈ Cn×n×n be such that S′ = (V ⊗V ⊗V).T . Let S′
1, ...,S′

n be the slices
of S′. We first claim that ∑n

m=1 vmi

(∑n
k=1(V

TV Tm)k,k

)
= Tr(S′

i). Using Theorem

3.2.1, we know that S′
i = V TDiV where Di =

∑n
m=1 vm,iTm. Now using the cyclic

property and the linearity of the trace operator, we get that

Tr(S′
i) = Tr(V TDiV) = Tr(V TV Di) = Tr(V TV (

n∑
m=1

vm,iTm))

=
n∑

m=1
vmiTr(V

TV Tm) =
n∑

m=1
vmi

(n∑
k=1

(V TV Tm)k,k

)
.

(3.8)

From this, we conclude that if Algorithm 5 is run in exact arithmetic, it computes
exactly the trace of the slices S′

i of S′.
Running Time: We analyse the steps of the algorithm and deduce the num-

ber of arithmetic operations required to perform the algorithm. Note that only the
numbered steps contribute to the complexity analysis.

1. Since V ∈ Mn(C), Step 1 can be done in O(n3) operations with ordinary
matrix multiplication.

2. In Step 2, for each m, k ∈ [n], we compute the inner product of the k-th row
of W with the k-th column of Tm. Computation of each inner product takes n
arithmetic operations. There are n2 such inner product computations. So this
step requires n3 arithmetic operations.

58 Chapter 3. Numerical Linear Algebra

3. In Step 3, we compute each xm by adding xm,k for all k ∈ [n]. Thus each
xm requires n arithmetic operations and hence, this step requires n2 arithmetic
operations.

4. In Step 4, we compute each s̃i by taking the inner product of the i-th column of
V and X = (X1, ...,xm). Each inner product requires n arithmetic operations
and hence, this step requires n2 arithmetic operations.

So, the total number of arithmetic operations required is TCB(n) = O(n3).
Error Analysis: We denote by Ak the k-th row of any matrix A and by A_,k

we denote the k-th column of A.
We proceed step by step and analyse the errors at every step of the algorithm.

At every step, we explain what the ideal output would be if the algorithm was run in
exact arithmetic. And we show that the output in finite arithmetic at every stage is
quite close to the ideal output.

Step 1: Let V be the matrix given as input. In this step, we want to compute
a product of the matrices V T and V . We use the standard matrix multiplication
algorithm and the bounds from (3.4). Let W = MM(V T ,V) be the output of Step
1 of this algorithm.

Using (3.4) and the fact that for any matrix V , ||V T || = ||V ||, we have:

||W − V TV || ≤ 2n · u · ||V ||2F . (3.9)

From (3.9) and the triangle inequality, we also have that

||W || ≤ ||V ||2F + 2nu||V ||2F < 2||V ||2F . (3.10)

In the last inequality, we use the hypothesis that 2nu < 1.
Step 2: In this step, we take as input a matrix W and compute all the diagonal

elements of the matrix WTm. Let xm,k = (WTm)k,k be computed on a floating point
machine. If the algorithm is run in exact arithmetic, the output at the end of Step 2
is (V TV Tm)k,k for all m, k ∈ [n].

Computationally, the k-th diagonal element can be computed as an inner product
between the k-th row of W and the k-th column of Tm. Then using the error bounds
of inner product computation in (3.2), we have that

|xm,k − (WTm)k,k| ≤ 2nu||Wk||||(Tm)_,k|| ≤ 2nu||W ||||(Tm)_,k||. (3.11)

Also, from (3.9), we have that

|(WTm)k,k − (V TV Tm)k,k| ≤ |⟨(W − V TV)k, (Tm)_,k⟩|
≤ ||(W − V TV)k||||(Tm)_,k||
≤ 2nu||V ||2F ||(Tm)_,k||.

(3.12)

Combining (3.11) and (3.12), the triangle inequality and the bound from (3.10), we
deduce that

|xm,k − (V TV Tm)k,k| ≤ 6nu||V ||2F ||(Tm)_,k||. (3.13)

We also want to give an upper bound for |xm,k|. By (3.13) and the triangle inequality,
we have

|xm,k| ≤ 6nu||V ||2F ||(Tm)_,k|| + |(V TV Tm)k,k| (3.14)

3.2. Slices after a change of basis 59

So we need to give an upper bound for |(V TV Tm)k,k|. Expanding along the definition
and using the Cauchy-Schwarz inequality, we obtain

|(V TV Tm)k,k| = |⟨(V TV)k, (Tm)_,k⟩| ≤ ||(V TV)k||||(Tm)_,k||. (3.15)

Putting this back in (3.14), we have that

|xm,k| ≤
(

6nu + 1
)

||V ||2F ||(Tm)_,k|| ≤ 2||V ||2F ||(Tm)_,k||. (3.16)

The final inequality uses the hypothesis that u < 1
6n .

Step 3: In this step, we take as input xm,k for all m, k ∈ [n]. We then compute
xm =

∑n
k=1 xm,k on a floating point machine for all m ∈ [n]. If the algorithm was run

in exact arithmetic, the output at the end of this step would be ∑n
k=1(V

TV Tm)k,k
for all m ∈ [n].

Computation of xm can also be thought of as inner product between the all 1’s
vector 1̄ and the vector (xm,1, ...,xm,n). So, we can again use the bounds from (3.2).
This gives us that

|xm −
n∑

k=1
xm,k| ≤ 2n

3
2 u

√√√√ n∑
k=1

|xm,k|2

≤ 4n
3
2 ||V ||2F u

√√√√ n∑
k=1

||(Tm)_,k||2.

(3.17)

The last equation uses (3.16) to bound the norm of |xm,k|. Also, summing up (3.13)
for all k ∈ [n] and using the triangle inequality, we have that

|
n∑

k=1
xm,k −

n∑
k=1

(V TV Tm)k,k| ≤ u||V ||2F (4n+ µMM (n))

(n∑
k=1

||(Tm)_,k||
)

≤ u||V ||2F (6n
3
2)

(n∑
k=1

||(Tm)_,k||2
)

.
(3.18)

The last inequality follows from the Cauchy-Schwarz inequality. Combining (3.17)
and (3.18), we finally have the error at the end of that

|xm −
n∑

k=1
(V TV Tm)k,k| ≤ u||V ||2F 10n

3
2

√√√√ n∑
k=1

||(Tm)_,k||2

= u||V ||2F 10n
3
2 ||Tm||F .

(3.19)

In the last equality, we use the definition of the Frobenius norm of matrices from
(3.1).

We also want to derive bounds for |xm|. From the previous equation, by the
triangle inequality we already get that

|xm| ≤ u||V ||2F 10n
3
2 ||Tm||F + |

n∑
k=1

(V TV Tm)k,k|. (3.20)

60 Chapter 3. Numerical Linear Algebra

So it is enough to derive bounds for |
∑n

k=1(V
TV Tm)k,k|. Summing up (3.15) for all

m ∈ [n] and using the Cauchy-Schwarz inequality, we obtain:

|
n∑

k=1
(V TV Tm)k,k| ≤

√
n

√√√√ n∑
k=1

|(V TV Tm)k,k|2

≤
√
n||V ||2F ||Tm||F .

(3.21)

Putting this back in (3.20), we have that

|xm| ≤ 2
√
n||V ||2F ||Tm||F . (3.22)

Here in the last inequality, we use the hypothesis that u ≤ 1
10n .

Step 4: In this step, we take as input xm for all m ∈ [n]. We then compute
s̃i =

∑n
m=1 vmixm in floating point arithmetic. Recall that S = (V ⊗ V ⊗ V).T and

S1, ...,Sn are the slices of S. Ideally if the algorithm is run in exact arithmetic, the
output at this stage is Tr(Si) =

∑n
m=1 vmi

(∑n
k=1(V

TV Tm)k,k

)
.

Using error bounds for the inner product operation (3.2) and using (3.22) to bound
|xm| we have that

|s̃i −
n∑

m=1
vmixm| ≤ 2nu||V_,i||

√√√√ n∑
m=1

|xm|2

≤ 4n
3
2 u||V ||3F

√√√√ n∑
m=1

||Tm||2F .

(3.23)

Also, summing up (3.19) for all m ∈ [n] and using the triangle inequality, we have:

|
n∑

m=1
vmi

(
xm −

n∑
k=1

(V TV Tm)k,k

)
| ≤ ||V_,i||

√√√√ n∑
m=1

|xm −
n∑

k=1
(V TV Tm)k,k|2

≤ u||V ||3F (8n
3
2 +

√
nµMM (n))

√√√√ n∑
m=1

||Tm||2F

(3.24)

Moreover, it follows from (3.6), that∑n
m=1 ||Tm||2F = ||T ||2F . Using this and combining

(3.23) and (3.24) using triangle inequality, we have:

||s̃i −
n∑

m=1
vmi

(n∑
k=1

(V TV Tm)k,k

)
|

≤ u||V ||3F 14n
3
2

√√√√ n∑
m=1

||Tm||2F

= µCB(n) · u · ||V ||3F ||T ||F ,

(3.25)

where µCB(n) ≤ 14n 3
2 .

3.3. Diagonalisation algorithm for diagonalisable matrices 61

3.3 Diagonalisation algorithm for diagonalisable matri-
ces

In this section, we look at the algorithmic problem of matrix diagonalisation over the
field of complex numbers.

Definition 3.3.1 (Eigenpair and eigenproblem). [BGVKS22] An eigenpair of a
matrix A ∈ Cn×n is a tuple (λ, v) ∈ C × Cn such that Av = λv and ||v||2 = 1. The
eigenproblem is the problem of finding a maximal set of linearly independent eigenpairs
(λi, vi) of a given matrix A. Note that an eigenvalue may appear more than once if
it has geometric multiplicity greater than one. In the case when A is diagonalizable,
the solution consists of exactly n eigenpairs, and if A has distinct eigenvalues, then
the solution is unique, up to multiplication by phases of vi. This is multiplication by
complex numbers of modulus 1.

Due to the Abel–Ruffini theorem, it is impossible to have a finite-time algorithm
which solves the eigenproblem exactly using arithmetic operations and radicals. So
one can only hope to find approximate eigenvalues and eigenvectors, up to a desired
accuracy.

Definition 3.3.2 (δ-forward approximation for the eigenproblem). Let (λi, vi)
be true eigenpairs for a diagonalizable matrix A. Given an accuracy parameter δ, the
problem is to find pairs (λ′

i, v′
i) such that ||vi − v′

i|| ≤ δ and |λi − λ′
i| ≤ δ i.e., to find

a solution close to the exact solution.

Definition 3.3.3 (δ-backward approximation for the eigenproblem). Given a
diagonalizable matrix A and an accuracy parameter δ, find exact eigenpairs (λ′

i, v′
i) for

a matrix A′ such that ||A−A′|| ≤ δ i.e., find an exact solution to a nearby problem.
Since diagonalizable matrices are dense in Cn×n, one can always find a complete set
of eigenpairs for some nearby A′.

The eigenproblem has been thoroughly studied in different models of computa-
tion. Without an attempt at being exhaustive, we will try to include a brief survey of
the results. The problem of devising an algorithm for the general eigenproblem that
was numerically stable remained open until the breakthrough by Armentano, Beltrán,
Bürgisser, Cucker, and Shub [ABB+18]. They gave an algorithm which on input any
matrix A with ||A|| ≤ 1, outputs a δ-backward approximation to the eigenproblem
(refer to Definition 3.3.3) in n10

δ2 arithmetic operations. Although the analysis of the
algorithm in this paper has been performed for exact arithmetic, the authors argue
informally that the homotopy continuation methods used in the algorithm are numer-
ically stable and can be implemented in finite precision arithmetic. This result was
further improved in [BGVKS22] who gave a numerically stable algorithm for matrix
diagonalisation that also runs in nearly matrix multiplication time and the number of
arithmetic operations has a polylogarithmic dependence on 1

δ (refer to Theorem 3.3.4
for a precise statement) as compared to [ABB+18] which has dependence on 1

δ in the
finite precision arithmetic model. This is the algorithm whose properties we discuss
in this section and this serves as one of the important building blocks of our tensor
decomposition algorithm, which is described in Chapter 5. In comparison, the diago-
nalisation problem for Hermitian matrices has been well understood since the work of
[Wil68] (refer to [BGVKS22] for a more detailed survey of the existing results.) In the
model of rational arithmetic with bounded bit length a, [Cai94] gave an algorithm to
compute a δ-forward approximation to the Jordan normal form in poly(n, a, log(1

δ))
arithmetic operations.

62 Chapter 3. Numerical Linear Algebra

Contributions of this section to matrix diagonalisation: Given A ∈
Mn(C) and δ > 0, the algorithm for matrix diagonalisation in [BGVKS22] com-
putes an invertible matrix V and a diagonal matrix D such that ||A− V DV −1|| ≤
δ. Moreover, V is guaranteed to be reasonably well-conditioned in the sense that
||V ||.||V −1|| = O(n2.5/δ) (refer to Theorem 3.3.4 for a precise statement). Note how-
ever that V might become arbitrarily poorly conditioned as δ goes to 0. The main
question that we address in this section is the following: Can we have a better guar-
antee on V assuming that the input matrix A is diagonalisable? In Theorem 3.3.4,
we show that this is indeed the case, under the additional assumption that the eigen-
values are distinct. The bounds in that theorem are expressed as a function of the
condition number of the eigenproblem (3.29), already defined in [BGVKS22], and of
the Frobenius eigenvector condition number (3.28).

Another issue that we address in Section 3.3 is the assumption ||A|| ≤ 1 on
the input matrix. Relaxing this assumption in infinite precision arithmetic is very
straightforward: given a bound B ≥ 1 on ||A||, one can simply divide A by B and this
does not change the eigenvectors. In finite arithmetic, however, this simple scaling
leads to round-off errors. In particular, the error analysis due to the scaling of A is
worked out in the proof of Theorem 3.3.12.

Condition numbers. If A is diagonalizable, we define following [BGVKS22] its
eigenvector condition number:

κV (A) = inf
V

||V || · ||V −1||, (3.26)

where the infimum is over all invertible V such that V −1AV is diagonal. Its minimum
eigenvalue gap is defined as

gap(A) := mini ̸=j |λi(A) − λj(A)|, (3.27)

where λi are the eigenvalues of A (with multiplicity). Instead of the eigenvector
condition number, it is sometimes more convenient to work instead with the Frobenius
eigenvector condition number

κF
V (A) = inf

V
(||V ||2F + ||V −1||2F) = inf

V
κF (V), (3.28)

where the infimum is taken over the same set of invertible matrices. We always have
κF

V (A) ≥ 2κV (A). Following [BGVKS22], we define the condition number of the
eigenproblem to be:

κeig(A) :=
κV (A)

gap(A) ∈ [0, ∞]. (3.29)

For a given invertible matrix V , we define the Frobenius condition number to be

κF (V) = ||V ||2F + ||V −1||2F . (3.30)

The following is the main theorem of this section. As mentioned before, in this
theorem, we give some properties of the diagonalisation algorithm EIG analyzed
in [BGVKS22]. The first two are from their paper, and the third one provides an
additional conditioning guarantee for V . It is especially useful for small values of δ.

Theorem 3.3.4. There is a randomized algorithm EIG which on input a diagonalis-
able matrix A ∈ Cn×n with ||A|| ≤ 1 and a desired accuracy parameter δ ∈ (0, 1

8κeig(A))

outputs a diagonal matrix D and an invertible matrix V . The following properties
are satisfied by the output matrices:

3.3. Diagonalisation algorithm for diagonalisable matrices 63

1. ||A− V DV −1|| ≤ δ and κ(V) ≤ 32n2.5

δ .

2. ||vi|| = 1 ± nu where vi are the columns of V .

3. κ(V) ≤ κF (V)
2 ≤ 1

2 (
9n
4 + 9n2(κF

V (A))
2).

The algorithm runs in
O(TMM(n) log2 n

δ
)

arithmetic operations on a floating point machine with

log(1
u
) = O(log4(

n

δ
) logn)

bits of precision with probability at least 1 − 1
n − 12

n2 .

In the rest of this section, we give some definitions and prove some lemmas leading
to the proof of this theorem.

Lemma 3.3.5. Suppose that A has n distinct eigenvalues λ1, . . . ,λn, with v1, . . . , vn

the corresponding eigenvectors. Let W be the matrix with columns v1, . . . , vn; let
u1, . . . ,un be the left eigenvectors of A, i.e., the rows of W−1. Then κF

V (A) =
2∑n

i=1 ||ui|| · ||vi||, and the infimum in (3.28) is reached for the matrix V obtained
from W by multiplication of each column by

√
||ui||/||vi||.

Proof. Since A has distinct eigenvalues, any matrix V that diagonalizes A is obtained
from W by multiplication of each column by some nonzero scalar xi. In matrix
notation, we have V = WD where D = diag(x1, ...,xn). We also have V −1 =
D−1W−1, and the i-th row of V −1 is therefore equal to ui/xi. As a result,

||V ||2F + ||V −1||2F =
n∑

i=1

(
x2

i ||vi||2 +
||ui||2

x2
i

)
.

An elementary computation shows that the infimum is reached for xi =
√

||ui||/||vi||.
Here we have assumed that xi ∈ R for all i. This is without loss of generality since
multiplying each entry of V or V −1 by a complex number of modulus 1 does not
change their Frobenius norms.

If M is diagonalisable as V DV −1 over C, let vi be the columns of V and uT
j be

the rows of V −1. Then M admits a spectral expansion of the form

M =
n∑

i=1
λiviu

∗
i . (3.31)

Definition 3.3.6. For M ∈ Mn(C), if M has distinct eigenvalues λ1, ...,λn and a
spectral expansion as in (3.31), then we define the eigenvalue condition number of λi

as

κ(λi) := ||viu
∗
i || = ||vi||||ui||

Remark 3.3.7. Note that κ(λi) is independent of the choice of the vi’s. This follows
from the fact that M has distinct eigenvalues: if v′

i,u′
i is another pair of vectors

corresponding to λi in the spectral expansion, then v′
i = kivi and u′

i = livi for some
non-zero constants ki, li. Using the fact that ⟨v′

i,u′
i⟩ = 1, we have kili = 1. Hence

||u′
i||||v′

i|| = ||ui||||vi|| which proves that κ(λi) is indeed independence of the choice of
the vi’s.

64 Chapter 3. Numerical Linear Algebra

Lemma 3.3.8. Let M ,M ′ be n× n matrices such that ||M ||, ||M ′|| ≤ 1 and ||M −
M ′|| ≤ δ where δ < 1

8κeig(M) . Let λ1, ...,λn be the distinct eigenvalues of M . Then

1. M ′ has distinct eigenvalues.

2. |κ(λi) − κ(λ′
i)| ≤ 2κV (A).

3.
√
n
∑

i∈[n] κ(λi)2 ≤ nκV (A).

Proof. Refer to the proof of Proposition 1.1 in [BGVKS22] for a proof of the first two
properties. Towards the third one, we first show that κV (A) ≥ κ(λi) for all i ∈ [n].
Using the definition of κV (A), we get that

κV (A) = infV ∈D(A)||V ||||V −1||

= infV ∈D(A)(max
x∈Cn

||V x||
||x||

)(max
x∈Cn

||V −1x||
||x||

)

≥ infV ∈D(A)||vi||||ui||

where vi are the columns of V and ui are the rows of V −1. The inequality follows from
the fact that maxx∈Cn

||V x||
||x|| ≥ ||V ei|| = ||vi||. Since ||V || = ||V T || for all matrices V ,

maxx∈Cn
||V −1x||

||x|| = maxx∈Cn
||V −T x||

||x|| ≥ ||V −T ei|| = ||ui||. By Remark 3.3.7, ||vi||||ui||
is equal for all V ∈ D(A). As a result, κV (A) ≥ ||vi||||ui|| = κ(λi) for all i ∈ [n].
This gives us √

n
∑
i∈[n]

κ(λi)2 ≤
√
n
∑
i∈[n]

κV (A)2 = nκV (A).

Lemma 3.3.9. Let A,A′ ∈ Mn(C) be such that A has n distinct eigenvalues and
||A−A′|| ≤ δ where δ < 1

8κeig(A) . Then

κF
V (A

′) ≤ 6nκV (A) ≤ 3nκF
V (A).

Proof. We first explain the proof for ||A||, ||A′|| ≤ 1 and then modify it to deal with
the general case. Suppose that λ1, . . . ,λn are the eigenvalues of A with corresponding
eigenvectors v1, . . . , vn. By Lemma 3.3.8, A′ has distinct eigenvalues as well. Let
λ′

1, . . . ,λ′
n be the eigenvalues of A′ with corresponding eigenvectors v′

1, . . . , v′
n. Let

W ′ be the matrix with columns v′
1, . . . , v′

n; let u′
1, . . . ,u′

n be the left eigenvectors of
A′, i.e., the rows of W−1. Applying Lemma 3.3.5 to A′, we know that

κF
V (A

′) = 2
n∑

i=1
||u′

i|| · ||v′
i||. (3.32)

From Lemma 3.3.8, we know that

|κ(λ′
i) − κ(λi)| ≤ 2κV (A)

and hence

κ(λ′
i) ≤ κ(λi) + 2κV (A).

3.3. Diagonalisation algorithm for diagonalisable matrices 65

Adding this up for all i = 1 to n,
n∑

i=1
κ(λ′

i) ≤
n∑

i=1
κ(λi) + 2nκV (A).

Now using the definition of κ(λi) as in Definition 3.3.6, we get that
n∑

i=1
||v′

i||||u′
i|| ≤

n∑
i=1

κ(λi) + 2nκV (A)

By the Cauchy-Schwarz inequality, we have
n∑

i=1
||v′

i||||u′
i|| ≤

√
n
∑
i∈[n]

κ(λi)2 + 2nκV (A).

By (3.32) and Lemma 3.3.8, we get that

κF
V (A

′) ≤ 6nκV (A) ≤ 3nκF
V (A).

Let us now take A,A′ to be arbitrary n×n matrices over C such that ||A−A′|| ≤ δ
for some δ ∈ (0, 1

8κeig
(A)). Let N0 := max{||A||, ||A′||}. Then we can define C = C

N0

and C ′ = A′

N0
where ||C||, ||C ′|| ≤ 1. Also notice that ||C −C ′|| ≤ δ′ = δ

N0
where δ′ <

1
8N0κeig(A) . Now, κeig(C) =

κV (C)
gap(C) . Since C = A

N0
, we get that gap(C) = gap(A)

N0
and

κV (C) = κV (A). Hence, κeig(C) = N0κeig(A) and this gives us δ′ < 1
8κeig(C) . Using

the previous argument, we have κF
V (C

′) ≤ 6nκV (C) ≤ 3nκF
V (C). Since scaling of

matrices preserves κF
V and κV , this gives us that κF

V (A
′) ≤ 6nκV (A) ≤ 3nκF

V (A).

Lemma 3.3.10. Let A ∈ Mn(C) be a diagonalisable matrix with distinct eigenvalues
and let A = V DV −1 such that for all i ∈ [n], for each column vi of V ,

∣∣∣∣||vi|| − 1
∣∣∣∣ ≤ δ.

Then κF (V) ≤ n(1 + δ)2 +
(κF

V (A))2

4(1−δ)2 .

Proof. By Lemma 3.3.5, if U = V −1 and u1, ...,un are the rows of U , then κF
V (A) =∑

i∈[n] 2||ui||||vi||. Since |||vi||−1| ≤ δ for all i ∈ [n], we have that (1− δ)
∑

i∈[n] 2||ui|| ≤
κF

V (A) ≤ (1 + δ)
∑

i∈[n] 2||ui||. From the definition of κF ,

κF (V) = ||V ||2F + ||V −1||2F = n(1 + δ)2 +
∑
i∈[n]

||ui||2

≤ n(1 + δ)2 + (
∑
i∈[n]

||ui||)2 ≤ n(1 + δ)2 +
(κF

V (A))
2

4(1 − δ)2 .

We are now ready to complete the proof of Theorem 3.3.4.

Proof of Theorem 3.3.4. The first two properties are from [BGVKS22] (see in par-
ticular Theorem 1.6 for the first one). From the second property and from Lemma
3.3.10 applied to A′ = V DV −1 for δ = nu, we have

κ(V) ≤ κF (V)

2 ≤ 1
2 (n(1 + nu)2 +

(κF (A′))2

4(1 − nu)2).

66 Chapter 3. Numerical Linear Algebra

Since δ < 1
8κeig(A) , it follows from Lemma 3.3.9 that κF

V (A
′) ≤ 3nκF

V (A) and this gives

us that κ(V) ≤ κF (V)
2 ≤ 1

2 (n(1+nu)2 +
(9n2κF

V (A))2

4(1−nu)2). Since nu < 1
2 , this implies that

κ(V) ≤ κF (V)

2 ≤ 1
2 (

9n
4 + 9n2(κF

V (A))
2).

In the remainder of this section, we relax the hypothesis ||A|| ≤ 1 on the input
matrix.

Theorem 3.3.11. [BGVKS22] If ||A||, ||A′|| ≤ 1, ||A− A′|| ≤ δ, δ < gap(A)
8κV (A) and

{(vi,λi)}i∈[n], {(v′
i,λ′

i)}i∈[n] are eigenpairs of A,A′ , then

||vi − v′
i|| ≤ 6nκeig(A)δ and ||λ′

i − λi|| ≤ κV (A)δ ≤ 2κeig(A)δ for all i ∈ [n],

where vi’s are given up to multiplication by phases.

Note here that by "phases" we mean complex numbers of norm 1.

Corollary 3.3.11.1. For matrices A,A′ ∈ Mn(C), if ||A−A′|| ≤ δ, {(vi,λi)}i∈[n],
{(v′

i,λ′
i)}i∈[n] are eigenpairs of A,A′ respectively and δ < gap(A)

8κV (A) , then

||vi − v′
i|| ≤ 6nκeig(A)δ and |λi − λ′

i| ≤ κV (A)δ for all i ∈ [n]

where the vi’s are given up to multiplication by phases.

Proof. Let N0 = max{||A||, ||A′||}. Let C = A
N0

and C ′ = A′

N0
. Then ||C||, ||C ′|| < 1

and taking δ′ = δ
N0

, we get that ||C − C ′|| ≤ δ′ where δ′ < 1
8N0κeig(A) = 1

8κeig(C) .
Applying Theorem 3.3.11, we have ||ui − u′

i|| ≤ 6nκeig(C)δ′ where the ui are the
eigenvectors of C after possibly multiplying ui by phases. Using κeig(C) = N0κeig(A)
gives us that ||ui − u′

i|| ≤ 6nκeig(A)δ. Since the eigenvectors remain unchanged after
scaling the matrix by a constant, this implies that ||vi − v′

i|| ≤ 6nκeig(A)δ.
If µ1, ...,µn are the corresponding eigenvalues of C and µ′

1, ...,µ′
n are the corre-

sponding eigenvalues of C ′, then we get that |µi − µ′
i| < κV (C)δ′. Since C = A

N0
and

C ′ = A′

N0
, this implies that µi =

λi
N0

and µ′
i =

λ′
i

N0
for all i ∈ [n]. Hence, multiplying

both sides by N0 gives us that N0|µi − µ′
i| < κV (C)N0δ

′, hence |λi − λ′
i| < κV (C)δ.

Since κV (C) = κV (A), we finally conclude that |λi − λ′
i| < κV (A)δ.

We now present the algorithm for computing a forward approximation to the
eigenvectors of a diagonalisable matrix.

Algorithm 6: Forward approximation of the eigenvectors of a matrix (EIG-
FWD)

Input: A diagonalisable matrix A with distinct eigenvalues, estimates
Knorm > max{||A||F , 1} and Keig > κeig(A), desired accuracy parameter δ.

1. Compute B′ = A
2Knorm

on a floating point machine.

2. Compute δ′ = δ
64nKnormKeig

.

3. Let (W ,D0) be the output of EIG(B′, δ′).

4. Output the columns w1, ...,wn of W .

3.3. Diagonalisation algorithm for diagonalisable matrices 67

Here we assume at step 2 that the parameter δ′ is computed without any roundoff
error. As in [BGVKS22], this will be done for simplicity throughout the thesis in
computations whose size does not grow with n. In the next theorem, we state some
properties of Algorithm 6.

Theorem 3.3.12. Given a diagonalisable matrix A ∈ Mn(C), a desired accuracy
parameter δ ∈ (0, 1

2) and estimates Knorm > max{||A||F , 1} and Keig > κeig(A) as
input, Algorithm 6 outputs vectors w1, ...,wn ∈ Cn such that the following properties
are satisfied with probability at least 1 − 1

n − 12
n2 :

• If v(0)1 , ..., v(0)n are the true normalized eigenvectors of A, then we have ||v(0)i −
wi|| < δ up to multiplication by phases.

• Let W be the matrix with columns w1, ...,wn. Then

κ(W) ≤ κF (W)

2 ≤ 1
2 (

9n
4 + 81n4(κF

V (A))
2).

The algorithm requires
O(TMM(n) log2 nKeigKnorm

δ
)

arithmetic operations on a floating point machine with

O(log4(
nKeigKnorm

δ
) logn)

bits of precision.

Remark 3.3.13. The proof of this theorem only incorporates the error due to scaling
of the matrices and requires some relatively routine and technical calculations. Hence
this has been relegated to Appendix B.

68

Chapter 4

Numerical Algorithm for Tensor
Decomposition

This chapter is dedicated to the following algorithmic problem: Given a diagonalisable
tensor, find the unique decomposition of the tensor. As discussed in Section 1.4.5, we
give a randomized linear-time and numerically stable algorithm to solve the problem
approximately. In this section, we state the algorithm in the standard algebraic model
of computation assuming infinite precision and give a correctness proof of that. We
then present the algorithm in the finite-precision arithmetic model of computation.
The correctness proof of the algorithm and its probabilistic analysis will be given in
Chapters 5 and 6 respectively.

4.1 Introduction

4.1.1 Simplified Algorithm

Before giving a high-level presentation of our algorithm, we introduce a few notations.
A symmetric tensor T ∈ Cn ⊗ Cn ⊗ Cn can be cut into n slices T1, . . . ,Tn where
Tk = (Tijk)1≤i,j≤n. Each slice is a symmetric matrix of size n. In the algorithm
below we also make use of a "change of basis" operation, which applies a linear map
of the form A ⊗ A ⊗ A to a tensor. Here, A ∈ Mn(C) and we apply A to the 3
components of the input tensor. In particular, for rank-1 symmetric tensors we have

(A⊗A⊗A).(u⊗ u⊗ u) = (ATu)⊗3. (4.1)

We give more details on this operation at the beginning of Section 3.2. The algorithm
proceeds as follows.

(i) Pick vectors a = (a1, ..., an) and b = (b1, ..., bn) at random from a finite set
and compute two random linear combinations T (a) =

∑n
i=1 aiTi and T (b) =∑n

i=1 biTi of the slices of T .

(ii) Diagonalise (T (a))−1T (b) = V DV −1. Let v1, ..., vn be the columns of V .

(iii) Let u1, ...,un be the rows of V −1.

(iv) Let T ′ = (V ⊗ V ⊗ V).T . Let T ′
1, ...,T ′

n be the slices of T ′. Define αi = Tr(T ′
i).

We will refer to the computation of Tr(T ′
i) as the trace of slices after a change

of basis (TSCB).

(v) Output (α1)
1
3u1, ..., (αn)

1
3un.

The above algorithm is a modified version of Jennrich’s algorithm for symmetric
tensors. In terms of algorithm design, our main contribution lies in step (iv). Previous

4.1. Introduction 69

versions of Jennrich’s algorithm have appealed instead to the resolution of a linear
system of equations: see e.g. [BCMV14, Moi18] for the case of ordinary tensors.
In the symmetric case, the algebraic algorithm in [Kay11] for decomposition of a
polynomial as a sum of powers of linear forms also appeals to the resolution of a
linear system for essentially the same purpose. Our trace-based version of step (iv)
is more efficient, and this is crucial for the derivation of the complexity bounds in
Theorem 4.3.4. Step (iv) is indeed the most expensive: it is responsible for the O(n3)
term in the arithmetic complexity of the algorithm. We explain informally at the
beginnining of Section 4.1.3 why our trace-based approach works.

4.1.2 Organization of the chapter

In Section 4.2, we state the above algorithm in more detail and show that if this
algorithm is given a complete diagonalisable tensor exactly as input, it indeed returns
the (unique) decomposition. In the underlying computational model assumed for the
analysis in that section, all arithmetic operations can be done exactly and matrices
can be diagonalised exactly. This is the algorithm that we will adapt to the finite
arithmetic model in Section 4.3.

4.1.3 Ideas for algorithm design

Recall that we had defined in Section 1.4.2 the notion of diagonalisable tensors.

Definition 4.1.1. We call a symmetric tensor T ∈ Cn ⊗ Cn × Cn diagonalisable if
T =

∑n
i=1 u

⊗3
i where the ui are linearly independent.

In other words, a symmetric tensor T is diagonalisable if there exists an invertible
change of basis U that takes the diagonal tensor ∑i∈[n] e

⊗3
i to T , i.e., T = (U ⊗U ⊗

U).(∑i∈[n] e
⊗3
i) for some U ∈ GLn(C).

In this section we outline the main ingredients required for the design of the
algorithm and the proof strategy as well.

Trace of the slices after a change of basis

After step (iii) of the algorithm, we have determined matrix V −1 with rows u1, . . . ,un

such that T =
∑n

i=1 αiu
⊗3
i . Here the αi are unknown coefficients. As explained at

the beginning of this chapter, the traditional approach is to find them by solving
the corresponding linear system. One difficulty here is that this system is highly
overdetermined: we have one equation for each entry of T , but only n unknowns. We
show that the system can be solved quickly in a numerical stable way by exploiting
some of its structural properties. Our approach relies on a change of basis (recall the
definition from Section 3.2). More precisely, let T ′ = (V ⊗ V ⊗ V).T be the tensor
defined at the beginning of step (iv). We know that the tensor T can be written as
T = (V −1 ⊗ V −1 ⊗ V −1).

(∑n
i=1 αie

⊗3
i

)
. Since u1, . . . ,un are the rows of V −1, it

follows that T ′ = (V ⊗ V ⊗ V).T =
∑n

i=1 αie
⊗3
i where ei is the i-th standard basis

vector. Therefore we can read off the αi from the entries of T ′. This observation is
not sufficient to obtain the desired running time since it is not clear how to perform
a change of basis in O(n3) arithmetic operations. Indeed, since a symmetric tensor
of size n has Ω(n3) coefficients, one would have to perform a constant number of
operations per coefficient. A further observation is that we do not need to compute
every entry of T ′: assuming that T is diagonalisable, we know in advance that all
entries of T ′ except the diagonal ones will be equal to 0 (up to rounding errors). As

70 Chapter 4. Numerical Algorithm for Tensor Decomposition

a result, αi is approximately equal to the trace of T ′
i , the i-the slice of T ′.Recall that

in Section 3.2 we have already given a fairly simple algorithm for the computation
of these n traces in O(n3) arithmetic operations. For this we do not even need to
assume that the input tensor is diagonalisable. We also analyse this algorithm in
finite arithmetic in the same section. The correctness of our main algorithm in exact
arithmetic (as presented at the beginning of this section) is established in Section 4.2
based on the results of Section 3.2.

4.2 Tensor decomposition for complete symmetric ten-
sors in exact arithmetic

Let T ∈ (Cn)⊗3 be a diagonalisable tensor given as input. In this section we give
an algorithm which returns the linearly independent ui’s in the decomposition of T ,
up to multiplication by cube roots of unity. This algorithm works in a computational
model where all arithmetic operations can be done exactly and additionally, we can
diagonalise a matrix exactly.

Algorithm 7: Tensor decomposition algorithm for complete symmetric ten-
sors

Input: An order-3 diagonalisable symmetric tensor T ∈ Cn×n×n.
Output: linearly independent vectors l1, ..., lr ∈ Cn such that T =

∑n
i=1 l

⊗3
i .

Pick a1, ..., an and b1, ..., bn uniformly and independently at random from a
finite set S ⊂ C

Let T1, ...,Tn be the slices of T .
1 Set T (a) =

∑n
i=1 aiTi and T (b) =

∑n
i=1 biTi.

2 Compute T (a)′
= (T (a))−1.

3 Compute D = T (a)′
T (b).

4 Compute the normalized eigenvectors p1, ..., pn of D.
5 Let P be the matrix with (p1, ..., pn) as columns and compute P−1. Let vi be

the i-th row of P−1.
6 Define S = (P ⊗ P ⊗ P).T and let S1, ...,Sn be the slices of S. Compute

αi = Tr(Si).
7 Output (α1)

1
3 v1, ..., (αn)

1
3 vn.

Algorithm 7 is essentially the algorithm that was already presented in Section 4.1.3.
As explained in that section, this is a symmetric version of Jennrich’s algorithm where
the coefficients αi are determined in a novel way (as the traces of slices of a certain
tensor). The algorithm will be analyzed in finite precision arithmetic in the following
section and the final two chapters of this thesis.

The remainder of this section is devoted to a correctness proof for Algorithm 7
including an analysis of the probability of error. The main theorem of this section is
Theorem 4.2.2. In that direction, we prove an intermediate lemma showing that if
a1, ..., an and b1, ..., bn are picked at random from a finite set, then T (a) is invertible
and the eigenvalues of (T (a))−1T (b) are distinct with high probability.

Theorem 4.2.1. Let T =
∑n

i=1 u
⊗3
i where ui ∈ Cn are linearly independent vectors.

Let T1, ...,Tn be the slices of T . Set T (a) =
∑n

i=1 aiTi and T (b) =
∑n

i=1 biTi where
a1, ..., an, b1, ..., bn are picked uniformly and independently at random from a finite set
S ⊂ K. If T (a) is invertible, let T (a)′

= (T (a))−1. Let λ1, ...,λn be the eigenvalues of

4.2. Tensor decomposition for complete symmetric tensors in exact arithmetic 71

T (a)′
T (b). Then

Pra1,...,an,b1,...,bn∈rS [T
(a) is invertible and λi ̸= λj for all i ̸= j] ≥ 1 − (

2(n
2)

|S|
+

n

|S|
).

Proof. Let U be the matrix with columns u1, ...,un. Since T =
∑n

i=1 u
⊗3
i , by Corollary

3.2.1.1, the slices T1, ...,Tn of T can be written as

Ti = UTDiU where Di = diag(u1,i, ...,un,i).

Taking a = (a1, ..., an) ∈ Cn, this gives us that

T (a) = UTD(a)U where D(a) = diag(⟨a,u1⟩, ..., ⟨a,un⟩).

Similarly, T (b) = UTD(b)U where D(b) = diag(⟨b,u1⟩, ..., ⟨b,un⟩). Now if T (a) is
invertible, we can write

T (a)′
T (b) = U−1

(
diag(⟨b,u1⟩

⟨a,u1⟩
, ..., ⟨b,un⟩

⟨a,un⟩
)

)
U (4.2)

Hence, the eigenvalues of T (a)′
T (b) are λi =

⟨b,ui⟩
⟨a,ui⟩ . For all i ̸= j ∈ [n], we define the

polynomial

Pij(x1, ...,xn, y1, ..., yn) = ⟨y,ui⟩⟨x,uj⟩ − ⟨y,uj⟩⟨x,ui⟩ =
n∑

k,l=1
ykxl(uikujl − uilujk)

where y = (y1, ..., yn) and x = (x1, ...,xn). Now T (a) is invertible iff ⟨a,ui⟩ ̸= 0 for
all i ∈ [n]. This gives us that

Pra1,...,an∈rS [T
(a) is invertible] = Pra1,...,an∈rS [⟨a,ui⟩ ̸= 0 for all i ∈ [n]]. (4.3)

For all i ∈ [n], there exists k ∈ [n] such that uik ̸= 0. Hence

Pra1,...,an∈rS [⟨a,ui⟩ = 0] ≤ 1
|S|

by Lemma 2.2.9, and then

Pra1,...,an∈rS [T
(a) is invertible] ≥ 1 − n

|S|
(4.4)

by the union bound. Also, if T (a) is invertible, then λi = λj if and only if Pij(a, b) = 0.
Written as a probabilistic statement, this gives us that

Pra,b∈rS [T
(a) is invertible and for all i ̸= j,λi ̸= λj]

= Pra,b∈rS [T
(a) is invertible and for all i ̸= j,Pij(a, b) ̸= 0].

(4.5)

Since U is an invertible matrix, its rows are pairwise linearly independent and for
all i, j ∈ [n], there must exist some k0, l0 such that (uik0ujl0 − uil0ujk0) ̸= 0. Hence,
taking a = ek0 and b = el0 (where ei denotes the vector with 1 at the i-th position
and 0 otherwise), we get that Pij(ek0 , el0) ̸= 0. Hence, Pij ̸≡ 0 and

Pra,b∈rS [Pij(a, b) ̸= 0] ≥ 1 − 2
|S|

72 Chapter 4. Numerical Algorithm for Tensor Decomposition

by Lemma 2.2.9 since deg(Pij) ≤ 2.
Applying the union bound, we then have

Pra,b∈rS [For all i ̸= j ∈ [n],Pij(a, b) ̸= 0] ≥ 1 −
2(n

2)

|S|
.

Finally, using (4.4) and (4.5), we have that

Pra,b∈rS [T
(a) is invertible and λi ̸= λj for all i ̸= j]

= Pra,b∈rS [T
(a) is invertible and for all i ̸= j,Pij(a, b) ̸= 0]

≥ 1 − (
2(n

2)

|S|
+

n

|S|
).

Theorem 4.2.2. If an input tensor T ∈ (Cn)⊗3 can be written as T =
∑n

i=1 u
⊗3
i

where the ui ∈ Cn are linearly independent vectors, then Algorithm 7 succeeds with
high probability. More formally, if a1, ..., an, b1, ..., bn are chosen uniformly and in-
dependently at random from a finite subset S ⊂ C, then the algorithm returns lin-
early independent l1, ..., ln ∈ Cn such that T =

∑n
i=1 l

⊗3
i with probability at least

1 − (
2(n

2)
|S| + n

|S|).

Proof. First, using Theorem 4.2.1 we get that if a1, ..., an, b1, ..., bn are picked uni-
formly and independently at random from a finite subset S ⊂ K, then T (a) is invertible
and the eigenvalues of T (a)′

T (b) are distinct with probability at least 1 − (
2(n

2)
|S| + n

|S|).
Now we show that if T (a) is invertible and the eigenvalues of T (a)′

T (b) are dis-
tinct, then Algorithm 7 returns linearly independent vectors l1, ..., ln ∈ Cn such that
T =

∑n
i=1(li)

⊗3.
If the eigenvalues of a matrix are distinct, then the dimension of the eigenspaces

corresponding to each eigenvalue is 1. Hence, the eigenvectors of T (a)′
T (b) are unique

(up to a scaling factor). From (4.2), we get that the columns of U−1 are eigenvectors
of T (a)′

T (b). Since the columns of P are also eigenvectors of T (a)′
T (b), this gives us

the relation that there exists a permutation matrix Pπ such that

P = U−1PπD where D = diag(k1, ..., kn) and ki ̸= 0. (4.6)

Now we claim that the αi’s computed in Step 6 of Algorithm 7 are exactly equal to
k3

i . Let S = (P ⊗ P ⊗ P).T and let S1, ...,Sn be the slices of S. Following (4.1),
we know that the tensor T can be written as T =

∑n
i=1 u

⊗3
i =

∑n
i=1(U

T ei)⊗3 =∑n
i=1((P

T
π U)

T ei)⊗3. Then

αi = Tr(Si) =
n∑

j=1
Si,j,j =

n∑
j=1

(
(P ⊗ P ⊗ P).(

n∑
t=1

(UTPπet)
⊗3)

)
i,j,j

=
n∑

j,t=1

(
(P TUTPπet)

⊗3
)

i,j,j

=
n∑

j,t=1
((DTP T

π U
−TUTPπet)

⊗3)i,j,j

=
n∑

j,t=1
(DT et)i(D

T et)
2
j = (DT ei)

3
i = k3

i .

(4.7)

4.3. Complete Decomposition of Symmetric Tensors in Finite Arithmetic 73

Since U , D and Pπ are all invertible, P is invertible as well and PπDP
−1 = U .

Putting this in vector notation, if vi are the rows of P−1, then ui = kπ(i)vπ(i). As a
result, for any cube root of unity ωi,

T =
n∑

i=1
(ui)

⊗3 =
n∑

i=1
(ωikπ(i)vπ(i))

⊗3 =
n∑

i=1
((απ(i))

1
3 vπ(i))

⊗3.

We say that Algorithm 7 "succeeds" if the algorithm returns linearly independent
l1, ..., ln ∈ Cn such that T =

∑n
i=1 l

⊗3
i . Hence, from the previous equation, we can

see that the algorithm indeed returns the unique decomposition up to permutation
and scaling by cube roots of unity. This finally gives us that

Pra,b∈rS [Algorithm 7 "succeeds"]
≥ Pra,b∈rS [Algorithm 7 "succeeds",T (a) is invertible and the eigenvalues of T (a)′

T (b) are distinct]
= Pra,b∈rS [T

(a) is invertible and the eigenvalues of T (a)′
T (b) are distinct]

≥ 1 − (
2(n

2)

|S|
+

n

|S|
).

4.3 Complete Decomposition of Symmetric Tensors in
Finite Arithmetic

We claimed at the beginning of Section 1.4.5 that the condition number for symmetric
tensor decomposition is well defined. In Section 4.3 we first justify that claim, then
present our finite precision decomposition algorithm (Algorithm 8), and analyze its
properties from Section 4.3.2 onward.

4.3.1 Uniqueness of Tensor Decompositions

One of the important properties of tensor decompositions that motivates its study and
applications in spite of the hardness of the problem, is the fact that in most cases the
decompositions are unique (also sometimes referred to as identifiable). In comparison
to this, matrix decompositions are usually not unique (except in special settings, refer
to [Gil20] for a nice exposition on uniqueness results for matrix factorizations.

First, we state a well-known result showing that the tensor decomposition is
unique up to permutation if it satisfies certain generic conditions. Here we will state
the result following the notation of [Moi18].

Definition 4.3.1. We say that two sets of factors

{(u(i), v(i),w(i))}r
i=1 and {(u(i), v(i),w(i))}r

i=1

are equivalent if there is a permutation π : [r] −→ [r] such that for all i,

u(i) ⊗ v(i) ⊗w(i) = u(π(i)) ⊗ v(π(i)) ⊗w(π(i)).

Theorem 4.3.2. [Har70, Moi18] Suppose we are given a tensor of the form

T =
∑
i∈[r]

u(i) ⊗ v(i) ⊗w(i)

74 Chapter 4. Numerical Algorithm for Tensor Decomposition

where the following conditions are met:

• the vectors {u(i)}i are linearly independent.

• the vectors {v(i)}i are linearly independent.

• every pair of vectors in {w(i)}i is linearly independent.

Then {(u(i), v(i),w(i))}r
i=1 and {(u(i), v(i),w(i))}r

i=1 are equivalent factors.

Note that this reduces to the notion of diagonalisablity in symmetric tensors.
Applying this to the case of symmetric tensors, we get the following corollary.

Corollary 4.3.2.1. Let T =
∑

i∈[n] u
⊗3
i be a symmetric tensor where the vectors

ui ∈ Cn are linearly independent. For any other decomposition T =
∑

i∈[n](u
′
i)

⊗3,
the vectors u′

i must satisfy u′
i = ωiuπ(i) where ωi is a cube root of unity and π ∈ Sn

a permutation.

The above result was also derived in [Kay11] by a different method (uniqueness of
polynomial factorization). For order-3 tensors, a more general regarding uniqueness
of tensor decompositions is due to Kruskal [Kru77].] For the next lemma, recall
the definition of the condition number of a diagonalisable symmetric tensor from
Definition 1.4.3.

Lemma 4.3.3. Let T be a diagonalisable tensor. Then for all U ∈ Mn(C) such that
U diagonalises T , the condition numbers κF (U) are equal.

Proof. By Corollary 4.3.2.1, for all U ∈ Mn(C) such that U diagonalises T , the rows
of U are unique up to permutation and scaling by cube roots of unity. Writing this
in matrix notation, if U and U ′ are two such distinct matrices that diagonalise T ,
there exists a permutation π ∈ Sn and a diagonal matrix D with cube roots of unity
along the diagonal entries, such that U ′ = DPπU where Pπ is the permutation matrix
corresponding to π.

Now, ||U ′||F = ||DPπU ||F . If u1, ...,un are the rows of U , then indeed the rows
of U ′ can be written as u′

i = ωiuπ(i) where ωi are the cube roots of unity. Using
the definition of ||.||F , we get that ||U ′||2F =

∑
i∈[n] ||u′

i||2 =
∑

i∈[n] ||ωiuπ(i)||2 =∑
i∈[n] ||ui||2 = ||U ||2F . Similarly,

||(U ′)−1||F = ||(DPπU)
−1||F = ||U−1(Pπ)

TD−1||F .

Since (Pπ)T is also a permutation matrix, multiplication by it on the right permutes
the columns of U−1. Also, inverse of cube roots of unity are cube roots of unity as
well. Hence, if v′

1, ..., v′
n are the columns of U−1, and v1, ..., vn are the columns of U ,

this gives us that v′
i = ω′

ivπ−1(i) where ω′
i is a cube root of unity. This gives us that

||(U ′)−1||2F =
∑n

i=1 ||v′
i||2 =

∑
i∈[n] ||ω′

ivπ−1(i)||2 =
∑

i∈[n] ||vi||2 = ||U−1||2F . This
finally gives us that κF (U ′) = ||U ′||2F + ||(U ′)−1||2F = ||U ||2F + ||U−1||2F = κF (U).

4.3. Complete Decomposition of Symmetric Tensors in Finite Arithmetic 75

4.3.2 Finite-precision Jennrich’s Algorithm for Symmetric Tensors

Algorithm 8: Jennrich’s Algorithm for Complete Decomposition of Sym-
metric Tensors.

Let Cgap,Cη > 0 and cF > 1 be some absolute constants we will fix in (6.6).
Input: An order-3 symmetric diagonalisable tensor T ∈ (Cn)⊗3, an estimate
B for the condition number of the tensor and an accuracy parameter ε ≤ 1.

Output: A solution to the ε-approximation problem for the decomposition
of T .

Set kgap := 1
Cgapn6B3 and kF := cFn

5B3.
Pick (a1, ..., an, b1, ..., bn) ∈ Gη uniformly at random where η := 1

Cηn
17
2 B4

is
the grid size.

Let T1, ...,Tn be the slices of T .
1 Compute S(a) =

∑n
i=1 aiTi and S(b) =

∑n
i=1 biTi on a floating point machine.

2 Compute S(a)′
= INV (S(a)) on a floating point machine where INV is the

stable matrix inversion algorithm in Theorem 3.1.3.
Let δ := 1

nc4 log2(nB
ε)

where c4 is a constant we will set in Section 5.6.3.
3 Compute D = MM(S(a)′ ,S(b)) on a floating point machine where MM is the

stable matrix multiplication algorithm in Theorem 3.1.3.
4 Let v(0)1 , ..., v(0)n be the output of EIG− FWD on the input

(D, δ, B
kgap

,B 3
2
√
nkF) on a floating point machine.

Let V (0) be the matrix with v
(0)
1 , ..., v(0)n as columns.

5 Compute C = INV(V (0)) on a floating point machine where INV is the
matrix inversion algorithm in Theorem 3.1.3 and let u′

i be the rows of C.
6 Let α′

1, ...,α′
n be the output of TSCB(T ,V (0)) where TSCB is the algorithm

for computing the trace of the slices after a change of basis in Algorithm 5.
7 Output {l1, ..., ln} where li = (α′

i)
1
3u′

i is computed on a floating point
machine for all i ∈ [n]. Note that by (α′

i)
1
3 we refer to any one of the cube

roots of α′
i.

Recall that the condition number for tensor diagonalisation κ(T) was defined in
Definition 1.4.3, and the notion of ε-approximation for tensor decomposition was
defined in Section 1.4.3. Our main result about Algorithm 8 below already appears
as Theorem 4.3.4 in the introduction, and it is the central result of this chapter. We
will build towards the proof of this theorem in the following chapters.

Theorem 4.3.4 (Main Theorem). There is an algorithm which, given a diagonalis-
able tensor T , a desired accuracy parameter ε and some estimate B ≥ κ(T), outputs
an ε-approximate solution to the tensor decomposition problem for T in

O(n3 + TMM (n) log2 nB

ε
)

arithmetic operations on a floating point machine with

O(log12(
nB

ε
) logn)

bits of precision, with probability at least
(

1 − 1
n − 12

n2

)(
1 − 1√

2n
− 1

n

)
.

76 Chapter 4. Numerical Algorithm for Tensor Decomposition

4.3.3 Proof Strategy of Theorem 4.3.4:

As we have seen in Section 4.2, if a diagonalisable tensor T is given as input, if each
of the steps of Algorithm 8 are performed in exact arithmetic and if we can perform
matrix diagonalisation exactly in Step 4, we will get a (unique) decomposition of the
tensor, that is, we get vectors v1, ..., vn ∈ Cn such that T =

∑n
i=1 v

⊗3
i exactly.

Let T1, ...,Tn be the slices of the tensor. In the algorithm, we pick a, b uniformly
and independently at random from the finite grid Gη = {−1, −1+ η, −1+ 2η, ..., 1 −
2η, 1 − η}2n, then define T (a) =

∑n
i=1 aiTi and T (b) =

∑n
i=1 biTi.

In Chapter 5, we use certain techniques for analysing numerical algorithms to
give a proof of Theorem 4.3.4, albeit under some extra assumptions. Namely, we will
assume in Theorem 4.3.6 below that we have picked points a, b from the finite grid
such that the Frobenius condition number of T (a) is "small" and the eigenvalue gap
of (T (a))−1T (b) is "large". These are stated more formally in Definition 4.3.5.
Definition 4.3.5 (Input Conditions). We say that x = (T , a, b) satisfies the (n,B)-
input conditions with parameters kF , kgap if the following condition is true: Let
T ∈ (Cn)⊗3 be a diagonalisable tensor such that κ(T) ≤ B with slices T1, ...,Tn. Let
a, b ∈ (−1, 1]n and let T (a) =

∑n
i=1 aiTi and T (b) =

∑n
i=1 biTi. Moreover, T (a) is

invertible, κF (T (a)) ≤ kF and gap((T (a))−1T (b)) ≥ kgap where kF and kgap are as
defined in Algorithm 9.

Theorem 4.3.6. Let x be an input to the algorithm such that it satisfies the (n,B)-
input conditions with parameters kF := cFn

5B3, kgap := 1
Cgapn6B3 (from Definition

4.3.5) where the constants Cgap, cF are set in (6.6). Let ε ≤ 1 be the input accuracy
parameter. Then on input (x, ε) Algorithm 8 outputs an ε-approximation to the tensor
decomposition problem for T in

O(n3 + TMM (n) log2 nB

ε
)

arithmetic operations on a floating point machine with

O(log12(
nB

ε
) logn)

bits of precision, with probability at least 1 − 1
n − 12

n2 .

We will then see in Chapter 6 that these conditions are satisfied with high prob-
ability over the choice of a and b and complete the proof of Theorem 4.3.4.

Proof ideas for probabilistic analysis in Chapter 6:

There are two sources of randomization in our algorithm: the diagonalisation algo-
rithm from [BGVKS22] is randomized, and moreover our algorithm begins with the
computation of two random linear combinations T (a),T (b) of slices of the input tensor
(step (i) of the algorithm sketch at the beginning of the chapter). As it turns out, the
error bounds from Section 4.3 are established under the hypothesis that the Frobenius
condition number of T (a) is "small" and the eigenvalue gap of (T (a))−1T (b) is "large".
We therefore need to show that this hypothesis is satisfied for most choices of the
random vectors a, b. For this we assume that a, b are chosen uniformly at random
from a discrete grid. Our analysis in Chapter 6 follows a two-stage process:

(i) First we assume that a and b are drawn from the uniform distribution on the
hypercube [−1, 1)n. This is analyzed with the Carbery-Wright inequality, a
well-known anticoncentration inequality.

4.3. Complete Decomposition of Symmetric Tensors in Finite Arithmetic 77

(ii) In a second stage, we round the (real valued) coordinates of a and b in order
to obtain a point of the discrete grid. This is analysed with the multivariate
Markov inequality.1

This two-stage process is inspired by the construction of "robust hitting sets" in [FS18].
However, the general bounds from [FS18, Theorem 3.6] are not sharp enough for our
purpose: they would lead to an algorithm using polynomially many bits of precision,
but we are aiming for polylogarithmic precision. As a result, we need to perform
an ad hoc analysis for certain linear and quadratic polynomials connected to the
Frobenius condition number of T (a) and to the eigenvalue gap of (T (a))−1T (b). These
are essentially the polynomials occuring in [BCMV14] in their analysis of the stability
of Jennrich’s algorithm with respect to input noise; but in that paper they choose a, b
to be (normalized) Gaussian vectors rather than points from a discrete grid.

4.3.4 Proof Ideas of Theorem 4.3.6

Matrix diagonalisation

For step (ii) of our algorithm we require a fast and numerically stable diagonalisation
algorithm, which takes in a diagonalisable matrix and outputs a set of eigenvectors.
For that, we use the fast and numerically stable algorithm for matrix diagonalisation
that we had given in Theorem 3.3.12 which is a slight modification of the diagonal-
ization algorithm of [BGVKS22]. Recall that we had also shown that the condition
number of the matrix (denoted by κ(V)) which has these eigenvectors as columns
can be expressed as function of the condition number of the eigenproblem. Note that
the choice of κ(T) as our tensor decomposition number arises from that analysis and
we show in Chapter 6 that if κ(T) is bounded, then the condition number of the
eigenproblem is bounded with high probability and hence, κ(V) is bounded as well.
This facilitates the inversion of V in Step (iii) of the algorithm sketch mentioned at
the beginning of this chapter in a fast and numerically stable way. We note that
the diagonalization algorithm of [BGVKS22] is responsible for the number of bits of
precision needed in our main result (Theorem 4.3.4).

Finite precision analysis of tensor decomposition:

The correctness of the infinite-precision version of our main algorithm is established
in Section 4.2, and we proceed with its analysis in finite arithmetic in Chapter 5.
The principle behind this analysis is relatively straightforward: we need to show
that the output of each of the 7 steps does not deviate too much from the ideal,
infinite-precision output. For each step, we have two sources of error:

(i) The input to that step might not be exact because of errors accumulated in
previous steps.

(ii) The computation performed in that step (on an inexact input) is inexact as
well.

Summing up these two contributions, we can upper bound the error for that step.
Moreover, for each step we already have estimates for the error (ii) due to the inexact
computation. In particular, for basic operations such as matrix multiplication and
inversion there are well-known guarantees recalled in Section 3.1; for the change of

1This discretization stage could also be analyzed with [Koi95, Theorem 3], but we would not
obtain a sharper bound in this case.

78 Chapter 4. Numerical Algorithm for Tensor Decomposition

basis algorithm we have the guarantees from Section 3.2; and for diagonalisation we
have the guarantees from Section 3.3 based on [BGVKS22]. Nevertheless, obtaining
reasonably precise error bounds from this analysis requires rather long and technical
developments. In Chapter 5, we give a general framework for analysis of numerical
algorithms. We analyse the error in each step of the algorithm, show that each step
satisfies some notion of numerical stability and show that the algorithm which is a
composition of these different numerically stable steps is also numerically stable.

79

Chapter 5

Numerical Algorithms

This chapter is dedicated to the study of the composition of numerically stable algo-
rithms. Recall that in Section 1.3, we had discussed the notions of numerical stability
of algorithms and had elucidated via an example how the composition of numerically
stable algorithms is not always numerically stable. We had also discussed the notion
of condition number which is a measure of how much the image of a function varies on
slight perturbation of the input. In this chapter, we give formal definitions for related
notions of numerical stability of algorithms and prove theorems related to numerical
stability of composition of numerically stable algorithms. As an application, we show
that certain simple functions appearing in Algorithm 8 satisfy these conditions. This
in turn helps us to prove the correctness of Algorithm 8, under the assumption that
the input satisfies certain conditions.

5.1 Overview of the Chapter:

5.1.1 Analysis of numerical stability of algorithms:

In Section 5.2, we introduce the notion of (a, b)-continuous functions. Recall that
we had discussed forward-stable algorithms in Section 1.3. In this chapter, we give a
concrete mathematical definition of this. We then define an algorithm f̃ computing
a function f to be a robustly numerically stable if when given a slightly perturbed
input to f̃ , it outputs a solutionclose to the value of the function f on the actual
input. We finally show that a forward stable algorithm for computing a continuous
function is also robustly numerically stable. In Section 5.4, we also define formally
the notion of approximate computation by probabilistic algorithms and in Theorem
5.4.2 give sufficient conditions for which the composition of approximate probabilistic
algorithms is also an approximate probabilistic algorithm.

5.1.2 Application to the analysis of Algorithm 8:

The goal of this section is to formally prove Theorem 4.3.6 which is one of the main
steps for a correctness proof of Algorithm 8 as described in Section 4.3.3. In this
theorem, we show that Algorithm 8 indeed outputs an ε-approximate solution to
the tensor decomposition problem (refer to Section 1.4.3), if the input satisfies some
special conditions. To prove this theorem, firstly we define simple functions corre-
sponding to the steps of Algorithm 8. Recall that Algorithm 8 consists of seven
steps. Using the machinery developed in Section 5.2, we show that the functions
corresponding to Steps 1,2,3,5 and 6 are robustly numerically stable. We also prove
certain similar guarantees for step 7 of the algorithm, albeit this deviates slightly from
the definition of continuous functions. Step 4 in Algorithm 8 requires diagonalisation
of a diagonalisable matrix. We can use the analysis from Section 3.3 to directly show

80 Chapter 5. Numerical Algorithms

that our diagonalisation algorithm (Algorithm 6) indeed satisfies our definitions of
approximate computation by probabilistic algorithms.

Finally, we show that Algorithm 8 can be rewritten as a composition of functions
made of these simple functions. We also show that when the input to Algorithm
8 satisfies the special conditions, then we can use Theorem 5.4.2 to show that the
composition at the end of each step is also a probabilistic algorithm (according to
Definition 5.4.1).

5.2 Numerical Stability of Algorithms
For a function f on domain X, one can associate to it a parameter κf : X −→ R

which we will refer to as the condition number. The condition number can be chosen
independently for every function with the following goal in mind : If a function is
continuous (refer to Definition 5.2.1) on a certain subdomain, the condition number
parameter indicates how ill-conditioned the problem is on certain inputs, that is how
much the function value deviates on slight perturbation of the input values. A higher
condition number on a certain input indicates that the function is more ill-conditioned
on that particular input.

For a function f , we denote by dom(f), the domain of the function.

Definition 5.2.1. Let f : S ⊂ CM −→ CN with condition number κf and let u ∈ R+.
Let x ∈ S be an input for f such that B(x,u) ⊂ S. We call f an (a, b)-continuous
function on subdomain S at scale u if for all x̃ ∈ B(x,u) such that x̃ ∈ dom(f),

• ||f(x̃) − f(x)|| ≤ uaκf (x).

• κf (x̃) ≤ bκf (x).

where a, b ∈ R+. We will see some concrete examples of functions satisfying these
conditions in Section 5.3.

We had discussed the notion of forward-stable numerical algorithms in Section
1.3. Informally, it is an algorithm for computing a certain function that outputs a
solution close to the actual output value on a certain desired input.

Definition 5.2.2. Let f : S ⊂ CM −→ CN be a function with condition number κf .
We say that f̃ is a (u,ψ)-forward stable algorithm for the function f on the domain
S at machine precision u ∈ R+ if on any input x ∈ S,

||f̃(x) − f(x)|| ≤ u.ψ(κf (x))

Note: For forward-stable algorithms, u will usually be the precision of the
machine on which the algorithm is executed.

Comparison to [BNV23]: The definition of forward stable algorithms in
[BNV23] can be obtained from Definition 5.2.2 by adding the following restrictions
that u < 1

a(M) .(1 + κ(x)) and ψ(κf (x)) ≤ a(M)(1 + κ(x)) where a is a univariate
polynomial, M is the dimension of the input space and κ(x) satisfies the definition
of condition number (Definition 3.1) in [BNV23].

We introduce the notion of robust numerical stability of algorithms. An algo-
rithm is said to be robustly numerically stable if the desired input to the algorithm
is perturbed slightly, then the algorithm outputs some solution close to the actual
solution on the desired input.

5.3. Defining functions and a robustness result 81

Definition 5.2.3. Let f : CM −→ CN be a function with condition number κf . We
say that f̃ is a (u,ψ′)-robust numerically stable algorithm computing the function f
on some set S ⊂ CM with scale u > 0 if on any input x ∈ S such that B(x,u) ⊂ S
and for all x̃ ∈ B(x,u),

||f̃(x̃) − f(x)|| ≤ u.ψ′(κf (x)).

We call ψ′ to be the "condition number growth function" of f̃ .

In the following lemma, we show that a "forward stable" algorithm for a "con-
tinuous" function is also "robustly numerically stable". As shown in the lemma, the
function ψ′ in Definition 5.2.3 witnessing the robust numerical stability of f̃ is a small
modification of the function ψ of Definition 5.2.2 (witnessing the numerical stability
of f̃).

Note: In Definition 5.2.3, the machine precision of f̃ and the scale of f have been
assumed to be equal. This is just to make the analysis simpler and more streamlined.
One can definitely take them to be different and this can often result in stricter error
bounds. In fact, when this setup is applied to Algorithm 8, this is the central reason
why we get a bound of log12(nB

ϵ) bits of precision using this framework as compared
to the analysis in [KS22a] which gives us a bound of log4(nB

ϵ).

Lemma 5.2.4. Let f̃ be a (u,ψ)-forward stable algorithm computing a function
f : CM −→ CN with condition number κf which is (a, b)-continuous for scale u on
domain S ⊂ CM where ψ is a non-decreasing function. Then f̃ is also (u,ψ′)-robust
numerically stable on S where ψ′ = ψ ◦ ϕb + ϕa where for any c ∈ R+, ϕc is defined
as follows:

ϕc : R+ −→ R+

t 7→ ct

Proof. Let x ∈ S be such that B(x,u) ⊂ S. Hence, any element x̃ ∈ B(x,u) lies in S
as well. Since, f is a (a, b)-continuous function for scale u on the domain S, following
Definition 5.2.1, we have that

||f(x̃) − f(x)|| ≤ u.a.κf (x). (5.1)

Following Definition 5.2.2, since f̃ is a (u,ψ)-forward stable algorithm on domain S
and x̃ ∈ S,

||f̃(x̃) − f(x̃)|| ≤ u ·ψ(κf (x̃)) (5.2)

We also have that κf (x̃) ≤ bκf (x) (this can concluded from Definition 5.2.1 for a
continuous function f). Putting this back in (5.2) along with the fact that ψ is an
non-decreasing function on its first coordinate, we have that

||f̃(x̃) − f(x̃)|| ≤ u ·ψ(bκf (x)). (5.3)

Combining (5.1) and (5.3) using triangle inequality, we get the desired result.

5.3 Defining functions and a robustness result
Recall that we had designed Algorithm 7 in Section 4.2 for computing the (unique)
tensor decomposition of diagonalisable tensors. Notice that each step of the algorithm
is a simple, linear algebraic function and in this section, we design functions f1, ..., f7

82 Chapter 5. Numerical Algorithms

corresponding to the steps of Algorithm 7. (Since, Steps 2 and 5 are matrix inversion
maps, hence, we will define f5 = f2.)

Moreover, in this section, we also define maps f̃i which can be essentially thought
of as algorithms for computing fi in finite precision arithmetic for all i ∈ [7]. We
also define corresponding condition numbers κi for all i ∈ {1, 2, 3, 5, 6, 7} (refer to the
discussion at the beginning of Section 5.2).

The main conclusions of this section which is stated more formally in Theo-
rem 5.3.11 are the following:

• Firstly, using the machinery developed in Section 5.2, we show that for some
scale αi > 0, f̃i is a (αi,ψ′

i)-robust numerically stable algorithm for computing
the function fi on domain Xi (with input parameter n) for all i ∈ {1, 2, 3, 5, 6}
where ψ′

i is a function which is quasi-polynomial in n and κi.

• For f7, we also show a similar result: For some x ∈ X7 (with input parameter
n), we get that on input some x̃ close to x, f̃7 outputs some ỹ which is also
close to some y ∈ f7(x).

• For f4 (which corresponds to matrix diagonalisation), we also show that for some
specific parameters p, f̃4,p is a probabilistic algorithm (refer to Definition 5.4.1)
for computing f4.

Organization: For better readability of this exposition, we keep the analysis for
Steps 1,2 and 3 in the main text and defer the proofs for the rest to Appendix C.

5.3.1 Step 1:

Defining f1: Let X1 := (Cn ⊗ Cn ⊗ Cn)× Cn × Cn and Y1(n) =Mn(C)×Mn(C).
Define function f1 : X1 −→ Y1(n) as f1(T , a, b) = (T (a),T (b)) where for any c =
(c1, ..., cn) ∈ Cn, we define T (c) =

∑n
i=1 ciTi. For any element, x = (T , a, b) ∈ X1, we

define ||x|| =
√

||T ||2F + ||a||2 + ||b||2. We also define κ1(x) =
√

||x||2 + 2. For any

y = (A,B) ∈ Y1, we define ||y|| =
√

||A||2F + ||B||2F .

Lemma 5.3.1. For any δ0 ∈ (0, 1), f1 is a (2
√

2,
√

2)-continuous function at scale
δ0 on domain X1.

Proof. Let x = (T , a, b) ∈ X1 such that

B(x, δ0) := {x′ : ||x− x′|| ≤ δ0} ⊆ X1. (5.4)

Let x̃ = (T̃ , ã, b̃) ∈ B(x, δ0). Then

||f1(x̃) − f1(x)|| =
√

|| ˜T (a) − T (a)||2F + || ˜T (b) − T (b)||2F (5.5)

5.3. Defining functions and a robustness result 83

Now, ã ≤ ||a|| + δ0 ≤ ||a|| + 1. We define Tjk = (T1,j,k, ...,Tn,j,k) for all j, k ∈ [n].
Then we have that

|| ˜T (a) − T (a)||2F =
n∑

j,k=1
|⟨ã, ˜Tjk⟩ − ⟨a,Tjk⟩|2

≤ 2
n∑

j,k=1

(
|⟨ã, ˜Tjk − Tj,k⟩|2 + |⟨ã− a,Tjk⟩|2

)

= 2||ã||2
n∑

j,k=1
|| ˜Tjk − Tj,k||2 + 2||ã− a||2

n∑
j,k=1

||Tjk||2

= 2(||a|| + 1)2||T̃ − T ||2F + 2||ã− a||2||T ||2F
= 2δ2

0((||a|| + 1)2 + ||T ||2F)

Following a similar calculation for b and putting this back in (5.5), we have that

||f1(x̃) − f1(x)|| ≤ 2δ0

√
(||a|| + 1)2 + (||b|| + 1)2 + 2||T ||2F ≤ 2

√
2δ0

√
||x||2 + 2.

(5.6)
Now we want to bound the change in κ1 on perturbation of input. Let x̃ ∈ B(x, δ0)
and following the definition of κ1, we have that

κ1(x̃) =
√

||x̃||2 + 2 ≤
√
(||x|| + δ0)2 + 2 ≤

√
2
√

||x||2 + 2 =
√

2κ1(x)

Defining f̃1: Let a, b ∈ Cn and T ∈ (Cn)⊗3 be the inputs. Let Tjk := (T1,j,k, ...,Tn,j,k).
Then to compute (j, k)-th entry of T (a), the algorithm computes the inner product
of a and Tj,k on a floating point machine with suitable machine precision.

Lemma 5.3.2. For any 0 ≤ α0 ≤ 1
2n , f̃1 is an (α0,ψ1)-numerically stable algorithm

for the function f on domain X1 where ψ1(κ1) = nκ2
1 when run on a floating point

machine with machine precision α0.

Proof. Since (T (a))jk =
∑n

i=1 ai(Ti)j,k, it follows from (3.2) that

||(S(a))j,k − (T (a))j,k|| ≤ γn||a||

√√√√ n∑
i=1

|(Ti)j,k|2.

Moreover, γn ≤ 2nα0 since nα0 ≤ 1
2 . Hence

||S(a) − T (a)||F =

√√√√ n∑
j,k=1

||(S(a))j,k − (T (a))j,k||2 ≤ 2nα0||a||

√√√√ n∑
i,j,k=1

|(Ti)j,k|2

= 2nα0||a||||T ||F .

(5.7)

Similarly, for S(b), using the same computation, we also have that ||S(b) − T (b)||F ≤
2nα0||b||||T ||F . Combining them, we get that

||f̃1(x) − f1(x)|| =
√

||S(a) − T (a)||2F + ||S(b) − T (b)||2F

≤ 2nα0||T ||F
√

||a||2 + ||b||2 ≤ nα0||x||2 ≤ nα0κ
2
1(x)

(5.8)

84 Chapter 5. Numerical Algorithms

Theorem 5.3.3. For any ε0 ∈ (0, 1
2n), f̃1 is an (ε0,ψ′

1)-robust numerically stable
algorithm for computing f1 on domain X1 where ψ′

1(κ1) = 2nκ2
1 + 2

√
2κ1 when run

on a floating point machine with machine precision ε0.

Proof. From Lemma 5.2.4, we get that

||f̃1(x̃1) − f1(x1)|| ≤ ε0.ψ′
1(κ1(x))

= ε0(ψ1(
√

2κ1(x)) + 2
√

2κ1(x))

= ε0

(
2n(κ1(x))

2 + 2
√

2(κ1(x))

)
.

5.3.2 Step 2:

Recall that we had defined the Frobenius condition number of matrices (denoted by
κF) in (3.30).We first prove the following theorem: if A is a matrix with bounded κF

and A′ is another matrix which is close to A (in the Frobenius norm), then (A′)−1 is
also close to A−1.

Lemma 5.3.4. Let A ∈ Mn(C) be such that κF (A) ≤ K ≤ ∞ . Define A′ ∈ Mn(C)
as A′ = A+ ∆ where ||∆||F ≤ M and M

√
K ≤ 1. Then A′ is invertible and

||(A′)−1 −A−1||F ≤ MK

1 −M
√
K

Proof. We first use the fact that for any matrix B ∈ Mn(C), if ||B|| < 1, I +B is
invertible and

(I +B)−1 =
∞∑

i=0
(−1)iBi. (5.9)

Since A′ = A(I +A−1∆) where ||∆|| ≤ M and ||A−1|| ≤ ||A−1||F ≤
√
κF (A) ≤

√
K,

we have that ||A−1∆|| ≤ ||A−1||||∆|| ≤ M
√
K < 1. This shows that A′ is invertible,

hence (A′)−1 = (I +A−1∆)−1A−1. Now, we can use (5.9) for B = A−1∆ and apply
the triangle inequality to get that

||(A′)−1 −A−1|| = ||(I +A−1∆)−1A−1 −A−1||
≤ ||A−1||||(I +A−1∆)−1 − I||

≤ ||A−1||||
(∞∑

i=1
||A−1∆||i

)
.

Hence, we can finally conclude that

||(A′)−1 −A−1|| ≤ MK

1 −M
√
K

.

Defining f2: Let function f2 : GLn(C) −→ GLn(C) be defined as the inversion
of matrices i.e. f2(A) = A−1. We define the condition number for f2 as κ2(A) =
κF (A) = ||A||2F + ||A−1||2F . We define X2 = GLn(C) to be the input space for f2 and
use the Frobenius norm of matrices as the metric on GLn(C).

5.3. Defining functions and a robustness result 85

Lemma 5.3.5. For any δ1 > 0, f2 is a (2, 8)-continuous function at scale δ1 on
domain I2(δ1) := {A|A ∈ GLn(C), δ1

√
κ2(A) ≤ 1

2}

Proof. Let A ∈ I2(δ1) and let Ã ∈ B(A, δ1). Using Lemma 5.3.4, we get that Ã is
invertible and hence, Ã ∈ dom(f2). Moreover,

||f2(Ã) − f2(A)|| = ||(Ã)−1 −A−1||F ≤ δ1κ2(A)

1 − δ1
√
κ2(A)

≤ 2δ1κ2(A).

Using the definition of the condition numbers, we also have that

κ2(Ã) = ||Ã||2F + ||(Ã)−1||2F ≤ (
√
κ2(A) + δ1)

2 + (
√
κ2(A) + 2δ1κ2(A))

2

≤ 4κ2(A) + 4κ2(A) = 8κ2(A)

The second last inequality uses the fact that δ1 ≤ 1
2
√

κ2(A)
≤
√
κ2(A) since κ2(A) >

1.

Defining f̃2: We fix a matrix multiplication algorithm as mentioned in Theo-
rem 3.1.3 with a fixed η > 0 and define f̃2 to be the numerically stable algorithm for
computing matrix inversion on a floating point machine with some machine precision
α1.

Lemma 5.3.6. For any α1 > 0, f̃2 is a (α1,ψ2)-numerically stable algorithm for com-
puting the function f2 at machine precision α1 on domain GLn(C) where ψ2(κ2) =

C2n
cη+log(10)κ

8 log(n)+ 1
2

2 for some constant C2 > 0.

Proof. Let A ∈ GLn(C) be an input to f̃2. Then

||f̃2(A) − f2(A)|| ≤ µINV(n).α1.(κ2(A))
cINV log(n)||A−1|| ≤ C2n

cη+log(10)κ
8 log(n)+ 1

2
2

for some constant C2 > 0.

Now we combine the two above lemmas to show that f̃2 is a robust numerically
stable algorithm for computing f2.

Theorem 5.3.7. For any ε1 ∈ (0, 1], f̃2 is an (ε2,ψ′
3)-robust numerically stable al-

gorithm for computing f2 on domain I2(ε2) := {A|A ∈ GLn(C), ε2
√
κ2(A) ≤ 1

2}.
where ψ′

2(κ2) = µ′
INV (n).(8κ2(x2))

8 log(n)+ 1
2 + 2κ2(x2) and µ′

INV (n) = 2
√

2.µINV (n).n8 log(8).

Proof. Let x2 ∈ I2 and x̃2 ∈ B(x2, ε1). Using Lemma 5.2.4, we get that

||f̃2(x̃2) − f2(x2)|| ≤ ε1.ψ′
2(κ2(x2))

= ε1(ψ2(8κ2(x2)) + 2κ2(x2))

= ε1(µINV (n).(8κ2(x2))
8 log(n)+ 1

2 + 2κ2(x2))

= ε1(µ
′
INV (n).(8κ2(x2))

8 log(n)+ 1
2 + 2κ2(x2))

where µ′
INV (n) = 2

√
2.µINV (n).n8 log(8).

86 Chapter 5. Numerical Algorithms

5.3.3 Step 3:

Defining f3: Let X3 := Mn(C) ×Mn(C) be the input space. Then function f3 :
X3 −→ Mn(C) be defined as the matrix multiplication map f3(A,B) = AB. We define
the condition number of f3 as κ3(x) =

√
2||x|| + 1. For any x = (A,B) ∈ X3, we

define the norm on the input space, ||x|| =
√

||A||2F + ||B||2F . We define the norm on
the output space Mn(C) to be the Frobenius norm.

Lemma 5.3.8. Then for any δ2 ∈ (0, 1], f3 is a (1, 2
√

2)-continuous function at
scale δ2 on domain X3.

Proof. Let x = (A,B) ∈ X3 and x̃ = (Ã, B̃) ∈ B(x, δ2).Then

||f3(x̃) − f3(x)|| = ||ÃB̃ −AB||F
≤ ||ÃB̃ −AB̃||F + ||AB̃ −AB||F
≤ ||Ã−A||F ||B̃||F + ||A||F ||B̃ −B||F
≤ δ2(||B̃||F + ||A||F) ≤ δ2(

√
2||x|| + 1) = δ2κ3(x).

The second-last inequality follows from the fact that ||B̃||F ≤ ||B||F + δ2 ≤ ||B||F + 1
and an application of the Cauchy-Schwarz inequality.

Let x = (A,B) ∈ X3 and x̃ ∈ B(x, δ2). Following the definition of κ3, we have
that

κ3(x̃) =
√

2||x̃|| + 1 ≤
√

2||x|| +
√

2δ2 + 1 ≤
√

2(||x|| + 2) ≤ 2
√

2(
√

2||x|| + 1) = 2
√

2κ3(x)

Defining f̃3: Let f̃3 be a fixed numerically stable algorithm for matrix multi-
plication with a fixed η > 0, as mentioned in Theorem 3.1.3 with machine precision
u = α1.

Lemma 5.3.9. For any α2 > 0, f̃3 is a (α2,ψ3)-numerically stable algorithm for
computing the function f3 on domain X3 where ψ3(κ3) =

1
4n

cη+
1
2κ2

3.

Proof. Let x = (A,B) ∈ X3 be the input to f̃3. Then using the bounds from Theorem
3.1.3 (1), we can conclude that

||f̃3(x) − f3(x)|| ≤ ncη+
1
2 .α2.||A||||B|| ≤ α2 · 1

2n
cη+

1
2 (||A||2 + ||B||2)

≤ α2 · 1
4n

cη+
1
2 (2||x||2 + 1)

≤ α2 · 1
4n

cη+
1
2 (

√
2||x|| + 1)2

= α2 · 1
4n

cη+
1
2 (κ3(x))

2.

Now we combine the two above lemmas to show that f̃3 is a robust numerically
stable algorithm for computing f3.

Theorem 5.3.10. For any ε2 ∈ (0, 1], f̃3 is an (ε2,ψ′
3)-robust numerically stable

algorithm for computing f3 on domain X3 where ψ′
3(κ3) = 2ncη+

1
2κ2

3 + κ3.

5.4. Composition Theorem 87

Proof. Let x3, x̃3 ∈ X3 such that x̃3 ∈ B(x3, ε2). Then using Lemma 5.2.4, we get
that

||f̃3(x̃3) − f3(x3)|| ≤ ε2.ψ′
3(κ3(x))

= ε2(ψ3(2
√

2κ3(x)) + κ3(x))

= ε2(2ncη+
1
2κ2

3 + κ3).

5.3.4 Conclusion:

In this section, we have already defined functions fi for i ∈ [3] and the correspond-
ing numerically stable algorithms f̃i computing them in finite arithmetic. As ex-
plained previously, these correspond to Steps 1-3 of Algorithm 8. The functions fi for
i ∈ {5, 6, 7} which are involved in Steps 5-7 of the algorithm and their corresponding
numerically stable algorithms f̃i for i ∈ {5, 6, 7} are defined in Appendices C.2.1-
C.2.4.

The function corresponding to Step 4, denoted by f4, takes in a diagonalisable
matrix with distinct eigenvalues and returns the set of eigenvectors of the matrix.
Further in Appendix C.2.1, we denote by f̃4,p, the corresponding algorithm for com-
puting f4. It is essentially the algorithm for matrix diagonalisation (Algorithm 6)
described in Section 3.3 run with parameters p = (δ,Keig,Knorm) as mentioned in
the description of the algorithm.

The following is the main theorem of this section

Theorem 5.3.11. For i ∈ {1, 3, 6}, f̃i is a (δi,ψ′
i)-robust numerically stable algorithm

for computing fi on domain Xi where δi ∈ (0, 1
10n) and ψ′

i(κi) = (nκlog n
i)mi for some

constant mi.
f̃2 is a (δ2,ψ′

2)-robust numerically stable algorithm for computing f2 on domain
I2(δ2) where δ2 ∈ (0, 1] and ψ′

2(κ2) = (nκlog n
2)m2 for some constant m2.

Moreover, let x, x̃ ∈ X7 such that ||x− x̃|| ≤ δ ≤ 1
216(||x||+1) . Then algorithm f̃7

when run on input x̃ on a machine with precision δ, there exists y ∈ f7(x) such that

||f̃7(x̃) − y|| ≤ 2u
(

2n+ (n||x||)
2
3 + ||x||2

)
.

where u := 6δ 1
3 (||x|| + 1) 1

3 .
Let p = (ε4,Keig,Knorm) be some parameters where ε4 ∈ (0, 1

2). Define X4,p :=
{x ∈ X4|x satisfies parameter p} and

up =
1

n
C4 log4(

nKeigKnorm
ε4

)
for some constant C4 > 0.

Then f̃4,p is a (1 − 1
n − 12

n2 , up, ε4)-algorithm for computing f4 on subdomain X4,p
when run on a finite precision machine with machine precision up.

5.4 Composition Theorem
The main goal of this section is to create a general framework for the analysis of
(probabilistic) algorithms that compute a function approximately on a subdomain of

88 Chapter 5. Numerical Algorithms

the function. More formally, let f be a function which on input x returns a set of
solutions Y .

One example of such function is the cube root function. For any α ∈ C, the
output of the function is {β|β3 = α}. Another example is the function which takes
in a rank-1 order-d tensor and outputs a decomposition. This is given by the map

u1 ⊗ ... ⊗ ud 7→
{
(w1u1, ...,wdud)|w1...wd = 1

}
Another example we want to focus on is the function that takes in a diagonalisable
matrix with distinct eigenvalues and outputs the set of all possible tuples of eigen-
vectors. Let Dn be the set of diagonalisable matrices with distinct eigenvalues. If
a diagonalisable matrix A ∈ Dn is given as input, the function ϕ : Dn −→ P((Cn)n)
returns the following set

ϕ(A) := {(v1, ..., vn) is an ordered tuple of eigenvectors of A}

For a matrix A ∈ Dn, its eigenvectors are unique up to scaling and permutations. As
mentioned in [BBV19], a way that analysis of such set-valued functions can be often
avoided is by quotienting the space by a suitable equivalence relation. In this specific
case of ϕ, one can avoid dealing with set-valued functions by quotienting ϕ(Dn) by
the symmetric group on n elements, Sn and then treating the quotient space as a set
of projective lines. But note that this is a very specific solution which can be applied
specifically to this function whereas in this chapter, we give a general framework that
does not assume any structure on the space of possible solutions.

We define a (probabilistic) algorithm to be a function which on input some x̃
close to x outputs ỹ close to some y ∈ Y (with probability p). Recall that we
had discussed in Example 1.3.1 in Section 1.3 how the composition of numerically
stable algorithms might not always be numerically stable. In Theorem 5.4.2, we give
sufficient conditions such that the composition of probabilistic algorithms is also a
probabilistic algorithm.
Definition 5.4.1 (Probabilistic Algorithm). Let f : CM −→ P(CN) be a function.
Let (Ω, F , P) be a probability space where Ω is a set, F ⊆ P(Ω) is a σ-algebra and
P : F −→ [0, 1] is a probability measure. Define F̃ := {f̃ω : CM −→ CN |ω ∈ Ω} to be a
family of functions. Let u, ε ∈ R+ and let x ∈ S and x̃ ∈ B(x,u). Then define

Ax,x̃ := {ω ∈ Ω| there exists some y ∈ f(x) such that ||f̃ω(x̃) − y|| ≤ ε}.

We say that F̃ is a (p,u, ε)-algorithm on probability space (Ω, F , P) computing f on
domain S ⊂ CM if P(Ax,x̃) ≥ p.

We would refer to p as the probability parameter, u as the input scale and ε as the
output scale of algorithm f̃ .

When the algorithm is deterministic, that is, P(Ax,x̃) = 1 for all x, x̃, then |F̃ | = 1
and for simpler notation, we will drop the probability parameter in that case. More
formally, we would simply say that the algorithm F̃ is a (u, ε)-algorithm for computing
f on some subdomain S.

We now extend the definition of composition of functions Let f : CM −→ P(CN)
and g : CN −→ P(CP). We define the following special composition operation.

g ◦s f : CM −→ P(CP)

x 7→
⋃

y∈f (x)

g(y). (5.10)

5.4. Composition Theorem 89

We denote by ◦ the usual composition map for functions.
For a function f : CM −→ CN and for any subset S ⊆ CM , f(S) = ⋃

x∈S f(x).

Theorem 5.4.2. Let F̃ be a (pf ,uf , εf)-algorithm on probability space Pf = (Ωf , Ff , Pf)
computing a function f : CM −→ P(CN) on a domain Sf ⊆ CM . Let g : CN −→ P(CP)
be another function and let G̃ be a (pg, εf , εg)-algorithm on probability space Pg =
(Ωg, Fg, Pg) computing g on domain f(Sf) ⊆ CN .

Let h = g ◦s f and H̃ = {g̃ ◦ f̃ |g̃ ∈ G̃, f̃ ∈ F̃}. Then H̃ is a (pgpf ,uf , εg)-algorithm
on probability space Pg × Pf for computing h on Sf .

Proof. Let x ∈ Sf and let x̃ ∈ B(x,uf). Then we define

Af
x,x̃ := {ω ∈ Ωf | there exists some yf ∈ f(x) such that ||f̃ω(x̃) − yf || ≤ εf }.

Since F̃ is a (pf ,uf , εf)-algorithm for computing f on Pf , then

Pf (A
f
x,x̃) ≥ pf . (5.11)

For a particular ω ∈ Ax,x̃, let yω
f ∈ f(x) ⊆ f(Sf) such that ||f̃ω(x̃)− yω

f || ≤ εf . Since,
G̃ is a (pg, εf , εg)-algorithm, then we can define the corresponding sets

Ag

yω
f

,f̃ω(x̃)
:= {ω′ ∈ Ωg| there exists some yg ∈ g(yω

f) such that ||g̃ω′(f̃ω(x̃))−yg|| ≤ εg}.
(5.12)

Now for the function h, we can also define the following set

Ah
x,x̃ := {ω ∈ Ωh| there exists some yh ∈ h(x) such that ||h̃ω(x̃) − yh|| ≤ εg} (5.13)

Then, since for all h ∈ H̃, there exists f ∈ F̃ and g ∈ g̃ such that h = g ◦ f , it is clear
that ⋃

ω∈Af
x,x̃

(
{ω} ×Ag

yω
f

,f̃ω(x̃)

)
⊆ Ah

x,x̃.

Let ω1 ∈ Af
x,x̃ and let yω1

f ∈ f(x) such that ||f̃ω1(x̃) − yω1
f || ≤ εf . Since g̃ is a

(pg, εf , εg)-algorithm for computing g on Pg, then

Pg(A
g

y
ω1
f

,f̃ω1 (x̃)
) ≥ pg. (5.14)

Then using this and (5.11), along with the law of total probabilities, we get that

Ph(A
h
x,x̃) ≥ (Pg × Pf)

(⋃
ω∈Af

x,x̃

(
{ω} ×Ag

yω
f

,f̃ω(x̃)

))

≥ pgpf .

Corollary 5.4.2.1. Let f̃ be a (uf , εf)-algorithm computing a function f : CM −→
P(CN) on a domain Sf ⊆ CM . Let g : CN −→ P(CP) be another function and let g̃
be a (εf , εg)-algorithm computing g on domain f(Sf) ⊆ CN .

Let h = g ◦s f and h̃ = g̃ ◦ f̃ . Then h̃ is a (uf , εg)-algorithm for computing h on
Sf .

This can also be extended to composition of multiple functions using a similar
proof.

90 Chapter 5. Numerical Algorithms

5.5 Algorithm 7 as a composition of simple functions
In this section, we define some simple functions using the functions defined in Section
5.3 and show that Algorithm 7 can be written as a composition of these functions.

Some standard functions: We define the function πi : X1 × ... ×Xn −→ Xi to
be the projection function on the i-th coordinate for all i ∈ [n]. For two functions
f1 : X −→ Y and f2 : X −→ Z, we define

f1 × f2 : X −→ Y ×Z

x 7→ (f1(x), f2(x)).

We define the map that takes in a matrix and returns a tuple of its columns

ψmatrow : Mn(C) −→ (Cn)n

A 7→ (a1, ..., an) where ai is the i-th row of A

For any space X, IdX denotes the identity map on that space. For our applications,
we will drop the subscript as the space will be clear from the context.

Recall that Xi are the domains for functions fi defined in Section 5.3. We define
the following maps

g1 = f1 × π1 : X1 −→ Mn(C) ×Mn(C) × (Cn)⊗3

g2 = (f2 ◦ π1) × π2 × π3 : X2 ×Mn(C) × (Cn)⊗3 −→ Mn(C) ×Mn(C) × (Cn)⊗3

g3 = (f3 ◦ π1) × π2 : X3 × (Cn)⊗3 −→ Mn(C) × (Cn)⊗3

g4 = (f4 ◦ π1) × π2 : X4 × (Cn)⊗3 −→ P(Mn(C)) × (Cn)⊗3

g5 = (ψmatrow ◦ f2 ◦ π1) × Id : X5 × (Cn)⊗3 −→ (Cn)n ×Mn(C) × (Cn)⊗3

g6 = (f6 ◦ π2) × π1 : (Cn)n ×X6 −→ Cn × (Cn)n

g7 = f7 : X7 −→ P((Cn)n)

(5.15)

Each gi corresponds to the i-th step of Algorithm 7 and hence Theorem 4.2.2 can
be rewritten in the following way to show that the composition of these functions
h = g7 ◦s ... ◦s g1 where ◦s is the composition defined in (5.10) outputs the set of all
possible decompositions of the input tensor T .

Note: The function definitions gi always don’t exactly resemble the i-th step of
Algorithm 7 - in a few cases, it has some elements that are carried forward from the
previous steps. For example, the function g1 takes as input the diagonalisable tensor
T given as input to the algorithm and vectors a and b and computes matrices T (a) =∑n

i=1 aiTi and T (b) =
∑n

i=1 biTi. The output of this step is the tuple (T (a),T (b),T).
It imitates Step 1 of Algorithm 7, except for the part that it carries forward the input
tensor T as well. This is for book-keeping purposes and the computation at each step
of the algorithm remains unchanged.

When f : X −→ P(Y1) × Y2 and g : Y1 × Y2 −→ P(Z), then the corresponding map
◦s can be defined as

g ◦s f : f −→ P(Z)

x 7→
⋃

y1∈Y1

g(y1, y2) where f(x) = (Y1, y2) ∈ P(Y1) × Y2

This is essentially an extension of the ◦s defined in (5.10) using the inclusion map

5.6. Error analysis of Algorithm 8: 91

P(Y1) × Y2 ↪−→ P(Y1 × Y2). Usually for our applications, it would be assumed that
the range of f matches the domain of g. When the domains do not match, then the
output of g ◦s f can be assumed to be an empty set.

Note: The maps fi : Xi −→ Yi(n) for all i ∈ {1, 2, 3, 5, 6} defined in Section 5.3
can be written as a map f ′

i : Xi −→ P(Yi(n)) where for all x ∈ Xi, f ′
i(x) = {fi(x)}.

In the rest of this section, by abuse of notation, we use the map fi to denote the
corresponding map f ′

i , wherever applicable. For all i ∈ {1, 2, 3, 5, 6}, |gi(yi)| = 1
Lemma 5.5.1. Let x = (T , a, b) ∈ X1 be such that the following conditions are
satisfied:

• T is a diagonalisable tensor.

• Let T1, ...,Tn be the slices of T . Then T (a) =
∑n

i=1 aiTi is an invertible matrix
and (T (a))−1T (b) has distinct eigenvalues.

We define function h = g7 ◦s ... ◦s g1. Then

h(x) ⊆ D(T) := {(u1, ...,un)|ui ∈ Cn are linearly independent and T =
n∑

i=1
u⊗3

i }.

Proof. From the discussion above, we know that the functions gi essentially imitates
the different steps of Algorithm 7. Hence, by Theorem 4.2.2, we get that h(x) ⊆
D(T).

The opposite direction is true as well - this follows from Corollary 4.3.2.1, that if
T =

∑n
i=1 u

⊗3
i where ui ∈ Cn are linearly independent, then the vectors ui are unique

up to permutation and multiplication by cube roots of unity.

5.6 Error analysis of Algorithm 8:

5.6.1 Writing Algorithm 8 as a composition of functions

Defining g̃i: Recall the definitions of f̃4,p from Section C.2.1 and f̃i for i ∈ [7] \ {4}
from Sections 5.3.1 - 5.3.3 and Appendices C.2.1 - C.2.4. The algorithm g̃i computing
gi is defined in the same way as in (5.15), just replacing f4 by f̃4,p and for all i ∈
[7] \ {4} by f̃i wherever it occurs. We define the following maps

g̃1 = f̃1 × π1 : X1 −→ Mn(C) ×Mn(C) × (Cn)⊗3

g̃2 = (f̃2 ◦ π1) × π2 × π3 : X2 ×Mn(C) × (Cn)⊗3 −→
(
Mn(C) ×Mn(C)

)
× (Cn)⊗3

g̃3 = (f̃3 ◦ π1) × π2 : X3 × (Cn)⊗3 −→ Mn(C) × (Cn)⊗3

g̃4,p,ω = (f̃4,p,ω ◦ π1) × π2 : X4 × (Cn)⊗3 −→ Mn(C) × (Cn)⊗3 for fixed parameter p
and internal choices for randomness ω ∈ Ω (refer to Section C.2.1)

g̃5 = (ψmatrow ◦ f̃2 ◦ π1) × Id : X2 × (Cn)⊗3 −→ (Cn)n ×
(
Mn(C) × (Cn)⊗3

)
g̃6 = (f̃6 ◦ π2) × π1 : (Cn)n ×X6 −→ Cn × (Cn)n

g̃7 = f̃7 : X7 −→ (Cn)n

(5.16)

We define the family of algorithm g̃4,p in a similar way as we had defined f̃4,p in
(C.2).

g̃4,p := {g̃4,p,ω|ω ∈ Ω} (5.17)

92 Chapter 5. Numerical Algorithms

We define the composition of these functions

h̃p,ω = g̃7 ◦ ...g̃4,p,ω ◦ ... ◦ g̃1 : X1 −→ (Cn)n.

Consequently we can define the family of functions

h̃p := {h̃p,ω|ω ∈ Ω}. (5.18)

Remark 5.6.1. Recall from Section C.2.1 that f̃4,p is the set of functions {f̃4,p,ω|ω ∈
Ω} with the underlying probability space P = (Ω, F , P). Then the same probability
distribution applies over g̃4,p and h̃p as well. This is the probability space P that we
will be referring to throughout this section.

Note that g̃i corresponds to Step i of Algorithm 9 and hence h̃ corresponds to
Algorithm 9.

We define the error parameter εi (which corresponds to the error at every step of
the algorithm) in the following way:

εi =

1

nci log2(nB
ε)

i ∈ {4, 5, 6, 7}
1

nci log12(nB
ε)

i ∈ {0, 1, 2, 3} (5.19)

where c0 = 128 × (24)4, ci+1 = ci
2 for i ∈ {0, 1, 2, 4, 5}, c4 = (c3

2)
1
4 and c7 = c6

6 . Note
that this value of c0 is set in Section 5.6.3 and this implies that for all i ∈ [7], ci ≥ 1,
which we will use later. We show in this section that h̃p (as defined in (5.18))is an
((1 − 1

n − 12
n2), ε0, ε7)-algorithm (following Definition 5.4.1) on probability space P

(refer to Remark 5.6.1) for computing h on some subdomain. The following is the
formal statement of this theorem and we give a proof of this in Section 5.6.2

Theorem 5.6.2. We define the space D to be the set of all y ∈ X1 which satisfy
the (n,B)-input conditions (according to Definition 4.3.5) with parameters kF , kgap.
Let ε ≤ 1 be the desired accuracy parameter and we set p := (ε4

2 ,Keig,Knorm) where
Keig = B

kgap
, Knorm =

√
nB3kF and ε4 is set in (5.19). Then h̃p is an (1 − 1

n −
12
n2 , ε0, ε7)-algorithm with probability space P for computing h on subdomain D when
each individual g̃i is run on a finite precision machine with precision εi−1 for all
i ∈ [7].

Rewriting Algorithm 8:

We first rewrite Algorithm 8 in terms of the newly-defined g̃i’s.

5.6. Error analysis of Algorithm 8: 93

Algorithm 9: Jennrich’s Algorithm for Complete Decomposition of Sym-
metric Tensors.

Let Cgap,Cη > 0 and cF > 1 be some absolute constants we will fix in (6.6).
Input: An order-3 symmetric diagonalisable tensor T ∈ (Cn)⊗3, an estimate
B for the condition number of the tensor and an accuracy parameter ε ≤ 1.

Output: A solution to the ε-approximation problem for the decomposition
of T .

Set kgap := 1
Cgapn6B3 and kF := cFn

5B3.
Pick (a1, ..., an, b1, ..., bn) ∈ Gη uniformly at random where η := 1

Cηn
17
2 B4

is
the grid size.

Let δ := 1
nc4 log2(nB

ε)
where c4 is a constant we will set in Section 5.6.3 and

define p = (δ, B
kgap

,B 3
2
√
nkF).

1 Let ỹ1 = (T̃ , ã, b̃). Compute g̃1(ỹ1) = (S(a),S(b), T̃) where
(S(a),S(b)) = f̃1(T̃ , ã, b̃)

2 Let ỹ2 = g̃1(ỹ1). Compute g̃2(ỹ2) = (S(a)′ ,S(b), T̃) where S(a)′
:= f̃2(S(a)).

3 Let ỹ3 = g̃2(ỹ2). Compute g̃3(ỹ3) = (D, T̃) where D := f̃3(S(a)′ ,S(b)).
4 Let ỹ4 := g̃3(ỹ3). Compute g̃4,p,ω(ỹ4) = (V (0), T̃) where V (0) := f̃4,p,ω(D) for

some internal choice of randomness ω (refer to the discussion in Section
C.2.1).

5 Let x̃5 := g̃4,p(ỹ4). Compute g̃5(ỹ5) = ((u′
1, ...,u′

n),V (0), T̃) where
C := f̃2(V (0)) and u′

1, ...,u′
n be the rows of C.

6 Let x̃6 := g̃5(ỹ5). Compute g̃6(ỹ6) = (C, (α′
1, ...,α′

n)) where
α′

1, ...,α′
n := f̃6(V (0), T̃).

7 Let ỹ7 = g̃6(ỹ6). Compute g̃7(ỹ7) = (l1, ..., ln) where
l1, ..., ln = f̃7((α′

1, ...,α′
n), (u′

1, ...,u′
n)).

Output {l1, ..., ln}.

5.6.2 Proof of Theorem 5.6.2:

In (5.16), we had defined g̃i to be the algorithm corresponding to Step i in Algorithm
9 for all i ∈ [7]. We start with y1 and ỹ1 as the input for h and h̃ as defined in
Theorem 5.6.2. We define the partial compositions

h̃i = g̃i ◦ ...g̃1 for all i ∈ [3]
h̃4,p = g̃4,p ◦ ... ◦ g̃1

h̃i,p = g̃i ◦ ...g̃4,p...g̃1 for all i ∈ {5, 6, 7}
hi = gi ◦ ...g1 for all i ∈ [7].

(5.20)

Also, note that by this definition, h̃p = h̃7,p and h = h7. We define the spaces
Di(n) in the following way:

Di(n) =

{
D i = 1
hi−1(D) i ∈ {2, ..., 7} (5.21)

Then we show the following statements:

• We start by showing in Section 5.6.2 that h̃1 is an (ε0, ε1) algorithm (following
Definition 5.4.1) for computing h1 on domain D1.

94 Chapter 5. Numerical Algorithms

• Then in the following sections, for i ∈ {2, 3, 5, 6, 7}, we show that g̃i is an
(εi−1, εi) algorithm for computing gi on domain Di. And we also show that for
the parameters p set in the hypothesis of Theorem 4.3.6, g̃4,p is a (1 − 1

n − 12
n2)-

algorithm on the probability space P (defined in the statement of Theorem
4.3.6) for computing g4 on domain D4. Using Theorem 5.4.2 and Corollary
5.4.2.1 wherever applicable, we can then inductively show the following

– h̃i is an (ε0, εi) algorithm for computing hi on domain Di for i ∈ {2, 3}.
– h̃i,p is an (1 − 1

n − 12
n2 , ε0, εi) algorithm on the probability space P for

computing hi on domain Di for i ∈ {4, 5, 6, 7}.

For better readability of this exposition, we keep the analysis for h̃1, h̃2, h̃3 and
h̃4,p in the main text and defer the proofs for the rest to Appendix C.4.

Starting with y1:

The goal of this section is to show that g̃1 = h̃1 is an (ε0, ε1)-algorithm for computing
g1 = h1 on domain D1 = D.

Recall that we had defined the space X1 := (Cn)⊗3 × Cn × Cn in Section 5.3.1.
Let y1 ∈ D1 and ỹ1 ∈ B(y1, ε0). Then the inputs to functions g̃1 and g1 are ỹ1 and
y1 respectively. Following the definition of g1 in (5.15) and g̃1 in (5.16), consequently
the inputs to f̃1 and f1 are set as x̃1 = ỹ1 and x1 = y1 respectively.

Relation to Step 1 of the Algorithm: From the definition of D, we know
that y1 = x1 = (T , a, b) ∈ D1 ⊆ X1. Following the definition of g1 from (5.15),
we get that it takes as input y1 and outputs (f1(x1),T). Following the definition of
f1 from Section 5.3.1 we get that f1(x1) = (T (a),T (b)) where T (a) =

∑n
i=1 aiTi and

T (b) =
∑n

i=1 biTi.
We also have that

||x1 − x̃1|| = ||y1 − ỹ1|| ≤ ε0. (5.22)

First, we bound the norm of a diagonalisable tensor by a function of its condition
number.

Lemma 5.6.3. Let T be an order-3 diagonalisable tensor. Then ||T ||F ≤ (κ(T))
3
2 .

Proof. Let T =
∑n

i=1 u
⊗3
i where the ui’s are linearly independent. Let U ∈ GLn(C)

be the matrix with rows u1, ...,un. From Corollary 3.2.1.1, we get that the slices Ti

of T can be written as Ti = UTDiU where Di = diag(u1,i, ...,un,i). Therefore,

||T ||2F =
n∑

i=1
||Ti||2F =

n∑
i=1

||UTDiU ||2F

≤ ||U ||4F
n∑

i=1
||Di||2F

= ||U ||4F (
n∑

i=1
(

n∑
k=1

|uk,i|2))

= ||U ||6F ≤ κ(T)3.

In Section 5.3.1, we have defined the condition number for f1 as κ1(x) =
√

||x||2 + 2
for some x ∈ X1 where X1 = (Cn ⊗ Cn ⊗ Cn) × Cn × Cn.

5.6. Error analysis of Algorithm 8: 95

Since, y1 = (T , a, b) ∈ D, we already have that κ(T) ≤ B and a, b ∈ [−1, 1]n.
Using this along with Lemma 5.6.3 on T gives us that for all x1 = y1 ∈ D,

κ1(x1) =
√

||x1||2 + 2 =
√

||T ||2F + ||a||2 + ||b||2 + 2 ≤
√

2n+B3 + 2. (5.23)

Putting this in Theorem 5.3.11 along with (5.22), we get that using Lemma C.1.1
that for large enough n and some appropriate constant m′

1,

||f̃1(x̃1) − f1(x1)|| ≤ ε0.(n
(
κ1(x1)

)log n

)m1 ≤ ε0(nB)m′
1 log(n) ≤

√
ε0
2 =

ε1
2 . (5.24)

Now following the definitions of gi,hi and g̃i, h̃i from (5.15) and (5.20), we have

||h̃1(ỹ1) − h1(y1)|| = ||g̃1(ỹ1) − g1(y1)||

=
√

||f̃1(x̃1) − f1(x1)||2 + ||π1(x̃1) − π1(x1)||2

≤

√
ε2

1
4 + ε2

0 ≤ ε1.

(5.25)

We can finally conclude that h̃1 is an (ε0, ε1) algorithm for computing h1 on domain
X1.

Setting y2:

The goal of this section is to show that g̃2 is an (ε1, ε2)-algorithm for computing g2
on domain D2 = h1(D1). We also use the conclusion of Section 5.6.2, that is, h̃1
is an (ε0, ε1)-algorithm for computing h1 on subdomain D1. Since, h2 = g2 ◦s h1
and h̃2 = g̃2 ◦ h̃1, using Corollary 5.4.2.1, we get that h̃2 is an (ε0, ε2)-algorithm for
computing h2 on domain D1.

Recall that we had defined the space X2 := GLn(C) in Section 5.3.2. We pick
some y2 ∈ D2 ⊆ X2 ×Mn(C) × (Cn)⊗3 (where D2 = h1(D) as defined in (5.21))
and ỹ2 ∈ B(y2, ε1). The inputs to functions g̃2 and g2 will be ỹ2 and y2 respectively.
Following the definition of g2 in (5.15) and g̃2 in (5.16), consequently the inputs to
f̃2 and f2 are set as x̃2 = π1(ỹ2) and x2 = π1(y2) respectively.

Relation to Step 2 of the Algorithm: From the definition of h1, the input
to g2, denoted by y2 has the following structure: y2 = (T (a),T (b),T) ∈ D2 (refer to
Section 5.6.2 and Step 2 of Algorithm 9). Recall that f2 is the function corresponding
to matrix inversion defined in Section 5.3.2. Following the definition of g2 = (f2 ◦
π1)× π2 × π3, this consequently gives us that the input to f2 is x2 = π1(y2) = T (a) ∈
X2. Application of g2 on y2, performs matrix inversion on the first coordinate and
leaves the rest of the coordinate unchanged. More formally,

g2(y2) = (f2(x2),T (b),T) = ((T (a))−1,T (b),T) (5.26)

Since, ||ỹ2 − y2|| ≤ ε1, this in turn also implies that

||x̃2 − x2|| ≤ ε1. (5.27)

Moreover, from the assumption that the input y1 ∈ D, more specifically, that it
satisfies (n,B)-input Condition 4.3.5, we have that the Frobenius condition number
(defined in Section 3.3) of x2 = T (a) is bounded by kF := cFn

5B3. Recall that we
had defined the condition number for f2 in Section 5.3.2 as κ2 = κF . Then this gives

96 Chapter 5. Numerical Algorithms

us that
κ2(x2) = κF (T

(a)) ≤ kF := cFn
5B3. (5.28)

Following the definition of εi from (5.19) and using Lemma C.1.1, we already have
that

ε1.
√
κ2(x2) =

1
nc1 log12(nB

ε
)
.√cFn

5
2B

3
2 ≤

√
ε1
2 ≤ 1

2 (5.29)

Recall the definition of the space I2(ε1) as defined in Section 5.3.2 (and Theorem
5.3.11) which is the subdomain of f2 on which f̃2 is a robust numerically stable
algorithm for computing f2. Using (5.29), we can thus conclude that T (a) ∈ I2(ε1).
Putting this in Theorem 5.3.11 and using (5.27) and Lemma C.1.1, we get that for
large enough n and for some appropriate constant m′

2,

||f̃2(x̃2) − f2(x2)|| ≤ ε1.(n
(
κ2(x2)

)log n

)m2 ≤ ε1(nB)m′
2 log(n) ≤

√
ε1
2 =

ε2
2 . (5.30)

The final inequality follows from the definition of εi in (5.19).
Following the definition of g̃2 and g2 from (5.15), we can conclude that

||g̃2(ỹ2) − g2(y2)||

=
√

||f̃2(π1(ỹ2)) − f2(π1(y2))||2 + ||π2(ỹ2) − π2(y2)||2 + ||π3(ỹ2) − π3(y2)||2

≤

√
ε2

2
4 + ε2

1 ≤ ε2.

(5.31)

This shows that g̃2 is an (ε1, ε2)-algorithm for computing g2 on the space D2 defined
in (5.21).

For any y ∈ h2(D1), we also compute a bound on ||y|| which we will require
later in Section 5.6.2. Then, following the previous discussion, there exists some
y1 = (T , a, b) ∈ D1 such that y = h2(y1) = ((T (a))−1,T (b,T).

Lemma 5.6.4. Let U ∈ Mn(C) with rows u1, ...,uk be such that κF (U) ≤ B. Then,
given a ∈ [−1, 1]n,

∑
k∈[n] |⟨a,uk⟩|2 ≤ nB.

Proof. By the Cauchy-Schwarz inequality,∑
k∈[n]

|⟨a,uk⟩|2 ≤
∑

k∈[n]
||a||2||uk||2 = ||a||2||U ||2F .

Since a ∈ [−1, 1]n, we know that ||a||2 ≤ n. Hence ∑k∈[n] |⟨a,uk⟩|2 ≤ nB.

This gives us that ||T (b)||F ≤
√
nB3. Recall that since y1 = (T , a, b) ∈ D, we have

that κ(T) ≤ B and using Lemma 5.6.3, this implies ||T ||F ≤ B
3
2 . Using (5.29), we

also get that ||(T (a))−1||2F ≤ κF (T (a)) ≤ cFn
5B3. Then we can finally conclude that

||y|| =
√

||(T (a))−1||2F + ||T (b)||2F + ||T ||2F ≤
√
cFn5B3 + nB3 +B3 <

√
3cFn5B3.

(5.32)

Setting y3:

The goal of this section is to show that g̃3 is an (ε2, ε3)-algorithm for computing g3
on domain D3 = h2(D1). We also use the conclusion of Section 5.6.2, that is, h̃2
is an (ε0, ε2)-algorithm for computing h2 on subdomain D1. Since, h3 = g3 ◦s h2

5.6. Error analysis of Algorithm 8: 97

and h̃3 = g̃3 ◦ h̃2, using Corollary 5.4.2.1, we get that h̃3 is an (ε0, ε3)-algorithm for
computing h3 on domain D1.

Recall from Section 5.3.3 that we had defined X3 = Mn(C) ×Mn(C). We de-
note by y3 ∈ D3 ⊆ X3 × (Cn)⊗3 the input to g3 and ỹ3 ∈ B(y3, ε1) the input to
g̃3. Consequently the inputs to f̃3 and f3 are set as x̃3 = π1(ỹ3) and x3 = π1(y3)
respectively.

Relation to Step 3 of the Algorithm: From the definition of g3 in (5.15),
it takes in as input y3 =

(
(T (a))−1,T (b)),T

)
∈ D3 ⊆ X3 × (Cn)⊗3. Since g3 =

(f3 ◦ π1) × π2 × π3, this consequently gives us that the input to f3 is x3 = π1(y3) =
((T (a))−1,T (b)). Application of g3 on y3 performs matrix multiplication on the
first coordinate and leaves the last coordinate unchanged. More formally, g3(y3) =
(f3(x3),T). Following the definition of f3 in Section 5.3.3, we get that g3(y3) =
((T (a))−1T (b),T). The following is the main result of this section.

Claim 5.6.5. g̃3 is an (ε2, ε3)-algorithm for computing g3 on domain D3.

Proof. Let y3 ∈ D3 and ỹ3 ∈ B(y3.ε2). We define x3 = π1(y3) and x̃3 = π1(ỹ3) as
the inputs to f3 and f̃3 respectively. Since, ||ỹ3 − y3|| ≤ ε2, it follows that

||x̃3 − x3|| ≤ ε2. (5.33)

In Section 5.3.3, we had defined the condition number for Step 3 to be κ3(x) =√
2||x|| + 1.

Since, x3 = π1(y3) where y3 ∈ D3 = h2(D1), using (5.32), we get that

κ3(x3) =
√

2||x3|| + 1 ≤
√

2||y3|| + 1
≤
√

6cFn5B3 + 1.

Putting this in Theorem 5.3.11 along with (5.33) and using Lemma C.1.1, we get that
for large enough n and for some appropriate constant m′

3,

||f̃3(x̃3) − f3(x3)|| ≤ ε2.(n
(
κ3(x3)

)log n

)m3 ≤ ε2(nB)m′
3 log(n) ≤

√
ε2
2 =

ε3
2 . (5.34)

Following the definition of g3 and g̃3 from (5.15), this further gives us

||g̃3(ỹ3) − g3(y3)|| =
√

||f̃3(π1(ỹ3)) − f3(π1(y3))||2 + ||π2(ỹ3) − π2(y3)||2

≤

√
ε2

3
4 + ε2

2 ≤ ε3.
(5.35)

This shows that g̃3 is an (ε2, ε3)-algorithm for computing g3 on the space D3 defined
in (5.21).

Setting y4:

The goal of this section is to show that for the parameters p mentioned in the hypoth-
esis of Theorem 4.3.6, g̃4,p is an (1 − 1

n − 12
n2 , ε3, ε4)-algorithm on probability space

P for computing g4 on domain D4 = h3(D1). We also use the conclusion of Sec-
tion 5.6.2, that is, h̃3 is an (1, ε0, ε3)-algorithm for computing h3 on subdomain D1.
Since, h4 = g4 ◦s h3 and h̃4,p = g̃4,p ◦ h̃3, using Corollary 5.4.2.1, we get that h̃4,p is
an (1 − 1

n − 12
n2 , ε0, ε4)-algorithm on probability space P for computing h4 on domain

D1.

98 Chapter 5. Numerical Algorithms

Recall from Section C.2.1 that we had defined X4 to be set of all diagonalisable
matrices and in (5.21), we had defined the subdomain D4 = h3(D).

Recall from the hypothesis of Theorem 4.3.6 that we had set the parameter
p = (ε4

2 ,Keig,Knorm) where Keig = B
kgap

and Knorm =
√
nB3kF . Recall from (5.15)

and the discussion in Remark 5.6.1, that g̃4,p := {g̃4,p,ω|ω ∈ Ω} with an associated
probability space P = (Ω, F , P). The main goal of this subsection is the following
result.

Claim 5.6.6. For parameters p = (ε4
2 ,Keig,Knorm), g̃4,p is an (1 − 1

n − 12
n2 , ε3, ε4)-

algorithm on probability space P = (Ω, F , P) (refer to Definition 5.4.1) for computing
g4 on domain D4.

Relation to Step 4 of the algorithm: From the definition of h3, it takes in
(T , a, b) ∈ D and outputs y4 =

(
(T (a))−1T (b),T

)
∈ D4 (refer to the Step 4 of Algo-

rithm 9 for the details.) Let the first coordinate be denoted by x4 = (T (a))−1T (b). Ap-
plication of g4 on y4 performs matrix diagonalisation in the first coordinate and leaves
the second coordinate unchanged. More formally, g4(y4) = (V ,T) = (f4(x4),T) such
that for all columns vi of V , ||vi|| = 1 where f4 is the function for matrix diagonali-
sation defined in Section C.2.1.

Proof. Let y4 ∈ D4 and ỹ4 ∈ B(y4, ε3). By the definition of g̃4,p from (5.16) and the
discussion in Remark 5.6.1, we get that for all ω ∈ Ω, g̃4,p,ω = (f̃4,p,ω ◦π1)×π2. Then
the corresponding inputs to f̃4,p,ω and f4 are set to be x̃4 := π1(ỹ4) and x4 := π1(y4)
respectively. This already implies that x̃4 ∈ B(x4, ε3).

From the hypothesis of Theorem 5.6.2, we already have that y1 = (T , a, b)
satisfies the (n,B)-input Conditions 4.3.5 with parameters kgap and kF . Hence,
gap((T (a))−1T (b)) ≥ kgap, ||(T (a))−1||F ≤ kF and κ(T) ≤ B. Also, note that us-
ing Lemma 5.6.4, this implies that ||T (b)||F ≤

√
nB3.

Recall the definitions of κF
V and κeig from Section 3.3. Let U be a matrix that

diagonalises the given tensor T . Firstly, from the proof of Theorem 4.2.1, we know
that (T (a))−1T (b) is diagonalisable and the columns of U−1 form the eigenvectors of
(T (a))−1T (b) as well. Hence,

κF
V (x4) = κF

V ((T
(a))−1T (b)) ≤ κF (U

−1) = κ(T) ≤ B. (5.36)

Combining this with the fact gap((T (a))−1T (b)) ≥ kgap > 0, we get that

κeig((T
(a))−1T (b)) =

κF
V ((T

(a))−1T (b))

gap((T (a))−1T (b))
≤ B

kgap
=: Keig.

We also have that

||x4|| = ||(T (a))−1T (b)||F ≤ ||(T (a))−1||F ||T (b)||F ≤
√
nB3kF =: Knorm.

5.6. Error analysis of Algorithm 8: 99

This gives us that x4 satisfies parameters p as defined in Definition C.2.1. Using the
fact that ε ≤ 1 and c4 > 1, we get that for large enough n,

log4
(2nKeigKnorm

ε4

)
= log4

(
2nKeigKnorm · nc4 log2(nB

ε
)
)

=

(
log(2nKeigKnorm) + c4 log2(

nB

ε
) log(n)

)4

≤ 16c4
4 log8(

nB

ε
) log4(n)

≤ 16c4
4 log12(

nB

ε
)

(5.37)

The first inequality follows from the fact that for large enough n, 2nKnormKeig ≤ (nB)c

for some appropriate constant c > 1.
Using this, we can conclude that the machine precision required by f̃4,p is also

ε3 =
1

nc3 log12(nB
ε
)
=

1
n16c4

4 log12(nB
ε
)
<

1

n
log4(

nKeigKnorm
ε4
2

)
. (5.38)

Since x̃4 ∈ B(x4, ε3), we can define the set

Ax4,x̃4 := {ω ∈ Ω|there exists y(f)4 ∈ f4(x4) such that ||f̃4,p,ω(x̃4) − y
(f)
4 || ≤ ε4

2 }

where Ω is the set of internal random choices for Algorithm 6 (as explained in Section
C.2.1). Since, we have the bound on ε3 using (5.38), we can now use Theorem 5.3.11
to show that P(Ax4,x̃4) ≥ 1 − 1

n − 12
n2 . Following the definition of g4 and g̃4,p,ω from

(5.15), we get that for all ω ∈ Ax4,x̃4 ,

||g̃4,p,ω(ỹ4) − y
(g)
4 ||

=
√

||f̃4,p,ω(π1(ỹ4)) − y
(f)
4 ||2 + ||π2(ỹ4) − π2(y4)||2

≤

√
ε2

4
4 + ε2

3 ≤ ε4.

(5.39)

Now we can also similarly define the set

A(g)
y4,ỹ4 := {ω ∈ Ω|there exists y(g)4 ∈ g4(y4) such that ||g̃4,p,ω − g

(f)
4 || ≤ ε4}. (5.40)

Using (5.39), Ax4,x̃4 ⊆ A(g)
y4,ỹ4 and hence, P(A(g)

y4,ỹ4) ≥ 1 − 1
n − 12

n2 . This implies that
g̃4,p is an (1 − 1

n − 12
n2 , ε3, ε4)-algorithm on probability space P for computing g4 on

subdomain D4.

Bounds on norms and condition numbers of outputs of g4: For some
y ∈ g4(D4), we want to bound ||y||, which we will need later in Section C.4.2. From
the previous discussion, we get that y = (V ,T) such that for all columns vi of V,
||vi|| = 1. Since, g4(D4) = h4(D1), there exists some y1 = (T , a, b) ∈ D1 such
that y = h4(y1). Since y1 ∈ D1 (following Definition 5.21), we already have that
κ(T) ≤ B. Using Lemma 5.6.3, we already have that ||T ||2F ≤ (κ(T))3 ≤ B3. Using
this, we can finally conclude that

||y|| =
√

||V ||2F + ||T ||2F =
√
n+B3. (5.41)

100 Chapter 5. Numerical Algorithms

Using (5.36), we also know that for all x4 ∈ π1(D4), κF
V (x4) ≤ B. Following the

definition of g4, π1(g4(D4)) = f4(π1(D4)). Hence, from Lemma 3.3.10 for δ = 0 for
all V ∈ π1(g4(D4)), we can conclude that

κF (V) ≤ n+
B2

4 . (5.42)

5.6.3 Finishing the proof of Theorem 4.3.6

We state the theorem here again for completeness.

Theorem 5.6.7. Let x be an input to the algorithm such that it satisfies the (n,B)-
input conditions with parameters kF := cFn

5B3, kgap := 1
Cgapn6B3 (from Definition

4.3.5) where the constants Cgap, cF are set in (6.6). Let ε ≤ 1 be the input accuracy
parameter. Then on input (x, ε) Algorithm 8 outputs an ε-approximation to the tensor
decomposition problem for T in

O(n3 + TMM (n) log2 nB

ε
)

arithmetic operations on a floating point machine with

O(log12(
nB

ε
) logn)

bits of precision, with probability at least 1 − 1
n − 12

n2 .

We have already seen from the definitions that h̃ corresponds to Algorithm 9.
Computing the error: Let x be an input to Algorithm 9 that satisfies the

(n,B)-input conditions according to Definition 4.3.5. Let ε ≤ 1 be the input desired
accuracy parameter. We set c7 = 2 and using (5.19), the rest of the ci can be fixed
as well. This gives us that c0 = 128 × (24)4. Using this and the fact that n,B > 1,
we can conclude that ε7 = 1

n2 log2(nB
ε)

≤ ε. From Theorem 5.6.2, we get that on input
x̃ ∈ B(x, ε0), Algorithm 9 outputs an ε-approximation to the tensor decomposition
problem for T .

Computing the machine precision: Let us assume that the algorithm is run
with precision u := ε0

2n
3
2

where ε0 is defined in (5.19). Let x = (T , a, b) be the exact
input to the algorithm that satisfies the (n,B)-input conditions with parameters
kF , kgap as mentioned in the statement of Theorem 4.3.6. Following the definition
of the model in Section 1.2.2, we know that if T̃ is the actual input to Algorithm 8
(subsequently Algorithm 9), such that for all i, j, k ∈ [n], ||T̃i,j,k − Ti,j,k|| ≤ u. In
Step 1, we pick a, b ∈ [−1, 1]n at random. Following the definition of the model, we
get that the Step 1 of the algorithm actually gets some ã, b̃ ∈ Cn such that for all
i ∈ [n], |ãi − ai| ≤ u and |b̃i − bi| ≤ u. Then

||T̃ − T ||F ≤ u.n
3
2 . (5.43)

This gives us that ||ã− a|| ≤ u
√
n and ||b̃− b|| ≤ u

√
n.

Then using (5.43), we have that ||x̃− x|| ≤
√

||T̃ − T ||2F + ||ã− a||2 + ||b̃− b||2 ≤√
u2n3 + u2n+ u2n ≤ ε0. Using this relation, we can fix the number of bits of

precision required by the algorithm to

log(1
u
) = log(2nc0 log12(nB

ε
)+ 3

2) = O(log12(
nB

ε
) log(n)).

5.6. Error analysis of Algorithm 8: 101

Conclusion: Using Theorem 5.6.2, we get that if the algorithm is given as input
x̃ ∈ B(x, ε0), then the algorithm returns an ε-approximation to tensor decomposition
problem for T (as defined in Section 1.4.3) with probability at least (1 − 1

n − 12
n2) when

run on a machine with O(log12(nB
ε) log(n)) bits of precision.

102

Chapter 6

Probability Analysis of
Condition Numbers and Gap

6.1 Introduction
The central theme of this chapter is to deduce anti-concentration inequalities about
certain families of polynomials arising in the analysis of Algorithm 8. Compared
to [BCMV14], an interesting novelty of these inequalities is that the underlying dis-
tribution for the random variables is discrete and that they are applicable to polyno-
mials from Rn to C. In Section 6.2, we first study some polynomial norms and then
prove these results.

Let T ∈ (Cn)⊗3 be a diagonalisable tensor given as input to Algorithm 8 with
κ(T) < B, and let T1, ...,Tn be the slices of T . In the algorithm, we pick a1, ..., an, b1, ..., bn

uniformly and independently at random from a finite discrete grid Gη ⊂ [−1, 1]2n

and define T (a) =
∑n

i=1 aiTi, T (b) =
∑n

i=1 biTi. In this section we show that
(T , a, b) indeed satisfy the (n,B)-input conditions from Definition 4.3.5. More for-
mally, we show that T (a) is invertible, gap((T (a))−1T (b)) ≥ kgap := 1

cgapn6B3 and
κF (T (a)) ≤ kF := cFn

5B3 with high probability. This is the main result of Section
6.3. We also justify the choice of kgap and kF and choose appropriate values for cgap
and cF in Section 6.3.1. As a consequence of this, a central theorem arising out of
this section is Theorem 4.3.4 which concludes the probability analysis of Algorithm
8. We state it here again for completeness.

Theorem 6.1.1. Given a diagonalisable tensor T , a desired accuracy parameter ε
and some estimate B ≥ κ(T), Algorithm 8 outputs an ε-approximate solution to the
tensor decomposition problem for T in

O(TMM (n) log2 nB

ε
)

arithmetic operations on a floating point machine with

O(log12(
nB

ε
) logn)

bits of precision, with probability at least (1 − 1
n − 12

n2)(1 − 1√
2n

− 1
n).

6.2 Some definitions and bounds on norms of polynomi-
als

We define the norm of a polynomial following Forbes and Shpilka [FS18]. Recall from
Section 4.1.3 that their goal was to construct so-called "robust hitting sets".

6.2. Some definitions and bounds on norms of polynomials 103

Definition 6.2.1. (Norm of a complex-valued polynomial) For an n-variate polyno-
mial f(x) ∈ C[x], we denote

||f ||2 := (
∫
[−1,1]n

|f(x)|2dµ(x))
1
2 (6.1)

where µ(x) is the uniform probability measure on [−1, 1]n. We also denote

||f ||∞ = max
v∈[−1,1]n

|f(v)|.

Lemma 6.2.2. Let U = (uij) ∈ GLn(C) be such that κF (U) ≤ B. Then, for all
k ∈ [n],

∑
i∈[n] |uik|2 ≥ 1

B .

Proof. Since κF (U) ≤ B, we already have ||U−1||F ≤
√
B. Also, we know that

||U−1|| ≤ ||U−1||F . Hence, ||U−1|| ≤
√
B. By definition of the matrix norm,

||U−1x|| ≤
√
B||x|| for all x ∈ Cn. We define x = Uy and this shows that ||Uy|| ≥

ε||y|| where ε = 1√
B

. Let uk be the k-th column of U . Then ||uk||2 ≥ ε2. Hence,∑
i∈[n] |uik|2 ≥ ε2 = 1

B .

Inequalities: One of the most popular applications of inequalities for probabili-
ties typically uses the idea that (under certain assumptions) for a random variable, the
probability that it belongs to an interval which is far away from its expected value is
small. These are called concentration inequalities and some examples includes several
well-known inequalities such as Chebyshev’s inequality, Chernoff bounds, Hoeffding’s
inequality etc. In this section, we focus on inequalities which in principle, try to
achieve the opposite. Usually the goal is to show that for a random variable, the
probability that it belongs to an interval of small length is small, irrespective of the
choice of the location of the interval. One of the first such anti-concentration type of
inequality for linear combination of iid random variables (from specific distributions)
was discovered by Littlewood and Offord [LO38] and this sparked a series of such
results for different families of polynomials with applications to combinatorics and
complexity theory (refer to [Vu17] for a quick summary of the results). One of the
most general of such results is the Carbery-Wright inequality ([CW01], Theorem 8)
which applies to all polynomials and log-concave probability measures which we use
in this section.

The inequality in the form that we use states that if the l2 norm of a polynomial
is not too small, then on inputs picked uniformly and independently at random from
[−1, 1)n, the value of the polynomial is not too close to zero with high probability.
We use the following presentation of the theorem from [FS18].

Theorem 6.2.3 (Carbery-Wright). There exists an absolute constant CCW such that
if f : Rn −→ R is a polynomial of degree at most d, then for α > 0, it holds that

Prv∈U [−1,1)n [|f(v)| ≥ α] ≥ 1 −CCWd

(
α

||f ||2

) 1
d

.

Theorem 6.2.4 (Carbery-Wright for complex-valued polynomials). There exists an
absolute constant CCW such that if f : Rn −→ C is a polynomial of degree at most d,
then for α > 0, it holds that

Prv∈U [−1,1)n [|f(v)| ≥ α] ≥ 1 − 2CCWd

(
α

||f ||2

) 1
d

.

104 Chapter 6. Probability Analysis of Condition Numbers and Gap

Proof. Since f : Rn −→ C, we can write f = R(f) + ιI(f) where R(f), I(f) ∈ Rn −→
R are real polynomials of degree ≤ d. Then using Theorem 6.2.3, we get that

Prv∈U [−1,1)n [|R(f)(v)| ≥ α] ≥ 1 −CCWd

(
α

||R(f)||2

) 1
d

Prv∈U [−1,1)n [|I(f)(v)| ≥ α] ≥ 1 −CCWd

(
α

||I(f)||2

) 1
d

.

This gives us that

Prv∈U [−1,1)n [|f(v)|2 ≤ α2||f ||22]

= Prv∈U [−1,1)n [|R(f)(v)|2 + |I(f)(v)|2 ≤ α2
(

||R(f)||22 + |I(f)||22
)
]

≤ Prv∈U [−1,1)n [|R(f)(v)|2 ≤ α2||R(f)||22
⋃

|I(f)(v)|2 ≤ α2||I(f)||22]

≤ Prv∈U [−1,1)n [|R(f)(v)|2 ≤ α2||R(f)||22] + Prv∈U [−1,1)n [|I(f)(v)|2 ≤ α2||I(f)||22]

≤ 2CCWdα
1
d .

As a result,

Prv∈U [−1,1)n [|f(v)|2 ≥ α2] ≥ 1 − 2CCWd

(
α

||f ||2

) 1
d

.

The next two theorems are directed towards applying the Carbery-Wright The-
orem to a special polynomial which we will require later in Theorem 6.3.2. More
specifically, let U = (uij)i,j∈[n] be a matrix with bounded κF . Consider the linear
form P k(x) =

∑
i∈[n] pixi where pi = uik. We will apply the Carbery-Wright theorem

to P k.

Theorem 6.2.5. Let U = (uij) ∈ GLn(C) be such that κF (U) ≤ B. Let P k(x) =∑
i∈[n] pixi where pi = uik. Then

Prv∈U [−1,1)n [|f(v)| ≥ α√
3B

] ≥ 1 − 2CCWα.

Proof. Applying Theorem 6.2.4 to P k for d = 1, we get that

Prv∈U [−1,1)n [|f(v)| ≥ α||P k||2] ≥ 1 − 2CCWα. (6.2)

6.2. Some definitions and bounds on norms of polynomials 105

Now we claim that ||P k||22 ≥ 1
B . Expanding using the definition of ℓ2-norm of poly-

nomials from (6.1), we have:

||P k||22 =
∫
[−1,1]n

|
∑
i∈[n]

pixi|2dµ(x)

=
∫
[−1,1]n

|
(∑

k∈[n]
p
(r)
k xk

)
+ ι

(∑
k∈[n]

p
(i)
k xk

)
|2dµ(x)

=
∫
[−1,1]n

(∑
k∈[n]

p
(r)
k xk

)2
dµ(x) +

∫
[−1,1]n

(∑
k∈[n]

p
(i)
k xk

)2
dµ(x)

=
∑

k,l∈[n]
p
(r)
k p

(r)
l (

∫
[−1,1]n

xkxldµ(x)) +
∑

k,l∈[n]
p
(i)
k p

(i)
l (
∫
[−1,1]n

xkxldµ(x)).

When i ̸= k,
∫
[−1,1]n xixjdµ(x) = (1

2
∫ 1

−1 xidxi)2 = 0. Therefore,

||P k||22 =
∑

k∈[n]

(p
(r)
k)2 + (p

(i)
k)2

2 (
∫ 1

−1
x2

i dxi)

Using the fact that 1
2
∫ 1

−1 x
2
i dxi =

1
3 , we have ||P k||22 = 1

3
∑

i∈[n] |pi|2. Lemma 6.2.2
already implies that

||P k||22 ≥ 1
3B .

Using this in (6.2), we conclude that

Prv∈U [−1,1)n [|f(v)| ≥ α√
3B

] ≥ 1 − 2CCWα.

The next two theorems are directed towards applying the Carbery-Wright theorem
to another special polynomial which we will require later in Theorem 6.3.1. More
specifically, let U = (uij)i,j∈[n] be a matrix with bounded κF . Let P kl(x, y) =∑

i,j∈[n] p
kl
ijxiyj be the quadratic polynomial defined for all k, l ∈ [n] by its coefficients

pkl
ij = uikujl − uilujk. We will apply the Carbery-Wright theorem to P kl. First we

give a lower bound for the l2 norm of the polynomial.

Lemma 6.2.6. Let U = (uij) ∈ GLn(C) be such that κF (U) ≤ B. Then, for all
k, l ∈ [n],

∑
i,j∈[n] |uikujl − uilujk|2 ≥ 2

B2 .

Proof. We construct a submatrix U2 ∈ Mn,2(C) with the k-th and l-th columns of U .
Let k = 1 and l = 2 without loss of generality. Since κF (U) ≤ B, following the proof
of Lemma 6.2.2, for all y ∈ Cn, ||Uy|| ≥ ε||y|| where ε = 1√

B
. Then for all y ∈ C2,

we have ||U2y|| ≥ ε||y||. This implies that

||U2y||2 ≥ ε2||y||2

y∗U∗
2U2y ≥ ε2y∗y.

The minimum singular value σmin of U2 is defined as σ2
min = miny∈Cn,y ̸=0

y∗U∗
2 U2y

y∗y .
Therefore, σ2

min(U2) ≥ ε2. Since U∗
2U2 is a Hermitian matrix, σ2

min(U2) = λmin(U∗
2U2)

106 Chapter 6. Probability Analysis of Condition Numbers and Gap

where λ2
min refers to the smallest eigenvalue. This gives us that

λmin(U
∗
2U2) ≥ ε2.

Let a = (a1, ..., an) and b = (b1, ..., bn) be the columns of U2. Then U∗
2U2 =(

||a||2 a∗b
b∗a ||b||2

)
. Also, det(U∗

2U2) ≥ λ2
min(U

∗
2U2), i.e.,

||a||2||b||2 − |a∗b|2 ≥ λ2
min(U

∗
2U2) ≥ ε4.

Now from the complex form of Lagrange’s identity, we know that

||a||2||b||2 − |a∗b|2 =
1
2

n∑
i,j=1

|aibj − ajbi|2.

As a result, ∑n
i,j=1 |aibj − ajbi|2 ≥ 2ε4. Choosing ε = 1√

B
, we finally conclude that

for all k, l ∈ [n], ∑i,j∈[n] |uikujl − uilujk|2 ≥ 2
B2 .

Theorem 6.2.7. Let U = (uij) ∈ GLn(C) be such that κF (U) ≤ B. Let P kl(x, y) =∑
i,j∈[n] pijxiyj where pij = uikujl − uilujk. Then

Prv∈U [−1,1)n [|f(v)| ≥
√

2α
3B] ≥ 1 − 4CCWα

1
2 .

Proof. Applying Theorem 6.2.4 to P kl with d = 2 shows that

Prv∈U [−1,1)n [|f(v)| ≥ α||P kl||2] ≥ 1 − 4CCWα
1
2 . (6.3)

Now we claim that ||P kl||2 ≥
√

2
3B . Recall that

||P kl||22 =
∫
[−1,1]2n

|P kl(x, y)|2dµ(x, y)

where µ(x, y) is the uniform probability distribution on [−1, 1]2n. Let us define p(r)ij

and p
(i)
ij as the real and imaginary parts respectively of pij . We can estimate |P kl||22

as follows:∫
[−1,1]2n

|
∑

i,j∈[n]
pijxiyj |2dµ(x, y) =

∫
[−1,1]2n

|
(∑

i,j∈[n]
p
(r)
ij xiyj

)
+ ι

(∑
i,j∈[n]

p
(i)
ij xiyj

)
|2dµ(x, y)

=

(∑
i,j,k,l∈[n]

p
(r)
ij p

(r)
kl (

∫
[−1,1]2n

xiyjxkyldµ(xy))
)
+

(∑
i,j,k,l∈[n]

p
(i)
ij p

(i)
kl (
∫
[−1,1]2n

xiyjxkyldµ(xy)
)

=
∑

i,j,k,l∈[n]
(p

(r)
ij p

(r)
kl + p

(i)
ij p

(i)
kl)(

∫
[−1,1]n

xixkdµ(x))(
∫
[−1,1]n

yjyldµ(y)).

When i ̸= k,
∫
[−1,1]n xixkdµ(x) = (

∫
[−1,1] xidµ(xi))2 = 0. Similarly

∫
[−1,1]n yjyldµ(y) =

0 for j ̸= l. This gives us that

||P kl||22 =
∑

i,j∈[n]

(
(p

(r)
ij)2 + (p

(i)
ij)

2
)
(
∫
[−1,1]n

x2
i dµ(x))(

∫
[−1,1]n

y2
jdµ(y))

6.2. Some definitions and bounds on norms of polynomials 107

Since
∫
[−1,1]n x

2
i dµ(x) = 1

2
∫ 1

−1 x
2
i dxi =

∫
[−1,1]n y

2
jdµ(y) = 1

2
∫ 1

−1 y
2
jdyj = 1

3 , we get
that

||P kl||22 =
1
9
∑

i,j∈[n]
|pij |2.

Now, from Lemma 6.2.6, it follows that ||P kl||22 ≥ 2
9B2 . Using this in (6.3), we can

conclude that

Prv∈U [−1,1)n [|f(v)| ≥
√

2α
3B] ≥ (1 − 4CCWα

1
2).

Our next goal is to show a similar probabilistic result for both families of poly-
nomials (linear and quadratic), but replacing the previous continuous distribution
over [−1, 1)n by a distribution where the inputs are chosen uniformly and indepen-
dently at random from a discrete grid. To formalise this distribution, we describe
another equivalent random process of picking an element at random from [−1, 1)n

and rounding it to the nearest point on the grid.
Remark: η is chosen so that 1

η is an integer so that the intervals of the grid
have the same length and this ensures that the “picking unifromly at random and
rounding" process is equivalent to “picking uniformly at random from the grid".

Theorem 6.2.8 (Multivariate Markov’s Theorem). Let f : Rn −→ R be a homoge-
neous polynomial of degree r, that for every v ∈ [−1, 1]n satisfies |f(v)| ≤ 1. Then,
for every ||v|| ≤ 1, it holds that ||∇(f)(v)|| ≤ 2r2 where ∇ denotes the gradient of a
function.

Theorem 6.2.9. Let f : R2n −→ C be a homogeneous polynomial of degree at most d.
Let η > 0 be such that 1

η is an integer. Let (a, b) ∈ [−1, 1)2n and (a′, b′) = gη(a, b)
where the rounding function is chosen for m = 2n. Then |f(a, b) − f(a′, b′)| ≤
4η

√
n||f ||∞d2.

Proof. We write f = R(f) + ιI(f) where R(f), I(f) : Rn −→ R. By the mean
value theorem, there exists a point (a0, b0) on the line segment connecting (a, b) and
(a′, b′), such that |R(f)(a, b)−R(f)(a′, b′)| = ||(a, b)− (a′, b′)|| · |(R(f))′(a0, b0)|
where (R(f))′(a0, b0) is the derivative of R(f) in the direction (a, b)− (a′, b′) evalu-
ated at a0, b0. From Theorem 6.2.8, it follows that |(R(f))′(a0, b0)| ≤ 2||R(f)||∞d2.
Similarly, we also get that |(I(f))′(a0, b0)| ≤ 2||I(f)||∞d2. This finally gives us that

|f(a, b) − f(a′, b′)| = |
(
R(f)(a, b) −R(f)(a′, b′)

)
+ ι

(
I(f)(a, b) − I(f)(a′, b′)

)
|

=

√(
R(f)(a, b) −R(f)(a′, b′)

)2
+

(
I(f)(a, b) − I(f)(a′, b′)

)2

≤ ||(a, b) − (a′, b′)|| ·
√

4||R(f)||2∞d4 + 4||I(f)||2∞d4 ≤ 4η
√
n||f ||∞d2.

The last inequality follows from the fact that ||R(f)||∞, ||I(f)||∞ ≤ ||f ||∞.

108 Chapter 6. Probability Analysis of Condition Numbers and Gap

Theorem 6.2.10. Let U = (uij) ∈ GLn(C) be such that κF (U) ≤ B. Let P kl(x, y) =∑
i,j∈[n] pijxiyj where pij = uikujl − uilujk. Let CCW be the absolute constant guar-

anteed by Theorem 6.2.3. Then

Pr(a,b)∈U Gη
[|P kl(a, b)| ≥

√
2α

3B − 16ηn
3
2B] ≥ 1 − 4CCWα

1
2 .

Proof. Using Theorem 6.2.9 for f = P kl where d = 2, we already have that |P kl(a, b)−
P kl(a′, b′)| ≤ 16η

√
n||P kl||∞. Since (a′, b′) is selected uniformly at random from

[−1, 1]2n, by Theorem 6.2.7 we have |P kl(a′, b′)| ≥
√

2α
3B with probability at least

(1 − 4CCWα
1
2). This gives us that

|P kl(a′, b′)| ≥
√

2α
3B − 16η

√
n||P kl||∞ (6.4)

Now we claim that ||P kl||∞ ≤ Bn. Indeed,

||P kl||∞ = max
v∈[−1,1]2n

|P kl(v)|

≤
∑

i,j∈[n]
|uikujl − ujkuil|

≤
∑

i,j∈[n]
(|uikujl| + |ujkuil|)

≤
∑

i,j∈[n]
(
|uik|2 + |ujl|2

2 +
u2

jk + u2
il

2)

≤ n||U ||2F ≤ Bn.

Putting this in (6.4), we can conclude that

Pr(a,b)∈U Gη
[|P kl(a, b)| ≥

√
2α

3B − 16ηBn
3
2] ≥ 1 − 4CCWα

1
2 .

Corollary 6.2.10.1. Let U = (uij) ∈ GLn(C) be such that κF (U) ≤ B. Let
P kl(x, y) =

∑
i,j∈[n] pijxiyj where pij = uikujl − uilujk. Let CCW be the absolute

constant guaranteed by Theorem 6.2.3. Then

Pr(a,b)∈U Gη
[|P kl(a, b)| ≥ k] ≥ (1 − 4CCW

(3B(k+ 16ηBn 3
2)√

2

) 1
2
).

In the next theorem, we give a similar result for the polynomial in Theorem 6.2.5.
We will require this later in Theorem 6.3.2. First we give a lower bound for the l2
norm of the polynomial.

Theorem 6.2.11. Let U = (uij) ∈ GLn(C) be such that κF (U) ≤ B. Let P k(x) =∑
i∈[n] pixi where pi = uik. Let CCW be the absolute constant guaranteed in Theorem

6.2.3. Then

Pr(a,b)∈U Gη
[|P k(a)| ≥ α√

3B
− η

√
nB] ≥ 1 − 2CCWα.

6.3. Towards a proof of Theorem 4.3.4 109

Proof. Using the fact that P k is a linear polynomial and using the Cauchy-Schwarz
inequality, we get that

||P k(a) − P k(a′)||2

= ||
∑
i∈[n]

pi(ai − a′
i)||2

≤ ||a − a′||2||
n∑

i=1
|pi|2||

≤ ||a − a′||2||U ||2F
≤ ||a − a′||2κF (U) < nη2B

This gives us that ||P k(a) − P k(a′)|| ≤ η
√
nB. Since a is selected uniformly at ran-

dom from [−1, 1]n, using Theorem 6.2.5, we have that |P k(a)| ≥ α√
3B

with probability
at least (1 − 2CCWα). This gives us that

|P k(a′)| ≥ α√
3B

− η
√
nB (6.5)

with probability at least 1 − 2CCWα.

Finally, we give a lemma that will be needed in Section 6.3.

Lemma 6.2.12. Let U = (uij) ∈ Mn(C) be such that κF (U) ≤ B. Then, given
a ∈ [−1, 1]n, for all k, l ∈ [n], |(

∑
i∈[n] aiuki)(

∑
j∈[n] ajulj)| ≤ nB

2 .

Proof.

|(
∑
i∈[n]

aiuki)(
∑

j∈[n]
ajulj)|

= |(
∑
i∈[n]

aiuki)||(
∑

j∈[n]
ajulj)|

≤ ||a||2||uk||||ul||

where uk and ul are the k-th and l-th rows of U respectively. Now we get that

||uk||||ul|| ≤ ||uk||2 + ||ul||2

2 ≤ (κF (U))

2 ≤ B

2 .

Since a ∈ [−1, 1]n, then ||a|| ≤
√
n. Combining these inequalities yields the desired

result.

6.3 Towards a proof of Theorem 4.3.4
Let T1, ...,Tn be the slices of the tensor T given as input to Algorithm 8. Let kgap, kF

be the parameters as set in Algorithm 8. Let a1, ..., an, b1, ..., bn be picked uniformly
and independently at random from a finite grid Gη ⊂ [−1, 1]2n (as defined in Def-
inition ??). Let T (a) =

∑n
i=1 aiTi and T (b) =

∑n
i=1 biTi. Recall from (3.27) that

for a matrix A, gap(A) is defined as the minimum distance between its eigenval-
ues. In this subsection, as claimed in Section 4.3.2, we show that T (a) is invertible,
gap((T (a))−1T (b)) ≥ kgap and κF (T (a)) ≤ kF with high probability.

110 Chapter 6. Probability Analysis of Condition Numbers and Gap

Theorem 6.3.1. Let T ∈ (Cn)⊗3 be a diagonalisable order-3 symmetric tensor such
that κ(T) ≤ B. We denote by T1, ...,Tn the slices of T . Let (a1, ..., an, b1, ..., bn) ∈ R2n

be picked from Gη uniformly at random and set T (a) :=
∑n

i=1 aiTi, T (b) :=
∑n

i=1 biTi.
If T (a) is invertible, let T (a)′

= (T (a))−1. Then for any kgap > 0, we have that

Pr(a,b)∈U Gη
[T (a) is invertible and gap(T (a)′

T (b)) ≥ kgap] ≥ 1 −
(

4n2CCW (
3Bαgap√

2
)

1
2 +

nη

2

)

where αgap = nBkgap
2 + 16ηBn 3

2 .

Proof. Let U be the matrix with rows u1, ...,un such that T =
∑n

i=1 u
⊗3
i and κ(T) =

κF (U) ≤ B. If a1, ..., an are picked independently and uniformly at random from a
finite set S, from (4.4), we get that T (a) is invertible with probability at least 1 − n

|S| .
We use this for S = {−1, −1 + η, ..., 1 − 2η, 1 − η} ⊂ [−1, 1]. Since |S| = 2

η , if a is
picked uniformly and independently at random from Gη, ⟨a,uk⟩ = 0 with probability
at most η

2 . Recall the definition of D(a) in Theorem 3.2.1. It follows from the union
bound that det(D(a)) ̸= 0 with probability at least 1 − nη

2 .
If T (a) is invertible, let λ1, ...,λn be the eigenvalues of T (a)′

T (b). Then by Theorem
3.2.1 (more precisely the fact that T (a) = UTD(a)U), we get that λk = ⟨b,uk⟩

⟨a,uk⟩ where
uk are the rows of U and ⟨a,uk⟩ ̸= 0. Hence

gap(T (a)′
T (b)) = min

k ̸=l∈[n]

∣∣∣∣ ⟨b,uk⟩
⟨a,uk⟩

− ⟨b,ul⟩
⟨a,ul⟩

∣∣∣∣
= min

k ̸=l∈[n]

∣∣∣∣⟨b,uk⟩⟨a,ul⟩ − ⟨b,ul⟩⟨a,uk⟩
⟨a,uk⟩⟨a,ul⟩

∣∣∣∣
By Corollary 6.2.10.1, if a is picked fromGη uniformly at random, then |⟨b,uk⟩⟨a,ul⟩−
⟨b,ul⟩⟨a,uk⟩| < t with probability at most 4CCW (3B√

2 (t + 16ηBn 3
2))

1
2 . Combining

these results with the union bound, we get that

Pra,b∈Gη [∃k, l ∈ [n]|⟨b,uk⟩⟨a,ul⟩ − ⟨b,ul⟩⟨a,uk⟩| < t ∪ T (a) is not invertible]

≤ 4n2CCW (
3B√

2
(t+ 16ηBn

3
2))

1
2 +

nη

2 .

This gives us that

Pra,b∈Gη [T
(a) is invertible and for all k, l ∈ [n]|⟨b,uk⟩⟨a,ul⟩ − ⟨b,ul⟩⟨a,uk⟩| > t]

≥ 1 − (4n2CCW (
3B√

2
(t+ 16ηBn

3
2))

1
2 +

nη

2).

Now if |⟨b,uk⟩⟨a,ul⟩ − ⟨b,ul⟩⟨a,uk⟩| > t, we have that

gap(T (a)′
T (b)) > t min

k ̸=l∈[n]

1
|⟨a,uk⟩⟨a,ul⟩|

By Lemma 6.2.12, since κF (U) ≤ B we have |⟨a,uk⟩⟨a,ul⟩| ≤ nB
2 for all a ∈ Gη ⊆

[−1, 1]n. This implies that gap(T (a)′
T (b)) > 2t

nB . Finally, setting t = nBkgap
2 , we get

the desired conclusion.

Theorem 6.3.2. Let T ∈ Cn×n×n be a diagonalisable degree-3 symmetric tensor
such that κ(T) ≤ B, where T1, ...,Tn are the slices of T . Let a ∈ [−1, 1]2n be picked
from Gη uniformly at random and set T (a) :=

∑n
i=1 aiTi. If T (a) is invertible, let

6.3. Towards a proof of Theorem 4.3.4 111

T (a)′
= (T (a))−1. Then for all kF > nB3, we have that

Pra∈U Gη [T
(a) is invertible and κF (T

(a)) ≤ kF] ≥ 1 − (2nCCWαF +
nη

2)

where αF =
√

3B(
√

nB2

kF −nB3 + η
√
nB).

Proof. Let U be the matrix with rows u1, ...,un such that T =
∑n

i=1 u
⊗3
i and κ(T) =

κF (U) ≤ B. Since a is picked uniformly and independently from Gη, following the
proof of Theorem 6.3.1, T (a) is invertible with probability at least (1 − nη

2). If T (a)

is invertible, using Theorem 3.2.1, and more precisely the fact that T (a) = UTD(a)U ,
we have:

||T (a)′ ||F ≤ ||U−1||2F ||(D(a))−1||F
≤ κF (U)||(D(a))−1||F
≤ B||(D(a))−1||F .

Now, ||(D(a))−1||2F =
∑n

i=1
1

|⟨a,ui⟩|2 . By Theorem 6.2.11, if a is picked from Gη uni-
formly at random, then |⟨a,ui⟩| ≥ k with probability at least 1 − 2CCW (

√
3B(k +

η
√
nB)). This gives us that

Pra∈Gη [∃m ∈ [n]|⟨a,um⟩| ≤ k ∪ T (a) is not invertible]

≤
n∑

m=1
Pra∈Gη [|⟨a,um⟩| ≤ k] + Pra∈Gη [T

(a) is not invertible]

≤ 2nCCW (
√

3B(k+ η
√
nB)) +

nη

2 .

As a result,

Pra∈Gη [for all m ∈ [n]|⟨a,um⟩| ≥ k and T (a) is invertible]

≥ 1 − (2nCCW (
√

3B(k+ η
√
nB)) +

nη

2).

By Lemma 5.6.4, ||D(a)||2 ≤ nB. This further implies that if |⟨a,um⟩| ≥ k for all
m, then ||(D(a))−1||2F + ||D(a)||2F ≤ n

k2 + nB, which in turn implies that κF (T (a)) =

||T (a)′ ||2F + ||T (a)||2F ≤ nB2

k2 +nB3. Setting k =
√

nB2

kF −nB3 gives the desired conclusion.

Theorem 6.3.3. Let T ∈ Cn×n×n be a diagonalisable degree-3 symmetric tensor
such that κ(T) ≤ B. Let T1, ...,Tn be the slices of T and given a, b picked uniformly
and independently at random from Gη, set T (a) :=

∑n
i=1 aiTi and T (b) :=

∑n
i=1 biTi.

If T (a) is invertible, let T (a)′
= (T (a))−1. We assume that l1, ..., ln is the output

returned by Algorithm 8 on input T , B and an accuracy parameter ε. Let kgap and
kF be as defined in Theorem 4.3.6. Then there exist cube roots of unity ωi such that
||ωiui − li|| < ε, T (a) is invertible, gap(T (a)′

T (b)) ≥ kgap and κF (T (a)) ≤ kF with
probability at least(

1 − 1
n

− 12
n2

)(
1 −

(
nCCWαF + 4n2CCW (

3Bαgap√
2

)
1
2 + nη

))

where αgap = nBkgap
2 + 16ηBn 3

2 and αF =
√

3B(
√

nB2

kF −nB3 + η
√
nB).

112 Chapter 6. Probability Analysis of Condition Numbers and Gap

Proof. Let E1 be the event that there exist cube roots of unity ωi with ||ωiui − li|| < ε.
Let E2 be the event that gap(T (a)′

T (b)) ≥ kgap. We define E3 to be the event that
κF (T (a)) ≤ kF and E4 to be the event that T (a) is invertible. We want to bound

Pra,b∈Gη [E1 ∩E2 ∩E3 ∩E4]

= Pr[E1|E2 ∩E3 ∩E4]Pra,b∈Gη [E2 ∩E3 ∩E4].

Note here the probability in the first line and the first factor in the second line is also
with respect to the internal choice of randomness in the diagonalisation algorithm
(Algorithm 6). We refrain from mentioning it at every step in order to make the
equations more readable.

Using Theorem 4.3.6, we get that Pr[E1|E2 ∩ E3 ∩ E4] ≥ 1 − 1
n − 12

n2 . Using
Theorem 6.3.1, we also have Pra,b∈Gη [E2,E4] ≥ 1 − (4n2CCW (3Bαgap√

2)
1
2 + nη

2) where
αgap = nBkgap

2 + 16ηBn 3
2 . From Theorem 6.3.2, we already know that Pra,b∈Gη [E3,E4] ≥

1 − (n(CCW (αF)) +
nη
2) where αF =

√
3B(

√
nB2

kF −nB3 + η
√
nB). Combining these us-

ing the union bound shows that

Pra,b∈Gη [E2,E3,E4] ≥ 1 − (n(CCW (αF)) +
nη

2) + (4n2CCW (
3Bαgap√

2
)

1
2 +

nη

2)

= 1 − (n(CCW (αF)) + (4n2CCW (
3Bαgap√

2
)

1
2) + nη).

Multiplying this by 1 − 1
n − 12

n2 gives the desired result.

6.3.1 Finishing the proof of Theorem 4.3.4

Let T be the diagonalisable symmetric tensor given as input and let U ∈ GLn(C) be
such that U diagonalises T . Let B be an estimate for κ(T) = κF (U). Let a, b be
picked uniformly and independently at random from Gη and define T (a) =

∑n
i=1 aiTi,

T (b) =
∑n

i=1 biTi to be two linear combination of the slices T1, ...,Tn of T . Let
E1 be the event that Algorithm 8 outputs an ε-approximate solution to the tensor
decomposition problem, E2 be the event that gap(T (a)′

T (b)) ≥ kgap, E3 be the event
that κF (T (a)) ≤ kF and E4 be the event that T (a) is invertible. By Theorem 6.3.3,

Pra,b∈Gη [E1 ∩E2 ∩E3 ∩E4] ≥
(

1 − 1
n

− 12
n2

)(
1 − nCCWαF + 4n2CCW (

3Bαgap√
2

)
1
2 + nη

)
.

As promised in Algorithm 8, we define at last the constants Cgap and cF . Namely,
we set

Cgap :=
1

48
√

2C2
CW

and cF = 96C2
CW + 1. (6.6)

Since in Algorithm 8, we set kgap = 1
48

√
2C2

CW n6B3 and η = 1
Cηn

15
2 B4

, we have for large
enough n,

αgap =
nBkgap

2 + 16ηBn
3
2

=
1

96
√

2C2
CWn5B2 +

1
Cηn

15
2 B4

≤ 1
48

√
2C2

CWn5B4 .

6.3. Towards a proof of Theorem 4.3.4 113

This gives us that (3Bαgap√
2)

1
2 ≤ 1

4CCW

√
2n5B

, hence

4n2CCW (
3Bαgap√

2
)

1
2 ≤ 1√

2nB
≤ 1√

2n
. (6.7)

The last inequality follows from the fact that B > 1. We also set kF = (96C2
CW +

1)n5B3. Since nB3 < n5B3, we have

αF =
√

3B(

√
nB2

kF − nB3 + η
√
nB)

=
√

3B(

√
1

96C2
CWn4B

+
1

Cηn8B
7
2
)

≤ 1
8CCWn2 +

√
3

Cηn7B3

≤ 1
4CCWn2

This gives us that 2nCCWαF ≤ 1
2n . Also, ηn = 1

Cηn
13
2 B4

≤ 1
2n . Combining these with

(6.7) finally shows that

Pra,b∈Gη [E1] ≥ Pra,b∈Gη [E1 ∩E2 ∩E3 ∩E4]

≥
(

1 − 1
n

− 12
n2

)(
1 − 2nCCWαF + 4n2CCW (

3Bαgap√
2

)
1
2 + nη

)
≥
(

1 − 1
n

− 12
n2

)(
1 − 1√

2n
− 1
n

)
.

114

Bibliography

[ABB+18] Diego Armentano, Carlos Beltrán, Peter Bürgisser, Felipe Cucker,
and Michael Shub. A stable, polynomial-time algorithm for the
eigenpair problem. Journal of the European Mathematical Society,
20(6):1375–1437, Apr 2018. doi:10.4171/jems/789.

[AFH+12] Anima Anandkumar, Dean P Foster, Daniel J Hsu, Sham M Kakade,
and Yi-kai Liu. A Spectral Algorithm for Latent Dirichlet Al-
location. In Advances in Neural Information Processing Systems,
2012. URL: https://proceedings.neurips.cc/paper/2012/file/
15d4e891d784977cacbfcbb00c48f133-Paper.pdf.

[AGH+14] Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M. Kakade, and
Matus Telgarsky. Tensor Decompositions for Learning Latent Variable
Models. J. Mach. Learn. Res., 15(1), 2014. URL: https://www.jmlr.
org/papers/volume15/anandkumar14b/anandkumar14b.pdf.

[AHK12] Animashree Anandkumar, Daniel J. Hsu, and Sham M. Kakade. A
Method of Moments for Mixture Models and Hidden Markov Mod-
els. In COLT 2012 - The 25th Annual Conference on Learning The-
ory. JMLR.org, 2012. URL: http://proceedings.mlr.press/v23/
anandkumar12/anandkumar12.pdf.

[Bar68] Erwin H. Bareiss. Sylvester’s identity and multistep integer-preserving
gaussian elimination. Mathematics of Computation, 22(103):565–578,
1968. URL: http://www.jstor.org/stable/2004533.

[BBV19] Carlos Beltrán, Paul Breiding, and Nick Vannieuwenhoven. Pencil-based
algorithms for tensor rank decomposition are not stable. SIAM Jour-
nal on Matrix Analysis and Applications, 40(2), 2019. doi:10.1137/
18M1200531.

[BC13] P. Bürgisser and F. Cucker. Condition: The Geometry of Numerical
Algorithms. Grundlehren der mathematischen Wissenschaften. Springer
Berlin Heidelberg, 2013. URL: https://books.google.fr/books?id=
d_SSnAEACAAJ.

[BCMT09] Jérôme Brachat, Pierre Comon, Bernard Mourrain, and Elias P. Tsigari-
das. Symmetric tensor decomposition. In 17th European Signal Process-
ing Conference, EUSIPCO. IEEE, 2009. URL: https://ieeexplore.
ieee.org/document/7077748/.

[BCMV14] Aditya Bhaskara, Moses Charikar, Ankur Moitra, and Aravindan Vija-
yaraghavan. Smoothed Analysis of Tensor Decompositions. In Proceed-
ings of the Forty-Sixth Annual ACM Symposium on Theory of Comput-
ing, STOC, 2014. doi:10.1145/2591796.2591881.

https://doi.org/10.4171/jems/789
https://proceedings.neurips.cc/paper/2012/file/15d4e891d784977cacbfcbb00c48f133-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/15d4e891d784977cacbfcbb00c48f133-Paper.pdf
https://www.jmlr.org/papers/volume15/anandkumar14b/anandkumar14b.pdf
https://www.jmlr.org/papers/volume15/anandkumar14b/anandkumar14b.pdf
http://proceedings.mlr.press/v23/anandkumar12/anandkumar12.pdf
http://proceedings.mlr.press/v23/anandkumar12/anandkumar12.pdf
http://www.jstor.org/stable/2004533
https://doi.org/10.1137/18M1200531
https://doi.org/10.1137/18M1200531
https://books.google.fr/books?id=d_SSnAEACAAJ
https://books.google.fr/books?id=d_SSnAEACAAJ
https://ieeexplore.ieee.org/document/7077748/
https://ieeexplore.ieee.org/document/7077748/
https://doi.org/10.1145/2591796.2591881

BIBLIOGRAPHY 115

[BCSS98] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Com-
putation. Springer-Verlag, 1998.

[BGI11] Alessandra Bernardi, Alessandro Gimigliano, and Monica Idà. Comput-
ing symmetric rank for symmetric tensors. Journal of Symbolic Compu-
tation, 46(1), 2011. doi:10.1016/j.jsc.2010.08.001.

[BGVKS22] Jess Banks, Jorge Garza-Vargas, Archit Kulkarni, and Nikhil Srivas-
tava. Pseudospectral shattering, the sign function, and diagonalization
in nearly matrix multiplication time. Foundations of Computational
Mathematics, Aug 2022. doi:10.1007/s10208-022-09577-5.

[BHKX22] Mitali Bafna, Jun-Ting Hsieh, Pravesh K. Kothari, and Jeff Xu.
Polynomial-Time Power-Sum Decomposition of Polynomials. CoRR,
abs/2208.00122, 2022. arXiv:2208.00122.

[Bjö14] Å. Björck. Numerical Methods in Matrix Computations. Texts in Applied
Mathematics. Springer International Publishing, 2014. URL: https:
//books.google.fr/books?id=joO8BAAAQBAJ.

[BNV23] Carlos Beltrán, Vanni Noferini, and Nick Vannieuwenhoven.
When can forward stable algorithms be composed stably?
IMA Journal of Numerical Analysis, page drad026, 05 2023.
arXiv:https://academic.oup.com/imajna/advance-article-pdf/
doi/10.1093/imanum/drad026/50479917/drad026.pdf, doi:
10.1093/imanum/drad026.

[Bor07] Folkmar Bornemann. A model for understanding numerical stabil-
ity. IMA Journal of Numerical Analysis, 27(2):219–231, apr 2007.
URL: https://doi.org/10.1093%2Fimanum%2Fdrl037, doi:10.1093/
imanum/drl037.

[BSS89] L. Blum, M. Shub, and S. Smale. On a theory of computation and
complexity over the real numbers: NP-completeness, recursive functions
and universal machines. Bulletin of the American Mathematical Society,
21(1):1–46, July 1989.

[BSV21a] Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich. Reconstruction
Algorithms for Low-Rank Tensors and Depth-3 Multilinear Circuits. In
Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, 2021. doi:10.1145/3406325.3451096.

[BSV21b] Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich. Reconstruc-
tion algorithms for low-rank tensors and depth-3 multilinear circuits. In
Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing (STOC), 2021. URL: https://doi.org/10.1145/3406325.
3451096.

[Cai94] Jin-Yi Cai. Computing jordan normal forms exactly for commuting
matrices in polynomial time. International Journal of Foundations of
Computer Science, 05(03n04):293–302, 1994. arXiv:https://doi.org/
10.1142/S0129054194000165, doi:10.1142/S0129054194000165.

[Car06] Enrico Carlini. Reducing the number of variables of a polynomial.
In Algebraic geometry and geometric modeling, Math. Vis., pages

https://doi.org/10.1016/j.jsc.2010.08.001
https://doi.org/10.1007/s10208-022-09577-5
http://arxiv.org/abs/2208.00122
https://books.google.fr/books?id=joO8BAAAQBAJ
https://books.google.fr/books?id=joO8BAAAQBAJ
http://arxiv.org/abs/https://academic.oup.com/imajna/advance-article-pdf/doi/10.1093/imanum/drad026/50479917/drad026.pdf
http://arxiv.org/abs/https://academic.oup.com/imajna/advance-article-pdf/doi/10.1093/imanum/drad026/50479917/drad026.pdf
https://doi.org/10.1093/imanum/drad026
https://doi.org/10.1093/imanum/drad026
https://doi.org/10.1093%2Fimanum%2Fdrl037
https://doi.org/10.1093/imanum/drl037
https://doi.org/10.1093/imanum/drl037
https://doi.org/10.1145/3406325.3451096
https://doi.org/10.1145/3406325.3451096
https://doi.org/10.1145/3406325.3451096
http://arxiv.org/abs/https://doi.org/10.1142/S0129054194000165
http://arxiv.org/abs/https://doi.org/10.1142/S0129054194000165
https://doi.org/10.1142/S0129054194000165

116 BIBLIOGRAPHY

237–247. Springer, Berlin, 2006. URL: https://doi.org/10.1007/
978-3-540-33275-6_15.

[CC70] J. Douglas Carroll and Jih-Jie Chang. Analysis of individual differ-
ences in multidimensional scaling via an n-way generalization of “eckart-
young” decomposition. Psychometrika, 35(3):283–319, Sep 1970. doi:
10.1007/BF02310791.

[CG05] Guillaume Cheze and André Galligo. Four lectures on polynomial ab-
solute factorization. In Solving polynomial equations, pages 339–392.
Springer, 2005.

[CL07] Guillaume Chèze and Grégoire Lecerf. Lifting and recombination tech-
niques for absolute factorization. Journal of Complexity, 23(3):380–420,
2007.

[CW01] Anthony Carbery and James Wright. Distributional and L-q norm in-
equalities for polynomials over convex bodies in R-n. Mathematical Re-
search Letters, 8:233–248, 2001. URL: https://api.semanticscholar.
org/CorpusID:59405379.

[DDH07] James Demmel, Ioana Dumitriu, and Olga Holtz. Fast linear alge-
bra is stable. Numerische Mathematik, 108(1), 2007. doi:10.1007/
s00211-007-0114-x.

[DDHK07] James Demmel, Ioana Dumitriu, Olga Holtz, and Robert Kleinberg. Fast
matrix multiplication is stable. Numerische Mathematik, 106(2), 2007.
doi:10.1007/s00211-007-0061-6.

[DdL+22] Jingqiu Ding, Tommaso d’Orsi, Chih-Hung Liu, David Steurer, and Ste-
fan Tiegel. Fast algorithm for overcomplete order-3 tensor decompo-
sition. In Proceedings of Thirty Fifth Conference on Learning Theory,
2022. URL: https://proceedings.mlr.press/v178/ding22a.html.

[DL78] Richard A. Demillo and Richard J. Lipton. A probabilis-
tic remark on algebraic program testing. Information Pro-
cessing Letters, 7(4):193–195, 1978. URL: https://www.
sciencedirect.com/science/article/pii/0020019078900674,
doi:https://doi.org/10.1016/0020-0190(78)90067-4.

[DLCC07] Lieven De Lathauwer, Josphine Castaing, and Jean-Franois Cardoso.
Fourth-order cumulant-based blind identification of underdetermined
mixtures. IEEE Transactions on Signal Processing, 55(6):2965–2973,
2007. doi:10.1109/TSP.2007.893943.

[FGS18] Michael A. Forbes, Sumanta Ghosh, and Nitin Saxena. Towards Black-
box Identity Testing of Log-Variate Circuits. In 45th International Col-
loquium on Automata, Languages, and Programming (ICALP 2018),
2018. URL: http://drops.dagstuhl.de/opus/volltexte/2018/9058,
doi:10.4230/LIPIcs.ICALP.2018.54.

[Fis94] Ismor Fischer. Sums of like powers of multivariate linear forms. Math-
ematics Magazine, 67(1):59–61, 1994. URL: http://www.jstor.org/
stable/2690560.

https://doi.org/10.1007/978-3-540-33275-6_15
https://doi.org/10.1007/978-3-540-33275-6_15
https://doi.org/10.1007/BF02310791
https://doi.org/10.1007/BF02310791
https://api.semanticscholar.org/CorpusID:59405379
https://api.semanticscholar.org/CorpusID:59405379
https://doi.org/10.1007/s00211-007-0114-x
https://doi.org/10.1007/s00211-007-0114-x
https://doi.org/10.1007/s00211-007-0061-6
https://proceedings.mlr.press/v178/ding22a.html
https://www.sciencedirect.com/science/article/pii/0020019078900674
https://www.sciencedirect.com/science/article/pii/0020019078900674
https://doi.org/https://doi.org/10.1016/0020-0190(78)90067-4
https://doi.org/10.1109/TSP.2007.893943
http://drops.dagstuhl.de/opus/volltexte/2018/9058
https://doi.org/10.4230/LIPIcs.ICALP.2018.54
http://www.jstor.org/stable/2690560
http://www.jstor.org/stable/2690560

BIBLIOGRAPHY 117

[Fre79] Rūsin, š Freivalds. Fast probabilistic algorithms. In International Sympo-
sium on Mathematical Foundations of Computer Science (MFCS), pages
57–69. Springer, 1979.

[FS18] Michael A. Forbes and Amir Shpilka. A PSPACE Construction of a
Hitting Set for the Closure of Small Algebraic Circuits. In Proceedings
of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
STOC, 2018. doi:10.1145/3188745.3188792.

[Gao03] Shuhong Gao. Factoring multivariate polynomials via partial differential
equations. Mathematics of computation, 72(242):801–822, 2003.

[GG13] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Alge-
bra. Cambridge University Press, USA, 3rd edition, 2013.

[GGKS19] Ankit Garg, Nikhil Gupta, Neeraj Kayal, and Chandan Saha. Determi-
nant Equivalence Test over Finite Fields and over Q. In 46th Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP
2019), 2019. URL: http://drops.dagstuhl.de/opus/volltexte/
2019/10638.

[GHK15] Rong Ge, Qingqing Huang, and Sham M. Kakade. Learning Mixtures
of Gaussians in High Dimensions. In Proceedings of the Forty-Seventh
Annual ACM Symposium on Theory of Computing, STOC, 2015. doi:
10.1145/2746539.2746616.

[Gil20] Nicolas Gillis. Nonnegative Matrix Factorization. Society for Industrial
and Applied Mathematics, Philadelphia, PA, 2020. doi:10.1137/1.
9781611976410.

[GM15] Rong Ge and Tengyu Ma. Decomposing Overcomplete 3rd Order Ten-
sors using Sum-of-Squares Algorithms. In Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM), 2015. doi:10.4230/LIPIcs.APPROX-RANDOM.
2015.829.

[GMKP17] Ignacio García-Marco, Pascal Koiran, and Timothée Pecatte. Re-
construction algorithms for sums of affine powers. In Proc. Interna-
tional Symposium on Symbolic and Algebraic Computation (ISSAC),
pages 317–324, 2017. URL: http://doi.acm.org/10.1145/3087604.
3087605, doi:10.1145/3087604.3087605.

[GMKP18] Ignacio García-Marco, Pascal Koiran, and Timothée Pecatte. Polyno-
mial equivalence problems for sums of affine powers. In Proc. Inter-
national Symposium on Symbolic and Algebraic Computation (ISSAC),
2018.

[Gup22] Nikhil Gupta. On symmetries of and equivalence tests for two polynomial
families and a circuit class. PhD thesis, CSA, IISc Bangalore, 2022.

[GVX14] Navin Goyal, Santosh Vempala, and Ying Xiao. Fourier PCA and
Robust Tensor Decomposition. In Proceedings of the Forty-Sixth An-
nual ACM Symposium on Theory of Computing, STOC, 2014. doi:
10.1145/2591796.2591875.

https://doi.org/10.1145/3188745.3188792
http://drops.dagstuhl.de/opus/volltexte/2019/10638
http://drops.dagstuhl.de/opus/volltexte/2019/10638
https://doi.org/10.1145/2746539.2746616
https://doi.org/10.1145/2746539.2746616
https://doi.org/10.1137/1.9781611976410
https://doi.org/10.1137/1.9781611976410
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.829
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.829
http://doi.acm.org/10.1145/3087604.3087605
http://doi.acm.org/10.1145/3087604.3087605
https://doi.org/10.1145/3087604.3087605
https://doi.org/10.1145/2591796.2591875
https://doi.org/10.1145/2591796.2591875

118 BIBLIOGRAPHY

[Har70] RA Harshman. Foundations of the PARAFAC procedure: Models and
conditions for an" explanatory" multi-mode factor analysis. UCLA Work-
ing Papers in Phonetics, 1970. URL: https://www.psychology.uwo.
ca/faculty/harshman/wpppfac0.pdf.

[Hås89] Johan Håstad. Tensor rank is NP-complete. In Automata, Languages
and Programming. Springer Berlin Heidelberg, 1989. URL: https://
link.springer.com/chapter/10.1007/BFb0035776.

[Hig02] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms.
Society for Industrial and Applied Mathematics, second edition, 2002.
doi:10.1137/1.9780898718027.

[HJ13] Roger Horn and Charles Johnson. Matrix Analysis. Cambridge Univer-
sity Press (second edition), 2013.

[HK13] Daniel Hsu and Sham M. Kakade. Learning Mixtures of Spherical Gaus-
sians: Moment Methods and Spectral Decompositions. In Proceedings
of the 4th Conference on Innovations in Theoretical Computer Science,
ITCS, 2013. doi:10.1145/2422436.2422439.

[HKZ09] Daniel J. Hsu, Sham M. Kakade, and Tong Zhang. A spectral algo-
rithm for learning hidden markov models. In COLT - The 22nd Con-
ference on Learning Theory, 2009. URL: http://www.cs.mcgill.ca/
%7Ecolt2009/papers/011.pdf#page=1.

[HSS15] Samuel B. Hopkins, Jonathan Shi, and David Steurer. Tensor principal
component analysis via sum-of-square proofs. In Proceedings of The 28th
Conference on Learning Theory, 2015. URL: https://proceedings.
mlr.press/v40/Hopkins15.html.

[Kay11] Neeraj Kayal. Efficient algorithms for some special cases of the poly-
nomial equivalence problem. In Symposium on Discrete Algorithms
(SODA). Society for Industrial and Applied Mathematics, January 2011.

[KB09] Tamara G. Kolda and Brett W. Bader. Tensor Decompositions and
Applications. SIAM Review, 51(3), 2009. doi:10.1137/07070111X.

[KG85] Walter Keller-Gehrig. Fast algorithms for the characteristics polynomial.
Theoretical Computer Science, 36:309 – 317, 1985. URL: http://www.
sciencedirect.com/science/article/pii/0304397585900490, doi:
https://doi.org/10.1016/0304-3975(85)90049-0.

[KNST18] Neeraj Kayal, Vineet Nair, Chandan Saha, and Sébastien Tavenas. Re-
construction of full rank algebraic branching programs. ACM Transac-
tions on Computation Theory (TOCT), 11(1):2, 2018.

[Koi95] P. Koiran. Approximating the volume of definable sets. In Proceedings
of IEEE 36th Annual Foundations of Computer Science, 1995. doi:
10.1109/SFCS.1995.492470.

[Koi00] Pascal Koiran. Circuits versus trees in algebraic complexity. In Horst
Reichel and Sophie Tison, editors, STACS 2000, pages 35–52, Berlin,
Heidelberg, 2000. Springer Berlin Heidelberg.

https://www.psychology.uwo.ca/faculty/harshman/wpppfac0.pdf
https://www.psychology.uwo.ca/faculty/harshman/wpppfac0.pdf
https://link.springer.com/chapter/10.1007/BFb0035776
https://link.springer.com/chapter/10.1007/BFb0035776
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1145/2422436.2422439
http://www.cs.mcgill.ca/%7Ecolt2009/papers/011.pdf#page=1
http://www.cs.mcgill.ca/%7Ecolt2009/papers/011.pdf#page=1
https://proceedings.mlr.press/v40/Hopkins15.html
https://proceedings.mlr.press/v40/Hopkins15.html
https://doi.org/10.1137/07070111X
http://www.sciencedirect.com/science/article/pii/0304397585900490
http://www.sciencedirect.com/science/article/pii/0304397585900490
https://doi.org/https://doi.org/10.1016/0304-3975(85)90049-0
https://doi.org/https://doi.org/10.1016/0304-3975(85)90049-0
https://doi.org/10.1109/SFCS.1995.492470
https://doi.org/10.1109/SFCS.1995.492470

BIBLIOGRAPHY 119

[KP20] Bohdan Kivva and Aaron Potechin. Exact nuclear norm, completion
and decomposition for random overcomplete tensors via degree-4 SOS.
CoRR, 2020. arXiv:2011.09416.

[Kru77] Joseph B. Kruskal. Three-way arrays: rank and uniqueness of trilinear
decompositions, with application to arithmetic complexity and statistics.
Linear Algebra and its Applications, 18(2), 1977. doi:https://doi.
org/10.1016/0024-3795(77)90069-6.

[KS09] Zohar Karnin and Amir Shpilka. Reconstruction of generalized depth-
3 arithmetic circuits with bounded top fan-in. In 24th Annual IEEE
Conference on Computational Complexity (CCC), pages 274–285, 2009.

[KS19] Neeraj Kayal and Chandan Saha. Reconstruction of non-degenerate ho-
mogeneous depth three circuits. In Proc. 51st Annual ACM Symposium
on Theory of Computing (STOC), pages 413–424, 2019.

[KS21] Pascal Koiran and Mateusz Skomra. Derandomization and Absolute
Reconstruction for Sums of Powers of Linear Forms. Theor. Comput.
Sci., 887, 2021. doi:10.1016/j.tcs.2021.07.005.

[KS22a] Pascal Koiran and Subhayan Saha. Black Box Absolute Reconstruction
for Sums of Powers of Linear Forms. In 42nd IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Sci-
ence (FSTTCS 2022), 2022. URL: https://drops.dagstuhl.de/opus/
volltexte/2022/17416, doi:10.4230/LIPIcs.FSTTCS.2022.24.

[KS22b] Pascal Koiran and Subhayan Saha. Complete decomposition of symmet-
ric tensors in linear time and polylogarithmic precision, 2022. arXiv:
2211.07407.

[KS23] Pascal Koiran and Subhayan Saha. Absolute reconstruction for sums of
powers of linear forms: degree 3 and beyond. computational complexity,
32(2), August 2023. doi:10.1007/s00037-023-00239-8.

[LO38] J. E. Littlewood and A. C. Offord. On the number of real roots of a
random algebraic equation. Journal of the London Mathematical Society,
s1-13(4):288–295, 1938. doi:https://doi.org/10.1112/jlms/s1-13.
4.288.

[LRA93] S. E. Leurgans, R. T. Ross, and R. B. Abel. A Decomposition for Three-
Way Arrays. SIAM Journal on Matrix Analysis and Applications, 14(4),
1993. doi:10.1137/0614071.

[MN07] Frédéric Magniez and Ashwin Nayak. Quantum complexity of testing
group commutativity. Algorithmica, 48(3):221–232, 2007.

[Moi18] A. Moitra. Algorithmic Aspects of Machine Learning. Cambridge
University Press, 2018. URL: https://books.google.fr/books?id=
ruVqDwAAQBAJ.

[MR05] Elchanan Mossel and Sébastien Roch. Learning Nonsingular Phylogenies
and Hidden Markov Models. In Proceedings of the Thirty-Seventh Annual
ACM Symposium on Theory of Computing, STOC, 2005. doi:10.1145/
1060590.1060645.

http://arxiv.org/abs/2011.09416
https://doi.org/https://doi.org/10.1016/0024-3795(77)90069-6
https://doi.org/https://doi.org/10.1016/0024-3795(77)90069-6
https://doi.org/10.1016/j.tcs.2021.07.005
https://drops.dagstuhl.de/opus/volltexte/2022/17416
https://drops.dagstuhl.de/opus/volltexte/2022/17416
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.24
http://arxiv.org/abs/2211.07407
http://arxiv.org/abs/2211.07407
https://doi.org/10.1007/s00037-023-00239-8
https://doi.org/https://doi.org/10.1112/jlms/s1-13.4.288
https://doi.org/https://doi.org/10.1112/jlms/s1-13.4.288
https://doi.org/10.1137/0614071
https://books.google.fr/books?id=ruVqDwAAQBAJ
https://books.google.fr/books?id=ruVqDwAAQBAJ
https://doi.org/10.1145/1060590.1060645
https://doi.org/10.1145/1060590.1060645

120 BIBLIOGRAPHY

[MSS16] Tengyu Ma, Jonathan Shi, and David Steurer. Polynomial-Time Ten-
sor Decompositions with Sum-of-Squares. In IEEE 57th Annual Sym-
posium on Foundations of Computer Science (FOCS), 2016. doi:
10.1109/FOCS.2016.54.

[NP21] Vincent Neiger and Clément Pernet. Deterministic computation of the
characteristic polynomial in the time of matrix multiplication. Journal
of Complexity, 67:101572, 2021. URL: https://www.sciencedirect.
com/science/article/pii/S0885064X21000273, doi:https://doi.
org/10.1016/j.jco.2021.101572.

[Pak12] Igor Pak. Testing commutativity of a group and the power of random-
ization. LMS Journal of Computation and Mathematics, 15:38–43, 2012.

[Poi95] B. Poizat. Les petits cailloux: une approche modèle-théorique de
l’algorithmie. Nūr al-mant.iq wa-al-ma‘rifah. Aléas, 1995. URL: https:
//books.google.fr/books?id=YeHuAAAAMAAJ.

[PS07] Clément Pernet and Arne Storjohann. Faster algorithms for the char-
acteristic polynomial. In Proceedings of the 2007 International Sympo-
sium on Symbolic and Algebraic Computation, ISSAC ’07, page 307–314,
New York, NY, USA, 2007. Association for Computing Machinery.
doi:10.1145/1277548.1277590.

[PSV22] Shir Peleg, Amir Shpilka, and Ben Lee Volk. Tensor reconstruction
beyond constant rank, 2022. doi:10.48550/ARXIV.2209.04177.

[RS00] Sridhar Rajagopalan and Leonard J. Schulman. Verification
of identities. SIAM Journal on Computing, 29(4):1155–1163,
2000. arXiv:https://doi.org/10.1137/S0097539797325387, doi:
10.1137/S0097539797325387.

[Sap15] Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit
complexity. https://github.com/dasarpmar/lowerbounds-survey,
2015.

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polyno-
mial identities. J. ACM, 27(4):701–717, October 1980. doi:10.1145/
322217.322225.

[Sha09] Hani Shaker. Topology and factorization of polynomials. Mathematica
Scandinavica, pages 51–59, 2009.

[Shi16] Yaroslav Shitov. How hard is the tensor rank?, 2016. doi:10.48550/
ARXIV.1611.01559.

[Shp09] Amir Shpilka. Interpolation of depth-3 arithmetic circuits with two mul-
tiplication gates. SIAM Journal on Computing, 38(6):2130–2161, 2009.

[Sip13] Michael Sipser. Introduction to the Theory of Computation. Course
Technology, Boston, MA, third edition, 2013.

[SS71] A. Schönhage and V. Strassen. Schnelle multiplikation großer zahlen.
Computing, 7(3):281–292, Sep 1971. doi:10.1007/BF02242355.

https://doi.org/10.1109/FOCS.2016.54
https://doi.org/10.1109/FOCS.2016.54
https://www.sciencedirect.com/science/article/pii/S0885064X21000273
https://www.sciencedirect.com/science/article/pii/S0885064X21000273
https://doi.org/https://doi.org/10.1016/j.jco.2021.101572
https://doi.org/https://doi.org/10.1016/j.jco.2021.101572
https://books.google.fr/books?id=YeHuAAAAMAAJ
https://books.google.fr/books?id=YeHuAAAAMAAJ
https://doi.org/10.1145/1277548.1277590
https://doi.org/10.48550/ARXIV.2209.04177
http://arxiv.org/abs/https://doi.org/10.1137/S0097539797325387
https://doi.org/10.1137/S0097539797325387
https://doi.org/10.1137/S0097539797325387
https://github.com/dasarpmar/lowerbounds-survey
https://doi.org/10.1145/322217.322225
https://doi.org/10.1145/322217.322225
https://doi.org/10.48550/ARXIV.1611.01559
https://doi.org/10.48550/ARXIV.1611.01559
https://doi.org/10.1007/BF02242355

BIBLIOGRAPHY 121

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of
recent results and open questions. Found. Trends Theor. Comput. Sci.,
5(3–4):207–388, mar 2010. doi:10.1561/0400000039.

[tB91] Jos M F ten Berge. Kruskal’s polynomial for 2×2×2 arrays and a gen-
eralization to 2×n×n arrays. Psychometrika, 56(4):631–636, December
1991.

[Tur36] Alan Mathison Turing. On computable numbers, with an application to
the Entscheidungsproblem. J. of Math, 58(345-363):5, 1936.

[Val79] L. G. Valiant. Completeness classes in algebra. In Proceedings of the
Eleventh Annual ACM Symposium on Theory of Computing, STOC ’79,
page 249–261, New York, NY, USA, 1979. Association for Computing
Machinery. doi:10.1145/800135.804419.

[Vu17] Van Vu. Anti-concentration Inequalities for Polynomials, pages 801–
810. Springer International Publishing, Cham, 2017. doi:10.1007/
978-3-319-44479-6_32.

[Wil68] J.H. Wilkinson. Global convergene of tridiagonal QR algorithm with
origin shifts. Linear Algebra and its Applications, 1(3):409–420, 1968.
doi:https://doi.org/10.1016/0024-3795(68)90017-7.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In
Symbolic and Algebraic Computation, pages 216–226, Berlin, Heidelberg,
1979. Springer Berlin Heidelberg.

https://doi.org/10.1561/0400000039
https://doi.org/10.1145/800135.804419
https://doi.org/10.1007/978-3-319-44479-6_32
https://doi.org/10.1007/978-3-319-44479-6_32
https://doi.org/https://doi.org/10.1016/0024-3795(68)90017-7

122

Appendix A

Appendix to Chapter 2

A.1 Computing the complexity of the randomized algo-
rithm in [KS21] and comparing it with our algo-
rithm

Recall the [KS21] equivalence from Section 2.1.1. The algorithm proceeds as follows:

1. Pick a random matrix R ∈ Mn(K) and set h(x) = f(Rx).

2. Let T1, ...,Tn be the slices of h. If T1 is singular, reject. Otherwise, compute
T ′

1 = T−1
1 .

3. If the matrices T ′
1Tk commute and are all diagonalisable over K, accept. Oth-

erwise, reject.

The following are the different stages of computation required in this algorithm:

1. If the polynomial is input in dense representation, here we have to compute all
the slices T1, ...,Tn and following the proof of Theorem 2.6.3, this takes O(n4)
many arithmetic operations
If the polynomial is given as a blackbox, we compute x′ = Rx. And we call the
blackbox on this input.

2. Compute T1,T2, ...,Tn We know

(Tk)ij =
1
3!
∂xixjxk

(h).

So we can extract each entry of Tk using constant many calls to the blackbox
and constantly many arithemtic operations using Lemma 2.6.2. There are in
total n3 such entries that we need to compute. So the total number of calls to
the blackbox is O(n3) and the number of arithmetic operations is O(n3)

3. Check if T1 is invertible. If invertible, compute T ′
1 = T−1

1 .
This can be done in time at most O(n3).

4. Checking pairwise commutativity of {T ′
1Tj}j∈[n]

Here we compute the product T ′
1TiT

′
1Tj and T ′

1TjT
′
1Ti and check if their differ-

ence is 0. For each pair, this can be done in time O(nω). Since there are (n
2)

many pairs, this can be done in time O(nω+2).

5. Checking the diagonalisability of T ′
1Tj for all j ∈ [n]:

As we showed that the diagonalisability of each T ′
1Tj can be checked in time

O(nω+1). So the total time taken for checking diagonalisability of n such ma-
trices is O(nω+2).

A.2. Complexity analysis for variable minimization 123

So we conclude that if the polynomial is given as an input in the dense representation
model, then the algorithm runs in time O(nω+2).
If the polynomial is given as a blackbox, then the algorithm makes O(n3) many calls
to the blackbox and requires O(nω+2) many arithmetic operations.

So we manage to shave a factor of n from [KS21] in both cases: when the poly-
nomial is given in dense representation as well as when it is input as an arithmetic
circuit.

A.2 Complexity analysis for variable minimization
In this section, we provide a detailed complexity analysis of Algorithm 3. We show
that if a degree d polynomial in n variables over C is given as a blackbox, the algo-
rithm performs poly(n, d) many calls to the blackbox and performs poly(n, d) many
arithmetic operations to check if the polynomial can be written as a linear combi-
nation of t many linearly independent linear forms for some t ≤ n (see Theorem
A.2.2).

In the next lemma, we show that given a blackbox computing the polynomial, we
can compute the partial derivative with respect to a single variable at a given point
in O(d) many oracle calls and poly(d) arithmetic operations.

Lemma A.2.1. Given a blackbox computing P ∈ K[x1, ...,xn] of degree at most d,
and given points α1, ...,αn ∈ Kn, we can compute the matrix M such that Mij =
∂xi(P)(αj) using O(n2d) many oracle calls to the blackbox and O(n2M(d) log d)
many arithmetic operations.

Proof. We assume i = 1. Given points a1, ..., an ∈ K, ∂x1(P)(a1, ..., an) can be
computed using the following steps of computation:

• Compute the polynomial P (x, a2, ..., an) explicitly using polynomial interpola-
tion. This can be done using O(M(d) log d) many arithmetic operations and
d+ 1 many calls to the blackbox. [GG13] (Section 10.2)

• Compute ∂x(P (x, a2, ..., an)) using O(d) many arithmetic operations.

• evaluate it at x = a1, which requires O(d) many arithmetic operations.

We do this for every (a1, ..., an) = (α
(1)
j , ...,α(n)

j) for all j ∈ [n]. Thus each row of the
matrix M can be computed using O(nM (d) log d) many operations. For each xi such
that i ∈ [n], a similar algorithm works and the matrix M can be computed using
O(n2M(d) log d) arithmetic operations and O(n2d) many calls to the blackbox.

Now we are in a position to analyse the complexity of Algorithm 3

Theorem A.2.2. Given a blackbox computing a polynomial P ∈ K[x1, ...,xn]d with
t essential variables, the algorithm makes O(n2d) many calls to the blackbox and
requires O(nω + n2M(d) log d+ tω+1) many arithmetic operations.

Proof. The following are the steps of the algorithm:

• Using Lemma A.2.1, we know that the matrix M can be computed in time
O(n2M(d) log d) many arithmetic operations and O(n2d) many calls to the
blackbox.

• The basis of ker(M) can be computed and the basis can be completed using
O(nω) many arithmetic operations.

124 Appendix A. Appendix to Chapter 2

• For n = t, using Theorem 2.7.1 the algorithm checks equivalence using O(t2d)
many calls to the blackbox and O(t2M(d) log d+ tω+1) many arithmetic oper-
ations.

So we conclude that if the polynomial is given as a blackbox, then the algorithm
makes O(n2d) many calls to the blackbox and the number of arithmetic operations
required is O(nω + n2M(d) log d+ tω+1).

Using Section 2.7.2 and the fact that we just need to do polynomial interpolation
and completion of the basis, we conclude that Algorithm 3 takes time poly(n, d, log(|S|), bf)
in the bit model of computation. Here bf is the bit size of the maximum coefficient
in f and S is the set from which the entries of R and α

(i)
j s are picked uniformly and

independently at random.

125

Appendix B

Appendix to Chapter 3

B.1 Proof of Theorem 3.3.12
Lemma B.1.1. Let A,A′ ∈ Mn(C) be such that A has n distinct eigenvalues and
||A−A′|| ≤ δ where δ < 1

8κeig(A) . Then

gap(A′) ≥ 3gap(A)
4 .

Proof. Refer to the proof of Proposition 1.1 in [BGVKS22].

Lemma B.1.2. Let u be such that log(1
u) > log4(n

δ) logn where δ < 1
2 . Then for

n ≥ 4, n2u < δ.

Proof. From the hypothesis δ < 1
2 it follows that log(1

δ) > 1 and log(1
δ) ≤ log4(1

δ).
Also, from n ≥ 4 it follows that log4(n) − 2 ≥ 0 and log(1

δ) ≤ log4(1
δ) + log4(n) − 2.

Now we use the fact that log4(1
δ) + log4(n) ≤ log4(n

δ). This implies that

log(1
δ
) ≤ (log4(

n

δ
) − 2) logn.

Thereefore log(n2

δ) < log4(n
δ) logn ≤ log(1

u), and n2u ≤ δ.

Proof of Theorem 3.3.12. Let v(0)1 , ..., v(0)n be the true normalized eigenvectors of A.
By Theorem 3.3.4, we need O(log4(n

δ′) logn) bits of precision to run EIG in step 3.
So, we assume that the number of bits of precision available for this algorithm is
log(1

u) := c log4(n
δ′) logn for some constant c > 1. We define B = A

2Knorm
. Then

||B|| ≤ 1
2 < 1. Following the notation of Section 1.2.2, let B′ = fl(A

2Knorm
). Using

(3.3), we know that

||B −B′|| ≤ u ·
√
n

2 . (B.1)

Since u ·
√
n ≤ 1, then ||B′|| ≤ 1

2 + u·
√

n
2 < 1. We first show that the conditions of

Theorem 3.3.4 are satisfied when we run EIG on (B′, δ′). For this, we have to show
that δ′ ≤ 1

8κeig(B′) .
Applying Lemma B.1.2 where log(1

u) = c log4(n
δ′) logn, we get that for large

enough n, u
√
n < n2u < δ′ < δ

4KeigKnorm
. This gives us:

u ·
√
n

2 ≤ 1
8KeigKnorm

<
1

8κeig(B)
.

126 Appendix B. Appendix to Chapter 3

Putting it back in (B.1), we also have that ||B −B′|| < 1
8κeig(B) . Now we can apply

Lemma 3.3.9 to B,B′ and we obtain the inequality

κV (B
′) ≤ κF

V (B
′)

2 ≤ 3nκV (B) ≤ 3nκF
V (B)

2 . (B.2)

It from Lemma B.1.1 that gap(B′) ≥ 3gap(B)
4 . This gives us that

1
Keig

<
1

κeig(A)
=

gap(A)
κV (A)

=
2Knormgap(B)

κV (B)
≤ 8nKnormgap(B′)

κV (B′)
.

Hence,
δ′ =

δ

64nKeigKnorm
<

δ

8κeig(B′)
<

1
8κeig(B′)

,

and we can now run EIG on (B′, δ′). By Theorem 3.3.4, the algorithm therefore
outputs (W ,D0) such that

||B′ −WD0W
−1|| ≤ δ′ (B.3)

with probability at least 1 − 1
n − 12

n2 . Applying the triangle inequality to (B.1) and
(B.3) shows that ||B −WD0W

−1|| ≤ u·
√

n
2 + δ

64nKeigKnorm
. Since u

√
n ≤ n2u, by

Lemma B.1.2 and for large enough n we have u·
√

n
2 ≤ δ

64nKeigKnorm
. This gives us that

||B −WD0W
−1|| ≤ δ

32nKeigKnorm
. Multiplying both sides by 2Knorm, we obtain

||A−W (2KnormD0)W
−1|| ≤ δ

16nKeig
.

Let A′ = W (2KnormD0)W−1. We can now use Corollary 3.3.11.1 for A and A′ since
δ

16nKeig
< 1

8nKeig
< 1

8κeig(A) . Let v1, ..., vn be the eigenvectors of A′. Then there exists
a phase ρi such that

||v(0)i − ρivi|| ≤ 6nκeig(A)
δ

16nKeig
<
δ

2. (B.4)

By Theorem 3.3.4, ||wi|| = 1 ± nu since w1, ...,wn are the columns of W . Note that
the wi’s are the eigenvectors of A′ as well. Since A′ has distinct eigenvalues, the
eigenvectors are unique up to scaling by complex numbers. This along with the fact
that ||vi|| = 1 gives us that there exists phase ρ′

i such that

||vi − (ρ′
i)

−1wi|| = |nu|||vi|| <
δ

2.

The final inequality comes from the fact that for n > 2, nu < n2u
2 and we can

therefore use Lemma B.1.2. Now, multiplying by |ρi| on both sides, we have

||ρivi − ρi(ρ
′
i)

−1wi|| <
δ

2. (B.5)

Now, using the triangle inequality on (B.4) and (B.5),

||v(0)i − ρi(ρ
′
i)

−1wi|| < δ. (B.6)

B.1. Proof of Theorem 3.3.12 127

From Theorem 3.3.4, we get that κ(W) ≤ κF (W)
2 ≤ 1

2 (
9n
4 + 9n2(κF

V (B
′))2). By

(B.2) and the fact that κF
V (A) = κF

V (B), we have

1
2 (

9n
4 + 9n2(κF

V (B
′))2) ≤ 1

2 (
9n
4 + 81n4(κF

V (B))2) =
1
2 (

9n
4 + 81n4(κF

V (A))
2).

128

Appendix C

Some omitted technical details
from Chapter 5

C.1 Some technical lemmas
Lemma C.1.1. Let u = 1

nc logk(nB)
for some integer k ≥ 2, for some constant c > 0

and n,B ≥ 1. Then for any constant c′ > 0 and large enough n, u(nB)c′ log(n) ≤
√

u
2 .

Proof. Since, we have that log(u) = −c logk(nB) log(n), this gives us that

log(u) + c′ log(n) log(nB) ≤ (c′ log(nB) − c logk(nB)) log(n) ≤ log(2) − c

2 logk(nB) log(n).

Using this, we can conclude that u(nB)c′ log(n) ≤ 1
2n

c
2 logk(nB)

=
√

u
2

Lemma C.1.2. For constants cn1 , cn2 , cB1 , cB2 , cε,C > 0, if

log(1
u) > c log(nB

ε
) logn,

where c = 2 max{cn1 + cn2 , cB1 + cB2 , cε, logC} then

C
ncn1 log n+cn2BcB1 log n+cB2

εcε
≤ 1

u .

Proof. Let c = 2 max{cn1 + cn2 , cB1 + cB2 , cε, logC}. Then

log(1
u
) = c log(nB

ε
) logn

= c log(nB) logn+ log(1
ε
) logn

≥ (cn1 logn+ cn2) log(n) + (cB1 logn+ cB2) log(B) + cε log(1
ε
) + log(C)

≥ log
(
C
ncn1 log n+cn2BcB1 log n+cB2

εcε

)
.

C.2 Remaining proofs from Section 5.3

C.2.1 Step 4:

In this section, we also define functions f4 corresponding to the matrix diagonalisation
required in Step 4 of Algorithm 8 and then using results from Section 3.3 show that

C.2. Remaining proofs from Section 5.3 129

there exist some algorithm which output some solution close to the actual solution
of the diagonalisation function. Defining f4 and f̃4: Let X4 be the set of all
diagonalisable matrices in Mn(C) with distinct eigenvalues. We define f4 : X4 −→
P(GLn(C)) to be the diagonalisation map. More formally, for some A ∈ X4, we
define f4(A) to be the set of matrices

{V ∈ GLn(C)|∃ diagonal D where A = V DV −1, columns of V have norm 1}.

For any x ∈ X4, we define ||x|| = ||A||.
The forward-diagonalisation algorithm (EIG-FWD) defined in Algorithm 6 does

the following: For any A ∈ X4, the algorithm takes as some input Ã close to A (along
with parameters Keig ≥ κeig(A), Knorm ≥ ||A||F and some accuracy parameter ε)
and outputs some matrix Ṽ such that there exists V ∈ f4(A) for which ||Ṽ − V || ≤ ε
with high probability on some internal choice of randomness of the algorithm. More
formally, we denote by P = (Ω, F , P) to be the probability space of the internal
choices of randomness of the algorithm EIG-FWD.

For all parameters p = (ε,Keig,Knorm), define function

f̃4,p,ω : X4 −→ GLn(C)

x 7→ EIG-FWD(x, p,ω)

where EIG-FWD(x, p,ω) is the output of the algorithm EIG-FWD run with param-
eters p = (ε,Keig,Knorm) and ω ∈ Ω is the corresponding value for the internal
random choices of the algorithm on input x ∈ X4 on a floating point machine with
machine precision u where

log(1
u) = C4 log4(

nKeigKnorm
ε

) (C.1)

for some constant C4 > 0.

Definition C.2.1. We say that some x ∈ X4 satisfies parameters p = (ε,Keig,Knorm)
if Keig ≥ κeig(A) and Knorm ≥ max{||A||F , 1}.

Note that if δ > 0, EIG-FWD will always output a matrix and in fact, it will
approximate f4 when the parameters are satisfied. Rewriting Theorem 3.3.12 in this
language, we get the following result. Define

f̃4,p := {f̃4,p,ω|ω ∈ Ω}. (C.2)

Lemma C.2.2. Let p = (ε4,Keig,Knorm) be some parameters where ε4 ∈ (0, 1
2).

Define X4,p := {x ∈ X4|x satisfies parameter p} and

up =
1

n
C4 log4(

nKeigKnorm
ε4

)
for some constant C4 > 0.

Then f̃4,p is a (1 − 1
n − 12

n2 , up, ε4)-algorithm for computing f4 on subdomain X4,p
when run on a finite precision machine with machine precision up.

Proof. Since, x̃ ∈ B(x, u) where u = 1

n
C4 log4(

nKeigKnorm
ε4

)
for some constant C4 > 0,

using the fact that Knorm > 1 and ε < 1, we get that for large enough n

||x̃− x|| ≤ u <
1

nc4 log(Keig)
=

1
(Keig)C4 log(n) ≤ 1

8Keig
≤ 1

8κeig(x)
. (C.3)

130 Appendix C. Some omitted technical details from Chapter 5

Using Lemma 3.3.8, this gives us that x̃ is diagonalisable and has distinct eigenvalues.
Hence, x̃ ∈ X4.

Let us assume that Algorithm 6 is run with some choice of parameters p. Now,
instead of some x ∈ X4,p, it is given as input x̃ such that for all i, j ∈ [n], ||x̃− x|| ≤
||x̃ij − xij || ≤ up where up is also the required machine precision of the algorithm.
We follow the definition of the model of finite arithmetic from Section 1.2.2 and the
explanation regarding the same at the end of Section 1.1.2 of [BGVKS22] "...since
it is not even assumed that the input is stored exactly." In that case, we show that
EIG-FWD is robust. More formally, we define

Ax,x̃ := {ω ∈ Ω|There exists y ∈ f4(x) such that ||f̃4,p,ω(x̃) − y|| ≤ ε4}.

Then using Theorem 3.3.12, we get that P(Ax,x̃) ≥ 1 − 1
n − 12

n2 . This gives us the
desired conclusion. Ṽ such that there exists V ∈ f4(x) such that ||Ṽ − V || ≤ ε4.1

C.2.2 Step 5:

We do not define a new function for Step 5 because it uses the matrix inversion
function on a different input. So we reuse f2 from Section 5.3.2 as the basic function
for this step.

C.2.3 Step 6:

Written in standard basis notation, the equality T ′ = (A⊗A⊗A).T corresponds to
the fact that for all i1, i2, i3 ∈ [n],

T ′
i1i2i3 =

∑
j1,j2,j3∈[n]

Aj1i1Aj2i2Aj3i3Tj1j2j3 . (C.4)

Lemma C.2.3. Let a ∈ Cm and b ∈ Cn. Then ||a⊗ b||F ≤ ||a||||b||.

Proof. Following the definition of ||.||F of tensors, we get that

||a⊗ b||2F =
∑

i∈[m],j∈[n]
|aibj |2 ≤ (

∑
i∈[m]

|ai|2)(
∑

j∈[n]
|bj |2) = ||a||2||b||2.

Defining f6: Let X6 := (Cn)⊗3 ×Mn(C). Define function f6 : X6 −→ Cn as the
trace of slices after a change of basis. More formally, f6(T ,V) = (Tr(S1), ..., Tr(Sn))
where S1, ...,Sn are the slices of the tensor S = (V ⊗ V ⊗ V).T . For any element
x = (V ,T) ∈ X6, we define ||x|| =

√
||V ||2F + ||T ||2F . We define κ6(x) := (||x|| + 1)3.

We also define the norm on the output space Cn as the l2 norm on vectors.

Lemma C.2.4. For any δ5 ∈ (0, 1], f6 is a (4, 8)-continuous function at scale δ5 on
the domain X6.

Proof. Let x = (T ,V) ∈ X6 and x̃ = (T̃ , Ṽ) ∈ B((T ,V), δ5). We want to give a
bound on ||f6(T̃ , Ṽ) − f6(T ,V)||. To do this, we bound ||f6(T̃ , Ṽ) − f6(T , Ṽ)|| and
||f6(T , Ṽ) − f6(T ,V)|| independently and then use triangle inequality to give the
required bound.

1One can assume that Algorithm 6 gets the desired input exactly. In Appendix C.3, we show that
f4 is continuous and combining this with the numerical stability of Algorithm 6, it can be shown
that it is robust.

C.2. Remaining proofs from Section 5.3 131

First, we give a bound on ||f6(T̃ , Ṽ) − f6(T , Ṽ)||. Let v1, ..., vn be the columns
of V and ṽ1, ..., ṽn be the columns of Ṽ . Let S̃ = (Ṽ ⊗ Ṽ ⊗ Ṽ).T̃ with slices S̃i and
S′ = (Ṽ ⊗ Ṽ ⊗ Ṽ).T with slices S′

i. Following the definition of change of basis from
(3.5), we have that

||f6(T̃ , Ṽ) − f6(T , Ṽ)||2 =
n∑

i=1
|Tr(S̃i) − Tr(S′

i)|2

=
n∑

i=1

∣∣∣∣ n∑
j=1

(
S̃i,j,j − S′

i,j,j

)∣∣∣∣2

=
n∑

i=1

∣∣∣∣ n∑
j=1

n∑
j1,j2,j3=1

Ṽj1,iṼj2,j Ṽj3,j(T̃j1,j2,j3 − Tj1,j2,j3)

∣∣∣∣2

≤ ||T̃ − T ||2F
(n∑

i=1
||

n∑
j=1

ṽi ⊗ (ṽj)
⊗2||2F

)

≤ ||T̃ − T ||2F
(n∑

i,j=1
||ṽi ⊗ ṽj ⊗ ṽj ||2F

)

(C.5)

The second-last inequality follows from an application of the Cauchy-Schwarz inequal-
ity and the last inequality follows from triangle inequality. Using Lemma C.2.3 twice,
we get that

n∑
i,j=1

||ṽi ⊗ ṽj ⊗ ṽj ||2F ≤ (
n∑

i=1
||ṽi||2)(

n∑
j=1

||ṽj ⊗ ṽj ||2F)

≤ ||Ṽ ||2F (
n∑

j=1
||ṽj ||4) ≤ ||Ṽ ||6F .

(C.6)

Putting this back in (C.5) and using the fact that ||T̃ − T || ≤ δ5 and ||Ṽ ||F ≤
||V ||F + δ5 ≤ ||V ||F + 1, we get that

||f6(T̃ , Ṽ) − f6(T , Ṽ)|| ≤ δ5||Ṽ ||3F ≤ δ5(||V ||F + 1)3. (C.7)

We now want to give a bound on ||f6(T , Ṽ) − f6(T ,V)||. Let S = (V ⊗ V ⊗ V).T
and S1, ...,Sn be the slices of S. Expanding along the definition, we get that

||f6(T , Ṽ) − f6(T ,V)|| =

√√√√ n∑
i=1

|Tr(S′
i) − Tr(Si)|2

≤

√√√√ n∑
i1,i2,i3=1

|S′
i1,i2,i3

− Si1,i2,i3)|2

=

√√√√ n∑
i1,i2,i3=1

∣∣∣∣ n∑
j1,j2,j3=1

(Ṽj1i1 Ṽj2i2 Ṽj3i3 − Vj1i1Vj2i2Vj3i3)Tj1j2j3

∣∣∣∣2

≤ ||T ||F

√√√√ n∑
i1,i2,i3,j1,j2,j3=1

∣∣∣∣Ṽj1i1 Ṽj2i2 Ṽj3i3 − Vj1i1Vj2i2Vj3i3

∣∣∣∣2
= ||T ||F ||Ṽ ⊗3 − V ⊗3||F .

(C.8)

132 Appendix C. Some omitted technical details from Chapter 5

The last inequality follows again from an application of the Cauchy-Schwarz inequal-
ity.

Now we want to bound ||Ṽ ⊗3 −V ⊗3||F . Let E ∈ Mn(C) be such that Ṽ = V +E.
Thus we already have that ||E||F = ||Ṽ − V ||F ≤ δ5. Extending Lemma C.2.3 for
matrices, we can get that for matrices V1,V2, ||V1 ⊗ V2||F ≤ ||V1||F ||V2||F . Applying
this and expanding the tensor power, we get that

||Ṽ ⊗3 − V ⊗3||F = ||(V +E)⊗3 − V ⊗3||F ≤ 3||V ||2F ||E||F + 3||V ||F ||E||2F + ||E||3F

≤ 3δ5(||V ||2F + ||V ||F +
1
3) ≤ 3δ5(||V ||F + 1)2.

In the last step, we use the fact that δ5 ≤ 1. Putting this back in (C.8),

||f6(T , Ṽ) − f6(T ,V)|| ≤ 3δ5(||V ||F + 1)2||T ||F . (C.9)

Combining (C.7) and (C.9), we have

||f6(T̃ , Ṽ) − f6(T ,V)|| ≤ 3δ5(||V ||F + 1)2||T ||F + δ5(||V ||F + 1)3.

Thus, we can finally conclude that

||f6(x̃) − f6(x)|| ≤ 4δ5(||x|| + 1)3 = 4δ5κ6(x). (C.10)

Let x ∈ X6 and x̃ ∈ B(x, δ5). Then

κ6(x̃) = (||x̃|| + 1)3 ≤ 8(||x|| + 1)3 = 8κ6(x).

Defining f̃6: We define f̃6 as the numerically stable algorithm for computing a
linear combination of the slices after a change of basis (Algorithm 5) with machine
precision u = α5.

Lemma C.2.5. For all α5 ∈ (0, 1
10n), f̃6 is a (α5,ψ5)-numerically stable algorithm

for computing f6 where ψ6(κ6) =
63
8 n

2(κ6)
4
3 .

Proof. Let x = (T ,V) be the input to f̃6 where T ∈ (Cn)⊗3 and V ∈ Mn(C). Let
f6(x) = (s1, ..., sn) and f̃6 = (s̃1, ..., s̃n). Using Theorem 3.2.3, we get that

||f̃6(x) − f6(x)|| =

√√√√ n∑
i=1

||si − s̃i||2 ≤ 14n2α5||V ||3F ||T ||F

≤ 14n2α5

(3||V ||2F + ||T ||2F
4

)2

≤ α5(
63
8 n

2||x||4) ≤ α5(
63
8 n

2(κ6(x))
4
3).

(C.11)

The second-last inequality follows from an application of the weighted AM-GM in-
equality.

Theorem C.2.6. For any ε5 ∈ (0, 1
10n), f̃6 is an (ε5,ψ′

6)-robust numerically stable
algorithm for computing f6 on domain where ψ′

6(κ6) = 126n2κ
4
3
6 + 4κ6.

C.2. Remaining proofs from Section 5.3 133

Proof. Let x6 ∈ X6 and x̃6 ∈ B(x6, ε5). From Lemma 5.2.4, we get that

||f̃6(x̃6) − f6(x6)|| ≤ ε5.ψ′
6(κ6(x6))

= ε5(ψ6(8κ6(x6)) + 4κ6(x6))

= ε5

(
126n2(κ6(x6))

4
3 + 4κ6(x6)

)
.

C.2.4 Step 7:

In this section we first define the two simple functions f (1)7 (corresponding to com-
puting cube root) and f (2)7 (corresponding to vector scaling) and their corresponding
algorithms that are used in Step 7 of Algorithm 8. We define the map f7 corre-
sponding to Step 7 of the algorithm as a composition of these two simple functions
and define the algorithm f̃7 computing this function as a similar composition of the
two corresponding algorithms. We show that f (2)7 is robustly numerically stable and
use that to prove bounds on the error made by f̃7 while computing f7 on perturbed
inputs.

Defining f
(1)
7 : We define f (1)7 as the following cube root map

f
(1)
7 : C −→ P(C)

α 7→ {β|β3 = α}

Let x, x̃ ∈ C such that |x̃− x| ≤ δ ≤ 1. Then for a fixed ỹ ∈ f
(1)
7 (x̃),

|x̃− x| =
∏

y∈f
(1)
7 (x)

|ỹ− y|.

This implies, that for all ỹ ∈ f
(1)
7 (x̃), there exists y ∈ f

(1)
7 (x) such that

|ỹ− y| ≤ |x̃− x|
1
3 ≤ δ

1
3 . (C.12)

We also define f̃7
(1) as the algorithm for evaluation of cube roots in finite precision

arithmetic as mentioned in Section 1.2.2. If the algorithm is executed on x̃ ∈ C on a
machine with finite precision δ, this gives us that there exists some ỹ′ ∈ f

(1)
7 (x̃) such

that
|f̃7

(1)
(x̃) − ỹ′| ≤ δ|ỹ′|. (C.13)

Using (C.12), we also get that there exists y′ ∈ f
(1)
7 (x) such that |ỹ′ − y′| ≤ δ

1
3 .

Combining this with (C.13) using triangle inequality, we get that there exists y′ ∈
f
(1)
7 (x) such that

|f̃7
(1)

(x̃) − y′| ≤ δ|ỹ′| + δ
1
3 ≤ δ(δ

1
3 + |y′|) + δ

1
3 ≤ 2δ

1
3 + δ|y′|. (C.14)

Defining f
(2)
7 : We define f (2)7 as the following map for vector scaling

f
(2)
7 : C × Cn −→ Cn

(α, v) 7→ αv

134 Appendix C. Some omitted technical details from Chapter 5

For some x = (α, v) ∈ C × Cn in the input space, we define ||x|| = |α|2 + ||v||2 and
the norm on the output space is the usual l2 norm on vectors.

Let x = (α, v), x̃ = (α̃, ṽ) ∈ C × Cn such that ||x̃− x|| ≤ δ ≤ 1. Then

||f (2)7 (x̃) − f
(2)
7 (x)||2 =

n∑
i=1

|α̃ṽi − αvi|2

≤ 2
n∑

i=1

(
|α̃|2|ṽi − vi|2 + |vi|2|α̃− α|2

)

≤ 2
(

|α̃|2δ2 + δ2
n∑

i=1
|vi|2

)

≤ 2δ2
(

2(|α|2 + 1) +
n∑

i=1
|vi|2

)
≤ 4δ2(||x||2 + 1).

(C.15)

We also define f̃7
(2) as the algorithm for vector scaling in finite arithmetic. More

formally, it takes in x = (α, v) ∈ C × Cn and computes y ∈ Cn such that yi =
fl(α× vi) as defined in Section 1.2.2.

If f̃7
(2) is executed on x̃ = (α̃, ṽ) ∈ C × Cn on a machine with precision δ, this

gives us that

||f̃7
(2)

(x̃) − f
(2)
7 (x̃)|| =

√√√√ n∑
i=1

|fl(α̃ṽi) − α̃ṽi|2 = δ|α̃|

√√√√ n∑
i=1

||ṽi||2 ≤ δ||x̃||2

2 . (C.16)

Combining (C.15) and (C.16) along with the fact that ||x̃|| ≤ ||x|| + δ ≤ ||x|| + 1, we
get that

||f̃7
(2)

(x̃) − f
(2)
7 (x)|| ≤ δ

(||x̃||2

2 + 2
√
(||x||2 + 1)

)
≤ δ

(
||x||2 + 1 + 2

√
(||x||2 + 1)

)
≤ δ(

√
||x||2 + 1 + 1)2 ≤ 2δ(||x||2 + 2).

(C.17)

Defining f7: Let the input space to be X7 := Cn × (Cn)n and the output space to
be Y7(n) := (Cn)n. Finally we define f7 to be the following map

f7 : X7 −→ Y7(n)

(α1, ...,αn), (v1, ..., vn) 7→ {y|yi = f
(2)
7 (y

(1)
i , vi) for all y(1)i ∈ f

(1)
7 (αi)}

We also define f̃7 to be the following algorithm run with machine precision δ: On
input x = (α1, ...,αn), (v1, ..., vn) ∈ X7, f̃7 performs the following computations:

• Computes y(1)i = f̃7
(1)

(αi) for all i ∈ [n] with precision δ .

• Computes yi = f̃7
(2)

(y
(1)
i , vi) on machine with precision u := 6δ 1

3 (||x|| + 1) 1
3 .

• Outputs y = (y1, ..., yn) ∈ Y7(n).

The following theorem is the main theorem of this section.

C.2. Remaining proofs from Section 5.3 135

Theorem C.2.7. Let x, x̃ ∈ X7 such that ||x− x̃|| ≤ δ ≤ 1
216(||x||+1) . If f̃7 is run on

a machine with precision δ, then there exists y ∈ f7(x) such that

||f̃7(x̃) − y|| ≤ 2u
(

2n+ (n||x||)
2
3 + ||x||2

)
.

Proof. Let x = (α1, ...,αn), (v1, ..., vn) ∈ X7 and x̃ = (α̃1, ..., α̃n), (ṽ1, ..., ṽn). Since
||x̃− x|| ≤ δ, it also follows that |α̃i − αi| ≤ δ. Then using (C.14), we get that there
exists y(1)i ∈ f

(1)
7 (αi) such that

|f̃7
(1)

(α̃i) − y
(1)
i | ≤ δ|y(1)i | + 2δ

1
3

for all i ∈ [n]. Notice that ỹi = (f̃7
(1)

(α̃i), ṽi) and yi = (y
(1)
i , vi) are the inputs to

f̃7
(2) and f

(2)
7 respectively. Using the facts that |y(1)i |3 = |αi| ≤ ||x|| and ||ṽi − vi|| ≤

||x̃− x|| ≤ δ, this implies that

||ỹi − yi|| =
√

|f̃7
(1)

(α̃i) − y
(1)
i |2 + ||ṽi − vi||2

≤
√
(δ|y(1)i | + 2δ 1

3)2 + δ2

≤ 3δ
1
3 (||x||

1
3 + 1)

≤ 6δ
1
3 (||x|| + 1)

1
3 =: u ≤ 1.

Running f̃7
(2) with machine precision u and using (C.17), we get that

||f̃7
(2)

(ỹi) − f
(2)
7 (yi)|| ≤ 2u(||yi||2 + 2). (C.18)

Since, |y(1)i |3 = |αi|, using Jensen’s inequality on the cube root function, we also get
that ∑n

i=1 |y(1)i |2

n
≤
(∑n

i=1 |αi|2

n

) 1
3

≤
(||x||2

n

) 1
3

(C.19)

Using this along with the fact that ∑n
i=1 ||vi||2 ≤ ||x||2 gives us that

n∑
i=1

||yi||2 =
n∑

i=1

(
|y(1)i |2 + ||vi||2

)
≤ (n||x||)

2
3 + ||x||2.

Putting this back in (C.18), we can conclude that

||f̃7(x̃) − f7(x)|| =

√√√√ n∑
i=1

||f̃7
(2)

(ỹi) − f
(2)
7 (yi)||2

≤

√√√√4u2
n∑

i=1

(
(||yi||2 + 2)

)2

≤ 2u
(

2n+
n∑

i=1
||yi||2

)
≤ 2u

(
2n+ (n||x||)

2
3 + ||x||2

)
.

136 Appendix C. Some omitted technical details from Chapter 5

C.3 Diagonalisation is a (6n
3
2 , 4n)-continuous function

Recall from Section C.2.1 that we had defined f4 to be the function corresponding
to matrix diagonalisation. More formally, it takes as input a diagonalisable matrix A
and outputs the set of eigenvectors of A.

Also, recall that in Definition 5.2.1 we had defined the notions of continuity of
functions belonging to {f : Cm −→ Cn} . This definition can be extended similarly
to the case of functions belonging to {f : Cm −→ P(Cn)}. We mention it here for
completeness.

Definition C.3.1. Let f : S ⊂ CM −→ P(CN) with condition number κf and let
u ∈ R+. Let x ∈ S be an input for f such that B(x,u) ⊂ S. We call f to be an
(a, b)-continuous function on subdomain S at scale u if for all x̃ ∈ B(x,u) such that
x̃ ∈ dom(f), y ∈ f(x) and ỹ ∈ f(x̃) such that

• ||f(x̃) − y|| ≤ uaκf (x).

• κf (x̃) ≤ bκf (x).

where a, b ∈ R+.

We finally show that f4 is indeed a continuous function.

Claim C.3.2. f4 is a (6n 3
2 , 4n)-continuous function at scale δ3 > 0 on domain

S4 := {A is diagonalisable and has distinct eigenvalues and κeig(A) <
1

8δ3
}.

Proof. Let A ∈ S4 such that B(A, δ3) ⊆ S4 let Ã ∈ B(A, δ3). Using Lemma 3.3.9,
Ã is diagonalisable with distinct eigenvalues and hence Ã ∈ dom(f4). Then using
Corollary 3.3.11.1, we get that there exist eigenvectors y = (v1, ..., vn) ∈ f4(A) and
ỹ = (ṽ1, ..., ṽn) ∈ f4(Ã) such that

||ỹ− y|| =

√√√√ n∑
i=1

||vi − ṽi||2 ≤ 6n
3
2κeig(A)ε3 (C.20)

up to scaling by cube roots of unity.
Let λ1, ...,λn be the eigenvalues of A and λ′

1, ...,λ′
n be the eigenvalues of Ã. Then

using Corollary 3.3.11.1, we get that |λi − λ′
i| ≤ κV (A)δ3. Therefore, we have that

for all i ̸= j ∈ [n],

gap(A) ≤ |λi − λj |
≤ |λ′

i − λ′
j | + |λi − λ′

i| + |λj − λ′
j |

≤ |λ′
i − λ′

j | + 2κV (A)δ3

Since, δ3 <
1

8κeig(A) =
8gap(A)
κV (A) , we get that gap(Ã) ≥ 3gap(A)

4 . Using Lemma 3.3.9, we

also get that κV (Ã) ≤ κF
V (Ã)

2 ≤ 3nκV (A). Combining these, we finally get that

κ4(Ã) = κeig(Ã) =
κV (Ã)

gap(Ã)
≤ 3nκV (A)

3gap(A)
4

= 4nκeig(A). (C.21)

Combining (C.20) and (C.21), we get that f4 is indeed a (6n 3
2 , 4n)-continuous function

on the domain S4 at scale δ3 > 0.

C.4. Appendix to Section 5.6.2 137

C.4 Appendix to Section 5.6.2

C.4.1 Setting y5:

The goal of this section is to show that g̃5 is an (ε4, ε5)-algorithm for computing g5
on domain D5 = h4(D1) (refer to (5.20) for the definition of the functions). We also
use the conclusion of Section 5.6.2, that is, for the parameter p mentioned in the
hypothesis of Theorem 4.3.6, h̃4,p is an ((1 − 1

n − 12
n2), ε0, ε4)-algorithm on probability

space P for computing h4 on subdomain D1. Since, h5 = g5 ◦s h4 and h̃5,p = g̃5 ◦
h̃4,p, using Corollary 5.4.2.1, we get that h̃5,p is an (1 − 1

n − 12
n2 , ε0, ε5)-algorithm on

probability space P for computing h5 on domain D1.
Recall here from Section C.2.2 (and the definition of g5 in (5.15)) that this cor-

responds to Step 5 of Algorithm 8 and here we will use the map designed for matrix
inversion, i.e. f2.

Relation to Step 5 of the Algorithm: From the definition of g4 in (5.16),
it takes in as input y5 = (V ,T) ∈ D5 = h4(D) ⊆ X2 × (Cn)⊗3. Since, g5 =
(ψmatrow ◦ f5 ◦ π1) × Id, the input to f5 is x5 = π1(y5). Then the output at the end
of the step is g5(y5) = (ψmatrow(f2(x5)), y5). Since f2 is the map for matrix inversion
defined in Section 5.3.2, we have g5(V ,T) = ((w1, ...,wn), (V ,T)) where w1, ...,wn

are the rows of V −1. The following is the main result of this section.

Claim C.4.1. g̃5 is an (ε4, ε5)-algorithm for computing g5 on domain D5.

Proof idea: The proof strategy for this section is almost the same as Section
5.6.2. Recall that the condition number for f5, denoted by κ2 is defined in Section
C.2.2. We want to show that κ2(x5) is bounded and the rest of the proof idea remains
the same.

Proof. Let y5 ∈ D5 and ỹ ∈ B(y5, ε4). We define x5 = π1(y5) and x̃5 = π1(ỹ5) as the
inputs to f5 and f̃5 respectively. Since ||ỹ5 − y5|| ≤ ε4, this also implies that

||x̃5 − x5|| ≤ ε4. (C.22)

In Section 5.3.2, for some x ∈ X2, we had defined the condition number for f2 to
be κ2(x) = κF (x). Since x5 ∈ π1(D5) = π1(g4(D4)), using (5.42), we have that
κ2(x5) = κF (x5) ≤ n+ B2

4 . Then using this and applying Lemma C.1.1,

ε4.
√
κ2(x5) ≤ ε4.

√
n+

B2

4 ≤
√
ε4
2 ≤ 1

8, (C.23)

we can also conclude that x5 ∈ I2(ε4). Putting this in Theorem 5.3.11, using (C.22)
and Lemma C.1.1, we get that

||f̃2(x̃5) − f2(x5)|| ≤ ε4.(n
(
κ2(x5)

)log n

)α5 ≤ ε4(nB)α′
5 log(n) ≤

√
ε4
2 =

ε5
2 . (C.24)

138 Appendix C. Some omitted technical details from Chapter 5

The final inequality follows from the definition of εi in (5.19). Following the definition
of g5 and g̃5 from (5.15), we finally get that

||g̃5(ỹ5) − g5(y5)||

=
√

||ψmatrow(f̃2(π1(ỹ5))) −ψmatrow(f2(π1(y5)))||2 + ||Id(ỹ5) − Id(y5)||2

=
√

||f̃2(π1(ỹ5)) − f2(π1(y5))||2 + ||Id(ỹ5) − Id(y5)||2

≤

√
ε2

5
4 + ε2

4 ≤ ε5.

(C.25)

This shows that g̃5 is an (ε4, ε5)-algorithm for computing g5 on subdomain D5.

Following the definition of gi from (5.15), we get that π1(g5(D5)) = ψmatrow(f2(π1(D5))).
For all y5 ∈ π1(g5(D5)), we compute an upper bound on ||y5|| , which we will
require later in Section C.4.3. From the previous discussion, we know that for
y5 = (V ,T) ∈ D5, g5(y5) = ((w1, ...,wn), (V ,T)) where w1, ...,wn are the rows
of V −1. Using (5.42),

||π1(g5(y5))|| = ||f2(π1(y5))|| =
n∑

i=1
||wi||2 = ||V −1||F ≤

√
κF (V) =

√
n+

B2

4 .

(C.26)

C.4.2 Setting y6:

The goal of this section is to show that g̃6 is an (ε5, ε6)-algorithm for computing
g6 on domain D6 = h5(D1) (refer to (5.20) for the definition of the functions). We
also use the conclusion of Section C.4.1, that is, for the parameter p mentioned
in the hypothesis of Theorem 4.3.6, h̃5,p is an ((1 − 1

n − 12
n2), ε0, ε5)-algorithm on

probability space P for computing h5 on subdomain D1. Since, h6 = g6 ◦s h5 and
h̃6,p = g̃6 ◦ h̃5,p, using Corollary 5.4.2.1, we get that h̃6,p is an (1 − 1

n − 12
n2 , ε0, ε6)-

algorithm on probability space P for computing h6 on domain D1.
Relation to Step 6 of the Algorithm: Following the definition of g6 from

(5.15), g6 takes as input y6 =

(
(w1, ...,wn), (V ,T)

)
∈ D6 = h5(D) ⊆ (Cn)n ×X6.

Since g6 = (f6 ◦ π2)× π1, the input to f6 is x6 = π2(y6). Then the output at the end
of the step is g6(y6) = (f6(x6), (w1, ...,wn)). Following the definition of f6 in Section
C.2.3 which computes the trace of the slices after a change of basis of the tensor T by
the matrix V . More formally, g6(y6) = ((α1, ...,αn), (w1, ...,wn)) where αi = Tr(Si)
for all i ∈ [n] such that S = (V ⊗ V ⊗ V).T and S1, ...,Sn are the slices of S .

Remark C.4.2. Following the definition of g5 and g4 from (5.15), we have that
π2 ◦ g5 = Id where Id is the identity function. Using this, we get that there exists
some y ∈ D4 such that x6 = π2(g5(g4(y))) = g4(y) = (V ,T). Moreover from the
definition of g4, we also get that since (V ,T) is in the output space of g4, for all
columns vi of V , ||vi|| = 1. This in turn, implies that ||V ||F ≤

√
n.

The following is the main result of this section.

Claim C.4.3. g̃6 is an (ε5, ε6)-algorithm for computing g6 on domain D6.

Proof. Let y6 ∈ D6 and ỹ6 ∈ B(y6, ε5) which are the inputs to g6 and g̃6 respectively.
Then the inputs to f̃6 and f6 are set as x̃6 = π2(ỹ6) and x6 = π2(y6) = (V ,T)

C.4. Appendix to Section 5.6.2 139

respectively. Since, ||ỹ6 − y6|| ≤ ε5, this in turn implies that

||x̃6 − x6|| ≤ ε5. (C.27)

In Section C.2.3, we had defined the condition number for Step 6 to be κ6(x) =
(||x|| + 1)3. Using Remark C.4.2 and (5.41), then we get that

κ6(x6) ≤ (||x6|| + 1)3 ≤ (
√
n+B3 + 1)3.

Putting this in Theorem 5.3.11 and using (C.27) and Lemma C.1.1,it follows that for
large enough n and for some appropriate constant m′

6,

||f̃6(x̃6) − f6(x6)|| ≤ ε4.(n
(
κ6(x6)

)log n

)m6 ≤ ε5(nB)m′
6 log(n) ≤

√
ε5
2 =

ε6
2 . (C.28)

Following the definition of g6 and g̃6 from (5.15), using this, we get that

||g̃6(ỹ6) − g6(y6)||

=
√

||π1(ỹ6)) − π1(y6)||2 + ||f̃6(π2(ỹ6)) − f6(π2(y6))||2

≤

√
ε2

5 +
ε2

6
4 ≤ ε6.

(C.29)

This shows that g̃6 is an (ε5, ε6)-algorithm for computing g6 on subdomain D6.

Now for all y6 ∈ D6, we want to compute a bound on ||f6(π2(y6))|| which we will
use later in Section C.4.3. From the discussion in this section, we already know that
y6 = ((w1, ...,wn), (V ,T)) and g6(y6) = ((α1, ...,αn), (w1, ...,wn)). Moreover,since,
D6 = h6(D1) as defined in (5.21), y6 = h6(y1) for some y1 ∈ D1. From the assumption
of Theorem 5.6.2, we get that y1 = (T , a, b) satisfies the (n,B)-input Conditions
4.3.5 which in turn implies that T is a diagonalisable tensor and κ(T) ≤ B (refer
to Definitions 1.4.3 and 4.1.1 for the corresponding definitions). If U is a matrix
that diagonalises the input tensor T , then ||U ||F ≤

√
κF (U) ≤

√
B. From (4.6),

we get that there exist scalars k1, ..., kn ∈ C such that V = U−1D where D =
diag(k1, ..., kn). Hence, (UV)T ei = DT ei = kiei. Then, using (4.7, |αi| = |ki|3 =
||(UV)T ei||3. Since using the previous discussion and Remark C.4.2 we have that
||UV ||F ≤ ||U ||F ||V ||F ≤

√
nB, we can finally conclude that

||f6(π2(y6))|| =

√√√√ n∑
i=1

|αi|2 =

√√√√ n∑
i=1

||(UV)T ei||6

≤ (
n∑

i=1
||(UV)T ei||2)

3
2 ≤ (nB)

3
2 .

(C.30)

C.4.3 Setting y7:

The goal of this section is to show that g̃7 is an (ε6, ε7)-algorithm for computing g7
on domain D7 = h6(D1) (refer to (5.20) for the definition of the functions). We also
use the conclusion of Section C.4.2, that is, for the parameter p mentioned in the
hypothesis of Theorem 4.3.6, h̃6,p is an ((1 − 1

n − 12
n2), ε0, ε6)-algorithm on probability

space P for computing h6 on subdomain D1. Since, h7 = g7 ◦s h6 and h̃7,p = g̃7 ◦ h̃6,p,
using Corollary 5.4.2.1, we finally get that h̃7,p is an (1 − 1

n − 12
n2 , ε0, ε7)-algorithm on

probability space P for computing h7 on domain D1.

140 Appendix C. Some omitted technical details from Chapter 5

Relation to Step 7 of the algorithm: Following the definition of g7 from
(5.15), we know that g7 takes as input y7 = ((α1, ...,αn), (w1, ...,wn)) ∈ g6(D6) ⊆
Cn × (Cn)n = X7 and computes (l1, ..., ln) where li = βiwi such that β3

i = αi.
The following is the main result of this section which will complete the proof of

Theorem 5.6.2.

Claim C.4.4. g̃7 is an (ε6, ε7)-algorithm for computing g7 on domain D7.

Proof. We set y7 ∈ D7 and ỹ7 ∈ B(y7, ε6). Recall that X7 is the domain of definition
of f7, defined in Section C.2.4. Since, D7 ⊆ X7, then the inputs to f̃7 and f7 are ỹ7
and y7 as well, respectively.

First we compute a bound on ||y7||. By the definition of D7 from (5.21), y7 =
g6(y6) for some y6 ∈ D6. Following the definition of g6 = (f6 ◦s π2) × π1 from (5.15),
using (C.26) and (C.30),

||y7|| =
√

||f6 ◦ π2(y6)||2 + ||π1(y6)||2 ≤

√
n3B3 + n+

B2

4 ≤ 2n
3
2B

3
2 .

Now, for large enough n, ε6 = 1
nc6 log2(nB

ε)
≤ 1

216(2n
3
2 B

3
2 +1)

≤ 1
216(||y7||+1) . Then, we

can apply Theorem 5.3.11 along with Lemma C.1.1 to get that there exists some
y
(g)
7 ∈ g7(y7) such that

||g̃7(ỹ7)−y
(g)
7 || ≤ 12ε

1
3
6 (

√
n||x7||+ 1)

1
3 (2n+ ||x||27 +n

2
3 ||x7||

2
3) ≤ 192ε

1
3
6 n

11
3 B

7
2 ≤ (ε6)

1
6 = ε7.

(C.31)
Since g7 = f7 and g̃7 = f̃7 from (5.15), we finally conclude that g̃7 is an (ε6, ε7)-
algorithm for computing g7 on subdomain D7.

	Abstract
	Résumé en français
	Introduction
	Tensors and polynomials
	Tensors
	Polynomials
	Tensor polynomial equivalence:

	Models of computation
	Algebraic Models of Computations
	The Blum-Shub-Smale Model:
	Black-box model

	Finite precision arithmetic

	Numerical Algorithms and Condition Numbers
	Contributions to Numerical Stability of Algorithms

	Tensor Decompositions
	Symmetric tensor decomposition
	Diagonalisable tensors:
	Approximate tensor decomposition
	Algorithms for Tensor Decompositions
	Contributions to tensor decomposition
	Condition numbers for tensor decomposition

	Reconstruction Algorithms
	Absolute reconstruction
	Polynomial equivalence testing:
	Sums of powers of linear forms

	Contributions to Absolute Reconstruction

	Absolute Reconstruction for Sums of Powers of Linear Forms
	Introduction
	Methods and proof strategies
	Sums of cubes
	Extension to higher degree:

	Organization of this chapter
	Notations

	Faster algorithm for sums of cubes
	Characterization of equivalence to P3
	Analysis for positive inputs
	Failure of commutativity
	Failure of diagonalisability
	Analysis for negative inputs

	Equivalence to a linear combination of d-th powers
	The Algorithm
	Characterisation of equivalence to Pd
	Analysis for positive inputs
	Analysis of negative inputs
	Failure of commutativity
	Failure of diagonalisability
	Finishing the analysis for negative inputs

	Variable Minimization
	Reconstruction Algorithm for Pd
	 Complexity analysis for equivalence to a sum of cubes
	Complexity analysis for equivalence to some polynomial in Pd
	Complexity Analysis in the algebraic model
	Complexity analysis for the bit model

	Numerical Linear Algebra
	Preliminaries: Fast and Stable Linear Algebra
	Finite precision arithmetic
	Matrix Multiplication and Inversion

	Slices after a change of basis
	Diagonalisation algorithm for diagonalisable matrices

	Numerical Algorithm for Tensor Decomposition
	Introduction
	Simplified Algorithm
	Organization of the chapter
	Ideas for algorithm design
	Trace of the slices after a change of basis

	Tensor decomposition for complete symmetric tensors in exact arithmetic
	Complete Decomposition of Symmetric Tensors in Finite Arithmetic
	Uniqueness of Tensor Decompositions
	Finite-precision Jennrich's Algorithm for Symmetric Tensors
	Proof Strategy of Theorem 4.3.4:
	Proof ideas for probabilistic analysis in Chapter 6:

	Proof Ideas of Theorem 4.3.6
	Matrix diagonalisation
	Finite precision analysis of tensor decomposition:

	Numerical Algorithms
	Overview of the Chapter:
	Analysis of numerical stability of algorithms:
	Application to the analysis of Algorithm 8:

	Numerical Stability of Algorithms
	Defining functions and a robustness result
	Step 1:
	Step 2:
	Step 3:
	Conclusion:

	Composition Theorem
	Algorithm 7 as a composition of simple functions
	Error analysis of Algorithm 8:
	Writing Algorithm 8 as a composition of functions
	Rewriting Algorithm 8:

	Proof of Theorem 5.6.2:
	Starting with y1:
	Setting y2:
	Setting y3:
	Setting y4:

	Finishing the proof of Theorem 4.3.6

	Probability Analysis of Condition Numbers and Gap
	Introduction
	Some definitions and bounds on norms of polynomials
	Towards a proof of Theorem 4.3.4
	Finishing the proof of Theorem 4.3.4

	Appendix to Chapter 2
	Computing the complexity of the randomized algorithm in KS21 and comparing it with our algorithm
	Complexity analysis for variable minimization

	Appendix to Chapter 3
	Proof of Theorem 3.3.12

	Some omitted technical details from Chapter 5
	Some technical lemmas
	Remaining proofs from Section 5.3
	Step 4:
	Step 5:
	Step 6:
	Step 7:

	Diagonalisation is a (6n32,4n)-continuous function
	Appendix to Section 5.6.2
	Setting y5:
	Setting y6:
	Setting y7:

