This property is at the heart of their analysis of the robustness of Jennrich's algorithm.

This polynomial is equivalent to P 3 (x 1 , x 2 ) = x 3 1 + x 3 2 over R and C but not over Q.

iii Abstract A symmetric tensor is a multi-dimensional array with entries that are invariant under all permutations of its indices and it is equivalent to a homogeneous polynomial with degree equal to the order of the tensor. In this thesis, we study in the decomposition of an order-d symmetric tensor T over C as a sum of symmetric rank-one tensors, that is, decompositions of the form T = r i=1 u ⊗d i where u i ∈ C n . In order to obtain efficient algorithms, it is necessary to add certain restrictions to these tensors. In most of our algorithms throughout this thesis, we treat the case where the u i 's are linearly independent and such a decomposition is essentially unique. This forces the number of summands, r to be at most n and if r = n, then the tensor is called diagonalisable. Given a tensor T , we are interested in the following two algorithmic questions: 1) is it diagonalisable? and 2) if it is diagonalisable, output a decomposition. We give an answer to the first question in the algebraic model of computation. More specifically, given oracle access to a blackbox for the degree-d homogeneous polynomial equivalent to an order-d tensor T ∈ C n ⊗ ... ⊗ C n , we can verify in polynomial (in n, d) time in the Blum-Shub-Smale model of computation, whether the tensor is diagonalisable or not. We also extend this to the case where the number of summands is strictly less than n. We also give a numerically-stable algorithm that solves the second question approximately. More formally, given an order-3 symmetric tensor T that is diagonalisable and a desired accuracy parameter ε, we give an algorithm that outputs a decomposition which is ε-close (in the l 2 norm) to the actual decomposition. It runs in linear time and requires polylogarithmic bits of precision when run on a finite precision machine.

Résumé en français

Un tenseur symétrique est un tableau multidimensionnel dont les entrées sont invariantes sous toutes les permutations de ses indices et il est équivalent à un polynôme homogène dont le degré est égal à l'ordre du tenseur. Dans cette thèse, nous étudions la décomposition d'un tenseur symétrique d'ordre d, noté T , sur C en tant que somme de tenseurs symétriques de rang un, c'est-à-dire des décompositions de la forme T = r i=1 u ⊗d i où u i ∈ C n . Afin d'obtenir des algorithmes efficaces, il est nécessaire d'ajouter certaines restrictions à ces tenseurs. Dans la plupart de nos algorithmes, nous traitons le cas où les u i sont linéairement indépendants et une telle décomposition est essentiellement unique. Cela implique que le nombre de termes de la somme, r, soit au plus n, et si r = n, le tenseur est appelé diagonalisable. Étant donné un tenseur T , nous nous intéressons aux deux questions algorithmiques suivantes : 1) est-il diagonalisable ? et 2) s'il est diagonalisable, produire une décomposition. Nous répondons à la première question dans le cadre du modèle de calcul algébrique. Plus précisément, en ayant accès à un oracle pour une boîte noire représentant le polynôme homogène de degré d équivalent à un tenseur d'ordre d, T ∈ C n ⊗ . . . ⊗ C n , nous pouvons vérifier en temps polynomial (en n et d) dans le modèle de calcul de Blum-Shub-Smale si le tenseur est diagonalisable ou non. Nous étendons également cela au cas où le nombre de termes de la somme est strictement inférieur à n. Nous donnons également un algorithme numériquement stable qui résout approximativement la deuxième question. Plus formellement, étant donné un tenseur symétrique d'ordre 3, T , qui est diagonalisable, et un paramètre de précision souhaité ε, nous donnons un algorithme qui produit une décomposition qui est ε-proche (au sens de la norme l 2 ) de la décomposition réelle. Il s'exécute en temps linéaire et nécessite un nombre de bits polylogarithmique de précision lorsqu'il est exécuté sur une machine à précision finie.

Chapter 1 Introduction

Tensors are important algebraic objects that appear in different branches of science such as mathematics, physics, computer science and chemistry. For most of our purposes, tensors can be viewed as a multi-dimensional array with entries from the underlying field K. Following this, order-1 tensors are vectors and order-2 tensors are essentially matrices.

One fundamental question that people have been interested in is the decomposition of tensors into its rank-one components. In this thesis, we look at the following two algorithmic problems related to these decompostions:

• Decision problem: Given a tensor T and some fixed number r, does there exist a decomposition of the tensor T as a sum of r rank-one components?

• Search problem: If it is given that such a decomposition exists, find such a decomposition.

Tensor decompositions have generated significant interest in recent years due to their applications in different fields such as signal processing, computer vision, chemometrics, neuroscience and others (see [START_REF] Kolda | Tensor Decompositions and Applications[END_REF] for a comprehensive survey on the applications and available software for this problem). In fact, a number of learning algorithms for certain models have been developed through the fundamental machinery of tensor decompositions. Pure topic models ( [START_REF] Anandkumar | A Method of Moments for Mixture Models and Hidden Markov Models[END_REF]), blind source separation and independent component analysis ( [START_REF] De Lathauwer | Fourth-order cumulant-based blind identification of underdetermined mixtures[END_REF]), Hidden Markov Models ( [START_REF] Mossel | Learning Nonsingular Phylogenies and Hidden Markov Models[END_REF], [START_REF] Daniel | A spectral algorithm for learning hidden markov models[END_REF]), mixture of spherical gaussians ( [START_REF] Hsu | Learning Mixtures of Spherical Gaussians: Moment Methods and Spectral Decompositions[END_REF], [START_REF] Ge | Learning Mixtures of Gaussians in High Dimensions[END_REF]), Latent Dirichlet Allocation ([AFH + 12]). Numerous algorithms have been devised for solving the tensor decomposition problem with different assumptions on the input tensor and different efficiency and accuracy bounds [Har70, LRA93, BCMT09, BGI11, GVX14, BCMV14, AGH + 14, GM15, HSS15, MSS16, KP20, BHKX22, DdL + 22].

In this thesis, we are interested in symmetric tensors that satisfy certain genericity conditions (we refer to these as diagonalisable tensors) and we will see in Section 4.3.1 that such a decomposition is essentially unique. We consider the decision problem from an algebraic complexity point of view -if an arbitrary symmetric tensor is given succinctly, we give an algebraic algorithm that runs in polynomial time to verify if it has a decomposition that satisfies the genericity conditions. Polynomials are the main objects of study in algebraic complexity theory -in Section 1.1.3 we explore their equivalence with tensors. We define the algebraic model of computation in Section 1.2.1 and discuss the relation of the decision problem with reconstruction algorithms and the problem of polynomial equivalence testing in algebraic complexity theory in Sections 1.5 and 1.5.2. We also consider the search problem but from the point of view of numerical algorithms (we discuss this in more detail in Section 1.3). We fix the standard finite-precision arithmetic to be the underlying model of computation. This model is explained in more detail in Section 1.2.2. In this setting, if the order-3 symmetric tensor given explicitly as input has a decomposition that satisfies some genericity conditions, then we give an algorithm that solves the search problem approximately -it outputs a solution which is close to the actual decomposition of the tensor.

Tensors and polynomials

Tensors

From a mathematical point of view, tensors describe a (multi)-linear relationship between products of vector spaces (and their duals). In linear algebra, a multilinear map is a function of several variables that is linear separately in each variable. Let V 1 , • • • , V d be vector spaces over the field K. Formally, an order d tensor is an element of the set of all multilinear maps {ϕ :

V * 1 × • • • × V * d - → K}
where V * i denotes the dual of the vector space V i . When each of these V i 's have a finite basis, then the tensors can be written as a multi-dimensional array with entries from the underlying field K. Following this definition, order-1 tensors are vectors and order-2 tensors are essentially bilinear maps.

For the rest of this thesis, we will fix the underlying vector spaces to be either R n or C n for some n and then we can consider tensors to be multi-dimensional arrays. If T ∈ C I 1 ⊗ • • • C I d , then for a particular k ∈ [d], the k-th mode is C I k . The order of a tensor is then the number of dimensions (also referred to as modes). Let a (1) , • • • , a (k) be vectors such that a (i) ∈ C I k . Then their tensor product (also, sometimes referred to as the outer product) denoted by T = a (1) ⊗ • • • ⊗ a (k) is an element in the vector space C I 1 ⊗ • • • C I k . When written as a multi-dimensional array, for all i t ∈ [I t ] for t ∈ [k],

T i 1 ,••• ,i k = a (1) i 1 a (2) i 2 • • • a (k) i k .
An order-d tensor T ∈ C I 1 ⊗ • • • C I d is defined to be a rank-one tensor if there exist vectors a (1) , • • • , a (d) ̸ = 0 where a (k) ∈ C I k for all k ∈ [d] such that T = a (1) ⊗ • • • ⊗ a (d) .

A tensor is called cubical if T ∈ C Iו••I for a particular I (that is, every mode has the same size.) A cubical tensor is called symmetric if its elements remain constant under any permutation of indices. For example,

T ∈ C I ⊗ C I ⊗ C I is symmetric if for all i, j, k ∈ I T ijk = T ikj = T jik = T jki = T kij = T kji .

Polynomials

A degree d polynomial in

P ∈ F[x 1 , • • • , x n ] is called homogeneous if all monomials have same total degree d, that is for m = x e 1 1 • • • x en n , e 1 + • • • + e n = d. A polynomial P ∈ F[x 1 , • • • , x n ]
is said to be multilinear if for all monomials m = x e 1 1 ...x en n such that coeff m (f ) ̸ = 0, e i ≤ 1. A homogeneous polynomial P ∈ F[x 1 , • • • , x n ] of degree d is said to be set-multilinear if there exists a partition of the set of variables {x 1 , • • • , x d } into sets S 1 , • • • , S d such that every monomial with a non-zero coefficient in P contains exactly one variable from each S i . More formally, every monomial in P has the form d i=1 x (i) where x (i) ∈ S i .

Tensor polynomial equivalence:

We can associate to a symmetric tensor T of order d the homogeneous polynomial

f (x 1 , ..., x n ) = n i 1 ,••• ,i d =1 T i 1 ,••• ,i d x i 1 x i 2 • • • x i d .
This correspondence is bijective, and the symmetric tensor associated to a homogeneous polynomial f can be obtained from the following relation: for i 1 , • • • , i d ∈ [n], the (i 1 , • • • , i d )-th entry of the tensor can be extracted from the partial derivative of the polynomial with respect to the monomial x i 1 ...x i d .

To write the expression more formally, we will set up some notation. For a monomial m = x e 1 1 ...x en n , we denote by ē = (e 1 , • • • , e n ) the tuple of indices of the respective variables. Then we define ē! = ( n i=1 e i )! e 1 !...en! . Let us assume we want to extract the (i 1 , • • • , i d )-th entry of the tensor

T i 1 ,••• ,i d .
Using this notation, we can write the corresponding monomial x i 1 ...x i d as m = x e 1 1 ...x en n for some appropriate e 1 , • • • , e n ≥ 0. Then we get that the corresponding entry of the tensor is given by the following relation

1 ē! ∂ d f ∂x i 1 ...x i d = T i 1 ,••• ,i d (1.1)
When the condition of symmetry is dropped from the tensor (often referred to as ordinary tensors), one can show similarly that an ordinary degree-d tensor is equivalent to a homogeneous set-multilinear polynomial (defined in Section 1.1.2).

Models of computation

In computer science, the computational complexity or simply complexity of an algorithm is the amount of resources (in terms of time taken and memory requirements) required to run the algorithm. Alan Turing in his seminal paper [START_REF] Mathison | On computable numbers, with an application to the Entscheidungsproblem[END_REF] introduced the notion of Turing Machines which is a simple mathematical model that suffices for studying many questions about computational tasks and efficiently solving them. More concretely, let f be a function that takes in a string of bits (that is, the input is in the set {0, 1} * ) and outputs 0 or 1. An algorithm for computing f is a fixed set of instructions that on any input x ∈ {0, 1} * computes f (x). The Turing machine is a formal definition of the mechanical rules that any algorithm must consist of, that is, it can use only these fixed rules arbitrarily many number of times and nothing else. These rules are elementary like reading a bit of the input, writing something or reusing some already written symbols from the given working space or just stopping and giving as output the desired value. The running time of an algorithm is defined to be the number of times these elementary rules are used by the algorithm. (For a more formal definition of Turing machines, refer to [START_REF] Sipser | Introduction to the Theory of Computation[END_REF]). Throughout the rest of this thesis, this is what we will refer to as the bit model of computation.

Algebraic Models of Computations

An arithmetic circuit is a very natural and succinct way of representing polynomials. In fact, it captures exactly the number of arithmetic operations required to evaluate the polynomial on any input. Definition 1.2.1. An arithmetic circuit C over the field F with parameters P = {α 1 , • • • , α p } ⊆ F and set of variables X = {x 1 , • • • , x n } is a finite directed acyclic graph where each vertex (gate) is one of the following:

• A vertex with in-degree 0 labelled by some variable x i or some element in P. If the label is a variable, the vertex is called an input gate.

• A vertex with in-degree 2 labelled by either + or ×.

• An output gate with out-degree zero; we assume there is exactly one output gate.

C computes the polynomial in a natural way: every input gate computes a polynomial in F ∪ X. A vertex with label × (called the product gate) computes the product of the polynomials computed by its children and a vertex with label + (called the sum gate) computes the sum of the polynomials computed by its children. The output gate outputs the polynomial computed by the circuit.

The size of a circuit is the number of vertices in the graph. For a fixed polynomial p, size(p) denotes the minimum size of a circuit computing the polynomial. There are other interesting models of computation as well such as arithmetic formulas (underlying acyclic graph in Definition 1.2.1 is a tree) and arithmetic branching programs (refer to [START_REF] Shpilka | Arithmetic circuits: A survey of recent results and open questions[END_REF] for a good exposition of the different arithmetic models of computation.)

The Blum-Shub-Smale Model:

The Blum-Shub-Smale model is a uniform model of computation due to [START_REF] Blum | On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines[END_REF][START_REF] Blum | Complexity and Real Computation[END_REF]. It constitutes of a generalization of Turing Machines that perform computation over some arbitrary ring R. When R = F 2 , then the BSS model is equivalent to the standard Turing machine model. Note that the definitions in this section are mostly taken from [START_REF] Koiran | Circuits versus trees in algebraic complexity[END_REF].

An algebraic circuit over C is an arithmetic circuit (following Definition (1.2.1)) where in addition to the × and + gates an equality test gate = is allowed. A test gate takes in two elements α, β ∈ C and outputs 1 if α = β and 0 otherwise. Size and depth of algebraic circuits are defined analogously. An algebraic circuit over R can be defined similarly by replacing the equality test gate = by the order ≥ test gate. It takes in two elements α, β ∈ R and outputs 1 if α ≥ β and 0 otherwise. The following complexity classes can then be defined based on algebraic circuits Complexity classes over R and C: A problem is essentially a subset of C ∞ = n≥1 C n . We denote by P C the class of all non-uniform polynomial time problems over C. More formally, a problem X ⊆ C ∞ is in P C if there exists a polynomial p(n) and a family of algebraic circuits (C n ) n≥1 with parameters α 1 , • • • , α p ∈ C where C n has n + p inputs, size(C n ) ≤ p(n) and the following conditions are satisfied:

∀x ∈ C n , x ∈ X ⇐⇒ C n (α 1 , • • • , α p , x 1 , • • • , x n ) = 1.
(1.2)

A problem X is in the class P C of polynomial-time problems if X ∈ P C and the corresponding circuit family (C n ) in (1.2) is uniform. More formally, there exists a polynomial time Turing machine in the classical sense which on input n (in unary) constructs C n . One can similarly define complexity classes P R and P R using algebraic circuits over R. Note: This complexity class can also be defined using a generalization of Turing Machines over C (with the added advantage that basic arithmetic operations (addition, subtraction, multiplication, division, and comparison) take a unit time step to perform) [START_REF] Poizat | Les petits cailloux: une approche modèle-théorique de l'algorithmie. Nūr al-mant . iq wa-al-ma'rifah[END_REF]. More generally, analogous complexity classes can be defined for any arbitrary structures. A structure M is a set equipped with a finite set of functions f i ∈ M n i -→ M and relations r i ⊆ M m i . One can also similarly define corresponding non-deterministic classes NP C and NP C ( Refer to [START_REF] Koiran | Circuits versus trees in algebraic complexity[END_REF] for more formal definitions).

Black-box model

For a lot of algebraic problems, it is necessary to give a polynomial as input. and one can study the different representations of these input polynomials. One simple way to give the polynomial as input is to give a list of the coefficients of the different monomials of the polynomial. But polynomials in n variables and degree d can have ( n+d d ) monomials (which is exponential in n, d).

Recall from Definition 1.2.1 that every polynomial can be represented by an arithmetic circuit. And this representation is succinct in the following sense i.e. there exist polynomials that have exponential in n, d monomials but have a circuit of size polynomial in n, d. For example, the polynomial

p(x 1 , • • • , x n ) = n i=1 (1 + x i ) (1.3)
has 2 n monomials but it has an arithmetic circuit of size 2n. So, often circuits computing a specific polynomial is given as input and this is referred to as the whitebox model of computation. Another way of giving the polynomial as input is by black-box access, which is defined as giving oracle access to the polynomial by evaluation at a certain point. This can be stated more formally in the following way: Let f be a polynomial in

C[x 1 , • • • , x n ]. For any query (α 1 , • • • , α n ) ∈ C n , the oracle returns f (α 1 , • • • , α n ) in unit time.
The choice of models for representing the input polynomials can often affect the hardness of the problem. We will illustrate this using the polynomial identity testing (PIT) problem which is a fundamental problem in algebraic complexity theory. The algorithmic problem is the following: Given a multivariate polynomial P ∈ C[x 1 , • • • , x n ], determine whether P ≡ 0. If the input polynomial is given as a list of coefficients, then PIT becomes trivially linear (in the input size) because one just needs to check if the list has a non-zero element or not. For both the white-box and the black-box model, the problem becomes significantly harder -no deterministic subexponential time algorithms are known in the literature and solving this problem would have major consequences in complexity theory (refer to [START_REF] Shpilka | Arithmetic circuits: A survey of recent results and open questions[END_REF] for a detailed exposition).

Using the fact that the BSS model can be defined equivalently using generalizations of Turing machine model (refer to the note at the end of Section 1.2.1), one can also consider looking at algorithms based on this model (refer to the beginning of Section 1.2 for a discussion of algorithms and Turing machines). As discussed, they can perform basic arithmetic operations (addition, subtraction, multiplication, division, and comparison) as a unit time step irrespective of their size. In Chapter 2, we will fix the underlying model of computation to be the BSS model with oracle access to a black-box computing the polynomial and give certain algebraic algorithms based on this model.

An algorithm is said to run in strongly polynomial time in the BSS model of computation if the following properties are satisfied:

• The number of arithmetic operations is bounded by a polynomial in the size of the input instance

• The bit-size of the numbers on which these arithmetic operations are performed is also polynomial in the size of the input instance.

Any algorithm with these two properties can be converted to a polynomial time algorithm (by replacing the arithmetic operations by suitable algorithms for performing the arithmetic operations on a Turing machine) in the bit size model of computation (refer to the beginning of Section 1.2 for a discussion.) The following is an example of a situation where this is not satisfied: Given the integer 2 n as input (requires O(n) bits of input size in the bit model), one only requires n multiplications to compute 2 2 n (via repeated squaring). But the size of the number of bits in this computation is log(2 2 n ) = 2 n which is exponential in the input size and hence, this algorithm is not strongly polynomial time.

In the algorithms presented in Chapter 2, if the polynomial given as input has coefficients in Q, we show that our algorithms indeed run in strongly polynomial time and by the previous discussion, we get polynomial time running bounds for our algorithms even in the standard Turing machine model of computation. This will be explained in more detail in Section 2.7.2 in Chapter 2.

Finite precision arithmetic

Another widely studied model of computation is the finite precision arithmetic model. In this model, real numbers are rounded to a fixed number of bits which may depend on the input size and accuracy. We use like [START_REF] Banks | Pseudospectral shattering, the sign function, and diagonalization in nearly matrix multiplication time[END_REF] the standard floating point axioms from [START_REF] Nicholas | Accuracy and Stability of Numerical Algorithms[END_REF]. This model can yield actual Boolean complexity bounds and also helps to analyse the stability of the algorithm which we will see in more detail in Chapter 3.

We now elaborate on this model for completeness of the exposition. It is assumed that numbers are stored and manipulated up to some machine precision u which is a function of n, the size of the input and δ which is the desired accuracy parameter. This means that every number x ∈ C is stored as fl(x) = (1 + ∆)x for some adversarially chosen ∆ ∈ C, satisfying |∆| ≤ u and each arithmetic operation * ∈ {+, -, ×, ÷} is guaranteed to yield an output satisfying fl(x * y) = (x * y)(1 + ∆) where |∆| ≤ u (1.4)

It is also standard and convenient to assume that we can evaluate √ x and x 1 3 for any x ∈ C, where again fl( √ x) = √ x(1 + ∆) and fl(x

1
3 ) = y(1 + ∆) for |∆| ≤ u where y is a cube root of x.

Thus, the outcomes of all operations are adversarially noisy due to roundoff. The bit lengths of numbers stored in this form remain fixed at log( 1 u ). An iterative algorithm that can be implemented in finite precision (typically, polylogarithmic in the input size and desired accuracy) is called numerically stable. Note that in this model it is not even assumed that the input is stored exactly.

Numerical Algorithms and Condition Numbers

Recall that we had described the model of finite precision arithmetic in Section 1.2.2. An algorithm in this model cannot compute the desired function exactly, due to the error that can creep in the computation at every step. Algorithms that are mathematically equivalent (that is, they are designed to compute the same function) can perform very differently in the finite precision model. In order to quantifiably characterize these "differences in performance", the notion of numerical stability of an algorithm was introduced. Without an attempt at being exhaustive, the following are the different notions of stability:

• Forward stability: On some input, the algorithm outputs a solution that is close to the exact solution on that input.

• Backward stable: We say f is a backward stable algorithm for computing a function f , if on input x, it outputs f ( x) where x is some point close to x.

In this section we also provide more background on condition numbers in numerical computation. A book-length treatment of this subject can be found in [START_REF] Bürgisser | Condition: The Geometry of Numerical Algorithms[END_REF]. There is no universally accepted definition of a "condition number" in numerical analysis, but a common one, is as follows. Suppose we wish to compute a map f : X → Y . The condition number of f at an input x is a measure of the variation of the image f (x) when x is perturbed by a small amount. This requires the choice of appropriate distances on the spaces X and Y . The condition number is therefore a quantitative measure of the continuity of f at x. In particular, it is independent of the choice of an algorithm for computing f . In finite arithmetic, we cannot hope to approximate f (x) with a low precision algorithm at an input x with a high condition number since we do not even assume that the input is stored exactly. Moreover, designing algorithms that work in low precision at well-conditioned inputs is often a challenging task. This can be elucidated nicely with an example from [START_REF] Beltrán | When can forward stable algorithms be composed stably?[END_REF]. Let A ∈ R m×n where m ≥ n be a left-invertible matrix and b ∈ R m . We consider the problem of finding x ∈ R n such that Ax = b (also known as the over-determined least squares problem). One algorithm for this is to transform the system into a system of normal linear equations which can be solved by Gaussian elimination with full pivoting. But the algorithm is said to be somewhat numerically unstable since the condition number of the Gram matrix A T A (which governs the stability of this algorithm) in the intermediate step is (κ(A)) 2 . Here κ(A) is the condition number of A, defined as κ(A) = ||A||||A † || where A † is the Moore-Penrose inverse of A. A more stable algorithm is obtained by computing a reduced singular value decomposition of A = U SV T , solving the diagonal system Sy = U T b and computing x = V y. [START_REF] Björck | Numerical Methods in Matrix Computations[END_REF] Sometimes, the above continuity-based definition of condition numbers is not suitable. This is for instance the case for decision problems, where the map f is booleanvalued. A popular alternative is to use the inverse of the (normalized) distance to the set of ill-posed instances [BC13, chapter 6]. One can sometimes show that these two notions coincide [BC13, Section 1.3].

Another example that we would be looking at throughout this thesis is the problem of designing numerical algorithms for matrix diagonalisation (which we will explore in more detail in Section 3.3). Suppose for instance that we want to approximate the eigenvectors of a matrix. In order to estimate the condition number in the above sense, we need to understand how the eigenvectors evolve under a perturbation of the input matrix. This is a relatively standard task in perturbation theory, see for instance Appendix A of [START_REF] Bhaskara | Smoothed Analysis of Tensor Decompositions[END_REF] 1 or the proof of Proposition 1.1 in [START_REF] Banks | Pseudospectral shattering, the sign function, and diagonalization in nearly matrix multiplication time[END_REF]. However, until the recent breakthrough [START_REF] Banks | Pseudospectral shattering, the sign function, and diagonalization in nearly matrix multiplication time[END_REF] we did not have any efficient, low-precision algorithm for this task (see Theorem 3.3.4 in Section 3.3 for a precise statement of their result).

One can ask the following question: Is the composition of backward/forward stable algorithms also a backward/forward stable algorithm for computing the composition of the respective functions? The following is an example borrowed from [START_REF] Beltrán | When can forward stable algorithms be composed stably?[END_REF] showing that it is not always true.

Example 1.3.1. Define the functions g : R -→ R as g(x) = x 3 and h : R -→ [1, ∞) as h(x) = x 2 + 1. Let g and h be the respective backward stable algorithms for computing each of these functions in finite precision arithmetic.

Define the function f : R -

→ [ 1 3 , ∞) as f (x) = 1 3 (x 2 + 1).
Then it is easy to check that f can be written as a composition of these functions, that is, f = g • h.

Let us assume the rounding in this model is by rounding downward. More formally, for any x ∈ R, the corresponding element in the finite precision arithmetic denote by fl

(x) ≤ x. Since g • h(0) = fl( 1 3 ) < 1 3 , there is no x ∈ R such that g • h(x) = fl( 1 3
). Hence the algorithm g • h for computing f in finite precision is not backward stable.

One can then attempt to characterize the exact conditions under which composition of stable algorithms yield stable algorithms. This question was studied for the notion of backward stability in [START_REF] Bornemann | A model for understanding numerical stability[END_REF] (also refer to Section 2 of [START_REF] Beltrán | When can forward stable algorithms be composed stably?[END_REF] for a discussion). In [START_REF] Beltrán | When can forward stable algorithms be composed stably?[END_REF], the authors identified two sufficient conditions based on condition numbers for a stable composition of forward stable algorithms.

Contributions to Numerical Stability of Algorithms

In Chapter 5, we introduce the notion of robust numerically stable algorithms -given certain perturbations of the desired input, the algorithm outputs some solution close to the actual solution on the desired input. This is related to the notion of mixed stability in [START_REF] Beltrán | When can forward stable algorithms be composed stably?[END_REF]. We also show that if the function satisfies some continuity conditions (based on the condition number of the problem) and the algorithm computing it is forward stable, then the algorithm is also robust numerically stable. We apply this to certain simple intermediate functions that occur in the numerical algorithm for tensor decomposition (Algorithm 8).

We also define the notion of stable probabilistic algorithms for computing setvalued functions and create a framework for analysing the stability of the composition of these algorithms. More concretely, we show that if two functions satisfy some compatibility criteria and have stable probabilistic algorithms computing them, then the composition of those two algorithms will also be a stable probabilistic algorithm for the composition of the functions.

We create this framework to perform a streamlined analysis of the numerical algorithm for the tensor decomposition problem that we study in Chapter 4. We break the algorithm down into several smaller steps (algorithms), show that each of these steps are compatible and have stable probabilistic algorithms for computing them and hence, their composition is a stable probabilistic algorithm as well.

Tensor Decompositions

Recall that we had defined rank-one tensors in Section 1.1.1. Given an order-d tensor, we want to write it as a sum of rank-one tensors of order d. This is popularly referred to as the CP decomposition with its name originating from the psychometrics community. CP is short for CANDECOMP (canonical decomposition) introduced by Carroll and Chang [START_REF] Carroll | Analysis of individual differences in multidimensional scaling via an n-way generalization of "eckartyoung" decomposition[END_REF] and PARAFAC (parallel factors) introduced by Harshman [START_REF] Ra Harshman | Foundations of the PARAFAC procedure: Models and conditions for an" explanatory" multi-mode factor analysis[END_REF]. More formally, given an order-d tensor

T ∈ C n 1 ⊗ ...C n d (similarly for R),
we want to write it as

T = r i=1 a (1) i ⊗ ... ⊗ a (d) i (1.5)
where r is some positive integer and a

(j) i ∈ C n j for all i ∈ [r], j ∈ [d].
Firstly note, that a decomposition of the tensor of this form always exists. In fact, for any tensor T ∈ C n 1 ⊗ ...C n d , it can be trivially written as

T = i j ∈[n j ] for all j∈[d] T i 1 ,••• ,i d e (1) i 1 ⊗ ... ⊗ e (d) i d .
(1.6)

where e

(k) j is the j-th standard basis vector in C n k . The rank of a tensor, denoted by rank(T ) is the smallest integer r such that T can be written as a sum of rank-one tensors as in (1.5). From 1.6, we can conclude that for any order-d cubical tensor T ∈ (C n ) ⊗d , rank(T ) ≤ n d . With a slightly clever argument, one can show that for any such tensor T , rank(T ) ≤ n d-1 . (Lemma 16.9 in [START_REF] Saptharishi | A survey of lower bounds in arithmetic circuit complexity[END_REF]). A major open question in this field is to find an explicit tensor T of order-3 with super-linear rank.

Example 1.4.1 (Jan Draisma's talk in AG'23).

Let T ∈ (R 2 ) ⊗3 such that T 111 = 1, T 2,1,1 = 2, T 2,2,1 = 6, T 1,2,2 = -1, T ijk = 0 otherwise.
Then trivially it can be written in the form of (1.5) using four summands

T = 1.(e 1 ⊗ e 1 ⊗ e 1 ) + 2.(e 2 ⊗ e 1 ⊗ e 1 ) + 6.(e 2 ⊗ e 2 ⊗ e 1 ) + (-1)e 1 ⊗ e 2 ⊗ e 2 .
But there is a smaller decomposition with two summands

T = (e 1 + 2e 2 ) ⊗ (e 1 + 3e 2 ) ⊗ e 1 + e 1 ⊗ e 2 ⊗ (-3e 1 -e 2 ).
Using the relation with polynomials, as described in Section 1.1.3, the the polynomial f T corresponding to T can be equivalently written as

f T = x 1 y 1 z 1 + 2x 2 y 1 z 1 + 6x 2 y 2 z 1 -x 1 y 2 z 2 = x 1 y 1 z 1 + 2x 2 y 1 z 1 + 6x 2 y 2 z 1 + 3x 1 y 2 z 1 -3x 1 y 2 z 1 -x 1 y 2 z 2 = (x 1 + 2x 2 )(y 1 + 3y 2 )x 1 + x 1 y 2 (-3z 1 -z 2 ).
Again using the tensor polynomial equivalence, it follows that the tensor has the smaller decomposition with two summands.

The definition of tensor rank is the exact analogue of matrix rank. However, one key difference is that rank of a real-valued tensor can be different over R and C. One example from [START_REF] Kruskal | Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics[END_REF] will help illustrate this issue. Let us consider the following tensor T ∈ (R 2 ) ⊗3 such that

T 1,1,1 = T 2,2,1 = T 1,2,2 = 1 and T 2,1,2 = -1.
This tensor has rank 3 over R [tB91] but has rank 2 over C.

Given an order-d tensor T ∈ C n 1 ⊗ ... ⊗ C n d , one can ask the following natural algorithmic questions:

1. Decision problem: Given r, does there exist sets of vectors {a The problem of determining the rank of a tensor T was shown to be NP-hard (even for order d = 3) by Håstad [START_REF] Håstad | Tensor rank is NP-complete[END_REF].

(j) i } i∈[r] ∈ C n j for all j ∈ [d] such that

Symmetric tensor decomposition

Recall that we had defined symmetric tensors in Section 1.1.1. One can also extend the notion of rank defined in Section 1.4 to the special case of symmetric tensors. The order-d rank-1 symmetric tensors are now of the form T = u ⊗d where

T i 1 ,••• ,i d = j∈[d] u i j . Let T ∈ C n ⊗ ... ⊗ C n
be an order-d symmetric tensor. Following (1.5), we can define the symmetric tensor decomposition analogously as

T = r i=1 u i ⊗ u i ⊗ ... ⊗ u i where u i ∈ C n .
(1.7)

It is slightly more non-trivial than the general case to show that every symmetric tensor has a decomposition of the form (1.7). We will include a proof sketch here for completeness of this exposition.

Lemma 1.4.2. Every order-d symmetric tensor has a decomposition of the form 1.7.

Proof. From the tensor-polynomial equivalence in Section 1.1.3, we get that every order-d symmetric tensor T ∈ (C n ) ⊗d can be written as a homogeneous degree-

d polynomial f T ∈ C[x 1 , • • • , x n ] d . Hence, T has a decomposition of the form (1.7) iff f T = s i=1 ℓ d i where ℓ i are linear forms in C[x 1 , • • • , x n ] 1 . Let L be de- fined as span C {ℓ d |ℓ is a linear form ∈ C[x 1 , • • • , x n ] 1 }. We want to show that L = C[x 1 , • • • , x n ] d . The space L is trivially contained in C[x 1 , • • • , x n ] d .
For the opposite direction, note that the set of monomials of degree-d given by {x [START_REF] Fischer | Sums of like powers of multivariate linear forms[END_REF], we get that every degree-d monomial can be written as a sum of d-th powers of linear forms. More formally, this follows from the following expression y 1 ...y t = 1 2 t-1 t! e 2 ∈{0,1},...,et∈{0,1}

e 1 1 • • • x en n |e 1 + ... + e n = d} forms a basis of C[x 1 , • • • , x n ] d . From
(-1) e 2 +...+et x 1 + i∈{2,...,t}

(-1) e i x i t . (1.8) Hence, C[x 1 , • • • , x n ] d = span C {x e 1 1 • • • x en n |e 1 + • • • + e n = d}
⊆ L and this gives us the desired result.

We can then define the symmetric rank (over C) for any symmetric tensor T similarly to be

rank S (T ) = min r : T = r i=1 a i ⊗ • • • ⊗ a i , where a i ∈ C n (1.9)
One can ask the following question: Is the symmetric rank of a tensor same as the rank of the tensor? This was famously known as the Comon's conjecture and was resolved negatively by Yaroslav Shitov in [START_REF] Shitov | How hard is the tensor rank?[END_REF]. One can define the symmetric decision problem and symmetric search problem in a similar way as in Section 1.4. The symmetric tensor rank of T is NP-hard to compute even for d = 3 [START_REF] Shitov | How hard is the tensor rank?[END_REF] and hence, the the symmetric decision problem is NP-hard as well.

Diagonalisable tensors:

We focus our attention on order-3 symmetric tensors. From (1.7), it has a decomposition of the form T = r i=1 u ⊗3 i and in order to obtain efficient algorithms, one can impose an additional linear independence condition on the u i . Note that such a decomposition is essentially unique if it exists (up to a permutation of the u i 's and scaling by cube roots of unity) [START_REF] Kruskal | Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics[END_REF][START_REF] Ra Harshman | Foundations of the PARAFAC procedure: Models and conditions for an" explanatory" multi-mode factor analysis[END_REF]. There is a traditional distinction between undercomplete decompositions, when the number of summands r ≤ n in (1.5), and overcomplete decompositions, where r > n. We consider only undercomplete decompositions because of the linear independence condition on the u i . Moreover, we impose the additional condition that r is exactly equal to n, i.e., we focus on complete decompositions. We say that a tensor is diagonalisable if it satisfies these two conditions.

One can ask the following algorithmic question: Given a diagonalisable tensor

T ∈ C n ⊗ C n ⊗ C n , recover the vectors u 1 , • • • , u n ∈ C n such that T = n i=1 u ⊗3 i .
Note that, this is a special case of the search problem of tensor decomposition. One of the first algorithms to give provable guarantees for this problem was Jennrich's algorithm [START_REF] Ra Harshman | Foundations of the PARAFAC procedure: Models and conditions for an" explanatory" multi-mode factor analysis[END_REF][START_REF] Leurgans | A Decomposition for Three-Way Arrays[END_REF]. This algorithm depends on the method of simultaneous diagonalisation and even works for more general settings such as ordinary tensors.

One can also study the decision version of the problem: Given an arbitrary orderd symmetric tensor T , is T diagonalisable? Using the relation between tensors and polynomials in Section 1.1.3, we can see that a homogeneous degree-d polynomial

f ∈ K[x 1 , • • • , x n ]
can be written as a sum of d-th powers of linear forms over K if and only if there exist v i ∈ K such that the corresponding symmetric tensor T f can be decomposed as

T f = i v ⊗d i .
In a joint work with Pascal Koiran [KS22a, KS23] (which forms Chapter 2 of this thesis), we give a randomized polynomial-time algorithm for this problem in the algebraic model of computation (refer to the BSS model in Section 1.2.1) with oracle access to the black-box for the homogeneous degreed polynomial T f . We also extend this to the case of undercomplete decompositions (r ≤ n) via a reduction to the complete case.

Approximate tensor decomposition

As explained above, an order-3 symmetric tensor

T ∈ C n ⊗ C n ⊗ C n is called diago- nalisable if there exist linearly independent vectors u i ∈ C n such that T = n i=1 u ⊗3 i .
The objective of the ε-approximation problem for tensor decomposition is to find linearly independent vectors u ′ 1 , • • • , u ′ n such that there exists a permutation π ∈ S n where

||ω i u π(i) -u ′ i || ≤ ε
with ω i a cube root of unity. Here ε is the desired accuracy parameter given as input.

Hence the problem is essentially that of approximating the vectors u i appearing in the decomposition of T . Note that this is a forward approximation in the sense of numerical analysis (refer to Section 1.3 for the discussion on different kinds of numerical algorithms and compare with Definitions 3.3.2 and 3.3.3).

Algorithms for Tensor Decompositions

One of the central spectral algorithms for computing tensor decompositions is Jennrich's Algorithm [START_REF] Ra Harshman | Foundations of the PARAFAC procedure: Models and conditions for an" explanatory" multi-mode factor analysis[END_REF][START_REF] Leurgans | A Decomposition for Three-Way Arrays[END_REF][START_REF] Moitra | Algorithmic Aspects of Machine Learning[END_REF]. This algorithm, also referred to in the literature as the "simultaneous diagonalisation algorithm," was one of the first to give provable guarantees for tensor decomposition. If an order-3 input tensor satisfies certain genericity conditions this algorithm returns the unique decomposition (up to permutation and scaling) almost surely. More formally, let T ∈ C n 1 ⊗ C n 2 ⊗ C n 3 be an order-3 tensor of the form (1.5) with the following additional conditions on the u (j) i

• The vectors u

(1) i are linearly independent.

• The vectors u

(2) i are linearly independent.

• The vectors u

(3) i are pairwise linearly independent. Following the definition of Kruskal rank from Section 4.3.1, this implies that k-rank({u

(3) i } i∈[r] ) ≥ 2.
We will refer to these conditions as the genericity conditions. Note that if a tensor has such a decomposition, then it is unique (up to permutation and scaling by complex numbers across each mode of a summand such that their product is 1) (refer to the discussion in Section 4.3.1). Then Jennrich's algorithm returns such a decomposition exactly. This algorithm can also be generalized to higher order tensors which satisfy similar genericity conditions. Moreover, it is shown in [START_REF] Bhaskara | Smoothed Analysis of Tensor Decompositions[END_REF] that the algorithm is robust to noise in the input. Namely, it was shown that for an input tensor T = n i=1 v ⊗3 i + E where E is some arbitrary inverse-polynomial noise, Jennrich's algorithm can also be used to output a decomposition ṽi such that ||v iṽi || ≤ ε. At the heart of the robustness analysis of the Jennrich's Algorithm in [START_REF] Bhaskara | Smoothed Analysis of Tensor Decompositions[END_REF] (refer to their Appendix A) is the following statement about diagonalisability of perturbed matrices: Let M be a diagonalisable matrix that can be written as M = U DU -1 where the condition number of U is bounded and let M be another matrix such that ||M -M || is small. Then M is also diagonalisable, has distinct eigenvalues and the eigenvectors of M and M are close. This is similar in spirit to Proposition 1.1 in [START_REF] Banks | Pseudospectral shattering, the sign function, and diagonalization in nearly matrix multiplication time[END_REF] (Theorem 3.3.11 in this thesis.)

Note that the genericity conditions restrict the number of summands in the decomposition, r to be at most min{n 1 , n 2 , n 3 }. Another interesting line of research has focussed on exploring the overcomplete regime, that is r > min{n 1 , n 2 , n 3 }. For the rest of this section, to ease notation, we will restrict our attention to symmetric tensors which forces r > n.

One can drop the genericity condition entirely and attempt to decompose an arbitrary low-rank tensor given as input. For symmetric tensors with constant rank, such an algorithm can be found in [START_REF] Bhargava | Reconstruction Algorithms for Low-Rank Tensors and Depth-3 Multilinear Circuits[END_REF]. This algorithm was recently extended to slightly superconstant rank in [START_REF] Peleg | Tensor reconstruction beyond constant rank[END_REF].

One can also aim to decompose tensors under milder genericity conditions that still preserve the uniqueness of the decomposition. For order-4 tensors, when T = i∈[r] u ⊗4 i and the u i are in general positions, then the FOOBI (Fourth-Order-Only Blind Identification) algorithm from [START_REF] De Lathauwer | Fourth-order cumulant-based blind identification of underdetermined mixtures[END_REF] can recover the decomposition where the number of summands r is at most O(d 2 ). Still other algorithms for symmetric tensor decomposition can be found in the algebraic literature, see e.g. [START_REF] Brachat | Tsigaridas. Symmetric tensor decomposition[END_REF][START_REF] Bernardi | Computing symmetric rank for symmetric tensors[END_REF]. These two papers do not provide any complexity analysis for their algorithms.

Furthermore, there are several algorithms for tensor decompositions which use optimization techniques. One of the most notable algorithm for computing the CP decomposition (refer to (1.5) for a definition) is the Alternating Least Squares (ALS) algorithm [START_REF] Carroll | Analysis of individual differences in multidimensional scaling via an n-way generalization of "eckartyoung" decomposition[END_REF][START_REF] Ra Harshman | Foundations of the PARAFAC procedure: Models and conditions for an" explanatory" multi-mode factor analysis[END_REF], often referred to as the "workhorse" algorithm for computing a CPD. The key idea is to solve the least-squares optimization problem on a mode of the tensor (refer to the beginning of Section 1.1.1 for a definition) while keeping the other modes fixed and solving this optimization problem for all the modes. For a more formal explanation, refer to [START_REF] Kolda | Tensor Decompositions and Applications[END_REF].

Contributions to tensor decomposition

Recall that an order-3 tensor T ∈ (C n ) ⊗3 is called diagonalisable if there exist linearly independent vectors u 1 , • • • , u n ∈ C n such that T can be decomposed as in (1.5).

Definition 1.4.3 (Condition number of a diagonalisable symmetric tensor). Let T be a diagonalisable symmetric tensor over C such that T = n i=1 u ⊗3 i . Let U ∈ M n (C) be the matrix with rows u 1 , . . . , u n . We define the tensor decomposition condition number of T as:

κ(T ) = ||U || 2 F + ||U -1 || 2
F . We will show in Section 4.3 that κ(T ) is well defined: for a diagonalisable tensor the condition number is independent of the choice of U . Note that when U is close to a singular matrix, the corresponding tensor is poorly conditioned, i.e., has a large condition number. This is not surprising since our goal is to find a decomposition where the vectors u i are linearly independent.

Our main result is a randomized polynomial time algorithm in the finite precision model which on input a diagonalisable tensor, an estimate B for the condition number of the tensor and an accuracy parameter ε, returns a forward approximate solution to the tensor decomposition problem (following the definition in Section 1.4.3).

In the following, we denote by T M M (n) the number of arithmetic operations required to multiply two n × n matrices in a numerically stable manner.

If ω denotes the exponent of matrix multiplication, it is known that T M M (n) = O(n ω+η ) for all η > 0 (see Section 3.1 for details).

Theorem 1.4.4 (Main Theorem).

There is an algorithm which, given a diagonalisable tensor T , a desired accuracy parameter ε and some estimate B ≥ κ(T ), outputs an ε-approximate solution to the tensor decomposition problem for T in

O(n 3 + T M M (n) log 2 nB ε )
arithmetic operations on a floating point machine with

O(log 12 ( nB ε ) log n) bits of precision, with probability at least 1 -1 n -12 n 2 1 -1 √ 2n -1 n .
The corresponding algorithm appears as Algorithm 8 in Section 4.3. A simplified version of this algorithm is presented in Section 4.1.1. The following are the important conclusions from the above theorem:

• The number of bits of precision required for this algorithm is polylogarithmic in n, B and 1 ε . • The running time as measured by the number of arithmetic operations is O(n 3 ) for all ε = 1 poly(n) , i.e., it is linear in the size of the input tensor. This requires the use of fast matrix multiplication. With standard matrix multiplication, the running time is quasilinear instead of linear (i.e., it is multiplied by a polylogarithmic factor). The bit complexity of the algorithm is also quasilinear.

• The algorithm can provide inverse exponential accuracy, i.e., it still runs in polynomial time even when the desired accuracy parameter is ε = 1 exp (n) .

In order to obtain this result we combine techniques from algorithm design and algorithm analysis; the main ideas are outlined in Sections 4.1.1, 4.1.3 and 4.3.4. To the best of our knowledge, this is the first tensor decomposition algorithm shown to work in polylogarithmic precision. Moreover, this algorithm is also the first to run in a linear number of arithmetic operations (i.e., prior to this work no linear time algorithm was known, even in the exact arithmetic model). This is based on joint work with Pascal Koiran [START_REF] Koiran | Absolute reconstruction for sums of powers of linear forms: degree 3 and beyond[END_REF][START_REF] Koiran | Complete decomposition of symmetric tensors in linear time and polylogarithmic precision[END_REF].

The bounds on the number of bits of precision can be improved up to log 4 ( nB ε ) log n. A detailed proof of this can be found in [START_REF] Koiran | Complete decomposition of symmetric tensors in linear time and polylogarithmic precision[END_REF]. We lose out on some bits of precision to give a simpler and more streamlined error analysis of the algorithm. Refer to the discussions in Section 4.1.3 and Section 5.2 for more details.

Condition numbers for tensor decomposition

Recall that we had discussed the notion of numerical algorithms and the associated notion of condition numbers in Section 1.3.

For the purpose of this thesis, we have worked with the somewhat ad-hoc choice of κ(T ) (refer to Definition 1.4.3) as our condition number because this parameter controls the numerical precision needed for our main algorithm, as shown by Theorem 4.3.42 . In particular, we have found it more convenient to work with κ(T ) than with a quantity such as ||U ||.||U -1 ||, commonly used as a condition number in numerical linear algebra.

The results presented in this thesis are in stark contrast with those of Beltrán et al. [START_REF] Beltrán | Pencil-based algorithms for tensor rank decomposition are not stable[END_REF]. That paper analyzes a class of tensor decomposition algorithms related to Jennrich's algorithm. Their conclusion is that all these "pencil-based algorithms" are numerically unstable.

A precise comparison of our results with the numerical instability result of [BBV19] is delicate because we do not work in the same setting. In particular, they work with ordinary instead of symmetric tensors; they do not work with the same condition number; and their result is obtained for undercomplete rather than complete decompositions. We believe that the main reason why we obtain a positive result is due to yet another difference, namely, the use of randomization in step (i) of our algorithm. In the setting of [START_REF] Beltrán | Pencil-based algorithms for tensor rank decomposition are not stable[END_REF] one would have to take two fixed linear combinations T (a) , T (b) of the slices. Essentially, they show that for every fixed choice of a pair of linear combinations, there are input tensors for which this choice is bad; whereas we show that for every (well conditioned) input T , most choices of a and b are good.

Beltrán et al. conclude their paper with the following sentence: "We hope that these observations may (re)invigorate the search for numerically stable algorithms for computing CPDs."3 The algorithm presented in this thesis answers their call, at least for the case of complete decomposition of symmetric tensors. We believe that our techniques can also be applied to decomposition of ordinary tensors. We have chosen to focus on symmetric tensors because this setting is somewhat simpler technically. In future work, we plan to extend this work to the case of undercomplete decompositions. Note that this will require a change in the definition of the condition number κ(T ); the role of U -1 will now be played by the Moore-Penrose pseudoinverse.

Reconstruction Algorithms

Arithmetic circuit reconstruction is the following algorithmic problem: For an input polynomial f , typically given by a black box (refer to Section 1.2.1 for a definition), the goal is to find the smallest circuit computing f within some class C of arithmetic circuits. This problem can be divided in two subproblems: a decision problem (can f be computed by a circuit of size s from the class C?) and the reconstruction problem proper (the actual construction of the smallest circuit for f ). The proper reconstruction problem is an algebraic analogue of the exact learning problem for Boolean circuits.

Absolute reconstruction

An interesting subclass of reconstruction algorithms is the problem of absolute reconstruction, namely, in the case where C is a class of circuits over the field of complex numbers. The name is borrowed from absolute factorization, a well-studied problem in computer algebra (see e.g. [START_REF] Cheze | Four lectures on polynomial absolute factorization[END_REF][START_REF] Chèze | Lifting and recombination techniques for absolute factorization[END_REF][START_REF] Gao | Factoring multivariate polynomials via partial differential equations[END_REF][START_REF] Shaker | Topology and factorization of polynomials[END_REF]). Most of the existing reconstruction algorithms appeal to a polynomial factorization subroutine, see e.g. [GMKP17, GMKP18, KS09, Kay11, KNST18, KS19, Shp09]. This typically yields polynomial time algorithms over finite fields or the field of rational numbers. However, in standard models of computation such as the unit-cost RAM or the Turing machine this approach does not yield polynomial time algorithms for absolute reconstruction. This is true even for the decision version of this problem. In the Turing machine model, the difficulty is as follows. We are given an input polynomial f , say with rational coefficients, and want to decide if there is a small circuit C ∈ C for f , where C may have complex coefficients. After applying a polynomial factorization subroutine, a reconstruction algorithm will manipulate polynomials with coefficients in a field extension of Q. If this extension is of exponential degree, the remainder of the algorithm will not run in polynomial time. This point is explained in more detail in [START_REF] Koiran | Derandomization and Absolute Reconstruction for Sums of Powers of Linear Forms[END_REF] on the example of a reconstruction algorithm due to Neeraj Kayal [START_REF] Kayal | Efficient algorithms for some special cases of the polynomial equivalence problem[END_REF]. One way out of this difficulty is to work in a model where polynomial roots can be extracted at unit cost, as suggested in a footnote of [START_REF] Garg | Determinant Equivalence Test over Finite Fields and over Q[END_REF]. We will work instead in more standard models, namely, the Turing machine model or the unit-cost RAM over C with arithmetic operations only (an appropriate formalization is provided by the Blum-Shub-Smale model of computation [START_REF] Blum | Complexity and Real Computation[END_REF][START_REF] Blum | On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines[END_REF], refer to Section 1.2.1).

Polynomial equivalence testing:

Definition 1.5.1. Two polynomial f , g ∈ K[x] (where x = {x 1 , • • • , x n }) are said to be equivalent over K, if there exists an invertible linear transformation A ∈ GL n (K) such that f (x) = g(Ax).
Note that two polynomials can be equivalent over K but not over a subfield K ⊂ K. The difference in the choice of fields can be illustrated by the following example:

Example 1.5.2. Consider the rational polynomial

f (x 1 , x 2 ) = (x 1 + √ 2x 2 ) 3 + (x 1 - √ 2x 2 ) 3 = 2x 3 1 + 12x 1 x 2 2 .
An equivalence test for a family of polynomials

C ⊆ K[x 1 , • • • , x n ]
(where K is some underlying field) is defined to be the following algorithmic task: Given polynomial g, check if there exists some f ∈ C such that f and g are equivalent over K. Note that this is a special case of the decision version of the reconstruction problem for the circuit class C.

If the equivalence test succeeds, then another algorithmic question can be to output the circuit f and the corresponding linear transformation A. Note again this is a special case of the proper reconstruction problem.

The input polynomial g can be represented in two ways: either as a list of coefficients of the polynomial (referred to as the polynomial equivalence (PE) problem in [START_REF] Gupta | On symmetries of and equivalence tests for two polynomial families and a circuit class[END_REF]) or as a black-box (refer to Section 1.2.1).

Previous works: We define a few polynomial families before..

• Det n : The determinant polynomial takes in a matrix with variable entries X = (x i,j ) i,j∈ [n] and computes the determinant of the matrix. More formally,

Det n = σ∈Sn sign(π) n i=1
x i,σ(i) .

• Perm n : The permanent polynomial takes in a matrix with variable entries X = (x i,j ) i,j∈ [n] and computes the permanent of the matrix. More formally,

Perm n = σ∈Sn n i=1 x i,σ(i) .
(1.10) 

Sums of powers of linear forms

Let f (x 1 , . . . , x n ) be a homogeneous polynomial of degree d. In this thesis, we study decompositions of the type:

f (x 1 , . . . , x n ) = r i=1 l i (x 1 , . . . , x n ) d (1.11)
where the l i are linear forms. Such a decomposition is sometimes called a Waring decomposition, or a symmetric tensor decomposition. The smallest possible value of r is the symmetric tensor rank of f , and it is NP-hard to compute already for d = 3 [START_REF] Shitov | How hard is the tensor rank?[END_REF]. One can nevertheless obtain polynomial time algorithms by restricting to a constant value of r [START_REF] Bhargava | Reconstruction algorithms for low-rank tensors and depth-3 multilinear circuits[END_REF]. In this thesis, we assume instead that the linear forms l i are linearly independent (hence r ≤ n). This setting was already studied by Kayal [START_REF] Kayal | Efficient algorithms for some special cases of the polynomial equivalence problem[END_REF]. It turns out that such a decomposition is unique when it exists, up to a permutation of the l i and multiplications by d-th roots of unity. This follows for instance from Kruskal's uniqueness theorem. For a more elementary proof, see [START_REF] Kayal | Efficient algorithms for some special cases of the polynomial equivalence problem[END_REF]Corollary 5.1] and [KS21, Section 3.1]. Under this assumption of linear independence, the case r = n is of particular interest. In this case, f is equivalent to the sum of d-th powers polynomial Equivalence and reconstruction algorithms over Q are number-theoretic in nature in the sense that their behavior is highly sensitive to number-theoretic properties of the coefficients of the input polynomial. This point is clearly illustrated by Example 1.5.2 By contrast, equivalence and reconstruction algorithms over R and C are of a more geometric nature.

P d (x) = x d 1 + x d 2 + • • • + x d n (1.

Contributions to Absolute Reconstruction

Our main contributions are as follows: Recall that P d is the sum of d-th powers polynomials (1.12), and let us assume that the input f ∈ C[x 1 , . . . , x n ] is a homogeneous polynomial of degree d.

(i) For d = 3, we improve by a factor of n on the running time of the test of equivalence to P 3 from [START_REF] Koiran | Derandomization and Absolute Reconstruction for Sums of Powers of Linear Forms[END_REF] presented in Section 2.1.1. The price to be paid for this improvement is that the algorithm now has two-sided error.

( Finally, we show that our linear algebraic approach can be extended to the computation of the actual decomposition. For instance, when f ∈ C[x 1 , . . . , x n ] is equivalent to P d , we can compute an invertible matrix A such that f (x) = P d (Ax). We emphasize that for this result we must step out of our usual algebraic model, and allow the computation of polynomial roots. The matrix A is indeed not computable from f with arithmetic operations only, as shown by the example in Section 1.5.2. We therefore obtain an alternative to the algorithm from [START_REF] Kayal | Efficient algorithms for some special cases of the polynomial equivalence problem[END_REF] for the computation of A. That algorithm relies on multivariate polynomial factorization, whereas our algorithm relies on matrix diagonalization (this is not an algebraic task since diagonalizing a matrix requires the computation of its eigenvalues).

Chapter 2

Absolute Reconstruction for Sums of Powers of Linear Forms

In this chapter, we look at the following decision problem: If an arbitrary homogeneous degree-d polynomial over R or C is given as blackbox, can it be written as sums of powers of linearly independent linear forms? This is related to the question of absolute reconstruction of the same family of polynomials (as explained in Section 1.5.1) and the connection of this question to tensor decompositions has been explored in detail in Section 1.4.2. This is based on joint work with Pascal Koiran and a preliminary version of the results of this chapter appear in [START_REF] Koiran | Black Box Absolute Reconstruction for Sums of Powers of Linear Forms[END_REF]. The full version appears in [START_REF] Koiran | Absolute reconstruction for sums of powers of linear forms: degree 3 and beyond[END_REF].

Introduction

Methods and proof strategies

Sums of cubes

For d = 3, the first test of equivalence to P d running in polynomial time over C and over R was given in [START_REF] Koiran | Derandomization and Absolute Reconstruction for Sums of Powers of Linear Forms[END_REF]. There, the problem was treated as a tensor decomposition problem which was then solved by methods from linear algebra. We briefly outline this approach since the present chapter improves on it and extends it to higher degree. Let f ∈ K[x 1 , . . . , x n ] be the input polynomial, where K is the field of real or complex numbers. We can form with the coefficients of f a symmetric tensor1 of order three T = (T ijk ) 1≤i,j,k≤n so that

f (x 1 , . . . , x n ) = n i,j,k=1 T ijk x i x j x k .
This tensor can be cut into n slices T 1 , . . . , T n where T k = (T ijk ) 1≤i,j≤n . Each slice is a symmetric matrix of size n. By abuse of language we also say that T 1 , . . . , T n are the slices of f . The equivalence test to P 3 proposed in [START_REF] Koiran | Derandomization and Absolute Reconstruction for Sums of Powers of Linear Forms[END_REF] works as follows.

1. On input f ∈ K[x 1 , . . . , x n ], pick a random matrix R ∈ M n (K) and set h(x) = f (Rx).

2. Let T 1 , . . . , T n be the slices of h. If T 1 is singular, reject. Otherwise, compute

T ′ 1 = T -1 1 .
3. If the matrices T ′ 1 T k commute and are all diagonalizable over K, accept. Otherwise, reject. This simple randomized algorithm has one sided error: it can fail (with low probability) only when f is equivalent to P 3 . Its analysis is based on the following characterization [KS21, Section 3.2]: Theorem 2.1.1. A degree 3 homogeneous polynomial f ∈ K[x 1 , ..., x n ] is equivalent to P 3 iff its slices T 1 , ..., T n span a non-singular matrix space and the slices are simultaneously diagonalisable by congruence, i.e., there exists an invertible matrix

Q ∈ M n (K) such that Q T T i Q is diagonal for all i ∈ [n].

Extension to higher degree:

In order to extend the approach of Section 2.1.1 to higher order, we associate to a homogeneous polynomial of degree d the (unique) symmetric tensor T of order d such that

f (x 1 , . . . , x n ) = n i 1 ,...,i d =1 T i 1 ...i d x i 1 x i 2 . . . x i d .
A slice of T (or by abuse of language, a slice of f ) is a matrix of size n obtained by fixing the values of d -2 indices. We show in Section 2.3.2 that Theorem 2.1.1 can be generalized as follows:

Theorem 2.1.2. A degree d homogeneous polynomial f ∈ C[x 1 , . . . , x n ] is equivalent to P d = n i=1 x d i if
and only if its slices span a nonsingular matrix space and the slices are simultaneously diagonalizable by congruence, i.e., there exists an invertible matrix Q ∈ M n (C) such that for every slice S of f , the matrix

Q T SQ is diagonal.
This characterization is satisfactory from a purely structural point of view, but not from an algorithmic point of view because the number of slices of a tensor of order d is exponential in d. Recall indeed that a tensor of size n and order d has d(d-1) 2 n d-2 slices: a slice is obtained by fixing the values of d -2 indices and hence, each slice is a matrix of size n. The tensors encountered in this chapter are all symmetric since they originate from homogeneous polynomials. Taking the symmetry constraints into consideration reduces the number of distinct slices to ( n+d-3 d-2 ) at most: this is the number of multisets of size d -2 in a set of n elements, or equivalently the number of monomials of degree d -2 in the variables x 1 , . . . , x n . This number remains much too large to reach our goal of a complexity polynomial in n and d. This problem has a surprisingly simple solution: our equivalence algorithm needs to work with 3 slices only! This is true already for d = 3, and is the reason why we can save a factor of n compared to the algorithm of Section 2.1.1. More precisely, we can replace the loop at line 3 of that algorithm by the following test: check that T ′ 1 T 2 is diagonalizable, and commutes with T ′ 1 T 3 (recall that T ′ 1 = T -1 1 ). It may be surprising at first sight that we can work with the first 3 slices only of a tensor with n slices. To give some plausibility to this claim, note that T 1 , T 2 , T 3 are not slices of the input f , but slices of the polynomial h(x) = f (Rx) obtained by a random change of variables. As a result, each slice of h contains some information on all of the n slices of f . The algorithm for order d > 3 is of a similar flavor, but one must be careful in the choice of the 3 slices from h.

Our algorithms are therefore quite simple (and the equivalence algorithm for d = 3 is even somewhat simpler than the algorithm from Section 2.1.1); but their analysis is not so simple and forms the bulk of this chapter. In fact, analysing the case of "negative" inputs, i.e. input polynomials that are not equivalent to any polynomial in P d , forms the bulk of this chapter. For d > 3, the notion of "weak-singularity" of matrices (Definition 2.3.7) will be introduced which along with the notions of "commutativity property" and "diagonalisability property" helps us to give us another equivalent criterion for testing equivalence to a polynomial in P d in Theorem 2.3.8. Finally, the crucial part of the proof (for d > 3, and already for d = 3) is to show that testing commutativity of two matrices and diagonalisability of one matrix is enough for testing these properties for any "symmetric family of symmetric matrices" (refer to Definition 2.3.12) with high probability.

Note here that an arbitrary slice of the polynomial is hard to compute, when the polynomial is given as blackbox (because that requires computing arbitrary degreed partial derivatives using the blackbox). Hence, this particular choice of slices is crucial because they can be computed in polynomial time.

Real versus complex field. For K = R and even degree there is obviously a difference between sums of d-th powers of linear forms and linear combinations of d-th powers. In this chapter we wish to allow arbitrary linear combinations. For this reason, in the treatment of the high order case (d > 3) we are not interested in equivalence to P d only. Instead, we would like to know whether the input is equivalent to some polynomial of the form n i=1 α i x d i with α i ̸ = 0 for all i. We denote by P d this class of polynomials (one could even assume that α i = ±1 for all i). At first reading, there is no harm in assuming that K = C. In this case, one can assume without loss of generality that α i = 1 for all i. For K = R, having to deal with the whole of P d slightly complicates notations, but the proofs are not significantly more complicated than for K = C. For this reason, in all of our results we give a unified treatment of the two cases K = C and K = R.

Relation to matrix commutativity testing: As a byproduct of our analysis of the degree 3 case, we obtain a randomized algorithm for testing the commutativity of a family of matrices A 1 , . . . , A k . The naive algorithm for this would check that A i A j = A j A i for all i ̸ = j. Instead, we propose to test the commutativity of two random linear combinations of the A i . The resulting algorithm has one sided-error, and its probability of error can be bounded as follows:

Lemma 2.1.3. Let A 1 , ..., A k ∈ M n (K). We take two random linear combinations

A α = i∈[k] α i A i and A β = i∈[k] β i A i ,
where the α i and β i are picked independently and uniformly at random from a finite set S ⊂ K. If {A i } i∈ [k] is not a commuting family, then the two matrices A α , A β commute with probability at most2 |S| . The resulting algorithm is so simple and natural that it may already be known to some readers, but we could not find in the literature on commutativity testing. Commutativity testing has been studied in particular in the setting of black box groups, in the classical [START_REF] Pak | Testing commutativity of a group and the power of randomization[END_REF] and quantum models [START_REF] Magniez | Quantum complexity of testing group commutativity[END_REF]. Pak's algorithm [START_REF] Pak | Testing commutativity of a group and the power of randomization[END_REF] is based on the computation of random subproducts of the A i . In its instantiation to matrix groups [Pak12, Theorem 1.5], Pak suggests as a speedup to apply Freivald's technique [START_REF] Rūsin | Fast probabilistic algorithms[END_REF] for the verification of matrix products. This can be done in the same manner for Lemma 2.1.3. We stress that Pak's algorithm applies only to groups rather than semigroups; in particular, for the application to commutativity of matrices this means that the M i must be invertible. 2 Note that there is no such assumption in Lemma 2.1.3; compared to [START_REF] Pak | Testing commutativity of a group and the power of randomization[END_REF] we therefore obtain a randomized algorithm for testing matrix semigroup commutativity. We also note that the idea of testing commutativity on random linear combinations is akin to the general technique for the verification of identities in [START_REF] Rajagopalan | Verification of identities[END_REF]. However, in the case of commutativity testing that chapter does not obtain any improvement over the trivial deterministic algorithm (see Theorem 3.1 in [START_REF] Rajagopalan | Verification of identities[END_REF]). In order to analyze the higher order case d > 3, we will derive an appropriate generalization of Lemma 2.1.3 (to families of matrices satisfying certain symmetry properties).

Organization of this chapter

In Section 2.2, we present a faster algorithm for equivalence to sum of cubes. We give a detailed complexity analysis of our algorithm in Chapter 2.6 and compare it to that of [START_REF] Koiran | Derandomization and Absolute Reconstruction for Sums of Powers of Linear Forms[END_REF]. In Section 2.3, we extend our ideas for the degree-3 case to the arbitrary degree-d case and give an algorithm for equivalence to sum of d-th powers (Algorithm 2). In fact our algorithm can test if the input polynomial is equivalent to some linear combination of d-th powers (As explained in Section 1.4.5, these notions are different over R when d is even). In Chapter 2.7.1, we give a detailed complexity analysis of Algorithm 2. In Section 2.7.2, we show that when the input polynomial has rational coefficients, Algorithm 2 runs in polynomial time in the bit model of computation, as well. In Section 2.4, we give an algorithm to check whether the input polynomial can be decomposed into a linear combination of d-th powers of at most n many linearly independent linear forms. In Section A.2, we compute the number of blackbox calls and arithmetic operations performed by this algorithm. In Section 2.5, we show how we can modify our decision algorithm to give an algorithm that actually computes the linear forms and their corresponding coefficients.

Notations

We work in a field K which may be the field of real numbers or the field of complex numbers. Some of our intermediate results (in particular, Lemma 2.1.3) apply to other fields as well. We denote by K[x 1 , . . . , x n ] d the space of homogeneous polynomials of degree d in n variables with coefficients in K. A homogeneous polynomial of degree d is also called a degree-d form. We denote by P d the polynomial n i=1 x d i , and we say that a degree d form f (x 1 , . . . , x n ) is equivalent to a sum of d-th powers if it is equivalent to P d , i.e., if f (x) = P d (Ax) for some invertible matrix A. More generally, we denote by P d the set of polynomials of the form n i=1 α i x d i with α i ̸ = 0 for all i. As explained in Section 1.4.5, for K = R we are not only interested in equivalence to P d : we would like to know whether the input is equivalent to one of the elements of P d .

We denote by M n (K) the space of square matrices of size n with entries from K. We denote by ω a feasible exponent for matrix multiplication, i.e., we assume that two matrices of M n (K) can be multiplied with O(n ω ) arithmetic operations in K.

We denote by M (d) the number of arithmetic operations required for multiplication of two polynomials of degree ≤ d and we will often refer to the O(d log d log log d) bounds given by [START_REF] Schönhage | Schnelle multiplikation großer zahlen[END_REF] for polynomial multiplication to give concrete bounds for our algorithms.

Throughout the chapter, we will choose the entries r ij of a matrix R independently and uniformly at random from a finite set S ⊂ K. When we calculate the probability of some event E over the random choice of the r ij , by abuse of notation instead of Pr r 11 ,...,rnn∈S [E] we simply write Pr R∈S [E].

Faster algorithm for sums of cubes

In this section we present our fast algorithm for checking whether an input polynomial f (x 1 , . . . , x n ) is equivalent to

P 3 = x 3 1 + • • • + x 3 n (see Algorithm 1 below).
As explained in Section 1.5.2, this means that f (x) = P 3 (Ax) for some invertible matrix A. In Section 2.1.1 we saw that a degree 3 form in n variables can be viewed as an order 3 tensor, which we can be cut into n slices. All of our decomposition algorithms build on this approach.

Algorithm 1: Randomized algorithm to check equivalence to P 3 1 Input: A degree-3 homogeneous polynomial f 2 Let R ∈ M n (K) be a matrix such that its entries r ij are picked uniformly and independently at random from a finite set S and set h Recall from Section 2.1.1 that the equivalence algorithm from [START_REF] Koiran | Derandomization and Absolute Reconstruction for Sums of Powers of Linear Forms[END_REF] needs to check that the n matrices T ′ 1 T k commute and are diagonalisable, where T 1 , . . . , T n denote the slices of h(x) = f (Rx). Algorithm 1 is faster because it only checks that T ′ 1 T 2 and T ′ 1 T 3 commute and that T ′ 1 T 2 is diagonalisable. We do a detailed complexity analysis of the two algorithms in Chapter 2.6. It reveals that the cost of the diagonalisability tests dominates the cost of the commutativity tests for both algorithms. Since we have replaced n diagonalisability tests by a single test, it follows that Algorithm 1 is faster by a factor of n. More precisely, we show that the algorithm from [START_REF] Koiran | Derandomization and Absolute Reconstruction for Sums of Powers of Linear Forms[END_REF] performs O(n ω+2 ) arithmetic operations when K = C, but Algorithm 1 performs only O(n ω+1 ) arithmetic operations.

(x) = f (Rx) 3 Let T 1 , T 2 , T 3 be the first 3 slices of h. 4 if T 1 is singular then 5 reject 6 else 7 compute T ′ 1 = T -1 1 8 if T ′ 1 T 2 and T ′ 1 T 3 commute and T ′ 1 T 2 is diagonalisable
The remainder of this section is devoted to a correctness proof for Algorithm 1, including an analysis of the probability of error. Our main result about this algorithm is as follows.

Theorem 2.2.1. If an input f ∈ K[x 1 , ..., x n ] 3 is not equivalent to a sum of cubes, then f is rejected by the algorithm with high probability over the choice of the random matrix R. More precisely, if the entries r i,j are chosen uniformly and independently at random from a finite set S ⊆ K then the input will be rejected with probability ≥ 1 -2 |S| . Conversely, if f is equivalent to a sum of n cubes then f will be accepted with high probability over the choice of the random matrix R. More precisely, if the entries r i,j are chosen uniformly and independently at random from a set S ⊆ K, then the input will be accepted with probability ≥ 1 -2n

|S| . The second part of Theorem 2.2.1 is the easier one, and it already follows from [START_REF] Koiran | Derandomization and Absolute Reconstruction for Sums of Powers of Linear Forms[END_REF]. Indeed, the same probability of error 2n/|S| was already given for the randomized equivalence algorithm of [START_REF] Koiran | Derandomization and Absolute Reconstruction for Sums of Powers of Linear Forms[END_REF], and any input accepted by that algorithm is also accepted by our faster equivalence algorithm. Nevertheless, we give a self-contained proof of this error bound in Section 2.2.2 as a preparation toward the case of higher degree.

One of the reasons why the analysis is simpler for positive inputs is that there is only one way for a polynomial to be equivalent to P 3 : its slices must satisfy all the properties of Theorem 2.2.8 (at the end of Section 2.2.1). By contrast, if a polynomial is not equivalent to P 3 this can happen in several ways depending on which property fails. We analyze failure of commutativity in Section 2.2.3 and failure of diagonalisability in Section 2.2.4. Then we tie everything together in Section 2.2.5.

Characterization of equivalence to P 3

Toward the proof of Theorem 2.2.1 we need some results from [START_REF] Koiran | Derandomization and Absolute Reconstruction for Sums of Powers of Linear Forms[END_REF], which we recall in this section. We also give a complement in Theorem 2.2.7. First, let us recall how the slices of a polynomial evolve under a linear change of variables.

Theorem 2.2.2. Let g be a degree-3 form with slices S 1 , ..., S n and let f (x) = g(Ax). The slices T 1 , ..., T n of f are given by the formula:

T k = A T D k A where D k = i=1 a i,k S i and the a i,k are the entries of A. In particular, if g = n i=1 α i x 3 i we have D k = diag (α 1 a 1,k , ..., α n a n,k
). In Theorem 2.1.1 we gave a characterization of equivalence to P 3 based on simultaneous diagonalisation by congruence. This characterization follows from Theorem 2.2.2 and the next lemma. See [KS21, Section 3.2] for more details on Theorem 2.2.2, Lemma 2.2.3 and the connection to Theorem 2.1.1.

Lemma 2.2.3. Let f be a degree 3 homogeneous polynomial such that f (x) = P 3 (Ax) for some non-singular A. Let U and V be the subspaces of M n (K) spanned by slices of f and P 3 respectively. Then the subspace V is the space of diagonal matrices and U is a non-singular subspace, i.e., it is not made of singular matrices only.

Instead of diagonalisation by congruence, it is convenient to work with the more familiar notion of diagonalisation by similarity, where an invertible matrix A acts by S → A -1 SA instead of A T SA. We collect the necessary material in the remainder of this section (and we refer to diagonalisation by similarity simply as diagonalisation).

The two following properties play a fundamental role throughout this chapter.

Definition 2.2.4. Let V be a non-singular space of matrices.

• We say that V satisfies the Commutativity Property if there exists an invertible matrix A ∈ V such that A -1 V is a commuting subspace i.e., P Q = QP for any two matrices P , Q ∈ A -1 V

• We say that V satisfies the Diagonalisability Property if there exists an invertible matrix B ∈ V such that all the matrices in the space B -1 V are diagonalisable.

The next result can be found in [KS21, Section 2.2].

Theorem 2.2.5. Let V be a non-singular subspace of matrices of M n (K). The following properties are equivalent.

• V satisfies the commutativity property.

• For all non-singular matrices A ∈ V, A -1 V is a commuting subspace.

Remark 2.2.6. Let V be a non-singular subspace of matrices which satisfies the commutativity and diagonalisability properties. There exists an invertible matrix B ∈ V and an invertible matrix R which diagonalizes simultaneously all of B -1

V (i.e., R -1 M R is diagonal for all M ∈ B -1 V).
Proof. Pick an invertible matrix B ∈ V such that W = B -1 V is a space of diagonalizable matrices. By Theorem 2.2.5, W is a commuting subspace. It is well known that a finite collection of matrices is simultaneously diagonalisable if and only if they commute, and each matrix in the collection is diagonalisable. We conclude by applying this result to a basis of W (any matrix R which diagonalises a basis will diagonalise all of W).

We now give an analogue of Theorem 2.2.5 for the diagonalisability property.

Theorem 2.2.7. Let V be a non-singular subspace of matrices which satisfies the commutativity property. The following properties are equivalent:

• V satisfies the diagonalisability property.

• For all non-singular matrices A ∈ V, the matrices in A -1 V are simultaneously diagonalisable.

Proof. Suppose that V satisfies the diagonalisability property. By the previous remark, we already know that there exists some invertible matrix B ∈ V such that the matrices in B -1 V are simultaneously diagonalisable by an invertible matrix R. We need to establish the same property for an arbitrary invertible matrix

A ∈ V. For any M ∈ V, A -1 M = (B -1 A) -1 (B -1 M ). Hence A -1 M is diagonalised by R since this matrix diagonalises both matrices B -1 A and B -1 M . Since R is independent of the choice of M ∈ V, we have shown that the matrices in A -1 V are simultaneously diagonalisable.
The importance of the commutativity and diagonalisability properties stems from the fact that they provide a characterization of simultaneous diagonalisation by congruence, which in turn (as we have seen in Theorem 2.1.1) provides a characterization of equivalence to P 3 : Theorem 2.2.8. Let A 1 , ..., A k ∈ M n (K) and assume that the subspace V spanned by these matrices is non-singular. There are diagonal matrices Λ i and a non-

singular matrix R ∈ M n (K) such that A i = RΛ i R T for all i ∈ [k] if

and only if V satisfies the Commutativity property and the Diagonalisability property.

For a proof, see [KS21, Section 2.2] for K = C and [KS21, Section 2.3] for K = R.

Analysis for positive inputs

In this section we analyze the behavior of Algorithm 1 on inputs that are equivalent to P 3 . First, we recall the Schwartz-Zippel Lemma which we will be using throughout this chapter.

Lemma 2.2.9 ([DL78][Zip79][Sch80]

). Let P ∈ K[x 1 , ..., x n ] be a non-zero polynomial of total degree d ≥ 0 over a field K. Let S be a finite subset of K and let r 1 , ..., r n be picked uniformly and independently at random from a finite set S. Then Pr r 1 ,...,rn∈S [P (r 1 , ...,

r n ) = 0] ≤ d |S| .
Lemma 2.2.10. Let f be a degree-3 form with slices S 1 , ..., S n such that the subspace V spanned by the slices is non-singular. Let h(x) = f (Rx) where the entries r i,j are chosen uniformly and independently at random from a finite set S ⊆ K. Let T 1 , ..., T n be the slices of h. Then

Pr R∈S [T 1 is invertible] ≥ 1 - 2n |S| .
Proof. We can obtain the slices T k of h from the slices S k of f using Theorem 2.2.2 namely, we have

T k = R T D k R where D k = i∈[n] r i,k S i and the r i,k are the entries of R.
Therefore T 1 is invertible iff R and D 1 are invertible. Applying the Lemma 2.2.9 to det(R) shows that R is singular with probability at most n/|S|. We will see that D 1 is singular also with probability at most n/|S|; the lemma then follows from the union bound.

Matrix D 1 is not invertible iff det(D 1 ) = 0. Since D 1 = i∈[n] r i,1 S i det(D 1 ) ∈ K[r 1,1 , ..., r n,1 ] and deg(det(D 1 )) ≤ n. Since, V is non-singular, there exists some choice of α = (α 1 , ..., α n ), such that S = i∈[n] α i S i is invertible. Hence det(D 1
) is not identically zero, and it follows again from Lemma 2.2.9 that this polynomial vanishes with probability at most n |S| .

Lemma 2.2.11.

Given A ∈ M n (K), let T 1 , ..., T n be the slices of h(x) = P 3 (Ax). If T 1 is invertible, define T ′ 1 = (T 1 ) -1 . Then T ′ 1 T 2 commutes with T ′ 1 T 3 , and T ′ 1 T 2 is diagonalisable. Proof. By Theorem 2.2.2, T k = A T diag(A 1k , ..., A nk )A = A T D k A.
If T 1 is invertible, the same is true of A and D 1 . The inverse (D 1 ) -1 is diagonal like D 1 , hence (D 1 ) -1 D 2 and (D 1 ) -1 D 3 are both diagonal as well and must therefore commute. Now,

T ′ 1 T 2 T ′ 1 T 3 = A -1 ((D 1 ) -1 D 2 (D 1 ) -1 D 3 )A = A -1 ((D 1 ) -1 D 3 (D 1 ) -1 D 2 )A = T ′ 1 T 3 T ′ 1 T 2 . Finally, T ′ 1 T 2 = A -1 ((D 1 ) -1 D 2 )
A so this matrix diagonalisable. In the above lemma we have essentially reproved the easier half of Theorem 2.2.8. We are now in position to prove the easier half of Theorem 2.2.1. Proposition 2.2.12. If an input f ∈ K[x 1 , ..., x n ] 3 is equivalent to a sum of n cubes then f will be accepted by Algorithm 1 with high probability over the choice of the random matrix R. More precisely, if the entries r i,j are chosen uniformly and independently at random from a set S ⊆ K, then f will be accepted with probability at least 1 -2n |S| . Proof. Suppose that f (x) = P 3 (Bx) for some invertible matrix B. By Lemma 2.2.3, the space spanned by the slices of f is nonsingular. We can therefore apply Lemma 2.2.10: the first slice T 1 of h(x) = f (Rx) is invertible with probability at least 1 -2n

|S| . Moreover, when T 1 is invertible Lemma 2.2.11 shows that f will always be accepted (we can apply this lemma to h since h(x) = P 3 (BRx)).

Failure of commutativity

In this section we first give the proof of Lemma 2.1.3. This is required for the analysis of Algorithm 1, and moreover this simple lemma yields a new randomized algorithm for commutativity testing as explained in Section 1.4.5. We restate the lemma here for the reader's convenience: Lemma 2.2.13. Let A 1 , ..., A k ∈ M n (K). We take two random linear combinations

A α = i∈[k] α i A i and A β = i∈[k] β i A i ,
where the α i and β i are picked independently and uniformly at random from a finite set S ⊂ K.

If {A i } i∈[k]
is not a commuting family, then the two matrices A α , A β commute with probability at most 2 |S| .

Proof. We want to bound the probability of error, i.e., Pr α,β [A α , A β commute]. Let us define

P comm (α, β) = A α A β -A β A α = i,j∈[k] α i β j (A i A j -A j A i ).
By construction, A α commutes with A β if and only if

P comm (α, β) = 0. Since {A i } i∈[k]
is not a commuting family, there exists i, j

∈ [n] such that A i A j -A j A i ̸ = 0.
Hence there exists some entry (r, s) such that

(A i A j -A j A i ) r,s ̸ = 0 (2.1) Let us define P r,s comm (α, β) = (A α A β -A β A α ) r,s . From (2.1) we have P r,s comm (e i , e j ) ̸ = 0
where e i is the vector with a 1 at the i-th position and 0's elsewhere. In particular, P r,s comm is not identically zero. Since deg(P r,s comm ) ≤ 2, it follows from the Lemma 2.2.9 that

Pr α,β∈S [P r,s comm (α, β) = 0] ≤ 2 |S|
and the same upper bound applies to Pr α,β∈S

[P comm (α, β) = 0].
The next result relies on the above lemma. Theorem 2.2.14 gives us a way to analyze the case when the slices of the input polynomial fail to satisfy the commutativity property (recall that this property is relevant due to Theorem 2.2.8): Theorem 2.2.14. Let f ∈ K[x 1 , ..., x n ] 3 be a degree 3 form such that the subspace V spanned by its n slices is non-singular and does not satisfy the commutativity property. Let h(x) = f (Rx) where the entries r i,j of R are chosen uniformly and independently at random from a finite set S ⊂ K.Let T 1 , ..., T n be the slices of h.

If T 1 is invertible, define T ′ 1 = T -1 1 . Then Pr[T 1 is invertible and T ′ 1 T 2 , T ′ 1 T 3 commute] ≤ 2 |S| .
Proof. By Theorem 2.2.2 we know that

T k = R T ( n i=1 r i,k S i )R
where S 1 , . . . , S n are the slices of f . Let us define D 1 = n i=1 r i,1 S i . Then we have:

T ′ 1 T 2 = R -1 (D 1 ) -1 R -T R T ( n i=1 r i,2 S i )R = R -1 ( n i=1 r i,2 D -1 1 S i )R. Similarly, T ′ 1 T 3 = R -1 ( n i=1 r i,3 D -1 1 S i )R. So T ′ 1 T 2 commutes with T ′ 1 T 3 iff R is invert- ible and n i=1 r i,2 D -1 1 S i commutes with n i=1 r i,3 D -1 1 S i . Let E 1 be the event that T ′ 1 T 2 commutes with T ′ 1 T 3 , and let E ′ 1 be the event that n i=1 r i,2 D -1 1 S i commutes with n i=1 r i,3 D -1 1 S i . Let E 2 be the event that {(D 1 ) -1 S i } i∈[n]
is not a commuting family. Since V does not satisfy the commutativity property,

(D 1 ) -1 V is not a com- muting subspace if D 1 is invertible. Hence the event that D 1 is invertible is the same as E 2 . Setting A i = (D 1 ) -1 S i , α i = r i,2 , β i = r i,3 in Lemma 2.1.3 we obtain Pr R∈S E ′ 1 E 2 ≤ 2 |S| .
Note here that D 1 depends only on the random variables r i,1 for all i ∈ [n] and therefore is independent of r k,2 and r l,3 for all k, l ∈ [n], because we assume that the entries of R are all picked uniformly and independently at random. Now we know that T 1 is invertible iff R and D 1 are invertible. Let E 3 be the event that T 1 is invertible, and E 4 the event that R is invertible. We have E 3 = E 2 ∩ E 4 , and we have seen that

E 1 = E ′ 1 ∩ E 4 .
The probability of error can finally be bounded as follows:

Pr R∈S [E 1 ∩ E 3 ] = Pr R∈S [E ′ 1 ∩ E 2 ∩ E 4 ] ≤ Pr R∈S [E ′ 1 |E 2 ] ≤ 2/|S|.

Failure of diagonalisability

Theorem 2.2.14 gives us a way to analyze the case when the slices of the input polynomial fail to satisfy the commutativity property. With the results in the present section we will be able to analyze the case where the commutativity property is satisfied, but the diagonalisability property fails (recall that these properties are relevant due to Theorem 2.2.8).

Proposition 2.2.15. Let U ⊆ M n (K) be a commuting subspace of matrices. We define

M := M M is diagonalisable and M ∈ U .
Then M is a linear subspace of U. In particular, if there exists A ∈ U such that A is not diagonalisable then M is a proper linear subspace of U.

Proof. M is trivially closed under multiplication by scalars. Let M , N ∈ M. These two matrices are diagonalisable by definition of M, and they commute since M ⊆ U.

Hence they are simultaneously diagonalisable. Thus M is closed under addition as well, which implies that it is a linear subspace of U.

Corollary 2.2.15.1. Let {A i } i∈[n] be a commuting family of matrices such that A i is not diagonalisable for at least one index i ∈ [n]. Let S ⊂ K n be a finite set. Then D = i α i A i is diagonalisable with probability at most 1/|S| when α 1 , ..., α n are chosen uniformly and independently at random from S.

Proof. We define U = span{A 1 , ..., A n } and

M := M M is diagonalisable and M ∈ U .
So the probability of error is Pr ᾱ∈S D ∈ M . By Proposition 2.2.15 and the hypothesis that there exists

A i ∈ U \ M, M is a proper linear subspace of U. So M is an intersection of hyperplanes. Since A i ̸ ∈ M, there exists a linear form l M (X) corresponding to a hyperplane such that l M (M ) = 0 for all M ∈ M and l M (A i ) ̸ = 0.
This gives us that l M ̸ ≡ 0. We know that if D is diagonalisable then l M (D) = 0. By the Lemma 2.2.9 the probability of error satisfies:

Pr ᾱ∈S D ∈ M ≤Pr ᾱ∈S l M (D) = 0 ≤ 1 |S| since deg(l M ) = 1.
The last result of this section is an analogue of Theorem 2.2.14 for the diagonalisability property.

Theorem 2.2.16. Let f ∈ K[x 1 , ..., x n ] 3 be a degree 3 form such that the subspace V spanned by its n slices is non-singular, satisfies the commutativity property but does not satisfy the diagonalisability property. Let h(x) = f (Rx) where the entries r i,j of R are chosen uniformly and independently at random from a finite set S ⊂ K. Let T 1 , ..., T n be the slices of h.

If T 1 is invertible, define T ′ 1 = T -1 1 . Then Pr R∈S [T 1 is invertible and T ′ 1 T 2 is diagonalisable] ≤ 1 |S| .
Proof. As in the proof of Theorem 2.2.14 we have

T ′ 1 T 2 = R -1 ( n i=1 r i,2 D -1 1 S i )R
where

D 1 = n i=1 r i,1 S i . So T ′ 1 T 2 is diagonalisable iff R is invertible and M = j∈[n] r j,2 D -1 1 S j is diagonalisable. We denote by E 1 be the event that T ′ 1 T 2 is diag- onalisable, and by E ′ 1 the event that M is diagonalisable. Let E 2 be the event that {(D 1 ) -1 S i } i∈[n]
is a commuting family, but there exists i ∈ [n] such that (D 1 ) -1 S i is not diagonalisable. Since V satisfies the commutativity property and does not satisfy the diagonalisability property, by Theorem 2.2.7 the event that D 1 is invertible is the same event as E 2 .

Setting A i = (D 1 ) -1 S i and α i = r i,2 in Corollary 2.2.15.1, we obtain

Pr R∈S E ′ 1 E 2 ≤ 1 |S| .
Note here that D 1 depends only on the random variables r i,1 for all i ∈ [n] and therefore is independent of r k,2 for all k ∈ [n], because we assume that the entries of R are all picked uniformly and independently at random. Now we know that T 1 is invertible iff R and D 1 is invertible. Let E 3 be the event that T 1 is invertible, and E 4 the event that R is invertible. We have E 3 = E 2 ∩ E 4 , and we have seen that

E 1 = E ′ 1 ∩ E 4 .
The probability of error can finally be bounded as follows:

Pr R∈S [E 1 ∩ E 3 ] = Pr R∈S [E ′ 1 ∩ E 2 ∩ E 4 ] ≤ Pr R∈S [E ′ 1 |E 2 ] ≤ 1 |S| .

Analysis for negative inputs

In this section we complete the proof of Theorem 2.2.1. The case of positive inputs was treated in Section 2.2.2. It therefore remains to prove the following result.

Theorem 2.2.17.

If an input f ∈ K[x 1 , ...,
x n ] 3 is not equivalent to a sum of cubes, then f is rejected by Algorithm 1 with high probability over the choice of the random matrix R. More precisely, if the entries r i,j are chosen uniformly and independently at random from a finite set S ⊆ K then the input will be rejected with probability at least 1 -2 |S| .

Proof. Let S 1 , ..., S n be the slices of f and V = span{S 1 , ..., S n }. From Theorem 2.1.1 and Theorem 2.2.8, we know that if f ̸ ∼ P 3 there are three disjoint cases to consider:

(i) V is a singular subspace of matrices.

(ii) V is a non-singular subspace and does not satisfy the commutativity property.

(iii) V is a non-singular subspace, satisfies the commutativity property but does not satisfy the diagonalisability property.

We will upper bound the probability of error in each case. In case (i), T 1 = j∈[n] r 1,j S j ∈ V is always singular for any choice of the r 1,j . So f is rejected by the algorithm with probability 1 in this case. In case (ii) we can upper bound the probability of error as follows:

Pr R∈S [f is accepted by the algorithm]

= Pr R∈S [T 1 is invertible, T ′ 1 T 2 , T ′ 1 T 3 commute, T ′ 1 T 2 is diagonalisable] ≤ Pr R∈S [T 1 is invertible, T ′ 1 T 2 , T ′ 1 T 3 commute].
By Theorem 2.2.14, this occurs with probability 2/|S| at most. In case (iii) we have the following bound on the probability of error:

Pr R∈S [f is accepted by the algorithm] = Pr R∈S [T 1 is invertible, T ′ 1 T 2 , T ′ 1 T 3 commute, T ′ 1 T 2 is diagonalisable] ≤ Pr R∈S [T 1 is invertible, T ′ 1 T 2 is diagonalisable].
By Theorem 2.2.16 this occurs with probability 1/|S| at most. Therefore, in all three cases the algorithm rejects f with probability at least 1 -2 |S| .

Equivalence to a linear combination of d-th powers

We can associate to a symmetric tensor T of order d the homogeneous polynomial

f (x 1 , ..., x n ) = i 1 ,...,i d ∈[n] T i 1 ...i d x i 1 ...x i d .
This correspondence is bijective, and the symmetric tensor associated to a homogeneous polynomial f can be obtained from the relation

T i 1 ...i d = 1 d! ∂ d f ∂x i 1 ...∂x i d . The (i 1 , ..., i d-2 )-th slice of T is the symmetric matrix T i 1 ...i d-2 with entries (T i 1 ...i d-2 ) i d-1 ,i d = T i 1 ...i d

The Algorithm

Recall from Section 2.1.3, we denote by P d , the set of polynomials of the form

n i=1 α i x d i with α i ̸ = 0 for all i ∈ [n].
In this section we present a poly-time algorithm for checking whether an input degree d form in n variables f is equivalent to some polynomial in P d (see Algorithm 2 below). This means that f (x) = P d (Ax) for some P d ∈ P d such that A is invertible.

Recall from Section 2.2, that the equivalence algorithm for sum of cubes needs to check if

T ′ 1 T 2 commutes with T ′ 1 T 3 and if T ′ 1 T 2 is diagonalisable,
where T 1 , ..., T n are the slices of h(x) = f (Rx). Now, we prove a surprising fact that even for the higher degree cases, checking commutativity of 2 matrices and the diagonalisability of 1 matrix is enough to check equivalence to sum of linear combination of d-th powers.

Recall the definition of the permanent polynomial from (1.10). Interestingly though, arbitrary slices of a degree-d polynomial f are as hard to compute as the permanent polynomial even if f has a small arithmetic circuit. This follows from the following observation in [START_REF] Valiant | Completeness classes in algebra[END_REF] that the coefficient of the monomial y 1 ...y n in the polynomial n i=1 n j=1 x ij y j is the permanent of the n × n matrix X = (x ij ). The remainder of this section is devoted to a correctness proof for Algorithm 2, including an analysis of the probability of error. Our main result about this algorithm is as follows:

Let {T i 1 ,...,i d-2 } i 1 ,...,i d-2 ∈[n] be the slices of h(x) = f (Rx).
Theorem 2.3.1. If an input f ∈ F[x 1 , ..., x n ] d is not equivalent to some polynomial P d ∈ P d ,
then f is rejected by the algorithm with high probability over the choice of the random matrix R. More precisely, if the entries r i,j of R are chosen uniformly and independently at random from a finite set S ⊆ K, then the input will be rejected with probability ≥ (1 -2(d-2) |S| ). Conversely, if f is equivalent to some polynomial P d ∈ P d , then f will be accepted with high probability over the choice of the random matrix R. More precisely, if the entries r i,j are chosen uniformly and independently at random from a finite set S ⊆ K, then the input will be accepted with probability ≥ (1 -n(d-1) |S| ). The proof structure of this theorem follows the one of Theorem 2.2.1. In Section 2.3.3, we give a proof of the second part of theorem i.e. the behavior of Algorithm 2 on the positive inputs. Here we require a stronger property of the subspace spanned by the slices of these positive inputs. For this we define the notion of "weak singularity" in Section 2.3.2 and prove an equivalence result related to it. On the negative inputs i.e if a polynomial is not equivalent to some polynomial in P d , this can again happen in several ways depending on which property fails. We analyze the failure of commutativity in Section 2.3.4 and failure of diagonalisability in Section 2.3.4. Then we collect everything together and prove the first part of the theorem in Section 2.3.4.

Characterisation of equivalence to P d

First, we show how the slices of a degree-d form evolve under a linear change of variables. This result is an extension of Theorem 2.2.2 to the higher degree case.

Theorem 2.3.2. Let g be a degree-d form with slices {S

i 1 ...i d-2 } i 1 ,...,i d-2 ∈[n] and let f (x) = g(Ax). Then the slices T i 1 ...i d-2 of f , are given by T i 1 ...i d-2 = A T D i 1 ...i d-2 A where D i 1 ...i d-2 = j 1 ...j d-2 ∈[n] a j 1 i 1 ...a j d-2 i d-2 S j 1 ...j d-2 and a i,j are the entries of A. If g = n i=1 α i x d i , we have D i 1 ...i d-2 = diag(α 1 ( d-2 m=1 a 1,im ), ..., α n ( d-2 m=1 a n,im )).
Proof. By definition of the slices of a polynomial,

S i 1 ...i d-2 = 1 d! H ∂ d-2 g ∂x i 1 ....∂x i d-2 (x) and T i 1 ...i d-2 = 1 d! H ∂ d-2 f ∂x i 1 ....∂x i d-2 (x)
where H f (x) is the Hessian matrix of f at point x. Since f (x) = g(Ax), by differentiating d times, we get that

∂ d f ∂x i 1 ...∂x i d (x) = j 1 ...j d ∈[n] a j 1 i 1 ...a j d i d ∂ d g ∂x j 1 ...∂x j d (Ax).
Putting these equations in matrix form, and using the fact that

∂ d g ∂x j 1 ...∂x j d (Ax) = ∂ d g ∂x j 1 ...∂x j d (x) we get the desired result.
The next lemma uses Theorem 2.3.2 to reveal some crucial properties about the subspace spanned by the slices of any degree-d form which is equivalent to some g ∈ P d . It is an extension of Lemma 2.2.3 to the higher degree case.

Lemma 2.3.3. Let f (x 1 , ..., x n ) and g(x 1 , ..., x n ) be two forms of degree d such that f (x) = g(Ax) for some non-singular matrix A.

1. If U and V denote the subspaces of M n (K) spanned respectively by the slices of f and g, we have U = A T VA.

2. V is non-singular iff U is non-singular.
3. In particular, for g ∈ P d the subspace V is the space of diagonal matrices and U is a non-singular subspace, i.e., it is not made of singular matrices only.

Proof. Theorem 2.3.

2 shows that U ⊆ A T VA. Now since, g(x) = f (A -1 x), same argument shows that V ⊆ A -T UA -1 . This gives us that U = A T VA.
For the second part of the lemma, let us assume that V is non-singular and M U be an arbitrary matrix in U. Using the previous part of the lemma, we know that there exists

M V ∈ V such that M U = A T M V A. Since V is non-singular, det(M V ) ̸ = 0.
Taking determinant on both sides, we get that det(M U ) = det(A) 2 det(M V ) ̸ = 0 (since A is invertible, det(A) ̸ = 0). For the converse, assume that U is non-singular. Following a similar proof, it can be shown that det(M U ) ̸ = 0.

For the third part of the lemma, let

{S i 1 ...i d-2 } i 1 ...i d-2 ∈[n] be the slices of g. If g = i∈[n] α i x d i
, such that α i ̸ = 0 for all i, S¯i has α i in the (i, i)-th position and 0 everywhere. Also, S i 1 ,...,i d-2 = 0, when the i k 's are not equal. Hence, V is the space of all diagonal matrices. Hence V is a non-singular space. Using the previous part of the lemma, we get that U is a non-singular space as well.

The next lemma is effectively a converse of the second part of Lemma 2.3.3. It shows that if the slices of f are diagonal matrices, then the fact that they effectively originate from a symmetric tensor forces them to be extremely special. 

Lemma 2.3.4. Let f ∈ K[x 1 , ..., x n ] d be a degree-d form. If the slices of f are diagonal matrices, then f = i∈[n] α i x d i for some α 1 , ..., α n ∈ K. Proof. Let T i 1 ,...,i d-2 be the slices of f . Let I = {(i σ(1) , ..., i σ(d) )|σ ∈ S d }.
(T i 1 ...i d-2 ) i d-1 ,i d = (T i σ(1) ,...,i σ(d-2) ) i σ(d-1) ,i σ(d) .
(2.2)

We want to show that

T i 1 ,...,i d ̸ = 0 only if i 1 = i 2 = ... = i d . Using (2.2), it is sufficient to show that (T i 1 ,...,i d-2 ) i d-1 ,i d ̸ = 0 only if i d-1 = i d . This is true since T i 1 ,...,i d-2 are diagonal matrices. This gives us that f = i∈[n] α i x d i .
Now we are finally ready to prove a theorem that characterizes exactly the set of degree-d homogeneous polynomials which are equivalent to some g ∈ P d . This is an extension of Theorem 2.1.1 to the degree-d case, and it already appears as Theorem 2.1.2 in the introduction. We restate it now for the reader's convenience.

Theorem 2.3.5. A degree d form f ∈ K[x 1 , ..., x n ] is equivalent to some polynomial P d ∈ P d if and only if its slices {T i 1 ,...,i d-2 } i 1 ,...,i d-2 ∈[n]
span a non-singular matrix space and the slices are simultaneously diagonalisable by congruence, i.e., there exists an invertible matrix Q ∈ M n (K) such that the matrices 

Q T T i 1 ...i d-2 Q are diagonal for all i 1 , ..., i d-2 ∈ [n]. Proof. Let U be the space spanned by {T i 1 ,...,i d-2 } i 1 ,...,i d-2 ∈[n] . If f is equivalent to P d ,
R ∈ M n (K) such that T i 1 ...i d-2 = RΛ i 1 ...i d-2 R T for all i 1 , ..., i d-2 ∈ [n]. So now we consider g(x) = f (R -T x). Let {S i 1 ,...,i d-2 } i 1 ,...,i d-2 ∈[n]
be the slices of g. Using Theorem 2.3.2, we get that

S i 1 ...i d-2 = (R -1 )( j 1 ...j d-2 ∈[n] r j 1 i 1 ...r j d-2 i d-2 RΛ j 1 ...j d-2 R T )R -T = j 1 ...j d-2 ∈[n] r j 1 i 1 ...r j d-2 i d-2 Λ j 1 ...j d-2 .
This implies that S j 1 ...j d-2 are also diagonal matrices. By Lemma 2.3.4, g = i∈[n] α i x d i . It therefore remains to be shown that α i ̸ = 0, for all i ∈ [n]. Let V be the subspace spanned by the slices of g and the slices of f span a non-singular matrix space U. Since, U is a non-singular subspace of matrices, using part (2) of Lemma 2.3.3, we get that V is a non-singular subspace of matrices.

But if some α i vanishes, for all A ∈ V, A¯i = 0. Hence V is a singular subspace, which is a contradiction. This gives us that g = n i=1 α i x d i where α i ̸ = 0 for all i. Hence, g ∈ P d and f is equivalent to g.

Theorem 2.3.6. Let f ∈ K[x 1 , ..., x n ] be a degree-d form. f is equivalent to some polynomial P d ∈ P d iff the subspace V spanned by its slices {T i 1 ,...,i d-2 } i 1 ,...,i d-2 ∈[n]
is a non-singular subspace and V satisfies the Commutativity Property and the Diagonalisability Property.

Proof. This follows from Theorem 2.3.5 and Theorem 2.2.8 for k = n d-2 to get the result.

We now introduce a weaker notion of singularity of a subspace spanned by a set of matrices and using that we prove a stronger version of Theorem 2.3.6. More formally we show that the characterization is valid even when the "non-singular subspace" criterion imposed on the subspace V spanned by the slices of the polynomial is replaced by the "not a weakly singular subspace" criterion.

Definition 2.3.7. (Weak singularity) Let V be the space spanned by matrices {S

i 1 ,...,i d-2 } i 1 ,...,i d-2 ∈[n] . V is weakly singular if for all α = (α 1 , ..., α n ), det( i 1 ,...,i d-2 ∈[n] ( k∈[d-2] α i k )S i 1 ...i d-2 ) = 0.
Notice here that the notion of weak-singularity is entirely dependent on the generating set of matrices. So it is more of a property of the generating set. But by abuse of language, we will call the span of the matrices to be weakly singular. To put it in contrast, refer to Section 2.1.1 where the notion of singularity is a property of the subspace spanned by the matrices (irrespective of the generating set). It can be further observed that for all n ≥ 2 and d ≥ 4, non-singular families of matrices can be easily constructed which are weakly singular! Theorem 2.3.8. Let f ∈ K[x 1 , ..., x n ] be a degree-d form. f is equivalent to some polynomial P d ∈ P d iff the subspace V spanned by its slices

{T i 1 ,...,i d-2 } i 1 ,...,i d-2 ∈[n]
is not a weakly singular subspace, satisfies the Commutativity Property and the Diagonalisability Property.

Proof. First we show that if

f = P d (Ax) such that P d ∈ P d i.e. P d (x) = n i=1 α i x d i
where α i ̸ = 0 for all i ∈ [n] and A is invertible, then V is not a weakly singular subspace, satisfies the commutativity property and the diagonalisability property.

Let {S i 1 ...i d-2 } i 1 ,...,i d-2 ∈[n]
be the slices of P d . Then S¯i = α i diag(e i ) where e i is the i-th standard basis vector, and all other slices are 0. From Theorem 2.3.2,

T i 1 ...i d-2 = A T D i 1 ...i d-2 A = A T ( k∈[n] a ki 1 ...a ki d-2 Sk)A.

Now we define

T ( β) = i 1 ,...,i d-2 ∈[n] ( k∈[d-2] β i k )T i 1 ...i d-2 = i 1 ,...,i d-2 ∈[n] ( k∈[d-2] β i k )A T (diag(α 1 ( m∈[d-2] a 1im ), ..., α n ( m∈[d-2] a nim )))A = A T diag(α 1 ( i 1 ,...,i d-2 ∈[n] ( k∈[d-2] β i k a 1i k )), ..., α n ( i 1 ,...,i d-2 ∈[n] ( k∈[d-2] β i k a ni k )))A.
Taking determinant on both sides, det(T

)( β) = det(A) 2 n m=1 T m ( β) where T m ( β) = α m ( i 1 ,...,i d-2 ∈[n] ( k∈[d-2] β i k a mi k ))
. Since, A is invertible, none of its rows are all 0. Hence for all m 0 ∈ [n], there exists

j 0 ∈ [n], such that a m 0 j 0 ̸ = 0. Then coeff β d-2 j 0 (T m 0 ) = a d-2 m 0 j 0 ̸ = 0. Hence T m 0 ̸ ≡ 0 for all m 0 ∈ [n]
which implies that det(T ) ̸ ≡ 0. Therefore, there exists β0 such that det(T )( β0 ) ̸ = 0. This proves that det

( i 1 ,...,i d-2 ∈[n] ( k∈[d-2] β i k )T i 1 ...i d-2 ) ̸ ≡ 0. Hence, V = span{T i 1 ...i d-2 } i 1 ,...,i d-2 ∈[n]
is not weakly singular. Theorem 2.3.6 gives us that the subspace spanned by the slices V satisfies the commutativity property and the diagonalisability property.

For the converse, if V is not a weakly singular subspace, then it is a non-singular subspace as well. And it satisfies the commutativity property and the diagonalisability property. By Theorem 2.3.6, we get that f is equivalent to some polynomial in P d .

Analysis for positive inputs

In this section we analyze the behavior of Algorithm 2 on inputs that are equivalent to some polynomial in P d (which we refer to as the positive inputs). We recall here again that by T1, we denote the slice T 11...1 .

Lemma 2.3.9. Let f ∈ K[x 1 , ..., x n ] d with slices {S i 1 ,...,i d-2 } i 1 ,...,i d-2 ∈[n]
, such that the subspace V spanned by the slices is not weakly singular. Let h(x) = f (Rx) where the entries r i,j are chosen uniformly and independently at random from a finite set

S ⊆ K. Let {T i 1 ,...,i d-2 } i 1 ,...,i d-2 ∈[n] be the slices of h. Then Pr R∈S [T1 is invertible] ≥ 1 - n(d -1) |S| .
Proof. We can obtain the slices T i 1 ...i d-2 of h from the slices S i 1 ...i d-2 of f using Theorem 2.3.2. Namely, we have

T i 1 ...i d-2 = R T D i 1 ...i d-2 R where D i 1 ...i d-2 = j 1 ...j d-2 ∈[n] ( m∈[d-2] r jm,im )S j 1 ...j d-2 .
Therefore T1 is invertible iff R and D1 are invertible. Applying Lemma 2.2.9 to det(R) shows that R is singular with probability at most n |S| . We will show that D1 is singular with probability at most n(d-2)

|S| . The lemma then follows from the union bound. Matrix D1 is not invertible iff det(D1) = 0. Since,

D1 = j 1 ...j d-2 ∈[n] ( m∈[d-2] r jm,1 )S j 1 ...j d-2 , det(D1) ∈ K[r 1,1 , ..., r n,1 ] and deg(det(D1)) ≤ n(d -2)
. Since, V is not weakly singular, there exists some choice of α = (α 1 , ..., α n ), such that

S = i 1 ,...,i d-2 ∈[n] ( m∈[d-2] α im )S i 1 ...i d-2
is invertible. Hence, det(S) ̸ = 0. This gives us that det(D1)(α) ̸ = 0. which gives us that det(D1) ̸ ≡ 0. From the Lemma 2.2.9, it follows that

Pr R∈S [det(D1) = 0] ≤ n(d -2) |S| .
Recall here from Section 2.1.3, we define by P d , the set of all polynomials of the form

n i=1 α i x d i such that 0 ̸ = α i ∈ K for all i ∈ [n]. Lemma 2.3.10. Given A ∈ M n (K), let {T i 1 ,...,i d-2 } i 1 ,...,i d-2 ∈[n] be the slices of h(x) = P d (Ax) where P d ∈ P d . If T1 is invertible, define T ′ 1 = (T1) -1 . Then T ′ 1T2 commutes with T ′ 1T3 and T ′ 1T2 is diagonalisable. Proof. Let P d = n i=1 α i x d i where α i ̸ = 0. By Theorem 2.3.2, T i 1 ...i d-2 = A T (diag(α 1 ( d-2 m=1 a 1,im ), ..., α n ( d-2 m=1 a n,im )))A = A T D i 1 ...i d-2 A.
If T1 is invertible, the same is true of A and D1. The inverse (D1) -1 is diagonal like D1, hence (D1) -1 D2 and (D1) -1 D3 are both diagonal as well and must therefore commute. Now,

T ′ 1T2T ′ 1T3 = A -1 ((D1) -1 D2(D1) -1 D3)A = A -1 ((D1) -1 D3(D1) -1 D2)A = T ′ 1T3T ′ 1T2.
Finally, T ′ 1T2 = A -1 ((D1) -1 D2)A so this matrix is diagonalisable.

We are now in a position to prove the easier half of Theorem 2.3.1.

Theorem 2.3.11. If an input f ∈ K[x 1 , ..., x n ] d is equivalent to some polynomial P d ∈ P d then f will be accepted by Algorithm 2 with high probability over the choice of the random matrix R. More precisely, if the entries r i,j are chosen uniformly and independently at random from a finite set S ⊆ K, then the input will be accepted with probability ≥ (1 -n(d-1) |S| ).

Proof. We start by assuming that f = P d (Bx) for some P d ∈ P d where B is an invertible matrix. By Theorem 2.3.8, we know that the subspace spanned by the slices of f is not weakly singular. We can therefore apply Lemma 2.3.9, the first slice

T1 of h(x) = f (Rx) is invertible with probability at least 1 -n(d-1)
|S| . Moreover if T1 is invertible, Lemma 2.3.10 shows that, f will always be accepted. (We can apply this lemma to h since h = P d (RBx)).

Analysis of negative inputs

In this section, we analyse the behaviour of Algorithm 2 on the inputs that are not equivalent to any polynomial in P d (which we refer to as the negative inputs). The main goal is to show that the algorithm rejects negative inputs with high probability.

Failure of commutativity

Definition 2.3.12.

Let {S i 1 ,...,i d } i 1 ,...,i d ∈[n]
be a family of matrices. We say that the matrices form a symmetric family of symmetric matrices if each matrix in the family is symmetric and for all permutations σ ∈ S d , S i 1 ,...,i d = S i σ(1) ...i σ(d) .

In the next lemma, we show that if a symmetric family of symmetric matrices (this family has size n d ) is not a commuting family, then two linear combinations of these matrices formed by picking just 2n elements at random also do not commute with high probability.

Lemma 2.3.13 (General commutativity lemma). Let {S i 1 ,...,i d } i 1 ,...,i d ∈[n] be a symmetric family of symmetric matrices in M n (K) that do not form a commuting family. Pick α = {α 1 , ..., α n } and α ′ = {α ′ 1 , ..., α ′ n } uniformly and independently at random from a finite set S ⊂ K. We define

M α = i 1 ,...,i d ∈[n] ( m∈[d] α im )S i 1 ,...,i d and M α ′ = j 1 ,...,j d ∈[n] ( m∈[d] α ′ jm )S j 1 ,...,j d . Then, Pr α,α ′ ∈S M α , M α ′ don't commute ≥ 1 -2d |S| .
Proof. We want to bound the probability of error, i.e

Pr α,α ′ ∈S M α M α ′ -M α ′ M α ̸ = 0 . The expression M α M α ′ -M α ′ M α can be written as i 1 ,...,i d ∈[n] j 1 ,...,j d ∈[n] ( m∈[d] α im α ′ jm )(S i 1 ...i d S j 1 ...j d -S j 1 ...j d S i 1 ...i d ).
For a fixed r, s ∈ [n], we define the polynomial

P r,s comm (α, α ′ ) = i 1 ,...,i d ,j 1 ,...,j d ∈[n] ( m∈[d] α im α ′ jm )m r,s i 1 ...i d j 1 ...j d where m r,s i 1 ...i d j 1 ...j d = (S i 1 ...i d S j 1 ...j d -S j 1 ...j d S i 1 ...i d ) r,s . First note that by construction M α commutes with M α ′ if and only if for all r, s ∈ [n] such that P r,s comm (α, α ′ ) = 0. Since, {S i 1 ,...,i d } is not a commuting family, there exists i 0 1 , ..., i 0 d , j 0 1 , ..., j 0 d ∈ [n], such that S i 0 1 ...i 0 d S j 0 1 ...j 0 d -S j 0 1 ...j 0 d S i 0 1 ...i 0 d ̸ = 0.
Hence, there exists some entry (r 0 , s 0 ) such that

(S i 0 1 ...i 0 d S j 0 1 ...j 0 d -S j 0 1 ...j 0 d S i 0 1 ...i 0 d ) r 0 ,s 0 ̸ = 0. Now we claim that P r 0 ,s 0 comm (α, α ′ ) ̸ ≡ 0. It is enough to show that the coefficient of α i 0 1 ...α i 0 d α ′ j 0 1 ...α ′ j 0 d in P r 0 ,s 0 comm (α, α ′ ) is non-zero. Let I 0 = {(i 0 σ(1) , ..., i 0 σ(d) )|σ ∈ S d } and J 0 = {(j 0 σ(1) , ..., j 0 σ(d) )|σ ∈ S d }. Then coeff α i 0 1 ...α i 0 d α ′ j 0 1 ...α ′ j 0 d (P r 0 ,s 0 comm ) = ī∈I 0 , j∈J 0 m r 0 s 0 īj .
The matrices S i 1 ...i d form a symmetric family in the sense of Definition 2.3.12. Therefore, for all ī ∈ I 0 , j ∈ J 0 , m r 0 s 0 īj are equal. This gives us that

coeff α i 0 1 ...α i 0 d α ′ j 0 1 ...α ′ j 0 d (P r 0 ,s 0 comm ) = |I 0 ||J 0 |(m r 0 ,s 0 i 0 1 ...i 0 d j 0 1 ...j 0 d ) ̸ = 0.
Hence P r 0 ,s 0 comm ̸ ≡ 0 and deg(P r 0 ,s 0 comm ) ≤ 2d and using Lemma 2.2.9, we get that, Pr α,α ′ ∈S [P r 0 ,s 0 comm (α,

α ′ ) ̸ = 0] ≥ 1 -2d |S| . Putting r = r 0 , s = s 0 , this gives us that Pr α,α ′ ∈S M α , M α ′ don't commute ≥ 1 - 2d |S| .
The next result relies on the above lemma. Theorem 2.3.14 gives us a way to analyze the case when the slices of the input polynomial fail to satisfy the commutativity property (recall that this property is relevant due to Theorem 2.3.8).

Theorem 2.3.14. Let f ∈ K[x 1 , ..., x n ] d be a degree d form such that the subspace of matrices V spanned by its slices is not weakly singular and does not satisfy the commutativity property. Let h(x) = f (Rx) where the entries (r i,j ) of R are chosen uniformly and independently at random from a finite set

S ⊂ K. Let {T i 1 ...i d-2 } i 1 ,...,i d-2 ∈[n] be the slices of h. If T1 is invertible, define T ′ 1 = (T1) -1 . Then Pr[T1 is invertible and T ′ 1T2, T ′ 1T3 commute ] ≤ 2(d-2) |S| . Proof. Let {S i 1 ...i d-2 } i 1 ,...,i d-2 ∈[n]
be the slices of f . By Theorem 2.3.2, we know that

T i 1 ...i d-2 = R T j 1 ...j d-2 ∈[n] ( m∈[d-2] r jm,im S j 1 ...j d-2 ) R. Let us define D i 1 ...i d-2 = j 1 ...j d-2 ∈[n] ( m∈[d-2] r jm,im )S j 1 ...j d-2
. Then we have for all i ∈ {2, ..., n}:

T ′ 1Tī = R -1 (D1) -1 (R) -T R T D¯iR = R -1 ( j 1 ...j d-2 ∈[n] ( m∈[d-2] r jm,i )(D1) -1 S j 1 ...j d-2 )R. (2.3) So, if T1 is invertible, T ′ 1T2 commutes with T ′ 1T3 iff (D1) -1 D2 commutes with (D1) -1 D3. Let E 1 be the event that T1 is invertible and T ′ 1T2 commutes with T ′ 1T3. Let E ′ 1
be the event that D1 is invertible and (D1) -1 D2 commutes with (D1) -1 D3. Let E 4 be the event that R is invertible. Then we have that

E 1 = E ′ 1 ∩ E 4 . Let E 2 be the event that D1 is invertible and {(D1) -1 S i 1 ,...,i d-2 } i 1 ,...,i d-2 ∈[n]
is not a commuting family. Since V does not satisfy the commutativity property, (D1) -1 V is not a commuting subspace if D1 is invertible. Hence, the event that D1 is invertible is the same as the event E 2 . This also implies that

E ′ 1 ⊆ E 2 . Setting A i 1 ...i d-2 = (D1) -1 S i 1 ...i d-2 , α i = r i,2 , α ′ i = r i,3
and then using Lemma 2.3.13, we can conclude that

Pr R∈S E ′ 1 |E 2 ≤ 2(d-2)
|S| . Note here that D1 depends only on the random variables r i,1 for all i ∈ [n] and therefore is independent of r k,2 and r l,3 for all k, l ∈ [n], because we assume that the entries of R are all picked uniformly and independently at random. Let E 3 be the event that T1 is invertible. Now we know that T1 is invertible iff R and D1 are invertible. Then, we have E 3 = E 2 ∩ E 4 Hence, the probability of error can be bounded as follows:

Pr R∈S [E 1 ] = Pr R∈S [E ′ 1 ∩ E 2 ∩ E 4 ] ≤ Pr R∈S [E ′ 1 |E 2 ] ≤ 2(d -2) |S| .

Failure of diagonalisability

Theorem 2.3.14 gives us a way to analyze the case when the slices of the input polynomial fail to satisfy the commutativity property. With the results in the present section we will be able to analyze the case where the commutativity property is satisfied, but the diagonalisability property fails (recall that these properties are relevant due to Theorem 2.3.8).

Lemma 2.3.15.

Let {A i 1 ...i d } i 1 ,..,i d ∈[n] ∈ M n (K)
be a commuting family of symmetric matrices. Let us assume that this family is symmetric in the sense of Definition 2.3.12 and there exists i 0 1 , ...,

i 0 d ∈ [n] such that A i 0 1 ...i 0 d is not diagonalisable. Let S ⊂ K be a finite set. Then D = n i 1 ,...,i d =1 ( m∈[d] α im )A i 1 ...

i d is diagonalisable with probability at most d

|S| when α 1 , ..., α n are chosen uniformly and independently at random from S.

Proof. We define

U = span{A i 1 ...i d } i 1 ,..,i d ∈[n]
. We also define the class of matrices

M := M M is diagonalisable and M ∈ U .
So, we want to show that Pr α∈S D ∈ M ≤ d |S| . Now using Proposition 2.2.15, and the hypothesis that there exists

A i 0 1 ...i 0 d ∈ U \ M, we get that M is a proper linear subspace of U. So M is an intersection of hyperplanes. Since A i 0 1 ...i 0 d ̸ ∈ M, there exists a linear form l M (X) = i,j∈[n] a ij X ij corresponding to a hyperplane such that l M (M ) = 0 for all M ∈ M and l M (A i 0 1 ...i 0 d ) ̸ = 0. We know that if D is diagonalisable, then l M (D) ̸ = 0. We compute the polynomial l M (D)(α) = i 1 ,...,i d ∈[n] ( m∈[d] α im )m i 1 ...i d where m i 1 ...i d = ( k,l∈[n] a kl (A i 1 ...i d ) k,l ).
Now we claim that l M (D) ̸ ≡ 0. We show this by proving that the coefficient of

α i 0 1 ...α i 0 d in l M (D)(α) is not equal to 0. Let I 0 = {(i 0 σ(1) , ..., i 0 σ(d) )|σ ∈ S d }. Then coeff α i 0 1 ...α i 0 d (D) = ī∈I 0 m¯i. Since the matrices A i 1 ...i d form a symmetric family, the m¯i are equal for all ī ∈ I 0 . Also, since, l M (A i 0 1 ...i 0 d ) ̸ = 0, we get that k,l∈[n] a k,l (A i 0 1 ...i 0 d ) k,l ̸ = 0.

This gives us that m

i 0 1 ...i 0 d ̸ = 0. Hence, we get that coeff α i 0 1 ...α i 0 d (D) = |I 0 |m i 0 1 ...i 0 d ̸ = 0.
Thus, l M (D) ̸ ≡ 0 and deg(l M (D)) ≤ d. From Lemma 2.2.9, we have

Pr α∈S D ∈ M ≤ Pr α∈S [l M (D)(α) = 0] ≤ d |S| .
The last result for this section is an analogue of the Theorem 2.3.14 for the diagonalisability property.

Theorem 2.3.16. Let f ∈ K[x 1 , ..., x n ] d be a degree-d form such that the subspace V spanned by its slices is a not weakly-singular subspace, satisfies the commutativity property, but does not satisfy the diagonalisability property. Let h(x) = f (Rx) where the entries r i,j of R are chosen uniformly and independently at random from a finite set

S ⊂ K, Let {T i 1 ...i d-2 } i 1 ,...,i d-2 ∈[n] be the slices of h. If T1 is invertible, define T ′ 1 = (T1) -1 . Then Pr[T1 is invertible and T ′ 1T2 is diagonalisable ] ≤ d -2 |S| .
Proof. As in the proof of Theorem 2.3.14, we use the expression for T ′ 1T2 which we obtain from the definition of the slices i.e.

R -1 ( j 1 ...j d-2 ∈[n] ( m∈[d-2] r jm,2 )(D1) -1 S j 1 ...j d-2 )R where D1 = j 1 ...j d-2 ∈[n] ( m∈[d-2] r jm,1 )S j 1 ...j d-2 . So if T1 is invertible, T ′ 1T2 is diag- onalisable iff M = ( j 1 ...j d-2 ∈[n] ( m∈[d-2] r jm,2 )(D1) -1 S j 1 ...j d-2 ) is diagonalisable.
We denote by E 1 the event that T1 is invertible and T ′ 1T2 is diagonalisable and by E ′ 1 the event that D1 is invertible and M is diagonalisable. Let E 4 be the event that R is invertible. Hence,

E 1 = E ′ 1 ∩ E 4 . Let E 2 be the event that D1 is invertible and {(D1) -1 S i 1 ...i d-2 } i 1 ,...,i d-2 ∈[n]
is a commuting family and there exists j 1 ...j d-2 ∈ [n] such that (D1) -1 S j 1 ...j d-2 is not diagonalisable. Since V satisfies the commutativity property and does not satisfy the diagonalisability property, by Theorem 2.2.7, the event that D1 is invertible is the event same as E 2 . It can also be observed that

E ′ 1 ⊆ E 2 . Setting A i 1 ...i d-2 = (D1) -1 S i 1 ...i d-2
and setting α i = r i,2 for all i ∈ [n] and using Lemma 2.3.15, we get that

Pr R∈S E ′ 1 E 2 ≤ d-2
|S| . Now we know that T1 is invertible iff R and D1 is invertible. Let E 3 be the event that T1 is invertible. Then, we have E 3 = E 2 ∩ E 4 . The probability of error can finally be bounded as follows:

Pr R∈S [E 1 ∩ E 3 ] = Pr R∈S [E ′ 1 ∩ E 2 ∩ E 4 ] ≤ Pr R∈S [E ′ 1 |E 2 ] ≤ d-2 |S| .

Finishing the analysis for negative inputs

In this section we complete the proof of Theorem 2.3.1. The case of positive inputs was treated in Section 2.3.3. It therefore remains to prove the following result.

Theorem 2.3.17. If an input f ∈ K[x 1 , ..., x n ] d is not equivalent to some polynomial P d ∈ P d , then f is rejected by the algorithm with high probability over the choice of the random matrix R. More precisely, if the entries r i,j are chosen uniformly and independently at random from a finite set S ⊆ K, then the input will be rejected with probability

≥ (1 -2(d-2) |S| ). Proof. Let {S i 1 ,...,i d-2 } i 1 ,...,i d-2 ∈[n]
be the slices of f and V = span{S i 1 ,...,i d-2 }. From Theorem 2.3.6 and Theorem 2.2.8, we know that if f ̸ ∼ P d , then there are three disjoint cases:

1. Case 1: V is a weakly singular subspace of matrices.

2. Case 2: V is not a weakly singular subspace and V does not satisfy the commutativity property.

3. Case 3: V is not a weakly singular subspace, V satisfies the commutativity property but does not satisfy the diagonalisability property. Now we try to upper bound the probability of error in each case.

In case 1,

T1 = R T ( j 1 ...j d-2 ∈[n] r j 1 ,1 ...r j d-2 ,1 S j 1 ...j d-2 )R ∈ R T VR
is always singular for any choice of r j,1 . So f is rejected with probability 1 in this case.

In case 2, we can upper bound the probability of error as follows:

Pr R∈S [f is accepted by the algorithm] = Pr R∈S [T1 is invertible, T ′ 1T2, T ′ 1T3 commute , T ′ 1T2 is diagonalisable] ≤ Pr R∈S [T1 is invertible, T ′ 1T2, T ′ 1T3 commute ].
Using Theorem 2.3.14, we get that this occurs with probability at most 2(d-2) |S| . In Case 3, we have the following upper bound on the probability of error,

Pr R∈S [f is accepted by the algorithm] = Pr R∈S [T1 is invertible, T ′ 1T2, T ′ 1T3 commute , T ′ 1T2 is diagonalisable] ≤ Pr R∈S [T1 is invertible, T ′ 1T2 is diagonalisable].
By Theorem 2.3.16, this occurs with probability ≤ d-2 |S| . Therefore in all these three cases, the algorithm rejects f with probability at least 1 -2(d-2) |S| .

Variable Minimization

We first recall the notion of redundant and essential variables studied by Carlini [START_REF] Carlini | Reducing the number of variables of a polynomial[END_REF] and Kayal [START_REF] Kayal | Efficient algorithms for some special cases of the polynomial equivalence problem[END_REF].

Definition 2.4.1. A variable x i in a polynomial f (x 1 , ..., x n ) is redundant if f does not depend on x i , i.e., x i does not appear in any monomial of f . Let f ∈ K[x 1 , ..., x n ].
The number of essential variables is the smallest number t such that there exists an invertible linear transformation A ∈ K n×n on the variables such that every monomial of f (Ax) contains only the variables x 1 , ..., x t .

In this section we propose the following algorithm for variable minimization. A randomized algorithm for minimizing the number of variables is given in ([Kay11], Theorem 4.1). More precisely, if the input f has t essential variables the algorithm finds (with high probability) an invertible matrix A such that f (Ax) depends on its first t variables only. It is based on the observation that t = dim(∂f ) where ∂(f ) denotes the tuple of n first-order partial derivatives ∂f ∂x i (and dim(∂f ) denotes the dimension of the spanned subspace). [START_REF] Kayal | Efficient algorithms for some special cases of the polynomial equivalence problem[END_REF] then uses Lemma 2.4.3 along with Theorem 2.4.4 to return the required invertible matrix.

We combine the algorithm for minimizing the number of variables along with Algorithm 2 to check if there exists a decomposition of the polynomial into linear combination of d-th powers of ≤ n many linearly independent linear forms. More formally, Algorithm 3 decides in polynomial time over C or R whether the input f which is given as blackbox can be written as t i=1 α i l d i for some t ≤ n where l i 's are linearly independent linear forms and α i ̸ = 0 for all i ∈ [t]. We do a detailed complexity analysis of this algorithm in Appendix A.2.

Definition 2.4.2. Let f(x) = (f 1 (x), ..., f m (x)) ∈ (K[x]
) m be a vector of polynomials over a field K. The set of K-linear dependencies in f, denoted by f ⊥ , is the set of all vectors v ∈ K m , whose inner product with f is the zero polynomial i.e

f ⊥ := {(a 1 , ..., a m ) ∈ K m | i∈[m] a i f i (x) = 0}
This following lemma from [START_REF] Kayal | Efficient algorithms for some special cases of the polynomial equivalence problem[END_REF] gives a randomized algorithm to compute the basis of linear dependencies of a vector of polynomials. We restate it here for completeness and also calculate the probability bounds which we will need for our correctness proof of Algorithm 3. 

Lemma 2.4.3. Let f = (f 1 (X), ..., f m (X)) be a vector of m polynomial with deg(f i ) ≤ d such that rank(f ⊥ ) = t.
P (a 1 , ..., a m ) =       f 1 (a 1 ) f 2 (a 1 ) . . . f m (a 1 ) f 1 (a 2 ) f 2 (a 2 ) . . . f m (a 2 ) . . . . . . . . . . . . f 1 (a m ) f 2 (a m ) . . . f m (a m )       Then Pr a∈S [rank(P (a 1 , ..., a m )) = m -t] ≥ 1 - (m -t)d |S| Additionally, if rank(P (a 1 , ..., a m )) = m -t, then ker(P (a 1 , ..., a m )) = f ⊥ .
Proof. Without loss of generality, we assume that the polynomial f 1 , ..., f m-t are Klinearly independent and the rest of the polynomials are K linear combinations of the first m -t polynomials. So it is enough to prove that [START_REF] Kayal | Efficient algorithms for some special cases of the polynomial equivalence problem[END_REF] shows that det(Q) ̸ ≡ 0. Applying Lemma 2.2.9, we get that,

Q(a 1 , ..., a m ) =       f 1 (a 1 ) f 2 (a 1 ) . . . f m-t (a 1 ) f 1 (a 2 ) f 2 (a 2 ) . . . f m (a 2 ) . . . . . . . . . . . . f 1 (a m-t ) f 2 (a m-t ) . . . f m (a m-t )       has full rank, which is equivalent to proving that det(Q)(a 1 , ..., a m ) ̸ = 0. Now deg(det(Q)(x 1 , ..., x n )) ≤ (m -t)d. Claim 7 in
Pr a∈S [rank(P (a 1 , ..., a m )) = m -t] ≥ 1 - (m -t)d |S|
Recall that we define ∂(f ) = ( ∂f ∂x 1 , ..., ∂f ∂xn ). Let b 1 , ..., b n-t be a basis for ∂(f ) ⊥ . Now there exists t independent vectors a 1 , ..., a t such that the vector space K n is spanned by a 1 , ..., a t , b 1 , ..., b n-t . We define A f to be the invertible matrix whose columns are a 1 , ..., a t , b 1 , ..., b n-t .

Theorem 2.4.4. [START_REF] Carlini | Reducing the number of variables of a polynomial[END_REF] The number of redundant variables in a polynomial f (x) equals the dimension of ∂(f ) ⊥ . Furthermore, given a basis of ∂(f ) ⊥ , the polynomial f (A f X) depends on only the first (ndim(∂(f ) ⊥ ))) variables.

Lemma 2.4.5. If f can be written as a sum of r powers of linearly independent linear forms, then the number of essential variables of f is equal to r.

Proof. Follows from Example 42 in [START_REF] Koiran | Derandomization and Absolute Reconstruction for Sums of Powers of Linear Forms[END_REF].

We combine all the results in this section along with Theorem 2.3.1 to give a correctness proof for Algorithm 3.

Theorem 2.4.6. If an input P ∈ K[x 1 , ..., x n ] d can not be written as t i=1 α i l d i , where l i are linearly independent linear forms and α i ̸ = 0 for all i ∈ [t], for any t ≤ n, then P is rejected by Algorithm 3 with high probability over the choice of the random matrix R and the points α 1 , ..., α n . More formally, if the entries α i j and r i,j are chosen uniformly and independently at random from a finite set S, then the input will be rejected with probability

≥ (1 -2(d-2) |S| )(1 -n(d-1) |S| ). Conversely, if P ∈ K[x 1 , ...,
x n ] d can be written as t i=1 α i l d i where l i are linearly independent linear forms and α i ̸ = 0 for all i ∈ [t], then P will be accepted by Algorithm 3 with high probability over the choice of the random matrix R and the points a 1 , ..., a n . More formally, if the entries α (i) j and r i,j are chosen uniformly and independently at random from a finite set S, then the input will be accepted with probability ≥ (1 -t(d-1) |S| ) 2 . Proof. Let us assume that P has t essential variables and we fix M as given by the algorithm. Then using Lemma 2.4.3 for f i = ∂P ∂x i and a i = α i , we get that

Pr α [v 1 , ..., v n-t is a basis for ∂(P ) ⊥ ] ≥ 1 - t(d -1) |S| .
The linear transformation A defined in the algorithm, satisfies the conditions of the linear transformation defined in Theorem 2.4.4 with b i = v i and a i = u i with probability ≥ 1 -t(d-1) |S| . Now, we define f (x) = P (Ax). This gives us that

Pr α [f (x) depends only on the first

t variables] ≥ 1 - t(d -1) |S| ≥ 1 - n(d -1) |S| .
Using Theorem 2.3.1, we get that if f can not be written as a sum of t-many sum of d-th powers of linear forms for any t ≤ n, then the algorithm rejects the polynomial with probability

≥ (1 -2(d-2) |S| )(1 -n(d-1) |S| ).
For the converse, if f can be written as a sum of t-many sum of d-th powers of linear forms, using Lemma 2.4.5, then the polynomial has t essential variables. Then the algorithm accepts P with probability ≥ (1 t(d-1) |S| ) 2 .

Reconstruction Algorithm for P d

The general reconstruction problem for a special class of arithmetic circuits can be stated as follows: Given a homogeneous degree-d polynomial, output the smallest circuit that computes it. In this section, we look at the reconstruction problem for linear combination of d-th powers of linearly independent linear forms. Notice that Algorithm 2 already solves the decision version of this problem in polynomial time i.e. Given a homogeneous degree-d polynomial, can it be written as a linear combination of d-th powers of linearly independent linear forms?

In terms of the polynomial equivalence problem, we have already shown that given a homogeneous degree-d polynomial f , we can check in polynomial time if there exists an invertible matrix A and some P d ∈ P d such that f (x) = P d (Ax). We give an algorithm (see Algorithm 4 below) that uses Algorithm 2 to check the existence of such an A and then outputs the A and the corresponding P d . When f ∈ C[x 1 , ..., x n ] d , this algorithm runs in polynomial time, if we allow the computation of polynomial roots in our model.

Algorithm 4: Randomized Reconstruction Algorithm Result: The algorithm checks if f is equivalent to some polynomial in P d and outputs {(α 1 , l 1 ), ..., (α n , l n )} where 0 ̸ = α i ∈ K and l i 's are linearly independent linear forms such that f = n i=1 α i l d i 1 Input: A degree-d homogeneous polynomial f given as blackbox 2 Let R ∈ M n (K) be a matrix such that its entries r ij are picked uniformly and independently at random from a finite set S and set h(x) = f (Rx) 3 Let T i 1 ,...,i d-2 be the slices of h for all i 1 , ...,

i d-2 ∈ [n] 4 Compute T1, T2, T3 5 if T1 is singular then 6 reject 7 else 8 compute T ′ 1 = T -1 1 9 if T ′ 1T2 and T ′ 1T3 commute and T ′ 1T2 is diagonalisable over K then 10 diagonalise T ′ 1T2 = P ΛP -1
11 Let l i be the i-th row of (R -1 P -1 ) and let α i = f (P Rx)(e i ) where e i ∈ K n is the i-th standard basis vector for all i ∈ [n]

12

Output {(α 1 , l 1 ), ..., (α n , l n )} 13 else 14 reject 15 end 16 end Note that this output is unique up to the permutation and scaling of the linear forms by a constant. If the linear form l i is scaled by a constant c, then it is reflected in the α i which becomes α i c d . A natural question is to study the approximate version for this reconstruction problem i.e. if the input polynomial admits such a decomposition, the linear forms which are returned by the algorithm are "arbitrarily close" to the required linear forms. In this context, one should note that interestingly, the only non-algebraic step in this algorithm is the step of matrix diagonalization. All other steps can be computed exactly in polynomial time. Recently, [START_REF] Banks | Pseudospectral shattering, the sign function, and diagonalization in nearly matrix multiplication time[END_REF] gave a poly-time randomized algorithm for the approximate version of matrix diagonalization problem. Referring to that algorithm for our diagonalization step combined with our reconstruction algorithm should effectively give a polynomial time randomized algorithm for the approximate version of the reconstruction problem. A more precise analysis is left for future work.

For the next lemma, we assume that the input polynomial f is equivalent to some polynomial P d ∈ P d i.e. f (x) = P d (Ax) where A is an invertible matrix. Take a random change of variables and let T1 and T2 be two slices of the new polynomial. Then, the eigenvalues of (T1) -1 T2 are distinct with high probability over the random change of variables. Lemma 2.5.1 along with Corollary 2.5.1.1 ensures that just diagonalization of a single (T1) -1 T2 is enough to recover the matrix A uniquely (up to permutation and scaling of the rows).

Theorem 2.5.1. Let f (x) = P d (Ax) for some P d ∈ P d where A is an invertible matrix. Let h(x) = f (Rx) where the entries r ij of R are chosen uniformly and independently at random from a finite set S. Let the slices of h be {T

i 1 ...i d-2 } i 1 ,...,i d-2 ∈[n] . If T1 is invertible, let T ′ 1 = T -1 1 . Let λ 1 , ..., λ n be the eigenvalues of T ′ 1T2. Then Pr R∈S [There exists i, j ∈ [n] such that λ i = λ j and T1 is invertible ] ≤ 2( n 2 )(d -2) |S| .
Proof. Let us assume that P d (x) = n i=1 α i x d i where α i ̸ = 0. We use the fact that h

(x) = P d (RAx). Let {S i 1 ...i d-2 } i 1 ,...,i d-2 ∈[n]
be the slices of P d . Then we know from (2.3),

T ′ 1T2 = (RA) -1 ( j 1 ...j d-2 ∈[n] m∈[d-2] (RA) jm,2 (D1) -1 S j 1 ...j d-2 )(RA)
where

D1 = j 1 ...j d-2 ∈[n] ( m∈[d-2]
(RA) jm,1 )S j 1 ...j d-2 .

Since S i 1 ...i d-2 are the slices of P d , we know that

S i 1 ...i d-2 = α i diag(e i ) if i 1 = i 2 = ... = i d-2 = i = 0 otherwise.
Since T1 is invertible, then R and D1 are invertible. Now

D1 = diag(α 1 ((RA) 1,1 ) d-2 , ..., α n ((RA) n,1 ) d-2 ).
Since D1 is invertible, this gives us that α i ((RA) i,1 ) d-2 ̸ = 0 for all i ∈ [n] and we obtain

T ′ 1T2 = (RA) -1 diag( ((RA) 1,2 ) d-2 ((RA) 1,1 ) d-2 , ..., ((RA) n,2 ) d-2 ((RA) n,1 ) d-2 ) RA (2.4) This gives us that λ i = ((RA) i,2 ) d-2
((RA) i,1 ) d-2 . We define

P i,j (R) = ((RA) i,2 (RA) j,1 ) d-2 -((RA) j,2 (RA) i,1 ) d-2 .
We can see that

λ i ̸ = λ j iff P i,j (R) ̸ = 0. Also, deg(P ij ) ≤ 2(d -2). We can choose R such that (RA) i,2 = 1, (RA) j,1 = 1, (RA) i,1 = 0, (RA) j,2 = 0, (If A is invertible,
there exists R such that RA = M for any matrix M ). Hence, P ij ̸ ≡ 0. Using Schwartz-Zippel Lemma, we get that

Pr R∈S [P ij = 0] ≤ 2(d -2) |S| .

This gives us that

Pr R∈S [T1 is invertible and

λ i = λ j ] ≤ Pr R∈S [P ij = 0] ≤ 2(d -2) |S| .
Taking the union bound over all possible pairs of i, j ∈ [n], we get that

Pr R∈S [There exists i, j ∈ [n] such that λ i = λ j and T1 is invertible ] ≤ 2( n 2 )(d -2) |S| .
Corollary 2.5.1.1. Let f (x) be a degree-d form which is equivalent to some polynomial in P d . Let h(x) = f (Rx) where the entries r ij of R are chosen uniformly and independently at random from a finite set S ⊂ K. Let the slices of h be

{T i 1 ,...,i d-2 } i 1 ,...,i d-2 ∈[n] . If T1 is invertible, let T ′ 1 = T -1 1 . Suppose T ′ 1T2 can be diagonalised as P ΛP -1 . Let l i be the rows of R -1 P -1 . Define α i = f (P Rx)(e i ) where e i ∈ K n is the i-th standard basis vector for all i ∈ [n]. Then Pr R∈S [T1 is invertible and f (x) = n i=1 α i l d i ] ≥ 1 - 2( n 2 )(d -2) |S| .
Proof. By Theorem 2.5.1, we get that

Pr R∈S [T1 is invertible and

T ′ 1T2 has distinct eigenvalues] ≥ 1 - 2( n 2 )(d -2)
|S| .

We will now show that if T1 is invertible and

T ′ 1T2 has distinct eigenvalues, then f (x) = n i=1 α i l d i .
If the eigenvalues are distinct, then the rank of the eigenspaces corresponding to each eigenvalue is 1. Hence, the eigenvectors of T ′ 1T2 are unique (up to a scaling factor). We already know that h(x) = P d (Bx) for some P d ∈ P d such that B is invertible. Then the columns of B -1 form the eigenvectors of T ′ 1T2. We take the diagonalization of T ′ 1T2 into P ΛP -1 . Note here that the columns of P form the eigenvectors for T ′ 1T2. The uniqueness of eigenvectors of T ′ 1T2 gives us that the set of columns of P are essentially the set of columns of B -1 upto a scaling factor. So this gives us that h(x) = P ′ d (P -1 x) for some P ′ d ∈ P d . We know that f (x) = h(R -1 x). This gives us that f (x) = P ′ d (R -1 P -1 )x. We define A = R -1 P -1 and the i-th row of A as l i . This fixes the set of linear forms of the decomposition of the input polynomial which are unique up to a scaling factor. Taking P d = f (A -1 x) gives the corresponding polynomial in P d such that f is equivalent to P d . Now P d = n i=1 α i x d i where α i ̸ = 0. Evaluating P d at e i ∈ K n where e i is the i-th standard basis vector, returns the corresponding α i . Hence,

Pr R∈S [f (x) = n i=1 α i l d i and T1 is invertible] ≥ 1 - 2( n 2 )(d -2) |S| .
We combine all the results in this section along with Theorem 2.3.1 to give a correctness proof of Algorithm 4.

Theorem 2.5.2. If an input f ∈ K[x 1 , ..., x n ] d is not equivalent to some polynomial in P d , then f is rejected by Algorithm 4 with high probability. More formally, if the entries r i,j of R are chosen uniformly and independently at random from a finite set S, then the input will be rejected with probability ≥ (1 -2(d-2) |S| ).

Conversely, if an input f ∈ K[x 1 , ..., x n ] d is equivalent to some polynomial in P d , then Algorithm 4 outputs such a polynomial with high probability. More formally,if the entries of a matrix R are chosen uniformly and independently from a finite set S, then the algorithm outputs a set of linearly independent linear forms l i and corresponding

coefficients α i ̸ = 0 such that f = n i=1 α i l d i with probability ≥ 1 -( 2( n 2 )(d-2) |S| + n(d-1)
|S| ). Proof. From Theorem 2.3.17, we get that if f is not equivalent to any polynomial in P d , then f is rejected by Algorithm 4 with probability ≥ (1 -2(d-2) |S| ). For the converse, we start by assuming that f is equivalent to some polynomial in P d . We know that if the first slice T1 of h(x) = f (Rx) is not invertible, the Algorithm always makes an error and rejects the input. From Theorem 2.3.8, we know that the subspace spanned by the slices of f is not weakly singular. We can therefore apply Lemma 2.3.9, we get that

Pr R∈S [T1 is not invertible] ≤ n(d -1) |S| . (2.5)
Moreover if T1 is invertible, Lemma 2.3.10 shows that f will always be accepted. Let the output of the algorithm be {(α i , l i )} i∈ [n] . So the only possible error is when

f ̸ = i∈[n] α i l d i .
From Corollary 2.5.1.1, we get that

Pr R∈S [Algorithm makes an error and

T1 is invertible] ≤ 2( n 2 )(d -2) |S| . (2.6)
Combining (2.5) and (2.6), we get that if f is equivalent to some polynomial in P d , then Algorithm 4 returns a set of linearly independent linear forms l i and corresponding coefficients α i ̸ = 0 (which are unique up to scaling and permutation) such that

f = n i=1 α i l d i with probability ≥ 1 -( 2( n 2 )(d-2) |S| + n(d-1)
|S| ). We can also replace the call to Algorithm 2 in Algorithm 3 by a call to Algorithm 4 to similarly get a reconstruction algorithm for linear combination of powers of at most n linearly independent linear forms. More specifically, given a polynomial f in blackbox, it will check if there exists a decomposition of f = t i=1 α i l d i for some t ≤ n where l i 's are linearly independent and α i ̸ = 0 and outputs the decomposition, if it exists.

Complexity analysis for equivalence to a sum of cubes

We first explain how the diagonalizability of a matrix can be tested efficiently with an algebraic algorithm. This can be done thanks to the following classical result from linear algebra (see e.g. [START_REF] Horn | Matrix Analysis[END_REF], Corollary 3.3.8 for the case K = C).

Lemma 2.6.1. Let K be a field of characteristic 0 and let χ M be the characteristic polynomial of a matrix M ∈ M n (K). Let P M = χ M gcd(χ M ,χ ′ M ) be the square-free part of χ M . The matrix M is diagonalisable over K iff P M (M ) = 0. Moreover, in this case M is diagonalisable over K iff all the roots of P M lie in K.

We prove the following lemma which shows that each entry of the slices that we need to compute can be computed using O(d) calls to the blackbox and O(d log 3 d) many arithmetic operations. This proof is motivated from the idea of polynomial interpolation and the proof strategy of Lemma 4 in [START_REF] Forbes | Towards Blackbox Identity Testing of Log-Variate Circuits[END_REF].Their algorithm gives a poly(sd) runtime in our setting. In this section, we will require this lemma only for d = 3, but we prove the general form so that we can use it later in Chapter 2.7. Lemma 2.6.2. Let f ∈ K[x 1 , ..., x n ] be a homogeneous polynomial of degree d where |K| > d. If f is input as a blackbox C, then for some i ∈ [n] can compute the coefficient of x d-2 i x k x j using O(d) many oracle calls to the blackbox and O(M (d) log d) many arithmetic operations.

Proof. Here we use the standard trick of polynomial interpolation. Without loss of generality, we assume that i = 1, that is we need to compute coeff x d-2

1 x j x k (f ). So we can write, C(x 1 , ..., x n ) = d i=0 c i x i 1 where c j ∈ K[x 2 , ..., x n ].
Now there are three cases:

• j = k = 1 • only one of j or k = 1 • j, k ̸ = 1.
Case 1: Evaluate the polynomial at the point (1, 0, ..., 0) ∈ K n . This gives us the coefficient of x d 1 in f . Case 2: Exactly one of j or k is 1. Without loss of generality, we assume j = 1 and k = 2. So we want to compute coeff x d-1 1 x 2 (f ). We evaluate the polynomial f at the point t = (t, 1, 0, ..., 0) ∈ K n . Now it's easy to check that coeff

t d-1 (f ( t)) = coeff x d-1 1
x 2 (f ). So we need to only interpolate and calculate the coefficient of t d-1 in f ( t).

Case 3: j, k ̸ = 1. Now in this, there are two cases :

• j = k = 2 : Here we take a similar strategy as Case 2. We evaluate f at t = (t, 1, 0, ..., 0)

∈ K n . Then coeff t d-2 (f ( t)) = coeff x d-2 1 x 2 2 (f ) So interpolate and compute the coefficient of t d-2 in f ( t).
• The final case is when the indices are all distinct. Let j = 2 and k = 3 without loss of generality. We evaluate the polynomial f at t = (t, 1, 1, 0, ..., 0) ∈ K n . Now

coeff t d-2 (f ( t)) = coeff x d-2 1 x 2 2 (f ) + coeff x d-2 1 x 2 x 3 (f ) + coeff x d-2 1 x 2 3 (f )
Now, using the previous case, we compute coeff

x d-2 1 x 2 2 (f ) and coeff x d-2 1 x 2 3 (f ), subtract them from coeff t d-2 (f ( t))
and return the answer. 

Each case of this algorithm requires us to do univariate polynomial interpolation at most constantly many number of times and this can be

., x n ] is given in dense representation, Algorithm 1 runs in time O(n ω+1

) where ω is the exponent of matrix multiplication. If the degree 3 form f ∈ K[x 1 , ..., x n ] is given as a blackbox then the algorithm makes O(n 2 ) many calls to the blackbox and O(n ω+1 ) many arithmetic operations.

Proof. The following are the different stages of computation required in this algorithm:

1. Recall from Theorem 2.2.2, the slices T i of h = f (Rx) are given by the formula

T k = R T ( i∈[n] r i,k S i )R.
If the polynomial is input in dense representation, then the elements of S i can be computed from the coefficients of f . Then we take linear combinations of the S i 's and computing T 1 , T 2 , T 3 takes O(n 3 ) many arithmetic operations.

If the polynomial is given as a blackbox, we compute x ′ = Rx and we call the blackbox on this input.

2. Compute T 1 , T 2 , T 3 We know

(T k ) ij = 1 3! ∂ x i x j x k (h)
So we can extract each entry of T k using constant many calls to the blackbox and constantly many arithmetic operations using Lemma 2.6.2. There are in total 3n 2 such entries that we need to compute. So the total number of calls to the blackbox is O(n 2 ) and the number of arithmetic operations is O(n 2 ).

3. Check if T 1 is invertible. If invertible, compute T ′ 1 = T -1
1 . This can be done in time at most O(n 3 ). (Faster algorithms exist [START_REF] Von | Modern Computer Algebra[END_REF] but this bound is enough since it is not the most expensive step of the algorithm.)

Checking commutativity of T ′

1 T 2 and T ′ 1 T 3 . Here we compute the product T ′ 1 T 2 T ′ 1 T 3 and T ′ 1 T 3 T ′ 1 T 2 and check if their difference is 0. This can be done in time O(n ω ).

Checking the diagonalisability of T ′

1 T 2 : Here we use Lemma 2.6.1. Hence there are four steps:

• Compute the characteristic polynomial of M i.e. χ M . Owing to a recent breakthrough by [START_REF] Neiger | Deterministic computation of the characteristic polynomial in the time of matrix multiplication[END_REF], there is a deterministic algorithm for this problem that runs in time O(n ω ). A randomized algorithm for this problem with same running time was given by [START_REF] Pernet | Faster algorithms for the characteristic polynomial[END_REF]. A more classical result is a deterministic algorithm for this problem due to [START_REF] Keller-Gehrig | Fast algorithms for the characteristics polynomial[END_REF] which runs in O(n ω log(n)) number of arithmetic operations.

• Compute gcd(χ M , χ ′ M , ). Since, deg(χ M ) ≤ n, this can be done in O(n 2 ) using Euclidean Algorithm. [GG13] • Compute P M = χ M gcd(χ M ,χ ′ M )
. This is can be computed in O(n 2 ) using the standard long-division algorithm.

• Check if P M (M ) = 0. Using Horner's Method, we can evaluate the polynomial at M using n many matrix multiplications only. Hence, computing P M (M ) takes O(n ω+1 ) time.

Hence, we can conclude that the diagonalisability of T ′ 1 T 2 can be checked in time O(n ω+1 ). Note that this is the most expensive step of the algorithm! So we conclude that if the polynomial is given as an input in the dense representation model, then the algorithm runs in time O(n ω+1 ). If the polynomial is given as a blackbox, then the algorithm makes O(n 2 ) many oracle calls to the blackbox and takes O(n ω+1 ) many arithmetic operations. Proof. The following are the different stages of computation required in this algorithm:

Complexity analysis

1. If the polynomial is given as a blackbox, we compute x ′ = Rx. And we call the blackbox on this input.

2. Compute T1, T2, T3. We know that (Tk

) ij = 1 d! ∂ x i x j x d-2 k (h).
So we can extract each entry of T¯i using O(d) many oracle calls to C ′ and O(M (d) log d) many arithmetic operations using Lemma (2.6.2). There are in total 3n 2 such entries that we need to compute. So this entire operation can be done using O(n 2 d) many oracle calls to the blackbox and O(n 2 M (d) log d) many arithmetic operations.

Check if T1 is invertible. If invertible, compute

T ′ 1 = (T1) -1
4. Checking commutativity of T ′ 1T2 and T ′ 1T3.

Checking the diagonalisability of T ′ 1T2:

Steps (3), (4) and ( 5) are exactly the same as Theorem 2.6.3. This is because they don't require any assumptions on T1, T2, T3 except for the fact that they are n × n matrices. Thus, from the proof of Theorem 2.6.3, we get that these steps can be checked in O(n ω+1 ) many arithmetic operations. So we conclude that if the polynomial is given as a blackbox, then the algorithm makes O(n 2 d) many calls to the blackbox; the number of arithmetic operations re-

quired is O(n 2 M (d) log d + n ω+1 ). Since M (d) = O(d log d log log d), the number of arithmetic operations is O(n 2 d log 2 d log log d + n ω+1 ).

Complexity analysis for the bit model

We look at the case where f ∈ Q[x 1 , ..., x n ] is a degree-d form and we want to check if it can be written as a linear combination of dth powers of linear forms over R or C. Our algebraic algorithms run in polynomial time in the standard bit model of computation, i.e., they are "strongly polynomial" algorithms (this is not automatic due to the issue of coefficient growth during the computation). For a detailed discussion of how the previous algorithms fail to give a polynomial time algorithm for this problem in this model, refer to Section 1.1 from [START_REF] Koiran | Derandomization and Absolute Reconstruction for Sums of Powers of Linear Forms[END_REF].

We try to estimate the complexity of each step of the algorithm in the standard bit model of computation, following the proof of Theorem 2.7.1. In Step (1), we take a matrix R such that its entries r i,j are picked uniformly and independently at random from a finite set S.Hence the bit size of the entries of R are bounded by log(|S|) + 1. We define h = f (Rx). Recall from Theorem 2.3.2, that the slices T¯i of h can be written as R T 

( i 1 ,...,i d-2 ∈[n] ( m∈[d] r im,i )S i 1 ...i d-2 )R.
The entries of the slices S i 1 ...i d-2 are essentially the coefficients of f . So they are bounded by the bit size of the maximum coefficient in f which we define to be b f . Therefore, the bit size of each element of T¯i is b := poly(log(|S|), log(n), d, b f ) for all i. Now the elements of T1, T2, T3 are computed using Lemma 2.6.2 that uses polynomial interpolation and hence, computing these matrices takes time poly(n, d, b). In Step (3), we check if the slice T1 is invertible and if invertible, it is inverted. Since the bit-size of the inputs of T1 are bounded by b, the matrix can be inverted using Bareiss' Algorithm [START_REF] Bareiss | Sylvester's identity and multistep integer-preserving gaussian elimination[END_REF] in time poly(n, d, b). In Step (4), testing commutativity of T ′ 1T2 and T ′ 1T3 requires only matrix multiplication which does not blow up the entry of the matrices and hence, this step can be done in time poly(n, d, b). In Step (5), we need to check the diagonalisability of M = T ′ 1T2. Over the field of complex numbers it therefore suffices to check that P M (M ) = 0 which can be done in time poly(n, d, b). For the discussion of how the same can be executed over R, refer to Section 4 of [START_REF] Koiran | Derandomization and Absolute Reconstruction for Sums of Powers of Linear Forms[END_REF].

So the total time required for the entire computation in the bit model of complexity is poly(n, d, log(|S|), b f ) where b f is the bit size of the maximum coefficient in f and S is the set from which the entries of R are picked uniformly and independently at random.

Chapter 3

Numerical Linear Algebra

This chapter is dedicated to the study of different fundamental algorithms for linear algebra, albeit in the finite precision arithmetic model of computation. In Section 3.1.1, we further explore the model of finite precision arithmetic (which we had already described in Section 1.2.2) and in Section 3.1, we present the error guarantees for well-known fast algorithms for standard linear algebra problems like matrix multiplication and matrix inversion. Then, in Section 3.2, we give a linear time algorithm for computing the trace of the slices of a symmetric tensor after a change of basis operation. We also perform the error analysis of this algorithm in the finite precision arithmetic model of computation. In Section 3.3, we prove some interesting properties of the fast and numerically stable diagonalisation algorithm from [START_REF] Banks | Pseudospectral shattering, the sign function, and diagonalization in nearly matrix multiplication time[END_REF]. These are key components of the numerical algorithm for tensor decomposition that we will describe in Chapter 4.

Preliminaries: Fast and Stable Linear Algebra

In this section, we explore the computational model of finite precision arithmetic that has already been introduced in Section 1.2.2 in greater detail. We present the different estimates for various linear algebraic operations such as inner product of vectors, matrix multiplication and matrix inversion. This is the main content of Sections 3.1.1 and 3.1.2 and they have been taken from [START_REF] Nicholas | Accuracy and Stability of Numerical Algorithms[END_REF] and [START_REF] Banks | Pseudospectral shattering, the sign function, and diagonalization in nearly matrix multiplication time[END_REF]. We include these for completeness of the exposition.

Finite precision arithmetic

Recall that we had described the finite precision arithmetic model of computation in Section 1.2.2. Every number x ∈ C is stored as fl(x) = (1 + ∆)x for some adversarially chosen ∆ ∈ C, satisfying |∆| ≤ u where u is the precision of the finite arithmetic machine.

Norms: We denote by ||x|| the ℓ 2 (Hermitian) norm of a vector x ∈ C n . For A ∈ M n (C), we denote by ||A|| its operator norm and by ||A|| F its Frobenius norm:

||A|| 2 F = n i,j=1 |A ij | 2 . (3.1)
We always have ||A|| ≤ ||A|| F . We'll need to compute the inner product of two vectors x, y ∈ C n . For this purpose, we will assume that

|x T y -fl(x T y)| ≤ γ n ||x||||y|| (3.2)
where u is the machine precision and γ n = nu 1-nu . For a proof, refer to the discussion at the discussion in [START_REF] Nicholas | Accuracy and Stability of Numerical Algorithms[END_REF], Section 3.1.

We will also assume similar guarantees for matrix-matrix addition and matrixscalar multiplication. More specifically, if A ∈ C n×n is the exact output of such an operation, then its floating point representation fl(A) will satisfy

fl(A) = A + A • ∆ where |∆ ij | < u.
Here A • ∆ denotes the entry-wise product A ij ∆ ij . This multiplicative error can be converted into an additive form i.e.

||A • ∆||

≤ u √ n||A||. (3.3)
For more complicated linear algebraic operations like matrix multiplication and matrix inversion, we require more sophisticated error guarantees which we now explain.

Matrix Multiplication and Inversion

The definitions we state here are taken from The following theorem by [START_REF] Demmel | Fast matrix multiplication is stable[END_REF] gives a numerically stable matrix multiplication algorithm which is used by [START_REF] Demmel | Fast linear algebra is stable[END_REF] to gives numerically stable algorithm for matrix inversion and a numerically stable algorithm for QR factorization of a given matrix. We use the presentation of these theorems from [START_REF] Banks | Pseudospectral shattering, the sign function, and diagonalization in nearly matrix multiplication time[END_REF].

Theorem 3.1.3.

1. If ω is the exponent of matrix multiplication, then for every η > 0, there is a µ MM (n)-stable matrix multiplication algorithm with µ MM (n) = n cη and T MM (n) = O(n ω+η ), where c η does not depend on n.

Given an algorithm for matrix multiplication satisfying part (1), there is a

(µ INV (n), c INV )-stable inversion algorithm with µ INV (n) ≤ O(µ MM (n)n log 10 ) and c INV ≤ 8,
and

T INV (n) = O(T MM )(n).
In particular, all of the running times above are bounded by T MM (n) for a n × n matrix.

Instead of the fast matrix multiplication algorithm, one can also consider the errors from the conventional computation. Let A, B be two matrices and let C = AB computed on a floating point machine with machine precision u. From (3.13) in [START_REF] Nicholas | Accuracy and Stability of Numerical Algorithms[END_REF], we have that

||C -AB|| ≤ 2nu||A|| F ||B|| F . (3.4)
We will use this bound in the next section, where (in contrast to Section 3.3) fast matrix multiplication is not needed.

Slices after a change of basis

Given tensors T , T ′ ∈ C n×n×n , we say that there is a change of basis

A ∈ M n (C) that takes T to T ′ if T ′ = (A ⊗ A ⊗ A).T .
Written in standard basis notation, the equality T ′ = (A ⊗ A ⊗ A).T corresponds to the fact that for all i 1 , i 2 , i 3 ∈ [n],

T ′ i 1 i 2 i 3 = j 1 ,j 2 ,j 3 ∈[n] A j 1 i 1 A j 2 i 2 A j 3 i 3 T j 1 j 2 j 3 . (3.5) Note that if T = u ⊗3 for some vector u ∈ C n , then (A ⊗ A ⊗ A).T = (A T u) ⊗3 .
The choice of making A act by multiplication by A T rather than by multiplication by A is somewhat arbitrary, but it is natural from the point of view of the polynomial-tensor equivalence in Section 1.1.3. Indeed, from the polynomial point of view a change of basis corresponds to a linear change of variables. More precisely, if f (x 1 , . . . , x n ) is the polynomial associated to T (refer to Section 1.1.3) and f

′ (x 1 , . . . , x n ) is the polynomial associated to T ′ = (A ⊗ A ⊗ A).T , we have f ′ (x) = f (Ax).
In the present section we give a fast and numerically stable algorithm for computing the trace of the slices after a change of basis. More formally, given a tensor T and a matrix V , it computes T r(S 1 ), ..., T r(S n ) where S 1 , ..., S n are the slices of the tensor S = (V ⊗ V ⊗ V ).T with small error in O(n 3 ) many arithmetic operations. The following theorem was derived in Theorem 2.2.2 in the polynomial language of Section 1.1.3. Theorem 3.2.1. Let T ∈ (C n ) ⊗3 be a tensor with slices T 1 , ..., T n and let S = (A ⊗ A ⊗ A).T where A ∈ M n (C). Then the slices S 1 , ..., S n of S are given by the formula:

S k = A T D k A where D k = i=1 a i,k T i and a i,k are the entries of A. Corollary 3.2.1.1. Let S = r i=1 a ⊗3 i .
Let A be the r × n matrix with rows a 1 , ..., a r . Then the slices S k of S are given by the formula x m requires n arithmetic operations and hence, this step requires n 2 arithmetic operations.

S k = A T D k A where D k = diag(a 1,k , ..., a r,k ).

In

Step 4, we compute each si by taking the inner product of the i-th column of V and X = (X 1 , ..., x m ). Each inner product requires n arithmetic operations and hence, this step requires n 2 arithmetic operations.

So, the total number of arithmetic operations required is T CB (n) = O(n 3 ).

Error Analysis: We denote by A k the k-th row of any matrix A and by A _,k we denote the k-th column of A.

We proceed step by step and analyse the errors at every step of the algorithm. At every step, we explain what the ideal output would be if the algorithm was run in exact arithmetic. And we show that the output in finite arithmetic at every stage is quite close to the ideal output.

Step 1: Let V be the matrix given as input. In this step, we want to compute a product of the matrices V T and V . We use the standard matrix multiplication algorithm and the bounds from (3.4). Let W = M M (V T , V ) be the output of Step 1 of this algorithm.

Using (3.4) and the fact that for any matrix V , ||V T || = ||V ||, we have:

||W -V T V || ≤ 2n • u • ||V || 2 F .
(3.9)

From (3.9) and the triangle inequality, we also have that

||W || ≤ ||V || 2 F + 2nu||V || 2 F < 2||V || 2 F .
(3.10)

In the last inequality, we use the hypothesis that 2nu < 1.

Step 2: In this step, we take as input a matrix W and compute all the diagonal elements of the matrix W T m . Let x m,k = (W T m ) k,k be computed on a floating point machine. If the algorithm is run in exact arithmetic, the output at the end of Step 2 is (V

T V T m ) k,k for all m, k ∈ [n].
Computationally, the k-th diagonal element can be computed as an inner product between the k-th row of W and the k-th column of T m . Then using the error bounds of inner product computation in (3.2), we have that

|x m,k -(W T m ) k,k | ≤ 2nu||W k ||||(T m ) _,k || ≤ 2nu||W ||||(T m ) _,k ||.
(3.11) Also, from (3.9), we have that

|(W T m ) k,k -(V T V T m ) k,k | ≤ |⟨(W -V T V ) k , (T m ) _,k ⟩| ≤ ||(W -V T V ) k ||||(T m ) _,k || ≤ 2nu||V || 2 F ||(T m ) _,k ||.
(3.12)

Combining (3.11) and (3.12), the triangle inequality and the bound from (3.10), we deduce that

|x m,k -(V T V T m ) k,k | ≤ 6nu||V || 2 F ||(T m ) _,k ||. (3.13)
We also want to give an upper bound for |x m,k |. By (3.13) and the triangle inequality, we have

|x m,k | ≤ 6nu||V || 2 F ||(T m ) _,k || + |(V T V T m ) k,k | (3.14)
So we need to give an upper bound for |(V T V T m ) k,k |. Expanding along the definition and using the Cauchy-Schwarz inequality, we obtain

|(V T V T m ) k,k | = |⟨(V T V ) k , (T m ) _,k ⟩| ≤ ||(V T V ) k ||||(T m ) _,k ||. (3.15)
Putting this back in (3.14), we have that

|x m,k | ≤ 6nu + 1 ||V || 2 F ||(T m ) _,k || ≤ 2||V || 2 F ||(T m ) _,k ||. (3.16)
The final inequality uses the hypothesis that u < 1 6n .

Step 3: In this step, we take as input x m,k for all m, k ∈ [n]. We then compute x m = n k=1 x m,k on a floating point machine for all m ∈ [n]. If the algorithm was run in exact arithmetic, the output at the end of this step would be n k=1

(V T V T m ) k,k for all m ∈ [n].
Computation of x m can also be thought of as inner product between the all 1's vector 1 and the vector (x m,1 , ..., x m,n ). So, we can again use the bounds from (3.2). This gives us that

|x m - n k=1 x m,k | ≤ 2n 3 2 u n k=1 |x m,k | 2 ≤ 4n 3 2 ||V || 2 F u n k=1 ||(T m ) _,k || 2 .
(3.17)

The last equation uses (3.16) to bound the norm of |x m,k |. Also, summing up (3.13) for all k ∈ [n] and using the triangle inequality, we have that

| n k=1 x m,k - n k=1 (V T V T m ) k,k | ≤ u||V || 2 F (4n + µ M M (n)) n k=1 ||(T m ) _,k || ≤ u||V || 2 F (6n 3 2 ) n k=1 ||(T m ) _,k || 2 .
(3.18)

The last inequality follows from the Cauchy-Schwarz inequality. Combining (3.17) and (3.18), we finally have the error at the end of that

|x m - n k=1 (V T V T m ) k,k | ≤ u||V || 2 F 10n 3 2 n k=1 ||(T m ) _,k || 2 = u||V || 2 F 10n 3 2 ||T m || F . (3.19)
In the last equality, we use the definition of the Frobenius norm of matrices from (3.1). We also want to derive bounds for |x m |. From the previous equation, by the triangle inequality we already get that

|x m | ≤ u||V || 2 F 10n 3 2 ||T m || F + | n k=1 (V T V T m ) k,k |. (3.20) So it is enough to derive bounds for | n k=1 (V T V T m ) k,k |.
Summing up (3.15) for all m ∈ [n] and using the Cauchy-Schwarz inequality, we obtain:

| n k=1 (V T V T m ) k,k | ≤ √ n n k=1 |(V T V T m ) k,k | 2 ≤ √ n||V || 2 F ||T m || F .
(3.21)

Putting this back in (3.20), we have that

|x m | ≤ 2 √ n||V || 2 F ||T m || F . (3.22)
Here in the last inequality, we use the hypothesis that u ≤ 1 10n .

Step 4: In this step, we take as input x m for all m ∈ [n]. We then compute si = n m=1 v mi x m in floating point arithmetic. Recall that S = (V ⊗ V ⊗ V ).T and S 1 , ..., S n are the slices of S. Ideally if the algorithm is run in exact arithmetic, the output at this stage is T r

(S i ) = n m=1 v mi n k=1 (V T V T m ) k,k .
Using error bounds for the inner product operation (3.2) and using (3.22) to bound |x m | we have that

| si - n m=1 v mi x m | ≤ 2nu||V _,i || n m=1 |x m | 2 ≤ 4n 3 2 u||V || 3 F n m=1 ||T m || 2 F .
(3.23) Also, summing up (3.19) for all m ∈ [n] and using the triangle inequality, we have:

| n m=1 v mi x m - n k=1 (V T V T m ) k,k | ≤ ||V _,i || n m=1 |x m - n k=1 (V T V T m ) k,k | 2 ≤ u||V || 3 F (8n 3 2 + √ nµ M M (n)) n m=1 ||T m || 2 F (3.24) Moreover, it follows from (3.6), that n m=1 ||T m || 2 F = ||T || 2 F .
Using this and combining (3.23) and (3.24) using triangle inequality, we have:

|| si - n m=1 v mi n k=1 (V T V T m ) k,k | ≤ u||V || 3 F 14n 3 2 n m=1 ||T m || 2 F = µ CB (n) • u • ||V || 3 F ||T || F , (3.25)
where µ CB (n) ≤ 14n

Diagonalisation algorithm for diagonalisable matrices

In this section, we look at the algorithmic problem of matrix diagonalisation over the field of complex numbers.

Definition 3.3.1 (Eigenpair and eigenproblem). [START_REF] Banks | Pseudospectral shattering, the sign function, and diagonalization in nearly matrix multiplication time[END_REF] An eigenpair of a matrix A ∈ C n×n is a tuple (λ, v) ∈ C × C n such that Av = λv and ||v|| 2 = 1. The eigenproblem is the problem of finding a maximal set of linearly independent eigenpairs (λ i , v i ) of a given matrix A. Note that an eigenvalue may appear more than once if it has geometric multiplicity greater than one. In the case when A is diagonalizable, the solution consists of exactly n eigenpairs, and if A has distinct eigenvalues, then the solution is unique, up to multiplication by phases of v i . This is multiplication by complex numbers of modulus 1.

Due to the Abel-Ruffini theorem, it is impossible to have a finite-time algorithm which solves the eigenproblem exactly using arithmetic operations and radicals. So one can only hope to find approximate eigenvalues and eigenvectors, up to a desired accuracy.

Definition 3.3.2 (δ-forward approximation for the eigenproblem). Let (λ i , v i ) be true eigenpairs for a diagonalizable matrix A. Given an accuracy parameter δ, the problem is to find pairs (λ

′ i , v ′ i ) such that ||v i -v ′ i || ≤ δ and |λ i -λ ′ i | ≤ δ i.e.
, to find a solution close to the exact solution.

Definition 3.3.3 (δ-backward approximation for the eigenproblem). Given a diagonalizable matrix A and an accuracy parameter δ, find exact eigenpairs (λ ′ i , v ′ i ) for a matrix A ′ such that ||A -A ′ || ≤ δ i.e., find an exact solution to a nearby problem. Since diagonalizable matrices are dense in C n×n , one can always find a complete set of eigenpairs for some nearby A ′ .

The eigenproblem has been thoroughly studied in different models of computation. Without an attempt at being exhaustive, we will try to include a brief survey of the results. The problem of devising an algorithm for the general eigenproblem that was numerically stable remained open until the breakthrough by Armentano, Beltrán, Bürgisser, Cucker, and Shub [ABB + 18]. They gave an algorithm which on input any matrix A with ||A|| ≤ 1, outputs a δ-backward approximation to the eigenproblem (refer to Definition 3.3.3) in n 10 δ 2 arithmetic operations. Although the analysis of the algorithm in this paper has been performed for exact arithmetic, the authors argue informally that the homotopy continuation methods used in the algorithm are numerically stable and can be implemented in finite precision arithmetic. This result was further improved in [START_REF] Banks | Pseudospectral shattering, the sign function, and diagonalization in nearly matrix multiplication time[END_REF] who gave a numerically stable algorithm for matrix diagonalisation that also runs in nearly matrix multiplication time and the number of arithmetic operations has a polylogarithmic dependence on 1 δ (refer to Theorem 3.3.4 for a precise statement) as compared to [ABB + 18] which has dependence on 1 δ in the finite precision arithmetic model. This is the algorithm whose properties we discuss in this section and this serves as one of the important building blocks of our tensor decomposition algorithm, which is described in Chapter 5. In comparison, the diagonalisation problem for Hermitian matrices has been well understood since the work of [START_REF] Wilkinson | Global convergene of tridiagonal QR algorithm with origin shifts[END_REF] (refer to [START_REF] Banks | Pseudospectral shattering, the sign function, and diagonalization in nearly matrix multiplication time[END_REF] for a more detailed survey of the existing results.) In the model of rational arithmetic with bounded bit length a, [START_REF] Cai | Computing jordan normal forms exactly for commuting matrices in polynomial time[END_REF] gave an algorithm to compute a δ-forward approximation to the Jordan normal form in poly(n, a, log( 1 δ )) arithmetic operations.

Contributions of this section to matrix diagonalisation:

Given A ∈ M n (C) and δ > 0, the algorithm for matrix diagonalisation in [START_REF] Banks | Pseudospectral shattering, the sign function, and diagonalization in nearly matrix multiplication time[END_REF] computes an invertible matrix V and a diagonal matrix D such that ||A -V DV -1 || ≤ δ. Moreover, V is guaranteed to be reasonably well-conditioned in the sense that ||V ||.||V -1 || = O(n 2.5 /δ) (refer to Theorem 3.3.4 for a precise statement). Note however that V might become arbitrarily poorly conditioned as δ goes to 0. The main question that we address in this section is the following: Can we have a better guarantee on V assuming that the input matrix A is diagonalisable? In Theorem 3.3.4, we show that this is indeed the case, under the additional assumption that the eigenvalues are distinct. The bounds in that theorem are expressed as a function of the condition number of the eigenproblem (3.29), already defined in [START_REF] Banks | Pseudospectral shattering, the sign function, and diagonalization in nearly matrix multiplication time[END_REF], and of the Frobenius eigenvector condition number (3.28).

Another issue that we address in Section 3.3 is the assumption ||A|| ≤ 1 on the input matrix. Relaxing this assumption in infinite precision arithmetic is very straightforward: given a bound B ≥ 1 on ||A||, one can simply divide A by B and this does not change the eigenvectors. In finite arithmetic, however, this simple scaling leads to round-off errors. In particular, the error analysis due to the scaling of A is worked out in the proof of Theorem 3.3.12.

Condition numbers. If A is diagonalizable, we define following [START_REF] Banks | Pseudospectral shattering, the sign function, and diagonalization in nearly matrix multiplication time[END_REF] its eigenvector condition number:

κ V (A) = inf V ||V || • ||V -1 ||, (3.26)
where the infimum is over all invertible V such that V -1 AV is diagonal. Its minimum eigenvalue gap is defined as

gap(A) := min i̸ =j |λ i (A) -λ j (A)|, (3.27)
where λ i are the eigenvalues of A (with multiplicity). Instead of the eigenvector condition number, it is sometimes more convenient to work instead with the Frobenius eigenvector condition number

κ F V (A) = inf V (||V || 2 F + ||V -1 || 2 F ) = inf V κ F (V ), (3.28)
where the infimum is taken over the same set of invertible matrices. We always have κ F V (A) ≥ 2κ V (A). Following [START_REF] Banks | Pseudospectral shattering, the sign function, and diagonalization in nearly matrix multiplication time[END_REF], we define the condition number of the eigenproblem to be:

κ eig (A) := κ V (A) gap(A) ∈ [0, ∞]. (3.29)
For a given invertible matrix V , we define the Frobenius condition number to be

κ F (V ) = ||V || 2 F + ||V -1 || 2 F . (3.30)
The following is the main theorem of this section. As mentioned before, in this theorem, we give some properties of the diagonalisation algorithm EIG analyzed in [START_REF] Banks | Pseudospectral shattering, the sign function, and diagonalization in nearly matrix multiplication time[END_REF]. The first two are from their paper, and the third one provides an additional conditioning guarantee for V . It is especially useful for small values of δ.

Theorem 3.3.4.

There is a randomized algorithm EIG which on input a diagonalisable matrix A ∈ C n×n with ||A|| ≤ 1 and a desired accuracy parameter δ ∈ (0, 1 8κ eig (A) ) outputs a diagonal matrix D and an invertible matrix V . The following properties are satisfied by the output matrices:

1. ||A -V DV -1 || ≤ δ and κ(V ) ≤ 32n 2.5 δ . 2. ||v i || = 1 ± nu where v i are the columns of V . 3. κ(V ) ≤ κ F (V ) 2 ≤ 1 2 ( 9n 4 + 9n 2 (κ F V (A)) 2 ). The algorithm runs in O(T MM (n) log 2 n δ )
arithmetic operations on a floating point machine with

log( 1 u ) = O(log 4 ( n δ ) log n)
bits of precision with probability at least 1 -1 n -12 n 2 . In the rest of this section, we give some definitions and prove some lemmas leading to the proof of this theorem. Lemma 3.3.5. Suppose that A has n distinct eigenvalues λ 1 , . . . , λ n , with v 1 , . . . , v n the corresponding eigenvectors. Let W be the matrix with columns v 1 , . . . , v n ; let u 1 , . . . , u n be the left eigenvectors of A, i.e., the rows of Proof. Since A has distinct eigenvalues, any matrix V that diagonalizes A is obtained from W by multiplication of each column by some nonzero scalar x i . In matrix notation, we have V = W D where D = diag(x 1 , ..., x n ). We also have V -1 = D -1 W -1 , and the i-th row of V -1 is therefore equal to u i /x i . As a result,

W -1 . Then κ F V (A) = 2 n i=1 ||u i || • ||v i ||,
||V || 2 F + ||V -1 || 2 F = n i=1 x 2 i ||v i || 2 + ||u i || 2 x 2 i .
An elementary computation shows that the infimum is reached for

x i = ||u i ||/||v i ||.
Here we have assumed that x i ∈ R for all i. This is without loss of generality since multiplying each entry of V or V -1 by a complex number of modulus 1 does not change their Frobenius norms.

If M is diagonalisable as V DV -1 over C, let v i be the columns of V and u T j be the rows of V -1 . Then M admits a spectral expansion of the form (M ) . Let λ 1 , ..., λ n be the distinct eigenvalues of M . Then 1. M ′ has distinct eigenvalues.

M = n i=1 λ i v i u * i . ( 3 
′ i = k i v i and u ′ i = l i v i for some non-zero constants k i , l i . Using the fact that ⟨v ′ i , u ′ i ⟩ = 1, we have k i l i = 1. Hence ||u ′ i ||||v ′ i || = ||u i ||||v i || which proves that κ(λ i ) is indeed independence of the choice of the v i 's. Lemma 3.3.8. Let M , M ′ be n × n matrices such that ||M ||, ||M ′ || ≤ 1 and ||M - M ′ || ≤ δ where δ < 1 8κ eig

|κ(λ

i ) -κ(λ ′ i )| ≤ 2κ V (A). 3. n i∈[n] κ(λ i ) 2 ≤ nκ V (A).
Proof. Refer to the proof of Proposition 1.1 in [START_REF] Banks | Pseudospectral shattering, the sign function, and diagonalization in nearly matrix multiplication time[END_REF] for a proof of the first two properties. Towards the third one, we first show that κ

V (A) ≥ κ(λ i ) for all i ∈ [n].
Using the definition of κ V (A), we get that

κ V (A) = inf V ∈D(A) ||V ||||V -1 || = inf V ∈D(A) (max x∈C n ||V x|| ||x|| )(max x∈C n ||V -1 x|| ||x|| ) ≥ inf V ∈D(A) ||v i ||||u i ||
where v i are the columns of V and u i are the rows of V -1 . The inequality follows from the fact that max

x∈C n ||V x|| ||x|| ≥ ||V e i || = ||v i ||. Since ||V || = ||V T || for all matrices V , max x∈C n ||V -1 x|| ||x|| = max x∈C n ||V -T x|| ||x|| ≥ ||V -T e i || = ||u i ||. By Remark 3.3.7, ||v i ||||u i || is equal for all V ∈ D(A). As a result, κ V (A) ≥ ||v i ||||u i || = κ(λ i ) for all i ∈ [n]. This gives us n i∈[n] κ(λ i ) 2 ≤ n i∈[n] κ V (A) 2 = nκ V (A).
Lemma 3.3.9. Let A, A ′ ∈ M n (C) be such that A has n distinct eigenvalues and ||A -A ′ || ≤ δ where δ < 1 8κ eig (A) . Then

κ F V (A ′ ) ≤ 6nκ V (A) ≤ 3nκ F V (A).
Proof. We first explain the proof for ||A||, ||A ′ || ≤ 1 and then modify it to deal with the general case. Suppose that λ 1 , . . . , λ n are the eigenvalues of A with corresponding eigenvectors v 1 , . . . , v n . By Lemma 3.3.8, A ′ has distinct eigenvalues as well. Let λ ′ 1 , . . . , λ ′ n be the eigenvalues of ,u ′ n be the left eigenvectors of A ′ , i.e., the rows of W -1 . Applying Lemma 3.3.5 to A ′ , we know that

A ′ with corresponding eigenvectors v ′ 1 , . . . , v ′ n . Let W ′ be the matrix with columns v ′ 1 , . . . , v ′ n ; let u ′ 1 , . . .
κ F V (A ′ ) = 2 n i=1 ||u ′ i || • ||v ′ i ||. (3.32)
From Lemma 3.3.8, we know that

|κ(λ ′ i ) -κ(λ i )| ≤ 2κ V (A)
and hence

κ(λ ′ i ) ≤ κ(λ i ) + 2κ V (A).
Adding this up for all i = 1 to n,

n i=1 κ(λ ′ i ) ≤ n i=1 κ(λ i ) + 2nκ V (A).
Now using the definition of κ(λ i ) as in Definition 3.3.6, we get that

n i=1 ||v ′ i ||||u ′ i || ≤ n i=1 κ(λ i ) + 2nκ V (A)
By the Cauchy-Schwarz inequality, we have

n i=1 ||v ′ i ||||u ′ i || ≤ n i∈[n] κ(λ i ) 2 + 2nκ V (A).
By (3.32) and Lemma 3.3.8, we get that

κ F V (A ′ ) ≤ 6nκ V (A) ≤ 3nκ F V (A).
Let us now take A, A ′ to be arbitrary n × n matrices over C such that ||A -

A ′ || ≤ δ for some δ ∈ (0, 1 8κ eig (A)). Let N 0 := max{||A||, ||A ′ ||}. Then we can define C = C N 0 and C ′ = A ′ N 0 where ||C||, ||C ′ || ≤ 1. Also notice that ||C -C ′ || ≤ δ ′ = δ N 0 where δ ′ < 1 8N 0 κ eig (A) . Now, κ eig (C) = κ V (C) gap(C) . Since C = A N 0 , we get that gap(C) = gap(A) N 0 and κ V (C) = κ V (A). Hence, κ eig (C) = N 0 κ eig (A) and this gives us δ ′ < 1 8κ eig (C) . Using the previous argument, we have κ F V (C ′ ) ≤ 6nκ V (C) ≤ 3nκ F V (C). Since scaling of matrices preserves κ F V and κ V , this gives us that κ F V (A ′ ) ≤ 6nκ V (A) ≤ 3nκ F V (A).
Lemma 3.3.10. Let A ∈ M n (C) be a diagonalisable matrix with distinct eigenvalues and let A = V DV -1 such that for all i ∈ [n], for each column

v i of V , ||v i || -1 ≤ δ. Then κ F (V ) ≤ n(1 + δ) 2 + (κ F V (A)) 2 4(1-δ) 2 .
Proof. By Lemma 3.3.5, if U = V -1 and u 1 , ..., u n are the rows of U , then

κ F V (A) = i∈[n] 2||u i ||||v i ||. Since |||v i || -1| ≤ δ for all i ∈ [n], we have that (1 -δ) i∈[n] 2||u i || ≤ κ F V (A) ≤ (1 + δ) i∈[n] 2||u i ||. From the definition of κ F , κ F (V ) = ||V || 2 F + ||V -1 || 2 F = n(1 + δ) 2 + i∈[n] ||u i || 2 ≤ n(1 + δ) 2 + ( i∈[n] ||u i ||) 2 ≤ n(1 + δ) 2 + (κ F V (A)) 2 4(1 -δ) 2 .
We are now ready to complete the proof of Theorem 3.3.4.

Proof of Theorem 3.3.4. The first two properties are from [START_REF] Banks | Pseudospectral shattering, the sign function, and diagonalization in nearly matrix multiplication time[END_REF] (see in particular Theorem 1.6 for the first one). From the second property and from Lemma 3.3.10 applied to A ′ = V DV -1 for δ = nu, we have

κ(V ) ≤ κ F (V ) 2 ≤ 1 2 (n(1 + nu) 2 + (κ F (A ′ )) 2 4(1 -nu) 2 ).
Since δ < 1 8κ eig (A) , it follows from Lemma 3.3.9 that κ F

V (A ′ ) ≤ 3nκ F V (A) and this gives us that κ(V ) ≤ κ F (V ) 2 ≤ 1 2 (n(1 + nu) 2 + (9n 2 κ F V (A)) 2 4(1-nu) 2 ). Since nu < 1 2 , this implies that κ(V ) ≤ κ F (V ) 2 ≤ 1 2 ( 9n 4 + 9n 2 (κ F V (A)) 2 ).
In the remainder of this section, we relax the hypothesis ||A|| ≤ 1 on the input matrix.

Theorem 3.3.11. [BGVKS22] If ||A||, ||A ′ || ≤ 1, ||A -A ′ || ≤ δ, δ < gap(A) 8κ V (A) and {(v i , λ i )} i∈[n] , {(v ′ i , λ ′ i )} i∈[n] are eigenpairs of A, A ′ , then ||v i -v ′ i || ≤ 6nκ eig (A)δ and ||λ ′ i -λ i || ≤ κ V (A)δ ≤ 2κ eig (A)δ for all i ∈ [n],
where v i 's are given up to multiplication by phases.

Note here that by "phases" we mean complex numbers of norm 1.

Corollary 3.3.11.1. For matrices

A, A ′ ∈ M n (C), if ||A -A ′ || ≤ δ, {(v i , λ i )} i∈[n] , {(v ′ i , λ ′ i )} i∈[n] are eigenpairs of A, A ′ respectively and δ < gap(A) 8κ V (A) , then ||v i -v ′ i || ≤ 6nκ eig (A)δ and |λ i -λ ′ i | ≤ κ V (A)δ for all i ∈ [n]
where the v i 's are given up to multiplication by phases.

Proof. 

Let N 0 = max{||A||, ||A ′ ||}. Let C = A N 0 and C ′ = A ′ N 0 . Then ||C||, ||C ′ || < 1 and taking δ ′ = δ N 0 , we get that ||C -C ′ || ≤ δ ′ where δ ′ < 1 8N 0 κ eig (A) = 1 8κ eig (C)
i -µ ′ i | < κ V (C)δ ′ . Since C = A N 0 and C ′ = A ′ N 0 , this implies that µ i = λ i N 0 and µ ′ i = λ ′ i N 0 for all i ∈ [n]. Hence, multiplying both sides by N 0 gives us that N 0 |µ i -µ ′ i | < κ V (C)N 0 δ ′ , hence |λ i -λ ′ i | < κ V (C)δ. Since κ V (C) = κ V (A), we finally conclude that |λ i -λ ′ i | < κ V (A)δ.
We now present the algorithm for computing a forward approximation to the eigenvectors of a diagonalisable matrix.

Algorithm 6: Forward approximation of the eigenvectors of a matrix (EIG-FWD)

Input: A diagonalisable matrix A with distinct eigenvalues, estimates K norm > max{||A|| F , 1} and K eig > κ eig (A), desired accuracy parameter δ.

1. Compute B ′ = A 2Knorm on a floating point machine.

Compute δ

′ = δ 64nKnormK eig .
3. Let (W , D 0 ) be the output of EIG(B ′ , δ ′ ).

4. Output the columns w 1 , ..., w n of W .

Here we assume at step 2 that the parameter δ ′ is computed without any roundoff error. As in [START_REF] Banks | Pseudospectral shattering, the sign function, and diagonalization in nearly matrix multiplication time[END_REF], this will be done for simplicity throughout the thesis in computations whose size does not grow with n. In the next theorem, we state some properties of Algorithm 6. Theorem 3.3.12. Given a diagonalisable matrix A ∈ M n (C), a desired accuracy parameter δ ∈ (0, 1 2 ) and estimates K norm > max{||A|| F , 1} and K eig > κ eig (A) as input, Algorithm 6 outputs vectors w 1 , ..., w n ∈ C n such that the following properties are satisfied with probability at least 1 -1 n -12 n 2 :

• If v (0) 1 , ..., v (0)
n are the true normalized eigenvectors of A, then we have ||v (0)

iw i || < δ up to multiplication by phases.

• Let W be the matrix with columns w 1 , ..., w n . Then

κ(W ) ≤ κ F (W ) 2 ≤ 1 2 ( 9n 4 + 81n 4 (κ F V (A)) 2 ).
The algorithm requires

O(T MM (n) log 2 nK eig K norm δ )
arithmetic operations on a floating point machine with

O(log 4 ( nK eig K norm δ ) log n)
bits of precision.

Remark 3.3.13. The proof of this theorem only incorporates the error due to scaling of the matrices and requires some relatively routine and technical calculations. Hence this has been relegated to Appendix B.

versions of Jennrich's algorithm have appealed instead to the resolution of a linear system of equations: see e.g. [START_REF] Bhaskara | Smoothed Analysis of Tensor Decompositions[END_REF][START_REF] Moitra | Algorithmic Aspects of Machine Learning[END_REF] for the case of ordinary tensors.

In the symmetric case, the algebraic algorithm in [START_REF] Kayal | Efficient algorithms for some special cases of the polynomial equivalence problem[END_REF] for decomposition of a polynomial as a sum of powers of linear forms also appeals to the resolution of a linear system for essentially the same purpose. Our trace-based version of step (iv) is more efficient, and this is crucial for the derivation of the complexity bounds in Theorem 4.3.4.

Step (iv) is indeed the most expensive: it is responsible for the O(n 3 ) term in the arithmetic complexity of the algorithm. We explain informally at the beginnining of Section 4.1.3 why our trace-based approach works.

Organization of the chapter

In Section 4.2, we state the above algorithm in more detail and show that if this algorithm is given a complete diagonalisable tensor exactly as input, it indeed returns the (unique) decomposition. In the underlying computational model assumed for the analysis in that section, all arithmetic operations can be done exactly and matrices can be diagonalised exactly. This is the algorithm that we will adapt to the finite arithmetic model in Section 4.3.

Ideas for algorithm design

Recall that we had defined in Section 1.4.2 the notion of diagonalisable tensors.

Definition 4.1.1. We call a symmetric tensor

T ∈ C n ⊗ C n × C n diagonalisable if T = n i=1 u ⊗3 i
where the u i are linearly independent.

In other words, a symmetric tensor T is diagonalisable if there exists an invertible change of basis U that takes the diagonal tensor i∈[n] e ⊗3 i to T , i.e., T = (U ⊗ U ⊗ U ).( i∈[n] e ⊗3 i ) for some U ∈ GL n (C). In this section we outline the main ingredients required for the design of the algorithm and the proof strategy as well.

Trace of the slices after a change of basis

After step (iii) of the algorithm, we have determined matrix V -1 with rows u 1 , . . . , u n such that T = n i=1 α i u ⊗3 i . Here the α i are unknown coefficients. As explained at the beginning of this chapter, the traditional approach is to find them by solving the corresponding linear system. One difficulty here is that this system is highly overdetermined: we have one equation for each entry of T , but only n unknowns. We show that the system can be solved quickly in a numerical stable way by exploiting some of its structural properties. Our approach relies on a change of basis (recall the definition from Section 3.2). More precisely, let T ′ = (V ⊗ V ⊗ V ).T be the tensor defined at the beginning of step (iv). We know that the tensor T can be written as

T = (V -1 ⊗ V -1 ⊗ V -1 ). n i=1 α i e ⊗3 i . Since u 1 , . . . , u n are the rows of V -1 , it follows that T ′ = (V ⊗ V ⊗ V ).T = n i=1 α i e ⊗3
i where e i is the i-th standard basis vector. Therefore we can read off the α i from the entries of T ′ . This observation is not sufficient to obtain the desired running time since it is not clear how to perform a change of basis in O(n 3 ) arithmetic operations. Indeed, since a symmetric tensor of size n has Ω(n 3 ) coefficients, one would have to perform a constant number of operations per coefficient. A further observation is that we do not need to compute every entry of T ′ : assuming that T is diagonalisable, we know in advance that all entries of T ′ except the diagonal ones will be equal to 0 (up to rounding errors). As a result, α i is approximately equal to the trace of T ′ i , the i-the slice of T ′ .Recall that in Section 3.2 we have already given a fairly simple algorithm for the computation of these n traces in O(n 3 ) arithmetic operations. For this we do not even need to assume that the input tensor is diagonalisable. We also analyse this algorithm in finite arithmetic in the same section. The correctness of our main algorithm in exact arithmetic (as presented at the beginning of this section) is established in Section 4.2 based on the results of Section 3.2.

Tensor decomposition for complete symmetric tensors in exact arithmetic

Let T ∈ (C n ) ⊗3 be a diagonalisable tensor given as input. In this section we give an algorithm which returns the linearly independent u i 's in the decomposition of T , up to multiplication by cube roots of unity. This algorithm works in a computational model where all arithmetic operations can be done exactly and additionally, we can diagonalise a matrix exactly.

Algorithm 7: Tensor decomposition algorithm for complete symmetric tensors Input: An order-3 diagonalisable symmetric tensor T ∈ C n×n×n . Output: linearly independent vectors l 1 , ..., l r ∈ C n such that T = n i=1 l ⊗3 i . Pick a 1 , ..., a n and b 1 , ..., b n uniformly and independently at random from a finite set S ⊂ C Let T 1 , ..., T n be the slices of T . (b) . 4 Compute the normalized eigenvectors p 1 , ..., p n of D. 5 Let P be the matrix with (p 1 , ..., p n ) as columns and compute P -1 . Let v i be the i-th row of P -1 . 6 Define S = (P ⊗ P ⊗ P ).T and let S 1 , ..., S n be the slices of S. Compute α i = Tr(S i ).

1 Set T (a) = n i=1 a i T i and T (b) = n i=1 b i T i . 2 Compute T (a) ′ = (T (a) ) -1 . 3 Compute D = T (a) ′ T
7 Output (α 1 )

1 3 v 1 , ..., (α n ) 1 3 v n .
Algorithm 7 is essentially the algorithm that was already presented in Section 4.1.3. As explained in that section, this is a symmetric version of Jennrich's algorithm where the coefficients α i are determined in a novel way (as the traces of slices of a certain tensor). The algorithm will be analyzed in finite precision arithmetic in the following section and the final two chapters of this thesis.

The remainder of this section is devoted to a correctness proof for Algorithm 7 including an analysis of the probability of error. The main theorem of this section is Theorem 4.2.2. In that direction, we prove an intermediate lemma showing that if a 1 , ..., a n and b 1 , ..., b n are picked at random from a finite set, then T (a) is invertible and the eigenvalues of (T (a) ) -1 T (b) are distinct with high probability. 

λ i ̸ = λ j for all i ̸ = j] ≥ 1 -( 2( n 2 ) |S| + n |S| ).
Proof. Let U be the matrix with columns u 1 , ..., u n . Since T = n i=1 u ⊗3 i , by Corollary 3.2.1.1, the slices T 1 , ..., T n of T can be written as

T i = U T D i U where D i = diag(u 1,i , ..., u n,i ).
Taking a = (a 1 , ..., a n ) ∈ C n , this gives us that

T (a) = U T D (a) U where D (a) = diag(⟨a, u 1 ⟩, ..., ⟨a, u n ⟩). Similarly, T (b) = U T D (b) U where D (b) = diag(⟨b, u 1 ⟩, ..., ⟨b, u n ⟩). Now if T (a) is invertible, we can write T (a) ′ T (b) = U -1 diag( ⟨b, u 1 ⟩ ⟨a, u 1 ⟩ , ..., ⟨b, u n ⟩ ⟨a, u n ⟩ ) U (4.2)
Hence, the eigenvalues of T (a) ′ T (b) are λ i = ⟨b,u i ⟩ ⟨a,u i ⟩ . For all i ̸ = j ∈ [n], we define the polynomial

P ij (x 1 , ..., x n , y 1 , ..., y n ) = ⟨y, u i ⟩⟨x, u j ⟩ -⟨y, u j ⟩⟨x, u i ⟩ = n k,l=1 y k x l (u ik u jl -u il u jk )
where y = (y 1 , ..., y n ) and x = (x 1 , ...,

x n ). Now T (a) is invertible iff ⟨a, u i ⟩ ̸ = 0 for all i ∈ [n]
. This gives us that Pr a 1 ,...,an∈rS [T (a) is invertible] = Pr a 1 ,...,an∈rS [⟨a,

u i ⟩ ̸ = 0 for all i ∈ [n]]. (4.3) For all i ∈ [n], there exists k ∈ [n] such that u ik ̸ = 0. Hence Pr a 1 ,...,an∈rS [⟨a, u i ⟩ = 0] ≤ 1 |S|
by Lemma 2.2.9, and then

Pr a 1 ,...,an∈rS [T (a) is invertible] ≥ 1 - n |S| (4.4) by the union bound. Also, if T (a) is invertible, then λ i = λ j if and only if P ij (a, b) = 0.
Written as a probabilistic statement, this gives us that Pr a,b∈rS [T (a) is invertible and for all i ̸ = j,

λ i ̸ = λ j ] = Pr a,b∈rS [T (a) is invertible and for all i ̸ = j, P ij (a, b) ̸ = 0]. (4.5)
Since U is an invertible matrix, its rows are pairwise linearly independent and for all i, j ∈ [n], there must exist some k 0 , l 0 such that (u ik 0 u jl 0 -u il 0 u jk 0 ) ̸ = 0. Hence, taking a = e k 0 and b = e l 0 (where e i denotes the vector with 1 at the i-th position and 0 otherwise), we get that P ij (e k 0 , e l 0 ) ̸ = 0. Hence, P ij ̸ ≡ 0 and

Pr a,b∈rS [P ij (a, b) ̸ = 0] ≥ 1 - 2 |S|
by Lemma 2.2.9 since deg(P ij ) ≤ 2.

Applying the union bound, we then have

Pr a,b∈rS [For all i ̸ = j ∈ [n], P ij (a, b) ̸ = 0] ≥ 1 - 2( n 2 ) |S| .
Finally, using (4.4) and (4.5), we have that Pr a,b∈rS [T (a) is invertible and

λ i ̸ = λ j for all i ̸ = j] = Pr a,b∈rS [T (a) is invertible and for all i ̸ = j, P ij (a, b) ̸ = 0] ≥ 1 -( 2( n 2 ) |S| + n |S| ). Theorem 4.2.2. If an input tensor T ∈ (C n ) ⊗3 can be written as T = n i=1 u ⊗3 i
where the u i ∈ C n are linearly independent vectors, then Algorithm 7 succeeds with high probability. More formally, if a 1 , ..., a n , b 1 , ..., b n are chosen uniformly and independently at random from a finite subset S ⊂ C, then the algorithm returns linearly independent l 1 , ...,

l n ∈ C n such that T = n i=1 l ⊗3 i with probability at least 1 -( 2( n 2 ) |S| + n |S| ).
Proof. First, using Theorem 4.2.1 we get that if a 1 , ..., a n , b 1 , ..., b n are picked uniformly and independently at random from a finite subset S ⊂ K, then T (a) is invertible and the eigenvalues of T (a) ′ T (b) are distinct with probability at least 1 -(

2( n 2 ) |S| + n |S|
). Now we show that if T (a) is invertible and the eigenvalues of T (a) ′ T (b) are distinct, then Algorithm 7 returns linearly independent vectors l 1 , ...,

l n ∈ C n such that T = n i=1 (l i ) ⊗3 .
If the eigenvalues of a matrix are distinct, then the dimension of the eigenspaces corresponding to each eigenvalue is 1. Hence, the eigenvectors of T (a) ′ T (b) are unique (up to a scaling factor). From (4.2), we get that the columns of U -1 are eigenvectors of T (a) ′ T (b) . Since the columns of P are also eigenvectors of T (a) ′ T (b) , this gives us the relation that there exists a permutation matrix P π such that

P = U -1 P π D where D = diag(k 1 , ..., k n ) and k i ̸ = 0. (4.6)
Now we claim that the α i 's computed in Step 6 of Algorithm 7 are exactly equal to k 3 i . Let S = (P ⊗ P ⊗ P ).T and let S 1 , ..., S n be the slices of S. Following (4.1), we know that the tensor T can be written as

T = n i=1 u ⊗3 i = n i=1 (U T e i ) ⊗3 = n i=1 ((P T π U ) T e i ) ⊗3
. Then

α i = T r(S i ) = n j=1 S i,j,j = n j=1 (P ⊗ P ⊗ P ).( n t=1 (U T P π e t ) ⊗3 ) i,j,j = n j,t=1 (P T U T P π e t ) ⊗3 i,j,j = n j,t=1 ((D T P T π U -T U T P π e t ) ⊗3 ) i,j,j = n j,t=1 (D T e t ) i (D T e t ) 2 j = (D T e i ) 3 i = k 3 i . (4.7)
Since U , D and P π are all invertible, P is invertible as well and P π DP -1 = U . Putting this in vector notation, if v i are the rows of P -1 , then u i = k π(i) v π(i) . As a result, for any cube root of unity ω i ,

T = n i=1 (u i ) ⊗3 = n i=1 (ω i k π(i) v π(i) ) ⊗3 = n i=1 ((α π(i) ) 1 3 v π(i) ) ⊗3 .
We say that Algorithm 7 "succeeds" if the algorithm returns linearly independent l 1 , ..., l n ∈ C n such that T = n i=1 l ⊗3 i . Hence, from the previous equation, we can see that the algorithm indeed returns the unique decomposition up to permutation and scaling by cube roots of unity. This finally gives us that Pr a,b∈rS [Algorithm 7 "succeeds"] ≥ Pr a,b∈rS [Algorithm 7 "succeeds", T (a) is invertible and the eigenvalues of T (a) ′ T (b) are distinct] = Pr a,b∈rS [T (a) is invertible and the eigenvalues of

T (a) ′ T (b) are distinct] ≥ 1 -( 2( n 2 ) |S| + n |S| ).

Complete Decomposition of Symmetric Tensors in Finite Arithmetic

We claimed at the beginning of Section 1.4.5 that the condition number for symmetric tensor decomposition is well defined. In Section 4.3 we first justify that claim, then present our finite precision decomposition algorithm (Algorithm 8), and analyze its properties from Section 4.3.2 onward.

Uniqueness of Tensor Decompositions

One of the important properties of tensor decompositions that motivates its study and applications in spite of the hardness of the problem, is the fact that in most cases the decompositions are unique (also sometimes referred to as identifiable). In comparison to this, matrix decompositions are usually not unique (except in special settings, refer to [START_REF] Gillis | Nonnegative Matrix Factorization[END_REF] for a nice exposition on uniqueness results for matrix factorizations. First, we state a well-known result showing that the tensor decomposition is unique up to permutation if it satisfies certain generic conditions. Here we will state the result following the notation of [START_REF] Moitra | Algorithmic Aspects of Machine Learning[END_REF]. Definition 4.3.1. We say that two sets of factors

{(u (i) , v (i) , w (i) )} r i=1 and {(u (i) , v (i) , w (i) )} r i=1 are equivalent if there is a permutation π : [r] - → [r] such that for all i, u (i) ⊗ v (i) ⊗ w (i) = u (π(i)) ⊗ v (π(i)) ⊗ w (π(i)) .
Theorem 4.3.2. [START_REF] Ra Harshman | Foundations of the PARAFAC procedure: Models and conditions for an" explanatory" multi-mode factor analysis[END_REF][START_REF] Moitra | Algorithmic Aspects of Machine Learning[END_REF] Suppose we are given a tensor of the form

T = i∈[r] u (i) ⊗ v (i) ⊗ w (i)
where the following conditions are met:

• the vectors {u (i) } i are linearly independent.

• the vectors {v (i) } i are linearly independent.

• every pair of vectors in {w (i) } i is linearly independent.

Then {(u (i) , v (i) , w (i) )} r i=1 and {(u (i) , v (i) , w (i) )} r i=1 are equivalent factors.

Note that this reduces to the notion of diagonalisablity in symmetric tensors. Applying this to the case of symmetric tensors, we get the following corollary.

Corollary 4.3.2.1. Let T = i∈[n] u ⊗3
i be a symmetric tensor where the vectors u i ∈ C n are linearly independent. For any other decomposition

T = i∈[n] (u ′ i ) ⊗3 , the vectors u ′ i must satisfy u ′ i = ω i u π(i)
where ω i is a cube root of unity and π ∈ S n a permutation.

The above result was also derived in [START_REF] Kayal | Efficient algorithms for some special cases of the polynomial equivalence problem[END_REF] by a different method (uniqueness of polynomial factorization). For order-3 tensors, a more general regarding uniqueness of tensor decompositions is due to Kruskal [START_REF] Kruskal | Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics[END_REF].] For the next lemma, recall the definition of the condition number of a diagonalisable symmetric tensor from Definition 1.4.3. Lemma 4.3.3. Let T be a diagonalisable tensor. Then for all U ∈ M n (C) such that U diagonalises T , the condition numbers κ F (U ) are equal.

Proof. By Corollary 4.3.2.1, for all U ∈ M n (C) such that U diagonalises T , the rows of U are unique up to permutation and scaling by cube roots of unity. Writing this in matrix notation, if U and U ′ are two such distinct matrices that diagonalise T , there exists a permutation π ∈ S n and a diagonal matrix D with cube roots of unity along the diagonal entries, such that U ′ = DP π U where P π is the permutation matrix corresponding to π.

Now, ||U ′ || F = ||DP π U || F . If u 1 , .
.., u n are the rows of U , then indeed the rows of U ′ can be written as

u ′ i = ω i u π(i)
where ω i are the cube roots of unity. Using the definition of ||.|| F , we get that

||U ′ || 2 F = i∈[n] ||u ′ i || 2 = i∈[n] ||ω i u π(i) || 2 = i∈[n] ||u i || 2 = ||U || 2 F . Similarly, ||(U ′ ) -1 || F = ||(DP π U ) -1 || F = ||U -1 (P π ) T D -1 || F .
Since (P π ) T is also a permutation matrix, multiplication by it on the right permutes the columns of U -1 . Also, inverse of cube roots of unity are cube roots of unity as well. Hence, if v ′ 1 , ..., v ′ n are the columns of U -1 , and v 1 , ..., v n are the columns of U , this gives us that

v ′ i = ω ′ i v π -1 (i)
where ω ′ i is a cube root of unity. This gives us that

||(U ′ ) -1 || 2 F = n i=1 ||v ′ i || 2 = i∈[n] ||ω ′ i v π -1 (i) || 2 = i∈[n] ||v i || 2 = ||U -1 || 2 F . This finally gives us that κ F (U ′ ) = ||U ′ || 2 F + ||(U ′ ) -1 || 2 F = ||U || 2 F + ||U -1 || 2 F = κ F (U ).

Finite-precision Jennrich's Algorithm for Symmetric Tensors

Algorithm 8: Jennrich's Algorithm for Complete Decomposition of Symmetric Tensors. Let C gap , C η > 0 and c F > 1 be some absolute constants we will fix in (6.6).

Input: An order-3 symmetric diagonalisable tensor T ∈ (C n ) ⊗3 , an estimate B for the condition number of the tensor and an accuracy parameter ε ≤ 1. 

4 Let v (0) 1 , ..., v (0) n be the output of EIG -F W D on the input (D, δ, B kgap , B 3 2 √ nk F ) on a floating point machine.
Let V (0) be the matrix with v (

n as columns. 5 Compute C = INV(V (0) ) on a floating point machine where INV is the matrix inversion algorithm in Theorem 3.1.3 and let u ′ i be the rows of C. 6 Let α ′ 1 , ..., α ′ n be the output of T SCB(T , V (0) ) where T SCB is the algorithm for computing the trace of the slices after a change of basis in Algorithm 5. 7 Output {l 1 , ..., l n } where l i = (α ′ i )

1 3 u ′ i is computed on a floating point machine for all i ∈ [n]. Note that by (α ′ i ) 1 3
we refer to any one of the cube roots of α ′ i . Recall that the condition number for tensor diagonalisation κ(T ) was defined in Definition 1.4.3, and the notion of ε-approximation for tensor decomposition was defined in Section 1.4.3. Our main result about Algorithm 8 below already appears as Theorem 4.3.4 in the introduction, and it is the central result of this chapter. We will build towards the proof of this theorem in the following chapters.

Theorem 4.3.4 (Main Theorem).

There is an algorithm which, given a diagonalisable tensor T , a desired accuracy parameter ε and some estimate B ≥ κ(T ), outputs an ε-approximate solution to the tensor decomposition problem for T in

O(n 3 + T M M (n) log 2 nB ε )
arithmetic operations on a floating point machine with

O(log 12 ( nB ε ) log n)
bits of precision, with probability at least 1 -1 n -12

n 2 1 -1 √ 2n -1 n .

Proof Strategy of Theorem 4.3.4:

As we have seen in Section 4.2, if a diagonalisable tensor T is given as input, if each of the steps of Algorithm 8 are performed in exact arithmetic and if we can perform matrix diagonalisation exactly in Step 4, we will get a (unique) decomposition of the tensor, that is, we get vectors v 1 , ..., v n ∈ C n such that T = n i=1 v ⊗3 i exactly. Let T 1 , ..., T n be the slices of the tensor. In the algorithm, we pick a, b uniformly and independently at random from the finite grid G η = {-1, -1 + η, -1 + 2η, ..., 1 -2η, 1 -η} 2n , then define T (a) = n i=1 a i T i and T (b) = n i=1 b i T i . In Chapter 5, we use certain techniques for analysing numerical algorithms to give a proof of Theorem 4.3.4, albeit under some extra assumptions. Namely, we will assume in Theorem 4.3.6 below that we have picked points a, b from the finite grid such that the Frobenius condition number of T (a) is "small" and the eigenvalue gap of (T (a) ) -1 T (b) is "large". These are stated more formally in Definition 4.3.5. Definition 4.3.5 (Input Conditions). We say that x = (T , a, b) satisfies the (n, B)-

input conditions with parameters k F , k gap if the following condition is true: Let T ∈ (C n ) ⊗3 be a diagonalisable tensor such that κ(T ) ≤ B with slices T 1 , ..., T n . Let a, b ∈ (-1, 1] n and let T (a) = n i=1 a i T i and T (b) = n i=1 b i T i . Moreover, T (a) is invertible, κ F (T (a) ) ≤ k F and gap((T (a) ) -1 T (b) ) ≥ k gap
where k F and k gap are as defined in Algorithm 9. Theorem 4.3.6. Let x be an input to the algorithm such that it satisfies the (n, B)input conditions with parameters k F := c F n 5 B 3 , k gap := 1 Cgapn 6 B 3 (from Definition 4.3.5) where the constants C gap , c F are set in (6.6). Let ε ≤ 1 be the input accuracy parameter. Then on input (x, ε) Algorithm 8 outputs an ε-approximation to the tensor decomposition problem for T in

O(n 3 + T M M (n) log 2 nB ε )
arithmetic operations on a floating point machine with

O(log 12 ( nB ε ) log n)
bits of precision, with probability at least 1 -1 n -12 n 2 . We will then see in Chapter 6 that these conditions are satisfied with high probability over the choice of a and b and complete the proof of Theorem 4.3.4.

Proof ideas for probabilistic analysis in Chapter 6:

There are two sources of randomization in our algorithm: the diagonalisation algorithm from [START_REF] Banks | Pseudospectral shattering, the sign function, and diagonalization in nearly matrix multiplication time[END_REF] is randomized, and moreover our algorithm begins with the computation of two random linear combinations T (a) , T (b) of slices of the input tensor (step (i) of the algorithm sketch at the beginning of the chapter). As it turns out, the error bounds from Section 4.3 are established under the hypothesis that the Frobenius condition number of T (a) is "small" and the eigenvalue gap of (T (a) ) -1 T (b) is "large". We therefore need to show that this hypothesis is satisfied for most choices of the random vectors a, b. For this we assume that a, b are chosen uniformly at random from a discrete grid. Our analysis in Chapter 6 follows a two-stage process:

(i) First we assume that a and b are drawn from the uniform distribution on the hypercube [-1, 1) n . This is analyzed with the Carbery-Wright inequality, a well-known anticoncentration inequality.

(ii) In a second stage, we round the (real valued) coordinates of a and b in order to obtain a point of the discrete grid. This is analysed with the multivariate Markov inequality.1 

This two-stage process is inspired by the construction of "robust hitting sets" in [START_REF] Forbes | A PSPACE Construction of a Hitting Set for the Closure of Small Algebraic Circuits[END_REF]. However, the general bounds from [FS18, Theorem 3.6] are not sharp enough for our purpose: they would lead to an algorithm using polynomially many bits of precision, but we are aiming for polylogarithmic precision. As a result, we need to perform an ad hoc analysis for certain linear and quadratic polynomials connected to the Frobenius condition number of T (a) and to the eigenvalue gap of (T (a) ) -1 T (b) . These are essentially the polynomials occuring in [START_REF] Bhaskara | Smoothed Analysis of Tensor Decompositions[END_REF] in their analysis of the stability of Jennrich's algorithm with respect to input noise; but in that paper they choose a, b to be (normalized) Gaussian vectors rather than points from a discrete grid.

Proof Ideas of Theorem 4.3.6

Matrix diagonalisation

For step (ii) of our algorithm we require a fast and numerically stable diagonalisation algorithm, which takes in a diagonalisable matrix and outputs a set of eigenvectors.

For that, we use the fast and numerically stable algorithm for matrix diagonalisation that we had given in Theorem 3.3.12 which is a slight modification of the diagonalization algorithm of [START_REF] Banks | Pseudospectral shattering, the sign function, and diagonalization in nearly matrix multiplication time[END_REF]. Recall that we had also shown that the condition number of the matrix (denoted by κ(V )) which has these eigenvectors as columns can be expressed as function of the condition number of the eigenproblem. Note that the choice of κ(T ) as our tensor decomposition number arises from that analysis and we show in Chapter 6 that if κ(T ) is bounded, then the condition number of the eigenproblem is bounded with high probability and hence, κ(V ) is bounded as well. This facilitates the inversion of V in Step (iii) of the algorithm sketch mentioned at the beginning of this chapter in a fast and numerically stable way. We note that the diagonalization algorithm of [START_REF] Banks | Pseudospectral shattering, the sign function, and diagonalization in nearly matrix multiplication time[END_REF] is responsible for the number of bits of precision needed in our main result (Theorem 4.3.4).

Finite precision analysis of tensor decomposition:

The correctness of the infinite-precision version of our main algorithm is established in Section 4.2, and we proceed with its analysis in finite arithmetic in Chapter 5. The principle behind this analysis is relatively straightforward: we need to show that the output of each of the 7 steps does not deviate too much from the ideal, infinite-precision output. For each step, we have two sources of error:

(i) The input to that step might not be exact because of errors accumulated in previous steps.

(ii) The computation performed in that step (on an inexact input) is inexact as well.

Summing up these two contributions, we can upper bound the error for that step. Moreover, for each step we already have estimates for the error (ii) due to the inexact computation. In particular, for basic operations such as matrix multiplication and inversion there are well-known guarantees recalled in Section 3.1; for the change of basis algorithm we have the guarantees from Section 3.2; and for diagonalisation we have the guarantees from Section 3.3 based on [START_REF] Banks | Pseudospectral shattering, the sign function, and diagonalization in nearly matrix multiplication time[END_REF]. Nevertheless, obtaining reasonably precise error bounds from this analysis requires rather long and technical developments. In Chapter 5, we give a general framework for analysis of numerical algorithms. We analyse the error in each step of the algorithm, show that each step satisfies some notion of numerical stability and show that the algorithm which is a composition of these different numerically stable steps is also numerically stable.

Chapter 5

Numerical Algorithms

This chapter is dedicated to the study of the composition of numerically stable algorithms. Recall that in Section 1.3, we had discussed the notions of numerical stability of algorithms and had elucidated via an example how the composition of numerically stable algorithms is not always numerically stable. We had also discussed the notion of condition number which is a measure of how much the image of a function varies on slight perturbation of the input. In this chapter, we give formal definitions for related notions of numerical stability of algorithms and prove theorems related to numerical stability of composition of numerically stable algorithms. As an application, we show that certain simple functions appearing in Algorithm 8 satisfy these conditions. This in turn helps us to prove the correctness of Algorithm 8, under the assumption that the input satisfies certain conditions.

Overview of the Chapter:

Analysis of numerical stability of algorithms:

In Section 5.2, we introduce the notion of (a, b)-continuous functions. Recall that we had discussed forward-stable algorithms in Section 1.3. In this chapter, we give a concrete mathematical definition of this. We then define an algorithm f computing a function f to be a robustly numerically stable if when given a slightly perturbed input to f , it outputs a solutionclose to the value of the function f on the actual input. We finally show that a forward stable algorithm for computing a continuous function is also robustly numerically stable. In Section 5.4, we also define formally the notion of approximate computation by probabilistic algorithms and in Theorem 5.4.2 give sufficient conditions for which the composition of approximate probabilistic algorithms is also an approximate probabilistic algorithm.

Application to the analysis of Algorithm 8:

The goal of this section is to formally prove Theorem 4.3.6 which is one of the main steps for a correctness proof of Algorithm 8 as described in Section 4.3.3. In this theorem, we show that Algorithm 8 indeed outputs an ε-approximate solution to the tensor decomposition problem (refer to Section 1.4.3), if the input satisfies some special conditions. To prove this theorem, firstly we define simple functions corresponding to the steps of Algorithm 8. Recall that Algorithm 8 consists of seven steps. Using the machinery developed in Section 5.2, we show that the functions corresponding to Steps 1,2,3,5 and 6 are robustly numerically stable. We also prove certain similar guarantees for step 7 of the algorithm, albeit this deviates slightly from the definition of continuous functions.

Step 4 in Algorithm 8 requires diagonalisation of a diagonalisable matrix. We can use the analysis from Section 3.3 to directly show that our diagonalisation algorithm (Algorithm 6) indeed satisfies our definitions of approximate computation by probabilistic algorithms. Finally, we show that Algorithm 8 can be rewritten as a composition of functions made of these simple functions. We also show that when the input to Algorithm 8 satisfies the special conditions, then we can use Theorem 5.4.2 to show that the composition at the end of each step is also a probabilistic algorithm (according to Definition 5.4.1).

Numerical Stability of Algorithms

For a function f on domain X, one can associate to it a parameter κ f : X -→ R which we will refer to as the condition number. The condition number can be chosen independently for every function with the following goal in mind : If a function is continuous (refer to Definition 5.2.1) on a certain subdomain, the condition number parameter indicates how ill-conditioned the problem is on certain inputs, that is how much the function value deviates on slight perturbation of the input values. A higher condition number on a certain input indicates that the function is more ill-conditioned on that particular input.

For a function f , we denote by dom(f ), the domain of the function.

Definition 5.2.1. Let f : S ⊂ C M -→ C N with condition number κ f and let u ∈ R + . Let x ∈ S be an input for f such that B(x, u) ⊂ S. We call f an (a, b)-continuous function on subdomain S at scale u if for all x ∈ B(x, u) such that x ∈ dom(f ),

• ||f ( x) -f (x)|| ≤ uaκ f (x). • κ f ( x) ≤ bκ f (x).
where a, b ∈ R + . We will see some concrete examples of functions satisfying these conditions in Section 5.3.

We had discussed the notion of forward-stable numerical algorithms in Section 1.3. Informally, it is an algorithm for computing a certain function that outputs a solution close to the actual output value on a certain desired input. Definition 5.2.2. Let f : S ⊂ C M -→ C N be a function with condition number κ f . We say that f is a (u, ψ)-forward stable algorithm for the function f on the domain S at machine precision u ∈ R + if on any input x ∈ S,

|| f (x) -f (x)|| ≤ u.ψ(κ f (x))

Note:

For forward-stable algorithms, u will usually be the precision of the machine on which the algorithm is executed.

Comparison to [BNV23]:

The definition of forward stable algorithms in [START_REF] Beltrán | When can forward stable algorithms be composed stably?[END_REF] can be obtained from Definition 5.2.2 by adding the following restrictions that u < 1 a(M ) .

(1 + κ(x)) and ψ(κ

f (x)) ≤ a(M )(1 + κ(x))
where a is a univariate polynomial, M is the dimension of the input space and κ(x) satisfies the definition of condition number (Definition 3.1) in [START_REF] Beltrán | When can forward stable algorithms be composed stably?[END_REF].

We introduce the notion of robust numerical stability of algorithms. An algorithm is said to be robustly numerically stable if the desired input to the algorithm is perturbed slightly, then the algorithm outputs some solution close to the actual solution on the desired input. Definition 5.2.3. Let f : C M -→ C N be a function with condition number κ f . We say that f is a (u, ψ ′ )-robust numerically stable algorithm computing the function f on some set S ⊂ C M with scale u > 0 if on any input x ∈ S such that B(x, u) ⊂ S and for all x ∈ B(x, u),

|| f ( x) -f (x)|| ≤ u.ψ ′ (κ f (x)).
We call ψ ′ to be the "condition number growth function" of f .

In the following lemma, we show that a "forward stable" algorithm for a "continuous" function is also "robustly numerically stable". As shown in the lemma, the function ψ ′ in Definition 5.2.3 witnessing the robust numerical stability of f is a small modification of the function ψ of Definition 5.2.2 (witnessing the numerical stability of f ).

Note: In Definition 5.2.3, the machine precision of f and the scale of f have been assumed to be equal. This is just to make the analysis simpler and more streamlined. One can definitely take them to be different and this can often result in stricter error bounds. In fact, when this setup is applied to Algorithm 8, this is the central reason why we get a bound of log 12 ( nB ϵ ) bits of precision using this framework as compared to the analysis in [START_REF] Koiran | Black Box Absolute Reconstruction for Sums of Powers of Linear Forms[END_REF] which gives us a bound of log 4 ( nB ϵ ). (5.1) Following Definition 5.2.2, since f is a (u, ψ)-forward stable algorithm on domain S and x ∈ S,

|| f ( x) -f ( x)|| ≤ u • ψ(κ f ( x)) (5.2)
We also have that κ f ( x) ≤ bκ f (x) (this can concluded from Definition 5.2.1 for a continuous function f ). Putting this back in (5.2) along with the fact that ψ is an non-decreasing function on its first coordinate, we have that

|| f ( x) -f ( x)|| ≤ u • ψ(bκ f (x)).
(5.3) Combining (5.1) and (5.3) using triangle inequality, we get the desired result.

Defining functions and a robustness result

Recall that we had designed Algorithm 7 in Section 4.2 for computing the (unique) tensor decomposition of diagonalisable tensors. Notice that each step of the algorithm is a simple, linear algebraic function and in this section, we design functions f 1 , ..., f 7 corresponding to the steps of Algorithm 7. (Since, Steps 2 and 5 are matrix inversion maps, hence, we will define f 5 = f 2 . ) Moreover, in this section, we also define maps fi which can be essentially thought of as algorithms for computing f i in finite precision arithmetic for all i ∈ [7]. We also define corresponding condition numbers κ i for all i ∈ {1, 2, 3, 5, 6, 7} (refer to the discussion at the beginning of Section 5.2).

The main conclusions of this section which is stated more formally in Theorem 5.3.11 are the following:

• Firstly, using the machinery developed in Section 5.2, we show that for some scale α i > 0, fi is a (α i , ψ ′ i )-robust numerically stable algorithm for computing the function f i on domain X i (with input parameter n) for all i ∈ {1, 2, 3, 5, 6} where ψ ′ i is a function which is quasi-polynomial in n and κ i .

• For f 7 , we also show a similar result: For some x ∈ X 7 (with input parameter n), we get that on input some x close to x, f7 outputs some ỹ which is also close to some y ∈ f 7 (x).

• For f 4 (which corresponds to matrix diagonalisation), we also show that for some specific parameters p, f4,p is a probabilistic algorithm (refer to Definition 5.4.1) for computing f 4 .

Organization: For better readability of this exposition, we keep the analysis for Steps 1,2 and 3 in the main text and defer the proofs for the rest to Appendix C.

Step 1:

Defining 

f 1 : Let X 1 := (C n ⊗ C n ⊗ C n ) × C n × C n and Y 1 (n) = M n (C) × M n (C). Define function f 1 : X 1 - → Y 1 (n) as f 1 (T ,
∈ (0, 1), f 1 is a (2 √ 2, √ 2)-continuous function at scale δ 0 on domain X 1 . Proof. Let x = (T , a, b) ∈ X 1 such that B(x, δ 0 ) := {x ′ : ||x -x ′ || ≤ δ 0 } ⊆ X 1 .
(5.4)

Let x = ( T , ã, b) ∈ B(x, δ 0 ). Then ||f 1 ( x) -f 1 (x)|| = || T (a) -T (a) || 2 F + || T (b) -T (b) || 2 F (5.5)
Now, ã ≤ ||a|| + δ 0 ≤ ||a|| + 1. We define T jk = (T 1,j,k , ..., T n,j,k ) for all j, k ∈ [n].

Then we have that

|| T (a) -T (a) || 2 F = n j,k=1 |⟨ã, T jk ⟩ -⟨a, T jk ⟩| 2 ≤ 2 n j,k=1 |⟨ã, T jk -T j,k ⟩| 2 + |⟨ã -a, T jk ⟩| 2 = 2||ã|| 2 n j,k=1 || T jk -T j,k || 2 + 2||ã -a|| 2 n j,k=1 ||T jk || 2 = 2(||a|| + 1) 2 || T -T || 2 F + 2||ã -a|| 2 ||T || 2 F = 2δ 2 0 ((||a|| + 1) 2 + ||T || 2 F )
Following a similar calculation for b and putting this back in (5.5), we have that

||f 1 ( x) -f 1 (x)|| ≤ 2δ 0 (||a|| + 1) 2 + (||b|| + 1) 2 + 2||T || 2 F ≤ 2 √ 2δ 0 ||x|| 2 + 2.
(5.6) Now we want to bound the change in κ 1 on perturbation of input. Let x ∈ B(x, δ 0 ) and following the definition of κ 1 , we have that

κ 1 ( x) = || x|| 2 + 2 ≤ (||x|| + δ 0 ) 2 + 2 ≤ √ 2 ||x|| 2 + 2 = √ 2κ 1 (x)
Defining f1 : Let a, b ∈ C n and T ∈ (C n ) ⊗3 be the inputs. Let T jk := (T 1,j,k , ..., T n,j,k ). Then to compute (j, k)-th entry of T (a) , the algorithm computes the inner product of a and T j,k on a floating point machine with suitable machine precision.

Lemma 5.3.2. For any 0 ≤ α 0 ≤ 1 2n , f1 is an (α 0 , ψ 1 )-numerically stable algorithm for the function f on domain X 1 where ψ 1 (κ 1 ) = nκ 2 1 when run on a floating point machine with machine precision α 0 .

Proof. Since (T (a) ) jk = n i=1 a i (T i ) j,k , it follows from (3.2) that

||(S (a) ) j,k -(T (a) ) j,k || ≤ γ n ||a|| n i=1 |(T i ) j,k | 2 . Moreover, γ n ≤ 2nα 0 since nα 0 ≤ 1 2 . Hence ||S (a) -T (a) || F = n j,k=1 ||(S (a) ) j,k -(T (a) ) j,k || 2 ≤ 2nα 0 ||a|| n i,j,k=1 |(T i ) j,k | 2 = 2nα 0 ||a||||T || F .
(5.7)

Similarly, for S (b) , using the same computation, we also have that

||S (b) -T (b) || F ≤ 2nα 0 ||b||||T || F .
Combining them, we get that

|| f1 (x) -f 1 (x)|| = ||S (a) -T (a) || 2 F + ||S (b) -T (b) || 2 F ≤ 2nα 0 ||T || F ||a|| 2 + ||b|| 2 ≤ nα 0 ||x|| 2 ≤ nα 0 κ 2 1 (x)
(5.8)

Theorem 5.3.3. For any ε 0 ∈ (0, 1 2n ), f1 is an (ε 0 , ψ ′ 1 )-robust numerically stable algorithm for computing f 1 on domain X 1 where ψ ′ 1 (κ 1 ) = 2nκ 2 1 + 2 √ 2κ 1 when run on a floating point machine with machine precision ε 0 . Proof. From Lemma 5.2.4, we get that

|| f1 ( x1 ) -f 1 (x 1 )|| ≤ ε 0 .ψ ′ 1 (κ 1 (x)) = ε 0 (ψ 1 ( √ 2κ 1 (x)) + 2 √ 2κ 1 (x)) = ε 0 2n(κ 1 (x)) 2 + 2 √ 2(κ 1 (x)) .

Step 2:

Recall that we had defined the Frobenius condition number of matrices (denoted by κ F ) in (3.30).We first prove the following theorem: if A is a matrix with bounded κ F and A ′ is another matrix which is close to A (in the Frobenius norm), then (A ′ ) -1 is also close to A -1 .

Lemma 5.3.4. Let A ∈ M n (C) be such that κ F (A) ≤ K ≤ ∞ . Define A ′ ∈ M n (C) as A ′ = A + ∆ where ||∆|| F ≤ M and M √ K ≤ 1. Then A ′ is invertible and ||(A ′ ) -1 -A -1 || F ≤ M K 1 -M √ K
Proof. We first use the fact that for any matrix B ∈ M n (C), if ||B|| < 1, I + B is invertible and

(I + B) -1 = ∞ i=0 (-1) i B i .
(5.9)

Since A ′ = A(I + A -1 ∆) where ||∆|| ≤ M and ||A -1 || ≤ ||A -1 || F ≤ κ F (A) ≤ √ K, we have that ||A -1 ∆|| ≤ ||A -1 ||||∆|| ≤ M √ K < 1. This shows that A ′ is invertible, hence (A ′ ) -1 = (I + A -1 ∆) -1 A -1
. Now, we can use (5.9) for B = A -1 ∆ and apply the triangle inequality to get that

||(A ′ ) -1 -A -1 || = ||(I + A -1 ∆) -1 A -1 -A -1 || ≤ ||A -1 ||||(I + A -1 ∆) -1 -I|| ≤ ||A -1 |||| ∞ i=1 ||A -1 ∆|| i .
Hence, we can finally conclude that

||(A ′ ) -1 -A -1 || ≤ M K 1 -M √ K .
Defining f 2 : Let function f 2 : GL n (C) -→ GL n (C) be defined as the inversion of matrices i.e. f 2 (A) = A -1 . We define the condition number for

f 2 as κ 2 (A) = κ F (A) = ||A|| 2 F + ||A -1 || 2 F .
We define X 2 = GL n (C) to be the input space for f 2 and use the Frobenius norm of matrices as the metric on GL n (C).

Lemma 5.3.5. For any δ 1 > 0, f 2 is a (2, 8)-continuous function at scale δ 1 on domain

I 2 (δ 1 ) := {A|A ∈ GL n (C), δ 1 κ 2 (A) ≤ 1 2 }
Proof. Let A ∈ I 2 (δ 1 ) and let à ∈ B(A, δ 1 ). Using Lemma 5.3.4, we get that à is invertible and hence, à ∈ dom(f 2 ). Moreover,

||f 2 ( Ã) -f 2 (A)|| = ||( Ã) -1 -A -1 || F ≤ δ 1 κ 2 (A) 1 -δ 1 κ 2 (A) ≤ 2δ 1 κ 2 (A).
Using the definition of the condition numbers, we also have that

κ 2 ( Ã) = || Ã|| 2 F + ||( Ã) -1 || 2 F ≤ ( κ 2 (A) + δ 1 ) 2 + ( κ 2 (A) + 2δ 1 κ 2 (A)) 2 ≤ 4κ 2 (A) + 4κ 2 (A) = 8κ 2 (A)
The second last inequality uses the fact that δ 1 ≤

1 2 √ κ 2 (A) ≤ κ 2 (A) since κ 2 (A) > 1.
Defining f2 : We fix a matrix multiplication algorithm as mentioned in Theorem 3.1.3 with a fixed η > 0 and define f2 to be the numerically stable algorithm for computing matrix inversion on a floating point machine with some machine precision α 1 . Lemma 5.3.6. For any α 1 > 0, f2 is a (α 1 , ψ 2 )-numerically stable algorithm for computing the function f 2 at machine precision α 1 on domain GL n (C) where ψ 2 (κ 2 ) =

C 2 n cη +log(10) κ 8 log(n)+ 1 2 2 for some constant C 2 > 0.
Proof. Let A ∈ GL n (C) be an input to f2 . Then

|| f2 (A) -f 2 (A)|| ≤ µ INV (n).α 1 .(κ 2 (A)) c INV log(n) ||A -1 || ≤ C 2 n cη +log(10) κ 8 log(n)+ 1 2 2
for some constant C 2 > 0. Now we combine the two above lemmas to show that f2 is a robust numerically stable algorithm for computing f 2 . Theorem 5.3.7. For any ε 1 ∈ (0, 1], f2 is an (ε 2 , ψ ′ 3 )-robust numerically stable algorithm for computing f 2 on domain

I 2 (ε 2 ) := {A|A ∈ GL n (C), ε 2 κ 2 (A) ≤ 1 2 }. where ψ ′ 2 (κ 2 ) = µ ′ IN V (n).(8κ 2 (x 2 )) 8 log(n)+ 1 2 + 2κ 2 (x 2 ) and µ ′ IN V (n) = 2 √ 2.µ IN V (n).n 8 log(8) .
Proof. Let x 2 ∈ I 2 and x2 ∈ B(x 2 , ε 1 ). Using Lemma 5.2.4, we get that

|| f2 ( x2 ) -f 2 (x 2 )|| ≤ ε 1 .ψ ′ 2 (κ 2 (x 2 )) = ε 1 (ψ 2 (8κ 2 (x 2 )) + 2κ 2 (x 2 )) = ε 1 (µ IN V (n).(8κ 2 (x 2 )) 8 log(n)+ 1 2 + 2κ 2 (x 2 )) = ε 1 (µ ′ IN V (n).(8κ 2 (x 2 )) 8 log(n)+ 1 2 + 2κ 2 (x 2 ))
where

µ ′ IN V (n) = 2 √ 2.µ IN V (n)
.n 8 log(8) .

Step 3:

Defining f 3 : Let X 3 := M n (C) × M n (C) be the input space. Then function f 3 : X 3 -→ M n (C) be defined as the matrix multiplication map f 3 (A, B) = AB. We define the condition number of f 3 as κ 3 (x) = √ 2||x|| + 1. For any x = (A, B) ∈ X 3 , we define the norm on the input space, ||x|| = ||A|| 2 F + ||B|| 2 F . We define the norm on the output space M n (C) to be the Frobenius norm.

Lemma 5.3.8. Then for any δ 2 ∈ (0, 1], f 3 is a (1, 2 √ 2)-continuous function at scale δ 2 on domain X 3 .

Proof. Let x = (A, B) ∈ X 3 and x = ( Ã, B) ∈ B(x, δ 2 ).Then

||f 3 ( x) -f 3 (x)|| = || Ã B -AB|| F ≤ || Ã B -A B|| F + ||A B -AB|| F ≤ || Ã -A|| F || B|| F + ||A|| F || B -B|| F ≤ δ 2 (|| B|| F + ||A|| F ) ≤ δ 2 ( √ 2||x|| + 1) = δ 2 κ 3 (x).
The second-last inequality follows from the fact that || B|| F ≤ ||B|| F + δ 2 ≤ ||B|| F + 1 and an application of the Cauchy-Schwarz inequality. Let x = (A, B) ∈ X 3 and x ∈ B(x, δ 2 ). Following the definition of κ 3 , we have that

κ 3 ( x) = √ 2|| x|| + 1 ≤ √ 2||x|| + √ 2δ 2 + 1 ≤ √ 2(||x|| + 2) ≤ 2 √ 2( √ 2||x|| + 1) = 2 √ 2κ 3 (x)
Defining f3 : Let f3 be a fixed numerically stable algorithm for matrix multiplication with a fixed η > 0, as mentioned in Theorem 3.1.3 with machine precision u = α 1 .

Lemma 5.3.9. For any α 2 > 0, f3 is a (α 2 , ψ 3 )-numerically stable algorithm for computing the function f 3 on domain X 3 where ψ 3 (κ 3 ) = 1 4 n cη + 1 2 κ 2 3 .

Proof. Let x = (A, B) ∈ X 3 be the input to f3 . Then using the bounds from Theorem 3.1.3 (1), we can conclude that

|| f3 (x) -f 3 (x)|| ≤ n cη + 1 2 .α 2 .||A||||B|| ≤ α 2 • 1 2 n cη + 1 2 (||A|| 2 + ||B|| 2 ) ≤ α 2 • 1 4 n cη + 1 2 (2||x|| 2 + 1) ≤ α 2 • 1 4 n cη + 1 2 ( √ 2||x|| + 1) 2 = α 2 • 1 4 n cη + 1 2 (κ 3 (x)) 2 .
Now we combine the two above lemmas to show that f3 is a robust numerically stable algorithm for computing f 3 . Theorem 5.3.10. For any ε 2 ∈ (0, 1], f3 is an (ε 2 , ψ ′ 3 )-robust numerically stable algorithm for computing f 3 on domain X 3 where ψ ′ 3 (κ 3 ) = 2n cη + 1 2 κ 2 3 + κ 3 .

Proof. Let x 3 , x3 ∈ X 3 such that x3 ∈ B(x 3 , ε 2 ). Then using Lemma 5.2.4, we get that

|| f3 ( x3 ) -f 3 (x 3 )|| ≤ ε 2 .ψ ′ 3 (κ 3 (x)) = ε 2 (ψ 3 (2 √ 2κ 3 (x)) + κ 3 (x))
= ε 2 (2n cη + 1 2 κ 2 3 + κ 3 ).

Conclusion:

In this section, we have already defined functions f i for i ∈ [3] and the corresponding numerically stable algorithms fi computing them in finite arithmetic. As explained previously, these correspond to Steps 1-3 of Algorithm 8. The functions f i for i ∈ {5, 6, 7} which are involved in Steps 5-7 of the algorithm and their corresponding numerically stable algorithms fi for i ∈ {5, 6, 7} are defined in Appendices C.2.1-C.2.4. The function corresponding to Step 4, denoted by f 4 , takes in a diagonalisable matrix with distinct eigenvalues and returns the set of eigenvectors of the matrix. Further in Appendix C.2.1, we denote by f4,p , the corresponding algorithm for computing f 4 . It is essentially the algorithm for matrix diagonalisation (Algorithm 6) described in Section 3.3 run with parameters p = (δ, K eig , K norm ) as mentioned in the description of the algorithm.

The following is the main theorem of this section Theorem 5.3.11. For i ∈ {1, 3, 6}, fi is a (δ i , ψ ′ i )-robust numerically stable algorithm for computing f i on domain X i where δ i ∈ (0, 1 10n ) and ψ ′ i (κ i ) = (nκ log n i ) m i for some constant m i .

f2 is a (δ 2 , ψ ′ 2 )-robust numerically stable algorithm for computing f 2 on domain I 2 (δ 2 ) where δ 2 ∈ (0, 1] and ψ ′ 2 (κ 2 ) = (nκ log n

2

) m 2 for some constant m 2 . Moreover, let x, x ∈ X 7 such that ||x -x|| ≤ δ ≤ 1 216(||x||+1) . Then algorithm f7 when run on input x on a machine with precision δ, there exists y ∈ f 7 (x) such that

|| f7 ( x) -y|| ≤ 2u 2n + (n||x||) 2 3 + ||x|| 2 .
where u := 6δ 1 3 (||x|| + 1) 1 3 . Let p = (ε 4 , K eig , K norm ) be some parameters where ε 4 ∈ (0, 1 2 ). Define X 4,p := {x ∈ X 4 |x satisfies parameter p} and

u p = 1 n C 4 log 4 ( nK eig Knorm ε 4 ) for some constant C 4 > 0.
Then f4,p is a (1 -1 n -12 n 2 , u p , ε 4 )-algorithm for computing f 4 on subdomain X 4,p when run on a finite precision machine with machine precision u p .

Composition Theorem

The main goal of this section is to create a general framework for the analysis of (probabilistic) algorithms that compute a function approximately on a subdomain of the function. More formally, let f be a function which on input x returns a set of solutions Y .

One example of such function is the cube root function. For any α ∈ C, the output of the function is {β|β 3 = α}. Another example is the function which takes in a rank-1 order-d tensor and outputs a decomposition. This is given by the map

u 1 ⊗ ... ⊗ u d → (w 1 u 1 , ..., w d u d )|w 1 ...w d = 1
Another example we want to focus on is the function that takes in a diagonalisable matrix with distinct eigenvalues and outputs the set of all possible tuples of eigenvectors. Let D n be the set of diagonalisable matrices with distinct eigenvalues. If a diagonalisable matrix A ∈ D n is given as input, the function ϕ : D n -→ P((C n ) n ) returns the following set ϕ(A) := {(v 1 , ..., v n ) is an ordered tuple of eigenvectors of A} For a matrix A ∈ D n , its eigenvectors are unique up to scaling and permutations. As mentioned in [START_REF] Beltrán | Pencil-based algorithms for tensor rank decomposition are not stable[END_REF], a way that analysis of such set-valued functions can be often avoided is by quotienting the space by a suitable equivalence relation. In this specific case of ϕ, one can avoid dealing with set-valued functions by quotienting ϕ(D n ) by the symmetric group on n elements, S n and then treating the quotient space as a set of projective lines. But note that this is a very specific solution which can be applied specifically to this function whereas in this chapter, we give a general framework that does not assume any structure on the space of possible solutions.

We define a (probabilistic) algorithm to be a function which on input some x close to x outputs ỹ close to some y ∈ Y (with probability p). Recall that we had discussed in Example 1.3.1 in Section 1.3 how the composition of numerically stable algorithms might not always be numerically stable. In Theorem 5.4.2, we give sufficient conditions such that the composition of probabilistic algorithms is also a probabilistic algorithm. Definition 5.4.1 (Probabilistic Algorithm). Let f : C M -→ P(C N ) be a function. Let (Ω, F, P) be a probability space where Ω is a set, F ⊆ P(Ω) is a σ-algebra and P : F -→ [0, 1] is a probability measure. Define F := { fω : C M -→ C N |ω ∈ Ω} to be a family of functions. Let u, ε ∈ R + and let x ∈ S and x ∈ B(x, u). Then define A x, x := {ω ∈ Ω| there exists some y ∈ f (x) such that || fω ( x) -y|| ≤ ε}.

We say that F is a (p, u, ε)-algorithm on probability space (Ω, F, P) computing f on domain S ⊂ C M if P(A x, x) ≥ p.

We would refer to p as the probability parameter, u as the input scale and ε as the output scale of algorithm f . When the algorithm is deterministic, that is, P(A x, x) = 1 for all x, x, then | F | = 1 and for simpler notation, we will drop the probability parameter in that case. More formally, we would simply say that the algorithm F is a (u, ε)-algorithm for computing f on some subdomain S.

We now extend the definition of composition of functions Let f : C M -→ P(C N ) and g : C N -→ P(C P ). We define the following special composition operation.

g • s f : C M - → P(C P ) x → y∈f (x)
g(y).

(5.10)

We denote by • the usual composition map for functions. For a function f : C M -→ C N and for any subset S ⊆ C M , f (S) = x∈S f (x).

Theorem 5.4.2. Let F be a (p f , u f , ε f )-algorithm on probability space P f = (Ω f , F f , P f ) computing a function f : C M -→ P(C N ) on a domain S f ⊆ C M . Let g : C N -→ P(C P ) be another function and let G be a (p g , ε f , ε g )-algorithm on probability space P g = (Ω g , F g , P g ) computing g on domain f

(S f ) ⊆ C N . Let h = g • s f and H = { g • f | g ∈ G, f ∈ F }.
Then H is a (p g p f , u f , ε g )-algorithm on probability space P g × P f for computing h on S f . Proof. Let x ∈ S f and let x ∈ B(x, u f ). Then we define

A f x, x := {ω ∈ Ω f | there exists some y f ∈ f (x) such that || fω ( x) -y f || ≤ ε f }. Since F is a (p f , u f , ε f )-algorithm for computing f on P f , then P f (A f x, x) ≥ p f . (5.11) For a particular ω ∈ A x, x, let y ω f ∈ f (x) ⊆ f (S f ) such that || fω ( x) -y ω f || ≤ ε f . Since, G is a (p g , ε f , ε g )-algorithm, then we can define the corresponding sets A g y ω f , fω ( x) := {ω ′ ∈ Ω g | there exists some y g ∈ g(y ω f ) such that || gω ′ ( fω ( x)) -y g || ≤ ε g }.
(5.12) Now for the function h, we can also define the following set

A h x, x := {ω ∈ Ω h | there exists some y h ∈ h(x) such that || hω ( x) -y h || ≤ ε g } (5.13)
Then, since for all h ∈ H, there exists f ∈ F and g ∈ g such that h = g • f , it is clear that

ω∈A f x, x {ω} × A g y ω f , fω ( x) ⊆ A h x, x. Let ω 1 ∈ A f x, x and let y ω 1 f ∈ f (x) such that || fω 1 ( x) -y ω 1 f || ≤ ε f . Since g is a (p g , ε f , ε g )-algorithm for computing g on P g , then P g (A g y ω 1 f , fω 1 ( x) ) ≥ p g .
(5.14) Then using this and (5.11), along with the law of total probabilities, we get that

P h (A h x, x) ≥ (P g × P f ) ω∈A f x, x {ω} × A g y ω f , fω ( x) ≥ p g p f . Corollary 5.4.2.1. Let f be a (u f , ε f )-algorithm computing a function f : C M - → P(C N ) on a domain S f ⊆ C M . Let g : C N - → P(C P ) be another function and let g be a (ε f , ε g )-algorithm computing g on domain f (S f ) ⊆ C N . Let h = g • s f and h = g • f . Then h is a (u f , ε g )-algorithm for computing h on S f .
This can also be extended to composition of multiple functions using a similar proof.

Algorithm 7 as a composition of simple functions

In this section, we define some simple functions using the functions defined in Section 5.3 and show that Algorithm 7 can be written as a composition of these functions.

Some standard functions: We define the function π i : X 1 × ... × X n -→ X i to be the projection function on the i-th coordinate for all i ∈ [n]. For two functions f 1 : X -→ Y and f 2 : X -→ Z, we define

f 1 × f 2 : X - → Y × Z x → (f 1 (x), f 2 (x)).
We define the map that takes in a matrix and returns a tuple of its columns

ψ matrow : M n (C) - → (C n ) n A → (a 1 , ..., a n ) where a i is the i-th row of A
For any space X, Id X denotes the identity map on that space. For our applications, we will drop the subscript as the space will be clear from the context.

Recall that X i are the domains for functions f i defined in Section 5.3. We define the following maps

g 1 = f 1 × π 1 : X 1 - → M n (C) × M n (C) × (C n ) ⊗3 g 2 = (f 2 • π 1 ) × π 2 × π 3 : X 2 × M n (C) × (C n ) ⊗3 - → M n (C) × M n (C) × (C n ) ⊗3 g 3 = (f 3 • π 1 ) × π 2 : X 3 × (C n ) ⊗3 - → M n (C) × (C n ) ⊗3 g 4 = (f 4 • π 1 ) × π 2 : X 4 × (C n ) ⊗3 - → P(M n (C)) × (C n ) ⊗3 g 5 = (ψ matrow • f 2 • π 1 ) × Id : X 5 × (C n ) ⊗3 - → (C n ) n × M n (C) × (C n ) ⊗3 g 6 = (f 6 • π 2 ) × π 1 : (C n ) n × X 6 - → C n × (C n ) n g 7 = f 7 : X 7 - → P((C n ) n ) (5.15)
Each g i corresponds to the i-th step of Algorithm 7 and hence Theorem 4.2.2 can be rewritten in the following way to show that the composition of these functions h = g 7 • s ... • s g 1 where • s is the composition defined in (5.10) outputs the set of all possible decompositions of the input tensor T . Note: The function definitions g i always don't exactly resemble the i-th step of Algorithm 7 -in a few cases, it has some elements that are carried forward from the previous steps. For example, the function g 1 takes as input the diagonalisable tensor T given as input to the algorithm and vectors a and b and computes matrices T

(a) = n i=1 a i T i and T (b) = n i=1 b i T i .
The output of this step is the tuple (T (a) , T (b) , T ). It imitates Step 1 of Algorithm 7, except for the part that it carries forward the input tensor T as well. This is for book-keeping purposes and the computation at each step of the algorithm remains unchanged.

When f : X -→ P(Y 1 ) × Y 2 and g : Y 1 × Y 2 -→ P(Z), then the corresponding map • s can be defined as

g • s f : f - → P(Z) x → y 1 ∈Y 1 g(y 1 , y 2 ) where f (x) = (Y 1 , y 2 ) ∈ P(Y 1 ) × Y 2
This is essentially an extension of the • s defined in (5.10) using the inclusion map

P(Y 1 ) × Y 2 - → P(Y 1 × Y 2 )
. Usually for our applications, it would be assumed that the range of f matches the domain of g. When the domains do not match, then the output of g • s f can be assumed to be an empty set.

Note: The maps f i : X i -→ Y i (n) for all i ∈ {1, 2, 3, 5, 6} defined in Section 5.3 can be written as a map f ′ i : X i -→ P(Y i (n)) where for all x ∈ X i , f ′ i (x) = {f i (x)}. In the rest of this section, by abuse of notation, we use the map f i to denote the corresponding map f ′ i , wherever applicable. For all i ∈ {1, 2, 3, 5, 6}, |g i (y i )| = 1 Lemma 5.5.1. Let x = (T , a, b) ∈ X 1 be such that the following conditions are satisfied:

• T is a diagonalisable tensor.

• Let T 1 , ..., T n be the slices of T . Then T (a) = n i=1 a i T i is an invertible matrix and (T (a) ) -1 T (b) has distinct eigenvalues.

We define function

h = g 7 • s ... • s g 1 . Then h(x) ⊆ D(T ) := {(u 1 , ..., u n )|u i ∈ C n are linearly independent and T = n i=1 u ⊗3 i }.
Proof. From the discussion above, we know that the functions g i essentially imitates the different steps of Algorithm 7. Hence, by Theorem 4.2.2, we get that h(x) ⊆ D(T ).

The opposite direction is true as well -this follows from Corollary 4.3.2.1, that if T = n i=1 u ⊗3 i where u i ∈ C n are linearly independent, then the vectors u i are unique up to permutation and multiplication by cube roots of unity.

Error analysis of Algorithm 8:

Writing Algorithm 8 as a composition of functions

Defining gi : Recall the definitions of f4,p from Section C.2.1 and fi for i ∈ [7] \ {4} from Sections 5.3.1 -5.3.3 and Appendices C.2.1 -C.2.4. The algorithm gi computing g i is defined in the same way as in (5.15), just replacing f 4 by f4,p and for all i ∈ [7] \ {4} by fi wherever it occurs. We define the following maps

g1 = f1 × π 1 : X 1 - → M n (C) × M n (C) × (C n ) ⊗3 g2 = ( f2 • π 1 ) × π 2 × π 3 : X 2 × M n (C) × (C n ) ⊗3 - → M n (C) × M n (C) × (C n ) ⊗3 g3 = ( f3 • π 1 ) × π 2 : X 3 × (C n ) ⊗3 - → M n (C) × (C n ) ⊗3 g4,p,ω = ( f4,p,ω • π 1 ) × π 2 : X 4 × (C n ) ⊗3 - → M n (C) × (C n ) ⊗3
for fixed parameter p and internal choices for randomness ω ∈ Ω (refer to Section C.2.1)

g5 = (ψ matrow • f2 • π 1 ) × Id : X 2 × (C n ) ⊗3 - → (C n ) n × M n (C) × (C n ) ⊗3 g6 = ( f6 • π 2 ) × π 1 : (C n ) n × X 6 - → C n × (C n ) n g7 = f7 : X 7 - → (C n ) n (5.16)
We define the family of algorithm g4,p in a similar way as we had defined f4,p in (C.2).

g4,p := { g4,p,ω |ω ∈ Ω} (5.17)

• Then in the following sections, for i ∈ {2, 3, 5, 6, 7}, we show that gi is an (ε i-1 , ε i ) algorithm for computing g i on domain D i . And we also show that for the parameters p set in the hypothesis of Theorem 4.3.6, g4,p is a (1 -1 n -12 n 2 )algorithm on the probability space P (defined in the statement of Theorem 4.3.6) for computing g 4 on domain D 4 . Using Theorem 5.4.2 and Corollary 5.4.2.1 wherever applicable, we can then inductively show the following -hi is an (ε 0 , ε i ) algorithm for computing h i on domain D i for i ∈ {2, 3}.

-hi,p is an (1 -1 n -12 n 2 , ε 0 , ε i ) algorithm on the probability space P for computing h i on domain D i for i ∈ {4, 5, 6, 7}.

For better readability of this exposition, we keep the analysis for h1 , h2 , h3 and h4,p in the main text and defer the proofs for the rest to Appendix C.4.

Starting with y 1 :

The goal of this section is to show that g1 = h1 is an (ε 0 , ε 1 )-algorithm for computing

g 1 = h 1 on domain D 1 = D.
Recall that we had defined the space X 1 := (C n ) ⊗3 × C n × C n in Section 5.3.1. Let y 1 ∈ D 1 and ỹ1 ∈ B(y 1 , ε 0 ). Then the inputs to functions g1 and g 1 are ỹ1 and y 1 respectively. Following the definition of g 1 in (5.15) and g1 in (5.16), consequently the inputs to f1 and f 1 are set as x1 = ỹ1 and x 1 = y 1 respectively.

Relation to

Step 1 of the Algorithm: From the definition of D, we know that y

1 = x 1 = (T , a, b) ∈ D 1 ⊆ X 1 .
Following the definition of g 1 from (5.15), we get that it takes as input y 1 and outputs (f 1 (x 1 ), T ). Following the definition of f 1 from Section 5.3.1 we get that f 1 (x 1 ) = (T (a) , T (b) ) where T (a) = n i=1 a i T i and

T (b) = n i=1 b i T i . We also have that ||x 1 -x1 || = ||y 1 -ỹ1 || ≤ ε 0 . (5.22)
First, we bound the norm of a diagonalisable tensor by a function of its condition number.

Lemma 5.6.3. Let T be an order-3 diagonalisable tensor. Then ||T || F ≤ (κ(T ))

3 2 . Proof. Let T = n i=1 u ⊗3 i
where the u i 's are linearly independent. Let U ∈ GL n (C) be the matrix with rows u 1 , ..., u n . From Corollary 3.2.1.1, we get that the slices T i of T can be written as

T i = U T D i U where D i = diag(u 1,i , ..., u n,i ). Therefore, ||T || 2 F = n i=1 ||T i || 2 F = n i=1 ||U T D i U || 2 F ≤ ||U || 4 F n i=1 ||D i || 2 F = ||U || 4 F ( n i=1 ( n k=1 |u k,i | 2 )) = ||U || 6 F ≤ κ(T ) 3 .
In Section 5.3.1, we have defined the condition number for f 1 as κ

1 (x) = ||x|| 2 + 2 for some x ∈ X 1 where X 1 = (C n ⊗ C n ⊗ C n ) × C n × C n .
Since, y 1 = (T , a, b) ∈ D, we already have that κ(T ) ≤ B and a, b ∈ [-1, 1] n . Using this along with Lemma 5.6.3 on T gives us that for all x 1 = y 1 ∈ D,

κ 1 (x 1 ) = ||x 1 || 2 + 2 = ||T || 2 F + ||a|| 2 + ||b|| 2 + 2 ≤ 2n + B 3 + 2.
(5.23) Putting this in Theorem 5.3.11 along with (5.22), we get that using Lemma C.1.1 that for large enough n and some appropriate constant m ′ 1 ,

|| f1 ( x1 ) -f 1 (x 1 )|| ≤ ε 0 .(n κ 1 (x 1 ) log n ) m 1 ≤ ε 0 (nB) m ′ 1 log(n) ≤ √ ε 0 2 = ε 1 2 . (5.24)
Now following the definitions of g i , h i and gi , hi from (5.15) and (5.20), we have

|| h1 ( ỹ1 ) -h 1 (y 1 )|| = || g1 ( ỹ1 ) -g 1 (y 1 )|| = || f1 ( x1 ) -f 1 (x 1 )|| 2 + ||π 1 ( x1 ) -π 1 (x 1 )|| 2 ≤ ε 2 1 4 + ε 2 0 ≤ ε 1 .
(5.25)

We can finally conclude that h1 is an (ε 0 , ε 1 ) algorithm for computing h 1 on domain X 1 .

Setting y 2 :

The goal of this section is to show that g2 is an (ε 1 , ε 2 )-algorithm for computing g 2 on domain D 2 = h 1 (D 1 ). We also use the conclusion of Section 5.6.2, that is, h1 is an (ε 0 , ε 1 )-algorithm for computing h 1 on subdomain D 1 . Since, h 2 = g 2 • s h 1 and h2 = g2 • h1 , using Corollary 5.4.2.1, we get that h2 is an (ε 0 , ε 2 )-algorithm for computing h 2 on domain D 1 .

Recall that we had defined the space X 2 := GL n (C) in Section 5.3.2. We pick some y 2 ∈ D 2 ⊆ X 2 × M n (C) × (C n ) ⊗3 (where D 2 = h 1 (D) as defined in (5.21)) and ỹ2 ∈ B(y 2 , ε 1 ). The inputs to functions g2 and g 2 will be ỹ2 and y 2 respectively. Following the definition of g 2 in (5.15) and g2 in (5.16), consequently the inputs to f2 and f 2 are set as x2 = π 1 ( ỹ2 ) and x 2 = π 1 (y 2 ) respectively.

Relation to

Step 2 of the Algorithm: From the definition of h 1 , the input to g 2 , denoted by y 2 has the following structure: y 2 = (T (a) , T (b) , T ) ∈ D 2 (refer to Section 5.6.2 and Step 2 of Algorithm 9). Recall that f 2 is the function corresponding to matrix inversion defined in Section 5.3.2. Following the definition of g 2 = (f 2 • π 1 ) × π 2 × π 3 , this consequently gives us that the input to f 2 is x 2 = π 1 (y 2 ) = T (a) ∈ X 2 . Application of g 2 on y 2 , performs matrix inversion on the first coordinate and leaves the rest of the coordinate unchanged. More formally,

g 2 (y 2 ) = (f 2 (x 2 ), T (b) , T ) = ((T (a) ) -1 , T (b) , T ) (5.26) Since, || ỹ2 -y 2 || ≤ ε 1 , this in turn also implies that || x2 -x 2 || ≤ ε 1 . (5.27)
Moreover, from the assumption that the input y 1 ∈ D, more specifically, that it satisfies (n, B)-input Condition 4.3.5, we have that the Frobenius condition number (defined in Section 3.3) of x 2 = T (a) is bounded by k F := c F n 5 B 3 . Recall that we had defined the condition number for f 2 in Section 5.3.2 as κ 2 = κ F . Then this gives us that

κ 2 (x 2 ) = κ F (T (a) ) ≤ k F := c F n 5 B 3 .
(5.28) Following the definition of ε i from (5.19) and using Lemma C.1.1, we already have that

ε 1 . κ 2 (x 2 ) = 1 n c 1 log 12 ( nB ε ) . √ c F n 5 2 B 3 2 ≤ √ ε 1 2 ≤ 1 2 (5.29)
Recall the definition of the space I 2 (ε 1 ) as defined in Section 5.3.2 (and Theorem 5.3.11) which is the subdomain of f 2 on which f2 is a robust numerically stable algorithm for computing f 2 . Using (5.29), we can thus conclude that T (a) ∈ I 2 (ε 1 ).

Putting this in Theorem 5.3.11 and using (5.27) and Lemma C.1.1, we get that for large enough n and for some appropriate constant m ′ 2 ,

|| f2 ( x2 ) -f 2 (x 2 )|| ≤ ε 1 .(n κ 2 (x 2 ) log n ) m 2 ≤ ε 1 (nB) m ′ 2 log(n) ≤ √ ε 1 2 = ε 2 2 .
(5.30)

The final inequality follows from the definition of ε i in (5.19). Following the definition of g2 and g 2 from (5.15), we can conclude that

|| g2 ( ỹ2 ) -g 2 (y 2 )|| = || f2 (π 1 ( ỹ2 )) -f 2 (π 1 (y 2 ))|| 2 + ||π 2 ( ỹ2 ) -π 2 (y 2 )|| 2 + ||π 3 ( ỹ2 ) -π 3 (y 2 )|| 2 ≤ ε 2 2 4 + ε 2 1 ≤ ε 2 .
(5.31)

This shows that g2 is an (ε 1 , ε 2 )-algorithm for computing g 2 on the space D 2 defined in (5.21).

For any y ∈ h 2 (D 1 ), we also compute a bound on ||y|| which we will require later in Section 5.6.2. Then, following the previous discussion, there exists some y 1 = (T , a, b) ∈ D 1 such that y = h 2 (y 1 ) = ((T (a) ) -1 , T (b , T ).

Lemma 5.6.4. Let U ∈ M n (C) with rows u 1 , ..., u k be such that κ

F (U ) ≤ B. Then, given a ∈ [-1, 1] n , k∈[n] |⟨a, u k ⟩| 2 ≤ nB.
Proof. By the Cauchy-Schwarz inequality,

k∈[n] |⟨a, u k ⟩| 2 ≤ k∈[n] ||a|| 2 ||u k || 2 = ||a|| 2 ||U || 2 F . Since a ∈ [-1, 1] n , we know that ||a|| 2 ≤ n. Hence k∈[n] |⟨a, u k ⟩| 2 ≤ nB.
This gives us that ||T (b) || F ≤ √ nB 3 . Recall that since y 1 = (T , a, b) ∈ D, we have that κ(T ) ≤ B and using Lemma 5.6.3, this implies ||T || F ≤ B 3 2 . Using (5.29), we also get that ||(T

(a) ) -1 || 2 F ≤ κ F (T (a) ) ≤ c F n 5 B 3 . Then we can finally conclude that ||y|| = ||(T (a) ) -1 || 2 F + ||T (b) || 2 F + ||T || 2 F ≤ c F n 5 B 3 + nB 3 + B 3 < 3c F n 5 B 3 .
(5.32)

Setting y 3 :

The goal of this section is to show that g3 is an (ε 2 , ε 3 )-algorithm for computing g 3 on domain D 3 = h 2 (D 1 ). We also use the conclusion of Section 5.6.2, that is, h2 is an (ε 0 , ε 2 )-algorithm for computing h 2 on subdomain D 1 . Since, h 3 = g 3 • s h 2 and h3 = g3 • h2 , using Corollary 5.4.2.1, we get that h3 is an (ε 0 , ε 3 )-algorithm for computing h 3 on domain D 1 .

Recall from Section 5.3.3 that we had defined X 3 = M n (C) × M n (C). We denote by y 3 ∈ D 3 ⊆ X 3 × (C n ) ⊗3 the input to g 3 and ỹ3 ∈ B(y 3 , ε 1 ) the input to g3 . Consequently the inputs to f3 and f 3 are set as x3 = π 1 ( ỹ3 ) and x 3 = π 1 (y 3 ) respectively.

Relation to Step 3 of the Algorithm: From the definition of g 3 in (5.15), it takes in as input

y 3 = (T (a) ) -1 , T (b) ), T ∈ D 3 ⊆ X 3 × (C n ) ⊗3 . Since g 3 = (f 3 • π 1 ) × π 2 × π 3 , this consequently gives us that the input to f 3 is x 3 = π 1 (y 3 ) = ((T (a) ) -1 , T (b)
). Application of g 3 on y 3 performs matrix multiplication on the first coordinate and leaves the last coordinate unchanged. More formally, g 3 (y 3 ) = (f 3 (x 3 ), T ). Following the definition of f 3 in Section 5.3.3, we get that g 3 (y 3 ) = ((T (a) ) -1 T (b) , T ). The following is the main result of this section.

Claim 5.6.5. g3 is an (ε 2 , ε 3 )-algorithm for computing g 3 on domain D 3 .

Proof. Let y 3 ∈ D 3 and ỹ3 ∈ B(y 3 .ε 2 ). We define x 3 = π 1 (y 3 ) and x3 = π 1 ( ỹ3 ) as the inputs to f 3 and f3 respectively. Since, || ỹ3 -

y 3 || ≤ ε 2 , it follows that || x3 -x 3 || ≤ ε 2 .
(5.33)

In Section 5.3.3, we had defined the condition number for Step 3 to be κ 3 (x) = √ 2||x|| + 1. Since, x 3 = π 1 (y 3 ) where y 3 ∈ D 3 = h 2 (D 1 ), using (5.32), we get that

κ 3 (x 3 ) = √ 2||x 3 || + 1 ≤ √ 2||y 3 || + 1 ≤ 6c F n 5 B 3 + 1.
Putting this in Theorem 5.3.11 along with (5.33) and using Lemma C.1.1, we get that for large enough n and for some appropriate constant m ′ 3 ,

|| f3 ( x3 ) -f 3 (x 3 )|| ≤ ε 2 .(n κ 3 (x 3 ) log n ) m 3 ≤ ε 2 (nB) m ′ 3 log(n) ≤ √ ε 2 2 = ε 3 2 . (5.34)
Following the definition of g 3 and g3 from (5.15), this further gives us

|| g3 ( ỹ3 ) -g 3 (y 3 )|| = || f3 (π 1 ( ỹ3 )) -f 3 (π 1 (y 3 ))|| 2 + ||π 2 ( ỹ3 ) -π 2 (y 3 )|| 2 ≤ ε 2 3 4 + ε 2 2 ≤ ε 3 . (5.35)
This shows that g3 is an (ε 2 , ε 3 )-algorithm for computing g 3 on the space D 3 defined in (5.21).

Setting y 4 :

The goal of this section is to show that for the parameters p mentioned in the hypothesis of Theorem 4.3.6, g4,p is an (1 -1 n -12 n 2 , ε 3 , ε 4 )-algorithm on probability space P for computing g 4 on domain D 4 = h 3 (D 1 ). We also use the conclusion of Section 5.6.2, that is, h3 is an (1, ε 0 , ε 3 )-algorithm for computing h 3 on subdomain D 1 . Since, h 4 = g 4 • s h 3 and h4,p = g4,p • h3 , using Corollary 5.4.2.1, we get that h4,p is an (1 -1 n -12 n 2 , ε 0 , ε 4 )-algorithm on probability space P for computing h 4 on domain D 1 . This gives us that x 4 satisfies parameters p as defined in Definition C.2.1. Using the fact that ε ≤ 1 and c 4 > 1, we get that for large enough n,

log 4 2nK eig K norm ε 4 = log 4 2nK eig K norm • n c 4 log 2 ( nB ε ) = log(2nK eig K norm ) + c 4 log 2 ( nB ε ) log(n) 4 ≤ 16c 4 4 log 8 ( nB ε ) log 4 (n) ≤ 16c 4 4 log 12 ( nB ε )
(5.37)

The first inequality follows from the fact that for large enough n, 2nK norm K eig ≤ (nB) c for some appropriate constant c > 1.

Using this, we can conclude that the machine precision required by f4,p is also

ε 3 = 1 n c 3 log 12 ( nB ε ) = 1 n 16c 4 4 log 12 ( nB ε ) < 1 n log 4 ( nK eig Knorm ε 4 2 ) .
(5.38)

Since x4 ∈ B(x 4 , ε 3 ), we can define the set

A x 4 , x4 := {ω ∈ Ω|there exists y (f ) 4 ∈ f 4 (x 4 ) such that || f4,p,ω ( x4 ) -y (f ) 4 || ≤ ε 4 2 }
where Ω is the set of internal random choices for Algorithm 6 (as explained in Section C.2.1). Since, we have the bound on ε 3 using (5.38), we can now use Theorem 5.3.11 to show that P(A x 4 , x4 ) ≥ 1 -1 n -12 n 2 . Following the definition of g 4 and g4,p,ω from (5.15), we get that for all ω ∈ A x 4 , x4 , || g4,p,ω ( ỹ4 ) -y (g)

4 || = || f4,p,ω (π 1 ( ỹ4 )) -y (f ) 4 || 2 + ||π 2 ( ỹ4 ) -π 2 (y 4 )|| 2 ≤ ε 2 4 4 + ε 2 3 ≤ ε 4 .
(5.39)

Now we can also similarly define the set 

A (g)
y 4 , ỹ4 ) ≥ 1 -1 n -12 n 2 . This implies that g4,p is an (1 -1 n -12 n 2 , ε 3 , ε 4
)-algorithm on probability space P for computing g 4 on subdomain D 4 .

Bounds on norms and condition numbers of outputs of g 4 : For some y ∈ g 4 (D 4 ), we want to bound ||y||, which we will need later in Section C.4.2. From the previous discussion, we get that y = (V , T ) such that for all columns v i of V, ||v i || = 1. Since, g 4 (D 4 ) = h 4 (D 1 ), there exists some y 1 = (T , a, b) ∈ D 1 such that y = h 4 (y 1 ). Since y 1 ∈ D 1 (following Definition 5.21), we already have that κ(T ) ≤ B. Using Lemma 5.6.3, we already have that ||T || 2 F ≤ (κ(T )) 3 ≤ B 3 . Using this, we can finally conclude that

||y|| = ||V || 2 F + ||T || 2 F = n + B 3 . (5.41)
Chapter 6

Probability Analysis of Condition Numbers and Gap

Introduction

The central theme of this chapter is to deduce anti-concentration inequalities about certain families of polynomials arising in the analysis of Algorithm 8. Compared to [START_REF] Bhaskara | Smoothed Analysis of Tensor Decompositions[END_REF], an interesting novelty of these inequalities is that the underlying distribution for the random variables is discrete and that they are applicable to polynomials from R n to C. In Section 6.2, we first study some polynomial norms and then prove these results. Let T ∈ (C n ) ⊗3 be a diagonalisable tensor given as input to Algorithm 8 with κ(T ) < B, and let T 1 , ..., T n be the slices of T . In the algorithm, we pick a 1 , ..., a n , b 1 , ..., b n uniformly and independently at random from a finite discrete grid

G η ⊂ [-1, 1] 2n and define T (a) = n i=1 a i T i , T (b) = n i=1 b i T i .
In this section we show that (T , a, b) indeed satisfy the (n, B)-input conditions from Definition 4.3.5. More formally, we show that T (a) is invertible, gap((T (a) ) -1 T (b) ) ≥ k gap := 1 cgapn 6 B 3 and κ F (T (a) ) ≤ k F := c F n 5 B 3 with high probability. This is the main result of Section 6.3. We also justify the choice of k gap and k F and choose appropriate values for c gap and c F in Section 6.3.1. As a consequence of this, a central theorem arising out of this section is Theorem 4.3.4 which concludes the probability analysis of Algorithm 8. We state it here again for completeness. Theorem 6.1.1. Given a diagonalisable tensor T , a desired accuracy parameter ε and some estimate B ≥ κ(T ), Algorithm 8 outputs an ε-approximate solution to the tensor decomposition problem for T in

O(T M M (n) log 2 nB ε )
arithmetic operations on a floating point machine with

O(log 12 ( nB ε ) log n) bits of precision, with probability at least (1 -1 n -12 n 2 )(1 -1 √ 2n -1 n ).

Some definitions and bounds on norms of polynomials

We define the norm of a polynomial following Forbes and Shpilka [START_REF] Forbes | A PSPACE Construction of a Hitting Set for the Closure of Small Algebraic Circuits[END_REF]. Recall from Section 4.1.3 that their goal was to construct so-called "robust hitting sets". 

:= ( [-1,1] n |f (x)| 2 dµ(x)) 1 2 (6.1)
where µ(x) is the uniform probability measure on [-1, 1] n . We also denote 

||f || ∞ = max v∈[-1,1] n |f (v)|. Lemma 6.2.2. Let U = (u ij ) ∈ GL n (C) be such that κ F (U ) ≤ B. Then, for all k ∈ [n], i∈[n] |u ik | 2 ≥ 1 B . Proof. Since κ F (U ) ≤ B, we already have ||U -1 || F ≤ √ B. Also, we know that ||U -1 || ≤ ||U -1 || F . Hence, ||U -1 || ≤ √ B.
= 1 √ B . Let u k be the k-th column of U . Then ||u k || 2 ≥ ε 2 . Hence, i∈[n] |u ik | 2 ≥ ε 2 = 1 B .
Inequalities: One of the most popular applications of inequalities for probabilities typically uses the idea that (under certain assumptions) for a random variable, the probability that it belongs to an interval which is far away from its expected value is small. These are called concentration inequalities and some examples includes several well-known inequalities such as Chebyshev's inequality, Chernoff bounds, Hoeffding's inequality etc. In this section, we focus on inequalities which in principle, try to achieve the opposite. Usually the goal is to show that for a random variable, the probability that it belongs to an interval of small length is small, irrespective of the choice of the location of the interval. One of the first such anti-concentration type of inequality for linear combination of iid random variables (from specific distributions) was discovered by Littlewood and Offord [START_REF] Littlewood | On the number of real roots of a random algebraic equation[END_REF] and this sparked a series of such results for different families of polynomials with applications to combinatorics and complexity theory (refer to [START_REF] Vu | Anti-concentration Inequalities for Polynomials[END_REF] for a quick summary of the results). One of the most general of such results is the Carbery-Wright inequality ([CW01], Theorem 8) which applies to all polynomials and log-concave probability measures which we use in this section.

The inequality in the form that we use states that if the l 2 norm of a polynomial is not too small, then on inputs picked uniformly and independently at random from [-1, 1) n , the value of the polynomial is not too close to zero with high probability. We use the following presentation of the theorem from [START_REF] Forbes | A PSPACE Construction of a Hitting Set for the Closure of Small Algebraic Circuits[END_REF]. 

Pr v∈ U [-1,1) n [|f (v)| 2 ≤ α 2 ||f || 2 2 ] = Pr v∈ U [-1,1) n [|R(f )(v)| 2 + |I(f )(v)| 2 ≤ α 2 ||R(f )|| 2 2 + |I(f )|| 2 2 ] ≤ Pr v∈ U [-1,1) n [|R(f )(v)| 2 ≤ α 2 ||R(f )|| 2 2 |I(f )(v)| 2 ≤ α 2 ||I(f )|| 2 2 ] ≤ Pr v∈ U [-1,1) n [|R(f )(v)| 2 ≤ α 2 ||R(f )|| 2 2 ] + Pr v∈ U [-1,1) n [|I(f )(v)| 2 ≤ α 2 ||I(f )|| 2 2 ] ≤ 2C CW dα 1 d .
As a result,

Pr v∈ U [-1,1) n [|f (v)| 2 ≥ α 2 ] ≥ 1 -2C CW d α ||f || 2 1 d .
The next two theorems are directed towards applying the Carbery-Wright Theorem to a special polynomial which we will require later in Theorem 6.3.2. More specifically, let U = (u ij ) i,j∈[n] be a matrix with bounded κ F . Consider the linear form P k (x) = i∈[n] p i x i where p i = u ik . We will apply the Carbery-Wright theorem to P k . Theorem 6.2.5. Let U = (u ij ) ∈ GL n (C) be such that κ F (U ) ≤ B. Let P k (x) = i∈[n] p i x i where p i = u ik . Then

Pr v∈ U [-1,1) n [|f (v)| ≥ α √ 3B ] ≥ 1 -2C CW α.
Proof. Applying Theorem 6.2.4 to P k for d = 1, we get that ] ≥ (1 -4C CW α 1 2 ).

Pr v∈ U [-1,1) n [|f (v)| ≥ α||P k || 2 ] ≥ 1 -2C CW α. (6.2) Since [-1,1] n x 2 i dµ(x) = 1 2 1 -1 x 2 i dx i = [-
Our next goal is to show a similar probabilistic result for both families of polynomials (linear and quadratic), but replacing the previous continuous distribution over [-1, 1) n by a distribution where the inputs are chosen uniformly and independently at random from a discrete grid. To formalise this distribution, we describe another equivalent random process of picking an element at random from [-1, 1) n and rounding it to the nearest point on the grid.

Remark: η is chosen so that 1 η is an integer so that the intervals of the grid have the same length and this ensures that the "picking unifromly at random and rounding" process is equivalent to "picking uniformly at random from the grid". ).

In the next theorem, we give a similar result for the polynomial in Theorem 6.2.5. We will require this later in Theorem 6.3.2. First we give a lower bound for the l 2 norm of the polynomial. Proof. Using the fact that P k is a linear polynomial and using the Cauchy-Schwarz inequality, we get that ||P k (a) where u k and u l are the k-th and l-th rows of U respectively. Now we get that

||u k ||||u l || ≤ ||u k || 2 + ||u l || 2 2 ≤ (κ F (U )) 2 ≤ B 2 .
Since a ∈ [-1, 1] n , then ||a|| ≤ √ n. Combining these inequalities yields the desired result.

Towards a proof of Theorem 4.3.4

Let T 1 , ..., T n be the slices of the tensor T given as input to Algorithm 8. Let k gap , k F be the parameters as set in Algorithm 8. Let a 1 , ..., a n , b 1 , ..., b n be picked uniformly and independently at random from a finite grid G η ⊂ [-1, 1] 2n (as defined in Definition ??). Let T (a) = n i=1 a i T i and T (b) = n i=1 b i T i . Recall from (3.27) that for a matrix A, gap(A) is defined as the minimum distance between its eigenvalues. In this subsection, as claimed in Section 4.3.2, we show that T (a) is invertible, gap((T (a) ) -1 T (b) ) ≥ k gap and κ F (T (a) ) ≤ k F with high probability. Proof. Let U be the matrix with rows u 1 , ..., u n such that T = n i=1 u ⊗3 i and κ(T ) = κ F (U ) ≤ B. If a 1 , ..., a n are picked independently and uniformly at random from a finite set S, from (4.4), we get that T (a) is invertible with probability at least 1 -n |S| . We use this for S = {-1, -1 + η, ..., 1 -2η, 1 -η} ⊂ [-1, 1]. Since |S| = 2 η , if a is picked uniformly and independently at random from G η , ⟨a, u k ⟩ = 0 with probability at most η 2 . Recall the definition of D (a) in Theorem 3.2.1. It follows from the union bound that det(D (a) ) ̸ = 0 with probability at least 1 -nη 2 . If T (a) is invertible, let λ 1 , ..., λ n be the eigenvalues of T (a) ′ T (b) . Then by Theorem 3.2.1 (more precisely the fact that T (a) = U T D (a) U ), we get that λ k = ⟨b,u k ⟩ ⟨a,u k ⟩ where u k are the rows of U and ⟨a, u k ⟩ ̸ = 0. Hence 1 |⟨a, u k ⟩⟨a, u l ⟩| By Lemma 6.2.12, since κ F (U ) ≤ B we have |⟨a, u k ⟩⟨a, u l ⟩| ≤ nB 2 for all a ∈ G η ⊆ [-1, 1] n . This implies that gap(T (a) ′ T (b) ) > 2t nB . Finally, setting t = nBkgap 2 , we get the desired conclusion. Theorem 6.3.2. Let T ∈ C n×n×n be a diagonalisable degree-3 symmetric tensor such that κ(T ) ≤ B, where T 1 , ..., T n are the slices of T . Let a ∈ [-1, 1] 2n be picked from G η uniformly at random and set T (a) := n i=1 a i T i . If T (a) is invertible, let T (a) ′ = (T (a) ) -1 . Then for all k F > nB 3 , we have that Pr a∈ U Gη [T (a) is invertible and κ F (T (a) )

≤ k F ] ≥ 1 -(2nC CW α F + nη 2 )
where α F = √ 3B(

nB 2 k F -nB 3 + η √ nB).
Proof. Let U be the matrix with rows u 1 , ..., u n such that T = n i=1 u ⊗3 i and κ(T ) = κ F (U ) ≤ B. Since a is picked uniformly and independently from G η , following the proof of Theorem 6.3.1, T (a) is invertible with probability at least (1 -nη 2 ). If T (a) is invertible, using Theorem 3.2.1, and more precisely the fact that T (a) = U T D (a) U , we have: k F -nB 3 gives the desired conclusion. (a) is invertible, let T (a) ′ = (T (a) ) -1 . We assume that l 1 , ..., l n is the output returned by Algorithm 8 on input T , B and an accuracy parameter ε. Let k gap and k F be as defined in Theorem 4.3.6. Then there exist cube roots of unity ω i such that ||ω i u i -l i || < ε, T (a) is invertible, gap(T (a) ′ T (b) ) ≥ k gap and κ F (T (a) ) ≤ k F with probability at least Proof. Let E 1 be the event that there exist cube roots of unity ω i with ||ω i u i -l i || < ε. Let E 2 be the event that gap(T (a) ′ T (b) ) ≥ k gap . We define E 3 to be the event that κ F (T (a) ) ≤ k F and E 4 to be the event that T (a) is invertible. We want to bound

||T (a) ′ || F ≤ ||U -1 || 2 F ||(D (a) ) -1 || F ≤ κ F (U )||(D (a) ) -1 || F ≤ B||(D (a) ) -1 || F . Now, ||(D (a) ) -1 || 2 F = n i=1 1 |⟨a,u i ⟩| 2 .
1 - 1 n - 12 n 2 1 -nC CW α F + 4n 2 C CW (
Pr a,b∈Gη [E 1 ∩ E 2 ∩ E 3 ∩ E 4 ] = Pr[E 1 |E 2 ∩ E 3 ∩ E 4 ]Pr a,b∈Gη [E 2 ∩ E 3 ∩ E 4 ].
Note here the probability in the first line and the first factor in the second line is also with respect to the internal choice of randomness in the diagonalisation algorithm (Algorithm 6). We refrain from mentioning it at every step in order to make the equations more readable. 

1 2 + nη 2 ) = 1 -(n(C CW (α F )) + (4n 2 C CW ( 3Bα gap √ 2 ) 1 2 ) + nη).
Multiplying this by 1 -1 n -12 n 2 gives the desired result.

Finishing the proof of Theorem 4.3.4

Let T be the diagonalisable symmetric tensor given as input and let U ∈ GL n (C) be such that U diagonalises T . Let B be an estimate for κ(T ) = κ F (U ). Let a, b be picked uniformly and independently at random from G η and define T (a) = n i=1 a i T i , T (b) = n i=1 b i T i to be two linear combination of the slices T 1 , ..., T n of T . Let E 1 be the event that Algorithm 8 outputs an ε-approximate solution to the tensor decomposition problem, E 2 be the event that gap(T (a) ′ T (b) ) ≥ k gap , E 3 be the event that κ F (T (a) ) ≤ k F and E 4 be the event that T (a) is invertible. By Theorem 6.3.3, The last inequality follows from the fact that B > 1. We also set k F = (96C 2 CW + 1)n 5 B 3 . Since nB 3 < n 5 B 3 , we have

Pr a,b∈Gη [E 1 ∩ E 2 ∩ E 3 ∩ E 4 ] ≥ 1 - 1 n - 12 n 2 1 -nC CW α F +
α F = √ 3B( nB 2 k F -nB 3 + η √ nB) = √ 3B( 1 96C 2 CW n 4 B + 1 C η n 8 B 7 2 ) ≤ 1 8C CW n 2 + √ 3 C η n 7 B 3 ≤ 1 4C CW n 2
This gives us that 2nC CW α F ≤ 1 2n . Also, ηn = 1 Cηn 13 2 B 4 ≤ 1 2n . Combining these with (6.7) finally shows that Pr a,b∈Gη [

E 1 ] ≥ Pr a,b∈Gη [E 1 ∩ E 2 ∩ E 3 ∩ E 4 ] ≥ 1 - 1 n - 12 n 2 1 -2nC CW α F + 4n 2 C CW ( 3Bα gap √ 2 ) 1 2 + nη ≥ 1 - 1 n - 12 n 2 1 - 1 √ 2n - 1 n .
with probability at least 1 - .., w n are the columns of W . Note that the w i 's are the eigenvectors of A ′ as well. Since A ′ has distinct eigenvalues, the eigenvectors are unique up to scaling by complex numbers. This along with the fact that ||v i || = 1 gives us that there exists phase ρ ′ i such that

||v i -(ρ ′ i ) -1 w i || = |nu|||v i || < δ 2 .
The final inequality comes from the fact that for n > 2, nu < n 2 u 2 and we can therefore use Lemma B.1.2. Now, multiplying by |ρ i | on both sides, we have 

||ρ i v i -ρ i (ρ ′ i ) -1 w i || <
i -ρ i (ρ ′ i ) -1 w i || < δ. (B.6) there exist some algorithm which output some solution close to the actual solution of the diagonalisation function. Defining f 4 and f4 : Let X 4 be the set of all diagonalisable matrices in M n (C) with distinct eigenvalues. We define f 4 : X 4 -→ P(GL n (C)) to be the diagonalisation map. More formally, for some A ∈ X 4 , we define f 4 (A) to be the set of matrices {V ∈ GL n (C)|∃ diagonal D where A = V DV -1 , columns of V have norm 1}.

For any x ∈ X 4 , we define ||x|| = ||A||.

The forward-diagonalisation algorithm (EIG-FWD) defined in Algorithm 6 does the following: For any A ∈ X 4 , the algorithm takes as some input à close to A (along with parameters K eig ≥ κ eig (A), K norm ≥ ||A|| F and some accuracy parameter ε) and outputs some matrix Ṽ such that there exists V ∈ f 4 (A) for which || Ṽ -V || ≤ ε with high probability on some internal choice of randomness of the algorithm. More formally, we denote by P = (Ω, F, P) to be the probability space of the internal choices of randomness of the algorithm EIG-FWD.

For all parameters p = (ε, K eig , K norm ), define function f4,p,ω : X 4 -→ GL n (C) x → EIG-FWD(x, p, ω)

where EIG-FWD(x, p, ω) is the output of the algorithm EIG-FWD run with parameters p = (ε, K eig , K norm ) and ω ∈ Ω is the corresponding value for the internal random choices of the algorithm on input x ∈ X 4 on a floating point machine with machine precision u where for some constant C 4 > 0.

Definition C.2.1. We say that some x ∈ X 4 satisfies parameters p = (ε, K eig , K norm ) if K eig ≥ κ eig (A) and K norm ≥ max{||A|| F , 1}.

Note that if δ > 0, EIG-FWD will always output a matrix and in fact, it will approximate f 4 when the parameters are satisfied. Rewriting Theorem 3.3.12 in this language, we get the following result. Define ) for some constant C 4 > 0.

Then f4,p is a (1 -1 n -12 n 2 , u p , ε 4 )-algorithm for computing f 4 on subdomain X 4,p when run on a finite precision machine with machine precision u p . Proof. Since, x ∈ B(x, u) where u = for some constant C 4 > 0, using the fact that K norm > 1 and ε < 1, we get that for large enough n

|| x -x|| ≤ u < 1 n c 4 log(K eig ) = 1 (K eig ) C 4 log(n) ≤ 1 8K eig ≤ 1 8κ eig (x) . (C.3)
First, we give a bound on ||f 6 ( T , Ṽ ) -f 6 (T , Ṽ )||. Let v 1 , ..., v n be the columns of V and ṽ1 , ..., ṽn be the columns of Ṽ . Let S = ( Ṽ ⊗ Ṽ ⊗ Ṽ ). T with slices Si and S ′ = ( Ṽ ⊗ Ṽ ⊗ Ṽ ).T with slices S ′ i . Following the definition of change of basis from (3.5), we have that Ṽj 1 ,i Ṽj 2 ,j Ṽj 3 ,j ( Tj 1 ,j 2 ,j 3 -T j 1 ,j 2 ,j 3 ) We now want to give a bound on ||f 6 (T , Ṽ ) -f 6 (T , V )||. Let S = (V ⊗ V ⊗ V ).T and S 1 , ..., S n be the slices of S. Expanding along the definition, we get that

||f 6 (T , Ṽ ) -f 6 (T , V )|| = n i=1 |T r(S ′ i ) -T r(S i )| 2 ≤ n i 1 ,i 2 ,i 3 =1 |S ′ i 1 ,i 2 ,i 3 -S i 1 ,i 2 ,i 3 )| 2 = n i 1 ,i 2 ,i 3 =1 n j 1 ,j 2 ,j 3 =1 ( Ṽj 1 i 1 Ṽj 2 i 2 Ṽj 3 i 3 -V j 1 i 1 V j 2 i 2 V j 3 i 3 )T j 1 j 2 j 3 2 ≤ ||T || F n i 1 ,i 2 ,i 3 ,j 1 ,j 2 ,j 3 =1 Ṽj 1 i 1 Ṽj 2 i 2 Ṽj 3 i 3 -V j 1 i 1 V j 2 i 2 V j 3 i 3 2 = ||T || F || Ṽ ⊗3 -V ⊗3 || F . (C.8)

  T has a decomposition of the form (1.5)?2. Search problem: If such a decomposition exists, find the decomposition.

  Now since they are slices of a polynomial, we know that

Algorithm 3 :

 3 Randomized algorithm for ≤ n linearly independent linear forms 1 Input: A degree-d homogeneous polynomial P given by a blackbox 2 Pick (α 1 , ..., α n ) where α j = (α (1) j , ..., α (n) j ) and α (i) j are picked uniformly and independently at random from a finite set S ⊂ K 3 Compute M = ( ∂P ∂x j (α i )), such that i, j ∈ [n] 4 Perform Gaussian elimination on M and define the basis of the kernel B = {v 1 , ..., v n-t } 5 Add vectors u 1 , ..., u t to B to obtain a basis for K n 6 Define n × n matrix A = (u 1 , ..., u t , v 1 , ..., v n-t ) where u i and v j are the columns of A 7 Let f (x) = P (Ax) 8 Run Algorithm 2 on f (x 1 , ..., x t , 0, ..., 0) 9 if Algorithm 2 accepts then

  done in time O(M (d) log d) [GG13] (Section 10.2) where M (d) is the number of arithmetic operations for polynomial multiplication. Rest of the operations can be done in time O(1). It also requires O(d) many oracle calls to the blackbox. So the algorithm uses O(M (d) log d) many arithmetic operations and O(d) many oracle calls to the blackbox.

Theorem 2.6. 3 .

 3 If a degree 3 form f ∈ K[x 1 , ..

[ BGVKS22 ]

 BGVKS22 Definition 3.1.1. A µ MM (n)-stable multiplication algorithm MM(., .) takes as input A, B ∈ C n×n and a precision u > 0 and outputs C = MM(A, B) satisfying ||C -AB|| ≤ µ MM (n) • u||A||||B|| on a floating point machine with precision u, in T MM (n) arithmetic operations. Definition 3.1.2. A (µ INV (n), c INV )-stable inversion algorithm INV(.) takes as input A ∈ C n×n and a precision u and outputs C = INV(A) satisfying ||C -A -1 || ≤ µ INV (n).u.(κ(A)) c INV log n ||A -1 ||. on a floating point machine with precision u, in T INV (n) arithmetic operations.

Definition 3 .

 3 2.2 (Tensor Norm). Given a tensor T ∈ (C n ) ⊗3 , we define the Frobenius norm ||T || F of T as ||T || F = n i,j,k=1 |T i,j,k | 2 3. In Step 3, we compute each x m by adding x m,k for all k ∈ [n]. Thus each

Theorem 4.2. 1 .

 1 Let T = n i=1 u ⊗3 i where u i ∈ C n are linearly independent vectors. Let T 1 , ..., T n be the slices of T . Set T (a) = n i=1 a i T i and T (b) = n i=1 b i T i where a 1 , ..., a n , b 1 , ..., b n are picked uniformly and independently at random from a finite set S ⊂ K. If T (a) is invertible, let T (a) ′ = (T (a) ) -1 . Let λ 1 , ..., λ n be the eigenvalues of 4.2. Tensor decomposition for complete symmetric tensors in exact arithmetic 71 T (a) ′ T (b) . Then Pr a 1 ,...,an,b 1 ,...,bn∈rS [T (a) is invertible and

  Output: A solution to the ε-approximation problem for the decomposition of T . Set k gap := 1 Cgapn 6 B 3 and k F := c F n 5 B 3 . Pick (a 1 , ..., a n , b 1 , ..., b n ) ∈ G η uniformly at random where η := . Let T 1 , ..., T n be the slices of T . 1 Compute S (a) = n i=1 a i T i and S (b) = n i=1 b i T i on a floating point machine. 2 Compute S (a) ′ = IN V (S (a) ) on a floating point machine where IN V is the stable matrix inversion algorithm in Theorem 3.1.3. Let δ := 1 n c 4 log 2 ( nB ε ) where c 4 is a constant we will set in Section 5.6.3. 3 Compute D = MM(S (a) ′ , S (b) ) on a floating point machine where M M is the stable matrix multiplication algorithm in Theorem 3.1.3.

  Lemma 5.2.4. Let f be a (u, ψ)-forward stable algorithm computing a function f : C M -→ C N with condition number κ f which is (a, b)-continuous for scale u on domain S ⊂ C M where ψ is a non-decreasing function. Then f is also (u, ψ ′ )-robust numerically stable on S where ψ ′ = ψ • ϕ b + ϕ a where for any c ∈ R + , ϕ c is defined as follows: ϕ c : R + -→ R + t → ct Proof. Let x ∈ S be such that B(x, u) ⊂ S. Hence, any element x ∈ B(x, u) lies in S as well. Since, f is a (a, b)-continuous function for scale u on the domain S, following Definition 5.2.1, we have that ||f ( x) -f (x)|| ≤ u.a.κ f (x).

  a, b) = (T(a) , T(b) ) where for any c = (c 1 , ..., c n ) ∈ C n , we defineT (c) = n i=1 c i T i . For any element, x = (T , a, b) ∈ X 1 , we define ||x|| = ||T || 2 F + ||a|| 2 + ||b|| 2 . We also define κ 1 (x) = ||x|| 2 + 2. For any y = (A, B) ∈ Y 1 , we define ||y|| = ||A|| 2 F + ||B|| 2 F .Lemma 5.3.1. For any δ 0

.

  Theorem 6.2.3 (Carbery-Wright). There exists an absolute constantC CW such that if f : R n -→ R is a polynomial of degree at most d, then for α > 0, it holds that Pr v∈ U [-1,1) n [|f (v)| ≥ α] ≥ 1 -C CW d α ||f || 2 1 dTheorem 6.2.4 (Carbery-Wright for complex-valued polynomials). There exists an absolute constant C CW such that if f : R n -→ C is a polynomial of degree at most d, then for α > 0, it holds thatPr v∈ U [-1,1) n [|f (v)| ≥ α] ≥ 1 -2C CW d α ||f || 2 1 d . Proof. Since f : R n -→ C, we can write f = R(f ) + ιI(f ) where R(f ), I(f ) ∈ R n -→ Rare real polynomials of degree ≤ d. Then using Theorem 6.2.3, we get thatPr v∈ U [-1,1) n [|R(f )(v)| ≥ α] ≥ 1 -C CW d α ||R(f )|| 2 1 d Pr v∈ U [-1,1) n [|I(f )(v)| ≥ α] ≥ 1 -C CW d α ||I(f )|| 2

  Theorem 6.2.8 (Multivariate Markov's Theorem). Let f : R n -→ R be a homogeneous polynomial of degree r, that for everyv ∈ [-1, 1] n satisfies |f (v)| ≤ 1. Then, for every ||v|| ≤ 1, it holds that ||∇(f )(v)|| ≤ 2r 2where ∇ denotes the gradient of a function. Theorem 6.2.9. Let f : R 2n -→ C be a homogeneous polynomial of degree at most d.Let η > 0 be such that 1 η is an integer. Let (a, b) ∈ [-1, 1) 2n and (a ′ , b ′ ) = g η (a, b) where the rounding function is chosen for m = 2n. Then |f (a, b) -f (a ′ , b ′ )| ≤ 4η √ n||f || ∞ d 2 .Proof. We write f = R(f ) + ιI(f ) where R(f ), I(f ) : R n -→ R. By the mean value theorem, there exists a point (a 0 , b 0 ) on the line segment connecting (a, b) and(a ′ , b ′ ), such that |R(f )(a, b) -R(f )(a ′ , b ′ )| = ||(a, b) -(a ′ , b ′ )|| • |(R(f )) ′ (a 0 , b 0 )| where (R(f )) ′ (a 0 , b 0 ) is the derivative of R(f ) in the direction (a, b) -(a ′ , b ′ ) evaluated at a 0 , b 0 . From Theorem 6.2.8, it follows that |(R(f )) ′ (a 0 , b 0 )| ≤ 2||R(f )|| ∞ d 2 .Similarly, we also get that|(I(f )) ′ (a 0 , b 0 )| ≤ 2||I(f )|| ∞ d 2 . This finally gives us that |f (a, b) -f (a ′ , b ′ )| = | R(f )(a, b) -R(f )(a ′ , b ′ ) + ι I(f )(a, b) -I(f )(a ′ , b ′ ) | = R(f )(a, b) -R(f )(a ′ , b ′ ) 2 + I(f )(a, b) -I(f )(a ′ , b ′ ) 2 ≤ ||(a, b) -(a ′ , b ′ )||

  Theorem 6.2.11.Let U = (u ij ) ∈ GL n (C) be such that κ F (U ) ≤ B. Let P k (x) = i∈[n] p i x i where p i = u ik . Let C CW be the absolute constant guaranteed in Theorem 6.2.3. Then Pr (a,b)∈ U Gη [|P k (a)| ≥ α √ 3B -η √ nB] ≥ 1 -2C CW α.

a

  i u ki )( j∈[n] a j u lj )| = |( i∈[n] a i u ki )||( j∈[n] a j u lj )| ≤ ||a|| 2 ||u k ||||u l ||

  Theorem 6.3.1. Let T ∈ (C n ) ⊗3 be a diagonalisable order-3 symmetric tensor such that κ(T ) ≤ B. We denote by T 1 , ..., T n the slices of T . Let (a 1 , ..., a n , b 1 , ..., b n ) ∈ R 2n be picked from G η uniformly at random and set T(a) := n i=1 a i T i , T (b) := n i=1 b i T i . If T (a) is invertible, let T (a) ′ = (T (a) ) -1 . Then for any k gap > 0, we have that Pr (a,b)∈ U Gη [T(a) is invertible and gap(T (a) ′ T (b) ) ≥ k gap ] ≥ 1 -4n 2 C CW (

  gap(T (a) ′ T (b) ) = min k̸ =l∈[n] ⟨b, u k ⟩ ⟨a, u k ⟩ -⟨b, u l ⟩ ⟨a, u l ⟩ = min k̸ =l∈[n]

Theorem 6.3. 3 .

 3 Let T ∈ C n×n×n be a diagonalisable degree-3 symmetric tensor such that κ(T ) ≤ B. Let T 1 , ..., T n be the slices of T and given a, b picked uniformly and independently at random from G η , set T (a) := n i=1 a i T i and T (b) := n i=1 b i T i . If T

nη where α gap = nBkgap 2 + 16ηBn 3 2

 23 and α F = √ 3B( nB 2 k F -nB 3 + η √ nB).

  1 n -12 n 2 . Applying the triangle inequality to (B.1) and (B.3) shows that ||B -W D 0 W -1 || ≤ u• √ n 2 + δ 64nK eig Knorm . Since u √ n ≤ n 2 u, by Lemma B.1.2 and for large enough n we have u• √ n 2 ≤ δ 64nK eig Knorm . This gives us that ||B -W D 0 W -1 || ≤ δ 32nK eigKnorm . Multiplying both sides by 2K norm , we obtain||A -W (2K norm D 0 )W -1 || ≤ δ 16nK eig . Let A ′ = W (2K norm D 0 )W -1 .We can now use Corollary 3.3.11.1 for A and A ′ since δ 16nK eig < 1 8nK eig < 1 8κ eig(A) . Let v 1 , ..., v n be the eigenvectors of A ′ . Then there exists a phase ρ i such that||v (0) i -ρ i v i || ≤ 6nκ eig (A) 3.3.4, ||w i || = 1 ± nu since w 1 , .

  the triangle inequality on (B.4) and (B.5), ||v

  f4,p := { f4,p,ω |ω ∈ Ω}. (C.2) Lemma C.2.2. Let p = (ε 4 , K eig , K norm ) be some parameters where ε 4 ∈ (0, 1 2 ). Define X 4,p := {x ∈ X 4 |x satisfies parameter p} and u p = 1 n C 4 log 4 ( nK eig Knorm ε 4

1 nC

 1 4 log 4 ( nK eig Knorm ε 4 )

||f 6 (

 6 T , Ṽ ) -f 6 (T , Ṽ )|| 2 = n i=1 |Tr( Si ) -Tr(S ′ i

F≤||

  ṽj ) ⊗2 || 2 || T -T || 2 F n i,j=1 || ṽi ⊗ ṽj ⊗ ṽj || 2 F (C.5)The second-last inequality follows from an application of the Cauchy-Schwarz inequality and the last inequality follows from triangle inequality. Using Lemma C.2.3 twice, we get thatn i,j=1 || ṽi ⊗ ṽj ⊗ ṽj || 2 F ≤ ( ṽj || 4 ) ≤ || Ṽ || 6 F . (C.6) Putting this back in (C.5) and using the fact that || T -T || ≤ δ 5 and || Ṽ || F ≤ ||V || F + δ 5 ≤ ||V || F + 1, we get that ||f 6 ( T , Ṽ ) -f 6 (T , Ṽ )|| ≤ δ 5 || Ṽ || 3 F ≤ δ 5 (||V || F + 1) 3 . (C.7)

then 10 accept 11 else 12 reject 13 end 14 end

  We denote by T¯i, the corresponding slice T i...Let R ∈ M n (K) be a matrix such that its entries r ij are picked uniformly and independently at random from a finite set S and set h(x) = f (Rx).3 Let {T i 1 ...i d-2 } i 1 ...i d-2 ∈[n]be the slices of h.

	4 We compute the slices T1,T2,T3.
	5 if T1 is singular then
	6	reject
	7 else
	8 9	compute T ′ 1 = (T1) -1 if T ′ 1T2 and T ′ 1T3 commute and T ′ 1T2 is diagonalisable over K

i . Algorithm 2 checks if T ′ 1T2 commutes with T ′ 1T3 and if T ′ 1T3 is diagonalisable. These particular slices are special because they can be computed using small number of calls to the blackbox and in small number of arithmetic operations (due to the fact that they are essentially repeated partial derivatives with respect to a single variable) and hence, help us give a polynomial time algorithm. More precisely, we show that if the polynomial is given as a blackbox, the algorithm requires only O(n 2 d) calls to the blackbox and O(n 2 M (d) log d + n ω+1 ) many arithmetic operations. We do a detailed complexity analysis of this algorithm in Appendix 2.7. Algorithm 2: Randomized algorithm to check polynomial equivalence to P d 1 Input: A degree-d homogeneous polynomial f 2

  Theorem 2.3.2 shows that the slices of f are simultaneously diagonalisable by congruence and Lemma 2.3.3 shows that U is non-singular. Let us show the converse. Since the slices {T i 1 ,...,i d-2 } i 1 ,...,i d-2 ∈ [n] are simultaneously diagonalisable, there are diagonal matrices Λ i 1 ...i d-2 and a non-singular matrix

  Pick a 1 , ..., a m where a j = (a 's are chosen uniformly and independently at random from a finite set S ⊆ K for all i, j ∈ [m]. Define matrix

	(1) j , ..., a j ) where the a (m)	(i)

j

for equivalence to some polyno- mial in P d 2.7.1 Complexity Analysis in the algebraic model

  In this section, we provide a detailed complexity analysis of Algorithm 2. We show that if a degree d polynomial in n variables over C is given as a blackbox, the algorithm makes poly(n, d) many calls to the blackbox and performs poly(n, d) many arithmetic operations to decide if f is equivalent to some polynomial in P d .

Theorem 2.7.1. If a degree-d form f ∈ C[x 1 , ..., x n ] is given as a blackbox, then Algorithm 2 makes O(n 2 d) many calls to the blackbox and requires O(n 2 d log 2 d log log d + n ω+1 ) many arithmetic operations.

  and the infimum in (3.28) is reached for the matrix V obtained from W by multiplication of each column by ||u i ||/||v i ||.

  . Applying Theorem 3.3.11, we have ||u i -u ′ i || ≤ 6nκ eig (C)δ ′ where the u i are the eigenvectors of C after possibly multiplying u i by phases. Using κ eig (C) = N 0 κ eig (A) gives us that ||u i -u ′ i || ≤ 6nκ eig (A)δ. Since the eigenvectors remain unchanged after scaling the matrix by a constant, this implies that ||v i -v ′ i || ≤ 6nκ eig (A)δ. If µ 1 , ..., µ n are the corresponding eigenvalues of C and µ ′ 1 , ..., µ ′ n are the corresponding eigenvalues of C ′ , then we get that |µ

  By definition of the matrix norm, ||U -1 x|| ≤ √ B||x|| for all x ∈ C n . We define x = U y and this shows that ||U y|| ≥ ε||y|| where ε

  1,1] n y 2 j dµ(y) = 1

				2	1 -1 y 2 j dy j = 1 3 , we get
	that			
	||P kl || 2 2 =	1 9	i,j∈[n]	|p ij | 2 .
	Now, from Lemma 6.2.6, it follows that ||P kl || 2 2 ≥ 2 9B 2 . Using this in (6.3), we can conclude that
	Pr v∈ U [-1,1) n [|f (v)| ≥	√ 3B 2α	

  • 4||R(f )|| 2 ∞ d 4 + 4||I(f )|| 2 ∞ d 4 ≤ 4η √ n||f || ∞ d 2 .The last inequality follows from the fact that||R(f )|| ∞ , ||I(f )|| ∞ ≤ ||f || ∞ . Let U = (u ij ) ∈ GL n (C) be such that κ F (U ) ≤ B. Let P kl (x, y) = i,j∈[n] p ij x i y j where p ij = u ik u jl -u il u jk . Let C CW be the absolute constant guaranteed by Theorem 6.2.3. Then Pr (a,b)∈ U Gη [|P kl (a, b)| ≥Proof. Using Theorem 6.2.9 for f = P kl where d = 2, we already have that |P kl (a, b) -P kl (a ′ , b ′ )| ≤ 16η √ n||P kl || ∞ . Since (a ′ , b ′ ) is selected uniformly at random from [-1, 1] 2n , by Theorem 6.2.7 we have |P kl (a ′ , b ′ )| ≥ This gives us that |P kl (a ′ , b ′ )| ≥ Now we claim that ||P kl || ∞ ≤ Bn. Indeed, ||P kl || ∞ = max ( |u ik | 2 + |u jl | 2 Let U = (u ij ) ∈ GL n (C) be such that κ F (U ) ≤ B. Let P kl (x, y) = i,j∈[n] p ij x i y j where p ij = u ik u jl -u il u jk . Let C CW bethe absolute constant guaranteed by Theorem 6.2.3. Then Pr (a,b)∈ U Gη [|P kl (a, b)| ≥ k] ≥ (1 -4C CW 3B(k + 16ηBn

	Theorem 6.2.10. √ 3B 2α	-16ηn	3 2 B] ≥ 1 -4C CW α	1 2 .
	(1 -4C CW α	1 2 ). √ 3B 2α	-16η	√	√ 3B with probability at least 2α n||P kl || ∞ (6.4)
		v∈[-1,1] 2n	|P kl (v)|
					2	+	u 2 jk + u 2 il 2	)
		≤ n||U || 2 F ≤ Bn.
	Putting this in (6.4), we can conclude that	
		Pr (a,b)∈ U Gη [|P kl (a, b)| ≥	√ 3B 2α	-16ηBn	3 2 ] ≥ 1 -4C CW α	1 2 .
	Corollary 6.2.10.1. 3 2 ) 2 √	1 2

≤ i,j∈[n] |u ik u jl -u jk u il | ≤ i,j∈[n] (|u ik u jl | + |u jk u il |) ≤ i,j∈

[n] 

  -P k (a ′ )|| 2 ′ || 2 ||U || 2 F ≤ ||a -a ′ || 2 κ F (U ) < nη 2 B This gives us that ||P k (a) -P k (a ′ )|| ≤ η √ nB.Since a is selected uniformly at random from [-1, 1] n , using Theorem 6.2.5, we have that |P k (a)| ≥ α √ 3B with probability at least (1 -2C CW α). This gives us that|P k (a ′ )| ≥

	= ||	p i (a i -a ′ i )|| 2
	i∈[n]			
		n		
	≤ ||a -a ′ || 2 ||	|p i | 2 ||
		i=1		
	≤ ||a -a α √ 3B	-η	√ nB	(6.5)
	with probability at least 1 -2C CW α.			
	Proof.			
	|(			
	i∈[n]			

Finally, we give a lemma that will be needed in Section 6.3. Lemma 6.2.12.

Let U = (u ij ) ∈ M n (C) be such that κ F (U ) ≤ B. Then, given a ∈ [-1, 1] n , for all k, l ∈ [n], |( i∈[n] a i u ki )( j∈[n] a j u lj )| ≤ nB 2 .

  ⟨b, u k ⟩⟨a, u l ⟩ -⟨b, u l ⟩⟨a, u k ⟩ ⟨a, u k ⟩⟨a, u l ⟩ By Corollary 6.2.10.1, if a is picked from G η uniformly at random, then |⟨b, u k ⟩⟨a, u l ⟩ -⟨b, u l ⟩⟨a, u k ⟩| < t with probability at most 4C CW ( 3B Combining these results with the union bound, we get thatPr a,b∈Gη [∃k, l ∈ [n]|⟨b, u k ⟩⟨a, u l ⟩ -⟨b, u l ⟩⟨a, u k ⟩| < t ∪ T (a) is not invertible] Pr a,b∈Gη [T (a) is invertible and for all k, l ∈ [n]|⟨b, u k ⟩⟨a, u l ⟩ -⟨b, u l ⟩⟨a, u k ⟩| > t] Now if |⟨b, u k ⟩⟨a, u l ⟩ -⟨b, u l ⟩⟨a, u k ⟩| > t,we have that gap(T (a) ′ T (b) ) > t min

	√ 2 . ≤ 4n 2 C CW ( 2 (t + 16ηBn 3 2 )) 1 3B √ 2 (t + 16ηBn 3 2 )) 1 2 + nη 2 .
	This gives us that						
	≥ 1 -(4n 2 C CW (	3B √ 2	(t + 16ηBn	3 2 ))	1 2 +	nη 2	).

k̸ =l∈

[n] 

  By Theorem 6.2.11, if a is picked from G η uniformly at random, then |⟨a, u i ⟩| ≥ k with probability at least 1 -2C CW (By Lemma 5.6.4, ||D (a) || 2 ≤ nB. This further implies that if |⟨a, u m ⟩| ≥ k for all m, then ||(D (a) ) -1 || 2 F + ||D (a) || 2 F ≤ n k 2 + nB, which in turn implies that κ F (T (a) ) = ||T (a) ′ || 2 F + ||T (a) || 2 F ≤ nB 2 k 2 + nB 3 . Setting k =

	η	√	nB)). This gives us that			√	3B(k +
			Pr √	3B(k + η	√	nB)) +	nη 2	.
	As a result,			
			Pr √	3B(k + η	√	nB)) +	nη 2	).
							nB 2

a∈Gη [∃m ∈ [n]|⟨a, u m ⟩| ≤ k ∪ T (a) is not invertible] ≤ n m=1 Pr a∈Gη [|⟨a, u m ⟩| ≤ k] + Pr a∈Gη [T (a) is not invertible] ≤ 2nC CW ( a∈Gη [for all m ∈ [n]|⟨a, u m ⟩| ≥ k and T (a) is invertible] ≥ 1 -(2nC CW (

  Using Theorem 4.3.6, we get that Pr[E 1 |E 2 ∩ E 3 ∩ E 4 ] ≥ 1 -1 n -12 n 2 . Using Theorem 6.3.1, we also have Pr a,b∈Gη [E 2 , E 4 ] ≥ 1 -(4n 2 C CW ( 3Bαgap √2 ) From Theorem 6.3.2, we already know that Pr a,b∈Gη[E 3 , E 4 ] ≥ 1 -(n(C CW (α F )) + nη2 ) where α F = Combining these using the union bound shows that Pr a,b∈Gη [E 2 , E 3 , E 4 ] ≥ 1 -(n(C CW (α F )) +

					1 2 + nη 2 ) where
	α gap = nBkgap 2	+ 16ηBn	3 2 . √ 3B(	nB 2 k F -nB 3 + η nB). nη √ 2 ) + (4n 2 C CW (	3Bα gap √ 2	)

  4n 2 C CW ( As promised in Algorithm 8, we define at last the constants C gap and c F . Namely,

	This gives us that ( 3Bαgap √ 2 )	1 2 ≤	4C CW	1 √	2n 5 B	, hence
		4n 2 C CW (	3Bα gap √ 2	)	1 2 ≤	√	1 2nB	≤	1 √ 2n	.	(6.7)
											3Bα gap √ 2	)	1 2 + nη .
	we set	C gap :=	48 √	1 2C 2 CW	and c F = 96C 2 CW + 1.	(6.6)
	Since in Algorithm 8, we set k gap =	48 √	1 2C 2 CW n 6 B 3 and η =	Cηn	1 15 2 B 4	, we have for large
	enough n,									
			α gap = =	nBk gap 2 96 √ 2C 2 + 16ηBn 1 CW n 5 B 2 + 3 2	1 C η n 15 2 B 4
						≤	48 √	1 2C 2 CW n 5 B 4 .

κ(T ) also appears in the sublinear term for the arithmetic complexity of the algorithm.

CPD stands for Canonical Polyadic Decomposition, i.e., decomposition as a sum of rank-1 tensors."

Recall that a tensor of order d is symmetric it is invariant under all d! permutations of its indices.

Pak's result is definitely stated only for groups, and it appears that its correctness proof actually uses the invertibility hypothesis.

Since V ∈ M n (C),Step 1 can be done in O(n 3 ) operations with ordinary matrix multiplication.

In Step 2, for each m, k ∈ [n], we compute the inner product of the k-th row of W with the k-th column of T m . Computation of each inner product takes n arithmetic operations. There are n 2 such inner product computations. So this step requires n 3 arithmetic operations.

This discretization stage could also be analyzed with [Koi95, Theorem 3], but we would not obtain a sharper bound in this case.

One can assume that Algorithm 6 gets the desired input exactly. In Appendix C.3, we show that f 4 is continuous and combining this with the numerical stability of Algorithm 6, it can be shown that it is robust.

, 4n)-continuous function on the domain S 4 at scale δ

> 0.

Then if T 1 , ..., T n are the slices of T , we also have that Wherever we mention that the computation is done on a floating point machine, we assume that there is an adversarial error associated with that computation. The following is the main theorem of this section.

Theorem 3.2.3. Let us assume that a tensor T ∈ (C n ) ⊗3 and a matrix V ∈ M n (C) are given as input to Algorithm 5. Set S = (V ⊗ V ⊗ V ).T following the definition in (3.5) and let S 1 , ..., S n be the slices of S. Then the algorithm returns s1 , ..., sn such that

where µ CB (n

) operations on a machine with precision u < 1 10n .

Proof. Let S ′ ∈ C n×n×n be such that S ′ = (V ⊗ V ⊗ V ).T . Let S ′ 1 , ..., S ′ n be the slices of S ′ . We first claim that n m=1 v mi n k=1 (V T V T m ) k,k = T r(S ′ i ). Using Theorem 3.2.1, we know that S ′ i = V T D i V where D i = n m=1 v m,i T m . Now using the cyclic property and the linearity of the trace operator, we get that

T r(S

(3.8)

From this, we conclude that if Algorithm 5 is run in exact arithmetic, it computes exactly the trace of the slices S ′ i of S ′ . Running Time: We analyse the steps of the algorithm and deduce the number of arithmetic operations required to perform the algorithm. Note that only the numbered steps contribute to the complexity analysis.

Chapter 4 Numerical Algorithm for Tensor Decomposition

This chapter is dedicated to the following algorithmic problem: Given a diagonalisable tensor, find the unique decomposition of the tensor. As discussed in Section 1.4.5, we give a randomized linear-time and numerically stable algorithm to solve the problem approximately. In this section, we state the algorithm in the standard algebraic model of computation assuming infinite precision and give a correctness proof of that. We then present the algorithm in the finite-precision arithmetic model of computation. The correctness proof of the algorithm and its probabilistic analysis will be given in Chapters 5 and 6 respectively.

Introduction

Simplified Algorithm

Before giving a high-level presentation of our algorithm, we introduce a few notations. A symmetric tensor T ∈ C n ⊗ C n ⊗ C n can be cut into n slices T 1 , . . . , T n where T k = (T ijk ) 1≤i,j≤n . Each slice is a symmetric matrix of size n. In the algorithm below we also make use of a "change of basis" operation, which applies a linear map of the form A ⊗ A ⊗ A to a tensor. Here, A ∈ M n (C) and we apply A to the 3 components of the input tensor. In particular, for rank-1 symmetric tensors we have

We give more details on this operation at the beginning of Section 3.2. The algorithm proceeds as follows.

(i) Pick vectors a = (a 1 , ..., a n ) and b = (b 1 , ..., b n ) at random from a finite set and compute two random linear combinations T (a) = n i=1 a i T i and T (b) = n i=1 b i T i of the slices of T .

(ii) Diagonalise (T (a) ) -1 T (b) = V DV -1 . Let v 1 , ..., v n be the columns of V .

(iii) Let u 1 , ..., u n be the rows of V -1 .

(iv) Let T ′ = (V ⊗ V ⊗ V ).T . Let T ′ 1 , ..., T ′ n be the slices of T ′ . Define α i = Tr(T ′ i ). We will refer to the computation of T r(T ′ i ) as the trace of slices after a change of basis (TSCB).

(v) Output (α 1 )

The above algorithm is a modified version of Jennrich's algorithm for symmetric tensors. In terms of algorithm design, our main contribution lies in step (iv). Previous

We define the composition of these functions

Consequently we can define the family of functions hp := { hp,ω |ω ∈ Ω}.

(5.18)

Remark 5.6.1. Recall from Section C.2.1 that f4,p is the set of functions { f4,p,ω |ω ∈ Ω} with the underlying probability space P = (Ω, F, P). Then the same probability distribution applies over g4,p and hp as well. This is the probability space P that we will be referring to throughout this section.

Note that gi corresponds to Step i of Algorithm 9 and hence h corresponds to Algorithm 9.

We define the error parameter ε i (which corresponds to the error at every step of the algorithm) in the following way:

where

1 4 and c 7 = c 6 6 . Note that this value of c 0 is set in Section 5.6.3 and this implies that for all i ∈ [7], c i ≥ 1, which we will use later. We show in this section that hp (as defined in (5.18))is an ((1 -1 n -12 n 2 ), ε 0 , ε 7 )-algorithm (following Definition 5.4.1) on probability space P (refer to Remark 5.6.1) for computing h on some subdomain. The following is the formal statement of this theorem and we give a proof of this in Section 5.6.2 Theorem 5.6.2. We define the space D to be the set of all y ∈ X 1 which satisfy the (n, B)-input conditions (according to Definition 4.3.5) with parameters k F , k gap . Let ε ≤ 1 be the desired accuracy parameter and we set p := ( ε 4 2 , K eig , K norm ) where

12 n 2 , ε 0 , ε 7 )-algorithm with probability space P for computing h on subdomain D when each individual gi is run on a finite precision machine with precision ε i-1 for all i ∈ [7].

Rewriting Algorithm 8:

We first rewrite Algorithm 8 in terms of the newly-defined gi 's.

Algorithm 9: Jennrich's Algorithm for Complete Decomposition of Symmetric Tensors. Let C gap , C η > 0 and c F > 1 be some absolute constants we will fix in (6.6).

Input: An order-3 symmetric diagonalisable tensor T ∈ (C n ) ⊗3 , an estimate B for the condition number of the tensor and an accuracy parameter ε ≤ 1.

Output: A solution to the ε-approximation problem for the decomposition of T . Set k gap := a) , S (b) , T ) where (S (a) ,

4 Let ỹ4 := g3 ( ỹ3 ). Compute g4,p,ω ( ỹ4 ) = (V (0) , T ) where V (0) := f4,p,ω (D) for some internal choice of randomness ω (refer to the discussion in Section C.2.1).

Proof of Theorem 5.6.2:

In (5.16), we had defined gi to be the algorithm corresponding to Step i in Algorithm 9 for all i ∈ [7]. We start with y 1 and ỹ1 as the input for h and h as defined in Theorem 5.6.2. We define the partial compositions

(5.20) Also, note that by this definition, hp = h7,p and h = h 7 . We define the spaces D i (n) in the following way:

Then we show the following statements:

• We start by showing in Section 5.6.2 that h1 is an (ε 0 , ε 1 ) algorithm (following Definition 5.4.1) for computing h 1 on domain D 1 .

Recall from Section C.2.1 that we had defined X 4 to be set of all diagonalisable matrices and in (5.21), we had defined the subdomain D 4 = h 3 (D).

Recall from the hypothesis of Theorem 4.3.6 that we had set the parameter p = ( ε 4 2 , K eig , K norm ) where K eig = B kgap and K norm = √ nB 3 k F . Recall from (5.15) and the discussion in Remark 5.6.1, that g4,p := { g4,p,ω |ω ∈ Ω} with an associated probability space P = (Ω, F, P). The main goal of this subsection is the following result.

Claim 5.6.6. For parameters p = ( ε 4 2 , K eig , K norm ), g4,p is an (1 -1 n -12 n 2 , ε 3 , ε 4 )algorithm on probability space P = (Ω, F, P) (refer to Definition 5.4.1) for computing g 4 on domain D 4 .

Relation to

Step 4 of the algorithm: From the definition of h 3 , it takes in (T , a, b) ∈ D and outputs y 4 = (T (a) ) -1 T (b) , T ∈ D 4 (refer to the Step 4 of Algorithm 9 for the details.) Let the first coordinate be denoted by x 4 = (T (a) ) -1 T (b) . Application of g 4 on y 4 performs matrix diagonalisation in the first coordinate and leaves the second coordinate unchanged. More formally, g 4 (y 4 ) = (V , T ) = (f 4 (x 4 ), T ) such that for all columns v i of V , ||v i || = 1 where f 4 is the function for matrix diagonalisation defined in Section C.2.1.

Proof. Let y 4 ∈ D 4 and ỹ4 ∈ B(y 4 , ε 3 ). By the definition of g4,p from (5.16) and the discussion in Remark 5.6.1, we get that for all ω ∈ Ω, g4,p,ω = ( f4,p,ω • π 1 ) × π 2 . Then the corresponding inputs to f4,p,ω and f 4 are set to be x4 := π 1 ( ỹ4 ) and x 4 := π 1 (y 4 ) respectively. This already implies that x4 ∈ B(x 4 , ε 3 ).

From the hypothesis of Theorem 5.6.2, we already have that y 1 = (T , a, b) satisfies the (n, B)-input Conditions 4.3.5 with parameters k gap and k F . Hence, gap((T (a) ) -1 T (b) ) ≥ k gap , ||(T (a) ) -1 || F ≤ k F and κ(T ) ≤ B. Also, note that using Lemma 5.6.4, this implies that ||T (b) || F ≤ √ nB 3 . Recall the definitions of κ F V and κ eig from Section 3.3. Let U be a matrix that diagonalises the given tensor T . Firstly, from the proof of Theorem 4.2.1, we know that (T (a) ) -1 T (b) is diagonalisable and the columns of U -1 form the eigenvectors of (T (a) ) -1 T (b) as well. Hence,

(5.36)

Combining this with the fact gap((T (a) ) -1 T (b) ) ≥ k gap > 0, we get that

We also have that

Using (5.36), we also know that for all x 4 ∈ π 1 (D 4 ), κ F V (x 4 ) ≤ B. Following the definition of g 4 , π 1 (g 4 (D 4 )) = f 4 (π 1 (D 4 )). Hence, from Lemma 3.3.10 for δ = 0 for all V ∈ π 1 (g 4 (D 4 )), we can conclude that

(5.42)

Finishing the proof of Theorem 4.3.6

We state the theorem here again for completeness.

Theorem 5.6.7. Let x be an input to the algorithm such that it satisfies the (n, B)input conditions with parameters k F := c F n 5 B 3 , k gap := 1 Cgapn 6 B 3 (from Definition 4.3.5) where the constants C gap , c F are set in (6.6). Let ε ≤ 1 be the input accuracy parameter. Then on input (x, ε) Algorithm 8 outputs an ε-approximation to the tensor decomposition problem for T in

arithmetic operations on a floating point machine with

bits of precision, with probability at least 1 -1 n -12 n 2 . We have already seen from the definitions that h corresponds to Algorithm 9. Computing the error: Let x be an input to Algorithm 9 that satisfies the (n, B)-input conditions according to Definition 4.3.5. Let ε ≤ 1 be the input desired accuracy parameter. We set c 7 = 2 and using (5.19), the rest of the c i can be fixed as well. This gives us that c 0 = 128 × (24) 4 . Using this and the fact that n, B > 1, we can conclude that ε 7 = 1 n 2 log 2 ( nB ε ) ≤ ε. From Theorem 5.6.2, we get that on input x ∈ B(x, ε 0 ), Algorithm 9 outputs an ε-approximation to the tensor decomposition problem for T .

Computing the machine precision: Let us assume that the algorithm is run with precision u := ε 0 2n 3 2 where ε 0 is defined in (5.19). Let x = (T , a, b) be the exact input to the algorithm that satisfies the (n, B)-input conditions with parameters k F , k gap as mentioned in the statement of Theorem 4.3.6. Following the definition of the model in Section 1.2.2, we know that if T is the actual input to Algorithm 8 (subsequently Algorithm 9), such that for all i, j, k 

(5.43)

Using this relation, we can fix the number of bits of precision required by the algorithm to

Conclusion:

Using Theorem 5.6.2, we get that if the algorithm is given as input x ∈ B(x, ε 0 ), then the algorithm returns an ε-approximation to tensor decomposition problem for T (as defined in Section 1.4.3) with probability at least (1 -1 n -12 n 2 ) when run on a machine with O(log 12 ( nB ε ) log(n)) bits of precision.

Now we claim that ||P

Expanding using the definition of ℓ 2 -norm of polynomials from (6.1), we have:

Using this in (6.2), we conclude that

The next two theorems are directed towards applying the Carbery-Wright theorem to another special polynomial which we will require later in Theorem 6.3.1. More specifically, let U = (u ij ) i,j∈[n] be a matrix with bounded κ F . Let P kl (x, y) = i,j∈[n] p kl ij x i y j be the quadratic polynomial defined for all k, l ∈ [n] by its coefficients p kl ij = u ik u jl -u il u jk . We will apply the Carbery-Wright theorem to P kl . First we give a lower bound for the l 2 norm of the polynomial. Lemma 6.2.6.

Proof. We construct a submatrix U 2 ∈ M n,2 (C) with the k-th and l-th columns of U . Let k = 1 and l = 2 without loss of generality. Since κ F (U ) ≤ B, following the proof of Lemma 6.2.2, for all

The minimum singular value σ min of U 2 is defined as

where λ 2 min refers to the smallest eigenvalue. This gives us that

Now from the complex form of Lagrange's identity, we know that

Proof. Applying Theorem 6.2.4 to P kl with d = 2 shows that as follows:

This gives us that

Appendix A

Appendix to Chapter 2 A.1 Computing the complexity of the randomized algorithm in [KS21] and comparing it with our algorithm

Recall the [START_REF] Koiran | Derandomization and Absolute Reconstruction for Sums of Powers of Linear Forms[END_REF] equivalence from Section 2.1.1. The algorithm proceeds as follows:

1. Pick a random matrix R ∈ M n (K) and set h(x) = f (Rx).

2. Let T 1 , ..., T n be the slices of h.

3. If the matrices T ′ 1 T k commute and are all diagonalisable over K, accept. Otherwise, reject.

The following are the different stages of computation required in this algorithm:

1. If the polynomial is input in dense representation, here we have to compute all the slices T 1 , ..., T n and following the proof of Theorem 2.6.3, this takes O(n 4 ) many arithmetic operations If the polynomial is given as a blackbox, we compute x ′ = Rx. And we call the blackbox on this input.

2. Compute T 1 , T 2 , ..., T n We know

So we can extract each entry of T k using constant many calls to the blackbox and constantly many arithemtic operations using Lemma 2.6.2. There are in total n 3 such entries that we need to compute. So the total number of calls to the blackbox is O(n 3 ) and the number of arithmetic operations is O(n 3 )

1 . This can be done in time at most O(n 3 ).

Checking pairwise commutativity of {T

Here we compute the product T ′ 1 T i T ′ 1 T j and T ′ 1 T j T ′ 1 T i and check if their difference is 0. For each pair, this can be done in time O(n ω ). Since there are ( n 2 ) many pairs, this can be done in time O(n ω+2 ).

Checking the diagonalisability of T ′

1 T j for all j ∈ [n]: As we showed that the diagonalisability of each T ′ 1 T j can be checked in time O(n ω+1 ). So the total time taken for checking diagonalisability of n such matrices is O(n ω+2 ).

A.2. Complexity analysis for variable minimization 123 So we conclude that if the polynomial is given as an input in the dense representation model, then the algorithm runs in time O(n ω+2 ). If the polynomial is given as a blackbox, then the algorithm makes O(n 3 ) many calls to the blackbox and requires O(n ω+2 ) many arithmetic operations.

So we manage to shave a factor of n from [START_REF] Koiran | Derandomization and Absolute Reconstruction for Sums of Powers of Linear Forms[END_REF] in both cases: when the polynomial is given in dense representation as well as when it is input as an arithmetic circuit.

A.2 Complexity analysis for variable minimization

In this section, we provide a detailed complexity analysis of Algorithm 3. We show that if a degree d polynomial in n variables over C is given as a blackbox, the algorithm performs poly(n, d) many calls to the blackbox and performs poly(n, d) many arithmetic operations to check if the polynomial can be written as a linear combination of t many linearly independent linear forms for some t ≤ n (see Theorem A.2.2).

In the next lemma, we show that given a blackbox computing the polynomial, we can compute the partial derivative with respect to a single variable at a given point in O(d) many oracle calls and poly(d) arithmetic operations.

Lemma A.2.1. Given a blackbox computing P ∈ K[x 1 , ..., x n ] of degree at most d, and given points α 1 , ..., α n ∈ K n , we can compute the matrix M such that M ij = ∂ x i (P )(α j ) using O(n 2 d) many oracle calls to the blackbox and O(n 2 M (d) log d) many arithmetic operations.

Proof. We assume i = 1. Given points a 1 , ..., a n ∈ K, ∂ x 1 (P )(a 1 , ..., a n ) can be computed using the following steps of computation:

• Compute the polynomial P (x, a 2 , ..., a n ) explicitly using polynomial interpolation. This can be done using O(M (d) log d) many arithmetic operations and d + 1 many calls to the blackbox. [GG13] (Section 10.2)

• Compute ∂ x (P (x, a 2 , ..., a n )) using O(d) many arithmetic operations.

• evaluate it at x = a 1 , which requires O(d) many arithmetic operations.

We do this for every (a 1 , ..., • The basis of ker(M ) can be computed and the basis can be completed using O(n ω ) many arithmetic operations.

Appendix A. Appendix to Chapter 2

• For n = t, using Theorem 2.7.1 the algorithm checks equivalence using O(t 2 d) many calls to the blackbox and O(t 2 M (d) log d + t ω+1 ) many arithmetic operations.

So we conclude that if the polynomial is given as a blackbox, then the algorithm makes O(n 2 d) many calls to the blackbox and the number of arithmetic operations required is

Using Section 2.7.2 and the fact that we just need to do polynomial interpolation and completion of the basis, we conclude that Algorithm (A) . Then

Proof. Refer to the proof of Proposition 1.1 in [START_REF] Banks | Pseudospectral shattering, the sign function, and diagonalization in nearly matrix multiplication time[END_REF].

Thereefore log( n 2 δ ) < log 4 ( n δ ) log n ≤ log( 1 u ), and n 2 u ≤ δ.

Proof of Theorem 3.3.12. Let v

n be the true normalized eigenvectors of A. By Theorem 3.3.4, we need O(log 4 ( n δ ′ ) log n) bits of precision to run EIG in step 3. So, we assume that the number of bits of precision available for this algorithm is log(

< 1. We first show that the conditions of Theorem 3.3.4 are satisfied when we run EIG on (B ′ , δ ′ ). For this, we have to show that δ ′ ≤ 1 8κ eig (B ′ ) . Applying Lemma B.1.2 where log( 1 u ) = c log 4 ( n δ ′ ) log n, we get that for large enough n, u Knorm . This gives us:

.

Putting it back in (B.1), we also have that ||B -B ′ || < 1 8κ eig (B) . Now we can apply Lemma 3.3.9 to B, B ′ and we obtain the inequality

4

. This gives us that

Hence,

and we can now run EIG on (B ′ , δ ′ ). By Theorem 3.3.4, the algorithm therefore outputs (W , D 0 ) such that 

Proof. Since, we have that log(u) = -c log k (nB) log(n), this gives us that

Using this, we can conclude that u(nB

C.2 Remaining proofs from Section 5.3

C.2.1 Step 4:

In this section, we also define functions f 4 corresponding to the matrix diagonalisation required in Step 4 of Algorithm 8 and then using results from Section 3.3 show that Using Lemma 3.3.8, this gives us that x is diagonalisable and has distinct eigenvalues. Hence, x ∈ X 4 . Let us assume that Algorithm 6 is run with some choice of parameters p. Now, instead of some x ∈ X 4,p , it is given as input x such that for all i, j ∈

where u p is also the required machine precision of the algorithm. We follow the definition of the model of finite arithmetic from Section 1.2.2 and the explanation regarding the same at the end of Section 1.1.2 of [BGVKS22] "...since it is not even assumed that the input is stored exactly." In that case, we show that EIG-FWD is robust. More formally, we define A x, x := {ω ∈ Ω|There exists y ∈ f 4 (x) such that || f4,p,ω ( x) -y|| ≤ ε 4 }.

Then using Theorem 3.3.12, we get that P(A x, x) ≥ 1 -1 n -12 n 2 . This gives us the desired conclusion. Ṽ such that there exists

C.2.2 Step 5:

We do not define a new function for Step 5 because it uses the matrix inversion function on a different input. So we reuse f 2 from Section 5.3.2 as the basic function for this step.

C.2.3 Step 6:

Written in standard basis notation, the equality

Proof. Following the definition of ||.|| F of tensors, we get that

as the trace of slices after a change of basis. More formally, f 6 (T , V ) = (Tr(S 1 ), ..., Tr(S n )) where S 1 , ..., S n are the slices of the tensor S = (V ⊗ V ⊗ V ).T . For any element

We define κ 6 (x) := (||x|| + 1) 3 . We also define the norm on the output space C n as the l 2 norm on vectors. Lemma C.2.4. For any δ 5 ∈ (0, 1], f 6 is a (4, 8)-continuous function at scale δ 5 on the domain X 6 .

Proof. Let x = (T , V ) ∈ X 6 and x = ( T , Ṽ ) ∈ B((T , V ), δ 5 ). We want to give a bound on ||f 6 ( T , Ṽ ) -f 6 (T , V )||. To do this, we bound ||f 6 ( T , Ṽ ) -f 6 (T , Ṽ )|| and ||f 6 (T , Ṽ ) -f 6 (T , V )|| independently and then use triangle inequality to give the required bound.

The last inequality follows again from an application of the Cauchy-Schwarz inequality.

Now we want to bound

Thus we already have that ||E||

Applying this and expanding the tensor power, we get that

In the last step, we use the fact that δ 5 ≤ 1. Putting this back in (C.8),

Combining (C.7) and (C.9), we have

Thus, we can finally conclude that

Defining f6 : We define f6 as the numerically stable algorithm for computing a linear combination of the slices after a change of basis (Algorithm 5) with machine precision u = α 5 .

Lemma C.2.5. For all α 5 ∈ (0, 1 10n ), f6 is a (α 5 , ψ 5 )-numerically stable algorithm for computing f 6 where ψ 6 (κ 6 ) = 63 8 n 2 (κ 6 ) 4 3 .

Proof. Let x = (T , V ) be the input to f6 where T ∈ (C n ) ⊗3 and V ∈ M n (C). Let f 6 (x) = (s 1 , ..., s n ) and f6 = ( s1 , ..., sn ). Using Theorem 3.2.3, we get that

3 ).

(C.11)

The second-last inequality follows from an application of the weighted AM-GM inequality.

Theorem C.2.6. For any ε 5 ∈ (0, 1 10n ), f6 is an (ε 5 , ψ ′ 6 )-robust numerically stable algorithm for computing f 6 on domain where ψ ′ 6 (κ 6 ) = 126n 2 κ 4 3

6 + 4κ 6 .

Proof. Let x 6 ∈ X 6 and x6 ∈ B(x 6 , ε 5 ). From Lemma 5.2.4, we get that

C.2.4 Step 7:

In this section we first define the two simple functions f

(1) 7 (corresponding to computing cube root) and f

(2) 7 (corresponding to vector scaling) and their corresponding algorithms that are used in Step 7 of Algorithm 8. We define the map f 7 corresponding to Step 7 of the algorithm as a composition of these two simple functions and define the algorithm f7 computing this function as a similar composition of the two corresponding algorithms. We show that f

(2) 7 is robustly numerically stable and use that to prove bounds on the error made by f7 while computing f 7 on perturbed inputs.

Defining f

(1)

7 : We define f

(1) 7

as the following cube root map f

(1)

This implies, that for all ỹ ∈ f

(1) 7 ( x), there exists y ∈ f

(1)

We also define f7

(1) as the algorithm for evaluation of cube roots in finite precision arithmetic as mentioned in Section 1.2.2. If the algorithm is executed on x ∈ C on a machine with finite precision δ, this gives us that there exists some ỹ′ ∈ f

(1)

Using (C.12), we also get that there exists y ′ ∈ f

(1)

. Combining this with (C.13) using triangle inequality, we get that there exists y ′ ∈ f (1)

Defining f

(2)

as the following map for vector scaling f

(2)

For some x = (α, v) ∈ C × C n in the input space, we define ||x|| = |α| 2 + ||v|| 2 and the norm on the output space is the usual l 2 norm on vectors.

Let

We also define f7

(2) as the algorithm for vector scaling in finite arithmetic. More 

|| f7

(2) ( x) -f

(2)

(C.17) Defining f 7 : Let the input space to be X 7 := C n × (C n ) n and the output space to be Y 7 (n) := (C n ) n . Finally we define f 7 to be the following map

We also define f7 to be the following algorithm run with machine precision δ: On input x = (α 1 , ..., α n ), (v 1 , ..., v n ) ∈ X 7 , f7 performs the following computations:

i , v i ) on machine with precision u := 6δ

The following theorem is the main theorem of this section.

. If f7 is run on a machine with precision δ, then there exists y ∈ f 7 (x) such that

Proof. Let x = (α 1 , ..., α n ), (v 1 , ..., v n ) ∈ X 7 and x = ( α1 , ..., αn ), ( ṽ1 , ..., ṽn ). Since || x -x|| ≤ δ, it also follows that | αi -α i | ≤ δ. Then using (C.14), we get that there exists y

i , v i ) are the inputs to f7

(2) and f

(2) 7

respectively. Using the facts that |y

(1)

Running f7

(2) with machine precision u and using (C.17), we get that

i | 3 = |α i |, using Jensen's inequality on the cube root function, we also get that

Using this along with the fact that n i=1 ||v i || 2 ≤ ||x|| 2 gives us that n i=1

Putting this back in (C.18), we can conclude that

C.3 Diagonalisation is a (6n 3 2 , 4n)-continuous function

Recall from Section C.2.1 that we had defined f 4 to be the function corresponding to matrix diagonalisation. More formally, it takes as input a diagonalisable matrix A and outputs the set of eigenvectors of A. Also, recall that in Definition 5.2.1 we had defined the notions of continuity of functions belonging to {f : C m -→ C n } . This definition can be extended similarly to the case of functions belonging to {f : C m -→ P(C n )}. We mention it here for completeness.

Definition C.3.1. Let f : S ⊂ C M -→ P(C N ) with condition number κ f and let u ∈ R + . Let x ∈ S be an input for f such that B(x, u) ⊂ S. We call f to be an (a, b)-continuous function on subdomain S at scale u if for all x ∈ B(x, u) such that x ∈ dom(f ), y ∈ f (x) and ỹ ∈ f ( x) such that

where a, b ∈ R + .

We finally show that f 4 is indeed a continuous function.

Claim C.3.2. f 4 is a (6n 3 2 , 4n)-continuous function at scale δ 3 > 0 on domain S 4 := {A is diagonalisable and has distinct eigenvalues and κ eig (A) < 1 8δ 3 }.

Proof. Let A ∈ S 4 such that B(A, δ 3 ) ⊆ S 4 let à ∈ B(A, δ 3 ). Using Lemma 3.3.9, à is diagonalisable with distinct eigenvalues and hence à ∈ dom(f 4 ). Then using Corollary 3.3.11.1, we get that there exist eigenvectors y = (v 1 , ..., v n ) ∈ f 4 (A) and ỹ = ( ṽ1 , ..., ṽn ) ∈ f 4 ( Ã) such that

up to scaling by cube roots of unity. Let λ 1 , ..., λ n be the eigenvalues of A and λ ′ 1 , ..., λ ′ n be the eigenvalues of Ã. Then using Corollary 3.3.11.1, we get that |λ i -λ ′ i | ≤ κ V (A)δ 3 . Therefore, we have that for all i ̸ = j ∈ [n], ) , we get that gap( Ã) ≥ 3gap(A)

4

. Using Lemma 3.3.9, we also get that κ

Combining these, we finally get that The goal of this section is to show that g5 is an (ε 4 , ε 5 )-algorithm for computing g 5 on domain D 5 = h 4 (D 1 ) (refer to (5.20) for the definition of the functions). We also use the conclusion of Section 5.6.2, that is, for the parameter p mentioned in the hypothesis of Theorem 4.3.6, h4,p is an ((1 -1 n -12 n 2 ), ε 0 , ε 4 )-algorithm on probability space P for computing h 4 on subdomain D 1 . Since, h 5 = g 5 • s h 4 and h5,p = g5 • h4,p , using Corollary 5.4.2.1, we get that h5,p is an (1 -1 n -12 n 2 , ε 0 , ε 5 )-algorithm on probability space P for computing h 5 on domain D 1 .

Recall here from Section C.2.2 (and the definition of g 5 in (5.15)) that this corresponds to Step 5 of Algorithm 8 and here we will use the map designed for matrix inversion, i.e. f 2 .

Relation to Step 5 of the Algorithm: From the definition of g 4 in (5.16), it takes in as input

Then the output at the end of the step is g 5 (y 5 ) = (ψ matrow (f 2 (x 5 )), y 5 ). Since f 2 is the map for matrix inversion defined in Section 5.3.2, we have g 5 (V , T ) = ((w 1 , ..., w n ), (V , T )) where w 1 , ..., w n are the rows of V -1 . The following is the main result of this section.

Claim C.4.1. g5 is an (ε 4 , ε 5 )-algorithm for computing g 5 on domain D 5 .

Proof idea:

The proof strategy for this section is almost the same as Section 5.6.2. Recall that the condition number for f 5 , denoted by κ 2 is defined in Section C.2.2. We want to show that κ 2 (x 5 ) is bounded and the rest of the proof idea remains the same.

Proof. Let y 5 ∈ D 5 and ỹ ∈ B(y 5 , ε 4 ). We define x 5 = π 1 (y 5 ) and x5 = π 1 ( ỹ5 ) as the inputs to f 5 and f5 respectively. Since || ỹ5 -y 5 || ≤ ε 4 , this also implies that

In Section 5.3.2, for some x ∈ X 2 , we had defined the condition number for f 2 to be κ 2 (x) = κ F (x). Since x 5 ∈ π 1 (D 5 ) = π 1 (g 4 (D 4 )), using (5.42), we have that κ 2 (x 5 ) = κ F (x 5 ) ≤ n + B 2 4 . Then using this and applying Lemma C.1.1,

we can also conclude that x 5 ∈ I 2 (ε 4 ). Putting this in Theorem 5.3.11, using (C.22) and Lemma C.1.1, we get that

The final inequality follows from the definition of ε i in (5.19). Following the definition of g 5 and g5 from (5.15), we finally get that

This shows that g5 is an (ε 4 , ε 5 )-algorithm for computing g 5 on subdomain D 5 .

Following the definition of g i from (5.15), we get that π 1 (g 5 (D 5 )) = ψ matrow (f 2 (π 1 (D 5 ))). For all y 5 ∈ π 1 (g 5 (D 5 )), we compute an upper bound on ||y 5 || , which we will require later in Section C.4.3. From the previous discussion, we know that for y 5 = (V , T ) ∈ D 5 , g 5 (y 5 ) = ((w 1 , ..., w n ), (V , T )) where w 1 , ..., w n are the rows of V -1 . Using (5.42),

C.4.2 Setting y 6 :

The goal of this section is to show that g6 is an (ε 5 , ε 6 )-algorithm for computing g 6 on domain D 6 = h 5 (D 1 ) (refer to (5.20) for the definition of the functions). We also use the conclusion of Section C.4.1, that is, for the parameter p mentioned in the hypothesis of Theorem 4.3.6, h5,p is an ((1 -1 n -12 n 2 ), ε 0 , ε 5 )-algorithm on probability space P for computing h 5 on subdomain D 1 . Since, h 6 = g 6 • s h 5 and h6,p = g6 • h5,p , using Corollary 5.4.2.1, we get that h6,p is an (1 -1 n -12 n 2 , ε 0 , ε 6 )algorithm on probability space P for computing h 6 on domain D 1 .

Relation to Step 6 of the Algorithm: Following the definition of g 6 from (5.15), g 6 takes as input y 6 = (w 1 , ...,

Then the output at the end of the step is g 6 (y 6 ) = (f 6 (x 6 ), (w 1 , ..., w n )). Following the definition of f 6 in Section C.2.3 which computes the trace of the slices after a change of basis of the tensor T by the matrix V . More formally, g 6 (y 6 ) = ((α 1 , ..., α n ), (w 1 , ..., w n )) where

T and S 1 , ..., S n are the slices of S .

Remark C.4.2. Following the definition of g 5 and g 4 from (5.15), we have that π 2 • g 5 = Id where Id is the identity function. Using this, we get that there exists some y ∈ D 4 such that x 6 = π 2 (g 5 (g 4 (y))) = g 4 (y) = (V , T ). Moreover from the definition of g 4 , we also get that since (V , T ) is in the output space of g 4 , for all columns

The following is the main result of this section.

Claim C.4.3. g6 is an (ε 5 , ε 6 )-algorithm for computing g 6 on domain D 6 .

Proof. Let y 6 ∈ D 6 and ỹ6 ∈ B(y 6 , ε 5 ) which are the inputs to g 6 and g6 respectively. Then the inputs to f6 and f 6 are set as x6 = π 2 ( ỹ6 ) and x 6 = π 2 (y 6 ) = (V , T ) This shows that g6 is an (ε 5 , ε 6 )-algorithm for computing g 6 on subdomain D 6 . Now for all y 6 ∈ D 6 , we want to compute a bound on ||f 6 (π 2 (y 6 ))|| which we will use later in Section C.4.3. From the discussion in this section, we already know that y 6 = ((w 1 , ..., w n ), (V , T )) and g 6 (y 6 ) = ((α 1 , ..., α n ), (w 1 , ..., w n )). Moreover,since, D 6 = h 6 (D 1 ) as defined in (5.21), y 6 = h 6 (y 1 ) for some y 1 ∈ D 1 . From the assumption of Theorem 5.6.2, we get that y 1 = (T , a, b) satisfies the (n, B)-input Conditions 4.3.5 which in turn implies that T is a diagonalisable tensor and κ(T ) ≤ B (refer to Definitions 1.4.3 and 4.1.1 for the corresponding definitions). If U is a matrix that diagonalises the input tensor T , then ||U || F ≤ κ F (U ) ≤ √ B. From (4.6), we get that there exist scalars k 1 , ..., k n ∈ C such that V = U -1 D where D = diag(k 1 , ..., k n ). Hence, (U V ) T e i = D T e i = k i e i . Then, using (4. The goal of this section is to show that g7 is an (ε 6 , ε 7 )-algorithm for computing g 7 on domain D 7 = h 6 (D 1 ) (refer to (5.20) for the definition of the functions). We also use the conclusion of Section C.4.2, that is, for the parameter p mentioned in the hypothesis of Theorem 4.3.6, h6,p is an ((1 -1 n -12 n 2 ), ε 0 , ε 6 )-algorithm on probability space P for computing h 6 on subdomain D 1 . Since, h 7 = g 7 • s h 6 and h7,p = g7 • h6,p , using Corollary 5.4.2.1, we finally get that h7,p is an (1 -1 n -12 n 2 , ε 0 , ε 7 )-algorithm on probability space P for computing h 7 on domain D 1 .

Relation to

Step 7 of the algorithm: Following the definition of g 7 from (5.15), we know that g 7 takes as input y 7 = ((α 1 , ..., α n ), (w 1 , ..., w n )) ∈ g 6 (D 6 ) ⊆ C n × (C n ) n = X 7 and computes (l 1 , ..., l n ) where l i = β i w i such that β 3 i = α i . The following is the main result of this section which will complete the proof of Theorem 5.6.2. Claim C.4.4. g7 is an (ε 6 , ε 7 )-algorithm for computing g 7 on domain D 7 .

Proof. We set y 7 ∈ D 7 and ỹ7 ∈ B(y 7 , ε 6 ). Recall that X 7 is the domain of definition of f 7 , defined in Section C.2.4. Since, D ⊆ X 7 , then the inputs to f7 and f 7 are ỹ7 and y 7 as well, respectively.

First we compute a bound on ||y 7 ||. By the definition of D 7 from (5.21), y 7 = g 6 (y 6 ) for some y 6 ∈ D 6 . Following the definition of g 6 = (f 6 • s π 2 ) × π 1 from (5.15), using (C.26) and (C.30), Since g 7 = f 7 and g7 = f7 from (5.15), we finally conclude that g7 is an (ε 6 , ε 7 )algorithm for computing g 7 on subdomain D 7 .