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purement scientifique que sur tous les autres aspects de la recherche. Aurélien, merci en
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durant ces trois années à l’ENS de Lyon. Je n’aurais pas pu rêver mieux que de me
retrouver dans un environnement comme celui-ci. Alors que mes productions scientifiques
font (soi-disant) de moi un expert dans un domaine très spécifique qui sera développé dans
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Résumé

Cette thèse étudie les compromis entre l’apprentissage statistique et la protection de la
vie privée. D’une part, l’apprentissage, qui se définit comme l’estimation de quantités
ou de tendances significatives à l’échelle d’une population en n’ayant accès qu’à des ob-
servations échantillonnées de cette population, sera plus facile si l’on accorde un accès
illimité aux données d’apprentissage. D’un autre côté, les données d’apprentissage peu-
vent être sensibles et leur utilisation sans restriction pourrait entrâıner des problèmes de
confidentialité.

Le spectre des problèmes de sécurité et de confidentialité pouvant être très large, il est
nécessaire de préciser le champ d’application de cette thèse. Dans la configuration con-
sidérée, les données sont agrégées par un seul acteur qui les utilise pour entrâıner un
modèle statistique (procédure d’estimation, réseau neuronal, . . . ). Ce modèle est ensuite
partagé avec le monde entier. Le problème considéré est celui de l’inversion : est-il possible
de briser la confidentialité des échantillons des données d’entrâınement individuels par la
seule observation du modèle entrâıné ?

Après une introduction, cette thèse est composée de six chapitres et d’une conclusion. Le
premier chapitre présente une étude de cas pratique. Il établit empiriquement le compromis
entre l’utilité en classification d’images et la protection contre les attaques par inférence
d’appartenance en tirant parti de la parcimonie du modèle.

Le deuxième chapitre est consacré à la présentation des principaux résultats de la théorie de
la confidentialité différentielle. Cette définition mathématique de la confidentialité permet
de se défendre contre n’importe quel adversaire, avec de fortes garanties de confidentialité.
Le chapitre illustre des résultats connus et importants de la littérature en les intégrant
dans un cadre statistique, introduisant ainsi le lecteur à des concepts clés pour le reste de
la thèse.
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Le troisième chapitre se concentre sur les bornes inférieures sur l’utilité statistique des
algorithmes d’apprentissage lorsqu’ils sont soumis à des contraintes de confidentialité
différentielle. En particulier, il présente un cadre de preuve qui s’appuie sur une for-
malisation en tant que problème de transport, où les ensembles de données sont comparés
en utilisant des fonctions de similarité qui capturent l’essence de la confidentialité. Ce
cadre permet de retrouver les résultats de l’état de l’art des dernières années sur le sujet,
tout en unifiant la théorie qui les sous-tend. Ce cadre de preuve est également prêt à
l’emploi, ce qui signifie qu’il est facile de l’utiliser pour élargir la théorie, notamment pour
de nouvelles définitions de la confidentialité ou de nouvelles structures probabilistes de
l’espace de données.

Le quatrième chapitre explique comment appliquer les techniques du chapitre précédent,
en regardant des exemples paramétriques. En particulier, il étudie le modèle de Bernoulli,
le modèle uniforme, le modèle gaussien et l’estimation de familles exponentielles à domaine
compact. Il donne également des références bibliographiques pour de nombreux problèmes
similaires intéressants.

Le cinquième chapitre étudie l’estimation non paramétrique privée des densités. Il présente
plusieurs procédures d’estimation optimales ou quasi-optimales pour des densités appar-
tenant à des espaces fonctionnels de Lipschitz et de Sobolev. Le problème est étudié dans
le cadre de la confidentialité différentielle régulière et de la confidentialité différentielle
concentrée.

Le sixième (et dernier) chapitre traite du problème de l’estimation de la fonction quantile.
Il s’appuie tout d’abord sur l’idée que les quantiles empiriques d’un ensemble de données
sont de bons estimateurs des quantiles de la distribution sous-jacente. À partir de là,
les propriétés de concentration des algorithmes de pointe pour l’estimation des quantiles
empiriques privés sont dérivées pour le problème de l’estimation statistique. Le chapitre
présente les limites de ces estimateurs, notamment en soulignant leur sous-optimalité pos-
sible sur des instances spécifiques du problème.
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Abstract

This thesis studies the tradeoffs between statistical learning and privacy. On the one hand,
learning, which is defined as estimating meaningful quantities or trends at the scale of a
population with only access to sampled observations of that population, will be easier if
granted unrestricted access to its training data. On the other hand, the training data can
be sensitive, and its unrestricted use can lead to privacy issues.

Since the spectrum of security and privacy issues can be very large, it is necessary to
specify the range of this thesis. In the considered setup, the data is aggregated by a single
actor that uses it to train a statistical model (estimation procedure, neural network, . . . ).
This model is then shared to the entire world. The problem that is considered is the
inversion one : is it possible to break the privacy of the individual samples of the training
data by the sole observation of the trained model ?

After an introduction, this thesis is composed of six chapters and of a conclusion. The first
chapter presents a practical case study. It empirically draws the tradeoff between utility
in image classification and privacy against membership inference attacks by leveraging the
sparsity of the model.

The second chapter is devoted to the presentation of key results of the theory of differential
privacy. This mathematical definition of privacy allows defending against any adversary,
with strong privacy guarantees. The chapter illustrates known and important results from
the literature by embedding them in a statistical framework, thus introducing the reader
to key concepts for the rest of the thesis.

The third chapter focuses on lower-bounds on the statistical utility of learning algorithms
when constrained by differential privacy. In particular, it presents a proof framework
that builds on a formalization as a transport problem, where datasets are compared using
similarity functions that capture the essence of privacy. This framework allows recovering
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the state-of-the-art results of the last few years on the subject, while unifying the theory
behind them. It is also plug-and-play, meaning that it is easy to build on, notably for new
definitions of privacy, or new probabilistic structures of the data space.

The fourth chapter details how to apply the techniques of the previous one on parametric
examples. In particular, it studies the Bernoulli model, the uniform model, the Gaussian
model, and the estimation of exponential families with compact domain. It also gives
bibliographic pointers for many interesting similar problems.

The fifth chapter studies the private nonparametric estimation of densities. It presents
multiple optimal or near-optimal estimation procedures for densities that belong to Lip-
schitz and Sobolev functional spaces. The problem is studied under regular differential
privacy and under concentrated differential privacy.

The sixth (and last) chapter considers the quantile function estimation problem. First, it
builds on the idea that empirical quantiles of a dataset are good proxies for the quantiles
of the underlying distribution. From that, the concentration properties of state-of-the-
art algorithms for the private empirical quantile estimation are derived for the statisti-
cal estimation problem. The chapter presents the limits of these estimators, notably by
pointing-out their possible sub-optimality on specific instances of the problem.
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Notations

N Set of natural numbers.
Z Set of relative integers.
Q Set of rational numbers.
R Set of real numbers.
C Set of complex numbers.
{m, . . . , n} Set of integers from m (included) to n (included).
Pk Simplex of Rk of vectors with positive entries that sum to 1.
X∗ Non-null elements from X.
X+ (resp. X−) Non-negative (resp. non-positive) elements from X.
Xk Set k-tuples from X.
Xk
· Should be interpreted as (X·)

k.
Xk↗ Set k-tuples from X sorted by non-decreasing order.
# (S) Cardinality of set S.
· ⊔ · Disjoint union of sets.
X Vector X = (X1, . . . , Xn), or dataset.
· ⊗ · Kronecker product.
· ∼ · Neighboring relation.
ln Natural logarithm.
logk Logarithm in basis k (i.e. ln(·)/ ln(k)).
dom (M) Domain (set of admissible inputs) of the mechanism M.
codom (M) Codomain (set of admissible outputs) of the mechanism M.
∇f Gradient of the function f .
∇2f Hessian of the function f .
∆f Sensitivity (l1) of f .
∆kf lk sensitivity of f .
Ck(E,F ) Functions from E to F that are k-times continuously differentiable.
C∞(E,F ) ∩k≥0Ck(E,F ).

ΘLip
L Set of L-Lipschitz functions on [0, 1].

ΘSob
L,β Set of β-Sobolev functions on [0, 1].

ΘPSob
L,β Set of β-Periodic Sobolev functions on [0, 1].
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PX Probability distribution. X may be used to specify the randomness.
EX Expectation. X may be used to specify the randomness.
VX Variance. X may be used to specify the randomness.
CovX Covariance matrix. X may be used to specify the randomness.
B(p) Bernoulli distribution of probability of success p.
B(n, p) Binomial distribution of probability of success p and n trials.
U(S) Uniform distribution on S.
E(λ) Exponential distribution of p.d.f. p(x) = λe−λx.

L(b) Centered Laplace distribution of p.d.f. p(x) = 1
2be

− |x|
b .

L(bId) Distribution on Rd with independent components of distribution L(b).
N (µ,Σ) Multivariate normal distribution with mean µ and covariance matrix Σ.
P ≪ Q P is absolutely continuous w.r.t. Q.
µ⊗n Product measure with n times µ as marginal measure.
L−→ Convergence in distribution.

TV (P,Q) Total variation distance between P and Q.
KL (P∥Q) Kullback–Leibler divergence of P from Q.
Dα (P∥Q) Rényi divergence of level α of P from Q.
Π (P1, . . . ,PN ) Set of couplings with marginal distributions P1, . . . ,PN .
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Introduction

With the generalization of large-scale data collection, the ever-increasing computational
power of modern computers, and the ingenious contributions of the scientific community,
statistical learning (which is often referred to as machine learning or simply as artificial
intelligence) has revolutionized many aspects of our modern lives. This revolution is not
only quantitative, but it is also a qualitative one in the sense that it changes the way
knowledge is built. Traditionally, sensible science (e.g. physics, chemistry, social sciences,
. . . ) is built by proposing a model that has later to be confirmed by the experiments. In
contrast, statistical learning builds a model from the experiments. For various reasons,
one could want to share this learned model with the world (e.g. to help with the diagnosis
of certain diseases). However, when this model is trained on sensitive data (e.g. medical
data [Dubost et al., 2020, Jung et al., 2021, Truong & Oudre, 2022, Bargiotas et al.,
2022, Sbidian et al., 2020, la Tour et al., 2018, Czernichow et al., 2020, Sebia et al.,
2023, Brat et al., 2020, Lalanne et al., 2020]), this task is challenging, and extra caution
measures should be taken.

Let me start with the following, extremely famous story [Kearns & Roth, 2019], that
illustrates well the catastrophic consequences of poor data management. Netflix12 is an
American media company. It produces movies and TV shows, but they mostly serve as a
way to promote its main product : an over-the-top3, on-demand4, paid-subscription-based,
video platform. On this platform, users can watch movies and TV shows produced either
by Netflix directly, but also by many others to who Netflix gives in turn some money.
For such a platform, the first necessary condition to succeed is to offer a large collection
of high quality movies and TV shows. However, this is certainly not the only one. At
the core of what makes the Netflix experience is its recommendation system. It is the
algorithm that recommends the Netflix users new programs to watch based on what the
platform thinks the user’s tastes are. Good suggestions lead to users that spend more time
on the platform, and in turn to users that are more satisfied. In practice, the platform

1https://about.netflix.com/en
2https://en.wikipedia.org/wiki/Netflix
3Offered directly to the consumer via internet.
4Not constrained by a strict schedule.

https://about.netflix.com/en
https://en.wikipedia.org/wiki/Netflix
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recommends its users shows that were appreciated by users that the platform believes to
have similar tastes.

So, in 2006, Netflix started a data challenge with the hope that, by releasing an anonymized
dataset of ratings given by a subset of its users to a subset of its shows, the machine learn-
ing community would find a better recommendation algorithm than their home-brewed
version. The metrics for the evaluation, and the continuous improvements on the chal-
lenge, are not relevant here. However, the hot topic for this thesis is the dataset that was
released by Netflix.

The dataset that Netflix released is a collection of more than 100 million [Bennett et al.,
2007] records of the form (anonymized user id, show name, rating), where

• anonymized user id refers to a field that allows to uniquely identify the user that
gives the review, without further detail about the user’s identity,

• show name is the name of the show to which the review is given,

• and rating is the actual value of the review, which is an integer between 1 and 5
(think about it as ”stars”).

Did the release of this dataset respect Netflix’s users’ privacy ? There is no clear answer
to that question. Someone could indeed argue that ”yes”, Netflix has made a sufficient
effort at hiding its users’ identity. Indeed, this dataset does not contain any information
that allows to directly identify the users (such as names, zip codes, . . . ). However, no one
can guarantee that such dataset won’t ever be deanonymized.

In fact, and this is the reason why this story is so popular, it was partially deanonymized.
During the same year (2006), a young researcher (at the time PhD student of Vitaly
Shmatikov5) named Arvind Narayanan6 uploaded an article on arXiv7 [Narayanan &
Shmatikov, 2006], claiming to have recovered sensitive information about the users that
were part of the ”anonymized” dataset.

How did they proceed ? Without diving too much into technicalities, they used the

5https://www.cs.cornell.edu/~shmat/
6https://www.cs.princeton.edu/~arvindn/
7https://arxiv.org/

https://www.cs.cornell.edu/~shmat/
https://www.cs.princeton.edu/~arvindn/
https://arxiv.org/
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dataset of public reviews of the website IMDb8 in order to recover the hidden reviews of
the common users with the Netflix dataset. The idea is the following : if a user belongs to
both datasets, he should give similar reviews to the shows that he rated both on Netflix
and on IMDb. Those similarities can be leveraged in order to find matchings. Once a
matching between a user in the IMDb database and in the Netflix dataset has been found,
it is possible to look at the shows that were rated by the user on Netflix (thinking that he
was anonymous), but not on IMDb (knowing that the reviews were public). By doing so,
[Narayanan & Shmatikov, 2006] claims that it is possible to find the political orientation
or even the sexual preferences of a subset of common users.

This revelation ultimately led to Netflix canceling its challenge9, and to a class action
lawsuit against Netflix, that was ultimately dismissed after a settlement with the plaintiffs
was found10.

So, what is the take-home message from that story ? For me, it is that the privacy of a
pipeline that involves sensitive data can be more complex than it seems, and sometimes the
intuition can be fooled. In the case of the Netflix challenge, even though the identifiable
labels (name, zip code, . . . ) were removed, people were still identifiable because of the
relative uniqueness of their tastes.

Let me extrapolate a bit from this example. What would have happened if, instead
of publicly releasing the dataset, Netflix only gave it to a restricted list of whitelisted
researchers ? Maybe one of the researchers could have been compromised and would
have then leaked the dataset, but for the sake of reasoning, let us suppose that it is not
the case. The researchers develop their new recommendation algorithm, no data leaks,
and Netflix implements it on its platform. Would it be possible that, through its own
recommendations that were generated by this algorithm, a user infers the private tastes
of other specific users ?

Even though this question may sound at first as if it was borrowed from a conspiracy
theory, giving a scientific answer is not an easy task. It raises two important questions :
”How would it even be possible ?” and ”How can we guarantee that it would be impossible,
or at least hard ?”.

In this thesis, I will try to give answers to both questions (not necessarily in the case of
the Netflix example), and to precisely characterize the frontier between what is doable or
not while guaranteeing a certain level of privacy.

8https://www.imdb.com
9https://www.nytimes.com/2010/03/13/technology/13netflix.html

10https://www.wired.com/2009/12/netflix-privacy-lawsuit/

https://www.imdb.com
https://www.nytimes.com/2010/03/13/technology/13netflix.html
https://www.wired.com/2009/12/netflix-privacy-lawsuit/
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Note that this example is not isolated, and that the literature on privacy attacks is massive
[Narayanan & Shmatikov, 2006, Backstrom et al., 2007, Fredrikson et al., 2015, Dinur &
Nissim, 2003, Homer et al., 2008, Loukides et al., 2010, Narayanan & Shmatikov, 2008,
Sweeney, 2000, Gonon et al., 2023b, Wagner & Eckhoff, 2018, Sweeney, 2002, Voyez et al.,
2022b].

0.1 Some context and definitions

I chose to name my thesis ”On the tradeoffs of statistical learning with privacy” for reasons
that will hopefully be clear by the end of the Introduction. Here, I define what the terms
statistical learning and privacy mean in this title, and I intuitively introduce the tradeoff
between them that will be at the core of this thesis.

0.1.1 A definition of statistical learning

The term statistical learning [Shalev-Shwartz & Ben-David, 2014, Bach, 2021] can be
defined as a way to ”learn” quantities or behaviors that are meaningful at the scale of a
population, with only access to observations of that population (samples). For instance,
estimating the proportion of people from the general population that like a movie based
on the reviews of a restricted set of reviewers.

In particular, in this thesis, all the problems that are considered fit in this framework : we
will have access to a dataset X = (X1, . . . , Xn) corresponding to the observations of the
data of n individuals. We will suppose that this dataset was generated from a distribution
P, and the objective will be to construct an estimator θ̂(X) such that θ̂(X) ≈ θ(P),
θ(P) being the quantity of interest from P (e.g. parametric or non-parametric estimation,
more abstract behavior like regression error, comparative behavior to the empirical data).
For instance, in the previous example, the likings of the reviewers can be modelled as

X1, . . . , Xn
i.i.d.∼ B(p) (independently and identically distributed according a Bernoulli

distribution of probability of success p). The problem would be to build an estimator
from X1, . . . , Xn that approximates p.

0.1.2 A definition of privacy

The notion of privacy is harder to define. We will see down the line that it is possible
to define it mathematically via the property of differential privacy [Dwork et al., 2006b,
Dwork et al., 2006a]. However, a mathematical model is only as good as it reflects what
we want it to. At first, I will thus try to informally draw the boundaries of the concept of
privacy. It will later help us to understand why differential privacy works.

According to the Cambridge Dictionary11, privacy is about ”not revealing somebody’s
information”. This definition is a bit imprecise as to how to interpret it. Indeed, it

11https://dictionary.cambridge.org/

https://dictionary.cambridge.org/
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doesn’t specify what ”revealing” means. For instance, if I reveal somebody’s age +1 year,
did I reveal his age ? Someone could argue that ”no”, the age wasn’t revealed. However,
any good willing people would probably argue that ”yes” the age was leaked. Indeed, the
inverse transformation is extremely easy to do.

From the last example, we can try to modify this definition and say that privacy is about
not revealing something that could be used to recover somebody’s information. However,
this definition is extremely strong. It implies that the only things that can be communi-
cated should be independent of the data. This definition completely blocks learning. The
challenge is to find a definition that allows both learning and privacy.

Instead, let me propose (inspired by differential privacy [Dwork et al., 2006a, Dwork et al.,
2006b]) the following definition of privacy : privacy is about only revealing things that make
discriminating if one’s information was used hard. With this definition, it is still possible
to have correlation between the data and the quantities that are communicated, but the
recovering of one’s information must be hard. ”How hard ?” is a question that will later
be mathematically characterized. Another question that must be answered is ”hard for
who ?”. We will call weak privacy the scenario in which the adversaries are known in
advance, and strong privacy the one in which the adversaries can be anything. Besides,
the property of differential privacy that will be used later guarantees a certain level of
privacy against any adversary. It is thus a strong definition of privacy.

0.1.3 An example of a non-private learning model

Before properly defining privacy, let us start by looking at a famous learning algorithm,
and let us show that it has big privacy issues, in the sense that it is easily reverted. The
dataset consists of n pairs (data, value) ((xi, yi))i=1,...,n where the x’s live in a metric space
X , equipped with a distance function d. The learning algorithm that we consider is the
nearest neighbor predictor. Given a new data x, it predicts its associated value ŷ with

ŷ := yî ,

where
î := argmin

i=1,...,n
d(x, xi) .

With only a black box access to the nearest neighbor predictor (that is the ability to query
its output for any x), it can be very easy to recover the full training set ((xi, yi))i=1,...,n.
For instance, in a regression setup, it is not unreasonable to suppose that the marginal
distribution of the y’s is continuous. Then, almost surely, all the y’s from the training
set are distinct. Furthermore, by querying a grid of arbitrary precision of the space X ,
it is possible to (i) obtain the values of all the y’s of the training set, and to (ii) obtain
the Voronoi diagram12 or Dirichlet tessellations induced by the predictor on X with an
arbitrary precision. Reconstructing the x’s from the training set then boils down to the

12https://en.wikipedia.org/wiki/Voronoi diagram

https://en.wikipedia.org/wiki/Voronoi_diagram
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inversion of this Dirichlet tessellations, which is a well studied problem [Ash & Bolker,
1985, Aurenhammer, 1987, Hartvigsen, 1992, Schoenberg et al., 2003, Yeganova et al.,
2001, Aloupis et al., 2013]. For instance, when d is Euclidean, the solution is often either
unique, or parametrized by a few parameters only [Ash & Bolker, 1985]. In the first case,
the inversion is thus possible. In the second one, if the information of only a few of the
x’s leak, it is possible to reconstruct all the other ones.

0.1.4 The nature of the tradeoff

The tradeoff between utility and privacy will later be investigated mathematically. How-
ever, at this point, we can already feel its nature. Privacy acts as a constraint on the data
pipeline. Furthermore, by taking the last definition of privacy, the harder we want the
discrimination process to be, the more restrictive privacy is on the data pipeline. This
filtration of the usable pipelines means that possibly, we will exclude all the pipelines
that obtained good utility for the task at hand. This forms the basis of the fundamental
tradeoff implying privacy : the tradeoff between utility and privacy.

This tradeoff can be strong or weak in nature. For instance, the tradeoff is weak if it
only measures the degradation of performance of a given data pipeline by the addition of
privacy, compared to the same unrestricted pipeline, or to the best unrestricted pipeline.
In contrast, the tradeoff is strong if it characterizes the degradation of performance of any
private data pipeline compared to the best unrestricted data pipeline for the same task.
By the end of the introduction, we will already have seen an example of strong tradeoff.

0.2 Attack surface, and the boundaries of the thesis

The topic of security and privacy is so large that entire journals and conferences are devoted
to the subject13 14 15. This subsection of the introduction presents the boundaries of the
subject of this thesis, and gives bibliographic pointers to what is immediately outside this
boundary.

Let us enumerate the most common steps involved in a data pipeline. Data is collected,
communicated, aggregated and processed. Furthermore, this list is not necessarily sequen-
tial, and in particular, it is possible to communicate on various quantities that appear at
different stages of the pipeline.

In this thesis, we will always fall into the following scenario : we suppose that after collec-
tion, the data is centralized by a common aggregator that processes it. This aggregator
then communicates to the world a quantity that is built from the data that is collected.

13https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8013
14https://www.ieee-security.org/TC/SP2022/
15https://onlinelibrary.wiley.com/journal/24756725

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8013
https://www.ieee-security.org/TC/SP2022/
https://onlinelibrary.wiley.com/journal/24756725
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The privacy problem is the following : Is it possible to recover information about the data
from the sole observation of the outputted quantity.

In particular, we consider that the aggregator is trustworthy, and that the communication
channels hide all information to everyone, except to the two communicating parties. This
scenario is rather restrictive, but still extremely rich. The rest of this section presents
techniques that allow relaxing those strong hypotheses. They will not be explored further
in the rest of the thesis.

0.2.1 Can an actor be trusted ?

The first important hypothesis is that actors can be trusted, and that communication
channels are secured. Thanks to symmetric and asymmetric encryption [Simmons, 1979],
the second part of this hypothesis is reasonable. For the first part, on the other hand,
as long as the data is stored somewhere and is not encrypted, data breaches can happen.
Furthermore, the task of learning from the data often requires being able to perform arith-
metic operations on the representations of the data (such as additions and multiplications),
which are not compatible with classical encryption schemes.

In order to solve this problem, a possible solution is the use of homomorphic encryption
(see [Acar et al., 2018] for a comprehensive survey). The term homomorphic encryption
refers to encryption schemes that preserve the morphisms (such as multiplications and
additions). It thus makes the task of learning (at least some) possible, with only access
to encrypted data. It often comes however at the cost of extra computational complexity,
and possible error terms.

0.2.2 Data collection and centralization

The second hypothesis about the setup of the thesis is that the data is centralized by a
common aggregator. From a security point of view, this is often seen as a problem since
it introduces a single point of failure. However, with our hypothesis that the actors can
be trusted, this is not a problem. It also poses another problem with data sovereignty.
In order to relax the hypothesis, both federated learning and local differential privacy are
great options.

Federated learning [McMahan et al., 2017, Konečný et al., 2016, McMahan et al., 2018a,
Bonawitz et al., 2019, Vanhaesebrouck et al., 2017, Bellet et al., 2018, Marfoq et al., 2021]
has been proposed as a way to solve the problem of data centralization. Without digging
into details, it can be defined as a set of techniques allowing the training of common
machine learning models, by aggregating the information of decentralized datasets or data
holders. A simple example would be the following : a model is trained via SGD. An agent
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that holds a dataset and the current iterate of the model runs an EPOCH16 of SGD17

on the data that he owns. He then gives the updated model to the next agent, and the
process continues. For more details, the reader may refer to the surveys [Zhang et al.,
2021b, Kairouz et al., 2021].

Local differential privacy [Duchi et al., 2013] blurs the data with noise as soon as it exits its
original data holder (as opposed to regular differential privacy that blurs the information
when it exits the aggregator). At first, it seems like a more appealing notion of privacy
(since the privacy guarantees are stronger), however, it comes at the cost of utility since
local differentially private mechanisms typically end up with a lot more noise than their
non-local alternatives. The reader may refer to the survey [Yang et al., 2020].

0.3 The vocabulary of statistical learning

Linking back to the subject of the thesis, an important question is whether an estimator
(private or not) estimates well the quantity of interest (that is defined at the scale of the
population).

In the following, we consider that we have access to a dataset X = (X1, . . . , Xn) ∈ X n

generated from some distribution P. In many applications, the independence and identical
distribution assumption is made, namely that P = p⊗n for some distribution p on X .

0.3.1 The formalization for estimation

First, for the estimation problem (which will be the main topic of this thesis), we suppose
that the data distribution can be fully described by a parameter θ ∈ Θ. We note it
(X1, . . . , Xn) ∼ Pθ. Say we have built an estimator θ̂ from the dataset (X1, . . . , Xn), how
to measure its utility as an estimator of the true parameter θ ?

This is usually done by taking a cost function c : Θ × Θ → R+ that measures how close
its two arguments are, with the convention that the lower, the better. For instance, when
Θ is a subspace of some Euclidean space, it is common practice to take c(x, y) = ∥x− y∥α
for α ≥ 1. Hence, the utility of our estimator θ̂ may be measured as

c(θ̂, θ) . (1)

However, this quantity is a random variable. A common practice is thus either to control
it in probability (i.e. that it is small with high probability), or to take its expectation
(notice that c is positive). The performance can hence be measured as

R
(
θ̂
)
:= E(X1,...,Xn)∼Pθ,θ̂

(
c(θ̂, θ)

)
, (2)

16i.e. a complete pass over the dataset
17Stochastic Gradient Descent
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which is commonly called the risk of θ̂, and where the subscript θ̂ in the expectation is
used to refer to all the sources of randomness that might be in θ̂ and that are independent
of (X1, . . . , Xn). For instance, in the Euclidean case, when c(x, y) = ∥x−y∥2 the quantity
Equation (2) is usually referred to as the quadratic risk of the estimator θ̂.

0.3.2 The formalization for a specific task

Even if it will not be the main subject of this thesis, it is not possible to talk about learning
without presenting the case in point of the measure of performance for supervised learning.
Here, we suppose that ((a1, b1), . . . , (an, bn)) ∼ p⊗n

θ . For instance, it handles the famous
regression model where bi = f(ai) + ϵi where f is the regression function to learn, and ϵi
is some noise.

A first approach would be to build an estimator f̂ of the function f and to measure its
utility as previously by leveraging a norm or a semi-norm in a functional space. Another
approach is to measure the utility of f̂ by measuring its predictive utility on unseen data
with the same distribution. For instance, the utility could be measured with

R
(
f̂
)
:= E

((a1,b1),...,(an,bn),(a,b))∼p⊗(n+1)
θ ,f̂

(
c′(f̂(a), b)

)
,

where c′ is a cost function defined on the output space of f instead of the parameter space.

This measure of performance measures the relevance of f̂ not for how close it is to f but
for how well it behaves like f on a specific task and against the true data distribution.
In particular, this formulation makes a lot of sense when the mapping θ 7→ pθ is not
”injective” (i.e. when the model is not identifiable), which is for instance the case with
neural networks which are often invariant by permutation and rescaling of the weights.

Notice that this new measure of performance perfectly fits in the previous scenario, how-
ever, this formulation is of key interest in predictive scenarios. In particular, the measure
of performance can be approximated by Monte-Carlo methods without having to know
the ground-truth parameter θ. The empirical risk of an estimator f̂ is hence defined as

Rn

(
f̂
)
:=

1

n

n∑
i=1

c′(f̂(ai), bi) .

In particular, this formulation of the problem often allows controlling the generalization
error [Musavi et al., 1994, Vapni, 1995, Mohri et al., 2012, Gonon et al., 2023a], which is

equal to Rn

(
f̂
)
−R

(
f̂
)
for a given estimator f̂ of f . Such bounds are usually derived

using the theory of VC dimension [Blumer et al., 1989, Vapnik, 2006], the Rademacher
complexity [Koltchinskii & Panchenko, 2000, Koltchinskii, 2001, Bartlett & Mendelson,



22

2002], covering number arguments [Dudley, 1967, Haussler, 1995], Pac-Bayesian methods
[McAllester, 1999, Haddouche et al., 2020, Haddouche et al., 2021, Haddouche & Guedj,
2022, Haddouche & Guedj, 2023, Haddouche et al., 2023], or the algorithmic stability
[Rogers & Wagner, 1978, Bousquet & Elisseeff, 2002, Xu et al., 2012] of the learning
algorithm.

Recently, this last proof framework has been used to prove that with differential privacy
(wait for the next section for a proper definition), the generalization gap can be upper-
bounded [Dwork et al., 2015, Oneto et al., 2017, Nissim & Stemmer, 2015, He et al., 2021]
by the sole effect of privacy. In other word, it shows that differential privacy is a sufficient
condition to have a small generalization gap. That being said, the empirical risk of the

produced private estimator Rn

(
f̂
)
may be high, and in this case, a small generalization

gap just says f̂ behaves as poorly on the data that he has not seen as on the data that he
has seen. A small generalization gap is a desirable property to have, but it is not sufficient
to characterize the effect of privacy on the estimation difficulty. We may now close the
parenthesis about the generalization gap under differential privacy. The rest of the Thesis
fits in the general setup of Section 0.3.1, and Chapter 1 will be the only part where the
specific formalism of Section 0.3.2 is more suited.

0.4 How to formalize privacy ?

The gold standard in privacy protection is the definition of differential privacy. It gives
strong privacy guarantees while still being extremely handy to use in many situations. It
is notably used by the US Census Bureau [Abowd, 2018], Google [Erlingsson et al., 2014],
Apple [Thakurta et al., 2017] and Microsoft [Ding et al., 2017], among many others.

0.4.1 Differential privacy

Given n ∈ N∗ and a feature space X , X n may be viewed as a set of datasets containing n
elements from X . Given X = (X1, . . . , Xn) ∈ X n and i ∈ {1, . . . , n}, Xi is the data record
of the individual i from the database.

On (X n)2, the Hamming18 distance is defined as

dham ((X1, . . . Xn), (Y1, . . . Yn)) :=

n∑
i=1

1Xi ̸=Yi
.

In particular, for X,Y ∈ X n and k ∈ N, dham (X,Y) ≤ k when the datasets X and Y
differ by the records of at most k individuals.

The core idea of differential privacy is to say that if a mechanism M was to work on a
dataset X ∈ X n and to output M(X) in some output space codom (M), then it should

18from its inventor Richard Hamming
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have outputted a similar output if applied to any other dataset that differed from X
only on few records. Formally, this ”similarity” is characterized in terms of distributions.
Hence, a differentially private mechanism that is not constant is necessarily stochastic.
The following definition is due Cynthia Dwork19, Frank McSherry20, Kobbi Nissim21, and
Adam D. Smith22 [Dwork et al., 2006b], and it owed them the Gödel prize in 2017. Given
ϵ ∈ R+∗, a randomized mechanism M : X n → codom (M) is ϵ-differentially private (or
ϵ-DP) if for any X,Y ∈ X n and any measurable S of the output space codom (M), we
have

dham (X,Y) ≤ 1 =⇒ PM (M(X) ∈ S) ≤ eϵPM (M(Y) ∈ S) . (3)

When dham (X,Y) ≤ 1, we say that X and Y are neighbors. An interpretation of this
definition is that if the datasets X and Y vary on the records of at most one individual,
then the output distributions should be close.

The parameter ϵ is usually referred to as the privacy budget. The bigger it is, the looser
the constraint of Equation (3) becomes. On the opposite side, if it is very small, it forces
the distributions of M(X) and of M(Y) to be extremely close.

As a point of reference, in 2020, the data anonymized by the US Census Bureau was
released with a ϵ of around 2023.

Personally, I like to view differential privacy as an analogous notion to the one of quotient
in algebra. Indeed, the famous isomorphism theorem states that given a morphism, its
image is isomorphic to the original structure quotiented by its kernel. In the construction
of the measure theory and of the Lp spaces, it is frequent to identify objects that differ
by negligible aspects. With differential privacy, the output distributions of neighboring
datasets are not equal (contrary to quotient structures), but they are close. The answer
to the question ”how close ?” can be tuned by varying ϵ. An alternative abstract view of
differential privacy could be as a form of Lipschitz condition for the mechanism, that is of
probabilistic nature.

This notion of neighboring (i.e. differing on the data record of at most one individual)
makes differential privacy all the more compatible with statistical learning. Indeed, by its
nature, statistical estimation does not care about the data of a single individual. It tries
to find patterns that are meaningful at the scale of the population.

19https://en.wikipedia.org/wiki/Cynthia Dwork
20https://en.wikipedia.org/wiki/Frank McSherry
21https://people.cs.georgetown.edu/~kobbi/
22https://cs-people.bu.edu/ads22/
23https://www.census.gov/newsroom/press-releases/2021/2020-census-key-parameters.html

https://en.wikipedia.org/wiki/Cynthia_Dwork
https://en.wikipedia.org/wiki/Frank_McSherry
https://people.cs.georgetown.edu/~kobbi/
https://cs-people.bu.edu/ads22/
https://www.census.gov/newsroom/press-releases/2021/2020-census-key-parameters.html
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0.4.2 Privacy guarantees

In order to understand the guarantees provided by differential privacy, we can play the
role of an attacker. There is a ϵ-DP mechanism M and two datasets X1 and X2 that
differ on the records of at most one individual. We have access to M (X?), and we want
to determine if X? = X1 or if X? = X2. That is, we have access to the records of all the
individuals except one, and we want to test between two possibilities for this remaining
record.

We set up a decision rule (or statistical test). We decide of a S ⊂ codom (M). If M (X?) ∈
S, we say that X? = X1. Conversely, if M (X?) /∈ S, we say that X? = X2. What is the
error of this test ?

The type 1 error α is defined as

α := PX?=X1 (M (X?) /∈ S) .

It measures the probability of X1 being falsely rejected. Likewise, the type 2 error β is
defined as

β := PX?=X2 (M (X?) ∈ S) .

It measures the probability of X1 being falsely selected.

Since M is ϵ-DP, it follows that

β = PX?=X2 (M (X?) ∈ S) ≥ e−ϵPX?=X1 (M (X?) ∈ S) = e−ϵ(1− α) ,

and likewise that
α ≥ e−ϵ(1− β) .

In other words, α and β cannot be arbitrarily small at the same time. Any test will either
falsely reject or falsely select X1 frequently.

This proves the strong nature of the guarantees provided by differential privacy. No
adversary can do better than a certain efficiency fixed by ϵ.

0.4.3 Statistical implications and Bernoulli example

Differential privacy acts as a constraint on the set of usable estimators. As for other
constraints (e.g. restricted bandwidth, . . . ) [Barnes et al., 2019, Barnes et al., 2020b,
Acharya et al., 2021a, Acharya et al., 2021c, Acharya et al., 2021d, Acharya et al., 2021b],
it is interesting to study its consequences on learning and statistical estimation. This
question will be the central question of this thesis.
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We start by looking at the simple example of Bernoulli parameter estimation. We are given

X1, . . . , Xn
i.i.d.∼ B(p) where p ∈ [0, 1], and the task is to estimate p fromX := (X1, . . . , Xn).

If privacy was not an issue, the most natural estimator would probably be the moment
estimator

p̂(X1, . . . , Xn) :=
1

n

(
n∑

i=1

Xi

)
. (4)

Its quadratic risk (the measure of performance) may be computed as

EX∼B(p)⊗n

(
(p̂(X)− p)2

)
=
(
EX∼B(p)⊗n (p̂(X))− p

)2
+ VX∼B(p)⊗n (p̂(X))

= (p− p)2 +
p(1− p)

n
=

p(1− p)

n
.

(5)

However, this estimator is not differentially private. Indeed, it is deterministic and not
constant.

In contrast, the following estimator is ϵ-DP :

M(X1, . . . , Xn) :=
1

n

(
n∑

i=1

Xi

)
+

1

nϵ
L(1) ,

where L(1) should be interpreted as a random variable (independent of X) following the
Laplace distribution L(1). This claim is in fact a simple application of the so-called Laplace
mechanism [Dwork et al., 2006b, Dwork et al., 2006a] that will be presented in Chapter 2.
For the completeness on this introduction, we give a brief proof.

Let X,X′ ∈ X n such that dham (X,X′) ≤ 1. By noting PM(X) (rest. PM(X′)) the output
distribution of M when applied to X (resp. X′), we can first notice that both of them are
absolutely continuous w.r.t. Lebesgue’s measure on R. We can thus use pM(X) and pM(X′)

to refer to their respective densities. We have (almost surely in x) that

pM(X)(x)

pM(X′)(x)
=

1
2e

−|x−ϵ(
∑n

i=1 Xi)|
1
2e

−|x−ϵ(
∑n

i=1 X
′
i)|

triangular inequality
≤ eϵ|(

∑n
i=1 Xi)−(

∑n
i=1 X

′
i)| ,

and since dham (X,X′) ≤ 1, it follows that almost surely in x,

pM(X)(x)

pM(X′)(x)
≤ eϵ .

Hence, for any Borel set S, ∫
S
pM(X) ≤ eϵ

∫
S
pM(X′) ,

which translates to
P (M(X) ∈ S) ≤ eϵP

(
M(X′) ∈ S

)
.
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This proves that M is ϵ-DP.

We may now measure the performance of M by looking at its quadratic risk as

EX∼B(p)⊗n

(
(M(X)− p)2

)
=
(
EX∼B(p)⊗n,M (M(X))− p

)2
+ VX∼B(p)⊗n,M (M(X))

= (p− p)2 +
p(1− p)

n
+

2

n2ϵ2
=

p(1− p)

n
+

2

n2ϵ2
.

(6)

0.5 What is the cost of privacy ?

What was the cost of privacy in the estimation of p, the parameter of the Bernoulli
distribution, of the last section ? The comparison of Equation (5) and of Equation (6)
shows that the performance with privacy is degraded additively by 2

n2ϵ2
. But why do we

have to compare those two estimators ? For instance, if we consider the estimator that is
constant, equal to p, we can see that it has null quadratic risk under B(p)⊗n. Furthermore,
it is constant, and is hence ϵ-DP for any ϵ > 0 ! Should we conclude that the best estimator
achieves perfect estimation, and that this conclusion is not changed when the estimator is
restricted to be private ?

If the last example feels puzzling, it is normal. The estimator constant to p works well
under B(p)⊗n, but knowing p in advance is cheating of course. In contrast, it performs
poorly under any B(p′)⊗n whenever p′ ̸= p. Instead, we see that the performance of an
estimator should not only be measured against what is, but also against what could have
been. With this in mind, we can see that for any constant estimator, we can always find
a Bernoulli distribution such that it has a quadratic risk bigger than 1

4 . In comparison,

p̂(·) (see Section 0.4.3) has a quadratic risk that is smaller than 1/4
n on any Bernoulli

distribution.

This idea of good performance under any possible outcome has led to the notion ofminimax
optimality. In this theory, it is only meaningful to compare the performance of a given
estimator to the one of the best estimator on its worst outcome. Formally, the minimax
risk of estimation of the model (B(p)⊗n)p∈[0,1] is the quantity

inf
p̂′ estimator

sup
p∈[0,1]

EX∼B(p)⊗n

(
(p̂′(X)− p)2

)
. (7)

For the Bernoulli model, it is well known that this minimax risk of estimation is Ω
(
1
n

)
[Rigollet & Hütter, 2015] (asymptotically lower-bounded by a positive constant times 1

n).
The proof can be found in Chapter 4, where it is used as an illustration. In particular,
in comparison with the upper-bound of the non-private estimator p̂(·), it means that p̂(·)
has minimax-optimal convergence rate of estimation, which means that the uniform upper
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bound on the quadratic risk of p̂(·) is comparable to a lower bound on the minimax risk
for the estimation problem, up to multiplicative constants. Without privacy, the optimal
rate of estimation is thus Θ

(
1
n

)
(O
(
1
n

)
and Ω

(
1
n

)
).

An important question that will be central in most of this thesis is whether this minimax
rate of estimation is modified by privacy. Formally, the question is whether the quantity

inf
M:ϵ−DP

sup
p∈[0,1]

EX∼B(p)⊗n,M

(
(M(X)− p)2

)
. (8)

is significantly bigger than the quantity of Equation (7) or not.

Equation (6) tells us that this quantity is upper-bounded by O
(
max

(
1
n ,

1
(nϵ)2

))
, but we

still need a matching lower-bound. For the Bernoulli example, we give a concise proof of
such lower-bound that is a direct application of the techniques presented in Chapter 3.

Let p1 < p2 be two parameters in (0, 1) and let U1, . . . , Un, be n independent and identically

distributed uniform random variables on [0, 1]. The random variables Zi := (X
(1)
i , X

(2)
i ) ∈

R2, 1 ≤ i ≤ n, defined by

(X
(1)
i , X

(2)
i ) = (1[0,p1)(Ui),1[0,p2)(Ui))

are independent and identically distributed with marginal distributions Bernoulli B(p1)
and B(p2). In the sequel we note X(j) = (X

(j)
1 , . . . , X

(j)
n ), j = 1, 2, U = (U1, . . . , Un),

S1 := [0, (p1 + p2)/2). and S2 := [(p1 + p2)/2, 1]. Given any (ϵ, 0)-DP mechanism M :
[0, 1]n → [0, 1] (where ϵ > 0) to estimate the Bernoulli parameter, the risk satisfies

sup
p∈[0,1]

EX∼B(p)⊗n

(
(M(X)− p)2

)
≥
(
EX∼B(p1)⊗n,M

(
(M(X)− p1)

2
)
+ EX∼B(p2)⊗n,M

(
(M(X)− p2)

2
))

/2

Coupling
=

(
EU,M

(
(M(X(1))− p1)

2
)
+ EU,M

(
(M(X(2))− p2)

2
))

/2

Conditioning
= EU

(
EM

(
(M(X(1))− p1)

2
)
+ EM

(
(M(X(2))− p2)

2
))

/2

≥
(p2−p1

2

)2
EU

(
PM

(
M(X(1)) ∈ S2

)
+ PM

(
M(X(2)) ∈ S1

))
/2.

(9)
This is where the DP property yields a lower bound on the second factor as

EU

(
e−ϵdham(X(1),X(2))PM

(
M(X(2)) ∈ S2

)
+ PM

(
M(X(2)) ∈ S1

))
dham(·,·)≥0

≥ EU

(
e−ϵdham(X(1),X(2))

(
PM

(
M(X(2)) ∈ S2

)
+ PM

(
M(X(2)) ∈ S1

)))
= EU

(
e−ϵdham(X(1),X(2))

) Jensen
≥ e−nϵ|p2−p1| ,

(10)
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which overall yields the lower bound (p2−p1)
2

8 e−nϵ|p2−p1|.

A good lower bound on the minimax risk is then provided by optimizing over p1 and p2.
For instance, when n ≥ 2

ϵ , p1 =
1
2 and p2 =

1
2 + 1

nϵ lead to

sup
p∈[0,1]

EX∼B(p)⊗n,M

(
(M(X)− p)2

)
≥ 1

8

1

(nϵ)2
.

Since this is true for any ϵ-DP M, and since any ϵ-DP estimator is also in particular an
estimator, it is possible to write that

inf
M:ϵ−DP

sup
p∈[0,1]

EX∼B(p)⊗n

(
(M(X)− p)2

)
≥ Ω

(
max

(
1

n
,

1

(nϵ)2

))
. (11)

Together, the upper-bound of Equation (6) and the lower-bound of Equation (11) prove
that the minimax rate of estimation of the parameter of a Bernoulli distribution under ϵ-

differential privacy is Θ
(
max

(
1
n ,

1
(nϵ)2

))
, which is to compare to the non-private minimax

rate of estimation of Θ
(
1
n

)
. In particular, two regimes arise.

Low privacy regime. When ϵ = Ω
(

1√
n

)
, the minimax rate of estimation is unchanged

by privacy. We call this regime the low privacy regime, in which privacy basically comes
for free on a statistical point of view.

High privacy regime. In contrast, the regime ϵ ≪ 1√
n
comes with a degradation of

the minimax risk of estimation. Privacy in this regime comes with a necessary cost on the
estimation complexity. In other words, any private estimator performs significantly worse
than the best non-private estimator.

Through this example, we have seen our first example of strong privacy-utility tradeoff.
Many more will be investigated in the rest of this thesis.

0.6 An overview of the thesis

This thesis is composed of six chapters. They are based on five research articles [Lalanne
et al., 2023d, Lalanne et al., 2023b, Lalanne et al., 2023c, Gonon et al., 2023b], but the
structure does not necessarily reflect a clear one to one mapping between the chapters and
the articles (with one extra chapter). At the beginning of each chapter, a small clarification
is made as to what articles were used for the chapter, and to who contributed to them.
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0.6.1 Overview of Chapter 1

Deep neural networks are state-of-the-art for many learning problems. In practice, it is
possible to tune the parameters of a given network in order to perfectly interpolate the
available data [Zhang et al., 2021a]. This overfitting regime is of practical interest since
good performance can be obtained this way [Belkin et al., 2019]. However, it comes with an
increased risk in terms of privacy [Rigaki & Garcia, 2020], since the network memorizes
information about training data, up to the point of interpolating them. Among these
information, some might be confidential. This raises the question of what information can
be inferred given a black-box access to the model.

To detect an overfitting situation, an indicator is given by the ratio of the number of
parameters by the number of data points available: the more parameters there are, the
more the model is likely to be able to interpolate the data. In order to hinder the capacity
of the model to overfit, and thus to store confidential information, this work studies the
role of the number of nonzero parameters used. Can we find a good trade-off between
model accuracy and privacy by tuning the sparsity (number of nonzero parameters) of
neural networks?

Attacks such as ”Membership Inference Attack” (MIA) [Hu et al., 2022, Shokri et al.,
2017, Truex et al., 2021, Rezaei & Liu, 2021, Hui et al., 2021, Long et al., 2018, Yeom
et al., 2018, Salem et al., 2018, Sablayrolles et al., 2019, Voyez et al., 2022a] can infer
whether a data point was a member of the training set [Shokri et al., 2017], using only
a black-box (or white-box is other cases) access to the targeted model. This can be
problematic in case of sensitive data (medical data, etc.). Given a network, how could one
reduce the risk of such attacks, while preserving its performances as much as possible?

This chapter leverages sparsity in neural networks as a defense against MIA’s. This is an
empirical study and introduces the reader to real-world privacy attacks.

0.6.2 Overview of Chapter 2

This chapter presents key concepts and technical results about differential privacy that
are necessary for the rest of the thesis. It puts an emphasis on embedding those results in
a statistical framework in order to link them with the main theme of the thesis.

0.6.3 Overview of Chapter 3

Similarly to the small example for the Bernoulli estimation, this chapter studies minimax
lower bounds for classes of differentially private estimators. In particular, it shows how
to characterize the power of a statistical test under differential privacy in a plug-and-play
fashion by solving an appropriate transport problem. With specific coupling constructions,
this observation allows deriving Le Cam-type and Fano-type inequalities not only for
regular definitions of differential privacy but also for those based on Rényi divergence.
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This is a core chapter for the thesis that introduces theoretical tools that are used in the
rest of the thesis.

0.6.4 Overview of Chapter 4

This chapter illustrates the results of the last chapter on three simple, fully worked out
parametric examples. In particular, it shows that the problem class has a huge importance
on the provable degradation of utility due to privacy. In certain scenarios, it shows that
maintaining privacy results in a noticeable reduction in performance only when the level
of privacy protection is very high. Conversely, for other problems, even a modest level of
privacy protection can lead to a significant decrease in performance.

It also observes that the DP-SGLD algorithm, a private convex solver, can be employed
for maximum likelihood estimation with a high degree of confidence, as it provides near-
optimal results with respect to both the size of the sample and the level of privacy protec-
tion. This algorithm is applicable to a broad range of parametric estimation procedures,
including exponential families.

Finally, it gives bibliographical pointers to many recent research articles studying similar
problems of private parametric estimation problems.

0.6.5 Overview of Chapter 5

Given X := (X1, . . . , Xn) ∼ P⊗n
π , where Pπ refers to a distribution of probability that has

a density π that is absolutely continuous with respect to Lebesgue measure on [0, 1], this
chapter studies the private estimation of π.

In terms of upper-bounds, this chapter analyzes histogram and so-called projection esti-
mators at a resolution that captures the impact of the privacy and smoothness parameters.
Furthermore, it proves new lower bounds by using classical packing method combined with
new tools that characterize the testing difficulty under global privacy from [Acharya et al.,
2021e, Kamath et al., 2022, Lalanne et al., 2023b].

In particular, for Lipschitz densities and under pure differential privacy, it recovers known
results from [Barber & Duchi, 2014] with a few complements. It then extends the estima-
tion on this class of distributions to the context of concentrated differential privacy [Bun
& Steinke, 2016], a more modern definition of privacy that is compatible with stochastic
processes relying on Gaussian noise. It finally investigates higher degrees of smoothness
by looking at periodic Sobolev distributions.
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0.6.6 Overview of Chapter 6

Any probability distribution P on [0, 1] is fully characterized by its cumulative distribution
function (CDF) defined by

FP(t) := P
(
(−∞, t]

)
, ∀t ∈ R .

The central topic of this chapter is the quantile function (QF), F−1
P , defined as the gener-

alized inverse of FP:

F−1
P (p) = inf

{
t ∈ R | p ≤ FP(t)

}
, ∀p ∈ [0, 1] ,

with the convention inf ∅ = +∞. When P is absolutely continuous w.r.t. Lebesgue’s
measure with a density that is bounded away from 0, FP and F−1

P are bijective and are
inverse from one another.

A well-known result is that, under mild hypotheses on P, if U ∼ U([0, 1]) (U follows a
uniform distribution on [0, 1]), then F−1

P (U) ∼ P [Devroye, 1986]. In other words, knowing
F−1

P allows to generate data with distribution P. It makes the estimation of F−1
P a key

component in data generation. Indeed, privately learning the quantile function would then
allow generating infinitely many new coherent samples at no extra cost on privacy.

Given X1, . . . , Xn
i.i.d.∼ P, this chapter studies the private estimation of F−1

P (pj) from these
samples at prescribed values {p1, . . . , pm} ⊂ (0, 1).

Without privacy and under mild hypotheses on the distribution, it is well-known [Van der
Vaart, 1998] that for each p ∈ (0, 1), the quantity X(E(np)) is a good estimator of F−1

P (p),
where X(1), . . . , X(n) are the order statistic of X1, . . . , Xn (i.e. a permutation of the obser-
vations such that X(1) ≤ X(2) ≤ · · · ≤ X(n)) and E(x) denotes the largest integer smaller
or equal to x. The quantity X(E(np)) is called the empirical (as opposed to statistical)
quantile of the dataset (X1, . . . , Xn) (as opposed to the distribution P) of order p.

This chapter studies the properties of private empirical quantiles procedures, when ap-
plied for the corresponding statistical task. It started as a project in collaboration with
Clément Gastaud and Nicolas Grislain from Sarus Technologies24 with whom we proved
the quasi-equivalence between the JointExp mechanism [Gillenwater et al., 2021] and the
inverse sensitivity mechanism [Asi & Duchi, 2020b, Asi & Duchi, 2020a], and with whom
we studied the statistical properties of those two estimators on continuous and atomic dis-
tributions. For them, quantiles are interesting for private data generation. Later during
the preparation of my thesis, [Kaplan et al., 2022] proposed a new state-of-the-art mecha-
nism for the empirical quantile problem. We chose to investigate the statistical properties

24https://www.sarus.tech/

https://www.sarus.tech/
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of this new mechanism, and came up with nice concentration inequalities, proving a poly-
logarithmic degradation of the utility when the number of quantiles increases.
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Chapter 1

A practical case study :
membership inference attacks and
sparsity in neural networks

The origin of this chapter, and the use of the first person. This chapter is
based on the article [Gonon et al., 2023b], written by my colleagues and friends Antoine
Gonon1, Can Pouliquen2, Guillaume Lauga3, Léon Zheng4, and Quoc-Tung Le5, and by
myself. The genesis of the project was to find and investigate a common theme among the
PhD students that were in the same research team. In this chapter, I will try to respect
the following rule : the use of the first person of the plural (we, our, . . . ) represents all
the above-mentioned people, while the use of the first person of the singular (I, my, . . . )
represents myself.

Deep neural networks are state-of-the-art for many learning problems. In practice, it is
possible to tune the parameters of a given network in order to perfectly interpolate the
available data [Zhang et al., 2021a]. This overfitting regime is of practical interest since
good performance can be obtained this way [Belkin et al., 2019]. However, it comes with an

1https://agonon.github.io/
2https://perceptronium.github.io/
3https://laugaguillaume.github.io/
4https://leonzheng2.github.io/
5https://tung-qle.github.io/

https://agonon.github.io/
https://perceptronium.github.io/
https://laugaguillaume.github.io/
https://leonzheng2.github.io/
https://tung-qle.github.io/
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increased risk in terms of privacy [Rigaki & Garcia, 2020], since the network memorizes
information about training data, up to the point of interpolating them. Among these
information, some might be confidential. This raises the question of what information can
be inferred given a black-box access to the model.

To detect an overfitting situation, an indicator is given by the ratio of the number of
parameters by the number of data points available: the more parameters there are, the
more the model is likely to be able to interpolate the data. In order to hinder the capacity
of the model to overfit, and thus to store confidential information, this work studies the
role of the number of nonzero parameters used. Can we find a good trade-off between
model accuracy and privacy by tuning the sparsity (number of nonzero parameters) of
neural networks?

Attacks such as ”Membership Inference Attack” (MIA) [Hu et al., 2022, Shokri et al.,
2017, Truex et al., 2021, Rezaei & Liu, 2021, Hui et al., 2021, Long et al., 2018, Yeom
et al., 2018, Salem et al., 2018, Sablayrolles et al., 2019, Voyez et al., 2022a] can infer the
membership of a data point to the training set [Shokri et al., 2017], using only a black-box
(or white-box is other cases) access to the targeted model. This can be problematic in
case of sensitive data (medical data, etc.). Given a network, how could one reduce the
risk of such attacks, while preserving its performance as much as possible?

Numerous procedures have been proposed to defend against MIAs [Hu et al., 2022]. In
this work, the studied approach consists in decreasing the number of nonzero parameters
used by the network in order to reduce its memorization capacity, while preserving as
much as possible its accuracy.

Related works. The links between neural network sparsity and privacy have already
been partially explored, but, to the best of our knowledge, it has not yet been shown
that sparsity improves privacy without further adjustment of the training algorithm. A
comparison with literature is done in section 1.3.

Contributions and results. The results of the experiments in section 1.3 support the
hypothesis that sparsity improves the defense against MIAs while maintaining compa-
rable performance on the learning task. However, the standard deviations reported in
the experiments suggest that larger scale experiments are needed before confirming this
trend. Figure 1.1 shows that the trade-off between robustness to MIA and network accu-
racy is similar between unstructured sparsity, obtained by an Iterative Magnitude Pruning
(IMP) [Frankle & Carbin, 2019] of the weights, and structured ”butterfly” sparsity, where
the weights matrices are constrained to admit some structured sparse factorization [Lin
et al., 2021, Dao et al., 2022]. To the best of our knowledge, the ”butterfly” structure
has not been studied before in this context. This structure achieves similar trade-offs as
IMP, which is remarkable, as the structure is fixed beforehand, independently of the data.
Moreover, software and hardware optimizations can be envisioned to leverage butterfly
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Figure 1.1: Means and standard deviations of the accuracy and defense level of various
sparse networks. The percentage of nonzero weights is given in blue for IMP (∗ p%), and
in red for Butterfly (• p%). The color (as represented on the heat scale) emphasizes the
sparsity level (in % of non-zero weights). The line has a slope of −3.25.

sparsity in order to implement matrix-vector multiplications in a more efficient way than
it is without sparsity or with unstructured sparsity.

Experiments on CIFAR-10 show that when the percentage of nonzero weights in ResNet-
20 is between 3.4% and 17.3%, a relative loss of p% in accuracy, compared to the trained
dense network 6, leads to a relative gain of 3.6 × p% in defense against MIA, see Figure
1.1.

Section 1.1 introduces the MIAs used for the experiments. Section 1.2 describes the types
of sparsity used to defend against MIAs. The results of the experiments are presented in
section 1.3, with a comparison to literature.

6The dense network is the original network, with 100% of the nonzero weights.
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Figure 1.2: Experiments obey to the following pipeline: two networks are trained in the
same fashion on Dtarget

train and Dshadow
train respectively. Rshadow, Dshadow

train and Dshadow
test are then

used to train a discriminator that will attack Rtarget by trying to infer the membership of
x in Dtarget

train .

1.1 MIA with a shadow model

Let D be a dataset and Dtrain ⊂ D be a training subset. The associated membership
function mDtrain,D is defined by:

mDtrain,D : x ∈ D 7→
{

1 if x ∈ Dtrain,
0 otherwise.

Given a dataset Dtarget, and a target network Rtarget trained on a subset Dtarget
train of Dtarget,

a MIA consists in retrieving the associated membership function mtarget := mDtarget
train ,Dtarget ,

with only a black-box access to the function x 7→ Rtarget(x). Most of the known attacks
are based on an observation of the output of the Rtarget model, locally around x [Hu
et al., 2022]. In general, these attacks seek to measure the confidence of the model in its
predictions made locally around x. If the measured confidence is high enough, then the
attacker answers positively to the membership question.

In practice, the most efficient attacks consist in training a discriminator model that makes
a decision based on local information of Rtarget around x. This discriminator is trained
from a shadow network [Hu et al., 2022], as explained below (see also Figure 1.2).

Suppose that the attacker has access to a dataset Dshadow from the same distribution as
Dtarget. It then trains its own shadow network Rshadow on a subset Dshadow

train of the data
it owns. Ideally, Rshadow is trained under the same conditions as Rtarget (same architecture
and same optimization algorithm). The attacker then has a tuple (Rshadow,Dshadow,Dshadow

train )
which is similar to (Rtarget,Dtarget,Dtarget

train ), and he knows the shadow membership function
mshadow := mDshadow

train ,Dshadow .
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Discriminator. The attacker can then train a discriminator to approximate mshadow,
given a black box access to Rshadow. This discriminator can then be used to approximate
mtarget given a black box access to Rtarget. The model for the discriminator can be any
classical classifier (logistic regression, neural network, etc.) [Hu et al., 2022].

1.2 Defense and neural network pruning

Training sparse neural networks is first motivated by needs for frugality in resources (mem-
ory, inference time, training time, etc.).

Here, the following hypothesis is investigated: sparsity can limit the model’s ability to
store private information about the data it has been trained on. A perfectly confidential
network has not learned anything from its data and has no practical interest. A trade-off
between confidentiality and accuracy must be made according to the task at hand. In
what follows, two types of sparsity are considered.

1.2.1 Unstructured sparsity via IMP

In the first case, no specific structure is imposed on the set of nonzero weights. The weights
that are set to zero (pruned) are selected by an iterative magnitude pruning process (IMP)
[Frankle & Carbin, 2019]:

• train a network the usual way,

• prune p% of the weights having the smallest magnitude,

• adjust the remaining weights by re-training the network (weights that have been
pruned are masked and are no longer updated), then go back to the second point
until the desired level of sparsity is reached.

This procedure allows to find sparse networks with empirical good statistical properties
[Frankle & Carbin, 2019, Frankle et al., 2021, Malach et al., 2020, Orseau et al., 2020, Paul
et al., 2022].

1.2.2 Structured butterfly sparsity

In the second case, the sparsity is structured: the weight matrices of the neural network
are constrained to admit a ”butterfly” factorization [Zheng et al., 2022, Le et al., 2022, Dao
et al., 2021, Dao et al., 2020], for which the associated matrix-vector multiplication can
be efficiently implemented [Dao et al., 2022]. A square matrix W of size N := 2L has a
butterfly factorization if it can be written as an exact product W = X(1) . . .X(L) of L
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square factors of size N , where each factor satisfies the support constraint7 supp(X(ℓ)) ⊆
supp(S

(ℓ)
bf ), with S

(ℓ)
bf := I2ℓ−1 ⊗ [ 1 1

1 1 ]⊗IN/2ℓ . See Figure 1.3 for an illustration. The factors
have at most two nonzero entries per row and per column. Leveraging this factorization,
matrix-vector multiplication has a complexity of O(N logN), against O(N2) in general.

(a) S
(1)
bf (b) S

(2)
bf (c) S

(3)
bf (d) S

(4)
bf

Figure 1.3: Supports in a butterfly factorization of size N = 16.

To enforce the butterfly structure in a neural network, the weight matrices W are pa-
rameterized as W = X(1) . . .X(L), and only the nonzero coefficients of X(1), . . . ,X(L) are
initialized and then optimized by stochastic gradient descent.

In general, for a matrix W of arbitrary size, it is also possible to impose a similar structure
but the definitions are more involved. We refer the reader to [Lin et al., 2021]. In the case
of a convolution layer, the matrix W for which we impose such a structure corresponds
to the concatenation of convolution kernels [Lin et al., 2021]. In our experiments, for a
fixed size of W and a fixed number of factors L, the rectangular butterfly factorization is
parameterized according to a so-called monotone chain following [Lin et al., 2021]. Among
all possible chains, the one with the minimal number of parameters is selected.

Butterfly networks can reach empirical performance comparable to a dense network on
image classification tasks [Dao et al., 2022, Lin et al., 2021].

1.3 Experimental results

All hyperparameters (including the discriminator architecture) have been determined fol-
lowing a grid search, averaged on three experiments to take into account randomness.

Dataset. Experiments are performed on the CIFAR-10 dataset (60000 images 32 ×
32 × 3, 10 classes). The dataset is randomly (uniformly) partitioned into 4 subsets
Dtarget

train ,Dtarget
test ,Dshadow

train ,Dshadow
test of 15000 images, respectively used to train and test the

target and shadow networks. The membership functions are defined as in section 1.1, with

7supp(·) is the set of nonzero entries of a matrix, IN is the identity matrix of size N ×N , and ⊗ is the
Kronecker product.



39

Dtarget := Dtarget
train ∪ Dtarget

test and Dshadow := Dshadow
train ∪ Dshadow

test . For the target and shadow
network, among their 15000 training data points, 1000 are randomly chosen and fixed for
all our experiments as a validation set (used to tune the hyper-parameters, and for the
stopping criterion).

Training of the target and shadow models. The target and shadow networks have
a ResNet-20 architecture [He et al., 2016] (272474 parameters). They are trained to
minimize the cross-entropy loss by stochastic gradient descent (with 0.9 momentum and
no Nesterov acceleration) on their respective training sets for 300 epochs, with a batch size
of 256. The dataset is augmented with random horizontal flipping and random cropping.
The initial learning rate is divided by 10 after 150 and after 225 epochs. The weights
of the neural networks are initialized with the standard method on Pytorch, following a
uniform distribution on (−1/

√
n, 1/

√
n) where n is the input dimension for a linear layer,

and n is input dimension× kernel width× kernel height for a convolution.

Values of initial learning rate and weight decay are reported in table 1.1. Note that the
chosen hyperparameters allow to reproduce results of [He et al., 2016] when using the
whole 50000 training images of CIFAR-10 instead of 15000 of them as it is done for the
target and shadow networks.

For IMP, 24 prunings and readjustments of the parameters are performed. Each read-
justment is done with the same training procedure as above (300 epochs, etc.). Before
each pruning, the weights are rewound to the values they had at the end of the epoch of
maximum validation accuracy in the last 300 epochs.

For training ResNet-20 with the butterfly structure, the original weight matrices of some
convolution layers are substituted by matrices admitting a butterfly factorization, with
a number L = 2 or 3 of factors, following a monotonic chain minimizing the number of
parameters in the factorization, as described in section 1.2.2. The substituted layers are
those of the S = 1, 2 or 3 last segments8 of ResNet-20.

Discriminator training. A discriminator takes as inputs the class i of x, the prediction
R(x) made by a network R (target or shadow), as well as 1

ϵE (|R(x)−R(x+ ϵN )|) (ϵ =
0.001 and N , an independent centered and reduced Gaussian vector) that encodes local
first order information of R around x. The expectation is estimated by averaging over 5
samples. For each pair of networks (Rtarget,Rshadow), three discriminators (perceptrons)
are trained, with respectively 1, 2, 3 hidden layer(s) and 30, 30, 100 neurons on each
hidden layer. The binary cross entropy is minimized with Adam for 80 epochs, without
weight decay and for three different learning rates {0.01, 0.001, 0.0001}.

8A segment is three consecutive basic blocks with the same number of filters. A basic block is two
convolutional layers surrounded by a residual connection.
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Table 1.1: Hyperparameters for the training of the target and the shadow neural networks.

Network % of nonzero params Initial learning rate Weight decay

ResNet-20 dense 100 % 0.03 0.005
Butterfly (S = 1, L = 2) 32.3 % 0.3 0.0005
Butterfly (S = 1, L = 3) 29.6 % 0.3 0.0001
Butterfly (S = 2, L = 2) 15.9 % 0.3 0.0005
Butterfly (S = 2, L = 3) 12.9 % 0.1 0.001
Butterfly (S = 3, L = 2) 11.8 % 0.3 0.0005
Butterfly (S = 3, L = 3) 8.5 % 0.1 0.001
IMP with k prunings ≃ 100× (0.8)k% 0.03 0.005

Accuracy and defense The accuracy of a network is the percentage of data whose
class is the one predicted with the highest probability by the network. The defense D of a
network against a discriminator is defined as D = 200−2A where A is the accuracy of the
discriminator on the membership classification task associated with the training and test
data of the considered network. For example, if a discriminator has an attack accuracy
A = 50+x, then the defense is D = 100− 2x. In our case, there are as much training and
testing data points for the network (target or shadow). Ideally, the discriminator should
not do better than guessing randomly, having then an accuracy of 50%.

Results Dense target and shadow networks achieve on average 87.5% accuracy on the
test set. This accuracy decreases with sparsity, see Figure 1.1. A gain (or loss) in defense
is significant if the interval with upper (resp. lower) bound being the mean plus (resp.
minus) the standard deviation is disjoint from the interval corresponding to the trained
dense network. A significant gain (or loss) in defense is only observed for a proportion
of nonzero weight between 0% and 17.3%, and for 41.4% and 51.5%. Between 3.4% and
17.3%, a relative loss of p% in accuracy, compared to the trained dense network, leads to
a relative gain of 3.6× p%: 3.6 ≃ |defense−defense dense|

defense dense
accuracy dense

|accuracy−accuracy dense| .

Related work on sparsity as a defense mechanism. Experimental results from
[Yuan & Zhang, 2022] suggest on the contrary that training a network with sparse regu-
larization from IMP degrades privacy. But these results were not averaged over multiple
experiments to reduce variability due to randomness. The experiments of [Yuan & Zhang,
2022] are also performed on CIFAR-10 but with a model with 40 times as many weights
as ResNet-20, and for a proportion of nonzero weights above 50%. Given the standard
deviations observed in Figure 1.1 for sparsity levels above 20% on ResNet-20, one should
remain cautious about the interpretation of the results of [Yuan & Zhang, 2022].

[Tan et al., 2023] also showed recently that decreasing the number of parameters of a model
can improve defense to MIAs. This is complementary to this chapter. Note however that
the way the number of parameters are reduced are fundamentally different since [Tan
et al., 2023] consider smaller dense networks while, here, sparse subnetworks are consider.
These types of networks may not have the same privacy-accuracy trade-off.
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Given a sparsity level, [Wang et al., 2021] looks for the parameters that minimize the loss
function of the learning problem, penalized by the highest MIA attack accuracy achievable
against these parameters. Note that this penalty term is in general not explicitly com-
putable, and difficult to minimize. Moreover, this requires to know in advance the type of
attack that targets the network, e.g., the architecture of the attacker, etc. No comparison
with the non-penalized case has been proposed in [Wang et al., 2021], which makes it
unclear whether this penalization is necessary to improve privacy or if sparsity without
additional penalization is sufficient. In contrast, our experiments do suggest the latter.
Moreover, [Wang et al., 2021] only displays the defense achieved at the sparsity level with
the smallest penalized loss function. In comparison, Figure 1.1 shows the robustness to
MIAs for a whole range of different sparsity levels.

Finally, it has been observed that enforcing sparsity during the training of neural networks
with DP-SGD (”Differentially Private Stochastic Gradient Descent”) [Abadi et al., 2016,
Adamczewski & Park, 2023] improves the accuracy, compared to the dense network, while
keeping the same guarantees of Differential Privacy (giving strong privacy guarantees)
[Huang et al., 2020, Adamczewski & Park, 2023]. However, compared to SGD, DP-SGD
suffers from a performance drop and a high computational demand that is prohibitive
for large-scale experiments [Sander et al., 2022, Lalanne et al., 2023b]. In contrast, the
privacy enhancement investigated in this work comes at a lower cost (in both accuracy
and resources) but does not provide any theoretical differential privacy guarantee.

1.4 Take home message

The results obtained support the following conjecture: sparsity is a defense mechanism
against membership inference attacks, as it reduces the effectiveness of attacks with a
relatively low cost on network accuracy. This is in particular the case for structured
butterfly sparsity, which had not yet been investigated in this context to the best of our
knowledge.

Extending the experiments to a richer class of models, datasets and attacks would support
the interest of sparsity as a defense mechanism. In the future, sparsity could serve as a
baseline to decrease privacy threats since it comes at a lower computational cost than
methods providing strong theoretical guarantees such as DP-SGD, does not require to
know the kind of attack in advance, allows for fast matrix-vector multiplication when
using structured sparsity such as the butterfly structure, and, compared to penalized loss
where the attacker could infer the typical behavior of the model on training data [Song
et al., ], it may not lead to bias easily exploitable by an attacker.
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Chapter 2

A survival guide to differential
privacy

The origin of this chapter, and the use of the first person. This chapter presents
important results that the reader must know about differential privacy. In particular, it
does not present direct contributions, other than the reformulation effort. Additionally,
this chapter is in part inspired by Rachel Cumming’s lecture on differential privacy that
was given at a summer school at the CIRM in May 2022 in Marseille, France. Hence, in
this chapter, I will try to respect the following rule : the use of the first person of the
plural (we, our, . . . ) will be used as a generic inclusion formula to include the reader.
I will refrain from using the first person of the singular (I, my, . . . ), except for editorial
clarifications about this thesis.

This chapter presents key concepts and technical results about differential privacy that
are necessary for the rest of the thesis. It puts an emphasis on embedding those results in
a statistical framework in order to link them with the main theme of the thesis.

2.1 Formal definitions of privacy

All the formal definitions of differential privacy are based on neighboring relations.

Definition 2.1.1 (Neighboring relation). Let D be the set of possible datasets (for the
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problem of interest). A neighboring relation is a symmetric relation on D, which means
that it is a subset R of D2 such that (x, y) ∈ R iff (y, x) ∈ R. We will note x ∼ y iff
(x, y) ∈ R.

Intuitively, when two datasets are neighbors, one wants the output of any private learner
to have similar outputs on them.

When the objective is to hide the individual values of a dataset, a few natural neighboring
relations arise.

Example 2.1.2 (Addition / deletion). When D = ∪k≥0X k, representing the collection of
all finite datasets that are collections of elements of X , the addition/replacement neigh-
boring relation is defined as x ∼ y iff x = y (up to a permutation) or x can be obtained
from y by addition or deletion of a single element (up to a permutation).

Example 2.1.3 (Substitution - permutation dependent). When D = X n, representing
the collection of all datasets that are collections of n elements of X , the permutation
dependent neighboring relation is defined as x ∼ y iff dham (x, y) ≤ 1 where dham (·, ·)
refers to the Hamming distance.

Example 2.1.4 (Substitution - permutation invariant). When D = X n, representing
the collection of all datasets that are collections of n elements of X , the permutation
independent neighboring relation is defined as x ∼ y iff there exists σ a permutation of
the indices such that dham (σ(x), y) ≤ 1.

In particular, for the substitution neighboring relations, n (the sample size) is a constant
of the problem (even if it is possible to consider a series of problems of different sizes). In
contrast, for the addition/deletion neighboring relation, the sample size is not fixed and
datasets can be of any size.

It can be interesting to design your own dataset spaces and neighboring relations depending
on the problem at hand. However, some of the properties that follow depend on the fact
that D is connex for the neighboring relation ∼, that is that for any pair of datasets in
D, there exist a path of neighboring (for ∼) datasets in D linking them. Except when
specified, all the results of this chapter are in this general setup. In the rest of the
thesis, without further specifications, the setup is the one of the permutation dependent
substitution neighboring relation.
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2.1.1 The historic definition

The first definition of differential privacy [Dwork et al., 2006b, Dwork et al., 2006a] bounds
the output distributions of any pair of neighboring datasets on any measurable element of
the output space.

Definition 2.1.5 (Differential privacy). Let O be a set (that will be our output space)
endowed with a σ-algebra σ(O). Let ϵ ≥ 0 (called the privacy budget) and δ ≥ 0 (the
relaxation parameter). A randomized mechanism M : D → O is (ϵ, δ)-differentially private
(or simply (ϵ, δ)-DP) if for any S ∈ σ(O), for any X,X′ ∈ D,

X ∼ X′ =⇒ P (M(X) ∈ S) ≤ eϵP
(
M(X′) ∈ S

)
+ δ .

Furthermore, a mechanism that is (ϵ, 0)-DP is said to satisfy ϵ-pure differential privacy, or
simply ϵ-DP. This definition needs a small clarification on what a randomized mechanism
M : D → O means. It means that to each X ∈ D is associated a distribution PM(X) on
(O, σ(O)). In the definition, P (M(X) ∈ S) is a proxy for PM(X)(S).

The role of ϵ. If a mechanism is (ϵ, δ)-DP, it is also (ϵ′, δ)-DP if ϵ′ > ϵ. As a result, the
smaller ϵ, the stronger the constraint on privacy. The two following limit behaviors arise:

• ϵ = 0: Perfect privacy, where the result cannot depend at all on the data. As a
result, no learning is possible.

• ϵ = +∞: No privacy since the constraint vanishes. Privacy is no longer implied by
the definition.

We want to be somewhere in the middle, and the “correct ”choice of ϵ depends on the
level of privacy that we want to guarantee.

The role of δ. Similarly, we can observe that the smaller δ, the stronger the privacy
guarantees. δ differs from ϵ because:

• It gives a small additive slack in the privacy guarantee (relaxation).

• It allows for a family of output distributions that are not all absolutely continuous
with respect to each other.
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• Even with uniform support, it allows for an easier mechanism design.

In order to tune δ, we can fall back on the following observations and interpretations of
this parameter:

• δ may be viewed as the probability under which the output mechanism does not
respect the ϵ-DP guarantee [Dwork & Roth, 2014]. In fact, this rule of thumb is
not always true (despite being a good guideline), but it is often true (indeed it is a
common proof technique to conclude to the (ϵ, δ)-DP [Dwork & Roth, 2014])

• If δ = 1 then we’re back to no privacy, even for ϵ = 0.

• Usually, δ is considered to be acceptable if δ ≪ 1
n [Dwork & Roth, 2014].

Remark 2.1.6. One might think that the definition of differential privacy is arbitrary,
and it is. However, it is becoming increasingly adopted because this is the best that has
been proposed to this date. Indeed, it ensures strong privacy guarantees (see [Kairouz
et al., 2015, Dong et al., 2019]) while allowing for a nice algebra of private mechanisms
(as we will see later). As a consequence, it is both conceptually powerful and handy, in a
way that wasn’t matched by previous definitions (such as k-anonymity [Sweeney, 2002]).

Example 2.1.7 (Randomized data leak). For the replacement neighboring relation, the
mechanism that select an element in the dataset uniformly at random and shares it to the
world is (0, 1/n)-DP (n being the sample size). Since this mechanism couldn’t realistically
be considered as private, this observation strengthens the guideline that one must have
δ ≪ 1

n .

2.1.2 Definitions based on Rényi divergences

Working under pure differential privacy is often preferable compared to working under
(ϵ, δ)-DP. However, it can easily be shown that a pure differentially private mechanisms
cannot be-non trivial (i.e. not having the same output distribution on any pair of neigh-
boring datasets), and have Gaussian output distributions. This observation is problematic
since the Gaussian structure is extremely handy and is broadly used in data science (in
has strong tail bounds and allows the exact computation of otherwise intractable terms).
It is possible to encapsulate those mechanisms with the larger definition of (ϵ, δ)-DP (ap-
proximate differential privacy, but choosing the relaxation parameter δ is always a haste,
and often lead to suboptimal errors.
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In comparison, modern definitions of privacy that are specifically tailored to handle mech-
anisms with a Gaussian structure are based on the Rényi divergence. For the rest of this
thesis, for any α > 1, Dα ( ·∥ ·) denotes the Renyi divergence of level α, which defined for
two distributions of probability P and Q as

Dα (P∥Q) :=
1

α− 1
ln

∫ (
dP
dQ

)α−1

dQ .

For more details, we recommend referring to the excellent article [van Erven & Harremoës,
2014]. With this new divergence between probability distributions, it is possible to de-
fine the Rényi differential privacy, and the more restrictive zero-concentrated differential
privacy as :

Definition 2.1.8 (Rényi differential privacy). Let O be a set (that will be our output
space) endowed with a σ-algebra σ(O). Let ϵ ≥ 0 (called the privacy budget), and α > 1
(called the level). A randomized mechanism M : D → O is (α, ϵ)-Rényi differentially
private (or simply (α, ϵ)-RDP) if for any S ∈ σ(O), for any X,X′ ∈ D,

X ∼ X′ =⇒ Dα

(
PM(X)

∥∥PM(X′)

)
≤ ϵ . (2.1)

For more details on Rényi differential privacy, please refer to [Mironov, 2017].

Definition 2.1.9 (Concentrated differential privacy). Let O be a set (that will be our
output space) endowed with a σ-algebra σ(O). Let ρ ≥ 0 (called the privacy budget). A
randomized mechanism M : D → O is ρ-zero-concentrated differentially private (or simply
ρ-zCDP) if for any S ∈ σ(O), for any X,X′ ∈ D,

X ∼ X′ =⇒ ∀1 < α < +∞,Dα

(
PM(X)

∥∥PM(X′)

)
≤ ρα . (2.2)

For more details on concentrated differential privacy, please refer to the original paper
[Dwork & Rothblum, 2016], or to the updated version [Bun & Steinke, 2016].

2.1.3 Other interesting attempts

As we have seen in the introduction, from differential privacy, it is possible to deduce
strong lower bounds on the testing difficulty between two neighboring datasets. In fact,
it is an equivalence [Kairouz et al., 2015]. A mechanism is (ϵ, δ)-DP iff for any pair of
neighboring datasets X and X′, if an adversary tries to discriminate X from X′ with a
type 1 error α, he should have a type 2 error β ≥ fϵ,δ(α). fϵ,δ is called a tradeoff function.

The expression of fϵ,δ is fully characterized by ϵ and δ, but it is possible to take any (as
long as it satisfies a few hypotheses) tradeoff function to define a new type of privacy.
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This is what is done in the excellent article [Dong et al., 2019], which also provides a lot
of conceptual insights on the effect of differential privacy.

2.2 The algebra of private mechanisms

Differential privacy offers strong privacy guarantees, but it is not the only reason why this
definition of privacy became so popular. It is also extremely handy to use, and it is possible
to talk about the algebra of private mechanisms. Indeed, it is possible to control the
privacy of any procedure building on private mechanisms by the so-called post-processing,
composition, and group privacy properties. Furthermore, providing privacy guarantees for
any of the above-mentioned definitions of privacy usually allows providing guarantees for
all the other ones. This section presents key building blocks that are used almost all the
time.

2.2.1 Post processing

The first important property is the post-processing property. Informally, it states that
any quantity that is build from a private observation of the dataset, and without further
information about the dataset, is still private.

Fact 2.2.1 (Post processing). If M is a mechanism satisfies one of the above-mentioned
definitions of privacy, and if f is a deterministic function, then f(M) satisfies the same
definition of privacy as M, and with the same privacy parameters.

It is possible to deal with stochastic functions by integrating the last result w.r.t. the extra
source of randomness in f . In order to obtain the same conclusion when f is randomized,
we typically need the extra source of randomness to be independent of the ones on which
M builds.

2.2.2 Various conversions, and corresponding fees

It is possible to convert guarantees between (ϵ, δ)-DP, (α, ϵ)-RDP, and ρ-zCDP. Between
(ϵ, δ)-DP and (α, ϵ)-RDP, [Bun & Steinke, 2016] states that any (ϵ, 0)-DP mechanism is

also (α, α ϵ2

2 )-RDP for any α. Furthermore, [Mironov, 2017] states that any (α, ϵ)-RDP

mechanism is also
(
ϵ+

ln 1
δ

α−1 , δ
)
-DP for any δ > 0. Between RDP and zCDP, the conversion

is only possible from zCDP to RDP, and is given by the definition. Between zCDP and DP,
[Bun & Steinke, 2016] states that any (ϵ, 0)-DP mechanism is also ϵ2

2 -zCDP. Furthermore,

it also states that any ρ-zCDP mechanism is also
(
ρ+ 2

√
ρ ln 1

δ , δ
)
-DP for any δ > 0.

2.2.3 Comparing any pair of datasets

The definitions of differential privacy characterize the testing difficulty between pairs of
neighboring datasets. However, under the connexity assumption, it is possible to charac-



48

terize the testing difficulty between any pair of datasets depending on their distance k on
the neighboring relation ∼ (i.e. the minimal length of a path on ∼ linking them). Such
property is usually called the group privacy property.

Indeed, by inductively applying the definition of differential privacy, it directly follows
that

Fact 2.2.2 (Group privacy). If a randomized mechanism M is (ϵ, δ)-differentially private,
then, for any pair of datasets X,X′ ∈ D and any measurable S ⊆ codom (M), if X and
X′ are at distance at most k on ∼, then

PM (M(X) ∈ S) ≤ eϵkPM (M(Y) ∈ S) + δkeϵ(k−1) .

For concentrated differential privacy, [Bun & Steinke, 2016] states that

Fact 2.2.3 (Group privacy (zCDP case)). If a randomized mechanism M is ρ-zCDP,
then, for any pair of datasets X,X′ ∈ D, if X and X′ are at distance at most k on ∼,
then

∀1 < α < +∞,Dα

(
PM(X)

∥∥PM(X′)

)
≤ ρk2α .

2.2.4 The case in point of composition

The most important property of differential privacy is probably the so-called composition
property. Informally, it states that if each access to the dataset during a complex data
pipeline is done with a certain privacy budget, then the whole procedure is differentially
private with privacy budget the sum of the individual privacy budgets.

Let M1, . . . ,Mk be randomized mechanisms from a common dataset space D (and even-
tually taking auxiliary inputs) to their respective output spaces. An adaptive composition
of M1, . . . ,Mk is a pipeline (or computational acyclic graph) in which each of the mech-
anisms appears at most once. In particular, those mechanisms are allowed to take as
auxiliary input the result of the previous ones. In this scenario, we say that Mi satisfies
a certain property of differential privacy if its restriction to the dataset variable satisfies
it for any value of its auxiliary inputs. Composition theorems allow characterizing the
privacy of the whole pipeline, depending on the privacy budgets of the building blocks
M1, . . . ,Mk.

Under (ϵ, δ)-DP, the following result [Kairouz et al., 2015] sharply characterizes the com-
position of private mechanisms. Its expression can be a bit terrifying at first, but it is
easily derived in simpler (but suboptimal) applicable forms.



49

Fact 2.2.4 (Advanced composition). If M1, . . . ,Mk are respectively (ϵ1, δ1), . . . , (ϵk, δk)-
DP, then for any δ̃ ∈ [0, 1], any adaptive composition of those mechanisms is(

ϵ̃, 1− (1− δ̃)Πk
i=1(1− δi)

)
-DP ,

for
ϵ̃ := min (A,B,B) ,

where

A :=
k∑

i=1

ϵi ,

B :=

k∑
i=1

(eϵi − 1)ϵi
eϵi + 1

+

√√√√√ k∑
i=1

2ϵ2i ln

e+

√∑k
i=1 ϵ

2
i

δ̃

 ,

and

C :=
k∑

i=1

(eϵi − 1)ϵi
eϵi + 1

+

√√√√ k∑
i=1

2ϵ2i ln

(
1

δ̃

)
.

Two more applicable corollaries of this theorem (and that were known earlier) are the so
called simple composition theorem [Dwork et al., 2006b, Dwork et al., 2006a] which states
that if M1, . . . ,Mk are respectively (ϵ1, δ1), . . . , (ϵk, δk)-DP, then any adaptive composition

of those mechanisms is
(∑k

i=1 ϵi,
∑k

i=1 δi

)
-DP, and the first form of the so-called advanced

composition theorem [Dwork et al., 2010], stating that ifM1, . . . ,Mk are all (ϵ, δ)-DP, then
for any δ̃ ∈ [0, 1], any adaptive composition of those mechanisms is (ϵ̃, kδ + δ̃)-DP, where

ϵ̃ := kϵ (eϵ − 1) + ϵ

√
2k ln

(
1

δ̃

)
.

In particular, the small extra slack given in δ allows for a ϵ̃ that scales in O(kϵ2 +
√
kϵ),

which is often a lot better than the scaling in kϵ given by simple composition.

Remark 2.2.5 (From addition/deletion to replacement). By noticing that a replacement
in a dataset can be decomposed as an addition and then a deletion, thanks to the simple
composition property, if an algorithm is (ϵ, δ)-DP for the addition/deletion neighboring
relation, it is (2ϵ, 2δ)-DP for the permutation invariant replacement neighboring relation.

With RDP and its variants, composition is a lot simpler [Mironov, 2017]. Indeed, we have
the following composition theorem :
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Fact 2.2.6 (Composition with Rényi divergence). If M1, . . . ,Mk are respectively
(α, ϵ1), . . . , (α, ϵk)-RDP, then any adaptive composition of those mechanisms is(
α,
∑k

i=1 ϵi

)
-RDP.

Note that a direct consequence on this result is the composition of zCDP mechanisms, stat-
ing that if M1, . . . ,Mk are respectively ρ1, . . . , ρk-zCDP, then any adaptive composition
of those mechanisms is

∑k
i=1 ρi-zCDP.

2.2.5 Privacy amplification and subsampling

A last property that is interesting (but not exploited directly in this thesis) is the privacy
amplification by subsampling. Namely, the idea that the privacy of a randomized mecha-
nism is amplified by previously subsampling its dataset. I recommend [Balle et al., 2018a]
and [Wang et al., 2020] for recent results.

2.3 The private jungle

We saw that private mechanisms form a nice algebra, making them appealing for many
data pipelines. However, we still have to present elementary building blocks that are
versatile enough to adapt to many problems. We do so in this section by presenting the
ubiquitous mechanisms that are the Laplace mechanism, the Gaussian mechanism, the
exponential mechanism, and some results about private optimization.

2.3.1 Laplace mechanism

The Laplace mechanism [Dwork et al., 2006b, Dwork et al., 2006a] was the first example
of private mechanism. It is based on the following simple idea. Let us say that we have
a deterministic function f defined on a set of datasets D and taking values in Rk that we
want to make private. The idea is to replace f by the randomized mechanism

X ∈ D 7→ f(X) + αL(Ik) ,

where the notation L(Ik) refers to a random vector with independent components following
Laplace distributions of parameter 1.

The amount of noise α to add in order to make this mechanism (called the Laplace
mechanism) depends on the sensitivity of the function f .

Definition 2.3.1 (lk-sensitivity). For f : D → Rk defined on a set of datasets D equipped
with a neighboring relation ∼, the lk-sensitivity of f (∆kf) is defined as

∆kf := sup
X∼X′

∥f(X)− f(X′)∥k .

For brevity, ∆f is often used to refer to ∆1f .
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Example 2.3.2 (Mean estimation, sensitivity). Let us give a small example that high-
lights the importance of the choice of the neighboring relation ∼, and the dataset space
D. Let us consider the example where we observe n samples X1, . . . , Xn living in [a, b],
and where the objective is to privately estimate their mean 1

n

∑n
i=1Xi. For the addi-

tion/deletion relationship in the setup where the sample-size n is not fixed, the sensitivity
of this query is |b − a|. On the other hand, in the replacement setup where n is fixed,

the sensitivity of the same query is |b−a|
n . Changing the setup allows to greatly reduce the

sensitivity.

The privacy of the Laplace mechanism is given by the following result :

Fact 2.3.3 (Privacy guarantees). If α ≥ ∆f
ϵ , then the Laplace mechanism is ϵ-DP.

Furthermore, the tail bounds on the Laplace distribution allow deriving the following
utility guarantees of the Laplace mechanism :

Fact 2.3.4 (Utility guarantees). Let us note y the output of the Laplace mechanism with
noise magnitude α. For any γ > 0,

P

(
∥f(x)− y∥1 > α ln

(
k

γ

))
< γ .

Example 2.3.5 (Learning finite distributions). Let S = {s1, . . . , sk} be a finite set. We
call Pk the simplex of Rk of vectors with positive entries that sum to 1. To any distribution
of probability p on S canonically corresponds a vector p = (p1, . . . , pk) ∈ Pk such that
p ({si}) = pi for any i. Hence, we will simply use a vector in Pk to refer to distributions.
Finally, for p ∈ Pk, X ∼ p means that the random variable X follows the distribution
associated to p on S.

The problem is the following : let p ∈ Pk, and given X1, . . . , Xn
i.i.d.∼ p, can we build

a ϵ-DP estimator of p ? Guided by the simple moment estimator, we can look at the
performances of the histogram estimator.

For any i, we define hi :=
∑n

j=1 1Xj=si . The non-private histogram estimator is defined

as p̂ :=
(
. . . , 1

nhi, . . .
)
. Can we make it private ?
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This estimator builds on the deterministic function of the data

f := (X1, . . . , Xn) 7→

. . . ,
n∑

j=1

1Xj=si , . . .

 . (2.3)

What is its l1 sensitivity ? Adding or removing a single element to the dataset will
change the value of at most one coordinate of the output vector by at most +1 or −1.
Consequently, the l1 sensitivity for the addition/removal relation is 1. By replacing an
element of the dataset, the counts of at most two coordinates of the output vector can
change by at most +1 or −1 each. Consequently, the l1 sensitivity of f for the replacement
neighboring relation is 2. In order to be conservative, let us keep 2 as an upper-bound on
both sensitivities.

Applying Fact 2.3.3, if L1, . . . ,Ln
i.i.d.∼ L(1), then the mechanism

M := (X1, . . . , Xn) 7→

. . . ,

n∑
j=1

1Xj=si +
2

ϵ
Li, . . .

 (2.4)

is ϵ-DP. Finally, by post-processing (Fact 2.2.1), the following estimator is ϵ-DP :

p̂ϵ := (X1, . . . , Xn) 7→
1

n

. . . ,
n∑

j=1

1Xj=si +
2

ϵ
Li, . . .

 . (2.5)

Let us analyze its performances as an estimator of the true distribution. First, we can
notice that for any i, hi ∼ B(n, pi). Hence,

E
(
∥p− p̂ϵ∥22

)
=

1

n2
E

(
k∑

i=1

(
npi − hi −

2

ϵ
Li

)2
)

=
1

n2

k∑
i=1

E

((
npi − hi −

2

ϵ
Li

)2
)

=
1

n2

k∑
i=1

(
E

(
npi − hi −

2

ϵ
Li

)2

+ V

(
hi +

2

ϵ
Li

))
indep.
=

1

n2

k∑
i=1

(
E

(
npi − hi −

2

ϵ
Li

)2

+ V (hi) + V

(
2

ϵ
Li

))

=
1

n2

k∑
i=1

(
E (0)2 + npi(1− pi) +

8

ϵ2

)

=

∑k
i=1 pi(1− pi)

n
+

8k

n2ϵ2
.
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Finding, or upper-bounding the quantity sup∀i,pi≥0,
∑

i pi=1

∑k
i=1 pi(1 − pi) will allow to

conclude. First, we notice that sup∀i,pi≥0,
∑

i pi=1

∑k
i=1 pi(1− pi) ≤ sup∑

i pi=1

∑k
i=1 pi(1−

pi). We dropped the positivity constraints. Then, we see that the gradient of the only
remaining constraint is equal to (1, . . . , 1) uniformly. In particular, it is never 0 and thus
the KKT conditions apply. They tell us that at the optimum, there exist a λ∗ ∈ R such
that

(. . . , 1− 2p∗i , . . . ) = λ∗(. . . , 1, . . . ).

In other words, at the optimum, all the components are equal. Since the vector is a vector
of probability, the only possibility is to have p∗i =

1
k for all i.

Finally, we get

E
(
∥p− p̂ϵ∥22

)
≤ 1

n
+

8k

n2ϵ2
. (2.6)

It can be proven, by using techniques presented in Chapter 3, that when the estimator is
not private, the optimal rate of estimation is Θ(1/n). In particular, when ϵ = Ω(

√
k/

√
n),

we can see that the rate of estimation provided by Equation (2.6) is not degraded. On
the other hand, when ϵ ≪

√
k/

√
n, the guarantees obtained via Equation (2.6) start to

degrade.

Furthermore, since Equation (2.6) is an upper bound, it only says that the guarantees
start to degrade. However, by looking at the special case of the uniform distribution, we
have

E
(
∥punif − p̂ϵ∥22

)
=

(
1− 1

k

)
n

+
8k

n2ϵ2
. (2.7)

On this example, the utility is effectively degraded. The tools necessary to study the
optimality of such estimation will be presented in Chapter 3. In this case, the estimation
is not optimal, and a projection step (convex projection on the set of probability distribu-
tions) must be added. It then becomes optimal up to polylog factors (see [Acharya et al.,
2021e]).

2.3.2 Gaussian mechanism

Using the same formalism as with the Laplace mechanism (deterministic f to make pri-
vate), the idea of the Gaussian mechanism is to replace f by the randomized mechanism

X ∈ D 7→ f(X) + αN (0, Ik) ,

where the notation N (0, Ik) refers to a random vector with independent components fol-
lowing centered normal distributions of variance 1.

It can easily be shown that if f is not constant on a given pair of neighboring databases,
then this mechanism has no chance to be ϵ-DP for any finite ϵ. This is where concentrated
differential privacy comes handy : this mechanism is ρ-zCDP for a certain ρ > 0. It is
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then possible to give results for (ϵ, δ)-DP for strictly positive δ by leveraging the conversion
from zCDP to DP.

Fact 2.3.6 (Privacy guarantees). If α ≥ ∆2f√
2ρ
, then the Gaussian mechanism is ρ-zCDP.

Furthermore, the utility of this mechanism is controlled by classical tail bounds on the
chi-squared distribution [Laurent & Massart, 2000].

Fact 2.3.7 (Utility guarantees). Let us note y the output of the Gaussian mechanism with
noise magnitude α. For any γ > 0,

P

(
∥f(x)− y∥22 ≥ α2

(
k + 2

√
k ln

(
1

γ

)
+ 2 ln

(
1

γ

)))
≤ γ .

From global to local sensitivity. The Laplace and the Gaussian mechanisms are de-
fined with a uniform bound on the sensitivity (i.e. that it holds for any pair of neighboring
datasets), one might be tempted to use the local sensitivity (i.e. it holds for any pair of
neighboring datasets with one fixed extremity). With the Laplace mechanism for instance,
it can however be shown that it is not possible. It is possible however to use the so-called
smoothed sensitivity [Nissim et al., 2007] at the cost of an extra slack in the δ. This thesis
does not exploit such techniques directly, but it is important to know their existence.

2.3.3 Exponential mechanism

Another extremely important example of private mechanism building block is the so-
called exponential mechanism [McSherry & Talwar, 2007]. Let us present the setup : The
dataset space D is equipped with a neighboring relation ∼, and we want to build a private
mechanism taking its output in some output space O equipped with a reference σ-finite
measure µ.

For a dataset X ∈ D and an output candidate o ∈ O, the utility of o relatively to the
dataset X (i.e. how good o would be if returned by the mechanism applied to X) is
measured by a utility function u : D ×O → R. Usually, the convention that ”the higher,
the better” is taken.

The idea of the exponential mechanism is, given a dataset X, to return a random variable
on O that has a density p w.r.t. µ that almost-surely satisfies

p(o) ∝ e
u(X,o)

α ,
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where ∝ means proportionality, and α > 0. In particular, computing the normaliza-
tion factor is often a problem for sampling from this mechanism, and may require smart
sampling algorithms [Gillenwater et al., 2021].

Similarly as with the Laplace and Gaussian mechanisms, the privacy guarantees of the
exponential mechanism depend on the sensitivity of u.

Definition 2.3.8 (Sensitivity). The sensitivity of u (∆u) is defined as

sup
X∼X′

sup
o∈O

∣∣u(X, o)− u(X′, o)
∣∣ .

Fact 2.3.9 (Privacy guarantees). If α ≥ 2∆u
ϵ , then the exponential mechanism is ϵ-DP.

Furthermore, when the normalization factor is independent of the dataset, α ≥ ∆u
ϵ is

enough to arrive to the same conclusions.

When the output space O is finite, utility guarantees of the exponential mechanism are
easily derived.

Fact 2.3.10 (Utility guarantees, finite case). Denoting by o the output of the exponential
mechanism on X, for any γ > 0,

P

(
sup
o′∈O

u(X, o′)− u(X, o) > α ln

(
#(O)

γ

))
< γ .

When the output space is not finite, it can be harder to give utility results for the expo-
nential mechanism. It often requires to control the normalization factor of the exponential
mechanism. For instance, in the theory of the inverse sensitivity [Asi & Duchi, 2020b, Asi
& Duchi, 2020a], this is done by a technique called smoothing. [Kaplan et al., 2022] does it
by imposing a minimal gap condition for the quantile problem. This approach is built on
in Chapter 6. Finally, Chapter 6 also presents an ad-hoc technique for the multiquantile
problem that is based on neutralizing the normalization term by working on probability
ratios on continuous domains.

Example 2.3.11 (Inverse sensitivity). An important mechanism building tool that is
exploited in Chapter 6 is the inverse sensitivity mechanism [Asi & Duchi, 2020b, Asi &
Duchi, 2020a]. Recall that since D is connex for the neighboring relation ∼, it is possible to
define a distance on D by stating that the distance between two datasets is the minimum
length of the path linking them. Let us note d this distance.
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When the target of the private procedure is a deterministic function f : D → O, the inverse
sensitivity mechanism corresponds to the exponential mechanism with utility function

u(X, o) = −min
{
d(X,X′)|X′ ∈ D, f(X′) = o

}
.

This mechanism first appeared in [McSherry, 2010] for the mean and the median estima-
tion. It was later generalized to arbitrary queries in [Asi & Duchi, 2020b, Asi & Duchi,
2020a]. Very recently, this mechanism has been used to prove the strong equivalence
between private mechanisms and robust mechanisms [Asi et al., 2023].

2.3.4 Private optimization

Many problems can be formalized as an optimization problem, i.e. to find the global
(or local) extremum(a) of a well-chosen function. In particular, in a learning setup, this
function is built from a dataset (e.g. empirical risk of an estimator, least squares, . . . ). In
this scenario, the question of how to find a differential private point that is close to the
optimum is crucial.

The results of the literature are numerous and often too verbose to be presented in this
overview chapter. However, we can give a few pointers to interesting approaches of this
ongoing body of literature [Song et al., 2013, McMahan et al., 2018b, Abadi et al., 2016,
Smith et al., 2017, Wu et al., 2017, Iyengar et al., 2019, Song et al., 2020, Song et al., 2021,
Mangold et al., 2022, Ganesh et al., 2022, Gopi et al., 2022, Bassily et al., 2019, Bassily
et al., 2014, Avella-Medina et al., 2021, Ganesh et al., 2023], and leave the technical details
aside.

DP-SGD. Probably the most well-known private optimization algorithm, DP-SGD (for
Differentially Private Stochastic Gradient Descent) [Abadi et al., 2016] mimics the be-
havior of the classical stochastic gradient descent algorithm, with the difference that it
clips each sample’s relative gradient to a ball, and add noise. Furthermore, it leverages a
specific stochastic batch structure in order to increase privacy by subsampling.

In the setup where the problem can be expressed as

θ∗ = argmin
θ

1

n

n∑
i=1

l((xi, yi), θ)

for a loss function l, and where ((x1, y1), . . . , (xn, yn)) is the dataset (considered with the
replacement relationship), DP-SGD considers the sequence

θt+1 = θt − ηtgt .
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The sequence of positive real numbers (ηt)t is the sequence of learning rates. The quantity
gt is a private estimate of the gradient defined as

gt =
1

#(B)

∑
i∈B

clipC (∇θl((xi, yi), θ)) +N
(
0,

C2σ2

B2

)
.

Here, B is a batch obtained by i.i.d. selection of each element in the dataset with proba-
bility p, σ > 0 tunes the amount of noise, and clipC is the function that project onto the
Euclidean ball of radius C and centered in 0.

The mechanism generating the noisy gradient is (α, g(α, σ, p))-Rényi differentially private
for any α > 0 where

g(α, σ, p) = Dα

(
(1− p)N

(
0, σ2

)
+ pN

(
1, σ2

)∥∥N (
0, σ2

))
.

The privacy of a full trajectory can then be characterized in terms of Rényi differential
privacy by composition theorems.

Its limitations are that in many application scenarios (e.g. Deep Learning), it comes
with little to no utility guarantees. It is much more computationally demanding than
its non-private counterpart (for instance requiring very large batch sizes). And, it makes
hyperparameter tuning a hassle. Luckily for this last point, rules of thumbs have been
designed for interpolating the results of DP-SGD based on a few observations [Sander
et al., 2022].

Langevin diffusion. Langevin diffusion refers to the continuous-time stochastic process
of a gradient-flow perturbed by a standard Brownian motion. This Brownian motion can
be leveraged to obtain privacy, playing the role of the Gaussian noise in DP-SGD. In the
convex case, this observation leads to the state of the art first order private solver for
convex problems [Ganesh et al., 2022]. It was later adapted to handle stochastic gradients
in [Ryffel et al., 2022].

Second order optimization. Recently, second order optimization methods have been
investigated in order to reduce the high number of steps that first order private solvers
take to converge. In non-private optimization, this is done by adapting the learning rate
and the direction of the gradient based on a surrogate of the Hessian matrix. Adaptations
for the private setup appear in [Avella-Medina et al., 2021, Ganesh et al., 2023].

Fixed-point methods. Many optimization problems can be reduced to fixed-point
equations [Bauschke & Combettes, 2011] of the form

x = f(x) .

Under suited hypotheses on f and on the set in which x lives, it is often possible to converge
to a solution (often unique) of the fixed-point equation via a iterative series xn+1 := f(xn)
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(e.g. Fixed-point theorem of Banach-Picard in Banach spaces, fixed-point theorem in
compact spaces). The choice of f is often equivalent to the choice of an optimization
algorithm (e.g. gradient descent).

A very recent piece of work [Cyffers et al., 2023] modified this framework by adding noise to
the iterates, in order to obtain differential privacy. The resulting method is general enough
to recovers algorithms such as DP-SGD, but also allows directly adapting methods such
as ADMM to differential privacy [Boyd et al., 2011].
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Chapter 3

Lower-bounds on the statistical
risk : a unified framework

The origin of this chapter, and the use of the first person. This chapter is based
on the article [Lalanne et al., 2023b], written by Aurélien Garivier1, Rémi Gribonval2, and
by myself. In this chapter, I will try to respect the following rule : the use of the first
person of the plural (we, our, . . . ) represents all the above-mentioned people, while the
use of the first person of the singular (I, my, . . . ) represents myself.

This chapter studies minimax lower bounds for classes of differentially private estimators.
In particular, it shows how to characterize the power of a statistical test under differential
privacy in a plug-and-play fashion by solving an appropriate transport problem. With
specific coupling constructions, this observation allows deriving Le Cam-type and Fano-
type inequalities not only for regular definitions of differential privacy but also for those
based on Renyi divergence. This is a core chapter for the thesis that introduces theoretical
tools that are used in the rest of the thesis.

3.1 Context on minimax lower-bounds

The lower-bounds and the optimality will be investigated in a minimax sense.

1https://perso.ens-lyon.fr/aurelien.garivier/www.math.univ-toulouse.fr/ agarivie/

index.html/
2https://people.irisa.fr/Remi.Gribonval/

https://perso.ens-lyon.fr/aurelien.garivier/www.math.univ-toulouse.fr/_agarivie/index.html/
https://perso.ens-lyon.fr/aurelien.garivier/www.math.univ-toulouse.fr/_agarivie/index.html/
https://people.irisa.fr/Remi.Gribonval/
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3.1.1 The Minimax Risk and Private Estimators

We start by defining the minimax risk. Given n ∈ N∗ and a feature space X , X n may
be viewed as a set of datasets containing n elements from X . We consider a family of
probability distributions (Pθ)θ∈Θ on X n where Θ is equipped with a semi-metric3 dΘ :
Θ2 → R+. Often, for all θ ∈ Θ, Pθ = p⊗n

θ where (pθ)θ∈Θ is a family of probability
distributions on X . This corresponds to the classical statistical setup where we observe
n i.i.d. random variables. The general setup allows capturing phenomena that are not
i.i.d., for instance Markov processes. Given an estimator θ̂ : X n → Θ one might look at
its uniform risk of estimation over Θ for a loss function Φ : [0,+∞) → [0,+∞) that is
non-decreasing and such that Φ(0) = 0 which is

sup
θ∈Θ

∫
Xn

Φ(dΘ(θ̂(X), θ))dPθ(X) .

The best achievable uniform risk defines what is called the minimax risk

Mn := inf
θ̂
sup
θ∈Θ

∫
Xn

Φ(dΘ(θ̂(X), θ))dPθ(X) . (3.1)

Here, the infimum over θ̂ is taken among all possible measurable functions of the samples.

In order to factorize the results, we will use the abstract formulation that a randomized
mechanism M : X n → Θ satisfies a certain condition C rather than fixing the class in
which it belongs. We define the private minimax risk as the best achievable uniform risk
with mechanisms that satisfy the privacy condition C

M(C)
n := inf

M s.t. C
sup
θ∈Θ

∫
Xn

EPM
(Φ(dΘ(M(X), θ))) dPθ(X) . (3.2)

Note that with both notations Mn and M
(C)
n , there is a lot of implicit (the semi-metric,

. . . ). This is a choice in order to simplify the notations, and the context will fix the
ambiguities.

3.1.2 Introducing example

As a warmup we discuss here the simplest possible example on which we can present the
questions that this chapter addresses and the flavor of the developed approaches. Let
p1 < p2 be two parameters in (0, 1) and let U1, . . . , Un, n be independent and identically

distributed uniform random variables on [0, 1]. The random variables Zi := (X
(1)
i , X

(2)
i ) ∈

R2, 1 ≤ i ≤ n, defined by

(X
(1)
i , X

(2)
i ) = (1[0,p1)(Ui),1[0,p2)(Ui))

are independent and identically distributed with marginal distributions Bernoulli B(p1)
and B(p2). In the sequel we note X(j) = (X

(j)
1 , . . . , X

(j)
n ), j = 1, 2, U = (U1, . . . , Un),

3i.e. that is positive, symmetric, that satisfies the triangular inequality and dΘ(θ, θ) = 0, ∀θ ∈ Θ
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S1 := [0, (p1 + p2)/2). and S2 := [(p1 + p2)/2, 1]. Given any (ϵ, 0)-DP mechanism M :
[0, 1]n → [0, 1] (where ϵ > 0) to estimate the Bernoulli parameter, the risk satisfies

sup
p∈[0,1]

EX∼B(p)⊗n

(
(M(X)− p)2

)
≥
(
EX∼B(p1)⊗n,M

(
(M(X)− p1)

2
)
+ EX∼B(p2)⊗n,M

(
(M(X)− p2)

2
))

/2

Coupling
=

(
EU,M

(
(M(X(1))− p1)

2
)
+ EU,M

(
(M(X(2))− p2)

2
))

/2

Conditioning
= EU

(
EM

(
(M(X(1))− p1)

2
)
+ EM

(
(M(X(2))− p2)

2
))

/2

≥
(p2−p1

2

)2
EU

(
PM

(
M(X(1)) ∈ S2

)
+ PM

(
M(X(2)) ∈ S1

))
/2.

(3.3)
This is where the DP property yields a lower bound on the second factor as

EU

(
e−ϵdham(X(1),X(2))PM

(
M(X(2)) ∈ S2

)
+ PM

(
M(X(2)) ∈ S1

))
dham(·,·)≥0

≥ EU

(
e−ϵdham(X(1),X(2))

(
PM

(
M(X(2)) ∈ S2

)
+ PM

(
M(X(2)) ∈ S1

)))
= EU

(
e−ϵdham(X(1),X(2))

) Jensen
≥ e−nϵ|p2−p1| ,

(3.4)

which overall yields the lower bound (p2−p1)
2

8 e−nϵ|p2−p1|. A good lower bound on the
minimax risk is then provided by optimizing over p1 and p2. For instance, when n ≥ 2

ϵ ,
p1 =

1
2 and p2 =

1
2 + 1

nϵ leads to

sup
p∈[0,1]

EX∼B(p)⊗n

(
(M(X)− p)2

)
≥ 1

8

1

(nϵ)2
.

The idea behind the first inequality in (3.3) is classical in the minimax literature and is
recalled in Section 3.1.3 using the notion of packing. The coupling construction can be
generalized and taylored to other settings and has a critical impact on the deduced lower
bounds, as we present in Section 3.4. The minoration involving differential privacy is a
special case of the techniques that we formalize under the notion of admissible similarity
functions in Section 3.3, which are adapted to various types of privacy constraints.

3.1.3 From Minimax Lower Bounds to Hypothesis Testing

A classical technique (see [Duchi et al., 2013]) for finding lower bounds onMn

(
(Pθ)θ∈Θ , dΘ,Φ

)
is to replace the parameter set Θ by a much “simpler” set Θ′ ⊆ Θ and to use the trivial
lower bound

Mn ≥ inf
θ̂

sup
θ∈Θ′

∫
Xn

Φ(dΘ(θ̂(X), θ))dPθ(X) .

Usually Θ′ is chosen as an Ω-packing of Θ, for some real number Ω > 0: it is a countable
family Θ′ := {θi, i ∈ N∗} (θi)i∈N∗

(and most of the time, including in this chapter, it is
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taken to be finite) such that: a) θi ∈ Θ for all i; b) i ̸= j =⇒ dΘ(θi, θj) ≥ 2Ω; and c)
there is a well-defined function ΨΘ′ satisfying

ΨΘ′(θ) ∈ argmin
i≥1

dΘ(θi, θ)

for each θ ∈ Θ. Under such hypotheses, any estimator θ̂ satisfies [Duchi et al., 2013]

sup
θ∈Θ′

∫
Xn

Φ(dΘ(θ̂(X), θ))dPθ(X) ≥ Φ(Ω) sup
i∈{1,...,#(Θ′)}

PX∼Pθi

(
ΨΘ′

(
θ̂(X)

)
̸= i
)

. (3.5)

The mapping Ψ̂ := ΨΘ′ ◦ θ̂ : X n → {1, . . . ,#(Θ′)} may be viewed as a test function (that
selects the model number) and thus

Mn ≥ Φ(Ω) inf
Ψ:Xn→{1,...,#(Θ′)}

sup
i∈{1,...,#(Θ′)}

PX∼Pθi
(Ψ (X) ̸= i) . (3.6)

Finding minimax lower bounds is thus done by finding a suitable Ω-packing of the param-
eter space and then by providing lower bounds on

inf
Ψ:Xn→{1,...,#(Θ′)}

sup
i∈{1,...,#(Θ′)}

PX∼Pθi
(Ψ (X) ̸= i) . (3.7)

Two powerful tools to find such lower bounds come from information theory: Le Cam’s
lemma (see Fact 3.1.1) can be used when Θ′ only contains two elements, while Fano’s
lemma (see Fact 3.1.2) is applicable when Θ′ contains N ≥ 2 elements.

Fact 3.1.1 (Neyman-Pearson & Le Cam’s lemma [Rigollet & Hütter, 2015, Lemma 5.3]).
Let P1,P2 be two probability distributions on a measure space E, then

inf
Ψ:E→{1,2}

max
i∈{1,2}

PX∼Pi (Ψ (X) ̸= i) ≥ 1

2
inf

Ψ:E→{1,2}

2∑
i=1

PX∼Pi (Ψ (X) ̸= i)

=
1

2
(1− TV (P1,P2)) .

(3.8)

Let us highlight that along this thesis, the term ”Fact” refers to results directly borrowed
from existing literature, independently of the supposed technicality of the result and/or of
its proof. It is simply used to easily emphasize whether a result is a contribution or not.

Fact 3.1.2 (Fano’s lemma [Giraud, 2021, Theorem 3.1]). Let (Pi)i∈{1,...,N} be a family of
probability distributions on a measure space E. For any probability distribution Q on E
such that Pi ≪ Q for all i, and for any test function Ψ : X n → {1, . . . , N},

max
i∈{1,...,N}

PX∼Pi (Ψ (X) ̸= i) ≥ 1

N

N∑
i=1

PX∼Pi (Ψ (X) ̸= i)

≥ 1−
1 + 1

N

∑N
i=1KL (Pi∥Q)

ln(N)
.

(3.9)
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Often Q is set to 1
N

∑N
i=1 Pi.

With the same reasoning used [Duchi et al., 2013] to establish (3.5), with
Θ′ = (θi)i∈{1,...,#(Θ′)} an Ω-packing of Θ, we can lower-bound the private minimax risk:

M(C)
n ≥ Φ(Ω) inf

M s.t. C
inf

Ψ:codom(M)→{1,...,#(Θ′)}
sup

i∈{1,...,#(Θ′)}
PX∼Pθi

,M (Ψ (M(X)) ̸= i) .

(3.10)
Consequently, finding private minimax lower bounds is done analogously to the non-private
setting by finding an appropriate Ω-packing and a lower bound on

inf
Ψ:codom(M)→{1,...,#(Θ′)}

sup
i∈{1,...,#(Θ′)}

PX∼Pθi
,M (Ψ (M(X)) ̸= i) (3.11)

that is independent on the mechanism M but only depends on the privacy condition C.

3.2 Quantitative results : constraint-specific lower-bounds

The main contribution of this work, presented in Section 3.3, is to propose a generic
framework for the derivation of lower bounds on the minimax risk under various privacy
conditions. Technically, the techniques of Le Cam and Fano are extended to the private
context, reducing the distributional test problem (3.11) to a Kantorovich problem [San-
tambrogio, 2016, Peyré & Cuturi, 2019, Villani et al., 2009] of the form

sup
Q∈Π(P1,...,PN )

∫
(Xn)N

sC (X1, . . . ,XN ) dQ (X1, . . . ,XN ) . (3.12)

Here, Π (P1, . . . ,PN ) is the set of couplings between the considered distributions and sC
is an admissible similarity function depending on the nature of the constraint C and the
number of hypotheses (Theorem 3.3.3 and Theorem 3.3.4). For instance, regarding (ϵ, δ)-
differential privacy, similarity functions are obtained by comparing datasets to a common
anchor. This result is summarized in Theorem 3.3.2.

Unlike the prior work of [Acharya et al., 2021e], the proposed framework allow us to con-
sider joint couplings across all instances rather than just pairwise couplings. Additionally,
the level of generality of our proofs leaves room for subsequent work to build upon this
framework.

The general idea behind the proofs is as follows. In classical Fano’s, one considers the
decoding error probability: on average over a family of instances, what is the probability
that the estimator, given samples from a given instance, fails to identify that the samples
came from that instance. In place of Fano’s inequality, the present work lower bounds
this by noting that, given datasets X1, ...,XN coming from each instance, as well as an
”anchor” dataset Λ (or alternatively an anchor distribution), differential privacy implies
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that the probability that the estimator decides Xi comes from instance i cannot differ
by much from the probability it decides Λ comes from instance i, provided Λ and Xi

are similar. The decoding error probability can thus be lower bounded in terms of the
maximum distance between Λ and any of X1, ...,XN , averaged over the randomness of
X1, ...,XN , where there is freedom in choosing how to couple this randomness.

Section 3.4 includes various coupling constructions yielding quantitative lower bounds for
the Kantorovich formulation (3.12). These constructions only depend on the number of
hypotheses N , the sample size n, the privacy parameters ϵ, δ, ρ, and information theoretic
quantities such as the pairwise total variations or KL divergences between the distribu-
tions. Those results will be presented in Section 3.3 and in Section 3.4.

3.2.1 Differential privacy with two hypotheses

We now showcase useful consequences, starting with the case N = 2: similarly to
[Acharya et al., 2021e], we extend Le Cam’s lemma to the (ϵ, δ)-differentially private
setting:

Theorem 3.2.1 (Le Cam for (ϵ, δ)-DP). If a randomized mechanism M satisfies (ϵ, δ)-
DP, then for any test function Ψ : codom (M) → {1, 2} and any probability distributions
P1 and P2 on X n we have

max
i∈{1,2}

PX∼Pi,M (Ψ (M (X)) ̸= i) ≥ 1

2
max

{
1− TV (P1,P2) ,

1−
(
1− e−nϵ + 2ne−ϵδ

)
TV (P1,P2)

}
.

Furthermore, when P1 = p⊗n
1 and P2 = p⊗n

2 are product distributions,

max
i∈{1,2}

PX∼Pi,M (Ψ (M (X)) ̸= i)

≥ 1

2

((
1−

(
1− e−ϵ

)
TV (p1,p2)

)n − 2ne−ϵδTV (p1,p2)
)
.

The proof can be found in Section 3.4.2. The classical lower bound of Le Cam (3.8)
allows for a tunable testing difficulty depending on TV (P1,P2). However, in the regime
ϵ, δ = o(1/n), the private lower bound is Ω(1): it becomes arbitrarily hard to distinguish
between any pair of distributions.

For i.i.d. observations (Pi = p⊗n
i ), it follows by convexity that for any (ϵ, δ)-DP mechanism

M and test function Ψ : codom (M) → {1, 2}

max
i∈{1,2}

PX∼Pi,M (Ψ (M (X)) ̸= i) ≥ 1

2

(
e−ϵnTV(p1,p2) − 2e−ϵδnTV (p1,p2)

)
.
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This is to be compared to the state of the art lower bound of [Acharya et al., 2021e,
Theorem 1]:

max
i∈{1,2}

PX∼Pi,M (Ψ (M (X)) ̸= i) ≥ 1

2

(
0.9e−10ϵnTV(p1,p2) − 10δnTV (p1,p2)

)
.

Theorem 3.2.1 gives tighter results with better constants, notably thanks to a different
proof technique avoiding some convexity and concentration inequalities. While this dif-
ference does not change the obtained rates, such an improvement is significant on the
resulting sample complexities by a factor 10 in the exponential. As an illustration, imag-
ine that a statistician has to discriminate between the two hypotheses H0 : B

(
50
100

)
and

H1 : B
(

51
100

)
, two Bernoulli distributions. Under ϵ = 0.1, if we want H0 and H1 to be

falsely rejected with probability at most 1%, [Acharya et al., 2021e] says that the experi-
ment will have to be calibrated with at least 381 participants while our Theorem 3.2.1 says
that in fact, at least 4109 participants will be necessary, leading to a less over-optimistic
estimation by a large factor.

3.2.2 Concentrated differential privacy with two hypotheses

We also prove an equivalent for so-called ρ-zero concentrated differential privacy (or in
short ρ-zCDP), which is, to the best of our knowledge, the first successful attempt at doing
so.

Theorem 3.2.2 (Le Cam for ρ-zCDP). If a randomized mechanism M satisfies ρ-zCDP,
then for any test function Ψ : codom (M) → {1, . . . , N} and any probability distributions
P1 and P2 on X n,

max
i∈{1,2}

PX∼Pi,M (Ψ (M (X)) ̸= i) ≥ 1

2
max

{
1− TV (P1,P2) ,

1− n
√

ρ/2TV (P1,P2)
}
.

Furthermore, when P1 = p⊗n
1 and P2 = p⊗n

2 are product distributions,

max
i∈{1,2}

PX∼Pi,M (Ψ (M (X)) ̸= i) ≥ 1

2

(
1− n

√
ρ/2TV (p1,p2)

)
.

The proof of this result can be found in Section 3.4.2. As above, any two distributions
can no longer be distinguished in the regime ρ ≪ 1/n2.

3.2.3 Differential privacy with many hypotheses

For more than two hypotheses and (ϵ, δ)-DP, we also get a private version of Fano’s lemma.

Theorem 3.2.3 (Multiple Distributional Tests for (ϵ, δ)-DP). If a randomized mechanism
M satisfies (ϵ, δ)-DP, then for any test function Ψ : codom (M) → {1, . . . , N}, any family
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of probability distributions (Pi)i∈{1,...,N} on X n and any Q such that Pi ≪ Q for all i,

max
i∈{1,...,N}

PX∼Pi,M (Ψ (M(X)) ̸= i) ≥ max

{
1−

1 + 1
N

∑N
i=1KL (Pi∥Q)

ln(N)
,

1

2
− 1− e−nϵ + 2ne−ϵδ

2N2

∑
i,j

2TV (Pi,Pj)

1 + TV (Pi,Pj)
,

1δ=0 ×

1−
1 + nϵ

N2

∑
i,j

2TV(Pi,Pj)
1+TV(Pi,Pj)

ln(N)

 .

Furthermore,when P1 = p⊗n
1 , . . . , PN = p⊗n

N are product distributions,

max
i∈{1,...,N}

PX∼Pi,M (Ψ (M(X)) ̸= i) ≥ max

 1

2N2

∑
i,j

((
1− (1− e−ϵ)

2TV (pi,pj)

1 + TV (pi,pj)

)n

−2ne−ϵδ
2TV (pi,pj)

1 + TV (pi,pj)

)
,

1δ=0 ×

1−
1 + nϵ

N2

∑
i,j

2TV(pi,pj)
1+TV(pi,pj)

ln(N)

 .

The proof is given in Section 3.4.2. When dealing with product distributions, the quantity

D :=
n

N2

∑
i,j

2TV (pi,pj)

1 + TV (pi,pj)

can roughly be seen as an averaged hamming distance between pairs of marginals. An
implication of Theorem 3.2.3 is then that

max
i∈{1,...,N}

PX∼Pi,M (Ψ (M(X)) ̸= i) ≥ 1δ=0 ×
(
1− 1 + ϵD

ln(N)

)
.

As the bound of [Acharya et al., 2021e, Theorem 2]

max
i∈{1,...,N}

PX∼Pi,M (Ψ (M(X)) ̸= i) ≥ 1δ=0 × 0.9×min

{
1,

N

e10ϵD

}
, (3.13)

the lower bound is Ω(1) in the regime D = o(ln(N)/ϵ). In particular, both inequalities are
expected to yield similar qualitative results for a broad range of applications. However,
the quantitative consequences of Theorem 3.2.3 can again be orders of magnitude better.
Another improvement of our result is that, contrary to previous work, our bound allows to
handle asymmetric hypotheses. Indeed, prior work is based on a uniform upper-bound on
the family (TV (pi,pj))i,j whereas our work uses only their mean value. As an illustration,
if a statistician was to discriminate between a set of N distributions with for instance N−1
distributions close to each other in total variation distance and one outlier far from all
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the others, the results of [Acharya et al., 2021e] only tell that the problem will be at least
as hard as discriminating distributions that are far from one another (which is easy). In
contrast, our Theorem 3.2.3 shows that the true testing difficulty lies in discriminating the
distributions that are similar (the outlier vanishes), thus resulting in lower bounds that
are less over-optimistic.

3.2.4 Concentrated differential privacy with many hypotheses

Similarly, we obtain results for multiple hypotheses under ρ-zCDP.

Theorem 3.2.4 (Multiple Distributional Tests for ρ-zCDP). If a randomized mechanism
M satisfies ρ-zCDP, then for any test function Ψ : codom (M) → {1, . . . , N}, any family
of probability distributions (Pi)i∈{1,...,N} on X n and any Q such that Pi ≪ Q for all i,

max
i∈{1,...,N}

PX∼Pi,M (Ψ (M(X)) ̸= i) ≥ max

{
1−

1 + 1
N

∑N
i=1KL (Pi∥Q)

ln(N)
,

1−
1 + n2ρ

N2

∑
i,j

2TV(Pi,Pj)
1+TV(Pi,Pj)

ln(N)

 .

Furthermore, when P1 = p⊗n
1 , . . . , PN = p⊗n

N are product distributions,

max
i∈{1,...,N}

PX∼Pi,M (Ψ (M(X)) ̸= i) ≥ 1−
1 + n2ρ

N2

∑
i,j

1
n

2TV(pi,pj)
1+TV(pi,pj)

+
(

2TV(pi,pj)
1+TV(pi,pj)

)2
ln(N)

.

The proof is to be found in Section 3.4.2. This result recovers a recently published result in
[Kamath et al., 2022], with the advantage again of better handling asymmetrical hypothe-
ses (i.e. with possible outliers). Another interesting observation is that our framework
unifies the proofs of lower bounds under a general technique based on multiple marginals
coupling and similarity functions.

3.3 From Testing to a Transport Problem

This section presents our main theorem, which states that finding lower bounds on (3.11)
can be done by solving a transport problem [Santambrogio, 2016, Peyré & Cuturi, 2019].
In some sense, this view is close to the coupling of [Acharya et al., 2021e] which considers
couplings between pairs of marginals and controls the variations of the hamming distance
compared to its expected value with Markov’s inequality. However, the high level view
that our result allows to obtain numerically sharper results because it allows to skip ap-
proximations such as those involving Jensen or Markov inequalities and more importantly,
it allows handling divergence-based definitions of privacy which do not fit in the framework
of [Acharya et al., 2021e]. Furthermore, a key difference is that the theory of [Acharya
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et al., 2021e] only requires to build couplings between pairs of marginals, whereas our
theory requires building couplings between all the marginals at the same time. This is
both a drawback because it requires to use more complex coupling constructions, and an
advantage because it allows to give results that are easier to use when there are more than
two hypotheses.

Our analysis is based on the notion of similarity functions.

Definition 3.3.1. Given a condition C, we say that a similarity function sC : (X n)N → R
is admissible for C if for any mechanism M : X n → codom (M) that satisfies C, for any
test function Ψ : codom (M) → {1, . . . , N}, and for any X1, . . . ,XN ∈ X n, the following
inequality holds:

1

N

N∑
i=1

PM (Ψ (M (Xi)) ̸= i) ≥ sC (X1, . . . ,XN ) .

Theorem 3.3.2. If a randomized mechanism M : X n → codom (M) satisfies the privacy
condition C, for any N ≥ 2, if sC : (X n)N → R is an admissible similarity function for C,
for any distributions P1, . . . ,PN over X n we have

inf
Ψ:codom(M)→{1,...,N}

max
i∈{1,...,N}

PX∼Pi,M (Ψ (M (X)) ̸= i)

≥ sup
Q∈Π(P1,...,PN )

∫
(Xn)N

sC (X1, . . . ,XN ) dQ (X1, . . . ,XN ) .
(3.14)

Proof. Given a test function Ψ : codom (M) → {1, . . . , N} and a coupling Q ∈ Π(P1, . . . ,PN ),

max
i∈{1,...,N}

PX∼Pi,M (Ψ (M (X)) ̸= i) ≥ 1

N

N∑
i=1

PX∼Pi,M (Ψ (M (X)) ̸= i)

=

∫
(Xn)N

1

N

N∑
i=1

PM (Ψ (M (Xi)) ̸= i) dQ (X1, . . . ,XN )

≥
∫
(Xn)N

sC (X1, . . . ,XN ) dQ (X1, . . . ,XN ) .

In particular, under (ϵ, δ)-DP, similarity functions are built using a technique that we
call anchoring which will be introduced in Section 3.3.1, where the proof of the following
theorem is given.
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Theorem 3.3.3 (Admissible similarity functions for (ϵ, δ)-DP). When C is (ϵ, δ)-differential
privacy, the following approaches yield admissible similarity functions.

• Global anchoring. Consider any anchor function Λ : (X n)N → X n, and define
the admissible similarity function as

sC (X1, . . . ,XN ) :=
N − 1

N
e−ϵmaxi(dham(Xi,Λ(X1,...,XN )))

− e−ϵδmax
i

(dham (Xi,Λ (X1, . . . ,XN ))) .

• Projection anchoring. In particular, for any j ∈ {1, . . . , N}, consider the projec-
tion anchor Λj (X1, . . . ,XN ) := Xj, and define the corresponding admissible simi-
larity function

sC (X1, . . . ,XN ) :=
N − 1

N
e−ϵmaxi(dham(Xi,Xj)) − e−ϵδmax

i
(dham (Xi,Xj))

• (ϵ, δ)-DP Le Cam matching. When N = 2, there is a global anchor function
yielding the admissible similarity function

sC (X1,X2) :=
1

2
e−ϵ⌈dham(X1,X2)/2⌉ − e−ϵδ ⌈dham (X1,X2) /2⌉ .

• Pairwise anchoring. An admissible similarity function is

sC (X1, . . . ,XN ) :=
1

2N2

N∑
i=1

N∑
j=1

e−ϵ⌈dham(Xi,Xj)/2⌉ − 2e−ϵδ ⌈dham (Xi,Xj) /2⌉ .

• (ϵ, 0)-DP Fano matching. When δ = 0, an admissible similarity function is

sC (X1, . . . ,XN ) := 1−
1 + ϵ

N2

∑N
i=1

∑N
j=1 dham (Xi,Xj)

ln(N)
.

When working under ρ-zCDP, admissible similarity functions are built using classical
information theoretic inequalities directly. It can be seen as a form of anchoring on the
distributions rather than on the observed random variables (i.e. all the distributions are
compared to a common distribution directly that is not necessarily a pushforward by M).
The following result is proved in Section 3.3.2.
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Theorem 3.3.4 (Admissible similarity functions for ρ-zCDP). When C is the ρ-zero
concentrated-differential privacy, the two following quantities are admissible similarity
functions:

• ρ-zCDP Fano matching

sC (X1, . . . ,XN ) := 1−
1 + ρ

N2

∑N
i=1

∑N
j=1 dham (Xi,Xj)

2

ln(N)
.

• ρ-zCDP Le Cam matching When N = 2

sC (X1,X2) :=
1

2

(
1−

√
ρ/2dham (X1,X2)

)
.

Note that similarity functions can also be easily built for the more general notion of
(ξ, ρ) - concentrated differential privacy by swapping the group privacy property for its
correct variant (see [Bun & Steinke, 2016]). We do not include the results about (ξ, ρ)-
concentrated differential in this section because our objective is more to illustrate the
versatility of our framework rather than to build a complete catalogue.

3.3.1 The case of (ϵ, δ)-differential privacy

(ϵ, δ)-differential privacy allows to compare conditional distributions for datasets depend-
ing on their Hamming distance. In particular, characterizing the pushforward of a dis-
tribution by a private mechanism in not an easy task. We overtake that difficulty with
a technique that we call anchoring. Informally, an anchor is a function that, given mul-
tiple datasets, decides a common dataset to exploit so called group privacy of (ϵ, δ)-DP
mechanisms and to give numerically tractable results.

Fact 3.3.5 ((ϵ, δ)-DP Group Privacy). Given ϵ ∈ R+∗ and δ ∈ [0, 1), if a randomized
mechanism M : X n → codom (M) is (ϵ, δ)-differentially private, then, for all X,Y ∈ X n

and all measurable S ⊆ codom (M), we have

PM (M(X) ∈ S) ≤ eϵdham(X,Y)PM (M(Y) ∈ S) + δdham (X,Y) eϵ(dham(X,Y)−1) .

Global Anchoring

The first type of anchor is a global anchor, where all the marginal datasets are compared
to the same one.
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Lemma 3.3.6 (Global Anchoring). Consider an (ϵ, δ)-DP mechanism M , a test function
Ψ : codom (M) → {1, . . . , N}, and datasets X1, . . . ,XN ∈ X n. For any anchor function
Λ : (X n)N → X n, we have

1

N

N∑
i=1

PM (Ψ (M (Xi)) ̸= i) ≥ N − 1

N
e−ϵmaxi dham(Xi,Λ) − e−ϵδmax

i
dham (Xi,Λ)

where Λ is a shorthand for Λ (X1, . . . ,XN ).

Proof. By the group privacy property (see Fact 3.3.5), we have for each i ∈ {1, . . . , N}

PM (Ψ (M (Xi)) ̸= i) ≥ e−ϵdham(Xi,Λ)PM (Ψ (M (Λ)) ̸= i)− e−ϵδdham (Xi,Λ) .

As a result,

1

N

N∑
i=1

PM (Ψ (M (Xi)) ̸= i)

≥ 1

N

(
N∑
i=1

e−ϵdham(Xi,Λ)PM (Ψ (M (Λ)) ̸= i)− e−ϵδdham (Xi,Λ)

)

≥ 1

N

(
e−ϵmaxi dham(Xi,Λ)

N∑
i=1

PM (Ψ (M (Λ)) ̸= i)

−Ne−ϵδmax
i

dham (Xi,Λ)

)
=

N − 1

N
e−ϵmaxi dham(Xi,Λ) − e−ϵδmax

i
dham (Xi,Λ) ,

where we used
∑N

i=1 PM (Ψ (M (Λ)) ̸= i) =
∑N

i=1(1−PM (Ψ (M (Λ)) = i)) = N − 1 to get
the last equality.

Remark 3.3.7 ((ϵ, δ)-DP Le Cam Matching). When we have to find an anchor between
only two datasets, we can design it optimally. Considering any X1,X2 ∈ X n, by definition
these datasets disagree on exactly dham (X1,X2) entries. The projection anchor Λ =
Λj , j ∈ {1, 2} consists in anchoring both X1 and X2 to Xj . Consequently, we have
max {dham (X1,Λ) , dham (X2,Λ)} = dham (X1,X2). If instead we allocate in the anchor Λ
half of the disagreeing components to X1 and the other half to X2, we get an anchor that
satisfies

max {dham (X1,Λ) , dham (X2,Λ)} = ⌈dham (X1,X2) /2⌉ .
Furthermore, one can check that no anchor can achieve a better bound. With this new
anchor, the direct application of Lemma 3.3.6 yields

1

2

(
PM (Ψ (M (X1)) ̸= 1) + PM (Ψ (M (X2)) ̸= 2)

)
≥ 1

2
e−ϵ⌈dham(X1,X2)/2⌉ − e−ϵδ ⌈dham (X1,X2) /2⌉ .

(3.15)



72

Pairwise Anchoring

The fact that one needs to control the maximum of the hamming distances between a
single anchor and the marginals might be prohibitive. We give here a symmetrized version
that only requires to control the hamming distances between the pairs of marginals.

Lemma 3.3.8 (Pairwise Anchoring). Under the assumptions of Lemma 3.3.6 we have

1

N

N∑
i=1

PM (Ψ (M (Xi)) ̸= i)

≥ 1

2N2

N∑
i=1

N∑
j=1

(
e−ϵ⌈dham(Xi,Xj)/2⌉ − 2e−ϵδ ⌈dham (Xi,Xj) /2⌉

)
.

Proof. First we observe that

1

N

N∑
i=1

PM (Ψ (M (Xi)) ̸= i)

=
1

2N2

N∑
i=1

N∑
j=1

(PM (Ψ (M (Xi)) ̸= i) + PM (Ψ (M (Xj)) ̸= j)) .

We then consider the two-point anchor defined in Remark 3.3.7 and get using (3.15) that
for every 1 ≤ i, j ≤ N ,

PM (Ψ (M (Xi)) ̸= i) + PM (Ψ (M (Xj)) ̸= j)

≥ e−ϵ⌈dham(Xi,Xj)/2⌉ − 2e−ϵδ ⌈dham (Xi,Xj) /2⌉ .

The special case of (ϵ, 0)-DP

The following lemma yields a bound on the KL divergence between the output distributions
of an (ϵ, 0)-DP mechanism applied to different datasets.

Lemma 3.3.9. If a randomized mechanism M : X n → codom (M) is (ϵ, 0)-DP, then

∀X,Y ∈ X n,
dPM(X)

dPM(Y)
≤ edham(X,Y)ϵ, PM(X) − almost surely ,

where
dPM(X)

dPM(Y)
is the Radon-Nikodym density of the distribution of the output of the mech-

anism with input X, with respect to the distribution of the output of the mechanism with
input Y. As a consequence,

∀X,Y ∈ X n, KL (M(X)∥M(Y)) ≤ ϵdham (X,Y) .
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Proof. By the group privacy property (see Fact 3.3.5), it is clear that the measurable sets
of null measure for PM(X) are exactly the measurable sets of null measure for PM(Y). In

particular, PM(X) ≪ PM(Y) and hence p :=
dPM(X)

dPM(Y)
exists. By group privacy property

again for each measurable set S ⊆ codom (M) we have

PM(Y)(S) ≥ e−ϵdham(X,Y)PM(X)(S)

= e−ϵdham(X,Y)

∫
S
pdPM(Y)

≥ e−ϵdham(X,Y)

(
inf
S

p

)
PM(Y)(S) .

So, for each measurable set S,

PM(Y)(S) > 0 =⇒ inf
S

p ≤ edham(X,Y)ϵ .

Furthermore, p is measurable for the Borel σ-algebra of R. In particular, for any n ∈ N∗,
p−1

(
[edham(X,Y)ϵ + 1

n ,+∞)
)
is measurable. As a consequence,

∀n ∈ N∗, PM(Y)

(
p−1

([
edham(X,Y)ϵ + 1

n ,+∞
)))

= 0

and then

PM(Y)

(
p−1

((
edham(X,Y)ϵ,+∞

)))
= PM(Y)

(
p−1

(
∪n∈N∗

[
edham(X,Y)ϵ + 1

n ,+∞
)))

= PM(Y)

(
∪n∈N∗p

−1
([

edham(X,Y)ϵ + 1
n ,+∞

)))
≤
∑
n∈N∗

PM(Y)

(
p−1

([
edham(X,Y)ϵ + 1

n ,+∞
)))

= 0

which proves that
dPM(X)

dPM(Y)
≤ edham(X,Y)ϵ, PM(Y)-almost surely, which is also the case PM(X)-

almost surely, thanks to the first remark of the proof. The result about the KL divergence
is a direct consequence of this inequality.

In particular, this result allows us to apply Fano’s lemma in order to obtain a similarity
function that is based on anchoring the conditional distributions rather than the marginals.
I.e., given, X1, . . . ,XN ∈ X n, PM(X1), . . . ,PM(XN ) are anchored to 1

N

∑N
j=1 PM(Xj).

Lemma 3.3.10 ((ϵ, 0)-DP Fano Matching). Let X1, . . . ,XN ∈ X n and Ψ : codom (M) →
{1, . . . , N},

1

N

N∑
i=1

PM (Ψ (M (Xi)) ̸= i) ≥ 1−
1 + ϵ

N2

∑N
i=1

∑N
j=1 dham (Xi,Xj)

ln(N)
.
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Proof. By Fano’s lemma (see Fact 3.1.2),

1

N

N∑
i=1

PM (Ψ (M (Xi)) ̸= i) ≥ 1−
1 + 1

N

∑N
i=1KL

(
PM(Xi)

∥∥ 1
N

∑N
j=1 PM(Xj)

)
ln(N)

.

By convexity of the KL divergence with respect to its second argument (see [van Erven &
Harremoës, 2014, Theorem 12]), it follows that

1

N

N∑
i=1

PM (Ψ (M (Xi)) ̸= i) ≥ 1−
1 + 1

N2

∑N
i=1

∑N
j=1KL

(
PM(Xi)

∥∥PM(Xj)

)
ln(N)

. (3.16)

An application of Lemma 3.3.9 concludes the proof.

The bound of Lemma 3.3.9 on the KL divergence between the output distributions works
well because the product ϵdham (X,Y) is typically high in the chosen applications. When
it is small, better control on the KL divergence is possible. For instance, [Dwork et al.,
2010] proves the bound

KL (M(X)∥M(Y)) ≤ ϵdham (X,Y)
(
eϵdham(X,Y) − 1

)
,

which was later improved in [Dwork & Rothblum, 2016] to

KL (M(X)∥M(Y)) ≤ 1

2
ϵdham (X,Y)

(
eϵdham(X,Y) − 1

)
.

Those two bounds are problematic when the product ϵdham (X,Y) is too high. This was
later improved in [Bun & Steinke, 2016] to

KL (M(X)∥M(Y)) ≤ 1

2
(ϵdham (X,Y))2 ,

but it is still worse than the version that we use for high values of ϵdham (X,Y). The best
of both worlds is achieved in [He et al., 2021] with

KL (M(X)∥M(Y)) ≤ ϵdham (X,Y)
eϵdham(X,Y) − 1

eϵdham(X,Y) + 1
.

Again, when the value ϵdham (X,Y) is typically high, there is no need to come to this
degree of precision. However, in some settings, for instance when ϵ is very small or when
the distributions to test are very close, this last expression can lead to better results than
the one that we used.

3.3.2 The case of ρ-zero concentrated differential privacy

For ρ-zero concentrated differential privacy, the fact that the definition uses information
theoretic quantities makes things easier than with the traditional definition of privacy. In
particular, the anchoring technique happens implicitly on the distributions rather than on
the marginals (similarly as with the (ϵ, 0)-DP case). Again, the notion of group privacy is
central in our proofs.
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Fact 3.3.11 (ρ-zCDP Group Privacy [Bun & Steinke, 2016, Proposition 27]). Let ρ ∈ R+∗,
if a randomized mechanism M : X n → codom (M) is ρ-zero concentrated differentially
private, then, for any X,Y ∈ X n and for any α ∈ (1,∞),

Dα (M(X)∥M(Y)) ≤ ρdham (X,Y)2 α .

Lemma 3.3.12 (ρ-zCDP Le Cam Matching). Consider a ρ-zCDP mechanism M, a test
function Ψ : codom (M) → {1, 2}, and two datasets X1,X2 ∈ X n. We have

1

2

2∑
i=1

PM (Ψ (M (Xi)) ̸= i) ≥ 1

2

(
1−

√
ρ/2dham (X1,X2)

)
.

Proof. By the Neyman-Pearson lemma (see Fact 3.1.1),

1

2

2∑
i=1

PM (Ψ (M (Xi)) ̸= i) ≥ 1

2
(1− TV (M(X1),M(X2))) .

By Pinsker’s lemma (see [Tsybakov, 2009, Lemma 2.5]), TV (P,Q) ≤
√
KL (P∥Q) /2, and

hence
1

2

2∑
i=1

PM (Ψ (M (Xi)) ̸= i) ≥ 1

2

(
1−

√
KL (M(X1)∥M(X2)) /2

)
=

1

2

(
1−

√
D1 (M(X1)∥M(X2)) /2

)
.

Since the Renyi divergence between a given pair of distributions Dα ( .∥ .) is non-decreasing
in α (see [van Erven & Harremoës, 2014, Theorem 3]), we obtain for any α ∈ (1,+∞), s

1

2

2∑
i=1

PM (Ψ (M (Xi)) ̸= i) ≥ 1

2

(
1−

√
Dα (M(X1)∥M(X2)) /2

)
.

Eventually, we obtain using group privacy (see Fact 3.3.11) that

1

2

2∑
i=1

PM (Ψ (M (Xi)) ̸= i) ≥ 1

2

(
1−

√
ρα/2dham (X1,X2)

)
.

The supremum of the right hand side over α ∈ (1,+∞) yields the result.

We also obtain a zero concentrated DP version of the Fano matching method that we
introduced previously for (ϵ, 0)-DP.
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Lemma 3.3.13 (ρ-zCDP Fano Matching). Consider a ρ-zCDP mechanism M, a test
function Ψ := codom (M) → {1, . . . , N}, and datasets X1, . . . ,XN ∈ X n. We have

1

N

N∑
i=1

PM (Ψ (M (Xi)) ̸= i) ≥ 1−
1 + ρ

N2

∑N
i=1

∑N
j=1 dham (Xi,Xj)

2

ln(N)
.

Proof. By the inequality (3.16) established in the proof of Lemma 3.3.10, and using again
the fact that Dα ( .∥ .) is non-decreasing in α (see [van Erven & Harremoës, 2014, Theorem
3]), as well as the group privacy property (see Fact 3.3.11), we obtain that for any α ∈
(1,+∞),

1

N

N∑
i=1

PM (Ψ (M (Xi)) ̸= i) ≥ 1−
1 + 1

N2

∑N
i=1

∑N
j=1KL

(
PM(Xi)

∥∥PM(Xj)

)
ln(N)

≥ 1−
1 + 1

N2

∑N
i=1

∑N
j=1Dα

(
PM(Xi)

∥∥PM(Xj)

)
ln(N)

.

≥ 1−
1 + ρα

N2

∑N
i=1

∑N
j=1 dham (Xi,Xj)

2

ln(N)
.

The supremum of the right-hand side over α ∈ (1,+∞) yields the result.

3.4 Lower-bounds via Couplings

The transport problem (3.12) can be studied either theoretically [Santambrogio, 2016]
or numerically [Peyré & Cuturi, 2019] in order to give the best lower bounds that our
technique permits. However, identifying an optimal coupling is out of the scope of this
section. We here provide coupling constructions that are sufficient to exhibit useful lower
bounds.

3.4.1 Near optimal couplings

Most of the similarity functions expressed in Theorem 3.3.2 yield lower bounds that are
based on or further lower-bounded by expressions involving the quantities

E(X1,...,XN )∼Q (g (dham (Xi,Xj)))

for a coupling Q ∈ Π(P1, . . . ,PN ) where g is a fixed non-increasing function. Hence, finding
reasonably good lower bounds can be achieved by finding a coupling that minimizes the
expected pairwise Hamming distance between the marginals.

As a proxy, we first aim at maximizing the probabilities of pairwise equalities between
all the marginals simultaneously. We then control the Hamming distance by observing
that when Xi = Xj , dham (Xi,Xj) = 0 and otherwise, dham (Xi,Xj) ≤ n. It is known
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[Kallenberg, 1993] that if Q ∈ Π(P1, . . . ,PN ), the disagreement probabilities (i.e. the
probability that two marginal random variables are not equal) between the marginals
satisfy

∀i, j, TV (Pi,Pj) ≤ P(X1,...,XN )∼Q (Xi ̸= Xj) . (3.17)

A natural question is whether this lower bound is achievable by a coupling simultaneously
for all pairs of marginals. When there are only two marginals (i.e. N = 2), a classical
construction (see [Kallenberg, 1993]) answers this question positively:

Fact 3.4.1 (Maximal coupling). Let P1 and P2 be two probability distributions on X n

that share the same σ-algebra. There exists a coupling π∞(P1,P2) ∈ Π(P1,P2) (which is
a distribution on (X n)2), called a maximal coupling, such that

P(X1,X2)∼π∞(P1,P2)(X1 ̸= X2) = TV (P1,P2) ,

∀S measurable , P(X1,X2)∼π∞(P1,P2)(X1 ∈ S) = P1(X1 ∈ S) ,

∀S measurable , P(X1,X2)∼π∞(P1,P2)(X2 ∈ S) = P2(X2 ∈ S) .

This construction unfortunately does not generically scale to more than two marginals,
even though on simple examples, couplings can be built that still match the lower bound
(3.17) for any pair of marginals.

Example 3.4.2 (Bernoulli optimal coupling). Given Pi = B(pi), 1 ≤ i ≤ N a family
of Bernoulli distributions and U ∼ U([0, 1]) a uniformly distributed variable on [0, 1],
the random vector (X1, . . . , XN ) defined by Xi := 1[0,pi)(U) is distributed according to a
coupling Q ∈ Π(P1, . . . ,PN ), and for every i, j

P(Xi ̸= Xj) = |pi − pj | = TV (B(pi),B(pj)) .

There are however examples for which it is provably impossible to build couplings that
match the lower bound (3.17) for any pair of marginals.

Example 3.4.3 (A counterexample). Let X1 ∼ U({−1, 0}), X2 ∼ U({0, 1}) and X3 ∼
U({1,−1}), and let P be a coupling between X1, X2 and X3. We have that,

1X1 ̸=X2 + 1X2 ̸=X3 + 1X3 ̸=X1 ≥ 2

and as a consequence on P,

P(X1 ̸= X2)+P(X2 ̸= X3) + P(X3 ̸= X1) ≥ 2

> TV (X1, X2) + TV (X2, X3) + TV (X3, X1) ,

which proves that at least one of the disagreement probabilities is strictly bigger than the
corresponding total variation.
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Recent constructions based on Poisson point processes allow in general, for any number
of marginals N , to match the lower bound (3.17) up to a factor 2.

Fact 3.4.4 (Near-optimal coupling of multiple distributions [Angel & Spinka, 2021]). Let
P1, . . . ,PN be N distributions on the same measurable set. There exists a coupling
Q ∈ Π(P1, . . . ,PN ) such that

∀i, j ∈ {1, . . . , N} , P(X1,...,XN )∼Q (Xi ̸= Xj) ≤
2TV (Pi,Pj)

1 + TV (Pi,Pj)
.

In the rest of this section, the notation π∞(P1, . . . ,PN ) refers to a coupling that satisfies
this condition. When there are only two distributions, it refers to the construction of
Fact 3.4.1. This factor 2 is not a problem for minimax theory, since it is a common
practice to overlook the constants by looking at rates of convergence. However, for some
more precise applications, working on more specific couplings may improve our results.
With either coupling constructions, the lower bounds of Theorem 3.3.2 can be controlled
with the following straighforward lemma:

Lemma 3.4.5. Let P1, . . . ,PN be N distributions on X n and Q ∈ Π(P1, . . . ,PN ). Con-
sider 1 ≤ i, j ≤ N and denote ∆i,j := P(X1,...,XN )∼Q (Xi ̸= Xj). We have

E(X1,...,XN )∼Q (dham (Xi,Xj)) ≤ n∆i,j

E(X1,...,XN )∼Q

(
dham (Xi,Xj)

2
)
≤ n2∆i,j

E(X1,...,XN )∼Q

(
e−ϵdham(Xi,Xj)

)
≥ 1− (1− e−nϵ)∆i,j .

Note that ∆i,j directly depends on the coupling construction, but that with any of the
ones presented above, we always have ∀i, j, ∆i,j ≤ 2TV (Pi,Pj).

When the distributions that we are trying to couple are product distributions (i.e. P1 =
p⊗n
1 , . . . ,PN = p⊗n

N ), we can notice that any coupling q ∈ Π(p1, . . . ,pN ) induces a cou-
pling q⊗n ∈ Π(P1, . . . ,PN ). Under this coupling, the Hamming distances between the
pairs of marginals follow binomial distributions. For the rest of this section, we define the
product (near) optimal coupling

π⊗(p⊗n
1 , . . . ,p⊗n

N ) := π∞(p1, . . . ,pN )⊗n .

Straightforward computations yield the following lemma.
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Lemma 3.4.6. Let P1 = p⊗n
1 , . . . ,PN = p⊗n

N be N product distributions on X n and
q ∈ Π(p1, . . . ,
pN ). Consider any 1 ≤ i, j ≤ N and denote4 δi,j := P(X1,...,XN )∼q (Xi ̸= Xj). We have:

E(X1,...,XN )∼q⊗n (dham (Xi,Xj)) = nδi,j

E(X1,...,XN )∼q⊗n

(
dham (Xi,Xj)

2
)
= n2δ2i,j + nδi,j(1− δi,j) ≤ n2δ2i,j + nδi,j

E(X1,...,XN )∼q⊗n

(
e−ϵdham(Xi,Xj)

)
=
(
1− (1− e−ϵ)δi,j

)n ≥ e−nϵδi,j .

Note that δi,j directly depends on the coupling construction, but that with any of the ones
presented above (applied to p1, . . . ,pN ), we always have ∀i, j, δi,j ≤ 2TV (pi,pj).

Each of the coupling constructions presented above has its own merits. They will all prove
to be useful in the sequel.

3.4.2 Quantitative lower bounds

In this subsection, we finally put the pieces together in order to obtain quantitative lower
bounds on (3.11). This subsection serves as a joint proof for Theorem 3.2.1, Theorem 3.2.2,
Theorem 3.2.3 and Theorem 3.2.4.

Immediate results on the private minimax risk. A usual estimator (i.e. a measur-
able function of the samples) θ̂ may be viewed as randomized and almost surely constant
to θ̂ (i.e. ∀X,M(X) := θ̂(X) almost surely). As a result, it is clear that the private mini-
max risk is always bigger than the non-private one. For distributional tests, the result is
not so obvious, and we give the following general purpose lemma that ensures that Fano’s
and Le Cam’s regular inequalities still hold.

Lemma 3.4.7. Let (Pi)i∈{1,...,N} be a family of probability distributions on X n and let
M : X n → codom (M) be a randomized mechanism,

inf
Ψ:codom(M)→{1,...,N}

N∑
i=1

PX∼Pi,M (Ψ (M(X)) ̸= i) ≥ inf
Ψ:XN→{1,...,N}

N∑
i=1

PX∼Pi (Ψ (X) ̸= i) .

In particular, the inequalities in Le Cam’s lemma (see Fact 3.1.1) or Fano’s lemma (see
Fact 3.1.2) still hold when the test function Ψ is fed with an input M(X) ∈ codom (M)
instead of an input X ∈ X n.

4not to be confused with the Kronecker symbol.
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Proof. Let Ψ : codom (M) → {1, . . . , N} be a test function. Then,

N∑
i=1

PX∼Pi,M (Ψ (M(X)) ̸= i) =
N∑
i=1

∫
PX∼Pi (Ψ (M(X)) ̸= i) dPM

=

∫ N∑
i=1

PX∼Pi ((Ψ ◦M) (X) ̸= i) dPM

≥
∫

inf
Ψ′:XN→{1,...,N}

N∑
i=1

PX∼Pi

(
Ψ′ (X) ̸= i

)
dPM

= inf
Ψ′:XN→{1,...,N}

N∑
i=1

PX∼Pi

(
Ψ′ (X) ̸= i

)
.

Taking the infimum over Ψ : codom (M) → {1, . . . , N} concludes the proof.

The case of two hypotheses (N = 2). At first, we look at the implications of couplings
between pairs of distributions. Given P1 and P2 distributions on X n, a direct implication
of Lemma 3.4.7 and of Le Cam’s lemma (see Fact 3.1.1) is that independently on the
privacy condition C imposed on M,

max
i∈{1,2}

PX∼Pi,M (Ψ (M (X)) ̸= i) ≥ 1

2
(1− TV (P1,P2)) .

This is the first ingredient in the proof of Theorem 3.2.1 and Theorem 3.2.2 that we now
detail.

Proof of Theorem 3.2.1. When M is (ϵ, δ)-DP, the generic bound of Theorem 3.3.2 ap-
plied with the Le Cam matching technique described in Theorem 3.3.3 and the coupling
π∞(P1,P2) leads to

max
i∈{1,2}

PX∼Pi,M (Ψ (M (X)) ̸= i) ≥ 1

2
E(X1,X2)∼π∞(P1,P2)

(
e−ϵdham(X1,X2)

)
− e−ϵδE(X1,X2)∼π∞(P1,P2) (dham (X1,X2))

Lemma 3.4.5
≥ 1

2

(
1− (1− e−nϵ)∆1,2

)
− e−ϵn∆1,2

=
1

2

(
1−

(
1− e−nϵ + 2ne−ϵδ

)
TV (P1,P2)

)
.

where in the second line we denote ∆1,2 := P(X1,X2)∼π∞(P1,P2) (X1 ̸= X2) and in the
last line we use that ∆1,2 = TV (P1,P2) with the chosen coupling. Similarly, in the
case of product distributions, with the same matching but π⊗(p⊗n

1 ,p⊗n
2 ) we obtain as a

consequence of Lemma 3.4.6

max
i∈{1,2}

PX∼Pi,M (Ψ (M (X)) ̸= i)

≥ 1

2

((
1−

(
1− e−ϵ

)
TV (p1,p2)

)n − 2ne−ϵδTV (p1,p2)
)
.
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Proof of Theorem 3.2.2. When M is ρ-DP, the generic bound of Theorem 3.3.2 applied
with the Le Cammatching technique described in Theorem 3.3.4 and the coupling π∞(P1,P2)
leads to

max
i∈{1,2}

PX∼Pi,M (Ψ (M (X)) ̸= i) ≥ 1

2

(
1−

√
ρ/2E(X1,X2)∼π∞(P1,P2) (dham (X1,X2))

)
Lemma 3.4.5

≥ 1

2

(
1−

√
ρ/2δn∆1,2

)
=

1

2

(
1− n

√
ρ/2TV (P1,P2)

)
.

where in the second line we denote ∆1,2 := P(X1,X2)∼π∞(P1,P2) (X1 ̸= X2) and in the
last line we use that ∆1,2 = TV (P1,P2) with the chosen coupling. Similarly, in the
case of product distributions, with the same matching but π⊗(p⊗n

1 ,p⊗n
2 ) we obtain as a

consequence of Lemma 3.4.6

max
i∈{1,2}

PX∼Pi,M (Ψ (M (X)) ̸= i) ≥ 1

2

(
1− n

√
ρ/2TV (p1,p2)

)
.

The case of arbitrary many hypotheses (N ≥ 2). Given P1, . . . ,PN distributions
on X n, a direct implication of Lemma 3.4.7 and of Fano’s lemma (see Fact 3.1.2) is that
independently on the privacy condition C imposed on M, for any Q such that Pi ≪ Q for
all i,

max
i∈{1,...,N}

PX∼Pi,M (Ψ (M(X)) ̸= i) ≥ 1−
1 + 1

N

∑N
i=1KL (Pi∥Q)

ln(N)
.

Again, this serves as the first ingredient of the proof of Theorem 3.2.3 and Theorem 3.2.4
that we now detail.

Proof of Theorem 3.2.3. When M is (ϵ, δ)-DP, the generic bound of Theorem 3.3.2 ap-
plied with the pairwise anchoring technique described in Theorem 3.3.3 and the coupling
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π∞(P1, . . . ,PN ) leads to (since ⌈n/2⌉ ≤ n for each integer n ≥ 0)

max
i∈{1,...,N}

PX∼Pi,M (Ψ (M(X)) ̸= i)

≥ 1

2N2
E(X1,...,XN )∼π∞(P1,...,PN )

( N∑
i=1

N∑
j=1

e−ϵdham(Xi,Xj)

− 2e−ϵδdham (Xi,Xj)
)

Lemma 3.4.5
≥ 1

2N2

( N∑
i=1

N∑
j=1

(
1−

(
1− e−nϵ

)
∆i,j

)
− 2e−ϵδn∆i,j

)
≥ 1

2
− 1− e−nϵ + 2ne−ϵδ

2N2

∑
i,j

2TV (Pi,Pj)

1 + TV (Pi,Pj)

where in the second line we denote ∆i,j := P(X1,...,XN )∼π∞(P1,...,PN ) (Xi ̸= Xj) and in the

last line we use that ∆i,j ≤ 2TV(Pi,Pj)
1+TV(Pi,Pj)

with the chosen coupling. Similarly, in the case of

product distributions, with the same matching but the product coupling π⊗(p⊗n
1 , . . . ,p⊗n

N )
we obtain as a consequence of Lemma 3.4.6

max
i∈{1,...,N}

PX∼Pi,M (Ψ (M(X)) ̸= i)

≥ 1

2N2

∑
i,j

((
1− (1− e−ϵ)

2TV (pi,pj)

1 + TV (pi,pj)

)n

−2ne−ϵδ
2TV (pi,pj)

1 + TV (pi,pj)

)
.

When δ = 0, the generic bound of Theorem 3.3.2 applied with the Fano matching technique
described in Theorem 3.3.3 and the coupling π∞(P1, . . . ,PN ) leads to

max
i∈{1,...,N}

PX∼Pi,M (Ψ (M(X)) ̸= i)

≥ 1−
1 + ϵ

N2

∑N
i=1

∑N
j=1 E(X1,...,XN )∼π∞(P1,...,PN ) (dham (Xi,Xj))

lnN

Lemma 3.4.5
≥ 1−

1 + ϵ
N2

∑N
i=1

∑N
j=1 n∆i,j

lnN

≥ 1−
1 + nϵ

N2

∑N
i=1

∑N
j=1

2TV(Pi,Pj)
1+TV(Pi,Pj)

lnN

where in the second line we denote ∆i,j := P(X1,...,XN )∼π∞(P1,...,PN ) (Xi ̸= Xj) and in the

last line we use that ∆i,j ≤ 2TV(Pi,Pj)
1+TV(Pi,Pj)

with the chosen coupling. Similarly, in the case

of product distributions, with the same matching but the coupling π⊗(p⊗n
1 , . . . ,p⊗n

N ) we
obtain as a consequence of Lemma 3.4.6

max
i∈{1,...,N}

PX∼Pi,M (Ψ (M(X)) ̸= i) ≥ 1−
1 + nϵ

N2

∑N
i=1

∑N
j=1

2TV(pi,pj)
1+TV(pi,pj)

lnN
.
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Proof of Theorem 3.2.4. When M is ρ-zCDP, the generic bound of Theorem 3.3.2 ap-
plied with the Fano matching technique described in Theorem 3.3.4 and the coupling
π∞(P1, . . . ,PN ) leads to

max
i∈{1,...,N}

PX∼Pi,M (Ψ (M(X)) ̸= i)

≥ 1−
1 + ρ

N2

∑N
i=1

∑N
j=1 E(X1,...,XN )∼π∞(P1,...,PN )

(
dham (Xi,Xj)

2
)

lnN

Lemma 3.4.5
≥ 1−

1 + ρ
N2

∑N
i=1

∑N
j=1 n

2∆i,j

lnN

≥ 1−
1 + n2ρ

N2

∑N
i=1

∑N
j=1

2TV(Pi,Pj)
1+TV(Pi,Pj)

lnN

where in the second line we denote ∆i,j := P(X1,...,XN )∼π∞(P1,...,PN ) (Xi ̸= Xj) and in

the last line we use that ∆i,j ≤ 2TV(Pi,Pj)
1+TV(Pi,Pj)

with the chosen coupling. Similarly, in the

case of product distributions, with the same matching but with the product coupling
π⊗(p⊗n

1 , . . . ,p⊗n
N ) we obtain,

max
i∈{1,...,N}

PX∼Pi,M (Ψ (M(X)) ̸= i)

≥ 1−
1 + ρ

N2

∑N
i=1

∑N
j=1 E(X1,...,XN )∼π⊗(p⊗n

1 ,...,p⊗n
N )

(
dham (Xi,Xj)

2
)

lnN

Lemma 3.4.6
≥ 1−

1 + ρ
N2

∑N
i=1

∑N
j=1

(
n2δ2i,j + nδi,j

)
lnN

≥ 1−
1 + n2ρ

N2

∑N
i=1

∑N
j=1

((
2TV(pi,pj)
1+TV(pi,pj)

)2
+ 1

n
2TV(pi,pj)
1+TV(pi,pj)

)
lnN

where in the second line we denote δi,j := P(X1,...,XN )∼π∞(p1,...,pN ) (Xi ̸= Xj) and in the

last line we use that δi,j ≤ 2TV(pi,pj)
1+TV(pi,pj)

with the chosen coupling.

3.5 A note on Assouad’s method

As the reduction to a testing problem between multiple hypotheses, Assouad’s lemma relies
on similar ideas, where the packing has to be parametrized by a hypercube. Its advantage
over tools like Fano’s lemma is that it only makes tests between pairs of hypotheses (instead
of all of them at the same time). The cost of this is that the control of the packing is
slightly more difficult.

Suppose that the set of distributions of interest P contains a family of distributions
(Pω)ω∈{0,1}m for a certain positive integer m. If the loss function (taken quadratic for
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simplicity) can be decomposed as (where in ∥Pω − Pω′∥, the difference between distribu-
tions should be interpreted as the difference of the features that we are trying to estimate
corresponding to those distributions)

∀ω, ω′ ∈ {0, 1}m, ∥Pω − Pω′∥2 ≥ 2τ
m∑
i=1

1ω ̸=ω , (3.18)

then the minimax risk can be lower-bounded as

inf
π̂ s.t. C

sup
P∈P

EX∼P,π̂(∥π̂(X)− π∥2)

≥ τ

16

m∑
i=1

inf
M s.t. C

Ψ:codom(M)→{0,1}

PX∼P
ωi,0 ,M (Ψ (M(X)) ̸= 0) + PX∼P

ωi,1 ,M (Ψ (M(X)) ̸= 1) .

(3.19)
where Pωi,0 and Pωi,1 are the mixture distributions

Pωi,0 :=
1

2m−1

∑
ω∈{0,1}m|ωi=0

Pω and Pωi,0 :=
1

2m−1

∑
ω∈{0,1}m|ωi=1

Pω .

The proof is classical and can be found in [Acharya et al., 2021e]. The term

PX∼P
ωi,0 ,M (Ψ (M(X)) ̸= 0) + PX∼P

ωi,1 ,M (Ψ (M(X)) ̸= 1)

characterizes the testing difficulty between Pωi,0 and Pωi,0 . It can be controlled by Le Cam’s
lemma, and by its variants when working under privacy (see [Acharya et al., 2021e, Lalanne
et al., 2023b] for differential privacy and [Lalanne et al., 2023b] for concentrated differential
privacy).

Using this technique usually leads to better lower-bounds in the case of (ϵ, δ)-differential
privacy when δ ̸= 0 or with concentrated differential privacy.
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Chapter 4

Examples of lower-bounds on
parametric models

The origin of this chapter, and the use of the first person. This chapter is based
on the article [Lalanne et al., 2023b], written by Aurélien Garivier1, Rémi Gribonval2, and
by myself. In this chapter, I will try to respect the following rule : the use of the first
person of the plural (we, our, . . . ) represents all the above-mentioned people, while the
use of the first person of the singular (I, my, . . . ) represents myself.

This chapter illustrates the results of the last chapter on three simple, fully worked out
parametric examples. In particular, it shows that the problem class has a huge importance
on the provable degradation of utility due to privacy. In certain scenarios, it shows that
maintaining privacy results in a noticeable reduction in performance only when the level
of privacy protection is very high. Conversely, for other problems, even a modest level of
privacy protection can lead to a significant decrease in performance.

It also demonstrates that the DP-SGLD algorithm, a private convex solver, can be em-
ployed for maximum likelihood estimation with a high degree of confidence, as it provides
near-optimal results with respect to both the size of the sample and the level of privacy

1https://perso.ens-lyon.fr/aurelien.garivier/www.math.univ-toulouse.fr/ agarivie/

index.html/
2https://people.irisa.fr/Remi.Gribonval/

https://perso.ens-lyon.fr/aurelien.garivier/www.math.univ-toulouse.fr/_agarivie/index.html/
https://perso.ens-lyon.fr/aurelien.garivier/www.math.univ-toulouse.fr/_agarivie/index.html/
https://people.irisa.fr/Remi.Gribonval/
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protection. This algorithm is applicable to a broad range of parametric estimation proce-
dures, including exponential families.

Finally, it gives bibliographical pointers to many recent research articles studying similar
problems of private parametric estimation problems.

4.1 Parametric unidimensional examples

First, let us start with unidimensional examples.

4.1.1 Bernoulli model

The first application is the estimation of the proportion of a population that satisfies a
certain property. It is a prime example of the application of Le Cam’s lemma Fact 3.1.1
and its private counterparts Theorem 3.2.1 and Theorem 3.2.2. When we consider the
parametric Bernoulli model

(B(θ))θ∈Θ , Θ = (0, 1) ,

a classical and simple estimator for estimating the true parameter θ∗ from i.i.d. samples
X1, . . . , Xn drawn according to B (θ∗) is via the empirical average

θ̂ :=
1

n

n∑
i=1

Xi .

The quadratic risk of this estimator is

E
(
(θ∗ − θ̂)2

)
=

θ∗(1− θ∗)

n
≤ 1/4

n
.

In order to find lower bounds on the minimax risk (with or without privacy constraints),
let us investigate an Ω = α

4 -packing
3 with θ1 :=

1+α
2 and θ2 :=

1
2 .

Regular Minimax Risk. By the master bound (3.6), Le Cam’s lemma (Fact 3.1.1)
and Pinsker’s inequality (see [Tsybakov, 2009, Lemma 2.5]),

Mn ≥ (α/4)2 · 1
2

(
1− TV

(
B(θ1)⊗n,B(θ2)⊗n

))
≥ α2

32

(
1−

√
KL (B(θ1)⊗n∥B(θ2)⊗n) /2

)
=

α2

32

(
1−

√
nKL (B(θ1)∥B(θ2)) /2

)
.

where we used the tensorization property of the KL divergence (see [van Erven & Har-
remoës, 2014, Theorem 28]). We can observe that when α ∈ [0, 1/2],

KL (B(θ1)∥B(θ2)) ≤ α2 .

3With d(·, ·) = | · − · |, see Section 3.1.3: an Ω-packing must satisfy d(θi, θj) ≥ 2Ω, i ̸= j.
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Indeed, let us note g(x) = 1+x
2 ln (1 + x) + 1−x

2 ln (1− x) − x2. We have that dg(x)
dx (x) =

ln(1+x)+ln(1−x)
2 − 2x and since g(0) = 0 and x 7→ ln(1+x) is 2-Lipschitz on [−1/2, 1/2], we

have that g(x) ≤ 0, ∀x ∈ [0, 1/2]. Hence, when α ∈ [0, 1/2],

KL (B(θ1)∥B(θ2)) =
(
θ1 ln

(
θ1
θ2

)
+ (1− θ1) ln

(
1− θ1
1− θ2

))
=

(
1 + α

2
ln (1 + α) +

1− α

2
ln (1− α)

)
≤ α2 .

So, with α = 1√
n
, as soon as n ≥ 4, we obtain that

Mn ≥ α2

32

(
1−

√
nα2/2

)
=

1/160

n
= Ω

(
1

n

)
,

which concludes that the non-private minimax rate is lower bounded by a quantity of the
order of 1

n and in particular, that the empirical mean estimator θ̂ is minimax optimal in
term of rates of convergence. Furthermore, any private minimax rate also has to be of the
order of at least 1

n .

Minimax Risk with ϵ-Differential Privacy. By the private master lower bound (3.10)
and the product form of Le Cam’s lemma for (ϵ, 0)-DP (see Theorem 3.2.1) combined with
the last inequality in Lemma 3.4.6 we obtain

M(ϵ-DP)
n ≥ (α/4)2 · 1

2
e−nϵTV(B(θ1),B(θ2))

≥ α2

32
e−nϵ

√
KL(B(θ1)∥B(θ2))/2

=
α2

32
e−

√
(nϵ)2α2/2

where we used again Pinsker’s inequality.

So, with α = 1
nϵ , when nϵ ≥ 2, we obtain that

M(ϵ-DP)
n ≥ 1/32

(nϵ)2
e−

√
1/2 ≥ 1/80

(nϵ)2
= Ω

(
1

(nϵ)2

)
.
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ρ-zero Concentrated Differential Privacy. Similarly, by the product form of Le
Cam’s lemma for ρ-zCDP (see Theorem 3.2.2), we get with α = 1

n
√
ρ when n

√
ρ ≥ 2,

M(ρ-zCDP)
n ≥ α2

32

(
1− n

√
ρ/2TV (B(θ1),B(θ2))

)
≥ α2

32

(
1− n

√
ρKL (B(θ1)∥B(θ2)) /4

)
=

α2

32

(
1−

√
n2ρα2/4

)
=

1/64

n2ρ

= Ω

(
1

n2ρ

)
.

Matching Upper Bounds. Consider the Laplace mechanism M(X) := 1
n

∑n
i=1Xi +

1
nϵLap(1). It is an (ϵ, 0)-DP estimator X [Dwork & Roth, 2014] and its quadratic risk

is O
(

1
n + 1

(nϵ)2

)
. Likewise, the Gaussian mechanism M(X) = 1

n

∑n
i=1Xi +

2
n
√
ρN (0, 1)

is ρ-zCDP [Bun & Steinke, 2016] and its one is O
(

1
n + 1

n2ρ

)
. Combined with the lower

bounds established so far and with Lemma 3.4.7, this allows to conclude that in fact

M(ϵ-DP)
n = Θ

(
max

{
1

n
,

1

(nϵ)2

})
,

and that this optimal rate is achieved with the Laplace mechanism, while

M(ρ-zCDP)
n = Θ

(
max

{
1

n
,

1

n2ρ

})
,

which is an optimal rate achieved by the Gaussian mechanism.

The Cost of Privacy. An interesting observation for both definitions of privacy is that
there exist regimes (ϵ ≪ 1/

√
n or ρ ≪ 1/n) for which the minimax rate of convergence is

degraded compared to the non private one. In other words, privacy has an unavoidable
cost on utility, no matter the mechanism used. Conversely, the order of magnitude of the
minimax risk is not degraded otherwise.

4.1.2 Uniform support model

We consider the parametric model

(pθ := U([0, θ]))θ∈Θ , Θ = (0, 1] .

To exploit Le Cam’s lemma we will need to control the total variation between two dis-
tributions. In this model, it can be done explicitly. The total variation between p⊗n

θ1
and

p⊗n
θ2

can be computed as

TV
(

p⊗n
θ1

,p⊗n
θ2

)
= 1−

∫
[0,1]n

min

(
πp⊗n

θ1

, πp⊗n
θ2

)
= 1−

(
min (θ1, θ2)

max (θ1, θ2)

)n

.
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Non-Private Minimax Risk. By the (non-private) master lower bound (3.6) and Le
Cam’s lemma (Fact 3.1.1), applied to the 1

2n -packing θ1 = 1− 1
n and θ2 = 1, we have

Mn ≥ e−1

8n2
= Ω

(
1

n2

)
.

where we used that 1−TV
(

p⊗n
θ1

,p⊗n
θ2

)
=
(
1− 1

n

)n ≥ e−1. Furthermore, as we now show,

the estimator maxX achieves this rate of convergence when X1, . . . , Xn ∼ U([0, θ∗]) are
independent. Indeed, for any t ∈ [0, θ∗],

P (maxX < t) = Πn
i=1P (Xi < t) =

(
t

θ∗

)n

.

Hence, maxX has a density πmaxX with respect to the Lebesgue measure where

∀t ∈ R, πmaxX(t) = 1[0,θ∗](t)
ntn−1

θ∗n
,

so that

E(maxX) =

∫ θ∗

0
t

(
ntn−1

θ∗n

)
dt =

n

n+ 1
θ∗ ,

V(maxX) =

∫ θ∗

0
t2
(
ntn−1

θ∗n

)
dt− [E(maxX)]2 = θ∗2

(
n

n+ 2
− n2

(n+ 1)2

)
.

By the bias-variance tradeoff, the quadratic risk of maxX is thus O
(
θ∗2

n2

)
. In particular,

this proves that the non-private minimax rate of convergence is Θ
(

1
n2

)
and that maxX

achieves this minimax rate of convergence.

Minimax Risk with ϵ-Differential Privacy. By the private master lower bound (3.10)
and the product form of Le Cam’s private lemma for ϵ-DP on product distributions (see
Theorem 3.2.1 with δ = 0) with the 1

2nϵ -packing θ1 = 1 − 1
nϵ and θ2 = 1 we have when

nϵ > 1

M(ϵ-DP)
n ≥ e−1

8(nϵ)2
= Ω

(
1

(nϵ)2

)
,

In particular, the rate is degraded compared to the non-private one as soon as ϵ is
decreasing.

Minimax Risk with ρ-zero Concentrated Differential Privacy. Similarly, using
the product form of Le Cam’s private lemma for ρ-zCDP on product distributions (see
Theorem 3.2.2) and the 1

2n
√
ρ -packing θ1 = 1− 1

n
√
ρ and θ2 = 1 gives that when n

√
ρ > 1,

M(ρ-zCDP)
n ≥

1− 1√
2

8n2ρ
= Ω

(
1

n2ρ

)
.

In particular, the rate is degraded compared to the non-private one as soon as ρ is de-
creasing.
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This example shows that when the stochastic noise due to sampling shrinks too fast (here
maxX has quadratic risk O(1/n2)), then the noise due to privacy becomes predominant.
In particular, we do not observe a distinction on the rate at which ϵ or ρ tends to 0 in
order the conclude to a degradation of the minimax risk. It is systematically degraded.

4.2 Parametric multidimensional examples

One dimensional models already allow exhibiting degradation that is due to privacy. How-
ever, things are more interesting when looking at multidimensional examples. Indeed, in
this setup, dimensionality amplifies the degradation that is due to privacy.

For instance, with Gaussians where the usual estimation quadratic risk is of the order

Θ
(
d
n

)
, we will see in the following that this rate becomes Ω

(
d
n + d2

(nϵ)2

)
under ϵ-differential

privacy. The privacy overhead degrades quadratically in the dimension, whereas the reg-
ular estimation rate only degrades linearly.

4.2.1 Gaussian model

The second application is the estimation of the unknown mean θ∗ ∈ Rd of multivariate
normally distributed data with fixed covariance matrix σ2Id. When we consider the para-
metric model

(
N (θ, σ2Id)

)
θ∈Θ ,Θ = Rd , a classical and simple estimator for estimating

the mean θ∗ from i.i.d. samples X1, . . . , Xn is the empirical average θ̂ := 1
n

∑n
i=1Xi . The

quadratic risk of this estimator is

E
(
∥θ∗ − θ̂∥2

)
=

σ2d

n
. (4.1)

If we were to apply Le Cam’s lemma Fact 3.1.1 or its private counterparts Theorem 3.2.1
and Theorem 3.2.2, the parameter that tunes the dimensionality d would not be captured
by the resulting minimax lower bounds which would thus be overly optimistic. This
example forces us to use Fano’s lemma Fact 3.1.2 or its private counterparts Theorem 3.2.3
or Theorem 3.2.4 in order to have a chance to capture this phenomenon.

The total variation that appears in Fano’s inequality is controlled via Pinsker’s inequality
in terms of a Kullback-Leibler divergence, which in the case of isotropic Gaussians is known
to be proportional to the squared Euclidean distance.

∀θ1, θ2 ∈ Θ, KL
(
N (θ1, σ

2Id)
∥∥N (θ2, σ

2Id)
)
=

∥θ2 − θ1∥2

2σ2
. (4.2)

This enables the use of packing results for the Euclidean norm, and minimax bounds valid
in the more general case where the KL divergence is controlled by the Euclidean norm
between parameters.
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Packing Choice. In high dimension, the packing is chosen with an exponential number
of hypotheses. A good way to obtain well-spread points is to use Varshamov–Gilbert’s
theorem

Fact 4.2.1 (Varshamov–Gilbert’s theorem [Rigollet & Hütter, 2015, Lemma 5.12]). For

any ζ ∈
(
0, 12
)
and for every dimension d ≥ 1 there exist N ≥ e

ζ2d
2 and w1, . . . , wN ∈

{0, 1}d such that,

i ̸= j =⇒ dham (wi, wj) ≥
(
1

2
− ζ

)
d .

Minimax Lower Bounds. We obtain the following minimax lower bounds that we
factorized in a single result:

Proposition 4.2.2. Let (pθ)θ∈Θ be a family of probability distributions on the same mea-
surable space and Θ be a subset of Rd with d ≥ 66 that contains a ball of radius r0 for the
euclidean distance. Assume that γ > 0 is such that

∀θ1, θ2 ∈ Θ, KL (pθ1∥pθ2) ≤ γ∥θ2 − θ1∥2. (4.3)

Then we have the following results on the minimax rates:

Mn ≥
min

(
r0√
d
, 1
64

√
nγ

)2
d

32
= Ω

(
d

nγ

)
,

M(ϵ-DP)
n ≥

max
(
min

(
r0√
d
, 1
64

√
nγ

)
,min

(
r0√
d
,

√
d

642
√
2nϵ

√
γ

))2
d

32

= Ω

(
max

{
d

nγ
,

d2

(nϵ)2γ

})
,

M(ρ-zCDP)
n ≥

max
(
min

(
r0√
d
, 1
64

√
nγ

)
,min

(
r0√
d
, 1
6422

√
2n

√
ργ

))2
d

32

= Ω

(
max

{
d

nγ
,

d

n2ργ

})
,

when ρ < 1. Note that all the asymptotic expressions are taken when r0 > C
√
d for a

positive constant C i.e. when the parameter space is not ”too small”.

Proof. Without loss of generality, let us suppose that 0 is the center of the ball of radius r0
(without loss of generality because we are going to work on a neighborhood of 0 but it can
be translated to any point). Varshamov–Gilbert’s theorem (Fact 4.2.1) with ζ = 1

4 allows



92

us to consider N and w1, . . . , wN and to define a packing of the form θ1 := αw1, . . . , θN :=
αwN such that

i ̸= j =⇒ α2d

4
≤ ∥θi − θj∥2 ≤ α2d .

This yields an Ω = α
√
d/4-packing with respect to the Euclidean metric. Since 0 is in the

interior of Θ, all the θi’s are in Θ provided that α is small enough. By the (non-private)
master lower bound (3.6) and Fano’s lemma (Fact 3.1.2),

Mn ≥ (α
√
d/4)2 ·

1−
1 + 1

N

∑
iKL

(
p⊗n
θi

∥∥∥ 1
N

∑
j p⊗n

θj

)
lnN


Jensen
≥ (α

√
d/4)2 ·

1−
1 + 1

N2

∑
i,j KL

(
p⊗n
θi

∥∥∥p⊗n
θj

)
lnN


= (α

√
d/4)2 ·

(
1−

1 + 1
N2

∑
i,j nKL

(
pθi∥pθj

)
lnN

)
(4.3)

≥ α2d

16

(
1−

1 + 1
N2

∑
i,j nγ∥θi − θj∥2

lnN

)

≥ α2d

16

(
1− 1 + nγα2d

d/32

)
,

where in the last line we used that N ≥ ed/32 and ∥θi − θj∥2 ≤ α2d. With α :=

min
(

r0√
d
, 1
64

√
nγ

)
when d ≥ 66 leads to

Mn ≥
min

(
r0√
d
, 1
64

√
nγ

)2
d

32
= Ω

(
d

nγ

)
.

For ϵ-DP and ρ-zCDP, the first term in the max expressed in Proposition 4.2.2 is a di-
rect consequence of the above bound and of Lemma 3.4.7 so we now concentrate on the
other term. By the private master lower bound (3.10) and Fano’s lemma for product
distributions and (ϵ, 0)-DP (see Theorem 3.2.3), arguments as above show that

M(ϵ-DP)
n ≥ α2d

16

(
1−

1 + 2nϵ
N2

∑
i,j TV

(
pθi ,pθj

)
lnN

)

≥ α2d

16

1−
1 + 2nϵ

N2

∑
i,j

√
KL
(

pθi∥pθj

)
/2

lnN


≥ α2d

16

(
1−

1 + 2nϵ
N2

∑
i,j

√
γ/2∥θi − θj∥

lnN

)

≥ α2d

16

(
1−

1 + 2nϵα
√

γ/2
√
d

d/32

)
.
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Again, setting α := min
(

r0√
d
,

√
d

642
√
2nϵ

√
γ

)
when d ≥ 66 allows to conclude that

M(ϵ-DP)
n ≥

min
(

r0√
d
,

√
d

642
√
2nϵ

√
γ

)2
d

32

= Ω

(
d2

(nϵ)2γ

)
.

Similarly, by Fano’s lemma for product distributions and ρ-zCDP (see Theorem 3.2.4),

M(ρ-zCDP)
n ≥ α2d

16

(
1−

1 + 4n2ρ
N2

∑
i,j

1
2nTV

(
pθi ,pθj

)
+TV

(
pθi ,pθj

)2
lnN

)

≥ α2d

16

1−
1 + 4n2ρ

N2

∑
i,j

1
2n

√
KL
(

pθi∥pθj

)
/2 + KL

(
pθi∥pθj

)
/2

lnN


≥ α2d

16

(
1−

1 + 4n2ρ
N2

∑
i,j

1
2n

√
γ/2∥θi − θj∥+ γ∥θi − θj∥2/2

lnN

)

≥ α2d

16

(
1−

1 +
(
2
√
2nρα

√
γd+ 2n2ργα2d

)
d/32

)
,

and setting α := min
(

r0√
d
, 1
6422

√
2n

√
ργ

)
when d ≥ 66 concludes that (because ρ ≤ 1)

M(ρ-zCDP)
n ≥

min
(

r0√
d
, 1
6422

√
2n

√
ργ

)2
d

32

= Ω

(
d

n2ργ

)
.

Note that the constraint d ≥ 66 can be relaxed to smaller constants by changing the ζ in
the application of Varshamov–Gilbert’s theorem at the cost of changing the constants in
the minimax lower bounds. Likewise, the constraint ρ < 1 can be replaced by ρ < M for
any positive constant M at the cost again of worse constants. Since we aim to use this
result in high dimension and with high privacy, those hypotheses are natural in order to
simplify the expressions.

About the choice of the norm. For the estimation, we chose to use the squared l2
norm as the measure of performance, since it is the one people are the most used to.
However, in the literature of differential privacy, a more common practice is to use the
total variation distance (see Section 4.3 for an overview).
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4.2.2 Continuous exponential families and maximum likelihood

For many other parametric models, the statistician typically would like to consider the
maximum likelihood estimator. Given X1, . . . , Xn i.i.d. random variables of distribution
pθ∗ , the maximum likelihood estimator has value

θ̂ML ∈ argmax
θ∈Θ

{
l(θ) :=

1

n

n∑
i=1

f(Xi, θ)

}
, (4.4)

where f is the log-likelihood. The parametric model with respect to a reference measure
µ is thus

∀X,
dpθ

dµ
(X) := ef(X,θ), θ ∈ Θ ,

where dpθ
dµ is the Radon-Nikodym density of pθ with respect to µ and Θ is often a closed,

convex subset of Rd with nonempty interior. This setup covers, in particular, exponential
families [Van der Vaart, 1998] with f(X, θ) = θTT (X) − ln(Z(θ)) associated with some
statistic T and normalization factor Z(θ). This section first presents a lower bound on the
minimax risk for the private estimation in such parametric models and then studies the
optimality properties of the Differentially Private Stochastic Gradient Langevin Dynamics
(DP-SGLD) of [Ryffel et al., 2022] for this specific task based on the existing upper bounds
for this private convex optimizer.

On the regularity of f and the estimation complexity

First, we may assume that the parametric model is not degenerate in the sense that f
satisfies

∀θ ∈ Θ,

∫
∇θf(X, θ)dpθ(X) = 0 . (4.5)

This hypothesis is for instance satisfied in the Gaussian model presented previously. In-
deed, in this case ∀X,∇θf(θ+X, θ)+∇θf(θ−X, θ) = 0 and ∀X, dpθ

dµ (θ+X) = dpθ
dµ (θ−X).

This hypothesis is more generally satisfied in the broader model of the exponential fam-
ilies (see [Boucheron et al., 2019, Théorème 4.10]). Under such hypothesis, we have the
following lemma which will allow to leverage Proposition 4.2.2:

Lemma 4.2.3. If (Pθ)θ∈Θ satisfies the property (4.5) and if f is concave and β-smooth
in its second argument, then

∀θ1, θ2 ∈ Θ,KL (pθ1∥pθ2) ≤
β

2
∥θ2 − θ1∥2 .

Note that the family (Pθ)θ∈Θ directly depends on f . In particular, for the Gaussian Model,
β = 1

σ2 , we recover the classical upper bound on the KL divergence between multivariate
normal distributions, which is in fact in this case, an equality.
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Proof. Because of concavity in the second argument of f and the fact that it is β-smooth,
we have the following result:

∀θ1, θ2 ∈ Θ,∀x, f(x, θ1)+∇θf(x, θ1)
T (θ2 − θ1) ≤ f(x, θ2) +

β

2
∥θ1 − θ2∥2 .

As a consequence,

KL (pθ1∥pθ2) =

∫
ln

(
dpθ1

dPθ2

)
dpθ1 =

∫
(f(X, θ1)− f(X, θ2)) dpθ1(X)

≤
∫ (

−∇θf(X, θ1)
T (θ2 − θ1) +

β

2
∥θ1 − θ2∥2

)
dpθ1(X)

(4.5)
=

∫
β

2
∥θ1 − θ2∥2dpθ1(X) =

β

2
∥θ1 − θ2∥2 .

We may apply Proposition 4.2.2 with γ = β/2 and we obtain that

M(ρ-zCDP)
n = Ω

(
max

{
d

n2βρ
,
d

nβ

})
(4.6)

Under the hypotheses of Proposition 4.2.2: d is big enough, ρ is small enough and the
interior of the parameter space is big enough. In particular, this gives us a lower bound
to compare any private estimator to.

Private maximum likelihood

In general, θ̂ML has no closed form formula. Even when it has some, the closed form
formula usually does not respect differential privacy.

The problem (4.4) is typically addressed via numerical optimization: instead of considering
its explicit maximum, a provably converging sequence is constructed. This requires some
assumptions on the log-likelihood f . A convenient combination of hypotheses is that f is λ-
strongly concave, β-smooth and L-Lipschitz in its second argument: then, the stochastic
gradient ascend algorithm converges rapidly to θ̂ML [Beck, 2017]. Exponential families
typically obey those requirements with β := supθ∈Θ λmax (Cθ) and, λ := infθ∈Θ λmin (Cθ)
where Cθ := CovX∼Pθ

(T (X)) and λmin(C) (resp. λmax(C)) denotes the smallest (resp.
largest) eigenvalue of a matrix C (see [Boucheron et al., 2019, Théorème 4.10]).

The issue of privacy can be addressed directly in the optimization procedure. DP-SGD
[Abadi et al., 2016] is an adaptation of the Stochastic Gradient Descent method where the
gradient is first clipped and then noised. The privacy guarantees are based on the moment
accountant method or on the composition of Renyi differential privacy [Mironov, 2017].
The results are obtained under very general hypotheses on the objective function, but
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are based on a pessimistic scenario where an adversary may observe every gradient in the
optimizer. Recent work based on Langevin diffusion [Chourasia et al., 2021, Ryffel et al.,
2022] has adapted the Gradient Descent algorithm and the Stochastic Gradient Descent
algorithm in order to have privacy guarantees with tighter utility bounds at the price of
stronger hypotheses on the objective function which is required to have a compact domain
and to be strongly convex.

Building on DP-SGLD by [Ryffel et al., 2022], we consider its adaptation for maximum
likelihood DP-SGML (Algorithm 1). For a batch B ⊆ {1, . . . , n}, the batch log-likelihood
is defined as

lB(θ) :=
1

# (B)
∑
i∈B

f(Xi, θ) .

For a closed convex set Θ, ΠΘ refers to the projection onto Θ.

Data: X1, . . . , Xn, f , step sizes (ηk)k≥0, batch size m, noise variance σ2, initial
parameter θ0, stopping time K.

for k = 0, . . . ,K − 1 do
Sample batch Bk from X1, . . . , Xn with replacement of size m ;
Compute ∇lBk

(θk) =
1

#(Bk)

∑
i∈Bk

∇θf(Xi, θk) ;

Update parameter θk+1 = ΠΘ

(
θk + ηk∇lBk

(θk) +
√
2ηkN (0, σ2Id)

)
.

end
return θK

Algorithm 1: DP-SGML: Differentially Private Stochastic Gradient Maximum Like-
lihood

A choice of the parameters (ηk)k≥0, σ2, θ0 and K is suggested by the privacy-utility
theorem Fact 4.2.4 which is a direct corollary of [Ryffel et al., 2022].

Fact 4.2.4 (Utility and Privacy of Algorithm 1, Fixed Step Size). Assume that f is λ-
strongly concave, β-smooth and L-Lipschitz in its second argument on Θ. Consider any
ρ > 0, an integer n ≥ 1, a batch size m and set

σ2 :=
4L2

ρλn2
, K :=

2β

λ
ln

(
ρn2

d

)
, ξ2 := EB

(
∥∇lB(θML)∥2

)
Given a collection X of n arbitrary samples, consider M(X) = θK obtained using DP-

SGML with θ0 ∼ ΠΘ

(
N (0, 2σ

2

λ Id)
)

and constant step size η = 1
2β . This mechanism

satisfies ρ-zCDP. Moreover, if X is such that the solution θML of (4.4) is in the interior
of Θ, then

E
(
∥θML − θK∥2

)
= O

(
βdL2

ρλ3n2

)
+

ξ2

2λ2

where the expectation is with respect to initialization, random batch sampling, and noise
addition in the parameter update step.
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Indeed, the direct application of [Ryffel et al., 2022, Theorem 4.1] gives the privacy guar-
antee, and that

E (l(θML)− l(θK)) = O

(
βdL2

ρλ2n2

)
+

ξ2

4λ
.

Furthermore, by λ-strong concavity of l,

l(θML)− l(θK) ≥ ∇l(θML)(θK − θML) +
λ

2
∥θL − θML∥2

and since θML is in the interior of Θ, ∇l(θML) = 0 which concludes the proof. The term
ξ2 := EB

(
∥∇lB(θML)∥2

)
is due to the stochastic noise of the batch sampling. Indeed,

even though ∇l(θML) = 0, this is not necessarily the case when working on batches. This
term depends on the batch size m and can be made arbitrarily small by choosing m large
enough.

About minimax optimality

The quadratic risk of any (private or not) solver M can be decomposed (by the triangle
inequality and since (a+ b)2 ≤ 2a2 + 2b2, ∀a, b ≥ 0) as:

E
(
∥θ∗ −M(X)∥2

)
≤ 2

(
E
(
∥θ∗ − θML∥2

)
+ E

(
∥θML −M(X)∥2

))
(4.7)

where the expectation is over the draw of X and, in the case of a private solver, on the
intrinsic randomness of M.

The first term in the right hand side of (4.7) only depends on the properties of the “ideal”
maximum likelihood estimator in this parametric model. Under mild assumptions, it is
asymptotically normal – for example, in exponential families (see [Van der Vaart, 1998,
Theorem 4.6]): we have

√
n (θ∗ − θML)

L−→ N
(
0, C−1

θ∗
)
,

and

E
(
∥θ∗ − θML∥2

)
= O

(
d

nλ

)
. (4.8)

The second term in (4.7) depends on the solver, which here can be controlled with
Fact 4.2.4. As a consequence, the ratio between the error of estimation and the mini-
max risk which is lower-bounded in (4.6) can be bounded as follows:

E
(
∥θ∗ −M(X)∥2

)
M

(ρ-zCDP)
n

(4.7)&(4.6)
= O

E
(
∥θ∗ − θML∥2

)
+ E

(
∥θML −M(X)∥2

)
max

{
d

n2βρ
, d
nβ

}


= O

(
nβ

d
E
(
∥θ∗ − θML∥2

)
+

n2βρ

d
E
(
∥θML −M(X)∥2

))
.
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In particular, for the fixed step-size (see Fact 4.2.4), when θML is in the interior of Θ and
when the variance term due to the clipped gradient is negligible (i.e., when be batch size

is big enough to have ξ2

4λ = O
(

βdL2

ρλ2n2

)
), the second term is O

(
β2L2

λ3

)
.

All in all, the ratio between the risk of DP-SGML for maximum likelihood in exponential
families when the maximum likelihood estimator is in the interior of the search set is

E
(
∥θ∗ −M(X)∥2

)
M

(ρ-zCDP)
n

= O

(
β

λ
+

β2L2

λ3

)
.

DP-SGML optimally captures the variation in the sample size n, in the privacy parameter
ρ, and to some extent, in the dimensionality d (to some extent because even if d vanishes in
the expressions, L, β and λ may vary with d). This proves what we call the near-minimax
optimality of DP-SG(L)D for performing inference via maximum likelihood in a broad
class of parametric models.

4.3 Other parametric models in the literature

Many interesting parametric estimation procedures have been studied in the literature.
Table 4.1 presents some of the interesting contributions, without necessarily being ex-
haustive.
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Article Model(s)

[Smith, 2011]
Broad class of models with asymptotically normal,

low privacy regime.

[Barber & Duchi, 2014] Mean estimation.

[Diakonikolas et al., 2015] Discrete structured distributions, tv distance.

[Karwa & Vadhan, 2018] Gaussian mean, unidimensional.

[Bun et al., 2019]
[Bun et al., 2021]

Hypothesis selection, tv distance.
Finite product distributions, tv distance.

Gaussian means in high dimensions, tv distance.
Sum of independent random variables, tv distance.
Piecewise polynomial finite density, tv distance.

Mixtures, tv distance.
Supervised learning, tv distance.

[Kamath et al., 2019]
Gaussian covariances in high dimensions, scaled Frobenius distance.

Gaussian means in high dimensions, tv distance.
Product distributions, tv distance.

[Biswas et al., 2020]
Gaussian means in high dimensions, scaled l2 distance.

Gaussian covariances in high dimensions, scaled Frobenius distance.

[Kamath et al., 2020] Mean of heavy tailed distributions, l2 distance.

[Acharya et al., 2021e]

Finite distributions, tv distance.
Finite distributions, l2 distance.

Finite product distributions, tv distance.
Finite mixtures of Gaussian means in high dimension, tv distance

[Aden-Ali et al., 2021] Gaussian means in high dimensions, tv distance.

[Cai et al., 2021]
Subgaussian mean.
Linear regression.

[Brown et al., 2021] Gaussian means in high dimensions, scaled l2 distance.

[Cai et al., 2021]
Subgaussian mean.
Linear regression.

[Kamath et al., 2022] Stochastic convex optimization with heavy tailed data.

[Singhal, 2023] Bernoulli product distributions.

[Kamath et al., 2023a] Exponential families.

[Kamath et al., 2023b] Exponential families.

Table 4.1: Bibliography on private parametric estimation
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Chapter 5

Nonparametric density estimation

The origin of this chapter, and the use of the first person. This chapter is based
on the article [Lalanne et al., 2023a], written by Aurélien Garivier1, Rémi Gribonval2, and
by myself. In this chapter, I will try to respect the following rule : the use of the first
person of the plural (we, our, . . . ) represents all the above-mentioned people, while the
use of the first person of the singular (I, my, . . . ) represents myself.

We address here the problem of privately estimating a probability density, which fits in
this line of work. Given X := (X1, . . . , Xn) ∼ P⊗n

π , where Pπ refers to a distribution of
probability that has a density π with respect to the Lebesgue measure on [0, 1], how to
estimate π privately? Technically, what metrics or hypothesis should be set on π? What
is the cost of privacy? Are the methods known so far optimal? Such are the questions
that are investigated in the rest of this chapter.

Related work. Non-parametric density estimation has been an important topic of re-
search in statistics for many decades now. Among the vast literature on the topic, let us
just mention the important references [Györfi et al., 2002, Tsybakov, 2009].

Recently, the interest for private statistics has shone a new light on this problem. Remark-

1https://perso.ens-lyon.fr/aurelien.garivier/www.math.univ-toulouse.fr/ agarivie/

index.html/
2https://people.irisa.fr/Remi.Gribonval/

https://perso.ens-lyon.fr/aurelien.garivier/www.math.univ-toulouse.fr/_agarivie/index.html/
https://perso.ens-lyon.fr/aurelien.garivier/www.math.univ-toulouse.fr/_agarivie/index.html/
https://people.irisa.fr/Remi.Gribonval/
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able early contributions [Wasserman & Zhou, 2010, Hall et al., 2013] adapted histogram
estimators, so-called projection estimators and kernel estimators to satisfy the privacy
constraint. They conclude that the minimax rate of convergence, n−2β/(2β+1), where n
is the sample size and β is the (Sobolev) smoothness of the density, is not affected by
global privacy. However, an important implicit hypothesis in this line of work is that ϵ,
the parameter that decides how private the estimation needs to be, is supposed not to
depend on the sample size. This hypothesis may seem disputable, and more importantly,
it fails to precisely characterize the tradeoff between utility and privacy. To the best of
our knowledge, the only piece of work that studies this problem under global privacy when
ϵ is not supposed constant is [Barber & Duchi, 2014]. They study histogram estimators
on Lipschitz distributions for the integrated risk. They conclude that the minimax risk of
estimation is max

(
n−2/3 + (nϵ)−1

)
, showing how small ϵ can be before the minimax risk

of estimation is degraded. Our chapter extends such results to high degrees of smoothness,
to other definitions of global differential privacy, and to other risks.

The literature under the much stricter notion of local privacy is a lot richer. Contrary to
global privacy, local privacy requires that each data holder anonymizes its data before them
being communicated to an aggregator. It is a stronger definition of privacy than global
differential privacy. A remarkable early piece of work [Duchi et al., 2016] has brought a
nice toolbox for deriving minimax lower bounds under local privacy that has proven to
give sharp results for many problems. As a result, the problem of non-parametric density
estimation (or its analogous problem of non-parametric regression) has been extensively
studied under local privacy. For instance, [Butucea et al., 2019] investigates the elbow
effect and questions of adaptivity over Besov ellipsoids. [Kroll, 2021] and [Schluttenhofer
& Johannes, 2022] study the density estimation problem at a given point with an emphasis
on adaptivity. Universal consistency properties have recently been derived in [Györfi &
Kroll, 2023]. Analogous regression problems have been studied in [Berrett et al., 2021]
and in [Györfi & Kroll, 2022]. Finally, the problem of optimal non-parametric testing has
been studied in [Lam-Weil et al., 2022].

Contributions. In this chapter, we investigate the impact of global privacy when the
privacy budget is not constant. We treat multiple definitions of global privacy and different
levels of smoothness for the densities of interest.

In terms of upper-bounds, we analyze histogram and projection estimators at a resolution
that captures the impact of the privacy and smoothness parameters. We also prove new
lower bounds using the classical packing method combined with new tools that characterize
the testing difficulty under global privacy from [Acharya et al., 2021e, Kamath et al.,
2022, Lalanne et al., 2023b].

In particular, for Lipschitz densities and under pure differential privacy, we recover the
results of [Barber & Duchi, 2014] with a few complements. We then extend the estimation
on this class of distributions to the context of concentrated differential privacy [Bun &
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Steinke, 2016], a more modern definition of privacy that is compatible with stochastic
processes relying on Gaussian noise. We finally investigate higher degrees of smoothness
by looking at periodic Sobolev distributions. The main results are summarized in Table 5.

ϵ-DP ρ-zCDP

Lipschitz
Equation (5.2)

Upper-bound:

O
(
max

{
n−2/3, (nϵ)−1

})
[Barber & Duchi, 2014] & Theorem 5.1.2

Lower-bounds:

-Pointwise: Ω
(
max

{
n−2/3, (nϵ)−1

})
Theorem 5.1.3 & Corollary 5.1.4

-Integrated: Ω
(
max

{
n−2/3, (nϵ)−1

})
[Barber & Duchi, 2014] & Theorem 5.1.6

Upper-bound:

O
(
max

{
n−2/3, (n

√
ρ)−1

})
Theorem 5.1.2

Lower-bounds:

-Pointwise: Ω
(
max

{
n−2/3, (n

√
ρ)−1

})
Theorem 5.1.3 & Corollary 5.1.4

-Integrated: Ω
(
max

{
n−2/3, (n

√
ρ)−1

})
Theorem 5.1.6

Periodic Sobolev
Smoothness β
Equation (5.21)

Upper-bounds:

-Pure DP: O

(
max

{
n
− 2β

2β+1 , (nϵ)
− 2β

β+3/2

})
Theorem 5.2.3

-Relaxed: Õ
(
max

{
n
− 2β

2β+1 , (nϵ)
− 2β

β+1

})
Õ hides polylog factors. Corollary 5.2.5

Lower-bound:

Ω
(
max

{
n
− 2β

2β+1 , (nϵ)
− 2β

β+1

})
Theorem 5.2.4

Upper-bound:

O
(
max

{
n
− 2β

2β+1 , (n
√
ρ)

− 2β
β+1

})
Theorem 5.2.3

Lower-bound:

Ω
(
max

{
n
− 2β

2β+1 , (n
√
ρ)

− 2β
β+1

})
Theorem 5.2.4

Table 5.1: Summary of the results

5.1 Histogram Estimators and Lipschitz Densities

Histogram estimators approximate densities with a piecewise continuous function by count-
ing the number of points that fall into each bin of a partition of the support. Since those
numbers follow binomial distributions, the study of histogram estimators is rather simple.
Besides, they are particularly interesting when privacy is required, since the sensitivity
of a histogram query is bounded independently of the number of bins. They were first
studied in this setup in [Wasserman & Zhou, 2010], while [Barber & Duchi, 2014] provided
new lower-bounds that did not require a constant privacy budget.

As a warm-up, this section proposes a new derivation of known results in more modern
lower-bounding frameworks [Acharya et al., 2021e, Kamath et al., 2022, Lalanne et al.,
2023b], and then extends these upper-bounds and lower-bounds to the case of zCDP.
Furthermore, it also covers the pointwise risk as well as the infinite-norm risk.

Let h > 0 be a given bandwidth or binsize. In order to simplify the notation, we suppose
without loss of generality that 1/h ∈ N \ {0} (if the converse is true, simply take h′ =
1/ ⌈1/h⌉ where ⌈x⌉ refers to the smallest integer bigger than x). [0, 1] is partitioned in 1

h
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sub-intervals of length h, which are called the bins of the histogram. Let Z1, . . . , Z1/h be
independent and identically distributed random variables with the same distribution as a
random variable Z that is supposed to be centered and to have a finite variance. Given a
dataset X = (X1, . . . , Xn), the (randomized) histogram estimator is defined for x ∈ [0, 1]
as

π̂hist(X)(x) :=
∑

b∈bins
1b(x)

1

nh

(
n∑

i=1

1b(Xi) + Zb

)
. (5.1)

We indexed the Z’s by a bin instead of an integer without ambiguity. Note that by taking
Z almost-surely constant to 0, one recovers the usual (non-private) histogram estimator
of a density.

5.1.1 General utility of histogram estimators

Characterizing the utility of (5.1) typically requires assumptions on the distribution π to
estimate. The class of L-Lipschitz densities is defined as

ΘLip
L :=

{
π ∈ C0([0, 1],R+)

∣∣∣∣∣
{
∀x, y ∈ [0, 1], |π(y)− π(x)| ≤ L|y − x| ,∫
[0,1] π = 1 .

}
. (5.2)

The following general-purpose lemma gives an upper-bound on the error that the histogram
estimator makes on Lipschitz distributions:

Lemma 5.1.1 (General utility of (5.1)). There exists CL > 0, a positive constant that
only depends on L, such that

sup
x0∈[0,1]

sup
π∈ΘLip

L

EX∼P⊗n
π ,π̂hist

((
π̂hist(X)(x0)− π(x0)

)2)
≤ CL

(
h2 +

1

nh
+

V(Z)

n2h2

)
.

Proof. Let π ∈ ΘLip
L , x0 ∈ [0, 1]. The classical bias-variance decomposition gives that

E

((
π̂hist(X)(x0)− π(x0)

)2)
=
(

E
(
π̂hist(X)(x0)

)
− π(x0)

)2
+ V

(
π̂hist(X)(x0)

)
.

For any x ∈ [0, 1], we note bin(x) the bin of the histogram in which x falls into. Notice
that, for any x0 ∈ [0, 1] and any integer i, the random variable 1bin(x0)(Xi) follows a
Bernoulli distribution of probability of success

∫
bin(x0)

π. Let us first study the bias, using
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the definition (5.1) of π̂hist

∣∣∣E(π̂hist(X)(x0)
)
− π(x0)

∣∣∣ = ∣∣∣∣∣ 1nh
n∑

i=1

E
(
1bin(x0)(Xi)

)
− π(x0)

∣∣∣∣∣
=

∣∣∣∣∣n
∫
bin(x0)

π(x)dx

nh
− π(x0)

∣∣∣∣∣
=

1

h

∣∣∣∣∣
∫
bin(x0)

(π(x)− π(x0))dx

∣∣∣∣∣
≤ 1

h

∫
bin(x0)

|π(x)− π(x0)| dx

≤ L

h

∫
bin(x0)

|x− x0| dx ≤ Lh

2
.

Let us now look at the variance. By independence of Xi’s and Zj ’s,

V
(
π̂hist(X)(x0)

)
=

1

n2h2

(
n∑

i=1

V
(
1bin(x0)(Xi)

)
+ V

(
Zbin(x0)

))

=
1

n2h2

(
n

(∫
bin(x0)

π

)(
1−

∫
bin(x0)

π

)
+ V (Z)

)

≤ 1

nh2

(∫
bin(x0)

π

)
+

V (Z)

n2h2
.

Since π is L-Lipschitz on [0, 1] and has to integrate to 1 (because it is a density), π is
uniformly bounded from above by L + 1 on [0, 1]. Hence,

∫
bin(x0)

π ≤ (L + 1)h and the
result follows.

The term h2 corresponds to the bias of the estimator. The variance term 1
nh + V(Z)

n2h2

exhibits two distinct contributions : the sampling noise 1
nh and the privacy noise V(Z)

n2h2 . In
particular, the utility of π̂hist changes depending whether the variance is dominated by
the sampling noise or by the privacy noise.

5.1.2 Privacy and bin size tuning

π̂hist(X) is a simple function of the bin count vector

f(X) :=

(
n∑

i=1

1b1(Xi), . . . ,
n∑

i=1

1b1/h(Xi)

)
.

In particular, since the bins form a partition of [0, 1], changing the value of one of the X’s
can change the values of at most two components of f(X) by at most 1. Hence, the l1 and
l2 sensitivities of f are respectively 2 and

√
2. By a direct application of the Laplace or

Gaussian mechanisms, and by choosing the binsize that minimizes the variance, we obtain
the following privacy-utility result :
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Theorem 5.1.2 (Privacy and utility of (5.1) - DP case). Given ϵ > 0, using π̂hist with
h = max(n−1/3, (nϵ)−1/2) and Z = 2

ϵL(1), where L(1) refers to a random variable following
a Laplace distribution of parameter 1, leads to an ϵ-DP procedure. Furthermore, in this
case, there exists CL > 0, a positive constant that only depends on L, such that

sup
x0∈[0,1]

sup
π∈ΘLip

L

EX∼P⊗n
π ,π̂hist

((
π̂hist(X)(x0)− π(x0)

)2)
≤ CLmax

{
n−2/3, (nϵ)−1

}
.

Furthermore, given ρ > 0, using π̂hist with h = max(n−1/3, (n
√
ρ)−1/2) and Z =

√
1
ρN (0, 1),

where N (0, 1) refers to a random variable following a centered Gaussian distribution of
variance 1, leads to a ρ-zCDP procedure. Furthermore, in this case, there exists CL > 0,
a positive constant that only depends on L, such that

sup
x0∈[0,1]

sup
π∈ΘLip

L

EX∼P⊗n
π ,π̂hist

((
π̂hist(X)(x0)− π(x0)

)2)
≤ CLmax

{
n−2/3, (n

√
ρ)−1

}
.

Note that this bound is uniform in x. In particular, by integration on [0, 1], the same
bound also holds for the integrated risk (in L2 norm). As expected, the optimal bin size
h depends on the sample size n and on the parameter (ϵ or ρ) tuning the privacy.

5.1.3 Lower-bounds and minimax optimality

All lower-bounds will be investigated in a minimax sense. Given a class Π of admissible
densities, a semi-norm ∥·∥ on a space containing the class Π, and a non-decreasing positive
function Φ such that Φ(0) = 0, the minimax risk is defined as

inf
π̂ s.t. C

sup
π∈Π

EX∼P⊗n
π ,π̂Φ(∥π̂(X)− π∥) ,

where C is a condition that must satisfy the estimator (privacy in our case).

General framework. A usual technique for the derivation of minimax lower bounds
on the risk uses a reduction to a testing problem (see [Tsybakov, 2009]). Indeed, if a
family Π′ := {π1, . . . , πm} ⊂ Π of cardinal m is an Ω-packing of Π (that is if i ̸= j =⇒
∥πi − πj∥ ≥ 2Ω), then a lower bound is given by

inf
π̂ s.t. C

sup
π∈Π

EX∼P⊗n
π ,π̂Φ(∥π̂(X)− π∥)

≥ Φ(Ω) inf
π̂ s.t. C

Ψ:codom(π̂)→{1,...,m}

max
i∈{1,...,m}

PX∼P⊗n
πi

,π̂ (Ψ (π̂(X)) ̸= i) . (5.3)

For more details, see [Duchi et al., 2016, Acharya et al., 2021e, Lalanne et al., 2023b]. The
right-hand side characterizes the difficulty of discriminating the distributions of the pack-
ing by a statistical test. Independently on the condition C, it can be lower-bounded using
information-theoretic results such a Le Cam’s lemma [Rigollet & Hütter, 2015, Lemma
5.3] or Fano’s lemma [Giraud, 2021, Theorem 3.1]. When C is a local privacy condition,
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[Duchi et al., 2016] provides analogous results that take privacy into account. Recent
work [Acharya et al., 2021e, Kamath et al., 2022, Lalanne et al., 2023b] provides analo-
gous forms for multiple notions of global privacy. When using this technique, finding good
lower-bounds on the minimax risk boils down to finding a packing of densities that are far
enough from one another without being too easy to discriminate with a statistical test.

It is interesting to note that for the considered problem, this technique does not yield
satisfying lower-bounds with ρ-zCDP every time Fano’s lemma is involved. Systematically,
a small order is lost. To circumvent that difficulty, we had to adapt Assouad’s technique
to the context of ρ-zCDP. Similar ideas have been used in [Duchi et al., 2016] for lower-
bounds under local differential privacy and in [Acharya et al., 2021e] for regular global
differential privacy. To the best of our knowledge, such a technique has never been used in
the context of global concentrated differential privacy, and is presented in Remark 5.1.5. In
all the proofs of the lower-bounds, we systematically presented both approaches whenever
there is a quantitative difference. This difference could be due to small suboptimalities in
Fano’s lemma for concentrated differential privacy, or simply to the use of a suboptimal
packing.

Pointwise lower-bound

The first lower-bound that will be investigated is with respect to the pointwise risk. Point-
wise, that is to say given x0 ∈ [0, 1], the performance of the estimator π̂ is measured by

how well it approximates π at x0 with the quadratic risk EX∼P⊗n
π ,π̂

(
(π̂(X)(x0)− π(x0))

2
)
.

Technically, it is the easiest since it requires a ”packing” of only two elements, which gives
the following lower-bound:

Theorem 5.1.3 (Pointwise lower-bound). There exists CL > 0, a positive constant de-
pending only on L such that, for any x0 ∈ [0, 1], there exist n0(x0, L) ∈ N and c0(x0, L) > 0
such that for any n ≥ n0, and any α ≥ c0/n

inf
π̂s.t.C

sup
π∈ΘLip

L

EX∼P⊗n
π ,π̂

(
(π̂(X)(x0)− π(x0))

2
)
≥ C−1

L max
{
n−2/3, (nα)−1

}
, (5.4)

where α = ϵ when the condition C is the ϵ-DP condition and α =
√
ρ when C is ρ-zCDP.

Proof. Let x0 ∈ [0, 1]. As explained above, finding a ”good” lower-bound can be done
by finding and analyzing a ”good” packing of the parameter space. Namely, in this case,
we have to find distributions on [0, 1] that have a L-Lipschitz density (w.r.t. Lebesgue’s
measure) such that the densities are far from one another at x0, but such that it is not
extremely easy to discriminate them with a statistical test. We propose to use a packing
{Pf ,Pg} of two elements where g is the constant function on [0, 1] (hence Pg is the uniform
distribution) and f deviates from g by a small triangle centered at x0. The two densities
are represented in Figure 5.1. After analyzing various quantities about these densities,
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Figure 5.1: Packing for Theorem 5.1.3

such as their distance at x0, their KL divergences or their TV distance, we leverage Le
Cam-type results to conclude.

Packing construction. We define the functions fL,x0,h, ∀h > 0 as

∀x ∈ [0, 1], fL,x0,h(x) :=


1− Lh2 if x ∈ [0, x0 − h) ∪ [x0 + h, 1],

1− Lh2 + Lh+ L(x− x0) if x ∈ [x0 − h, x0) .

1− Lh2 + Lh− L(x− x0) if x ∈ [x0, x0 + h)

(5.5)

Note that as soon as h ≤ min{x0, 1− x0}, fL,x0,h ∈ ΘLip
L . The case x0 ∈ {0, 1} is treated

in the exact same fashion, but by considering functions that only contain ”half of a spike”
centered on x0. Furthermore, let us note g the function that is constant to 1 on [0, 1] (we
have g ∈ ΘLip

L ).

We start by redefining the total variation distance between two probability distributions,
and we recall some useful alternative expressions that are used in the proofs of this chapter.
Given (U , T ) a set U equipped with a σ-algebra T , and two probability measures P1 and
P2 two probability distributions on U , and compatible with T , the total variation distance
TV (·, ·) between P1 and P2 is defined as

TV (P1,P2) := sup
S∈T

|P1(S)− P2(S)| .

Furthermore, when P1,P2 are dominated by a common σ-finite measure µ on (U , T ), by
noting p1 :=

dP1
dµ and p2 :=

dP2
dµ , the Radon-Nikodym derivatives of P1 and P2 with respect
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to µ, the following alternative expressions to the total variation can be useful :

TV (P1,P2) := sup
S∈T

|P1(S)− P2(S)|

= P1({p1 > p2})− P2({p1 > p2})

=

∫
{p1>p2}

p1 − p2dµ

=

∫
{p2≥p1}

p2 − p1dµ

=
1

2

∫
U
|p1 − p2|dµ

= 1−
∫
U
min(p1, p2)dµ .

These expressions simply come from considering the events {p1 > p2} and {p2 ≥ p1} that
form a partition of U , and from the relation |a − b| = a + b − 2min(a, b) for any real
numbers a and b.

Jumping back to our original proof, when fL,x0,h ∈ ΘLip
L , we can compute the total vari-

ation between PfL,x0,h
and Pg the distributions of probability with densities fL,x0,h and g

with respect to Lebesgue’s measure on [0, 1],

TV
(

PfL,x0,h
,Pg

)
= 1−

∫
[0,1]

min (fL,x0,h, g)

Constant part
≤ 1−

∫
[0,1]

1− Lh2dx

= Lh2 .

(5.6)

Another important measure of discrepancy between probability distributions is the so-
called KL divergence. For two probability distributions P and Q such that P ≪ Q (absolute
continuity), it is defined as

KL (P∥Q) =
∫

ln

(
dP
dQ

)
dP .

Back to our problem, for h in a neighborhood of 0, we also have the following Taylor
expansion on their KL divergence:

KL
(

Pg∥PfL,x0,h

)
=

∫
[0,1]

ln

(
g

fL,x0,h

)
g

= ln

(
1

1− Lh2

)
(1− 2h) + 2

∫ h

0
ln

(
1

1− Lh2 + Lt

)
dt

≤ C
(
h3 +O(h4)

)
,

(5.7)
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where C is a positive constant depending only on L the O only hides constant factors.
Furthermore, |g(x0)− fL,x0,h(x0)| = L|h2 − h| and {g, fL,x0,h} is thus a L

2 |h
2 − h| packing

of ΘLip
L w.r.t the seminorm f, g 7→ ∥f − g∥ := |f(x0)− g(x0)|.

Recovering the usual lower-bound By the classical minimax reduction as hypothesis
testing Equation (5.3),

inf
π̂ s.t. C

sup
π∈ΘLip

L

EX∼P⊗n
π ,π̂

(
(π̂(X)(x0)− π(x0))

2
)

≥ L2

4

(
h2 − h

)2
inf

π̂ s.t. C
inf

Ψ:ΘLip
L →{0,1}

max
{

PX∼P⊗n
g ,π̂ (Ψ(π̂(X)) ̸= 0) ,

PX∼P⊗n
fL,x0,h

,π̂ (Ψ(π̂(X)) ̸= 1)

}
Fact 3.1.1

≥ L2

8
(h2 − h)2

(
1− TV

(
P⊗n
g ,P⊗n

fL,x0,h

))
Pinsker
≥ L2

8
(h2 − h)2

(
1−

√
KL
(

P⊗n
g

∥∥P⊗n
fL,x0,h

)
/2

)
Tensorization

=
L2

8
(h2 − h)2

(
1−

√
nKL

(
Pg∥PfL,x0,h

)
/2

)
(5.7)

≥ L2

8
(h2 − h)2

(
1−

√
n

2

(
h3L2

3
+O(h4)

))
.

(5.8)

The second inequality comes from the so-called Le Cam’s lemma [Rigollet & Hütter, 2015]
that lower-bounds the testing difficulty (without further constraints) between two distribu-
tions. The next inequality comes from the so-called Pinsker’s inequality [Tsybakov, 2009],
that states that for two probability distributions P and Q, TV (P,Q) ≤

√
KL (P∥Q) /2.

The last inequality is the result of the so-called tensorization property of the KL diver-
gence that states that for two probability distributions P and Q, and for an integer n ≥ 1,
KL (P⊗n∥Q⊗n) ≤ nKL (P∥Q).

When possible (i.e. when n is big enough), setting h =
(

1
4nL2

)1/3
leads to, for n big enough

(so that h− h2 ≥ h/2 and |O(h4)| ≤ h3L2

3 ),

inf
π̂ s.t. C

sup
π∈ΘLip

L

EX∼P⊗n
π ,π̂

(
(π̂(X)(x0)− π(x0))

2
)
≥ L2

64

(
1

4L2

)2/3

n−2/3 .

This implies the first lower bound.
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ϵ-DP overhead. By Equation (5.8) and by Le Cam’s lemma for differential privacy on
product distributions Theorem 3.2.1,

inf
π̂ ϵ-DP

sup
π∈ΘLip

L

EX∼P⊗n
π ,π̂

(
(π̂(X)(x0)− π(x0))

2
)
≥ L2

8
(h2 − h)2e

−nϵTV
(

PfL,x0,h
,Pg

)

(5.6)

≥ L2

8
(h2 − h)2e−Lnϵh2

.

When possible (i.e. when nϵ is big enough), setting h = 1/
√
nϵ leads to, for nϵ big enough

(so that h− h2 ≥ h/2),

inf
π̂ ϵ-DP

sup
π∈ΘLip

L

EX∼P⊗n
π ,π̂

(
(π̂(X)(x0)− π(x0))

2
)
≥ L2e−L

32
(nϵ)−1 .

ρ-zCDP overhead. By Le Cam’s lemma for zero-concentrated differential privacy on
product distributions Theorem 3.2.2 in (5.8),

inf
π̂ ϵ-DP

sup
π∈ΘLip

L

EX∼P⊗n
π ,π̂

(
(π̂(X)(x0)− π(x0))

2
)

≥ L2

8
(h2 − h)2

(
1− n

√
ρ/2TV

(
PfL,x0,h

,Pg

))
(5.6)

≥ L2

8
(h2 − h)2

(
1− n

√
ρ/2Lh2

)
.

When possible (i.e. when n
√
ρ is big enough), setting h =

(
1√

2Ln
√
ρ

)1/2
leads to, for n

√
ρ

big enough (so that h− h2 ≥ h/2),

inf
π̂ ρ-zCDP

sup
π∈ΘLip

L

EX∼P⊗n
π ,π̂

(
(π̂(X)(x0)− π(x0))

2
)
≥ L

64
(n
√
ρ)−1 .

Additionally, we can notice that, when applied to any fixed x0 ∈ [0, 1], Theorem 5.1.3
immediately gives the following corollary for the control in infinite norm :

Corollary 5.1.4 (Infinite norm lower-bound). There exists CL > 0, a positive constant
depending only on L such that there exist n0(L) ∈ N and c0(L) > 0 such that for any
n ≥ n0, and any α ≥ c0/n

inf
π̂s.t.C

sup
π∈ΘLip

L

EX∼P⊗n
π ,π̂∥π̂(X)− π∥2∞ ≥ C−1

L max
{
n−2/3, (nα)−1

}
, (5.9)

where α = ϵ when the condition C is the ϵ-DP condition and α =
√
ρ when C is ρ-zCDP.
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On the optimality and on the cost of privacy. Theorem 5.1.2, Theorem 5.1.3 and
Corollary 5.1.4 give the following general result : Under ϵ-DP or under ρ-zCDP, histogram
estimators have minimax-optimal rates of convergence against distributions with Lipschitz
densities, for the pointwise risk or the risk in infinite norm. In particular, in the low privacy
regime (“large” α), the usual minimax rate of estimation of n− 2

3 is not degraded. This
includes the early observations of [Wasserman & Zhou, 2010] in the case of constant α (ϵ

or
√
ρ). However, in the high privacy regimes (α ≪ n− 1

3 ), these results prove a systematic
degradation of the estimation. Those regimes are the same as in [Barber & Duchi, 2014],
the metrics on the other hand are different.

Remark 5.1.5 (Assouad’s lemma/method). As the reduction to a testing problem be-
tween multiple hypotheses, Assouad’s lemma relies on similar ideas, where the packing
has to be parametrized by a hypercube. Its advantage over tools like Fano’s lemma is that
it only makes tests between pairs of hypotheses (instead of all of them at the same time).
The cost of this is that the control of the packing is slightly more difficult.

Suppose that the set of distributions of interest P contains a family of distributions
(Pω)ω∈{0,1}m for a certain positive integer m. If the loss function (taken quadratic for
simplicity) can be decomposed as

∀ω, ω′ ∈ {0, 1}m, ∥Pω − Pω′∥2L2 ≥ 2τ
m∑
i=1

1ωi ̸=ω′
i
= 2τdham

(
ω, ω′) , (5.10)

then the minimax risk can be lower-bounded as (the proof is classical and can be found
in [Acharya et al., 2021e, Section 5.4])

inf
π̂ s.t. C

sup
P∈P

EX∼P,π̂(∥π̂(X)− π∥2L2)

≥ τ

16

m∑
i=1

inf
M s.t. C

Ψ:codom(M)→{0,1}

PX∼P
ωi,0 ,M (Ψ (M(X)) ̸= 0)+

PX∼P
ωi,1 ,M (Ψ (M(X)) ̸= 1) .

(5.11)

where Pωi,0 and Pωi,1 are the mixture distributions

Pωi,0 :=
1

2m−1

∑
ω∈{0,1}m|ωi=0

Pω and Pωi,0 :=
1

2m−1

∑
ω∈{0,1}m|ωi=1

Pω . (5.12)

The term
PX∼P

ωi,0 ,M (Ψ (M(X)) ̸= 0) + PX∼P
ωi,1 ,M (Ψ (M(X)) ̸= 1)

characterizes the testing difficulty between Pωi,0 and Pωi,1 . It can be controlled by Le Cam’s
lemma, and by its variants when working under privacy (see [Acharya et al., 2021e, Lalanne
et al., 2023b] for differential privacy and [Lalanne et al., 2023b] for concentrated differential
privacy).
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Integrated lower-bound

The lower-bound of Theorem 5.1.3 is interesting, but its pointwise (or in infinite norm in
the case of Corollary 5.1.4) nature means that much global information is possibly lost.
Instead, one can look at the integrated risk EX∼P⊗n

π ,π̂∥π̂(X) − π∥2L2 . Given Lemma 5.1.1
and the fact that we work on probability distributions with a compact support, upper-
bounding this quantity is straightforward.

The lower-bound for the integrated risk is given by :

Theorem 5.1.6 (Integrated lower-bound). There exists CL > 0, a positive constant de-
pending only on L such that, there exist n0(L) ∈ N and c0(L) > 0 such that for any
n ≥ n0, and any α ≥ c0/n

inf
π̂ s.t. C

sup
π∈ΘLip

L

EX∼P⊗n
π ,π̂∥π̂(X)− π∥2L2 ≥ C−1

L max
{
n−2/3, (nα)−1

}
where α = ϵ when C is the ϵ-DP condition, and α =

√
ρ when C is the ρ-zCDP condition.

Proof. If we were to use the same packing (see Figure 5.1) as in the proof of Theorem 5.1.3,
the lower-bounds would not be good. Indeed, moving from the pointwise difference to the
L2 norm significantly diminishes the distances in the packing. Instead, we will use the
same idea of deviating from a constant function by triangles, except that we authorize
more than one deviation. More specifically, we consider a packing consisting of densities
fω’s where the ω’s are a well-chosen family of {0, 1}m (m is fixed in the proof) [Van der
Vaart, 1998]. Then, for a given ω ∈ {0, 1}m, fω has a triangle centered on i

m+1 iff wi ̸= 0.
We then leverage Fano-type inequalities, and we use Assouad’s method in order to find
the announced lower-bounds.

For any ω ∈ {0, 1}m different from 0 and any h > 0, we define the function gL,ω,h as

gL,ω,h :=
1

∥ω∥1

m∑
i=1

ωif∥ω∥1L, i
m+1

,h , (5.13)

where the functions f are defined in (5.5). Note that gL,ω,h is L-Lipschitz and that as soon

as h ≤ hm := 1
2(m+1) it is also a valid density so that gL,ω,h ∈ ΘLip

L . Notice that the function

gL,ω,h is constant to 1−∥ω∥1Lh2 everywhere except on each interval
[

i
m+1 − h, i

m+1 + h
]

with i such that ωi ̸= 0, on which it deviates by a triangle of slopes +L and −L.

By denoting by K the triangle kernel such that K(t) =
∫ t
−∞ L1[−h,0](t

′) − L1[(0,h](t
′)dt′,
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i
m+1 when ωi = 10
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1

Tuneable deviation support

y = fω(x)

x
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j
m+1 when ωj = 0

Figure 5.2: Packing for Theorem 5.1.6

it might be easier to visualize gL,ω,h as

∀t ∈ [0, 1], gL,ω,h(t) = 1− ∥ω∥1
∫

K +
m∑
i=1

ωiK

(
t− i

m+ 1

)
,

where
∫
K = Lh2.

For ω, ω′ ∈ {0, 1}m and for h small enough (i.e. h ≤ hm), we can bound the total variation
between PgL,ω,h

and PgL,ω′,h as

TV
(

PgL,ω,h
,PgL,ω′,h

)
= 1−

∫
[0,1]

min
(
gL,ω,h, gL,ω′,h

)
Constant part

≤ 1−min
(
1− ∥ω∥1Lh2, 1− ∥ω′∥1Lh2

)
= max

(
∥ω∥1, ∥ω′∥1

)
Lh2 ≤ mLh2 .

(5.14)
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TV
(

PgL,ω,h
,PgL,ω′,h

)
=

1

2

∫ ∣∣gL,ω,h − gL,ω′,h

∣∣
=

1

2

∫ ∣∣∣∣∣∥(ω′∥1 − ∥ω∥1)
∫

K +
m∑
i=1

(ω′
i − ωi)K

(
· − i

m+ 1

)∣∣∣∣∣
≤ 1

2

∫ ∣∣∥ω′∥1 − ∥ω∥1
∣∣ ∫ K +

m∑
i=1

∣∣ω′
i − ωi

∣∣K (· − i

m+ 1

)
=

1

2

( ∣∣∥ω′∥1 − ∥ω∥1
∣∣+ dham

(
ω, ω′))∫ K

≤ mLh2 .

(5.15)

The KL divergence between PgL,ω,h
and Pg, with g the density constant equal to 1 on [0, 1],

satisfies

KL
(

PgL,ω,h

∥∥Pg

)
=

∫
[0,1]

ln (gL,ω,h) gL,ω,h

= ln
(
1− ∥ω∥1Lh2

) (
1− ∥ω∥1Lh2

)
(1− ∥ω∥12h)

+ 2∥ω∥1
∫ h

0
ln
(
1− ∥ω∥1Lh2 + Lt

) (
1− ∥ω∥1Lh2 + Lt

)
dt

ln(1+·)≤·
≤

(
−∥ω∥1Lh2

) (
1− ∥ω∥1Lh2

)
(1− ∥ω∥12h)

+ 2∥ω∥1
∫ h

0

(
−∥ω∥1Lh2 + Lt

) (
1− ∥ω∥1Lh2 + Lt

)
dt

Calculus
≤ L2

3
∥ω∥1h3(2− 3∥ω∥1h) .

(5.16)

Finally, we lower bound the squared L2 distance between gL,ω,h and gL,ω′,h:
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∫
[0,1]

(
gL,ω,h − gL,ω′,h

)2
=

m∑
i=1

1ωi ̸=ω′
i

∫ i
m+1

+h

i
m+1

−h

((
∥ω′∥1 − ∥ω∥1

) ∫
K + (ωi − ω′

i)K

(
t− i

m+ 1

))2

dt

≥
m∑
i=1

1ωi ̸=ω′
i

∫ i
m+1

+h

i
m+1

−h

(
K

(
t− i

m+ 1

)
−
∣∣∥ω∥1 − ∥ω′∥1

∣∣ ∫ K

)2

dt

≥
m∑
i=1

1ωi ̸=ω′
i

∫ i
m+1

+h

i
m+1

−h

{(
K

(
t− i

m+ 1

))2

−2K

(
t− i

m+ 1

) ∣∣∥ω∥1 − ∥ω′∥1
∣∣ ∫ K

}
dt

≥ dham
(
ω, ω′)(∫ K2 − 2m

(∫
K

)2
)

≥ 2dham
(
ω, ω′)L2

(
h3

3
−mh4

)
=

2dham (ω, ω′)L2
(
h3 − 3mh4

)
3

.

(5.17)

By the Varshamov-Gilbert theorem [Tsybakov, 2009, Lemma 2.7], as long as m ≥ 8,
there exist M ∈ N and ω(0), . . . , ω(M) ∈ {0, 1}m such that M ≥ 2m/8, ω(0) = {0}m and

i ̸= j =⇒ dham
(
ω(i), ω(j)

)
≥ m/8. According to (5.17), the family

(
gL,ω(i),h

)
i=1,...,M

is

then an Ω := 1
2

√
mL2(h3−3mh4)

12 packing of ΘLip
L for the L2 distance.
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Recovering the usual lower-bound. By Equation (5.3) with Φ(·) := (·)2 and ∥ · ∥ the
L2 norm,

inf
π̂ s.t. C

sup
π∈ΘLip

L

EX∼P⊗n
π ,π̂

(∫
[0,1]

(π̂(X)− π)2
)

≥
mL2

(
h3 − 3mh4

)
48

inf
π̂ s.t. C

inf
Ψ:ΘLip

L →{0,1}
max

i=1,...,M
PX∼P⊗n

g
L,ω(i),h

,π̂ (Ψ(π̂(X)) ̸= i)

Fact 3.1.2
≥

mL2
(
h3 − 3mh4

)
48

1−
1 + 1

M

∑
1≤i≤M KL

(
P⊗n
g
L,ω(i),h

∥∥∥P⊗n
g

)
ln(M)


Tensorization

=
mL2

(
h3 − 3mh4

)
48

1−
1 + n

M

∑
1≤i≤M KL

(
Pg

L,ω(i),h

∥∥∥Pg

)
ln(M)


(5.16)&∥ω∥1≤m,M≥2m/8

≥
mL2

(
h3 − 3mh4

)
48

(
1−

1 + L2

3 nmh3(2− 3mh)

ln(2)m/8

)
.

(5.18)
So, by choosing m =

⌈
n1/3

⌉
and h = c

m where c is a positive constant small enough we
get, for n big enough,

inf
π̂ ϵ-DP

sup
π∈ΘLip

L

EX∼P⊗n
π ,π̂

(∫
[0,1]

(π̂(X)− π)2
)

≥ C−1(n)−2/3 ,

where C is a positive constant depending only on L.

ϵ-DP overhead. By the same reduction and Fano’s lemma for differential privacy on
product distributions (Theorem 3.2.3), we get for any h ≤ hm,

inf
π̂ ϵ-DP

sup
π∈ΘLip

L

EX∼P⊗n
π ,π̂

(∫
[0,1]

(π̂(X)− π)2
)

≥
mL2

(
h3 − 3mh4

)
48

1−
1 + nϵ

M2 2
∑

1≤i,j≤M TV
(

Pg
L,ω(i),h

,Pg
L,ω(j),h

)
ln(M)


(5.15)&M≥2m/8

≥
mL2

(
h3 − 3mh4

)
48

(
1− 1 + 2nϵmLh2

ln(2)m/8

)
.

So, by choosing m = ⌈
√
nϵ⌉ and h = c

m where c is small enough a positive constant
(depending only on L), we get, as soon as min(n, nϵ) is big enough,

inf
π̂ ϵ-DP

sup
π∈ΘLip

L

EX∼P⊗n
π ,π̂

(∫
[0,1]

(π̂(X)− π)2
)

≥ C ′−1(nϵ)−1 ,

where C ′ is a positive constant depending only on L.
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ρ-zCDP overhead. For ρ-zCDP, we present the proof using both Fano’s lemma and
Assouad’s method. We will see that Assouad gives better results

Fano version. By again the same reduction and Fano’s lemma for zero-concentrated

differential privacy (Theorem 3.2.4), denoting ti,j := TV
(

Pg
L,ω(i),h

,Pg
L,ω(j),h

)
, we get for

any h ≤ hm,

inf
π̂ ρ-zCDP

sup
π∈ΘLip

L

EX∼P⊗n
π ,π̂

(∫
[0,1]

(π̂(X)− π)2
)

≥
mL2

(
h3 − 3mh4

)
48

1−
1 + n2ρ

M2 4
∑

1≤i,j≤M

(
1
n ti,j + t2i,j

)
ln(M)


(5.15)

≥
mL2

(
h3 − 3mh4

)
48

1−
1 + n2ρ4

(
mLh2

n +m2L2h4
)

ln(2)m/8

 .

So, by choosing m =
⌈(
n
√
ρ
) 2

3

⌉
and h = c

m for c small enough (depending only on L), if
n
ρ is big enough, we get that

inf
π̂ s.t. ρ-zCDP

sup
π∈ΘLip

L

EX∼P⊗n
π ,π̂

(∫
[0,1]

(π̂(X)− π)2
)

≥ C ′′−1(n
√
ρ)−4/3

where C ′′ is a positive constant depending only on L.

Assouad version. From Equation (5.17), we can see that when h := c
m for a positive c

that is small enough, the condition expressed in Equation (5.10) is satisfied for τ = Ω(h3).
To apply (5.12), the only missing ingredient is to bound the testing difficulties between
the mixtures on the hypercube.

In the sequel, Pω is used as a short for PgL,ω,h
. We need to bound the total variation
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between the mixtures on the hypercube (see (5.12)) as

TV (Pωi,0 ,Pωi,1) = TV

 1

2m−1

∑
ω∈{0,1}m|ωi=0

PgL,ω,h
,

1

2m−1

∑
ω∈{0,1}m|ωi=1

PgL,ω,h


=

1

2

1

2m−1

∫ ∣∣∣∣∣∣
∑

ω∈{0,1}m|ωi=0

gL,ω,h −
∑

ω∈{0,1}m|ωi=1

gL,ω,h

∣∣∣∣∣∣
=

1

2m

∫ ∣∣∣∣∣ ∑
ω1,...,ωi−1,ωi+1...,ωm∈{0,1}

(
gL,(ω1,...,ωi−1,0,ωi+1...,ωm),h−

gL,(ω1,...,ωi−1,1,ωi+1...,ωm),h

)∣∣∣∣∣
≤ 1

2m

∑
ω1,...,ωi−1,ωi+1...,ωm∈{0,1}

∫ ∣∣∣∣∣gL,(ω1,...,ωi−1,0,ωi+1...,ωm),h−

gL,(ω1,...,ωi−1,1,ωi+1...,ωm),h

∣∣∣∣∣
Equation (5.15)

≤ 1

2m

∑
ω1,...,ωi−1,ωi+1...,ωm∈{0,1}

2Lh2

= O
(
h2
)
.

All in all, by using Le Cam’s lemma for product distribution and ρ-zCDP Theorem 3.2.2,
and by Equation (5.11),

inf
π̂ ρ-zCDP

sup
π∈ΘPSob

L,β

EX∼P⊗n
π ,π̂

(∫
[0,1]

(π̂(X)− π)2
)

= Ω
(
mh3

) (
1− n

√
ρO
(
h2
))

. (5.19)

Setting h ≈
(
n
√
ρ
)−1

2 concludes the proof.

Since the lower-bounds of Theorem 5.1.6 match the upper-bounds of Theorem 5.1.2, we
conclude that the corresponding estimators are optimal in terms of minimax rate of con-
vergence.

5.2 Projection Estimators and Periodic Sobolev Densities

The Lipschitz densities considered in Section 5.1 are general enough to be applicable
in many problems. However, this level of generality becomes a curse in terms of rate of
estimation. Indeed, as we have seen, the optimal rate of estimation is max

(
n−2/3, (nϵ)−1

)
.

To put it into perspective, for many parametric estimation procedures, the optimal rate
of convergence usually scales as max

(
n−1, (nϵ)−2

)
[Acharya et al., 2021e]. This section

studies the estimation of smoother distributions, for different smoothness levels, at the
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cost of generality. In particular, it establishes that the smoother the distribution class is,
the closer the private rate of estimation is to max

(
n−1, (nϵ)−2

)
. In other words, it means

that the more regular the density is supposed to be, the closer we get to the difficulty of
parametric estimation.

When the density of interest π is in L2([0, 1]), it is possible to approximate it by projections.
Indeed, L2([0, 1]) being a separable Hilbert space, there exists a countable orthonormal
family (ϕi)i∈N\{0} that is a Hilbert basis. In particular, if θi :=

∫
[0,1] π ϕi then

N∑
i=1

θiϕi

L2

−→
N→+∞

π .

Let N be a positive integer, Z1, . . . , ZN be independent and identically distributed random
variables with the same distribution as a centered random variable Z having a finite
variance. Given a dataset X = (X1, . . . , Xn), that is also independent of Z1, . . . , ZN , the
(randomized) projection estimator is defined as

π̂proj(X) =
N∑
i=1

(
θ̂i +

1

n
Zi

)
ϕi where θ̂i :=

1

n

n∑
j=1

ϕi(Xj) . (5.20)

The truncation order N and the random variable Z are tuned later to obtain the desired
levels of privacy and utility. L2([0, 1]) has many well known Hilbert bases, hence multiple
choices for the family (ϕi)i∈N\{0}. For instance, orthogonal polynomials, wavelets, or the
Fourier basis, are often great choices for projection estimators. Because of the privacy
constraint however, it is better to consider a uniformly bounded Hilbert basis [Wasserman
& Zhou, 2010], which is typically not the case with a polynomial or wavelet basis. From
now on, this work will focus on the following Fourier basis :

ϕ1(x) = 1

ϕ2k(x) =
√
2 sin (2πkx) k ≥ 1

ϕ2k+1(x) =
√
2 cos (2πkx) k ≥ 1 .

5.2.1 General utility of projection estimators

By the Parseval formula, the truncation resulting of approximating the density π on a
finite family of N orthonormal functions induces a bias term that accounts for

∑
i≥N+1 θ

2
i

in the mean square error. Characterizing the utility of π̂proj requires controlling this term,
and this is usually done by imposing that π is in a Sobolev space. We recall the definition
given in [Tsybakov, 2009]: given β ∈ N\{0} and L > 0, the class ΘSob

L,β of Sobolev densities
of parameters β and L is defined as

ΘSob
L,β :=

π ∈ Cβ([0, 1],R+)

∣∣∣∣∣∣∣∣

π(β−1) is absolutely continuous ,∫
[0,1]

(
π(β)

)2 ≤ L2 ,∫
[0,1] π = 1 .

 .
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For a function f , we used the notation f (β) to refer to its derivative of order β. In addition,
the class ΘPSob

L,β of periodic Sobolev densities of parameters β and L is defined as

ΘPSob
L,β :=

{
π ∈ ΘSob

L,β

∣∣∣∀j ∈ {0, . . . , β − 1}, π(j)(0) = π(j)(1)
}

. (5.21)

Finally, we recall the following general-purpose lemma [Tsybakov, 2009] that allows con-
trolling the truncation bias :

Fact 5.2.1 (Ellipsoid reformulation [Tsybakov, 2009]). A non-negative function π with

integral 1 belongs to ΘPSob
L,β if and only if

∞∑
i=1

a2βi θ2i ≤ L2

π2β
, where aj := j if j is even and

aj := j − 1 if j is odd.

In this class, one can characterize the utility of projection estimators with the following
lemma:

Lemma 5.2.2 (General utility of (5.20)). There is a constant CL,β > 0, depending only
on L, β, such that

sup
π∈ΘPSob

L,β

EX∼P⊗n
π ,π̂proj∥π̂proj(X)− π∥2L2 ≤ CL,β

(
1

N2β
+

N

n
+

NV(Z)

n2

)
.

Proof. Let π ∈ ΘPSob
L,β . We have,

E

(∫
[0,1]

(
π̂proj(X)− π

)2) Parseval
= E

(
N∑
i=1

(
θ̂i − θi +

1

n
Zi

)2

+
+∞∑

i=N+1

θ2i

)

=
N∑
i=1

E

((
θ̂i − θi +

1

n
Zi

)2
)

+
+∞∑

i=N+1

θ2i .

Furthermore, for any i, since Z is centered

E
(
θ̂i

)
= E

 1

n

n∑
j=1

ϕi(Xj)


=

1

n

n∑
j=1

E (ϕi(Xj))
Xj i.i.d.

= EX∼P⊗n
π

ϕi(X1)

=

∫
πϕi = θi
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Hence, for any i, since Zi is independent from the dataset

E

((
θ̂i − θi +

1

n
Zi

)2
)

= V
(
θ̂i

)
+

1

n2
V (Zi)

Independence of Xj
=

1

n2

n∑
j=1

V (ϕi (Xj)) +
1

n2
V (Zi)

|ϕi|≤
√
2

≤ 2

n
+

1

n2
V (Z) .

Finally, with aj := j − 1, Fact 5.2.1 allows bounding
∑+∞

i=m+1 θ
2
i as

+∞∑
i=N+1

θ2i ≤ 1

N2β

+∞∑
i=N+1

a2βi θ2i ≤ 1

N2β

+∞∑
i=1

a2βi θ2i
Fact 5.2.1

≤ 1

N2β

L2

π2β
.

This yields the conclusion with CL,β := max(2, L2/π2β).

5.2.2 Privacy and bias tuning

The estimator π̂proj(X) is a function of the sums
(∑n

j=1 ϕ1(Xj), . . . ,
∑n

j=1 ϕN (Xj)
)
. In

particular, it is possible to use Laplace and Gaussian mechanisms on this function in order
to obtain privacy. Since the functions |ϕi| are bounded by

√
2 for any i, the l1 sensitivity

of this function is 2
√
2N and its l2 sensitivity is 2

√
2
√
N . Applying the Laplace and

the Gaussian mechanism and tuning N to optimize the utility of Lemma 5.2.2 gives the
following result:

Theorem 5.2.3 (Privacy and utility of (5.20)). Given any ϵ > 0 and truncation order

N , using π̂proj with Z = 2N
√
2

ϵ L(1), where L(1) refers to a random variable following a
Laplace distribution of parameter 1, leads to an ϵ-DP procedure. Moreover, there exists
CL,β > 0, a positive constant that only depends on L and β, such that if N is on the order

of min
(
n

1
2β+1 , (nϵ)

1
β+3/2

)
,

sup
π∈ΘPSob

L,β

EX∼P⊗n
π ,π̂proj∥π̂proj(X)− π∥2L2 ≤ CL,β max

{
n
− 2β

2β+1 , (nϵ)
− 2β

β+3/2

}
.

Furthermore, given any ρ > 0, and truncation order N , using π̂proj with Z = 2
√
N√
ρ N (0, 1),

where N (0, 1) refers to a random variable following a centered Gaussian distribution of
variance 1, leads to a ρ-zCDP procedure. Moreover, there exists CL,β > 0, a positive con-

stant that only depends on L and β, such that, if N is of the order of min
(
n

1
2β+1 ,

(
n
√
ρ
) 1

β+1

)
sup

π∈ΘPSob
L,β

EX∼P⊗n
π ,π̂proj∥π̂proj(X)− π∥2L2 ≤ CL,β max

{
n
− 2β

2β+1 , (n
√
ρ)

− 2β
β+1

}
.

We now discuss these guarantees depending on the considered privacy regime.



122

Low privacy regimes. According to Theorem 5.2.3, when the privacy-tuning param-
eters are not too small (i.e. when the estimation is not too private), the usual rate of

convergence n
− 2β

2β+1 is not degraded. In particular, for constant ϵ or ρ, this recovers the
results of [Wasserman & Zhou, 2010].

High privacy regimes. Furthermore, Theorem 5.2.3 tells that in high privacy regimes

(ϵ ≪ n
−β−1/2

2β+1 or ρ ≪ n
− 2β+2

2β+1 ), the provable guarantees of the projection estimator are
degraded compared to the usual rate of convergence. Is this degradation constitutive of
the estimation problem, or is it due to a suboptimal upper-bound? Section 5.2.3 shows
that this excess of risk is in fact almost optimal.

5.2.3 Lower-bounds

As with the integrated risk on Lipschitz distributions, obtaining lower-bounds for the class
of periodic Sobolev densities is done by considering a packing with many elements. The
idea of the packing is globally the same as for histograms, except that the uniform density
is perturbed with a general C∞ kernel with compact support instead of simple triangles.
In the end, we obtain the following result:

Theorem 5.2.4 (Integrated lower-bound). Given L, β > 0 there exists constants CL,β >
0, n0(L, β) ∈ N, and c0(L, β) > 0, such that for any n ≥ n0, and any α ≥ c0/n

inf
π̂ s.t. C

sup
π∈ΘPSob

L,β

EX∼P⊗n
π ,π̂∥π̂(X)− π∥2L2 ≥ C−1

L,β max
{
n
− 2β

2β+1 , (nα)
− 2β

β+1

}
where α = ϵ when C is the ϵ-DP condition, and α =

√
ρ when C is the ρ-zCDP condition.

Proof. As with the proof of Theorem 5.1.6, this lower-bound is based on the construction
of a packing of densities fω’s where the ω’s are a well-chosen family of {0, 1}m (m is fixed
in the proof). Then, for a given ω ∈ {0, 1}m, fω deviates from a constant function around

i
m+1 if, and only if, wi ̸= 0. Contrary to the proof of Theorem 5.1.6 however, the deviation
cannot be by a triangle : Indeed, such a function wouldn’t even be differentiable. Instead,
we use a deviation by a C∞ kernel with compact support. Even if the complete details
are given in the full proof, Figure 5.3 gives a general illustration of the packing. Again,
Fano-type inequalities (for the ϵ-DP case), and Assouad’s lemma (for the ρ-zCDP case)
are used to conclude.

Let us consider the following well-known function :

∀x ∈ R, K0(x) := e
− 1

1−x2 1(−1,1)(x) .

We can notice that for any β > 0 there exists ν > 0 such that the kernel K(x) :=

νK0(2x) satisfies K ∈ C∞(R, [0,+∞)),
∫ (

K(β)
)2 ≤ 1 and K(x) > 0 iff x ∈ (−1/2, 1/2).

Furthermore, for any i ∈ N, K(i)(x) = 0 for every x ∈ (−∞,−1/2] ∪ [1/2,+∞).
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i
m+1 when ωi = 10

Derivative of order β
with bounded energy

C∞

1

1

Tuneable deviation support

y = fω(x)

x

y

j
m+1 when ωj = 0

Figure 5.3: Packing for Theorem 5.2.4

Packing construction. Let m ∈ N \ {0} that will be fixed later. For any h > 0, and
ω ∈ {0, 1}m, we define the function gL,β,ω,h as,

∀x ∈ [0, 1], gL,β,ω,h(x) := 1− ∥ω∥1Lhβ+1

∫
K + Lhβ

m∑
i=1

ωiK

(
x− i

m+1

h

)
. (5.22)

Note that when h < 1
m+1 we have

∫ 1
0 gL,β,ω,h = 1; when mh

∫ (
K(β)

)2 ≤ 1, we have

gL,β,ω,h ≥ 0; and when both hold we have gL,β,ω,h ∈ ΘPSob
L,β . Indeed, under these hypotheses

∫ (
g
(β)
L,β,ω,h

)2
=

∫ Lhβ
m∑
i=1

ωi

(
x 7→ K

(
x− i

m+1

h

))(β)
2

=

∫ (
L

m∑
i=1

ωiK
(β)

(
· − i

m+1

h

))2

disjoint support
= L2

m∑
i=1

ωi

∫
K(β)

(
· − i

m+1

h

)2

≤ L2mh

∫ (
K(β)

)2
≤ L2 .

In the sequel of this proof, this hypothesis will always be satisfied asymptotically for all
the values of m and h that will be considered. From now on, we may consider it valid.
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Given h > 0 and ω, ω′ ∈ {0, 1}m, when gL,β,ω,h, gL,β,ω′,h ∈ ΘPSob
L,β , we can bound the total

variation between PgL,β,ω,h
and PgL,β,ω′,h as,

TV
(

PgL,β,ω,h
,PgL,β,ω′,h

)
=

1

2

∫ ∣∣gL,β,ω,h − gL,β,ω′,h

∣∣
=

1

2

∫ ∣∣∣∣∣∥(ω′∥1 − ∥ω∥1)Lhβ+1

∫
K +

m∑
i=1

(ω′
i − ωi)Lh

βK

(
· − i

m+1

h

)∣∣∣∣∣
≤ 1

2

∫
∥|ω′∥1 − ∥ω∥1|Lhβ+1

∫
K +

m∑
i=1

|ω′
i − ωi|LhβK

(
· − i

m+1

h

)

=
1

2

( ∣∣∥ω′∥1 − ∥ω∥1
∣∣+ dham

(
ω, ω′))Lhβ+1

∫
K

≤ mLhβ+1 .

(5.23)

The KL divergence between PgL,β,ω,h
and Pg, the uniform distribution on [0, 1], is bounded

as

KL
(

PgL,β,ω,h

∥∥Pg

)
=

∫
[0,1]

ln (gL,β,ω,h) gL,β,ω,h

=

∫
[0,1]\∪i:ωi ̸=0[ i

m+1
−h

2
, i
m+1

+h
2 ]
ln

(
1− ∥ω∥1Lhβ+1

∫
K

)(
1− ∥ω∥1Lhβ+1

∫
K

)
dt

+ ∥ω∥1
∫ h

2

−h
2

ln

(
1− ∥ω∥1Lhβ+1

∫
K + LhβK

(
t

h

))
(
1− ∥ω∥1Lhβ+1

∫
K + LhβK

(
t

h

))
dt

ln(1+·)≤·
≤ (1− ∥ω∥1h)

(
−∥ω∥1Lhβ+1

∫
K

)(
1− ∥ω∥1Lhβ+1

∫
K

)
+ ∥ω∥1

∫ h
2

−h
2

(
−∥ω∥1Lhβ+1

∫
K + LhβK

(
t

h

))
(
1− ∥ω∥1Lhβ+1

∫
K + LhβK

(
t

h

))
dt

Calculus
≤ ∥ω∥1L2h2β+1

∫
K2 ≤ mL2h2β+1

∫
K2 .

(5.24)
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Finally, the squared L2 distance between gL,β,ω,h and gL,β,ω′,h can be lower bounded as,∫
[0,1]

(
gL,β,ω,h − gL,β,ω′,h

)2
=

m∑
i=1

1ωi ̸=ω′
i∫ i

m+1
+h

2

i
m+1

−h
2

(
Lhβ+1

(
∥ω′∥1 − ∥ω∥1

) ∫
K + (ωi − ω′

i)Lh
βK

(
t− i

m+1

h

))2

dt

≥
m∑
i=1

1ωi ̸=ω′
i

∫ i
m+1

+h
2

i
m+1

−h
2

(
LhβK

(
t− i

m+1

h

)
− Lhβ+1

∣∣∥ω∥1 − ∥ω′∥1
∣∣ ∫ K

)2

dt

≥
m∑
i=1

1ωi ̸=ω′
i

∫ i
m+1

+h
2

i
m+1

−h
2


(
LhβK

(
t− i

m+1

h

))2

−2LhβK

(
t− i

m+1

h

)
Lhβ+1

∣∣∥ω∥1 − ∥ω′∥1
∣∣ ∫ K

}
dt

≥ dham
(
ω, ω′)L2h2β+1

(∫
K2 − 2mh

(∫
K

)2
)

.

(5.25)
By the Varshamov-Gilbert theorem [Tsybakov, 2009, Lemma 2.7], as long as m ≥ 8,
there exist M ∈ N and ω(0), . . . , ω(M) ∈ {0, 1}m such that M ≥ 2m/8, ω(0) = {0}m and

i ̸= j =⇒ dham
(
ω(i), ω(j)

)
≥ m/8. According to (5.25), the family

(
gL,β,ω(i),h

)
i=1,...,M

is

then a Ω = 1
2

√
m
8 L

2h2β+1
(∫

K2 − 2mh
(∫

K
)2)

packing of ΘPSob
L,β for the L2 distance.



126

Recovering the usual lower-bound. By Equation (5.3) with Φ(·) := (·)2 and ∥ · ∥ the
L2 norm,

inf
π̂ s.t. C

sup
π∈ΘPSob

L,β

EX∼P⊗n
π ,π̂

∫
[0,1]

(π̂(X)− π)2

≥ L2

32
mh2β+1

(∫
K2 − 2mh

(∫
K

)2
)

inf
π̂ s.t. C

inf
Ψ:ΘPSob

L,β →{0,1}
max

i=1,...,M
PX∼P⊗n

g
L,β,ω(i),h

,π̂ (Ψ(π̂(X)) ̸= i)

Fact 3.1.2
≥ L2

32
mh2β+1

(∫
K2 − 2mh

(∫
K

)2
)

1−
1 + 1

M

∑
1≤i≤M KL

(
P⊗n
g
L,β,ω(i),h

∥∥∥P⊗n
g

)
ln(M)


Tensorization

=
L2

32
mh2β+1

(∫
K2 − 2mh

(∫
K

)2
)

1−
1 + n

M

∑
1≤i≤M KL

(
Pg

L,β,ω(i),h

∥∥∥Pg

)
ln(M)


(5.24)&M≥2m/8

≥ L2

32
mh2β+1

(∫
K2 − 2mh

(∫
K

)2
)(

1−
1 + nmL2h2β+1

∫
K2

ln(2)m/8

)
.

(5.26)

Finally, setting m =
⌈
n

1
2β+1

⌉
and h = c

m for c small enough gives that, for n big enough,

inf
π̂ ϵ-DP

sup
π∈ΘPSob

L,β

EX∼P⊗n
π ,π̂

∫
[0,1]

(π̂(X)− π)2 ≥ C−1n
− 2β

2β+1 ,

where C is a positive constant depending only on L and β.

ϵ-DP overhead. By the same reduction and Fano’s lemma for differential privacy on
product distributions (Theorem 3.2.3), we get

inf
π̂ ϵ-DP

sup
π∈ΘPSob

L,β

EX∼P⊗n
π ,π̂

∫
[0,1]

(π̂(X)− π)2

≥ L2

32
mh2β+1

(∫
K2 − 2mh

(∫
K

)2
)

1−
1 + nϵ

M2 2
∑

1≤i,j≤M TV
(

Pg
L,β,ω(i),h

,Pg
L,β,ω(j),h

)
ln(M)


(5.23)

≥ L2

32
mh2β+1

(∫
K2 − 2mh

(∫
K

)2
)(

1−
1 + 2nϵmLhβ+1

∫
K

ln(2)m/8

)
.
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Setting m =
⌈
(nϵ)

1
β+1

⌉
and h = c

m for c small enough leads to, for nϵ big enough,

inf
π̂ ϵ-DP

sup
π∈ΘPSob

L,β

EX∼P⊗n
π ,π̂

∫
[0,1]

(π̂(X)− π)2 ≥ C ′−1 (nϵ)
− 2β

β+1 ,

where C ′ is a constant depending only on L and β.

ρ-zCDP overhead. For ρ-zCDP, we present the proof using both Fano’s lemma and
Assouad’s method. We will see that Assouad gives better results.

Fano version. By again the same reduction and Fano’s lemma for zero-concentrated

differential privacy (Theorem 3.2.4), denoting ti,j := TV
(

Pg
L,β,ω(i),h

,Pg
L,β,ω(j),h

)
, we get

inf
π̂ ρ-zCDP

sup
π∈ΘPSob

L,β

EX∼P⊗n
π ,π̂

∫
[0,1]

(π̂(X)− π)2

≥ L2

32
mh2β+1

(∫
K2 − 2mh

(∫
K

)2
)

(
1−

1 + n2ρ
M2 4

∑
1≤i,j≤M

1
n ti,j + t2i,j

ln(M)

)
(5.23)

≥ L2

32
mh2β+1

(∫
K2 − 2mh

(∫
K

)2
)

1−
1 + 4n2ρ

(
mLhβ+1

∫
K

n +
(
mLhβ+1

∫
K
)2)

ln(2)m/8

 .

So, by choosing m =
⌈(
n
√
ρ
) 2

2β+1

⌉
and h = c

m for c small enough, if n
√
ρ and n

(n
√
ρ)

2β
2β+1

=(
n
√
ρ
) 1

2β+1 /
√
ρ are big enough,

inf
π̂ ϵ-DP

sup
π∈ΘPSob

L,β

EX∼P⊗n
π ,π̂

∫
[0,1]

(π̂(X)− π)2 ≥ C ′′−1 (n
√
ρ)

− 2β
β+1/2 ,

where C ′′ is a constant depending only on L and β.

Assouad version. From Equation (5.25), we can see that when h := c
m for a positive

c that is small enough, the condition expressed in Equation (5.10) is satisfied for τ =
Ω(h2β+1). To apply (5.12), the only missing ingredient is to bound the testing difficulties
between the mixtures on the hypercube.
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In the sequel, Pω is used as a short for PgL,β,ω,h
. We need to bound the total variation

between the mixtures on the hypercube (denoted Pωi,0 and Pωi,1 , cf (5.12)) as

TV (Pωi,0 ,Pωi,1)

=
1

2

1

2m−1

∫ ∣∣∣∣∣∣
∑

ω∈{0,1}m|ωi=0

gL,β,ω,h −
∑

ω∈{0,1}m|ωi=1

gL,β,ω,h

∣∣∣∣∣∣
=

1

2m

∫ ∣∣∣∣∣ ∑
ω1,...,ωi−1,ωi+1...,ωm∈{0,1}

(
gL,β,(ω1,...,ωi−1,0,ωi+1...,ωm),h−

gL,β,(ω1,...,ωi−1,1,ωi+1...,ωm),h

)∣∣∣∣∣
≤ 1

2m

∑
ω1,...,ωi−1,ωi+1...,ωm∈{0,1}

∫ ∣∣∣∣∣gL,β,(ω1,...,ωi−1,0,ωi+1...,ωm),h−

gL,β,(ω1,...,ωi−1,1,ωi+1...,ωm),h

∣∣∣∣∣
Equation (5.23)

≤ 1

2m

∑
ω1,...,ωi−1,ωi+1...,ωm∈{0,1}

2Lhβ+1

∫
K

= O
(
hβ+1

)
.

All in all, by using Le Cam’s lemma for product distribution and ρ-zCDP (Theorem 3.2.2),
and by leveraging Equation (5.11), with τ = Ω(h2β+1),

inf
π̂ ρ-zCDP

sup
π∈ΘPSob

L,β

EX∼P⊗n
π ,π̂

∫
[0,1]

(π̂(X)− π)2 = Ω
(
mh2β+1

)(
1− n

√
ρO
(
hβ+1

))
. (5.27)

Setting h ≈
(
n
√
ρ
) −1

β+1 and m = c/h for c small enough concludes the proof by yielding a

lower bound Ω

((
n
√
ρ
)− 2β

2β+1

)
.

In comparison with the upper-bounds of Theorem 5.2.3, for ϵ-DP the lower-bound almost
matches the guarantees of the projection estimator. In particular, the excess of risk in the
high privacy regime is close to being optimal. Section 5.2.4 explains how to bridge the
gap even more, at the cost of relaxation.

Under ρ-zCDP, the lower-bounds and upper-bounds actually match. We conclude that
projection estimators with ρ-zCDP obtain minimax-optimal rates of convergence.
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5.2.4 Near minimax optimality via relaxation

An hypothesis that we can make on the sub-optimality of the projection estimator against
ϵ-DP mechanisms is that the l1sensitivity of the estimation of N Fourier coefficients scales
as N whereas its l2 sensitivity scales as

√
N . Traditionally, the Gaussian mechanism

[Dwork et al., 2006a, Dwork et al., 2006b] has allowed to use the l2 sensitivity instead of
the l1 one at the cost of introducing a relaxation term δ in the privacy guarantees, leading
to (ϵ, δ)-DP.

[Bun & Steinke, 2016] states that if a mechanism M is ρ-zCDP, then it is(
ρ+ 2

√
ρ ln(1/δ), δ

)
-DP for any δ > 0. Applying this result and Theorem 5.2.3 with δ of

the form 1
nγ for a positive exponent γ gives the following result :

Corollary 5.2.5 (Privacy and utility of (5.20) with relaxation). For any ϵ > 0 and γ > 0,

defining ρ̃ := 1
16

ϵ2

ln(nγ) and using π̂proj with Z = 2
√
N√
ρ̃
N (0, 1), where N (0, 1) refers to a ran-

dom variable following a centered Gaussian distribution of variance 1, leads to an
(
ϵ, 1

nγ

)
-

DP procedure if ϵ ≤ 8 ln (nγ). Furthermore, there exists CL,β > 0, a positive constant that

only depends on L and β, such that if N is of the order of min
(
n

1
2β+1 ,

(
n
√
ρ̃
) 1

β+1

)
then

sup
π∈ΘPSob

L,β

EX∼P⊗n
π ,π̂proj∥π̂proj(X)− π∥2L2 ≤ CL,β max

{
n
− 2β

2β+1 , Pβ,γ(ln(n))(nϵ)
− 2β

β+1

}
,

where Pβ,γ is a polynomial expression depending on β and γ.

Proof. Indeed, when ϵ ≤ 8 ln (nγ), ρ̃ ≤ 2
√

ρ̃ ln(nγ). The resulting mechanism is thus(
4
√

ρ̃ ln(nγ), 1
nγ

)
-DP

In order to understand the implications of this result, one must understand the role of δ in
(ϵ, δ)-differential privacy. It is usually interpreted as the probability of the procedure not
respecting the ϵ-DP condition [Dwork & Roth, 2014]. Hence, with probability δ, the result
is not guaranteed to be private. A general rule of thumb for choosing δ is to take it much
smaller than 1/n so that each individual of the database only has a small chance of seeing
its data leak [Dwork & Roth, 2014]. Choosing δ = 1/nγ for γ > 1 is hence considered a
good choice for δ.

With this relaxation, the upper-bound of Corollary 5.2.5 matches the lower-bound of
Theorem 5.2.4 for ϵ-DP up to polylog factors.
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Chapter 6

Quantile function estimation

The origin of this chapter, and the use of the first person. This chapter is based
on two articles. The first one [Lalanne et al., 2023d] was written by Aurélien Garivier1,
Clément Gastaud (research engineer at Sarus Technologies 2), Nicolas Grislain (CEO of
Sarus Technologies), Rémi Gribonval3, and by myself. The second one [Lalanne et al.,
2023c] was written by Aurélien Garivier, Rémi Gribonval, and by myself. In this chapter,
I will try to respect the following rule : the use of the first person of the plural (we, our,
. . . ) represents all the above-mentioned people. In particular, I will not specify which
set of authors contributed to each result for brevity. I encourage the reader to refer to
the articles for more clarifications. The use of the first person of the singular (I, my, . . . )
represents myself.

Any probability distribution P on [0, 1] is fully characterized by its cumulative distribution
function (CDF) defined by

FP(t) := P
(
(−∞, t]

)
, ∀t ∈ R .

The central topic of this chapter is the quantile function (QF), F−1
P , defined as the gener-

alized inverse of FP:

F−1
P (p) = inf

{
t ∈ R | p ≤ FP(t)

}
, ∀p ∈ [0, 1] ,

1https://perso.ens-lyon.fr/aurelien.garivier/www.math.univ-toulouse.fr/ agarivie/

index.html/
2https://www.sarus.tech/
3https://people.irisa.fr/Remi.Gribonval/

https://perso.ens-lyon.fr/aurelien.garivier/www.math.univ-toulouse.fr/_agarivie/index.html/
https://perso.ens-lyon.fr/aurelien.garivier/www.math.univ-toulouse.fr/_agarivie/index.html/
https://www.sarus.tech/
https://people.irisa.fr/Remi.Gribonval/
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with the convention inf ∅ = +∞. When P is absolutely continuous w.r.t. Lebesgue’s
measure with a density that is bounded away from 0, FP and F−1

P are bijective and are
inverse from one another.

A well-known result is that, under mild hypotheses on P, if U ∼ U([0, 1]) (U follows a
uniform distribution on [0, 1]), then F−1

P (U) ∼ P [Devroye, 1986]. In other words, knowing
F−1

P allows to generate data with distribution P. It makes the estimation of F−1
P a key

component in data generation. Indeed, privately learning the quantile function would then
allow generating infinitely many new coherent samples at no extra cost on privacy.

Given X1, . . . , Xn
i.i.d.∼ P, this section studies the private estimation of F−1

P (pj) from these
samples at prescribed values {p1, . . . , pm} ⊂ (0, 1).

6.1 Empirical quantiles proxy

Without privacy and under mild hypotheses on the distribution, it is well-known [Van der
Vaart, 1998] that for each p ∈ (0, 1), the quantity X(E(np)) is a good estimator of F−1

P (p),
where X(1), . . . , X(n) are the order statistic of X1, . . . , Xn (i.e. a permutation of the obser-
vations such that X(1) ≤ X(2) ≤ · · · ≤ X(n)) and E(x) denotes the largest integer smaller
or equal to x. The quantity X(E(np)) is called the empirical (as opposed to statistical)
quantile of the dataset (X1, . . . , Xn) (as opposed to the distribution P) of order p. In this
chapter, we will use private estimators of the empirical quantiles as proxies for private
estimators of the statistical ones.

While the computation of private empirical quantiles has led to a rich literature, much
less is known on the statistical properties of the resulting algorithms seen as estimators of
the statistical quantiles of an underlying distribution, compared to more traditional ways
of estimating a distribution.

Early approaches for solving the private empirical quantile computation used the Laplace
mechanism [Dwork et al., 2006a, Dwork et al., 2006b] but the high sensitivity of the
quantile query made it of poor utility. Smoothed sensitivity-based approaches followed
[Nissim et al., 2007] and managed to achieve greatly improved utility.

The current state of the art for the computation of a single empirical private quantile
[Smith, 2011] is an instantiation of the so-called exponential mechanism [McSherry &
Talwar, 2007] (see Chapter 2) with a specific utility function that we will denote QExp
(for exponential quantile) in the rest of this section. It is implemented in many DP software
libraries [Allen, , IBM, ].
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For the computation of multiple empirical private quantiles, the problem gets more com-
plicated. Indeed, with differential privacy, every access to the dataset has to be accounted
for in the overall privacy budget. Luckily, and part of the reasons why differential privacy
became so popular in the first place, composition theorems [Dwork et al., 2006b, Kairouz
et al., 2015, Dong et al., 2019, Dong et al., 2020, Abadi et al., 2016] (see Chapter 2)
give general rules for characterizing the privacy budget of an algorithm depending on the
privacy budgets of its subroutines. It is hence possible to estimate multiple empirical
quantiles privately by separately estimating each empirical quantile privately (using the
techniques presented above) and by updating the overall privacy budget with composition
theorems. The algorithm IndExp (see Section 6.1.3) builds on this framework. However,
recent research has shown that such approaches are suboptimal. For instance, [Gillenwa-
ter et al., 2021] presented an algorithm (JointExp) based on the exponential mechanism
again, with a utility function tailored for the joint computation of multiple private empir-
ical quantiles directly. JointExp became the state of the art for about a year. It can be
seen as a generalization of QExp, and the associated clever sampling algorithm is inter-
esting in itself. Yet, more recently, [Kaplan et al., 2022] demonstrated that an ingenious
use of a composition theorem (as opposed to a more straightforward direct independent
application) yields a simple recursive computation using QExp that achieves the best em-
pirical performance to date. We will refer to their algorithm as RecExp (for recursive
exponential). Furthermore, contrary to JointExp, RecExp is endowed with strong utility
guarantees [Kaplan et al., 2022] in terms of the quality of estimation of the empirical
quantiles. There is still ongoing work studying this problem, in particular for getting rid
of the bounded assumption [Durfee, 2023].

6.1.1 Motivations for empirical quantiles

In fact, E(npj) ≈ npj has no link with FP a priori. In contrast, from a statistical
point of view, the quantity of interest is the deviation w.r.t. the statistical quantiles
(F−1

P (p1), . . . , F
−1
P (pm)). We circumvent that difficulty with the following general purpose

lemma :

Lemma 6.1.1 (Concentration of empirical quantiles). If X1, . . . , Xn
i.i.d.∼ Pπ where π is

a density on [0, 1] w.r.t. Lebesgue’s measure such that π ≥ π
¯
∈ R > 0 almost surely, then

for any p ∈ (0, 1) and γ > 0 such that γ < min
(
F−1
X (p), 1− F−1

X (p)
)
, we have

P
(
sup
k∈J

|X(E(np)+k) − F−1
X (p)| > γ

)
≤ 2e

−
γ2π

¯
2

8p
n
+ 2e

−
γ2π

¯
2

8(1−p)
n
,

where

J :=

{
max

(
−E(np) + 1,−E

(
1

2
nγπ

¯

)
+ 1

)
,

. . . ,min

(
n− E(np), E

(
1

2
nγπ

¯

)
− 1

)}
.
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The integer set J may be viewed as an error buffer : As long as an algorithm returns a
point with an order error falling into J (compared to E(np)), the error on the statistical
estimation will be small.

Proof. We define

N̄ :=
n∑

i=1

1(F−1
X (p)+γ,+∞)(Xi) .

Let k ∈ {−E(np) + 1, . . . , n− E(np)}. We have the following event inclusion:(
X(E(np)+k) > F−1

X (p) + γ
)
⊂
(
N̄ ≥ n− (E(np) + k)

)
⊂
(
N̄ ≥ n(1− p)− k − 1

)
.

N̄ being a sum of independent Bernoulli random variables, we introduce η := 1− p− γπ
¯
,

a natural upper bound on the probability of success of each of these Bernoulli random

variables. Hence, by multiplicative Chernoff bounds, whenever
γπ
¯

η − k+1
nη ≥ 0, which is

equivalent to k ≤ nγπ
¯
− 1,

P
(
X(E(np)+k) > F−1

X (p) + γ
)
≤ P

(
N̄ ≥ nη

(
1 +

γπ
¯

η
− k + 1

nη

))

≤ e
−nη

(
γπ
¯
η
− k+1

nη

)2

/

(
2+

γπ
¯
η
− k+1

nη

)
.

By going further and imposing that k + 1 ≤ 1
2nγπ¯

, we get

P
(
X(E(np)+k) > F−1

X (p) + γ
)
≤ e

−nη
4

(
γπ
¯
η

)2

/

(
2+

γπ
¯

2η

)
.

Finally, by noticing that η
(γπ

¯

η

)2
/
(
2 +

γπ
¯

2η

)
=

γ2π
¯

2

2(1−p)− 3
2
γπ
¯

≥
γ2π

¯

2

2(1−p) ,

P
(
X(E(np)+k) > F−1

X (p) + γ
)
≤ e

−
γ2π

¯
2

8(1−p)
n
.

Now, looking at the other inequality, we define

N
¯
:=

n∑
i=1

1(−∞,F−1
X (p)−γ)(Xi) .

Like previously,(
X(E(np)+k) < F−1

X (p)− γ
)
⊂
(
N
¯
≥ E(np) + k

)
⊂
(
N
¯
≥ np+ k − 1

)
.

With the exact same techniques as previously, imposing the condition k − 1 ≥ −1
2nγπ¯

gives

P
(
X(E(np)+k) < F−1

X (p)− γ
)
≤ e

−
γ2π

¯
2

8p
n
.
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Thus, under the various conditions specified for k, by union bound,

P
(
|X(E(np)+k) − F−1

X (p)| > γ
)
≤ e

−
γ2π

¯
2

8p
n
+ e

−
γ2π

¯
2

8(1−p)
n
.

Now define I := {k ∈ {−E(np), . . . , n − E(np)}||X(E(np)+k) − F−1
X (p)| ≤ γ}. Notice that

since X(1) ≤ X(2) ≤ · · · ≤ X(n), I is an integer interval. Which means that if a ∈ I ≤ b ∈ I,

then [a, b]∩Z ⊂ I. As a consequence, if |X(E(np)+k)−F−1
X (p)| ≤ γ for two integers k1 and

k2, it is also the case for all the integers between them. By union bound, we get

P

(
sup
k∈J

|X(E(np)+k) − F−1
X (p)| > γ

)
≤ 2e

−
γ2π

¯
2

8p
n
+ 2e

−
γ2π

¯
2

8(1−p)
n
,

where

J :=

{
max

(
−E(np) + 1,−E

(
1

2
nγπ

¯

)
+ 1

)
, . . . ,min

(
n− E(np), E

(
1

2
nγπ

¯

)
− 1

)}
.

This result strengthens the approach of using private empirical quantiles as proxies for the
statistical ones. Furthermore, it will be at the core of many of our results.

6.1.2 Exponential quantile

Given n points X1, . . . , Xn ∈ [0, 1] and p ∈ (0, 1), the QExp mechanism, introduced by
[Smith, 2011], is an instantiation of the exponential mechanism w.r.t. µ the Lebesgue’s
measure on [0, 1], with utility function uQExp such that, for any q ∈ [0, 1],

uQExp

(
(X1, . . . , Xn), q

)
:= −

∣∣#({i|Xi < q})− E(np)
∣∣ .

The sensitivity of uQExp is 1 for both replacement and addition/deletion neighboring
relations. As the density of QExp is constant on all the intervals of the form (X(i), X(i+1)),
a sampling algorithm for QExp is to first sample an interval (which can be done by
sampling a point in a finite space) and then to uniformly sample a point in this interval.
This algorithm has complexity O(n) if the points are sorted and O(n log n) otherwise. Its
utility (as measured by a so-called ”empirical error”) is controlled, cf [Kaplan et al., 2022]
Lemma A.1. This is summarized as follows

Fact 6.1.2 (Empirical Error of QExp). Consider fixed real numbers X1, . . . , Xn ∈ [0, 1]
that satisfy miniX(i+1) − X(i) ≥ ∆ > 0 with the convention X(0) = 0 and X(n+1) = 1.
Denote q the (random) output of QExp on this dataset, for the estimation of a single
empirical quantile of order p, and

E :=
∣∣∣# ({i|Xi < q

})
− E(np)

∣∣∣ ,
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the empirical error of QExp. For any β ∈ (0, 1), we have

P

E ≥ 2
ln
(
1
∆

)
+ ln

(
1
β

)
ϵ

 ≤ β .

This private mechanism for empirical quantiles is used in many of the DP libraries [Wilson
et al., 2019, Allen, , IBM, , Labs, 2022, Berghel et al., 2022, OpenMinded, 2022, Johnson
et al., 2020].

6.1.3 Independent exponential quantiles

Given p1, . . . , pm ∈ (0, 1), IndExp privately estimates the empirical quantiles of order
p1, . . . , pm by evaluating each quantile independently using QExp and the simple compo-
sition property (see Chapter 2). Each quantile is estimated with a privacy budget of ϵ

m .
The complexity is O(mn) if the points are sorted, O(mn+ n log n) otherwise.

6.1.4 Joint exponential quantiles

For JointExp, we suppose that the support of the distribution is [a, b] and not simply
[0, 1]. The readers may read those results with a = 0 and b = 1 in mind. We suppose that
the vector containing the orders of the quantiles to estimate is sorted (p = (p1, . . . , pm) ∈
(0, 1)m↗), and that X = (X1, . . . , Xm) is sorted as well. For any X ∈ X n, q = (q1, . . . , qm)
sorted output candidate, and p ∈ (0, 1)m, we use the convention Xi≤0 = qi≤0 = a,
Xi≥n+1 = qi≥m+1 = b, pi≤0 = 0 and pi≥m+1 = 1. Finally, for the brevity of notation,
vectors are interpreted when needed as the set containing their components.

The JointExp mechanism (introduced by [Gillenwater et al., 2021]) is an instanciation of
an exponential mechanism with utility function

uJE(X,q) := −1

2

m+1∑
i=1

∣∣δJE(i,X,q)
∣∣ ,

(which is of sensitivity 1 for the replacement neighboring relation and of 1/2 for the
addition/deletion one) where

δJE(i,X,q) := n(pi − pi−1)−#(X ∩ (qi−1, qi]) .

This mechanism works by penalizing the result whenever the number of data points in each
quantile interval (# (X ∩ (qi−1, qi])) deviates from what should be expected (n(pi−pi−1)).
We can notice that this mechanism is the same as QExp when m = 1.

In the original article, [Gillenwater et al., 2021] also provide a sampling algorithm of
complexity O(mn log(n) + nm2).
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6.1.5 Recursive exponential quantiles

Introduced by [Kaplan et al., 2022], RecExp is based on the following idea : Suppose that
we already have a private estimate, qi, of the empirical quantile of order pi for a given i.
Estimating the empirical quantiles of orders pj > pi should be possible by only looking at
the data points that are bigger than qi, and similarly for the empirical quantiles of orders
pj < pi. Representing this process as a tree, the addition or removal of an element in the
dataset only affects at most one child of each node and at most one node per level of depth
in the tree. The ”per-level” composition of mechanisms comes for free in terms of privacy
budget, hence only the tree depth matters for composition. By choosing a certain order
on the quantiles to estimate, this depth can be bounded by log2m+ 1. More details can
be found in the original article [Kaplan et al., 2022].

When using QExp with privacy budget ϵ
log2 m+1 for estimating the individual empirical

quantiles, RecExp is ϵ-DP with the addition/removal neighborhing relation. This remains
valid with the replacement relation if we replace ϵ by ϵ/2, as the replacement relation can
be seen as a two-steps addition/removal relation. RecExp has a complexity of O(n logm)
if the points are sorted and O(n log(nm)) otherwise. The following control of its empirical
error is adapted from [Kaplan et al., 2022] Theorem 3.3.

Fact 6.1.3 (Empirical Error of RecExp). Consider fixed real numbers X1, . . . , Xn ∈ [0, 1]
that satisfy miniX(i+1) − X(i) ≥ ∆ > 0 with the convention X(0) = 0 and X(n+1) = 1.
Denote (q1, . . . , qm) the (random) return of RecExp on this dataset, for the estimation of
m empirical quantiles of orders (p1, . . . , pm), and

E := max
j

∣∣∣#({i|Xi < qj})− E(npj)
∣∣∣ ,

the empirical error of RecExp. For any β ∈ (0, 1), we have

P

E ≥ 2(log2m+ 1)2
ln
(
1
∆

)
+ ln(m) + ln

(
1
β

)
ϵ

 ≤ β .

6.1.6 Quantiles with inverse sensitivity

At first glance, there is no connection between the theory of the Inverse Sensitivity (see
Chapter 2 for a reminder) and JointExp. The first one is born from the need to build a
general mechanism that is endowed with optimality properties [Asi & Duchi, 2020b, Asi
& Duchi, 2020a] for a broad class of problems, while the second comes from the idea that
good empirical quantiles should separate the data points proportionally. In the case of
the estimation of a single quantile (i.e. m = 1), it was observed [Asi & Duchi, 2020b] that
the two algorithms are similar. Here we prove that, up to minor differences, this remains
true with an arbitrary number of quantiles. For this, we provide the precise expression of
the inverse sensitivity function for the multiquantile problem.
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Recall that the theory of inverse sensitivity aims at mimicing the behavior of a determin-
istic function f that is defined on the set of all datasets. For the problem of estimating
multiple empirical quantiles, we thus need to define such function. We propose to apply
the theory of inverse sensitivity to the function

f : X 7→ (X(⌈np1⌉), . . . , X(⌈npm⌉)) .

For the inverse sensitivity, we will always work with the replacement neighboring relation.
Deriving the expression of the inverse sensitivity for a dataset X and an output candidate
q boils down to answering the question: What is the minimal number of points from X
that need to be changed in order to obtain a vector that has q as its empirical quantiles?
Theorem 6.1.4 solves this question for Lebesgue-almost-any q.

Theorem 6.1.4. For any X ∈ Xn and q ∈ ([a, b] \X)m↗ without collision,

−uIS(X,q) =
1

2

m+1∑
i=2

|δ(i,X,q)|+
m∑
i=2

1R+ (δ(i,X,q))

+
1

2
|δclosed(1,X,q)|+ 1R+ (δclosed(1,X,q))

with

δ(i,X,q) = # (X ∩ (qi−1, qi])− (⌈npi⌉ − ⌈npi−1⌉)
δclosed(i,X,q) = # (X ∩ [qi−1, qi])− (⌈npi⌉ − ⌈npi−1⌉) .

Proof. If Y ∈ f−1(q) then:

• Each ”bin” has the right number of points: δ(i,Y,q) = 0, i ∈ {2 . . .m+ 1}, and
δclosed(1,Y,q) = 0.

• Every point of q appears in Y: q ⊆ Y.

Then we can understand the modifications that have to be made to X in order to obtain
a Y ∈ Q−1(q). For the first condition, some points have to be moved from bins in
excess to bins in deficit. This procedure accounts for

∑m+1
i=2 δ(i,X,q)+ + δclosed(1,X,q)+

operations which can be reformulated as 1
2

∑m+1
i=2 |δ(i,X,q)| + 1

2 |δclosed(1,X,q)|. For the
second condition, we have to make sure that for all i, qi belongs to the dataset. For a bin
in strict deficit, at least a point has to be added to it due to the first condition. Hence, we
can make sure to add the associated quantile at no extra cost. For a bin in excess on the
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other hand, since by hypothesis q ∩X = ∅, a point in the bin will have to be replaced by
the associated quantile at an extra cost of 1. In the end, we find the desired result.

The case when q has collisions or shares some common points with the dataset is more
difficult. Luckily, those cases can be neglected when considering the sampling mechanism.
Indeed, the inverse sensitivity mechanism has a density that is absolutely continuous w.r.t.
Lebesgue’s measure, the expression of the resulting mechanism can be further simplified
(see Corollary 6.1.5) by modifying the density on outcomes of null Lebesgue measure.

Corollary 6.1.5. For any X ∈ Xn, E(2/ϵ)
uIS (X) has the same output distribution as E(2/ϵ)

ũIS
(X)

where ∀X ∈ Xn, ∀q ∈ O,

−ũIS(X,q) =
1

2

m+1∑
i=1

|δ(i,X,q)|+
m∑
i=1

1R+(δ(i,X,q)) .

Remark 6.1.6. One can check that |ũIS(X,q) − uJE(X,q)| ≤ 2(m + 1) and thus the
distributions differ significantly only on outcomes of high utility (when the number of
misclassified points is of the order O(m)). The bad outcomes are almost equally penalized
and for this reason, we can expect the two algorithms to perform almost identically when
n is large enough. This is indeed confirmed by numerical examples, as illustrated in
Section 6.3.5. As a consequence, we will mainly focus on JointExp for the rest of this
chapter, all the results being applicable to IS as well (with some minor tweaks).

Sampling from that distribution. For simplicity, X is assumed to be sorted. The
sampling density of the inverse sensitivity mechanism is constant on sets

(
[Xi1 , Xi1+1) ×

. . .× · · · × [Xim , Xim+1)
)
∩ [a, b]m↗ for i = (i1, . . . , im) ∈ O′ where

O′ = {i ∈ {0, . . . , n}m , 0 ≤ i1 ≤ · · · ≤ im ≤ m} .

Hence, a finite sampling algorithm for the inverse sensitivity mechanism is to:

• sample i = (i1, . . . , im) ∈ O′ under PO′ ;

• sample q′j uniformly in [Xij , Xij+1), independently for all j in {1 . . .m};

• output (q′j)j∈{1...m} sorted by increasing order;
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with the probability PO′ defined on O′ as

PO′(i) ∝ 1

γ(i)
Πm+1

j=1 ϕ(ij−1, ij , j)Π
m
j=1τ(ij) (6.1)

where, if we denote by counti(i) the number of occurrences of integer i in the ordered
tuple i,

∀i ∈ O′, γ(i) = Πm
i=0counti(i)! ,

∀i ∈ {0, . . . ,m}, τ(i) = Xi+1 −Xi ,

and for 0 ≤ i, i′ ≤ m and 1 ≤ j ≤ m+ 1,

ϕ(i, i′, j) =


0, if i′ < i

e−
ϵ
2(

1
2
|δ̂(i,i′,m+1)|), if j = m+ 1

e−
ϵ
2(

1
2
|δ̂(i,i′,j)|)+1R+

(δ̂(i,i′,j)), otherwise

with δ̂(i, i′, j) = i′ − i− (⌈npj⌉ − ⌈npj−1⌉).

Since O′ has a finite cardinality bounded by (n + 1)m, it is possible to compute the
probability of all the elements in that space and to sample this way. However, the fact
that this complexity is exponential in m makes it unusable in practice. [Gillenwater et al.,
2021] present an algorithm that allows to sample from any distribution that factorizes in
an analog form of (6.1) that has a complexity (both in time and space) of O(n2m+m2n).
Furthermore, if the function ϕ(i, i′, j) can be rewritten as ϕ′(i′ − i, j) (which is the case
in our problem), the complexity becomes O(mn log n+m2n). Overall, in order to sample
efficiently from the inverse sensitivity mechanism, one can use Algorithm 1 proposed by
[Gillenwater et al., 2021] by taking great care of using a sensitivity of 1 (instead of 2) and
by replacing the function ϕ by the one used in this chapter.

6.2 Statistical utility

As promised at the beginning of the chapter, we now derive bounds on the statistical utility
of the above-mentioned mechanisms when used as statistical estimators of the underlying
quantiles.

6.2.1 Controlling the gaps

A difficulty is that the guaranteed utility of the empirical quantiles depends on the mini-
mum gap in the order statistics ∆. For many distributions, this quantity can be as small as
we want, and the guarantees on the empirical error of QExp, IndExp and RecExp can be
made as poor as we want [Lalanne et al., 2023d]. However, by imposing a simple condition
on the density, the following lemma tells that the minimum gap in the order statistic is
”not too small”.
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Lemma 6.2.1 (Concentration of the gaps). Consider n ≥ 1 and X1, . . . , Xn
i.i.d.∼ Pπ where

π is a density on [0, 1] w.r.t. Lebesgue’s measure such that π̄ ∈ R ≥ π ≥ π
¯
∈ R > 0 almost

surely. Denote ∆i = X(i) − X(i−1), 1 ≤ i ≤ n + 1, with the convention X(0) = 0 and

X(n+1) = 1. For any γ > 0 such that γ < 1
4π̄ , we have

P

(
n+1
min
i=1

∆i >
γ

n2

)
≥ e−4π̄γ .

Proof. The following fact is a direct consequence of Lemma 2.1 in Chapter 5 of [Devroye,
1986].

Fact 6.2.2 (Concentration of the gaps for uniform samples). Let X1, . . . , Xn
i.i.d.∼ U([0, 1]),

the uniform distribution on [0, 1]. Denoting ∆1 := X(1),∆2 := X(2) − X(1), . . . ,∆n :=

X(n) −X(n−1), and ∆n+1 := 1−X(n), for any γ > 0 such that γ < 1
n+1 ,

P

(
min
i

∆i > γ

)
= (1− (n+ 1)γ)n .

We give a proof here for completeness. The first step consists in characterizing the distri-
bution of (∆1, . . . ,∆n). Let h : Rn → R be a positive Borelian function. By the transfer
theorem,∫

h(∆1, . . . ,∆n)dP(∆1, . . . ,∆n)

=

∫
h(X(1), X(2) −X(1), . . . , X(n) −X(n−1))dP(X(1), . . . , X(n)) .

Furthermore, (X(1), . . . , X(n)) follows a uniform distribution on the set of n ordered points
in [0, 1]. Hence,∫

h(∆1, . . . ,∆n)dP(∆1, . . . ,∆n)

= n!

∫
h(X1, X2 −X1, . . . , Xn −Xn−1)10≤X1≤···≤Xn≤1dX1 . . . dXn .

Finally, the variable swap δ1 = X1, δ2 = X2 −X1, . . . , δn = Xn −Xn1 that has a jacobian
of 1, same as its inverse (both transformations are triangular matrices with only 1’s on
the diagonal), gives that∫

h(∆1, . . . ,∆n)dP(∆1, . . . ,∆n)

= n!

∫
h(δ1, . . . , δn)10≤δ1,...,0≤δn,

∑n
i=1 δi≤1dδ1 . . . dδn .
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The last equation means that (∆1, . . . ,∆n) follows a uniform distribution on the simplex{
0 ≤ ∆1, . . . ,∆n ≤ 1,

∑n
i=1∆i ≤ 1

}
. The probability P (mini∆i > γ) may now be

computed as

P

(
min
i

∆i > γ

)
= n!

∫
1γ<δ1,...,γ<δn,

∑n
i=1 δi<1−γ10≤δ1,...,0≤δn,

∑n
i=1 δi≤1dδ1 . . . dδn,

and by considering the variable swap δ′i := δi−γ
1−(n+1)γ (which is separable) of which the

jacobian of the inverse is (1− (n+ 1)γ)n,

P

(
min
i

∆i > γ

)
= n!(1− (n+ 1)γ)n

∫
10<δ′1,...,0<δ′n,

∑n
i=1 δ

′
i<1dδ

′
1 . . . dδ

′
n

= (1− (n+ 1)γ)n .

This concludes the proof of Fact 6.2.2. Now, X1, . . . , Xn
i.i.d.∼ Pπ where π is a density on

[0, 1] w.r.t. Lebesgue’s measure such that π̄ ∈ R ≥ π ≥ π
¯
∈ R > 0 almost surely. In

particular, the data is not necessary uniform. By a coupling argument, if U1, . . . , Un
i.i.d.∼

U([0, 1]),
(
F−1
π (U1), . . . , F

−1
π (Un)

)
has the same distribution as (X1, . . . , Xn). We can

furthermore notice that

∀p, q ∈ (0, 1), ϵ > 0, , |p− q| > ϵ =⇒
∣∣F−1

π (p)− F−1
π (q)

∣∣ > ϵ

π̄
.

Indeed, the lower bound π ≥ π
¯
ensures that Fπ is a bijection and that so does its inverse.

The upper bound π̄ ≥ π ensures that Fπ cannot grow too fast, and thus that its inverse is
not too flat. Formally,

∀a, b, |Fπ(b)− Fπ(a)| =
∣∣∣∣∫ b

a
π

∣∣∣∣ ≤ π̄|b− a|.

In particular, it holds for b = F−1
π (p) and a = F−1

π (q).

Consequently, if ∆′
1 := U(1),∆

′
2 := U(2) − U(1), . . . ,∆

′
n := U(n) − U(n−1), and ∆′

n+1 :=
1− U(n),

P

(
min
i

∆i > γ

)
≥ P

(
min
i

∆′
i > π̄γ

)
= (1− (n+ 1)π̄γ)n .

Finally, let us simplify this expression to a easy-to-handle one. If γ < n
2π̄ ,

P

(
min
i

∆i >
γ

n2

)
=

(
1− n+ 1

n

π̄γ

n

)n

≥
(
1− 2n

n

π̄γ

n

)n

=

(
1− 2π̄γ

n

)n

.

Furthermore, for any x ∈ (0, 1/2) and n ≥ 1, by the Taylor-Lagrange formula, there exist
c ∈

(
−x

n , 0
) (

1− x

n

)n
= en ln(1− x

n) = e
n
(
− x

n
− 1

2
1

(1+c)2
x2

n2

)
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And so, when n ≥ 1, (
1− x

n

)n
≥ e−2x

In definitive, when n ≥ 1 and γ < 1
4π̄

P

(
min
i

∆i >
γ

n2

)
≥ e−4π̄γ .

6.2.2 High probability bounds

This subsection leverages the previous results in order to provide high-probability bounds
for QExp, IndExp and RecExp.

Theorem 6.2.3 (Statistical utility of QExp). Consider n ≥ 1 and X1, . . . , Xn
i.i.d.∼ Pπ

where π is a density on [0, 1] w.r.t. Lebesgue’s measure such that π̄ ∈ R ≥ π ≥ π
¯
∈ R > 0

almost surely. Denote q the (random) result of QExp on (X1, . . . , Xn) for the estimation

of the quantile of order p, where min(p, 1− p) > 2/n. For any γ ∈ (0, 2min(p,1−p)
π
¯

)

P
(
|q − F−1

π (p)| > γ
)
≤ 4n

√
2eπ̄e−

ϵnγπ
¯

32 + 4e−
γ2π

¯
2

8
n .

Proof. Let us start with the general idea. We fix a buffer size K and define QC (for
quantile concentration) the event ”Any error of at most K points in the order statistic
compared toX(E(np)) induces an error of at most γ on the statistical estimation of F−1

π (p)”.
The probability P (QCc) is controlled by Lemma 6.1.1.
We fix a gap size ∆ > 0 and define the event G (for gaps) mini∆i ≥ ∆, so that P (Gc) is
controlled by Lemma 6.2.1.
Then, we notice that

P
(
|q − F−1

π (p)| > γ
)

≤ P
(
|q − F−1

π (p)| > γ
∣∣QC,G

)
+ P (QCc) + P (Gc)

≤ P
(
E ≥ K + 1

∣∣QC,G
)
+ P (QCc) + P (Gc) ,

where E refers to the empirical error of QExp. Using Fact 6.1.2 for a suited β controls

P
(
E ≥ K + 1

∣∣∣∣QC,G
)
. Tuning the values of K, ∆ and β concludes the proof.

For simplicity, let us assume that E
(
1
2nγπ¯

)
− 1 ≤ min (E(np)− 1, n− E(np)), which is

for instance the case when γ < 2min(p,1−p)
π
¯

, which we suppose. Furthermore, suppose that
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1
2nγπ¯

≥ 2, which is for instance the case when n > 2/min(p, 1−p) thank to the hypothesis

on γ. By noting K := E
(
1
4nγπ¯

)
, Lemma 6.1.1 says that,

P

(
sup

k∈{−K,...,K}
|X(E(np)+k) − F−1

X (p)| > γ

)
≤ 4e

−
γ2π

¯
2

8max(p,(1−p))
n
,

We call QC (for quantile concentration) the complementary of this last event. Let δ > 0
that satisfies δ < 1

4π̄ . We define the event G :=
(
mini∆i >

δ
n2

)
(for gaps). Lemma 6.2.1

ensures that
P (Gc) ≤ 1− e−4π̄δ .

Conditionally to QC, denoting by q the output of QExp, |q − F−1
π (p)| > γ =⇒ E ≥

K − 1 ≥ K/2 whenever n ≥ 4/(γπ
¯
). By also working conditionally to G, and in order to

apply Fact 6.1.2, we look for a β > 0 such that

K/2 = 2
ln(n2) + ln

(
1
δ

)
+ ln

(
1
β

)
ϵ

,

which gives

β =
n2

δ
e−

ϵE

(
1
4nγπ

¯

)
4 .

Note that even if Fact 6.1.2 is stated for β ∈ (0, 1), its conclusion remains obviously true
for β ≥ 1.

Finally,

P
(
|q − F−1

π (p)| > γ
)
≤ P

(
|q − F−1

π (p)| > γ,QC,G
)
+ P (QCc) + P (Gc)

≤ en2

δ
e−

ϵnγπ
¯

16 + 1− e−4π̄δ + 4e
−

γ2π
¯
2

8max(p,1−p)
n
,

and by fixing δ := n
√
e

2
√
2π̄
e−

ϵnγπ
¯

32 , because 1− e−4π̄δ ≤ 8π̄δ for any δ > 0,

P

(
|q − F−1

π (p)| > γ

)
≤ 4n

√
2eπ̄e−

ϵnγπ
¯

32 + 4e
−

γ2π
¯
2

8max(p,(1−p))
n
.

Applying this result to IndExp (ϵ becomes ϵ
m) together with a union bound gives the

following result :

Corollary 6.2.4 (Statistical utility of IndExp). Consider n ≥ 1 and X1, . . . , Xn
i.i.d.∼ Pπ

where π is a density on [0, 1] w.r.t. Lebesgue’s measure such that π̄ ∈ R ≥ π ≥ π
¯
∈ R > 0



144

almost surely. Denote q := (q1, . . . , qm) the (random) result of IndExp on (X1, . . . , Xn) for
the estimation of the quantiles of orders p := (p1, . . . , pm), where mini[min(pi, 1 − pi)] >

2/n. For each γ ∈
(
0, 2mini[min(pi,1−pi)]

π
¯

)
we have

P
(
∥q− F−1

π (p)∥∞ > γ
)
≤ 4nm

√
2eπ̄e−

ϵnγπ
¯

32m

+ 4me−
γ2π

¯
2

8
n ,

where F−1
π (p) = (F−1

π (p1), . . . , F
−1
π (pm)).

Proof. IndExp is the application of m independent QExp procedures but with privacy
parameter ϵ

m in each. A union bound on the events that check if each quantile is off by
at least γ gives the result by Theorem 6.2.3.

So, there exist a polynomial expression P and two positive constants C1 and C2 depending
only on the distribution such that, under mild hypotheses,

P
(
∥q−F−1

π (p)∥∞ > γ
)

≤ P (n,m)max

(
e−C1

ϵnγ
m , e−C2γ2n

)
.

We factorized the polynomial expression since it plays a minor role compared to the values
in the exponential.

Statistical complexity of IndExp. The term P (n,m)e−C2γ2n simply comes from the
concentration of the empirical quantiles around the statistical ones. It is independent of
the private nature of the estimation. It is the price that one usually expects to pay without
the privacy constraint.

Privacy overhead of IndExp. The term P (n,m)e−C1
ϵnγ
m can be called the privacy

overhead. It is the price paid for using this specific private algorithm for the estimation.
For IndExp, if we want it to be constant, ϵn has to roughly scale as m times a polynomial
expression in log2m. As we will see later in Theorem 6.2.5, RecExp behaves much better,
with nϵ having to scale only as a polynomial expression in log2m.

A privacy overhead of this type is not only an artifact due to a given algorithm (even if
a suboptimal algorithm can make it worse), but in fact a constituent part of the private
estimation problem, associated to a necessary price to pay, as captured by several works
on generic lower bounds valid for all private estimators [Duchi et al., 2013, Duchi et al.,
2014, Acharya et al., 2021e, Acharya et al., 2018, Acharya et al., 2021a, Acharya et al.,
2021c, Acharya et al., 2021d, Acharya et al., 2021b, Barnes et al., 2020a, Barnes et al.,
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2020b, Barnes et al., 2019, Kamath et al., 2022, Butucea et al., 2019, Lalanne et al.,
2023b, Berrett & Butucea, 2019, Steinberger, 2023, Kroll, 2021].

With a similar proof technique as in the one of Theorem 6.2.3, the following result gives
the statistical utility of RecExp :

Theorem 6.2.5 (Statistical utility of RecExp). Consider n ≥ 1 and X1, . . . , Xn
i.i.d.∼ Pπ

where π is a density on [0, 1] w.r.t. Lebesgue’s measure such that π̄ ∈ R ≥ π ≥ π
¯
∈

R > 0 almost surely. Denote q := (q1, . . . , qm) the result of RecExp on (X1, . . . , Xn) for
the quantiles of orders p := (p1, . . . , pm), where mini[min(pi, 1 − pi)] > 2/n. For any

γ ∈ (0, 2mini[min(pi,1−pi)]
π
¯

) we have

P
(
∥q− F−1

π (p)∥∞ > γ
)
≤ 4n

√
2eπ̄me

−
ϵnγπ

¯

32 log2(2m)2

+ 4me−
γ2π

¯
2

8
n .

Proof. For simplicity, let us assume that E
(
1
2nγπ¯

)
− 1 ≤ min (E(np1)− 1, n− E(npm)),

which is for instance the case when γ < 2mini min(pi,1−pi)
π
¯

, which we suppose. Furthermore,

suppose that 1
2nγπ¯

≥ 2 , which is for instance the case when n > 2/minimin(pi, 1 − pi)

thank to the hypothesis on γ. By noting K := E
(
1
4nγπ¯

)
, Lemma 6.1.1 says that for any

i ∈ {1, . . . ,m},

P

(
sup

k∈{−K,...,K}
|X(E(npi)+k) − F−1

X (pi)| > γ

)
≤ 4e

−
γ2π

¯
2

8Cp1,...,pm
n
,

where Cp1,...,pm := maxi (max (pi, (1− pi))). We define the event QC (for quantile concen-
tration),

QC :=

m⋂
i=1

(
sup

k∈{−K,...,K}
|X(E(npi)+k) − F−1

X (pi)| ≤ γ

)
.

By union bounds,

P (QCc) ≤ 4me
−

γ2π
¯
2

8Cp1,...,pm
n
.

Let δ > 0 that satisfies δ < 1
4π̄ . We define the event G :=

(
mini∆i >

δ
n2

)
(for gaps).

Lemma 6.2.1 ensures that
P (Gc) ≤ 1− e−4π̄δ .

Conditionally to QC, denoting by q the output of RecExp, ∥q−F−1
π (p)∥∞ > γ =⇒ E ≥

K − 1 ≥ K/2 whenever n ≥ 4/(γπ
¯
). By also working conditionally to G, and in order to
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apply Fact 6.1.3, we look for a β > 0 such that

K/2 = 2(log2m+ 1)2
ln(n2) + ln

(
1
δ

)
+ lnm+ ln

(
1
β

)
ϵ

,

which gives

β =
n2m

δ
e
−

ϵE

(
1
4nγπ

¯

)
4(log2 m+1)2 .

Note that even if Fact 6.1.3 is stated for β ∈ (0, 1), its conclusion remains obviously true
for β ≥ 1.

Finally,

P
(
∥q− F−1

π (p)∥∞ > γ
)
≤ P

(
∥q− F−1

π (p)∥∞ > γ,QC,G
)
+ P (QCc) + P (Gc)

≤ en2m

δ
e
−

ϵnγπ
¯

32(log2 m+1)2 + 1− e−4π̄δ + 4me
−

γ2π
¯
2

8Cp1,...,pm
n
,

and by fixing δ := n
√
em

2
√
2π̄

e
−

ϵnγπ
¯

32(log2 m+1)2 , we get that,

P
(
∥q− F−1

π (p)∥∞ > γ
)
≤ 4n

√
2eπ̄me

−
ϵnγπ

¯

32(log2 m+1)2 + 4me
−

γ2π
¯
2

8Cp1,...,pm
n
.

As with Corollary 6.2.4, we can simplify this expression as

P

(
∥q−F−1

π (p)∥∞ > γ

)
≤ P (n,m)max

(
e
−C1

ϵnγ

(log2 m)2 , e−C2γ2n

)
,

where P is a polynomial expression and C1 and C2 are constants, all depending only on
the distribution.

Statistical complexity of RecExp. On the one hand the statistical term of this ex-
pression, which is independent of ϵ, is the same as with IndExp. This is natural since
the considered statistical estimation problem is unchanged, only the privacy mechanism
employed to solve it under a DP constraint was changed.

Privacy overhead of RecExp. On the other hand the privacy overhead

P (n,m)e
−C1

ϵnγ

(log2 m)2 is much smaller than the one of IndExp. The scaling of ϵn to reach
a prescribed probability went from approximately linear in m to roughly a polynomial
expression in log2m.
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In particular and to the best of our knowledge, this scaling inm places RecExp much ahead
of its competitors (the algorithms that compute multiple private empirical quantiles) for
the task of statistical estimation.

Remark 6.2.6. All the results presented in this subsection require a uniform lower-bound
on the density of the distribution from which the data is being sampled. Note that via
some minor adaptations in the proofs, all the results can be adapted to the less restrictive
hypothesis that the density is lower-bounded on a neighborhood of the statistical quantiles
only.

6.2.3 Provable suboptimalities

Private quantile estimators often focus on estimating the quantile function at specific
points p1, . . . , pm , which is probably motivated by a combination of practical considera-
tions (algorithms to estimate and representing finitely many numbers are easier to design
and manipulate than algorithms to estimate a function) and of intuitions about privacy
(estimating the whole quantile function could increase privacy risks compared to estimat-
ing it on specific points). It is however well-documented in the (non-private) statistical
literature that, under regularity assumptions on the quantile function, it can also be ap-
proximated accurately from functional estimators, see e.g. [Györfi et al., 2002, Tsybakov,
2009].

Building on this, this section considers a simple private histogram estimator of the density
[Wasserman & Zhou, 2010] in order to estimate the quantile function in functional infinite
norm. This allows of course to estimate the quantile function at (p1, . . . , pm) for arbitrary
m. As a natural consequence, we show that when m is very high, for a given privacy
level RecExp has suboptimal utility guarantees and is beaten by the guarantees of the
histogram estimator. Theorem 6.2.10 and Theorem 6.2.5 give a decision criterion (by
comparing the upper bounds) to decide whether to use RecExp or a histogram estimator
for the estimation problem.

Motivation: lower bounds for IndExp and RecExp

Lower-bounding the density of the exponential mechanism for uQExp gives a general lower-
bound on its utility:

Lemma 6.2.7 (Utility of QExp; Lower Bound). Let X1, . . . , Xn ∈ [0, 1]. Denoting by q
the result of QExp on (X1, . . . , Xn) for the quantile of order p, we have for any t ∈ [0, 1]
and any positive γ ∈ (0, 14 ],

P

(
|q − t| > γ

)
≥ 1

2
e−

nϵ
2 .
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Note that this holds without any constraint relating p,n, or γ.

Proof. By definition of uQExp we have −n ≤ uQExp

(
(X1, . . . , Xn), q

)
≤ 0 for any input,

hence using that 0 ≤ γ ≤ 1/4 we get

P

(
|q − t| > γ

)
=

∫
[0,1]\[t−γ,t+γ] e

ϵ
2
uQExp

(
(X1,...,Xn),q

)
dq∫

[0,1] e
ϵ
2
uQExp

(
(X1,...,Xn),q

)
dq

≥

∫
[0,1]\[t−γ,t+γ] e

− ϵ
2
ndq∫

[0,1] e
0dq

≥ (1− 2γ)e−
ϵ
2
n

≥ 1

2
e−

ϵ
2
n .

As a consequence, if the points X1, . . . , Xn are randomized, the probability that QExp
makes an error bigger than γ on the estimation of a quantile of the distribution is at least
1
2e

−nϵ
2 . A direct consequence is that for any γ ∈ (0, 14 ], the statistical utility of IndExp

has a is lower-bounded:

P

(
∥q− F−1

π (p)∥∞ > γ

)
≥ 1

2
e−

nϵ
2m ,

and the statistical utility of RecExp is also lower-bounded:

P

(
∥q− F−1

π (p)∥∞ > γ

)
≥ 1

2
e
− nϵ

2(log2 m+1) .

These are consequences of lower-bounds on the estimation error of the first statistical
quantile estimated by each algorithm in its respective computation graph (with privacy
level ϵ/m for IndExp; ϵ/(log2m+ 1) for RecExp).

In particular, for both algorithms, utility becomes arbitrarily bad when m increases. This
is not a behavior that would be expected from any optimal algorithm. The rest of this
section studies a better estimator for high values of m.

Histogram density estimator

The histogram density estimator is a well-known estimator of the density of a distribution
of probability. Despite its simplicity, a correct choice of the bin size can even make it
minimax optimal for the class of Lipschitz densities.
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Under differential privacy, this estimator was first adapted and studied by [Wasserman &
Zhou, 2010]. It is studied both in terms of integrated squared error and in Kolmogorov-
Smirnov distance. In the sequel, we need a control in infinite norm. We hence determine
the histogram concentration properties for this metric.

Given a a bin size h > 0 that satisfies 1
h ∈ N, we partition [0, 1] in 1

h intervals of length
h. The intervals of this partition are called the bins of the histogram. Given 1

h i.i.d.
centered Laplace distributions of parameter 1, (Lb)b∈bins, we define π̂hist, an estimator of
the supposed density π of the distribution as: for each t ∈ [0, 1],

π̂hist(t) :=
∑

b∈bins
1b(t)

1

nh

(
n∑

i=1

1b(Xi) +
2

ϵ
Lb

)
.

The function that, given the bins of a histogram, counts the number of points that fall in
each bin of the histogram has a sensitivity of 2 for the replacement neighboring relation.
Indeed, replacing a point by another changes the counts of at most two (consecutive) bins
by one. Hence, the construction of the Laplace mechanism ensures that π̂hist is ϵ-DP.

Note that, as a common practice, we divided by n freely in terms of privacy budget in the
construction of π̂hist. This is possible because we work with the replacement neighboring
relation. The size n of the datasets is fixed and is a constant of the problem.

The deviation between π and π̂hist can be controlled.

Lemma 6.2.8 (Utility of π̂hist; Density estimation). Consider X1, . . . , Xn
i.i.d.∼ Pπ where π

is a density on [0, 1] w.r.t. Lebesgue’s measure such that π is L-Lipschitz for some positive
constant L, and the private histogram density estimator π̂hist with bin size h. For any
γ > Lh, we have

P
(
∥π̂hist − π∥∞ > γ

)
≤ 1

h
e−

γhnϵ
4 +

2

h
e−

h2(γ−Lh)2

4
n .

Proof. Let us consider a specific bin of the histogram b. Let γ > 0. Denoting by ∥ · ∥∞,b

the infinite norm restrained to the support of b, which is a semi-norm, we have

P
(
∥π̂hist − π∥∞,b > γ

)
= P

∥∥∥∥∥ 1

nh

(
n∑

i=1

1b(Xi) +
2

ϵ
L

)
− π

∥∥∥∥∥
∞,b

> γ
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where L ∼ Lap(1), a centered Laplace distribution of parameter 1. So,

P
(
∥π̂hist − π∥∞,b > γ

)
= P

∥∥∥∥∥
(

1

nh

n∑
i=1

1b(Xi)− π

)
+

2

nhϵ
L

∥∥∥∥∥
∞,b

> γ


triangular inequality

≤ P

∥∥∥∥∥ 1

nh

n∑
i=1

1b(Xi)− π

∥∥∥∥∥
∞,b

> γ/2


+ P

(∣∣∣∣ 2

nhϵ
L
∣∣∣∣ > γ/2

)
Let us first control the first term. Since π is L Lipschitz, ∀x ∈ b,

∣∣π(x)− 1
h

∫
b π
∣∣ ≤ Lh

2 . So,
when γ > Lh,∥∥∥∥∥ 1

nh

n∑
i=1

1b(Xi)− π

∥∥∥∥∥
∞,b

> γ/2

 ⊂

(∣∣∣∣∣ 1nh
n∑

i=1

1b(Xi)−
1

h

∫
b
π

∣∣∣∣∣ > γ/2− Lh/2

)
.

Finally, notice that the family (1b(Xi))i is a family of i.i.d. Bernoulli random variables of
probability of success

∫
b π. By Hoeffding’s inequality,

P

∥∥∥∥∥ 1

nh

n∑
i=1

1b(Xi)− π

∥∥∥∥∥
∞,b

> γ/2

 ≤ 2e−
h2(γ−Lh)2

4
n .

The second term is controlled via a tail bound on the Laplace distribution as

P

(∣∣∣∣ 2

nhϵ
L
∣∣∣∣ > γ/2

)
= P

(
|L| > γnhϵ

4

)
=

∫ ∞

γnhϵ
4

e−tdt

= e−
γhnϵ

4 .

So, if γ > Lh,

P
(
∥π̂hist − π∥∞,b > γ

)
≤ 2e−

h2(γ−Lh)2

4
n + e−

γhnϵ
4 .

Finally, a union bound on all the bins gives that if γ > Lh,

P
(
∥π̂hist − π∥∞ > γ

)
≤ 2

h
e−

h2(γ−Lh)2

4
n +

1

h
e−

γhnϵ
4 .

Application to quantile function estimation

In order to use π̂hist as an estimator of the quantile function, we need to properly define a
quantile function estimator associated with it. Indeed, even if π̂hist estimates a density of
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probability, it does not necessary integrate to 1 and can even be negative at some locations.
Given any integrable function π̂ on [0, 1], we define its generalized quantile function

F−1
π̂ (p) = inf

{
q ∈ [0, 1]|

∫ q

0
π̂ ≥ p

}
,∀p ∈ [0, 1] ,

with the convention inf ∅ = 1. Even if this quantity has no reason to behave as a quantile
function, the following lemma tells that F−1

π̂ is close to an existing quantile function when
π̂ is close to its corresponding density.

Lemma 6.2.9 (Inversion of density estimators). Consider a density π on [0, 1] w.r.t.
Lebesgue’s measure such that π ≥ π

¯
∈ R > 0 almost surely. If π̂ is an integrable function

that satisfies ∥π̂ − π∥∞ ≤ α, and if p ∈ [0, 1] is such that

[
F−1
π (p)− 2α

π
¯

, F−1
π (p) + α

π
¯

]
⊂

(0, 1), then ∣∣F−1
π (p)− F−1

π̂ (p)
∣∣ ≤ 2α

π
¯

.

Proof. We have,

Fπ̂

(
F−1
π (p) +

α

π
¯

)
∥π̂−π∥∞≤α

≥ Fπ

(
F−1
π (p) +

α

π
¯

)
− α

π≥π
¯

≥ Fπ

(
F−1
π (p)

)
+

α

π
¯

π
¯
− α

= Fπ

(
F−1
π (p)

)
= p .

So,

F−1
π̂ (p) ≤ F−1

π (p) +
α

π
¯

.

Furthermore, for any t ∈
[
2α
π
¯

, F−1
π (p)

]
,

Fπ̂

(
F−1
π (p)− t

) ∥π̂−π∥∞≤α

≤ Fπ

(
F−1
π (p)− t

)
+ α

π≥π
¯

≤ Fπ

(
F−1
π (p)

)
− tπ

¯
+ α

< Fπ

(
F−1
π (p)

)
− 2α

π
¯

π
¯
+ α

= Fπ

(
F−1
π (p)

)
− α < p .

So, for any t ∈
(

2α
π
¯

, F−1
π (p)

)
;

F−1
π̂ (p) ≥ F−1

π (p)− t ,
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and finally,

F−1
π̂ (p) ≥ F−1

π (p)− 2α

π
¯

.

A direct consequence of Lemma 6.2.8 and Lemma 6.2.9 is Theorem 6.2.10. It controls the
deviation of the generalized quantile function based on π̂hist to the true quantile function.

Theorem 6.2.10 (Utility of F−1
π̂hist ; Quantile function estimation). Consider X1, . . . , Xn

i.i.d.∼
Pπ where π is a density on [0, 1] w.r.t. Lebesgue’s measure such that π is L-Lipschitz for
some positive constant L and that π ≥ π

¯
∈ R > 0 almost surely, and h < π

¯
/(4L) such that

1
h ∈ N. Let F−1

π̂hist be the quantile function estimator associated with the private histogram

density estimator π̂hist with bin size h. Consider γ0 ∈ (2Lh/π
¯
, 1/2), I := Fπ

(
(γ0, 1− γ0)

)
,

and ∥ · ∥∞,I the sup-norm of functions on the interval I. We have

P

(
∥F−1

π̂hist − F−1
π ∥∞,I > γ

)

≤ 1

h
e−

γπ
¯
hnϵ

8 +
2

h
e
−h2

4

(
γπ
¯
2
−Lh

)2

n
; ,

whenever γ ∈ (2Lh/π
¯
, γ0).

Proof. Given γ ∈
(

2Lh
π
¯

, γ0

)
,
γπ
¯

2 ≥
2π
¯
Lh

2π
¯

= Lh. So, Lemma 6.2.9 applies and gives that

P

(
∥π̂hist − π∥∞ >

γπ
¯

2

)
≤ 1

h
e−

γπ
¯
hnϵ

8 +
2

h
e
−h2

4

(
γπ
¯
2
−Lh

)2

n
.

Furthermore, I = Fπ ((γ0, 1− γ0). So,

∀p ∈ I, γ0 < F−1
π (p) < 1− γ0 .

In particular, when π̂hist satisfies ∥π̂hist − π∥ ≤
γπ
¯

2 , Lemma 6.2.8 applies and gives

∀p ∈ I, |F−1
π̂hist(p)− F−1

π (p)| ≤ γ .

This is equivalent to
∀p ∈ I, ∥F−1

π̂hist(p)− F−1
π (p)∥∞,I ≤ γ .

Finally,

P

(
∥F−1

π̂hist − F−1
π ∥∞,I > γ

)
≤ 1

h
e−

γπ
¯
hnϵ

8 +
2

h
e
−h2

4

(
γπ
¯
2
−Lh

)2

n
.
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Analysis of Theorem 6.2.10. As with Theorem 6.2.3 and Theorem 6.2.5, the upper-
bound provided by Theorem 6.2.10 can be split in two terms : The error that one usually

expects without privacy constraint, 2
h exp(−h2

4 (
γπ
¯

2 − Lh)2n), and the one that come from

the private algorithm, 1
h exp(−

γπ
¯
hnϵ

8 ). The assumption
γπ
¯

2 > Lh ensures that the bin size
h and the desired level of precision γ are compatible.

Computational aspects. π̂hist is constant on each bin. Hence, it can be stored in a
single array of size 1

h . If the data points are sorted, this array can be filled with a single pass
over all data points and over the array. Then, given p1, . . . , pm ∈ (0, 1) sorted, estimating
F−1
π̂hist(p1), . . . , F

−1
π̂hist(pm) can be done with a single pass over p1, . . . , pm and over the array

that stores π̂hist. Indeed, it is done by ”integration” of the array until the thresholds of
the pi’s are reached. The overall complexity of this procedure is O

(
n+m+ 1

h

)
to which

must be added O(n log n) if the data is not sorted and O(m logm) if the targeted quantiles
pi are not sorted.

Comparison with RecExp. Comparing this histogram-based algorithm to RecExp is
more difficult than comparing RecExp to IndExp. First of all, the results are qualitatively
different. Indeed, RecExp estimates the quantile function on a finite number of points
and the histogram estimator estimates it on an interval. The second result is stronger
in the sense that when the estimation is done on an interval, it is done for any finite
number of points in that interval. However, the error of RecExp for that finite number
of points may be smaller than the one given by the histogram on the interval. Then, the
histogram depends on a meta parameter h. With a priori information on the distribution,
it can be tuned using Theorem 6.2.10. Aditionally, the hypothesis required are different
: Theorem 6.2.5 does not require the density to be Lipschitz contrary to Theorem 6.2.10.
Finaly, we can observe that the histogram estimator is not affected by the lower bounds
described in Section 6.2.3. Hence, when all the hypotheses are met, there will obviously
always be a number m of targeted quantiles above which it is better to use histograms.

Remark 6.2.11. Notice that the hypothesis of Lipschitzness of the density is only useful
for the histogram estimators. In particular the guarantees of QExp, IndExp, and RecExp
do not require such hypothesis. This section thus presented a strict subclass of the problem
on which RecExp may be suboptimal.

Remark 6.2.12. We would like to highlight the fact that histograms are used as an
illustration of the suboptimality of RecExp on some instances of the problem. In particular,
it does not imply that they are the state of the art on such instances. It is very possible that
other mechanisms perform well in such cases [Blocki et al., 2012, Alabi et al., 2022]. In fact,
provided that the inversion from the cumulative distribution function of the distribution
to its quantile function is easy (which is typically the case when the density is uniformly
lower-bounded), we expect that many private CDF estimators will behave similarly or
better on these specific instances [Bun et al., 2015, Kaplan et al., 2020, Drechsler et al.,
2022, Denisov et al., 2022, Henzinger & Upadhyay, 2022].
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6.2.4 Experimental results

For the experiments, we benchmarked the different estimators on beta distributions, as
they allow to easily tune the Lipschitz constants of the densities, which is important for
characterizing the utility of the histogram estimator.

Figure 6.1 represents the performance of the estimator as a function of m. We estimate

the quantiles of orders p =
(
1
4 + 1

2(m+1) , . . . ,
1
4 + m

2(m+1)

)
since it allows us to stay in the

regions where the density is not too small.

IndExp vs RecExp vs Histograms. Figure 6.1, confirms our claims about the scaling
in m of IndExp and RecExp. Indeed, even if IndExp quickly becomes unusable, RecExp
stays at a low error until really high values of m. The conclusions of Section 6.2.3 also
seem to be verified : Even if RecExp performs well for small to intermediate values of
m, there is always a certain value of m for which it becomes worse than the histogram
estimator. This shift of regime occurs between m ≈ 10 for the distribution Beta(0.5, 0.5)
and m ≈ 40 for the distribution Beta(2, 5).

Error of the histogram-based approach. The shape of the error for the histogram
estimator is almost flat. Again, it is compatible with Theorem 6.2.10 : The control in
infinite norm is well suited for the histograms.

Role of the Lipschitz constant. By crossing the shape of the beta distributions and
Figure 6.1, a pattern becomes clear : The distributions on which the histogram estimator
performs best (i.e. the distributions on which it becomes the best estimator for the lowest
possible value of m) are the distributions with the smallest Lipschitz constant. This
was expected since the guarantees of utility of Theorem 6.2.10 get poorer the higher this
quantity is.

6.2.5 The case of JointExp and the inverse sensitivity

For the specific case of JointExp and the inverse sensitivity mechanism (due to their sim-
ilarities we only focus on JointExp), we do not have high probability bounds as satisfying
as the ones of QExp, IndExp or RecExp, in the sense that the scaling in m is much poorer.
However, we are still able to provide consistency results at fixed m and ϵ which is the first
consistency result for this method.

For this, we first need two technical lemmas.

Lemma 6.2.13. Let X̃ be a real random variable with density πX̃ and p ∈ (0, 1). We
suppose that πX̃ ≥ πmin > 0 on an open neighborhood N of F−1

X̃
(p). If we have access to
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The vertical axis reads the error E
(
∥q̂− F−1(p)∥∞

)
where

p =
(
1
4 + 1

2(m+1) , . . . ,
1
4 + m

2(m+1)

)
for different values of m, n = 10000, ϵ = 0.1, q̂ is the

private estimator, and E is estimated by Monte-Carlo averaging over 50 runs. The
histogram is computed on 200 bins.

Figure 6.1: Numerical performance of the different private estimators

X̃ = (X̃1, . . . , X̃n) i.i.d. realisations of X̃ then for every γ > 0, if n ≥ 2
γπmin

,

[F−1
X̃

(p)−γ, F−1
X̃

(p)+γ] ⊂ N =⇒ P
(∣∣∣F−1

X̃
(p)− X̃(⌈np⌉)

∣∣∣ > γ
)
≤ e

−n

(
γ2π2

min
8(1−p)

)
+e

−n

(
γ2π2

min
8p

)

Proof. Let γ > 0 such that [F−1
X̃

(p)− γ, F−1
X̃

(p) + γ] ⊂ N . Let us define

N =
n∑

i=1

1(F−1

X̃
(p)+γ,+∞)(X̃i) .
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N is a sum of n independent Bernoulli random variable with probabilities of success lower
than η = 1− p− γπmin. If X̃(⌈np⌉) > F−1

X̃
(p) + γ, then N ≥ n(1− p). So,

P
(
X̃(⌈np⌉) > F−1

X̃
(p) + γ

)
≤ P (N ≥ n(1− p)− 1)

= P

(
N ≥ nη

(
1 +

γπmin

η
− 1

nη

))
≤ e

−nη
(

γπmin
η

− 1
nη

)2
/
(
2+

γπmin
η

− 1
nη

)
where line 3 is deduced from line 2 by a multiplicative Chernoff bounds. If we further
impose that n ≥ 2

γπmin
,

P
(
X̃(⌈np⌉) > F−1

X̃
(p) + γ

)
≤ e

−nη
4

(
γπmin

η

)2
/
(
2+

γπmin
η

)

≤ e
−n

4

(
γ2π2

min
2(1−p)−γπmin

)
≤ e

−n

(
γ2π2

min
8(1−p)

)

Looking at the event
(
X̃(np) < F−1

X̃
(p)− γ

)
and a union bound give the expected result.

Lemma 6.2.14. Let X̃ be a real random variable with density πX̃ and p ∈ (0, 1). We

suppose that πmax ≥ πX̃ ≥ πmin > 0 on an interval I of R. If we note N =
∑n

i=1 1I(X̃i)
the number of points that fall in I, we have

P (N ≥ 2nλ(I)πmax) ≤ e−
nλ(I)πmax

3 ,

P

(
N ≤ 1

2
nλ(I)πmin

)
≤ e−

nλ(I)πmin
8 .

.

Proof. This is a simple application of multiplicative Chernoff bounds to the sum N of
independent Bernoulli random variables.

Finally, the consistency result states that

Theorem 6.2.15. If X is a random variable with density πX w.r.t. Lebesgue measure
that is piecewise continuous and if there exists β > 0 such that πX > 0 and is continuous
on ∪n

i=1[F
−1
X̃

(pi)− β, F−1
X̃

(pi) + β], then, denoting by q the output of JointExp applied to
X with constant ϵ,

P
(
∥q− F−1

X (p)∥∞ > β
)
= on(1) .
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Proof. Let 0 < γ < β such that πX̃ > 0 on O := ∪n
i=1[F

−1
X̃

(pi)− β, F−1
X̃

(pi) + β]. We note
πmin = infO πX̃ and πmax = supO πX̃ . We also define the following events:

A : ∀i,
∣∣∣X̃(⌈npi⌉) − F−1

X̃
(pi)

∣∣∣ ≤ γ ,

B : ∀i,#(X̃ ∩ [F−1
X̃

(pi) + γ, F−1
X̃

(pi) + β]) ≥ 1

2
n(β − γ)πmin and

#(X̃ ∩ [F−1
X̃

(pi)− β, F−1
X̃

(pi)− γ]) ≥ 1

2
n(β − γ)πmin ,

C : ∀i,#(X̃ ∩ [F−1
X̃

(pi)− γ, F−1
X̃

(pi) + γ]) ≤ 2n2γπmax .

Then we can compute,

P
(
∥q− F−1

X̃
(p)∥∞ > β|A,B,C

)
P
(
∥q− F−1

X̃
(p)∥∞ ≤ β|A,B,C

) ≤
P
(
∥q− F−1

X̃
(p)∥∞ > β|A,B,C

)
P
(
∥q− F−1

X̃
(p)∥∞ ≤ γ|A,B,C

)
Conditionally to A and B, −uJE(X̃,q) ≤ 1

2

(
1
2n(β − γ)πmin

)
=⇒ ∥q − F−1

X̃
(p)∥∞ ≤

β. Furthermore, conditionally to A and C, ∥q − F−1
X̃

(p)∥∞ ≤ γ =⇒ −uJE(X̃,q) ≤
1
2 (4(m+ 1)nγπmax). So,

P
(
∥q− F−1

X̃
(p)∥∞ > β|A,B,C

)
P
(
∥q− F−1

X̃
(p)∥∞ ≤ γ|A,B,C

) ≤ (b− a)m

(2γ)m/m!
e
− ϵ

4

(
(β−α)πmin

2
−4(m+1)γπmax

)
n

and by fixing γ = βπmin

16(m+1)πmax+2πmin
we end up with

P
(
∥q− F−1

X̃
(p)∥∞ > β|A,B,C

)
P
(
∥q− F−1

X̃
(p)∥∞ ≤ β|A,B,C

)
≤ 2m(b− a)mm!

βm

(
4(m+ 1)πmax + πmin/2

πmin

)m

e−
ϵβπmin

16
n .

We can use Lemma 6.2.13, Lemma 6.2.14 and union bounds to obtain the following for n
big enough:

P
(
∥q− F−1

X̃
(p)∥∞ > β

)
≤ P

(
∥q− F−1

X̃
(p)∥∞ > β|A,B,C

)
+ P(Ac) + P(Bc) + P(Cc)

≤ 2m(b− a)mm!

βm

(
4(m+ 1)πmax + πmin/2

πmin

)m

e−
ϵβπmin

16
n

+
m∑
i=1

e
−n

(
β2π4

min

8(1−pi)(16(m+1)πmax+2πmin)
2

)
+

m∑
i=1

e
−n

(
β2π4

min

8pi(16(m+1)πmax+2πmin)
2

)

+me
−n

βπminπmax
24(m+1)πmax+3πmin + 2me

−n
πmin

8

(
β− βπmin

16(m+1)πmax+2πmin

)
.
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6.3 JointExp and atomic distributions

The theoretical guarantees of JointExp (and also all the algorithms that use it such as
IndExp or RecExp) hold true for continuous distributions. This section observes numeri-
cally and proves theoretically that in fact, when the distribution involves isolated atoms,
this mechanism fails completely. It also provides a simple solution to this problem, and
demonstrates the improvement both theoretically and experimentally.

6.3.1 JointExp fails on atomic distributions

In order to understand the origin of this weakness of JointExp, we analyse the density of
the distribution of its output. This density is constant on the “blocks”(

[Xi1 , Xi1+1)× . . .× · · · × [Xim , Xim+1)
)
∩ [a, b]m↗

for each i = (i1, . . . , im) ∈ O′ where

O′ = {i ∈ {0, . . . , n}m , i1 ≤ · · · ≤ im} .

The probability of the output of JointExp being in a given block is proportional to the
volume of this block.

What can happen in practice is that even though a block is interesting in terms of utility
level, its volume can in fact be close to zero if the data points are close. The volume can
even be zero in case of equality, hence this block is never selected by the exponential mech-
anism. This phenomenon occurs particularly often for data drawn from distributions with
isolated atoms: asymptotically, the dataset will almost surely contain collisions among the
data points as n grows and JointExp will fail on the corresponding quantiles.

To formally capture this phenomenon, from now on, X is supposed to be a collection
of n i.i.d. samples of a random variable X with distribution PX and with cumulative
distribution function (CDF) FX .

Proposition 6.3.1. Suppose that there exist q ∈ (a, b) and η > 0 such that I := (q−η, q+
η) ⊂ [a, b] satisfies PX({q}) > 0 and PX(I \ {q}) = 0. Then there exist some probability
vectors p such that, denoting by q the output of JointExp applied to X with constant ϵ,

EX, JointExp

(
∥q− F−1

X (p)∥∞
)
= Ωn(1) , (6.2)

where we use the vector notation F−1
X (p) = (F−1

X (p1), . . . , F
−1
X (pm)). Furthermore, the

Lebesgue measure of the set of problematic probability vectors is lower bounded by
PX({q})m/(m!).
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Proof. Since PX({q}) > 0 and PX(I \{q}) = 0, there exists a nonempty interval A of [0, 1]
such that {q} = F−1

X (A) with λ(A) ≥ PX({q}), λ referring to Lebesgue measure. Let us
prove that any p with at least one component in A satisfies (6.2).

For this, assume that p has its ith entry pi in A. Due to the structure of PX , PX(X∩ (I \
{q}) ̸= ∅) = 0, hence almost surely it holds that for every j we have either |Xj−q| ≥ η > 0
or |Xj − q| = 0. Remember that the output density is a mixture of uniforms on the sets(
[Xi1 , Xi1+1) × . . . × · · · × [Xim , Xim+1)

)
∩ [a, b]m↗ for i = (i1, . . . , im) ∈ O′. If the ith

component of the output qi was to be sampled from a data interval that doesn’t admit q
in its closure, then ∥q−F−1

X (p)∥∞ ≥ η. If on the other hand qi was to be sampled from a
data interval that does admit q in its closure, then it belongs to an interval [Xk, Xk+1) for
some k such that q ∈ [Xk, Xk+1] and Xk+1 −Xk ≥ η. Conditionally to the fact that there
are m′ ≤ m other quantiles that are sampled from [Xk, Xk+1], the conditional expectation
of ∥q − F−1

X (p)∥∞ can be lower by a (strictly) positive functional (f(η,m′)) of η and m′

(because the corresponding slice of the output is uniform on [Xk, Xk+1]
m′ ↗.

This shows that the risk can be lower bounded by a quantity in Conv{η, f(η, 1), . . . , f(η,m)}
which is then bigger than min{η, f(η, 1), . . . , f(η,m)} which is positive.

This result shows that for certain data distributions with isolated atoms, JointExp is not
consistent, even asymptotically, on many instances of the estimation problem (i.e. not
on unrealistic corner cases). This behavior is all the more counterintuitive as one would
think that on datasets with a lot of collisions, very little noise would be needed to ensure
privacy since the points are already indistinguishable.

Example 6.3.2. Consider the private estimation of the median (i.e. m = 1 quantile, and
p = (1/2)) on [a, b] = [−1, 1]. Since m = 1, JointExp coincides with ExponentialQuantile,
and when all data points are equal to 0 (i.e. PX = δ0) its output is uniformly distributed
in [−1, 1] whatever the sample size n as long as it is even.

When considering estimation on real-world distributions, many real-life datasets show
accumulation points and can be modeled as continuous distributions with some Diracs at
specific points. A famous example is the revenue statistics of the US Census Bureau: many
participants in surveys are not qualified to have some category of revenue (too young or
not investing in some assets) hence the presence of accumulations at the zero value for
these categories. In fact, any continuous variable that is censored, conditional on some
other variable or generated by mimetic agents tending to repeat exactly some values, will
show accumulation points where JointExp has great chances to fail.
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This type of failure may seem surprising given a) the strong connection between JointExp
and the Inverse Sensitivity; and b) existing performance guarantees for smoothed Inverse
Sensitivity mechanisms [Asi & Duchi, 2020b, Asi & Duchi, 2020a]. Indeed, while JointExp
is not smoothed, smoothing convolves the output distribution with a max kernel, increasing
the volume of the maximum of the distribution to circumvent the difficulties raised by
isolated atoms. This approach is perfectly viable when JointExp is applied with m = 1
(so in the case of RecExp), however, when m is strictly bigger, the problem becomes
intractable.

As a tractable alternative, we propose a heuristic algorithm based on noise addition prior
to the application of JointExp, and we show that this mechanism is endowed with privacy
and consistency guarantees. Note that the exposed problems with atomic distribution also
occur for highly concentrated continuous distributions.

Another possible solution would be to discretize the output space. However, the resulting
algorithm would have a complexity of O(f(m,n, δ) + 1/δm) where δ is the precision of
the discretization and f is some function. Since this is exponential in the number of
quantiles, it suffers from the curse of dimensionality, and we argue that jittering is a
better alternative.

6.3.2 Introducing the HSJointExp algorithm

Since JointExp has a density that is constant on the blocks(
[Xi1 , Xi1+1)× . . .× · · · × [Xim , Xim+1)

)
∩ [a, b]m↗

for i = (i1, . . . , im) ∈ O′, it fails when the blocks that have a great utility (i.e. the ones
leading to interesting quantile candidates) have a volume that is too small. By adding
noise to the data points, we ensure a minimal volume for the blocks, and in particular
for the interesting regions, while only shifting the empirical quantiles of the dataset by a
small amount.

Let w1, . . . , wn be i.i.d variables, and let

X̃ = (X1 + w1, . . . , Xn + wn) . (6.3)

The Heuristically Smoothed JointExp (HSJointExp) is defined as the algorithm that ap-
plies JointExp on the noisy data X̃.

Other possible solutions could be to discretize the output space [Xiao et al., 2010], or to
use the smoothing trick of the inverse sensitivity mechanism [Asi & Duchi, 2020b, Asi &
Duchi, 2020a, Asi et al., 2023]. However, those two approaches are computationally hard
and suffer from the curse of dimensionality.
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Let us now discuss the choice of the distribution Pw of the (wi)
′s. Discrete noise distribu-

tions (for instance Bernoulli noise scaled by some α > 0: w
α ∼ B(12)) may seem interesting

because they lead to easily tuneable data gaps. However, this often just creates new
instances where JointExp fails. Indeed, adding discrete noise to data distributions with
accumulation points creates new accumulation points.

For this reason, we focus in the sequel on continuous noise distributions with a density
denoted by πw. The density πX̃ of the noisy data X̃ is hence given by the convolution
formula,

∀t ∈ R, πX̃(t) =

∫
πw(t− x)PX(dx) . (6.4)

A typical choice of noise discussed in the sequel is the uniform distribution on the interval
[−α, α].

Before discussing the choice of the scale parameter α, we remark that HSJointExp consists
of the addition of i.i.d. noise prior to running JointExp. Its privacy guarantees are thus a
direct consequence of the following generic composition lemma.

Proposition 6.3.3. Let w be a random variable on Rn with probability distribution Pw

that is invariant by permutations of the components of the vector. If M is ϵ-DP on X n,
then X 7→ M(projXn(X+w)) is also ϵ-DP.

Proof. Let M be a ϵ-DP algorithm on X n, X,X′ ∈ X n such that X ∼ X′. Then, for every
w ∈ Rn,projXn(X+w) ∼ projXn(X′+σ(w)) for a specific permutation of the components
σ. For each measurable set S ⊂ O we get

P(M(projXn(X+w)) ∈ S)

=

∫
Rn

PM(M(projXn(X+w)) ∈ S)Pw(dw)

≤ eϵ
∫

Rn

PM(M(projXn(X′ + σ(w))) ∈ S)Pw(dσ(w))

= eϵ
∫

Rn

PM(M(projXn(X′ +w)) ∈ S)Pw(dw)

= eϵP(M(projXn(X′ +w)) ∈ S)

which completes the proof.

The projection step proj onto the data space X n is necessary because JointExp needs
to know the range of the data. Note that X n could be replaced by any set of the form
[a−δα,n, b+δα,n]

n where δα,n is a quantity that depends on α and n. So for instance, if the
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noise follows a uniform distribution on the interval [−α, α], projecting on [a − α, b + α]n

(does nothing) and then running JointExp on [a − α, b + α] ensures that no point will
overflow.

6.3.3 Consistency of HSJointExp on constant data

In order to give some insight on the general analysis of HSJointExp, and to explain the
choice that we suggest for the amplitude α of the noise, we start by discussing the simple
setting of Example 6.3.2 where Xi ≡ 0 and JointExp is known to fail. We consider uniform

noise with distribution dPw(w) =
1[−α,α](w)

2α dw, and HSJointExp returns the output of

ExponentialQuantile/JointExp with m = 1 on the noisy data X̃:

M := E(2/ϵ)
uJE

(X̃).

The true median of the dataset is 0, and we study the quadratic risk E(M2) of our
mechanism. Note that the classical way of analyzing exponential mechanisms is to use
the utility bounds found in [McSherry & Talwar, 2007]. However, here we do not have
the required level of control on the normalization factor. We hence go for a more direct
way of controlling the output distribution. Denoting by N(x, y) =

∑n
i=1 1[x,y)(0+wi) the

number of noisy points falling in the interval [x, y), we define the event

G :=
{
N(−α,−α/4) ≥ n/4

}
∩
{
N(α/4, α) ≥ n/4

}
.

Since N(−α,−α/4)
L
= N(α/4, α) ∼ B(n, 3/8), by Hoeffding’s inequality, the probability

of G is a least 1 − 2 exp(−n/32). Moreover, on the event G, for every x ∈ [−α/4, α/4]
one has N(−α, x) ≥ n/4 and N(x, α) ≥ n/4; hence, the minimal number of sample points
that need to be changed so as to reach a median equal to x is at most δJE(1, X̃, x) =∣∣n/2−N(−1, x)

∣∣ ≤ n/4 (see Figure 6.2), and −uJE(X̃, x) ≤ n/8. On the other hand, for

every x /∈ [−α, α], δJE(1, X̃, x) = n/2 and uJE(X̃, x) = n/4. Since the density of M at
x ∈ [−1, 1] is equal to exp

(
− uJE(X̃, x)ϵ/2

)
/
∫ 1
−1 exp

(
− uJE(X̃, t)ϵ/2

)
dt,

P
(
|M | > α

∣∣G) ≤ P
(
|M | > α

∣∣G)
P
(
|M | ≤ α/4

∣∣G)
≤ 2× e−nϵ/8

α/2× e−nϵ/16
=

4e−nϵ/16

α
.

Therefore,

E
(
M2
)
≤ 12

(
P(Ḡ) + P

(
|M | > α

∣∣G))+ α2 P
(
|M | ≤ α

∣∣G)
≤ e−n/32 +

4e−nϵ/16

α
+ α2 .

Choosing α = e−nϵ/48 yields

E
(
M2
)
≤ 5e−nϵ/24 + e−n/32 .

We conclude that, contrary to JointExp, HSJointExp is here consistent as soon as nϵ → ∞,
which is anyway a necessary condition. Besides, the analysis provides a simple and generic
way to tune the noise amplitude α as a function of n and ϵ.
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0 +α−α−1 1−α/4 α/4

X̃(n/2)X̃(0) X̃(1) X̃(n−1) X̃(n)

× × × × ×
. . . . . .

δJE(1, X̃, x) ≤ n/4≥ n/4 points ≥ n/4 points

Figure 6.2: δJE(1, X̃, x) is bounded by n/4 for −α/4 ≤ x ≤ α/4 on the event G.

6.3.4 General Consistency of HSJointExp

The consistency of HSJointExp is based on the idea of leveraging the consistency of Joint-
Exp on continuous distributions. We decompose the error on the estimation in two terms:
The error measuring the gap between the quantiles of PX and the ones of PX̃ and the
error made by JointExp on the estimation of the quantiles of PX̃.

The first term can be controlled by the following general purpose proposition.

Proposition 6.3.4. For any non-increasing f : R → [0, 1] such that ∀t ≥ 0,P(|w| > t) ≤
f(t), then for every p ∈ (0, 1), for every t ≥ 0 such that 1− f(t) > 0,

F−1
X̃

(p) ≤ F−1
X

(
p

1− f(t)

)
+ t ,

sup
δ∈(0,p)

−F−1
−X

(
1− p+ δ

1− f(t)

)
− t ≤ F−1

X̃
(p) .

Proof. Let t ≥ 0 such that 1− f(t) > 0,

P

(
X + w ≤ F−1

X

(
p

1− f(t)

)
+ t

)
≥ P

(
X + w ≤ F−1

X

(
p

1− f(t)

)
+ t, |w| ≤ t

)
≥ P

(
X ≤ F−1

X

(
p

1− f(t)

)
, |w| ≤ t

)
≥ P

(
X ≤ F−1

X

(
p

1− f(t)

))
P (|w| ≤ t)

≥ p

1− f(t)
(1− f(t)) ≥ p .

So, F−1
X̃

(p) ≤ F−1
X

(
p

1−f(t)

)
+ t. Let δ ∈ (0, p), the same arguments give

P

(
X + w ≤ −F−1

−X

(
1− p+ δ

1− f(t)

)
− t

)
≤ p− δ < p
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which allows concluding with the desired result.

For instance, when applied to some noise with distribution dPw(w) =
1[−α,α](w)

2α dw with
t = α and f(t) = 0, if FX is continuous and strictly increasing on a neighborhood of
F−1
X (p), we can say that |F−1

X (p)− F−1
X̃

(p) | ≤ α.

The second error term can be controlled with Theorem 6.2.15 assuming that we fall into
its hypothesis. By adding some uniform noise in [−α, α], we then obtain the following
result:

Theorem 6.3.5. If the distribution of X is a mixture of a finite number of Diracs in
(a, b) and of a random variable Y with a continuous density πY on [a, b] w.r.t. Lebesgue’s
measure such that πY > 0 on [a, b] \ O where O is a finite union of intervals and πY = 0
on O, then for any precision δ and Lebesgue-almost-any probability vector p, there exists
a noise level α > 0 such that the ϵ-DP estimator q based on HSJointExp satisfies

∥q− F−1
X (p)∥∞ ≤ δ

with high probability (as n grows).

Proof. We tune the noise w to have density dPw(w) =
1[−δ/2,δ/2](w)

δ dw. Under the hypoth-
esis, F−1

X has a finite number of discontinuity points. We can apply Proposition 6.3.4 with
t = δ/2 and f(t) = 0 to get that for Lebesgue-almost-any p,

∥F−1
X̃

(p)− F−1
X (p)∥∞ ≤ δ/2 .

In order to conclude, we can describe the density πX̃ of the noisy random variable. It is
piecewise continuous on [a, b], πX̃ > 0 on [a, b] \ O′ where O′ is a finite union of intervals
and πX̃ = 0 on O′. Consequently, there only are a finite number of p’s in (0, 1) such that
it is not possible to find a β > 0 such that πX̃ > 0 on [F−1

X̃
(p)− β, F−1

X̃
(p) + β] and where

πX̃ is continuous on that interval. Any p that has no such p as any of its components
qualifies and we can apply Theorem 6.2.15 to get that

∥q− F−1
X̃

(p)∥∞ ≤ δ/2

with high probability. We get the result by the triangle inequality.

Theorem 6.3.5 states in particular that many distributions that satisfy the hypothesis of
Proposition 6.3.1 and on which JointExp is not consistent also satisfy the hypothesis of
Theorem 6.3.5 and HSJointExp can thus achieve arbitrary levels of precision on them
(provided n is large enough).
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Figure 6.3: Distributions used for experiments

As highlighted by Section 6.3.3, working on much stricter distribution classes can lead to
numerically tractable optimal levels of noise.

6.3.5 Numerical Results

This section presents the behaviors of JointExp, the Inverse Sensitivity mechanism and
HSJointExp on synthetic and on real-world distributions. In particular, 6.3.5 is devoted
to the presentation of the distributions of interest. Section 6.3.5 numerically studies the
performance of the algorithms on the above-mentioned distributions. And finally, Sec-
tion 6.3.5 looks at the possible numerical gain of privacy resulting from the noise addition.

Distributions

We claimed that HSJointExp has a huge advantage over regular JointExp in the case of
distributions with isolated atoms. In order to test it numerically, we propose to do so with
synthetic data in the first place. Indeed, in allows us to tune various interesting quantities.
For real world distributions, it is harder to identify which ones satisfy the condition of
having isolated atoms. We propose to evaluate the performance of the algorithms by
identifying a real-world distribution with the empirical distribution of a real-world dataset.
The concentration of this dataset (i.e. how peaked its histogram is) is then the decisive
criterion: The more concentrated it is, the more suboptimal JointExp/IS is expected to
be compared to the smoothed variants.
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Figure 6.4: Error of the estimators as a function of n

Mixed distributions (synthetic). For p ∈ [0, 1] and δ ∈ [0, 1/2], we define the Mixed
distribution of parameters (p, δ) as the distribution with support in [0, 1/2− δ] ∪ {1/2} ∪
[1/2 + δ, 1] such that if a random variable X follows this distribution, we have P(X =
1/2) = p, P(X ∈ [0, 1/2 − δ]) = P(X ∈ [1/2 + δ, 1]), and conditionally to the event
(X ∈ [0, 1/2 − δ]) or to the event (X ∈ [1/2 + δ, 1]), X is uniform. In particular, the
mixed distribution of parameters (0, 0) is the uniform distribution on [0, 1]. In order to
better visualize such distributions, sampled histograms are represented in Figure 6.3. The
parameters ϵ and δ allow tuning, respectively, the probability of the atom and its isolation.
The bigger they are, the more HSJointExp is expected to outperform the non-smoothed
variants.

Pages and Ratings (real-world). The distributions that we call Pages and Ratings
correspond to the empirical distributions of a collection of ratings and of number of pages of
books from the Goodreads-Books dataset [Soumik, ]. Gillenwater et al. [Gillenwater et al.,
2021] used the same datasets as numerical evidences of the performance of JointExp for
estimating empirical quantiles. Again, sampled histograms are represented in Figure 6.3.
The distributions look relatively smooth (i.e. not too peaked and with a relatively small
support), and as a result, we can expect the gap between JointExp/IS and HSJointExp
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to be negligible.

Earnings and Dividends (real-world). The distributions that we call Earnings and
Dividends correspond respectively to the personal incomes and personal incomes from
dividends categories of the US 2021 Census [Bureau, 2021]. Again, sampled histograms
are represented in Figure 6.3. We can notice that contrary to the previous two real-world
distributions, these two are much more concentrated. For Earnings, the concentration
is due to the existence of categories of extremely high revenues. As a consequence, the
support of the distribution is necessary big, and the algorithms that seek for privately
estimating the quantiles have little information about the localization of the data points.
On the other hand, the vast majority of people declare revenues below $500 500, resulting
in the high concentration of the distribution close to 0. For Dividends, the support is
smaller, but since a big part of the population simply does not have any revenues from
dividends, the distribution shows an accumulation point at 0. With both distributions,
we expect the smoothing operation to vastly improve the performance of JointExp/IS.

Numerical Performance

Figure 6.4 and Figure 6.5 Compare the performance of JointExp, the Inverse Sensitivity
mechanism and two variants of HSJointExp with uniform and Gaussian noise structure
respectively on the distributions presented in Figure 6.3.

Complements on HSJointExp Uniform and Gaussian. The mechanism that we
call HSJointExp Uniform is the application of JointExp post addition of centered uniform
noise. If [a, b] was our estimate of the support of the distribution, we apply JointExp
on [a − σ

√
3, b + σ

√
3] where σ is the standard deviation of the noise. In HSJointExp

Gaussian, the centered uniform noise is replaced by centered Gaussian noise. The support
of the resulting distribution is now infinite, and the projection step is therefore mandatory.
We chose to project the data points in [a− 5σ, b+ 5σ] where σ is the standard deviation
of the noise in order to make sure that most of the points will remain untouched by the
projection step.

Analyzing the results of Figure 6.4. The first important fact to notice is the similar
performance of JointExp and the Inverse Sensitivity mechanism, confirming the theoreti-
cal results. The second is the similar performance of HSJointExp Uniform and Gaussian,
showing that the structure of the noise, given that it is regular enough, is not of critical im-
portance. Finally, and probably the most important, we can compare the performance of
JointExp/IS and of HSJointExp. On Mixed(0, 0) (i.e. the uniform distribution on [0, 1]),
Ratings and Pages, the two algorithms perform identically. This is what we expected given
the smoothness of the distributions. On more concentrated distributions like Earnings
and Dividends on the other hand, we see that HSJointExp vastly improves the perfor-
mance of JointExp, sometimes by multiple orders of magnitude. Finally, Mixed(0.1, 0.05),
Mixed(0.2, 0.1) and Mixed(0.5, 0.25) demonstrate that the more isolated and probable the
atoms of the distribution are, the more suboptimal JointExp is compared to the smoothed
variants.
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Figure 6.5: Dependence on the smoothing level

Analyzing the results of Figure 6.5. Figure 6.5 shows the same results as Figure 6.4
but with an emphasis on the dependence on the noise level. For instance, we can see that
when the smoothing operation allows for better performance, it is often the case for a large
range of smoothing levels. Finally, we can numerically observe two limit behaviors that
are quite intuitive : When the noise level tends to 0, HSJointExp performs as JointExp.
Indeed, in this case, the smoothing trick has almost no effect on the distribution. When
the noise level tends to +∞ on the other hand, the performance of HSJointExp is terrible.
This is also quite intuitive, since the smoothed distribution has lost almost all correlation
with the original distribution. For all these reasons, we recommend tuning the noise as in
the extreme case of the Dirac (see Section 6.3.3) since this value is small enough to not fall
in the regime where the performance are degraded by the smoothing, but it still greatly
improves the performance on degenerated distributions.
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Privacy Amplification

A final property that we would like to explore is the possible amplification of privacy
of HSJointExp. Indeed, adding Laplace or Gaussian noise to bounded quantities is a
common way to make them private [Dwork et al., 2006b]. Furthermore, it is well known
that some preprocessing steps (prior to the application of an already private mechanism)
increase the provable privacy of the overall mechanism. This is for instance the case with
subsampling [Balle et al., 2018b]. Consequently, one would think that adding noise to the
data does not only preserve the privacy guarantees of the original mechanism (as stated
by Proposition 6.3.3), but has reasonable chances to make it more private. In order to
evaluate the actual privacy of our mechanism, we investigate its privacy loss:

L(X,Y,q) :=
dP/dq

(
JointExp(X̃) = q

)
dP/dq

(
JointExp(Ỹ) = q

)
for Y ∼ X and q ∈ O where dP/dq

(
JointExp(X̃) = q

)
refers to the value of the density

of HSJointExp applied to X at q. For a given dataset X, we define

ϵeff := sup
X∼Y

sup
q

log (L(X,Y,q))

the effective difficulty of distinguishing X from any of its neighbors. We always have that
ϵeff ≤ ϵ but we would like to measure the difference between the two and its dependence
on the noise level.

In Figure 6.6 we numerically estimate ϵeff in the following setup: For each of the datasets
(notedX), we estimate the median using HSJointExp with Laplace noise tuned with ϵ = 1.
We estimate L(X,Y,q) for anyY ∼ X by discretizing the search space ofY and by Monte
Carlo averaging to integrate with respect to the noise.
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Figure 6.6: Evolution of ϵeff for the median estimation

The variance of the resulting ϵeff is high, but we can see two regimes: For low values of the
noise, the privacy of the mechanism is unchanged. For high values of noise, on the other
hand, ϵeff < ϵ and differentiating the datasets from their neighbors is harder.
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By crossing the results with Figure 6.5 however, it seems that the privacy amplification
only occurs for values of the noise for which the utility of HSJointExp is already degraded
compared to regular JointExp.
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Conclusion

This thesis studied the impact of privacy on the statistical difficulty of estimation and
learning problems. It started in Chapter 1 by experimentally demonstrating that sparsity
in neural networks can be leveraged as a practical defense against membership inference
attacks.

In order to provide strong privacy guarantees, Chapter 2 introduced the gold standard
definition of differential privacy, and presented important privacy-preserving mechanisms.
This definition of privacy allows for strong privacy guarantees, and is usually achieved by
adding randomized noise to deterministic mechanisms.

Chapter 3 then presented a unified framework for deriving lower-bounds on the statistical
testing difficulty between distributions under various notions of privacy. this characteriza-
tion of the testing difficulty can in turn be used to characterize the estimation difficulty :
how hard is it to learn distributions under privacy ? The rest of the thesis was devoted to
the study of multiple examples.

As presented in Chapter 4, on unidimensional learning (or estimation) of regular-enough
parametric problems (e.g. Bernoulli), the typical rate of estimation can usually be ex-
pressed as Θ

(
1
n

)
. When constrained to be ϵ-differentially private, this rate of estimation

typically becomes Θ
(
max

(
1
n ,

1
n2ϵ2

))
. Two regimes must be distinguished : in the regime

ϵ = Ω
(

1√
n

)
, privacy has no real impact on the statistical complexity of the problem. It

can basically be obtained ”for free”. In the regime ϵ ≪ 1√
n
on the other hand, privacy

has a necessary cost on estimation. In particular, those upper-bounds were recovered for
the multiquantiles problem Chapter 6 in the regime where m, the number of quantiles, is
fixed.

When dropping the parametric assumption, and when replacing it with an assumption
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of β periodic-Sobolev densities, Chapter 5 demonstrated that the rate of estimation of

the problem is Θ̃
(
max

(
n
− 2β

2β+1 , (nϵ)
− 2β

β+1

))
under (ϵ, δ)-DP for reasonably small δ (i.e.

δ ≪ 1/n). This indicates that with only little assumptions on the regularity of the density
(e.g. β = 1), the rate of estimation is degraded compared to the parametric case, and that
the degradation due to privacy occurs much sooner than in the parametric case. On the
contrary, when the regularity is assumed high (e.g. β ≈ ∞), one recovers the parametric
rate of estimation.

For learning high-dimensional parametric distributions (e.g. Gaussian distributions), Chap-

ter 4 showed that the typical rate of estimation is Ω
(
max

(
d
n ,

d2

n2ϵ2

))
. When compared

to the non-private rate of estimation of Θ
(
d
n

)
, one can see that dimensionality dispropor-

tionately affects the privacy overhead. In other words, it means that the privacy overhead
has a worse scaling in the dimensionality than the usual statistical rate of estimation (d2

instead of d).

These last observations suggest that in order to move forward, dimensionality and smooth-
ness assumptions will probably play central roles in the next steps of private machine
learning. For the smoothness, it has already been demonstrated that certain specific ar-
chitectures are more prone to high accuracy with privacy than others [Papernot et al.,
2021, Tramèr & Boneh, 2021]. For dimensionality, even if the typical degradation in d2

sounds like a fatality, one must remember that it is a worst case scenario. Many empir-
ical evidences suggest that the way data is represented in memory and the models that
are used to process it are grossly overparametrized. In other words, the effective dimen-
sionality of the problem is much lower than the one of its representation (the ambient
one). Since in practice, algorithms like DP-SGD [Abadi et al., 2016] add a level of noise
that is proportional to the dimension of the gradient [Yu et al., 2021, Tramèr & Boneh,
2021, Shen et al., 2021, Kurakin et al., 2022], working with the effective dimension instead
of the ambient one can be a solution.

Smart techniques can be used in order to reduce the dimensionality of the problem. The
input dimension can be reduced using ad-hoc techniques such as Fourier or Wavelet thresh-
olding, thus getting rid of a part of the noise. Similar techniques can be applied with
learned basis (e.g. PCA or dictionary learning). When one is interested in the overall
dimension (i.e. data + model), other techniques have recently been proposed in order to
reduce it during training. [Yu et al., 2021] and [Zhou et al., 2021] project or approximate
the gradients on low-dimensional subspaces during the training. [Zhang et al., 2021c]
focuses on subproblems where the gradients are sparse. As demonstrated in Chapter 1
and in [Adamczewski & Park, 2023], pruning neural networks is also a good way to re-
duce the dimensionality. On specific tasks, compressive learning can be used in order to
only keep what’s needed for the learning task [Schellekens et al., 2019a, Schellekens et al.,
2019b, Chatalic et al., 2021]. Finally, transfer learning (i.e. the fact of fine-tuning a model
that has been pre-trained on another task) can be used to efficiently reduce the dimension-
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ality, and unlocked high accuracy on complex problems like ImageNet [De et al., 2022].
As for mixed privacy [Golatkar et al., 2022], this last solution requires being private only
with respect to a fraction of the training data, and might be seen as a form of cheating.
However, this assumption is perfectly realistic for certain types of data. For instance, with
images, it wouldn’t be unrealistic to consider images taken on the street to not require
privacy protection.

A problem with transfer learning as presented in [De et al., 2022] is that it requires a
lot of annotated data, which is expansive. I personally believe that autosupervision (or
self-supervised learning) can be the key of high accuracy with privacy for a broad class
of problems, and on a tight budget. Autosupervision aims at learning meaningful low-
dimensional embeddings of the data from unlabeled data only. This embedding can then be
used alternatively to the one used in [De et al., 2022]. In particular, recent methods allow
for similar accuracies between self-supervised embeddings and supervised embeddings for
many downstream tasks [He et al., 2020, Grill et al., 2020, Caron et al., 2020, Gidaris
et al., 2021, Zheng et al., 2023]. For images, we can see that there is a huge intersection
between the images that do not require privacy, and the ones that are easily collected. For
instance, by strapping a camera to a car for a hew hours, it would be possible to collect
a huge dataset. Applying autosupervision to this dataset (without annotations) may lead
to good embeddings, suitable for private fine-tuning on the task at hand.

As the last words of this thesis, I would like to say that I really enjoyed working on
these subjects, and in the working environment that was provided to me. Despite a
somewhat stale first half of the thesis because of COVID-19 that severely impacted human
interactions (including scientific), the much freer second half allowed me to discover the
thriving and exciting world of research. Finally, I would like to thank once again the
people without whom this thesis wouldn’t have been possible : Aurélien Garivier and
Rémi Gribonval for their kind supervision, and Nicolas Grislain for introducing me to the
ins and outs of differential privacy.
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Federated optimization: Distributed machine learning for on-device intelligence. 19

[Kroll, 2021] Kroll, M. (2021). On density estimation at a fixed point under local
differential privacy. Electronic Journal of Statistics, 15(1), 1783 – 1813. https:

//doi.org/10.1214/21-EJS1830 101, 145

[Kurakin et al., 2022] Kurakin, A., Chien, S., Song, S., Geambasu, R., Terzis, A., &
Thakurta, A. (2022). Toward training at imagenet scale with differential privacy. CoRR,
abs/2201.12328. https://arxiv.org/abs/2201.12328 172

[la Tour et al., 2018] la Tour, T. D., Moreau, T., Jas, M., & Gramfort, A. (2018).

http://proceedings.mlr.press/v125/kaplan20a.html
http://proceedings.mlr.press/v125/kaplan20a.html
https://proceedings.mlr.press/v162/kaplan22a.html
https://proceedings.mlr.press/v162/kaplan22a.html
https://doi.org/10.4230/LIPIcs.ITCS.2018.44
https://doi.org/10.1109/18.930926
https://doi.org/10.1109/18.930926
https://doi.org/10.1214/21-EJS1830
https://doi.org/10.1214/21-EJS1830
https://arxiv.org/abs/2201.12328


192

Multivariate convolutional sparse coding for electromagnetic brain signals. Ad-
vances in Neural Information Processing Systems 31: Annual Conference on Neu-
ral Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018,
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