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Résumé

Cette these étudie les compromis entre 'apprentissage statistique et la protection de la
vie privée. D’une part, 'apprentissage, qui se définit comme ’estimation de quantités
ou de tendances significatives a 1’échelle d’une population en n’ayant acces qu’a des ob-
servations échantillonnées de cette population, sera plus facile si I'on accorde un acces
illimité aux données d’apprentissage. D’un autre coté, les données d’apprentissage peu-
vent étre sensibles et leur utilisation sans restriction pourrait entrainer des problemes de
confidentialité.

Le spectre des problemes de sécurité et de confidentialité pouvant étre tres large, il est
nécessaire de préciser le champ d’application de cette thése. Dans la configuration con-
sidérée, les données sont agrégées par un seul acteur qui les utilise pour entrainer un
modele statistique (procédure d’estimation, réseau neuronal, ...). Ce modele est ensuite
partagé avec le monde entier. Le probleme considéré est celui de I'inversion : est-il possible
de briser la confidentialité des échantillons des données d’entrainement individuels par la
seule observation du modele entrainé ?

Apres une introduction, cette these est composée de six chapitres et d’une conclusion. Le
premier chapitre présente une étude de cas pratique. Il établit empiriquement le compromis
entre I'utilité en classification d’images et la protection contre les attaques par inférence
d’appartenance en tirant parti de la parcimonie du modele.

Le deuxieme chapitre est consacré a la présentation des principaux résultats de la théorie de
la confidentialité différentielle. Cette définition mathématique de la confidentialité permet
de se défendre contre n’importe quel adversaire, avec de fortes garanties de confidentialité.
Le chapitre illustre des résultats connus et importants de la littérature en les intégrant
dans un cadre statistique, introduisant ainsi le lecteur a des concepts clés pour le reste de
la these.



Le troisieme chapitre se concentre sur les bornes inférieures sur l'utilité statistique des
algorithmes d’apprentissage lorsqu’ils sont soumis a des contraintes de confidentialité
différentielle. En particulier, il présente un cadre de preuve qui s’appuie sur une for-
malisation en tant que probléme de transport, ou les ensembles de données sont comparés
en utilisant des fonctions de similarité qui capturent I’essence de la confidentialité. Ce
cadre permet de retrouver les résultats de I’état de ’art des dernieres années sur le sujet,
tout en unifiant la théorie qui les sous-tend. Ce cadre de preuve est également prét a
I’emploi, ce qui signifie qu’il est facile de 1'utiliser pour élargir la théorie, notamment pour
de nouvelles définitions de la confidentialité ou de nouvelles structures probabilistes de
I’espace de données.

Le quatrieme chapitre explique comment appliquer les techniques du chapitre précédent,
en regardant des exemples paramétriques. En particulier, il étudie le modele de Bernoulli,
le modele uniforme, le modele gaussien et ’estimation de familles exponentielles & domaine
compact. Il donne également des références bibliographiques pour de nombreux problemes
similaires intéressants.

Le cinquieme chapitre étudie I’estimation non paramétrique privée des densités. Il présente
plusieurs procédures d’estimation optimales ou quasi-optimales pour des densités appar-
tenant a des espaces fonctionnels de Lipschitz et de Sobolev. Le probleme est étudié dans
le cadre de la confidentialité différentielle réguliere et de la confidentialité différentielle
concentrée.

Le sixieme (et dernier) chapitre traite du probléme de I'estimation de la fonction quantile.
Il s’appuie tout d’abord sur I'idée que les quantiles empiriques d’un ensemble de données
sont de bons estimateurs des quantiles de la distribution sous-jacente. A partir de la,
les propriétés de concentration des algorithmes de pointe pour ’estimation des quantiles
empiriques privés sont dérivées pour le probleme de I’estimation statistique. Le chapitre
présente les limites de ces estimateurs, notamment en soulignant leur sous-optimalité pos-
sible sur des instances spécifiques du probleme.



Abstract

This thesis studies the tradeoffs between statistical learning and privacy. On the one hand,
learning, which is defined as estimating meaningful quantities or trends at the scale of a
population with only access to sampled observations of that population, will be easier if
granted unrestricted access to its training data. On the other hand, the training data can
be sensitive, and its unrestricted use can lead to privacy issues.

Since the spectrum of security and privacy issues can be very large, it is necessary to
specify the range of this thesis. In the considered setup, the data is aggregated by a single
actor that uses it to train a statistical model (estimation procedure, neural network, .. .).
This model is then shared to the entire world. The problem that is considered is the
inversion one : is it possible to break the privacy of the individual samples of the training
data by the sole observation of the trained model 7

After an introduction, this thesis is composed of six chapters and of a conclusion. The first
chapter presents a practical case study. It empirically draws the tradeoff between utility
in image classification and privacy against membership inference attacks by leveraging the
sparsity of the model.

The second chapter is devoted to the presentation of key results of the theory of differential
privacy. This mathematical definition of privacy allows defending against any adversary,
with strong privacy guarantees. The chapter illustrates known and important results from
the literature by embedding them in a statistical framework, thus introducing the reader
to key concepts for the rest of the thesis.

The third chapter focuses on lower-bounds on the statistical utility of learning algorithms
when constrained by differential privacy. In particular, it presents a proof framework
that builds on a formalization as a transport problem, where datasets are compared using
similarity functions that capture the essence of privacy. This framework allows recovering



the state-of-the-art results of the last few years on the subject, while unifying the theory
behind them. It is also plug-and-play, meaning that it is easy to build on, notably for new
definitions of privacy, or new probabilistic structures of the data space.

The fourth chapter details how to apply the techniques of the previous one on parametric
examples. In particular, it studies the Bernoulli model, the uniform model, the Gaussian
model, and the estimation of exponential families with compact domain. It also gives
bibliographic pointers for many interesting similar problems.

The fifth chapter studies the private nonparametric estimation of densities. It presents
multiple optimal or near-optimal estimation procedures for densities that belong to Lip-
schitz and Sobolev functional spaces. The problem is studied under regular differential
privacy and under concentrated differential privacy.

The sixth (and last) chapter considers the quantile function estimation problem. First, it
builds on the idea that empirical quantiles of a dataset are good proxies for the quantiles
of the underlying distribution. From that, the concentration properties of state-of-the-
art algorithms for the private empirical quantile estimation are derived for the statisti-
cal estimation problem. The chapter presents the limits of these estimators, notably by
pointing-out their possible sub-optimality on specific instances of the problem.



Notations

dom (90)
codom (M)
Vf
V2if
Af
Agf
CHE,F)
C>®(E,F)
Lip
géob
L,

PSob
oLy

Set of natural numbers.

Set of relative integers.

Set of rational numbers.

Set of real numbers.

Set of complexr numbers.

Set of integers from m (included) to n (included).

Simplex of RF of vectors with positive entries that sum to 1.
Non-null elements from X.

Non-negative (resp. non-positive) elements from X.

Set k-tuples from X.

Should be interpreted as (X.).

Set k-tuples from X sorted by non-decreasing order.
Cardinality of set S.

Disjoint union of sets.

Vector X = (X1,...,Xy), or dataset.

Kronecker product.

Neighboring relation.

Natural logarithm.

Logarithm in basis k (i.e. In(-)/In(k)).

Domain (set of admissible inputs) of the mechanism 1.
Codomain (set of admissible outputs) of the mechanism 1.
Gradient of the function f.

Hessian of the function f.

Sensitivity (1) of f.

I sensitivity of f.

Functions from E to F that are k-times continuously differentiable.
ﬁkzock(Ev F)

Set of L-Lipschitz functions on [0, 1].

Set of B-Sobolev functions on [0, 1].

Set of B-Periodic Sobolev functions on [0, 1].



Probability distribution. X may be used to specify the randomness.
Ezxpectation. X may be used to specify the randomness.

Variance. X may be used to specify the randomness.

Covariance matriz. X may be used to specify the randomness.
Bernoulli distribution of probability of success p.

Binomial distribution of probability of success p and n trials.
Uniform distribution on S.

Ezxponential distribution of p.d.f. p(x) = Xe .

Centered Laplace distribution of p.d.f. p(z) = %6_%.

Distribution on R? with independent components of distribution £(b).
Multivariate normal distribution with mean p and covariance matrix .
P is absolutely continuous w.r.t. Q.

Product measure with n times 1 as marginal measure.

Convergence in distribution.

Total variation distance between P and Q.
Kullback—Leibler divergence of P from Q.

Rényi divergence of level o of P from Q.

Set of couplings with marginal distributions Py, ..., Py.
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Introduction

With the generalization of large-scale data collection, the ever-increasing computational
power of modern computers, and the ingenious contributions of the scientific community,
statistical learning (which is often referred to as machine learning or simply as artificial
intelligence) has revolutionized many aspects of our modern lives. This revolution is not
only quantitative, but it is also a qualitative one in the sense that it changes the way
knowledge is built. Traditionally, sensible science (e.g. physics, chemistry, social sciences,

..) is built by proposing a model that has later to be confirmed by the experiments. In
contrast, statistical learning builds a model from the experiments. For various reasons,
one could want to share this learned model with the world (e.g. to help with the diagnosis
of certain diseases). However, when this model is trained on sensitive data (e.g. medical
data [Dubost et al., 2020, Jung et al., 2021, Truong & Oudre, 2022, Bargiotas et al.,
2022, Shidian et al., 2020, la Tour et al., 2018, Czernichow et al., 2020, Sebia et al.,
2023, Brat et al., 2020, Lalanne et al., 2020]), this task is challenging, and extra caution
measures should be taken.

Let me start with the following, extremely famous story [Kearns & Roth, 2019], that
illustrates well the catastrophic consequences of poor data management. Netflix'? is an
American media company. It produces movies and TV shows, but they mostly serve as a
way to promote its main product : an over-the-top®, on-demand?, paid-subscription-based,
video platform. On this platform, users can watch movies and TV shows produced either
by Netflix directly, but also by many others to who Netflix gives in turn some money.
For such a platform, the first necessary condition to succeed is to offer a large collection
of high quality movies and TV shows. However, this is certainly not the only one. At
the core of what makes the Netflix experience is its recommendation system. It is the
algorithm that recommends the Netflix users new programs to watch based on what the
platform thinks the user’s tastes are. Good suggestions lead to users that spend more time
on the platform, and in turn to users that are more satisfied. In practice, the platform

"https://about.netflix.com/en
’https://en.wikipedia.org/wiki/Netflix
30Offered directly to the consumer via internet.
4Not constrained by a strict schedule.
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recommends its users shows that were appreciated by users that the platform believes to
have similar tastes.

So, in 2006, Netflix started a data challenge with the hope that, by releasing an anonymized
dataset of ratings given by a subset of its users to a subset of its shows, the machine learn-
ing community would find a better recommendation algorithm than their home-brewed
version. The metrics for the evaluation, and the continuous improvements on the chal-
lenge, are not relevant here. However, the hot topic for this thesis is the dataset that was
released by Netflix.

The dataset that Netflix released is a collection of more than 100 million [Bennett et al.,
2007] records of the form (anonymized user_id, show name, rating), where

e anonymized user_id refers to a field that allows to uniquely identify the user that
gives the review, without further detail about the user’s identity,

e show_name is the name of the show to which the review is given,

e and rating is the actual value of the review, which is an integer between 1 and 5
(think about it as ”stars”).

Did the release of this dataset respect Netflix’s users’ privacy ? There is no clear answer
to that question. Someone could indeed argue that "yes”, Netflix has made a sufficient
effort at hiding its users’ identity. Indeed, this dataset does not contain any information
that allows to directly identify the users (such as names, zip codes, ...). However, no one
can guarantee that such dataset won’t ever be deanonymized.

In fact, and this is the reason why this story is so popular, it was partially deanonymized.
During the same year (2006), a young researcher (at the time PhD student of Vitaly
Shmatikov®) named Arvind Narayanan® uploaded an article on arXiv’ [Narayanan &
Shmatikov, 2006], claiming to have recovered sensitive information about the users that
were part of the ”anonymized” dataset.

How did they proceed 7 Without diving too much into technicalities, they used the

Shttps://www.cs.cornell.edu/~shmat/
Shttps://www.cs.princeton.edu/~arvindn/
"https://arxiv.org/


https://www.cs.cornell.edu/~shmat/
https://www.cs.princeton.edu/~arvindn/
https://arxiv.org/
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dataset of public reviews of the website IMDb® in order to recover the hidden reviews of
the common users with the Netflix dataset. The idea is the following : if a user belongs to
both datasets, he should give similar reviews to the shows that he rated both on Netflix
and on IMDb. Those similarities can be leveraged in order to find matchings. Once a
matching between a user in the IMDb database and in the Netflix dataset has been found,
it is possible to look at the shows that were rated by the user on Netflix (thinking that he
was anonymous), but not on IMDb (knowing that the reviews were public). By doing so,
[Narayanan & Shmatikov, 2006] claims that it is possible to find the political orientation
or even the sexual preferences of a subset of common users.

This revelation ultimately led to Netflix canceling its challenge’, and to a class action
lawsuit against Netflix, that was ultimately dismissed after a settlement with the plaintiffs
was found'?.

So, what is the take-home message from that story 7 For me, it is that the privacy of a
pipeline that involves sensitive data can be more complex than it seems, and sometimes the
intuition can be fooled. In the case of the Netflix challenge, even though the identifiable
labels (name, zip code, ...) were removed, people were still identifiable because of the
relative uniqueness of their tastes.

Let me extrapolate a bit from this example. What would have happened if, instead
of publicly releasing the dataset, Netflix only gave it to a restricted list of whitelisted
researchers 7 Maybe one of the researchers could have been compromised and would
have then leaked the dataset, but for the sake of reasoning, let us suppose that it is not
the case. The researchers develop their new recommendation algorithm, no data leaks,
and Netflix implements it on its platform. Would it be possible that, through its own
recommendations that were generated by this algorithm, a user infers the private tastes
of other specific users ?

Even though this question may sound at first as if it was borrowed from a conspiracy
theory, giving a scientific answer is not an easy task. It raises two important questions :
”How would it even be possible ?” and ”How can we guarantee that it would be impossible,
or at least hard 7”.

In this thesis, I will try to give answers to both questions (not necessarily in the case of
the Netflix example), and to precisely characterize the frontier between what is doable or
not while guaranteeing a certain level of privacy.

8https://www.imdb.com
“nttps://www.nytimes.com/2010/03/13/technology/13netf1lix.html
Onttps://www.wired.com/2009/12/netflix-privacy-lawsuit/


https://www.imdb.com
https://www.nytimes.com/2010/03/13/technology/13netflix.html
https://www.wired.com/2009/12/netflix-privacy-lawsuit/
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Note that this example is not isolated, and that the literature on privacy attacks is massive
[Narayanan & Shmatikov, 2006, Backstrom et al., 2007, Fredrikson et al., 2015, Dinur &
Nissim, 2003, Homer et al., 2008, Loukides et al., 2010, Narayanan & Shmatikov, 2008,
Sweeney, 2000, Gonon et al., 2023b, Wagner & Eckhoff, 2018, Sweeney, 2002, Voyez et al.,
2022b).

0.1 Some context and definitions

I chose to name my thesis ” On the tradeoffs of statistical learning with privacy” for reasons
that will hopefully be clear by the end of the Introduction. Here, I define what the terms
statistical learning and privacy mean in this title, and I intuitively introduce the tradeoff
between them that will be at the core of this thesis.

0.1.1 A definition of statistical learning

The term statistical learning [Shalev-Shwartz & Ben-David, 2014, Bach, 2021] can be
defined as a way to "learn” quantities or behaviors that are meaningful at the scale of a
population, with only access to observations of that population (samples). For instance,
estimating the proportion of people from the general population that like a movie based
on the reviews of a restricted set of reviewers.

In particular, in this thesis, all the problems that are considered fit in this framework : we
will have access to a dataset X = (X1,...,X,,) corresponding to the observations of the
data of n individuals. We will suppose that this dataset was generated from a distribution
P, and the objective will be to construct an estimator #(X) such that 6(X) ~ 6(P),
0(P) being the quantity of interest from P (e.g. parametric or non-parametric estimation,
more abstract behavior like regression error, comparative behavior to the empirical data).
For instance, in the previous example, the likings of the reviewers can be modelled as
Xq,..., X, i B(p) (independently and identically distributed according a Bernoulli
distribution of probability of success p). The problem would be to build an estimator

from X1,..., X, that approximates p.

0.1.2 A definition of privacy

The notion of privacy is harder to define. We will see down the line that it is possible
to define it mathematically via the property of differential privacy [Dwork et al., 2006b,
Dwork et al., 2006a]. However, a mathematical model is only as good as it reflects what
we want it to. At first, I will thus try to informally draw the boundaries of the concept of
privacy. It will later help us to understand why differential privacy works.

According to the Cambridge Dictionary'!', privacy is about "not revealing somebody’s
information”. This definition is a bit imprecise as to how to interpret it. Indeed, it

"https://dictionary.cambridge.org/


https://dictionary.cambridge.org/
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doesn’t specify what ”revealing” means. For instance, if I reveal somebody’s age +1 year,
did I reveal his age 7 Someone could argue that "no”, the age wasn’t revealed. However,
any good willing people would probably argue that ”yes” the age was leaked. Indeed, the
inverse transformation is extremely easy to do.

From the last example, we can try to modify this definition and say that privacy is about
not revealing something that could be used to recover somebody’s information. However,
this definition is extremely strong. It implies that the only things that can be communi-
cated should be independent of the data. This definition completely blocks learning. The
challenge is to find a definition that allows both learning and privacy.

Instead, let me propose (inspired by differential privacy [Dwork et al., 2006a, Dwork et al.,
2006b]) the following definition of privacy : privacy is about only revealing things that make
discriminating if one’s information was used hard. With this definition, it is still possible
to have correlation between the data and the quantities that are communicated, but the
recovering of one’s information must be hard. ”How hard ?” is a question that will later
be mathematically characterized. Another question that must be answered is "hard for
who 77. We will call weak privacy the scenario in which the adversaries are known in
advance, and strong privacy the one in which the adversaries can be anything. Besides,
the property of differential privacy that will be used later guarantees a certain level of
privacy against any adversary. It is thus a strong definition of privacy.

0.1.3 An example of a non-private learning model

Before properly defining privacy, let us start by looking at a famous learning algorithm,
and let us show that it has big privacy issues, in the sense that it is easily reverted. The
dataset consists of n pairs (data, value) ((z,9:)),—; _, Where the 2’s live in a metric space
X, equipped with a distance function d. The learfliflg algorithm that we consider is the
nearest neighbor predictor. Given a new data z, it predicts its associated value § with
:g =Y,
where
i := argmind(z, ;) .
i=1,...,n

With only a black box access to the nearest neighbor predictor (that is the ability to query
its output for any z), it can be very easy to recover the full training set ((z;,%i)),_y -
For instance, in a regression setup, it is not unreasonable to suppose that the maréiﬂal
distribution of the y’s is continuous. Then, almost surely, all the 3’s from the training
set are distinct. Furthermore, by querying a grid of arbitrary precision of the space X,
it is possible to (i) obtain the values of all the y’s of the training set, and to (ii) obtain
the Voronoi diagram'? or Dirichlet tessellations induced by the predictor on X with an
arbitrary precision. Reconstructing the x’s from the training set then boils down to the

2https://en.wikipedia.org/wiki/Voronoi_diagram
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inversion of this Dirichlet tessellations, which is a well studied problem [Ash & Bolker,
1985, Aurenhammer, 1987, Hartvigsen, 1992, Schoenberg et al., 2003, Yeganova et al.,
2001, Aloupis et al., 2013]. For instance, when d is Euclidean, the solution is often either
unique, or parametrized by a few parameters only [Ash & Bolker, 1985]. In the first case,
the inversion is thus possible. In the second one, if the information of only a few of the
x’s leak, it is possible to reconstruct all the other ones.

0.1.4 The nature of the tradeoff

The tradeoff between utility and privacy will later be investigated mathematically. How-
ever, at this point, we can already feel its nature. Privacy acts as a constraint on the data
pipeline. Furthermore, by taking the last definition of privacy, the harder we want the
discrimination process to be, the more restrictive privacy is on the data pipeline. This
filtration of the usable pipelines means that possibly, we will exclude all the pipelines
that obtained good utility for the task at hand. This forms the basis of the fundamental
tradeoff implying privacy : the tradeoff between utility and privacy.

This tradeoff can be strong or weak in nature. For instance, the tradeoff is weak if it
only measures the degradation of performance of a given data pipeline by the addition of
privacy, compared to the same unrestricted pipeline, or to the best unrestricted pipeline.
In contrast, the tradeoff is strong if it characterizes the degradation of performance of any
private data pipeline compared to the best unrestricted data pipeline for the same task.
By the end of the introduction, we will already have seen an example of strong tradeoff.

0.2 Attack surface, and the boundaries of the thesis

The topic of security and privacy is so large that entire journals and conferences are devoted
to the subject'® '* 1. This subsection of the introduction presents the boundaries of the
subject of this thesis, and gives bibliographic pointers to what is immediately outside this
boundary.

Let us enumerate the most common steps involved in a data pipeline. Data is collected,
communicated, aggregated and processed. Furthermore, this list is not necessarily sequen-
tial, and in particular, it is possible to communicate on various quantities that appear at
different stages of the pipeline.

In this thesis, we will always fall into the following scenario : we suppose that after collec-
tion, the data is centralized by a common aggregator that processes it. This aggregator
then communicates to the world a quantity that is built from the data that is collected.

Bhttps://ieecexplore.ieee.org/xpl/RecentIssue. jsp?punumber=8013
Yhttps://wuw.ieee-security.org/TC/SP2022/
Yhttps://onlinelibrary.wiley.com/journal/24756725
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The privacy problem is the following : Is it possible to recover information about the data
from the sole observation of the outputted quantity.

In particular, we consider that the aggregator is trustworthy, and that the communication
channels hide all information to everyone, except to the two communicating parties. This
scenario is rather restrictive, but still extremely rich. The rest of this section presents
techniques that allow relaxing those strong hypotheses. They will not be explored further
in the rest of the thesis.

0.2.1 Can an actor be trusted ?

The first important hypothesis is that actors can be trusted, and that communication
channels are secured. Thanks to symmetric and asymmetric encryption [Simmons, 1979],
the second part of this hypothesis is reasonable. For the first part, on the other hand,
as long as the data is stored somewhere and is not encrypted, data breaches can happen.
Furthermore, the task of learning from the data often requires being able to perform arith-
metic operations on the representations of the data (such as additions and multiplications),
which are not compatible with classical encryption schemes.

In order to solve this problem, a possible solution is the use of homomorphic encryption
(see [Acar et al., 2018] for a comprehensive survey). The term homomorphic encryption
refers to encryption schemes that preserve the morphisms (such as multiplications and
additions). It thus makes the task of learning (at least some) possible, with only access
to encrypted data. It often comes however at the cost of extra computational complexity,
and possible error terms.

0.2.2 Data collection and centralization

The second hypothesis about the setup of the thesis is that the data is centralized by a
common aggregator. From a security point of view, this is often seen as a problem since
it introduces a single point of failure. However, with our hypothesis that the actors can
be trusted, this is not a problem. It also poses another problem with data sovereignty.
In order to relax the hypothesis, both federated learning and local differential privacy are
great options.

Federated learning [McMahan et al., 2017, Kone¢ny et al., 2016, McMahan et al., 2018a,
Bonawitz et al., 2019, Vanhaesebrouck et al., 2017, Bellet et al., 2018, Marfoq et al., 2021]
has been proposed as a way to solve the problem of data centralization. Without digging
into details, it can be defined as a set of techniques allowing the training of common
machine learning models, by aggregating the information of decentralized datasets or data
holders. A simple example would be the following : a model is trained via SGD. An agent
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that holds a dataset and the current iterate of the model runs an EPOCH' of SGD'”
on the data that he owns. He then gives the updated model to the next agent, and the
process continues. For more details, the reader may refer to the surveys [Zhang et al.,
2021b, Kairouz et al., 2021].

Local differential privacy [Duchi et al., 2013] blurs the data with noise as soon as it exits its
original data holder (as opposed to regular differential privacy that blurs the information
when it exits the aggregator). At first, it seems like a more appealing notion of privacy
(since the privacy guarantees are stronger), however, it comes at the cost of utility since
local differentially private mechanisms typically end up with a lot more noise than their
non-local alternatives. The reader may refer to the survey [Yang et al., 2020].

0.3 The vocabulary of statistical learning

Linking back to the subject of the thesis, an important question is whether an estimator
(private or not) estimates well the quantity of interest (that is defined at the scale of the
population).

In the following, we consider that we have access to a dataset X = (X1,...,X,) € &A™
generated from some distribution P. In many applications, the independence and identical
distribution assumption is made, namely that P = p®” for some distribution p on X.

0.3.1 The formalization for estimation

First, for the estimation problem (which will be the main topic of this thesis), we suppose
that the data distribution can be fully described by a parameter § € ©. We note it
(X1,...,X,) ~ Py. Say we have built an estimator 6 from the dataset (X1,...,Xp), how
to measure its utility as an estimator of the true parameter 6 7

This is usually done by taking a cost function ¢ : ©® x © — R, that measures how close
its two arguments are, with the convention that the lower, the better. For instance, when
© is a subspace of some Euclidean space, it is common practice to take c(z,y) = ||z — y||*
for > 1. Hence, the utility of our estimator 6 may be measured as

(0,0) . (1)

However, this quantity is a random variable. A common practice is thus either to control
it in probability (i.e. that it is small with high probability), or to take its expectation
(notice that c is positive). The performance can hence be measured as

R(0) =Epx,  xoyeppi (c0:9)) - 2

16j.e. a complete pass over the dataset
7Stochastic Gradient Descent
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which is commonly called the risk of é, and where the subscript 6 in the expectation is
used to refer to all the sources of randomness that might be in 6 and that are independent
of (Xi,...,Xp,). For instance, in the Euclidean case, when c(z,y) = ||z — y||* the quantity
Equation (2) is usually referred to as the quadratic risk of the estimator .

0.3.2 The formalization for a specific task

Even if it will not be the main subject of this thesis, it is not possible to talk about learning
without presenting the case in point of the measure of performance for supervised learning.
Here, we suppose that ((a1,b1), ..., (an, by)) ~ pg". For instance, it handles the famous
regression model where b; = f(a;) + €; where f is the regression function to learn, and ¢;
is some noise.

A first approach would be to build an estimator f of the function f and to measure its
utility as previously by leveraging a norm or a semi-norm in a functional space. Another
approach is to measure the utility of f by measuring its predictive utility on unseen data
with the same distribution. For instance, the utility could be measured with

R (1) = E iy app 7 (¢ (F(@) D))

where ¢ is a cost function defined on the output space of f instead of the parameter space.

This measure of performance measures the relevance of f not for how close it is to f but
for how well it behaves like f on a specific task and against the true data distribution.
In particular, this formulation makes a lot of sense when the mapping 6 — pg is not
"injective” (i.e. when the model is not identifiable), which is for instance the case with
neural networks which are often invariant by permutation and rescaling of the weights.

Notice that this new measure of performance perfectly fits in the previous scenario, how-
ever, this formulation is of key interest in predictive scenarios. In particular, the measure
of performance can be approximated by Monte-Carlo methods without having to know
the ground-truth parameter 6. The empirical risk of an estimator f is hence defined as

In particular, this formulation of the problem often allows controlling the generalization
error [Musavi et al., 1994, Vapni, 1995, Mohri et al., 2012, Gonon et al., 2023a], which is
equal to R, ( f) -R ( f) for a given estimator f of f. Such bounds are usually derived

using the theory of VC dimension [Blumer et al., 1989, Vapnik, 2006], the Rademacher
complexity [Koltchinskii & Panchenko, 2000, Koltchinskii, 2001, Bartlett & Mendelson,
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2002], covering number arguments [Dudley, 1967, Haussler, 1995], Pac-Bayesian methods
[McAllester, 1999, Haddouche et al., 2020, Haddouche et al., 2021, Haddouche & Guedj,
2022, Haddouche & Guedj, 2023, Haddouche et al., 2023], or the algorithmic stability
[Rogers & Wagner, 1978, Bousquet & Elisseeff, 2002, Xu et al., 2012] of the learning
algorithm.

Recently, this last proof framework has been used to prove that with differential privacy
(wait for the next section for a proper definition), the generalization gap can be upper-
bounded [Dwork et al., 2015, Oneto et al., 2017, Nissim & Stemmer, 2015, He et al., 2021]
by the sole effect of privacy. In other word, it shows that differential privacy is a sufficient
condition to have a small generalization gap. That being said, the empirical risk of the

produced private estimator R, ( f) may be high, and in this case, a small generalization
gap just says f behaves as poorly on the data that he has not seen as on the data that he
has seen. A small generalization gap is a desirable property to have, but it is not sufficient
to characterize the effect of privacy on the estimation difficulty. We may now close the
parenthesis about the generalization gap under differential privacy. The rest of the Thesis
fits in the general setup of Section 0.3.1, and Chapter 1 will be the only part where the
specific formalism of Section 0.3.2 is more suited.

0.4 How to formalize privacy ?

The gold standard in privacy protection is the definition of differential privacy. It gives
strong privacy guarantees while still being extremely handy to use in many situations. It
is notably used by the US Census Bureau [Abowd, 2018], Google [Erlingsson et al., 2014],
Apple [Thakurta et al., 2017] and Microsoft [Ding et al., 2017], among many others.

0.4.1 Differential privacy

Given n € N, and a feature space X, X" may be viewed as a set of datasets containing n
elements from X. Given X = (X1,...,X,) € X" and i € {1,...,n}, X; is the data record
of the individual 7 from the database.

On (X™)?, the Hamming'® distance is defined as
n
ham (X1, Xn), (Y1, Y0)) = Lz, -
i=1

In particular, for X, Y € X" and k € N, dpam (X,Y) < k when the datasets X and Y
differ by the records of at most k£ individuals.

The core idea of differential privacy is to say that if a mechanism 90 was to work on a
dataset X € X™ and to output 9(X) in some output space codom (91), then it should

Bfrom its inventor Richard Hamming



23

have outputted a similar output if applied to any other dataset that differed from X
only on few records. Formally, this ”similarity” is characterized in terms of distributions.
Hence, a differentially private mechanism that is not constant is necessarily stochastic.
The following definition is due Cynthia Dwork'?, Frank McSherry?’, Kobbi Nissim?!, and
Adam D. Smith?? [Dwork et al., 2006b], and it owed them the G&del prize in 2017. Given
e € R4, a randomized mechanism 9 : X" — codom (M) is e-differentially private (or
e-DP) if for any X, Y € X" and any measurable S of the output space codom (91), we
have

dham (X, Y) < 1 —> Py (M(X) € 5) < ePoy (M(Y) € 5) . (3)

When dpam (X,Y) < 1, we say that X and Y are neighbors. An interpretation of this
definition is that if the datasets X and Y vary on the records of at most one individual,
then the output distributions should be close.

The parameter € is usually referred to as the privacy budget. The bigger it is, the looser
the constraint of Equation (3) becomes. On the opposite side, if it is very small, it forces
the distributions of 9(X) and of 9M(Y) to be extremely close.

As a point of reference, in 2020, the data anonymized by the US Census Bureau was
released with a € of around 207°.

Personally, I like to view differential privacy as an analogous notion to the one of quotient
in algebra. Indeed, the famous isomorphism theorem states that given a morphism, its
image is isomorphic to the original structure quotiented by its kernel. In the construction
of the measure theory and of the LP spaces, it is frequent to identify objects that differ
by negligible aspects. With differential privacy, the output distributions of neighboring
datasets are not equal (contrary to quotient structures), but they are close. The answer
to the question "how close ?” can be tuned by varying e. An alternative abstract view of
differential privacy could be as a form of Lipschitz condition for the mechanism, that is of
probabilistic nature.

This notion of neighboring (i.e. differing on the data record of at most one individual)
makes differential privacy all the more compatible with statistical learning. Indeed, by its
nature, statistical estimation does not care about the data of a single individual. It tries
to find patterns that are meaningful at the scale of the population.

Yhttps://en.wikipedia.org/wiki/Cynthia Dwork
2Onttps://en.wikipedia.org/wiki/Frank McSherry
2mttps://people.cs.georgetown.edu/~kobbi/

nttps://cs-people.bu.edu/ads22/
Bhttps://www.census.gov/newsroom/press-releases/2021/2020- census-key-parameters.html
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0.4.2 Privacy guarantees

In order to understand the guarantees provided by differential privacy, we can play the
role of an attacker. There is a e-DP mechanism 9t and two datasets X; and Xy that
differ on the records of at most one individual. We have access to 9t (X+), and we want
to determine if X, = X7 or if X, = Xy. That is, we have access to the records of all the
individuals except one, and we want to test between two possibilities for this remaining
record.

We set up a decision rule (or statistical test). We decide of a S C codom (). If M (X-) €
S, we say that X7 = X;. Conversely, if 9 (X>) ¢ S, we say that X, = Xo. What is the
error of this test ?

The type 1 error « is defined as
a = Px,—x, (M (Xz) ¢ 5) .

It measures the probability of X being falsely rejected. Likewise, the type 2 error 3 is
defined as
b= PX7:X2 (EJJZ (X?) S S) .

It measures the probability of X; being falsely selected.

Since M is e-DP, it follows that
B =Px,=x, (M(X;) € 5) > e Px,=x, (M(X7) €5) =e (1 -0a),
and likewise that
a>e (1-7).

In other words, o and 8 cannot be arbitrarily small at the same time. Any test will either
falsely reject or falsely select X frequently.

This proves the strong nature of the guarantees provided by differential privacy. No
adversary can do better than a certain efficiency fixed by e.

0.4.3 Statistical implications and Bernoulli example

Differential privacy acts as a constraint on the set of usable estimators. As for other
constraints (e.g. restricted bandwidth, ...) [Barnes et al., 2019, Barnes et al., 2020b,
Acharya et al., 2021a, Acharya et al., 2021c, Acharya et al., 2021d, Acharya et al., 2021b],
it is interesting to study its consequences on learning and statistical estimation. This
question will be the central question of this thesis.
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We start by looking at the simple example of Bernoulli parameter estimation. We are given
Xq,..., X, L B(p) where p € [0, 1], and the task is to estimate p from X := (X1,..., X,,).

If privacy was not an issue, the most natural estimator would probably be the moment

estimator
1 n
=1
Its quadratic risk (the measure of performance) may be computed as

Ex~spen ((B(X) = p)?) = (Exspen (X)) —p)° + Vxoppen (H(X))
p(t—p) _pd—p) (%)

=(p-p)’+

However, this estimator is not differentially private. Indeed, it is deterministic and not
constant.

In contrast, the following estimator is e-DP :

M(Xy,. .., Xy) = % (Zn: Xl-) + %5(1) ,

=1

where £(1) should be interpreted as a random variable (independent of X) following the
Laplace distribution £(1). This claim is in fact a simple application of the so-called Laplace
mechanism [Dwork et al., 2006b, Dwork et al., 2006a] that will be presented in Chapter 2.
For the completeness on this introduction, we give a brief proof.

Let X, X" € &A™ such that dpam (X, X’) < 1. By noting Pyy(x) (rest. Poyxs)) the output
distribution of 9 when applied to X (resp. X’), we can first notice that both of them are
absolutely continuous w.r.t. Lebesgue’s measure on R. We can thus use pop(x) and pop(x)
to refer to their respective densities. We have (almost surely in x) that

Pom(X) ()

Pon(x) (v)

e—|x—6(2?:1 X2)| triangular inequality 65‘( " Xi)_( n Xl,)’ 7
e le—e(Zi X)) -

SN

and since dpam (X, X’) <1, it follows that almost surely in x,

Pon(X) () < e
Pon(xr) (v)

P SeE/p N
/Ssm(X) Ssm(X)

P(OM(X) € S) < P (M(X') € 5) .

Hence, for any Borel set S,

which translates to
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This proves that 9 is e-DP.

We may now measure the performance of 91 by looking at its quadratic risk as

Ex~spen (MX) = p)?) = (Exuspenam (MUX)) — ) + Vxspyonm (X))

6)
_ o p(l=p) 2  p(l-p) 2 (
=p-p"+ n + n2e? n + n2e?

0.5 What is the cost of privacy ?

What was the cost of privacy in the estimation of p, the parameter of the Bernoulli
distribution, of the last section ? The comparison of Equation (5) and of Equation (6)
shows that the performance with privacy is degraded additively by # But why do we
have to compare those two estimators 7 For instance, if we consider the estimator that is
constant, equal to p, we can see that it has null quadratic risk under B(p)®™. Furthermore,
it is constant, and is hence e-DP for any € > 0! Should we conclude that the best estimator
achieves perfect estimation, and that this conclusion is not changed when the estimator is
restricted to be private ?

If the last example feels puzzling, it is normal. The estimator constant to p works well

under B(p)®", but knowing p in advance is cheating of course. In contrast, it performs

poorly under any B(p')®" whenever p’ # p. Instead, we see that the performance of an

estimator should not only be measured against what is, but also against what could have

been. With this in mind, we can see that for any constant estimator, we can always find
1

a Bernoulli distribution such that it has a quadratic risk bigger than 7. In comparison,

p() (see Section 0.4.3) has a quadratic risk that is smaller than % on any Bernoulli

distribution.

This idea of good performance under any possible outcome has led to the notion of minimazx
optimality. In this theory, it is only meaningful to compare the performance of a given
estimator to the one of the best estimator on its worst outcome. Formally, the minimax
risk of estimation of the model (B(p)®”)p€[071] is the quantity

inf  sup Ex.pgpen ((0(X) —p)?) - (7)

N
P estlmatorpe[ovl]

For the Bernoulli model, it is well known that this minimax risk of estimation is 2 (l)
[Rigollet & Hiitter, 2015] (asymptotically lower-bounded by a positive constant times -).
The proof can be found in Chapter 4, where it is used as an illustration. In particular,
in comparison with the upper-bound of the non-private estimator p(-), it means that p(-)
has minimaz-optimal convergence rate of estimation, which means that the uniform upper



27

bound on the quadratic risk of p(-) is comparable to a lower bound on the minimax risk
for the estimation problem, up to multiplicative constants. Without privacy, the optimal
rate of estimation is thus © () (O (1) and Q (2)).

An important question that will be central in most of this thesis is whether this minimax
rate of estimation is modified by privacy. Formally, the question is whether the quantity

_ 2
o ZL[BP}EXNB(;D)@"EUZ((W(X) p)?) . (8)

is significantly bigger than the quantity of Equation (7) or not.

Equation (6) tells us that this quantity is upper-bounded by O (max (%, ﬁ)), but we
still need a matching lower-bound. For the Bernoulli example, we give a concise proof of
such lower-bound that is a direct application of the techniques presented in Chapter 3.

Let p1 < ps be two parameters in (0, 1) and let Uy, . .., Uy, be n independent and identically
(2))
S

distributed uniform random variables on [0, 1]. The random variables Z; := (Xi(l), X,
R?, 1 < i < n, defined by

O XD = (g 1) (U, Lo o) (T3))

are independent and identically distributed with marginal distributions Bernoulli B(p;)
and B(ps). In the sequel we note X() = (X{j),...,XT(Lj)), j =12 U= (Uy,...,U,),
S1 =10, (p1 + p2)/2). and Sy := [(p1 + p2)/2,1]. Given any (¢,0)-DP mechanism 9 :
[0,1]™ — [0, 1] (where € > 0) to estimate the Bernoulli parameter, the risk satisfies

sup Exppen ((M(X) —p)?)

pel0,1]
> (EXNB(p1)®",9ﬁ ((gm(x) p1) ) + Ex~B(ps)on,m ((Dﬁ(X) - p2)?)) /2
Coupling (Eu,m ((im ) ) + Eum ((gﬁ(x(z)) _ p2)2>) /2
Conditioning Eu (Ezm ( _ p1)2> + Eon ((im(x(?)) — p2)2>) /2

> (%5")"Eu (Pw (mt( <”) € 55) + P (MX?) € 51) ) /2.
(9)
This is where the DP property yields a lower bound on the second factor as
Eu (e’edham(x(l)’X(Q))Pgﬁ (sm(x<2>) c 52) + Py (aﬁ(x@) c 51) )

dham () >0 Eq (e,gdhm(xm,xm) (Pm (m(xm) c 52) + Pon (mt(x(2>) € Sl) )) (10)

—edpam X(l)’x(g) Jensen _
—EU(e €ay, ( ) 2 e n€|p2 p1|,
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which overall yields the lower bound Me‘"e‘m_p”.

A good lower bound on the minimax risk is then provided by optimizing over p; and po.
For instance, when n > %, p1 = % and py = % + i lead to

1
sup Ex. n M(X) —p 2 > — .
pelo] X~B(p)®n,m (( (X) ) ) 8 (ne)?

Since this is true for any e-DP 90, and since any e-DP estimator is also in particular an
estimator, it is possible to write that

1 1
i n — 2 > _ .
zm:leIlfDP pil[lg?u SX()° ((Z)ﬁ(X) P) ) =& <max <n’ (ne)2>> (11)

Together, the upper-bound of Equation (6) and the lower-bound of Equation (11) prove

that the minimax rate of estimation of the parameter of a Bernoulli distribution under e-

differential privacy is © (max (%, (n%)Q) ), which is to compare to the non-private minimax

rate of estimation of © (%) In particular, two regimes arise.

Low privacy regime. When e =) (%), the minimax rate of estimation is unchanged

by privacy. We call this regime the low privacy regime, in which privacy basically comes
for free on a statistical point of view.

High privacy regime. In contrast, the regime ¢ < ﬁ comes with a degradation of
the minimax risk of estimation. Privacy in this regime comes with a necessary cost on the
estimation complexity. In other words, any private estimator performs significantly worse
than the best non-private estimator.

Through this example, we have seen our first example of strong privacy-utility tradeoff.
Many more will be investigated in the rest of this thesis.

0.6 An overview of the thesis

This thesis is composed of six chapters. They are based on five research articles [Lalanne
et al., 2023d, Lalanne et al., 2023b, Lalanne et al., 2023¢, Gonon et al., 2023b], but the
structure does not necessarily reflect a clear one to one mapping between the chapters and
the articles (with one extra chapter). At the beginning of each chapter, a small clarification
is made as to what articles were used for the chapter, and to who contributed to them.
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0.6.1 Overview of Chapter 1

Deep neural networks are state-of-the-art for many learning problems. In practice, it is
possible to tune the parameters of a given network in order to perfectly interpolate the
available data [Zhang et al., 2021a]. This overfitting regime is of practical interest since
good performance can be obtained this way [Belkin et al., 2019]. However, it comes with an
increased risk in terms of privacy [Rigaki & Garcia, 2020], since the network memorizes
information about training data, up to the point of interpolating them. Among these
information, some might be confidential. This raises the question of what information can
be inferred given a black-box access to the model.

To detect an overfitting situation, an indicator is given by the ratio of the number of
parameters by the number of data points available: the more parameters there are, the
more the model is likely to be able to interpolate the data. In order to hinder the capacity
of the model to overfit, and thus to store confidential information, this work studies the
role of the number of nonzero parameters used. Can we find a good trade-off between
model accuracy and privacy by tuning the sparsity (number of nonzero parameters) of
neural networks?

Attacks such as "Membership Inference Attack” (MIA) [Hu et al., 2022, Shokri et al.,
2017, Truex et al., 2021, Rezaei & Liu, 2021, Hui et al., 2021, Long et al., 2018, Yeom
et al., 2018, Salem et al., 2018, Sablayrolles et al., 2019, Voyez et al., 2022a] can infer
whether a data point was a member of the training set [Shokri et al., 2017], using only
a black-box (or white-box is other cases) access to the targeted model. This can be
problematic in case of sensitive data (medical data, etc.). Given a network, how could one
reduce the risk of such attacks, while preserving its performances as much as possible?

This chapter leverages sparsity in neural networks as a defense against MIA’s. This is an
empirical study and introduces the reader to real-world privacy attacks.

0.6.2 Overview of Chapter 2

This chapter presents key concepts and technical results about differential privacy that
are necessary for the rest of the thesis. It puts an emphasis on embedding those results in
a statistical framework in order to link them with the main theme of the thesis.

0.6.3 Overview of Chapter 3

Similarly to the small example for the Bernoulli estimation, this chapter studies minimax
lower bounds for classes of differentially private estimators. In particular, it shows how
to characterize the power of a statistical test under differential privacy in a plug-and-play
fashion by solving an appropriate transport problem. With specific coupling constructions,
this observation allows deriving Le Cam-type and Fano-type inequalities not only for
regular definitions of differential privacy but also for those based on Rényi divergence.
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This is a core chapter for the thesis that introduces theoretical tools that are used in the
rest of the thesis.

0.6.4 Overview of Chapter 4

This chapter illustrates the results of the last chapter on three simple, fully worked out
parametric examples. In particular, it shows that the problem class has a huge importance
on the provable degradation of utility due to privacy. In certain scenarios, it shows that
maintaining privacy results in a noticeable reduction in performance only when the level
of privacy protection is very high. Conversely, for other problems, even a modest level of
privacy protection can lead to a significant decrease in performance.

It also observes that the DP-SGLD algorithm, a private convex solver, can be employed
for maximum likelihood estimation with a high degree of confidence, as it provides near-
optimal results with respect to both the size of the sample and the level of privacy protec-
tion. This algorithm is applicable to a broad range of parametric estimation procedures,
including exponential families.

Finally, it gives bibliographical pointers to many recent research articles studying similar
problems of private parametric estimation problems.

0.6.5 Overview of Chapter 5

Given X := (X7,..., X,,) ~ P2" where P, refers to a distribution of probability that has
a density 7 that is absolutely continuous with respect to Lebesgue measure on [0, 1], this
chapter studies the private estimation of .

In terms of upper-bounds, this chapter analyzes histogram and so-called projection esti-
mators at a resolution that captures the impact of the privacy and smoothness parameters.
Furthermore, it proves new lower bounds by using classical packing method combined with
new tools that characterize the testing difficulty under global privacy from [Acharya et al.,
2021e, Kamath et al., 2022, Lalanne et al., 2023b].

In particular, for Lipschitz densities and under pure differential privacy, it recovers known
results from [Barber & Duchi, 2014] with a few complements. It then extends the estima-
tion on this class of distributions to the context of concentrated differential privacy [Bun
& Steinke, 2016], a more modern definition of privacy that is compatible with stochastic
processes relying on Gaussian noise. It finally investigates higher degrees of smoothness
by looking at periodic Sobolev distributions.
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0.6.6 Overview of Chapter 6

Any probability distribution P on [0, 1] is fully characterized by its cumulative distribution
function (CDF) defined by

Fp(t) ;= P((~00,1]), VteR.

The central topic of this chapter is the quantile function (QF), F5 ! defined as the gener-
alized inverse of Fp:

B =ni{ter|p< o} vpe01),

with the convention inf() = +o0o. When P is absolutely continuous w.r.t. Lebesgue’s
measure with a density that is bounded away from 0, Fp and Fg L are bijective and are
inverse from one another.

A well-known result is that, under mild hypotheses on P, if U ~ U([0,1]) (U follows a
uniform distribution on [0,1]), then Fi *(U) ~ P [Devroye, 1986]. In other words, knowing
Fy L allows to generate data with distribution P. It makes the estimation of Fy L a key
component in data generation. Indeed, privately learning the quantile function would then
allow generating infinitely many new coherent samples at no extra cost on privacy.

Given X1,..., X, b P, this chapter studies the private estimation of Fy’ 1(pj) from these

samples at prescribed values {p1,...,pm} C (0,1).

Without privacy and under mild hypotheses on the distribution, it is well-known [Van der
Vaart, 1998] that for each p € (0,1), the quantity X(g(,y)) is a good estimator of Fp_l(p),
where X (i), ..., X(,) are the order statistic of Xi,..., X, (i.e. a permutation of the obser-
vations such that X(1) < X9y <--- < X (n)) and E(x) denotes the largest integer smaller
or equal to z. The quantity X g,y is called the empirical (as opposed to statistical)
quantile of the dataset (X1,..., X)) (as opposed to the distribution P) of order p.

This chapter studies the properties of private empirical quantiles procedures, when ap-
plied for the corresponding statistical task. It started as a project in collaboration with
Clément Gastaud and Nicolas Grislain from Sarus Technologies’! with whom we proved
the quasi-equivalence between the JointExp mechanism [Gillenwater et al., 2021] and the
inverse sensitivity mechanism [Asi & Duchi, 2020b, Asi & Duchi, 2020a], and with whom
we studied the statistical properties of those two estimators on continuous and atomic dis-
tributions. For them, quantiles are interesting for private data generation. Later during
the preparation of my thesis, [Kaplan et al., 2022] proposed a new state-of-the-art mecha-
nism for the empirical quantile problem. We chose to investigate the statistical properties

Znttps://www.sarus.tech/
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of this new mechanism, and came up with nice concentration inequalities, proving a poly-
logarithmic degradation of the utility when the number of quantiles increases.
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Chapter 1

A practical case study :
membership inference attacks and
sparsity in neural networks

The origin of this chapter, and the use of the first person. This chapter is
based on the article [Gonon et al., 2023b], written by my colleagues and friends Antoine
Gonon', Can Pouliquen?, Guillaume Lauga®, Léon Zheng®, and Quoc-Tung Le°, and by
myself. The genesis of the project was to find and investigate a common theme among the
PhD students that were in the same research team. In this chapter, I will try to respect
the following rule : the use of the first person of the plural (we, our, ...) represents all
the above-mentioned people, while the use of the first person of the singular (I, my, ...)
represents myself.

Deep neural networks are state-of-the-art for many learning problems. In practice, it is
possible to tune the parameters of a given network in order to perfectly interpolate the
available data [Zhang et al., 2021a]. This overfitting regime is of practical interest since
good performance can be obtained this way [Belkin et al., 2019]. However, it comes with an

"https://agonon.github.io/
’https://perceptronium.github.io/
3https://laugaguillaume.github.io/
“https://leonzheng2.github.io/
Shttps://tung-qle.github.io/
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increased risk in terms of privacy [Rigaki & Garcia, 2020], since the network memorizes
information about training data, up to the point of interpolating them. Among these
information, some might be confidential. This raises the question of what information can
be inferred given a black-box access to the model.

To detect an overfitting situation, an indicator is given by the ratio of the number of
parameters by the number of data points available: the more parameters there are, the
more the model is likely to be able to interpolate the data. In order to hinder the capacity
of the model to overfit, and thus to store confidential information, this work studies the
role of the number of nonzero parameters used. Can we find a good trade-off between
model accuracy and privacy by tuning the sparsity (number of nonzero parameters) of
neural networks?

Attacks such as ”Membership Inference Attack” (MIA) [Hu et al., 2022, Shokri et al.,
2017, Truex et al., 2021, Rezaei & Liu, 2021, Hui et al., 2021, Long et al., 2018, Yeom
et al., 2018, Salem et al., 2018, Sablayrolles et al., 2019, Voyez et al., 2022a] can infer the
membership of a data point to the training set [Shokri et al., 2017], using only a black-box
(or white-box is other cases) access to the targeted model. This can be problematic in
case of sensitive data (medical data, etc.). Given a network, how could one reduce the
risk of such attacks, while preserving its performance as much as possible?

Numerous procedures have been proposed to defend against MIAs [Hu et al., 2022]. In
this work, the studied approach consists in decreasing the number of nonzero parameters
used by the network in order to reduce its memorization capacity, while preserving as
much as possible its accuracy.

Related works. The links between neural network sparsity and privacy have already
been partially explored, but, to the best of our knowledge, it has not yet been shown
that sparsity improves privacy without further adjustment of the training algorithm. A
comparison with literature is done in section 1.3.

Contributions and results. The results of the experiments in section 1.3 support the
hypothesis that sparsity improves the defense against MIAs while maintaining compa-
rable performance on the learning task. However, the standard deviations reported in
the experiments suggest that larger scale experiments are needed before confirming this
trend. Figure 1.1 shows that the trade-off between robustness to MIA and network accu-
racy is similar between unstructured sparsity, obtained by an Iterative Magnitude Pruning
(IMP) [Frankle & Carbin, 2019] of the weights, and structured ”butterfly” sparsity, where
the weights matrices are constrained to admit some structured sparse factorization [Lin
et al., 2021, Dao et al., 2022]. To the best of our knowledge, the "butterfly” structure
has not been studied before in this context. This structure achieves similar trade-offs as
IMP, which is remarkable, as the structure is fixed beforehand, independently of the data.
Moreover, software and hardware optimizations can be envisioned to leverage butterfly



35

50
9751 54
95.0 - 4
40
4.1
92.5 -
8.5 \ 5.0
@ 30
S 90.0 A 127 6.1
19
©
S 87.5 - 11.8
© 15.9 N
- N 113 20
85.0 - \
82.5 - 29.6 + L 10
32.3
80.0 1
T T T T T 0

80 81 82 83 84 85
Target accuracy

Figure 1.1: Means and standard deviations of the accuracy and defense level of various
sparse networks. The percentage of nonzero weights is given in blue for IMP (x p%), and
in red for Butterfly (e p%). The color (as represented on the heat scale) emphasizes the
sparsity level (in % of non-zero weights). The line has a slope of —3.25.

sparsity in order to implement matrix-vector multiplications in a more efficient way than
it is without sparsity or with unstructured sparsity.

Experiments on CIFAR-10 show that when the percentage of nonzero weights in ResNet-
20 is between 3.4% and 17.3%, a relative loss of p% in accuracy, compared to the trained
dense network ©, leads to a relative gain of 3.6 x p% in defense against MIA, see Figure
1.1.

Section 1.1 introduces the MIAs used for the experiments. Section 1.2 describes the types
of sparsity used to defend against MIAs. The results of the experiments are presented in
section 1.3, with a comparison to literature.

5The dense network is the original network, with 100% of the nonzero weights.
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Figure 1.2: Experiments obey to the following pipeline: two networks are trained in the
same fashion on D28 and Dehadow regpectively, Rehadow pshadow g pshadow are then
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used to train a discriminator that will attack R'¥&° by trying to infer the membership of
v in DES

1.1 MIA with a shadow model

Let D be a dataset and Diain C D be a training subset. The associated membership
function mp, ., p is defined by:

1 ifz S Dtrain,

m . cx €D :
Drain,D { 0 OtherWlSe-

i : target
Given a dataset D'8°t and a target network R trained on a subset th;igrf of Dtareet

a MIA consists in retrieving the associated membership function marget := Mptarget prarget s

train

with only a black-box access to the function z — R'%8(z). Most of the known attacks
are based on an observation of the output of the R' model, locally around = [Hu
et al., 2022]. In general, these attacks seek to measure the confidence of the model in its
predictions made locally around z. If the measured confidence is high enough, then the
attacker answers positively to the membership question.

In practice, the most efficient attacks consist in training a discriminator model that makes
a decision based on local information of R'*®* around z. This discriminator is trained
from a shadow network [Hu et al., 2022], as explained below (see also Figure 1.2).

Suppose that the attacker has access to a dataset D24 from the same distribution as

Dtarget - Tt then trains its own shadow network R®2d°W on a subset Dﬁ?jﬂ)w of the data

it owns. Ideally, R®Pad°W is trained under the same conditions as R'&* (same architecture

and same optimization algorithm). The attacker then has a tuple (Rshadow pshadow pshadow

which is similar to (Rta1eet, ptarset, Dgzﬁf "), and he knows the shadow membership function

Mghadow -— mrDshadow7'Dshadow-

train
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Discriminator. The attacker can then train a discriminator to approximate Mmghadow,
given a black box access to R*"24°%  This discriminator can then be used to approximate
Miarget given a black box access to Rtarget - The model for the discriminator can be any
classical classifier (logistic regression, neural network, etc.) [Hu et al., 2022].

1.2 Defense and neural network pruning

Training sparse neural networks is first motivated by needs for frugality in resources (mem-
ory, inference time, training time, etc.).

Here, the following hypothesis is investigated: sparsity can limit the model’s ability to
store private information about the data it has been trained on. A perfectly confidential
network has not learned anything from its data and has no practical interest. A trade-off
between confidentiality and accuracy must be made according to the task at hand. In
what follows, two types of sparsity are considered.

1.2.1 Unstructured sparsity via IMP

In the first case, no specific structure is imposed on the set of nonzero weights. The weights
that are set to zero (pruned) are selected by an iterative magnitude pruning process (IMP)
[Frankle & Carbin, 2019]:

e train a network the usual way,

e prune p% of the weights having the smallest magnitude,

e adjust the remaining weights by re-training the network (weights that have been
pruned are masked and are no longer updated), then go back to the second point
until the desired level of sparsity is reached.

This procedure allows to find sparse networks with empirical good statistical properties
[Frankle & Carbin, 2019, Frankle et al., 2021, Malach et al., 2020, Orseau et al., 2020, Paul
et al., 2022].

1.2.2 Structured butterfly sparsity

In the second case, the sparsity is structured: the weight matrices of the neural network
are constrained to admit a ”butterfly” factorization [Zheng et al., 2022, Le et al., 2022, Dao
et al., 2021, Dao et al., 2020], for which the associated matrix-vector multiplication can
be efficiently implemented [Dao et al., 2022]. A square matrix W of size N := 2F has a
butterfly factorization if it can be written as an exact product W = XU . X&) of L
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square factors of size N, where each factor satisfies the support constraint” supp(X(z)) C
supp(Sl(ff))7 with S](ff) =Ty ®[1 H@IN/QL See Figure 1.3 for an illustration. The factors
have at most two nonzero entries per row and per column. Leveraging this factorization,

matrix-vector multiplication has a complexity of O(N log N), against O(N?) in general.

(a) Siy (b) 8,7 () S (@) sy
Figure 1.3: Supports in a butterfly factorization of size N = 16.

To enforce the butterfly structure in a neural network, the weight matrices W are pa-
rameterized as W = X1 . X&) and only the nonzero coefficients of X® o XE) are
initialized and then optimized by stochastic gradient descent.

In general, for a matrix W of arbitrary size, it is also possible to impose a similar structure
but the definitions are more involved. We refer the reader to [Lin et al., 2021]. In the case
of a convolution layer, the matrix W for which we impose such a structure corresponds
to the concatenation of convolution kernels [Lin et al., 2021]. In our experiments, for a
fixed size of W and a fixed number of factors L, the rectangular butterfly factorization is
parameterized according to a so-called monotone chain following [Lin et al., 2021]. Among
all possible chains, the one with the minimal number of parameters is selected.

Butterfly networks can reach empirical performance comparable to a dense network on
image classification tasks [Dao et al., 2022, Lin et al., 2021].

1.3 Experimental results

All hyperparameters (including the discriminator architecture) have been determined fol-
lowing a grid search, averaged on three experiments to take into account randomness.

Dataset. Experiments are performed on the CIFAR-10 dataset (60000 images 32 x
32 x 3, 10 classes). The dataset is randomly (uniformly) partitioned into 4 subsets

target ytarget . . .
DB Do’ , Dehadow pshadow of 15000 images, respectively used to train and test the

target and shadow networks. The membership functions are defined as in section 1.1, with

7supp(-) is the set of nonzero entries of a matrix, Iy is the identity matrix of size N x N, and ® is the
Kronecker product.
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Dlarget .— PIAEEL || DIATESt 5y pshadow . — pshadow | pshadow  For the target and shadow
network, among their 15000 training data points, 1000 are randomly chosen and fixed for
all our experiments as a validation set (used to tune the hyper-parameters, and for the

stopping criterion).

Training of the target and shadow models. The target and shadow networks have
a ResNet-20 architecture [He et al., 2016] (272474 parameters). They are trained to
minimize the cross-entropy loss by stochastic gradient descent (with 0.9 momentum and
no Nesterov acceleration) on their respective training sets for 300 epochs, with a batch size
of 256. The dataset is augmented with random horizontal flipping and random cropping.
The initial learning rate is divided by 10 after 150 and after 225 epochs. The weights
of the neural networks are initialized with the standard method on Pytorch, following a
uniform distribution on (—1/y/n,1/y/n) where n is the input dimension for a linear layer,
and n is input dimension x kernel width x kernel height for a convolution.

Values of initial learning rate and weight decay are reported in table 1.1. Note that the
chosen hyperparameters allow to reproduce results of [He et al., 2016] when using the
whole 50000 training images of CIFAR-10 instead of 15000 of them as it is done for the
target and shadow networks.

For IMP, 24 prunings and readjustments of the parameters are performed. Each read-
justment is done with the same training procedure as above (300 epochs, etc.). Before
each pruning, the weights are rewound to the values they had at the end of the epoch of
maximum validation accuracy in the last 300 epochs.

For training ResNet-20 with the butterfly structure, the original weight matrices of some
convolution layers are substituted by matrices admitting a butterfly factorization, with
a number L = 2 or 3 of factors, following a monotonic chain minimizing the number of
parameters in the factorization, as described in section 1.2.2. The substituted layers are
those of the S = 1,2 or 3 last segments® of ResNet-20.

Discriminator training. A discriminator takes as inputs the class ¢ of x, the prediction
R(z) made by a network R (target or shadow), as well as 1E (|R(z) — R(z + eN)|) (e =
0.001 and N, an independent centered and reduced Gaussian vector) that encodes local
first order information of R around x. The expectation is estimated by averaging over 5
samples. For each pair of networks (Rt¥get Rshadow) “three discriminators (perceptrons)
are trained, with respectively 1, 2, 3 hidden layer(s) and 30, 30, 100 neurons on each
hidden layer. The binary cross entropy is minimized with Adam for 80 epochs, without
weight decay and for three different learning rates {0.01,0.001, 0.0001}.

8A segment is three consecutive basic blocks with the same number of filters. A basic block is two
convolutional layers surrounded by a residual connection.
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Table 1.1: Hyperparameters for the training of the target and the shadow neural networks.

Network % of nonzero params | Initial learning rate | Weight decay

ResNet-20 dense 100 % 0.03 0.005
Butterfly (S =1,L = 2) 323 % 0.3 0.0005
Butterfly (S =1,L = 3) 29.6 % 0.3 0.0001
Butterfly (S =2,L = 2) 15.9 % 0.3 0.0005
Butterfly (S =2,L = 3) 12.9 % 0.1 0.001
Butterfly (S =3,L = 2) 11.8 % 0.3 0.0005
Butterfly (S =3,L = 3) 8.5 % 0.1 0.001
IMP with k prunings ~ 100 x (0.8)%% 0.03 0.005

Accuracy and defense The accuracy of a network is the percentage of data whose
class is the one predicted with the highest probability by the network. The defense D of a
network against a discriminator is defined as D = 200 — 2A where A is the accuracy of the
discriminator on the membership classification task associated with the training and test
data of the considered network. For example, if a discriminator has an attack accuracy
A = 50+ x, then the defense is D = 100 — 2z. In our case, there are as much training and
testing data points for the network (target or shadow). Ideally, the discriminator should
not do better than guessing randomly, having then an accuracy of 50%.

Results Dense target and shadow networks achieve on average 87.5% accuracy on the
test set. This accuracy decreases with sparsity, see Figure 1.1. A gain (or loss) in defense
is significant if the interval with upper (resp. lower) bound being the mean plus (resp.
minus) the standard deviation is disjoint from the interval corresponding to the trained
dense network. A significant gain (or loss) in defense is only observed for a proportion
of nonzero weight between 0% and 17.3%, and for 41.4% and 51.5%. Between 3.4% and
17.3%, a relative loss of p% in accuracy, compared to the trained dense network, leads to

. . |defense—defense dense| accuracy dense
~
a relative gain of 3.6 X po: 3.6 ~ defense dense laccuracy —accuracy dense]

Related work on sparsity as a defense mechanism. Experimental results from
[Yuan & Zhang, 2022] suggest on the contrary that training a network with sparse regu-
larization from IMP degrades privacy. But these results were not averaged over multiple
experiments to reduce variability due to randomness. The experiments of [Yuan & Zhang,
2022] are also performed on CIFAR-10 but with a model with 40 times as many weights
as ResNet-20, and for a proportion of nonzero weights above 50%. Given the standard
deviations observed in Figure 1.1 for sparsity levels above 20% on ResNet-20, one should
remain cautious about the interpretation of the results of [Yuan & Zhang, 2022].

[Tan et al., 2023] also showed recently that decreasing the number of parameters of a model
can improve defense to MIAs. This is complementary to this chapter. Note however that
the way the number of parameters are reduced are fundamentally different since [Tan
et al., 2023] consider smaller dense networks while, here, sparse subnetworks are consider.
These types of networks may not have the same privacy-accuracy trade-off.
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Given a sparsity level, [Wang et al., 2021] looks for the parameters that minimize the loss
function of the learning problem, penalized by the highest MIA attack accuracy achievable
against these parameters. Note that this penalty term is in general not explicitly com-
putable, and difficult to minimize. Moreover, this requires to know in advance the type of
attack that targets the network, e.g., the architecture of the attacker, etc. No comparison
with the non-penalized case has been proposed in [Wang et al., 2021], which makes it
unclear whether this penalization is necessary to improve privacy or if sparsity without
additional penalization is sufficient. In contrast, our experiments do suggest the latter.
Moreover, [Wang et al., 2021] only displays the defense achieved at the sparsity level with
the smallest penalized loss function. In comparison, Figure 1.1 shows the robustness to
MIAs for a whole range of different sparsity levels.

Finally, it has been observed that enforcing sparsity during the training of neural networks
with DP-SGD (”Differentially Private Stochastic Gradient Descent”) [Abadi et al., 2016,
Adamezewski & Park, 2023] improves the accuracy, compared to the dense network, while
keeping the same guarantees of Differential Privacy (giving strong privacy guarantees)
[Huang et al., 2020, Adamczewski & Park, 2023]. However, compared to SGD, DP-SGD
suffers from a performance drop and a high computational demand that is prohibitive
for large-scale experiments [Sander et al., 2022, Lalanne et al., 2023b]. In contrast, the
privacy enhancement investigated in this work comes at a lower cost (in both accuracy
and resources) but does not provide any theoretical differential privacy guarantee.

1.4 Take home message

The results obtained support the following conjecture: sparsity is a defense mechanism
against membership inference attacks, as it reduces the effectiveness of attacks with a
relatively low cost on network accuracy. This is in particular the case for structured
butterfly sparsity, which had not yet been investigated in this context to the best of our
knowledge.

Extending the experiments to a richer class of models, datasets and attacks would support
the interest of sparsity as a defense mechanism. In the future, sparsity could serve as a
baseline to decrease privacy threats since it comes at a lower computational cost than
methods providing strong theoretical guarantees such as DP-SGD, does not require to
know the kind of attack in advance, allows for fast matrix-vector multiplication when
using structured sparsity such as the butterfly structure, and, compared to penalized loss
where the attacker could infer the typical behavior of the model on training data [Song
et al., ], it may not lead to bias easily exploitable by an attacker.
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Chapter 2

A survival guide to differential
privacy

The origin of this chapter, and the use of the first person. This chapter presents
important results that the reader must know about differential privacy. In particular, it
does not present direct contributions, other than the reformulation effort. Additionally,
this chapter is in part inspired by Rachel Cumming’s lecture on differential privacy that
was given at a summer school at the CIRM in May 2022 in Marseille, France. Hence, in
this chapter, I will try to respect the following rule : the use of the first person of the
plural (we, our, ...) will be used as a generic inclusion formula to include the reader.
I will refrain from using the first person of the singular (I, my, ...), except for editorial
clarifications about this thesis.

This chapter presents key concepts and technical results about differential privacy that
are necessary for the rest of the thesis. It puts an emphasis on embedding those results in
a statistical framework in order to link them with the main theme of the thesis.

2.1 Formal definitions of privacy

All the formal definitions of differential privacy are based on neighboring relations.

Definition 2.1.1 (Neighboring relation). Let D be the set of possible datasets (for the
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problem of interest). A neighboring relation is a symmetric relation on D, which means
that it is a subset R of D? such that (z,y) € R iff (y,z) € R. We will note z ~ y iff
(r,y) € R.

Intuitively, when two datasets are neighbors, one wants the output of any private learner
to have similar outputs on them.

When the objective is to hide the individual values of a dataset, a few natural neighboring
relations arise.

Example 2.1.2 (Addition / deletion). When D = Up>oX k_ representing the collection of
all finite datasets that are collections of elements of X, the addition/replacement neigh-
boring relation is defined as  ~ y iff x = y (up to a permutation) or = can be obtained
from y by addition or deletion of a single element (up to a permutation).

Example 2.1.3 (Substitution - permutation dependent). When D = X™, representing
the collection of all datasets that are collections of n elements of X', the permutation
dependent neighboring relation is defined as x ~ y iff dyam (x,y) < 1 where dyam (-, )
refers to the Hamming distance.

Example 2.1.4 (Substitution - permutation invariant). When D = X", representing
the collection of all datasets that are collections of n elements of X', the permutation
independent neighboring relation is defined as x ~ y iff there exists ¢ a permutation of
the indices such that dpam (o(x),y) < 1.

In particular, for the substitution neighboring relations, n (the sample size) is a constant
of the problem (even if it is possible to consider a series of problems of different sizes). In
contrast, for the addition/deletion neighboring relation, the sample size is not fixed and
datasets can be of any size.

It can be interesting to design your own dataset spaces and neighboring relations depending
on the problem at hand. However, some of the properties that follow depend on the fact
that D is connex for the neighboring relation ~, that is that for any pair of datasets in
D, there exist a path of neighboring (for ~) datasets in D linking them. Except when
specified, all the results of this chapter are in this general setup. In the rest of the
thesis, without further specifications, the setup is the one of the permutation dependent
substitution neighboring relation.
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2.1.1 The historic definition

The first definition of differential privacy [Dwork et al., 2006b, Dwork et al., 2006a] bounds
the output distributions of any pair of neighboring datasets on any measurable element of
the output space.

Definition 2.1.5 (Differential privacy). Let O be a set (that will be our output space)
endowed with a o-algebra ¢(O). Let ¢ > 0 (called the privacy budget) and § > 0 (the
relaxation parameter). A randomized mechanism 9 : D — O is (¢, 0)-differentially private
(or simply (¢, 6)-DP) if for any S € o(0O), for any X, X' € D,

XX = PMX)eS) <eP(MX)es)+6.

Furthermore, a mechanism that is (¢, 0)-DP is said to satisfy e-pure differential privacy, or
simply e-DP. This definition needs a small clarification on what a randomized mechanism
M : D — O means. It means that to each X € D is associated a distribution Poyx) on
(0,0(0)). In the definition, P (9(X) € S) is a proxy for Pyyx)(S).

The role of e. If a mechanism is (¢, §)-DP, it is also (¢/,)-DP if € > e. As a result, the
smaller €, the stronger the constraint on privacy. The two following limit behaviors arise:

e ¢ = (0: Perfect privacy, where the result cannot depend at all on the data. As a
result, no learning is possible.

e ¢ = +00: No privacy since the constraint vanishes. Privacy is no longer implied by
the definition.

We want to be somewhere in the middle, and the “correct ”choice of ¢ depends on the
level of privacy that we want to guarantee.

The role of §. Similarly, we can observe that the smaller §, the stronger the privacy
guarantees. § differs from e because:

e It gives a small additive slack in the privacy guarantee (relaxation).

e [t allows for a family of output distributions that are not all absolutely continuous
with respect to each other.
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e Even with uniform support, it allows for an easier mechanism design.

In order to tune §, we can fall back on the following observations and interpretations of
this parameter:

e ) may be viewed as the probability under which the output mechanism does not
respect the e-DP guarantee [Dwork & Roth, 2014]. In fact, this rule of thumb is
not always true (despite being a good guideline), but it is often true (indeed it is a
common proof technique to conclude to the (¢,d)-DP [Dwork & Roth, 2014])

e If § =1 then we’re back to no privacy, even for e = 0.

e Usually, 0 is considered to be acceptable if § < + [Dwork & Roth, 2014].

n

Remark 2.1.6. One might think that the definition of differential privacy is arbitrary,
and it is. However, it is becoming increasingly adopted because this is the best that has
been proposed to this date. Indeed, it ensures strong privacy guarantees (see [Kairouz
et al., 2015, Dong et al., 2019]) while allowing for a nice algebra of private mechanisms
(as we will see later). As a consequence, it is both conceptually powerful and handy, in a
way that wasn’t matched by previous definitions (such as k-anonymity [Sweeney, 2002]).

Example 2.1.7 (Randomized data leak). For the replacement neighboring relation, the
mechanism that select an element in the dataset uniformly at random and shares it to the
world is (0,1/n)-DP (n being the sample size). Since this mechanism couldn’t realistically
be considered as private, this observation strengthens the guideline that one must have
§< £

2.1.2 Definitions based on Rényi divergences

Working under pure differential privacy is often preferable compared to working under
(e,0)-DP. However, it can easily be shown that a pure differentially private mechanisms
cannot be-non trivial (i.e. not having the same output distribution on any pair of neigh-
boring datasets), and have Gaussian output distributions. This observation is problematic
since the Gaussian structure is extremely handy and is broadly used in data science (in
has strong tail bounds and allows the exact computation of otherwise intractable terms).
It is possible to encapsulate those mechanisms with the larger definition of (e, §)-DP (ap-
proximate differential privacy, but choosing the relaxation parameter § is always a haste,
and often lead to suboptimal errors.
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In comparison, modern definitions of privacy that are specifically tailored to handle mech-
anisms with a Gaussian structure are based on the Rényi divergence. For the rest of this
thesis, for any o > 1, Dy, (+]| -) denotes the Renyi divergence of level «, which defined for
two distributions of probability P and Q as

1 dP\ !
D, (P||Q) ::oz—lln/<dQ> dqQ .

For more details, we recommend referring to the excellent article [van Erven & Harremoés,
2014]. With this new divergence between probability distributions, it is possible to de-
fine the Rényi differential privacy, and the more restrictive zero-concentrated differential
privacy as :

Definition 2.1.8 (Rényi differential privacy). Let O be a set (that will be our output
space) endowed with a o-algebra o(Q). Let € > 0 (called the privacy budget), and o > 1
(called the level). A randomized mechanism 9 : D — O is («,€)-Rényi differentially
private (or simply («, €)-RDP) if for any S € ¢(QO), for any X, X’ € D,

X~X = Da (PDJT(X)H Pm(x/)) <e. (2.1)

For more details on Rényi differential privacy, please refer to [Mironov, 2017].

Definition 2.1.9 (Concentrated differential privacy). Let O be a set (that will be our
output space) endowed with a o-algebra o(O). Let p > 0 (called the privacy budget). A

randomized mechanism 9% : D — O is p-zero-concentrated differentially private (or simply
p-zCDP) if for any S € o(0O), for any X, X' € D,

X~X = Vli<ax< 400, Dq (Pm(x)H Pm(x/)) < pa. (22)

For more details on concentrated differential privacy, please refer to the original paper
[Dwork & Rothblum, 2016], or to the updated version [Bun & Steinke, 2016].

2.1.3 Other interesting attempts

As we have seen in the introduction, from differential privacy, it is possible to deduce
strong lower bounds on the testing difficulty between two neighboring datasets. In fact,
it is an equivalence [Kairouz et al., 2015]. A mechanism is (¢, §)-DP iff for any pair of
neighboring datasets X and X', if an adversary tries to discriminate X from X’ with a
type 1 error «, he should have a type 2 error 5 > f. s(c). fes is called a tradeoff function.

The expression of f; is fully characterized by € and §, but it is possible to take any (as
long as it satisfies a few hypotheses) tradeoff function to define a new type of privacy.
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This is what is done in the excellent article [Dong et al., 2019], which also provides a lot
of conceptual insights on the effect of differential privacy.

2.2 The algebra of private mechanisms

Differential privacy offers strong privacy guarantees, but it is not the only reason why this
definition of privacy became so popular. It is also extremely handy to use, and it is possible
to talk about the algebra of private mechanisms. Indeed, it is possible to control the
privacy of any procedure building on private mechanisms by the so-called post-processing,
composition, and group privacy properties. Furthermore, providing privacy guarantees for
any of the above-mentioned definitions of privacy usually allows providing guarantees for
all the other ones. This section presents key building blocks that are used almost all the
time.

2.2.1 Post processing

The first important property is the post-processing property. Informally, it states that
any quantity that is build from a private observation of the dataset, and without further
information about the dataset, is still private.

Fact 2.2.1 (Post processing). If MM is a mechanism satisfies one of the above-mentioned
definitions of privacy, and if f is a deterministic function, then f(9M) satisfies the same
definition of privacy as M, and with the same privacy parameters.

It is possible to deal with stochastic functions by integrating the last result w.r.t. the extra
source of randomness in f. In order to obtain the same conclusion when f is randomized,
we typically need the extra source of randomness to be independent of the ones on which
M builds.

2.2.2 Various conversions, and corresponding fees

It is possible to convert guarantees between (¢, d)-DP, («, €)-RDP, and p-zCDP. Between
(6,0)-DP and («,€)-RDP, [Bun & Steinke, 2016] states that any (e,0)-DP mechanism is
also (a,a%)—RDP for any «. Furthermore, [Mironov, 2017] states that any («,€)-RDP

1
mechanism is also (€ + (llnf“l, 5)—DP for any § > 0. Between RDP and zCDP, the conversion

is only possible from zCDP to RDP, and is given by the definition. B2etween zCDP and DP,
[Bun & Steinke, 2016] states that any (e, 0)-DP mechanism is also $-zCDP. Furthermore,

it also states that any p-zCDP mechanism is also <p 4+ 24/pln %, 5)—DP for any § > 0.

2.2.3 Comparing any pair of datasets

The definitions of differential privacy characterize the testing difficulty between pairs of
neighboring datasets. However, under the connexity assumption, it is possible to charac-
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terize the testing difficulty between any pair of datasets depending on their distance k& on
the neighboring relation ~ (i.e. the minimal length of a path on ~ linking them). Such
property is usually called the group privacy property.

Indeed, by inductively applying the definition of differential privacy, it directly follows
that

Fact 2.2.2 (Group privacy). If a randomized mechanism I is (e, d)-differentially private,
then, for any pair of datasets X, X' € D and any measurable S C codom (M), if X and
X' are at distance at most k on ~, then

Pon (M(X) € S) < eFPgp (M(Y) € S) + SkeF=1 .

For concentrated differential privacy, [Bun & Steinke, 2016] states that

Fact 2.2.3 (Group privacy (zCDP case)). If a randomized mechanism 9 is p-zCDP,
then, for any pair of datasets X, X' € D, if X and X' are at distance at most k on ~,
then

V1 < o < +00, Do (Pancx)|| Pamxry) < pkPar .

2.2.4 The case in point of composition

The most important property of differential privacy is probably the so-called composition
property. Informally, it states that if each access to the dataset during a complex data
pipeline is done with a certain privacy budget, then the whole procedure is differentially
private with privacy budget the sum of the individual privacy budgets.

Let My, ..., 9 be randomized mechanisms from a common dataset space D (and even-
tually taking auxiliary inputs) to their respective output spaces. An adaptive composition
of My, ..., My, is a pipeline (or computational acyclic graph) in which each of the mech-

anisms appears at most once. In particular, those mechanisms are allowed to take as
auxiliary input the result of the previous ones. In this scenario, we say that 91; satisfies
a certain property of differential privacy if its restriction to the dataset variable satisfies
it for any value of its auxiliary inputs. Composition theorems allow characterizing the
privacy of the whole pipeline, depending on the privacy budgets of the building blocks
My, ..., M.

Under (€,0)-DP, the following result [Kairouz et al., 2015] sharply characterizes the com-
position of private mechanisms. Its expression can be a bit terrifying at first, but it is
easily derived in simpler (but suboptimal) applicable forms.
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Fact 2.2.4 (Advanced composition). If My, ..., My, are respectively (€1,061), ..., (€, 0k)-
DP, then for any § € [0,1], any adaptive composition of those mechanisms is

(g, 1—(1-8)mk (1 61)) _DP,

for
¢ :=min (A, B, B) ,

where

k

A= Zei y
i=1
B = k (6'5Z _1)51' k 9 21 Zi’c:l €
_Z e Zeln e+ 5 ,
=1 =1

and

Two more applicable corollaries of this theorem (and that were known earlier) are the so
called simple composition theorem [Dwork et al., 2006b, Dwork et al., 2006a] which states
that if 901y, ..., My, are respectively (e1,01), ..., (€k, Ix)-DP, then any adaptive composition
of those mechanisms is (Zle €, Zle 5i>—DP, and the first form of the so-called advanced
composition theorem [Dwork et al., 2010], stating that if My, ..., My are all (¢, §)-DP, then
for any ¢ € [0, 1], any adaptive composition of those mechanisms is (€, kd + §)-DP, where

€:=ke(e"—1)+¢€/2kln <(1§> .

In particular, the small extra slack given in § allows for a € that scales in O(ke? 4 vke),
which is often a lot better than the scaling in ke given by simple composition.

Remark 2.2.5 (From addition/deletion to replacement). By noticing that a replacement
in a dataset can be decomposed as an addition and then a deletion, thanks to the simple
composition property, if an algorithm is (¢,d)-DP for the addition/deletion neighboring
relation, it is (2¢,26)-DP for the permutation invariant replacement neighboring relation.

With RDP and its variants, composition is a lot simpler [Mironov, 2017]. Indeed, we have
the following composition theorem :
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Fact 2.2.6 (Composition with Rényi divergence). If My,..., My are respectively
(a,€1),..., (v, €x)-RDP, then any adaptive composition of those mechanisms is

(0. 3k 1 «i)-RDP.

Note that a direct consequence on this result is the composition of zZCDP mechanisms, stat-
ing that if My, ..., W are respectively pi, ..., pr-zCDP, then any adaptive composition
of those mechanisms is Zle pi~zCDP.

2.2.5 Privacy amplification and subsampling

A last property that is interesting (but not exploited directly in this thesis) is the privacy
amplification by subsampling. Namely, the idea that the privacy of a randomized mecha-
nism is amplified by previously subsampling its dataset. I recommend [Balle et al., 2018a]
and [Wang et al., 2020] for recent results.

2.3 The private jungle

We saw that private mechanisms form a nice algebra, making them appealing for many
data pipelines. However, we still have to present elementary building blocks that are
versatile enough to adapt to many problems. We do so in this section by presenting the
ubiquitous mechanisms that are the Laplace mechanism, the Gaussian mechanism, the
exponential mechanism, and some results about private optimization.

2.3.1 Laplace mechanism

The Laplace mechanism [Dwork et al.; 2006b, Dwork et al., 2006a] was the first example
of private mechanism. It is based on the following simple idea. Let us say that we have
a determianistic function f defined on a set of datasets D and taking values in R* that we
want to make private. The idea is to replace f by the randomized mechanism

X €D f(X)+al(ly),

where the notation £(1j) refers to a random vector with independent components following
Laplace distributions of parameter 1.

The amount of noise a to add in order to make this mechanism (called the Laplace
mechanism) depends on the sensitivity of the function f.

Definition 2.3.1 (Ix-sensitivity). For f : D — R* defined on a set of datasets D equipped
with a neighboring relation ~, the lx-sensitivity of f (Axf) is defined as

Apf = sup [ f(X) = F(X )k -
X~ X

For brevity, Af is often used to refer to Ay f.
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Example 2.3.2 (Mean estimation, sensitivity). Let us give a small example that high-
lights the importance of the choice of the neighboring relation ~, and the dataset space
D. Let us consider the example where we observe n samples Xi,..., X, living in [a, b],
and where the objective is to privately estimate their mean %Z?:l X;. For the addi-
tion/deletion relationship in the setup where the sample-size n is not fixed, the sensitivity
of this query is |b — a|. On the other hand, in the replacement setup where n is fixed,
the sensitivity of the same query is @. Changing the setup allows to greatly reduce the

sensitivity.
The privacy of the Laplace mechanism is given by the following result :
Fact 2.3.3 (Privacy guarantees). If o > %, then the Laplace mechanism is e-DP.

Furthermore, the tail bounds on the Laplace distribution allow deriving the following
utility guarantees of the Laplace mechanism :

Fact 2.3.4 (Utility guarantees). Let us note y the output of the Laplace mechanism with
notse magnitude o. For any v > 0,

P (176 =yl > am (1)) <.

Example 2.3.5 (Learning finite distributions). Let S = {s1,..., st} be a finite set. We
call P, the simplex of R¥ of vectors with positive entries that sum to 1. To any distribution
of probability p on S canonically corresponds a vector p = (p1,...,pr) € P such that
p ({si}) = pi for any i. Hence, we will simply use a vector in Py, to refer to distributions.
Finally, for p € Pg, X ~ p means that the random variable X follows the distribution
associated to p on S.

iid.

The problem is the following : let p € Py, and given Xi,...,X,, ~ p, can we build
a e-DP estimator of p 7 Guided by the simple moment estimator, we can look at the
performances of the histogram estimator.

For any i, we define h; := Z;‘Zl 1 x,=s;- The non-private histogram estimator is defined
as p = ( cy %hi, .. ) Can we make it private 7
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This estimator builds on the deterministic function of the data

fr=X X)) dxm, | (2.3)

What is its [; sensitivity 7 Adding or removing a single element to the dataset will
change the value of at most one coordinate of the output vector by at most +1 or —1.
Consequently, the [y sensitivity for the addition/removal relation is 1. By replacing an
element of the dataset, the counts of at most two coordinates of the output vector can
change by at most +1 or —1 each. Consequently, the [ sensitivity of f for the replacement
neighboring relation is 2. In order to be conservative, let us keep 2 as an upper-bound on
both sensitivities.

Applying Fact 2.3.3,if Lq,..., L, L L(1), then the mechanism

n
2
M= (X1, Xp) = |y > Lxms + = Lis (2.4)
i=1 ¢
is e-DP. Finally, by post-processing (Fact 2.2.1), the following estimator is e-DP :

f)e = (Xl,...,Xn) —

1 " 2
=D S x— L] (2.5)
n = €

Let us analyze its performances as an estimator of the true distribution. First, we can
notice that for any i, h; ~ B(n,p;). Hence,

1 k 2 \?2
E(llp—pd3) = ?E ( (npi_hi_€£i> )
=1

=1
1 & 8
— EZ <E (0) + np;(1 — pi) + 2)
=1
Y pi(l—p) | 8k
+ 2.2 °
n n-<e
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Finding, or upper-bounding the quantity SUDv; 5,205, pi=1 Zle pi(1 — p;) will allow to
conclude. First, we notice that supy; ;, >0y p,—1 Zle pi(1—pi) < sups Zle pi(1—
p;i). We dropped the positivity constraints. Then, we see that the gradient of the only
remaining constraint is equal to (1,...,1) uniformly. In particular, it is never 0 and thus
the KKT conditions apply. They tell us that at the optimum, there exist a A* € R such
that

(o 1=2p0,. ) =N (1,0,

In other words, at the optimum, all the components are equal. Since the vector is a vector
of probability, the only possibility is to have p; = % for all 3.

Finally, we get
E (o~ pelB) < -+ 5 (26)
P=Pell2) =5 T 22 '
It can be proven, by using techniques presented in Chapter 3, that when the estimator is
not private, the optimal rate of estimation is ©(1/n). In particular, when e = Q(v'k/\/n),
we can see that the rate of estimation provided by Equation (2.6) is not degraded. On
the other hand, when ¢ < Vk/y/n, the guarantees obtained via Equation (2.6) start to

degrade.

Furthermore, since Equation (2.6) is an upper bound, it only says that the guarantees
start to degrade. However, by looking at the special case of the uniform distribution, we

have .
(-7 4 Bk (2.7)

n n2e?

E (Hpunif - ka%) =

On this example, the utility is effectively degraded. The tools necessary to study the
optimality of such estimation will be presented in Chapter 3. In this case, the estimation
is not optimal, and a projection step (convex projection on the set of probability distribu-
tions) must be added. It then becomes optimal up to polylog factors (see [Acharya et al.,
2021e)).

2.3.2 Gaussian mechanism

Using the same formalism as with the Laplace mechanism (deterministic f to make pri-
vate), the idea of the Gaussian mechanism is to replace f by the randomized mechanism

X €D f(X)+aN(0,1;),

where the notation A(0, I;) refers to a random vector with independent components fol-
lowing centered normal distributions of variance 1.

It can easily be shown that if f is not constant on a given pair of neighboring databases,
then this mechanism has no chance to be e-DP for any finite €. This is where concentrated
differential privacy comes handy : this mechanism is p-zCDP for a certain p > 0. It is



54

then possible to give results for (¢, §)-DP for strictly positive 0 by leveraging the conversion
from zCDP to DP.

Ao f

Fact 2.3.6 (Privacy guarantees). If o > Nk

then the Gaussian mechanism is p-zCDP.

Furthermore, the utility of this mechanism is controlled by classical tail bounds on the
chi-squared distribution [Laurent & Massart, 2000].

Fact 2.3.7 (Utility guarantees). Let us note y the output of the Gaussian mechanism with
noise magnitude c. For any v > 0,

P (\f(x) —yll3 > o? <k+2m+2ln G))) <~.

From global to local sensitivity. The Laplace and the Gaussian mechanisms are de-
fined with a uniform bound on the sensitivity (i.e. that it holds for any pair of neighboring
datasets), one might be tempted to use the local sensitivity (i.e. it holds for any pair of
neighboring datasets with one fixed extremity). With the Laplace mechanism for instance,
it can however be shown that it is not possible. It is possible however to use the so-called
smoothed sensitivity [Nissim et al., 2007] at the cost of an extra slack in the . This thesis
does not exploit such techniques directly, but it is important to know their existence.

2.3.3 Exponential mechanism

Another extremely important example of private mechanism building block is the so-
called exponential mechanism [McSherry & Talwar, 2007]. Let us present the setup : The
dataset space D is equipped with a neighboring relation ~, and we want to build a private
mechanism taking its output in some output space O equipped with a reference o-finite
measure U.

For a dataset X € D and an output candidate o € O, the utility of o relatively to the
dataset X (i.e. how good o would be if returned by the mechanism applied to X) is
measured by a utility function u : D x O — R. Usually, the convention that ”the higher,
the better” is taken.

The idea of the exponential mechanism is, given a dataset X, to return a random variable
on O that has a density p w.r.t. u that almost-surely satisfies

u(X,0)
plo) e o,
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where o« means proportionality, and o > 0. In particular, computing the normaliza-
tion factor is often a problem for sampling from this mechanism, and may require smart
sampling algorithms [Gillenwater et al., 2021].

Similarly as with the Laplace and Gaussian mechanisms, the privacy guarantees of the
exponential mechanism depend on the sensitivity of u.

Definition 2.3.8 (Sensitivity). The sensitivity of u (Au) is defined as

sup sup |u(X,0) — u(X’,0)| .
X~X’"0€0

Fact 2.3.9 (Privacy guarantees). If a > MT“, then the exponential mechanism is e-DP.
Furthermore, when the normalization factor is independent of the dataset, o > % 18
enough to arrive to the same conclusions.

When the output space O is finite, utility guarantees of the exponential mechanism are
easily derived.

Fact 2.3.10 (Utility guarantees, finite case). Denoting by o the output of the exponential
mechanism on X, for any v > 0,

P (sup w(X,0') —u(X,0) > aln (#’(YO)>> <7

o'eO

When the output space is not finite, it can be harder to give utility results for the expo-
nential mechanism. It often requires to control the normalization factor of the exponential
mechanism. For instance, in the theory of the inverse sensitivity [Asi & Duchi, 2020b, Asi
& Duchi, 2020a], this is done by a technique called smoothing. [Kaplan et al., 2022] does it
by imposing a minimal gap condition for the quantile problem. This approach is built on
in Chapter 6. Finally, Chapter 6 also presents an ad-hoc technique for the multiquantile
problem that is based on neutralizing the normalization term by working on probability
ratios on continuous domains.

Example 2.3.11 (Inverse sensitivity). An important mechanism building tool that is
exploited in Chapter 6 is the inverse sensitivity mechanism [Asi & Duchi, 2020b, Asi &
Duchi, 2020a]. Recall that since D is connex for the neighboring relation ~, it is possible to
define a distance on D by stating that the distance between two datasets is the minimum
length of the path linking them. Let us note d this distance.
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When the target of the private procedure is a deterministic function f : D — O, the inverse
sensitivity mechanism corresponds to the exponential mechanism with utility function

u(X,0) = —min {d(X,X)|X' € D, f(X) =0} .

This mechanism first appeared in [McSherry, 2010] for the mean and the median estima-
tion. It was later generalized to arbitrary queries in [Asi & Duchi, 2020b, Asi & Duchi,
2020a]. Very recently, this mechanism has been used to prove the strong equivalence
between private mechanisms and robust mechanisms [Asi et al., 2023].

2.3.4 Private optimization

Many problems can be formalized as an optimization problem, i.e. to find the global
(or local) extremum(a) of a well-chosen function. In particular, in a learning setup, this
function is built from a dataset (e.g. empirical risk of an estimator, least squares, ...). In
this scenario, the question of how to find a differential private point that is close to the
optimum is crucial.

The results of the literature are numerous and often too verbose to be presented in this
overview chapter. However, we can give a few pointers to interesting approaches of this
ongoing body of literature [Song et al., 2013, McMahan et al., 2018b, Abadi et al., 2016,
Smith et al., 2017, Wu et al., 2017, Iyengar et al., 2019, Song et al., 2020, Song et al., 2021,
Mangold et al., 2022, Ganesh et al., 2022, Gopi et al., 2022, Bassily et al., 2019, Bassily
et al., 2014, Avella-Medina et al., 2021, Ganesh et al., 2023], and leave the technical details
aside.

DP-SGD. Probably the most well-known private optimization algorithm, DP-SGD (for
Differentially Private Stochastic Gradient Descent) [Abadi et al., 2016] mimics the be-
havior of the classical stochastic gradient descent algorithm, with the difference that it
clips each sample’s relative gradient to a ball, and add noise. Furthermore, it leverages a
specific stochastic batch structure in order to increase privacy by subsampling.

In the setup where the problem can be expressed as
1 n
0" = in — (x5, 9:),0
arg()mm - ;Zl (x4, i), 0)

for a loss function [, and where ((x1,41),..., (Zn,yn)) is the dataset (considered with the
replacement relationship), DP-SGD considers the sequence

Orr1 =0t —mig: -
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The sequence of positive real numbers (7;); is the sequence of learning rates. The quantity
gt is a private estimate of the gradient defined as

20.2
gt = #(1B) > cling (Vol((xi,9:),0) + N <0’ CB”) '

i€B

Here, B is a batch obtained by i.i.d. selection of each element in the dataset with proba-
bility p, o > 0 tunes the amount of noise, and clip. is the function that project onto the
Fuclidean ball of radius C' and centered in 0.

The mechanism generating the noisy gradient is («, g(«, o, p))-Rényi differentially private
for any o > 0 where

g(a,0,p) = Dg ((1 —p)N (0,02) +pN (1,02)“/\/’(0,02)) )

The privacy of a full trajectory can then be characterized in terms of Rényi differential
privacy by composition theorems.

Its limitations are that in many application scenarios (e.g. Deep Learning), it comes
with little to no utility guarantees. It is much more computationally demanding than
its non-private counterpart (for instance requiring very large batch sizes). And, it makes
hyperparameter tuning a hassle. Luckily for this last point, rules of thumbs have been
designed for interpolating the results of DP-SGD based on a few observations [Sander
et al., 2022].

Langevin diffusion. Langevin diffusion refers to the continuous-time stochastic process
of a gradient-flow perturbed by a standard Brownian motion. This Brownian motion can
be leveraged to obtain privacy, playing the role of the Gaussian noise in DP-SGD. In the
convex case, this observation leads to the state of the art first order private solver for
convex problems [Ganesh et al., 2022]. It was later adapted to handle stochastic gradients
in [Ryffel et al., 2022].

Second order optimization. Recently, second order optimization methods have been
investigated in order to reduce the high number of steps that first order private solvers
take to converge. In non-private optimization, this is done by adapting the learning rate
and the direction of the gradient based on a surrogate of the Hessian matrix. Adaptations
for the private setup appear in [Avella-Medina et al., 2021, Ganesh et al., 2023].

Fixed-point methods. Many optimization problems can be reduced to fixed-point
equations [Bauschke & Combettes, 2011] of the form

Under suited hypotheses on f and on the set in which x lives, it is often possible to converge
to a solution (often unique) of the fixed-point equation via a iterative series x, 41 = f(xy,)



58

(e.g. Fixed-point theorem of Banach-Picard in Banach spaces, fixed-point theorem in
compact spaces). The choice of f is often equivalent to the choice of an optimization
algorithm (e.g. gradient descent).

A very recent piece of work [Cyffers et al., 2023] modified this framework by adding noise to
the iterates, in order to obtain differential privacy. The resulting method is general enough
to recovers algorithms such as DP-SGD, but also allows directly adapting methods such
as ADMM to differential privacy [Boyd et al., 2011].
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Chapter 3

Lower-bounds on the statistical
risk : a unified framework

The origin of this chapter, and the use of the first person. This chapter is based
on the article [Lalanne et al., 2023b], written by Aurélien Garivier!, Rémi Gribonval?, and
by myself. In this chapter, I will try to respect the following rule : the use of the first
person of the plural (we, our, ...) represents all the above-mentioned people, while the
use of the first person of the singular (I, my, ...) represents myself.

This chapter studies minimax lower bounds for classes of differentially private estimators.
In particular, it shows how to characterize the power of a statistical test under differential
privacy in a plug-and-play fashion by solving an appropriate transport problem. With
specific coupling constructions, this observation allows deriving Le Cam-type and Fano-
type inequalities not only for regular definitions of differential privacy but also for those
based on Renyi divergence. This is a core chapter for the thesis that introduces theoretical
tools that are used in the rest of the thesis.

3.1 Context on minimax lower-bounds

The lower-bounds and the optimality will be investigated in a minimaz sense.

https://perso.ens-1lyon.fr/aurelien.garivier/www.math.univ-toulouse.fr/ _agarivie/
index.html/
2https://people.irisa.fr/Remi.Gribonval/


https://perso.ens-lyon.fr/aurelien.garivier/www.math.univ-toulouse.fr/_agarivie/index.html/
https://perso.ens-lyon.fr/aurelien.garivier/www.math.univ-toulouse.fr/_agarivie/index.html/
https://people.irisa.fr/Remi.Gribonval/
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3.1.1 The Minimax Risk and Private Estimators

We start by defining the minimax risk. Given n € N, and a feature space X, X" may
be viewed as a set of datasets containing n elements from X. We consider a family of
probability distributions (Pg)ycg on X™ where © is equipped with a semi-metric® dg :
©? — Ry. Often, for all § € ©, Py = pg™ where (Pg)yeo is a family of probability
distributions on X. This corresponds to the classical statistical setup where we observe
n i.i.d. random variables. The general setup allows capturing phenomena that are not
i.i.d., for instance Markov processes. Given an estimator 6: X" — O one might look at
its uniform risk of estimation over © for a loss function ® : [0,4+00) — [0,+00) that is
non-decreasing and such that ®(0) = 0 which is

sup / B(de (6(X), 0))dPy(X) .
0ecO Jxn

The best achievable uniform risk defines what is called the minimaz risk

M, := inf sup / ®(do(0(X),0))dPy(X) . (3.1)
0 6cO Jxn

Here, the infimum over 6 is taken among all possible measurable functions of the samples.

In order to factorize the results, we will use the abstract formulation that a randomized
mechanism 9 : X" — O satisfies a certain condition C rather than fixing the class in
which it belongs. We define the private minimaz risk as the best achievable uniform risk
with mechanisms that satisfy the privacy condition C

MO = inf sup /X Epy (2(do(M(X), 0))) dPy(X) (3.2)

Note that with both notations 91, and 9)?516), there is a lot of implicit (the semi-metric,
..). This is a choice in order to simplify the notations, and the context will fix the
ambiguities.

3.1.2 Introducing example

As a warmup we discuss here the simplest possible example on which we can present the
questions that this chapter addresses and the flavor of the developed approaches. Let
p1 < p2 be two parameters in (0,1) and let Uy,...,U,, n be independent and identically

distributed uniform random variables on [0, 1]. The random variables Z; := (Xi(l), XZ~(2)) €
R%, 1 < i < n, defined by

(XM, X2 = (Lo py) (U)o ) (TU3))

are independent and identically distributed with marginal distributions Bernoulli B(p;)
and B(pz). In the sequel we note X0 = (ij),...,Xflj)), j =12 U= (Uy,...,U,),

3i.e. that is positive, symmetric, that satisfies the triangular inequality and de(6,0) = 0,V € ©
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S1 = 1[0,(p1 + p2)/2). and Sy := [(p1 + p2)/2,1]. Given any (e,0)-DP mechanism 90 :
[0,1]™ — [0, 1] (where € > 0) to estimate the Bernoulli parameter, the risk satisfies

sup Ex.pgpen (M(X) —p)?)

p€(0,1]
> (Ex~spyenm (MUX) = p1)?) + Exppe)on o (MX) = p2)?)) /2
B (B (RXD) = p1)?) + Euan (MXP) = p2)?)) /2
Conditioning Ey (Ezm ((m(x(l)) _ p1)2) + Eon ((W(X@)) _ p2)2)> /2

> (252) By (Por (MXD) € $,) + Pon (MX) € 51) ) /2.
(3.3)

This is where the DP property yields a lower bound on the second factor as

Eu (e~ (XV X Py (M(XO) € 5,) 4 Pon (MX) € 51) )

dhamg-)zo - (e—edhm(X“%X(?)) (Pm (im(X(Q)) c 52) + Pon (zm(x@)) c 51) )) (3.4)

—edpap (XD X (2) Jensen _
:EU<6 ham ( ) > e ne|p2 pll,

2
which overall yields the lower bound %e*m'prm. A good lower bound on the
minimax risk is then provided by optimizing over p; and p,. For instance, when n > %,
plzéandpgzé—&-i leads to

1
sup Ex. w (OM(X) —p)?) > = .
pe(0.1] X~B(p)® (( (X) )) 8 (ne)2

The idea behind the first inequality in (3.3) is classical in the minimax literature and is
recalled in Section 3.1.3 using the notion of packing. The coupling construction can be
generalized and taylored to other settings and has a critical impact on the deduced lower
bounds, as we present in Section 3.4. The minoration involving differential privacy is a
special case of the techniques that we formalize under the notion of admissible similarity
functions in Section 3.3, which are adapted to various types of privacy constraints.

3.1.3 From Minimax Lower Bounds to Hypothesis Testing

A classical technique (see [Duchi et al., 2013]) for finding lower bounds on 9, ((Pg)geq  do, P)
is to replace the parameter set © by a much “simpler” set ©' C © and to use the trivial
lower bound
W, > inf sup | D(da(d(X).6)dPa(X)
0 0O’ Jxn
Usually ©' is chosen as an Q-packing of ©, for some real number Q > 0: it is a countable
family ©" := {60;,i € N.} (0;),cn. (and most of the time, including in this chapter, it is



62

taken to be finite) such that: a) 6; € © for all i; b) i # j = de(6;,6;) > 2€; and c)
there is a well-defined function Vg satisfying

Ve (0) € argmindeg(6;,0)
i>1

for each § € ©. Under such hypotheses, any estimator 6 satisfies [Duchi et al., 2013]

sup /X n@(d@(é(X),Q))dPg(X) > $(0) ie{fﬁ(@/)}wagi (‘I’@/ (9(X)) #i) . (3.5)

The mapping ¥ := We 00 : X" — {1,...,# (©')} may be viewed as a test function (that
selects the model number) and thus

M, > (0 inf su Px..p, (¥ (X 7) .
( )\P:X"—>{1,-..,#(@’)}ie{1,...,£(@f)} X Pe’( (X)#1) (3.6)

Finding minimax lower bounds is thus done by finding a suitable (2-packing of the param-
eter space and then by providing lower bounds on
inf sup Px~p, (¥ (X)#1) .
WX —{1,...#(0")} jef1,... #(0)} ‘i (3.7)
Two powerful tools to find such lower bounds come from information theory: Le Cam’s

lemma (see Fact 3.1.1) can be used when ©’ only contains two elements, while Fano’s
lemma (see Fact 3.1.2) is applicable when ©’ contains N > 2 elements.

Fact 3.1.1 (Neyman-Pearson & Le Cam’s lemma [Rigollet & Hiitter, 2015, Lemma 5.3]).
Let Py, Py be two probability distributions on a measure space £, then

2
1
o Px.p (U (X)#£i) >~ inf Px~p, (¥ (X) # i
W:Sgl{l,2}ig%%)2(} x~pi (U )¢Z)_2m:g§{1,2}; xp, (F(X)#19) (3.8)
1

Let us highlight that along this thesis, the term ”Fact” refers to results directly borrowed
from existing literature, independently of the supposed technicality of the result and/or of
its proof. It is simply used to easily emphasize whether a result is a contribution or not.

Fact 3.1.2 (Fano’s lemma [Giraud, 2021, Theorem 3.1]). Let (P;);cqy . ny be a family of
probability distributions on a measure space €. For any probability distribution Q on £
such that P; < Q for all i, and for any test function ¥ : X™ — {1,...,N},

N
ie{rﬁ?}fN} Px~p; (¥ (X) #1i) > % ; Px~p; (W (X) #1) (3.9)
1+ A YN KL(PQ)

In(N)

> 1
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: 1 N
Often Q is set to 7 > ;. Pi.

With the same reasoning used [Duchi et al., 2013] to establish (3.5), with
o = (ei)z‘e{l,...,#(@’)} an Q-packing of ©, we can lower-bound the private minimax risk:

MO > d(Q) inf inf su Px. U (9N(X 7).
"o ( )gﬁs.t.C\I/:codom(fm)%{ly,“’#(@/)}ie{17."7£(9,)} X P@i,fm( ( ( ))7& )

(3.10)
Consequently, finding private minimax lower bounds is done analogously to the non-private
setting by finding an appropriate 2-packing and a lower bound on

inf Px~pg, m (¥ (M(X)) # i) (3.11)

1 sup
@:codom (M) —{1,....#(O)} je{1,... #(0")}

that is independent on the mechanism 9% but only depends on the privacy condition C.

3.2 Quantitative results : constraint-specific lower-bounds

The main contribution of this work, presented in Section 3.3, is to propose a generic
framework for the derivation of lower bounds on the minimax risk under various privacy
conditions. Technically, the techniques of Le Cam and Fano are extended to the private
context, reducing the distributional test problem (3.11) to a Kantorovich problem [San-
tambrogio, 2016, Peyré & Cuturi, 2019, Villani et al., 2009] of the form

sup / se (Xi,..., XN)dQ(Xq, ..., XN) . (3.12)
QGH(Pl""va) (Xn)N

Here, I1(Py,...,Py) is the set of couplings between the considered distributions and s¢
is an admissible similarity function depending on the nature of the constraint C and the
number of hypotheses (Theorem 3.3.3 and Theorem 3.3.4). For instance, regarding (e, d)-
differential privacy, similarity functions are obtained by comparing datasets to a common
anchor. This result is summarized in Theorem 3.3.2.

Unlike the prior work of [Acharya et al., 2021¢], the proposed framework allow us to con-
sider joint couplings across all instances rather than just pairwise couplings. Additionally,
the level of generality of our proofs leaves room for subsequent work to build upon this
framework.

The general idea behind the proofs is as follows. In classical Fano’s, one considers the
decoding error probability: on average over a family of instances, what is the probability
that the estimator, given samples from a given instance, fails to identify that the samples
came from that instance. In place of Fano’s inequality, the present work lower bounds
this by noting that, given datasets X1, ..., Xy coming from each instance, as well as an
7anchor” dataset A (or alternatively an anchor distribution), differential privacy implies



64

that the probability that the estimator decides X; comes from instance ¢ cannot differ
by much from the probability it decides A comes from instance i, provided A and X;
are similar. The decoding error probability can thus be lower bounded in terms of the
maximum distance between A and any of Xj,..., Xy, averaged over the randomness of
X4, ..., Xy, where there is freedom in choosing how to couple this randomness.

Section 3.4 includes various coupling constructions yielding quantitative lower bounds for
the Kantorovich formulation (3.12). These constructions only depend on the number of
hypotheses IV, the sample size n, the privacy parameters €, d, p, and information theoretic
quantities such as the pairwise total variations or KL divergences between the distribu-
tions. Those results will be presented in Section 3.3 and in Section 3.4.

3.2.1 Differential privacy with two hypotheses

We now showcase useful consequences, starting with the case N = 2: similarly to
[Acharya et al., 2021¢], we extend Le Cam’s lemma to the (e, d)-differentially private
setting:

Theorem 3.2.1 (Le Cam for (¢,0)-DP). If a randomized mechanism I satisfies (e, 6)-
DP, then for any test function ¥ : codom (M) — {1,2} and any probability distributions
P1 and Py on X™ we have

max Px.p, an (¥ (M (X)) # i) > lmax {1 — TV (P1,P2) ,
ie{1,2} ' 2

1= (1= e 4 2ne™8) TV (P1,Py) |

Furthermore, when P1 = p?" and Py = p?" are product distributions,

max Px.p, o (¥ (M (X)) # 1)
1€{1,2}

> ((1 — (1 — 676) TV (p1, pg))n —2ne” 9TV (p1, pg)) .

N

The proof can be found in Section 3.4.2. The classical lower bound of Le Cam (3.8)
allows for a tunable testing difficulty depending on TV (P1,P2). However, in the regime
€,0 = o(1/n), the private lower bound is €(1): it becomes arbitrarily hard to distinguish
between any pair of distributions.

Fori.i.d. observations (P; = p{™), it follows by convexity that for any (e, §)-DP mechanism
M and test function ¥ : codom (M) — {1,2}

1
‘max Pxp,an (U (M (X)) #16) > = (e—f"T"(phm) —2¢nTV (py, pg)) .
i€{1,2} 2
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This is to be compared to the state of the art lower bound of [Acharya et al., 2021e,
Theorem 1]:

ax, Px~p;m (¥ (M (X)) # i) = % (0-96710€”Tv(p1’p2) —106nTV (p1, p2)) :
7 k]

Theorem 3.2.1 gives tighter results with better constants, notably thanks to a different
proof technique avoiding some convexity and concentration inequalities. While this dif-
ference does not change the obtained rates, such an improvement is significant on the
resulting sample complexities by a factor 10 in the exponential. As an illustration, imag-
ine that a statistician has to discriminate between the two hypotheses Hy : B (%) and
Hi : B (15—010), two Bernoulli distributions. Under ¢ = 0.1, if we want Hy and H; to be
falsely rejected with probability at most 1%, [Acharya et al., 2021¢] says that the experi-
ment will have to be calibrated with at least 381 participants while our Theorem 3.2.1 says
that in fact, at least 4109 participants will be necessary, leading to a less over-optimistic

estimation by a large factor.

3.2.2 Concentrated differential privacy with two hypotheses

We also prove an equivalent for so-called p-zero concentrated differential privacy (or in
short p-zCDP), which is, to the best of our knowledge, the first successful attempt at doing
S0.

Theorem 3.2.2 (Le Cam for p-zCDP). If a randomized mechanism 9 satisfies p-zCDP,
then for any test function W : codom (M) — {1,..., N} and any probability distributions
Py and Py on X",

max Pcp,on (¥ (M (X)) # ) > ¢ max {1~ TV (P1,Py) |

1€{1,2}
1 — ny/p/2TV (Py, Ps) } .

Furthermore, when P1 = p?” and Py = p?" are product distributions,

max Pcep,n (¥ (M(X)) # ) > 5 (1= nv/p/2TV (pr.p2))

The proof of this result can be found in Section 3.4.2. As above, any two distributions
can no longer be distinguished in the regime p < 1/n?.

3.2.3 Differential privacy with many hypotheses

For more than two hypotheses and (e, 0)-DP, we also get a private version of Fano’s lemma.

Theorem 3.2.3 (Multiple Distributional Tests for (¢,0)-DP). If a randomized mechanism
M satisfies (€,6)-DP, then for any test function ¥ : codom (M) — {1,..., N}, any family
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of probability distributions (Pi)i€{17_”7N} on X™ and any Q such that P; < Q for all 7,

1+ 42X KL (P Q)
In(N) ’

iE{I{l,.E.L.},{N} Px~p, o (¥ (M(X)) # i) > max {1 -

1 1—e™+2ne Z 2TV (P4, P;)
2 2N?2 i 1+TV(PZ,P]) ’
2TV(P;,P;)
T L4 33 25 Trrve.p))
6=0 In(N)
Furthermore,when P1 = p1 , ..., Py= p%n are product distributions,

_ 1 ey 2TV (Pi,py) \"
. 1 1 2V PPy
le{rﬁa)’( }PXNP E)JT(\I/ (m(X)) 7é Z) Z Inax 2]\]2 ; ((1 (1 € )1 +TV (pivpj)
e 2TV (pi,pj) >
—2ne” f—r—"—""— |
1+ TV (pi, p;)

2TV(ps,P;)
1+ Zu 1+TV(p“FJ>J)

In(V)

115:0 x 11—

The proof is given in Section 3.4.2. When dealing with product distributions, the quantity
Z 2TV (p;, p])
T N2 1+ TV (i, py)

can roughly be seen as an averaged hamming distance between pairs of marginals. An
implication of Theorem 3.2.3 is then that

1+e€eD
Px~p, on (U X 1) > 15— 11— ————
e Pxepm (W (OM(X)) #1) = Ts=o X ( ln(N)>
As the bound of [Acharya et al.; 2021e, Theorem 2]
max P (T (OM(X)) #i) > Ls—p x 0.9 X min< 1 N (3.13)
ie{l,...),(N} X~Pi, = =e=0 : ’ 010D [ .

the lower bound is §2(1) in the regime D = o(In(/N)/e€). In particular, both inequalities are
expected to yield similar qualitative results for a broad range of applications. However,
the quantitative consequences of Theorem 3.2.3 can again be orders of magnitude better.
Another improvement of our result is that, contrary to previous work, our bound allows to
handle asymmetric hypotheses. Indeed, prior work is based on a uniform upper-bound on
the family (TV (p;, p;)); ; whereas our work uses only their mean value. As an illustration,
if a statistician was to dlscrlmmate between a set of IV distributions with for instance N —1
distributions close to each other in total variation distance and one outlier far from all
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the others, the results of [Acharya et al., 2021¢] only tell that the problem will be at least
as hard as discriminating distributions that are far from one another (which is easy). In
contrast, our Theorem 3.2.3 shows that the true testing difficulty lies in discriminating the
distributions that are similar (the outlier vanishes), thus resulting in lower bounds that
are less over-optimistic.

3.2.4 Concentrated differential privacy with many hypotheses

Similarly, we obtain results for multiple hypotheses under p-zCDP.

Theorem 3.2.4 (Multiple Distributional Tests for p-zCDP). If a randomized mechanism
M satisfies p-zCDP, then for any test function ¥ : codom (M) — {1,..., N}, any family
of probability distributions (Pi)z‘e{l LN} on X" and any Q such that P; < Q for all 7,

1+ % 2N KL (P Q)
In(N) ’

n2p 2TV(P;,P;)
L+ ‘N2z Zi,j 1+TV(P;,P;)

ieﬁlﬁ},{N} Px~p, m (¥ (M(X)) # i) > max {1 -

In(V)
Furthermore, when Py = p$", ..., Py = p%" are product distributions,
14225 1 2TV<?i,pj>) n ( 2TV(|(m,pj>))2
. N 2,5 n 1+TV(p;,p; 1+TV(p;,p;
Px-p, U (OM(X >1-
eax Px P, (U (M(X)) #14) > (V)

The proof is to be found in Section 3.4.2. This result recovers a recently published result in
[Kamath et al., 2022], with the advantage again of better handling asymmetrical hypothe-
ses (i.e. with possible outliers). Another interesting observation is that our framework
unifies the proofs of lower bounds under a general technique based on multiple marginals
coupling and similarity functions.

3.3 From Testing to a Transport Problem

This section presents our main theorem, which states that finding lower bounds on (3.11)
can be done by solving a transport problem [Santambrogio, 2016, Peyré & Cuturi, 2019].
In some sense, this view is close to the coupling of [Acharya et al., 2021¢] which considers
couplings between pairs of marginals and controls the variations of the hamming distance
compared to its expected value with Markov’s inequality. However, the high level view
that our result allows to obtain numerically sharper results because it allows to skip ap-
proximations such as those involving Jensen or Markov inequalities and more importantly,
it allows handling divergence-based definitions of privacy which do not fit in the framework
of [Acharya et al., 2021¢]. Furthermore, a key difference is that the theory of [Acharya
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et al.; 2021e] only requires to build couplings between pairs of marginals, whereas our
theory requires building couplings between all the marginals at the same time. This is
both a drawback because it requires to use more complex coupling constructions, and an
advantage because it allows to give results that are easier to use when there are more than
two hypotheses.

Our analysis is based on the notion of similarity functions.

Definition 3.3.1. Given a condition C, we say that a similarity function s¢ : (X”)N — R
is admissible for C if for any mechanism 9 : ™ — codom (9) that satisfies C, for any
test function ¥ : codom (M) — {1,..., N}, and for any Xi,..., Xy € X", the following
inequality holds:

N
> Pon (¥ (M (X)) # 1) = se (X1,..., Xx) -

=1

1
N

Theorem 3.3.2. If a randomized mechanism MM : X™ — codom (M) satisfies the privacy
condition C, for any N > 2, if s¢ : (X")N — R is an admissible similarity function for C,
for any distributions Py, ... ,Px over X™ we have

\Ilzcodom(Slﬂrll)%{l,...,N}ie{ql’?ji(N} X Pz,im( (Qﬁ( ))7&@)

Z sup / SC(le"'7XN)dQ(X17"'7XN) .
QeIl(Py,....,PN) J (X))

(3.14)

Proof. Given a test function ¥ : codom (M) — {1,..., N} and a coupling Q € IT (Py,...,Px),

N
B P (0T 710) 2 3P on (¥ (X)) £

1 N
/Xn NZ i))#wdQ(Xl,...,XN)

2/ se (X, Xn)dQ (X, X)) -
(am)N

In particular, under (e,6)-DP, similarity functions are built using a technique that we
call anchoring which will be introduced in Section 3.3.1, where the proof of the following
theorem is given.
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Theorem 3.3.3 (Admissible similarity functions for (¢, 6)-DP). When C is (e, §)-differential
privacy, the following approaches yield admissible similarity functions.

e Global anchoring. Consider any anchor function A : (X ”)N — X", and define
the admissible similarity function as

N-—-1 _ . .
se (Xq,...,Xy) = ¥ e~ € max; (dham (Xi,A(X1,.... X))
—e % max (dham (Xi, A (X1,...,XN))) -
e Projection anchoring. In particular, for any j € {1,..., N}, consider the projec-
tion anchor A; (Xy,...,Xy) = X;, and define the corresponding admissible simi-

larity function

N -1
Sc (X17 s aXN) = Te_emaXi(dham(Xi7Xj)) —e 9 ml,aX (dham (X’Lv X]))

e (¢,0)-DP Le Cam matching. When N = 2, there is a global anchor function
yielding the admissible similarity function

1
sc (Xla Xg) — 56_€[dham(X17X2)/21 —e ¢ [dham (XI’ X2) /2~| .

e Pairwise anchoring. An admissible similarity function is

N N
1 X e
se (Xq,...,Xy) = INE E :Ze—e(dham(xl,xj)/ﬂ — 276 [dpam (X4, X;5) /2] -
i=1 j=1

(6,0)-DP Fano matching. When 6 =0, an admissible similarity function is

_ 1+ ﬁ Zf\il Zjvzl dham (Xz, X])
In(N) '

Sc (le-n,XN) =1

When working under p-zCDP, admissible similarity functions are built using classical
information theoretic inequalities directly. It can be seen as a form of anchoring on the
distributions rather than on the observed random variables (i.e. all the distributions are
compared to a common distribution directly that is not necessarily a pushforward by 90).
The following result is proved in Section 3.3.2.
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Theorem 3.3.4 (Admissible similarity functions for p-zCDP). When C is the p-zero
concentrated-differential privacy, the two following quantities are admissible similarity
functions:

e p-zCDP Fano matching

_ 1+ % Zi\il Zjvzl dham (Xz, Xj)2

Xi,...,.Xy):=1
SC( 1, ) N) ].H(N)

e p-zCDP Le Cam matching When N = 2

se (X1, Xo) i= % (1 — /p/2dham (Xl,X2)> :

Note that similarity functions can also be easily built for the more general notion of
(&, p) - concentrated differential privacy by swapping the group privacy property for its
correct variant (see [Bun & Steinke, 2016]). We do not include the results about (¢, p)-
concentrated differential in this section because our objective is more to illustrate the
versatility of our framework rather than to build a complete catalogue.

3.3.1 The case of (¢, 0)-differential privacy

(e, 0)-differential privacy allows to compare conditional distributions for datasets depend-
ing on their Hamming distance. In particular, characterizing the pushforward of a dis-
tribution by a private mechanism in not an easy task. We overtake that difficulty with
a technique that we call anchoring. Informally, an anchor is a function that, given mul-
tiple datasets, decides a common dataset to exploit so called group privacy of (e, §)-DP
mechanisms and to give numerically tractable results.

Fact 3.3.5 ((¢,0)-DP Group Privacy). Given € € Ry and § € [0,1), if a randomized
mechanism 9 : X™ — codom (M) is (e, d)-differentially private, then, for all X, Y € X"
and all measurable S C codom (9M), we have

Po (M(X) € ) < e“ramXYIpy (M(Y) € ) + ddpam (X, Y) efldhamXY)=1)

Global Anchoring

The first type of anchor is a global anchor, where all the marginal datasets are compared
to the same one.
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Lemma 3.3.6 (Global Anchoring). Consider an (e,d)-DP mechanism MM , a test function
U : codom (M) — {1,..., N}, and datasets Xy,..., Xy € X™. For any anchor function
A (XN = X", we have

N N-1
Z X)) #1) > N o€ maxi dnam (Xi,A) =€ max dpam (X, A)

where A is a shorthand for A (Xq,...,XyN).

Proof. By the group privacy property (see Fact 3.3.5), we have for each ¢ € {1,..., N}
Por (U (I (X)) # i) > e~ “ramXiD)pop (T (901 (A)) # 4) — e Odpam (Xi, A) -

As a result,
1 N
D Pon (W (M (X)) # 1)
i=1
N
(Z e Dham X Npoy (W (M (A)) # 4) — e dpam (X5, A))
=1
1 N
> ~ <€—e max; dpam (Xi,A) Zl Pon (\II (f)ﬁ (A)) #* Z)
—Ne “d max dpam (X, A)>
_ N — 16—5maxi dham(XivA) _ 6—65 max dham (XZ’ A) ,
N i
where we used SN | Poy (U (M (A)) # i) = SN (1 — Pon (¥ (M (A)) =4)) = N — 1 to get
the last equality. O

Remark 3.3.7 ((¢,6)-DP Le Cam Matching). When we have to find an anchor between
only two datasets, we can design it optimally. Considering any X1, Xo € X", by definition
these datasets disagree on exactly dpam (Xi1,X2) entries. The projection anchor A =
Aj, j € {1,2} consists in anchoring both X; and X3 to X;. Consequently, we have
max {dpam (X1, A) , dham (X2, A)} = dham (X1, X2). If instead we allocate in the anchor A
half of the disagreeing components to X; and the other half to X3, we get an anchor that
satisfies
max {dham (Xla A) 7dham (XQa A)} = [dham (Xla XQ) /21 .

Furthermore, one can check that no anchor can achieve a better bound. With this new
anchor, the direct application of Lemma 3.3.6 yields

! (X1)) # 1) + Po (¥ (90 (X2)) £ 2))

5 (Pom (W (9
B (3.15)
5 _e(dham(XLXZ)/z‘I _55 (dham (X17 X2> /2-‘ .
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Pairwise Anchoring

The fact that one needs to control the maximum of the hamming distances between a
single anchor and the marginals might be prohibitive. We give here a symmetrized version
that only requires to control the hamming distances between the pairs of marginals.

Lemma 3.3.8 (Pairwise Anchoring). Under the assumptions of Lemma 3.3.6 we have

1 N
D P (¥ (M (X)) # )
=1

N N
= 2]1{2 > (efe[dham(xi’xj)m —2e7 [dpam (X4, X;) /20 '
i=1 j—1

Proof. First we observe that

1 N
& 2 Pon (¥ (M(X,)) # 1)
i=1

N N
= s 2D (P (W (M (X)) # ) + Pon (¥ (M (X)) # 7))

i=1 j=1

We then consider the two-point anchor defined in Remark 3.3.7 and get using (3.15) that
for every 1 <i,5 < N,

Pon (W (M (X)) # 1) + Pan (¥ (M (X)) # J)
> ¢l dham X X321 _ 967§ [dpyor (Xi, X5) /2] -

The special case of (¢,0)-DP

The following lemma yields a bound on the KL divergence between the output distributions
of an (¢,0)-DP mechanism applied to different datasets.
Lemma 3.3.9. If a randomized mechanism M : X™ — codom (M) is (¢,0)-DP, then

dP
vX,Y € A", MX) < edham(X’Y)E, Ponx) — almost surely ,

where ;lg?;g; is the Radon-Nikodym density of the distribution of the output of the mech-
anism with input X, with respect to the distribution of the output of the mechanism with

input Y. As a consequence,

VX,Y € A", KL (M(X)|M(Y)) < edpam (X,Y) .
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Proof. By the group privacy property (see Fact 3.3.5), it is clear that the measurable sets
of null measure for Poy(x) are exactly the measurable sets of null measure for Pyp(y). In
dPay(x)
dpgm<y)
again for each measurable set S C codom (90t) we have

particular, Poyx) < Pop(y) and hence p := exists. By group privacy property

Pan(y)(S) > e~ “amEY)py ()

:e_Edham(XvY)/pdpfm(Y)
S
> 6_an/ham(X,Y) <j%fp) Pgm(Y)(S) .

So, for each measurable set S,

Poy)(S) >0 = iréfp < eham(XY)e

Furthermore, p is measurable for the Borel o-algebra of R. In particular, for any n € N,
pt ([edham(X’Y)6 + %, —|—oo)) is measurable. As a consequence,

et gy (7 (=7 ) o

and then
ey (7 (5 1))) = Py (o (Lo, [ 13, 120))
=P (™ ([0 13 120))

< 5P (7 ([ 1.)

. dPoy(x)
which proves that Pony)

almost surely, thanks to the first remark of the proof. The result about the KL divergence
is a direct consequence of this inequality. O

< efham (X, Y)e, Pon(y)-almost surely, which is also the case Pgy(x)-

In particular, this result allows us to apply Fano’s lemma in order to obtain a similarity

function that is based on anchoring the conditional distributions rather than the marginals.
. N

Le., given, Xy,..., Xy € X", Poyex,), - - -, Paoy(x ) are anchored to + > j=1Po(x;)-

Lemma 3.3.10 ((¢,0)-DP Fano Matching). Let Xi,..., Xy € X™ and ¥ : codom (IM) —
{1,...,N},

3 el ]\i N,dam X, X
ZPm@m(xi»#ny—”NZ”EZW (Xi. X))

=1

1
N
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Proof. By Fano’s lemma (see Fact 3.1.2),

L+ % 2L KL (F’im(xi)
In(V)

¥ ZN=1 me(Xj)>

N
D P (W (O (X)) £) > 1
=1

By convexity of the KL divergence with respect to its second argument (see [van Erven &
Harremoés, 2014, Theorem 12]), it follows that

N 1 32 S0 SO0 KL (Pangx | Panc )
1 N2 i=1 2uj=1 M(X;) M(X;)
— E Pop (U (M (X ) >1— : 3.16
An application of Lemma 3.3.9 concludes the proof. O

The bound of Lemma 3.3.9 on the KL divergence between the output distributions works
well because the product edpam, (X,Y) is typically high in the chosen applications. When
it is small, better control on the KL divergence is possible. For instance, [Dwork et al.,
2010] proves the bound

KL (9(X) | M(Y)) < edpamn (X, ) (elom®E¥) 1)
which was later improved in [Dwork & Rothblum, 2016] to
1
KL (M(X)] M(Y)) < Sedyam (X, Y) (o) — 1)

Those two bounds are problematic when the product edpam, (X,Y) is too high. This was
later improved in [Bun & Steinke, 2016] to

KL (X)) < 5 (edham (X, ¥))?

but it is still worse than the version that we use for high values of edpam (X,Y). The best
of both worlds is achieved in [He et al., 2021] with

eEdham (X7Y) — 1

KL (M) M(Y)) < ednam (X, Y) “G— ey -

Again, when the value edpam, (X,Y) is typically high, there is no need to come to this
degree of precision. However, in some settings, for instance when e is very small or when
the distributions to test are very close, this last expression can lead to better results than
the one that we used.

3.3.2 The case of p-zero concentrated differential privacy

For p-zero concentrated differential privacy, the fact that the definition uses information
theoretic quantities makes things easier than with the traditional definition of privacy. In
particular, the anchoring technique happens implicitly on the distributions rather than on
the marginals (similarly as with the (e,0)-DP case). Again, the notion of group privacy is
central in our proofs.
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Fact 3.3.11 (p-zCDP Group Privacy [Bun & Steinke, 2016, Proposition 27]). Let p € Ry,
if a randomized mechanism M : X™ — codom (M) is p-zero concentrated differentially
private, then, for any X, Y € X™ and for any a € (1,00),

Do (M(X)[|M(Y)) < plham (X, Y)*

Lemma 3.3.12 (p-zCDP Le Cam Matching). Consider a p-zCDP mechanism 9, a test
function ¥ : codom (M) — {1,2}, and two datasets X1,Xy € X™. We have

2
%Z Pax (W (M (X)) # i) > % (1= Vo 2dham (X1,X3)) -
i=1

Proof. By the Neyman-Pearson lemma (see Fact 3.1.1),

(1 =TV (M(X1), M(Xs))) -

l\')\»i

2
5 D P (W (X)) # ) >
=1

By Pinsker’s lemma (see [Tsybakov, 2009, Lemma 2.5]), TV (P,Q) < /KL (P| Q) /2, and
hence

2
5> P (W0 (X)) #1) > 1 (1 /KL (X)) (X)) /2)
=1

=5 (1= VD R [K)) /2) -

Since the Renyi divergence between a given pair of distributions Dy, (.|| .) is non-decreasing
in a (see [van Erven & Harremoés, 2014, Theorem 3]), we obtain for any o € (1, +00), s

2
5> P (B (X)) # 1) > £ (1~ v/Da (K] [ U(X2)) /2) -
=1

Eventually, we obtain using group privacy (see Fact 3.3.11) that

,me X,)) # i) > (1—\/;Tdham Xl,Xz) :

The supremum of the right hand side over a € (1, +00) yields the result. O

We also obtain a zero concentrated DP version of the Fano matching method that we
introduced previously for (e,0)-DP.



76
Lemma 3.3.13 (p-zCDP Fano Matching). Consider a p-zCDP mechanism 9, a test
function ¥ := codom (M) — {1,..., N}, and datasets Xi,...,Xy € X". We have

1 o . 1+&Yr, Zj'vzldham (X4, X;)?
NP (EOR(K) #) 2 1 - R

Proof. By the inequality (3.16) established in the proof of Lemma 3.3.10, and using again
the fact that Dy, (.|| .) is non-decreasing in « (see [van Erven & Harremoés, 2014, Theorem
3]), as well as the group privacy property (see Fact 3.3.11), we obtain that for any a €
(1, +00),

1 1%2&2&&(% ol Pax,))
N 2 P (VO (X0) # ) 2 )
o 1+sz”z]11?)( Paicx))

1+ p2 Zz 12 dham(xi7xj)
In(V)

The supremum of the right-hand side over a € (1, +00) yields the result. O

3.4 Lower-bounds via Couplings

The transport problem (3.12) can be studied either theoretically [Santambrogio, 2016]
or numerically [Peyré & Cuturi, 2019] in order to give the best lower bounds that our
technique permits. However, identifying an optimal coupling is out of the scope of this
section. We here provide coupling constructions that are sufficient to exhibit useful lower
bounds.

3.4.1 Near optimal couplings

Most of the similarity functions expressed in Theorem 3.3.2 yield lower bounds that are
based on or further lower-bounded by expressions involving the quantities

E(X1,...,XN)NQ (g (dham (X’La X])))

for a coupling Q € II(Py, ..., Py) where g is a fixed non-increasing function. Hence, finding
reasonably good lower bounds can be achieved by finding a coupling that minimizes the
expected pairwise Hamming distance between the marginals.

As a proxy, we first aim at maximizing the probabilities of pairwise equalities between
all the marginals simultaneously. We then control the Hamming distance by observing
that when X; = X, dham (X4, X;) = 0 and otherwise, dham (X4, X;) < n. It is known
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[Kallenberg, 1993] that if Q € II(Pq,...,Py), the disagreement probabilities (i.e. the
probability that two marginal random variables are not equal) between the marginals

satisfy
Vi,j, TV (Pi,P;) <Px, . xy)~0 (Xi # Xj) . (3.17)

A natural question is whether this lower bound is achievable by a coupling simultaneously
for all pairs of marginals. When there are only two marginals (i.e. N = 2), a classical
construction (see [Kallenberg, 1993]) answers this question positively:

Fact 3.4.1 (Maximal coupling). Let Py and Py be two probability distributions on X"
that share the same o-algebra. There exists a coupling ©°(P1,P2) € II(P1,P2) (which is
a distribution on (X™)?), called a maximal coupling, such that
P(x1,X5)~ro(Py,Po) (X1 # X2) =TV (P1,P2) |
VS measurable , P x, x,)~moo(pPy,py)(X1 € S) =P1(X1 € 9),
VS measurable , P (x, x,)oroo(Py,po) (X2 € 5) =P2(X2 € 8).

This construction unfortunately does not generically scale to more than two marginals,
even though on simple examples, couplings can be built that still match the lower bound
(3.17) for any pair of marginals.

Example 3.4.2 (Bernoulli optimal coupling). Given P; = B(p;), 1 < i < N a family
of Bernoulli distributions and U ~ U([0,1]) a uniformly distributed variable on [0, 1],
the random vector (X1, ..., Xy) defined by X; := 1,,y(U) is distributed according to a
coupling @ € II(Pq,...,Px), and for every i, j

P(Xi # X;) = |pi — p;| = TV (B(pi), B(pj)) -

There are however examples for which it is provably impossible to build couplings that
match the lower bound (3.17) for any pair of marginals.

Example 3.4.3 (A counterexample). Let X; ~ U({—1,0}), Xo ~ U({0,1}) and X3 ~
U({1,—1}), and let P be a coupling between X1, X2 and X3. We have that,

Txyzx, + Ixyrxy + Axgzx, > 2
and as a consequence on P,
P(X; # Xo)+P (X2 # X3) + P(X3 # X1) > 2
> TV (Xl,Xg) + TV (XQ,Xg) + TV (Xg,Xl) ,

which proves that at least one of the disagreement probabilities is strictly bigger than the
corresponding total variation.
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Recent constructions based on Poisson point processes allow in general, for any number
of marginals N, to match the lower bound (3.17) up to a factor 2.

Fact 3.4.4 (Near-optimal coupling of multiple distributions [Angel & Spinka, 2021]). Let
P1,...,Pn be N distributions on the same measurable set. There exists a coupling
QeIl(Py,...,Pn) such that

N 2TV (P;,P;)
1,...,N}, P Xi# Xj) < o F
VZ,] S { 3 ) }7 (le"'7XN)NQ( ?é J> -1 + TV <P’L7 P])

In the rest of this section, the notation 7°°(Py, ..., Py) refers to a coupling that satisfies
this condition. When there are only two distributions, it refers to the construction of
Fact 3.4.1. This factor 2 is not a problem for minimax theory, since it is a common
practice to overlook the constants by looking at rates of convergence. However, for some
more precise applications, working on more specific couplings may improve our results.
With either coupling constructions, the lower bounds of Theorem 3.3.2 can be controlled
with the following straighforward lemma:

Lemma 3.4.5. Let Py,...,Py be N distributions on X™ and Q € II(Py,...,Px). Con-
sider 1 <i,j < N and denote A;j := Px, . xy)~q (Xi # X;). We have
Ex1,.... X x)~Q (dham (Xi; X)) < ndi
E(Xl,.A.,XN)NQ <dham (XZ7X])2> S n2Ai,j

Exi,.. Xx)~Q (6_6dham(xi’xj)> 21— (1—-e™)Ai;.

Note that A;; directly depends on the coupling construction, but that with any of the
ones presented above, we always have Vi, j, A;; < 2TV (P;,P;).

When the distributions that we are trying to couple are product distributions (i.e. P; =
pe",...,Py = p%”), we can notice that any coupling q € II(py,...,Px~) induces a cou-
pling q®" € II(Py,...,Py). Under this coupling, the Hamming distances between the
pairs of marginals follow binomial distributions. For the rest of this section, we define the
product (near) optimal coupling

TPy, PN = (P, PN)

Straightforward computations yield the following lemma.
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Lemma 3.4.6. Let P; = p{",...,Py pN be N product distributions on X™ and

q e (py,---,
pn). Consider any 1 <i,j < N and denote" §; ; := Px1,..xx)~q (Xi # Xj). We have:

Ex,,...Xx)~qe" (dham (Xi, X)) = ndi ;
E(X1,...,XN)~Q®” (dham (Xl, Xj)2> = n25i2,j + n5i,j(1 - 5i7j) < n252~2,j + ném-

E(Xi Xy (€_€dllaln(Xi7Xj)> - (1 —(1- 6_5)51‘,3')” > e 00

Note that ¢; ; directly depends on the coupling construction, but that with any of the ones
presented above (applied to p1,...,Pn), we always have Vi,j, 6;; < 2TV (p;, p;).

Each of the coupling constructions presented above has its own merits. They will all prove
to be useful in the sequel.

3.4.2 Quantitative lower bounds

In this subsection, we finally put the pieces together in order to obtain quantitative lower
bounds on (3.11). This subsection serves as a joint proof for Theorem 3.2.1, Theorem 3.2.2,
Theorem 3.2.3 and Theorem 3.2.4.

Immediate results on the private minimax risk. A usual estimator (i.e. a measur-
able function of the samples) 0 may be viewed as randomized and almost surely constant
to 0 (i.e. VX, M(X) := 6(X) almost surely). As a result, it is clear that the private mini-
max risk is always bigger than the non-private one. For distributional tests, the result is
not so obvious, and we give the following general purpose lemma that ensures that Fano’s
and Le Cam’s regular inequalities still hold.

Lemma 3.4.7. Let (P; )ze{l N} be a family of probability distributions on X™ and let
M : X" — codom (M) be a randomized mechanism,

inf }ZPX P (U (X)) #14) > inf N}ZPXNP (X) #1) .

W:codom(M)—{1,....N =1 U AN {1,

In particular, the inequalities in Le Cam’s lemma (see Fact 3.1.1) or Fano’s lemma (see
Fact 3.1.2) still hold when the test function U is fed with an input M(X) € codom (M)
instead of an input X € X™.

4not to be confused with the Kronecker symbol.
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Proof. Let ¥ : codom (M) — {1,..., N} be a test function. Then,

Z Px~p; o (¥ )) # 1) Z / Px~p, (¥ (OM(X)) # i) dPon

_ /Z Pxp, (U 0 0) (X) £ i) dPox

=1

> / in prwp (X) # i) dPyn

VAN {1, N} =

= inf Z Px~p, (V' (X) #1) .

VAN {1, N}

Taking the infimum over ¥ : codom (9) — {1,..., N} concludes the proof. O

The case of two hypotheses (N = 2). At first, we look at the implications of couplings
between pairs of distributions. Given P; and Po distributions on X", a direct implication
of Lemma 3.4.7 and of Le Cam’s lemma (see Fact 3.1.1) is that independently on the
privacy condition C imposed on I,

—

D Px~p, o (¥ (M (X)) #1) = 5 (1 =TV (P1,P2)) .

\V)

This is the first ingredient in the proof of Theorem 3.2.1 and Theorem 3.2.2 that we now
detail.

Proof of Theorem 3.2.1. When 9 is (e,6)-DP, the generic bound of Theorem 3.3.2 ap-
plied with the Le Cam matching technique described in Theorem 3.3.3 and the coupling
7°(P1,P2) leads to

[y

e Pocopyon (W (M(X)) 7 1) = 5B Xo)ome (P 2) (e*edham(XhXﬂ)
— € OE(x, Xy)~ro(P1,Py) (dham (X1, X2))

Lemma 3.4.5 ]

> 3 (1—(1—=e")A12) —e “nAiy

= % (1—(1—e™ +2ne ) TV (Py,P3)) .

where in the second line we denote Ajs := Pix, x,)~moo(py,py) (X1 # X2) and in the
last line we use that Ao = TV (P1,P2) with the chosen coupling. Similarly, in the
case of product distributions, with the same matching but 7 (py", p5™) we obtain as a
consequence of Lemma 3.4.6

s Px~p,m (¥ (9 (X)) # i)

> (1= (1= ) TV (p1,p2)) " — 20 5TV (P1,p2) -
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Proof of Theorem 3.2.2. When I is p-DP, the generic bound of Theorem 3.3.2 applied
with the Le Cam matching technique described in Theorem 3.3.4 and the coupling 7°° (P, P2)
leads to

. 1
max PXNPZ-,{IR (\If (m (X)) # 7‘) > 5 (1 -V p/2E(X1,X2)N7"OO(P1,P2) (dham (Xl’ X2)))

i€{1,2}
Lemmza 3.4.5 % (1 _ \/p/izgnAm)
1
= (1 - n\/p/QTV(Pl,P2)> .

where in the second line we denote Aja := Pix, x,)~re(py,py) (X1 # X2) and in the
last line we use that Ayo = TV (P1,P2) with the chosen coupling. Similarly, in the
case of product distributions, with the same matching but 7 (py", p5™) we obtain as a
consequence of Lemma 3.4.6

max Pxp, o (¥ (M (X)) # i) >
1€{1,2}

(1 —n/p/2TV (p1, DQ)) :

N —

O]

The case of arbitrary many hypotheses (N > 2). Given Py,...,Py distributions
on X", a direct implication of Lemma 3.4.7 and of Fano’s lemma (see Fact 3.1.2) is that
independently on the privacy condition C imposed on 9, for any Q such that P; < Q for
all 7,

. 1+ £ 5 Y KL(P;[ Q)
iy, PP (0 (X)) #9) 2 1 = In(V)

Again, this serves as the first ingredient of the proof of Theorem 3.2.3 and Theorem 3.2.4
that we now detail.

Proof of Theorem 3.2.3. When 9 is (€, d)-DP, the generic bound of Theorem 3.3.2 ap-
plied with the pairwise anchoring technique described in Theorem 3.3.3 and the coupling
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7 (P1,...,Pn) leads to (since [n/2]| < n for each integer n > 0)
max PXNP om (\I’ (m(X)) 75 Z)
ie{l1,...,N}
1 N N
—edpam (X, X
Z WE(Xl,...,XN)NTI'OO(Pl,...,PN)(Zze ham( ])
i=1 j=1

2e " Sdyam (Xs, X;) )

Lemma 3.4.5

g QNQ(ZZ (1= (1= e7™) Aiy) = 2e70n A, )

=1 j=1
1 1—e™+2ne Z 2TV (P, Pj)
2 2N? T 1+ TV (P, Py)

v

where in the second line we denote A;; := Pix, . xy)ure(Py,..py) (Xi # X;) and in the

last line we use that A; ; < %’% with the chosen coupling. Similarly, in the case of
product distributions, with the same matching but the product coupling 7® (p$™, ..., p%")

we obtain as a consequence of Lemma 3.4.6

max PXNphgm (\IJ (W(X)) 75 Z)

ie{1,...,N}
1 e 2TV(pi,pj) "
> — —
—2N2;<<1 (I—e )1+TV(pi,p]~)
14+ TV (pi, pj)

When § = 0, the generic bound of Theorem 3.3.2 applied with the Fano matching technique
described in Theorem 3.3.3 and the coupling 7*°(P1,...,Py) leads to

max PXNP m <\I/ (S)J?(X)) 7é 7,)

—2ne

Ze{l7 A }
€ N N
o Lt >oim1 2je1 EXy, X ) omoo Py Pry) (dham (X4, X))
- In N
Lemm>a 3.4.5 ] 1+ ﬁ sz\il Z;V:1 ’I’LAi’j
- In N
2TV(P;,P,)
o, M N Yt Y1 IV
- In N
where in the second line we denote A;; := P(x, . Xy)~ro(Py,..Py) (Xi # X;) and in the
last line we use that A;; < %F% with the chosen coupling. Similarly, in the case
of product distributions, with the same matching but the coupling 7% (p{", ..., p%") we

obtain as a consequence of Lemma 3.4.6

14 ne sy 1 Z 2TV (pi,P;)

. 1 4TV (py,p;)
Px.p. on (U (IM(X > = i)
enax Px P (U (M(X)) # 1) > TN
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Proof of Theorem 3.2./. When 9 is p-zCDP, the generic bound of Theorem 3.3.2 ap-
plied with the Fano matching technique described in Theorem 3.3.4 and the coupling
*(Pq,...,Py) leads to

max Px.p, on (¥ (MM(X)) # i)

7’6{17 7N}
N N 2
LT B e ) (dhan (X6 X))
- In N
Lemm>a 3.4.5 1 1+ % sz\il Zé\le HQAM'
- InN
2 2TV(P;,P;)
_ 14+ 55 > 12; 1 1+TVPL,P)
In N
where in the second line we denote A;; = Px, . Xy)wre(Ps,..Py) (Xi # X;) and in
the last line we use that A;; < %‘% with the chosen coupling. Similarly, in the

case of product distributions, with the same matching but with the product coupling
(pY", ..., p%") we obtain,

max PXNP m (\If (S)ﬁ(X)) 7& Z)

z6{17 * }
2

. 1+ N2 Zz 1 Z (Xl, LX)~ ® (PP pE) (dham (X, X5) )
- In N
Lemm>a 3.4.6 1 1+ % Zi\il Z;V:I (ngéiz,j + néi:j)

= a In N

2) <N =N 2TV(pi,p;) \2 | 1 2TV(pip;)
1+ 5 2 in > i1 <<1+Tv(p7¢,|cj>j)) +a 1+TV(pi,pJ>j))
>1-—
. In N
where in the second line we denote d;; := P(x, .. xy)~re(p1,...pn) (Xi # X;) and in the

2TV (p:,p;)

last line we use that ¢; ; < 1+TV(pi,p;)

with the chosen coupling.

3.5 A note on Assouad’s method

As the reduction to a testing problem between multiple hypotheses, Assouad’s lemma relies
on similar ideas, where the packing has to be parametrized by a hypercube. Its advantage
over tools like Fano’s lemma is that it only makes tests between pairs of hypotheses (instead
of all of them at the same time). The cost of this is that the control of the packing is
slightly more difficult.

Suppose that the set of distributions of interest P contains a family of distributions
(Pw)wefo,1ym for a certain positive integer m. If the loss function (taken quadratic for
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simplicity) can be decomposed as (where in ||P,, — P./||, the difference between distribu-
tions should be interpreted as the difference of the features that we are trying to estimate
corresponding to those distributions)

m
Vw,o’ € {0,1}™, [Py =Py =27 ) Ly, (3.18)
i=1
then the minimax risk can be lower-bounded as

_inf sup Exp#(||7(X) — 7TH2)

7 st. Cpep
T il .
> D30 il Pxep o (VX)) £0) 4 Prep o (¥ (X)) £ 1)

=1 W:codom(M)—{0,1}
(3.19)
where P_i,0 and P,:,1 are the mixture distributions

1 1
Pwi,o = om—T1 E Pw and Pwi,o = om—1 E Pw .
we{0,1}™|w;=0 we{0,1}m|w;=1

The proof is classical and can be found in [Acharya et al., 2021¢]. The term
Px~p_iom (W (M(X)) # 0) + Pxp ;o (¥ (M(X)) # 1)

characterizes the testing difficulty between P ;.0 and P 0. It can be controlled by Le Cam’s
lemma, and by its variants when working under privacy (see [Acharya et al., 2021e, Lalanne
et al., 2023b] for differential privacy and [Lalanne et al., 2023b] for concentrated differential
privacy).

Using this technique usually leads to better lower-bounds in the case of (e, d)-differential
privacy when § # 0 or with concentrated differential privacy.
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Chapter 4

Examples of lower-bounds on
parametric models

The origin of this chapter, and the use of the first person. This chapter is based
on the article [Lalanne et al., 2023b], written by Aurélien Garivier!, Rémi Gribonval?, and
by myself. In this chapter, I will try to respect the following rule : the use of the first
person of the plural (we, our, ...) represents all the above-mentioned people, while the
use of the first person of the singular (I, my, ...) represents myself.

This chapter illustrates the results of the last chapter on three simple, fully worked out
parametric examples. In particular, it shows that the problem class has a huge importance
on the provable degradation of utility due to privacy. In certain scenarios, it shows that
maintaining privacy results in a noticeable reduction in performance only when the level
of privacy protection is very high. Conversely, for other problems, even a modest level of
privacy protection can lead to a significant decrease in performance.

It also demonstrates that the DP-SGLD algorithm, a private convex solver, can be em-
ployed for maximum likelihood estimation with a high degree of confidence, as it provides
near-optimal results with respect to both the size of the sample and the level of privacy

"https://perso.ens-lyon.fr/aurelien.garivier/www.math.univ-toulouse.fr/_agarivie/
index.html/
*https://people.irisa.fr/Remi.Gribonval/


https://perso.ens-lyon.fr/aurelien.garivier/www.math.univ-toulouse.fr/_agarivie/index.html/
https://perso.ens-lyon.fr/aurelien.garivier/www.math.univ-toulouse.fr/_agarivie/index.html/
https://people.irisa.fr/Remi.Gribonval/
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protection. This algorithm is applicable to a broad range of parametric estimation proce-
dures, including exponential families.

Finally, it gives bibliographical pointers to many recent research articles studying similar
problems of private parametric estimation problems.

4.1 Parametric unidimensional examples

First, let us start with unidimensional examples.

4.1.1 Bernoulli model

The first application is the estimation of the proportion of a population that satisfies a
certain property. It is a prime example of the application of Le Cam’s lemma Fact 3.1.1
and its private counterparts Theorem 3.2.1 and Theorem 3.2.2. When we consider the
parametric Bernoulli model

(B(0))geo»  ©=1(0,1),

a classical and simple estimator for estimating the true parameter 6* from i.i.d. samples
X1,..., X, drawn according to B (0*) is via the empirical average

1 n
0:=— Z Xz .
i
The quadratic risk of this estimator is
A 0*(1 — 0" 1/4
E((G*—H)Q) =¥SL-
n n
In order to find lower bounds on the minimax risk (with or without privacy constraints),
let us investigate an () = %-packing3 with 6y := 1‘%@ and 0o := %

Regular Minimax Risk. By the master bound (3.6), Le Cam’s lemma (Fact 3.1.1)
and Pinsker’s inequality (see [Tsybakov, 2009, Lemma 2.5]),

M, > (a/4)? - % (1 =TV (B(6,)®",B(62)°"))
o2
32

2

(1 - VEL(BO™ [ BG)*") /2)
% (1 — VKL (B(01)] B(62)) /2) .

where we used the tensorization property of the KL divergence (see [van Erven & Har-
remocs, 2014, Theorem 28]). We can observe that when « € [0,1/2],

>

KL (B(01)] B(6)) < o .

SWith d(-,-) = | - — - |, see Section 3.1.3: an Q-packing must satisfy d(6;,6;) > 29, i # j.
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Indeed, let us note g(z) = 1321 (1 + ) + 152 In (1 — z) — 22. We have that dg(x)( ) =
w — 2z and since g(0) = 0 and x + In(1 + ) is 2-Lipschitz on [—1/2,1/2], we
have that g(x) <0, Vz € [0,1/2]. Hence, when « € [0,1/2],

w000 = (v (22) 1o (121))

_ (1;aln(1+a)+1;aln(l—a)>

(VAN
Q
2o

as soon as n > 4, we obtain that

> - — 2 - ! = —

So, with a = f’

which concludes that the non-private minimax rate is lower bounded by a quantity of the
order of =+ and in particular, that the empirical mean estimator f is minimax optimal in
term of rates of convergence. Furthermore, any private minimax rate also has to be of the
order of at least %

Minimax Risk with e-Differential Privacy. By the private master lower bound (3.10)
and the product form of Le Cam’s lemma for (¢,0)-DP (see Theorem 3.2.1) combined with
the last inequality in Lemma 3.4.6 we obtain

M(EDP) > (a J4)? . ; —neTV(B(61),5(62))

7n5\/KL (61)11B(02))/2
32

Oé2

_ &
32°¢

| \/

ne)2a?/2

where we used again Pinsker’s inequality.

So, with a = i, when ne > 2, we obtain that

on(DP) = 1/32 i 1/80 :Q(( 1 2> '

" ~ (ne)? ~ (ne)? ne)
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p-zero Concentrated Differential Privacy. Similarly, by the product form of Le

Cam’s lemma for p-zCDP (see Theorem 3.2.2), we get with a = n%/ﬁ when n,/p > 2,

WP 2 O (1 /AT (B(0), B(0)
a2
> & (1= n/pKL (B[ B(2) /4)
a? 1/64
=3 <1 — \/n2poz2/4) = 7{210
=0

VR
3
(3]

)

Matching Upper Bounds. Consider the Laplace mechanism M(X) := 13" | X; +
LLap(1). It is an (e,0)-DP estimator X [Dwork & Roth, 2014] and its quadratic risk
is O (% + ﬁ) Likewise, the Gaussian mechanism MM(X) = 13" X, + n%/ﬁ/\/(o? 1)

is p-zCDP [Bun & Steinke, 2016] and its one is O (% + n%p) Combined with the lower
bounds established so far and with Lemma 3.4.7, this allows to conclude that in fact

1 1
(eDP) _ L
i G’(max{n’ <ne>2}> ’

and that this optimal rate is achieved with the Laplace mechanism, while

m(p—zCDP) — O | max l i
n n’ n2p )

which is an optimal rate achieved by the Gaussian mechanism.

The Cost of Privacy. An interesting observation for both definitions of privacy is that
there exist regimes (¢ < 1/y/n or p < 1/n) for which the minimax rate of convergence is
degraded compared to the non private one. In other words, privacy has an unavoidable
cost on utility, no matter the mechanism used. Conversely, the order of magnitude of the
minimax risk is not degraded otherwise.

4.1.2 Uniform support model

We consider the parametric model

(P :=U([0,0]))pece,  ©=1(01].

To exploit Le Cam’s lemma we will need to control the total variation between two dis-
tributions. In this model, it can be done explicitly. The total variation between pg” and

pgi" can be computed as

;N AN\ _ 1 _ ; -1 — M !
TV <p91 » Py, ) =1 /[0,1}" hin <ngn,ﬂp;®2n> =1 <max (01,02) .
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Non-Private Minimax Risk. By the (non-private) master lower bound (3.6) and Le
Cam’s lemma (Fact 3.1.1), applied to the 2i packing #; =1 — % and 0, = 1, we have

n

e ! 1
> = .
M 8n? Q(n2>

where we used that 1 — TV (pgﬁ", p?;”) = (1 — %)n > e~ !, Furthermore, as we now show,

the estimator max X achieves this rate of convergence when Xi,..., X, ~ U([0,0*]) are
independent. Indeed, for any t € [0, 6],

t n
PmaxX <t)=1II",P(X; <t) = (9*> .

Hence, max X has a density mnaxx with respect to the Lebesgue measure where

ntnfl
Vt€R, Tmaxx(t) = ]1[0,9*](75)9*771 ;

so that

0* n—1
E(max X) :/ t <”tn> dt = "¢,
0 0* n -+ 1

w30 = [ (% - s =0 (325 )

By the bias-variance tradeoff, the quadratic risk of max X is thus O (%) In particular,

this proves that the non-private minimax rate of convergence is © (#) and that max X
achieves this minimax rate of convergence.

Minimax Risk with e-Differential Privacy. By the private master lower bound (3.10)
and the product form of Le Cam’s private lemma for e-DP on product distributions (see
Theorem 3.2.1 with 6 = 0) with the 2}Ze—packing 0 =1-— nie and 6y = 1 we have when
ne > 1

o (eDP) > et of 1
" ~ 8(ne)? (ne)?2 )’

In particular, the rate is degraded compared to the non-private one as soon as € is
decreasing.

Minimax Risk with p-zero Concentrated Differential Privacy. Similarly, using
the product form of Le Cam’s private lemma for p-zCDP on product distributions (see
Theorem 3.2.2) and the ﬁ—packing 0, =1- %ﬁ and 02 = 1 gives that when n,/p > 1,

1-— L
V2 1

2 —Q<2>-

8n=p n4p

In particular, the rate is degraded compared to the non-private one as soon as p is de-
creasing.

mtglp—zCDP) >
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This example shows that when the stochastic noise due to sampling shrinks too fast (here
max X has quadratic risk O(1/n?)), then the noise due to privacy becomes predominant.
In particular, we do not observe a distinction on the rate at which € or p tends to 0 in
order the conclude to a degradation of the minimax risk. It is systematically degraded.

4.2 Parametric multidimensional examples

One dimensional models already allow exhibiting degradation that is due to privacy. How-
ever, things are more interesting when looking at multidimensional examples. Indeed, in
this setup, dimensionality amplifies the degradation that is due to privacy.

For instance, with Gaussians where the usual estimation quadratic risk is of the order
© (d)7 we will see in the following that this rate becomes €2 <% + i) under e-differential

n (ne)?
privacy. The privacy overhead degrades quadratically in the dimension, whereas the reg-

ular estimation rate only degrades linearly.

4.2.1 Gaussian model

The second application is the estimation of the unknown mean 6* € R? of multivariate
normally distributed data with fixed covariance matrix 021;. When we consider the para-
metric model (./\/'(0, Ug[d))%@ ,0 = R? | a classical and simple estimator for estimating
the mean 6* from i.i.d. samples X1,..., X, is the empirical average 0 := %Z?:l X; . The
quadratic risk of this estimator is

E (llo" - 8)2) =

If we were to apply Le Cam’s lemma Fact 3.1.1 or its private counterparts Theorem 3.2.1
and Theorem 3.2.2, the parameter that tunes the dimensionality d would not be captured
by the resulting minimax lower bounds which would thus be overly optimistic. This
example forces us to use Fano’s lemma Fact 3.1.2 or its private counterparts Theorem 3.2.3
or Theorem 3.2.4 in order to have a chance to capture this phenomenon.

o2d

n

(4.1)

The total variation that appears in Fano’s inequality is controlled via Pinsker’s inequality
in terms of a Kullback-Leibler divergence, which in the case of isotropic Gaussians is known
to be proportional to the squared Euclidean distance.

0y — 042
¥01,00 € ©, KL (N (01, 0210)|| N (02, 02 1)) = ||22021H ,

(4.2)
This enables the use of packing results for the Euclidean norm, and minimax bounds valid
in the more general case where the KL divergence is controlled by the Euclidean norm
between parameters.
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Packing Choice. In high dimension, the packing is chosen with an exponential number
of hypotheses. A good way to obtain well-spread points is to use Varshamov—Gilbert’s
theorem

Fact 4.2.1 (Varshamov—Gilbert’s theorem [Rigollet & Hiitter, 2015, Lemma 5.12]). For

24
any ¢ € (0, %) and for every dimension d > 1 there exist N > eT" and Wi, ..., WN €

{0,1}? such that,
27&] — dham(wuwj) <_C>

Minimax Lower Bounds. We obtain the following minimax lower bounds that we
factorized in a single result:

Proposition 4.2.2. Let (Pg)gcg be a family of probability distributions on the same mea-
surable space and © be a subset of RY with d > 66 that contains a ball of radius ro for the
euclidean distance. Assume that v > 0 is such that

V01,02 € ©, KL (py, | Po,) <702 — 61]* (4.3)

Then we have the following results on the minimax rates:

o > min (2 64F)2d_9<d>
"= 32 N ny/) "’

(o)) ¢

=3

0 1
max (mll’l (\[ 4\/7T’y) ,ml
n it

el )]
IM(p-+CDP) > e (mm( Vi sy ) mm( Vi 6P 2n/pY ))2d

:Q<max{d,2d }) ,
ny ncpy

when p < 1. Note that all the asymptotic expressions are taken when ro > CVd for a
positive constant C' i.e. when the parameter space is not "too small”.

m(E—DP) >

Proof. Without loss of generality, let us suppose that 0 is the center of the ball of radius 7
(without loss of generality because we are going to work on a neighborhood of 0 but it can
be translated to any point). Varshamov-Gilbert’s theorem (Fact 4.2.1) with ¢ = 1 allows
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us to consider N and w1, ...,wy and to define a packing of the form 0y := awy,...,0y :=

awpy such that
2

d
i) = =< [6- 6] <o’

This yields an Q = av/d/4-packing with respect to the Euclidean metric. Since 0 is in the
interior of ©, all the 6;’s are in © provided that « is small enough. By the (non-private)
master lower bound (3.6) and Fano’s lemma (Fact 3.1.2),

1+ 4 XKL (g

1 pon
Mm, > (a\/&/4)2 11— N Z] pg]. )

In N
Jensen 1 + # Z@j KL <p58;n (8;”)
> (aVd/4)?-[1- .

14 52 >, 7KL (pe, || Ps,)
_ 2 B N2 %] i f]
= (aVd/4) (1 V
(4;;) @ 1_ 1+ ﬁ sz ny]|0; — 6;]?
- 16 In N

2 2

S a’d 1_ 1+ nya”d ,
— 16 d/32

where in the last line we used that N > e¥/32 and ||6; — 6;]> < o?d. With a =

min (\[, 64F) when d > 66 leads to

IECYES N

For e-DP and p-zCDP, the first term in the max expressed in Proposition 4.2.2 is a di-
rect consequence of the above bound and of Lemma 3.4.7 so we now concentrate on the
other term. By the private master lower bound (3.10) and Fano’s lemma for product
distributions and (€,0)-DP (see Theorem 3.2.3), arguments as above show that

a?d <1_ + 25, TV (pez,p9)>

(E—DP) > _
M — 16 InN

+ 25,5 /KL (Po, I Ps,) /2
In N

a?d gl 2”€ZUFII9—9H>

v

Y

In N

1 1+2nea\/7\f>

Y

d/32
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Again, setting o := min ( N 42\‘[[“ f) when d > 66 allows to conclude that
Vi 2
M (eDP) > min <\f 642fn6f> d
" - 32

- ()

Similarly, by Fano’s lemma for product distributions and p-zCDP (see Theorem 3.2.4),

4n 1 2
m(p—zCDP) > @ 1 _ p Z’L] 2nTV (p9¢7 p@j) +TV (p@iv p9j)

" — 16 In N
>a72d 4np2”2n\/KL (Pa, |l Pe,) /2 + KL (pg,ll Ps,) /2
- 16 InN
_ o A S e TR0 03] A1 — 512
— 16 InN
S 2d 2\fnpom/ d + 2n?pya d)
=16 d/32 ’

and setting a := min <\f 6422fn\ﬁ) when d > 66 concludes that (because p < 1)

2
. {ro d
p(p-2CDP) =, i (\f 6422fn,ﬁ)
" - 32

d
o) .
<n2m>

Note that the constraint d > 66 can be relaxed to smaller constants by changing the ¢ in
the application of Varshamov—Gilbert’s theorem at the cost of changing the constants in
the minimax lower bounds. Likewise, the constraint p < 1 can be replaced by p < M for
any positive constant M at the cost again of worse constants. Since we aim to use this
result in high dimension and with high privacy, those hypotheses are natural in order to
simplify the expressions.

About the choice of the norm. For the estimation, we chose to use the squared [
norm as the measure of performance, since it is the one people are the most used to.
However, in the literature of differential privacy, a more common practice is to use the
total variation distance (see Section 4.3 for an overview).
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4.2.2 Continuous exponential families and maximum likelihood

For many other parametric models, the statistician typically would like to consider the
maximum likelihood estimator. Given Xi,..., X, i.i.d. random variables of distribution
Py+, the maximum likelihood estimator has value

Oy € arg max {l(@) = %Z f(Xi,G)} , (4.4)
i=1

0cO

where f is the log-likelihood. The parametric model with respect to a reference measure

w is thus

VX, @(X) =0 peo,
dp

where dd—p;f is the Radon-Nikodym density of pg with respect to p and © is often a closed,
convex subset of R with nonempty interior. This setup covers, in particular, exponential
families [Van der Vaart, 1998] with f(X,0) = 67T (X) — In(Z(6)) associated with some
statistic T and normalization factor Z(6). This section first presents a lower bound on the
minimax risk for the private estimation in such parametric models and then studies the
optimality properties of the Differentially Private Stochastic Gradient Langevin Dynamics
(DP-SGLD) of [Ryffel et al., 2022] for this specific task based on the existing upper bounds

for this private convex optimizer.

On the regularity of f and the estimation complexity

First, we may assume that the parametric model is not degenerate in the sense that f
satisfies

Vo € O, / Vof(X,0)dpe(X) =0 . (4.5)

This hypothesis is for instance satisfied in the Gaussian model presented previously. In-
deed, in this case VX, Vg f(0+X,0)+Vyf(0—X,0) = 0 and VX, %(G—I—X) = dd%(ﬁ—X).
This hypothesis is more generally satisfied in the broader model of the exponential fam-
ilies (see [Boucheron et al., 2019, Théoreme 4.10]). Under such hypothesis, we have the
following lemma which will allow to leverage Proposition 4.2.2:

Lemma 4.2.3. If (Py)gco satisfies the property (4.5) and if f is concave and [3-smooth
in its second argument, then

<8

V61,62 € ©,KL (Po, || Poz) < 51102 = 61 -

Note that the family (Py)gece directly depends on f. In particular, for the Gaussian Model,
8= %, we recover the classical upper bound on the KL divergence between multivariate
normal distributions, which is in fact in this case, an equality.
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Proof. Because of concavity in the second argument of f and the fact that it is S-smooth,
we have the following result:

V01,05 € ©,Vz, f(x,01)+V9f(x,91)T(92 — 91) < f(x,ez) + g”gl — 92”2 .

As a consequence,

KL (poype) = [ 10 (G2 ) dp, = [ (70X.00) = F(X.62)) dpi, ()

< [ (90000762 - 1) + 5161 ~ 6alP ) dpa ()

4.5
D2 oy~ 0Paps, () = Dy —

We may apply Proposition 4.2.2 with v = /2 and we obtain that

(p-zCDP) _ 4 d
oo, =0 (max { W28y 1B }) (4.6)

Under the hypotheses of Proposition 4.2.2: d is big enough, p is small enough and the
interior of the parameter space is big enough. In particular, this gives us a lower bound
to compare any private estimator to.

Private maximum likelihood

In general, Oyr, has no closed form formula. Even when it has some, the closed form
formula usually does not respect differential privacy.

The problem (4.4) is typically addressed via numerical optimization: instead of considering
its explicit maximum, a provably converging sequence is constructed. This requires some
assumptions on the log-likelihood f. A convenient combination of hypotheses is that f is A-
strongly concave, S-smooth and L-Lipschitz in its second argument: then, the stochastic
gradient ascend algorithm converges rapidly to Gy, [Beck, 2017]. Exponential families
typically obey those requirements with 5 := supycg Amax (Co) and, A := infpce Amin (Co)
where Cp := Covxp, (T'(X)) and Amin(C) (resp. Amax(C)) denotes the smallest (resp.
largest) eigenvalue of a matrix C (see [Boucheron et al., 2019, Théoreme 4.10]).

The issue of privacy can be addressed directly in the optimization procedure. DP-SGD
[Abadi et al., 2016] is an adaptation of the Stochastic Gradient Descent method where the
gradient is first clipped and then noised. The privacy guarantees are based on the moment
accountant method or on the composition of Renyi differential privacy [Mironov, 2017].
The results are obtained under very general hypotheses on the objective function, but
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are based on a pessimistic scenario where an adversary may observe every gradient in the
optimizer. Recent work based on Langevin diffusion [Chourasia et al., 2021, Ryffel et al.,
2022] has adapted the Gradient Descent algorithm and the Stochastic Gradient Descent
algorithm in order to have privacy guarantees with tighter utility bounds at the price of
stronger hypotheses on the objective function which is required to have a compact domain
and to be strongly convex.

Building on DP-SGLD by [Ryffel et al., 2022], we consider its adaptation for maximum
likelihood DP-SGML (Algorithm 1). For a batch B C {1,...,n}, the batch log-likelihood

is defined as 1
5l) = ——— E Xi, 0) .

For a closed convex set O, Ilg refers to the projection onto ©.
Data: Xi,...,X,, f, step sizes (nx)k>0, batch size m, noise variance o
parameter 6y, stopping time K.
for k=0,..., K —1do
Sample batch By from X7,..., X, with replacement of size m ;
Compute Vig, (0;) = % ZieBk Vof(Xi,0k) ;
Update parameter 611 = Ilg (Gk + Vi, (k) + V20N (0, chId)).
end

return Oy
Algorithm 1: DP-SGML: Differentially Private Stochastic Gradient Maximum Like-

lihood

, initial

A choice of the parameters (ny)r>0, 02, 6o and K is suggested by the privacy-utility
theorem Fact 4.2.4 which is a direct corollary of [Ryffel et al., 2022].

Fact 4.2.4 (Utility and Privacy of Algorithm 1, Fixed Step Size). Assume that f is \-
strongly concave, B-smooth and L-Lipschitz in its second argument on ©. Consider any
p >0, an integer n > 1, a batch size m and set

412 2 2
2 K = j]n (pn

7T om0 d

) L €= Eg (| Vis(Ou) )

Given a collection X of n arbitrary samples, consider IM(X) = Ok obtained using DP-

SGML with 6y ~ Ilg (N(O, %Id)) and constant step size n = % This mechanism
satisfies p-zCDP. Moreover, if X is such that the solution O\, of (4.4) is in the interior

of ©, then

2)2

where the expectation is with respect to initialization, random batch sampling, and noise
addition in the parameter update step.

(| — xc ) = O (MZ) &

pA3n2 T
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Indeed, the direct application of [Ryffel et al., 2022, Theorem 4.1] gives the privacy guar-
antee, and that

E (I(6ui) — 1(6x)) = O <5dL2 ) &

pA2n?2 4\’

Furthermore, by A-strong concavity of [,

A
1(Owur) — U(0k) > VI(OuL) Ok — Om1) + §H9L — O )?

and since @y, is in the interior of ©, VI(fy,) = 0 which concludes the proof. The term
¢ = Eg (||VIg(Omwr)||?) is due to the stochastic noise of the batch sampling. Indeed,
even though VI(fyg,) = 0, this is not necessarily the case when working on batches. This
term depends on the batch size m and can be made arbitrarily small by choosing m large
enough.

About minimax optimality

The quadratic risk of any (private or not) solver 2t can be decomposed (by the triangle
inequality and since (a + b)? < 2a? + 2b%,Va, b > 0) as:

E (o —m)I?) <2 (E(10" - swl?) +E(I0s —MX)I2))  (@7)

where the expectation is over the draw of X and, in the case of a private solver, on the
intrinsic randomness of 1.

The first term in the right hand side of (4.7) only depends on the properties of the “ideal”
maximum likelihood estimator in this parametric model. Under mild assumptions, it is
asymptotically normal — for example, in exponential families (see [Van der Vaart, 1998,
Theorem 4.6]): we have

Vi (0% = bur) 5 N (0,C57)

and

£(10° - s ) = O (ndA) | (48)

The second term in (4.7) depends on the solver, which here can be controlled with
Fact 4.2.4. As a consequence, the ratio between the error of estimation and the mini-
max risk which is lower-bounded in (4.6) can be bounded as follows:

(16" = M) (mppiry  (EIE — bunl?) + E(lora — X))

-zCDP -
Qﬁgﬂz ) max{n%ﬁp,%}

_o <”d/35(ue* ~ol?) + @E(HQML - m<x>u?)> .
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In particular, for the fixed step-size (see Fact 4.2.4), when Oy, is in the interior of © and
when the variance term due to the clipped gradient is negligible (i.e., when be batch size

is big enough to have % =0 (fféf;)), the second term is O (ﬁiﬁz)

All in all, the ratio between the risk of DP-SGML for maximum likelihood in exponential
families when the maximum likelihood estimator is in the interior of the search set is

E(llo™ - m(X)|1?) (5 m?)
—0o(Z+ .

9),t’glp—ZCDP) B\

A A3

DP-SGML optimally captures the variation in the sample size n, in the privacy parameter
p, and to some extent, in the dimensionality d (to some extent because even if d vanishes in
the expressions, L, f and A may vary with d). This proves what we call the near-minimax
optimality of DP-SG(L)D for performing inference via maximum likelihood in a broad
class of parametric models.

4.3 Other parametric models in the literature

Many interesting parametric estimation procedures have been studied in the literature.
Table 4.1 presents some of the interesting contributions, without necessarily being ex-
haustive.
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Model(s)

Smith, 2011]

Broad class of models with asymptotically normal,
low privacy regime.

arber & Duchi, 2014]

Mean estimation.

Discrete structured distributions, tv distance.

[

B

[Diakonikolas et al., 2015]
[Karwa & Vadhan, 2 )18]

Gaussian mean, unidimensional.

[Bun et al., 2019]
[Bun et al., 2021]

Hypothesis selection, tv distance.

Finite product distributions, tv distance.
Gaussian means in high dimensions, tv distance.
Sum of independent random variables, tv distance.
Piecewise polynomial finite density, tv distance.
Mixtures, tv distance.

Supervised learning, tv distance.

[Kamath et al., 2019]

Gaussian covariances in high dimensions, scaled Frobenius distance.
Gaussian means in high dimensions, tv distance.
Product distributions, tv distance.

[Biswas et al., 2020]

Gaussian means in high dimensions, scaled Iy distance.
Gaussian covariances in high dimensions, scaled Frobenius distance.

[Kamath et al., 2020]

Mean of heavy tailed distributions, lo distance.

[Acharya et al., 2021¢]

Finite distributions, tv distance.
Finite distributions, lo distance.
Finite product distributions, tv distance.
Finite mixtures of Gaussian means in high dimension, tv distance

Aden-Ali et al., 2021]

Gaussian means in high dimensions, tv distance.

Jai et al., 2021]

Subgaussian mean.
Linear regression.

Brown et al., 2021]

Gaussian means in high dimensions, scaled lo distance.

Cai et al., 2021]

Subgaussian mean.
Linear regression.

Kamath et al., 2022]

Stochastic convex optimization with heavy tailed data.

Singhal, 2023]

Bernoulli product distributions.

amath et al., 2023a]

Exponential families.

[
[C
[
[
[
[
[K
[K

amath et al.