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Titre: Simulation ab initio du transport et de la dynamique quantique de differents
porteurs avec interactions
Mots clés: Quantum-ESPRESSO, transport quantique, spin-flip, NEGF, electron-
phonon, paquet d’onde

Résumé: Nous concevons une
méthodologie générale et un code pour la
simulation dans un cadre de mécanique
quantique de différents porteurs, en pre-
mier lieu des électrons et des phonons,
pour des systèmes à grande taille. Dif-
férents types d’interactions entre por-
teurs ont également été envisagés et im-
plémentés dans notre code de transport,
comme les interactions électron-phonon
ou les interactions entre spin électronique
et spin local (résidant sur une molécule
magnétique par exemple), responsables
d’effets inélastiques.

La méthode est basée sur des cal-
culs réalistes de structure électronique
effectués avec le package Quantum-
ESPRESSO et le code Wannier90. Le
code Wannier90 permet ensuite de con-
struire des hamiltoniens électroniques sur
une base localisée d’orbitales Wannier,

tandis que le package PHonon calcule
la matrice dynamique régissant la dy-
namique des phonons. Nous avons tra-
vaillé selon deux approches : i) les fonc-
tions de Green hors équilibre (NEGF),
permettant de calculer les spectres de
transmission ainsi que les courants de
charge, d’énergie ou de chaleur, et ii) la
propagation en temps réel des paquets
d’ondes en utilisant soit l’équation de
Schrödinger, soit via les polynômes de
Chebyshev pour développer l’opérateur
d’évolution.

Ces méthodes ont été testées une pre-
mière fois sur deux modèles 1D de deux
chaînes Ag reliées par une molécule de
benzène ou de vanadium. Enfin, nous
avons appliqué la méthode à plusieurs
matériaux 2D tels qu’une seule couche de
phosphore noir ou de graphène avec des
atomes de Co déposés sur ces matériaux.

Title: Ab initio modeling of quantum transport and dynamics of interacting carriers
Keywords: Quantum-ESPRESSO, Quantum transport, spin-flip, NEGF, electron-
phonon, wave packet

Abstract :
We design a general methodology and

a code for simulation in a quantum-
mechanical framework different trans-
port carriers, first of all electrons and
phonons, for large scale systems. Dif-
ferent kinds of interactions between car-
riers have been also considered and im-
plemented in our transport code, such as
electron-phonon interactions or exchange
coupling between electronic and local (re-
siding on a magnetic molecule, for ex-
ample) spins, responsible for inelastic ef-
fects.

The method is based on realistic elec-
tronic structure calculations carried out
with Quantum-ESPRESSO package and

Wannier90 code. We worked within two
approaches: i) non-equilibrium Green’s
functions (NEGF), allowing to calculate
the transmission spectra as well as the
charge, energy, or heat currents and ii)
real-time propagation of wave packets us-
ing either the Schrödinger equation or
the Chebyshev polynomials for expand-
ing the evolution operator.

The method was first applied to 1D
model case of two Ag chains connected by
a benzene and by a vanadocene molecule.
Finally, we applied the method to sev-
eral 2D materials, such as a single layer
of black phosphorus or graphene with de-
posited Co ad-atoms.
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Résumé long en français

Ma thèse est consacrée au développement d’un programme qui permettrait de
simuler (de manière générale) le transport quantique de différents canaux (électrons
et phonons dans un premier temps) dans des jonctions à l’échelle atomique. Une
étape importante consistait à prendre en considération diverses interactions locales
des porteurs se propageant au sein de la jonction. Par exemple, nous avons mis en
œuvre des interactions électron-phonon ou spin-spin entre des électrons de conduc-
tion et des adsorbats locaux tels que des molécules (éventuellement magnétiques).
Cela peut ouvrir la possibilité d’aborder de nombreux phénomènes intéressants,
par exemple, la conversion d’énergie et divers effets thermoélectriques, ou des prob-
lèmes plus fondamentaux tels que l’intrication quantique entre différents degrés de
liberté ou les effets de décohérence quantique dus aux interactions inélastiques.
Afin de l’appliquer à des matériaux réels, nous utilisons le cadre de la mécanique
quantique basé sur des calculs de structure électronique réalistes effectués avec
le package Quantum ESPRESSO basé sur la théorie fonctionnelle de la densité.
En conjonction avec les codes WANNIER90 et EPW, il est utilisé pour construire
l’hamiltonien sur la base des fonctions de Wannier pour les électrons ou calculer la
matrice dynamique pour les phonons ainsi que pour évaluer les constantes de cou-
plage électron-phonon dans la représentation spatiale (en utilisant le code EPW).
Ce sont les paramètres clés pour les simulations ultérieures de transport à grande
échelle avec notre code. L’hamiltonien total conduisant à la propagation d’une
porteuse est composé de deux premiers termes décrivant le réseau parfait et une
partie centrale, tandis que le troisième terme contient le couplage entre eux. Les
deux premiers termes sont calculés séparément. La supercellule décrivant la partie
centrale doit contenir suffisamment de cellules primitives du même type que les
électrodes dans toutes les directions pour s’approcher du potentiel de type des
électrodes sur les frontières. Ainsi, le code des transports considère les bords de la
région centrale comme un prolongement des électrodes.

Sans interactions, c’est-à-dire dans le régime élastique, le transport quantique
est régi par l’approche de Landauer-Büttiker reliant de nombreuses propriétés in-
téressantes (telles que le courant de charge, le courant d’énergie ou encore la chauffe
des électrodes) à la fonction de transmission de mécanique quantique pour qu’un
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porteur se propage à travers la jonction. Le calcul de la transmission élastique
peut se faire par plusieurs méthodes. Nous avons travaillé selon deux approches
: i) La propagation en temps réel des paquets d’ondes en utilisant soit l’équation
de Schrödinger, soit via les polynômes de Chebyshev pour développer l’opérateur
d’évolution, et ii) Les fonctions de Green hors équilibre (NEGF), permettant de
calculer les spectres de transmission ainsi que les courants de charge, d’énergie ou
de chaleur.

La méthode de paquet d’onde consiste en une simulation en temps réel de la
propagation d’une porteuse à travers la jonction. Il peut évoluer dans le temps en
utilisant différentes techniques de calcul telles que la solution directe de l’équation
de Schrödinger ou par l’opérateur d’évolution développé par les polynômes de
Chebyschev. La probabilité de transmission est donnée par la portion de la partie
transmise du paquet d’ondes. Là où l’équation de Schrödinger permet de prendre
en compte un système avec un potentiel dépendant du temps, la méthode des
polynômes de Chebyschev permet d’économiser du temps de calcul. Différents
types d’interactions peuvent être pris en compte de manière relativement simple
et établie dans les deux approches, avec certains avantages et inconvénients. Le
couplage électron-phonon est considéré uniquement dans la jonction et est exprimé
en base d’orbitale de Wannier pour la partie électronique et en base de mode
d’oscillation pour les phonons. Nous utilisons un modèle de dynamique de paquet
d’onde similaire à celui proposé par Mingo et al [1], qui consiste à décrire la
fonction d’onde totale du système sur différents canaux phononiques.

L’interaction spin-spin intervient lorsqu’une impureté magnétique est intro-
duite dans un système métallique non magnétique, dans certaines conditions et à
basse température. Cette impureté est filtrée en raison des interactions avec les
électrons de conduction formant un état fortement corrélé. Le filtrage provient
d’événements de spin-flip, inversant le spin de l’impureté et de l’électron tout en
préservant leur spin total.

La méthode de paquet d’onde a été appliquée aux paquets d’ondes électron-
iques, alors que la propagation des vibrations atomiques était principalement
traitée par des paquets d’ondes classiques. Nous proposons une approche per-
mettant de traiter de manière quantique la propagation de phonon dans une base
spatial (comme pour les électrons avec la base d’orbitale de Wannier) représen-
tant le déplacement atomique de chaque atome suivant dans les trois directions
de l’espace. Pour Obtenir l’Hamiltonien phononique d’un système, on part de la
matrice dynamique calculée à l’aide du package Quantum ESPRESSO en base de
déplacement atomique. Afin de pouvoir récupérer l’Hamiltonien, il faut changer de
repère et passer en base des modes de vibration et conserver la matrice de passage
entre les deux bases.

La pleine puissance du formalisme NEGF apparaît lorsqu’on va au-delà du



5

régime de transport cohérent des transporteurs n’interagissant pas. Diverses inter-
actions à plusieurs corps (telles qu’électron-électron, phonon-phonon ou électron-
phonon), apparaissant dans la région de diffusion, peuvent être commodément
incluses (de manière perturbatrice) en ajoutant les auto-énergies d’interaction
correspondantes à celles de contact. Cela entraînera une correction non élas-
tique supplémentaire des courants électriques ou phononiques totaux. À l’inverse,
nous pouvons prendre en compte l’interaction électron-phonon pour le calcul des
phonons. Les corrections anharmoniques dues aux interactions phonon-phonon
dans la jonction peuvent également être incluses de manière similaire en constru-
isant les auto-énergies d’interaction. La plupart des calculs ont été effectués à l’aide
de diagrammes de Feynman d’ordre le plus bas impliquant des processus à trois
phonons (corrections du second ordre). Il a été constaté que ces effets à plusieurs
corps jouent un rôle important dans la réduction significative de la conductance
thermique des nanojonctions à l’échelle atomique à haute température.

L’effet des processus de spin-flip sur le transport d’électrons a également été
étudié avec l’approche NEGF pour les points quantiques ou pour les chaînes atom-
iques simulées par un modèle magnétique s-d. Étant donné que le formalisme
NEGF devient plutôt compliqué et prend plus de temps, la plupart des calculs
jusqu’à présent se limitaient aux corrections d’ordre le plus bas en ce qui concerne
les constantes de couplage électron-phonon. Il est conçu pour traiter les systèmes
à plusieurs électrons fournis par deux mers de Fermi dans les électrodes gauche
et droite. On a implémenté un modèle prenant en compte l’intéraction électron-
phonon où, la jonction moléculaire est couplée à son bain thermique (modes de
vibration moléculaire thermalisants) mais est découplée phononiquement des deux
électrodes, seules les fonctions de Green phononiques de la jonction sont néces-
saires. Il est donc pratique de travailler sur la base de ses modes de vibration
comme dans le cas du paquet d’ondes. Par ailleurs, un second modèle, que nous
voulions implémenter, consiste à relier phononiquement la jonction et les élec-
trodes. Dans ce cas, ce problème serait mieux traité en base déplacement avec la
matrice dynamique de chaque pièce et leurs couplages.

Ces méthodes ont été testées une première fois sur deux modèles 1D de deux
chaînes Ag reliées par une molécule de benzène ou de vanadium. Nous avons ob-
servé l’influence de la géométrie des molécules sur le transport des électrons avec
ou sans interaction électron-phonon et identifié les modes de vibration les plus im-
portants pour la propagation des électrons et des phonons. Les états moléculaires
du benzène participants au transport des électrons ont pu être révélés avec la prop-
agation de paquet d’onde. Nous avons constaté que l’orientation de la molécule
permet ou non l’accès des électrons par certains états moléculaires, induisant ainsi
une différence de transmission en fonction de l’orientation. Dans un second temps,
nous avons testé le couplage électron-phonon et la transmission photonique. Des
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modes de vibrations du benzène, qui ont été activés par la connexion entre les
électrodes et la molécule, participent grandement à l’interaction électron-phonon.
De plus, ces modes permettent aussi la propagation de paquet d’onde phononique
à travers la jonction pour certaines fréquences d’oscillations. Avec le formalisme
des fonctions de Green, nous avons aussi calculé différents types de courant. Cela
a permis en autre d’étudier des effets thermoélectriques tel que l’effet Seebeck,
Peltier ou encore l’effet Joule. En considérant un couplage électron-phonon, des
modes de vibrations induisent des sauts de conductance aux voltages correspon-
dants aux fréquences de ces modes.

Dans le deuxième exemple, nous avons considéré les jonctions Ag/vanadocène
afin de tester les interactions spin-spin. Sans tenir compte des interactions entre
spins, ce système privilégie la propagation d’électron avec une certaine orientation
de spin et permet donc un filtrage de spin. En ajoutant l’interaction spin-spin, cela
a induit une probabilité significative de spin-flip modifiant le taux de transmission
total.

Enfin, nous avons appliqué les deux méthodes aux matériaux 2D tels qu’une
mono-couche de phosphore noir ou de graphène avec des atomes de Co déposés sur
ces matériaux. En étudiant le phosphore noir, nous avons tout d’abord écrit un
article [2]. Dans lequel, nous expliquons l’implication des orbitales moléculaires
non liantes dans les mesures de microscope électronique à balayage (STM) sur un
solide de phosphore noir. Les orbitales non liantes, étant plus étendues en dehors
du matériau, sont plus sujets au recouvrement avec les orbitales de la pointe d’un
STM. Par la suite, nous nous sommes intéressés à modéliser le transport sur une
mono-couche. L’idée était de tirer profit de la structure "armchair" du phosphore
suivant une direction privilégié et de déposer une ligne d’atome de Co le long de
cette direction. Nous voulions étudier le transport suivant la direction orthogonale
à cette ligne de Co.

L’avantage de ce genre de système 2D, où la jonction est periodique suiv-
ant la direction perpendiculaire au transport, est que nous pouvons appliquer les
méthodes NEGF et paquet d’onde dessus. Ce pendant, nous nous sommes aussi
intéressés à un modèle dans lequel la jonction contient un défaut ponctuel. Sur
une mono-couche de graphène, nous testons la propagation d’un paquet d’onde
en deux dimensions. Avec une jonction où l’on dépose un atome de Co sur le
graphène, on peut ajouter l’interaction spin-spin dans les calculs.

Dans le futur, en plus du rapprochement d’une molécule en contact avec un
bain thermal avec la methode NEGF, nous allons mettre en œuvre une réalisation
avec laquelle la jonction est couplée à des conducteurs non seulement électron-
iquement, mais aussi par vibrations. Les interactions électron-photon peuvent
également être élaborées puisque formellement le formalisme est très similaire au
cas déjà mis en œuvre des interactions électron-phonon. Le calcul électron-phonon
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avec paquet d’ondes a été introduit avec un exemple d’un canal phonon, ce qui
fournit la probabilité d’excitation du phonon. Cependant, nous pouvons appro-
fondir ce modèle. On peut analyser la décohérence des électrons ou des phonons
en fonction du nombre de canaux que l’on simule. Nous pouvons étudier les trains
de paquets d’ondes via différents canaux et observer comment ils sont distribués
entre les canaux. Dans le futur, un projet plus ambitieux consistera à simuler si-
multanément la propagation d’un phonon et d’un électron pour observer comment
ils interagissent dans la jonction ou, à l’inverse, modéliser la manière de dissiper un
phonon créé par une interaction avec un paquet d’ondes électroniques. Le calcul
électron-phonon avec paquet d’ondes a été introduit avec un exemple d’un canal
phonon, ce qui fournit la probabilité d’excitation du phonon. Cependant, nous
pouvons approfondir ce modèle. On peut analyser la décohérence des électrons
ou des phonons en fonction du nombre de canaux que l’on simule. Nous pouvons
étudier les trains de paquets d’ondes via différents canaux et observer comment
ils sont distribués entre les canaux. Dans le futur, un projet plus ambitieux con-
sistera à simuler simultanément la propagation d’un phonon et d’un électron pour
observer comment ils interagissent dans la jonction ou, à l’inverse, modéliser la
manière de dissiper un phonon créé par une interaction avec un paquet d’ondes
électroniques.
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Chapter 1

Introduction

1.1 Motivation and state-of-the-art

The quantum transport field studies propagation and dynamics of various carriers,
such as electrons, phonons, magnons, etc. in different materials where quantum-
mechanical effects play an important role. They are important to be taken into
account in understanding the behaviour and properties of mesoscopic systems and
nanoscale devices with characteristic size smaller than the phase coherence length
so that quantum-mechanical nature of carriers is important. It has led to sev-
eral significant advancements in various fields such as field-effect transistors [3] or
molecular spintronics [4]. Modern transistors and integrated circuits were created
by the development of quantum transport models. Quantum transport domain
is at the origin of studies of Hall effect, magnetic tunnel junctions, quantum in-
terference in atomic and molecular junctions [5], etc. Quantum transport have
a crucial role in understanding and manipulating the behaviour of electrons in
quantum dots. The quantum dots have a unique electronic and optical proper-
ties which makes them useful in applications such as displays, solar cells [6, 7],
medical imaging, etc. One can mention many other domains such as spintronics,
quantum computing or quantum optics, for example, where quantum transport
and quantum effects have a determinant role in the advancement.

My PhD thesis is devoted to developing a general playground and computa-
tional platform which would allow simulating the quantum transport of different
channels (electrons and phonons at the first time) in atomic-scale junctions, as
illustrated schematically in Figure 1.1. An important ingredient was to take into
consideration various local interactions of propagating carriers within the junc-
tion. For example, we have implemented electron-phonon or spin-spin interactions
between conduction electrons and local adsorbates such as (possibly magnetic)
molecules. This can open the possibility to address many interesting phenomena

11
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e-

Interactions

Left lead Right lead
Central region (C)

HOT

phonons

COLD

Figure 1.1: Physical setup for our transport code: it represents a nanoscale junc-
tion connected to two leads. Various carriers, like electrons or phonons, propagate
through the junction and can moreover interact inside it. A gradient of tempera-
ture or a voltage can be applied between the leads to drive the motion of carriers.

such as, for example, energy conversion and various thermoelectric effects, or more
fundamental problems such as quantum entanglement between different degrees of
freedom or quantum decoherence effects due to inelastic interactions. In order
to be applied to real materials, we use the quantum mechanical framework based
on realistic electronic structure calculations performed with Quantum-ESPRESSO
(QE) package based on the Density Functional Theory (DFT). In conjunction with
Wannier90 and EPW codes, it is used to construct the Hamiltonian in the basis of
Wannier functions for electrons or calculate the Dynamical matrix for phonons as
well as to evaluate electron-phonon coupling constants in the real space represen-
tation (using EPW code). These are the key parameters for subsequent large-scale
transport simulations with our code.

Without interactions, i.e. in the elastic (or coherent) regime, quantum trans-
port is ruled by Landauer-Büttiker approach relating many transport properties
of interest to the quantum-mechanical transmission function for a carrier to prop-
agate across the junction. For electrons, it allows calculating the particle current
as well as the energy or the heat currents (from the Left or Right electrode to the
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b)  NEGF

RScattering region

a)  scattering approach

L

c)  Wave packet

Figure 1.2: Three main methods to compute the transmission and reflection func-
tions of different carriers.

central region) using the following expressions:

IL/R =
e

h

∫
dE T (E)[fL/R(E))− fR/L(E)]

IEL/R =
1

h

∫
dE E T (E)[fL/R(E))− fR/L(E)]

IQL/R = −QL/R =
1

h

∫
dE (E − µL/R) T (E)[fL/R(E))− fR/L(E)],

(1.1)

where T (E) is the total energy-dependent electron transmission function (including
two spin polarizations) and fL/R are Fermi-Dirac electron distribution functions of
the Left/Right lead kept at the chemical potential µL/R. The heat power released
in electrodes, QL/R, is opposite to the heat current going from the corresponding
electrode into the scattering region.

For phonons, the transmission function, τ(E), allows calculating thermal (en-
ergy) currents by:

IEL/R =
1

h

∫
dE E τ(E)[nL/R(E))− nR/L(E)],

where nL/R are now Bose-Einstein distribution functions of two electrodes.
The calculation of elastic transmission can be done by several methods [8].

Figure 1.2 demonstrates some of them.
Scattering approach:
It consists of calculating all transmission and reflection amplitudes, tij and rij,

for all Bloch states propagating from the Left electrode to the junction. These
scattering states can be calculated using wave function matching technique by di-
viding the whole system into the slabs and constructing the global smooth solution.
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Such a strategy is implemented in PWcond code [9] (a part of QE) for calculating
the electron transport directly after the SCF calculation using a plane wave basis.

Non-equilibrium Green’s functions (NEGF):
It is a widely-used method [5, 10, 11] where the elastic transmission is calculated

using the Green’s function of the central region and contact self-energies, ΣL/R,
describing its coupling to Left/Right electrodes. The method was extensively
applied to both electron and phonon transport.

Wave packet method:
It consists of a real-time simulation of a carrier propagation across the junction

[12, 13]. It can be evolved in time using different calculational techniques such as
direct solution of the Schrödinger equation, by evolution operator [14, 15] expanded
by Chebyshev polynomials, by Suzuki-Trotter time evolution, which decomposes
states in Trotter subspace, or by Krylov time evolution [16, 17]. The transmission
probability is given by the portion of the transmitted part of the wave packet.
The approach was applied to electronic wave packets, while propagation of atomic
vibrations was mainly treated by classical wave packets.

Different types of interactions can be accounted for in a relatively straight-
forward and established way into the last two approaches, with certain advantages
and drawbacks:

NEGF, interactions:
The full power of the NEGF formalism appears when going, however, beyond

the coherent transport regime of noninteracting carriers. Various many-body inter-
actions (such as electron-electron, phonon-phonon or electron-phonon), appearing
in the scattering region, can be conveniently included (in a perturbative way) by
adding the corresponding interaction self-energies to the contact ones [18, 19, 20].
That will result in an additional non-elastic corrections to the total charge currents.
NEGF can also be used for phonon transport [21] with electron-phonon interac-
tions. Anharmonic corrections due to phonon-phonon interactions in the junction
can be also included in a similar way by constructing the interaction self-energies.
Here, most calculations were performed using the lowest order Feynman diagrams
involving three-phonon processes (second-order corrections) [22, 23]. These many-
body effects were found to play an important role in reducing significantly the
thermal conductance of atomic-scale nanojunctions at high temperatures. Effects
of spin-flip processes on electron transport were also investigated with NEGF ap-
proach for quantum dots [24, 25] or for atomic chains [26] simulated by a magnetic
s-d model. Since the NEGF formalism becomes rather complicated and time-
consuming, most calculations so far were restricted to the lowest order corrections
with respect to electron-phonon coupling constants.
Advantages: It is designed to deal with many-electron systems provided by two
Fermi seas in the Left and Right electrodes.



1.1. MOTIVATION AND STATE-OF-THE-ART 15

Drawbacks: Interactions are treated perturbatively so that calculations are nor-
mally restricted to the lowest order corrections.

Wave packets, interactions:
A time-dependent approach based on wave packets with electron-phonon inter-

actions was presented by Monturet and Lorente [27] to model tight-binding chains
with few sites connected to vibrations. The spin-transfer phenomena were also
simulated based on wave packets and density matrix approach [28, 29] in order to
validate a semi-classical approximation.
Advantages: Non-perturbative solution; relatively easy to include time-dependent
perturbations and some other ingredients, such as magnetic field, for example.
Drawbacks: Difficult to simulate more than few carriers at the same time because
of entanglement of the full wave function.

Our code aims at implementing both NEGF and wave packet’s methods and
is going to compliment plane wave transport code PWcond, already integrated in
Quantum-ESPRESSO. In the NEGF, we include electron-phonon interactions in
the junction, similarly to [18, 19, 20], with the goal to study their effects on both
electron and phonon transport at the same time in a self-consistent way. Within
the wave packet approach, we implement a real-time quantum dynamics and prop-
agation of electron and phonon wave packets for 1D (molecular junctions) and also
for 2D (Graphene and others) systems. Phonon wave packets, in full analogy with
electrons, are constructed as a specific quantum superposition of single-phonon
states corresponding to different normal modes. We want to include furthermore
the effect of various interactions on the wave packet’s propagation. This has been
realized, firstly, for an electron interacting with local vibrations on the molecule
or with a local spin which follows closely to [27, 28]. Similar interactions can
also be considered for a phonon wave packet in the future. Note that in perspec-
tive also other kinds of interactions, like electron(or phonon)/photon, may be also
introduced in our code.

There are many DFT-based codes with different implementations of quantum
transport. Here some of them are listed:

The Quantum-ESPRESSO package [30, 31] proposes transport calculations
with the PWcond code. It is based on plane waves and solves the 3D scattering
problem, calculating all transmission and reflection coefficients.

The Dacapo code [32] is based on the plane-wave pseudopotential approach in
DFT calculations. It allows calculating various transport quantities with NEGF
methods such as conductance, current, transmission spectra. From this, Ref. [33]
develops ASE – the oriented object code in python implementing the DFT.

The code SIESTA [34] is a famous code which performs electronic structure
calculations based on DFT. It uses a localized basis set to describe the electronic
structure of the system. Transport is calculated with TranSIESTA [35, 36]) which
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uses the NEGF method.

Quantum ATK (Atomistix ToolKit) is a commercial software package devel-
oped by Synopsis [37]. It does DFT calculations employing a localized basis set
and more precisely the numerical atomic orbital (NAO) basis set. It performs
NEGF calculations [38]. The electron and electron-phonon calculations are done
with DFT, phonon transport calculations are done with Boltzmann equation [39].

Kwant [40, 41] is a Python package for numerical calculations of quantum trans-
port properties using a tight-binding model. It is based on the Landauer–Buttiker
formalism and wave packet propagation in multi-terminal setup. It is important to
note that Kwant focuses specifically on the numerical simulation of quantum trans-
port phenomena and does not provide electronic structure calculation capabilities
like DFT codes.

OpenMX is a DFT code working in plane wave basis set. It can perform
several calculations on electronic structure, including current calculations with
NEGF method.

KITE is an open-source software coded in python. It uses machine learning
to use DFT in tight-binding model without solving Konh-Sham equations [42]. It
calculates wave packet propagation using Chebyshev polynomials.

KNIT [43] is a python library which calculates the transport for multi-electrode
systems with NEGF method using tight-binding models.

GOLLUM and SMEAGOL [44, 45, 46] are transport codes based on DFT
packages such as Castep, VASP, ABINIT and Quantum-ESPRESSO interfaced
with Wannier90 for the first one, and with SIESTA for the second one. They
are both using Hamiltonians in user-defined tight-binding model or in localized
basis provided by DFT calculations. Historically, SMEAGOL was created first to
perform electron transport with the NEGF method. GOLLUM can calculate the
electron and phonon transport in multi-terminal geometries.

TB_Sim is a tight-binding code to compute the structural, electronic, op-
tical and transport properties of various nanostructures using Kubo or NEGF
formalisms for transport.

OMEN is a transport code based on semi-empirical tight-binding models. Car-
rier and current densities are calculated by injecting into the system electrons and
holes at different energies and solving their evolutions with the wave function or
the NEGF formalisms.
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1.2 Density Functional Theory

1.2.1 Hohenberg-Kohn theorems and Kohn-Sham equations

To describe the electronic structure of the system, one can begin with the Schrödinger
equation:

ĤsysΨsys = EsysΨsys. (1.2)

The total many-body Hamiltonian for N electrons and M nuclei is the sum
of kinetic energy terms and electron-nuclei, electron-electron, and nuclei-nuclei
interactions:

Ĥsys = −
N∑
i=1

ℏ2∇2
i

2m
−

M∑
A=1

ℏ2∇2
A

2mA

−
N∑
i=1

M∑
A=1

e2ZA

riA
+
1

2

N∑
i ̸=j

e2

rij
+
1

2

M∑
A ̸=B

e2ZAZB

RAB

(1.3)

As nuclei are much heavier (and so slower) than electrons, one usually applies
the adiabatic (or Born-Oppenheimer) approximation, which decouple the motion
of electrons and nuclei. One then arrives at the electronic Hamiltonian where
nuclei positions enter as external parameters:

Ĥ = −
N∑
i=1

ℏ2∇2
i

2m
−

N∑
i=1

M∑
A=1

e2ZA

riA
+

1

2

N∑
i ̸=j

e2

rij
= T̂ + V̂ + Ŵ (1.4)

containing kinetic T̂ , external single-body V̂ (due to electron-nuclei interactions)
and electron-electron Ŵ contributions and the electronic Schrödinger equation:

ĤΨ = EΨ. (1.5)

The solution of the two last equations gives the electronic wave function Ψ and
the electronic energy E. The total energy is then the sum of E and the constant
energy from nuclei-nuclei potential, since the latters are treated classically.

The Density Functional Theory (DFT) is a computational quantum mechanical
method used to calculate the electronic structure of many-electron systems and
provides a practical approach to study the properties and behaviour of atoms,
molecules and solids.

The main variable in DFT is the electron density which can be defined for any
many-electron wave function Ψ as:

n(r) = ⟨Ψ| n̂(r) |Ψ⟩ ,
n̂(r) = ψ†(r)ψ(r)

(1.6)

using second quantization representation and field operators, ψ†(r) and ψ(r), cre-
ating or annihilating an electron at r, respectively.
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The theoretical footing of DFT is based on two theorems provided by Ho-
henberg and Kohn in 1964 [47, 48]. The first Hohenberg-Kohn theorem states
that there are one-to-one mapping between external potential V , the ground state
electron wave function Ψ, and, further, the ground state density n(r):

V (r) ⇔ Ψ(r1, r2, ..., rN) ⇔ n(r). (1.7)

Therefore, all observables in the ground state are unique functional of the
electron density n(r), for example the wave function Ψ[n] itself, which is much
simpler since it depends on only one variable r.

The second Hohenberg-Kohn theorem states that the exact ground state den-
sity n0(r) corresponding to the external potential V (r) minimizes the energy func-
tional:

∂EV [n(r)]

∂[n(r)]
= 0, (1.8)

with
EV [n] = ⟨Ψ[n]| T̂ + Ŵ |Ψ[n]⟩+

∫
V (r)n(r)dr (1.9)

so that the ground state total energy is given by E0 = EV [n0].
In 1965, Kohn and Sham [49] proposed an efficient way to solve for n(r) map-

ping a “real” interacting electrons problem to the one of non-interacting electrons.
They suggested to rewrite the variational functional EV [n] in the following way:

EV [n] = Ts[n] +

∫
V (r)n(r)dr+ EH + Exc[n]. (1.10)

Here Ts[n] is the kinetic energy of non-interacting electrons, Ts[n] = ⟨Ψs[n]| T̂ |Ψs[n]⟩,
where Ψs[n] is the inverse of the last map in Eq. 1.7 for non-interacting electrons
and the Hartree energy correspond at

EH =
e2

2

∫ ∫
n(r)n(r′)

|r− r′|
drdr′ .

All remaining corrections are collected in the exchange-correlation functional,
Exc[n], which is unknown and needs to be approximated, in general.

The variational problem for so written functional is then equivalent to solution
of single-particle effective equations:[

− ℏ2

2m
∇2 + Veff(r)

]
ϕi(r) = ϵiϕi(r),

Veff (r) = V (r) + e2
∫

n(r′)

|r− r′|
dr′ + Vxc(r),

(1.11)
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where ϕi are the so-called Kohn-Sham (KS) orbitals of the non-interacting system
and Vxc(r) = δExc[n(r)]/δn(r) is the exchange-correlation potential. The ground
state electron density is then given by:

n0(r) =
occ.∑
i

|ϕi(r)|2 (1.12)

so that the KS equations have to be solved self-consistently. It is very important
to realize that the KS scheme would produce the exact ground state density n(r)
and, as a consequence, the total energy if one knew the exact exchange-correlation
functional.

Comparing two different forms Eq. 1.9 and Eq. 1.10 of the same functional,
one can see that the exchange-correlation energy corrects for both kinetic and
electron-electron terms:

Exc[n] = T [n]− Ts[n] +W [n]− e2

2

∫ ∫
n(r)n(r′)

|r− r′|
drdr′. (1.13)

In DFT, the exchange-correlation term is always approximated by different meth-
ods. We will discuss later in this chapter several methods of approximation.

1.2.2 Spin polarized systems

The DFT can also be extended to include external magnetic field B(r). The first
Hohenberg-Kohn theorem is generalized and establishes one-to-one mappings:

{V (r),B(r)} ⇔ Ψ(r1α1, r2α2, ..., rNαN) ⇔ {n(r),m(r)} (1.14)
where spin indexes αi for the electron i were also introduced.

The additional variable, the magnetization density m(r), is calculated as:

m(r) = ⟨Ψ| m̂(r) |Ψ⟩ ,

m̂(r) =
∑

α,β=↓,↑

ψ†(r, α)σα,βψ(r, β) (1.15)

with Pauli matrices:

σx =
( 0 1

1 0

)
, σy =

( 0 −i
i 0

)
, σz =

( 1 0
0 −1

)
. (1.16)

The Kohn-Sham scheme proceeds by introducing the total energy variational
functional EV,B[n,m] as follows:

EV,B[n,m] = Ts[n,m] +

∫
V (r)n(r)dr−

∫
B(r)m(r)dr+

e2

2

∫ ∫
n(r)n(r′)

|r− r′|
drdr′ + Exc[n,m],

(1.17)
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where exchange-correlation energy functional Exc depends now on both electron
and magnetization densities. Konh-Sham equations are written for two-component
spinor wave functions and state:∑

β

[(
− ℏ2

2m
∇2 + Veff(r)

)
δαβ − µBσαβBeff (r)

]
ϕi(r, β) = ϵiϕi(r, α)

Veff (r) =V (r) + e2
∫

n(r′)

|r− r′|
dr′ + Vxc(r)

Beff (r) =B(r)−Bxc(r)

(1.18)

and exchange-correlation potential and magnetic field are given by Vxc(r) = δExc/δn(r)
and Bxc(r) = δExc/δm(r), respectively. The ground state electron and magneti-
zation densities are calculated as:

n0(r) =
occ.∑
i

∑
α

|ϕi(r, α)|2,

m0(r) =
occ.∑
i

ϕ∗
i (r, α)σαβϕi(r, β)

(1.19)

where magnetic moment is expressed in units of magneton Bohr, µB = eℏ/2mc.
Note finally that instead of using n(r) and m(r) one can work with another set

of four variables, ñαβ(r), which compose the so-called density matrix defined as:

ñαβ(r) = ⟨Ψ|ψ†(r, α)ψ(r, β) |Ψ⟩ (1.20)

and can be calculated in terms of Kohn-Sham orbitals as:

ñαβ(r) =
occ.∑
i

ϕ∗
i (r, α)ϕi(r, β). (1.21)

The relation to the charge and spin magnetizations are provided by:

ñ(r) = Tr[ñ(r)], m(r) = Tr[ñ(r)σ] (1.22)

and vice versa:
ñαβ(r) =

1

2
[n(r)δαβ + σαβ ·m(r)] (1.23)

1.2.3 Exchange-correlation Energy Functional

Konh-Sham equations describe an auxiliary non-interacting system for a many-
electron problem. It is supposed to describe properly the ground state energy and
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the charge density if the exchange-correlation (xc) energy is exactly known, which
is not true in practice. We will discuss in this section main approximations which
are used to calculate it.

The first one, the most simple, is the Local Density Approximation (LDA),
which assumes that the total xc energy can be expressed as an integral of inde-
pendent local contributions, ϵxc, in the form:

ELDA
xc =

∫
dr n(r)ϵxc[n(r)], (1.24)

where the local xc energy, ϵxc(n), can be taken as the one for the infinite homo-
geneous electron gas with the same electron density n everywhere in space. Since
the LDA is the local approximation, it may not be very appropriate for describing
systems with rapidly changing electron densities or with important long range non-
local correlations. Despite this limitation, LDA remains a valuable tool in DFT,
and it is often used as a starting point for more complex exchange-correlation
functional which take into account other effects beyond the local density.

The Local Spin Density Approximation (LSDA) is similar to LDA and is used
in spin-polarized calculations. It takes into account both electron density and the
local magnetization:

ELSDA
xc =

∫
dr n(r) ϵxc[n(r), |m|]. (1.25)

One of the most popular parameterizations was proposed by Perdew and Zunger
[50], it consists in interpolating the accurate intermediate values obtained from
the quantum Monte Carlo data of Ceperley and Alder [51].

Generalized Gradient Approximation (GGA) includes the gradient of the elec-
tron density in addition to the electron density itself in the integral:

EGGA
xc =

∫
dr n(r) ϵxc[n(r), |m|,∇n(r),∇mz(r)]. (1.26)

This approximation contains more information than local information due to its
gradients ∇n and ∇m. PW91 [52] and PBE [53] are the most widely used
parametrizations of GGA which can be reliably used over a very wide range of
materials.

Typically (but not always), the GGA is more accurate than LDA. It is believed
to describe better, in particular, magnetic systems containing transition metal
elements like Co, Ni, or Fe. On the other side, the structural and electronic
properties of heavier elements, such as Au, Pt, or Ir are known to be treated
better within LDA approximation. We note finally that both (semi)local LDA and
GGA approximations are poorly applied to systems where non-local effects, strong
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correlations or self-interaction corrections may play an important role, such as
different types of oxides, molecular systems containing magnetic centers and many
others. For such systems more sophisticated (and time-consuming) functionals,
such as META-GGA, DFT+U, or different types of orbital-dependent and hybrid
functionals have been proposed in a variety of flavours [48].

1.3 Quantum ESPRESSO

Quantum-ESPRESSO (QE) is an open-source software package for electronic struc-
ture calculations and materials modelling based on DFT [30, 31]. It is widely used
by the scientific community for predicting the electronic, structural, and dynamical
properties of different materials. QE provides a suite of tools for performing var-
ious calculations, including ground-state calculations, excited-state calculations,
molecular dynamics simulations, and more. It can handle a variety of materi-
als, including solids, surfaces, interfaces, and molecules, and it supports a range
of exchange-correlation functionals such LDA, GGA, meta-GGA, and various hy-
brid functionals. The package includes several codes, such as PWscf (Plane Wave
Self-Consistent Field), which is the main program for performing DFT calcula-
tions. QE also provides a user-friendly interface, called PWgui, for setting up and
running calculations and many post-processing codes such as pp.x (to plot differ-
ent physical quantities such as the charge density or wave functions) or projwfc.x
(to calculate total, projected, and vacuum density of states). It also implements
different levels of parallelization on both shared-memory and distributed-memory
architectures.

1.3.1 Package PWscf (pw.x)

PWscf uses a plane-wave basis set to expand wave functions of electrons in periodic
systems, and uses pseudopotentials (PPs) to describe electron-ion interactions. It
employs norm-conserving (NC) or ultrasoft (US) PPs enabling to remove core elec-
trons from calculations and to replace the real valence wave functions by so-called
pseudo wave functions. The latter are much smoother and could be expanded
using smaller number of plane waves, which improves the computational efficiency
of calculations. The PPs can be split into a local part, V loc, and a non-local
part, V NL, which can be written by introducing so-called projector functions of
well-defined angular momentum l centered at an atomic site i:

V NL =
∑
i

∑
l,m

Di
l,m

∣∣βi
lY

i
l,m

〉 〈
βi
lY

i
l,m

∣∣ , (1.27)
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Figure 1.3: Self-consistent scheme of DFT calculations.
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where βi
l , Y

i
l,m, D

i
l,m are radial components of projector functions, spherical har-

monics and pseudopotential coefficients, respectively.
In PWscf, the electronic structure calculations are done using a self-consistent

field algorithm, where electronic wave functions and electron density are iteratively
updated until a convergence threshold is reached, as illustrated in Figure 1.3. First,
we give an initial guess for electron charge density, which allows to construct
the effective potential. From this, it solves the Kohn-Sham equations to obtain
eigenvalues and eigenfunctions. A new electron density is recalculated from these
eigenfunctions using Eq. 1.12. At each iteration, it is verified if the difference
between the previous and the new electron density is less than the convergence
threshold fixed by the user. If convergence is not achieved, it recalculates again the
effective potential with the new electron density, otherwise the system is considered
being well described with the calculated charge density and electron levels. The
convergence criteria for the self-consistent field iterations can be adjusted by the
user.

PWscf can perform a variety of calculations, including total energy calcula-
tions, geometry optimizations, electronic spectra, and more. It can also calculate
the electronic and magnetic properties of materials (with collinear or noncollinear
order), such as band structures, density of states, magnetic moments, and magnetic
anisotropy energies related to spin-orbit interactions.

1.3.2 Package PHonon (ph.x)

PHonon is a code included in Quantum-ESPRESSO that calculates the vibra-
tion properties of a variety of structures, including crystalline systems as well as
isolated molecules. The theory behind PHonon is based on density functional
perturbation theory (DFPT) [54, 55, 56] which can compute vibrational modes
for any wave vector using only self-consistent calculations in a primitive unit cell
(contrary to the frozen phonon method employing a supercell geometry). It uses
the harmonic approximation, where the atoms oscillate around their equilibrium
positions with small amplitudes. Thus, the total energy of the ion-electron system
in the adiabatic approximation (Eq. 1.4), known as the Born-Oppenheimer energy
surface, is expanded in a Taylor series around equilibrium positions with atomic
displacements, xiαR:

E = E(0) +
∑
iαR

∂E

xiαR
xiαR +

1

2

∑
iαR

∑
i′α′R′

∂2E

∂xiαR∂xi′α′R′
xiαRxi′α′R′ + ... (1.28)

where i, α, and R stand for the atom in the unit cell, Cartesian direction, and the
Bravais lattice vector, respectively.

The first derivatives of the total energy correspond to the linear response of
the system to external perturbation. They define atomic forces, which can be
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calculated using the Hellman-Feynman theorem as:

FiαR = − ∂E

∂xiαR
= −⟨Ψ| ∂HKS

∂xiαR
|Ψ⟩ , (1.29)

where HKS is the Kohn-Sham Hamiltonian and Ψ is the ground state wave func-
tion. In the absence of external perturbations, the forces are zero at equilibrium.

Second-order terms define the Dynamical matrix given by:

DiαR,i′α′R′ =
1

√
mi mi′

∂2E

∂xiαR∂xi′α′R′
, (1.30)

where mi are atomic masses. The eigenvalues and eigenvectors of the Dynamical
matrix provide phonon frequencies and polarization vectors of the corresponding
mode, respectively.

In order to calculate the dynamical matrix, ph.x performs SCF calculations for
a set of all inequivalent atomic displacements in the primitive cell which is much
more time-consuming than the usual SCF calculation (roughly by a factor of 3N,
where N is the number of atoms in the unit cell). The Dynamical matrix then
can be calculated in the real basis using q2r.x code, and the phonon bands can be
plotted on a specified k-path using matdyn.x routine.

Advanced features of the PHonon package include the calculation of third-order
energy derivatives, Raman parameters, phonon–phonon interaction coefficients etc.
The PHonon package also allows to calculate electron-phonon matrix elements in
Konh-Sham basis for electrons and mode basis for phonons. They can be used
for evaluating electron-phonon (Eliashberg) spectral function for estimation of su-
perconducting critical temperature. PHonon contains also some capabilities to
calculate electron-phonon coefficients in the Wannier basis but we have decided to
use for that purpose the EPW code (described below) implementing a calculation
of a variety of properties related to electron-phonon interactions.

1.3.3 Package Wannier90

Wannier90 is a software package for calculating maximally localized Wannier func-
tions (MLWFs) [57, 58, 59] using band structure calculations from plane wave codes
such as, for example, Quantum-ESPRESSO. MLWFs provide a real-space repre-
sentation of the electronic structure, and they are often used to study and analyse
the properties of materials, such as the electronic band structure, topological prop-
erties, response functions, etc.

Wannier functions have been introduced by Gregory Wannier in 1937 as a way
to describe the electronic structure of a periodic crystal in a real space. They are
defined by a unitary transformation of the Bloch wave functions:

ψnk(r) = unk(r)e
ik·r (1.31)
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which are eigenstates (associated with band n and wave vector k) of the periodic
crystal Hamiltonian. Functions unk are translationally periodic:

unk(r+R) = unk(r)

with R being Bravais lattice vectors.
The idea behind Wannier functions is to provide a more intuitive and physi-

cal representation of the electronic structure than Bloch wave functions with the
inverse transformation:

WnR(r) =
V

(2π)3

∫
BZ

ψnk(r)e
−ik·Rdk, (1.32)

where V is the main volume for normalization of wave functions. It returns wave
functions localized at the lattice vectors R.

This procedure works relatively well for the case of isolated bands producing
one-to-one correspondence. For more complex cases, we have to use a more general
transformation matrix U to pass from bands m to orbitals n basis:

WnR(r) =
V

(2π)3

∫
BZ

[∑
m

Unm(k)ψmk(r)

]
e−ik·Rdk (1.33)

The transformation is designed to produce a set of functions localized as much
as possible in real space, meaning with a well-defined position and sharply peaked
around a particular atomic site. For this, they are searched in such a way to
reduce the spread Ω defined as the sum of the second moments of all the Wannier
functions in a reference cell [58]:

Ω =
∑
n

[⟨0n| r2 |0n⟩ − ⟨0n| r |0n⟩2], (1.34)

where |0n⟩ are Wannier functions in the cell "0".
Wannier functions have a wide range of applications in the study of materi-

als, including the calculation of transport properties, the analysis of topological
insulators, and the study of polarization and other response functions. They are
also used in the construction of tight-binding models, which provide a simplified
description of the electronic structure of a material in terms of a few parameters.

The Wannier90 code works by performing a unitary transformation of the Bloch
eigenstates to obtain a set of MLWFs that are maximally localized in real space.
This transformation is done using the following steps:

– first, generate a set of initial Wannier functions. These can be chosen arbi-
trarily, but it is often convenient to use the atomic orbitals of constituent atoms.
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– secondly, project the Bloch eigenstates onto the initial Wannier functions to
obtain a set of projections.

– thirdly, use the projections to construct a unitary transformation matrix that
minimizes the spread of the MLWFs. The spread is a measure of the extent of the
Wannier functions in real space, and the minimization procedure ensures that the
MLWFs are the most localized.

– finally, apply the unitary transformation matrix to the Bloch eigenstates to
obtain the MLWFs.

To use the Wannier90 code, you typically need to provide the code with a set
of Bloch eigenstates, calculated with an NSCF run and with usually more bands
than in SCF calculation, and a set of crystal coordinates that define the periodicity
of the system. The code also requires various input parameters that control the
calculation, such as the number of MLWFs to be generated and the convergence
criteria for the minimization procedure. The resulting Wannier functions can be
used to calculate a wide range of properties, such as charge density, band struc-
tures, density of states and many others. The Wannier90 code also includes tools
for visualizing the MLWFs (with the software xcrysden in the format "xsf" for
example) and calculating various transport properties.

1.3.4 Package EPW (epw.x)

Electron-phonon coupling appears when the self-consistent DFT potential is ex-
panded around equilibrium atomic positions:

HKS(X) = H0
KS +

∑
iαR

∂VSCF

∂XiαR

∣∣∣∣
x=0

XiαR (1.35)

where the first term, H0
KS = −(ℏ2/2m)∇2 + VSCF (X = 0), is the Kohn-Sham

Hamiltonian at the equilibrium and XiαR are (reduced, see Eqs. 2.47) atomic
displacements of the atom i at the lattice vector R in the Cartesian direction α.
In the second quantization, the displacements become operators (as we will discuss
later) given by Eq. 2.73:

X̂iαR =
1√
N

∑
qν

√
ℏ

2ωqν

V qν
iα e

iqR
[
b̂qν + b̂†−qν

]
, (1.36)

where b̂qν and b̂†−qν are phonon’s annihilation and creation operators of the qν vi-
brational mode described by its polarization vector V qν

iα . Inserting this expression,
the electron-phonon interaction term in the second quantized form can be cast into
the form:

Ĥe−ph =
∑

kmn,qν

gmn,ν(k,q)c
†
k+q,mck,n

[
b̂qν + b̂†−qν

]
, (1.37)
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where c†k,n and ck,n are creation and annihilation operators for an electron of the
wave vector k and the band n.

Electron-phonon coupling constants, gmn,ν(k,q), can be written using deriva-
tives of the KS potential along a given vibrational mode, ∂qνVSCF , as follows:

gmn,ν(k,q) =

√
ℏ

2ωqν

⟨ψm,k+q| ∂qνVSCF |ψn,k⟩ . (1.38)

with ∂qνVSCF related to derivatives in atomic basis by:

∂qνVSCF =
1√
N

∑
iαR

V qν
iα e

iqR∂XiαR
VSCF (1.39)

which follows from Eq. 1.36.
In order to evaluate accurately various material properties related to electron-

phonon interactions such as superconducting temperatures, scattering rates, elec-
tron or phonon lifetimes, and so on, a very fine mesh in reciprocal space is often
required.

The EPW (Electron-Phonon Interactions using Wannier functions) [60, 61,
62] is designed to accomplish this task. It makes use of Quantum-ESPRESSO
package to calculate the electronic structure and phonons (with ph.x code) and
Wannier90 to construct maximally localized Wannier functions (MLWFs). The
strategy of EPW is then to construct electron-phonon coupling elements in a real
space representation for both electrons (in the basis of Wannier functions) and
phonons (in the basis of atomic displacements):

gmn,iα(R
′,R) = ⟨m0| ∂XiαR

VSCF |nR′⟩ (1.40)

where |nR′⟩ are electronic Wannier function n in the cell R′.
First, coupling matrices in reciprocal space, g(k,q) (Eq. 1.38), are calculated

on a coarse grid of k and q from the data provided by pw.x and ph.x (providing
also the derivatives of the SCF potential) runs. Then real space coupling matri-
ces, g(R′,R) (Eq. 1.40), are constructed from reciprocal space ones by Fourier
transformation [63, 64]. In the second step, the inverse Fourier transformation
is applied back to real space matrices in order to interpolate g(k,q) on a much
denser mesh of k and q vectors.

For our transport code, we need to save real space couplings gmn,iα(R
′,R) calcu-

lated by EPW at the intermediate stage. These parameters, written in appropriate
format, will be next used in our transport calculations.
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Figure 1.4: Calculational scheme of our transport code.

1.4 Introduction to our transport code and my con-
tribution

The choice of computational path through different codes presented in previous
sections depends on the type of system (magnetic or not) and the carrier transport
we want to study. As it is shown in Fig. 1.4, it starts with SCF calculation followed
by either NSCF (for electrons) or PHonon (for phonons) runs. Our model is based
on a system composed of a periodic lattice (lead), large enough to propagate a
carrier, and a junction (a molecule, for example) introduced in the centre of the
system.

The total Hamiltonian driving the propagation of a carrier is then given by:

Ĥ = Ĥlead + Ĥcenter + Ĥlead−center (1.41)
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with two first terms describing the perfect lattice and the central region, while the
third term contains the coupling between them. Two first terms can be calculated
separately. The supercell describing the central part should contain enough of
the lead-like units cells in all directions to approach the lead-like potential on
the boundaries. Thus, the transport code considers the central region edges as a
prolongation of the lead.

The calculations with electron’s Hamiltonian and Dynamical matrix (governing
the phonon dynamics) are already implemented. The electron-phonon couplings
can be extracted from EPW calculations, and exchange spin-spin interactions in
the case of magnetic junctions can be calculated from spin-dependent DFT Hamil-
tonians. It is possible in the perspective to add some other types of carriers and
other interactions. In next chapters, we will discuss in more detail different types
of transport calculations implemented in our code and present some test examples.

I discuss finally my contributions to the code. On the time of my arrival, the
transmission calculation via the NEGF method was already implemented for elec-
trons and phonons. Moreover, it was already possible to simulate the dynamics of
wave packets with the Schrödinger method. I have started by implementing the
wave packet propagation with Chebyschev method. This algorithm works much
faster than the Schrödinger method, reducing the computation time by the factor
of 100. I have also suggested to use EPW to extract electron-phonon couplings in
order to work in the same electron basis as provided by Wannier90 code. I con-
tributed to the calculation of the phonon Hamiltonian too. I have also implemented
the spin-spin interaction for magnetic junctions and developed the formalism of
the 2D wave packets.

For NEGF calculations, our initial goal was to calculate the electron and
phonon currents in a self-consistent way taking into consideration electron-phonon
interactions in the junctions affecting both electron and phonon channels – a "full
approach" implying a self-consistent loop over electron and phonon Green’s func-
tions. I have started by working on the elastic currents implementation from the
transmission functions already implemented in the code, for both electrons and
phonons. I contributed next to the development of the current calculation with
the electron-phonon interactions for electrons in the model of a junction (molecule)
coupled to its own thermal bath and described therefore by a bare phonon Green’s
function. I have further started to implement the phonon’s current calculation in
inelastic regime and also to model the electron current by renormalising electronic
Green’s functions with a dressed phonon Green’s functions due to phonon con-
tacts. We still need to test carefully these preliminary implementations, and few
further steps will be needed to achieve our final objective.

I would emphasise again that our code implements a quantum description of
electron and phonon carriers based on realistic parameters extracted from ab initio
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DFT calculations and should therefore apply to a variety of real materials such as
1D molecular junctions, 2D systems or material interfaces, to study different kinds
of electron and phonon related phenomena.





Chapter 2

Wave packet

Wave packet (WP) methods are well studied and widely used approaches in trans-
port field [12]. WP dynamics can be simulated by different methods. The simplest
one consists in applying directly the Schrödinger equation [65, 13] to evolve in time
the wave function. It can also be resolved by using Green’s functions [66]. An-
other way consists in calculation of an evolution operator using different methods.
Halimed et al. [15] compare the Chebyshev method with the Krylov’s one, and the
Suzuki-Trotter time evolution and conclude that Chebyshev method may be more
efficient and fast. Some codes already implement this scheme with and without
including interactions. So far, the wave packet method was developed to study
phonon transport either with Boltzmann equation [67, 68] or within classical or
semi-classical approaches. Moreover, electron-phonon interactions were included
mainly for model systems as in Ref. [27]. Our contribution consists in proposing a
quantum-mechanical treatment of a phonon dynamics using a single-phonon wave
packets constructed in the real space. We also developed a framework to perform
calculations on the same footing for electrons and phonons, including electron-
phonon or spin-spin interactions, with realistic parameters describing real 1D and
2D systems.

2.1 Wave packet model
In a periodic lattice, quasi-particles as electrons or phonons are delocalized and
can be treated as Bloch waves characterized by their wave vector k. The localized
state of the particle can be described by a function describing the probability’s
amplitude to find a carrier in a specific point in space. The WP will typically have
a finite width, which reflects the uncertainty in the position of the particle. The
wave function describing our propagating particle can be defined as:

ψ(ri) = F (ri)ϕk(ri) (2.1)

33
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where ri runs over all the orbitals of the system. This function is the product of the
envelope function F (ri) defining the shape and localization of WP and the Bloch
wave function ϕk(ri) encoding all the information on the direction of propagation,
the velocity or the phase of the wave function.

Figure 2.1: Schematic representation of a simulated system with a propagating
carrier scattered on a perturbed central region.

The total number of orbitals Ntot includes the orbitals of the central part NC

and of the lead NL. As the lead is a periodic lattice, it can be defined by the
primitive cell, which reduces the memory allocation for calculations. In this way,
the total number of orbitals in the lead NL is expressed with the number of orbitals
per cell, Norb, and the number of cells in the lead, Ncell, as NL = Norb×Ncell. With
WP, we work with large scale systems, represented in Figure 2.1. The probability
to find a carrier in a cell is represented by |ψ|2, which has a Gaussian shape due
to the envelope function F (r). The white boxes represent infinite lead’s cells. The
cells overlapping with molecular junction supercell are represented in grey. In
green, we represent the cell Rmol related to the molecule and few possible orbitals
of the lead perturbed my the molecule. We can notice that the model is valid for
2D systems as well as for 1D system if the number of cells in y direction is set to
one. The total number of orbitals can be expressed as:

Ntot = Norb(Ncell − 1) +NC .

Then, all carriers coming from the lead evolve according to the lead Hamiltonian
ĤL. The first property we can extract from this Hamiltonian is the band structure,
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which gives the energy, E(k), as a function of wave vector k. To do this, one makes
a Fourier transformation of the lead Hamiltonian to reciprocal space:

HL
mn(k) =

∑
R

ĤL
0m,Rne

ikR, (2.2)

where the first index was fixed at the cell 0 and the sum runs over all cells, R, of
the periodic lead. It can be noticed that the matrix HL(k) has the dimension of
Norb ×Norb and is Hermitian. It can be diagonalized as:∑

n

HL
n′n(k)Unm(k) = Em(k)Un′m(k)

where its eigenvalues, Em(k), give energy bandsm and eigenvectors, Unm(k), define
wave functions on the orbital n. The wave function, corresponding to the state
km, can be then written as the Bloch function:

ϕkm(R, n) = Unm(k)e
ikR (2.3)

at the orbital n in the cell R. The band structure (or phononic dispersion for
phonons) is used to select the Bloch state at the energy of interest, determining
possible k and m as transport channels. The initial wave function of Eq. (2.1) can
be then constructed as:

ψ(R, n) =
1

c
F (R)ϕkm(R, n), (2.4)

where c is the normalizing constant, and should be evolved in time with the full
Hamiltonian. This wave function is associated with a carrier in the lead with
the selected energy we want to propagate. In the majority of cases, the envelope
function F to be used has a simple Gaussian shape:

F (R) = e−
|R−R0|

2

σ2 (2.5)

and is defined by two parameters, the initial cell position, R0, and the width of
the packet controlled by σ.

After defining the wave function, we focus now on the propagation properties.
The velocity and the direction of an electron in the lead is required to know where
to send the electrons. In theory, the group velocity is determined by the lead band
dispersion, the derivative of the band energy with respect to the wave vector,
Vk = ∇kE(k)/ℏ. However, computing this expression involves working on a dense
k-grid and is not numerically very accurate. Instead, one can use the definition of
the velocity operator as the time derivative of the position operator expressed in
the Heisenberg representation r̂(t), which leads to:

V̂ =
dr̂(t)

dt
=

1

iℏ
[r̂, ĤL] (2.6)
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Consider now the Bloch function in Eq. 2.3. Its velocity in the x direction will be
given by:

Vx = ⟨ϕ| V̂x |ϕ⟩ = − i

ℏ
⟨ϕ| x̂ĤL − ĤLx̂ |ϕ⟩ (2.7)

The expression for the velocity can be written in terms of orbital positions and
Hamiltonian elements:

Vx = − i

ℏ
∑
ni′

ϕ(n)∗
[
xnH

L
ni′ −HL

ni′ xi′
]
ϕ(i′), (2.8)

where n is restricted to the unit cell 0 while i′ runs over all the orbitals of the
lead. Using now explicit Bloch form in Eq. 2.3 one can rewrite the expression in
the final form:

Vx = − i

ℏ
∑
nn′,R

ϕ(0, n)∗
[
x0,nH

L
0n,Rn′ −HL

0n,Rn′ (Rx + x0,n′)
]
ϕ(0, n′)eikR, (2.9)

where now n, n′ run over the unit cell 0.
In this section, we constructed our wave packet in the lead part as a propagating

Bloch function enveloped with a Gaussian function. Moreover, we defined some
tools for Wave packet propagation as the band structure and the velocity which
allow us to select the state at the specific energy Em(k). In next, we will focus on
how to propagate the wave function we constructed.

2.2 Carrier propagation

2.2.1 Evolution by Schrödinger equation method

Figure 2.2: Algorithm of wave function propagation by the Schrödinger equation.
The time, represented under the evolution axis, is discretized in N +1 steps. Each
time corresponds to a wave function ψ above the evolution axis. The time step
tn+1 − tn is dtn represented in red. The differential of the wave function between
time tn and time tn+1 is dψ(tn) (represented in red).
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The most simple way to propagate a Wave packet is to compute on several
time steps the wave function. As shown in Fig. 2.2, we discretize the time tn to
which we associate a wave function at this time ψ(tn). We pass from a time to
the next one by the time step tn+1 = tn + dtn (in our case, we consider a constant
step in time dtn = dt). We use the same process for wave functions:

ψ(tn + 1) = ψ(tn) + dψ(tn). (2.10)

To calculate the partial derivative of the wave function over the time, we use the
time dependent Schrödinger equation:

iℏ
dψ(tn)

dt
= Ĥψ(tn)

⇐⇒ dψ(tn) = − i

ℏ
Ĥψ(tn)dt.

(2.11)

Starting from the wave packet we initialized in the previous section, we calcu-
late iteratively the wave function at each step from the previous time with the
expression:

ψ(tn + 1) = ψ(tn)−
i

ℏ
Ĥψ(tn)dt . (2.12)

This method is straightforward. In case if we want to apply a Hamiltonian with
a time dependence, we can modify at each iteration the Hamiltonian. However,
it is time-consuming to calculate the product Ĥψ(tn) for huge systems and at the
fine grid of time steps. Moreover, the dependency on the previous step makes it
difficult to implement parallel calculations.

2.2.2 Evolution with Chebyshev polynomials

There are many publications on time evolution of quantum wave packets. Various
methods, improving on direct use of the Schrödinger equation, have been proposed
implementing the computation of the evolution operator:

Ŝ(t2, t1) = e−
i
ℏ Ĥ(t2−t1). (2.13)

Chebyshev polynomials have various applications in mathematics and physics,
including the computation of the evolution operator. In particular, Chebyshev
method was used in many studies on spin polarized systems [69] and with electron-
phonon interactions too [70]. This method allows to calculate the diffusion and
the conductance too [71, 14]. With this method, one is able to calculate the
wave function |ψ(tn)⟩ directly from the initial wave function |ψ(t0)⟩ at any time
of interest:

|ψ(tn)⟩ = Ŝ(tn, t0) |ψ(t0)⟩ . (2.14)
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The evolution operator is often used to solve differential equations numerically.
Thereafter, we will consider the operator of interest as a complex function of the
Hamiltonian Ŝ = f(Ĥ) (the evolution operator being the exponential function).
To calculate it we approximate the operator as the polynomial sum up to the
order N as f(Ĥ) ≈ RN(Ĥ). First, we define orthogonal polynomials as a basis of
polynomials Pn with the hermitian product between them defined as:

(Pm|Pn) =

∫
Pm(E)Pn(E)n(E)dE = δmn (2.15)

with some specific density function, n(E). These polynomials satisfy recurrence
relations:

E Pn(E) = an Pn(E) + bn−1 Pn−1(E) + bn Pn+1(E) , (2.16)

with some an and bn coefficients being real and positive. The goal is therefore
to find the best polynomial approximation of an operator f(Ĥ), i.e. the one that
gives the best accuracy at a given numerical cost. For an order N , the polynomials
which minimize the difference between RN(Ĥ) and f(Ĥ) have the form [67]:

RN(Ĥ) =
N∑

n=0

(Pn|f)Pn(Ĥ). (2.17)

In the orthogonal polynomial’s theory, the polynomial RN(Ĥ) converge to the
operator f(Ĥ) when N → +∞. From this, we can try to solve Eq. 2.14 by
developing the product of f(Ĥ) and a state |ψ⟩:

f(Ĥ) |ψ⟩ = lim
N→+∞

RN(Ĥ) |ψ⟩ = lim
N→+∞

N∑
n=0

(Pn|f)Pn(Ĥ) |ψ⟩ . (2.18)

Let N be the degree of the expansion for which we estimate that the accuracy is
sufficient. We then have to calculate numerically the sum:

f(Ĥ) |ψ⟩ ≈
N∑

n=0

(Pn|f)Pn(Ĥ) |ψ⟩ . (2.19)

The coefficients (Pn|f) depend on the kind of polynomials we use. This part of
the calculation of Eq. 2.19 is not computationally expensive. On the contrary,
the calculation of |ψn⟩ = Pn(Ĥ) |ψ⟩ will run over Ntot ×Ntot elements for each N
vector. The computer memory will be able to store few of them in the same time.
Thus, we have to save the sum of them at each iteration. |ψn⟩ can be expressed
from Eq. 2.16 which gives:

bn |ψn+1⟩ = Ĥ |ψn⟩ −
N∑
m

CP |ψm⟩ , (2.20)
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where CP is a tri-diagonal matrix composed of a and b coefficients:

CP =


a0 b0 0 ... ... 0
b0 a1 b1 ... ... ...
... \ \ \ ... ...
0 ... bn−1 an bn 0
... ... ... \ \ \

 . (2.21)

We initialize the 0 and 1st orders, and we can write the general expression for the
term n+ 1 as a function of n and n− 1 terms:

|ψ0⟩ = P0(Ĥ) |ψ⟩ = |ψ⟩

|ψ1⟩ =
Ĥ

b0
|ψ0⟩ −

a0
b0

|ψ0⟩

|ψn+1⟩ =
Ĥ

bn
|ψn⟩ −

an
bn

|ψn⟩ −
bn−1

bn
|ψn−1⟩ .

(2.22)

In this way, we need to store only 3 vectors at the same time for each n+1 iteration
which allows to reduce a memory consummation.

In the case of Chebyshev polynomials, the density function is of the form,
n(E) ∝ 1/

√
[1− (E − a)2/4b2]. Recurrence coefficients are constants, an = a

and bn = b, and are defined by the energy window W of the system’s spectrum,
W = max(Ĥ)−min(Ĥ), a corresponds to the middle point of the spectrum and
2b = W/2. To be sure to converge, we take a second energy window:

W = 2
(
max(Ĥ)−min(Ĥ)

)
. (2.23)

For Chebyshev polynomials, (Pn|f) for exponential function are expressed in terms
of Bessel functions Jn(x). These coefficients are initialized at the beginning as:

(P0|f) = e−
i
ℏatJ0(−

2bt

ℏ
) , (2.24)

and are given for other orders by:

(Pn|f) = (−i)n
√
2 e−

i
ℏatJn(−

2bt

ℏ
) . (2.25)

In our code, we put as a parameter the convergence criteria α defined by

α =
e1Wt

4ℏ(N + 1)
, (2.26)

which takes values in the interval 0 ≤ α ≤ 1. These criteria indicate if the N
polynomial degrees are adequate to describe the evolution operator for a time
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difference t and an energy windows W . The lower is α, the better is the precision
of calculation, and thus the wave packet do not diverge in time. We extract the
power N from Eq. 2.26 as a function of α and a maximum time t:

N =
eWt

4ℏα
− 1. (2.27)

The strength of the Chebyshev method is in its efficiency and the rapidity of calcu-
lation. The heaviest part is the calculation of |ψn⟩, it has to be done once for differ-
ent time steps evolution. The time dependent part is in coefficient (Pn|f). We note,
however, that within this method the Hamiltonian has to be time-independent
which limits its applicability to some extent, but for majority calculations, the
Chebyshev method is widely used and very much appreciated. Now, we will dis-
cuss different models of propagation with interactions.

2.3 Different models of propagation

2.3.1 Electron-phonon interaction

The first model of propagation we implement, similar to Mingo et al. [1], is based
on the Frölich-like Hamiltonian:

Ĥ = Ĥe + Ĥph + Ĥep, (2.28)

where Ĥe is the electronic Hamiltonian, Ĥph represents the phonon system and
Ĥep is the electron-phonon coupling term.

Electron Hamiltonian can be expressed in the tight-binding form as follows:

Ĥe =
Ntot∑
jj′

tj′j ĉ
†
j′ ĉj (2.29)

where ĉ†j and ĉj are creation and annihilation operators at the site j and tj′j are
hopping parameters.

For phonons, Ĥph can be expressed in vibration mode basis. As for electrons,
this Hamiltonian is composed of creation (b̂†) and annihilation (b̂) operators, for
the mode λ:

Ĥph =
∑
λ

ℏωλ

(
b̂†λb̂λ +

1

2

)
(2.30)

Electron-phonon couplings, Eq. 1.40, are written in the basis of Wannier or-
bitals and atomic displacements. As we consider interactions only in the junction,
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the periodicity brought by the displacement basis is less appropriate than the vi-
bration mode basis. With the expression of the displacement operator Eq. 1.36,
the electron-phonon couplings have the following expression in the vibration mode
basis [19]:

gλj′j =
∑
iα

√
ℏ

2ωλ

V λ
iαgj′j,iα(0; 0), (2.31)

where λ should replace {qν} and the translational vectors, R,R′, for the supercell
of the junction are set to 0 to single out all the displacements and Wannier functions
in the unit cell "0".

From this, the interaction term Ĥep can be rewritten as:

Ĥep =
∑
j′jλ

gλj′j ĉ
†
j′ ĉj(b̂

†
λ + b̂λ) (2.32)

j j′ 

j′j

Figure 2.3: Vertex describing the scattering of an electron from the state j to the
state j′ and excitation/absorption of a phonon in the mode λ.

This expression is visualized in Figure 2.3. Blue arrows describe the electron
coming from the site j and departing from the site j′ after the interaction. During
the interaction, a phonon with a mode λ, represented in a green wave, can be
created or annihilated. This interaction is characterized by the electron-phonon
element gλj′j. It can be noticed that the energy of the electron is different between
the site j and the site j′.

The total wave function of the system |Ψ⟩ described by the Hamiltonian (2.28)
can be generally written as a superposition:

|Ψ⟩ =
∑
jn

ϕn(j) · |j⟩ ⊗ |n⟩ , (2.33)
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where |j⟩ and |n⟩ describe an electron on the site j and a phononic state with
n phonons in a chosen mode λ, respectively, the products of which make up the
basis states for the total system. For simplicity, we restrict here our discussion to
only one active mode λ but the approach is straightforwardly generalized to the
multi-mode case.

This state can not be in general represented as a simple product of the electronic
wave function |ψe⟩ and the phononic wave function |ψph⟩:

|ψe⟩ =
∑
j

Aj |j⟩

|ψph⟩ =
∑
n

Bn |n⟩ ,
(2.34)

because ϕn(j) can not be generally factorized:

ϕn(j) ̸= AjBn

representing generally an "entangled" state of the composed electron-phonon sys-
tem.

Note that even if it were the case and:

|Ψ⟩ = |ψe⟩ × |ψph⟩ . (2.35)

at the initial moment, the state will get "entangled" at later times due to el-ph
interactions and will evolve into the general form of Eq. 2.33.

In our model, represented in Fig. 2.4, the electronic wave packet ϕ0(j) rep-
resented by (0) is initially on the chain with no phonons. It propagates to the
molecular junction and at (1) interacts with a molecule and will be able to create
or annihilate phonons with a certain probability, led by interaction term Ĥep. At
later times, the probability to find an electron (2) is redistributed over different
phononic channels. Each channel corresponds to a different number of phonons,
and an electron is described with the wave function ϕn(j). Note that the total
energy, E = Ee + Eph, is conserved, therefore electron wave packets propagate
slightly slower when the number of phonons increase.

We note finally that the probability to have n phonons in the system, Pn, after
interactions is given by:

Pn = ⟨n|Ψ |n⟩ =
∑
j

|ϕn(j)|2 (2.36)
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Figure 2.4: Schematic illustration of the model for the electron wave packet prop-
agation, including the electron-phonon interactions at the junction. j represents
electronic sites of the system, j = [1;N ], while n is the number of phonons in the
mode of interest.

Similarly, the probability of an electron to be found at the site i, Pi, is expressed
as:

Pi = ⟨i|Ψ |i⟩ =
∑
n

|ϕn(i)|2 (2.37)

because of orthogonality of phononic states |n⟩. It means, for example, that the
only electron subsystem after all the interactions is not in a pure state but is rather
described by a statistical mixture of electronic states |ϕn⟩.

2.3.2 Spin-Spin interaction

We now turn to the second model of interactions, namely spin-spin interactions
between the conduction electron and the local spin (of a magnetic molecule, for
example). In Quantum-ESPRESSO, we have a possibility to calculate systems
polarized in spin by inducing a starting magnetization on some atoms and letting
the system relax during SCF calculation. The magnetic interaction we implement
is inspired by the famous s-d or Kondo model. It includes ingredients needed to
study Kondo effect, which was first described by Jun Kondo in 1964.

When a magnetic impurity is introduced in a non-magnetic metallic host, at
certain conditions and at low temperature it becomes screened due to interactions
with conduction electrons forming a collective spin singlet state. The screening
comes from spin-flip events which can change the spin projections of the impurity
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and of the electron at the same time, preserving the projection of the total spin.
We mention some previous works such as [28, 29, 72] where wave packet approach
was also used to explore spin-spin interactions.

 

Figure 2.5: Scheme of two spin-flip paths contributing to the s-d model. The
states of the conduction electron i and j are represented by upper red lines, and
an impurity state is represented by the line beneath. In a), the electron arrives
with the spin opposite to the spin of the localized state. From this, there are
two options: in b) electron first jumps onto the impurity level which gets doubly
occupied; in c) an electron first jumps out of the impurity level and then another
electron fills it. Both processes contribute to the same final state in d) where the
spin exchange between the impurity and the conduction electron is observed.

The relevant total Hamiltonian is written as:

Ĥ =
∑
ijσ

tij ĉ
†
iσ ĉjσ +

∑
ij

Jij s⃗ijS⃗, (2.38)

where tij are hopping elements between orbitals i and j. The interaction of the
conduction electron and the local spin is provided by the second term of Eq. 2.38.
The conduction electron spin operators are described using Pauli matrices σ⃗:

s⃗ij =
∑
αβ

ĉ†iα
σ⃗αβ
2
ĉjβ (2.39)
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and local spin is represented by the spin vector operator S⃗. The matrix J represents
the coupling constants for exchange interactions between sites i and j. We note
that conduction electron spin operators, s⃗ij, refer to all the Wannier orbitals ij
(including those participating in the local spin formation), which is somewhat
different from the standard Kondo model formulation.

The commutation rules for spin operators are as follows:

[Ŝx, Ŝy] = iŜz , [Ŝy, Ŝz] = iŜx , [Ŝz, Ŝx] = iŜy.

It is convenient to define ladder operators as:

Ŝ+ = Ŝx + iŜy and Ŝ− = Ŝx − iŜy.

The Kondo Hamiltonian (2.38) can be rewritten, using these ladder operators:

Ĥ = Ĥ0 +
∑
ij

Jij

[
ŝzijŜ

z +
1

2

(
ŝ+ijŜ

− + ŝ−ijŜ
+
)]

, (2.40)

where Ĥ0 is the electron Hamiltonian of the system without spin-spin interactions.
The spin of an electron or magnetic impurity is represented by the spin quantum

number S determining the magnitude of the spin. For conduction electron it is of
course 1/2, but it could take any positive integer or half-integer values for the local
spin S = 0, 1/2, 1, 3/2, 2, etc. S goes with the quantum number ms which refers
to the spin projection on the z direction and takes values {−S,−S+1, .., S−1, S}.
Quantum numbers S andms define the Zeeman basis, |S,ms⟩, where spin operators
act as follows:

Ŝz |S,ms⟩ = ms |S,ms⟩
Ŝ+ |S,ms⟩ =

√
S(S + 1)−ms(ms + 1) |S,ms + 1⟩

Ŝ− |S,ms⟩ =
√
S(S + 1)−ms(ms − 1) |S,ms − 1⟩ .

(2.41)

The appearance of spin-spin interactions in the Kondo model can be understood
(and derived) from another well-known model - the Anderson impurity model,
which describes the conduction electron propagating through a site with a strong
Coulomb interaction. Two processes contributing to spin-flip contributions are
illustrated in Figure 2.5. The first one goes through the doubly occupied impurity
level, while the second process involves only single occupation of the level. The
both paths contribute to the spin-flip of the conduction electron between initial
and final states. Taking into consideration these two processes, one can set up
the effective Kondo model with parameters J related to those of the Anderson
impurity model [73, 74].
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Magnetic defect

Pertubed cells

Ideal unperturbed cells

Figure 2.6: General model of the system with spin-spin interactions. Each square
represents a cell of the system. In red, the magnetic impurity; in green, the lead
cells perturbed by the magnetic impurity; in blue, the lead cells considered too
far from the junction to be affected by the magnetization and having therefore
Jij = 0.

To construct the junction’s Hamiltonian Eq. (2.40), we need to know the Hamil-
tonian Ĥ0 and parameters J . For this, we need the Hamiltonians for spin up and
spin down electrons separately constructed using the Wannier90 code. In DFT
calculations, the local spin appears to have its maximum value ms = S so the
DFT Hamiltonians for spin up or down should be compared with:

Ĥ↑↓ = Ĥ0 +
∑
ij

Jijs
↑↓
ij S. (2.42)

Knowing the local spin S from DFT calculations, we can get Ĥ0 and couplings
Jij from following equations:

Ĥ0 =
1

2
(Ĥ↑ + Ĥ↓) (2.43)

and
Jij = (Ĥ↑

ij − Ĥ↓
ij)/S, (2.44)

assuming conduction electron’s spin sz = ±1/2 for up and down channels.
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We can calculate now the spin-flip probability of a propagating electron as
shown in Figure 2.6. We consider an electron coming from a non-magnetic lead
(shown in blue) and going through the junction (shown in green). The spin of
the electron will interact with the local spin (shown in red) during its propagation
with exchange parameters Jij. determined as discussed above.

The total wave functions have the form:

|Ψ⟩ =
∑
j,ms

ψms(j) · |j⟩ ⊗ |ms⟩

and is described by electron wave functions, ψms(j), on 2S + 1 chains associated
with different z-components of the local spin S (finite in contrast to the phononic
case presented before).

2.3.3 Phononic propagation

We will start our discussion of the second quantization of atomic vibrations on the
simplest case of a finite system, such as a molecule, for example. This will allow
us to introduce the notion of phonons as quanta of vibrational excitations. Then
we generalize the formalism to periodic crystals, making a direct analogy of the
procedure with the previous case of a finite system.

Finite system

The ensemble of N atoms of a molecule is described in quantum mechanics by the
Hamiltonian with the kinetic and potential energy parts:

Ĥ = T̂ + Ê({xiα}) (2.45)

where xiα stand for displacements in Cartesian coordinates (α = x, y, z) of the i-th
atom (i = 1..N) from equilibrium positions. If we develop the potential energy in
a Taylor expansion, the first constant term, E(0), can be put to zero, the first-
order terms, ∂E

∂xiα
, giving the forces, are also zero at equilibrium. If we keep only

second-order terms (harmonic approximation) the Hamiltonian takes the following
form:

Ĥ =
∑
iα

p̂2iα
2mi

+
1

2

∑
iα,i′α′

∂2E

∂xiα∂xi′α′
x̂iαx̂i′α′ (2.46)

where conjugate displacement and momentum operators satisfy canonical commu-
tation relations:

[x̂iα, p̂i′α′ ] = ihδii′δαα′
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It is convenient to re-scale displacement and momentum operators like:

p̂iα√
mi

−→ P̂iα;
√
mi x̂iα −→ X̂iα. (2.47)

The canonical commutation relations are preserved:

[X̂iα, P̂i′α′ ] = ihδii′δαα′

and the Hamiltonian takes the following form:

Ĥ =
1

2

∑
iα

P̂ 2
iα +

1

2

∑
iα,i′α′

X̂iαDiα,i′α′X̂i′α′ (2.48)

with the dynamical matrix D defined by the second derivative of the potential
energy with respect to atomic displacements as follows:

Diα,i′α′ =
1

√
mi mi′

∂2E

∂xiα∂xi′α′
=

∂2E

∂Xiα∂Xi′α′
(2.49)

We can notice that the first and second terms are of the form of ⟨P |P ⟩ and
⟨X|D |X⟩, constructed on vector-columns Piα and Xiα, respectively. One can
therefore proceed by solving the eigenvalue problem for the dynamical matrix:∑

i′α′

Diα, i′α′φν
i′α′ = ω2

νφ
ν
iα (2.50)

which defines normal modes ν with their frequencies ων and corresponding polar-
ization vectors φν . Since the D matrix is by construction real and symmetric, its
eigenvectors φν are also real-valued.

Now we can insert the identity resolution and the D-matrix representation in
the normal mode’s basis φν which we simply denote as |ν⟩:

Î =
∑
ν

|ν⟩ ⟨ν| , D̂ =
∑
ν

ω2
ν |ν⟩ ⟨ν| (2.51)

into the kinetic and potential energy terms, respectively, of the Hamiltonian which
can be thus rewritten as:

Ĥ =
1

2

∑
ν

〈
P̂
∣∣∣ν〉〈ν∣∣∣P̂〉+

1

2

∑
ν

ω2
ν

〈
X̂
∣∣∣ν〉〈ν∣∣∣X̂〉

=
1

2

∑
ν

P̂ 2
ν +

1

2

∑
ν

ω2
νX̂

2
ν

(2.52)
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with new displacement and momentum operators referring to normal modes:

X̂ν =
∑
iα

φν
iαX̂iα

P̂ν =
∑
iα

φν
iαP̂iα

(2.53)

and the inverse transformation:

X̂iα =
∑
ν

φν
iαX̂ν

P̂iα =
∑
ν

φν
iαP̂ν

(2.54)

New operators are Hermitian and satisfy again the canonical commutation rela-
tions:

[X̂ν , P̂ν′ ] = ihδνν′ (2.55)

The Hamiltonian from Eq. 2.52 describes the set of independent oscillators corre-
sponding to different normal modes. Therefore, it can be conveniently rewritten
as:

Ĥ =
∑
ν

ℏων

(
b̂†ν b̂ν +

1

2

)
(2.56)

by introducing creation and annihilation operators for each mode ν:

b̂ν =

√
ων

2ℏ

(
X̂ν +

i

ων

P̂ν

)
b̂†ν =

√
ων

2ℏ

(
X̂ν −

i

ων

P̂ν

) (2.57)

These creation operators act on the vacuum state and create an excited state in
a specific mode, called a phonon. From Eqs. 2.55, 2.57 one sees that creation and
annihilation operators satisfy the commutation relations:

[b̂ν , b̂
†
ν′ ] = δνν′ (2.58)

so that phonons satisfy the boson statistics.
The basis states for the system can be characterized by the number of phonons

in each mode, |n1, .., nN⟩. Applying the creation or annihilation operator will
increase or decrease the number of phonons in a specific mode, like:

b̂†ν |n1, .., nν , .., nN⟩ =
√
nν + 1 |n1, .., nν + 1, .., nN⟩

b̂ν |n1, .., nν , .., nN⟩ =
√
nν |n1, .., nν − 1, .., nN⟩

(2.59)
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Note, finally, that displacement operators can be expanded in terms of creation
and annihilation operators as follows:

X̂iα =
∑
ν

√
ℏ
2ων

φν
iα (b̂ν + b̂†ν) . (2.60)

In order to describe the quantum propagation of a phonon, we need to define
local creation and annihilator operators in the displacement basis as:

b̂iα =
∑
ν

φν
iαb̂ν

b̂†iα =
∑
ν

φν
iαb̂

†
ν

(2.61)

which corresponds to the unitary rotation of the basis. In this way, we can think
of creating or annihilating a phonon on a specific site iα by applying the operator
b̂†iα or b̂iα:

b̂†iα |0⟩ = |ϕiα⟩
b̂iα |ϕiα⟩ = |0⟩

(2.62)

The general one-phonon state can be then expanded as:

|Ψ⟩ =
∑
iα

φiα |ϕiα⟩ (2.63)

where coefficients φiα can be seen as the real-space wave function of the phonon.
Its evolution in time will be governed by the Hamiltonian matrix:

Hiα,i′α′ = ⟨ϕiα| Ĥ |ϕi′α′⟩ =
∑
ν

ℏωνφ
ν
iαφ

ν
i′α′ (2.64)

which simply means that it is proportional to the square root of the Dynamical ma-
trix, H = ℏ

√
D. This is analogous to the tight-binding Hamiltonian for electrons.

The phononic wave function, φiα, can be then propagated with either Schrödinger
equation or by the Chebyshev method, as in the electronic case.

Note finally that the wave function for the phonon state b̂†ν |0⟩ in the real space
representation is simply φν

iα.

Periodic system

The Hamiltonian for a periodic system can be generally written as:

Ĥ =
1

2

∑
iαR

P̂ 2
iαR +

1

2

∑
iαR, i′α′R′

X̂iαR DiαR, i′α′R′ X̂i′α′R′ (2.65)
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where XiαR stand for atomic displacements in Cartesian coordinates (α = x, y, z)
of the i-th atom in the cell defined by the translation R.

Again, first and second terms have the form of ⟨P |P ⟩ and ⟨X|D |X⟩, respec-
tively. We diagonalize therefore the dynamical matrix and search for its eigenfunc-
tions. As for electrons, the standard choice for periodic dynamical matrix are the
Bloch functions: ∑

i′α′R′

DiαR, i′α′R′φqν
i′α′R′ = ω2

qνφ
qν
iαR

φqν
iαR =

1√
N
V qν
iα e

iqR

∑
i′α′

Diα, i′α′(q)V qν
i′α′ = ω2

qνV
qν
iα

where
Diα, i′α′(q) =

∑
i′α′R′

DiαR, i′α′R′eiq(R
′−R)

is the Fourier transforming of the dynamical matrix. Note that for −q one always
has:

ω−qν = ωqν ; V −qν
iα = V qν∗

iα

due to Diα, i′α′(−q) = Diα, i′α′(q)∗.
Inserting again the unity resolution and the spectral representation of the dy-

namical matrix in Eq. 2.65 one obtains:

Ĥ =
1

2

∑
qν

P̂qνP̂
†
qν +

1

2

∑
qν

ω2
qνX̂

†
qνX̂qν (2.66)

where

P̂qν = ⟨P |qν⟩ =
∑
iαR

P̂iαRφ
qν
iαR

X̂qν = ⟨qν|X⟩ =
∑
iαR

X̂iαRφ
qν∗
iαR

(2.67)

with inverse transformation:

P̂iαR =
∑
qν

P̂qνφ
qν∗
iαR

X̂iαR =
∑
qν

X̂qνφ
qν
iαq

(2.68)

They still represent the conjugated variables:

[X̂qνP̂q′ν′ ] = iℏδqq′δνν′
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but are not self-adjoint operators, namely:

P̂ †
qν = P̂−qν

X̂†
qν = X̂−qν

(2.69)

so that the Hamiltonian can be also written as:

Ĥ =
1

2

∑
qν

P̂qνP̂−qν +
1

2

∑
qν

ω2
qνX̂−qνX̂qν (2.70)

In Appendix 4 we show how Hamiltonian Eq. 2.70 can be written in the similar
form as for finite systems:

Ĥ =
∑
qν

ℏωqν

(
b̂†qν b̂qν +

1

2

)
, (2.71)

where creation and annihilation operators for the mode qν adopt well-known form:

b̂qν =

√
ωqν

2ℏ

(
X̂qν +

i

ωqν

P̂−qν

)
b̂†qν =

√
ωqν

2ℏ

(
X̂−qν −

i

ωqν

P̂qν

)
.

(2.72)

Finally, real space displacement operators can be also cast into well-known expres-
sion:

X̂iαR =
∑
qν

√
ℏ

2ωqν

φqν
iαR

[
b̂qν + b̂†−qν

]
. (2.73)

Similar to the finite system, one can introduce local phonon basis by means of
operators:

b̂iαR =
∑
qν

φqν
iαR b̂qν

b̂†iαR =
∑
qν

φqν∗
iαR b̂†qν

(2.74)

and define phononic basis in the real space:

|ϕiαR⟩ = b̂†iαR |0⟩ . (2.75)

The general one-phonon state can then be expanded as:

|Ψ⟩ =
∑
iαR

ϕiαR |ϕiαR⟩ , (2.76)
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where coefficients ϕiαR can be considered as the real-space wave function of the
phonon. The time evolution is defined by the Hamiltonian matrix:

HiαR,i′α′R′ = ⟨ϕiαR| Ĥ |ϕi′α′R′⟩ =
∑
qν

ℏωqνφ
qν
iαRφ

qν∗
i′α′R′ . (2.77)

Note again that the wave function for the Bloch phonon state b̂†qν |0⟩ in the real
space representation is simply φqν

iαR. Weighted by the Gaussian function, it can be
considered as a starting wave function for a phononic wave packet which can be
propagated using the Schrödinger equation or the Chebyshev method.





Chapter 3

Non-equilibrium Green Function
Method

3.1 Green’s Functions

The Green’s functions method is widly-used in transport calculation codes. Some
codes perform current calculations as Quantum ATK [37], openMX, KNIT [43],
GOLLUM [44], etc. Within the NEGF formalism one can also consider interac-
tions in the Central region, as in Refs. [18, 7, 19], which include electron-electron,
electron-phonon, phonon-phonon, or electron-photon interactions. It is important
however that interactions are limited by the Central "active" region while elec-
trodes are described by noninteracting Hamiltonians. With our code, we include
the possibility to add the electron-phonon interactions in the current calculations.
Our initial goal was to calculate self-consistently the inelastic corrections to both
electron and phonon Green’s functions due to electron-phonon interactions in the
Central region (we have had time however to advance only on the first part of the
task – on the effect of interactions on the electron transport). This full treatment
of two connected electron-phonon transport channels is not yet implemented to
the best of our knowledge in any code.

We start our discussion of Green’s functions approach to the transport with an
equilibrium case, and then present the formalism for a non-equilibrium situation.

3.1.1 Equilibrium Case

In physics, Green’s functions are an important concept used in different domains
to solve, for example, differential equations or to study many-body systems. It
provides a way to calculate various properties for a given Hamiltonian with possible
interactions. There are many references discussing different aspects of the Green’s

55
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functions formalism and the variety of its applications [75, 76, 10, 77, 78, 11, 5].
One usually starts by discussing three different pictures in quantum mechanics.

In the Schrödinger picture, a quantum state is a function of time while operators
are time-independent:

|ΨS(t)⟩ = e−iĤt/ℏ |ΨS(0)⟩ . (3.1)

ÔS(t) = ÔS (3.2)

In the Heisenberg picture, on the contrary, the operators evolve in time while
a state is time-independent:

|ΨH⟩ = |ΨS(0)⟩ . (3.3)

ÔH(t) = eiĤt/ℏ ÔS e
−iĤt/ℏ (3.4)

Finally, in the intermediate representation, called the interaction picture, both
states and operators depend on time. It is useful when the total Hamiltonian is
decomposed as:

Ĥ = Ĥ0 + V̂ , (3.5)

where Ĥ0 is a non-interacting known part and V̂ can be time-dependent and include
interactions. The states and operators evolve as:

|ΨI(t)⟩ = eiĤ0t/ℏ |ΨS(t)⟩ , (3.6)

ÔI(t) = eiĤ0t/ℏ ÔS e
−iĤ0t/ℏ. (3.7)

The time evolution is therefore driven by the interaction part of the Hamilto-
nian:

iℏ∂t |ΨI(t)⟩ = V̂I(t) |ΨI(t)⟩ , (3.8)

where V̂I(t) is the interaction term in the interaction picture. It is important that
all the three pictures, dividing differently the time evolution between states and
operators, give the same expectation values, ⟨Ψ|O |Ψ⟩.

From Eq. 3.6 one can find the relation between |ΨI(t)⟩ and |ΨI(t0)⟩:

|ΨI(t)⟩ = eiĤ0t/ℏ e−iĤ(t−t0)/ℏ |ΨS(t0)⟩

= eiĤ0t/ℏ e−iĤ(t−t0)/ℏ e−iĤ0t0/ℏ |ΨI(t0)⟩
(3.9)

and define the operator Ŝ(t, t0) from:

|ΨI(t)⟩ = Ŝ(t, t0) |ΨI(0)⟩ (3.10)

which is called the evolution operator and has the following properties:
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• Ŝ†(t, t0) Ŝ(t, t0) = Ŝ(t, t0) Ŝ
†(t, t0) = 1

• Ŝ†(t, t0) = Ŝ−1(t, t0)

• Ŝ(t, t0) Ŝ(t0, t) = 1

• Ŝ(t0, t1) Ŝ(t1, t2) = Ŝ(t0, t2).

Note that the evolution operator allows to relate operators in the Heisenberg
picture in Eq. 3.4 with those in the interaction picture:

ÔH(t) = Ŝ(0, t)ÔI(t)Ŝ(t, 0) (3.11)

Now, the (time-ordered) electronic Green’s function (at zero temperature) is
defined as:

iℏG(r′, t′; r, t) =
⟨Ψ0| Tt

{
ψ̂H(r

′, t′)ψ̂†
H(r, t)

}
|Ψ0⟩

⟨Ψ0|Ψ0⟩
, (3.12)

where Ψ0 is the interacting ground state and the time-ordering operators (for
electrons) are defined by:

Tt

{
Â(t1)B̂(t2)

}
= θ(t1 − t2)Â(t1)B̂(t2)− θ(t2 − t1)B̂(t2)Â(t1). (3.13)

The Green’s function G(r′, t′; r, t) represents the amplitude of probability to
create an additional electron in the ground state and to observe it at the later time.
The time-ordering operator allows to describe at the same time both electrons and
holes propagation: when t′ > t it describes an electron propagating from r to r′,
when t′ < t – a hole propagating from r′ to r.

One usually introduces also four other Green’s functions called retarded, ad-
vanced, inferior and superior by following definitions:

Gr(r′, t′; r, t) =− iθ(t′ − t)⟨{ψH(r
′, t′), ψ†

H(r, t)}⟩
Ga(r′, t′; r, t) = iθ(t− t′)⟨{ψH(r

′, t′), ψ†
H(r, t)}⟩

G<(r′, t′; r, t) = i⟨ψ†
H(r, t), ψH(r

′, t′)⟩
G>(r′, t′; r, t) =− i⟨ψH(r

′, t′), ψ†
H(r, t)⟩

(3.14)

where {} are anticommutators. These functions are used to describe different kinds
of correlations and allow to calculate various response functions (retarded func-
tions). These four Green’s functions are not independent of each other, obeying
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the following relationship:

Gr −Ga = G> −G<. (3.15)

From Eq. 3.8 one finds the equation for the evolution operator:

iℏ ∂tŜ(t, t0) = V̂I(t)Ŝ(t, t0). (3.16)

Integrating this equation, we obtain a perturbation expansion:

Ŝ(t, t0) = Ŝ(t0, t0)−
i

ℏ

∫ t

t0

dt1 V̂I(t1) Ŝ(t1, t0)

=
∞∑
n=0

(
− i

ℏ

)n ∫ t

t0

dt1 ...

∫ tn−1

t0

dtn V̂I(t1) ...V̂I(tn).

(3.17)

Using the time-ordering operator, this equation can be conveniently written as
the time-ordered exponential:

Ŝ(t, t0) =
∞∑
n=0

1

n!

(
− i

ℏ

)n ∫ t

t0

dt1 ...

∫ t

t0

dtn Tt

{
V̂I(t1) ...V̂I(tn)

}
= Tt

{
exp

(
− i

ℏ

∫ t

t0

dt′ V̂I(t
′)

)}
.

(3.18)

The Green’s function in Eq. 3.12 is defined on the ground state |Ψ0⟩ of an
interacting system. According to the Gell-Mann and Low theorem [79], it can be
constructed from the ground state |Φ0⟩ of a non-interacting system with the help
of the evolution operator in two ways:

|Ψ0⟩ = Ŝ(0,−∞) |Φ0⟩ , (3.19)

e−iθ |Ψ0⟩ = Ŝ(0,∞) |Φ0⟩ , (3.20)

assuming adiabatic switching on or off interactions at ±∞, where eiθ is some
unknown phase.

Inserting these expressions for the interacting ground state, we can rewrite the
Green’s function as following:

iℏG(r′, t′; r, t) =
⟨Φ0| Ŝ(∞, 0)Tt

{
ψ̂H(r

′, t′)ψ̂†
H(r, t)

}
Ŝ(0,−∞) |Φ0⟩

⟨Φ0| Ŝ(∞, 0) Ŝ(0,−∞) |Φ0⟩

=
⟨Φ0| Tt

{
Ŝ(∞,−∞)ψ̂I(r

′, t′)ψ̂†
I(r, t)

}
|Φ0⟩

⟨Φ0| Ŝ(∞,−∞) |Φ0⟩
,

(3.21)
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where the field operators in the last line were transformed to the Interaction picture
according to Eq. 3.11, or explicitly:

iℏG(r′, t′; r, t) =
⟨Φ0| Tt

{
exp

(
− i

ℏ

∫∞
−∞ dt1 V̂I(t1)

)
ψ̂I(r

′, t′)ψ̂†
I(r, t)

}
|Φ0⟩

⟨Φ0| Tt

{
exp

(
− i

ℏ

∫∞
−∞ dt1 V̂I(t1)

)}
|Φ0⟩

(3.22)
This final expression is used to calculate equilibrium Green’s function using per-
turbation expansion with respect to the potential V . It contains an integral over
the time axis which should be modified if the system is driven out of equilibrium,
as we now will discuss.

3.1.2 Non-Equilibrium case

In the previous equation the integration ran from −∞ to +∞ because the Gell-
Mann and Low theorem allowed to relate ground states of interacting and non-
interacting systems assuming adiabatic switching on and off interactions. In non-
equilibrium situation (in applied voltage, for example) it is not any more true for
the time at +∞, the system is not guaranteed to return to its non-equilibrium non-
interacting state after switching off interactions. Therefore, the only well-defined
state is the one at −∞ and one is forced to use the contour C with two branches for
the evolution operator S as it is demonstrated in Fig. 3.1, one going from −∞ to
+∞ (the contour part C+) and another one – from +∞ to −∞ (the contour part
C−) with the contour parameter along the C denoted as τ . The advantage of this
contour is that one avoids to refer explicitly to unknown state at +∞, and only
the reference state is the one at −∞ which is well known. This formalism, often
called Keldysh or Non-equilibrium Green’s function (NEGF), was foreshadowed by
the work of Julian Schwinger and proposed almost simultaneously by Keldysh [80]
and separately by Kadanoff and Baym [81]. It also allows to include naturally
time-dependent perturbation potentials V (t) in the scheme.

One then defines the contour-ordered Green function as:

iℏG(1′; 1) = ⟨Ψ0| TC [ψ̂H(1
′)ψ̂†

H(1)] |Ψ0⟩ (3.23)

using the contour ordering operator TC and shorthand notations (1) referring to
(r1, τ1) on the contour.

This contour-ordered Green’s function plays an analogous role in NEGF as the
causal (or time-ordered) Green’s function in equilibrium theory. It has for example
a similar perturbation expansion:

iℏG(1′; 1) = ⟨Φ0| ŜCTC

{
ψ̂I(1

′)ψ̂†
I(1)

}
|Φ0⟩, (3.24)
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Figure 3.1: Keldysh contour composed of two branches going from −∞ to +∞
and back from +∞ to −∞.

where the evolution operator on the contour is given by:

ŜC = TC

{
exp

(
− i

ℏ

∫
C

dτV̂I(τ)

)}
. (3.25)

Since time labels lie now on the contour with two branches, one has now four
different Green’s functions defined in the time domain:

G(1, 2) =


G++(1, 2) t1, t2 ∈ C+

G−−(1, 2) t1, t2 ∈ C−
G<(1, 2) t1 ∈ C+, t2 ∈ C−
G>(1, 2) t1 ∈ C−, t2 ∈ C+

(3.26)

From this one sees that G<, G>, G++, and G−− correspond to "lesser", "greater",
time-ordered (or causal), and anti time-ordered Green’s functions, respectively:

iℏG<(1′, 1) =− ⟨Ψ0| ψ̂†
H(1)ψ̂H(1

′) |Ψ0⟩
iℏG>(1′, 1) = ⟨Ψ0| ψ̂H(1

′)ψ̂†
H(1) |Ψ0⟩

iℏG++(1′, 1) = ⟨Ψ0| Tt[ψ̂H(1
′)ψ̂†

H(1)] |Ψ0⟩
iℏG−−(1′, 1) = ⟨Ψ0| Tt̃[ψ̂H(1

′)ψ̂†
H(1)] |Ψ0⟩ ,

(3.27)

where Tt̃ is the anti time-ordering operator.
One can define, moreover, retarded and advanced Green’s functions as:

Gr =G++ −G<

Ga =G−− −G>.
(3.28)

These definitions can be in fact applied to any function on the contour.
From Eqs. 3.27 it follows that four Green’s functions are not independent, in

particular, one has:

G++ +G−− = G> +G<

Gr −Ga = G> −G<.
(3.29)
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We also list some other useful relations:

G++(1, 2) = θ(t1 − t2)G
>(1, 2) + θ(t2 − t1)G

<(1, 2)

G−−(1, 2) = θ(t2 − t1)G
>(1, 2) + θ(t1 − t2)G

<(1, 2)

Gr(1, 2) =θ(t1 − t2)
(
G>(1, 2)−G<(1, 2)

)
Ga(1, 2) =θ(t2 − t1)

(
G<(1, 2)−G>(1, 2)

)
.

(3.30)

We discuss now how to express Green’s functions with the perturbation ap-
proach. The Wick decomposition allows a perturbation expansion of Green’s
functions starting from Eqs. 3.24, 3.25. In particular, if the interaction Hamil-
tonian includes external potential (due to coupling to electrodes, for example) and
many-body interactions, H = H0 + Vext +Wint, the contour-ordered Green’s will
satisfy the Dyson equation:

G(1′, 1) = g(1′, 1) +

∫
C

dτ2g(1
′, 2)Vext(2)G(2, 1)

+

∫
C

dτ2

∫
C

dτ3 g(1
′, 2)Σ(2, 3)G(3, 1)

(3.31)

where g is the Green’s function for non-interacting system, H = H0, and many-
body interactions contribute to the (irreducible) self-energy functional, Σ. It can
be calculated for e− e or e− ph interactions taking into account various Feynman
diagrams. Fig. 3.2 presents some key ingredients, like interaction vertices and
Green’s functions, needed to construct them. Note that there is also symmetric
Dyson equation:

G(1′, 1) = g(1′, 1) +

∫
C

dτ2G(1
′, 2)Vext(2)g(2, 1)

+

∫
C

dτ2

∫
C

dτ3 G(1
′, 2)Σ(2, 3)g(3, 1)

(3.32)

with non-interacting g on the right side of integrals.
In considering the Dyson equation on the contour one encounters different types

of contour integrals such as for example:

F (τ, τ ′) =

∫
C

dτ1A(τ, τ1)B(τ1, τ
′), (3.33)

where we skip all space variables for simplicity, the integration over them is as-
sumed otherwise.

We briefly discuss now how to calculate the corresponding real-time functions,
F</> or F r/a. The Langreth theorem proposes to deform the real timeline into a
double contour shape, as it is shown in Fig. 3.3. Lets calculate the "lesser" function
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Non-interaction Green’s function

Figure 3.2: Source: [11]. Different key quantities entering Feynman diagrams with
electron-electron or electron-phonon interactions.

F<(t, t′). We consider C1 as a twisted contour C+ of the contour in Fig. 3.1 and
C2 as a twisted contour C−:

F<(t, t′) =

∫
C1

dt1A
++(t, t1)B

<(t1, t
′) +

∫
C2

dt1A
<(t, t1)B

++(t1, t
′). (3.34)

In the first part, t1 and t are on the same contour. That is why we get A++. On the
contrary, we have B< because t1 and t′ are not on the same contour. Similarly, for
the second integral, where t1 is in the same contour as t′. The Langreth theorem
allows to calculate A++ in Eq. 3.30 by splitting the contour C1 into two parts as a
casual contour. Then, the first part can be calculated as a function of the retarded
terms of A and B:∫

C1

dt1A
++(t, t1)B

<(t1, t
′) =

∫ t

−∞
dt1A

>(t, t1)B
<(t1, t

′)

+

∫ −∞

t

dt1A
<(t, t1)B

<(t1, t
′)

=

∫ +∞

−∞
dt1A

r(t, t1)B
<(t1, t

′) .

(3.35)

By prolongation, we can extend the integral window from −∞ to +∞. Repeating
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Figure 3.3: Keldysh contour is twisted and divided into two sub-contours C1 and
C2. The right-side edge of each contour corresponds to the two arguments of the
object F defined by Eq. 3.33. Both contours are linked at −∞.

the same operation with the second part, we obtain the final expression:

F<(t, t′) =

∫ +∞

−∞
dt1

[
Ar(t, t1)B

<(t1, t
′) + A<(t, t1)B

a(t1, t
′)

]
. (3.36)

For the greater term F>, we obtain the same result by replacing "<" terms by
">".

To calculate the retarded term, we can start again with Eqs. 3.28:

F r(t, t′) = θ(t′ − t)
(
F>(t, t′)− F<(t, t′)

)
. (3.37)

Then, we get from Eq. 3.36:

F r(t, t′) = θ(t− t′)

∫ +∞

−∞
dt1

[
Ar(t, t1)(B

>(t1, t
′)−B<(t1, t

′)) + (A>(t, t1)

− A<(t, t1))B
a(t1, t

′)

]
= θ(t− t′)

(∫ t

−∞
dt1 (A>(t, t1)− A<(t, t1)) (B

>(t1, t
′)−B<(t1, t

′))

+

∫ t′

−∞
dt1 (A>(t, t1)− A<(t, t1)) (B

<(t1, t
′)−B>(t1, t

′))

)
.

(3.38)

Reversing the integral from −∞ to t′, we obtain finally:

F r(t, t′) =

∫ t

t′
dt1 A

r(t, t1) B
r(t1, t

′) =

∫ ∞

−∞
dt1 A

r(t, t1) B
r(t1, t

′). (3.39)
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For a stationary case (a constant applied voltage, for example) all the functions
depend only on the difference, t− t′, so after Fourier transform, one gets a simple
relation in the energy (or frequency) domain:

F r(E) = Ar(E)Br(E). (3.40)

Using similar rules for multi-variable contour integration and one-body potential
one can re-write the Dyson equation 3.31 in the energy domain for different func-
tions as:

Gr/a =gr/a + gr/aVextG
r/a + gr/aΣr/aGr/a

G< =g< + g<VextG
a + grVextG

<

+ g<ΣaGa + grΣ<Ga(E) + grΣrG<

(3.41)

Greater Green’s function is given by the last equation simply replacing "<" by
">".

By using this method, we can describe different types of self-energy and Green’s
functions. We will see in the next section that sometimes it is easier to use a simpler
contour. Our goal in this section is to calculate the current, taking into account
(or not) inelastic interactions between electrons and phonons. Note that several
studies were done to calculate electron-boson interactions, as Aeberhard et al.
[7] who presented calculations in the presence of electron-photon interactions by
NEGF methods. Batge et al. [82] used time-ordering to calculate quantum electron
and heat currents, taking into account interactions with bosons. Subsequently, we
will focus on the inelastic terms in the lowest-order of perturbation and discuss
the influence of electron-phonon interactions on the electronic charge current IL/R
and the heating QL/R in Eq. 1.1. In addition, we will present similar formalism
to calculate the energy current due to phonons taking into consideration electron-
phonon interactions.

3.2 Current calculation

3.2.1 Electron current

We now derive a general expression for different currents in terms of Green’s func-
tions. The system consists of the Central region (C) (which could be a molecule,
atomic chain etc.) connected to two electrodes, left L and right R. The Hamilto-
nian matrix has therefore the block-wise form:

H0 + Vext =

 HLL VLC 0
VCL HCC VCR

0 VRC HRR

 , (3.42)
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where H0 has only diagonal blocks and describes decoupled systems and Vext cou-
ples the Central region with two leads. Total Hamiltonian can also contain many-
body interactions:

Ĥ = Ĥ0 + V̂ext + Ŵint (3.43)

which we limit to the Central region.
Different Green’s function for isolated leads at equilibrium can be derived from

their definitions, Eq. 3.14. In the basis of eigenstates, denoted by k, they take the
form:

g<k (t, t
′) = − 1

iℏ
f(εk) e

i
ℏ εk(t

′−t)

g>k (t, t
′) =

1

iℏ
(1− f(εk))e

i
ℏ εk(t−t′)

grk(t, t
′) =

1

iℏ
θ(t− t′) e

i
ℏ εk(t−t′)

gak(t, t
′) = − 1

iℏ
θ(t′ − t) e

i
ℏ εk(t

′−t),

(3.44)

where f(E) is the Fermi-Dirac distribution function.
In the energy space it then gives:

g<k (E) = 2πi f(εk)δ(E − εk)

g>k (E) = 2πi
(
1− f(εk)

)
δ(E − εk)

(3.45)

g
r/a
k (E) =

1

E ± iη − εk
. (3.46)

One can see that the "<" and ">" functions can be expressed in terms of
retarded and advanced functions as follows:

g<k (E) = −f(E)[grk(E)− gak(E)]

g>k (E) = −i(1− f(E))[grk(E)− gak(E)].
(3.47)

Eqs. 3.46, 3.47 are valid of course in any basis such as the basis of atomic orbitals
used in Eq. 3.42 so that, in matrix notations, we have:

gr/a(E) = [E ± iη −HLL]
−1

g<(E) = −f(E)[gr(E)− ga(E)]

g>(E) = −i(1− f(E))[gr(E)− ga(E)],

(3.48)

where the two last relations are valid for any system in equilibrium (due to so-called
fluctuation-dissipation theorem [10]).
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The electric current flowing from the Left lead to the Central region is calcu-
lated as follows:

IL(t) = −e

〈
dN̂L,H(t)

dt

〉
= −ie

ℏ

〈
[H, N̂L,H(t)]

〉
, (3.49)

where the operator (in the Heisenberg representation) of the number of electrons
in the Left lead is:

N̂L =
∑
k

c†kck =
∑
i

c†ici (3.50)

and is defined using either eigenstates k or local orbitals i of the Left lead.
Non-zero contributions in the commutators come from terms coupling the Left

lead and the Central region:

IL =
ie

ℏ
∑

j∈L,n∈C

〈
Vjnc

†
j(t)cn(t)− Vnjc

†
n(t)cj(t)

〉
(3.51)

and using "lesser" Green’s functions:

IL = e
∑

j∈L,n∈C

[G<
nj(t, t)Vjn − VnjG

<
jn(t, t)]

= e · Tr[G<
CL(t, t)VLC − VCLG

<
LC(t, t)],

(3.52)

where in the last line matrix multiplication notations are assumed for shortness
and the trace is taken over Central region indices.

Passing to the energy space by Fourier transformation, we have:

IL =
e

h

∫
dE Tr[G<

CL(E)VLC − VCLG
<
LC(E)]. (3.53)

The G<
CL and G<

LC terms can be developed by Dyson’s equations (3.32) and
(3.31), respectively, to produce:

IL =
e

h

∫
dETr[(G<

CCVCLg
a
LL +Gr

CCVCLg
<
LL)VLC

− VCL(g
<
LLVLCG

a
CC + grLLVLCG

<
CC)]

=
e

h

∫
dE Tr[(Gr

CC −Ga
CC)VCLg

<
LLVLC − VCL(g

r
LL − gaLL)VLCG

<
CC ].

(3.54)

Using relations (3.28) between different Green’s functions, one can rewrite the
expression as follows:

IL =
e

h

∫
dE Tr[VCL g

<
LLVLC(G

>
CC −G<

CC)− VCL(g
>
LL − g<LL)VLCG

<
CC ]. (3.55)
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Now, one can introduce various contact self-energies of the Central part due to its
coupling to the Left electrode:

Σ
r/a
L (E) = VCLg

r/a
LL (E)VLC

Σ<
L(E) = VCLg

<
LL(E)VLC

= −fL(E)VCL(g
r
LL(E)− gaLL(E))VLC = ifL(E)Γ

L(E)

Σ>
L(E) = VCLg

>
LL(E)VLC = −i(1− fL(E))Γ

L(E)

(3.56)

with the coupling matrix defined as:

ΓL(E) = i[Σr
L − Σa

L]. (3.57)

Using these "</>" self energies, the current can be expressed finally as:

IL =
e

h

∫
dE Tr[Σ<

L(G
>
CC −G<

CC)− (Σ>
L − Σ<

L)G
<
CC ]

=
e

h

∫
dE Tr[Σ<

L(E)G
>
CC(E)− Σ>

L(E)G
<
CC(E)] .

(3.58)

Using instead of the particle operator, N̂L, the energy, ĤL =
∑

k εkc
†
kck or

ĤL − µLN̂L, one can arrive at the energy and heat currents flowing from the Left
electrode:

IEL =
1

h

∫
dE E Tr[Σ<

L(E)G
>
CC(E)− Σ>

L(E)G
<
CC(E)]

IQL =
1

h

∫
dE (E − µL) Tr[Σ

<
L(E)G

>
CC(E)− Σ>

L(E)G
<
CC(E)].

(3.59)

Lesser and greater Green’s functions of the Central region, entering Eq. 3.58,
can be derived from the Dyson equation (see Refs. [5, 10]):

G
</>
CC = Gr

CC(Σ
</>
L + Σ

</>
R + Σ

</>
int )Ga

CC (3.60)

with
G

r/a
CC =

1

(E −HCC − Σ
r/a
L − Σ

r/a
R − Σ

r/a
int )

. (3.61)

Here, interaction self-energies, Σint, resulting from interactions in the Central re-
gion (el-el or el-ph) are added to corresponding contact ones.

Inserting Eqs. 3.60 in Eq. 3.58, the total current can be readily written as the
sum of elastic and inelastic contributions:

IL = IL,elastic + IL,inelastic (3.62)
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IL,elastic =
e

h

∫
dE(fL − fR) Tr

[
ΓLGr

CCΓ
RGa

CC

]
(3.63)

IL,inelastic =
e

h

∫
dE Tr

[
i(1− fL)Γ

LGr
CCΣ

<Ga
CC + ifLΓ

LGr
CCΣ

>Ga
CC

]
. (3.64)

If no interactions take place in the Central region, the inelastic contribution dis-
appears and one is left with the well known Landauer expression for the current:

IL =
e

h

∫
(fL − fR)T (E)dE, (3.65)

where the transmission function is calculated as:

T (E) = Tr
[
ΓL(E)Gr

CC(E)Γ
R(E)Ga

CC(E)
]
. (3.66)

With the general Eq. 3.58, we can calculate the current, including any type of
interactions occurring in the Central region.

For phonons, we define Green’s functions differently, but we obtain an equiva-
lent general expression for the current.

3.2.2 Phonon current calculation

For atomic vibrations the Green’s functions are constructed using displacement
operators (in the Heisenberg picture) [22, 76, 83]:

iℏDi′α′R′,iαR(τ
′, τ) = ⟨TC{X̂i′α′R′(τ ′)X̂iαR(τ)}⟩, (3.67)

where the contour-ordering of two operators is now defines as:

TC

{
X̂(τ2)Ŷ (t1)

}
= θ(τ2 − τ1)X̂(τ2)Ŷ (τ1) + θ(τ1 − τ2)Ŷ (τ1)X̂(τ2). (3.68)

As in the case of electrons, the Dynamical matrix, playing the role of the Hamilto-
nian in the NEGF formalism, is divided into blocks, where W couples the Central
region with two leads as:

D0 +Dext =

 DLL WLC 0
WCL DCC WCR

0 WRC DRR

 (3.69)

and possible interactions can be again considered in the Central region.



3.2. CURRENT CALCULATION 69

For isolated leads, governed by DLL or DRR, we can expand displacement op-
erators in terms of phonon operators as in Eq. 2.73 which leads us to:

di′α′R′,iαR(τ
′, τ) =

∑
qν

φqν
i′α′R′φ

qν∗
iαR

2ωqν

d̃qν(τ
′, τ), (3.70)

where phononic Green’s functions are defined as follows:

d̃qν(τ
′, τ) =

1

i
⟨TC{Âqν(τ

′)Â†
qν(τ)}⟩ (3.71)

and are constructed on operators:

Âqν = b̂qν + b̂†−qν . (3.72)

Non-interacting phononic Green’s functions are given by:

d̃<qν(t
′, t) = −i⟨Â†

qν(t)Âqν(t
′)⟩

d̃>qν(t
′, t) = −i⟨Âqν(t

′)Â†
qν(t)⟩

d̃rqν(t
′, t) = −iθ(t′ − t) ⟨[Âqν(t

′)Â†
qν(t)]⟩

d̃aqν(t
′, t) = iθ(t− t′) ⟨[Âqν(t

′)Â†
qν(t)]⟩

(3.73)

and in the frequency domain:

d̃<qν(ω) = −2πi [(1 + nqν)δ(ω + ωqν) + nqνδ(ω − ωqν)]

d̃>qν(ω) = −2πi [(1 + nqν)δ(ω − ωqν) + nqνδ(ω + ωqν)]

d̃r,aqν (ω) =
1

ω ± iη − ωqν

− 1

ω ± iη + ωqν

=
2ωqν

(ω ± iη)2 − ω2
qν

,

(3.74)

where nqν are occupation numbers of the mode qν given, in equilibrium, by the
Bose-Einstein distribution.

One can again express "<" and ">" functions in terms of retarded and ad-
vanced functions as follows [83]:

d̃<qν(ω) = F (ω)[d̃rqν(ω)− d̃aqν(ω)]

d̃>qν(ω) = F (−ω)[d̃rqν(ω)− d̃aqν(ω)],
(3.75)

where

F (ω) =

{
n(ω), ω > 0

1 + n(|ω|), ω < 0
(3.76)
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Going back to the real space, one arrives (in matrix notations) at:

dr,a(ω) = [(ω ± iη)2 −DLL]
−1

d<(ω) = F (ω)[dr(ω)− da(ω)]

d>(ω) = F (−ω)[dr(ω)− da(ω)]

(3.77)

which are analogous to Eqs. 3.48 for electrons.
We can introduce contact self-energies of the Central part due to its coupling

to the Left electrode also for phonons:

Π
r/a
L (ω) = WCLd

r/a
LL (ω)WLC

Π<,>
L (ω) = WCLg

<,>
LL (ω)WLC .

(3.78)

For phonons, the energy current flowing from the Left lead to the Central region
is obtained from the time derivative of the energy of the Left lead,

∑
qν ℏωqνb

†
qνbqν .

Passing through similar steps as for electrons one can derive the following expres-
sion for phononic energy (or thermal) current:

JL =

∫
ℏωTr[Π<

L(ω)D>
CC(ω)− Π>

L(ω)D<
CC(ω)]dω. (3.79)

The needed Green’s functions are calculated from similar equations:

D</>
CC = Dr

CC(Π
</>
L +Π

</>
R +Π

</>
int )Da

CC (3.80)

with
Dr/a

CC =
1

((ω ± iη)2 −DCC − Π
r/a
L − Π

r/a
R − Π

r/a
int )

. (3.81)

Again, interaction self-energies, Πint, resulting from interactions in the Central
region (el-ph or ph-ph) can be added to corresponding contact ones.

3.3 Electron-phonon coupling

3.3.1 Electrons: Hartree self-energy

In Section 3.1.2 we discussed irreducible self-energies Σ. For electron-phonon cou-
pling two terms, Hartree and Fock (exchange), appear in the lowest order (which
are second-order terms, i.e. include two electron-phonon interactions). In the case
when the molecular junction is coupled to its thermal bath (thermalizing molecular
vibrations) but is decoupled vibrationally from the two electrodes, only phononic
Green’s functions of the junction are needed. Therefore, it is convenient to work
in the basis of its vibrations as in the wave packet case, Eq. 2.31. We first discuss
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Figure 3.4: Feynman diagram of the Hartree term.

the Hartree diagram shown in Fig. 3.4 for interaction with a specific mode λ in
the junction.

The loop in the diagram corresponds to the electronic charge, n = −iℏG<(0)
so that:

ΣH(τ
′
1, τ1)

iℏ
= δ(τ ′1, τ1)

gλ

iℏ

[∫
C
dτ2 iℏDλ(τ2, τ1) [−iℏG<(0)]

]
gλ

iℏ
, (3.82)

where it is assumed that gλ and G< are matrices in the Wannier basis while
phononic Green’s function Dλ is a scalar.

The self-energies Σ>,<
H = 0 because two times on the contour should be the

same. On the other side, for Σ++
H one has :

Σ++
H (t′1, t1) = −iℏδ(t′1, t1)gλ

[∫ +∞

−∞
D++

λ (t2, t1)dt2

+

∫ −∞

+∞
D+−

λ (t2, t1)dt2

]
G<(0)gλ.

(3.83)

Combining two integrals (coming from two contour branches) together, one gets:

Σ++
H (t′1, t1) = −iℏδ(t′1, t1)gλ

[∫ +∞

−∞
Dr

λ(t2, t1)dt2

]
G<(0)gλ, (3.84)

where Dr
λ = D++

λ −D+−
λ .
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Going to the energy domain for all the quantities and using Σr
H = Σ++

H −Σ+−
H =

Σ++
H one finally gets:

Σr
H(E) = −iℏ gλDr

λ(0)

∫ +∞

−∞

dE ′

2π
G<(E ′)gλ. (3.85)

Summing up contributions from all the modes λ, we get the total Hartree self
energy:

Σr
H(E) = −iℏ

∑
λ

gλDr
λ(0)

∫ +∞

−∞

dE ′

2π
G<(E ′)gλ . (3.86)

One can notice that the Hartree self-energy does not depend on energy and
provides just the energy renormalization. It is therefore usually neglected [5] and
we will also do that. Next, we discuss the calculation of the Fock self-energy.

3.3.2 Electrons: Fock (exchange) self-energy

Contrary to the Hartree self-energy, the Fock self-energy is usually used in the in-
elastic current calculations. In this subsection, we derive the inelastic self-energies
Σ we use in our code. Globally, in this subsection we will do the same step as in
the previous one. The Fock diagram, shown in Figure 3.5(a), is given by:
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Figure 3.5: a) Feynman diagram of the Fock term. b) Scheme of the contour
corresponding to each type of Fock’s self-energy Σ. Each of them has a fixed time
τ1 and τ2 on the contour.

Σ(τ2, τ1) = iℏgλG(τ2, τ1)Dλ(τ2, τ1)g
λ. (3.87)
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This equation comes from the Dyson equation (3.32). Like before, we have two
electron-phonon interactions, but the electronic Green’s function connects now
different vertices. As previously, it is assumed that gλ and G are the matrices in
the Wannier basis while phononic Green’s function Dλ is a scalar.

We do not need to use the Langreth rules, but we can deduce them with a
simple contour. The time on the contour corresponds to the self-energy we derive.
The relations (3.26), illustrated in Figure 3.5(b), show how τ1 and τ2 should be
placed on the contour. The two times in green, τ1 and τ2, correspond to the ”++”
term, and should be both on the C+ part of the contour. In red, τ1 on C− and τ2
on C+ correspond to the ” < ” term. In blue, τ1 on C+ and τ2 on C− correspond to
the ” > ” term. For the ”−−” case, both times are on the C− contour in purple.
With this, we can determine which Green’s function we have to use.

The simplest real-time self-energies are Σ< and Σ> which are just the products
so that one has:

Σ<(t2, t1) = iℏgλ G<(t2, t1) D
<
λ (t2, t1)g

λ

Σ>(t2, t1) = iℏgλ G>(t2, t1) D
>
λ (t2, t1)g

λ.
(3.88)

For the retarded self-energy, we begin by using Eq. 3.28 which allows us to
express it in terms of "++" and "<" terms:

Σr(t2, t1) = Σ++(t2, t1)− Σ<(t2, t1). (3.89)

It is easy to develop this term with the help of Figure 3.5(b):

Σr(t2, t1) = iℏgλ
[
G++(t2, t1) D

++
λ (t2, t1)−G<(t2, t1) D

<
λ (t2, t1)

]
gλ. (3.90)

One can then use again Eq. 3.89 for "++" term and arrive at:

Σr(t2, t1) = iℏgλ
[
(Gr(t2, t1) +G<(t2, t1))(D

r
λ(t2, t1) +D<

λ (t2, t1))

−G<(t2, t1)D
<
λ (t2, t1)

]
gλ = iℏgλ

[
Gr(t2, t1)D

r
λ(t2, t1)

+Gr(t2, t1)D
<
λ (t2, t1) +G<(t2, t1)D

r
λ(t2, t1)

]
gλ.

(3.91)

In the stationary case (dependence only on (t2 − t1)), we perform the Fourier
transformation to pass to the energy domain:

Σr(E) = iℏ
∑
λ

gλ

[∫ +∞

−∞

dΩ

2π

(
Gr(E − Ω) Dr

λ(Ω)

+Gr(E − Ω) D<
λ (Ω) +G<(E − Ω) Dr

λ(Ω)

)]
gλ,

(3.92)
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where we have also reintroduced the summation over all modes λ.
For ” < ” and ” > ” self-energies, we get similar equations in the energy

domain:

Σ<(E) = iℏ
∑
λ

gλ

[∫ +∞

−∞

dΩ

2π
G<(E − Ω) D<

λ (Ω)

]
gλ

Σ>(E) = iℏ
∑
λ

gλ

[∫ +∞

−∞

dΩ

2π
G>(E − Ω) D>

λ (Ω)

]
gλ.

(3.93)

These expressions can be found in many studies of electron-phonon interactions,
as in Refs. [10, 11, 19]. Moreover, the NEGF approach can be also applied to other
electron-boson interactions such as electron-photon [7] in a similar way.

In our code, the calculations are done in orbital basis. To understand the
element matrix calculations, we consider for the event at τ1 the interaction between
sites i and j and for the event at τ2 the interaction between sites i′ and j′. We can
consider two kinds of setup. The first one, as discussed by, for example, Sergueev
et al. [18], considers an isolated molecule kept in contact with its own thermal
bath and can be therefore described conveniently in the phonon mode basis λ. The
second situation consists of connecting the junction and leads phononically. This
problem would be better treated in displacement basis with the dynamical matrix
of each part and their couplings as shown in Eq. 3.69.

We can express the electron-phonon self-energy in Eqs. 3.92, 3.93 in Wannier
basis for electrons and displacement basis for phonons b (including atomic site
and three Cartesian directions) by using relation (3.70) between phonon Green’s
functions and electron-phonon couplings, see Eq. 1.40, in displacement basis. For
example, the lesser term can be expressed as:

Σ<
j′j(E) = iℏ

∑
b′b

gb
′

j′i′

[∫ +∞

−∞

dΩ

2π
G<

i′i(E − Ω) D<
b′b(Ω)

]
gbij (3.94)

and similar for other self-energies.

3.3.3 Phonons: lowest order self-energy

In this section, we were inspired by Galperin et al. [83] in which they calcu-
lated thermal transport with phonon Green’s functions. Here, we describe how
electron-phonon interactions renormalise the phonon’s Green’s function. Whereas
for electrons there are two self-energies at the lowest order of perturbation, for
phonons there is only one possibility to combine two interactions. At each inter-
action, phonons are created or annihilated. Figure 3.6(a) helps to understand the
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Figure 3.6: a) Feynman diagram of the phonon self-energy term. b) Scheme of
the contour corresponding to each type of self-energy Π. Each of them has a fixed
time τ1 and τ2 on the contour.

meaning of phonon self-energy Π. We again represent in blue, electron Green’s
functions. Green wavy lines on both sides correspond to two phononic Green’s
functions, ending or starting at interaction points shown by red circles. In our
code the phonon calculations are done in the displacement basis b with coupling
matrix gb in the Wannier basis provided by Eq. 1.40. Thus, Figure 3.6(a) describes
the phonon self-energy:

Πb′b(τ2, τ1) =iℏ
∑
iji′j′

gb
′

j′i′Gi′i(τ2, τ1)g
b
ijGjj′(τ1, τ2)

=iℏTr
[
gb

′
G(τ2, τ1)g

bG(τ1, τ2)
]
.

(3.95)

We omit in the following the trace over Wannier functions to simplify equations.
The first thing we can notice in this equation is that the phonon self-energy is
completely defined by electron Green’s functions without phonon propagators. The
second thing we notice is the inversion of times of the second Green’s function.
Similar to electronic case, we use the contour in Figure 3.6(b) to determine which
Green’s function is used. We can get quite straightforwardly the expressions for
"</>" self-energies:

Π<
b′b(t2, t1) = iℏ gb′G<(t2, t1)g

bG>(t1, t2)

Π>
b′b(t2, t1) = iℏ gb′G>(t2, t1)g

bG<(t1, t2).
(3.96)
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For the retarded term it is now convenient to use Eq. 3.30:

Πr
b′b(t1, t2) = θ(t1 − t2)

[
]Π>(t1, t2)− Π<

b′b(t1, t2)

]
. (3.97)

By developing the two terms with Eq. 3.30 we obtain:

Πr
b′b(t2, t1) = iℏ θ(t2 − t1)

[
gb

′
G>(t2, t1)g

bG<(t1, t2)− gb
′
G<(t2, t1)g

bG>(t1, t2)

]
= iℏθ(t2 − t1)

[
gb

′
Gr(t2, t1)g

bG<(t1, t2) + gb
′
G<(t2, t1)g

bGa(t1, t2)

− gb
′
Ga(t2, t1)g

bG<(t1, t2)− gb
′
G<(t2, t1)g

bGr(t1, t2)

]
,

(3.98)

where in the last step we used Eq. 3.29 to replace "greater" functions, G> =
Gr −Ga +G<.

When we develop the two last terms and, more specifically, Ga(t2, t1) and
Gr(t1, t2) as:

Ga(t2, t1) = θ(t1 − t2)
(
G<(t2, t1)−G>(t2, t1)

)
Gr(t1, t2) = θ(t1 − t2)

(
G>(t1, t2)−G<(t1, t2)

) (3.99)

we see that the two θ functions will cancel out them. The final expression of the
retarded self-energy will therefore take the form:

Πr
b′b(t2, t1) = iℏ

[
gb

′
Gr(t2, t1)g

bG<(t1, t2) + gb
′
G<(t2, t1)g

bGa(t1, t2)

]
. (3.100)

As before, in the stationary case, we can go to the energy space by a Fourier
transform and putting back the trace notation we obtain the final expression:

Πr
b′b(Ω) = iℏTr

[∫ +∞

−∞

dE

2π

(
gb

′
Gr(E + Ω)gbG<(E) + gb

′
G<(E + Ω)gbGa(E)

)]
.

(3.101)
Applying the same Fourier transformations to ” < ” and ” > ” terms, we obtain:

Π<
b′b(Ω) = iℏTr

[∫ +∞

−∞

dE

2π
gb

′
G<(E + Ω)gbG>(E)

]

Π>
b′b(Ω) = iℏTr

[∫ +∞

−∞

dE

2π
gb

′
G>(E + Ω)gbG<(E)

]
.

(3.102)
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In this section, we have derived inelastic self-energies needed to calculate the
currents for electrons and phonons. In principle, all the Green’s functions, elec-
tronic and phononic, entering the diagrams could be calculated self-consistently in
the real space basis. That would make up a complete scheme for calculating the
properties of coupled electron-phonon systems (second model). We have however
implemented only the first step at the moment, where phononic Green’s functions
in the junction are those of an isolated molecule kept in contact with its thermal
bath (the first model).





Chapter 4

Test on different systems

We test various implementations in our transport code on several simple models.
First, we consider 1D junctions consisting of two Ag atomic chains connected by
Benzene or Vanadocene molecules to model electron-phonon or spin-spin interac-
tions, correspondingly. Then several 2D systems, such as Black Phosphorus or
Graphene with Co ad-atoms in different geometry will be discussed.

4.1 1D system: Ag wire

4.1.1 Ag perfect wire

We consider first a linear chain (a wire) of silver atoms, which will be used as a
lead in further transport calculations. It is interesting due to the presence of only
one s-like band at the Fermi energy (EF ), as we will see, and has also a gap close
to EF which could be also of potential interest.

For electronic structure calculations we used the first principles DFT software
Quantum-ESPRESSO (QE), discussed in Section 1.3, which is based on plane wave
expansion of electronic wave functions. We build a primitive cell, composed of an
Ag atom placed at the origin (0, 0, 0), which is large enough, of 10 Å, in the x
and y directions, to avoid spurious chain-chain interactions. We have started by
minimizing the total energy using the pw.x code with respect to the cell parameters
a in the z direction and have found the equilibrium distance of about 2.6 Å.

SCF calculations were done using Perdew-Burke-Ernzerhof (PBE) functional
for exchange-correlation potential, which is one of the most popular GGA parametriza-
tions. Ultrasoft pseudopotentials were employed to describe electron-ion interac-
tions with energy cutoffs of 30 and 300 Ry for wave functions and charge density,
respectively. The mesh of 1× 1× 40 k-points were adopted and the smearing of
0.01 Ry was used for integrating over 1D Brillouin zone.

79
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-  Quantum ESPRESSO
+ transport code

z  

x 

Figure 4.1: Band structure of an infinite Ag linear atomic chain calculated with
QE (black) and using Wannier functions (red). All the bands are labelled by their
main atomic orbital characters.

The band structure of the wire is shown in Figure 4.1 and was calculated with
the "bands" option in pw.x. The energy E is calculated on the k path along
the z direction (wire axis) plotted in units of 2π/a, where a is the wire lattice
parameter. Atoms of Ag have 11 valence electrons with the electronic configuration
[Kr]4d105s1. Because of the symmetry of d-orbitals with respect to the z axis, the
dx2−y2 and dxy bands, as well as dxz and dyz ones, are two-fold degenerate. The
s and dz2 orbitals can hybridize and contribute together to the conduction band
crossing EF (mostly of s-character) and to another lowest in energy band (mostly
of dz2-character).

We can determine the orbital contributions to different bands using the in-
formation from the DOS shown in Figure 4.2 calculated with a NSCF run using
1 × 1 × 80 k-points in order to obtain smooth-shape curves. With projwfc.x we
can calculate the total DOS as well as the DOS projected on different Ag orbitals
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Figure 4.2: a) Total DOS of an Ag infinite atomic chain compared to the PDOS
on d and s orbitals. b) PDOS resolved over five d orbitals.

 

Figure 4.3: Real-space images of different Wannier orbitals sampling the electronic
structure of the Ag wire and used further in the transport code. Red and blue
colours correspond to positive and negative sign, respectively. a) shows s-orbital
centred at the Ag-Ag bond; b) represents different d-orbitals.
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(PDOS). First, we compare the PDOS with the DOS. From Figure 4.2a one can
see that s-orbital dominates the band around the Fermi level. The peaks in the
DOS are associated with band edges. At E < −1.8 eV the whole contribution
in the DOS come from d-orbitals, as seen in Figure 4.2a. The dz2-orbital can hy-
bridize with the s-orbital by symmetry, producing well pronounced anti-crossing
at around −1 eV and opening the gap. Other d-bands are split into two doublets
- dxz in green and the dyz in blue, and dx2−y2 in cyan and dxy in purple dots.
The dxz, dyz orbitals are equivalent by rotation of 90◦ around the z direction, while
dx2−y2 , dxy orbitals – by rotation of 45◦. In the 1D wire geometry, these symmetries
will result therefore in the degeneracy of corresponding bands. Note that the last
pair of bands, originated from perpendicularly oriented dx2−y2- and dxy-orbitals, is
the less dispersive one due to small overlap in the z direction.

- Quantum ESPRESSO
+ transport code

Transversal

Longitudinal

Figure 4.4: Phononic dispersion for an infinite Ag chain.

For Wannier calculations with the code Wannier90, we select an s-orbital in
the middle of the Ag-Ag bond as well as five d-orbitals centered on Ag atoms, as
illustrated in Figure 4.3. The frozen energy window spreads from −∞ to 3 eV
which allows to reproduce well all the bands discussed above from the calculated
Wannier Hamiltonian. The bands are calculated taking into account orbital-orbital
hoppings up to 18.5 Å, corresponding to the 7th neighbour, which is especially
important for correct description of the s band crossing the Fermi energy.
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Flat configuration Tilted configuration

Figure 4.5: Two studied configurations of Benzene molecule joining two Ag wires.
They can be realized at different Ag-Ag wire separations.

The phonon carriers have their own energy dispersion, represented by their fre-
quencies ω as a function of a wave vector q. Figure 4.4 presents the phononic bands
of the Ag wire along the z direction. The three bands correspond to three direc-
tions of oscillations of Ag atoms: longitudinal one (oscillations along the wire axis
z) shows positive energies going up to 30 meV while two transverse bands (oscilla-
tions in the xy plane) are degenerate by symmetry and have imaginary frequencies
(shown by negative values in Figure 4.4) indicating at the transverse instability
of a linear chain, presumably towards the formation of a zigzag configuration. In
our transport code, we have also the possibility to compute the dispersion rela-
tions by diagonalizing the phonon’s Hamiltonian calculated as a square root of the
Dynamical matrix. We took here a cutoff for interaction distance smaller than
for electrons, of 12 Å. From Figure 4.4 we can notice that we reproduce correctly
the longitudinal band with the Hamiltonian while all imaginary frequencies have
been set to zero in order to avoid their impact on subsequent phonon transport
calculations.

After the detailed analysis of the Ag chain, we present now different types of
molecular junctions where Ag chains play a role of electrodes.

4.1.2 Ag wire Benzene junctions

We begin with a simple benchmark case of a benzene molecule, which represents
a basic molecule widely studied in literature. We mention few publications: in
Ref.[84] and [85] they simulated the adsorption of a benzene molecule on a Ag wire
and studied the impact of charge transfer on molecular states. Ref.[20] reported on
NEGF calculations based on DFT for Carbon atomic chain or nanotube molecular
junctions with a benzene molecule. They looked at electron-phonon interactions
too, which will be also the subject of our study.

Elastic transport

Inspired by the recent publication[86] discussing geometry-dependent interference
effects for spin-filtering in Benzene-based junctions, we compare two possibles ori-
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entations of Benzene connected to Ag wires as illustrated in Figure 4.5. The "flat"
configuration puts the Benzene plane perpendicularly to the wire’s axis while the
"tilted" configuration has only one mirror symmetry with respect to the xz plane
– the plane of the page in figure. These two configurations can be realized depend-
ing on the distance between Ag wires. The supercell in the z direction is made of
10 Ag atoms on the left of Benzene and 9 on the right, which is enough to match
the SCF potential to the one of the perfect Ag wire on both sides. During the
relaxation, we fixed two Ag atoms on both sides (contacting the leads) and relax
the other Ag atoms only in the z direction. We observed that the tilting angle
of Benzene increases with the distance between the Ag apex atoms. The flat and
tilted configurations were obtained for apex-apex distance of 4.68 Å and 5.66 Å,
respectively. The SCF calculations were done using the 1x1x4 k-mesh.
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Figure 4.6: a) and b) represent the total DOS of tilted and flat configurations,
respectively, as a function of energy. c) and d) show the projected DOS onto
Benzene states (molecular PDOS) for two configurations.

To select the energy window for Wannier90 calculations, the DOS calculations
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are useful. The total DOS for both configurations is shown in Figure 4.6 and was
calculated with 1x1x20 k points. Figure 4.2(a) and (b) present the DOS for the
flat and tilted configurations, respectively. We can recognize, in both of them,
Ag-related structures with the contribution of Ag d orbitals in the energy window
from about −4 to −2 eV and the s-like structure around the Fermi energy. In
contrast with the Ag wire, many peaks appear at lower energy due to Benzene
molecular states. Figure 4.6(c),(d) present the contribution of the molecule to
the total DOS, projected DOS (PDOS). We can identify peaks corresponding to
molecular levels of the benzene. Molecular PDOS in both cases has a non-zero
contribution around the Fermi energy, which indicated that it will participate
in electron transport, which should be mediated by frontier orbitals, mostly by
LUMO (lowest unoccupied molecular orbital) state located at about 1.6 eV above
the Fermi level. To describe correctly LUMO states with Wannier90, the energy
window [−25; 3] eV was used. To achieve a good localization of Wannier orbitals,
we add two s orbitals on Ag apex atoms while

Figure 4.7: Source of the image [5]: (a) Energy diagram of a tight-binding model of
Benzene molecule with a hopping elements −t between the nearest Carbon atoms.
On-site energy is denoted as ϵ0. (b) representation of six molecular orbitals and
their energy levels. Green and blue colors represent the positive and negative signs
of electronic wave functions, respectively.

for Benzene, we used 18 orbitals: π-orbitals on C, s orbitals on H, and s orbitals
in the middle of C-C bonds. In both configurations, the benzene frontier orbitals
hybridize with Ag s-states around the Fermi energy producing a finite PDOS at the
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Fermi energy, which is noticeably higher for the "tilted" configuration, indicating
that probably more molecular states can hybridize in this case with Ag states.

The representation of molecular states of Benzene, shown in Figure 4.7, allows
understanding of the composition of electronic wave functions on each site. We can
notice that both HOMO (highest occupied molecular orbital) and LUMO states
are two-fold degenerate with an energy of ϵ0 ∓ t, respectively, where ϵ0 is the on-
site energy and −t is the nearest neighbour hopping element. In the case of the
junction, we have to take into consideration the overlap between the s-orbital of
Ag atoms and molecular states of the Benzene. For the "flat" configuration, only
HOMO-1 state can have a non-zero overlap because of opposite alternating phases
of electronic wave functions for other states on the Benzene plane (cancelling out).
For the tilted configuration, the axial symmetry with respect to the z axis is
broken. It allows therefore to have finite overlaps for one of HOMO (the one on
the right) and one of LUMO (the one on the left) states.

Figure 4.8(b) present transmission functions for two configurations of Benzene
calculated by Green’s function method discussed in Section 3.2 with the Hamilto-
nian constructed on Wannier’s functions. In black, the ideal transmission of Ag
infinite atomic chain is shown given by the number of bands at specific energy,
it is integer and is always higher than the transmission of a molecular junction.
For the "flat" configuration, as was argued above, only one symmetric Benzene
orbital (denoted as "1") can mediate the transport from the Ag s-band, resulting
in a finite tunnelling transmission at the Fermi energy since this orbital lies well
below the Fermi energy (at around −5 eV). For the "tilted" configuration, on the
contrary, two more molecular orbitals, denoted as "2" and "3" and coming from
HOMO and LUMO doublets, get opened producing a destructive interference with
the orbital "1". This is translated to the very small transmission in a wide range
of energies around the Fermi level. Near 1.6 eV, the transmission goes to 1 due to
the resonant tunnelling through the LUMO orbital "3".

In order to confirm this interpretation of NEGF results, we perform a real-
time dynamics of electronic wave packets, shown in Figure 4.9. We propagate
the wave packet constructed from the Bloch function at the Fermi energy. The
corresponding k-point was kz = 0.25 (in units of 2π

a
). The group velocity of an

electron was found to be about Vz ≈ 640 km/s. At t0, the wave packet is coming
from the left lead. At t1, an electron arrives at the junction. The noisy peaks at this
point are due to interference between the electron wave function coming from the
left and the reflected from the junction part. The contributions from all Benzene
molecular orbitals (18 altogether), shown by columns in the middle of panels, allow
to confirm previous analysis. In the "flat" case, an electron passes only through
the HOMO-1 state, while in the "tilted" case, the three orbitals are seen to be
involved. These three pathways produce destructive inference, discussed above,
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Figure 4.8: a) Propagation pathways for electron transport around the Fermi
energy for Ag/Benzene junctions in two configurations. b) Transmission as a
function of energy for two configurations and for the perfect Ag wire calculated by
NEGF method.

resulting in complete reflection of an electron as in Ref. [87]. The wave packet
can be also studied at the LUMO energy (≈ 1.6 eV) to reveal the origins of the
transmission peak in the tilted case. We have seen that an electron has a negligible
probability to pass through HOMO-1 or HOMO states at this energy, and the main
contribution comes from the LUMO state.

At t2, an electron has passed the junction and the transmitted and reflected
portions of the wave packet should be related to transmission (T ) and reflection
(R) probabilities, respectively. They can be estimated as follows:

T =
∑
i∈R

|ϕ(i)|2; R =
∑
i∈L

|ϕ(i)|2, (4.1)

where ϕ(i) is the electron wave function at the site i. Table 4.1 demonstrates the
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Figure 4.9: Propagation of the wave packet across Ag/Benzene junction in flat
and tilted configurations. On each panel the lines on the left and right sides
show the probability function on the left and right electrodes, respectively, while
the columns in the middle describe the contributions from the Benzene molecular
orbitals (which are 18 in total).

consistency between the two methods: from NEGF calculations, one had at the
Fermi energy T ≈ 0.62 and R ≈ 0.38 for the "flat" case and T ≈ 1.00 and R ≈ 0.00
for the "tilted" one. As we have a unique s-band crossing the Fermi energy, the
wave packet propagated at the corresponding k-point gives the total transmission
as provided by NEGF in Figure 4.8.

On this simple example, we can see a utility of wave packet method. The fact
that we can observe the propagation of electrons across the junction in real time
and analyze contributions from different molecular orbitals is complementary to
the NEGF approach, which allows to obtain the total transmission as a function
of energy.
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Figure 4.10: a) Electron-phonon coupling elements with the LUMO state for dif-
ferent vibration modes of an isolated Benzene molecule. b) Representation of the
important mode "30" mostly coupled to the LUMO. The red arrows represent the
direction and the amplitude of atomic oscillations.

Electron-phonon interactions

We now add electron-phonon interactions. We consider first the isolated Benzene
molecule. From EPW calculations we can extract the Dynamical matrix, the
electronic Hamiltonian in Wannier basis and electron-phonon coupling matrix in
real space. We then diagonalize both the Dynamical matrix and the Hamiltonian
and rotate the coupling matrix in order to get electron-phonon elements in the
basis of molecular vibrations and molecular orbitals.

In order to identify the most important for transport vibrational mode, we plot
in Figure 4.10 for each mode its coupling strength to the LUMO orbital (any of two
of which were found to be equal) which is expected to play the most important role
in electron transport around the Fermi energy. The mode which interacts most

configuration Reflection in junction transmission total
flat 0.61781 0.0000 0.38219 1.0000

tilted 0.99733 0.0000 0.00267 1.0000

Table 4.1: Contributions of the final wave packet in the two leads for flat and tilted
configurations, which can be related to the transmission and reflection coefficients.
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Flat configuration

Tilted configuration

X 5000 X 5000 

X 5000 X 5000 

Figure 4.11: Evolution of electronic wave packet with inclusion of electron-phonon
interaction term with the mode "30" of the Benzene. Again, the lines on the left
and right sides as well as the columns in the middle describe the contributions to
the left and right chains and on molecular levels, correspondingly.

strongly with the LUMO (marked by the red circle) is the mode "30" characterized
by its energy of 0.197 eV. For this mode, which we can denote as the mode "0",
we add to the electron Hamiltonian the corresponding electron-phonon term as in
Eq. (2.32):

Ĥep
ij,0 = gλ=30

ij (b̂†0 + b̂0)ĉ
†
i ĉj, (4.2)

where ij run over (all) molecular orbitals.
Figure 4.11 shows the wave packet propagation in the presence of electron-

phonon interactions with the chosen mode considering the simple case of one
phonon channel in the model, Figure 2.4. The probability function in the up-
per channel (with one excited phonon) is multiplied by 5000. At the time t0, the
wave packet comes from the left lead and no phonon is present in the molecule
initially. At the time t1, an electron arrives at the molecule and starts to interact
with the mode.
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From the later time t2, one can get the overall probability of phonon excitation.
The total wave function is of the form:

|Ψ⟩ =
∑
i

ϕ0(i) |0⟩+
∑
i

ϕ1(i) |1⟩ , (4.3)

where |0⟩ and |1⟩ are phononic states without phonon and with one phonon, re-
spectively. The probability to excite a phonon is then given by the norm of the
wave function in the excitation channel:

P1 =
∑
i

|ϕ1(i)|2. (4.4)

One can see that the "flat" configuration has a negligible probability to excite a
phonon. On the contrary, this probability is much higher, of the order of ≈ 10−4,
for the "tilted" configuration. It is consistent with our previous finding: since an
electron does not pass across the LUMO orbital in the "flat" configuration due to
symmetry considerations, it can not neither excite a phonon. In the "tilted" case,
the LUMO is active, and the phonon can be now excited.
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Figure 4.12: Excitation rates for each vibration mode for flat and tilted configu-
rations. The mode with the highest rate in each case is represented on inset.

We performed similar calculations for all the modes, Figure 4.12, in order to
see if the probability to excite a phonon correlates with electron-phonon coupling
calculated for the LUMO orbital, and to verify if the mode "30" gives indeed the
highest excitation rate. For the "tilted" case, some of the modes get a non-zero
excitation rate, but the Highest rate is still related to the mode "30". In the "flat"
case, as the LUMO state is not acting in the electron transport, Figure 4.10 is not
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Figure 4.13: Vibrational frequencies as a function of the mode number for the
case of Ag/Benzene junction in two configurations. The frequencies for the full
junction and for the Benzene only (fixing all Ag atoms) are both shown by black
and red lines, respectively. For both configurations, two lowest frequency modes
which are activated due to coupling to Ag chains are represented on insets.

relevant, and we find indeed that the only mode which can be excited is the mode
"18". This mode is rotationally symmetric and therefore should be activated by an
electron passing through the HOMO-1 orbital, which is the only one participating
in the transport.

Until now, the electron-phonon couplings were extracted from the isolated Ben-
zene molecule. We compare now these calculations with the electron-phonon cal-
culations of the full Ag/Benzene junction. Figure 4.13 presents in black the fre-
quencies of all 93 modes of the full system (containing 19 Ag atoms and 12 Benzene
atoms) for each geometry as well as those obtained from the sub-matrix of the total
Dynamical matrix, considering only displacements of Benzene atoms (in red). The
highest in frequency modes are matching perfectly for two types of calculations.
These modes are intrinsic Benzene modes involving relative displacements of Ben-
zene atoms. The 6 highest modes corresponds to Hydrogen oscillations. On the
contrary, Ag atoms are much heavier than Carbon or Hydrogen. Therefore, the
modes corresponding to Ag wires are situated at lower frequencies, contributing
to a hump going from 0 to 30 meV. Between these extreme cases, the modes are
composed of displacements of silver and benzene atoms. In the case of isolated
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benzene, the 6 lowest-frequency modes, corresponding to rigid displacements and
rotations of the Benzene as a whole, should in fact have zero frequencies since
do not require any energy. When the Benzene is connected to Ag wires, some of
these modes get non-zero frequencies due to interaction with Ag contacts. In the
"flat" case, the contacts activate a "breathing" mode with a rigid oscillation of the
molecule along the z direction. For the "tilted" one – a "swing" oscillation in the
zy plane as shown in Figure 4.13. We can notice that these oscillations fall into
the frequency window of the Ag wire vibrations, of [0, 0.027] eV, so they should
be active for phonon transport across the molecule, which as we will see is indeed
the case.
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Figure 4.14: a) Excitation rates for each vibration mode in two configurations,
considering the Benzene sub-matrix blocks in the Dynamical matrix. b) Important
modes with the highest rates for each case.

Figure 4.14 displays the excitation rates for those phonons calculated from the
molecule sub-matrix. For the "tilted "case, the mode "30" (marked as "5" in
figure) still has significant excitation rate, close in fact to the one found previously
for the isolated molecule (see Figure 4.12). However, two other modes, the mode
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"11" and especially the "swinging" mode (marked as "3") strongly benefit from
the coupling to Ag wires and may get highly excited. For the "flat" configuration,
one finds two modes with relatively high excitation rates – the "breathing" mode
(marked as "1") and another one ("2"). One can conclude, therefore, that for
both configurations the most interesting modes, easy to be excited, are the modes
activated by interaction with Ag chains – the "breathing" and the "swinging"
modes.
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Figure 4.15: a) Phonon transmission as a function of energy for the perfect Ag
wire and for the two configurations of Ag/Benzene junction. b) Phonon’s PDOS
on the Benzene and on the apex Ag atom.

The electron transport for Ag/Benzene junctions calculated with our code has
brought therefore consistent results. We test now the phonon transport.

Phonon transport

We calculate first the phonon transmission function by NEGF method. Figure 4.15
presents the phonon’s transmission for both geometries, together with the phononic
DOS projected on Benzene and different displacements of the apex Ag atom. The
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"flat" configuration has a wide transmission feature, centred at 7 meV, with trans-
mission close to 1. The corresponding PDOS indicates that this feature should be
attributed to the "breathing" mode. Similarly, for the "tilted" configuration, the
peak at 12 meV should be associated to the "swinging" mode.

Flat configuration Tilted configuration

ħω =0,007 eV ħω =0,012 eV

Figure 4.16: Phononic wave packet at the moment of its passage across the
molecule for two configurations at specific energies.

To confirm the role of these low-frequency vibrations, we propagate the phononic
wave packets at specific energies chosen close to transmission function maxima.
The results are shown in Figure 4.16. In the "flat" case, we choose the wave vector
qz = 0.076 (2π

a
) corresponding to the energy ℏω = 7 meV, which gives the group

velocity of Vz ≈ 1102 m/s. Observing the displacement of the Benzene atoms,
we can confirm that the main contribution comes from the "breathing" mode. In
the "tilted" case, we work with the wave vector of qz = 0.126 (2π

a
) at the energy

ℏω = 12 meV, which correspond to the velocity Vz ≈ 6622 m/s. We see again that
the main vibration mediating the wave packet is the "swinging" mode.

NEGF calculations

We now present the calculations of various current-voltage characteristics. They
are most relevant since they can be directly compared with experimental data.
First, we will consider the elastic regime without electron-phonon interactions. As
the "tilted" configuration has a very low transmission around the Fermi energy,
we will focus most on the "flat" geometry. Figure 4.17(a) represents the charge
current as well as the heating power dissipated in two electrodes as a function of
voltage at zero temperature. In our symmetric geometry with equal coupling of
molecular orbitals to the left and right electrodes the voltage was assumed to apply
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Figure 4.17: a) Charge current and heating of two electrodes as a function of
voltage for Ag/Benzene junction in the "flat" configuration. b) Joule effect: the
total heating of electrodes matches perfectly to the total dissipated power given
by IV .

symmetrically too, +V/2 and −V/2 on the left and right leads, whereas molecular
levels energies were kept at their equilibrium values.

The charge current (in green) evolves linearly as a function of voltage. As it
is an integral of the transmission between ±V/2 and because the transmission for
the "flat" case can be considered as linear around the Fermi energy (Figure 4.8),
the current is linear until the voltage reaches the edge of the conduction band at
−1.2 eV below the Fermi energy. After this, the charge current saturates due to
the gap in the band structure of Ag wires. The associated heating of the left lead
(in red) and of the right one (in black) are not symmetric too, describing how
much each lead receives the thermal energy due to electron thermalization to the
corresponding chemical potential.

One can also model some interesting thermoelectric effects. The Joule effect
refers to the heat dissipation that appears when an electric current passes through
the resistive junction. Classically, it is due to collisions of electrons with atoms
or molecules. These collisions cause the electrons to lose their kinetic energy,
resulting in the generation of heat. The greater the resistance of the material, the
more collisions occur, and thus, more heat is produced. The amount of the total
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heat Q generated in the system is given by the Joule’s law:

Q = I × V = V 2/R. (4.5)

Without inelastic effects, the Joule heat should be equal to the sum of two contri-
butions of the left and right heating (from Eq. (3.59)).

Q = QL +QR =− 1

h

[∫
dE (E − eV/2)(fL − fR)T (E, V )

+

∫
dE (E + eV/2)(fR − fL)T (E, V )

]
= IV.

(4.6)

Adding two contributions in the Left and Right leads, we indeed recover the Joule’s
law as shown in Figure 4.17(b).

The most important thermoelectric effect is the Seebeck effect. It consists in the
voltage generation due to temperature gradient between two electrodes. In general,
electrons tend to diffuse from the hotter lead to the colder one. This movement of
electrons is translated into induced voltage between the two electrodes needed to
stop electron’s flux. The magnitude and the sign of the generated voltage depends
on the properties of the material. The Seebeck coefficient represents the voltage
induced by the gradient of temperature between the two regions. In practical
applications, the Seebeck effect is commonly used in thermoelectric devices, such
as thermocouples and thermoelectric generators. A thermocouple consists of two
different metals or semiconductors linked together by a junction. When a junction
connects a higher temperature reservoir with a lower temperature one, a voltage
is generated across the thermocouple. Thermoelectric generators are devices that
convert heat energy directly into electrical energy. They typically consist of an
array of thermocouples connected in series. The Seebeck effect has applications in
various fields, including power generation or waste heat recovery. It can be used
to power electronic devices or in charge batteries.

Figure 4.18(a) helps to understand the phenomenon. The gradient of temper-
ature induces a difference in electron occupations in left and right leads. If the
temperature of the left lead TL is higher than the temperature of the right one
TR (in figure, TR = 0 K), electrons above the Fermi level (equal for two leads)
will propagate from the left to the right. On the contrary, electrons below the
Fermi level will propagate in the opposite direction – from the right to the left.
The two currents will cancel out if the transmission function were constant around
the Fermi energy. If not, the net non-zero current will establish in the system,
of the sign depending on the slope of the transmission function. Figure 4.18(c)
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Figure 4.18: Thermoelectric effects for the Ag/Benzene junction in the "flat"
configuration. Illustrations of the Seebeck effect (a) and of the Peltier effect (b).
c) Induced charge current as a function of temperature of the left electrode at
zero voltage. d) Heating of the two electrodes as a function of applied voltage at
constant (room) temperature.

shows the calculated current at zero voltage as a function of temperature differ-
ence between electrodes. As we observe a slow variation of the transmission in the
"flat" configuration, the effect is very small too. Notice that the induced current
is negative, which means that it is mediated by holes. It is due to the fact that the
transmission function has a negative (though quite small) slope around the Fermi
energy as seen in Figure 4.8(b).

Another important effect is the Peltier effect, which is reciprocal to the See-
beck one. This phenomenon is related to the cooling of one electrode by passing
an electric current while keeping both electrodes at the same temperature. The
primary application of the Peltier effect is in thermoelectric cooling and heating
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systems. By using the Peltier effect, these systems can provide cooling or heating
abilities without the need for refrigerants or mechanical compressors. They are
commonly used for cooling electronic components, such as computer chips, laser
diodes or sensors. Figure 4.18(b) illustrates the effect. Two electrodes are kept at
the same temperature while an applied voltage shifts their chemical potentials µ,
in figure µL > µR. The heat currents into the electrodes are defined by Eq. (1.1).
Since fL− fR > 0 electrons will propagate from the left to the right at any energy.
For the left electrode, only electrons leaving it at E > µL will produce the cooling
(shown in blue) since the remaining holes should be filled from the chemical po-
tential µL. At E < µL, the thermalization will cause the heating of the electrode
(red region). For the right electrode, on the contrary, only electrons arriving at
E < µR will produce the cooling (shown in blue) since they should thermalize
to higher lying µR. At E > µR, the thermalization will cause the heating of the
electrode (red region).

As seen from Figure 4.18(b) only a little fraction of electrons will contribute to
the Peltier cooling in electrodes. That is why the transmission should have a huge
variation around the Fermi energy in order to bias enough the cooling contribution.
In our case of rather constant in energy transmission, as seen in Figure 4.18(b), we
can not observe Peltier effect – both leads are heating positively at any voltage.
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Figure 4.19: a) Transmission function in the "tilted" configuration with a gate of
−1.4 V applied locally on the Benzene molecule. b) The corresponding heating as
a function of voltage.

To enhance the Peltier effect, a possible solution would be to apply a gate on
the benzene molecule to bring a specific molecular orbital close to the Fermi energy.
We model this situation for the "tilted" configuration, where the important LUMO
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orbital is positioned at 1.6 eV above the Fermi energy. Figure 4.19(a) presents the
transmission function at applied gate of −1.4 Volt. This will shift all molecular
levels. We can observe in particular the peak of transmission from LUMO shifted
towards the Fermi energy with a strong variation in energy. Figure 4.19(b) gives
the heating powers calculated for this situation. One can see indeed that at small
positive voltage the left lead is getting cooled while the right one is heated. For
negative voltages, we have an inverse situation. The strong asymmetry in trans-
mission, due to the LUMO placed closely to the Fermi level, allows therefore to
amplify significantly the Peltier effect.

a) b)

Figure 4.20: Thermal flux as a function of temperature gradient in the "flat"
configuration. a) Electron’s heat current at zero voltage. b) Phonon’s energy
current.

We can also calculate the thermal flux from elastic current calculations. The
thermal flux is the heat transport induced by a gradient of temperatures at zero
applied voltage, similar to Seebeck effect. The different types of carriers can trans-
fer the thermal energy. Figure 4.20 compares the thermal flux carried by electrons
and by phonons. For electrons, the thermal flux is represented by the heating
of one electrode and the cooling of another one, the sum of the two being zero
since IV = 0. For phonons, it is characterized by the energy current. We see
that the electronic contribution is in the range of nWatts while it is in pWatts
for phonons. The factor of 1000 between the two thermal currents indicates that
electrons conduct the heat much more efficiently than vibrations in the considered
system.

Finally, we discuss the effect of electron-phonon interactions. The electron-
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Figure 4.21: Differential conductance as a function of voltage in elastic and inelastic
regimes for the "flat" (a) and "tilted" (b) configurations. c) Heating power to the
molecule as a function of voltage for both cases.

phonon coupling in NEGF formalism can be treated with two approximations.
First, we can consider a junction connected to two left and right phonon reservoirs
(leads). The second model consist of connecting a junction to another thermal
bath [18] at a certain temperature in order to thermalize the junction vibrations.
The first model is not yet implemented, so we will discuss here the second (more
simple) approach. Figure 4.21(a) and (b) present the differential conductance,
both elastic and the total one including inelastic corrections, for the "flat" and
"tilted" cases. The elastic conductance of the "flat" configuration is higher than
for the "tilted" case because of the strong difference in transmission around the
Fermi energy. In the "flat" case, the inelastic conductance is slightly shifted with
respect to the elastic one. This shift comes mainly from the elastic correction[5],
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δIelastic, due to possibility for an electron to take energy from phonons and to give
it back in the junction without changing its final energy.

For the tilted case, the conductance shows steps at specific voltages correspond-
ing to frequencies of vibration modes presented previously. Such steps in conduc-
tance are often obtained in simulations (for example, in Refs. [19, 88, 89, 90]) and
experimentally [91, 92]. The steps are attributed to the opening of another trans-
port channel with an excited phonon. We observe that the first step is the highest
one and corresponds to the "swinging" vibrational mode. The height of this step
confirms the importance of the mode in inelastic transport, as it has been also
seen in the simulations with wave packets. The step at 0.2 eV is associated with
the mode 30 of the benzene.

Finally, we can also calculate the amount of energy transferred to the molecule.
In the elastic case, the total energy current to the molecule is always zero, IEL +IER =
0 because of the energy conservation. In the inelastic case, it is not the case
producing the heating of the molecule, Q = IEL + IER . Figure 4.21(c) demonstrates
that the heating of the benzene is more important in the "tiled" configuration,
which is consistent with our wave packet studies showing more important phonon
excitation rates for this case.

This section allowed to demonstrate a majority of functionalities of our trans-
port code on a simple one dimensional system. We simulated the transmission
and the current/voltage characteristics with the NEGF method. The wave packet
method confirmed NEGF results and allowed to get insight and more details on
molecular state resolution and time dynamics. We include the electron-phonon
interactions in the current and in the wave packet dynamics. We will discuss now
another kind of interaction which has been implemented in the code, namely mag-
netic exchange interactions between the local spin and the spin of the conduction
electron.

4.1.3 Ag wire with a Vanadocene

Metallocenes are a class of organometallic molecules which consist of a transition
metal atom trapped between two cyclopentadienyls (C5H5). The vanadocene be-
longs to metallocene group, it contains the vanadium as the central atom. The
vanadocene exhibits interesting electronic and magnetic properties due to the pres-
ence of the vanadium atom and has the total spin S = 3/2.

The Ag/Vanadocene junctions have been recently studied in our group in col-
laboration with experimentalists in view of single-molecule spin-filters based on
quantum interference effects[93]. We took therefore a model junction consisting
of Ag wires connected by a vanadocene molecule, shown in Figure 4.22, as a first
simple system to test spin-spin interactions implemented in our transport code.
We have started by performing the structural relaxation using spin-polarized cal-
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Figure 4.22: Model of a magnetic junction: Ag wires connected by a Vanadocene
molecule.

culations, where spin moment was initialized at the beginning only on the Vana-
dium atom. In output, the total magnetization of the system was found to be
about 2.52µB, which means that the system roughly preserves the total spin of
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Figure 4.23: a) DOS as a function of energy for the Vanadocene connected to Ag
wires. Total DOS calculated by different methots as well as the molecular PDOS
are shown. b) PDOS on Vanadium d-, p- and s-orbitals. c) PDOS on different
Vanadium d-orbitals.
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the Vanadocene molecule, which is S = 3/2. The small difference comes from
(negative) co-polarization of Ag chains.

The SCF calculations were done with PBE exchange-correlation potential (GGA
approximation) using 1x1x6 k-points. We used 1x1x2 k-mesh in the NSCF cal-
culation needed to construct Wannier functions. Another NSCF calculation was
done with a finer mesh of 1x1x40 in order to obtain the smooth DOS shown in
Figure 4.23. Figure 4.23(a) presents the DOS calculated with projwfc.x and allows
to compare the total DOS (in black) with the PDOS projected on the Vanadocene
molecule (in red). We observe that only Vanadocene orbitals contribute to the
differences between spin up and spin down channels. The cyan dashed curve cor-
respond to the DOS calculated with Wannier90. This DOS matches perfectly to
the one calculated with projwfc.x in the energy window [−6; 3] eV indicating that
we describe well all electronic states around the Fermi energy with the Wannier
basis. We select the orbitals for Wannier calculations by analyzing Figure 4.23(b)
where PDOS on different Vanadium orbitals are plotted.
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Figure 4.24: Transmission as a function of energy for spin up and spin down
channels through a Vanadocene molecular junction connecting Ag wires.

As previously, we first calculate the spin-resolved transmission function, which
is shown in Figure 4.24. One can observe that spin up electrons do not transmit
at the Fermi level while spin down transmission reaches almost the value of 1
which corresponds to spin-dependent PDOS of dz2 orbital of the Vanadium which
is expected to dominate the transport due to its orientation and strong coupling
to leads.
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Figure 4.25: Evolution of a wave packet through the Ag/Vanadocene junction for
spin up and down channels. The columns in the middle of each panel display
now the contributions from Wannier functions of the Vanadocene molecule (35 in
total).

One can see that main contributions come from d-orbitals, while contributions
of s- and p-orbitals are relatively small. For the Wannier basis we choose therefore
five d-orbitals on Vanadium, and we add, as for the Benzene before, π-orbitals on C
atoms and s-orbitals on H and on each C-C bond. Altogether, it makes therefore 35
orbitals for Vanadocene molecule. We have found that 3 eV above the Fermi level
is enough for the frozen energy window. The perfect matching of both DOS curves
in the selected energy window, discussed above, confirms our choice of Wannier
functions. Figure 4.23(c) presents the PDOS on different d-orbitals. For spin up,
dz2 , dxz and dyz states are occupied while for spin down only a small portion of
the dz2 is below the Fermi energy. Thus, we count 3 states occupied, which results
in the total spin close to S = 3/2. Moreover, the dz2 orbital (relatively strongly
hybridized with Ag chains) is located right above the Fermi energy for spin down,
while it is down shifted for the spin up case. This energy shift should play a role



106 CHAPTER 4. TEST ON DIFFERENT SYSTEMS

in the electron transport around the Fermi energy, as we will see now.
We can study an electron propagation through the Vanadocene with the wave

packet method. Figure 4.25 shows wave packet propagation at the Fermi energy
for both spins independently. The group velocity was found to be about 650
km/s. At the time t0, the wave packet is coming from the left lead and reaches
the junction at t1. We see that in both spin cases, the dz2 Vanadium orbital is
strongly contributing to the electron transport. In the spin down case, the electron
can pass through with a high probability. For spin up, the wave packet is totally
reflected.

spin states Reflection in junction transmission total∣∣↑, 3
2

〉
0.9964 0.0000 0.0036 1.0000∣∣↓, 3

2

〉
0.1244 0.0000 0.8756 1.0000

Table 4.2: Different contributions in final wave packet for spin up and spin down
electrons.

The transmission and reflection probabilities extracted from wave packet sim-
ulations are presented in Table 4.2 and matches well to NEGF transmissions. The
transmission in spin up case is very close to 0, while the spin down one is about
0.87 where with the NEGF method we obtained 0.86. These results agree pretty
well with NEGF transmission curves presented in Figure 4.24.

Once the spin up and spin down Hamiltonians are calculated with DFT and
transformed to Wannier basis, we can constructH0 and J matrices from Eqs. (2.43)
and (2.44) knowing the local spin S = 3/2. We can verify if exchange parameters J
are localized on Vanadocene and what are their spread into the junction. Fig 4.26
shows diagonal elements of J . In the lead part, one can observe some small values
which are negligible compared to those on the molecule and specially on Vanadium
d orbitals. We can thus deduce that the spin exchange events will occur mainly
near the Vanadium, which is quite reasonable.

In order to verify if our calculations with spin exchange are consistent, we
can propagate wave packets with H0 and J but deactivating the spin-flip terms
in the total Hamiltonian (2.40). We observe exactly the same evolution as in
spin-polarized DFT simulations presented in Figure (4.25).

There are no spin-flip events for |↑, 3/2⟩ and |↓,−3/2⟩ initial states where we
should recover the DFT result. On the contrary, the state |↓, 3/2⟩ can mix with
the state |↑, 1/2⟩ by rising and lowering operators in Eq. ((2.40)).

Figure 4.27 presents the evolution of wave packets including this interaction.
We initialize an electron coming from the left lead with a spin state |↓, 3/2⟩ at t0.
At t1, the electron interact with the local spin Of the Vanadocene.

At the time t2, an electron is reflected or transmitted with a spin up or down.
Table 4.3 gives a probability of having spin-flip, ≈ 0.22, which is quite high (much
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Figure 4.26: On-site exchange interaction elements for all Wannier orbitals in the
Vanadocene connected ro Ag wires. Ag wire’s orbitals far from Vanadocene are
all represented on the left, while the molecule’s orbitals – on the right.

spin states Reflection in junction transmission total
|↑, 1/2⟩ 0.1345 0.0000 0.1155 0.2500
|↓, 3/2⟩ 0.3688 0.0000 0.3812 0.7500
Total 0.5033 0.0000 0.4967 1.0000

Table 4.3: Different contributions in the final wave packet, taking into account
spin-flip events between |↓, 3/2⟩ and |↑, 1/2⟩ states.

larger than the probability to excite a phonon in the previous section). Moreover,
comparing this result with Table 4.2, we see that the spin interaction decreases
the reflection probability by a δT ≈ 0.512 what is more than 50%.

We could also take another local spin state rather than S = 3/2 for the initial
wave packet. Table 4.4 represents spin-flip probabilities for different combinations
of conduction electron and local spins. We can see that the probabilities are quite
close and are moreover symmetric with respect to the change of sign of two spins,
as it should be. The most probable spin-flip is found for the pair of states |↑,−1/2⟩
and |↓, 1/2⟩.

We have tested electron-phonon and spin-spin interactions on model systems
based on Ag wire leads. We now discuss our first applications to several 2D
materials.
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Figure 4.27: Time propagation of |↓, 3/2⟩ wave packet through the Vanadocene
molecule when spin-flip interactions are switched on.

electron spin mS = 3
2

mS = 1
2

mS = −1
2

mS = −3
2

↑ 0.00 0.25 0.33 0.25
↓ 0.25 0.33 0.25 0.00

Table 4.4: Total probability of the spin-flip for different initial spin channels.

4.2 2D system: Black phosphorus

4.2.1 Effect of bonding and antibonding character on STS
spectra

We introduce the 2D materials with a very representative example of Black Phos-
phorus (BP). One of the 2D layer-structured materials which has attracted recently
a great attention [94, 95, 96] due to possible superconductivity at low temperature,
high carrier mobility at room temperature or his semiconductor properties with a
tunable band gap [97, 98].

The single layer of BP is named as Phosphorene. We construct its primitive
cell with the lattice parameters of a = 3.348 Å and b = 4.587 Å along the x and y
direction, respectively. The vacuum region of 20 Å was used to separate the slabs
in the z direction and to avoid their artificial interaction. This cell contains 4 Phos-
phorus atoms (two atoms per sublayer). The DFT calculations were performed
within the PBE parametrization for the exchange-correlation functional and using
cutoffs of 30 and 300 Ry for wave functions and charge density, respectively.

The band structure of Phosphorene is shown in Figure 4.28(a) and it was
calculated with (20 × 20 × 1) k-points in the SCF calculation. It shows a gap
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a) b)

c)

Figure 4.28: a) Band structure of Phosphorene (a monolayer of BP) along the
k-path ΓXWY Γ. b) Images of the bonding and antibonding states at the Γ point.
c) bonding and antibonding distribution probabilities along the z direction while
integrated in the xy plane.

of 0.8 eV at the Γ point. We have found that the valence and conduction bands
are both made of pz orbitals, oriented perpendicular to the Phosphorene plane,
but making either bonding (B) or antibonding (AB) combinations between the
two sublayers within the same Phosphorene plane. These states, plotted with the
pp.x code, are illustrated in Figure 4.28(b) at the Γ point. Figure 4.28(c) presents
the distribution probabilities of these states along the z direction perpendicular
to the Phosphorene plane. One can see that the two states have rather different
behavior: while the B state (corresponding to the valence band) shows a strong
localization in between the two sites (making a bond), the AB state (corresponding
to the conduction band) presents a node there and spreads much more on both
sides in the vacuum region. These features can be readily reproduced by a simple
model with two Gaussians simulating the two atomic wave functions with nonzero
overlap S.

In collaboration with the MPQ group (Paris Diderot University), we have
worked on simulation of STM (Scanning tunnelling microscope) images, in par-
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a)

b)

a) c)

d)

Figure 4.29: a) Total DOS and PDOS on different p-orbitals of 10 layer BP slab
integrated over full 2D Brillouin Zone. b) LDOS in the vacuum plates at different
heights D of 10 layer slab integrated over full 2D Brillouin Zone. c) STM image
with atomic resolution of the area where the spectrum was measured. d) dI/dV
spectrum measured over a larger sample bias range.

ticular of BP. Scanning tunnelling microscope (STM) and related spectroscopy
measurements (STS) are among the most powerful techniques in surface science,
allowing to characterize the local geometry of surfaces (pure or with various kinds
of impurities or defects) as well as to probe their electronic states as a function of
energy. The tunnelling conductance, dI/dV , measured by STS, can be generally
related, within the well-known Tersoff-Hamann approach, to the local density of
states (LDOS) of the substrate at the STM tip position called the vacuum LDOS.

To investigate the effect of B/AB character of states on their extension out
of BP surface and therefore on observed STS spectra, we have performed the
calculation of a slab of ten Phosphorene layers stacked in an ABA ... sequence
along the z direction. The B layer is shifted by half of a unit-cell period along
the X axis with respect to the A layer, which corresponds to the minimum energy
configuration. Figure 4.29(a) shows the total DOS integrated over the full 2D
Brillouin zone for a 10 layer slab. One sees that the pz-DOS displays a rather
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symmetric shape to the right and to the left of the gap. On the contrary, the
LDOS in the vacuum, Figure 4.29(b), is clearly asymmetric, with a large increase
at positive energies where AB states are present compared to negative energies
dominated by B states. This asymmetry is a robust result and becomes even more
pronounced with increasing the distance from the surface, from 4 to 6 Å.

Experimentally, this asymmetry is observed by STM, as shown in Fig. 4.29(d).
The dI/dV spectrum of bulk BP around the Fermi level exhibits a 0.3 V gap cor-
responding to the gap of bulk BP [95, 99, 100]. Outside the gap, the dI/dV signal
exhibits a stronger increase in the conduction band than in the valence band. At
larger sample bias this asymmetry still holds with a much larger signal at posi-
tive voltage than at negative voltage. This experimental spectrum compares very
well with the calculated LDOS, which therefore confirms our theoretical predic-
tions. The discussed here results of this joint work have been published recently
in Ref. [2]. I note that Phosphorene has been considered as one of possible 2D
systems (along with of course Graphene) to test our transport code for 2D wave
packets dynamics.

4.2.2 Phosphorene with a Co linear chain

Figure 4.30: Model of a junction consisting of a periodic line of Co atoms adsorbed
on the Phosphorene.

We proceed now with a junction built on 2D Phosphorene. The idea was to
take advantage of the armchair structure of Phosphorene in the z direction and
to deposit a line of Co atoms along z as shown in Figure 4.30. We want then to
study the transport in the y direction and to see, in particular, if it displays any
spin-polarization. The relaxation of the junction was done by fixing all P atoms
and using a mesh of 1× 3× 12 k-points. We have found a total magnetization of
1.02 µB. Looking at the DOS, Figure 4.31(a), we have noticed that it has peaks
very low in energy, near -100 and -65 eV. The rest of the DOS starts from around
−25 eV which corresponds to the range of a BP layer electron states. We have
found that the lowest peaks correspond to the 3s and to the 3p orbitals of Co,
respectively, and represent core states which are of course irrelevant for electron
transport.
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Figure 4.31: a) DOS of the Co line ad-atoms on Phosphorene, total DOS as well
as different Co contributions are shown. b) DOS decomposed over s and d Co
orbitals.

Moreover, the contribution of Co 4s orbitals is also very small around the
Fermi energy. Therefore, in Wannier calculations, we consider only 3d orbitals of
Co and s and p orbitals for P atoms. The brown dashed curve represents the DOS
calculated with this choice of Wannier functions. It superposes perfectly with the
DOS calculated by QE which proves the validity of our Wannier model for the
energy range [−25; 3] eV.

Figure 4.31(b) shows the PDOS on different d-orbitals of Co. Among them,
we observe that only the dz2-orbital (for spin down) is located above the Fermi
level. For spin up states, all the d-orbitals are placed at the edge of the Phospho-
rene valence band. This will result in spin unbalance corresponding to the total
magnetic moment of about 1 µB which is found in calculations. Moreover, the
d-orbitals for spin down are located in the gap region of Phosphorene, [−0.6; 0.3]
eV. In the spin up case, on the contrary, no Co orbital contributes to the DOS at
the Fermi energy. This indicates at the full spin-polarization of Co states at the
Fermi level, which could be important for spin-filter properties. We have therefore
calculated the spin-polarized transmission in the y direction perpendicular to the
Co chain, which is shown in Figure 4.32. The total transmission is obtained by
integrating the k-resolved transmission over 200 kz-points. Unfortunately, we do
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Figure 4.32: Spin-resolved transmission in the y direction of Phosphorene/Co junc-
tion. The transmission of pure Phosphorene is also shown by black line for com-
parison.

not find any strong spin-polarization, there is a partial effect at the valence band
edge, at energies around −0.9 eV, but it is not so pronounced.

We can argue, however, that due to fully spin-polarized Co states at the Fermi
energy one can expect good spin-filter transport properties, but in the Co chain
direction z. Since the Fermi energy falls into the gap of Phosphorene these Co
states are inactive for the transport in the y direction where the transmission
is always zero in the gap. To check this point, we present in Figure 4.33 the
band structure of the junction in the z direction and compare it with the one for
freestanding Co chain, calculated with the same interatomic Co-Co distance along
the z direction. We can see that for the Co wire, the spin up has only the s band
crossing the Fermi level while for spin down – three bands. For deposited Co wire,
we find that only one spin down band intersects the Fermi energy which should
provide therefore fully spin-polarized transport channel, as was argued above.

In this section, we showed an example of transport calculations for 2D material
where however translation symmetry is preserved along one direction, along the z
in the case of Co chains on Phosphorene. We will consider now another 2D case
where translation symmetry is missing in both in-plane directions.
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Figure 4.33: Band structure along the kz direction of an isolated Co wire (left)
and of Phosphorene/Co junction (right). For isolated Co wire the same lattice
parameter (in the z direction) as the one in the Phosphorene/Co junction was
used.

4.3 Graphene with a Cobalt ad-atom
Graphene is a well studied 2D material constituted of a single layer of carbon
atoms arranged in a two-dimensional honeycomb lattice. It is considered as a very
promising system due to its exceptional properties such as an excellent electri-
cal conductivity because of the 0-band gap, chemical stability and resistance to
chemical reactions, transparency, good thermal conductivity, etc.

Therefore, we have started with the Graphene as a basic material to simulate
a propagation of wave packets in two dimensions. First, we have calculated the
lattice parameter by minimizing the total energy, and we have found a value of
a = 2.44 Å. Figure 4.34(a) presents the band structure of the Graphene along
the usual k-point path. The black curve shows the QE bands after performing
an SCF calculation with 12 × 12 × 1 k-points. The Graphene is known for its
famous Dirac cones, at K = (2/3, 2/3) (in crystal units), around which the bands
show quasilinear dispersion as seen in Figure 4.34(a). The DOS of the Graphene
around the Fermi level is shown in Figure 4.34(b). We observe the zero band gap
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Figure 4.34: Graphene: a) band structure along k-path ΓMKΓ calculated by QE
as well as with Wannier functions; b) total DOS and PDOS resolved on different
s and p orbitals.

behaviour. The px (in purple), py (in cyan dot) and s (in green) orbitals are not
contributing to electronic states around the Fermi energy, where only pz-orbitals
(in red) are important. Note that since the unit cell is composed of two carbons,
the PDOS should be multiplied by 2 to produce a perfect matching to the total
DOS.

The choice of Wannier orbitals is multiple. One can use only pz orbitals on
carbons which will allow reproducing well the band structure in a small range
of energies around the Fermi energy, [−3; 3] eV. However, in the perspective to
implement a magnetic scattering centers, it is better to include more orbitals in
order to describe well electronic states at lower energies too. The sp2 orbitals
converged very well in Wannier calculations, but the band structure wasn’t well
reproduced, we did not get, in particular, the zero band gap. We choose therefore
to use s-orbitals in the middle of each C-C bond in addition to Carbon pz-orbitals.
This choice allowed to reproduce correctly the QE bands in a large energy window,
[−25; 3] eV, as shown by the red curve in Figure 4.34(a), with reduced number of
orbitals per unit cell. The calculations were done with an orbital-orbital cutoff of
6.5 Å, which corresponds to 2nd cell neighbours on the Graphene lattice.



116 CHAPTER 4. TEST ON DIFFERENT SYSTEMS

-2

-1

 0

 1

 2

-2

-1

 0

 1

 2

Figure 4.35: Graphene states for transport: a) 2D band structure calculated with
our code with a grid of k-points centred at the K-point; b) velocity vectors of
Graphene on the Dirac cone. The purple arrows represent the velocity in the zy
plane, the length of the arrows is proportional to the velocity magnitude.

With our transport code, we can calculate first the 2D band structure along a
specific k-path or on some 2D mesh of k-points and then to choose a specific Bloch
state to be propagated at the energy of interest. Figure 4.35(a) is obtained with
a grid of k-points centred at K-point. Then we filter out the k-points around the
energy E = 0.2 eV with a range of ±0.01 eV which results in Figure 4.35(b). For
this fixed energy cut at E = 0.2 eV, the Dirac cone produces a circle, where each
k-point has its own group velocity, which can be calculated using equations like
Eq. (2.9) and should also correspond to Vg ∼ ∇kE(k). In the case of Dirac cones,
the velocity direction should follow the radial direction going outside the circle.
Our result confirms this and allows selecting a propagation direction for our wave
packet.

From the lead, we built our junction supercell with 7×6 unit cells of graphene
and put a Co atom at the hollow position above the carbon hexagon as illustrated in
Figure 4.36. This junction will be inserted in a larger plane of graphene, considered
as a lead far away from the Co in transport calculations. As the interactions
involve two neighbours in the lead (defined by our cutoff parameter) we consider
two unit cells on the perimeter of the junction as being unperturbed and therefore
matching to ideal graphene. The Co has an electronic configuration [Ar]3d74s2,
which corresponds to the spin S = 3/2. We relaxed the junction by fixing all the
carbon atoms except of those closest to the Co ad-atom, and observed that the Co
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Figure 4.36: Model of a Co ad-atom deposited on Graphene layer with a supercell
periodicity of 6× 7 unit cells of Graphene in the xy plane.

approaches the graphene layer before taking up a final position above the middle
of the hexagon.

From SCF calculations, done with 2×2 k-points, we obtain the total magneti-
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Figure 4.37: Co ad-atom/Graphene system: spin-resolved total DOS and the
PDOS on s and d Co orbitals. Also, the total DOS calculated with Wannier90 is
shown (in cyan).
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Figure 4.38: Co ad-atom/Graphene system: total DOS and PDOS on different Co
orbitals in a large energy window used to chose Wannier90 parameters.

zation of about 1.01 µB. Thus, the system remains locally magnetic, with the local
spin of S = 1/2, which is thus reduced compared to the atomic value of S = 3/2.
As in previous cases, we calculate the DOS from another NSCF calculation with
more dense mesh of 6 × 6 k-points. The PDOS shown in Figure 4.37 allows to
conclude that the spin 1/2 resides on dxz,yz Co orbitals, which are occupied in
spin up and appear to be pinned to the Fermi energy for spin down. The other
d-orbitals are fully occupied.

As in the case of BP/Co discussed above, in order to understand which orbitals
of Co we have to take into account and which energy window is necessary in
Wannier calculations, we plot the DOS in a larger energy window as shown in
Figure 4.38. Lowest levels are composed of 3s and 3p orbitals of Co. On the
contrary, the 4s and 3d Co orbitals are contributing around the Fermi energy. One
can guess that carbon orbitals start to contribute around −20 eV. Thus, we take
all electronic states in an energy window from −20 eV to 15 eV above the Fermi
energy to be used for constructing Wannier orbitals. The Wannier calculations
were done, as before, with a frozen window up to ±3 eV above the Fermi energy,
and we choose as Wannier functions pz Carbon orbitals and s-orbitals at C-C
bonds, as was discussed before for ideal Graphene, as well as five Co d-orbitals.

We show in Figure 4.39 the propagation of a 2D wave packet for spin up and
down electrons (firstly, without spin-flip terms). This is quite heavy calculation
because of huge number of unit cells. In 1D models, presented before, we worked
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Figure 4.39: Simulation of a 2D wave packet propagation in a Co ad-
atom/Graphene system for spin up and spin down electrons (without spin-flip).

with 800 unit cells of Ag wire along the z direction with 6 orbitals per cell. In
Figure 4.39, a simulation grid was 300 × 300 unit cells with 5 orbitals per unit
cell of Graphene. This model allows to see difficulties of wave packet propagation,
specifically the dispersion of the wave packet in time if it is not wide enough (due
to slight nonlinearity of the energy dispersion). We note however that the cur-
rent implementation of the code may be still significantly optimized and moreover
parallelized (it is a serial implementation at the moment) in the future. For spin
up and spin down cases, wave packets start to propagate at the same position at
t0. They propagate towards the Co ad-atom and interact with the perturbed cell
at t1. After the interaction, the wave packet tends to diffuse in time. Very small
difference is seen between the two spin cases with a slightly larger portion localized
on the Co cell in spin up channel. We notice that for more massive perturbations,
like magnetic molecules for example, the difference may be more pronounced.

We discuss now the effect of spin-spin interactions. As for the Ag/Vanadocene
case, we calculate the H0 and J matrix from spin up and spin down DFT Hamil-
tonians. We can verify the localization of exchange parameters plotting diagonal
elements as it is shown in Figure 4.40. Graphene orbitals which are far from the
Co atom are all represented on the left part of the figure while the perturbed
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Figure 4.40: Spin-exchange interaction elements on Wannier orbitals for a Co ad-
atom/Graphene.

Carbon atoms are collected on the right. We observe again large values of J on
Cobalt d-orbitals and much smaller values on closest Carbon atoms. We can thus
see again that spin-spin exchange interactions have a rather local character and
are mainly concentrated on the atoms around and especially on the Co ad-atom.

We propagate now the wave packet as before and visualize it on a map having
300 × 300 unit cells of Graphene. The wave packet is initially in the spin down
channel and at the same position as before at time t0. It propagates in the direction
of the central cell with Co atom and starts to interact with it at the time t1, opening
the second spin up channel due to spin-flip events. At time t2, the wave packet
in the spin down channel tends to diffuse but conserves its preferable transport
direction. For spin up channel, on the contrary, the electronic wave function
seems to spread in a more isotropic way around the Co ad-atom, showing a more
spherical ring. We have found the probability of the spin-flip to be about ≈ 0.05.
We note that it is much smaller than for Ag/Vanadocene case due to presumably
2D character of the system and therefore weaker global impact of local spin-flip
interactions on a 2D wave packet.
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Figure 4.41: Simulation of a 2D wave packet propagation with spin exchange
interactions on a Co ad-atom/Graphene. The wave packet is initialized at the
time t0 in the spin down channel.

4.4 Conclusions and perspectives

During My PhD, I was developing a methodology and computational tools for
simulating quantum transport based on the Quantum-ESPRESSO package and the
Wannier90 and EPW codes. We implemented transport calculations in a realistic
tight-binding approach with the NEGF and Wave packet methods. The code was
tested on different 1D models such as molecular junctions made of Ag wires and
Benzene or Vanadocene molecules, but also on 2D systems like a Phosphorene or a
Graphene layer. In these systems, we tested the wave packet propagation and the
NEGF transmission calculations for both electron and phonon transport, including
electron-phonon or spin-exchange interactions.

The complementarity of the NEGF and wave packet methods is exemplified in
different calculations of 1D systems. Whereas the NEGF method gives a global
transport characteristics of a system, the wave packet method gives a detailed
vision on the real dynamics of carriers. Section 4.1.2 illustrates this by identifying
molecular states acting in the destructive quantum interference or the phonon
modes mediating the thermal transport. In Section 4.1.3, a wave packet analysis
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allowed to understand the role of dz2 orbital of the Vanadium in the spin-filter and
spin-flip properties.

The calculations at finite voltage are directly linked to different thermoelec-
tric phenomena such as Seebeeck, Joule or Peltier effects. Our code verifies these
properties in the elastic regime and also provides consistent results for inelastic
conductance. In the future, in addition to the approximation of a molecule cou-
pled phononically to its thermal bath, we are going to implement a realization
where the junction is coupled to leads not only electronically but also by vibra-
tions and therefore electron and phonon Green’s functions should be calculated
self-consistently in the presence of electron-phonon interactions on the molecule.
Moreover, other kinds of interactions, such as electron-photon for example, can be
also worked out since formally the formalism is very similar to already implemented
case of electron-phonon interactions.

The electron-phonon calculation with wave packet was introduced with an ex-
ample of one or several phonon channels, which provides the calculation of the
phonon excitation probability. However, we can explore deeper this model. We
can analyse, for example. the decoherence of electrons or phonons after their inter-
action at the junction. We can study, moreover, a sequence of wave packets – wave
packet train – and explore the energy transfer to the molecule vibrations. In the
future, a more ambitions project would be to simulate a phonon and an electron
propagation simultaneously to observe how they interact in the junction or, on the
contrary, to model how a phonon created by an interaction with an electron will
dissipate due to its propagation deep into the leads.

We have tested our code on 2D systems such as a single-layer of Black Phos-
phorus, a Phosphorene, in Section 4.2 and a Graphene in Section 4.3. We are
going to put more efforts in this direction in order to optimize the code and to
perform some more advanced simulations in 2D materials, including different types
of interfaces or molecules.

We also collect and catalogue input and output data for different systems,
needed to construct an efficient Wannier basis and to perform subsequent transport
simulations. Finally, our transport code is expected to be integrated into the plane-
wave transport code PWcond which is already included in Quantum-ESPRESSO
package.



Appendix

In order to proceed in analogy with the finite system’s analysis we need real-
value eigenfunctions φ, not complex, which could be always constructed since the
dynamical matrix is always real and symmetric by construction, even for periodic
systems. To do that we pass to notation {q,−q, ν} → {Q, p, ν} where Q number
all the {q,−q} pairs and p = 1, 2 indicates the sign, +/−. In these new notations:

ωQ2ν = ωQ1ν ; φQ2ν
iαR = φQ1ν∗

iαR

so these pairs with p = 1, 2 correspond to the same eigenvalue of the dynamical
matrix and can therefore be combined to produce real-value eigenfunctions:

φQp̃ν =
∑
p

Up̃pφ
Qpν

with the unitary matrix:

Up̃p =
1√
2

(
1 1
−i i

)
(7)

This is similar to the transformation from two conjugated exponentials (complex)
to cos and sin functions (real). Inverse transformation relates the real function
basis to the standard one:

φQpν =
∑
p̃

U∗
p̃pφ

Qp̃ν

Using this real function basis in the unity resolution and in the spectral represen-
tation of the dynamical matrix yields:

Ĥ =
1

2

∑
Qp̃ν

P̂ 2
Qp̃ν +

1

2

∑
Qp̃ν

ω2
Qp̃νX̂

2
Qp̃ν (8)

where again

P̂Qp̃ν = ⟨P |Qp̃ν⟩ =
∑
iαR

P̂iαRφ
Qp̃ν
iαR

X̂Qp̃ν = ⟨Qp̃ν|X⟩ =
∑
iαR

X̂iαRφ
Qp̃ν
iαR

(9)
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with inverse transformation:

P̂iαR =
∑
Qp̃ν

P̂Qp̃νφ
Qp̃ν
iαR

X̂iαR =
∑
Qp̃ν

X̂Qp̃νφ
Qp̃ν
iαR

(10)

These operators refer again to the conjugate variables:

[X̂Qp̃νP̂Q′p̃′ν′ ] = iℏδQQ′δp̃p̃′δνν′

but are now Hermitian:

P̂ †
Qp̃ν = P̂Qp̃ν

X̂†
Qp̃ν = X̂Qp̃ν

(11)

Hamiltonian can be now written as follows:

Ĥ =
∑
Qp̃ν

ℏωQp̃ν

(
b̂†Qp̃ν b̂Qp̃ν +

1

2

)
(12)

in terms of standard creation and annihilation operators:

b̂Qp̃ν =

√
ωQp̃ν

2ℏ

(
X̂Qp̃ν +

i

ωQp̃ν

P̂Qp̃ν

)
b̂†Qp̃ν =

√
ωQp̃ν

2ℏ

(
X̂Qp̃ν −

i

ωQp̃ν

P̂Qp̃ν

) (13)

From Eq. (10) one finds for displacement operators:

X̂iαR =
∑
Qp̃ν

√
ℏ

2ωQν

φQp̃ν
iαR (b̂Qp̃ν + b̂†Qp̃ν) (14)

Rotation of creation and annihilation operators to the standard basis:

b̂Qpν =
∑
p̃

⟨Qpν|Qp̃ν⟩ b̂Qp̃ν =
∑
p̃

Up̃pb̂Qp̃ν

b̂†Qpν =
∑
p̃

⟨Qp̃ν|Qpν⟩ b̂†Qp̃ν =
∑
p̃

U∗
p̃pb̂

†
Qp̃ν

(15)

and inverse transformations:

b̂Qp̃ν =
∑
p

⟨Qp̃ν|Qpν⟩ b̂Qpν =
∑
p

U∗
p̃pb̂Qpν

b̂†Qp̃ν =
∑
p

⟨Qpν|Qp̃ν⟩ b̂†Qpν =
∑
p

Up̃pb̂
†
Qpν

(16)
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The Hamiltonian in the standard basis keeps the same form:

Ĥ =
∑
Qp̃ν

ℏωQν

(∑
pp′

Up̃pb̂
†
QpνU

∗
p̃p′ b̂Qp′ν +

1

2

)
=
∑
Qpν

ℏωQν

(
b̂†Qpν b̂Qpν +

1

2

)
(17)

The expression for creation operators in terms of displacement operators:

b̂Qpν =

√
ωQν

2ℏ

(
X̂Qpν +

i

ωQν

P̂ †
Qpν

)
b̂†Qpν =

√
ωQν

2ℏ

(
X̂†

Qpν −
i

ωQν

P̂Qpν

) (18)

The expression of displacement operators:

X̂iαR =
∑
Qpν

√
ℏ

2ωQν

[
φQpν
iαR b̂Qpν + φQpν∗

iαR b̂†Qpν

]
(19)

We can go now to original notations, {Q, p, ν} → {q,−q, ν}.
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