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Figure 1: The heliographic image “Point de vue du gras” by Nicéphore
Niépce is known as the oldest photography taken in Human history
(1827).
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Introduction

0.1 Context and motivation

0.1.1 Probing matter with light

The image presented in Fig. 1 is the first known recording of light us-
ing human technology. It was captured in 1827 by the French inven-
tor Nicéphore Niépce from a window of his abode in Saint-Loup-de-
Varennes, a small village in France. This was a formidable achievement
for the era: Niépce invented a photosensitive plate that could harness
light and process to cut-off its photosensitivity, thereby permitting ob-
servation without degradation. Of the entire electromagnetic spectrum,
the visible spectrum was the most natural part for humans to invent
image recording systems given our innate ability to perceive it with our
eyes. But other windows of the electromagnetic spectrum were explored
a few decades after Niépce’s breakthrough with Roentgen’s first X-ray
image and also with the development of radio technology towards the
end of the 19-th century.

In 1888, the German physicist H. Hertz conducted the first demon-
stration of radio wave transmission and measurement in the atmosphere
with the apparatus displayed on Fig. 2. By applying a voltage pulse to
an antenna, thereby radiating a 454MHz wave, he detected the same
signal using a secondary antenna. This groundbreaking experiment pio-
neered the development of wireless communication thanks to the excel-
lent propagation properties of radio frequencies and microwaves in the
atmosphere. From a basic science perspective, his experiment confirmed
the electromagnetic nature of radio waves and comforted Maxwell’s work
on the unification of electric and magnetic phenomena in his classical
theory of electromagnetism. Notably, he observed that radio waves are
reflected by metal surfaces, a characteristic of crucial importance as we
shall see now.
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Figure 2: Schematics of the first radio transmitter and antenna used
by H. Hertz in 1888 to demonstrate that radio waves, as much as light,
behave as an electromagnetic field.

In 1897, Alexander Popov, a physicist affiliated with the Imperial
Russian Navy, inadvertently discovered that radio waves could be used
for detection during a radio communication test between two ships based
in the Baltic sea: a third ship interrupted the signal as it sailed between
them, providing the first evidence of using radio waves for detection. A
few years later, in 1903, Hülsmeyer, inspired by the reflective properties
of radio waves on metallic surfaces, devised the Telemobiloskop which
is an active radio detection system. This technology was able to point
out the presence of a ship within a 3 km range in a given direction but
was not able to characterize the distance of the ship. Although it was
originally motivated by proximal ships detection and helping navigation
in low visibility conditions, its relatively short range and the problem
of multiple echoes prevented this technology to become widely used and
it fell into oblivion. During the 1920s and 1930s, a multiplicity of pro-
gresses in antenna design, radio emitters and electronics enabled people
to emit very short and intense focused radio pulses and to measure their
time of flight when reflected off a metallic surface. This gave rise to a
descendent of Hülsmeyer’s invention: the Radio Detection And Rang-
ing system (RADAR) which unraveled its full strategic potential during
the battle of Britain in the early months of World War II. Since these
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groundbreaking developments, radiofrequency and microwave detection
has evolved tremendously in accuracy, range, and power. Among all the
developments, the continuous wave radars used frequency modulated
signals fed into an interferometric design to obtain information both on
the range and velocity of the target objects by comparing the reflected
wave with the original one kept as a reference.

The multiple avatars of the RADAR as well as its optical version
called LIDAR (Light Detection and Ranging) are examples of electro-
magnetic interferometers used to probe matter. Other examples include
interferometric microscopy which aims at approaching the ultimate lim-
its of optical resolution [105, 121]. However, with the advent of quantum
theory, it became clear that matter and light are in a sense dual to each
other: quantum light is described in terms of particles with the intro-
duction of the photon and the quantum behavior of matter is associated
with probability amplitudes which behave as waves. The Kapitza Dirac
effect which consists of the diffraction of matter by a standing wave of
light [112, 89] was the first historical example of this dual point of view.

Following this line of thought, one can then ask how to probe light
or more generally electromagnetic radiation using matter. As we will
see, this will bring us naturally to the idea of the electron radar which
is the topic of this PhD.

0.1.2 Probing light with matter

Atomic interferometers directly descend from this idea which consists
in exploiting particle/wave duality unraveled even before the full for-
malization of quantum theory. They were experimentally demonstrated
thirty years ago [39, 115] and since then have been developed and applied
as sensors for several quantities, including measuring rotation with the
Ramsey–Bordé interferometer [25] (see Ref. [50] for a review). Appli-
cations of atomic interferometers concern basic science (high precision
measurements of the fine structure constant and of ℏ/M where M is
the mass of interfering particles, tests of relativity) but also measure-
ment of the local gravitational field. Concerning this latter application,
high precision gravimeters able to reach the 10−10 sensitivity on the
measurement of the local gravitational field have been commercialized
by the MuQuans company1 based in Bordeaux. Remarkably, matter
interferometers have also been used to obtain information on quantum

1Web site: https://www.muquans.com
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electromagnetic fields, thereby implementing the dual of what a radar
does, i.e. probing electromagnetic fields using quantum matter wave
interferences.

A prominent example is the Rydberg atom interferometer used as
a sensor for quantum electromagnetic fields, demonstrated in the sem-
inal experiments conducted by S. Haroche and his team. In a series of
remarkable experiments [28, 131, 88, 94, 27, 54, 150] (see [100] for a
review as well as S. Haroche’s Nobel lecture for an historical perspec-
tive), they have used two level systems (built from Rydberg atoms) in
a Ramsey interferometer to capture information about the number op-
erator for a trapped electromagnetic microwave mode (see Fig. 3). The
phase information retrieved from the Ramsey interferometer is related
to the cavity field through the ac-Stark shift, therefore the phase in-
formation is related to the photon number in the cavity [100]. In a
nutshell, modulo experimental imperfections, this Ramsey interferome-
ter performs a QND measurement [26] of the photon number. It should
also be noted that Rydberg atoms based quantum electrometers [63]
have reached record sensitivities but for static fields.

0.1.3 Sensing electromagnetic fields on a short time scale

All these experiments demonstrate the performances and usefulness of
matter interferometers in probing quantum and classical electromag-
netic fields. Nevertheless, accessing the dynamical properties of a field
over very short time scales is still extremely challenging. However, the
rapid development of quantum technologies based on solid state system
(superconducting circuits, semi-conducting platforms for quantum spin
manipulation, etc) call for a practical technology able to probe quantum
electromagnetic fields on a sub-nano second time scale which are the typ-
ical dynamical time scales for the quantum dynamics of such solid state
quantum mesoscopic devices.

Fast electrical modulation of optical systems enables measuring the
electric field up to a THz-bandwidth [37]. However, such optical systems
are not suitable for quantum mesoscopic devices due to the difficulty of
combining optics and microwave electronics within the same cryostat
and the large size of the sensing area (25 µm). On-chip systems based
on nano-mechanical resonators [47, 43], rf-capacitive gate based sens-
ing [1], NV-centers in diamond [57] as well as quantum dots have been
demonstrated, often as charge sensors able to detect a single electron
charge at a few tens of nm. But their bandwidth is still limited to 1
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Figure 3: (Extracted from [99]) Ramsey interferometric scheme for
photon number in a cavity. Initially being prepared in the appropriate
circular Rydberg state |g⟩. These are states where the last electron of is
sent far from the ionic core, in a very high principal quantum number
n and l = m = n− 1 quantum state. These circular Rydberg atoms are
then sent in a superposition of two circular Rydberg states |e⟩ and |g⟩
whose main quantum number n differ by 1 by a classical resonant mi-
crowave pulse (R1). The resulting superposition, which then has a large
dipolar momentum, interacts with a quantum electromagnetic mode in
a cavity (C), with a dispersive phase shift depending on their state and
proportional to the photon number in the cavity, before they are again
rotated by a classical microwave pulse in (R2). A photo-ionization de-
tector performs a measurement of the state of the two level atom in the
(|e⟩ , |g⟩) basis.
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to 10MHz at best. Moreover, they are not designed to detect quantum
features of the electromagnetic field such as non-classical fluctuations.

Reaching sub-nanosecond time scales or, equivalently tens to hun-
dreds of GHz bandwidth is a formidable challenge since we are speaking
about a measurement bandwidth comparable to the frequencies associ-
ated with the microwave spectrum. It is as if we would probe optical
radiation on the femto-second time scale, a notoriously difficult chal-
lenge if one remembers what it took to develop and master ultra-short
coherent classical pulses light sources [180, 97]. Ideally, such a system
should be somehow tunable in terms of time resolution and frequency
range within the GHz to THz window. And finally, it should be sensitive
enough to probe quantum radiation consisting of one to a few photons
due to the very low powers at which mesoscopic quantum devices are
operated. The central challenge is to identify a technology that could
fullfill these requirements. This thesis explores the potential of Electron
Quantum Optics (EQO) to achieve this goal.

0.2 Single electrons for probing electromagnetic
fields

Over the last 15 years, electron Quantum Optics emerged from the devel-
opment of on-demand single electron sources [70, 59, 11] and has changed
our approach of quantum coherent in micro and nano-electronics. It has
allowed access to the wave functions of individual excitations carried in
quantum electrical currents propagating through ballistic quantum con-
ductors such as quantum Hall edge channels [23]. After a decade of devel-
opments, it has reached a maturity with the demonstration of electronic
interferometry at the single and two particle levels. This culminated in
the implementation of tomography protocols [110, 17, 72] in a variety of
systems. When coupled to signal processing algorithms [163], they have
given access to the individual wave functions of electrons and hole prop-
agating in a quantum Hall edge channel, together with their emission
probabilities and coherences [17]. Moreover, fifteen years of progresses in
electronic decoherence modelization [181, 126, 127, 52, 125, 189, 65, 176,
35, 106, 157], characterization via various electronic interferometry ex-
periments [161, 134, 183, 159] and also in electronic decoherence control
[2, 104, 61] have potentially paved the way to highly controlled single
electron interferometry experiments. This unprecedented ability to gen-
erate, characterize and possibly manipulate electronic quantum states in
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Figure 4: Single electrons collider. It’s a setup made of two channel
separated by a distance d and capacitively coupled over a length l.
Two counter-propagating electrons propagating at velocity vF interact
through Coulomb interaction.

a quantum conductor suggests that EQO has reached a level of maturity
sufficient for exploring its diverse applications. A potential sensing appli-
cation that has gathered part of the EQO community in a collaborative
research project called SEQUOIA (Single-electron quantum optics for
quantum-enhanced measurements)2 funded by the European Metrology
Program for Innovation and Research is the development of interfero-
metric quantum sensing of quantum electromagnetic fields. This is the
idea of the electron radar which we will now introduce and explain.

0.2.1 Phase shifts in electron/electron collision

Electrons, given their charge, are susceptible to their surrounding elec-
tromagnetic environment. Such an environment can thus alter the elec-
tron’s quantum state. A single electron state is defined by its corre-
sponding wave packet. Therefore, an electromagnetic field exhibiting
rapid time-dependence is anticipated to imprint a phase modulation on
the wave packet.

We can estimate this phase shift when electron and radiation evolve
in a mesoscopic physics design as depicted in Fig. 4. This figure il-
lustrates two one-dimensional channels separated by a distance d and
capacitively coupled over a distance l. The probing electron propagates
in one channel while the radiation is contained in the other. This setup
aids in determining if a single electron can efficiently probe the field ra-
diated by another electron counter-propagating in the second channel.
This configuration allows for a dominant Coulomb interaction over the
all length l.

Assuming both electrons to be in an initial state of free propagation

2Web site: https://www.ptb.de/empir2018/sequoia/project/
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at a characteristic velocity vF , dependent on the circuit material, their
states will be modified by a phase factor eiδϕcou . The electric phase shift
δϕcou is computed as

δϕcou =
e

ℏ

∫
V (x(t), t) dt (1)

where V (x, t) denotes the potential experienced by the electron along
the trajectory t 7→ x(t). Because the electronic velocity vF is much
smaller than c and the size of the system is much smaller than the wave-
length of the radiation emitted at frequencies vF /l, propagation effects
for the EM field can be ignored and a quasi-stationary approximation of
electromagnetism can be applied (see below for numerical estimates). In
the present case, the phase shift is mostly electric and V (x, t) is obtained
from Coulomb’s law. After calculation, the phase shift is obtained as

δϕcou = αeff arcsinh (l/d) (2a)

αeff =
e2

4πε0εrℏvF
=
αqed

εr

c

vF
. (2b)

Considering the circuit at the junction of AlGaAs/AsGa semiconductors,
widely used in condensed matter experiments, with a relative permit-
tivity εr = 12.9 and a typical Fermi velocity vF = 105ms−1, we derive
αeff ∼ 1.7. Assuming now a typical d = 100 nm and an interaction time
of merely one hundredth of a nanosecond3 corresponding to l = 1 µm, we
get approximately δϕcou/2π ≃ 0.81. This significant phase shift suggests
that a single electron could potentially probe extremely low-intensity ra-
diation corresponding to the excitation of a single electron current in the
radiation channel.

Single electrons also offer the advantage that they can be generated
in very short electronic wave packets down to the tens of ps. It gives an
efficient way to sample the effect of an electromagnetic field over a sub-
nanosecond time scale, positioning single electrons as strong candidates
for quantum sensing. The remaining challenge is to find an apparatus
that extracts the quantum phase shift from the single electron wave
packet.

3This corresponds to an electromagnetic wavelength of 3mm, considerably larger
than the micro-metric dimensions of the system.
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Figure 5: Draft of the electronic quantum radar, an electronic circuit
with a Mach Zhender interfermoter geometry. A single electron source
is placed at the entrance. It can emit a single electron which then propa-
gates accross the interferometer. The upper arm is capacitively coupled
to a radiation. The measurement of the average current is conducted at
the output of the interferometer.

0.2.2 The electron radar proposal

We suggest to build an interferometric measurement system in the spirit
of Haroche’s previously discussed experiment, not using Rydberg atoms
but a single electron. We propose for this task a Mach-Zehnder interfer-
ometer (MZI) geometry as pictured Fig. 5 which is nothing but a space
domain version of a Ramsey interferometer. In this setup, the probe is a
single electron emitted at the entrance, the targeted radiation is coupled
to one branch called the target branch, and the average outgoing electri-
cal current is measured. Right after its emission, the single electron gets
delocalized in both branches by the electronic beam splitter. Propagat-
ing through both of them, each amplitude of the electron accumulates a
different quantum phase which is related to the local electromagnetic en-
vironment. Recombination of the amplitudes via a second beam splitter
and subsequent measurement of the outgoing current yields the quan-
tum phase difference, providing valuable information about the probed
radiation.

However, it should be noted that despite the similarities with Haroche’s
quantum measurement, there are crucial differences. The Ramsey in-
terferometer used in Haroche’s experiment provides a quantum non-
demolition (QND) measurement of the photon number, whereas the
electron radar does not. The coupling between electrons and the electro-
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magnetic field within an electrical circuit occurs via a time-dependent
voltage, which can be traced back to a quadrature of the field. As
pointed out in early QND theory literature [26], a quadrature evolves
over time, thus, a QND measurement of a time-dependent quadrature
presents a different challenge than measuring a time-independent photon
number. This is not what the electron radar does. Instead, as we shall
see in this thesis, this system parallels radar technology which leverages
classical electromagnetic wave amplitude to determine the velocity and
location of distant objects, justifying the name of “electron quantum
radar”.

In this PhD thesis, we construct a theoretical model for the “elec-
tron radar”, an interferometric measurement system that harnesses a
single electron’s sensitivity to the electromagnetic field and its extended
coherence time to probe low-amplitude radiation in either classical or
quantum states. We establish the pivotal equation linking the measured
electron signal to the properties of the probe and the field. Alongside
this, we present theoretical tools to ascertain the radar’s time and fre-
quency resolution. We substantiate the value of this system through
examples that demonstrate the potential to probe non-trivial quantum
states of the electromagnetic field.

0.3 Plan and outline of the main results

Structure of the manuscript After a first review chapter on electron
quantum optics (Chapter 1), this manuscript is mostly focused on the
various key elements of the electron radar. This includes the radiation
coupler that couples the electromagnetic radiation we want to probe
to the electronic interferometer (Chapter 2). This also includes single
electron wave packets which, as we shall see, determine the resolution
power of the electron radar (see Chapter 3). This chapter will introduce
the electronic ambiguity function, a new representation of the excess
single electron coherence which is the quantum version of an existing
concept in classical radar theory. Finally, the fully quantum theory of
the single electron radar incorporating a quantum radiation coupler as
well as single electron source and interaction effects will be presented
in Chapter 4. Predictions on the ability of the electron radar to probe
quantum radiations will also be presented and discussed in this chapter.

This progression has been retained to provide the reader with a pro-
gressive path towards this last chapter, introducing the concepts used in
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the electron radar theory one at a time. All the notational and technical
details are presented in a series of appendix so that the reader can get a
self contained exposition of the results presented in this manuscrit with
an emphasis on the concepts and underlying physics but without being
forced to go though all technical steps.

Let us now review in more details the contents of each chapter:

Electron quantum optics Chapter 1 aims at reviewing the neces-
sary background in electron quantum optics needed for the rest of this
manuscript. It lays the foundations for the quantum single electron
radar theory which is the main result presented in this manuscript.

We start by a brief presentation of the the state of the art in electron
quantum optics, including a rapid introduction to the physics of quan-
tum Hall edge channels and quantum points contacts. These elements
are the building blocks of all electronic interferometers demonstrated so
far in electron quantum optics with the AlGaAs/AsGa platform [23].
Conventional single electron sources used to generate single electron ex-
citation will then be reviewed4. We will then present the theoretical
foundations of electron quantum optics, introducing the electronic first-
order coherence function which is the electronic analogue of Glauber’s
quantum coherence introduced in quantum optics. Its basic proper-
ties and representations will be discussed as well as their relations to
measurable quantities. The last section of this chapter will be devoted
to bosonization, a theoretical tool that plays a crucial role in treating
Coulomb interactions, inherent in the full single electron radar model
presented in Chapter 4.

Radiation couplers Chapter 2 is devoted to the study of radiation
couplers. In our approach, a radiation coupler is viewed as an elas-
tic scatterer between the photons propagating in the radiation channel
and bosonic excitations, more specifically chiral charge/current density
waves at the edges of the 2DEG which are called edge-magnetoplasmons
(EMPs), propagating within the electron radar. Section 2.2 reviews the
basics of this approach and also the important connexion between the
EMP scattering matrix and the finite frequency admittance of the radi-
ation coupler viewed as a multi-terminal circuit element.

4We will focus on the ones demonstrated in Refs. [70, 58] but see Ref. [11] for an
exhaustive review.
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Various radiation coupler models directly relevant for the electron
radar will then be considered. Our exposition proceeds by increasing
complexity, starting with models coupling a classical time dependent
voltage drive to a quantum Hall edge channels in Sec. 2.3. Then, moti-
vated by probing quantum radiation, Sec. 2.4 discusses a model coupling
the interferometer to a real dynamical radiation channel. It involves two
capacitively coupled counter-propagating edge channels.

The electronic ambiguity function Chapter 3 aims at introducing
the important concept of electronic ambiguity function which describes
the resolution capabilities of a single electron excitation in the electron
radar. Since this concept is indeed imported from classical radar theory,
this chapter starts by reviewing classical radar theory in Sec. 3.1. Moti-
vated by pedagogy, we present a unidimensional toy model of a classical
radar which enables us to explicitly understand how a radar can mea-
sure the distance to a target but also its velocity5 as is well known by all
car drivers. In the process, the classical radar equation will be derived
together with the concept of ambiguity function in signal processing.

This initial exploration sets the stage for our journey towards the
electron quantum radar theory: in Sec. 3.2, a simplified model of the
electron radar will be presented. It assumes that the effect of the exter-
nal radiation on electrons propagating within it can be described using
the framework of time dependent single particle scattering. This is a
very strong hypothesis which assumes two things: (1) that the back-
action of the radiation on the radar can be described in purely classical
terms, (2) that there are no effects of Coulomb interactions within the
interferometer. This apparently naive approach will nevertheless lead
to the electron radar equation and enable us to introduce the electronic
ambiguity function, the quantum counterpart of the one appearing in
classical radar theory.

The rest of the chapter will be devoted to presenting the properties
of the electronic ambiguity function (Sec. 3.3) and discuss how it acts as
a filter on the signal we wish to reconstruct which is a time frequency
representation of a time dependent single particle scattering matrix.

The chapter wraps up with Sec. 3.4 where we discuss the experimen-
tal limitations in the time and frequency scales accessible when using
state of the art single electron sources. We then explore how techniques
commonly used in classical radar engineering can be transposed into the

5Based on the Doppler effect.
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electron quantum optics context to improve both the resolution as well
as the range of time and frequency scales accessible to an electron radar.

The quantum single electron radar theory Finally, chapter 4
presents the full quantum electron radar theory. It advances beyond the
limitations of the previous chapter by enabling us to take into account
the effects of Coulomb interactions under a linear screening hypothesis6.
Since it incorporates the full description of the radiation coupler, involv-
ing dynamical degrees of freedom of the radiation channel, this theory
enables us to discuss to what extent the electron radar can provide spe-
cific signatures of quantum radiation.

For the sake of pedagogy, in Sec. 4.1, we presents the underlying
physics behind the electron radar by extending the famous discussion of
Elitzur-Vaidman’s interferometric bomb detection [62]. From this per-
spective, the electron radar is not an ”interaction-free measurement” but
a fully quantum measurement in which “not too strong” interactions en-
able us to capture more information on the system than just its presence
or absence. In particular, we show that this discussion incorporates all
the basic elements of quantum measurement theory. It underlines the
role of the measurement’s backaction on the probed system. The key
point is that decoherence and backaction effects must not be too strong
otherwise the interferometric signal is killed. But they must not be too
weak because they are used to collect information on the system.

Then, a derivation of the quantum single electron radar equation
is presented in Sec. 4.2. The remarkable result is that this equation is
exactly of the same form than the one derived within a single particle
framework even if many body effects are present. It involves an effective
single particle scattering amplitude that can be computed from the EMP
scattering description of the radiation coupler and involves the quantum
state of the probed radiation. This is the central theoretical result of
this thesis.

To understand how these results can be used in experiments, we
consider in Sec. 4.3 the limiting regimes where the probe single electron
wave packet is either resolved in time or in energy. While the energy-
resolved case is straightforward to discuss, short duration wave packets
require a more careful discussion since they cannot be fully localized
due to the presence of the Fermi sea. A full quantitative analysis of the
electron radar signal for Levitons of given duration is presented that in-

6Commonly used in many previous works on electronic decoherence [34]
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corporates the potentially detrimental effects of electronic decoherence.
This analysis provides the explicit description of the experimental signal
that could be measured in an experiment.

In Sec. 4.4, this formalism is used to obtain explicit predictions for
the electron radar signatures of quantum radiation. In particular, we
propose a method for squeezing detection, illustrating that it should
be within experimental reach on the example of a squeezed vacuum
around a given frequency with realistic parameters. In the same way,
we discuss the possibility of the electron radar to detect a single EMP
within a given mode. Here also, the results we obtain suggest that single
EMP detection should also be experimentally achievable in forthcoming
experiments.

We finally conclude this thesis and discuss the theoretical and ex-
perimental perspective opened by this work.
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Chapter 1

Electron Quantum Optics

The initial chapter of this work aims to review the progress of electronic
transport over the past decades, evolving from a purely condensed mat-
ter perspective to a paradigm inspired by quantum optics. This change
has been accelerated by experimental advancements that have lead to
the controlled preparation and manipulation of novel states of electronic
fluid, down to single-electron excitations in structures analogous to op-
tical fibers for electrons. Subsequently, new theoretical concepts have
been elaborated to interpret the experiments based on these advances.
These concepts take inspiration from quantum optics, such as coherence
functions introduced by Roy Glauber in the 1960s [86, 87].

In this chapter, our primary focus will be on the experimental tools
that have led to the transition from coherent electronic transport to elec-
tron quantum optics. These tools are reminiscent of the standard com-
ponents found on an optical table: optical fibers, which will be supplied
by the chiral edge channels in the integer quantum Hall effect; beam-
splitters adjustable through metallic top gates; and sources for single to
few electrons, two categories of which will be introduced in Section 1.1.

The latter part of this chapter will concentrate on presenting the the-
oretical framework developed to comprehend and conceptualize these
novel experiments. Two central concepts will be introduced here and
utilized throughout the manuscript. Firstly, we will present electronic
coherence functions, discussing their primary properties, various repre-
sentations, and the physical quantities they give access to. Secondly, we
will explore bosonization, which establishes the correspondence between
electron and photon quantum optics.
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1.1 Experimental tools

1.1.1 Flying electrons

Electronic coherent transport

In the field of optics, photons propagate either freely in vacuum or
through conventional media, maintaining their quantum coherence over
kilometers due to their weak interaction with matter. This property
makes photons highly suitable for communication as they preserve the
initial signal over vast distances. However, their weak interaction poses a
challenge for computing, as it necessitates sophisticated technologies to
operate logical gates on photons [178]. Conversely, electrons, with their
inherent mass and charge, are highly sensitive to their environment,
making it challenging to maintain their coherent propagation over dis-
tances long enough to perform controlled quantum operations which are
at the heart of “electronic flying qubits” proposals [107, 14, 13, 194, 15]
This issue is especially pronounced for electrons in metals, as realistic
crystals contain impurities and phonons that interact with electrons and
also because of electron/electron screened Coulomb interactions [6, 67].

To demonstrate controlled quantum operations on electrons, we need
circuits with a size L small enough to preserve coherence but large
enough for manipulation. The inelastic length lin represents the typ-
ical distance over which electronic phase coherence is preserved, i.e.,
the length scale over which electron waves can interfere. Coherent elec-
trical transport occurs when L < lin. In condensed matter, electron-
phonon interactions and electron-electron interactions as well as effec-
tive screened Coulomb electron/electron interactions. Among inelastic
processes, electron-phonon interactions are responsible for Joule heat-
ing of electric wires when electrical currents flows within them. In most
materials at room temperature, lin is of the order of ten nanometers or
below, which is several orders of magnitude too small for constructing
quantum circuits based on coherent electronic transport. Reducing the
temperature to a few milli-Kelvin minimizes electron-phonon interac-
tions of thermal origin and thereby increase lin. Note that lowering the
temperature also enables manipulation and measurement of quantum
electronic signals with lower frequencies comparable to thermal energy,
i.e. GHz frequencies.

In metallic systems, at temperatures where phonons are not any-
more an issue, the effect of dynamical quantum (magnetic) impurities
is important and lead to a lot of studies in the 2000s. Nevertheless,
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in ultra-clean samples, electron/electron interactions induce electronic
relaxation and decoherence for electronic excitations above the Fermi
sea but do not jeopardize the Fermi liquid paradigm in 3D systems (see
[172] for a review and [67] for a more general introduction).

An approach to further increasing lin is by confining the conduc-
tor to a two-dimensional electron gas (2DEG) and considering the new
conductors that can be made using this type of systems. One way to
achieve this is through heterostructures formed at the interface between
two semiconductors, such as gallium arsenide (GaAs) and aluminum gal-
lium arsenide (AlGaAs). At these junctions, a triangular potential well
is created, leading to quantization of transverse quasi-momenta. In the
optimal regime, only electronic bands associated with the lowest quan-
tized transverse quasi-momenta are relevant, forming a 2DEG at the
interface [5].

These structures offer two significant advantages: first, electrons in
the 2DEG usually originate from donor atoms located approximately
100 nm away from the 2DEG. The potential associated with these ion-
ized impurities is thus smoothed out by this distance, reducing electron
interaction with charged impurities and leading to high mobility in the
material [5]. Second, the semiconductors are fabricated using molecular
beam epitaxy, a technique that grows thin films of single-crystal mate-
rials with atomic-scale precision [44]. Consequently, the crystal at the
interface is virtually defect-free. These two facts lead to a mean free
path lel between elastic collisions that electrons undergo with impurities
in the crystal [6] that can reach hundred of nanometers.

When L < lin ≪ lel, the specific regime of coherent electronic trans-
port is referred to as the ballistic regime. This regime is of interest in our
case, as it serves as the electrical analog of freely propagating photons.
When le ≪ lin electronic transport is still coherent but multiple elastic
scatterings of electrons on static impurities occur leading to phenom-
ena such as weak quantum localization [12] (see [137] for an extensive
review). This regime of quantum transport is called diffusive. It is the
one occuring in ordinary metallic conductors such as the ones reviewed
in [172] and not the one considered in this thesis.

As we shall see in the present chapter, these systems also present the
advantage of being extremely controllable. More precisely, it is possible
to confine the electron in quasi-1D structures that play the role of optical
fiber for electrons. Then, we will see that it is also possible to control, to
some extent, the screening of Coulomb interactions by the use of metallic
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top gate. Overall, the corpus of techniques in electronic lithography and
nano-fabrication was so well developped in the early 21st century that
it is not very surprising that AlGaAs/AsGa turned out to be the birth
platform for electron quantum optics.

Finally, it is worth noting that the graphene [147] is an alternative
platform for 1D and 2D coherent ballistic electronic transport, which
has demonstrated remarkable electronic properties [40] and the poten-
tial for novel quantum devices [80]. We don’t evoke it in the rest of
this manuscript, but it can potentially be an adequate platform for the
experimental realization of the quantum sensor modelled in chapter 4

Electronic analogous of optical fiber

Progresses in lithography techniques have enabled the shaping of elec-
tron gas to obtain quantum electrical circuits. By etching samples or
depositing metallic gates with sub micrometer precision, it allows to de-
sign a wide range of circuits. However, the unrestricted propagation of
electrons in any direction of the plane and the resulting elastic scattering
effects can pose a practical challenge to the application of such systems
for electron quantum optics as their size increases.

Fortunately, this obstacle can be overcome by the application of a
strong perpendicular magnetic field to a cryogenically cooled 2DEG.
This enables entry into a new regime of electronic transport called the
integer quantum Hall effect (QHE), which was discovered by von Klitzing
in 1980 [118] and later awarded the Nobel Prize. As we will review now,
the integer quantum Hall effect provides the original system of choice
for electron quantum optics.

2DEG under strong perpendicular magnetic field In the quan-
tum Hall regime, the propagation of electrons is confined to the edges of
the 2DEG, creating one-dimensional metallic states known as quantum
Hall edge channels. Their number is quantized and determined by the
magnitude of the magnetic field. Their propagation is chiral, following
a single direction dictated by the field which prevents any backscatter-
ing within one of these channels. The quantum Hall edge channels thus
exhibit properties similar to those of optical fibers making them highly
interesting for electron quantum optics.

To understand the integer quantum Hall effect at the intuitive level,
we consider an infinite 2DEG subjected to a perpendicular magnetic field
B = Bẑ. In such a system, the motion of electrons becomes quantized
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into discrete energy levels, known as Landau levels, which are described
by the following expression:

mettre une citation

En = ℏωc

(
n+

1

2

)
, (1.1)

where ℏ is the reduced Planck constant, n is an integer representing the
Landau level index and ωc is the cyclotron pulsation, i.e. the pulsation
associated with the classical circular motion of electrons in a magnetic
field. This energy spectrum is plotted on the left panel of Fig. 1.1. These
levels are highly degenerate and are equivalent to equally spaced har-
monic oscillator levels, with an energy separation of ℏωc between them.
The cyclotron pulsation ωc is related to the magnetic field strength B
and the effective mass of the electron m∗:

ωc =
eB

m∗ . (1.2)

As the magnetic field increases, the Landau levels thus become more
widely separated. The spin degeneracy of electrons is also lifted in the
presence of a magnetic field, leading to a Zeeman energy separation of
ℏωZ between the two spin populations.

This simple Landau level energy spectrum is of great help to un-
derstand the conduction properties of the sample. When the chemical
potential µ set by our voltage is inside one Landau level, the system is
a conductor and both the longitudinal and transverse resistivities have
finite values. However, if the chemical potential is between two Landau
levels, there are no states allowing electronic conduction that are avail-
able and the system becomes an insulator with infinite resistivity. It
should be noted that disorder in the 2DEG can be advantageous since it
leads to the presence of localized states that trap extra electrons when
the chemical potential is between two Landau levels, thereby stabilizing
the insulating behavior of the sample. However, disorder should not be
too strong, as it changes the degeneracy of Landau levels and can result
in the loss of energy localization of levels. A more comprehensive review
of this topic can be found in the lectures given by D. Tong at Cambridge
University1.

In a real experiment, such as the one conducted by von Klitzing and
illustrated schematically in the left panel of Fig. 1.1, the two-dimensional

1See: https://www.damtp.cam.ac.uk/user/tong/qhe.html.
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Figure 1.1: Figure extracted from [34] Left : Energy spectrum of an
infinite 2DEG under a perpendicular magnetic field. The energy gap
between two Landau levels is denoted by ℏωc, while ℏωZ represents the
energy associated with the Zeeman splitting. Given that the chemical
potential lies between two levels, this sample exhibits insulating proper-
ties. Middle: Here, the energy spectrum of a finite size 2DEG confined
to a region of size l along the y axis is displayed. The confinement po-
tential results in bent levels at the edges. Consequently, the chemical
potential intersects two levels at these edges, thereby creating two con-
duction channels. Right : This schematic represents chiral edge channels
of a sample under a perpendicular magnetic field denoted as B = B ez.
This perpendicular magnetic field imposes a chirality to the edge states,
leading to one-way transport channels around the sample’s boundary.

electron gas (2DEG) is not infinite and has edges. This means that the
energy spectrum of the system must be modified to take into account the
confinement potential at the edges. It bends the energy levels as shown
in the middle panel of Fig. 1.1 and allows for transverse conductivity.
When the chemical potential is at the same energy as one of the original
Landau levels, not much changes, but when it lies between them, the
chemical potential crosses every filled Landau level near the edges of
the system, creating one-dimensional metallic states that are electronic
conduction channels. This is known as the quantum Hall regime. The
number of conduction channels depends on the strength of the transverse
magnetic field and is given by the number of Landau levels that cross
the chemical potential. As the magnetic field gets stronger, this number
decreases.

Moreover, since the electronic velocity is linked to the gradient of
the potential, electrons within a given channel propagate in the oppo-
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site direction to those of the opposite edge, leading to chiral electronic
propagation as represented on the right panel of Fig. 1.1. This chirality
implies that no backscattering is possible along one edge of the sample,
and when the two edges are sufficiently far apart, any backscattering
event from one channel to another is prohibited.

The unique properties of the quantum Hall edge channels, including
chirality, 1D-confinement, and low temperature operation, make them
highly suitable for realizing coherent ballistic transport over distances of
several micrometers, with minimal electronic decoherence. As we shall
see, development started in the late 80s have also enabled us to build an
ideal electronic beam splitter, a basic component of electron quantum
optics which plays a crucial role in the first on-demand single electron
source that we will review now.

ajouter des refs

1.1.2 Manipulating electronic edge states

Over the past few decades, researchers in quantum optics have developed
an extensive range of experimental tools to manipulate the propagation
of photons. These tools can modulate the amplitude, phase, or frequency
of light using passive elements such as waveplates and polarizers, or
active elements such as acousto-optic modulators (AOMs) and electro-
optic modulators (EOMs). Photons can be delocalized among two paths
or recombined into the same beam using beam splitters. Additionally,
amplifiers can be used to boost signals, and single-mode optical fibers
can select spatial modes of quantum light states. The development of
these tools has been pivotal in realizing groundbreaking experiments.
For example, AOMs played a crucial role as optical switches in the ex-
periment by Alain Aspect and his collaborators testing Bell’s inequalities
[7].

Manipulating electronic states however is much more challenging, as
any interaction can potentially induce significant electronic decoherence.
Two techniques have been predominantly employed thus far. The first
approach involves physically etching the edges of circuits. This defines
the confining potential for the electrons thereby defining the circuit.
Unfortunately, this method is not very versatile because of the fixed
nature of the edge shape. Etching quality may also be an issue. This
is why a second method has been developed which relies on top gates.
As we will see this is the key method for building some of the basic
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components of electron quantum optics.

Top gate

The drawbacks of physical etching can be circumvented by placing a gate
on top of the heterojunction, above the edge channels to shape. When a
voltage is applied on it, an electric field is created between the gate and
the 2DEG. This electric field modifies the local electrostatic potential of
the 2DEG, leading to the confinement or repulsion of the charge carriers
depending on the sign of the applied voltage. It can be used to control
the spatial distribution and properties of these edge channels.

Quantum point contact

Going one step further, one can put two gates on top of a circuit as
pictured Fig. 1.2. In this configuration, applying a negative voltage on
both gates generates a saddle-shaped confining potential for electrons
which is called quantum point contact (QPC). It was first used, by
Wees et al. and independently by Wharam et al., to demonstrate the
quantized conductance in one dimensional conductors. When electrons
pass through the constriction, their motion becomes quantized due to
the confinement, and the conductance takes discrete values, which are
integer multiples of the fundamental unit of conductance 2e2/h.

citation

By creating a QPC in a 2DEG under the quantum Hall regime, it
can be used to bring the two counter-propagating edge channels close
together, enabling electron tunneling between them. The tunneling am-
plitude (and hence the splitting ratio) can be tuned by adjusting the
gate voltages, allowing precise control over the electron beam splitting
process.

To gain a comprehensive understanding of the QPC as a beam split-
ter, let us describe what happens when the QPC is gradually closed in
the presence of a 2DEG under the quantum Hall regime. A schematic
diagram of the process is presented Fig. 1.2. Initially, the QPC is
open, allowing for unimpeded electron transport through the constric-
tion. Closing the QPC leads to a narrowing of the constriction in the
2DEG, enabling the tunnelling in the edge channels with the higher en-
ergy levels (those located further away from the physical boundary).
As the constriction narrows, these channels are sequentially pinched off.
Eventually, when the QPC is sufficiently narrow, all edge channels are
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Figure 1.2: Schematic illustration of a QPC’s action on edge channels
in the context of quantum Hall systems. From left to right : Starting
with a small negative bias applied to the QPC. At this stage, all edge
channels are transmitted through the QPC. As we decrease the bias,
the repulsive potential at the QPC increases, causing the edge channels’
trajectories to bend. Initially, the channel closest to the edge continues
to be fully transmitted, while the other one can be either transmitted
or reflected to the opposite edge. As we continue to decrease the poten-
tial, both channels can either be transmitted or reflected. This situation
introduces a mix of transmission and reflection in the edge channel be-
havior. Eventually, as we further decrease the potential, all channels get
reflected, and no transmission through the QPC is observed. This sit-
uation corresponds to a closed QPC, where all incoming edge channels
are reflected back, and the conduction through the QPC vanishes.

pinched off, and the conductance through the constriction is effectively
zero. At this point, the QPC is considered to be in a closed state, with
no electron transport between the two larger electron reservoirs.

The QPC as an electron beam splitter can be incorporated into a
variety of electron interferometer setups, such as Fabry-Perot, Mach-
Zehnder, or Aharonov-Bohm interferometers. These devices use the
beam splitter to create two spatially separated electron paths that later
recombine, resulting in interference patterns that reveal information
about the electron coherence, phase, and interactions with the envi-
ronment. It is thus a key feature to build quantum sensors based on a
interferometric setup such as the electron quantum radar.

Ohmic contacts

The last building block of electron quantum optics is the Ohmic contact
which are used to contact the 2DEG burried 100 nm below the surface
of the sample, at the junction between AsGa and AlGaAs. Technically,
an Ohmic contact is a low resistance junction, non rectifying, between
a metal to semi-conductor and vice-versa. This implies that no large
Schottky barrier appears at the interface between the metal and the
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semi-conductor. Ohmic contacts in AsGa are usually made using an
AuGe alloy which forms an eutectic at 361 ◦C and, with the adjunction
of Nickel, has been shown to lead to very small contact resistivities (see
[8] for a review).

The physics of metal/semiconductors interfaces, and among them of
Ohmic contacts has been studied since decades and is quite complicated,
at the crossroads of physics, material science and chemistry [173, 182,
187]. Because the fabrication process is quite “brutal” (a metallic alloy
melts its way into the very clean crystalline structure manufactured by
molecular beam epitaxy), a microscopic modeling of this (disordered)
interface is extremely difficult. Nevertheless, it is possible to summarize
some of the higher level characteristics of such a contact.

This is based on the idea that, close to an Ohmic contact, a 2DEG
is under strong influence of the contact: first of all, because of the very
small barried between the 3D metal and the 2DEG, electrons tunnel
between the two and consequently, the Ohmic contact plays the role of
an electronic reservoir in the sense of Markus Büttiker: it absorbs any
incoming current. Moreover, the small distance between the two leads
to a very strong electrostatic coupling between the two. Consequently,
the Ohmic contact emits an equlibrium electronic fluid characterized by
its chemical potential corresponding to its electrical potential2 and its
temperature. This is enough to describe an Ohmic contact connected
to a dc or even ac generator. In this case, the Ohmic contact is an
absorber for the incoming currents and an emitter whose properties are
determined by its electronic temperature and the possibly time depen-
dent voltage applied to it. This explains the importance of the Ohmic
contact: when connected to the a lead with an amplification chain and
a voltmeter, it can be used to collect currents and then perform average
current or current noise measurements. It can also be connected to a
generator and act as a DC or AC source depending on the generator.

Following the same physical high level picture, Slobodeniuk and col-
laborators have elaborated a model for a small floating3 Ohmic contact
[177]. In this model, a floating Ohmic contact is a conductor which has
the following properties when connected to quantum Hall edge channels:

� It has a charge and an electrical potiential

� The charge and the currents entering and exiting the contact obey

2In the case where a time dependent potential is applied to it, this is more subtle.
3Not directly connected to a generator.
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the usual charge conservation equation

� The voltage of the contact is determined by the electrostatic cou-
pling to other conductors

� The current in each outgoing channel is determined by Hall’s re-
lation from the Ohmic contact’s potential.

As recalled in the introduction of this thesis, this component has been
used in many important experiments by the C2N group. In this case, the
floating contact can be viewed as a “galvanic node” that allows electrical
transport even in the DC regime, but in which electronic coherence is lost
(contrary to a very single quantum Hall edge channel). However, this
does not mean that a small Ohmic contact cannot be used in quantum
coherence nano-electronics as has been demonstrated recently [60].

1.1.3 Single electron sources

In this rapid review, we will discuss two commonly used single electron
sources: one is able to emit single electron excitations a few tens of µeV
above the Fermi sea (see Sec. 1.1.3) whereas the other one emits them
close to the Fermi surface but is much simpler to build and is much
more stable (see Sec. 1.1.3). Or course this are not the only sources
demonstrated and we refer the reader to [11] for an exhaustive review.

The mesoscopic capacitor

On-demand single-photon sources are essential components of optical
tables, widely used to investigate fundamental quantum physics such
as the particle-wave duality with double-slit experiments REF or the
bosonic statistics of photons through Hong-Ou-Mandel (HOM) experi-
ments [103]. These sources are now integrated to various quantum tech-
nologies, including quantum computing, quantum cryptography, and
quantum communication.

In the same way, the birth of electron quantum optics can be traced
back to the demonstrations of the first on-demand coherent single elec-
tron sources. The first one has been demonstrated in the Pierre Aigrain
laboratory at the École Normale Supérieure (ENS) in Paris by G. Fève
and collaborators during his PhD supervised by D. C. Glattli. This
experimental work [70, 68] followed previous theoretical work by M.
Büttiker and his (many) collaborators both for small and large drives
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[33, 154, 18, 146]. Characterization of this source was done by measur-
ing and analyzing both its finite frequency average current [130] and its
finite frequency current noise [129, 148] a quantity whose measurement
requires significant experimental developments [149].

Since then, this source has been extensively used in fundamental
quantum electron optics experiments such as the electronic analogous of
Hanbury Brown–Twiss [24] and Hong–Ou–Mandel [20] experiments. It
has also been used for studying electronic decoherence in quantum Hall
edge channels [74, 134]. Extensive reviews of this series of experiments
can be found in the PhDs thesis of E. Bocquillon [21], V. Freulon [73]
and A. Marguerite [132] as well as in recent reviews [23, 133].

1−D

Vd(t)

D

Figure 1.3: Extracted from [34]. Schematic view of the mesoscopic ca-
pacitor. A small cavity formed in the 2DEG is defined by a QPC. This
arrangement results in a Fabry-Pérot type quantization of energy levels
within the cavity, akin to the behavior of light in an optical Fabry-Pérot
interferometer. The energy levels can be manipulated by applying a
voltage to a metallic top gate covering the dot. This voltage can shift
the energy levels, allowing for the control of electron transport through
the dot.

This source, schematically depicted on Fig. 1.3 is commonly called
the mesoscopic capacitor as it built from of two armatures. The first
one is a metallic top gate while the second one is a quantum dot in the
integer quantum Hall regime placed beneath it. The dot is delimited
partly by etching and partly by a QPC isolating it from the rest of the
2DEG when totally closed. Due to its small size, the level spacing ∆
for electrons trapped in this circular quantum Hall edge channel has
a typical value of about 10−4eV when the dot size is approximately
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1 µm. to the confinement of electrons within the quantum dot. The
transmission coefficient T of the QPC can be adjusted by varying the
gate voltage Vg applied to it so that T takes values from 0 to 1. This
coefficient determines the typical time τe for an electron to leak from
the dot to the rest of the circuit [68]:

τe =
h

∆

(
1

T
− 1

2

)
. (1.3)

Opening the dot then reduces the escape time of the electron and, by
time/energy uncertainty, broadens the resonance associated with the
corresponding level within the electronic cavity. The QPC transmission
T thus appears as an experimentally controlled parameter for shaping
the duration of the electronic wave packet.

The source is driven by appliying a periodic square drive voltage
Vd to the top gate, with a period τd typically between 0.1 and 10 ns.
Under the effect of this drive, the energy levels of the quantum dot shift
non adiabatically, rising an occupied level well above the Fermi level
which causes the emission of a coherent single electron from the dot
into the outgoing quantum Hall edge channel during the first half of the
source’s duty cycle. This emission is then followed by a non-adiabatic
drive of this now empty level below the Fermi level, thereby leading to
the emission of a hole during the second half part of the duty cycle. A
schematic diagram of this duty cycle is presented in Fig. 1.4.

Initially, the voltage Vd is chosen so that the Fermi level is equidistant
from the first unoccupied level of the quantum dot and the last occupied
one. By applying a voltage Vd(t) = −∆/e during the first half of the
period, the energy of the last occupied level of the quantum dot is shifted
upward, just above the Fermi sea of the circuit. To guarantee that only
one level is promoted above the Fermi level, it is essential to ensure that
the energy level spacing ∆ is greater than the width of each level ℏ/τe. It
is also crucial that τd > τe for the source to operate in the single electron
regime, ensuring that only a single is emitted. These two requirements
can be expressed by:

ℏ
∆
< τe < τd , (1.4)

which clearly illustrates that a compromise has to be found between
these two requirements to operate the source in the single electron
regime. During the second half of the period, the energy levels return
to their initial positions, the now-empty discrete level fills up again,
allowing a hole to be emitted.
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Figure 1.4: Extracted from [34]. Schematic representation of the ideal
duty cycle of the electron source. It is achieved by applying a square
voltage of suitably tuned amplitude to the top gate. (1) Initially, all
energy levels below the Fermi level are filled with electrons. (2) A sudden
increase in voltage leads to a rapid shift in the energy levels. As a
result, one of the energy levels is propelled above the Fermi level. (3)
Within a characteristic leaking time denoted by τe, the electron that has
been promoted to the higher energy level tunnels out of the cavity and
propagates into the sample. (4) Subsequently, the voltage is abruptly
reduced, causing an empty energy level to shift below the Fermi level.
(5) An electron tunnels into the dot to occupy this empty level, leading
to the emission of a hole into the sample. This returns the system to the
initial state. By continuously repeating this cycle, a source is created
that emits an electron and a hole per period, separated from each other
by half a period.

One last requirement for the mesoscopic capacitor to operate in op-
timal conditions, is that the voltage drive’s rising time must be signifi-
cantly smaller than τe. It prevents hybridization between the quantized
states of the quantum dot and the continuum of single particle states
in the circuit. Otherwise the electron may tunnel out of the quantum
dot as soon as it crosses the Fermi level of the circuit, resulting in an
excitation with poor energy resolution.

Of course, one has to keep in mind that the description above is an
idealized one. So far, for T < 1, the mesoscopic capacitor has been
modelized within a single particle time dependent scattering approach.
Several results have been obtained analytically [141, 138], but it is also
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possible to implement numerical simulations as in [92, 64]. Assessing
the quality of the mesoscopic capacitor as a single electron source can
be done by using the recently developped algorithm for extracting the
single electron and home excitations from a time periodic single electron
coherence [163]. This method has been used in the case of a square and
sinusoidal drives applied to the top gate of the mesoscopic capacitor and
confirm that the optimal regime is obtained by an appropriate tuning
of the amplitude of the drive and of the transmission probability of
the QPC. A higher transmission opens the way to emitting more than
one excitation per half period wheres, a lower transmission of the QPC
tends to generate a quantum superposition of no emission and a single
electron/hole pair emission.

At the optimal operating points, the shape of the electron and hole
wavepackets depend on the shape of the drive as well as on the various
parameters used. In the case of the square drive, the wave packets
is of Lorentzian lineshape in the frequency domain, as expected for the
problem of a resonant level decaying in a continuum. This is the so-called
Landau quasi particle because it corresponds to an energy resolved, up
to its natural line width, single electron excitation.

The Leviton source

The other single electron source commonly used in electron quantum
optics is the Leviton source [59]. This source is based on a proposal by
Lee, Levitov and Lesovic inspired by the observation that an appropriate
voltage drive applied to an electron reservoir could lead to a reshuffling
of the electronic levels preserving the Fermi sea and thus generating only
purely electronic excitations on top of the Fermi sea [124].

Their prediction was that a Lorentzian voltage drive applied to a
single edge channel of amplitude such that the resulging Lorentzian cur-
rent pulses carries an integer multiple (say n) of the electron charge −e
generates a Slater determinant built from n mutually orthogonal wave
packets above the Fermi level. For n = 1, only one electronic excitation
is generated, called the Leviton.

Generation of these excitations is performed by applying the appro-
priate time dependent voltage drive to an large enough Ohmic contact
which plays the role of an electron reservoir for the 2DEG in contact
with it. The diagnostic for their emission consists in monitoring the low
frequency current noise at the output of a quantum point contact where
the source is connected at one input and the reference equilibrium at
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the other. As will be reviewed in Sec. 1.2, this is a measurement of the
partition noise of all the single particle excitations arriving to the QPC
from the source. These include electronic but also hole excitations. In
the case of the Lorentzian pulses, the theoretical prediction is that this
noise is minimal when no spurious electron/hole pairs are emitted or,
equivalently, when the current pulse is Lorentzian and carrying an inte-
ger multiple of −e. Ref. [58] contains an in-depth discussion of partition
noise diagnostic of such a purely electronic state generation.

It should be noted that generating such voltage pulses with a short
duraction is not so obvious. Denoting by τe the temporal width of the
associated current pulse, the energy scale of the corresponding Leviton
is ≃ ℏ/τe. In order to have such an energy scale well above the ther-
mal energy scale kBTel where Tel denotes the electron fluid temperature
(typically 30 to 100mK in the experiments), τe needs to be smaller than
ℏ/kBTel which is in the 25 to 76 ps range in this temperature range. Ad-
vanced waveform generators with a basic time step of 40 ps and 10 bit
encoding started to be used in the 2010s and opened the way to gener-
ating such excitations. Fourier synthesis with 4 harmonics has also been
used [16] but this is limited by the microwave cable’s bandwidth and
still limits τe in the tens of ps. Alternative methods involving the use of
a frequency comb have been recently investigated and reach τe ≃ 27 ps.
Photoconductive switches are now envisioned to reach the THz band-
width which would translate into 1 to 10 ps current pulses.

1.2 First order coherence

1.2.1 Historical perspective

The aim of this section is to present the basic concept of electron quan-
tum optics which are the electronic quantum coherences. This concept is
indeed directly borrowed from quantum optics where it has been intro-
duced by R. Glauber in the early 60s [87]. Glauber himselff published a
paper in the 90s on the generalization of these functions to fermions hav-
ing in mind its applications to cold fermionic atoms [36] but this work
was totally overlooked in the electronic quantum transport community.
The introduction of electronic coherences dates back to the PhD thesis
of Charles Grenier [90] following his publications on the subject [52, 93,
92]. At the same time, the concept was also recognized by G. Haack
in M. Büttiker’s group [96, 95]. So far, these studies mainly focused
on single electron coherence which, as we will recall, contains all the
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information on single particle physics in the electronic fluid.
Two electron coherence was first sudied by M. Moskalets [140, 139]

within the framework of time dependent scattering theory and then in
full generality by E. Thibierge during his thesis [184] with a proposal to
reconstruct it from a generalized Franson (two particle) interferometry
[185]. Two-electron decoherence study has been initiated by C. Cabart
in his PhD thesis but the topic is not closed as of now [34]. Two electron
coherence will not be mentioned more in the present manuscript. So
far only single electron coherence has been reconstructed under certain
hypotheses [110] or measured without any assumptions [17, 72]. Two
electron coherence requiring at least finite frequency noise measurements
[185] or maybe noise of the noise measurements, this quantity is much
harder to capture experimentally.

A deeper understanding of these objects came when realizing that
they cold be viewed as the quantum signals carried by a beam of elec-
trons [165] and that all ideal electronic interferometry experiments could
indeed be viewed as on-chip analog quantum signal processing turning
these quantum signals into measurable quantities. Benjamin Roussel’s
thesis provides a nice introduction to this point of view [162].

Here, we will present the basic elements on single electron coherence
needed to understand the present manuscript. This material is based on
all previously published material and also on the recent technical report
of the SEQUOIA project mentioned in the introduction of this thesis
[113].

1.2.2 Definition and physical content

Definition

The formal definition of single electron coherence mimics the one of
photonic coherencesintroduced by Glauber:

G(e)
ρ (X,X ′) = Tr

(
ψ(X) ρψ†(X ′)

)
(1.5)

where ψ(X) (resp. ψ†(X ′)) denote the destruction (resp. creation) oper-
ator for an electron at space-time position X = (x, t) resp. X ′ = (x′, t′)
and ρ the reduced density operator for the electron fluid. Note that this
definition is valid for electrons within a metal, a superconductor, or even
within an electron beam within an electronic microscope.

In quantum coherent nano-electronics, x = x′ will denote the posi-
tion of a detector or a specific position within the electrical circuit in
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consideration and we will mostly focus on single electron coherence in
the time domain:

G(e)
ρ,x(t, t

′) = G(e)
ρ ((x, t); (x, t′)) (1.6)

and, whenever these is no ambiguity on the x position, this index may
very well be omitted.

Physical content

To begin with, let us consider the case where the reference state is the
vacuum state |∅⟩. We consider that an N -electron Slater determinant
has been introduced in the system at time t = 0, based on N mutually
orthogonal4 normalized wave packets φ1, · · · , φN :

|ΨN ⟩ =
N∏

k=1

ψ†[φk] |∅⟩ . (1.7)

Denoting by G(e)
|ΨN ⟩,t=0(x|x′) the equal time single electron coherence

taken at t = 0, a straightforward computation leads to:

G(e)
|ΨN ⟩,t=0(x, x

′) =
N∑

k=0

φk(x)φk(x
′)∗ (1.8)

The single electron coherence therefore appears as the sum of the contri-
butions of each of the individual electronic wavefunction involved in the
state |ΨN ⟩. Each wavefunction φk contributes by φk(x)φk(x

′)∗, thereby
showing that information on the phase of the wavefunction φk(x) is

present for x ̸= x′. The local single electron coherence G(e)
ρ,x(t, t′) can be

viewed as the single particle “quantum signal” accessible at position x.
The number of non zero correlators in electron quantum optics is

much lower than in photonics. For example

⟨ψ(x, t)⟩ρ = 0 (1.9)

which means that there is no classical value associated with a fermionic
field. This follows from the so-called parity super-selection rule that was
originally discovered in relativistic quantum field theory [191, 75] but is

4This condition is indeed quite generic: because of the fermionic statistics, any
Slater determinant can be seen as built from mutually orthogonal wave packets.
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indeed ultimately related to no-signaling [109]. The parity superselection
rules states that quantum states involving a superposition of fermion
numbers with different parities are physically forbidden.

In condensed matter physics, the many-body state of a metal does
not allow any superposition of different numbers of electrons and there-
fore satisfies the parity superselection rule. By contrast, a superconduc-
tor does allow superposition involving numbers of electrons differing by
2: this leads to a non zero BCS order parameter

⟨ψ(x, t)ψ(x′, t′′)⟩BCS ̸= 0 (1.10)

but in both cases, Eq. (1.9) is satified. In a signal processing language, an
electronic or more generally a fermionic quantum beam does not carry
any classical fermionic amplitude (contrary to a bosonic or photonic
beam). The first non trivial quantum signals associated with a fermionc
quantum beam are the fluctuations of the fermionic field. In the case
of a metallic system, the first non zero correlator is the single electron
coherence defined by Eq. (1.6). In a superconductor, one should also
consider the BCS order parameter defined by (1.10). This points out an
important fact about the electron radar: it is intrinsically a quantum
radar since there is no classical field on which it is based.

It is interesting to use Eq. (1.8) to compute the single electron co-
herence within a Dirac sea corresponding to an infinite filling of single
electron plane wave φk(x) = eikx along a line from k = −∞ to k = kF .
A similar computation leads to the following expression:

G(e)
F,t=0(x, x

′) =
1

2π

eikF (x−x′)

x′ − x+ i0+
. (1.11)

à voir de plus prêt le com de Dario

The same quantity can also be computed for the equilibrium state of
these fermions, at a chemical potential kF (µ) dependent on the chemical
potential µ and electronic temperature Tel:

G(e)
µ,Tel,t=0(x, x

′) =
1

2πlth(Tel)

eikF (µ)(x−x′)

sinh
(

x′−x
lth(Tel)

+ i0+
) . (1.12)

which now reveals the thermal coherence length lth(Tel) = ℏvF /kBTel
of the electrons at non-zero temperature Tel. The 1/Tel dependence of
this coherence length can be traced back to the linear dispersion relation
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of the fermions close to the Fermi point. By contrast, when consider-
ing non-relativistic particles with dispersion relation E(k) = ℏ2k2/2m
at vanishing chemical potential, the corresponding coherence length
would exhibit the scaling of the De Broglie thermal length ldB(Tel) =
h/

√
2πmkBTel.

Excess single electron coherence

voir com Dario

Let us now turn to the case of usual metallic conductors in which
excitations are present within the electron fluid on top of this reference
vacuum state |Fµ⟩. These corresponds to the excitations emitted by the
electron sources present in the circuit when they are switched on at zero
temperature. The appropriate notion that contains information on the
single particle excitations is the excess single electron coherence ∆µG(e)

defined by

G(e)
ρ,x = G(e)

|Fµ⟩,x +∆0G(e)
ρ,x . (1.13)

Note that this quantity depends on the reference chemical potential µ.
In the rest of this manuscript, if not specified otherwise, we shall consider
µ = 0 and omit this index if not needed.

Within a 1D chiral system, relating G(e)
ρ,x+∆x(t, t

′) to G(e)
ρ,x(t, t′) cor-

responds to computing the evolution of single-electron coherence dur-
ing propagation along the chiral channel under consideration. This is
a dynamical problem that will be discussed in a forthcoming section.
However, it has a trivial expression in the case of ballistic propagation
at velocity vF :

G(e)
ρ,x+∆x(t, t

′) = G(e)
ρ,x(t−∆x/vF , t

′ −∆x/vF ) (1.14)

which corresponds to delaying G(e)
ρ,x by the time of flight ∆x/vF .

Several important examples in the context of electron quantum op-
tics can be discussed which involve single electron and single hole exci-
tations on top of the Fermi sea.

� One single electron excitation on top of the Fermi sea with wave-
function φe: the many body state is ψ†[φe] |F ⟩ in which ψ†[φe]
creates a single electron excitation in the normalized single parti-
cle state |φe⟩. Such a state would be generated by an ideal single
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electron source operated one time only. The excess single electron
coherence is then:

∆G(e)(t, t′) = φe(−vF t)φe(−vF t′)∗ (1.15)

� One single hole excitation on top of the Fermi sea with wavefunc-
tion φh: the many body state is ψ[φh] |F ⟩ in which ψ[φh] destroys
a single electron excitation in the normalized single particle state
|φh⟩. Such a state would be generated by an ideal single hole
source operated one time only. The excess single electron coher-
ence is then:

∆G(e)(t, t′) = −φh(−vF t)φh(−vF t′)∗ (1.16)

where the minus sign comes from the removal of one electron with
from the Fermi sea.

� A single electron hole pair, obtained by transfering a single electron
from the hole single particle state φh to the electronic single parti-
cle state φe corresponds to the the many-body state ψ†[φe]ψ[φh] |F ⟩.
This state would ideally be generated during one period by an ideal
AC source emitting exactly one electronic and one hole excitation
per period. It has an excess single electron coherence given by

∆G(e)(t, t′) = φe(−vF t)φe(−vF t′)∗−φh(−vF t)φh(−vF t′)∗ (1.17)

Finally it is possible to generate a quantum superposition involving
a pristine Fermi sea and the state that we have just considered,
thereby leading to

|Ψ⟩ =
(
u+ vψ†[φe]ψ[φh]

)
|F ⟩ (1.18)

in which |u|2 + |v|2 = 1. Then, the corresponding excess single
electron coherence is

∆G(e)(t, t′) = |v|2
(
φe(−vF t)φe(−vF t′)∗ − φh(−vF t)φh(−vF t′)∗

)

(1.19a)

+ uv∗φe(−vF t)φh(−vF t′)∗ + u∗vφh(−vF t)φe(−vF t′)∗
(1.19b)

The second line in the r.h.s, which involves products of φe and φ
∗
h

or its complex conjugate, arises from the coherent superposition
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between the presence and the absence of the electron-hole pair.
These terms correspond to electron-hole coherences and play an
important role in the discussion of HOM interferometry experi-
ments.

Of course, in experiments, electron sources are rarely ideal. Due to
difficulties in tuning their parameters, finite temperature effects, as well
as interactions in some setups, the idealized forms we have just discussed
do not correspond to the general form of the excess single electron co-
herence. In the next subsection, the various forms and representation of
single electron coherences are discussed.

1.2.3 Representations of single electron coherence

Electronic atoms of signals

For T -periodic sources, a general decomposition can be found which
appears as a natural generalization of the expressions discussed in the
previous subsection [163]. This decomposition leads to a representation
of single-electron coherence in terms of what are called electronic and
hole atoms of signals [164]. These atoms of signal are electronic and hole
single particle states forming orthonormal bases of the space of electronic
and hole single particle excitations and which are covariant with respect
to translation by the period T . More specifically, these states fall into
families indexed by a, |φa,l⟩, with l ∈ Z, where the l index corresponds
to a period of duration T so that translating |φa,l⟩ by T in the time
domain leads to |φa,l+1⟩. Then, the most general form of the excess
single electron coherence is given by

∆G(e)(t, t′) =
∑

l,l′

∑

a

g(e)a (l − l′)φ
(e)
a,l (t)φ

(e)
a,l′(t

′)∗ (1.20a)

−
∑

l,l′

∑

b

g
(h)
b (l − l′)φ

(h)
b,l (t)φ

(h)
b,l′(t

′)∗ (1.20b)

+
∑

l,l′

∑

a,b

(
g
(eh)
a,b (l, l′)φ

(e)
a,l (t)φ

(h)
b,l′(t

′)∗

+ g
(he)
b,a (l, l′)φ

(h)
b,l (t)φ

(e)
a,l′(t

′)∗
)
, (1.20c)

in which we have both electronic atoms of signals (the φ
(e)
a,l ) and hole

atoms of signal (the φ
(h)
b,l ).
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Band theory [195, 174] Floquet-Bloch analysis [163]

Spatial period Time period
Single particle Hamiltonian Single electron coherence

Band energy εa(k) Floquet-Bloch probabilty spectrum ga(ν)
Quasi-momentum k Quasi-energy ν

Wannier function wa,l(x) Atom of signal φk,l(t)

Table 1.1: Analogy between solid state band theory and signal process-
ing of the excess single-electron coherence described in [163]: the spatial
period of the crystal is replaced by the time period T = f−1 of the
electron source. Instead of diagonalizing a single particle Hamiltonian
and spatial translations, one diagonalizes the projections of the single
particle excess coherence operator in the electron and hole subspaces
and time translation, thereby obtaining Floquet-Bloch bands. Eigenval-
ues are probabilities instead of energies and depend on a quasi-energy
0 ≤ ν ≤ 2πf instead of a quasi-momentum. The electronic atoms of
signal play the same role as the Wannier functions in band theory and
are therefore subject to the same ambiguities [135].

com Dario + tableau

In these expressions, the real number g
(e)
a (0) and g

(h)
b (0) respectively

represent the emission probabilities per period for the electronic atom

of signal φ
(e)
a,l and hole atom of signal φ

(h)
b,l . Note the − sign in front of

the hole contribution which expresses the fact that a hole is always the
absence of an electron.

There are no coherences between the different families (a ̸= a′) of
electronic atoms of signal as well as between the different families (b ̸=
b′) of hole atoms of signal but there may be electron-hole coherences:

g
(eh)
ab (l, l′) may be non-zero. In the same way, electronic atoms of signals

may be correlated from one period to the other: g
(ee)
aa (l, l′) maybe non-

vanishing even for l ̸= l′, thereby reflecting the possibility of an electronic
coherence time larger than the time-period T . Therefore, the use of
electronic atoms of signal provides a discrete representation of single
electron coherence which makes it easier to distinguish what are the
single electron excitations emitted by an electron source from how they
are emitted. This is the exact analogous, in the quantum domain, of
describing music in terms of musical notes and of the music score (see
Fig. 1.5).
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2

POPULAR SUMMARY

Quantum mechanics and the associated interference e↵ects govern the laws of electricity of small conductors at low
temperatures. It is responsible for their unusual properties such as deviations from the standard law of impedance
composition. As spectacular as these e↵ects may be, this image of electronic transport is still very close to the classical
description of wave optics that had emerged from the 19th century.

Nevertheless, quantum electronics has recently entered a new era that cannot be grasped by any classical wave
equation paradigm. Recently developped fast electron emitters generate quantum electrical currents carrying one to
few elementary excitations per period, thereby bringing electronics closer to the paradigm of quantum optics which
aims at manipulating single to few photon states of the quantum electromagnetic field. In electron quantum optics,
several tomography protocols have recently been demonstrated, probing the single particle content of time-dependent
quantum electrical currents. These breakthroughs o↵er new possibilities such as encoding classical or quantum
information with electrons, engineering quantum circuits to simulate complex many-body problems and probing them
with single to few particle excitations or, developing electronic sensors exploiting the extreme sensitivity of quantum
electrical currents to the electromagnetic field. However, despite rapid progress, this field still lacks a tool box for
processing, analyzing and representing the quantum information embedded in quantum electrical currents.

In this paper, we present a general algorithm for extracting the single particle wavefunctions present within a time-
periodic quantum electrical current, their emission probabilities and mutual coherences and apply it to the analysis
of several electron sources. This work establishes the grounds for the development of signal processing of quantum
electrical currents, directly at the level of electronic wavefunctions, a key step in the development of electron-based
quantum technologies.

Input
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Probe
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reconstruction
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FIG. 1. Schematic of the process for extracting the single particle content from a quantum electrical current. Left part:
the Hong–Ou–Mandel interferometer uses two-particle interferences to encode the overlap between the injected single electron
coherences into the measurable signal (outgoing current noise). Middle part: the single electron coherence is reconstructed
from current noise measurements using the electronic version of protocols used in quantum optics. Right part: the result
of the tomographic reconstruction, depicted here using a time/frequency representation of the signal, is processed by the
algorithm described in the present paper to obtain a description of single electron coherence in terms of electronic atoms of
signal (analogues to musical notes) arranged according to a “quantum coherence score” (analogue of the music score).

Figure 1.5: (Extracted from [113]) Schematic representation of the de-
composition of the excess electronic coherence ∆W (e)(t, ω) in electron
and hole atoms of signals (case of a low amplitude sinusoidal drive).
The atoms of signal play the role of musical notes and the coherences
appearing in Eq. (1.20) provide the analogous of the music score.

One should nevertheless keep in mind that the electronic atoms of
signals are not unique, as expected by the analogy with the Wannier
functions [190] in band theory (Table 1.1 summarizes the analogy be-
tween the two approaches). In band theory, Wannier functions are not
unique because Bloch-functions, which are common eigenvectors of the
electrons and of translation operators associated with the crystal’s spa-
tial periodicity, may be redefined at least generically by a phase. Conse-
quently, Wannier functions have an intrinsic ambiguity, that is usually
lifted by imposing an extra condition such as minimal spreading in space.
In the present situation, it is the same: the atoms of signals may be cho-
sen as having a minimal spreading in time. The reader is referred to
Ref. [163] for the corresponding details.

Time-frequency representation: the Wigner function

The electronic Wigner distribution function5

W (e)
ρ,x(t, ω) =

∫

R

vFG(e)
ρ,x

(
t+

τ

2
, t− τ

2

)
eiωτdτ (1.21)

5The vF prefactor ensures that W (e)(t, ω) is dimensionless.
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introduced in Ref. [64] is real and gives access to both time-dependence
and energy content at the single particle level. In particular, the average
time dependent electric current, the electronic occupation numbers and
even the average instantaneous excess energy current ⟨jE(x, t)⟩ρ can be
related to the excess Wigner distribution function which is defined in

the same way from the excess single electron coherence ∆G(e)
ρ,x:

⟨i(x, t)⟩ρ = −e
∫

R

∆W (e)
ρ,x(t, ω)dω (1.22a)

⟨jE(x, t)⟩ρ = ℏ
∫

R

ω∆W (e)
ρ,x(t, ω)dω (1.22b)

fe(ω) = lim
T→+∞

[
1

T

∫ T/2

−T/2
W (e)

ρ,x(t, ω) dt

]
. (1.22c)

In systems with electron-hole symmetry, such as the dispersionless chi-
ral fermion description of Quantum Hall edge channels, the electronic
Wigner distribution can be related to the hole Wigner distribution func-
tion W (h) which is defined from the hole coherence by Eq. (1.21):

W
(e)
ρ,x(t, ω) = 1−W

(h)
ρ,x (t,−ω).

It is important to distinguish the electronic Wigner function from
the Wigner function used in quantum optics for description of coher-
ences of a single electromagnetic mode at different orders. In photon
quantum optics, Wigner representation is usually used for conjugate
continuous variables (so called optical quadratures) governing a single
harmonic oscillator corresponding to the relevant spatio-temporal mode
of the quantum electromagnetic field. The quantum optical Wigner func-
tion of optical quadratures characterizes arbitrarily high order Glauber
coherences of this electromagnetic mode and thus is fundamentally dif-
ferent from the Wigner representation of the conjugate variables x and
p describing 1D spatial propagation.

Before discussing the notion of electronic atoms of signal, it is useful
to discuss a few examples of the various representations of the single
electron coherence associated with simple single electron excitations.
Let us consider for example the case of the single electron excitation
emitted by the emptying of a single resonant level with energy ℏωe above
the Fermi energy into a chiral edge channel. This leads to an electronic
wavefunction with a truncated Wigner-Weisskopf spectral shape, that is
a truncated Lorentzian wave-function in the frequency domain,

φ̃e(ω) =

√
vFγe
N

Θ(ω)

ω − ωe + iγe/2
, (1.23)
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in which γe denotes the excitations’ natural width, Θ(ω) the Heaviside
function and N is a normalization factor. The resulting frequency and
time domain representations as well as the electronic Wigner distribution
function are depicted in Fig. 1.6.
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Figure 1.6: Representations of the coherence (Extracted from [162]).
Here are depicted three representations of the single electron coherence
of a typical wave packet emitted by the mesoscopic capacitor in the
single-electron source regime. On the left, we have the modulus of the
energy representation of the single-electron coherence φe(t)φe(t

′)∗ which
is only non-vanishing in the electron quadrant as expected. On the
right, we have the modulus of the time representation. We can see that
the average current is an exponential decay. On the middle, we have
plotted the electronic Wigner distribution function which is real and
contains both positive and negative values. We can see both the energy
dependence of the excitation (which populates only positive energies)
and its time dependence (which is an exponential decay).

It is also interesting to consider the Levitons whose generation has
been discussed in Sec. 1.1.3. Fig. 1.7 shows the electronic Wigner func-
tion of a Fermi sea to which a Lorentzian pulse has been applied, with the
resulting current carrying an integer multiple of the elementary charge
−e.

vFG(e)(t, t′) = G(e)
F (t− t′) e

ie
ℏ
∫ t
t′ V (τ) dτ (1.24)

in which G(e)
µ,Tel

(t − t′) is the single electron coherence of the reference
Fermi equilibrium distribution with chemical potential µ and electronic

46



q = 3 q = 4

q = 1 q = 2

-20 -10 0 10 20 -20 -10 0 10 20

0.0
2.5
5.0
7.5

10.0

0.0
2.5
5.0
7.5

10.0

t/τ0

ω
/τ

0

0.0 0.5 1.0 1.5∆W

Figure 1.7: (Figure extracted from [113]) Excess Wigner function for the
n-Leviton excitations up to n = 4. Note that ∆W (e)(t = 0, ω) exhibits
n maxima which arise from the addition of the contributions of the n
individual single particle states depicted on 1.8: each of them adds one
more spot with negativities close to t ≃ 0 at higher values of ω.

temperature Tel, and

V (t) =
V0

1 + (t/τ0)2
(1.25)

with V0 = nh/(eπτ0) to ensure that the resulting current pulse ⟨i(t)⟩ =
e2V (t)/h carries the charge −ne. As shown in [64], at zero temperature,
this state is a Slater determinant of n mutually orthogonal normalized
wave packets whose expression is

⟨ω|φk,τ0⟩ =
√
2τ0Θ(ω) e−ωτ0Lk−1(2ωτ0) (1.26)

where Lk(X) denotes the k-th Laguerre polynomial. Their Wigner func-
tion are depicted on Fig. 1.8 for k = 1 to k = 4.

adapter la figure avec le com de Dario

To conclude this rapid discussion of examples, we stress that the
above graphs are depictions of ideal wavepackets which could, in prin-
ciple, only be observed at zero temperature and with fine tuned param-
eters of the source. In reality, the source may emit more than a single
electron excitation per duty cycle. We refer the reader to [17] where the
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Figure 1.8: (Figure extracted from [162]) Wigner representation of the
single-electron wavefunctions building the n-Leviton excitations up to
n = 4.

single electron coherence emitted by an Ohmit contact driven by a train
of Lorentzian pulses calibrated to emit a train of Levitons have been
reconstructed by HOM tomography. The extration of single electron
excitations from these tomographic data clearly showed that the single
particle content does not involve only one electronic atom of signal per
period (see Fig. 5 of [17] for example). These remarks bring us to the
last part of this section devoted to single electron question: how is it
measured in experiments ?

1.2.4 Single electron tomography

Experimentalists in mesoscopic physics have long been used to measur-
ing quantities related to charge transport. These include the DC average
current, but also finite frequency average currents [77, 78, 22], low fre-
quency noise current with sensitivities down to 10−31A2/Hz [84, 83] and
current noise at finite frequency [149] which has been used to charac-
terize single electron emission by the mesoscopic capacitor. Numerous
results have been obtained via current noise measurement such as confir-
mation of the quantum shot noise reduction [85] and of high frequency
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quantum shot noise theory [193], the determination of the fractional
charge of elementary excitations in the fractional quantum Hall effect
[171], as well as of the spectrum of emitted photons by a DC biased
junction at fractional charge [16] which confirmed non-equilibrium fluc-
tuations relations established by I. Safi and collaborators [165, 170]. Non
stationary current noise has even been measured, thereby leading to the
demonstration of electromagnetic squeezing in tunnel junctions [79] and
in integer quantum Hall systems [9]. Finally, it was instrumental in
the first experimental evidence of fractional statistics in the fractional
quantum Hall effect [10].

But the average current, as well as current noise, only represent a
part of single or two electron coherence. For example,

⟨i(t)⟩ρ,x = −evF ∆G(e)
ρ,x(t, t) (1.27)

which shows that only the diagonal part of single electron coherence in
the time domain can be accessed. For the current noise, the situation is
similar since only the diagonal part of the intrinsic excess two electron
coherence is involved in the current noise correlators [184]. Accessing
the off-diagonal part of these quantum signals thus require more than
direct measurement of average currents and of the noise.

There are basically two tomographic methods for reconstructing sin-
gle electron coherence. The first one is based on the use of a time depen-
dent filter which is a parametrically driven quantum conductor which is
fed by the quantum electrical current whose excess single electron coher-
ence we would like to determine. The outgoing average electrical current
is then a linear function of this unknown quantum signal and we have a
linear inversion problem with a kernel determined by the experimental
parameters of the parametric drive of the filter. This process has been
partly implemented to determine the occupation number in out of equi-
librium quantum Hall edge channels but with a time-independent filter
[3] and, much more recently with a time-dependent filter, it has lead to
the tomography of the solitary electronic excitations emitted by a time
dependent barrier [72].

The second method relies on quantum point contact, which is of
course a very simple quantum conductor. Its scheme of principle is de-
pitected on Fig. 1.9. Here, the parametric driving of the previous method
is replaced by the injection of a controlled single electron coherence on
one of the input channels, while the quantum signal to be characterized
is sent on the other one. This is the principle of Hong-Ou-Mandel tomog-
raphy introduced in [92] and demonstrated in its generic form in [17]. It
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relies on two particle quantum interferences and the measured signal is
the low frequency current noise at the outcome of the Hong-Ou-Mandel
interferometer.

Figure 1.9: (Figure extracted from [113]) HOM tomography proto-
col: Two particle interferences between the unknown periodic electronic

Wigner distribution W
(e)
S in the incoming channel (1) and a modulated

reference Fermi sea signal, called the probe signal, W
(e)
Pn

incoming in
channel (2), generated by a voltage VPn (t) applied to a contact, occurs
at a QPC. The low frequency current noise is measured at the output (3)
as function of relative phase and reference probe amplitude. The mea-
surement is repeated with a set of known reference probes at harmonics
of the base frequency of the unknown signal. For each harmonic, one
then varies the DC bias of the probe to sweep the position in ω thereby
leading to a reconstruction of the ω-dependence of the n-th harmonic of

the unknown excess Wigner distribution ∆W
(e)
S (t, ω) [17]. Wigner dis-

tributions of the probe signal correspond to weak harmonic modulation
(see Eq. (1.32)).

When both sources S1 and S2 are switched on, this excess low fre-

quency current noise, denoted by ∆S
(S1&S2)
11 , is the sum of three contri-

butions [64]:

∆S
(S1&S2)
11 = ∆S

(S1)
11 +∆S

(S2)
11 +∆S

(HOM)
11 , (1.28)

where ∆S
(S1)
11 and ∆S

(S2)
11 are the excess current noises when only the
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source Sj (j = 1, 2) is switched on. These terms are given by:

∆S
(S1)
11 = e2T 2

∫

R

∆W
(e)
S1

(t, ω)
t

(1− 2feq(ω))
dω

2π
. (1.29a)

∆S
(S2)
11 = e2R2

∫

R

∆W
(e)
S2

(t, ω)
t

(1− 2feq(ω))
dω

2π
. (1.29b)

where R and T denote the reflection and transmission probabilities of
the QPC and feq the equilibrium Fermi distribution of the incoming
channels. These terms correspond to the excess noise in Hanbury Brown
and Twiss (HBT) experiments performed on each of the sources [24].
Since 1 − 2feq(ω) = tanh (ℏω/2kBTel) this expression counts the total
number of excitations (electrons and hole) whose energy are above kBTel
injected by the source Sj . When the other channel (called the probe) is
at zero temperature, it is exactly the total number of excitations injected
by Sj . The last term is called the HOM contribution since it requires
both sources to be switched on. It is given by

∆S
(HOM)
11 = −2e2RT

∫

R2

∆W
(e)
1in(t, ω)∆W

(e)
2in(t, ω)

t dω

2π
, (1.30)

where · · ·t denotes the average over time t. This contribution is the
overlap of the excess single-electron coherences arriving at the QPC [64]
and encodes the effect of two-particle interferences between the excita-
tions emitted by these sources. Finally, the minus sign comes from the

fermionic statistics of electrons. Viewing ∆W
(e)
1in as the unknown quan-

tum signal ∆W
(e)
S and ∆W

(e)
2in as a well controlled probe signal, Eq. (1.30)

is a linear filtering equation connecting the signal to be reconstructed

to the measured quantity ∆S
(HOM)
11 . This time, the filter is nothing but

the probe signal ∆W
(e)
2in . This explains why this tomography protocol,

based on the measurement of the current noise, gives a clear meaning to
Landauer’s aphorism “The noise is the signal” [122].

The last point to explain is the choice of the probe signals. In the
generic protocols originally proposed in [92], is was proposed to used as
probe signal small AC drives at all the frequencies that could appear in
the unknown excess coherence, supplemented by a DC bias. This comes
from the evaluation of the single electron coherence induced by a small
AC drive. Let us consider Eq. (1.24) and expand it in power of Va.c. we
obtain at first order in VAC:

∆G(e)(t, t′) = G(e)
0,Tel

(t− t′)
e

ℏ

∫

t′
VAC(τ) dτ . (1.31)
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Considering the case VAC(t) = VAC cos(2πnft + ϕ) and evaluating the
resulting Wigner function leads to the probe’s electronic distribution
function at first order in6 eVAC/hf :

∆W
(e)
Pn

(t, ω) =
eVAC

hf

1

|n| χπ|n|f,Tel
(ω) cos(2πnft− ϕ) (1.32)

where for ω′ > 0, we define

χω′,Tel
(ω) = fTel

(ω − ω′)− fTel
(ω + ω′) (1.33)

where fel(ω) denotes the Fermi distribution at vanishing chemical po-
tential and electronic temperature Tel. The above expression reduces to
the characteristic function of the interval [−ω′, ω′] for Tel = 0K. At non
zero temperature, it is a thermal smearing of this pulsation interval over
kBTel/ℏ. Eq. (1.32) thus shows that the small AC drive at frequency nf
just generates the temporal modulation of this drive within a smeared
interval of ω of width 2π|n|f around the Fermi level. This is exactly
what is depicted on the right part of Fig. 1.9. In the electronic Wigner
representation, the probes Pn characterized by the frequency nf , its
phase ϕ, its AC amplitude VAC such that eVAC/hf ≲ 1 and its dc bias
VDC enable us to perform a Fourier transfom on the n − th harmonic
with respect to the basic frequency f over the interval |ω−ωDC| ≤ π|n|f
where ωdc = −eVDC/ℏ denotes the dc bias of the probe.

1.3 Bosonization

In the final section of this chapter, we present a succinct exploration of
bosonization—a potent analytical method tailored for addressing Coulomb
interaction effects within electron quantum optics. This method ele-
gantly maps electronic excitations onto quantized charge density waves,
known as plasmons, which obey bosonic statistics.

To lay the foundation, we will first present a conceptual overview
of bosonization devoid of mathematical formulations. Subsequently, we
will elucidate the pivotal equations delineating the correspondence be-
tween electronic excitations and plasmons, their association with the
electric current, and various essential properties invoked throughout this
manuscript and its appendices.

6This dimensionless number corresponds to the number of photons of energy hf
associated with the amplitude of the drive. We are indeed considering the limit
dominated by single photon processes.
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For a more in-depth comprehension, the interested reader is directed
to the pertinent chapter of Clément Cabart’s thesis [34], which delves
deeper into the nuances and interpretations. Moreover, for an exhaustive
grasp of bosonization, Giamarchi’s seminal work[82] stands as a recom-
mended reading; it not only introduces but also portrays the utility
of bosonization in addressing theoretical quandaries in one-dimensional
systems.

1.3.1 Conceptual overview

Fermi’s theory, utilizing a perturbative approach, has demonstrated
success in modeling the electron cloud within a solid characterized by
weak Coulomb interactions in both two-dimensional (2D) and three-
dimensional (3D) cases. However, this theory encounters substantial
difficulties when applied to one-dimensional (1D) systems. Coulomb in-
teractions in 1D systems prohibits a straightforward perturbative treat-
ment of their effect. The dependence of dimensionality on the effects
of electron-electron interactions may initially appear counter-intuitive,
but can be elucidated through a simple thought experiment involving
the conceptualization of electrons as rigid spheres.

In a 2D or 3D context, an electron seeking to pass another one has the
option to navigate around the other electron, necessitating a relatively
minimal energy expenditure since the region of high effective Coulomb
potential can be avoided. Conversely, within a 1D system, the electron
has no alternative but to probe the region of strong interaction with the
other electron, intuitively justifying why interaction effects are drastic
in 1D.

Consequently, the propagation of electronic excitation in a 1D metal-
lic system does not rely on the perturbative image of an individual quasi-
particle — a ’dressed’ electron as proposed in Landau Fermi’s theory
[153] — but pushes to the front scene a collective excitation, akin to the
behavior of a phonon. This specific collective excitation of the electron
gas has been termed a plasmon. Given that our 1D channels are actu-
ally edge channels of the quantum Hall effect, we sometimes specifically
denote these excitations as edge-magnetoplasmons.

One intriguing aspect of this conceptualization involves the bosonic
statistical behavior of these edge-magnetoplasmon excitations, despite
their origin from fermionic electrons. This property can be understood
at a qualitative level without resorting to the full theoretical derivation.

In a metallic system, the ground state is not a particle void; in-
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stead, it is a stationary Fermi sea with many electrons already present
in the system. Therefore, an excitation can manifest as either a nega-
tively charged ’electronic excitation’ above the Fermi level or a positively
charged ’hole excitation’ which consists of extracting one electron below
the Fermi level. Both these quasi-particles obey fermionic statistics and
interact via Coulomb interactions. An electron-hole pair, viewed as a
single entity, can also be perceived as a quasi-particles but with a bosonic
statistic.

Edge-magnetoplasmons, in essence, constitute a coherent superposi-
tion of creating or not creating such electron-hole pairs, which accounts
for their bosonic statistical behavior.

The discussion thus far suggests that it might be logical to solely
utilize a bosonic framework for the analysis of 1D channels, given its
congruence with experimental results. Yet, as educated readers may
remember, quantum electronics in these channels have been explored
without the requirement for bosonization.

Studies of these 1D systems typically prioritize single to few electron
excitations over a short distance and in channels with strong Coulomb
interaction effects limited to finite size regions. This is not always the
case, a famous example being the Fractional Quantum Hall phases [186]
in which exotic excitation of fractional charges and statistics have been
predicted [123] and progressively unraveled experimentally by produc-
ing evidences for their fractional charge [171, 152] and then fractional
statistics [10, 142] . Such “exotic phase” which should be called strongly
correlated electronic fluids, are not considered in the present manuscript.

Under the weaker Coulomb interaction effects conditions that really
define electron quantum optics, the Fermi sea remains a pertinent ap-
proximation for the electron fluid in a metallic conductor even in 1D.
The fermionic framework of Landau Fermi’s theory, however, may fall
short in situations where Coulomb interactions still play a role. Two pri-
mary shortcomings arise. First, Fermi’s theory can impose considerable
computational burden when calculating electronic excitations in these
interacting systems. Second, it may yield erroneous analytical results
when treating Coulomb interactions effects perturbatively. In light of
these issues, the bosonic formalism emerges as an effective alternative
approach. This formalism will prove particularly useful when studying
the radiation coupler in Chapter 2.

The theory in question is not without limitations. While a detailed
mathematical derivation will not be developed here, it is crucial to note
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that the form presented relies on the linearization of the energy spectrum
around the Fermi energy. This implies a focus on energy levels close to
the Fermi level. Furthermore, some of the techniques presented here
are most efficient when the many-body states differs from the ground
state by a few electron or hole excitations which is fortunately the case
for most of the electron quantum optics experiments discussed in the
present thesis. However, these limitations are not overly restrictive.

Next, we shall delve into the bosonization ”recipe” which allows to
express plasmons in terms of electronic operators and conversely.

1.3.2 Relations between electrons and bosons

As discussed, plasmons can be characterized as coherent superpositions
of particle-hole pairs. At a given energy, there is no reason for treating
pairs of single electron state differently depending on their energy. Con-
sequently, the creation and annihilation operators for a plasmonic mode
at frequency ω are defined as:

b(ω) =
1√
ω

∫ +∞

−∞
c†(ω′ − ω)c(ω′) dω′ (1.34a)

b†(ω) =
1√
ω

∫ +∞

−∞
c†(ω′ + ω)c(ω′) dω′ (1.34b)

in which c†(ω) and c(ω) denote the creation and annihilation operators
for an electron at energy ℏω, respectively. The 1/

√
ω prefactor comes

from the fact that, as shown by Clément Cabart In Section 1.4.1 of his
thesis, these operators then obey the canonical commutation relations[
b(ω), b†(ω′)

]
= δ (ω − ω′), thus proving that plasmons obey bosonic

statistics.

Transitioning to the time domain, the operators that describe these
plasmonic modes at time t are formulated in terms of the self-adjoint
quantum field:

ϕ(t) =
i√
4π

∫ +∞

0

[
eiωtb†(ω)− e−iωtb(ω)

] dω√
ω
. (1.35)

Note that these bosonic modes are free: b(ω) and b†(ω) correspond to a
mode of energy ℏω. This is a remarkable statement: in the bosonic lan-
guage, the electronic fluid’s Hamiltonian for the Fermi gas is quadratic.
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For the inverse representation, expressing a fermionic electron field
in terms of plasmonic modes is done via the following relation:

ψ(t) =
U√
2πa

exp
[
i
√
4πϕ(t)

]
(1.36)

In this equation, the length a is a short-distance cutoff defining
the limit beyond which bosonization loses validity and ψ(t) is the elec-
tronic field operator at time t. The exponential component encompasses
plasmonic information and ensures that creating an electron at time t
provides the corresponding δ distribution in terms of charge density.
However, it omits the fact that employing the ψ(t) operator extracts a
fermionic excitation from the many body system and thus changes its
total fermion number. To accommodate this, the Klein ladder operator
U must be included. It follows the anticommutation rules and commutes
with all bosonic operators, its application is invariant with respect to the
order of operations with the bosonic operators in Eq. (1.36). Also this
operator works only for one kind of fermion. If we bosonize multiple
species (fermions with varied spins or in different channels), we require
as many Klein ladder operators as there are distinct fermionic species
in the system and ensure that they obey the proper anti-commutation
relations.

In a finite size system such as an electronic interferometer in the
Coulomb dominated regime [98], these Klein operators could be asso-
ciated with bosonic zero modes that have not been accounted for here
since finite size effects associated for example with the charging energy
in Coulomb dominated interferometer are neglected here.

1.3.3 Properties of the coherent displacement operator

The bosonic component of the fermionic operators in Eq. 1.36, repre-
sented by the exponential, can be understood as an infinite dimensional
variant of the coherent displacement operators:

D[α] = exp

(∫ +∞

0

[
α(ω)b†(ω)− α(ω)b(ω)

]
dω

)
. (1.37)

Applying this displacement operator on a vacuum of plasmons |0⟩ gen-
erates an infinite dimensional multimode coherent state

D[α] |0⟩ =
⊗

ω>0

D(α(ω)) |0ω⟩ =
⊗

ω>0

|α(ω)⟩ = |[α]⟩ . (1.38)
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We will use this displacement operator in this manuscript, so let us
exhibit their following essential characteristics:

D[α]D[β] = exp

(
i

∫ ∞

0
Im (β∗(ω)α(ω)) dω

)
D[α+ β] (1.39a)

D[α] = exp

(
−
∫ ∞

0

|α(ω)|2
2

dω

)
:D[α]: (1.39b)

in which :D[α]: denotes the normal ordered version of this displacement
operator. By leveraging these properties, the scalar product between
coherent states ⟨[β]|[α]⟩ can be expressed as

⟨[β]|[α]⟩ = exp

(∫ ∞

0

[
i Im (β∗(ω)α(ω))− |α(ω)− β(ω)|2

2

]
dω

)
(1.40)

and matrix elements can be computed via:

⟨[α]| :D[γ]: |[β]⟩ = exp

(∫ ∞

0
[γ(ω)α∗(ω)− γ∗(ω)β(ω)] dω

)
⟨[α]|[β]⟩ .

(1.41)

1.3.4 Relation between electrical current and plasmons

In condensed matter systems, a plasmonic coherent state can be gen-
erated by applying a standard AC voltage V (t) to the electron fluid,
for example via an Ohmic contact in the case of quantum Hall edge
channels. To elucidate the relationship between V (t) and the resultant
coherent state, we consider the influence of V (t) on an Ohmic contact
interfacing with a Fermi sea. This interaction gives rise to a current
whose average value is:

i(t) =
e2V (t)

h
. (1.42)

Concurrently, by evaluating the Fourier transform i(t) based on the
equation given by Eq. 1.27, we establish that the finite-frequency com-
ponents of the current are intrinsically associated with the plasmonic
operators as follows (ω > 0):

i(ω) = −e√ω b(ω) . (1.43)

From these two equations, it becomes evident that when a coherent state
is formed by a voltage V (t), all the current’s finite-frequency components
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align with those produced by the specified voltage. This is represented
by

∀ω > 0, −e√ω ⟨b(ω)⟩ = e2

h
Ṽ (ω) (1.44)

where Ṽ denotes the Fourier transform of V (t). Hence, the coherent
state under investigation can be described as

D
[
−eṼ (ω)

h
√
ω

]
|0⟩ . (1.45)
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Chapter 2

Radiation coupler

2.1 Introduction

The radiation coupler is a crucial element of the electron radar: it is
the component that couples the MZI to the electromagnetic field to be
probed. It involves a capacitive coupling between the edge channel of the
upper branch of the MZI, also called the target branch, to the radiation
channel. There are several types of radiation couplers. For example,
the radiation channel can be an integer quantum Hall edge channel, a
fractional one, or a classical transmission line.

In all cases, the radiation coupler will act as a filter between the
radiation channel and the electron fluid, modulating in a frequency de-
pendent way the coupling between the radiation to be probed and the
electronic fluid. Depending on the type of radiation we wish to probe,
some radiation couplers are better suited than others. This is why it is
fundamental to have quantitative models for the various experimentally
relevant radiation couplers.

These couplers can be viewed as linear scatterers, or equivalently
beam splitters, for photons propagating within the radiation channel
and EMPs propagating within the target branch. As long as all the con-
ductors involved in the radiation coupler remain in the linear response
regime, the radiation coupler can be described in terms of single particle
scattering between photons and EMPs.

Moreover, the coefficients of this scattering matrix have a transparent
physical interpretation in terms of finite frequency admittances. This
connexion has been originally unravelled by I. Safi in the context of
quantum wires [168, 169, 167] but has been since used in the context
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Figure 2.1: (a) Scheme of principle for sensing electromagnetic fields
with single electron excitations: one of the branches of an electronic
Mach-Zehnder interferometer (MZI) is capacitively coupled tothe exter-
nal electromagnetic radiation. The region where this coupling is effective
is called the radiation coupler.
Various types of radiation couplers are considered: (b) a top gate capac-
itively coupled to the quantum Hall edge channel of the target branch is
driven by a classical time dependent voltage. (c) The top gate of (b) is
connected to a transmission line. (d) The radiation channel is another
quantum Hall edge channel capacitively coupled to the target branch of
the MZI. (e) he rTadiation coupler consist of two small floating Ohmic
contacts that are capacitively coupled.
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of quantum Hall edge channels [53, 20]. It is a cornerstone for the
discussion of electronic decoherence within quantum Hall edge channels
[52, 65, 35] and it will be instrumental for the discussion of the electron
radar in the presence of Coulomb interactions (see Chapter 4).

The radiation channel can also be another edge channel which can be
viewed as a high impedance transmission line. In all these examples, the
bosonization formalism will be instrumental in modeling the radiation
coupler’s properties. The main objective of this section is to determine
the scattering matrix for electromagnetic excitations, photons or EMPs,
propagating within the radiation channel and EMP modes within the
MZI.

This chapter is organized as follows: in Sec. 2.2, the connexion be-
tween the EMP approach and the usual description of electronic circuit
in terms of multi-terminal circuit elements will be reviewed. This rep-
resentation will be particularly useful, as we will show that there is a
direct link between the plasmonic scattering amplitude and the admit-
tance matrix, which is an experimentally measurable quantity. We will
then turn to the various models of interest depicted on Fig. 2.1.

In Sec. 2.3, the coupling of an electron to a classical electric potential
will be considered via two coupler models: one that assumes that the
electron directly feel the applied voltage drive and one, more realistic,
where the time dependent voltage drive is applied to a top gate. How-
ever, by construction, these models can only describe the coupling to a
classical voltage drive.

Motivated by the perspective of probing quantum radiation, we will
study in Sec. 2.4, a coupler built from two counter-propagating edge
channels in total mutual influence. In this case, an electron propagat-
ing along the target branch of the MZI probes the charge fluctuations,
possibly of quantum origin, of the other channel.

2.2 From EMP scattering to electrical engineer-
ing and back

In this section, we will review the relation between the edge-magnetoplasmon
(EMP) scattering for quantum Hall conductors and the more traditional
point of view of electrical engineering which focuses on the current re-
sponse of a multi-terminal device or circuit element to voltage drives
applied to reservoirs. Our aim is not to present an exhaustive review of
this topic but to give the reader the basic tools that will be useful for
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understanding the underlying physics of the various radiation coupler
models discussed in this chapter.

2.2.1 EMP scattering matrix

In its most general form, the radiation coupler is a system that capaci-
tively couples together multiple radiation channels. We can picture it as
a beam splitter between photons and EMP propagating in the channels
to which it is connected. It is described by an EMP scattering matrix,
also called plasmonic scattering matrix, with elements Sαβ(ω):

boutα (ω) =
∑

β

Sαβ(ω) b
in
β (ω) (2.1)

which connect the bosonic mode boutα (ω) leaving the coupler through
channel α to the bosonic mode binβ (ω) entering the coupler through chan-
nel β. A drawing of a radiation coupler connected to multiple charge
reservoirs is shown Fig. 2.2. Each reservoir α, to which we apply an
AC voltage Vα(ω), is connected to the coupler by a lead with an input
and an output channel which, for simplicity, is assumes to be an integer
quantum Hall chiral edge channel. Other types of radiation channels
such as fractional Hall edge channels or transmission lines can also be
considered only if we introduce the appropriate prefactors in the relation
between the EMP creation and destruction operators and the electrical
current.

Figure 2.2: Drawing of a three-terminal circuit. Each reservoir β im-
poses a voltage Vβ to the circuit which responds with an electric current
Iα for each lead α.
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In each of these channels, the EMP modes at frequency ω are de-
scribed by the operators binα (ω) and b

out
α (ω) which are

iin/outα (ω) = −e√ω bin/outα (ω) (2.2)

So, by inserting Eq.(2.1) in Eq. (2.2), the outgoing current in each chan-
nel is a function of all the incoming currents:

ioutα (ω) =
∑

β

Sαβ(ω) i
in
β (ω) . (2.3)

This allows us to derive the net total current at frequency ω injected
into the coupler by the reservoir α:

Iα(ω) = iinα (ω)− ioutα (ω) (2.4)

= (1− Sαα(ω)) i
in
α (ω)−

∑

β ̸=α

Sαβ(ω) i
in
β (ω) (2.5)

which is a function of the EMP scattering matrix of the incoming cur-
rents. All of these input currents are generated by the AC voltage Vα(ω)
imposed at each reservoir α which pump charges directly into the input
channels at a frequency ω. The incoming currents are given by the Hall
relation:

iinα (ω) =
Vα(ω)

RK
(2.6)

with RK = h/e2 denoting the von Klitzing resistance. So we can write
Iα(ω) as a function of the AC voltages:

RK Iα(ω) = (1− Sαα(ω)) Vα(ω)−
∑

β ̸=α

Sαβ(ω)Vβ(ω) (2.7)

In this equation, the radiation coupler is described as a system that
responds with an AC electrical current Iα(ω) linearly in terms of the
AC voltage drives Vβ(ω) applied to the reservoirs. This observation
brings up an important point: we can describe a radiation coupler in
terms of linear current/voltage characteristics, just as we usually do for
a circuit in linear electrical engineering. The admittance matrix of a
multi-terminal circuit is this response function. The above calculation
shows that, for a radiation coupler, the coefficients of the admittance
matrix can be related to those of the plasmonic scattering matrix (see
Eq. (2.7)). Such a relation, which will be elaborated more precisely in
the next section, is important because finite frequency admittances can
indeed be measured experimentally in the 1 to 10GHz range [77, 78,
22].
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2.2.2 Discrete element description

In the linear regime, the AC electrical current response of a multi-
terminal circuit exposed to AC voltages is described by the admittance
matrix:

Yαβ(ω) =
∂Iα(ω)

∂Vβ

∣∣∣∣
V=0

(2.8)

which gives the average current entering the conductor from the lead
α when a voltage driven at the same frequency ω/2π is applied to the
reservoir β.

As stressed out by Büttiker [32], the finite frequency admittance
matrix is constrained by two sum rules. First of all, it has to ensure
charge conservation: ∑

α

Iα(ω) = 0 (2.9)

whatever time dependent voltages are applied to the reservoirs. Using
Eq. (2.8), this leads to the charge conservation sum rule:

∑

α

Yαβ(ω) = 0 . (2.10)

The finite frequency admittance matrix also has to satisfy gauge in-
variance: the currents remain unchanged when the potential in each
reservoir is shifted by the same time dependent potential. This leads to:

∑

β

Yαβ(ω) (Vβ(ω) + (δV )(ω)) =
∑

β

Yαβ(ω)Vβ(ω) (2.11)

and we end up with the gauge invariance sum rule:

∑

β

Yαβ(ω) = 0 . (2.12)

If we describe an EMP scatterer such as a radiation coupler as a multi-
terminal circuit with an admittance matrix Y(ω), then using Eq.(2.7)
we find the relation:

RKY(ω) = 1− S(ω) (2.13)

where S(ω) the EMP scattering matrix.
Naively, if one builds a radiation coupler model, computes S(ω) and

then Y(ω), one would expect that the admittance obey these conditions.
However, depending on the specific model under consideration, the EMP
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scattering matrix does not necessarily leads to a finite frequency admit-
tance that satisfies Eqs. (2.10) and (2.12). A well known example is the
computation of the 2× 2 admittance matrix of a quantum wire between
two gates in the Luttinger liquid theory [19]. In this case, the failure of
the admittance matrix, obtained from the 2×2 EMP scattering matrix,
to respect the charge conservation and gauge invariance sum rules, is
the signature that the quantum wire is actually coupled to additional
external gates.

To recover the conditions given by Eq. (2.10) and Eq. (2.12) we
need to add a new ingredient to the model of this circuit. We can take
in account these additional gates by adding a third lead capacitively
coupled to the quantum wire which, in the computation, is assumed
to be connected to the ground. Then, instead of having an electric
dipole, we get a three-terminal device with an associated 3×3 admittance
matrix. It contains the 2× 2 admittance matrix given by Eq. (2.13) as
a sub-matrix and satisfies the charge conservation and gauge invariance
conditions. Note that the dynamics of the extra lead is not described in
terms of 1D EMPs: the gates connected to the ground involve a large
number of channels, unlike quantum Hall edge channels at low filling
fractions.

We should emphasize that physically, this problem comes from the
screening of Coulomb interactions by nearby gates. Thus, it is not
surprising that this appears in Luttinger liquid models which assumed
screened short range Coulomb interactions.

To directly ensure the charge conservation and the gauge invariance
without extra gates, the capacitive couplings of the coupler have to be
in total electrostatic influence. Consequently, these conditions translate
into the following one for the EMP scattering matrix:

∑

β

Sαβ(ω) =
∑

α

Sαβ(ω) = 1 . (2.14)

As long as the radiation coupler has no internal degrees of freedom
through which energy can be dissipated, Y(ω) and S(ω) have to ensure
energy conservation. It implies that S(ω) have to be a unitary matrix.
Moreover, the system being a purely passive one, it cannot generate
more energy than what is sent into it and therefore ℜ(Y(ω)) must be
positive definite [29].

To illustrate these various constraints, let us now consider as an ex-
ample a radiation coupler connected to two reservoirs as shown Fig. 2.3.
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Figure 2.3: Drawing of a radiation coupler circuit with two integer
quantum Hall edge channels. Each reservoir β imposes a time dependent
voltage Vβ(t) to the corresponding edge channel. The EMP scattering
matrix enables computing the outgoing current from the incoming ones
and this determines the linear response of the electrical current Iα for
each lead α.

The two branches inside the coupler are assumed to be in total electro-
static influence and the EMP scattering process is assumed to be en-
ergy conserving. The scattering is thus described by a 2 unitary matrix
Sdip(ω) which respects the conditions of gauge invariance and charge
conservation summarized by Eq. (2.14). Thus the scattering matrix
takes the form:

Sdip(ω) =

(
t(ω) 1− t(ω)

1− t(ω) t(ω)

)
(2.15)

Energy conservation then forces

|t(ω)|2 + |1− t(ω)|2 = 1

which implies that

t(ω) =
1

2

(
1 + eiϑ(ω)

)
(2.16)

where ϑ(ω) is a real phase. The equivalent electrical circuit is a dipole
with an admittance Ydip(ω) that can be computes using Eq. (2.13):

RKYdip(ω) = RKYdip(ω)

(
1 −1
−1 1

)
= (1− t(ω))

(
1 −1
−1 1

)

(2.17)
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Both matrices are entirely described by the single function ω 7→ θ(ω)
that encodes the full response of the radiation coupler. As we shall
see, the model of two counter propagating integer quantum Hall edge
channels in total mutual electrostatic influence considered in Sec. 2.4
will fall into this parametrization.

2.2.3 Summary and connexion to other works

The take home message of this review is that a system that stationary
and elastically scatters one EMP of given energy into another EMP
mode at the same energy can be described in terms of a finite frequency
admittance that characterizes the linear current/voltage ac response.

The main consequence of this observation is that EMP scattering
is indeed connected to experimentally accessible quantities since finite
frequency admittances can be measured. Sometimes, the results of such
measurement bring insight on the physics of the quantum Hall conductor
as illustrated by Ref. [20].

This also tells us the limits of these results: any non elastic EMP
scatterer in which there is a non zero amplitude for many-EMP pro-
duction cannot be described in terms of linear current/voltage response
functions. More response coefficients are needed such as, for example
in the case of the mesoscopic capacitor operated in the single electron
source regime [70].

So far, we have not discussed any predictive model for these quan-
tities. Markus Büttiker and his collaborators have developed a long
stream of works that aim at predicting the low frequency behavior of
the finite frequency admittance of quantum conductors [32, 31, 154] as
well as of quantum Hall conductors [46, 45] based on a mean field elab-
oration of his approach of quantum transport based on single electron
scattering (see [18] for a complete review). In the following sections,
we will consider radiation couplers that do not involve any quantum
point contact but only capacitive couplings. For these systems, thanks
to bosonization, it is possible to compute directly the EMP scattering
matrix and therefore to obtain the results for finite frequency ac trans-
port using the correspondence discussed in the above section. This is
closer, in spirit, to the works of Büttiker and collaborators on the finite
frequency admittance of quantum wires [19, 18] and also to the works
of Ines Safi on quantum wires [168, 167] where the plasmon scattering
approach was indeed pioneered.
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2.3 The classically driven edge channel

The radiation couplers considered here are based on classically driven
edge channels studied through two different models. In the first one,
discussed in Sec. 2.3.1, a classical time and space dependent potential
U(x, t) is directly applied to the electrons propagating within the edge
channel. In this model, electron/electron interactions are neglected but
the applied potential imprints a time-dependent phase on each electron
within the edge channel. However, in experiments, the external drive
is not directly applied to the edge channel but to a top gate which is
capacitively coupled to the edge channel. This leads us to the model
discussed in Sec. 2.3.2. It involves a capacitive coupling between a finite
length region of the edge channel and a top gate to which the time-
dependent classical voltage is applied.

2.3.1 Direct coupling to the external voltage

We first consider electrons propagating within a chiral edge channel with
Fermi velocity vF and experiencing a time dependent potential U(x, t)
in the |x| ≤ l/2 region. We first compute how the EMP modes are
propagating across this radiation coupler.

Figure 2.4: An edge channel in which the electrons in the region |x| ≤
l/2 experience a classical time dependent electrical potential U(x, t)

EMP scattering

The starting point is the equation of motion for the chiral bosonic field
ϕR(x, t) built from the edge-magnetoplmasmon modes of the chiral edge
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channel:

(∂t + vF∂x)ϕR(x, t) =
e
√
π

h
U(x, t) . (2.18)

This equation can be solved using the method of characteristics:

ϕR(x+ vF τ, t+ τ) = ϕR(x, t)

+
e
√
π

h

∫ τ

0
U(x+ vF τ

′, t+ τ ′) dτ ′ (2.19)

which gives the outgoing field ϕR,out(t) = ϕR(l/2, t) in terms of the in-
coming field ϕR,in(t) = ϕR(−l/2, t) and of the time and space dependent
potential U(x, t):

ϕR,out(t) = ϕR,in(t− l/vF )

+
e
√
π

h

∫ l/vF

0
U(vF τ

′ − l/2, t+ τ ′ − l/vF ) dτ
′ . (2.20)

The incoming field thus propagates ballistically at velocity vF and the
space dependent potential adds a source term to the outgoing field.

Let us now assume U(x, t) is uniform within the |x| ≤ l/2 region and
equal to the time-dependent potential U(t) which is, for example, the ex-
ternally applied time dependent voltage. We will compute how the b(ω)
EMP annihilation operator is scattered. Specializing Eq. (2.20) for a
spatially homogeneous time dependent potential U(t) instead of U(x, t),
re-expressing it in the Fourier domain and using the b(ω) operators lead
to:

bout(ω) = t0(ω) bin(ω) + κ0(ω)U(ω) (2.21)

in which, using the notation X = ωl/vF and defining f(X) = (eiX −
1)/iX:

t0(ω) = eiX (2.22a)

κ0(ω) =
i e

h

√
lX

vF
f(X) (2.22b)

Note that τl = l/vF is the ballistic time of flight needed to cross the
radiation coupler. In Eq. (2.22a), t0(ω) is the amplitude for an incoming
EMP mode at frequency ω to go through the coupler. It describes a non-
dispersive phase shift ωl/vF reflecting its ballistic propagation. The
coefficient κ0(ω) describes the linear response of bout(ω) to U(ω). Its
explicit form depends on the assumptions of our model (here mainly
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that U(x, t) is uniform for |x| ≤ l/2). Rewriting the scattering formula
given Eq.(2.21) in terms of incoming and outgoing currents leads to:

iout(ω) = eiωτliin(ω)− e
√
ωκ0(ω)U(ω) (2.23)

Motivated by Sec. 2.2 we would like to rewrite the input output relation
(2.23) which defines the EMP scattering in the present problem into an
admittance matrix. To do so, we need to specify the reservoirs attached
to the circuit, the voltages drives applied to them and finally to properly
define the electrical currents flowing through the circuit.

Electrical dipole description

Folding the edge channels as depicted on Fig. 2.5-a enables us to view
the radiation coupler as an electrical dipole with a current Id = iin− iout
and a voltage Vu = U . Since in the present case, the upper part of the
dipole is not modeled, we can assume that Id = −Iu as expected in full
generality for an electrical dipole at finite frequency [32].

Figure 2.5: (a) Folding of the edge channel to obtain an electrical dipole.
(b) Drawing of an electrical dipole with Y(ω) its admittance matrix, Vu,
Vd, Iu and Id respectively denote the voltage and the average electrical
current in the two connecting leads. In panel (a), Vu = U , Vd = 0 and
Id = −Iu = iin − iout.

Following the notations of Fig. 2.5-b, the finite frequency admittance
matrix is defined by

Y0α,β(ω) =
∂⟨iα(ω)⟩
∂Vβ(ω)

(2.24)
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where (α, β) ∈ {u, d}. Gauge invariance then follows from the fact that

Yud(ω) = −e√ωκ0(ω) =
e2

h
(1− t0(ω)) = −Yuu(ω) (2.25)

combined with Id = −Iu which ensures that charge conservation is sat-
isfied. The admittance matrix is then determined by a single finite
frequency admittance Y0(ω) so that:

Y0(ω) = Y0(ω)

(
1 −1
−1 1

)
(2.26)

with

Y0(ω) =
e2

h

(
1− eiωl/vF

)
(2.27)

These results are in agreement with Eq. (2.17). In the complex plane,
RKY0(ω) travels at uniform speed on a circle of radius 1 centered on 1.
Evolution on a circle follows from the fact that RKY0(ω) = 1 − t0(ω)
where |t0(ω)| = 1 because of the absence of plasmon dissipation for |x| ≤
l/2. The linear angular velocity reflects the dispersionless propagation
of plasmons in the same region.

Figure 2.6: In gray is the modulus of the admittance of the classically
driven edge channel. In red is the admittance of classical RC circuit
with C = e2l

hvF
and R = h

2e2
.

The low-frequency expansion of Y0(ω) up to the second order in ω
has the form of an RC circuit :

Y0(ω) = −iCω +R(Cω)2 +O(ω3) (2.28)
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with

C =
e2l

hvF
(2.29a)

R =
h

2e2
=
RK

2
(2.29b)

Note that Cq = e2l/hvF is the quantum capacitance arising from the
finite density of state within the edge channel and RK/2 is the quantized
contact resistance associated with a single coherent chiral edge channel
[30]. Fig. 2.6 depictsRK |Y0(ω)| alongside the modulus of the admittance
of the RC circuit with parameters given by Eq. (2.29) whereas Fig. 2.7
depicts the phases of these admittances.

Figure 2.7: In gray is the argument of the admittance of the classically
driven edge channel. In red is the argument of the admittance of classical
RC circuit with C = e2l

hvF
and R = h

2e2
.

Both admittances have the same shape at low frequency but deviate
from each other as the frequency increases. Contrary to the impedance
of the RC circuit which has a monotonic evolution, Y0(ω) is periodic
in frequency with a period of 2πvf/l, as expected here from the propa-
gation of EMP at fixed velocities. The response of this linear coupler,
characterized by Y0(ω) vanishes for ω = 2πnvF /l (n ∈ N). As we shall
see, such features are quite general when considering a direct capacitive
coupling between two edge channels over a finite length. As a reminder,
remember that describing the full behavior of Y0(ω) in terms of usual dis-
crete elements of electrical circuits such as capacitances and inductances
requires going beyond the RC circuit and introducing more elements [29,
41].
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As mentioned earlier, this model where the electrons are directly
exposed to the external drive is an idealization since, in real experiments,
the external voltage drive is usually applied using a top gate which is
capacitively coupled to the edge channel. We will now discuss a discrete
element model incorporating this physics explicitly.

2.3.2 The classically driven top gate

We now consider a coupler built from a top gate capacitively coupled
to the |x| ≤ l/2 region of a chiral edge channel. This top gate is clas-
sically driven by a time dependent voltage Vg(t). The |x| ≤ l/2 region
forms a capacitor together with the top gate (see Fig. 2.8). In the spirit
of the discrete element description à la Büttiker, these two conductors
are assumed to be in total electrostatic influence, with a uniform time
dependent potential. We denote by Cg the geometric capacitance of
this radiation coupler. The propagating EMPs are still sensitive to an
electric potential U(t) which now depends on Vg(t) but U(t) ̸= Vg(t)
because of the potential drop at the capacitor.

The important point is that, by considering a capacitor, we are now
introducing Coulomb interaction effects in the radiation coupler. The
underlying physics can be understood by discussing what happens when
charges are pumped into a conductor. Because of the time dependent
drive applied to the reservoir, a time dependent charge involving electron
and hole excitations is pumped from the reservoir into the conductor,
where these excitations propagate. But the associated time dependent
charge shifts the electrical potential in the conductor in a time dependent
way, which in turn affects the propagation of electron and hole excita-
tions. This is why, in contrast with dc transport, Coulomb interactions
play an essential role in ac quantum transport. Büttiker understood
this point and pointed out the importance of Coulomb interaction in
AC transport in his works on finite frequency charge transport in meso-
scopic conductors [32, 31]. To address this problem, he developed a self
consistent mean-field approach to the AC quantum coherent transport
[154], taking into account how the time dependent charge density within
the conductor generates a time-dependent potential and thereby alters
the scattering of electronic excitations by the conductor.

In the present discussion, Coulomb interaction effects are taken into
account because the electrical potential U(t) seen by the electrons prop-
agating within the edge channel is not only determined by the external
potential but also by the charge polarizing the capacitor via its geomet-
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Figure 2.8: A top gate is capacitively coupled to the |x| ≤ l/2 region of a
chiral edge channel. It is driven by a time dependent gate voltage Vg(t).
Here Cg denotes the geometric capacitance between the two conductors.

ric capacitance Cg. We will now derive the input/output relation for the
EMP modes in the presence of the AC drive Vg(t) applied to the top
gate.

EMP scattering

Similarly to Sec. 2.3.1, the bosonic field ϕR(t), built from the EMP
modes of the chiral edge channel, propagates according to the following
equation of motion in the |x| ≤ l/2 region:

(∂t + vF∂x)ϕR(x, t) =
e
√
π

h
U(t) (2.30)

where U(t) is the electrical uniform time dependent potential felt by
the electrons. It can be calculated from the potential drop across the
capacitor to Vg(t):

U(t)− Vg(t) =
Q(t)

Cg
(2.31)

where Q(t) denotes the excess charge in the |x| ≤ l/2 of the chiral edge
channel. Using

Q(t) =
e√
π
(ϕin(t)− ϕout(t)) (2.32)

in addition to Eqs. (2.30) and (2.31), we can obtain a closed differential
equation for ϕR(x, t) within the |x| ≤ l/2 region. This method is iden-
tical to the one used to discuss the Coulomb interaction effects within a
chiral edge channel in Ref. [35]. The final result can be expressed as con-
necting the outgoing plasmon modes bout(ω) (derived from the Fourier
transform of ϕout(t)) to the incoming plasmon modes bin(ω) (associated
with ϕin(t)) and to VG:

bout(ω) = t(ω) bin(ω) + κ(ω)VG(ω) (2.33)
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in which, using X = ωl/vF :

t(ω) = eiX
1 + α f∗(X)

1 + α f(X)
= t0(ω)

1 + α f∗(X)

1 + α f(X)
(2.34a)

κ(ω) =
i f(X)

1 + α f(X)

e

h

√
lX

vF
=

κ0(ω)

1 + α f(X)
(2.34b)

where f(X) = (eiX − 1)/iX as before. The dimensionless coupling con-
stant

α =
e2l

hvFCg
(2.35)

is the ratio between the charging energy e2/Cg for an electron and the
kinetic energy scale ℏvF /l associated with the |x| ≤ l/2 region. It is
also the ratio Cq/Cg of the quantum capacitance over the geometrical
capacitance.

As such, α gives a measure of the importance of Coulomb interaction
effects. For α ≪ 1, the potential drop at the capacitance vanishes and
therefore the electrons directly see the gate voltage Vg(t). We thus call it
the voltage locked regime. On the other hand, in the the α ≳ 1 regime,
Coulomb interactions are so strong that they tend to block charge ac-
cumulation below the top gate: Q(t) ≃ 0. We thus call it the Coulomb
blocked regime.

Exactly as in Sec. 2.3.1, κ(ω) and t(ω) are not independent. Eq. (2.34a)
and Eq. (2.34b) imply that:

κ(ω) =
e

h

√
l

vF

t(ω)− 1√
X

. (2.36)

This follows from the top gate and the edge channel being in total elec-
trostatic influence. This relation would be violated if a third element,
such as a side gate, were capacitively coupled to the other two. Focusing
on t(ω), we see that its modulus is equal to one, as in the previous sec-
tion. This is expected since there are no dynamical degrees of freedom
in the top gate susceptible of dissipating energy. Consequently, t(ω) can
be rewritten as:

t(ω) = eiθ(ω) = eiωl/v(ω) (2.37)

with

v(ω) = vF
X

X + 2arctan
(
α(cosX−1)
X+α sinX

) (2.38)
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the phase velocity of EMP beneath the top gate. Eqs. (2.37) and (2.38)
show that Coulomb interaction manifest themselves as non linearities in
the ω-dependence of θ(ω). The coupler is now dispersive for the EMPs
propagating in the target branch. However, in the absence of Coulomb
interaction (α = 0), v(ω) = vF , so we recover a non-dispersive medium
and t(ω) = t0(ω). As expected, the model studied Sec. 2.3.1 is a simpler
version of this one obtained when considering that Coulomb interactions
play no role. We have plotted Fig. 2.9−(b) θ(ω) for different values of
α. As expected, when α = 0, θ(ω) is linear with a slope l/vF , but it
deviates from this regime as we increase α.

We have also plotted v(ω) for several values of α on Fig. 2.9-a. Before
discussing the ω dependence of the phase velocity v(ω), let us recall a
point already discussed in Ref. [35]. Dispersion of the EMP, leads to
distortion of classical current pulse but also to electronic decoherence
beneath the gate. This was not the case in the model discussed in
paragraph 2.3.1 where EMP propagate with an ω independent time of
flight l/vF . In the following section, we will focus more precisely on v(ω)
and its implications for coupler.

Figure 2.9: a Plot of v(ω)/vF from Eq.(2.38) for α = 0.1, 1 and 4. b
Plot of the phase of the transmission coefficient θ(ω) for α = 0.1, 1 and
4.

Phase velocity Fig. 2.9-a depicts the variation of v(ω)/vF as a func-
tion of ωl/vF , with α taking the values 0.1, 1, and 4. As previously
noted in the context of θ(ω), the presence of a non-zero α results in
the dispersion of v(ω), which grows as α increases. Notably, as long as
α ≳ 1, v(ω) is large at low frequencies. Whereas at high frequencies
the non-dispersive limit, with v(ω) ≃ vF , is recovered for any value of
α. Between these two regimes, we observe that v(ω) exhibits damped

76



oscillations with a frequency period 2πvF /l and v(ω) = vF every time ω
is an integer multiple of 2πvF /l.

Most of these observations can be attributed to the influence of
Coulomb interactions. At low frequencies and when α ≳ 1, the en-
ergy e2/Cg associated with charges, is greater than the plasmon energy
ℏω, leading to significant deviations from the non-interacting case. We
can also understand it from the electronic point of view: as mentioned
earlier, when α ≳ 1 the coupler is in the Coulomb blocked regime. In
this one the transmission of electrons at the output of the coupler must
occur rapidly to prevent charge accumulation below the top gate, which
induces an increase of the velocity of plasmons to v0 > vF . Conversely, in
the limit ℏω ≫ e2/Cg, the Coulomb energy becomes negligible compared
to the EMP energy. We thus expect their propagation to be almost un-
affected by Coulomb interactions and we expect to recover dispersionless
propagation with time of flight l/vF . The transition from one regime to
another as ω increases manifests itself in the damping of the oscillations.

However the oscillations can be attributed to the fact that the in-
teractions between the edge channel and the top gate occur on a finite
length l, thereby imposing boundary conditions that restrict the propa-
gation of plasmons around these frequencies. In contrast, more relaxed
boundary conditions would result in a different behavior of v(ω) in the
vicinity of these frequencies.

The phase velocity v(ω) is the effective velocity associated with the
phase accumulated during propagation within the radiation coupler for
an EMP at pulsation ω. However, in the case of multimode plasmonic
wave packets, a distinction needs to be made between the phase velocity
and the group velocity. The group velocity represents the average veloc-
ity at which the energy of a wave packet propagates. In classical optics,
there are scenarios where the phase velocity of a light wave exceeds c,
the speed of light in vacuum, but the group velocity still follows to the
laws of relativity and remains below c. In the following section, we will
evaluate this group velocity and discuss its behavior in regard with the
phase velocity.

Group velocity Let us consider an incoming plasmonic wave localized
around ω0 with a bandwidth γ. Its wave function is given by:

ϕin(t) = e−iω0t

∫ γ/2

−γ/2

d(δω)

2π
e−iδω tũ(δω) (2.39)
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with the low frequency envelope ũ(δω) in the bandwidth [−γ/2, γ/2]. In
this case the outgoing wave packet ϕout takes the form:

ϕout(t) = e−iω0t

∫ γ/2

−γ/2

d(δω)

2π
e−iδωtũ (δω) t (ω0 + δω) . (2.40)

The computation of the outgoing wave ϕout(t) is a challenging task with-
out any assumptions, as the phase θ(ω) of the transmission amplitude
is non-linear in ω. To make progress, we will focus on wave packets
with parameters ω0 and γ such that the transmission phase θ(ω) is lo-
cally non-dispersive and thus the envelop of the wave packet doesn’t get
distorted. Specifically, we assume that θ(ω) is quasi-linear in ω over
the entire range [ω0 − γ/2, ω0 + γ/2]. The acceptable values of γ for
which this approximation is valid depend on both ω0 and α. Indeed,
as shown in Fig. 2.9-b, the non linearities of θ(ω) are concentrated near
frequencies slightly smaller than 2πvF /l and become more pronounced
as α increases. If ω0 is chosen within these highly nonlinear regions,
the bandwidth γ is smaller than in less non linear regions. This forces
us consider wave packets with a small bandwidth and therefore a large
envelope in the time domain.

Assuming that ω0, α and γ are such that θ(ω0 + δω) ≃ θ(ω0) +
θ̇(ω0)δω, with δω ∈ [−γ/2, γ/2], leads to:

t(ω0 + δω) ≃ eiθ(ω0)e(iθ̇(ω0)δω) . (2.41)

By injecting this expression into Eq.(2.40), we get:

ϕout(t) ≃ e−iω0t+iθ(ω0)

∫ γ/2

−γ/2

d(δω)

2π
e−iδω(t−θ̇(ω0))ũ (δω) (2.42)

which can also be rewritten as:

ϕout(t) ≃ e−iω0t+iθ(ω0)ũ
(
t− θ̇(ω0)

)
. (2.43)

The derivative θ̇(ω0) thus appears as the time of flight of the wave packet
across the radiation coupler. It leads to a group velocity vG(ω):

vG(ω) =
l

θ̇(ω)
= vF

(X + α sinX)2 + α2 (cosX − 1)2

X2 + 2α (1− cosX)
. (2.44)

We can also write vG(ω) in terms of v(ω). Indeed, we have :

θ̇(ω) =
l

vG(ω)
=

l

v(ω)
− lω

v2(ω)

dv(ω)

dω
(2.45)
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which then leads to

vG(ω)

v(ω)
=

1

1− ω
v(ω)

dv(ω)
dω

. (2.46)

From this equation follows that vG(ω) > v(ω) whenever v(ω) is increas-

ing (dv(ω)dω > 0). Otherwise, it will be smaller.

Figure 2.10: Plot of vG(ω)/vF as a function of ωl/vF from Eq. (2.44)
for α = 0.1 1 and 4.

We have plotted vG(ω) (left panel) and vG(ω)/v(ω) (right panel)
for α = 0.1, 1 and 4 on Fig. 2.10. At low and high frequencies, as
well as for α ≪ 1, both the group velocity vG(ω) and phase velocity
v(ω) exhibit similar behaviors. In addition vG(ω) also have damped
oscillations with a period l/vF . However, as suggested by Eq.(2.46),
there exist certain frequency ranges where vG(ω) exceeds v(ω) and others
where vG(ω) < vF < v(ω) (see panel (b) on Fig. 2.10). The striking
point is the low value of vG(ω) for some values of ω. It is clearly the
result of an interference effect between EMP modes whose transmission
phase rapidly vary with ω as we increase α. Note that part of the effect
reflects the assumption that Coulomb interactions are abruptly screened
beyond the radiation coupler (for |x| > l/2). Therefore, ultimately, only
measurements of transmission phases provide a reliable way to assess for
these features in a real sample.

To conclude this discussion, let us stress that current pulses with
very short duration will not propagate according to the phase nor to
the group velocity considered here because they are broadband with re-
spect to the acceptable bandwidth where θ(ω) can be approximated by
a linear function of ω. Such large bandwidth/short current pulses are
especially sensitive to dispersion as they propagate through the coupler.
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What the above discussion suggests is that time of flight measurement
for very short current pulses which are routinely performed in labora-
tories [119, 111, 166] should probably be supplemented by frequency
domain measurements as in Ref. [120] to get a sharper insight on EMP
propagation.

Electrical dipole description

By folding the edge channels as we did in Sec. 2.3.1, we can model the
coupler as an electric dipole with a matrix admittance Y(ω). Because of
total mutual influence between the channel and the top gate, the finite
frequency admittance matrix takes the form:

Y(ω) = Y (ω)

(
1 −1
−1 1

)
(2.47)

with

Y (ω) =
e2

h

1− eiX

1 + αf(X)
=

Y0(ω)

1 + αf(X)
. (2.48)

Since t(ω) = eiθ(ω), RKY (ω) = 1− t(ω) spans a circle of radius 1 centred
on 1 in the complex plane1. As in Sec. 2.3.1, the low frequency expansion
of RKY (ω) is, at second order in ω the one of an RC circuit:

RKY (ω) ≃ −i
ωl/vF
1 + α

+
1

2

(ωl/vF )
2

(1 + α)2
+ · · · (2.49)

which enables us to identify

RKCµ =
l

(1 + α)vF
& R =

RK

2
. (2.50)

As expected, the contact resistance of a single coherent edge channel is
recovered and Cµ appears as the series addition of the quantum capaci-
tance of the edge channel with the geometric capacitance Cg since

Cµ =
Cq

1 + α
=

Cq

1 + Cq/Cg
=

CqCg

Cq + Cg
.

1The radius one reflects the relaxation resistance Rq = RK/2 of the circuit pre-
dicted by Büttiker [33].
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Figure 2.11: a Plot of the modulus RK |Y (ω)| as a function of ωl/vF
for three different values of the coupling: α = 0.1, 1 and 4. For each
of these values of α, the modulus of the impedance of the classical RC
circuit with R = RK/2 and for the corresponding RK and Cµ circuit is
plotted in dashed lines with the same colors. b Plot of arg (Y ) for the
same examples as in the left panel (coloring identical to the left panel).

Fig. 2.11 shows the behaviour of |RKY(ω)| = |1 − t(ω)| (panel a)
as well as of arg(Y (ω)) (panel b) as functions of ωl/vF and for different
values of the dimensionless coupling constant α.

As can be seen in the two panels, Y (ω) has an almost identical
evolution to Y0(ω) (Fig. 2.6 and Fig. 2.7) when α≪ 1. This is expected
since, in the voltage locked regime, the potential drop is zero at the
capacitor and the electrons within the edge channel directly see the
electric potential Vg(ω) applied to the top gate.

By contrast, when α ≳ 1, Y (ω) keeps the same periodicity in 2πvf/l
but Y (ω) ≃ Y0(ω) is only recovered at high frequencies. At lower fre-
quencies, the phase of Y (ω) deviates from the simple linear evolution
and the peaks of |Y(ω)| become sharper and less symmetric as α in-
creases. We also note that the phase θ(ω) plotted on Fig. 2.9-b displays
the typical features of a phase resonance: it tends to vary more slowly
at small ω (reflecting Y (ω) ≃ −iCµω at low frequency) and then rapidly
turns by 2π for ω close to 2πvF /l. The same pattern then repeats itself
but in a less pronounced way until the linear behavior observed at small
α is recovered. We also observe that increasing the Coulomb interaction
increases the sharpness of these resonances.

Such a behavior is not a surprise: for ℏω ≪ e2/Cg, Coulomb interac-
tion effects are expected to be dominant whereas, above this character-
istic scale, this is not the case. It is thus expected to recover the low-α
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behavior at large ω. The frequency scale that naturally appears in the
problem is RKCµ. In the voltage locked regime, Cg ≫ Cq and therefore
RKCµ ≃ RKCq = l/vF . This sets the frequency scale vF /l observed in
this regime. But at large α, Cg ≪ Cq and thus RKCµ ≃ RKCg ≪ l/vF .
This sets the frequency scale 1/RKCµ ≃ 1/RKCg for the transition be-
tween the low and large ω regimes.

To conclude this section, we have studied a radiation coupler model
driven by a classical voltage drive Vg(t). In this model, depending on
the importance of Coulomb interaction effects, we are either in a volt-
age locked regime where the electrons propagating within the target
branch directly experience the time dependent potential Vg(t), or in a
Coulomb blocked regime where charge accumulation beneath the top
gate is avoided.

The first model discussed in Sec. 2.3 can be seen as the α ≪ 1 of
the present model. Only in this limit can we forget about dispersion
of EMP modes which, as explained in Ref. [35], means that electronic
decoherence is quite weak. In this case, at small but non zero α, we
may consider that the gate voltage Vg(t) is filtered into an effective time
dependent voltage Ueff(t) via

Ueff(ω) =
VG(ω)

1 + α f (ωl/vF )
. (2.51)

However, all the models considered in the present section assume that a
classical drive is applied to the target branch of the electron radar. In
the perspective of using this device to probe quantum electromagnetic
radiation, we have to go beyond this limitation and consider a radiation
coupler that couples the target branch to a channel where electromag-
netic excitations can propagate. This is the object of the forthcoming
section.

2.4 Two counter-propagating edge channels

In this section, we consider a radiation coupler involving two counter-
propagating edge channels, capacitively coupled over a region of length l
as illustrated Fig. 2.12. We describe Coulomb interaction by an effective
long range interaction though a Büttiker discrete element like approach
[154] which assumes that the electrons within a conductor feels a time
dependent but uniform potential. Therefore, we will consider the two
facing edge channels form a capacitor whose geometric capacitance will

82



be denoted by Cg. We also assume that these two chiral conductors
are in total mutual influence in order to ensure maximal electrostatic
coupling between them.

Figure 2.12: Two counter-propagating edge channels are capacitively
coupled over a range l with a geometrical capacitance Cg. The incoming
and outgoing EMP modes are described by the operators ain, aout in the
upper branch and bin, bout in the lower branch.

This modeling is exactly the one used in Ref. [55] for a rectangular
quantum Hall bar of length l at filling fraction ν = 1. The EMP scat-
tering matrix can thus be directly extracted from Ref. [56] and we will
discuss its various limiting regimes.

2.4.1 The EMP scattering matrix

Denoting by b the EMP modes of the lower branch (target branch of the
electron radar) and a the EMP modes of the upper branch (the radiation
channel), the EMP scattering matrix S(ω) is given by the result of Sec.
III of Ref. [56] specialized for ν = 1:

κec(ω) = Sba(ω) = Sab(ω) =
−iXf(X)

2 + αf(X)
(2.52a)

tec(ω) = Saa(ω) = Sbb(ω) = 1− κec(ω) . (2.52b)

where α, X and f(X) have been introduced in Sec. 2.3. This time κec(ω)
couples a plasmonic mode to another one unlike the previous sections
where κ0(ω) (see Sec. 2.3.1) and κ(ω) (see Sec. 2.3.2) describe the couplin
of an EMP mode to the external classical voltage drive.

The regime of low α (Cg ≫ Cq) is the regime where the potential
drop at the capacitor, formed by the two channels facing each other,
can be neglected: both channels see the same potential. Note that this
is not a regime where the two edge channels are not interacting since
the condition of equal voltage is indeed a strong constraint. In order to
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decouple the two edge channels, one would indeed have to give up on
the hypothesis of total mutual influence. Both edge channels would be
coupled to external side gate whereas the geometric capacitance coupling
them would vanish. But this is incompatible with a capacitance matrix
for conductors in total electrostatic influence.

On the other hand, α ≫ 1 is the Coulomb blocked regime where
Coulomb energy is so large that charging these length l regions is almost
impossible.

We shall now discuss the limiting forms of the EMP scattering region
in these two very different regimes. A key point in interpreting the
results is the relation between the EMP scattering matrix and finite
frequency impedances. Under the hypothesis of total screening, there is
no leak of current to any external ground conductor. Thus the coupler
has exactly the same shape as the example studied Sec. 2.2.1, so we are
going to use the equations Eq. (2.15) and Eq. (2.17) that were derived
there. Consequently, the finite frequency admittance of this conductor
is

Yec(ω) =
e2

h
Sba(ω) . (2.53)

At low enough frequency, this dipole can be viewed as an RC circuit
with finite frequency admittance

Yec(ω) = −iCµω +RC2
µω +O(ω3) . (2.54)

Expanding Sba(ω) up to second order in ω then leads to

Cµ =
Cq

2 + α
=

CgCq/2

Cq/2 + Cg
& R = RK . (2.55)

We recover the expression of the quantum capacitance as the series ad-
dition of two single channel quantum capacitances (one for each edge
channel) with the geometric capacitance Cg. The total resistance RK is
the sum of the two contact resistances RK/2 for the two folded single
edge channels.

As already discussed on Sec. 2.2.1 the EMP scattering amplitudes
can be parametrized by:

tec(ω) =
1

2

(
1 + eiϑ(ω)

)
(2.56a)

κec(ω) =
1

2

(
1− eiϑ(ω)

)
(2.56b)
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Figure 2.13: Left panel: Plot of the phase ϑ(ω) as a function of ωl/2πvF
for two different values of the coupling: α = 1/5 (blue full line) and
α = 15 (red full line). For each of these values of α, the angle for the
RKCµ circuit is plotted in dashed lines with the same colors. Right
panel: plots of |Sba(ω)|2 for the same examples as in the top panel
(coloring identical to the top panel).

where ϑ(ω) is a real phase. Consequently, the parametric plot of Sba(ω)
and thus of RKYec(ω) in the complex plane is a circle of radius 1/2
centred on the point z = 1/2. Note that this is also the case for an RC
circuit with resistance RK and capacitance Cµ and ϑ(ω) ≃ RKCµω at
low frequency.

Fig. 2.13 displays ϑ(ω) as a function of ωl/vF for both a strong and
a weak coupling case. The probability |Sba(ω)|2 = sin2(ϑ(ω)/2) for an
EMP to be transmitted from the a edge channel into the b one is also
plotted on the right panel. The latter quantity displays the filtering of
the radiation coupler as a function of the frequency.

2.4.2 The voltage locked regime

The α→ 0 limit of the EMP scattering matrix given by Eq. (2.52) is

κec =
1

2

(
1− eiX

)
(2.57a)

tec =
1

2

(
1 + eiX

)
. (2.57b)

which therefore implies that ϑ(ω) = ωl/vF . This is consistent with
the full green line behaviour (α = 1/10) displayed on the left panel of
Fig. 2.13.

In this regime, the electrochemical capacitance is dominated by the
quantum capacitance’s contribution: Cµ ≃ Cq/2 which means that the
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corresponding time scale is RKCµ ≃ l/2vF . The fact that even at van-
ishing α, κec(ω) is non-zero comes from the fact that this “weak cou-
pling limit” is not a limit without interactions between the two counter-
propagating edge channels: it only means that the potential drop at the
capacitance vanishes and that both edge channels see the same voltage.
In this regime, the transmission probability exhibits sinusoidal oscilla-
tions as a function of ωl/vF just like a micro-wave directional coupler
or two strongly coupled copropagating edge channels with local interac-
tions would do (see Ref. [92]). This is why it is not very appropriate to
quality the voltage locked regime (α≪ 1) as a weak coupling regime.

As mentioned before, decoupling the two edge channels requires con-
sidering a model without the total screening hypothesis. However, note
that, from the perspective of the electron radar, such a model would
display a less efficient coupling between the two edge channels.

2.4.3 The Coulomb blocked regime

Increasing α introduces non-linearities in the phase ϑ(ω) as shown on
the left panel of Fig. 2.13. The phenomenology is then very similar to
the one observed in the model discussed in Sec. 2.3.2: at high frequency,
we recover a linear phase as a function of ω whereas, at low frequencies,
we see phase resonances where ϑ(ω) rapidly performs a 2π jump close
to the resonance frequencies 2πnl/vF (n ∈ N∗).

The cross-over scale 1/RKCµ is determined by the same considera-
tions than in Sec. 2.3.2. In the Coulomb blocked regime, the electro-
chemical capacitance is dominated by the geometric capacitance Cµ ∼
Cg since, in this regime, Cg ≪ Cq. The RKCµ ∼ RKCg time scale is
then much shorter than the free electron time of flight RKCq = l/vF .
As a resultn 1/RKCµ ≫ vF /l.

Note that the right panel of Fig. 2.13. shows a strong distortion of
the oscillations of the transmission probability |Sba(ω)|2 for ωRKCµ ≲ 1
which still reaches unity for ω slightly below 2πnvF /l (n ∈ N∗) but with
narrow resonances. As n increases, these resonances become broader up
to ω ≃ 1/RKCµ above which they disappear.

Consequently, it appears that at high enough α and low frequency
(ωRKCµ ≪ 1), this radiation coupler is indeed selective in frequency.
This is indeed an interesting feature for building a frequency selective
detector, the narrowest resonance being the first one for ω/2π = l/vF .
Of course, this does not mean that designing such a large α radiation
coupler represents the best technical option for producing a narrow-band
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radiation coupler. Introducing an LC-oscillator or and EMP cavity [38]
may be an interesting alternative.

Away from these resonances, the EMP transmission amplitudes cor-
responds to a very short time of flight across the length l interaction
region. This is the result of the zero charge constraint at infinite cou-
pling: every charge density disturbance has to go out of the interaction
region immediately and leads to no charge density change within the
interaction region (hence the vanishing inter-channel EMP scattering
amplitude).
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Chapter 3

Ambiguity function

This chapter is an introduction to the electron radar theory. Because all
these ideas are not familiar within the mesoscopic physics community,
we have chosen to follow an inductive path that starts from classical
radar theory, presented in Sec. 3.1 and introduces the basic concept
of ambiguity function in signal processing which quantifies the ability
of the radar to distinguish distances and velocities of a moving target.
Because it is an important historical example and because it provides
a pedagogical introduction to the problem of target reconstruction in
radar theory, we will discuss this example in a toy model version quite
extensively.

This concise review will enable us to move forward to the elec-
tronic radar theory which will the main topic in the present chapter
(see Sec. 3.2). At this stage, for the sake of simplicity, our discussion
will rely on a single particle scattering framework. The analogy and
differences with classical radar theory will then appear clearly. This
will enable us to introduce and study the core concept of single electron
radar theory which is the electronic ambiguity function (see Sec. 3.3).
This natural generalization of the well known concept in signal process-
ing characterizes the resolution power of the electron radar in terms of
effective time of flight and energy change of the electron within the time
of flight. As we will see, the corresponding frequency scale is the inverse
of the time scale of non stationary phenomenon that the electron radar
is able to probe. We will see that the electronic ambiguity function is
indeed the fourth, up to now unused, representation of the excess single
electron coherence emitted by an electron quantum optics source.

Section 3.4 will then be devoted to characterizing the time/frequency
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domain currently accessible to state of the art single electron source and
also to discuss techniques directly adapted from classical radar theory
to improve the resolution power of the electron radar and extend the
time/frequency domain that could be accessed with state of the art
single electron sources.

3.1 The ambiguity function in signal processing

The ambiguity function is a fundamental tool in radar and signal pro-
cessing which quantifies the trade-off between the ability to measure the
position and velocity of a target. This section aims at providing an
overview of this concept, its history, its definition and its properties.

To begin with, we present a brief review of the history of radar theory
and the emergence of the ambiguity fonction. Then, we will discuss
the classical radar theory which provides the mathematical foundations
for the ambiguity function. In particular, we will explain how it arises
naturally in the equations that describe the measurement of the position
and velocity of a target using interferometric measurements. We will
provide a formal definition of the ambiguity function and demonstrate
how it characterizes the resolution power of a radar system. Finally, we
will rapidly mention some of the practical considerations and limitations
of using the radar in real-world applications.

3.1.1 Historical overview and definition

The ambiguity function was first introduced by P. M. Woodward in 1953
[192] as a tool for analyzing radar signals in both the time and frequency
domains. It has been a subject of intense research, leading to various ex-
tensions and generalizations, such as the Wigner-Ville distribution and
Cohen class distributions [48]. The use of the ambiguity function has
significantly improved the understanding of radar detection and reso-
lution capabilities, making it an essential tool in modern radar system
analysis and design. It has been employed in the design and analy-
sis of advanced radar systems, such as synthetic aperture radar (SAR),
inverse synthetic aperture radar (ISAR), and multiple-input multiple-
output (MIMO) radar. These modern radar systems rely on the am-
biguity function to optimize signal processing techniques, target detec-
tion, and imaging capabilities [158]. In communication systems, the
ambiguity function has aided in the analysis and design of modulation
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schemes like spread spectrum and orthogonal frequency-division mul-
tiplexing (OFDM) techniques, as well as the development of synchro-
nization and channel estimation algorithms for robust, efficient systems
[155].

3.1.2 Classical radar theory

The radar is nothing but an interferometric instrument capable of de-
tecting a target (T ) and quantifying its range (c τT ) and velocity (vT )
with respect to the observer. In real conditions, the captured signal is
typically tainted with significant noise, originating from various sources
such as atmospheric interference, equipment-induced noise and, in the
context of military applications, potential jamming. However, for the
purpose of this brief review, we will intentionally disregard these noise
sources. Moreover, we will focus on the capabilities, concentrating in-
stead on measurement and reconstruction capacities of the range c τT
and velocity vT of the target.

The radar, pictured in the left panel of Fig. 3.1, measures these two
quantities along the direction determined by line of sight of the target
from the observer’s point of view. The fundamental principle behind
radar operation involves comparing a reference signal to its reflection
from the target, bearing similarities to a Mach-Zehnder interferometer
represented in the right panel of Fig. 3.1.

Initially, a linear separator, functioning as a semi-reflecting beam
splitter, divides the probe signal into two parts. The target, located on
one of the two interferometer branches (called the target branch), scat-
ters the probe signal. Subsequently, a second beam splitter combines
the scattered signal with the reference signal that has freely propagated
during a time τref along the reference branch. By analyzing the inter-
ference contributions on the average light or radio intensity coming out
of the interferometer in either the time or frequency domain, the round-
trip propagation time of the probe between the observer and the target
can be determined. Additionally, the frequency shift (ΩT ) experienced
by the probe during its interaction with the target (T ) gives information
on the velocity of the target via its Doppler shift.

While radar technology offers numerous advantages, its measurement
accuracy for position (cτT ) and velocity (vT ) cannot be made arbitrary
small. The wave nature of the probe signal imposes limitations on mea-
surement precision due to time-frequency uncertainty. To develop a
more quantitative understanding of these idea, we will now discuss a
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Figure 3.1: (a) A schematic diagram of a radar system probing the
relative position c τT /2 and velocity vT of a car is presented. The input
signal is divided into two parts: a probe that will be reflected by the car
and a reference signal that is kept for a time τref to be compared with
the measured reflection. This process is analogous to a Mach-Zehnder
interferometer (MZI) plotted in the right panel. (b) A schematic diagram
of the MZI is shown. The wave source is at the input of the MZI and
the average intensity is measured at the output. The car is placed in the
upper branch of the system, while the reference signal propagates freely
during a time τref in the lower branch.

simplified 1D model for the classical radar based on modeling the target
as a time dependent linear scatterer. Moreover, the discussion will be
non-relativistic which is enough to explain the main features.

Being 1D and relying on a scalar signal, this model is an over-
simplification compared to the realistic radar where wave polarization
and 3D geometry should be considered. It nevertheless captures the
essence of the physics of all radars used in aeronautics, of lidars as well
as of natural or artificial sonars.

Time dependent scattering

Assuming that the target is accurately represented by a time-dependent
scattering amplitudeRT (t, t

′), it scatters an incoming scalar signal xin(t
′)

arriving at time t′ into an outgoing signal xout(t) equal to:

xout(t) =

∫

t′≤t
RT (t, t

′)xin(t
′)dt′ (3.1)

where the condition t′ < t signifies that the target’s response is causal1.

1One could equivalently assume that R(t, t′) = 0 for t < t′.
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Figure 3.2: Left panel A radar positioned at x = 0 is probing a target
moving along the x-axis with a time dependant position xT (t). The
radar receives at time t a signal which has traveled from the target’s
initial position xT (t − τT (t)) back to the radar during a time τT (t).
Upon signal reception, the target has since moved to the position xT (t).
Right panel Space-time diagram featuring the probe signal’s path (dark
line) and the target’s trajectory (grey curve) within the radar’sreference
frame. The x-axis represents the spatial position and the y-axis denotes
the temporal position. A signal measured at time t was reflected by the
target at time t− τT (t) and has indeed been emitted at time t− 2τT (t).

To illustrate this, consider a scenario where the target is a solitary,
perfectly reflective point moving along the x-axis, as depicted in the
left panel of Fig. 3.2. The motion of this target is characterized by the
function xT (t), where the radar is at the origin x = 0.

The right panel of the figure presents a spatio-temporal diagram
of the situation, detailing the interplay of time and space coordinates.
The radar initiates the process by emitting a right-moving signal probe,
ϕpR(t

′), at time t′ and position x = 0. Subsequently, at time t, the
radar receives a reflected, left-moving signal ϕrL(t) at the same location.
Our objective is to calculate the scattering matrix, essentially a relation
between the reflected signal ϕrL(t) and the emitted one ϕpR(t

′).
To achieve this goal, we introduce τT (t), the time for the radiation

to cross the distance between the radar and the target when the signal
is measured at time t by the radar. It has thus been reflected by the
target at time t− τT (t), at a distance xT (t− τT (t)) away from the radar.
Given that the radiation propagates at the speed of light c, we obtain
the implicit equation giving the time of flight τT (t):

c τT (t) = xT (t− τT (t)) . (3.2)

Following a similar logic, the emission time of the signal received at
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time t is determined to be t′ = t − 2τT (t). The target, being a perfect
reflector, ensures that the measured and emitted radiations are related
for all time t by:

ϕrL(x = xT (t), t) = ϕpR(x = xT (t), t) . (3.3)

Proving this relation requires going in the reference frame moving at
the speed ẋT (t) = −vT (t) of the target2. Up to a space translation
which is not relevant here, the formulae describing the Gallilean change
of coordinates from the radar’s frame (coordinates (x, t)) to this new
frame (coordinates (x′, t′)) are

x′ = x+ vt (3.4a)

t′ = t (3.4b)

and, the field being a scalar:

ϕ′α(x
′, t′) = ϕα(x, t) (3.5)

for α = R or L. Perfect reflection in the moving reference frame is then
expressed as

ϕ′L,r(x
′
T (t

′), t′) = ϕ′R,p(x
′
T (t

′), t′) (3.6)

Consequently,

ϕrL(xT (t), t) = ϕ′L,r(x
′
T (t

′), t′) (3.7a)

= ϕ′R,p(x
′
T (t

′), t′) = ϕpR(xT (t), t) (3.7b)

which is Eq. (3.3). Including ballistic propagation of these left and right
moving fields then leads to

ϕrL(t) = ϕpR(t
′ = t− 2τT (t)) . (3.8)

The scattering amplitude RT (t, t
′) is then given by:

RT (t, t
′) = δ

(
t− t′ − 2τT (t)

)
. (3.9)

The scattering amplitude is zero except when t − t′ = 2τT (t), where
2τT (t) represents the round-trip time of a photon to reach the target
and return, measured at time t. So far, this is not surprising but under-
standing how the frequency shift emerges from this expression requires
deriving and analyzing the radar equation.

2With this convention vT (t) is the velocity of the target towards the radar.

94



Radar equation

In the time domain By computing the interference contribution to
the average light intensity measured at the detector at time t, we derive
the following equation:

I(t, τref) =

∫

t′<t
RT (t, t

′)x∗in(t
′)xin(t− τref)dt

′ + c.c. (3.10)

This equation, called the classical radar equation in the time domain
shows that the quantity of interest I(t, τref) is mainly a convolution prod-
uct of the scattering amplitude RT (t, t

′) with a kernel x∗in(t
′)xin(t− τref)

whose shape is given by the waveform of the probe. This kernel is
a quadratic functional of the amplitude of the incoming probe signal
xin(t).

When probing the previously discussed target, characterized by the
scattering matrix in Eq. (3.9), the form of I(t, τref) can be represented
as follows:

I(t, τref) = x∗in (t− 2τT (t))xin (t− τref) + c.c. (3.11)

From the derived equation, it is evident that the radar gauges the co-
herence of the probe within the time interval t − 2τT (t) and t − τref.
But the exact information that can be retrieved from the target are not
obvious. To further clarify this aspect, we assume that the probe signal
has a Gaussian envelope and is described by the following equation:

x(t) = A0 e
− (t−t0)

2

2σ2
t e−iω0t (3.12)

with A0 the maximal amplitude, t0 the center of the Gaussian enveloppe,
σt its temporal width and ω0 the carrier frequency. The radar signal then
becomes:

I(t, τref) = I0 cos (ω0 (τref − 2τT (t))) e
− (t−2τT (t)−t0)

2
+(t−τref−t0)

2

2σ2
t (3.13)

We also consider a target, depicted as a “flying cat”3 on Fig.3.2, moving
towards the radar at a constant velocity vT . Its trajectory is parametrized
by:

xT (t) = x0 − vT t , (3.14)

3Instead of a more realistic object such as a plane.
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where x0 represents its position at t = 0. By substituting this equation
into Eq. (3.2), we can compute the associated time of flight τT (t):

τT (t) =
x0 − vT t

c− vT
, (3.15)

allowing us to compute the measured signal:

I(t, τref) =I0 cos

[
ω0

(
τref +

2vT
c− vT

t− 2x0
c− vT

− t0

)]

× exp



−
(
t− 2x0−vT t

c−vT
− t0

)2
− (t− τref − t0)

2

2σ2t


 . (3.16)

This equation gives us a better insight into the information the radar
can provide about the target. This signal oscillates as a function of the
measurement time tt with a Gaussian envelope. These oscillations are at
the Doppler shift ∆ω0 = 2vTω0/c: they result from the beating between
the reference signal at ω0 and the Doppler shifted reflected signal. Note
that varying τref changes the phase ω0τref of the reference signal. By
measuring the oscillations in t, the Doppler shift can be measured and
the target’s speed reconstructed. The resolution of this measurement is
determined by the number of discernable oscillations in the radar signal,
a quantity growing with the probe frequency ω0 and the Gaussian width
σt. The center of the Gaussian envelope is located at

(
t̃, τ̃ref

)
in the

(t, τref) plane with:

t̃ =
2x0 + t0 (c− vT )

c+ vT
(3.17)

τ̃ref = 2
x0 + vT t0
c+ vT

(3.18)

Note that τ̃ref is directly proportional to the target’s distance xT (t0).
By estimating τ̃ref which is the center of the Gaussian enveloppe of the
radar signal in τref, one can determine xT (t0) with a relative error given
by vT /c when nothing is known on the speed of the target. The precision
on the estimation of the centre of the Gaussian is better with a short
probe signal or equivalently a small σt.

To illustrate this discussion , we have plotted on the top panel of
Fig. 3.3 the Gaussian-shaped envelope of I(t, τref)/I0, assuming a single-
point target moving towards the radar at a speed vT = 10−5c from an
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Figure 3.3: Top panel Plot of the envelop of the average light intensity
Ienv measured by the radar coming from the interference contributions.
It is plotted according t and τref. The signal emitted by the radar is
a Gaussian radiation of frequency ω0/2π = 500MHz, with a timewidth
σt = 0.2ms and was emitted at time t0 = 0. The target is a perfectly re-
flecting point, moving toward the radar with a speed vT = 3km s−1,and
an initial position x0 = 10 000 km. Bottom panel Plot of I(t, τ̃ref)/I0 for
three various values of σt: 0.5ms, 0.2ms and 0.1ms from left to right.

initial position x0 = 10 000 km. The radar probes it with a Gaussian
modulated signal with a duration σt = 0.2ms and a carrier frequency
ω0/2π = 500MHz (UHF band used for very long range surveillance,
typically like the long range radar stations used to monitor possible
incoming ballistic missiles during the Cold War).

We consider t0 = 0. Then, the expected Doppler shift is ω̃/2π =
2vTω0/2π(c − vT ) ≃ 10 kHz and the expected round-trip time is τ̃ref ≃
66.66ms. The Gaussian envelope is precisely centered at these expected
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values. As σt increases, the anisotropic Gaussian envelope becomes
larger.

The lower panel in the figure shows the normalized light intensity
I(t, τ̃ref)/I0 for values of σt of 0.5ms, 0.2ms, and 0.1ms. These curves,
all centered at t̃, exhibit oscillations modulated by a Gaussian envelope,
as predicted.

Increasing σt enhances the number of discernible oscillations in the
envelope. In other words, the Fourier transform Ĩ(Ω, τ̃ref)/I0 becomes
narrower around the Doppler shift 2vT /(c−vT )ω0 with the augmentation
of σt. This enables a more precise measurement of the velocity vT , via
the determination of the Doppler shift. But it simultaneously degrades
the measurement resolution on τ̃ref and thus on the target’s distance.
Consequently, there is an inherent trade-off between the resolution on
the velocity and the resolution of the position of the target when using
probes with a Gaussian shape.

Measuring I(t, τref) is optimal for assessing the target’s distance, al-
though velocity determination demands additional analysis on the mea-
surements. We now pivot to a time-frequency representation to have
a different view of the same problem. As we will see, this approach is
advantageous for radar applications as it simplifies the identification of
the propagation time and of the Doppler shift.

In the time-frequency domain By implementing a Fourier transfor-
mation on the aforementioned Eq. (3.10), while preserving the integral
over τ = t−t′ in the right-hand side of the equation, we obtain the radar
equation in the time-frequency domain:

Ĩ(ω, τref) =

∫

R

R̃T (ω − Ω, τref − τ)Ain(Ω, τ)e
i
(Ω+ω)τref−ωτ

2
dΩdτ

2π
(3.19)

originally derived for the classical radar [192]. Here, R̃T (Ω, τ) represents
the scattering amplitude by the target in the time-frequency domain:

R̃T (Ω, τ) =

∫

R

RT

(
t+

τ

2
, t− τ

2

)
eiΩ tdt. (3.20)

This scattering matrix is obtained by applying the Fourier transform to
RT (t, t

′), transforming it from the time domain to the time-frequency
domain.
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In our example of a target propagating toward the radar at a speed
vT , its scattering matrix in the time frequency domain is:

R̃T (Ω, τ) = exp

[
iΩ

(
x0
vT

− c τ

2vT

)]
. (3.21)

This representation poses significant challenges when analyzing radia-
tion behavior during propagation and subsequent reflection off the tar-
get. Interpreting the signal’s characteristics in both time and frequency
domains solely from Eq. (3.21) is nontrivial. Notwithstanding, it con-
tains identical information as R(t, t′).

The ambiguity function, denoted as Ain(τ,Ω) in Eq. (3.19), is defined
by:

Ain(τ,Ω) = c

∫

R

x∗in

(
t− τ

2

)
xin

(
t+

τ

2

)
eiΩtd t . (3.22)

It is the Fourier Transform of the correlation function x∗in
(
t− τ

2

)
xin

(
t+ τ

2

)

appearing in the radar equation in the time domain Eq. (3.10). The
Gaussian signal given by Eq. (3.12) has a Gaussian ambiguity function:

AGauss(Ω, τ) = e
−
(

τ
2σt

)2
−
(

Ωσt
2

)2

ei(Ωt0−ω0τ) (3.23)

Its principal axes are the Ω and τ axis. Its modulus is plotted on Fig. 3.4.
The ambiguity function is centred at (Ω, τ) = (0, 0) reaching a maximum
value of one for properly normalized x(t). It time extension is σt and
its frequency extension is σ−1

t . Because of the convolution form of the
radar equation (3.19), the ambiguity function time/frequency extension
directly give access to the radar resolution capabilities.

To illustrate this discussion and this new point of view, we have
compute the radar signal given by Eq. (3.19) with the same example
as before. Injecting Eq. (3.23) and Eq. (3.21) into Eq. (3.19) returns
a Gaussian shaped Ĩ(ω, τref). Instead of writing its full (and rather
cumbersome) expression, we have plotted |Ĩ(ω, τref)| on Fig. 3.5.

It is a 2D-Gaussian function centered at (τ, ω) given by the round-
trip time τ̃ref and the Doppler shift δω0 ≃ 2vTω0/c. The target’s velocity
and distance is then easy to read since we only need to retrieve these

two coordinates. We have also plotted the lines for which
∣∣∣Ĩ(ω, τref)

∣∣∣ =
0.3

∣∣∣Ĩ0
∣∣∣ assuming 3 different durations σt = 0.1ms, 0.2ms and 0.5ms.

As expected, larger values lead to an elongated signal along the τref-axis
and compressed along the ω-axis.
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Figure 3.4: Modulus of the ambiguity function for a Gaussian signal
centred at t0 with a time extension σt. The axis are normalized in
regards with σt.

3.1.3 Radar limitations

Besides the trade-off between range and Doppler resolution provided by
the ambiguity function, several practical considerations and limitations
exist when operating radar systems in real-world applications. These
aspects have not been discussed in this section, but they are worth not-
ing:

� Signal bandwidth and duration: Achieving good resolution in both
frequency and time dimensions simultaneously necessitates the
probing signal to have a broad spectrum and be elongated in time.
One type of signal that fits these criteria is the white noise signal.
However, its practical usage encounters technical limitations. The
emission of true white noise is hard to achieve due to equipment
bandwidth limitations. In the same way, measuring accurately
white noise signal demands a receiving system which senses radia-
tions in a wide bandwidth. Furthermore, the stochastic nature of
white noise complicates signal processing and interpretation.

� Clutter and interference: Following successful data acquisition,
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Figure 3.5: Plot of the average light intensity |Ĩ(ω, τref)/Ĩ0| normalized
to its maximum value Ĩ0 coming from the interference contributions
measured by the radar in the time-frequency domain. The probe is a
Gaussian radiation with a duration σt = 0.2ms. It is centred in (ω̃, τ̃ref).
The values used to plot the figure are the same than in Fig. 3.3. The
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∣∣∣Ĩ(ω, τref)

∣∣∣ = 0.3
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∣∣∣ for signals
with three different Gaussian timewidth σt, respectively 0.1ms, 0.2ms
and 0.5ms.

the primary signal processing task is to accurately reconstruct the
scattering matrix from the data which is a convoluted signal with
the ambiguity function. In real-world radar applications, this task
is further complicated. The received signal is often polluted with
noise, clutter, and interference from external sources. Such factors
exacerbate the deconvolution problem and make it more challeng-
ing to accurately estimate the target’s position and velocity.

� Multipath propagation: In a real-world three-dimensional space,
radar measurements can be misinterpreted due to the presence of
multiple propagation paths. These paths are caused by reflections
and refractions off objects other than the intended targets. In
such cases, knowing the specific reflection signature of the target
can prove beneficial. This knowledge aids in distinguishing signals
originating from direct path propagation from those derived from
other sources.
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� Computational complexity : The computation of the ambiguity
function can be computationally intensive, especially for high-
resolution radar systems or when processing large amounts of data.
This may impose limitations on the real-time processing capabili-
ties of the radar system.

In summary, the ambiguity function is a central concept in classical
radar theory, offering a unified representation of both time delay and
frequency shift resolution associated with the probing signal. Let us
now discuss how an analogous concept appears for the electron radar.

3.2 The electron radar equation

In this section, we aim to derive an analogous result, called the electron
radar equation. As we shall see, it will lead us to introduce the concept
of single electron ambiguity function which plays the same role as the
ambiguity function in the classical radar theory. However, we will see
that the electron radar is intrinsically quantum since there is no classical
signal associated with a single electron wave function.

For the sake of simplicity, we will model the electron radar as an ideal
electronic interferometer where interaction effects are either neglected or
effectively taken into account by using (time dependent) single particle
scattering theory. This is a strong assumption but we will see in Chapter
4 how to overcome it. The advantage is that it allows us to discuss the
electron radar equation and the associated concepts within the frame-
work of “linear electron quantum optics”.

3.2.1 The single particle scattering approach

We derive the radar equation under the hypothesis that electronic prop-
agation inside the MZI is described in terms of time dependent single
particle scattering. This means that we disregard electron-hole pair
creation due to Coulomb interactions within the MZI. This hypothesis
amounts to neglecting electronic decoherence within the MZI but we
will see in Chapter 4 how to overcome this limitation. We aim to probe
an unknown electromagnetic field localized at the vicinity of the target
branch of the MZI as depicted Fig. 3.6. The effect of this external mag-
netical field will also be described, as we shall explain in this section, by
an effective single particle scattering.
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Figure 3.6: Schematic view of the electron quantum radar. The setup
involves an electronic MZI formed by the conjunction of branches 1 and
2 with QPCs a and b. Branch 1 traverses the radiation coupler, while
branch 2 allows free propagation during a time τ2. The Aharonov-Bohm
phase, denoted by ϕAB, is associated with the magnetic flux penetrating
the MZI, which is generated by a perpendicular magnetic field. A single-
electron source, labelled as S, is positioned on branch 1 immediately be-
fore QPC a. Additionally, a time-dependent average electrical current
detector is placed on branch 1 just after QPC b. This configuration en-
ables the electron quantum radar to probe an unknown electromagnetic
field and measure its effects through the observed interference pattern
in the MZI.

We also assume that a source generates a single electron in the wave-
packet φe and injects it into the MZI. The electronic fluid state at the
source’s output is expressed as:

|ψS⟩ = ψ†
S [φe] |F ⟩ . (3.24)

For simplicity, we assume that the source is positioned right before the
first QPC so that the injected single electron excitation is in the single
particle state |φe⟩.

We also assume that the two QPCs a and b are ideal electronic beam
splitters with energy-independent scattering matrices:

MQPC
α =

( √
Tα i

√
Rα

i
√
Rα

√
Tα

)
, (3.25)

with Tα and Rα (α = a, b) denoting the electronic transmission and
reflection probabilities satisfing Tα +Rα = 1.
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The electron propagates ballistically for a time τ2 within the ref-
erence branch, while it is scattered by the electromagnetic field under
investigation in the target branch. We denote R(t, t′) as the amplitude
for an electron to enter branch 1 at time t′ and exit it at time t ≥ t′. This
amplitude encompasses the free propagation time before and after the
radiation-coupler, as well as the action of the electromagnetic field on
the electron within the radiation-coupler. The fact that propagation in
the presence of an external electromagnetic field can be described within
a single particle framework is an important hypothesis here. But exactly
as for the effects of Coulomb interactions, going beyond it will be dis-
cussed in Chapter 4. At this stage, based on considerations of Chapter
2, if the radiation is classical and the associated time dependent poten-
tial directly applied to the electrons within the radiation coupler, this
hypothesis is valid.

As the radar operates in the Aharonov-Bohm regime where charg-
ing effects can be neglected [98], both electronic amplitudes acquire a
phase shift of opposite sign: ±ϕAB/2 = ±πΦB/Φ0 (Φ0 = h/e being the
flux quantum). The second QPC recombines the two amplitudes and we
measure the outgoing time-dependent average electrical current ⟨i1out(t)⟩
leaving the first branch. The quantity of interest is the Aharonov-Bohm
flux-dependent contribution to ⟨i1out(t)⟩. In an MZI interferometer, the
Aharonov-Bohm phase dependence of the outgoing average current sim-
plifies to:

⟨i1out(t)⟩ = −e
(
I0(t) + eiϕABI+(t) + e−iϕABI+(t)

∗
)
. (3.26)

since the Aharonov-Bohm can only be encircled once by a single elec-
tron. Finally, the Aharonov-Bohm flux, ϕAB, dependent contributions
can be isolated from the background by applying a Fourier transform
to ⟨i1out(t)⟩ with respect to ΦB/Φ0. This allows us to specifically mea-
sure the quantity I+(t), which is of great interest since it contains the
interference between the two paths traversed by the electron.

Denoting byA(S
i−→ 1out) the amplitude for an electron to be emitted

by the source S, propagating along branch i between the two QPCs and
be detected in 1out, we have

I+(t) = vFA(S
1−→ 1out)A(S

2−→ 1out)
∗ (3.27)
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with

A(S
1−→ 1out) =

√
TaTb

∫

R

R(t, t′)φe(t
′) dt′ (3.28a)

A(S
2−→ 1out) = −

√
RaRb φe(t− τ2) . (3.28b)

Eq. (3.28a) describes propagation across a time dependent scatterer with
scattering amplitude R(t, t′) representing the effect of external radiation.
Eq. (3.28b) described ballistic propagation along the reference branch
with a time of flight τ2. Consequently, the outgoing current is propor-
tional to the overlap between the amplitude of electron propagation in
both branches.

To obtain a non-zero signal, it is essential that some coherence be-
tween the amplitudes in the two branches is preserved. This requirement
ensures that the interference between the electron wavefunctions in the
two branches can contribute to the detected signal, which is crucial for
the operation of the quantum radar.

The quantityX+(t) defined by I+(t) = −√
RaTaRbTbX+(t) does not

depends on the properties of the electronic beam splitters and completely
determines the interference contribution to the average electrical current.
It is equal to

X+(t) = vF

∫

R

R(t, t′)φe(t
′)φe(t− τ2)

∗dt′ . (3.29)

The expression mirrors the classical radar equation in the time domain
(see Eq. (3.10)) of the previous section. This equation involves a time
convolution between the function R(t, t′) which characterizes how the
electron propagates within the target branch, and the correlation func-
tion φe(t

′), φe(t − τ2)
∗ which acts as a kernel describing the imaging

characteristics of the radar.
In this analysis, we have assumed that the source S emits a single

electron excitation in a pure state characterized by the wave function
φe(t). However, the electron radar equation can be generalized to cover
any single electron source, including the ones emitting a single electron
excitation in a statistical mixture of pure states. In such a situation,
φe(t

′), φe(t)
∗ is replaced by the first-order excess single electron coher-

ence ∆G(e)
S

(
t
∣∣∣t′
)
.

In the end, Eq. (3.29) can be written as:

X+(t) = vF

∫

R

R(t, t′)∆G(e)
S

(
t− τ2

∣∣∣t′
)
dt′ . (3.30)
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For the sake of generality, this general form will be used throughout the
remainder of this section. This ensures that our treatment is sufficiently
general to encompass a variety of electron sources, even imperfect ones.

On a side note, in the spirit of being closer to what can measured
experimentally, we have also defined the quantity

I
(dc)
+ =

∫

R

I+(t) dt (3.31)

which represents the interference contribution to the total charge de-
tected on the output 1 of the MZI. Following the analogy, we can define:

X
(dc)
+ = vF

∫

R2

R(t, t′)φe(t
′)φe(t− τ2)

∗dt dt′ (3.32)

which expresses the experimental signal X
(dc)
+ as the linear filtering of

the dynamical quantity of interest R(t, t′) by a filter which is the excess
single electron coherence associated with the wave packet φe. It is the
signal of interest in an experiment In particular, for a MZI with QPCs
with 50 % transmission probability, the average dc current measured
when the experiment is repeated at frequency fd is given by:

⟨i(dc)1out
⟩ = −efd

2

(
1 + ℜ

(
eiϕABI

(dc)
+

))
. (3.33)

We will now discuss the time frequency version of the radar equation.

3.2.2 The time frequency domain radar equation

A time frequency form of the single electron radar equation can be ob-
tained by implementing a Fourier transformation on Eq. (3.30) while
preserving the integral over τ = t − t′ in the right-hand side of the
equation. This leads to

X̃+(ω) =

∫

R2

R̃(ω − Ω, τ2 − τ)AS(Ω, τ) e
i
(Ω+ω)τ2−ωτ

2
dΩdτ

2π
(3.34)

where we have introduced the time frequency scattering amplitude

R̃(Ω, τ) =

∫

R

R
(
t+

τ

2
, t− τ

2

)
eiΩt dt . (3.35)

This quantity is best interpreted within the framework of time-dependent
single-particle scattering theory if we consider the incoming and outgo-
ing electron modes at fixed energy, denoted by cin(ω) and cout(ω) re-
spectively, which enter and exit the electronic channel of the radiation
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coupler. Calculating the outgoing mode in terms of the incoming ones
results in the following expression:

cout(ω) =

∫

R2

dΩdτ

2π
eiωτ/2R̃(Ω, τ)cin(ω − Ω) ei(ω−Ω)τ/2 . (3.36)

Eq. (3.36) thus shows that R̃(Ω, τ) is the probability amplitude for an
electron entering the target branch with an energy ℏ(ω − Ω) to travel
during a time of flight τ/2, get a frequency shift of Ω and finally travels
during τ/2 at energy ℏω. This dependence on Ω and τ contains the
information on the energy transfers and effective time of flights experi-
enced by the electrons within the target branch of the MZI under the
influence of the radiation sent onto the radiation coupler.

The dimensionless quantity

AS(Ω, τ) = vF

∫

R

∆G(e)
S

(
t+

τ

2

∣∣∣t− τ

2

)
eiΩt dt (3.37)

is called the electronic ambiguity function associated with the source S
by analogy with classical signal processing [71] and with classical radar
theory (see Sec. 3.1).

More specifically, the experimental signal of the electron radar is
a convolution of the scattering amplitude R̃(Ω, τ) of the region to be
probed by the ambiguity function of the source S. A point-like response
R̃(Ω, τ) = δ(τ − τ0)δ(Ω − Ω0) corresponding to a ballistic propagation
during τ0 with a given frequency shift Ω0/2π will be spread by the convo-
lution kernel AS(Ω, τ), thereby justifying its name in the electron quan-
tum optics context. In optical terms, the electronic ambiguity function is
the point spread function describing the resolving power of the imaging
of R̃(Ω, τ) by the MZI. Although we’ve discussed the ambiguity function
in the context of single-electron excitations, this concept is not confined
to such signals. It can be extended to deal with signals involving mul-
tiple charges but the validity of the radar equation (3.34) is limited to
the single particle scattering framework.

The form of the single electron radar equation given by Eq. (3.34)
is very similar to the original radar equation derived Eq. (3.19). In
the usual radar context discussed in Sec. 3.1, the time τ in R̃(Ω, τ)
corresponds to the time to reach a target and come back whereas Ω
denotes the Doppler shift during reflection by a moving target.

However, although both equations are derived from a Mach-Zehnder
geometry, they should not be confused: contrary to electromagnetic
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fields whose average value can be non-zero, fermionic fields have a van-
ishing quantum average [76, 109, 162]. Consequently, the electronic
ambiguity function defined by Eq. (3.37) is not the ambiguity func-
tion of a classical signal: it is the fourth representation of the excess
single electron coherence. It is thus related by the appropriate Fourier

transforms to the time domain representation ∆G(e)
S (t|t′), the frequency

domain representation ∆G̃(e)
S (ω+|ω−) and the excess electronic Wigner

distribution ∆W
(e)
S (t, ω) [64].

3.3 The electronic ambiguity function

In this section, we summarize the general properties of the electronic
ambiguity function (see Sec. 3.3.1) and then discuss its role as a filter
(see Sec. 3.3.2). The experimentally relevant examples of Landau and
Leviton wave packets are then discussed in Sec. 3.3.3.

3.3.1 General properties

Exactly as for the electronic Wigner distribution function [64], the am-
biguity function satisfies general properties that are always valid. Let
us review them now:

Hermiticity and marginals

� Conjugate symmetric The hermiticity condition for the single elec-

tron coherence G(e)
S (t|t′) which leads to the reality of the electronic

Wigner distribution, translates into the conjugate symmetric of
the ambiguity function with respect to τ and Ω :

AS(Ω, τ)
∗ = AS(−Ω,−τ) (3.38)

� Electrical current relation At τ = 0, the excess ambiguity function
directly leads to the average finite frequency current

⟨i(Ω)⟩ = −eAS(Ω, τ = 0). (3.39)

� Ambiguity of stationnary and periodic signals A stationary source
such as a dc-bias or, more generally, a non equilibrium electron
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distribution function fe(ω) = feq(ω) + δfe(ω) generates a singular
ambiguity function concentrated on the Ω = 0 axis:

Afe(Ω, τ) = δ(Ω)

∫

R

δfe(ω) e
−iωτ dω (3.40)

The spreading along the Ω = 0 of the ambiguity function is there-
fore the coherence time of the excitations generated by the source.
Note that for a T -periodic electron source, the ambiguity function
is localized on the Ω = 2πn/T (n ∈ Z) lines.

� Peak value The excess single electron coherence ∆G(e)
S (t|t′) carries

information about all single particle excitations emitted by the
source. However, the associated ambiguity function doesn’t follow
the same normalization constraint as an ambiguity function related
to a L2(R) classical signal. Specifically, we have:

AS(Ω = 0, τ = 0) =
−⟨Q⟩
e

(3.41)

where ⟨Q⟩ denotes the average total charge injected by the source.
The maximum value of the ambiguity function is found when τ = 0
and Ω = 0. Furthermore, if the signal consists of a single, purely
electronic excitation, the normalization to unity is restored.

Time-energy uncertainty

The Wigner distribution function and the ambiguity function are both
representations used to study the time-frequency characteristics of a
signal. However, they exhibit different behaviors, particularly in terms
of their spreading properties related to time-energy uncertainty.

The Wigner distribution function is known for its minimal spreading
properties, which are intimately related to the Gabor-Heisenberg princi-
ple. It states that it is impossible to precisely determine both the energy
and the time of a signal simultaneously. The product of the uncertain-
ties in these two measurements is always bounded by a constant. In
other words, if you try to confine the signal more in time, it spreads in
frequency, and vice versa.

On the other hand, the ambiguity function does not always adhere
to this principle. By its construction, the ambiguity function tends to
be concentrated near the origin. This means that a signal with a broad
frequency range and extended in time will have an ambiguity function
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that is localized, both in terms of the absolute time delay |τ | and the
absolute frequency shift |Ω|.

For instance, let’s consider the ambiguity function of ideal white
noise, a theoretical signal that has infinite duration and infinite band-
width. In the realm of signal processing, the ambiguity function of such
a signal is proportional to δ(Ω) δ(τ). This representation clearly vio-
lates the Gabor-Heisenberg principle, as both time and frequency are
precisely defined.

Another example is the infinite chirp, a signal whose frequency in-
creases or decreases over time. The ambiguity function of an infinite
chirp is concentrated around a single line in the (Ω, τ) plane. This
also exhibits localization properties contradicting the Gabor-Heisenberg
principle.

In the context of electron quantum optics, these phenomena, namely
the randomization effect seen in white noise and the chirping localiza-
tion effect, are further discussed in Section 3.4. On a side note, these
examples illustrate that, while the Wigner distribution and ambiguity
functions are powerful tools for understanding the time-frequency char-
acteristics of signals, they offer different perspectives and can exhibit
unique behaviors depending on the nature of the signal under examina-
tion.

In the specific case of a source emitting precisely one single electron
excitation, denoted as φe, there are certain properties that the associated
ambiguity function, Aφe(Ω, τ), is known to satisfy. These properties, as
outlined in the reference [71], are as follows:

|Aφe(Ω, τ)| ≤ |Aφe(0, 0)| (3.42a)

|Aφe(0, 0)|2 =
∫

R2

|Aφe(Ω, τ)|2
dΩdτ

2π
. (3.42b)

None of these properties are linear with respect to the ambiguity
function. As such, we cannot expect them to be satisfied for a general
ambiguity function associated with a state that includes many-particle
excitations on top of the Fermi sea. Similarly, these properties may not
hold for an imperfect single electron source that samples a statistical
ensemble of single electron wave-packets.

3.3.2 The ambiguity function as a filter

We have demonstrated that the single particle scattering matrix of a tar-
get is probed with a resolution given by the ambiguity function. Since
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τ represents the time of flight of a single electron excitation across
the upper branch of the MZI, R̃(Ω, τ) has non vanishing values for
τ ∈ [τ1,min, τ1,dec]. τ1,min defines the minimal time of flight for the elec-
tron to cross the upper branch between the two QPCs, and τ1,dec is the
decoherence time within the upper branch of the MZI.

Its range in Ω is limited by the inverse of the characteristic time scale
associated with the non-stationarity of the incoming radiation. This
rectangle in the (Ω, τ) plane, whose precise extension will be discussed
below, delimitates the domain of interest where we want to be able to
probe the time dependent single particle scattering.

Howoever, because the ambiguity function depends on the single elec-
tron sources that we are able to use in experiments which are constrained
by the experimental state of the art, it is important to to determine to
what extent the experimentally adjustable parameters of realistic sin-
gle electron sources enable us to explore the physically relevant time
frequency range in the (Ω, τ) plane.

In practice, the decoherence time may be within the 100 ps range,
which corresponds to a coherence length of approximately 10 µm. Fur-
thermore, there is an interest in probing fast radiations down to time
scales ranging from 1 to 10 ps, thereby corresponding to frequencies Ω/2π
in the range of 100GHz to 1THz.

For an on-demand single electron source, there are a few parameters
that can be manipulated to control the properties of the emitted electron
wave packet. The emission time te is an apparent control parameter,
and in some sources, such as the driven mesoscopic capacitor, an energy
shift by ℏωe can be applied to the emitted excitation. Additionally,
the internal parameters of the source can provide some control over the
envelope of the emitted wave packet.

The injection time and energy shifts (te, ωe) of the single electron
probe introduce only a phase factor in front of the ambiguity function.
If Ste,ωe denotes the single electron source shifted by te in time and ℏωe

in energy, we can write:

ASte,ωe
(Ω, τ) = ei(Ω te−ωeτ)AS(Ω, τ) . (3.43)

By tuning te and ωe, we can find the operating point where the phase
shift ei(Ωte−ωeτ) of the ambiguity function cancels the linear compo-
nent in (Ω, τ) of the phase factor appearing in the electron radar equa-
tion (3.34): Arg(R̃(Ω, τ)) + Ωτ2−ωτ

2 . This linear phase cancellation can
be used to optimize the performance of the quantum radar system be-
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cause it suppresses the phase averaging in the (Ω, τ) integration in the
radar equation (3.34).

These adjustments being done, the electron radar’s resolution in the
(Ω, τ) plane is given by the close to unity spots of |AS(ω − Ω, τ2 − τ)|
when varying the control parameters ω and τ2. A more quantitative
analysis thus requires analyzing the ambiguity functions generated by
the available single electron sources before discussing techniques to re-
shape them in order to extend the exploration range in the (Ω, τ) plane
(which will be done in Sec. 3.4).

3.3.3 Examples

In this section, we discuss the ambiguity functions of the single particle
excitations generated by the two most commonly used sources in electron
quantum optics, id est the Landau quasiparticle and the Leviton.

The Landau quasi-particle

The Landau excitation [64] is a Lorentzian wave packet in energy, trun-
cated to energies above the Fermi level:

φ̃e(ω) =
NeΘ(ω)

ω − ωe + iγe/2
(3.44)

where Ne ensures normalization, γe denotes the inverse of the wave
packet’s duration and ℏωe is its emission energy. Landau excitations
are emitted by the mesoscopic capacitor in the single electron source
regime [70]. When they are in the energy resolved regime (γe ≪ ωe),
the truncation of the wave packet can be neglected. Within this regime,
the associated ambiguity function can be approximated by:

ALan(Ω, τ) =
γe e

−γe|τ |/2

γe − iΩ
ei

Ω|τ |
2 e−iτωe . (3.45)

Its modulus square has an exponential decay in τ over the time scale
τe = 1/γe and a Lorentzian behavior in Ω over the scale γe (see Fig. 3.7).

Thus, the Landau excitation, allows to probe a radiation at a fixed
frequency ωe with a frequency resolution given by γe. Both of these
parameters can be experimentally shifted over a limited interval which
is why this excitation is of particular interest. Typical injection energies
are of a few tens of µeV corresponding to ωe/2π in the 10 to 20GHz.
The linewidth is of the order of the GHz corresponding to a duration of
1 ns [70, 130].
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Figure 3.7: Contour plots for |A(Ω, τ)| = 0.9, 1/2, 1/4 and 1/8: (Top
left) Landau excitation for large Ωe/γe, plotted in terms of (Ω/γe, γeτ);
(Top right) Leviton excitation in the variables (Ωτe, τ/τe). The differ-
ence between the direction of exponential and algebraic decay is quite
visible. The corresponding electronic Wigner functions are also depicted
on the row below in terms of dimensionless variables: (γet, (ω− ωe)/γe)
for the Landau excitation and (t/τe, ωτe) for the Leviton excitation.

The Leviton excitation

The Leviton [59] consists of a single electron excitation on top of the
Fermi sea in a Lorentzian wave packet in position (or equivalently in
time) with width τe. It is generated by applying a Lorentzian voltage
pulse of total charge −e on the Fermi sea [124].

In the context of practical implementations, the typical durations of
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a Leviton are in the few tens of picoseconds range [166, 4]. However,
advancements in terahertz technology suggest the possibility of gener-
ating significantly shorter Leviton pulses in the future [81]. It is worth
noting that in order to prevent thermal fluctuations from significantly
distorting the Leviton, its duration must be less than ℏ/kBTel ≃ 76 ps
at an electronic temperature Tel ≃ 10mK.

The time-dependent wave function for a Leviton is given by:

φLev(t) =

√
τe
πvF

1

t− iτe
(3.46)

and therefore its ambiguity function is given by:

ALev(Ω, τ) =
2τe e

−τe|Ω|

2τe + iτ
e−i|Ω|τ/2 (3.47)

Apart from the phase factor e−iωeτ , Eqs. (3.45) and (3.47) are related
by the duality Ω ↔ −τ , γe ↔ 2τe which, in the limit ωe ≫ γe for the
Landau quasi-particle, is expected (see Fig. 3.7).

Compared to the Landau excitation, the Leviton ambiguity function
decays more rapidly in Ω for a value of the parameter τe. A practical
consequence is that probing short time scales with Leviton excitations
requires generating really short pulses as we shall see in the next section.

3.4 Shaping the ambiguity function

In this section, we consider the filtering effect associated with the elec-
tronic ambiguity function. We begin by discussing the practical limits
associated with the Landau and Leviton wave packets taking into ac-
count realistic parameters.

Then, in Secs. 3.4.2 and 3.4.3, we discuss how two techniques used
in the context of radars and sonars – chirping [116] and randomization
[192] – can be adapted in the context of electron quantum optics and
offer interesting perspectives for covering the physically relevant range
in the (Ω, τ) plane.

3.4.1 Experimental limitations in the time frequency do-
main

As discussed in Sec. 3.3.2, optimizing the electron radar signal first
involves adjusting the injection time te and, if possible, the energy ℏωe in
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order to avoid the linear phase averaging between the ambiguity function
and the single particle scattering in the radar equation.

Then, one is left with ω which governs ne measurement frequency
of the outgoing average electrical current and τ2 the time delay along
the reference branch. Bothe parameters can be adjusted in order to
maximize the overlap of the single particle scattering amplitude R̃(Ω, τ)
and the shifted ambiguity function AS(ω−Ω, τ2−τ) in modulus. In this
section, we qualitatively explore this idea to get an image of the region
accessible using the Levitov and Landau excitations.

Let us first review the current experimental limitations on the mea-
surement frequency ω/2π and τ2:

� Current laboratory equipment for measuring the finite frequency
average current typically have a maximal bandwidth of 20GHz.

� The range of accessible values for τ2 varies between 10 ps to 40 ps,
facilitated by a plunger gate proximate to the MZI’s reference
branch, which can manipulate its length by several hundred nano-
meters.

We have plotted this region as a rectangle on Fig. 3.8. Note that on
this figure, the light red area represents the domain of interest limited
by the electronic decoherence time τ1,dec = 100 ps and the minimal time
of flight τ1,min = 10ps along the target branch. In the Ω direction,
we wish to probe phenomemon with characteristic frequencies up to
|Ω|/2π ≲ 100GHz, aligning with the probing of dynamical timescales in
the tens of ps.

Figure 3.8 visually represents the overlapping of the physical region
of interest with the regions where the Leviton and Landau ambiguity
functions are concentrated when using realistic parameters. It shows
ambiguity functions for four realistic Levitons in the (Ω, τ) plane, cen-
tered at ω/2π = 10GHz and τ2 = 20ps. The retained value range from
40 ps which is the current state of the art using an adwanced waveform
generator [58] of Fourier harmonic synthesis such as in [16]. The lower
values of 1 and 2.5 ps require new techniques that are currently under
active development [4].

Considering these examples and varying ω and τ2 within the limits
discussed here shows that there is a part of the domain of physical
interest that can be probed but that there are also regions which will
not be accessible because none of the translated ambiguity functions
considered here has significant values there.
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Indeed short Leviton excitations (τe ≲ 10 ps) are able to reach Ω/2π
in the tens of GHz but lack the ability to explore many different values
of τ . Excitations with longer durations, such as the Leviton excitation
of 40 ps, corresponding to typical parameters in experiments [134], can
probe longer propagation times but lack the ability to explore physi-
cally relevant information for Ω/2π ≳ 20GHz which encodes the short
dynamical time scales of the incoming radiation.

In the end, the stripped area in Fig. 3.8 represents the region where it
is close to impossible to get any information about the radiation without
resorting to other wavepackets. This justifies the search for techniques to
shape the ambiguity function in order to obtain information at specific
values in Ω and τ .

3.4.2 Randomization

For single electron wave packets φe(t) = e−iωe(t−te)χe(t − te) based on
the envelope χe but emitted at random times te and energies ωe, the en-
semble averaged ambiguity function is related to the ambiguity function
Aχe of the enveloppe through

AS(Ω, τ) = Ete,ωe

(
ei(Ωte−ωeτ)

)
Aχe(Ω, τ) . (3.48)

Consequently, averaging over the random te and ωe localizes the ambigu-
ity function in the (Ω, τ) plane. In the specific case where te = te + nTe
and ωe = ωe + mΩe where n and m are independent random positive
integer valued variables,

AS(Ω, τ) = ei(Ωte−ωeτ) p̂n(ΩTe) p̂m(Ωeτ)Aχe(Ω, τ) (3.49)

where p̂n and p̂m are the characteristic functions of the probability laws
of the random integer valued variables n and m. Because we are deal-
ing with integer valued variable, these functions are 2π-periodic which
shows that the ambiguity function gets localized around the points of
the square lattice defined by ΩTe ∈ 2πZ and Ωeτ ∈ 2πZ. For exam-
ple, assuming that pn and pm are Poisson distributions with respective
averages n and m leads to:

|AS(Ω, τ)| = e−2n sin2(ΩTe
2 )−2m sin2(Ωeτ

2 ) |Aχe(Ω, τ)| . (3.50)

Randomized Leviton

As an illustrative example, Fig. 3.9 displays the modulus of the ambigu-
ity function, denoted as

∣∣An
Lev(Ω, τ)

∣∣, for a Leviton emitted at a random
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Figure 3.8: Probing R̃(Ω, τ) using Leviton ambiguity functions. The
light red (or pink) rectangular region defines the region where R̃(Ω, τ)
may be non-zero. The variable τ ranges from the shortest time of flight
across branch 1, denoted as τ1,min, to the decoherence time, τ1,dec. Typ-
ical values for these parameters are τ1,min ≃ 10 ps and τ1,dec ≃ 100 ps.
The frequency limit |Ω|/2π is set to be less than 100GHz, correspond-
ing to probing phenomena on the tens of ps time scale. The ambiguity
function ALev(ω − Ω, τ2 − τ) is centred on the point (ω, τ2) (indicated
by a bullet), where ω/2π ≃ 10GHz and τ2 ≃ 20 ps. The dotted rect-
angle demarcates the experimentally accessible zone for these parame-
ters: between 1 and 20GHz for ω/2π and 10 to 40 ps for τ2. The plots
of |AS(ω − Ω, τ2 − τ)| are represented as colored regions bounded by
|AS(ω − Ω, τ2 − τ)| = 1/2. The four plots correspond to Levitons with
durations τe = 1ps (blue), τe = 2.5 ps (light grey), τe = 10ps (light
blue), and τe = 40ps (dark blue).

time te = te + nTe. Here, n follows a Poissonian distribution centered
at n. The plot showcases three distinct cases: n = 0, n = 1, and n = 5.
Note that the Leviton being created just above the Fermi surface, its
emission energy cannot be shifted with respect to the Fermi energy. This
is why, for Levitons, we only consider randomized emission times.

Since the ambiguity function becomes localized around ΩTe integer
multiples of 2π and because the Leviton’s ambiguity functions typically
spreads over ΩτLev ≲ 1, the scale Te of random emission times is chosen
larger than the duration of the Leviton τLev (three times in Fig. 3.9).
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Figure 3.9: The modulus of the ambiguity function of a Leviton emit-
ted at a random time, denoted by

∣∣An
Lev(Ω, τ)

∣∣, is examined in three
distinct scenarios: n = 0, n = 1, and n = 5. In each case, the Leviton is
randomly emitted at times te = te + nTe, where n follows a Poissonian
distribution centered at n. The horizontal axis represents the dimen-
sionless frequency shift ΩTe/2π, while the vertical axis represents the
dimensionless time τ/Te. The plotted figures correspond to a period
Te = 3τLev In the scenario of n = 0, which corresponds to the trivial
case of a single Leviton emitted at te, the obtained results reproduces
with those on Figure 3.7. For non-zero values of n,

∣∣An
Lev(Ω, τ)

∣∣ becomes
localized at Ω values integer multiples of 2π/Te. As n increases, the dis-
tribution of

∣∣An
Lev(Ω, τ)

∣∣ becomes sharper around these frequencies.

This guarantees that no more than one Leviton is emitted within each
period.

As expected,
∣∣An

Lev(Ω, τ)
∣∣ becomes localized at frequencies Ω that

are integer multiples of 2π/Te while the temporal spread of the ambi-
guity function remains unaffected by the temporal randomization. As n
increases, the distribution of

∣∣An
Lev(Ω, τ)

∣∣ becomes sharper around these
frequencies since it reflects the total spreading of the emission time shifts
nTe.

In practice, Levitons in the 1 to 10 ps duration range are immune to
thermal noise even while emitted close to the Fermi surface. Randomiz-
ing their emission times by integer steps of 100 ps leads to localization of
the ambiguity function AS(Ω, τ) around frequencies Ω/2π multiples of
10GHz which can then be convenient for probing non stationary radia-
tion with characteristic frequencies in the tens of GHz, up to 100GHz,
as expected for such short wave packets.
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Randomized Landau particle

To illustrate the effects of randomization along both the time and fre-
quency axis, we have also plotted Fig. 3.10 the modulus of the ambigu-

ity function, denoted as
∣∣∣An,m

Lan(Ω, τ)
∣∣∣, for a Landau particle emitted at

a random time te = te + nTe and a random frequency ωe = ωe +mΩe.
Randomization of the emission energy is very easy to do for Landau ex-
citation since the emission energy is controlled by the dc voltage applied
to the top gate of the mesoscopic capacitor [70]. As in the random-
ized Leviton example, we have assumed that n and m follow indepen-
dent Poissonian distributions respectively centred at n and m. The plot
showcases the nine configurations of n and m taking the values 0, 1 and
5.

Exactly as in the Leviton case, the period of random emission Te is
chosen to be three times greater than the temporal width of the Landau
particle γ−1

e . The frequency interval of random emission Ωe is three
time greater than the frequency width γe so that 2π/Ωe is smaller than
the coherence time γ−1

e of the Landau wavepacket. There is some room
for such a randomization since one can vary the injection energy over a
fraction of the level spacing ∆ which is much larger than ℏγe without
compromising single electron emission by the mesoscopic capacitor.

For Landau quasi-particles, which can be emitted far above the ther-
mal noise energy scale and have durations in the ns range, shifting the
emission energy by multiples of 20 µeV will localize the ambiguity func-
tion around times separated by multiples of 200 ps.

The results are quite similar to the one obtained for the randomized
Levitons. For non zero values of n and m, the ambiguity function get lo-

calized around points of coordinates
(
k 2π

τe
, k′ 2πΩe

)
with k and k′ integers.

As n and m increase, the localized peaks become narrower.

The main advantage of randomization is that, by localizing the am-
biguity function around certain point, it might help reconstructing the
single particle scattering amplitude with better resolution than without
using this technique. Let us stress however that it does not extend the
region of the (Ω, τ) plane where the ambiguity function has significant
values. Therefore, in order to address the issue of unattainable regions
discussed in Sec. 3.4.1, a new technique called “‘chirping” has to be
introduced.
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Figure 3.10: Modulus of the ambiguity function of a Landau particule
emitted at random time and energy. In each case, the emission is at times
te = te + nTe and frequencies ωe = ωe +mΩe, where n and m follows
Poissonian distributions centered at n and m, both chosen among 0, 1
and 5. The Ω and τ are made dimensionless with respect to Te and Ωe.
Here, Ωe = 3γe and Te = 3/γe.

3.4.3 Chirping

A chirp is defined as an electronic wave packet with a slowly varying
envelop χe and a carrier whose frequency varies linearly with time:

φe(t) = χe(t) e
−i(ωe+κt/2)t . (3.51)
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If we call Aχe(Ω, τ) the ambiguity function associated to the wave func-
tion ϕχ = χ(t), then the ambiguity function of the chirped electronic
wave packet becomes:

Aφe(Ω, τ) = e−iωeτAχe(Ω− κτ, τ) . (3.52)

Up to a phase factor Aφe(Ω, τ) is the ambiguity function of the envelop
χe with a Ω dependence shifted by κτ . An envelope χe with a narrow
ambiguity function in Ω has a limited detection capacity in terms of the
energy change ℏΩ. Nevertheless, because is spread in τ , one can still
use it to probe the energy shift by chirping it. Using various values
for κ then enables us to span the (Ω, τ) plane in a cone delimited by
the maximal and minimal values of |κ|. The width τe of the original
ambiguity function Aχe in τ enables us to access energy changes of the
order of ℏκτe. Applying a linear voltage ramp Vr(t) = V̇r t leads to
κ = eV̇r/ℏ and Ωmax ∼ eV̇rτe/ℏ.

Although applying a linear voltage ramp to electrons generates a
quadratically increasing electrostatic phase as in Eq. (3.51), such a phase
applies to all the electronic wave function presents in the electronic
channel under consideration and therefore may generate electron/hole
pair excitations. This method may therefore be relevant for generat-
ing chirped excitation from solitary electrons [72] propagating within
depleted regions.

For experiments performed in integer quantum Hall edge channels,
a possible scheme avoiding the generation of electron/hole pairs maybe
to tune the voltage drive applied to a mesoscopic capacitor in the single
electron regime in order to directlty generate a chirped-like excitation.

In Ref. [114], Keeling, Shytov and Levitov have proposed a practical
way to generate a chirped single electron excitation close to the Fermi
surface by considering a resonant level crossing the Fermi sea at constant
velocity ωe(t) = κt. They have showed that, at zero temperature, a
single electron excitation is emitted with electronic wave function in the
frequency domain given by4

φ̃KSL(ω) =

√
2πγ

vFκ
Θ(ω) e−γω/2κe−iω2/2κ (3.53)

in which γ denotes the localized level linewidth which is assumed to
be constant here. In its Wigner representation, the KSL excitation is

4We use our convention for φ̃(ω) so that the normalization condition (A.7) is
satisfied.
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Figure 3.11: Wigner function of a KSL excitation plotted in terms of
(t/τe, ωτe) where τe = γ/2κ. For this example, κτ2e = 1 or equivalently
κ = γ2/4. With γ−1 = 40ps, this would correspond to a voltage ramp
of 0.41mVns−1 and τe = 20ps.

a bended Leviton excitation with a time-shift proportional to ω (see
Fig. 3.11). Its ambiguity function can be expressed in terms of the one
of a Leviton of duration τe = γ/2κ:

AKSL(Ω, τ) = ALev,τe

(
Ω, τ − Ω

κ

)
. (3.54)

Consequently, the range in Ω for this ambiguity function scales as eV̇rτe/ℏ
where as before, κ = eV̇r/ℏ. Because most of its weight is located close
to the Fermi sea, this excitation cannot be seen as a chirp in the sense of
Eq. (3.52). Nevertheless, it also leads to a tilted ambiguity function in
the (Ω, τ) plane. This excitation is the closest to a pure electronic chirp
that can be generated close to the Fermi surface. In order to be above
thermal fluctuations in realistic experimental conditions, τe should be
kept below 40 ps which, for escape times around 100 ps requires a volt-
age ramp steeper than 1mVns−1.

Fig. 3.12 depicts a KSL excitation obtained by driving a resonant
level with linewidth γ = 2.5 × 1010 s−1 (γ−1 = 40ps) with a voltage
ramp from 2 to 8mVns−1. Exploring higher frequencies in Ω requires
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Figure 3.12: Probing the (Ω, τ) plane using KSL excitations at fixed
level with width γ−1 = 40ps for different values of the voltage ramp:
2mVns−1 (light grey), 4mVns−1 (grey) and 8mVns−1 (dark grey).
Exactly as in Fig. 3.8, each grey area represents the part of the plane
where |AS(Ω, τ)| ≥ 1/2 and the light red rectangle represents the domain
of physical interest. We have assumed that ω/2π = 10GHz and τ2 =
10ps.

increasing the steepness of the voltage ramp. To keep the same slope
in the dimensionless variables Ωτe/2π and τ/τe, the level width γ must
also be scaled up as

√
κ. Since, in experiments, γ−1 is of the order of

a few tens of ps and the voltage ramp is limited to a few mVns−1, the
curves depicted on Fig. 3.12 are probably representative of what could
reasonably be achieved with current technology.

Chirping from a Landau excitation which is emitted well above the
Fermi sea would enable us to use longer wave packets, from 30 to 200 ps,
and therefore would not require such a steep voltage ramp to reach the
same range for Ω/2π. Fig. 3.13 depicts a 40 ps Landau excitation as
well as the result of its chirping using a voltage ramp or 0.5mVns−1

and 1mVns−1. Steeper voltage ranges, such as the ones considered for
Fig. 3.12 applied to longer wave packets would easily lead to frequencies
of several hundreds of GHz. However, as expected from electronic deco-
herence studies [189, 65, 134], chirped Landau excitations would require
a stronger decoherence control between the source generating it and the
first beam splitter of the MZI as well as during its propagation within
the MZI along the reference branch and outside the radiation coupler.
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Figure 3.13: Probing the (Ω, τ) plane using a Landau excitation of
duration τe = 40ps (light grey) and then chirping it with a voltage ramp
of 0.5mVns−1 (grey) and 1mVns−1 (dark grey). Exactly as on Fig. 3.8,
each grey area represents the part of the plane where |AS(Ω, τ)| ≥ 1/2
and the light red rectangle represents the domain of physical interest.
As on Fig. 3.12, ω/2π = 10GHz and τ2 = 10ps.

Protection against electronic decoherence can be ensured by blocking
energy relaxation into environmental channels [35], an idea which has
been successfully implemented in experiments [2, 104, 61] at the price
of a more complex sample.
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Chapter 4

Electron Radar

Introduction

As explained in the introduction of this thesis, the MZI interferometer
can sense the classical phase shift induced by an incident classical radi-
ation. However, this image is not sufficient to discuss how the electronic
MZI can probe a quantum radiation. A typical situation where it breaks
down is when the incident radiation involves a single photon: absorb-
ing it drastically alters the radiation. Proof that in some situation the
backaction of the interferometer on the radiation cannot be neflected.
This process may also generate an electron/hole pair in the electronic
fluid of the MZI, thereby invalidating the näıve single particle image
used to model the electron radar Sec. 3.2. Such a breakdown of single
particle physics is a hallmark of Coulomb interaction effects. The issue
of backaction and of Coulomb interactions are both addressed in this
chapter by presenting a full quantum approach to the electronic MZI in
the presence of external quantum radiation.

More precisely, we probe with the radar an incident quantum ra-
diation and we show that, to avoid decoherence effects on the probe,
a compromise must be found on the strength of the electron/radiation
coupling. The discussion of back-action effects also explains why single
electron interferometry is indeed appropriate for probing the quantum
state of mesoscopic quantum radiation involving a low average number
of photons. The key point is that a probe based on a single electron
excitation has a weak enough back-action on the radiation to preserve
the interference signal at the output of the MZI, allowing the extraction
of some information from the franges.
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In order to understand the underlying physics, a qualitative de-
scription of interferometric sensing of a quantum system is presented
in Sec. 4.1. Then, in Sec. 4.2, the full single electron quantum radar
theory is presented. In order to present an intuitive discussion of the
main results, the limiting regimes where a time or an energy resolved
wavepacket in used as a probe will be discussed in Sec. 4.3. Finally,
explicit predictions for classical and quantum external radiations are
presented in Sec. 4.4.

4.1 Interferometric sensing of a quantum sys-
tem

To understand how a quantum interferometer can sense the state of a
quantum system coupled to one of its branches, the road we take is based
on a generalization of the Elitzur Vaidman bomb detector [62]. As we
shall see, this discussion contrains the essential elements to understand
the key points in the discussion of the electron radar.

In Elitzur and Vaidman’s work, a quantum interferometer is used
to detect the presence of a bomb without triggering its explosion. The
bomb’s trigger is activated as soon as a particle travels across branch
1 of the interferometer (see Fig. 4.1). This assumes that the bomb’s
trigger is a perfectly efficient particle detector. The idea is then to tune
the optical paths of the MZI so that, in the absence of the bomb, the
particle exits on one of its outgoing branch but not in the other. In
the presence of the bomb, the particle exits with probability 1/4 in the
branch where it would never exit in the absence of the bomb. This
provides a sure diagnostic of its presence without interacting with its
trigger, hence the commonly used term “interaction free measurement”
to describe this process.

However, in the present context, we are interested into exploiting the
interaction between the particle and the bomb’s trigger to gain informa-
tion about the quantum state of the latter. It calls for a more detailed
model of interaction between the probe and the bomb trigger.

Initially in the |Idle⟩ state, the bomb associated with its trigger has
a richer dynamics. We denote by A0 the amplitude for the trigger to
absorb the incoming particle, initially in the |Ψ⟩, and detonate the bomb
which then ends in the |Exploded⟩ state. Assuming |A0|2 = 1 is equiv-
alent to consider the model of the dectector imagined by Elitzur and
Vaidman. To take in account the non-destructive interactions we must
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Figure 4.1: The Elitzur-Vaidman’s interferometer: in the absence of
the bomb, this single photon Mach-Zenhder interferometer is calibrated
so that there is no click in D2. In the presence of the bomb, the trig-
ger absorbs an incident photon with 100% efficiency and detonates the
bomb. Interferences are destroyed and there is a probability 1/4 for the
travelling particles to be detected by D2.

allow the possibility of fizzling described by a non vanishing amplitude
A1. The bomb and its trigger end-up in the fizzled state |Fizzled⟩, when
the probing particle interacts with the trigger but the latter one fails to
detect it. In this process, the particle is nevertheless affected and ends
into the |Ψ′⟩ state. The probabilities for these two alternatives sum to
unity: |A0|2 + |A1|2 = 1. The full interaction between the particle and
the bomb is then described by the quantum coherent process

|Ψ⟩ ⊗ |Idle⟩ −→ A0 |∅⟩ ⊗ |Exploded⟩
+A1 |Ψ′⟩ ⊗ |Fizzled⟩ (4.1a)

in which |∅⟩ denotes the vacuum state (the particle has been absorbed).
For balanced beam splitters, the conditional output probabilities are
then given by the following expressions :

p(No Particle) =
1

2
(1− |A1|2) (4.2a)

p(D1) =
1

4
(1 + |A1|2)− Pq (4.2b)

p(D2) =
1

4
(1 + |A1|2) + Pq (4.2c)

in which quantum interference effects are contained in the term

Pq =
1

2
ℜ
(
A1e

iϕAB ⟨Idle|Fizzled⟩ ⟨Ψ|Ψ′⟩
)

(4.3)
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which is sensitive to the (Aharonov-Bohm) phase difference ϕAB asso-
ciated with free propagation along the two branches of the MZI. p(Di)
indicates the conditional probabilty to detect the particle in the ith de-
tector. Note that information on the quantum state of the bomb is
contained in the product of the two overlaps ⟨Ψ|Ψ′⟩ and ⟨Idle|Fizzled⟩.
When the bomb is viewed as a classical object whose physical state is un-
altered by the interferometer, |Idle⟩ and |Fizzled⟩ just differ by a phase.
We are then left with a simpler version of Eq. (4.3) which only depends
on this relative phase, as well as of the scattering amplitude ⟨Ψ|Ψ′⟩ as-
sociated with propagation within the interferometer in the presence of
this classical object.

From our perspective, the bomb plays the role of the incoming elec-
tromagnetic radiation and the particle is the quantum electrical cur-
rent propagating within the MZI. The process in which the particle is
absorbed and the bomb is detonated corresponds to a full electronic
decoherence within the MZI. It occurs whenever Coulomb interactions
lead to the generation of any extra electron/hole pair within the channel
1 of the MZI compared to ballistic propagation along channel 2. The
resulting many-body state will then have a vanishing overlap with the
ballistic propagation of a single electron excitation within branch 2 of
the MZI. However, this is not the case of interest for the electron radar
since, in this case, the interference contribution to the average electrical
vanishes and, as in the Elitzur-Vaidman case, nothing can be learned on
the quantum state of the incoming radiation.

By contrast, in the absence of generation of any extra electron/hole
pair particles, the state of the electron propagating within branch 1 is
altered by its coupling to the incoming radiation: this corresponds to
the change |Ψ⟩ 7→ |Ψ′⟩ in the above discussion. For a classical radiation,
this is the phase shift associated with the voltage experienced by the
electrons (see Sec. 0.2.1).

Finally, the alteration of the bomb’s state |Idle⟩ 7→ |Fizzled⟩ in the
above discussion corresponds to the effect of the propagating electron
on the incident radiation in the situation where no extra-electron/hole
pairs are created. This is the back action of the interferometer, seen as
a measurement device, on the radiation. The amplitude ⟨Idle|Fizzled⟩
measures the “quantum recoil” of the radiation upon propagation of a
single electron and assuming that no extra electron/hole pair excitations
are generated along branch 1. As we shall see in Sec. 4.2.2, this is pre-
cisely the part that will contain information on the quantum fluctuations

128



of the incoming radiation.
It is important to notice that when the back-action is too large,

the overlap ⟨Idle|Fizzled⟩ may vanish and the interference signal is then
lost. This point explains why quantum electrical currents carrying a
single electronic excitations are relevant for probing mesoscopic quantum
electromagnetic fields which involve a low average number of photons:
besides decoherence which is generically less important for them, single
electron currents lead to a smaller back-action than currents carrying
more excitations.

In the end, this qualitative discussion suggests that, in order to be
able to extract some information on the incoming radiation, a compro-
mise is required: electronic decoherence as well as back-action on the
quantum radiation has to be moderate to ensure an experimentally ac-
cessible experimental signal but strong enough to ensure sensitivity to
the incoming quantum radiation.

4.2 The single electron radar equation

In this section, we derive the central result of this work which is the
single electron radar equation expressing the interference contribution
to the outgoing average current in terms of two distinct quantities. The
first one is the excess single electron coherence of the injected wave
packet which depends only on the electronic source S. The second one
is the effective single particle scattering amplitude describing both the
effects of electronic decoherence and of the incoming radiation. The
latter quantity reflects the dynamics of the interferometer coupled to its
electromagnetic environment.

Although this result is formally derived using bozonization of chiral
quantum Hall edge channels detailed in Appendix B.2, a more intuitive
derivation is presented in Sec. 4.2.2. Then, its connexion to a variant of
Full Counting Statistics will be detailed in Sec. 4.2.3. But before this,
let us briefly recall the framework used to model the radiation coupler
which was presented in Chapter 2 of this thesis.

4.2.1 Radiation coupler modeling

We assume that the radiation coupler involves a capacitive coupling
between a portion of the upper branch of the electronic MZI and the
external radiation channel which is fed by the incoming electromagnetic
radiation we want to study. Effect of Coulomb interactions within this
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region will be described within the framework of edge-magnetoplasmon
scattering. Originally introduced in the context of finite frequency quan-
tum transport in 1D [168, 167, 169], it enables us to describe the scat-
tering between the EMP modes propagating along the MZI upper edge
channel and the bosonic modes within the external radiation channel
[52].

For simplicity, we will consider that the whole upper branch of the
MZI is included in the radiation coupler so that the EMP scattering
matrix will account for the detailed geometry of the sample. We also
assume that only the EMP modes associated with the b(ω) and b†(ω)
destruction and creation operators and the external radiation modes
associated with the a(ω) and a†(ω) operators appear in the scattering
matrix S(ω):

(
aout(ω)
bout(ω)

)
=

(
Saa(ω) Sab(ω)
Sba(ω) Sbb(ω)

) (
ain(ω)
bin(ω)

)
. (4.4)

As discussed in detail in Chapter 2, depending on the design of the ra-
diation coupler, the (a, a†) modes may be photonic (case of Fig. 4.2-(b))
or edge-magnetoplasmonic (see Fig. 4.2-(a)). Note that these matrix el-
ements are related to finite frequency admittances as explained in Refs.
[168, 167, 53]. Consequently, these matrix elements could, in principle,
be inferred from experimental measurements as in Ref. [22]. Quantita-
tive predictions can also be made from theoretical models of the radia-
tion coupler. Experimentally relevant examples include the case of two
counter-propagating edge channels (see Fig. 4.2-(a)) as well as the case
of a capacitive coupling to a transmission line (see Fig. 4.2-(b)).

4.2.2 The single electron radar equation

The discussion of Sec. 4.1 suggests that, in the presence of Coulomb
interactions and of an incoming quantum radiation, the result takes the
same form than Eq. (3.29) with an effective single electron scattering am-
plitude Reff(t, t

′). This amplitude takes into account decoherence effects
as well as the electron’s back-action on the incoming quantum radiation.
The formal derivation of this fact is given in Appendix B.2. However, to
emphasize its physical meaning, we will acquire the form of the effective
scattering amplitude Reff(t, t

′) using semi-qualitative arguments in this
section.
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Figure 4.2: The edge-magnetoplasmon scattering approach describes
many situations, such as for example (a) two counter-propagating edge
channels capacitively coupled over a distance l, (see Fig. 4.4 for a realistic
sample design), (b) a chiral edge channel capacitively coupled to a lin-
ear external circuit described by a frequency dependent impedance Z(ω).
(c) Solving the equation of motions leads to a frequency dependent scat-
tering matrix S(ω) between the channel’s edge-magnetoplasmon modes
and the bosonic modes of the other system.

Electronic Decoherence In the absence of incoming electromagnetic
radiation, the amplitude Reff(t, t

′) is the amplitude for a single electron
to propagate elastically across the branch 1, taking into account the
capacitive coupling to the radiation coupler’s radiation channel. Any
process leading to the generation of an extra electron/hole pair within
the edge channel or of an excitation within the electromagnetic envi-
ronment would lead to decoherence in the MZI. This elastic scattering
amplitude has already appeared in studies of electronic decoherence in
the MZI [42, 126, 144, 145]. In Ref. [160], electronic decoherence in
MZI has been experimentally simulated by coupling an external voltage
probe which consisted of an Ohmic contact connected to one branch
via a QPC. This device probes which path is taken by the electrons
propagating within the MZI, thereby showing a reduction of the inter-
ferometer’s contrast when looking at the amplitude (square root of the
probability) for the electron to be transmitted across the probed area.

Then without radiation, Reff(t, t
′) should be the elastic scattering

amplitude for an incoming single electron excitation injected at time t′

in the presence of the Fermi sea to exit at time t without experiencing
any inelastic scattering: Reff(t, t

′) = Θ(t− t′)Z1(t− t′) where

Z1(τ) =

∫ +∞

0
Z̃1(ω) e

−iωτ dω

2π
. (4.5)

is the Fourier transform of the elastic scattering amplitude Z̃1(ω) for a
single electron of energy ℏω > 0 to cross branch 1 of the MZI without
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being altered. Thus Z̃1(ω) is called the elastic scattering amplitude asso-
ciated with branch 1 of the MZI. This quantity, computed in Refs. [52,
93, 35], has recently been reconsidered in the light of new experimental
studies of electronic relaxation [183, 159, 157]. As shown in Appendix
B.2, an explicit expression in terms of the EMP transmission amplitude
t(ω) = Sbb(ω) can be obtained:

Z1(τ) =
1

2πi(τ − i0+)
exp

[∫ +∞

0
(t(ω)− 1)e−iωτ dω

ω

]
. (4.6)

Going back to the discussion of Sec. 4.1, Z1(τ) corresponds to the
product A1 ⟨Ψ|Ψ′⟩ ⟨Idle|Fizzled⟩ when the radiation channel is fed with
the vacuum state: |Idle⟩ = |0⟩.

Back-action factor We now have to discuss the back-action of an
electron’s detection in the presence of incoming radiation. For now on,
we will consider the effect of the single electron current on the incoming
quantum radiation. An electron leaving the radiation coupler at time t
corresponds, in terms of EMP, to a localized current pulse coming out
of the target branch of the MZI. Such a current pulse comes from an
incoming pulse in the target branch of the MZI as well as a coherent pulse
in the radiation channel whose amplitudes are determined via the EMP
scattering matrix S(ω) of the radiation coupler and the amplitude of
the outgoing EMP bout(ω). Indeed, denoting by Λt(ω) = −eiωt/

√
ω the

amplitude of the mode bout(ω), the average amplitudes of the incoming
modes associated a localized current pulse going out of the target branch
of the MZI at time t are given by:

⟨bin(ω)⟩ = S∗
bb(ω) Λt(ω) (4.7a)

⟨ain(ω)⟩ = S∗
ba(ω) Λt(ω) . (4.7b)

Detecting an electron leaving the upper branch of the MZI at a given
time t thus corresponds to detecting a an electron together with an
electron/hole pair cloud described by S∗

bb(ω) Λt(ω). It also translates the
average ain(ω) by S

∗
ba(ω) Λt(ω). This translation is the “back-action” on

the radiation mode a(ω) of a single electron detection at time t at the
output of the target branch. To get the full back action, we have to take
into account all the modes at pulsation ω ≥ 0. The operator describing
the full back action process is thus the infinite dimensional displacement
operator Dain [S

∗
baΛt] associated with the amplitude ω 7→ (S∗

baΛt)(ω).
The full back-action factor is then ⟨Dain [S

∗
baΛt]⟩ρem : the average value
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of Dain [S
∗
baΛt] in the reduced density operator ρem describing the state

of the incoming quantum radiation. The amplitude Reff(t, t
′) is thus

proportional to ⟨Dain [S
∗
baΛt]⟩ρem . However, we should not forget that the

elastic scattering amplitude Z1(τ) already includes the back action factor
⟨Dain [S

∗
baΛt]⟩|0⟩ on the vacuum state |0⟩. This one need to be removed

by dividing Reff(t, t
′) with ⟨Dain [S

∗
baΛt]⟩|0⟩, leading to (τ = t− t′):

Reff(t, t
′) = Z1(τ)

⟨Dain [S
∗
baΛt]⟩ρem

⟨Dain

[
S∗
baΛt

]
⟩|0⟩

. (4.8)

We define the ratio of ⟨Dain [S
∗
baΛt]⟩ρem to ⟨Dain [S

∗
baΛt]⟩|0⟩ as the Franck-

Condon factor Fρem(t). It is the excess back-action on the incoming
radiation induced by a single electron excitation propagating across the
upper branch of the MZI. It is equal to the average value of the bosonic
normal ordered back-action displacement operator:

Fρem(t) =
〈
: Dain [S

∗
baΛt] :

〉
ρem

. (4.9)

which justify the analogy with the Franck-Condon factor that appears
in the spectroscopy of complex molecules [49] or in the Mössbauer effect
[175, 188] where it is called the Lamb–Mössbauer factor.

Effective single particle scattering amplitude The quantum in-
terference contribution to the average outgoing electrical current then
has the form

X+(t) = vF

∫ t

−∞
Reff(t, t

′)φe(t
′)φe(t− τ2)

∗ dt′ (4.10)

in which the effective single particle scattering amplitude is given by

Reff(t, t
′) = Z1(t− t′)Fρem(t) . (4.11)

Exactly as in the single particle approach, when repeated experiments
are performed, statistical fluctuations in the imperfect emission of sin-
gle electron excitations are accounted for by replacing φe(t

′)φe(t− τ2)
∗

by the excess single electron coherence ∆G(e)
S (t′|t − τ2) emitted by S.

Eq. (4.10) can then be interpreted as described on Fig. 4.3.
Expression (4.11) takes into account electronic decoherence and the

effect of the incoming quantum radiation. Together with the expressions
for Z1(τ) and for the Franck-Condon factor, Eqs. (4.10) and (4.11) form
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S (t′, t− τ2) Xt(t)
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Figure 4.3: Physical interpretation of the linear radar equation (4.10)
in the time domain showing the contribution of incoming single electron
coherence in the frequency domain to the signal the temporal signal
X+(t). The figure presents the product of two quantum amplitude: the
one with an arrow oriented away from the source corresponds for a direct
amplitude whereas the one, with the arrow arriving to the source corre-
sponds to the complex conjugated amplitudes contributing to X+(t).

the central result of the single electron radar theory. The factorized form
of the r.h.s. of Eq. (4.11) has an important consequence: the Franck-
Condon factor appears as the ratio of the electron radar signal in the
presence of external radiation to the one in the absence of it:

[X+(t)]ρem
[X+(t)]|0⟩

= Fρem(t) . (4.12)

If we are able to measure the time resolved average current ⟨i1out(t)⟩,
this would give us a direct access to the Franck-Concon factor but, in
experiments, the average current is measured at a given frequency and,
when looking for the best sensitivity and precision, at zero frequency. We
will thus have to analyze what information on Fρem(t) can be recovered
from such measurements.

4.2.3 Connection to full counting statistics

Before discussing specific examples in the next section of this chapter,
let us close the general discussion of the single electron radar equation
by making an explicit connection between the work presented here and
a paper by C. Flindt and his collaborators [51] who have proposed to
use an electronic MZI to measure the so-called full counting statistics
originally introduced in Ref. [124] (see also [143, 117] for more advanced
discussions and examples).
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Figure 4.4: Sample design of the electron radar using chiral edge chan-
nels in the integer quantum Hall regime (2DEG in green). The blue
region where two counter-propagating quantum Hall edge channels are
facing each other at short (≲ 100 nm) distance forms a radiation coupler
between the channel 1 of the MZI and the radiation channel in which the
radiation to be analyzed is sent. The quantity of interest is the average
outgoing current from the MZI and more precisely the first harmonic in
the Aharonov-Bohm phase.

More precisely, in the context of experiments performed on AlGaAs/AsGa
systems in the quantum Hall regime, the radiation channel may also be
a chiral quantum Hall edge channel, as depicted on Fig. 4.4. In this
case, the Franck-Condon factor Fρem(t) can be interpreted in terms of a
form of full counting statistics for electronic transport in the radiation
channel as was noticed in Ref. [51]. This work relied on a specific inter-
action model as well as on single particle scattering. We generalize this
work here with a full many body derivation independent on the details
of the Coulomb interaction model.

When the radiation channel is a single integer quantum Hall edge
channel, the incoming electrical current arriving into the interaction
region via this edge channel is, for ω > 0:

iin(ω) = −e√ω ain(ω) (4.13)

Introducing the filtering function

Γba(τ) =

∫ +∞

0

Sba(ω)

−iω
e−iωτ dω

2π
+ c.c. (4.14)
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we define the normalized filtered charge operator

N(t) =

∫

R

Γba(t− τ)
iin(τ)

−e dτ , (4.15)

where τ 7→ Γba(t− τ) can be viewed as a windowing function. N(t) can
be used to provide a compact expression of Fρem(t):

Fρem(t) =
〈
: e2πiN(t) :

〉
ρem

. (4.16)

The 2πN(t) operator represents the quantum phase kicks felt by a local-
ized electron propagating within the MZI. Note that the exponential of
this quantum phase kick operator is normal ordered with respect to the
bosonic modes ain(ω). It is possible to relate this normal ordering to the
usual time ordering in full counting statistics. It would provide a pre-
cise connexion between 2πN(t) and the time ordered electrical current
correlators.

Finally, let us comment on the interpretation of the windowing func-
tion Γba(t − τ). Defining Γ̃ba(ω) as the Fourier transform of Γba(τ), we
end up with the relation Γ̃ba(ω) = iSba(ω)/ω for ω > 0. Γ̃ba(ω) is thus
directly proportional to the non diagonal coefficient of the EMP scat-
tering matrix Sba(ω). Associating this relation with the one between
the EMP scattering matrix and finite frequency admittances reviewed
in Chapter 2 leads to

Γba(ω) =
Sba(ω)

−iω
=
RK

−iω

∂I
(out)
b (ω)

∂V
(in)
a (ω)

(4.17)

in which I
(out
b (ω) denotes the average total current going out from the

radiation coupler in the upper channel of the MZI – the propagation

channel for the b EMP modes – and V
(in)
a (ω) denotes a classical voltage

drive applied at the entrance of the radiation channel – the propagation
channel for the a EMP modes –. This equation thus connects Γba(ω)
to the finite frequency admittance of the electrical dipole associated
with the radiation coupler. Since the coupling is purely capacitive, one
expects this finite frequency response to be capacitive. It of the form

∂I
(out)
b (ω)

∂V
(in)
a (ω)

= −iω C
(eff)
ba (ω) (4.18)

136



in which the effective frequency-dependant capacitance C
(eff)
ba (ω) is non

zero in the low frequency limit. Consequently Γba(τ) appears as the
effective response rate associated with this capacitance

Γba(τ) =

∫ +∞

0
RKC

(eff)
ba (ω) e−iωτ dω

2π
+ c.c. (4.19)

The matrix element Sba(ω) of a radiation coupler made of two ungated
counter-propagating edge channels of length l that are capacitively cou-
pled to one another is computed in Sec. 2.4. In the limit Cg ≪ e2l/hvF ,
we get:

Γba(τ) ≃
1

2
1[0,l/vF ](τ) , (4.20)

where 1[0,l/vF ](t) is 1 for 0 ≤ t ≤ l/vF and zero otherwise. The case of
non vanishing values of Cq/Cg can be treated numerically when needed.

4.3 Limiting regimes of the single radar equa-
tion

We now discuss the limiting regimes of a time or of a frequency resolved
single electron excitation. The resulting limiting form of the electron
radar equation will be relevant whenever the time (resp. frequency)
extension of the probe is much smaller than the typical time (resp. fre-
quency) length scales of the effective scattering matrix. As expected,
time resolved wave packets are well suited to explore the time depen-
dance of the scattering whereas energy resolved excitations gives access
to the scattering amplitude in the frequency domain.

4.3.1 Energy resolved wave packets

Injecting energy resolved wavepackets suggests that we can indeed study
energy transfers between the single electron and the radiation in the
radiation coupler. To understand this more precisely, let us introduce
the scattering amplitude represented in the frequency-frequency domain:

R̃(ω+, ω−) =

∫

R2

R(t, t′) ei(ω+t−ω−t′)dt dt′ . (4.21)

It can be defined in the same way for the effective scattering amplitude
R̃eff(ω+, ω−). It is is directly proportional to the amplitude probability

137



of an electron entering the radiation coupler at energy ℏω− to leave it
at energy ℏω+. Denoting by X̃+(ω) the Fourier transform of the signal
X+(t) at frequency ω/2π, the radar equation (4.10) then takes the form

X̃+(ω) =

∫

R2

vF ∆̃G(e)

S (ω−, ω+ − ω)

ei(ω−ω+)τ2R̃eff(ω+, ω−)
dω+ dω−
(2π)2

(4.22)

in which ∆G̃(e)(ω−|ω+) denotes the excess single electron coherence in
the frequency domain:

∆̃G(e)

ρ (ω+, ω−) =

∫

R2

ei(ω+t+−ω−t−)∆G(e)
ρ (t+, t−) dt+dt− . (4.23)

Expression (4.22) determines the interference contribution to the finite
frequency average electrical current in the 1out branch of the MZI.

The physical interpretation of Eq. (4.22) is quite clear: for ω > 0, the
average finite frequency current ⟨i1out(ω)⟩ probes the outgoing electronic
coherence between two frequencies ω+ and ω+ − ω. The last one is the
frequency at which the electronic excitation is propagating along the
branch 2 of the MZI. It propagates during a time of flight τ2, hence
picking a phase ei(ω+−ω)τ2 . Since it appears in the complex conjugated
amplitude, this leads to the phase factor ei(ω−ω+)τ2 in Eq. (4.22). On the
other hand, on the upper branch of the MZI, the electronic excitations
enters the radiation coupler with energy ℏω− and leaves it an energy
ℏω+ with an amplitude R̃eff(ω+, ω−). Therefore, the contribution of the
outgoing coherence between the frequencies ω+ and ω+ − ω comes from
an incoming coherence emitted by the source S between the frequencies
ω− and ω+ − ω as summarized on Fig. 4.5.

Eq. (4.22) can then be used to understand which information can
be extracted from an energy resolved probe. To understand this more
precisely, let us consider an resolved excitation with Gaussian lineshape,
centered at energy ℏωe and with linewidth γe ≪ |ωe|. Its wave function
in the energy domain, defined by Eq. (A.6) is:

φ̃e(ω) = NΘ(sign(ωe)ω) e
−(ω−ωe)2/2γ2

e (4.24)

where the normalization condition (A.7) gives1 N 2γe/vF
√
4π ≃ 1. For

ωe > 0 we are dealing with an electronic excitation, whereas for ωe < 0

1The truncation for positive or negative energies can be neglected provided γe ≪
|ωe|.
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vF ∆̃G(e)

S (ω−, ω+ − ω)
X̃+(ω)

ω+

ω+ − ω

ω− ω+ω− ω+

R̃eff(ω+, ω−)

(ei(ω+−ω)τ2)∗

A B

Figure 4.5: Physical interpretation of the linear radar equation (4.22)
in the frequency domain showing the contribution of incoming single
electron coherence in the frequency domain to X̃+(ω) for ω > 0. Defi-
nition of the two paths is the same as in Fig. 4.3.

we are dealing with a hole excitation. In the limit where γe ≪ |ωe|
is also much smaller than the scales of variation of R̃eff(ω+, ω−), the
electron radar signal in the frequency domain given by Eq. (4.22) can
be approximated as:

X̃+(ω; τ2) ≃
γe√
π
e−iωeτ2R̃eff(ω + ωe, ωe) . (4.25)

Whenever ωe and ω+ωe have the same sign, we are accessing the electron
to electron or hole to hole effective scattering whereas whenever ωe and
ω + ωe do not have the same sign, we are accessing electron to hole or
hole to electron effective scattering.

This immediately suggests a naive protocol to recover information on
the Franck Condon factor in the frequency domain: injecting an energy
resolved electronic excitation at ωe and measuring the current at ω leads
to

[X+(ω; τ2)]ρem =
γe√
π
e−iωeτ2 Z̃(ωe) F̃ρem(ω) (4.26)

This is very seducing since F̃ρem(ω) can be obtained from a measure of
relative contrast and phase in an interferometry experiment. The two
measurements to compare being when the external radiation is switched
on versus switched off. However the obvious limitation comes from
the limited bandwidth of these measurements which, as mentioned in
Sec. 3.4.1, does not exceed 20GHz.
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4.3.2 Time resolved wave packets

We now discuss how Eqs. (4.10) and (4.11) can be used to interpret
experimental data obtained by recording interference fringes on the dc
average current measured at the output of the MZI, when the probes
have short wave-packets.

An (incorrect) time resolved heuristics

We consider a normalized Gaussian single electron wave packet:

φtr(t) =
1√

vF τe
√
π
e−(t−te)2/2τ2e e−iωe(t−te) (4.27)

with te the emission time, ℏωe the emission energy and τe the duration
of this single electron wave packet.

One could then be tempted to take the limit τe → 0 by consider-
ing that the limit of the Gaussien is, up to a refactor, a δ distribution.
Following this idea, using Eq. (4.10) to compute the average time de-
pendent current and brutally taking the limit τe → 0 leads to, at first
order in τe:

X+(t) ≃ τeR(te + τ2, te) δ(t− τ2 − te) (4.28)

The condition t = te + τ2 is not surprising: it comes from ballistic
propagation along the reference arm of the MZI and, X+(t) is then
proportional to the amplitude for the electron to enter branch 1 at te
and exit it at time t. Itegrating over t would then lead to

X
(dc)
+ ≃ τeR(te + τ2, te) . (4.29)

This suggests the following heuristics: a short wave packet samples the
Franck-Condon factor at the exit time te + τ2 of the electronic wave-
packet. Consequently, sweeping the emission time te of the probe wave-
packet would thus give access to Fρem(te+ τ2) thereby providing us with
a time resolved probe of the electromagnetic radiation via the Franck-
Condon factor.

However, this naive computation does not take into account the con-
straint that the incoming single electron excitation must be restricted
to positive energies due to the presence of the Fermi sea. Consequently,
taking abruptly the τe → 0 limit does not lead to correct results.

Of course, introducing a positive finite energy shift via the factor
e−iωe(t−te) in front of the r.h.s of Eq. (4.27) with ωe ≫ 2πvF /τe leads
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to a wave packet with negligible weight at negative energies. But it
also introduces a fast oscillating term e−iωe(t−t′−τ2) in front of R(t, t′) =
Z1(t − t′)Fρem(t) in the radar equation (4.10). This means that we are
probing electronic decoherence at energies close to ℏωe. But, as shown in
Ref. [66], electronic decoherence is expected to be worse at high energies
and may indeed kill the interference signal.

In order to mitigate this problem, the proper approach consists of in-
troducing electronic wave packets that are close to the Fermi surface and
whose duration can be shifted arbitrarily: these are the Levitons. Let
us now consider these specific excitations to obtain explicit previsions.

Case of Leviton excitations

Let us now consider the case of a Leviton wave-packet of width τe. Its
wave function is Lorentzian in the time domain and exponential in the
frequency domain [91]. We are interested in the interference contribution
to the outgoing electrical current for a Leviton of duration τe injected
at time te.

Because of the simple expression for the Leviton wave packet in the
frequency domain, the electron radar equation in the frequency domain

(see Eq. (4.22)) gives us a convenient form for X
(dc)
+ suitable for numer-

ical evaluations:

X
(dc)
+ =

∫

R

F̃ρem(Ω) e
−iΩ(te+τ2) fτe,τ2(Ω)

dΩ

2π
(4.30)

in which the filter

fτe,τ2(Ω) = 4πτe

∫ +∞

|Ω|/2
Z̃1

(
ω − Ω

2

)
e−2ωτee−i(ω−Ω

2
)τ2 dω

2π
(4.31)

contains all the effects of electronic decoherence along branch 1 and
ballistic propagation along branch 2 of the interferometer.

We now discuss the properties of this filter. The first point to notice
is that, for Ω ≥ 0, a change of variables immediately leads to

fτe,τ2(Ω ≥ 0) = 4πτee
−Ωτe

∫ +∞

0
Z̃1 (ω) e

−2ωτee−iωτ2 dω

2π

= e−Ωτefτe,τ0(0) . (4.32)

We can thus factorize the filter in two parts, the first one is a decreasing
exponential factor which only depends on Ω. Its typical width is τ−1

e and
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so this exponential only reflect the duration of the Leviton and does not
include any electronic decoherence effects. By contrast, the second part
fτe,τ2(0) includes the decoherence but does not depends on Ω. However,
this is not true for Ω ≤ 0 since in this case, the same rewriting leads to

fτe,τ2(Ω ≤ 0) = 4πτee
−|Ω|τee−i|Ω|τ2

∫ +∞

0
Z̃1 (ω + |Ω|) e−2ωτee−iωτ2 dω

2π
(4.33)

There, we still have a prefactor e−|Ω|τe−i|Ω|τ2 which reflects the Leviton’s
structure but the second part is not fτe,τ2(0) anymore. It depends on Ω

via Z̃1,el(ω + |Ω|) in the integrand.
In the end, one has to resort to numerics to compute the precise

expression for the filter. However, the integral in the r.h.s. of Eq. (4.33)
is cut-off at frequencies ω ≳ τ−1

e by the exponential. The difference
between this integral and the one appearing in fτe,τ2(0) comes from the

shift by |Ω| in Z̃1 (ω + |Ω|). But if, for some reason, we are consider-
ing a regime where Z̃1 (ω + |Ω|) does not decay too much for ωτe ≲ 1,
then maybe, one can neglect the difference between the two integrals
that appear in the r.h.s. of Eq. (4.33) and fτe,τ2(0). Under this “wild”
approximation, then

fτe,τ2(Ω ≤ 0) ≃ e−|Ω|(τe+iτ2)fτe,τ2(0) . (4.34)

Almost exactly as Eq. (4.32), it shows that the Ω-dependant prefactor is
determined by the timewidth of the Leviton wavepacket and τ2, not on
the electronic decoherence which only governs the second part fτe,τ2(0).
Of course, this is the result of an approximation and in practical cases,
one should always provide an exact numerical estimation of the filter.

These considerations suggest that fτe,τ2(Ω) is expected to be a low
pass filter. The limit τe → 0+ may even lead to a vanishing signal since,
in the case of the two counter-propagating edge channel model consid-
ered in Sec. 2.4, a very short Leviton may experience fractionalization
as it propagates across the radiation coupler. For short wave packets,
this would kill the electronic interference signal. Note that since the
Leviton’s duration τe appears in the expression of the filter, it indeed
limits the time resolution on Fρem(te + τ2).

Finally, in the absence of external radiation, since F|0⟩(t) = 1, we
obtain

[
X

(dc)
+

]
|0⟩

= 4πτe

∫ +∞

0
Z̃1(ω) e

−2ωτee−iωτ2 dω

2π
= fτe,τ2(0) . (4.35)

142



This quantity, which does not depend on te but still depends on τ2
represents the base interference contribution for the dc outgoing current
from the MZI. It is the base signal on which we are trying to see the
te dependent change of contrast when the external radiation is present.
Obviously, one expects that using shorter Levitons (τe → 0) leads to a

smaller base signal
[
X

(dc)
+

]
|0⟩
.

The take home message from this discussion is that the limiting time
resolution for accessing the Franck-Condon factor is basically given by
temporal width of the Leviton. This experimentally controlled parame-
ter must then be chosen carefully to mitigate electronic decoherence so
that the interference signal remains observable. The compromise dis-
cussed in Sec. 4.1 is that τe must be choosen small enough to have the
time resolution needed to sample the Franck-Condon factor but not too
small to avoid excessive electronic decoherence.

Numerical results for the base contrast for Leviton excitations

To conclude this section, let us now discuss numerical estimates for the

base signal
[
X

(dc)
+

]
|0⟩
, also called the vacuum baseline. When using short

wave packets, one has to carefully tune τ2 to maximize this signal in the
absence of external radiation. The minimal precision on τ2 must be
comparable to the duration τe of the Leviton wavepacket to synchronize
the times of flight along the target and along the reference branch of the
MZI. If not synchronized, then the interference signal will not be visible
on the dc average current.

We have calculated maxτ2

∣∣∣X(dc)
+

∣∣∣
τe,τ2

when injecting Levitons of width

τe with no external radiation (ρem = |0⟩ ⟨0|). We chose a radiation
coupler built from two counterpropagating edge channels in total elec-
trostatic influence over a distance l with a geometric capacitance Cg.

Fig. 4.6 depicts maxτ2

∣∣∣X(dc)
+

∣∣∣ as a function of vF τe/l. These graphs are

plotted for different values of the dimensionless coupling constant

α =
e2l

hvFCg
(4.36)

encoding the importance of Coulomb interaction effects within this ra-
diation coupler (see Sec. 2.4).

As expected, at fixed coupling, electronic decoherence is stronger for
shorter Leviton pulses due to their high energy components. At a given
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Figure 4.6: Contrast |X(dc)
+ | of dc-current interference fringes for Levi-

ton of duration τe as function of τevF /l in the absence of external ra-
diation (vacuum baseline). The radiation coupler involves two counter-
propagating edge channels in total mutual electrostatic influence over a
distance l. Curves have been plotted for α = 1/5 (red), 1 (green) and
15 (blue).

τe, the decoherence is also stronger for low α. A Coulomb dominated
regime (large α) leads to better results, an effect already predicted [106]
and observed [60] when an electron of energy ℏωe propagates across a
metallic island with Coulomb energy EC ≫ ℏωe. Finally, 50 % contrast
can be achieved when considering Levitons of durations τe ≳ l/10 vF
which, in the case of l = 10 µm and vF = 105ms−1, corresponds to
pulses of duration down to 10 ps.

This analysis shows that, with a reasonable model of a realistic ra-
diation coupler, it is possible to obtain a strong base signal even when
using Levitons of width in the tens of ps and even below. We now discuss
the possible signatures of experimentally relevant classical and quantum
radiations.

4.4 Predictions for classical and quantum radi-
ation

We now consider various types of radiations that are directly relevant for
forthcoming experiments. As a first step, we will discuss the behavior
of the Franck-Condon factor Fρem(t) that encodes the information on
the incoming radiation. Then, motivated by the experiments, we will
deepen the discussion by considering the interference contrast on the dc

current X
(dc)
+ when injecting Leviton wavepacket of given duration τe
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to see more quantitatively how the conclusions on Fρem(t) translate in

terms of the experimental signal X
(dc)
+ .

In Sec. 4.4.1, we consider classical radiation under the form of a time
dependent drive applied to the upper branch of the MZI via a capac-
itance. Then, we consider quantum states of radiation. In Sec. 4.4.2,
we discuss the ability of the electron radar to detect squeezing. Then,
we turn to Non Gaussian quantum radiation and analyze the ability to
detect a single edge magnetoplasmon in Sec. 4.4.3.

4.4.1 Classical radiation

Let us assume that a classical drive Vg(t) is applied to a top gate capaci-
tively coupled to the edge channel in the region |x| ≤ l/2 via a geometric
capacitance Cg as depicted on Fig. 4.7. This is the model illustrated in
Fig. 4.2-b but without dynamical degrees of freedom coupled to the top
gate (Z(ω) = 0). It corresponds to the limit of a an infinite number of
electronic channels in the top gate’s lead in Ref. [136]. For simplicity,
we assume that l is the total length of branch 1 of the MZI.

Because there are no external dynamical degrees of freedom in this
simplified model of a top gate, the scattering process can be described
in terms of the input/output relations for the edge channel’s EMP mode
current iin(ω) and iout(ω) which takes the form:

iout(ω) = t(ω) iin(ω) + Y (ω)Vg(ω) (4.37)

where t(ω) denotes the EMP transmission amplitude across the region
|x| ≤ l/2 and the admittance Y (ω) describes the response of the outgoing
current to the top gate potential Vg(ω). Under the hypotheses of total
mutual influence between the top gate and the |x| ≤ l/2 region of the
edge channel, Y (ω) is the finite frequency admittance of the electrical
dipole formed by the top gate and the edge channel. It is related to t(ω)
by [167, 53, 35]:

Y (ω) =
e2

h
(1− t(ω)) . (4.38)

Although these quantities could, in principle, be inferred from finite
frequency admittance measurements, predictions for these coefficients
depend on the specific model. Sec. 2.3.2 gives the expressions obtained
from a discrete element model à la Büttiker in which the top gate and
the |x| ≤ l/2 region are the two plates of a capacitor with geometric
capacitance Cg.
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Figure 4.7: A top gate is capacitively coupled to the |x| ≤ l/2 region of a
chiral edge channel. It is driven by a time dependent gate voltage Vg(t).
Cg denotes the geometric capacitance between the two conductors.

The gate voltage translates the edge magnetoplasmon operator bin(ω)
by −Y (ω)Vg(ω)/e

√
ω. So in terms of fermionic filed, it introduces a

phase factor in front of the fermionic field coming out of the radiation
coupler which is given by

FVg(t) = e
ie
ℏ
∫
R
Γ(t−τ)Vg(τ) dτ (4.39)

in which Γ(τ) is the inverse Fourier transform of −RKY (ω)/iω. We
already saw Γ(τ) as a filtering function when we linked the Franck-
Condon factor to full counting statistics in Sec. 4.2.3. This form shows
that the effective single particle scattering amplitude Reff(t, t

′) retains
the form given by Eq. (4.11) with Z1(τ) determined by injecting the
expression t(ω) = 1− RKY (ω) in Eq. (4.5) and FVg(t) playing the role
of the Franck-Condon factor Fρem(t) from the full quantum theory.

As explained in Sec. 2.4, the importance of Coulomb interactions
within the |x| ≤ l/2 region depends on the dimensionless coupling con-
stant

α =
e2l

hvFCg
(4.40)

which is the ratio of the single electron charging energy e2/Cg to the
kinetic energy scale ℏvF /l associated with the |x| ≤ l/2 region or, equiv-
alently, the ratio Cq/Cg of the quantum capacitance over the geometrical
capacitance. In the voltage locked regime (α ≪ 1), the voltage drop at
the capacitance vanishes and therefore the electrons directly see the gate
voltage Vg(t). In the Coulomb blocked regime (α ≳ 1), Coulomb inter-
actions are so strong that they tend to block charge accumutation below
the top gate.
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The voltage locked regime

At very small α, t(ω) ≃ eiωl/vF and U(t) ≃ Vg(t). In this regime, the
electrochemical capacitance Cµ = CgCq/(Cg + Cq) ≃ Cq is dominated
by the quantum capacitance Cq and the electrons within the |x| ≤ l/2
region experience the gate potential Vg(t). For α ≪ 1, t(ω) ≃ eiωl/vF .
Consequently, the elastic scattering amplitude has close to unit modulus
at low energy ω → 0 (see Sec. III.C of [35]): electronic decoherence can
be neglected. In other terms, there is no back-action of the incoming
electron on the edge channel mediated by the top-gate which could lead
to significant electronic decoherence.

Since in this regime Z1(ω) ∼ eiωl/vF , the effective scattering ampli-
tude can be approached by

Reff(t, t
′) ≃ δ

(
τ − l

vF

)
FVg(t) . (4.41)

At very small α, Γ(τ) = 1[0,l/vF ](τ) and therefore, we get:

Reff(t, t
′) ≃ δ

(
τ − l

vF

)
e

ie
ℏ
∫ τ1
0 U(τ) dτ (4.42)

with τ1 = l/vF and U(t) = Vg(t) as expected.

As α is increased, electronic decoherence starts to appear but, as long
as we keep the energy of the electronic excitation low enough, it can be
neglected. The first effect of increasing α is to modify the voltage seen
by the electrons below the top gate. As shown in Sec. 2.3.2, the electrons
see and effective voltage which is a filtering of Vg(ω) (see Eq. (2.51)).

To summarize, in the voltage locked regime, the MZI detects the
accumulated electric phase associated with the time dependent poten-
tial Vg(t) and the results may be interpreted within a single particle
framework.

The Coulomb blocked regime

The limit of large α corresponds to the regime dominated by Coulomb
interactions. They so strong that no charge accumulates on either plates
of the capacitor (neither on the |x| ≤ l/2 interaction region of the edge
channel not on the top gate). But, as explained in Sec. 2.3.2, the outgo-
ing edge magnetoplasmon mode bout(ω) has a very small response to the
external time dependent voltage. This means that the electron radar is
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weakly responding to the external voltage applied to the top gate. How-
ever, electronic decoherence is not a problem in this limit. This echoes
the results obtained recently in Ref. [61] in which a similar phenomenon
occurs in a MZI where the top gate in the strong coupling regime is
replaced by a metallic island with strong enough Coulomb interaction.

4.4.2 Squeezed radiation

We now consider a Gaussian state of the quantum electromagnetic field,
that is to say any state whose quadrature variables follow Gaussian dis-
tributions, and discuss the ability of the electron radar to detect squeez-
ing. We show that for a generic Gaussian state of the incoming radia-
tion, the electron radar probes squeezing in a specific mode defined by
the radiation coupler and we provide a simple criterion to make differ-
enciate between a squeezed state and a non-squeezed state in this mode.
Then, the experimentally relevant case of a radiation coupler exhibiting
a resonance around a given frequency with a high quality factor will be
considered. The analysis is pushed forward, up to obtaining predictions
for the contrast of interference fringes on with Levitons of fixed duration.

General squeezing criterion

Optimal electromagnetic mode for squeezing detection Given
the complexities involved in the measurement of a squeezed state, it is
of relative importance for this state to be contained within the electro-
magnetic mode for which the electronic quantum radar will be the most
sensitive. This mode is determined by the geometry of the radiation
coupler and represents the optimal coupling point between the electrical
and radiation channels. As such, it is fully characterized by the non-
diagonal coefficient of the EMP scattering matrix Sba(ω). To identify
this mode, let’s have a look at the expression of the Franck-Condon
factor:

Fρem(t) =
〈
: Dain [S

∗
baΛt] :

〉
ρem

, (4.43)

where

Dain [S
∗
baΛt] = exp

(∫ ωc

0

(
S∗
baΛta

†
in(ω)− c.c.

)
dω

)
. (4.44)
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We have introduced ωc which is an UV cut-off below which all the incom-
ing radiation is emitted. Introducing now the normalized EMP mode:

αt =
1

N 1/2

∫ ωc

0

Sba(ω)√
ω

e−iωt a(ω)dω , (4.45)

we can then rewrite the expression of Fρem(t) in Eq. (4.46) in a simpler
way:

Fρem(t) =
〈
: Dαt

[√
N
]
:
〉
ρem

. (4.46)

With this expression we see that the Franck-Condon factor is the aver-
age of a normal ordered displacement operator for the mode αt

2 with
the amplitude

√
N . Thus αt is the only filtered mode at which the ra-

diation coupler is sensitive, explaining why αt is the most suited mode
for probing squeezing. Note that αt and α

†
t satisfy the canonical com-

mutation relation[αt, α
†
t ] = 1. To determine the factor of normalization

N we just have to compute the equation:

N =

∫ ωc

0
|Sba(ω)|2

dω

ω
. (4.47)

To get an insight of the physical interpretation of N , we can rewrite
Eq. (4.47) into:

N =

∫ ωc

0
|Sba(ω)λ∗t (ω)|2 dω . (4.48)

From this equation we deduce that N is the average photon number
transmitted into the radiation channel by a time-localized single electron
excitation propagating within the electronic channel of the radiation
coupler. The integral in the r.h.s. of the equations above is convergent
in the infrared (low frequency) since Sba(ω) is linear at small ω and the
convergence in the ultraviolet (high frequency) is ensured by the UV
cutoff.

Gaussian approximation Computing the Franck-Condon factor Fρem(t)

using a Gaussian approximation for the (αt, α
†
t) mode leads to:

Fρem(t) = eiϕ(t) × e−N(⟨(∆Yt)2⟩ρem−⟨(∆Yt)2⟩|0⟩) . (4.49)

where the phase ϕ(t) is due to the average value ⟨αt⟩ and can be viewed
as arising from the classical voltage felt by the electrons within the upper

2The result is now independent of the UV cutoff ωc since all modes with ω ≥ ωc

are in the vacuum state and therefore do not contribute to Fρem(t).

149



branch of the MZI. The other contribution comes from the Gaussian
fluctuations of the incoming radiation which can change the modulus
of the Franck-Condon factor. Eq. (4.49) provides a sufficient criterion
for squeezing: as soon as |Fρem(t)| > 1 there is squeezing since this is
a signature of the fact that, for these values of t, fluctuations of the
quadrature

Yt =
i√
2

(
α†
t − αt

)
. (4.50)

are smaller than in the vacuum state: ⟨(∆Yt)2⟩ρem < ⟨(∆Yt)2⟩|0⟩.

Squeezing around a given frequency

Because of its relevance for experiments, let us discuss the ability of
the electron radar to detect squeezed radiation in an electromagnetic
mode around ω ≃ ω0 within a bandwidth γ0 such that Q0 = ω0/γ0
is significantly larger than one. Then Sba(ω) can be taken as constant
for |ω − ω0| ≤ γ0/2. We assuming that each mode within this band-
width is prepared in a squeezed vacuum (see Appendix C) with squeezing
paramereter z. Using in addition the narrow bandwidth approximation,
the Franck-Condon factor F|Sqz⟩(t) of the squeezed state |Sqz⟩ is given
by

F|Sqz⟩(t) ≃ e
|Sba(ω0)|

2

Q0
sinh(2|z|)[cosh(2|z|) cos(2ω0t−ϕ0)−sinh(2|z|)]

(4.51)

where ϕ0 = Arg(Sba(ω0))+Arg(z). As expected, there are values of t for
which the factor cosh(2|z|) cos(2ω0t−ϕ0)− sinh(2|z|) in the exponential
can have positive values leading to |F|Sqz⟩(t)| > 1. In particular its
maximum value is then

max
t

(
F|Sqz⟩(t)

)
= e

|Sba(ω0)|
2

2Q0
(1−e−4|z|)

> 1 (4.52)

whereas its minimum value is

min
t

(
F|Sqz⟩(t)

)
= e

− |Sba(ω0)|
2

2Q0
(e4|z|−1)

< 1 . (4.53)

Let us recall that the compression factor, which quantifies the reduction
of uncertainty in one quadrature at the expense of increased uncertainty
in the other quadrature, for the squeezed mode in |Sqz⟩ is given by
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e−4|z| (see Eq. C.7). The compression is often expressed in decibels via
the formula

dB(z) = −10 log10(e
−4|z|) =

40

log(10)
z ≃ 17.372 z (4.54)

so that a 3 dB squeezing corresponds to a 50 % noise reduction with
respect to the vacuum. As of today, a compression of 18% (0.86 dB)
with respect to vacuum fluctuations has been achieved in quantum Hall
edge channels [9]. Assuming a quality factor Q0 = 5 and no losses
(|Sba(ω0)|2 = 1) for the radiation coupler leads to an increase of the
Franck-Condon factor by 1.8% with respect to unity whereas a 3 dB
squeezing would lead to an increase by 5.1%.

Interference fringe contrast for Levitons

As mentioned in Sec. 4.3.2, time resolved sampling will be performed by
Levitons of duration τe. Therefore, the discussion of Sec. 4.3.2 is directly
relevant: the observed interference contrast on the dc current is not the
contrast in the absence of radiation multiplied by the Franck-Condon
factor F(te + τ2). We have to take into account the effect of electronic
decoherence as well as the limited time resolution of these single electron
pulses. In order to understand what happens, our discussion will assume
that the filtering (4.30) of the Franck Condon factor by the filter defined
by Eq. (4.31) can be approximated by a filtering by:

fτe,τ2(Ω) = fτe,τ2(0) e
−|Ω|τe eiτ2 min(0,Ω) . (4.55)

We now decompose the time periodic Franck-Condon factor given by
Eq. (4.51) in Fourier series:

F|Sqz⟩(t) ≃ e−Λ sinh2(2|z|)
∑

n∈Z
I|n| (Λ cosh(2|z|) sinh(2|z|)) e−2inω0(t−t̃e)

(4.56)
where Λ = |Sba(ω0)|2/Q0 is introduced for simplicity and In denotes the
modified Bessel function of order n. The time t̃e arises from the phase
of Sba(ω0) as well as of the squeezing parameter. We will forget it in
the following since it can be absorbed in a redefinition of the Leviton’s
injection times and does not matter for the discussion of interference
contrast.

Because |Sba(ω0)|2 ≤ 1 andQ0 is significantly larger than 1, Λ is quite
smaller than unity. Remembering also that experimentally reachable
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squeezing factors are not very high and therefore, Λ cosh(2|z|) sinh(2|z|) ≲
1. Moreover, In(x) ≃ (x/2)n/n! for n ≥ 1. Consequently, we are in a
regime where most of the contribution is expected to come from the first
harmonics: n = 0 and n = ±1 in Eq. (4.56). Let us retain only these
harmonics for simplicity:

F|Sqz⟩(t) ≃ F0(z,Λ) + e−2iω0tF1(z,Λ) + e2iω0tF−1(z,Λ) (4.57)

where

F0(z,Λ) = e−Λ sinh2(2|z|)I0 (Λ cosh(2|z|) sinh(2|z|))
≃ 1− Λ sinh2(2|z|) +O(Λ2) (4.58a)

F±1(z,Λ) = e−Λ sinh2(2|z|) I1 (Λ cosh(2|z|) sinh(2|z|))

≃ Λ

2
cosh(2|z|) sinh(2|z|) +O(Λ2) . (4.58b)

The n = 0 harmonic contains the contrast obtained when averaging over
the emission time te:

[
X

(dc)
+

]te
Sq(z)

=
[
X

(dc)
+

]
|0⟩

F0(z,Λ) . (4.59)

Since |F0(z,Λ)| < 1, this te-independent measurement is lower than
the one when only vacuum injected in the radiation channel. This is
the effect of the average number of photons in a squeezed vacuum: al-
though such a quantum state has sub-vacuum fluctuations, on average
over time, it has more fluctuations than the vacuum. This is measured
by its average number of photons which increases with |z|. Therefore,
increasing |z| leads to more electronic decoherence when considering the
time average over te.

Using the approximation given by Eq. (4.55), we finally obtain the
relative contrast with respect to vacuum baseline as:

[
X

(dc)
+

]
Sq(z)[

X
(dc)
+

]
|0⟩

= F0(z,Λ) + e−2ω0τe
[
F1(z,Λ) e

−2iω0te

+ e2iω0(τ2+te)F−1(z,Λ)
]
. (4.60)

The question is to determine whether or not the maximum modulus of
this ratio as a function of te is greater than unity or not. To solve this
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problem, we note that the r.h.s. of Eq. (4.60) is of the form

a+
b

2

(
e−iφ + ei(φ+ϑ)

)

with, at first order in Λ:

a = 1− Λ sinh2(2|z|) (4.61a)

b = Λcosh(2|z|) sinh(2|z|) e−2ω0τe (4.61b)

φ = 2ω0te (4.61c)

ϑ = 2ω0τ2 (4.61d)

Finding the maximum value of the relative contrast in modulus as we
vary φ is detailed in Appendix D. The final result is a simple expression
of the form

max
te

∣∣∣∣∣∣∣

[
X

(dc)
+

]
Sq(z)[

X
(dc)
+

]
|0⟩

∣∣∣∣∣∣∣
≃ 1 + Λ

(
η cosh(2z) sinh(2|z|)− sinh2(2z)

)
+O

(
Λ2

)

(4.62)
where Λ = |Sba(ω0)|2/Q0 and

η = e−2ω0τe |cos(2ω0τ2)| (4.63)

This maximum is greater than unity for 0 < z < arctanh(η)/2. Surpris-
ingly, above this value of the squeezing parameter, the contrast increase
associated with transcient sub-vacuum fluctuations is not compensated
by the drop of the time-averaged contrast with respect to the vacuum
baseline. As discussed in Appendix D, this comes from the damping of
the harmonics associated with the finite width of the Leviton. It does
not happen for η = 1.

This effect associated with the finite duration of the probing Leviton
can therefore hinder the observation of squeezing based on the sim-
ple criterion that, for some injection time, the maximum interference
contrast

[
X+(dc)

]
Sq(z)

is larger than the vacuum baseline
[
X+dc)

]
|0⟩.

As explained in Appendix in the D, avoiding this undesirable effect re-
quires not exceeding |z| = arctanh(η)/2. The maximum relative con-
trast with respect to the vacuum baseline is indeed obtained for |z|opt =
arctanh(η)/4 and is given by

max
|z|

max
te

∣∣∣∣∣∣∣

[
X

(dc)
+

]
Sq(z)[

X
(dc)
+

]
|0⟩

∣∣∣∣∣∣∣
≃ 1 +

Λ

2

(
1−

√
1− η2

)
+O

(
Λ2

)
. (4.64)
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This discussion immediatly shows that the choice of the Leviton’s dura-
tion must result from a compromise. On one hand, short Levitons lead
to η closer to one which is good for increasing the relative contrast with
respect to the vacuum baseline. One should notice that the maximally
optimized contrast given by Eq. (4.64) sharply decays when η is lowered
from 1 towards zero3. But, on the other hand, short Levitons experi-
ence a stronger decoherence and this leads to a reduced vaccum baseline

contrast

∣∣∣∣
[
X

(dc)
+

]
|0⟩

∣∣∣∣ as shown on Fig. 4.6. Consequently, the overshoot

above the vacuum baseline may become harder to measure.

Numerical results and discussion In order to discuss the experi-
mental observability of a greater than unity relative contrast with re-
spect to the vacuum, we have to use numerical evaluations. The above
discussion suggests to choose ω0 near a maximum of |Sba(ω0)|2. In the
case of the radiation coupler built from two counter-propagating ca-
pacitively coupled edge channels discussed in Sec. 2.4, this operation
point can be determined easily from Fig. 4.6. Here we will consider that
vF = 105ms−1 and l = 10 µm which corresponds to a time of flight
l/vF = 100 ps.

Moreover, as mentioned before, it may be better to limit electronic
decoherence. Naively, this could lead us to choose a strong coupling
situation α = 15 and ω0 at the first resonance frequency on Fig. 2.13.

The numerical results are presented on Figs. 4.8 to 4.11. Before
commenting them in details, let us mention that on all these plots, the
black oscillating curves correspond to the full numerical evaluation of
the contrast, taking into account the exact numerical evaluation of the
filter fτe,τ2(Ω) as well as all the harmonics in the Fourier series expansion
of the Franck-Condon factor. The dashed black horizontal line always

corresponds to the vacuum baseline

∣∣∣∣
[
X

(dc)
+

]
|0⟩

∣∣∣∣. The dotted red line

corresponds to the maximally optimized maximum contrast given by
Eq. (4.64) whereas the dotted black line corresponds to the evaluation
of Eq. (4.62) for the actual value of the squeezing parameter considered
in the example. We have plotted the results for three values of the
squeezing parameter: z ≃ 0.0496 corresponding to 18 % (or 0.86 dB)

3Moreover, one should remember that τ2 is chosen to maximize the vacuum base-
line which drops quickly to zero when τ2 is shifted away from its optimal value by
more than τe. Consequently, | cos(2ω0τ2)| cannot be optimized by changing τ2. It
may generically be below unity.
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noise reduction demonstrated in Ref. [9], z ≃ 0.0719 corresponding to
1.25 dB (or 25 %) noise reduction and z ≃ 0.1733 corresponding to 3 dB
(or 50 %) noise reduction.

Let us first discuss results for Levitons of duration 15 ps and compare
the voltage locked (α = 1/5) and Coulomb blocked (α = 15) regimes
of the radiation coupler. As mentioned before, the choices of ω0 are
different depending on the regime and are optimized in the sense that
they maximize Λ = |Sba(ω0)|2/Q0.

Figures 4.8 and 4.9 present the contrast of the interference fringes
for Levitons as a function of their injection time, computed from the
analytical expresssions (4.30) and (4.31) combined with Eq. (4.56). We
immediatly notice that, at some operating points, the contrast in the
presence of the squeezed vacuum does exceed the vacuum baseline. The
overshoot is small: of the order of 0.3 % on a baseline of 57.5 %. The best
numbers are obtained in the voltage locked regime for 1.25 dB squeezing
and ω0l/vF = π. This may seem difficult to observe but according to
our collaborator, G. Fève, the degree of precision reached on average
current measurements is such that this is not beyond reach. In other
words, the sensitivity of d.c. current measurement is not an issue. In
fact, G. Fève pointed out that the main experimental risk resides in the
stability of the experiment between the measurement with the squeezed
radiation “on” versus when the radiation is switched “off”. A small drift
in the experiment or within the sample could scramble the baseline and
hinder the increase of the contrast above the vacuum baseline which we
view as the smoking gun of squeezing detection by the MZI.

Note that the results depicted on Fig. 4.8 show a rather good agree-
ment between the numerical evaluation and the simplified models dis-
cussed in the previous paragraph. The tendencies that were discussed
there are clearly visible: the maximum contrast goes below the vacuum
baseline if the squeezing parameter is too high, such as for 3 dB squeezing
at ω0l/vF = π.

We immediatly see on Fig. 4.9 that, in the Coulomb blocked regime
(α = 15), the overshoot over the vacuum baseline is much harder to
see. The drop of the maximum occurs already between the 0.868 dB
and 1.15 dB noise reduction and the overshoot over the vacuum baseline
is of the order of 0.1 %. This deterioration is mainly associated with
the difference between ω0 in the two situations: going from ω0l/vF = π
(voltage locked case) to 5.5 (Coulomb blocked case) changes e−2ω0τe

from 0.390 to 0.192. This clearly degrades the situation as explained in

155



Appendix D: for example, without the effect of | cos(2ω0τ2)| < 1, |z|opt
would go down from 0.103 (1.79 dB) to 0.049 (0.84 dB).

We have thus considered much shorter Levitons of duration 2.5 ps in
order to increase the value of e−2ω0τe and therefore of η. Figures 4.10 and
4.11 present the same results as Figures 4.8 and 4.9 but for τe = 2.5 ps.

The first obvious observation is the decrease of the vacuum base-
line as expected from Fig. 4.6. Note that the obtained values are not
catastrophic: 0.20 to 0.23 in the voltage locked regimes and 0.67 in the
Coulomb blocked regime thereby showing the protective effects of strong
Coulomb interactions.

As expected, in the voltage locked regime, the best figures of merit
are obtained for ω0l/vF = π so that the radiation coupler provides the
best coupling between the electronic interferometer and the external ra-
diation. Compared to 15 ps Levitons, we see that increasing the squeez-
ing leads to a stronger effect here whereas, on Fig. 4.10, a 3 dB squeezing
is above the optimum discussed in Appendix D. Note that in absolute,
the contrast increase for 1.25 dB is still of the order of 0.3 %, same as
with 15 ps but it comes on top of a baseline of 0.23 instead of 0.575: this
represents a factor two improvement in the relative contrast increase
with respect to the vacuum baseline between 15 ps and 2.5 ps Levitons!

In the Coulomb blocked regime (α = 15), results are presented on
Fig. 4.11. Using 2.5 ps Levitons instead of 15 ps ones brings a notable
improvement in the figures of merit: the contrast overshoot is of the
order of 1 % on a baseline of 67.7 % instead of 0.1 % on a 96.5 %
baseline!
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Figure 4.8: The various panels present the interference contrast
[
X

(dc)
+

]

for Leviton excitations of width τe = 15ps assuming a 10 µm long ra-
diation coupler with vF = 105ms−1 and coupling strength α = 1/5.
The plots show the absolute contrast as a function of the dimensionless
injection time ω0te/2π for different values of the squeezing parameter z
(expressed in dB) and different values of ω0, ranging from ω0l/vF = 1 to
ω0l/vF = π. The dashed black horizontal line corresponds to the vacuum

baseline
[
X

(dc)
+

]
|0⟩
. The dotted black line is independent of the squeez-

ing parameter z and corresponds to the maximally optimized maximum
contrast given by Eq. (4.64) whereas the dotted red line corresponds to
the evaluation of Eq. (4.62) for the actual value of the squeezing param-
eter z considered in the example.
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Figure 4.9: The various panels present the interference contrast
[
X

(dc)
+

]

for Leviton excitations of width τe = 15ps assuming a 10 µm long radi-
ation coupler with vF = 105ms−1 and coupling strength α = 15. The
plots show the absolute contrast as a function of the dimensionless in-
jection time ω0te/2π for different values of the squeezing parameter z
(expressed in dB) and ω0l/vF = 5.5 right on the first resonance ob-
served on Fig. 2.13. Caption for the various line types is the same as for
Fig. 4.8.

4.4.3 Fock states

We now consider the problem of detecting Fock states in a specific EMP
mode denoted here by χ. This state being non-Gaussian, the Gaussian
result given by Eq. (4.49) breaks down.

The Franck-Condon factor

We consider Fock states in the mode associated with the normalized
single photon state χ. An explicit computation detailed in Appendix A.2
shows how to obtain the explicit expression for the Franck-Condon factor
F|N,χ⟩(t) by re-expressing the infinite displacement operator appearing
in its definition in an orthonormal basis (χn)n involving the normalized
mode χ:

Da [α] =
⊗

n≥0

Dan

[∫ +∞

0
α(ω) ⟨χn|ω⟩ dω

]
(4.65)

where α(ω) = S∗
ba(ω)Λt(ω). An explicit evaluation of the matrix element

of a displacement operator in a Fock state with N photons then leads
to

F|N ;χ⟩(t) = LN

(
2π |⟨χ|S∗

baΛt⟩|2
)

(4.66)
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Figure 4.10: The various panels present the interference contrast[
X

(dc)
+

]
for Leviton excitations of width τe = 2.5 ps assuming a 10 µm

long radiation coupler with vF = 105ms−1 with coupling strength
α = 1/5. The plots show the absolute contrast as a function of the
dimensionless injection time ω0te/2π for different values of the squeez-
ing parameter z (expressed in dB) and different values of ω0, ranging
from ω0l/vF = 1 to ω0l/vF = π. Caption for the various line types is
the same as for Fig. 4.8.
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Figure 4.11: The various panels present the interference contrast[
X

(dc)
+

]
for Leviton excitations of width τe = 2.5 ps assuming a 10 µm

long radiation coupler with vF = 105ms−1 with coupling strength
α = 15. The plots show the absolute contrast as a function of the
dimensionless injection time ω0te/2π for different values of the squeez-
ing parameter z (expressed in dB) and ω0l/vF = 5.5 right on the first
resonance observed on Fig. 2.13. Caption for the various line types is
the same as for Fig. 4.8.

in which LN is the N -th Laguerre polynomial and

⟨S∗
baΛt|χ⟩ = −

∫ +∞

0

Sba(ω)√
ω

e−iωtχ(ω)
dω

2π
. (4.67)

We now focus on the specific example of an EMP mode χ(ω) centered at
ω0 with lorentzian lineshape of width γ0, assuming ω0/γ0 significantly
larger than unity, as expected from spontaneous emission by a quantum
two level emitter.

Results and discussion

In order to determine whether or not single to few EMP detection is
possible by the electron radar, we have numerically evaluated the quan-
tity

x(t) = 2π |⟨χ|S∗
baΛt⟩|2 (4.68)

in an experimentally realistic situation. More precisely, we assume that
the radiation coupler consists of two counter propagating edge channels
capacitively coupled over a distance l = 10 µm (see Sec. 2.4) so that
vF = 105m/s leads to vF /l = 10GHz. Fig. 4.12 then depicts |Γba(ω)|2
(dashed lines) as a function of ωl/vF in the voltage locked (α = 1/10)
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Figure 4.12: Current noise spectra for a single EMP of energy ℏω0 with
Lorentzian linewidth γ0 for ωl/vF = 2 (green curve), 5.5 (red curve) and
10 (purple curve) superimposed with |Γba(ω)|2 defined by Eq. (4.17) for
the model of two counter propagating edge channels (see Sec. 2.4) in
the voltage locked regime (α = 1/10, dashed red curve) and Coulomb
blocked regime (α = 15, dashed blue curve).

and Coulomb blocked (α = 15) regimes. As explained in Appendix E,
this describes how the radiation coupler filters the excess current noise
associated with the EMPs propagating within the radiation channel. In
the voltage locked regime, the radiation coupler acts as a low pass filter
for the excess current noise whereas, in the Coulomb blocked regime, we
see a resonance peak for ω0l/vF = 5.5. These curves are superimposed
with the current noise power spectrum for a single EMP of duration
γ−1
0 = 1ns = 10 l/vF and energy ℏω0 such that ω0l/vF = 2, 5.5 and 10

corresponding to respective frequencies 3.2GHz, 8.75GHz and 15.9GHz.

Numerical estimates of x(t) for the six sets of parameters (three EMP
resonances and two values of α) considered on Fig. 4.12 are presented
on Fig. 4.13. When the EMP resonance is chosen where Γba(ω) has the
highest values (ω0l/vF = 2 for the voltage locked regime and ω0l/vF =
5.5 for the Coulomb blocked regime), x(t) values higher than 0.05 can
be achieved.

At fixed ω0l/vF the increase or decrease of the maximum value of x(t)

161



when going from the voltage locked to the Coulomb blocked regime is
consistent with the evolution of the response |Γba(ω0)|2: it only increases
when ω0 is chosen at resonance where the Γba(ω) response in enhanced
when going from α = 1/10 to α = 15.

These numerical predictions can be fitted with an evaluation of x(t)
that exploits the narrow band structure of the EMP:

x(t) ≃ |Sba(ω0)|2
ω2
0

∣∣∣∣
∫ +∞

0

√
ωχ(ω) e−iωt dω√

2π

∣∣∣∣
2

(4.69)

As shown in Appendix E, the r.h.s. can then be rewritten as

x(t) = 2π
γ0
ω0

|Sba(ω0)|2
⟨JQ(t)⟩|1;χ⟩
γ0ℏω0

. (4.70)

in which

JQ(t) =
RK

2
: i(t)2 : . (4.71)

denotes the instantaneous heat current operator injected in the radiation
channel expressed in terms of the electrical current i(t). In the end,
when γ0/ω0 is small enough and provided N is not very large, using the
expansion LN (x) ≃ 1 − Nx + O(x2) for the Laguerre polynomial, we
have:

[X+(t)]|N ;χ⟩

[X+(t)]|0⟩
≃ 1− 2πN

ω0

γ0
|Sba(ω0)|2

⟨JQ(t)⟩|1;χ⟩
γ0ℏω0

. (4.72)

The only hypothesis for deriving this expression is that the spectral
width of the EMP is small compared to the scale of variation of the
transparency |Sba(ω)|2 of the radiation coupler, no matter the precise ω
dependence of this quantity.

The precise comparison with numerical evaluations shows that the
analytical result given by Eq. (4.70) is quite good except on very short
time scales where the higher frequency details are expected to matter.
It also departs from the numerical evaluation of x(t) in the Coulomb
blocked regime for ω0l/vF = 5.5. This is expected since this specific
case is the one where the narrow band approximation used to derive the
analytical expression is the least satisfied.

Finally, we have computed the dc-current contrast decrease, opti-
mized over τ2, for the examples considered here when injecting Leviton
excitations of duration τe = l/10vF = 10ps compared to the same situ-
ation when the external radiation is switched off. Remember that, with
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Figure 4.13: Plots of x(t) as a function of tvF /l when using a single
energy EMP with energy ℏω0 and Lorentzian lineshape of width γ0 using
the model of two counter-propagating edge channels at l/vF = γ−1

0 /10
in the voltage locked regime (α = 1/10, red curves) and in the Coulomb
blocked regime (α = 15, blue curves). Three different values of ω0l/vF
have been considered: 2, 5.5 and 10. Dashed curves correspond to the
analytic expression given by Eq. (4.70).
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Figure 4.14: Plot of X
(dc)
+ as a function of the injection time te of a

Leviton excitation of duraction τe = l/10vF = γ0−1/100 with the same
parameters as on Fig. 4.13. Dashed cuves correspond to x(te).

the parameters considered here, the latter contrast is expected to be
above 50 % (see Sec. 4.3.2). The results, presented on Fig. 4.14, confirm
that an observable signal can be expected and that the relative contrast
drop is not too far from the one obtained by using |F|1;χ⟩(te)|. The dom-
inant effect in the amplitude of the effect comes from the transparenty
of the radiation coupler in the bandwith of the incident radiation. The
smoothing of the curves compared to x(t) reflects the filtering of high
frequencies associated with the finite duration of the Leviton as well as
with electronic decoherence.
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Chapter 5

Conclusion

5.1 Summary of the results

In this thesis, we have presented the theory of the single electron radar,
an interferometric measurement system for classical or quantum elec-
tromagnetic fields operating in the microwave range. It leverages the
electron’s sensitivity to such fields in order to reconstruct pertinent in-
formation about them.

Our central result is the expression of this quantity as a convolu-
tion of an effective single particle scattering amplitude which encodes
information on the external radiation by the fourth representation of
the excess single electron coherence of the source. This fonction, which
we call the electronic ambiguity function by analogy with the concept
introduced by Woodward in classical radar theory [192], plays the role of
the point spread function that describes the imaging through the MZI of
the effective single particle scattering induced by the external radiation.

Explicit predictions for this effective single particle scattering are
presented when the MZI is capacitively coupled to the external radiation.
Various models of the component ensuring this capacitive coupling – the
radiation coupler – have been considered.

In the introduction of this thesis, we had identified the performance
objectives for this system:

1. Sensitivity to single-photon fields

2. Capability to probe quantum-state of the electromagnetic fields

3. Sensitivity to radiation modes down to GHz frequencies
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4. Achievement of sub-nanosecond time resolution

5. Adjustable design characteristics

In order to discuss the first three items a realistic model for a ca-
pacitive coupler involving two capacitively coupled counter propagating
edge channels has been considered.

Concerning the first item, we show that a single EMP propagating
in the radiation edge channel could be detected since experimentally re-
alistic parameters may lead a variation of the time resolved electronic
interferences fringes of the order of 5 to 10 % over a baseline contrast
above 50 % during the fly by of a single EMP. Concerning the seond item,
by considering Gaussian states for the incident radiation, an operational
criterion for squeezing detection for a mode in the GHz frequency range
via short duration wavepackets is given. Realistic estimates suggest that
a 1.25 to 3 dB squeezing within a nearby edge channel could, in princi-
ple lead to a potentially observable 0.5 % increase in the contrast of the
Aharonov Bohm electronic interference fringes on the average dc current
signal when using sufficiently short Leviton pulses. Although squeezed
radiation has recently been generated within quantum Hall edge chan-
nels [9], these encouraging estimates call for further progresses in the
generation and control of quantum states of EMPs. All computations
are done for few to tens of ps Levitons which have sub-nanosecond time
resolution, thereby ensuring the fourth point of the list.

Concerning the last item, we have discussed the potential of well
known techniques from classical radar engineering such as randomiza-
tion and chirping for improving our ability to probe very short dynamical
time scales of the incident electromagnetic radiation. An interesting per-
spective would be to design a set of single electron excitations enabling
a full reconstruction of the effective single-particle amplitude induced
by the coupling to the external radiation. This question arises from the
observation that, in the classical radar theory, infinite chirps [116] turn
the signal of the radar into a Radon transform of the target’s scattering
amplitude for the electromagnetic radiation used to illuminate it. In
this context, the inverse Radon transform, a technique commonly used
in computated tomography scans [156], quantum optics [179, 128] and
even for reconstructing the quantum state of solitary electrons [72], pro-
vides a tomographic reconstruction of the target’s scattering amplitude.
However, in the context considered in this work, due to the presence
of the Fermi sea, perfect infinite chirps cannot be synthetized, thereby
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leaving the problem of tomographic reconstruction of the effective single
electron scattering amplitude open for further investigations.

5.2 Perspectives

5.2.1 Experimental implementation

Alongside our modeling efforts, the experimental team of Gwendal Fève
– our collaborators – have implemented a single electron interferometric
measurement of a time-dependent classical voltage. They achieved this
by exploiting single-electron properties with a Fabry-Pérot Interferom-
eter (FPI), depicted on the left panel of Fig. 5.1. The choice of the
Fabry Perot geometry was mainly motivated by fabrication considera-
tions: MZIs in the quantum Hall regime require the so-called “air bridge”
to collect the electrical current from the internal part of the device [108].
By comparison, the Fabry-Pérot geometry is easier to manufacture.

In this setup, the Quantum Point Contacts QPC1 and QPC3 serve
as adjustable electronic beam splitters, creating the Fabry-Pérot cav-
ity. The intermediate QPC2 is always left open. Consequently as the
propagation is chiral, electrons circulate unidirectionally within the cav-
ity, entering before QPC3 and exiting after QPC1. QPC2 is polarized
using two different lines. As such it serves a dual purpose: the top
part is connected to an a.c. line and is used to apply tha classical time
dependent branch to the upper part of the internal loop of the FP in-
terferometer. The bottom part of QPC2 is connected to a d.c. line and
is used to slightly change the area delimited by the internal loop via the
application of a d.c. voltage.

The Fabry-Pérot cavity permits multiple reflections and therefore is
much more complicated to analyze in the presence of electronic deco-
herence than the MZI. However, in the experiment performed in Paris,
several experimental facts were observed when feeding the interferometer
with a dc current bias an applying no time dependent voltage (V (t) = 0
on Fig. 5.1) [69, 113]:

� First of all the interference pattern was not observed in function
of the Aharonov Bohm flux threading the interferometer but in
function of the d.c. voltage bias applied to the lower top gate of
QPC2 (Vdc on Fig. 5.1). This means that the FP interferometer
is indeed dominated by Coulomb charging effects [98] which is not
the regime considered in the present thesis.
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� The dependence on the gate voltage only involved one harmonic:
this means that contributions stemming from paths which wind
more than once are heavily suppressed, probably by electronic
decoherence. In other terms, in practice, the FP interferometer
effectively behaves as a MZI.

Figure 5.1: Left panel: Electronic microscope image of the electronic
Fabry-Pérot interferometer. An alectronic cavity is delimited by QPC1
and QPC3 whereas QPC2 is used to deform the cavity with a dc voltage
bias applied to the bottom lower branch top gate whereas a time de-
pendent voltage (the classical radiation) is applied to the upper branch
top gate. The average dc current is measured after QPC1. Right panel:
Experimental data for the normalized average dc current as a function
of the dc voltage bias (Vdc – vertical axis) and the injection time of the
Levitons (horizontal axis).

Gwendal Fève’s team the conducted this experiment using probing
single electrons with a train of Leviton excitations of typical width 35 ps
separated by 1 ns. A sinusoidally oscillating voltage V (t) at a frequency
of 1GHz was then applied to the ac port of QPC2. The frequency of the
Leviton train matches the one of the time periodic voltage we wish to
probe in order to ensure that each Leviton of the train is injected at the
same time modulo the period. Then, the average DC current exiting the
interferometer is measured over a large number of periods to obtain a
good signal to noise ratio. Finally, Vdc is varied to reveal the interference
pattern of the FP interferometer and the time delay of the Leviton train
is also varied so that the single electron excitations sample the voltage
induced phase at different times.
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The results are displayed on the right panel of Fig. 5.1. Here, the
Transmission, a representation of the normalized current, is shown as
a function of the Leviton injection time (horizontal axis) and of the dc
potential potential Vdc. At fixed injection time, the Vdc oscillation is the
interference pattern of the FP interferometer. As the injection time of
the Leviton is varied, it experiences the electrostatic phase associated
with the polarization of the upper top gate of QPC2 at a different time.
Because the duration of the Leviton as well as its time of flight beneath
this top gate is very short, it samples the ac voltage V (t) within a certain
time window which is sliding as the injection time is varied.

This explains why the right panel of Fig. 5.1 displays a fringe pattern
(in function of Vdc) that follows the time dependence of V (t) over a
period of 1 ns, consistent with frequency 1GHz of the ac drive V (t).

This first experiment validates the concept of a single electron in-
terferometer to probe electromagnetic field with sub-nanosecond time
scales. Of course, this is only a first proof of concept for classical radi-
ation but it is a first important step. Work is in progress to attempt a
quantitative analysis of the experimental data beyond the simple single
particle scattering approach presented in [113].

The path forward will involve using a Mach-Zehnder Interferometer
(MZI) setup to demonstrate the electron radar and try to probe quan-
tum radiation instead of classical one. The idea would be to use another
quantum Hall edge channel as the radiation channel in order to mini-
mize the risks associated with sample fabrication. Future endeavors will
aim to corroborate our predictions through the probing of the squeezed
vacuum and Fock states for the EMPs. However this is not a purely
experimental challenge. The weak signals unraveled by the work pre-
sented in this PhD suggest that further theoretical explorations will help
making suitable choices for the sample design.

First of all, a modelization effort of quantum radiation sources within
quantum Hall edge channels should be pursued. For example, although
squeezing has been observed within quantum Hall edge channel in a
consistent way with theoretical predictions [9], this work only considered
mode at a given frequency. Understanding the full structure of time
dependent fluctuations of the current at the output of a driven QPC
is work in progress by G. Rebora, I. Safi and P. Degiovanni. This will
help identifying the best modes for sub-vacuum detection and thus put
constraints on the radiation coupler design.

This motivates a detailed exploration and comparison of the various
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radiation couplers introduced in Chapter 2 to put all chances of observ-
ing squeezing on our side. The shaping of the electronic wave packets
may also be explored with the same perspective.

Finally, single EMP generation has also never been demonstrated and
proposals for single EMP sources should be explored. A preliminary step
in this direction consists of an in-depth study of EMP cavities, a line of
research currently explored by Gerbold Ménard in G. Fève’s group.

5.2.2 Towards quantum metrology

Carl W. Helstrom recognized the inherent complexities brought by wave-
particle duality to measurement close to the quantum limit. This under-
standing acknowledged two major conjugated constraints: the diffrac-
tion limit and photon shot noise. In 1969, Helstrom tackled these funda-
mental issues head-on, publishing a groundbreaking paper on quantum
measurement [101]. He innovatively applied the statistical theory of esti-
mation to the quantum realm, giving birth to a new reformulation known
as quantum estimation theory [102]. In this paper, Helstrom presented
a key theoretical tool known as the Helstrom information, symbolized
as HI(θ). This quantity provides a means to identify the utmost reso-
lution achievable when estimating a parameter θ (such as the squeezing
parameter or any parameter parametrizing a family of quantum states
to be discriminated by the electron radar) of a quantum system rep-
resented by a density matrix ρ. The unique aspect of this tool is its
applicability regardless of the type of measurement apparatus employed
for the estimation process. Formally, for any unbiased estimator θ̂ of a

measurement series, the variance var
(
θ̂
)
always exceed the reciprocal

of the Helstrom information at the corresponding θ value, represented
as:

var
(
θ̂
)
≥ HI−1(θ) . (5.1)

This inequality generalizes the Cramer Rao inequality in classical es-
timation theory, which essentially has the same form with the Fisher
information replacing IH(θ). These tools have been extensively used
in quantum metrology with applications to atomic clocks and atom in-
terferometers and discussions of quantum-enhancement of metrological
performances via many-body entanglement [151].

We think that this framework could be used to characterize the
metrological performances of the electron radar. The computation of
HI(θ) would signify the maximal resolution limit that the radar can ever
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aspire to achieve in the estimation of θ. A more realistic determination
of the radar’s resolution can be achieved by evaluating the variance of
the measured quantities in the electron radar by incorporating all noise
sources of the experimental system. One could then infer from this

an estimation of var
(
θ̂
)
during a measurement process. This method

allows for a quantifiable measure of how closely the radar’s resolution
approaches the theoretical limit given by the inverse of the Helstrom
information.

5.2.3 Signal processing techniques

On a more practical level, parameter estimation in the experiment in-
volves the marriage of carefully designed measurements protocols and so-
phisticated post-processing algorithms that efficiently extract estimated
parameters from raw data. This require inverting the linear problem
which consists of the radar equation in the presence of noise. This is a
well known problem in signal processing for which well known techniques
exist. The single electron tomography presented in [16] uses max-like
estimation from a constrained Bayesian framework to determine the sin-
gle electron coherence from the experimental noise data measured at the
output of the HOM interferometer. Using such deconvolution algorithms
will certainly be extremely useful for reconstructing the effective single
electron scattering matrix defined by the amplitudes R̃(ω, τ).

Further research avenues may include the identification and cata-
loging of typical radiation signatures when subjected to radar probing.
With this catalogue of signatures, an unknown radiation’s most probable
properties could be swiftly discerned when probed, by cross-referencing
with the list of known signatures. This methodology presents an exciting
prospect for future research in electronic radar technology.
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Appendix A

Notations and
normalizations

In this appendix, we first recall the basic conventions used for fermionic
modes and electronic single particle states within the present work. We
also present the conventions used for bosonic excitations.

A.1 Electronic modes and wave packets

The mode decomposition for fermionic fields is defined by

ψ(t) =

∫

R

c(ω) e−iωt dω√
2πvF

(A.1)

so that these modes obey the canonical anticommutation relations

{c(ω), c†(ω′)} = δ(ω − ω′) . (A.2)

Equivalently, we have

c(ω) =

√
vF
2π

∫

R

ψ(t) eiωtdt . (A.3)

Given an electronic wave packet described by a normalized wave function
φe(x) such that ∫

R

|φe(x)|2 dx = 1 (A.4)

Throughout this paper, we will use the notation φe(t) for φe(−vF t) so
that

vF

∫

R

|φe(t)|2 dt = 1 . (A.5)
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We define

φ̃e(ω) = vF

∫

R

φe(t) e
iωt dt (A.6)

so that
1

vF

∫

R

|φ̃e(ω)|2
dω

2π
= 1 . (A.7)

The creation operator for the electronic wave packet φe is then defined
as

ψ†[φe] = vF

∫

R

φe(t)ψ
†(t) dt (A.8a)

=

∫

R

φ̃e(ω)c
†(ω)

dω√
2πvF

(A.8b)

A.2 Conventions for bosonic excitations

A normalized excitation is described by χ(ω) for ω > 0 such that

∫ +∞

0
|χ(ω|2 dω

2π
= 1 (A.9)

so that the single particle state

|χ⟩ =
∫ +∞

0
χ(ω) b†(ω) |∅⟩ dω√

2π
(A.10)

is normalized. If we define the corresponding creation operator

b†[χ] =

∫ +∞

0
χ(ω) b†(ω)

dω√
2π

(A.11)

and its hermitian conjugate b[χ], these operators obey the commutation
relations [

b[χ1], b
†[χ2]

]
= ⟨χ1|χ2⟩ 1 (A.12)

where ⟨χ1|χ2⟩ denotes the scalar product

⟨χ1|χ2⟩ =
∫ +∞

0
χ1(ω)

∗χ2(ω)
dω

2π
. (A.13)

on the space L2(R
+) of square summable functions on R+. Note that

with these conventions χ(ω) =
√
2π ⟨ω|χ⟩ where |ω⟩ = b†(ω) |∅⟩ is the

single photon state resolved in energy.
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Finally, when given an orthonormal basis of normalized single parti-
cle states |χn⟩ indexed by n, the mode operators b(ω) can be expressed
in terms of the bn = b[χn] as

b(ω) =
1√
2π

∑

n

χn(ω) bn . (A.14)

Starting from a normalized single particle state |χ⟩, we can express b†(ω)
in terms of b†[χ] and of b†[χ⊥] where |χ⊥

ω ⟩ denotes the normalized pro-
jection of |ω⟩ on the space of single particle excitations orthogonal to
|χ⟩:

b†(ω) = ⟨χ|ω⟩ b†[ω] +
√
1− | ⟨χ|ω⟩ |2 b†[χ⊥

ω ] . (A.15)
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Appendix B

Derivation of the radar
equation

In this Appendix, the single radar equation for the outgoing average
electrical current is derived. We will first derive it within the frame-
work of time dependent single particle scattering theory (linear electron
quantum optics) using a technique which can then be adapted to the
presence of Coulomb interaction effects which belong to the non-linear
regime of electron quantum optics.

B.1 Time-dependent single particle scattering
approach

We consider a MZI as depicted on Fig. 3.6 and discussed in Sec. 3.2.1.
Let us recall that the single electron scattering matrices of the two QPC
are assumed to be energy independent and given by:

Sα =

(√
Tα i

√
Rα

i
√
Rα

√
Tα

)
(B.1)

in which Tα and Rα respectively denote the transmission and reflection
probabilities at QPC α = A or B (Tα +Rα = 1).

The main idea is to express the outgoing electron field in branch 1 in
terms of incoming fields by back-tracing it from the output to the input
of the MZI interferometer. Assuming free propagation long the branch
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2, with time of flight τ2 leads to

ψ1out(t) =
√
TB ψ1,B−(t) + i

√
RB ψ2,B−(t) (B.2a)

= i
√
RB e−iϕAB/2

(√
TA ψ2in(t− τ2)

+ i
√
RA ψ1in(t− τ2)

)
(B.2b)

+
√
TB eiϕAB/2ψ1,B−(t) (B.2c)

in which ψα,B−(t) denotes the fermionic field right before the QPC B and
ψαin(t) denotes the incoming fields right before QPC A. Equation (B.2c)
involves the outgoing fermionic field from the radiation coupler. In the
case where propagation within this region can be described by a time
dependent linear scattering, we can relate it linearly to the incoming
field ψ1,A+ by

ψ1,B−(t) =

∫

R

R(t, t′)ψ1,A+(t
′) dt′ (B.3)

which assumes that no electron can be injected from any other channel
than the branch 1 of the MZI1. This enables us to write down the fully
general expression for the outgoing electrical current i1out(t) = −evF :

(ψ†
1outψ1out) : (t) in terms of the incoming electronic fields. We obtain

the outgoing current operator i1out(t) as

i1out(t) = Î0(t)− e
(
eiφAB Î+(t) + e−iφAB Î−(t)

)
(B.4)

in which, at the operator level

Î+(t) = −i
√
TBRB

∫

R

R(t, t′)
[√

TAψ
†
2in

− i
√
RAψ1in

]
(t− τ2)

×
[√

TAψ1in + i
√
RAψ2in

]
(t′) dt′ . (B.5)

When computing the average current, only terms that contain the same
numbers of ψ†

αin and ψαin are retained since the MZI is fed by two inde-
pendent electron sources. Consequently the AB-flux dependent part of
the average current is ⟨I+(t)⟩ = −e√RATARBTBX+(t) where

X+(t) =

∫

R

R(t, t′)
(
G(e)
1in − G(e)

2in

)
(t′|t− τ2) dt

′ . (B.6)

1We will discuss other cases later but for the average current, any other contribu-
tion would be irrelevant.

178



This is the time domain electron radar equation given by Eq. (4.10).
When the electron source is connected to 1in, after introducing the ambi-
guity function AS(Ω, τ) of the source S defined by Eq. (3.37) and R̃(Ω, τ)
defined by Eq. (3.35), we finally obtain the electron radar equation un-
der the form given by Eq. (3.34). Note that, within the single particle
scattering formalism, this equation is valid for any electron source, not
necessarily emitting a single electron excitation.

B.2 The interacting case

B.2.1 The plasmon scattering approach

Let us now consider the case where Coulomb interactions cannot be
neglected within the radiation coupler. We shall model it using the
EMP scattering formalism discussed in Sec. 2.2.1.

Note that the starting point of Eq. (B.2) is still valid. But, contrary
to the previous paragraph, the main challenge is now to backtrack the
fermionic field along the branch 1 of the MZI. Equivalently, we have to
express ψ1,B−(t) in terms of the incoming fields ψαin for α = 1, 2. In
order to do so, we consider the fermionic field ψ1,B−(t), expressed it in
terms of the outgoing edge-magnetoplasmon modes and use the edge-
magnetoplasmon scattering matrix to express it in terms of the incoming
modes into the radiation coupler.

To simplify the notation, the EMP modes along the branch 1 of
the MZI will be denoted by bα(ω) with α = in or α = out depending
whether they are incoming (position A+) or outgoing (position B−). In
the same way, the electromagnetic modes within the radiation channel
are denoted by aα(ω). The scattering matrix describing the coupling
between the edge channel and the electromagnetic modes is

S(ω) =

(
Sbb(ω) Sba(ω)
Sab(ω) Saa(ω)

)
(B.7)

so that (
bout(ω)
aout(ω)

)
= S(ω)

(
bin(ω)
ain(ω)

)
(B.8)

Using the bosonization formula for the fermionic field,and back-propagating
the bosonic mode operators across the radiation coupler, ψ1out(t) can be
expressed as

ψ1,B−(t) = eiΘψ1,A+(t)Db1 [(S
∗
bb − 1)Λ(t)]⊗Da[S

∗
baΛ(t)] (B.9)
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where the phase Θ is independent from t. Therefore, we need to compute

the correlator G(e)
ρi,B−

(1, t|2, t) which is equal to

⟨ψ†
2,A+

(t− τ2)ψ1,A+(t)Db1 [(S
∗
bb − 1)Λ(t)]Da[S

∗
baΛ(t)]⟩ (B.10)

in which the correlator is taken over the incoming many-body state
ρi = ρS ⊗ ρem which is the tensor product of the many body electronic
state ρS injected by the source by the incoming radiation state ρem for
the a(ω) modes.

B.2.2 The Franck-Condon factor

Let us now discuss how the correlator (B.10) can be evaluated. First
of all, the part that depends on the incident radiation state ρem can be
singled out thanks to the identity:

⟨Da[S
∗
baΛ(t)]⟩ρem = ⟨Da[S

∗
baΛ(t)]⟩|0⟩

× ⟨: Da[S
∗
baΛ(t)] :⟩ρem (B.11)

in which we have introduced the bosonic normal ordering : · · · :. All
the dependence in the incident radiation state ρem is thus contained
in the average value of the normal ordered displacement operator :
Da[S

∗
baΛ(t)] : for the a(ω) modes. The average value ⟨Da[S

∗
baΛ(t)]⟩|0⟩

is taken over the vacuum state for the a(ω) modes which means that it
can be reabsorbed into the correlator given by Eq. (B.10) except that
this time the quantum average is taken over the state ρS,0 = ρS⊗|0⟩ ⟨0|.
This can be summarized by

G(e)
ρi,B−

(1, t|2, t) = G(e)
ρS,0,B−

(1, t|2, t) (B.12a)

× ⟨: Da[S
∗
baΛ(t)] :⟩ρem (B.12b)

since ρS,0 = ρS ⊗ |0⟩ ⟨0| corresponds to a situation where no incident

radiation is sent onto the MZI. Therefore, the correlator G(e)
ρS,0,B−

(1, t|2, t)
is exactly the one appearing when computing the average current flowing
out of the MZI in the absence of electromagnetic radiation sent onto
it via the a(ω) modes. This problem corresponds to the problem of
electronic decoherence within the MZI.

In the end, the effect of the radiation injected into the radiation
coupler is described by the factor

Fρem(t) = ⟨: Da[S
∗
baΛ(t)] :⟩ρem (B.13)

which is the exact analogous of the Franck-Condon factor that appears
in the spectroscopy of complex molecules [49].
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B.2.3 Electronic propagation contribution

The electronic coherence G(e)
ρS,0,B−

(1, t|2, t) is more difficult to evaluate
because it corresponds to the outgoing single electron coherence after
propagation across the MZI in the presence of Coulomb interactions
within the branch 1 of the MZI. It turns out that simple and physically
transparent expressions can be found in the case where S is an ideal
single electron source. In this case, the state S is of the form

ρS = ψ†
1in[φe] |F ⟩ ⟨F |ψ1in[φe] (B.14)

where |F ⟩ corresponds to the Fermi sea with chemical potential µ = 0

in the two incoming electronic channels of the MZI and ψ†
1in[φe] creates

a single electron excitation with with wave function φe injected into the
MZI (position A−).

Expressing ψ†
1in[φe] in terms of ψ†

1,A+
[φe] and ψ†

2,A+
[φe] enables us

to show that

G(e)
ρS,0,B−

(1, t|2, t) = −i
√
RATA × ⟨F, 0a|ψ2,A+ [φe]ψ

†
2,A+

(t− τ2)

ψ1,B−(t)ψ
†
1,A+

[φe]|F, 0a⟩ (B.15a)

= −i
√
RATA × ⟨F2|ψ2,A+ [φe]ψ

†
2,A+

(t− τ2)|F2⟩
× ⟨F1, 0a|ψ1,B−(t)ψ

†
1,A+

[φe]|F1, 0a⟩ (B.15b)

in which |F, 0a⟩ denotes the tensor product of the Fermi sea in both
branches of the MZI and the ground state for the environmental modes.
Since φe is an electronic excitation above the Fermi level, the contribu-
tion associated with propagation along the branch 2 of the MZI can be
readily evaluated:

⟨ψ2,A+ [φe]ψ2,A+(t− τ2)⟩|F2⟩ = φe(t− τ2)
∗ . (B.16)

We are thus left with evaluating:

⟨ψ1,B−(t)ψ
†
1,A+

[φe]⟩|F1,0a⟩ =∫

R

vFφe(t
′)⟨ψ1,B−(t)ψ1,A+(t

′)⟩|F1,0a⟩ dt
′ . (B.17)

The time domain amplitude

Z1(τ) = vF ⟨ψ1,B−(τ)ψ
†
1,A+

(0)⟩|F1,0a⟩ (B.18)
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is the elastic single electron scattering amplitude across the branch 1
of the MZI. It is related to the elastic scattering amplitude Zel,1(ω)
computed in Refs. [52, 65] by a Fourier transform:

Z1(τ) =

∫ +∞

0
Zel,1(ωe) e

−iωeτ dωe

2π
. (B.19)

A direct evaluation of the r.h.s. of Eq. (B.18) from bosonization leads
to Eq. (4.6) whereas the evaluation of Zel,1(ω) can be done using the
expressions given in Ref. [66, 35] which we recall here for completeness:

Zel,1(ω) = 1 +

∫ ω

0
B(ω′) dω′ (B.20)

in which B(ω) is the solution of the integral equation

ωB(ω) = Sbb(ω)− 1 +

∫ ω

0
B(ω′)(Sbb(ω

′)− 1)dω′ (B.21)

with initial condition B(0+) = (dSbb/dω)(ω = 0+). Finally, we obtain:

⟨ψ1,B+(t)ψ
†
1,A+

[φe]⟩|F1,0a⟩ =

∫

R

φe(t
′)Z1(t− t′) dt′ . (B.22)

The correlator ⟨ψ2,A+ [φe]ψ
†
2,B−

(t−τ2)⟩|F2⟩ could also rewritten in a sim-
ilar way

⟨ψ2,A+ [φe]ψ
†
2,B−

(t)⟩|F2⟩ =

∫

R

φe(t
′)∗Z2(t− t′)∗ dt′ (B.23)

using the elastic scattering amplitude Z2(τ) = δ(τ − τ2) corresponding
to ballistic propagation during time of flight τ2.

Note that this form of the correlator ⟨ψ2,A+ [φe]ψ2,B−(t)⟩ remains
valid in the presence of electronic decoherence along branch 2 of the
MZI provided it is not caused by direct or indirect interactions (bath
mediated) between the two branches of the MZI. This means that there
must be no crosstalk between the two branches: each of these branch
do interact with their own environment which are prepared in their
ground states. In this case, we should use the elastic scattering am-
plitude Zel,2(ωe) for ωe > 0 to define Z2(τ). The elastic scattering
amplitude Zel,2(ωe) can be computed in terms of the finite frequency
admittance of the branch 2.
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B.2.4 General result

Let us finally collect the general result for the inter-branch coherence
GρS,0,B−(1, t|2, t) right before the second QPC in the general situation
where each of the branches involves Coulomb interactions, and possibly
a coupling to its own radiation channel fed by the vacuum state. In the
absence of external radiation, the expression

vFG(e)
ρS,0,B−

(1, t|2, t) =
∫

R2

vFφe(t− τ1)φe(t− τ2)
∗Z1(τ1)Z2(τ2) dτ1 dτ2

(B.24)
has a physically transparent interpretation: each wave packet gets

propagated according to the elastic scattering amplitude Zα(τ) along
the corresponding branch.

In the presence of incoming radiation arriving on each radiation cou-
pler of each branch α in independent respective quantum stated de-
scribed by the density operators ρem,α, Eq. (B.12) generalizes to

G(e)
ρi,B−

(1, t|2, t) = G(e)
ρS,0,B−

(1, t|2, t)×
∏

α=1,2

〈
: Daα

[(
S
(α)
ba

)∗
Λ(t)

]
:
〉
ρem,α

(B.25a)

In the end, the interference signal X+(t) is given by

X+(t) = vF

∫

R2

φe(t− τ1)φe(t− τ2)
∗×

Reff,1(t, t− τ1)Reff,2(t, t− τ2) dτ1,dτ2 (B.26)

in which the effective single particle scattering amplitudes are given by
the product of the elastic scattering amplitude by the Franck-Condon
factor:

Reff,α(t, t
′) = Zα(t− t′)Fρem,α(t) (B.27)

thus leading to the single electron radar equation (4.10) which reduces
to Eq. (4.11) in the case of ballistic propagation in time τ2 along branch
2 and no coupling to external radiation on this branch.

Last but not least, in the presence of Coulomb interactions, the radar
equation is valid only for an incoming single electron excitation injected
into the electronic MZI!
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Appendix C

Squeezing

C.1 Squeezed vacuum in a single mode

In this Appendix, we recall the basics needed to describe the squeezed
vacuum for a single mode1:

|Sqz⟩ = ez(a
†)2−z∗a2 |0⟩ (C.1)

where a and a† are the creation and destruction operators for a sin-
gle mode and z ∈ C. The squeezing operator Sz equal to ez(a

†)2−z∗a2 ,
performs a Bogoliubov transformation on the original mode operators:

S
†
zaSz = cosh(2|z|) a+ eiφ sinh(2|z|) a† . (C.2)

This enables us to compute the expectation value of any products of a
and a† in the state |Sqz⟩ as the expectation value of the same expression
in terms of the Bogoliubov transformed operators

az = cosh(2|z|) a+ eiφ sinh(2|z|) a† (C.3a)

a†z = cosh(2|z|) a† + eiφ sinh(2|z|) a (C.3b)

where φ = Arg(z). More precisely

⟨O[a, a†]⟩|Sqz⟩ = ⟨O[az, a
†
z]⟩|0⟩ (C.4)

Applying this relation to the quadrature

Xϑ =
1√
2

(
eiϑa+ e−iϑa†

)
(C.5)

1Note that |Sq0⟩ = |0⟩.
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leads to

⟨Xϑ⟩|Sqz⟩ = 0 (C.6a)

⟨(∆Xϑ)
2⟩|Sqz⟩ =

1

2
+ sinh2(2|z|) (C.6b)

+ cosh(2|z|) sinh(2|z|) cos(2ϑ+ φ) (C.6c)

which shows that the fluctuations are anisotropic in the Fresnel plane
for this harmonic mode, that Arg(z) determines the principal axes of
the ellipsoid of fluctuations. Its extrema are:

max
ϑ

⟨(∆Xϑ)
2⟩|Sqz⟩ =

1

2
cosh(4|z|) + 1

2
sinh(4|z|) = 1

2
e4|z| (C.7a)

min
ϑ

⟨(∆Xϑ)
2⟩|Sqz⟩ =

1

2
cosh(4|z|)− 1

2
sinh(4|z|) = 1

2
e−4|z| (C.7b)

The vacuum fluctuations being given by 1/2, the state |Sqz⟩ appears as
squeezed with sub-vacuum fluctuations compressed at most by a factor
e−4|z| < 1 as soon as |z| ≠ 0. Note that with ϑ = ω0t, we recover the non
stationary fluctuations of an harmonic mode of energy ℏω0 as a function
of time. These fluctuations have pulsation 2ω0.

Since the isotropic part of the fluctuations corresponds to 1
2+⟨a†a⟩|Sqz⟩,

Eq. (C.6b) gives us the average photon number in the squeezed vacuum
|Sqz⟩:

⟨a†a⟩|Sqz⟩ = sinh2(2|z|) (C.8)

Thinking of this harmonic mode as an optical mode, the above discussion
shows that increasing the squeezing parameter z increases the average
number of photons. A squeezed vacuum is thus on average more noisy
than the true vacuum and moreover, although increasing its squeezing
decreases its minimal fluctuations, it also increases its average noise.
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Appendix D

Optimal operating point for
squeezing detection

In this section, we discuss the optimization problem that appears in
squeezing detection.

As discussed in Sec. 4.4.2, this involves finding the maximum value
of the modulus of

R(ϑ, φ) = a+ b
(
e−iφ + ei(ϑ+φ

)
(D.1)

with (a, b) ∈ (R+)2 when varying φ, everything else being fixed. Since

|R(ϑ, φ)|2 = a2 + b2 cos2
(
φ+

ϑ

2

)
+ 2ab cos

(
ϑ

2

)
cos

(
φ+

ϑ

2

)
(D.2)

the maximum value is reached whenever

cos

(
φ+

ϑ

2

)
= sign

[
cos

(
ϑ

2

)]

and is given by

max
φ

[|R(ϑ, φ)|] =
√
a2 + b2 + 2ab

∣∣∣∣cos
(
ϑ

2

)∣∣∣∣ . (D.3)

Using Eqs. 4.57 and (4.58) and keeping only the first order in Λ then
leads to the following expression for the relative contrast with respect
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to the situation where no external radiation is present:

max
te




[
X

(dc)
+

]
Sq(z)[

X
(dc)
+

]
|0⟩


 = 1+Λ

(
η cosh(2|z|) sinh(2|z|)− sinh2(2|z|)

)
+O(Λ2)

(D.4)
where

η = e−2ω0τe |cos(2ω0τ2)| (D.5)

satisfies 0 ≤ η ≤ 1 and contains the effect of filtering associated with
the Leviton’s shape in the approximation scheme discussed in Sec. 4.4.2.
The function

Fη(z) = η cosh(2z) sinh(2|z|)− sinh2(2z) (D.6)

governs the maximum value of the contrast as first order in Λ as a func-
tion of the squeezing parameter z (here taken real positive for simplicity).
For η < 1, this function increases from 0 for z = 0 to a maximum value

max
z>0

(Fη(z)) =
1

2

(
1−

√
1− η2

)
(D.7)

which is obtained for

zopt =
1

2
arctanh(η) . (D.8)

Then it decreases for z > zopt, reaching zero for z = 2zopt and then, it
becomes negative. For larger squeezing parameters, it behaves as

Fη(z) ≃
1

2
− 1

4
(1− η) e4z . (D.9)

For η = 1, F1(z) grows to its z → +∞ limit which is 1/2. To illus-
trate this point, we have plotted Fη(z) as a function of the squeezing
parameter (expressed in dB) for various values of η on Fig. D.1.

Finally, this shows that there is an optimal value of squeezing which
leads to an absolute minimum of the contrast of the interferences fringes.
When one exceeds this optimal value, the lowering of the average base
line discussed on page 152 does not compensate the gain associated with
transient sub-vacuum fluctuations anymore. Consequently, the maxi-
mum achievable contrast is lower than the baseline measured in the
absence of external radiation.
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Figure D.1: Plots of Fη(z) defined by Eq. (D.6) as a function of z
(expressed in dB via Eq. (4.54)) for η = 1/4 (red curve), η = 1/2 (green
curve) and η = 4/5 (blue curve) and η = 1 (dashed curve).
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Appendix E

Single EMP detection

We now discuss the evaluation of the parameter x(t) = 2π| ⟨χ|S∗
baΛt⟩ |2

that appears in the evaluation of the Franck-Condon factor for Fock
states (see Eq. (4.66)). The qualitative behavior of this quantity can
be understood by using a time/frequency representation of the current
noise. The case of a narrow band EMP then leads to analytical approx-
imated expressions for x(t).

E.1 Time frequency analysis of current noise

Using ı̂(ω) = −e√ω b(ω) (ω > 0) for a single chiral integer quantum
Hall edge channel, x(t) = 2π| ⟨χ|S∗

baΛt⟩ |2 can be expressed in terms of

the excess current noise ∆S
(i)
|1;χ⟩(t, t

′) of a single quantum EMP in the
mode χ:

x(t) =
2π2

e2

∫

R2

Γba(t− t+) Γba(t− t−)
∗∆S

(i)
|1;χ⟩(t+, t−)dt+dt− . (E.1)

The physical meaning of this expression is better understood in terms

of the Wigner function ∆W
(i)
ρ (t, ω) of the excess current noise

∆W (i)
ρ (t, ω) =

∫

R

〈
: ı̂

(
t− τ

2

)
ı̂
(
t+

τ

2

)
:
〉
ρ,c
eiωτdτ (E.2)

in which ⟨AB⟩c denotes the connected correlator ⟨AB⟩ − ⟨A⟩⟨B⟩. In-
troducing the Ville transform associated with Γba(t):

WΓba
(t, ω) =

∫

R

Γba

(
t+

τ

2

)
Γba

(
t− τ

2

)
eiωτdτ . (E.3)
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leads to

x(t) =
2π2

e2

∫

R2

WΓba
(t− τ, ω)∆W

(i)
|1;χ⟩(τ, ω)

dωdτ

2π
. (E.4)

This shows that the radiation coupler’s response function Γba(τ) leads
to time-frequency filtering of of the excess quantum current noise of the
single EMP state |1, χ⟩. The time resolution for single EMP detection is
thus limited by the duration of the excess current noise associated with
the single EMP as well as by the response time of the radiation coupler,
typically the time scale appearing in Γba (see Sec. 4.2.3).

E.2 Current noise of a single EMP

For the single plasmon with wave-function χ, the average excess current
⟨i(t)⟩|1;χ⟩ is zero and the Wigner function of the excess current noise
defined in Eq. (E.2) is given by

∆W
(i)
|1;χ⟩(t,ω) =

e2

2π

∫

|Ω|≤2|ω|
e−iΩt

√
ω2 − Ω2

4

× χ

(
|ω|+ Ω

2

)
χ

(
|ω| − Ω

2

)∗ dΩ

2π
. (E.5a)

In the case of a narrowband single plasmon centered at the energy ℏω0

with Lorentzian linewidth γ0

χ(ω) =

√
γ0Θ(ω)

ω − ω0 +
iγ0
2

. (E.6)

such that γ0 ≪ ω0, the Wigner function of the excess current noise
can be approximated by the usual expression for such energy resolved
excitations:

∆W
(i)
|1;χ⟩(t, ω) ≃ Θ(t)

e2ω0

2π
4γ0t sinc (2(|ω| − ω0)t) e

−γ0t . (E.7)

E.3 Filtering of current noise

If the EMP has a narrow band compared to the typical scale of variation
of Γba(ω), the variation of Sba(ω) around ω0 can be neglected and this
leads to Eq. (4.69). One then recognizes

e2

2π

∣∣∣∣
∫ +∞

0

√
ωχ(ω) e−iωt dω√

2π

∣∣∣∣
2

=

∫

R

∆W (i)(t, ω)
dω

2π
(E.8)
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Bibliography

which in turns is related to the average instantaneous heat current car-
ried by the single EMP in state χ. The expression of JQ(t) in terms of
the current i(t) leads to

⟨JQ(t)⟩ρ =
RK

2

(
⟨i(t)⟩2ρ +

∫

R

∆W (i)
ρ (t, ω)

dω

2π

)
(E.9)

which then, because ⟨i(t)⟩|1;χ⟩ = 0, enables us to obtain Eq. (4.70) from
Eq. (4.69). For a single energy resolved EMP with energy ℏω0 and
Lorentzian lineshape of width γ0, the instantaneous heat current is given
by

⟨JQ(t)⟩|1;χ⟩ = ℏω0Θ(t) γ0 e
−γ0t (E.10)

and carries an average energy
∫
R
⟨JQ(t)⟩|1;χ⟩dt = ℏω0 as expected.
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[25] C. J. Bordé, C. Salomon, S. Avrillier, A. van Lerberghe, C.
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[32] M. Büttiker, A. Prêtre, and H. Thomas. “Dynamic conductance
and the scattering matrix of small conductors”. In: Phys. Rev.
Lett. 70 (1993), p. 4114. doi: 10.1103/PhysRevLett.70.4114.
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Summary

Recent advances in quantum nano-electronics have lead to the manufacturing of elec-
trical circuits in which quantum electrical currents involving one to a few electrons can
be generated controlled and characterized. This breakthrough has spurred the devel-
opment of sophisticated quantum sensing technologies, such as the electron quantum
radar (EQR) introduced in this work.

The EQR is an interferometric sensor leveraging both the sensitivity to electro-
magnetic fields and the long coherence time of single electrons to probe the quantum
state of microwave radiations with sub nanosecond time resolution. It is designed
as a Mach-Zehnder interferometer (MZI) with one branch coupled to the radiation
to be probed. As a single-electron propagates along both branches of the MZI, its
wave function is altered by the radiation. This shift is imprinted in the interferences
contribution to the average electrical current exiting the interferometer which then
provides information about the radiation.

Part of this work focuses on the shaping of single electron wave-packets and on
the design of the radiation coupler which coupled the incoming single electron to the
electromagnetic radiation to be probed. These two elements determine the EQR’s
resolving power for each probed radiation. Finally, the EQR’s sensing capabilities are
evaluated through specific examples, such as probing squeezed states or single photon
detection, demonstrating its potential to measure properties of quantum radiation in
both time and frequency domains in realistic forthcoming experiments.

Keywords: electron quantum optics, quantum coherence, electronic interferences,
Coulomb interaction, quantum sensing quantum optics,

Résumé

Les progrès récents en nanoélectronique quantique ont permis la fabrication de
circuits permettant de générer, contrôler et caractériser des courants constitués de un
à quelques électrons. Cette percée a engendré de nouvelles technologies quantiques de
détection, telles que le radar quantique à électrons (RQE) présenté dans cette thèse.

Le RQE est un capteur exploitant la sensibilité aux champs électromagnétiques
et la cohérence d’électrons uniques pour sonder l’état quantique d’un rayonnement
micro-ondes avec une résolution temporelle sub-nanoseconde. Il est conçu comme un
interféromètre de Mach-Zehnder (IMZ) dont l’une des branches est couplée au champ
à sonder. En traversant l’interféromètre, la fonction d’onde d’un électron est mod-
ifiée par le rayonnement. Ce changement est encodé dans les interférences contenues
dans le courant électrique moyen sortant de l’IMZ qui permettent de remonter à des
informations sur le rayonnement.

Deux chapitres sont consacrés au design du coupleur, couplant les électrons
au champ électromagnétiques à sonder, ainsi qu’à la modulation des états mono-
électroniques injectés. Ces deux éléments déterminent en grande partie le pouvoir de
résolution du RQE pour un rayonnement donné. Enfin nous discutons la capacité
du RQE à sonder des champs électromagnétiques aux temps courts sur des exemples
spécifiques, tel que la mesure du bruit non stationnaire d’un vide quantique comprimé
ou la détection de photons uniques. On montre ainsi son potentiel pour résoudre en
temps et en fréquence les propriétés d’un rayonnement quantique.

Mots-clés: optique quantique électronique, cohérence quantique, interférences
électroniques, interaction Coulombienne, détecteurs quantiques, optique quantique,
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