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de (diminuer sous) 3000 m entre +4 • C et +1 • C de réchauffement climatique.

Cette thèse a des implications en termes de gestion des catastrophes naturelles dans les Alpes françaises. D'abord, malgré leur diminution, les niveaux de retour 50 ans de charges de neige estimés dans nos travaux dépassent parfois les niveaux de retour 50 ans des normes françaises. Par exemple, à 1800 m, les normes françaises sont dépassées de 15% en moyenne, et pour la moitié des massifs. Ces dépassements sont probablement liés à des hypothèses discutables à propos du calcul des normes. Une deuxième implication est que les conceptions d'infrastructures critiques doivent être vérifiées au-dessus de 2000 m pour les aléas liés à la neige, c'est-à-dire là où les niveaux de retour 100 ans de chutes de neige ont augmenté.

Abstract

The anticipation of extreme climate events often relies on the quantification of T-year return levels, i.e. large values exceeded each year with probability 1 T , which are widely used to design critical infrastructures. Return levels are typically estimated with a two-step approach: i) a stationary generalized extreme value (GEV) distribution is fitted on a time series of annual maxima ii) return levels are computed using the fitted distribution. In the context of global warming, changes in return levels are usually assessed using GEV distributions that can vary with time, i.e using non-stationary GEV models where the parameters of the GEV distribution can vary with time.

This thesis analyses past and future changes of 50-year return levels of snow load and 100year return levels of snowfall in the French Alps using non-stationary GEV models. Snowfall (solid precipitation) is one of the key variables both for avalanche risk and for avoiding the disruption of transportation systems, while snow load (pressure exerted by the snowpack on the ground) is central both for water resource management and for the structural design of roofs. Time series of annual maxima of snowfall and snow load are provided every 300 m of elevation for the 23 massifs of the French Alps: by the S2M reanalysis , and by an ensemble of 20 climate projection of the EURO-CORDEX experiment (1951-2100). Each projection is adjusted against the S2M reanalysis for a high emission scenario called RCP8.5, which leads to more than +4 • C of global warming w.r.t. pre-industrial levels in 2100.

To study changes in return levels, we develop novel non-stationary GEV models that i) are based on a simple and robust statistical methodology for the S2M reanalysis ii) rely on piecewise-linear functions for the climate projection ensemble iii) can gather strength across consecutive elevations and within a climate projection ensemble.

We quantify changes in return levels using these models. Between 900 m and 3600 m of elevation, 50-year return levels of snow load have been decreasing for the period 1959-2019 and are projected to decrease when compared with +1 • C of global warming (reached in 2017). Averaged on all massifs, 100-year return levels of snowfall i) have been increasing above (decreasing below) 2000 m for the period 1959-2019 ii) are projected to increase above (decrease below) 3000 m at +4 • C of global warming when compared with +1 • C.

This thesis has implications for natural hazard management in the French Alps. First, despite their decrease, our 50-year return levels of snow load are sometimes exceeding 50year return levels of French building standards. For example, at 1800 m, French standards are exceeded by 15% on average, and by half of the massifs. These exceedances are likely due to questionable assumptions concerning the computation of these standards. A second implication is that the design of critical infrastructures needs to be verified above 2000 m for snow-related hazards, i.e. where 100-year return levels of snowfall have increased.

iii Résumé L'anticipation et la gestion des événements climatiques extrêmes reposent souvent sur l'estimation de niveaux de retour associés à des périodes de retour de T années, c'est-à-dire des valeurs dépassées chaque année avec une probabilité égale à 1 T , et qui sont habituellement utilisées pour concevoir des infrastructures critiques. Ces niveaux de retour sont traditionnellement estimés en deux étapes: i) une distribution d'extremum généralisée (GEV) stationnaire est ajustée à une série temporelle de maxima annuels ii) les niveaux de retour sont calculés à partir de la distribution ajustée. Dans un contexte de réchauffement climatique global, les changements de niveaux de retour sont habituellement évalués avec des distributions GEV qui peuvent évoluer avec le temps, c'est-à-dire avec des modèles GEV non-stationnaires où les paramètres de la distribution de GEV peuvent varier avec le temps.

Cette thèse étudie les changements passés et projetés de niveaux de retour 50 ans de charges de neige et de niveaux de retour 100 ans de chutes de neige dans les Alpes françaises à l'aide de modèles GEV non-stationnaires. Les chutes de neige (précipitations solides) font partie des variables clefs pour le risque d'avalanche et pour éviter une perturbation des réseaux de transport, alors que les charges de neige (pressions exercées par le manteau neigeux sur le sol) ont un impact important sur les ressources en eau et pour les normes de construction de toitures. Les travaux présentés dans cette thèse reposent sur l'analyse de séries temporelles de maxima annuels de chutes de neige et de charges de neige sont fournis tous les 300 m d'altitude pour les 23 massifs des Alpes françaises: par la réanalyse S2M pour la période passée , et par un ensemble de 20 projections climatiques de l'expérience EURO-CORDEX pour les périodes passées et futures . Ces projections sont ajustées par rapport à la réanalyse S2M pour un scénario de fortes émissions nommé RCP8.5, qui conduit en 2100 à plus de +4 • C de réchauffement climatique à l'échelle planétaire par rapport à l'ère préindustrielle.

Afin d'étudier les changements de niveaux de retour, nous avons développé de nouveaux modèles GEV non-stationnaires qui i) se basent sur une méthode statistique simple et robuste pour la réanalyse S2M ii) reposent sur des fonctions linéaires par morceaux pour l'ensemble de projections climatiques iii) peuvent améliorer les estimations en combinant les maxima d'altitudes différentes ou d'un ensemble de projections climatiques.

Ces modèles ont permis de quantifier l'évolution des niveaux de retour des charges et des chutes de neige dans les 23 massifs des Alpes françaises. Entre 900 m et 3600 m d'altitude, les niveaux de retour 50 ans de charges de neige ont diminué pour la période 1959-2019 et devraient diminuer par rapport à +1 • C de réchauffement climatique (réchauffement atteint en 2017). Les niveaux de retour 100 ans de chutes de neige ont en moyenne i) augmenté audessus de (diminué sous) 2000 m pour la période 1959-2019 ii) devraient augmenter au-dessus v Introduction

Context

Snow-related extremes can cause natural hazards, such as avalanches or winter storms, that can disrupt transportation (road, rail and air traffic), tourism, electricity (power lines), and communication systems [START_REF] Changnon | Catastrophic winter storms: An escalating problem[END_REF]. They can also lead to the collapse of buildings (Fig. 1.1) which may generate casualties and economic damages. For instance, more than USD 200 million in roof damages occurred during the Great Blizzard of 1993 [START_REF] O'rourke | Snow loads on gable roofs[END_REF]. In 2006, at the Katowice International Fair, a roof collapsed under a layer of snow, leading to 65 casualties and 140 injured [START_REF] Strasser | Snow loads in a changing climate: New risks?[END_REF]. [START_REF] Mensah | Review of technologies for snow melting systems[END_REF] One of the main paradigms to anticipate extremes consists in the quantification of return levels, i.e. large values exceeded with small probability [START_REF] Coles | An introduction to Statistical Modeling of Extreme Values[END_REF]. For instance, to avoid roof collapse due to snow overloading, European structure standards rely on the evaluation of 50-year return levels (values exceeded on average once every 50 years) of snow load [START_REF] Sanpaolesi | Scientific support activity in the field of structural stability of civil engineering works: snow loads[END_REF]. Traditionally, return levels are estimated with a statistical distribution of high values (annual maxima or values exceeding a high threshold) under the assumption of stationarity, i.e. it is assumed that this distribution does not change with time. However, this assumption is unlikely to hold with the climate change [START_REF] Milly | Stationarity is dead: Whither water management?[END_REF].

In this thesis, to account for the changing climate, we rely on non-stationary distributions. These distributions can change with time, and enable us to assess changes in extremes. Next, we give an overview of our approach. In Section 1.2, we present a concise state of the art both for i) the statistical methodology to model changes in extremes and ii) the past and projected changes in snow-related extremes. Specific knowledge gaps in the research literature are presented in Sect. 1.3. Finally, our scientific problematic and the outline of this manuscript are introduced in Section 1.4 and 1.5, respectively. What is an extreme value ? An answer to this question is domain-specific [START_REF] Mcphillips | Defining Extreme Events: A Cross-Disciplinary Review[END_REF]. In this thesis, following engineering practices, we rely on a statistical definition. A value is denoted as extreme if its intensity exceeds an extreme quantile called the 50-year (resp. 100-year) return level, i.e. a level exceeded each year with probability 1 50 (resp. 1 100 ). Such return levels can be estimated either directly or indirectly. Direct approaches rely on extreme quantile regression [START_REF] Koenker | Quantile Regression[END_REF][START_REF] Chernozhukov | Extremal Quantile Regression: An Overview[END_REF] which casts the estimation of a conditional quantile function as a minimization problem that involves the empirical distribution. However, in practice the amount of data in climate science is often limited. Thus, extreme quantile regression is not favored as it could lead to unstable estimates of return levels due to sampling issues. Instead, return levels are often estimated with a two-step approach: i) an extreme value distribution is fitted on the climatic data ii) return levels are directly computed with the fitted distribution. We follow this second approach, and detail the two steps in the paragraphs below.

First step: Fit of a generalized extreme value distribution

Extreme Value Theory [START_REF] Coles | An introduction to Statistical Modeling of Extreme Values[END_REF] considers two main distributions: the generalized extreme value (GEV) distribution and the Generalized Pareto distribution (GPD). Both distributions are widely used in climate research to analyze extreme values. On the one hand, parameters of the GEV distribution are estimated with maximum values of consecutive blocks of a time series (block maximum approach). On the other hand, parameters of the GPD are estimated using values that exceed a high threshold (peaks over threshold approach).

Both approaches are fundamentally equivalent and we choose to model annual maxima (i.e. maxima over blocks of size one year) using the GEV distribution. The Fisher-Tippett-Gnedenko theorem [START_REF] Fisher | Limiting forms of the frequency distribution of the largest or smallest member of a sample[END_REF][START_REF] Gnedenko | Sur la distribution limite du terme maximum d'une série aléatoire[END_REF] shows that asymptotically, maxima over blocks of infinite size follow a GEV distribution, which can be seen as an analogous to the central limit theorem [START_REF] Fisher | A History of the Central Limit Theorem[END_REF] which motivates to model sample means with a Gaussian distribution. In both cases, the remarkable idea is that we can approximate the distribution of a function of independent identically distributed random variables sampled from an unknown distribution.

The GEV distribution has three parameters: a location µ, a scale σ > 0 and a shape ξ (a.k.a extremal index or tail index). For example, if Y represents an annual maximum, i.e. a maximum over a block of one year, we can assume that Y ∼ GEV(µ, σ, ξ). It follows that the probability that the annual maximum Y is below y is:

P (Y ≤ y) = F GEV (y|µ, σ, ξ) = exp [-(1 + ξ y -µ σ ) -1 ξ + ]
, where u + denotes max (u, 0). (1.1) The first and second order moments of the GEV distribution are E(Y ) = µ + σ ξ (g 1 -1) and Var(Y ) = ( σ ξ ) 2 (g 2 -g 2 1 ) with g k = Γ(1 -k × ξ) where Γ denotes the gamma function. We note that the location parameter only contributes to the expectation E(Y ), and that the scale parameter is proportional to the standard deviation, i.e. Std(Y ) = Var(Y ). Finally, the shape parameter ξ controls the form of the distribution (Fig. 1.2 a). Indeed, depending on the sign of ξ, the GEV distribution belongs to three families of distribution known as i) the Weibull distribution (ξ < 0) with an upper bound, ii) the Gumbel distribution (ξ = 0), an unbounded distribution which represents the continuous limit as ξ → 0 and iii) the Fréchet distribution (ξ > 0) which has a lower bound.

(a) (b)

Figure 1.2: Influence of the shape parameter ξ on (a) the probability density function of the GEV distribution, noted f GEV (b) the return level y p , that corresponds to the return period T , and which is exceeded each year with probability p = 1 T . The location and scale parameters are fixed as µ = 1 and σ = 1.

The GEV distribution can be fitted to any time series of block maxima using the maximum likelihood method. Let y = (y 1 , ..., y N ) represent a vector of annual maxima of some climatic variable, e.g. temperature. Let θ = (µ, σ, ξ) denote a vector with the parameters of the GEV. Assuming that maxima are conditionally independent given θ, we compute the maximum likelihood estimator θ which corresponds to the parameter that maximizes the likelihood p(y|θ), where p(y|θ) = i ∂F GEV (y i |θ) ∂y i = i f GEV (y i |θ) with f GEV the probability density function of the GEV distribution.

Second step: Compute return levels with the fitted distribution

The T -year return level, also known as the return level with a return period of T years, is defined as a daily value y p exceeded each year with probability p = 1 T . In a stationary context, i.e. if the GEV distribution does not change with time, the Tyear return level is exceeded on average once every T years. In the next chapters of this thesis, we consider p ∈ { 1 50 , 1 100 } because it corresponds to the 50-year and 100-year return levels that are widely used for the design working life of building [START_REF] Cabrera | The Time Variable in the Calculation of Building Structures . How to extend the working life until the 100 years ?[END_REF].

The T -year return level simply corresponds to the 1 -p quantile of the GEV distribution:

P (Y ≤ y p ) = 1 -p ↔ y p = µ - σ ξ [1 -(-log (1 -p)) -ξ ]. (1.2)
In Figure 1.2 b, we illustrate how the return level y p increases in function of the return period T = 1 p for the three cases (ξ = -1, ξ = 0, ξ = 1). For ξ = 1, we observe that the return level increases roughly linearly. For ξ = 0, the return level seems to have a logarithmic increase. Finally for ξ = -1, the return level increases but is bounded above by 2.

1. INTRODUCTION 1.2.1.2 Non-stationary extreme value analysis: a framework to estimate changes in extreme values and to quantify their uncertainties robustly How to estimate changes in extreme values ? The most common approach is to estimate extreme values separately for two different periods and to compute the changes between them. Following the definitions of Sect. 1.2.1.1, changes in extreme values correspond to changes in return levels, which can be computed using one GEV distribution for each period. In climate science, periods of 20/30 years are traditionally considered as it is i) long enough to filter out the inter-annual variability ii) short enough to assume that climate averages are not impacted by climatic trends. For instance, O'Gorman (2014) estimates changes in 20-year return levels between two 20-year periods: 1981-2000 for the past climate, and 2081-2100 for the future climate under a high emission scenario. However this widely used approach has many drawbacks. For example, it does not rely on all the available data, but only on the data in the two periods of 20/30 years. Further, the assumption that periods of 20/30 years are not impacted by climatic trends can be debatable, and the possibility of a trend within the period is often not checked [START_REF] Kharin | Estimating extremes in transient climate change simulations[END_REF]. Finally, estimating a GEV distribution with annual maxima from 20/30 periods often lead to large uncertainties in the return levels. In climate science, these uncertainties are usually not accounted for despite their practical importance, e.g. to ensure that the design of protective measures and building standards based on return levels are adequate.

By contrast, non-stationary extreme value analysis makes it possible to consider all available data, and to account both for potential climatic trends and for uncertainties.

Non-stationary GEV modelling, i.e. non-stationary extreme value analysis for the GEV distribution, introduces deterministic functions µ(.), σ(.), ξ(.) that map each covariate to the corresponding parameters of the GEV distribution. For instance, temporal non-stationary GEV modelling considers functions µ(t), σ(t), ξ(t) that maps each temporal covariate t (such as the years or the global mean temperatures) to the changing parameters of the distribution [START_REF] Montanari | Modeling and mitigating natural hazards: Stationarity is immortal![END_REF]. Changing the location parameter shifts the GEV distribution toward larger/smaller values, while changing the scale parameter shrinks/spreads the GEV distribution. As illustrated in Figure 1.3, if the GEV distribution changes with a temporal covariate t, then the return level y p also changes with t. In other words, non-stationary GEV modelling enables us to model changes in return levels by modelling changes in the GEV distribution. Specifically, for each temporal covariate t, the changing return levels y p (t) can be computed as y p (t) = µ(t)-σ(t) ξ(t) [1-(-log (1 -p)) -ξ (t) ].

Non-stationary extreme value analysis provides a wide range of statistical methods to assess the uncertainty of return levels [START_REF] Coles | An introduction to Statistical Modeling of Extreme Values[END_REF][START_REF] Renard | Data-based comparison of frequency analysis methods: A general framework[END_REF]. The uncertainty of return levels is usually reported with confidence intervals. Such intervals are evaluated using the uncertainty of the parameters θ of the non-stationary GEV model, where θ denotes the maximum likelihood estimator (MLE). Thus, θ contains the estimated parameters for the functions µ(.), σ(.), ξ(.). In the following, we present two statistical methods that were used in this thesis to assess the uncertainty of return levels.

1. The delta method. Confidence intervals of return levels are estimated by assuming that θ is normally distributed, which stems from the asymptotic variance of the MLE. Thus, limits of the 95% confidence interval are θ ± q 0.975 × v( θ), where q 0.975 is the 0.975 quantile of the standard normal distribution, and v is a function that maps each parameter θ to the variance of the approximate normal distribution associated. Finally, using this confidence interval of θ, the delta method makes it possible to compute confidence intervals for the return levels. For more details, we refer to [START_REF] Coles | An introduction to Statistical Modeling of Extreme Values[END_REF].

2. The bootstrap method. Confidence intervals of return levels can also be estimated with a semi-parametric bootstrap resampling method adapted to non-stationary extreme distributions [START_REF] Efron | An introduction to the bootstrap[END_REF][START_REF] Kharin | Estimating extremes in transient climate change simulations[END_REF]. This procedure provides a set { θ (1) , ..., θ (i) , ..., θ (B) } of B = 1000 bootstrap samples GEV parameters that represent the in-sample variability. For each bootstrap sample, one return level is computed. This ultimately provides us with a distribution of return levels. From this distribution, we can compute any confidence intervals of return levels.

(b) (a) 1. INTRODUCTION

Past and projected changes in snow-related extremes

What is a snow-related extreme ? We define it as an extreme triggered directly or indirectly by snowfall. In this thesis, we study extreme values of two complementary snow variables: snowfall (a meteorological variable) and snow load (a snowpack variable). Changes in snow variables are complex because they depend on changes in precipitation and temperature. Snowfall is one of the critical parameters both for avalanche risk and for avoiding the disruption of transportation systems [START_REF] Gaume | Mapping extreme snowfalls in the French Alps using max-stable processes[END_REF], while snow load is central both for water resource management [START_REF] Marty | Recent Evidence of Large-Scale Receding Snow Water Equivalents in the European Alps[END_REF] and for the structural design of roofs (Croce et al., 2018a). In the following, we describe the past and projected changes in snowfall and snow load in Section 1.2.2.1 and 1.2.2.2, respectively.

Changes in extreme snowfall

Precipitation has two main phases, namely, solid precipitation (a.k.a. snowfall) and liquid precipitation (a.k.a. rainfall). Let f s (T ) denote the snowfall fraction, i.e. the fraction of precipitation which is solid at a daily mean surface temperature temperature T . The relationship between between f s (T ) and T often resembles an inverse S-shaped curve [START_REF] Maria | Improving snowfall representation in climate simulations via statistical models informed by air temperature and total precipitation[END_REF]. For instance, in the Northern Hemisphere below 1000 m of elevation, f s (-

3 o C) ≈ 100% , f s (0 o C) ≈ 50%, and f s (3 o C) ≈ 0% (Fig. 3 of O'Gorman 2014
). Thus, changes in snowfall depend both on changes in precipitation and changes in temperature.

The two main physical drivers of snowfall (temperature and precipitation) are both expected to increase with anthropogenic climate change (IPCC, 2021). Following the increase of global mean temperatures, it is expected that the rate of warming will be amplified over mountain regions. Indeed, temperatures are expected to increase more over lands than over oceans [START_REF] Byrne | Trends in continental temperature and humidity directly linked to ocean warming[END_REF], and it has been observed that the warming is amplified with elevation [START_REF] Pepin | Elevation-dependent warming in mountain regions of the world[END_REF].

At the global scale, mean and extreme precipitation are both expected to increase with the augmentation of global mean temperature but for two distinct reasons. On the one hand, global mean precipitation increases at a rate of 2%/ o C, i.e. 2% per degree of global mean warming, due to an increase in the radiative flux divergence of the atmosphere [START_REF] Igel | A reconstructed total precipitation framework[END_REF]. On the other hand, extreme precipitation should increase at a faster rate of 7%/ o C, due to an increase in mean atmospheric water vapor content according to the Clausius-Clapeyron relationship [START_REF] Ingram | Extreme precipitation: Increases all round[END_REF][START_REF] Allan | Advances in understanding large-scale responses of the water cycle to climate change[END_REF]. At the regional scale, we note that changes in atmospheric circulation patterns might modulate these warming-induced trends [START_REF] Frei | Future snowfall in the Alps: projections based on the EURO-CORDEX regional climate models[END_REF]. In particular, relative changes in extreme precipitation per unit of local warming are not evenly distributed over the globe (Fig. 6 of [START_REF] Kharin | Changes in temperature and precipitation extremes in the CMIP5 ensemble[END_REF] reaching lower rates of about 4%/ o C over land.

In a warming climate, it remains a counterintuitive phenomenon that mean snowfall can increase, at least transiently. At a regional scale, as long as regional temperatures are cold enough, i.e. temperatures with a high snowfall fraction, snowfall should increase if the mean precipitation increases in this region. However, if the surface temperatures become too warm, i.e. surface temperatures with a low snowfall fraction, more precipitation is expected to fall as rain instead of snow, which should ultimately decrease mean snowfall despite a potential increase in mean precipitations [START_REF] Kapnick | Controls of global snow under a changed climate[END_REF][START_REF] Krasting | Future Changes in Northern Hemisphere Snowfall[END_REF].

Extreme snowfall stems from extreme precipitation occurring in a range of optimal temperature slightly below the freezing point which favors higher snowfall intensities [START_REF] O'gorman | Contrasting responses of mean and extreme snowfall to climate change[END_REF]. The probability to experience temperatures in this optimal range is expected to decrease less than the likelihood to experience temperatures with a high snowfall fraction, and may even increase in cold areas where temperatures shall increase toward the freezing point while remaining below it (Fig. 1.4). Thus, in warm areas, i.e., at low and mid elevations and latitudes, extreme snowfall is expected to decrease less than mean snowfall [START_REF] Räisänen | Twenty-first century changes in snowfall climate in Northern Europe in ENSEMBLES regional climate models[END_REF]. To sum up, extreme snowfall is projected to increase in cold areas, i.e., at high latitudes and high elevation, and to decrease in warmer areas [START_REF] O'gorman | Contrasting responses of mean and extreme snowfall to climate change[END_REF][START_REF] Kawase | Regional Characteristics of Future Changes in Snowfall in Japan under RCP2.6 and RCP8.5 Scenarios[END_REF][START_REF] Frei | Future snowfall in the Alps: projections based on the EURO-CORDEX regional climate models[END_REF][START_REF] Chen | Anthropogenic influence would increase intense snowfall events over parts of the Northern Hemisphere in the future[END_REF][START_REF] Quante | Regions of intensification of extreme snowfall under future warming[END_REF]. This thesis will help to specify the elevation threshold that separates these two opposite trends in the French Alps. 

(b) (a)

Changes in extreme snow load

A snowpack, i.e. an accumulation of snow, can be described with several variables: the snow cover extent measures the area with snow on the ground, the snow depth corresponds to the observed height of accumulated snow, the snow water equivalent (SWE) is equal to the snow depth times the snow density, and finally the snow load is equal to the SWE times the gravitational acceleration. Snow load, a.k.a. ground snow load, corresponds to the pressure exerted by the snowpack on the ground. The snowpack evolution is complex because it depends on temperature (that drives several physical processes of the snow layers such as thermal diffusion, phase changes and metamorphism), and precipitation (snowfall and rainfall because the snowpack can absorb some of the rain). Thus, temperature is of prime interest for snowpack variables. Indeed, snowfall can occur any day with cold enough temperatures, while snowpack needs several consecutive days with cold enough temperatures to not melt.

In a warming climate, snow load (which is proportional to the SWE) should largely decrease. For instance, under a high emission scenario (RCP 8.5), mean winter SWE is expected to decrease in five high-mountain regions: Rocky Mountains, Subtropical Central Andes, European Alps, Hindu Kush and Karakoram and Himalaya (IPCC, 2019). We note the exception of Eurasian Arctic and North American Arctic where positive changes emerge by mid-century, and later in the century, respectively [START_REF] Brown | Chapter 3. Arctic terrestrial snow cover[END_REF]. Besides, it is virtually certain that snow cover will decline over most land regions during the 21st century, in terms of water equivalent, extent and annual duration (IPCC, 2021).

INTRODUCTION

Knowledge gaps in the literature on the French Alps

The French Alps, home to the largest ski areas in the world, are located between Lake Geneva to the north and the Mediterranean Sea to the south (Fig. 1.5a). This thesis focuses on changes in snowfall extremes and snow load extremes (Sect. 1.2.2) in the French Alps. Extremes are quantified using return levels (Sect. 1.2.1) because they are of prime interest for the design of structures. Specifically, extreme snow load is defined as the 50-year return levels of snow load, and extreme snowfall as the 100-year return levels of snowfall.

In Section 1.3.1, we report existing works on 100-year return levels of snowfall and 50year return levels of snow load in the French Alps, and find that changes in these return levels remain poorly studied. In Section 1.3.2, we present the snowfall and snow load data considered to fill this first gap. In Section 1.3.3, we report existing non-stationary generalized extreme value models to study the data considered.

Knowledge gaps in changes in return levels of snowfall and snow load

In the French Alps, most related works on extreme snowfall focus on the spatial dependency of annual maxima of snowfall using max-stable processes [START_REF] Davison | Statistical Modeling of Spatial Extremes[END_REF]. For instance, [START_REF] Gaume | Mapping extreme snowfalls in the French Alps using max-stable processes[END_REF] estimate joint exceedance probabilities and conditional return level maps, while [START_REF] Conclusion Nicolet | Decreasing spatial dependence in extreme snowfall in the French Alps since 1958 under climate change[END_REF] find that the spatial dependence range of extreme snowfall has been temporarily decreasing. We note that [START_REF] Gaume | Mapping extreme snowfalls in the French Alps using max-stable processes[END_REF] estimate stationary 100-year return level maps at a fixed elevation of 2000 m, and projected on the relief of the French Alps. Nevertheless, to the best of our knowledge, changes in return levels of snowfall have never been studied in the French Alps.

In the French Alps, 50-year return levels of snow load are of prime importance to design structures [START_REF] Biétry | Charges de neige au sol en France : proposition de carte révisée[END_REF]. Current structure standards estimated 50-year return levels with time series of snow depth measured at stations from 1945 to 1992, and with a hypothesis of constant snow density. However, potential changes in 50-year return level of snow load have never been studied in the French Alps, despite the need to account for climate change to ensure that current structure standards are still reliable. Near the French Alps, in Italy, we note the exception of Croce et al. (2018b) that estimate past and future changes in 50-year return levels between time windows of 40 years, e.g. 1981-2020 and 2060-2099. Based on the literature (Sect. 1.2.2), we can expect some changes in return levels of snowfall and snow load in the French Alps. In particular, these changes might vary with the elevation [START_REF] Frei | Future snowfall in the Alps: projections based on the EURO-CORDEX regional climate models[END_REF], and spatially in the French Alps with the large-scale circulation patterns [START_REF] Blanchet | Retreating Winter and Strengthening Autumn Mediterranean Influence on Extreme Precipitation in the Southwestern Alps over the last 60 years[END_REF] and the different climatological regions (Durand et al., 2009a).

Snowfall and snow load data in the French Alps

In the French Alps, most related works on extreme snowfall and extreme snow load are based on in-situ meteorological observations [START_REF] Biétry | Charges de neige au sol en France : proposition de carte révisée[END_REF][START_REF] Gaume | Mapping extreme snowfalls in the French Alps using max-stable processes[END_REF][START_REF] Conclusion Nicolet | Decreasing spatial dependence in extreme snowfall in the French Alps since 1958 under climate change[END_REF]. However, snowfall weather stations are mostly located around 1000 m of altitude, and are rarely located above 2000 m [START_REF] Gaume | Mapping extreme snowfalls in the French Alps using max-stable processes[END_REF][START_REF] Conclusion Nicolet | Decreasing spatial dependence in extreme snowfall in the French Alps since 1958 under climate change[END_REF]. Furthermore, observations are only available for the winter period (Nov-May) and are rarely continuously available along the years. Besides, related works on extreme snow load are limited because they do not rely on snow load observations but on snow depth observations and assume a constant snow density [START_REF] Biétry | Charges de neige au sol en France : proposition de carte révisée[END_REF].

KNOWLEDGE GAPS IN THE LITERATURE ON THE FRENCH ALPS

In this thesis, we rely on the S2M reanalysis that consists of simulations from the snowpack model Crocus driven by the SAFRAN atmospheric reanalysis [START_REF] Vernay | The S2M meteorological and snow cover reanalysis in the French mountainous areas (1958 -present)[END_REF]. The SAFRAN reanalysis combines information from numerical weather prediction models and the best possible set of available in-situ meteorological observations, and assumes that climate variables are homogeneous inside each of the 23 massifs of the French Alps every 300 m of elevation [START_REF] Vernay | The S2M meteorological and snow cover reanalysis over the French mountainous areas, description and evaluation 1958 -2020[END_REF]. Thus, for each massif and every 300 m of elevation, the S2M reanalysis provides annual maxima of snowfall and snow load from 1959 to 2019.

We also rely on future projections (2006-2100) and historical simulations of annual maxima of snowfall and snow load. Indeed, a climate projection ensemble of the EURO-CORDEX experiment [START_REF] Jacob | EURO-CORDEX: New high-resolution climate change projections for European impact research[END_REF] has been adjusted against the S2M reanalysis [START_REF] Verfaillie | Multicomponent ensembles of future meteorological and natural snow conditions for 1500 m altitude in the Chartreuse mountain range, Northern French Alps[END_REF] under a high emission scenario called RCP8.5 [START_REF] Moss | The next generation of scenarios for climate change research and assessment[END_REF]. Therefore, for each massif and every 300 m of elevation and each of the 20 ensemble members, annual maxima of snowfall and snow load are provided from 1951 to 2100.

In Figure 1.5b, we illustrate annual maxima of snowfall for the Vanoise massif at 1500 m. 

Knowledge gaps in non-stationary generalized extreme value models

Non-stationary GEV models improve the estimation of return levels, i.e. reduce the width of their uncertainty intervals, by gathering strength across sources of data. The datasets considered in this thesis (Sect. 1.3.2) make it possible to analyze how return levels of snowfall and snow load change temporally (in the past and the future), spatially (for the 23 massifs), with the elevation (every 300 m) and between climate models (for the 20 GCM-RCM pairs). Thus, in the following, we present existing non-stationary generalized extreme value models that account for temporal changes, spatial changes, changes with the elevation, and changes within the climate projection ensemble.

INTRODUCTION

Non-stationary GEV models that account for temporal changes. As explained in Section 1.2.1.2, instead of fitting GEV distributions on periods of 20/30 years, temporal non-stationary GEV models enable us to gather strength across periods by considering functions that map each covariate t to the changing GEV parameters µ(t), σ(t), ξ(t). However, in practice, due to the scarce number of maxima considered, these functions are often limited to linear functions. Indeed, with few maxima, more complex functions can lead to unrealistic changes (see example in Marty and Blanchet, 2012, with quadratic functions). We note that linear functions remain the default choice even when more maxima are available, e.g. when we fit several climate projections together [START_REF] Kharin | Estimating extremes in transient climate change simulations[END_REF][START_REF] Wang | North Atlantic ocean wave climate change scenarios for the twenty-first century[END_REF]. Since changes in extreme snowfall are likely nonlinear (Sect. 1.2.2), it seems interesting to rely on nonlinear functions when enough maxima are available.

Non-stationary GEV models that account for spatial changes. In the context of a spatial analysis, we can gather strength across observation stations using functions µ(s), σ(s), ξ(s) that map each spatial covariate s (longitude, latitude) to the parameters of the GEV distribution [START_REF] Davison | Statistical Modeling of Spatial Extremes[END_REF]. Some approaches even consider spatio-temporal functions µ(s, t), σ(s, t), ξ(s, t), and assume one common temporal evolution for all stations [START_REF] Westra | Detection of non-stationarity in precipitation extremes using a max-stable process model[END_REF]. However, approaches that study the spatial repartition of temporal changes usually consider one temporal non-stationary GEV model for each station.

Non-stationary GEV models that account for changes with the elevation. In mountainous regions, non-stationary GEV models can also be used to represent the relationship of snow extremes with elevation, using functions µ(z), σ(z), ξ(z) that map each elevation z to the parameters of the GEV distribution [START_REF] Blanchet | Mapping snow depth return levels: Smooth spatial modeling versus station interpolation[END_REF]Schellander and Hell, 2018). To account for the elevation, other approaches transform the data [START_REF] Gaume | Mapping extreme snowfalls in the French Alps using max-stable processes[END_REF] or propose novel distances [START_REF] Conclusion Nicolet | Decreasing spatial dependence in extreme snowfall in the French Alps since 1958 under climate change[END_REF]. However, to the best of our knowledge, non-stationary GEV models that use functions µ(z, t), σ(z, t), ξ(z, t) to gather strength both across elevations and time periods have never been considered.

Non-stationary GEV models that account for changes within the climate projection ensemble. A majority of temporal non-stationary approaches for climate projection ensembles estimates one non-stationary GEV model for each climate projection [START_REF] Kharin | Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations[END_REF][START_REF] Beniston | Future extreme events in European climate: An exploration of regional climate model projections[END_REF]. Several studies gather strength across climate projections by fitting one non-stationary GEV model with all climate projections [START_REF] Kharin | Estimating extremes in transient climate change simulations[END_REF][START_REF] Wang | North Atlantic ocean wave climate change scenarios for the twenty-first century[END_REF]. In other words, these approaches assume that all climate projections follow the same non-stationary distribution because they consider climate projections generated by the same climate model. However, their assumption is unlikely to hold in the cases where climate projections are generated by different climate models. In this case, one solution could be to consider a non-stationary GEV model defined by functions µ(i, t), σ(i, t), ξ(i, t), where i denotes the i-th climate projection.

Scientific problematic

In Section 1.3, we identify several gaps in the literature that are either related to climate science or to extreme value analysis. In Section 1.3.1, we highlight that past and projected changes in return levels of snowfall and snow load remain poorly studied in the French Alps despite their importance for societal adaptation to climate change. To fill this first gap, we consider past observations and climate projections of snow load and snowfall (Sect. 1.3.2). We consider non-stationary GEV models to study changes in return levels from these datasets. In Section 1.3.3, we emphasize that existing temporal non-stationary GEV models often remain limited to linear models, that are estimated separately on each time series of annual maxima, e.g. on each climate projection, even though there exists non-stationary GEV models that can gather strength across time series of annual maxima.

Based on these knowledge gaps in the research literature, the scientific problems of this thesis are split between climate science and extreme value analysis applied to climate science:

• We identify several gaps related to climate science: What are the past and projected changes in return levels of snowfall and snow load in the French Alps ? What is the organization of these changes with the elevation ? What is the implication of these climatic changes for snow-related hazard assessment ?

• We identify several limitations in the statistical approaches based on non-stationary GEV models to study changes in return levels: What kind of nonlinear functions could we consider for temporal non-stationary GEV models when we fit several climate projections together ? How to select the most appropriate non-stationary GEV model for each massif ? How to gather strength across time series of annual maxima from different climate models and from consecutive elevations ?

1. INTRODUCTION

Outline of this thesis

This thesis is presented through four main chapters that correspond to self-contained journal articles. Chapter 2 has been published in Natural Hazards and Earth System Sciences, Chapter 3 in The Cryosphere, while Chapter 4 has been submitted to Earth System Dynamics. Chapter 5 has not been submitted but will be soon. Finally, Chapter 6 is dedicated to the conclusions. An overview of each chapter is proposed in Figure 1.6. In chapter 2, past changes in 50-year return level of snow load are estimated between 1959 and 2019 from the S2M reanalysis using linear non-stationary GEV models. Specifically, we compute return levels that account for the effect of climate change, and compare them with the stationary return levels provided in current French structure standards.

In chapter 3, past changes in 100-year return levels of snowfall are assessed between 1959 and 2019 using linear non-stationary GEV models. We introduce a non-stationary GEV model that can gather strength across consecutive elevations.

In chapter 4, projected changes in 50-year return levels of snow load are estimated between +1 and +4 • C of global warming above pre-industrial levels. We rely on a flexible nonstationary GEV model based on piecewise linear functions, and which can also account for changes within the climate projection ensemble. Return levels are assessed together from the S2M reanalysis and all GCM-RCM pairs (considering both historical and future periods).

In chapter 5, projected changes in 100-year return levels of snowfall are evaluated between +1 and +4 • C of global warming using the methodology introduced in chapter 4.

In chapter 6, the conclusions and perspectives of this thesis are presented.

Past changes in extreme snow load

Le Roux, E., Evin, G., Eckert, N., Blanchet, J., and Morin, S.: Nonstationary extreme value analysis of ground snow loads in the French Alps: a comparison with building standards, Natural Hazards and Earth System Sciences, 20, 2961-2977, doi: 10.5194/nhess-2020-81, 2020 It could be that the decline was so small that it was unnoticeable till some crucial point was reached-like a domicile that slowly wears out and deteriorates, showing no signs of that deterioration until one night when the roof collapses.

-Isaac Asimov, Forward the Foundation 

Abstract: In a context of climate change, trends in extreme snow loads need to be determined to minimize the risk of structure collapse. We study trends in 50-year return levels of ground snow load (GSL) using non-stationary extreme value models. These trends are assessed at a mountain massif scale from GSL data, provided for the French Alps from 1959 to 2019 by a meteorological reanalysis and a snowpack model. Our results indicate a temporal decrease in 50-year return levels from 900 to 4200 m, significant in the northwest of the French Alps up to 2100 m. We detect the most important decrease at 900 m with an average of -30 % for return levels between 1960 and 2010. Despite these decreases, in 2019 return levels still exceed return levels designed for French building standards under a stationary assumption. At worst (i.e. at 1800 m), return levels exceed standards by 15 % on average, and half of the massifs exceed standards. We believe that these exceedances are due to questionable assumptions concerning the computation of standards. For example, these were devised with GSL, estimated from snow depth maxima and constant snow density set to 150 kg m -3 , which underestimate typical GSL values for the snowpack.

Introduction

Extreme snow loads can generate economic damages and casualties. For instance, more than USD 200 million in roof damages occurred during the Great Blizzard of 1993 [START_REF] O'rourke | Snow loads on gable roofs[END_REF]. In 2006, at the Katowice International Fair, the roof of one of the buildings collapsed under a layer of snow, leading to 65 casualties and 140 injured (BBC News, 2006). In France, snow loads over Roussillon in 1986, caused both EUR 17 million in damages and a major power outage due to overloading of electrical cables and pylons by sticking snow [START_REF] Vigneau | dans les Pyrénées orientales : deux perturbations méditerranéennes aux effets remarquables[END_REF][START_REF] Naaim-Bouvet | La neige : recherche et réglementation[END_REF].

Ground snow load (GSL) is defined as the pressure exerted by accumulated snow on the ground, which can be directly associated with accumulated snow on structures, e.g. on roofs [START_REF] Sanpaolesi | Scientific support activity in the field of structural stability of civil engineering works: snow loads[END_REF]. In detail, the observed height of accumulated snow is called snow depth (in m). The density of this snow can vary widely between precipitation particles (ρ SNOW ≈ 100 kg m -3 ) and a ripe snowpack (ρ SNOW ≈ 500 kg m -3 ). Multiplying snow depth by snow density gives the surface mass of snow (in kg m -2 ). Surface mass of snow corresponds to the snow water equivalent (SWE), which is the height of water (in mm) we could obtain if we melt all the snow in a 1 m 2 area. Indeed, since water density is ρ WATER = 1000 kg m -3 , we have that 1 mm of water on 1 m 2 has a surface mass of 1 kg m -2 . Snow load is the pressure exerted by this surface mass of snow (in N m -2 or Pa) and equals the SWE times the gravitational acceleration (g = 9.81 m s -2 ). Snowpack variables related to GSL (snow depth, SWE) evolve with climate change. As shown in Table 2.1, the literature on past trends in snowpack variables for the Western Alps shows a decreasing trend. The literature on projected trends also points to a decrease (stronger for the second half of the 21st century under a high greenhouse gas emission scenario than with strong reductions in greenhouse gas emissions) for mean winter (December-May) SWE in the European Alps (IPCC, 2019). However, anthropogenic climate change impacts climatic variables in their averages as well as in their extremes (Klein Tank and Konnen, 2003;IPCC, 2012). For instance, annual maxima of snow depth have decreased in Switzerland [START_REF] Marty | Long-term changes in annual maximum snow depth and snowfall in Switzerland based on extreme value statistics[END_REF]. Projected trends in extreme snowpack variables are prone to strong uncertainties [START_REF] Strasser | Snow loads in a changing climate: New risks?[END_REF][START_REF] Beniston | The European mountain cryosphere: a review of its current state, trends, and future challenges[END_REF] as both mean winter temperature (IPCC, 2019) and winter precipitation extremes [START_REF] Rajczak | Projections of Future Precipitation Extremes Over Europe: A Multimodel Assessment of Climate Simulations[END_REF] are projected to increase in the European Alps.

The impact of climate change on GSL was not taken into account in current European standards for structural design, a.k.a Eurocodes [START_REF] Sanpaolesi | Scientific support activity in the field of structural stability of civil engineering works: snow loads[END_REF], which drive French standards [START_REF] Biétry | Charges de neige au sol en France : proposition de carte révisée[END_REF]. These standards define that structures must withstand their own weight plus a pressure proportional to a characteristic value. The latter is the stationary 50-year return level of GSL, exceeded once every 50 years on average. Thus, studying trends in 50-year return levels of GSL is needed for updating these standards (Croce et al., 2018b).

In the literature, past and projected trends in 50-year return levels of GSL have rarely been investigated with the exception of [START_REF] Rózsás | Long-Term Trends in Annual Ground Snow Maxima for the Carpathian Region[END_REF], Il Jeong and Sushama (2018), and Croce et al. (2018b). In the French Alps, several studies focused on extreme snow variables [START_REF] Biétry | Charges de neige au sol en France : proposition de carte révisée[END_REF][START_REF] Gaume | Relative influence of mechanical and meteorological factors on avalanche release depth distributions: An application to French Alps[END_REF][START_REF] Gaume | Mapping extreme snowfalls in the French Alps using max-stable processes[END_REF] and their spatial dependence [START_REF] Nicolet | Inferring Spatio-temporal Patterns in Extreme Snowfall in the French Alps Using Max-stable Processes[END_REF][START_REF] Conclusion Nicolet | Decreasing spatial dependence in extreme snowfall in the French Alps since 1958 under climate change[END_REF][START_REF] Nicolet | A multi-criteria leave-two-out crossvalidation procedure for max-stable process selection[END_REF][START_REF] Nicolet | Assessing Climate Change Impact on the Spatial Dependence of Extreme Snow Depth Maxima in the French Alps[END_REF]. However, trends in 50-year return levels of GSL remain unexplored.

We fill these gaps by studying annual maxima of GSL provided every 300 m of altitude at a mountain massif scale for the 23 French Alps massifs. We rely on the SAFRAN-Crocus reanalysis [START_REF] Vernay | The S2M meteorological and snow cover reanalysis in the French mountainous areas (1958 -present)[END_REF] produced by the SAFRAN-Crocus chain (Durand et al., 2009a;[START_REF] Vionnet | The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2[END_REF] available for the period 1959-2019. The major advantage of this reanalysis is to benefit from an advanced snowpack model which provides daily estimates of ground snow load values, while previous studies relied on approximate values directly related to snow depth with a crude estimation of snow density [START_REF] Biétry | Charges de neige au sol en France : proposition de carte révisée[END_REF]. Thus, our approach considers only natural snow processes: we do not account for snow removal throughout the year and consider all processes (accumulation, thaw-freeze, melt, compaction etc.) occurring during the winter season.

Our statistical methodology consists in applying stationary and non-stationary extreme value models to annual maxima time series. We select one model by massif and altitude with the Akaike information criterion (AIC) statistical criterion, validate the selected model with the Anderson-Darling test, and assess its significance with the likelihood ratio statistical test. Finally, for each massif and altitude, we compute the relative change of 50-year return levels of GSL between 1960 and 2010, and we compare the non-stationary return level in 2019 with the stationary return level designed for French building standards.

This paper is organized as follows. Section 2 presents our data. Section 3 describes standards for ground snow load. Then, Sect. 4 explains our methodology. Results, discussion and conclusions are introduced in Sects. 5, 6 and 7, respectively.

PAST CHANGES IN EXTREME SNOW LOAD

Ground snow load data

The study area covers the French Alps which are located between Lake Geneva to the north and the Mediterranean Sea to the south (Fig. 2.1). The climate is contrasted, colder and wetter in the northern Alps and much drier in the southern Alps (Durand et al., 2009a). This region is typically divided into 23 mountain massifs of about 1000 km 2 . We rely on the SAFRAN-Crocus reanalysis [START_REF] Vernay | The S2M meteorological and snow cover reanalysis in the French mountainous areas (1958 -present)[END_REF] from the SAFRAN-Crocus chain (Durand et al., 2009a;[START_REF] Vionnet | The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2[END_REF] available from August 1958 to July 2019 at the scale of these massifs, every 300 m of altitude from 300 to 4800 m. Contrary to gridded products, this reanalysis assumes for a given altitude the homogeneity of the different variables at the scale of the massif. Also, annual maxima are available from 1959 to 2019. Indeed, annual maxima denote the maxima during a year centred on the winter season; for example, annual maxima for 1959 correspond to the maxima from the 1 August 1958 to the 31 July 1959.

To sum up, GSL equals SWE from the SAFRAN-Crocus reanalysis times the gravitational acceleration. We study time series of annual maxima of GSL for each massif from 1959 to 2019 every 300 m of altitude from 300 to 4800 m (Fig. 2.1). (Durand et al., 2009a).

The SAFRAN-Crocus reanalysis is produced by a chain of two models. First, SAFRAN meteorological reanalysis (Durand et al., 2009a) performs a spatialization of the weather data (precipitation, temperature, humidity, radiation, wind speed) over the massifs and altitudes. Then, the Crocus snowpack model [START_REF] Vionnet | The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2[END_REF] infers snow depth and SWE based on SAFRAN time series. Crocus is a one-dimensional multilayer physical snow scheme, which simulates the snowpack evolution over time, by accounting for several processes such as thermal diffusion, phase changes and metamorphism.

The SAFRAN-Crocus reanalysis has been evaluated against various observation datasets, as reported in previous publications [START_REF] Lafaysse | Toward a new chain of models for avalanche hazard forecasting in French mountain ranges, including low altitude mountains[END_REF][START_REF] Vionnet | Numerical weather forecasts at kilometer scale in the French Alps: Evaluation and application for snowpack modeling[END_REF][START_REF] Revuelto | Multi-criteria evaluation of snowpack simulations in complex alpine terrain using satellite and in situ observations[END_REF][START_REF] Vionnet | Sub-kilometer Precipitation Datasets for Snowpack and Glacier Modeling in Alpine Terrain[END_REF]. In most cases, the evaluation is carried out against in situ snow depth observations and remote sensing snow cover information. For example, [START_REF] Vionnet | Numerical weather forecasts at kilometer scale in the French Alps: Evaluation and application for snowpack modeling[END_REF] evaluated SAFRAN-Crocus snow depth data against 79 observed snow depth data in the French Alps for the 2010-2014 time period, with mean bias and standard error values of 18 and 37 cm, respectively. This corresponds to typical values for snow modelling systems applied in various regions on Earth. Because of lower data availability, evaluations against observed SWE values are less frequent than against snow depth data, although we note that Crocus has been shown to perform extremely well compared to other snow cover models, in terms of SWE, across many observation sites worldwide [START_REF] Krinner | ESM-SnowMIP: Assessing snow models and quantifying snow-related climate feedbacks[END_REF] and SAFRAN-Crocus exhibits satisfying performance in terms of snow depth and SWE in the Pyrenees [START_REF] Quéno | Snowpack modelling in the Pyrenees driven by kilometric-resolution meteorological forecasts[END_REF], providing confidence, with respect to other existing datasets, in using this model chain for GSL values. Further model evaluations, using additional datasets, are required to continue assessing and improving the quality of the model chain. Furthermore, we highlight that we only use SAFRAN-Crocus reanalysis values on flat field, and we did not use simulations on slopes; hence it is not relevant to discuss the impact of slope and aspect on the results of this study.

Standards for ground snow load in the French Alps

GSL French standards [START_REF] Biétry | Charges de neige au sol en France : proposition de carte révisée[END_REF] are based mostly on Eurocodes [START_REF] Sanpaolesi | Scientific support activity in the field of structural stability of civil engineering works: snow loads[END_REF] and on prior French standards. Each French department, and by extension each French Alps massif, is associated with a region (C or E) that sets characteristic 50-year return level values of GSL between 200 and 2000 m of altitude (Fig. 2.2). French standards were elaborated with annual maxima time series of snow depth on the ground measured at stations from 1945 to 1992. GSL data were approximated from annual maxima of snow depth and by assuming that snow density equals 150 kg m -3 . Following Eurocodes, the characteristic value of GSL is defined as the 50-year return level of a Gumbel distribution (Sect. 2.4). This distribution was fitted using the least squares method and by removing the top annual maximum when considered exceptional [START_REF] Biétry | Charges de neige au sol en France : proposition de carte révisée[END_REF] according to a criterion not explicitly mentioned in the French report cited as reference. However, in the Eurocodes, the standard method was to consider the top maximum as exceptional if it was 1.5 times larger than the second largest maximum [START_REF] Sanpaolesi | Scientific support activity in the field of structural stability of civil engineering works: snow loads[END_REF]. In our methodology, we do not remove the top annual maximum.

Statistical methodology

Following extreme value theory, we employ two stationary models and six non-stationary models for time series of annual maxima of GSL (Sect. 2.4.1). We select a single model for each time series (i.e. for each massif and altitude) with the AIC statistical criterion, validate this model with the Anderson-Darling test, and assess its significance with the likelihood ratio statistical test (Sect. 2.4.2). Finally, we compute the relative change of 50-year return levels of GSL between 1960 and 2010, quantify the uncertainty of return levels in 2019 to compare them with the stationary return levels designed for French standards (Sect. 2.4.3).

Non-stationary models based on extreme value distributions

Climate extremes are generally studied with statistics. As underlined in the IPCC special report on climate extremes, a large amount of statistical literature builds on extreme indices to examine moderate extremes (IPCC, 2012). However, since we focus on extremes that are more rare, it is recommended to rely on extreme value theory (EVT, [START_REF] Coles | An introduction to Statistical Modeling of Extreme Values[END_REF]. Such statistical models provide and hypothesize additional prior information in order to compensate for the limited number of empirical observations that commonly span only several decades. These models can be used to extrapolate beyond the empirical observations and to estimate return levels (Sect. 2.4.3).

EVT offers a suitable framework to analyse extreme values, i.e. to model the form of the tail for almost any probability distribution. Asymptotically, as the central limit theorem motivates sample means modelling with the normal distribution, the Fisher-Tippett-Gnedenko theorem [START_REF] Fisher | Limiting forms of the frequency distribution of the largest or smallest member of a sample[END_REF][START_REF] Gnedenko | Sur la distribution limite du terme maximum d'une série aléatoire[END_REF] encourages sample maxima modelling with the generalized extreme value (GEV) distribution. This theorem justifies that the maximum of finite-sized blocks with a large enough block size can be modelled with the GEV distribution. In practice, an annual maximum is thus usually considered a realization of a GEV distribution. Three parameters define the GEV distribution: a location µ, a scale σ > 0 and a shape ζ (a.k.a extremal index or tail index). The GEV distribution includes three specific types of distributions: Weibull (ζ < 0), Fréchet (ζ > 0) and Gumbel (ζ = 0). Thus, by definition, if Z represents an annual maximum of GSL, we can assume that Z follows a GEV distribution (i.e. Z ∼ GEV(µ, σ, ζ)), which implies the following:

P (Z ≤ z) =          exp [-(1 + ζ z-µ σ ) -1 ζ + ] if ζ = 0 and where u + denotes max (u, 0), exp [-exp (-z-µ σ )] if ζ = 0, in other words if Z ∼ Gumbel(µ, σ). (2.1)
In a context of climate change, a large amount of hydrological literature builds on nonstationary modelling [START_REF] Milly | Stationarity is dead: Whither water management?[END_REF] to assess whether a time series is generated by a unique probability distribution (stationary model) or if the generating probability distribution is changing (non-stationary model). Non-stationary extremes are usually studied with both non-stationary modelling and EVT [START_REF] Katz | Statistics of extremes in hydrology[END_REF]. Annual maxima are assumed independent but not necessarily identically distributed [START_REF] Serinaldi | Stationarity is undead: Uncertainty dominates the distribution of extremes[END_REF]. Such approaches combine a stationary random component (a fixed extreme value distribution) with non-stationary deterministic functions that map each temporal covariate t to the changing parameters of the distribution [START_REF] Montanari | Modeling and mitigating natural hazards: Stationarity is immortal![END_REF]. In a non-stationary context, [START_REF] Zhang | Monte Carlo Experiments on the Detection of Trends in Extreme Values[END_REF] showed that tests based on this parametric approach have stronger power of detection when compared with non-parametric methods.

We consider non-stationarity for both the Gumbel distribution and the more general GEV distribution, since they represent natural extensions of the Gumbel distribution which was used for French building standards (Sect. 2.3). For any model, we have Z(t) ∼ GEV(µ(t), σ(t), ζ(t)), as the Gumbel distribution corresponds to ζ(t) = 0. For a model M, we denote as θ M all parameters for its functions (µ(t), σ(t) and ζ(t)). We focus on simple linear functions due to the limited length of time series (60 years). The linearity starts in 1959, which is the first winter with available data. As shown in Table 2.2, we consider only models with a constant shape parameter but where the location and/or the scale parameter can vary linearly with years t.

Model type

Distribution Model name µ(t) 

σ(t) ζ(t) θ M Stationary Gumbel M 0 µ 0 σ 0 0 (µ 0 , σ 0 ) GEV M ζ 0 ζ 0 (µ 0 , σ 0 , ζ 0 ) Non-stationary Gumbel M µ 1 µ 0 + µ 1 × (t -1959) σ 0 0 (µ 0 , µ 1 , σ 0 ) GEV M ζ 0 ,µ 1 ζ 0 (µ 0 , µ 1 , σ 0 , ζ 0 ) Non-stationary Gumbel M σ 1 µ 0 σ 0 + σ 1 × (t -1959) 0 (µ 0 , σ 0 , σ 1 ) GEV M ζ 0 ,σ 1 ζ 0 (µ 0 , σ 0 , σ 1 , ζ 0 ) Non-stationary Gumbel M µ 1 ,σ 1 µ 0 + µ 1 × (t -1959) σ 0 + σ 1 × (t -1959) 0 (µ 0 , µ 1 , σ 0 , σ 1 ) GEV M ζ 0 ,µ 1 ,σ 1 ζ 0 (µ 0 , µ 1 , σ 0 , σ 1 , ζ 0 )

Model selection, validation and significance

Model selection. Let z = (z 1959 , . . . , z 2019 ) represent a time series of annual maxima of GSL, i.e. for a massif and an altitude (Sect. 2.2). First, models are fitted with the maximum likelihood method. For every model M , we compute the maximum likelihood estimator θ M , which corresponds to the parameter θ M that maximizes the likelihood:

θ M = argmax θ M L(θ M ; z) where L(θ M ; z) = p(z|θ M ) = t p(z t |µ(t), σ(t), ζ(t)) = t ∂P (Z(t) ≤ z t ) ∂z t . (2.2)
Then, for each z, i.e. for each massif and altitude, we select the model M N with the minimal AIC value [START_REF] Akaike | A New Look at the Statistical Model Identification[END_REF], as it is the best information criterion in a non-stationary context with small sample sizes [START_REF] Kim | Appropriate model selection methods for nonstationary generalized extreme value models[END_REF]. We define

M N = argmin M in Table 2 AIC(M), where AIC(M) = 2 × [#θ M -log L( θ M ; z)],
where #θ M is the cardinality of θ M .

(2.3)

The selected model M N can be any model from Table 2.2, i.e. a stationary or a non-stationary model. The subscript N designates the number of additional parameters compared to the stationary Gumbel model M 0 , i.e.

N = #θ M N -#θ M 0 .
Model validation. Quantile-quantile (Q-Q) analysis is performed for all selected models. To apply this analysis to both stationary and non-stationary model, we rely on [START_REF] Katz | Statistical methods for nonstationary extremes[END_REF], who suggests the following: (i) to transform the data to stationary Gumbel and (ii) to use a Q-Q plot analysis on the transformed data with respect to a Gumbel distribution. Q-Q plots reveal that transformed data are well fitted by a stationary Gumbel distribution; hence that data are well fitted by the selected models (Appendix 2.B). Moreover, according to the comparative study of [START_REF] Abidin | The Goodness-of-fit Test for Gumbel Distribution: A Comparative Study[END_REF], the most powerful goodness-of-fit test for the Gumbel distribution is a combination of the Anderson-Darling test and the maximum likelihood estimator. We apply this test on the transformed data using [START_REF] Saeb | gnFit R package[END_REF] and found that we cannot reject the null hypothesis (samples generated from the Gumbel model) at the 5 % significance level for almost all our selected models (98 %), justifying their good fit. We refer to Appendix 2.B for more details.

Model significance. If the selected model M N is not the model M 0 , then -since models are nested -we can compute the significance of M N with respect to M 0 with a likelihood ratio test [START_REF] Coles | An introduction to Statistical Modeling of Extreme Values[END_REF]. This test assesses whether there is enough evidence to reject the stationary Gumbel model M 0 in favour of the selected model M N . The null hypothesis can be stated as follows: the N additional parameters of the model M N can be set to zero. In other words, we want to check if setting to zero the N additional parameters of the model M N are supported by the data z. Under the null hypothesis, the likelihood ratio test statistic

(LR) has an asymptotic χ 2 N distribution: LR( θ M N , θ M 0 , z) = -2 log L( θ M 0 ;z) L( θ M N ;z) ∼χ 2 N ,
where ∼ means distributed under suitable regularity conditions. In practice, the test works as follows.

We first choose a 0.05 level of significance. Then, if LR is greater than q χ 2 N , the 1-0.05 = 0.95 quantile of the χ 2 N distribution, we reject the nested model M 0 in favour of the selected model M N . If the selected model M N is non-stationary, we consider the associated trend as significant.

Return levels

In a stationary context, the T -year return level, which corresponds to a return period of T years, is the classical metric to quantify hazards of extreme events [START_REF] Cooley | Return Periods and Return Levels Under Climate Change[END_REF]. For a stationary model, there is a one-to-one relationship between a return level (a quantile exceeded each year with probability p) and a return period (a duration exceeded every T = 1 p years on average).

In a non-stationary context, return level and return period concepts [START_REF] Cooley | Return Periods and Return Levels Under Climate Change[END_REF] become further ambiguous, are prone to misconceptions and can lead to misleading conclusions [START_REF] Serinaldi | Dismissing return periods![END_REF]. We focus on the yearly level for a fixed probability of exceedance, a.k.a effective return level [START_REF] Katz | Statistics of extremes in hydrology[END_REF][START_REF] Cheng | Non-stationary extreme value analysis in a changing climate[END_REF], as it conveys best that hazard evolves with time.

For the stationary Gumbel model M 0 , the return level z p (θ M 0 ) is defined as the level exceeded each year with probability p. In other words, if Z denotes an annual maximum, then P (Z ≤ z p (θ M 0 )) = 1 -p. This return level is constant through time and equals z p (θ M 0 ) = µ 0 -σ 0 log (-log (1 -p)). In this paper, we set p = 1 50 = 0.02 as it corresponds to the 50-year return period defined by French standards (based on European standards) for the design working life of buildings (Sect. 2.3).

For the selected model M N , the return level is defined as the yearly level for a fixed probability of exceedance p. For any model considered in Table 2.2, we obtain

z p (θ M N , t) = µ 0 + µ 1 × (t -1959) -σ 0 +σ 1 ×(t-1959) ζ 0 [1 -(-log (1 -p)) -ζ 0 ]
, where we set µ 1 , σ 1 or ζ 0 to 0 if they are not defined in the model M N . For example, for the Gumbel model M 0 , the return level is constant: for any year t, z

p (θ M 0 , t) = lim ζ 0 →0 [µ 0 + σ 0 ζ 0 (1 -(-log (1 -p)) -ζ 0 )] = µ 0 -σ 0 log (-log (1 -p)).
For any considered model, the time derivative of the return level is constant, as

∂zp(θ M N ,t) ∂t = µ 1 -σ 1 ζ 0 (1 -(-log (1 -p)) -ζ 0 ).
It quantifies the yearly change of return level. Thus, the relative difference of return levels between year t 1 and year t 2 is as follows:

relative change (z p (θ M N , t 1 ), z p (θ M N , t 2 )) = z p (θ M N , t 2 ) -z p (θ M N , t 1 ) z p (θ M N , t 1 ) = t 2 -t 1 z p (θ M N , t 1 ) × ∂z p (θ M N , t) ∂t .
(2.4)

In the context of maximum likelihood estimation, uncertainty related to return levels can be derived by the delta method, which quickly provides confidence intervals both in the stationary and non-stationary case [START_REF] Coles | An introduction to Statistical Modeling of Extreme Values[END_REF][START_REF] Gilleland | extRemes 2.0: An Extreme Value Analysis Package in R[END_REF]. First, the return level estimator associated with the maximum likelihood estimator simply equals z p ( θ M ). Then, due to the asymptotic normality of the maximum likelihood estimator (MLE), we can assume that, even with a finite number of data, the MLE is normally distributed. Therefore, under regularity conditions, limits of the 1 -α = 95 % confidence interval are θ M ± q α 2 × v zp ( θ M ), where q α 2 is the 1 -α 2 quantile of the standard normal distribution, and v zp is a function that maps each parameter θ M to the variance of the approximate normal distribution associated with its return level z p (θ M ). For a full expression of the function v zp and for details on the delta method, we refer to Theorem 2.4 of [START_REF] Coles | An introduction to Statistical Modeling of Extreme Values[END_REF]. In particular, this theorem explains that the delta method is valid for ζ 0 < 1, which is respected in our case as -0.5 ≤ ζ 0 ≤ 0.5 (Sect. 2.4.4). Also, uncertainty of non-stationary return levels z p ( θ M , t) can be obtained by incorporating the covariate t in the function z p .

Application

First, we exclude four time series of annual maxima with more than 10 % of zeros, i.e. years without GSL. Then, we fit models to time series and retain only those models with -0.5 ≤ ζ 0 ≤ 0.5. This impacts three time series. We make this choice because ζ 0 > 0.5 designates distributions with an "exploding" tail which are known to be physically implausible [START_REF] Martins | Generalized maximum-likelihood generalized extremevalue quantile estimators for hydrologic data[END_REF]. Following Sect. 2.4.2, we select one model for each time series (i.e. for each massif and altitude) with the AIC statistical criterion. Then, we exclude the five time series (2 %) where the selected model does not pass the Anderson test. Finally, we assess if the selected model is significantly more appropriate than the stationary Gumbel model M 0 with a likelihood ratio test.

PAST CHANGES IN EXTREME SNOW LOAD

Results

Selected models

Figure 2.3 shows that a stationary model, i.e. models M 0 and M ζ 0 , is selected for a majority (57 %) of time series studied (Sect. 2.2). Models with a linearity in both the location and scale parameters are the most frequently selected non-stationary models (22 %). For both stationary and non-stationary models, Gumbel models are always more often selected that their corresponding GEV models (Figs. 2.3,2.4). All in all, we highlight that 39 % of selected models are significantly more appropriate than the stationary Gumbel model M 0 . Figure 2.4 depicts shape parameter values for the selected models at 900, 1800 and 2700 m. We notice that a majority of massifs are white, illustrating that a (stationary or non-stationary) Gumbel model (i.e. ζ 0 = 0) is selected (Sect. 2.5). This emphasizes that a Gumbel distribution often explains more succinctly the data than a GEV distribution. Also, with the GEV distribution, the estimated most likely shape parameter ζ 0 is often quite uncertain; that is, confidence intervals are large, which is the main reason why French standards did not rely on it. This uncertainty in ζ 0 likely comes from the limited length of time series. Therefore, additional data would enable a more robust estimation of ζ 0 and thus reduce uncertainty. In Fig. 2.4, we further observe that non-null shape parameters at low altitudes (900 m) are always positive (brown-coloured massifs); that is, a Fréchet distribution is preferred. On the other hand, for high altitudes (1800 and 2700 m) non-null shape parameters are always negative (green-coloured massifs); that is, a Weibull distribution is favoured. Similar results for the shape parameter have been observed for snow depth by [START_REF] Blanchet | Extreme value statistics of snowfall in the Swiss Alpine region[END_REF], [START_REF] Blanchet | Mapping snow depth return levels: Smooth spatial modeling versus station interpolation[END_REF], and Schellander and Hell (2018). This reflects the different nature of annual maxima of GSL between low and high altitudes. At high altitudes, annual maxima are mainly due to snowpack accumulation during several months, while at low altitudes this accumulation is limited, and thus annual maxima roughly correspond to heavy precipitation. (2700 m) altitude. Markers show selected model M N , while filled markers symbolize models that are significantly better than the Gumbel model M 0 (Sect. 2.4.2). Grey areas denote either time series that were excluded (Sect. 2.4.4) or missing data, e.g. when the altitude considered is above the top altitude of the massif. A for maps at all altitudes). Quantitatively, for northwest massifs, we observe that return levels have decreased by up to 60 % at 900 m (dark blue), while at 1800 m this decrease is less marked (pale blue). Qualitatively, these decreasing trends are frequently due to significant changes both in the location and scale parameters of the Gumbel or GEV distribution (small and large diamond-shaped filled markers). At 2700 m, or in the south at 900 and 1800 m, we often do not observe any trends (white), since stationary models are selected (small and large cross-shaped markers). Figure 2.6 emphasizes the evolution of decreasing trends between 900 and 4800 m of altitude. We observe that decreasing trends are significant for more than one-third of the massifs, located in the northwest of the Alps (Appendix 2.A), up to 2100 m (black bars). In half a century, return levels have dropped on average by up to 30 % at 900 m. Until 3300 m, we observe a decline in the percentage of massifs with a significant decreasing trend. Above 3300 m, we do not find any significant decreasing trend. For both the relative decrease and the percentage of massifs with a decreasing trend, we notice a similar declining pattern. We also notice more decline between 3300 and 3900 m than at 3000 m, which echoes results from [START_REF] Lüthi | Projections of Alpine snow-cover in a high-resolution climate simulation[END_REF], who found that, in the Alps above 3000 m, the relative decrease for projected winter mean of fresh SWE is more marked than at 3000 m (see their Fig. 8). We emphasize, however, that most meteorological observations used as input to the SAFRAN-Crocus reanalysis are situated below 2000 m. Therefore, trends beyond 2000 m altitude should be considered with great caution. Figure 2.7 illustrates that, for altitudes 300 and 600 m, in general no trends are found except for a few decreasing trends at 600 m and two time series (1 at 300 m, 1 at 600 m) with important increasing trends (+100 % for one massif at 600 m). Despite this important increase in relative change, annual maxima of snow load remain small (< 1 kN m -2 ). Indeed, we found that these annual maxima correspond to snow load accumulated in a few days and thus are mainly driven by heavy precipitation rather than a seasonal snowpack accumulation. In particular, we hypothesize that the important increasing trend observed in the south at 600 m (colour red) might be caused by a regional phenomenon, resulting from Mediterranean humid air masses flowing northward into the north of Italy and then westward to the eastern part of the French Alps, that might be intensifying with global warming [START_REF] Garavaglia | Introducing a rainfall compound distribution model based on weather patterns sub-sampling[END_REF][START_REF] Gottardi | Statistical reanalysis of precipitation fields based on ground network data and weather patterns: Application over French mountains[END_REF][START_REF] Faranda | An attempt to explain recent trends in European snowfall extremes[END_REF].

Trends in return levels of ground snow load

To sum up trends in return levels of ground snow load, from 900 to 4800 m, either no trends or decreasing trends of 50-year return levels of GSL are found (Figs. 2.5,2.6,Fig. 2.11), while at 300 and 600 m, no clear trends are found (Fig. 2.7). 

Comparison of return levels of ground snow load with standards

We compare 50-year return levels of GSL and their uncertainty (Sect. 2.4.3) to French standards first for two massifs (Fig. 2.8) then globally (Fig. 2.9). We consider GSL data from 300 to 1800 m because standards are defined from 200 to 2000 m (Sect. 2.3). Figure 2.8 illustrates these levels and their uncertainty for two massifs (Vercors and Beaufortain) associated with different French standards regions. Standards are often exceeded at higher altitudes (e.g. at 1800 m). Also, Fig. 2.8 exemplifies the impact of accounting for decreasing trends in return levels. Indeed, we observe that return levels from the stationary Gumbel model M 0 (left) are often larger than effective return levels in 2019 (last year of data) from the selected model M N (right).

Figure 2.9 sums up the comparison between French standards and 50-year return levels for all 23 massifs. We display (i) the percentage of massifs whose return level exceeds standards and (ii) the mean relative difference between return levels and standards. Limits of the confidence intervals are approximated as the percentage of exceedances for the limits of return levels' 95 % confidence interval are displayed with black bars. Limits of the confidence intervals for the mean relative difference are displayed in shaded blue. The number of massifs considered is equal to 7 at 300 m, 17 at 600 m and 23 at 900 m and above. First, if we estimate return levels from data with the French standards method (Fig. 2.9 left), i.e. with a stationary Gumbel model M 0 , and GSL data approximated with snow depth obtained from reanalysis and ρ SNOW = 150 kg m -3 , then we observe few exceedances (less than 10 %) and that on average return levels remain below standards, as the mean relative difference remains below zero. Thus, in this setting, estimations from our reanalysis are consistent with French standards. However, if we consider the actual GSL, i.e. computed with SWE from the reanalysis, then French standards drastically underestimate return levels. Indeed, with a stationary Gumbel model M 0 , then for altitudes above or equal to 900 m, French standards are exceeded for a majority of massifs (Fig. 2.9 centre). But, if we consider the selected model M N , i.e. if we account for the decreasing trend in 50-year return levels, we have fewer exceedances at all altitudes (Fig. 2.9 right). In the latter case, at worst, i.e. at 1800 m, return levels exceed standards by 15 % on average, and half of the massifs (60 %) exceed standards. Furthermore, despite the fact that uncertainty intervals (black bars) can be large, it does not impact the main conclusions of this article. Indeed, in Fig. 2.9 right at 1800 m, we still have between 40 % and 80 % of massifs exceeding French standards. 

Discussion

Methodological considerations

We discuss in depth the statistical models chosen for this study. It is well-known that an annual-maximum-based approach can be wasteful in terms of data [START_REF] Coles | An introduction to Statistical Modeling of Extreme Values[END_REF]. However, since our objective is to estimate 50-year return levels and since we have 60 years of data, we still decide to rely on the annual-maximum-based approach (with the GEV distribution) rather than on the concurrent approach based on threshold exceedances (with the generalized Pareto distribution). Also, with the GEV distribution, our methodology is a direct extension of French building standards (Sect. 2.3).

For the non-stationary models, we focus on simple deterministic functions of time (µ(t), σ(t), ζ(t)) due to the limited length of time series. A linear non-stationarity seems preferable to a non-stationarity based on the Heaviside step function due to the continuous nature of climate change. We start the linear non-stationarity at the initial year, i.e. 1959. We decided to consider non-stationarity only for the location and scale parameter. Indeed, in the literature, a linear non-stationarity is considered sometimes only for the location parameter [START_REF] Fowler | Detecting change in UK extreme precipitation using results from the climateprediction.net BBC climate change experiment[END_REF][START_REF] Tramblay | Future evolution of extreme precipitation in the Mediterranean[END_REF] but more often both for the location and the scale (or log-transformed scale for numerical reasons) parameters [START_REF] Katz | Statistics of extremes in hydrology[END_REF][START_REF] Kharin | Estimating extremes in transient climate change simulations[END_REF][START_REF] Marty | Long-term changes in annual maximum snow depth and snowfall in Switzerland based on extreme value statistics[END_REF]Wilcox et al., 2018a). We consider a nonstationarity for both parameters because the scale parameters were not proportional to the location parameters, which could have otherwise simplified our parametrization. The shape parameter is typically considered constant in the literature, and we follow this approach.

For time series containing zeros, French standards rely on a mixed discrete-continuous distribution. They fit both a Gumbel distribution on non-zero annual maxima and the probability of having a non-zero annual maxima. However, with our reanalysis data, this approach sometimes leads to fitting non-stationary extreme value models with fewer than 40 non-zero annual maxima. Therefore, we rather decided to exclude any time series with more than 10 % of zeros (Sect. 2.4.4), to ensure that we fit models with more than 55 non-zero annual maxima. In practice, our approach gives 50-year return levels close to the approach from French standards (absolute difference remains lower than 0.1 kN m -2 ).

2.6.2 On the limitation to approximate annual maxima of ground snow load with annual maxima of snow depth SWE times the gravitational constant equals GSL. However, most countries do not measure SWE but only have access to snow depth (HS) [START_REF] Haberkorn | European Snow Booklet[END_REF]. In that case, snow density is required to obtain SWE (and subsequently GSL) from HS (Sect. 2.1). In particular, French standards approximate annual maxima of GSL with annual maxima of HS and by assuming a constant snow density, equal to ρ SNOW = 150 kg m -3 . In Fig. 2.10, we highlight limitations of such approaches with our reanalysis that provides, for the whole snowpack, daily values of SWE, HS and thus of snow density. We find that annual maxima of GSL are always underestimated by French standards' approximation (Fig. 2.10 left). The main reason is that, when annual maxima of GSL are reached, snow density is on average largely superior to ρ SNOW = 150 kg m -3 (Fig. 2.10 centre). Indeed, we observe that at the time of the annual maxima of GSL the snow density is around ≈ 350 kg m -3 on average at 2700 m and close to ≈ 250 kg m -3 on average at 900 m. Finally, despite high variations along the years, we also notice that, when annual maxima of GSL are reached, snow depth can be much lower than the annual maxima of snow depth (Fig. 2.10 right), which is another argument against the use of snow depth maxima as a proxy for GSL maxima. 

Conclusion

Based on both a reanalysis and a snowpack model, we detect an overall temporal decreasing trend of 50-year return levels of ground snow load (GSL) between 900 and 4200 m, which is significant up to 2100 m in the northwest of the French Alps. This confirms other studies in the Western Alps which also found overall decreasing trends in linked snowpack variables: SWE and snow depth. The largest decrease is found at 900 m with -30 % for return levels between 1960 and 2010. Despite these decreases, in 2019 return levels still exceed return levels designed for French building standards under a stationary assumption. At worst, i.e. at 1800 m, return levels exceed standards by 15 % on average, and half of the massifs exceed standards.

We hypothesize that this number of exceedances might be due to an underestimation of GSL by French standards. Indeed, these standards were devised with GSL estimated from snow depth maxima and constant snow density equal to 150 kg m -3 , which underestimate typical GSL values for the snowpack. Another reason for these exceedances might be illdesigned relationships between altitude and snow load. As shown in Fig. 2.2, French standards return levels increase linearly with altitude in three steps. Indeed, French standards [START_REF] Biétry | Charges de neige au sol en France : proposition de carte révisée[END_REF] follow previous national standards that advised for a linear relationship between altitude and snow load instead of relying on European standards' results that showed a quadratic relationship for the Alpine region [START_REF] Sanpaolesi | Scientific support activity in the field of structural stability of civil engineering works: snow loads[END_REF]. Thus, at higher altitudes, French standards underestimate actual return levels, which might explain the augmenting percentage of exceedance observed with the altitude (Fig. 2.9 right).

Many potential extensions of this work could be considered. First, our methodology could be extended with more advanced definitions of non-stationary return levels [START_REF] Rootzén | Design Life Level: Quantifying risk in a changing climate[END_REF][START_REF] Serinaldi | Dismissing return periods![END_REF]. Also, instead of considering time series of annual maxima as spatially independent, we believe that our analysis may benefit from an explicit modelling of the spatial dependence between extremes. Then, reanalyses are increasingly available at the European scale (e.g. [START_REF] Soci | High-resolution precipitation re-analysis system for climatological purposes[END_REF], which could be used for extending this work to a wider geographical scale. This requires, however, remaining cognizant of the limitations of such reanalyses, in particular (i) the temporal heterogeneity of the meteorological data input to these reanalyses [START_REF] Vidal | A 50-year high-resolution atmospheric reanalysis over France with the Safran system[END_REF]; (ii) the lack of observations at high altitudes, requiring caution in analysing trends for high-altitude locations; and (iii) model errors (e.g. snowpack model errors) which need to be taken into account when analysing the results. Finally, even if, according to our analysis, GSL exceeds French standards return levels in the French Alps, (Fig. 2.9 right), few destructions related to snow loads actually occurred. Several reasons might explain that. First, French standards consider a coefficient that maps GSL return levels to roof snow load return level, i.e. multiplication by a coefficient that summarizes several roof features: shape, exposure and thermal transmission [START_REF] Sanpaolesi | Scientific support activity in the field of structural stability of civil engineering works: snow loads[END_REF]. This coefficient might be overprotective. Also, following European standards, roof designers must add safety coefficients to ensure roofs' reliability. Indeed, they actually build roofs that withstand the sum of (i) the characteristic value of permanent action, i.e. selfweight, multiplied by a safety coefficient equal to 1.35 and (ii) the characteristic value of variable action, i.e. roof snow load return level, multiplied by a safety coefficient equal to 1.5 (Sanpaolesi et al., 1998 Eq. 8). Above all, French standards do not take into account that, after intense days of snowfall, the snow accumulated on the roof either slides off or is removed. In that case, the main risk lies in extreme snow events that might accumulate enough snow in a few days to exceed French standards. Undeniably, most known snow load destructions resulted from such intense snow events, sometimes combined with liquid precipitation that often heavily increases snow load. The response of these short but extreme and complex snow events to climate change might be an interesting topic for future research.

PAST CHANGES IN EXTREME SNOW LOAD

2.A Trends in return levels of ground snow load

In this section, we report, for every 300 m of altitude from 900 to 4200 m, the map of the relative change of 50-year return levels of GSL between 1960 and2010 (Fig. 2.11). Trends at 4500 and 4800 m are not reported, since they only concern the Mont Blanc massif, where no significant trend is inferred at these altitudes. Markers show selected model M N , while filled markers symbolize models that are significantly better than the Gumbel model M 0 (Sect. 2.4.2). Grey areas denote either time series that were excluded (Sect. 2.4.4) or missing data, e.g. when the altitude considered is above the top altitude of the massif.

2.B Detailed methodology for the model validation

Quantile-quantile plot. Standard diagnosis tools for both stationary and non-stationary extreme value models [START_REF] Coles | An introduction to Statistical Modeling of Extreme Values[END_REF][START_REF] Katz | Statistical methods for nonstationary extremes[END_REF] rely on a probability integral transformation f to the standard Gumbel distribution, i.e. Gumbel(0, 1).

Indeed, if Z(t) ∼ GEV(µ(t), σ(t), ζ(t)), then f (Z(t)) = 1 ζ(t) log 1 + ζ(t) Z(t)-µ(t) σ(t)
∼ Gumbel(0, 1). Thus, if z = (z 1959 , . . . , z 2019 ) represent a time series of annual maxima, then let z1959 = f (z 1959 ), . . . , z2019 = f (z 2019 ).

Quantile-quantile (Q-Q) plot is a standard diagnosis based on the comparison of empirical quantiles (computed from the empirical distribution) and theoretical quantiles (computed from the expected distribution). On the one hand, z(1) , . . . z( 61) are the empirical quantiles, which correspond to the ordered values of the zt . On the other hand, -log -log 1 62 , . . . , -log -log 61 62 r correspond to the theoretical quantiles. Indeed, if Z ∼ Gumbel(0, 1), then

P ( Z ≤ z) = exp -e -z = i 62 ↔ z = -log -log i 62 . Thus, the Q-Q plot is comprised of the pairs { -log -log i
62 , z(i) ; i = 1, . . . , 61}. In Fig. 2.12, we display Q-Q plots for the three time series of annual maxima of GSL displayed in Fig. 2.1. We observe that the left and the right Q-Q plots show a good fit, as the points stay close to the line. However, for the centre Q-Q plot, all points are close to the line, except for the highest empirical quantile that is largely above the corresponding theoretical quantile. As a whole, when observing all Q-Q plots (not shown) most time series show a good fit, except for a few time series (fewer than 10) which have a pattern similar to the centre Q-Q plot in Fig. 2.12. Anderson-Darling test. Q-Q plot is a qualitative tool to validate the goodness of fit for probability models. For the quantitative validation of the goodness of fit of the selected models, we rely on the Anderson-Darling statistical test, which is the most powerful test for the Gumbel distribution according to the comparative study of [START_REF] Abidin | The Goodness-of-fit Test for Gumbel Distribution: A Comparative Study[END_REF].

In practice, with this test, we assess whether the transformed annual maxima z(1) , . . . , z(61) are likely to be generated from a standard Gumbel distribution. Let n = 61 denote the number of samples, and F emp denotes the cumulative distribution function of the empirical (F gum for standard Gumbel) distribution. Then, Anderson-Darling test is based on the distance:

A 2 = n (F emp (x) -F gum (x)) 2 w(x)dF gum (x) ≈ - n i=1 2i -1 n {log[F gum (z (i) )] + log[1 -F gum (z (n+1-i) )]} -n, (2.5) 
where w(x) places more weight on the tail of the standard Gumbel distribution. For details, we refer to [START_REF] Abidin | The Goodness-of-fit Test for Gumbel Distribution: A Comparative Study[END_REF].

We apply this test on the transformed data using [START_REF] Saeb | gnFit R package[END_REF] and found that we cannot reject the null hypothesis (samples generated from the Gumbel model) at the 5 % significance level for almost all our selected models (98 %), justifying their good fit. As explained in Sect. 2.4.4, we exclude time series whose selected models do not pass this Anderson-Darling test. Abstract: Climate change projections indicate that extreme snowfall is expected to increase in cold areas, i.e., at high latitudes and/or high elevation, and to decrease in warmer areas, i.e., at mid-latitudes and low elevation. However, the magnitude of these contrasting patterns of change and their precise relations to elevation at the scale of a given mountain range remain poorly known. This study analyzes annual maxima of daily snowfall based on the SAFRAN reanalysis spanning the time period 1959-2019 and provided within 23 massifs in the French Alps every 300 m of elevation. We estimate temporal trends in 100-year return levels with non-stationary extreme value models that depend on both elevation and time. Specifically, for each massif and four elevation ranges (below 1000, 1000-2000, 2000-3000, and above 3000 m), temporal trends are estimated with the best extreme value models selected on the basis of the Akaike information criterion. Our results show that a majority of trends are decreasing below 2000 m and increasing above 2000 m. Quantitatively, we find an increase in 100-year return levels between 1959 and 2019 equal to +23 % (+32 kg m -2 ) on average at 3500 m and a decrease of -10 % (-7 kg m -2 ) on average at 500 m. However, for the four elevation ranges, we find both decreasing and increasing trends depending on location. In particular, we observe a spatially contrasting pattern, exemplified at 2500 m: 100-year return levels have decreased in the north of the French Alps while they have increased in the south, which may result from interactions between the overall warming trend and circulation patterns. This study has implications for natural hazard management in mountain regions.

Introduction

Extreme snowfall can generate casualties and economic damage. For instance, it can cause major natural hazards (avalanche, winter storms) that might be intensified with high winds and freezing rain. Heavy snowfall can also disrupt transportation (road, rail, and air traffic), tourism, electricity (power lines), and communication systems with a significant impact on economic services [START_REF] Changnon | Catastrophic winter storms: An escalating problem[END_REF][START_REF] Blanchet | Extreme value statistics of snowfall in the Swiss Alpine region[END_REF]. Subsequently, snow overloading can lead to the collapse of buildings such as a shed, a greenhouse, or something as large as an exhibition hall [START_REF] Strasser | Snow loads in a changing climate: New risks?[END_REF]. It remains a counterintuitive phenomenon that extreme snowfall can increase in a warming climate, at least transiently, i.e., as long as local temperatures are cold enough [START_REF] Frei | Future snowfall in the Alps: projections based on the EURO-CORDEX regional climate models[END_REF]. Therefore, to adapt protective measures, it is crucial to determine temporal trends in extreme snowfall for various areas (regions, elevations) and timescales, and to understand the underlying causes of these trends.

Extreme snowfall stems from extreme precipitation occurring in a range of optimal temperatures slightly below 0 o C according to [START_REF] O'gorman | Contrasting responses of mean and extreme snowfall to climate change[END_REF]. This optimal range of temperatures favors both high precipitation intensities and percentages of precipitation falling as snow close to 100 %. Thus, changes in extreme snowfall depend on a trade-off between trends in extreme precipitation and changes in the probability of experiencing temperature in this optimal range.

On a global scale, extreme precipitation is expected to increase with the augmentation of global mean temperature. Specifically, the most intense precipitation rates are theoretically expected to roughly increase at a rate of 7 % o C -1 , i.e., 7 % per degree of global mean warming, due to an increase in maximum atmospheric water vapor content according to the Clausius-Clapeyron relationship (O'Gorman and Muller, 2010). In practice, the observed global mean temperature scaling for annual maxima of 1 day precipitation is 6.6 % o C -1 [START_REF] Sun | A global, continental, and regional analysis of changes in extreme precipitation[END_REF]. On the other hand, the probability of experiencing temperature in the optimal range for extreme snowfall is expected to decrease in warm areas, i.e., mid-latitude and low-elevation regions, as temperatures are expected to shift away from 0 o C. However, this probability may increase in cold areas, i.e., high-latitude and/or high-elevation regions, where temperatures are expected to shift toward 0 o C while remaining below 0 o C [START_REF] Frei | Future snowfall in the Alps: projections based on the EURO-CORDEX regional climate models[END_REF].

In the European Alps, past observations show both that the warming rate is larger than the global warming rate and that trends in extreme precipitation depend on the season and on the region. Indeed, past trends in mean annual surface temperature point to a temperature increase in high mountain regions of central Europe, with a warming rate ranging from 0.15 to 0.35 o C per decade since 1960 (Fig. 2.2 of IPCC, 2019) against a range from 0.08 to 0.14 o C per decade since 1951 for the global warming rate (IPCC, 2013). Furthermore, past trends in daily maxima of precipitation largely depend on the season (Fig. 7 of [START_REF] Ménégoz | Contrasting seasonal changes in total and intense precipitation in the European Alps from 1903 to 2010[END_REF]. In winter, daily maxima precipitation (which may generate extreme snowfall) has trends that vary between -40 % to +40 % per century depending on the location. On the other hand, projected trends in winter precipitation in the European Alps indicate mostly positive trends in 100-year return levels (Fig. 12 of [START_REF] Rajczak | Projections of Future Precipitation Extremes Over Europe: A Multimodel Assessment of Climate Simulations[END_REF]. For instance, an increase between 5 % and 30 % is expected under a high greenhouse gas emission scenario (comparing 2070-2099 to 1981-2010 for RCP8.5).

In and around the French Alps, studies analyzing extreme snowfall are rare [START_REF] Beniston | The European mountain cryosphere: a review of its current state, trends, and future challenges[END_REF]. A few papers describe the trends in extreme snowfall depending on elevation (Table 3.1). On one hand, past observations for Swiss stations below 1800 m present either a majority of decreasing trends or insignificant changes in the mean annual maximum of snowfall [START_REF] Marty | Long-term changes in annual maximum snow depth and snowfall in Switzerland based on extreme value statistics[END_REF][START_REF] Scherrer | Snow variability in the Swiss Alps 1864-2009[END_REF]. On the other hand, climate projections for the Pyrenees and the Alps under a high greenhouse gas emission scenario (SRES A2 and RCP8.5, respectively) show that the mean seasonal maximum of snowfall is expected to decrease below a transition elevation and increase above it. López-Moreno et al. ( 2011 (comparing 2070-2099 to 1981-2010). In the French Alps, despite the existence of sufficient snowfall records and of previous studies that exploited them in an explicit extreme value framework, temporal trends in extreme snowfall remain poorly described. Indeed, earlier works focused rather on the spatial non-stationarity (with respect to latitude and longitude) of 3 d maxima of snowfall with max-stable processes [START_REF] Davison | Statistical Modeling of Spatial Extremes[END_REF]. For instance, [START_REF] Gaume | Mapping extreme snowfalls in the French Alps using max-stable processes[END_REF] estimated conditional 100-year return level maps at a fixed elevation of 2000 m, while [START_REF] Conclusion Nicolet | Decreasing spatial dependence in extreme snowfall in the French Alps since 1958 under climate change[END_REF] found that the spatial dependence range of extreme snowfall has been decreasing. This study addresses the gap identified above, by assessing past temporal trends in the 23 massifs of the French Alps, with special emphasis on the 100-year return levels of daily snowfall. We rely on the SAFRAN reanalysis (Durand et al., 2009a) available for the period 1959-2019, which provides, among other variables, time series of daily snowfall (from which annual maxima can be computed) for each massif and every 300 m of elevation between 600 and 3600 m [START_REF] Vernay | The S2M meteorological and snow cover reanalysis in the French mountainous areas (1958 -present)[END_REF]. In order to properly account for the specific statistical nature of maximal daily snowfall, our methodology relies on non-stationary extreme value models that depend on both elevation and time. Specifically, for each massif and four ranges of elevations (below 1000, 1000-2000, 2000-3000, and above 3000 m), temporal trends in 100year return levels are estimated with a model selected on the basis of the Akaike information criterion.

Snowfall data

We study annual maxima of daily snowfall in the French Alps, which are located between Lake Geneva to the north and the Mediterranean Sea to the south (Fig. 3.1). This region is typically divided into 23 mountain massifs of about 1000 km 2 , which correspond to 23 spatial units covering the French Alps [START_REF] Vernay | The S2M meteorological and snow cover reanalysis in the French mountainous areas (1958 -present)[END_REF], the climate being considered homogeneous inside each massif for a given elevation. The SAFRAN reanalysis (Durand et al., 2009a;[START_REF] Vernay | The S2M meteorological and snow cover reanalysis in the French mountainous areas (1958 -present)[END_REF] combines large-scale reanalyses and forecasts with in situ meteorological observations to provide daily snowfall data, i.e., snow water equivalent of solid precipitation measured in kg m -2 , available for each massif from August 1958 to July 2019. We consider annual maxima of daily snowfall centered on the winter season; e.g., an annual maximum for the year 1959 corresponds to the maximum from 1 August 1958 to 31 July 1959. Thus, we study annual maxima from 1959 to 2019.

The SAFRAN reanalysis focuses on the elevation dependency of meteorological conditions. Indeed, this reanalysis is not produced on a regular grid but provides data for each massif every 300 m of elevation. As illustrated in Fig. 3.1, we consider four ranges of elevation: below 1000 m, between 1000 and 2000 m, between 2000 and 3000 m, and above 3000 m. For instance, the maxima for the range "below 1000 m" correspond to the maxima at 600 m and the maxima at 900 m. We note that for each massif, we do not have any maxima above the top elevation of the massif.

The SAFRAN reanalysis has been evaluated both directly with in situ temperature and precipitation observations and indirectly with various snow depth observations compared to snow cover simulations of the model Crocus driven by SAFRAN atmospheric data (Durand et al., 2009a;[START_REF] Vionnet | Numerical weather forecasts at kilometer scale in the French Alps: Evaluation and application for snowpack modeling[END_REF][START_REF] Quéno | Snowpack modelling in the Pyrenees driven by kilometric-resolution meteorological forecasts[END_REF][START_REF] Revuelto | Multi-criteria evaluation of snowpack simulations in complex alpine terrain using satellite and in situ observations[END_REF][START_REF] Vionnet | Sub-kilometer Precipitation Datasets for Snowpack and Glacier Modeling in Alpine Terrain[END_REF]. Specifically, in [START_REF] Vionnet | Sub-kilometer Precipitation Datasets for Snowpack and Glacier Modeling in Alpine Terrain[END_REF], the SAFRAN reanalysis has been evaluated for snowfall against two numerical weather prediction (NWP) systems for winter 2011-2012. The authors find that the seasonal snowfall averaged over all the massifs of the French Alps reaches 546 mm in SAFRAN, 684 mm in the first NWP, and 737 mm in the second NWP. In detail, they find that SAFRAN significantly differs from the two NWP systems in (i) areas of high elevation, probably due to the limited number of high-elevation stations and gauge undercatch, and (ii) areas on the windward side of the different mountain ranges due to the assumption of climatological homogeneity within each SAFRAN massif. In [START_REF] Ménégoz | Contrasting seasonal changes in total and intense precipitation in the European Alps from 1903 to 2010[END_REF], the SAFRAN reanalysis has been compared to the regional climate model MAR which uses ERA-20C as forcing. The authors found that the vertical gradient of the annual mean of total precipitation of SAFRAN is generally smaller than those simulated by MAR.

Method

Statistical distribution for annual maxima

Following the block maxima approach from extreme value theory [START_REF] Coles | An introduction to Statistical Modeling of Extreme Values[END_REF], we model annual maxima of daily snowfall with the generalized extreme value (GEV) distribution. Indeed theoretically, as the central limit theorem motivates asymptotically sample means modeling with the normal distribution, the Fisher-Tippett-Gnedenko theorem [START_REF] Fisher | Limiting forms of the frequency distribution of the largest or smallest member of a sample[END_REF][START_REF] Gnedenko | Sur la distribution limite du terme maximum d'une série aléatoire[END_REF] encourages asymptotically sample maxima modeling with the GEV distribution. In practice, if Y is a random variable representing an annual maximum, we can assume that Y ∼ GEV(µ, σ, ξ). Then, if y denotes an annual maximum,

P (Y ≤ y) =            exp -1 + ξ y-µ σ -1 ξ + if ξ = 0 and where u + denotes max (u, 0), exp -exp -y-µ σ if ξ = 0; in other words Y ∼ Gumbel(µ, σ), (3.1)
where the three parameters are the location µ, the scale σ > 0, and the shape ξ. The GEV distribution encompasses three sub-families of distribution called reversed Weibull, Gumbel and Fréchet, which correspond to ξ < 0, ξ = 0, and ξ > 0, respectively.

Elevational-temporal models

We consider non-stationary models that depend on both elevation and time. Such models combine a stationary random component (a fixed extreme value distribution, e.g., GEV distribution) with non-stationary deterministic functions that map each covariate to the changing parameters of the distribution [START_REF] Montanari | Modeling and mitigating natural hazards: Stationarity is immortal![END_REF]. Specifically, for each massif and each range of elevation (below 1000, 1000-2000, 2000-3000, and above 3000 m), if Y z,t represents an annual maximum at the elevation z (within one of the four ranges of elevation) for the year t (between 1959 and 2019), we assume that Y z,t ∼ GEV(µ(z, t), σ(z, t), ξ(z)).

(3.2)

As illustrated in Table 3.2, we consider eight models that verify Eq. (3.2). For a model M, we denote as θ M the set of parameters of µ(z, t), σ(z, t), and ξ(z). Following a preliminary analysis with pointwise distributions (Sect. 3.4.1), we consider models with a location and a scale parameter that vary linearly with respect to elevation. Then, the shape parameter is either constant or linear with respect to elevation. Finally, the location and/or the scale can vary linearly with time. As shown in Table 3.2, we assume that the temporal and elevational effects are separable inside each range of elevation. Thus, we do not consider models with cross terms, i.e., terms involving both the elevation and the years such as z × t. We discuss this assumption in Sect. 3.5.1.

Temporal stationarity Model name µ(z, t) σ(z, t) ξ(z) #θ M Stationary M 0 µ 0 + µ z × z σ 0 + σ z × z ξ 0 M ξz ξ 0 + ξ z × z Non-stationary M µt µ 0 + µ z × z + µ t × t σ 0 + σ z × z ξ 0 M µt,ξz ξ 0 + ξ z × z Non-stationary M σt µ 0 + µ z × z σ 0 + σ z × z + σ t × t ξ 0 M σt,ξz ξ 0 + ξ z × z Non-stationary M µt,σt µ 0 + µ z × z + µ t × t σ 0 + σ z × z + σ t × t ξ 0 M µt,σt,ξz ξ 0 + ξ z × z
Table 3.2: Elevational-temporal models considered rely on the GEV distribution. For the elevational non-stationarity, the location and the scale parameters vary linearly with the elevation z, while the shape is either constant or linear with z. For temporal non-stationary models, the location and/or the scale vary linearly with time t. See Sect. 3.3.2 for a full description of the terms used in the table.

First, models are fitted with the maximum likelihood method. Let y = (y z 1 ,t 1 , . . ., y z 1 ,t M , . . ., y z N ,t 1 , . . ., y z N ,t M ) represent a vector of annual maxima from year t 1 to t M and for the range of elevations containing z 1 , . . ., z N for a given massif (Sect. 3.2). We classically assume that maxima are conditionally independent given θ M . For each model M, we compute the maximum likelihood estimator θ M which corresponds to the parameter θ M that maximizes the likelihood p(y|θ M ), where p(y|θ M ) = z t ∂P (Yz,t≤yz,t) ∂yz,t

. Then, we select the model with the minimal Akaike information criterion (AIC) for each massif and range of elevations. Indeed, the AIC is the best criterion in a non-stationary context with small sample sizes [START_REF] Kim | Appropriate model selection methods for nonstationary generalized extreme value models[END_REF]

. AIC equals 2 × [#θ M -p(y| θ M )],
where #θ M is the number of parameters for the model M. Thus, minimizing the AIC corresponds to selecting models that both have few parameters, i.e., low #θ M , and fit the data well, i.e., high p(y| θ M ). Goodness of fit is assessed with Q-Q plots which show a good fit for the selected models (Appendix 3.A).

Return levels

The T -year return level, which corresponds to a quantile exceeded each year with probability p = 1 T , is the classical metric to quantify hazards of extreme events [START_REF] Coles | An introduction to Statistical Modeling of Extreme Values[END_REF][START_REF] Cooley | Return Periods and Return Levels Under Climate Change[END_REF]. We set p = 1 100 = 0.01 as it corresponds to the 100-year return period which is widely used for hazard mapping and the design of defense structure in France, notably for snowrelated hazards [START_REF] Eckert | Long-term avalanche hazard assessment with a Bayesian depth-averaged propagation model[END_REF]. Let M denote a model from Table 3.2 and θ M the corresponding maximum likelihood estimator. Then, the associated return levels y p , which depend on the elevation z and the year t, can be computed as follows:

P (Y z,t ≤ y p (z, t)| θ M ) = 1 -p ↔ y p (z, t) = µ(z, t) - σ(z, t) ξ(z) 1 -(-log (1 -p)) -ξ(z) . (3.3)
We study trends in return levels. For any considered model, the time derivative of the return level ∂yp(z,t) ∂t is constant and quantifies the yearly change in return level. Thus, for each range of elevations, a massif is said to have an increasing trend if the associated return level has increased, i.e., if ∂y 0.01 (z,t) ∂t > 0. A massif has a decreasing trend if ∂y 0.01 (z,t) ∂t < 0. In the Result section, we display changes in 100-year return levels between 1959 and 2019, i.e., over the last 60 years, which equal 60 × ∂y 0.01 (z,t) ∂t . If ∂y 0.01 (z,t) ∂t = 0, i.e., if the selected model is temporally non-stationary, we compute the significance of the trend with a semi-parametric bootstrap resampling approach (Appendix 3.B). We generate B = 1000 bootstrap samples using the parameter θ M . For each bootstrap sample i, we compute the time derivative of the return level ∂yp(z,t) ∂t

(i)
. Finally, a massif with an increasing trend is said to have a significant trend if p( ∂y 0.01 (z,t)

∂t > 0| θ M ) = 1 B B i=1 1 ∂y 0.01 (z,t) ∂t (i) >0
> 1 -α, where α = 5 % is the significance level. In other words, the trend is significantly increasing when the percentage of bootstrap samples for which the return levels are increasing is above the threshold 1 -α. Likewise, a massif has a significant decreasing trend if p( ∂y 0.01 (z,t) ∂t < 0| θ M ) > 1 -α.

Workflow

In Sect. 3.4.1, we analyze changes in pointwise distribution of annual snowfall maxima with elevation in the 23 massifs of the French Alps, which helped us define the eight elevationaltemporal models considered (Sect. 3.3.2). Pointwise distribution stands for a distribution fitted on the annual maxima from a single elevation of one massif. Specifically, we fit a pointwise GEV distribution with the maximum likelihood method for each massif every 300 m of elevation from 600 to 3600 m. We exclude physically implausible distributions; i.e., ξ / ∈ [-0.5, 0.5] ( [START_REF] Martins | Generalized maximum-likelihood generalized extremevalue quantile estimators for hydrologic data[END_REF]. Then, we compute elevation gradients for the three GEV parameters and the 100-year return level with a linear regression.

In Sect. 3.4.2, we compare pointwise distributions with our approach based on piecewise elevational-temporal models. Piecewise models stand for models fitted on the annual maxima from a range of elevation of one massif. We present the elevational-temporal models selected in each massif for each range of elevations (below 1000, 1000-2000, 2000-3000, and above 3000 m) obtained with the methodology described in Sect. 3.3.2. First, we fit the eight models from Table 3.2 with the maximum likelihood method. Then, we select one model with the AIC. Finally, if the selected model is temporally non-stationary, we assess the significance of the trend using a semi-parametric bootstrap resampling approach with a significance level α = 5 % (Sect. 3.3.3).

In Sect. 3.4.3, we present for each massif and range of elevations the temporal trends in 100-year return levels obtained from selected models. We compute 100-year return levels in 2019 and their changes between 1959 and 2019 with the selected elevational-temporal models (Sect. 3.3.3). For each range of elevations, a massif has an increasing (decreasing) trend if the associated return level has increased (decreased).

Result

Pointwise distribution for each elevation.

According to pointwise fits, the location and scale parameters increase linearly with elevation (Fig. 3.2a and b). R 2 coefficients are always larger than 0.8, except for the Bauges massif for the scale parameter (Fig. 3.3b). The average elevation gradient for the location and the scale parameters is equal to 2.1 kg m -2 /100 m and 0.39 kg m -2 /100 m, respectively (Fig. 3.3a and b). In particular, this linear augmentation is also valid for any range of elevations considered to fit elevational-temporal models. Thus, as explained in Sect. 3.3.2, we assume for elevationaltemporal models location and scale parameters that vary linearly with respect to elevation. On the other hand, changes in the shape parameter rarely follow a linear relationship with elevation between 600 and 3600 m. Indeed, only seven massifs have R 2 coefficients larger than 0.5 (Fig. 3.3c). However, as illustrated in Fig. 3.2c, it does not preclude the shape parameter from varying linearly with the elevation locally, i.e., within an elevation range. Therefore, as explained in Sect. 3.3.2, we assume for elevational-temporal models that the shape parameter is either constant or linear with respect to elevation. In Fig. 3.2d we show the change in 100-year return levels with elevation, while in Fig. 3.3d we display their elevation gradients. Return levels augment linearly with elevation, which is confirmed by R 2 coefficients always larger than 0.8. The largest return levels and elevation gradients correspond to the Mercantour (Southern Alps) and Haute-Maurienne massif (eastern part of the French Alps). 

Elevational-temporal models for each range of elevations

Figure 3.4 illustrates selected models for each massif and each range of elevations. The most selected model is a temporally non-stationary models M µt,σt , which is selected for 54 % of the massifs and is significant for 32 % of the massifs. Further, the temporally stationary model M 0 and M ξz have been selected for 28 % and 1 % of the massifs. The remaining temporally non-stationary models have been selected for 17 % of massifs. We notice that the four-mostrepresented temporally non-stationary models have a linearity with respect to the years t for the scale parameter (which impacts both the mean and the variance of the GEV distribution), potentially indicating that often both the intensity and the variance of maxima are changing over time. Furthermore, we observe that the shape parameter values remain between -0.4 and 0.4, which is a physically acceptable range [START_REF] Martins | Generalized maximum-likelihood generalized extremevalue quantile estimators for hydrologic data[END_REF]. Except a majority of Weibull distributions (massifs displayed in green in Fig. 3.4) at 500 m in the northwest of the French Alps and a clear majority of Fréchet distributions (yellow massifs) at 2500 m, we do not find any clear spatial/elevation patterns for the shape parameter.

Figure 3.5 exemplifies the differences between pointwise distribution and our approach based on piecewise elevational-temporal models. We consider annual maxima from 600 to 3600 m of elevation for the Vanoise massif (Sect. 3.2). First, our approach makes it possible to interpolate GEV parameter values (and thus to deduce 100-year return levels) for each range of elevations (blue line) rather than having point estimates (green dots). Furthermore, it reduces confidence intervals for return levels (shaded areas) which were computed with an approach based on semi-parametric bootstrap resampling (Appendix 3.B). Finally, our approach accounts for temporal trends. For example, for the Vanoise massif above 3000 m, the selected model is a temporally non-stationary model (Fig. 3.4) with an increasing trend in return levels (Fig. 3.8). This explains why return levels in 2019 estimated from the elevationaltemporal model exceed return levels estimated from the pointwise distribution. In Fig. 3.7, we show distributions of changes and relative changes in 100-year return levels between 1959 and 2019. We find a temporal increase in 100-year return levels between 1959 and 2019 equal to +23 % (+32 kg m -2 ) on average at 3500 m and a decrease of -10 % (-7 kg m -2 ) on average at 500 m. For intermediate elevations, i.e., between 1000 and 3000 m, we observe that the distributions of changes and of relative changes remain roughly negative (decrease) at 1500 m and positive (increase) at 2500 m. This result holds for all massifs, for the subset of massifs with a selected model temporally non-stationary, and for the subset with a selected model that is temporally non-stationary and significant. In Fig. 3.8, we display the change in 100-year return levels between 1959 and 2019 for each range of elevations. At 500 m, we observe that eight massifs have a stationary trend and five massifs located in the center of the French Alps have a significant decreasing trend. We also note that two massifs located in the western French Alps have an increasing significant trend, with an absolute change in the 100-year return level close to +20 kg m -2 . At 1500 m, six massifs in the center of the French Alps have decreasing trends. At 2500 m, we observe a spatially contrasting pattern: most decreasing trends are located in the north, while most increasing trends are located in the south. We discuss this pattern in Sect. 3.5.4. At 3000 m, we observe that the six massifs with a significant increasing trend are located in the south of the French Alps.

Temporal trends in return levels

In Fig. 3.9, we display the return level in 2019 for each range of elevations. Combining Figs. 3.8 and 3.9 enables us to pinpoint massifs both with high return levels in 2019 and with an increasing or decreasing trend. For instance, at 2500 m, the Haute-Maurienne massif has one of the highest 100-year return levels in 2019 (185 kg m -2 ), but it is decreasing with time. On the other hand, at 2500 and 3500 m, most massifs in the south have high 100-year return levels values in 2019 and increasing trends. 

Discussion

Methodological considerations

We discuss the statistical models considered to estimate temporal trends in 100-year return levels of daily snowfall. For small-size time series of annual maxima, e.g., a few decades, return level uncertainty largely depends on the uncertainty in the shape parameter [START_REF] Koutsoyiannis | Statistics of extremes and estimation of extreme rainfall: I. Theoretical investigation[END_REF]. In order to reduce the uncertainty in the GEV parameters, models are often fitted using the information from several time series e.g., using regionalization methods [START_REF] Hosking | Regional frequency analysis[END_REF] or using scaling relationships between different aggregation durations [START_REF] Blanchet | A regional GEV scale-invariant framework for Intensity-Duration-Frequency analysis[END_REF]. In this work, we fit models to time series from several elevations. In the literature, elevation is often not treated as a covariate but rather accounted for by a spatial distance [START_REF] Blanchet | Spatial modeling of extreme snow depth[END_REF][START_REF] Gaume | Mapping extreme snowfalls in the French Alps using max-stable processes[END_REF][START_REF] Conclusion Nicolet | Decreasing spatial dependence in extreme snowfall in the French Alps since 1958 under climate change[END_REF]. In practice, as illustrated in Fig. 3.5, we compute the uncertainties in return levels for all the massifs and find that elevational-temporal models effectively decrease confidence intervals compared to pointwise distributions fitted to one time series.

Then, we fit the models to at least two time series, i.e., from at least two elevations. As illustrated in Fig. 3.1, for each range of elevations, we always have at least two time series, i.e., more than 100 maxima to estimate 100-year return levels. However, in practice annual maxima from consecutive elevations are often dependent. At low elevations, four time series contain zeros, i.e., years without any snowfall, which may lead to misestimation for the models. A potential solution would be to rely on a mixed discrete-continuous distribution: a discrete distribution for the probability of a year without any snowfall and a continuous GEV distribution for the annual maxima of snowfall. However, this would require at least one additional parameter for the discrete distribution and even more if we wish to model some non-stationarity. In practice, to avoid overparameterized models, we removed one time series which had more than 10 % of zeros.

Afterwards, for different ranges of elevation containing at most three consecutive elevations, we fit the models using all corresponding time series. For each model, this ensures that the temporal non-stationarity can be assumed to not depend on the elevation. Indeed, initially we intended for each massif to fit a single model to time series from all elevations. However, to account for decreasing trends at low elevations and increasing trends at high elevations, this led to complex overparameterized models that often did not fit well. We decided to consider a piecewise approach, i.e., simpler models fitted to ranges of consecutive elevations at most separated by 900 m (Figs. 3. 1 and 3.5). This ensures that we can assume that the temporal non-stationarity (no trend or decreasing/increasing trend) is shared between all elevations from the same range. Otherwise, we observe that annual maxima from consecutive altitudes are dependent (Fig. 3.1). We did not account for this dependence in our statistical model. Instead, we assumed that maxima are conditionally independent given the vector of parameters θ M (Sect. 3.3.2).

Finally, for each range of elevations, we consider models with a temporal non-stationarity only for the location and scale parameter. Indeed, in the literature, a linear non-stationarity is considered sometimes only for the location parameter [START_REF] Fowler | Detecting change in UK extreme precipitation using results from the climateprediction.net BBC climate change experiment[END_REF][START_REF] Tramblay | Future evolution of extreme precipitation in the Mediterranean[END_REF] but more often for both the location and the scale (or log-transformed scale for numerical reasons) parameters [START_REF] Katz | Statistics of extremes in hydrology[END_REF][START_REF] Kharin | Estimating extremes in transient climate change simulations[END_REF][START_REF] Marty | Long-term changes in annual maximum snow depth and snowfall in Switzerland based on extreme value statistics[END_REF]Wilcox et al., 2018a). Otherwise, the shape parameter is typically considered temporally stationary in the literature, and we followed this approach.

Implication of the temporal trends in 100-year return levels

In Fig. 3.8, we emphasize massifs with a strong increase in 100-year return levels between 1959 and 2019, e.g., massifs filled with medium/dark red correspond to increase ≥ +50 kg m -2 . Settlements in these massifs should ensure that the design of protective measures and building standards against extreme snow events are still adequate after such an increase. Hopefully, this might concern few settlements as such strong increases are always located above 2000 m. However, this might impact ski resorts which should ensure that the design of avalanche protection measures takes this change into account. We note that extreme snow events can sometimes be triggered by one snowfall event but often depend on other factors such as accumulated snow or wind. Therefore, to update structure standards for ground snow load [START_REF] Biétry | Charges de neige au sol en France : proposition de carte révisée[END_REF], we should account for both this increasing trend in annual maxima of daily snowfall and trends in annual maxima of ground snow loads [START_REF] Le Roux | Non-stationary extreme value analysis of ground snow loads in the French Alps: a comparison with building standards[END_REF]. Indeed, most known snow load destructions result from such intense and short snow events, sometimes combined with liquid precipitation, which is not considered in this study. In general, in mountainous regions around the French Alps, if the past trends continue into the future, for extreme snowfall we can expect decreasing trends below 1000 m and increasing trends above 3000 m, as this agrees with both our results and the literature (Table 3.1).

Data considerations

Following the evaluation of the SAFRAN reanalysis cited in Sect. 3.2, we can conclude that this reanalysis most likely underestimates high-elevation precipitation (above 2000 m), which probably leads to an underestimation of high-elevation snowfall. This deficiency does not affect the main contribution of this article, i.e., a majority of decreasing trends below 2000 m and a majority of increasing trends above 2000 m. However, this deficiency affects the value of extreme snowfall, i.e., the 100-year return level and the scale of its changes, which may be underestimated above 2000 m. For future works, we note that a direct evaluation of extreme snowfall could help to better pinpoint the locations where return levels might be biased.

Hypothesis for the contrasting pattern for changes in 100-year return levels

In Fig. 3.8, at 2500 m, we find a spatially contrasting pattern for changes in 100-year return levels of snowfall: most decreasing trends are located in the north, while most increasing trends are in the south. These changes contradict expectations based on the climatological differences between the north and south of the French Alps. Indeed, since the north is climatologically colder than the south in both winter and summer (Fig. 5 of Durand et al., 2009a), we would have expected the inverse pattern for an intermediate elevation, i.e., increasing trends in the north and decreasing trends in the south. Indeed, extreme snowfall stems from extreme precipitation occurring in a range of optimal temperatures slightly below 0 o C (O'Gorman, 2014; [START_REF] Frei | Future snowfall in the Alps: projections based on the EURO-CORDEX regional climate models[END_REF]. Thus, under global warming, we would have expected for an intermediate elevation that the probability of being in the range of optimal temperatures would be increasing in the north (because mean temperatures would shift toward the optimal range) while decreasing in the south (because temperatures would be shifting away from the optimal range). Therefore, we would have observed an increase in extreme snowfall in the north and a decrease in the south.

Thus, this spatial pattern of changes cannot be solely explained by the spatial pattern of mean temperature. In particular, we believe that dynamical changes, i.e., heterogeneous changes in extreme precipitation in the French Alps, may have contributed to generate this contrasting pattern. In Appendix 3.D, we apply our methodology (Sect. 3.3) on daily winter precipitation from the SAFRAN reanalysis for the period 1959-2019. We focus on winter precipitation because winter is the season when most annual maxima of daily snowfall occur below 3000 m (Appendix 3.E). We observe that at 2500 m (and at all elevations) changes in 100-year return levels of winter precipitation show the same contrasting pattern as 100-year return levels of snowfall This contrasting pattern is observed at all elevations for changes in 100-year return levels of winter precipitation. The literature also confirms that changes in extreme precipitation are not homogeneous. For instance, we observe for the period 1903-2010 that trends in daily maxima of winter precipitation are stronger in the south (+20 %-40 % per century) compared to the north (from -10 % to +20 % per century) of the French Alps (Fig. 7 of [START_REF] Ménégoz | Contrasting seasonal changes in total and intense precipitation in the European Alps from 1903 to 2010[END_REF]. We also observe for the period 1958-2017 that the 20-year return level of winter precipitation has decreased in the north of the French Alps and has slightly increased or remained the same in the south (Fig. 8 of [START_REF] Blanchet | Explaining recent trends in extreme precipitation in the Southwestern Alps by changes in atmospheric influences[END_REF]. This observation might be due to a stronger increasing trend in extreme precipitation for the Mediterranean circulation than for the Atlantic circulation. Indeed, precipitation maxima in the north of the French Alps are frequently triggered by the Atlantic circulation, while maxima in the south are often due to the Mediterranean circulation [START_REF] Blanchet | Retreating Winter and Strengthening Autumn Mediterranean Influence on Extreme Precipitation in the Southwestern Alps over the last 60 years[END_REF]. Furthermore, increasing trends in extreme snowfall have already been observed in the proximity of the Mediterranean Sea. For example, Faranda (2020) identified a certain number of Mediterranean countries showing positive changes in snowfall maxima. D'Errico et al. ( 2020) propose a physical explanation of this phenomenon: the Mediterranean Sea is warming faster than any other ocean, which enhances convective precipitation and favors heavy snowfalls during cold-spell events.

In practice, this increasing trend in extreme snowfall in the south should be temporary. Indeed, with climate change, temperatures are expected to shift further away from the optimal range of temperatures for extreme snowfall. Thus, in the long run, extreme snowfall is expected to decrease as the increase in extreme precipitation shall not compensate for the decreasing probability of being close to the optimal range of temperatures.

Conclusions and outlook

We estimate temporal trends in 100-year return levels of daily snowfall for several ranges of elevation based on the SAFRAN reanalysis available from 1959 to 2019 (Durand et al., 2009a). Our statistical methodology relies on non-stationary extreme value models that depend on both elevation and time. Our results show that a majority of trends are decreasing below 2000 m and increasing above 2000 m. Quantitatively, we find an increase in 100-year return levels between 1959 and 2019 equal to +23 % (+32 kg m -2 ) on average at 3500 m and a decrease of -10 % (-7 kg m -2 ) on average at 500 m. For the four investigated elevation ranges, we find both decreasing and increasing trends depending on location. In particular, we observe a spatially contrasting pattern, exemplified at 2500 m: 100-year return levels have decreased in the north of the French Alps while they have increased in the south. In the discussion, we highlight that this pattern might be related to known increasing trends in extreme snowfall in the proximity of the Mediterranean Sea.

Many potential extensions of this work could be considered. First, reanalyses are increasingly available at the European scale (e.g., [START_REF] Soci | High-resolution precipitation re-analysis system for climatological purposes[END_REF], which could be used for extending this work to a wider geographical scale. In this case, instead of considering close massifs as spatially independent, we believe that our methodology may benefit from an explicit modeling of the spatial dependence [START_REF] Padoan | Likelihood-based inference for max-stable processes[END_REF]. Then, climatic projections could enable us to explore temporal trends up to the end of the twenty-first century. In these circumstances, it might be more relevant to use global mean surface temperature as a temporal covariate to combine ensembles of climate models. Finally, future research should focus not solely on mountain regions but also on lowland regions such as around the Mediterranean Sea. Indeed, such regions are often heavily impacted by snow-related hazards because they are ill-equipped for such rare events. For instance, extreme snowfall over Roussillon, a Mediterranean coastal lowland, caused major damage in 1986 [START_REF] Vigneau | dans les Pyrénées orientales : deux perturbations méditerranéennes aux effets remarquables[END_REF], while in 2021 heavy snowfall over Spain caused at least EUR 1.4 billion of damage (The New York Times, 2021). In these regions, temperatures below the rain-snow transition temperature, i.e., roughly below 0 o C, may tend to be rare in the future. Therefore, in these cases, in addition to directly studying trends in snowfall extremes, we should focus on trends in the compound risk of cold wet events [START_REF] De Luca | Compound warm-dry and cold-wet events over the Mediterranean[END_REF].

3.A Quantile-quantile plots

A quantile-quantile (Q-Q) plot is a standard diagnosis tool based on the comparison of empirical quantiles (computed from the empirical distribution) and theoretical quantiles (computed from the expected distribution). For non-stationary extreme value models, the approach is two-fold [START_REF] Coles | An introduction to Statistical Modeling of Extreme Values[END_REF][START_REF] Katz | Statistical methods for nonstationary extremes[END_REF]. First, we transform observations into residuals with a probability integral transformation f GEV→Standard Gumbel . Then, we construct a Q-Q plot to assess if the residuals follow a standard Gumbel distribution. If the Q-Q plot reveals a good fit, it means that the non-stationary extreme value model has a good fit as well.

We start by transforming the observations y z 1 ,t 1 , . . ., y z 1 ,t M , . . ., y z N ,t 1 . . ., y z N ,t M into residuals. Let Y z,t ∼ GEV(µ(z, t), σ(z, t), ξ(z)) with parameter θ M . By definition of the probability integral transformation f GEV→Standard Gumbel , we obtain that

f GEV→Standard Gumbel (Y z,t ; θ M ) = 1 ξ(z) log 1 + ξ(z) Y z,t -µ(z, t) σ(z, t) ∼ Gumbel(0, 1). (3.4)
The transformed observations, a.k.a. residuals, are denoted as z,t = f GEV→Standard Gumbel (y z,t ; θ M ). Afterwards, we construct a Q-Q plot to assess if the residuals follow a standard Gumbel distribution. On one hand, the N × M empirical quantiles correspond to the ordered values of the residuals z 1 ,t 1 , . . ., z 1 ,t M , . . ., z N ,t 1 . . ., z N ,t M . On the other hand, we compute the corresponding N × M theoretical quantiles, which are the quantile i N ×M +1 of the standard Gumbel distribution, where i ∈ {1, . . ., N × M }. In Fig. 3.10, we display Q-Q plots for the selected model for the time series displayed in Fig. 3.1. We observe that they show a good fit, as the points stay close to the line. In general, most retained models show a good fit. Furthermore quantitatively, if we rely on an Anderson-Darling statistical test with a 5 % significance level to assess if the residuals follow a standard Gumbel distribution, we find that the largest parts of the tests are not rejected (not shown). 

3.B Semi-parametric bootstrap method

In the context of maximum likelihood estimation, uncertainty related to return levels can be evaluated with the delta method, which quickly provides confidence intervals in both the stationary and the non-stationary cases [START_REF] Coles | An introduction to Statistical Modeling of Extreme Values[END_REF][START_REF] Gilleland | extRemes 2.0: An Extreme Value Analysis Package in R[END_REF]. However, due to the dependence between maxima from consecutive elevations (Fig. 3.1), we decided to compute confidence intervals with a bootstrap resampling method [START_REF] Efron | An introduction to the bootstrap[END_REF]. This resampling method allows us to estimate the uncertainties resulting from insample variability. In this article, we rely on a semi-parametric bootstrap resampling method adapted to non-stationary extreme models [START_REF] Kharin | Estimating extremes in transient climate change simulations[END_REF][START_REF] Conclusion Sillmann | Extreme cold winter temperatures in Europe under the influence of North Atlantic atmospheric blocking[END_REF].

We generate B = 1000 bootstrap samples using the parameter θ M . For each bootstrap sample i, the semi-parametric bootstrap method is four-fold. First, as explained in Appendix 3.A, we compute the residuals z 1 ,t 1 , . . ., z 1 ,t M , . . ., z N ,t 1 . . ., z N ,t M . Then, from these residuals we draw with replacement a sample of size M × N . We denote these bootstrapped residuals as ˜ z 1 ,t 1 , . . ., ˜ z 1 ,t M , . . ., ˜ z N ,t 1 . . ., ˜ z N ,t M . Afterwards, we transform these bootstrapped residuals into bootstrapped annual maxima as follows: ỹz,t =

f -1
GEV→Standard Gumbel (˜ z,t ; θ M ). Finally, we estimate the parameter θ

(i)
M of model M with the bootstrapped annual maxima ỹz 1 ,t 1 , . . ., ỹz 1 ,t M , . . ., ỹz N ,t 1 . . ., ỹz N ,t M . To sum up, this bootstrap procedure provides a set { θ In practice, we rely on this set of GEV parameters to obtain 80 % confidence intervals for 100-year return levels (Fig. 3.5) or for time derivatives of 100-year return levels (Sect. 3.3.3). For instance, in the latter case we have p( ∂y 0.01 (z,t) ∂t

> 0| θ M ) = 1 B B i=1 1 ∂y 0.01 (z,t) ∂t (i)

>0

, where ∂y 0.01 (z,t) ∂t

(i)
is the time derivative of 100-year return levels for the parameter θ 

3.D Trends in 100-year return levels of winter precipitation

We apply the same methodology as in our study (Sect. 3.3) to daily winter (December to February) precipitation obtained with the SAFRAN reanalysis and spanning the period 1959-2019. First, a preliminary analysis with pointwise fits indicates that a linear parameterization with respect to the elevation for the location and scale parameters is also valid for the winter precipitation (Fig. 3.12). In Fig. 3.13, we illustrate changes in the 100-year return level of winter precipitation. We observe a spatially contrasting pattern at all elevations, i.e., increase in the south and decrease in the north. This underlines that the spatially contrasting pattern observed for changes in the 100-year return level of snowfall at 2500 m may result from the circulation patterns of precipitation. 

3.E Seasons when the annual maxima of daily snowfall occurred

In Fig. 3.14, we study the seasons when the annual maxima of daily snowfall occurred. For elevation range 1 (below 1000 m) and for elevation range 2 (between 1000 and 2000 m), we observe that the annual maxima mainly occurred (> 60 %) between December and February, i.e., the coldest part of the snow season. For elevation range 3 (between 2000 and 3000 m) more than 40 % of maxima occurred in winter, while slightly less than 30 % occurred in autumn and in spring. For elevation range 4 (above 3000 m) the seasons of occurrence are more spread, even if we observe that more than 40 % of maxima occurred in autumn. In conclusion, we find that below 3000 m, most annual maxima of daily snowfall occur in winter, while above 3000 m they mostly occur in autumn. Projected changes in extreme snow load I find it scandalous that in spite of the empirical record we continue to project into the future as if we were good at it, using tools and methods that exclude rare events.

-Nassim Nicholas Taleb, The Black Swan Abstract: Anticipating risks related to climate extremes often relies on the quantification of large return levels (values exceeded with small probability) from climate projection ensembles. Current approaches based on multi-model ensembles (MMEs) usually estimate return levels separately for each chain of the MME. By contrast, using MME obtained with different combinations of general circulation models (GCM) and regional climate models (RCM), our approach estimates return levels together from the past observations and all GCM-RCM pairs, considering both historical and future periods. The proposed methodology seeks to provide estimates of projected return levels accounting for the variability of individual GCM-RCM trajectories, with a robust quantification of uncertainties. To this aim, we introduce a flexible non-stationary generalized extreme value (GEV) distribution that includes i) piecewise linear functions to model the changes in the three GEV parameters ii) adjustment coefficients for the location and scale parameters to adjust the GEV distributions of the GCM-RCM pairs with respect to the GEV distribution of the past observations. Our application focuses on snow load at 1500 m elevation for the 23 massifs of the French Alps, which is of major interest for the structural design of roofs. Annual maxima are available for 20 adjusted GCM-RCM pairs from the EURO-CORDEX experiment, under the scenario RCP8.5. Our results show with a model-as-truth experiment that at least two linear pieces should be considered for the piecewise linear functions. We also show, with a split-sample experiment, that eight massifs should consider adjustment coefficients. These two experiments help us select the GEV parameterizations for each massif. Finally, using these selected parameterizations, we find that the 50-year return level of snow load is projected to decrease in all massifs, by -2.9 kN m -2 (-50%) on average between 1986-2005 and 2080-2099 at 1500 m elevation and RCP8.5. This paper extends to climate extremes the recent idea to constrain climate projection ensembles using past observations.

Introduction

Climate model simulation is one of the main scientific paradigms to anticipate extreme climate events. In particular, multimodel GCM-RCM ensembles are widely used to quantify the changes in climate extremes and their uncertainties (IPCC, 2019). General circulation models (GCMs) represent key processes of the climate system relevant at the global scale, and provide input for regional climate models (RCMs) used to downscale and refine the climate projections at the local to regional scale.

Climate extremes are usually assessed within the statistical framework of extreme value theory (EVT), by focusing either on annual maxima or on values exceeding a high threshold [START_REF] Coles | An introduction to Statistical Modeling of Extreme Values[END_REF]. EVT makes it possible to robustly estimate return levels, i.e. extreme quantiles that occur on average once every T years, where T is the corresponding return period. Return levels play a key role in the design of structures (dams, protections, roofs) to withstand the effects of natural hazards (floods, avalanches, wildfires, snow loads), see e.g. [START_REF] Rao | Flood Frequency Analysis[END_REF]; [START_REF] Eckert | Bayesian stochastic modelling for avalanche predetermination: From a general system framework to return period computations[END_REF]; [START_REF] Evin | Partitioning uncertainty components of an incomplete ensemble of climate projections using data augmentation[END_REF][START_REF] Le Roux | Non-stationary extreme value analysis of ground snow loads in the French Alps: a comparison with building standards[END_REF].

Most approaches using EVT to study climate extremes from multi-model ensembles (MMEs) rely on stationary generalized extreme value (GEV) distributions estimated separately on each chain of the MME, i.e. with each ensemble member [START_REF] Kharin | Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations[END_REF][START_REF] Beniston | Future extreme events in European climate: An exploration of regional climate model projections[END_REF]. Specifically, for each ensemble member, annual maxima are assumed stationary for two time slices of 20/30 years: one in the historical period representing the late 20th century climate, and one in the future period. For instance, [START_REF] Fowler | Estimating change in extreme European precipitation using a multimodel ensemble[END_REF] opted for two 30-year time slices: 1961-1990 and 2071-2100. Next, stationary 20/30-year return levels are estimated for each time slice with a GEV distribution. Finally, average changes, i.e. differences of return levels between time slices averaged on all ensemble members, are usually reported [START_REF] Kharin | Changes in temperature and precipitation extremes in the CMIP5 ensemble[END_REF][START_REF] O'gorman | Contrasting responses of mean and extreme snowfall to climate change[END_REF].

However, such approaches based on stationary GEV distributions have several drawbacks. First, the assumption of stationarity for 20/30 consecutive annual maxima can be debatable, and the possibility of a trend within the 20/30 years time slices is often not checked [START_REF] Kharin | Estimating extremes in transient climate change simulations[END_REF]. Then, the choice to rely only on 20/30 maxima implies that the estimated GEV parameters have large uncertainties. In this case, large return levels, e.g. 50-year (or even larger) return periods which are usually considered to design structures (see e.g., Tab.1 of [START_REF] Cabrera | The Time Variable in the Calculation of Building Structures . How to extend the working life until the 100 years ?[END_REF], can be highly uncertain.

Temporal non-stationary GEV approaches address these limitations by taking into account all the available annual maxima for each ensemble member, i.e. all the historical and future annual maxima are fitted with a single statistical model [START_REF] Kharin | Estimating extremes in transient climate change simulations[END_REF]. Such approaches combine a stationary random component (a fixed extreme value distribution) with non-stationary deterministic functions that map each temporal covariate (such as the years or the global mean temperatures) to the changing parameters of the distribution [START_REF] Montanari | Modeling and mitigating natural hazards: Stationarity is immortal![END_REF]. Another advantage of temporal non-stationary approaches is that they allow return levels to be estimated conditionally on each temporal covariate [START_REF] Kharin | Changes in temperature and precipitation extremes in the CMIP5 ensemble[END_REF].

A majority of temporal non-stationary approaches for MMEs rely on the GEV distributions estimated separately with each chain of the MME (Tab. 4.1), with some exceptions [START_REF] Caires | Projection and analysis of extreme wave climate[END_REF][START_REF] Kyselý | Estimating extremes in climate change simulations using the peaks-over-threshold method with a non-stationary threshold[END_REF][START_REF] Roth | Projections of precipitation extremes based on a regional, non-stationary peaks-over-threshold approach: A case study for the Netherlands and north-western Germany[END_REF][START_REF] Winter | Characterising the changing behaviour of heatwaves with climate change, Dynamics and Statistics of the Climate System[END_REF], and report return levels (conditionally on a given covariate) averaged on all ensemble members. We believe that such approaches are sub-optimal because they estimate one non-stationary GEV distribution with each chain of the MME, i.e. with roughly less than 200 maxima, which often implies simple parameterization (linear) for the non-stationary functions (Tab. 4.1).

Our study follows an alternative approach which relies on temporal non-stationary GEV distributions fitted together on all ensemble members. This approach enables us to robustly quantify uncertainties using standard tools from non-stationary extreme value analysis [START_REF] Aghakouchak | Extremes in a changing climate: detection, analysis and uncertainty[END_REF]. Such an approach has mainly been proposed for initial condition ensembles (Tab. 4.1), i.e. ensemble members that consist of replicates from the same GCM-RCM pair (or same GCM for GCM ensembles) simulated with different initial conditions. For initial condition ensembles, this alternative approach estimates a single non-stationary distribution on all ensemble members by assuming that they are independent and identically distributed (iid ).

However, this alternative approach is inadequate for GCM-RCM ensembles with several GCMs because the iid assumption, i.e. that all GCM-RCM pairs follow the same nonstationary distribution, is unlikely to hold in all the cases.

Our study fills this gap with a novel non-stationary extreme value approach inspired by the recent trend of statistical methods that constrain climate projections using past observations [START_REF] Brunner | Comparing Methods to Constrain Future European Climate Projections Using a Consistent Framework[END_REF]. We propose to fit a non-stationary GEV distribution together from the past observations and all GCM-RCM pairs, without necessarily assuming that all GCM-RCM pairs follow the same distribution. To this end, we introduce adjustment coefficients for the location and scale parameters of the GEV distribution to represent the variability of climate trajectories, i.e. the various GEV distributions of all GCM-RCM pairs. Specifically, the nonstationary GEV distribution is jointly fitted i) without adjustment coefficients on the past observations to represent the most likely climate trajectory ii) with adjustment coefficients on the GCM-RCM pairs to account for the variability of climate trajectories. Besides, nonstationary GEV based approaches for climate projections ensembles usually consider linear functions for the non-stationary functions, with the exception of [START_REF] Um | Modeling nonstationary extreme value distributions with nonlinear functions: An application using multiple precipitation projections for U.S. cities[END_REF] that uses nonlinear functions (Tab. 4.1). In this study, we extend these approaches by considering piecewise linear functions for the non-stationary functions. Our application focuses on snow loads at 1500 m elevation in the 23 massifs of the French Alps. Snow load corresponds to the pressure exerted by accumulated snow on the ground (proportional to the snow water equivalent) which is of major interest both for water resource management [START_REF] Marty | Recent Evidence of Large-Scale Receding Snow Water Equivalents in the European Alps[END_REF] and for the structural design of buildings (Croce et al., 2018a).

Section 4.2 presents our data, i.e. the 20 GCM-RCM pairs for RCP8.5 adjusted from EURO-CORDEX, and the S2M reanalysis set as the reference observational dataset [START_REF] Vernay | The S2M meteorological and snow cover reanalysis in the French mountainous areas (1958 -present)[END_REF][START_REF] Vernay | The S2M meteorological and snow cover reanalysis over the French mountainous areas, description and evaluation 1958 -2020[END_REF]. In Section 4.3, we detail our statistical methodology. Finally, results, discussions and conclusions are introduced in Sects. 4.4, 4.5 and 4.6 respectively.

Data

Our application relies on the S2M reanalysis and GCM-RCM pairs (1951-2100) statistically adjusted at 1500 m for the 23 massifs in the French Alps, i.e. between Lake Geneva to the north and the Mediterranean Sea to the south (Fig. 4.1). This region, home to the largest ski areas in the world, is prone to snow-related hazards such as avalanches [START_REF] Favier | Avalanche risk evaluation and protective dam optimal design using extreme value statistics[END_REF][START_REF] Sielenou | Combining random forests and class-balancing to discriminate between three classes of avalanche activity in the French Alps[END_REF] which are heavily impacted by ongoing warming [START_REF] Eckert | Temporal trends in avalanche activity in the French Alps and subregions: From occurrences and runout 6. CONCLUSION altitudes to unsteady return periods[END_REF][START_REF] Castebrunet | Projected changes of snow conditions and avalanche activity in a warming climate: The French Alps over the 2020-2050 and 2070-2100 periods[END_REF]). This study estimates potential changes in snow load hazard for a high emission scenario (RCP8.5) as a case study, although it could also be applied to other scenarios and variables. Following the block maxima approach to estimate the hazard of snow load (Sect. 4.3.1), we compute annual maxima of daily snow load centred on the winter season, e.g. an annual maximum for the year 1959 is the maximum from the 1st of August 1958 to the 31st of July 1959 (Fig. 4.1). We remind the reader that the snow load is equal to the gravitational acceleration (g = 9.81 m s -2 ) times the snow water equivalent (in kg m -2 ). Snow water equivalent equals the observed height of accumulated snow (in m) multiplied by the snow density (in kg m -3 ). The S2M reanalysis (Durand et al., 2009a;[START_REF] Vernay | The S2M meteorological and snow cover reanalysis in the French mountainous areas (1958 -present)[END_REF][START_REF] Vernay | The S2M meteorological and snow cover reanalysis over the French mountainous areas, description and evaluation 1958 -2020[END_REF] combines large scale reanalyses and forecasts with in situ meteorological observations to provide daily values of snow load from 1959 to 2019. The S2M reanalysis has been both evaluated with in situ temperature and precipitation observations (Durand et al., 2009a) and with various snow depth observations [START_REF] Vionnet | Numerical weather forecasts at kilometer scale in the French Alps: Evaluation and application for snowpack modeling[END_REF][START_REF] Quéno | Snowpack modelling in the Pyrenees driven by kilometric-resolution meteorological forecasts[END_REF][START_REF] Revuelto | Multi-criteria evaluation of snowpack simulations in complex alpine terrain using satellite and in situ observations[END_REF][START_REF] Vionnet | Sub-kilometer Precipitation Datasets for Snowpack and Glacier Modeling in Alpine Terrain[END_REF][START_REF] Vernay | The S2M meteorological and snow cover reanalysis over the French mountainous areas, description and evaluation 1958 -2020[END_REF]. The S2M reanalysis focuses on the elevation dependency of meteorological conditions. Indeed, this reanalysis is not produced on a regular grid, but provides data for each massif every 300 m of elevation between 600 m and 3600 m.

Statistical methodology

Generalized extreme value distribution

Following the block maxima approach of extreme value theory [START_REF] Coles | An introduction to Statistical Modeling of Extreme Values[END_REF], we model annual maxima with the GEV distribution. Indeed theoretically, as the central limit theorem motivates asymptotically sample means modeling with the normal distribution, the Fisher-Tippett-Gnedenko theorem [START_REF] Fisher | Limiting forms of the frequency distribution of the largest or smallest member of a sample[END_REF][START_REF] Gnedenko | Sur la distribution limite du terme maximum d'une série aléatoire[END_REF] encourages asymptotically sample maxima modeling with the GEV distribution. In practice, if Y represents an annual maximum, we can assume that Y ∼ GEV(µ, σ, ξ), which implies that:

P (Y ≤ y) = exp [-(1 + ξ y-µ σ ) -1 ξ + ] if ξ = 0 and where u + denotes max (u, 0), exp [-exp (-y-µ σ )] if ξ = 0, (4.1)
where the three parameters are: the location µ, the scale σ > 0, and the shape ξ. Three subfamilies of distribution (reversed Weibull, Gumbel, Fréchet) can be derived depending on the sign of the shape parameter (ξ < 0, ξ = 0, ξ > 0) respectively. Due to these theoretical justifications, the GEV distribution enables a robust estimation of return levels [START_REF] Coles | An introduction to Statistical Modeling of Extreme Values[END_REF][START_REF] Cooley | Return Periods and Return Levels Under Climate Change[END_REF]. The T -year return level, which is defined as a daily value y p exceeded each year with probability p = 1 T , corresponds to the 1 -p quantile of the GEV distribution

P (Y ≤ y p ) = 1 -p ↔ y p = µ -σ ξ [1 -(-log (1 -p)) -ξ ].
In this study, we set p = 1 50 as it corresponds to the 50-year return period that is widely used for the design working life of building [START_REF] Cabrera | The Time Variable in the Calculation of Building Structures . How to extend the working life until the 100 years ?[END_REF] notably for the building standard against snow load [START_REF] Croce | Harmonized European ground snow load map: Analysis and comparison of national provisions[END_REF].

Non-stationary distribution

Let Y obs t denote an observed annual maximum for the year t between 1959 and 2019, and T obs t represent the smoothed anomaly of global mean surface temperature (GMST) from HadCRUT5 (Sect. 4.2). We rely on a non-stationary distribution where each GEV parameter is a piecewise linear function of T , the smoothed anomaly of GMST. We note that we rely on a log link function for the scale parameter to ease the numerical optimization.

Y obs t |θ ∼ GEV(µ(T obs t ), σ(T obs t ), ξ(T obs t )) with µ(T ) = µ 0 + L i=1 µ i × (T -κ i ) + , log σ(T ) = σ 0 + L i=1 σ i × (T -κ i ) + , ξ(T ) = ξ 0 + L i=1 ξ i × (T -κ i ) + , (4.
2) where θ is a vector of coefficients for the piecewise-linear functions µ(.), σ(.), ξ(.), 1 ≤ L ≤ 4 corresponds to the number of linear pieces κ i = T min + (i-1)×(Tmax-T min ) L , and T min and T max are the minimum and maximum smoothed anomaly of GMST for the period 1951-2100 (Fig. 4.2). In other words, κ 2 , ..., κ L-1 are fixed and equally spaced between T min and T max and correspond to the L -1 anomalies of smoothed GMST where the line breaks, i.e. where the slope of the piecewise linear functions changes.

PROJECTED CHANGES IN EXTREME SNOW LOAD

Let Y pair k t represent an annual maximum of the GCM-RCM pair k for the year t between 1951 and 2100, and T pair k t represent the smoothed anomaly of global mean temperature (Sect. 4.2) for the GCM of GCM-RCM pair k (with k between 1 and 20).

Y pair k t |θ ∼ GEV(µ(T pair k t , GCM pair k , RCM pair k ), σ(T pair k t , GCM pair k , RCM pair k ), ξ(T pair k t )), (4.3)
where the five parameterizations for µ(T pair k t , GCM pair k , RCM pair k ) and σ(T pair k t , GCM pair k , RCM pair k ) are shown in Table 4.2, and where ξ(.) is given in Eq. 4.2. For the 20 GCM-RCM pairs, we consider adjustment coefficients for the location and scale parameters that aim at adjusting the distribution of GCM-RCM pairs w.r.t. the distribution of the past observations. We did not consider adjustment coefficients on the shape parameter because it sometimes leads to prediction failures. We consider five parameterizations: zero adjustment coefficients, one adjustment coefficient for all GCM-RCM pairs, one for each GCM, one for each RCM, and one for each GCM-RCM pair (Tab. 4.2). Following [START_REF] Brown | Climate projections of future extreme events accounting for modelling uncertainties and historical simulation biases[END_REF], we assume that these adjustment coefficients are constant, i.e. the same for historical and future climates.

In Table 4.2, we show the size of the vector of coefficients θ for the non-stationary GEV distribution. For each parameterization, θ contains three coefficients for the intercepts (µ 0 , σ 0 , ξ 0 ), the linear pieces coefficients, and the adjustment coefficients.

Parameterization of the

GEV parameters for the ensemble members Size of the vector adjustment coefficients

µ(T, GCM i , RCM j ) log σ(T, GCM i , RCM j ) of coefficients θ Zero µ(T ) log σ(T ) 3 + 3 × L One for all GCM-RCM pairs µ(T ) + µ all log σ(T ) + σ all 3 + 3 × L + 2 One for each GCM µ(T ) + µ GCM i log σ(T ) + σ GCM i 3 + 3 × L + 2 × #GCMs One for each RCM µ(T ) + µ RCM j log σ(T ) + σ RCM j 3 + 3 × L + 2 × #RCMs One for each GCM-RCM pair µ(T ) + µ GCM i ,RCM j log σ(T ) + σ GCM i ,RCM j 3 + 3 × L + 2 × #GCM-RCM pairs Table 4.2:
The five parameterizations of the adjustment coefficients considered for the location and scale parameters of ensemble members. For each parameterization, we detail the nonstationary functions. L represents the number of linear pieces. "#" means "number of".

Maximum likelihood estimation

For each massif, a temporal non-stationary GEV distribution, parameterized by a vector of coefficients θ, is estimated using the past observations and all GCM-RCM pairs. Let y = (y obs 1959 , ..., y obs 2019 , y pair 1 1951 , ..., y pair 1 2100 , ..., y pair 20 1951 , ..., y pair 20 2100 ) represent a vector with all annual maxima of a given massif, i.e. annual maxima from the observations and from the 20 GCM-RCM pairs (Sect. 4.2). The maximum likelihood method makes it possible to estimate the most likely coefficients θ with y. We obtain the maximum likelihood estimator θ together from the past observations and all GCM-RCM pairs by maximizing the likelihood p(y|θ): 

θ = argmax θ p(y|θ) =

Evaluation experiments

Our first evaluation experiment is a model-as-truth experiment, a.k.a. perfect model experiment, which evaluates long-term predictive performances using future projections [START_REF] Abramowitz | Model dependence in multi-model climate ensembles: weighting, sub-selection and out-of-sample testing[END_REF]. The observations from the S2M reanalysis (Sect. 4.2) are discarded for this experiment. Instead, one GCM-RCM pair is chosen as pseudo-observations for the calibration of the non-stationary GEV distribution. The calibration set contains the "historical" data of the GCM-RCM pair chosen as pseudo-observations, and the 19 remaining GCM-RCM pairs (1951-2100). The predictive performance is evaluated on an evaluation set that contains the future data (2020-2100) of the GCM-RCM pair chosen as pseudo-observations. In detail, each GCM-RCM pair is successively regarded as being pseudo-observations. Thus, a model-as-truth experiment can be roughly regarded as a leaveone-out cross-validation w.r.t. to GCM-RCM pairs. We note that for GCM-RCM pairs with the GCM HadGEM2-ES starts in 1982, while the pairs with the RCM RCA4 starts in 1971. Therefore, we successively regard as pseudo-observations the 12 GCM-RCM pairs (out of 20) that start before 1959, i.e. that have annual maxima for the period 1959-2019.

Our second evaluation experiment is a split-sample experiment, a.k.a. calibration-validation experiment, which enables us to estimate the short-term predictive performance of each parameterization. Specifically, for the calibration of the non-stationary GEV distribution, we rely on the oldest observations from the S2M reanalysis (Sect. 4.2) and all the GCM-RCM pairs. We validate the predictive performance on the most recent observations. For instance, if we choose to keep 80% of the observations for the calibration , then the remaining 20% of the observations are held-out for the evaluation (2008)(2009)(2010)(2011)(2012)(2013)(2014)(2015)(2016)(2017)(2018)(2019).

In these two evaluation experiments for GCM-RCM ensembles, we calculate the mean logarithmic score (LS) on the evaluation set, the lower the better, to assess the out-ofsample skill of a non-stationary distribution parameterized with θ. For N held-out observations y obs year 1 , ..., y obs year N , we have that LS = 

Workflow

First, for a set of past and projected annual maxima, we select one parameterization of the GEV distribution (number of linear pieces, parameterization of the adjustment coefficients) using a two-step selection method: i) we select the number of linear pieces with a model-astruth experiment using zero adjustment coefficients for the GEV parameters ii) we select the parameterization of the adjustment coefficients with a split-sample experiment using the number of linear pieces selected in the model-as-truth experiment. Then, we study trends in the 50-year return level of snow load. For each massif we rely on the parameterization of the GEV distribution selected using the two-step selection method. We report RL50, the 50-year return level that corresponds to Eq. 4.2, i.e. to the 50-year return level of the observations and their adjusted projections w.r.t. GCM-RCM pairs. In other words, if the selected parameterization has adjustment coefficients, RL50 is computed without these adjustment coefficients since using these coefficients would provide the 50-year return level of the GCM-RCM pairs. The 90% uncertainty interval is computed using a semi-parametric bootstrap resampling method adapted to non-stationary extreme value distributions (Appendix 4.A). For every anomaly of global mean temperature T , we have that the 50-return level RL50(T) is:

RL50(T ) = y 1 50 (T ) = µ(T ) - σ(T ) ξ(T ) [1 -(-log (1 - 1 50 )) -ξ(T ) ]. (4.5)

Results

Selection of one parameterization for each massif

In Figure 4.3a, for each massif, we illustrate the selected parameterization of the GEV distribution (number of linear pieces, parameterization of the adjustment coefficients). Next, we detail the design of our two-step selection method.

(a) In the first step, we select the number of linear pieces that minimizes the mean logarithmic score of a model-as-truth experiment using zero adjustment coefficients for the GEV parameters. The mean logarithmic score is averaged on the held-out pseudo-observations (2020-2100) for each of the 12 GCM-RCM pairs (which are set as pseudo-observations, see Sect. 4.4.1). We find that the parameterization with three linear pieces minimizes the mean logarithmic score for 80% of the massifs, see Fig. 4.3b. The parameterization with two linear pieces is selected for one massif, and the one with four linear pieces is selected for two massifs. Thus, at least two linear pieces are selected for the piecewise linear functions.

In the second step, we select the parameterization of the adjustment coefficients (Tab. 4.2) that minimizes the mean logarithmic score for a split-sample experiment using the number of linear pieces selected in the model-as-truth experiment. The mean logarithmic score is averaged on the evaluation observations for three split-sample experiments, where the calibration set corresponds to 60%, 70%, and 80% of the observations. Indeed, we observe that the split-sample experiment is quite sensitive to the size of the calibration set. Thus, we choose to average the mean logarithmic score on three split-sample experiments to obtain more robust results. We find that the parameterization with zero adjustment coefficients minimizes the mean logarithmic score for two thirds of the massifs, see Fig. 4.3c. Otherwise, the parameterization with one adjustment coefficient for all GCM-RCM pairs is selected for two massifs, the parameterization with one adjustment coefficient for each GCM is selected for two massifs, the parameterization with one adjustment coefficient for each RCM is selected for one massif, and the parameterization with one adjustment coefficient for each GCM-RCM pair is selected for three massifs. Thus, for two thirds of the massifs, adjustment coefficients do not lead to a better predictive performance on the validation periods. This is presumably due to the fact that GCM-RCM pairs have already been statistically adjusted with the ADAMONT method [START_REF] Verfaillie | The method ADAMONT v1.0 for statistical adjustment of climate projections applicable to energy balance land surface models[END_REF].

For a detailed analysis of the mean logarithmic scores of each parameterization for each massif, see Supplement, Part C.

Trends in the 50-year return level of snow load

In this section, for each massif we rely on the parameterization of the GEV distribution selected in Sect. 4.4.1.

In Figure 4.4, we illustrate changes in the 50-year return level between +1 and +4 degrees of global warming for four massifs where the selected parameterization is composed of three linear pieces with one adjustment coefficient for all GCM-RCM pairs (Fig. 4.4a), one coefficient for each GCM (Fig. 4.4b), one coefficient for each RCM (Fig. 4.4c), or one coefficient for each RCM-RCM pair (Fig. 4.4d). All 50-year return levels (for the non-stationary GEV distribution fitted on the observations, on each GCM-RCM pair, and on the observations and all GCM-RCM pairs) are decreasing with the anomaly of global mean temperature. We observe that RL50 with adjustment coefficients (shown in a warm color) is closer to the 50-year return level of the observation (in dark grey) than RL50 without adjustment coefficients (in cyan). This figure also shows how adjustment coefficients adjust the distribution toward the distribution of the observations by illustrating the probability density functions (with and without adjustment) at +1 degree of global warming. Nevertheless, we note that adjusted distributions do not perfectly match the distributions of the observation, which entails that the adjusted RL50 do not match the 50-year return levels of the observation. This is probably because we do not consider adjustment coefficients on the shape parameter. For instance, in Figure 4.4c, we observe that the shape parameter is negative for the distribution of the observation (because the density has an upper bound), while the shape parameter is positive for the adjusted distribution in orange. We choose to not consider adjustment adjustment for the shape parameter because it enables us to constrain predictive distributions on the future period, and to avoid prediction failures (Sect. 4.5.2). Besides, the 90% uncertainty interval of RL50 is computed using a semi-parametric bootstrap resampling method adapted to non-stationary extreme distributions (Appendix 4.A). We note that uncertainty intervals are widening at the nodes of the piecewise linear functions, i.e. at the anomaly of global temperature where the slope of the GEV parameters changes (κ i in Eq. 4.2). This is presumably due to the fact that the variability of the three GEV parameters is larger at the nodes than between them. without adjustment coefficients are shown in cyan, and with adjustment coefficients in a warm color. 90% uncertainty intervals are shaded. The 50-year return levels computed for each GCM-RCM pair (using for each GCM-RCM pair a non-stationary GEV distribution with the selected number of linear pieces) and for the observation (using a non-stationary GEV distribution with one linear piece and a constant shape parameter) are displayed with thin gray lines and thick dark lines, respectively. The probability density functions at +1, +2 and +3 degrees exemplify how adjustment coefficients can adjust the distribution. 4.2). Over the French Alps, the average change of RL50 is equal to -0.6 kN m -2 (-10%), -1.5 kN m -2 (-27%), -2.5 kN m -2 (-43%) for +2, +3, and +4 degrees of global warming, respectively. These relative changes are different for other elevations, a smaller relative decrease being obtained at 2100 m of elevation, and a larger relative decrease at 900 m of elevation (see Supplement, Part B). This result is consistent with the literature (Fig. 2.3 of IPCC 2019). At 1500 m, the relative decrease is less important in the center east side of the French Alps. For instance, for +4 degrees of global warming, the relative decrease roughly ranges between -33% and -38% in the center east side, while it ranges between -40% and -54% in the rest of the French Alps. For each massif, it is also possible to compute the average 50-year return level for several time slices: 1986-2005, 2031-2050, and 2080-2099. For instance, for the time slice 1986-2005, the average return level equals the average of the return level found for the years 1986, 1987, ..., 2005. In order to compute the return level of a given year, e.g. 1986, we rely on the relationship between the anomaly of global mean surface temperature (GMST) and the years (Fig. 4.2). Specifically, we rely on the anomaly of GMST averaged on the six GCMs to compute this relationship. Following this method, we find that on average the 50-year return level is projected to decrease by -0.8 kN m -2 (-14%) between 1986-2005 and 2031-2050 and by -2.9 kN m -2 (-50%) between 1986-2005 and 2080-2099 under the scenario RCP8.5. Note that this method could also provide the rate of change of other RCPs for various lead times, using their corresponding global temperature values.

Discussion

Comparison of our results with the projected trends at the scale of the European Alps

In Table 4.3, we compare our results with the Fig. 2.3 of IPCC ( 2019) that provides the trends in winter mean snow water equivalent (SWE) at the scale of the European Alps between 1000 m and 2000 m under the scenario RCP8.5. As detailed in Sect. 4.2, the snow load is proportional to the SWE, as it is equal to the SWE times the gravitational acceleration (g = 9.81 m s -2 ). For the 23 massifs, the average return level for several time slices 1986-2005, 2031-2050, 2080-2099 can be obtained as explained in Sect. 4.4.2. Likewise, with a similar methodology, the mean annual maxima can be expressed as the expectation of the non-stationary GEV distribution averaged for each year of the time slices. We find a decrease of mean annual maxima of snow load by -30% and -69% for the future periods 2031-2050 and 2080-2099 compared to the reference period 1986-2005.

Source

Figure 2.3 of IPCC (2019) relies on the raw (without adjustment) EURO-CORDEX data. They also find decreasing trends. For instance, between 1500 m and 2000 m of elevation, the mean winter SWE (proportional to the mean winter snow load) is expected to approximately decrease by -25% and -70% for the periods 2031-2050and 2080-2099, respectively (Tab. 4.3), respectively (Tab. 4.3). We observe that our mean annual maxima of snow load has a decreasing rate comparable to the decreasing rate of the mean value of snow load. These comparable rates may stem from the fact that i) both approaches rely (directly or indirectly) on the EURO-CORDEX data, ii) the annual maxima of snow load results from an accumulation during the winter (Dec to May), which implies that we can expect that the mean value will roughly decrease with the same rate as the mean annual maxima.

Methodological choices, assumptions and limitations

For the non-stationarity of the GEV parameters, we choose piecewise linear functions because they can approximate more complex functions with few parameters. This makes our methodology widely applicable. One limitation is that the nodes of the piecewise linear functions are fixed. Yet, we are confident that these functions are well-estimated owing to the high amount of maxima: each of the 20 GCM-RCM pairs provides more than 100 maxima. Otherwise, we rely on the anomaly of global mean temperature as covariate (Sect. 4.2), like a majority of references cited in Table 4.1. Indeed, this anomaly is often thought as a good proxy to measure the level of climate change [START_REF] Fix | A comparison of U.S. precipitation extremes under RCP8.5 and RCP4.5 with an application of pattern scaling[END_REF] which helps strengthen the global response to this threat [START_REF] Masson-Delmotte | An IPCC Special Report on the impacts of global warming of 1[END_REF]. We choose to focus on the scenario RCP8.5 to have the broadest spectrum of potential changes for the 50-year return level of snow load. Also, to obtain Eq. 4.4 we assume that all annual maxima are conditionally independent given the vector of parameters θ which is a classical hypothesis. Following the principle of parsimony, we assume that the adjustment coefficients are constant, i.e. the same for historical and future climates. Besides, as mentioned in Section 4.3.2, we did not consider adjustment coefficients for the shape parameter because it sometimes leads to prediction failure, i.e. the predictive distribution gives a null probability to some future annual maxima. This illustrates the trade-off between i) improving adjustments on the historical period, i.e. that the adjusted distribution better match the distribution of the observations and ii) having assumptions that help to constrain the predictive distribution on the future period.

For the two-step selection method, we first rely on a model-as-truth experiment to select the number of linear pieces. It assesses the optimal number of linear pieces to predict annual maxima of the pseudo-observations for the evaluation set (2020-2100), i.e. to find a good trade-off between underfitting and overfitting for the calibration set. In this first step, adjustment coefficients are not considered, such that this experiment does not depend on a specific parameterization. Then, the best parameterization of the adjustment coefficients is selected with a split-sample experiment. It assesses whether applying adjustment coefficients helps to predict observations of the evaluation set, i.e. whether it is reasonable to assume that the observations do not follow the same distribution as the GCM-RCM pairs. The evaluation score is average for three split-sample experiments where the evaluation set corresponds to the last 40%, 30%, and 20% of the observations (Sect. 4.4.1). Thus, evaluation sets of the three split-sample experiments contain 24, 17, 12 annual maxima, respectively, which is a limited amount to robustly select the best parameterization of the adjustment coefficients.

The 90% uncertainty intervals of return levels (Fig. 4.4) account both for the sampling uncertainty (Appendix 4.A) and the climate model uncertainty (distributions are fitted together from the past observations and all GCM-RCM pairs). In contrast, approaches that estimate return levels separately for each ensemble member usually do not account for the sampling uncertainty, i.e. the sampling uncertainty of return levels estimated on each ensemble, even if this uncertainty can be large because return levels are estimated with only one ensemble member. One limitation of our approach is that, contrary to the climatological expectations, the width of uncertainty intervals does not increase with global warming (Fig. 4.4). This is presumably a consequence of assuming constant adjustment coefficients.

Related works

First, our methodology based on adjustment coefficients can be seen as an extension of [START_REF] Brown | Climate projections of future extreme events accounting for modelling uncertainties and historical simulation biases[END_REF], which estimates non-stationary GEV distribution simultaneously with both observations and a single GCM-RCM pair, and introduces constant bias terms for each GEV parameter. There also exists some links with a debiasing method proposed for annual maxima from GCM-RCM projections [START_REF] Fontolan | Using climate change models to assess the probability of weather extremes events: A local scale study based on the generalized extreme value distribution[END_REF]. For the location parameter we consider additive adjustment coefficients that can be seen as bias terms, while the adjustment coefficients of the scale parameter that are multiplicative (due to the log link function) can be viewed as bias correction factors [START_REF] Hosseinzadehtalaei | Climate change impact assessment on pluvial flooding using a distribution-based bias correction of regional climate model simulations[END_REF]. In this paper, we choose the name "adjustment coefficients" because we introduce them to improve the statistical adjustments. Our idea to add adjustment coefficients for each GCM/RCM or GCM-RCM pairs into the non-stationary extreme value distributions (Tab. 4.2) comes from the ANOVA framework, which can be applied to partition the uncertainty of GCM-RCM projections by identifying GCM/RCM main effects, or GCM/RCM interactions [START_REF] Hawkins | The potential to narrow uncertainty in regional climate predictions[END_REF][START_REF] Evin | Partitioning uncertainty components of an incomplete ensemble of climate projections using data augmentation[END_REF]. Then, our approach based on piecewise linear functions for the non-stationarity of the GEV parameters can be viewed as using linear splines. In the literature, there exists many extreme value theory approaches using splines: linear splines have been applied to model the temporal non-stationarity (Wilcox et al., 2018b), while cubic splines are often considered to model spatial extremes [START_REF] Chavez-Demoulin | Generalized additive modelling of sample extremes[END_REF][START_REF] Gaume | Mapping extreme snowfalls in the French Alps using max-stable processes[END_REF].

Conclusions and outlook

Following the recent trend of statistical methods that constrain climate projections using past observations [START_REF] Brunner | Comparing Methods to Constrain Future European Climate Projections Using a Consistent Framework[END_REF], we propose a novel non-stationary extreme value approach for GCM-RCM ensembles that estimates a non-stationary GEV distribution from both the past observations and all GCM-RCM pairs together. Specifically, we rely on a flexible nonstationary generalized extreme value (GEV) distribution with i) piecewise linear functions to model the changes in the three GEV parameters ii) adjustment coefficients for the location and scale parameters to adjust the GEV distributions of the GCM-RCM pairs with respect to the GEV distribution of the past observations. In order to select one parameterization of the GEV distribution (number of linear pieces, parameterization of the adjustment coefficients) we design a two-step selection procedure based on two evaluation experiments for GCM-RCM ensembles: a model-as-truth experiment and a split-sample experiment. In this article, as a case study, the proposed approach is applied to snow load in the French Alps at 1500 m of elevation, using 20 GCM-RCM pairs statistically adjusted from the EURO-CORDEX experiment under the scenario RCP8.5. More generally, the proposed approach could also be applied to other scenarios, climate variables, and climate projection ensembles.

Many extensions of this work could be considered. First, our parameterization of the GEV distribution cannot account for different changes of distributions among the GCM-RCM pairs. Indeed, in the case where a parameterization of the GEV distribution without adjustment coefficients is selected, the GCM-RCM pairs are considered as independent and identically distributed. By contrast, in the case where a parameterization with adjustment coefficients is selected, GCM-RCM pairs can have different distributions. However, these distributions are still constrained to have the same changes with global warming because adjustment coefficients are constant. In future works, to better account for different changes of distributions among the GCM-RCM pairs, we could imagine adjustment coefficients that vary with global warming. A second potential extension of this work could be to improve the parameterization of the GEV distribution by adding weights for each GCM-RCM pair. In our methodology, GCM-RCM pairs are currently considered as equally plausible even though it is known that for each application some of them can have a better agreement with the past observations. Following the intuition of weighting schemes for climate ensemble [START_REF] Knutti | A climate model projection weighting scheme accounting for performance and interdependence[END_REF], we could design a parameterization of the GEV distribution that assigns more weights, i.e. more confidence, to climate models that agree more with the observation.

4.A Uncertainty estimation

We estimate the uncertainties resulting from in-sample variability with a semi-parametric bootstrap resampling method adapted to non-stationary extreme distributions [START_REF] Efron | An introduction to the bootstrap[END_REF][START_REF] Kharin | Estimating extremes in transient climate change simulations[END_REF]. This method relies on a transformation f GEV→Standard Gumbel to the standard Gumbel distribution. Indeed, if Y x ∼ GEV(µ(x), σ(x), ξ(x)), then f GEV→Standard Gumbel (Y x ) = 1 ξ(x) log(1 + ξ(x) Yx-µ(x) σ(x) ) ∼ Gumbel(0, 1). Let y = (y 1 , ..., y S ) denote a vector of annual maxima, with S the size of the vector. The transformed observations, a.k.a. residuals, are computed as m = f GEV→Standard Gumbel (y m ), using θ for µ(x), σ(x), ξ(x).

We generate B = 1000 bootstrap samples with a four steps procedure. First, we compute the residual vector = ( 1 , ... S ). Then, for each bootstrap sample i, from these residuals we draw with replacement a sample of size S denoted as

˜ (i) 1 , ..., ˜ (i)
S . Further, we transform these bootstrapped residuals into bootstrapped annual maxima as follows: ∀m,

ỹ(i) m = f -1 GEV→Standard Gumbel (˜ (i) m )
. Finally, we estimate the GEV parameter θ (i) with the bootstrapped annual maxima ỹi 1 , ..., ỹi S . To sum up, this bootstrap procedure provides a set { θ (1) , ..., θ (i) , ..., θ (B) } of B GEV parameters that represents the in-sample variability.

4.B Supplementary materials

This appendix section corresponds to the supplementary materials of Le Roux et al. (2021b). 

4.B.1 Combinations of general circulation model and regional climate model

4.B.2 Results for the elevation 900 m and 2100 m

We apply the same methodology at the elevation 900 m and 2100 m. In Figure 4.7, we present the selected parameterization of the GEV distribution. In Figure 4.7 (a), we observe that at 900 m many massif in the South of the Alps are discarded in the first step of the three-step selection method. This is simply due to the fact that more years without accumulated snow, i.e. annual maxima equal to zero, happen at 900 m than at 1500 m. Besides, a parameterization with zero adjustment coefficients is selected for most remaining massifs. In Figure 4.7 (b), we observe that at 2100 m parameterizations with adjustment coefficients are selected for a majority of massifs. In Figure 4.8 and Figure 4.9, we illustrate the relative change of return levels for +2, +3, and +4 degrees of global warming w.r.t. +1 degrees at 900 m and 2100 m of elevation. On one hand, for 900 m we find that the relative decrease is stronger than at 1500 m, as we observe that the average change of return level is equal to -0.4 kN m -2 (-15%), -1 kN m -2 (-33%), -1.5 kN m -2 (-48%) for +2, +3, and +4 degrees, respectively. On the other hand, for 2100 m, we find that the relative decrease is weaker than at 1500 m, as we observe that the average change of return level is equal to -0.9 kN m -2 (-9%), -2.1 kN m -2 (-22%), -3.4 kN m -2 (-36%) for +2, +3, and +4 degrees, respectively. 

4.B.3 Detailed results of the evaluation experiments for elevation 1500 m

In Table 4.5, we detail the mean logarithmic score for the model-as-truth experiment at 1500 m. This score is averaged on the pseudo-observation of the validation set (2020-2100) for the 12 GCM-RCM pairs set as pseudo-observations. We find that a parameterization with zero linear pieces, which corresponds to a stationary GEV distribution, always performs worse than non-stationary approaches with at least one linear piece. A parameterization with one linear piece, which is the most used parameterization in the literature (Tab. 1), is either on par with approaches using more linear pieces (e.g. for the Haute-Tarentaise massif, and for the Vanoise massif) or worse than such approaches (e.g. for the Aravis massif, and the for the Bauges massif).

Massif name

Mean logarithmic score (LS) for the model-as-truth experiment with zero adjustment coefficients. In Table 4.6, we detail the mean logarithmic score for the split-sample experiment at 1500 m. The mean logarithmic score is averaged on three split-sample experiments, where the calibration set corresponds to 60%, 70%, and 80% of the observations. We find that a parameterization with zero adjustment coefficients performs better than with adjustment coefficients on many massifs, e.g. for the Oisans and Beaufortain massifs. For the massifs where a parameterization with adjustment coefficients is selected, we observe that the four parameterizations with adjustment coefficients (one for all GCM-RCM pairs, one for each GCM, one for each RCM, one for each GCM-RCM pair) perform almost similarly.

Massif name

Mean logarithmic score (LS) for the split-sample experiment. We rely on the selected number of linear pieces selected with the model-as-truth experiment. Zero One for all GCM-RCMs One for each GCM One for each RCM One for each GCM-RCM Aravis 1.84 Abstract: In a warming climate, extreme snowfall is expected to increase as long as temperatures are cold enough, i.e. at high latitudes or at high elevation. In practice, increases and decreases of projected extreme snowfall can often be separated by a threshold: an elevation or a climatological temperature. Past studies usually propose such thresholds for frequent extreme snowfall (mean annual maxima) and fixed time periods, e.g. 2070-2100. By contrast, this study provides the evolution of these critical elevations for frequent and rare extreme snowfall (return levels with return periods of 5-100 years), i.e. the evolution of the elevation thresholds below (above) which extreme snowfall is expected to decrease (increase). To this aim, we consider a recent methodology based on a non-stationary extreme value analysis that can project the evolution of extreme snowfall using climate projection ensembles. We apply this methodology to an ensemble of 20 adjusted GCM-RCM pairs from the EURO-CORDEX experiment, under the scenario RCP8.5. This ensemble is available for each of the 23 massifs of the French Alps, and provides annual maxima of snowfall every 300 m of elevations from 1951 to 2100. Our results rely on relative changes computed for each level of global warming w.r.t. the current climate, and averaged on all massifs of the French Alps. Quantitatively, at +4 • C of global warming, average relative changes in 100-year return levels range between -15% (-11 kg m -2 ) at 900 m and +8% (+12 kg m -2 ) at 3600 m. Qualitatively, 100-year return levels are expected to i) increase above 3300 m ii) increase and then decrease at 2700 m and 3000 m iii) decrease below 2400 m. For 100-year return levels of snowfall, the elevation threshold is expected to increase from 2600 m at +1.5 • C to 3000 m at +4 • C. More generally, we find that the more frequent the extreme snowfall, the higher is its elevation threshold, and that thresholds are projected to increase slightly less for frequent extreme snowfall.

4.B.4 Results for all elevations

Introduction

Extreme snowfall can cause major natural hazards (avalanche, winter storms) which may generate casualties and economic damage [START_REF] Changnon | Catastrophic winter storms: An escalating problem[END_REF][START_REF] Blanchet | Extreme value statistics of snowfall in the Swiss Alpine region[END_REF]Le Roux et al., 2021a). However, despite these risks, there remains knowledge gaps in the international literature (IPCC, 2019(IPCC, , 2021) ) regarding the impact of climate warming on extreme snowfall.

The two main physical drivers of extreme snowfall (temperature and extreme precipitation) are both expected to increase with anthropogenic climate change (IPCC, 2021). Following the increase of global mean temperatures, it is expected that the rate of warming will be amplified over mountain regions. Indeed, temperatures are expected to increase more over lands than over oceans [START_REF] Byrne | Trends in continental temperature and humidity directly linked to ocean warming[END_REF], and it has been observed that the warming is amplified with elevation [START_REF] Pepin | Elevation-dependent warming in mountain regions of the world[END_REF]. At the global scale, extreme precipitation is projected to increase of 7% per • C of global mean warming, due to an increase in mean atmospheric water vapor content according to the Clausius-Clapeyron relationship [START_REF] Ingram | Extreme precipitation: Increases all round[END_REF][START_REF] Allan | Advances in understanding large-scale responses of the water cycle to climate change[END_REF]. At the regional scale, we note that changes in atmospheric circulation patterns might modulate these warming-induced trends [START_REF] Frei | Future snowfall in the Alps: projections based on the EURO-CORDEX regional climate models[END_REF]. In particular, relative changes in extreme precipitation per unit of local warming are not evenly distributed over the globe (Fig. 6 of [START_REF] Kharin | Changes in temperature and precipitation extremes in the CMIP5 ensemble[END_REF] reaching lower rates of about 4% per • C of global mean warming over land.

Extreme snowfall stems from extreme precipitation occurring in a range of optimal temperature slightly below the freezing point which favors higher snowfall intensities [START_REF] O'gorman | Contrasting responses of mean and extreme snowfall to climate change[END_REF]. The probability to experience temperatures in this optimal range is expected to decrease less than the probability to experience temperatures below the freezing point, and may even increase in cold areas where temperatures shall increase toward the freezing point while remaining below it [START_REF] Frei | Future snowfall in the Alps: projections based on the EURO-CORDEX regional climate models[END_REF]. Therefore, extreme snowfall is projected to increase in cold areas, i.e., at high latitudes and high elevation, and to decrease in warmer areas, i.e., at low and mid elevations and latitudes (O'Gorman, 2014).

In the literature we often observe a threshold that separates increases and decreases of projected extreme snowfall (Tab. 5.1). This threshold can be to specified either directly with elevations [START_REF] López-Moreno | Effects of climate change on the intensity and frequency of heavy snowfall events in the Pyrenees[END_REF][START_REF] Frei | Future snowfall in the Alps: projections based on the EURO-CORDEX regional climate models[END_REF] and climatological temperatures [START_REF] De Vries | Future snowfall in western and central Europe projected with a high-resolution regional climate model ensemble[END_REF][START_REF] Lute | Projected changes in snowfall extremes and interannual variability of snowfall in the western United States[END_REF][START_REF] Kawase | Enhancement of heavy daily snowfall in central Japan due to global warming as projected by large ensemble of regional climate simulations[END_REF], or indirectly with maps of increasing and decreasing trends [START_REF] O'gorman | Contrasting responses of mean and extreme snowfall to climate change[END_REF][START_REF] Lader | Anticipated changes to the snow season in Alaska: Elevation dependency, timing and extremes[END_REF][START_REF] Chen | Anthropogenic influence would increase intense snowfall events over parts of the Northern Hemisphere in the future[END_REF][START_REF] Kawase | Regional Characteristics of Future Changes in Snowfall in Japan under RCP2.6 and RCP8.5 Scenarios[END_REF][START_REF] Quante | Regions of intensification of extreme snowfall under future warming[END_REF]. Studies that directly estimate a threshold usually compute it for fixed time periods, e.g. 2070-2100, and for frequent extreme snowfall (mean annual maxima or 99th percentile). We note the exception of [START_REF] Kawase | Enhancement of heavy daily snowfall in central Japan due to global warming as projected by large ensemble of regional climate simulations[END_REF] This study focuses on the elevation threshold below (above) which extreme snowfall is expected to decrease (increase) on average in the French Alps under a high emission scenario called RCP 8.5. We provide the evolution of this threshold for frequent (mean annual maxima) and rare (return levels with return periods of 5-100 years) extreme snowfall using a recent methodology (Le Roux et al., 2021b), based on a non-stationary extreme value analysis, that can project the evolution of any extreme variable from climate projection ensembles.

Section 5.2 presents our data, i.e. the adjusted climate projection ensemble and the reference observational dataset. In Section 5.3, we detail our statistical methodology. Finally, results, discussions and conclusions are introduced in Sects. 5.4, 5.5 and 5.6 respectively.

Data

Following chapter 4, for each of the 23 massifs of the French Alps we rely on the S2M reanalysis (1959-2019) and 20 GCM-RCM pairs (1951-2100) under the emission scenario RCP 8.5. The main difference is that in this chapter we study the annual maxima of snowfall, whereas in chapter 4 we study the annual maxima of snow load. In detail, we consider the annual maxima of snowfall every 300 m of elevation from 900 m to 3600 m. Similarly to chapter 4, at low elevation we discard several massifs (9 massifs at 900 m and 3 massifs at 1200 m) because many projected annual maxima are equal to zero.

Statistical methodology

We follow the methodology presented in chapter 4, i.e. as in Le Roux et al. (2021b). For each massif we rely on the parameterization of the GEV distribution selected using the two-step selection method. This parameterization provides a function that maps different levels T (in • C) of global warming to a GEV distribution. Thus, for different levels of global warming, mean annual maxima can be obtained as the expectation of the GEV distribution, while the 100-year return level of snowfall corresponds to the 99th percentile of this distribution.

This article analyzes average relative changes in mean annual maxima and 100-year return levels of snowfall. Relative changes can be obtained for each level of global warming in reference to the global warming corresponding to the current climate (i.e. +1 • C). The average relative change equals the relative change averaged over the 23 massifs of the French Alps.

These average relative changes are computed every 300 m of elevation from 900 m to 3600 m, and between +1.5 and +4 • C of global warming. Finally, we rely on a contour function from the Python programming language to assess for each level of global warming the elevation threshold, i.e. the elevation where the average relative change is equal to 0%. This contour function is based on a quadtree subdividing algorithm, see e.g. [START_REF] Wang | Adaptive quadtree subdividing contour plotting algorithms[END_REF]. Qualitatively, mean annual maxima of snowfall are expected to increase at 3600 m (Fig. 5.1 a), to first increase and shortly after to decrease at 3300 m (Fig. 5.1 c), and to decrease below 3000 m (Fig. 5.1 e). Likewise, expected changes in 100-year return levels of snowfall are expected to increase above 3300 m (Fig. 5.1 b), to increase and then decrease at 2700 m and 3000 m (Fig. 5.1 d), and to decrease below 2400 m (Fig. 5.1 f). These three types of evolution (increase, increase followed by a decrease, decrease) likely correspond to different outcomes of the trade-off between the expected increase in local extreme winter precipitation and the expected increase in local temperatures (Appendix 5.A). The first type of evolution, i.e. the expected increase in extreme snowfall, probably results from the expected increase in extreme winter precipitation and/or from the expected increase in the probability to experience optimal temperatures for extreme snowfall, i.e. temperatures located around the freezing point (O'Gorman, 2014). For some elevations, this increase in extreme snowfall is followed by a decrease (second type of evolution), while lower elevations are directly expecting a decrease (third type of evolution). For these two types of evolution, the decrease is undoubtedly caused by a decline in the probability to experience optimal temperatures for extreme snowfall. For cases where there is first an increase followed by a decrease for mean annual maxima and 100-year return levels (Fig. 5.1 c and 5.1 d, respectively), it is interesting to note transitional states where average relative changes are almost steady as a function of the global warming level, i.e. between +1.5 • C and +2 • C for mean annual maxima, and +1.5 • C and +3 • C for 100-year return level.

Results

Projected changes in extreme snowfall

Quantitatively, average relative changes are rather moderate for the 100-year return levels. Indeed, even with a global warming of +4 • C, average relative changes range between -15% (-11 kg m -2 ) at 900 m and +8% (+12 kg m -2 ) at 3600 m. For the mean annual maxima, average relative changes at +4 • C of global warming range between -26% (-8 kg m -2 ) at 900 m and +3% (+3 kg m -2 ) at 3600 m. 

Projected changes in the elevation threshold for extreme snowfall

The elevation threshold is defined as the elevation below (above) which extreme snowfall is expected to decrease (increase) on average. For every level T of global warming, this threshold corresponds to the elevation where the expected average relative change is equal to 0%. At this elevation, on average, extreme snowfall at T • C of global warming is expected to equal extreme snowfall at +1 • C. Thus, for all elevations above (below) this threshold, extreme snowfall is expected on average to increase (decrease) at T • C compared with +1 • C. Figure 5.2 illustrates the elevation that coincides with various values (..., -2%, 0%, 2%, ...) of average relative change both for the mean annual maxima and for the 100-year return levels of snowfall. These values are displayed between +1.5 • C and +4 • C of global warming, and are generated considering only elevations above 2100 m, i.e. elevations close to the elevation threshold. We observe that the elevation threshold, i.e. the elevation that coincides with the level 0% of average relative change, is projected to increase with global warming. For example, the elevation threshold of mean annual maxima of snowfall is expected to approximately increase from 3000 m at +1.5 • C of global warming to 3300 m at +4 • C, whereas the threshold of 100-year return levels of snowfall is expected to increase from 2600 m to 3000 m.

This expected increase of the elevation thresholds is certainly a direct consequence of the projected warming. Furthermore, we observe that the elevation threshold is higher for the mean annual maxima than for the 100-year return levels. In other words, the more frequent the extreme snowfall, the higher is its elevation threshold. This phenomenon might be due to the reduction with the elevation of the probability to experience optimal temperatures for extreme snowfall. Indeed, extreme winter precipitation is expected to increase at all elevations (Appendix 5.A). Thus, 100-year return levels are expected to increase at 3000 m for +1.5 • C because these return levels do not need frequent optimal temperatures in order to increase. By contrast, more frequent extreme snowfall needs frequent optimal temperatures in order to increase. For +1.5 • C, this explains why at 3000 m mean annual maxima are expected to decrease, while they are expected to increase at 3300 m. In Figure 5.3, we display together the elevation threshold for the mean annual maxima, and for the T-year return levels with T ∈ {2, 5, 10, 20, 50, 100}. In other words, the elevation threshold of frequent extreme snowfall, e.g. mean annual maxima and 2-year return levels, can be compared with the elevation threshold of rare extreme snowfall, e.g. 50-year and 100-year return levels. Our results indicate that the more frequent the extreme snowfall, the higher is its elevation threshold. We also find that elevation thresholds are expected to increase more for rare extreme snowfall than for frequent extreme snowfall. For instance between +1.5 • C and +4 • C of global warming, the elevation threshold increases at a rate of 123 m and 164 m per • C for the mean annual maxima and the 100-year return levels, respectively. However, the elevation threshold does not increase linearly with global warming. Indeed at +4 • C of global warming, the increase of the elevation threshold is flattening for all extreme snowfall. snowfall is expected to increase (decrease) for rare and more frequent extremes. We also display the corresponding temporal horizons under the 8.5 RCP scenario.

Discussion

Projected trends in extreme snowfall at the massif level

In Section 5.4, every 300 m of elevation, relative changes are averaged over all the massifs of the French Alps. We choose to average relative changes in order to increase the robustness of our results. Figure 5.1 illustrates that the evolution of these average changes are consistent between the different elevations: the higher the elevation, the higher the average changes.

At the massif level, the evolution of relative changes are sometimes discordant between elevations (Appendix 5.B). These small inconsistencies are likely explained by our statistical methodology that enables us to select for each elevation a different parameterization of the GEV distribution. For instance, a massif might have a parameterization with one linear piece at a given elevation, and a parameterization with more linear pieces at another elevation.

Table 5.2 indicates the selected parameterization of the GEV distribution for all massifs and all elevations from 900 m to 3600 m. We observe that 46% of these selected parameterizations consider one linear piece for the temporal non-stationarity of the GEV distribution, and that 63% of these parameterizations do not consider adjustment coefficients. Two, three, four linear pieces are considered for 16%, 20%, 19% of these selected parameterization, respectively. At the massif level, relative changes do not necessarily have the same sign as the average relative changes. Figure 5.4 illustrates that when the average relative change in extreme snowfall is increasing (decreasing), all massifs in the French Alps do not necessarily have increasing (decreasing) trends. In this figure, we display the percentages of massifs with increasing and decreasing trends in mean annual maxima and in 100-year return levels relatively to +1 • C. We observe that one property holds at all elevations: the percentage of massifs with decreasing trends grows or remains the same with global warming. In particular, for the 100-year return levels of snowfall (Fig. 5.4 b), we observe that for +4 • C of global warming, a majority of decrease is projected below and at 3000 m, and of increase above 3000 m. In detail, a majority of massifs has a decreasing trend below 2700 m for all temperatures between +1.5 • C and +4 • C of global warming. At 3000 m, we have a majority of increasing trends until +2.5 • C, then we have a majority of decreasing trends. Above 3300 m, a majority of massifs have an increasing trend for all temperatures between +1.5 • C and +4 • C. At 3300 m, the percentage of massifs with increasing trends is less important with higher temperatures, whereas at 3600 m the percentage of massifs with increasing trends remains equal to 89%. Figure 5.5 displays the spatial repartition of increasing trends in 100-year return levels between +1 and +4 • C of global warming from 2700 m to 3600 m of elevation. We observe that at all elevations the majority of increasing trends are located in the North of the French Alps. The most important increase is found in the Vanoise massif at 3600 m: +13% (+22.5 kg m -2 ). 

Contributions to the analysis of changes in extreme snowfall

Existing approaches that specify elevation thresholds [START_REF] López-Moreno | Effects of climate change on the intensity and frequency of heavy snowfall events in the Pyrenees[END_REF][START_REF] Frei | Future snowfall in the Alps: projections based on the EURO-CORDEX regional climate models[END_REF] 2011) (return levels associated with return periods of 2 and 25 years). By contrast, our results provide the expected evolution of this threshold for a wide range of extreme snowfall (Fig. 5.3). Indeed, our approach makes it possible to assess projected extreme snowfall between +1.5 • C and +4 • C of global warming, every 300 m of elevation from 900 m to 3600 m, and for a wide range of extreme snowfall.

On the one hand, our approach benefits from the S2M reanalysis and 20 GCM-RCM pairs (1951-2100), which provide homogeneous data for each massif of the French Alps and every 300 m of elevation [START_REF] Vernay | The S2M meteorological and snow cover reanalysis over the French mountainous areas, description and evaluation 1958 -2020[END_REF]. Quantile mapping method ADAMONT [START_REF] Verfaillie | The method ADAMONT v1.0 for statistical adjustment of climate projections applicable to energy balance land surface models[END_REF] was used to adjust the EURO-CORDEX dataset [START_REF] Jacob | EURO-CORDEX: New high-resolution climate change projections for European impact research[END_REF] against the S2M reanalysis to provide the GCM-RCM pairs under the scenario RCP8.5.

On the other hand, our study also takes advantage of a recent statistical methodology that can project the evolution of any extreme variable from a climate projection ensemble (Le Roux et al., 2021b). This methodology relies on flexible non-stationary generalized extreme value (GEV) models that include i) piecewise linear functions to model the changes in the three GEV parameters ii) adjustment coefficients for the location and scale parameters to adjust the GEV distributions of the GCM-RCM pairs with respect to the GEV distribution of the past observations. We emphasize one advantage and one limitation of this methodology. One drawback is that the knots of the different linear pieces, i.e. where the slope of the piecewise linear functions changes, are fixed. Thus we cannot interpret the values of these knots, i.e. the amount of global warming where the slope changes, but only the overall behavior of the piecewise linear function. One advantage of this methodology is that it models changes in the three GEV parameters, which makes it possible to have opposite changes between the body and the tail of the GEV distribution. For instance, at 3000 m for +2 • C of global warming, we find that 100-year return levels are increasing (tail of the distribution) and that the mean annual maxima are decreasing (body of the distribution).

Conclusions

This article focuses on the elevation threshold above (below) which extreme snowfall is expected to increase (decrease) on average when compared with +1 • C of global warming. In the French Alps, we observe that this threshold is expected to increase between +1.5 • C and +4 • C of global warming for both rare (return levels with return periods of 5-100 years) and frequent (mean annual maxima) extreme snowfall. Thus, elevations are either i) strictly above the threshold curve ii) reached by the threshold curve, or iii) strictly below the threshold curve. Three possible types of evolution are obtained: i) increase ii) increase followed by a decrease iii) decrease. We find that the more frequent the extreme snowfall, the higher is its elevation threshold and the less this threshold is expected to increase with global warming.

These findings have implications for snowfall-related hazard assessment in the French Alps. For instance, if we consider 100-year return levels, it needs to be verified that the design of critical infrastructures are still adequate above 2600 m of elevation, i.e. where we expect an increase on average at +1.5 • C of global warming (Fig. 5.3). From 900 m to 3600 m of elevation, we find that average relative changes in extreme snowfall are not expected to change much. Indeed, average changes at +4 • C of global warming range between -15% and +8% for the 100-year return levels, and between -26% and +3% for the mean annual maxima. Thus, snowfall-related hazards are expected to remain roughly as intense as in the current climate.

5.A Projected changes in extreme winter precipitation

We apply the same methodology as our study (Sect. 5.3) to daily winter (December to February) precipitation. Figure 5.6 illustrates the average relative changes in mean annual maxima and in 100-year return levels of winter precipitation between +1.5 and +4 • C of global warming. We observe that 100-year return levels are expected to increase more than the mean annual maxima of winter precipitation for all elevations between 900 m and 3600 m. For instance, for a global warming of +4 • C, average relative changes in mean annual maxima range between +4% and +14%, while average relative changes in 100-year return levels range between +13% and +25%. 

5.B Projected changes in extreme snowfall at the massif level

Figure 5.7 illustrates projected changes in 100-year return levels of snowfall for four massifs: the Chartreuse, Mont-Blanc, Bauges and Queyras massif. The evolution of these changes are consistent between elevations for the Chartreuse and the Mont-Blanc massifs: : the higher the elevation, the higher the average changes. The Bauges and Queyras massifs have small inconsistencies at some elevations. Indeed, for the Bauges massif, we observe that for a low warming level (until ≈ +2.4 • ) the average relative change at 2100 m is above the average relative change at 2400 m (Fig. 5.7 c). Likewise, for the Queyras massif, the average relative change at 1200 m is above the average relative changes at 1500 m, 1800 m and 2100 m (Fig. 5.7 c). These small inconsistencies are due to different parameterization of the GEV distribution. For instance, in the Bauges massif at 2100 m the selected GEV parameterization has three linear pieces, while at 2400 m the selected GEV parameterization has one linear piece. This thesis provides the first analysis of past and projected changes of snow-related extremes in the French Alps, using the S2M reanalysis (1959-2019) and 20 GCM-RCM pairs (1951-2100), which are provided for each massif of the French Alps and every 300 m of elevation [START_REF] Verfaillie | The method ADAMONT v1.0 for statistical adjustment of climate projections applicable to energy balance land surface models[END_REF][START_REF] Vernay | The S2M meteorological and snow cover reanalysis over the French mountainous areas, description and evaluation 1958 -2020[END_REF]. This thesis both extends the international literature on snow-related extremes, and assesses the local impact of such extremes. Next, we synthesize our main contributions to climate science and snow-related hazard assessment. Table 6.1 condenses the main climatological results of the thesis. To sum up, between 900 m and 3600 m, 50-year return levels of snow load have been decreasing for the period 1959-2019 and are projected to decrease when compared with return levels in the current climate at +1 • C of global warming above pre-industrial levels (this warming was approximately reached in 2017). Averaged over all massifs, 100-year return levels of snowfall i) have been increasing above (decreasing below) 2000 m for the period 1959-2019 ii) are projected to increase above (decrease below) 3000 m at +4 Decrease from 900 m to 4200 m, significant in the northwest up to 2100 m. Largest decrease at 900 m with -5% per decade on average (Chap. 2).

Majority of decrease below (increase above) 2000 m. On average, increase of +4% per decade at 3500 m and decrease of -2% at 500 m. Spatially contrasting pattern at 2500 m (Chap. 3). Projected changes when compared with +1 • C of global warming above pre-industrial levels Decrease of -10%, -27%, -43% on average at 1500 m for +2, +3, +4 • C of global warming. Decrease by -50% on average between 1986-2005 and 2080-2099. Relative decrease is less important in the center east side of the French Alps. From 900 m to 3600 m, the higher the elevation, the smaller the relative decrease (Chap. 4).

A majority of decreases projected below and at 3000 m, and of increases above 3000 m for +4 • C of global warming. At +1.5 • C, 2600 m is the elevation threshold above (below) which we observe an increase (a decrease). For a global warming of +4 • C, average relative changes in 100-year return levels w.r.t to +1 • C range between -15% at 900 m and +8% at 3600 m (Chap. 5). Table 6.1: Past and projected changes in return levels of snow load and snowfall in the French Alps.

Past changes are estimated using the S2M reanalysis . Projected changes are estimated with this reanalysis and 20 adjusted GCM-RCM pairs (1951-2100) under a high emission scenario called RCP8.5 that exceeds +4 degrees of global warming in 2100.
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These climatological results represent an additional step in the understanding of snow-related extremes and their changes in the French Alps. First, [START_REF] Biétry | Charges de neige au sol en France : proposition de carte révisée[END_REF] estimate extreme snow load using time series of snow depth. Then, [START_REF] Gaume | Mapping extreme snowfalls in the French Alps using max-stable processes[END_REF] analyze extreme snowfall using spatial extreme statistics to provide return level maps. [START_REF] Conclusion Nicolet | Decreasing spatial dependence in extreme snowfall in the French Alps since 1958 under climate change[END_REF]; Nicolet (2017) also rely on spatial statistics and find that the dependence range of snow-related extremes (snowfall and snow depth) has decreased. Finally, this thesis is the first to assess past and projected changes of snowfall extremes and of snow load extremes in the French Alps. More widely, our work provides new results to fill a gap in the international literature (IPCC, 2019(IPCC, , 2021) ) regarding the impact of climate warming on extreme snowfall. This thesis has implications for snow-related hazard assessment in the French Alps. First, despite their decrease, our 50-year return levels of snow load are sometimes exceeding 50-year return levels of French building standards. For example, at 1800 m, French standards are exceeded by 15% on average, and by half of the massifs. These exceedances are likely due to questionable assumptions concerning the computation of standards. Indeed, these standards were devised with snow load, estimated from snow depth maxima and constant snow density set to 150 kg m -3 , which underestimate typical snow load values for the snowpack. Then, it should be ensured that the design of critical infrastructures are still adequate for snow-related hazards above 2000 m of elevation, i.e. where 100-year return levels of snowfall have increased.

Contributions to non-stationary extreme value analysis

Our contribution to non-stationary extreme value analysis applied to climate science is threefold: i) simple and robust statistical methods based on temporal non-stationary GEV models when we study time series with 60 annual maxima ii) flexible temporal non-stationary GEV models for climate projection ensemble iii) novel methods to gather strength across time series of annual maxima from different climate models and from consecutive elevations.

In chapters 2 and 3, we study past changes in snow load and snowfall using the S2M reanalysis, which provides 60 consecutive annual maxima for each massif and every 300 m of elevation. We rely on several statistical tools to provide a robust assessment of return levels, despite the scarce amount of annual maxima. In particular, in chapter 2, our objective was to propose a simple and interpretable statistical methodology that could participate in the methodology applied for future upgrades of French structure standards [START_REF] Biétry | Charges de neige au sol en France : proposition de carte révisée[END_REF]. Thus, we consider several temporal non-stationary GEV models where the shape parameter is assumed constant, and where the location and/or the scale parameter can vary linearly with time. Such models make it possible to have changes in the mean and/or variance of the GEV distribution, while avoiding overfitting. Then, we select one best model using a statistical criterion. Finally, we test the significance of the temporal trend of the best model (based on a likelihood ratio test or on bootstrap), and assess its goodness-of-fit with quantile-quantile plots and Anderson-Darling tests.

In chapters 4 and 5, we study projected changes in snow load and snowfall using the S2M reanalysis and 20 adjusted GCM-RCM pairs (1951-2100) under the scenario RCP8.5. Thus, for each massif and every 300 m of elevation, 20 maxima are available each year. In these chapters, we rely on a flexible non-stationary generalized extreme value (GEV) distribution based on piecewise linear functions to model the changes in the three GEV parameters. In the literature, most approaches consider linear functions for the non-stationary functions. Our contribution is to extend these approaches by considering piecewise linear functions for the non-stationary functions, with one to four linear pieces. The optimal number of linear pieces is selected using a novel two-step selection procedure. These piecewise linear functions can be viewed as linear splines. The main advantage of using splines instead of linear models is that it can smoothly approximate the temporal evolution (linear and nonlinear) of any climatic variable, in a context of global change.

In chapters 3 and 4, we propose novel methods to gather strength across time series of annual maxima from different climate models and from consecutive elevations. These methods improve the estimation of return levels by reducing the width of their uncertainty intervals. On the one hand, in chapter 3 we propose a non-stationary GEV model that gathers strength across consecutive elevations. We consider consecutive elevations that are within an elevation range of 1000 m in order to assume a common temporal trend for the consecutive elevations. In practice, we use functions µ(z, t), σ(z, t), ξ(z, t) that depend linearly on the elevation z, or that can be constant for the shape parameter. On the other hand, in chapter 4, we introduce non-stationary GEV models that are fitted to past observations and a climate projection ensemble. To this end, we consider constant adjustment coefficients for the location and scale parameters of the GEV distribution. Specifically, the non-stationary GEV model is fitted i) without adjustment coefficients on the past observations to represent the most likely climate trajectory ii) with adjustment coefficients on the climate projections to account for the variability of climate trajectories.

Discussions and perspectives

Evaluation of snow-related annual maxima

Reanalysis datasets are widely used in climate science due to their homogeneous nature. The S2M reanalysis assumes that climate variables are homogeneous inside each of the 23 massifs of the French Alps every 300 m of elevation [START_REF] Vernay | The S2M meteorological and snow cover reanalysis over the French mountainous areas, description and evaluation 1958 -2020[END_REF]. This reanalysis helps to study how climate variables vary with the elevation and between massifs.

Reanalysis datasets must be evaluated using other products and observations to assess their abilities to reproduce the spatial and temporal variations of each climate variable. The S2M reanalysis has already been both evaluated directly with in situ temperature and precipitation observations and indirectly with various snow depth observations compared to snow cover simulations of the model Crocus driven by SAFRAN atmospheric data (Durand et al., 2009a;[START_REF] Vionnet | Numerical weather forecasts at kilometer scale in the French Alps: Evaluation and application for snowpack modeling[END_REF][START_REF] Quéno | Snowpack modelling in the Pyrenees driven by kilometric-resolution meteorological forecasts[END_REF][START_REF] Revuelto | Multi-criteria evaluation of snowpack simulations in complex alpine terrain using satellite and in situ observations[END_REF][START_REF] Vionnet | Sub-kilometer Precipitation Datasets for Snowpack and Glacier Modeling in Alpine Terrain[END_REF][START_REF] Ménégoz | Contrasting seasonal changes in total and intense precipitation in the European Alps from 1903 to 2010[END_REF]. However, the climate indicators used in this thesis, i.e. the annual maxima of snow load and snowfall, have never been specifically evaluated.

The evaluation of these annual maxima would require observations of snowfall and snow load. Many observations of precipitation across the different massifs (≈ 300 stations) are already assimilated in the S2M reanalysis. Thus, we would need other sources of snowfall observations to evaluate the reanalysis. By contrast, for the snow load, there exists automatic measurements that have not been assimilated in the S2M reanalysis and could be used to perform additional evaluations.

The evaluation of annual maxima from the S2M reanalysis would require comparing automatic stations data with data at fixed elevations of a massif. For the S2M reanalysis we could approximate annual maxima for intermediate elevations by interpolating annual maxima from fixed elevations. Then, following [START_REF] Vionnet | Sub-kilometer Precipitation Datasets for Snowpack and Glacier Modeling in Alpine Terrain[END_REF], we could compare annual maxima using either elevation ranges, transects, or relief maps.

In a second step, we could evaluate annual maxima from the climate projection ensemble. Indeed, this ensemble has not been statistically adjusted to the annual maxima from the S2M reanalysis. Instead, the ensemble has been adjusted to the hourly data from the S2M reanalysis using a quantile mapping for each weather regime. Therefore, we could compare projected annual maxima (after 2005) from the climate projection ensemble with the annual maxima from the S2M reanalysis after 2005.

Changes of snow-related extremes in low-land regions

In this thesis, we focus on a mountainous region, the French Alps, which is accustomed to snow-related hazards. By contrast, low-land regions, i.e. regions at low elevations, are often heavily impacted by snow-related hazards because they are ill-equipped for such rare events. For instance, in 2021 heavy snowfall over Spain caused at least 1.4 billion Euro of damage (The New York Times, 2021). In these regions, it rarely snows and when it does the snowpack generally melts in a few days. Thus, annual maxima of snow load are usually equal to zero (years without snow), and at best correspond to an accumulation in a few days.

In some low-land regions, extreme snow load might increase, at least transiently, due to regional phenomena. For instance, by comparing the periods 2011-2050 and 1951-1990 for the scenario RCP8.5, [START_REF] Croce | Extreme Ground Snow Loads in Europe from 1951 to 2100[END_REF] find that 50-year return levels of snow load are expected to increase in the southern part of the French Atlantic coast, the Iberian Peninsula, and the Mediterranean coastal areas. In the South of the French Alps at 300 m and 600 m of elevation, we also observe two massifs where 50-year return levels of snow load have increased between 1959 and 2019 (Chapter 2).

However, anticipating long-term projected changes of 50-year return levels of snow load in low-land regions would require further developing the tools elaborated in this thesis. Indeed, in these regions, since most annual maxima will probably be equal to zero, the GEV distribution would fit poorly all annual maxima. A first solution would be to rely on a mixed discrete-continuous distribution. For instance, for time series of annual maxima containing zeros, French standards i) fits a GEV distribution on non-zero annual maxima, ii) estimates the probability of having a non-zero annual maxima. Thus, in the context of climate change, we would need to estimate jointly a non-stationary GEV model only with years with non-zero annual maxima, and to project the changes in the probability to have non-zero annual maxima. A second solution would be to rely on statistical tools adapted to compound extremes. Indeed, in low-land regions, temperatures below the rain-snow transition temperature, i.e. roughly below the freezing point, may tend to be rare in the future [START_REF] Soubeyroux | Les nouvelles projections climatiques de référence drias 2020 pour la métropole[END_REF]. Therefore, to study changes in extreme snowfall, we would focus on the compound risk of cold-wet events [START_REF] De Luca | Compound warm-dry and cold-wet events over the Mediterranean[END_REF], i.e. we would estimate changes in the joint probability to observe extreme precipitation and freezing temperatures.

Simplification of our statistical methodology for climate ensembles

Quantifying climate extremes from climate ensembles is a burning topic. In chapter 4, we introduce a non-stationary GEV model that includes i) piecewise linear functions to model the changes in the three GEV parameters ii) adjustment coefficients for the location and scale parameters to account for the variability of the GCM-RCM pairs w.r.t. the past observations. Several extensions of this model are possible. For instance, piecewise linear functions that correspond to linear splines could be naturally replaced by splines of higher orders or/and more linear pieces could be considered. Next, we present a general idea to simplify drastically the parameterization of adjustment coefficients which could fuel interest in non-stationary extreme value models for climate ensembles.

Currently, one drawback of our approach is that our non-stationary GEV models have many adjustment coefficients. Thus, some adjustment coefficients (for a specific GCM, or RCM, or GCM-RCM pair) might not be needed. The underlying reason for this overparameterization is that our approach implicitly involves a high-dimensional space of coordinates for the adjustment coefficients. For instance, when we consider one adjustment coefficient for each GCM, this space of coordinates has a number of dimensions equal to the number of GCMs. One simple idea to fix this over-parameterization could be to rely on a low-dimensional space of coordinates for the adjustment coefficients. Indeed, spatial extreme value analysis methods rely on a low-dimensional space of coordinates (latitude and longitude) rather than using a high-dimensional space with a number of dimensions equal to the number of stations [START_REF] Davison | Statistical Modeling of Spatial Extremes[END_REF]. Likewise, future extensions of our work could involve a low-dimensional space of coordinates to decrease the number of adjustment coefficients. For instance, if we consider several GCMs, we could imagine a space with a single dimension where the unique coordinate would be the empirical bias (of the GCM w.r.t to the observation) for the variable of interest. Thus, an unbiased GCM would have a coordinate equal to zero, while a biased GCM will have a non zero coordinate. In such space, a single adjustment coefficient (multiplied to the unique coordinate) could adjust all GCMs together.
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 11 Figure 1.1: Examples of roof collapse due to snow-related extremes. (a) Katowice (Poland) Jan. 2006 (TimeNote, 2006) (b) Moorhead (USA) Mar. 2019 (The Associated Press, 2019) (c) Gyeongju (South Korea) Feb. 2014[START_REF] Mensah | Review of technologies for snow melting systems[END_REF] 
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 13 Figure 1.3: Influence of changing (a) the location parameter or (b) the scale parameter on the probability density function of the GEV distribution, and on the 4-year return level y 1 4 .
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 14 Figure 1.4: Influence of the changing distribution of temperature on mean snowfall and extreme snowfall for (a) a cold climate (b) a warm climate. The blue line denotes the CTRL period where CTRL means control/historical. The red line denotes the SCEN period, where SCEN means scenario/future. The light grey shaded area represents the overall temperature interval in which snowfall occurs; the dark grey shading shows the preferred temperature interval for extreme snowfall to occur (Figure from Frei et al. 2018).
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 15 Figure 1.5: (a) Topography and delineation for the 23 massifs of the French Alps, e.g. the Vanoise massif corresponds to the purple region (Durand et al., 2009a). (b) Time series of annual maxima of daily snow load from 1951 to 2100 for the Vanoise massif at 1500 m elevation. Annual maxima from the S2M reanalysis (1959-2019) are displayed in black, while annual maxima from the 20 adjusted GCM-RCM pairs (1951-2100) under an historical and a high emission scenario (RCP8.5) are displayed with brighter colors.
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 16 Figure 1.6: Outline of this thesis. Each chapter can be read as a self-contained scientific article. All chapters consider non-stationary GEV models that account for temporal changes.
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 21 Figure 2.1: (a) Three time series of annual maxima of ground snow load (GSL) from 1959 to 2019 for 3 massifs at low (900 m), mid (1800 m) or high (2700 m) altitude and (b) 23 mountains massifs of the French Alps and their orographic features (Durand et al., 2009a).

Figure 2

 2 Figure 2.2: (a) French standards 50-year return levels of ground snow load (GSL) with respect to altitude for regions C and E. (b) Map of the region type for each massif.

Figure 2 . 3 :

 23 Figure 2.3: Distribution of selected models. Frequency of selected model (in %) with respect to all time series, i.e. for all massifs and altitudes. For the selection procedure and the definition of significance, we refer to Sect. 2.4.2.

Figure 2 . 4 :

 24 Figure 2.4: Shape parameter values for the selected models at low (900 m), mid (1800 m) or high (2700 m) altitude. Markers show selected model M N , while filled markers symbolize models that are significantly better than the Gumbel model M 0 (Sect. 2.4.2). Grey areas denote either time series that were excluded (Sect. 2.4.4) or missing data, e.g. when the altitude considered is above the top altitude of the massif.

Figure 2 .

 2 Figure2.5 maps the relative change of 50-year return levels of GSL between 1960 and 2010 (Eq. 2.4) at 900, 1800 and 2700 m (see Appendix 2.A for maps at all altitudes). Quantitatively, for northwest massifs, we observe that return levels have decreased by up to 60 % at 900 m (dark blue), while at 1800 m this decrease is less marked (pale blue). Qualitatively, these decreasing trends are frequently due to significant changes both in the location and scale parameters of the Gumbel or GEV distribution (small and large diamond-shaped filled markers). At 2700 m, or in the south at 900 and 1800 m, we often do not observe any trends (white), since stationary models are selected (small and large cross-shaped markers).
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 25 Figure 2.5: Trends in 50-year return levels of ground snow load (GSL) between 1960 and 2010 at low (900 m), mid (1800 m) or high (2700 m) altitude. Markers show selected model M N , while filled markers symbolize models that are significantly better than the Gumbel model M 0 (Sect. 2.4.2). Grey areas denote missing data, e.g. when the altitude considered is above the top altitude of the massif.
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 26 Figure 2.6: Temporal decreasing trend of 50-year return levels of ground snow load (GSL) between 900 and 4800 m of altitude.

Figure 2

 2 Figure 2.7: (a) Time series of annual maxima for ground snow load (GSL) for two massifs (Aravis and Parpaillon) either at 300 m or 600 m of altitude. (c) Trend for annual maxima of ground snow load (GSL) at 300 and 600 m of altitude. Markers show selected model M N , while filled markers symbolize models that are significantly better than the Gumbel model M 0 (Sect. 2.4.2). Grey areas denote time series that were excluded (Sect. 2.4.4).

Figure 2

 2 Figure 2.8: 50-year return levels of ground snow load (GSL) from altitude 300 to 1800 m for Vercors (a, b) and Beaufortain (c, d) massifs. Return levels (green line) and their uncertainty (shaded green and black bars) are estimated from the data either with the stationary Gumbel model M 0 (a, c) or with the selected model M N (b, d). If M N is a non-stationary model, the return level is the effective return level in 2019, and we display the change of return levels per decade (striped histogram), i.e. 10 times the time derivative of return level (Sect. 2.4.3).
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 29 Figure 2.9: Comparison of 50-year return levels of ground snow load (GSL) with French standards between 300 and 1800 m. We show the percentage of massifs (green histogram) whose return levels exceed French standards and the mean relative difference (blue line) between return levels and standards. (a) similar to French standards estimation (stationary Gumbel M 0 and GSL approximated with snow depth obtained from the reanalysis and ρ SNOW = 150 kg m -3 ). (b) stationary Gumbel M 0 and actual GSL, i.e. computed with SWE from the reanalysis. (c) selected model M N (if M N is non-stationary, the return level is the effective return level in 2019) and actual GSL.

Figure 2 .

 2 Figure 2.10: Limitation of approximating annual maxima of ground snow load (GSL) from annual maxima of snow depth (HS). (a) Difference between annual maxima of GSL and GSL computed from annual maxima of HS and ρ SNOW = 150 kg m -3 . (b) Snow density when annual maxima of GSL are reached. (c) Difference between annual maxima of HS and HS when annual maxima of GSL are reached.

Figure 2 .

 2 Figure 2.11: Trends in return levels of ground snow load (GSL) between 900 and 4200 m of altitude.Markers show selected model M N , while filled markers symbolize models that are significantly better than the Gumbel model M 0 (Sect. 2.4.2). Grey areas denote either time series that were excluded (Sect. 2.4.4) or missing data, e.g. when the altitude considered is above the top altitude of the massif.

Figure 2 .

 2 Figure 2.12: Q-Q plots of the selected models for the three time series displayed in Fig. 2.1. (a) Ubaye massif at 900 m fitted with the model M ζ0 . (b) Vercors massif at 1800 m fitted with the model M ζ0,µ1 . (c) Beaufortain massif at 2700 m fitted with the model M ζ0 .
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  ) estimated a transition elevation of around 2000 m for the Pyrenees (comparing 2070-2100 to 1960-1990), while Frei et al. (2018) estimated a transition of around 3000 m for the Alps

Figure 3 . 1 :

 31 Figure 3.1: (a-d) Time series of annual maxima of daily snowfall from 1959 to 2019 for the Vanoise massif (purple region in e) clustered by the four ranges of elevations considered. (e) Topography and delineation of the 23 massifs of the French Alps (Durand et al., 2009a).
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 32 Figure 3.2: Changes in GEV parameters (a-c) and in 100-year return levels (d) with the elevation for the 23 massifs of the French Alps. GEV distributions are estimated pointwise for the annual maxima of daily snowfall every 300 m of elevation.
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 33 Figure 3.3: Elevation gradients for the GEV parameters (a-c) and 100-year return levels (d) for the 23 massifs of the French Alps. GEV distributions are estimated pointwise for the annual maxima of daily snowfall every 300 m of elevation. Elevation gradients are estimated with a linear regression. The R 2 coefficient is written in black for each massif.

Figure 3 . 4 :

 34 Figure 3.4: Selected models and shape parameter values for each range of elevations in the 23 massifs of the French Alps. We write the suffix of the name of each selected model on the map; e.g., we write µ t , σ t for the model M µt,σt . We underline the suffix when the model has a significant trend (Sect. 3.3.3). Hatched grey areas denote missing data, e.g., when the elevation is above the top elevation of the massif. Shape parameter values are computed at the middle elevation for each range, e.g., at 1500 m for the range 1000-2000 m.

Figure 3 . 5 :

 35 Figure 3.5: Comparison of pointwise distributions with our approach based on piecewise elevationaltemporal models for the Vanoise massif. GEV parameters (a-c) and 100-year return levels with their 80 % confidence intervals (d) are shown from 600 to 3600 m of elevation.

Figure 3 .

 3 Figure3.6 shows that both increasing and decreasing trends in 100-year return levels are found for all elevation ranges. We also observe that a majority of trends are decreasing below 2000 m and increasing above 2000 m. If we analyze only significant trends, the elevation pattern remains the same. On one hand, more than 30 % of massifs have significant decreasing trends below 2000 m: 40 % below 1000 m and 30 % for the range 1000-2000 m. On the other hand, roughly 30 % of massifs have significant increasing trends above 2000 m: slightly less than 30 % for the range 2000-3000 m and slightly less than 40 % above 3000 m. We note that the sign and the significance of the trends (summarized with the percentages in Fig.3.6) remain largely similar for the trends in events of 10-and 50-year return periods (Appendix 3.C).
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 36 Figure 3.6: Percentages of massifs with significant/non-significant trends in 100-year return levels of daily snowfall for each range of elevation. A massif has an increasing/decreasing trend if the 100-year return level of the selected elevational-temporal model has increased/decreased.

Figure 3

 3 Figure 3.7: (a) Distributions of changes in 100-year return levels between 1959 and 2019 for one elevation in each range of elevation. The mean and the median are displayed with a green triangle and an orange line, respectively. (b) Same as (a) but for the relative changes. Distributions of changes are computed at the middle elevation for each range, e.g., at 1500 m for the range 1000-2000 m.
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 38 Figure 3.8: Changes in 100-year return levels of daily snowfall between 1959 and 2019 for each range of elevations. The corresponding relative changes are displayed on the map. Hatched grey areas denote missing data, e.g., when the elevation is above the top elevation of the massif. Changes in return levels are computed at the middle elevation for each range, e.g., at 1500 m for the range 1000-2000 m. Massifs with non-significant trends are indicated with a pattern of whites dots.

Figure 3 . 9 :

 39 Figure 3.9: The 100-year return levels in 2019 of daily snowfall for each range of elevations. The 100year return levels are both illustrated with colors (elevation-range-dependent scale) and written on the map. Hatched grey areas denote missing data, e.g., when the elevation is above the top elevation of the massif. Return levels are computed at the middle elevation for each range, e.g., at 1500 m for the range 1000-2000 m.

Figure 3 .

 3 Figure 3.10: Q-Q plots of the selected elevational-temporal models for the Vanoise massif for the four ranges of elevations considered (see Fig. 3.1 for the time series). (a) Below 1000 m. (b) Between 1000 and 2000 m. (c) Between 2000 and 3000 m. (d) Above 3000 m.
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 312 Figure 3.12: Changes in GEV parameters (a-c) and in 100-year return levels (d) with the elevation for the 23 massifs of the French Alps. GEV distributions are estimated pointwise for the annual maxima of daily winter precipitation every 300 m of elevation.

Figure 3 . 13 :

 313 Figure 3.13: Changes in 100-year return levels of daily winter precipitation between 1959 and 2019 for each range of elevations. The corresponding relative changes are displayed on the map. Hatched grey areas denote missing data, e.g., when the elevation is above the top elevation of the massif. Changes in return levels are computed at the middle elevation for each range, e.g., at 1500 m for the range 1000-2000 m. Massifs with non-significant trends are indicated with a pattern of white dots.
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 314 Figure 3.14: Seasons when the annual maxima of daily snowfall occurred for elevation range 1 (below 1000 m), elevation range 2 (between 1000 and 2000 m), elevation range 3 (between 2000 and 3000 m), and elevation range 4 (above 3000 m).

Contents 4 . 1

 41 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.3 Statistical methodology . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.3.1 Generalized extreme value distribution . . . . . . . . . . . . . . . . . 65 4.3.2 Non-stationary distribution . . . . . . . . . . . . . . . . . . . . . . . 65 4.3.3 Maximum likelihood estimation . . . . . . . . . . . . . . . . . . . . . 66 4.3.4 Evaluation experiments . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.3.5 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.4.1 Selection of one parameterization for each massif . . . . . . . . . . . 68 4.4.2 Trends in the 50-year return level of snow load . . . . . . . . . . . . 69 4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.5.1 Comparison of our results with the projected trends at the scale of the European Alps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.5.2 Methodological choices, assumptions and limitations . . . . . . . . . 74 4.5.3 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.6 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . . 75 4.A Uncertainty estimation . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.B Supplementary materials . . . . . . . . . . . . . . . . . . . . . . . . 76 4.B.1 Combinations of general circulation model and regional climate model 76 4.B.2 Results for the elevation 900 m and 2100 m . . . . . . . . . . . . . . 77 4.B.3 Detailed results of the evaluation experiments for elevation 1500 m . 79 4.B.4 Results for all elevations . . . . . . . . . . . . . . . . . . . . . . . . . 81 59 4. PROJECTED CHANGES IN EXTREME SNOW LOAD

Figure 4

 4 Figure 4.1: (a) Topography and delineation for the 23 massifs of the French Alps, e.g. the Vanoise massif corresponds to the purple region (Durand et al., 2009a). (b) Time series of annual maxima of daily snow load from 1951 to 2100 for the Vanoise massif at 1500 m elevation. Annual maxima from the S2M reanalysis (1959-2019) are displayed in black, while annual maxima from the 20 adjusted GCM-RCM pairs (1951-2100) under an historical and a high emission scenario (RCP8.5) are displayed with brighter colors.

Figure 4

 4 Figure 4.3: (a) Map of the selected parameterization of the GEV distribution. The selected parameterizations of the adjustment coefficients are illustrated with colors, while the selected numbers of linear pieces are written on the map. (b) Distribution of the selected number of linear pieces. (c) Distribution of the selected adjustment coefficients.

Figure 4 . 4 :

 44 Figure 4.4: Estimated 50-year return levels between +1 and +4 degrees of global warming at elevation 1500 m under RCP8.5 for four massifs with adjustment coefficients: (a) one coefficient for all GCM-RCM pairs (b) one coefficient for each GCM, (c) one coefficient for each RCM, and (d) one coefficient for each RCM-RCM pair. RL50 (Eq. 4.5)without adjustment coefficients are shown in cyan, and with adjustment coefficients in a warm color. 90% uncertainty intervals are shaded. The 50-year return levels computed for each GCM-RCM pair (using for each GCM-RCM pair a non-stationary GEV distribution with the selected number of linear pieces) and for the observation (using a non-stationary GEV distribution with one linear piece and a constant shape parameter) are displayed with thin gray lines and thick dark lines, respectively. The probability density functions at +1, +2 and +3 degrees exemplify how adjustment coefficients can adjust the distribution.

Figure 4 .

 4 Figure 4.5 illustrates RL50 for the 23 massifs of the French Alps at 1500 m elevation for +1, +2, +3, and +4 degrees of global warming, i.e. of smoothed anomaly of global mean surface temperature. The return levels are larger in the northwest of the French Alps, and this pattern persists with global warming. Over the whole French Alps, the average RL50 equals 5.7 kN m -2 at +1 degrees of global warming, and 3.3 kN m -2 at +4 degrees.
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 45 Figure 4.5: 50-year return levels (RL50) of snow load at 1500 m for +1, +2, +3, and +4 degrees of global warming under RCP8.5.

Figure 4 .

 4 Figure 4.6 details the relative change of RL50 for +2, +3, and +4 degrees of global warming at 1500 m elevation w.r.t. +1 degrees, which corresponds roughly to the current level of global warming above industrial levels (see Fig.4.2). Over the French Alps, the average change of RL50 is equal to -0.6 kN m -2 (-10%), -1.5 kN m -2 (-27%), -2.5 kN m -2 (-43%) for +2, +3, and +4 degrees of global warming, respectively. These relative changes are different for other elevations, a smaller relative decrease being obtained at 2100 m of elevation, and a larger relative decrease at 900 m of elevation (see Supplement, Part B). This result is consistent with the literature (Fig.2.3 of IPCC 2019). At 1500 m, the relative decrease is less important in the center east side of the French Alps. For instance, for +4 degrees of global warming, the relative decrease roughly ranges between -33% and -38% in the center east side, while it ranges between -40% and -54% in the rest of the French Alps.

Figure 4 . 6 :

 46 Figure 4.6: Relative changes in 50-year return levels (RL50) of snow load at 1500 m for +2, +3, and +4 degrees of global warming under the scenario RCP8.5 w.r.t +1 degrees of global warming.

Figure 4 . 7 :

 47 Figure 4.7: Map of the selected parameterization of the GEV distribution at (a) 900 m and (b)2100 m. The selected parameterizations of the adjustment coefficients are illustrated with colors, while the selected numbers of linear pieces are written on the map.
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 48 Figure 4.8: Relative changes in 50-year return levels (RL50) of snow load at 900 m for +2, +3, and +4 degrees of global warming under the scenario RCP8.5 w.r.t +1 degrees of global warming.
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 49 Figure 4.9: Relative changes in 50-year return levels (RL50) of snow load at 2100 m for +2, +3, and +4 degrees of global warming under the scenario RCP8.5 w.r.t +1 degrees of global warming.

Figure 4 .

 4 Figure 4.10 illustrates average relative changes in 50-year return levels (RL50) of snow load between +1.5 and +4 degrees of global warming. These changes are computed every 300 m of elevation between 900 m and 3600 m. To sum up, we observe that the higher the elevation, the smaller the relative decrease. This Figure was not in the preprint version of Le Roux et al. (2021b), but will probably be in the final version of the article.

Figure 4 . 10 :

 410 Figure 4.10: Average relative changes in 50-year return levels (RL50) of snow load every 300 m from 900 m to 3600 m of elevation, between +1.5 and +4 degrees of global warming under the scenario RCP8.5 w.r.t +1 degrees of global warming. Relative changes are averaged on all available massifs.

Figure 5 .

 5 Figure 5.1 illustrates the average relative change of mean annual maxima and 100-year return levels of snowfall, i.e. of frequent and rare extreme snowfall, for different levels of global warming and for every 300 m of elevation from 900 m to 3600 m. For the scenario RCP8.5, +2 • C, +3 • C, +4 • C corresponds to the year 2038, 2061, and 2080, respectively.Qualitatively, mean annual maxima of snowfall are expected to increase at 3600 m (Fig.5.1 a), to first increase and shortly after to decrease at 3300 m (Fig.5.1 c), and to decrease below 3000 m (Fig.5.1 e). Likewise, expected changes in 100-year return levels of snowfall are expected to increase above 3300 m (Fig.5.1 b), to increase and then decrease at 2700 m and 3000 m (Fig.5.1 d), and to decrease below 2400 m (Fig.5.1 f). These three types of evolution (increase, increase followed by a decrease, decrease) likely correspond to different outcomes of the trade-off between the expected increase in local extreme winter precipitation and the expected increase in local temperatures (Appendix 5.A). The first type of evolution, i.e. the expected increase in extreme snowfall, probably results from the expected increase in extreme winter precipitation and/or from the expected increase in the probability to experience optimal temperatures for extreme snowfall, i.e. temperatures located around the freezing point (O'Gorman, 2014). For some elevations, this increase in extreme snowfall is followed by a decrease (second type of evolution), while lower elevations are directly expecting a decrease (third type of evolution). For these two types of evolution, the decrease is undoubtedly caused by a decline in the probability to experience optimal temperatures for extreme snowfall. For cases where there is first an increase followed by a decrease for mean annual maxima and 100-year return levels (Fig.5.1 c and 5.1 d, respectively), it is interesting to note transitional states where average relative changes are almost steady as a function of the global warming level, i.e. between +1.5 • C and +2 • C for mean annual maxima, and +1.5 • C and +3 • C for 100-year return level.Quantitatively, average relative changes are rather moderate for the 100-year return levels. Indeed, even with a global warming of +4 • C, average relative changes range between -15% (-11 kg m -2 ) at 900 m and +8% (+12 kg m -2 ) at 3600 m. For the mean annual maxima, average relative changes at +4 • C of global warming range between -26% (-8 kg m -2 ) at 900 m and +3% (+3 kg m -2 ) at 3600 m.
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 51 Figure 5.1: Average relative changes in (a,c,e) mean annual maxima (b,d,f ) 100-year return levels of snowfall, every 300 m of elevation from 2100 m to 3600 m, between +1.5 and +4 • C of global warming. We also display the corresponding temporal horizons under the 8.5 RCP scenario. Relative changes are computed with respect to +1 • C, and are averaged over the 23 massifs of the French Alps.

Figure 5 . 2 :

 52 Figure 5.2: Elevations that coincide with various values (..., -2%, 0%, 2%, ...) of average relative change in (a) mean annual maxima (b) 100-year return levels of snowfall. These values are shown between +1.5 and +4 • C of global warming from 2100 m to 3600 m. Relative changes are computed with respect to +1 • C, and are averaged over the 23 massifs of the French Alps. The elevation threshold corresponds to the level 0%.

Figure 5 . 3 :

 53 Figure 5.3: Evolution with global warming of the elevation threshold above (below) which extremesnowfall is expected to increase (decrease) for rare and more frequent extremes. We also display the corresponding temporal horizons under the 8.5 RCP scenario.

Figure 5 . 4 :

 54 Figure 5.4: Percentages of massifs with increasing and decreasing trends in (a) mean annual maxima (b) 100-year return levels of snowfall relatively to +1 • C. These percentages are shown every 0.5 • C of global warming between +1.5 and +4 • C, and from 2100 m to 3600 m. We illustrate the average relative change with colors.
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 55 Figure 5.5: Relative changes in 100-year return levels of snowfall between +1 and +4 • C at elevation 2700 m, 3000 m, 3300 m, and 3600 m. Corresponding changes in kg m -2 are written on the maps. Hatched grey areas denote missing data, e.g., when the elevation is above the top elevation of the massif.
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 56 Figure 5.6: Average relative changes in (a, c) mean annual maxima (b, d) 100-year return levels of winter precipitation, every 300 m of elevation from 900 m to 3600 m, between +1.5 • C and +4 • C of global warming. Average relative changes are illustrated separately for (a, b) high elevations, i.e. between 2400 m and 3600 m, and for (c, d) lower elevations between 900 m and 2100 m. We also display the corresponding temporal horizons under the 8.5 RCP scenario. Relative changes are computed with respect to +1 • C.
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 57 Figure 5.7: Relative changes in 100-year return levels of snowfall, every 300 m of elevation from 2100 m to 3600 m, between +1.5 and +4 • C of global warming for the (a) Chartreuse, (b) Mont-Blanc, (c) Bauges, and (d) Queyras massif. We also display the corresponding temporal horizons under the 8.5 RCP scenario. Relative changes are computed relatively to +1 • C.

1

 1 Contributions to climate science and snow-related hazard assessment

  

  State of the art 1.2.1 Statistical methodology to model changes in extremes 1.2.1.1 Extreme value analysis: a statistical theory to estimate extreme values

	1. INTRODUCTION
	1.2

Table 2 .

 2 2: Statistical models considered for annual maxima of GSL are based on the Gumbel or the GEV distribution and are extensions of the stationary Gumbel model. For non-stationary models, the location and/or the scale vary linearly with years t after the starting year 1959.

Table 3 . 1 :

 31 Temporal trends in extreme snowfall with respect to elevation in and around the French Alps. Elevations are in meters above sea level (m a.s.l.). S Nd denotes the annual maximum of snowfall in N consecutive days.

		Location	Indicator	Temporal trend	Time period	Dataset	Reference
	Past trends	Switzerland Swiss Alps	S 3d S 1d	Decrease for the majority of stations Insignificant changes	1930-2010 1864-2009	25 stations, all except one below 1800 m 9 stations, all except one below 1000 m	Marty Blanchet (2012) and Scherrer et al. (2013)
	Projected trends	Pyrenees Western and central Europe Alps	25-year return level of S 1d December-February S 1d September-May S 1d	Decrease below 1500 m Increase above 2500 m Increase almost only in high mountain ranges Decrease below 3000 m Increase above 3000 m	1960-1990 vs. 2070-2100 1961-2100 1981-2010 vs. 2070-2099	1 HIRHAM RCM and SRES A2 8 KNMI RACMO2 RCM and RCP8.5 14 EURO-CORDEX GCM-RCM and RCP8.5 Frei et al. (2018) López-Moreno et al. (2011) de Vries et al. (2014)

  Le Roux, E., Evin, G., Eckert, N., Blanchet, J., and Morin, S.: A nonstationary extreme value approach for climate projection ensembles : application to snow loads in the French Alps, Earth System Dynamics Discussions, pp. 1-22, URL https://doi.org/10.5194/esd-2021-79, 2021b

Table 4 .

 4 

1: Temporal non-stationary GEV based approaches for GCM ensembles and GCM-RCM ensembles. The symbol "*" means that the ensemble is an initial condition ensemble, i.e. each ensemble member consists of the same GCM-RCM pair with different initialisation.

Table 4 .

 4 3: Projected trends in snow water equivalent (SWE), and snow load under the scenario RCP8.5 using the EURO-CORDEX experiment. In the first four rows of the Table,we specify that the result is approximated because the trend was read from the Figure2.3. of IPCC (2019).

Table 4 .

 4 4: 20 GCM-RCM pairs considered. We always rely on the version r1i1p1 except for EC-EARTH where we use r12i1p1.

Table 4 . 5 :

 45 Mean logarithmic score for the model-as-truth experiment for the elevation 1500 m. The mean logarithmic score is averaged on the held-out pseudo-observations (2020-2100) for the 12 GCM-RCM pairs set as pseudo-observations for each massif.

		1 linear piece 2 linear pieces 3 linear pieces	4 linear pieces
	Aravis	1.73	1.71	1.71	1.71
	Bauges	1.6	1.58	1.58	1.58
	Beaufortain	1.63	1.63	1.62	1.62
	Belledonne	1.5	1.48	1.48	1.48
	Chablais	1.62	1.6	1.6	1.6
	Champsaur	1.07	1.05	1.04	1.05
	Chartreuse	1.65	1.64	1.64	1.64
	Devoluy	0.89	0.87	0.86	0.87
	Grandes-Rousses	1.23	1.22	1.22	1.22
	Haute-Maurienne	0.84	0.83	0.83	0.83
	Haute-Tarentaise	1.47	1.47	1.47	1.47
	Maurienne	1.18	1.18	1.17	1.18
	Mont-Blanc	1.7	1.69	1.69	1.69
	Oisans	1.11	1.1	1.1	1.1
	Parpaillon	0.83	0.81	0.81	0.81
	Pelvoux	1.12	1.11	1.11	1.11
	Queyras	0.5	0.49	0.48	0.48
	Thabor	1.0	1.0	0.99	0.99
	Ubaye	0.29	0.27	0.26	0.27
	Vanoise	1.44	1.44	1.44	1.44
	Vercors	1.29	1.27	1.27	1.27

Table 4 . 6 :

 46 Mean logarithmic score for the split-sample experiment for the elevation 1500 m. The mean logarithmic score is averaged on three split-sample experiments , where the calibration set correspond to 60%, 70%, and 80% of the observations.

			1.88	1.88	1.88	1.88
	Bauges	1.7	1.75	1.74	1.75	1.74
	Beaufortain	1.77	1.83	1.83	1.83	1.83
	Belledonne	1.62	1.67	1.67	1.67	1.67
	Chablais	1.77	1.8	1.79	1.79	1.79
	Champsaur	1.18	1.16	1.15	1.15	1.15
	Chartreuse	1.76	1.75	1.74	1.74	1.74
	Devoluy	1.18	1.16	1.17	1.17	1.17
	Grandes-Rousses	1.3	1.44	1.43	1.43	1.43
	Haute-Maurienne 1.13	1.14	1.14	1.14	1.14
	Haute-Tarentaise 1.52	1.55	1.54	1.55	1.55
	Maurienne	1.3	1.38	1.37	1.37	1.37
	Mont-Blanc	1.71	1.71	1.71	1.71	1.71
	Oisans	1.11	1.28	1.27	1.27	1.27
	Parpaillon	1.06	1.08	1.08	1.08	1.07
	Pelvoux	1.39	1.37	1.37	1.37	1.37
	Queyras	1.06	0.96	0.96	0.96	0.96
	Thabor	1.1	1.14	1.13	1.13	1.13
	Ubaye	1.08	1.05	1.05	1.06	1.05
	Vanoise	1.42	1.43	1.42	1.42	1.42
	Vercors	1.46	1.42	1.41	1.41	1.41

  ;[START_REF] López-Moreno | Effects of climate change on the intensity and frequency of heavy snowfall events in the Pyrenees[END_REF] that study return levels with return periods of 10 and 25 years.

	Reference	Location	Indicator	Projected changes	Periods	Dataset Scenario
	López-Moreno et al. (2011)	Pyrenees	25-year re-turn level	Decrease below 1500 m Increase above 2500 m	1960-1990 2070-2100	1 RCM SRES A2
	de Vries et al. (2014)	Europe Western and Central	Dec-Feb S 1d Decrease for T histo Increase for T histo Dec-Feb < -10 o C Dec-Feb > -5 o C	2071-2100 1981-2010	RCMs GCM-8	RCP8.5
	Lute et al. (2015)	States Western United	percentile Average above 99th	Decrease for T histo Increase for T histo Nov-Mar < -7 o C Nov-Mar > -3 o C	2040-2069 1950-2005	GCMs 20	RCP8.5
	Kawase et al. (2016)	Japan and North Asia	Nov-Apr 10-year return level	(using a regression) Decrease for T histo Increase for T histo Nov-Mar < -5 o C Nov-Mar > -5 o C	2080-2099 1950-2011	RCMs 48	RCP8.5
	(2018) Frei et al.	Alps	S 1d Sep-May	Increase above 3000 m a.s.l Decrease until 3000 m a.s.l	2070-2099 1981-2010	RCMs GCM-16	RCP8.5

Table 5 . 1 :

 51 Projected changes in extreme snowfall under a high emission scenario. Based on climate projection datasets, changes are assessed between an historical and a future period. S Nd denotes the mean of seasonal maximum of snowfall in N consecutive days. T histo m1-m2 denotes the mean temperature for the historical period between the months m1 and m2.
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	.2: Percentages of selected GEV parameterization (number of linear pieces for the temporal
	non-stationarity and adjustment coefficients) for all massifs and all elevations between
	900 m and 3600 m.

  estimate them for fixed time periods, e.g.2070-2100 compared to 1960-1990[START_REF] López-Moreno | Effects of climate change on the intensity and frequency of heavy snowfall events in the Pyrenees[END_REF]. Elevation thresholds are assessed for frequent extreme snowfall in[START_REF] Frei | Future snowfall in the Alps: projections based on the EURO-CORDEX regional climate models[END_REF] (mean annual maxima or 99th percentile), and for moderate extreme snowfall inLópez-Moreno et al. (

  • C of global warming when compared with +1 • C.

	50-year return levels of snow load	100-year return levels of snowfall
	Past changes	
	between 1959	
	and 2019	

PAST CHANGES IN EXTREME SNOW LOAD

PAST CHANGES IN EXTREME SNOWFALL

PROJECTED CHANGES IN EXTREME SNOW LOAD
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Projected changes in extreme snowfall This chapter has not been submitted to a scientific journal but will be soon.

Les grenades ouvertes qui saignent sous une mince et pure couche de neige le bleu des mosquées sous la neige les camions rouillés sous la neige les pintades blanches plus blanches encore les longs murs roux les voix perdues cheminent à tâtons sous la neige Toute la ville, jusqu'à l'énorme citadelle S'envole dans le ciel moucheté -Nicolas Bouvier, Novembre

3.C Sensitivity to the return period

The 100-year return period was chosen because it is the largest return period considered in the Eurocodes for building structures [START_REF] Cabrera | The Time Variable in the Calculation of Building Structures . How to extend the working life until the 100 years ?[END_REF]. We believe that this return period is the most familiar return period for non-experts as it corresponds to a centennial event.

For smaller return periods (5-10 years), our results also apply. In Fig. 3.11, we illustrate our results for the 10-, 50-, and 100-year return periods. We observe that the overall distribution of increasing/decreasing trend for the return levels is almost insensitive to the choice of the return period. For instance, the only noticeable difference between the 10-and 100-year return periods is that for the elevation range 1000-2000 m and for the elevation range 2000-3000 m, we observe that one massif shows an increasing trend for the return period of 10 years, while it is decreasing for the return period of 100 years. 

PROJECTED CHANGES IN EXTREME SNOW LOAD

Quantile mapping method ADAMONT [START_REF] Verfaillie | The method ADAMONT v1.0 for statistical adjustment of climate projections applicable to energy balance land surface models[END_REF] was used to adjust the EURO-CORDEX dataset [START_REF] Jacob | EURO-CORDEX: New high-resolution climate change projections for European impact research[END_REF] against the S2M reanalysis to provide daily values of snow load that spans historical and future (2006-2100) time periods. Specifically, the EURO-CORDEX dataset consists of RCMs forced over Europe by GCMs from the CMIP5 ensemble [START_REF] Taylor | An overview of CMIP5 and the experiment design[END_REF] for the historical and several representative concentration pathways (RCP) scenarios [START_REF] Moss | The next generation of scenarios for climate change research and assessment[END_REF]. We focus on the RCP8.5 emission scenario, and consider a total of 20 GCM-RCM pairs, with 6 GCMs and 11 RCMs (see Supplement, Tab. S1). Finally, every 300 m of elevation for each massif, adjusted EURO-CORDEX meteorological data are used as input to Crocus to provide estimates of the time evolution of the snow cover [START_REF] Verfaillie | Multicomponent ensembles of future meteorological and natural snow conditions for 1500 m altitude in the Chartreuse mountain range, Northern French Alps[END_REF], enabling us to compute the maximum annual value of snow load. For simplicity, we often refer to S2M reanalysis as our observation reference. We note that we discard the two most southern massifs because many projected annual maxima are equal to zero.

The anomaly of global mean surface temperature (GMST) w.r.t. the pre-industrial period (1850-1900) is chosen as the temporal covariate for our statistical methodology. In practice, we smooth this anomaly with cubic splines to obtain a covariate that does not depend on the internal variability of GMST (Fig. 4.2). For each GCM-RCM pair we rely on the GMST corresponding GCM as covariate, while we rely on GMST from HadCRUT5 [START_REF] Morice | An Updated Assessment of Near-Surface Temperature Change From 1850: The HadCRUT5 Data Set[END_REF] as covariate for the observations. For simplicity, we refer to +1 degree of smoothed anomaly of GMST as +1 degree of global warming. . For the 6 GCMs, we show the anomaly of global mean surface temperature using historical emissions until 2005, and projected emissions (RCP8.5). Years correspond to the year centered on winter.