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Résumé

Mouvements moléculaires fonctionnels dans la conception de médicaments : application
aux récepteurs nicotiniques del’acétylcholine.

L’étude des changements conformationnels se produisant au sein d’une protéine est
essentielle pour comprendre sa fonction et la façon dont elle peut être modulée. Ainsi,
ce projet de recherche a pour but d’étudier les changements conformationnels du récep-
teur nicotinique α4α5β2, de proposer de nouvelles façons de moduler ce récepteur et de
développer une méthode pour trouver de nouveaux modulateurs. L’intérêt pour le récep-
teur α4α5β2 provient d’études d’association pangénomique associant le polymorphisme
d’un seul nucléotide (PSN D398N) de la sous-unité α5, à la dépendance à la nicotine et au
cancer du poumon. En l’absence de structures expérimentales du récepteur nicotinique
α4α5β2, je ne disposais pas des informations structuralles nécessaires pour comprendre
ses changements conformationnels, informations essentielles pour concevoir des médica-
ments ciblant des sites effecteurs spécifiques. Ainsi, comme première étape de ce projet, j’ai
procédé à la modélisation in-silico du récepteur α4α5β2 dans les états de repos, activé et
désensibilisé. Après avoir obtenu des modèles satisfaisants, j’ai calculé le chemin de tran-
sition conformationnel entre les états modélisés et j’ai utilisé ce chemin conformationnel
pour effectuer une analyse des cavités. L’analyse des cavités sur le chemin de transition
a pré-validé les modèles en confirmant la présence de sites orthostériques et allostériques
connus et j’ai identifié de nouveaux sites effecteurs plausibles qui peuvent être exploités
pour moduler le récepteur nicotinique α4α5β2. Afin de proposer des modulateurs pour ces
nouveaux sites, j’ai entrepris de collecter des données de ligands et leur poche de liaison
sur leur protéine cible, puis j’ai entraîné uneméthode d’apprentissage profond pour générer
des ligands complémentaires pour une poche de protéine donnée. En outre, pour aborder
la question de la synthèse des composés générés in-silico, j’ai intégré une série de scores
d’accessibilité synthétique qui m’ont permis de définir des seuils et des filtres pour pour-
suivre l’étude uniquement sur les composés générés in-silico ayant une voie synthétique
prédite. Le modèle génératif entraîné peut être utilisé pour générer de nouveaux composés
complémentaires aux poches du récepteurα4α5β2 sélectionnés à partir de l’analyse des cav-
ités, mais son utilisation peut également être généralisé à la génération de ligands ciblant
d’autres protéines dans des projets de recherche futurs.

Mots clefs: Récepteur nicotinique, modélisation in-silico, chemin de transition confor-
mationnel, apprentissage profond.
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Abstract

Functional molecular motions in drug design: application to nicotinic acetylcholine recep-
tors.

The study of the conformational changes occurring in a protein structure is essential
to understand its function and how a protein can be modulated. This research project was
started with the aim of studying the gating cycle of the α4α5β2 nAChR, propose new ways
of modulating this receptor and to develop a method to find novel modulators. The interest
on the α4α5β2 receptor comes from GWAS studies that have associated a Single Nucleotide
Polymorphism (SNPD398N) on theα5 subunit, to nicotine addiction and lung cancer. With-
out experimental structures of the α4α5β2 nAChR, I lacked the structural information to
understand its gating mechanism, information essential to perform drug design in specific
effector sites. Therefore, as the first step in the development of this project I performed
the in-silico modeling of the α4α5β2 nAChR in resting, activated and desensitized func-
tional states. Once I obtained the nAChR models, I computed the conformational transition
path between the modeled functional states and used this conformational path to do cavity
analysis. The cavity analysis on the transition path pre-validated the models by confirming
the presence of known orthosteric and allosteric sites and I identified novel plausible ef-
fector sites that can be exploited to modulate the α4α5β2 nAChR. As an initial approach to
propose modulators for these new proposed cavities, I collected and curated the structural
data of protein-ligand pairs and trained a deep learning method to produce ligand shapes
and chemical compounds, complementary to protein pockets. In addition, to tackle the is-
sue of how to synthesize in-silico generated compounds, I integrated a series of synthetic
feasibility scores that allowed me to set thresholds and filters to select in-silico generated
compounds with an hypothetical synthetic route available. The trained generative model
could be used to generate novel compounds complementary to the selected α4α5β2 nAChR
pockets extracted from the cavity analysis, but it could also be used to generate ligands for
other proteins in future research projects.

Keywords: Nicotinic receptor, in-silico modeling, transition path, deep learning.

v



vi



Résumé substantiel

L’étude des changements conformationnels se produisant dans la structure d’une protéine
est essentielle pour comprendre sa fonction et comment une protéine peut être modulée. Ce
projet de recherche a été conçu dans le but d’étudier le cycle d’ouverture/ fermeture du ré-
cepteur nicotinique de l’acétylcholine α4α5β2, de proposer de nouvelles façons de moduler
ce récepteur et de développer une méthode pour trouver de nouvelles petites molécules
qui pourraient agir comme modulateurs allostériques positifs (PAM) et être utilisés pour
traiter la dépendance à la nicotine. L’intérêt pour le récepteur α4α5β2 provient des études
d’association pangénomique qui ont associé un polymorphisme d’un seul nucléotide (SNP)
sur la sous-unité α5 résultant en un échange d’aspartate par de l’asparagine (SNP D398N),
à un risque plus élevé de développer une dépendance à la nicotine et un cancer du poumon.

Sans les structures expérimentales du récepteur nicotinique de l’acétylcholine α4α5β2,
il me manquait les informations structurales pour comprendre son mécanisme d’ouverture/
fermeture, informations essentielles pour réaliser la conception de médicaments dans des
sites effecteurs spécifiques. Par conséquent, comme première étape dans le développement
de ce projet, j’ai effectué la modélisation in-silico du récepteur nicotinique α4α5β2 dans les
états fonctionnels au repos, activé et désensibilisé en utilisant comme modèles les struc-
tures homologues publiées de α3β4, α4β2, α7 ainsi que le récepteur nicotinique de type
musculaire. Les modèles obtenus pour le récepteur nicotinique α4α5β2 sont conformes
aux observations structurales rapportées pour les structures expérimentales des récepteurs
nicotiniques homologues et d’autres canaux ioniques pentamériques à libération par ligand.
En outre, le profil du pore ionique délimité par l’hélice M2 du domaine transmembranaire
(TMD) indique que les modèles se trouvent dans les états fonctionnels souhaités : le modèle
de récepteur activé a un pore ionique ouvert d’un diamètre minimal de 7,7 Å, le modèle de
récepteur au repos a un pore ionique fermé au milieu du TMD d’un diamètre minimal de
3,0 Å et le modèle désensibilisé, a un pore partiellement fermé à l’extrémité inférieure du
TMD d’un diamètre minimal de 4,7 Å.

Ensuite, j’ai utilisé une méthode appelée Path Optimization Exploration (POE) pour
échantillonner la surface du paysage d’énergie potentielle et trouver les chemins d’énergie
minimale reliant les trois états fonctionnelsmodélisés à faible énergie. Ces chemins d’énergie
minimale comportaient 67 conformations qui décrivent un modèle du cycle d’ouverture/
fermeture du récepteur nicotinique α4α5β2 lorsqu’il est activé, désensibilisé ou désactivé,
et c’est la première fois que l’état désensibilisé est inclus dans ce type d’analyse. Avec le cy-
cle d’ouverture/ fermeture du récepteur nicotinique α4α5β2, j’ai pu décrire et comparer les
changements structurels qui ont été rapportés pour d’autres récepteur nicotiniques et qui
sont connus pour être essentiels pour réguler et initier l’ouverture du pore ionique : la com-
paction du domaine extracellulaire (ECD) et la torsion entre l’ECD et le TMD. Lorsque le ré-
cepteur nicotinique α4α5β2 passe de la conformation activée à la conformation au repos ou
désactivée, la boucle-C s’ouvre et le ECD se relâche. J’ai également observé la torsion glob-
ale attendue dans le sens inverse des aiguilles d’une montre de l’ECD par rapport à le TMD,
lorsque le récepteur nicotinique α4α5β2 devient activé. Pour déterminer si le relâchement
de l’ECD précède la torsion entre l’ECD et le TMD qui conduit à l’ouverture du pore ion-
ique, j’ai analysé la synchronisation entre ces changements de conformation. J’ai observé
qu’il y a une corrélation inverse entre la torsion et l’épanouissement : lorsque le récepteur
est complètement relâché, la torsion entre les domaines est à sa valeur la plus basse. Les
mouvements de relâchement et de torsion semblent se produire simultanément, lorsque le
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récepteur passe d’une conformation activée à une conformation de repos. Cependant, le
relâchement et la torsion ne semblent pas être synchronisés entre l’état de désensibilisa-
tion et l’état de repos, car le récepteur commence d’abord par se détordre, puis la ECD se
contracte. Dans l’ensemble, le relâchement et la torsion de la ECD sont conformes à ce
qui a été décrit pour les structures expérimentales homologues de récepteur nicotiniques
utilisées comme modèles.

Le cycle de ouverture/ fermeture a été utilisé comme entrée à mkgridXf, pour faire une
analyse de cavité sur le récepteur nicotinique α4α5β2. L’analyse des cavités sur le cycle
d’ouverture/ fermeture a pré-validé les modèles en confirmant la présence du site de li-
aison orthostérique connu dans l’interface ECD entre les sous-unités α4 et β2 et du site
allostérique dans l’interface ECD entre les sous-unités α5 et α4, les deux sites étant recou-
vert par la boucle-C. J’ai obtenu 255 cavités qui sont formées au moins une fois le long de
la trajectoire. Sur ces 255 cavités, seules 52 avaient au moins une fois au cours de la tra-
jectoire, un volume supérieur à 150 Å3 et ont été sélectionnées une l’analyse typologique.
L’objectif de l’analyse typologique était de classifier des types d’évolutions géométrique en
fonction de l’état fonctionnel et donc d’identifier de nouvelles cavités allostériques poten-
tielles qui pourraient être modulées avec un PAM. Les cavités ont été regroupées en util-
isant le regroupement hiérarchique de leurs volumes pour chaque conformation du cycle
d’ouverture/ fermeture/ désenssibilisation comme descripteurs. J’ai sélectionné les cavités
qui montrent un volume plus élevé sur l’état activé et les cavités qui étaient situées dans
la sous-unité α5 ou à l’interface entre la sous-unité α5 et une autre sous-unité. Cette sélec-
tion a été faite avec l’hypothèse qu’en modulant ces cavités et en conservant leurs volumes
élevés, il devrait être possible de maintenir le récepteur nicotinique α4α5β2 dans une con-
formation active et si ces cavités sont situées près de ou dans α5, les composés conçus pour
les moduler devraient être sélectifs aux récepteurs avec cette sous-unité. Le premier site de
liaison nouvellement identifié est situé dans la ECD de α5 et fait face au pore ionique. Les
deux autres nouveaux sites sont dans le TMD de α5 et dans l’interface entre le TMD de α5

et de β2. J’ai pris les résidus délimitant ces cavités comme définition de poches et utilisé les
informations sur ces poches comme entrée pour la génération de composés de novo.

Comme approche pour proposer des modulateurs pour ces poches nouvellement pro-
posées, j’ai entraîné une méthode d’apprentissage profond pour générer des composés avec
des propriétés moléculaires complémentaires aux propriétés des poches protéiques. Le
modèle a été publié par le groupe de Gianni de Fabritis et est formé de deux composantes :
un réseau de génération de formes et un réseau annotateur. Le réseau bicycle antagoniste
génératif (bicycleGAN) conçu pour empêcher le réseau générateur entraîné de rester sur un
minimum local ou de souffrir d’un effondrement sur un seul mode tout en produisant une
distribution diversifiée de sorties. Ce réseau de génération de formes est entraîné avec une
base de données de paires protéine-ligand que j’ai extraites, classées et arrimées (docked) et
qui incluait plusieurs modulateurs de récepteur nicotiniques. La base de données comprend
68 enzymes, 35 protéases, 32 kinases, 27 GPCRs, 17 récepteurs nucléaires et 10 canaux ion-
iques parmi lesquels : α7, α4β2, α3β4 et le récepteur GABA-A. Une fois le réseau de généra-
tion de formes entraîné, j’ai pu l’utiliser pour générer des formes de ligands complémen-
taires aux poches des protéines. Les formes décrivent les propriétés des atomes présents
dans le ligand telles que la localisation en 3D des carbones hydrophobes aliphatiques, des
carbones hydrophobes aromatiques, des donneurs de liaisons hydrogène et des accepteurs
de liaisons hydrogène. La deuxième partie du modèle génératif de novo est un réseau an-
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notateur composé de deux auto-encodeur variationnels (VAE). Le premier VAE est utilisé
exclusivement pendant l’entraînement pour ajouter du bruit aux composés chimiques 3D
dont les coordonnées sont traduites en une représentation en grille utilisée pour entraîner le
second VAE. L’encodeur du deuxième VAE est un réseau de neurones convolutif (CNN) qui
codera la forme du ligand dans une représentation latente vectorielle. Ensuite, le décodeur,
qui est un réseau "longue mémoire à court terme" (LSTM), utilisera la représentation codée
de la forme du ligand et la traduira en une séquence de SMILES chimiquement correcte.
Pour entraîner ce réseau, j’ai utilisé une base de données 3D interne du laboratoire, déjà
prétraitée pour le docking, qui contient des structures moléculaires extraites de la banque
MolPort et compte 5 600 000 composés qui ont été traités et stockés dans un format de
données binaires HDF5.

Avant de générer des composés moléculaires pour les cavités sélectionnées, j’ai effec-
tué quelques tests d’évaluation sur les modèles entraînés. J’ai évalué si les formes des lig-
ands générés pour une même poche protéique étaient différentes et si le réseau annotateur
était capable de décoder efficacement les formes générées. Pour ce faire, j’ai sélectionné
quatre protéines pour lesquelles je disposais d’au moins 900 composés ayant une activ-
ité biologique annotée (que nous appellerons ligands) : le récepteur de la progestérone,
l’anhydrase carbonique 2, le transporteur de sérotonine sodium-dépendant et le récepteur
intracellulaire sigma non-opioïde 1 . Les protéines ont été traduites en une représentation
en grille et données en entrée au réseau de génération de formes avec un vecteur échan-
tillonné aléatoirement à partir d’une distribution normale standard. 100 formes de ligands
complémentaires ont été générées pour chacune des 4 poches protéiques et comparées par
paires en utilisant le coefficient de corrélation de Pearson. J’ai trouvé que le bicycleGAN
générait une distribution de formes de ligands qui étaient très similaires les unes aux autres.
Cette constatation suggère que le générateur de bicycleGAN a souffert d’un effondrement
de mode ou que, puisque la complémentarité entre les propriétés moléculaires des pro-
téines et des ligands est limitée (les donneurs de liaisons hydrogène interagissent avec les
accepteurs de liaisons hydrogène), il n’est pas nécessaire d’utiliser un modèle génératif
aussi complexe puisqu’il n’est pas possible d’obtenir une large distribution de résultats. J’ai
observé que les formes de ligands générés avaient beaucoup d’atomes hydrophobes alipha-
tiques et seulement quelques atomes hydrophobes aromatiques et ce comportement a été
correctement appris par le réseau annotateur pour lequel les SMILES générés avaient prin-
cipalement des cycles aliphatiques et un nombre inférieur de cycles aromatiques. Ensuite,
une forme de ligand de chaque protéine a été décodée en 10 000 SMILES différents par le
réseau annotateur. J’ai calculé le nombre de donneurs de liaison hydrogène, d’accepteurs
de liaison hydrogène, le nombre de cycles aromatiques, le nombre de cycles aliphatiques,
le nombre de liaisons rotatives, le nombre d’halogènes, le poids moléculaire, la surface po-
laire topologique (TPSA) et le coefficient de partage d’unemolécule entre les phases aqueuse
et lipophile (LogP), pour les composés générés et les liants et j’ai comparé leurs distribu-
tions. De cette analyse, j’ai observé que les composés générés ont en moyenne un poids
moléculaire plus élevé, plus de cycles aliphatiques, d’halogènes, d’accepteurs de liaisons
hydrogène, de donneurs de liaisons hydrogène et de liaisons libre en rotation. Ce qui mon-
tre que ces composés sont plus gros que les liants réels annotés. Lorsque j’ai comparé la
distribution des longueurs des SMILES canoniques générés à la longueur des SMILES canon-
iques des ligands connus, j’ai observé que les composés générés ont des SMILES avec plus
de symboles. En moyenne, les SMILES ont une longueur comprise entre 60 et 70 symboles.
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Pour filtrer les composés générés, j’ai décidé d’utiliser la faisabilité synthétique comme
critère principal. J’ai utilisé trois scores pour classer les composés générés : le score d’accessibilité
synthétique (SA), le score d’accessibilité rétrosynthétique (RA) et le score de complexité
synthétique (SC). Je n’ai sélectionné que les composés dont le score RA était supérieur à 0,7
(70% de probabilité de trouver une voie rétrosynthétique avec AiZynthFinder) et les scores
SA et SC inférieurs à 3,5 (un score de 1 pour les deux méthodes indique que le composé est
facile à synthétiser). Ces seuils de score ont démontré que la plupart des composés générés
ne pouvaient pas être synthétisés et se sont avérés être un critère de filtrage très strict.
Après ces étapes de filtrage, les composés générés sélectionnés ont été traités avec AiZyn-
thFinder et ceux pour lesquels une voie rétrosynthétique a été trouvée ont été dockés et sont
présentés dans ce manuscrit de thèse. A partir des composés dockés, il est possible de noter
que les modèles génératifs entraînés performent beaucoupmieux en générant des composés
pour des poches larges et exposées aux solvants, comme c’est le cas pour l’anhydrase car-
bonique 2 ou sur l’α5, face au pore ionique. Globalement, j’ai eu plus de difficultés à trouver
des ligands adéquats pour les cavités hydrophobes et plus petites dans le TMD de l’α5. Cela
est probablement dû au fait que le réseau génère des composés avec, en moyenne, aucun ou
seulement un cycle aromatique par molécule. Pour résoudre ce problème, il serait possible
de mettre en place une procédure pour continuer à générer des composés jusqu’à ce qu’un
nombre de suffisant composés avec les propriétés souhaitées aient été générés.

Ce travail de recherche a produit desmodèles de récepteur nicotiniqueα4α5β2 dans trois
états fonctionnels : état de repos, état activé et état désensibilisé. Je présente et décris égale-
ment le cycle d’ouverture/ fermeture/ déssensibilisation du récepteur nicotinique α4α5β2

qui n’avait pas été calculé ou décrit auparavant. Les modèles et les cycles d’ouverture/
fermeture/ déssensibilisation peuvent être utilisés dans de futurs projets de recherche de
médicaments, pour étudier si la SNP D398N a un effet sur les changements structurels
du récepteur nicotinique α4α5β2 et pour analyser les interactions électrostatiques et hy-
drophobes qui ont lieu dans l’interface ECD-TMD et qui conduisent à l’ouverture du pore
ionique. Une autre contribution de ce travail est la prédiction des trois cavités présentes
sur la sous-unité α5, uniquement présente à l’état activé. Les cavités dans le TMD sont
particulièrement intéressantes, car il existe des preuves que les modulateurs allostériques
positifs pourrait se lier dans un site de liaison allostérique dans le TMD. Enfin, le réseau
génératif pourrait être utilisé pour générer des petites molécules de novo avec une voie
rétrosynthétique qui pourraient être synthétisés et testés dans le cadre d’autres projets de
découverte de médicaments.
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3.3 Extension of the ECD along the transition path between the resting,
activated and desensitized states. The extension of the ECD for each
frame, in the three different POE iterations is plotted in the y axis. The
x axis depicts the percentage of progression along the trajectory starting
from resting then activated, desensitized and back to resting state. Each dot
is a structural conformation in the trajectory between states. For compar-
ison, I included the ECD extension of homologous experimental nicotinic
receptors used as templates for modeling. . . . . . . . . . . . . . . . . . . . 45
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In this chapter I introduce the general topic of pentameric ligand gated ion channels
Pentameric Ligan Gated Ion Channel (PLGICs), the sub-types and their therapeutic appli-
cations as well as the experimental structures that have been resolved and their functional
states. It was important to introduce them since I used some of these structures as tem-
plates to validate my work on the α4α5β2 receptor. Then I focus on nicotinic acetylcholine
receptors (nAChRs), their subunit composition and the orthosteric binding site. This led
to the introduction of the concept of allosteric modulation, defined by the Monod Wyman-
Changeux model that explains how the activation of nAChRs takes place and also all kinds
of modulators that can bind andmodulate these PLGICs. I describe how theα4α5β2 nAChRs
was chosen as a potential therapeutic target to treat nicotine addiction, from genome-wide
association studies that related a Single Nucleotide Polymorphism (SNP) on α5 to lung can-
cer and nicotine dependence. I present some of the cell, mice and structural studies that
suggest this SNP could be producing a loss of function that leads to less activation of the
receptor and the behavioral studies performed on mice showing that they self-administer
more nicotine when they present this SNP. These observations lead to the hypothesis that
if less activation of the receptor led to nicotine addiction, the receptor could be selectively
activated to treat nicotine addiction. Since this research project was purely in-silico, I fin-
ished the introduction chapter explaining some of the computational methods that were
key to the development of this work.

1



Chapter 1

1.1 Pentameric Ligand Gated Ion Channels (PLGICs)

PLGICs are membrane proteins that function as modulators of electrochemical signals in
the peripheral and central nervous system. [1, 2] PLGICs are protein systems of 150 to
300kDa that can be found in mammals, invertebrate insects and fish as well as in bacteria.
[2, 3] They share an architecture of five subunits, with their rotational axis centered on
an ion channel. [2] These five subunits can be homomeric and symmetrical or heteromeric
and pseudo-symmetrical. Each subunit has an N-terminal extracellular domain (ECD), with
the binding site for agonists that is made of 10 β strands, a transmembrane domain (TMD)
composed by four membrane-spanning α helices (M1-M4), with the pore being formed and
delineated by TM2 and an intracellular domain (ICD) that contributes to many different
functions including: channel conductance and desensitization, receptor trafficking, assem-
bly and anchoring. [4] The ICD is present only in eukaryotes and it is composed by a
disordered loop with highly variable sequence and length that connects the TM3 and TM4
helices (Figure 1.1). [5–7] They respond to the binding of an activator, with structural re-
arrangements that shift the receptor from the resting functional state (or closed ion pore),
to the opening of the ion pore and the charge selective influx of ions to the cell. After pro-
longed exposure to an activator the receptor changes into a conformation with high affinity
to the agonist and reduced ion conductance called desensitization. [3] The binding site of
agonists or antagonists is called the orthosteric binding site. The orthosteric binding site
is located on the ECD, in the solvent accessible area between the interface of two subunits.
It is formed by the loops A-C, from the principal subunit (+) and D-F from the comple-
mentary subunit (-) and is capped by the loop-C. Once an effector binds to the orthosteric
site, the loop-C closes, the ECD contracts and these structural changes initiated on the the
ECD are transmitted to the TMD by a series of hydrophobic and electrostatic interactions
forming and evolving in the interface between the ECD and TMD. These structural and
chemical changes translate into rearrangements of the TMD, including the side chains of
TM2 and the opening and closing of the ion pore. [2, 7, 8] In resting state, many studies
performed on the experimental structures of PLGICs have reported a gate in the middle
of the pore at positions 9’ and 13’, in the notation that counts from the N-terminus of the
TM2. These studies suggest that hydrophobic residues on those positions constitute the
main permeation barrier in the ion pore of most PLGICs. [9]

PLGICs are important therapeutic targets to treat addiction, anxiety, pain, schizophre-
nia as well as Alzheimer’s disease and several mutations affecting their function have been
associated with congenital pathologies including epilepsy and autism. [2] Scientist are well
aware of their therapeutic relevance and big efforts have been invested into the study and
determination of their experimental structures, which presents several technical challenges
including the difficulty to overexpress and then solubilize or reconstitute in detergent or
nanodiscs, large quantities of functional proteins. [7, 10] The first insights into the full
length structure and function of PLGICs came from the cation selective prokaryotic recep-
tors Erwinia chrysanthemi (ELIC) and cyanobacterium Gloeobacter violaceus (GLIC), which
were the first high resolution structures to be experimentally resolved with resolutions of
3.3 Å and 3.1 Å in activated and resting states. [11, 12] In addition, a locally closed con-
formation of GLIC that occurs during allosteric gating transitions was also published. [13]
Among eukaryotes, the first structure to be published was that of the anion selective C.
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Figure 1.1: Structure of a Pentameric Ligand Gated Ion Channel (PLGIC), composed
of 5 nicotinic α7 subunits. a) PLGICs have an Extracellular Domain (ECD) , a Transmem-
brane Domain (TMD) and an Intracellular Domain (ICD). b) Pentameric assembly of PLGICs
and upper view showing the ion pore. c) Orthosteric binding site between two subunits in
the ECD.
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elegans (GluCl) receptor in activated state, at a resolution of 3.3 Å. [14]. At the time I
started this research project and up to this date, several other eukaryotic structures have
been resolved, including the anion selective glycine receptor (GlyR) α1 in open, resting and
desensitized states, [15–17] GlyR α3 in resting and partially open or desensitized states [18,
19]. Some GlyR structures have also been published in pre-open states, these structures
provide insights into the reaction pathway of the receptor. [17] The gamma-aminobutyric
acid receptor (GABAnR) β3 in desensitized and resting states [20, 21], the cation selective
serotonin receptor (5-HT3AR) in closed and open states as well as other structures with in-
termediate profiles that could be described as: pre-active closed state or a desensitized state
with a closed pore occurring downstream from the activated state [22–25], several nAChRs
including neuronal α3β4 [26] and α4β2 [27–29] in desensitized stated and α7 [8, 30], the
first nicotinic receptor resolved in open, resting and desensitized conformations, as well as
the muscle type Torpedo nAChR in resting state. [31, 32]

1.2 Nicotinic Acetylcholine Receptors (nAChRs)

nAChRs regulate the neuroexcitation of synaptic membranes by converting the chemical
signal of the neurotransmiter acetylcholine, into an electrical signal controlled by the en-
trance of cations (sodium, potassium and calcium), after the opening of the channel pore.
[7, 33] They are important therapeutic targets pursued to treat addiction, depression and
pain, as well as to improve cognition and neuroprotection for Parkinson’s and Alzheimer’s
disease. [34]. Their function and location, in the central and peripheral nervous system,
is determined by their subunit composition, which can include different combinations of
17 known subunits: α1 − α10, β1 − β4, γ, δ and ϵ. Neuronal types can be heteromeric and
constituted by a combination of α and β subunits, or homomeric with only α subunits like
α7 and α9. Muscle types are formed by α1, β1 as well as γ, δ and ϵ subunits. [35] nAChRs
with heteromeric composition have 2 orthosteric binding sites, located in the interface be-
tween α and β subunits. Homomeric nAChRs have 5 orthosteric or acetylcholine binding
sites, in the interface of α7 − α7 and α9 − α9 subunits. [36, 37] These acetylcholine bind-
ing sites in the ECD, are largely separated and at the same time, functionally linked to the
ion pore in the TMD, located at a 60 Å distance from the orthosteric sites. This distinct
regulation of the ion pore by topographically different and distant acetylcholine binding
sites, is why we recognize nAChRs as allosteric machines. [33, 37–39] The MonodWyman-
Changeux model has been fundamental to our understanding of acetylcholine’s allosteric
modulation of nAChRs. [40] Following this model statements, and from experimental data,
[41] we know that nAChRs can spontaneously shift between resting and activated confor-
mations and that each conformation has a distinct affinity to the allosteric modulator. More
specifically, the activated conformations have a higher affinity to acetylcholine or any other
activator, as compared to the resting conformation, and the probability of the channel be-
ing in an ion-permeable conformation increases as the occupation of the 2 to 5 different
orthosteric sites gets fulfilled. [38, 40]

In addition to the orthosteric site, nAChRs contain distinct sites that can be allosteri-
cally modulated to either help stabilize an active conformation of the receptor ( positive al-
losteric modulators (PAMS)) or to stabilize a resting conformation of the receptor ( negative
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allosteric modulators (NAMS)). [39] Both PAMS and NAMS have no direct effect on the
receptors, instead they increase the affinity of the receptor to orthosteric agonists or an-
tagonists. Several PAMS have been identified for the α7 and α4β2 nAChRs. These PAMS
present diverse structures and functionality, which suggests there must be different binding
sites in the receptor. Some binding sites are located in the ECD, in the interface between
α4 − α4 (PAMS NS9283 and Zn2+) and β2 − β2 subunits (PAM HEPES) and in the TMD, on
the α4 subunit (PAMNS206). In addition, mutations done on α7 suggest that the PAM PNU-
120596, binds in the TMD. [42–44] A new class of activators ago-PAMS, primarily reported
for α7 (compound GAT107), are compounds capable of potentiating orthosteric activation
as well as activating the receptor without an orthosteric agonist. These compounds are
believed to bind in a TMD allosteric binding site, as well as in a site in the ECD that con-
nects to the vestibule of the ion channel and produces a direct allosteric activation. [45–47]
Allosteric binding sites and modulators offer some significant advantages over the classical
orthosteric sites. The first of them being the possibility to find selective effectors, since
allosteric binding sites can show a higher degree of sequence diversity, as compared to or-
thosteric binding sites which have evolved to bind the same neurotransmitter. In addition,
allosteric modulation can be achieved both with small molecules and antibodies specific
to an allosteric conformation, which increases the possibilities of therapeutic approaches
that can be pursued. Another advantage that will benefit the development of drugs to treat
addiction, is that there is no competition between allosteric effectors and endogenous neu-
rotransmitters, therefore they should not have reinforcing effects that could lead to either
dependence or abuse. [39, 48, 49]

Several drugs targeting nAChRs have been approved, such asmecamylamine and vareni-
cline and succinylcholine. Mecamylamine acts as a non-selective nAChRs antagonist and is
used to treat severe hypertension, it binds to nAChRs in the peripheral and central nervous
system. [50] Varenicline is the only selective α4β2 partial agonist, approved as therapeutic
treatment to treat nicotine addiction and smoking cessation. [51] Succinylcholine binds to
post-synaptic motor nAChRs and it used to be used for general anesthesia. However, suc-
cinylcholine present adverse effects such as cardiac arrest, which have forced researchers
to find replacements. [52]

1.3 nAChRα4α5β2 as a therapeutic target to aid smoking
cessation

nAChR α4α5β2 is the main focus of this work, years of research efforts have focused on
this PLGIC to find novel and selective PAMS, to be used to aid smoking cessation and treat
nicotine dependence. The interest in this receptor emerged from genome-wide associa-
tion studies (GWAS) which have highlighted a link between a SNP to nicotine dependence,
Chronic Obstructive Pulmonary Disease (COPD), and lung cancer susceptibility, indepen-
dently of smoking behavior. This SNP results in an exchange of the amino acid aspartate
(D) to asparagine (N) at position 298 on the α5 submit, an amino acid highly conserved in
several species. [53–55] α5 is an accessory subunit that forms part of functional nAChRs
α3β4 and α4β2. α4β2α5 receptors have the highest affinity to nicotine and are expressed
in the midbrain dopamine system, implicated in stress, mood disorders, learning and drug
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reward. Therefore, α4β2α5 receptors have been identified as the main contributors to nico-
tine’s addictive effects. [56, 57]

Sophisticated experiments on HEK cells and Xenopus oocytes have been carried on, to
determine how (or if) the α5SNP was affecting the intrinsic functional properties of the
receptor. [53] The results suggested the α5SNP was producing a partial loss of function
and therefore, less activation of α4α5β2 receptors by endogenous acetylcholine. [53, 54,
56] Structural studies on α4α5β2 receptors, did not observe this loss function and suggest
the α5SNP is rather affecting the biosynthesis or trafficking and export of the receptor to
the cell surface, since the SNP is located in the ICD of the receptor.[58] Studies on neurons
isolated directly from mice nervous tissue, measured the increase of neuronal intracellular
free Ca2+ concentration, that should be modulated by receptors with the α5 subunit. Their
results also showed a loss of function for receptors with the α5SNP which had a decreased
ability to translate acetylcholine chemical signals, to Ca2+ entry to the cells and subsequent
depolarization. [59] In vivo analyses of the role of α5SNP on mice, showed that mice with
the α5SNP self-administered higher doses of nicotine, compared to wild type mice. [57,
60] A hypothesis derived from these observations is that if the α5SNP produces a loss of
function that translates into less activation and increased nicotine consumption, it would
be desirable to find specific PAMS for the receptors with the α5 subunit, to be used as a
therapeutic treatment to aid smoking cessation.

Smoking is a risk factor associated with the development of chronic respiratory and
cardiovascular diseases as well as cancer and diabetes. [61] In Europe alone, despite ob-
served declining numbers of smoking rates, tobacco use remains a major preventable cause
of cancer [62] and over six million people will die every year due to tobacco use. Statistical
predictions have shown that the improvements and implementation of tobacco consump-
tion control policies, including offering people help to quit, have the potential to reduce
future lung cancer incidence in Europe. [63] Nowadays, it is of great relevance to find more
effective treatments, with less side effects, to reduce nicotine consumption in the form of
smoking.

1.4 In silico methods for drug discovery

In silico methods have been conceived with the aim of designing novel and safe drugs, to
reposition marketed drugs and to narrow down the number of compounds to synthesize
or assay on in vivo or in vitro systems. [64, 65] The first step in a drug design project, is
to identify a target known to be involved in a disease, for which there is no ideal medi-
cal treatment. Once a target has been identified, we must strive to find a number of small
molecules that produce the desired effect and that can be optimized in subsequent and iter-
ative steps. In an ideal drug discovery process, the final selected molecules that could turn
into drugs, should have an optimal profile of good affinity, selectivity, solubility, permeabil-
ity and non-toxicity. [66] The in silico approaches to rational drug design, can be divided in
two categories: ligand-based design and structure-based design. For the methods classified
as ligand-based design, the structure of the target is not known and can’t be determined
but there are compounds known to bind to the target. New ligands are designed or found
based on the similarity property principle, coined by Gerald Maggiora and Mark Johnson,
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which states that structurally similar compounds should have similar properties (or bio-
logical activity). [67] As its name implies, for structure-based methods, the structure of the
target is known or can be determined by comparative modeling and selected ligands should
be complementary in terms of steric fit as well as hydrophobic and electrostatic properties
to the binding site.

1.4.1 Comparative modeling

If the experimental structure of the chosen therapeutic target is not known, its 3D struc-
ture can be predicted using comparative modeling. To do so, we need at least one other
protein with known structure (template), that shares a significant sequence similarity with
our target. [68] When we do comparative modeling, we assume that the 3D structure is de-
termined by the primary sequence of amino acids and that evolutionary related sequences
will have the same structure. [69]

The first step for comparative modeling is to select the template(s) or reference struc-
ture(s). The chosen template(s) should have the highest possible sequence similarity or
identity to our target. To find template structures the sequence of the target (in our case
the sequence of each subunit) can be downloaded in FASTA format from UniProt [70] and
the BLASTp [71] algorithm can be used to fetch from the RCSB Protein Data Bank (PDB)
[72] those structures with the highest sequence similarity. Once the template(s) have been
chosen the next step is to do sequence alignment between the template(s) and the target.
This alignment will be used to determine which parts of the template(s) will be used for the
model, therefore, this step is determinant for the model’s quality. Structurally conserved
regions must be well aligned and structurally variable regions must be identified. [68] The
alignment can be done with tools like Clustal Omega [73], MUSCLE [74] or T-coffee. [75]
Afterwards, there are many different methods available to determine the 3D structure of
the target, based on the sequence alignment with the templates, [69] here I introduceMOD-
ELLER. MODELLER measures torsional angles and atom distances on the template(s) and
uses them as spatial restraints over the target protein. These restraints are derived from
the sequence alignment and represented as probability density functions which are com-
bined into an objective function that will be optimized using molecular dynamics (Fig-
ure 1.2). [76, 77] Finally, the produced models can be evaluated and refined iteratively until
a satisfactory model is obtained [68]. Several scores exist to evaluate comparative models:
PROCHECK [78], zDOPE[79] and Molprobity [80]. QMEANBrane[81] was also included,
as it is a knowledge-based score that checks local quality of membrane protein models.

The quality of themodels will bemostly limited by the choice of templates and the struc-
tural alignment. Templates with low resolution are not suitable for comparative modeling
since the placement of some side chains could be uncertain. The degree of homology or
similarity is another important factor. Domains with sequence identity values lower than
25% will be difficult to model.[69, 82] However, for two pairs of proteins with a sequence
identity higher than 50%, 90% of their backbone will have a similar 3D structure. [69, 82]
The sequence alignment is used to generate the backbone of the protein, therefore, errors
in the sequence alignment will be handed-down to the model backbone and side chains will
not be positioned correctly. [83]
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Figure 1.2: Comparative modeling with MODELLER. The first step for comparative
modeling is the multiple sequence alignment between the target and the template se-
quences. Then MODELLER extracts spatial restraints from the templates and applies them
on the target structure. Those models that satisfy most of the spatial restraints are selected.

1.4.2 Molecular dynamics and transition path calculation

Molecular Dynamics methods predict the movements of the atomic coordinates of proteins
and other molecular systems as a function of time. These methods allow us to investigate
biological processes that would otherwise be challenging to study experimentally, including
ligand binding, conformational changes or protein folding. [84] The main concept behind
molecular dynamics implies that given a biomolecular system with its atoms positions, we
can calculate the forces applied on each atom by all other atoms to repeatedly update their
velocities and positions. In the end, we obtain a movie in which each frame depicts in
3D the atomic conformation of the biomolecular system at every point of the simulated
time interval. [85] A molecular dynamics algorithm has three different components: 1) The
molecular topology files containing the description of the bonds, bond angles and other
simulation parameters. 2) The molecular mechanics force fields, which integrate results
of quantum mechanical calculations and other experimental measurements to estimate the
forces between atoms or more precisely the estimated potential energy as a function of
atom coordinates. 3) Integrators to integrate Newton’s equations of motion. Integrators
will allow us to determine the position of an atom or object at any given time (t), given
its previous time (t-1) to calculate the next time point position (t + 1) and velocities effi-
ciently. 4) If the total system energy were constant, the kinetic energy would increase as
the potential energy of the structure decreases, which would make the system overheat.
To avoid this we have a thermostat, which will be added to the integrator to control the
temperature. Something similar is observed for the pressure of the system, that will be ad-
justed by a barostat by scaling the box size. [86, 87] The potential force field functions are
divided in two terms: Bonded and non bonded interactions (Equation 1.1). Bonded inter-
actions include covalent bond stretching, torsion potential or rotation around bonds, angle
bending, and improper torsion potentials as well as correction terms like Urey-Bradley [88]
and CMAP [89] for CHARMM36m [90]. Non bonded interactions between atoms include a
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term for the Lennard-Jones potential and Coulomb electrostatic potential. [86]

Bonded terms:

U(r) =
∑
bonds

Kr(r − r0)
2 +

∑
angles

Kθ(θ − θ0)
2

+
∑

dihedrals

KΦ(1 + cos(nΦ− δ))

+
∑

improper
dihedrals

Kϕ(ϕ− ϕ0)
2 + Ucorr(r)

Nonbonded terms:

+
∑

nonbonded

qiqj
4πDrij

+ ϵij

[(
Rmin,ij

rij

)12

− 2

(
Rmin,ij

rij

)6
]

(1.1)

In the bonded term, K’s are the force constants, r0, θ0, Φ0 and ϕ0 are the bond length,
torsion angle and improper angle values. n and δ are the dihedral multiplicity and phase.
Ucorr(r) is a correction term. The first part of the non bonded terms describe electrostatic
interactions where qi and qj are the partial atom charges of atoms i and j. The second term
describes van der Waals interactions, where ϵij is the well depth,Rmin,ij is the radius in the
Pauli repulsion and Lennard Jones potential term and rij is the distance between atoms i
and j. [91]

The energy landscape is a 3N-dimensional function that describes the free energy of
the system in terms of the coordinates of its N atoms. [92] In this landscape each point
has a particular conformation that the protein adopts and the conformational changes are
described by the displacement from conformation A to conformation B, where A and B are
low energy favorable conformations, depicted as basins, and transition states are interme-
diate states with higher energy, shown as saddle points. The free energy (G) estimates the
stability of a system and governs the direction of its structural changes. [93] The free en-
ergy variations∆G are determined by an enthalpic∆H and entropic term∆S proportional
to the temperature of the system (T), as shown on Equation 1.2:

∆G = ∆H − T∆S (1.2)

When we assume an adiabatic system (T=0), then the free energy of the system is only
determined by the enthalpy ∆H = ∆U + P∆V . In addition, if volume changes are neg-
ligible, the enthalpy corresponds to the potential energy and can be described by the force
fields of molecular dynamics. However, current molecular dynamics are conventionally
limited to time scales of microseconds. This time scale is too short for processes like con-
formational changes and biological reactions. To circumvent this time scale limitation, we
can use algorithms for Transition Path Sampling, which will do an efficient search within
the highly dimensional space of all possible transition paths between two stable states. [94]

9



Chapter 1

One of these methods is Conjugate Peak Refinement (CPR) [95], which finds minimum en-
ergy saddle points on the potential energy landscape of an adiabatic process. The potential
energy surface depicts the low energy reactant and product of a conformational change as
basins and the path connecting these two basins going through the saddle points. This path
is known as the minimum energy path and is a close average of the most probable confor-
mational paths. The CPR algorithm represents a reaction path as a chain of discrete points
termed chain-of-states (COS), between the reactant and the product state (end states). The
number of states is not fixed and the path is constructed and modified step by step. The
CPR algorithm uses a force field to measure the energy of the intermediate states placed
on a piecewise linear interpolation between end states. The point with the highest energy
is determined and will be minimized in a direction conjugated to the interpolated segment,
to approach a lower energy valley. The structure obtained is a new point in the transition
path and the same procedure is repeated for all other segments.[92]

1.4.3 Docking

Molecular docking predicts the affinity, orientation and conformation (or binding pose) of
a ligand to a target by simulating the molecular interactions between them. [96] To achieve
this, the ligand is analyzed based on its state variables: a position given by the translation of
the ligand’s x,y and z coordinates, its orientation given by its rotation, as well as its flexibil-
ity and conformation described by the different torsion angles of each rotational bond. [97]
To perform docking we need two things: a searching algorithm to find the binding pose
and a scoring function to rank the binding poses. Searching algorithms can either system-
atically go over the multidimensional search space at predefined intervals or be stochastic
and randomly change the state variables until a criteria is met. Another criteria for the
searching algorithm is whether they will find a local or nearest minimum energy to the
current conformation or a global best minimum energy. Hybrid methods have proven to
be more efficient at finding the best binding pose. [97, 98] Scoring functions can also be di-
vided in three categories: force field function, knowledge based and empirical scores. Force
field functions measure molecular forces and interactions between ligand and target. It
quantifies electrostatic and hydrophobic and Van der Waals interactions. Knowledge based
scoring functions use databases of structural data to extract and compare large amounts
of data describing the preferred geometries of interacting protein ligand atoms to derive a
pseudopotential. Empirical scoring functions use a regression or classification algorithm to
correlate experimental affinity data to physically meaningful terms that might be similar
to force-field based scoring functions but can also include terms such as hydrophobic and
desolvation interactions. [99, 100]

Before using docking the target and ligand should be prepared. In brief, for the target
all hydrogen atoms at desired pH should be added, water molecules should be removed
(except those important for the protein-ligand binding site) and if needed partial charges
should be computed. For the ligand, a 3D low energy conformation with explicit hydrogens
will be required, special attention should be put into generating the correct or most likely
tautomers, stereoisomers and protonation states of the ligand. [97]

One of the limitations of docking is sampling the correct pose for the ligand. As the
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ligand’s flexibility increases it becomes more and more complex and time consuming to
sample its conformational space. Rigid docking can be more efficient, however, if we start
with the wrong ligand conformation our possibilities to find a good ligand-protein binding
pose are lower. The second limitation is the choice of the scoring function to accurately
rank correct poses. This issue can be tackled by re-scoring each pose with different scores
and selecting those poses that receive high scores or by visual inspection of the docked
poses. [100, 101]

1.4.4 Artificial intelligence for drug discovery

Artificial Intelligence (AI) has been used for decades on drug discovery to identify new
molecular representations that capture two and 3D chemical characteristics and to derive
mathematical functions that explain the relationship between these molecular representa-
tions and their biological properties. As the amount of structural information for potential
and known therapeutic targets increases and diverse as well as specialized databases con-
tinue to appear and expand, the applicability and significance of AI for drug discovery
continues to become more relevant. [64, 102]

Machine learning (ML) is a subclass of AI.[103] ML methods can be divided into two
groups: supervised and unsupervised learning. Unsupervised learning is used for dimen-
sionality reduction, clustering or to find patterns in unlabeled data.[104] Supervised meth-
ods usually require large labeled data sets to train a model to learn the relationship be-
tween known input and output data. These methods are used to classify or predict con-
tinuous variables. Supervised methods like support vector machine (SVM), random forest
and XGboost have been used by computational chemists to predict absorption, distribution,
metabolism, excretion and toxicity (ADME-Tox), [105–108] molecular properties [109], vir-
tual screening [110], among other applications [109, 111].

Neural networks are computational architectures designed to mimic the connections
between neurons in brains. They are composed of multi-layer structures of interconnected
nodes which have associated weights and a firing threshold that determines how high the
output of the node should be for the node to become activated and send information to the
next layer of nodes. The weights are optimized during training to fit the training data and
reduce the error loss. [112, 113] When we talk about deep learning we refer to neural net-
works with many layers, each of them capable of understanding more and more complex
levels of abstraction and learn complex functions. [112, 114] Convolutional Neural Net-
works Convolutional Neural Network (CNNs) were designed to process data in the form of
multidimensional arrays and identify increasingly complex patterns while keeping spatial
information. A convolutional layer has three components: the input array, a filter or ker-
nel and a feature map. During convolutions, the kernel moves across the receptive field of
the input array, to check if a feature is present. [114] CNNs are part of some of the most
used Deep Learning models still being used: Generative Adversarial Network (GANs) and
Variational Autoencoders (VAEs).

GANs consist of two networks competing against each other: a generator (G) net-
work that is trained to generate images which should look like the training data and fool
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a discriminator (D) and the discriminator which is trained to distinguish between gener-
ated and real samples. [115] VAEs have two components, an encoder (E) network that will
find a distribution over the latent space that will condense and describe the most important
features in the training data and a D that will reconstruct the original data from a vec-
tor sampled from the latent space distribution provided by the encoder. A VAE is trained
to minimize the reconstruction error between the encoded and decoded data (Figure 1.3).
[116]

Figure 1.3: Schema of Generative Adversarial Networks (GANs) and Variational Au-
toencoders (VAEs). The upper schema depicts the generator and discriminator networks
competing against each other, so the generator learns to produce realistic data. In the orig-
inal implementation, the discriminator tries to maximize the binary cross entropy and the
generator tries to minimize it. The lower diagram shows the encoder and decoder net-
works on VAEs, the encoder encodes the data into a distribution over the latent space and
the decoder decodes a sample from this distribution. In the original implementation, the
loss function measures howwell the original data was reconstructed and the KLDivergence
ensures the encoded distribution stays close to a standard normal distribution with µ = 0,
σ =1.

Long Short-TermMemory cells (LSTMs) networks are the successors of Recurrent Neu-
ral Networks (RNNs), developed to handle and propagate long-term information and to
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understand sequential patterns. They contain cells with closed loop connections of feed-
back that allow information to persist and be used from one step to the next as a kind of
memory that gets communicated from initial steps until the last step. These cells have dif-
ferent gates: a forget gate, an input gate and an output gate. The forget gate determines
which information should be preserved by using a sigmoid activation function that will
assign values between 0 and 1, 0 to forget data. The input gate combines the current state
Xt with the previous hidden state ht−1 and decides what information to keep and scales the
data between -1 and 1 with a tanh activation function (Figure 1.4). The output gate deter-
mines the values of the next hidden state that will contain the information from all previous
inputs. In addition, there is also a cell state that stores the information from the forget gate
(if it should be kept) and the input state, giving the network a new cell state.[117]

Figure 1.4: Long Short-Term Memory (LSTM) cell. LSTMs have three different gates:
an input gate, a forget gate and an output gate. Sigmoid activation functions are there
to determine which information should be propagated or preserved and tanh activation
functions scale the data values. On the schema, t is timestep, Xt is the current input, ht−1

the previous hidden state, ft forget gate, it input gate, Ct is the cell state and Ot is the output
gate, all at time t.

De novo drug design is being researched with the goal of exploring new regions of the
chemical space, containing molecules with desirable drug properties. Exploring new areas
of the chemical space will be advantageous, since it will allow chemists to have access to
molecules not protected by intellectual property and to exploit their structure activity re-
lationships to uncover new mechanisms of target modulation or even find a novel class of
compounds that are more potent and selective. In addition, these molecules can be patented
and generate profits to help continue the research of new therapeutics. [118] Over the last
years, ligand-based deep learning methods have been implemented to perform molecular
generation and optimization. [119–123] Many of these methods train CNNs or RNNs with
two and 3D, molecular representations. 2D representations include string based represen-
tations such as SMILES, InChi and molecular fingerprints, whilst 3D representations are
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mainly grids of voxels that specify atom densities contained in each voxel. [124, 125]

Given that the activity of a ligand is determined by its 3D interactions with a protein,
including the 3D structure of both the target’s binding site and the ligand should improve
the quality of generated compounds. Applications for structure-based de novo drug design
using deep learning had been limited to the work of Miha Skalic and Gianni de Fabritiis.
[126] In this work, they implement a GAN to produce ligand shapes complementary to a
protein pocket, or shape generation network, and these ligands shapes are decoded into
grammatically correct SMILES by a shape-captioning network. The architecture of the
shape generation network is a bicycleGAN shown in Figure 1.5, a successor of GANs con-
ceived to tackle the issue of multimodal image-to-image translation. [127] BicycleGANs
were implemented to avoid mode collapse and produce a distribution of different outputs.
Its objective is to encourage a bijection between the output and latent space. To achieve
this, two tasks are jointly learned during training, the first task is to map the latent code
and input to the output and the second task is to learn to go from the output back to the
latent space. This way each latent space sample should correspond to only one output.
When training the shape generation network as a Conditional Variational Autoencoder -
GAN (cVAE-GAN), the encoder provides the latent space from the real data and the gener-
ator has the benefit of seeing ground truth input-output pairs. This might lead to a failure
to generate new data when sampling random latent noise at test time. In addition the dis-
criminator will not get to see generated results from sampled noise during training. If the
generator is also trained as a Conditional Latent Regressor GAN (cLR-GAN) the latent space
is sampled from a distribution, circumventing the previous issues and encouraging the bi-
jection between the output and latent space. The captioning network has two components,
a VAE and an Encoder-Decoder system. The VAE is only used during training to add noise
to the voxelized ligands so that they can resemble the generated ligand shape outputs from
the BicycleGAN. The Encoder is a convolutional neural network that will produce a vec-
tor representation of the ligand shape for the Decoder, which is a LSTM network and will
translate the feature vector into a sequence of SMILES. [126, 127]
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Figure 1.5: Schema of the original training of a BicycleGAN. a) Testing of the trained
generator (G). To produce a distribution of outputs, the latent code z will be randomly
sampled from a standard normal distribution. Then the G will map the input image (A) and
z to produce the output B̂. b) On the Conditional Variational Autoencoder GAN (cVAE-
GAN) the encoder (E) gets as input the ground truth target image B and ecodes it into the
latent space Q(x|B). The G will try to map the input image A along with sampled z back
into the original image B, and generate B̂. The first components to the loss function are
the adversarial loss from the discriminator(D), the reconstruction L1 loss between B and B̂
and the KLD between a standard normal distribution and the distribution output from the
E. c) On the Conditional Latent Regressor GAN (cLR-GAN) a random latent vector N(z) is
sampled from a standard normal distribution and is used to map A into the output B̂, then
the E tries to reconstruct N(z) from the output. The next components to the loss function
are: the adversarial loss from the discriminator and the L1 reconstruction loss between
sampled N(z) and z reconstructed from output.

1.5 Project objectives

The main goal of this project was to study the structure of the α4α5β2 nAChR to propose
alternatives to modulate it. Since the experimental structure of α4α5β2 nAChR has not
been resolved in any functional state, the first objective of this work was to model the
receptor in three functional states (activated, resting and desensitized), using comparative
modeling with homologous nAChRs as templates. The models were refined and relaxed in
a membrane before moving on to the second objective of this research project which was
obtaining the conformational transition path between the modeled states. This transition
pathwas then used to validate themodels and to compute cavities that appeared throughout
the trajectory and in the three domains of the receptor. The final objective of this project
was to train and validate a de novo generative model to explore new areas of the chemical
space and to propose novel interesting compounds that could be synthesized and bind to
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the cavities in the α4α5β2 nAChR. All the objectives of this project are summarized on
Figure 1.6.

Figure 1.6: The four objectives of the project are summarized on this figure. 1) The
models of α4α5β2 nAChR in resting, activated and desensitized states were obtained by
comparative modeling. 2) The trajectory between the conformational states was calculated
using Path Optimization Exploration (POE). 3) The trajectorywas processed bymkgridXf to
compute the cavities formed on the receptor. After clustering analysis, the cavities formed
on α5 in the activated conformation were selected. 4) A generative model was trained to
generate compounds complementary to the selected cavities on the α4α5β2 nAChR.
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The α4α5β2 nAChR is a pseudo-symmetrical, membrane protein with two α4 subunits
and each of them has 627 amino acids, two β2 subunits each with 502 amino acids, and
one α5 subunit with 468 amino acids. Overall, the pentamer has a molecular weight of 180
kilodalton. Although several experimental studies have shown the relevance of the α4α5β2

nAChR as a promising therapeutic target, the experimental structure of this receptor is
complicated to obtain and has not been determined in any functional state. Therefore, to be
able to study this receptor, I began this project using comparativemodeling to obtainmodels
of α4α5β2 in three functional states: activated state with open ion pore, resting state with
closed ion pore and desensitized state with partially blocked ion pore. I started by collecting
the information of experimentally resolved structures with good resolution and with an
amino acid sequence homologous to the subunits of α4α5β2. The first challenge was that
these experimental homologous structures had to be in the functional states that I wished to
model. However, at the beginning of this project, the only experimental structures of cation
selective PLGICs available in open and resting state, were those of the serotonin receptor (5-
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HT3AR). In this chapter I describe the challenges I faced while modeling the α4α5β2 nAChR
and how I obtained the models only after the structures of α7 were published and used as
templates.

18



Comparative Modeling of the functional states of α4α5β2

2.1 Introduction

The reason behindwhy comparativemodeling can be used tomodel proteins is that proteins
with similar amino acid sequencewill share a similar 3D structure. This remains true as long
as the protein we wish to model does not go through large conformational changes. If we
think of the structural changes occurring on all PLGICs, as the receptor becomes activated,
it is clear that the exact same amino acid sequence can have very different 3D structures.
Therefore, to be able to use comparative modeling and obtain the α4α5β2 structure on
the desired conformations, I needed homologous experimental structures as templates that
should also be in the functional state I wished to model.

At the beginning of the project, while looking for homologous structures with high se-
quence similarity to α4α5β2, the cation selective serotonin receptor (5-HT3AR) structures
appeared to be good template candidates. Several structures of the 5-HT3AR had been ex-
perimentally resolved with the three domains and in several functional states. In the first
published X-ray structure of the 5-HT3AR, with a resolution of 3.5 Å, the ICDwas truncated
and the receptor had to be stabilized by single chain antibodies as crystallization chaper-
ones in detergent. The functional state of this receptor was difficult to assign but given the
4.6 Å hydrophobic constriction at the level of L9 (L260) the structure was determined to be
in a non-conductive resting state. This structure showed some unexpected behaviors as the
global backbone conformation of the protein resembled what had been observed for open
state channels, in addition the loop-C that should remain open in resting state, appeared
to be slightly closed. [22] The publication of an apo-structure of 5-HT3AR, confirmed the
unexpected observations on the crystal structure. This structure was a full length 5-HT3AR,
resolved by cryo-EM with a closed ion pore and an open loop-C. However, it had a much
lower resolution of 4.3 Å. [24] That same year two different groups published other cryo-
EM structures of 5-HT3AR with bound agonists, antagonists and a PAM. Chakrapani et.al.
were able to assign one of the structures to an activated conformation with a wide open
ion pore, this structure contains the three domains with a resolution of 3.8 Å and serotonin
bound to it. [24] Nury et.al. could also assign one of the structures to an activated state,
however, this structure has a low resolution 4.1 Å and the ICD had been truncated. A resting
state, stabilized by the antagonist tropisetron, with a resolution of 4.5Å, showed a higher
similarity to the X-Ray structure (r.m.s.d. of 0.6 Å) than to the apo structure (r.m.s.d. of
1.15 Å). [128] The 5-HT3AR stabilized in a resting state by the antagonist granisetron, was
resolved by cryo-EM to a resolution of 2.92 Å.What was surprising about this structure was
that its conformation is slightly different to what was observed on the structures of other
5-HT3AR with the antagonist tropisetron bound and that being granisetron such a potent
competitive antagonist, it would be expected the stabilized confirmation would be similar
to the apo-conformation. However, it was observed that the loop-C in the ECD is slightly
closed and overall the TMD structure appears to be in a conformation between serotonin
bound structures and apo structures. [129] It is challenging to assign 5-HT3AR structures
to a functional state due to the limited resolution, the influence of the detergent, crystal
packing, different receptor engineering methods and the diverse agonists and activators
used to stabilize the structures.

An heteromeric (α4)2(β2)3 nAChR was solved by X-ray diffraction in detergent, with
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nicotine bound to the orthosteric site andwithout the ICD. This structure has a resolution of
3.94 Å and is described to be in desensitized state with a constriction in the transmembrane
domain, at the cytosolic end of the pore, formed by glutamate (E) in the -1’ position of the
TM2 alpha helices, that has a diameter of 3.8 Å. [27, 29]. A few years later, two structures of
(α3)2(β4)3, were determined by electronmicroscopy, with resolutions of 3.34 and 3.87 Å [26].
These structures offered information on the ICD, since only the disordered loop connecting
the MX and M4 helices was replaced by a linker (BRIL). The structure with the highest
resolution was resolved with nicotine bound to the orthosteric site and in a lipid nanodisc.
The pore architecture of α3β4 is identical to α4β2, therefore, the structures were determined
to be in desensitized conformation with the ion pore constricted by glutamate (E) -1’ of the
M2 alpha helices and with a diameter of 3.4 Å. The first nAChR in resting conformation and
with a resolution of 2.69 Å, was determined by electron microscopy for the native muscle-
type, αγαδβ [32]. The structure was reconstructed into nanodiscs andwith the polypeptide
antagonist a-bungarotoxin, bound to the orthosteric site. In this structure, the hydrophobic
leucine (L) 9’, located in the middle of the pore, constricts the pore with a diameter of 2.8
Å. The structures of α7 in resting, activated and desensitized states were resolved by cryo-
EM in a lipidic-nanodisc [8] and in detergent. [130] The activated state was stabilized by
the agonist epibatidine and a PAM PNU-120596, which allowed to obtain the first nAChRs
structure in activated state with a resolution of 2.70 Å. The resting state was resolved with
the antagonist α-bungarotoxin, with a resolution of 3.00 Å and the desensitized state with
a resolution of 3.60 Å, was obtained in complex with epibatidine. All these structures are
an outstanding contribution to our understanding of the gating cycle of nAChRs and its
discrepancies with other pLGICs.

In this chapter I explain themethod and templates used tomodelα4α5β2 nAChR, as well
as the differences observed between the experimentally solved structures of nAChRs and 5-
HT3ARs. I present and discuss the ion pore profile used to characterize the functional state
of the models and compare some structural features of α4α5β2 nAChR to other PLGICs.

2.2 Methods

2.2.1 Definitions

Activated state / open-pore: the activated functional state of the receptor can be de-
scribed as activated or as in open ion pore state.

Resting state /closed-pore: the apo or resting functional state of the receptor can be
described as resting or as closed ion pore state.

Desensitized state: This is a holo state of the receptor where the ECD conformation is
similar to the activated state but the TMD shows a blocked ion pore. The ion pore is blocked
at the lower end of the pore, with a different profile from the resting state.

Template: I use this term to name the selected homologous structures that were used to
model α4α5β2 by comparative modeling.
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Target: the target sequences are those of α4, α5 or β2 whose 3D structure is to be obtained
by comparative modeling.

Model: Here the structures of α4α5β2 obtained by comparative modeling in resting, acti-
vated and desensitized states are called models.

Restraint: The restraints defined by the algorithm of MODELLER, used for compara-
tive modeling, are the probability density functions describing the spatial arrangement of
groups of atoms in the target protein (distance between atoms, angles, dihedral angles). The
restraints are calculated from the structural templates and their multiple sequence align-
ment with the target sequence.

2.2.2 Selection of homologous proteins as templates

To find homologous sequences with experimental structures, I performed a blastp search
on the NCBI BLAST [71] service, comparing the sequence of α5 against the PDB. [72] I
filtered out those templates with a query cover lower than 70% and I gave priority to X-
ray structures or cryo-EM structures with the best resolution, structures that were clearly
assigned to a specific functional state (resting, activated, desensitized) and structures with
the three domains (ECD, TMD, ICD).

Before the structures of α7 were published, I attempted to model α4α5β2 with the struc-
tures of mice 5-HT3AR as templates for the activated and resting states. To simplify the
description of the structures, I will name them by their 4 letter identifier from the PDB.
To model the activated state I chose 5-HT3AR 6DG8 [23] and 6HIN,[128] both activated by
the agonist serotonin and assigned to an open-pore state. The resting state was modeled
with mice 5-HT3AR 6NP0 [129] inhibited by the competitive antagonist granisetron, elec-
tric ray muscle-type nAChR 6UWZ inhibited by α-bungarotoxin [32] and an unpublished
acetylcholine binding protein AChBPα5−α4 chimera, where the interface between subunits
was mutated to the sequence of the interface between α5α4, determined to be an allosteric
binding site by in-house data. Both the data and the chimera were provided by the Institut
Pasteur Receptor Channels Unit (Pierre-Jean Corringer and experimental data from Akos
Nemecz). The desensitized state was modeled with nAChRs α4β2 (5KXI) [27] and α3β4

(6PV7), [26] both assigned to a desensitized state and activated by nicotine.

After a year of unsuccessful model production, the structures of α7 in resting, activated
and desensitized states [8] were published and the templates were changed (Figure 2.1).
The activated state was modeled with nAChR α7 7KOX stabilized in activated state by
the agonist epibatidine and the PAM PNU120596. The resting model with the AChBPα5−α4

chimera, electric raymuscle-type nAChR 6UWZandα7 7KOO inhibited byα-bungarotoxin.
The templates to model the desensitized state were nAChRs α4β2 5KXI, α3β4 6PV7, as well
as α7 7KOQ, with bound epibatidine.
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Figure 2.1: Templates used to model α4α5β2 in resting, activated and desensitized
states. The figure presents the templates information regarding the experimental tech-
nique, resolution, bound ligand(s), composition and reported functional state of each struc-
ture and whether the protein was stabilized in nanodisc or detergent.

2.2.3 Multiple sequence alignment

The sequences of human α4, α5 and β2 were extracted from UniProtKB [131] (ACHA5
gene, entry: P30532; ACHA4 gene, entry: P43681; ACHB2 gene, entry: P17787). Since I
wanted to model the three domains of the protein excluding the disordered loop in the
ICD, I used JPred4 [132] to predict the parts of the sequence that should have an α helix
secondary structure and belong to the MX and MA helices and those that should be part
of the disordered loop. The parts of the sequence not covered by available homologous
structures were also removed, that is: 33 amino acids in the N-terminal part and 203 amino
acids from the disordered loopwere removed from theα4 sequence, 41 amino acids in the N-
terminal and 24 amino acids on the disordered loop from theα5 sequencewere also removed
and 25 amino acids in the N-terminal side and 72 amino acids from the disordered loop were
erased from the β2 sequence. It should be noted that PLGICs without the disordered loop
remain functional and with agonist binding profiles similar to those of wild type receptors.
[22] Since the disordered loop in the ICD was removed, all the subunits were split into
two chains, the first chain going from the N-terminal ECD to the MX helix and the second
chain with MA and TM4 helices. The truncated sequences were concatenated to generate
a decamer and are reported in the appendix Figure 6.1.

Since I was modeling a heteromeric protein, special attention had to be put on the order
of the sequences and subunits. To preserve the orthosteric binding site, the loop-C in the
main subunit (+) must come from α4 and the complementary subunit (-) must be β2. At
the same time, on the allosteric site the main subunit (+) must be the α5 subunit and the
complementary subunit (-) α4 (Figure 2.2).

The model and the templates have 5 subunits, 10 chains and the multiple sequence
alignment was done per chain and per functional state in three- and two-dimensions. Ini-
tially the sequences were aligned using Clustal Omega [73] with default parameters. This
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Figure 2.2: Subunit alignment of templates used to model α4α5β2. The known al-
losteric and orthosteric sites are shown in green and blue, respectively, and capped by the
loop-C. The figure indicates which subunits from the templates were aligned with each
subunit in α4α5β2.

sequence alignment was refined using VMD’s 3D MultiSeq alignment. [133] For example,
the multiple sequence alignment of α5 in desensitized state was performed only with the
sequences and structures of β2 from 5KXI, α7 from 7KOQ and β4 from 6PV7. This 3D align-
ment allowed us to refine the gaps from the initial Clustal Omega alignment. For each
functional state, a pir file with the multiple sequence alignments, in the format required by
MODELLER, [76, 77] was created.

2.2.4 Comparative modeling with MODELLER

I used MODELLER for comparative modeling, since it allows to control certain structural
characteristics of the receptors and to model the side chains in the orthosteric binding site
with the information from the bound ligand in the pdb of the templates. MODELLER takes
as input a multiple sequence alignment of the target sequence with all the template se-
quences in .pir format as well as the structures of the templates (cartesian coordinates as
pdb files). To compute the 3D structure of the target, MODELLER derives from the mul-
tiple sequence alignment a set of structural restraints to be imposed on the atoms of the
target protein. In addition, I included the following restraints: a restraint to keep the pro-
line from the conserved sequence FPF and numbered 136 on α4, 137 on α5 and 138 on β2

in cis isomerization (ω angle 0) and a restraint to maintain sulfur atoms on cysteines at a
distance shorter than 2.0 Å to form a disulfide bond. These disulfide bonds are in the ECD
of all subunits and are formed by cysteines 128 and 142 on α4, 129 and 143 on α5 and 130
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and 144 on β2. In addition α subunits have a disulfide bond in the loop-C formed between
cysteines 199 and 200 on α4 and 193 and 194 on α5. α4 and β2 subunits were also restrained
to keep them symmetrical (Figure 2.3).

Figure 2.3: Structural restraints imposed on the structure of α4α5β2. On the left side
the restraints set to preserve the disulfide bonds on the ECD and the proline on cis confor-
mation. The right side shows the ligands in the orthosteric binding site whose information
was used to model the side chains between subunits.

I also used the information of ligands bound on the experimental structures of the
templates, to model the side chains in the ECD on the allosteric and orthosteric binding
sites. Both the allostric and orthosteric binding sites present the conserved hydrophobic
box where ligands bind. For the activated model I used the agonist epibatidine in the or-
thosteric binding site of the structure of α7 7KOX. For the closed model I used the ligand in
the AChBP chimera and for the desensitized model I took nicotine in α4β2 and epibatidine
in α7.

Afterwards, MODELLER optimizes the placement in space of the atoms in the initial
3D structure of the target, to reduce the violation of structural constraints. The parameters
included on this step are "library_schedule = autosched.slow" and "md_level = refine.slow".

2.2.5 Evaluation and selection of models

I used MODELLER’s setup to produce 1000 models of each functional state. In the initial
process of template selection and sequence alignment validation, the structures were scored
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to measure their likelihood to be correct with Modeller’s zDOPE score [76]. Once the tem-
plates and sequence alignment were selected, I also included QMEAN, [81] Procheck, [78]
Verify3D [134] and ProsA scores. [135] zDOPE is the Z-score of a protein’s DOPE score,
a statistical potential based on atomic distances, calculated from native protein structures
to estimate the energy of the model. Negative zDOPE values suggest a lower energy and
the modeled protein is more likely to be in a native conformation. [76] Similar to zDOPE,
ProSA is a statistical potential based on Cα-Cα distances, that measures the energy of the
system. If this value is outside a range, characteristic for native structures with a certain
number of residues, the measured protein might have an erroneous structure. [135] Ver-
ify3D measures the compatibility of a 3D structure with its sequence. For each amino acid
a statistical preferred environment was established (described by its secondary structure,
fraction of side chains covered by polar atoms and how buried a residue is) and the pro-
tein is scored depending on what percentage of its amino acids agree with the expected
environment. Higher percentages indicate models with better quality. [134] Molprobity is
a log-weighted combination of the clash score, percentage of Ramachandran outliers and
percentage of bad side-chain rotamers, that yields one number which reflects the crystallo-
graphic resolution at which those values would be expected. [80] Therefore, for a modeled
protein, the lower itsMolprobity scores is, the better its structures should be. QMEANBrane
ranges from 0 (poor quality model) to 1 (good quality model) and is a linear combination of
several molecular descriptors assessing: the local geometry, long-range interactions, burial
status of residues, agreement between predicted and calculated secondary structure and
solvent accessibility, to assess the quality of the TMD. [81]

In addition the 3D structures of the templates were also scored and compared to the
models. The models with the best scores were selected for further optimization.

2.2.6 Relaxation and equilibration of models with GROMACS

Once I selected the models with the best scores for each functional conformation, I added
the hydrogens with Maestro and the protonation state of histidines and other residues that
could be ionized at physiological pH were selected using reduce. [136] The receptor with-
out the ICD disordered loop has 31511 atoms and 1926 residues. A fast routine was set up
in collaboration with Max Bonomi from the structural Bioinformatics Unit at the Institute
Pasteur, to minimize and equilibrate the three conformational states of α4α5β2 using a col-
lection of python [137, 138] and gromacs-2020.4 scripts. The first step of this procedure
is to use the Membrane Builder [139–141] from the CHARMM-GUI web server [142] to
generate an heterogeneous lipid bilayer and α4α5β2 protein input files for gromacs. The
components of the lipid bilayer include: 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC),
1-palmitoyl-2-oleoyl-phosphatidic-acid (POPA) and cholesterol (CHL) with a stoichiome-
try of 3POPC, 1POPA and 1CHL. Previous studies have shown that this composition can
stabilize the receptor in an active conformation [143–145]. The upper layer and lower layer
had 180 and 175 lipids, respectively. The lipid bilayer was centered at 0 on the z axis and a
gap with a radius of 2.0 nm was created at the center of the lipid bilayer to fit the protein.
The protein was solvated and two disulfide bonds were set for each α subunit (128-142,
192-193 in α4 and 129-143, 193-194 in α5) and a single disulfide bond for the β2 subunits
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(130-144). The protein was inserted into the lipid bilayer using gromacs insert-molecules.
The system was solvated using gromacs command solvate and excess waters in the lipid
bilayer were removed, afterwards ions were inserted using gromacs command genion. A
new gromacs topology file was created considering the final number of lipids and the cor-
rect number of waters and ions. The steepest-descent algorithm for energy minimization
was used for 50000 steps or until the maximum force was smaller than 1000 KJ/molηm. The
system was equilibrated for seven steps at 303.15K, with position restraints on the heavy
atoms to prevent the activated receptor from collapsing.

2.2.7 Validation of α4α5β2 models functional state

During the study and characterization of ion channels, the minimum pore diameter is rou-
tinely used to assign an experimental structure to a functional state. In this work, I com-
puted the pore profile and pore radius of the α4α5β2 models using the program HOLE. The
configuration of HOLE that I used was defined by the following commands on the input
file: radius, I used simple.rad to specify the van der Waals radii of each atom with the def-
inition given by the AMBER potential energy function; cvect 0 0 1 to specify the channel
pore lies along the Z axis and enrad of 14Å, which is the radius above which the end of the
pore should be found. [146]

2.3 Results and discussion

The latest blastp results yield 33 homologous sequences with e-values between 2e−51 and
1e−142 and identity percentages between 56.13% and 26.44%. The results include human
nAChRs α4β2, α3β4, the recently published α7 structure, electric ray muscle-type nAChR
α1γδβ1 and mice 5-HT3AR. The percentage of sequence identity between the α4, α5, β2

subunits and the templates subunits are shown in Table 2.1. α4, α5 and β2 have the lowest
sequence identity with 5-HT3AR. With values between 27% and 31%, the 5-HT3AR could
still be used as template but the least conserved regions would be difficult to model. The
sequences of α5 and α4 are most similar to α3 and β2 has a high sequence similarity to
β4. Overall, I was surprised to see that α7, being a nAChR in the central neural system,
like α4β2 and α3β4 had the lowest percentage of sequence identity among α subunits, even
lower than α1 in the electric ray muscle-type nAChR.

Table 2.1: α4, α5 and β2 subunits percentage of sequence identity. This table shows
the percentage identity of the α4, α5 and β2 subunits with the subunits of the templates
used to create the models.

Identity
% α5 α3 α4 β4 α1 β2 α7 β1 δ γ 5-HT3A

α5 – 56.13 54.74 49.85 45.56 41.95 38.12 36.48 33.05 30.84 27.04
α4 54.74 67.66 – 56.8 56.97 58.28 47.6 46.27 42.57 42.73 31.37
β2 41.95 54.65 58.28 76.99 41.94 – 43.95 42.95 38.6 39.63 27.53
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At the beginning of the project, my objective was to model α4α5β2 with the three do-
mains and in three functional states, so I did not have a lot of choices tomakewhile selecting
the templates, as the structures of α7 had not been published. I chose the structures of the
5-HT3AR as templates, because these were the only structures available in resting and ac-
tivated functional states, among all eukaryotic and cation selective PLGICs, and with the
highest homology to α4α5β2 nAChR. For the activated state, since the 5-HT3AR structure
6HIN does not have an ICD, I decided to include the 5-HT3AR structure 6DG8 to be able
to model it. For the resting state there were several 5-HT3AR structures to choose from
but 6NP0 was chosen since it had the best resolution (2.92Å). The other 5-HT3AR struc-
tures with a closed pore had resolutions between 3.5 to 4.5Å. The structure of 6NP0 was
described to have a closed-pore profile similar to what is observed in the apo 5-HT3AR [22]
but the overall structure is believed to be in a conformation between the serotonin activated
5-HT3AR and the apo structure. In addition the loop-C expected to be extended in resting
structures appears to be slightly closed. These unexpected structural features are likely to
come from the interactions established by the agonist granisetron [129] A few months later
the structure of muscle-type nAChR was also published and determined to be in a resting,
closed pore conformation so I decided to include it in the templates, to get structural infor-
mation from its α and β subunits. For the desensitized state, I chose only 5KXI among the
other α4β2 structures in desensitized state because it is the X-ray structure that served for
the building and refinement of subsequent cryo-EM structures (6CNJ and 6CNK).[29] Since
none of these structures have an ICD, I also decided to include the structure of α3β4 6PV7
to model the desensitized state. I chose 6PV7 instead of 6PV8 because the structure of the
second could not be solved in lipidic nanodisc, the receptor had to be purified in detergent
and the authors suggest there could be conformational differences produced from detergent
artifacts. [26]

The first score I used to decide if I was obtaining reasonably good models was MOD-
ELLER’s zDOPE score. Before α7 was published, I used 5-HT3A structures as templates
for the resting and activated states. The zDOPE scores I obtained from MODELLER for
the model in the activated stare were consistently bad (zDOPE = -0.090). In addition I had
difficulties modeling the disulfide bonds in the loop-c of α subunits and the cis-proline in
the cys-loop. Once the structures of α7 were published and used as templates, the zDOPE
improved significantly for the activated states and I was able to continue the following
modeling steps (Figure 2.4).

One hypothesis to explain why the models in activated state had such bad scores, com-
pared to the resting and desensitized models, relies on the quality and disagreement be-
tween the experimental templates. The 6DG8 and 6HIN structures have low resolution,
4.10 Å for 6HIN and 3.89 Å for 6DG8. Within the structures, the highest B-factors (a mea-
sure of the uncertainty of the position of the atoms) are located in the TMD and ICD. The
B-factors for 6HIN range between 35.76 to 154.02 Å2, with an average of 57.80 Å2 and for
6DG8 between 102.82 to 659.00 Å2, with and average of 140.60Å 2. Some studies on X-ray
structures have estimated that at resolutions worse than 3.3 Å the average maximum B-
factor to consider that the structure was constructed based on experimental evidence rather
than an over-interpretation of the atom position, should be 80 Å2. [147] Which makes me
question how reliable the atom positions in the structure 6DG8 actually are, although it
most be noted that these structures were obtained by cryo-EM and not by X-ray crystal-
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Figure 2.4: Comparison of the model’s zDOPE scores with different templates.
zDOPE scores assigned by MODELLER to the models in the three functional states. The
red bars are the scores for the models in resting state, the yellow bars for the activated state
and the blue bars the desensitized state. The scores changed when the 5-HT3A template
structures were changed for α7 nAChR structures.

lography. The ECDs of 6HIN and 6DG8 appear to have considerable structural differences,
although they have similar pore profiles with an open pore showing a minimum radius
of 3.0 and 3.3 Å. The structural alignment of the TMD of these receptors has an RMSD of
3.12 Å and the TM1-TM4 helices seem to be positioned differently. For comparison, the
structures of the TMD of α4β2 in desensitized state 5KXI, 6CNJ and 6CNK were aligned
and are shown in Figure 2.5. These structures have an average RMSD of 1.11 Å with well
aligned TM1-TM4 helices. It is not clear to me whether 6DG8 and 6HIN are two 5-HT3ARs
in two different activated conformations or if the limited resolution of the structures does
not allow us to define with enough certainty the atom positions in the TMD. The resting
and desensitized models benefited from the structural information of other nAChRs and
the models had acceptable zDOPE scores.

Another structural feature, present in other experimental structures of nAChRs, that
was difficult to model using 5-HT3ARs as templates, was the cis-proline located in the cys-
loop of the ECD, that interacts with the TM2-TM3 loop in the interface between the ECD
and TMD and the disulfide bond in the loop-C of the ECD. Figure 2.6 There is no agree-
ment on whether or not this proline should be in cis or trans conformation, or its exact
role in the gating cycle of the ion chanel. However, NMR studies show that peptides with
a phenylalanine followed by a proline are more likely to present a proline as a cis isomer.
[148] In addition, the α4β2 crystal structure and all other nAChRs have this proline is in
cis conformation. As it was described in the methods, restraints were integrated during
the modeling process for both features. However, in the multiple sequence alignment be-
tween the target and the templates the phenyl-proline-phenyl (FPF) sequence is conserved
but the 5-HT3ARs have a trans-proline isomer. Since a cis conformation was imposed but
the templates had this same proline in trans conformation the resulting models had a very
deformed semi cis-proline that was difficult to fix during posterior refinement steps. Simi-
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Figure 2.5: Structural alignment of the activated 5-HT3AR templates and desensi-
tized structures of α4β2. On the left, the alignment of the TMD between the 5-HT3AR
structures 6HIN and 6DG8 has an RMSD of 3.12 Å. These structures are of the same recep-
tor and have been determined to be in an activated functional state with similar pore radius
but show different TMD conformations. For comparison, on the right the structural align-
ment of the TMD between α4β2 nAChRs has an average RMSD of 1.11 Å, these structures
are in desensitized state.
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larly, the cysteines in the loop-C of the α subunits are not present in 5-HT3ARs loop-C and
I often observed that models had these cysteines positioned at a distance or conformation
that did not allow the conserved disulfide bridge to be formed.

Figure 2.6: Proline isomerization in 5-HT3A andnAChRs templates. a) The cis-proline
isomer is located in the cys-loop of some PLGICs. Here α4 has a cis-proline isomer in the
cys-loop. A disulfide bond in the loop-c, only present in the α subunits of nAChRs, is also
shown. b) Conserved phenyl-proline-phenyl (FPF) amino acids in 5-HT3A and nAChRs. c)
Cis-proline in the cys-loop of α4. d) Trans-proline in the cys-loop of 5-HT3A.

Once the α7 structures were published I decided to use only nAChRs to generate the
models, so I removed the 5-HT3A templates and did a new multiple sequence alignment.
By modeling α4α5β2 with nAChRs, the isomerization of the prolines in the cys-loop as well
as the disulfide bond in the loop-C could be modeled and the modeled activated receptor
improved significantly. These models were minimized and relaxed in the membrane, as de-
scribed in the methods. To have an idea of what scores I would obtain for the experimental
structures used as temples and to compare these values to the minimized models, the tem-
plates and models where scored by the zDOPE as well as ProSA, QMEAN, Verify3D and
molprobity (Figure 2.7). I was surprised to see 6DG8’s positive zDOPE score, if a model got
a positive score this would suggest it is not a native-like model. In addition only 37% of the
residues in 6DG8 are in a statistically expected environment as described by the Verify3D
score. Both zDOPE and ProSA agree that the 5-HT3AR structures have the least native-like
structures among all the templates. Overall the 5-HT3AR structures in activated state, score
worse than the nAChR templates with the zDOPE, ProSA, QMEAN and Verify3D scores.
The relaxed models zDOPE scores improved significantly from the scores I had before min-
imization and relaxation in membrane: resting -1.27, activated -1.00, desensitized -1.05.
In addition, the models done without 5-HT3AR templates had better zDOPE and Verify3D
scores in active and resting states than the 5-HT3AR structures. Overall, the models have
worse scores than the nAChR structures, however for most scores (except molprobity and
ProSA) their scores are still within the range of the scores obtained for the experimental
structures used as templates.

The modeling of α4α5β2 in its functional states proved to be a very challenging and
time consuming step of this research project. No amount of pages I could write will be
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Figure 2.7: Models evaluation using different score functions. The models in resting,
activated and desensitized states made with α7 nAChR as template are compared to all the
structures used as templates. For zDOPE, good models have the lowest negative scores.
QMEAN is in the range of 0-1, good models have values close to 1. Verify3D is a percent-
age, good models have higher percentages. ProSA is a Z-score and the value shown is the
average of the subunits with ( 400 amino acids), proteins with 400 amino acids have values
between -13 and -3. Molprobity the lower the score, better the predicted quality should be.
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representative of the actual number of multiple sequence alignments or combination of
templates and template subunits that I tested to come to the point where the models were
acceptable. Of course, the final choices I made will affect all the following steps of this
research project.

One of the first questions raised by the models appeared after the transition path be-
tween the functional states was computed. It was observed that the loop-C of the α5 sub-
unit remains slightly open in the desensitized state, while it would be expected to remain
closed, as it is the case for the orthosteric binding site between α4 and β2 in the experimen-
tal structures. After the cavity analysis, I was able to notice that the volume of the cavity
capped by the loop-C of α5 follows the expected extended loop-C in resting state (larger
volume), closed loop-C in activated state (smaller volume) pattern, but in desensitized state
this loop-C has a volume similar to the volume in the interface between β2−α4 and β2−α5.
When I looked at the volumes in the desensitized states of the heteromeric α4β2 and α3β4

receptors, I noticed that non-orthosteric interfaces show variable cavity volumes and only
orthosteric sites have a low volume, closed loop-C profile. This made me realize that while
doing the multiple sequence alignment, for the desensitized state α5 was aligned to the β4,
β2 and α7 subunits. It is likely that because α5 has a higher sequence identity to β4 and β2

their structures had a higher weight during the modeling than α7 structure. In addition the
loop-C is shorter in α5, and therefore, the conserved cysteines in all α subunits could not
be modeled from α7 and some gaps had to be inserted which leads to α5 having a better
alignment to the β subunits. Figure 2.8

Figure 2.8: Alignment of modeled loop-C in α5 with desensitized templates. a) Mul-
tiple sequence alignment between the loop-C of α5, β2, β4 and α7. α5 is the target sequence
while the rest of the subunits are part of the templates to model the desensitized state 5KXI,
6PV7 and 7KOQ. b) Structural alignment between the modeled α5 and α4, α3, β2, β4 and α7.
In green β2 and β4, the second has a very extended loop-C in desensitized state. In red α5’s
loop-C, with a structure similar to β2 and shorter than the loop of α4 and α3, shown in
cyan.

To confirm the functional states of the models before the transition path analysis, I com-
pared the pore profile of the models to the published data of PLGICs. In particular the pore
radius and the side chains of the residues of TM2 that delineate the ion pore (Figure 2.9).

In the resting model, the ion pore in the TMD is constricted by the hydrophobic Leu
side chains at positions 9’ with a minimum diameter (dmin) of 3.00 Å and 16’ with a dmin
= 3.35 Å as well as by Val 13’, dmin = 4.34 Å. In addition, the resting state shows a narrow
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Figure 2.9: Residues on TM2 helix delineating the pore. In blue the pore profile of the
models in resting, activated and desensitized states as well as the residues delineating the
ion pore on the M2 helix of the TMD.

pore in the interface with the cytosol, at the Thr 2’ position (dmin = 4.40 Å), a similar
behavior was observed from molecular dynamics simulations of the α4β2 receptor [149].
These constrictions are smaller than the estimated radius of a hydrated Na+ ion, which is
2.76 Å (diameter = 5.52 Å). The same residues contribute to the ion pore blockage in the
structures of α7 [8] and the muscle type nAChR [32] in resting state. On the structure of
α7, is at the level of Leu 9’ where the pore is most constricted (dmin = 2.4 Å). The same is
observed for the muscle type nAChR with a dmin of 2.8 Å at the Leu 9’ position. The Leu
9’ constriction is conserved among other PLGICs and is observed both in receptors with
a bound antagonist and in apo structures [8]. In the active conformation of the α4α5β2

nAChR model, the pore diameter near the Leu 9’ position increases to 8.14 Å and has a
minimum pore radius of 7.70 Å at the Thr 2’ position. Similar to the activated structure of
α7, where the ion channel has a minimum pore radius of 7.2 Å at the Leu 9’ position. The
constriction described in the activated structure of α7 [8], located in the ECD at E97 and
R98 (6.4 A°), within the sequence DER, was also observed in the activated model (dmin =
6.90 Å). The E97 is only present in α7 where it contributes to ion permeability [8]. In all
other subunits there is a glycine and the residues contributing to the constriction are D106,
in the sequence DGD of α4, R101 in the sequence DGR of α5 and M101 in the sequence
DGM of β2. This constriction in the ECD has not been observed in the open structures of
the 5-HT3R, where the residues at that position are smaller V106, G107 and a K108 which is
parallel to the pore axis [128] or on the ECD of the desensitized structure of α4β2 [27, 29] in
which the ECD is un-bloomed with the agonist nicotine bound in the orthosteric binding
site. Similar to what is observed in the experimental structure of α4β2 [27] and α3β4 [26]
on the desensitized model the lower part of the pore is contracted and blocked by T250,
2’ and E247, -1’ in α4 and T242, 2’ E239, -1’ in β2 while in α5 there is C242 2’ and E230
-1’ potentially contributing to the blockage of the pore (dmin = 4.70 Å). The ECD pore has
more resemblance to α7 in desensitized state, with a mild constriction (dmin = 8.44Å) that
is not observed in α4β2 or α3β4 (Figure 2.10).
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Figure 2.10: Pore radius along the ion pore of the α4α5β2models and templates. The
figure shows on the y axis the channel coordinates starting from the ECD to end on the
ICD. The x axis depicts the pore radius in Å. The model and templates in resting state are
colored in blue, in orange to yellow the activated state and in reds the desensitized sates.
The templates have dashed lines and the models have dotted darker lines.
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2.4 Conclusion and perspectives

Without the experimental structure of α4α5β2 it is difficult to assert the exact structure of
this receptor. Based on the analyses I performed and the comparison of the models to the
available α4β2 and α7 structures, we can confirm the orthosteric site in the models shows
a conformation that is similar to the experimental structures in all functional states. The
pore profile of these models indicates, the models have ion pores blocked in the resting
state, open ion pore in the activated state and partially blocked ion pore in the desensitized
state. These profiles are similar to what is observed in other experimental structures of
nAChRs. The structure of the allosteric binding site between α5 and α4 is also similar to
the activated and resting experimental structures. The question on what should be the
loop-C conformation of α5 in desensitized state remains debatable.

From the development of these models I have learned which steps to prioritize and how
to select the right templates for future projects. I present in this chapter a description and
analysis of all the currently available structures that could be used to model an eukaryotic
and cation selective PLGICs along with their advantages and disadvantages. In addition
the structure of the models of α4α5β2 in resting, activated and desensitized states, show in
overall and agreement with available nAChR structures and can now be used for any other
future structural biology studies or drug design projects.
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In this chapter I explain the procedure employed to calculate a series of intermediate
conformations describing the gating cycle of the α4α5β2 nAChR. That is, the conforma-
tional changes taking place as the receptor shifts from the resting conformation into an
activated functional state and then into a desensitized conformation. This is, to my knowl-
edge, the first time the gating cycle between three functional states has been obtained. Then
I visualize and measure these structural changes by following the different cavities formed
along the receptor during the gating cycle and I associate these volume changes to a func-
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tional state. This analysis allowed me first to validate both the models and the gating cycle
and to find new cavities with interesting properties that could be targeted to modulate the
receptor.
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3.1 Introduction

Proteins are dynamic systems that go through a series of conformational changes associated
to biological functions such as protein folding, ligand recognition and catalysis. A detailed
understanding of these structural changes is crucial to determine how we can modulate a
protein. However, these conformational changes are difficult to study, given the extremely
high number of theoretical conformations that could exist when considering all the rota-
tional degrees of freedom each residue in a protein could have. [150] However, not all of
these conformations are likely to occur. In fact, we only need to find a small set of low en-
ergy favored conformations, connected by intermediate less favorable but accessible states.
The low energy favorable conformations can be topically found by experimental techniques
like X-ray crystallography and cryo-EM. However, in silico methods remain essential to un-
derstand and determine the intermediate states.[7, 151]

In particular, Molecular dynamics (MD) simulations have been fundamental to the study
of PLGICs. An atomistic solvent and membrane MD analysis of µs-long, was done on the
eukaryotic X-ray structures of PLGICs in activated state. At the end of these long MD sim-
ulations the receptor converged to the apo conformation, once ivermectin was removed to
abruptly destabilize the active state.This study also described the un-blooming, or closing
of the loop-C, and twisting of the ECD with respect to the TMD, which are key confor-
mational changes that drive the ion-pore opening and are observed in all PLGICs. [152]
Similar studies have been done on α7 nAChRs, [153–155] which predicted the ECD and
TMD Leu9’ constriction in the desensitized state, later on confirmed by the experimental
structures. [8] MD simulations on the desensitized X-ray structure of α4β2 showed that by
either removing the agonist or replacing it by an antagonist, the loop-C expanded and the
receptor was stabilized in a resting conformation. [149, 156] From these studies on α4β2

we can reconstruct the pattern of communication that takes place between the ECD and
the TMD to modulate the opening and closing of the ion pore. These process starts at the
loop-C in the main subunit (+) at the ECD, the conformational changes happening on this
loop when it opens (blooms) or closes (un-blooming) are communicated to the cys-loop and
the loop-F of the complementary subunit (-) and then to the M2-M3 linker in the interface
of the ECD and TMD domains. This communication occurs through a series of electrostatic
and hydrophobic interactions that break and form during the gating cycle. One of the first
publications describing a method for transition path sampling between two endpoints was
done on the X-ray structure of the GLIC channel in a resting and activated state. The low-
est free energy path between both states was found using sting method simulations. Their
results contributed to our understanding of the allosteric interactions governing the com-
munication between the ECD and TMD, in particular, the salt bridge (D32-R192) and its
influence on the gating cycle. [157]

While current MD simulations remain at the scale of µs, in vitro studies show that the
spontaneous opening of the ion pore of nAChRs occurs once every second (1.3 ± 1.4/seg).
[41] As it was described in the introduction, differentmethods to bypass this time frame lim-
itation are focused on transition path sampling.[94] For this project I used an adiabatic path
calculationmethod called Path Optimization Exploration (POE) developed by the Structural
Bioinformatics Unit at the Institut Pasteur. POE samples the potential energy landscape sur-
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face to find the minimum energy paths connecting low energy favored conformations. To
do so it searched for topological shortcuts along a complex transition path generated by
CPR and selects shorter paths with lower energy and fewer intermediate points.[158, 159]

A protein’s function and regulation is tightly linked to the interactions they can form
with other proteins and molecular compounds. The type and strength of these interactions
relies on the spatial arrangement and the types of atoms in the protein.[160] The solvent
accessible areas between the protein atoms are called cavities. These cavities are delineated
by the residue side chains that constitute a protein pocket and determine its molecular
properties. [161] The discovery of these pockets is a critical step in the process of drug
design. To find the cavities along the α4α5β2 transition path I used mkgridXf. [162] This
method is able to find cavities in the conformational path of a protein by finding the solvent
accessible area over the van der Waals atom surface of a protein. We can define the protein
pocket of a cavity by extracting the atoms delineating it.

Here I describe and compare the structural changes observed during the gating cycle
of α4α5β2 to the information I have from other in-silico methods applied on experimental
or modeled structures of other PLGICs. In addition I analyze the cavities computed by
mkgridXf and select a few of them that have large volumes or appear only in the activated
conformational frames.

3.2 Methods

3.2.1 Transition path sampling with Path Optimization and Explo-
ration (POE)

After minimizing and equilibrating the receptor in the membrane, it had to be desolvated
and extracted from the membrane before the transition path sampling was done with POE
in an adiabatic system. POE was executed with CHARMM version 35b2 and the force field
for all-atom parameterization CHARMM36m. [90] The contribution of non-bonded and
non-local interactions between atoms to the potential energy, was calculated with a sig-
moidal distance dependent dielectric function.[163] The CPR algorithm [95] used in POE
is implemented in the TReK module of CHARMM. The first iteration of POE constructs
an initial path by interpolating between two conformations or end points. Interpolation
of the backbone coordinates and of the side chain internal coordinates. This is done using
CHARMM Hammer Drill, developed in the Structural Bioinformatics Unit. Then all possi-
ble shortcuts along this path are calculated and combined to generate new alternative and
shorter transition paths. This process is repeated iteratively and the final path is selected
if its curvilinear length (sum of rmsd between adjacent conformations) and its maximum
energy are lower than in the previous paths. In order to prevent getting atoms highly dis-
placed while doing the initial guess of a path, the atoms are only authorized to have a
displacement of 0.5Å. In addition, to avoid cis- trans isomerizations on the prolines they
were restrained to a trans conformation (Ω = 180 °) with the exception of prolines 136 in
α4, 137 in α5 and 138 in β2 that were restrained to ensure they would maintain the cis con-
formation throughout the simulation. I performed 3 POE iterations for the transition path
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between the resting-activated states and the activated-desensitized state, and 2 POE itera-
tions for the transition path between the desensitized-resting conformations. I stopped the
iteration process once I did not observe a reduction in the potential energy and a reduction
in the number of intermediate conformations.

3.2.2 Analysis of the properties of the gating cycle

In order to find the most important motions in the α4α5β2 gating cycle trajectory needed
for conformational changes, I performed Principal Component Analysis (PCA) using the
atomic coordinates of each atom and each frame in the trajectory as descriptors. [164]

I also needed to determine if the models and the conformations in the trajectory dis-
played the conformational changes described to be essential to initiate and regulate the
gating cycle of nAChRs. To do so, I compared the transition path to experimental struc-
tures using two known descriptors broadly used to characterize PLGICs: expansion of the
ECD and the torsion angle between the ECD and TMD. The expansion or spread of the
ECD has been used before to describe the structural changes taking place in the ECD as it
contracts and expands when complexed with an agonist or antagonist, respectively [149,
154, 157]. This movement can be described using the radius of gyration of the Cα atoms on
each chain of the ECD, which quantifies the degree to which each subunit expands inward
and outward relative to the central pore. The radius of gyration is defined on Equation 3.1.∑

i(xmean − xi)
2 + (ymean − yi)

2 + (zmean − zi)
2

N
(3.1)

Where N is the number of Cα atoms, xmean, ymean, zmean are the center of mass of the
Cα atoms and xi, yi, zi are their atom coordinates.

The torsion angle or twisting between the ECD and the TMD measures the torsion
of the ECD relative to the TMD around the pore axis. Structural comparisons of resting
and activated states of PLGICs indicate that a global twisting or opposite direction ro-
tation of the ECD and TMD around the pore axis is involved in ion channel activation.
[149, 153, 154, 157]. The torsion angle was calculated as the average of the dihedral an-
gles obtained for each chainti between the three following vectors: #                                                  »

chainiECD,ECDcom,
#                                           »

ECDcom, TMDcom and #                                                    »

chainiTMD, TMDcom. Where chainiECD is the average of the
atomic coordinates of Cα in the ECD of chain i, chainiTMD is the average of the atomic
coordinates of Cα in the TMD of chain i, and TMDcom andECDcom are the center of mass
of the entire TMD and ECD.

The pocket of the allosteric site between the α5α4 subunits was extracted and NS9283,
a published allosteric modulator [165] as well as nicotine were docked to validate the mod-
eled allosteric site using smina. [99] The molecules used for docking were prepared us-
ing a pipeline of in-house scripts that generates the lowest energy tautomers, isomers and
conformers. [166] I performed flexible docking allowing the residues PHE95, TRP150 and
TYR196 in α5(+) and TRP55, HIS109 and THR119 in α4(−) to remain flexible.

41



Chapter 3

3.2.3 Cavity analysis of α4α5β2

The transition path between resting, closed and desensitized states was combined and used
as the input for mkgridXf [162] to determine new and known binding sites throughout
the receptor structure. The only mkgridXf parameter that was changed from the default
was rou (6 Å), the radius of the large probe that defines the excluded volume considered to
be part of the solvent. After cavity calculation, the cavities whose mean volume was not
higher than 100 Å3 and the cavities that did not have a volume higher than 150 Å3 at least
once during the transition path, were excluded from the analysis.

To find cavities that displayed similar volumes at a given step of the conformational tra-
jectory, hierarchical clusteringwas performed using Scipy’s [167] linkage function, with the
following parameters: cosine distance to compute the distance matrix between cavities and
the UPGMA algorithm (or average) as the method to combine clusters. These parameters
were chosen among all the other options using the cophenetic correlation coefficient im-
plemented in Scipy that measures how well a dendrogram preserves the pairwise distances
between the original data points. The cavity volumes were standardized by subtracting
the mean and dividing by the standard deviation. The clustered cavities presenting higher
volumes during the frames close to and during the activated state, were visually inspected.

As part of mkgridXf’s functionalities, I obtained the footprint of the selected cavities,
which defines a protein pocket by the atoms or groups of atoms outlining the cavities. From
mkgridXf’s implementation the delineating residues were encoded by Equation 3.2:

fprealg (c) =

{
σ − δ(c, g), ifδ(c, g) < σ

0, otherwise
(3.2)

where the, σ is 5 Å and δ(c, g) is the non mathematical distance between the cavity c, with
voxel centers c and g a group of protein atoms a, which can be defined by Equation 3.3:

δ(c, g) = min
v∈c,a∈g

(d(v, a)− rad(a))) (3.3)

The threshold selected for the inner pocket residues was fprealg (c) < 3 Å afterwards, the
residues in the outer pocket were those within radius2 < 9 Å from the inner pocket
residues.

3.3 Results and discussion

Based on the pore profiles, I assigned the models of α4α5β2 to a specific functional state
and used them as end points to obtain the minimum energy conformational path with POE.
The minimum energy conformational paths between end states have a set of 23 frames (or
conformations) distributed between the resting and activated states, 23 frames between
activated and desensitized states, and 21 frames between desensitized and resting states.
These frames represent a progression of the structural changes that occur in a landscape
of potential energy, where the end points represent the low energy conformations and the
intermediate frames are scattered along the lowest energy saddle points.
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3.3.0.1 Global motions analyzed by PCA

PCA Figure 3.1 highlights the most important structural changes occurring in α4α5β2 gat-
ing cycle. The first 3 components have an explained variance of 0.757, 0.218 and 0.014. I
observed that the first two principal components represent the structural changes observed
as the receptor shifts from being in resting state to becoming activated. That is, the bloom-
ing and un-blooming as the loop-C opens and closes and the ECD contracts or expands as
well as the global counterclockwise twist of the ECD relative to the TMD. The third com-
ponent represents smaller changes observed in the TMD along the TM2 helix lining the
pore.

Figure 3.1: Principal ComponentAnalysis (PCA) of the coordinates on the frames of
theα4α5β2 trajectory. The x and y axes depict the 1st and 2nd components, each data point
is a conformation or frame in the trajectory between the resting-activated-desensitized con-
formational path.

3.3.0.2 Analysis of the twisting between the ECD and TMD

Afterwards, I compared the twisting of α4α5β2 to the published data on other PLGICs. As
it is shown on Figure 3.2, the twisting of the ECD during the gating cycle of α4α5β2 is more
emphasized as compared to what I observed for α7 in all three conformations (α7 resting
twisting angle = 17.04°, activated angle= 23.45°, desensitized angle = 16.22°). In the models,
the twisting increases from 19.94° in resting state to 26.19° in activated state to then de-
crease to 24.69° in the desensitized state. α7 shows a similar pattern of increasing twisting
when becoming activated. The difference is observed between the desensitized structures
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of α7 and α4α5β2. While it seems that for α7 the opposite direction rotation of the ECD and
TMD around the pore axis increases from activated to resting state, in α4α5β2 the twisting
angle decreases to 24.69°. However, I observed a similar twisting angle in the desensitized
structure of α4β2 (24.23°). The structure of the desensitized model was probably more in-
fluenced by the structure of α4β2 used as template, since comparative modeling methods
follow sequence similarity. But overall, the models and the conformations in the trajectory,
align with the increasing twisting description between the ECD and TMD after activation,
observed on the other PLGICs.

Figure 3.2: Twisting angle between the ECD and TMD, along the transition path
between the resting, activated and desensitized states. The twisting angles between
the ECD and TMD domains for each frame, in the three different POE iterations are plotted
in the y axis. The x axis depicts the percentage of progression along the trajectory starting
from resting then activated, desensitized and back to resting state. Each dot is a structural
conformation in the trajectory between states. For comparison, I included the twisting
angle of homologous experimental nicotinic receptors used as templates for modeling.

3.3.0.3 Analysis of the blooming of the ECD

Then I compared the expansion of the ECD during the gating cycle of α4α5β2, to homolo-
gous receptors. On Figure 3.3 the ECD is more expanded (or bloomed) in the resting state
(30.28 Å), similar to the structures of α7 (30.34 Å) and muscle type nAChR (30.37 Å). As the
receptor shifts to activated conformation, it un-blooms and the ECD contracts. However,
the contraction is less accentuated in α4α5β2 (29.70 Å) compared to activated α7 (29.50 Å).
When the receptor becomes desensitized the ECD starts blooming (30.40 Å), to the same
extent as the resting state. A behavior that is not observed for α7(30.25 Å), for which the
ECD also blooms but stays slightly more compact than in resting state. I believe this accen-
tuated relaxation was derived from the α3β4 template in desensitized state, for which the
ECD appears to be even more relaxed or extended than for the resting structures (30.87 Å).
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Figure 3.3: Extension of the ECD along the transition path between the resting, ac-
tivated and desensitized states. The extension of the ECD for each frame, in the three
different POE iterations is plotted in the y axis. The x axis depicts the percentage of pro-
gression along the trajectory starting from resting then activated, desensitized and back to
resting state. Each dot is a structural conformation in the trajectory between states. For
comparison, I included the ECD extension of homologous experimental nicotinic receptors
used as templates for modeling.

3.3.0.4 Cavity analysis

I took the models and templates in the activated functional state and compared the volumes
of the cavities capped by the loop-C in the ECD. I observed that in orthosteric binding sites,
the loop-C is more tightly closed as compared to the other subunit interfaces (Figure 3.4).
The α7 receptor has an orthosteric site between all subunits, which would explain why its
ECD is more compact in the activated and desensitized states, as compared to the α4α5β2

models. The orthosteric sites along the gating cycle of α4α5β2, show an open loop-C in
resting state with volumes similar to resting α7 and a compact loop-C in activated and
desensitized states similar to open α7 and desensitized α4β2 and α3β4. During activation,
the loop-C on the allosteric site between α5α4 and the non-orthosteric sites between β2α4

and β2α5 close to a volume comparable to α7. But as the receptor shifts to a desensitized
state the loop C starts to open. A behavior I also observe in the non-orthosteric interfaces
of α4β2 and α3β4, although the volumes are smaller in these homologous structures.

3.3.0.5 Correlation between twisting and blooming in the transitional modeling

When I analyzed the synchrony between the twisting and blooming movements in the re-
ceptor shown on Figure 3.5, the trajectory ofα4α5β2 indicates there is an inverse correlation
between the twisting and the blooming and these two movements appear to occur simul-
taneously, except to a certain extent between the desensitized and resting states. When
the receptor is in its resting state, the twisting between the ECD and TMD is at its lowest
angle and the ECD is more extended. As the receptor becomes activated, the ECD is less
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Figure 3.4: Cavity volumes in allosteric and orthosteric binding sites of α4α5β2 and
templates. This figure depicts the cavity volume changes in all the interfaces of theα4α5β2

and compares it to the templates.
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extended and the twisting between domains increases to its maximum. From the activated
state to the desensitized state, the twisting between domains is preserved but the ECD starts
to expand and is more expanded than the resting state. The expansion of the ECD on de-
sensitized state was unexpected to observe but as it had been discussed, it is likely a bias
inherited from the multiple sequence alignment of α5 with β subunits and the presence of
only two orthosteric binding sites, which are more tightly closed in activated and desensi-
tized state. As the conformation shifts from desensitized state to resting states, I observed
two less synchronized movements, first the receptor starts to un-twist and afterwards, the
ECD appears to have a slight contraction.

Figure 3.5: Correlation between the twisting and blooming movements. The x axis
represents the extension of the ECD (Å) and the y axis the torsion angle (°) between ECD
and TMD. Each data point represents a conformation in the gating path trajectory. The
conformations between resting and activated state are in red and numbered from 1 to 23,
from activated to desensitized state are light orange numbered from 23 to 43 and from
activated to desensitized are in blue from 43 to 66.

3.3.0.6 Docking on the orthosteric and allosteric site

Experimental data suggests that nicotine does not bind in the interface between α5α4 [58],
this is most likely due to the absence of the TYR100 on α5, which is present on α4 and
forms a hydrogen bond with the nitrogen on the pyrrolidine of nicotine, as it is shown on
panel b of Figure 3.6. Other differences between the orthosteric (α4(+)β2(−)) and allosteric
(α5(+)α4(−)) binding sites are the THR119 and LYS57 on α4(−). These two residues in the
interface of the allosterinc binding site can act as hydrogen bond donors, however, on the
orthosteric site with β2(−) as the complementary subunits these residues are substituted
by LEU121 and THR59. The leucine could form weaker hydrophobic interactions with a
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ligand and threonine has a smaller side chain that is distant form the binding site. Another
structural difference I could observe between the orthosteric and allosteric binding site is
the length of the loop-C, which is shorter in α5(+) as compared to α4(+). This difference
appears to keep the disulfide bond away from the binding site and the loop-C slightly more
open in activated and desensitized states (panel a of Figure 3.6). From the docking of NS9283
on the orthosteric site in activated state (panel c of Figure 3.6), we observe this compound
forms a cation-π interaction between the aromatic 1,2,4-oxadiazole and ARG189, hydrogen
bonds between LYS57, THR119, and the cyano group in the benzonitrile, hydrogen bonds
between ARG189 and the nitrogen in the 1,2,4-oxadiazole group as well as π stacking be-
tween the benzoitrile and TRP150. I also observed the conformation of the side chain of
ARG189 at the bottom of the allosteric binding site is quite important to determine the
types of interactions that can occur between the ligand and the protein.

Figure 3.6: Orthosterc site between α4(+)β2(−) and allosteric site between
α5(+)α4(−) a) Alignment between the orthosteric site in the experimental structure of
α4β2 (5kxi) and the modeled allosteric site, the residue differences between binding sites
are indicated in light pink and cyan. b) nicotine bound to the orthosteric site ofα4(+)β2(−).
c) PAM ARG189 bound in the allosteric site between α5(+)α4(−).
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3.3.0.7 Clustering of cavities to identify plausible effector sites

The global gating cycle trajectory of α4α5β2 contains 67 conformations or intermediate
structures describing the activation and deactivation of the receptor. This trajectory was
aligned to perform cavity detection with mkgridXf. The RMSD between resting and acti-
vated conformation is 3.11 Å, between activated and desensitized conformation is 2.46 Å
and between desensitized and resting conformations is 2.054 Å. 255 cavities were found to
be formed at least once along the transition path. On average, each frame has 30 cavities
and the maximum number of cavities formed in a single frame is 67 while the minimum is
1. Only 55 cavities appear in more than 75% of the trajectory, 94 on less than 25% of the
trajectory and 41 on less than 10%. In terms of volumes, the maximum average volume
along the trajectory is observed in the allosteric site between α5 − α4 (666.98 Å3) and in
the non-orthosteric sites between β2 − α4 (550.24 Å3) and β2 − α5 (405.07 Å3), all of then
capped by the loop-C. Only 22 cavities have average volumes higher than 100 Å3 and 52
cavities have at least once during the trajectory a volume higher than 150 Å3. For compari-
son, the volume of a water molecule at 20°C is around 30 Å3 and its van derWaals exclusion
volume about 12 Å3 .[168] These 52 cavities were selected for the clustering analysis. I ob-
tained 5 clusters and cavity 79, in the interface of an α4, β2 subunit near the α-helix in the
N-terminal end, as an outlier Figure 3.7. The most populated cluster is cluster 2 with 21
cavities while the least populated clusters is cluster 1 with only 3.

Figure 3.7: Clusters of cavities using the volume Å3 as descriptor. The y axis depicts
the cosine distance and the x axis the cavity number as selected by mkgridXf. There is one
outlier, cavity 79 and six clusters identified with different colors.

To facilitate the visualization I averaged the volume values within clusters and obtained
the volume profile of each of them. On Figure 3.8 cluster 2with 20 cavities, appears to gather
cavities with volumes predominantly higher when the receptor is in activated state, this
cluster is interesting because I could try to occupy these cavities with a ligand to preserve
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the cavity volume and observe if the receptor is maintained in activated conformation.
Cluster 3, with 4 cavities is also interesting, since the cavities appear to have higher volumes
only in resting state. Cluster 5 gathers all the cavities capped by the loop-C and shows the
lowest volumes during the activated state.

Figure 3.8: Cavity volume profile for each cluster. The averaged volumes of all the
cavities in each cluster is plotted on the y axis. The x axis shows the ordered frames of
the transition path progression resting-activated-desensitized. The number on the top-
right corner indicates the cluster number, the first vertical line in green is the frame with
the activated state conformation and the second vertical line in blue is the frame with the
desensitized conformation.

Among all the cavities in cluster 2, I selected those appearing on the α5 subunit or in the
interface between another subunit and α5 with the idea that these cavities could be targeted
to selectively activate receptors with an α5 subunit Figure 3.9. In the end I selected a cavity
in the ECD (cavity 206, shown in green) located on loop-B facing the ion pore and with
a volume between 400-460 Å3 during the activated state. As well as three cavities in the
TMD: a cavity located in the interface between β2 (TM2-TM3) and α5 (TM1-TM2), with
a maximum volume of 350-420 Å3 during the activated state (cavity 174), a second cavity
located in in the TMD of α5 between TM1,TM2 and TM3 with a maximum volume in the
activated state between 250-290 Å3 (cavity 104) that in activated state extends and connects
to another cavity (cavity 165) in the TMD between α5 and α4 with volumes around 170 Å3
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in activated state.

Figure 3.9: Cavities in α5 selected from clustering analysis. The upper left figure de-
picts the α4α5β2 nAChR where α4 subunits are shown in blue, α5 is in magenta and beta2
subunits are shown in cyan. All the cavities are located in the ECD or TMD of α5. Upper
view of the receptor showing cavity 206 in green in the ECD facing the pore. The plot on
the bottom of the figure shows the cavity volume change on each frame and is color coded
with the same color as the upper left figure.

3.4 Conclusion and discussion

Here I showed that the gating cycle obtained from the transition path sampling between
the models used as endpoints, presents the un-twisting and twisting as well as the bloomed
and un-bloomed structural movements essential to the initiation and regulation of the pore
opening. The twisting and un-blooming movements appear to happen simultaneously, al-
though I would have expected the un-blooming to start before the twisting of the receptor
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as I would expect the loop-c closing to be the first structural change occurring after activa-
tion. However, some experimental results show that the closing of loop-C is not necessary
to induce the channel opening and that there might not be a consecutive sequence of struc-
tural changes leading to the activation of the receptor. [169] In addition, the cavity analysis
showed the presence of the allosteric and orthosteric binding sites and demonstrates the
orthosteric sites show volume profiles changing according to the loop-C expansion, which
is what we observe in experimental structures. I identify and report cavities that can be
further studied in future research projects to maintain the receptor in activated state and
validate the allosteric site by docking of NS9283 and nicotine.
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In this chapter, I explain the reasoning behind why I chose this generative model to
propose compounds to be tested for α4α5β2, the data gathered to train the model and the
training process. I present ligand shapes generated by the shape generation network and
compare the results for proteins in the evaluation and test set. Then I show the captioning
network is capable of decoding these shapes into valid SMILES and provide some insights
into the relationship between the generated ligands and the generated shapes. I report a
predicted synthetic route for the compounds with good synthetic feasibility scores andwith
the best docking scores.
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4.1 Introduction

De novo compound generation means proposing new chemical structures that satisfy a
molecular profile. This molecular profile can be a desirable biological activity or a set of
molecular properties. [170]

Virtual screening of existing libraries is usually the method of preference to identify
or short list compounds that could modulate a target. However, the difference between
virtual screening and de-novo generation of compounds is that for virtual screening the
molecules must be known a priori. This is a limiting factor considering the chemical space
of potential drug-like compounds is extremely large, with estimates ranging between 1023
to 1060 molecules. [171] It is unlikely that we would be able to navigate the chemical space
and select a subset of molecules that is both representative of all areas of the chemical space
and with a number of compounds that is still feasible to evaluate with a reasonable time
frame. The goal behind de-novo generation of compounds is to navigate the chemical space
more efficiently by considering fewer molecules to be evaluated, but that were designed to
have a set of desired properties. [172] Nonetheless, the actual usefulness of de-novo drug
design, depends on our ability to translate an in-silico generated chemical structure into a
molecule that can be experimentally tested. [173] Another limitation of these methods is
the inconsistent consideration of the stereoisomers of a molecule, which leaves the end user
with the task of deciding the most relevant enantiomer before synthesis. Other difficulties
have also been encountered while trying to design an objective function that could allow
us to ensure that we will obtain compounds with the desired properties. [170]

A collaborative project between the Channel Receptors Laboratory and the Structural
Bioinformatics Unit at the Institut Pasteur as well as the Natural Product Chemistry group,
BioCIS at Paris-Saclay University was initiated with the aim to identify potential allosteric
modulators of the α4α5β2 nAChRs. An important part of this project was developed by Dr.
Laura Ortega Varga and it involved the design of an in silico nAChR-tailored database con-
taining fragmented known orthosteric and allosteric nAChR ligands, natural alkaloids and
commercially available analogs of these compounds obtained from the ZINC12 database.
[174] This large database was screened in silico, to select the fragments with the best dock-
ing scores to be tested experimentally and 4 hits were obtained (unpublished data). The
latest experimental data produced by Gabrielle Dejean, from the Channel Receptors Labo-
ratory, suggests that one of the compounds studied during this research project selectively
inhibits α4α5β2 nAChRs. In order to expand the chemical space that has been previously
studied and by suggestion of the group at Paris-Saclay University, we decided to explore
generative models to propose new compounds that could be experimentally tested. We
were inclined on the method published by Skalic et.al. [126]. We found this method to
complement well our project since it is trained on three-dimensional grid representations
of protein-ligand pairs, to generate chemical compounds with molecular properties com-
plementary to a protein pocket. Therefore, once the models were trained we would be able
to generate compounds for the new pockets extracted from the cavity analysis described
on the previous chapter. These compounds could either be synthesized and experimen-
tally tested or be used as starting points to create a new virtual screening library with new
commercially available compounds but targeting different pockets in the receptor.
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The models implemented by Skalic et.al. [126] are two generative models composed
of several neural networks that can be subdivided in two steps. The first step uses a bicy-
cleGAN [127] that is trained with protein ligand pairs to learn to generate ligand shapes
complementary to the protein pocket. We will call this first part of the model the shape
generation network. The second step combines a convolutional neural network or CNN-
Encoder to extract a vector of features representing the ligand shapes and an LSTM-Decoder
learns to translate these input features into SMILES strings with correct syntax. We will
call the second part of the model the caption network (Figure 4.1).

Figure 4.1: Generation of molecules with the shape generation network and cap-
tioning network. The first component of the generative model is the shape generation
network that once trained takes as input a protein pocked voxelized into a grid with 14
channels describing molecular properties and a sampled vector from a standard normal
Gaussian distribution. From this input the generator will generate ligand shapes. The cap-
tioning network takes as input the generated ligand shapes grids and decodes them into
the SMILES representation of molecules.

In this chapter, I will describe the expanded DUD-E database, that I curated in order to
have more nAChRs and binders to these nAChRs with reported affinity. In addition I will
also describe the difference between the generative models published by Skalic et.al. [126]
and the models that I trained. Finally I will evaluate the generative models by generating
compounds complementary to the pockets extracted from the cavity analysis of the α4α5β2

nAChR as well as other proteins in the evaluation and test set.
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4.2 Methods

4.2.1 Shape generation network

The shape generation network is a bicycleGAN, that was implemented to avoid mode col-
lapse and produce a distribution of different outputs in the domain of multimodal image-
to-image translation.[127] Its objective is to encourage a bijection between the output and
latent space, Figure 4.2.

Figure 4.2: Schema of the shape generation network. The network architecture is the
same as for the bicycleGAN, except the input is the 3D grid of the P and the L and the output
is the 3D grid of the Ł. E is the encoder, D is the decoder and G is the generator. CE is the
cross entropy between real and generated ligand. The adversarial loss from the discrimina-
tors, D1 and D2, between protein real-ligand and protein generated-ligand is the MSE. On
the cVAE-GAN schema, Q(z|L) is the distribution of the latent variable z given the ligand
shape L, N(0,I) is standard normal Gaussian distribution and KL is the KLDivergence. On
the cLR-GAN schema, N(z) is a randomly sampled vector from a standard normal Gaussian
distribution.

4.2.1.1 Data collection and subsetting

Similarly to the original publication, [126] all ligands taken from DUD-E [175] were re-
processed for docking, with a pipeline of in-house scripts to obtain the most predominant
tautomer conformations, stereoisomers and low energy three-dimensional conformations.
I compared the binding sites of the proteins on the DUD-E database to the allosteric binding
site in α5−α4 using probis [176] and observed that kinases, with very similar binding sites
among them, were over represented in the dataset and none of the protein binding sites
presented similarities to α4α5β2 allosteric binding site. Therefore, I decided to expand the
database to include nAChRs structures but also distinct proteins with binding sites similar
to the allosteric and orthosteric binding sites in nAChRs.

The first step involved taking as reference 17 known nicotinic ligands.[177] and find-

56



De novo compound generation for α4α5β2 nAChRs

ing all the proteins to which they could bind. I used the swiss target prediction web tool
[178] and retrieved all the resulting UniprotIDs. [70] Afterwards I used those UniprotIDs to
extract their protein structures from the PDB database [72]. Those protein structures with
a bound ligand and the best resolution were manually selected and curated. Afterwards
I used the BindingDB [179] API to extract the compounds with reported affinity values. I
kept all ligands with annotated activity data (Ki, IC50, EC50) better than 1 µM to their target,
molecular weights lower than 600 Da and fewer than 20 rotatable bonds. In the end only
the proteins with 30 binders were prepared and kept. All proteins and ligand pairs were
prepared for docking with smina, as described before.

The enriched database includes 68 enzymes, 35 proteases, 32 kinases, 27 GPCRs 17 nu-
clear receptors, 10 ion-channels, among which are α7, α4β2, α3β4 and the GABA-A receptor
and 40 proteins with diverse functions (Figure 4.3). With this database, I was able to train
my generative network with the orthosteric binding site of homologous proteins and with
a more diverse and balanced group of proteins.

Figure 4.3: Comparison of the proteins and ligands in DUD-E and the DUD-E + new
proteins. This figure depicts the protein classification and the number of proteins in each
group. In the extended database the kinases are no longer over represented

Afterwards, I compared again all the binding sites of the proteins in the new database
that included both the previous DUD-E docked ligands and proteins and the new protein-
ligand pairs curated to extend DUD-E. I used this comparison to select the training, evalu-
ation and test sets. The training set contains both proteins that have unique binding sites
and proteins that have similar binding sites to those in the evaluation set (Figure 4.4). For
the test set I kept only the subset of proteins with unique binding sites that had between
300 and 3000 binders. The test set will allow me to test if the network is able to generalize
and generate ligands even for protein pockets different from those used for training. The
binding sites were again compared with probis; two binding sites were considered to be
similar if more than 10 nodes overlapped with an E-value lower than 1x10-4 and a RMSD
lower than 2.0 Å.
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Figure 4.4: Proteins in the extended-DUDE database grouped by binding site simi-
larity. The binding sites were compared with probis. Each node represents a protein and
an edge was added if two binding sites were similar, with more than 10 nodes overlapped,
an E-value lower than 1x10-4 and a RMSD lower than 2.0 Å. The color codes represent dif-
ferent protein families, named on the left of the figure

The final training database includes 148 proteins that have at least another protein with
a similar binding site and 39 proteins with no similar binding sites within this database;
each protein has between 30 and 150 docked ligands. The test set includes 20 proteins with
no similar binding sites within this database and each protein has between 46 and 3000
docked ligands. The rest of the proteins were kept in the evaluation set.

4.2.1.2 Training setup

I used Libmolgrid [125] to translate the three-dimensional coordinates of the protein and
ligand pairs into a 3D grid representation. This grid is a vector of three-dimensional grids
of atom density called channels and each channel describes an atom property. In my case I
had 30 channels, the first 14 channels correspond to protein molecular properties and the
last channel is the void channel, which completes for the density of the voxels that had
values lower than the summed max density. The next 15 channels correspond to the 14
ligand molecular properties and the void ligand channel:

Protein channel properties: Aliphatic Hydrophobic Carbon, Aliphatic NonHydrophobe
Carbon, Aromatic Hydrophobic Carbon, Aromatic NonHydrophobe Carbon, Halogen, Ni-
trogen Acceptor, Nitrogen HDonor HAcceptor, Oxygen HAcceptor, Oxygen HDonor HAc-
ceptor, Sulfur, Phosphorus, Calcium, Zinc, GenericMetal, protein void.

Ligand channel properties: Aliphatic Hydrophobic Carbon, Aliphatic NonHydrophobe
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Carbon, Aromatic Hydrophobic Carbon, Aromatic NonHydrophobe Carbon, Bromine or Io-
dine, Chlorine, Fluorine, Nitrogen HAcceptor, Nitrogen HDonor HAcceptor, Oxygen HAc-
ceptor, Oxygen HDonor HAcceptor, Sulfur, Phosphorus, GenericMetal, ligand void.

To compute the atom density at a grid point, the function shown on Equation 4.1 and
implemented in Libmolgrid, was used. In this function, r is the van der Waals radius and
d is the distance from the atom center. The function A(d, r) is a continuous Gaussian from
the atom center to the van der Waals radius, that turns to 0 when the distance is 1.5 times
the van der Waals radius. [112]

A(d, r) =


e−

2d2

r2 , 0 ≤ d ≥ r
4

e2r2
d2 − 12

e2r
d+ 9

e2
, r ≤ d ≥ 1.5r

0, d ≥ 1.5r

(4.1)

The grids had a resolution of 1.0 and a dimension along each side of the cube of 24
Å. This process is also called voxelization. To locate the binding site of the protein to be
voxelized, the center of the docked ligands was taken as reference to set the grid position.
The atom density values of both the protein and the ligand were translated and randomly
rotated before being voxelized during the training process.

The network architecture was kept as described by Skalic et.al. [126] However, to train
the BicycleGAN the cVAE-GAN and cLR-GAN objective functions were changed and com-
bined into Equation 4.2.

G,E = argminG,E maxD MSEV AE
GAN(G,D,E)

+λCEV AE(G,E) +MSEGAN(D,G)

+λlatentL
laltent
1 (G,E) + λKLLKL(E)

(4.2)

Where G is the generator, E the encoder and D the discriminator. MSEV AE
GAN(D,G,E)

represents the mean squared error adversarial loss of the cVAE-GAN, CEV AE(G,E) is the
Cross Entropy (CE) loss measuring the reconstruction of the ligand,MSEGAN(G,D) is the
mean squared error adversarial loss for the cLR-GAN, Llatent

1 is the L1 latent reconstruction
loss and LKL is the KLDivergence distribution loss between the Encoder’s distribution and
a standard normal Gaussian distribution. The parameters λ, λlatent and λKL are weights
controlling the relative importance of each term and were set to λ =10, λlatent= 0.5 and
λKL=0.01.

As input to the discriminator, I concatenated the grid representation of the protein and
ligand. The dimension of the latent vector (Z) was set to 8. Networks were optimized with
the Adam optimizer, with a learning rate of 5.10−4 that was kept constant during training.
The training was done for a total of 5,798 epochs. I measured the Pearson Correlation
coefficient per channel, between the training ligand and the generated ligand, to monitor
the evolution of the ligand reconstruction. The training was stopped once the Pearson
Correlation, cross entropy and the adversarial loss stopped improving.
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4.2.2 Captioning network

The captioning network has two components, a VAE and an Encoder-Decoder. The VAE is
only used during training, to add noise to the voxelized ligands so that they can resemble
the generated ligand shape outputs from the BicycleGAN. The Encoder is a CNN that will
produce a vector representation of the ligand shape for the Decoder, which is an LSTM
network and will translate the feature vector into a sequence of SMILES, Figure 4.5.

Figure 4.5: Schema of the captioning network architecture. The VAE is used during
training to add noise to the voxelized ligands that will be used to train the captioning net-
work. It has two CNNs: the encoder E1 and the decoder D1. Q(z|L) is the distribution of
the latent variable z given the ligand shape L, N(0,I) is a standard normal Gaussian distri-
bution and KL is the KLDivergence. The captioning network is composed of an encoder
(E2), which is a convolutional neural network and a decoder (D2), which is an LSTM with
an input state (xt) and a hidden state (ht), at time t. The encoder takes as input the noisy
ligand shape generated by the VAE (Ł) and compresses it into a vector that is given as in-
put to D2 with the SMILES vector. D2 outputs a sequence of letters or SMILES encoding a
compound.

4.2.2.1 Data collection

To construct the database to train the captioning network I used an in-house database, al-
ready pre-processed for docking that containsmolecular structures extracted fromMolPort.
I did a filtering to get those SMILES containing only the following symbols: C, c, N, n, S, s, P,
O, o, B, F ,I, Cl, [nH], Br, 1, 2, 3, 4, 5, 6,# ,=, -, ( ,). Having the low energy three-dimensional
structure of the ligands allowed me to reduce the data preparation time during training. In
the end I had 5,600,000 compounds stored as sdf that were processed and stored in an HDF5
binary data format using h5py and rdkit scripts, where the keys are the SMILES and the
values are the 3D coordinates for each compound.

The input to the captioning network are the grid of three-dimensional coordinates of
each ligand, the length of the SMILES and the SMILES. The ligands were rotated before
being voxelized which was performed with libmolgrid, as it was already described. [125]
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4.2.2.2 Training setup

The VAE architecture was kept as described by Skalic et.al. [180] The VAE objective func-
tion is show on Equation 4.3:

V AEloss = CEV AE(E,Dec) + LKL(E)β (4.3)

Where E is the CNN encoder and D is the CNN decoder. CEV AE is the cross entropy
loss measuring the reconstruction of the ligand andLKL is the KLDivergence loss to ensure
the latent space distribution found by the Encoder is similar to a standard normal Gaussian
distribution. The parameter β ranges from 0 to 1 and are values from a sigmoid function
S(x) = 1

1+e−x , were x are numbers between -10 and 10. For the LSTM, both the encoder and
decoder doing the captioning, have as objective function the cross entropy loss between the
class probabilities that are the output of the Decoder and the actual SMILES symbol indexes.

The VAE was optimized with the Adam optimizer (α= 5.10−4) and the learning rate
was reduced by half every 10,000 iterations. I trained the VAE for 5 epochs, until I ob-
served the Pearson Correlation per channel between generated ligand shapes and real lig-
and shapes stopped improving. Afterwards, the Encoder and Decoder doing the captioning,
were trained for 128 epochs until I observed the cross entropy loss stopped improving. They
were optimized with the Adam optimizer (α = 1.10−3) and the learning rate was reduced
by half if the epoch number was divisible by 2 and the iteration number was divisible by
21000.

4.2.3 Filtering and docking of generated compounds by synthetic
feasibility

I decided to use synthetic feasibility, as the criteria to filter the generated compounds. The
Synthetic Accessibility (SA) score [181], Retrosynthetic Accessibility (RA)score [182] and
the Synthetic Complexity (SC)Score [183] score were calculated for each compound. The
SA score ranges from 1 (easy to synthesize) to 10 (very difficult to synthesize) and combines
fragment contribution and a complexity penalty. If a given molecule has fragments com-
monly present in PubChem and not many complex features (large rings, non-standard ring
fusions, stereo complexity and largemolecule size) it will get a score close to 1. The SCScore
ranges from 1 (easy to synthesize) to 5 (difficult to synthesize). It uses reaction knowledge
that gives high scores to compounds that would require a lot of reaction steps to be syn-
thesized. The RAScore is a probability that serves as a fast first approach to determine if
a synthetic route can be identified for a molecular compound by the CASP tool AiZyn-
thFinder. [184] AiZynthFinder tries to find a synthetic route for a compound by recursively
breaking it down into purchasable precursors. AiZynthFinder is very time consuming and
can take up to 2 minutes per molecule which is why the RAScore was implemented. I
could not find an agreement as to which value to set up as a threshold to keep or not
the generated ligands. So I calculated these scores for 10000 generated compounds for the
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sodium-dependent serotonin transporter (SC6A4_HUMAN), on my test set, and observed
the correlation between scores to select 3.5 as the threshold for SA score and SCScore and
0.7 for the RAscore. Finally, only the compounds that have good synthetic feasibility scores
were analyzed with AiZynthFinder and those with the shortest predicted synthetic path
were selected to be pre-processed and docked with smina, as described before.

4.2.4 Models analysis

The first thing Iwanted to evaluatewas howdiverse the generated shapeswere andwhether
the captioning network that was trained with a different dataset from the shape generating
network, was able to decode the generated shapes efficiently. To evaluate this, I selected
two proteins from the evaluation set: the progesterone receptor (P06401, PRGR_HUMAN)
and the carbonic anhydrase 2 (P00918, CAH2_HUMAN); and two proteins from the test
set: the sodium-dependent serotonin transporter (P31645, SC6A4_HUMAN) and the sigma
non-opioid intracellular receptor 1 (Q99720, SGMR1_HUMAN). These proteins had more
than 900 binders or binders in the binding database. The docked poses of the binders were
voxelized and given as input to the captioning network. Then the proteinwas also voxelized
at the ligand center and given to the shape generation network with a vector z (randomly
sampled from a standard normal distribution) as input, to generate complementary shapes.
The ligand shapes were decoded into 10,000 SMILES by the captioning network.

The generated shapes were pairwise compared with the Pearson correlation per chan-
nel. I randomly sampled as many generated shapes and SMILES as the number of binders
I had for each protein. I added all the values per channel for the generated shapes and
the voxelized binders and compared the distribution of these values. To study the caption-
ing network I calculated the hydrogen-bond donors, hydrogen-bond acceptors, number of
aromatic rings, number of aliphatic rings, number of rotatable bonds, number of halogens,
molecular weight, topological polar surface area (TPSA) and the partition coefficient of
a molecule between aqueous and lipophilic phases (LogP), for generated compounds and
binders and compared their distributions. In addition I also compared the distribution of the
number of characters (or lengths) of generated SMILES with the distribution of the lengths
of the binders.

4.3 Results

It is possible to generate 10,000 ligand shapes for a protein pocket in less than 4 minutes.
Afterwards 25,000 SMILES can be decoded in less than 3 minutes and from these generated
SMILES nearly 40% will be chemically correct.
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Figure 4.6: Example of generated shape and compounds for the progesterone recep-
tor. The generator on the shape generation network takes as input the voxelized proges-
terone binding site and outputs a ligand shape. Then the encoder takes this ligand shape
and encodes it into a latent vector that is the input to the decoder which will generate
strings of SMILES.

Pairwise comparisons of the generated ligand shapes for each protein indicate that the
generated shapes are very similar to each other with pearson correlation per channel av-
erage values ranging between 0.95-0.98, with most of the variability in the least populated
channels encoding halogens, S, and P. In addition, a narrow distribution of the channel
sums, over all the channels shown in the boxplots on Figure 4.7 and on Figure 4.8 suggests
the generated shapes might not be very different from each other. Overall, larger density
sums per channel on the generated shapes as compared to binders shapes, might indicate
the shapes of generated ligands are bigger than the ligand shapes of voxelized binders. In
particular for the channels with aliphatic hydrophobic atom densities. Generated shapes
are most likely covering the entire protein pocket and contain in a single shape, all the
chemical properties complementary to the protein pocket. In this case, it does not make
sense to expect the generator to produce different shapes with each randomly sampled z,
since the complementary chemical properties of the pocket should not change. The diver-
sity of ligands is obtained in the captioning step since different atoms can be associated
to the same property. No difference was observed between the generated shapes for the
proteins in the evaluation and the test sets which suggests the shape generation network
performs well for protein with binding sites not similar to those observed during train-
ing. One interesting difference between generated compounds and binders is observed in
the channel with sulfur. This atom underrepresented in the trained data is less likely to
be present in generated compounds, the same could be the case for P and metals. How-
ever, compounds could be quickly generated until a desired minimum of S, P or metals are
present on the generated chemical structures. The small densities on aromatic channels are
interesting and unexpected to see.

Afterwards the distribution of the molecular properties of the generated compounds
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Figure 4.7: Distribution of the summation of each channel values on the generated
molecules. These box plots depict the distribution of the channel values sum on the x axis
and the channel descriptor on the y axis, for the two proteins in the evaluation set.
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Figure 4.8: Distribution of the summation of each channel values on the generated
molecules. These box plots depict the distribution of the channel values sum on the x axis
and the channel descriptor on the y axis, for the two proteins in the test set.
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and binders was compared. I observed that generated compounds have on average more
aliphatic rings, halogens, hydrogen bond acceptors, hydrogen bond donors and rotatable
bonds. Which again suggests that these compounds might be bigger than the binders. The
most striking difference between generated compounds and binders is the number of aro-
matic rings which are between 0 to 1 for generated compounds and 2 to 4 for binders.
However, aromatic compounds are still generated and since thousands of molecules can be
produced in a matter of seconds a rule can be applied on the generation step to produce
new molecules until N molecules with 2,3, or 4 aromatic rings are generated. A possible
explanation for this behavior is that the network stayed in a local minima where it is more
likely to get a good score when it generates rings in uppercase, which encodes aliphatic
toms and rings in SMILES representation, instead of switching to lowercase letter which
encode aromatic rings in the canonical SMILES representation used to train the model.

Figure 4.9: Distribution of ring, bond and atoms counts. These boxplots show the
distribution of the number of aliphatic and aromatics rings, hydrogen bond donors and
acceptors as well as the number of halogens and rotatable bonds on known binders and
generated compounds.

It is surprising to see that the estimated LogP of the generated compounds follows a
similar distribution to the estimated LogP of the known binders (Figure 4.10). The higher
molecular weights between 500-600 Da also suggest that shapes and compounds are gen-
erated to cover the entire voxelized protein pocket and suggests most generated molecules
will be larger than the majority of known drug-like compounds. The TPSA values for most
of the generated compounds are below 140 A2 which suggests that generated compounds
could still be able to permeate cell membranes. It is also interesting to see that the TPSA
values for the generated compounds of proteins in the evaluation set have a narrow and
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similar distribution to those of the known binders for CAH2_HUMAN and PRGR_HUMAN,
less so for SGMR1_HUMAN and SC6A4_HUMAN.

Figure 4.10: Distribution of LogP, TPSA and MW of generate compounds and
binders. This figure compares the distribution of the LogP, TPSA and MW of the gen-
erated compounds and binders for each protein.
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When I compared the distribution of the lengths of the generated canonical SMILES
to the length of the canonical SMILES of known binders I observed that generated com-
pounds have SMILES with more symbols. Which is not surprising considering the gener-
ated molecules are bigger. On average, the SMILES have lengths between 60-70 symbols. It
is important to point out that the maximum number of symbols we allowed each SMILES
string to have during training is 72. This is the length of the captioning embedding. During
early stages of training I observed the generated SMILES had between 20 and 30 charac-
ters but the network optimized towards SMILES with the maximum number of symbols.
This behavior raises the question of whether or not the models are capable of generating
molecules that will adapt to protein pockets with different sizes.

Figure 4.11: Distribution of SMILES lengths of generated compounds and binders.
This figure compares the distribution of the SMILES length of the generated compounds
and binders for each protein.

I observed the generated compounds had SAscores between 4.5 and 5.4. This score
suggests that not many of the fragments from generated compounds are present in the
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fragments found on PubChem. The generated compounds might be penalized due to their
higher molecular size. The SCscore for CAH2_HUMAN and SC6A4_HUMAN indicates
the generated compounds would require many reaction steps to be synthesized. From
their RAScores the median probability to find a predicted retrosynthetic route by AiZyn-
thFinder for generated compounds is 40%. The generated compounds for PRGR_HUMAN
and SGMR1_HUMAN have both SCscores and RAscores suggesting it will be difficult to
obtain compounds with a predicted retrosynthetic route. After applying the synthetic fea-
sibility thresholds (SAscore, SCScore, RAscore) on the 10,000 compounds generated for each
protein 2% of the generated compounds for CAH2_HUMAN, 0.8% of the generated com-
pounds for PRGR_HUMAN, 20.3% of SC6A4_HUMAN and 13% of SGMR1_HUMAN gen-
erated compounds were selected. Finally, AiZynthFinder was able to propose a retrosyn-
thetic route for 101 compounds for CAH2_HUMAN, 16 compounds for PRGR_HUMAN,
1,852 for SC6A4_HUMAN and 241 for SGMR1_HUMAN. For these compounds I used rd-
kit’s quantitative estimation of drug likeness (QED) as the last filter to select generated
compounds to be docked. QED evaluates the number of favorable drug like properties
the compounds have and ranges from 0 (all properties unfavourable) to one (all properties
favourable). I selected only those compounds with QED scores higher than 0.5.

Figure 4.12: Distribution of the synthetic feasibility scores chose to filter the gener-
ated compounds for each protein. This figure compares the three synthetic feasibility
scores for all generated compounds. The scores are: the SA score (1 easy to synthesize, 10
very difficult to synthesize), the SCScor (1 easy to synthesize, 5 difficult to synthesize) and
the RAScore (probability to get a synthetic route with AiZynthFinder).
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4.3.1 Application of themodels onCAH2_HUMAN, SC6A4_HUMAN
and α4α5β2 nAChRs

The compounds that passed the synthetic feasibility filters and had the best drug-likeness
scores were docked. On Figure 4.13 two of the generated compounds with the best docking
scores are shown. I used the protein–ligand interaction profiler (PLIP) [185] to visualize the
interactions between the docked generated ligand and the proteins. The generatedmolecule
shown bound to CAH2_HUMAN, is not a pan assay interference compound, as predicted by
the PAINS remover [186] and the ADME-Tox properties predicted by the SwissADME tool
[178] indicate this compound is likely to be a P-glycoprotein substrate which could pump
this compound out of the cell to be cleared from the body. In addition, this molecule has a
high molecular weight (564 Da) and TPSA (147.04 Å2) which makes it moderately soluble
but with low gastrointestinal absorption and unlikely to cross the blood brain barrier. With
its large size and many heavy hetero atoms the molecule can form two hydrogen bond
between the oxygen of the amide in the pyridine and THR199, a hydrogen bond with the
nitrogen of this amide and HIS94, another hydrogen bond between the nitrogen of the
piperazine group and THR200 as well as a hydrogen bond between the pyrymidine and
PRO201. I obtained 5 different predicted reaction paths proposed by AiZynthFinder [184]
for this compound. All paths have similar steps to the reaction path shown on Figure 4.14,
which includes a series of nucleophilic aromatic substitutions with Cl as leaving group and
either piperazine or piperidine as nucleophile and the conversion of a nitrile into an amide.

The generated compound for SC6A4_HUMAN has a lower molecular weight and TPSA
(529 Da, 73.71 Å2), does not contain any functional groups that would suggest it could be
a pan-assay interference compound. This molecule has moderate solubility, good gastroin-
testinal absorption and is likely to be able to cross the blood brain barrier. It forms salt bridge
with the interaction between the tertiary amine and ASP98, a hydrogen bond between the
carbonyl following the piperidine and THR497, a π stacking interaction between benzene
and TYR176 and other weaker hydrophobic interactions. To synthesize this compound,
AiZynthFinder predicted 11 different hypothetical synthetic paths like the one shown on
Figure 4.15. The first steps of this hypothetical reaction path include the halogenation of
the carbon atom bound to the carbonyl group and the reduction and deoxygenation of the
carbonyl group on the N-Methylformamide, followed by the nucleophilic substitution of Br,
then the conversion of a ketone into amine using reductive amination, the reaction between
the amine and the carboxylic acid to form an amide and finally the nucleophilic aromatic
substitution with Br as the leaving group and the piperidine as the nucleophile.

Finally I decided to see how the generative model would perform on the four pockets
extracted from the trajectory of the α4α5β2 nAChRs after the cavity analysis. The first
cavity that I will call cavity 206, is located in the ECD of α5 behind the loop-C and facing
the ion pore. The selected generated compound is shown on Figure 4.16. This compound
was not marked as a pan assay interference compound. Its ADME-Tox properties imply,
this compound is very soluble, with a high gastrointestinal absorption and not likely to
cross the blood brain barrier. It has 12 rotatable bonds which could increase the entropic
penalty of the ligand and reduce its affinity to the receptor (if it could reach it). From
the selected docking pose we can observe this compound forms a hydrogen bond between

70



De novo compound generation for α4α5β2 nAChRs

Figure 4.13: Selected generated compounds with the best docking poses to
CAH2_HUMAN and SC6A4_HUMAN. The left side shows all the protein-ligand inter-
actions obtained with PLIP and the types of interactions. On the right side the structure of
the generated compound.
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Figure 4.14: Predicted synthetic route for the generated compound docked to
CAH2_HUMAN. This figure depicts a potential synthetic route, precursors and intermedi-
ate reaction steps to synthesize the generated compound for CAH2_HUMAN, as proposed
by AiZynthFinder

Figure 4.15: Predicted Synthetic route for the generated compound docked to
SC6A4_HUMAN. This figure depicts a potential synthetic route, precursor and intermedi-
ate reaction steps to synthesize the generated compound for SC6A4_HUMAN , as proposed
by AiZynthFinder
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SER84 and the oxygen of the ether group, a hydrogen bond between the ASP85 and the
oxygen of the carbonyl group on the tertiary amide, another hydrogen bond between the
secondary amide and ILE92, a hydrogen bond between LEU94 and the nitrile, a hydrogen
bond between LYS107 and the oxygen of the carbonyl bound to piperidine as well as π-
stacking interaction between HIS104 and the thiophene. The 10 reaction paths proposed
by AiZynthFinder look similar to what is shown on Figure 4.17. First the electrophilic
Addition of nitromethane on the double bond, followed by the acid medium reduction of
nitromethane into a primary amine, then the nucleophilic addition of piperidine to the
electrophilic carbon of the carbonyl group and finally a last nucleophilic addition of the
primary amine to the electrophilic carbon of the carbonyl group.

Cavity 174 is formed between the TM1 and TM2 helices of α5 and the TM2 and TM3
heliced of β2. The compound shown on Figure 4.16 bound to this cavity, was not classified
to be a pan assay interference compound and has good predicted ADME-Tox properties
since it is water soluble, has good gastrointestinal absorption and is likely to cross the
blood brain barrier. It binds to the α4α5β2 receptor by forming a hydrogen bond between
the oxygen on the carboxylic group THR242 and SER246 as well as other hydrophobic
interactions. Other compounds generated for this pocked were also forming π-stacking
interactions with PHE245. From the hypothetical AiZynthFinder reaction path we observe
that: two independent reactions can take place: first, the esterification of the carboxylic
acid with methanol and the replacement of the -OH group in the primary alcohol by Br
(a reaction that makes sense theoretically but with a very slow rate in reality). Then the
reaction between cyclobutane, which has no double bond and is not nucleophilic, with
bromine. This reaction will not take place unless head or light is applied to it. Finally the
nucleophilic substitution of Cl Figure 4.18.

For the process of shape generation and shape captioning I decided to consider the
cavities 104 and 165 as one since they merge in the activated frame of the α4α5β2 receptor’s
trajectory. This cavity is located in the TMD of α5. The chosen ligand bound to 104-165 is
shown in Figure 4.16 is not a pan assay interference compound, is also soluble and has a
good predicted gastrointestinal absorption but is unlikely to cross the blood brain barrier.
It also has 12 rotatable bonds which could affect its binding to the receptor. It forms a
hydrogen bond between the tetrahydropyran andASN216, another hydrogen bond between
the nitrogen in the thiocarbonyl and ILE217 as well as several hydrophobic interactions. 5
different reactions were proposed, with most of them having between 2 to 4 steps. The
hypothetical reaction shown in Figure 4.19 involves the nucleophilic attack of the primary
amine to the electrophilic Cl-carbon bond followed by a second nucleophilic substitution
of the -OH group in the carboxylic group by the secondary amine.

4.4 Conclusion and discussion

The training of the bicycleGAN was difficult and took about a month on a single Nvidia
GTX 1080TI GPU, once optimal parameters has been identified. We were able to stabilize
the training by adding the void channel and by normalizing the tensor so the 15 channels
add to one on each voxel. The similarity of the produced ligand shapes for a protein indi-
cates that the generator does not learn to generate a wide distribution of different ligand
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Figure 4.16: Selected generated compounds with the best docking poses to the 3
pockets selected from the cavity analysis performed on the α4α5β2 trajectory. The
left side shows all the protein-ligand interactions obtained with PLIP and the types of in-
teractions. On the right side the structure of the generated compound.
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Figure 4.17: Predicted synthetic route for the generated compound docked to cavity
206 located in the ECD of α5. This figure depicts a potential synthetic route, precur-
sors and intermediate reaction steps to synthesize the generated compound as proposed by
AiZynthFinder.

Figure 4.18: Predicted synthetic route for the generated compound docked to cavity
174 between the TMD of α5 and β2. This figure depicts a potential synthetic route, pre-
cursors and intermediate reaction steps to synthesize the generated compound as proposed
by AiZynthFinder.

Figure 4.19: Predicted synthetic route for the generated compound docked to cav-
ities 104 and 164 in the TMD of α5. This figure depicts a potential synthetic route,
precursors and intermediate reaction steps to synthesize the generated compound as pro-
posed by AiZynthFinder.
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shapes complementary to the protein pocket. What I observed from the summation over
the values for each channel of generated ligands is that, compared to experimentally known
binders, the generated shapes are likely to span and describe the entire protein pocket. The
reason why the generated shapes are not significantly different could be that in spite of
training the generator as part of the bicycleGAN, a model conceived to avoid mode col-
lapse, the generator gets trapped in a local minimum during training and suffers frommode
collapse, producing very similar ligand shapes for a protein pocket. Another explanation
to why the generated shapes are not significantly different could be that chemical comple-
mentary is actually not that diverse, e.g. if there is a hydrogen bond donor it will most
likely interact with a hydrogen bond acceptor or if there is a aromatic hydrophobic side
chain it is most likely to interact with other hydrophobic groups. Thus, a ligand shape with
complementary properties to a protein pocket might not have a large number of different
possible combinations. This raises the question of whether a simpler generative model like
a VAE or a VAE-GAN could have been trained to produce the ligand shapes instead of the
complex bicycleGAN.

During the training of the captioning network the VAE used to add noise to voxelized
ligands was impossible to train until I added a weight to the KLDivergence in the objective
function. This weight takes values from a sigmoid distribution so that I could down-weight
the contribution of the KLDivergence to the objective function and give priority to the
reconstruction of the ligands at the beginning of the training. The captioning network was
trained without difficulties and I was quite impressed with the complementarity between
the generated ligand shapes and the atoms encoded into the SMILES by the decoder, given
that the shape and the captioning networks were trained separately with different data sets.
I observed that generated shapes had large channel sums over the aliphatic hydrophobic
channel and the captioning network produced mostly SMILES with aliphatic rings instead
of aromatic rings. It is also very interesting to observe the diverse functional groups that
the captioning network is able to combine for a single ligand shape and still be able to
produce correct SMILES. I was also happy to see the presence of less represented atoms in
the training data, like halogens and sulfur, being integrated into the generated SMILES.

I noticed the network performsmuch better generating compounds for large and solvent
exposed pockets, as it is the case for the carbonic anhydrase 2 (CAH2_HUMAN) or the
cavity 206 on α5 facing the ion pore. While I had more difficulties finding adequate ligands
for the smaller cavities in the TMD of α5. This is likely due to the network generating
compounds with on average, no or only one aromatic ring per molecule. I did observe that
the generated ligands for the cavities on α5 were smaller than those generated for the other
4 proteins I studied.

Another issue I observed was the small number of generated compounds that were kept
after the filtering based on synthetic feasibility scores. These numberswere even lower after
using AiZynthFinder to select only those compounds with a predicted synthetic route and
among these compounds still half of them had to be removed before docking because they
did not have drug-like properties and presented a large number of rotatable bonds or high
molecular weight. This filtering proved to be hihgly selective. Ideally, it would be more
interesting to be able to train generative models to generate only molecules with desirable
drug-like and ADME-Tox properties. Something that could be done with the model I have
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trained and described in this chaper, is setting up a pipeline to keep generating compounds
until N compounds with desired properties have been generated. This is feasible since the
process of shape captioning is not time consuming. With this pipeline implemented I would
re-generate new small, lipid soluble molecules for the α4α5β2 nAChR that would be more
likely to be able to cross the blood brain barrier by transmembrane diffusion.
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General conclusion and perspectives

During the development of this research project I learned and documented themethodology
to produce the α4α5β2 models in resting, activated and desensitized states. I presented an
overview of the currently available experimental structures that can be used as templates to
model other eukaryotic cation selective PLGICS, as well as their structural features agree-
ment and disagreement. These models can now be used to study the functional motions of
α4α5β2 and can also be used for drug discovery projects. One aspect that could be improved
on the models is the position of the loop-C on the α5 subunit in desensitized state. This
subunit could be remodeled but this time using as templates α subunits with a loop-C that
closes completely to cap the orthosteric binding site.

Another important contribution is the first study of a transition path between three pos-
sible functional states of a PLGIC. The trajectory between these states provides a model to
study the gating cycle of α4α5β2 receptor and the possible synchrony between the bloom-
ing of the ECD and the twisting between the ECD and TMD. In the future it would be
interesting to characterize in detail the electrostatic and hydrophobic interactions chang-
ing in the interface between the ECD and TMD during the gating cycle. This information
is key to understanding how exactly the structural changes happening on each domain are
communicated. Another interesting analysis that could be done with the models is, intro-
ducing the SNP on the structures of α5 that has been associated with nicotine dependence
and lung cancer. This analysis could allow us to see if the SNP has an impact on the recep-
tor structure or on the gating cycle. Another contribution from this work is the prediction
of the three cavities present on the α5 subunit, only in the activated state. The cavities in
the TMD are particularly interesting, since there is evidence that PAMS could bind in an
allosteric binding site in the TMD.

I also collected and curated a data set to train a generative model to design novel chemi-
cal structures complementary to protein pockets. To tackle the issue of synthetic feasibility
that these models present, I integrated several scores to filter generated molecules and to
be able to have a synthetic route for all the compounds that can be used in further stud-
ies. The network produces chemically correct SMILES from ligand shapes, that integrate
a diverse number of functional groups. One of the limitations on the applicability of the
model is that most of the generated compounds don’t have drug-like properties or don’t
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have desired ADME-Tox properties. I also observed the network produces less meaningful
compounds for small hydrophobic pockets, as is the case for the pockets in the TMD of
α5. To solve this issue, it would be feasible to implement a pipeline that would filter the
compounds that don’t have desired properties and continue the process of ligand gener-
ation until the desired number of generated ligands has been reached. Once this pipeline
has been set up specific properties can be sought and a new set of compounds could be
generated for the allosteric cavity and the new cavities in the α4α5β2 receptor.
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Supplementary data

Figure 6.1: Sequence of the α4,α5,β2 subunits of the modeled receptor
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