
HAL Id: tel-04381693
https://theses.hal.science/tel-04381693

Submitted on 9 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards efficient quantum algorithms for optimization
and sampling

Dániel Szilágyi

To cite this version:
Dániel Szilágyi. Towards efficient quantum algorithms for optimization and sampling. Other [cs.OH].
Université Paris Cité, 2022. English. �NNT : 2022UNIP7185�. �tel-04381693�

https://theses.hal.science/tel-04381693
https://hal.archives-ouvertes.fr

Université Paris Cité
École Doctorale Sciences Mathématiques de Paris Centre (386)

Institut de Recherche en Informatique Fondamentale

Towards efficient quantum algorithms
for optimization and sampling

par Dániel SZILÁGYI

Thèse de Doctorat en Informatique

dirigée par Iordanis KERENIDIS

Présentée et soutenue publiquement le 20 Octobre 2022, devant un jury composé de :

Iordanis KERENIDIS Directeur de Recherche, CNRS, IRIF, Paris Directeur de thèse

Alain DURMUS Maître de Conférence, ENS Paris-Saclay Rapporteur
Jérémie ROLAND Professeur, Université Libre de Bruxelles Rapporteur

Omar FAWZI Directeur de Recherche, ENS de Lyon Examinateur
Stacey JEFFERY Senior Researcher, CWI, Amsterdam Examinatrice
Sophie LAPLANTE Directrice de Recherche, CNRS, IRIF, Paris Examinatrice

Acknowledgments

Three years ago, that February Thursday was a day just like any other – until it wasn’t. I was
minding my own business at the office, thinking that I solved my internship problem (spoiler: I
did not), when I got a short email from Iordanis: “Could you come to my office when you have
five minutes?”. My mind raced to remember if I did anything wrong, or if I managed to break
something during the first month of my internship at IRIF. It turned out that I did neither,
but there was a call for applications for a PhD position, closing the following day. We applied
without much hesitation and got the funding several months later. After three years of work,
I ended up with some Theorems that I present in the rest of this document. However, as the
saying goes, maybe the real treasure thesis was the friends that we made along the way. So, now
it is time to acknowledge and thank those people.

First of all, I would like to thank Iordanis for offering me the opportunity and guiding me
through the highs and lows of this thesis. I could not have wished for a better supervisor.
Together with Ale, Jonas and Amine, we spent many a productive meeting discussing the future
of quantum computing. Next, there is Sander, who became my academic-adoptive-older-brother,
he put up a truly valiant effort fielding my questions about research, cycling, and everything in
between. Similarly, this thesis would not have existed without my coauthors Simon and Anupam,
who taught me about scientific rigor, meticulousness, as well as a great deal of mathematics.
Finally, I would like to thank all the members of the jury, who read this thesis with great care.

Of course, I did not spend all (or even most) of my time hunched over a piece of paper.
An integral part of my experience at IRIF were the lunches, long coffee breaks, and after-work
activities. This all started with Simon, Yassine, Mikaël, Zhou, Amaury and Yixin, who kept
inviting me to join them for lunch every day for six months until I finally could. Then came
my office-mates Robin and Avi, who provided support when the morale was low, and quality
banter when the spirits were high. The atmosphere at IRIF was remarkably international, as
I could speak Serbian with Simona, Hungarian with Dániel, Slovene with Klara, and English
and French with everyone else. Many awesome people came and left in the subsequent years,
and many a drink was drunk with Pierre, Anupa, Filippo, Enrique, Wael, Mouna, Gabriel,
Geoffroy and Patrick. Thanks Frédéric for cultivating such a welcoming atmosphere in the lab,
and thanks Eva, Etienne, Jemuel and Maximilien for helping me out when not everything was
smooth sailing.

I can not complain about the life outside of the office, either. For that, I can thank my
flatmate Ognjen, who kept me fed and supplied with the finest specialty coffee one can buy in
Europe. Speaking of which, many have influenced my life these years from different corners of
Europe. Tapping away on their phones from the Netherlands, Serbia and Finland, Aleksandar,
Dušan and Marko provided me with a steady stream firehose of distractions, as well as occasional
nuggets of wisdom about the research questions I had. I shared countless technical discussions
with Joel in Sweden, while Marko and Slađa made me feel like at home in Belgium.

Still, there is no place like home (or, as I started calling it, “home home”). Whenever I
visited Novi Sad, I knew that I could always relax and unwind with my high school friends
Miloš, Vukašin2, Nikola, Ilija, Zoran and Nemanja. No visit home would be complete without a
visit to Belgrade, where I always enjoyed catching up with my friends Vladan, Nikola, Marija
and Ema from Petnica. Finally, I would like to thank my family, who have stood by me for the
last 27 years. Without the continued support of my parents Rozália and Csaba, and my sisters
Krisztina and Éva, I would not be where I am now.

i

Résumé

Récemment, avec l’avènement du big data et de l’apprentissage machine à grande échelle, il y a eu
une demande croissante pour des algorithmes quantiques qui seraient plus directement applicables à
des problèmes pertinents en pratique. Dans cette thèse, nous présentons trois algorithmes qui visent
à nous rapprocher de cet objectif.

Premièrement, nous développons un algorithme quantique pour l’optimisation conique du second
ordre, une classe de problèmes d’optimisation qui se situe entre les programmes linéaires et semi-
définis en termes d’expressivité et de facilité de résolution. Ces problèmes sont le plus souvent résolus
avec l’aide d’une méthode de point intérieur, dont la complexité est principalement imposée par le
coût de la résolution d’une série de systèmes linéaires. Dans notre algorithme, nous résolvons ces
systèmes linéaires de manière approximative à l’aide d’un algorithme quantique, et nous prouvons
que la méthode des points intérieurs qui en résulte converge vers la solution correcte en un même
nombre d’itérations. Nous donnons des preuves numériques que l’algorithme fournit des accélérations
de bout en bout dans certaines applications de faible précision telles que les machines à vecteurs de
support et l’optimisation de portefeuille financier.

L’algorithme des systèmes linéaires quantiques que nous utilisons est le résultat d’une longue
ligne de recherche engendrée par l’algorithme de système linéaire quantique de Harrow, Hassidim
et Lloyd. Bien qu’il ait été prouvé qu’il est asymptotiquement optimal, le circuit correspondant
compliqué et nécessite un prétraitement classique. La deuxième contribution de cette thèse est un
algorithme quantique amélioré pour les systèmes linéaires, basé sur la méthode classique optimale
de l’itération de Chebyshev.

Enfin, nous observons que les algorithmes susmentionnés ont la propriété commune d’approximer
l’unique vraie solution du problème donné. En général, la conception de tels algorithmes quantiques
est difficile, car souvent la seule façon de récupérer (une approximation de) la vraie solution est
d’exécuter l’algorithme plusieurs fois (soit naïvement, soit par amplification d’amplitude) et de
calculer certaines statistiques (par exemple la moyenne) des sorties mesurées. Si les ordinateurs
quantiques donnent intrinsèquement accès à l’échantillonnage de leurs sorties, pourrions-nous les
exploiter pour accélérer les problèmes d’échantillonnage classiques ? De manière surprenante, il
s’avère que l’échantillonnage gaussien n’est pas un problème complètement résolu, même sur les
ordinateurs classiques. Notre troisième contribution est un algorithme de Monte Carlo hamiltonien
classique pour l’échantillonnage gaussien dans le modèle d’interrogation du premier ordre. Nous
surmontons et contournons plusieurs bornes inférieures en prenant des pas longues et aléatoires
pour intégrer le hamiltonien au cœur de l’algorithme.

Mot-clés : algorithmes quantiques, systèmes linéaires, optimisation conique du second ordre, ma-
chines à vecteurs de support, optimisation de portefeuille, échantillonnage, Monte Carlo hamiltonien.

iii

Summary

Recently, with the advent of big data and large-scale machine learning, there has been an increasing
demand for quantum algorithms that would be more directly applicable to practically-relevant
problems. In this thesis we present three algorithms that aim to take us closer to this goal.

Firstly, we develop a quantum algorithm for second-order cone programming, a class of optimiza-
tion problems that is between linear and semidefinite programs in terms of expressivity and ease of
solving. These problems are most commonly solved using interior-point methods, the complexity
of which is mainly dictated by the cost of solving a series of linear systems. In our algorithm we
solve these linear systems approximately using a quantum linear system solver, and prove that the
resulting interior-point method converges to the correct solution in the same number of iterations.
We give numerical evidence that the algorithm provides end-to-end speedups in certain low-precision
applications such as support-vector machines and portfolio optimization.

The quantum linear system solver that we use is the result of a long line of research spawned by
the quantum linear system algorithm of Harrow, Hassidim and Lloyd. While it has been proven
to be asymptotically optimal, its corresponding circuit is nontrivial and requires some classical
preprocessing. The second contribution of this thesis is an improved quantum algorithm for linear
systems, based on the optimal classical method of Chebyshev iteration.

Finally, we observe that the aforementioned algorithms have the common property of approxi-
mating the unique true solution of the input problem. In general, designing such quantum algorithms
is nontrivial, as often the only way of recovering (an approximation to) the true solution is by
running the algorithm many times (either naively or via amplitude amplification) and computing
some statistics (e.g. the mean) of the measured outputs. If quantum computers intrinsically provide
sampling access to their outputs, could we exploit them to speed up classically-relevant sampling
problems? Surprisingly, it turns out that Gaussian sampling is not a completely solved problem, even
on classical computers. Our third contribution is a classical Hamiltonian Monte Carlo algorithm for
Gaussian sampling in first-order query model. We overcome and sidestep several lower bounds by
taking long and random steps for integrating the Hamiltonian in the heart of the algorithm.

Keywords: quantum algorithms, linear systems, second-order optimization, support-vector ma-
chines, portfolio optimization, sampling, Hamiltonian Monte Carlo.

v

Résumé long

Introduction

Il y a environ 40 ans, lorsqu’il est devenu évident que l’ordinateur était devenu un succès retentissant,
Richard Feynman a proposé un nouveau paradigme révolutionnaire pour s’attaquer aux problèmes
de calcul du 21e siècle, qu’il a appelé l’ordinateur quantique. Il est rapidement apparu que les
ordinateurs quantiques pouvaient fournir des accélérations dans des domaines sans rapport avec leur
objectif initial de simulation de la mécanique quantique. Alors que le travail de fond de Deutsch et
Penrose [DP85] et les premiers algorithmes de Bernstein et Vazirani [BV97] et Simon [Sim97]
manquaient d’applications pratiques immédiates, elles ont ouvert la voie au résultat historique de
Shor [Sho94], qui a exploité la transformation de Fourier quantique pour calculer les logarithmes
discrets en temps polynomial. Cet algorithme a suscité un grand intérêt dans ce domaine naissant,
ce qui a entraîné des avancées en cryptographie [Gis+02 ; BL17], théorie de la complexité [Wat09 ;
Ji+21], théorie du codage [LB13], ainsi que de nouveaux algorithmes quantiques [Gro96 ; Bra+02 ;
Sze04], pour n’en citer que quelques-uns. Nous renvoyons le lecteur à [Pre21] pour un aperçu récent
du domaine, ainsi qu’à [NC12] pour une discussion approfondie des résultats classiques.

Récemment, avec l’avènement du big data et de l’apprentissage automatique à grande échelle, il
y a eu une demande croissante d’algorithmes quantiques qui seraient plus directement applicables
à des problèmes pertinents en pratique. Le travail de Harrow, Hassidim et Lloyd [HHL09] a
fourni exactement cela : un algorithme quantique permettant de résoudre un système linéaire en
un temps poly-logarithmique dans la taille. Bien sûr, un tel temps d’exécution ne peut être atteint
qu’avec un modèle d’entrée et de sortie spécifique [Aar15], puisque lire naïvement l’entrée et écrire la
sortie aurait une complexité qui est quadratique (resp. linéaire) dans la dimension du système. Plus
précisément, l’algorithme de [HHL09] suppose que l’entrée est donnée comme un oracle quantique
qui permet d’interroger les éléments de l’entrée en superposition, et fournit une sortie sous la forme
de l’état quantique, qui peut être mesuré afin de récupérer un seul échantillon de la distribution
induite par le vecteur solution normalisé (approximatif). A première vue, l’utilité d’un tel algorithme
est discutable, avec un modèle d’entrée trop fort, et une sortie donnée sous une forme peu pratique.
Néanmoins, il s’avère que ce modèle d’entrée est raisonnable pour les matrices structurées (sous le
nom de codage en bloc [CGJ19]) tandis que la sortie du vecteur d’état peut être utilisée dans le cas
où il est creux, ou lorsque le système linéaire lui-même découle d’un problème d’échantillonnage.
Par exemple, l’algorithme du système de recommandation quantique de Kerenidis et Prakash
[KP17] fonctionne avec un modèle d’entrée étroitement lié et est construit de manière à ce que
l’échantillonnage soit la forme “naturelle” et souhaitée de la sortie.

Après [HHL09], la recherche a bifurqué dans deux directions différentes. D’une part, la commu-
nauté a travaillé à l’amélioration et à l’extension des éléments de base de l’algèbre linéaire quantique.
Notamment, Low, Yoder et Chuang [LYC16] ainsi que Low et Chuang [LC17a ; LC17b ; LC19]
ont introduit les techniques de qubitisation et de traitement du signal quantique, qui ont ensuite
été améliorées et généralisées par le cadre de la transformation quantique de la valeur singulière

vii

viii

de Gilyén, Su, Low et Wiebe [Gil+19]. Ce cadre permet d’appliquer un polynôme arbitraire à
une matrice codée en bloc, ce qui permet d’exprimer la simulation hamiltonienne, la résolution
de systèmes linéaires, l’amplification d’amplitude et de nombreux autres algorithmes de manière
unifiée [Mar+21]. D’autre part, de nombreux travaux ont été réalisés pour combiner ces éléments
de base afin de résoudre des problèmes plus compliqués (plus “de haut niveau”). Une ligne de
recherche notable a été lancée par Brandao et Svore [BS17b], qui ont proposé un algorithme
de résolution de programmes semi-définis (PSD). Ce travail a ensuite été amélioré par Brandão,
Kalev, Li, Lin, Svore et Wu [Bra+19], van Apeldoorn, Gilyén, Gribling et de Wolf
[vApe+17] et Apeldoorn et Gilyén [AG19]. Le solveur PSD de [KP20a] utilise une approche
légèrement différente, il est basé sur un analogue quantique robuste d’une méthode classique de
point intérieur (l’algorithme classique habituellement utilisé pour résoudre les PSD).

Dans la première moitié de cette thèse, nous nous appuyons sur les deux branches du riche
corpus de travaux mentionné ci-dessus. Nous présentons deux résultats principaux, dans l’ordre
chronologique : Chapitre 2 contient un algorithme (quantique) pour la programmation conique du
second ordre, et Chapitre 3 contient un algorithme quantique amélioré pour les systèmes linéaires.
Le premier est basé sur une analyse robuste d’une méthode classique de point intérieur [MT00 ;
AG03], et utilise un solveur de système linéaire quantique [HHL09 ; CKS17 ; CGJ19 ; Gil+19] pour
accélérer sa boucle interne. Ce dernier contient une légère amélioration des algorithmes de systèmes
linéaires susmentionnés, basée sur la méthode classique optimale d’itération de Tchebychev [Var00].

Les algorithmes de Chapitres 2 et 3 ont la propriété commune d’approcher l’unique vraie solution
du problème d’entrée. En général, la conception de tels algorithmes quantiques n’est pas triviale,
car souvent la seule façon de récupérer (une approximation de) la vraie solution est d’exécuter
l’algorithme de nombreuses fois (soit naïvement, soit par amplification d’amplitude) et de calculer
certaines statistiques (par exemple la moyenne) des sorties mesurées. Même si l’on peut borner
précisément le nombre d’exécutions nécessaires ainsi que la complexité du post-traitement classique,
une telle approche laisse un peu à désirer. Si les ordinateurs quantiques fournissent intrinsèquement
un accès d’échantillonnage à leurs sorties, pourrions-nous les exploiter pour accélérer les problèmes
d’échantillonnage classiques ? Une approche évidente pour ce faire serait de remplacer l’optimisation
locale dans chaque itération de la méthode de point intérieur de Chapitre 2 par une procédure
simple qui choisit l’itération suivante au hasard dans un voisinage du point courant. Il s’avère que
cette marche aléatoire peut être utilisée pour échantillonner un point uniforme dans un polytope, et
a déjà été analysée par Kannan et Narayanan [KN12], Narayanan [Nar16] et Sachdeva et
Vishnoi [SV16] sous le nom de la marche de Dikin. En particulier, le principal élément constitutif
de [Nar16] est une procédure d’échantillonnage à partir d’une loi gaussienne liée au hessien d’une
certaine fonction barrière.

Étonnamment, selon le modèle d’entrée, l’échantillonnage gaussien n’est pas un problème
complètement résolu, même sur les ordinateurs classiques. Bien sûr, dans le cas le plus simple où la
matrice de covariance est complètement donnée, il semble que l’on ne puisse pas faire beaucoup
mieux que l’algorithme traditionnel qui calcule (ou approche) l’inverse de la racine carrée de la
matrice de covariance. Le modèle de requête du premier ordre, où l’on compte les requêtes sur le
gradient de la log-densité, est plus intéressant. Ce modèle est étroitement lié aux différents modèles
d’entrée quantique dont nous avons parlé, et est le modèle naturel pour certaines applications telles
que l’échantillonnage de Thompson pour les bandits contextuels [Rus+18]. Les meilleurs algorithmes
de ce modèle sont basés sur les méthodes de Monte Carlo hamiltonien [Dua+87] et Langevin [Bes94 ;
RT96 ; RR98]. Ces algorithmes effectuent une marche aléatoire en intégrant de manière répétée la
dynamique hamiltonienne avec des conditions initiales aléatoires. Leur performance est limitée par
le nombre et la longeur des pas que l’on utilise pour approximer les intégrales, et les algorithmes
actuels ont été conjecturés comme étant optimaux [CV22 ; LST21]. Dans la seconde partie de la

ix

thèse (Chapitre 4), nous contournons ces bornes inférieures avec un algorithme qui prend des étapes
d’intégration longues et aléatoires.

Nous décrivons nos contributions de manière plus détaillée.

Algorithmes quantiques

L’ensemble du domaine de l’algèbre linéaire quantique est rendu possible par une simple observation :
nous pouvons identifier un vecteur unitaire 𝐱 ∈ ℝ2𝑘 avec l’état |𝐱⟩ ∶= ∑2𝑘

𝑖=1 𝑥𝑖 |𝑖⟩ sur seulement
𝑘 qubits. Dans ce cadre, les matrices doivent avoir une norme bornée, nous encodons donc une
matrice 𝐴 ∈ ℝ2𝑘×2𝑘 dans le coin supérieur gauche d’un opérateur unitaire (𝑘 + 𝑎)-qubit 𝑈𝐴 de sorte
que 𝐴 = 𝜁(⟨0|⊗𝑎 ⊗ 𝐼)𝑈𝐴(|0⟩⊗𝑎 ⊗ 𝐼) pour un certain 𝜁 ≥ ‖𝐴‖2. Nous appelons 𝑈𝐴 un 𝜁-codage en
bloc de 𝐴. Maintenant, appliquer 𝐴 à 𝐱 revient à appliquer le codage en bloc 𝑈𝐴 à |0⟩⊗𝑎 |𝐱⟩ et à
post-sélectionner le résultat sur le premier registre restant |0⟩⊗𝑎. Il est important de noter que cette
post-sélection réussit avec une probabilité de ∥𝐴𝐱/𝜁∥2, qui peut être amplifiée jusqu’à une constante
au coût de 𝑂(𝜁/‖𝐴𝐱‖) – le facteur de subnormalisation 𝜁 joue un rôle crucial dans Chapitre 3.

Une fois que nous pouvons calculer le produit matrice-vecteur, le problème suivant évident est
la résolution de systèmes linéaires. Pour une matrice 𝐴 et un vecteur 𝐛, le problème des systèmes
linéaires quantiques demande de préparer l’état correspondant au vecteur 𝐴−1𝐛. Sans perte de
généralité, nous supposons que 𝐴 est hermitienne et a des valeurs singulières dans l’intervalle [1/𝜅, 1]
(ce qui implique qu’elle a un conditionnement 𝜅). En gardant cela à l’esprit, le “meilleur” (en termes
de sous-normalisation) que nous puissions espérer est un 𝜅-codage en bloc de 𝐴−1. Cependant,
on ne sait pas comment construire ce codage en bloc (exact) autrement qu’en inversant 𝐴 sur un
ordinateur classique et en appliquant les méthodes standard de codage en bloc des matrices denses
génériques, ce qui annule toute amélioration de la complexité par rapport à un algorithme purement
classique.

Heureusement, la TQVS (transformation quantique des valeurs singulières, [Gil+19]) et la
CLU (combinaison linéaire des unitaires, [BCK15]) nous permettent de construire des codages
en blocs de 𝑝(𝐴) pour les polynômes 𝑝, avec diverses sous-normalisations. Dans le cas de CLU,
la sous-normalisation est ∥𝐜𝑝∥

1
, où 𝐜𝑝 est le vecteur des coefficients dans le développement de

Tchebychev 𝑝(𝑥) = ∑𝑛
𝑖=0 𝑐𝑝,𝑖𝒯𝑖(𝑥). Dans le cas de TQVS, la sous-normalisation est simplement

max𝑥∈[−1,1] |𝑝(𝑥)|. Observons que la sous-normalisation CLU est au moins aussi grande que celle
pour TQVS, puisque tous les polynômes avec ∥𝐜𝑝∥

1
≤ 1 sont bornés par 1 sur [−1, 1]. Par conséquent,

afin de construire un codage en bloc approché de 𝐴−1, le polynôme 𝑝 doit approximer l’inverse sur
𝐷𝜅 = [−1, −1/𝜅] ∪ [1/𝜅, 1], et ne pas être beaucoup plus grand que 𝜅 sur [−1/𝜅, 1/𝜅]. Un exemple
simple d’un tel polynôme est 𝑝𝑛(𝑥) = 1−(1−𝑥2)𝑛

𝑥 , qui approche 1/𝑥 sur 𝐷𝜅 pour 𝑛 ≥ 𝜅2 log(𝜅/𝜀).
Les coefficients de Tchebychev de ce polynôme peuvent être interprétés comme des probabilités
binomiales, leur norme 1 est donc bornée et, par conséquent, 𝑝𝑛 peut être évalué efficacement
en utilisant à la fois TQVS et CLU. L’idée de Childs, Kothari et Somma [CKS17] était que
l’expansion de Tchebychev de 𝑝𝑛 peut être tronquée après 𝑂(𝜅) termes donnant une approximation
polynomiale asymptotiquement optimale de l’inverse sur 𝐷𝜅. Dans Chapitre 3, nous considérons le
polynôme optimal de ce type,

𝑞𝑛(𝑥) ∶=
1 − 𝒯𝑛(1+1/𝜅2−2𝑥2

1−1/𝜅2)/𝒯𝑛(1+𝜅2

1−𝜅2)
𝑥

.

Nous montrons que la norme 1 des coefficients de Tchebychev de 𝑞𝑛 admet une borne encore
meilleure, impliquant des algorithmes optimaux de systèmes linéaires quantiques basés sur CLU et

x

TQVS. Étant donné la simple borne supérieure polynomiale (c’est-à-dire 𝑂(
√
degré)) de l’écart entre

TQVS et CLU pour des polynômes arbitraires, nous étudions également l’efficacité des algorithmes
basés sur CLU pour l’approximation de certaines autres fonctions d’intérêt. Nous montrons que
même les fonctions discontinues telles que la fonction signe ont une norme 1 des coefficients de
Tchebychev bien bornée, et nous conjecturons que la simulation hamiltonienne (et en particulier
cos(𝜅𝑥) et sin(𝜅𝑥) pour 𝜅 > 1) montre une séparation polynomiale entre CLU et TQVS. Nous
concluons le Chapitre avec un algorithme simple basé sur la CLU imbriquée pour la simulation
hamiltonienne.

Dans Chapitre 2, nous appliquons la machinerie des systèmes linéaires de Chapitre 3 au problème
plus “compliqué” de la programmation conique du second ordre (PCSO), une classe de problèmes
d’optimisation convexes qui se situe entre les programmes linéaires (PL) et semi-définis (PSD)
en termes d’expressivité. Un algorithme efficace pour la programmation conique du second ordre
produirait également des algorithmes efficaces pour de nombreux problèmes intéressants, tels que la
programmation quadratique convexe (standard et sous contrainte quadratique), l’optimisation de
portefeuille, et bien d’autres [AG03]. Dans Chapitre 2, nous présentons un algorithme quantique
pour PCSO, ainsi que deux problèmes candidats pour des accélérations quantiques de bout en
bout à l’aide de cet algorithme : les machines à vecteurs de support (MVS) et l’optimisation de
portefeuille.

Dans PCSO, on doit optimiser un objectif linéaire 𝐜⊤𝐱 soumis à des contraintes linéaires de
la forme 𝐴𝐱 = 𝐛, ainsi qu’une contrainte de second ordre 𝐱 ∈ ℒ𝑛1 × ⋯ × ℒ𝑛𝑟 sur les blocs de
𝐱, où le cône de second ordre ℒ𝑘 ⊆ ℝ𝑘 est défini comme ℒ𝑘 = {𝐱 = (𝑥0; �̃�) ∈ ℝ𝑘 ∣ ‖�̃�‖ ≤ 𝑥0}. La
méthode standard pour résoudre PCSO est la méthode de point intérieur (MPI), découverte pour
la première fois par Karmarkar [Kar84], et généralisée à tous les cônes symétriques (une classe
qui inclut le cône du second ordre) par Nesterov et Todd [NT97 ; NT98]. Une méthode classique
de point intérieur résout un problème d’optimisation sur des cônes symétriques en commençant
par une solution admissible et en trouvant itérativement des solutions avec un saut de dualité plus
petit tout en maintenant l’admissibilité. Une seule étape itérative consiste à résoudre un système
d’équations linéaires appelé système linéaire de Newton et à mettre à jour l’itération courante en
utilisant les solutions du système de Newton. L’analyse d’une MPI classique montre qu’à chaque
itération, les solutions mises à jour restent admissibles et que le saut de dualité est réduit d’un
facteur de (1 − 𝛼/

√
𝑛) où 𝑛 est la dimension du problème d’optimisation et 𝛼 > 0 est une constante.

L’algorithme converge donc vers une solution admissible avec un saut de dualité 𝜖 en 𝑂(
√

𝑛 log(1/𝜖))
itérations.

Une méthode de point intérieur quantique [KP20a] utilise un solveur de système linéaire quantique
au lieu d’un solveur classique dans chaque itération de la MPI. Cependant, il existe une différence
importante entre les procédures d’algèbre linéaire classique et quantique pour résoudre le système
linéaire 𝐴𝐱 = 𝐛. Contrairement aux solveurs de systèmes linéaires classiques qui renvoient une
description exacte de 𝐱, les procédures de tomographie quantique peuvent renvoyer une solution
𝜀 précise 𝐱 telle que ‖𝐱 − 𝐱‖ ≤ 𝜀‖𝐱‖ avec 𝑂(𝑛/𝜀2) d’exécutions du solveur de système linéaire
quantique. De plus, ces solveurs de systèmes linéaires requièrent que 𝐴 et 𝐛 soient donnés sous forme
de codage en bloc [CGJ19], ce modèle d’entrée est donc également utilisé par notre algorithme. L’un
des principaux défis techniques dans le développement d’une méthode quantique de points intérieurs
(MQPI) est d’établir la convergence de la MPI classique qui utilise des solutions 𝜀-approchées du
système linéaire de Newton (dans la norme ℓ2) au lieu des solutions exactes dans la MPI classique.

La méthode de point intérieur quantique pour les programmes de cônes du second ordre nécessite
des idées supplémentaires allant au-delà de celles utilisées pour les méthodes de points intérieurs
quantiques pour les PSD [KP20a]. En particulier, les méthodes de points intérieurs pour PCSO
peuvent être décrites en utilisant le cadre de l’algèbre de Jordan euclidienne [MT00]. Le cadre de

xi

l’algèbre de Jordan euclidienne fournit des analogues de concepts tels que les valeurs propres, les
normes spectrales et de Frobenius pour les matrices et les contraintes semi-définies positives pour le
cas des PCSO. En utilisant ces idées conceptuelles du cadre de l’algèbre de Jordan euclidienne [MT00]
et l’analyse de la méthode approximative de point intérieur PSD [KP20a] nous fournissons une MPI
approximative pour PCSO qui converge en 𝑂(

√
𝑛 log(1/𝜖)) itérations. Les MPI approximatifs pour

PCSO n’ont pas été étudiés auparavant dans la littérature d’optimisation classique ou quantique ;
cette analyse est la principale contribution technique de Chapitre 2.

Algorithmes classiques

L’une des tâches les plus importantes en statistique et en apprentissage automatique consiste à
échantillonner à partir de distributions hautement dimensionnelles et potentiellement compliquées.
Les chaînes de Markov constituent un moyen efficace d’échantillonner de telles distributions, et il
existe une grande variété d’algorithmes de chaînes de Markov conçus spécifiquement à cet objectif.
En général, la principale difficulté de l’analyse de ces algorithmes est de lier le temps d’exécution
précis ou le temps de mélange de la chaîne de Markov. Bien que de nombreux algorithmes soient
très largement utilisés (heuristiques) depuis plusieurs décennies, les bornes rigoureuses de leurs
performances sont souvent absentes. Un exemple clé est l’algorithme de Monte Carlo Hamiltonien
(MCH) [Dua+87]. Il s’agit d’un élégant algorithme de chaîne de Markov qui utilise la dynamique
hamiltonienne pour explorer efficacement l’espace d’état, sans trop s’éloigner de la région de haute
probabilité. L’une de ses principales caractéristiques est qu’il surmonte le comportement lent et
diffus qui est inhérent aux approches à “petits pas” telles que la marche par boules et l’algorithme
de Langevin. Bien que cela soit effectivement observé dans l’utilisation et les études heuristiques
de l’algorithme MCH [Nea11], les efforts récents sont principalement limités à des tailles de pas
beaucoup plus courtes que les choix heuristiques [Che+20 ; CV22]. Dans ce travail, nous prouvons
des bornes apparemment optimales sur l’algorithme MCH (avec intégrateur saute-mouton) pour le
cas particulier des distributions gaussiennes. Il s’agit de la passerelle typique vers des distributions
plus compliquées telles que les distributions logconcaves ou multimodales. Notre implémentation
de MCH exploite des temps d’intégration longs et aléatoires. Cela surpasse les récents obstacles
à l’échantillonnage de distributions gaussiennes à l’aide de la MCH avec des temps d’intégration
courts [CV22] ou déterministes [LST21].

Nos bornes s’énoncent le plus facilement dans le “modèle de la boîte noire”, où le but est
d’échantillonner à partir une loi de la forme 𝑒−𝑓(𝐱) pour 𝐱 ∈ ℝ𝑑, et nous avons un accès par requête
à la fois à 𝑓 et à son gradient ∇𝑓. Dans le cas d’une loi gaussienne, 𝑓 doit être une forme quadratique
𝑓(𝐱) = 1

2(𝐱 − 𝝁)⊤Σ−1(𝐱 − 𝝁), où 𝝁 et Σ sont respectivement la moyenne (inconnue) et la matrice
de covariance de la gaussienne. Le conditionnement 𝜅 de la distribution gaussienne est simplement
le conditionnement de Σ−1. Dans Chapitre 4, nous développons un algorithme MCH ajusté par
Metropolis qui peut calculer un échantillon 𝜀-approximatif à partir de la gaussienne donnée en
utilisant 𝑂(

√
𝜅𝑑1/4 log(1/𝜀)) d’évaluations du gradient.

Ces deux bornes semblent conformes aux attentes [Dua+87 ; Nea11 ; Bes+13], et nous pensons
qu’elles sont serrées lorsque l’on utilise l’intégrateur saute-mouton habituel pour simuler la dynamique
hamiltonienne. Notre algorithme dépasse la borne inférieure de Ω̃(𝜅

√
𝑑) sur la complexité du

MCH pour un échantillonnage gaussien de [LST21] en utilisant des temps d’intégration aléatoires.
Cela permet d’éviter les problèmes de périodicité bien connus associés à un temps d’intégration
déterministe.

Notre travail s’inscrit dans l’effort récent de prouver des bornes non asymptotiques (et souvent
serrées) sur les algorithmes de chaînes de Markov pour les lois spécifiques telles que les lois gaussiennes
et, plus généralement, les lois logconcaves (où 𝑓 est supposé être convexe). La plupart de ces efforts

xii

se sont concentrés sur des dynamiques à pas courts, comme la marche par boules, l’algorithme de
Langevin et la MCH avec des temps d’intégration courts. L’utilisation de tels “pas locaux” permet
de contrôler plus facilement la stabilité et la probabilité d’acceptation de l’algorithme. Cependant,
la restriction aux dynamiques à pas courts est aussi ce qui ralentit ces algorithmes, et c’est ce que
nous évitons dans notre algorithme MCH.

Enfin, la restriction à l’échantillonnage des distributions gaussiennes et logconcaves est précisé-
ment parallèle à la restriction aux fonctions quadratiques et convexes en optimisation. Néanmoins,
un écart entre la complexité (en requete de premier ordre) de l’échantillonnage logconcave et la
complexité 𝑂(min{

√
𝜅, 𝑑}) de l’optimisation convexe est apparemment jugé plausible. Plus pré-

cisément, les auteurs de [LST20] suggèrent une borne inférieure de Ω(𝜅) pour l’échantillonnage
logconcave. Notre travail montre qu’une dépendance sous-linéaire de 𝜅 est possible au moins pour
le cas particulier des lois gaussiennes, et nous y voyons la preuve qu’une borne générale de 𝑂(

√
𝜅)

pour l’échantillonnage logconcave pourrait être réalisable.

Contents

1 Preliminaries 1
1.1 Introduction . 1
1.2 Quantum algorithms . 3
1.3 Classical algorithms . 4

I Quantum algorithms 7

2 Quantum interior-point methods 9
2.1 Introduction . 9
2.2 Preliminaries . 12
2.3 A quantum interior-point method . 17
2.4 Technical results . 19
2.5 Quantum Support-Vector Machines . 27
2.6 Quantum portfolio optimization . 29

3 Optimal quantum linear system solvers 33
3.1 Introduction . 33
3.2 Preliminaries . 35
3.3 Quantum preliminaries . 39
3.4 A QLS-algorithm based on 𝑞𝑡 . 42
3.5 Comparison with previous polynomial-based QLS-solvers 46
3.6 Query lower bounds . 47
3.7 Examples of functions with bounded Chebyshev coefficient norms 49

II Classical algorithms 55

4 Gaussian sampling 57
4.1 Introduction and main result . 57
4.2 Problem definition and preliminaries . 59
4.3 Idealized and unadjusted HMC . 61
4.4 Metropolis-Adjusted HMC . 65
4.5 Conclusions and open questions . 74
4.6 Omitted proofs . 75

Bibliography 77

xiii

1 | Preliminaries

1.1 Introduction

Around 40 years ago, when it became clear that the computer had become a resounding success,
Richard Feynman proposed a revolutionary new paradigm for tackling the computational problems of
the 21st century – he called it the quantum computer. Soon it became apparent quantum computers
could provide speedups in areas unrelated to their original purpose of simulating quantum mechanics.
While the foundational work of Deutsch and Penrose [DP85] and the early algorithms of Bernstein
and Vazirani [BV97] and Simon [Sim97] lacked immediate practical applications, they paved the way
for the landmark result of Shor [Sho94], who leveraged the quantum Fourier transform to compute
discrete logarithms in polynomial time. This algorithm has spawned a great deal of interest in
the nascent field, which resulted in advances in cryptography [Gis+02; BL17], complexity theory
[Wat09; Ji+21], coding theory [LB13], as well as new quantum algorithms [Gro96; Bra+02; Sze04],
to name just a few. We refer the reader to [Pre21] for a recent overview of the field, as well as
[NC12] for a thorough discussion of the classical results.

Recently, with the advent of big data and large-scale machine learning, there has been an
increasing demand for quantum algorithms that would be more directly applicable to practically-
relevant problems. The work of Harrow, Hassidim, and Lloyd [HHL09] provided just that: a
quantum algorithm for solving a linear system in time that is poly-logarithmic in its size. Of course,
such a running time can only be achieved with a specific input and output model [Aar15], since
naively reading the input and writing the output would have a complexity that is quadratic (resp.
linear) in the system dimension. More precisely, the algorithm of [HHL09] assumes that the input
is given as a quantum oracle that allows querying the elements of the input in superposition, and
provides an output in the form of the quantum state, that can be measured in order to recover a
single sample from the distribution induced by the normalized (approximate) solution vector. At a
first glance, the utility of such an algorithm is questionable, with an input model that is too strong,
and the output given in an inconvenient form. Nevertheless, it turns out that this input model is
reasonable for structured (e.g. sparse) matrices (under the name of block encodings [CGJ19]) while
the state-vector output can be used in the case where it is sparse, or when the linear system itself
arises from a sampling problem. For example, the quantum recommendation system algorithm of
Kerenidis and Prakash [KP17] works with a closely related input model and is constructed so that
sampling is the “natural” and desired form of output.

Following [HHL09], the research has branched in two different directions. On one hand, the
community worked on improving an extending the basic building blocks of quantum linear algebra.
Notably, Low, Yoder, and Chuang [LYC16] as well as Low and Chuang [LC17a; LC17b; LC19]
introduced the techniques of qubitization and quantum signal processing, which have then been
improved and generalized by the quantum singular value transformation framework of Gilyén,
Su, Low, and Wiebe [Gil+19]. This framework allows one to apply an arbitrary polynomial to
a block-encoded matrix, allowing one to express Hamiltonian simulation, linear system solving,

1

2 CHAPTER 1. PRELIMINARIES

amplitude amplification, and many other algorithms in a unified way [Mar+21]. On the other
hand, there has been a lot of work on combining these basic building blocks in order to solve more
complicated (more “high level”) problems. A notable line of research has been started by Brandao
and Svore [BS17b], who proposed an algorithm for solving semidefinite programs (SDP). This work
has later been improved by Brandão, Kalev, Li, Lin, Svore, and Wu [Bra+19], van Apeldoorn,
Gilyén, Gribling, and de Wolf [vApe+17], and Apeldoorn and Gilyén [AG19]. The SDP solver of
Kerenidis and Prakash [KP20a] uses a slightly different approach of directly developing a robust
quantum analog of a classical interior-point method (the most commonly-used classical algorithm
for solving SDP).

In the first half of this thesis we build upon both branches of the aforementioned rich body
of work. We present two main results, in chronological order: Chapter 2 contains a (quantum)
algorithm for second-order cone programming, and Chapter 3 contains an improved quantum linear
systems algorithm. The former is based on a robust analysis of a classical interior-point method
[MT00; AG03], and uses a quantum linear system solver [HHL09; CKS17; CGJ19; Gil+19] to speed
up its inner loop. The latter contains a slight improvement of the aforementioned linear system
algorithms, based on the optimal classical method of Chebyshev iteration [Var00].

The algorithms in Chapters 2 and 3 have the common property of approximating the unique
true solution of the input problem. In general, designing such quantum algorithms is nontrivial, as
often the only way of recovering (an approximation to) the true solution is by running the algorithm
many times (either naively or via amplitude amplification) and computing some statistics (e.g. the
mean) of the measured outputs. Even though one can precisely bound the number of required runs
as well as the complexity of the classical postprocessing, such an approach leaves something to
be desired. If quantum computers intrinsically provide sampling access to their outputs, could we
exploit them to speed up classically-relevant sampling problems? An obvious approach for doing
this would be by replacing the local optimization in each iteration of the interior-point method from
Chapter 2 with a simple procedure that chooses the next iterate at random from a neighborhood of
the current point. It turns out that this random walk can be used to sample a uniform point from a
polytope, and has already been analyzed by Kannan and Narayanan [KN12], Narayanan [Nar16],
and Sachdeva and Vishnoi [SV16] under the name of Dikin walk. In particular, the key building
block of [Nar16] is a procedure for sampling from a Gaussian distribution related to the Hessian of
a certain barrier function.

Surprisingly, depending on the input model, Gaussian sampling is not a completely solved
problem, even on classical computers. Of course, in the simplest setting when the covariance
matrix is completely given, it seems that one can not do much better than the folklore algorithm
of computing (or approximating) the inverse of the square root of the covariance matrix. More
interesting is the first-order query model, where one counts the queries to the gradient of the
log-density. This model is closely related to the various quantum input models we discussed, and
is the natural model for certain applications such as Thompson sampling for contextual bandits
[Rus+18]. The best algorithms in this model are based on the Hamiltonian [Dua+87] and Langevin
[Bes94; RT96; RR98] Monte Carlo methods. These algorithms perform a random walk by repeatedly
integrating Hamiltonian dynamics with random initial conditions. Their performance is limited by
the number and size of the steps one uses to approximate the integrals, and the current algorithms
have been conjectured to be optimal [CV22; LST21]. In the second half of the thesis (Chapter 4)
we circumvent these lower bounds with an algorithm that takes long and random integration steps.

In the remainder of this Chapter we describe our contributions in more detail.

1.2. QUANTUM ALGORITHMS 3

1.2 Quantum algorithms
The entire area of quantum linear algebra is made possible by one simple observation: we can
identify a unit vector 𝐱 ∈ ℝ2𝑘 with the state |𝐱⟩ ∶= ∑2𝑘

𝑖=1 𝑥𝑖 |𝑖⟩ on only 𝑘 qubits. In this framework,
matrices need to have bounded norm, so we encode a matrix 𝐴 ∈ ℝ2𝑘×2𝑘 in the upper-left corner of
a (𝑘 + 𝑎)-qubit unitary operator 𝑈𝐴 so that 𝐴 = 𝜁(⟨0|⊗𝑎 ⊗ 𝐼)𝑈𝐴(|0⟩⊗𝑎 ⊗ 𝐼) for some 𝜁 ≥‖𝐴‖2. We
call 𝑈𝐴 a 𝜁-block-encoding of 𝐴. Now, applying 𝐴 to 𝐱 amounts to applying the block-encoding
𝑈𝐴 to |0⟩⊗𝑎 |𝐱⟩ and post-selecting the result on the first register remaining |0⟩⊗𝑎. It is important
to note that this post-selection succeeds with probability ∥𝐴𝐱/𝜁∥2, which can be amplified up to a
constant at cost 𝑂(𝜁/‖𝐴𝐱‖) – the subnormalization factor 𝜁 plays a crucial role in Chapter 3.

Once we can compute matrix-vector product, the obvious next problem is solving linear systems.
For a matrix 𝐴 and a vector 𝐛, the quantum linear systems problem asks one to prepare the
state corresponding to the vector 𝐴−1𝐛/∥𝐴−1𝐛∥. Without loss of generality, we assume that 𝐴 is
Hermitian and has singular values in the interval [1/𝜅, 1] (implying that it has condition number 𝜅).
Having this in mind, the “best” (in terms of subnormalization) we can hope for is a 𝜅-block-encoding
of 𝐴−1. However, it is unclear how to construct this (exact) block-encoding other than inverting 𝐴
on a classical computer and applying standard methods for block-encoding generic dense matrices,
thus negating any improvements in complexity over a purely classical algorithm.

Luckily, the QSVT (quantum singular value transformation, [Gil+19]) and LCU (linear com-
bination of unitaries, [BCK15]) allow us to construct block-encodings of 𝑝(𝐴) for polynomials 𝑝,
with various subnormalizations. In the case of LCU, the subnormalization is ∥𝐜𝑝∥

1
, where 𝐜𝑝 is

the vector of coefficients in the Chebyshev expansion 𝑝(𝑥) = ∑𝑛
𝑖=0 𝑐𝑝,𝑖𝒯𝑖(𝑥). In the case of QSVT,

the subnormalization is simply max𝑥∈[−1,1] |𝑝(𝑥)|. Observe that the LCU subnormalization is at
least as large as the one for QSVT, since all polynomials with ∥𝐜𝑝∥

1
≤ 1 are bounded by 1 on

[−1, 1]. Therefore, in order to construct an approximate block-encoding of 𝐴−1, the polynomial 𝑝
needs to approximate the inverse on 𝐷𝜅 = [−1, −1/𝜅] ∪ [1/𝜅, 1], and be not much larger than 𝜅 on
[−1/𝜅, 1/𝜅]. A simple example of such a polynomial is 𝑝𝑛(𝑥) = 1−(1−𝑥2)𝑛

𝑥 , which approximates 1/𝑥
on 𝐷𝜅 for 𝑛 ≥ 𝜅2 log(𝜅/𝜀). The Chebyshev coefficients of this polynomial can be interpreted as
binomial probabilities, so their 1-norm is bounded, and therefore 𝑝𝑛 can be efficiently evaluated using
both QSVT and LCU. The insight of Childs, Kothari, and Somma [CKS17] was that the Chebyshev
expansion of 𝑝𝑛 can be truncated after 𝑂(𝜅) terms yielding an asymptotically optimal polynomial
approximation to the inverse on 𝐷𝜅. In Chapter 3 we consider the optimal such polynomial,

𝑞𝑛(𝑥) ∶=
1 − 𝒯𝑛(1+1/𝜅2−2𝑥2

1−1/𝜅2)/𝒯𝑛(1+𝜅2

1−𝜅2)
𝑥

.

We show that the Chebyshev coefficient 1-norm of 𝑞𝑛 admits an even better bound, implying
optimal LCU- and QSVT-based quantum linear system algorithms. Given the simple polynomial
(i.e. 𝑂(

√
degree)) upper bound on the gap between QSVT and LCU for arbitrary polynomials, we

also investigate the efficiency of LCU-based algorithms for approximating some other functions of
interest. We show that even discontinuous functions such as the sign function have a nicely-bounded
Chebyshev coefficient 1-norm, and we conjecture that Hamiltonian simulation (and in particular
cos(𝜅𝑥) and sin(𝜅𝑥) for 𝜅 > 1) provides a polynomial separation between LCU and QSVT. We
conclude the Chapter with a simple nested LCU-based algorithm for Hamiltonian simulation.

In Chapter 2 we apply the linear systems machinery from Chapter 3 to the more “complicated”
problem of second-order cone programming (SOCP), a class of convex optimization problems that
lies between linear (LP) and semidefinite (SDP) programs in terms of expressiveness. An efficient
algorithm for SOCP would also yield efficient algorithms for many interesting problems, such as

4 CHAPTER 1. PRELIMINARIES

(standard and quadratically-constrained) convex quadratic programming, portfolio optimization,
and many others [AG03]. In Chapter 2 we present a quantum algorithm for SOCP, as well as two
candidate problems for end-to-end quantum speedups using this algorithm: support-vector machines
(SVM) and portfolio optimization.

In SOCP one needs to optimize a linear objective 𝐜⊤𝐱 subject to linear and second-order
constraints on the blocks of 𝐱. Traditionally, SOCPs are solved using the interior-point method
(IPM), an algorithm that starts from a feasible solution, and iteratively improves it by reducing the
duality gap. Each improvement is done by solving a linear system (called the Newton system), and
updating the the iterate using the solution (called the Newton step) of this system. One can show
[Kar84; NT97; NT98] that in each iteration the duality gap decreases multiplicatively by the same
factor, reaching a duality gap of 𝜖 in 𝑂(

√
𝑛 log(1/𝜖)) iterations.

A quantum interior point method of Kerenidis and Prakash [KP20a] uses a quantum linear
system solver instead of classical one in each iteration of the IPM. Several adjustments need to be
made for this approach to work out. Firstly, the algorithm requires the input data to be provided
in the form of appropriate block-encodings. Secondly (and crucially), the IPM analysis needs to
be adapted to the case of inexact Newton steps. In particular, the algorithm works by solving the
Newton system using a quantum linear systems solver, and recovering a classical approximation
of the Newton step using tomography. Proving that this quantum algorithm still converges to (an
approximation to) the correct solution is the main technical challenge of this his analysis is based
on the quantum interior-point method for SDP [KP20a], but uses additional ideas from the classical
SOCP analysis by [MT00].

1.3 Classical algorithms

One of the most important tasks in statistics and machine learning is to sample from high-dimensional
and potentially complicated distributions. Markov chains are an efficient means for sampling from
such distributions, and there is a wide variety of Markov chain algorithms designed specifically for
this purpose. Typically, the main difficulty in analyzing these algorithms is to bound the precise
running time or mixing time of the Markov chain. While many algorithms have been in very broad
(heuristic) usage for several decades, rigorous bounds on their performance are often missing. A
key example is the Hamiltonian Monte Carlo (HMC) algorithm [Dua+87]. This is an elegant
Markov chain algorithm that utilizes Hamiltonian dynamics to efficiently explore the state space,
without straying too far away from the high probability region. One of its key features is that
it overcomes the slow, diffusive behavior that is inherent to “small step” approaches such as the
ball walk and Langevin algorithm. While this is indeed observed in heuristic uses and studies of
the HMC algorithm [Nea11], recent efforts are mostly restricted to step sizes much shorter than
the heuristic choices [Che+20; CV22]. In this work, we prove seemingly optimal bounds on the
HMC algorithm (with leapfrog integrator) for the special case of Gaussian distributions. This is the
typical gateway to more complicated distributions such as logconcave or multimodal distributions.
Our implementation of HMC exploits long and randomized integration times. This surpasses recent
roadblocks on sampling Gaussian distributions using HMC with either short [CV22] or deterministic
[LST21] integration times.

Our bounds are stated most easily in the “black box model”, where the goal is to sample from a
density of the form 𝑒−𝑓(𝐱) for 𝐱 ∈ ℝ𝑑, and we are given query access to both 𝑓 and its gradient ∇𝑓.
The Gaussian case further restricts 𝑓 to be a quadratic form 𝑓(𝐱) = 1

2(𝐱 − 𝝁)⊤Σ−1(𝐱 − 𝝁), where 𝝁
and Σ are the (unknown) mean and covariance matrix of the Gaussian, respectively. The condition
number 𝜅 of the Gaussian distribution is simply the condition number of Σ−1. In Chapter 4 we

1.3. CLASSICAL ALGORITHMS 5

develop a Metropolis-adjusted HMC algorithm that can compute an 𝜀-approximate sample from the
given Gaussian using 𝑂(

√
𝜅𝑑1/4 log(1/𝜀)) gradient evaluations.

Both bounds seem in line with expectation [Dua+87; Nea11; Bes+13], and we expect they
are tight when using the usual leapfrog integrator for simulating the Hamiltonian dynamics. Our
algorithm surpasses the Ω̃(𝜅

√
𝑑) lower bound on the complexity of HMC for Gaussian sampling

from [LST21] by using randomized integration times. This avoids the well-known periodicity issues
associated to a deterministic integration time.

Our work fits within the recent effort of proving non-asymptotic (and often tight) bounds on
Markov chain algorithms for constrained distributions such as Gaussian distributions and, more
generally, logconcave distributions (where 𝑓 is assumed to be convex). Most of these efforts have
focused on short step dynamics such as the ball walk, the Langevin algorithm, and HMC with
short integration times. The use of such “local steps” makes it easier to control the stability and
acceptance probability of the algorithm. However, the restriction to short step dynamics is also
what slows down these algorithms, and this is what we avoid in our HMC algorithm.

Finally, the restriction to sampling Gaussian and logconcave distributions precisely parallels
the restriction to quadratic and convex functions in optimization. Nonetheless, a gap between the
(first-order oracle) complexity for logconcave sampling and the 𝑂(min{

√
𝜅, 𝑑}) complexity for convex

optimization is apparently deemed plausible. More specifically, the authors in [LST20] suggest
an Ω(𝜅) lower bound for logconcave sampling. Our work shows that a sublinear 𝜅-dependency is
possible at least for the special case of Gaussian distributions, and we see it as evidence that a
general 𝑂(

√
𝜅) bound for logconcave sampling might be achievable.

Part I

Quantum algorithms

7

2 | Quantum interior-point methods
Joint work with Iordanis Kerenidis and Anupam Prakash

2.1 Introduction

It is well known that many interesting and relevant optimization problems in the domain of Machine
Learning can be expressed in the framework of convex optimization [BV04; Bub15]. The landmark
result in this area was the discovery of interior-point methods (IPM) by [Kar84], and their subsequent
generalization to all “self-scaled” (i.e. symmetric) cones by [NT97; NT98]. Very recently, [CLS19]
have shown that it is possible to solve linear programs (LP) in 𝑂(𝑛𝜔), the time it takes to multiply
two matrices (as long as 𝜔 ≥ 2 + 1/6, which is currently the case). This result has been further
extended in [LSZ19] to a slightly more general class of cones, however, their techniques did not yield
improved complexities for second-order (SOCP) and semidefinite programming (SDP). An efficient
algorithm for SOCP would also yield efficient algorithms for many interesting problems, such as
(standard and quadratically-constrained) convex quadratic programming, portfolio optimization,
and many others [AG03].

Starting with the landmark results of [Gro96; Sho94], and, more recently, [HHL09], it has been
demonstrated that quantum computers offer significant (sometimes even exponential) asymptotic
speedups for a number of important problems. More recently, there has been substantial work in the
area of convex optimization. Quantum speedups for gradient descent were investigated by [GAW19],
whereas [BS17b; Bra+19; vApe+17; AG19] presented quantum algorithms for SDP based on the the
multiplicative weights framework of [AHK12]. However, it has been difficult to establish asymptotic
speedups for this family of quantum SDP solvers as their running time depends on problem-specific
parameters, including a 5th-power dependence on the width of the SDP. Interestingly, the recent
result of [BKF22] suggests that such a speedup might be obtained when applying an SDP algorithm
of this type to some low-precision instances of quadratic binary optimization.

In an orthogonal approach, [KP20a] proposed a quantum algorithm for LPs and SDPs by
quantizing a variant of the classical interior point method and using the state of the art quantum
linear algebra tools [CGJ19; Gil+19] – in particular, the matrix multiplication and inversion
algorithms whose running time is sub-linear in the input size. However, the complexity of this
algorithm depends on the condition number of 𝑂(𝑛2)-sized matrices that is difficult to bound
theoretically. It therefore remains an open question to find an end-to-end optimization problem for
which quantum SDP solvers achieve an asymptotic speedup over state of the art classical algorithms.
In this chapter, we propose two candidates for such end-to-end speedups: support-vector machines
(SVM) and portfolio optimization.

2.1.1 Our results and techniques

In this section, we provide a high level sketch of our results and the techniques used for the quantum
interior point method for SOCPs. We begin by discussing the differences between classical and
quantum interior point methods.

9

10 CHAPTER 2. QUANTUM INTERIOR-POINT METHODS

A classical interior point method solves an optimization problem over symmetric cones by
starting with a feasible solution and iteratively finding solutions with a smaller duality gap while
maintaining feasibility. A single iterative step consists of solving a system of linear equations
called the Newton linear system and updating the current iterate using the solutions of the Newton
system. The analysis of the classical IPM shows that in each iteration, the updated solutions remain
feasible and the duality gap is decreased by a factor of (1 − 𝛼/

√
𝑛) where 𝑛 is the dimension of

the optimization problem and 𝛼 > 0 is a constant. The algorithm therefore converges to a feasible
solution with duality gap 𝜖 in 𝑂(

√
𝑛 log(1/𝜖)) iterations.

A quantum interior point method [KP20a] uses a quantum linear system solver instead of
classical one in each iteration of the IPM. However, there is an important difference between classical
and quantum linear algebra procedures for solving the linear system 𝐴𝐱 = 𝐛. Unlike classical
linear system solvers which return an exact description of 𝐱, quantum tomography procedures
can return an 𝜖-accurate solution 𝐱 such that ‖𝐱 − 𝐱‖ ≤ 𝜖‖𝐱‖ with 𝑂(𝑛/𝜖2) runs of the quantum
linear system solver. Additionally, these linear system solvers require 𝐴 and 𝐛 to be given as block-
encodings [CGJ19], so this input model is used by our algorithm as well. One of the main technical
challenges in developing a quantum interior point method (QIPM) is to establish convergence of
the classical IPM which uses 𝜖-approximate solutions of the Newton linear system (in the ℓ2 norm)
instead of the exact solutions in the classical IPM.

The quantum interior point method for second-order cone programs requires additional ideas
going beyond those used for the quantum interior point methods for SDP [KP20a]. Second order
cone programs are optimization problems over the product of second-order or Lorentz cones (see
section 2.2.1 for definitions), interior point methods for SOCP can be described using the Euclidean
Jordan algebra framework [MT00]. The Euclidean Jordan algebra framework provides analogs
of concepts like eigenvalues, spectral and Frobenius norms for matrices and positive semidefinite
constraints for the case of SOCPs. Using these conceptual ideas from the Euclidean Jordan algebra
framework [MT00] and the analysis of the approximate SDP interior point method [KP20a] we
provide an approximate IPM for SOCP that converges in 𝑂(

√
𝑛 log(1/𝜖)) iterations. Approximate

IPMs for SOCP have not been previously investigated in the classical or the quantum optimization
literature, this analysis is one of the main technical contributions of this chapter.

From an algorithmic perspective, SOCPs are much closer to LPs (Linear Programs) than to
SDPs, since for cones of dimension 𝑛, the Newton linear systems arising in LP and SOCP IPMs
are of size 𝑂(𝑛), whereas in the SDP case they are of size 𝑂(𝑛2). Namely, a second-order conic
constraint of dimension 𝑛 can be expressed as a single PSD constraint on a (sparse) 𝑛 × 𝑛 matrix
[AG03] – this allows us to embed an SOCP with 𝑛 variables and 𝑚 constraints in an SDP with an
𝑛 × 𝑛 matrix and 𝑚 constraints. The cost of solving that SDP would have a worse dependence on
the error [AG19] or the input size [KP20a]. On the other hand, the quantum representations (block
encodings) of the Newton linear systems for SOCP are also much simpler to construct than those
for SDP. The smaller size of the SOCP linear system also makes it feasible to empirically estimate
the condition number for these linear systems in a reasonable amount of time allowing us to carry
out extensive numerical experiments to validate the running time of the quantum algorithm.

The theoretical analysis of the quantum algorithm for SOCP shows that its worst-case running
time is

𝑂 (𝑛
√

𝑟𝜁𝜅
𝛿2 log(1

𝜖
)) , (2.1)

where 𝑟 is the rank and 𝑛 the dimension of the SOCP, 𝛿 bounds the distance of intermediate
solutions from the cone boundary, 𝜁 is a parameter bounded by

√
𝑛, 𝜅 is an upper bound on the

condition number of matrices arising in the interior-point method for SOCPs, and 𝜖 is the target
duality gap. The running time of the algorithm depends on problem dependent parameters like 𝜅

2.1. INTRODUCTION 11

and 𝛿 that are difficult to bound in terms of the problem dimension 𝑛 – this is also the case with
previous quantum SDP solvers [KP20a; AG19] and makes it important to validate the quantum
optimization speedups empirically. Interestingly, since we require a classical solution of the Newton
system, the linear system solver could also be replaced by a classical iterative solver [Saa03] which
would yield a complexity of 𝑂(𝑛2√

𝑟𝜅 log(𝑛/𝜖)).
Let us make a remark about the complexity: as it is the case with all approximation algorithms,

(2.1) depends on the inverse of the target duality gap 𝜖, thus the running time of our algorithm
grows to infinity as 𝜖 approaches zero, as in the case of classical IPM. Our running time also depends
on 𝜅, which in turn is empirically observed to grow inversely with the duality gap (in particular as
𝑂(1/𝜖)) which again makes the running time go to infinity as 𝜖 approaches zero. The quantum IPM
is a low precision method, unlike the classical IPM, and it can offer speedups for settings where the
desired precision 𝜖 is moderate or low. Thus although at first glance it seems that the 𝜖-dependence
in (2.1) is logarithmic, experimental evidence suggests that the factor 𝜁𝜅

𝛿2 depends polynomially on
1/𝜖.

2.1.2 Applications to SVM

Support Vector Machines (SVM) are an important application in machine learning, where even a
modest value of 𝜖 = 0.1 yields an almost optimal classifier. Since the SVM training problem can be
reduced to SOCP, the quantum IPM for SOCP can be used to obtain an efficient quantum SVM
algorithm. We perform extensive numerical experiments to evaluate our algorithm on random SVM
instances and compare it against state of the art classical SOCP and SVM solvers.

The numerical experiments on random SVM instances indicate that the running time of the
quantum algorithm scales as roughly 𝑂(𝑛2.591), where all the parameters in the running time are
taken into account and the exponent is estimated using a least squares fit. We also benchmarked the
exponent for classical SVM algorithms on the same instances and for a comparable accuracy, the
scaling exponent was found to be 3.31 for general SOCP solvers and 3.11 for state-of-the-art SVM
solvers. We note that this does not prove a worst-case asymptotic speedup, but the experiments on
unstructured SVM instances provide strong evidence for a significant polynomial speedup of the
quantum SVM algorithm over state-of-the-art classical SVM algorithms. We can therefore view
SVMs as a candidate problem for which quantum optimization algorithms can achieve a polynomial
speedup over state of the art classical algorithms for an end-to-end application.

Our IPM for SOCPs yields the first specialized quantum algorithm for training support-vector
machines (SVM). While several quantum SVM algorithms have been proposed, they are unlikely to
offer general speedups for the most widely used formulation of SVM – the soft-margin (ℓ1-)SVM
(defined in eq. (2.10)). On one hand, papers such as [SA22] formulate the SVM as a SDP, and solve
that using existing quantum SDP solvers such as [BS17b; Bra+19; vApe+17; AG19] – with the
conclusion being that a speedup is observed only for very specific sparse instances. On the other
hand, [RML14] solves an easier related problem – the least-squares SVM (ℓ2-SVM or LS-SVM, see
eq. (2.11) for its formulation), thus losing the desirable sparsity properties of ℓ1-SVM [Suy+02]. It
turns out that applying our algorithm to this problem also yields the same complexity as in [RML14]
for the ℓ2-SVM. Very recently, a quantum algorithm for yet another variant of SVM (SVM-perf,
[Joa06]) has been presented in [AH20].

2.1.3 Applications to portfolio optimization

Mathematical finance is an application area where quantum computers could potentially offer
groundbreaking speedups. This is a very recent research area for quantum algorithms and is
important in terms of applications as even modest speedups for computational financial problems

12 CHAPTER 2. QUANTUM INTERIOR-POINT METHODS

can have enormous real world impact. Of course, translating these theoretical advantages of quantum
algorithms into real world applications necessitates both much more advanced hardware, which
may take some more years to come, but also a close collaboration between the communities of
quantum algorithms and of mathematical Finance in order to really understand where and how
such quantum algorithms can become a new powerful tool to be used within the general framework
of mathematical finance.

Rebentrost and Lloyd [RL18] proposed a quantum algorithm for the unconstrained portfolio
optimization problem. Their algorithm uses quantum linear system solvers to obtain speedups for
portfolio optimization problems that can be reduced to unconstrained quadratic programs, which
in turn are reducible to a single linear system. The main limitation of their algorithm is that it
can not incorporate positivity or budget constraints, thus restricting its applicability to real world
problems that can have complex budget constraints. The reason for this limitation is algorithmic,
the constrained portfolio optimization problem is known to be equivalent to quadratic programming
(QP), a class of optimization problems that is more general than linear programming (LP).

In this chapter, we consider portfolio optimization with an arbitrary number of positivity as well
as budget constraints. We express the given portfolio optimization problem as a SOCP and solve it
using our quantum IPM. We show numerical evidence of polynomial speedups over the classical
algorithms.

2.2 Preliminaries

2.2.1 Second-order cone programming

For the sake of completeness, in this section we present the most important results about classical
SOCP IPMs, from [MT00; AG03]. We start by defining SOCP as the optimization problem over
the product of second-order (or Lorentz) cones ℒ = ℒ𝑛1 × ⋯ × ℒ𝑛𝑟 , where ℒ𝑘 ⊆ ℝ𝑘 is defined as
ℒ𝑘 = {𝐱 = (𝑥0; �̃�) ∈ ℝ𝑘 ∣ ‖�̃�‖ ≤ 𝑥0}. In this chapter we consider the problem (2.2) and its dual
(2.3):

min 𝐜⊤𝐱
s.t. 𝐴𝐱 = 𝐛

𝐱 ∈ ℒ,
(2.2)

max 𝐛⊤𝐲
s.t. 𝐴⊤𝐲 + 𝐬 = 𝐜

𝐬 ∈ ℒ, 𝐲 ∈ ℝ𝑚.
(2.3)

We call 𝑛 ∶= ∑𝑟
𝑖=1 𝑛𝑖 the size of the SOCP (2.2), and 𝑟 is its rank.

A solution (𝐱, 𝐲, 𝐬) satisfying the constraints of both (2.2) and (2.3) is feasible, and if in addition
it satisfies 𝐱 ∈ intℒ and 𝐬 ∈ intℒ, it is strictly feasible. If at least one constraint of (2.2) or (2.3),
is violated, the solution is infeasible. The duality gap of a feasible solution (𝐱, 𝐲, 𝐬) is defined as
𝜇 ∶= 𝜇(𝐱, 𝐬) ∶= 1

𝑟 𝐱⊤𝐬. As opposed to LP, and similarly to SDP, strict feasibility is required for
strong duality to hold [AG03]. From now on, we assume that our SOCP has a strictly feasible
primal-dual solution (this assumption is valid, since the homogeneous self-dual embedding technique
from [YTM94] allows us to embed (2.2) and (2.3) in a slightly larger SOCP where this condition is
satisfied).

2.2.2 Euclidean Jordan algebras

The cone ℒ𝑛 has an algebraic structure similar to that of symmetric matrices under the matrix
product. Here, we consider the Jordan product of (𝑥0, �̃�) ∈ ℝ𝑛 and (𝑦0, �̃�) ∈ ℝ𝑛, defined as

𝐱 ∘ 𝐲 ∶= [𝐱⊤𝐲
𝑥0�̃� + 𝑦0�̃�] , and its identity element 𝐞 ∶= [1

0𝑛−1] .

2.2. PRELIMINARIES 13

This product is closely related to the (linear) matrix representation Arw(𝐱) ∶= [𝑥0 �̃�⊤

�̃� 𝑥0𝐼𝑛−1
], which

in turn satisfies the following equality:

𝐱 ∘ 𝐲 = Arw(𝐱)𝐲 = Arw(𝐱)Arw(𝐲)𝐞.

The key observation is that this product induces a spectral decomposition of any vector 𝐱, that has
similar properties as its matrix relative. Namely, for any vector 𝐱 we define

𝜆1(𝐱) ∶= 𝑥0 +‖�̃�‖ , 𝐜1(𝐱) ∶= 1
2

[
1
�̃�

∥�̃�∥
] ,

𝜆2(𝐱) ∶= 𝑥0 −‖�̃�‖ , 𝐜2(𝐱) ∶= 1
2

[
1

−�̃�
∥�̃�∥

] . (2.4)

We use the shorthands 𝜆1 ∶= 𝜆1(𝐱), 𝜆2 ∶= 𝜆2(𝐱), 𝐜1 ∶= 𝐜1(𝐱) and 𝐜2 ∶= 𝐜2(𝐱) whenever 𝐱 is clear
from the context, so we observe that 𝐱 = 𝜆1𝐜1 + 𝜆2𝐜2. The set of eigenvectors {𝐜1, 𝐜2} is called the
Jordan frame of 𝐱, and satisfies several properties:

Proposition 2.1 (Properties of Jordan frames). Let 𝐱 ∈ ℝ𝑛 and let {𝐜1, 𝐜2} be its Jordan
frame. Then, the following holds:

1. 𝐜1 ∘ 𝐜2 = 0 (the eigenvectors are “orthogonal”)

2. 𝐜1 ∘ 𝐜1 = 𝐜1 and 𝐜2 ∘ 𝐜2 = 𝐜2

3. 𝐜1, 𝐜2 are of the form (1
2 ; ± ̃𝐜) with ‖ ̃𝐜‖ = 1

2

On the other hand, just like a given matrix is positive (semi)definite if and only if all of its
eigenvalues are positive (nonnegative), a similar result holds for ℒ𝑛 and intℒ𝑛 (the Lorentz cone
and its interior):

Proposition 2.2. Let 𝐱 ∈ ℝ𝑛 have eigenvalues 𝜆1, 𝜆2. Then, the following holds:

1. 𝐱 ∈ ℒ𝑛 if and only if 𝜆1 ≥ 0 and 𝜆2 ≥ 0.

2. 𝐱 ∈ intℒ𝑛 if and only if 𝜆1 > 0 and 𝜆2 > 0.

Now, using this decomposition, we can define arbitrary real powers 𝐱𝑝 for 𝑝 ∈ ℝ as 𝐱𝑝 ∶= 𝜆𝑝
1𝐜1 +𝜆𝑝

2𝐜2,
and in particular the “inverse” and the “square root”

𝐱−1 = 1
𝜆1

𝐜1 + 1
𝜆2

𝐜2, if 𝜆1𝜆2 ≠ 0,

𝐱1/2 = √𝜆1𝐜1 + √𝜆2𝐜2, if 𝐱 ∈ ℒ𝑛.

Moreover, we can also define some operator norms, namely the Frobenius and the spectral one:

‖𝐱‖𝐹 = √𝜆2
1 + 𝜆2

2 =
√

2‖𝐱‖ ,

‖𝐱‖2 = max{|𝜆1|, |𝜆2|} = |𝑥0| +‖�̃�‖ .

14 CHAPTER 2. QUANTUM INTERIOR-POINT METHODS

Finally, we define an analogue to the operation 𝑌 ↦ 𝑋𝑌 𝑋. It turns out that for this we need
another matrix representation (quadratic representation) 𝑄𝐱, defined as

𝑄𝐱 ∶= 2Arw2(𝐱) − Arw(𝐱2) = [‖𝐱‖2 2𝑥0�̃�⊤

2𝑥0�̃� 𝜆1𝜆2𝐼𝑛 + 2�̃��̃�⊤] . (2.5)

Now, the matrix-vector product 𝑄𝐱𝐲 will behave as the quantity 𝑋𝑌 𝑋. To simplify the notation,
we also define the matrix 𝑇𝐱 ∶= 𝑄𝐱1/2 .

The definitions that we introduced so far are suitable for dealing with a single constraint 𝐱 ∈ ℒ𝑛.
For dealing with multiple constraints 𝐱1 ∈ ℒ𝑛1 , … , 𝐱𝑟 ∈ ℒ𝑛𝑟 , we need to deal with block-vectors
𝐱 = (𝐱1; 𝐱2; … ; 𝐱𝑟) and 𝐲 = (𝐲1; 𝐲2; … ; 𝐲𝑟). We call the number of blocks 𝑟 the rank of the vector
(thus, up to now, we were only considering rank-1 vectors). Now, we extend all our definitions to
rank-𝑟 vectors.

1. 𝐱 ∘ 𝐲 ∶= (𝐱1 ∘ 𝐲1; … ; 𝐱𝑟 ∘ 𝐲𝑟)

2. The matrix representations Arw(𝐱) and 𝑄𝐱 are the block-diagonal matrices containing the
representations of the blocks:

Arw(𝐱) ∶= Arw(𝐱1) ⊕ ⋯ ⊕ Arw(𝐱𝑟) and 𝑄𝐱 ∶= 𝑄𝐱1
⊕ ⋯ ⊕ 𝑄𝐱𝑟

3. 𝐱 has 2𝑟 eigenvalues (with multiplicities) – the union of the eigenvalues of the blocks 𝐱𝑖. The
eigenvectors of 𝐱 corresponding to block 𝑖 contain the eigenvectors of 𝐱𝑖 as block 𝑖, and are
zero everywhere else.

4. The identity element is 𝐞 = (𝐞1; … ; 𝐞𝑟), where 𝐞𝑖’s are the identity elements for the corre-
sponding blocks.

Thus, all things defined using eigenvalues can also be defined for rank-𝑟 vectors:

1. The norms are extended as ‖𝐱‖2
𝐹 ∶= ∑𝑟

𝑖=1∥𝐱𝑖∥
2
𝐹
and ‖𝐱‖2 ∶= max𝑖∥𝐱𝑖∥2

, and

2. Powers are computed blockwise as 𝐱𝑝 ∶= (𝐱𝑝
1; … ; 𝐱𝑝

𝑟) whenever the corresponding blocks are
defined.

Some further matrix-algebra inspired properties of block vectors are stated in the following two
claims:

Claim 2.3 (Algebraic properties). Let 𝐱, 𝐲 be two arbitrary block-vectors. Then, the following
holds:

1. The spectral norm is subadditive: ‖𝐱 + 𝐲‖2 ≤‖𝐱‖2 +‖𝐲‖2.

2. The spectral norm is less than the Frobenius norm: ‖𝐱‖2 ≤‖𝐱‖𝐹.

3. If 𝐴 is a matrix with minimum and maximum singular values 𝜎min and 𝜎max respectively,
then the norm ‖𝐴𝐱‖ is bounded as 𝜎min‖𝐱‖ ≤‖𝐴𝐱‖ ≤ 𝜎max‖𝐱‖.

4. The minimum eigenvalue of 𝐱 + 𝐲 is bounded as 𝜆min(𝐱 + 𝐲) ≥ 𝜆min(𝐱) −‖𝐲‖2.

5. The following submultiplicativity property holds: ‖𝐱 ∘ 𝐲‖𝐹 ≤‖𝐱‖2 ⋅‖𝐲‖𝐹.

2.2. PRELIMINARIES 15

In general, the proofs of these statements are analogous to the matrix case, with a few notable
differences: First, the vector spectral norm ‖⋅‖2 is not actually a norm, since there exist nonzero
vectors outside ℒ which have zero norm. It is, however, still bounded by the Frobenius norm (just
like in the matrix case), which is in fact a proper norm. Secondly, the minimum eigenvalue bound
also holds for matrix spectral norms, with the exact same statement. Finally, the last property is
reminiscent of the matrix submultiplicativity property ‖𝐴 ⋅ 𝐵‖𝐹 ≤‖𝐴‖2‖𝐵‖𝐹.

We finish with several well-known properties of the quadratic representation 𝑄𝐱 and 𝑇𝐱.

Proposition 2.4 (Properties of 𝑄𝐱, from [AG03]). Let 𝐱 ∈ intℒ. Then, the following holds:

1. 𝑄𝐱𝐞 = 𝐱2, and thus 𝑇𝐱𝐞 = 𝐱.

2. 𝑄𝐱−1 = 𝑄−1
𝐱 , and more generally 𝑄𝐱𝑝 = 𝑄𝑝

𝐱 for all 𝑝 ∈ ℝ.

3. ‖𝑄𝐱‖2 =‖𝐱‖2
2, and thus ‖𝑇𝐱‖2 =‖𝐱‖2.

4. 𝑄𝐱 preserves ℒ, i.e. 𝑄𝐱(ℒ) = ℒ and 𝑄𝐱(intℒ) = intℒ.

2.2.3 Interior-point methods

Our algorithm follows the general IPM structure, i.e. it uses Newton’s method to solve a sequence
of increasingly strict relaxations of the Karush-Kuhn-Tucker (KKT) optimality conditions:

𝐴𝐱 = 𝐛, 𝐴⊤𝐲 + 𝐬 = 𝐜 (2.6)
𝐱 ∘ 𝐬 = 𝜈𝐞, 𝐱 ∈ ℒ, 𝐬 ∈ ℒ,

where the parameter 𝜈 > 0 is decreased by a factor 𝜎 < 1 in each iteration. Since 𝐱 ∘ 𝐬 = 𝜈𝐞 implies
that the duality gap is 𝜇 = 𝜈, by letting 𝜈 → 0 the IPM converges towards the optimal solution.
The curve traced by (feasible) solutions (𝐱, 𝐲, 𝐬) of (2.6) for 𝜈 > 0 is called the central path, and we
note that all points on it are strictly feasible.

More precisely, in each iteration we need to find Δ𝐱, Δ𝐲, Δ𝐬 such that 𝐱next ∶= 𝐱 + Δ𝐱,
𝐲next ∶= 𝐲 + Δ𝐲 and 𝐬next ∶= 𝐬 + Δ𝐬 satisfy (2.6) for 𝜈 = 𝜎𝜇. After linearizing the product
𝐱next ∘ 𝐬next, we obtain the following linear system – the Newton system:

⎡
⎢
⎣

𝐴 0 0
0 𝐴⊤ 𝐼

Arw(𝐬) 0 Arw(𝐱)

⎤
⎥
⎦

⎡
⎢
⎣

Δ𝐱
Δ𝐲
Δ𝐬

⎤
⎥
⎦

= ⎡
⎢
⎣

𝐛 − 𝐴𝐱
𝐜 − 𝐬 − 𝐴⊤𝐲
𝜎𝜇𝐞 − 𝐱 ∘ 𝐬

⎤
⎥
⎦

. (2.7)

As a final remark, it is not guaranteed that (𝐱next, 𝐲next, 𝐬next) is on the central path (2.6), or even
that it is still strictly feasible. Luckily, it can be shown that as long as (𝐱, 𝐲, 𝐬) starts out in a
neighborhood 𝒩 of the central path, (𝐱next, 𝐲next, 𝐬next) will remain both strictly feasible and in 𝒩.
It can be shown that this algorithm halves the duality gap every 𝑂(

√
𝑟) iterations, so indeed, after

𝑂(
√

𝑟 log(𝜇0/𝜖)) it will converge to a (feasible) solution with duality gap at most 𝜖 (given that the
initial duality gap was 𝜇0).

2.2.4 Quantum linear algebra

As it was touched upon earlier, the main speedup in our algorithms comes from the fact that we
use the quantum linear algebra algorithms from [CGJ19; Gil+19] whose complexity is sublinear in
the dimension. Of course, we need to change our computational model for this sentence to make

16 CHAPTER 2. QUANTUM INTERIOR-POINT METHODS

any sense: namely, we encode 𝑛-dimensional unit vectors as quantum states of a ⌈log2(𝑛)⌉-qubit
system. In other words, for a vector 𝐳 ∈ ℝ2𝑘 with ‖𝐳‖ = 1, we use the notation |𝐳⟩ to refer to the
𝑘-qubit state |𝐳⟩ ∶= ∑2𝑘−1

𝑖=0 𝑧𝑖 |𝑖⟩, where |𝑖⟩ are the standard basis vectors of ℂ2𝑘 , the state space of
a 𝑘-qubit system [NC12].

Given a quantum state |𝐳⟩, we have very limited ways of interacting with it: we can either
apply a unitary transformation 𝑈 ∶ ℂ2𝑘 → ℂ2𝑘 , or we can measure it, which means that we discard
the state and obtain a single random integer 0 ≤ 𝑖 ≤ 2𝑘 − 1, with the probability of measuring 𝑖
being 𝑧2

𝑖 . In particular this means that we can neither observe the amplitudes 𝑧𝑖 directly, nor can
we create a copy of |𝐳⟩ for an arbitrary |𝐳⟩. In addition to this, it is a priori not clear how (and
whether it is even possible) to implement the state |𝐳⟩ or an arbitrary unitary 𝑈 using the gates
of a quantum computer. Luckily, there exists a quantum-classical framework using QRAM data
structures described in [KP17] that provides a positive answer to both of these questions.

The QRAM can be thought of as the quantum analogue to RAM, i.e. an array [𝐛(1), … , 𝐛(𝑚)]
of 𝑤-bit bitstrings, whose elements we can access in poly-logarithmic time given their address
(position in the array). More precisely, QRAM is just an efficient implementation of the unitary
transformation

|𝑖⟩ |0⟩⊗𝑤 ↦ |𝑖⟩ |𝑏(𝑖)
1 … 𝑏(𝑖)

𝑤 ⟩ , for 𝑖 ∈ [𝑚].

The usefulness of QRAM data structures becomes clear when we consider the block encoding
framework:

Definition 2.5. Let 𝐴 ∈ ℝ𝑛×𝑛 be a symmetric matrix. Then, the ℓ-qubit unitary matrix

𝑈 ∈ ℂ2ℓ×2ℓ is a (𝜁, ℓ) block encoding of 𝐴 if 𝑈 = [𝐴/𝜁 ⋅
⋅ ⋅]. For an arbitrary matrix 𝐵 ∈ ℝ𝑛×𝑚,

a block encoding of 𝐵 is any block encoding of its symmetrized version sym(𝐵) ∶= [0 𝐵
𝐵⊤ 0].

We want 𝑈 to be implemented efficiently, i.e. using an ℓ-qubit quantum circuit of depth (poly-)
logarithmic in 𝑛. Such a circuit would allow us to efficiently create states |𝐴𝑖⟩ corresponding to
rows (or columns) of 𝐴. Moreover, we need to be able to construct such a data structure efficiently
from the classical description of 𝐴. It turns out that we are able to fulfill both of these requirements
using a data structure built on top of QRAM.

Theorem 2.6 (Block encodings using QRAM [KP17; KP20b]). There exist QRAM data
structures for storing vectors 𝐯𝑖 ∈ ℝ𝑛, 𝑖 ∈ [𝑚] and matrices 𝐴 ∈ ℝ𝑛×𝑛 such that with access to
these data structures one can do the following:

1. Given 𝑖 ∈ [𝑚], prepare the state |𝐯𝑖⟩ in time 𝑂(1). In other words, the unitary |𝑖⟩ |0⟩ ↦
|𝑖⟩ |𝐯𝑖⟩ can be implemented efficiently.

2. A (𝜁(𝐴), 2 log𝑛) unitary block encoding for 𝐴 with 𝜁(𝐴) =‖𝐴‖−1
2 min(‖𝐴‖𝐹 , 𝑠1(𝐴)), where

𝑠1(𝐴) = max𝑖 ∑𝑗 |𝐴𝑖,𝑗| can be implemented in time 𝑂(log𝑛). Moreover, this block
encoding can be constructed in a single pass over the matrix 𝐴, and it can be updated in
𝑂(log2 𝑛) time per entry.

From now on, we will also refer to storing vectors and matrices in QRAM, meaning that we use the
data structure from Theorem 2.6. Note that this is the same quantum oracle model that has been
used to solve SDPs in [KP20a] and [AG19].

2.3. A QUANTUM INTERIOR-POINT METHOD 17

Once we have these block encodings, we may use them to perform linear algebra. In particular,
we want to construct the quantum states |𝐴𝐛⟩ and |𝐴−1𝐛⟩, corresponding to the matrix-vector
product 𝐴𝐛 and the solution of the linear system 𝐴𝐱 = 𝐛:

Theorem 2.7 (Quantum linear algebra with block encodings [CGJ19; Gil+19]). Let 𝐴 ∈ ℝ𝑛×𝑛

be a matrix with non-zero eigenvalues in the interval [−1, −1/𝜅] ∪ [1/𝜅, 1], and let 𝜖 > 0. Given
an implementation of an (𝜁, 𝑂(log𝑛)) block encoding for 𝐴 in time 𝑇𝑈 and a procedure for
preparing state |𝑏⟩ in time 𝑇𝑏,

1. A state 𝜖-close to |𝐴−1𝑏⟩ can be generated in time 𝑂((𝑇𝑈𝜅𝜁 + 𝑇𝑏𝜅)polylog(𝜅𝜁/𝜖)).

2. A state 𝜖-close to |𝐴𝑏⟩ can be generated in time 𝑂((𝑇𝑈𝜅𝜁 + 𝑇𝑏𝜅)polylog(𝜅𝜁/𝜖)).

3. For 𝒜 ∈ {𝐴, 𝐴−1}, an estimate Λ such that Λ ∈ (1 ± 𝜖)‖𝒜𝑏‖ can be generated in time
𝑂((𝑇𝑈 + 𝑇𝑏)𝜅𝜁

𝜖 polylog(𝜅𝜁/𝜖)).

Finally, in order to recover classical information from the outputs of a linear system solver, we
require an efficient procedure for quantum state tomography. The tomography procedure is linear in
the dimension of the quantum state.

Theorem 2.8 (Efficient vector state tomography, [KP20a]). There exists an algorithm that
given a procedure for constructing |𝐱⟩ (i.e. a unitary mapping 𝑈 ∶ |0⟩ ↦ |𝐱⟩ and its controlled
version in time 𝑇𝑈) and precision 𝛿 > 0 produces an estimate 𝐱 ∈ ℝ𝑛 with ‖𝐱‖ = 1 such that
‖𝐱 − 𝐱‖ ≤

√
7𝛿 with probability at least (1 − 1/𝑛0.83). The algorithm runs in time 𝑂 (𝑇𝑈

𝑛 log 𝑛
𝛿2).

Of course, repeating this algorithm 𝑂(1) times allows us to increase the success probability to
at least 1 − 1/ poly(𝑛). Putting Theorems 2.6, 2.7 and 2.8 together, assuming that 𝐴 and 𝐛 are
already in QRAM, we obtain that the complexity of a completely self-contained algorithm for
solving the system 𝐴𝐱 = 𝐛 with error 𝛿 is 𝑂 (𝑛 ⋅ 𝜅𝜁

𝛿2). For well-conditioned matrices, this presents
a significant improvement over 𝑂(𝑛𝜔) (or, in practice, 𝑂(𝑛3)) needed for solving linear systems
classically, especially when 𝑛 is large and the desired precision is not too high. This can be compared
with classical iterative linear algebra algorithms [Saa03], whose per-iteration cost is equal to the
number of non-zero elements of 𝐴, as well as the new quantum-inspired solvers [GLT18] that have
high-degree polynomial dependence on the rank, error, and the condition number.

2.3 A quantum interior-point method

Having introduced the classical IPM for SOCP, we can finally introduce our quantum IPM (Algorithm
1). The main idea is to use quantum linear algebra as much as possible (including solving the Newton
system – the most expensive part of each iteration), and falling back to classical computation when
needed. Since quantum linear algebra introduces inexactness, we need to deal with it in the analysis.
The inspiration for the “quantum part” of the analysis is [KP20a], whereas the “classical part” is
based on [MT00]. Nevertheless, the SOCP analysis is unique in many aspects and a number of
hurdles had to be overcome to make the analysis go through. In the rest of the section, we give
a brief introduction of the most important quantum building blocks we use, as well as present a
sketch of the analysis.

First, we note that the algorithms from the previous section allow us to “forget” that Algorithm 1
is quantum, and treat it as a small modification of the classical IPM, where the system (2.7) is
solved up to an ℓ2-error 𝛿. Since Algorithm 1 is iterative, the main part of the analysis is proving
that a single iteration preserves closeness to the central path, strict feasibility, and improves the

18 CHAPTER 2. QUANTUM INTERIOR-POINT METHODS

Algorithme 1 : A quantum IPM for SOCP
1 Require: Matrix 𝐴 and vectors 𝐛, 𝐜 in QRAM, precision parameter 𝜖

1. Find feasible initial point (𝐱, 𝐲, 𝐬, 𝜇) and store it in QRAM.

2. Repeat the following steps for 𝑂(
√

𝑟 log(𝜇0/𝜖)) iterations:

a) Compute the vector 𝜎𝜇𝐞 − 𝐱 ∘ 𝐬 classically and store it in QRAM.
b) Prepare and update the block encodings of the LHS and the RHS of the Newton system

(2.7)
c) Solve the Newton system to obtain |(Δ𝐱; Δ𝐲; Δ𝐬)⟩, and obtain a classical approximate

solution (Δ𝐱; Δ𝐲; Δ𝐬) using tomography.
d) Update 𝐱 ← 𝐱 + Δ𝐱, 𝐬 ← 𝐬 + Δ𝐬 and store in QRAM.
e) Update 𝜇 ← 1

𝑟 𝐱⊤𝐬.

3. Output (𝐱, 𝐲, 𝐬).

duality gap. In the remainder of this section, we state our main results informally, while the exact
statements and proofs of all claims are presented later, as Theorems 2.10, 2.18 and 2.19, respectively.

Theorem (Per-iteration correctness, informal). Let (𝐱, 𝐲, 𝐬) be a strictly feasible primal-dual
solution that is close to the central path, with duality gap 𝜇, and at distance at least 𝛿 from the
boundary of ℒ. Then, the Newton system (2.7) has a unique solution (Δ𝐱, Δ𝐲, Δ𝐬). There
exist positive constants 𝜉, 𝛼 such that the following holds: If we let Δ𝐱, Δ𝐬 be approximate
solutions of (2.7) that satisfy

∥Δ𝐱 − Δ𝐱∥
𝐹

≤ 𝜉𝛿 and ∥Δ𝐬 − Δ𝐬∥
𝐹

≤ 𝜉𝛿,

and let 𝐱next ∶= 𝐱 + Δ𝐱 and 𝐬next ∶= 𝐬 + Δ𝐬 be the updated solution, then:

1. The updated solution is strictly feasible, i.e. 𝐱next ∈ intℒ and 𝐬next ∈ intℒ.

2. The updated solution is close to the central path, and the new duality gap is less than
(1 − 𝛼/

√
𝑟)𝜇.

The proof of this theorem consists of 3 main parts:

1. Rescaling 𝐱 and 𝐬 so that they commute in the Jordan-algebraic sense [AG03]. This part can
be reused from the classical analysis [MT00].

2. Bounding the norms of Δ𝐱 and Δ𝐬, and proving that 𝐱 + Δ𝐱 and 𝐬 + Δ𝐬 are still strictly
feasible (in the sense of belonging to intℒ). This part of the analysis is also inspired by
the classical analysis, but it has to take into account the inexactness of the Newton system
solution.

3. Proving that the new solution (𝐱 + Δ𝐱, 𝐲 + Δ𝐲, 𝐬 + Δ𝐬) is in the neighborhood of the central
path, and the duality gap/central path parameter have decreased by a factor of 1 − 𝛼/

√
𝑟,

where 𝛼 is constant. This part is the most technical, and while it is inspired by [KP20a], it
required using many of the Jordan-algebraic tools from [AG03; MT00].

2.4. TECHNICAL RESULTS 19

Theorem 2.10 formalizes the fact that the Algorithm 1 has the same iteration invariant as the
classical IPM. Since the duality gap is reduced by the same factor in both algorithms, their iteration
complexity is the same, and a simple calculation shows that they need 𝑂(

√
𝑟) iterations to halve the

duality gap. On the other hand, the cost of each iteration varies, since the complexity of the quantum
linear system solver depends on the precision 𝜉𝛿, the condition number 𝜅 of the Newton matrix, as
well as its 𝜁-parameter. While exactly bounding these quantities is the subject of future research,
it is worth noting that for 𝜁, we have the trivial bound 𝜁 ≤

√
𝑛, and research on iterative linear

algebra methods [Dol05] suggests that 𝜅 = 𝑂(1/𝜇) = 𝑂(1/𝜖). The final complexity is summarized
in the following theorem:

Theorem. Let (2.2) be a SOCP with 𝐴 ∈ ℝ𝑚×𝑛, 𝑚 ≤ 𝑛, and ℒ = ℒ𝑛1 × ⋯ × ℒ𝑛𝑟 . Then,
Algorithm 1 achieves duality gap 𝜖 in time

𝑇 = 𝑂 (
√

𝑟 log (𝜇0/𝜖) ⋅ 𝑛𝜅𝜁
𝛿2 log(𝜅𝜁

𝛿
)) ,

where the 𝑂(⋅) notation hides the factors that are poly-logarithmic in 𝑛 and 𝑚.

Finally, the quality of the resulting (classical) solution is characterized by the following theo-
rem:

Theorem. Let (2.2) be a SOCP as in Theorem 2.18. Then, after 𝑇 iterations, the (linear)
infeasibility of the final iterate 𝐱, 𝐲, 𝐬 is bounded as

‖𝐴𝐱 − 𝐛‖ ≤ 𝛿‖𝐴‖ ,
∥𝐴⊤𝐲 + 𝐬 − 𝐜∥ ≤ 𝛿 (‖𝐴‖ + 1) .

2.4 Technical results
In this section, we present our main technical results – the proofs of Theorems 2.10, 2.18 and 2.19.

2.4.1 Central path

In addition to the central path defined in (2.6), we define the distance from the central path as
𝑑(𝐱, 𝐬, 𝜈) =‖𝑇𝐱𝐬 − 𝜈𝐞‖𝐹, so the corresponding 𝜂-neighborhood is given by

𝒩𝜂(𝜈) ∶= {(𝐱, 𝐲, 𝐬) | (𝐱, 𝐲, 𝐬) strictly feasible and 𝑑(𝐱, 𝐬, 𝜈) ≤ 𝜂𝜈}.

Using this neighborhood definition, we can specify what exactly do we mean when we claim that
the important properties of the central path are valid in its neighborhood as well.

Lemma 2.9 (Properties of the central path). Let 𝜈 > 0 be arbitrary and let 𝐱, 𝐬 ∈ intℒ. Then,
𝐱 and 𝐬 satisfy the following properties:

1. For all 𝜈 > 0, the duality gap and distance from the central path are related as

|𝐱⊤𝐬 − 𝑟𝜈| ≤ √𝑟
2

⋅ 𝑑(𝐱, 𝐬, 𝜈).

2. The distance from the central path is symmetric in its arguments i.e. 𝑑(𝐱, 𝐬, 𝜈) = 𝑑(𝐬, 𝐱, 𝜈).

20 CHAPTER 2. QUANTUM INTERIOR-POINT METHODS

3. Let 𝜇 = 1
𝑟 𝐱⊤𝐬. If 𝑑(𝐱, 𝐬, 𝜇) ≤ 𝜂𝜇, then (1 + 𝜂)∥𝐬−1∥

2
≥∥𝜇−1𝐱∥

2
.

Proof. For part 1, let {𝜆𝑖}2𝑟
𝑖=1 be the eigenvalues of 𝑇𝐱𝐬, note that 𝑇𝑥 is invertible as 𝑥 ∈ ℒ. Then

using the properties of 𝑇𝐱, we have

𝐱⊤𝐬 = 𝐱⊤𝑇 −1
𝐱 𝑇𝐱𝐬 = (𝑇𝐱−1𝐱)⊤𝑇𝐱𝐬 = 𝐞⊤𝑇𝐱𝐬 = 1

2

2𝑟
∑
𝑖=1

𝜆𝑖.

We can therefore bound the duality gap 𝑥⊤𝑠 as follows,

𝐱⊤𝐬 = 1
2

2𝑟
∑
𝑖=1

𝜆𝑖 ≤ 𝑟𝜈 + 1
2

2𝑟
∑
𝑖=1

|𝜆𝑖 − 𝜈| ≤ 𝑟𝜈 + √𝑟
2

√
2𝑟

∑
𝑖=1

(𝜆𝑖 − 𝜈)2 = 𝑟𝜈 + √𝑟
2

⋅ 𝑑(𝐱, 𝐬, 𝜈).

The second step used the Cauchy-Schwarz inequality while the third follows from the definition
𝑑(𝐱, 𝐬, 𝜈)2 = ∑2𝑟

𝑖=1(𝜆𝑖 − 𝜈)2. The proof of the lower bound is similar, but starts instead with the
inequality

1
2

2𝑟
∑
𝑖=1

𝜆𝑖 ≥ 𝑟𝜈 − 1
2

2𝑟
∑
𝑖=1

|𝜈 − 𝜆𝑖|.

For part 2, it suffices to prove that 𝑇𝐱𝐬 and 𝑇𝐬𝐱 have the same eigenvalues. This follows from part
2 of Theorem 10 in [AG03]. Finally for part 3, as 𝑑(𝐬, 𝐱, 𝜇) ≤ 𝜂𝜇 we have,

𝜂𝜇 ≥∥𝑇𝐬𝐱 − 𝜇𝐞∥
𝐹

=∥𝑇𝐬𝐱 − 𝜇 (𝑇𝐬𝑇𝐬−1) 𝐞∥
𝐹

=∥𝑇𝐬 (𝐱 − 𝜇𝑇𝐬−1𝐞)∥
𝐹

≥ 𝜆min(𝑇𝐬)∥𝐱 − 𝜇𝑇𝐬−1𝐞∥
𝐹

≥ 𝜆min(𝑇𝐬)∥𝐱 − 𝜇𝐬−1∥
2

= 1
∥𝐬−1∥

2

⋅ 𝜇 ⋅∥𝜇−1𝐱 − 𝐬−1∥
2

Therefore, 𝜂∥𝐬−1∥
2

≥∥𝜇−1𝐱 − 𝐬−1∥
2
. Finally, by the triangle inequality for the spectral norm,

𝜂∥𝐬−1∥
2

≥∥𝜇−1𝐱∥
2

−∥𝐬−1∥
2

,

so we can conclude that ∥𝐬−1∥
2

≥ 1
1+𝜂 ∥𝜇−1𝐱∥

2
.

2.4.2 A single quantum IPM iteration

Recall that the essence of our quantum algorithm is repeated solution of the Newton system (2.7)
using quantum linear algebra. As such, our goal is to prove the following theorem:

Theorem 2.10 (Per-iteration correctness, formal). Let 𝜒 = 𝜂 = 0.01 and 𝜉 = 0.001 be
positive constants and let (𝐱, 𝐲, 𝐬) be a feasible solution of (2.2) and (2.3) with 𝜇 = 1

𝑟 𝐱⊤𝐬 and
𝑑(𝐱, 𝐬, 𝜇) ≤ 𝜂𝜇. Then, for 𝜎 = 1 − 𝜒/

√
𝑛, the Newton system (2.7) has a unique solution

(Δ𝐱, Δ𝐲, Δ𝐬). Let Δ𝐱, Δ𝐬 be approximate solutions of (2.7) that satisfy

∥Δ𝐱 − Δ𝐱∥
𝐹

≤ 𝜉
‖𝑇𝐱−1‖

, ∥Δ𝐬 − Δ𝐬∥
𝐹

≤ 𝜉
2∥𝑇𝐬−1∥

,

where 𝑇𝐱 and 𝑇𝐱 are the square roots of the quadratic representation matrices in equation (2.5).

2.4. TECHNICAL RESULTS 21

If we let 𝐱next ∶= 𝐱 + Δ𝐱 and 𝐬next ∶= 𝐬 + Δ𝐬, the following holds:

1. The updated solution is strictly feasible, i.e. 𝐱next ∈ intℒ and 𝐬next ∈ intℒ.

2. The updated solution satisfies 𝑑(𝐱next, 𝐬next, 𝜇) ≤ 𝜂𝜇 and 1
𝑟 𝐱⊤

next𝐬next = 𝜇 for 𝜇 = 𝜎𝜇,
𝜎 = 1 − 𝛼√

𝑟 and a constant 0 < 𝛼 ≤ 𝜒.

Since the Newton system (2.7) is the same as in the classical case, we can reuse Theorem 1 from
[MT00] for the uniqueness part of Theorem 2.10. Therefore, we just need to prove the two parts
about strict feasibility and improving the duality gap. Our analysis is inspired by the general case
analysis from [BN01], the derived SDP analysis from [KP20a], and uses some technical results from
the SOCP analysis in [MT00]. The proof of Theorem 2.10 consists of three main steps:

1. Rescaling 𝐱 and 𝐬 so that they share the same Jordan frame.

2. Bounding the norms of Δ𝐱 and Δ𝐬, and proving that 𝐱 + Δ𝐱 and 𝐬 + Δ𝐬 are still strictly
feasible (in the sense of belonging to intℒ).

3. Proving that the new solution (𝐱 + Δ𝐱, 𝐲 + Δ𝐲, 𝐬 + Δ𝐬) is in the 𝜂-neighborhood of the central
path, and the duality gap/central path parameter have decreased by a factor of 1 − 𝛼/

√
𝑛,

where 𝛼 is constant.

2.4.3 Rescaling 𝐱 and 𝐬

As in the case of SDPs, the first step of the proof uses the symmetries of the Lorentz cone to perform
a commutative scaling, that is to reduce the analysis to the case when 𝐱 and 𝐬 share the same
Jordan frame. Although ∘ is commutative by definition, two vectors sharing a Jordan frame are
akin to two matrices sharing a system of eigenvectors, and thus commuting (some authors [AG03]
say that the vectors operator commute in this case). The easiest way to achieve this is to scale by
𝑇𝐱 = 𝑄𝐱1/2 and 𝜇−1, i.e. to change our variables as

𝐱 ↦ 𝐱′ ∶= 𝑇 −1
𝐱 𝐱 = 𝐞 and 𝐬 ↦ 𝐬′ ∶= 𝜇−1𝑇𝐱𝐬.

Note that for convenience, we have also rescaled the duality gap to 1. Recall also that in the matrix
case, the equivalent of this scaling was 𝑋 ↦ 𝑋−1/2𝑋𝑋−1/2 = 𝐼 and 𝑆 ↦ 𝜇−1𝑋1/2𝑆𝑋1/2. We use
the notation 𝐳′ to denote the appropriately-scaled vector 𝐳, so that we have

Δ𝐱′ ∶= 𝑇 −1
𝐱 Δ𝐱, Δ𝐬′ ∶= 𝜇−1𝑇𝐱Δ𝐬

For approximate quantities (e.g. the ones obtained using tomography, or any other approximate
linear system solver), we use the notation ⋅ , so that the increments become Δ𝐱 and Δ𝐬, and their
scaled counterparts are Δ𝐱′ ∶= 𝑇 −1

𝐱 Δ𝐱 and Δ𝐬′ ∶= 𝜇−1𝑇𝐱Δ𝐬. Finally, we denote the scaled version
of the next iterate as 𝐱′

next ∶= 𝐞 + Δ𝐱′ and 𝐬′
next ∶= 𝐬′ + Δ𝐬′. Now, we see that the statement of

22 CHAPTER 2. QUANTUM INTERIOR-POINT METHODS

Theorem 2.10 implies the following bounds on ∥Δ𝐱′ − Δ𝐱′∥
𝐹
and ∥Δ𝐬′ − Δ𝐬′∥

𝐹
:

∥Δ𝐱′ − Δ𝐱′∥
𝐹

=∥𝑇𝐱−1Δ𝐱 − 𝑇𝐱−1Δ𝐱∥
𝐹

≤‖𝑇𝐱−1‖ ⋅∥Δ𝐱 − Δ𝐱∥
𝐹

≤ 𝜉, and

∥Δ𝐬′ − Δ𝐬′∥
𝐹

= 𝜇−1∥𝑇𝐱Δ𝐬 − 𝑇𝐱Δ𝐬∥
𝐹

≤ 𝜇−1‖𝑇𝐱‖∥Δ𝐬 − Δ𝐬∥
𝐹

= 𝜇−1‖𝐱‖2∥Δ𝐬 − Δ𝐬∥
𝐹

≤ (1 + 𝜂)∥𝐬−1∥
2
∥Δ𝐬 − Δ𝐬∥

𝐹
by Lemma 2.9

≤ 2∥𝑇𝐬−1∥∥Δ𝐬 − Δ𝐬∥
𝐹

≤ 𝜉.

Throughout the analysis, we will make use of several constants: 𝜂 > 0 is the distance from
the central path, i.e. we ensure that our iterates stay in the 𝜂-neighborhood 𝒩𝜂 of the central
path. The constant 𝜎 = 1 − 𝜒/

√
𝑟 is the factor by which we aim to decrease our duality gap, for

some constant 𝜒 > 0. Finally constant 𝜉 > 0 is the approximation error for the scaled increments
Δ𝐱′, Δ𝐬′. Having this notation in mind, we can state several facts about the relation between the
duality gap and the central path distance for the original and scaled vectors.

Claim 2.11. The following holds for the scaled vectors 𝐱′ and 𝐬′:

1. The scaled duality gap is 1
𝑟 𝐱′⊤𝐬′ = 1.

2. 𝑑(𝐱, 𝐬, 𝜇) ≤ 𝜂𝜇 is equivalent to ‖𝐬′ − 𝐞‖ ≤ 𝜂.

3. 𝑑(𝐱, 𝐬, 𝜇𝜎) = 𝜇 ⋅ 𝑑(𝐱′, 𝐬′, 𝜎), for all 𝜎 > 0.

At this point, we claim that it suffices to prove the two parts of Theorem 2.10 in the scaled case.
Namely, assuming that 𝐱′

next ∈ intℒ and 𝐬′
next ∈ intℒ, by construction we get

𝐱next = 𝑇𝐱𝐱′
next and 𝐬next = 𝑇𝐱−1𝐬′

next

and thus 𝐱next, 𝐬next ∈ intℒ.
On the other hand, if 𝜇𝑑(𝐱′

next, 𝐬′
next, 𝜎) ≤ 𝜂𝜇, then 𝑑(𝐱next, 𝐬next, 𝜇) ≤ 𝜂𝜇 follows by Claim 2.11.

Similarly, from 1
𝑟 𝐱′⊤

next𝐬′
next = 𝜎, we also get 1

𝑟 𝐱⊤
next𝐬next = 𝜇. We conclude this part with two technical

results from [MT00], that use the auxiliary matrix 𝑅𝑥𝑠 defined as 𝑅𝑥𝑠 ∶= 𝑇𝐱 Arw(𝐱)−1 Arw(𝐬)𝑇𝐱.
These results are useful for the later parts of the proof of Theorem 2.10.

Claim 2.12 ([MT00], Lemma 3). Let 𝜂 be the distance from the central path, and let 𝜈 > 0 be
arbitrary. Then, 𝑅𝑥𝑠 is bounded as

∥𝑅𝑥𝑠 − 𝜈𝐼∥ ≤ 3𝜂𝜈.

Claim 2.13 ([MT00], Lemma 5, proof). Let 𝜇 be the duality gap. Then, the scaled increment
Δ𝐬′ is

Δ𝐬′ = 𝜎𝐞 − 𝐬′ − 𝜇−1𝑅𝑥𝑠Δ𝐱′.

2.4. TECHNICAL RESULTS 23

2.4.4 Maintaining strict feasibility

The main tool for showing that strict feasibility is conserved is the following bound on the increments
Δ𝐱′ and Δ𝐬′:

Lemma 2.14 ([MT00], Lemma 6). Let 𝜂 be the distance from the central path and let 𝜇 be the
duality gap. Then, we have the following bounds for the scaled direction:

‖Δ𝐱′‖𝐹 ≤ Θ√
2

‖Δ𝐬′‖𝐹 ≤ Θ
√

2
, where Θ =

2√𝜂2/2 + (1 − 𝜎)2𝑟
1 − 3𝜂

Moreover, if we substitute 𝜎 with its actual value 1 − 𝜒/
√

𝑟, we get Θ = √2𝜂2+4𝜒2

1−3𝜂 , which we can
make arbitrarily small by tuning the constants. Now, we can immediately use this result to prove
𝐱′

next, 𝐬′
next ∈ intℒ.

Lemma 2.15. Let 𝜂 = 𝜒 = 0.01 and 𝜉 = 0.001. Then, 𝐱′
next and 𝐬′

next are strictly feasible, i.e.
𝐱′

next, 𝐬′
next ∈ intℒ.

Proof. By Lemma 2.14, 𝜆min(𝐱) ≥ 1−∥Δ𝐱′∥
𝐹

≥ 1− Θ√
2 −𝜉. On the other hand, since 𝑑(𝐱, 𝐬, 𝜇) ≤ 𝜂𝜇,

we have 𝑑(𝐱′, 𝐬′, 1) ≤ 𝜂, and thus

𝜂2 ≥‖𝐬′ − 𝑒‖2
𝐹 =

2𝑟
∑
𝑖=1

(𝜆𝑖(𝐬′) − 1)2

The above equation implies that 𝜆𝑖(𝐬′) ∈ [1 − 𝜂, 1 + 𝜂] , ∀𝑖 ∈ [2𝑟]. Now, since ‖𝐳‖2 ≤‖𝐳‖𝐹,

𝜆min(𝐬) ≥ 𝜆min(𝐬′ + Δ𝐬′) −∥Δ𝐬′ − Δ𝐬′∥
𝐹

≥ 𝜆min(𝐬′) −‖Δ𝐬′‖𝐹 −∥Δ𝐬′ − Δ𝐬′∥
𝐹

≥ 1 − 𝜂 − Θ
√

2 − 𝜉,

where we used Lemma 2.14 for the last inequality. Substituting 𝜂 = 𝜒 = 0.01 and 𝜉 = 0.001, we get
that 𝜆min(𝐱) ≥ 0.8 and 𝜆min(𝐬) ≥ 0.8.

2.4.5 Maintaining closeness to central path

Finally, we move on to the most technical part of the proof of Theorem 2.10, where we prove that
𝐱′

next, 𝐬′
next is still close to the central path, and the duality gap has decreased by a constant factor.

We split this into two lemmas.

Lemma 2.16. Let 𝜂 = 𝜒 = 0.01, 𝜉 = 0.001, and let 𝛼 be any value satisfying 0 < 𝛼 ≤ 𝜒. Then,
for 𝜎 = 1 − 𝛼/

√
𝑟, the distance to the central path is maintained, that is, 𝑑(𝐱′

next, 𝐬′
next, 𝜎) < 𝜂𝜎.

Proof. By Claim 2.11, the distance of the next iterate from the central path is

𝑑(𝐱′
next, 𝐬′

next, 𝜎) =∥𝑇𝐱′
next

𝐬′
next − 𝜎𝐞∥

𝐹
,

and we can bound it from above as

𝑑(𝐱′
next, 𝐬′

next, 𝜎) =∥𝑇𝐱′
next

𝐬′
next − 𝜎𝐞∥

𝐹

=∥𝑇𝐱′
next

𝐬′
next − 𝜎𝑇𝐱′

next
𝑇𝐱′−1

next
𝐞∥

𝐹

≤∥𝑇𝐱′
next

∥ ⋅∥𝐬′
next − 𝜎 ⋅ (𝐱′

next)−1∥ .

24 CHAPTER 2. QUANTUM INTERIOR-POINT METHODS

So, it is enough to bound ‖𝐳‖𝐹 ∶=∥𝐬′
next − 𝜎 ⋅ 𝐱′−1

next∥𝐹
from above, since

∥𝑇𝐱′
next

∥ =∥𝐱′
next∥2

≤ 1 +∥Δ𝐱′∥
2

≤ 1 +‖Δ𝐱′‖2 + 𝜉 ≤ 1 + Θ√
2

+ 𝜉.

We split 𝐳 as

𝐳 = (𝐬′ + Δ𝐬′ − 𝜎𝑒 + Δ𝐱′)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐳1

+ (𝜎 − 1)Δ𝐱′
⏟⏟⏟⏟⏟

𝐳2

+ 𝜎 (𝑒 − Δ𝐱′ − (𝑒 + Δ𝐱′)−1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐳3

,

and we bound ‖𝐳1‖𝐹 ,‖𝐳2‖𝐹, and ∥𝐳3∥
𝐹
separately.

1. By the triangle inequality, ‖𝐳1‖𝐹 ≤‖𝐬′ + Δ𝐬′ − 𝜎𝑒 + Δ𝐱′‖𝐹 + 2𝜉. Furthermore, after substitut-
ing Δ𝐬′ from Claim 2.13, we get

𝐬′ + Δ𝐬′ − 𝜎𝑒 + Δ𝐱′ = 𝜎𝑒 − 𝜇−1𝑅𝑥𝑠Δ𝐱′ − 𝜎𝑒 + Δ𝐱′

= 𝛼 − 𝜒√
𝑟

𝑒 + 𝜇−1(𝜇𝐼 − 𝑅𝑥𝑠)Δ𝐱′.

Using the bound for ∥𝜇𝐼 − 𝑅𝑥𝑠∥ from Claim 2.12 as well as the bound for ‖Δ𝐱′‖𝐹 from Lemma
2.14, we obtain

‖𝐳1‖𝐹 ≤ 2𝜉 + 𝜒√
𝑟

+ 3√
2

𝜂Θ.

2. ‖𝐳2‖𝐹 ≤ 𝜒√
𝑟 (Θ√

2 + 𝜉), where we used the bound from Lemma 2.14 again.

3. Here, we first need to bound ∥(𝑒 + Δ𝐱′)−1 − (𝑒 + Δ𝐱′)−1∥
𝐹
. For this, we use the submulti-

plicativity of ‖⋅‖𝐹:

‖(𝑒 + Δ𝐱′)−1 − (𝑒 + Δ𝐱′)−1‖𝐹 =∥(𝑒 + Δ𝐱′)−1 ∘ (𝑒 − (𝑒 + Δ𝐱′) ∘ (𝑒 + Δ𝐱′)−1)∥
𝐹

≤∥(𝑒 + Δ𝐱′)−1∥
2

⋅∥𝑒 − (𝑒 + Δ𝐱′ + Δ𝐱′ − Δ𝐱′) ∘ (𝑒 + Δ𝐱′)−1∥
𝐹

=∥(𝑒 + Δ𝐱′)−1∥
2

⋅∥(Δ𝐱′ − Δ𝐱′) ∘ (𝑒 + Δ𝐱′)−1∥
𝐹

≤∥(𝑒 + Δ𝐱′)−1∥
2

⋅∥Δ𝐱′ − Δ𝐱′∥
𝐹

⋅∥(𝑒 + Δ𝐱′)−1∥
2

≤ 𝜉 ⋅∥(𝑒 + Δ𝐱′)−1∥
2

⋅∥(𝑒 + Δ𝐱′)−1∥
2

.

Now, we have the bound ∥(𝑒 + Δ𝐱′)−1∥
2

≤ 1
1−‖Δ𝐱′‖𝐹

and similarly ∥(𝑒 + Δ𝐱′)−1∥
2

≤ 1
1−‖Δ𝐱′‖𝐹−𝜉 ,

so we get
∥(𝑒 + Δ𝐱′)−1 − (𝑒 + Δ𝐱′)−1∥

𝐹
≤ 𝜉

(1 −‖Δ𝐱′‖𝐹 − 𝜉)2 .

Using this, we can bound ∥𝐳3∥
𝐹
:

∥𝐳3∥
𝐹

≤ 𝜎 (∥𝑒 − Δ𝐱′ − (𝑒 + Δ𝐱′)−1∥
𝐹

+ 𝜉 + 𝜉
(1 −‖Δ𝐱′‖𝐹 − 𝜉)2) .

2.4. TECHNICAL RESULTS 25

If we let 𝜆𝑖 be the eigenvalues of Δ𝐱′, then by Lemma 2.14, we have

∥𝑒 − Δ𝐱′ − (𝑒 + Δ𝐱′)−1∥
𝐹

= √
2𝑟

∑
𝑖=1

((1 − 𝜆𝑖) − 1
1 + 𝜆𝑖

)
2

= √
2𝑟

∑
𝑖=1

𝜆4
𝑖

(1 + 𝜆𝑖)2 ≤ Θ√
2 − Θ

√
2𝑟

∑
𝑖=1

𝜆2
𝑖

≤ Θ2

2 −
√

2Θ
.

Combining all bound from above, we obtain

𝑑(𝐱′
next, 𝐬′

next, 𝜎) ≤ (1 + Θ√
2

+ 𝜉) ⋅ (2𝜉 + 𝜒√
𝑟

+ 3√
2

𝜂Θ

+ 𝜒√
𝑟

(Θ√
2

+ 𝜉)

+ 𝜎 (Θ2

2 −
√

2Θ
+ 𝜉 + 𝜉

(1 − Θ/
√

2 − 𝜉)2
)⎞⎟

⎠
.

Finally, if we plug in 𝜒 = 0.01, 𝜂 = 0.01, 𝜉 = 0.001, we get 𝑑(𝐱, 𝐬, 𝜎) ≤ 0.005𝜎 ≤ 𝜂𝜎.

Now, we prove that the duality gap decreases.

Lemma 2.17. For the same constants, the updated solution satisfies 1
𝑟 𝐱′⊤

next𝐬′
next = (1 − 𝛼√

𝑟)
for 𝛼 = 0.005.

Proof. Since 𝐱′
next and 𝐬′

next are scaled quantities, the duality gap between their unscaled counterparts
is 𝜇

𝑟 𝐱′⊤
next𝐬′

next. Applying Lemma 2.9 (and Claim 2.11) with 𝜈 = 𝜎𝜇 and 𝐱′
next, 𝐬′

next, we obtain the
upper bound

𝜇𝐱′⊤
next𝐬′

next ≤ 𝑟𝜎𝜇 + √𝑟
2

𝜇𝑑(𝐱′
next, 𝐬′

next, 𝜎),

which in turn implies

1
𝑟

𝐱′⊤
next𝐬′

next ≤ (1 − 0.01√
𝑟

) (1 + 𝑑(𝐱′
next, 𝐬′

next, 𝜎)
𝜎

√
2𝑟

) .

By instantiating Lemma 2.9 for 𝛼 = 𝜒, from its proof, we obtain 𝑑(𝐱′
next, 𝐬′

next, 𝜎) ≤ 0.005𝜎, and
thus

1
𝑟

𝐱′⊤
next𝐬′

next ≤ 1 − 0.005√
𝑟

Therefore, the final 𝛼 for this Lemma is 0.005.

2.4.6 Final complexity and feasibility

In every iteration we need to solve the Newton system to a precision dependent on the norms of
𝑇𝐱−1 and 𝑇𝐬−1 . Thus, to bound the running time of the algorithm (since the complexity of the vector

26 CHAPTER 2. QUANTUM INTERIOR-POINT METHODS

state tomography procedure depends on the desired precision), we need to bound ‖𝑇𝐱−1‖ and ∥𝑇𝐬−1∥.
Indeed, by the properties of the quadratic representation, we get

‖𝑇𝐱−1‖ =∥𝐱−1∥ = 𝜆min(𝐱)−1 and
∥𝑇𝐬−1∥ =∥𝐬−1∥ = 𝜆min(𝐬)−1.

If the tomography precision for iteration 𝑖 is chosen to be at least (i.e. smaller than)

𝛿𝑖 ∶= 𝜉
4
min {𝜆min(𝐱𝑖), 𝜆min(𝐬𝑖)} , (2.8)

then the premises of Theorem 2.10 are satisfied. The tomography precision for the entire algorithm
can therefore be chosen to be 𝛿 ∶= min𝑖 𝛿𝑖. Note that these minimum eigenvalues are related to
how close the current iterate is to the boundary of ℒ – as long as 𝐱𝑖, 𝐬𝑖 are not “too close” to the
boundary of ℒ, their minimal eigenvalues should not be “too small”.

There are two more parameters that impact the complexity of the quantum linear system solver:
the condition number of the Newton matrix 𝜅𝑖 and the matrix parameter 𝜁𝑖 of the QRAM encoding in
iteration 𝑖. For both of these quantities we define their global versions as 𝜅 = max𝑖 𝜅𝑖 and 𝜁 = max𝑖 𝜁𝑖.
Therefore, we arrive to the following statement about the complexity of Algorithm 1.

Theorem 2.18. Let (2.2) be a SOCP with 𝐴 ∈ ℝ𝑚×𝑛, 𝑚 ≤ 𝑛, and ℒ = ℒ𝑛1 × ⋯ × ℒ𝑛𝑟 . Then,
our algorithm achieves duality gap 𝜖 in time

𝑇 = 𝑂 (
√

𝑟 log (𝜇0/𝜖) ⋅ 𝑛𝜅𝜁
𝛿2 log(𝜅𝜁

𝛿
)) .

This complexity can be easily interpreted as product of the number of iterations and the cost of
𝑛-dimensional vector tomography with error 𝛿. So, improving the complexity of the tomography
algorithm would improve the running time of our algorithm as well.

Note that up to now, we cared mostly about strict (conic) feasibility of 𝐱 and 𝐬. Now, we address
the fact that the linear constraints 𝐴𝐱 = 𝐛 and 𝐴⊤𝐲 + 𝐬 = 𝐜 are not exactly satisfied during the
execution of the algorithm. Luckily, it turns out that this error is not accumulated, but is instead
determined just by the final tomography precision:

Theorem 2.19. Let (2.2) be a SOCP as in Theorem 2.18. Then, after 𝑇 iterations, the (linear)
infeasibility of the final iterate 𝐱, 𝐲, 𝐬 is bounded as

‖𝐴𝐱𝑇 − 𝐛‖ ≤ 𝛿‖𝐴‖ ,
∥𝐴⊤𝐲𝑇 + 𝐬𝑇 − 𝐜∥ ≤ 𝛿 (‖𝐴‖ + 1) .

Proof. Let (𝐱𝑇, 𝐲𝑇, 𝐬𝑇) be the 𝑇-th iterate. Then, the following holds for 𝐴𝐱𝑇 − 𝐛:

𝐴𝐱𝑇 − 𝐛 = 𝐴𝐱0 + 𝐴
⊤

∑
𝑡=1

Δ𝐱𝑡 − 𝐛 = 𝐴
⊤

∑
𝑡=1

Δ𝐱𝑡. (2.9)

On the other hand, the Newton system at iteration 𝑇 has the constraint 𝐴Δ𝐱𝑇 = 𝐛 − 𝐴𝐱𝑇 −1, which
we can further recursively transform as,

𝐴Δ𝐱𝑇 = 𝐛 − 𝐴𝐱𝑇 −1 = 𝐛 − 𝐴 (𝐱𝑇 −2 + Δ𝐱𝑇 −1)

= 𝐛 − 𝐴𝐱0 −
𝑇 −1
∑
𝑡=1

Δ𝐱𝑡 = −
𝑇 −1
∑
𝑡=1

Δ𝐱𝑡.

2.5. QUANTUM SUPPORT-VECTOR MACHINES 27

Substituting this into equation (2.9), we get

𝐴𝐱𝑇 − 𝐛 = 𝐴 (Δ𝐱𝑇 − Δ𝐱𝑇) .

Similarly, using the constraint 𝐴⊤Δ𝐲𝑇 + Δ𝐬𝑇 = 𝐜 − 𝐬𝑇 −1 − 𝐴⊤𝐲𝑇 −1 we obtain that

𝐴⊤𝐲𝑇 + 𝐬𝑇 − 𝐜 = 𝐴⊤ (Δ𝐲𝑇 − Δ𝐲𝑇) + (Δ𝐬𝑇 − Δ𝐬𝑇) .

Finally, we can bound the norms of these two quantities,

‖𝐴𝐱𝑇 − 𝐛‖ ≤ 𝛿‖𝐴‖ ,
∥𝐴⊤𝐲𝑇 + 𝐬𝑇 − 𝐜∥ ≤ 𝛿 (‖𝐴‖ + 1) .

2.5 Quantum Support-Vector Machines

In this section we present our quantum support-vector machine (SVM) algorithm as an application
of our SOCP solver. Given a set of vectors 𝒳 = {𝐱(𝑖) ∈ ℝ𝑛 | 𝑖 ∈ [𝑚]} (training examples) and their
labels 𝑦(𝑖) ∈ {−1, 1}, the objective of the SVM training process is to find the “best” hyperplane that
separates training examples with label 1 from those with label −1. In this section we focus on the
(traditional) soft-margin (ℓ1-)SVM, which can be expressed as the following optimization problem:

min
𝐰,𝑏,𝝃

‖𝐰‖2 + 𝐶‖𝝃‖1

s.t. 𝑦(𝑖)(𝐰⊤𝐱(𝑖) + 𝑏) ≥ 1 − 𝜉𝑖, ∀𝑖 ∈ [𝑚]
𝝃 ≥ 0.

(2.10)

Here, the variables 𝐰 ∈ ℝ𝑛 and 𝑏 ∈ ℝ correspond to the hyperplane, 𝝃 ∈ ℝ𝑚 corresponds to the
“linear inseparability” of each point, and the constant 𝐶 > 0 is a hyperparameter that quantifies
the tradeoff between maximizing the margin and minimizing the constraint violations.

As a slightly less traditional alternative, one might also consider the ℓ2-SVM (or least-squares
SVM, LS-SVM) [SV99], where the ‖𝝃‖1 regularization term is replaced by ‖𝝃‖2. This formulation
arises from considering the least-squares regression problem with the constraints 𝑦(𝑖)(𝐰⊤𝐱(𝑖) +𝑏) = 1,
which we solve by minimizing the squared 2-norm of the residuals:

min
𝐰,𝑏,𝝃

‖𝐰‖2 + 𝐶‖𝝃‖2

s.t. 𝑦(𝑖)(𝐰⊤𝐱(𝑖) + 𝑏) = 1 − 𝜉𝑖, ∀𝑖 ∈ [𝑚]
(2.11)

Since this is a least-squares problem, the optimal 𝐰, 𝑏 and 𝝃 can be obtained by solving a linear
system. In [RML14], a quantum algorithm for LS-SVM is presented, which uses a single quantum
linear system solver. Unfortunately, replacing the ℓ1-norm with ℓ2 in the objective of (2.11) leads
to the loss of a key property of (ℓ1-)SVM – weight sparsity [Suy+02].

2.5.1 Reducing SVM to SOCP

Finally, we are going to reduce the SVM problem (2.10) to SOCP. In order to do that, we define
an auxiliary vector 𝐭 = (𝑡 + 1; 𝑡; 𝐰), where 𝑡 ∈ ℝ – this allows us to “compute” ‖𝐰‖2 using the
constraint 𝐭 ∈ ℒ𝑛+2 since

𝐭 ∈ ℒ𝑛+2 ⇔ (𝑡 + 1)2 ≥ 𝑡2 +‖𝐰‖2 ⇔ 2𝑡 + 1 ≥‖𝐰‖2 .

28 CHAPTER 2. QUANTUM INTERIOR-POINT METHODS

Thus, minimizing‖𝐰‖2 is equivalent to minimizing 𝑡. Note we can restrict our bias 𝑏 to be nonnegative
without any loss in generality, since the case 𝑏 < 0 can be equivalently described by a bias −𝑏 > 0
and weights −𝐰. Using these transformations, we can restate (2.10) as the following SOCP:

min
𝐭,𝑏,𝝃

[0 1 0𝑛 0 𝐶𝑚] [𝐭 𝑏 𝝃]
⊤

s.t.
⎡
⎢⎢⎢
⎣

0 0 1
⋮ ⋮ 𝑋⊤ ⋮ diag(𝐲)
0 0 1
1 −1 0𝑛 0 0𝑚

⎤
⎥⎥⎥
⎦

⎡
⎢
⎣

𝐭
𝑏
𝝃

⎤
⎥
⎦

= [𝐲
1]

𝐭 ∈ ℒ𝑛+2, 𝑏 ∈ ℒ1, 𝜉𝑖 ∈ ℒ1 ∀𝑖 ∈ [𝑚]

(2.12)

Here, we use the notation 𝑋 ∈ ℝ𝑛×𝑚 for the matrix whose columns are the training examples
𝐱(𝑖), and 𝐲 ∈ ℝ𝑚 for the vector of labels. This problem has 𝑂(𝑛 + 𝑚) variables, and 𝑂(𝑚) conic
constraints (i.e. its rank is 𝑟 = 𝑂(𝑚)). Therefore, in the interesting case of 𝑚 = Θ(𝑛), it can be
solved in 𝑂(

√
𝑛) iterations. More precisely, if we consider both the primal and the dual, in total

they have 3𝑚 + 2𝑛 + 7 scalar variables and 2𝑚 + 4 conic constraints.
In practice (as evidenced by the LIBSVM and LIBLINEAR libraries [CL11; Fan+08]), a small

modification is made to the formulations (2.10) and (2.11): instead of treating the bias separately,
all data points are extended with a constant unit coordinate. In this case, the SOCP formulation
remains almost identical, with the only difference being that the constraints 𝐭 ∈ ℒ𝑛+2 and 𝑏 ∈ ℒ1

are replaced by a single conic constraint (𝐭; 𝑏) ∈ ℒ𝑛+3. This change allows us to come up with a
simple feasible initial solution in our numerical experiments, without going through the homogeneous
self-dual formalism of [YTM94].

Note also that we can solve the LS-SVM problem (2.11), by reducing it to a SOCP in a similar
manner. In fact, this would have resulted in just 𝑂(1) conic constraints, so an IPM would converge
to a solution in 𝑂(1) iterations, which is comparable with the result from [RML14].

2.5.2 Experimental results

We next present some experimental results to assess the running time parameters and the perfor-
mance of our algorithm for random instances of SVM. If an algorithm demonstrates a speedup on
unstructured instances like these, it is reasonable to extrapolate that the speedup is generic, as
it could not have used any special properties of the instance to derive an advantage. For a given
dimension 𝑛 and number of training points 𝑚, we denote our distribution of random SVMs with
𝒮𝒱ℳ(𝑛, 𝑚, 𝑝), where 𝑝 denotes the probability that a datapoint is misclassified by the optimal
separating hyperplane. Additionally, for every training set sampled from 𝒮𝒱ℳ(𝑛, 𝑚, 𝑝), a corre-
sponding test set of size ⌊𝑚/3⌋ was also sampled from the same distribution. These test sets are
used to evaluate the generalization error of SVMs trained in various ways.

Our experiments consist of generating roughly 16000 instances of 𝒮𝒱ℳ(𝑛, 2𝑛, 𝑝), where 𝑛
is chosen to be uniform between 22 and 29 and 𝑝 is chosen uniformly from the discrete set
{0, 0.1, … , 0.9, 1}. The instances are then solved using a simulation of Algorithm 1 (with the target
duality gap of 𝜖 = 0.1) as well as using the ECOS SOCP solver [DCB13] (with the default target
duality gap). We simulate the execution of Algorithm 1 by implementing the classical IPM and
adding noise to the solution of the Newton system (2.7). The noise added to each coordinate is
uniform, from an interval selected so that the noisy increment (Δ𝐱, Δ𝐲, Δ𝐬) simulates the outputs
of the tomography algorithm with precision determined by Theorem 2.10. The SVM parameter
𝐶 is set to be equal to 1 in all experiments. Additionally, a separate, smaller experiment with
roughly 1000 instances following the same distribution is performed for comparing Algorithm 1 with
LIBSVM [CL11] using a linear kernel.

2.6. QUANTUM PORTFOLIO OPTIMIZATION 29

Figure 2.1: Observed complexity of Algorithm 1,
its power law fit, and 95% confidence interval.

Figure 2.2: Empirical CDF of the difference
in accuracy between SVMs trained in different
ways.

The experiments are performed on a Dell Precision 7820T workstation with two Intel Xeon
Silver 4110 CPUs and 64GB of RAM, and experiment logs are available at [KPS21b]. By finding
the least-squares fit of the power law 𝑦 = 𝑎𝑥𝑏 through the observed values of the quantity 𝑛1.5𝜅𝜁

𝛿2 ,
we obtain the exponent 𝑏 = 2.591, and its 95% confidence interval [2.564, 2.619] (this interval is
computed in the standard way using Student’s 𝑡-distribution, as described in [Net+96]). These
observations, the power law, and its confidence interval are show on Figure 2.1. Thus, we can say
that for random 𝒮𝒱ℳ(𝑛, 2𝑛, 𝑝)-instances, and fixed 𝜖 = 0.1, the complexity of Algorithm 1 scales
as 𝑂(𝑛2.591). This represents a polynomial improvement over general dense SOCP solvers with
complexity 𝑂(𝑛𝜔+0.5). In practice, the polynomial speedup is conserved when compared to ECOS
[DCB13], that has a measured running time scaling of 𝑂(𝑛3.314), with a 95% confidence interval
for the exponent of [3.297, 3.330] (this is consistent with the internal usage of a [Str69]-like matrix
multiplication algorithm, with complexity 𝑂(𝑛2.807)). Neglecting constant factors, this gives us a
speedup of 104 for 𝑛 = 106. The results from the LIBSVM solver indicate that the training time
with a linear kernel has a complexity of 𝑂(𝑛3.112), with a 95% confidence interval for the exponent
of [2.799, 3.425]. These results suggest Algorithm 1 retains its advantage even when compared to
state-of-the-art specialized classical algorithms.

Additionally, we use the gathered data to verify that the accuracy of our quantum (or approx-
imate) SVM is close to the optimum: Figure 2.2 shows that both at train- and at test-time the
accuracies of all three classifiers are most of the time within a few percent of each other, with
Algorithm 1 often outperforming the exact SOCP SVM classifier.

In conclusion, the performed numerical experiments indicate that Algorithm 1 provides a
polynomial speedup for solving SOCPs with low- and medium precision requirements. In particular,
for SVM, we achieve a polynomial speedup with no detriment to the quality of the trained classifier.

2.6 Quantum portfolio optimization

The theory of portfolio optimization in mathematical finance was developed by Markowitz [Mar52].
The theory describes how wealth can be optimally invested in assets which differ in expected return
and risk.

30 CHAPTER 2. QUANTUM INTERIOR-POINT METHODS

The input for the portfolio optimization problem is data about the historical prices of certain
financial assets, the goal is to assemble the optimal portfolio that maximizes the expected return for
a given level of risk. Let us assume that there are 𝑚 assets and we have data for historical returns
on investment for 𝑇 time epochs for each asset. Let 𝑅(𝑡) ∈ ℝ𝑚 be the vector of returns for all assets
for time epoch 𝑡. The expected reward and risk for the assets can be estimated from the data as
follows,

𝝁 = 1
𝑇

∑
𝑡∈[𝑇]

𝑅(𝑡)

Σ = 1
𝑇 − 1

∑
𝑡∈[𝑇]

(𝑅(𝑡) − 𝝁)(𝑅(𝑡) − 𝝁)⊤ (2.13)

A portfolio is specified by the total investment 𝑥𝑗 in asset 𝑗 for all assets 𝑗 ∈ [𝑚]. The expected
reward and risk for the portfolio 𝑥 are respectively given by 𝝁⊤𝐱 and 𝐱⊤Σ𝐱.

The portfolio optimization can include positivity and budget constraints. Positivity constraints
𝑥𝑗 > 0 corresponds to the situation where it is not possible to short sell asset 𝑗. Budget constraints
limit the amount of money invested in a subset of the assets and can depend on the value of the
assets and also on the size of the initial investment. Similarly, one can add constraints to ensure
that the portfolio is diversified by adding constraints on the amount of investment in certain asset
classes. The constrained portfolio optimization problem can therefore capture a variety of complex
constraints that arise in real world portfolio selection problems.

In the quantum setting, we do not estimate the covariance matrix as in equation (2.13), we
instead store the square root of the covariance Σ to which we have direct access from the data,
i.e. the covariance matrix Σ = 𝑀𝑀⊤ where 𝑀 is the matrix with columns 1√

𝑇 −1(𝑅(𝑡) − 𝝁). Given
the data it is easy to construct quantum data structures for operating with 𝑀 [KP17], hence we
formulate the portfolio optimization problem in terms of 𝑀.

The constrained portfolio optimization problem can be written as an optimization problem in
one of several equivalent ways [CPT18]. We use the following formulation here:

min 𝐱⊤𝑀⊤𝑀𝐱
s.t. 𝝁⊤𝐱 = 𝑅

𝐴𝐱 = 𝐛
𝐱 ≥ 0.

(2.14)

Note that for the above formulation, 𝐱 is the portfolio, 𝝁 is the vector of mean asset prices, 𝑀 is a
matrix such that the covariance matrix of the asset prices is defined as Σ = 𝑀⊤𝑀, and 𝐴𝐱 = 𝐛
and 𝐱 ≥ 0 are the constraints. An inequality constraint 𝐶𝐱 ≥ 𝐝 can be realized by introducing a
slack variable 𝐬 ∶= 𝐶𝐱 − 𝐝 and requiring 𝐬 ≥ 0.

For the case when there are no inequality constraints, the problem becomes a linear least-squares
problem, for which there is a closed-form solution [RL18]. However, there is no closed form solution
for the general constrained portfolio optimization problem.

2.6.1 Reducing portfolio optimization to SOCP

The constrained portfolio optimization problem can be reduced to an SOCP by using the matrix 𝑀
we defined earlier. First off, we see that 𝐱⊤Σ𝐱 =‖𝑀𝐱‖2, however, minimizing the squared norm is
equivalent to minimizing the norm itself which turns out to be more naturally expressible using
Lorentz constraints. We introduce an additional vector 𝐭 ∶= (𝑡0, ̃𝐭) such that ̃𝐭 = 𝑀𝐱. Using this

2.6. QUANTUM PORTFOLIO OPTIMIZATION 31

variable the portfolio optimization problem in equation (2.13) is easily seen to be equivalent to the
following SOCP in the canonical form,

min (1; 0𝑛+𝑚)𝑇(𝐭; 𝐱)

s.t. ⎡
⎢
⎣

0𝑚 −𝐼𝑚 𝑀
0 (0𝑚)⊤ 𝝁⊤

0 (0𝑚)⊤ 𝐴

⎤
⎥
⎦

[𝐭
𝐱] = ⎡

⎢
⎣

0𝑚

𝑅
𝐛

⎤
⎥
⎦

𝐭 ∈ ℒ𝑚+1, 𝑥𝑖 ∈ ℒ1 ∀ 𝑖 ∈ [𝑛],

(2.15)

The optimal solution lies on the boundary of the cones and thus will have 𝑡0 =∥ ̃𝐭∥ =‖𝑃𝐱‖, the SOCP
objective function therefore also optimizes the objective function for the portfolio optimization
problem (2.13). The remaining SOCP constraints respectively enforce the constraints ̃𝐭 = 𝑀𝐱,
𝜇⊤𝐱 = 𝑅 and 𝐴𝐱 = 𝐛. The positivity constraints 𝐱 ≥ 0 are ensured by the second order constraints
𝑥𝑖 ∈ ℒ1.

2.6.2 Experimental results

In the experiments, we solve the following portfolio problem

min 𝐱𝑇Σ𝐱
s.t. 𝝁𝑇𝐱 = 𝑅

𝑥 ≥ 0,
(2.16)

i.e. just the problem (2.14) without the “complicated” linear constraints. We use the cvxportfolio
dataset [Boy+17], that contains historical data about the stocks of the S&P-500 companies for
each day over a period of 9 years (2007-2016). By subsampling the dataset for different numbers of
companies and time periods, we obtain random (but structured) instances of different sizes. We
perform the simulation as described in Section 2.5.2.

By repeatedly solving instances of varying sizes to a fixed precision 𝜀 = 0.1, we can understand
the empirical distributions of the runtime parameters 𝛿 and 𝜅 (see Figure 2.3).

(a) Squared inverse tomography precision 1/𝛿2 for
instances of (2.16) of different sizes.

(b) Condition number 𝜅 for instances of (2.16) of
different sizes.

Figure 2.3: Dependence of runtime parameters on the portfolio instance size

Finally, we estimate the average-case complexity of Algorithm 1 by substituting these observed
values of 𝑟, 𝑛, 𝜖, 𝛿, 𝜅 and 𝜁 into the expression from Theorem 2.18. Figure 2.4 shows how this quantity

32 CHAPTER 2. QUANTUM INTERIOR-POINT METHODS

increases with the problem size 𝑛, after removing 1% of the biggest outliers. Again, by finding the
least-squares fit of a power law through these points, one obtains a dependence of 𝑂(𝑛2.387), with a
95% confidence bound of [2.184, 2.589]. When compared to the classical complexity that scales as
𝑂(𝑛𝜔+0.5) (which can be thought of as 𝑛3.5 in practice), we see that for most instances the quantum
algorithm achieves a speedup by a factor of almost 𝑂(𝑛).

Figure 2.4: Observed complexities for 𝜖 = 0.1 and the corresponding power-law fit. The 𝑥-axis is
𝑛, the size of the Newton system, and the 𝑦-axis is the observed complexity, as per Theorem 2.18.

3 | Optimal quantum linear system
solvers

Joint work with Sander Gribling and Iordanis Kerenidis

3.1 Introduction

The quantum linear systems (QLS) problem asks for a state that encodes the solution of a linear
system 𝐴𝐱 = 𝐛 where 𝐴 ∈ ℝ𝑛×𝑛 and 𝐛 ∈ ℝ𝑛.1 Solving linear systems of equations appears as
a subproblem in many downstream applications in optimization and in machine learning. Some
examples include least-squares regression [CGJ19], support-vector machines [RML14; KPS21a], as
well as differential equations [LMS20; Ton+21]. Thus, optimizing the resources (depth in particular)
required for solving QLS would bring us closer to running these algorithms on near-term quantum
hardware.

In a seminal work, Harrow, Hassidim, and Lloyd [HHL09] showed how to solve the QLS-problem
using only polylog(𝑛) queries to the input. Their algorithm has a polynomial dependence on
the condition number 𝜅 of 𝐴 and the desired precision 𝜀 > 0. Subsequent work has improved
the 𝜅-dependence to near linear [Amb12],2 and the error-dependence to polylog(1/𝜀) [CKS17].
The algorithms in [HHL09; Amb12; CKS17] can all be viewed as implementing a polynomial
transformation of 𝐴 that approximates the inverse. They are based on various combinations of
Hamiltonian simulation, quantum walks, linear combinations of unitaries, and most recently the
quantum singular value transformation framework (QSVT) [LC19; Gil+19].

Very recently, the QLS-problem has been studied using an adiabatic approach [SSO19; AL22;
LT20; Cos+21]. Interestingly, the state-of-the-art QLS-algorithm now comes from the adiabatic
framework: in [Cos+21] the complexity of QLS is improved from 𝑂(𝜅 log(𝜅/𝜀)) (achieved using
polynomial-based techniques) to 𝑂(𝜅 log(1/𝜀)). Their algorithm prepares a low-precision estimate
of the |𝐴−1𝐛⟩ using a gate-based implementation of the discrete adiabatic evolution and improves
its quality using quantum eigenstate filtering.

In this work, we revisit the polynomial-based QLS solvers and show that the optimal approxi-
mation polynomial (arising from Chebyshev iteration [Var00; Pol87]) can be efficiently evaluated
using a quantum algorithm. In particular, we recall the two algorithms for evaluating polynomials
bounded by 1 (in absolute value) on the interval [−1, 1]: the linear combination of unitaries (LCU)
lemma [BCK15], and the QSVT framework [Gil+19]. The latter is asymptotically optimal (see
[Gil+19, Theorem 73]), but requires the computation of certain angles (see Section 3.3.1 for details),
and doing so efficiently in a numerically stable way is the subject of ongoing research [Haa19;
Cha+20; Don+21]. On the other hand, the LCU approach is simpler, but trades that simplicity for
a logarithmic overhead (multiplicative in the depth and additive in the number of qubits), as well as
a slowdown directly proportional to the 1-norm of the polynomial coefficients in the Chebyshev basis.

1Without loss of generality, one may assume that 𝐴 is Hermitian.
2Here by a near linear runtime in terms of 𝜅 we mean a runtime that scales as 𝜅 polylog(𝜅).

33

34 CHAPTER 3. OPTIMAL QUANTUM LINEAR SYSTEM SOLVERS

Therefore, the motivating question is to determine which polynomials can be efficiently evaluated
using LCU (at the cost of only a log-overhead).

The asymptotically best polynomial-based QLS-algorithm uses a polynomial introduced by
Childs, Kothari, and Somma [CKS17] (abbreviated as CKS from now on), which yields a natural
LCU-based algorithm. In a nutshell, the CKS polynomial is obtained by starting from the polynomial
𝑝𝑡(𝑥) ∶= 1−(1−𝑥2)𝑡

𝑥 for 𝑡 = 𝑂(𝜅2), expressing it in the Chebyshev basis, and truncating the sum
after 𝑂(𝜅) terms. Since the Chebyshev coefficients can be interpreted as probabilities of a certain
binomial distribution, their 1-norm is easily bounded by a constant.

Our main technical contribution is to show that the Chebyshev iteration polynomial also has a
bounded Chebyshev coefficient 1-norm (see Theorem 3.17), and can thus be evaluated using LCU.
Additionally, the same norm bound implies that the polynomial can be efficiently evaluated using
QSVT, yielding an optimal (as opposed to asymptotically optimal) QLS algorithm.

In more detail, our approach is as follows. First recall that the Chebyshev iteration corresponds
to the polynomial

𝑞𝑡(𝑥) ∶=
𝒯𝑡 (1+1/𝜅2−2𝑥2

1−1/𝜅2)/𝒯𝑡 (1+1/𝜅2

1−1/𝜅2)

𝑥
,

where 𝒯𝑡 is the 𝑡-th Chebyshev polynomial of the first kind. These Chebyshev polynomials are
defined as 𝒯0(𝑥) = 1, 𝒯1(𝑥) = 𝑥, and 𝒯𝑡+1(𝑥) = 2𝑥𝒯𝑡(𝑥) − 𝒯𝑡−1(𝑥) for 𝑡 ≥ 1. They have the
property that |𝒯𝑡(𝑥)| ≤ 1 for all 𝑥 ∈ [−1, 1] and 𝑡 ≥ 0. One can show that the polynomial 𝑞𝑡 is an
𝜀-approximation of the inverse on the domain 𝑥 ∈ [−1, −1/𝜅] ∪ [1/𝜅, 1], whenever 𝑡 ≥ 1

2𝜅 log(2𝜅2/𝜀).
To bound the maximum absolute value of 𝑞𝑡 on [−1, 1], we express 𝑞𝑡(𝑥) as ∑𝑡−1

𝑖=0 𝑐𝑖𝒯2𝑖+1(𝑥) and
bound the 1-norm of the vector 𝐜. The vector of coefficients can be used to implement 𝑞𝑡(𝐴)/‖𝐜‖1
either directly via the linear combinations of unitaries approach, or via the quantum singular value
transformation approach.

In Section 3.7 we show that this approach of bounding the 1-norm of the vector of coefficients
in the Chebyshev basis more generally leads to near optimal quantum algorithms via the LCU
framework for a variety of continuous functions (powers of monomials, exponentials, logarithms)
and discontinuous functions (the error function and by extension the sign and rectangle functions).
For these functions, the coefficient norm is only a logarithmic factor away from the maximum
absolute value on the interval [−1, 1], meaning that they can be approximately evaluated with LCU
in addition to QSVT, with slightly deeper circuits (multiplicative logarithmic overhead) and slightly
more qubits (additive logarithmic overhead).

The state of the art quantum linear systems solvers have a complexity that grows linearly in the
condition number 𝜅. In the small-𝜅 regime (𝜅 = 𝑂(𝑛)), it has long been known that Ω(𝜅) queries to
the entries of the matrix are also needed for general linear systems [HHL09] and recently this bound
has (surprisingly) been extended to the case of positive definite systems [OD21]. For larger 𝜅 less is
known. For example, we do not know if quantum algorithms can improve classical algorithms if 𝜅 is
large (i.e., can we beat matrix multiplication time?). We do not even have a linear lower bound: are
Ω(𝑛2) queries needed when 𝜅 = Ω(𝑛2)? In [DT09] this question was answered positively when one
wants to obtain a classical description of 𝐴−1𝐛 and here we present a simplified proof of this result.

Organization. In Section 3.2 we recall the different approximation polynomials used for ap-
proximately solving linear systems. In Section 3.3 we recall the LCU and QSVT algorithms for
evaluating matrix polynomials on a quantum computer. The main technical result of the work is
contained in Section 3.4, where we show that the Chebyshev iteration polynomial can be efficiently
evaluated using LCU and QSVT. We present some numerical evidence for the improved efficiency in

3.2. PRELIMINARIES 35

Section 3.5. Finally, in Section 3.6, we give an overview of known lower bounds on the complexity
of quantum linear system solvers both in the small 𝜅 regime and in the large 𝜅 regime.

3.2 Preliminaries

3.2.1 Polynomials and approximations

Problem definition. We consider linear systems that are defined by a Hermitian 𝑛-by-𝑛 matrix
𝐴 ∈ ℂ𝑛×𝑛 and a unit vector 𝐛 ∈ ℂ𝑛. We use 𝜅 to denote the condition number of 𝐴, that is, we
assume that all non-zero eigenvalues of 𝐴 lie in the set 𝐷𝜅 ∶= [−1, −1/𝜅] ∪ [1/𝜅, 1]. Our goal is to
approximately solve the linear system

𝐴𝐱 = 𝐛.

One can consider different notions of approximate solutions. Two natural ones are the following:

1) return �̃� such that ‖�̃� − 𝐴−1𝐛‖ ≤ 𝜀.

2) return �̃� such that ‖𝐴�̃� − 𝐛‖ ≤ 𝜀.

Up to a change in 𝜀, the two notions are equivalent. Indeed, we have the chain of inequalities

‖𝐴𝐱 − 𝐛‖ ≤ ‖𝐱 − 𝐴−1𝐛‖ ≤ 𝜅‖𝐴𝐱 − 𝐛‖. (3.1)

We will focus on algorithms that achieve a polylogarithmic dependence in 𝜀. In Lemma 3.10 we
construct the optimal degree-𝑡 polynomial for approximation in the second notion, see Definition 3.13.
Prior work [CKS17; CGJ19; Gil+19] focused on the first notion of approximation, which is equivalent
up to polylogarithmic factors in the complexity. In Section 3.5 we show (numerically) that our
polynomials also improve over prior work with respect to approximation in the first notion.

From matrices to scalars. Given a polynomial 𝑝(𝑥) = ∑𝑇
𝑡=1 𝑐𝑡𝑥𝑡 with coefficients 𝑐𝑡 ∈ ℂ,

and a Hermitian matrix 𝐴, we define 𝑝(𝐴) = ∑𝑇
𝑡=1 𝑐𝑡𝐴𝑡. If we let 𝐴 = ∑𝑛

𝑖=1 𝜆𝑖𝐮𝑖𝐮∗
𝑖 be the

eigendecomposition of 𝐴, then 𝑝(𝐴) = ∑𝑛
𝑖=1 𝑝(𝜆𝑖)𝐮𝑖𝐮∗

𝑖 .
We focus on methods to obtain a vector �̃� that approximates 𝐴−1𝐛 that are based on polynomials

that approximate the inverse function 𝜆 ↦ 𝜆−1 on the domain [1/𝜅, 1] (in the case of positive
definite matrices) or 𝐷𝜅 (in the general case). For example, let 𝐴 be a Hermitian matrix with
eigenvalues in [1/𝜅, 1] and let 𝑝 ∶ ℝ → ℝ be a polynomial such that |𝑝(𝜆) − 𝜆−1| ≤ 𝜀 for 𝜆 ∈ [1/𝜅, 1].
Then �̃� ∶= 𝑝(𝐴)𝐛 satisfies

‖�̃� − 𝐴−1𝐛‖ = ‖ ∑
𝑖

(𝑝(𝜆𝑖) − 𝜆−1
𝑖)𝐮𝑖𝐮∗

𝑖 𝐛‖ ≤ ‖ ∑
𝑖

(𝑝(𝜆𝑖) − 𝜆−1
𝑖)𝐮𝑖𝐮∗

𝑖 ‖‖𝐛‖ ≤ 𝜀‖𝐛‖.

Chebyshev decomposition. It is also useful to consider the Chebyshev decomposition of 𝑝(𝑥),
i.e., the decomposition

𝑝(𝑥) =
𝑡

∑
𝑖=0

𝑐𝑖𝒯𝑖(𝑥)

in the basis {𝒯0(𝑥), 𝒯1(𝑥), … , 𝒯𝑡(𝑥)}, for some vector 𝐜 = (𝑐𝑖)𝑖∈{0,…,𝑡} of coefficients. One can give
an analytic expression for the coefficients 𝑐𝑖 using the fact that the Chebyshev polynomials are
orthogonal with respect to the Chebyshev measure which is defined in terms of the Lebesgue measure
as d𝜇(𝑥) = (1 − 𝑥2)−1/2 d𝑥. In other words, 𝑐𝑖 = ∫1

−1
𝑝(𝑥)𝒯𝑖(𝑥)√

1−𝑥2 d𝑥. Note that in practice this integral
is rarely computed explicitly, as there exist efficient interpolation-based methods for computing the
coefficient-vector 𝐜 [Gen72].

36 CHAPTER 3. OPTIMAL QUANTUM LINEAR SYSTEM SOLVERS

3.2.2 Approximating the inverse on [1/𝜅, 1]

As mentioned above, approximating the solution of a linear system 𝐴𝐱 = 𝐛 amounts to approximating
the function 1/𝑥 on a domain that contains the spectrum of 𝐴. We start by assuming that 𝐴 is
positive-definite, i.e. that all of its eigenvalues lie in the interval [1/𝜅, 1]. A “natural” polynomial
we can consider is the degree-(𝑡 − 1) Taylor expansion of 1/𝑥 around the point 𝑥 = 1:

𝑝+
𝑡 (𝑥) ∶=

𝑡−1
∑
𝑘=0

(1 − 𝑥)𝑘 = 1 − (1 − 𝑥)𝑡

𝑥
.

Its error on the interval [1/𝜅, 1] is straightforward to analyze.

Lemma 3.1. We have |𝑥𝑝+
𝑡 (𝑥) − 1| ≤ 𝜀 for all 𝑥 ∈ [1/𝜅, 1] whenever 𝑡 ≥ 𝜅 log(1/𝜀).

Proof. For all 𝑥 ∈ [1/𝜅, 1] we have

|𝑥𝑝+
𝑡 (𝑥) − 1| = |1 − 𝑥|𝑡 ≤ (1 − 1/𝜅)𝑡 ≤ 𝑒− log(1/𝜀) = 𝜀.

Using the same reasoning as in Equation (3.1) we can analyze the error in the regime 1).

Corollary 3.2. We have |𝑝+
𝑡 (𝑥) − 1/𝑥| ≤ 𝜀 for all 𝑥 ∈ [1/𝜅, 1] whenever 𝑡 ≥ 𝜅 log(𝜅/𝜀).

Interestingly, it turns out (see e.g. [Pol87]) that this is exactly the polynomial that arises from
the (standard, unaccelerated) gradient descent for minimizing the quadratic 1

2𝐱⊤𝐴𝐱 − 𝐛⊤𝐱 for
a positive-definite matrix 𝐴, starting from the point 𝐱1 = 𝐛. Given the existence of accelerated
gradient descent methods that converge in 𝑂(

√
𝜅) iterations, it is reasonable to expect that a

corresponding polynomial with degree 𝑂(
√

𝜅) exists as well.
Indeed, instead of 𝑝+

𝑡 , one can ask what is the best degree-(𝑡 − 1) polynomial 𝑞+
𝑡 ? In other words,

what is the degree-(𝑡 − 1) polynomial 𝑞+
𝑡 that minimizes

max
𝑥∈[1/𝜅,1]

|𝑥𝑞+
𝑡 (𝑥) − 1|. (3.2)

First observe that all such polynomials can be expressed in the form 𝑞+
𝑡 (𝑥) = 1−𝑟+

𝑡 (𝑥)
𝑥 where 𝑟+

𝑡 is
a degree-𝑡 polynomial that satisfies 𝑟+

𝑡 (0) = 1.3 Thus, our goal is to find a degree-𝑡 polynomial
𝑟+

𝑡 (𝑥) that has the smallest absolute value on the interval [1/𝜅, 1] and satisfies the normalization
constraint 𝑟+

𝑡 (0) = 1. It turns out that we can use extremal properties of the Chebyshev polyno-
mials 𝒯𝑡(𝑥) to determine an optimal 𝑟+

𝑡 (𝑥). We use the following well-known result (cf. [SV14,
Prop. 2.4]).

Lemma 3.3. For any degree-𝑡 polynomial 𝑝(𝑥) such that |𝑝(𝑥)| ≤ 1 for all 𝑥 ∈ [−1, 1], and
any 𝑦 such that |𝑦| > 1, we have |𝑝(𝑦)| ≤ |𝒯𝑡(𝑦)|.

Using the affine transformation 𝑥 ↦ 1+1/𝜅−2𝑥
1−1/𝜅 this gives the following corollary:

Corollary 3.4. Let 𝜅 > 1 be real, and let 𝑡 > 0 be an integer. Then, the polynomial

𝑟+
𝑡 (𝑥) = 𝒯𝑡 (1 + 1/𝜅 − 2𝑥

1 − 1/𝜅
)/𝒯𝑡 (1 + 1/𝜅

1 − 1/𝜅
)

3For example, in the case of the Taylor expansion we have 𝑟+
𝑡 (𝑥) = (1 − 𝑥)𝑡.

3.2. PRELIMINARIES 37

is a degree-𝑡 polynomial that satisfies 𝑟+
𝑡 (0) = 1, and minimizes the quantity max𝑥∈[1,1/𝜅] |𝑟+

𝑡 (𝑥)|.

Note that the polynomials 𝑟+
𝑡 satisfy a Chebyshev-like 3-term recurrence. As a consequence, the

polynomials 𝑞+
𝑡 (𝑥) = (1 − 𝑟+

𝑡 (𝑥))/𝑥 also satisfy such a recurrence. The corresponding iterative
method is known as the Chebyshev iteration.

Remark 3.5 (Chebyshev iteration). The polynomial 𝑞+
𝑡 (𝑥) satisfies the recurrence

𝑞+
𝑡+1(𝑥) = 2 𝒯𝑡(𝛾)

𝒯𝑡+1(𝛾)
𝜅 + 1 − 2𝜅𝑥

𝜅 − 1
𝑞+

𝑡 (𝑥) − 𝒯𝑡−1(𝛾)
𝒯𝑡+1(𝛾)

𝑞+
𝑡−1(𝑥) − 4𝜅

𝜅 − 1
𝒯𝑡(𝛾)

𝒯𝑡+1(𝛾)
, (3.3)

where 𝛾 = 1+1/𝜅
1−1/𝜅 . This recurrence corresponds to the iterative method 𝐱1 = 𝐛 and

𝐱𝑡+1 = 2 𝒯𝑡(𝛾)
𝒯𝑡+1(𝛾)

(𝜅 + 1)𝐼 − 2𝜅𝐴
𝜅 − 1

𝐱𝑡 − 𝒯𝑡−1(𝛾)
𝒯𝑡+1(𝛾)

𝐱𝑡−1 − 4𝜅
𝜅 − 1

𝒯𝑡(𝛾)
𝒯𝑡+1(𝛾)

𝐛.

The convergence rate of this method is summarized by the following theorem:

Theorem 3.6. Let 𝜅 > 1 and 𝜖 > 0. Then, for 𝑡 ≥ 1
2
√

𝜅 log(2/𝜖) we have

∣𝑥𝑞+
𝑡 (𝑥) − 1∣ ≤ 𝜖 for all 𝑥 ∈ [1/𝜅, 1].

Proof. First, we define 𝑠(𝑥) = 1+1/𝜅−2𝑥
1−1/𝜅 , so that we have 𝑟+

𝑡 (𝑥) = 𝒯𝑡(𝑠(𝑥))/𝒯𝑡(𝑠(0)). Thus, for all
𝑥 ∈ [1/𝜅, 1], we have

|𝑥𝑞+
𝑡 (𝑥) − 1| = |𝑟+

𝑡 (𝑥)| = ∣𝒯𝑡(𝑠(𝑥))/𝒯𝑡(𝑠(0))∣ .
Additionally, since |𝑠(𝑥)| ≤ 1 on this interval, we also have |𝒯𝑡(𝑠(𝑥))| ≤ 1. Thus, it suffices to find 𝑡
for which 𝒯𝑡(𝑠(0)) = 𝒯𝑡(1 + 2

𝜅−1) ≥ 1
𝜖 . Since the Chebyshev polynomial 𝒯𝑡(⋅) can be computed as

𝒯𝑡(𝑥) = 1
2

((𝑥 −
√

𝑥2 − 1)
𝑡

+ (𝑥 +
√

𝑥2 − 1)
𝑡
) for |𝑥| ≥ 1, (3.4)

we can conclude that 𝒯𝑡(𝑠(0)) = 1
2 ((

√
𝜅−1√
𝜅+1)

𝑡
+ (

√
𝜅+1√
𝜅−1)

𝑡
) ≥ 1

2 (
√

𝜅+1√
𝜅−1)

𝑡
. Using the inequality

(1 + 𝑥
𝑛)𝑛+𝑥/2 ≥ 𝑒𝑥 for 𝑥, 𝑛 ≥ 0, after substituting 𝑡 = 1

2
√

𝜅 log(2/𝜖) we have

𝒯𝑡(𝑠(0)) ≥ 1
2

(
√

𝜅 + 1√
𝜅 − 1

)
𝑡

= 1
2

(1 + 2√
𝜅 − 1

)
(
√

𝜅−1+2/2) log(2/𝜖)
2

≥ 1
2
exp(log(2/𝜖)) = 1

𝜖
.

Just like in Corollary 3.2, we can bound the error |𝑞+
𝑡 (𝑥) − 1/𝑥|.

Corollary 3.7. Let 𝜅 > 1 and 𝜖 > 0. Then, for 𝑡 ≥ 1
2
√

𝜅 log(2𝜅/𝜖) we have

∣𝑞+
𝑡 (𝑥) − 1/𝑥∣ ≤ 𝜖 for all 𝑥 ∈ [1/𝜅, 1].

3.2.3 The general case

We now return to the setting where 𝐴 is a Hermitian matrix and has eigenvalues in the domain
𝐷𝜅 = [−1, −1/𝜅] ∪ [1/𝜅, 1]. In this case, instead of the (indefinite) system 𝐴𝐱 = 𝐛, we consider the
equivalent positive-definite linear system 𝐴2𝐱 = 𝐴𝐛. In other words, we approximate the inverse on
𝐷𝜅 using the positive case and a simple substitution:

38 CHAPTER 3. OPTIMAL QUANTUM LINEAR SYSTEM SOLVERS

Corollary 3.8. Let 𝜀 > 0, 𝜅 > 1, and let 𝑃𝑡 be any degree-(𝑡 − 1) polynomial such that
|𝑦𝑃𝑡(𝑦) − 1| ≤ 𝜀 for all 𝑦 ∈ [1/𝜅2, 1]. Then, |𝑥2𝑃𝑡(𝑥2) − 1| ≤ 𝜖 for all 𝑥 ∈ 𝐷𝜅.

We define the following two polynomials as the respective analogs of 𝑝+
𝑡 and 𝑞+

𝑡 for 𝐷𝜅:

𝑝𝑡(𝑥) = 𝑥𝑝+
𝑡 (𝑥2) = 1 − (1 − 𝑥2)𝑡

𝑥
, and (3.5)

𝑞𝑡(𝑥) = 𝑥𝑞+
𝑡 (𝑥2) =

1 − 𝒯𝑡(
1+1/𝜅2−2𝑥2

1−1/𝜅2)/𝒯𝑡(1+𝜅2

1−𝜅2)
𝑥

. (3.6)

We call 𝑞𝑡 the Chebyshev iteration polynomial. Both 𝑝𝑡 and 𝑞𝑡 are degree-(2𝑡 − 1) polynomials, but
different values of 𝑡 are required in order to achieve an 𝜀-approximation of 1/𝑥 on 𝐷𝜅. In particular,
the following degrees are required:

Corollary 3.9. Let 𝜅 > 1 and 𝜀 > 0. Then,

1. |𝑝𝑡(𝑥) − 1/𝑥| ≤ 𝜀 for all 𝑥 ∈ 𝐷𝜅 whenever 𝑡 ≥ 𝜅2 log(𝜅/𝜀),

2. |𝑞𝑡(𝑥) − 1/𝑥| ≤ 𝜀 for all 𝑥 ∈ 𝐷𝜅 whenever 𝑡 ≥ 1
2𝜅 log(2𝜅/𝜀).

Lemma 3.10. Let 𝑡 ∈ ℕ and 𝜅 > 1. The polynomial 𝑞𝑡 is a degree-(2𝑡 − 1) polynomial that
minimizes the quantity max𝑥∈𝐷𝜅

|𝑥𝑃 (𝑥) − 1| among all degree-(2𝑡 − 1) polynomials 𝑃 ∈ ℝ[𝑥].

Proof. For a given 𝑡, we define

𝜀+ ∶= min
𝑃 +∈ℝ[𝑦]

deg 𝑃 +=𝑡−1

max
𝑦∈[1/𝜅2,1]

|𝑦𝑃 +(𝑦) − 1|, 𝜀 ∶= min
𝑃∈ℝ[𝑥]

deg 𝑃=2𝑡−1

max
𝑥∈𝐷𝜅

|𝑥𝑃 (𝑥) − 1|.

We first show that 𝑞𝑡 certifies that 𝜀 ≤ 𝜀+, and then we show 𝜀 = 𝜀+. From Corollary 3.4,
we know that 𝜀+ is achieved by the degree-𝑡 − 1 polynomial 𝑞+

𝑡 (𝑥) ∶= 1−𝒯𝑡(𝑠(𝑥))/𝒯𝑡(𝑠(0))
𝑥 , where

𝑠(𝑥) ∶= 1+1/𝜅2−2𝑥
1−1/𝜅2 . Then, for 𝑞𝑡(𝑥) ∶= 1−𝒯𝑡(𝑠(𝑥2))/𝒯𝑡(𝑠(0))

𝑥 we have

max
𝑥∈𝐷𝜅

|𝑥𝑞𝑡(𝑥) − 1| = max
𝑥∈𝐷𝜅

|𝑥2𝑞+
𝑡 (𝑥2) − 1| = max

𝑦∈[1/𝜅2,1]
|𝑦𝑞+

𝑡 (𝑦) − 1| = 𝜀+,

where in the first equality we use Equation (3.6). We now show that 𝜀 = 𝜀+. Let 𝑃(𝑥) be a
degree-(2𝑡 − 1) polynomial that satisfies max𝑥∈𝐷𝜅

|𝑥𝑃 (𝑥) − 1| = 𝜀. We first show that 𝑃 is odd. To
do this, decompose 𝑃 as 𝑃(𝑥) = 𝑃even(𝑥) + 𝑃odd(𝑥) where 𝑃even is even and 𝑃odd is odd. Then

max
𝑥∈𝐷𝜅

|𝑥𝑃 (𝑥) − 1| = max
𝑥∈[1/𝜅,1]

max{|𝑥𝑃(𝑥) − 1|, | − 𝑥𝑃(−𝑥) − 1|}

= max
𝑥∈[1/𝜅,1]

max{|𝑥𝑃odd(𝑥) + 𝑥𝑃even(𝑥) − 1|, |𝑥𝑃odd(𝑥) − 𝑥𝑃even(𝑥) − 1|}

≥ max
𝑥∈[1/𝜅,1]

|𝑥𝑃odd(𝑥) − 1| = max
𝑥∈𝐷𝜅

|𝑥𝑃odd(𝑥) − 1|.

Hence replacing 𝑃 by 𝑃odd decreases 𝜀, so we may assume that 𝑃(𝑥) is odd. Then 𝑃(𝑥)/𝑥
is a degree-(2𝑡 − 2) even polynomial. Let 𝑃 +(𝑦) be the degree-(𝑡 − 1) polynomial for which
𝑃(𝑥)/𝑥 = 𝑃 +(𝑥2). Then we have

max
𝑦∈[1/𝜅2,1]

|𝑦𝑃 +(𝑦) − 1| = max
𝑥∈[1/𝜅,1]

|𝑥2𝑃 +(𝑥2) − 1| = max
𝑥∈𝐷𝜅

|𝑥𝑃 (𝑥) − 1| = 𝜀

This shows that 𝜀+ ≤ 𝜀 which concludes the proof: 𝑞𝑡 is the degree-(2𝑡 − 1) polynomial that
minimizes max𝑥∈𝐷𝜅

|𝑥𝑃 (𝑥) − 1| over polynomials of degree 2𝑡 − 1.

3.3. QUANTUM PRELIMINARIES 39

We conclude this section with a short discussion of the approach taken by [CKS17], the previous
best polynomial-based QLS algorithm. The key insight of [CKS17] is that one can truncate the
higher order terms of 𝑝𝑡 in the Chebyshev basis without a significant impact on the approximation
error. The polynomial 𝑝𝑡 can be written in the Chebyshev basis as follows:

𝑝𝑡(𝑥) = 4
𝑡−1
∑
𝑗=0

(−1)𝑗 ⎛⎜
⎝

∑𝑡
𝑖=𝑗+1 (2𝑡

𝑡+𝑖)
22𝑡

⎞⎟
⎠

𝒯2𝑗+1(𝑥). (3.7)

This expansion can be truncated at �̃�(𝜅) terms, since the Chebyshev coefficients decay exponentially.
This can be shown by relating the absolute value of the 𝑗-th coefficient (for 𝑗 = 0, 1, …) to
the probability of more than 𝑡 + 𝑗 heads appearing in 2𝑡 tosses of a fair coin. This probability
decreases as 𝑒−𝑗2/𝑡 which can be seen by applying the Chernoff bound. Thus, starting from 𝑝𝑡, an
𝜀-approximation of the inverse, we obtain an 𝜀-approximation of 𝑝𝑡 by truncating the summation at
𝑗 = √𝑡 log(4𝑡/𝜀) = �̃�(𝜅). For these parameters, we obtain a 2𝜀-approximation of the inverse on 𝐷𝜅.
We refer to this polynomial as the CKS polynomial and we state its main property below.

Theorem 3.11 ([CKS17]). Let 𝜅 > 1, 𝜀 > 0 and let ̃𝑝𝑡 be the truncated degree-(2𝑡 − 1) CKS
polynomial. Then, | ̃𝑝𝑡(𝑥) − 1/𝑥| ≤ 𝜀 for all 𝑥 ∈ 𝐷𝜅 whenever 𝑡 ≥ 1 + √𝑡′ log(8𝑡′/𝜀), where
𝑡′ = 𝜅2 log(2𝜅/𝜀).

3.3 Quantum preliminaries
There exist different input models that one might consider when solving the linear system problem.
In the standard case of a dense matrix 𝐴, one might assume that all entries of 𝐴 are already stored
in memory. Alternatively, if 𝐴 is sparse, sometimes it is more efficient to consider oracle access to
its nonzero entries. In the quantum setting, this sparse-access model is particularly amenable to
speedups. In the sparse-access model we assume that access to 𝐴 is provided through two oracles

𝒪nz ∶ |𝑗, ℓ⟩ ↦ |𝑗, 𝜈(𝑗, ℓ)⟩ and 𝒪𝐴 ∶ |𝑗, 𝑘, 𝑧⟩ ↦ |𝑗, 𝑘, 𝑧 ⊕ 𝐴𝑗𝑘⟩ ,

where 𝜈(𝑗, ℓ) is the row index of the ℓth nonzero entry of the 𝑗th column. Many quantum algorithms
can be phrased naturally in terms of a different input model called the block-encoding model [LC19;
CGJ19]. (One can efficiently construct a block-encoding, given sparse access.)

Definition 3.12 (Block encoding). Let 𝐴 ∈ ℝ𝑛×𝑛 be a Hermitian matrix, and let 𝑁 ∈ ℕ be
such that 𝑛 = 2𝑁, and let 𝜇 ≥ 1. The (𝑁 + 𝑎)-qubit operator 𝑈𝐴 is a (𝜇, 𝑎)-block-encoding of
𝐴 if it satisfies 𝐴 = 𝜇(⟨0|⊗𝑎 ⊗ 𝐼)𝑈𝐴(|0⟩⊗𝑎 ⊗ 𝐼).

For convenience, if we are not interested in the number of ancillary qubits 𝑎, we simply call 𝑈𝐴 a
𝜇-block-encoding. In what follows, we assume that we have access to 𝑈𝐴, an (exact4) (1, 𝑎)-block-
encoding of 𝐴. The case of 𝜇-block-encodings with 𝜇 > 1 can be reduced to the former by replacing
our starting matrix with 𝐴/𝜇, that has eigenvalues in 𝐷𝜇𝜅. Furthermore, we assume that 𝐴 is
invertible, with eigenvalues in 𝐷𝜅. Finally, we assume that we have access to 𝑈𝐛, a unitary that
(exactly) prepares the state |𝐛⟩ = 𝐛/‖𝐛‖ on input |𝟎⟩: 𝑈𝐛 |𝟎⟩ = |𝐛⟩.

We define the quantum linear system problem (QLSP) as follows:

4Constructing exact block-encodings of arbitrary matrices 𝐴 that are given in the sparse-access input model is
a priori not possible with a finite gate set. Instead, one can construct a block-encoding of an approximation ̃𝐴, by
allowing an overhead in the circuit depth that is proportional to log(‖𝐴 − ̃𝐴‖).

40 CHAPTER 3. OPTIMAL QUANTUM LINEAR SYSTEM SOLVERS

Definition 3.13 (Quantum linear systems). Let 𝐴 ∈ ℝ𝑛×𝑛 be a Hermitian matrix with
eigenvalues in 𝐷𝜅, let 𝐛 ∈ ℝ𝑛, and let 𝜀 > 0. Given a block-encoding 𝑈𝐴 of 𝐴 and a state
preparation oracle 𝑈𝐛, output a state

|𝜙⟩ = 𝛼 |0⟩ |𝐱⟩ + 𝛽 |1⟩ |𝜓⟩

where ‖ |𝐴𝐱⟩ − |𝑏⟩ ‖ ≤ 𝜀, |𝜓⟩ is an arbitrary state, and 𝛼, 𝛽 ∈ ℂ are such that |𝛼|2 + |𝛽|2 = 1
and |𝛼|2 ≥ 2/3.

As mentioned before, the widely-used definition from the the literature [CKS17; CGJ19; Gil+19]
is equivalent to Definition 3.13 up to a change in 𝜖. In this work we use Definition 3.13, as our
algorithm is optimal in this sense. In Section 3.5 we (numerically) show that our algorithm also
improves over prior work with respect to the more widely used definition.

Recent approaches for solving the QLS problem are based on applying a block-encoding of
𝑝(𝐴) to |𝐛⟩. In the next two sections we describe two ways of computing a block-encoding of 𝑝(𝐴):
through the QSVT framework, or by decomposing 𝑝 in the Chebyshev basis, computing each term
individually, and combining the results using the linear combination of unitaries lemma (the LCU
approach).

3.3.1 QSVT approach

The most straightforward way for evaluating a polynomial quantumly is through the quantum
singular value transformation framework [Gil+19]. Using QSVT, one can directly evaluate any
polynomial 𝑝 as long as its sup-norm is suitably bounded. Here the sup-norm of 𝑝 is defined as

‖𝑝‖∞ ∶= max
𝑥∈[−1,1]

|𝑝(𝑥)|.

This is achieved by performing a series of rotations by angles 𝚽 = (𝜙1, … , 𝜙𝑡) on a single qubit,
that induces a degree-𝑡 polynomial transformation of the singular values of 𝐴. Determining these
angles efficiently in a numerically stable way is the subject of ongoing research [Haa19; Cha+20;
Don+21]. Below, we state a version of QSVT suitable for evaluating even and odd polynomials,
since this is the case we are most interested in.

Theorem 3.14 ([Gil+19, Cor. 18], for block-encodings). Let 𝐴 ∈ ℝ𝑛×𝑛 be Hermitian, and let
𝑈𝐴 be a 1-block-encoding of 𝐴. Let Π = (|0⟩⟨0|)⊗𝑎 ⊗ 𝐼, and suppose that 𝑝 ∈ ℝ[𝑥] is a degree-𝑡
polynomial of parity-(𝑡 mod 2) satisfying ‖𝑝‖∞ ≤ 1. Then there exists a 𝚽 ∈ ℝ𝑡 such that

𝑝(𝐴) = (⟨+| ⊗ Π) (|0⟩⟨0| ⊗ 𝑈𝚽 + |1⟩⟨1| ⊗ 𝑈−𝚽) (|+⟩ ⊗ Π)

where 𝑈Φ is defined as the phased alternating sequence

𝑈𝚽 ∶=
⎧{
⎨{⎩

𝑒i𝜙1(2Π−𝐼)𝑈𝐴 ∏(𝑡−1)/2
𝑗=1 (𝑒i𝜙2𝑗(2Π−𝐼)𝑈†

𝐴𝑒i𝜙2𝑗+1(2Π−𝐼)𝑈𝐴) if 𝑛 is odd, and

∏𝑡/2
𝑗=1 (𝑒i𝜙2𝑗−1(2Π−𝐼)𝑈†

𝐴𝑒i𝜙2𝑗(2Π−𝐼)𝑈𝐴) if 𝑛 is even.

Note that QSVT is fundamentally limited to evaluating polynomials that are bounded by 1 in
absolute value on [−1, 1] (since the output is a unitary matrix). Approximations 𝑝 of 𝑥−1 on 𝐷𝜅
are inherently not bounded by 1 on the interval [−1, 1]: they are around 𝜅 for 𝑥 = 1/𝜅. The
QSVT framework allows us to evaluate 𝑝(𝑥)/𝑀 on 𝐴 where 𝑀 is an upper bound on ‖𝑝‖∞. This
subnormalization reduces the success probability of for example a QSVT-based QLS-solver. It is
thus important to obtain polynomial approximations 𝑝 that moreover permit a good bound 𝑀.

3.3. QUANTUM PRELIMINARIES 41

3.3.2 LCU approach

An alternative approach is based on the Linear Combinations of Unitaries (LCU) lemma [BCK15].
It uses the fact that Chebyshev polynomials have a particularly nice vector of angles, which permits
an efficient implementation of the LCU circuit.

Lemma 3.15 ([Gil+19, Lem. 9]). Let 𝚽 ∈ ℝ𝑡 be such that 𝜙1 = (1 − 𝑡)𝜋
2 and 𝜙𝑖 = 𝜋

2 for
2 ≤ 𝑖 ≤ 𝑡. For this choice of 𝚽, the polynomial 𝑝 from Theorem 3.14 is 𝒯𝑡, the 𝑡-th Chebyshev
polynomial of the first kind.

Computing a single Chebyshev polynomial. We consider in more detail the above circuit for
computing 𝒯2𝑡+1(𝐴) for a matrix 𝐴 with a 1-block-encoding 𝑈𝐴. Let Π = |0⟩⟨0| ⊗ 𝐼 be the same
projector as in Theorem 3.14 (we drop the exponent ⊗𝑎 for convenience, or equivalently, we assume
that the block-encoding 𝑈𝐴 has a single auxiliary qubit). By Lemma 3.15 the unitary

𝑈2𝑡+1 = 𝑒−𝜋i𝑡(2Π−𝐼)𝑈𝐴

𝑡
∏
𝑗=1

(𝑒i 𝜋
2 (2Π−𝐼)𝑈†

𝐴𝑒i 𝜋
2 (2Π−𝐼)𝑈𝐴)

satisfies (⟨0| ⊗ 𝐼)𝑈2𝑡+1(|0⟩ ⊗ 𝐼) = 𝒯2𝑡+1(𝐴). We first simplify the above. Note that 2Π − 𝐼 has
eigenvalues ±1 and therefore 𝑒−𝜋i𝑡(2Π−𝐼) = (−1)𝑡𝐼 and 𝑒i 𝜋

2 (2Π−𝐼) = i(2Π − 𝐼). This means that

𝑈2𝑡+1 = (−1)𝑡𝑈𝐴

𝑡
∏
𝑗=1

(i(2Π − 𝐼)𝑈†
𝐴i(2Π − 𝐼)𝑈𝐴)

= (−1)𝑡(i)2𝑡𝑈𝐴

𝑡
∏
𝑗=1

((2Π − 𝐼)𝑈†
𝐴(2Π − 𝐼)𝑈𝐴)

= 𝑈𝐴

𝑡
∏
𝑗=1

((2Π − 𝐼)𝑈†
𝐴(2Π − 𝐼)𝑈𝐴⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=∶𝑊

) = 𝑈𝐴𝑊 𝑡.

In other words, 𝑈2𝑡+1 can be viewed as 𝑡 applications of the unitary 𝑊, followed by a single
application of 𝑈𝐴. The circuit for even Chebyshev polynomials 𝑈2𝑡 is very similar, and can be
obtained from 𝑈2𝑡+1 by removing the final application of (left multiplication by) 𝑈𝐴 – however,
since we are ultimately interested in implementing the inverse, an odd function, we do not describe
the circuit in more detail.

Computing a linear combination of Chebyshev polynomials. Given the above circuit that
computes block-encodings of 𝒯2𝑘+1(𝐴) for 𝑘 ≥ 0, the next step is to compute a block-encoding of
linear combinations of the form

𝑝(𝐴) =
𝑡−1
∑
𝑖=0

𝑐𝑖𝒯2𝑖+1(𝐴). (3.8)

This can be achieved using a version of the LCU algorithm due to [CKS17]. In particular, the key to
an efficient implementation of the linear combination ∑𝑡−1

𝑖=0 𝑐𝑖𝑈2𝑖+1 is the efficient implementation
of the operator ∑𝑡−1

𝑖=0 |𝑖⟩⟨𝑖| ⊗ 𝑈2𝑖+1, which we achieve by introducing an 𝑙 = (⌈log2 𝑡⌉ + 1)-qubit
counter register, and successively applying 𝑊, 𝑊 2, 𝑊 4, … , 𝑊 2𝑙−1 controlled on qubits 0, 1, … , 𝑙 − 1
of the counter, followed by a single application of 𝑈𝐴 at the end. In [CKS17, Thm. 4] this circuit is
analyzed for a specific polynomial-approximation of the inverse. The analysis naturally extends to
arbitrary polynomials of the form (3.8).

42 CHAPTER 3. OPTIMAL QUANTUM LINEAR SYSTEM SOLVERS

Theorem 3.16 (based on [CKS17]). Let 𝐴 be a Hermitian matrix with eigenvalues in 𝐷𝜅, let
𝑈𝐴 be its block-encoding, and let 𝑈√

𝐜 be a unitary that prepares the state 1
√‖𝐜‖1

∑𝑛
𝑖=1

√𝑐𝑖 |𝑖⟩.

Then, there exists an algorithm that computes a ‖𝐜‖1-block-encoding of 𝑝(𝐴) using 𝑡 + 1 calls to
controlled versions of 𝑈𝐴 and 𝑈†

𝐴, and a single call to each of 𝑈√
𝐜 and 𝑈†√

𝐜. This circuit uses
a logarithmic number of additional qubits, and has a gate complexity of 𝑂(𝑡polylog(𝑛𝑡𝜅/𝜀)).

Compared to the QSVT approach, for this circuit we only need to compute the Chebyshev coefficients
𝐜, as opposed to the vector of angles 𝚽 – this comes, however, at the cost of using 𝑂(log 𝑡) additional
qubits. Moreover, the coefficient 1-norm ‖𝐜‖1 represents an upper bound for ‖𝑝‖∞, since

|𝑝(𝑥)| = ∣
𝑡

∑
𝑖=0

𝑐𝑖𝒯𝑖(𝑥)∣ ≤
𝑡

∑
𝑖=0

|𝑐𝑖| ⋅ |𝒯𝑖(𝑥)| ≤‖𝐜‖1 , for |𝑥| ≤ 1. (3.9)

A natural question is how tight this bound is for general degree-𝑡 polynomials 𝑝 with ‖𝑝‖∞ ≤ 1. By
norm conversion (Equation (3.14) in particular), the ratio ‖𝐜‖1 /‖𝑝‖∞ is provably upper bounded
by 𝑂(

√
𝑡) but in Section 3.7 we observe that for many “interesting” functions the ratio ‖𝐜‖1 /‖𝑝‖∞

is in fact only 𝑂(log(𝑡)). A notable exception is the complex exponential 𝑒i𝜅𝑥 (and thus sin(𝜅𝑥)
and cos(𝜅𝑥)) for which numerical experiments suggest that it attains the 𝑂(

√
𝑡) upper bound. In

Section 3.7.3 we show how to overcome this limitation by composing easily-implementable functions.

3.4 A QLS-algorithm based on 𝑞𝑡

As mentioned before, our main result is the following explicit upper bound on the Chebyshev
coefficient 1-norm of 𝑞𝑡.

Theorem 3.17 (Main result). For all 𝑡 ∈ ℕ, the Chebyshev coefficient 1-norm of 𝑞𝑡 is bounded
as ∥𝐜𝑡∥1

≤ 2(1 + 1
𝒯𝑡(𝑠(0)))𝑡. In particular, for 𝑡 ≥ 1

2𝜅 log(2𝜅2/𝜀) we have ‖𝐜𝑡‖1 ≤ 2(1 + 𝜀/𝜅2)𝑡.

The proof of this Theorem is split between Section 3.4.1 and Lemma 3.19. As a corollary, we get
a QSVT-based QLS algorithm that can be described as applying the polynomial 𝑞𝑡 to a 1-block-
encoding of the input matrix 𝐴. This yields an 𝑂(𝑡)-block-encoding of 𝑞𝑡(𝐴), which can then be
applied to the input state |𝐛⟩. Formally, we show the following.

Corollary 3.18 (QSVT-based algorithm). Let 𝐴 be a Hermitian matrix with eigenvalues
in 𝐷𝜅, let 𝑈𝐴 be a 1-block-encoding of 𝐴, and let 𝜀 > 0. Then, for 𝑡 ≥ 1

2𝜅 log(2𝜅2/𝜀), a
2(1 + 𝜀/𝜅2)𝑡-block-encoding of 𝑞𝑡(𝐴) can be constructed using 2𝑡 − 1 calls to 𝑈𝐴 and 𝑈†

𝐴.

Proof. The algorithm consists of applying QSVT (Theorem 3.14) to the polynomial 𝑞𝑡(𝑥)/∥𝑞𝑡∥∞
.

This allows us to construct a ∥𝑞𝑡∥∞
-block-encoding of 𝑞𝑡(𝐴) with the desired complexity. It remains

to upper bound ∥𝑞𝑡∥∞
by 2(1 + 𝜀/𝜅2)𝑡. Motivated by Equation (3.9), it suffices to upper bound the

1-norm of the vector 𝐜 of coefficients of 𝑞𝑡 in the Chebyshev basis (again by 2(1 + 𝜀/𝜅2)𝑡) – this is
guaranteed by Theorem 3.17.

The block-encoding of 𝑞𝑡(𝐴) can now be used as a black-box replacement for the block-encoding of
the corresponding CKS polynomial evaluated at 𝐴. For example, using variable-time amplitude
amplification, an 𝑂(𝜅)-query (to 𝑈𝐴) complexity QLS algorithm can be derived. We refer the reader
to [CKS17; Gil+19; Mar+21] for an overview of these techniques.

3.4. A QLS-ALGORITHM BASED ON 𝑞𝑡 43

As an alternative approach, one could use the fact that ‖𝐜𝑡‖1 is bounded in order to evaluate 𝑞𝑡 via
LCU (Theorem 3.16). At the cost of using 𝑂(log 𝑡) additional qubits, an LCU-based approach would
yield a more “natural” quantum algorithm, that does away with the classical angle computation
preprocessing step required by QSVT – computing these angles efficiently in a numerically stable
way is the subject of ongoing research [Cha+20; Don+21; Haa19].

3.4.1 Bounding the Chebyshev coefficients

As discussed above, in order to apply (a normalized version of) 𝑞𝑡 to a block-encoding of a Hermitian
matrix with eigenvalues in 𝐷𝜅, we need a bound on the sup-norm of 𝑞𝑡 on the interval [−1, 1].
In order to derive such a bound, we express 𝑞𝑡 in the basis of Chebyshev polynomials. Each of
the Chebyshev polynomials has sup-norm equal to 1 and therefore a bound on the 1-norm of the
coefficient vector provides a bound on the sup-norm of 𝑞𝑡. Recall that since 𝑞𝑡 is an odd polynomial,
its expansion in the Chebyshev basis only involves the odd-degree Chebyshev polynomials. That is,
we can write

𝑞𝑡(𝑥) =
𝑡−1
∑
𝑖=0

𝑐𝑡,𝑖𝒯2𝑖+1(𝑥) (3.10)

for some vector 𝐜𝑡 = (𝑐𝑡,𝑖)𝑖∈{0,…,𝑡−1} of coefficients. One can give an analytic expression for 𝑐𝑡,𝑖 using
the fact that the Chebyshev polynomials are orthogonal with respect to the Chebyshev measure.
Here we take a different approach and use the following discrete orthogonality relations. Fix a
degree 𝑚 ∈ ℕ and let {𝑥1, … , 𝑥𝑚} be the roots of 𝒯𝑚(𝑥). The 𝑥𝑘’s are called the Chebyshev nodes
and they admit an analytic formula:

𝑥𝑘 = cos(
(𝑘 − 1

2)𝜋
𝑚

) for 𝑘 = 1, … , 𝑚 (3.11)

The discrete orthogonality relation that we will use is the following. For 0 ≤ 𝑖, 𝑗 < 𝑚, we have

𝑚
∑
𝑘=1

𝒯𝑖(𝑥𝑘)𝒯𝑗(𝑥𝑘) =

⎧{{
⎨{{⎩

𝑚 if 𝑖 = 𝑗 = 0,
𝑚
2 if 𝑖 = 𝑗 < 𝑚,
0 if 𝑖 ≠ 𝑗.

(3.12)

Since 𝑞𝑡 is a polynomial of degree 2𝑡 − 1, we will use the discrete orthogonality conditions corre-
sponding to 𝑚 = 2𝑡 to recover the coefficient of 𝒯2𝑖+1 in 𝑞𝑡. We have

𝑐𝑡,𝑖 = 1
𝑡

2𝑡
∑
𝑘=1

𝑞𝑡(𝑥𝑘)𝒯2𝑖+1(𝑥𝑘) (3.13)

for all 𝑖 ∈ {0, 1, … , 𝑡 − 1}. We can equivalently write this in matrix form, 𝐜𝑡 = 1
𝑡 𝓣𝑡𝐪𝑡, where

𝓣𝑡 =
⎡
⎢⎢⎢
⎣

𝒯1(𝑥1) 𝒯1(𝑥2) … 𝒯1(𝑥2𝑡)
𝒯3(𝑥1) 𝒯3(𝑥2) … 𝒯3(𝑥2𝑡)

⋮ ⋮ ⋱ ⋮
𝒯2𝑡−1(𝑥1) 𝒯2𝑡−1(𝑥2) … 𝒯2𝑡−1(𝑥2𝑡)

⎤
⎥⎥⎥
⎦

and 𝐪𝑡 =
⎡
⎢⎢⎢
⎣

𝑞𝑡(𝑥1)
𝑞𝑡(𝑥2)

⋮
𝑞𝑡(𝑥2𝑡)

⎤
⎥⎥⎥
⎦

.

Our goal is to show that ‖𝐜𝑡‖1 ≤ 𝐶⋅𝑡 for a small constant 𝐶. To do so, we first use the Cauchy-Schwarz
inequality to obtain

‖𝐜𝑡‖1 ≤
√

𝑡‖𝐜𝑡‖2 = 1√
𝑡
‖𝓣𝑡𝐪𝑡‖2 ≤ ‖𝓣𝑡‖√

𝑡
‖𝐪𝑡‖2 = ‖𝐪𝑡‖2 (3.14)

where the last equality follows from the discrete orthogonality relations Equation (3.12): we see
that 𝓣𝑡𝓣∗

𝑡 = 𝑡𝐼𝑡 and therefore ‖𝓣𝑡‖ =
√

𝑡. Thus, bounding ‖𝐪𝑡‖2 would conclude the proof of
Theorem 3.17.

44 CHAPTER 3. OPTIMAL QUANTUM LINEAR SYSTEM SOLVERS

Lemma 3.19. We have ‖𝐪𝑡‖2 ≤ 2(1+ 1
𝒯𝑡(𝑠(0)))𝑡 for all 𝑡 ∈ ℕ. In particular, for 𝑡 ≥ 1

2𝜅 log(2𝜅2/𝜀)
we have ‖𝐪𝑡‖2 ≤ 2(1 + 𝜀/𝜅2)𝑡.

Proof. We start by bounding ∣𝑞𝑡(𝑥)∣ on [−1, 1], and we recall that

𝑞𝑡(𝑥) = 1 − 𝒯𝑡(𝑠(𝑥))/𝒯𝑡(𝑠(0))
𝑥

, where 𝑠(𝑥) = 1 + 1/𝜅2 − 2𝑥2

1 − 1/𝜅2 .

On one hand, when 𝑥 ∈ 𝐷𝜅 we have 𝑠(𝑥) ∈ [−1, 1] and thus ∣1 − 𝒯𝑡(𝑠(𝑥))/𝒯𝑡(𝑠(0))∣ ≤ 1+1/𝒯𝑡(𝑠(0)).
On the other hand, when |𝑥| ≤ 1/𝜅 we have 1 ≤ 𝑠(𝑥) ≤ 𝑠(0) = 1+1/𝜅2

1−1/𝜅2 . Since 𝒯𝑡(𝑥) is increasing for
𝑥 ≥ 1, it follows that 0 ≤ 1 − 𝒯𝑡(𝑠(𝑥))/𝒯𝑡(𝑠(0)) ≤ 1 for all |𝑥| ≤ 1/𝜅. Together this shows that

∣𝑞𝑡(𝑥)∣ =∣1 − 𝒯𝑡(𝑠(𝑥))/𝒯𝑡(𝑠(0))
𝑥

∣ ≤ 1 + 1/𝒯𝑡(𝑠(0))
|𝑥|

for all 𝑥 ∈ [−1, 1] {0}.

We now bound the norm of 𝐪𝑡. We have

∥𝐪𝑡∥
2 =

2𝑡
∑
𝑘=1

𝑞𝑡(𝑥𝑘)2 ≤ (1 + 1
𝒯𝑡(𝑠(0))

)
2 2𝑡

∑
𝑘=1

1
𝑥2

𝑘
= (1 + 1

𝒯𝑡(𝑠(0))
)

2 2𝑡
∑
𝑘=1

1
cos2 (2𝑘−1

4𝑡 𝜋)
,

where we substituted the exact expression for the Chebyshev nodes 𝑥𝑘 = cos (2𝑘−1
4𝑡 𝜋). Moreover,

we have

cos2 (2(2𝑡 − 𝑘 + 1) − 1
4𝑡

𝜋) = cos2 (2𝑘 − 1
4𝑡

𝜋) =
1 − cos (2𝑘−1

2𝑡 𝜋)
2

for all 1 ≤ 𝑘 ≤ 𝑡,

where the first equality comes from 𝑥2𝑡−𝑘+1 = −𝑥𝑘. Therefore, we have

∥𝐪𝑡∥
2 ≤ 4 (1 + 1

𝒯𝑡(𝑠(0))
)

2 𝑡
∑
𝑘=1

1
1 − cos(2𝑘−1

2𝑡 𝜋)
.

We note that the roots of 𝒯𝑡(𝑥) are exactly cos(2𝑘−1
2𝑡 𝜋), for 𝑘 ∈ [𝑡]. For any polynomial 𝑃(𝑥) =

𝐶 ∏𝑡
𝑘=1(𝑥 − 𝑟𝑘) the following identity holds for all 𝑥 for which 𝑃(𝑥) ≠ 0:

𝑡
∑
𝑘=1

1
𝑥 − 𝑟𝑘

= 𝑃 ′(𝑥)
𝑃 (𝑥)

.

Applying the above to 𝑃(𝑥) = 𝒯𝑡(𝑥) and 𝑥 = 1 (which is not a root of 𝒯𝑡), we get
𝑡

∑
𝑘=1

1
1 − cos(2𝑘−1

2𝑡 𝜋)
= 𝒯′

𝑡(1)
𝒯𝑡(1)

= 𝑡 ⋅ 𝒰𝑡−1(1)
1

= 𝑡2.

This concludes the main part of the proof: we have shown that ‖𝐪𝑡‖ ≤ 2(1 + 1
𝒯𝑡(𝑠(0)))𝑡.

Finally, for 𝑡 ≥ 1
2𝜅 log(2𝜅2/𝜀), we bound 1/𝒯𝑡(𝑠(0)) as in the proof of Corollary 3.7. Namely,

using the same inequalities, we have

𝒯𝑡(𝑠(0)) ≥ 1
2

(𝜅 + 1
𝜅 − 1

)
𝑡

≥ 1
2

(1 + 2
𝜅 − 1

)
1
2 𝜅 log(2𝜅2/𝜀)

≥ 𝜅2

𝜀
.

Combining this lemma with Equation (3.14), we derive the same bound for ∥𝐜𝑡∥1
, thus completing

the proof of Theorem 3.17.

3.4. A QLS-ALGORITHM BASED ON 𝑞𝑡 45

3.4.2 Efficiently computing the coefficients

In the case of evaluating 𝑞𝑡 via LCU, one question of practical relevance is how to compute the
coefficients 𝐜𝑡. Naively using the recurrence (3.3) to compute 𝐜𝑡 gives rise to an algorithm with
𝑂(𝑡2) arithmetic operations with real numbers. Alternatively, one can use FFT-based Chebyshev
interpolation algorithms that can compute 𝐜𝑡 with 𝑂(𝑡 log 𝑡) operations given the vector 𝐪𝑡 of the
values of 𝑞𝑡(𝑥) at the order-𝑡 Chebyshev nodes [Gen72]. Thus, in order to get an 𝑂(𝑡 log 𝑡)-operation
algorithm for computing 𝐜𝑡, it suffices to show that 𝑞𝑡(𝑥) can be evaluated at a single Chebyshev
node 𝑥𝑘 with 𝑂(log 𝑡)-operations. Given the form of 𝑞𝑡, this means that we need to compute
𝒯𝑡(𝑠(𝑥𝑘)) with 𝑂(log 𝑡) operations. One way to do this is via the degree-halving identities

𝒯2𝑡(𝑥) = 2𝒯𝑡(𝑥)2 − 1 and 𝒯2𝑡+1(𝑥) = 2𝒯𝑡+1(𝑥)𝒯𝑡(𝑥) − 𝑥.

3.4.3 A more natural quantum algorithm?

Given the reduction of the general linear system problem to the PD case (Corollary 3.8), one
might be tempted to mirror this reduction when designing a quantum algorithm, with the goal of
achieving �̃�(

√
𝜅) complexity for solving PD systems. The input of such an algorithm would be a

(block-encoding of a) Hermitian matrix 𝐴 with eigenvalues in [1/𝜅, 1], and the output would be a
block-encoding of 𝑞+

𝑡 (𝐴). To evaluate this polynomial using QSVT, we first need to normalize it by
dividing it by max𝑥∈[−1,1] |𝑞+

𝑡 (𝑥)|. It turns out that this maximum grows exponentially with 𝑡: one
can lower bound it by |𝑞+

𝑡 (−1)| and we have

|𝑞+
𝑡 (−1)| ≥

𝒯𝑡 (1+1/𝜅+2
1−1/𝜅)

𝒯𝑡 (1+1/𝜅
1−1/𝜅)

− 1 ≥ 𝒯𝑡(3 + 4/(𝜅 − 1))
𝒯𝑡(1 + 2/(𝜅 − 1))

≥ 𝒯𝑡(3)
𝒯𝑡(2)

≥ 1
2

(3 + 2
√

2
2 +

√
3

)
𝑡

≥ 1
2

(3
2

)
𝑡

.

Therefore, amplifying the output of QSVT would take exponential time. In the case of LCU, the
coefficient 1-norm is lower bounded by |𝑞+

𝑡 (−1)| (by Equation (3.9)), so the output of a LCU-based
algorithm would also need to be amplified exponentially. Alternative approaches of multiplying
𝑞+

𝑡 (𝑥) by a rectangle function that is close to 1 on [1/𝜅, 1] and close to 0 elsewhere are similarly
fruitless as the degree of the resulting approximation polynomial would become linear in 𝜅. It should
be noted, however, that these issues can be avoided if we assume that the mapping 𝑥 ↦ 1+1/𝜅−2𝑥

1−1/𝜅
has already been performed “ahead of time”: in [OD21], Orsucci and Dunjko have shown that PD
matrices can indeed be inverted in 𝑂(

√
𝜅), provided that a block-encoding of 𝐼 − 𝛼𝐴 is given as

input (for suitable 𝛼).
Another natural alternative approach would be to quantize a method such as momentum

gradient descent, which also converges in 𝑂(
√

𝜅) for PD matrices [Pol87]. One way to achieve this
would be using the approach of Kerenidis and Prakash [KP20b], who quantized the basic gradient
descent algorithm by implementing the recurrence 𝐫𝑡+1 = (𝐼 − 𝜂𝐴)𝐫𝑡 satisfied by the differences
𝐫𝑡 ∶= 𝐱𝑡 − 𝐱𝑡−1 of successive iterates. Applying this idea to momentum gradient descent, one gets a
recurrence involving two successive differences:

[𝐫𝑡+1
𝐫𝑡

] = [(1 + 𝛽)𝐼 − 𝜂𝐴 −𝛽𝐼
𝐼 0]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑀

[𝐫𝑡
𝐫𝑡−1

] ,

46 CHAPTER 3. OPTIMAL QUANTUM LINEAR SYSTEM SOLVERS

for suitable choices of 𝜂 and 𝛽. For example, following [Pol87, Chapter 3], one can set 𝜂 =
4/(1 + √1/𝜅)2 and 𝛽 = (1 − 2/(1 +

√
𝜅))2. Implementing a similar approach as in [KP20b] would

require the construction of 𝑂(1)-block-encodings of powers of 𝑀. In particular, this would require
𝑀 to have a small norm. Unfortunately, for large enough 𝜅 ≥ 9 and the above choice of 𝜂, 𝛽, one has
‖𝑀‖ ≥

√
2 which means that a block-encoding of 𝑀 𝑡 needs to have sub-normalization at least 2𝑡/2.

3.5 Comparison with previous polynomial-based QLS-solvers
In Lemma 3.10 we saw that the Chebyshev iteration polynomial 𝑞𝑡 is the degree-(2𝑡 − 1) polynomial
that minimizes the error

max
𝑥∈𝐷𝜅

|𝑥𝑃 (𝑥) − 1|

over all polynomials of degree 2𝑡 − 1. This implies that the CKS polynomial attains a larger error
than the Chebyshev iteration polynomial, or conversely requires a higher degree to reach the same
error on 𝐷𝜅. In Table 3.1, we use Corollary 3.9 and Theorem 3.11 to compute the degree required
to achieve error 𝜀 on 𝐷𝜅, and observe that the degree of the CKS polynomial is roughly twice the
degree of the corresponding Chebyshev iteration polynomial.

𝜅
𝜀 0.5 10−2 10−4 10−6

2 15 33 53 71
10 115 203 301 399
100 1819 2687 3669 4633
1000 24913 33515 43337 52989

(a) CKS polynomial

𝜅
𝜀 0.5 10−2 10−4 10−6

2 5 11 21 31
10 37 77 123 169
100 599 991 1451 1911
1000 8295 12207 16811 21417

(b) Chebyshev iteration

Table 3.1: Degrees of approximation polynomials for a given condition condition number 𝜅 and
error 𝜀, computed according to Corollary 3.9.

Another way of comparing these polynomials is to compute their errors according to

max
𝑥∈𝐷𝜅

∣𝑃 (𝑥) − 1/𝑥∣

(corresponding to definition 1)). The optimal polynomial (also called the minimax polynomial)
according to this definition has no explicit description, but it can still be computed relatively
efficiently using the Remez exchange algorithm – see e.g. [PT09] for a practical implementation.
In [Don+21] the authors compared the minimax and the CKS polynomials. In Figures 3.1 and 3.2
we add the Chebyshev iteration polynomials to this comparison. In particular, we show the
errors max𝑥∈𝐷𝜅

∣𝑃 (𝑥) − 1/𝑥∣ where 𝑃 is the minimax, CKS and Chebyshev iteration polynomial. In
Figure 3.1 we see that that for a fixed condition number, the convergence is linear for all polynomials,
with the CKS polynomial being the slowest to converge (i.e., for the same degree, the difference in
errors is a few orders of magnitude). Conversely, in Figure 3.2 we see that with polynomials of a
fixed degree, the error of the CKS is an order of magnitude higher, no matter the condition number.

We conclude this section with a remark on the (CPU) time needed to compute (the coefficients
of) these polynomials. On the authors’ hardware (an Intel Xeon Silver 4110 CPU), computing all
the CKS and Chebyshev iteration polynomials from Figures 3.1 and 3.2 only took a few seconds,
whereas computing the corresponding minimax polynomials took several hours. One reason for this
is that while the former can be computed using simple and efficient machine-precision operations,
the latter requires (at least in the implementation of [Don+21]) dealing with arbitrary-precision
floating-point numbers.

3.6. QUERY LOWER BOUNDS 47

80 85 90 95 100 105

10−2

100

polynomial degree

ap
pr

ox
im

at
io

n
er

ro
r

CKS
Chebyshev iteration

Minimax

Figure 3.1: Approximation error for a fixed condition number 𝜅 = 10 and varying degrees.

5 10 15 20 25 30 35

10−5

100

condition number

ap
pr

ox
im

at
io

n
er

ro
r

CKS
Chebyshev iteration

Minimax

Figure 3.2: Approximation error for a fixed degree 2𝑡 − 1 = 127 and varying condition numbers.

3.6 Query lower bounds

So far, we have been considering algorithms (i.e. upper bounds) for the QLS problem. The complexity
of the best algorithm for the QLS problem depends linearly on 𝜅 (we ignore the polylogarithmic
factors in this section), so a natural question is whether this dependence is optimal. In [HHL09] it
has been shown that this is indeed the case: in the sparse access input model (the setting in which
such lower bounds are usually proven), the complexity of QLS for general systems is Ω(min(𝜅, 𝑛)).
Recently, it has been shown [OD21] that the same Ω(min(𝜅, 𝑛)) lower bound even holds for the

48 CHAPTER 3. OPTIMAL QUANTUM LINEAR SYSTEM SOLVERS

restriction of QLS to PD matrices – this is surprising since in the classical setting a
√

𝜅-separation
exists between the general and the PD case. We note that both of these lower bounds apply when
the output of the QLS solver is the quantum state |𝐴−1𝐛⟩. As a consequence, one can show that
computing a classical description of 𝐴−1𝐛 is just as hard.

Both of the above results apply to the small-𝜅 regime. In particular, they leave open the
possibility of a 𝑜(𝑛𝜔)-time quantum algorithm for solving linear systems (with classical output).
The existence of such an algorithm would speed up many classical optimization algorithms (e.g.,
interior point methods) in a black-box way. In [DT09] it was shown that one cannot obtain a
large quantum speedup when the output is required to be classical: Ω(𝑛2) quantum queries to the
entries of 𝐴 are needed to obtain a classical description of a single coordinate of 𝐴−1𝑒𝑛, where
𝑒𝑛 is the 𝑛-th standard basis vector in ℝ𝑛. The statement is robust in the following sense: after
normalizing 𝐴−1𝑒𝑛, it suffices to obtain a 𝛿-additive approximation of the first coordinate for some
𝛿 = 𝑂(1/𝑛2). We present a simplified proof of this result of [DT09] at the end of this section.
Note that this high precision prevents one from lifting the bound to the quantum-output setting:
to obtain a 𝛿-additive approximation of a single coordinate of |𝐴−1𝑏⟩ one can use roughly 1/𝛿
rounds of amplitude estimation on a QLS-solver 𝒜. With 𝛿 = 𝑂(1/𝑛2) this only implies that
𝑛2 ⋅ cost(𝒜) = Ω(𝑛2). A second type of quantum lower bound is described in [Gil+19]: roughly
speaking, if a (smooth) function 𝑓 ∶ 𝐼 → [−1, 1] has a derivative whose absolute value is 𝑑, then
Ω(𝑑) uses of a 1-block-encoding 𝑈𝐴 of 𝐴 are needed to create a block-encoding of 𝑓(𝐴). Here 𝐼 is a
subset of [−1, 1] that contains the eigenvalues of the Hermitian matrix 𝐴. Applied to 𝑓(𝑥) = 1/(𝜅𝑥),
this shows that indeed Ω(𝜅) applications of 𝑈𝐴 are needed to create a block-encoding of 𝐴−1. As
mentioned before, a block-encoding of 𝐴−1 can be combined with a state preparation oracle for
𝐛 to solve the QLS problem. Such a strategy however naturally incurs a 𝜅-dependence in the
runtime, and it remains an interesting open question whether one could solve the QLS problem
(with quantum output!) without such a dependence in 𝜅 and in time 𝑜(𝑛𝜔).

3.6.1 Lower bound for matrix inversion with classical output

We present a simplified proof of a matrix-inversion lower bound result of [DT09]. It is based on the
quantum query complexity of the majority function MAJ𝑛 ∶ {0, 1}𝑛 → {0, 1} which takes value 1
on input 𝐱 if and only if ∑𝑖∈[𝑛] 𝑥𝑖 > 𝑛/2. It is well known that the quantum query complexity of
MAJ𝑛 is Θ(𝑛) [Bea+01].

Lemma 3.20. Let 𝑋 ∈ {0, 1}𝑛×𝑛. Then, the matrix 𝐴 ∈ {0, 1}(2𝑛+2)×(2𝑛+2) defined as

𝐴 =
⎡
⎢⎢⎢
⎣

0 1∗
𝑛

1𝑛 0
0 0
𝑋 0

0 𝑋∗

0 0
0 1𝑛
1∗

𝑛 0

⎤
⎥⎥⎥
⎦

satisfies (𝐴3)1,2𝑛+2 = ∑𝑛
𝑖=1 ∑𝑛

𝑗=1 𝑋𝑖,𝑗.

Proof. 𝐴 is the adjacency matrix of an undirected graph that can be described as follows. We start
with a bipartite graph between two sets of 𝑛 vertices whose edge set is described by 𝑋, then we
add two vertices labeled 1 and 2𝑛 + 2 that we connect respectively to the first set of vertices and
the second set of vertices. The entry (1, 2𝑛 + 2) of 𝐴3 counts the number of paths of length 3 from
1 to 2𝑛 + 2 in this graph. This equals the number of edges between the sets {2, … , 𝑛 + 1} and
{𝑛 + 2, … , 2𝑛 + 1}, that is, (𝐴3)1,2𝑛+2 = ∑𝑛

𝑖=1 ∑𝑛
𝑗=1 𝑋𝑖,𝑗.

3.7. EXAMPLES OF FUNCTIONS WITH BOUNDED CHEBYSHEV COEFFICIENT NORMS49

Corollary 3.21. Let 𝐴 ∈ {0, 1}𝑛×𝑛. Determining a single off-diagonal entry of 𝐴3, with
success probability ≥ 2/3, takes Θ(𝑛2) quantum queries to 𝐴.

Lemma 3.22. Let 𝐴 ∈ {0, 1}𝑛×𝑛. Then, for 𝑁 = 4𝑛, the matrix 𝐵 ∈ {0, 1}𝑁×𝑁 defined by

𝐵 =
⎡
⎢⎢⎢
⎣

𝐼 𝐴
𝐼 𝐴

𝐼 𝐴
𝐼

⎤
⎥⎥⎥
⎦

,

satisfies (𝐵−1)1,𝑁 = −(𝐴3)1,𝑛.

Proof. It is straightforward to verify that the inverse of 𝐵 is

𝐵−1 =
⎡
⎢⎢⎢
⎣

𝐼 −𝐴 𝐴2 −𝐴3

𝐼 −𝐴 𝐴2

𝐼 −𝐴
𝐼

⎤
⎥⎥⎥
⎦

.

If 𝐴 is the adjacency matrix of the directed version of the graph described in Lemma 3.20, we can
also compute the norm of the last column as follows:

∥𝐵−1𝐞4𝑛∥2 = (∑
𝑖,𝑗

𝑋𝑖,𝑗)
2

+ ∑
𝑖

(∑
𝑗

𝑋𝑖,𝑗)
2

+ 𝑛 + 1.

In particular, for the hard instances (where |𝑛/2 − ∑𝑖,𝑗 𝑋𝑖,𝑗| ≤ 1), we have that ∥𝐵−1𝐞4𝑛∥ =
Θ(𝑛2).

Corollary 3.23. Let 𝐴 ∈ {0, 1}𝑛×𝑛. Determining a single off-diagonal entry of 𝐴−1 up to
precision < 1/2, with success probability ≥ 2/3, takes Θ(𝑛2) quantum queries to 𝐴.

3.7 Examples of functions with bounded Chebyshev coefficient
norms

The inverse function is not the only function that can be efficiently evaluated using LCU of Chebyshev
polynomials. Here we discuss several families of functions for which the 1-norm of the Chebyshev
coefficients is of the order log(degree).

3.7.1 Simple examples

We first observe that the monomial 𝑥𝑛 has the following Chebyshev expansion:

𝑥𝑛 = 21−𝑛
𝑛

∑
′

𝑗=0, 𝑛−𝑗 even
(𝑛

𝑛−𝑗
2

)𝒯𝑗(𝑥),

where the prime at the sum symbol indicates that the contribution of 𝑗 = 0 needs to be halved (if
it appears). The sum of these coefficients is bounded by 1. This implies that for any polynomial
the 1-norm of the coefficients in the Chebyshev basis is at most the 1-norm of the coefficients in

50 CHAPTER 3. OPTIMAL QUANTUM LINEAR SYSTEM SOLVERS

the monomial basis. This means, for example, that the Chebyshev coefficient 1-norm of the scaled
exponential is at most 1. Similarly, for a degree 𝑛 approximation of the (scaled) logarithm the
1-norm grows as 𝑂(log𝑛). In particular, they have the following Taylor expansions for 𝜅 ≥ 1

𝑒𝜅(𝑥−1) = 𝑒−𝜅
∞

∑
𝑛=0

(𝜅𝑥)𝑛

𝑛!
,

slog𝜅(𝑥) ∶= log(1/𝜅 + ((𝑥 + 1)/2)(1 − 1/𝜅)) = log(𝜅 + 1
2𝜅

(1 + 𝜅 − 1
𝜅 + 1

𝑥))

= log(𝜅 + 1
2𝜅

) +
∞

∑
𝑛=1

(−1)𝑛+1

𝑛
(𝜅 − 1

𝜅 + 1
)

𝑛

𝑥𝑛.

3.7.2 Approximating discontinuities – the error function

Some more interesting examples are the sign and the rectangle functions, defined as

sign(𝑥) ∶=

⎧{{
⎨{{⎩

1 if 𝑥 > 0,
0 if 𝑥 = 0,
−1 if 𝑥 < 0,

and Π(𝑥) ∶= {
1 if |𝑥| ≤ 1/2,
0 else.

It is well-known [LC17a; Gil+19] that the error-function erf(𝑥) = 2√
𝜋 ∫𝑥

0
𝑒−𝑧2 d𝑧 is a fundamental

building block for approximating discontinuous functions. For example, given 𝜖, 𝛿 > 0, there exists
a choice of 𝜅 = 𝑂(polylog(1/𝜖)/𝛿) such that erf(𝜅𝑥) is 𝜖-close to sign(𝑥) on [−1, 1] [−𝛿, 𝛿]. We show
below that the 1-norm of the coefficients of the Chebyshev series of erf(𝜅𝑥) is 𝑂(log𝜅). We start
with the following expansion from [LC17a]:

erf(𝜅𝑥) = 2𝜅𝑒−𝜅2/2
√

𝜋
⎛⎜
⎝

𝐼0(𝜅2/2)𝑥 +
∞

∑
𝑗=1

𝐼𝑗(𝜅2/2)(−1)𝑗 (
𝒯2𝑗+1(𝑥)

2𝑗 + 1
−

𝒯2𝑗−1(𝑥)
2𝑗 − 1

)⎞⎟
⎠

.

By regrouping the terms, we get the following explicit form of the Chebyshev series of erf(𝜅𝑥):

erf(𝜅𝑥) = 2𝜅𝑒−𝜅2/2
√

𝜋

∞
∑
𝑛=0

(−1)𝑛 𝐼𝑛(𝜅2/2) + 𝐼𝑛+1(𝜅2/2)
2𝑛 + 1

𝒯2𝑛+1(𝑥). (3.15)

Now, in order to bound the coefficient norm, we use the following inequality from [BP14]:

𝑒−𝑥𝑥−𝑛(𝐼𝑛(𝑥) + 𝐼𝑛+1(𝑥)) ≤ √ 2
𝜋

(𝑥 + 𝑛
2

+ 1
4

)
−𝑛− 1

2

.

Note that 𝐼𝑛(𝑥) ≥ 0 for 𝑥 ≥ 0 and all 𝑛 ∈ ℕ. So, the above in fact bounds the absolute value of the
left hand side. We use this inequality to bound the (absolute value of the) coefficient of 𝒯2𝑛+1(𝑥)
in (3.15) as follows:

2𝜅𝑒−𝜅2/2
√

𝜋
𝐼𝑛(𝜅2/2) + 𝐼𝑛+1𝜅2/2)

2𝑛 + 1
≤ 4

𝜋
1

2𝑛 + 1
(𝜅2

𝜅2 + 𝑛 + 1/2
)

𝑛+1/2

. (3.16)

Using this inequality, we can bound the coefficient norm of the truncated Chebyshev series:

3.7. EXAMPLES OF FUNCTIONS WITH BOUNDED CHEBYSHEV COEFFICIENT NORMS51

Lemma 3.24. Let 𝑁 > 0 be an integer. Then,

2𝜅𝑒−𝜅2/2
√

𝜋

𝑁
∑
𝑛=0

𝐼𝑛(𝜅2/2) + 𝐼𝑛+1(𝜅2/2)
2𝑛 + 1

≤ 6 + 2 log𝑁
𝜋

.

Proof. Using (3.16), and the fact that 0 ≤ 𝜅2

𝜅2+𝑛+1/2 ≤ 1, we get

2𝜅𝑒−𝜅2/2
√

𝜋

𝑁
∑
𝑛=0

𝐼𝑛(𝜅2/2) + 𝐼𝑛+1(𝜅2/2)
2𝑛 + 1

≤ 4
𝜋

𝑁
∑
𝑛=0

1
2𝑛 + 1

(𝜅2

𝜅2 + 𝑛 + 1/2
)

𝑛+1/2

≤ 4
𝜋

𝑁
∑
𝑛=0

1
2𝑛 + 1

.

It is well-known that the last sum is 𝑂(log𝑁). To be more precise,

4
𝜋

𝑁
∑
𝑛=0

1
2𝑛 + 1

≤ 4
𝜋

(1 +
𝑁

∑
𝑛=1

1
2𝑛

) = 4
𝜋

+ 2
𝜋

𝑁
∑
𝑛=1

1
𝑛

≤ 4
𝜋

+ 2
𝜋

(1 + log𝑁) ≤ 6 + 2 log𝑁
𝜋

.

Now, if we just want to bound the coefficients’ 1-norm, it suffices to take 𝑁 = ⌈𝜅2⌉, and bound the
rest of the coefficients using the following simple tail bound:

Lemma 3.25. Let 𝑁 ≥ 𝜅2 be an integer. Then,

2𝜅𝑒−𝜅2/2
√

𝜋

∞
∑
𝑛=𝑁

𝐼𝑛(𝜅2/2) + 𝐼𝑛+1(𝜅2/2)
2𝑛 + 1

≤ 22−𝑁.

Proof. Again, we start by using (3.16), but now we note that for 𝑛 ≥ 𝜅2, 0 ≤ 𝜅2

𝜅2+𝑛+1/2 ≤ 1
2 , so

2𝜅𝑒−𝜅2/2
√

𝜋

∞
∑
𝑛=𝑁

𝐼𝑛(𝜅2/2) + 𝐼𝑛+1(𝜅2/2)
2𝑛 + 1

≤ 4
𝜋

∞
∑
𝑛=𝑁

2−𝑛

2𝑛 + 1
≤ 23−𝑁

𝜋
≤ 22−𝑁.

Therefore, the coefficient norm of the entire series is bounded by 6+2 log 𝜅2

𝜋 + 22−𝜅2 ≤ 4 + 2 log𝜅. An
easy consequence of this bound is that we can approximate erf(𝜅𝑥) up to error 0 ≤ 𝜖 ≤ 22−𝜅2 with
a polynomial of degree log2(4/𝜖).

If the desired error 𝜖 is larger than 22−𝜅2 , a more careful analysis of the tail bound for 𝜅 ≤ 𝑁 ≤ 𝜅2

yields an 𝜖-approximation polynomial of degree 𝑂(𝑘√log(𝜅/𝜖)).

Lemma 3.26. Let 1 ≤ 𝛼 ≤ 𝜅 be an integer. Then,

4
𝜋

(𝛼+1)𝜅−1

∑
𝑛=𝛼𝜅

1
2𝑛 + 1

(𝜅2

𝜅2 + 𝑛 + 1/2
)

𝑛+1/2

≤ 4
𝜋

𝑒𝛼2/2.

52 CHAPTER 3. OPTIMAL QUANTUM LINEAR SYSTEM SOLVERS

Proof. First, we note that (𝜅2

𝜅2+𝑛+1/2)
𝑛+1/2

≤ (𝜅2

𝜅2+𝑛)
𝑛
, so we get

4
𝜋

(𝛼+1)𝜅−1

∑
𝑛=𝛼𝜅

1
2𝑛 + 1

(𝜅2

𝜅2 + 𝑛 + 1/2
)

𝑛+1/2

≤ 4
𝜋

(𝛼+1)𝜅−1

∑
𝑛=𝛼𝜅

1
2𝑛 + 1

(𝜅2

𝜅2 + 𝑛
)

𝑛

≤ 4
𝜋

(𝛼+1)𝜅−1

∑
𝑛=𝛼𝜅

1
2(𝛼𝜅) + 1

(𝜅2

𝜅2 + 𝛼𝜅
)

𝛼𝜅

= 4
𝜋

𝜅
2(𝛼𝜅) + 1

(𝜅
𝜅 + 𝛼

)
𝛼𝜅

= 4
𝜋

𝜅
2(𝛼𝜅) + 1

(1
1 + 𝛼/𝜅

)
𝛼𝜅

≤ 4
𝜋

𝜅
2(𝛼𝜅) + 1

(𝑒−𝛼/(2𝜅))
𝛼𝜅

= 4
𝜋

𝜅
2(𝛼𝜅) + 1

𝑒−𝛼2/2 ≤ 4
𝜋

𝑒−𝛼2/2.

The second to last inequality requires 𝛼 ≤ 𝜅.

So, to get an 𝜖-approximation polynomial, we just need to an integer 1 ≤ 𝛼0 ≤ 𝜅 such that

22−𝜅2 + 4
𝜋

𝜅
∑

𝛼=𝛼0

𝑒−𝛼2/2 ≤ 𝜖.

Indeed, if we let 𝜖′ = 𝜖 − 22−𝜅2 , it suffices to choose 𝛼0 = ⌈√2 log(4𝜅
𝜋𝜖′)⌉, so we get

22−𝜅2 + 4
𝜋

𝜅
∑

𝛼=𝛼0

𝑒−𝛼2/2 ≤ 22−𝜅2 + 4𝜅
𝜋

𝑒−𝛼2
0/2 ≤ 22−𝜅2 + 𝜖′ = 𝜖.

Thus, the degree of the 𝜖-approximating polynomial is 𝛼0𝜅 − 1 = 𝑂(𝜅√log(𝜅/𝜖)).

3.7.3 Hamiltonian simulation, sin(𝜅𝑥) and cos(𝜅𝑥)

The Hamiltonian simulation problem requires one to evaluate the function 𝑒i𝜅𝑥 for a possibly
large value of 𝜅. This function is closely related to sin(𝜅𝑥) and cos(𝜅𝑥), and in this section we
focus ourselves to the case of cos(𝜅𝑥) with 𝜅 ≥ 1. We recall the Jacobi-Anger expansion [DLMF,
Eq. 10.12.3] of cos(𝜅𝑥):

cos(𝜅𝑥) = 𝐽0(𝜅) + 2
∞

∑
𝑗=1

(−1)𝑗𝐽2𝑗(𝜅)𝒯2𝑗(𝑥), (3.17)

where 𝐽𝑛(𝑥) is the Bessel function of the first kind. One could attempt to show an Ω(
√

𝜅) lower
bound on the coefficient 1-norm by using the large-argument approximation [DLMF, Eq. 10.7.8]

𝐽𝑛(𝑥) ≈ √ 2
𝜋𝑥

cos(𝑥 − 𝑛𝜋
2

− 𝜋
4

) .

Unfortunately this approximation is only valid for 𝑛 ≪
√

𝑥, or equivalently, 𝑗 ≪
√

𝜅 (a simple proof
would require the same equality up to 𝑗 = 𝑂(𝜅)). Therefore, we turn to positive results, and show
how to evaluate cos(𝜅𝑥) as a composition of easily-implementable functions corresponding to simple
quantum circuits in the matrix (block-encoding) case.

First, we show that cos(𝑥) can be approximated using a polynomial with a coefficient norm that
is less than 1. We do this by showing that the 1-norm of the entire Chebyshev series of cos(𝑥) is 1.

3.7. EXAMPLES OF FUNCTIONS WITH BOUNDED CHEBYSHEV COEFFICIENT NORMS53

By specializing the expansion Equation (3.17) for 𝜅 = 1 and observing that 𝒯2𝑗(0) = (−1)𝑗, we get
that

1 = cos 0 = 𝐽0(1) + 2
∞

∑
𝑗=1

𝐽2𝑗(1),

so in order to bound the coefficient norm, it suffices to show that 𝐽2𝑗(1) ≥ 0 for all 𝑗 > 0. This
holds by [DLMF, Eq. 10.14.2] and [DLMF, Eq. 10.14.7], i.e.

0 < 𝐽𝜈 (𝜈) < 2 1
3

3 2
3 Γ (2

3) 𝜈 1
3

and 1 ≤ 𝐽𝜈 (𝜈𝑥)
𝑥𝜈𝐽𝜈 (𝜈)

≤ 𝑒𝜈(1−𝑥).

In order to approximate cos(𝑥) to an error 𝜀, it suffices to truncate the series Equation (3.17) after
𝑂(log(1/𝜀)) terms, since [DLMF, Eq. 10.14.4] gives us the tail bound |𝐽𝑛(𝑥)| ≤ |𝑥|𝑛

2𝑛𝑛! .
Finally, for 𝜅 > 1 define 𝑘 ∶= ⌈𝜅⌉, and note that it suffices to evaluate cos(𝑘𝑥) due to the (trivial)

identity cos(𝜅𝑥) = cos(𝑘(𝜅𝑥/𝑘)). We conclude by observing that cos(𝑘𝑥) = 𝒯𝑘(cos𝑥). The key
point is that the functions 𝜅𝑥/𝑘, cos(𝑥) and 𝒯𝑘(𝑥) can all be approximated with polynomials of
coefficient norm at most 1, so composing them “just works” without any costly subnormalization.
In other words, by composing these functions, we can start from a 1-block-encoding of a matrix 𝐴,
and construct 1-block-encodings of 𝜅

𝑘 𝐴, cos (𝜅
𝑘 𝐴), and finally 𝒯𝑘 (cos (𝜅

𝑘 𝐴)) = cos(𝜅𝐴).
We can apply a similar trick in order to evaluate sin(𝜅𝑥). As before, we note that it suffices to

implement sin(𝑘𝑥) for 𝑘 = ⌈𝜅⌉, and we use the following identity involving the 𝒰𝑘, the Chebyshev
polynomials of the second kind:

sin(𝑘𝑥) = 𝒰𝑘−1(cos𝑥) sin(𝑥).

An easy calculation shows that simply negating the ancilla qubit at the start of the circuit in
Section 3.3.2 allows us to compute a 1-block-encoding of sin(𝜅𝐴). As a consequence, we obtain a
simple LCU-based algorithm for Hamiltonian simulation.

Part II

Classical algorithms

55

4 | Gaussian sampling
Joint work with Simon Apers and Sander Gribling

4.1 Introduction and main result

One of the most important tasks in statistics and machine learning is to sample from high-dimensional
and potentially complicated distributions. Markov chains are an efficient means for sampling from
such distributions, and there is a wide variety of Markov chain algorithms designed specifically for
this purpose. Typically, the main difficulty in analyzing these algorithms is to bound the precise
running time or mixing time of the Markov chain. While many algorithms have been in very broad
(heuristic) usage for several decades, rigorous bounds on their performance are often missing. A
key example is the Hamiltonian Monte Carlo (HMC) algorithm [Dua+87]. This is an elegant
Markov chain algorithm that utilizes Hamiltonian dynamics to efficiently explore the state space,
without straying too far away from the high probability region. One of its key features is that
it overcomes the slow, diffusive behavior that is inherent to “small step” approaches such as the
ball walk and Langevin algorithm. While this is indeed observed in heuristic uses and studies of
the HMC algorithm [Nea11], recent efforts are mostly restricted to step sizes much shorter than
the heuristic choices [Che+20; CV22]. In this work, we prove seemingly optimal bounds on the
HMC algorithm (with leapfrog integrator) for the special case of Gaussian distributions. This is the
typical gateway to more complicated distributions such as logconcave or multimodal distributions.
Our implementation of HMC exploits long and randomized integration times. This surpasses recent
roadblocks on sampling Gaussian distributions using HMC with either short [CV22] or deterministic
[LST21] integration times.

Our bounds are stated most easily in the “black box model”, where the goal is to sample from
a density of the form 𝑒−𝑓(𝑥) for 𝑥 ∈ ℝ𝑑, and we are given query access to both 𝑓 and its gradient
∇𝑓. The Gaussian case further restricts 𝑓 to be a quadratic form 𝑓(𝑥) = 1

2(𝑥 − 𝜇)⊤Σ−1(𝑥 − 𝜇),
where 𝜇 and Σ are the (unknown) mean and covariance matrix of the Gaussian, respectively. The
condition number 𝜅 of the Gaussian distribution is simply the condition number of Σ−1. We prove
the following theorem.

Theorem (informal version of Theorem 4.17). The Metropolis-adjusted HMC algorithm with
leapfrog integrator can sample from a distribution 𝜀-close in total variation distance to a
𝑑-dimensional Gaussian distribution with condition number 𝜅 using a total number of gradient
evaluations

𝑂(
√

𝜅𝑑1/4 log(1/𝜀)).a

aWe use the 𝑂(⋅)-notation to hide polylogarithmic factors in the problem parameters 𝑑, 𝜅 and log(1/𝜀).

This theorem builds on an analysis of the unadjusted HMC algorithm, for which we get a
bound of 𝑂(

√
𝜅𝑑1/4/

√
𝜀) on the total number of gradient evaluations. Both bounds seem in line

with expectation [Dua+87; Nea11; Bes+13], and we expect they are tight when using the usual
leapfrog integrator for simulating the Hamiltonian dynamics. Our algorithm surpasses the Ω̃(𝜅

√
𝑑)

57

58 CHAPTER 4. GAUSSIAN SAMPLING

lower bound on the complexity of HMC for Gaussian sampling from [LST21] by using randomized
integration times. This avoids the well-known periodicity issues associated to a deterministic
integration time.

Our work fits within the recent effort of proving non-asymptotic (and often tight) bounds on
Markov chain algorithms for constrained distributions such as Gaussian distributions and, more
generally, logconcave distributions (where 𝑓 is assumed to be convex). Most of these efforts have
focused on short step dynamics such as the ball walk, the Langevin algorithm, and HMC with
short integration times. The use of such “local steps” makes it easier to control the stability and
acceptance probability of the algorithm. However, the restriction to short step dynamics is also
what slows down these algorithms, and this is what we avoid in our HMC algorithm.

Finally, the restriction to sampling Gaussian and logconcave distributions precisely parallels
the restriction to quadratic and convex functions in optimization. Nonetheless, a gap between the
(first-order oracle) complexity for logconcave sampling and the 𝑂(min{

√
𝜅, 𝑑}) complexity for convex

optimization is apparently deemed plausible. More specifically, the authors in [LST20] suggest
an Ω(𝜅) lower bound for logconcave sampling. Our work shows that a sublinear 𝜅-dependency is
possible at least for the special case of Gaussian distributions, and we see it as evidence that a
general 𝑂(

√
𝜅) bound for logconcave sampling might be achievable.

4.1.1 Background and prior work

There is a vast body of work on the use of Markov chain algorithms for sampling from Gaussian
and logconcave distributions. These works mostly consider the (Metropolized) random walk or ball
walk (MRW), the Metropolis-adjusted Langevin algorithm (MALA), and HMC. We discuss those
works most directly related to ours.

The earliest works focus on asymptotic bounds or scaling limits on the performance as 𝑑 → ∞.
A 𝑑1/4-scaling was suggested in [Dua+87; KP91; Bes+13] for the complexity of HMC with leapfrog
integrator for Gaussians and logconcave product distributions. This improves over the expected
𝑑- and 𝑑1/3-scalings of MRW and MALA, respectively. Indeed, in a recent work by Chewi et
al. [Che+21] it was proven that the complexity of MALA for standard Gaussian distributions (with
𝜅 = 1) scales as 𝑂(𝑑1/3). For leapfrog HMC, the only non-asymptotic bounds scaling with 𝑑1/4

seem to have been proven recently in [MV18; Mou+21] for the unadjusted HMC chain, and under
additional regularity assumptions. While these assumptions include Gaussians, the final complexities
in these works scale at least with 𝜅2 and 1/

√
𝜀, and so scale much worse in terms of both 𝜅 and 𝜀

compared to our bound.
An improved (linear) 𝜅-dependency is obtained in recent works on MALA [Dwi+18; LST20;

WSC21] and HMC [Che+20]. This seems optimal based on the Ω̃(𝜅
√

𝑑) lower bounds on MALA
and HMC from [WSC21; LST21], which even apply to the Gaussian case. Such lower bounds
typically follow from either restricting to short integration times (as with MALA), which leads
to diffusive behavior, or fixed integration times, which can lead to periodic behavior in the HMC
algorithm. Either of these restrictions leads to an Ω(𝜅)-dependency, and indeed we are not aware of
any former non-asymptotic bounds on the mixing time achieving a sublinear 𝜅-dependency (while
using a numerical integrator). We sidestep these issues by using both long and random integration
times. Analyzing the resulting algorithm can be significantly more involved, and for this we restrict
our analysis to the Gaussian case. It however seems likely that this will form a gateway to proving√

𝜅-scalings for general logconcave distributions.
The use of randomized integration times was also studied recently in the randomized HMC

algorithm by Bou-Rabee and Sanz-Serna [BS17a]. Similarly to our work, they motivate their
algorithm by looking at the Gaussian case, and obtain similar scalings to our work for properties

4.2. PROBLEM DEFINITION AND PRELIMINARIES 59

such as the autocorrelation time and mean displacement. In follow-up works [Del+21; LW22],
bounds similar to ours are proven on the relaxation time. However, all of these results are proven
only for the idealized case, and do not take into account the errors of numerical integration.

Finally, for completeness we also mention that there are algorithms for Gaussian sampling that
are not based on Markov chains. While these are generally incomparable (e.g., require access to the
precision or covariance matrix rather than gradient), we refer the interested reader to [VDC22].

4.2 Problem definition and preliminaries

4.2.1 Gaussian sampling

We consider a 𝑑-dimensional Gaussian distribution with unknown precision matrix 𝐵 (equal to
the inverse of the covariance matrix) and mean 𝜇 = 0.1 In such case, the Gaussian distribution is
𝜋(𝑥) ∝ exp(−𝑓(𝑥)) with 𝑓(𝑥) = 1

2𝑥⊤𝐵𝑥 for 𝑥 ∈ ℝ𝑑 and 𝐵 a positive definite matrix. The algorithms
we use (Hamiltonian Monte Carlo with a leapfrog integrator) are basis invariant, and so for ease
of notation we will assume throughout that 𝐵 is diagonal with 𝐵𝑖𝑖 = 𝜔2

𝑖 for each 𝑖 ∈ [𝑑]. As
input, we are given bounds 0 < 𝛼 ≤ 𝛽 such that 𝛼𝐼 ⪯ 𝐵 ⪯ 𝛽𝐼, or, equivalently, 𝛼 ≤ 𝜔2

𝑖 ≤ 𝛽. The
condition number of 𝐵 is 𝜅 = 𝛽/𝛼 and we will also call this the condition number of 𝜋. We assume
first-order query access to 𝑓, which means that a single query at a point 𝑥 ∈ ℝ𝑑 provides both 𝑓(𝑥)
and ∇𝑓(𝑥) = 𝐵𝑥. The goal is to return a sample from a distribution that is 𝜀-close to 𝜋 in total
variation distance, while making a minimal number of gradient queries to 𝑓.

4.2.2 Markov chains on ℝ𝑑

Throughout we work with Markov chains whose behaviour can be described as follows: when at
𝑥 ∈ ℝ𝑑 move to 𝑦 ∈ ℝ𝑑 with probability density 𝑇 (𝑥, 𝑦) ≥ 0. We identify the Markov chain with the
transition kernel (density) 𝑇 ∶ ℝ𝑑 × ℝ𝑑 → ℝ+. For a fixed 𝑥 ∈ ℝ𝑑 we use 𝑇𝑥 to denote the probability
distribution on ℝ𝑑 with density 𝑇 (𝑥, ⋅). Similarly (with some abuse of notation), we denote by 𝑇𝜇
the probability distribution on ℝ𝑑 with density ∫ 𝜇(𝑥)𝑇 (𝑥, ⋅) d𝑥. The 𝐾-step transition kernel 𝑇 𝐾

is defined recursively via 𝑇 𝐾(𝑥, 𝑦) = ∫
ℝ𝑑 𝑇 𝐾−1(𝑥, 𝑧)𝑇 (𝑧, 𝑦) d𝑧 for 𝐾 > 1. We say that 𝑇 satisfies the

detailed balance condition with respect to the probability density 𝜋 ∶ ℝ𝑑 → ℝ+ if

𝜋(𝑥)𝑇 (𝑥, 𝑦) = 𝜋(𝑦)𝑇 (𝑦, 𝑥) for all 𝑥, 𝑦 ∈ ℝ𝑑.

The associated Markov chain is called reversible.

4.2.3 Hamiltonian dynamics and the harmonic oscillator

At its core, Hamiltonian Monte Carlo makes moves by integrating Hamiltonian dynamics. In general,
these describe the evolution of a physical system parameterized by (generalized) positions and
(generalized) momenta. For the purposes of this work, we denote the former with 𝑥 ∈ ℝ𝑑 and the
latter with 𝑣 ∈ ℝ𝑑. We sometimes refer to 𝑣 as the velocity, which in classical physics is equal to the
momentum of a unit mass. The Hamiltonian evolution of a 𝑑-dimensional system is governed by
its Hamiltonian ℋ ∶ ℝ𝑑 × ℝ𝑑 → ℝ, which can be understood as the total energy of the system at
position 𝑥 ∈ ℝ𝑑 and with velocity 𝑣 ∈ ℝ𝑑. The evolution of the system is described by the following
equations:

d𝑥
d𝑡

= 𝜕ℋ(𝑥, 𝑣)
𝜕𝑣

, d𝑣
d𝑡

= −𝜕ℋ(𝑥, 𝑣)
𝜕𝑥

.
1This is without loss of generality. Using 𝑂(

√
𝜅) gradient queries we can always determine the mean up to high

precision and then translate the Gaussian to the origin.

60 CHAPTER 4. GAUSSIAN SAMPLING

The simplest example is the (one-dimensional) harmonic oscillator with Hamiltonian ℋ(𝑥, 𝑣) =
1
2𝜔2𝑥2 + 1

2𝑣2 for some given 𝜔 > 0. Its evolution is described by d𝑥
d𝑡 = 𝑣 and d𝑣

d𝑡 = −𝜔2𝑥, which can
be solved analytically to yield

[𝑥(𝑡)
𝑣(𝑡)] = [cos(𝜔𝑡) 1

𝜔 sin(𝜔𝑡)
−𝜔 sin(𝜔𝑡) cos(𝜔𝑡)] [𝑥(0)

𝑣(0)] (4.1)

A more interesting example is the 𝑑-dimensional harmonic oscillator. For a given positive (semi)def-
inite matrix 𝐵 ∈ ℝ𝑑×𝑑, its Hamiltonian is ℋ(𝑥, 𝑣) = 1

2𝑥⊤𝐵𝑥 + 1
2𝑣⊤𝑣, and its evolution is described

by
d𝑥
d𝑡

= 𝑣, d𝑣
d𝑡

= −𝐵𝑥. (4.2)

If 𝐵 has eigenvalues 𝜔2
𝑖 then in the eigenbasis of 𝐵 the system effectively decomposes into 𝑑

independent harmonic oscillators with frequencies 𝜔𝑖. When analyzing our algorithms, it is often
useful to assume that 𝐵 is diagonal, so we can treat each coordinate independently. Of course, the
algorithms themselves remain basis-independent, and only require the aforementioned bounds 𝛼
and 𝛽 on the eigenvalues 𝜔2

𝑖 .

4.2.4 The leapfrog integrator

The leapfrog integrator, also known as the Störmer-Verlet method, is a well-known numerical
integrator for Hamiltonian dynamics that uses two queries to 𝜕ℋ(𝑥,𝑣)

𝜕𝑥 in each integration step. In
the Gaussian case ℋ(𝑥, 𝑣) = 1

2𝑥⊤𝐵𝑥 + 1
2𝑣⊤𝑣 and the propagator takes the following closed form:

[𝑥(𝑛+1)

𝑣(𝑛+1)] = [𝐼 − 𝛿2

2 𝐵 𝛿𝐼
−𝛿𝐵(𝐼 − 𝛿

4𝐵) 𝐼 − 𝛿2

2 𝐵
] [𝑥(𝑛)

𝑣(𝑛)] , (4.3)

where 𝛿 > 0 is a parameter used to describe the integration time. See for example [LR05, Sec. 2.6]
for details. We will exploit that, similarly as for the idealized Hamiltonian dynamics, the leapfrog
dynamics also decouple in the diagonal basis of 𝐵. Hence, as before, we can assume without loss
of generality that 𝐵 is diagonal with entries 0 < 𝛼 ≤ 𝜔2

𝑖 ≤ 𝛽, and the leapfrog integrator can be
interpreted as integrating 𝑑 independent harmonic oscillators. To understand the leapfrog integrator
we can thus restrict to a single harmonic oscillator with parameter 𝜔.

The propagator from Equation (4.3) has eigenvalues

𝜆± = 1 − 𝛿2𝜔2

2
± i𝛿𝜔√1 − 𝛿2𝜔2

4
.

If 𝛿2𝜔2 ≤ 4, we can set 𝜆± = 𝑒±i𝜑, where 𝜑 ∈ [0, 𝜋] is uniquely defined by cos(𝜑) = 1 − 𝛿2𝜔2

2 and

sin(𝜑) = 𝛿𝜔√1 − 𝛿2𝜔2

4 . We can use 𝜑 to rewrite the propagator as a rotation with angle 𝜑

[cos(𝜑) 1
�̂� sin(𝜑)

−�̂� sin(𝜑) cos(𝜑)] , where �̂� = 𝜔√1 − 𝛿2𝜔2

4
.

Comparing this with (4.1), we see that the leapfrog trajectory exactly follows the Hamiltonian
dynamics for the modified Hamiltonian ℋ̂ given by

ℋ̂(𝑥, 𝑣) = 1
2

�̂�2𝑥2 + 1
2

𝑣2.

4.3. IDEALIZED AND UNADJUSTED HMC 61

Indeed, if (̂𝑥(𝑡), ̂𝑣(𝑡)) is the solution of Hamilton’s equations with Hamiltonian ℋ̂(𝑥, 𝑣) and initial
conditions (̂𝑥(0) = 𝑥0, ̂𝑣(0) = 𝑣0), then the 𝑛th point on the leapfrog trajectory equals

[̂𝑥(𝑛)

̂𝑣(𝑛)] = [cos(𝑛𝜑) 1
�̂� sin(𝑛𝜑)

−�̂� sin(𝑛𝜑) cos(𝑛𝜑)] [̂𝑥0
̂𝑣0
] = [cos(�̂�𝑡𝑛) 1

�̂� sin(�̂�𝑡𝑛)
−�̂� sin(�̂�𝑡𝑛) cos(�̂�𝑡𝑛)] [̂𝑥0

̂𝑣0
] = [̂𝑥(𝑡𝑛)

̂𝑣(𝑡𝑛))] ,

where 𝑡𝑛 = 𝑛𝜑/�̂�. We can now easily check that the difference between ℋ and ℋ̂ is

ℋ(𝑥, 𝑣) − ℋ̂(𝑥, 𝑣) = 𝛿2𝜔4𝑥2

8
.

By our former remark, this observation extends to general 𝑑-dimensional harmonic oscillators and
the corresponding leapfrog integrator (4.3): we define �̂� by replacing 𝜔𝑖 by �̂�𝑖 for each eigenvalue
of 𝐵, where

�̂�𝑖 ∶= 𝜔𝑖
√1 − 𝛿2𝜔2

𝑖
4

(4.4)

and we set ℋ̂(𝑥, 𝑣) = 1
2𝑥⊤�̂�𝑥 + 1

2𝑣⊤𝑣, then the leapfrog integrator is an exact integrator for ℋ̂ and
we moreover have

ℋ(𝑥, 𝑣) − ℋ̂(𝑥, 𝑣) = 𝛿2

8
∑
𝑖∈[𝑑]

𝜔4
𝑖 𝑥2

𝑖 . (4.5)

Finally we introduce the following notation: the tuple (𝑥′, 𝑣′) = leapfrog(𝑥, 𝑣, 𝑡, 𝛿) is defined
as the (position,momentum) vector after taking 𝑡/𝛿 leapfrog integration steps for ℋ with stepsize
0 ≤ 𝛿 ≤ 1/

√
𝛽.2

4.3 Idealized and unadjusted HMC
We first analyze an idealized version of HMC, Algorithm 2, where we assume that we can exactly
integrate the Hamiltonian dynamics. We use long and random integration times. In order to later
apply the results from this section in the setting of a numerical integrator, we will use uniformly
random integration times 𝑡 ∼ 𝑈(𝒯) from a finite set 𝒯. We require only the following property of 𝒯.
For all 0 < 𝛼 ≤ 𝜔2 ≤ 𝛽 we have

ℙ𝑡∼𝑈(𝒯)[| cos(𝜔𝑡)| ≤ 0.9] ≥ 1/2. (4.6)

In Section 4.6.1 we show that 𝒯 = {𝑘 ⋅ 𝛿 ∣ 𝑘 ∈ ℕ, 𝑘 ⋅ 𝛿 < 10𝜋/
√

𝛼} satisfies this property for all
0 < 𝛿 < 𝑐√

𝛽 for a sufficiently small constant 𝑐 > 0.

Algorithme 2 : Markov kernel 𝑃 (idealized HMC with random integration time)
Input : 𝑥 ∈ ℝ𝑑, 𝒯 as in Equation (4.6)
Output : 𝑥′ ∈ ℝ𝑑

1 Draw 𝑣 ∼ 𝒩(0, 𝐼𝑑) and 𝑡 ∼ 𝑈(𝒯);
2 Define 𝑥′ by following Hamiltonian dynamics for ℋ for time 𝑡, starting from (𝑥, 𝑣);

It is well known that idealized HMC with a fixed integration time has the desired stationary
distribution 𝜋 whose density at (𝑥, 𝑣) is related to the Hamiltonian ℋ(𝑥, 𝑣) = 1

2𝑥⊤ diag(𝝎)𝑥 + 1
2𝑣⊤𝑣,

i.e., 𝜋(𝑥, 𝑦) ∝ exp(−1
2𝑥⊤ diag(𝝎)𝑥 + 1

2𝑣⊤𝑣) (cf. [Dua+87; Nea96; Vis21]). From this it follows
2We will always apply this with 𝑡/𝛿 ∈ ℕ.

62 CHAPTER 4. GAUSSIAN SAMPLING

that also 𝑃 has stationary distribution 𝜋. In Section 4.3.1 we show that 𝑃 has a small mixing
time. We then extend this result to the setting where we use a numerical integrator (leapfrog)
instead of the idealized time evolution according to Hamiltonian dynamics. For this we use the
fact (cf. Section 4.2.4) that the leapfrog integrator applied to ℋ(𝑥, 𝑣) can in fact be viewed as an
exact integrator for the Hamiltonian dynamics of a modified Hamiltonian ℋ̂(𝑥, 𝑣). By bounding the
distance between 𝜋 and ̂𝜋 ∝ exp(−ℋ̂(𝑥, 𝑣)), we obtain a sample from a distribution that is 𝜀 close
to 𝜋 in total variation distance using a number of gradient evaluations that scales as 𝑂(

√
𝜅𝑑1/4/

√
𝜀),

see Section 4.3.2.

4.3.1 Idealized HMC

Let 𝑃 𝑡
𝑥 denote the proposal distribution from 𝑥 ∈ ℝ𝑑, conditioned on having picked 𝑡 ∈ [0, 𝑇]. Using

the explicit expression Equation (4.1), we can expand it as

𝑃 𝑡
𝑥(𝑧) = ℙ𝑣∼𝒩(0,1) [cos(𝜔𝑖𝑡)𝑥𝑖 + 1

𝜔𝑖
sin(𝜔𝑖𝑡)𝑣𝑖 = 𝑧𝑖 ∀𝑖 ∈ [𝑑]]

= (2𝜋)−𝑑/2 ∏
𝑖∈[𝑑]

𝜔𝑖
| sin(𝜔𝑖𝑡)|

exp⎛⎜⎜
⎝

−1
2

⎛⎜
⎝

𝑧𝑖 − cos(𝜔𝑖𝑡)𝑥𝑖
1

𝜔𝑖
sin(𝜔𝑖𝑡)

⎞⎟
⎠

2
⎞⎟⎟
⎠

. (4.7)

The probability with which idealized HMC moves from 𝑥 to 𝑧 is then 𝑃𝑥(𝑧) = 1
|𝒯| ∑𝑡∈𝒯 𝑃 𝑡

𝑥(𝑧)d𝑡.
We analyze the convergence in total variation distance by explicitly writing out the distribution

𝑃 𝐾 obtained by taking 𝐾 steps of the idealized HMC method. If we condition on the choice
of random integration times in step 2 of Algorithm 2, then the resulting distribution is again a
normal distribution. Indeed, let (𝑣(1), … , 𝑣(𝐾)), (𝑡1, … , 𝑡𝐾) and (𝑥(1), … , 𝑥(𝐾)) denote the velocities,
integration times and positions, respectively, encountered during the first 𝐾 steps. By repeatedly
applying (4.7), we can express

𝑥(𝐾)
𝑖 = 𝑥(𝐾−1)

𝑖 cos(𝜔𝑖𝑡𝐾) + 1
𝜔𝑖

sin(𝜔𝑖𝑡𝐾)𝑣(𝐾)

= 𝑥(0)
𝑖 (

𝐾
∏
𝑘=1

cos(𝜔𝑖𝑡𝑘)) + 1
𝜔𝑖

𝐾
∑
𝑘=1

𝑣(𝑘) sin(𝜔𝑖𝑡𝑘) ⎛⎜
⎝

𝐾
∏

𝑗=𝑘+1
cos(𝜔𝑖𝑡𝑗)⎞⎟

⎠
.

For a fixed tuple 𝐭 = (𝑡1, … , 𝑡𝐾) ∈ 𝒯𝐾 but random choices (𝑣(1), … , 𝑣(𝐾)) ∼ 𝒩(0, 𝐼𝑑)𝐾, we now
argue that this describes a Gaussian distribution, which we denote by 𝑃 𝐭

𝑥 . First, note that 𝑃 𝐭
𝑥 is a

product distribution: 𝑃 𝐭
𝑥(𝑧) = ∏𝑖∈[𝑑] 𝑃 𝐭,𝑖

𝑥 (𝑧𝑖) where we use 𝑃 𝐭,𝑖
𝑥 for the marginal distribution of 𝑃 𝐭

𝑥

with respect to the 𝑖-th coordinate. Then, note that 𝑃 𝐭,𝑖
𝑥 describes a sum of Gaussians, and hence

forms again a Gaussian. We formalize this in the next lemma.

Lemma 4.1. Let 𝐭 ∈ 𝒯𝐾, 𝜔 > 0, 𝑥 ∈ ℝ, and consider

𝑧 = 𝑥 (
𝐾

∏
𝑘=1

cos(𝜔𝑡𝑘)) + 1
𝜔

𝐾
∑
𝑘=1

𝑣(𝑘) sin(𝜔𝑡𝑘) ⎛⎜
⎝

𝐾
∏

𝑗=𝑘+1
cos(𝜔𝑡𝑗)⎞⎟

⎠

where 𝑣(𝑘) ∼ 𝒩(0, 1) for each 𝑘 ∈ [𝐾]. Then 𝑧 ∼ 𝒩(𝑥 ∏𝐾
𝑘=1 cos(𝜔𝑡𝑘), 1

𝜔2 (1 − ∏𝐾
𝑘=1 cos(𝜔𝑡𝑗)2)).

If the term ∏𝐾
𝑘=1 cos(𝜔𝑡𝑘) is sufficiently small, then 𝑃 𝐭

𝑥 is close to 𝜋. Equation (4.6) and
Hoeffding’s inequality show that for a random tuple 𝐭 = (𝑡1, … , 𝑡𝐾) ∼ 𝑈(𝒯𝐾) this term will indeed
be small. Then we use this to prove convergence of the proposal distribution to 𝜋.

4.3. IDEALIZED AND UNADJUSTED HMC 63

Lemma 4.2. Let 0 < 𝛼 < 𝜔2 < 𝛽 and 𝒯 as in Equation (4.6). Then there exists a constant
𝑐 > 0 such that

ℙ𝐭∼𝑈(𝒯𝐾) [∣
𝐾

∏
𝑘=1

cos(𝜔𝑡𝑘)∣ ≥ 0.9𝐾/4] ≤ exp(−𝑐𝐾).

Using the above lemma, we show the proposal distributions 𝑃 𝐾
𝑥 (𝑧) ∶= 𝑃 𝐾(𝑥, 𝑧) and 𝑃 𝐾

𝑦 ∶=
𝑃 𝐾(𝑦, 𝑧) are close provided that 𝑥 and 𝑦 are close.

Proposition 4.3. There exists a constant 𝐶 > 0 such that for every 𝑥, 𝑦 ∈ ℝ𝑑, if

𝐾 ≥ 𝐶max{log(𝑑
𝜀

) , log(𝑑‖𝑥 − 𝑦‖∞√
𝛼𝜀

)},

then, with 𝑃 the kernel of idealized HMC, we have

‖𝑃 𝐾
𝑥 − 𝑃 𝐾

𝑦 ‖TV ≤ 𝜀.

Proof. Recall that 𝑃 𝐾
𝑥 = 1

|𝒯|𝐾 ∑𝐭∈𝒯𝐾 𝑃 𝐭
𝑥 and 𝑃 𝐭

𝑥 = ∏𝑖∈[𝑑] 𝑃 𝐭,𝑖
𝑥 is a product distribution. Hence, we

can twice apply a triangle inequality to obtain

‖𝑃 𝐾
𝑥 − 𝑃 𝐾

𝑦 ‖TV ≤ 1
|𝒯|𝐾

∑
𝐭∈𝒯𝐾

‖𝑃 𝐭
𝑥 − 𝑃 𝐭

𝑦 ‖TV

≤ ∑
𝑖∈[𝑑]

1
|𝒯|𝐾

∑
𝐭∈𝒯𝐾

‖𝑃 𝐭,𝑖
𝑥 − 𝑃 𝐭,𝑖

𝑦 ‖TV (4.8)

Now let 𝛿 = min{ 1√
2 ,

√
𝛼𝜀

𝑑‖𝑥−𝑦‖∞
}. By Lemma 4.2, there exists a constant 𝐶 > 0 such that for

𝐾 = 𝐶max{log(𝑑
𝜀), log(1

𝛿)} we have that

ℙ𝐭∼𝑈(𝒯𝐾) [∣
𝐾

∏
𝑘=1

cos(𝜔𝑖𝑡𝑗)∣ ≥ 𝛿] ≤ 𝜀
2𝑑

for each 𝑖 ∈ [𝑑]. Hence for each coordinate 𝑖 ∈ [𝑑] we have
1

|𝒯|𝐾
∑

𝐭∈𝒯𝐾

‖𝑃 𝐭,𝑖
𝑥 − 𝑃 𝐭,𝑖

𝑦 ‖TV ≤ 𝜀
2𝑑

+ 1
|𝒯|𝐾

∑
𝐭∈𝒯𝐾∶| ∏𝐾

𝑘=1 cos(𝜔𝑖𝑡𝑗)|≤𝛿

‖𝑃 𝐭,𝑖
𝑥 − 𝑃 𝐭,𝑖

𝑦 ‖TV

≤ 𝜀
2𝑑

+ (1 − 𝜀
2𝑑

)|𝑥𝑖 − 𝑦𝑖|𝛿
2𝜔𝑖

(4.9)

where we use that for 𝐭 ∈ 𝒯𝐾 for which ∣ ∏𝐾
𝑘=1 cos(𝜔𝑖𝑡𝑗)∣ ≤ 𝛿 ≤ 1√

2 , the proposal distributions 𝑃 𝐭,𝑖
𝑥

and 𝑃 𝐭,𝑖
𝑦 are univariate Gaussians with means 𝜇𝑥, 𝜇𝑦 that satisfy |𝜇𝑥 − 𝜇𝑦| ≤ 𝛿|𝑥𝑖 − 𝑦𝑖|, and both

have variance 𝜎2 ≥ 1−𝛿2

𝜔2
𝑖

≥ 1
2𝜔2

𝑖
. (For univariate Gaussians one has ‖𝒩(𝜇,𝜎2) − 𝒩(𝜇2, 𝜎2)‖TV <

|𝜇1 − 𝜇2|/𝜎.) Combining Equations (4.8) and (4.9) we obtain ‖𝑃 𝐾
𝑥 − 𝑃 𝐾

𝑦 ‖TV ≤ 𝜀.

This bound then easily leads to a bound on the total variation distance between 𝑃 𝐾
𝑥 and 𝜋 for 𝑥

that is sufficiently close to 0, and this is the main conclusion of this section.

Theorem 4.4 (Idealized HMC). There exists a constant 𝐶 > 0 such that for every 𝑥 ∈ ℝ𝑑, if

𝐾 ≥ 𝐶 log(𝑑𝜅(1 + ‖𝑥‖∞)
𝜀

) ,

64 CHAPTER 4. GAUSSIAN SAMPLING

then, with 𝜋 ∝ exp(−1
2𝑥⊤𝐵𝑥) and 𝑃 the kernel of idealized HMC, we have

‖𝑃 𝐾
𝑥 − 𝜋‖TV ≤ 𝜀.

Proof. We write 𝜋 = ∫
ℝ𝑑 𝛿𝑦 d𝜋(𝑦). Using that 𝜋 is stationary for 𝑃 (and hence 𝑃 𝐾), we also have

that 𝜋 = ∫
ℝ𝑑 𝑃 𝐾

𝑦 d𝜋(𝑦). Now we apply Jensen’s inequality:

‖𝑃 𝐾
𝑥 − 𝜋‖TV ≤ ∫

𝑦∈ℝ𝑑

‖𝑃 𝐾
𝑥 − 𝑃 𝐾

𝑦 ‖TV d𝜋(𝑥)

≤ 𝜋({𝑦 ∶ ‖𝑦‖ > 𝛾}) + ∫
𝑦∈ℝ𝑑∶‖𝑦‖≤𝛾

‖𝑃 𝐾
𝑥 − 𝑃 𝐾

𝑦 ‖TV d𝜋(𝑥).

Choosing 𝛾 sufficiently large ensures that 𝜋({𝑦 ∶ ‖𝑦‖ > 𝛾}) ≤ 𝜀/2. Lemma 4.8 shows that 𝛾 ∈ Θ̃(
√

𝛽𝑑)
suffices. We set 𝐾 = 𝐶 log(𝑑𝜅(𝛾+‖𝑥‖∞)

𝜀) for the constant 𝐶 > 0 for which Proposition 4.3 implies
that ‖𝑃 𝐾

𝑥 − 𝑃 𝐾
𝑦 ‖TV ≤ 𝜀/2 for all 𝑥, 𝑦 ∈ ℝ𝑑 with ‖𝑥 − 𝑦‖∞ ≤ 𝛾 + ‖𝑥‖∞. Combining these two bounds

shows that ‖𝑃 𝐾
𝑥 − 𝜋‖TV ≤ 𝜀.

4.3.2 Unadjusted HMC

The results from the previous section extend from the idealized setting where one can integrate
exactly, to the setting where one uses a (suitably chosen) numerical integrator: the leapfrog
integrator.

Algorithme 3 : Markov kernel �̂� (leapfrog HMC with random integration time)
Input : 𝑥 ∈ ℝ𝑑, stepsize 𝛿 ≤ 1/

√
𝛽, 𝒯 ∶= {𝑘 ⋅ 𝛿 ∣ 𝑘 ∈ ℕ, 𝑘 ⋅ 𝛿 < 10𝜋/

√
𝛼}

Output : 𝑥′ ∈ ℝ𝑑

1 Draw 𝑣 ∼ 𝒩(0, 𝐼𝑑) and move from 𝑥 to (𝑥, 𝑣) ;
2 Draw 𝑡 ∼ 𝑈(𝒯) and set (𝑥′, 𝑣′) = leapfrog(𝑥, 𝑣, 𝑡, 𝛿) ;

As discussed in Section 4.2.4, the leapfrog dynamics correspond to Hamiltonian dynamics for a
slightly modified Hamiltonian ℋ̂. Bounding the distance between the stationary distribution ̂𝜋 and
𝜋 leads to the following poly(1/𝜀)-algorithm for sampling from a distribution 𝜀-close to 𝜋.

Proposition 4.5 (Unadjusted HMC). There exist constants 𝐶, 𝐶′ > 0 such that for every
𝑥 ∈ ℝ𝑑, if

𝐾 ≥ 𝐶 log(𝑑𝜅(1 + ‖𝑥‖∞)
𝜀

) and 𝛿 ≤ 𝐶′
√

𝜀√
𝛽𝑑1/4 ,

then
‖�̂�𝐾

𝑥 − 𝜋‖TV ≤ 𝜀

where 𝜋(𝑥) ∝ exp(−1
2𝑥⊤𝐵𝑥) and �̂� is the kernel of the unadjusted leapfrog HMC chain with

step size 𝛿. A sample from �̂�𝐾
𝑥 can be obtained using 𝑂(

√
𝜅𝑑1/4
√

𝜀 log(𝑑𝜅
𝜀)) gradient evaluations.

Proof. By our discussion of the leapfrog integrator in Section 4.2.4, we know that �̂� corresponds
to the idealized HMC algorithm for the modified Hamiltonian ℋ̂. Here we assume 𝛿2𝜔2

𝑖 ≤ 4 for
all 𝑖 ∈ [𝑑], i.e., 𝛿 ≤ 1√

𝛽 . It thus follows from Theorem 4.4 that if we start from 0 ∈ ℝ𝑑 and take
𝐾 = 𝑂(log(𝑑𝜅/𝜀)) steps of the chain �̂�, then it returns a distribution that is 𝜀/2-close to the
modified stationary ̂𝜋 defined as

̂𝜋(𝑥) ∝ exp(−1
2

𝑥⊤�̂�𝑥).

4.4. METROPOLIS-ADJUSTED HMC 65

Using that ̂𝜋 and 𝜋 are both multivariate Gaussians, one can show (see Lemma 4.20 for completeness)

‖𝜋 − ̂𝜋‖TV ≤ 3
8

𝛿2√∑
𝑖

𝜔4
𝑖 ≤ 3

8
𝛿2𝛽

√
𝑑.

Hence by choosing a sufficiently small stepsize 𝛿 ∈ 𝑂(
√

𝜀/(
√

𝛽𝑑1/4)), we have that ‖ ̂𝜋 − 𝜋‖TV ≤ 𝜀/2.
Together this shows that the resulting distribution after 𝐾 = 𝑂(log(𝑑𝜅/𝜀)) steps will be 𝜀-close to
𝜋.

It remains to bound the complexity of the algorithm. A single leapfrog step requires 2 gradient
evaluations, and so a single step of the Markov chain �̂� requires 𝑡/𝛿 ∈ 𝑂(

√
𝜅𝑑1/4/

√
𝜀) gradient

evaluations. Applying 𝑂(log(𝑑𝜅/𝜀)) steps of the Markov chain yields a total number of gradient
evaluations

𝑂 (
√

𝜅𝑑1/4
√

𝜀
log(𝑑𝜅

𝜀
)) .

4.4 Metropolis-Adjusted HMC

Here we study the Metropolis-adjusted HMC algorithm. The algorithm applies a Metropolis filter
to correct for the numerical errors of the integrator. This ensures that the algorithm has the correct
stationary distribution, and leads to an overall improved error dependence.

Algorithme 4 : Markov kernel 𝑄 (Adjusted leapfrog HMC with random integration
time)

Input : 𝑥 ∈ ℝ𝑑, stepsize 𝛿 ∈ 𝑂(1/(
√

𝛽𝑑1/4)), 𝒯 ∶= {𝑘 ⋅ 𝛿 ∣ 𝑘 ∈ ℕ, 𝑘 ⋅ 𝛿 < 10𝜋/
√

𝛼}
Output : 𝑥′ ∈ ℝ𝑑

1 Draw 𝑣 ∼ 𝒩(0, 𝐼𝑑) and move from 𝑥 to (𝑥, 𝑣) ;
2 Draw 𝑡 ∼ 𝑈(𝒯) and set (𝑥′, 𝑣′) = leapfrog(𝑥, 𝑣, 𝑡, 𝛿) ;
3 Accept with probability

min{1, exp (− ℋ(𝑥′, −𝑣′) + ℋ(𝑥, 𝑣))}

and return 𝑥′. Otherwise return 𝑥′ = 𝑥;

We make a few observations about the adjusted HMC algorithm.

Lemma 4.6. The Markov kernel 𝑄 defined in Algorithm 4 has the following properties:

1. Kernel 𝑄 is reversible with respect to its stationary distribution 𝜋(𝑥) ∝ exp(−1
2𝑥⊤𝐵𝑥).

2. The acceptance probability in Line 3 is a function of only 𝑥 and 𝑥′:

min{1, exp (−ℋ(𝑥′, −𝑣′)+ℋ(𝑥, 𝑣))} = min{1, exp(𝛿2

8
∑
𝑖∈[𝑑]

𝜔4
𝑖 (𝑥2

𝑖 −𝑥′
𝑖
2))} ≕ 𝐴(𝑥, 𝑥′),

and we can rewrite 𝑄𝑥(𝑥′) = �̂�𝑥(𝑥′)𝐴(𝑥, 𝑥′) for 𝑥 ≠ 𝑥′.

Proof of Lemma 4.6, part 1. This fact is well known for fixed integration times. Here we prove that
it also holds for randomized integration times.

We prove first that 𝑄 leaves the distribution 𝜋(𝑥) ∝ exp(−𝑥⊤𝐵𝑥/2) invariant. To this end, we
look at the larger phase space. Starting from 𝑥 ∼ 𝜋, the state (𝑥, 𝑣) in step 2 is distributed according

66 CHAPTER 4. GAUSSIAN SAMPLING

to the distribution
̃𝜋(𝑥, 𝑣) ∝ exp(−𝑥⊤𝐵𝑥/2 − 𝑣⊤𝑣/2) = exp(−ℋ(𝑥, 𝑣)).

It remains to prove that steps 2. and 3. leave ̃𝜋 invariant. Let 𝑇 denote the kernel of the proposal
generated in step 2. (i.e., proposal (𝑥′, −𝑣′) has density 𝑇 ((𝑥, 𝑣), (𝑥′, 𝑣′))). First we note that 𝑇 is
symmetric, i.e., 𝑇 ((𝑥, 𝑣), (𝑥′, 𝑣′)) = 𝑇 ((𝑥′, 𝑣′), (𝑥, 𝑣)). To see this, recall that leapfrog integration
is reversible in the sense that leapfrog(𝑥, 𝑣, 𝑡/𝛿, 𝛿) = (𝑥′, 𝑣′) implies that leapfrog(𝑥′, −𝑣′, 𝑡/𝛿, 𝛿) =
(𝑥, −𝑣), and hence

𝑇 ((𝑥, 𝑣), (𝑥′, 𝑣′)) = 1
|𝑈(𝒯)|

∑
𝑡∈𝑈(𝒯)

𝟙 {leapfrog(𝑥, 𝑣, 𝑡) = (𝑥′, −𝑣′)}

= 1
|𝑈(𝒯)|

∑
𝑡∈𝑈(𝒯)

𝟙 {leapfrog(𝑥′, 𝑣′, 𝑡) = (𝑥, −𝑣)} = 𝑇 ((𝑥′, 𝑣′), (𝑥, 𝑣)).

Then, note that step 3. effectively implements a Metropolis filter w.r.t. distribution ̃𝜋, which has
acceptance probability

𝐴((𝑥, 𝑣), (𝑥′, 𝑣′)) = min{1, ̃𝜋(𝑥′, 𝑣′)
̃𝜋(𝑥, 𝑣)

} = min{1, exp (− ℋ(𝑥′, −𝑣′) + ℋ(𝑥, 𝑣))}.

It is then a direct consequence that steps 2. and 3. leave ̃𝜋 invariant as well.
Next, we show that 𝑄 is in fact reversible with respect to 𝜋, i.e.,

𝜋(𝑥)𝑄(𝑥, 𝑥′) = 𝜋(𝑥′)𝑄(𝑥′, 𝑥), for all 𝑥, 𝑥′ ∈ ℝ𝑑.

To do this, we use the fact that for all 𝑥, 𝑣 ∈ ℝ𝑑, the density ̃𝜋(𝑥, 𝑣) factorizes as ̃𝜋(𝑥, 𝑣) = 𝜋(𝑥)𝜇(𝑣)
with 𝜇(𝑣) ∼ exp(−𝑣⊤𝑣/2) a standard Gaussian. Using this, we get that

𝜋(𝑥)𝑄(𝑥, 𝑥′) = 𝜋(𝑥) ∬
𝑣,𝑣′∈ℝ𝑑

𝑇 ((𝑥, 𝑣), (𝑥′, 𝑣′))𝐴((𝑥, 𝑣), (𝑥′, 𝑣′)) 𝜇(𝑣) d𝑣d𝑣′

= 𝜋(𝑥) ∬
𝑣,𝑣′∈ℝ𝑑

𝑇 ((𝑥, 𝑣), (𝑥′, 𝑣′))min{1, 𝜋(𝑥′)𝜇(𝑣′)
𝜋(𝑥)𝜇(𝑣)

} 𝜇(𝑣) d𝑣d𝑣′

= ∬
𝑣,𝑣′∈ℝ𝑑

𝑇 ((𝑥, 𝑣), (𝑥′, 𝑣′))min {𝜋(𝑥)𝜇(𝑣), 𝜋(𝑥′)𝜇(𝑣′)}d𝑣d𝑣′.

Since each term in the last expression is symmetric under the exchange of (𝑥, 𝑣) with (𝑥′, 𝑣′), we
conclude that it is equal to 𝜋(𝑥′)𝑄(𝑥, 𝑥′) for all 𝑥, 𝑥′, and conclude that the chain is reversible.

Proof of Lemma 4.6, part 2. First recall that (𝑥′, 𝑣′) = leapfrog(𝑥, 𝑣, 𝑡/𝛿, 𝛿). From Section 4.2.4 we
know that the leapfrog integrator preserves the modified Hamiltonian and therefore we have

ℋ̂(𝑥, 𝑣) = ℋ̂(𝑥′, 𝑣′) = ℋ̂(𝑥′, −𝑣′).

Moreover, by Equation (4.5) we have

ℋ(𝑥, 𝑣) − ℋ̂(𝑥, 𝑣) = 𝛿2

8
∑
𝑖∈[𝑑]

𝜔4
𝑖 𝑥2

𝑖

4.4. METROPOLIS-ADJUSTED HMC 67

for all 𝑥, 𝑣 ∈ ℝ𝑑. Combining these two identities we find that

ℋ(𝑥, 𝑣) − ℋ(𝑥′, −𝑣′) = ⎛⎜
⎝

ℋ̂(𝑥, 𝑣) + 𝛿2

8
∑
𝑖∈[𝑑]

𝜔4
𝑖 𝑥2

𝑖
⎞⎟
⎠

− ⎛⎜
⎝

ℋ̂(𝑥′, −𝑣′) + 𝛿2

8
∑
𝑖∈[𝑑]

𝜔4
𝑖 𝑥′

𝑖
2⎞⎟
⎠

= 𝛿2

8
∑
𝑖∈[𝑑]

𝜔4
𝑖 (𝑥2

𝑖 − 𝑥′
𝑖
2),

and hence the acceptance probability takes the form 𝐴(𝑥, 𝑥′) as claimed.
From this, it easily follows that 𝑄𝑥 takes the form 𝑄𝑥(𝑥′) = �̂�𝑥(𝑥′)𝐴(𝑥, 𝑥′) for 𝑥 ≠ 𝑥′:

𝑄𝑥(𝑥′) = ∬
𝑣,𝑣′∈ℝ𝑑

𝑇 ((𝑥, 𝑣), (𝑥′, 𝑣′))𝐴((𝑥, 𝑣), (𝑥′, 𝑣′)) 𝜇(𝑣) d𝑣d𝑣′

= 𝐴(𝑥, 𝑥′) ∬
𝑣,𝑣′∈ℝ𝑑

𝑇 ((𝑥, 𝑣), (𝑥′, 𝑣′)) 𝜇(𝑣) d𝑣d𝑣′ = 𝐴(𝑥, 𝑥′)�̂�𝑥(𝑥′).

4.4.1 Concentration bounds on high-dimensional Gaussian random variables

Here we use concentration bounds on high-dimensional Gaussians to show that ∑𝑖∈[𝑑] 𝜔4
𝑖 𝑥2

𝑖 is, with
high probability, close to ∑𝑖∈[𝑑] 𝜔2

𝑖 both for 𝑥 ∼ 𝜋 and 𝑥 ∼ ̂𝜋. We moreover show that in that case
𝜋(𝑥) and ̂𝜋(𝑥) differ by at most a small multiplicative factor.

We will use the following version of the Hanson-Wright inequality [HW71] which gives a
concentration inequality for quadratic forms of independent Gaussian random variables.

Theorem 4.7 (Hanson-Wright inequality [Ver18, Thrm 6.2.1]). Let 𝑋 = (𝑋1, … , 𝑋𝑑) ∈ ℝ𝑑 be
a random vector with independent 𝒩(0, 1) coordinates. Let 𝐴 be a 𝑑 × 𝑑 matrix. Then, for
every 𝑡 ≥ 0, we have

ℙ[|𝑋⊤𝐴𝑋 − 𝔼[𝑋⊤𝐴𝑋]| ≥ 𝑡] ≤ 2 exp(−𝐶min{ 𝑡2

𝐾4‖𝐴‖2
𝐹

, 𝑡
𝐾2‖𝐴‖

}) ,

where 𝐾, 𝐶 > 0 are constants.a

aThe theorem holds more generally for independent mean zero sub-gaussian variables 𝑋𝑖. The constant 𝐾
then upper bounds the sub-gaussian norm of all 𝑋𝑖.

Note that if 𝑋 ∈ ℝ𝑑 is a random vector with independent 𝒩(0, 1) coordinates, then so is 𝑌 = 𝑈𝑋
for a rotation matrix 𝑈. This rotation-invariance allows us to again assume, for ease of notation, that
𝐵 = diag(𝝎). For convenience, recall that 𝜋(𝑥) = ∏𝑖 𝜔𝑖

(2𝜋)𝑑/2 exp (−1
2 ∑𝑖 𝑥2

𝑖 𝜔2
𝑖), and (cf. Equation (4.4))

that ̂𝜋 is constructed similarly using �̂� which is defined, for each 𝑖 ∈ [𝑑], as �̂�𝑖 = 𝜔𝑖√1 − 𝛿2𝜔2
𝑖

4 . We
have 𝜔2

𝑖 − �̂�2
𝑖 = 1

4𝛿2𝜔4
𝑖 . For 𝛾 ≥ 1, we define the measurable set

𝐸𝛾 ∶=
⎧{
⎨{⎩

𝑥 ∈ ℝ𝑑 ∣ ∣𝑥⊤ diag(𝝎)4𝑥 − ∑
𝑖

𝜔2
𝑖 ∣ ≤ 𝛾√∑

𝑖∈[𝑑]
𝜔4

𝑖

⎫}
⎬}⎭

. (4.10)

The Hanson-Wright inequality gives us the following concentration of measure for 𝜋 and ̂𝜋.

68 CHAPTER 4. GAUSSIAN SAMPLING

Lemma 4.8. Let 𝛾 ≥ 1 and consider 𝐸𝛾 as in Equation (4.10) then we have the following:

1. Let 𝜋(𝑥) ∝ exp(−1
2𝑥⊤ diag(𝝎)2𝑥), then 𝜋(𝐸𝛾) ≥ 1 − 2 exp (− 𝐶𝛾) where 𝐶 > 0 is a

constant.

2. If 0 < 𝛿 ≤ 𝛽−1/2𝑑−1/4, then for ̂𝜋(𝑥) ∝ exp(−1
2𝑥⊤ diag(�̂�)2𝑥) we have ̂𝜋(𝐸𝛾) ≥ 1 −

2 exp(−𝐶′𝛾) where 𝐶′ > 0 is a constant.

Proof. We first prove the concentration of measure for 𝜋. We have

𝜋(𝐸𝛾) = ℙ𝑥∼𝜋
⎡
⎢
⎣

∣𝑥⊤ diag(𝝎)4𝑥 − ∑
𝑖

𝜔2
𝑖 ∣ ≤ 𝛾√∑

𝑖∈[𝑑]
𝜔4

𝑖
⎤
⎥
⎦

= ℙ𝑧∼𝒩(0,𝐼𝑑)
⎡
⎢
⎣

∣𝑧⊤ diag(𝝎)2𝑧 − ∑
𝑖

𝜔2
𝑖 ∣ ≤ 𝛾√∑

𝑖∈[𝑑]
𝜔4

𝑖
⎤
⎥
⎦

where we set 𝑧𝑖 = 𝜔𝑖𝑥𝑖 for each 𝑖 ∈ [𝑑] and observe that 𝑧𝑖 ∼ 𝒩(0, 1). We apply Theorem 4.7 to the
vector 𝑧, matrix 𝐴 = diag(𝝎)2, 𝑡 = 𝛾‖𝐴‖𝐹, and note that ‖𝐴‖𝐹 ≥‖𝐴‖ implies the lower bound

min
⎧{
⎨{⎩

(𝛾‖𝐴‖𝐹)2

𝐾4‖𝐴‖2
𝐹

,
𝛾‖𝐴‖𝐹
𝐾2‖𝐴‖

⎫}
⎬}⎭

≥ min{ 𝛾2

𝐾4 , 𝛾
𝐾2 } ≥ 𝛾min{𝐾−2, 𝐾−4}.

Therefore, for 𝐶 ≤ min{𝐾−2, 𝐾−4} we obtain the desired bound for 𝜋.
We now use the same proof strategy to show concentration for ̂𝜋. We have

̂𝜋(𝐸𝛾) = ℙ𝑥∼�̂�
⎡
⎢
⎣

∣𝑥⊤ diag(𝝎)4𝑥 − ∑
𝑖

𝜔2
𝑖 ∣ ≤ 𝛾√∑

𝑖∈[𝑑]
𝜔4

𝑖
⎤
⎥
⎦

= ℙ𝑧∼𝒩(0,𝐼𝑑)
⎡
⎢
⎣

∣𝑧⊤ diag(𝝎)4 diag(�̂�)−2𝑧 − ∑
𝑖

𝜔2
𝑖 ∣ ≤ 𝛾√∑

𝑖∈[𝑑]
𝜔4

𝑖
⎤
⎥
⎦

≥ ℙ𝑧∼𝒩(0,𝐼𝑑)
⎡
⎢
⎣

∣𝑧⊤ diag(𝝎)4 diag(�̂�)−2𝑧 − ∑
𝑖

𝜔4
𝑖 /�̂�2

𝑖 ∣ ≤ 𝛾√∑
𝑖∈[𝑑]

𝜔4
𝑖 − | ∑

𝑖
𝜔2

𝑖 − 𝜔4
𝑖 /�̂�2

𝑖 |⎤⎥
⎦

By definition 𝜔4
𝑖 /�̂�2

𝑖 = 𝜔2
𝑖 /(1 − 𝛿2𝜔2

𝑖 /4), and the upper bound on 𝛿 implies that 𝛿2𝜔2
𝑖 ≤ 2. Using

this bound, we get

∣∑
𝑖

𝜔2
𝑖 − 𝜔4

𝑖 /�̂�2
𝑖 ∣ = ∑

𝑖
𝜔2

𝑖 (1 − 1
1 − 𝛿2𝜔2

𝑖 /4
) ≤ ∑

𝑖
𝜔2

𝑖 (1 − 1 + 𝛿2𝜔2
𝑖 /2)

= 1
2

∑
𝑖

𝛿2𝜔4
𝑖 ≤ 1

2
√

𝑑
∑

𝑖
𝜔2

𝑖 ≤ 1
2√∑

𝑖
𝜔4

𝑖 .

Again, using the fact that 𝜔4
𝑖 /�̂�2

𝑖 ≤ 2𝜔2
𝑖 , we can further lower bound ̂𝜋(𝐸𝛾) as follows:

̂𝜋(𝐸𝛾) ≥ ℙ𝑧∼𝒩(0,𝐼𝑑)
⎡
⎢
⎣

∣𝑧⊤ diag(𝝎)4 diag(�̂�)−2𝑧 − ∑
𝑖

𝜔4
𝑖 /�̂�2

𝑖 ∣ ≤ 𝛾
4√∑

𝑖∈[𝑑]
(𝜔4

𝑖 /�̂�2
𝑖)2⎤

⎥
⎦

.

We can then again apply Theorem 4.7 to obtain ̂𝜋(𝐸𝛾) ≥ 1 − 2 exp(−𝐶′𝛾) for a suitable constant
𝐶′ > 0.

4.4. METROPOLIS-ADJUSTED HMC 69

Next we give a bound on ̂𝜋(𝑥)/𝜋(𝑥) for all 𝑥 ∈ 𝐸𝛾, which we will use later to show that ̂𝜋 can
be used as a warm start for 𝜋.

Lemma 4.9. Let 𝜋(𝑥) ∝ exp(−1
2𝑥⊤ diag(𝝎)2𝑥), let 𝛾 ≥ 1 and consider 𝐸𝛾 as in Equa-

tion (4.10). Let 𝛿 = 1
10√𝛾𝛽𝑑1/4 , set �̂�𝑖 = 𝜔𝑖√1 − 𝛿2𝜔2

𝑖
4 for each 𝑖 ∈ [𝑑], and let ̂𝜋(𝑥) ∝

exp(−1
2𝑥⊤ diag(�̂�)2𝑥). Then for all 𝑥 ∈ 𝐸𝛾 we have

0.9 ≤ ̂𝜋(𝑥)
𝜋(𝑥)

≤ 1.1.

Proof. For 𝑥 ∈ ℝ𝑑 we have

̂𝜋(𝑥)
𝜋(𝑥)

= (∏
𝑖

(1 − 𝛿2𝜔2
𝑖

4
))

1/2

exp(𝛿2

8
∑

𝑖
𝑥2

𝑖 𝜔4
𝑖) .

We first obtain an upper bound on �̂�(𝑥)
𝜋(𝑥) for 𝑥 ∈ 𝐸𝛾. Using the inequality 1 − 𝑧 ≤ exp(−𝑧) (which

holds for all 𝑧 ∈ ℝ), we obtain

̂𝜋(𝑥)
𝜋(𝑥)

≤ exp⎛⎜
⎝

𝛿2

8
(∑

𝑖
𝑥2

𝑖 𝜔4
𝑖 − 𝜔2

𝑖)⎞⎟
⎠

≤ exp⎛⎜⎜
⎝

1
8

𝛿2𝛾√∑
𝑖∈[𝑑]

𝜔4
𝑖
⎞⎟⎟
⎠

≤ exp(1
800

) ≤ 1.1

where in the second inequality we use that 𝑥 ∈ 𝐸𝛾.
We can similarly bound �̂�(𝑥)

𝜋(𝑥) from below for 𝑥 ∈ 𝐸𝛾. For this we use the inequality 1 − 𝑧 ≥
exp(−𝜂𝑧) which holds for 0 ≤ 𝑧 < 1 and 𝜂 ≥ 1

𝑧 ln(1
1−𝑧). For 𝑧 ≤ 1/2 one has 1

𝑧 ln(1
1−𝑧) ≤ 1 + 𝑧 and

thus 𝜂 = 1 + 𝑧 suffices. We apply this with 𝑧 = 𝛿2𝜔2
𝑖

4 ≤ 1
400𝛾

√
𝑑 < 1/2. This allows us to lower bound

�̂�(𝑥)
𝜋(𝑥) as

̂𝜋(𝑥)
𝜋(𝑥)

≥ exp⎛⎜
⎝

−1
2

(1 + 1
400𝛾

√
𝑑

) 𝛿2

4
∑

𝑖
𝜔2

𝑖
⎞⎟
⎠

exp(𝛿2

8
∑

𝑖
𝑥2

𝑖 𝜔4
𝑖)

≥ exp⎛⎜
⎝

−1
2

1
400𝛾

√
𝑑

𝛿2

4
∑

𝑖
𝜔2

𝑖 − 𝛿2

8
∣∑

𝑖
𝑥2

𝑖 𝜔4
𝑖 − ∑

𝑖
𝜔2

𝑖 ∣⎞⎟
⎠

≥ exp(− 1
3200 ⋅ 100𝛾2𝑑𝛽

∑
𝑖

𝜔2
𝑖 − 1

800
) ≥ exp(− 1

400
) ≥ 0.9

where in the third inequality we use that 𝛿2 = 1
100𝛾𝛽

√
𝑑 and 𝑥 ∈ 𝐸𝛾.

Finally, we note that the acceptance probability is large on 𝐸𝛾.

Lemma 4.10. Let 𝐴(𝑥, 𝑥′) be the acceptance probability of the adjusted leapfrog HMC with
step size 𝛿. If 𝑥, 𝑥′ ∈ 𝐸𝛾 then 𝐴(𝑥, 𝑥′) ≥ exp(− 𝛿2𝛾

4 𝑑1/2𝛽).

Proof. If both 𝑥, 𝑥′ ∈ 𝐸𝛾 then we have that ∑𝑖∈[𝑑] 𝜔4
𝑖 (𝑥2

𝑖 − 𝑥′
𝑖
2) ≤ 2𝛾√∑𝑖 𝜔4

𝑖 ≤ 2𝛾𝑑1/2𝛽.

Lemmas 4.9 and 4.10 tell us that the stepsize 𝛿 should scale with 𝛾, 𝑑 and 𝛽 as

𝛿 = 1
10√𝛾𝛽𝑑1/4

. (4.11)

70 CHAPTER 4. GAUSSIAN SAMPLING

This choice of 𝛿 ensures a high acceptance probability whenever 𝑥, 𝑥′ ∈ 𝐸𝛾 and a pointwise bound
on the ratio ̂𝜋(𝑥)/𝜋(𝑥) for 𝑥 ∈ 𝐸𝛾. In the next section we tune the choice of 𝛾 ≥ 1 to apply an
argument based on the 𝑠-conductance.

4.4.2 𝑠-conductance and warm start

We will bound the mixing time of the Metropolis-adjusted chain using the so-called 𝑠-conductance.
This is a generalization of the conductance that allows to ignore small subsets of measure 𝜋(𝑆) ≤ 𝑠.

Definition 4.11 (𝑠-conductance). Let 0 < 𝑠 < 1/2 and define the 𝑠-conductance 𝐶𝑠 of a
Markov chain with transition kernel 𝑇 and stationary distribution 𝜋 as

𝐶𝑠 ≔ inf{𝐶𝑠(𝑆) ∣ 𝑆 ⊆ ℝ𝑑 measurable, 𝑠 < 𝜋(𝑆) ≤ 1
2

} , with 𝐶𝑠(𝑆) ≔
∫
𝑆

𝑇 (𝑥, 𝑆𝑐)𝜋(d𝑥)
𝜋(𝑆) − 𝑠

.

The 𝑠-conductance leads to a mixing time bound through the following theorem from Lovász and
Simonovits (the formulation below is from [WSC21, Lem. 1]). It uses a warmness parameter 𝐷𝜇0,𝜋

𝑠
between the initial distribution 𝜇0 and target distribution 𝜋, which for 0 < 𝑠 < 1/2 is defined by

𝐷𝜇0,𝜋
𝑠 ≔ sup{|𝜇0(𝐴) − 𝜋(𝐴)| ∶ 𝐴 ⊆ ℝ𝑑 measurable, 𝜋(𝐴) ≤ 𝑠}.

Lemma 4.12. Consider a reversible, lazya Markov chain with transition kernel 𝑅, stationary
distribution 𝜋 and initial distribution 𝜇0. Then for any 𝐾 ≥ 0 it holds that

‖𝑅𝐾
𝜇0

− 𝜋‖TV ≤ 𝐷𝜇0,𝜋
𝑠 + 𝐷𝜇0,𝜋

𝑠

𝑠
(1 − 𝐶2

𝑠
2

)
𝐾

.

aA lazy chain takes a step with probability 1/2, and otherwise does nothing.

Using Lemma 4.9 we can prove that the stationary distribution ̂𝜋 of the unadjusted chain �̂� for
sufficiently small step size forms a warm start, if we take 𝛾 ∈ Θ(log(1/𝑠)).

Lemma 4.13 (Unadjusted warm start). Let 𝜋(𝑥) ∝ 𝑒− 1
2 𝑥⊤ diag(𝝎)2𝑥 and let ̂𝜋(𝑥) ∝ 𝑒− 1

2 𝑥⊤ diag(�̂�)2𝑥

with �̂�𝑖 = 𝜔𝑖√1 − 𝛿2𝜔2
𝑖

4 . For any 0 < 𝑠 < 1/2, if 𝛿 ≤ 𝐶
√𝛽 log(1/𝑠)𝑑1/4 for a sufficiently small

constant 𝐶 > 0, then
𝐷�̂�,𝜋

𝑠 ≤ 3𝑠.

Proof. Consider the set 𝐸𝛾 defined in (4.10) for a sufficiently large 𝛾 ∈ 𝑂(log(1/𝑠)). Then by
Lemmas 4.8 and 4.9 both 𝜋(𝐸𝛾) ≥ 1 − 𝑠 and ̂𝜋(𝐸𝛾) ≥ 1 − 𝑠, and ̂𝜋(𝑥)/𝜋(𝑥) ≤ 1.1 for all 𝑥 ∈ 𝐸𝛾.
Now let 𝐴 ⊆ ℝ𝑑 with 𝜋(𝐴) ≤ 𝑠. Then we have

| ̂𝜋(𝐴) − 𝜋(𝐴)| = | ̂𝜋(𝐴 ∩ 𝐸𝛾) + ̂𝜋(𝐴 ∩ 𝐸𝑐
𝛾) − 𝜋(𝐴 ∩ 𝐸𝛾) − 𝜋(𝐴 ∩ 𝐸𝑐

𝛾)|
≤ | ̂𝜋(𝐴 ∩ 𝐸𝛾) − 𝜋(𝐴 ∩ 𝐸𝛾)| + ̂𝜋(𝐴 ∩ 𝐸𝑐

𝛾) + 𝜋(𝐴 ∩ 𝐸𝑐
𝛾)

≤ 𝜋(𝐴 ∩ 𝐸𝛾) + ̂𝜋(𝐴 ∩ 𝐸𝑐
𝛾) + 𝜋(𝐴 ∩ 𝐸𝑐

𝛾)
≤ 𝜋(𝐴) + 𝑠 + 𝑠 ≤ 3𝑠.

Here in the second inequality we use that | ̂𝜋(𝑥) − 𝜋(𝑥)| ≤ 𝜋(𝑥) for all 𝑥 ∈ 𝐸𝛾.

4.4. METROPOLIS-ADJUSTED HMC 71

4.4.3 Bounding the 𝑠-conductance of the adjusted HMC chain

To bound the 𝑠-conductance of the adjusted chain, we first bound the 𝑠-conductance of the unadjusted
HMC chain �̂�, and then relate both conductances. For the unadjusted chain, we can use our bounds
on the mixing time of that chain to lower bound its conductance.

Lemma 4.14 (𝑠-conductance unadjusted HMC). Let 0 < 𝑠 < 1/2 and let ̂𝐶𝑠 be the 𝑠-
conductance of the unadjusted HMC chain �̂� with step size 𝛿 ≤ 𝐶

√𝛽 log(1/𝑠)𝑑1/4 for a sufficiently
small constant 𝐶 > 0. Then

̂𝐶𝑠 ∈ Ω(1/ log(𝑑𝜅 log(1/𝑠))).

Proof. First consider the 𝑠-conductance ̂𝐶(𝐾)
𝑠 of the 𝐾-step kernel �̂�𝐾. From Proposition 4.5 we

know that ‖�̂�𝐾
𝑥 − ̂𝜋‖TV ≤ 1/10 for 𝐾 ∈ Ω(log(𝑑𝜅(1 + ‖𝑥‖∞))). In particular, if 𝑥 ∈ 𝐸𝛾 with 𝛾 ≥ 1

then ‖𝑥‖∞ ≤ (𝛾 + 1)𝑑𝜅 and hence ‖�̂�𝐾
𝑥 − ̂𝜋‖TV ≤ 1/10 for all 𝑥 ∈ 𝐸𝛾 and 𝐾 ∈ Ω(log(𝛾𝑑𝜅)). By

Lemma 4.8 we can ensure ̂𝜋(𝐸𝛾) ≥ 1 − 𝑠 by picking 𝛾 ∈ 𝑂(log(1/𝑠)) (recall that 𝛿 = 1
10√𝛾𝛽𝑑1/4),

in which case 𝐾 ∈ 𝑂(log(𝑑𝜅 log(1/𝑠))). As a consequence, for any 𝑆 for which 𝑠 < ̂𝜋(𝑆) ≤ 1/2 we
have that

̂𝐶(𝐾)
𝑠 (𝑆) =

∫
𝑆

̂𝜋(𝑥)�̂�𝐾
𝑥 (𝑆𝑐)

̂𝜋(𝑆) − 𝑠
≥

∫
𝑆∩𝐸𝛾

̂𝜋(𝑥)�̂�𝐾
𝑥 (𝑆𝑐)

̂𝜋(𝑆) − 𝑠

≥
̂𝜋(𝑆 ∩ 𝐸𝛾)(̂𝜋(𝑆𝑐) − 1/10)

̂𝜋(𝑆) − 𝑠
≥ ̂𝜋(𝑆𝑐) − 1

10
≥ 2

5
,

and hence ̂𝐶(𝐾)
𝑠 ≥ 2/5.

Now we can use the fact that ̂𝐶(𝐾)
𝑠 ≤ 𝐾 ̂𝐶(1)

𝑠 = 𝐾 ̂𝐶𝑠 to conclude that ̂𝐶𝑠 ≥ 2/(5𝐾), which is
Ω(1/ log(𝑑𝜅 log(1/𝑠))) as claimed. To see that ̂𝐶(𝐾)

𝑠 ≤ 𝐾 ̂𝐶(1)
𝑠 (which is well-known, see e.g. [Lev+17,

Eq. (7.10)]), define ̂𝜋𝑆 by ̂𝜋𝑆(𝑥) = ̂𝜋(𝑥) for 𝑥 ∈ 𝑆 and ̂𝜋𝑆(𝑥) = 0 elsewhere. Then note that
̂𝐶(𝐾)
𝑠 (𝑆) = ‖𝑄𝐾

�̂�𝑆
− ̂𝜋𝑆‖TV/(̂𝜋(𝑆) − 𝑠). Using a telescoping sum and a triangle inequality we can

bound

‖𝑄𝐾
�̂�𝑆

− ̂𝜋𝑆‖TV ≤ ‖𝑄𝐾
�̂�𝑆

− 𝑄𝐾−1
�̂�𝑆

‖TV + ‖𝑄𝐾−1
�̂�𝑆

− 𝑄𝐾−2
�̂�𝑆

‖TV + ⋯ + ‖𝑄�̂�𝑆
− ̂𝜋𝑆‖TV

≤ 𝐾‖𝑄�̂�𝑆
− ̂𝜋𝑆‖TV,

where the second inequality follows from submultiplicativity of the total variation distance. Dividing
both sides by (̂𝜋(𝑆) − 𝑠) and taking the infimum over 𝑆 proves that ̂𝐶(𝐾)

𝑠 ≤ 𝐾 ̂𝐶(1)
𝑠 .

To relate the 𝑠-conductance of the adjusted chain to the one of the unadjusted chain, we use the
properties of 𝜋 and ̂𝜋 shown in Section 4.4.1: there is a set 𝐸 ⊆ ℝ𝑑 of large measure on which 𝜋 and

̂𝜋 pointwise differ by at most a small multiplicative constant. Moreover, if both 𝑥 ∈ 𝐸 and 𝑥′ ∈ 𝐸,
then the acceptance probability of the adjusted chain satisfies 𝐴(𝑥, 𝑥′) ≥ 99/100.

Lemma 4.15 (𝑠-conductance adjusted HMC). Let 0 < 𝑠 < 𝐶/ log(𝑑𝜅) for a sufficiently small
constant 𝐶 > 0, and let 𝐶𝑠 and ̂𝐶𝑠/2 be the 𝑠-conductance and the 𝑠/2-conductance of the
adjusted and unadjusted chains 𝑄 and �̂� with step size 𝛿 ≤ 𝐶′

√𝛽 log(1/𝑠)𝑑1/4 for a sufficiently small
constant 𝐶′ > 0. Then

𝐶𝑠 ≥ ̂𝐶𝑠/2/2.

72 CHAPTER 4. GAUSSIAN SAMPLING

Proof. Our goal is to lower bound 1
𝜋(𝑆)−𝑠 ∫

𝑆
𝜋(𝑥)𝑄(𝑥, 𝑆𝑐)d𝑥 for all sets 𝑆 such that 𝑠 < 𝜋(𝑆) ≤ 1

2 .
To this end, we will use that by Lemmas 4.8, 4.8, 4.9 and 4.10 the set 𝐸 ≔ 𝐸𝛾 ⊂ ℝ𝑑 (defined in
Equation (4.10)) for a suitable 𝛾 ∈ Θ(log(1/𝑠)) and 𝛿 = 1

10√𝛾𝛽𝑑1/4 (as in Equation (4.11)) satisfies

1. 𝜋(𝐸𝑐) ≤ 𝑠/10,

2. ̂𝜋(𝐸𝑐) ≤ 𝑠2/10,

3. 0.9 ≤ �̂�(𝑥)
𝜋(𝑥) ≤ 1.1 for all 𝑥 ∈ 𝐸,

4. the acceptance probability 𝐴(𝑥, 𝑥′) ≥ 99/100 for all 𝑥, 𝑦 ∈ 𝐸.

Note that in Lemma 4.14 we have shown that ̂𝐶𝑠/2 ∈ Ω(1/ log(𝑑𝜅 log(1/𝑠))). Therefore, for
𝑠 < 𝐶/ log(𝑑𝜅) for a small enough constant 𝐶 > 0, we have 𝑠 ≤ ̂𝐶𝑠/2 and thus ̂𝜋(𝐸𝑐) ≤ 𝑠 ̂𝐶𝑠/2/10.

We can use this to lower bound the integral

∫
𝑆

𝜋(𝑥)𝑄(𝑥, 𝑆𝑐)d𝑥 ≥ ∫
𝑆∩𝐸

𝜋(𝑥)𝑄(𝑥, 𝑆𝑐 ∩ 𝐸) d𝑥

= ∫
𝑆∩𝐸

𝜋(𝑥) ∫
𝑆𝑐∩𝐸

𝑄(𝑥, 𝑦) d𝑦d𝑥

= ∫
𝑆∩𝐸

𝜋(𝑥) ∫
𝑆𝑐∩𝐸

�̂�(𝑥, 𝑦)𝐴(𝑥, 𝑦) d𝑦d𝑥

≥ 0.85 ∫
𝑆∩𝐸

̂𝜋(𝑥) ∫
𝑆𝑐∩𝐸

�̂�(𝑥, 𝑦) d𝑦d𝑥

= 0.85 ∫
𝑆∩𝐸

̂𝜋(𝑥)�̂�(𝑥, 𝑆𝑐 ∩ 𝐸) d𝑥

= 0.85 (∫
𝑆∩𝐸

̂𝜋(𝑥)�̂�(𝑥, 𝑆𝑐 ∪ 𝐸𝑐)d𝑥 − ∫
𝑆∩𝐸

̂𝜋(𝑥)�̂�(𝑥, 𝐸𝑐)d𝑥)

≥ 0.85 (∫
𝑆∩𝐸

̂𝜋(𝑥)�̂�(𝑥, 𝑆𝑐 ∪ 𝐸𝑐)d𝑥 − ̂𝜋(𝐸𝑐)) ,

where the last inequality follows from detailed balance:

∫
𝑆∩𝐸

̂𝜋(𝑥)�̂�(𝑥, 𝐸𝑐)d𝑥 = ∫
𝐸𝑐

̂𝜋(𝑥)�̂�(𝑥, 𝑆 ∩ 𝐸)d𝑥 ≤ ̂𝜋(𝐸𝑐).

We recognize the last integral as the ergodic flow from the set 𝑆′ ∶= 𝑆 ∩ 𝐸 to its complement, and
so we can lower bound it in terms of the conductance of �̂�, provided that 𝑆′ has an appropriate
measure according to ̂𝜋. We bound ̂𝜋(𝑆′) from below

̂𝜋(𝑆′) ≥ 0.9𝜋(𝑆′) = 0.9(𝜋(𝑆) − 𝜋(𝑆 ∩ 𝐸𝑐)) ≥ 0.9𝑠 − 𝜋(𝐸𝑐) ≥ 0.8𝑠,

and from above:
̂𝜋(𝑆′) ≤ 1.1𝜋(𝑆′) ≤ 1.1𝜋(𝑆) ≤ 0.55.

We proceed in two different ways depending on the measure ̂𝜋(𝑆′).

4.4. METROPOLIS-ADJUSTED HMC 73

1. If 0.8𝑠 ≤ ̂𝜋(𝑆′) ≤ 1/2, we have the lower bound

𝐶𝑠 =
∫
𝑆

𝜋(𝑥)𝑄(𝑥, 𝑆𝑐)d𝑥
𝜋(𝑆) − 𝑠

≥ 0.85
̂𝐶𝑠/2(̂𝜋(𝑆′) − 𝑠/2) − ̂𝜋(𝐸𝑐)

𝜋(𝑆) − 𝑠

≥ 0.85
̂𝐶𝑠/2(̂𝜋(𝑆′) − 0.6𝑠)

𝜋(𝑆) − 𝑠

≥ 0.85
̂𝐶𝑠/2(0.9𝜋(𝑆′) − 0.6𝑠)

𝜋(𝑆) − 𝑠

≥ 0.85
̂𝐶𝑠/2(0.9𝜋(𝑆) − 𝜋(𝐸𝑐) − 0.6𝑠)

𝜋(𝑆) − 𝑠

≥ 0.85
̂𝐶𝑠/2(0.9𝜋(𝑆) − 0.7𝑠)

𝜋(𝑆) − 𝑠

≥ 0.85
̂𝐶𝑠/2(0.7𝜋(𝑆) − 0.7𝑠)

𝜋(𝑆) − 𝑠
≥

̂𝐶𝑠/2

2
.

2. If 1/2 ≤ ̂𝜋(𝑆′) ≤ 0.55, we have 𝑠 ≤ ̂𝜋(𝑆′𝑐) ≤ 1/2. Additionally, we know that �̂� satisfies
detailed balance:

∫
𝑆′

̂𝜋(𝑥)�̂�(𝑥, 𝑆′𝑐)d𝑥 = ∫
𝑆′𝑐

̂𝜋(𝑥)�̂�(𝑥, 𝑆′)d𝑥.

Therefore, we have the following lower bound

𝐶𝑠 =
∫
𝑆

𝜋(𝑥)𝑄(𝑥, 𝑆𝑐)d𝑥
𝜋(𝑆) − 𝑠

≥ 0.85
̂𝐶𝑠/2(̂𝜋(𝑆′𝑐) − 𝑠/2) − ̂𝜋(𝐸𝑐)

𝜋(𝑆𝑐) − 𝑠

≥ 0.85
̂𝐶𝑠/2(̂𝜋(𝑆′𝑐) − 0.6𝑠)

𝜋(𝑆𝑐) − 𝑠

= 0.85
̂𝐶𝑠/2(1 − ̂𝜋(𝑆′) − 0.6𝑠)

1 − 𝜋(𝑆) − 𝑠

≥ 0.85
̂𝐶𝑠/2(1 − 1.1𝜋(𝑆) − 0.6𝑠)

1 − 𝜋(𝑆) − 𝑠

≥ 0.85
̂𝐶𝑠/2(1 − 1.1𝜋(𝑆) − 0.6𝑠)

1 − 𝜋(𝑆) − 0.6𝑠
≥

̂𝐶𝑠/2

2
.

4.4.4 Mixing time of adjusted HMC

We can now plug our bounds on the 𝑠-conductance into Lemma 4.12 to get the following bound on
the mixing time of the (lazy) Metropolis-adjusted HMC chain,3 when starting from a warm start.

Theorem 4.16 (Metropolis-adjusted HMC with warm start). Let 0 < 𝜀 < 𝐶/ log(𝑑𝜅) for
a sufficiently small constant 𝐶 > 0, and let 𝜇0 be an initial distribution with warmness
𝐷𝜇0,𝜋

𝑠 ≤ 𝜀/2 for 𝑠 = 𝜀/6. There exist constants 𝐶′, 𝐶″ > 0 such that for every 𝑥 ∈ ℝ𝑑, if

𝐾 ≥ 𝐶′ log(𝑑𝜅 log(1/𝜀)) log(1/𝜀) and 𝛿 ≤ 𝐶″

√𝛽 log(1/𝜀)𝑑1/4
,

3Making the chain lazy reduces the 𝑠-conductance only by a factor 2.

74 CHAPTER 4. GAUSSIAN SAMPLING

then
‖𝑄𝐾

𝜇0
− 𝜋‖TV ≤ 𝜀

where 𝜋 ∝ exp(−𝑥⊤𝐵𝑥/2) and 𝑄 is the kernel of the (lazy) Metropolis-adjusted leapfrog HMC
chain with step size 𝛿.

Proof. For 𝑠 = 𝜀/6 and our choice of 𝛿 we know from Lemmas 4.15 and 4.14 that 𝑄 has 𝑠-conductance
𝐶𝑠 ∈ Ω(1/ log(𝑑𝜅 log(1/𝑠))). By invoking Lemma 4.12 we know that

‖𝑄𝐾
𝜇0

− 𝜋‖TV ≤ 𝐷𝑠 + 𝐷𝑠
𝑠

(1 − 𝐶2
𝑠

2
)

𝐾

≤ 𝜀
2

+ 3 (1 − 𝐶2
𝑠

2
)

𝐾

≤ 𝜀

for 𝐾 ∈ Ω(log(1/𝜀)/𝐶𝑠) and hence 𝐾 ∈ Ω(log(𝑑𝜅 log(1/𝜀)) log(1/𝜀)).

Hence, starting from a warm start 𝜇0 we can sample from a distribution 𝜀-close to 𝜋 in TV-
distance using 𝑂(

√
𝜅𝑑1/4 log(1/𝜀)) gradient evaluations. To get around this warm start, recall from

Lemma 4.13 that the stationary distribution of the unadjusted chain (with sufficiently small step
size 𝛿) provides a warm start for the adjusted chain. This gives the following, main theorem.

Theorem 4.17 (Metropolis-adjusted HMC). Let 0 < 𝜀 < 𝐶/ log(𝑑𝜅) for a sufficiently small
constant 𝐶 > 0. There exists constants 𝐶′

0, 𝐶′, 𝐶″ > 0 such that for every 𝑥 ∈ ℝ𝑑, if

𝐾 ≥ 𝐶′ log(𝑑𝜅 log(1/𝜀)) log(1/𝜀), 𝐾0 ≥ 𝐶′
0 log (𝑑𝜅(1 + ‖𝑥‖∞)/𝜀) , 𝛿 ≤ 𝐶″

√𝛽 log(1/𝑠)𝑑1/4
,

then
‖(𝑄𝐾 ∘ �̂�𝐾0)𝑥 − 𝜋‖TV ≤ 𝜀

where 𝜋 ∝ exp(−𝑥⊤𝐵𝑥/2) and 𝑄 (resp. �̂�) is the kernel of the (lazy) Metropolis-adjusted
(resp. unadjusted) leapfrog HMC chain with step size 𝛿. We can thus obtain a sample from a
distribution that is 𝜀-close to 𝜋 in TV-distance using 𝑂(

√
𝜅𝑑1/4 log(1/𝜀)) gradient evaluations.

Proof. From Lemma 4.13 we know that there exists a constant 𝐶″ > 0 such that if 𝛿 ≤ 𝐶″

√𝛽 log(1/𝑠)𝑑1/4 ,
then ̂𝜋 is such that 𝐷�̂�,𝜋

𝑠 ≤ 𝜀/4 for 𝑠 = 𝜀/12, i.e., ̂𝜋 is warm for 𝜋. Theorem 4.16 shows that there
exists a constant 𝐶′ > 0 such that for all 𝐾 ≥ 𝐶′ log(𝑑𝜅 log(1/𝜀)) log(1/𝜀) we have ‖𝑄𝐾

�̂� −𝜋‖TV ≤ 𝜀/2.
On the other hand, for the unadjusted chain, by Theorem 4.4, there exists a constant 𝐶′

0 > 0 such
that for all 𝑥 ∈ ℝ𝑑 and 𝐾0 ≥ 𝐶′

0 log(𝑑𝜅(1+‖𝑥‖∞)
𝜀) we have ‖�̂�𝐾0

𝑥 − ̂𝜋‖TV ≤ 𝜀/2. Combining these
two estimates we obtain for such 𝐾 and 𝐾0 that

‖(𝑄𝐾 ∘ �̂�𝐾0)𝑥 − 𝜋‖TV ≤ ‖(𝑄𝐾 ∘ �̂�𝐾0)𝑥 − 𝑄𝐾
�̂� ‖TV + ‖𝑄𝐾

�̂� − 𝜋‖TV

≤ ‖�̂�𝐾0
𝑥 − ̂𝜋‖TV + ‖𝑄𝐾

�̂� − 𝜋‖TV ≤ 𝜀,

where we used submultiplicativity (‖𝑄𝐾
𝜇 − 𝑄𝐾

𝜈 ‖TV ≤ ‖𝜇 − 𝜈‖TV) in the second inequality.

4.5 Conclusions and open questions
To conclude, we studied the Hamiltonian Monte Carlo algorithm for sampling from high-dimensional
Gaussian distributions, focusing on the dependency on both condition number 𝜅 and dimension 𝑑 of
the Gaussian. We showed that a HMC algorithm with the leapfrog integrator and long, randomized

4.6. OMITTED PROOFS 75

integration times can be used to sample from a distribution 𝜀-close to a Gaussian distribution by
making only 𝑂(

√
𝜅𝑑1/4 log(1/𝜀)) gradient queries. This scaling seems optimal for leapfrog HMC in

both the dimension and the condition number (by well-known scaling limits [Dua+87; Nea11]).
The

√
𝜅-dependency also improves over similar, preceding work on leapfrog HMC that achieved

at best a linear 𝜅-dependency [MV18; Che+20]. While these works typically consider more general
logconcave distributions, we feel that our work enhances the possibility of obtaining a similar√

𝜅-dependency for such distributions as well. This would disprove the Ω(𝜅) versus 𝑂(
√

𝜅) gap that
was suggested by Lee, Shen and Tian [LST20] between logconcave sampling and convex optimization,
respectively.

4.6 Omitted proofs

4.6.1 Cosine contracts on average

Lemma 4.1. Let 𝐭 ∈ 𝒯𝐾, 𝜔 > 0, 𝑥 ∈ ℝ, and consider

𝑧 = 𝑥 (
𝐾

∏
𝑘=1

cos(𝜔𝑡𝑘)) + 1
𝜔

𝐾
∑
𝑘=1

𝑣(𝑘) sin(𝜔𝑡𝑘) ⎛⎜
⎝

𝐾
∏

𝑗=𝑘+1
cos(𝜔𝑡𝑗)⎞⎟

⎠

where 𝑣(𝑘) ∼ 𝒩(0, 1) for each 𝑘 ∈ [𝐾]. Then 𝑧 ∼ 𝒩(𝑥 ∏𝐾
𝑘=1 cos(𝜔𝑡𝑘), 1

𝜔2 (1 − ∏𝐾
𝑘=1 cos(𝜔𝑡𝑗)2)).

Proof. It is clear that 𝔼[𝑧] = 𝑥 ∏𝐾
𝑘=1 cos(𝜔𝑡𝑘). The sum of Gaussian random variables is again

distributed according to a Gaussian whose variance is the sum of the individual variances. That is,

𝔼[(𝑧 − 𝔼[𝑧])2] = 1
𝜔2

𝐾
∑
𝑘=1

sin(𝜔𝑡𝑘)2 ⎛⎜
⎝

𝐾
∏

𝑗=𝑘+1
cos(𝜔𝑡𝑗)2⎞⎟

⎠

= 1
𝜔2

𝐾
∑
𝑘=1

(1 − cos(𝜔𝑡𝑘)2) ⎛⎜
⎝

𝐾
∏

𝑗=𝑘+1
cos(𝜔𝑡𝑗)2⎞⎟

⎠

=
1 − ∏𝐾

𝑗=1 cos(𝜔𝑡𝑗)2

𝜔2 .

Lemma 4.18. Let 0 <
√

𝛼 <
√

𝛽. There exists a universal constant 𝑐 > 0 such that for all
0 < 𝛿 ≤ 𝑐√

𝛽 and

𝒯𝛿 = {𝑘 ⋅ 𝛿 ∣ 𝑘 ∈ ℕ, 𝑘 ⋅ 𝛿 < 10𝜋√
𝛼

}

we have for all 𝜔 ∈ [
√

𝛼,
√

𝛽] that

ℙ𝑡∼𝑈(𝒯𝛿)[| cos(𝜔𝑡)| ≤ 0.9] ≥ 1/2.

Proof. Let 𝜔 be such that
√

𝛼 ≤ 𝜔 ≤
√

𝛽. Note that | cos(𝜔𝑡)| is periodic with period 𝜋
2𝜔 . We write

𝒯𝛿 as the disjoint union

𝒯𝛿 =
𝑁
⋃
𝑛=1

(𝒯𝛿 ∩ [(𝑛 − 1)𝜋
2𝜔

, 𝑛𝜋
2𝜔

])

76 CHAPTER 4. GAUSSIAN SAMPLING

where 𝑁 is the least integer such that 𝑁𝜋
2𝜔 > 10𝜋√

𝛼 , i.e., 𝑁 = ⌊20𝜔√
𝛼 ⌋. Note that 𝑁 ≥ 20. For 𝛿 ≤ 𝑐/

√
𝛽,

the first 𝑁 − 1 such intervals contain at least

⌊ 𝜋
2𝜔𝛿

⌋ ≥ ⌊𝜋
√

𝛽
2𝜔𝑐

⌋ ≥ ⌊ 𝜋
2𝑐

⌋

equally spaced points. For small enough 𝑐 > 0, Lemma 4.19 shows that for each of these 𝑁 − 1
intervals we have

ℙ𝑡∼𝑈(𝒯𝛿∩[(𝑛−1)𝜋
2𝜔 , 𝑛𝜋

2𝜔])[| cos(𝜔𝑡)| ≤ 0.9] ≥ 20
19

1
2

.

We thus have
ℙ𝑡∼𝑈(𝒯𝛿)[| cos(𝜔𝑡)| ≤ 0.9] ≥ 19

20
20
19

1
2

= 1
2

.

Lemma 4.19. Let 𝜁 > 𝜂 ≥ 0, and 𝒯 = {𝜂 + 𝑛𝜁 ∶ 𝑛 ∈ ℕ, 𝜂 + 𝑛𝜁 ≤ 𝜋/2} with |𝒯| ≥ 10. Then
for 𝑡 chosen uniformly from 𝒯 we have

ℙ𝑡∼𝑈(𝒯) {| cos(𝑡)| ≤ 0.9} ≥ 3/5.

Proof. Since 𝜁 ≤ ⌊ 𝜋
2(|𝒯|−1)⌋, we have

ℙ𝑡∼𝑈(𝒯) {| cos(𝑡)| ≤ 0.9} = ℙ𝑡∼𝑈(𝒯) {𝑡 ≥ arccos(0.9)}

≥ 1
|𝒯|

⌊𝜋/2 − arccos(0.9)
𝜁

⌋

≥ 1
|𝒯|

⌊(1 − 2 arccos(0.9)/𝜋) (|𝒯| − 1)⌋ .

The last quantity is at least 3/5 for |𝒯| ≥ 10.

4.6.2 Distances between Gaussian distributions

For multivariate mean-zero Gaussians we use the following bound that can be found in [DMR22]:

‖𝒩(0, Σ1) − 𝒩(0, Σ2)‖TV ≤ 3
2
min{1,∥Σ−1

1 Σ2 − 𝐼∥
𝐹

} . (4.12)

We use it to bound the distance between 𝜋 and ̂𝜋.

Lemma 4.20. Let 𝜋 and ̂𝜋 be two Gaussians that satisfy 𝜋(𝑥) ∝ exp(−𝑥⊤ diag(𝝎)𝑥/2) and
̂𝜋(𝑥) ∝ exp(−𝑥⊤ diag(�̂�)𝑥/2) with �̂�𝑖 = 𝜔𝑖√1 − 𝛿2𝜔2

𝑖
4 . Then

‖𝜋 − ̂𝜋‖TV ≤ 3
8

𝛿2√∑
𝑖

𝜔4
𝑖 ≤ 3

8
𝛿2𝛽

√
𝑑.

Proof. Applying the bound Equation (4.12) to Σ1 = diag(�̂�) and Σ2 = diag(𝝎) we get

‖𝜋 − ̃𝜋‖TV ≤ 3
2

√√√

⎷
∑

𝑖

⎛⎜
⎝

(1 − 𝛿2𝜔2
𝑖

4
) − 1⎞⎟

⎠

2

= 3
8

𝛿2√∑
𝑖

𝜔4
𝑖 ≤ 3

8
𝛿2𝛽

√
𝑑.

Bibliography

[Aar15] Scott Aaronson. “Read the Fine Print”. In: Nature Physics 11.4 (Apr. 2015), pp. 291–
293. issn: 1745-2473, 1745-2481. doi: 10.1038/nphys3272.

[AG03] F. Alizadeh and D. Goldfarb. “Second-Order Cone Programming”. In: Mathematical
Programming 95.1 (Jan. 1, 2003), pp. 3–51. issn: 1436-4646. doi: 10.1007/s10107-
002-0339-5.

[AG19] Joran van Apeldoorn and András Gilyén. “Improvements in Quantum SDP-Solving
with Applications”. In: 46th International Colloquium on Automata, Languages, and
Programming (ICALP 2019). Ed. by Christel Baier, Ioannis Chatzigiannakis, Paola Floc-
chini, and Stefano Leonardi. Vol. 132. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019,
99:1–99:15. isbn: 978-3-95977-109-2. doi: 10.4230/LIPIcs.ICALP.2019.99.

[AH20] Jonathan Allcock and Chang-Yu Hsieh. “A Quantum Extension of SVM-perf for
Training Nonlinear SVMs in Almost Linear Time”. In: Quantum 4 (Oct. 15, 2020),
p. 342. issn: 2521-327X. doi: 10.22331/q-2020-10-15-342. arXiv: 2006.10299
[quant-ph].

[AHK12] Sanjeev Arora, Elad Hazan, and Satyen Kale. “The Multiplicative Weights Update
Method: A Meta-Algorithm and Applications”. In: Theory of Computing 8.6 (May 1,
2012), pp. 121–164. doi: 10.4086/toc.2012.v008a006.

[AL22] Dong An and Lin Lin. “Quantum Linear System Solver Based on Time-optimal
Adiabatic Quantum Computing and Quantum Approximate Optimization Algorithm”.
In: ACM Transactions on Quantum Computing 3.2 (June 30, 2022), pp. 1–28. issn:
2643-6809, 2643-6817. doi: 10.1145/3498331.

[Amb12] Andris Ambainis. “Variable Time Amplitude Amplification and Quantum Algorithms
for Linear Algebra Problems”. In: 29th International Symposium on Theoretical Aspects
of Computer Science (STACS 2012). Ed. by Christoph Dürr and Thomas Wilke. Vol. 14.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2012, pp. 636–647. isbn: 978-3-939897-35-4.
doi: 10.4230/LIPIcs.STACS.2012.636.

[BCK15] Dominic W. Berry, Andrew M. Childs, and Robin Kothari. “Hamiltonian Simulation
with Nearly Optimal Dependence on All Parameters”. In: 2015 IEEE 56th Annual
Symposium on Foundations of Computer Science. 2015 IEEE 56th Annual Symposium
on Foundations of Computer Science. Oct. 2015, pp. 792–809. doi: 10.1109/FOCS.
2015.54.

[Bea+01] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf.
“Quantum Lower Bounds by Polynomials”. In: Journal of the ACM 48.4 (July 1, 2001),
pp. 778–797. issn: 0004-5411. doi: 10.1145/502090.502097.

77

https://doi.org/10.1038/nphys3272
https://doi.org/10.1007/s10107-002-0339-5
https://doi.org/10.1007/s10107-002-0339-5
https://doi.org/10.4230/LIPIcs.ICALP.2019.99
https://doi.org/10.22331/q-2020-10-15-342
https://arxiv.org/abs/2006.10299
https://arxiv.org/abs/2006.10299
https://doi.org/10.4086/toc.2012.v008a006
https://doi.org/10.1145/3498331
https://doi.org/10.4230/LIPIcs.STACS.2012.636
https://doi.org/10.1109/FOCS.2015.54
https://doi.org/10.1109/FOCS.2015.54
https://doi.org/10.1145/502090.502097

78 BIBLIOGRAPHY

[Bes+13] Alexandros Beskos, Natesh Pillai, Gareth Roberts, Jesus-Maria Sanz-Serna, and Andrew
Stuart. “Optimal Tuning of the Hybrid Monte Carlo Algorithm”. In: Bernoulli 19 (5A
Nov. 2013), pp. 1501–1534. issn: 1350-7265. doi: 10.3150/12-BEJ414.

[Bes94] Julian Besag. “Comments on “Representations of Knowledge in Complex Systems” by
U. Grenander and MI Miller”. In: J. Roy. Statist. Soc. Ser. B 56.591-592 (1994), p. 4.

[BKF22] Fernando G. S. L. Brandão, Richard Kueng, and Daniel Stilck França. “Faster Quantum
and Classical SDP Approximations for Quadratic Binary Optimization”. In: Quantum
6 (Jan. 20, 2022), p. 625. issn: 2521-327X. doi: 10.22331/q-2022-01-20-625. arXiv:
1909.04613 [quant-ph].

[BL17] Daniel J. Bernstein and Tanja Lange. “Post-Quantum Cryptography”. In: Nature
549.7671 (Sept. 2017), pp. 188–194. issn: 0028-0836, 1476-4687. doi: 10 . 1038 /
nature23461.

[BN01] Aharon Ben-Tal and Arkadi Nemirovski. Lectures on Modern Convex Optimization:
Analysis, Algorithms, and Engineering Applications. Society for Industrial and Applied
Mathematics, Jan. 2001. isbn: 978-0-89871-491-3. doi: 10.1137/1.9780898718829.

[Boy+17] Stephen Boyd, Enzo Busseti, Steve Diamond, Ronald N. Kahn, Kwangmoo Koh,
Peter Nystrup, and Jan Speth. “Multi-Period Trading via Convex Optimization”. In:
Foundations and Trends® in Optimization 3.1 (Aug. 7, 2017), pp. 1–76. issn: 2167-3888,
2167-3918. doi: 10.1561/2400000023.

[BP14] Árpád Baricz and Tibor K. Pogány. “On a Sum of Modified Bessel Functions”. In:
Mediterranean Journal of Mathematics 11.2 (May 1, 2014), pp. 349–360. issn: 1660-5454.
doi: 10.1007/s00009-013-0365-y.

[Bra+02] Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. “Quantum Amplitude
Amplification and Estimation”. In: Contemporary Mathematics. Ed. by Samuel J.
Lomonaco and Howard E. Brandt. Vol. 305. Providence, Rhode Island: American
Mathematical Society, 2002, pp. 53–74. isbn: 978-0-8218-2140-4. doi: 10.1090/conm/
305/05215.

[Bra+19] Fernando G. S. L. Brandão, Amir Kalev, Tongyang Li, Cedric Yen-Yu Lin, Krysta M.
Svore, and Xiaodi Wu. “Quantum SDP Solvers: Large Speed-Ups, Optimality, and
Applications to Quantum Learning”. In: 46th International Colloquium on Automata,
Languages, and Programming (ICALP 2019). Ed. by Christel Baier, Ioannis Chatzi-
giannakis, Paola Flocchini, and Stefano Leonardi. Vol. 132. Leibniz International
Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2019, 27:1–27:14. isbn: 978-3-95977-109-2. doi: 10.4230/
LIPIcs.ICALP.2019.27.

[BS17a] Nawaf Bou-Rabee and Jesús María Sanz-Serna. “Randomized Hamiltonian Monte
Carlo”. In: The Annals of Applied Probability 27.4 (Aug. 2017), pp. 2159–2194. issn:
1050-5164, 2168-8737. doi: 10.1214/16-AAP1255.

[BS17b] Fernando G.S.L. Brandao and Krysta M. Svore. “Quantum Speed-Ups for Solving
Semidefinite Programs”. In: 2017 IEEE 58th Annual Symposium on Foundations of
Computer Science (FOCS). 2017 IEEE 58th Annual Symposium on Foundations of
Computer Science (FOCS). Oct. 2017, pp. 415–426. doi: 10.1109/FOCS.2017.45.

[Bub15] Sébastien Bubeck. “Convex Optimization: Algorithms and Complexity”. In: Foundations
and Trends® in Machine Learning 8.3-4 (2015), pp. 231–357. issn: 1935-8237, 1935-8245.
doi: 10.1561/2200000050.

https://doi.org/10.3150/12-BEJ414
https://doi.org/10.22331/q-2022-01-20-625
https://arxiv.org/abs/1909.04613
https://doi.org/10.1038/nature23461
https://doi.org/10.1038/nature23461
https://doi.org/10.1137/1.9780898718829
https://doi.org/10.1561/2400000023
https://doi.org/10.1007/s00009-013-0365-y
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.4230/LIPIcs.ICALP.2019.27
https://doi.org/10.4230/LIPIcs.ICALP.2019.27
https://doi.org/10.1214/16-AAP1255
https://doi.org/10.1109/FOCS.2017.45
https://doi.org/10.1561/2200000050

BIBLIOGRAPHY 79

[BV04] Stephen P. Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge, UK ;
New York: Cambridge University Press, 2004. 716 pp. isbn: 978-0-521-83378-3.

[BV97] Ethan Bernstein and Umesh Vazirani. “Quantum Complexity Theory”. In: SIAM
Journal on Computing 26.5 (Oct. 1997), pp. 1411–1473. issn: 0097-5397. doi: 10.1137/
S0097539796300921.

[CGJ19] Shantanav Chakraborty, András Gilyén, and Stacey Jeffery. “The Power of Block-
Encoded Matrix Powers: Improved Regression Techniques via Faster Hamiltonian
Simulation”. In: 46th International Colloquium on Automata, Languages, and Program-
ming (ICALP 2019). Ed. by Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini,
and Stefano Leonardi. Vol. 132. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019,
33:1–33:14. isbn: 978-3-95977-109-2. doi: 10.4230/LIPIcs.ICALP.2019.33.

[Cha+20] Rui Chao, Dawei Ding, Andras Gilyen, Cupjin Huang, and Mario Szegedy. Finding
Angles for Quantum Signal Processing with Machine Precision. Mar. 8, 2020. doi:
10.48550/arXiv.2003.02831. arXiv: 2003.02831 [quant-ph].

[Che+20] Yuansi Chen, Raaz Dwivedi, Martin J. Wainwright, and Bin Yu. “Fast Mixing of
Metropolized Hamiltonian Monte Carlo: Benefits of Multi-Step Gradients”. In: Journal
of Machine Learning Research 21.92 (2020), pp. 1–72. issn: 1533-7928. url: http:
//jmlr.org/papers/v21/19-441.html.

[Che+21] Sinho Chewi, Chen Lu, Kwangjun Ahn, Xiang Cheng, Thibaut Le Gouic, and Philippe
Rigollet. “Optimal Dimension Dependence of the Metropolis-Adjusted Langevin Algo-
rithm”. In: Proceedings of Thirty Fourth Conference on Learning Theory. Conference on
Learning Theory. PMLR, July 21, 2021, pp. 1260–1300. url: https://proceedings.
mlr.press/v134/chewi21a.html.

[CKS17] Andrew M. Childs, Robin Kothari, and Rolando D. Somma. “Quantum Algorithm for
Systems of Linear Equations with Exponentially Improved Dependence on Precision”.
In: SIAM Journal on Computing 46.6 (Jan. 2017), pp. 1920–1950. issn: 0097-5397.
doi: 10.1137/16M1087072.

[CL11] Chih-Chung Chang and Chih-Jen Lin. “LIBSVM: A Library for Support Vector
Machines”. In: ACM Transactions on Intelligent Systems and Technology 2.3 (Apr.
2011), pp. 1–27. issn: 2157-6904, 2157-6912. doi: 10.1145/1961189.1961199.

[CLS19] Michael B. Cohen, Yin Tat Lee, and Zhao Song. “Solving Linear Programs in the
Current Matrix Multiplication Time”. In: Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing. STOC 2019. New York, NY, USA: Association
for Computing Machinery, June 23, 2019, pp. 938–942. isbn: 978-1-4503-6705-9. doi:
10.1145/3313276.3316303.

[Cos+21] Pedro C. S. Costa, Dong An, Yuval R. Sanders, Yuan Su, Ryan Babbush, and Dominic
W. Berry. Optimal Scaling Quantum Linear Systems Solver via Discrete Adiabatic
Theorem. Nov. 15, 2021. doi: 10.48550/arXiv.2111.08152. arXiv: 2111.08152
[quant-ph].

[CPT18] Gérard Cornuéjols, Javier Peña, and Reha Tütüncü. Optimization Methods in Finance.
2nd ed. Cambridge: Cambridge University Press, 2018. isbn: 978-1-107-05674-9. doi:
10.1017/9781107297340.

https://doi.org/10.1137/S0097539796300921
https://doi.org/10.1137/S0097539796300921
https://doi.org/10.4230/LIPIcs.ICALP.2019.33
https://doi.org/10.48550/arXiv.2003.02831
https://arxiv.org/abs/2003.02831
http://jmlr.org/papers/v21/19-441.html
http://jmlr.org/papers/v21/19-441.html
https://proceedings.mlr.press/v134/chewi21a.html
https://proceedings.mlr.press/v134/chewi21a.html
https://doi.org/10.1137/16M1087072
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1145/3313276.3316303
https://doi.org/10.48550/arXiv.2111.08152
https://arxiv.org/abs/2111.08152
https://arxiv.org/abs/2111.08152
https://doi.org/10.1017/9781107297340

80 BIBLIOGRAPHY

[CV22] Zongchen Chen and Santosh S. Vempala. “Optimal Convergence Rate of Hamiltonian
Monte Carlo for Strongly Logconcave Distributions”. In: Theory of Computing 18.9
(Apr. 30, 2022), pp. 1–18. doi: 10.4086/toc.2022.v018a009.

[DCB13] Alexander Domahidi, Eric Chu, and Stephen Boyd. “ECOS: An SOCP Solver for
Embedded Systems”. In: 2013 European Control Conference (ECC). 2013 European
Control Conference (ECC). July 2013, pp. 3071–3076. doi: 10.23919/ECC.2013.
6669541.

[Del+21] George Deligiannidis, Daniel Paulin, Alexandre Bouchard-Côté, and Arnaud Doucet.
“Randomized Hamiltonian Monte Carlo as Scaling Limit of the Bouncy Particle Sampler
and Dimension-Free Convergence Rates”. In: The Annals of Applied Probability 31.6
(Dec. 2021), pp. 2612–2662. issn: 1050-5164, 2168-8737. doi: 10.1214/20-AAP1659.

[DLMF] F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert,
C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.
NIST Digital Library of Mathematical Functions. Release 1.1.5. Mar. 15, 2022. url:
http://dlmf.nist.gov/.

[DMR22] Luc Devroye, Abbas Mehrabian, and Tommy Reddad. The Total Variation Distance
between High-Dimensional Gaussians with the Same Mean. Feb. 26, 2022. arXiv:
1810.08693 [math, stat]. url: http://arxiv.org/abs/1810.08693.

[Dol05] Hilary Dollar. “Iterative Linear Algebra for Constrained Optimization”. PhD thesis.
University of Oxford, 2005.

[Don+21] Yulong Dong, Xiang Meng, K. Birgitta Whaley, and Lin Lin. “Efficient Phase-Factor
Evaluation in Quantum Signal Processing”. In: Physical Review A 103.4 (Apr. 22, 2021),
p. 042419. doi: 10.1103/PhysRevA.103.042419.

[DP85] David Deutsch and Roger Penrose. “Quantum Theory, the Church–Turing Principle
and the Universal Quantum Computer”. In: Proceedings of the Royal Society of London.
A. Mathematical and Physical Sciences 400.1818 (July 8, 1985), pp. 97–117. doi:
10.1098/rspa.1985.0070.

[DT09] Sebastian Dörn and Thomas Thierauf. “The Quantum Query Complexity of the
Determinant”. In: Information Processing Letters 109.6 (Feb. 28, 2009), pp. 325–328.
issn: 0020-0190. doi: 10.1016/j.ipl.2008.11.006.

[Dua+87] Simon Duane, A.D. Kennedy, Brian J. Pendleton, and Duncan Roweth. “Hybrid Monte
Carlo”. In: Physics Letters B 195.2 (Sept. 1987), pp. 216–222. issn: 03702693. doi:
10.1016/0370-2693(87)91197-X.

[Dwi+18] Raaz Dwivedi, Yuansi Chen, Martin J. Wainwright, and Bin Yu. “Log-Concave Sam-
pling: Metropolis-Hastings Algorithms Are Fast!” In: Proceedings of the 31st Conference
On Learning Theory. Conference On Learning Theory. PMLR, July 3, 2018, pp. 793–797.
url: https://proceedings.mlr.press/v75/dwivedi18a.html.

[Fan+08] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.
“LIBLINEAR: A Library for Large Linear Classification”. In: The Journal of Machine
Learning Research 9 (June 1, 2008), pp. 1871–1874. issn: 1532-4435.

[GAW19] András Gilyén, Srinivasan Arunachalam, and Nathan Wiebe. “Optimizing Quantum
Optimization Algorithms via Faster Quantum Gradient Computation”. In: Proceedings
of the 2019 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). Proceed-
ings. Society for Industrial and Applied Mathematics, Jan. 2019, pp. 1425–1444. doi:
10.1137/1.9781611975482.87.

https://doi.org/10.4086/toc.2022.v018a009
https://doi.org/10.23919/ECC.2013.6669541
https://doi.org/10.23919/ECC.2013.6669541
https://doi.org/10.1214/20-AAP1659
http://dlmf.nist.gov/
https://arxiv.org/abs/1810.08693
http://arxiv.org/abs/1810.08693
https://doi.org/10.1103/PhysRevA.103.042419
https://doi.org/10.1098/rspa.1985.0070
https://doi.org/10.1016/j.ipl.2008.11.006
https://doi.org/10.1016/0370-2693(87)91197-X
https://proceedings.mlr.press/v75/dwivedi18a.html
https://doi.org/10.1137/1.9781611975482.87

BIBLIOGRAPHY 81

[Gen72] W. Morven Gentleman. “Implementing Clenshaw-Curtis Quadrature, II Computing the
Cosine Transformation”. In: Communications of the ACM 15.5 (May 1972), pp. 343–346.
issn: 0001-0782, 1557-7317. doi: 10.1145/355602.361311.

[Gil+19] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. “Quantum Singular
Value Transformation and beyond: Exponential Improvements for Quantum Matrix
Arithmetics”. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing. STOC ’19: 51st Annual ACM SIGACT Symposium on the Theory of
Computing. Phoenix AZ USA: ACM, June 23, 2019, pp. 193–204. isbn: 978-1-4503-
6705-9. doi: 10.1145/3313276.3316366.

[Gis+02] Nicolas Gisin, Grégoire Ribordy, Wolfgang Tittel, and Hugo Zbinden. “Quantum
Cryptography”. In: Reviews of Modern Physics 74.1 (Mar. 8, 2002), pp. 145–195. doi:
10.1103/RevModPhys.74.145.

[GLT18] András Gilyén, Seth Lloyd, and Ewin Tang. Quantum-Inspired Low-Rank Stochastic
Regression with Logarithmic Dependence on the Dimension. Nov. 12, 2018. doi: 10.
48550/arXiv.1811.04909. arXiv: 1811.04909 [quant-ph].

[Gro96] Lov K. Grover. “A Fast Quantum Mechanical Algorithm for Database Search”. In:
Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing.
STOC ’96. New York, NY, USA: Association for Computing Machinery, July 1, 1996,
pp. 212–219. isbn: 978-0-89791-785-8. doi: 10.1145/237814.237866.

[Haa19] Jeongwan Haah. “Product Decomposition of Periodic Functions in Quantum Signal
Processing”. In: Quantum 3 (Oct. 7, 2019), p. 190. doi: 10.22331/q-2019-10-07-190.

[HHL09] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. “Quantum Algorithm for Linear
Systems of Equations”. In: Physical Review Letters 103.15 (Oct. 7, 2009), p. 150502.
doi: 10.1103/PhysRevLett.103.150502.

[HW71] D. L. Hanson and F. T. Wright. “A Bound on Tail Probabilities for Quadratic Forms in
Independent Random Variables”. In: The Annals of Mathematical Statistics 42.3 (June
1971), pp. 1079–1083. issn: 0003-4851, 2168-8990. doi: 10.1214/aoms/1177693335.

[Ji+21] Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen. “MIP*
= RE”. In: Communications of the ACM 64.11 (Oct. 25, 2021), pp. 131–138. issn:
0001-0782. doi: 10.1145/3485628.

[Joa06] Thorsten Joachims. “Training Linear SVMs in Linear Time”. In: Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
KDD ’06. New York, NY, USA: Association for Computing Machinery, Aug. 20, 2006,
pp. 217–226. isbn: 978-1-59593-339-3. doi: 10.1145/1150402.1150429.

[Kar84] N. Karmarkar. “A New Polynomial-Time Algorithm for Linear Programming”. In:
Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing. STOC
’84. New York, NY, USA: Association for Computing Machinery, Dec. 1, 1984, pp. 302–
311. isbn: 978-0-89791-133-7. doi: 10.1145/800057.808695.

[KN12] Ravindran Kannan and Hariharan Narayanan. “Random Walks on Polytopes and an
Affine Interior Point Method for Linear Programming”. In: Mathematics of Operations
Research 37.1 (Feb. 2012), pp. 1–20. issn: 0364-765X. doi: 10.1287/moor.1110.0519.

https://doi.org/10.1145/355602.361311
https://doi.org/10.1145/3313276.3316366
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.48550/arXiv.1811.04909
https://doi.org/10.48550/arXiv.1811.04909
https://arxiv.org/abs/1811.04909
https://doi.org/10.1145/237814.237866
https://doi.org/10.22331/q-2019-10-07-190
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1214/aoms/1177693335
https://doi.org/10.1145/3485628
https://doi.org/10.1145/1150402.1150429
https://doi.org/10.1145/800057.808695
https://doi.org/10.1287/moor.1110.0519

82 BIBLIOGRAPHY

[KP17] Iordanis Kerenidis and Anupam Prakash. “Quantum Recommendation Systems”. In:
8th Innovations in Theoretical Computer Science Conference (ITCS 2017). Ed. by
Christos H. Papadimitriou. Vol. 67. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017,
49:1–49:21. isbn: 978-3-95977-029-3. doi: 10.4230/LIPIcs.ITCS.2017.49.

[KP20a] Iordanis Kerenidis and Anupam Prakash. “A Quantum Interior Point Method for
LPs and SDPs”. In: ACM Transactions on Quantum Computing (Oct. 2, 2020). doi:
10.1145/3406306.

[KP20b] Iordanis Kerenidis and Anupam Prakash. “Quantum Gradient Descent for Linear
Systems and Least Squares”. In: Physical Review A 101.2 (Feb. 14, 2020), p. 022316.
doi: 10.1103/PhysRevA.101.022316.

[KP91] A. D. Kennedy and Brian Pendleton. “Acceptances and Autocorrelations in Hybrid
Monte Carlo”. In: Nuclear Physics B - Proceedings Supplements 20 (May 20, 1991),
pp. 118–121. issn: 0920-5632. doi: 10.1016/0920-5632(91)90893-J.

[KPS21a] Iordanis Kerenidis, Anupam Prakash, and Dániel Szilágyi. “Quantum Algorithms
for Second-Order Cone Programming and Support Vector Machines”. In: Quantum 5
(Apr. 8, 2021), p. 427. issn: 2521-327X. doi: 10.22331/q-2021-04-08-427. arXiv:
1908.06720 [quant-ph, stat].

[KPS21b] Iordanis Kerenidis, Anupam Prakash, and Dániel Szilágyi. Quantum SVM via SOCP
Experiment Logs. figshare, Mar. 16, 2021. doi: 10.6084/m9.figshare.11778189.v1.

[LB13] Daniel A. Lidar and Todd A. Brun. Quantum Error Correction. Cambridge University
Press, Sept. 12, 2013. 689 pp. isbn: 978-0-521-89787-7. Google Books: XV9sAAAAQBAJ.

[LC17a] Guang Hao Low and Isaac L. Chuang. Hamiltonian Simulation by Uniform Spectral
Amplification. July 17, 2017. doi: 10.48550/arXiv.1707.05391. arXiv: 1707.05391
[quant-ph].

[LC17b] Guang Hao Low and Isaac L. Chuang. “Optimal Hamiltonian Simulation by Quantum
Signal Processing”. In: Physical Review Letters 118.1 (Jan. 5, 2017), p. 010501. doi:
10.1103/PhysRevLett.118.010501.

[LC19] Guang Hao Low and Isaac L. Chuang. “Hamiltonian Simulation by Qubitization”. In:
Quantum 3 (July 12, 2019), p. 163. issn: 2521-327X. doi: 10.22331/q-2019-07-12-163.
arXiv: 1610.06546 [quant-ph].

[Lev+17] David Asher Levin, Y. Peres, Elizabeth L. Wilmer, James Propp, and David B. Wilson.
Markov Chains and Mixing Times. Second edition. Providence, Rhode Island: American
Mathematical Society, 2017. 447 pp. isbn: 978-1-4704-2962-1.

[LMS20] Noah Linden, Ashley Montanaro, and Changpeng Shao. Quantum vs. Classical Algo-
rithms for Solving the Heat Equation. June 18, 2020. doi: 10.48550/arXiv.2004.06516.
arXiv: 2004.06516 [quant-ph].

[LR05] Benedict Leimkuhler and Sebastian Reich. Simulating Hamiltonian Dynamics. Cam-
bridge Monographs on Applied and Computational Mathematics. Cambridge: Cam-
bridge University Press, 2005. isbn: 978-0-521-77290-7. doi: 10.1017/CBO9780511614118.

[LST20] Yin Tat Lee, Ruoqi Shen, and Kevin Tian. “Logsmooth Gradient Concentration and
Tighter Runtimes for Metropolized Hamiltonian Monte Carlo”. In: Proceedings of Thirty
Third Conference on Learning Theory. Conference on Learning Theory. PMLR, July 15,
2020, pp. 2565–2597. url: https://proceedings.mlr.press/v125/lee20b.html.

https://doi.org/10.4230/LIPIcs.ITCS.2017.49
https://doi.org/10.1145/3406306
https://doi.org/10.1103/PhysRevA.101.022316
https://doi.org/10.1016/0920-5632(91)90893-J
https://doi.org/10.22331/q-2021-04-08-427
https://arxiv.org/abs/1908.06720
https://doi.org/10.6084/m9.figshare.11778189.v1
http://books.google.com/books?id=XV9sAAAAQBAJ
https://doi.org/10.48550/arXiv.1707.05391
https://arxiv.org/abs/1707.05391
https://arxiv.org/abs/1707.05391
https://doi.org/10.1103/PhysRevLett.118.010501
https://doi.org/10.22331/q-2019-07-12-163
https://arxiv.org/abs/1610.06546
https://doi.org/10.48550/arXiv.2004.06516
https://arxiv.org/abs/2004.06516
https://doi.org/10.1017/CBO9780511614118
https://proceedings.mlr.press/v125/lee20b.html

BIBLIOGRAPHY 83

[LST21] Yin Tat Lee, Ruoqi Shen, and Kevin Tian. “Lower Bounds on Metropolized Sampling
Methods for Well-Conditioned Distributions”. In: Advances in Neural Information Pro-
cessing Systems. Vol. 34. Curran Associates, Inc., 2021, pp. 18812–18824. url: https:
/ / papers . nips . cc / paper / 2021 / hash / 9c4e6233c6d5ff637e7984152a3531d5 -
Abstract.html.

[LSZ19] Yin Tat Lee, Zhao Song, and Qiuyi Zhang. “Solving Empirical Risk Minimization
in the Current Matrix Multiplication Time”. In: Proceedings of the Thirty-Second
Conference on Learning Theory. Conference on Learning Theory. PMLR, June 25, 2019,
pp. 2140–2157. url: https://proceedings.mlr.press/v99/lee19a.html.

[LT20] Lin Lin and Yu Tong. “Optimal Polynomial Based Quantum Eigenstate Filtering with
Application to Solving Quantum Linear Systems”. In: Quantum 4 (Nov. 11, 2020),
p. 361. issn: 2521-327X. doi: 10.22331/q-2020-11-11-361. arXiv: 1910.14596
[quant-ph].

[LW22] Jianfeng Lu and Lihan Wang. “On Explicit L2-convergence Rate Estimate for Piecewise
Deterministic Markov Processes in MCMC Algorithms”. In: The Annals of Applied
Probability 32.2 (Apr. 2022), pp. 1333–1361. issn: 1050-5164, 2168-8737. doi: 10.1214/
21-AAP1710.

[LYC16] Guang Hao Low, Theodore J. Yoder, and Isaac L. Chuang. “Methodology of Resonant
Equiangular Composite Quantum Gates”. In: Physical Review X 6.4 (Dec. 28, 2016),
p. 041067. doi: 10.1103/PhysRevX.6.041067.

[Mar+21] John M. Martyn, Zane M. Rossi, Andrew K. Tan, and Isaac L. Chuang. “Grand
Unification of Quantum Algorithms”. In: PRX Quantum 2.4 (Dec. 3, 2021), p. 040203.
doi: 10.1103/PRXQuantum.2.040203.

[Mar52] Harry Markowitz. “Portfolio Selection”. In: The Journal of Finance 7.1 (1952), pp. 77–
91. issn: 1540-6261. doi: 10.1111/j.1540-6261.1952.tb01525.x.

[Mou+21] Wenlong Mou, Yi-An Ma, Martin J. Wainwright, Peter L. Bartlett, and Michael I.
Jordan. “High-Order Langevin Diffusion Yields an Accelerated MCMC Algorithm”. In:
Journal of Machine Learning Research 22.42 (2021), pp. 1–41. issn: 1533-7928. url:
http://jmlr.org/papers/v22/20-576.html.

[MT00] Renato D.C. Monteiro and Takashi Tsuchiya. “Polynomial Convergence of Primal-Dual
Algorithms for the Second-Order Cone Program Based on the MZ-family of Directions”.
In: Mathematical Programming 88.1 (June 1, 2000), pp. 61–83. issn: 1436-4646. doi:
10.1007/PL00011378.

[MV18] Oren Mangoubi and Nisheeth Vishnoi. “Dimensionally Tight Bounds for Second-Order
Hamiltonian Monte Carlo”. In: Advances in Neural Information Processing Systems.
Vol. 31. Curran Associates, Inc., 2018. url: https://papers.nips.cc/paper/2018/
hash/e07bceab69529b0f0b43625953fbf2a0-Abstract.html.

[Nar16] Hariharan Narayanan. “Randomized Interior Point Methods for Sampling and Opti-
mization”. In: The Annals of Applied Probability 26.1 (Feb. 2016), pp. 597–641. issn:
1050-5164, 2168-8737. doi: 10.1214/15-AAP1104.

[NC12] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Infor-
mation: 10th Anniversary Edition. 1st ed. Cambridge University Press, June 5, 2012.
isbn: 978-1-107-00217-3. doi: 10.1017/CBO9780511976667.

[Nea11] Radford M. Neal. MCMC Using Hamiltonian Dynamics. May 10, 2011. doi: 10.1201/
b10905. arXiv: 1206.1901 [physics, stat].

https://papers.nips.cc/paper/2021/hash/9c4e6233c6d5ff637e7984152a3531d5-Abstract.html
https://papers.nips.cc/paper/2021/hash/9c4e6233c6d5ff637e7984152a3531d5-Abstract.html
https://papers.nips.cc/paper/2021/hash/9c4e6233c6d5ff637e7984152a3531d5-Abstract.html
https://proceedings.mlr.press/v99/lee19a.html
https://doi.org/10.22331/q-2020-11-11-361
https://arxiv.org/abs/1910.14596
https://arxiv.org/abs/1910.14596
https://doi.org/10.1214/21-AAP1710
https://doi.org/10.1214/21-AAP1710
https://doi.org/10.1103/PhysRevX.6.041067
https://doi.org/10.1103/PRXQuantum.2.040203
https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
http://jmlr.org/papers/v22/20-576.html
https://doi.org/10.1007/PL00011378
https://papers.nips.cc/paper/2018/hash/e07bceab69529b0f0b43625953fbf2a0-Abstract.html
https://papers.nips.cc/paper/2018/hash/e07bceab69529b0f0b43625953fbf2a0-Abstract.html
https://doi.org/10.1214/15-AAP1104
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1201/b10905
https://doi.org/10.1201/b10905
https://arxiv.org/abs/1206.1901

84 BIBLIOGRAPHY

[Nea96] Radford M. Neal. Bayesian Learning for Neural Networks. Red. by P. Bickel, P. Diggle,
S. Fienberg, K. Krickeberg, I. Olkin, N. Wermuth, and S. Zeger. Vol. 118. Lecture
Notes in Statistics. New York, NY: Springer New York, 1996. isbn: 978-0-387-94724-2.
doi: 10.1007/978-1-4612-0745-0.

[Net+96] John Neter, Michael H. Kutner, Christopher J. Nachtsheim, and William Wasserman.
Applied Linear Regression Models. Irwin, 1996. 750 pp. isbn: 978-0-256-08601-0. Google
Books: 4CrvAAAAMAAJ.

[NT97] Yu. E. Nesterov and M. J. Todd. “Self-Scaled Barriers and Interior-Point Methods
for Convex Programming”. In: Mathematics of Operations Research 22.1 (Feb. 1997),
pp. 1–42. issn: 0364-765X. doi: 10.1287/moor.22.1.1.

[NT98] Yu. E. Nesterov and M. J. Todd. “Primal-Dual Interior-Point Methods for Self-Scaled
Cones”. In: SIAM Journal on Optimization 8.2 (May 1998), pp. 324–364. issn: 1052-6234.
doi: 10.1137/S1052623495290209.

[OD21] Davide Orsucci and Vedran Dunjko. “On Solving Classes of Positive-Definite Quantum
Linear Systems with Quadratically Improved Runtime in the Condition Number”. In:
Quantum 5 (Nov. 8, 2021), p. 573. issn: 2521-327X. doi: 10.22331/q-2021-11-08-573.
arXiv: 2101.11868 [quant-ph].

[Pol87] Boris T. Polyak. Introduction to optimization. Translations series in mathematics and
engineering. New York: Optimization Software, Publications Division, 1987. 438 pp.
isbn: 978-0-911575-14-9.

[Pre21] John Preskill. Quantum Computing 40 Years Later. June 25, 2021. doi: 10.48550/
arXiv.2106.10522. arXiv: 2106.10522 [quant-ph].

[PT09] Ricardo Pachón and Lloyd N. Trefethen. “Barycentric-Remez Algorithms for Best
Polynomial Approximation in the Chebfun System”. In: BIT Numerical Mathematics
49.4 (Oct. 10, 2009), p. 721. issn: 1572-9125. doi: 10.1007/s10543-009-0240-1.

[RL18] Patrick Rebentrost and Seth Lloyd. Quantum Computational Finance: Quantum
Algorithm for Portfolio Optimization. Nov. 9, 2018. doi: 10.48550/arXiv.1811.03975.
arXiv: 1811.03975 [quant-ph].

[RML14] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. “Quantum Support Vector
Machine for Big Data Classification”. In: Physical Review Letters 113.13 (Sept. 25,
2014), p. 130503. doi: 10.1103/PhysRevLett.113.130503.

[RR98] Gareth O. Roberts and Jeffrey S. Rosenthal. “Optimal Scaling of Discrete Approxi-
mations to Langevin Diffusions”. In: Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 60.1 (Feb. 1998), pp. 255–268. issn: 1369-7412, 1467-9868.
doi: 10.1111/1467-9868.00123.

[RT96] Gareth O. Roberts and Richard L. Tweedie. “Exponential Convergence of Langevin
Distributions and Their Discrete Approximations”. In: Bernoulli 2.4 (Dec. 1996), p. 341.
issn: 13507265. doi: 10.2307/3318418. JSTOR: 3318418.

[Rus+18] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. “A
Tutorial on Thompson Sampling”. In: Foundations and Trends® in Machine Learning
11.1 (July 11, 2018), pp. 1–96. issn: 1935-8237, 1935-8245. doi: 10.1561/2200000070.

[SA22] Seyran Saeedi and Tom Arodz. Quantum Sparse Support Vector Machines. Apr. 22,
2022. doi: 10.48550/arXiv.1902.01879. arXiv: 1902.01879 [quant-ph, stat].

https://doi.org/10.1007/978-1-4612-0745-0
http://books.google.com/books?id=4CrvAAAAMAAJ
https://doi.org/10.1287/moor.22.1.1
https://doi.org/10.1137/S1052623495290209
https://doi.org/10.22331/q-2021-11-08-573
https://arxiv.org/abs/2101.11868
https://doi.org/10.48550/arXiv.2106.10522
https://doi.org/10.48550/arXiv.2106.10522
https://arxiv.org/abs/2106.10522
https://doi.org/10.1007/s10543-009-0240-1
https://doi.org/10.48550/arXiv.1811.03975
https://arxiv.org/abs/1811.03975
https://doi.org/10.1103/PhysRevLett.113.130503
https://doi.org/10.1111/1467-9868.00123
https://doi.org/10.2307/3318418
http://www.jstor.org/stable/3318418
https://doi.org/10.1561/2200000070
https://doi.org/10.48550/arXiv.1902.01879
https://arxiv.org/abs/1902.01879

BIBLIOGRAPHY 85

[Saa03] Yousef Saad. Iterative Methods for Sparse Linear Systems. Second. Society for Industrial
and Applied Mathematics, Jan. 2003. isbn: 978-0-89871-534-7. doi: 10 . 1137 / 1 .
9780898718003.

[Sho94] P.W. Shor. “Algorithms for Quantum Computation: Discrete Logarithms and Factor-
ing”. In: Proceedings 35th Annual Symposium on Foundations of Computer Science.
Proceedings 35th Annual Symposium on Foundations of Computer Science. Nov. 1994,
pp. 124–134. doi: 10.1109/SFCS.1994.365700.

[Sim97] Daniel R. Simon. “On the Power of Quantum Computation”. In: SIAM Journal
on Computing 26.5 (Oct. 1997), pp. 1474–1483. issn: 0097-5397. doi: 10 . 1137 /
S0097539796298637.

[SSO19] Yiğit Subaşı, Rolando D. Somma, and Davide Orsucci. “Quantum Algorithms for
Systems of Linear Equations Inspired by Adiabatic Quantum Computing”. In: Physical
Review Letters 122.6 (Feb. 14, 2019), p. 060504. doi: 10.1103/PhysRevLett.122.
060504.

[Str69] Volker Strassen. “Gaussian Elimination Is Not Optimal”. In: Numerische Mathematik
13.4 (Aug. 1, 1969), pp. 354–356. issn: 0945-3245. doi: 10.1007/BF02165411.

[Suy+02] J. A. K. Suykens, J. De Brabanter, L. Lukas, and J. Vandewalle. “Weighted Least
Squares Support Vector Machines: Robustness and Sparse Approximation”. In: Neu-
rocomputing 48.1 (Oct. 1, 2002), pp. 85–105. issn: 0925-2312. doi: 10.1016/S0925-
2312(01)00644-0.

[SV14] Sushant Sachdeva and Nisheeth K. Vishnoi. “Faster Algorithms via Approximation
Theory”. In: Foundations and Trends® in Theoretical Computer Science 9.2 (Mar. 27,
2014), pp. 125–210. issn: 1551-305X, 1551-3068. doi: 10.1561/0400000065.

[SV16] Sushant Sachdeva and Nisheeth K. Vishnoi. “The Mixing Time of the Dikin Walk in
a Polytope—A Simple Proof”. In: Operations Research Letters 44.5 (Sept. 1, 2016),
pp. 630–634. issn: 0167-6377. doi: 10.1016/j.orl.2016.07.005.

[SV99] J.A.K. Suykens and J. Vandewalle. “Least Squares Support Vector Machine Classifiers”.
In: Neural Processing Letters 9.3 (June 1, 1999), pp. 293–300. issn: 1573-773X. doi:
10.1023/A:1018628609742.

[Sze04] Mario Szegedy. “Quantum Speed-up of Markov Chain Based Algorithms”. In: 45th
Annual IEEE Symposium on Foundations of Computer Science. 45th Annual IEEE
Symposium on Foundations of Computer Science. Oct. 2004, pp. 32–41. doi: 10.1109/
FOCS.2004.53.

[Ton+21] Yu Tong, Dong An, Nathan Wiebe, and Lin Lin. “Fast Inversion, Preconditioned Quan-
tum Linear System Solvers, Fast Green’s-Function Computation, and Fast Evaluation
of Matrix Functions”. In: Physical Review A 104.3 (Sept. 27, 2021), p. 032422. doi:
10.1103/PhysRevA.104.032422.

[vApe+17] Joran van Apeldoorn, András Gilyén, Sander Gribling, and Ronald de Wolf. “Quantum
SDP-Solvers: Better Upper and Lower Bounds”. In: 2017 IEEE 58th Annual Symposium
on Foundations of Computer Science (FOCS). 2017 IEEE 58th Annual Symposium
on Foundations of Computer Science (FOCS). Oct. 2017, pp. 403–414. doi: 10.1109/
FOCS.2017.44.

[Var00] Richard S. Varga. Matrix Iterative Analysis. Vol. 27. Springer Series in Computational
Mathematics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. isbn: 978-3-642-
05154-8. doi: 10.1007/978-3-642-05156-2.

https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1137/S0097539796298637
https://doi.org/10.1137/S0097539796298637
https://doi.org/10.1103/PhysRevLett.122.060504
https://doi.org/10.1103/PhysRevLett.122.060504
https://doi.org/10.1007/BF02165411
https://doi.org/10.1016/S0925-2312(01)00644-0
https://doi.org/10.1016/S0925-2312(01)00644-0
https://doi.org/10.1561/0400000065
https://doi.org/10.1016/j.orl.2016.07.005
https://doi.org/10.1023/A:1018628609742
https://doi.org/10.1109/FOCS.2004.53
https://doi.org/10.1109/FOCS.2004.53
https://doi.org/10.1103/PhysRevA.104.032422
https://doi.org/10.1109/FOCS.2017.44
https://doi.org/10.1109/FOCS.2017.44
https://doi.org/10.1007/978-3-642-05156-2

86 BIBLIOGRAPHY

[VDC22] Maxime Vono, Nicolas Dobigeon, and Pierre Chainais. “High-Dimensional Gaussian
Sampling: A Review and a Unifying Approach Based on a Stochastic Proximal Point
Algorithm”. In: SIAM Review 64.1 (Feb. 3, 2022), pp. 3–56. issn: 0036-1445. doi:
10.1137/20M1371026.

[Ver18] Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in
Data Science. Cambridge Series in Statistical and Probabilistic Mathematics. Cam-
bridge: Cambridge University Press, 2018. isbn: 978-1-108-41519-4. doi: 10.1017/
9781108231596.

[Vis21] Nisheeth K. Vishnoi. An Introduction to Hamiltonian Monte Carlo Method for Sampling.
Aug. 26, 2021. arXiv: 2108.12107 [cs, math, stat]. url: http://arxiv.org/abs/
2108.12107.

[Wat09] John Watrous. “Quantum Computational Complexity”. In: Encyclopedia of Complexity
and Systems Science. Ed. by Robert A. Meyers. New York, NY: Springer, 2009, pp. 7174–
7201. isbn: 978-0-387-30440-3. doi: 10.1007/978-0-387-30440-3_428.

[WSC21] Keru Wu, Scott Schmidler, and Yuansi Chen. Minimax Mixing Time of the Metropolis-
Adjusted Langevin Algorithm for Log-Concave Sampling. Sept. 27, 2021. doi: 10.48550/
arXiv.2109.13055. arXiv: 2109.13055 [cs, stat].

[YTM94] Yinyu Ye, Michael J. Todd, and Shinji Mizuno. “An O(√nL)-Iteration Homogeneous
and Self-Dual Linear Programming Algorithm”. In: Mathematics of Operations Research
19.1 (Feb. 1994), pp. 53–67. issn: 0364-765X. doi: 10.1287/moor.19.1.53.

https://doi.org/10.1137/20M1371026
https://doi.org/10.1017/9781108231596
https://doi.org/10.1017/9781108231596
https://arxiv.org/abs/2108.12107
http://arxiv.org/abs/2108.12107
http://arxiv.org/abs/2108.12107
https://doi.org/10.1007/978-0-387-30440-3_428
https://doi.org/10.48550/arXiv.2109.13055
https://doi.org/10.48550/arXiv.2109.13055
https://arxiv.org/abs/2109.13055
https://doi.org/10.1287/moor.19.1.53

	Preliminaries
	Introduction
	Quantum algorithms
	Classical algorithms

	Quantum algorithms
	Quantum interior-point methods
	Introduction
	Preliminaries
	A quantum interior-point method
	Technical results
	Quantum Support-Vector Machines
	Quantum portfolio optimization

	Optimal quantum linear system solvers
	Introduction
	Preliminaries
	Quantum preliminaries
	A QLS-algorithm based on qt
	Comparison with previous polynomial-based QLS-solvers
	Query lower bounds
	Examples of functions with bounded Chebyshev coefficient norms

	Classical algorithms
	Gaussian sampling
	Introduction and main result
	Problem definition and preliminaries
	Idealized and unadjusted HMC
	Metropolis-Adjusted HMC
	Conclusions and open questions
	Omitted proofs

	Bibliography

