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Résumé

Les intérieurs planétaires sont constitués d'enveloppes fluides animées de mouvements qui tendent à homogénéiser leur température et leur composition. Pour étudier leur dynamique, la convection, générée par la présence simultanée d'inhomogénéités thermique et chimique, est traitée comme une faible perturbation autour d'un état de référence adiabatique, hydrostatique et bien mélangé. Ainsi, dans l'ensemble de cette thèse, nous modélisons une couche sphérique d'un fluide dont la perturbation de masse volumique dépend linéairement de sa température et de sa composition. L'ajout d'une seconde source d'inhomogénéité est favorable à l'occurence d'instabilités double-diffusives dont l'étude constitue l'objectif principal de cette thèse.

Dans la première partie de la thèse, nous nous sommes intéressés à un modèle double-diffusif de la dynamo terrestre dans lequel les deux composantes de la flottabilité sont déstabilisantes. Le régime de convection est alors qualifié de top-heavy. Le fluide inclus dans la coquille sphérique est soumis à un mouvement de rotation globale et sa convection génère un champ magnétique. Une première analyse de la stabilité linéaire du système montre que l'ajout d'une seconde source de flottabilité facilite l'amorçage de la convection. Dans un second temps, une étude paramétrique composée de 79 simulations numériques vise à étudier la morphologie du champ magnétique simulé. Quel que soit le partitionnement de la puissance totale d'entrée entre puissances convectives thermique et chimique, nous arrivons à obtenir des champs magnétiques simulés dont la morphologie est proche de celle du champ géomagnétique. En revanche, nous observons que la transition entre une dynamo dominée par un champ magnétique dipolaire et une dynamo multipolaire dépend fortement de la nature du forçage convectif. Une analyse de l'équilibre des forces à différentes échelles montre que la transition apparaît lorsque le rapport entre forces d'inertie et de Lorentz à la longueur dominante de l'écoulement atteint 0.5. Le rapport des énergies cinétique et magnétique de la géodynamo se révèle être un bon estimateur de cette grandeur. Le noyau terrestre est caractérisé par une énergie magnétique très supérieure à son énergie cinétique et se trouve donc loin de la transition. Cette observation suggère que la transition dipôle-multipole n'est pas à l'origine des inversions de polarité du champ géomagnétique.

La seconde partie du manuscrit se focalise sur un autre régime de convection double-diffusive : les doigts de sel. Les gradients chimique et thermique participent de manière opposée à la stabilité du fluide, l'écoulement étant alimenté par l'énergie potentielle libérée par la composante chimique instable. Le régime des doigts de sel a largement été exploré dans des modèles locaux en géométrie cartésienne mais un nombre restreint d'études a été conduit en géométrie sphérique globale. Nous avons choisi de supprimer dans notre modèle la rotation ainsi que le champ magnétique afin de nous concentrer sur les spécificités de ce régime de convection en géométrie sphérique. L'émergence de couches limites dans nos simulations conduit à une atténuation des contrastes en température et en composition auxquels le fluide est soumis, ce qui rend nécessaire la définition d'un contraste de densité effectif défini sur l'état convectif. Nous montrons qu'une loi d'échelle dérivée par des études locales cartésiennes [START_REF] Stern | The "Salt-Fountain" and Thermohaline Convection[END_REF][START_REF] Taylor | Laboratory Experiments on the Structure of Salt Fingers[END_REF] pour la taille caractéristique horizontale des doigts de sel s'applique également dans nos simulations globales. Deux régimes asymptotiques, aux frontières du domaine de l'instabilité des doigts de sel, sont identifiés pour les transferts thermique et chimique, ainsi que pour la vitesse convective de l'écoulement. Dans 54 simulations, nous observons une instabilité secondaire de grande échelle qui se manifeste par la formation d'un jet unique ou de jets multiples de directions alternées. Sur les temps longs, ces structures tendent à fusionner, suggérant ainsi qu'un jet unique constituerait l'état final du système. Bien que nous ne soyons pas en mesure de déterminer les conditions exactes de démarrage de ce mode de convection, la formation des jets dans nos simulations semble liée à une instabilité introduite par [START_REF] Holyer | The Stability of Long, Steady, Two-Dimensional Salt Fingers[END_REF].

Mot-clés : Convection double-diffusive -Intérieurs planétaires -Géodynamo -Simulations numériques

Abstract

The planetary interiors are constituted of fluid envelopes animated with movements which tend to homogenize their temperature and composition. To study their dynamics, the convection, maintained by simultaneous presence of thermal and chemical inhomogeneities, is treated as a weak perturbation around an adiabatic, hydrostatic and well-mixed reference state. We model a spherical layer of a fluid whose density perturbation varies linearly with its temperature and composition. The addition of a second source of inhomogeneity is prone to the occurrence of double-diffusive instabilities. Studying those instabilities in global geometry is the main focus of this thesis.

In the first part of the thesis, we focused on a double-diffusive model of the geodynamo in which both components of buoyancy are destabilizing. The convection regime is then called top-heavy. We consider a rotating spherical shell in which the magnetic field is sustained by convective motions. A linear stability of the system analysis shows that the onset of convection is facilitated by the addition of a second buoyancy source. We next carry out a parametric survey by performing 79 numerical simulations which aims to investigate the morphology of the simulated magnetic field. For any partitioning of the total input power between thermal and chemical convective powers, earth-like simulated magnetic fields can be obtained. On the contrary, we observe that the transition between a dynamo dominated by a dipolar magnetic field and a multipolar dynamo strongly depends on the nature of the buoyancy forcing. A scale-dependent analysis of the force balance shows that the transition occurs when the ratio between inertial and Lorentz forces at the dominant convective lengthscale reaches 0.5. The ratio of kinetic on magnetic energies is found to be a good proxy of this quantity. The Earth's core is characterized by a magnetic energy much higher than the kinetic one and is therefore far from the transition. This observation suggests that the dipole-multipole transition is not related to the polarity reversal of the geomagnetic field.

The second part of the manuscript focuses on another double-diffusive convection regime : salt fingering. Chemical and thermal background gradients have opposing contributions to the stability of the fluid, the flow being driven by the release of potential energy from the destabilizing chemical anomalies. The salt finger regime has been widely explored in local models in Cartesian geometry but a limited number of studies have been conducted in global spherical geometry. We have chosen to neglect the influence of rotation and magnetic field in our model in order to focus on this convection regime in spherical geometry. The emergence of boundary layers in our simulations leads to a weakening of bulk thermal and chemical contrasts. This prompts us to introduce an effective density contrast defined on the fluid bulk only. We show that a scaling law for the typical scale of salt fingers, derived by local Cartesian studies [START_REF] Stern | The "Salt-Fountain" and Thermohaline Convection[END_REF][START_REF] Taylor | Laboratory Experiments on the Structure of Salt Fingers[END_REF], still holds in our global simulations. Two asymptotic regimes at the boundaries of the salt finger instability domain are identified for the thermal and chemical transports as well as for the convective flow velocity of the the flow. In 54 of our models, we observe a large-scale secondary instability that manifests itself either in the formation of a single jet or of multiple jets of alternated directions. On longer times, we frequently observe a gradual merging of the multiple jets, possibly implying that the single jet solution would be the ultimate faith of the system. Although we are not able to determine the exact physical starting conditions of this instability, the jets formation in our simulations seems to be linked to an instability introduced by [START_REF] Holyer | The Stability of Long, Steady, Two-Dimensional Salt Fingers[END_REF].
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The triangles correspond to those simulations by [START_REF] Christensen | Conditions for Earth-like Geodynamo Models[END_REF] with Pr 1. The horizontal dashed line marks the f dip = 0.5 limit between dipolar and multipolar dynamos. The vertical dashed line corresponds to E k /E m = 0.9. Vertical and horizontal black segments attached to the symbols correspond to one standard deviation about the time-averaged values for f dip and E k /E m , respectively. . . . . . . . . . . . . . . . . . III.16Time evolution of the dipolar fraction f dip and of the magnetic to kinetic energy ratio E m /E k for the simulation (x) of Table III IV.2 Température de doigts de sel illustrant l'influence des modes de Holyer (1984) sur l'instabilité primaire. Dans un premier temps, l'instabilité secondaire induit une ondulation verticale des doigts de sel de période horizontale nulle (panneau de gauche), ce qui conduit à une perte de la cohérence verticale de l'écoulement (panneau central). Des structures de grandes échelles, les blobs, finissent par se former (panneau de droite). Cette figure correspond à la figure 2 de [START_REF] Shen | Equilibrium Salt-Fingering Convection[END_REF] 
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IV.23 (a) Pe ξ en fonction de Ra 1/4 T Le 5 Pr 1/2 Une loi de puissance en a été dérivée en réalisant une régression linéaire et en ne conservant que les simulations avec r * ρ ≥ 0.5. (b) Pe ξ compensé par Ra 1/4 T en fonction de Ra ξ Ra -1/4 T pour les simulations avec r * ρ < 0.5. La ligne en tirets correspond à la loi de puissance dérivée dont l'expression est fournie en dessous des données. Le qui vérifie l'équation de Laplace ∇ 2 V = 0. Il est alors possible de décomposer ce champ scalaire en harmoniques sphériques, appelés les coefficients de Gauss. Les modèles actuels du champ géomagnétique visent à prévoir l'évolution temporelle de ces coefficients en se basant sur des mesures des trois composantes de B à la surface. La densification du réseau d'observatoires magnétiques, initié dès la fin du xix e siècle, ainsi que l'avènement de mesures satellitaires depuis deux décennies permettent d'améliorer constamment la précision des modèles. La présence de roches aimantées dans la croûte terrestre limite leur résolution spatiale au degré d'harmonique sphérique max = 13. Tous les 5 ans, une nouvelle génération de l'International Geomagnetic Reference Field (IGRF) voit le jour. Ce modèle fournit les coefficients de Gauss tronqués à max = 13, ainsi que leur variation séculaire afin de prévoir l'évolution temporelle du champ magnétique des prochaines années. La figure I.1a montre la composante radiale B r du champ magnétique à la surface de la Terre tronquée à max = 13 pour l'IGRF-13 [START_REF] Alken | International Geomagnetic Reference Field : The Thirteenth Generation[END_REF] 

V(r, θ, φ, t) = R ⊕ ∞ =1 R ⊕ r
Lo = B ΩD √ µ 0 ρ o = τ Ω τ A avec τ A = D √ µ 0 ρ o B , ( 
E = ν ΩD 2 = τ Ω τ ν , (I.11)
où τ ν est le temps caractéristique de diffusion visqueuse. [START_REF] Busse | Thermal Instabilities in Rapidly Rotating Systems[END_REF] a montré théoriquement que le nombre de Rayleigh critique augmente proportionnellement à E -4/3 pour un fluide en géométrie sphérique illustrant ainsi le caractère stabilisant de la rotation. Dans le cas du noyau terrestre, en considérant une viscosité cinématique de 10 -6 m 2 • s -1 [START_REF] Alfè | First-Principles Calculation of Transport Coefficients[END_REF][START_REF] De Wijs | First-Order Phase Transitions by First-Principles Free-Energy Calculations : The Melting of Al[END_REF], le nombre d'Ekman atteint une valeur de l'ordre de 10 -15 .

Pour maintenir un champ magnétique fort sur des temps géologiques dans un régime de rotation rapide, la convection nécessite une source d'énergie importante. La cristallisation de la graine, induit 

= κ T κ ξ = τ ξ τ T avec τ ξ = D 2 κ ξ et τ T = D 2 κ T . (I.
ρ ρ m = 1 -α T (T -T m ) -α ξ (ξ -ξ m ), (I.14)
où l'indice m indique des grandeurs moyennes. La condition de stabilité d'une stratification en masse volumique verticale s'écrit (voir par exemple l'équation 6 de Chaljub et Valette 2004)

N 2 = -g d dz ρ ρ m > 0, (I.15)
où l'axe vertical z est orienté dans le sens opposé à g, et N, appelée fréquence de Brunt-Väisälä, correspond à la fréquence des oscillations de rappel d'une particule déplacée verticalement dans un fluide stratifié. D'après ce critère, la stratification est stable si N 2 > 0, neutre si N 2 = 0 et instable si N 2 < 0. En utilisant l'équation d'état (I.14), N 2 peut être décomposée en une contribution thermique En revanche, l'analyse devient plus complexe lorsque la température et la composition ne contribuent pas de la même manière à la stabilité du fluide, c'est-à-dire lorsque N 2 T et N 2 ξ sont de signes opposés. Afin de délimiter le domaine dans lequel le fluide est instable, il est nécessaire d'introduire un rapport de densité

N 2 T et une contribution chimique N 2 ξ N 2 = N 2 T + N 2 ξ avec N 2 T = α T g dT dz et N 2 ξ =
R ρ R ρ = α T dT dz α ξ dξ dz ≈ Le Ra T Ra ξ = N 2 T N 2 ξ . (I.19)
Lorsque la température joue un rôle stabilisant (N 2 T > 0 et N 2 ξ < 0) -le gradient thermique est qualifié de subadiabatique -le fluide est favorable au développement d'une instabilité primaire [START_REF] Stern | The "Salt-Fountain" and Thermohaline Convection[END_REF], appelée doigts de sel, dès lors que 

≤ 1 R ρ ≤ Pr + 1 Pr + Le -1 avec Pr = ν κ T = τ T τ ν . (I.21)
où Pr est le nombre de Prandtl qui s'exprime comme le rapport de la viscosité cinématique ν et de κ T .

De la même manière que pour le régime des doigts de sel, la borne supérieure délimite la zone non convective de l'espace des paramètres, tandis que la borne inférieure délimite le régime dominé par la convection thermique. Pour illustrer le mécanisme à l'origine de la croissance de l'instabilité, nous considérons le cas d'une couche d'eau froide douce superposée à une couche d'eau chaude salée (voir la figure I.3). Lorsqu'une particule de fluide est déplacée vers le haut, sa température s'équilibre plus rapidement que sa composition conduisant à une diminution de sa masse volumique. La poussée d'Archimède entraîne alors la particule à une profondeur inférieure à sa position initiale. Le processus se répète avec une amplification graduelle de l'amplitude des oscillations.

La figure I.4a), inspirée du diagramme de [START_REF] Ruddick | A Practical Indicator of the Stability of the Water Column to Double-Diffusive Activity[END_REF], présente un espace des paramètres découpés en quatre cadrans qui permet de résumer les différents régimes dynamiques que nous venons de décrire. En convection Rayleigh-Bénard, le critère de stabilité de la stratification en densité ne fournit en fait qu'une condition nécessaire au démarrage de la convection. En pratique, en plus de la superadiabacité de l'état de référence, le nombre de Rayleigh doit être plus large qu'une valeur critique Ra c pour que la convection démarre. Dans les différents régimes doubles-diffusifs, le même phénomène se produit et la différence Ra ξ -|Ra T | dans le régime des doigts de sel, ou l'opposé dans le régime de semi-convection, doit excéder une valeur critique pour entraîner le démarrage de l'instabilité. Ce phénomène se matérialise par la zone blanche de forme complexe visible au centre du diagramme. Sa complexité traduit le rôle facilitateur subtil que peut avoir la rotation et/ou l'addition d'une seconde source de flottabilité sur le démarrage de la convection. Les frontières de cette zone ont été tracées de manière schématique à l'aide de la figure 1 de Mather et Simitev (2021). L'impact de la rotation La convection double-diffusive est un processus physique contre-intuitif. Dans ce régime dynamique particulier, l'écoulement du fluide est alimenté par la diffusion thermique, qui rend possible la conversion de l'énergie potentielle de la composante instable en énergie cinétique. Bien que le régime des doigts de sel fût observé dès la fin du xix e siècle par de grands noms de la mécanique des fluides, Lord Rayleigh et Vagn Walfried Ekman en particulier, il fallut attendre le travail fondateur de [START_REF] Stern | The "Salt-Fountain" and Thermohaline Convection[END_REF] pour déterminer l'origine de la convection double-diffusive. Il comprit en premier le rôle joué par l'écart entre les diffusivités thermique et chimique et conclut que ce phénomène devait être commun dans les océans, où la masse volumique de l'eau de mer dépend de sa température et de sa salinité. La convection double-diffusive a dès lors bénéficié d'une attention particulière en océanographie physique conduisant à la publication de nombreuses études expérimentales [START_REF] Taylor | Laboratory Experiments on the Structure of Salt Fingers[END_REF][START_REF] Turner | The Coupled Turbulent Transports of Salt and and Heat across a Sharp Density Interface[END_REF], numériques [START_REF] Stellmach | Dynamics of Fingering Convection. Part 2 The Formation of Thermohaline Staircases[END_REF]Traxler et al. 2011a) et théoriques [START_REF] Holyer | The Stability of Long, Steady, Two-Dimensional Salt Fingers[END_REF][START_REF] Howard | The Salt-Finger Zone[END_REF][START_REF] Radko | Finite-Amplitude Salt Fingers in a Vertically Bounded Layer[END_REF][START_REF] Stern | The "Salt-Fountain" and Thermohaline Convection[END_REF]). La communauté s'est concentrée en particulier sur un phénomène observé dès les années 1960 [START_REF] Cooper | Regularly Spaced Steps in the Main Thermocline near Bermuda[END_REF][START_REF] Tait | Some Observations of Thermo-Haline Stratification in the Deep Ocean[END_REF] : les escaliers thermohalins. Dans les régimes semi-convectifs et des doigts de sel, la saturation de l'instabilité primaire résulte de la croissance d'une instabilité secondaire qui peut se manifester sous différentes formes : instabilité collective [START_REF] Stern | Collective Instability of Salt Fingers[END_REF], jets [START_REF] Holyer | The Stability of Long, Steady, Two-Dimensional Salt Fingers[END_REF][START_REF] Shen | Equilibrium Salt-Fingering Convection[END_REF] ou encore sous la forme de modons [START_REF] Radko | The Double-Diffusive Modon[END_REF]. Une description plus détaillée de ces différentes instabilités sera réalisée dans l'introduction du chapitre IV. Dans le cas des escaliers thermohalins, le fluide s'organise en une superposition verticale de couches de masse volumique quasi-uniforme. La figure I.5 illustre le phénomène observé dans l'océan Atlantique (A) (R. W. [START_REF] Schmitt | Enhanced Diapycnal Mixing by Salt Fingers in the Thermocline of the Tropical Atlantic[END_REF]) et dans des modèles numériques locaux réalisés par Yang (2020) (B-C). Il est remarquable de constater que dans l'océan ces structures atteignent une épaisseur de plusieurs dizaines de mètres alors qu'elles sont générées par des doigts de sel dont la largeur caractéristique est de l'ordre de la dizaine de centimètres.

Les simulations de Yang (2020) montrent que la quasi-uniformité de la masse volumique dans chaque couche est assurée par des cellules de convection de grande échelle semblables à celles rencontrées dans une configuration de Rayleigh-Bénard. L'existence d'interfaces favorables aux doigts de sel entre chaque couche permet de maintenir la circulation du fluide à l'intérieur de chacune d'elles.

Le lien entre la convection double-diffusive et les escaliers thermohalins a rapidement été admis. Néanmoins, l'identification du mécanisme précis à l'origine de leur formation fait encore l'objet de nombreux débats (voir le chapitre 8 de Radko 2013). La séparation d'échelle existante entre les processus diffusifs et l'organisation à grande échelle qui en résulte induisent une raideur spatiale qui rend numériquement coûteuse la simulation numérique d'un tel phénomène naturel.

La convection double-diffusive ne se limite pas aux océans. Son application s'est répandue à de nombreux champs de recherche (voir le chapitre 12 de Radko 2013, pour une liste détaillée). Elle jouerait notamment un rôle fondamental dans la dynamique des intérieurs stellaires. La contraction du coeur convectif serait favorable à la formation d'une zone semi-convective à sa périphérie [START_REF] Merryfield | Hydrodynamics of Semiconvection[END_REF]. Bien que le formalisme reste le même que pour les océans, les intérieurs stellaires sont caractérisées par une dynamique opérant dans une région de l'espace des paramètres complètement différente. L'eau salée est caractérisée par une valeur de Pr de l'ordre de la dizaine et une valeur de Le de l'ordre de la centaine. Dans les étoiles, les photons assurent un transport thermique radiatif efficace et conduisent à des valeurs de Pr très faibles (10 -7 -10 -4 ), tandis que Le atteint des valeurs très élevées (10 6 -10 8 ). Le régime de semi-convection est ainsi plus facilement accessible dans les intérieurs stellaires (voir équation I.21). Néanmoins, les cas océanique (Pr > 1) et astrophysique (Pr < 1) présentent de nombreuses similitudes, en particulier la capacité à former des escaliers thermohalins [START_REF] Mirouh | A Newmodel for Mixing by Double-Diffusive Convection (Semi-Convection). I. The Conditions for Layer Formation[END_REF][START_REF] Rosenblum | Turbulent Mixing and Layer Formation in Double-Diffusive Convection : Three-Dimensionnal Numerical Simulations and Theories[END_REF]. De la même manière, la fusion de 3 He est susceptible de conduire à la formation de doigts de sel au coeur des étoiles géantes rouges [START_REF] Charbonnel | Thermohaline Mixing : A Physical Mechanism Governing the Photospheric Composition of Low-Mass Giants[END_REF]. Ce régime de convection a été exploré par de nombreuses études numériques locales en géométrie cartésienne (e.g. [START_REF] Brown | Chemical Transport and Spontaneous Layer Formation in Fingering Convection in Astrophysics[END_REF][START_REF] Garaud | 2D or not 2D : the effect of dimensionality on the dynamics of fingering convection at low Prandtl number[END_REF]Traxler et al. 2011b) considérant des valeurs faibles de Pr (0.01 ≤ Pr ≤ 0.3), adaptées au contexte des intérieurs stellaires.

Bien que la convection thermo-solutale soit susceptible de jouer un rôle important dans les intérieurs planétaires, elle a bénéficié d'une attention limitée pour la modélisation de la géodynamo. La dynamique de ce système résulte de l'interaction de nombreux processus physiques arborant une plage de temps caractéristiques très étendue qui peut se résumer sous la forme [START_REF] Christensen | Conditions for Earth-like Geodynamo Models[END_REF], les inversions de polarité du champ [START_REF] Glatzmaier | A Three-Dimensional Convective Dynamo Solution with Rotating and Finitely Conducting Inner Core and Mantle[END_REF] -bien que le processus physique qui en est à l'origine reste à déterminer -et la dérive vers l'ouest du champ magnétique [START_REF] Aubert | Bottom-up Control of Geomagnetic Secular Variation by the Earth's Inner Core[END_REF]. La réussite de cette approximation a probablement participé à l'abandon rapide d'un modèle double-diffusif pour la géodynamo après les travaux pionniers de Glatzmaier et Roberts (1996).

τ Ω τ A τ adv τ η τ T τ ν τ ξ , ×10 4 ×10 2 ×10 3 ×10 5 ×10 ×10 2 (I.23) en considérant κ T ≈ 10 -5 m 2 • s -1 et κ ξ ≈ 10 -8 m 2 • s -1
La Terre ne constitue pas une exception au sein du système solaire. Des mouvements de convection animent l'intérieur de nombreux satellites et planètes. Les envois de sondes spatiales -Pioneer 10 et 11, Mariner 10, Voyager 1 et 2, Cassini, Galileo, Juno -ont confirmé l'existence d'un champ magnétique à la surface de Mercure [START_REF] Ness | The Magnetic Field of Mercury, 1[END_REF][START_REF] Thébault | International Geomagnetic Reference Field : The 12th Generation[END_REF], Jupiter [START_REF] Connerney | A New Model of Jupiter's Magnetic Field From Juno's First Nine Orbits[END_REF], Saturne [START_REF] Cao | The Landscape of Saturn's Internal Magnetic Field from the Cassini Grand Finale[END_REF], Uranus [START_REF] Herbert | Aurora and Magnetic Field of Uranus[END_REF][START_REF] Ness | Magnetic Fields at Uranus[END_REF], Neptune [START_REF] Connerney | The Magnetic Field of Neptune[END_REF] et Ganymède [START_REF] Gurnett | Evidence for a Magnetosphere at Ganymede from Plasma-Wave Observations by the Galileo Spacecraft[END_REF][START_REF] Kivelson | Discovery of Ganymede's Magnetic Field by the Galileo Spacecraft[END_REF] Une modélisation réaliste d'une dynamo planétaire nécessite deux ingrédients supplémentaires non considérés dans les études locales : un champ magnétique et une rotation globale. À notre connaissance peu de modèles numériques étudient l'interaction de ces processus physiques avec la convection double-diffusive. [START_REF] Glatzmaier | An Anelastic Evolutionary Geodynamo Simulation Driven by Compositional and Thermal Convection[END_REF] ont réalisé une première simulation numérique de géodynamo double-diffusive en ajoutant une équation de transport chimique à leur premier modèle [START_REF] Glatzmaier | A Three-Dimensional Convective Dynamo Solution with Rotating and Finitely Conducting Inner Core and Mantle[END_REF] 

Conservation de la quantité de mouvement

La dynamique de l'écoulement dans le noyau externe est décrite par l'équation de Navier-Stokes exprimée dans le référentiel planétaire 

ρ ∂u ∂t + (u • ∇)u + 2Ω × u + Ω × (Ω × r) = -ρ∇ψ + ρf L + ∇ • C, ( 
∇ • E = ρ e 0 , Maxwell -Ampère : ∇ × B = µ 0 j + µ 0 0 ∂E ∂t , Maxwell -Thomson : ∇ • B = 0, Maxwell -Faraday : ∇ × E = - ∂B ∂t ,
(II.17) où 0 est la permittivité diélectrique du vide. Pour un écoulement non relativiste, les courants de déplacement peuvent être négligés dans l'équation de Maxwell-Ampère

∇ × B = µ 0 j. (II.18)
Dans un conducteur en mouvement, la loi d'Ohm s'écrit

j = σ (E + u × B) , (II.19)
où σ est la conductivité électrique. L'expression de j est injectée dans l'équation de Maxwell-Ampère

∇ × B = 1 η (E + u × B) avec η = 1 µ 0 σ (II.20)
la diffusivité magnétique du fluide. Le rotationnel de cette équation associé aux équations de Maxwell-Thomson et Maxwell-Faraday permet d'aboutir à l'équation d'induction

∂B ∂t = ∇ × (u × B) -∇ × (η∇ × B), (II.21)
qui suffit à décrire l'évolution de l'état électromagnétique du système.

Bilan d'énergie dans le noyau

En multipliant l'équation de Navier-Stokes (II.15) par u et en intégrant sur un volume fermé V délimité par une surface S, nous obtenons 

V ρ 2 ∂u 2 ∂t + ρ(u • ∇)u 2 dV = V -ρ∇ψ + j × B + ∇ • C • u dV. (II.
u • (∇ • C) dV = - V (C • ∇) u dV + S (u • C) dS.
(II.25)

À la frontière externe du système, le tenseur des contraintes C exerce un travail sur la surface S.

Chaque particule de fluide est soumise à une force faisant intervenir le tenseur des contraintes que nous allons interpréter physiquement. En s'appuyant sur les définitions de τ (II.10) et de C (II.9), nous pouvons écrire

(C • ∇) • u = C i j ∂u i ∂x j = C i j ς i j = -pς j j + 2ρνς 2 i j - 2 3 ρν(ς j j ) 2 = -p∇ • u + Φ ν . (II.26)
Intégré sur le volume V, le premier terme peut s'interpréter comme l'augmentation de l'énergie interne qui résulte de la compression du fluide. Le second terme correspond à la dissipation visqueuse de l'énergie cinétique. Finalement, le raisonnement ayant été réalisé pour un volume V quelconque, nous aboutissons à une équation locale de conservation de l'énergie cinétique 

ρ de k dt = ∇ • (u • C) + j × B -ρ∇ψ • u + p∇ • u -Φ ν . (II.
0 V ∂e m ∂t dV = V [∇ × (u × B)] • B dV - V ∇ × (η∇ × B) • B dV. (II.28)
Le premier terme du membre de droite se simplifie à l'aide d'une identité vectorielle et de l'équation de Maxwell-Ampère

[∇ × (u × B)] • B = (u × B) • (∇ × B) + ∇ • [(u × B) × B] = -µ 0 (j × B) • u + ∇ • [(u × B) × B] . (II.29)
Pour le second terme, l'utilisation d'identités vectorielles associées à l'équation de Maxwell-Ampère et la loi d'Ohm (II.19) permet d'écrire

-∇ × (η∇ × B) • B = -∇ × µ 0 ηj • B = -∇ • (E × B) -∇ • [(u × B) × B] - µ 0 j 2 σ .
(II.30) L'équation de conservation de l'énergie magnétique peut alors se réécrire 

∂e m ∂t = -(j × B) • u -Φ η -∇ • Π (II.31) avec e m = B 2 2µ 0 , Φ η = j 2 σ et Π = E × B µ 0 , ( 
P = - V o ρu • ∇ψ dV, D ν = V o Φ ν dV et D η = V o +V i Φ η dV
∂ ρe i ∂t + ∇ • ρe i u = -ρ ∂ψ ∂t -p∇ • u + Φ ν + Φ η + ∇ • (k T ∇T) + H T . (II.39)
La conservation de la masse (II.3) permet de réécrire le membre de gauche

ρ de i dt = -ρ ∂ψ ∂t -p∇ • u + Φ ν + Φ η + ∇ • (k T ∇T) + H T .
(II.40)

Équations de transport thermique et chimique

L'équation de conservation de l'énergie interne (II.40) va nous permettre d'obtenir une équation de transport pour la température. La différentielle de e i s'exprime 

de i = C v dT -(l -p) dρ ρ 2 , avec C v = ∂e i ∂T V et l = T ∂P ∂T V , ( 
                                                           dρ dt = -ρ∇ • u, ρ du dt + 2ρΩ × u = -∇p -ρ∇ψ + j × B + ∇ • 2ρν ς - 1 3 (∇ • u) δ , ∇ 2 ψ = 4πGρ, ∂B ∂t = ∇ × (u × B) -∇ × (η∇ × B), ρC v dT dt - l ρ dρ dt = ∇ • (k T ∇T) -ρ ∂ψ ∂t + H T + Φ ν + Φ η , ρ dξ dt = ∇ • κ ξ ρ∇ξ + H ξ .
( 

État de référence

La convection du fluide et la production d'un champ magnétique par la dynamo constituent de faibles perturbations autour d'un état de référence. Bien que le refroidissement séculaire, de l'ordre de -100 K • Ga -1 pour la Terre (voir la table 4 de Nimmo 2015), des planètes entraîne une modification lente de cet état de référence, nous le considérons stationnaire dans cette étude (voir la section 2.2 de [START_REF] Anufriev | The Boussinesq and Anelastic Liquid Approximations for Convection in the Earth's Core[END_REF], pour une discussion sur la variation séculaire de l'état de référence). Dans l'état de référence, le fluide est supposé bien mélangé. La composition ξ et l'entropie massique s sont alors homogènes dans le fluide (voir par exemple [START_REF] Glatzmaier | An Anelastic Evolutionary Geodynamo Simulation Driven by Compositional and Thermal Convection[END_REF]. Nous faisons l'hypothèse que l'état de référence présente une symétrie sphérique induisant une unique dépendance radiale de p, T, s, ξ, ψ et ρ. L'approche classique consiste à décomposer chaque variable du système en une contribution moyenne, mesurée dans l'état de référence du système, et un terme de fluctuation induit par la convection ρ(r, t) = ρ 0 (r) + ρ (r, t), p(r, t) = p 0 (r) + p (r, t), s(r, t) = s 0 + s (r, t),

ψ(r, t) = ψ 0 (r) + ψ (r, t), T(r, t) = T 0 (r) + T (r, t) et ξ(r, t) = ξ 0 + ξ (r, t).
(II.49) L'indice 0 correspond à l'état de référence, tandis que l'exposant correspond aux perturbations de faible amplitude devant les valeurs de référence. Le potentiel de gravitation ψ 0 de l'état de référence vérifie l'équation de Poisson (II.5) [START_REF] Anufriev | The Boussinesq and Anelastic Liquid Approximations for Convection in the Earth's Core[END_REF], une valeur qui n'est finalement pas si proche de 0. Néanmoins, nous faisons l'hypothèse dans l'intégralité de cette thèse que D i = 0 dans le contexte des noyaux liquides des planètes telluriques.

L'objectif de cette partie est d'illustrer les conséquences de cette approximation sur le système d'équations (II.46). La diffusivité magnétique η, la viscosité cinématique ν, la conductivité thermique k T et la diffusivité chimique κ ξ sont maintenant supposées uniformes. Nous introduisons un paramètre afin de quantifier le ratio entre les fluctuations et l'état de référence [START_REF] Gilman | Compressible Convection in a Rotating Spherical Shell. I. Anelastic Equations[END_REF])

∼ ρ ρ 0 ∼ T T 0 ∼ ξ ξ 0 ∼ p p 0 (II.64)
Les équations du système (II.46) sont développées à l'ordre 1 en . De manière analogue, il est possible d'utiliser comme paramètre de développement le nombre de Mach M défini par le rapport de la vitesse de chute libre u f et de celle du son u s (voir l'équation 41 de Verhoeven et al. 2015)

M 2 = u f u s 2 avec u 2 f = ρ g o D ρ 0 et 1 u 2 s = α p ρ 0 (II.65)
La relation de Meyer généralisée (II.53) permet de réécrire cette équation en faisant apparaître le coefficient de dissipation

M 2 = D i α T T o C p C p -C v . (II.66)
Le nombre de Mach tend ainsi vers 0 lorsque D i tend vers 0.

L'expression de la variation radiale de ρ 0 (II.62) suggère que la masse volumique ρ 0 est uniforme dans le fluide. En prenant en compte cette approximation, il est possible d'intégrer l'équation de Poisson vérifiée par le potentiel gravitationnel Nous faisons par la suite l'hypothèse que ce champ de gravité n'est pas perturbé par les fluctuations de masse volumique.

∇ • g = -4πGρ 0 , ( 
En remplaçant ρ par son expression (II.49), l'équation de conservation de la masse (II.3) devient

1 ρ 0 ∂ρ ∂t + ∇ • u + u r 1 ρ 0 dρ 0 dr + ρ ρ 0 ∇ • u + ∇ρ ρ 0 • u = 0. (II.70)
Les deux derniers termes sont des termes d'ordre 2, ils peuvent donc être négligés. En utilisant la définition de l'état de référence (II.62), cette équation peut se réécrire

1 ρ 0 ∂ρ ∂t + ∇ • u + u r Di Γd = 0. (II.71)
L'approximation de Boussinesq, en faisant tendre le nombre de dissipation vers 0, nous permet d'ignorer le dernier terme. Il convient de quantifier le ratio des deux termes restants. En choisissant le temps d'advection τ adv = D/U, où U est la vitesse caractéristique de l'écoulement, comme temps caractéristique du système, nous pouvons écrire

∂ρ ∂t ρ 0 ∇ • u ∼ ρ ρ 0 ∼ . (II.72)
Le terme de dérivée temporelle est donc d'un ordre plus élevé que la divergence de u. Négliger ce terme revient à réaliser un filtrage temporel de cette équation en rendant impossible la propagation d'onde acoustique dans le fluide. Finalement, l'équation de conservation de la masse dans l'approximation de Boussinesq se résume à

∇ • u = 0. (II.73)
En résumé, elle conduit donc à réaliser un filtrage spatial et temporel du système, là où l'approximation anélastique se résume à un simple filtrage temporel.

En utilisant la relation de Meyer généralisée (II.53) et l'expression du facteur de dissipation D i (II.59), l'équation d'état (II.47) s'écrit

dρ ρ = -α T dT -α ξ dξ + Tα 2 T ρ C p -C v dp = -α T dT -α ξ dξ + D i Tα T C p ρ C p -C v D dψ 0 dr dp (II.74)
En remplaçant les différentielles par les termes de fluctuations, en considérant que T, ξ, ρ et ψ sont dominés par leur valeur dans l'état de référence et en utilisant l'équilibre hydrostatique (II.62), nous aboutissons à

ρ ρ = -α T T -α ξ ξ -D i Tα T C p C p -C v D p dp 0 dr . (II.75)
Le dernier terme peut alors être approximé

D i Tα T C p C p -C v D p dp 0 dr ∼ -D i Tα T C p C p -C v p p 0 = -M 2 (II.76)
permettant ainsi de faire apparaître le nombre de Mach (voir équation II.66) qui tend vers 0 dans l'approximation de Boussinesq. Le dernier terme peut donc être négligé. Finalement, l'équation d'état devient

ρ ρ 0 = -α T T -α ξ ξ . (II.77)
La divergence nulle de u (II.73) permet de simplifier l'expression des forces de viscosité dans l'équation de Navier-Stokes (II.15)

∇ • 2ρν ς - 1 3 (∇ • u) δ = ρ 0 ν∇ 2 u. (II.78)
En injectant les décompositions de ρ, ψ et p dans l'équation de Navier-Stokes (II.15) et en ne conservant que les termes d'ordres 0 et 1, nous obtenons

ρ 0 du dt + 2ρ 0 Ω × u = - dp 0 dr e r -∇p -(ρ 0 + ρ )g o r r o e r -ρ 0 ∇ψ + j × B + ρ 0 ν∇ 2 u. (II.79)
L'équilibre hydrostatique (II.47) permet de simplifier l'équation

ρ 0 du dt + 2ρ 0 Ω × u = -∇p -ρ g o r r o e r + j × B + ρ 0 ν∇ 2 u. (II.80)
Finalement, en remplaçant ρ par son expression (voir équation II.77), nous aboutissons à

ρ 0 du dt + 2ρ 0 Ω × u = -∇p + ρ 0 α T T + α ξ ξ g o r r o e r + j × B + ρ 0 ν∇ 2 u. (II.81)
L'équation de transport chimique (II.45) devient, dans le cadre de l'approximation de Boussinesq

ρ 0 dξ dt = κ ξ ρ 0 ∇ 2 ξ + ∂ξ ∂r dρ 0 dr + H ξ . (II.82)
L'expression de la dérivée radiale de ρ 0 (II.62) est injectée dans cette égalité

dξ dt = κ ξ ∇ 2 ξ - D i ΓD ∂ξ ∂r + H ξ ρ 0 , (II.83)
et fait apparaître le nombre de dissipation D i . Il est alors possible d'estimer le rapport entre les dérivées temporelle et radiale de ξ

D i ∂ξ ∂r ∂ξ ∂t ΓD ∼ D i Γ τ adv τ ξ . (II.84)
Le rapport des temps caractéristiques τ adv et τ ξ est difficile à estimer pour la Terre, du fait de l'incertitude élevée sur la valeur de κ ξ . Néanmoins, il atteint des valeurs bien inférieures à 1 (voir équation I.23). Le second terme du membre de droite peut donc être négligé. Finalement, dans l'approximation de Boussinesq, l'équation de transport chimique s'écrit simplement

dξ dt = κ ξ ∇ 2 ξ + H ξ ρ 0 . (II.85)
De la même manière, l'équation de transport thermique (II.42) peut se simplifier en utilisant l'équation de conservation de la masse (II.73)

dT dt = κ T + ∇ 2 T + H T + Φ ν + Φ η ρ 0 C v , (II.86) où κ T est la diffusivité thermique définie par κ T = k T ρ 0 C v . (II.87)
Dans l'approximation de Boussinesq, l'expression de Φ ν se simplifie

Φ ν = -ρ 0 ν (∇ × u) 2 . (II.88)
Il est alors possible de comparer l'amplitude de ce terme à celle de la dérivée temporelle de T

Φ ν ρ 0 C v ∂T ∂t ∼ νU T DC v . (II.89)
Nous supposons maintenant que tous les termes de l'équation de Navier-Stokes (II.81) sont d'ordre 0. En particulier, nous avons

ρ 0 α T T dψ 0 dr ∼ |ρ 0 ν∇ 2 u • e r |.
(II.90)

Le rapport des deux termes s'exprime donc

Φ ν ρ 0 C v ∂T ∂t ∼ D i C p C v . (II.91)
Le terme de dissipation visqueuse peut donc être négligée dans l'approximation de Boussinesq. Par un raisonnement analogue, il est possible de montrer que

Φ η ρ 0 C v ∂T ∂t ∼ η UD C p C v D i ∼ τ adv τ η C p C v D i . (II.92)
Dans le cas de la Terre, le rapport de temps caractéristique τ adv /τ η est de l'ordre de 10 -3 (voir équation I.23). Le terme de dissipation ohmique peut donc lui aussi être négligé.

En résumé, dans l'approximation de Boussinesq, la dynamique du système est décrite par

                                                 ∇ • u = 0, ρ 0 du dt + 2ρ 0 Ω × u = -∇p + ρ 0 α T T + α ξ ξ g o r r o e r + j × B + ρ 0 ν∇ 2 u, ∂B ∂t = ∇ × (u × B) + η∇ 2 B, dT dt = κ T + ∇ 2 T + H T ρ 0 C v , dξ dt = κ ξ ∇ 2 ξ + H ξ ρ 0 .
(II.93)

Pour la suite, les indices et les exposants sont abandonnés afin de simplifier les notations. Ce système d'équations sera complété par des conditions aux limites dans une section ultérieure.

Adimensionnement

Le système d'équations (II.93) ne possède pas de solution analytique connue. L'étude du système passe par l'exploration d'un espace des paramètres définis par un certain nombre de grandeurs sans dimension indépendantes. Ces dernières permettent de mettre en regard différents processus physiques afin d'identifier des régimes dynamiques. L'adimensionnement du problème passe dans un premier temps par la définition d'échelles caractéristiques. Chacune des variables d'état Xp, u, T, ξ et B -est décomposée sous la forme X = X * x, (II.94) où x et X * correspondent respectivement à l'échelle choisie et à la valeur adimensionnée de X. Nous adoptons ici un adimensionnement similaire à celui de Takahashi (2014). Les longueurs sont mesurées relativement à l'épaisseur de la coquille D = r or i . Les durées s'expriment en temps caractéristique de diffusion τ ν = D 2 /ν. Les échelles de température et de composition dépendent des conditions aux limites choisies. Dans cette partie, nous noterons ∂T et ∂ξ ces deux échelles. L'adimensionnement de l'équation de transport thermique (II.93) conduit à écrire

ν∂T D 2 dT * dt * = κ T ∂T D 2 ∇ 2 * T * + H T ρ 0 C v ⇒ dT * dt * = ∇ 2 * T * Pr + H T * , (II.95) avec H T * = D 2 H T ρ 0 C v ν∂T . (II.96)
Cette mise à l'échelle fait apparaître un premier nombre adimensionné, le nombre de Prandtl Pr défini par le rapport de la viscosité cinématique et de la diffusivité thermique

Pr = ν κ T = τ T τ ν .
(II.97)

Adimensionnement

En termes de temps caractéristiques, Pr s'exprime comme le rapport des temps caractéristiques de diffusions thermique τ T et visqueuse τ ν . De la même manière, l'adimensionnement de l'équation de transport chimique (II.93) s'écrit 

dξ * dt * = ∇ 2 * ξ * Sc + H ξ * avec Sc = ν κ ξ = τ ξ τ ν et H ξ * = D 2 H ξ ρ 0 ν∂ξ , (II.
∂B * ∂t * = ∇ * × (u * × B * ) + ∇ 2 * B * Pm avec Pm = ν η = τ η τ ν , (II.100)
où Pm est le nombre de Prandtl magnétique. Il peut se définir comme le rapport des temps caractéristiques de diffusion magnétique et visqueuse.

Finalement, la normalisation de la pression par ρ 0 (ν/D) 2 et du champ magnétique par ρ 0 µ 0 ηΩ permet d'adimensionner l'équation de Navier-Stokes (II.93)

du * dt * + 2 E e z × u * = -∇ * p * + Ra T Pr T * + Ra ξ Sc ξ * r * r o * e r + 1 EPm (∇ * × B * ) × B * + ∇ 2 * u * . (II.101)
où le nombre d'Ekman E, les nombres de Rayleigh thermique Ra T et chimique Ra ξ sont définis par 

E = ν ΩD 2 = τ Ω τ ν , Ra T = α T g o D 3 ∂T νκ T et Ra ξ = α ξ g o D 3 ∂ξ
∇ 2 T c = -PrH T et ∇ 2 ξ c = -ScH ξ .
(II.104) 

                                               ∇ • u = 0, du dt + 2 E e z × u = -∇p + Ra T Pr T + Ra ξ Sc ξ r r o e r + 1 EPm (∇ × B) × B + ∇ 2 u, ∂B ∂t = ∇ × (u × B) + ∇ 2 B Pm , dT dt = ∇ 2 T Pr + H T , dξ dt = ∇ 2 ξ Sc + H ξ .
( 

Conditions aux limites

Le système d'équations (II.106) doit être complété par des conditions aux limites thermiques, chimiques, cinématiques, dynamiques et magnétiques. Nous considérons un fluide inclus dans une coquille sphérique de volume V o définie par ses rayons interne r i et externe r o . La valeur du rapport d'aspect r i /r o est fixée à 0.35, valeur actuelle pour le noyau liquide de la Terre.

Concernant la vitesse, deux types de conditions aux limites peuvent être adoptés pour le système. Dans les deux cas, la vitesse radiale s'annule aux frontières du fluide. Nous distinguons ainsi d'une part les conditions rigides, dans lesquelles une vitesse horizontale nulle est imposée aux bornes

u(r i , θ, φ) = u(r o , θ, φ) = 0, (II.107)
et les conditions de surface libre de contraintes, qualifiée de stress-free d'autre part, pour lesquelles les contraintes tangentielles (C • e r ) × e r s'annulent aux frontières du système 

u r (r i , θ, φ) = u r (r o , θ, φ) = 0 et ∂ ∂r u φ,θ r (r i ) = ∂ ∂r u φ,θ r (r o ) = 0. (II.
∂T ∂r (r i ) = -1, ∂T ∂r (r o ) = 0, ∂ξ ∂r (r i ) = -1 et ∂ξ ∂r (r o ) = 0. (II.111)
Pour ce choix de conditions aux limites, les échelles de température et de composition sont définies par les gradients en r i

∂T = D ∂T ∂r (r i ) et ∂ξ = D ∂ξ ∂r (r i ) .
(II.112) (ii) Hybride : la température et le flux thermique sont imposés à l'ICB et à la CMB respectivement, tandis que le flux chimique est imposé aux bornes du système

T(r i ) = 0, ∂T ∂r (r o ) = -1, ∂ξ ∂r (r i ) = -1 et ∂ξ ∂r (r o ) = 0. (II.113)
Pour ce choix, les échelles de température et de composition sont définies par les gradients en

r = r i et en r = r o ∂T = D ∂T ∂r (r o ) et ∂ξ = D ∂ξ ∂r (r i ) .
(II.114) (iii) Température et composition fixées : la température et la composition sont imposées aux frontières du domaine fluide

T(r i ) = 1, T(r o ) = 0, ξ(r i ) = 1 et ξ(r o ) = 0. (II.115)
Pour ce choix de conditions aux limites, les unités de température et de composition sont définies par les contrastes en température et en composition

∂T = ∆T = T(r i ) -T(r o ) et ∂ξ = ∆ξ = T(r i ) -T(r o ).
(II.116) Dans notre approche, les sources volumiques H T et H ξ ne modélisent pas la présence possible d'éléments radioactifs dans le noyaux. Ils sont introduits dans les configurations (i) et (ii) afin de pouvoir imposer des flux différents aux frontières du domaine fluide. Pour les conditions aux limites hybrides, H T = 0 tandis que H T = H ξ = 0 lorsque température et composition sont imposées aux deux frontières.

Approche numérique

Le système d'équations (II.106) est résolu à l'aide du code numérique open-source MagIC1 [START_REF] Gastine | Scaling Regimes in Spherical Shell Rotating Convection[END_REF][START_REF] Lago | MagIC v5.10 : A Two-Dimensional MPI Distribution for Pseudo-Spectral Magneto Hydrodynamics Simulations in Spherical Geometry[END_REF][START_REF] Wicht | Inner-Core Conductivity in Numerical Dynamo Simulations[END_REF]. Ce logiciel a été validé au préalable pour la convection double-diffusive à l'aide d'un cas de référence initié par M. [START_REF] Breuer | Thermochemically Driven Convection in a Rotating Spherical Shell[END_REF]. L'objectif de cette partie est de présenter dans les grandes lignes le fonctionnement du code. Une description plus détaillée est fournie par la documentation.

Équation d'évolution des champs scalaires

La divergence nulle de u et de B assure une décomposition de ces deux champs vectoriels en potentiels poloïdal et toroïdal [START_REF] Chandrasekhar | Hydrodynamic and Hydromagnetic Stability[END_REF])

u = ∇ × (∇ × We r ) Champ poloïdal + ∇ × Ze r Champ toroïdal et B = ∇ × (∇ × Ge r ) + ∇ × He r .
(II.117)

Cette opération mathématique permet de réduire le nombre d'inconnues dans le système en éliminant une composante pour chaque champ vectoriel solénoïdal. Les potentiels poloïdaux et toroïdaux peuvent alors être dérivés à partir des identités

e r • u = -∇ 2 h W, e r • (∇ × u) = -∇ 2 h Z, e r • B = -∇ 2 h G et e r • (∇ × B) = -∇ 2 h H, (II.118)
où ∇2 h est la contribution horizontale du laplacien définie par

∇ 2 h = 1 r 2 sin θ ∂ ∂θ sin θ ∂ ∂θ + 1 r 2 sin 2 θ ∂ 2 ∂φ 2 . (II.119) W, Z, G, H, ξ, T et p constituent les nouvelles inconnues à déterminer.
La projection radiale de l'équation d'induction (II.106) associée à l'identité (II.118) permet de déterminer une première équation différentielle pour le potentiel poloïdal magnétique G 2

∇ 2 h - ∂ ∂t + 1 Pm ∂ 2 ∂r 2 + ∇ 2 h G = e r • D avec D = ∇ × (u × B). (II.120)
Les équations d'évolution de Z et H sont obtenues en projetant radialement les rotationnels des équations de Navier-Stokes et d'induction (II.106)

               ∇ 2 h - ∂ ∂t + ∂ 2 ∂r 2 + ∇ 2 h Z = e r • (∇ × F), ∇ 2 h - ∂ ∂t + 1 Pm ∂ 2 ∂r 2 + ∇ 2 h H = e r • (∇ × D) (II.121)
Les équations de transport thermique et chimique (II.106) peuvent être mises sous une forme adaptée à la résolution numérique du système.

               ∂ ∂t - 1 Pr ∂ 2 ∂r 2 + 2 r ∂ ∂r + ∇ 2 h T = -u • ∇T + H T , ∂ ∂t - 1 Sc ∂ 2 ∂r 2 + 2 r ∂ ∂r + ∇ 2 h ξ = -u • ∇ξ + H ξ .
(II.122)

Finalement, deux approches sont possibles pour déterminer une équation d'évolution pour W. La première consiste à considérer la projection radiale de l'équation de Navier-Stokes (II.106)

∇ 2 h - ∂ ∂t + ∂ 2 ∂r 2 + ∇ 2 h W - Ra T Pr T + Ra ξ Sc ξ r r o + ∂p ∂r = e r • F, (II.123) et sa divergence horizontale ∇ 2 h ∂ ∂t ∂ ∂r - ∂ 3 ∂r 3 - 2 r ∇ 2 h + ∇ 2 h ∂ ∂r W + ∇ 2 h p = ∇ h • F, (II.124)
où F regroupe les contributions non-linéaires ainsi que la force de Coriolis 

F = - 2 E e z × u -(u • ∇)u + 1 EPm (∇ × B) × B. (II.125) Dans cette expression, ∇ h • F correspond à la contribution horizontale de la divergence de F ∇ h • F = 1 r sin θ ∂ ∂θ (sin θF θ ) + 1 r sin θ
-∇ 2 h ∂ 4 ∂r 4 + ∇ 2 h 2 ∂ 2 ∂r 2 + ∇ 2 h + 6 r 2 - 4 r ∇ 2 h ∂ ∂r - ∂ ∂t ∂ 2 ∂r 2 + ∇ 2 h W - Ra T Pr ∇ 2 h T + Ra ξ Sc ∇ 2 h ξ r r o = e r • ∇ × ∇ × F, (II.127)
faisant intervenir cette fois-ci une dérivée d'ordre 4. Dans MagIC, la solution adoptée dépend de la discrétisation radiale choisie. L'utilisation de la formulation en double rotationnel des différences finies conduit à supprimer la pression tandis que la décomposition en polynômes de Tchebyshev adopte la première approche, du fait de problèmes de stabilité liés au mauvais conditionnement de la dérivée spatiale d'ordre 4 -le conditionnement étant une fonction croissante de l'ordre de dérivation (voir par exemple [START_REF] Hesthaven | Spectral Methods for Time-Dependent Problems[END_REF]) -et de la localisation dans le plan complexe des valeurs propres des opérateurs du problème parabolo-elliptique [START_REF] Hollerbach | A Spectral Solution of the Magneto-Convection Equationsin Spherical Geometry[END_REF][START_REF] Stellmach | An Efficient Spectral Method for the Simulation of Dynamos in Cartesian Geometry and Its Implementation on Massively Parallel Computers[END_REF].

La résolution numérique du système d'équations (II.120 -II.127) nécessite de discrétiser spatialement et temporellement chaque champ scalaire. Afin d'illustrer les stratégies adoptées dans MagIC, nous allons nous concentrer sur l'équation d'évolution de G (II.120). Par un raisonnement analogue, il est possible de réaliser ces opérations pour chaque champ scalaire. 

Discrétisation spatiale 6.2.a Décomposition en harmoniques sphériques

∇ 2 h Y m = - ( + 1) r 2 Y m . (II.130)
La décomposition en harmoniques sphériques du potentiel magnétique poloïdal G tronquée au degré d'harmonique sphérique max s'écrit

G(r, θ, φ, t) ≈ max =1 m=- G m (r, t)Y m (θ, φ), (II.131) où G m est le coefficient associé à Y m défini par les transformées directes G m (r, θ, t) = 1 2π 2π 0 G(r, θ, φ, t)e -imφ dφ, (Transformée de Fourier), G m (r, t) = 1 π π 0 G m (r, θ, t)P m (cos θ) sin θ dθ (Transformée de Legendre).
(II.132)

Ces transformées permettent de projeter le champ scalaire G, défini sur la grille physique (θ, φ), dans l'espace spectral ( , m). Numériquement, les transformée de Fourier et de Legendre sont respectivement approximées par La décomposition de G en harmoniques sphériques (II.131) associée à l'identité (II.130) permet de réécrire l'équation (II.120

                     G m (r, θ k , t) ≈ 1 N φ N φ j=1 G(r, θ k , φ j , t)e -imφ j avec φ j = 2 jπ N φ , G m (r, t) ≈ 1 N θ N θ k=1 w k G m (r, θ k , t)P m (cos θ k ), ( 
) max =1 ( + 1) r 2 ∂ ∂t + 1 Pm - ∂ 2 ∂r 2 + ( + 1) r 2 G m (r, t)Y m (θ, φ) = e r • D(r, θ, φ, t). (II.134)
En projetant cette égalité sur l'harmonique sphérique Y m nous aboutissons à une équation d'évolution vérifiée par l'ensemble des G m

( + 1) r 2 ∂ ∂t + 1 Pm - ∂ 2 ∂r 2 + ( + 1) r 2 G m (r, t) = S Y m (θ, φ)e r • D(r, θ, φ, t)dS. (II.135)
L'unique terme non-linéaire de l'équation d'induction constitue le membre de droite de cette égalité.

Ce dernier est calculé sur la grille physique avant d'être projeté sur la grille spectrale, ce qui implique les transformées en harmoniques sphériques. Cette formulation pseudo-spectrale est adoptée dans MagIC, car le traitement des termes non-linéaires dans l'espace spectral induirait un couplage d'un grand nombre d'harmoniques sphériques de degrés différents, conduisant ainsi à la manipulation de matrices denses. L'opérateur appliqué à G m dans le membre de gauche est quant à lui indépendant de l'ordre m de l'harmonique sphérique. Suivant les champs considérés, le membre de droite est susceptible de contenir des termes linéaires, comme la force de Coriolis ou la poussée d'Archimède.

6.2.b Discrétisation radiale

Deux stratégies de discrétisation radiale sont mise en oeuvre dans MagIC : les différences finies et une approche spectrale fondée sur la décomposition des fonctions radiales en polynômes de Tchebychev (voir [START_REF] Boyd | Chebyshev and Fourier Spectral Methods : Second Revised Edition[END_REF]. Pour les deux schémas, l'intervalle [r i , r o ] est discrétisé à l'aide d'une grille radiale composée de N r points.

Différences finies

Dans les cas des différences finies, les N r points qui échantillonnent chaque rayon de la coquille sphérique sont équidistants au coeur du volume mais suivent une progression géométrique aux frontières du domaine (voir [START_REF] Dormy | The Onset of Thermal Convection in Rotating Spherical Shells[END_REF]). Cette densification de la grille radiale aux bornes du fluide permet de résoudre les fort gradients observés au sein des couches limites. Le schéma utilisé par MagIC est dit centré. L'expression de la dérivée numérique d'une fonction radiale f en r i fait intervenir f (r i+1 ) et f (r i-1 ). Par exemple la dérivée première de f en r i s'obtient en considérant le développement de Taylor-Young de f en r i+1 et r i-1

               f (r i+1 ) = f (r i ) + h i+1 d f dr (r i ) + h 2 i+1 2 d 2 f dr 2 (r i ) + O h 3 i+1 f (r i-1 ) = f (r i ) -h i d f dr (r i ) + h 2 i 2 d 2 f dr 2 (r i ) + O h 3 i , (II.136) où h i+1 = r i+1 -r i et h i = r i -r i-1 .
L'ajout de points voisins aditionnels permet d'améliorer la précision de la dérivée numérique. Pour un schéma d'ordre 2, la dérivée de f est approximée par

d f dr (r i ) ≈ 1 h i+1 + h i h i h i+1 ( f i+1 -f i ) + h i+1 h i ( f i -f i-1 ) + O (h i h i+1 ) , (II.137) où nous avons adopté la notation f i = f (r i ).
La dérivée seconde est obtenue par un raisonnement analogue

∂ 2 f ∂r 2 = 2 h i + h i+1 f i+1 -f i h i+1 - f i -f i-1 h i - 1 3 (h i+1 -h i ) ∂ 3 f ∂r 3 + O       h 3 i+1 + h 3 i h i + h i+1       . (II.138)
Cette expression contient un terme faisant intervenir la dérivée à l'ordre 3 de f qui constitue l'erreur dominante dans le calcul de la dérivée seconde. Du fait du facteur h i+1h i , ce dernier est spécifique aux grilles irrégulières [START_REF] Dormy | Modélisation Numérique de La Dynamo Terrestre[END_REF]. Afin de minimiser cette erreur, il est commun d'adopter une progression géométrique de la grille radiale avec h i+1 = qh i où q est un facteur proche de 1. MagIC adopte donc un espacement régulier dans le volume convectif et une progression géométrique près des bords pour obtenir une meilleure résolution spatiale des couches limites. Un paramètre d'entrée permet d'ajuster la transition entre les deux segments de la grille [START_REF] Dormy | Modélisation Numérique de La Dynamo Terrestre[END_REF].

Approche spectrale

Dans la seconde approche, chaque fonction radiale est décomposée sur une base formée par les polynômes de Tchebychev {T n } n∈N définis par

∀ n ∈ N, ∀ x ∈ [-1, 1], T n (x) = cos [n arccos(x)] . (II.139)
Il est alors commode de discrétiser l'intervalle [-1, 1] à l'aide d'une grille dite de Gauss-Lobatto dont les points nodaux x k sont définis par

∀ k ∈ 1, N r , x k = cos (k -1)π N r -1 (II.140)
Une grille radiale {r k } k∈ 1,N r est obtenue par une transformation affine de la grille de Gauss-Lobatto

∀ k ∈ 1, N r , r k = 1 2 [(r o -r i )x k + r o + r i ]. (II.141) La décomposition radiale de G m tronquée à l'ordre N r en un point r k s'écrit G m (r k , t) ≈ c N r n=1 G mn (t)T n [x k (r k )] avec c = 2 N r -1 (II.142)
où le double prime indique que les premier et dernier termes de la somme sont multipliés par 1/2 (voir [START_REF] Glatzmaier | Numerical Simulations of Stellar Convective Dynamos. I -The Model and Method[END_REF]. Dans cette expression, G mn correspond au coefficient associé au polynôme

de Tchebychev T n G mn (t) ≈ c N r k=1 G m (x k , t)T n (x k ). avec T n (x k ) = cos πn(k -1) N r -1 . (II.143)
La grille de Gauss-Lobatto (II.140) est particulièrement intéressante car elle permet de calculer des intégrales numériques exactes pour des polynômes de degré inferieur à 2N r -1 (voir le chapitre 2 de [START_REF] Canuto | Spectral Methods. Scientific Computation[END_REF]). Elle permet de plus d'optimiser le passage de la grille physique à la grille spectrale en faisant intervenir des transformées en cosinus discrètes qui possèdent leur propre algorithme de transformée rapide (voir le chapitre 12 de Press et al. 1992). Néanmoins, elle conduit à une densification de la grille radiale à proximité des frontières du système, ce qui peut imposer des restrictions sévères au pas de temps, en particulier lorsque le champ magnétique atteint une amplitude élevée [START_REF] Christensen | Numerical Modelling of the Geodynamo : A Systematic Parameter Study[END_REF]. Afin de limiter cet effet, nous adoptons pour les modèles numériques avec un champ magnétique la transformation proposée par [START_REF] Kosloff | A Modified Chebyshev Pseudospectral Method with an O(N-1) Time Step Restriction[END_REF] qui permet de remplacer x k (voir équation II.140) par X k

∀ k ∈ 1, N r , X k = arcsin (αx k ) arcsin (α) et α ∈ ]0, 1], (II.144)
où α est appelé coefficient de mapping. Afin de maintenir la convergence spectrale de la simulation, α doit vérifier

α ≤ cosh | ln( )| N r -1 -1 , (II.145)
où est la précision machine.

La décomposition de G m (II.142) en polynômes de Tchebychev est injectée dans l'équation (II.135)

∀ k ∈ 1, N r , ∀ ∈ 1, max , N r -1 n=0 A kn dG mn dt (t) = E m [u, B] + N r -1 n=0 I kn G mn (t) (II.146) avec A kn = c ( + 1) r 2 k T n (x k ) , E m [u, B] = S Y m (θ, φ)e r • DdS et I kn = c Pm d 2 T n dr 2 (x k ) -A kn .(II.147)
Dans cette équation I kn regroupe les termes linéaires, qui se trouvaient dans le membre de gauche dans l'équation (II.135), et E m est constitué du terme non-linéaire d'induction. Les différences finies permettent d'aboutir à un système analogue. Les matrices A et I sont des matrices denses de taille N r × N r lorsque la décomposition en polynômes de Tchebychev est utilisée, tandis qu'elles présentent une structure bande si les différences finies sont adoptées. Par la suite, la sommation sur n est rendue implicite par l'utilisation de la convention d'Einstein.

Discrétisation temporelle

Il reste maintenant à présenter la stratégie adoptée pour discrétiser temporellement l'équation (II.147). Dans MagIC, les termes non-linéaires ainsi que la force de Coriolis sont traités explicitement (opérateur E), tandis que les termes linéaires sont traités implicitement (opérateur I). Le schéma est alors qualifié de IMEX (IMplicit/EXplicit). Différents schémas temporels multistep et multistage sont implémentés dans le code.

Schéma multistep

Son principe est illustré au travers de l'équation (II.147). Pour un intervalle de temps δt fixe, le calcul de la solution G mn (t + δt) obtenue après p + 1 itérations temporelles s'exprime 

A kn G p+1 mn = s j=1 a j A kn G p+1-j mn + δt         s j=1 b E j E p+1-j m + s j=0 b I j I kn G p+1-j nm         , ( II 
A kn -b I 0 δtI kn G p+1 mn = s j=1 a j A kn G p+1-j mn + δ t         s j=1 b E j E p+1-j m + b I j I kn G p+1-j nm         , (II.150)
Plusieurs schémas multistep sont disponibles dans MagIC. L'utilisation d'une méthode, appelée CNAB2, associant un schéma de Crank-Nicholson pour les termes implicites et un schéma du second ordre de Adams-Bashforth pour les termes explicites s'est largement démocratisée dans la modélisation numérique de géodynamo depuis les travaux de Glatzmaier (1984). Il est défini par a

= (1, 0) b E = (3/2, -1/2) et b I = (1/2, 1/2, 0
). Le choix de ce schéma numérique conduit à simplifier la relation (II.150)

A kn - δt 2 I kn G p+1 mn = A kn + δt 2 I kn G p mn + δt 2 3E p m -E p-1 m .
(II.151)

Schéma multistage

De manière analogue au précédent schéma, son principe est illustré au travers de l'équation (II.147).

Pour un intervalle de temps δt fixe, n s sous-étapes sont résolues pour avancer l'équation en temps de 

t à t + δt ∀ i ∈ 1, n s , A kn -δta I ii I kn G i mn = G p mn + δt i j=1 a E i j E j m + a I i j I kn G j mn , (II.152) où G i mn est la solution intermédiaire à l'étape i et G p mn celle à l'instant t. À la fin de ces étapes, la solution G p+1 mn à l'instant t + δt s'exprime G p+1 mn = G p mn + δt n s j=1 b E j E j m + b I j I kn G j mn . (II.

Diagnostics

Pour cette partie, nous introduisons les moyennes temporelle

f t = 1 ∆t t 0 +∆t t 0 f (r, t ) dt , (II.154)
où t 0 et ∆t correspondent respectivement à l'instant à partir duquel et la durée sur laquelle f est moyennée, et spatiales 

f S = 1 4π S f (r, t) sin θ dθ dφ et f V = 1 V V f (r, t)
D ν (t) = V o [∇ × u(r, t)] 2 dV et D η (t) = V o +V i [∇ × B(
L = π h ( h + 1)r m ≈ π h r m avec h = max =1 E k,pol t E k,pol t et r m = r i +
Nu = T c (r i ) -T c (r o ) T t,S (r i ) -T t,S (r o ) et Sh = ξ c (r i ) -ξ c (r o ) ξ t,S (r i ) -ξ t,S (

Abstract

Convection in the liquid outer core of the Earth is driven by thermal and chemical perturbations.

The main purpose of this study is to examine the impact of double-diffusive convection on magnetic field generation by means of three-dimensional global geodynamo models, in the so-called "topheavy" regime of double-diffusive convection, when both thermal and compositional background gradients are destabilizing. Using a linear eigensolver, we begin by confirming that, compared to the standard single-diffusive configuration, the onset of convection is facilitated by the addition of a second buoyancy source. We next carry out a systematic parameter survey by performing 79 numerical dynamo simulations. We show that a good agreement between simulated magnetic fields and the geomagnetic field can be attained for any partitioning of the convective input power between its thermal and chemical components. On the contrary, the transition between dipole-dominated and multipolar dynamos is found to strongly depend on the nature of the buoyancy forcing. Classical parameters expected to govern this transition, such as the local Rossby number -a proxy of the ratio of inertial to Coriolis forces-or the degree of equatorial symmetry of the flow, fail to capture the dipole breakdown. A scale-dependent analysis of the force balance instead reveals that the transition occurs when the ratio of inertial to Lorentz forces at the dominant length scale reaches 0.5, regardless of the partitioning of the buoyancy power. The ratio of integrated kinetic to magnetic energy E k /E m provides a reasonable proxy of this force ratio. Given that E k /E m ≈ 10 -4 -10 -3 in the Earth's core, the geodynamo is expected to operate far from the dipole-multipole transition. It hence appears that the occurrence of geomagnetic reversals is unlikely related to dramatic and punctual changes of the amplitude of inertial forces in the Earth's core, and that another mechanism must be sought.

Introduction

The exact composition of Earth's core remains unclear but it is admitted that it is mainly composed of iron and nickel with a mixture of lighter elements in liquid state, such as silicon or oxygen (see [START_REF] Hirose | Composition and State of the Core[END_REF], for a review). The ongoing crystallization of the inner core releases light elements and latent heat at the inner-core boundary (ICB), while the mantle extracts thermal energy from the outer core at the core-mantle boundary (CMB). This combination of processes is responsible for the joint presence of thermal and chemical inhomogeneities within the outer core.

Convection with two distinct sources of mass anomaly is termed double-diffusive convection (e.g. [START_REF] Radko | Double-Diffusive Convection[END_REF]. A key physical parameter of double-diffusive convection is the Lewis number Le, defined as the ratio of the thermal diffusivity κ T to the chemical diffusivity κ ξ . In the liquid core of terrestrial planets, Le reaches at least 10 -10 4 (e.g. [START_REF] Li | The Chemical Diffusivity of Oxygen in Liquid Iron Oxide and a Calcium Ferrite[END_REF][START_REF] Loper | A Study of Conditions at the Inner Core Boundary of the Earth[END_REF].

Under double-diffusive conditions, the increase of the background density with depth does not necessarily imply the stability of the fluid in response to perturbations. As shown in Fig. III.1, three configurations can be considered:

(i) the salt fingering regime, when the background thermal gradient ∇T 0 is stabilizing and the mean compositional gradient ∇ξ 0 is destabilizing;

(ii) the semi-convection regime, when ∇T 0 is destabilizing and ∇ξ 0 is stabilizing;

(iii) the top heavy convection regime (also known as double-buoyant), when both ∇T 0 and and ∇ξ 0 are destabilizing.

These three cases correspond to three quadrants in Fig. III.1, which is inspired by [START_REF] Ruddick | A Practical Indicator of the Stability of the Water Column to Double-Diffusive Activity[END_REF]. Note that being located inside one of these three quadrants does not necessarily guarantee that convection occurs, since, for all configurations, the onset does not coincide with the origin of the diagram: a critical contrast in temperature, or composition, or both, is required to trigger convective motions. In starting with hydrodynamic, non-magnetic studies. Considering the Le 1 limit for a fluid filling a rapidly-rotating annulus, [START_REF] Busse | Is Low Rayleigh Number Convection Possible in the Earth's Core ?[END_REF] theoretically predicted that the addition of chemical buoyancy facilitated the onset of standard thermal convection, in two ways. First by lowering the critical value of the Rayleigh number required to trigger the classical spiralling thermal Rossby waves of size and frequency proportional to E 1/3 and E -2/3 , respectively, where E = ν/ΩD 2 is the non-dimensional Ekman number, ν being the kinematic viscosity, Ω the rotation rate and D the size of the fluid domain. Second, and more importantly, by enabling a second class of instability. The latter is characterized by a much lower onset, independent of E, a critical length scale of the order of the size of the fluid domain, and a very small frequency, proportional to E. [START_REF] Busse | Is Low Rayleigh Number Convection Possible in the Earth's Core ?[END_REF] referred to this class of instability as "nearly steady" (i. e. slow) convection, and he argued that it could facilitate "immensely" convection in Earth's core, though with several caveats (see Busse 2002, for details). [START_REF] Simitev | Double-Diffusive Convection in a Rotating Cylindrical Annulus with Conical Caps[END_REF] pushed the analysis further for various Le, and stressed that the critical onset curve for convective instability in a rotating annulus forms disconnected regions of instabilities in the parameter space. In particular, the second family of modes (i.e. the slow modes) are stable whenever the compositional gradient is destabilizing. Tr ümper et al. ( 2012), [START_REF] Net | Numerical Study of the Onset of Thermosolutal Convection in Rotating Spherical Shells[END_REF] and [START_REF] Silva | The Onset of Thermo-Compositional Convection in Rotating Spherical Shells[END_REF] studied the onset of double-diffusive convection in a spherical shell geometry. In the top-heavy regime with 3 ≤ Le ≤ 10, Tr ümper et al. ( 2012) confirmed that the addition of a secondary buoyancy source facilitates the convective onset. [START_REF] Net | Numerical Study of the Onset of Thermosolutal Convection in Rotating Spherical Shells[END_REF] showed that the properties of the critical onset mode, such as its drift frequency or its azimuthal wave number, strongly depends on the fractioning between thermal and compositional buoyancy. Using a linear eigensolver, [START_REF] Silva | The Onset of Thermo-Compositional Convection in Rotating Spherical Shells[END_REF] carried out a systematic survey of the onset of convection in spherical shells for the different double-diffusive regimes. In the top-heavy configuration with Le = 25, they showed that the convection onset is characterized by an abrupt change between the purely thermal and the purely compositional eigenmodes depending on the relative proportion of the two buoyancy sources. In addition, they demonstrated that the onset mode features the same asymptotic dependence on the Ekman number as classical thermal Rossby waves over the entire top-heavy regime (top-right quadrant of Figure III.1), thereby casting some doubt on the likelihood of the occurrence of slow modes.

Tr ümper et al. ( 2012) performed a series of non-linear, moderately supercritical, rotating convection calculations at constant Le = 10, for different proportions of chemical and thermal driving. To that end, they conducted a parameter survey, varying the chemical and thermal Rayleigh numbers, to be defined below, while keeping their sum constant. This way of sampling the parameter space, however, does not guarantee that the total buoyancy input power stays constant. This complicates the interpretation of their results, for instance regarding the influence of compositional and thermal forcings on the convective flow properties.

Let us now turn our attention to the few self-consistent dynamo calculations in the top-heavy regime published to date (marked with a cross in the top-right quadrant of Fig. III.1). The first integration was reported by [START_REF] Glatzmaier | An Anelastic Evolutionary Geodynamo Simulation Driven by Compositional and Thermal Convection[END_REF]. This calculation was an anelastic, double-diffusive extension of the celebrated Boussinesq simulation of the geodynamo by [START_REF] Glatzmaier | A Three-Dimensional Convective Dynamo Solution with Rotating and Finitely Conducting Inner Core and Mantle[END_REF]. [START_REF] Glatzmaier | An Anelastic Evolutionary Geodynamo Simulation Driven by Compositional and Thermal Convection[END_REF] assumed enhanced and equal values of the diffusivities, i.e. Le = 1. Consequently, that simulation did not exhibit stark differences with the purely thermal convective model, except that the dipole did not reverse over the course of the simulated 40, 000 years. The second numerical investigation of geodynamo models driven by top-heavy convection was conducted by [START_REF] Takahashi | Double Diffusive Convection in the Earth's Core and the Morphology of the Geomagnetic Field[END_REF]. His models were based on the Boussinesq approximation with Le = 10 and relatively large Ekman numbers (E ≥ 2 × 10 -4 ). In addition, [START_REF] Mather | Regimes of Thermo-Compositional Convection and Related Dynamos in Rotating Spherical Shells[END_REF] identified a few top-heavy Boussinesq dynamos with Le = 25 and E = 10 -4 , that used stress-free mechanical boundary conditions and appeared to be close to onset. Top-heavy dynamo simulations were also performed by [START_REF] Manglik | A Dynamo Model with Double Diffusive Convection for Mercury's Core[END_REF] and [START_REF] Takahashi | Mercury's Anomalous Magnetic Field Caused by a Symmetry-Breaking Self-Regulating Dynamo[END_REF] in the context of modelling Mercury's dynamo. Double-diffusive models of the geodynamo are the exception rather than the rule, essentially on the account of Occam's razor. Efforts carried out in the community since the mid nineteen-nineties have been towards understanding the most salient properties of the geomagnetic field using a minimum number of ingredients (e.g. Wicht and Sanchez 2019, for a review). To that end, the codensity formalism introduced by [START_REF] Braginsky | Equations Governing Convection in Earth's Core and the Geodynamo[END_REF] is particularly attractive: it assumes that the molecular values of κ ξ and κ T can be replaced by a single turbulent transport property. Consequently, the mass anomaly field can be described by a single scalar, termed the codensity, that aggregates the two sources of mass anomaly. This approach has the benefit of (i) removing one degree of freedom and (ii) mitigating the numerical cost by suppressing the scale separation between chemical and thermal fields when Le The codensity formalism was quite successful in reproducing some of the best constrained features of the geomagnetic field and its secular variation (e.g. [START_REF] Aubert | Bottom-up Control of Geomagnetic Secular Variation by the Earth's Inner Core[END_REF][START_REF] Christensen | Conditions for Earth-like Geodynamo Models[END_REF][START_REF] Schaeffer | Turbulent Geodynamo Simulations : A Leap towards Earth's Core[END_REF][START_REF] Wicht | Advances in Geodynamo Modelling[END_REF]. Most geodynamo models actually assume that the diffusivity of the codensity field equals the kinematic viscosity, yielding a Prandtl number of unity. A remarkable property of the geodynamo that remains to be explained satisfactorily from the numerical modelling standpoint, is its ability to reverse its polarity every once in a while, that is to go from a dipole-dominated state to another dipole-dominated state through a transient multipolar state (see e.g. Valet and Fournier 2016, for a recent review of the relevant paleomagnetic data). A possibility is that the geodynamo has been, at least punctually in its history, in a dynamical state that can enable the switch between dipole-dominated and multipolar states to occur. A key question that follows is therefore: what are the physical processes that control the transition between dipole-dominated dynamos and multipolar dynamos? This has been analyzed intensively numerically, starting with the systematic approach of [START_REF] Kutzner | From Stable Dipolar towards Reversing Numerical Dynamos[END_REF], who demonstrated that a stronger convective driving led to a dipole breakdown, and that for intermediate values of the forcing, the simulated field could oscillate between dipolar and multipolar states. [START_REF] Sreenivasan | The Role of Inertia in the Evolution of Spherical Dynamos[END_REF] showed that an increasing role of inertia (through stronger driving) perturbed the dominant Magneto-Archimedean-Coriolis force balance to the point that it led to a less structured and less dipole-dominated magnetic field. In the same vein, [START_REF] Christensen | Scaling Properties of Convection-Driven Dynamos in Rotating Spherical Shells and Application to Planetary Magnetic Fields[END_REF] assumed that the transition is due to a competition between inertia and Coriolis force. They introduced a diagnostic quantity termed the local Rossby number Ro L = U/ΩL, as a proxy of this force ratio. Here U denotes the average flow speed and L is an integral measure of the convective flow scale. Based on their ensemble of simulations, [START_REF] Christensen | Scaling Properties of Convection-Driven Dynamos in Rotating Spherical Shells and Application to Planetary Magnetic Fields[END_REF] concluded that the breakdown of the dipole occurred above a critical value of about Ro L 0.12, in what appeared a relatively sharp transition (see also [START_REF] Christensen | Dynamo Scaling Laws and Applications to the Planets[END_REF]. If this reasoning gives a satisfactory account of the numerical dataset, its extrapolation to Earth's core regime raises questions (e.g. [START_REF] Oruba | Transition between Viscous Dipolar and Inertial Multipolar Dynamos[END_REF]. Since the geomagnetic dipole reversed in the past, the numerical evidence collected so far (see [START_REF] Wicht | Theory and Modeling of Planetary Dynamos[END_REF], for a review) suggests that the geodynamo could lie close to the transition between dipolar and multipolar states. This implies that Ro L could be of the order of 0.1 for the Earth's core. Geomagnetic reversals should then reflect the action of a convective feature of scale L of about 50 m (see [START_REF] Aubert | Spherical Convective Dynamos in the Rapidly Rotating Asymptotic Regime[END_REF][START_REF] Davidson | Scaling Laws for Planetary Dynamos[END_REF]. It is very unlikely that such a small-scale flow could significantly alter a dipole-dominated magnetic field.

According to [START_REF] Soderlund | The Influence of Magnetic Fields in Planetary Dynamo Models[END_REF], the breakdown of the dipole is rather due to a decrease of the relative helicity of the flow. In numerical dynamo simulations, coherent helicity favors large-scale poloidal magnetic field through the α-effect (see [START_REF] Parker | Hydromagnetic Dynamo Models[END_REF] at work in convection columns and it therefore contributes actively to the production and the maintenance of dipolar field (e.g. [START_REF] Olson | Numerical Modelling of the Geodynamo : Mechanism of Field Generation and Equilibration[END_REF]. Conversely, the dipolar field can promote a more helical flow, with the Lorentz force enhancing the flow along the axis of convection columns, as shown by [START_REF] Sreenivasan | Helicity generation and subcritical behaviour in rapidly rotating dynamos[END_REF]. By measuring the integral force balance for dipolar and multipolar numerical dynamos, [START_REF] Soderlund | The Influence of Magnetic Fields in Planetary Dynamo Models[END_REF] noticed that the Coriolis force remained dominant, even in multipolar models. Accordingly, they suggested that, in their models, the modification of the flow structure was rather controlled by a competition of second-order forces, with the ratio of inertia to viscous forces as the parameter controlling the transition.

The role played by viscous effects was further stressed by [START_REF] Oruba | Transition between Viscous Dipolar and Inertial Multipolar Dynamos[END_REF], who proposed that the transition from dipolar to multipolar dynamos in the numerical dataset was controlled by a triple force balance between Coriolis force, viscosity, and inertia. A local Rossby number constructed using the viscous lengthscale, E 1/3 D, as opposed to the integral scale L discussed above, carries the same predictive power in separating dipolar from multipolar dynamo models (their Fig. 4). This argument was subsequently refined by [START_REF] Garcia | Equatorial Symmetry Breaking and the Loss of Dipolarity in Rapidly Rotating Dynamos[END_REF], who included the Prandtl number dependence of the critical convective length scale when defining the local Rossby number. From a mechanistic point of view, [START_REF] Garcia | Equatorial Symmetry Breaking and the Loss of Dipolarity in Rapidly Rotating Dynamos[END_REF] showed that the dipole breakdown was not necessarily correlated to a decrease of the relative helicity, but rather to a weakening of the equatorial symmetry of the flow. Introducing the proportion of kinetic energy contained in this equatorially symmetric component, they demonstrated that the transition could be satisfactorily explained by a sharp decrease of that quantity when the refined local Rossby number exceeded a value of 0.2 (their Fig. 3d). This would imply that the transition from a dipolar state to a multipolar state would essentially be a hydrodynamic transition. Discussing the implication of their results for the geodynamo, they clearly stated that the role of inertia was presumably overestimated in the numerical dataset that had been investigated so far, stressing the need for stronger field dynamos, where the magnetic field could possibly have an active role.

The early numerical dataset admittedly contained a majority of dynamos operating at large Ekman numbers, and relatively low magnetic Prandtl number Pm. In the dynamos studied by [START_REF] Soderlund | The Influence of Magnetic Fields in Planetary Dynamo Models[END_REF], the convective flow was not dramatically altered by the presence of a self-sustained magnetic field. Since then, a large number of simulations have been published with lower values of E and comparatively larger values of Pm [START_REF] Menu | Magnetic Effects on Fields Morphologies and Reversals in Geodynamo Simulations[END_REF][START_REF] Schaeffer | Turbulent Geodynamo Simulations : A Leap towards Earth's Core[END_REF][START_REF] Schwaiger | Force Balance in Numerical Geodynamo Simulations : A Systematic Study[END_REF][START_REF] Yadav | Approaching a Realistic Force Balance in Geodynamo Simulations[END_REF]. For those strong-field dynamos, in the sense of a ratio of bulk magnetic energy to bulk kinetic energy larger than one, the magnetic field has a significant impact on the flow, and on the dipolar-multipolar transition. [START_REF] Menu | Magnetic Effects on Fields Morphologies and Reversals in Geodynamo Simulations[END_REF] reported simulations with a prevailing Lorentz force, that remain dipolar way beyond the supposedly critical Ro L 0.12 value. Given that Earth hosts a strong-field dynamo, it is then worth investigating whether the competition between Lorentz force and inertia may actually lead to the transition.

In order to shed light on this particular issue, and to further strengthen our understanding of doublediffusive dynamos, we have performed a suite of 79 novel dynamo models, comprising 44, 20, 15 simulations with top-heavy, purely thermal, purely chemical driving, respectively. The goal of this work is twofold: on the one hand, we will follow an approach similar to that of [START_REF] Takahashi | Double Diffusive Convection in the Earth's Core and the Morphology of the Geomagnetic Field[END_REF] and study to which extent the relative proportion of chemical to thermal driving impacts the earthlikeness (in a morphological sense) of the simulated magnetic fields. On the other hand, we will examine whether this proportion has an impact on the dipolar to multipolar transition. [START_REF] Takahashi | Double Diffusive Convection in the Earth's Core and the Morphology of the Geomagnetic Field[END_REF] reported a drop of the dipolarity when the relative contribution of thermal convection to the total input power exceeds 65 %. We will analyze whether this was a fortuitous consequence of the cases he considered, and whether we can find a more general rationale to explain the transition, by careful inspection of the force balance at work. This paper is organized as follows: the derivation of the governing equations and their numerical approximations are presented in Section 2. The results are described in Section 3. We proceed by firstly investigating the onset of convection for top-heavy convection. The impact of the input power distribution on the Earth-likeness is then explored. Finally we examine the transition between dipolar and multipolar dynamos. Section 4 discusses the results and their geophysical implications.

Model and methods

Hypotheses

We operate in spherical coordinates (r, θ, ϕ) and consider a spherical shell of volume V o filled with a fluid delimited by the inner core boundary (ICB), located at the radius r i , on one side and by the 

U (0.3 -2.0) × 10 -3 m • s -1
Finlay and Amit (2011) core mantle boundary (CMB), located at the radius r o , on the other side with r i /r o = 0.35. The shell rotates about the e z -axis with a constant rotation rate Ω, where e z is the unit vector in the direction of rotation. The equation of state

ρ = ρ 0 [1 -α T (T -T 0 ) -α ξ (ξ -ξ 0 )], (III.1)
describes how the density of the fluid ρ varies with temperature T and composition ξ. In this equation, α T and α ξ are the coefficients of thermal and chemical expansion, T 0 , ρ 0 and ξ 0 the average temperature, density and composition of lighter elements in the outer core.

The properties of the fluid, including its kinematic viscosity ν, its magnetic diffusivity η, its specific heat C p , its chemical and thermal diffusivity (κ ξ , κ T ), its coefficients of thermal and chemical expansion (α T , α ξ ) are assumed to be spatially uniform and constant in time. Due to the almost uniform density in the outer core, we also assume a linear variation of the acceleration of gravity g with radius. The physical and thermodynamical properties of the Earth's core relevant for this study are given in Table III.1.

Governing equations

Convection of an electrically-conducting fluid gives rise to a magnetic field B. The state of the fluid is then described by the velocity field u, the magnetic field B, the pressure p, the temperature T and the composition ξ. The equations governing the dynamics of the flow under the Boussinesq approximation are cast in a non-dimensional form. We adopt the thickness of the shell D = r or i as reference length scale and the viscous diffusion time D 2 /ν as time scale. A velocity scale is then given by ν/D. Composition is scaled by

∂ξ = ∂ξ ∂r (r i ) D, (III.2)
pressure by ρ 0 (ν/D) 2 , power by ν 3 ρ 0 /D and magnetic induction by ρ 0 µ 0 ηΩ, where µ 0 is the magnetic permeability of vacuum. Temperature unit is based on the temperature gradient at r i ,

∂T = ∂T ∂r (r i ) D, or at r o , ∂T = ∂T ∂r (r o ) D, (III.3)
depending on the thermal boundary conditions. Under the Boussinesq approximation, the equation for the conservation of mass is

∇ • u = 0. (III.4)
The dynamics of the flow is described by the Navier-Stokes equation, expressed in the frame rotating with the mantle

du dt = - 2 E e z × u + Ra T Pr T + Ra ξ Sc ξ r r o e r -∇p + 1 EPm [(∇ × B) × B] + ∇ 2 u, (III.5)
where r is the unit vector in the radial direction. The time evolution of the magnetic field under the magnetohydrodynamics approximation is given by the induction equation

∂B ∂t = ∇ × (u × B) + 1 Pm ∇ 2 B with ∇ • B = 0. (III.6)
Finally, the evolution of entropy and composition are governed by the similar transport equations The thermal and chemical Rayleigh numbers

dT dt = 1 Pr ∇ 2 T + H T , ( 
Ra T = α T g 0 D 3 ∂T νκ T and Ra ξ = α ξ g 0 D 3 ∂ξ νκ ξ , (III.12)
where g o is the gravitational acceleration at the CMB, measure the vigour of thermal and chemical convection. Note that the Lewis number Le discussed in the Introduction is the ratio of the Schmidt number to the Prandtl number,

Le = κ T κ ξ = Sc Pr . (III.13)
Table III.2 provides estimates of these control parameters for the Earth's core. These nondimensional number express the ratio of characteristic physical time scales

E = τ Ω τ ν , Pm = τ η τ ν and Le = τ ξ τ T , (III.14)
where τ Ω = 1/Ω is the typical rotation time, τ ν = D 2 /ν the viscous diffusion time, τ η = D 2 /η the magnetic diffusion time, τ T = D 2 /κ T the thermal diffusion time and τ ξ = D 2 /κ ξ the chemical diffusion time.

Earth's outer core evolves on a broad range of time scales, as one can glean from the inspection of Table III.3. In particular, even if the evolution of temperature and composition are governed by similar transport equations (see Eq. III.7 and III.8), thermal diffusion is much more efficient than chemical diffusion, which causes the Lewis number to greatly exceeds unity (see Tab. III.2). This implies that the typical lengthscale of chemical heterogeneities is possibly several orders of magnitude smaller than the length scale of thermal heterogeneities. The values of the control parameters spanned by the simulations presented in this work are discussed in section 2.2.6.

Boundary conditions

The inner core is growing and is ejecting light elements because of its crystallization, which in principle yields coupled boundary conditions for temperature and composition (e.g. [START_REF] Anufriev | The Boussinesq and Anelastic Liquid Approximations for Convection in the Earth's Core[END_REF][START_REF] Glatzmaier | An Anelastic Evolutionary Geodynamo Simulation Driven by Compositional and Thermal Convection[END_REF]. For the sake of simplicity, thermal and chemical boundary conditions are considered as decoupled here, as in e.g. [START_REF] Takahashi | Double Diffusive Convection in the Earth's Core and the Morphology of the Geomagnetic Field[END_REF]. We consider two different setups to explore the impact of varying the thermal boundary conditions: (i) Fixed fluxes: thermal and composition fluxes are imposed at both boundaries with

∂T ∂r (r i ) = -1, ∂ξ ∂r (r i ) = -1, ∂T ∂r (r o ) = 0 and ∂ξ ∂r (r o ) = 0. (III.15)
(ii) Hybrid: temperature is fixed at the ICB while the temperature flux is imposed at the CMB, the boundary conditions on chemical composition are the same as in the previous setup

T(r i ) = 0, ∂ξ ∂r (r i ) = -1, ∂T ∂r (r o ) = -1 and ∂ξ ∂r (r o ) = 0.
(III.16) No-slip mechanical boundary conditions are used at both boundaries. The mantle is assumed to be insulating, such that the magnetic field at the CMB has to match a source-free potential field. The inner core is treated as a rigid electrically-conducting sphere which can freely rotate around the e z -axis (e.g. [START_REF] Hollerbach | A Spectral Solution of the Magneto-Convection Equationsin Spherical Geometry[END_REF][START_REF] Wicht | Inner-Core Conductivity in Numerical Dynamo Simulations[END_REF]). Its rotation is a response to the viscous and magnetic torques exerted by the outer core on the inner core. The conductivity of the inner core is assumed to be equal to that of the outer core, and its moment of inertia is calculated by using the same density as the liquid outer core. 

Numerical approach

We solve the system of equations (III.4-III.8) using the open-source geodynamo code MagIC 2 (Gas- et al. 2016;[START_REF] Wicht | Inner-Core Conductivity in Numerical Dynamo Simulations[END_REF]. This code has been validated against a benchmark for double-diffusive convection initiated by M. [START_REF] Breuer | Thermochemically Driven Convection in a Rotating Spherical Shell[END_REF].

tine
The solenoidal vectors u and B are decomposed in poloidal and toroidal potentials

         u(r, t) = ∇ × ∇ × [W(r, t)r] + ∇ × [Z(r, t)r] , B(r, t) = ∇ × ∇ × [G(r, t)r] + ∇ × [H(r, t)r] ,
(III.17

)
where r is the radius vector. The new unknowns are then W, Z, G, H, T, ξ and p.

Each of these scalar fields is expanded in spherical harmonics to maximum degree and order max in the horizontal direction. The spherical harmonic representation of the magnetic poloidal potential G reads

G(r, θ, φ, t) max =0 m=- G m (r, t)Y m (θ, φ) (III.18)
where G m (r, t) is the coefficient associated to Y m , the spherical harmonic of degree and order m. The non-linear terms are calculated in physical space. The open-source SHTns library 3 (see Schaeffer 2013) is used to compute the forward and inverse spectral transforms on the unit-sphere.

In the radial direction, MagIC uses either a finite difference scheme, or a Chebyshev collocation method (see [START_REF] Boyd | Chebyshev and Fourier Spectral Methods : Second Revised Edition[END_REF]. The finite difference grid, whose number of points is denoted by N r , is regularly spaced in the bulk of the domain, and follows a geometric progression near the boundaries (see [START_REF] Dormy | The Onset of Thermal Convection in Rotating Spherical Shells[END_REF]). When the collocation approach is selected, Chebyshev polynomials are truncated at degree N and the N r collocation points r k are defined by

∀k ∈ [[1, N r ]],                r k = 1 2 [(r o -r i )x k + r o + r i ] x k = cos (k -1)π N r -1 . (III.19)
Due to the particular choice of spatial grid given by the equation above, the transforms between physical grid and Chebyshev representation are carried out by fast discrete cosine transform (see Press et al. 1992, chapter 12). This discretisation yields a point densification close to the boundaries which could impose severe time step restrictions when the magnetic field is strong (see [START_REF] Christensen | Numerical Modelling of the Geodynamo : A Systematic Parameter Study[END_REF]. To mitigate this effect, we adopt the mapping proposed by [START_REF] Kosloff | A Modified Chebyshev Pseudospectral Method with an O(N-1) Time Step Restriction[END_REF] and replace x k in Eq. (III.19) by 

∀k ∈ [[1, N r ]], X k = arcsin(αx k ) arcsin(α) with α ∈]0,
∆r min ∼ N -1 r ∼ N -1 r ∼ N -1 r ∼ N -2 r Regular grid (α → 1) Finite difference α = α max Chebyshev-Gauss-Lobatto (α → 0) Figure III.2 -Minimal
grid spacing ∆r min between two radial points as a function of the number of collocation points N r for a regularly-spaced grid, the grid used when finite differences are employed, the collocation grid with the mapping by [START_REF] Kosloff | A Modified Chebyshev Pseudospectral Method with an O(N-1) Time Step Restriction[END_REF] with a mapping coefficient α max (Eq. III.21) and the standard Gauss-Lobatto grid.

where α is the mapping coefficient. To maintain the spectral convergence of the simulation α has to verify

α ≤ α max = cosh | ln( )| N r -1 -1 , (III.21)
where is the machine precision.

Figure III.2 shows the minimum grid spacing ∆r min as a function of N r for a regular grid, the finite difference grid with geometrical clustering near the boundaries, and two collocation grids, with α → 0 (Gauss-Lobatto grid) and α = α max . Because ∆r min ∼ N -2 r when using the classical Gauss-Lobatto grid, adopting the mapping by [START_REF] Kosloff | A Modified Chebyshev Pseudospectral Method with an O(N-1) Time Step Restriction[END_REF] yields a possible increase of ∆r min by a factor 2 -3 when N r 100. The time step size could in principle rise by a comparable amount, should it be controlled by the propagation of Alfvén waves in the vicinity of the boundaries [START_REF] Christensen | Numerical Modelling of the Geodynamo : A Systematic Parameter Study[END_REF]. Using the finite difference method enables even larger grid spacing and hence possible additional gain in the time step size. This speed-up shall however be mitigated by the fact that N r has to be increased by a factor 1.5 to 3 when using finite differences to achieve an accuracy comparable to that of the Chebyshev collocation method (see [START_REF] Christensen | A Numerical Dynamo Benchmark[END_REF][START_REF] Matsui | Performance Benchmarks for a next Generation Numerical Dynamo Model[END_REF].

G m is then expanded in truncated Chebyshev series G m (r k , t) 2 N r -1 N-1 n=0 G mn (t)T n (r k ), (III.22) with G mn (t) 2 N r -1 N r n=1 G m (x k , t)T n (x k ), (III.23)
where the double primes on the summations indicate that the first and the last indices are multiplied by one half (see [START_REF] Glatzmaier | Numerical Simulations of Stellar Convective Dynamos. I -The Model and Method[END_REF]). In the above equations, T n (x k ) is the n-th order Chebyshev polynomial at the collocation point x k defined by

T n (x k ) = cos[n arccos(x k )] = cos πn(k -1) N r -1 . (III.24)
Further details on spherical harmonics and Chebyshev polynomials expansion can be found in [START_REF] Tilgner | Spectral Methods for the Simulation of Incompressible Flows in Spherical Shells[END_REF] and [START_REF] Christensen | Numerical Dynamo Simulations[END_REF].

Once the spatial discretisation has been specified, the set of equations (III.4-III.8) complemented by the boundary conditions (see Eq. III.15 and III.16) forms a semi-discrete system where only the time discretisation remains to be expressed. As an example, the time evolution of the poloidal potential for the magnetic field G m (r k ) (see Eq. III.22) can be written as an ordinary differential equation

             dG m dt (r k , t) = E[u, B] + I[G m ], G m (x k , t 0 ) = G 0 m (x k ), (III.25)
where G 0 m (r k ) is the initial condition, E a non linear-function of u and B and I a linear function of G m . The above equation serves as a canonical example of the treatment of the different contributions: the non-linear terms are treated explicitly (function E) while the remaining linear terms are handled implicitly (function I). In MagIC, several implicit/explicit (IMEX) time schemes are employed to time advance the set of equations (III.4-III.8) from t to t + δt:

(i) a combination of a Crank-Nicolson for the implicit terms and a second-order Adams-Bashforth for the explicit terms called CNAB2 (see [START_REF] Glatzmaier | Numerical Simulations of Stellar Convective Dynamos. I -The Model and Method[END_REF],

(ii) two IMEX Runge-Kutta : PC2 (see [START_REF] Jameson | Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge Kutta Time Stepping Schemes[END_REF]) and BPR353 (see [START_REF] Boscarino | Implicit-Explicit Runge-Kutta Schemes for Hyperbolic Systems and Kinetic Equations in the Diffusion Limit[END_REF]).

CNAB2 has been commonly used in geodynamo models since the pioneering work of [START_REF] Glatzmaier | Numerical Simulations of Stellar Convective Dynamos. I -The Model and Method[END_REF]. IMEX Runge-Kutta schemes have been rarely employed in the context of geodynamo models [START_REF] Glatzmaier | An Anelastic Evolutionary Geodynamo Simulation Driven by Compositional and Thermal Convection[END_REF], rapidly-rotating convection in spherical shells [START_REF] Marti | A Computationally Efficient Spectral Method for Modeling Core Dynamics[END_REF] or quasi-geostrophic models of 2-D convection [START_REF] Gastine | Pizza : An Open-Source Pseudo-Spectral Code for Spherical Quasi-Geostrophic Convection[END_REF]. For IMEX Runge-Kutta schemes, s substages are solved to time-advance Eq. (III.25) from t to t + δt

G i m (r k ) = G m (r k , t) + δt i j=0 a E i,j E j + a I i, j I j , (III.26) where i ∈ [[0, s]], G i m is the intermediate solution at substage i, E j = E[B, u](t + c E j δt) and I j = I[G m ](t + c I j δt). G m (r k , t + δt) is then given by G m (r k , t + δt) = G m (r k , t) + δt s j=0 b E j E j + b I j I j (III.27)
In the above equations, the matrices a I and a E and the vectors b I , b E , c E and c I form the so-called Butcher tables of the IMEX Runge Kutta schemes given in Appendix III.A. Since the last lines of a E,I are equal to b E,I for PC2 and BPR353, the last operation to retrieve G m (r k , t + δt) (Eq. III.27) is actually redundant with the last sub-stage (see [START_REF] Ascher | Implicit-Explicit Runge-Kutta Methods for Time-Dependent Partial Differential Equations[END_REF]. IMEX Runge-Kutta schemes require more computational operations to time advance the set of equations(III.4-III.8) from t to t + δt than CNAB2. However, they allow larger time step sizes that compensate for this extra numerical cost [START_REF] Marti | A Computationally Efficient Spectral Method for Modeling Core Dynamics[END_REF]) and they are more accurate and stable. Since BPR353 is a third-order scheme, it is particuraly attractive to ensure an accurate equilibration of the most turbulent runs.

Simulation diagnostics

For each diagnostic quantity f , we adopt in the following overbars for time averaging and angle brackets for spatial averaging

f t = 1 t avg t 0 +t avg t 0 f (t) dt and f V = 1 V V f (r, t) dV, (III.28)
where t avg corresponds to the averaging time.

2.5.a Integral quantities and scales

The magnetic E m and kinetic E k energies are given by

E m (t) + E k (t) = 1 2 V o +V i B 2 (r, t) EPm dV + V o u 2 (r, t) dV , (III.29)
where V i is the inner core volume. By multiplying the Navier-Stokes equation (III.5) by u and the induction equation (III.6) by B, we obtain the following power balance

d dt (E k + E m ) (t) = P T (t) + P ξ (t) -D ν (t) -D η (t).
(III.30)

In the case of double-diffusive convection, the energy is provided by chemical and thermal buoyancy power P ξ and P T defined by

                 P ξ (t) = V o Ra ξ Sc ξ(r, t) r r o u r (r, t) V o P T (t) = V o Ra T Pr T(r, t) r r o u r (r, t) V o (III.31)
and dissipated by viscous and Ohmic dissipations D ν and D η given by

               D ν (t) = V o [∇ × u(r, t)] 2 V o D η (t) = (V o + V i ) [∇ × B(r, t)] 2 EPm 2 V o +V i . (III.32)
Once a statistically steady state has been reached, the input buoyancy powers should compensate the Ohmic and viscous dissipations. Following [START_REF] King | Heat Transfer by Rapidly Rotating Rayleigh-Bénard Convection[END_REF], to assess the consistency of the numerical computations, we measure the time-average difference between input and output powers ∆P

∆P = 100 × P T + P ξ -D ν -D η t P T + P ξ t . (III.33)
We made sure that this difference remained lower than 1.5 % for all the simulations reported in this study. This value is below the 2 % threshold considered as sufficient to ensure the convergence of integral diagnostics (see [START_REF] Gastine | Turbulent Rayleigh-Bénard Convection in Spherical Shells[END_REF][START_REF] King | Heat Transfer by Rapidly Rotating Rayleigh-Bénard Convection[END_REF]. For each simulation, the total convective power P tot and the relative thermal convective power P % T are defined by P tot = P T (t) + P ξ (t) t and P % T = P T (t) P T (t) + P ξ (t) t × 100. (III.34) P % T hence vanishes for a purely chemical forcing and is equal to 100 % for a purely thermal forcing.

Following [START_REF] Christensen | Scaling Properties of Convection-Driven Dynamos in Rotating Spherical Shells and Application to Planetary Magnetic Fields[END_REF] and [START_REF] Schwaiger | Force Balance in Numerical Geodynamo Simulations : A Systematic Study[END_REF], we introduce two quantities to characterise the typical flow lengthscale. The integral scale L already discussed in the introduction is obtained from the time-averaged kinetic energy spectrum

L = π 2 E k (t) t u (t) • u (t) t , (III.35)
where u • u t /2 is the kinetic energy contained in spherical harmonic degree , while the dominant lengthscale is defined as the peak of the poloidal kinetic energy spectra [START_REF] Schwaiger | Force Balance in Numerical Geodynamo Simulations : A Systematic Study[END_REF], 2020)

= argmax E k,pol (t) t , (III.36)
where E k,pol is the contribution of spherical harmonic degree to the total poloidal kinetic energy.

In order to explore the impact of the equatorial symmetry of the flow on the dipole-multipole transition, we consider the relative equatorially-symmetric kinetic energy ζ introduced by Garcia et al.

(

) ζ = E s,NZ k E NZ k t , (III.37) 2017 
where E NZ k is the kinetic energy contained in the non-zonal flow and E s,NZ k the kinetic energy contained in the equatorially-symmetric part of the non-zonal flow.

We measure the mean convective flow amplitude either by the magnetic Reynolds number Rm or by the Rossby number Ro defined by Multipolar simulations are defined as having f dip < 0.5, and they will be marked by a cross in subsequent figures. Dipolar simulations ones will be displayed using a circle. The vertical dashed line marks the f dip = 0.5 limit between dipolar and multipolar simulations.

Rm = 2E k (t) V o t Pm = τ η τ adv , Ro = 2E k (t) V o t E = τ Ω τ adv , ( 
The dipolar character of the CMB magnetic field is quantified by its dipolar fraction f dip , defined as the ratio of the axisymmetric dipole component to the total field strength at the CMB in spherical harmonics up to degree and order 12. A magnetic field is considered as dipolar when f dip > 0.5 and multipolar otherwise. This bound differs from the original threshold of f dip = 0.35 considered by [START_REF] Christensen | Scaling Properties of Convection-Driven Dynamos in Rotating Spherical Shells and Application to Planetary Magnetic Fields[END_REF], but it is found to better separate the two types of dynamo models contained in our dataset. Note that the same bound of 0.5 was recently chosen by [START_REF] Menu | Magnetic Effects on Fields Morphologies and Reversals in Geodynamo Simulations[END_REF] where ∆T , ∆ξ are the temperature and composition differences between the ICB and the CMB, and the subscript 0 stands for the background conducting state. For both the fixed fluxes and hybrid configurations (recall section 2.2.3 above), we obtain a background composition contrast given by

∆ξ 0 = r i r o r i r o + 2 2 r i r o 2 + r i r o + 1 . (III.42)
The background temperature drop ∆T 0 depends on the imposed boundary conditions. For the fixed
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flux setup, it reads

∆T ff 0 = r i r o r i r o + 2 2 r i r o 2 + r i r o + 1 = ∆ξ 0 , (III.43)
while it becomes

∆T hyb 0 = r o r i , (III.44)
for the hybrid setup.

Table III.4 gives the definition of most of these integral diagnostics and provides estimates for Earth's core, along with the bracket of values obtained in the numerical dataset presented here.

Exploration of parameter space

We compute 79 simulations varying the Ekman number, the magnetic Prandtl number, the thermal and the chemical Rayleigh numbers. The properties of this dataset are listed in Tab. III.6. The less turbulent simulations have been initialized with a strong dipolar field and a random thermo-chemical perturbation. Their final states have been used as initial conditions for the more turbulent simulations, in order to shorten their transients. Three different Ekman numbers are considered in this study : 10 -4 , 3 × 10 -4 and 10 -5 . Ra T has been varied between 0 and 6 × 10 10 and Ra ξ between 0 and 1.9 × 10 12 to study the influence of the convective forcing and span the transition between dipole-dominated and multipolar dynamos. We adopt Pr = 0.3 and Sc = 3 (i.e. Le = 10) for a better comparison with previous studies (e.g. Takahashi 2014) and to mitigate the computational cost associated with large Lewis numbers. Pm varies between 0.5 and 7, depending on the Ekman number, in order to maintain Rm > 100. The numerical models were integrated for at least 20 % of a magnetic diffusion time τ η for the most turbulent (and demanding) ones, and for more than one τ η for the others, in order to ensure that a statistically steady state had been reached. 

Results

Onset of top-heavy convection

Results

We determine the onset of convection using the open-source software SINGE 4 which computes linear eigenmodes for incompressible, double-diffusive fluids enclosed in a spherical cavity (see [START_REF] Kaplan | Subcritical Thermal Convection of Liquid Metals in a Rapidly Rotating Sphere[END_REF][START_REF] Monville | Rotating Convection in Stably-Stratified Planetary Cores[END_REF][START_REF] Schaeffer | Efficient Spherical Harmonic Transforms Aimed at Pseudospectral Numerical Simulations[END_REF][START_REF] Vidal | Quasi-Geostrophic Modes in the Earth's Fluid Core with an Outer Stably Stratified Layer[END_REF]. For a fixed Ra T (Ra ξ ), the code solves the generalized eigenvalue problem formed by the linearized Navier-Stokes and transport equations. It seeks eigenmodes f of the form

f (t, r, θ, φ) = f (r, θ) exp[i(mφ -ωt)],
where f is a function of r and θ, m is the azimuthal wave number and ω the complex angular frequency. Starting at a specific (Ra T , Ra ξ ), the critical mode is determined by varying one of the Rayleigh numbers (keeping the other fixed) in order to obtain an ω with a vanishing imaginary part. The onset mode is then characterized by its critical chemical and thermal Rayleigh numbers (Ra c ξ , Ra c T ), its critical azimuthal wave number m c and its (real) angular drift frequency ω c . Connecting the (Ra c ξ , Ra c T ) pairs that we collected with SINGE gives rise to the critical curves plotted in Fig. III.4. In each panel, the intersection of these curves with the x-axis (resp. y-axis) corresponds to the critical Rayleigh number for purely thermal (resp. chemical) convection. Underneath the critical curves, the grey-shaded areas are regions of the parameter space where thermal and chemical perturbations are unable to trigger a convective flow.

We note that the shape delimited by the critical curves in the bottom row of Fig. III.4 is not rectangular, as would be the case if the two sources of buoyancy were independent. Instead, we observe a decrease of the critical G c ξ when G c T increases for the three different Ekman numbers. As previously reported by [START_REF] Busse | Is Low Rayleigh Number Convection Possible in the Earth's Core ?[END_REF][START_REF] Tr Ümper | Numerical Study on Double-Diffusive Convection in the Earth's Core[END_REF] and [START_REF] Net | Numerical Study of the Onset of Thermosolutal Convection in Rotating Spherical Shells[END_REF], and discussed in the Introduction, this demonstrates that the addition of a second buoyancy source facilitates the onset of convection as compared to the single diffusive configurations.

Starting from G c T = 0 and following the critical curve for each Ekman number, m c grows until one reaches the upper right "corner" of the onset region and then decreases to a value comparable to the starting G c T = 0 m c value when G c ξ tends to zero. We observe that m c is nearly constant on the vertical branches, while it increases much faster on the horizontal ones, as already reported by Tr ümper et al. (2012).

As can be seen in Figs. III.4(e) and III.4(f), the shaded shape is much wider with fixed-flux boundary conditions than with hybrid boundary conditions. This comes from the difference in the temperature contrasts of the background conducting states. An adequate way to compare both setups resorts to using diagnostic Grasshof numbers 

Gr T = Gr T ∆T 0 , Gr ξ = Gr ξ ∆ξ 0 , ( 

Results

The analysis of the onset of double-diffusive convection becomes even more straightforward if one adopts the formalism introduced by [START_REF] Silva | The Onset of Thermo-Compositional Convection in Rotating Spherical Shells[END_REF]. This framework rests on two parameters: first, the diagnostic effective Grasshof number The onset curves can be separated into two branches: (i) From Θ = 0 up to Θ ≈ π/16, the onset mode almost behaves as a pure low-Pr thermal mode with little change in m c E 1/3 and a large drift speed;

(ii) a sharp transition to another kind of onset mode, reminiscent of the Pr 1 convection onset, is observed for Θ π/16. The latter is characterized by a smaller drift frequency, a higher azimuthal wavenumber and a lower effective Grasshof number Gr c . The critical azimuthal wavenumber reaches its maximum for Θ ≈ π/16 before gradually decreasing to reach a value comparable to that expected for purely thermal convection towards Θ = π/2.

The Ekman dependence is almost perfectly captured by the asymptotic scalings E -1/3 and E -2/3 for the critical wavenumber m c and the drift frequency ω c . The case of mixing angles Θ ≥ 7π/16 with E = 10 -4 constitutes an exception to this rule with a sharp drop to a constant critical wavenumber m c = 2 (see the small kink in the upper left part of Fig. III.4d). The dependence of Gr c on the Ekman number shows a more pronounced departure from the leading-order asymptotic scaling Gr c ∼ E -4/3 . As shown by [START_REF] Dormy | The Onset of Thermal Convection in Rotating Spherical Shells[END_REF] for differential heating (see e.g. their Fig. 5), the higher-order terms in the asymptotic expansion of Ra c T as a function of the Ekman number are still significant for E > 10 -6 (see also [START_REF] Schaeffer | Effective Scaling for the Onset of Thermal Convection in Rotating Planetary Cores[END_REF]. Given the range of Ekman numbers considered for this study, it is not suprising that the asymptotic scaling for Gr c is not perfectly realized yet.

In summary, the onset of double-diffusive convection in the top-heavy regime takes the form of thermal-like drifting Rossby-waves, the nature of which strongly depends on the fraction between chemical and thermal forcings. This confirms the results previously obtained by [START_REF] Silva | The Onset of Thermo-Compositional Convection in Rotating Spherical Shells[END_REF] (their Fig. 9).

A reference case

We will now focus on the simulation marked by an asterisk (*) in Table III 
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power amounts on average for 46 % of the total input power. Since the local Rossby number Ro L reaches 0.11, this simulation is expected to operate in a parameter regime close to the transition between dipolar and multipolar regimes (Ro L ≈ 0.12) put forward by [START_REF] Christensen | Scaling Properties of Convection-Driven Dynamos in Rotating Spherical Shells and Application to Planetary Magnetic Fields[END_REF]. This high value of Ro L also indicates the sizeable role played by inertia in the force balance of this simulation. In typical dipole-dominated dynamos, the velocity field features extended sheet-like structures that span most of the core volume (see [START_REF] Schwaiger | Force Balance in Numerical Geodynamo Simulations : A Systematic Study[END_REF][START_REF] Yadav | Scaling Laws in Spherical Shell Dynamos with Free-Slip Boundaries[END_REF]. Because of the strong forcing that characterizes the reference simulation, the convective flow is organised on smaller scales, which likely reflects the sizeable amplitude of inertia. The magnetic field is dominated by its axisymmetric dipolar component (see Fig. In a global sense, our reference simulation can be qualified as a strong-field dynamo since the ratio of the magnetic energy E m to kinetic energy E k is slightly larger than unity, E m /E k = 1.36.

Figure III.7 shows a comparison between the radial component of the magnetic field at the CMB (left) and its representation truncated at spherical harmonic degree max = 13 (right). The truncated field presents several key similarities with the geomagnetic field at the CMB, such as a significant axial dipole and patches of reverse polarity in both hemispheres.

Earth-likeness

For a more quantitative assessment of the Earth-likeness of the dynamo models, we employ the rating of compliance χ 2 introduced by [START_REF] Christensen | Conditions for Earth-like Geodynamo Models[END_REF]. This quantity is derived from four criteria based on the magnetic field at the CMB truncated at the degree = 8 (i) the relative axial dipole energy AD/NAD, which corresponds to the ratio of the magnetic energy in the axial dipole field to that of the rest of the field up to degree and order eight, (ii) the equatorial symmetry O/E corresponding to the ratio of the magnetic energy at the CMB of components that have odd values of ( + m) for harmonic degrees between two and eight to its counterpart in components with + m even, 10 -9 10 -8 10 -7 10 -6 10 -5 10 -4 10 2 10 3 10 4

Rm

Earth-like (iii) the zonality Z/NZ, which corresponds to the ratio of the zonal to non-zonal magnetic energy for harmonic degrees two to eight at the CMB, (iv) the flux concentration factor FCF, defined by the variance in the squared radial field.

P % T = 0 %, Sc = 3 
To evaluate these quantities for the Earth, [START_REF] Christensen | Conditions for Earth-like Geodynamo Models[END_REF] used different models based on direct measures such as gufm1 model by [START_REF] Jackson | Four Centuries of Geomagnetic Secular Variation from Historical Records[END_REF] and IGRF-11 model (from [START_REF] Finlay | International Geomagnetic Reference Field : The Eleventh Generation[END_REF], as well as archeomagnetic and lake sediment data (model CALS7K.2 from [START_REF] Korte | Continuous Geomagnetic Field Models for the Past 7 Millennia : 1. A New Global Data Compilation[END_REF]) and a statistical model for paleofield (see [START_REF] Quidelleur | On Low-Degree Spherical Harmonic Models of Paleosecular Variation[END_REF]. These models allow to estimate the evolution of the mean value of the Gauss coefficients and their variances. Finally, they obtained the values given in Table III.5 for the four rating parameters. These values are used to determine the rating of compliance between numerical dynamo models and the geomagnetic field χ 2 expressed by

χ 2 = ψ k            ln ψ k t -ln ψ ⊕ k ln Var ψ ⊕ k            2 ,
where ψ k ∈ {AD/NAD, O/E, Z/NZ, FCF}, Var ψ ⊕ k is the variance of ψ ⊕ k and the exponent ⊕ stands for the Earth core. The agreement between simulation and Earth is termed by [START_REF] Christensen | Conditions for Earth-like Geodynamo Models[END_REF] as excellent if χ 2 < 2, as good when 2 ≤ χ 2 ≤ 4, as marginal wen 4 < χ 2 ≤ 8 and non-compliant when χ 2 > 8. We adopt the same classification in the following. According to Table III.5, the relative axial dipole power (AD/NAD) and the equatorial symmetry (O/E) of the reference simulation (*) are too large in comparison with the reference geomagnetic values, which penalises the overall compliance of the simulation. Nevertheless, the simulation remains in excellent agreement with the geomagnetic field with χ 2 = 1.5.

Based on this rating of compliance χ 2 , [START_REF] Christensen | Conditions for Earth-like Geodynamo Models[END_REF] propose a representation to classify the different numerical dynamos according to the ratio of three different timescales: the rotation period τ Ω , the advection time τ adv and the magnetic diffusion time τ η . Those can be cast into two dimensionless numbers: the magnetic Reynolds number Rm defined by τ η /τ adv and the magnetic Ekman number E η defined by τ Ω /τ η = E/Pm. T : while several purely chemical simulations are already multipolar below Rm 500, the transition to multipolar dynamos is delayed to Rm > 1500 for the purely thermal ones. Although all those dynamo models that possess a good or excellent semblance with the geomagnetic field at the CMB lie within the boundaries of the original wedge, having a pair (E η , Rm) that lies within this wedge cannot be considered as a sufficient condition to produce an Earth-like magnetic field, since the wedge includes a number of simulations with marginal or poor semblance.

To further discuss the impact of P % T on the morphology of the magnetic field at the CMB, Fig. III.9 shows χ 2 in the parameter space (P tot , P % T ) for the three different Ekman numbers considered here. The dashed lines mark the tentative boundaries between dipolar and multipolar simulations in term of P tot . The dipole-multipole transition is delayed to larger input power P tot at lower Ekman numbers. Decreasing E indeed enables the exploration of a physical regime with lower Ro prone to [START_REF] Gillet | Stochastic Forecasting of the Geomagnetic Field from the COV-OBS. X1 Geomagnetic Field Model, and Candidate Models for IGRF-12[END_REF]. Black markers correspond to simulations with P % T = 100 %, while white ones correspond to simulations with P % T = 0 %. The horizontal dashed line marks the limit between dipolar and multipolar dynamos adopted in this study (see Sec. 2.2.5 for details). The vertical dashed line marks the expected limit between dipolar and multipolar dynamos according to [START_REF] Christensen | Scaling Properties of Convection-Driven Dynamos in Rotating Spherical Shells and Application to Planetary Magnetic Fields[END_REF]. Vertical and horizontal black segments attached to each symbol represent one standard deviation about the time-averaged values.

sustain dipole-dominated dynamos (see [START_REF] Christensen | Scaling Properties of Convection-Driven Dynamos in Rotating Spherical Shells and Application to Planetary Magnetic Fields[END_REF][START_REF] Kutzner | From Stable Dipolar towards Reversing Numerical Dynamos[END_REF]. The input power required to obtain multipolar dynamos is multiplied by roughly 300 when decreasing E from 10 -4 to 10 -5 . For each Ekman number, the width of the dipolar window strongly depends on P % T since the actual input power needed to reach the transition is an order of magnitude lower for pure chemical convection than for pure thermal convection. Simulations with P % T = 40 % are found to behave similarly as purely thermal convection. We further observe that Earth-like dynamos can be obtained for any partitioning of power injection with the best agreement obtained close to the dipole-multipole transition. This is a consequence of the way we have sampled the parameter space, mainly adopting one single Pm value for each Ekman number. Magnetic Reynolds numbers Rm ∼ O(1000) conducive to yield Earth-like fields are then attained at strong convective forcings. Adopting larger Pm values at more moderate chemical and thermal Rayleigh numbers could hence produce Earth-like fields further away from the dipole-multipole transition (see [START_REF] Christensen | Conditions for Earth-like Geodynamo Models[END_REF]. Additional diagnostics are hence required to better understand why the dipole-multipole transition depends so strongly on the nature of the convective forcing.

Breakdown of the dipole

The physical reasons which cause the breakdown of the dipole in numerical models remain poorly known. Several previous studies suggest that the dipole may collapse when inertia reaches a sizeable contribution in the force balance (see [START_REF] Christensen | Scaling Properties of Convection-Driven Dynamos in Rotating Spherical Shells and Application to Planetary Magnetic Fields[END_REF][START_REF] Sreenivasan | The Role of Inertia in the Evolution of Spherical Dynamos[END_REF]. [START_REF] Christensen | Scaling Properties of Convection-Driven Dynamos in Rotating Spherical Shells and Application to Planetary Magnetic Fields[END_REF] introduced the local Rossby number Ro L as a proxy of the ratio between inertia and Coriolis force and found no dipole-dominated dynamos for Ro L > 0.12 (see Christensen 2010). Figure III.10 shows f dip as a function of Ro L for the 79 simulations computed in this study. The vertical line marks the threshold value of Ro L = 0.12 put forward by [START_REF] Christensen | Scaling Properties of Convection-Driven Dynamos in Rotating Spherical Shells and Application to Planetary Magnetic Fields[END_REF], while the horizontal line corresponds to f dip = 0.5, the boundary between dipolar and multipolar dynamos adopted in this study. To single out the effect of partitioning the input power between chemical and thermal forcings, the symbols have been color coded according to P % T . Each subset of models with comparable P % T exhibits the same decrease of f dip with Ro L as reported by [START_REF] Christensen | Scaling Properties of Convection-Driven Dynamos in Rotating Spherical Shells and Application to Planetary Magnetic Fields[END_REF]. However, the dipole-multipole transition occurs at lower Ro L when P % T decreases. For P % T ≥ 40 %, the transition happens close to Ro L = 0.12 while it happens around (2014). Black markers correspond to simulations with P % T = 100 %, while white ones correspond to simulations with P % T = 0 %. The horizontal dashed line marks the limit between dipolar and multipolar dynamos adopted in this study (see Sec. 2.2.5 for details). Vertical and horizontal black segments attached to each symbol represent one standard deviation about the time-averaged values.

Ro L = 0.05 for P % T = 0 %. In addition, the dynamo models with P % T ≥ 40 % are clearly separated in two groups of simulations with either f dip ≥ 0.5 or f dip < 0.3, while the dipole-multipole transition is much more gradual for pure chemical forcing. Ro L hence fails to capture the transition between dipolar and multipolar dynamos, independently of the transport properties of the convecting fluid.

Following [START_REF] Christensen | Scaling Properties of Convection-Driven Dynamos in Rotating Spherical Shells and Application to Planetary Magnetic Fields[END_REF], [START_REF] Garcia | Equatorial Symmetry Breaking and the Loss of Dipolarity in Rapidly Rotating Dynamos[END_REF] also envision that the increasing role of inertia would be responsible for the dipole breakdown. They however define another parameter to characterize it. They suggest that the transition is related to a change in the equatorial symmetry properties of the convective flow. To quantify it, they introduce the ratio ζ previously defined in Eq. (III.37). Another way to examine the dipole-multipole transition resorts to looking at the force balance governing the outer core flow dynamics (see [START_REF] Soderlund | The Influence of Magnetic Fields in Planetary Dynamo Models[END_REF][START_REF] Soderlund | The Competition between Lorentz and Coriolis Forces in Planetary Dynamos[END_REF]. To do so, we analyse force balance spectra following [START_REF] Aubert | Spherical Convective Dynamos in the Rapidly Rotating Asymptotic Regime[END_REF] and [START_REF] Schwaiger | Force Balance in Numerical Geodynamo Simulations : A Systematic Study[END_REF]. Each force entering the Navier-Stokes equation (III.5) is hence decomposed into spherical harmonic contributions. The spatial root mean square F RMS of a vector F reads

F RMS (t) = F 2 (r, t) V o\δ , (III.48)
where δ represents the thickness of the viscous boundary layer and V o\δ the outer core volume that excludes those boundary layers. By using the decomposition in spherical harmonics, the above expression can be rearranged as Ra T = 1.3 × 10 9 , Ra ξ = 1.9 × 10 12 (**) b)

F 2 RMS (t) = 1 V o\δ max =0 r o -δ r i +δ m=- |F m (r, t)| 2 r 2 dr,
Figure III.12 -Force balance spectra as a function of the spherical harmonic degree for a dipolar (a) and a multipolar (b) simulations with E = 10 -5 and P % T ≈ 46 %. Thick lines correspond to the time average of each force, while the shaded regions represent one standard deviation about mean. The abscissa of the markers corresponds to the dominant lengthscale for each simulation. A circle corresponds to a dipolar simulation while a cross corresponds to a multipolar one. Both simulations are referenced as simulations (*) and (**) in Tab. III.6.

We define the time-averaged spectrum F as a function of the harmonic degree for the force F by the relation

F = 1 V o\δ r o -δ r i +δ m=- |F m (r, t)| 2 r 2 dr t .
(III.49) Figure III.12 shows the time-averaged force balance spectra for one dipolar and one multipolar dynamo with E = 10 -5 and P T % 46%. For both panels, the spherical harmonic at which the poloidal kinetic energy peaks is indicated by filled markers.

The left panel corresponds to the force balance of the reference case (*) which is in excellent agreement with the geomagnetic field in terms of its low χ 2 value (recall Sec. 3.3.2). Its spectra feature a dominant quasi-geostrophic balance between Coriolis and pressure forces up to ≈ 60 accompanied by a magnetostrophic balance at smaller scales. The difference between pressure and Coriolis forces, forming the so-called ageostrophic Coriolis force (long dashed line), is then balanced by the two buoyancy sources (short dashed line) at large scales and by Lorentz force (irregular dashed line) at small scales. This forms the quasi-geostrophic Magneto-Archimedean-Coriolis balance (QG-MAC) devised by [START_REF] Davidson | Scaling Laws for Planetary Dynamos[END_REF] and expected to control the outer core fluid dynamics (see [START_REF] Roberts | On the Genesis of the Earth's Magnetism[END_REF]. This hierarchy of forces is similar to the one observed in geodynamo models that use a codensity approach (e.g. [START_REF] Aubert | Spherical Convective Dynamos in the Rapidly Rotating Asymptotic Regime[END_REF][START_REF] Schwaiger | Force Balance in Numerical Geodynamo Simulations : A Systematic Study[END_REF]. The breakdown of buoyancy sources reveals a dominant contribution of chemical forcings which grows at small scales. The QG-MAC balance is perturbed by a sizeable inertia, which reaches almost a third of the amplitude of Lorentz force below ≈ 20, while viscous effects are deferred to more than one order of magnitude below. Because of the strong convective forcing, the force separation is hence not as pronounced as in the exemplary dipolar cases by [START_REF] Schwaiger | Force Balance in Numerical Geodynamo Simulations : A Systematic Study[END_REF] dipole-dominated solution, the amplitude of each contribution is hence shifted to higher values. Most noticeable changes concern the prominent contribution of the chemical buoyancy for the degree = 1 and the ratio of inertia to Lorentz force. The former comes from a pronounced equatorial asymmetry of the chemical fluctuations. The development of strong equatorially-asymmetric convective motions has been observed by [START_REF] Landeau | Equatorially Asymmetric Convection Inducing a Hemispherical Magnetic Field in Rotating Spheres and Implications for the Past Martian Dynamo[END_REF] and [START_REF] Dietrich | A Hemispherical Dynamo Model : Implications for the Martian Crustal Magnetization[END_REF] with a codensity approach and flux boundary conditions. Below ≈ 20, inertia reaches a comparable amplitude to Lorentz force, while the smaller scales are still controlled by magnetic effects. This differs from the multipolar dynamo model described by [START_REF] Schwaiger | Force Balance in Numerical Geodynamo Simulations : A Systematic Study[END_REF], where inertia was significantly larger than Lorentz force at all scales forming the so-called quasi-geostrophic Coriolis-Inertia-Archimedian balance (e.g. [START_REF] Gillet | The Quasi-Geostrophic Model for Rapidly Rotating Spherical Convection Outside the Tangent Cylinder[END_REF]. Here the situation differs likely because of the larger Pm, which enables a stronger magnetic field (see [START_REF] Menu | Magnetic Effects on Fields Morphologies and Reversals in Geodynamo Simulations[END_REF]. At the dominant lengthscale , the ratio F i /F L is around 1 for the multipolar model, while it is less than 0.5 for the dipolar one. To examine whether the dipole-multipole transition is controlled by the ratio of inertia over Lorentz forces, we hence focus on the force balance at the dominant lengthscale , in contrast to previous studies, which analysed ratio of integrated forces [START_REF] Soderlund | The Influence of Magnetic Fields in Planetary Dynamo Models[END_REF][START_REF] Soderlund | The Competition between Lorentz and Coriolis Forces in Planetary Dynamos[END_REF][START_REF] Yadav | Approaching a Realistic Force Balance in Geodynamo Simulations[END_REF]).

Figure III

.13 shows the time-averaged force balance at for the simulations with E = 10 -5 and 30 % ≤ P % T ≤ 60 %. The dynamics at is primarily controlled by the geostrophic balance between the Coriolis force and the pressure gradient. The other contributions grow differently with P tot : viscosity and inertia increase continuously while Lorentz force at hardly increases beyond P tot ≈ 3 × 10 10 . The dipole-multipole transition occurs when inertia reaches a comparable amplitude to Lorentz force at (crosses).

The relevance of this force ratio for sustaining the dipolar field has already been put forward by [START_REF] Menu | Magnetic Effects on Fields Morphologies and Reversals in Geodynamo Simulations[END_REF], using models with a purely thermal forcing and Pr = 1. By considering turbulent simulations with large Pm, they show that strong Lorentz forces at large scale prevent the collapse of the dipole by inertia. As a result, they report dipole-dominated simulations with Ro L which exceeds the limit of 0.12 proposed by [START_REF] Christensen | Scaling Properties of Convection-Driven Dynamos in Rotating Spherical Shells and Application to Planetary Magnetic Fields[END_REF]. Here, we quantify the contribution of inertia at the dominant convective lengthscale by dividing the amplitude of inertia F i by the 10 -1 10 0

F i /F L 10 -2 10 -1 F i /F C a)
10 -1 10 0 (right) as a function of the ratio of inertia to the Lorentz force at the dominant lengthscale F i /F L . Black markers correspond to simulations with P % T = 100 %, while white markers correspond to simulations with P % T = 0 %. Horizontal dashed line marks the limit between dipolar and multipolar dynamo according to Sec. 2.2.5. Vertical dashed line marks the limit between dipolar and multipolar dynamo in term of F i /F L ratio. Vertical and horizontal black segments attached to the symbol correspond to one standard deviation about the time-averaged values. amplitude of Coriolis F C and Lorentz F L forces.

Figure III.14(a) shows our simulations in the parameter space defined by the amplitude ratios (F i /F L , F i /F C ). Each simulation is characterized by the proportion of thermal convection P % T and the nature of its thermal boundary conditions. Increasing the input power of the dynamo leads to a growth of inertia, such that the strongly-driven cases all lie in the upper right quadrant of Fig. III.14(a). The transition from dipolar to multipolar dynamos occurs sharply when F i /F L exceeds 0.5 over a broad range of F i /F C ranging from 0.03 to 0.08. This indicates that the transition is much more sensitive to the ratio of inertia over Lorentz force than to the ratio of inertia over Coriolis force. The transition for purely chemical simulations (white symbols) is reached at lower values of F i /F C and is more continuous than for the thermal ones (black symbols). This confirms the trend already observed in Fig. III.10, where f dip shows a much more gradual decreases with Ro L when P % T = 0%.

Figure III.14(b) shows f dip as a function of F i /F L . In contrast with the previous criteria, the ratio F i /F L successfully captures the transition between dipole-dominated and multipolar dynamos which happens when F i /F L 0.5, independently of the buoyancy power fraction. The simulation, which singles out in the upper right quadrant of Fig. III.14(b), is an exception to this criterion. This numerical model corresponds to P % T ≈ 47 % with Ra T = 6.8 × 10 10 , Ra ξ = 9.6 × 10 11 with hybrid boundary conditions. Although it features F i /F L > 0.5, its magnetic field is on time-average dominated by an axisymmetric dipole ( f dip = 0.69). This dynamo however strongly varies with time with several drops of the dipolar component below f dip = 0.5 (see Fig. III.16 in the appendix). Although the numerical model has been integrated for more than two magnetic diffusion times, the stability of the dipole cannot be granted for certain.

Summary and discussion

Convection in the liquid outer core of the Earth is thought to be driven by density perturbations from both thermal and chemical origins. In the vast majority of geodynamo models, the difference between the two buoyancy sources is simply ignored. In planetary interiors with huge Reynolds numbers, diffusion processes associated with molecular diffusivities could indeed possibly be superseded by turbulent eddy diffusion (see [START_REF] Braginsky | Equations Governing Convection in Earth's Core and the Geodynamo[END_REF]. This hypothesis forms the backbone of the so-called "codensity" approach which assumes that both thermal and compositional diffusivities are effectively equal. This approach suppresses some dynamical regimes intrinsic to double-diffusive convection [START_REF] Radko | Double-Diffusive Convection[END_REF].

The main goal of this study is to examine the impact of double-diffusive convection on the magnetic field generation when both thermal and compositional gradients are destabilizing (the so-called topheavy regime, see Takahashi 2014). To do so we have computed 79 global dynamo models, varying the fraction between thermal and compositional buoyancy sources P % T , the Ekman number E and the vigor of the convective forcing using a Prandtl number Pr = 0.3 and a Schmidt number Sc = 3. We have explored the influence of the thermal boundary conditions by considering two sets of boundary conditions for temperature and composition.

Using a generalised eigenvalue solver, we have first investigated the onset of thermo-solutal convection. In agreement with previous studies [START_REF] Busse | Is Low Rayleigh Number Convection Possible in the Earth's Core ?[END_REF][START_REF] Net | Numerical Study of the Onset of Thermosolutal Convection in Rotating Spherical Shells[END_REF][START_REF] Silva | The Onset of Thermo-Compositional Convection in Rotating Spherical Shells[END_REF][START_REF] Tr Ümper | Numerical Study on Double-Diffusive Convection in the Earth's Core[END_REF], we have shown that the incorporation of a destabilizing compositional gradient actually facilitates the onset of convection as compared to the single diffusive configurations by reducing the critical thermal Rayleigh number. The critical onset mode in the top-heavy regime of rotating double-diffusive convection is otherwise similar to classical thermal Rossby waves obtained in purely thermal convection [START_REF] Busse | Thermal Instabilities in Rapidly Rotating Systems[END_REF].

To quantify the Earth-likeness of the magnetic fields produced by the non-linear dynamo models, we have used the rating parameters introduced by [START_REF] Christensen | Conditions for Earth-like Geodynamo Models[END_REF]. Using geodynamo models with a codensity approach, [START_REF] Christensen | Conditions for Earth-like Geodynamo Models[END_REF] suggested that the Earth-like dynamo models are located in a wedge-like shape in the 2-D parameter space constructed from the ratio of three typical timescales, namely the rotation rate, the turnover time and the magnetic diffusion time. Here, we have shown that the physical parameters at which the best morphological agreement with the geomagnetic field is attained strongly depend on the ratio of thermal and compositional input power. In particular, we obtain 6 purely-compositional multipolar dynamo models that lie within the wedge region of Earth-like dynamos (recall Figure III.8a). This questions the relevance of the regime boundaries proposed by [START_REF] Christensen | Conditions for Earth-like Geodynamo Models[END_REF].

We have then used our set of double-diffusive dynamos to examine the transition between dipolar and multipolar dynamos. We have assessed the robustness of several criteria controlling this transition that had been proposed in previous studies. [START_REF] Sreenivasan | The Role of Inertia in the Evolution of Spherical Dynamos[END_REF] suggested that the dipole breakdown results from an increasing role played by inertia at strong convective forcings. [START_REF] Christensen | Scaling Properties of Convection-Driven Dynamos in Rotating Spherical Shells and Application to Planetary Magnetic Fields[END_REF] then introduced the local Rossby number Ro L as a proxy of the ratio of inertial to Coriolis forces. They suggested that Ro L ≈ 0.12 marks the boundary between dipole-dominated and multipolar dynamos over a broad range of control parameters. Our numerical dynamo models with P % T ≥ 40% follow a similar behaviour, while the transition between dipolar and multipolar dynamos occurs at lower Ro L (≈ 0.05) when chemical forcing prevails. A breakdown of the dipole for dynamo models with Ro L < 0.1 was already reported by [START_REF] Garcia | Equatorial Symmetry Breaking and the Loss of Dipolarity in Rapidly Rotating Dynamos[END_REF] using Pr > 1 under the codensity hypothesis (their Fig. 1). Using non-magnetic numerical models, [START_REF] Garcia | Equatorial Symmetry Breaking and the Loss of Dipolarity in Rapidly Rotating Dynamos[END_REF] further argued that the breakdown of the dipolar field is correlated with a change in the equatorial symmetry properties of the convective flow. 1. The horizontal dashed line marks the f dip = 0.5 limit between dipolar and multipolar dynamos. The vertical dashed line corresponds to E k /E m = 0.9. Vertical and horizontal black segments attached to the symbols correspond to one standard deviation about the time-averaged values for f dip and E k /E m , respectively.

They introduced the relative proportion of kinetic energy contained in the equatorially-symmetric convective flow, ζ, and suggested that multipolar dynamos would be associated with a lower value of this quantity. However, our numerical dataset shows that multipolar and dipolar dynamos coexist over a broad range of ζ (0.70 -0.85, recall Fig. III.11), indicating that this ratio has little predictive power in separating dipolar from multipolar simulations.

While neither Ro L nor ζ provide a satisfactory measure to characterise the dipole-multipole transition, the analysis of the force balance governing the dynamo models has been found to be a more promising avenue to decipher the physical processes at stake [START_REF] Soderlund | The Influence of Magnetic Fields in Planetary Dynamo Models[END_REF][START_REF] Soderlund | The Competition between Lorentz and Coriolis Forces in Planetary Dynamos[END_REF]. By considering a spectral decomposition of the different forces (e.g. [START_REF] Aubert | Spherical Convective Dynamos in the Rapidly Rotating Asymptotic Regime[END_REF][START_REF] Schwaiger | Force Balance in Numerical Geodynamo Simulations : A Systematic Study[END_REF], we have shown that the transition between dipolar and multipolar dynamos goes along with an increase of inertia at large scales. The analysis of the force ratio at the dominant scale of convection has revealed that the dipole-multipole transition is much more sensitive to the ratio of inertia to Lorentz force than to the ratio of inertia to Coriolis force. The transition from dipolar to multipolar dynamos robustly happens when the ratio of inertial to magnetic forces at the dominant lengthscale of convection exceeds 0.5, independently of P % T and the Ekman number. This confirms the results by [START_REF] Menu | Magnetic Effects on Fields Morphologies and Reversals in Geodynamo Simulations[END_REF] who argued that a strong Lorentz force prevents the demise of the axial dipole, delaying its breakdown beyond Ro L ≈ 0.12 (their Figs. 3 and4).

Providing a geophysical estimate of the ratio of inertial to magnetic forces at the dominant scale of convection in the Earth's core is not an easy task. Recent work by [START_REF] Schwaiger | Relating Force Balances and Flow Length Scales in Geodynamo Simulations[END_REF] suggests that the dominant scale of convection should be that at which the Lorentz force and the buoyancy force, both second-order actors in the force balance, equilibrate. Extrapolation of this finding to Earth's core yields a scale of approximately 200 km, that corresponds to spherical harmonic degree 40. This is far beyond what can be constrained through the analysis of the geomagnetic secular variation. Estimating the strength of both Lorentz and inertial forces at that scale is hence out of reach.

We can however try to approximate the ratio of these two forces by a simpler proxy, namely the ratio of the total kinetic energy E k to total magnetic energy E m . To examine the validity of this approximation, Fig. III.15 shows f dip as a function of the ratio E k /E m for our numerical simulations complemented with the codensity simulations of [START_REF] Christensen | Conditions for Earth-like Geodynamo Models[END_REF] that have Pr 1. We observe that the dipolar fraction f dip exhibits a variation similar to that shown in Fig. III.14(b) for the actual force ratio. The transition between dipolar and multipolar dynamos is hence adequately captured by the ratio [START_REF] Kutzner | From Stable Dipolar towards Reversing Numerical Dynamos[END_REF]. All but one of the numerical dynamos of our dataset become multipolar for E k /E m > 0.9, independently of E, P % T , and the type of thermal boundary conditions prescribed. Using the physical properties from Tab. III.1 leads to the following estimate for the Earth's core

E k /E m
E k E m = µ 0 ρ o U 2 B 2 ≈ 10 -4 -10 -3
O(1).

Christensen (2010) and [START_REF] Wicht | Theory and Modeling of Planetary Dynamos[END_REF] argued that convection in the Earth's core should operate in the vicinity of the transition between dipolar and multipolar dynamos in order to explain the reversals of the geomagnetic field. This statement, however, postulates that reversals and the dipole breakdown are governed by the same physical mechanism. The smallness of E k /E m for Earth's core indicates that it should operate far from the dipole-multipole transition, contrary to the numerical evidence accumulated up to now. The paleomagnetic record indicates that during a reversal or an excursion, the intensity of the field is remarkably low, which suggests that the strength of the geomagnetic field could decrease by about an order of magnitude. This state of affairs admittedly brings the ratio E k /E m closer to unity, yet without reaching it. So it seems that the occurrence of geomagnetic reversals is not directly related to an increase of the relative amplitude of inertia. Other mechanisms proposed to explain geomagnetic reversals rely on the interaction of a limited number of magnetic modes, whose nonlinear evolution is further subject to random fluctuations (e.g. [START_REF] Pétrélis | Simple Mechanism for Reversals of Earth's Magnetic Field[END_REF][START_REF] Schmitt | Magnetic Field Reversals and Secular Variation in a Bistable Geodynamo Model[END_REF]. In this useful conceptual framework, the large-scale dynamics of Earth's magnetic field is governed by the induction equation alone. The origin of the fluctuations that can potentially lead to a reversal of polarity is not explicited and it remains to be found, but evidence from mean fields models by [START_REF] Stefani | Why Dynamos Are Prone to Reversals[END_REF] suggests that the likelihood of reversals increases with the magnetic Reynolds number. In practice, these fluctuations could very well occur in the vicinity of the convective lengh scale, and have either an hydrodynamic, or a magnetic, or an hydromagnetic origin, depending on the process driving the instability. Shedding light on the origin of these fluctuations constitutes an interesting avenue for future numerical investigations of geomagnetic reversals.
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Appendices

III.A. Time scheme

We provide in this appendix the matrices a I and a E and the vectors b I , b E , c E and c I of the two IMEX Runge-Kutta schemes that we resorted to for this study. These vectors and matrices can conveniently be represented using Butcher tables [START_REF] Butcher | On Runge-Kutta Processes of High Order[END_REF].

BPR353: [START_REF] Boscarino | Implicit-Explicit Runge-Kutta Schemes for Hyperbolic Systems and Kinetic Equations in the Diffusion Limit[END_REF]) Implicit component

c I A I b I = 0 0 1 1/2 1/2 2/3 5/18 -1/9 1/2 1 1/2 0 0 1/2 1 1/4 0 3/4 -1/2 1/2 1/4 0 3/4 -1/2 1/2 Explicit component c E A E b E = 0 0 1 1 0
2/3 4/9 2/9 0 1 1/4 0 3/4 0 1 1/4 0 3/4 0 0 1/4 0 3/4 0 0 PC2: [START_REF] Jameson | Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge Kutta Time Stepping Schemes[END_REF]) Implicit component

c I A I b I = 0 0 1 1/2 1/2 1 1/2 0 1/2 1 1/2 0 0 1/2 1/2 0 0 1/2 Explicit component c E A E b E = 0 0 1 1 0 1 1/2 1/2 0 1 1/2 0 1/2 0 1/2 0 1/2 0

III.B. Numerical simulations

Table III.6 -Control parameters and simulation diagnostics for the 79 numerical simulations computed for this study. Simulations computed using the finite difference method in radius are marked with a superscript f (the others were computed using the Chebyshev collocation method in radius). Simulations with hybrid boundary conditions are marked by an H in the first column. Simulations are sorted by growing Ekman number and then by growing magnetic Reynolds number. The averaging and running times t avg and t run are expressed in units of magnetic diffusion time τ η . III.6. The horizontal dashed line corresponds to the boundary between dipole-dominated and multipolar dynamos ( f dip = 0.5). Time is scaled by the magnetic diffusion time.

Ra T Ra ξ (N r , max ) Pm α t scheme t avg t run Rm Ro L Λ f ohm χ 2 ζ f dip P % T Nu Sh (×10 8 ) (×10 9 ) (×10 -2 ) E = 1 × 10 -5 , Pr = 0.3, Sc = 3 H 0.

III.C. Simulation x

In this appendix we provide in 

. Existence d'une couche stratifiée sous la CMB

Le champ géomagnétique est alimenté par les mouvements de convection qui animent la partie externe du noyau terrestre. Le refroidissement séculaire de la Terre induit la cristallisation de la graine, riche en fer, qui injecte des éléments légers et de la chaleur latente à l'ICB. La convection résulte donc du couplage de flottabilités d'origines thermique et chimique. Du fait des valeurs élevées des nombres de Rayleigh thermique et chimique (voir la table III.2 du chapitre III), il est souvent supposé que la partie externe du noyau est entièrement convective et que le fluide est bien mélangé. Néanmoins, la validité de cette hypothèse a récemment été remise en question par l'existence possible d'une couche stratifiée en température sous la CMB.

La sismologie constitue un outil puissant pour l'étude de la structure de la Terre. La vitesse des ondes sismiques et leur déphasage temporel dépendent des propriétés des matériaux dans lesquels elles se propagent. Des études sismologiques récentes (voir Helffrich et Kaneshima 2010 ;[START_REF] Kaneshima | Stratification of Earth's Outermost Core Inferred from SmKS Array Data[END_REF][START_REF] Tanaka | Possibility of a Low P-wave Velocity Layer in the Outermost Core from Global SmKS Waveforms[END_REF]) observent une anomalie de vitesse, par rapport au Preliminary Reference Earth Model (PREM) développé par [START_REF] Dziewonski | Preliminary Reference Earth Model[END_REF], sous la CMB. Dans la partie supérieure du noyau, la vitesse de propagation mesurée d'ondes de compression SmKSondes sismiques se propageant à travers la partie externe du noyau en se réfléchissant m sous la CMB -est 0.1 à 1 % moins élevée que celle estimée par le modèle. Ce ralentissement est attribué à la présence d'une couche subadiabatique sous la CMB. L'épaisseur de cette stratification thermique est mal contrainte, mais les valeurs dans la littérature varient entre une centaine de kilomètres (voir par exemple Tanaka 2007) à des valeurs plus élevées de 300 à 450 km dans des études récentes (voir Helffrich et Kaneshima 2010 ;[START_REF] Kaneshima | Stratification of Earth's Outermost Core Inferred from SmKS Array Data[END_REF]. [START_REF] Irving | Seismically Determined Elastic Parameters for Earth's Outer Core[END_REF] proposent une interprétation alternative des observations sismologiques. En développant une équation d'état alternative, ils produisent un profil de référence de la vitesse des ondes P dans le noyau externe qui diffère de PREM, sans recourir à l'existence d'une stratification sous la CMB. D'un point de vue thermique, une couche subadiabatique se forme sous la frontière externe du noyau lorsque le flux thermique extrait par le manteau à la CMB, Q CMB , devient inférieur au flux thermique transporté par conduction le long d'un profil de température adiabatique (voir l'équation II.62). Ce dernier dépend de la valeur de la conductivité thermique k T du noyau. L'estimation de cette grandeur est rendue difficile par les conditions de température et de pression rencontrées dans le noyau terrestre. La réalisation de simulations ab initio est une des méthodes adoptées pour évaluer les propriétés thermique du fer liquide dans ces conditions extrêmes. Elles suggèrent des valeurs de la conductivité thermique comprises entre 100 et 150 W • m -1 • K -1 (de [START_REF] De Koker | Electrical Resistivity and Thermal Conductivity of Liquid Fe Alloys at High P and T, and Heat Flux in Earth's Core[END_REF][START_REF] Pozzo | Thermal and Electrical Conductivity of Iron at Earth's Core Conditions[END_REF][START_REF] Pozzo | Transport Properties for Liquid Silicon-Oxygen-Iron Mixtures at Earth's Core Conditions[END_REF]. Dans ces conditions, la convection de l'ensemble du noyau externe nécessite un flux thermique à la CMB élevé qui rend probable l'existence d'une couche subadiabatique. Néanmoins, les valeurs de k T et Q CMB sont encore mal contraintes pour le noyau terrestre. Des expériences de hautes pressions aboutissent notamment à une valeur de k T plus faible (Kon ôpkov á et al. 2016) compatible avec un noyau externe bien mélangé.

La présence d'une couche stratifiée a été envisagée dans des modèles numériques de dynamo afin d'expliquer les caractéristiques spatiales du champ magnétique herméen : un champ faible à sa surface [START_REF] Christensen | Scaling Properties of Convection-Driven Dynamos in Rotating Spherical Shells and Application to Planetary Magnetic Fields[END_REF][START_REF] Manglik | A Dynamo Model with Double Diffusive Convection for Mercury's Core[END_REF]) et une asymétrie Nord-Sud [START_REF] Takahashi | Mercury's Anomalous Magnetic Field Caused by a Symmetry-Breaking Self-Regulating Dynamo[END_REF]. La stratification induit un filtrage spatial du champ magnétique par effet de peau en atténuant comparativement plus les contributions des petites échelles (voir par exemple [START_REF] Gastine | Dynamo-Based Limit to the Extent of a Stable Layer atop Earth's Core[END_REF]. Ce processus de filtrage induit ainsi une contrainte supplémentaire sur l'épaisseur de la couche adiabatique. En s'appuyant sur des simulations numériques, [START_REF] Gastine | Dynamo-Based Limit to the Extent of a Stable Layer atop Earth's Core[END_REF] concluent sur l'incompatibilité entre la production d'un champ magnétique semblable au champ terrestre et la présence d'une stratification substantielle à la CMB. Néanmoins cette étude ne considère pas le possible couplage du volume convectif avec la couche subadiabatique par l'intermédiaire de doigts de sel (voir par exemple [START_REF] Manglik | A Dynamo Model with Double Diffusive Convection for Mercury's Core[END_REF].

L'existence possible d'une stratification thermiquement stable ne se limite pas aux cas de la Terre et de Mercure. Dans l'introduction, nous avons mis en lumière des enveloppes fluides dans les intérieurs des planètes du système solaire pouvant être favorables à la formation de doigts de sel (voir la figure I.6). Une meilleure compréhension de ce régime de convection dans un contexte planétaire pourrait permettre de mieux caractériser les transferts de chaleur et de masse qui ont lieu dans ces enveloppes fluides afin de mieux contraindre leur structure ainsi que leur évolution thermique. L'objectif des sections suivantes est d'offrir une description plus détaillée de la convection en doigts de sel et de ses spécificités. Dans une seconde section, nous aborderons notamment les instabilités secondaires de grande échelle qui peuvent lui succéder.

Une instabilité de petite échelle : les doigts de sel

La figure IV.1 illustre le mécanisme à l'origine de la formation des doigts de sel dans un contexte océanique. Nous considérons une couche d'eau de mer dont la salinité et la température croissent avec l'altitude z. Les gradients thermique et chimique sont représentés respectivement par des gradients de couleur à droite et à gauche pour des raisons de lisibilité. Ils contribuent de manière opposée à la stabilité du fluide : le gradient de température est stabilisant, tandis que le gradient de salinité est déstabilisant. Le fluide est favorable à la formation de doigts de sel si (voir l'équation I.20) la forme de doigts de sel verticaux de salinité excessive. La convection est donc alimentée, de manière contre-intuitive, par la diffusion thermique qui rend possible la conversion l'énergie potentielle de la composante chimique instable en énergie cinétique. La compétition entre la diffusion thermique, la poussée d'Archimède et la viscosité induit l'existence d'une taille caractéristique horizontale pour les doigts de sels. Si la particule de fluide de la figure IV.1 présente un rayon trop important, la poussée d'Archimède la rappelle à sa position initiale avant que la diffusion thermique ne lui permette de s'équilibrer thermiquement. Inversement, si son rayon est trop faible, la viscosité stoppera rapidement sa plongée. Pour une couche de fluide similaire à celle de la figure IV. 1, Stern (1960) identifia un mode critique de taille caractéristique horizontale À notre connaissance, la totalité des études portant sur les doigts de sel dans un contexte océanique ou stellaire adoptent une approche locale en géométrie cartésienne. Elle est justifiée par la taille caractéristiques des doigts de sel, de l'ordre du centimètre dans l'océan [START_REF] Radko | Double-Diffusive Convection[END_REF]) et de la dizaine de mètres au coeur des étoiles (Traxler et al. 2011a), qui permet de négliger la courbure du système et les variations de l'accélération du champ de gravité pour en étudier la dynamique. Dans ces modèles, le nombre de Rayleigh thermique est implicitement fixé en imposant la taille de la boîte D de manière à ce qu'elle contienne un certain nombre de doigts de sel (voir l'équation IV.2). Deux configurations peuvent alors être envisagées. La plus commune, qualifiée de unbounded consiste à considérer un domaine fluide doublement ou triplement périodique (e.g. [START_REF] Brown | Chemical Transport and Spontaneous Layer Formation in Fingering Convection in Astrophysics[END_REF][START_REF] Radko | Salt Fingers in Three Dimensions[END_REF][START_REF] Shen | Equilibrium Salt-Fingering Convection[END_REF]Traxler et al. 2011a). Dans la seconde configuration, qualifiée de bounded dans la littérature, la couche de fluide est contrainte entre deux plaques horizontales (e.g. Des modèles numériques non-linéaires restreignant la stratification thermique stable à une couche de quelques centaines de km sous la frontière noyau-manteau ont été proposés pour expliquer les spécificités du champ magnétique de Mercure [START_REF] Manglik | A Dynamo Model with Double Diffusive Convection for Mercury's Core[END_REF][START_REF] Takahashi | Mercury's Anomalous Magnetic Field Caused by a Symmetry-Breaking Self-Regulating Dynamo[END_REF]. Néanmoins, l'épaisseur de la stratification ainsi que la concentration en soufre du noyau herméen sont encore mal contraintes, ce qui ne permet pas de conclure sur la validité de ce modèle pour Mercure.

1 < R ρ < Le, (IV.
L h =              κ T ν gα T d T t dz              1/4 = |Ra T | -
La littérature abondante témoigne d'une bonne compréhension actuelle de la physique de la convection en doigts de sel. L'analyse de la stabilité linéaire de ce régime de convection s'est révélée efficace pour déterminer L h dans un premier temps au travers de la relation établie par [START_REF] Stern | The "Salt-Fountain" and Thermohaline Convection[END_REF]. En maximisant le taux de croissance en fonction du rapport des flux thermique et chimique 

γ γ = α T F T α ξ F ξ , (IV.4)
L h ≈              κ T ν gα T d T t dz γ 1 -γ              1/4 . (IV.5)
Concernant les transports thermique et chimique, les deux régimes asymptotiques R ρ → 1 et R ρ → Le ont été étudiés en détail. Le premier correspondant à la frontière entre régime dominé par la convection chimique et doigts de sel (voir la figure I.4), une relation de proportionnalité entre Sh et Ra 1/3 ξ , cohérente avec la loi 4/3 de Turner (1965), est établie par [START_REF] Yang | Salinity Transfer in Bounded Double Diffusive Convection[END_REF] en généralisant la théorie de Grossmann et Lohse (2000) pour la convection classique à ce régime asymptotique. Dans le régime faiblement linéaire R ρ → Le, Nu et Sh suivent une loi de puissance de la distance au seuil [START_REF] Proctor | Planform Selection in Salt Fingers[END_REF][START_REF] Radko | Equilibration of Weakly Nonlinear Salt Fingers[END_REF][START_REF] Radko | Salt Fingers in Three Dimensions[END_REF][START_REF] Stern | The Salt Finger Amplitude in Unbounded T-S Gradient Layers[END_REF][START_REF] Stern | Amplitude Equilibration of Sugar-Salt Fingers[END_REF] dont l'exposant dépend de la configuration, bounded ou unbounded, choisie. Enfin, une théorie de saturation de l'instabilité primaire faisant intervenir une instabilité secondaire -par exemple le cisaillement des doigts de sel décrit par Radko et Smith ( 2012) -a permis à [START_REF] Brown | Chemical Transport and Spontaneous Layer Formation in Fingering Convection in Astrophysics[END_REF] d'établir des lois d'échelles pour les nombres de Nusselt et de Sherwood dans différents régimes asymptotiques adaptés aux contextes stellaires (Pr 1) venant ainsi compléter une première étude réalisée par Traxler et al. (2011a). Le régime des doigts de sel a largement été exploré dans les contextes océaniques et astrophysiques. Cependant des zones d'ombres demeurent. En particulier, les mécanismes à l'origine de la saturation de l'instabilité des doigts de sel restent encore à préciser.

Des instabilités secondaires de grande échelle 1.3.a Instabilités secondaires et saturation des doigts de sel

La saturation du mode de convection primaire est intimement liée à l'existence d'instabilités secondaires. [START_REF] Stern | Collective Instability of Salt Fingers[END_REF] propose ainsi d'expliquer la fin de la croissance de l'amplitude des doigts de sel par l'émergence d'une instabilité collective dont le mécanisme sera précisé plus loin. Passé un certain flux d'anomalie de masse, l'écoulement devient favorable au développement d'une onde de gravité de grande échelle. Les interactions de cette onde avec les doigts de sel induisent alors une dégradation de leur cohérence radiale et donc à la saturation de leur amplitude. En réalisant l'analyse de stabilité linéaire des doigts de sel à des perturbations de grande échelle pour un fluide unbounded bi-dimensionnel soumis à des gradients verticaux thermique et chimique uniformes, [START_REF] Holyer | On the Collective Instability of Salt Fingers[END_REF] a confirmé par la suite l'existence de ce mode instable. Néanmoins, son étude se limitait aux valeurs élevées de Pr et aux pertubations de grandes longeurs d'onde. Quelques années plus tard, [START_REF] Holyer | The Stability of Long, Steady, Two-Dimensional Salt Fingers[END_REF] a étendu son modèle en considérant une valeur quelconque de Pr. Elle a ainsi mis en évidence l'existence d'un mode instable de petite échelle non oscillant avec un nombre d'onde horizontal nul (voir sa section 4). Grâce à la théorie de Floquet, elle a montré que le taux de croissance de l'instabilité collective décrite par [START_REF] Stern | Collective Instability of Salt Fingers[END_REF] (voir sa section 5) était supérieur à celui de ce deuxième type d'instabilités seulement pour des valeurs très élevées de Pr (Pr ≥ 10 4 ). Des simulations numériques réalisées par [START_REF] Shen | Equilibrium Salt-Fingering Convection[END_REF], adoptant une configuration similaire au modèle de Holyer (1984), ont par la suite confirmé le rôle joué par les interactions non linéaires entre les modes de Holyer et les doigts de sel dans la saturation de l'instabilité primaire. En accord avec l'étude de Holyer (1984), l'instabilité secondaire se manifeste dans un premier temps par une ondulation verticale des doigts de sel de période horizontale nulle (voir la figure IV.2 extraite de Shen (1995)). Ces derniers finissent par perdre leur cohérence radiale pour donner naissance à des blobs, des structures isotropes, de plus grande échelle. Leurs collisions aléatoires conduisent finalement à la saturation de l'instabilité primaire. L'instabilité secondaire peut donc conduire dans certains cas à l'émergence de structure de plus grande échelle sous la forme de blobs (Shen 1995), de modons [START_REF] Radko | The Double-Diffusive Modon[END_REF]) ou encore d'écoulements de taille commensurable à celle du domaine fluide. Nous allons maintenant nous efforcer de faire un bref état des lieux des connaissances sur deux instabilités secondaires de grande échelle : les escaliers thermohalins et les jets.

1.3.b Les escaliers thermohalins

Les escaliers thermohalins constituent sûrement l'instabilité secondaire la plus célèbre. L'abondance de la littérature pour des applications allant des océans terrestres à la génération du champ magnétique d'une planète témoigne de l'intérêt de la communauté scientifique pour ce phénomène. Dans un premier temps, ces structures de grandes échelles ont été observés dans l'océan [START_REF] Tait | Some Observations of Thermo-Haline Stratification in the Deep Ocean[END_REF] et dans des systèmes expérimentaux [START_REF] Turner | Salt Fingers across a Density Interface[END_REF]. Elles ont été par la suite obtenues dans des simulations numériques cartésiennes [START_REF] Stellmach | Dynamics of Fingering Convection. Part 2 The Formation of Thermohaline Staircases[END_REF]) pour un fluide unbounded soumis à des gradients verticaux chimique et thermique uniformes. Cette instabilité se manifeste par la formation d'une superposition de couches bien mélangées, dont l'épaisseur est grande devant l'épaisseur caractéristique des doigts de sel, uniforme en température et en composition. Malgré de nombreuses études expérimentales, numériques et théoriques, le mécanisme à l'origine de la formation des escaliers thermohalins reste incertain. Néanmoins, deux hypothèses dominent dans la littérature (i) l'instabilité collective développée par [START_REF] Stern | Collective Instability of Salt Fingers[END_REF], (ii) l'instabilité γ, décrite comme une instabilité du gradient de flux, proposée par [START_REF] Radko | A Mechanism for Layer Formation in a Double-Diffusive Fluid[END_REF].

Les deux prochains paragraphes ont pour objectif de fournir au lecteur une meilleure compréhension de la naissance de l'instabilité secondaire dans les deux modèles. Pour ce faire nous considérons de l'eau soumise initialement à un gradient thermique stabilisant et un gradient solutal déstabilisant et dont la masse volumique décroît avec la profondeur.

Instabilité collective

L'instabilité collective résulte des interactions non-linéaires d'une onde de gravité interne avec les doigts de sel. [START_REF] Radko | Double-Diffusive Convection[END_REF] fournit une interprétation physique pertinente de ce couplage dans la section 6. c) En revanche, lorsque cette dérivée est négative (courbe bleue), les variations verticales de γ conduisent à une accumulation de chaleur (flèches ondulées bleues) dans la partie inférieure de la boîte et (a) la perturbation s'amplifie (courbe bleue). Cette figure s'inspire de la figure 8.16 de [START_REF] Radko | Double-Diffusive Convection[END_REF] rouge sur le panneau de droite). Lorsque cette dérivée est positive (courbe rouge sur le panneau de droite), le flux thermique (flèches rouges ondulées) converge en z = 0.75, induisant une accumulation de chaleur, et diverge en z = 0.25. Cette modulation verticale du flux thermique, modélisé par la taille des flèches, a pour conséquence l'atténuation de la perturbation (courbe rouge sur le panneau de gauche). À l'inverse, lorsque la dérivée de γ est négative (courbe bleue sur le panneau de droite), les variations verticales de γ conduisent à une accumulation de chaleur dans la partie inférieure de la boîte et la perturbation s'amplifie (courbe bleue sur le panneau de gauche) : l'instabilité s'auto-entretient. À terme, ce mécanisme conduit à la formation de deux couches superposées bien mélangées. À l'interface des deux couches mixées, une interface favorable aux doigts de sel persiste. [START_REF] Stellmach | Dynamics of Fingering Convection. Part 2 The Formation of Thermohaline Staircases[END_REF]) et Traxler et al. (2011a) simulent numériquement la dynamique d'un fluide double-diffusif dans un domaine cartésien triplement périodique soumis à des gradients verticaux chimique et thermique uniformes. Ils obtiennent des escaliers thermohalins dans des modèles océaniques avec Pr = 7, Le = 3 et R ρ = 1.1. Leurs simulations illustrent la séquence d'évènements précédant la formations des escaliers : dans un premier temps, une onde de gravité interne de grande échelle se développe dans la couche fluide, mais son amplitude sature avant l'émergence d'une stratification en densité du fluide. Néanmoins, cette onde interagit de manière non linéaire avec des modes γ à croissance plus lente. Ces interférences donnent lieu à la sélection d'une instabilité γ de grande échelle et à la formation d'escaliers thermohalins, confirmant ainsi la théorie de Radko (2003). À condition de définir les rapports de densité et de flux sur l'état convectif développé, [START_REF] Yang | Multiple States and Transport Properties of Double-Diffusive Convection Turbulence[END_REF] ont constaté que leurs simulations bounded tri-dimensionnelles présentant des escaliers thermohalins étaient favorables à la croissance d'une instabilité γ (voir leur figure 3B). Dans les simulations de [START_REF] Brown | Chemical Transport and Spontaneous Layer Formation in Fingering Convection in Astrophysics[END_REF] 

1.3.c Une circulation de grande échelle : les jets

Dans son modèle, [START_REF] Holyer | The Stability of Long, Steady, Two-Dimensional Salt Fingers[END_REF] prédit la formation d'une instabilité secondaire de grande échelle dont le taux de croissance est supérieur à celui de l'instabilité collective lorsque Pr 1. Cette instabilité se traduit par une ondulation verticale d'ensemble des doigts de sel (voir le panneau de gauche de la figure IV.2). À terme, elle entraîne une perte de la cohérence radiale de l'écoulement et à une réorganisation de ce dernier. Dans le cas de simulations 2D, [START_REF] Shen | Equilibrium Salt-Fingering Convection[END_REF] a observé dans un premier temps un étirement horizontal des doigts de sel suivi de la formation de blobs de grande échelle (voir le panneau de droite de la figure IV.2), qui semble ne pas être la seule instabilité de grande échelle possible. Dans leur section 3, [START_REF] Stern | The Secondary Instability of Salt Fingers[END_REF] offrent un mécanisme physique simple pour expliquer la saturation des doigts de sel par les modes de Holyer (1984) : un cisaillement horizontal entraîne une inflexion des doigts de sel. Une analyse linéaire de la stabilité du système leur permet de conclure que le cisaillement horizontal croît exponentiellement avec un taux proportionnel à la vitesse verticale de l'écoulement. Dans leur modèle, la saturation des doigts de sel est donc engendré par le développement de jets dans le fluide qui viennent limiter les transports verticaux. Cette instabilité présente une structure très similaire à celle observée en convection Rayleigh-Bénard 2 D pour des conditions aux limites de glissement sans frottements (voir par exemple la figure 2 de [START_REF] Goluskin | Convectively Driven Shear and Decreased Heat Flux[END_REF]. Cette instabilité secondaire de grande échelle a été de la même manière envisagée par [START_REF] Radko | Equilibration of Weakly Nonlinear Salt Fingers[END_REF] pour expliquer la saturation de l'instabilité primaire dans le cas des faibles Pr (voir sa section 3.2). Il obtient ainsi une simulation numérique 2D, avec Pr = 0.01, R ρ = 2.8 et Le = 3, dans laquelle l'écoulement s'organise en une superposition de couches horizontales de vitesse quasi-uniforme. Néanmoins, les champ de température et de composition reste dominés par des structures de petite échelle (voir sa figure 2). [START_REF] Garaud | 2D or not 2D : the effect of dimensionality on the dynamics of fingering convection at low Prandtl number[END_REF] confirment l'existence de cette instabilité dans des simulations numériques cartésienne 2D à Pr = 0.03, Le = 33 et R ρ = 5 (voir sa section 3). En revanche, le mécanisme à l'origine de l'instabilité est encore à déterminer. [START_REF] Radko | Equilibration of Weakly Nonlinear Salt Fingers[END_REF] propose l'utilisation d'une théorie de champ moyen pour expliquer la formation des jets zonaux. La modification des profils verticaux moyens de u, T et ξ induite par les doigts de sel conduirait ainsi à l'intensification de la circulation horizontale dans le fluide. Ce scénario est en accord avec les observations de Garaud et Brummell (2015). Dans leur simulation, la vitesse horizontale présente des oscillations de relaxation (voir leur figure 3), dont la période est trois ordres de grandeur supérieure au temps de diffusion thermique à l'échelle du doigt de sel, précédées par des oscillations du transport chimique. La croissance des jets semble donc être alimentée par l'instabilité primaire. Ces oscillations mettent en lumière un couplage fort entre l'écoulement de grande échelle et les doigts de sel. La circulation horizontale induit une inflexion des doigts de sel et conduit ainsi à la diminution des transports chimique et thermique. En d'autres termes, les jets affaiblissent le mécanisme à l'origine de leur formation. Leur amplitude décroît et un nouveau cycle peut alors recommencer. Afin de limiter les coûts numériques, [START_REF] Xie | Jet Formation in Salt-Finger Convection : A Modified Rayleigh-Bénard Problem[END_REF] proposent d'étudier ce phénomène pour un fluide 2D unbounded à l'aide d'un système d'équations, établi initialement par [START_REF] Xie | A Reduced Model for Salt-Finger Convection in the Small Diffusivity Ratio Limit[END_REF], qu'ils qualifient de convection Rayleigh-Bénard modifiée. Dans leur approche originale, ils choisissent de supprimer l'équation de transport thermique en admettant que la température est asservie au champ de vitesse. L'effet stabilisant de T se manifeste alors sous la forme d'un terme dissipatif supplémentaire de grande échelle dans l'équation de Navier-Stokes (voir leur équation 2.1a). Ils valident leur modèle réduit en réalisant une simulation numérique non linéaire proche de celle présentée par [START_REF] Garaud | 2D or not 2D : the effect of dimensionality on the dynamics of fingering convection at low Prandtl number[END_REF]. Ils retrouvent notamment les oscillations de relaxation observées dans cette étude (voir leur figure 2e) et confirment le mécanisme décrit par [START_REF] Garaud | 2D or not 2D : the effect of dimensionality on the dynamics of fingering convection at low Prandtl number[END_REF]. Leur modèle leur permet alors d'étudier le comportement d'une simulation avec un R ρ plus élevé sur une durée beaucoup plus importante (10 5 temps de diffusion visqueux à l'échelle du doigt de sel). L'oscillation de relaxation n'est en revanche plus visible dans les séries temporelles de cette simulation (voir leur figure 4). Toutes ces études se sont limitées à l'étude de fluides bi-dimensionnels. [START_REF] Garaud | 2D or not 2D : the effect of dimensionality on the dynamics of fingering convection at low Prandtl number[END_REF] considèrent même que cette instabilité n'est pas excitée en 3D (voir leur section 3.2). Yang et al. (2016a) sont les premiers à obtenir numériquement l'émergence d'une circulation horizontale de grande échelle dans un fluide bounded avec Pr = 7, Le = 100 et R ρ = 1.6. La faible valeur de R ρ pour ce modèle avec Pr > 1 contraste avec celles adoptées par [START_REF] Radko | Equilibration of Weakly Nonlinear Salt Fingers[END_REF] et [START_REF] Garaud | 2D or not 2D : the effect of dimensionality on the dynamics of fingering convection at low Prandtl number[END_REF]. L'existence de l'instabilité dans un fluide 3D est confirmée par [START_REF] Yang | Multiple States and Transport Properties of Double-Diffusive Convection Turbulence[END_REF]. Ils constatent en particulier que la modification de l'écoulement au profit de jets horizontaux nécessite d'atteindre une valeur de Ra ξ supérieure à une valeur seuil de 8 × 10 10 pour leurs simulations avec Pr = 7, Le Malgré son intérêt pour les intérieurs planétaires, un nombre restreint d'études s'est intéressé au régime des doigts de sel en géométrie sphérique. Dans ce chapitre, nous cherchons à caractériser l'instabilité primaire en géométrie sphérique et à déterminer si cette configuration est favorable à la naissance d'une instabilité secondaire de grande échelle.

Modèle et méthodes

Hypothèses

Nous considérons un fluide inclus dans une coquille sphérique de volume V 0 délimité par une frontière interne (IB), localisée à un rayon r i , et par une frontière externe (OB), localisée à un rayon r o , avec un rapport d'aspect 

Équation de la dynamique et paramètres de contrôle

En tout point du volume, l'état du fluide est décrit par les champs de vitesse u, de pression p, de température T et de composition ξ. Nous nous plaçons dans l'approximation de Boussinesq (voir la section 3 du chapitre II). Nous adoptons ici l'épaisseur de la coquille sphérique D = r or i comme longueur caractéristique et le temps de diffusion visqueuse D 2 /ν comme unité de temps. L'échelle de vitesse est alors donnée par ν/D. La pression est mise à l'échelle par ρ 0 (ν/D) 2 et la puissance par ν 3 ρ 0 /D. Les échelles de température et la composition sont construites à partir des différences de température ∆T = T(r i ) -T(r o ) et de composition ∆ξ = ξ(r i ) -ξ(r o ) entre les frontière interne et externe de la coquille. Sous l'approximation de Boussinesq, l'équation de conservation de la masse (voir équation II.73) s'écrit

∇ • u = 0. (IV.11)
En l'absence de rotation et de champ magnétique, la dynamique de l'écoulement est décrite par l'équation de Navier-Stokes (voir équation II.106)

∂u ∂t + u • ∇u = - 1 Pr -|Ra T |T + Ra ξ Le ξ r r o e r -∇p + ∇ 2 u. (IV.12)
Enfin l'évolution de la température et de la composition sont contrôlées par des équations de transport semblables

∂T ∂t + u • ∇T = ∇ 2 T Pr et ∂ξ ∂t + u • ∇ξ = ∇ 2 ξ LePr . (IV.13)
Le système d'équations (IV.11 -IV.13) fait apparaître 4 nombres adimensionnés. Les nombre de Prandtl Pr et de Lewis Le expriment respectivement les rapports entre les diffusivités visqueuse et thermique et entre les diffusivités chimique et thermique

Pr = ν κ T et Le = κ T κ ξ = Sc Pr avec Sc = ν κ ξ , (IV.14)
où Sc est le nombre de Schmidt. Les nombres de Rayleigh thermique et chimique

Ra T = α T g 0 D 3 ∆T νκ T et Ra ξ = α ξ g 0 D 3 ∆ξ νκ ξ , (IV.15)
mesurent la vigueur des forçage thermique et chimique. Dans le régime des doigts de sel, le nombre de Rayleigh thermique est négatif 1 , traduisant ainsi le rôle stabilisant du profil thermique. Dans notre modèle, le rapport de densité (voir l'équation I.19) de l'état initial s'exprime

R ρ = Le |Ra T | Ra ξ . (IV.16)
Comme proposé par Traxler et al. (2011a), nous définissons un rapport de densité normalisé r ρ

r ρ = R ρ -1
Le -1 , (IV.17)

1. Dans notre modèle, le signe négatif du nombre de Rayleigh thermique est obtenu en supposant α T négatif. Le système d'équations (IV.11 -IV.13) est complété par des conditions aux limites cinématiques, thermiques et chimiques. Nous adoptons des conditions rigides aux frontières de la coquille sphérique

u(r i ) = 0 et u(r o ) = 0. (IV.18)
La convection du fluide est alimentée par les contrastes en température ∆T et en composition ∆ξ imposés aux bornes du fluide. Le tableau IV.1 fournit les valeurs explorées par les 104 simulations réalisées dans cette étude pour chaque paramètre de contrôle.

Diagnostics supplémentaires

Nous définissons dans cette partie des diagnostics supplémentaires à ceux introduits dans la section 7 du chapitre II. Les grandeurs conditionnées à l'existence d'un champ magnétique sont absentes de ce chapitre.

En vertu de l'équation de conservation de la masse (IV.11), le vecteur solénoïdal u est décomposé en une partie poloïdale W et une partie toroïdale

Z u(r, t) = ∇ × ∇ × [W(r, t)e r ] + ∇ × [Z(r, t)e r ]. (IV.19)
Nous pouvons alors définir des énergies cinétiques poloïdale et toroïdale

E k,pol = V o 2 [∇ × (∇ × We r )] 2 t,V o et E k,tor = V o 2 (∇ × Ze r ) 2 t,V o . (IV.20)
L'amplitude de l'écoulement convectif moyen est mesuré grâce aux nombres de Reynolds 

Re pol = 2E k,pol V o et Re tor = 2E k,tor V o . (IV.
Sh = F conv,ξ + F diff,ξ - 1 Sc dξ c dr et Nu = F conv,T + F diff,T - 1 Pr dT c dr , (IV.24)
où les flux convectifs et diffusifs sont définis par

F conv,ξ = u r ξ t,S , F diff,ξ = - 1 Sc ∂ξ ∂r t,S , F conv,T = u r T t,S et F diff,T = - 1 Pr ∂T ∂r t,S (IV.25) 
Dans notre modèle, les dérivées radiales de la température et de la composition -solutions de

∇ 2 T c = 0 et de ∇ 2 ξ c = 0 -dans l'état diffusif s'expriment dT c dr (r) = - r i r o r 2 et dξ c dr (r) = - r i r o r 2 . (IV.26)
En utilisant la définition de la puissance convective chimique (II.157) et celle du nombre de Sherwood Sh (II.165), nous pouvons écrire que

P ξ t = 4πRa ξ Sc 2              r i r o r i r o + 1 Sh 2 1 - r i r o 2 + 1 - r i r o r o r i ∂ξ ∂r t,S r 3 dr              . (IV.27)
En séparant ξ en une contribution de l'état diffusif ξ c et une fluctuation ξ , l'intégrale se réécrit En remplaçant le second terme par son expression, la relation IV.27 devient alors

P ξ t = 2πRa ξ Sc 2 r i (r i + r o ) (Sh -1)       1 - ξ t,V o (Sh -1)
r 3 o -r 3 i r i r o (r o + r i )       (IV.30)
L'amplitude du second terme diminue lorsque le forçage s'intensifie, puisque ξ t,V o reste borné entre -1 et 1 alors que Sh augmente. Sa correction devient donc plus significative pour de faibles valeurs de Sh. Pour obtenir une expression approchée de P ξ , nous pouvons négliger le second terme entre crochets dans cette égalité

P ξ t ≈ 2πRa ξ Sc 2 r i (r i + r o ) (Sh -1). (IV.31)
Nous obtenons ainsi l'expression dérivée par [START_REF] Christensen | Scaling Properties of Convection-Driven Dynamos in Rotating Spherical Shells and Application to Planetary Magnetic Fields[END_REF] dans leur annexe A. Cette approximation devient exacte pour un champ de gravité proportionnelle à 1/r 2 (voir section 2.3 de [START_REF] Gastine | Turbulent Rayleigh-Bénard Convection in Spherical Shells[END_REF]. La figure IV.6a montre P ξ t en fonction de Ra ξ Sc -2 (Sh -1) pour l'ensemble des simulations, présentées dans la section 2.2.6. Le coefficient de proportionnalité entre les deux grandeurs a été calculé à l'aide du package scipy.odr de python. Le modèle linéaire obtenu

P ξ t = (7.053 ± 0.002) Ra ξ Sc 2 (Sh -1) (IV.32)
est représenté par une ligne en tirets. Il est en très bon accord avec l'ensemble des simulations. La valeur obtenue pour le coefficient directeur est très proche de la valeur 7.03 attendue. Afin de discuter la validité de la relation IV.31, la figure IV.6b montre P ξ t compensée par Ra ξ Sc -2 (Sh -1) en fonction de Ra ξ Sc -2 (Sh -1). La valeur théorique du coefficient directeur est représentée par une ligne horizontale en tirets. L'approximation de Christensen et Aubert (2006) semble être moins pertinente pour les simulations moins forcées. L'écart au modèle peut être rationnalisé en considérant la forme exacte (IV.27). L'amplitude du terme correctif devient significative pour de faibles valeurs de Sh -1.

Dans notre modèle, le rapport de flux (voir l'équation IV.4) adimensionné s'exprime

γ = R ρ u r T t,V u r ξ t,V . (IV.33)
Nous choisissons ici de l'approximer par

γ ≈ P T t P ξ t ≈ R ρ Le Nu -1 Sh -1 . (IV.34)

Couches limites

Les conditions aux limites chimiques, thermiques et cinétiques conduisent à la formation de couches limites aux frontières du fluide. Il est utile pour notre étude d'évaluer l'épaisseur de la couche convective λ b et les écarts en température ∆ b T et en composition ∆ b ξ auxquels est soumis le fluide dans le volume, en dehors des couches limites. La définition de ces grandeurs nécessite de réussir à délimiter les couches limites chimiques et thermique. Dans notre étude, nous faisons l'hypothèse que l'épaisseur de la couche limite est asservie à la couche limite chimique [START_REF] Radko | Finite-Amplitude Salt Fingers in a Vertically Bounded Layer[END_REF]. La géométrie sphérique adoptée dans notre étude induit une asymétrie des couches limites interne et externe , caractérisées respectivement par des épaisseurs λ i et λ o , ainsi que des contrastes en température (composition) ∆ i T(ξ) et ∆ o T(ξ). Il est donc indispensable de pouvoir déterminer les deux frontières du volume dominé par la convection. Plusieurs méthodes ont été largement utilisées pour accomplir cette tâche dans le cas canonique de la convection Rayleigh-Bénard [START_REF] Julien | Statistical and Physical Balances in Low Rossby Number Rayleigh-Bénard Convection[END_REF], pour une description exhaustive, voir la section 2.2). La première s'appuie sur le profil radial moyen de la température. Dans ce régime classique, la température est uniforme dans le volume et elle varie linéairement avec la profondeur au sein des couches limites. La transition est alors déterminée en repérant la profondeur à laquelle l'extrapolation linéaire de T atteint la valeur de l'isotempérature (voir par exemple la figure 3 

r i + λ i r o -λ o -1 0 1 2 3 4 5 6 7 F ξ λ b F conv,ξ F diff,ξ σ ξ r i + λ i r o -λ o r ξ(r o ) ξ(r o -λ o ) ξ(r i + λ i ) ξ(r i ) ∆ i ξ ∆ i T ξ T 0.0 0.2 0.4 0.6 0.8 1.0 1.2 σ ξ ×10 -3 T (r o -λ o ) T (r i + λ i ) T (r i ) T a) b)
∆ b T = 1 -∆ i T -∆ o T, ∆ b ξ = 1 -∆ i ξ -∆ o ξ et λ b = 1 -λ i -λ o . (IV.35)

Approche numérique

Le système d'équations (IV.11 -IV.13) est discrétisé à l'aide du code numérique open-source MagIC.

Le fonctionnement de cet algorithme a été présenté dans la section 6 du chapitre II. Pour la quasitotalité des simulations, nous avons adopté une approche spectrale pour la discrétisation radiale. La simulation numérique qui nécessitait la résolution radiale la plus élevée a été intégrée avec la méthode des différences finies pour le schéma radial. L'avancement en temps du système d'équations a été réalisée grâce à trois schémas numériques temporels : CNAB2, BPR353 [START_REF] Boscarino | Implicit-Explicit Runge-Kutta Schemes for Hyperbolic Systems and Kinetic Equations in the Diffusion Limit[END_REF]) et un schéma multi-stage issu de [START_REF] Ascher | Implicit-Explicit Runge-Kutta Methods for Time-Dependent Partial Differential Equations[END_REF]) appelé ARS343 (voir Gopinath et al. 2022, pour une description détaillée de ces schémas).

Nous nous sommes assurés de la convergence numérique de nos simulations en vérifiant que ∆P < 2 % (voir équation II.159). Dans certains cas, l'émergence d'une instabilité secondaire conduit à l'évolution du système sur une échelle de temps caractéristique commensurable à plusieurs τ ν . Un état final statistiquement stationaire n'est alors plus garanti par le critère de convergence. Pour ces simulations, nous nous sommes efforcés d'atteindre une moyenne temporelle de E k,tor stable. Enfin pour un petit nombre d'entre-elles, la saturation finale des jets n'est pas atteinte du fait d'une intégration numérique trop coûteuse, conduisant ainsi à une possible sous-estimation de E k,tor (voir la section 4).

Exploration de l'espace des paramètres

Nous avons réalisé 107 simulations numériques en faisant varier le nombre de Prandtl Pr, le nombre de Lewis Le et les deux nombres de Rayleigh (Ra T , Ra ξ ). Les caractéristiques principales de l'ensemble des simulations sont fournies dans la table IV.3. Les simulations les plus proches du seuil ont été initialisées à l'aide d'une perturbation thermo-chimique aléatoire. Leur état final a ensuite été utilisé comme point de départ pour les simulations les plus turbulentes afin de réduire la durée du régime transitoire.

Afin de pouvoir discuter nos résultats au regard d'études numériques antérieures (e.g. [START_REF] Brown | Chemical Transport and Spontaneous Layer Formation in Fingering Convection in Astrophysics[END_REF][START_REF] Stellmach | Dynamics of Fingering Convection. Part 2 The Formation of Thermohaline Staircases[END_REF]Traxler et al. 2011a ;Yang et al. 2016a), les valeurs de Pr dans nos simulations couvrent deux ordres de grandeur allant de 0.03 à 7, tandis que Le varie entre 3 et 33. 

Les valeurs de

Une première instabilité : les doigts de sel

Doigts de sel et couches limites

Dans nos simulations numériques, nous considérons un fluide, emprisonné dans une coquille sphérique, dont la convection est alimentée par des contrastes antagonistes de température et de composition. Les conditions aux bords imposées pour la température, la composition et la vitesse mènent à la formation de couches limites à proximité des parois de la coquille lorsque la convection est amorcée. Le fluide dans le coeur du volume se retrouve donc soumis à des différences de composition et de température inférieures à celles fixées initialement aux bornes du domaine. En géométrie cartésienne, la symétrie du système, ainsi que le champ de gravité uniforme, induisent des couches limites interne Pour la simulation avec r ρ = 0.0005 (lignes foncées), ∆ b T atteint 0.86. Le profil thermique moyen de l'état développé reste très proche du profil conductif initial conduisant ainsi à des couches limites thermiques peu marquées. L'atténuation des contrastes thermique et chimique avec la diminution de r ρ s'accompagne d'une contraction des couches limites. λ i est par exemple divisé par 2 lorsque r ρ passe de 0.75 (ligne claire) à 0.0005 (ligne foncée). Sur la figure IV.10b, l'encart correspond à un agrandissement de la figure sur la couche limite inférieure. Pour chaque modèle, la frontière de la couche limite interne est représentée par un segment vertical de la couleur correspondante. La diminution de la valeur de r ρ conduit à une réduction de l'épaisseur des couches limites.

Les couches limites jouent un rôle primordial dans la dynamique du système. La théorie de Grossmann et Lohse (2000) pour la convection Rayleigh-Bénard prend en compte leur épaisseur ainsi que leur contribution relative aux taux de dissipation thermique et visqeuse pour prévoir le régime dans lequel le fluide se trouve. Dans notre modèle, l'existence de couches limites conduit à une modification des profils thermiques et chimiques de l'état développé. Afin d'être en mesure de comparer nos résultats à ceux d'études locales considérant un fluide périodique, il convient de mieux caractériser les couches limites dans nos simulations. Dans leur modèle, [START_REF] Radko | Finite-Amplitude Salt Fingers in a Vertically Bounded Layer[END_REF], de manière analogue à la configuration que nous adoptons ici en géométrie sphérique, considère une couche fluide incluse entre deux plaques rigides. Ce fluide est soumis à des différences de température et de composition qui assurent la formation de doigts de sel à l'intérieur du volume et conduisent à la formation de couches limites chimiques et thermiques aux deux bords. Dans la section 5 de leur étude, ils dérivent une expression analytique du flux chimique pour une paire de doigts de sel (voir leur section 5.3) en appuyant leur raisonnement sur plusieurs hypothèses que nous utiliserons ou discuterons dans cette partie (i) la vitesse, les perturbations thermique et chimique sont uniformes au sein d'un doigt de sel, (ii) les doigts de sel sont marginalement instables pour les gradients thermiques et chimiques résultant du développement de la convection, le nombre d'onde horizontal est donc égal à celui du mode critique (voir R. W. Schmitt 1979), (iii) les couches limites thermiques et chimiques sont de même épaisseur, (iv) la température et la composition évoluent linéairement au sein des couches limites, (v) les couches limites sont marginalement surcritiques [START_REF] Malkus | The Heat Transport and Spectrum of Thermal Turbulence[END_REF].

Bien que ce ne soit pas leur objectif principal, leur développement analytique aboutit à une relation entre les gradients thermique et chimique dans le volume et ceux dans les couches limites. Nous allons donc essayer maintenant de dérouler un raisonnement analogue pour notre modèle. En régime permanent, l'équation de transport chimique (voir l'équation II.106) moyennée en θ et φ s'écrit

u • ∇ξ t,S ∼ ∇ 2 ξ t,S Sc . (IV.36)
Comme [START_REF] Radko | Finite-Amplitude Salt Fingers in a Vertically Bounded Layer[END_REF], nous avons fait l'hypothèse que les couches limites thermiques et chimiques sont de même épaisseur. La convection étant ici entièrement pilotée par les inhomogénéités chimiques, toute perturbation de la couche limite chimique induira une perturbation de la couche limite thermique. Nous supposons ensuite que la température et la composition évoluent linéairement avec le rayon au sein des couches limites, approximation raisonnable au vu des profils radiaux décrits plus haut (voir la figure IV.10),

∂ r ξ t,S ∼ ∆ o ξ λ o et ∂ r T t,S ∼ ∆ o T λ o , (IV.37)
au sein de la couche limite supérieure et

∂ r ξ t,S ∼ ∆ i ξ λ i et ∂ r T t,S ∼ ∆ i T λ i , (IV.38)
au sein de la couche limite inférieure. Cette linéarisation est rendue possible par la méthode que nous avons employée pour délimiter les couches limites (voir la section 2.2.4). La linéarité radiale de ξ t et T t associée à la conservation radiale des flux chimique et thermique (IV.23) permet d'aboutir à une première relation reliant les contrastes en température et en composition des deux couches limites

r i r o 2 ∆ i T ∆ o T = λ i λ o et r i r o 2 ∆ i ξ ∆ o ξ = λ i λ o . (IV.39)
Ces deux premières relations mettent en avant l'asymétrie des couches limites internes et externes inhérente à la géométrie sphérique et dans notre cas à la dépendance radiale de l'amplitude du champ de gravité. Pour la convection Rayleigh-Bénard, [START_REF] Malkus | The Heat Transport and Spectrum of Thermal Turbulence[END_REF] suppose que les couches limites sont marginalement instables, leur taille est telle qu'un nombre de Rayleigh défini sur l'épaisseur et le contraste en température de ces dernières est égal au nombre de Rayleigh critique Ra c . Nous pouvons définir des nombres de Rayleigh locaux Ra λ i et Ra λ o pour les couches limites inférieure et supérieure respectivement

Ra λ i = g i λ 3 i Ra ξ ∆ i ξ -|Ra T |∆ i T et Ra λ o = Ra ξ ∆ o ξ -|Ra T |∆ o T, (IV.40)
où g i et g o sont respectivement les amplitude du champ de gravité en r i et en r o avec g i /g o = r i /r o . En utilisant l'argument de [START_REF] Malkus | The Heat Transport and Spectrum of Thermal Turbulence[END_REF], nous pouvons alors écrire que Ra

λ i doit être égal à Ra λ o g i λ 3 i Ra ξ ∆ i ξ -|Ra T |∆ i T ∼ g o λ 3 o Ra ξ ∆ o ξ -|Ra T |∆ o T ∼ Ra c . (IV.41)
La simplification de cette équation conduit alors à

λ i λ o 3 = r o ∆ o ξ r i ∆ i ξ              1 - |Ra T |∆ o T Ra ξ ∆ o ξ 1 - |Ra T |∆ i T Ra ξ ∆ i ξ              . (IV.42)
Les relations (IV.39) montrent que le terme entre parenthèses dans l'équation précédente vaut 1. Finalement l'égalité des nombres de Rayleigh locaux dans les deux couches limites s'écrit

λ i λ o 3 = r o ∆ o ξ r i ∆ i ξ . (IV.43)
Cette nouvelle relation associée avec celle précédemment dérivée (IV.39), nous permet d'aboutir à

λ i λ o = r i r o 1/4 et ∆ i ξ ∆ o ξ = r i r o -7/4 . (IV.44)
Ces deux relations ont la particularité d'être indépendantes des paramètres d'entrée des simulations. Elles font seulement intervenir le rapport des rayons r i et r o . Nous allons maintenant les tester à l'aide de nos simulations. Les épaisseurs des couches limites λ i et λ o sont mesurées dans nos simulations numériques en repérant l'intersection des flux chimiques radiaux diffusif et convectif (voir la section 2.2.4).

La figure IV.11a montre λ o en fonction de λ i pour l'ensemble des simulations. En accord avec la relation dérivée plus haut pour le rapport de λ i et λ o (voir l'équation IV.44), λ o est toujours supérieur à λ i . Au premier ordre, l'épaisseur de la couche limite externe augmente linéairement avec λ i sur presque deux ordres de grandeur. Le coefficient de proportionnalité est calculé grâce à une régression linéaire en ne conservant que les simulations avec λ i < 0.02

λ 0 = (1.18 ± 0.01) λ i . (IV.45)
Sa valeur est proche de celle attendue théoriquement (r i /r o ) -1/4 = 1.3 (voir l'équation IV.44). La ligne en tirets correspond au modèle linéaire dérivé. Il est en bon accord avec les simulations pour 

∆ b ξ + ∆ i ξ + ∆ o ξ = 1 et ∆ b T + ∆ i T + ∆ o T = 1. (IV.47)
En remplaçant ∆ i ξ et ∆ i T par leurs expressions (IV.44), les relations précédentes deviennent

1 -∆ b ξ = ∆ o ξ 1 + r i r o -7/4 et 1 -∆ b T = ∆ o T 1 + r i r o -7/4 . (IV.48)
Nous aboutissons donc finalement à une relation reliant les contrastes chimique et thermique dans le volume à ceux dans la couche limite supérieure. [START_REF] Radko | Finite-Amplitude Salt Fingers in a Vertically Bounded Layer[END_REF] supposent que les doigts de sel qui se développent sont marginalement instables pour les profils thermique et chimique développés.

Le nombre d'onde horizontal est alors égal au nombre d'onde critique. Cette hypothèse leur permet de dériver une relation supplémentaire entre

∆ b ξ (∆ b T) et ∆ o ξ (∆ o T).
Ils soulignent néanmoins que cette approximation, vérifiée pour une paire de doigts de sel, perd de sa pertinence pour des doigts de sel multiples. Nous ne retiendrons donc pas cette hypothèse pour la suite du raisonnement. En utilisant de nouveau la linéarité des gradients chimique et thermique, les nombres de Nusselt Nu et de Sherwood Sh définis au rayon r o s'écrivent 

Sh = 4πr 2 o ∆ o ξ λ o et Nu = 4πr 2 o ∆ o T λ o . ( IV 

Introduction des rapports de densité effectifs

La modification des profils radiaux moyens de la température et de la composition est loin d'être anodine. Elle nécessite la définition d'un nouveau paramètre afin de décrire de manière plus rigoureuse le système. [START_REF] Radko | Finite-Amplitude Salt Fingers in a Vertically Bounded Layer[END_REF], R. W. [START_REF] Schmitt | The Growth Rate of Super-Critical Salt Fingers[END_REF] et [START_REF] Yang | Multiple States and Transport Properties of Double-Diffusive Convection Turbulence[END_REF] proposent de construire un rapport de densité basé sur l'état développé plutôt que sur l'état de référence. Suivant leur exemple, nous adoptons les définitions suivantes pour le rapport de densité apparent

R * ρ et sa version normalisée r * ρ R * ρ = R ρ ∆ b T ∆ b ξ et r * ρ = R * ρ -1 Le -1 . (IV.52)
Il nous sera utile pour la suite de comprendre comment ce nouveau diagnostic est relié aux paramètres d'entrée des simulations. La figure IV.13a montre r * ρ en fonction de r ρ pour trois séries de simulations (i) Pr = 0.3, Le = 10, Ra T = -10 9 et 1 × 10 9 ≤ Ra ξ ≤ 3 × 10 9 (pentagones) ; l'écart entre les profils moyens de l'état de référence et ceux de l'état développé se réduit lorsque r ρ croît. Les deux séries à Pr > 1 (croix et cercles) montrent une évolution très similaire lorsque r ρ diminue. r * ρ s'éloigne progressivement de la bissectrice pour atteindre 0.8 à r ρ = 0.5. La composition s'homogénéise dans le volume, tandis que le profil moyen thermique reste peu impacté (voir la figure IV.10b). r * ρ diminue ensuite linéairement jusqu'à r ρ = 0.2 pour atteindre 0.55. En revanche, pour des valeurs de r ρ inférieures à 0.2, l'écart à la bissectrice se réduit pour les simulations à Pr = 7 (cercles). Pour les deux séries, une différence importante entre r * ρ et r ρ persiste aux faibles valeurs de r ρ . Par exemple, pour la simulation à Pr = 3 (croix) la plus forcée, r ρ = 5.6 × 10 -3 , tandis que r * ρ = 0.15. Cet écart entre les deux rapports de densité rend difficile l'exploration du régime r * ρ proche de 0 (courbe bleue sur la figure IV.4), qui est celui à priori favorable à la formation des escaliers thermohalins (e.g. [START_REF] Brown | Chemical Transport and Spontaneous Layer Formation in Fingering Convection in Astrophysics[END_REF][START_REF] Stellmach | Dynamics of Fingering Convection. Part 2 The Formation of Thermohaline Staircases[END_REF]. Pour la série à Pr < 1 (pentagones), l'écart de r * ρ à r ρ atteint des amplitudes moins élevée sur l'intervalle [0.3, 1]. La diffusion chimique étant plus efficace (Sc = 3) que dans les simulations précédentes (Sc = 30 pour Pr = 3 et Sc = 21 pour Pr = 7), le profil chimique moyen tend à rester proche de celui de référence. Pour cette série, le régime r ρ < 0. 

R * ρ /R ρ R * ρ = R ρ R ρ = 1.1 R ρ = 5

Morphologie de l'écoulement pour une série de référence

Nous allons maintenant nous focaliser sur une série de trois simulations pour mettre en avant les spécificités de la convection en doigts de sel en géométrie sphérique globale. Ces simulations possèdent le même rapport de densité R ρ = 1.1, le même Pr = 7 et le même Le = 3. La puissance convective injectée dans le fluide est multipliée par 500 entre la simulation la plus proche du seuil (a) et celle qui en est le plus éloignée (c). Les figures IV.14(a-c) montrent des rendus 3D de la vitesse radiale extrait d'instantanés pris au cours de l'intégration numérique. Les rayons des sphères interne et externe ont été choisis pour être en dehors des couches limites thermiques et chimiques. Pour des raisons de commodité, nous employons les termes plan équatorial et pôle Nord pour décrire les figures. La figure IV.14d montre le spectre moyenné en temps de l'énergie poloïdale en fonction du degré d'harmonique sphérique . La courbe relative à chaque simulation peut-être identifiée grâce à la pastille colorée présente dans le coin supérieur droit de chaque rendu. Le degré harmonique moyen h (voir équation II.163) est repéré pour chaque spectre par une ligne verticale en tirets de la couleur correspondante. Pour la simulation la moins forcée, l'écoulement est dominé par des filaments radiaux majoritairement ascendants cohérents sur quasiment toute l'épaisseur de la coquille sphérique (voir fig IV.14a). Ces structures particulières sont appelées mode ascenseur, elevator mode en anglais. À l'intérieur de chacun de ces filaments T, ξ et u r peuvent être considérées comme quasi-uniformes. Le champ de vitesse atteint des amplitudes relativement faibles avec Re pol = 10. Sur les surfaces sphériques interne et externe, des structures géométriques se forment et relient les doigts de sel entre eux. Les doigts de sel émergent à l'intersection de plusieurs polygônes comme on peut le voir au pôle Nord de la sphère interne. Le spectre de cette simulation (courbe claire) présente un maximum très marqué et le degré harmonique moyen h atteint une valeur de 39. La majorité de l'énergie cinétique poloïdale du fluide est stockée dans des degrés proches de ce pic. Cette concentration de E k,pol dans un nombre limité d'harmoniques sphériques se visualise sur la figure par une épaisseur semblable de tous les filaments. L'intensification du forçage s'accompagne d'une dégradation du mode ascenseur et d'une vitesse caractéristique plus élevée avec Re pol = 28. La longueur de cohérence radiale des doigts de sel se réduit (voir figure IV.14b). Ils perdent leur structure tubulaire et ondulent, ce qui donne parfois naissance à des embranchements comme on peut le voir dans le plan équatorial. Ils se contractent horizontalement conduisant ainsi à un décalage de h à une valeur de 74 plus élevée. Les structures géométriques restent bien définies au niveau de la sphère interne mais s'atténuent sur la sphère externe. Lorsqu'on continue d'augmenter la puissance convective injectée dans le fluide, l'écoulement devient quasiment isotrope (voir la figure IV.14c). Les doigts de sel se fracturent radialement et adoptent la forme de flagelles rappelant ainsi les modes de Holyer (1984) (voir la figure IV.15). Leur épaisseur continue de diminuer et h atteint une valeur de 166.

Croissance des doigts de sel

Dans cette partie, nous réalisons une analyse linéaire de stabilité de la convection en doigts de sel. Les équations de Navier-Stokes (IV.12) et les équations de transport (IV.13) sont linéarisées et une faible perturbation [W, T, ξ] de l'état de référence est injectée dans ces dernières, où W est la composante poloïdale du champ de vitesse (voir la décomposition II.117). Nous cherchons alors à déterminer à quelles conditions l'amplitude de l'instabilité croît exponentiellement. L'absence de rotation et de termes non linéaires entraîne d'une part le découplage des degrés harmoniques qui peuvent alors être traités séparément, mais également l'indépendance à l'ordre m. Le potentiel poloïdal au degré W ainsi que les perturbations en température et en composition au degré T et ξ sont développés sous la forme

[W , T , ξ ](t, r) = [ Ŵ , T , ξ ](r) exp (λ t) avec λ = τ + iω ,
(IV.53) Dans la configuration bounded, le mode le plus instable ne domine donc pas l'écoulement dans le régime non-linéaire. Ce dernier résulte au contraire de la superposition de plusieurs modes instables ayant chacun une structure radiale permettant de reconstruire une structure de doigt de sel tubulaire. L'analyse de stabilité linéaire de la convection n'est pas suffisante pour prévoir les caractéristiques de l'écoulement. Les interactions non-linéaires entre les différents modes de convection doivent donc être prises en compte. Nous allons maintenant présenter les résultats obtenus grâce aux simulations non-linéaires réalisées.

Épaisseur caractéristique d'un doigt de sel

Nous avons vu au travers des figures IV.14(a-c) que les doigts de sel exhibent une largeur horizontale caractéristique L h . Cette taille caractéristique résulte d'une compétition entre la diffusion thermique, la poussée d'Archimède et la viscosité (voir section 1.1 de Garaud 2018). En réalisant une analyse marginale de stabilité, [START_REF] Stern | The "Salt-Fountain" and Thermohaline Convection[END_REF] [START_REF] Stern | The "Salt-Fountain" and Thermohaline Convection[END_REF]. Le modèle fournit une prédiction satisfaisante de l'ordre de grandeur de L h pour des nombres de Rayleigh thermiques variant sur 6 ordres de grandeur. En revanche, on observe sur cette figure une dépendance secondaire à r * ρ : à |Ra T | fixé, une augmentation de r * ρ conduit à une augmentation de l'épaisseur caractéristique des doigts de sel. Pour la série de simulations à Pr = 7 (cercle) et |Ra T | = -3.66 × 10 9 formant une ligne verticale, L h est multiplié par 2.88 lorsque r * ρ passe de 0.11 (vert-orange) à 0.97 (rose). R. W. [START_REF] Schmitt | The Growth Rate of Super-Critical Salt Fingers[END_REF] a généralisé la relation proposée par [START_REF] Stern | The "Salt-Fountain" and Thermohaline Convection[END_REF] à tout R ρ (voir sa section 3). En cherchant à maximiser le taux de croissance en fonction du rapport de flux γ, il a réussi à exprimer L h comme une fonction de Pr, Le et R ρ . Cette correction établie pour un fluide unbounded en géométrie cartésienne est cependant difficilement transposable à notre étude. Nous allons donc maintenant tenter de dériver une correction de cette loi de puissance pour notre système en géométrie sphérique. La taille caractéristique des doigts de sel découle d'un équilibre entre la poussée d'Archimède, la viscosité et la diffusion thermique. Dans l'équation de Navier-Stokes (IV.12) et l'équation de transport thermique (IV.13), cet équilibre se traduit, en supposant un régime stationnaire, par les égalités suivantes 1/4 . La ligne en tirets correspond à la première bissectrice.

Ra T Pr T + Ra ξ Sc ξ r r o t,V ∼ ∇ 2 u • e r t,V et u • ∇T t,V ∼ ∇ 2 T t,
L 4 h ∼ γ 1 -γ |Ra T | -1 λ b ∆ b T , ( IV 
Une loi de puissance de Pe ξ en fonction de Ra ξ a été dérivée en réalisant une régression linéaire. La loi obtenue est fournie sur la figure. Nous commençons dans un premier temps à nous intéresser au régime r * ρ ≥ 0.5. L'exploration de ce régime faiblement non-linéaire a été réalisée dans plusieurs études (voir Proctor et Holyer 1986 ;[START_REF] Radko | Equilibration of Weakly Nonlinear Salt Fingers[END_REF][START_REF] Radko | Salt Fingers in Three Dimensions[END_REF][START_REF] Stern | The Salt Finger Amplitude in Unbounded T-S Gradient Layers[END_REF][START_REF] Stern | Amplitude Equilibration of Sugar-Salt Fingers[END_REF] principalement unbounded. Il est nécessaire de définir la distance au point marginal R ρ = Le. En suivant [START_REF] Radko | Equilibration of Weakly Nonlinear Salt Fingers[END_REF], nous adoptons la définition suivante

Vitesse radiale d'un doigt de sel

= 1 R * ρ - 1 Le . (IV.70)
En réalisant un développement asymptotique, [START_REF] Radko | Equilibration of Weakly Nonlinear Salt Fingers[END_REF] et [START_REF] Radko | Salt Fingers in Three Dimensions[END_REF][START_REF] Hollerbach | A Spectral Solution of the Magneto-Convection Equationsin Spherical Geometry[END_REF] ont montré que les transports thermique et chimique vérifient à l'équilibre des lois de puissances de la forme est fournie en dessous des données et tracée sous la forme d'une ligne en tirets. L'exposant de calculé est proche des valeurs précédemment proposées par [START_REF] Radko | Salt Fingers in Three Dimensions[END_REF][START_REF] Radko | Equilibration of Weakly Nonlinear Salt Fingers[END_REF]. Le nombre restreint de simulations à Pr > 1 et r * ρ ≥ 0.5 nous empêche de quantifier de manière convaincante une possible différence de comportement entre les simulations à Pr ≥ 1 et celles à Pr < 1. Néanmoins, la série de simulations à Pr = 7 (cercles clairs) suggère un exposant potentiellement plus élevé pour en accord avec [START_REF] Radko | Equilibration of Weakly Nonlinear Salt Fingers[END_REF]. Lorsque devient supérieur à 0.1, cette loi de puissance surestime le transfert thermique pour les simulations à Pr ≥ 1 (cercles, croix et hexagones). On peut maintenant déduire une relation liant à Sh * -1. La définition de γ (IV.33) associée à l'approximation (IV.69) et à la loi de puissance (IV.73) permet d'aboutir à une proportionnalité entre (Sh * -1) /Le 2 Pr et p , où p est normalement l'exposant apparaissant dans la loi de puissance (IV.73). La figure IV.21b montre (Sh * -1)/Le 2 Pr en fonction de . Les simulations avec < 0.05 s'alignent sur une même tendance, cohérente avec une loi de puissance. Elles présentent une faible dispersion d'amplitude similaire à celle observée pour (Nu * -1)/Pr. tendance. Comme précédemment, l'exposant p est calculée déterminé grâce à une régression linéaire de log 10 (Sh * -1)/Le 2 Pr en fonction de log 10 pour les simulations avec r * ρ ≥ 0.5. La loi de puissance dérivée 

Sh * -1 PrLe 2 = (6 ± 2) 1.

Régime I r

* ρ ≥ 0.5 Régime II r * ρ < 0.5 γ(1 -γ) R * ρ 2 Le Constante Nu -1 Pr 5/4 ∆ b T λ b Non étudié Sh -1 PrLe 2 5/4 ∆ b ξ λ b Ra 1/3 ξ Pe ξ |Ra T | 1/4 Le

Dynamique temporelle de l'instabilité

Nous allons maintenant nous intéresser à la croissance temporelle de l'instabilité secondaire. Les figures IV.26(a,c) montrent l'évolution temporelle de l'énergie cinétique poloïdale (trait plein) et toroïdale (trait en tirets) pour deux simulations avec (a) Ra T = -10 8 , Pr = 0. En revanche, le taux de croissance reste sensiblement le même sur l'intervalle de r * ρ exploré. La simulation à r * ρ = 0.78 est la dernière de la série à générer des jets. Pour Pr = 0.3, les jets ne sont donc observables que sur une plage de r * ρ qui admet une borne inférieure et une borne supérieure. Cette observation est vérifiée pour l'ensemble de nos simulations avec Pr < 1. Pour le panneau de droite (b), Ra T = -3.66 × 10 9 , Pr = 7 et r = 1.21. La simulation à r * ρ = 0.78 (bleue claire) est celle qui ne présente pas de jet. Une diminution de r * ρ à une valeur de 0.55 rend possible la croissance de E 1 k,tor , qui atteint un premier palier à 150 avant de saturer à une valeur de 2000 après 0.2 temps visqueux. Nous observons une lente oscillation, dont la période est commensurable au temps de diffusion visqueux, de faible amplitude après la saturation. Si nous continuons de diminuer r * ρ , la valeur finale de E k,tor augmente progressivement et le premier palier disparaît. En revanche, le taux de croissance reste encore une fois sensiblement le même pour 0.29 ≤ r * ρ ≤ 0.43. L'intervalle de r * ρ au sein duquel les jets zonaux se forment ne semble pas admettre de borne inférieure pour Pr = 7. Cette observation se généralise à l'ensemble de nos simulation avec Pr ≥ 1.

Une fois l'énergie cinétique toroïdale saturée et les jets formés, les simulations à Pr < 1 et celles à Pr ≥ 1 présentent des dynamiques temporelles très différentes. L'écoulement des simulations avec Pr < 1 est dominé par un unique jet zonal et il présente une symétrie de révolution (voir figure IV.25a,b). L'orientation de son axe de symétrie n'est soumis à aucune contrainte, elle va donc varier d'un modèle à un autre comme le montre les rendus 3D IV.25a,b. En revanche, pour la majorité des simulations nous n'observons pas de variations temporelles importantes de l'orientation de cet axe. L'écoulement des simulations à Pr ≥ 1 est plus complexe. Il s'organise en couches sphériques concentriques de vitesse horizontale uniforme. Chacune d'entre-elles adopte un axe de symétrie différent compliquant ainsi la description de l'écoulement. Afin d'illustrer l'évolution temporelle d'un système de jets multiples, la figure IV.28 montre la vitesse azimutale u φ moyennée en φ à l'équateur en fonction du rayon et du temps pour une simulation avec R ρ = 1.5, Pr = 3, Le = 10 et Ra ξ = 2 × 10 10 . Pour ce modèle, l'énergie cinétique toroïdale est majoritairement axisymétrique. L'étude de la vitesse zonale dans le plan équatorial est donc pertinente. À un instant donné, l'écoulement est composé de trois paires de jets de directions alternées. Chaque jet est généré initialement au niveau de la couche limite inférieure et migre à vitesse constante pour s'atténuer au niveau de la couche limite supérieure avec 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 Time un temps de trajet de presque 0.3 temps visqueux. Ce comportement quasi-périodique change vers la fin de la série temporelle puisque les jets négatifs situés au centre du volume semblent tendre à fusionner. Dans certaines de nos simulations avec Pr ≥ 1, les jets multiples tendent à s'agréger au profit d'une structure mono-jet. Cette fusion se fait sur un temps commensurable au temps de diffusion visqueuse. La question de la stabilité de la configuration multi-jets est donc délicate. L'écoulement de grande échelle présente des évolutions temporelles sur des temps caractéristiques proche de celui de la diffusion visqueuse. L'étude systématique de la stabilité du système sur ces échelles de temps nécessite donc des ressources numériques importantes. Pour mitiger cet effort numérique, nous avons choisi de prolonger un certain nombre des simulations multi-jets avec Pr ≥ 1 pour étudier la stabilité des jets et le processus de fusion semble systématique. Certaines de nos simulations ont ainsi nécessité presque deux temps visqueux avant d'atteindre un régime stationnaire. [START_REF] Xie | Jet Formation in Salt-Finger Convection : A Modified Rayleigh-Bénard Problem[END_REF] observent de même la fusion de plusieurs jets pour leur simulation à haut R ρ (voir leur section 3.2) à un temps 5 ordres de grandeur supérieur au temps caractéristique de diffusion thermique à l'échelle du doigts de sel. En comparaison, notre simulation a été intégré sur 7000 temps de diffusion thermique à l'échelle du doigts de sel.

Mécanisme à l'origine de l'émergence de l'instabilité

Dans l'ensemble des simulations, l'émergence de jets zonaux se manifeste par une augmentation importante de l'énergie cinétique toroïdale contenue dans les dégrés harmoniques de grandes échelles (voir figure IV.26b,d). Afin d'automatiser l'identification des simulations intéressantes, nous proposons la définition d'un critère se basant sur le rapport de l'énergie cinétique toroïdale contenue dans les degrés ∈ 1, 5 et dans les degrés ∈ 6, 10 . En nous basant sur nos simulations, nous choisissons 4 comme valeur seuil de ce paramètre pour identifier celles présentant une circulation toroïdale de grande échelle. Il est à noter que lorsque ce paramètre est proche de cette valeur seuil, le jet n'atteint pas une amplitude suffisante pour être visible dans l'écoulement total. Nous observons néanmoins une amplitude de E 1 k,pol plus élevée. tor /Re pol est atteint pour r * ρ = 0.45. Cette tendance se confirme pour la série suivante. L'augmentation de la puissance convective totale conduit à une borne supérieure du domaine instable plus élevée. La série d'étoiles rouges est composée de simulations avec Ra T = -7.33 × 10 7 , Pr = 0.1 et Le = 30. L'écoulement devient favorable à la formation d'instabilités de grande échelle pour r * ρ > 0.50. La borne supérieure pour r * ρ n'a pas été déterminée ici. Cette contraction du domaine de l'instabilité avec une augmentation de Le et une diminution de Pr se confirme avec la série de simulations à Pr = 0.03, Le = 33 et Ra T = -6.6 × 10 7 (étoiles noires). La croissance de l'énergie cinétique toroïdale dans le mode = 1 nécessite désormais une valeur de r * ρ supérieure à 0.82. Il est à noter que deux simulations de cette série présentent des jets subdominants par rapport à l'amplitude de l'écoulement de petite échelle. Dans le régime Pr ≥ 1, modélisé par des cercles sur la figure, le domaine instable est translaté à des valeurs plus faibles de r * ρ , bien qu'il puisse s'étendre jusqu'à r * ρ = 0.7 pour les simulations à Pr = 3 et Le = 30. Contrairement au cas Pr < 1, nous n'observons pas de borne inférieure à ce domaine, quelle que soit la configuration choisie. Les modèles à Pr > 1 présentent une évolution temporelles plus complexes (voir la section 4.4.2). L'état final de l'écoulement est donc incertain et la mesure de Re 1 tor /Re pol est à considérer avec précaution. Par exemple, il a fallu 0.5 temps de diffusion visqueuse, 7000 temps de diffusion thermique à l'échelle d'un doigts de sel, pour que la simulation présentée à la figure IV.28 montrent des signes précurseurs à la fusion de plusieurs jets. Les 5 simulations pour lesquelles le temps d'intégration n'est pas suffisant pour déterminer si une fusion des jets multiples aura éventuellement lieu sont indiquées par des symboles avec un contour gris sur les deux figures. 

Q θ θ Q ϕϕ Q rϕ Q rθ Q θ ϕ Figure IV.30 -Évolution temporelle de chaque composante Q ij = u i u j V
avec (i, j) ∈ r, θ, φ pour une simulation avec Pr = 0.3, Le = 10, R ρ = 5 et Ra ξ = 2 × 10 8 . Afin d'éviter un changement de repère, l'axe de symétrie de l'écoulement a été numériquement fixé en imposant une symétrie longitudinale. Le jet ne présente donc pas de composante selon e θ .

Le panneau de droite IV.29b montre Re pol en fonction de r * ρ . La légende adoptée est la même que pour la figure précédente. Au sein d'une série où la valeur de Ra T est fixée, par exemple la série d'étoile jaunes la moins forcée, Re pol croît lorsque r * ρ diminue. Une amplitude plus faible de r * ρ est obtenue en injectant une puissance convective chimique plus importante dans le fluide et conduit donc à une vitesse accrue des doigts de sel. De la même manière, une convection plus vigoureuse s'accompagne d'une translation de la série à des valeurs de Re pol plus élevées. L'ensemble des simulations favorables à la formation de jets vérifient Re pol > 10. Cette borne inférieure confirme la nécessité d'un forçage convectif suffisant afin d'initier la croissance de l'énergie cinétique toroïdale (voir Yang et al. 2020). Néanmoins cette valeur seuil de Re pol constitue une condition nécessaire mais non suffisante à la formation de jets zonaux. Nous constatons en effet l'existence de 45 simulations non favorables à une circulation de grande échelle possédant un Re pol supérieur à 10. Afin d'identifier le mécanisme à l'origine de l'instabilité secondaire, nous considérons maintenant le cas d'un écoulement mono-jet. Nous nous plaçons dans un repère sphérique (e r , e ϑ , e ϕ ) dans lequel la circulation de grande échelle ne présente pas de composante selon e ϑ . [START_REF] Radko | Equilibration of Weakly Nonlinear Salt Fingers[END_REF] propose d'expliquer la croissance de l'instabilité secondaire par une théorie de champ moyen. La modification des profils verticaux de u, T et ξ induit par les doigts de sel conduit à l'émergence de couches horizontales de vitesse uniforme. La présence des ces jets limite les transferts chimique et thermique et conduit à la saturation des doigts de sel. Dans nos simulations l'instabilité secondaire, se développant sur le champ de doigts de sel initial, se manifeste par une intensification de l'écoulement toroïdal de grande échelle. T et ξ sont peu impactés par la nouvelle morphologie de l'écoulement. L'équation de Navier-Stokes IV.12 projeté selon e ϕ devient

∂ t u ϕ + u • ∇u ϕ = -∇p • e ϕ + ∇ 2 (u) • e ϕ .
(IV.86)

Nous pouvons moyenner cette équation en ϕ et utiliser la conservation de la masse IV.11 Le second terme du membre de gauche peut se réécrire

∂ t u ϕ ϕ + ∇ • uu ϕ ϕ = ∇ 2 u ϕ • e ϕ . ( IV 
∇ • uu ϕ ϕ = ∇ • u r u ϕ e r + u ϑ u ϕ e ϑ .
(IV.88)

Nous aboutissons donc finalement à

∂ t U zon + 1 r 2 ∂ ∂r r 2 u r u ϕ ϕ + 1 r sin ϑ ∂ ∂ϑ sin ϑ u ϑ u ϕ ϕ = ∇ 2 u ϕ • e ϕ avec U zon = u ϕ ϕ ,(IV.89)
où U zon correspond à la vitesse zonale. En se focalisant sur les jets, Guervilly (2022) aboutit à une équation identique à la nôtre, en dehors du terme de Coriolis (voir son équation 31). La dissipation ne pouvant être responsable de la croissance de U zon , nous nous focalisons maintenant sur les deux termes de corrélations u ϑ u ϕ ϕ et u r u ϕ ϕ issus du tenseur de Reynolds projeté sur e ϕ .

Nous considérons le cas d'une simulation avec Ra ξ = 2 × 10 8 , Pr = 3, Le = 10 et R ρ = 5. Pour éviter de recourir à un changement de repère sphérique, l'axe de symétrie de l'écoulement a été numériquement fixé en imposant une symétrie longitudinale. Le champ de vitesse au sein du jet ne possède donc pas de composante selon e θ . La figure IV.30 montre l'évolution temporelle de chaque composante Q i j = u i u j V avec (i, j) ∈ {r, θ, φ} 2 pour cette simulation. Initialement, l'écoulement s'organise sous la forme de doigts de sel radiaux qui présente une forte corrélation radiale. Q rr est ainsi deux ordres de grandeur supérieur à Q rθ et Q rφ . En raison de la symétrie imposée, Q φφ (Q rφ ) et Q θθ (Q rθ ) sont égaux. À l'émergence de l'instabilité à t = 4, une circulation zonale se développe dans le volume, Q φφ s'intensifie jusqu'à dépasser Q rr . Cette croissance de Q φφ semble être précédée à t = 3.80 par une augmentation de Q rφ . Il est probable que ces deux processus soient en réalité simultanés dans le cas des modes de Holyer (voir la figure IV.2). Une anisotropie des doigts de sel pourrait ainsi être nécessaire à la croissance temporelle de U zon .

La figure IV.31 montre l'évolution temporelle de l'énergie poloïdale E k,pol , de l'énergie toroïdale E k,tor , de l'énergie toroïdale axisymétrique E as k,tor (a) et de Sh (b) pour une simulation avec Ra T = -10 9 , Pr = 0.3, Le = 10 et R ρ = 4. Nous constatons que E k,pol (a) et Sh (b) sont parfaitement corrélés, reflétant ainsi que l'amplitude du transport chimique suit les variations de l'amplitude de la composante radiale de l'écoulement. Afin de visualiser les variations temporelles de l'énergie poloïdale, des axes des ordonnées différents ont été adoptés pour E k,pol et E k,tor . Cette simulation est repérée sur la figure IV.29. par la présence d'une étoile blanche au centre d'une étoile jaune. Elle se trouve donc à la limite du domaine des jets en terme de r * ρ pour cette série de simulations. Son écoulement présente un unique jet toroïdal dont le signe oscille temporellement. Son axe de symétrie voit son orientation évoluer dans le temps. L'énergie cinétique toroïdale axisymétrique, faible initialement, atteint une amplitude plus importante à t = 9. L'énergie toroïdale présente des oscillations de relaxation, de période proche d'un temps de diffusion visqueux, similaires à celles décrites par [START_REF] Garaud | 2D or not 2D : the effect of dimensionality on the dynamics of fingering convection at low Prandtl number[END_REF] et [START_REF] Xie | Jet Formation in Salt-Finger Convection : A Modified Rayleigh-Bénard Problem[END_REF]. Un jet d'amplitude élevée conduit à l'inflexion des doigts de sel et réduit par la même occasion les vitesse u r et transport chimique radiaux Sh. Il rétroagit donc de manière négative sur le moteur qui l'alimente et son amplitude diminue. Chaque augmentation (diminution) de E k,tor est précédée par une croissance (décroissance) de E k,pol . Une augmentation de R ρ conduit à une disparition des oscillations de relaxation en accord avec les observations de Xie et al. (2019). Le jet atteint alors une amplitude plus élevée (voir les étoiles plus grandes sur la figure IV.29), ce qui se traduit par une rétroaction plus importante sur l'écoulement radial. Nous observons notamment une diminution légère des valeurs de Nu et Sh lors de la croissance du jet. Par exemple, pour la simulation avec Ra T = -10 8 , Pr = 0.3, R ρ = 4 et Le = 10, la valeur de Sh chute de 6 %. Ce dernier est donc bien responsable de la saturation des doigts de sel. Inversement, une diminution de R ρ s'accompagne d'une disparition des jets lorsque Pr < 1. L'oscillation pourrait donc être la signature de la limite du domaine de l'instabilité secondaire en terme de R ρ .

Synthèse et discussion

Bien que le régime des doigts de sel soit susceptible d'être à l'oeuvre dans l'intérieur fluides de certaines planètes, le régime des doigts de sel a été peu étudié pour un fluide dans une géométrie sphérique. La majorité des études sur le sujet adopte en effet une approche locale et choisissent d'ignorer les effets de bord en considérant un fluide unbounded. La géométrique sphérique, ainsi que l'existence de conditions aux limites thermiques et chimiques, apportent une complexité supplémentaire au problème. L'objectif principale de cette étude est donc de caractériser l'instabilité primaire dans cette configuration et en particulier de tester la validité de résultats obtenus dans des études locales. Pour cela, nous avons réalisé 107 simulations numériques en faisant varier le ratio de densité R ρ , le nombre de Prandtl Pr, le nombre de Lewis Le et le nombre de Rayleigh thermique Ra T .

Dans notre modèle, nous considérons un fluide inclus dans une coquille sphérique de rapport de rayon r i /r o = 0.35. Sa convection est alimentée par des différences de température et de composition imposées aux frontières du domaine qui assurent des conditions favorables au développement de doigts de sel. À l'amorçage de la convection, la présence des conditions aux limites conduit à la formation de couches limites compositionnelles aux bornes du domaine. En basant notre raisonnement sur des hypothèses suggérées par [START_REF] Radko | Finite-Amplitude Salt Fingers in a Vertically Bounded Layer[END_REF], nous avons établis des relations de proportionnalité faisant intervenir le rapport d'aspect entre les contrastes thermique et chimique ainsi que les épaisseurs des couches limites interne et externe. Ces expressions mettent notamment en avant l'asymétrie, induite par la géométrie sphérique et le changement de la gravité en fonction du rayon, avec des contrastes en composition plus marqués à la couche limite interne (r = r i ) qu'externe (r = r o ). L'atténuation des contrastes en température et en composition auxquels le fluide est soumis nécessite de définir un rapport de densité apparent R [START_REF] Stern | The "Salt-Fountain" and Thermohaline Convection[END_REF], mais montre une dépendance secondaire au rapport de densité apparent R * ρ . Moyennant quelques hypothèses, dont l'approximation dite de tall fingers [START_REF] Smyth | Instability and Diapycnal Momentum Transport in a Double-Diffusive, Stratified Shear Layer[END_REF]Stern 1975), qui fait l'hypothèse que les dérivées radiales sont négligeables devant les dérivées horizontales, nous avons abouti à une correction de cette relation faisant intervenir le ratio de flux γ identique à celle établie par [START_REF] Taylor | Laboratory Experiments on the Structure of Salt Fingers[END_REF]. L'ajout de ce terme correctif améliore grandement la prédictibilité de la relation.

Un raisonnement similaire basé sur le bilan de puissance en régime permanent nous a permis d'écrire une loi d'échelle pour le nombre de Péclet chimique Pe ξ faisant intervenir le nombre de Sherwood Sh et γ. Nous avons alors identifié deux régimes asymptotiques aux frontières du domaine d'instabilité des doigts de sel pour ces grandeurs. Pour les faibles valeurs de R * ρ , Sh atteint un premier régime en loi de puissance de Ra ξ . La théorie de Grossmann et Lohse (2000), établie initialement pour la convection Rayleigh-Bénard, a été généralisée au régime des doigts de sel par [START_REF] Yang | Salinity Transfer in Bounded Double Diffusive Convection[END_REF] pour le régime asymptotique R ρ → 1. Elle prévoit une relation de proportionnalité entre Sh et Ra 1/3 ξ . Bien que ce régime asymptotique ne soit pas atteint dans nos simulations, ce modèle offre une prédiction satisfaisante pour Sh. Le rapport de flux γ, quant à lui, sature à une valeur qui dépend de Le. Dans ce premier régime, nous aboutissons ainsi à une loi d'échelle pour Pe ξ ne faisant intervenir que les nombres de Rayleigh thermique et chimique. Quand R * ρ → Le, Sh s'organise en branches qui viennent se connecter au premier régime asymptotique et γ peut être approximé par le rapport R * ρ /Le. Radko et [START_REF] Radko | Salt Fingers in Three Dimensions[END_REF][START_REF] Radko | Finite-Amplitude Salt Fingers in a Vertically Bounded Layer[END_REF] et [START_REF] Radko | Equilibration of Weakly Nonlinear Salt Fingers[END_REF] ont proposé de définir une distance au seuil . Dans leur théorie, les amplitudes des transports advectifs chimique et thermique se comportent alors en loi de puissance de , Nu ∼ Sh ∼ p , où la valeur de l'exposant p dépend au premier ordre du mécanisme de saturation de l'instabilité primaire [START_REF] Radko | Equilibration of Weakly Nonlinear Salt Fingers[END_REF]) et du caractère bounded ou unbounded du modèle. Ce modèle s'est révélé pertinent pour nos simulations, pour lesquelles nous avons déterminé que p atteignait une valeur de 1.25, proche de celle obtenue par [START_REF] Radko | Finite-Amplitude Salt Fingers in a Vertically Bounded Layer[END_REF].

Dans 54 simulations, une instabilité secondaire de grande échelle se développe dans le fluide. Elle se manifeste par l'intensification de l'énergie cinétique toroïdale stockée dans les degrés harmoniques de grande échelle. Le régime astrophysique Pr < 1 favorise la croissance d'un jet unique, tandis qu'un écoulement multi-jets de directions alternées est observable dans certaines de nos simulations avec Pr ≥ 1. La croissance de cette instabilité secondaire opère sur un temps commensurable au temps de diffusion visqueux. Aux temps plus longs, les simulations avec un écoulement multi-jets présentent une évolution complexe. Les jets migrent de la couche limite interne vers la couche limite externe et tendent à fusionner en accord avec les observations de Xie et al. (2019). Cette configuration semblerait donc n'être qu'un état métastable du système qui convergerait systématiquement vers un écoulement mono-jet.

La formation des jets nécessite un niveau de forçage suffisant, Re pol > 10, et ils apparaissent sur une plage de r * ρ qui dépend de la valeur de Pr. Dans nos simulations, le fort couplage entre les transports radiaux thermique et chimique de petite échelle et l'écoulement toroïdal de grande échelle, ainsi que la structure de l'écoulement toroïdal, montrent que les modes de Holyer (1984) sont responsables de l'émergence des jets. L'observation d'oscillations de relaxation dans une simulation en frontière du domaine de l'instabilité des jets constitue un argument solide en faveur de ce scénario. En se développant, le jet courbe les doigts de sel radiaux et engendre une corrélation entre les composantes horizontales et radiales de l'écoulement. Cette corrélation est le moteur qui vient alimenter la croissance des jets. Ce processus sature quand le cisaillement des doigts de sel devient trop important et réduit l'efficacité du transport radial. L'amplitude de la vitesse des jets est intimement liée à l'inflexion des doigts de sel. Nous avons ainsi pu observé qu'un jet intense conduisait à une diminution des valeurs de Sh et Nu. Par exemple, pour une simulation avec Ra T = -10 8 , Pr = 0.3, R ρ = 4 et Le = 10, cela se traduit par une chute de 6 % de la valeur de Sh. Néanmoins, du fait du choix de la géométrie sphérique, nous ne sommes pas en mesure de directement calculer le mode critique de cette instabilité dans nos simulations en utilisant les outils développés par [START_REF] Holyer | The Stability of Long, Steady, Two-Dimensional Salt Fingers[END_REF] afin de confirmer cette théorie.

Initialement, l'objectif de cette étude était de vérifier l'existence d'escaliers thermohalins en géométrie sphérique. Bien que nous ayons intégré des simulations numériques dont les valeurs de Ra ξ et Sh sont comparables à celles des modèles de [START_REF] Yang | Double Diffusive Convection in the Finger Regime for Different Prandtl and Schmidt Numbers[END_REF], nous n'avons pas réussi à observer la formation d'escaliers thermohalins. Il est probable que des forçages convectifs plus intenses soient requis pour rendre possible l'émergence de cette autre instabilité secondaire de grande échelle. L'utilisation de simulations 2D se présente alors comme une alternative séduisante, bien qu'elle puisse montrer certaines limitations (voir Garaud et Brummell 2015). Nous avons ainsi réussi à obtenir des escaliers thermohalins pour un fluide 2D à l'aide du code open-source pizza2 (Gastine 2019). La figure IV.32 montre les fluctuations de compositions pour une simulation avec Ra T = -3.66 × 10 13 , Pr = 7, Le = 21 et R ρ = 1.098 à trois instants différents exprimés en unité de temps visqueux. Afin de limiter le coût numérique de la simulation, nous n'avons considéré qu'un quart de l'anneau sphérique. Le modèle a été intégré durant 0.13 temps visqueux sur une grille avec N r = 4096 et m max = 3072. Aux trois instants, l'écoulement se scinde en trois enveloppes distinctes et présente une morphologie similaire à celui observé dans les modèles numériques locaux de Yang (2020) (voir la figure IV.9). Au centre de la coquille, il reste dominé par des doigts de sel radiaux modulés par une structure spiralée de grande échelle ressemblant très fortement aux modes de gravité impliqués dans l'instabilité collective. En revanche dans les enveloppes inférieure et supérieure, il s'organise en panaches convectifs et sa morphologie devient proche de celle observée dans le cas de la convection Rayleigh-Bénard classique. Nous observons que l'interface en doigts de sel tend à se contracter au cours du temps. L'obtention d'escaliers thermohalins dans un modèle 2D est prometteur et suggère que cette instabilité pourrait être observée en géométrie sphérique à condition d'atteindre au moins Ra ξ > 10 12 pour les configurations avec Pr > 1. 

Appendices

IV.A. Simulations numériques

Conclusions et perspectives

Ce chapitre résume dans un premier temps les résultats principaux ainsi que les contributions de cette thèse. Dans un second temps, nous aborderons les perspectives ouvertes par ce travail et des résultats préliminaires concernant l'influence de la rotation sur l'instabilité primaire des doigts de sel. 2014). Il était donc naturel dans un premier temps de nous intéresser à un modèle top-heavy de la géodynamo et de discuter de la pertinence de cette approche pour cet objet physique.

En résumé

Une étude linéaire du seuil de la convection nous a permis de confirmer que l'ajout d'une composante chimique instable à la flottabilité réduisait l'amplitude du contraste en température nécessaire à l'amorçage de la convection (voir [START_REF] Busse | Is Low Rayleigh Number Convection Possible in the Earth's Core ?[END_REF]. À l'aide d'une exploration systématique de l'espace des paramètres réalisée grâce à 79 simulations, nous avons mis en avant une influence du partitionnement de la puissance d'entrée entre puissances convectives thermique et chimique sur la morphologie du champ magnétique produit par effet dynamo. Néanmoins, quelle que soit la nature du forçage convectif adopté, nous sommes en mesure d'obtenir un champ magnétique simulé présentant un bon accord morphologique avec le champ géomagnétique, au sens des critères mis en évidence par [START_REF] Christensen | Conditions for Earth-like Geodynamo Models[END_REF]. En l'état actuel, il semble donc difficile d'établir une contrainte pour la contribution relative de la convection chimique dans le noyau terrestre comme l'avait suggéré [START_REF] Takahashi | Double Diffusive Convection in the Earth's Core and the Morphology of the Geomagnetic Field[END_REF]. En revanche, l'ajout d'une seconde source de flottabilité a permis de jeter un nouveau regard sur la transition d'un champ magnétique dominé par sa composante dipolaire à un champ multipolaire. Il est habituellement suggéré que cette dernière est contrôlée au premier ordre par une transition hydrodynamique, résultante de la compétition entre les forces d'inertie et de Coriolis [START_REF] Christensen | Scaling Properties of Convection-Driven Dynamos in Rotating Spherical Shells and Application to Planetary Magnetic Fields[END_REF]. Néanmoins, nous avons pu montrer, en accord avec l'étude de [START_REF] Menu | Magnetic Effects on Fields Morphologies and Reversals in Geodynamo Simulations[END_REF], que la force de Lorentz était susceptible de retarder l'effondrement du dipôle. Un nouveau paramètre, défini par le rapport des forces d'inertie et magnétique à la longueur dominante de l'écoulement, permet de capturer la transition indépendemment de la nature du forçage convectif. Ce paramètre étant difficilement mesurable pour la Terre, nous avons proposé de l'estimer à partir du rapport des énergies cinétique et magnétique [START_REF] Kutzner | From Stable Dipolar towards Reversing Numerical Dynamos[END_REF]. Le noyau de la Terre évolue dans un régime dynamique où l'énergie magnétique atteint une amplitude bien supérieure à celle de l'énergie cinétique et se trouve donc loin de la transition dipôle-multipole. Cette observation suggère que les inversions de polarité du champ ne résultent pas d'une croissance de l'amplitude de l'inertie dans le noyau.

L'instabilité des doigts de sel constitue un processus physique plus surprenant. Dans ce régime de convection, les gradients thermique et chimique contribuent de manière opposé à la stabilité du fluide. La conversion de l'énergie potentielle stockée dans la composante chimique instable en énergie cinétique est rendue possible par la diffusion thermique. Cette instabilité se développe sur un espace des paramètres délimité par les inégalités 1 < R ρ < Le, où R ρ correspond au rapport des anomalies de masse d'origine thermique et compositionnelle, et Le est le nombre de Lewis. Ce domaine d'instabilités est singulier car il est délimité par des bornes inférieure et supérieure. L'asymptote R ρ → 1 correspond à un régime dominé par la convection chimique, tandis que R ρ → Le correspond à un régime proche du seuil de la convection en doigts de sel. Les doigts de sel ont fait l'objet de nombreuses études numériques locales en géométrie cartésienne adaptées aux contextes océaniques et stellaires (voir Radko 2013, pour une revue du sujet). En revanche, cette instabilité a été moins explorée dans le cas des intérieurs planétaires. En particulier, l'influence de la rotation et du champ magnétique sur ce régime de convection restent encore méconnus, bien que des études plus récentes aient contribué à en améliorer notre compréhension, notamment dans le régime faiblement non linéaire [START_REF] Guervilly | Fingering Convection in the Stably-Stratified Layers of Planetary Cores[END_REF][START_REF] Manglik | A Dynamo Model with Double Diffusive Convection for Mercury's Core[END_REF][START_REF] Mather | Regimes of Thermo-Compositional Convection and Related Dynamos in Rotating Spherical Shells[END_REF][START_REF] Monville | Rotating Convection in Stably-Stratified Planetary Cores[END_REF][START_REF] Net | Numerical Study of the Onset of Thermosolutal Convection in Rotating Spherical Shells[END_REF][START_REF] Silva | The Onset of Thermo-Compositional Convection in Rotating Spherical Shells[END_REF].

Nous avons fait le choix de supprimer la rotation et le champ magnétique de notre modèle dans la seconde partie de la thèse, afin de nous concentrer sur les spécificités des doigts de sel en géométrie sphérique. Nous avons adopté un modèle qualifié de bounded dans lequel température et composition sont fixées aux deux frontières de la coquille sphérique. Ces conditions aux limites conduisent au développement de couches limites qui atténuent les contrastes en température et en composition auxquels le fluide est soumis. Afin de comparer nos résultats à ceux d'études locales unbounded, il est alors nécessaire de définir un rapport de densité effectif R * ρ [START_REF] Radko | Finite-Amplitude Salt Fingers in a Vertically Bounded Layer[END_REF][START_REF] Schmitt | The Growth Rate of Super-Critical Salt Fingers[END_REF][START_REF] Yang | Double Diffusive Convection in the Finger Regime for Different Prandtl and Schmidt Numbers[END_REF]) défini sur l'état convectif du fluide, après correction des effets de couches limites compositionnelles.

À l'aide d'une étude systématique de l'espace des paramètres réalisée à l'aide de 104 simulations numériques, nous avons pu vérifier qu'une loi d'échelle établie en géométrie cartésienne [START_REF] Stern | The "Salt-Fountain" and Thermohaline Convection[END_REF][START_REF] Taylor | Laboratory Experiments on the Structure of Salt Fingers[END_REF]-basée sur l'équilibre des forces d'Archimède et de viscosité, ainsi que l'hypothèse dite de tall finger, qui fait l'hypothèse que la dimension horizontale des doigts de sel est faible devant leur dimension radiale -pour la largeur caractéristique des doigts de sel fournit une bonne description des longueurs mesurées dans nos calculs numériques. Afin de caractériser les lois d'échelle régissant les transports chimique et thermique ainsi que la vitesse convective, nous avons scindé l'espace des paramètres en deux régimes asymptotiques. Pour les faibles valeurs de R * ρ , l'évolution de Sh au sein de nos simulations est cohérent avec la théorie de Grossmann et Lohse (2000), généralisée à ce régime asymptotique par [START_REF] Yang | Salinity Transfer in Bounded Double Diffusive Convection[END_REF]. Pour les valeurs élevées de R * ρ , les transports thermique et chimique obéissent à des lois polynomiales en p , avec p ≈ 5/4 et la distance au seuil de la convection (R ρ = Le). Dans ces deux régimes asymptotiques, nous avons réussi à établir une loi d'échelle pour la vitesse radiale de l'écoulement.

Dans 54 de nos simulations, l'instabilité primaire conduit à la formation d'une circulation de grande échelle qui se manifeste par un ou plusieurs jets de directions alternées. Sur des temps longs, la fusion progressive de ces structures, déjà observée par [START_REF] Xie | Jet Formation in Salt-Finger Convection : A Modified Rayleigh-Bénard Problem[END_REF] pour un modèle réduit bidimensionnel, suggère qu'un jet unique constitue l'état stable du système. Nous avons établi que la formation de cette instabilité secondaire nécessite une vitesse convective des doigts de sel suffisamment élevée -le nombre de Reynolds poloïdal Re pol doit être supérieur à 10 -dans l'écoulement. Néanmoins, cette condition n'est pas suffisante pour délimiter le domaine de l'instabilité secondaire, qui est restreint à un intervalle de R * ρ dépendant de la valeur du nombre de Prandtl Pr. Nous avons pu en particulier observer que le domaine des jets admet une borne inférieure en terme de R * ρ pour les simulations avec Pr < 1. Les modes décrits par [START_REF] Holyer | The Stability of Long, Steady, Two-Dimensional Salt Fingers[END_REF] constitue le processus physique le plus vraisemblable pour expliquer la formation de jets dans nos modèles. L'inflexion horizontale des doigts de sel engendrée par cette instabilité amorçe la circulation toroïdale de grande échelle. La pertinence de ce scénario est renforcée par l'observation d'oscillation de relaxation des énergies cinétiques toroïdale et poloïdale dans une simulation en frontière du domaine des jets, illustrant ainsi le fort couplage existant entre les doigts de sel et la circulation de grande échelle. Les jets, en cisaillant les doigts de sel, affaiblissent le processus physique qui les alimente. Leur existence résulte donc d'un équilibre entre les transports convectifs radial et toroïdal. Ce mécanisme est de plus cohérent avec l'existence d'une borne inférieure au domaine des jets pour les simulations avec Pr < 1. Nous avons pu observer que ces dernières généraient des doigts de sel de longueur radiale comparable à leur épaisseur horizontale, ils se révèlent donc plus difficiles à courber. Néanmoins, la géométrie sphérique ne permet pas l'utilisation directe des outils développés par [START_REF] Holyer | The Stability of Long, Steady, Two-Dimensional Salt Fingers[END_REF] pour caractériser directement l'instabilité dans nos simulations.

Influence de la rotation sur les doigts de sel

Afin d'ouvrir quelques perspectives immédiates à ce travail de thèse, cette section présente quelques résultats préliminaires concernant l'influence de la rotation sur la morphologie de l'écoulement dans le régime des doigts de sel. Nous montrons ici deux simulations, l'une sans rotation et l'autre avec un nombre d'Ekman E = 10 -4 , possédant les mêmes valeurs de Ra T = -3.66 × 10 9 , de Pr = 7, de Le = 3 et de R ρ = 1.25. La rotation conduit à une augmentation de la valeur du nombre de Rayleigh critique nécessaire à l'amorçage de la convection (voir [START_REF] Monville | Rotating Convection in Stably-Stratified Planetary Cores[END_REF], pour le régime des doigts de sel en sphère pleine). Pour un forçage convectif équivalent, l'ajout de la rotation réduit donc la surcriticalité de l'écoulement.

La figure V.1 montre des rendus 3-D de la vitesse radiale pour la simulation sans rotation (a) et celle avec E = 10 -4 (b). Sur chaque rendu, les surfaces sphériques interne et externe correspondent respectivement à des rayons adimensionnés de r i + 0.03 et r o -0.04 situés en dehors des couches limites. L'axe de rotation est colinéaire à l'axe z représenté sur la figure de gauche. Sur le panneau de droite, la vitesse radiale atteint une amplitude moins importante du fait de la surcriticalité réduite de l'écoulement. Nous observons que la rotation conduit à une inflexion importante des doigts de sel radiaux dans le plan équatorial. La figure V.2 montre des rendus 3-D de l'énergie cinétique azimutale pour la simulation sans rotation (a) et celle avec E = 10 -4 (b). Sur chaque rendu, la surface sphérique externe correspond à un rayon adimensionné de r o -0.04 tandis que la surface interne correspond à un rayon adimensionné de (a) r i +0.57 et (b) r i +0.37 afin d'être située dans le jet. L'axe de rotation est colinéaire à l'axe z représenté sur la figure de gauche. Les deux simulations présentent un jet unique prograde dans leur écoulement. L'écoulement de la figure de droite est très similaire à celui de la figure 15 de [START_REF] Monville | Rotating Convection in Stably-Stratified Planetary Cores[END_REF] malgré l'absence de graine dans leurs simulations. Pour le modèle numérique sans rotation, du fait de l'orientation arbitraire du jet qui se développe, l'axe de symétrie de la circulation de grande échelle n'est pas colinéaire à l'axe z. L'ajout de la rotation (b) conduit à imposer une symétrie préférentielle à l'écoulement et à aligner cet axe avec celui de la rotation. En revanche, nous observons que le jet ne parvient pas à pénétrer à l'intérieur du cylindre tangent et il atteint une amplitude maximale dans le plan équatorial, en accord avec [START_REF] Guervilly | Fingering Convection in the Stably-Stratified Layers of Planetary Cores[END_REF]. Malgré la surcriticalité moins importante, l'énergie cinétique azimutale dans le jet est un ordre de grandeur supérieure dans le cas avec rotation (b).

En résumé, ces résultats préliminaires confirment l'influence importante de la rotation sur la convection en doigts de sel. Une exploration plus systématique de l'espace des paramètres est nécessaire pour établir une nouvelle loi d'échelle pour L h [START_REF] Bouffard | Double-Diffusive Thermochemical Convection in the Liquid Layers of Planetary Interiors : A First Numerical Exploration with a Particle-in-Cell Method[END_REF][START_REF] Monville | Rotating Convection in Stably-Stratified Planetary Cores[END_REF]) ainsi que pour les transports thermique et chimique faisant intervenir le nombre d'Ekman E. Ils suggèrent de plus que l'ajout d'une rotation globale à l'écoulement favorise la formation d'une circulation de grande échelle plus intense et impose une symétrie axiale à l'écoulement toroïdal. La rotation semble donc amplifier la croissance de l'énergie cinétique toroïdale. Le domaine de l'instabilité secondaire pourrait donc être modifié par sa présence. Néanmoins, lorsque l'effet de la rotation est trop important, l'écou- lement adopte une symérie cylindrique et les doigts de sel présentent un fort degré d'alignement avec l'axe de rotation [START_REF] Guervilly | Fingering Convection in the Stably-Stratified Layers of Planetary Cores[END_REF][START_REF] Monville | Rotating Convection in Stably-Stratified Planetary Cores[END_REF]. Cette modification de la géométrie de l'écoulement est susceptible d'influencer la formation des jets.

Et après ?

Cette thèse a contribué, à petites échelles bien sûr, à améliorer notre compréhension des instabilités double-diffusives dans le contexte des intérieurs planétaires, mais de nombreuses pistes restent à explorer pour parfaire cette connaissance. Au-delà de ce contexte, les instabilités double-diffusives constituent des processus physiques captivants. La richesse des dynamiques rencontrées dans ce régime de convection suffit à motiver des études plus approfondies sur le sujet qu'elles aient une application géophysique ou s'inscrivant dans une perspective plus fondamentale en dynamique des fluides.

En premier lieu, il est indispensable de continuer à explorer le régime des doigts de sel, en particulier dans le cas de modèles incluant une rotation et un champ magnétique, plus réalistes d'un point de vue géophysique. Concernant la rotation, nos résultats préliminaires montrent un effet significatif de la rotation sur ce régime de convection, à la fois sur la taille des doigts de sel et sur la formation de jets toroïdaux, mais ces résultats doivent encore être consolidés. L'influence du champ magnétique sur cet type d'écoulement reste à préciser. En particulier, l'existence de jets peut sembler à première vue incompatible avec un champ magnétique généré par effet dynamo du fait du fort cisaillement résultant dans l'écoulement.

Des modèles hybrides -couplant des zones de convection top-heavy à des stratification thermique et/ou chimique (voir par exemple Guervilly 2022 ; [START_REF] Manglik | A Dynamo Model with Double Diffusive Convection for Mercury's Core[END_REF]) -constituent des pistes prometteuses pour des applications géophysiques car ils correspondent mieux à notre représentation actuelle des intérieurs planétaires (voir la figure I.6). L'utilisation de ce type de modèle est complexe car il fait intervenir de nombreuses variables, en particulier l'épaisseur et le niveau de stratification qui restent mal contraints. En revanche, ils montrent une richesse de mécanismes physiques (filtrage du champ magnétique, pénétration de la convection dans la zone stratifiée, . . .) qui rendent leur étude
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 1 Composante radiale du champ géomagnétique au 01/01/2020 tronquée à max = 13 à la surface de la Terre (a) et à l'interface noyau-manteau (b) (modèle IGRF-13 Alken et al. 2021). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I.2 Observations expérimentales de doigts de sel. Ils ont été obtenus par Huppert et Turner (1981) en saupoudrant du sel au-dessus d'un liquide présentant un gradient en température stabilisant. Les structures sont rendus visibles par l'ajout de fluorescéine et l'éclairage par le bas au travers d'une fente. . . . . . . . . . . . . . . . . . . . . . . . . . I.3 Illustration de la convection double-diffusive oscillante réalisée par

III. 5

 5 (a) Critical effective Grasshof number multiplied by E 4/3 as a function of the Grasshof mixing angle Θ. (b) Critical azimuthal wavenumber m c multiplied by E 1/3 as a function of Θ. (c) Critical drift frequency ω c multiplied by E 2/3 as a function of Θ. Symbol colors correspond to the Ekman number, open-symbols to hybrid boundary conditions and filled symbols to fixed-flux boundary conditions. . . . . . . . . . . . . . . . . . . . . . . III.6 Three-dimensional renderings of a snapshot of simulation (*) (see Tab. III.6). On each panel, the inner and outer spherical surfaces correspond to dimensionless radii r = 0.57 and r = 1.5, respectively. The z axis displayed in panel (a) corresponds to the axis of rotation. (a) : Temperature perturbation. (b) : Composition. (c) : Velocity. The outer surface shows the zonal velocity u ϕ , while the inner surface, the equatorial cut and the two meridional cuts display the magnitude of the velocity field, |u|. (d) : Magnetic field. The outer surface shows the radial field B r , while the inner surface, the equatorial cut and the two meridional cuts display the magnitude of the magnetic field, |B|. All fields are dimensionless. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III.7 Hammer projection of the dimensionless radial magnetic field at the CMB truncated at the spherical harmonic degree max = 341 (a) and at spherical harmonic degree max = 13 (b) for the numerical simulation (*) shown in Figure III.6. It corresponds to the same snapshot as in Figure III.6. The dashed lines in panel(b) correspond to negative values of the radial magnetic field. . . . . . . . . . . . . . . . . . . . . . . . . . III.8 Compliance parameter χ 2 as a function of the magnetic Ekman number E η and of the magnetic Rayleigh number Rm for three different setups : purely chemical convection (left), double-diffusive convection (center) and pure thermal convection (right). Dashed lines mark the limits of the Earth-like domain defined by Christensen et al. (

  .6. The horizontal dashed line corresponds to the boundary between dipole-dominated and multipolar dynamos ( f dip = 0.5). Time is scaled by the magnetic diffusion time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV.1 Illustration du mécanisme à l'origine de la formation des doigts de sel. Initialement, la salinité et la température du fluide croissent avec l'altitude z. Les gradients de salinité et de température sont représentés respectivement par les gradients de couleur à droite et à gauche. L'accélération du champ de gravité g est représentée sur le schéma. Une perturbation déplace une particule de fluide (cercle en tirets espacés) vers le bas (cercle en tirets serrés). Cette particule de fluide chaude et salée se retrouve dans un environnement moins salé et plus froid. Elle diffuse rapidement sa chaleur (flèches ondulées) pour s'équilibrer avec son environnement alors que sa salinité n'évolue quasiment pas. La particule étant plus dense que le liquide qui l'entoure elle continue à plonger (cercle plein). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  et résulte de simulations numériques bi-dimensionnelles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV.3 Illustration du mécanisme à l'origine de la formation d'escaliers thermohalins dans le cas de l'instabilité collective. Initialement, le fluide est soumis à des gradients verticaux thermique et chimique uniforme et sa densité croît avec la profondeur. Le foncé correspond à une zone de faible densité, tandis que le clair à une zone de forte densité. L'onde de gravité interne, dont les fronts d'onde sont repérés par des diagonales en trait plein, induit des déplacements (larges flèches noires) du fluide vers le haut (zone U) et vers le bas (zone D). Des particules de fluide plus chaud et plus salé se retrouvent dans un environnement plus dense (cercle foncé). Cette modification des profils thermique et chimique induit une modulation de l'amplitude du flux d'anomalies de masse (flèches blanches). Cette figure s'inspire largement de la figure 6.3 de Radko (2013). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV.4 Illustration de la dépendance de γ à R ρ . La portion de courbe bleue correspond à l'intervalle sur lequel γ décroît tandis que la portion rouge correspond à l'intervalle sur lequel γ croît. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV.5 Illustration du mécanisme de l'instabilité γ. Profils verticaux de la température (a), du rapport de densité (b) et de γ (c). (c) Les flèches ondulées correspondent au flux thermique et leur taille donne une idée de l'amplitude relative de ce dernier. (a) Initialement, la température (ligne en tirets) et la composition (non représentée) croissent linéairement avec z. L'eau la plus chaude et la plus salée se trouve donc dans la partie supérieure du fluide. (b) R ρ vaut alors R 0 ρ (ligne verticale en tirets) et (c) γ est égal à γ 0 . (a) Une perturbation induit une modification des profils verticaux thermique et chimique (ligne noire) qui conduit à (b) une variation verticale de R ρ (ligne noire). (c) La variation verticale de R ρ se traduit par une variation verticale de γ qui dépend du signe de la dérivée de γ par rapport à R ρ . Lorsque cette dérivée est positive (courbe rouge), les variations verticales de γ conduisent à une convergence du flux thermique (flèches ondulées rouges) en z = 0.75 et à sa divergence en z = 0.25. (a) La pertubation en température s'atténue (courbe rouge). (c) En revanche, lorsque cette dérivée est négative (courbe bleue), les variations verticales de γ conduisent à une accumulation de chaleur (flèches ondulées bleues) dans la partie inférieure de la boîte et (a) la perturbation s'amplifie (courbe bleue). Cette figure s'inspire de la figure 8.16 de Radko (2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV.6 (a) P ξ t en fonction de Ra ξ Sc -2 (Sh -1) pour l'ensemble des simulations, qui seront présentées à la section 2.2.6. Le coefficient de proportionnalité entre les deux grandeurs a été déterminé par une régression linéaire. Le modèle linéaire obtenu est représenté par une ligne en tirets et son expression est fournie sur la figure. (b) P ξ t compensée par Ra ξ Sc -2 (Sh -1) en fonction de Ra ξ Sc -2 (Sh -1) pour l'ensemble des simulations. La prédiction théorique du coefficient directeur (voir équation IV.31) est représentée par une ligne horizontale en tirets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV.7 Profil radiaux moyennés en temps pour une simulation avec Ra T = 3.66 × 10 7 , R ρ = 1.1, Pr = 7 et Le = 3. (a) Les flux chimiques diffusif F diff,ξ (trait en tiret) et convectif F conv,ξ (trait plein) et la variance σ ξ de la composition (ligne en tirets-points). Les couches limites chimiques apparaissent sous la forme de zones grisées en bleu. Les épaisseurs des couches limite externe λ o et interne λ i sont définies sur l'axe des abscisses. La double flèche en tirets définit l'épaisseur de la zone convective. (b) Température (ligne claire) et composition (ligne foncée). Les lignes horizontales en tirets de couleur correspondante repèrent la température et la composition aux frontières de la zone convective. Par souci de lisibilité, seuls les sauts en température ∆ i T et composition ∆ i ξ au travers de la couche limite inférieure ont été défini sur la figure grâce à des doubles flèches verticales en tirets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV.8 Les simulations numériques réalisées dans cette étude dans un espace des paramètres défini par Ra T , Ra ξ et r ρ . Deux plans de cet espace ont été représentés pour souligner la manière dont nous l'avons exploré. (a) r ρ en fonction des deux nombres de Rayleigh (|Ra T |, Ra ξ ). (b) log 10 (|Ra T |) en fonction de Ra ξ et r ρ . Le symbole de chaque simulation dépend de son Pr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV.9 Profils verticaux moyen de la température T et de la composition C pour deux simulations avec Ra ξ = 10 10 et R ρ = 1.6. ( a) (Pr, Sc) = (7, 70) et (b) (Pr, Sc) = (7, 700). Cette figure est extraite de Yang (2020). . . . . . . . . . . . . . . . . . . . . . . . . . . . IV.10 Profils radiaux de la température (a) et de la composition (b) moyennés en temps pour quatre simulations présentant Ra T = -3, 66 × 10 9 , Pr = 7 et Sc = 21. Ces simulations diffèrent par leur valeur de Ra ξ et donc de r ρ . La couleur de chaque ligne est une fonction de r ρ . Les lignes en tirets correspondent aux profils radiaux de l'état diffusif. La température et la composition sont fixées aux deux bords. (b) L'encart correspond à un agrandissement de la figure sur la couche limite inférieure. Pour chaque modèle, la frontière de la couche limite interne est représentée par un segment vertical de la couleur correspondante. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV.11 (a) Épaisseur de la couche limite externe λ o en fonction de celle de la couche limite interne λ i . (b) Contraste de composition de la couche limite externe ∆ o ξ en fonction de celui de la couche limite interne ∆ i ξ. Pour les deux figures, une régression linéaire a été réalisée en ne conservant que les simulations avec λ i < 0.02. Les expressions des deux relations obtenues sont fournies sur chaque figure. Les lignes en tirets correspondent aux modèles linéaires issus de la régression. . . . . . . . . . . . . . . . . . . . . . . . . . IV.12 (1 -∆ b ξ)/(1 -∆ b T) en fonction de Sh/Nu. Une loi de puissance a été dérivée en réalisant une régression linéaire et son expression est fournie sur la figure. La ligne en tirets correspond à cette loi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV.13 (a) r * ρ en fonction de r ρ pour trois séries de simulations : (i) Pr = 0.3, Sc = 3, Ra T = -10 9 (pentagones), (ii) Pr = 3, Sc = 30, Ra T = -1.5 × 10 9 (croix) et (iii) Pr = 7, Sc = 21, Ra T = -3.66 × 10 9 (cercles). Pour chaque série, on fait varier r ρ en faisant varier Ra ξ . La ligne en tirets marque la première bissectrice. (b) R * ρ /R ρ en fonction de |Ra T | pour deux séries de simulations : (i) R ρ = 1.1, Pr = 7, Le = 3 (cercles), (ii) R ρ = 5, Pr = 0.3, Le = 10 (pentagone). La ligne en tirets correspond à l'égalité entre R ρ et R * ρ . . . . . . . IV.14 (a-c) Rendu 3-D de la vitesse radiale pour trois simulations présentant R ρ = 1.1, Pr = 7 et Sh = 21. Sur chaque rendu, les surfaces sphériques interne et externes correspondent respectivement à des rayons adimensionnés de r i + 0.03 et r o -0.04. Entre la simulation (a) et la simulation (c), la puissance totale injectée dans la coquille sphérique a été multipliée par 500 environ. (d) Spectres de l'énergie cinétique poloïdale pour ces 3 simulations. Le degré h (voir équation II.163) pour chaque spectre est repéré par une ligne verticale en tiret et atteint respectivement 39, 75 et 165 pour les trois simulations. Chaque simulation est identifiée par une couleur (voir disque coloré dans le coin supérieur droit de chaque rendu 3-D). . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV.15 Lignes de courant de doigts de sel soumis à la perturbation non-oscillante décrite par Holyer (1984). Cette figure correspond à la figure 1 de cette étude. . . . . . . . . . . . IV.16 (a) h en fonction de c . Le coefficient de proportionnalité entre ces deux degrés d'harmonique sphérique a été obtenu en réalisant une régression linéaire. Le coefficient est fourni dans la légende. Le modèle linéaire dérivé est représenté par une ligne en tirets. (b) γ en fonction de γ c . La ligne en tirets délimite la première bissectrice. . . . . IV.17 Profil radial du potentiel poloïdal W du mode le plus instable (courbe clair) et du mode de degré harmonique h (courbe foncée) pour une simulation avec Ra T = -2.2 × 10 8 , Pr = 0.3, Le = 10, R ρ = 1.1. Le rayon r a été normalisé par le rayon de la coquille externe r o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV.18 L h en fonction de |Ra T | sur la figure de gauche (a) et en fonction de |Ra T |(1 -γ)/γ sur la figure de droite (b). Des lois de puissance en |Ra T | (a) et en |Ra T |(1 -γ)/γ ont été dérivées en réalisant une régression linéaire. Sur chaque figure, l'expression de cette loi est fournie. Les lignes en tirets correspondent à ces deux lois. . . . . . . . . . . . . . IV.19 Pe ξ en fonction de Ra ξ (Sh -1) γ(1 -γ)/Ra T 1/4 . La ligne en tirets correspond à la première bissectrice. Une loi de puissance de Pe ξ en fonction de Ra ξ a été dérivée en réalisant une régression linéaire. La loi obtenue est fournie sur la figure. . . . . . . . . IV.20 (a) Sh en fonction de Ra ξ . Les lignes en pointillés et en tirets correspondent respectivement aux lois d'échelles dérivées plus loin dans le texte pour les valeurs faibles (r * ρ < 0.5) et élevées (r * ρ ≥ 0.5) de r * ρ . Pour le second régime, la loi d'échelle a été tracé pour deux séries de simulations: (i) Ra T = -10 8 , Pr = 0, 3, Le = 10 (pentagone) et (ii) Ra T = -3.66 × 10 9 , Pr = 7, Le = 3 (cercle). (b) γ en fonction de R * ρ /Le. La ligne en pointillé délimite la première bissectrice. Les régimes I et II délimités respectivement par r * ρ ≥ 0.5 et r * ρ < 0.5 sont indiqués au niveau de l'échelle de couleur. . . . . . . . . . IV.21 (a) (Nu * -1)/Pr en fonction de . (b) (Sh * -1)/Le 2 Pr en fonction de . Pour chaque figure, une loi de puissance en a été dérivée en réalisant une régression linéaire et en ne conservant que les simulations avec r * ρ > 0.5. L'expression obtenue est ainsi indiquée sur chaque figure. Les lignes en tirets correspondent aux lois de puissance dérivées. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV.22 (a) Sh en fonction Ra ξ . Une loi de puissance a été dérivé en réalisant une régression linéaire et en ne conservant que les simulations avec r * ρ < 0.5. La ligne en tirets correspond à cette loi. (b) ShRa -1/3 ξ en fonction de Ra ξ . Pour les deux figures, seules les simulations avec r * ρ < 0.5 ont été conservées. . . . . . . . . . . . . . . . . . . . . . .

  régime I et le régime II correspondent à ceux définis à la figure IV.20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV.24 Nombre de Reynolds poloïdal local Re L compensé par Pr 1/2 en fonction de pour l'ensemble des simulations avec r * ρ > 0.5. La ligne en tirets correspond à la loi de puissance établie dont l'expression est fournie dans la légende de la figure. . . . . . . IV.25 Rendu 3D de la vitesse azimutale pour 4 simulations. Sur chaque rendu, les surfaces sphériques interne et externe correspondent respectivement à des rayons adimensionnés de r i + 0.03 et r o -0.04, situés en dehors des couches limites. Les simulations de la première ligne (a-b) ont une valeur de Pr de 0.3, une valeur de Le de 10 et une valeur de Ra T atteignant -10 8 . Leur valeur de R ρ est respectivement de 6 et 4. Entre la simulation (a) et la simulation (b), la puissance convective totale a été multipliée par 5. Les lignes de courants de l'écoulement de grande échelle, tronqué au degré harmonique = 7, sont représentées sous forme de tubes. Leurs rayons et leurs couleurs dépendent de la norme carrée de la vitesse, le rouge correspondant à des valeurs élevées. Les simulations de la seconde ligne ligne (c-d) ont une valeur de Pr de 3, une valeur de Le de 10 et une valeur de R ρ atteignant 1.5. Entre la simulation (c) et la simulation (d), la puissance convective totale a été multipliée par 10. . . . . . . . . . . . . . . . . . . . . . IV.26 Première colonne (a,c) : évolution temporelle de l'énergie cinétique poloïdale (trait plein) et toroïdale (trait en tirets) pour deux simulations avec (a) Ra T = -10 8 , Pr = 0.3, Le = 10 et R ρ = 4; (c) Ra T = -1.5 × 10 8 , Pr = 1, Le = 10 et R ρ = 1.3. Seconde colonne (b,d) : Spectre de l'énergie cinétique totale en fonction du degré harmonique pour ces deux simulations. Les spectres sont tracées à trois instants différents. La couleur de chaque courbe est relative à l'instant auquel a été réalisé le spectre (voir les lignes verticales en pointillés sur les figures de la première colonne). Le degré harmonique h est indiqué sur chaque figure par une ligne verticale en tirets. . . . . . . . . . . . . . . IV.27 Évolution temporelle de l'énergie cinétique contenue dans l'harmonique sphérique de degré = 1 à un rayon r donné pour deux séries de simulations. (a) Ra T = -10 8 , Pr = 0.3, Le = 10 et r = 1.22. Pour la simulation à r * ρ = 0.40, r = 1.32 (b) Ra T = -3.66 × 10 9 , Pr = 7 et r = 1.21. La couleur de chaque courbe est relative à r * ρ . . . IV.28 Vitesse azimutale u φ moyennée en φ dans le plan équatorial en fonction du rayon et du temps pour une simulation avec R ρ = 1.5, Pr = 3, Le = 10 et Ra ξ = 2 × 10 10 . Le bleu correspond à un jet négatif (u φ < 0), tandis que le marron correspond à un jet positif (u φ > 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV.29 Les simulations numériques réalisées dans cette étude représentées dans deux plans de l'espace des paramètres définis par (a) r * ρ et Ra ξ ; (b) Re pol et r * ρ . Les symboles sont colorés en accord avec Le. Pour les deux figures, la taille du symbole est proportionnelle au ratio Re 1 tor /Re pol , où Re 1 tor correspond à nombre de Reynolds toroïdal du mode = 1. Les simulations sans jets sont représentées par des marqueurs gris avec une faible opacité et celles présentant des jets avec des marqueurs colorés. Pour les 5 simulations avec un contour gris le temps d'intégration n'est pas suffisant pour déterminer si une fusion des jets multiples aura éventuellement lieu. La valeur de Re 1 tor /Re pol pour ces modèles est alors possiblement sous-estimée. L'étoile jaune avec une étoile blanche au centre correspond à la simulation discutée à la figure IV.31. . . . . . . . . . . . . . . . . IV.30 Évolution temporelle de chaque composante Q i j = u i u j V avec (i, j) ∈ r, θ, φ pour une simulation avec Pr = 0.3, Le = 10, R ρ = 5 et Ra ξ = 2 × 10 8 . Afin d'éviter un changement de repère, l'axe de symétrie de l'écoulement a été numériquement fixé en imposant une symétrie longitudinale. Le jet ne présente donc pas de composante selon e θ . . . . IV.31 (a) Évolution temporelle de l'énergie poloïdale (bleu foncé), de l'énergie toroïdale (rouge) et de l'énergie toroïdale axisymétrique (tirets) pour une simulation avec Ra T = -10 9 , Pr = 0.3, Le = 10 et R ρ = 4. Afin de visualiser les variations de E k,pol , deux axes d'ordonnées ont été utilisés. (b) Évolution temporelle de Sh pour cette même simulation. Cette simulation est repérée sur la figure IV.29 par une étoile blanche au centre d'une étoile jaune. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV.32 Fluctuation de composition dans une simulation 2D avec Ra T = -3.66 × 10 13 , Pr = 7, Le = 21 et R ρ = 1.098 à trois instants différents exprimés en unité de temps visqueux. Afin de limiter le coût numérique de la simulation, nous n'avons considéré qu'un quart de l'anneau sphérique. Le modèle a été intégré durant 0.13 temps visqueux sur une grille avec N r = 4096 et m max = 3072. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V.1 Rendu 3-D de la vitesse radiale pour deux simulations présentant Ra T = -3.66 × 10 9 , R ρ = 1.25, Pr = 7 et Le = 3. Sur chaque rendu, les surfaces sphériques interne et externe correspondent respectivement à des rayons adimensionnés de r i + 0.03 et r o -0.04. La simulation (a) correspond à un modèle sans rotation tandis que le nombre d'Ekman E pour la simulation (b) vaut 10 -4 . L'axe de rotation est colinéaire à l'axe z représenté sur le panneau de gauche. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V.2 Rendu 3-D de l'énergie cinétique azimutale pour deux simulations présentant Ra T = -3.66 × 10 9 , R ρ = 1.25, Pr = 7 et Le = 3. Sur chaque rendu, la surface sphérique externe correspond à un rayon adimensionné de r o -0.04 tandis que la surface interne correspond à un rayon adimensionné de (a) r i +0.57 et (b) r i +0.37 afin d'être située dans le jet. La simulation (a) correspond à un modèle sans rotation tandis que le nombre d'Ekman E pour la simulation (b) vaut 10 -4 . L'axe de rotation est colinéaire à l'axe z représenté sur le panneau de gauche. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Liste des tableaux II.1 Estimations des paramètres de contrôle pour Mercure, la Terre, Ganymède et Jupiter. Pour chaque astre, un exposant précise de quelles études proviennent les valeurs utilisées pour estimer les paramètres. (a) : Christensen (2006), Christensen et Wicht (2008), Rivoldini et al. (2009) et Solomon et al. (2018) ; (b) : Anufriev et al. (2005), Badro et al. (2007), Braginsky et Roberts (1995), B. Buffett (2015), Dziewonski et Anderson (1981), Finlay et Amit (2011), Gillet et al. (2010), Kon ôpkov á et al. (2016), Labrosse (2003), Li et al. (2000), Loper et Roberts (1981), Pozzo et al. (2013), Roberts et King (2013) et Zhang et al. (2020) ; (c) : Christensen (2015), R ückriemen et al. (2015) et R ückriemen et al. (2018) ; (d) Soderlund (2019) et Vance et al. (2018) ; (e) French et al. (2012) et Wilson (2015

  t) cos(mφ) + h m (t) sin(mφ) P m (θ) (I.2) avec (r, θ, φ) les coordonnées sphériques, t le temps, R ⊕ le rayon moyen de la Terre, P m le polynôme associé de Legendre de degré et d'ordre m. Dans cette expression, les coefficients (g m , h m ) sont
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 1 Figure I.1 -Composante radiale du champ géomagnétique au 01/01/2020 tronquée à max = 13 à la surface de la Terre (a) et à l'interface noyau-manteau (b) (modèle IGRF-13 Alken et al. 2021).
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 2 Figure I.2 -Observations expérimentales de doigts de sel. Ils ont été obtenus par Huppert et Turner (1981) en saupoudrant du sel au-dessus d'un liquide présentant un gradient en température stabilisant. Les structures sont rendus visibles par l'ajout de fluorescéine et l'éclairage par le bas au travers d'une fente.
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 3 Figure I.3 -Illustration de la convection double-diffusive oscillante réalisée par[START_REF] Garaud | Double-Diffusive Convection at Low Prandtl Number[END_REF]. Le gradient thermique déstabilisant est mis en avant par un gradient de couleur allant du rouge pour l'eau chaude, au bleu pour l'eau froide. La salinité de l'eau est représentée par la densité de particules blanches.

  Figure I.4 -a) Description schématique des différents régimes existants pour la convection double-diffusive inspiré par le diagramme de Ruddick (1983). L'espace des paramètres présente deux directions indépendantes définies par Ra T et Ra ξ . Comme la température et la composition peuvent avoir soit un effet stabilisant, soit un effet déstabilisant sur le fluide, le diagramme est divisé en quatre cadrans. Les lignes horizontale et verticale correspondent respectivement au cas de la convection purement thermique et purement chimique. Les domaines des instabilités des doigts de sel et de la semi-convection sont délimités par les équations (I.20, I.21) dont les expressions sont rappelées sur le schéma. Le seuil de la convection a été tracé de manière schématique grâce à la figure 1 de Mather et Simitev (2021) et prend en compte la rotation. En revanche, ce diagramme ne prend pas en compte l'influence du champ magnétique. Différentes valeurs de l'angle Θ (voir la définition I.22) sont indiquées. Les figures b) et c) offrent une idée de la taille réelle de chaque zone pour deux systèmes physiques ayant un Le de 10 et différant par leur valeur de Pr qui atteint respectivement 0.01 (b) et 1 (c).

Figure I. 5

 5 Figure I.5 -(A) Profils verticaux de température T et de salinité S mesurés dans des escaliers thermohalins dans l'océan Atlantique tropical à 400 m de profondeur. Cette figure est tirée de R. W. Schmitt et al. (2005). (B -C) Rendu 3D des perturbations de salinité dans un modèle numérique local adoptant Pr = 7 et Le = 3 (Yang et al. 2020). L'écoulement présente 1 (B) et 3 (C) escaliers thermohalins séparés par des interfaces favorables à une convection en doigts de sel. Les courbes vertes et violettes correspondent aux profils verticaux moyens de température et de composition.

  II.67) où g = -∇ψ 0 est l'accélération du champ de gravitation. En supposant que la masse volumique de la graine est ρ 0 et en intégrant cette équation entre 0 et r, nous aboutissons à

  nécessite donc la résolution de deux équations couplées pour W et p[START_REF] Glatzmaier | Numerical Simulations of Stellar Convective Dynamos. I -The Model and Method[END_REF] faisant intervenir une dérivée radiale d'ordre 3. Dans la seconde approche, la composante radiale du double rotationnel de l'équation de Navier-Stokes permet de dériver une équation d'évolution de W indépendante de p (voir par exemple[START_REF] Dormy | MHD Flow in a Slightly Differentially Rotating Spherical Shell, with Conducting Inner Core, in a Dipolar Magnetic Field[END_REF] 

  Les harmoniques sphériques constituent une solution efficace pour représenter les variations horizontales d'une fonction lisse définie sur la sphère. L'harmonique de degré et d'ordre m, notée Y m est définie à toute colatitude θ et à toute longitude φ par Y m (θ, φ) = P m (cos θ)e imφ , (II.128) où P m est une fonction associée de Legendre. La normalisation des harmoniques sphériques est choisie ici pour qu'elles vérifient la relation d'orthogonalité S Y m (θ, φ)Y m (θ, φ)dS = δ δ mm , (II.129) où δ correspond à la notation de Kronecker et dS = sin θ dθ dφ. Dans cette expression, la notation est adoptée pour le complexe conjugué. Cet ensemble de fonctions vérifient l'identité

  II.133) où N φ est le nombre de points longitudinaux équidistants, θ k les N θ points de collocation de Gauss suivant la colatitude et w k les poids associés (voir par exemple le chapitre 9de Glatzmaier 2013). La fonction G étant à valeurs réelles, la relation G m = -G ,-m permet de ne considérer que les coefficients avec m ≥ 0. Dans MagIC, le calcul de ces deux transformations et des transformations inverses est réalisée grâce à la librairie open-source SHTns 3[START_REF] Schaeffer | Efficient Spherical Harmonic Transforms Aimed at Pseudospectral Numerical Simulations[END_REF]).

  .148) où s est l'ordre du schéma. Les exposants sont relatifs à la discrétisation temporelle, à titre d'exemple G p mn = G mn (t 0 + pδt), (II.149) où t 0 correspond à l'instant initial de la simulation. Les vecteurs a, b E et b I sont des poids spécifiques au schéma adopté. Cette expression peut être mise sous la forme

6. 4 .

 4 Mise en oeuvreL'algorithme (II.1) rédigé en pseudo-code résume le déroulement de l'avancement en temps du problème mathématique (II.120 -II.127) discrétisé dans le cas d'une discrétisation radiale utilisant l'approche spectrale. Nous avons supposé ici que le pas de temps δt restait constant. Chaque itération temporelle est constituée d'une boucle radiale durant laquelle les forces non-linéaires sont calculées dans la grille physique et la force de Coriolis dans l'espace spectral. Elle est suivie d'une boucle sur les degrés d'harmoniques durant laquelle l'avancement en temps des équations est réalisé en procédant à la résolution de problèmes linéaires analogues à celui illustré à l'équation (II.151). Algorithme II.1 -Pseudo-code de MagIC dans le cas d'une discrétisation radiale utilisant l'approche spectrale. Nous avons supposé ici que le pas de temps restait constant. Cet algorithme est adapté de Lago et al. (2021) # Boucle temporelle for each time step do # Boucle radiale # Calcul des membres de droite dans les é quations (II.120-II.122) for each r in N r do # Passage de la grille spectrale à # la grille physique (II.131) ( , m, r) → (θ, φ, r) for each θ, φ in N θ , N φ do Calcul des termes non -liné aires end for # Dé composition en harmoniques sphé riques II.133 (θ, φ, r) → ( , m, r) Calcul de la force de Coriolis end for # Boucle sur les degré d'harmoniques sphé riques # Avancement en temps des é quations for each in N do for m = 0 to # Dé composition en polyn ôme de Tchebychev (II.143) ( , m, r) → ( , m, n) # Avancement en temps des é quations Mettre à jour le membre de droite dans (II.151) Ré soudre (II.151) end for Mettre à jour les dérivées radiales # Retour sur la grille radiale (II.142) ( , m, n) → ( , m, r) end for end for
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 1 Figure III.1 -Schematic overview of previous studies on double-diffusive convection and dynamo action in terrestrial interiors, inspired by the regime diagram of[START_REF] Ruddick | A Practical Indicator of the Stability of the Water Column to Double-Diffusive Activity[END_REF]. The parameter space has two independent directions, defined by the prescribed background temperature and composition gradients, respectively. It is divided into four quadrants, since each gradient can have a stabilizing or destabilizing effect on fluid motion. The vertical and horizontal straight lines correspond to purely thermal and purely chemical convection, respectively (in which case there exists a unique destabilizing background profile). The publications that appear in the three quadrants of dynamical interest are the following: Bouffard (2017), M.[START_REF] Breuer | Thermochemically Driven Convection in a Rotating Spherical Shell[END_REF],[START_REF] Busse | Is Low Rayleigh Number Convection Possible in the Earth's Core ?[END_REF],[START_REF] Glatzmaier | An Anelastic Evolutionary Geodynamo Simulation Driven by Compositional and Thermal Convection[END_REF],[START_REF] Manglik | A Dynamo Model with Double Diffusive Convection for Mercury's Core[END_REF],[START_REF] Mather | Regimes of Thermo-Compositional Convection and Related Dynamos in Rotating Spherical Shells[END_REF],[START_REF] Monville | Rotating Convection in Stably-Stratified Planetary Cores[END_REF],[START_REF] Net | Numerical Study of the Onset of Thermosolutal Convection in Rotating Spherical Shells[END_REF],[START_REF] Silva | The Onset of Thermo-Compositional Convection in Rotating Spherical Shells[END_REF],[START_REF] Simitev | Double-Diffusive Convection in a Rotating Cylindrical Annulus with Conical Caps[END_REF],[START_REF] Takahashi | Double Diffusive Convection in the Earth's Core and the Morphology of the Geomagnetic Field[END_REF],[START_REF] Takahashi | Mercury's Anomalous Magnetic Field Caused by a Symmetry-Breaking Self-Regulating Dynamo[END_REF][START_REF] Tr Ümper | Numerical Study on Double-Diffusive Convection in the Earth's Core[END_REF]. Crosses denote dynamo studies, triangles linear and weakly non-linear hydrodynamic studies, and squares non-linear hydrodynamic studies.

1 .

 1 With regard to Fig. III.1, this amounts to restricting the diagram to either the vertical or the horizontal straight line.

Figure III. 3 -

 3 Figure III.3 -Distribution of the dipolar fraction f dip for the 79 numerical simulations of this study. Multipolar simulations are defined as having f dip < 0.5, and they will be marked by a cross in subsequent figures. Dipolar simulations ones will be displayed using a circle. The vertical dashed line marks the f dip = 0.5 limit between dipolar and multipolar simulations.

Figure III. 3

 3 FigureIII.3 shows the statistical distribution of f dip for the simulations reported in this study. Two distinct groups of numerical simulations separated by a gap at f dip ≈ 0.5 are visible in this figure.A magnetic field is considered as dipolar when f dip > 0.5 and multipolar otherwise. This bound differs from the original threshold of f dip = 0.35 considered by[START_REF] Christensen | Scaling Properties of Convection-Driven Dynamos in Rotating Spherical Shells and Application to Planetary Magnetic Fields[END_REF], but it is found to better separate the two types of dynamo models contained in our dataset. Note that the same bound of 0.5 was recently chosen by[START_REF] Menu | Magnetic Effects on Fields Morphologies and Reversals in Geodynamo Simulations[END_REF] in their study. The magnetic field amplitude is measured by the Elsasser number Λ

Figure

  Figure III.4 shows the location of the 79 computed numerical simulations for the three considered Ekman numbers in the parameter space (G T , G ξ ) defined by

Figure

  Figure III.4 -Linear onset of top-heavy convection in (1 + Gr T E 4/3 , 1 + Gr ξ E 4/3 ) parameter space, where Gr T , Gr ξ , and E are the thermal Grasshof, chemical Grasshof and Ekman numbers, respectively, for the three Ekman numbers E considered in this study: 10 -4 (left column), 3 × 10 -5 (center column), and 10 -5 (right column). Critical curves correspond to the edges of the gray shaded areas. Dark gray areas were obtained for fixed-flux boundary conditions and light gray areas for hybrid boundary conditions, the latter present only for E = 3 × 10 -5 and E = 10 -5 . The bottom panels (d), (e) and (f) show zoomed-in insets of upper panels (a), (b) and (c). The edges of the gray areas, which define the critical curves, connect discs whose color defines the critical azimuthal wavenumber m c . The top row (in logarithmic scale in both directions) also features the location in parameter space of the 79 simulations computed in this study. Circles (resp. crosses) represent dipolar (resp. multipolar) simulations. Circles and crosses with gray (resp. black) edges correspond to fixed-flux (resp. hybrid) boundary conditions. Simulations (*) and (**) are reference simulations discussed in detail in the text (see also Tab. III.6).
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 15 Figure III.5 -(a) Critical effective Grasshof number multiplied by E 4/3 as a function of the Grasshof mixing angle Θ. (b) Critical azimuthal wavenumber m c multiplied by E 1/3 as a function of Θ. (c) Critical drift frequency ω c multiplied by E 2/3 as a function of Θ. Symbol colors correspond to the Ekman number, open-symbols to hybrid boundary conditions and filled symbols to fixed-flux boundary conditions.

  Gr c , Θ) can be interpreted as the polar coordinates of the critical onset mode in the ( Gr T , Gr ξ ) Cartesian parameter space. A mixing angle Θ = 0 hence corresponds to purely thermal convection, while Θ = π/2 corresponds to purely chemical convection. Figure III.5 shows the critical effective Grasshof number Gr c , the critical azimuthal wave number m c and the critical angular drift frequency |ω c |, multiplied in each instance by their expected asymptotic dependence on the Ekman number for purely thermal convection, as a function of the Grasshof mixing angle Θ. Adopting a diagnostic effective Grasshof number conveniently enables the merging of the onset curves associated with the two sets of thermal boundary conditions (fixed-flux and hybrid).

  Figure III.6 -Three-dimensional renderings of a snapshot of simulation (*) (see Tab. III.6). On each panel, the inner and outer spherical surfaces correspond to dimensionless radii r = 0.57 and r = 1.5, respectively. The z axis displayed in panel (a) corresponds to the axis of rotation. (a): Temperature perturbation. (b): Composition. (c): Velocity. The outer surface shows the zonal velocity u ϕ , while the inner surface, the equatorial cut and the two meridional cuts display the magnitude of the velocity field, |u|. (d): Magnetic field. The outer surface shows the radial field B r , while the inner surface, the equatorial cut and the two meridional cuts display the magnitude of the magnetic field, |B|. All fields are dimensionless.
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 7 Figure III.7 -Hammer projection of the dimensionless radial magnetic field at the CMB truncated at the spherical harmonic degree max = 341 (a) and at spherical harmonic degree max = 13 (b) for the numerical simulation (*) shown in Figure III.6. It corresponds to the same snapshot as in Figure III.6. The dashed lines in panel(b) correspond to negative values of the radial magnetic field.

  Figure III.6 shows 3-D renderings of several fields extracted from a snapshot taken over the course of the numerical integration: (a) temperature perturbation, (b) composition, (c) zonal velocity and magnitude of the velocity vector, (d) radial magnetic field and magnitude of the magnetic field vector. We chose the radius of the inner and outer spheres of these renderings to place ourselves outside thermal and compositional boundary layers. Convection is primarily driven by the chemical composition flux at the ICB. Because of the contrast in diffusion coefficients (Le = 10), compositional plumes develop at a much smaller scale than that of thermal plumes (see Fig. III.6a and Fig. III.6b). Having Le = 10 also induces a chemical boundary layer much thinner than the thermal one, as illustrated by the Sherwood number Sh being five times larger than the Nusselt number Nu in this case (44.8 versus 8.0, see Tab. III.6). The emission of a thermal plume is likely triggered by an impinging chemical plume. Accordingly, one would expect temperature fluctuations to be enslaved to compositional fluctuations, which may explain the outstanding spatial correlation between temperature and composition noticeable in Fig. III.6(a) and Fig. III.6(b). This correlation was already reported by Tr ümper et al. (2012) for predominantly thermal convection.

  III.7a), despite the supposed proximity of the simulation with the dipolar-multipolar transition zone. Inspection of TableIII.6 indicates that this snapshot-based observation can in fact be extended to the entire duration of the simulation (close to half a magnetic diffusion time), as the average dipolar fraction f dip is equal to 0.77.The radial magnetic field features intense localized flux patches of mostly normal polarity in each hemisphere, with a few reverse flux patches paired with normal ones, mostly at high latitudes. Those fluid regions hosting a locally strong magnetic field are characterized by more quiescent flows, as can be seen in the equatorial planes of Fig.III.6(c) and Fig. III.6(d) in the vicinity of the outer boundary.
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 8 Figure III.8 -Compliance parameter χ 2 as a function of the magnetic Ekman number E η and of the magnetic Rayleigh number Rm for three different setups: purely chemical convection (left), double-diffusive convection (center) and pure thermal convection (right). Dashed lines mark the limits of the Earth-like domain defined by Christensen et al. (2010) and the black symbol marks the approximate position of the Earth's dynamo in this representation. The significant size of the error bars is due to the wide range of estimates for U and η (see Tab. III.2). The triangles correspond to the simulations provided by Christensen et al. (2010) with Pr = 0.3 or Sc = 3.TableIII.5 -Time-average of the rating parameters defined by[START_REF] Christensen | Conditions for Earth-like Geodynamo Models[END_REF] for Earth and the simulation (*) (see Tab. III.6).
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 9 Figure III.9 -Compliance parameter χ 2 as a function of the input power P tot and of the relative thermal buoyancy power P % T for the three different Ekman numbers considered in this study. The different colors correspond to the compliance quality defined by[START_REF] Christensen | Conditions for Earth-like Geodynamo Models[END_REF]. The dashed lines mark a tentative extrapolation of the transition between dipolar and multipolar dynamos in this parameter space.

  Figure III.8 shows our numerical simulations plotted in the parameter space (E η ,Rm). For comparison purposes, the simulations by[START_REF] Christensen | Conditions for Earth-like Geodynamo Models[END_REF] with Pr = 0.3 or Sc = 3 (triangular markers) have been added to our 79 dynamo models. To single out the effect of the diffusivities, the purely chemical, the double-diffusive and the purely thermal simulations have been plotted separately. The black symbol marks the approximate position of Earth's dynamo in this representation (see Tab. III.1 and Tab. III.4).[START_REF] Christensen | Conditions for Earth-like Geodynamo Models[END_REF] posited the existence, in this parameter space, of a triangular wedge (delimited by dashed lines in Fig. III.8), inside which the numerical dynamos yield Earth-like surface magnetic fields (those from our dataset are shown in Fig. III.8 with dark blue and blue disks for Excellent and Good ratings, respectively). Below the wedge, weakly super-critical dynamos feature too dipolar magnetic fields, on the account of the modest value of the magnetic Reynolds number. Conversely, a significant increase of the input power at a given E η yields small-scale convective flows, which possibly lead to the breakdown of the axial dipole (multipolar simulations displayed with crosses in Fig. III.8). We observe in Fig. III.8 that the upper boundary of the wedge actually depends on the value of P %

  Figure III.10 -The dipolar fraction f dip as a function of the local Rossby number Ro L . Geophysical range of f dip based on the COV-OBS.x1 model by[START_REF] Gillet | Stochastic Forecasting of the Geomagnetic Field from the COV-OBS. X1 Geomagnetic Field Model, and Candidate Models for IGRF-12[END_REF]. Black markers correspond to simulations with P % T = 100 %, while white ones correspond to simulations with P % T = 0 %. The horizontal dashed line marks the limit between dipolar and multipolar dynamos adopted in this study (see Sec. 2.2.5 for details). The vertical dashed line marks the expected limit between dipolar and multipolar dynamos according to[START_REF] Christensen | Scaling Properties of Convection-Driven Dynamos in Rotating Spherical Shells and Application to Planetary Magnetic Fields[END_REF]. Vertical and horizontal black segments attached to each symbol represent one standard deviation about the time-averaged values.

  Figure III.11 -The dipolar fraction f dip as a function of the relative portion of equatorially-symmetric kinetic energy ζ for the 79 simulations computed in this study. Geophysical range of f dip based on the COV-OBS.x1 model by[START_REF] Gillet | Stochastic Forecasting of the Geomagnetic Field from the COV-OBS. X1 Geomagnetic Field Model, and Candidate Models for IGRF-12[END_REF]. Geophysical estimates of ζ are based on the study of[START_REF] Aubert | Earth's Core Internal Dynamics 1840-2010 Imaged by Inverse Geodynamo Modelling[END_REF]. Black markers correspond to simulations with P % T = 100 %, while white ones correspond to simulations with P % T = 0 %. The horizontal dashed line marks the limit between dipolar and multipolar dynamos adopted in this study (see Sec. 2.2.5 for details). Vertical and horizontal black segments attached to each symbol represent one standard deviation about the time-averaged values.

  Figure III.11 shows f dip as a function of ζ. Geophysical estimates for ζ are based on the study of Aubert (2014). The decrease of the relative equatorial symmetry ζ goes along with a gradual weakening of the axisymmetric dipolar field. Below ζ = 0.7, no dipolar dynamos are obtained while conversely the models with ζ ≥ 0.85 are all dipolar. However, this parameter has little predictive power to separate the dipolar solutions from the multipolar ones over the intermediate range 0.7 ≤ ζ ≤ 0.85.

  Figure III.13 -Time-averaged force balance spectra at the dominant lengthscale as a function the total buoyancy power P tot for numerical models with E = 10 -5 and 30 % < P % T < 60 %. The dynamo models (*) and (**) correspond to simulations referenced in Tab. III.6. The horizontal and vertical segments attached to each symbol correspond to one standard deviation about the time-averaged values.
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  Figure III.14 -Ratio of inertia to Coriolis force at the dominant lengthscale F i /F C (left) and the dipolar fraction f dip

  Figure III.15 -Dipolarity parameter f dip as a function of the kinetic to magnetic energy ratio E k /E m . The triangles correspond to those simulations by Christensen et al. (2010) with Pr1. The horizontal dashed line marks the f dip = 0.5 limit between dipolar and multipolar dynamos. The vertical dashed line corresponds to E k /E m = 0.9. Vertical and horizontal black segments attached to the symbols correspond to one standard deviation about the time-averaged values for f dip and E k /E m , respectively.

  Figure III.16 -Time evolution of the dipolar fraction f dip and of the magnetic to kinetic energy ratio E m /E k for the simulation (x) of TableIII.6. The horizontal dashed line corresponds to the boundary between dipole-dominated and multipolar dynamos ( f dip = 0.5). Time is scaled by the magnetic diffusion time.

  Figure III.16 the detailed time evolution of the dipolar fraction f dip and of the magnetic to kinetic energy ratio E m /E k of the anomalous simulation that appears for instance in the top-right quadrant of Fig. III.14(b) and Fig. III.15. This simulation is marked with a (x) in TableIII.6.
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 1 Figure IV.1 -Illustration du mécanisme à l'origine de la formation des doigts de sel. Initialement, la salinité et la température du fluide croissent avec l'altitude z. Les gradients de salinité et de température sont représentés respectivement par les gradients de couleur à droite et à gauche. L'accélération du champ de gravité g est représentée sur le schéma. Une perturbation déplace une particule de fluide (cercle en tirets espacés) vers le bas (cercle en tirets serrés). Cette particule de fluide chaude et salée se retrouve dans un environnement moins salé et plus froid. Elle diffuse rapidement sa chaleur (flèches ondulées) pour s'équilibrer avec son environnement alors que sa salinité n'évolue quasiment pas. La particule étant plus dense que le liquide qui l'entoure elle continue à plonger (cercle plein).
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 2 Figure IV.2 -Température de doigts de sel illustrant l'influence des modes de Holyer (1984) sur l'instabilité primaire. Dans un premier temps, l'instabilité secondaire induit une ondulation verticale des doigts de sel de période horizontale nulle (panneau de gauche), ce qui conduit à une perte de la cohérence verticale de l'écoulement (panneau central). Des structures de grandes échelles, les blobs, finissent par se former (panneau de droite). Cette figure correspond à la figure 2 de Shen (1995) et résulte de simulations numériques bi-dimensionnelles.
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 3 Figure IV.3 -Illustration du mécanisme à l'origine de la formation d'escaliers thermohalins dans le cas de l'instabilité collective. Initialement, le fluide est soumis à des gradients verticaux thermique et chimique uniforme et sa densité croît avec la profondeur. Le foncé correspond à une zone de faible densité, tandis que le clair à une zone de forte densité. L'onde de gravité interne, dont les fronts d'onde sont repérés par des diagonales en trait plein, induit des déplacements (larges flèches noires) du fluide vers le haut (zone U) et vers le bas (zone D). Des particules de fluide plus chaud et plus salé se retrouvent dans un environnement plus dense (cercle foncé). Cette modification des profils thermique et chimique induit une modulation de l'amplitude du flux d'anomalies de masse (flèches blanches). Cette figure s'inspire largement de la figure 6.3 de Radko (2013).

  3 de son livre. La figure IV.3 illustre le mécanisme à l'origine de la formation des escaliers thermohalins dans le cas de l'instabilité collective. Initialement, la densité du fluide décroît avec la profondeur. Le foncé (clair) correspond à une zone de faible (forte) densité. Les fronts d'une onde de gravité plane inclinée d'un faible angle par rapport à l'horizontale ont été tracés. Cette onde tend à densifier les zones U du fluide où son amplitude est positive en déplaçant vers le haut (flèches noires larges) des particules de fluide. Inversement, elle tend à réduire la densité du fluide dans les zones D où son amplitude est négative. Les perturbations induites par l'onde conduisent ainsi à une modification des profils thermique et chimique. Les flux d'anomalie de masse F ρ (flèches ondulées blanches) s'intensifient (diminuent) dans la partie supérieure (inférieure) des zones U. Les doigts de sel conduisent alors à densifier les zones D et à diluer les zones U du fluide. Cette compétition entre l'onde de gravité et l'instabilité primaire est contrôlée par le nombre de Stern A (Stern 1969) défini en géométrie cartésienne pour des gradients thermique et chimique uniformes paroù F ρ correspond au flux vertical de masse volumique, qui permet de quantifier l'efficacité relative du transport de masse par convection par rapport au transport de masse par diffusion. L'instabilité secondaire est amortie par dissipation visqueuse si A < 1[START_REF] Stern | Collective Instability of Salt Fingers[END_REF].[START_REF] Brown | Chemical Transport and Spontaneous Layer Formation in Fingering Convection in Astrophysics[END_REF] ont testé cette hypothèse en utilisant des modèles numériques dans le régime astrophysique pour un fluide double-diffusif en géométrie cartésienne. La convection dans leurs simulations numériques est assurée par des gradients verticaux thermique et chimique uniformes. Ils poursuivent ainsi l'exploration du
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 45 Figure IV.4 -Illustration de la dépendance de γ à R ρ . La portion de courbe bleue correspond à l'intervalle sur lequel γ décroît tandis que la portion rouge correspond à l'intervalle sur lequel γ croît.

  = 3 et R ρ = 1.2. Plus récemment, Monville et al. (2019) (voir leur figure 15) et Guervilly (2022) ont observé numériquement ce type d'écoulement respectivement pour une sphère et une coquille de fluide en rotation. En particulier, le modèle de Monville et al. (2019) le moins influencé par la rotation présente le jet de plus forte amplitude relativement au contenu énergétique.

  la masse volumique du fluide ρ dépendent linéairement de sa température T et de sa compositionξ ρ = ρ c [1 -α T (T -T c ) -α ξ (ξ -ξ c )],(IV.9) où α T et α ξ sont les coefficients de dilatation thermique et chimiques. Dans cette expression, T c , ρ c et ξ c correspondent respectivement à la température, la masse volumique et la composition dans l'état diffusif initial. Les propriétés du fluide -sa viscosité cinématique ν, sa capacité thermique C p , ses diffusivités chimique κ ξ et thermique κ T , ses coefficients de dilatation chimique α ξ et thermique α Tsont supposés uniformes et indépendantes du temps. Nous nous plaçons dans un repère sphérique (e r , e θ , e φ ) pour étudier la dynamique de ce système. Nous adoptons ici une croissance linéaire de l'amplitude du champ de gravité g avec le rayon r g = -r r o g o e r , (IV.10) où g o est l'accélération du champ de gravité en r o .

Figure

  Figure IV.6 -(a) P ξ t en fonction de Ra ξ Sc -2 (Sh -1) pour l'ensemble des simulations, qui seront présentées à la section 2.2.6. Le coefficient de proportionnalité entre les deux grandeurs a été déterminé par une régression linéaire. Le modèle linéaire obtenu est représenté par une ligne en tirets et son expression est fournie sur la figure. (b) P ξ t compensée par Ra ξ Sc -2 (Sh-1) en fonction de Ra ξ Sc -2 (Sh-1) pour l'ensemble des simulations. La prédiction théorique du coefficient directeur (voir équation IV.31) est représentée par une ligne horizontale en tirets.

  de Belmonte et al. 1994). La second procédé repose sur le fait que la variance radiale de T atteint un maximum à la frontière entre le coeur du fluide et une couche limite (voir par exemple la figure 4 de[START_REF] Tilgner | Temperature and Velocity Profiles of Turbulent Convection in Water[END_REF]. Plus récemment,[START_REF] Long | Thermal Boundary Layer Structure in Convection with and without Rotation[END_REF] ont montré que ces deux méthodes pouvaient échouer pour certaines configurations. L'extrapolation linéaire perd de son efficacité lorsque la température dans la volume est non uniforme, par exemple pour un fluide en rotation, tandis que les maxima de la variance donne une épaisseur erronée pour des flux de T imposés aux bornes du fluide. Ils se tournèrent donc vers un critère plus général et plus robuste défini par[START_REF] Julien | Statistical and Physical Balances in Low Rossby Number Rayleigh-Bénard Convection[END_REF], qui ont constaté, qu'à la frontière entre le coeur du domaine fluide convectif et les couches limites, les flux convectifs et conductifs étaient égaux. Dans notre modèle, la convection est alimentée par des inhomogénéités chimiques, nous définissons donc par la suite les couches limites compositionnelles par les rayons auxquels l'équipartition entre ces deux types de transports est atteinte pour la composition.La figure IV.7a montre les profils radiaux moyennés en temps des flux chimiques (voir l'équation IV.23) F conv,ξ (trait plein), F diff,ξ (trait en tirets) et σ ξ (trait en tirets-points), variance radiale de la composition, pour une simulation avec Ra T = 3.66 × 10 7 , R ρ = 1.1, Pr = 7 et Le = 3. L'intersection de F conv,ξ (trait plein) et F diff,ξ (trait en tirets) permet de délimiter les couches limites interne et externe apparaissant sous la forme de zone grisée en bleu. Leurs épaisseurs λ i et λ o sont définies sur l'axe des abscisses, tandis que celle du volume λ b est mis en avant par une double flèche horizontale en tirets. Nous constatons que les maximas locaux de σ ξ se trouvent en dehors des couches limites définies par cette
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 7 Figure IV.7 -Profil radiaux moyennés en temps pour une simulation avec Ra T = 3.66 × 10 7 , R ρ = 1.1, Pr = 7 et Le = 3. (a) Les flux chimiques diffusif F diff,ξ (trait en tiret) et convectif F conv,ξ (trait plein) et la variance σ ξ de la composition (ligne en tirets-points). Les couches limites chimiques apparaissent sous la forme de zones grisées en bleu. Les épaisseurs des couches limite externe λ o et interne λ i sont définies sur l'axe des abscisses. La double flèche en tirets définit l'épaisseur de la zone convective. (b) Température (ligne claire) et composition (ligne foncée). Les lignes horizontales en tirets de couleur correspondante repèrent la température et la composition aux frontières de la zone convective. Par souci de lisibilité, seuls les sauts en température ∆ i T et composition ∆ i ξ au travers de la couche limite inférieure ont été défini sur la figure grâce à des doubles flèches verticales en tirets.

Figure

  Figure IV.8 -Les simulations numériques réalisées dans cette étude dans un espace des paramètres défini par Ra T , Ra ξ et r ρ . Deux plans de cet espace ont été représentés pour souligner la manière dont nous l'avons exploré. (a) r ρ en fonction des deux nombres de Rayleigh (|Ra T |, Ra ξ ). (b) log 10 (|Ra T |) en fonction de Ra ξ et r ρ . Le symbole de chaque simulation dépend de son Pr.
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 9 Figure IV.9 -Profils verticaux moyen de la température T et de la composition C pour deux simulations avec Ra ξ = 10 10 et R ρ = 1.6. ( a) (Pr, Sc) = (7, 70) et (b) (Pr, Sc) = (7, 700). Cette figure est extraite de Yang (2020).

FigureFigure

  Figure IV.10 -Profils radiaux de la température (a) et de la composition (b) moyennés en temps pour quatre simulations présentant Ra T = -3, 66 × 10 9 , Pr = 7 et Sc = 21. Ces simulations diffèrent par leur valeur de Ra ξ et donc de r ρ . La couleur de chaque ligne est une fonction de r ρ . Les lignes en tirets correspondent aux profils radiaux de l'état diffusif. La température et la composition sont fixées aux deux bords. (b) L'encart correspond à un agrandissement de la figure sur la couche limite inférieure. Pour chaque modèle, la frontière de la couche limite interne est représentée par un segment vertical de la couleur correspondante.

Figure

  Figure IV.12 -(1 -∆ b ξ)/(1 -∆ b T) en fonction de Sh/Nu. Une loi de puissance a été dérivée en réalisant une régression linéaire et son expression est fournie sur la figure. La ligne en tirets correspond à cette loi.

  λ i < 3 × 10 -2 . Pour des valeurs supérieures de λ i , nous observons un décrochage à cette loi linéaire. Pour les simulations concernées, les épaisseurs importantes des couches limites rendent caduque l'hypothèse de linéarité du gradient chimique utilisée dans notre raisonnement. En parallèle, la figure IV.11b montre ∆ o ξ en fonction de ∆ i ξ. Le contraste en composition ∆ i ξ est toujours un ordre de grandeur supérieur à ∆ o ξ. En accord avec la relation (IV.44), ∆ o ξ croît linéairement avec ∆ i ξ au premier ordre. Le coefficient de proportionnalité entre ∆ i ξ et ∆ o ξ est calculé grâce à une régression linéaire en ne conservant que les simulations avec λ i < 0.02 ∆ o ξ = (0.14 ± 0.001) ∆ i ξ. (IV.46) Nous aboutissons ainsi à une valeur très proche de celle attendue théoriquement (r i /r o ) 7/4 = 0.15. Le modèle linéaire obtenu est représenté par la ligne en tirets sur la figure IV.11b. Il est en très bon accord avec les simulations pour ∆ i ξ < 0.4. Pour des valeurs de ∆ i ξ supérieure, la dispersion de ∆ o ξ atteint une amplitude plus élevée. Nous poursuivons notre raisonnement pour essayer d'obtenir une expression du rapport ∆ b T/∆ b ξ. Dans notre modèle, ∆ b T et ∆ b ξ sont reliés aux contrastes en température et en composition dans les couches limites via l'égalité

1 -

 1 .49) Ces définitions de Sh et Nu associées avec l'équation (IV.48) permettent d'aboutir à .12 montre (1 -∆ b ξ)/(1 -∆ b T) en fonction du rapport Sh/Nu pour l'ensemble des simulations. (1 -∆ b ξ)/(1 -∆ b T) croît linéairement avec Sh/Nu et le coefficient de proportionnalité qui les relie ne semble pas dépendre des paramètres d'entrée. Il est déterminé en réalisant une régression linéaire sur l'ensemble des données 1 -∆ b T 1 -∆ b ξ = (0.846 ± 0.001) Nu Sh . (IV.51) La courbe en tirets correspond à ce modèle linéaire qui est en excellent accord avec nos données. Nous aboutissons ainsi à une relation entre le rapport des flux thermique et chimique et les sauts en température et composition ∆ b T et ∆ b ξ.

(

  ii) Pr = 3, Le = 10, Ra T = -1.5 × 10 9 et 1.5 × 10 9 ≤ Ra ξ ≤ 1.5 × 10 10 (croix) ; (iii) Pr = 7, Le = 3, Ra T = -3.66 × 10 9 et 3.5 × 10 9 ≤ Ra ξ ≤ 1.1 × 10 10 (cercles). Au sein de chaque série, les simulations diffèrent par leur valeur de Ra ξ . La ligne en tirets repère la première bissectrice. Pour l'ensemble des simulations, r * ρ est supérieur à r ρ car ∆ b T > ∆ b ξ. Nous avons en effet pu constater précédemment (voir figure IV.10) que pour un forçage donné, le contraste en composition ∆ b ξ est plus atténué que celui en température ∆ b T. Pour les simulations proche du seuil (r ρ ≈ 1), r * ρ converge vers la première bissectrice. Comme nous avons pu l'observer sur la figure IV.10,

Figure

  Figure IV.13 -(a) r * ρ en fonction de r ρ pour trois séries de simulations : (i) Pr = 0.3, Sc = 3, Ra T = -10 9 (pentagones), (ii) Pr = 3, Sc = 30, Ra T = -1.5 × 10 9 (croix) et (iii) Pr = 7, Sc = 21, Ra T = -3.66 × 10 9 (cercles). Pour chaque série, on fait varier r ρ en faisant varier Ra ξ . La ligne en tirets marque la première bissectrice. (b) R * ρ /R ρ en fonction de |Ra T | pour deux séries de simulations : (i) R ρ = 1.1, Pr = 7, Le = 3 (cercles), (ii) R ρ = 5, Pr = 0.3, Le = 10 (pentagone). La ligne en tirets correspond à l'égalité entre R ρ et R * ρ .

  3 n'a pas été exploré. La figure IV.13b montre le rapport R * ρ /R ρ (et donc du rapport ∆ b T/∆ b ξ) en fonction de |Ra T | pour deux séries de simulations (i) R ρ = 1.1, Pr = 7, Le = 3 (cercles) ; (ii) R ρ = 5, Pr = 0.3, Le = 10 (pentagones). Au sein d'une même série, les simulations différent par leur valeur de Ra T et par leur valeur de Ra ξ . L'égalité entre R * ρ et R ρ est repérée par une ligne horizontale en tirets. À un même Ra T , le rapport R * ρ /R ρ est moins élevé pour la série à Pr = 0.3 (pentagones) que pour la série à Pr = 7 (cercles). La diffusion chimique étant plus efficace dans la série à Pr = 0.3, le profil chimique moyen est moins impacté par la convection et ∆ b ξ reste proche de 1. Pour les deux séries de simulations, l'écart entre R * ρ et R ρ diminue quand |Ra T | croît. Autrement dit, nous pouvons anticiper que dans la limite des très grands forçages, pertinents aux écoulements géo-et astrophysiques, la différence entre les deux quantités s'estompe.

Figure

  Figure IV.14 -(a-c) Rendu 3-D de la vitesse radiale pour trois simulations présentant R ρ = 1.1, Pr = 7 et Sh = 21. Sur chaque rendu, les surfaces sphériques interne et externes correspondent respectivement à des rayons adimensionnés de r i + 0.03 et r o -0.04. Entre la simulation (a) et la simulation (c), la puissance totale injectée dans la coquille sphérique a été multipliée par 500 environ. (d) Spectres de l'énergie cinétique poloïdale pour ces 3 simulations. Le degré h (voir équation II.163) pour chaque spectre est repéré par une ligne verticale en tiret et atteint respectivement 39, 75 et 165 pour les trois simulations. Chaque simulation est identifiée par une couleur (voir disque coloré dans le coin supérieur droit de chaque rendu 3-D).

FigureFigure

  Figure IV.15 -Lignes de courant de doigts de sel soumis à la perturbation non-oscillante décrite par Holyer (1984). Cette figure correspond à la figure 1 de cette étude.

Figure

  Figure IV.17 -Profil radial du potentiel poloïdal W du mode le plus instable (courbe clair) et du mode de degré harmonique h (courbe foncée) pour une simulation avec Ra T = -2.2 × 10 8 , Pr = 0.3, Le = 10, R ρ = 1.1. Le rayon r a été normalisé par le rayon de la coquille externe r o .

Figure

  Figure IV.18 -L h en fonction de |Ra T | sur la figure de gauche (a) et en fonction de |Ra T |(1 -γ)/γ sur la figure de droite (b). Des lois de puissance en |Ra T | (a) et en |Ra T |(1 -γ)/γ ont été dérivées en réalisant une régression linéaire. Sur chaque figure, l'expression de cette loi est fournie. Les lignes en tirets correspondent à ces deux lois.

3 Figure

 3 Figure IV.19 -Pe ξ en fonction de Ra ξ (Sh-1) γ(1 -γ)/Ra T 1/4 . La ligne en tirets correspond à la première bissectrice.

FigureFigure 5 .

 5 Figure IV.20 -(a) Sh en fonction de Ra ξ . Les lignes en pointillés et en tirets correspondent respectivement aux lois d'échelles dérivées plus loin dans le texte pour les valeurs faibles (r * ρ < 0.5) et élevées (r * ρ ≥ 0.5) de r * ρ . Pour le second régime, la loi d'échelle a été tracé pour deux séries de simulations : (i) Ra T = -10 8 , Pr = 0, 3, Le = 10 (pentagone) et (ii) Ra T = -3.66 × 10 9 , Pr = 7, Le = 3 (cercle). (b) γ en fonction de R * ρ /Le. La ligne en pointillé délimite la première bissectrice. Les régimes I et II délimités respectivement par r * ρ ≥ 0.5 et r * ρ < 0.5 sont indiqués au niveau de l'échelle de couleur.

  wT t,V ∝ p et wξ t,V ∝ p , (IV.71) où w est la vitesse verticale et p un exposant à déterminer dont la valeur dépend du mécanisme à l'origine de la saturation des doigts de sel. Les transports chimique et thermique étant assurés par les doigts de sel dans le fluide, il est normal que l'exposant de soit le même dans les deux expressions. Dans le cas d'un modèle bounded,[START_REF] Radko | Finite-Amplitude Salt Fingers in a Vertically Bounded Layer[END_REF] prévoient p = 1 (voir leur section 3.1) pour un fluide 2D dans la limite Pr 1, tandis que[START_REF] Radko | Salt Fingers in Three Dimensions[END_REF] obtiennent p = 2 pour un fluide périodique dans le même régime asymptotique. Dans notre étude, il convient de caractériser les transport thermique et chimique uniquement sur le coeur du volume fluide et donc d'appliquer une correction liée à la formation de couches limites compositionnelles. Nous définissons donc des nombres de Nusselt Nu * et de Sherwood Sh * apparents Nu * .21a montre l'évolution de (Nu * -1)/Pr avec pour les 107 simulations réalisées. En s'éloignant du seuil, le transport convectif gagne en efficacité expliquant la croissance du flux thermique avec . La plage de variation de (Nu * -1)/Pr plus étendue d'un ordre de grandeur que celle de soutient l'hypothèse d'un exposant p > 1. À faible , entre 4 × 10 -3 et 7 × 10 -2 , les simulations présentent au premier ordre une même tendance, cohérente avec une loi de puissance, avec une faible dispersion relative à Pr. À un donné, le flux thermique est légèrement plus efficace dans les simulations à faible Pr. Afin de déterminer l'exposant p, nous réalisons une régression linéaire de log 10 [(Nu * -1)/Pr] en fonction de log 10 pour les simulations avec r * ρ ≥ 0.5. La loi de puissance obtenue Nu * -1 Pr = (9 ± 2)1.3±0.1 . (IV.73) 

Figure 3 ξFigure

 3 Figure IV.22 -(a) Sh en fonction Ra ξ . Une loi de puissance a été dérivé en réalisant une régression linéaire et en ne conservant que les simulations avec r * ρ < 0.5. La ligne en tirets correspond à cette loi. (b) ShRa -1/3 ξ en fonction de Ra ξ . Pour les deux figures, seules les simulations avec r * ρ < 0.5 ont été conservées.

Figure

  Figure IV.25 -Rendu 3D de la vitesse azimutale pour 4 simulations. Sur chaque rendu, les surfaces sphériques interne et externe correspondent respectivement à des rayons adimensionnés de r i + 0.03 et r o -0.04, situés en dehors des couches limites. Les simulations de la première ligne (a-b) ont une valeur de Pr de 0.3, une valeur de Le de 10 et une valeur de Ra T atteignant -10 8 . Leur valeur de R ρ est respectivement de 6 et 4. Entre la simulation (a) et la simulation (b), la puissance convective totale a été multipliée par 5. Les lignes de courants de l'écoulement de grande échelle, tronqué au degré harmonique = 7, sont représentées sous forme de tubes. Leurs rayons et leurs couleurs dépendent de la norme carrée de la vitesse, le rouge correspondant à des valeurs élevées. Les simulations de la seconde ligne ligne (c-d) ont une valeur de Pr de 3, une valeur de Le de 10 et une valeur de R ρ atteignant 1.5. Entre la simulation (c) et la simulation (d), la puissance convective totale a été multipliée par 10.

  (courbe rouge), E 1 k atteint respectivement 5 × 10 4 (b) et 2 × 10 4 (d). En comparant ces valeurs aux valeurs de E k,tor à saturation (voir la première colonne de la figure), nous constatons que la majorité de l'énergie cinétique toroïdale est stockée dans ce mode. Un second pic émerge à = 3 pour les deux spectres dont l'amplitude vaut respectivement 300 (b) et 90 (d).La figure IV.27 montre l'évolution de l'énergie cinétique E 1 k,tor contenue dans l'harmonique sphérique de degré = 1 à un rayon donné pour deux séries de simulations. Pour le panneau de gauche (a), Ra T = -10 8 , Pr = 0.3, Le = 10 et r = 1.22. Pour la simulation à r * ρ = 0.4 (courbe bleue foncée), r = 1.32. Elle est la seule de la série qui ne présente pas de jets zonaux. E 1 k,tor fluctue temporellement autour d'une valeur moyenne de 20, faible devant l'énergie cinétique toroïdale totale 5 × 10 3 . Une augmentation de r * ρ à 0.45 (courbe rose) conduit à une croissance notable de E 1 k,tor sur environ un temps visqueux avant d'atteindre la saturation. La valeur à saturation diminue lorsque r * ρ augmente.

Figure IV. 26 -Figure

 26 Figure IV.26 -Première colonne (a,c) : évolution temporelle de l'énergie cinétique poloïdale (trait plein) et toroïdale (trait en tirets) pour deux simulations avec (a) Ra T = -10 8 , Pr = 0.3, Le = 10 et R ρ = 4 ; (c) Ra T = -1.5 × 10 8 , Pr = 1, Le = 10 et R ρ = 1.3. Seconde colonne (b,d) : Spectre de l'énergie cinétique totale en fonction du degré harmonique pour ces deux simulations. Les spectres sont tracées à trois instants différents. La couleur de chaque courbe est relative à l'instant auquel a été réalisé le spectre (voir les lignes verticales en pointillés sur les figures de la première colonne). Le degré harmonique h est indiqué sur chaque figure par une ligne verticale en tirets.

Figure

  Figure IV.28 -Vitesse azimutale u φ moyennée en φ dans le plan équatorial en fonction du rayon et du temps pour une simulation avec R ρ = 1.5, Pr = 3, Le = 10 et Ra ξ = 2 × 10 10 . Le bleu correspond à un jet négatif (u φ < 0), tandis que le marron correspond à un jet positif (u φ > 0).

3 LeFigure

 3 Figure IV.29 -Les simulations numériques réalisées dans cette étude représentées dans deux plans de l'espace des paramètres définis par (a) r * ρ et Ra ξ ; (b) Re pol et r * ρ . Les symboles sont colorés en accord avec Le. Pour les deux figures, la taille du symbole est proportionnelle au ratio Re 1 tor /Re pol , où Re 1 tor correspond à nombre de Reynolds toroïdal du mode = 1. Les simulations sans jets sont représentées par des marqueurs gris avec une faible opacité et celles présentant des jets avec des marqueurs colorés. Pour les 5 simulations avec un contour gris le temps d'intégration n'est pas suffisant pour déterminer si une fusion des jets multiples aura éventuellement lieu. La valeur de Re 1 tor /Re pol pour ces modèles est alors possiblement sous-estimée. L'étoile jaune avec une étoile blanche au centre correspond à la simulation discutée à la figure IV.31.

  composée de simulations avec Pr = 0.3, Le = 10 et Ra T = -10 8 . Pour cette configuration, le domaine de l'instabilité correspond à des valeurs de r * ρ comprise entre 0.42 et 0.86. Le ratio Re 1 tor /Re pol croît progressivement avec la distance au seuil (r * ρ = 1) jusqu'à atteindre son maximum 1.05 à r * ρ = 0.5. L'énergie cinétique toroïdale dépasse alors l'énergie cinétique poloïdale. Son amplitude s'atténue ensuite légèrement pour atteindre 0.96 à r * ρ = 0.42. Une faible diminution de r * ρ à une valeur de 0.4 conduit à la disparition abrupte des jets avec le rapport Re 1 tor /Re pol chutant à 0.04. En multipliant Ra ξ et Ra T par 10 pour certaines configurations, nous obtenons la seconde série d'étoiles jaunes. L'intervalle de r * ρ propice à l'instabilité est alors décalé à des valeurs plus élevées. La simulation de cette série avec r * ρ = 0.41 bascule dans un régime stable, tandis que celle à r * ρ = 0.83 forme maintenant des jets. Le maximum de Re 1

Figure

  Figure IV.31 -(a) Évolution temporelle de l'énergie poloïdale (bleu foncé), de l'énergie toroïdale (rouge) et de l'énergie toroïdale axisymétrique (tirets) pour une simulation avec Ra T = -10 9 , Pr = 0.3, Le = 10 et R ρ = 4. Afin de visualiser les variations de E k,pol , deux axes d'ordonnées ont été utilisés. (b) Évolution temporelle de Sh pour cette même simulation. Cette simulation est repérée sur la figure IV.29 par une étoile blanche au centre d'une étoile jaune.

  * ρ basé sur l'état développé (voir Radko et Stern 2000 ; R. W. Schmitt 1979 ; Yang et al. 2020). L'écart entre ce nouveau paramètre et le rapport de densité R * ρ montre une dépendance au nombre de Rayleigh thermique Ra T et au nombre de Prandtl Pr qui rend difficile l'exploration du régime asymptotique R * ρ → 1.

Figure IV. 32 -

 32 Figure IV.32 -Fluctuation de composition dans une simulation 2D avec Ra T = -3.66 × 10 13 , Pr = 7, Le = 21 et R ρ = 1.098 à trois instants différents exprimés en unité de temps visqueux. Afin de limiter le coût numérique de la simulation, nous n'avons considéré qu'un quart de l'anneau sphérique. Le modèle a été intégré durant 0.13 temps visqueux sur une grille avec N r = 4096 et m max = 3072.

Figure V. 1 -

 1 Figure V.1 -Rendu 3-D de la vitesse radiale pour deux simulations présentant Ra T = -3.66 × 10 9 , R ρ = 1.25, Pr = 7 et Le = 3. Sur chaque rendu, les surfaces sphériques interne et externe correspondent respectivement à des rayons adimensionnés de r i + 0.03 et r o -0.04. La simulation (a) correspond à un modèle sans rotation tandis que le nombre d'Ekman E pour la simulation (b) vaut 10 -4 . L'axe de rotation est colinéaire à l'axe z représenté sur le panneau de gauche.

Figure V. 2 -

 2 Figure V.2 -Rendu 3-D de l'énergie cinétique azimutale pour deux simulations présentant Ra T = -3.66 × 10 9 , R ρ = 1.25, Pr = 7 et Le = 3. Sur chaque rendu, la surface sphérique externe correspond à un rayon adimensionné de r o -0.04 tandis que la surface interne correspond à un rayon adimensionné de (a) r i + 0.57 et (b) r i + 0.37 afin d'être située dans le jet. La simulation (a) correspond à un modèle sans rotation tandis que le nombre d'Ekman E pour la simulation (b) vaut 10 -4 . L'axe de rotation est colinéaire à l'axe z représenté sur le panneau de gauche.

  Dimensionless control parameters. The two rightmost columns provide estimates of these parameters for Earth's core and the values spanned by the simulations computed in this study. Earth's core values were estimated thanks to Tab. III.1. . . . . . . . . . . . III.3 Characteristic time scales for the Earth's core. The values were estimated thanks to Tab. III.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Control parameters and simulation diagnostics for the 79 numerical simulations computed for this study. Simulations computed using the finite difference method in radius are marked with a superscript f (the others were computed using the Chebyshev collocation method in radius). Simulations with hybrid boundary conditions are marked by an H in the first column. Simulations are sorted by growing Ekman number and then by growing magnetic Reynolds number. The averaging and running times t avg and t run are expressed in units of magnetic diffusion time τ η . . . . . . . . . . . . . . . . . . . . . III.6 Control parameters and simulation diagnostics for the 79 numerical simulations computed for this study (continued). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III.6 Control parameters and simulation diagnostics for the 79 numerical simulations computed for this study (continued). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV.1 Paramètres de contrôle adimensionnés. Les trois premières colonnes fournissent le nom, le symbole et la définition de chaque grandeur. La dernière colonne fournit les valeurs explorées par nos simulations. .

). Le nombre de Lewis pour Mercure a été calculé en supposant que le nombre de Schmidt atteignait la même valeur que pour la Terre. La valeur de Ra T pour les noyaux de Mercure et Ganymède (borne inférieure) a été dérivée à partir d'un raisonnement proposé par

[START_REF] Soderlund | Ocean Dynamics of Outer Solar System Satellites[END_REF]

. Les valeurs de Ra ξ ont été estimées en supposant un contraste de composition égal à la proportion d'éléments légers dans le fluide. Pour l'océan de Ganymède, la valeur de Le a été supposée du même ordre de grandeur que celle atteinte dans les océans terrestres. . . . . . . . . . . . . . . . . . . . III.1 Physical and thermodynamical parameters of Earth's outer core relevant for this study. The corresponding references are listed in the rightmost column, which may comprise several entries if a bracket of values are provided. . . . . . . . . . . . . . . . . . . . . . III.2 III.4 Output parameters of the numerical simulations and their estimates for Earth's core . III.5 Time-average of the rating parameters defined by Christensen et al. (2010) for Earth and the simulation (*) (see Tab. III.6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . IV.2 Lois d'échelle dérivées dans la section 3.3.6 pour γ(1 -γ), Sh -1, Nu -1 et Pe ξ dans le régime où r * ρ ≥ 0.5 et dans le régime où r * ρ < 0.5. . . . . . . . . . . . . . . . . . . . . . . IV.3 Paramètres de contrôle et diagnostics pour les 104 simulations réalisées dans cette étude. Les simulations sont triées par Pr croissant, puis par Ra T croissant et enfin par R ρ croissant. La simulation intégrée avec la méthode des différences finies est repérée par un exposant f . Les simulations qui présentent des jets sont repérées par une astérisque * dans la dernière colonne . . . . . . . . . . . . . . . . . . . . . . . . . . IV.3 Paramètres de contrôle et diagnostics pour les 104 simulations réalisées dans cette étude.160 IV.3 Paramètres de contrôle et diagnostics pour les 104 simulations réalisées dans cette étude.161 Introduction Le noyau terrestre, composé majoritairement de fer, est constitué d'une graine solide baignant dans une enveloppe de fluide conducteur d'électricité. Une première description schématique de sa dynamique laisse entrevoir la complexité de ce système. Sur des temps géologiques, le refroidissement séculaire du noyau induit une cristallisation progressive de la graine. Cette dernière libère des éléments légers et de l'énergie thermique dans la partie externe du noyau. Elle alimente ainsi la circulation du fluide qui la compose. Avec une vitesse caractéristique U de l'ordre du mm • s -1 (Finlay et Amit 2011), les particules de fluide se décrochant de la surface de la graine mettent une centaine d'années à migrer jusqu'au manteau. Les mouvements de ce liquide conducteur génèrent par induction un champ magnétique dont les temps caractéristiques de variations s'étalent de la dizaine au million d'années (voir par exemple la figure 1 de C. G. Constable et S. C. Constable 2004). À l'échelle de la journée, la rotation de la Terre induit une force de Coriolis qui affecte considérablement l'écoulement. Ses variations temporelles résultent de l'interaction de nombreux processus physiques évoluant sur des échelles temporelles et spatiales très étendues (voir par exemple la figure 15 de Olson 2015). Cette complexité est exacerbée par l'absence d'observations directes de l'écoulement. Les instabilités qui animent le noyau se manifestent en revanche indirectement à la surface par l'intermédiaire de phénomènes naturels tel que le champ magnétique. L'observation d'un champ magnétique B à la surface de la Terre constitue un indice de sa dynamique interne. Il résulte de la superposition des contributions de sources internes et externes à l'enveloppe terrestre (voir par exemple la figure 1 de Olsen et al. 2015). La diversité des processus physiques responsables conduit à un large spectre de variations temporelles et spatiales. Néanmoins, les composantes de grande échelle de B sont dominées par le champ d'origine interne. Dans l'intégralité du manuscrit, nous nous concentrons sur le champ magnétique généré par le noyau. Dans un milieu isolant, la description de ce champ passe par la définition d'un potentiel magnétique V B = -∇V, (I.1)

  est la taille caractéristique du domaine d'étude qui correspond dans le cas de la géodynamo à l'épaisseur du noyau externe, de l'ordre de 2000 km. Cette quantité peut s'exprimer comme le rapport du temps caractéristique de diffusion magnétique τ η = D 2 /η et du temps caractéristique d'advection τ adv = D/U. Dans le régime asymptotique Rm → 0, cette équation se réduit à une équation de diffusion. L'énergie magnétique se dissipe en un temps commensurable à τ η . L'amplification du champ magnétique, par effet dynamo, nécessite que Rm soit supérieur à une valeur critique qui dépend du régime dynamique de la dynamo convective en géométrie sphérique (voir par exemple la figure 4 de Petitdemange 2018).L'observation du champ magnétique à la surface offre donc de nombreuses informations sur l'état dynamique du noyau externe. En utilisant la variation séculaire du champ géomagnétique,[START_REF] Finlay | On Flow Magnitude and Field-Flow Alignment at Earth's Core Surface : Core Flow Magnitude and Field-Flow Alignment[END_REF] aboutissent à une vitesse de l'écoulement à la surface du noyau terrestre de l'ordre du mm • s -1 . Il est alors utile de comparer cette vitesse à la vitesse de rotation de la Terre, à l'aide d'un nombre adimensionné appelé nombre de Rossby Ro

	Rm =	UD η	,			(I.4)
	où D Ro =	U ΩD	=	τ Ω τ adv	,	(I.5)

. Il présente une structure de grande échelle dominée par la composante axiale du dipôle = 1. Les lignes de champ sont expulsées au pôle Sud et se referment au pôle Nord. La faible conductivité électrique du manteau rend possible une extrapolation potentielle de B à la frontière noyau-manteau (CMB pour Core-Mantle Boundary) en utilisant l'équation (I.2). La figure I.1b montre B r tronqué à max = 13 à la CMB. La composante radiale du champ magnétique présente une morphologie spatiale plus complexe qu'à la surface. Sa composante dipolaire prédominante est nuancée par des structures de plus petites échelles, conduisant en particulier à des taches de polarité inverse dans les deux hémisphères. L'existence d'un champ magnétique B entretenu dans son noyau constitue une contrainte importante à la dynamique interne de la Terre. Ses variations temporelles et spatiales offrent une visualisation indirecte des processus physiques opérant en-dessous de sa surface. Leur interprétation passe par une modélisation physique et mathématique décrivant les couplages qui les lient. La composition exacte du noyau est incertaine, mais il est admis qu'il est composé majoritairement d'un mélange de fer et de nickel incluant une faible proportion d'éléments légers, de l'oxygène et du silicium, pour sa partie liquide (voir la revue de Hirose et al. 2013, pour des détails supplémentaires). L'écoulement du fer liquide, électriquement conducteur, génère par effet d'induction le champ magnétique terrestre principal B. Dans le cadre de l'approximation magnétohydrodynamique, les courants de déplacements sont négligés dans l'équation de Maxwell-Ampère. Cette équation et la loi d'Ohm permettent d'exprimer le couplage des variations temporelles et spatiales du champ géomagnétique à l'écoulement, par l'entremise de l'équation d'induction ∂B ∂t = ∇ × (u × B) + η∇ 2 B, (I.3) où η est la diffusivité magnétique, supposée uniforme et u la vitesse du fluide. Le membre de droite fait apparaître un terme de production et un terme de diffusion. Le rapport de ces deux termes antagonistes peut s'écrire sous la forme du nombre de Reynolds magnétique où Ω = 7.29 × 10 -5 s -1 est la vitesse angulaire de la Terre. Dans cette expression, τ Ω = 1/Ω correspond au temps caractéristique de rotation. La faible valeur de ce nombre pour le noyau terrestre, de l'ordre de 10 -6 , traduit le régime de rotation rapide dans lequel il se trouve. En étudiant les caractéristiques d'ondes de torsion magnéto-hydrodynamiques se propageant dans le noyau, Gillet et al. (2010) estiment une amplitude caractéristique B du champ magnétique dans ce dernier de 4 mT. Cette amplitude de B peut être caractérisée par le nombre de Lehnert Lo 1 , appelé aussi nombre de Rossby magnétique, quantifiant le rapport entre la vitesse des ondes d'Alfvén et la vitesse de rotation

  [START_REF] Kon Ôpkov Á | Direct Measurements of Thermal Conductivity in Solid Iron at Planetary Core Conditions[END_REF]. La loi de Wiedemann-Franz-Lorentz permet alors de relier les conductivités thermique k T et électrique σ à une température T est la perméabilité magnétique du vide. La température du noyau étant supérieure à la température de Curie du fer, la perméabilité magnétique de ce dernier peut être approximée par celle du vide. Cette grandeur atteint alors une valeur estimée de l'ordre du m 2 • s -1 dans le noyau. Nous aboutissons à une valeur de Rm de 2000, attestant ainsi du caractère auto-entretenue de la dynamo terrestre.

	k T = LTσ,			(I.8)
	où L est une quantité empirique, appelée nombre de Lorentz. La diffusivité magnétique s'exprime
	η =	1 µ 0 σ	,			(I.9)
	où µ 0 Ra T =	α T g∆TD 3 νκ T	,	(I.10)
	E m E c	≈	Lo Ro	2	= 10 4 ,	(I.7)

I.6) 

où ρ o est la masse volumique du noyau externe à la CMB et τ A le temps caractéristique des ondes d'Alfvén. Le Preliminary Reference Earth Model (PREM) proposé par

[START_REF] Dziewonski | Preliminary Reference Earth Model[END_REF] 

prévoit ρ o = 9000 kg • m -3 . Le nombre de Lehnert Lo atteint donc une valeur proche de 10 -4 pour la dynamo terrestre. Le carré du rapport des nombres de Lehnert et de Rossby permet d'estimer le fractionnement entre énergie magnétique E m et énergie cinétique E c contenues dans le noyau qui est donc caractérisée par un fort champ magnétique. Finalement, il est intéressant d'estimer la valeur de Rm. Les propriétés thermodynamique, en particulier la conductivité thermique k T , du fer liquide aux conditions de température et de pression du noyau terrestre est évaluée à l'aide de simulations ab initio (voir par exemple

[START_REF] Pozzo | Thermal and Electrical Conductivity of Iron at Earth's Core Conditions[END_REF][START_REF] Pozzo | Transport Properties for Liquid Silicon-Oxygen-Iron Mixtures at Earth's Core Conditions[END_REF] 

ou d'expériences réalisées à haute pression et haute température (e.g. Différents processus physiques, tels que les effets de marée ou la précession, sont susceptibles d'alimenter la circulation du noyau externe (voir

[START_REF] Landeau | Sustaining Earth's Magnetic Dynamo[END_REF]

, pour une revue complète). Dans les dynamos planétaires, il est généralement admis que les transports de chaleur et de masse sont assurés majoritairement par la convection. La convection est initiée, en dehors d'un forçage externe, par des variations locales de masse volumique ρ couplées au champ de gravité g environnant. L'instabilité de Rayleigh-Bénard constitue l'exemple canonique pour ce processus. Une couche de fluide d'épaisseur D, dont la surface est en contact avec l'air extérieur, est chauffée par le bas. La différence de température imposée aux bornes du fluide induit un gradient vertical de masse volumique. Lorsque le contraste en température devient suffisamment important, le transport par conduction n'est plus suffisant et des cellules de convection se mettent en place dans le système. Le fluide chaud, moins dense, tend à rejoindre la surface, tandis que le fluide froid plonge. Le seuil au-delà duquel l'instabilité croît est délimité par une valeur critique, de l'ordre de 10 3 , d'un nombre adimensionné, appelé nombre de Rayleigh. Pour un fluide soumis à une différence de température ∆T entre le bas et le haut du domaine, de viscosité cinématique ν, de diffusivité thermique κ T et de coefficient de dilatation thermique α T , ce nombre adimensionné peut être défini par où g est l'accélération du champ de gravité. Le noyau terrestre évolue dans un régime de rotation rapide dans lequel la convection est fortement impactée par la rotation (voir la section 62

de Chandrasekhar 1961)

. Il devient alors utile de définir le nombre d'Ekman E pour caractériser la vitesse de rotation

  13)Ce nombre adimensionné est une grandeur clé pour ce régime spécifique de convection. Dans cette expression, τ ξ et τ T sont respectivement les temps caractéristiques de diffusion chimique et thermique. Dans les intérieurs des planètes telluriques, Le atteint des valeurs allant de 10 à 10 4[START_REF] Li | The Chemical Diffusivity of Oxygen in Liquid Iron Oxide and a Calcium Ferrite[END_REF][START_REF] Loper | A Study of Conditions at the Inner Core Boundary of the Earth[END_REF].

L'ajout d'un second type d'inhomogénéités n'est pas anodin car il complexifie grandement la dynamique du système convectif. L'écart significatif entre les diffusivités thermique et chimique rend accessible de nouveaux régimes de convection. Pour mieux comprendre, nous considérons le cas d'une couche d'eau salée, stratifiée en masse volumique, dont les fluctuations de la masse volumique ρ dépendent linéairement de sa température T et de sa concentration en sel ξ

  . Dans ces inégalités, le facteur proposé pour passer d'un temps caractéristique à un autre est approximatif, la valeur de la plupart de ces temps étant mal contrainte. La séparation d'échelle conséquente entre les temps caractéristiques de rotation τ Ω et de diffusion thermique τ T , 14 ordres de grandeur, rend difficile sa modélisation numérique et

	Figure I.6 -Structure interne des planètes de notre système solaire possédant un champ magnétique de grande
	échelle. Pour Mercure, la structure se base sur Genova et al. (2019), Rivoldini et al. (2009) et Solomon et al. (2018) ;
	pour la Terre sur Dziewonski et Anderson (1981) et Hirose et al. (2013) ; pour Jupiter sur Wahl et al. (2017) ; pour
	Saturne sur Militzer et al. (2019) ; pour Ganymède sur Vance et al. (2014). Les zones favorables au régime des doigts
	de sel ou de semi-convection sont hypothétiques.
	l'ajout d'une source de flottabilité chimique induit une séparation d'échelle supplémentaire. Par souci
	de parcimonie, Braginsky (1991) introduit une hypothèse dite de codensité. Dans ce formalisme, les
	diffusivités thermique et chimique moléculaires sont remplacées par des diffusivités turbulentes, sup-
	posées égales. Les deux sources de flottabilité peuvent ainsi être unifiées en un champ scalaire unique,
	nommé codensité. Cette approximation permet de réduire le nombre de degré de liberté du système
	et supprime la séparation d'échelle entre les perturbations thermiques et chimiques, limitant ainsi le
	coût des simulations numériques. Cette approche a été adoptée dans la majorité des modèles numé-
	riques de géodynamo (voir par exemple Christensen 2010 ; Glatzmaier et Roberts 1995 ; Kutzner et
	Christensen 2002). Elle s'est ainsi montrée performante pour reproduire des caractéristiques essen-
	tielles du champ magnétique terrestre telles que sa morphologie spatiale

  Une région semi-convective subsurfacique est alors susceptible de se former. Ce modèle est conciliable avec les contraintes gravitationnelles et atmosphériques imposées par les observations[START_REF] Leconte | A New Vision of Giant Planet Interiors : Impact of Double Diffusive Convection[END_REF]. La modification des transports de masse et de température induit par cette zone semi-convective modifie notre vision de la structure chimique et thermique des deux géantes gazeuses[START_REF] Leconte | A New Vision of Giant Planet Interiors : Impact of Double Diffusive Convection[END_REF]. Ce modèle apporte ainsi une nouvelle contrainte au scénario de formation de ces deux planètes.

	. La figure I.6 résume notre connaissance actuelle de la structure interne de ces astres qui résulte en particulier d'observations sismologiques -pour la Terre -ainsi que gravimétriques et orbitales. On peut alors distinguer trois catégories gouttelettes qui plongent jusqu'à être de nouveau miscibles. Dans les intérieurs planétaires, la convection opère au sein d'un volume quasi-sphérique. Dans les principales planètes telluriques, le fluide est contraint par la présence de parois solides qui lui imposent des (i) les planètes et satellites telluriques -Mercure, la Terre et Ganymède-composées essentielle-conditions aux limites thermiques, chimiques, cinématiques et dynamiques et induisent le dévelop-ment de roches silicatées et de métaux. Leur champ magnétique résulte de la convection de fer pement, aux frontières du système, de couches limites. Ces dernières jouent un rôle important dans liquide, incluant une proportions d'éléments légers, dans le noyau. La présence d'une graine le processus de convection aux valeurs de Ra T et Ra ξ accessibles dans les expériences et les modèles solide est incertaine dans le cas de Ganymède (voir par exemple R ückriemen et al. 2018). numériques. Pour le problème de la convection sans rotation, la théorie de Grossmann et Lohse (2000) (ii) les géantes gazeuses -Jupiter et Saturne -composées essentiellement d'hydrogène et d'hé-prend en compte leur épaisseur ainsi que leur contribution aux taux de dissipation de l'énergie pour lium. Leur champ magnétique résulte de la convection d'hydrogène métallique d'une partie du prévoir le régime dynamique du fluide. Bien que des modèles double-diffusifs aient été largement noyau dilué. examinés dans les contextes océanique et astrophysique, la majorité des études adopte une approche
	(iii) les géantes de glace -Uranus et Neptune -dont la structure est plus incertaine mais qui sont locale en considérant un fluide périodique inclus dans une boîte cartésienne (voir par exemple Brown
	constituées d'une fraction importante d'eau et de méthane. Le processus MHD à l'origine du et al. 2013 ; Radko et Stern 1999 ; Stellmach et al. 2011). Dans ces modèles, qualifiés de non bornés
	champ magnétique de ces planètes est encore incertain. Ce dernier résulterait de la présence (unbounded), la totalité du fluide est en convection et l'absence de couches limites simplifie la caracté-
	d'eau ionique dans les profondeurs de ces planètes. Elles ne seront pas discutées ici (voir la risation du système. Le passage d'une configuration non bornée à une configuration bornée (bounded)
	revue de Stanley et Glatzmaier 2010, pour plus de détails). n'est pas anodin. La présence de couches limites modifie la dynamique du système (Radko et Stern
	Pour les planètes telluriques, des modèle de l'évolution thermique de Mercure (e.g. Hauck et al. 2000) et induit une complexité supplémentaire à son étude (Yang 2020). De plus, un modèle sphérique
	2004) et des estimations de la conductivité thermique du fer dans le noyau terrestre (de Koker et global induit des dépendances radiales de la gravité, des gradients thermiques et chimiques absentes
	al. 2012 ; Pozzo et al. 2012) suggèrent l'existence d'une stratification en température stable dans la des modèles locaux. Les spécificités des modèles sphériques globaux seront discutées plus en détail
	partie supérieure du noyau. Pour le noyau terrestre, cette hypothèse, corroborée par des études dans le chapitre IV.
	sismologiques (e.g. Helffrich et Kaneshima 2010 ; Kaneshima et Matsuzawa 2015 ; Tanaka 2007),
	reste néanmoins à confirmer (voir par exemple Irving et al. 2018, pour une interprétation alternative).
	Une couche subadiabatique pourrait avoir un influence important sur la morphologie du champ
	magnétique en limitant le volume de convection et/ou en agissant comme un filtre passe-bas sur ce
	dernier par effet de peau (voir par exemple la figure 6 de Gastine et al. 2020), conduisant ainsi à
	une diminution de l'amplitude du champ à la surface. Gastine et al. (2020), en s'appuyant sur des
	modèles numériques de géodynamo comprenant une stratification stable en température à la CMB,
	concluent que cette hypothèse est difficilement conciliable avec un champ magnétique semblable au
	champ géomagnétique. Néanmoins, une seule source de flottabilité est envisagée dans leur étude
	et les effets double-diffusifs sont donc ignorés. La pénétration de doigts de sel au sein de la couche
	stratifiée pourrait réduire l'effet de peau. L'existence d'une couche stratifiée semble en revanche plus
	prometteuse pour Mercure. Elle pourrait ainsi expliquer le champ faible de Mercure (Christensen
	2006 ; Manglik et al. 2010) ainsi que son asymétrie Nord-Sud (Takahashi et al. 2019). Pour Mercure, la
	Terre et Ganymède, des transitions de phase aux deux frontières du noyau externe sont susceptibles
	de conduire à la formation d'une stratification chimique stable. Pour la Terre, une anomalie de la
	vitesse sismique à la périphérie de l'ICB est expliqué par la présence d'une couche chimiquement
	stable, appelée couche F (Gubbins et al. 2008). Une fusion/resolidification partielle du noyau interne
	de la Terre est susceptible d'être à l'origine de sa formation (Alboussière et al. 2010). La cristallisation
	de fer en périphérie de la CMB pour Mercure (Chen et al. 2008 ; Vilim et al. 2010) et Ganymède
	(e.g. Christensen et Wicht 2015) pourrait de la même manière induire une zone favorable à la semi-
	convection dans la partie supérieure du noyau externe (voir D. Breuer et al. 2015, pour une revue sur
	le sujet). De manière analogue aux océans terrestres, l'océan subsurfacique de Ganymède pourrait
	être le siège d'instabilités double-diffusives.
	Dans les géantes gazeuses, Jupiter et Saturne, l'équation d'état des mélanges hydrogène-hélium sug-
	gère une non-miscibilité de l'hélium dans l'hydrogène métallique sur une certaine plage de pression
	et de température (Lorenzen et al. 2011 ; Salpeter 1973 ; Stevenson 1985). L'hélium forme alors des

Chapitre II Modèles de convection double-diffusive L

  [START_REF] Monville | Rotating Convection in Stably-Stratified Planetary Cores[END_REF] ont établi que le nombre de Rayleigh critique Ra c croissait proportionnellement à E -1 , une loi d'échelle très différente du comportement en convection-rotation classique avec Ra c ∼ E -4/3 . Une étude plus générale du seuil dans le cas de la convection double-diffusive a été réalisée par[START_REF] Silva | The Onset of Thermo-Compositional Convection in Rotating Spherical Shells[END_REF]. Ils montrent en particulier que cet écart au régime purement thermique disparaît dans le régime top-heavy. Pour des forçages convectifs plus importants, la formation de structures de grande échelle, si caractéristiques des instabilités double-diffusives, a aussi été obtenue en géométrie sphérique globale.[START_REF] Monville | Rotating Convection in Stably-Stratified Planetary Cores[END_REF] et[START_REF] Guervilly | Fingering Convection in the Stably-Stratified Layers of Planetary Cores[END_REF] ont par exemple observé l'émergence d'un écoulement zonal de grande échelle dans certaines de leurs simulations numériques non-linéaires dans le régime des doigts de sel. En parallèle, la morphologie du champ magnétique dépend de la nature du forçage convectif. 'instabilité primaire, les doigts de sel, en géométrie sphérique et en présence de couches limites visqueuses, thermiques et chimiques. La deuxième partie du chapitre se concentre sur une instabilité secondaire de grande échelle observée dans 54 de nos simulations. Dans le chapitre V, une conclusion générale résume les contributions principales de cette thèse et propose des perspectives au travail réalisé. Des simulations en rotation dans le régime des doigts de sel seront notamment présentées. 'objectif de de chapitre est de présenter le modèle adopté pour étudier la convection double-diffusive dans les intérieurs planétaires. Dans l'ensemble de cette thèse, le noyau externe est modélisé par une coquille sphérique de volume V o et d'épaisseur D = r or i , où r i et r o correspondent respectivement aux rayons interne et externe. Le volume de la graine est, quant à lui, noté V i . Dans le référentiel du manteau, la coquille possède une vitesse angulaire Ω = Ωe z . La convection du fluide conducteur d'électricité qui l'emplit génère un champ magnétique B par effet dynamo. Nous supposons que la masse volumique ρ du fluide dépend de sa température T et de sa composition ξ. L'état du fluide en tout point de l'espace est défini par sa vitesse u, son champ magnétique B, sa pression p, sa température T et sa composition ξ. L'étude du système est réalisée dans un repère sphérique (e r , e θ , e φ ) de coordonnées (r, θ, φ). La figure II.1 illustre le modèle géométrique adopté.

	temps de caractériser l
	et en incluant des conditions aux limites couplées pour la température et la composition. Néanmoins, ils ont choisi de conserver dans leur étude l'égalité entre les diffusivités thermique et chimique, ignorant ainsi la séparation d'échelle entre inhomogénéités thermique et chi-mique. Ils obtinrent un champ magnétique simulé semblable à celui du modèle purement thermique. Les progrès en terme de calcul haute performance ont permis de donner une nouvelle impulsion aux simulations numériques double-diffusives depuis une dizaine d'années. La plupart des codes de géodynamo permettent maintenant d'inclure une seconde équation de transport dans leur mo-dèle. Par exemple, Bouffard (2017) a développé pendant sa thèse une méthode de particle-in-cell (PIC) pour le code PARODY, développé par E. Dormy et J. Aubert, afin d'inclure une flottabilité supplémentaire d'originie chimique. Ce nouvel outil se révèle particulièrement adaptée au régime asymptotique Le → +∞ pertinent pour les enveloppes fluides planétaires. L'exploration de ces nou-veaux régimes de convection a alors permis de mettre en lumière des dynamiques spécifiques qui justifient la nécessité d'approfondir les études réalisées sur le sujet. Tout d'abord, l'ajout d'une se-conde source d'inhomogénéité facilite l'amorçage de la convection (voir Busse 2002 ; Net et al. 2012 ; Tr ümper et al. 2012) et altère la dépendance du seuil de la convection à la rotation en comparaison avec la convection Rayleigh-Bénard (une esquisse de ce phénomène physique est d'ailleurs visible sur la forme que prend le seuil sur la figure I.4). En intégrant des modèles numériques d'une sphère régime faiblement non-linéaire, Mather et Simitev (2021) ont réalisé une étude systématique de la morphologie du champ magnétique dans les trois cadrans double-diffusifs. Dans le régime top-heavy, ils ont confirmé la prédominance d'un champ magnétique dipolaire pour les modèles dominés par la convection chimique. Ils ont obtenu des simulations favorables à l'effet dynamo dans le régime de la semi-convection mais pas dans celui des doigts de sel. À des forçages convectifs plus importants, des modèles double-diffusifs ont été proposés pour expliquer les spécificités du champ magnétique de Mercure (Manglik et al. 2010 ; Takahashi et al. 2019). En réalisant des simulations numériques d'un fluide dans le régime top-heavy dans une coquille sphérique, Takahashi (2014) a conclu que la contribution de la flottabilité thermique au bilan de puissance total du noyau terrestre devait être bornée à 60 %. Au delà de cette valeur limite, un champ magnétique multipolaire est favorisé. Des descriptions plus détaillées des modèles globaux top-heavy et doigts de sel seront respectivement faites dans les chapitres III et IV. La convection double-diffusive offre de nombreuses perspectives de recherche dans la contexte des intérieurs planétaires. Les progrès en terme de calcul haute performance, ainsi que la suspicion de la présence de couches stratifiées ont participé à un regain d'intérêt depuis une dizaine d'années pour la convection double-diffusive pour modéliser les écoulements animant l'intérieur des planètes et des étoiles. De nombreuses questions restent néanmoins en suspens et nécessitent une attention particulière. L'objectif principal de cette thèse est de participer à l'effort commun, en se concentrant sur deux volets en particulier. Dans un premier temps, la pertinence de la convection double-diffusive pour modéliser la géodynamo doit être discutée. Ce régime particulier de convection permet-il de générer un champ magnétique présentant les mêmes spécificités que le champ géomagnétique ? Cet ajout de complexité à la modélisation est-il nécessaire ? Dans un second temps, les instabilités double-diffusives conduisent à des régimes de convection particuliers en modifiant en particulier les propriétés de transports thermique et chimiques. La prise en compte de ces processus est susceptible de modifier notre vision de la formation des planètes du système solaire. Il est ainsi indispensable de mieux caractériser ces instabilités dans le contexte des intérieurs planétaires. Je me suis donc intéressé dans la deuxième partie de ma thèse au régime des doigts de sel en géométrie sphérique globale. Pour répondre à ces deux problématiques, cette thèse adopte une approche numérique à travers la réalisation de 186 simulations (magnéto)-hydrodynamiques. Le manuscrit s'organise de la manière suivante. La modélisation physique et mathématique adoptée pour la convection double-diffusive dans le contexte des intérieurs planétaires est présentée dans le chapitre II. L'approche numérique adoptée est décrite dans ce chapitre. Le chapitre III se concentre sur la modélisation de la géodynamo. L'objectif de ce chapitre est de discuter de l'influence de la convection double-diffusive, dans le régime top-heavy, sur la morphologie du champ magnétique à l'aide de modèles numériques 3D globaux. Dans un premier temps, l'influence d'une source de flotta-bilité sur le seuil de la convection est examinée. Une étude paramétrique comportant 79 simulations numériques non-linéaires conduit ensuite à discuter l'adéquation de la convection double-diffusive pour modéliser la géodynamo. Ce chapitre est enfin l'occasion d'aborder le mécanisme à l'origine de pleine dans le régime des doigts de sel, Dans un la transition d'un champ magnétique dominé par sa composante dipolaire à un champ magnétique
	multipolaire. Le chapitre IV vise à examiner le régime des doigts de sel dans une coquille sphérique
	en l'absence de rotation et de champ magnétique à l'aide de modèles numériques 3D globaux. Une
	étude paramétrique comportant 107 simulations numériques non-linéaires permet dans un premier

1. Équations de la magnétohydrodynamique 1.1. Conservation de la masse

  

	Figure II.1 -Schéma du modèle géométrique. La coquille sphérique est délimitée par deux sphères de rayon r i et r o
	et tourne à une vitesse angulaire Ω. Un point de l'espace est repéré par ses coordonnées (r, θ, φ). Le repère cartésien
	(x, y, z) est indiqué sur le schéma.
	En l'absence de réaction chimique, les variations de masse d'un volume fermé fixe V sont reliées au
	flux de matière à travers la surface S qui le délimite
	V	∂ρ ∂t	dV = -	S	ρu • dS.	(II.1)
	Le théorème d'Ostrogradski permet de réécrire le membre de droite en faisant apparaître la divergence
	de ρu					
	V	∂ρ ∂t	+ ∇ • ρu dV = 0.	(II.2)
	Cette équation est vraie pour tout volume V, elle peut donc être énoncée sous une forme locale
	∂ρ ∂t	+ ∇ • ρu = 0.	(II.3)

1.3. Équation d'induction

  

	L'indice e est abandonné pour la suite du manuscrit. Le tenseur des contraintes peut-être décomposé
	en un terme faisant apparaître la pression p et un terme déviatorique
	Aux températures caractéristiques des noyaux planétaires, les métaux deviennent paramagnétiques.
	C = -pδ + τ, Leur perméabilité magnétique peut alors être approximée par la perméabilité magnétique du vide (II.9)
	µ 0 . Les variations temporelles et spatiales des champs magnétique et électrique sont régies par les
	où δ correspond au symbole de Kronecker et τ est le déviateur du tenseur des contraintes, aussi équations de Maxwell
	appelé tenseur des contraintes visqueuses. Pour un fluide newtonien isotrope, hypothèse adoptée
	dans notre modèle, le tenseur des contraintes dépend linéairement du tenseur de déformation ς Maxwell -Gauss :
	τ i j = 2ρνς i j + λς kk δ i j avec ς i j =	1 2	∂u i ∂x j	+	∂u j ∂x i	,	(II.10)
	où ν et λ sont respectivement la viscosité cinématique et la seconde viscosité du fluide. L'hypothèse
	de Stokes suggère une relation entre ces deux coefficients
	λ = -	2 3	ρν,					(II.11)
	qui permet de simplifier l'expression de τ	
	τ i j = ρν 2ς i j -	2 3	ς kk δ i j .			(II.12)
	En injectant cette expression dans l'équation de Navier-Stokes, nous aboutissons finalement à	II.4)
	où ψ est le potentiel gravitationnel, f L la densité volumique de force de Lorentz, exprimant le couplage de l'écoulement au champ magnétique et C le tenseur des contraintes. Le potentiel de gravité vérifie ρ ∂u ∂t + (u • ∇)u + Ω × u = -∇p -ρ∇ψ + ρf L + ∇ • 2ρν ς -1 3 (∇ • u) δ . (II.13)
	l'équation de Poisson			
	Dans un conducteur en mouvement, la force de Lorentz volumique s'exprime
	∇ 2 ψ = 4πGρ,					(II.5)
	ρf L = ρ e E + j × B			(II.14)
	où G est la constante universelle de gravitation. L'accélération centrifuge peut s'écrire sous la forme
	du gradient d'un champ scalaire où ρ e est la densité volumique de charge, E le champ électrique et j le vecteur densité de courant. Pour
	Ω × (Ω × r) = -∇ des vitesses non-relativistes, la contribution électrique de la force de Lorentz peut-être négligée devant (Ω × r) 2 2 , la contribution magnétique. Dans le noyau, le rapport de la vitesse caractéristique de l'écoulement (II.6) (voir l'introduction) et de la célérité de la lumière est de l'ordre de 10 -11 . L'équation de Navier-Stokes
	où r est le vecteur position. Il est alors possible de définir un potentiel gravitationnel effectif ψ e devient alors
	ψ e = ψ + ρ du dt + 2ρΩ × u = -∇p -ρ∇ψ + j × B + ∇ • 2ρν ς -(Ω × r) 2 2 ,	1 3	(∇ • u) δ ,	(II.7) (II.15)
	afin de simplifier l'équation de Navier-Stokes où la dérivée lagrangienne de u est définie par
	ρ du ∂u ∂t dt =	+ ((II.8) ∂u ∂t + (u • ∇) u. (II.16)

u • ∇)u + 2Ω × u = -ρ∇ψ e + ρf L + ∇ • C.

  et e p sont respectivement l'énergie interne massique et l'énergie potentielle gravitationnelle volumique. Il convient dans un premier temps de lister les processus physiques responsables de la variation d'énergie dans le noyau. À la frontière externe du système, le tenseur des contraintes C exerce un travail sur la surface S o qui délimite V o à la CMB. En parallèle, de l'énergie s'échappe du noyau à travers S o sous forme de chaleur conduite, de rayonnement électromagnétique et de masses convectées, qui transportent de l'énergie interne, de l'énergie potentielle de gravitation et de l'énergie cinétique. La présence éventuelle d'éléments radioactifs (voir par exemple[START_REF] Blanchard | The Solubility of Heat-Producing Elements in Earth's Core[END_REF] Xiong et al. 2018, pour l'uranium et le potassium) dans le noyau est modélisée par une source volumique d'énergie H T . En résumé, nous pouvons écrire que

	. En l'absence de réaction chimique, l'énergie totale E du système se décompose en une contribution (II.35) magnétique, une contribution cinétique, une contribution d'énergie potentielle gravitationnelle et une contribution d'énergie interne E = V o ρe i + e k + e p + e m dV avec e p = ρψ, (II.36) dt = S o u • C -J T diff -e k + ρe i + e p u -E × B µ 0 • dS + V 0 H T dV. (II.37) Nous avons choisi ici d'ignorer la diffusion de chaleur liée au gradient de composition et de pression (voir par exemple Braginsky et Roberts 1995). Le flux de chaleur diffusif est décrit par la loi de Fourier (voir par exemple le chapitre 8 de Bird et al. 2007) J T diff = -k T ∇T, (II.38) où k T est la conductivité thermique. En remplaçant les dérivées temporelles de E k et E m par leurs où e i dE expressions (II.27, II.31) et en utilisant l'équation (II.26), nous aboutissons à

3. Approximation de Boussinesq Afin

  de réduire la complexité et le coût numérique d'un modèle numérique de dynamo planétaire, il est classique de se placer dans l'approximation de Boussinesq. Dans le cadre de cette hypothèse, nous considérons que les variations de la masse volumique et des coefficients spécifiques au fluide dues à la température peuvent en général être ignorées. En dehors de la poussée d'Archimède, les variations de la masse volumique sont négligées du fait de la faible valeur de α T , environ 10 -5 K -1 pour le noyau terrestre. Le système d'équations simplifié est obtenu en faisant tendre le nombre de dissipation D i vers 0. Cette approximation, dite de couche mince, consiste à réaliser un filtrage spatial de la température de l'état de référence et du système d'équations II.46. Physiquement, cela revient à considérer que D est petite devant la longueur caractéristique de variation du gradient de T 0

	Dans l'état de référence, l'équilibre hydrostatique se traduit par
	dp 0 dr Nous aboutissons finalement à la relation = -ρ 0 dψ 0 dr . D dln (T 0 ) dr -1 ⇒ D C p dr (r o )α T dψ 0	,	(II.56) (II.63)
	C p T 0 où nous avons choisi d'exprimer D i à la CMB. Ce filtrage spatial n'est pas indispensable à la réso-dT 0 dr = -α T dψ 0 dr . (II.57) lution de la dynamique du système, les approximations anélastique liquide (Anufriev et al. 2005)
	et anélastique (Gilman et Glatzmaier 1981) autorisent D i	0. Pour le noyau externe terrestre, ce
	En introduisant le nombre de dissipation D i (voir par exemple Anufriev et al. 2005) nombre vaut approximativement 0.3 (voir par exemple
	D i =	α T D C p	dψ 0 dr	,								(II.58)
	où D est la taille caractéristique du domaine d'étude, cette équation peut se réécrire
	1 r 2 D T 0	d dr dT 0 r 2 dψ 0 dr dr = -D i . = 4πGρ 0 .					(II.50) (II.59)
	D'après le second principe de la thermodynamique, la différentielle de l'énergie interne massique
	s'exprime Enfin, en introduisant le paramètre de Grüneisen Γ (e.g. Vočadlo et al. 2003), défini dans l'état de
	référence par										
	de i = Tds + p Γ = ρ 0 T 0 ∂T 0 ∂ρ 0 S dρ ρ 2 . =	ρ 0 T 0	dT 0 dρ 0	,				(II.51) (II.60)
	L'expression précédente de la différentielle de e i (II.41) et l'isentropie du fluide dans l'état de référence
	permettent alors d'écrire que il est possible de décrire les variations radiales de la densité
	C v D ρ 0		dT 0 dr dρ 0 dr	= = -l ρ 2 0 D i dρ 0 dr Γ .	.							(II.52) (II.61)
	La relation de Meyer généralisée implique que En résumé, l'état de référence est défini par
	C p -C v = dξ 0 dr = 0,	Tα 2 T ρα p D T 0	et l = T dT 0 dr = -D i ,	α T α p D , ρ 0	dρ 0 dr	= -	D i Γ	,	1 r 2	d dr	r 2 dψ 0 dr	= 4πGρ 0 et	dp 0 dr	= -ρ 0	(II.53) dψ 0 dr .(II.62)
	où C p est la capacité thermique à pression constante définie par
	C p = T	∂s ∂T p	.									(II.54)
	En utilisant la relation de Meyer généralisée (II.53) et l'équation d'état (II.47) pour une composition
	constante, l'équation (II.52) se réécrit	
	C p T 0	dT 0 dr	=	α T ρ 0	dp 0 dr	.						(II.55)

  [START_REF] Tr Ümper | Numerical Study on Double-Diffusive Convection in the Earth's Core[END_REF] où Sc est le nombre de Schmidt, aussi parfois appelé nombre de Prandtl chimique. Il peut s'exprimer comme le rapport des temps caractéristiques de diffusions chimique et visqueuse. Le nombre de Lewis Le présenté dans l'introduction est alors le rapport des nombres de Schmidt et de Prandtl

	Le =	Sc Pr	=	τ ξ τ T	.	(II.99)

L'équation d'induction nécessite la définition d'une échelle caractéristique ν/D pour la vitesse qui dérive des échelles spatiale et temporelle. L'équation d'induction peut alors s'écrire

Table II .

 II 1 -Estimations des paramètres de contrôle pour Mercure, la Terre, Ganymède et Jupiter. Pour chaque astre, un exposant précise de quelles études proviennent les valeurs utilisées pour estimer les paramètres. (a) :[START_REF] Christensen | A Deep Dynamo Generating Mercury's Magnetic Field[END_REF],[START_REF] Christensen | Models of Magnetic Field Generation in Partly Stable Planetary Cores : Applications to Mercury and Saturn[END_REF],[START_REF] Rivoldini | The Interior Structure of Mercury and Its Core Sulfur Content[END_REF][START_REF] Solomon | Mercury : The View after MESSENGER[END_REF] ; (b) :[START_REF] Anufriev | The Boussinesq and Anelastic Liquid Approximations for Convection in the Earth's Core[END_REF],[START_REF] Badro | Effect of Light Elements on the Sound Velocities in Solid Iron :Implications for the Composition of Earth's Core[END_REF],[START_REF] Braginsky | Equations Governing Convection in Earth's Core and the Geodynamo[END_REF][START_REF] Buffett | Core-Mantle Interactions[END_REF],[START_REF] Dziewonski | Preliminary Reference Earth Model[END_REF],[START_REF] Finlay | On Flow Magnitude and Field-Flow Alignment at Earth's Core Surface : Core Flow Magnitude and Field-Flow Alignment[END_REF],[START_REF] Gillet | Fast Torsional Waves and Strong Magnetic Field within the Earth's Core[END_REF],[START_REF] Kon Ôpkov Á | Direct Measurements of Thermal Conductivity in Solid Iron at Planetary Core Conditions[END_REF],[START_REF] Labrosse | Thermal and Magnetic Evolution of the Earth's Core[END_REF],[START_REF] Li | The Chemical Diffusivity of Oxygen in Liquid Iron Oxide and a Calcium Ferrite[END_REF],[START_REF] Loper | A Study of Conditions at the Inner Core Boundary of the Earth[END_REF], Pozzo et al. (2013), Roberts et King (2013) et Zhang et al. (2020) ; (c) : Christensen (2015), R ückriemen et al. (2015) et R ückriemen et al. (2018) ; (d) Soderlund (2019) et Vance et al. (2018) ; (e)[START_REF] French | Ab Initio Simulations for Material Properties along the Jupiter Adiabat[END_REF][START_REF] Wilson | Diffusivity of Heavy Elements in Jupiter and Saturn[END_REF]. Le nombre de Lewis pour Mercure a été calculé en supposant que le nombre de Schmidt atteignait la même valeur que pour la Terre. La valeur de Ra T pour les noyaux de Mercure et Ganymède (borne inférieure) a été dérivée à partir d'un raisonnement proposé par[START_REF] Soderlund | Ocean Dynamics of Outer Solar System Satellites[END_REF]. Les valeurs de Ra ξ ont été estimées en supposant un contraste de composition égal à la proportion d'éléments légers dans le fluide. Pour l'océan de Ganymède, la valeur de Le a été supposée du même ordre de grandeur que celle atteinte dans les océans terrestres.

	Paramètre Mercure a	Terre b	Ganymède		Jupiter e
				Noyau c	Océan d	
	|Ra T |	10 21	10 26 -10 28	10 21 -10 29 10 20 -10 24	10 31
	Ra ξ	10 28 -10 31	10 30 -10 33	10 31	10 29 -10 30	?
	E	10 -12 -10 -13 10 -15	10 -13	10 -13 -10 -10 10 -18
	Pr	0.1	0.08 -0.25	0.2	10	10 -2 -1
	Le	20 -3000	9 -4000	10 4	100	1 -100
	R ρ	0 -10 -4	0 -10 3	10 -6 -100 10 -8 -10 -3	?
	Pm	10 -6				

(3.4 -20) 

× 10 -7 10 -6 10 -11 10 -6 Cette grandeur est introduite à l'occasion du chapitre IV. Les conditions aux limites adoptées dans ce chapitre entraînent une égalité des profils radiaux de T c et ξ c . Nous retiendrons donc la définition suivante pour R ρ R ρ = Le Ra T Ra ξ . (II.105) En résumé, le système d'équation (II.93) se réécrit sous forme adimensionnée

  est le volume de la graine. En régime statistiquement stationnaire, les puissances thermique et chimique compensent les dissipations visqueuse et magnétique. La mesure de la différence relative ∆P entre puissance d'entrée et de sortie La caractère dipolaire du champ magnétique à la CMB est quantifié par sa fraction dipolaire f dip , définie comme le rapport des amplitudes du dipôle axial et du champ magnétique total tronqué au degré = 12 à la surface du noyau externe[START_REF] Christensen | Scaling Properties of Convection-Driven Dynamos in Rotating Spherical Shells and Application to Planetary Magnetic Fields[END_REF]. L'amplitude du champ magnétique dans le noyau externe est mesurée par le nombre de le nombre d'Elsasser Λ ou le nombre de Lehnert Lo harmonique sphérique(voir Christensen et Aubert 2006 ;[START_REF] Schwaiger | Force Balance in Numerical Geodynamo Simulations : A Systematic Study[END_REF]. La première constitue une estimation intégrale de la longueur caractéristique. Sa définition repose sur le calcul d'un degré d'harmonique sphérique moyen (voir §3.6.3de Backus et al. 1996) 

						r, t)] 2 EPm 2	dV,	(II.158)
	où V i Rm = RePm =	τ η τ adv	.			(II.161)
	Λ =	2E m V o t	et Lo =	E Pm	Λ.	(II.162)

∆P = 100 × P T + P ξ -D ν -D η t P T + P ξ t , (II.159) permet la définition d'un critère de convergence numérique. Nous nous sommes assurés que cette différence était inférieure à 2 % pour l'ensemble des simulations réalisées au cours de cette thèse (voir Gastine et al. 2015 ; King et al. 2012). L'amplitude de la vitesse moyenne de l'écoulement est estimée grâce aux nombres de Rossby Ro et de Reynolds Re Re = 2E k (t) V o t et Ro = ReE. (II.160) Ro quantifie le rapport entre forces d'inertie et de Coriolis, tandis que Re correspond au rapport entre inertie et forces visqueuses. Le rapport des termes d'induction et de diffusion dans l'équation (II.21) est mesuré par le nombre de Reynolds magnétique Rm quantifiant respectivement le rapport entre les vitesses d'Alfvén et de rotation et le rapport entre les forces de Lorentz et de Coriolis.

La décomposition en harmoniques sphériques permet de définir deux échelles caractéristiques de l'écoulement construites grâce au spectre de l'énergie cinétique moyenné en temps en fonction du degré d'

  ,pol est l'énergie cinétique poloïdale 4 contenue dans l'harmonique sphérique de degré et r m correspond au rayon milieu de la coquille sphérique. Cette définition est sensible à la forme du spectre de l'énergie cinétique et se révèle particulièrement utile lorsque l'écoulement est dominé par l'interaction de plusieurs modes de convection.[START_REF] Schwaiger | Force Balance in Numerical Geodynamo Simulations : A Systematic Study[END_REF][START_REF] Schwaiger | Relating Force Balances and Flow Length Scales in Geodynamo Simulations[END_REF] introduisent également la notion de longueur caractéristique dominante L dont la définition fait intervenir le spectre de l'énergie cinétique poloïdale E k,pol

							2	r o	,	(II.163)
	où E kL =	π ˆ r m	avec ˆ = argmax E k,pol t	,	(II.164)
	Sh =	u r ξSc --dξ c ∂ξ ∂r t,S	et Nu =	∂T ∂r t,S dT c u r TPr --	,	(II.165)
			dr			dr
	où T					

où E k,pol est la contribution de l'harmonique sphérique de degré à l'énergie cinétique poloïdale.

L'efficacité des transports thermique et chimique est mesurée par les nombres de Nusselt Nu et de Sherwood Sh. Ces grandeurs quantifient le rapport des flux convectif et diffusif pour la températue et la composition. Une valeur élevée correspond alors à une convection soutenue. Leur définition dépend des conditions aux limites imposées au fluide (voir le chapitre 1

de Goluskin 2016)

. De manière générale, ils sont définis à un rayon r par c et ξ c sont les température et composition de l'état diffusif. Pour le chapitre III, nous adopterons une définition faisant intervenir les contrastes en température et en composition

  du forçage convectif. Cette observation nous a poussé à étudier plus en détail cette transition et en particulier à vérifier la validité de critères précédemment introduits dans la littérature pour la décrire.Ce chapitre présente un article intitulé Geomagnetic semblance and dipolar-multipolar transition in topheavy double-diffusive geodynamo models 1 (T. Tassin, T. Gastine, A. Fournier) publié dans le journal Geophysical Journal International le 20 avril 2021[START_REF] Tassin | Geomagnetic Semblance and Dipolar-Multipolar Transition in Top-Heavy Double-Diffusive Geodynamo Models[END_REF]. Afin d'assurer la cohérence du manuscrit, certaines notations ont été modifiées. Les figures III.15 et III.16 ont été de plus mises à jour car la simulation ( * ) a continué d'être intégrée après la publication de l'article.

	Chapter III				
	Geomagnetic semblance	
	and dipolar-multipolar transition
	in top-heavy double-diffusive
	geodynamo models	
					r o )	.	(II.166)
	Dans le modèle du chapitre IV, la température et la composition sont imposées aux frontières du
	domaine. Nous adoptons alors une définition différente pour les nombres de Nusselt et de Sherwood
	faisant intervenir les flux thermique et chimique en r = r o	
	Nu =	d T t,S dr dT c dr (r o ) (r o )	et Sh =	d ξ t,S dr dr (r o ) (r o ) dξ c	.		(II.167)

Résumé

La composition exacte du noyau terrestre reste incertaine. Néanmoins, il est admis qu'il est composé majoritairement de fer liquide incluant une faible proportion d'éléments plus légers, comme du silicium ou de l'oxygène

[START_REF] Hirose | Composition and State of the Core[END_REF]

. La cristallisation de la graine induit la libération d'éléments légers et de chaleur latente à la frontière noyau-manteau tandis que le manteau extrait de l'énergie thermique du noyau à la frontière de la graine. La convection du noyau externe est alors susceptible d'être alimentée par des inhomogénéités d'origine thermique et chimique, elle est alors qualifiée de double-diffusive. La circulation du fluide conducteur d'électricité dans la partie externe du noyau induit un champ magnétique par effet dynamo. La contribution relative de la puissance convective chimique influence l'écoulement et par la même occasion la morphologie du champ magnétique à la surface (voir par exemple Takahashi 2014). À notre connaissance, un nombre restreint d'études numériques ont choisi d'adopter un modèle double-diffusif pour la dynamo terrestre. nature

Table III .

 III 1 -Physical and thermodynamical parameters of Earth's outer core relevant for this study. The corresponding references are listed in the rightmost column, which may comprise several entries if a bracket of values are provided. Estimated using values of k T , ρ o and C p .

	Definition	Symbol Value	Reference (Lower bound -Upper bound)
	Inner radius	r i	1221.5 km	Dziewonski and Anderson (1981)
	Outer radius	r o	3480 km	Dziewonski and Anderson (1981)
	Earth angular velocity	Ω	7.29 × 10 -5 rad • s -1	
	Gravitational acceleration at CMB	g o	10.68 m • s -2	Dziewonski and Anderson (1981)
	Core density at CMB	ρ o	9 × 10 3 kg • m -3	Dziewonski and Anderson (1981)
	Specific heat	C p	(850 ± 80) J • kg -1 • K -1	Labrosse (2003)
	Heating power from core	Q	6 -16 TW	B. Buffett (2015)
	Thermal conductivity at CMB	k T	25 -100 W • m -1 • K -1	Kon ôpkov á et al. (2016) -Pozzo et al. (2013) and Zhang et al. (2020)
	Thermal diffusivity	κ T	(0.3 -1.4) ×10 -5 m 2 • s -1	
	Coefficient of thermal expansion	α T	(1.3 ± 0.1) × 10 -5 K -1	Labrosse (2003)
	Kinematic viscosity	ν	10 -6 m 2 • s -1	Roberts and King (2013)
	Magnetic diffusivity	η	0.5 -2.9 m 2 • s -1	Pozzo et al. (2013) -Kon ôpkov á et al. (2016)
	Estimated magnetic field strength	B	4 × 10 -3 T	Gillet et al. (2010)
	Superadiabatic composition contrast ∆ξ	0.02 -0.053	Badro et al. (2007) -Anufriev et al. (2005)
	Chemical diffusivity	κ ξ	(3 × 10 -9 -4.2 × 10 -7 ) m 2 • s -1	Loper and Roberts (1981) -Li et al. (2000)
	Coefficient of chemical expansion	α ξ	0.6 -0.83	Braginsky and Roberts (1995) -Labrosse (2015)
	Estimated flow velocity			

Table III .

 III 2 -Dimensionless control parameters. The two rightmost columns provide estimates of these parameters for Earth's core and the values spanned by the simulations computed in this study. Earth's core values were estimated thanks to Tab. III.1.

	Name	Symbol Definition	Core	This study
	Ekman	E	ν/ΩD 2	10 -15	10 -4 -10 -5
	Thermal Rayleigh	Ra T	α T g 0 D 3 ∂T/νκ T	10 26 -10 28	10 6 -10 10
	Chemical Rayleigh Ra ξ	α ξ g 0 D 3 ∂ξ/νκ ξ	10 30 -10 33	10 7 -10 12
	Magnetic Prandtl	Pm	ν/η	(3.4 -20) • 10 -7	0.5 -5
	Thermal Prandtl	Pr	ν/κ T	0.08 -0.25	0.3
	Schmidt	Sc	ν/κ ξ	2 -300	3
	Lewis	Le	κ T /κ ξ	9 -4000	10

Table III .

 III 3 -Characteristic time scales for the Earth's core. The values were estimated thanks to Tab. III.1.

	Name	Symbol Definition Core
	Typical rotation time	τ Ω	1/Ω	4 h
	Turnover time	τ adv	D/U	30 -250 yr
	Magnetic diffusion time	τ η	D 2 /η	10 5 -10 6 yr
	Thermal diffusion time	τ T	D 2 /κ T	10 9 -10 10 yr
	Viscous diffusion time	τ ν	D 2 /ν	10 11 yr
	Chemical diffusion time τ ξ	D 2 /κ ξ	10 11 --10 13 yr

Table III .

 III 4 -Output parameters of the numerical simulations and their estimates for Earth's core

	Name	Symbol Definition	Earth's core	This study	Reference
	Relative thermal convective power	P % T	see Eq. III.34 20 -70 %	0 -100 %	Lister and B. A. Buf-fett (1995) -Takahashi
						(2014)
	Rossby	Ro	U/ΩD	(1.7 -12) × 10 -6	0.002 -0.1	Table III.1
	Local Rossby	Ro L	U/ΩL	4.7 × 10 -5 -0.09 0.009 -0.45	Davidson (2013) -Olson
						and Christensen (2006)
	Relative equat. symmetric kinetic energy ζ		0.78 -0.9	0.65 -0.96	Aubert et al. (2017)
	Magnetic Reynolds	Rm	UD/η	(0.2 -9) × 10 3	10 2 -6 × 10 3	Table III.1
	Elsasser	Λ	B 2 /µ 0 ηρ o Ω	6.7 -39	0.3 -3 × 10 2	Table III.1
	Dipolarity parameter	f dip		0.6 -0.7	0.1 -1	Gillet et al. (2015)

  Finally, transports of heat and chemical composition are quantified by using the Nusselt Nu and the Sherwood Sh number defined by (seeGoluskin 2016, chapter 1) 

							in their study. The magnetic field
	amplitude is measured by the Elsasser number Λ
	Λ =	2E m V o t	.			(III.40)
	Nu =	∆T 0 ∆T t	and Sh =	∆ξ 0 ∆ξ t	,	(III.41)

  TableIII.6 -Control parameters and simulation diagnostics for the 79 numerical simulations computed for this study (continued).TableIII.6 -Control parameters and simulation diagnostics for the 79 numerical simulations computed for this study (continued).

	Ra T Ra T	Ra ξ Ra ξ	(N r , max ) Pm (N r , max ) Pm	α α	t scheme t scheme	t avg t run Rm Ro L t avg t run Rm Ro L	Λ Λ	f ohm χ 2 f ohm χ 2	ζ ζ	f dip P % T f dip P % T	Nu Sh Nu Sh
	(×10 8 ) (×10 9 ) (×10 8 ) (×10 9 )					(×10 -2 ) (×10 -2 )			
	H 3.4 0	480 0.1	(384, 341) f 0.5 (65, 106) 5.0	None BPR353 0.46 0.67 580 10.5 None CNAB2 1.17 1.31 161 1.3	9.2 0.65 1.5 0.71 0.77 3.2 0.47 4.9 0.81 0.88	8.0 44.8 (*) 1.0 3.8
	100 0.02	0 0.09	(129, 213) 1.0 (49, 85) 5.0	0.932 BPR353 0.26 1.29 1213 10 None CNAB2 2.54 7.73 180 1.2	21.7 0.67 0.8 0.72 0.71 10.5 1.0 7.2 0.62 4.3 0.86 0.86 1.3 4.0
	H 6.8 0.1	960 0	(380, 256) f 0.5 (65, 106) 5.0	None BPR353 1.54 1.88 843 15.3 None CNAB2 1.86 2.16 363 1.3	10.3 0.60 1.9 0.73 0.69 34.7 0.67 11.9 0.90 0.63 1.7 1.0 11.0 55.3 (x)
	300 0	0 0.5	(129, 256) 0.5 (49, 85) 5.0	0.962 BPR353 0.30 1.22 1235 17.4 None CNAB2 1.65 1.99 378 3.9	12.4 0.58 19.2 0.65 0.23 16.7 1.0 4 0.32 1.8 0.79 0.58 1.0 7.6
	H 13 0.047 0.33 1900 (408, 256) f 0.5 (65, 85) 5.0	None PC2 None BPR353 0.50 3.64 345 2.6 0.16 0.24 1252 19.7	13.8 0.57 21.2 0.68 0.20 14.8 0.58 2.8 0.78 0.75	14.2 68.2 (**) 1.6 6.9
	600 0.08 0	0 0.19 0.7	(129, 256) 0.5 (65, 106) 5.0 (49, 85) 5.0	0.962 BPR353 0.22 0.43 1640 21.6 E = 3 × 10 -5 , Pr = 0.3, Sc = 3 None CNAB2 1.10 1.18 334 1.8 None CNAB2 2.02 2.43 438 4.7 0.0 0.5 1.0 1.5 2.0 2.5 Time (τη )	21.4 0.61 11.6 0.65 0.32 20.9 1.0 31 0.69 3.8 0.81 0.71 1.7 6.0 4.8 0.31 2.8 0.78 0.52 1.0 8.6
	0 0.07	0.5 0.5	(49, 106) (97, 106)	2.0 5.0	0.779 CNAB2 1.37 1.55 113 1.2 None BPR353 0.35 1.70 438 3.4	0.4 0.30 52.3 0.89 0.86 18.9 0.56 3.0 0.78 0.71	1.0 4.0 1.8 8.1
	H 0.015 0.5 0 1	(49, 133) (65, 106)	2.0 5.0	0.779 CNAB2 1.95 2.33 154 1.3 None CNAB2 1.06 1.33 522 5.6	1.1 0.47 24.0 0.93 0.90 5.5 0.31 8.1 0.77 0.35	1.3 4.6 1.0 9.9
	H 0.1 0.14	1.1 0.34	(49, 133) (65, 106)	1.0 5.0	0.779 CNAB2 2.15 4.39 98 None CNAB2 1.08 1.09 482 3.1 2	0.4 0.31 36.5 0.88 0.88 38.6 0.64 3.8 0.78 0.68	1.4 6.3 2.0 7.7
	H 0.1 0.19	1.1 0	(129, 213) 2.0 (65, 106) 5.0	0.960 BPR353 0.15 3.11 178 1.7 None CNAB2 1.14 1.36 469 2.3	1.6 0.48 10.7 0.85 0.86 60.1 0.69 5.0 0.80 0.64 2.0 1.0 1.4 6.4
	0.1 0.12	1.4 0.52	(129, 170) 2.0 (81, 106) 5.0	0.960 BPR353 0.35 1.79 193 1.8 None BPR353 0.89 2.24 516 3.8	2.0 0.51 13.4 0.83 0.89 27.1 0.58 3.3 0.78 0.69	1.5 7.2 2.0 8.6
	0 0.027 1.1 2	(65, 133) (65, 106)	2.0 5.0	0.848 CNAB2 1.81 2.26 204 2.2 None CNAB2 2.11 2.44 580 5.9	1.6 0.43 8.5 0.79 0.86 7.7 0.34 6.3 0.78 0.36	1.0 8.2 1.9 10.4
	0.5 0.027 1.1 0	(49, 133) (65, 106)	2.0 5.0	0.779 CNAB2 1.62 1.71 255 1 None CNAB2 1.14 1.30 570 5.7	6.6 0.68 8.9 0.96 0.88 1.7 1.0 8.8 0.37 2.9 0.79 0.54 1.9 10.3
	0 0.1	4 0.69	(97, 133) (65, 106)	2.0 5.0	0.975 CNAB2 1.24 1.42 288 3.3 None CNAB2 1.12 1.45 533 4.2	2.0 0.38 2.3 0.78 0.60 22.8 0.55 3.4 0.78 0.69	1.0 11.2 2.0 9.1
	H 0.2 0.049 1 4	(97, 133) (65, 106)	2.0 5.0	0.930 CNAB2 1.04 1.32 307 2.9 None CNAB2 1.05 1.16 573 5.4	4.4 0.54 3.4 0.78 0.81 11.1 0.41 2.5 0.79 0.60	2.0 11.5 1.9 10.1
	1 0.049 1 0	(49, 106) (65, 133)	1.0 5.0	0.779 CNAB2 5.96 6.41 180 1.9 None BPR353 0.13 1.38 566 5.4	4.1 0.69 10.8 0.92 0.93 2.1 1.0 11.2 0.42 2.2 0.78 0.61 1.9 10.1
	1 0		0 1.4	(49, 106) (65, 106)	2.0 5.0	0.864 CNAB2 0.79 1.18 281 1.4 None CNAB2 1.32 1.61 615 6.5	20.6 0.81 3.4 0.81 0.78 2.4 1.0 7 0.31 16.6 0.75 0.23 1.0 11.0
	0 0.14	8 1	(97, 133) (65, 106)	2.0 3.0	0.975 CNAB2 1.91 5.45 385 4.6 None BPR353 0.33 2.10 412 5.7	3 11.8 0.50 2.5 0.79 0.74 0.41 2.6 0.77 0.67	1.0 14.8 2.3 10.6
	0.1 0.14	1.1 1	(97, 133) (81, 106)	1.0 5.0	0.935 CNAB2 1.30 1.77 164 2.0 None BPR353 0.37 1.72 655 5.5	9.2 0.79 5.0 0.77 0.80 24.7 0.51 3.3 0.77 0.66	2.2 9.2 2.3 10.5
	H 0.5 0.14	5.5 1	(129, 170) 2.0 (81, 133) 7.0	0.960 CNAB2 1.21 1.21 373 3.3 0.909 BPR353 0.42 2.36 896 5.2	8.4 0.62 2.3 0.76 0.81 40.6 0.52 4.3 0.77 0.62	2.4 13.4 2.3 10.4
	0.1 0	1.1 2	(97, 133) (97, 170)	2.0 5.0	0.935 CNAB2 1.61 1.89 317 1.8 0.935 BPR353 0.88 2.98 750 7.2	27.8 0.79 5.9 0.75 0.65 8.7 0.32 39.4 0.72 0.10	2.3 8.9 1.0 12.4
	0.05 0.3	5.5 0	(65, 133) (61, 170)	2.0 5.0	0.864 CNAB2 1.63 1.81 342 3 None CNAB2 0.16 1.24 616 3.6	12.8 0.69 2.2 0.72 0.80 72.6 0.66 4.7 0.76 0.62 2.4 1.0 2.2 12.9
	1 0.21	11 1.5	(97, 133) (81, 133)	1.0 5.0	0.935 CNAB2 1.10 1.30 297 5.7 0.909 BPR353 0.32 2.74 813 6.8	3.5 0.51 4.0 0.78 0.82 32 0.51 3.9 0.77 0.63	3.1 17.9 2.7 12.0
	1 0.3	11 3	(145, 170) 2.0 (97, 170) 5.0	0.960 CNAB2 1.08 1.23 541 4.9 0.935 BPR353 0.28 2.13 1144 9.6	11.4 0.59 1.5 0.75 0.76 30.2 0.44 6.8 0.79 0.44	3.2 17.4 3.3 14.6
	0 0.9	20 0	(97, 133) (81, 170)	2.0 5.0	0.975 CNAB2 1.04 1.06 581 6.7 0.909 BPR353 0.34 2.08 1244 9.8	5.5 0.43 5.6 0.76 0.44 74.9 0.54 6.9 0.74 0.56 3.8 1.0 1.0 20.0
	3.7 0.4	0 6	(49, 133) (97, 213)	1.0 5.0	0.779 CNAB2 1.31 1.41 328 5 0.935 BPR353 0.29 1.85 1576 12.8	12.4 0.71 2.8 0.74 0.84 4.0 1.0 30.6 0.38 42.7 0.72 0.09 4.0 17.4
	3.7 5	0 0	(81, 133) (73, 213)	2.0 5.0	0.900 CNAB2 0.88 1.02 613 4.4 0.889 BPR353 0.33 1.49 3363 23.5	36.7 0.72 3.7 0.73 0.70 4.0 1.0 130 0.39 17.7 0.75 0.25 7.4 1.0
	1.7 20	20 0	(145, 170) 2.0 (129, 170) 5.0	0.970 CNAB2 0.83 1.08 738 7.1 0.960 CNAB2 0.12 0.39 6160 45.1	12.5 0.54 1.7 0.76 0.65 297 0.36 21.9 0.76 0.21 10.5 1.0 4.0 21.3
	5		0	(97, 133)	2.0	0.864 CNAB2 0.89 1.06 726 5.7	38.6 0.69 2.8 0.72 0.71 4.6 1.0
	2.3	27	(129, 133) 2.0	0.960 CNAB2 1.07 1.07 857 8.3	14.7 0.53 1.7 0.76 0.63	4.6 23.3
	0.2	30	(109, 256) 2.0	0.948 BPR353 1.02 1.10 837 8.4	20	0.57 1.5 0.73 0.70	4.0 23.0
	H 0.4	8	(97, 170)	2.0	0.962 BPR353 0.95 1.09 755 6.9	42.4 0.68 4.2 0.69 0.63	4.2 17.3
	3		35	(129, 170) 2.0	0.962 CNAB2 1.13 1.13 976 9.5	16.4 0.52 1.8 0.76 0.59	5.2 25.2
	H 0.3	35	(129, 213) 2.0	0.962 BPR353 0.43 0.51 949 9.7	24.5 0.57 1.6 0.73 0.67	4.6 24.2
	0		100	(193, 213) 2.0	0.970 BPR353 0.13 0.18 1378 12.5	12.4 0.40 26.0 0.68 0.16	1.0 31.5
	12	0	(129, 170) 2.0	0.960 CNAB2 0.94 1.02 1237 11	37.5 0.59 2.5 0.73 0.66 6.8 1.0
	7	1	10 70	(97, 133) (193, 170) 2.0 1.0	0.935 BPR353 1.80 1.80 176 1.5 0.983 CNAB2 0.87 1.22 1579 13.9	2.4 0.66 20.1 0.80 0.91 32 19 0.44 27.2 0.69 0.15	1.8 10.6 7.2 31.1
	3.1 9	0 100	(97, 170) (193, 256) 2.0 1.0	0.935 BPR353 2.79 3.09 196 0.9 0.983 PC2 0.10 0.30 1765 14.8	3.4 0.79 12.6 0.92 0.94 100 2.0 1.0 27 0.49 12.2 0.72 0.27 8.2 33.1
	0 H 0.9	100 100	(193, 213) 1.0 (193, 213) 2.0	0.975 BPR353 0.29 0.29 444 4.9 0.983 PC2 0.12 0.16 1790 17.4	2.7 0.51 3.4 0.76 0.69 0 26.5 0.47 26.3 0.71 0.15	1.0 26.6 7.3 32.6
	H 0.8 40	120 0	(257, 256) 1.0 (97, 213) 2.0	0.990 BPR353 0.20 0.37 514 4.3 0.960 CNAB2 0.34 0.38 2521 19.5	14.1 0.74 1.8 0.69 0.80 40 50 0.50 22.2 0.71 0.17 11.0 1.0 4.5 28.1
	0 68	270 0	(320, 256) f 1.0 (129, 170) 1.0	None BPR353 0.47 0.95 685 7.2 0.960 BPR353 0.59 0.59 1671 23.5	5.5 0.54 7.9 0.73 0.33 0 33 0.53 7.4 0.71 0.26 13.0 1.0 1.0 36.2
	0		400	(380, 256) f 1.0	None BPR353 0.16 0.20 880 8.7	5.4 0.49 14.5 0.74 0.24 0	1.0 41.0
	46 0.013 0.045 (49, 85) 0 (109, 170) 1.0 5.0	0.940 BPR353 0.38 0.90 763 5.5 None CNAB2 1.09 1.78 175 1.1	23.5 0.75 2.4 0.71 0.77 100 7.3 1.0 1.6 0.32 10.1 0.98 0.82 1.2 2.8
	H 1.7	240	(321, 256) 1.0	0.992 BPR353 0.17 0.28 760 6.7	18.2 0.70 2.2 0.70 0.75 44	6.1 35.3

E = 1 × 10 -4 , Pr = 0.3, Sc = 3

  Ra T est défini sur le gradient vertical moyen de température et D est la taille caractéristique du domaine d'étude. Cette longueur atteint des valeurs de l'ordre du centimètre dans l'océan (voir la section 1.4 de Radko 2013, et la figure I.2).

	1/4 D,	(IV.2)
	où	

  [START_REF] Holyer | The Stability of Long, Steady, Two-Dimensional Salt Fingers[END_REF][START_REF] Radko | Finite-Amplitude Salt Fingers in a Vertically Bounded Layer[END_REF][START_REF] Schmitt | The Growth Rate of Super-Critical Salt Fingers[END_REF][START_REF] Yang | Double Diffusive Convection in the Finger Regime for Different Prandtl and Schmidt Numbers[END_REF][START_REF] Yang | Salinity Transfer in Bounded Double Diffusive Convection[END_REF] Yang et al. , 2016a,b),b). Des couches limites émergent aux frontières du fluide et conduisent à une atténuation des gradients verticaux thermique et chimique. Cette modification nécessite alors la définition d'un rapport de densité effectif défini sur l'état convectif développé (voir par exemple Radko et Stern 2000 ; R. W. Schmitt 1979 ; Yang et al. 2020).Depuis une dizaine d'années, ces études locales sont complétées par des modèles numériques en géométrie sphérique afin d'analyser la pertinence de ce régime de convection pour les intérieurs planétaires. En considérant la stabilité linéaire d'une sphère fluide en rotation,[START_REF] Monville | Rotating Convection in Stably-Stratified Planetary Cores[END_REF] ont confirmé numériquement une prédiction théorique de[START_REF] Busse | Is Low Rayleigh Number Convection Possible in the Earth's Core ?[END_REF] : la présence des doigts de sel tend à réduire le rôle stabilisant de la rotation. Le nombre de Rayleigh critique Ra

c augmente alors proportionnellement à E -1 , une dépendance qui diffère des régimes purement thermique

[START_REF] Busse | Thermal Instabilities in Rapidly Rotating Systems[END_REF] 

et top-heavy

[START_REF] Silva | The Onset of Thermo-Compositional Convection in Rotating Spherical Shells[END_REF]

, pour lesquels Ra c ∝ E -4/3 . Mather et

[START_REF] Mather | Regimes of Thermo-Compositional Convection and Related Dynamos in Rotating Spherical Shells[END_REF] 

et Silva et al. (2019) ont réalisé une étude systématique du seuil de la convection pour les trois cadrants d'instabilités double-diffusives. Leur approche repose sur la définition d'un nombre de Rayleigh effectif Ra et d'un angle Θ, similaire à l'angle de Turner défini par Ruddick (1983), Ra = Ra 2 T + Ra 2 ξ et Θ = atan2(Ra ξ , Ra T ), (IV.3) où atan2(x, y) est une fonction permettant de calculer l'argument d'un nombre complexe x + iy. Ces deux quantités offrent une vision de la convection double-diffusive sous la forme d'un plan complexe (voir la figure I.4). La dépendance du nombre de Rayleigh critique à l'angle Θ leur a permis d'identifier quatre régimes de convection en rotation (voir la figure 3 de Silva et al. 2019), dont les spécificités semblent persister dans des modèles faiblement non-linéaires (Mather et Simitev 2021).

  présentant des escaliers thermohalins, la condition en revanche pas vérifiée (voir leur figure7).[START_REF] Paparella | A Model for Staircase Formation in Fingering Convection[END_REF] proposent d'étudier la formation des escaliers thermohalins à l'aide d'un système d'équations (voir leur équation 17) couplant la poussée d'Archimède R ρ T -ξ à l'énergie toroïdale du fluide. Ils font notamment l'hypothèse forte que le rapport de flux γ ne dépend pas du temps. Malgré l'impossibilité d'exciter un mode γ, leur modèle se montre capable de générer des escaliers thermohalins à partir d'un bruit blanc.

			1. Introduction
	n'est		
	∂γ ∂R ρ	< 0	(IV.7)

Table IV .

 IV 1 -Paramètres de contrôle adimensionnés. Les trois premières colonnes fournissent le nom, le symbole et la définition de chaque grandeur. La dernière colonne fournit les valeurs explorées par nos simulations. Rayleigh thermique |Ra T | |α T g o D 3 ∆T/νκ T | 7.334 × 10 5 -1.83 × 10 11 Rayleigh chimique Ra ξ α ξ g o D 3 ∆ξ/νκ ξ 2 × 10 5 -5 × 10 11 Le |Ra T | /Ra ξ 1 -Le variant sur l'intervalle [0, 1] pour le régime des doigts de sel. La borne inférieure de cet intervalle correspond à la frontière entre les doigts de sel et un régime dynamique dominé par la convection chimique, tandis que la borne supérieure correspond au seuil de la convection (voir la figure I.4). Ce paramètre nous permet de comparer plus efficacement des modèles avec des nombres de Lewis différents.

	Nom	Symbole Définition	Cette étude
	Prandtl	Pr	ν/κ T	0.03 -7
	Schmidt	Sc	ν/κ ξ	1 -30
	Lewis	Le	κ T /κ ξ	3 -33
	Rapport de densité R ρ		

  21) Les transports chimique et thermique sont quantifiés par les nombre de Nusselt et de Sherwood (voir équation II.167) où S 1 et S 2 sont respectivement des sphères de rayons r 1 et r 2 . Dans cette expression, u r est la composante radiale du champ de vitesse. Cette relation de conservation permet d'exprimer les nombres de Nusselt et de Sherwood en n'importe quel rayon r (voir équation II.165)

	Nu =	d T t,S dr dT c dr (r o ) (r o )	et Sh =	d ξ t,S dr dr (r o ) (r o ) dξ c	.					(IV.22)
	L'absence de source volumique dans les équations de transport thermique et chimique (IV.13) garantit
	la conservation radiale des flux thermique et chimique entre deux rayons r 1 et r 2	
	r 2 1 ξu r -	1 Sc	∂ξ ∂r t,S 1	= r 2 2 ξu r -	1 Sc	∂ξ ∂r t,S 2	et r 2 1 Tu r -	1 Pr	∂T ∂r t,S 1	= r 2 2 Tu r -	1 Pr	∂T ∂r t,S 2	.(IV.23)

  où [ Ŵ , T , ξ ] sont des fonctions de r, τ le taux de croissance et ω la pulsation de dérive. En remplaçant les champs perturbatifs par leur expression (IV.53) dans le système linéarisé, nous obtenons un problème aux valeurs propres généralisées de la formeA X = λ B X, (IV.54) où A et B sont des opérateurs linéaires, X le vecteur d'état [W , T , ξ ] T et λ la valeur propre qui est une fonction de , Ra T , Ra ξ , Pr et Sc dans notre modèle. Pour chaque simulation (Ra T , Ra ξ , Pr, Sc), le mode le plus instable est alors identifié en cherchant le degré harmonique qui maximise τ . Pour ce faire, nous avons utilisé le package Linear Solver Builder (LSB) développé par Valdettaro et al. (2007). Il permet dans un premier temps de déterminer le spectre des valeurs propres λ en fonction du degré d'harmonique sphérique jusqu'à une valeur de troncature fixée par l'utilisateur. Le calcul du mode le plus instable est ensuite affiné grâce à une méthode itérative à partir d'une valeur propre précédemment calculée. LSB nous fournit donc le degré c , le vecteur X et la pulsation de dérive ω c du mode critique. À partir de toutes ces informations, nous sommes alors capables de définir un rapport de flux γ c pour le mode le plus instable en utilisant la définition de γ (IV.33). La figure IV.16a montre h en fonction de c pour les simulations avec R ρ > 1. Au premier ordre, h croît linéairement avec c et le coefficient de proportionnalité reliant les deux degrés semble dépendre faiblement des paramètres d'entrée. En revanche, on constate que h est supérieure à c pour l'ensemble de nos simulations. Le modèle linéaire dérivé h = (1.74 ± 0.02) c (IV.55) est représenté par une ligne en tirets sur la figure IV.16a. Il est en bon accord avec l'ensemble des simulations. On constate néanmoins un écart au modèle plus important lorsque c < 30. Les simulations les moins turbulentes tendent à vérifier c = h (voir par exemple le pentagone en bas à gauche de la figure IV.16a). L'inégalité entre h et c est en accord avec les spectres de l'énergie cinétique poloïdale (voir la figure IV.14d) discutés précédemment. Loin du seuil de l'instabilité, une grande plage de modes est excitée et la forme du spectre de la simulation non-linéaire résulte de l'interaction de cet ensemble de modes. Pour illustrer ce phénomène, R. W. Schmitt (1979) propose, dans la section 5 de son étude, d'injecter une perturbation sous la forme d'un bruit blanc dans le système d'équations linéarisées. En suivant l'évolution temporelle du spectre des fluctuations en salinité en fonction du nombre d'onde horizontal m (voir sa figure 7), il observe la croissance d'un grand nombre de modes. Le spectre atteint son amplitude maximale pour le nombre d'onde le plus instable et son pic présente une certaine épaisseur. C'est sans compter sur les modifications des profils ξ et Tpar rapport à l'état de référence qui peuvent impacter différemment les différents modes instables. Dans nos simulations, les profils radiaux de [W , T , ξ ] montrent un maximum marqué à un rayon qui croît avec le nombre d'onde considéré. Cette localisation radiale des modes propres semble être une conséquence à la fois de la géométrie sphérique mais aussi de la dépendance radiale de l'amplitude du champ de gravité. Le mode le plus instable semble se développer systématiquement dans la couche limite inférieure tandis que h correspond à un mode instable localisé dans le volume plus proche de la structure d'un mode élévateur. À titre d'exemple, la figure IV.17 montre le profil radial du potentiel poloïdal W du mode le plus instable (courbe foncée) et du mode de degré harmonique h (courbe claire) pour une simulation avec Ra T = -2.2 × 10 8 , Pr = 0.3, Le = 10 et R ρ = 1.1. Pour cette figure, le rayon r a été normalisé par le rayon de la coquille externe r o . Il est vraisemblable que le mode critique soit pénalisé par l'émergence des couches limites au profit de modes instables au coeur du volume. En parallèle, la figure IV.16 montre γ en fonction de γ c pour l'ensemble des simulations avec R ρ > 1. La ligne en tirets correspond à la première bissectrice. Pour γ c > 0.6, le rapport de flux est conservé lors de la mise en place de la convection. En revanche, γ sature à une valeur minimale pour les faibles valeurs de γ c . Cette valeur à saturation semble dépendre de Le. Les simulations avec Le = 10 (pentagones,

  Les rendu 3-D de la figure IV.14(a-c) mettent en avant un écoulement sous la forme de doigts de sel radiaux allongés. Leur rapport d'aspect permet d'utiliser l'approximation tall finger (voir Smyth et Kimura 2007, pour la dénomination) introduite parStern (1975). Nous considérons alors que les laplaciens de la vitesse ∇ 2 u t • e r et de la température ∇ 2 T t sont dominés par le terme de dérivée horizontale, ce qui nous permet de faire apparaître L h

	∇ 2 u t • e r V	∼	Re pol L 2 h	et	∇ 2 T	t,V	∼	T t,V h L 2	.	(IV.59)
	L'advection de la température est dominée par son terme radial et nous choisissons de linéariser
	la dérivée radiale de T en faisant apparaître l'épaisseur λ b et le contraste en température ∆ b T (voir
	l'équation IV.35)								
	u • ∇T t,V ∼ Re pol	∆ b T λ b	.				(IV.60)
	En utilisant la définition de γ (IV.33) et en supposant que la vitesse est bien corrélée aux perturbations
	thermique et chimique, approximation vérifiée dans nos simulations, ξ t,V peut s'écrire
	ξ t,V ∼	|Ra T | T t,V γRa ξ	Le.					(IV.61)
	Finalement, en associant les équations (IV.58-IV.61), nous aboutissons à une correction de la loi de
	puissance proposée par Stern (1960)		
											Pr	V	.	(IV.58)

  Nous cherchons dans cette partie à dériver une loi d'échelle pour Re pol . En régime permanent, la convection, en injectant de l'énergie dans le système, compense celle dissipée par diffusion visqueuse. Re pol Sc le nombre de Péclet chimique. La figure IV.19 montre le nombre de Péclet chimique Pe ξ en fonction de Ra ξ (Sh -1) γ(1 -γ)/|Ra T | 1/4 . La ligne en tirets correspond à la première bissectrice. La relation (IV.68) dérivée pour Pe ξ est bien vérifiée par l'ensemble des simulations sur presque 3 ordres de grandeur. Afin de confirmer la validité de notre raisonnement, nous avons réalisé une régression linéaire de log 10 (Sh -1) -1/2 γ(1 -γ)/|Ra T | -1/4 Pe ξ en fonction de log 10 (Ra ξ ). Nous obtenons ainsi un exposant 0.506 ± 0.002 pour Ra ξ dont la valeur est très proche de celle attendue. Le coefficient de proportionnalité quant à lui vaut 0.70 ± 0.03. La relation dérivée fait apparaître

	Le bilan de puissance (II.33) devient D ν t ∼ P T t + P ξ t . En supposant que le rotationnel de la vitesse est dominé par les termes de dérivées horizontales et (IV.66) sachant que l'écoulement est majoritairement radial, la dissipation visqueuse peut être approximée par D ν ≈ Re pol L h 2 . (IV.67) Le bilan de puissance en régime établi devient alors, en utilisant l'expression de L h (IV.65) et les approximations (IV.31), Pe 2 ξ ∼ Ra ξ (Sh -1) γ(1 -γ) |Ra T | 1/2 , (IV.68) Ra ξ avec Pe ξ = 10 6 10 8 10 10 10 12 10 0

  de atteint une valeur proche de celle attendue dans notre modèle. Il permet de prévoir efficacement Pe ξ pour le régime considéré mais il est cependant moins pertinent pour les simulations à Pr = 3 (croix) et Pr = 7 (cercles). Il est possible que les simulations à Pr > 1 adoptent un exposant plus élevé pour (comme proposé par Radko 2010), ce qui expliquerait cet écart au modèle. Malgré sa pertinence, la relation obtenue pour Pe ξ n'est pas entièrement satisfaisante car elle dépend encore de , paramètre de sortie des simulations. Néanmoins, nous anticipons (voir la figure IV.13) que dans la limite des très grands forçages, pertinents aux écoulements géo-et astrophysiques, R *

	1/2 .	(IV.78)
	L'exposant	

ρ → R ρ , faisant de un paramètre d'entrée dans ce cas. Dans le second régime, Sh ∼ Ra 1/3 ξ et γ sature à une constante

Table IV .

 IV 2 -Lois d'échelle dérivées dans la section 3.3.6 pour γ(1 -γ), Sh -1, Nu -1 et Pe ξ dans le régime où r * ρ ≥ 0.5 et dans le régime où r * ρ < 0.5.

  5/4 Pr 1/2 7/8 Ra 2/3 ξ |Ra T |-1/4 qui varie entre 0.4 et 0.8. Cette plage de valeur conduit à une variation de γ(1 -γ) de 30 % environ. Étant donné la dispersion des points observée sur la figure IV.22, il est raisonnable de supposer que le facteur γ(1 -γ) est le même pour l'ensemble des simulations. La relation (IV.68) peut donc se simplifierPe ξ ∼ Ra 2/3 ξ |Ra T | -1/4 . (IV.79) La figure IV.23 montre Pe ξ compensé par Ra 1/4 T en fonction de Ra ξ pour toutes les simulations avec r * ρ < 0.5. Afin de vérifier la relation (IV.79), nous avons réalisé une régression linéaire de log 10 Pe ξ |Ra T | 1/4 en fonction de log 10 Ra ξ pour les simulations avec r * ρ < 0.5. La loi de puissance dérivée représentée par une ligne en tirets sur la figure IV.23. L'ensemble des simulations est correctement décrit au premier ordre par cette loi de puissance. L'exposant calculé pour Ra ξ est en bon accord avec celui attendu théoriquement. En revanche, nous aboutissons à une loi d'échelle différente de celle établie par Hage et Tilgner (2010) grâce à un raisonnement s'appuyant une l'analyse dimensionnelle du système. Cette dernière prédit une dépendance du nombre de Reynolds Re aux nombres de Rayleigh thermique et chimique de la formeFigure IV.24 -Nombre de Reynolds poloïdal local Re L compensé par Pr 1/2 en fonction de pour l'ensemble des simulations avec r * ρ > 0.5. La ligne en tirets correspond à la loi de puissance établie dont l'expression est fournie dans la légende de la figure.En utilisant les relations établies dans le régime I (voir le tableau IV.2), nous aboutissons à la relation Pr que celle proposée par Guervilly (2022) (voir son équation 29), mais qui fait intervenir dans notre cas la distance au seuil et qui ne se limite pas à un intervalle de Pr. La figure IV.24 montre Re L Pr 1/2 en fonction de pour les simulations avec r * ρ > 0.5. Une régression linéaire de log Re Pr 1/2 en fonction de log 10 ( ) conduit à la loi de puissance Re L Pr 1/2 = (10 ± 1) 0.61±0.04 , (IV.84) dont l'exposant est proche de la valeur attendue, 0.625, pour notre modèle. Cette dernière est représentée par une ligne en tirets sur la figure IV.24. La quasi-totalité des simulations est correctement décrite par cette relation, seule une simulation, ayant la valeur la plus faible de , s'écarte de manière significative de cette tendance.Dans cette première partie, nous nous sommes concentrés sur les caractéristiques de l'écoulement radiale qui domine la dynamique du système. Dans certaines de nos simulations, la croissance de l'instabilité primaire est suivie par une organisation à grande échelle du champ de vitesse toroïdale. Nous allons maintenant présenter cette instabilité secondaire et décrire ses variations temporelles et spatiales.
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	Re L ∼ 5/8 Pr -1/2 ,		(IV.83)
	qui présente la même dépendance en		
	Pe ξ |Ra 1/4 T | = (0.09 ± 0.02)Ra 0.660±0.009 ξ		(IV.80)
	est fournie et Re ∼ |Ra T | -1/2 Ra ξ .		(IV.81)
	Dans ce régime, nous avons réussi à aboutir à une loi d'échelle tout à fait satisfaisante car elle ne
	dépend que des nombres de Rayleigh thermique et chimique. La table IV.2 résume les lois d'échelle

dérivées dans cette section pour γ(1 -γ), Sh -1, Nu -1 et Pe ξ dans les deux régimes étudiés. Dans le régime I, r * ρ > 0.5, nous pouvons modifier la loi d'échelle obtenue pour Pe ξ (IV.77) afin d'établir une relation pour un nombre de Reynolds poloïdal défini à l'échelle d'un doigt de sel Re L Re L = ReL h .

(IV.82)

4. Une seconde instabilité : les jets 4.1. Morphologie spatiale de l'instabilité secondaire

  Nous commençons par nous focaliser sur quatre simulations pour décrire les caractéristiques spatiales de l'instabilité secondaire des jets en géométrie sphérique globale. La figure IV.25 montrent des rendus 3D de la vitesse azimutale extrait d'instantanés pris au cours de l'intégration numérique. Les rayons des sphères interne et externe ont été choisis pour se trouver en dehors des couches limites thermiques, chimiques et visqueuses. Pour commodité, nous employons les termes plan équatorial et pôle Nord pour décrire les figures. Les simulations de la première ligne possèdent la même valeur de Pr = 0.3, la même valeur de Le = 10 et la même valeur de Ra T = -10 8 , mais diffèrent par la valeur de R ρ qui vaut respectivement 6 et 4. Afin d'observer la formation de jets, les deux simulations se trouvent dans un régime de haut R ρ en accord avec les observations de Radko (2010) (voir sa figure2) et[START_REF] Garaud | 2D or not 2D : the effect of dimensionality on the dynamics of fingering convection at low Prandtl number[END_REF] (voir sa section 3). Entre le premier et le second rendu, la puissance convective totale a été multipliée par 5. Les lignes de courants de l'écoulement de grande échelle sont tracés sous la forme de tubes. Leur rayons et leur couleur dépendent de la norme carrée de la vitesse, le rouge correspondant aux valeurs élevées. L'écoulement observé est représentatif des simulations à Pr < 1. Sur la figure IV.25a, l'écoulement présente une forte circulation zonale (voir plan équatorial) dont l'échelle est commensurable à celle de la coquille sphérique. Elle atteint son amplitude maximale négative, approximativement -50, proche du milieu de la coquille sphérique. La morphologie de l'écoulement est similaire à celle observée par[START_REF] Monville | Rotating Convection in Stably-Stratified Planetary Cores[END_REF] pour une de leur simulation en rotation mais où l'influence de l'influence de la force de Coriolis sur l'écoulement est réduite du fait de l'amplitude du forçage convectif (voir leur figure15a). La discontinuité de la vitesse observée dans le plan vertical est due à l'annulation de la vitesse azimutale sur l'axe. Dans cette simulation, le nombre de Reynolds toroïdal Re tor atteint 24, une valeur comparable à Re pol , qui vaut ici 41. L'écoulement présente une symétrie de révolution dont l'axe est mis en avant par les lignes de courant. Ce dernier se trouve dans un plan proche du plan équatorial et son orientation reste approximativement la même sur la période d'intégration. Une puissance convective plus élevée s'accompagne d'un jet d'amplitude supérieure (voir figure IV.25b). Dans cette simulation, Re tor atteint maintenant une valeur de 87, supérieure à celle de Re pol , qui vaut 77. L'axe de révolution de l'écoulement est maintenant localisé dans un plan orthogonal au plan équatorial. Une diminution de R ρ à une valeur de 3.25 conduit à une chute de Re tor qui atteint alors 26. L'écoulement n'est alors plus favorable à l'apparition d'une circulation zonale de grande échelle. Pour l'ensemble des simulations à Pr < 1, l'instabilité secondaire se manifeste sous la forme d'un jet unique. Il est alors toujours possible de définir un repère sphérique (e r , e ϑ , e ϕ ) dans lequel la vitesse dans le jet ne possède pas de composante selon e ϑ . Pour la majorité des simulations considérées ici, ce repère ne dépend pas du temps. Les simulations de la seconde ligne possèdent la même valeur de Pr = 3, la même valeur de Le = 10 et la même valeur de R ρ = 1.5, mais diffèrent par les valeurs de Ra T et de Ra ξ . En accord avec les observationsde Yang et al. (2016a), les jets sont obtenus pour une faible valeur de R ρ quand Pr > 1. Entre le troisième et le quatrième rendu, la puissance convective totale a été multipliée par 10. Le champ de vitesse observé est représentatif des simulations à Pr > 1. Sur la figure IV.25c, l'écoulement s'organise en une succession de cinq jets concentriques de signes alternés. Re tor atteint une valeur de 14, bien inférieure à celle de Re pol , qui vaut 72. L'écoulement reste donc dominé par les doigts de sel radiaux, malgré le développement d'une circulation zonale de grande échelle. Les jets ne forment pas des sphères parfaites comme Pr > 1 un écoulement mono-jet. Dans cette configuration, la valeur de Re tor est susceptible de dépasser celle de Re pol . L'évolution dynamique de la configuration multi-jets est discutée plus bas.

nous pouvons l'observer dans le plan équatorial. Ils adoptent une structure spiralée qui souligne une circulation complexe. Une convection plus soutenue conduit à une augmentation du nombre de jets à 7 (voir figure IV.25d). Leurs frontières deviennent plus nettes et ils tendent à former des sphères concentriques. L'amplitude de la vitesse dans chaque couche atteint des amplitudes plus élevées. Dans cette simulation, Re tor et Re pol valent respectivement 45 et 134. Bien que l'écart entre Re tor et Re pol se soit réduit, l'écoulement reste dominé par les doigts de sel. Nous observons dans certaines de nos simulations à

  3, Le = 10 et R ρ = 4 ; (c) Ra T = -1.5×10 8 , Pr = 1, Le = 10 et R ρ = 1.3. La croissance de l'énergie cinétique toroïdale visible sur ces deux figures est représentative du comportement des simulations à Pr < 1 et Pr ≥ 1 respectivement. Dans le cas où Pr = 0.3 (voir figure IV.26a), l'amplitude de E k,tor est initialement 25 fois moins élevée que celle de E k,pol . À partir de t = 0.4, elle croît rapidement, sans modification notable de E k,pol , pour saturer à environ 6 × 10 4 à t = 5. Cette multiplication de E k,tor par un facteur 30 se réalise sur un temps comparable au temps caractéristique de diffusion visqueuse. E k,tor atteint alors une valeur supérieure à E k,pol . Ce dépassement n'est pas observé systématiquement pour les modèles avec Pr < 1. Pour la simulation avec Pr = 1 (voir figure IV.26c), l'énergie cinétique poloïdale est initialement 30 fois plus élevée que l'énergie cinétique toroïdale. Cette dernière croît à partir de t = 6.5 pour saturer à une valeur de 2×10 4 à t = 9.1, sans variation notable de E k,pol . L'augmentation de E k,tor s'étend sur presque trois temps visqueux. En régime permanent, elle reste trois fois moins élevée que E k,pol . Pour certaines de nos simulations avec Pr ≥ 1, E k,tor sature à une valeur supérieure à celle de E k,pol . La croissance de l'énergie toroïdale s'accompagne par l'émergence d'un ou plusieurs jets de grande échelle (voir figure IV.25) dans l'écoulement, phénomène visible directement au niveau des spectres de l'énergie cinétique. Les figures IV.26(c,d) montrent les spectres de l'énergie cinétique totale en fonction du degré harmonique pour les deux simulations de la première colonne. Les spectres sont tracés à trois instants différents indiqués par des lignes verticales en pointillés de couleur correspondantes sur les figure de la première colonne. Étant donné la similitude de l'évolution temporelle des deux spectres, nous allons les décrire conjointement. Initialement (courbe bleue), les spectres sont très proches des spectres typique de convection en doigts de sel (voir par exemple la figure IV.14d). L'énergie cinétique de degré harmonique , E k , croît de trois ordres de grandeur entre = 1 et h . L'énergie cinétique est majoritairement stockée dans des harmoniques sphériques proches du pic du spectre. La croissance temporelle de E k,tor (courbes en tirets sur le panneau de gauche) conduit à une injection plus importante d'énergie dans les modes de grande échelle. L'énergie cinétique du mode = 1, E 1 k , est ainsi multiplié par 350 pour la première simulation et par 133 pour la seconde entre les instants repérés par les courbes verticales bleue et jaune. Les spectres de l'énergie cinétique atteignent désormais leur maximum à = 1. Nous n'observons pas de modifications significative au-delà des échelles > 6, autrement dit le spectre des doigts de sel reste relativement inchangé après le développement des jets. À la saturation de E k,tor

  La figure IV.29a montre les 107 simulations numériques, réalisées dans un espace des paramètres défini par r * ρ et Ra ξ , séparées en deux catégories (i) celles présentant des jets, pour lesquelles l'énergie cinétique toroïdale contenue dans les dégrés harmoniques ∈ 1, 5 est au moins 4 fois plus élevée que celle contenue dans les 5 degrés harmoniques suivants (ii) celles ne présentant pas de circulation toroïdale de grande échelle.La taille de chaque symbole est proportionnelle au ratio Re 1 tor /Re pol , où Re 1 tor est le nombre de Reynolds toroïdal du mode = 1 défini par La naissance de l'instabilité semble nécessiter un niveau de forçage convectif suffisant. L'intégralité des simulations favorable à la formation de jets possède ainsi une valeur de Ra ξ supérieure à 10 8 . L'existence d'un nombre de Rayleigh chimique critique est également observé par[START_REF] Yang | Multiple States and Transport Properties of Double-Diffusive Convection Turbulence[END_REF]. Dans leur modèle avec Pr = 7, R ρ = 1.2 et Le = 3, ils observent une modification de la morphologie de l'écoulement lorsque Ra ξ dépasse une valeur critique de 8 × 10 10 . Dans le régime Pr < 1, modélisé par des étoiles sur la figure IV.29, le domaine instable possède une borne inférieure à r * ρ = 0.4. Ses frontières précises dépendent de nombreux paramètres dont la valeur de Ra T . La série d'étoiles jaunes dans la partie inférieure droite de la figure est

	Re tor =	2E 1 k,tor V o	.	(IV.85)

Table IV .

 IV 3 -Paramètres de contrôle et diagnostics pour les 104 simulations réalisées dans cette étude. Les simulations sont triées par Pr croissant, puis par Ra T croissant et enfin par R ρ croissant. La simulation intégrée avec la méthode des différences finies est repérée par un exposant f . Les simulations qui présentent des jets sont repérées par une astérisque * dans la dernière colonne

	Ra T	(n r , max )	R ρ	R * ρ	γ	E % k,tor	Nu	Sh	(λ i , λ o )	(∆ i ξ, ∆ o ξ)	Re pol	Re 1 tor	h
	(×10 6 )								(×10 -1 )				
							Pr = 0.03, Le = 33.3					
	-66	(513, 426)	1.10 2.10	0.40 22.00 1.33	31.34	(0.06, 0.07) (0.43, 0.06) 1201.4 17.3	74
	-66	(241, 213)	8.25 11.85 0.60 12.48 1.02	10.23	(0.12, 0.14) (0.29, 0.04) 290.3	5.0	60
	-66	(217, 213)	15.40 18.89 0.71 8.96	1.01	4.90	(0.18, 0.21) (0.20, 0.03) 140.4	3.2	53
	-66	(193, 213)	22.44 24.84 0.80 5.84	1.00	2.39	(0.30, 0.33) (0.16, 0.02) 67.3	2.1	46
	-66	(193, 213)	23.00 25.31 0.81 5.60	1.00	2.26	(0.32, 0.35) (0.16, 0.02) 62.9	2.4	45
	-66	(193, 213)	27.50 27.50 0.88 4.89	1.00	1.47	(0.00, 0.00) (0.00, 0.00) 32.6	4.6	40	*
	-66	(193, 213)	28.00 28.00 0.89 4.38	1.00	1.41	(0.00, 0.00) (0.00, 0.00) 29.7	3.9	39	*
	-6.6	(201, 213)	1.10 2.46	0.40 20.23 1.19	18.03	(0.12, 0.14) (0.50, 0.07) 528.9	13.6	40
	-6.6	(129, 128)	2.95 5.85	0.49 15.57 1.06	12.13	(0.16, 0.19) (0.46, 0.07) 285.5	7.7	37
	-6.6	(129, 128)	8.25 13.23 0.62 11.00 1.01	6.59	(0.25, 0.28) (0.37, 0.05) 128.5	4.3	32
	-6.6	(129, 128)	15.40 20.28 0.72 7.74	1.00	3.46	(0.37, 0.40) (0.29, 0.04) 63.0	2.5	28
	-6.6	(129, 128)	22.44 25.91 0.81 4.89	1.00	1.91	(0.72, 0.66) (0.27, 0.04) 30.8	1.4	24
	-0.66	(97, 133)	1.10 2.81	0.39 17.53 1.09	9.86	(0.25, 0.29) (0.56, 0.08) 223.0	10.2	21
							Pr = 0.1, Le = 30					
	-733.4	(385, 426)	6.80 9.87	0.60 7.43	1.06	21.67	(0.05, 0.07) (0.28, 0.04) 285.8	2.9	117
	-73.34	(321, 213)	1.10 2.33	0.47 13.29 1.52	37.90	(0.05, 0.06) (0.47, 0.07) 493.3	6.2	72
	-73.34	(241, 213)	6.80 11.15 0.62 6.35	1.04	14.02	(0.11, 0.13) (0.36, 0.05) 127.6	2.9	63
	-73.34	(217, 213)	8.00 12.51 0.64 5.79	1.03	12.19	(0.12, 0.14) (0.33, 0.05) 109.3	2.2	62
	-73.34	(217, 213)	10.00 14.58 0.67 5.07	1.02	9.76	(0.13, 0.16) (0.30, 0.05) 86.3	3.0	59
	-73.34	(241, 213)	11.00 15.40 0.68 38.62 1.02	8.44	(0.14, 0.17) (0.28, 0.04) 76.4	58.0	58	*
	-73.34	(241, 213)	12.60 16.89 0.70 40.09 1.01	7.05	(0.15, 0.18) (0.25, 0.04) 64.2	50.9	56	*
	-73.34	(217, 213)	14.00 18.14 0.72 36.43 1.01	6.07	(0.16, 0.19) (0.23, 0.04) 55.4	40.4	55	*
	-73.34	(217, 213)	15.00 18.99 0.74 32.40 1.01	5.47	(0.17, 0.20) (0.22, 0.03) 49.9	33.1	54	*
	-73.34	(217, 213)	16.00 19.83 0.75 27.57 1.01	4.93	(0.18, 0.21) (0.21, 0.03) 44.9	27.1	53	*
	-73.34	(217, 213)	17.00 20.66 0.77 22.28 1.01	4.44	(0.19, 0.23) (0.20, 0.03) 40.4	20.9	52	*
	-73.34	(217, 213)	18.40 21.82 0.79 13.88 1.00	3.85	(0.21, 0.24) (0.18, 0.03) 34.7	13.4	50	*
	-7.334	(129, 128)	1.10 2.82	0.46 10.99 1.27	20.43	(0.12, 0.12) (0.55, 0.07) 206.5	4.6	40
	-7.334	(129, 128)	6.80 12.55 0.64 5.13	1.02	8.47	(0.22, 0.26) (0.43, 0.07) 54.2	1.7	33
	-7.334	(129, 128)	12.60 18.51 0.73 3.19	1.01	4.81	(0.31, 0.35) (0.34, 0.05) 28.0	1.1	29
	-7.334	(129, 128)	18.40 23.16 0.81 1.71	1.00	2.82	(0.44, 0.46) (0.27, 0.04) 15.1	0.6	26
	-7.334	(129, 128)	24.20 24.20 0.90 0.40	1.00	1.57	(0.00, 0.00) (0.00, 0.00) 6.6	0.2	22
	-0.7334 (49, 85)	1.10 3.19	0.44 8.35	1.13	10.74	(0.25, 0.27) (0.60, 0.09) 83.4	3.2	22
	-0.07334 (41, 85)	1.10 3.40	0.40 6.26	1.06	5.63	(0.52, 0.55) (0.64, 0.09) 33.1	2.0	12
							Pr = 0.3, Le = 10					
	-10000	(433, 682)	5.00 5.62	0.72 80.96 1.14	10.85	(0.04, 0.05) (0.11, 0.02) 253.6	510.2 200 *
	-10000	(321, 597)	7.30 7.64	0.82 79.67 1.03	3.70	(0.07, 0.08) (0.06, 0.01) 103.7	204.1 174 *
	-10000	(321, 597)	9.30 9.30	0.95 1.98	1.01	1.51	(0.00, 0.00) (0.00, 0.00) 30.2	3.9	133 *
	-2020	(541, 682)	1.01 1.72	0.60 12.23 4.14	53.74	(0.03, 0.03) (0.38, 0.05) 879.5	5.9	138
	-1500	(433, 512)	1.50 2.40	0.61 9.34	2.54	38.54	(0.04, 0.04) (0.35, 0.05) 563.1	3.8	134
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 IV 3 -Paramètres de contrôle et diagnostics pour les 104 simulations réalisées dans cette étude.

	Ra T	(n r , max )	R ρ	R * ρ	γ	E % k,tor	Nu	Sh	(λ i , λ o )	(∆ i ξ, ∆ o ξ)	Re pol	Re 1 tor	h
	(×10 6 )								(×10 -1 )				
	-1000	(289, 341)	3.50 4.67	0.68 5.51	1.30	16.10	(0.06, 0.07) (0.23, 0.03) 210.1	6.0	
	-1000	(241, 341)	4.00 5.09	0.70 52.90 1.21	12.77	(0.07, 0.08) (0.20, 0.03) 173.9	187.0 *
	-1000	(241, 341)	5.00 5.92	0.73 77.61 1.11	8.18	(0.08, 0.10) (0.16, 0.02) 121.4	229.9 *
	-1000	(193, 341)	6.00 6.77	0.77 72.19 1.06	5.50	(0.10, 0.12) (0.12, 0.02) 86.3	138.1 *
	-1000	(193, 341)	7.00 7.61	0.82 54.91 1.03	3.70	(0.12, 0.14) (0.10, 0.02) 59.7	65.2	*
	-1000	(193, 341)	8.00 8.49	0.88 7.20	1.02	2.64	(0.15, 0.18) (0.09, 0.01) 40.2	11.2	*
	-1000	(193, 341)	9.00 9.00	0.93 1.10	1.01	1.66	(0.00, 0.00) (0.00, 0.00) 20.5	1.5	*
	-300	(257, 341)	1.50 2.63	0.61 8.31	2.08	27.39	(0.06, 0.07) (0.40, 0.06) 316.9	3.2	
	-220	(257, 341)	1.10 2.10	0.60 9.69	2.62	30.86	(0.06, 0.07) (0.44, 0.06) 366.4	4.1	
	-202	(289, 341)	1.01 1.97	0.59 10.12 2.80	31.70	(0.06, 0.07) (0.45, 0.06) 380.6	4.3	
	-180	(129, 170)	9.00 9.00	0.94 0.42	1.01	1.49	(0.00, 0.00) (0.00, 0.00) 11.1	0.3	
	-100	(193, 213)	1.50 2.79	0.62 7.44	1.84	21.43	(0.09, 0.09) (0.43, 0.06) 211.7	2.9	
	-100	(161, 213)	3.00 4.63	0.68 5.31	1.26	12.51	(0.11, 0.14) (0.33, 0.05) 111.2	5.0	
	-100	(129, 170)	3.25 4.82	0.69 54.68 1.21	11.00	(0.12, 0.14) (0.31, 0.05) 100.2	96.4	*
	-100	(129, 170)	3.50 5.06	0.69 56.27 1.18	10.07	(0.12, 0.15) (0.30, 0.04) 91.9	89.3	*
	-100	(129, 170)	4.00 5.50	0.71 55.80 1.13	8.47	(0.14, 0.16) (0.27, 0.04) 77.9	81.5	*
	-100	(129, 170)	4.50 5.96	0.73 52.16 1.10	7.16	(0.15, 0.17) (0.25, 0.04) 66.4	57.1	*
	-100	(129, 170)	5.00 6.36	0.75 45.30 1.08	6.10	(0.16, 0.19) (0.22, 0.03) 56.8	50.8	*
	-100	(129, 170)	5.50 6.79	0.77 36.75 1.06	5.18	(0.17, 0.20) (0.21, 0.03) 48.5	31.5	*
	-100	(129, 170)	6.00 7.19	0.79 25.17 1.05	4.42	(0.18, 0.22) (0.19, 0.03) 41.3	21.8	*
	-100	(129, 170)	7.00 7.99	0.84 5.04	1.03	3.21	(0.22, 0.26) (0.16, 0.02) 29.1	5.3	*
	-100	(129, 170)	8.00 8.74	0.89 1.41	1.01	2.22	(0.32, 0.33) (0.15, 0.02) 18.6	1.1	
	-100	(129, 170)	9.00 9.00	0.94 0.32	1.00	1.42	(0.00, 0.00) (0.00, 0.00) 8.9	0.2	
	-30	(129, 170)	1.50 3.00	0.62 6.70	1.62	16.08	(0.12, 0.14) (0.47, 0.07) 134.7	3.7	
	-22	(129, 170)	1.10 2.39	0.59 7.69	1.89	17.54	(0.12, 0.14) (0.50, 0.07) 153.7	3.1	
	-20.6	(129, 170)	1.03 2.28	0.58 7.91	1.95	17.81	(0.12, 0.14) (0.51, 0.07) 157.9	3.0	
	-20.2	(129, 170)	1.01 2.24	0.58 7.99	1.98	17.89	(0.12, 0.14) (0.51, 0.07) 159.1	3.1	
	-10	(65, 128)	5.00 6.90	0.78 2.68	1.05	4.26	(0.32, 0.36) (0.31, 0.05) 24.7	1.0	
	-3	(65, 128)	1.50 3.36	0.62 5.20	1.33	9.03	(0.25, 0.30) (0.52, 0.08) 55.0	1.8	
	-0.3	(65, 128)	1.50 3.63	0.60 3.95	1.16	4.97	(0.53, 0.58) (0.57, 0.09) 22.0	1.1	
	-0.1	(65, 85)	5.00 7.97	0.80 0.60	1.01	1.81	(1.74, 1.51) (0.56, 0.09) 4.0	0.2	
							Pr = 1, Le = 10					
	-3000	(601, 794)	1.50 2.70	0.63 3.63	3.37	57.18	(0.03, 0.03) (0.41, 0.06) 255.8	1.6	
	-1500	(433, 629)	1.50 2.81	0.63 3.36	3.01	48.92	(0.04, 0.04) (0.43, 0.06) 198.5	2.0	
	-150	(257, 341)	1.10 2.51	0.61 3.19	2.76	32.79	(0.07, 0.08) (0.51, 0.07) 107.4	2.1	
	-150	(257, 341)	1.30 2.83	0.61 25.26 2.35	29.63	(0.07, 0.08) (0.49, 0.07) 93.1	51.8	*
	-150	(257, 341)	1.50 3.17	0.63 30.21 2.10	27.43	(0.07, 0.09) (0.48, 0.07) 82.5	58.6	*
	-150	(257, 341)	2.00 4.06	0.67 3.94	1.77	24.00	(0.08, 0.10) (0.46, 0.07) 64.5	8.6	*
	-15	(121, 170)	1.50 3.75	0.66 1.57	1.65	15.75	(0.15, 0.19) (0.54, 0.09) 32.8	0.8	
							Pr = 3, Le = 10					
	-7500	(769, 938)	1.50 2.91	0.61 10.62 4.46	85.69	(0.02, 0.02) (0.44, 0.06) 134.3	39.2	*
	-3000	(541, 682)	1.50 3.11	0.62 9.14	3.85	69.63	(0.03, 0.03) (0.47, 0.06) 95.0	15.9	*
	-1500	(541, 682)	1.05 2.35	0.60 48.63 4.84	68.32	(0.03, 0.03) (0.51, 0.07) 99.2	95.6	*
	-1500	(541, 682)	1.20 2.62	0.60 51.80 4.16	63.60	(0.03, 0.04) (0.49, 0.07) 87.7	90.2	*
	-1500	(433, 597)	1.50 3.28	0.64 3.65	3.44	58.93	(0.04, 0.04) (0.49, 0.07) 72.6	9.6	*
	-1500	(481, 629)	2.00 4.05	0.66 7.55	2.59	49.05	(0.04, 0.05) (0.45, 0.07) 56.0	15.4	*
	-1500	(481, 629)	3.00 5.86	0.76 0.44	1.98	40.89	(0.04, 0.06) (0.43, 0.07) 37.6	1.3	*
	-1500	(481, 629)	5.00 7.60	0.84 0.21	1.36	22.86	(0.06, 0.08) (0.31, 0.05) 19.7	0.5	*

Table IV .

 IV 3 -Paramètres de contrôle et diagnostics pour les 104 simulations réalisées dans cette étude.

	Ra T	(n r , max )	R ρ	R * ρ	γ	E % k,tor	Nu	Sh	(λ i , λ o )	(∆ i ξ, ∆ o ξ)	Re pol	Re 1 tor	h
	(×10 6 )								(×10 -1 )				
	-1500	(481, 512)	7.00 8.59	0.89 0.03	1.12	10.16	(0.07, 0.09) (0.18, 0.03) 9.9	0.1	*
	-1500	(481, 629)	9.00 9.42	0.95 0.00	1.01	2.25	(0.17, 0.16) (0.08, 0.01) 2.9	0.0	
	-1.5 Chapitre V (73, 106) 1.50 4.32	0.69 0.06	1.34 Pr = 7, Le = 3 8.40	(0.32, 0.39) (0.60, 0.10) 4.2	0.0	
	-183000 (1536, 1536) 1.10 1.51	0.78 13.58 25.06 102.98 (0.01, 0.01) (0.30, 0.04) 312.4	119.4 *
	-18300	(641, 970)	1.10 1.62	0.77 18.29 14.54 58.83	(0.02, 0.03) (0.35, 0.05) 128.6	58.6	*
	-8333.3 (385, 469)	2.50 2.78	0.93 0.09	1.85	8.06	(0.06, 0.08) (0.11, 0.02) 15.5	0.3	*
	-7320	(481, 629)	1.10 1.67	0.77 18.19 11.75 47.12	(0.03, 0.04) (0.37, 0.05) 90.6	38.9	*
	-6670	(385, 469)	2.00 2.52	0.89 0.33	3.67	19.10	(0.05, 0.06) (0.22, 0.03) 30.7	1.1	*
	-5000	(385, 426)	1.50 2.06	0.81 11.48 5.76	27.78	(0.04, 0.05) (0.29, 0.04) 47.8	16.6	*
	-3660	(577, 469)	0.70 1.22	0.77 11.73 25.12 63.68	(0.03, 0.03) (0.49, 0.07) 184.7	39.3	
	-3660	(385, 469)	1.00 1.59	0.76 40.59 11.83 43.65	(0.04, 0.04) (0.40, 0.05) 80.0	65.5	*
	-3660	(385, 469)	1.05 1.64	0.77 41.38 10.82 41.39	(0.04, 0.04) (0.39, 0.05) 73.9	61.5	*
	-3660	(385, 426)	1.10 1.71	0.77 17.83 10.16 40.13	(0.04, 0.04) (0.39, 0.05) 68.9	32.0	*
	-3660	(385, 469)	1.25 1.86	0.79 14.36 7.91	33.98	(0.04, 0.05) (0.35, 0.05) 56.5	22.7	*
	-3660	(385, 469)	1.50 2.09	0.81 8.45	5.50	26.04	(0.05, 0.06) (0.30, 0.04) 42.4	12.6	*
	-3660	(385, 469)	1.75 2.36	0.86 0.54	4.43	21.88	(0.05, 0.07) (0.27, 0.04) 32.4	1.9	*
	-3660	(385, 469)	2.00 2.56	0.89 0.29	3.30	16.88	(0.06, 0.08) (0.23, 0.04) 24.3	0.8	*
	-3660	(385, 469)	2.50 2.78	0.93 0.04	1.65	6.55	(0.08, 0.10) (0.12, 0.02) 11.0	0.1	*
	-3660	(385, 469)	2.75 2.87	0.96 0.01	1.19	2.64	(0.12, 0.13) (0.08, 0.01) 5.3	0.0	
	-3660	(385, 469)	2.90 2.90	0.98 0.00	1.03	1.29	(0.00, 0.00) (0.00, 0.00) 1.9	0.0	
	-3660	(385, 469)	2.95 2.95	0.99 0.00	1.01	1.07	(0.00, 0.00) (0.00, 0.00) 0.9	0.0	
	-3500	(385, 469)	1.05 1.65	0.77 39.71 10.72 40.95	(0.04, 0.04) (0.39, 0.05) 72.6	58.3	*
	-366	(193, 256)	1.10 1.91	0.81 0.50	6.50	23.48	(0.08, 0.10) (0.45, 0.07) 27.7	1.2	*
	-36.6	(129, 170)	1.10 2.06	0.82 0.11	3.84	12.37	(0.17, 0.23) (0.49, 0.08) 10.3	0.1	

  Il est généralement admis que la convection dans les intérieurs fluides des planètes est alimentée par la présence simultanée d'inhomogénéités thermiques et chimiques. En supposant que le niveau de turbulence atteint est suffisament élevé pour engendrer des diffusivités comparables pour ces deux champs scalaires, ces derniers sont habituellement fusionnés en un seul et nouveau champ, appelé codensité. Bien que ce modèle constitue une simplification séduisante, sa validité est remise en question dans le contexte des intérieurs planétaires du fait de la possible présence d'enveloppes fluides stratifiées. L'ajout d'une seconde source de flottabilité conduit à une nouvelle diversité d'instabilités dont les propriétés -par exemple les transports thermique et chimique -différent de celles de la convection Rayleigh-Bénard. La présence d'instabilités double-diffusives au sein des planètes du système solaire est donc susceptible de modifier notre vision de leur formation et de leur évolution thermique. Dans cette optique, une meilleure compréhension de leur comportement en géométrie sphérique est indispensable. Néanmoins, il faut garder à l'esprit que l'approche double-diffusive ajoute une complexité supplémentaire à la modélisation des intérieurs planétaires. Elle induit en particulier une nouvelle séparation d'échelles spatiales entre diffusions thermique et chimique qui amplifie la raideur numérique du problème. Il est alors important de discuter de la pertinence et de la nécessité de cette approche. Cette thèse contribue à répondre à cette question en explorant les différents régimes d'instabilités double-diffusives à l'aide de 186 simulations numériques. La figure I.4 synthétise la localisation des différents régimes double-diffusifs, dont la définition dépend du caractère stabilisant ou déstabilisant de la température et de la composition. L'espace des paramètres est alors découpé en quatre cadrans principaux : absence de convection (inférieur gauche), semiconvection (inférieur droit), top-heavy (supérieur droit) et enfin doigts de sel (supérieur gauche). Nous nous sommes ici limités à l'étude du régime top-heavy, où température et composition sont déstabilisantes (cadran supérieur droit), et des doigts de sel, où seule la composition est déstabilisante (cadran supérieur gauche).Le cadran top-heavy constitue l'instabilité la moins exotique car elle présente de nombreuses similitudes avec la convection Rayleigh-Bénard. Dans ce régime de convection, la circulation du fluide est alimentée par la présence simultanée d'inhomogénéités thermiques et chimiques. Elle a bénéficié d'un regain d'attention durant la dernière décennie dans le contexte des intérieurs planétaires, conduisant 1. En résumé à un nombre croissant d'études adoptant ce mode de convection en géométrie sphérique en présence d'une rotation globale et d'un champ magnétique (voir par exemple[START_REF] Manglik | A Dynamo Model with Double Diffusive Convection for Mercury's Core[END_REF][START_REF] Takahashi | Double Diffusive Convection in the Earth's Core and the Morphology of the Geomagnetic Field[END_REF] 

Pour éviter toute confusion avec le nombre de Lewis qui sera introduit plus bas, nous avons adopté cette notation pour le nombre de Lehnert.

Il est usuel de choisir une définition de nombre de Rayleigh thermique (chimique) qui lui impose un signe positif lorsque la stratification thermique (chimique) est instable.

Disponible à https://github.com/magic-sph/magic

Voir la documentation ou la thèse de Schwaiger (2020) pour une description complète.

https://bitbucket.org/nschaeff/shtns

[START_REF] Christensen | Scaling Properties of Convection-Driven Dynamos in Rotating Spherical Shells and Application to Planetary Magnetic Fields[END_REF] et Schwaiger et al. (2019) utilisaient l'énergie cinétique totale.

Dans ce chapitre, nous nous intéressons à un modèle de la géodynamo dont la convection est assurée par des gradients thermique et chimique déstabilisants correspondant ainsi au régime top-heavy (voir le cadrant supérieur droit de la figure I.4). L'ajout d'une seconde équation de transport complexifie l'étude de la dynamique de ce système. L'écart important entre les diffusivités thermique et chimique dans le noyau terrestre conduit à une séparation d'échelle coûteuse numériquement. Il est donc indispensable dans un premier temps de s'interroger sur la nécessité de l'ajout d'une complexité dans la modélisation de la géodynamo. Afin de répondre à cette première question, nous avons chercher à mieux caractériser la convection top-heavy dans le contexte des intérieurs planétaires, en d'autres termes pour une sphère en rotation et avec la présence d'un champ magnétique. Nous avons d'abord confirmé à l'aide d'une étude au seuil que l'ajout d'une source déstabilisante de flottabilité permettait de diminuer le seuil de la convection. Nous avons ensuite réalisé une étude paramétrique à travers l'intégration de 79 simulations de dynamo numériques à l'aide du code open-source MagIC. Dans cette seconde partie, nous avons montré qu'un champ magnétique simulé similaire au champ géomagnétique est accessible quel que soit le partionnement de la puissance convective totale entre contributions thermique et chimique. En revanche, nous avons constaté que la transition entre une dynamo dominée par un champ magnétique dipolaire et une dynamo multipolaire dépend de la

https://doi.org/10.1093/gji/ggab161

La convection en doigts de sel a largement été étudiée dans le contexte des océans où la masse volumique de l'eau dépend à la fois de sa température et de sa salinité. Des conditions favorables à la croissance de l'instabilité se rencontrent communément, par exemple dans les océans tropicaux où des couches d'eau chaude salée se retrouvent superposées à des couches d'eau douce froide. Ce processus de mélange a donc motivé de nombreuses études expérimentales[START_REF] Huppert | Nonlinear Double-Diffusive Convection[END_REF][START_REF] Huppert | Double-Diffusive Convection[END_REF], théoriques (e.g. R. W.[START_REF] Schmitt | The Growth Rate of Super-Critical Salt Fingers[END_REF][START_REF] Stern | The "Salt-Fountain" and Thermohaline Convection[END_REF] et numériques (e.g.[START_REF] Radko | Finite-Amplitude Salt Fingers in a Vertically Bounded Layer[END_REF][START_REF] Stellmach | Dynamics of Fingering Convection. Part 2 The Formation of Thermohaline Staircases[END_REF] Traxler et al. 2011b) afin de mieux en caractériser les spécificités. Elle a aussi bénéficié d'une attention particulière dans le contexte des intérieurs stellaires, où la chaleur est transportée par radiation. Au coeur des géantes rouges, la fusion de[START_REF]Et après ? stimulante[END_REF] He est susceptible de conduire à la formation de doigts de sel[START_REF] Charbonnel | Thermohaline Mixing : A Physical Mechanism Governing the Photospheric Composition of Low-Mass Giants[END_REF]. De nombreuses études numériques à faibles valeurs de Pr, adaptées au contexte stellaire, ont ainsi exploré ce régime de convection[START_REF] Brown | Chemical Transport and Spontaneous Layer Formation in Fingering Convection in Astrophysics[END_REF][START_REF] Garaud | 2D or not 2D : the effect of dimensionality on the dynamics of fingering convection at low Prandtl number[END_REF] Traxler et al. 2011a).

https://github.com/magic-sph/pizza
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