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Overview of the thesis

The objective of this thesis is to numerically investigate the aeroacoustics of a rectangular cavity and to f nd strategies to reduce the noise. This document is divided in two parts -direct simulations and adjoint simulations.

The direct algorithm solves a set of equations which reproduce the physics of the f ow, that is to say, it involves physical variables as velocity, pressure or temperature. Since it works with physical quantities, it can be validated using experimental data. The equations are time dependent, and so the iterative method starts at a given initial condition and time-marches the solution until the desired f nal time. The direct code is used to accurately predict both f ow and acoustic f elds in order to understand the mechanism of noise generation.

On the other hand the adjoint algorithm solves a set of equations which are mathematically derived from the direct system. The adjoint variables are not measurable quantities, even though they do have a physical meaning, representing the sensitivity of the f ow to external forcing. One of the peculiarities of the adjoint algorithm is that it marches backward in time.

A question might arise: why is it interesting to move backward in time?. Imagine that for a given system (for an example an aircraft) and certain initial conditions the acoustic emission is known. Since the noise is too high, it must be reduced to a certain value. In this case the f nal state is known (the maximum value of noise allowed) and the initial condition is sought.

The adjoint code is then used to investigate the regions of the conf guration where f ow modif cations would be more effective, in order to envision f ow control strategies. This investigation is performed by a sensitivity analysis.

The structure of the document is as follows:

Direct simulations. Chapter §1 describes the numerical method used to implement the direct simulation algorithm. After that the code is validated by performing several test cases in chapter §2. Finally, in chapter §3 the direct algorithm is used to investigate the cavity f ow oscillations and the emission of acoustic waves.

Adjoint simulations. In chapter §4 the mathematical formulation of the adjoint methods is given, as well as its numerical implementation for the present case. The validation of the adjoint algorithm is described and shown in chapter §5. At last, in chapter §6 the sensitivity analysis of channel and cavity f ows is performed.

Part I DIRECT SIMULATIONS

Chapter 1

Direct Numerical Simulation in compressible f ows

Simulation Numérique Directe d'un écoulement compressible

Dans ce chapître, nous nous sommes focalisés sur la simulation numérique d'écoulements subsoniques de cavités pour des nombres de Mach allant de 0.15 à 0.6. Nous avons pour celà utilisé un code aéroacoustique de simulation directe des équations de Navier-Stokes (DNS) sans aucun modèle de turbulence où les variables d'écoulement sont fonctions de l'espace et du temps. Ce code est écrit en Fortran, et son premier développement a été réalisé à l'IMFT par Anaïs Guaus (voir l'Appendice A de [START_REF] Guaus | Analyse linéaire des instabilités dans les écoulements incompressibles à parois courbes compliantes[END_REF]). Les équations de Navier-Stokes non linéaires compressibles bidimensionnelles sont sous forme conservative, et écrites en coordonnées cartésiennes (x, y). [START_REF] Chung | Wave propagation and scattering in computational aeroacoustics[END_REF]. Pour celà, nous avons à notre disposition dans la littérature de nombreuses formulations de schémas d'ordre élevé.

Schémas d'ordre élevé

Dans le cas d'écoulements compressibles, nous devons calculer non seulement le champ d'écoulement, mais aussi les ondes acoustiques, les ondes d'entropie et les ondes de vorticité. Afin de prédire correctement la propagation de ces ondes, les discrétisations spatiale et temporelle doivent être d'ordre élevé. De plus, la description des ondes instationnaires de petites échelles et de hautes fréquences nécessite que la dispersion et la dissipation des schémas numériques soient minimisées

Pour obtenir des résultats de haute précision, certaines précautions quant aux schémas numériques utilisés doivent être prises. Ainsi, les schémas explicites doivent alors faire intervenir une formulation utilisant un grand nombre de points de discrétisation. D'autres types de schémas sont donc plus appropriés, tels les schémas optimisés qui minimisent la différence entre la dispersion physique et numérique pour une gamme choisie de longueurs d'onde et de fréquences [START_REF] Tam | Dispersion-relation-preserving finite difference schemes for computational aeroacoustics[END_REF]. En résolvant de manière implicite les dérivées spatiales en chaque point de discrétisation, les schémas compacts, à précision égale avec les schémas explicites, font intervenir dans leur formulation un plus petit nombre de points de discrétisation [START_REF] Lele | Compact finite difference schemes with spectral-like resolution[END_REF]. Ce nombre de points peut être encore plus réduit en utilisant des schémas compacts préconditionnés [START_REF] Hixon | Prefactored small-stencil compact schemes[END_REF].

Cependant, même les schémas d'ordre élevé (qu'ils soient optimisés ou compacts) peuvent présenter des ondes d'origine purement numérique provenant d'un décalage fréquentiel dû aux différences centrées. Les solutions communes pour éliminer ces ondes dites 'spurious' sont l'utilisation d'un filtre passe-bas, ou bien l'ajout d'amortissement au membre de droite de l'équation de l'énergie, ou encore l'amortissement par l'utilisation de schémas décentrés en amont, dépendants de la direction locale de la vitesse du son. Toutes ces méthodes ont un inconvénient commun : l'augmentation du temps de calcul.

Une méthode alternative consiste à utiliser une formulation dite 'progressive-regressive', c'est-à-dire une combinaison de schémas aux différences finies décentrés d'un coté puis de l'autre (en aval puis en amont), créant de manière intrinsèque un amortissement des ondes 'spurious', sans augmenter le temps de calcul. Ce type de formulation a été proposé pour la première fois par Kloker [START_REF] Kloker | A robust high-resolution split-type compact FD scheme for spatial direct numerical simulation of boundary-layer transition[END_REF], comme extension du schéma centré du 6 ème ordre proposé par Lele [START_REF] Lele | Compact finite difference schemes with spectral-like resolution[END_REF].

Le schéma sélectionné pour la discrétisation des flux convectifs est le schéma compact du 6 ème ordre en formulation 'progressive-regressive' proposé par Kloker [START_REF] Kloker | A robust high-resolution split-type compact FD scheme for spatial direct numerical simulation of boundary-layer transition[END_REF]. Quant aux flux visqueux, nous pouvons leur appliquer une discrétisation numériquement moins coûteuse car ils ne nécessitent pas une précision aussi élevée que les flux convectifs. Un schéma explicite classique du 4 ème ordre a donc été implémenté.

Une méthode standard de Runge-Kutta du 4 ème ordre a été utilisée pour la discrétisation temporelle. Chaque itération contient quatre sous-itérations de Runge-Kutta où nous alternons entre des formulations en décentrage aval et amont pour le schéma spatial.

Conditions aux limites non réfléchissantes

Des conditions aux limites non réfléchissantes doivent permettre aux ondes de quitter le domaine de calcul sans réflexion. De plus, nous devons définir l'état de l'écoulement entrant dans le domaine de calcul, condition qui est a priori connue et peut donc être imposée à la limite d'entrée du domaine de calcul. Il existe de nombreux travaux qui ont étudié différentes méthodes pour avoir des conditions aux limites non réfléchissantes [START_REF] Tam | Solutions of the benchmark problems by the dispersion-relation-preserving scheme[END_REF]. Nous pouvons en gros en distinguer trois types : la méthode des caractéristiques, l'utilisation de solutions asymptotiques, et l'ajout d'une zone tampon dite zone 'buffer'. [START_REF] Thompson | Time dependent boundary conditions for hyperbolic systems[END_REF]. Dans la première version du code écrite par Anaïs Guaus [START_REF] Guaus | Analyse linéaire des instabilités dans les écoulements incompressibles à parois courbes compliantes[END_REF], les conditions aux limites caractéristiques de Giles [START_REF] Giles | Non-reflecting boundary conditions for the Euler equations[END_REF][START_REF] Giles | Nonreflecting boundary conditions for Euler equation calculations[END_REF] 

L'idée principale des conditions aux limites caractéristiques est la décomposition des ondes traversant les limites du domaine en ondes entrantes et sortantes, puis la suppression les ondes entrantes

ont été implémentées. Elles nécessitent que l'écoulement moyen soit estimé à toutes les frontières du domaine, car la différence entre les écoulements moyen et instantanné est utilisée pour calculer les ondes traversant les frontières du domaine.

Une difficulté supplémentaire apparaît aux frontières de sortie d'écoulement. En effet, l'écoulement moyen n'est a priori pas connu en aval à l'exception de la pression à l'infini aval. C'est pourquoi, nous avons implémenté dans ce cas une autre condition aux limites qui ne dépend d'aucune connaissance particulière des profils de vitesse de sortie : la formulation des conditions caractéristiques de Poinsot et Lele [START_REF] Poinsot | Boundary conditions for direct simulations of compressible viscous flows[END_REF]. Cette méthode, adaptée aux équations de Navier-Stokes, prend en compte les non linéarités de l'écoulement. A la limite de sortie d'écoulement, l'onde sortante n'est pas entièrement supprimée, mais elle est estimée d'après la différence de pression statique P -P ∞ , ce qui permet à l'information concernant le champ de pression lointain d'interagir avec le domaine de calcul.

Les conditions aux limites de type asymptotique simulent les conditions aux limites en utilisant pour le champ lointain l'expression asymptotique des équations d'Euler linéarisées. Cette approche est formulée en coordinnées cylindriques, où l'origine est habituellement choisie comme étant le centre de la source de bruit (mais il a été montré que cette origine peut en fait être fixée arbitrairement). Le principal avantage de cette approche est qu'elle est multidimensionnelle et que le problème lié aux coins est minimisé de par l'utilisation de coordonnées cylindriques. La formulation asymptotique de Tam and Dong [START_REF] Tam | Radiation and outflow boundary conditions for direct computation of acoustic and flow disturbances in a nonuniform mean flow[END_REF] a été implémentée durant le développement de la version mono-bloc du code, et les résultats obtenus furent quasi identiques à ceux obtenus par la méthode des caractéristiques [START_REF] Guaus | Analyse linéaire des instabilités dans les écoulements incompressibles à parois courbes compliantes[END_REF][START_REF] Rona | A numerical validation of a high-order finite-difference compact scheme for computational aeroacoustics[END_REF].

Même avec des conditions aux limites non réfléchissantes, il est parfois impossible d'éviter des réflexions d'onde, en particulier aux coins du domaine de calcul. Une méthode classique utilisée pour supprimer ces réflexions est l'ajout d'une zone tampon ou zone 'buffer'. Cette zone tampon, dite aussi couche d'absorption, est une région de dimension finie ajoutée à l'extérieur du domaine de calcul où la physique de l'écoulement est modifiée. Cette zone tampon augmente l'efficacité de la condition aux limites, voire dispense même de l'utilisation d'une condition aux limites particulière. Dans les simulations que nous avons effectuées, nous avons utilisé une zone tampon constituée d'un maillage de plus en plus étiré au fur et à mesure que l'on s'éloigne de la condition aux limites, ainsi que d'un filtre tel que proposé par Lele [START_REF] Lele | Compact finite difference schemes with spectral-like resolution[END_REF]. [START_REF] Poinsot | Boundary conditions for direct simulations of compressible viscous flows[END_REF].

Conditions aux limites de paroi

La formulation de conditions aux limites appropriées au cas de paroi solide pour des schémas d'ordre élevé est toujours un problème ouvert. En effet, les formulations communément utilisées pour les schémas d'ordre peu élevé peuvent conduire à des instabilités numériques quand elles sont appliquées aux schémas d'ordre élevé. Plusieurs solutions existent afin d'éviter ces solutions non physiques, telles que les conditions aux limites caractéristiques parfaitement réflexives qui sont basées sur la décomposition des ondes arrivant aux parois. Elles présentent cependant certains problèmes dans le cas d'ondes non perpendiculaires aux parois

Une autre solution consiste à estimer les flux convectifs aux parois, ainsi que l'a proposé sous une formulation robuste Gloerfelt [START_REF] Gloerfelt | Bruit rayonne par un ecoulement affleurant une cavite: simulation aeroacoustique directe et application de methodes integrals[END_REF], solution qui a été implémentée dans la première version du code [START_REF] Guaus | Analyse linéaire des instabilités dans les écoulements incompressibles à parois courbes compliantes[END_REF]. Cette condition a été validée pour des problèmes mono-bloc, mais elle a des difficultés à simuler correctement les écoulements au-dessus de surfaces discontinues en raison du couplage dans la dérivation multi-blocs.

La solution alternative à ce problème consiste à implémenter des points de maillage fantômes, appelés 'ghost cells'. Les 'ghost cells' sont des points de maillage utilisés à des fins numériques, placés à l'extérieur du domaine physique en vue de simuler la réflexion à la paroi solide. Pour les géométies de type cavité rectangulaire ou marche, les autres méthodes génèrent souvent l'apparition de fortes instabilités numériques à côté des coins supérieurs. Une méthode de type 'ghost cells' sans aucun point de maillage aux parois permet donc de contourner la complexité d'avoir à gérer des points de maillage placés exactement aux coins. C'est donc ce type de méthode qui a été utilisée pour implémenter des parois solides isothermes.

Nous présentons ici la méthode proposée par Guaus [START_REF] Guaus | Analyse linéaire des instabilités dans les écoulements incompressibles à parois courbes compliantes[END_REF] pour calculer les dérivées dans le cas de configurations multi-blocs. Elle est basée sur la définition de plusieurs configurations des différents blocs suivant les directions des coordonnées cartésiennes, comme illustré dans les figures 1.5 (pas de 'ghost cells') et 1.6 (avec 'ghost cells').

Introduction

The approach used to determine the f ow variables is Direct Numerical Simulation (DNS), in which the Navier-Stokes equations are numerically solved without any turbulence model and the f ow variables are obtained as a function of space and time. The f rst incompressible DNS computations date of the early 70's, when Orszag and Patterson [START_REF] Orszag | Numerical simulation of three-dimensional homogeneous isotropic turbulence[END_REF] investigated isotropic turbulence numerically, and Fasel [START_REF] Fasel | Investigation of the stability of boundary layers by a finite-difference model of the navier-stokes equations[END_REF] studied the stability and initial transition phenomena of two-dimensional (2D) boundary layer f ows. The development of DNS incompressible f ows continued during the 80's [START_REF] Kim | Turbulence statistics in fully-developed channel flow at low reynolds number[END_REF][START_REF] Laurien | Numerical simulation of boundary-layer transition and transition control[END_REF][START_REF] Moser | The effect of curvature in wall-bounded turbulent flows[END_REF], but it was not until the 90's that the f rst computations of compressible wall-bounded f ows were done [START_REF] Coleman | A numerical study of turbulent supersonic isothermal-wall channel flow[END_REF][START_REF] Rai | Direct simulation of spatially evolving compressible turbulent boundary layers[END_REF]. A good review on Direct Numerical Simulation was written by Moin and Mahesh [START_REF] Moin | Direct numerical simulation: a tool in turbulence research[END_REF].

During the last 20 years the complexity of the simulations has increased, DNS being nowadays applied to computational aeroacoustic studies [START_REF] Colonius | Sound generation in a mixing layer[END_REF][START_REF] Colonius | Computational aeroacoustics: progress on nonlinear problems of sound generation[END_REF][START_REF] Larsson | Aero acoustic investigation of an open cavity at low mach number[END_REF][START_REF] Rowley | On self-sustained oscillations in twodimensional compressible flow over rectangular cavities[END_REF] as well as f ow control [START_REF] Araya | Numerical assessment of local forcing on the heat transfer in a turbulent channel flow[END_REF][START_REF] Bewley | DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms[END_REF][START_REF] Collis | Optimal control of unsteady compressible viscous flows[END_REF][START_REF] Rowley | Cavity flow control simulations and experiments[END_REF]. However, the Reynolds number remains low respect to the values that are signif cant for real f ows.

As the Reynolds number increases, so does the instantaneous range of space and time scales, making diff cult the use of DNS for most engineering problems. Alternative numerical methods used to solve high Reynolds number problems are Large Eddy Simulation (LES) and Reynolds averaged Navier-Stokes (RANS). In LES the small energy-containing scales are modelled and the large scales are computed, hence reducing the grid requirements (see [START_REF] Lesieur | New trends in large eddy simulations of turbulence[END_REF] for a review). In RANS, the statistical evolution of the f ow is computed instead of the instantaneous f ow-f eld (see [START_REF] Speziale | A review of reynolds stress models for turbulent shear flows[END_REF] for a review).

As the Mach number increases, compressibility effects are more important and acoustic propagation as well. The far-f eld noise originated by an unsteady f ow system can be predicted by several methods. One approach consists on computing it directly from a highly-accurate DNS of the Navier-Stokes equations, using a Computational Aeroacoustics (CAA) algorithm. In an alternative method, the noise is extracted from an approximate compressible f ow prediction using an acoustic analogy [START_REF] Curle | The influence of solid boundaries upon aerodynamic sound[END_REF][START_REF] Williams | Sound generation by turbulence and surfaces in arbitrary motion[END_REF][START_REF] Lighthill | On the sound generated aerodynamically, I. general theory[END_REF].

The present study is focused to subsonic cavity f ows for a Mach number range from 0.15 to 0.6. For this objective, the Computational Aeroacoustics code outlined in table 1.1 is used. The code is written in Fortran and the f rst developments were done by Anaïs Guaus at IMFT, as described in the Appendix A of [START_REF] Guaus | Analyse linéaire des instabilités dans les écoulements incompressibles à parois courbes compliantes[END_REF]. The numerical method consists of a 6 th order compact scheme in space, a 4 th order scheme in time, the characteristic boundary conditions of Giles [START_REF] Giles | Non-reflecting boundary conditions for the Euler equations[END_REF][START_REF] Giles | Nonreflecting boundary conditions for Euler equation calculations[END_REF] at the non-ref ecting boundaries and the solid boundary conditions proposed by Gloerfelt [START_REF] Gloerfelt | Bruit rayonne par un ecoulement affleurant une cavite: simulation aeroacoustique directe et application de methodes integrals[END_REF] at the walls. More details are given in the coming sections.

This chapter starts with a brief introduction to Computational Aeroacoustics ( §1.1). After that the governing equations are given ( §1.2). Then the numerical method is described: spatial and temporal discretization ( §1.3), non-ref ecting ( §1.4) and solid ( §1.5) boundary conditions. At the end, the treatment of the different blocks is explained ( §1.6). 

Computational Aeroacoustics

In high Mach number f ows, not only the f ow f eld must be predicted but also the acoustic, entropy and vorticity waves. The acoustic waves are isotropic, non-dispersive, non-dissipative and propagate at the speed of sound. They expand radially and in the presence of a mean f ow they are convected downstream. The entropy and vorticity waves are non-dispersive, non-dissipative and highly directional, and they are convected in the direction and at the speed of the mean f ow without any distortion.

To predict wave propagation, spatial and temporal discretization must be of high order, and dispersion and dissipation must be minimized, in order to correctly describe unsteady, small scale, high-frequency waves [START_REF] Chung | Wave propagation and scattering in computational aeroacoustics[END_REF]. In traditional Computational Fluid Dynamics (CFD) only the formal order of the scheme is considered to evaluate the quality of the results (i.e. a 4 th order scheme is expected to provide more accurate results than a 2 nd order scheme).

On the other hand, in CAA formal order gives no information about the accuracy, since numerical dispersion and dissipation, anisotropy, and prediction of wave propagation might induce higher errors than differentiation. Numerical dissipation is caused by the variation of the group velocity of the wave components of different wave numbers. Numerical dispersion can arise from spatial discretization, temporal discretization or both. Therefore, non-dispersive and non-dissipative properties are more relevant than formal order of accuracy [START_REF] Tam | Solutions of the benchmark problems by the dispersion-relation-preserving scheme[END_REF]. A better description of high-order schemes is found in section §1. [START_REF] Airiau | Non-parallel acoustic receptivity of a Blasius boundary layer using an adjoint approach[END_REF].

For accurate prediction of acoustic waves numerical damping must be avoided, which can be achieved by taking a small time step. Actually, is has been shown that the time step must be much smaller than that indicated by the stability criterion in order to avoid dispersion and dissipation errors [START_REF] Hu | Application of low dissipation and dispersion Runge-Kutta schemes to benchmark problems in computational aeroacoustics[END_REF][START_REF] Hu | Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics[END_REF]. Hu et al. [START_REF] Hu | Application of low dissipation and dispersion Runge-Kutta schemes to benchmark problems in computational aeroacoustics[END_REF][START_REF] Hu | Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics[END_REF] derived a low-dissipation and low-dispersion Runge-Kutta scheme which optimizes (minimizes) the dissipation and dispersion errors for wave propagation [START_REF] Hu | Application of low dissipation and dispersion Runge-Kutta schemes to benchmark problems in computational aeroacoustics[END_REF][START_REF] Hu | Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics[END_REF].

Boundary conditions must be adapted to high-order schemes. Far-f eld boundaries must avoid the ref ection of waves: inf ow and radiation boundaries must allow acoustic waves to leave the domain, and outf ow boundaries must allow acoustic, entropy and vorticity waves to exit from the domain without ref ection. Wall boundary conditions must avoid numerical instabilities. More details on boundary conditions are given in the following sections §1.4 and §1.5.

Governing equations

The code is implemented with the non-linear 2D compressible Navier-Stokes (NS) equations with conservative variables in Cartesian coordinates (x, y):

∂U ∂t = - ∂F c ∂x - ∂G c ∂y + ∂F v ∂x + ∂G v ∂y (1.1)
with:

U = (ρ, ρu, ρv, ρe) t (1.2) F c = (ρu, p + ρu 2 , ρuv, (ρe + p)u) t G c = (ρv, ρuv, p + ρv 2 , (ρe + p)v) t F v = (0, τ 11 , τ 12 , uτ 11 + vτ 12q 1 ) t G v = (0, τ 12 , τ 22 , uτ 12 + vτ 22q 2 ) t where U are the unknown conservative variables of the system. F c and G c represent the convective f uxes and F v and G v the viscous f uxes. p, ρ and e are the pressure, density and internal energy of the f ow respectively. u and v represent the velocity in xand ydirections of the Cartesian system. τ ij and q i are the viscous stress tensor and the heat f uxes. And subscript t indicates the transpose of the vector.

For a Newtonian f uid, by Fourier's heat law the viscous stress tensors and heat f uxes are:

τ ij = µ ∂u i ∂x j + ∂u j ∂x i - 2 3 δ ij ∂u k ∂x k (1.
3)

q i = -λ ∂T ∂x i = - µc p P r ∂T ∂x i
where µ is the dynamic viscosity which depends on the temperature T , λ is the thermal conductivity, P r = 0.72 is the Prandlt number considered constant and c p is the specif c heat at constant pressure. The repetition of the index k indicates the summation of this index by Einstein's notation (also known as Einstein's summation convention) and δ ij is the Kronecker delta, which is equal to 1 if i = j, and 0 otherwise. Also note that the index 1 indicates the streamwise direction and 2 corresponds to the direction normal to the f ow, so x 1 = x, x 2 = y, u 1 = u and u 2 = v.

The temperature can be obtained from the equation of state for ideal gases:

p = ρrT (1.4) e = p [(γ -1)ρ] + u 2 + v 2 2
where r is the universal gas constant and γ is the ratio of specif c heats.

The implemented algorithm can also be used to solve the compressible Euler equations by neglecting the viscous terms F v and G v .

Spatial and temporal discretization

Performing numerical simulations of compressible f ows with a discretized system of equations might create unphysical, high frequency spatial oscillations. In order to minimize this problem, high-order schemes with low dissipative and low dispersive properties are becoming more and more popular.

Explicit schemes require large computational stencils to obtain high-accuracy results (e.g. a 6 th order explicit scheme needs a seven-point stencil in a constant uniform mesh). Optimized schemes minimize the difference between the physical and the numerical dispersion relationship over a chosen range of wavelengths and frequencies. The coeff cients are determined up to a certain formal order of accuracy and the remaining coeff cients are optimized. An example of an optimized scheme is the dispersionrelation-preserving (DRP) scheme of Tam and Webb [START_REF] Tam | Dispersion-relation-preserving finite difference schemes for computational aeroacoustics[END_REF].

Compact (implicit) schemes use smaller stencils by implicitly solving the spatial derivatives at each point. For instance, a 6 th order compact scheme uses a f ve-point stencil. Compact schemes are more accurate than explicit ones and give results similar to optimized schemes. Nevertheless, they have some disadvantages: a linear system must be solved to obtain the derivatives, increasing the computational time and making the algorithm more diff cult to parallelize, and the boundary stencil has a large effect on the stability and the accuracy of the scheme. Examples of compact schemes are the formulations of Lele [START_REF] Lele | Compact finite difference schemes with spectral-like resolution[END_REF] and Kloker [START_REF] Kloker | A robust high-resolution split-type compact FD scheme for spatial direct numerical simulation of boundary-layer transition[END_REF].

Prefactored compact schemes allow the use of even smaller stencils, e.g. from f ve to three points to obtain 6 th order accuracy. The original tridiagonal matrix is reduced by factorization to independent upper and lower bidiagonal matrices. A part than a smaller stencil, it presents other advantages: only one boundary stencil is necessary, and the computational time required is lower than for a standard compact scheme. The main disadvantage is that when solving non-linear equations, artif cial dissipation is required to damp spurious high-frequency waves generated in the solution. This formulation was proposed by Hixon [START_REF] Hixon | Prefactored small-stencil compact schemes[END_REF].

However, even high-order (optimized or compact) schemes might present spurious waves originated by a frequency shift due to the central differentiation. Common solutions to eliminate the undesired waves are low-pass f ltering, extra damping on the right hand side of the energy equation or damping by an upwind-biased scheme depending on the local sign of the sound speed. All these methods have a common disadvantage: additional computational time.

An alternative method consists on a progressive-regressive formulation, i.e. the combination of positively and negatively biased f nite-difference schemes (forward-backward). The forward-backward biased schemes quasi add-up to a central scheme, but with the advantage that the f nal accuracy is higher than those of the individual steps and the damping in inherent, so no additional computational time is required. This formulation was proposed by Kloker [START_REF] Kloker | A robust high-resolution split-type compact FD scheme for spatial direct numerical simulation of boundary-layer transition[END_REF] and it is an extension of the usual sixth-order centered scheme proposed by Lele [START_REF] Lele | Compact finite difference schemes with spectral-like resolution[END_REF].

Spatial discretization

The spatial discretization of the convective f uxes is a compact sixth-order f nite-difference scheme optimized in a f ve-point stencil. A progressive-regressive formulation by Kloker [START_REF] Kloker | A robust high-resolution split-type compact FD scheme for spatial direct numerical simulation of boundary-layer transition[END_REF] generates numerical f uxes of alternate sign that are used in a classical fourth-order Runge-Kutta scheme to time-march the f ow and the acoustic f eld. In each temporal iteration the forward-backward sequence is inverted to implicitly eliminate high-frequency numerical oscillations, so extra f ltering or the introduction of an artif cial viscosity term are not necessary. This scheme is stable up to a Courant number of 1.11 [START_REF] Kloker | A robust high-resolution split-type compact FD scheme for spatial direct numerical simulation of boundary-layer transition[END_REF].

The schemes presented in this section are given in x-direction as an example. Their formulation in ydirection is equivalent in all the cases. The forward and backward formulations to compute the derivative of the convective f ux F c are [table I, (Ia,Ib) [START_REF] Kloker | A robust high-resolution split-type compact FD scheme for spatial direct numerical simulation of boundary-layer transition[END_REF]]:

∂F c i-1 ∂x + 3 ∂F c i ∂x + ∂F c i+1 ∂x = 1 48∆x (5F c i-2 -148F c i-1 + 54F c i + 76F c i+1 + 13F c i+2 ) (1.5) ∂F c i-1 ∂x + 3 ∂F c i ∂x + ∂F c i+1 ∂x = 1 48∆x (-13F c i-2 -76F c i-1 -54F c i + 148F c i+1 -5F c i+2 )
Since it is not possible to use this scheme at the boundaries, a special compact sixth-order scheme with a non-centered f ve-point stencil is used at the second and the last but one points [table I, (V) [START_REF] Kloker | A robust high-resolution split-type compact FD scheme for spatial direct numerical simulation of boundary-layer transition[END_REF]]:

6 ∂F c 1 ∂x + 8 ∂F c 2 ∂x + ∂F c 3 ∂x = 1 12∆x (-43F c 1 -80F c 2 + 108F c 3 + 16F c 4 -F c 5 ) (1.6) 6 ∂F c N ∂x + 8 ∂F c N -1 ∂x + ∂F c N -2 ∂x = 1 12∆x (43F c N + 80F c N -1 -108F c N -2 -16F c N -3 + F c N -4 )
where N is the last point of the computational grid.

The values at the interior domain and the boundaries can be written in a pentadiagonal matrix, and hence the problem can be formulated as:

A DF c = BF c
where A is a tridiagonal matrix containing the left-hand-side coeff cients of equations (1.5)-(1.6), B is a pentadiagonal matrix containing the right-hand-side coeff cients of equations (1.5)-(1.6) and F c is a matrix containing the convective f uxes. The derivatives of the f uxes, DF c , are determined by LU decomposition.

In order to obtain the derivatives of the f uxes in the whole computational domain, the matrix F c requires the information of the boundaries, i.e. the f rst and last points. As a consequence, the matrices A and B must be completed with a boundary stencil, which is an explicit f fth-order scheme in a six-point stencil [table I, (IV) [START_REF] Kloker | A robust high-resolution split-type compact FD scheme for spatial direct numerical simulation of boundary-layer transition[END_REF]]:

∂F c 1 ∂x = 1 60∆x (-137F c 1 + 300F c 2 -300F c 3 + 200F c 4 -75F c 5 + 12F c 6 ) (1.7) ∂F c N ∂x = 1 60∆x (137F c N -300F c N -1 + 300F c N -2 -200F c N -3 + 75F c N -4 -12F c N -5 )
Nevertheless, the numerical values of the boundary points are not a direct output of the matricial formulation, but are computed in a later stage using the specif c boundary conditions.

On the other hand, viscous f uxes of the Navier-Stokes equations do not require an accuracy as high as the convective f uxes. They are in general much smaller, and in addition diffusion does not take an important role in the propagation of acoustic waves. Therefore, a less computationally expensive discretization can be used. The implemented scheme is a classic 4 th order explicit scheme.

For the interior domain, the derivative of the viscous f uxes F v is:

∂F v i ∂x = 1 12∆x (F v i-2 -8F v i-1 + 8F v i+1 -F v i+2 ) (1.8)
For the second and the last but one points it is:

∂F v 2 ∂x = 1 12∆x (-3F v 1 -10F v 2 + 18F v 3 -6F v 4 + 5F v 5 ) (1.9) ∂F v N -1 ∂x = 1 12∆x (3F v N + 10F v N -1 -18F v N -2 + 6F v N -3 -5F v N -4 )
For the f rst and last points it is:

∂F v 1 ∂x = 1 12∆x (-25F v 1 + 48F v 2 -36F v 3 + 16F v 4 -3F v 5 )
(1.10)

∂F v N ∂x = 1 12∆x (25F v N -48F v N -1 + 36F v N -2 -16F v N -3 + 3F v N -4 )
When working with a non-equidistant mesh x, it is necessary to derive the variables F (F c or F v ) respect to an equidistant mesh ξ and then apply the chain rule:

∂F ∂x = ∂F ∂ξ ∂ξ ∂x (1.11)
where the term ∂F/∂ξ is calculated at each iteration using the schemes previously described for the convective and viscous f uxes. On the other hand the term ∂ξ/∂x is computed once at the beginning of the simulation and stored to be used at each iteration. A 6 th order compact centered scheme is used to derive ∂ξ/∂x [table I, (I) [START_REF] Kloker | A robust high-resolution split-type compact FD scheme for spatial direct numerical simulation of boundary-layer transition[END_REF]]:

∂ξ i-1 ∂x + 3 ∂ξ i ∂x + ∂ξ i+1 ∂x = 1 12∆x (-ξ i-2 -28ξ i-1 + 28ξ i+1 + ξ i+2 ) (1.12) 
where the boundary schemes are the same as those used for the convective f uxes, given in (1.6) and (1.7).

Temporal discretization

The time marching is implemented with a usual 4 th order in time Runge-Kutta method. Each iteration has four Runge-Kutta sub-iterations, in which the spatial scheme described in the equations (1.5) alternates the forward (+) and backward (-) steps. Furthermore, at each temporal iteration the sequence is inverted, being for instance (+ -+-) whereas in the next temporal iteration is (-+ -+).

Each variable U n+1 at the iteration n + 1 is computed from its value U n at the iteration n, for which three intermediate states U n1 , U n2 and U n3 and needed:

U n1 = U n + ∆t 2 r n (1.13) U n2 = U n + ∆t 2 r n1 U n3 = U n + ∆tr n2 U n+1 = U n + ∆t 6 (r n + 2r n1 + 2r n2 + r n3 )
where ∆t is the time step and r k is calculated as

r k = - ∂ ∂x (F k c -F k v ) - ∂ ∂y (G k c -G k v ) k = n, n1, n2, n3 (1.14) 
The time step depends on the CFL stability criterion def ned by equation (1.15). The maximum Courant number CF L max allowed for convective f ows and the considered scheme is 1.11 [START_REF] Kloker | A robust high-resolution split-type compact FD scheme for spatial direct numerical simulation of boundary-layer transition[END_REF].

∆t • max | u | +c ∆x ≤ CF L max = 1.11 (1.15)
where c is the ambient speed of sound. To def ne the time step ∆t, an initial Courant number is used and ∆t is kept constant during the computations. After each iteration, a new Courant number is calculated with the new velocity value, and it is verif ed that it is within a specif ed limit.

Non-ref ecting boundary conditions

The problem of oscillations is especially diff cult to avoid at the boundaries, where due to the extrapolated information and high-order schemes the acoustic waves might be ref ected. Moreover, as the acoustic energy is usually a small percentage of the total energy of the f ow, the ref ected wave (of numerical origin) might be more important than the physical acoustic waves. In steady compressible simulations acoustic phenomena is suppressed by numerical dissipation, which permits a good prediction of the mean f ow. In linearized codes, the mean f ow is imposed and the acoustic waves can be controlled. On the other hand, the use of non-linear equations and low dispersive low dissipative schemes require adequate boundary conditions which allows a good prediction of the mean f ow and prevents acoustic ref ection.

A theoretical analysis of the system of equations gives the number of necessary and suff cient conditions that must be imposed to insure that the system is well-posed, and shows that the boundary conditions are independent from the numerical method. For the hyperbolic Euler equations the theoretical analysis is possible, but for the Navier-Stokes equations the analysis is much more complex and sometimes even impossible [START_REF] Poinsot | Boundary conditions for direct simulations of compressible viscous flows[END_REF]. This is why there are a lot of boundary conditions available for the Euler equations, while a less number are written for Navier-Stokes, which requires extra conditions over the viscous terms.

Non-ref ecting boundary conditions must allow waves to leave the domain without ref ection. The inf ow condition, moreover, must def ne the state of the f ow coming into the domain, which is known and so can be imposed. Several methods have been investigated in numerous studies. A good review on boundary conditions for compressible f ow simulations was done by Colonius [START_REF] Colonius | Modelling artificial boundary conditions for compressible flow[END_REF]. Broadly speaking, there are three methods to implement non-ref ecting boundary conditions [START_REF] Tam | Solutions of the benchmark problems by the dispersion-relation-preserving scheme[END_REF]: the method of characteristics, the use of asymptotic solutions and the addition of a buffer zone.

Characteristic boundary conditions

The main idea of characteristic boundary conditions is to decompose the waves crossing the boundaries into incoming and outgoing waves, and suppress the incoming ones. They were f rst proposed by Thompson [START_REF] Thompson | Time dependent boundary conditions for hyperbolic systems[END_REF], and alternative formulations were done by Giles [START_REF] Giles | Non-reflecting boundary conditions for the Euler equations[END_REF][START_REF] Giles | Nonreflecting boundary conditions for Euler equation calculations[END_REF] and Poinsot and Lele [START_REF] Poinsot | Boundary conditions for direct simulations of compressible viscous flows[END_REF].

The main advantage of this formulation is that it is valid even for nonlinear waves. Its main disadvantage is that it is essentially mono-dimensional, good in absorbing waves travelling in a direction normal Giles [START_REF] Giles | Non-reflecting boundary conditions for the Euler equations[END_REF][START_REF] Giles | Nonreflecting boundary conditions for Euler equation calculations[END_REF] Poinsot and Lele [START_REF] Poinsot | Boundary conditions for direct simulations of compressible viscous flows[END_REF] Linearized characteristics Non-linear characteristics Euler equations Navier-Stokes equations Disturbances calculated with respect to the mean f ow Disturbances calculated from the gradients Knowledge of the prof le required Knowledge of the prof le not required Perfectly non-ref ecting

Pressure relaxation Table 1.2 -Main differences between the characteristic boundary conditions of Giles, and Poinsot and Lele. to the boundary. Consequently, it presents problems when the travelling waves are oblique with respect to the boundary, and also when there is an important mean f ow tangential to the boundary.

In the f rst version of the code written by Anaïs Guaus [START_REF] Guaus | Analyse linéaire des instabilités dans les écoulements incompressibles à parois courbes compliantes[END_REF] the characteristic boundary conditions of Giles were implemented, in which the mean f ow must be estimated at all the boundaries: inf ow, radiation and outf ow. The reason is that the difference between the mean and the instantaneous f ow (i.e. the perturbation) is used to calculate the waves crossing the boundary.

Outf ow boundary conditions have the extra diff culty that, normally, the mean f ow is not known downstream, except for the pressure at inf nity. For simple cases such as channel or boundary layer f ows the mean f ow at the outf ow can be estimated, but this is not the case for more complex problems as f ows over steps or cavities. In order to solve them, an outf ow boundary condition which does not depend upon previous knowledge of the outf ow prof le is needed. For this reason, another boundary condition has been implemented at the outf ow: the characteristics formulation of Poinsot and Lele. The main differences between the formulation of Giles and that of Poinsot and Lele are outlined in table 1.2.

Firstly, the basics of the characteristic based methods are presented for a mono-dimensional problem using Euler equations. After that, the two alternatives used in this study are described for two dimensional problems.

1D characteristic boundary conditions

To describe in detail the characteristic method, it is going to be derived in its simplest case, the monodimensional (1D) Euler equation. Thompson's formulation [START_REF] Thompson | Time dependent boundary conditions for hyperbolic systems[END_REF] is used throughout. Let U = (ρ, u, p) be the vector of primitive variables density, velocity and pressure, which satisfy the linearized Euler equation:

∂U ∂t + A ∂U ∂x = 0 (1.16)
where A is the matrix obtained from the equations of conservation of mass, momentum and energy:

A =   u ρ 0 0 u 1/ρ 0 ρc 2 u  
(1.17)

In order to obtain the eigenvalues and eigenvectors of the system, the matrix A is decomposed as follows:

SAS -1 = Λ (1.18)
where S is the matrix of eigenvectors, which represent the directions of the characteristic waves. Λ is the diagonal matrix of eigenvalues, Λ ii = λ i , which are the characteristic velocities:

1. λ 1 = uc, corresponding to an acoustic wave propagating upstream.

2. λ 2 = u, corresponding to an entropy wave propagating at the speed of the f ow.

3. λ 3 = u + c, corresponding to an acoustic wave propagating downstream.

To get the amplitude of the waves crossing the boundaries, the vector of state is projected over the characteristic directions, which means multiplying the Euler equation (1.16) by S:

S ∂U ∂t + SA ∂U ∂x = S ∂U ∂t + ΛS ∂U ∂x = 0 (1.19) 
The mean f ow is assumed to be locally constant in space and time, i.e. ∂S ∂t = ∂S ∂x = 0 close to the boundary. Then equation (1.19) can be re-written as:

∂SU ∂t + Λ ∂SU ∂x = 0 (1.20)
The wave amplitudes are def ned as V = SU and so:

∂V ∂t + Λ ∂V ∂x = 0 (1.21)
which is the equation of wave propagation. It is important to remember that it is assumed that the directions of propagation are constant, which is true only locally.

Def ning L = ΛS ∂U ∂x as the characteristic waves, equation (1.21) is expressed as:

∂V ∂t + L = 0 (1.22)
where L 2 is an entropy wave and L 1 and L 3 are acoustic waves, which are function of the gradients in space of the primitive variables:

L 1 = (u -c) ∂p ∂x -ρc ∂u ∂x (1.23) L 2 = u c 2 ∂ρ ∂x - ∂p ∂x L 3 = (u + c) ∂p ∂x + ρc ∂u ∂x
For instance, for a subsonic outf ow, L 2 and L 3 are outgoing waves, while L 1 is an incoming wave. Numerically, the outgoing waves depend only on information within and at the boundary, making then possible to calculate them according to equations (1.23) using a non-centered scheme. On the other hand, incoming waves depend on external data, and hence can not be computed (except in some specif c cases where an analytical far-f eld solution can be derived).

Consequently, usual outf ow conditions consist on calculating the outgoing waves using the information of the interior domain, and prescribing the amplitude of the incoming wave.

L outgoing = ΛS ∂U ∂x (1.24) 
L incoming = imposed

The temporal gradients of the primitive variables are thus obtained from the characteristic waves as:

∂ρ ∂t = 1 c 2 1 2 (L 3 + L 1 ) + L 2 (1.25) ∂u ∂t = 1 2ρc (L 3 -L 1 ) ∂p ∂t = 1 2 (L 3 + L 1 )
When dealing with 2D simulations, an equivalent analysis of the system can be done, obtaining 4 characteristic waves: one entropy wave, one vorticity wave and two acoustic waves.

Linear Relaxation Method

As it has been explained, a common way to treat incoming waves in characteristic methods is to impose its amplitude. A natural way to treat a subsonic outf ow consists on totally suppress the incoming wave, i.e. L incoming = 0. This procedure is called perfectly non-ref ecting boundary and it has been used by Thompson [171] and Giles [START_REF] Giles | Non-reflecting boundary conditions for the Euler equations[END_REF]. This method has been proved to be adequate to control acoustic waves (when they are perpendicular to the boundary) but not the mean f ow. Physically, the mean pressure is imposed by the far-f eld state, and numerically it is fed back into the domain through the incoming wave.

If it is totally suppressed, this information is not fed back and the f ow might not retain a constant mean pressure.

One possible way to solve this problem is to calculate an analytical solution for the incoming wave. This is possible in certain academic conf gurations, yet it is diff cult or impossible in most of the cases. An alternative solution, more practical even though less accurate, consists on applying relaxation over the static pressure difference. This method is called Linear Relaxation Method (LRM). This approach was f rst proposed by Rudy and Strikwerda [START_REF] Rudy | A nonreflecting outflow boundary condition for subsonic Navier-Stokes calculations[END_REF], who added the correction term K(pp ∞ ) into the energy equation to simulate a non-ref ecting subsonic outf ow boundary condition. An extensive study of the coeff cient K showed that it depends on the Mach number M and a characteristic length of the domain l, in the form:

K = σ(1 -M 2 )c/l (1.26)
where an optimal value σ was found analytically to be around 0.27, even though in numerical simulations a better result was obtained with σ ≃ 0.58 [START_REF] Rudy | A nonreflecting outflow boundary condition for subsonic Navier-Stokes calculations[END_REF].

Poinsot and Lele [START_REF] Poinsot | Boundary conditions for direct simulations of compressible viscous flows[END_REF] derived two-dimensional characteristic boundary conditions for Navier-Stokes equations. In their approach, a subsonic outf ow is not def ned as perfectly non-ref ecting, but it allows certain ref ection in order to fed back the far-f eld pressure into the domain. This is done by setting the amplitude of the incoming wave as proportional to the static pressure difference:

L incoming = K(p -p ∞ ) = σ(1 -M 2 )(c/l)(p -p ∞ ) (1.27)
The coeff cient K is def ned as by Rudy and Strikwerda [START_REF] Rudy | A nonreflecting outflow boundary condition for subsonic Navier-Stokes calculations[END_REF] in equation (1.26), but Poinsot and Lele chose σ = 0.25.

In simple problems as a Poiseuille channel f ow, an analytical solution for the incoming wave can be easily derived, using for example asymptotic methods. In that case, the exact solution is added to equation (1.27) in order to ensure a good matching of derivatives:

L incoming = K(p -p ∞ ) + L exact incoming (1.28)
Selle et al. [START_REF] Selle | Actual impedance of nonreflecting boundary conditions: implications for computation of resonators[END_REF] investigated the relaxation coeff cient K when using the characteristic approach of Poinsot and Lele for a subsonic non-ref ecting outf ow. According to their study, a cutoff frequency can be def ned from the relaxation coeff cient f c = K/4π. This cutoff frequency is interpreted as the frequency below which the boundary condition will not allow the waves to leave the domain.

Furthermore, there is a minimum value σ min which prevents a drift in the mean values. The minimum value of σ is not f xed by acoustics, and it strongly depends on the computational parameters. Selle et al. suggest that a value under 0.1 may increase convergence time and it may prevent the simulation to reach a steady state.

2D characteristic boundary conditions of Giles

The mono-dimensional characteristic formulation of Thompson [START_REF] Thompson | Time dependent boundary conditions for hyperbolic systems[END_REF] has been used to describe in detail the method. Even though this method is also available in two dimensions, for this investigation two other characteristic formulations have been implemented and compared.

The f rst one is an alternative formulation, more simple, proposed by Giles [START_REF] Giles | Non-reflecting boundary conditions for the Euler equations[END_REF] and derived for the Euler equations. In this approach, the 2D linearized Euler equations are normalized by the density and the speed of sound. The main difference respect to Thompson's method consists on the way to obtain the values of the outgoing waves. While Thompson proposed to calculate them from the spatial gradients (eq. (1.23)), Giles considers disturbances respect to the mean f ow which has been used to linearize the equations.

Then, the exact formulation of the characteristic outgoing waves for the 2D equations is (using Giles' notation):

L 1 = δp -c 2 δρ (1.29) L 2 = ρcδv L 3 = δp + ρcδu L 4 = δp -ρcδu
where δρ, δu, δv, δp are the disturbances with respect to the mean f ow. L 1 is an entropy wave, L 2 is a vorticity wave, L 3 is an acoustic wave traveling downstream and L 4 is an acoustic wave propagating upstream.

Giles method is perfectly non-ref ecting and hence incoming waves are imposed to be zero. Once the characteristic waves are calculated, they are used to recover the disturbances of the primitive variables using:

δρ = L 3 + L 4 2c 2 - L 1 c 2 (1.30) δu = L 3 -L 4 2ρc δv = L 2 ρc δp = L 3 + L 4 2 
The main advantage of this method compared to the one of Thompson [START_REF] Thompson | Time dependent boundary conditions for hyperbolic systems[END_REF] is that it is simpler to implement and it is less computationally expensive. The main drawback is that a previous knowledge of the mean f eld at the boundary is required, and in many cases they are unknown.

2D characteristic boundary conditions of Poinsot and Lele

The second characteristic boundary condition considered is an extension to the Navier-Stokes equations of Thompson's method [START_REF] Thompson | Time dependent boundary conditions for hyperbolic systems[END_REF], which was proposed by Poinsot and Lele [START_REF] Poinsot | Boundary conditions for direct simulations of compressible viscous flows[END_REF]. This formulation can be used to implement any far-f eld boundary, even though here it has only been used for the outf ow boundary condition.

Consider the 2D Navier-Stokes equations:

∂U ∂t = - ∂F c ∂x - ∂G c ∂y + ∂F v ∂x + ∂G v ∂y (1.31)
where U = (ρ, ρu, ρv, ρe) are the unknown conservative variables of the system. F c and G c represent the inviscid f uxes and F v and G v the viscous f uxes. Considering a f ow moving in x-direction, the characteristic analysis [START_REF] Thompson | Time dependent boundary conditions for hyperbolic systems[END_REF] is applied to modify the hyperbolic terms of equation (1.31) corresponding to waves propagating in this direction, i.e. the convective f uxes F c .

Moreover, for a subsonic outf ow using Navier-Stokes equations 2 viscous conditions are necessary: the gradient of the tangential viscous stresses and the normal heat f ux must be zero at the boundary, i.e. ∂τ 12 /∂x = ∂q 1 /∂x = 0.

Hence the system can be re-written as: which contains the derivatives in y, the non-zero viscous terms and d i , with i = 1, ..., 4, where:

∂ρ ∂t + d 1 + ∂ρv ∂y (1.
d 1 = ∂ρu ∂x d 2 = u ∂p ∂x + ρc 2 ∂u ∂x d 3 = u ∂u ∂x + 1 ρ ∂p ∂x d 4 = u ∂v ∂x
The vector d i is given by the characteristic analysis performed for the system ∂U/∂t = -∂F c /∂x, and is function of the characteristic waves as:

d 1 = 1 c 2 1 2 (L 4 + L 1 ) + L 2 d 2 = 1 2 (L 4 + L 1 ) d 3 = 1 2ρc (L 4 -L 1 ) d 4 = L 3
where L 1 is an acoustic wave propagating upstream, L 2 is an entropy wave, L 3 is a vorticity wave and L 4 is an acoustic wave traveling downstream.

Using an analogy with the derivation detailed for the 1D case, the vector d i corresponds to the temporal derivatives of the primitive variables (ρ, p, u, v). The characteristic waves in 2D are given by:

L 1 = (u -c) ∂p ∂x -ρc ∂u ∂x L 2 = u c 2 ∂ρ ∂x - ∂p ∂x L 3 = u ∂v ∂x L 4 = (u + c) ∂p ∂x + ρc ∂u ∂x
For a subsonic outf ow L 1 is the only incoming wave, i.e. the only one which must be imposed and not calculated from the spatial gradients. In this approach, a LRM is applied according to equation (1.27).

Asymptotic boundary conditions

This method uses the far-f eld asymptotic expression of the linearized Euler equations to simulate the boundary conditions. Tam and Webb [START_REF] Tam | Dispersion-relation-preserving finite difference schemes for computational aeroacoustics[END_REF] derived asymptotic boundary conditions for uniform f ows, which were extended to non-uniform f ows by Tam and Dong [START_REF] Tam | Radiation and outflow boundary conditions for direct computation of acoustic and flow disturbances in a nonuniform mean flow[END_REF]. This approach is formulated in cylindrical coordinates, where the origin is usually the center of the noise source but it has been shown that it can be arbitrarily f xed. Its main advantage is that it is multidimensional and the problems at the corners are reduced due to the use of cylindrical coordinates.

The formulation of Tam and Dong is [START_REF] Tam | Radiation and outflow boundary conditions for direct computation of acoustic and flow disturbances in a nonuniform mean flow[END_REF]:

1 V g ∂ ∂t     ρ u v p     + ∂ ∂r + 1 2r     ρ - ρ u - ū v - v p - p     = 0 (1.33)
where (ρ, ū, v, p) represents the far-f eld at the boundary, in the absence of perturbations, and V g is the group speed of the acoustic waves, def ned as:

V g = ū • e r + c2 -(ū • e θ ) 2 with    e r = (cos θ, sin θ) e θ = (-sin θ, cos θ) ū = (ū, v) (1.34)
where c is the averaged speed of sound.

This approach was implemented for all the non-ref ecting boundaries during the development of the single block version of the code, and it was found to give very similar results to those from the characteristic method [START_REF] Guaus | Analyse linéaire des instabilités dans les écoulements incompressibles à parois courbes compliantes[END_REF][START_REF] Rona | A numerical validation of a high-order finite-difference compact scheme for computational aeroacoustics[END_REF]. However, its formulation in cylindrical coordinates made complicated its application in multi-block geometries, and hence it was not further used.

Buffer zone

Even with non-ref ecting boundary conditions sometimes it is not possible to avoid ref ections, especially at the corners of the computational domain. A common method used to suppress undesired oscillations is the addition of a buffer zone. A buffer zone, or absorbing layer, is a f nite region added outside the computational domain where the f ow physics are modif ed. They are used to either enhance the eff ciency of a boundary condition or to obviate the need for a complex boundary condition.

In the present computations a buffer zone consisting on a stretched mesh with increased cell length near the boundary and a 4 th order compact f lter proposed by Lele [START_REF] Lele | Compact finite difference schemes with spectral-like resolution[END_REF] is used:

α Ûi-1 + Ûi + α Ûi+1 = aU i + b 2 (U i+1 -U i-1 ) + c 2 (U i+2 -U i-2 ) (1.35)
where U are the non-f ltered values, Û are the f ltered values, and the coeff cients are:

a = 1 8 (5 + 6α), b = 1 2 (1 + 2α), c = - 1 8 (1 -2α) (1.36)
There are other ways to implement a buffer zone. For instance, Colonius et al. [48] proposed a f lter, Freund [START_REF] Freund | Proposed inflow/outflow boundary condition for direct computation of aerodynamic sound[END_REF] used a forcing term which can be added in the right-hand-side of the equations and Wasistho et al. [START_REF] Wasistho | Simulation techniques for spatially evolving instabilities in compressible flow over a flat plate[END_REF] damped directly the disturbances calculated from a reference f ow.

Wall boundary conditions

The formulation of an appropriate wall boundary condition in high-order-schemes is still an open problem, since common formulations for low-order schemes might lead to numerical instabilities when applied to high-order schemes. In low-order schemes, the derivatives of the Euler equation are approximated by a f rst-order f nite difference scheme, preserving the same order as the original partial differential equations (PDE). In high-order schemes, the order of the resulting f nite difference equation is higher than the order of the original PDE, and hence it can support solutions without a counterpart in the original system. This unphysical solutions are called spurious solutions, and they can be generated by the initial conditions or surface discontinuities as a wall.

Several solutions have been proposed to avoid creating these unphysical solutions at a solid boundary:

Ghost cells: They are non-physical points used for numerical purposes, placed outside the physical domain in order to simulate the ref ection at the solid boundary. They are further described in §1.5.2.

Characteristics:

The characteristic methods described in §1.4.1 can be used to implement a wall by considering a perfectly ref ecting boundary. As in the case of non-ref ecting boundaries, they might present problems if the waves are not perpendicular [START_REF] Poinsot | Boundary conditions for direct simulations of compressible viscous flows[END_REF].

Robust formulation over the convective f uxes:

In this approach the solid condition is applied by estimating the convective f uxes at the wall [START_REF] Gloerfelt | Bruit rayonne par un ecoulement affleurant une cavite: simulation aeroacoustique directe et application de methodes integrals[END_REF], as explained in §1.5.1.

Impedance mismatched method:

From classic acoustics theory, a wave in a f uid medium which encounters a second medium is partially ref ected into the f rst medium and transmitted in the second one, where the ratio ref ection/transmission depends on the characteristic impedance. Thus a solid boundary can be numerically simulated with a region in which the characteristic impedance is set to a much higher value than the f uid region, in order to ref ect the impinging waves [START_REF] Chung | Wave propagation and scattering in computational aeroacoustics[END_REF].

Solid boundaries in this investigation are modelled as isothermal and can be either slip or non-slip. In the f rst version of the code written by Anaïs Guaus [START_REF] Guaus | Analyse linéaire des instabilités dans les écoulements incompressibles à parois courbes compliantes[END_REF] a robust formulation proposed by Gloerfelt [START_REF] Gloerfelt | Bruit rayonne par un ecoulement affleurant une cavite: simulation aeroacoustique directe et application de methodes integrals[END_REF] was implemented and validated for single block problems. In order to improve the code, an alternative wall boundary condition with ghost cells was implemented as part of this thesis.

Gloerfelt's wall boundary condition

This method consists on estimating the convective f uxes normal to the wall. If an horizontal wall is considered, the x-direction is tangential to the wall, y-direction is normal to the wall, and the convective f uxes in conservative form are: 

∂y = γ γ -1 p + ρu 2 ∂v ∂y + v γ γ -1 ∂p ∂y + ∂ ∂y u + v 2 
For a slip wall (used when solving the Euler equations), v = 0 and the pressure gradient normal to the wall is imposed to be zero (∂p/∂y = 0). Applying all these conditions the convective f uxes in conservative form normal to the wall can be predicted as:

∂G c ρ ∂y w = ρ ∂v ∂y (1.38) ∂G c ρu ∂y w = ρu ∂v ∂y ∂G c ρv ∂y w = 0 ∂G c ρe ∂y w = γ γ -1 p + ρu 2 ∂v ∂y
where the subscript w denotes the wall position, and ∂v/∂y is obtained with a second-order approximation:

∂v ∂y w = 4v w+1 -v w+2 2∆y (1.39)
For a non-slip wall, the condition u = 0 must be added in addition to the conditions for a slip wall. In the f rst version of the code these boundary conditions were applied over the total f uxes G c + G v . The algorithm has been modif ed in order to apply them only over the convective f uxes G c . Both implementations are tested and compared in one of the validation test cases, §2.2.1.

Both isothermal and adiabatic walls have been implemented. In this formulation, the isothermal condition is directly imposed by calculating the density at the given temperature at the wall at the end of each iteration. To implement an adiabatic wall, ∂T /∂y = 0, which implies q y = 0. This condition is directly applied when calculating the viscous f ux G v ρe (the only one where q y appears).

Wall boundary condition with ghost cells

The approach proposed by Gloerfelt [START_REF] Gloerfelt | Bruit rayonne par un ecoulement affleurant une cavite: simulation aeroacoustique directe et application de methodes integrals[END_REF] gives satisfactory results for single-block problems, as is it to be shown in the validation test cases from chapter §2. However, it presents problems in simulations of f ows over surface discontinuities due to the coupling with the dynamic block derivation described in section §1. [START_REF] Åkervik | Optimal growth, model reduction and control in a separated boundary layer flow using global eigenmodes[END_REF]. In these simulations, high numerical instabilities appear near the upper corners due to the corner points. The proposed solution to this problem consists on the implementation of an alternative wall boundary condition with ghost cells.

There are different ways to implement boundary conditions with ghost cells [START_REF] Gloerfelt | Bruit rayonne par un ecoulement affleurant une cavite: simulation aeroacoustique directe et application de methodes integrals[END_REF]:

1. Place the f rst line of points on the wall, and the ghost cells inside the wall, as shown in f gure 1.2(a).

2. Place the f rst line of points in the interior domain, and the ghost cells inside the wall, as shown in f gure 1.2(b).

3. Use the minimum number of ghost cells, as proposed by Tam and Dong [START_REF] Tam | Wall boundary conditions for high-order finite-difference schemes in computational aeroacoustics[END_REF]. For a non-viscous f ow, v = 0, which can be interpreted as the pressure done by the wall over the f uid. The idea is to use a ghost cell to calculate the pressure and compute the other variables from the values at the interior domain. For a viscous f ow, u = v = 0, and a part from calculating the pressure with a ghost cell, another condition will be necessary, which can be interpreted as a tangential shear stress applied by the wall on the f uid. So in this case, the pressure and another variable representing the shear stress are computed with ghost cells and the other variables normally using a non-centered boundary scheme. Since the wall boundary condition without ghost cells presents high instabilities near the upper corner due to the corner point, a ghost cells method without any point at the wall is selected. The wall is considered to be at the same distance from the ghost cell and the f rst interior point, as shown in f gure 1.2(b).

The ghost cells method has been used to implement an isothermal wall. The isothermal condition is directly applied by imposing the temperature of the wall at the ghost cell, and compute the corresponding density from the equation of state for an ideal gas. The non-slip condition consists on imposing the
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3 -Determination of the velocity vector at the ghost cell. Interior points •, ghost cells • velocities u and v to be zero at the wall, which is done by mirroring them from the f rst interior point to the ghost cell, as shown in f gure 1.3.

To def ne the pressure at the wall, the gradient of pressure in the direction normal to the wall is imposed to be zero as it was done by Gloerfelt [START_REF] Gloerfelt | Bruit rayonne par un ecoulement affleurant une cavite: simulation aeroacoustique directe et application de methodes integrals[END_REF]. At the grid points which are closer to the wall the f ow locally behaves like a boundary layer, so ∂p/∂y = 0 can be considered, even in separated f ows. The equations used to estimate the f ow state at the ghost cells in an horizontal wall are:

u g = -u 1 (1.40) v g = -v 1 ∂p ∂y w = 0 ρ g = p g rT w .
where subscript w denotes a condition at the wall, 1 at the f rst interior point and g at the ghost cell, and r is the universal gas constant.

In order to obtain the pressure gradient two different schemes have been used. The f rst one is a second-order classic explicit centered scheme, in which p g = p 1 .

The second one is a fourth-order non-centered scheme with a f ve-point stencil that has been derived from a Taylor expansion to obtain the pressure gradient at the wall:

∂p ∂y w = a g p g + a 1 p 1 + a 2 p 2 + a 3 p 3 + a 4 p 4 = 0 (1.41)
where subscript g denotes the ghost cell and subscripts 1, ..., 4 denote the 4 interior points adjacent to the wall. The Taylor expansion of the pressure at the wall is:

p(y + h α ) = p(y) + h α p ′ (y) + h 2 α 2! p ′′ (y) + h 3 α 3! p ′′′ (y) + h 4 α 4! p ′′′′ (y) (1.42)
where the wall is placed at y = 0, α = g, 1, ..., 4 and:

h g = (-1/2)∆ξ h 1 = (1/2)∆ξ h 2 = (3/2)∆ξ h 3 = (5/2)∆ξ h 4 = (7/2)∆ξ
for a uniform equidistant grid in y-direction with spatial increment ∆ξ as shown in f gure 1.2(b). Solving the equation system gives the values of the coeff cients a g , ..., a 4 :

∂p ∂y w = 1 48∆ξ (22p g -17p 1 -9p 2 + 5p 3 -p 4 ) (1.43)
which implies that the pressure at the ghost cell can be calculated as:

p g = 1 22 (17p 1 + 9p 2 -5p 3 + p 4 ) (1.44) 

Multi-block treatment

The simulation of f ows over surface discontinuities, like steps or cavities, requires different blocks to create the geometry. In these complex conf gurations, it is important to implement good connectivity conditions between the different blocks. Here a numerical method proposed by Guaus [START_REF] Guaus | Analyse linéaire des instabilités dans les écoulements incompressibles à parois courbes compliantes[END_REF] to calculate the derivatives in multi-block conf gurations is presented.

Dynamic block derivation

A common inter-block condition consists on copying the last line of information from one block to the adjacent block, as shown in f gure 1.4. The f rst column of points of block 2, represented by white circles, are copied next to the last column of block 1, represented by black circles. Then, the derivative of the f uxes in block 1 are computed like it were a single block problem. The same procedure is applied to block 2, where the last column of points of block 1 is added in order to get the derivatives of the f uxes.

Once the derivatives have been calculated for all the blocks, the right-hand-side of the equation (1.1) is calculated separately for each block, without taking into account the extra columns used for the derivatives. After that, the left-hand-side of equation (1.1) is updated according to the Runge-Kutta integration and f nally the boundary conditions (non-ref ecting and solid) are applied.

The complexity of the problem increases with the existence of a corner. In that case, a part from copying the last rows and columns, it is important to give the adequate information to the corner point in order to simulate correctly the f ow at the separation point. An alternative method to compute the derivatives in multi-block conf gurations described in the Appendix A of [START_REF] Guaus | Analyse linéaire des instabilités dans les écoulements incompressibles à parois courbes compliantes[END_REF] is implemented. It consists on the def nition of different block conf gurations according to the directions of the Cartesian coordinates. To better illustrate the dynamic block derivation method, the block distribution shown in f gure 1.5 for a backward-facing-step is used as an example.

Figure 1.5(a) shows the block conf guration which def nes the geometry and is used throughout the computational simulation. In order to get the derivatives in x-direction, the alternative distribution of f gure 1.5(b) is used, where only two blocks are present. Equivalently, to compute the derivatives of the f uxes in y-direction the conf guration of f gure 1.5(c) is considered. The main idea is to compute the derivatives of the f uxes in each direction like it were a single block, and no accuracy between blocks is lost.

The re-distribution of the blocks to get the derivatives is done automatically by the code, and it can handle any kind of rectangular block conf guration (backward-facing step, forward-facing-step, cavity, channel with an interior rectangular obstacle, etc.). It is only required that adjacent blocks have the same physical dimensions and the same grid points on their adjacent edge.

Dynamic block derivation with ghost cells

The ghost cells method has been integrated into the code and coupled with the dynamic block derivation. An example of block conf guration is shown in f gure 1.6. The complexity of the problem consists in matching the block sizes in order to join them to compute the derivatives. Consequently, the ghost cells are not part of the blocks, but are def ned as independent vectors related with them, as shown by • in f gure 1.6(a). The block distribution to calculate the derivatives in x-direction is shown in f gure 1.6(b). Blocks 1 and 2 are computed together as explained in §1.6.1, and the ghost cells related to the horizontal wall on the south of block 1 are not considered, since they do not take part in the derivatives in this direction. On the other hand, block 3 has a vertical wall on the west, and the corresponding ghost cells are necessary to calculate the derivatives in x-direction. In order to use the ghost cells in the derivation of the f uxes, they are added to block 3 in the same way that blocks 1 and 2 are joined.

An equivalent treatment is done to the blocks to calculate the derivatives in y-direction. In this case, the ghost cells related to horizontals walls are required to correctly compute the derivatives. Blocks 1 and 3 have a solid boundary on the south, so the ghost cells vectors are added to them. Blocks 2 and 3 are put together as explained in the previous subsection.

The addition of blocks and ghost cells is done automatically by the program which can handle any rectangular block conf guration with walls in any boundary (east, west, north or south). The use of ghost cells is also possible when dealing with a single block problem, since the ghost cell vector is independent and can be added to any block. Specif c conditions must be added into the code regarding the corners. For a backward-facing step,

Conclusions

for instance, there is one ghost cell which is common for the blocks 1 and 3 (represented by a circle • in f gure 1.6(a)). In this case, in order to impose the f ow coming from the inf ow, this ghost cell is calculated using the variables from block 1 and ignoring the values from block 3. For a forwardfacing step, an equivalent treatment is done, giving preference to the block were the outf ow is located. The same conditions are applied to a cavity f ow, which is the combination of a backward-facing and a forward-facing steps.

Conclusions

In summary, the numerical method used consists on a 6 th order compact scheme with a progressiveregressive formulation for the spatial discretization of convective f uxes [START_REF] Kloker | A robust high-resolution split-type compact FD scheme for spatial direct numerical simulation of boundary-layer transition[END_REF], a 4 th order explicit scheme for the viscous f uxes and a classic 4 th order Runge-Kutta scheme for the time-marching. The use of a progressive-regressive formulation, in which the sequence forward-backward is inverted at each temporal iteration, avoids the use of a f lter or artif cial damping since it naturally suppresses high-frequency oscillations of numerical origin.

The characteristic boundary conditions of Giles [START_REF] Giles | Non-reflecting boundary conditions for the Euler equations[END_REF][START_REF] Giles | Nonreflecting boundary conditions for Euler equation calculations[END_REF] are used for the non-ref ecting boundaries, and in addition the characteristic formulation of Poinsot and Lele [START_REF] Poinsot | Boundary conditions for direct simulations of compressible viscous flows[END_REF] is implemented at the outf ow. The proposal of Poinsot and Lele does not require previous knowledge of the mean f ow at the outf ow, and it considers non-linearities of the f ow and viscous effects. Wall boundary conditions with ghost cells have been implemented, in which there is no point at the wall. This formulation avoids the singularity of having one point at the corner.

The problem of the multi-block derivation is solved by def ning different conf gurations according to the direction in which the derivative is calculated. The ghost cells have been integrated into the dynamic block derivation and any rectangular multi-block geometry can be simulated.
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Chapter 2

Validation test cases

Cas tests de validation

Il est très important de valider unes à unes les différentes méthodes numériques utilisées, durant les phases de développement et d'amélioration du code de calcul. Le but est d'avoir un outil numérique approprié pour l'étude du bruit émis par un écoulement laminaire au-dessus d'une cavité, dans lequel plusieurs caractéristiques entrent en jeu : l'aéroacoustique, les effets visqueux et la géométrie multiblocs. Pour chacunes de ces caractéristiques, plusieurs cas tests de validation ont été réalisés, lesquels sont listés dans le tableau 2.1.

Cas tests aéroacoustiques

Cinq cas tests de complexité croissante ont été implémentés afin de tester l'aptitude de notre code à réaliser des études acoustiques. Leur objectif est de valider le caractère non dissipatif et non diffusif des schémas de discrétisation, ainsi que les conditions aux limites non réfléchissantes et de parois solides, et le traitement des coins. Dans tous les cas testés (sauf indication contraire), le nombre de Mach de l'écoulement libre est de M = 0.5, et les équations simulées sont les équations d'Euler sur un maillage uniforme.

Les deux premiers cas consistent à simuler les propagations d'une onde acoustique, d'une onde d'entropie et d'une onde de vorticité dans un écoulement moyen uniforme suivant la direction

x (cas §2.1.1), puis uniforme suivant les directions x et y (cas §2.1.2), et cela sans la présence de paroi solide. L'onde acoustique se propage à la vitesse (u ∞ + c) en aval et (u ∞c) en amont, tandis que les deux autres ondes sont convectées à la vitesse de l'écoulement u ∞ . Les résultats de ces deux cas tests ont été comparés aux solutions analytiques données lors du premier workshop sur les problèmes de référence en aéroacoustique numérique [89]. [START_REF] Rona | A numerical validation of a high-order finite-difference compact scheme for computational aeroacoustics[END_REF].

Les deux cas tests suivants mettent en jeu la reflexion sur une paroi solide d'une onde acoustique dans un écoulement uniforme (cas

Cas tests visqueux

Le but de ces tests était de valider le code de calcul dans le cas de fluide visqueux. Nous nous sommes en particulier intéressés aux conditions aux limites de sortie d'écoulement et de paroi solide.

Le premier problème considéré est celui d'une couche limite sur une paroi plane sans gradient de pression. L'écoulement est considéré compressible avec un nombre de Mach de M = 0.2, et le régime de l'écoulement est laminaire avec un nombre de Reynolds basé sur l'épaisseur de couche limite de Re δ = 516. Le domaine de calcul est rectangulaire, avec un maillage uniforme dans la direction principale de l'écoulement, et raffiné à la paroi suivant la direction normale. Les résultats ont été comparés à la solution numérique de l'équation de similarité de Blasius.

Le second problème considéré est celui d'un écoulement de Poiseuille en canal plan avec un nombre de Mach de M = 0.1. Le nombre de Reynolds basé sur la demi-hauteur de canal h est de Re h = 15, l'écoulement est donc laminaire et les effets visqueux sont par conséquent importants. Le canal considéré pour cette étude a une longueur de 10h, et le maillage est uniforme. Les résultats obtenus sont comparés aux profils analytiques de vitesse u et de température, ainsi qu'au gradient de pression analytique.

Cas tests multi-blocs

Dans tous les cas tests précédents nous avons simulé des écoulements dans des géométries de type mono-bloc. Afin de parfaire la validation de notre code de simulation numérique, une dernière étape consiste donc à simuler un écoulement dans une géométrie multi-blocs, et de tester ainsi la dérivation inter-blocs et le traitement des coins. Nous avons pour celà considéré un écoulement 2D de fine couche limite laminaire à nombre de Mach de M = 0.1, qui arrive sur une marche descendante. Le [START_REF] Lele | Compact finite difference schemes with spectral-like resolution[END_REF], a été ajouté en limite de sortie d'écoulement.

maillage est raffiné au voisinage de la marche dans les deux directions horizontale et verticale, ainsi qu'au voisinage des parois. Une zone 'buffer', composée d'un maillage étiré et d'un filtre tel que proposé par Lele

La couche limite incidente se sépare au coin supérieur de la marche descendante formant, à l'arrière de la marche, une zone de recirculation primaire et un plus petit vortex secondaire au coin inférieur de la marche. Le vortex primaire devient de plus en plus grand, jusqu'à ce qu'il se détache du coin supérieur et soit convecté en aval. A ce moment là, le second vortex est attaché à la couche limite incidente, devenant le vortex primaire alors qu'un nouveau vortex secondaire est apparu au coin inférieur de la marche. Et le processus continue ainsi de manière périodique. Les résultats obtenus ont été comparés à ceux obtenus dans la même configuration 2D de marche descendante par le logiciel commercial FLUENT (cas Navier-Stokes incompressible). [START_REF] Giles | Non-reflecting boundary conditions for the Euler equations[END_REF][START_REF] Giles | Nonreflecting boundary conditions for Euler equation calculations[END_REF] a donné de très bons résultats, en particulier dans le cas d'ondes traversant perpendiculairement les frontières du domaine de calcul (paragraphe §2.1.1), avec cependant de très petites déviations en présence d'un écoulement moyen tangentiel à la frontière ( §2. 1.2). La condition aux limites de type asymptotique de Tam et Dong [START_REF] Tam | Radiation and outflow boundary conditions for direct computation of acoustic and flow disturbances in a nonuniform mean flow[END_REF], testée uniquement pour le problème §2.1.1, présente des résultats identiques à ceux obtenus avec une formulation de type caractéristique.

Résultats et conclusions

Nous avons montré les propriétés non dispersive et non dissipative des schémas numériques utilisés

La formulation de condition aux limites caractéristique de Poinsot et Lele [START_REF] Poinsot | Boundary conditions for direct simulations of compressible viscous flows[END_REF] 

Introduction

During the implementation and improvement of the code it is of extreme importance to validate, step by step, the numerical method. The aim is to have a numerical tool appropriate for the study of the noise emitted by a laminar f ow over a cavity, in which several aspects are involved: aeroacoustics, viscous effects, and multi-block geometries. For each of these aspects several validation test cases have been performed, which are outlined in table 2.1 and presented in the next sections.

Aeroacoustic test cases

Five test cases of increasing complexity have been implemented to test the suitability of the code to acoustic studies. Their objective is to validate the non-dissipative and non-dispersive properties of the discretization scheme, as well as the non-ref ecting and solid boundary conditions, and the treatment of the corner.

Propagation of waves in a uniform f ow

This is the f rst Aeroacoustic test case, consisting of an acoustic wave, a vorticity wave and an entropy wave propagating in a uniform f ow at a Mach number M = 0.5 with no solid boundary, as shown in f gure 2.1. On the left plot, the acoustic and the entropy waves are displayed by the density isocontours. The acoustic wave is placed in the center of the domain, while the entropy wave is closer to the outf ow boundary, at the same location as the vorticity wave as shown on the right plot. The acoustic wave expands radially and propagates at the speed (u ∞ + c) downstream and (u ∞c) upstream, whereas the other two waves are convected at the f ow speed u ∞ . As a consequence of this setting, the three waves reach the outf ow boundary simultaneously. This is problem 1, category 3 of the First Workshop on Benchmark Problems in Computational Aeroacoustics [89]. Its objective is to test the effectiveness of the radiation, the inf ow and the outf ow boundary conditions and the isotropy property of the computational algorithm in a complex problem. This test case has been done in collaboration with the University of Leicester, as part of a joint study of high-order schemes for computational aeroacoustics, and has been published as an AIAA conference proceedings in Rona et al. [START_REF] Rona | A numerical validation of a high-order finite-difference compact scheme for computational aeroacoustics[END_REF].

Aeroacoustic test cases Validation

The computational domain is -100 ≤ x ≤ 100, -100 ≤ y ≤ 100, discretized with an equidistant mesh of 201 × 201 points. The equations solved are the non-linear Euler equations in dimensional form and the initial f ow conditions are: The computations are performed in dimensional form, but the values of density, pressure, and time are normalized in order to validate the results. The normalization is done using the following scales: length scale ∆x = ∆y, time scale ∆x/c ∞ and density scale ερ ∞ /γ. From these, the velocity and pressure are scaled by c ∞ and ερ ∞ c 2 ∞ , and hence the non-dimensional values of the perturbations ρ′ and p′ are:

p = p ∞ 1 + ε e » -(ln 2) " x 2 +y 2 9 «- ρ = ρ ∞ 1 + ε γ e » -(ln 2) " x 2 +y 2 9 «- + 0.1 ε γ e » -(ln 2) (x-67) 2 +y 2 25 - u = u ∞ 1 + 0.04 y ε e » -(ln 2) (x-67) 2 +y 2 25 - v = -0.04(x -67) ε u ∞ e » -( ln 2) 
ρ′ = ρ -γ/ε and p′ = p -1/ε.
The results are validated against the non-dimensional analytical solution given in the First Workshop on Benchmark Problems in Computational Aeroacoustics [89], which is derived from the linearized Euler equations:

p′ = 1 2α 1 ∞ 0 e -ξ 2 /4α 1 cos(ξt)J 0 (ξη)ξ dξ ρ′ = p′ + e -α 2[ (x-67-Mxt) 2 +y 2 ]
where α 1 = [(ln 2)/9], α 2 = [(ln 2)/25], η = [(x -M x t) 2 + y 2 ] 1/2 and J 0 is a Bessel function of order 0. The evaluation in the integral has been done numerically with MATLAB R 7.3.0 using the adaptive Lobatto quadrature with an absolute error tolerance of 1.0e -9.

The computed results for non-dimensional density ρ are shown in f gure 2.2, corresponding to the adimensional times t = 30, 60 and 120. The four contour levels ρ′ = (-0.02, 0.01, 0.02, 0.04) are selected according to the First Workshop on Benchmark Problems in CAA. Figure 2.2(a), on the left, shows the adimensional density contours for the combined convected acoustic, vorticity and entropy waves at an adimensional time t = 30. The waves are approaching the right computational boundary, but they have not crossed it yet. The numerical prediction, shown by the black dashed line, overlaps the analytical solution, which is shown by the continuous blue line. The acoustic wave is expanding radially at the same time that is convected by the f ow, and the entropy wave is convected downstream without distortion. Both of them are perfectly circular, proving that there is no degradation due to the propagation at an angle respect to the Cartesian mesh.

In f gure 2.2(a), on the right, a cross-section of the non-dimensional density distribution along the x-axis, i.e. at y = 0, is given. The location of this cross-section is taken as in the benchmark problem solution guideline. The numerical solution, represented by the squares , shows very good agreement with the analytical solution, displayed by the solid line. Particularly, there are no appreciable discrepancies near the computational boundaries between the two solutions.

The acoustic, entropy, and vorticity waves impinge simultaneously against the right computational boundary at the non-dimensional time t = 60, as it can be seen in f gure 2.2(b). There is a good overlap of the analytical solution by the numerical prediction. More information about the interaction between the three waves is obtained from the waveform along the x-axis. As the waves coalesce onto one another at the right computational boundary, the density perturbation constructively interfere, creating a normalized density peak of about ρ′ ∼ 0.125. The numerical solution slightly underestimates the maximum, since the maximum is located between two points of the discretized computational domain.

At the last represented adimensional time, t = 120, the entropy and vorticity waves have escaped the domain, and only the acoustic wave remains in the interior domain, as represented in f gure 2.2(c). Even at the lowest non-dimensional density contour level of 0.01 there are no ref ections due to the boundary conditions. The non-dimensional density distribution along the x-axis, plotted to the right of the contour map, shows a good agreement between the numerical prediction and the analytical solution.

The results obtained using the other two non-ref ecting boundary conditions are shown in f gure 2.3. In both cases the non-dimensional density contours collapse very well with the analytical solution, proving the good performance of the characteristic formulation of Poinsot and Lele and the asymptotic solution of Tam and Dong.

Propagation of waves in a uniform diagonal f ow

In the previous problem §2.1.1, the non-ref ecting boundary conditions have been validated. However, as explained in section §1.4, characteristic boundary conditions are known to be good for waves travelling in a direction normal to the boundary, but might present problems when they impact the boundary with a certain angle or in the presence of a tangential mean f ow. It is for this reason that a more complex case is implemented: an acoustic, an entropy and a vorticity wave propagating in a Mach M = 0.5 f ow moving at 45 • with respect to the boundaries, as displayed in f gure 2.4. This is problem 2, category 3 of the First Workshop on Benchmark Problems in Computational Aeroacoustics [89]. The computational domain is -100 ≤ x ≤ 100, -100 ≤ y ≤ 100, discretized with an equidistant mesh of 201 × 201 points. The equations solved are the non-linear Euler equations in dimensional form and the initial f ow conditions are: Since there is a mean f ow in both xand y-directions, the bottom and left boundaries are implemented as an inf ow, using the characteristic boundary conditions of Giles. On the other hand, the top and right boundaries are def ned as outf ow, for which two formulations are compared: Giles, and Poinsot and Lele with σ = 0.25.

p = p ∞ 1 + ε e » -(ln 2) " x 2 +y 2 9 «- ρ = ρ ∞ 1 + ε γ e » -( ln 
As in the previous case §2.1.1, the simulations are done in dimensional form but the results are normalized for validation. The normalization is done using the same scales as §2.1.1.

The results are validated against the non-dimensional analytical solution of the linear Euler equations given in the First Workshop on Benchmark Problems in Computational Aeroacoustics [89]: 

p′ = 1 2α 1 ∞ 0 e -ξ 2 /4α 1 cos(ξt)J 0 (ξη)ξ dξ ρ′ = p′ + e -α 2[ (x-67-Mxt) 2 +(y-67-Myt) 2 ]
where

α 1 = [(ln 2)/9], α 2 = [(ln 2)/25], η = [(x -M x t) 2 + (y -M y t) 2 ]
1/2 and J 0 is a Bessel function of order 0. The MATLAB subroutine used for the previous case §2. [START_REF] Aerotranet | site internet[END_REF].1 has been adapted to this problem.

Figure 2.5 shows the results of non-dimensional density perturbations at different times. The levels ρ′ = (-0.02, 0.01, 0.02, 0.04) of the 2D density contour maps on the left have been selected in accordance to the guidelines of the First Workshop on Benchmark Problems in CAA [89]. On the right, the cross-section of the non-dimensional density distribution along the x-axis is given, as suggested by the benchmark problem solution guideline.

The plots show the results obtained with the outf ow formulation of Poinsot and Lele. The use of Giles characteristic boundary conditions gives identical results. In f gure 2.5(b), where t = 90, the waves are crossing the outf ow boundaries. The contours near the upper corner correspond to the combination of the entropy and the acoustic wave, who are leaving the domain simultaneously. The overall agreement between analytical and numerical solutions is good. At the time t = 120, displayed in f gure 2.5(c), the entropy and vorticity waves have left the domain without ref ections. The acoustic wave which is still inside the computational domain gives good agreement with the reference solution, but some distortion of the wave is observed near the boundaries.

On the right plot of f gure 2.5(b), the waveform along the x-axis shows a general good overlap and a good prediction of the maxima and minima. Only near the outf ow boundary there is a small deviation, in the order of O(10 -3 ) respect to the analytical solution. As proved in the following f gure 2.5(c), this slight deviation does not increase with time nor it expands, it is only convected back without contaminating the rest of the domain, so it can be considered negligible.

Single wall ref ection of an acoustic wave in a uniform f ow

This problem aims to test the wall boundary conditions in an acoustic problem, where the accuracy of the pressure prediction is of high importance. It consists of an acoustic wave convected by a uniform f ow at M = 0.5 that impacts against an horizontal wall located at the south of the perturbation source as shown in f gure 2.6. This test case has been done in collaboration with the University of Leicester, and has been published as an AIAA conference proceedings in Rona et al. [START_REF] Rona | A numerical validation of a high-order finite-difference compact scheme for computational aeroacoustics[END_REF]. This the problem 1, category 4 of the First Workshop on Benchmark Problems in Computational Aeroacoustics [89]. Cartesian grid of 201 × 201 points. The equations solved are the non-linear Euler equations and the initial f ow conditions are:

p = p ∞ 1 + ε e » -(ln 2) " x 2 +(y-25) 2 25 «- ρ = ρ ∞ 1 + ε γ e » -( ln 2) 
"

x 2 +(y-25) 2 25 «- u = u ∞ v = 0
where the reference values are p ∞ = 10 5 Pa, T ∞ = 298K and u ∞ = M c ∞ where c ∞ = γp ∞ /ρ ∞ = 346m/s is the ambient speed of sound, the Mach number is M = 0.5 and ε = 0.01.

Two boundary conditions have been used for the wall: Gloerfelt's boundary conditions, and the ghost cells method with a 2 nd order scheme. For the other boundaries, the non-ref ecting characteristic boundary conditions of Giles have been used. Both solid boundary conditions gave similar results. For clarity, only the results obtained using ghost cells (2 nd order) are shown.

As in the previous sections, the computations are done in dimensional form but the results are normalized for validation. The scales used for the normalization are described in §2.1.1.

The validation has been done against the analytical solution given in the f rst NASA Workshop on Benchmark Problems in CAA [89]:

p′ = ρ′ = 1 2α ∞ 0 e -ξ 2 /4α cos(ξt)[J 0 (ξη) + J 0 (ξζ)]ξ dξ where α = [(ln 2)/25], η = [(x -M t) 2 + (y -25) 2 ] 1/2 , ζ = [(x -M t) 2 + (y + 25) 2 ]
1/2 and J 0 is a Bessel function of order 0.

Figure 2.7 shows the results for density perturbations at the non-dimensional times t = 30, 60 and 120. The levels 0.01 and 0.05 of the two-dimensional density contour maps have been selected in ac- cordance to the guidelines of the workshop. The same guideline has been followed in order to chose the mono-dimensional cross-section along the x = y line.

At the time t = 30 the density pulse has just reached the wall. Figure 2.7(a) proves that the predicted results of the early stages of the ref ected wave give a good agreement with the analytical solution, both in the two-dimensional contour f eld and the density prof le along the x = y line. Figure 2.7(b) shows the ref ected acoustic wave at t = 60, just before it goes through the downstream non-ref ecting computational boundary. The density perturbations cross-section to the right of the contour map shows two similar peaks, the peak at s = 50 is the pulse ref ection from the wall and its shape is similar to the incident wave, which is centered at s ∼ 100. The numerical prediction overlaps the reference analytical solution.

Finally, f gure 2.7(c) shows the acoustic pulse after it has crossed the right computational boundary, corresponding to t = 120. In general the agreement between the predicted and analytical solutions is good, even though there is a small difference next to the non-ref ecting boundary which can be slightly observed in the two-dimensional contour f eld and is highlighted by the waveform. At s > 100 the predicted density perturbation minimum is slightly under-estimated by the numerical method and there is a difference between reference and numerical solutions in the order of O(10 -3 ). The density perturbation maximum is instead well-captured by the numerical prediction.

Single wall ref ection of an acoustic wave in a boundary layer f ow

In order to study the viscous effects in an acoustic problem, the single wall ref ection problem from §2.1.3 is repeated but the whole Navier-Stokes equations are solved. Due to the non-slip condition at the wall a uniform f ow cannot be imposed, and so the propagation of the pulse is done in the presence of a boundary layer f ow. The Mach number is maintained at M = 0.5, and the Reynolds number of the f ow based on the boundary layer thickness at the inf ow is Re δ = 516. The computational domain is square to match the previous test case §2.1.3, but of smaller physical dimensions in order to obtain a laminar f ow, and to keep the Mach number the same as before. To compare the results with the Euler case, the dimensions of the domain (the axis x and y) are re-scaled in order to get a domain of -100 ≤ x ≤ 100 and 0 ≤ y ≤ 200. In this case the grid is equidistant in the x-direction, whereas it is non-uniform in y-direction. The grid is ref ned near the wall, and it contains around 35 points inside the boundary layer. In total there are 290 × 140 points, and ∆x min = 2.5∆y min .

The velocity f eld is initialized with a very thin boundary layer as shown in f gure 2.8(a). The simulation is run until a steady state for all the variables is obtained. After that, an acoustic wave as in §2.1.3 is added, as displayed by f gure 2.8(b). The acoustic pulse is placed at the same non-dimensional distance from the wall as in §2.1.3, which corresponds to 1/8 of the computational domain.

The characteristic boundary conditions of Giles are used at the non-ref ecting boundaries. In addition, a numerical solution of the Blasius similarity equation for a laminar boundary layer is imposed at the inf ow. At the walls, the boundary conditions of Gloerfelt and ghost cells with a 2 nd order scheme are used and compared.

Since there is no analytical solution for this problem, the two numerical predictions are compared, and then they are both compared to the analytical solution for the Euler equations, where the observed differences are justif ed. The computations are performed in dimensional form, and from the resulting values the base boundary layer f ow is subtracted. After that, the results are normalized as in §2.1.1: time by ∆x/c ∞ , density by ερ ∞ /γ, velocity by the sound speed c ∞ and pressure by ερ ∞ c 2 ∞ .

Figure 2.9(a) shows the moment when the pulse f rst reaches the wall. The non-dimensional density contour levels ρ′ = (0.01, 0.05) have been selected as the previous test case §2.1.3, corresponding to the problem 1, category 4 of the First Workshop on Benchmark Problems in CAA [89]. On the left, the results for the two wall boundary conditions are compared, Gloerfelt in green solid line, and the ghost cells in black dashed line. Both results overlap perfectly, giving conf dence on the cross-validation of these numerical predictions. On the right, the results predicted using the Navier-Stokes equations are compared to the Euler analytical solution. In order to plot them together, the axis of the boundary layer results have been re-scaled, and hence the boundary layer thickness has become around δ re-scaled ≈ 13. It is interesting to see that in the region outside the boundary layer, where the viscous effects are not important, both results are exactly the same. On the other hand, inside the boundary layer, where the viscous effects are relevant, there is a slight difference between them.

In f gure 2.9(b), the wave has already been ref ected from the wall, and the incident wave (upper) and the ref ected wave (lower) can be distinguished. The left f gure shows again the comparison between Gloerfelt and ghost cells methods. Still, both of them overlap very well, even next to the wall, where the boundary condition could create some deviations. The right f gure shows the ghost cells results compared to the Euler analytical solution. Here the difference inside the boundary layer is more enhanced. It is easy to see that the Navier-Stokes prediction propagates upstream faster than the Euler case. The reason for this is the speed of propagation of the acoustic wave, which is (uc), that is to say, the difference between the f ow and the sound speed. In the Euler case, there is a uniform f ow propagating at M = 0.5, which means that the acoustic wave propagates at M = 0.5 as well in the whole domain. In the Navier-Stokes case, the velocity near the wall is almost zero, which implies that the acoustic wave in this region will move close to the sound speed. The same phenomenon explains why, in the direction of the f ow, the wave propagates faster in the Euler case than in the Navier-Stokes case. Finally, in f gure 2.9(c) the waves have crossed the non-ref ecting boundaries. The left plot shows the results for both solid boundary conditions, which are perfectly matched. The right plot displays the comparison between Euler and Navier-Stokes, where the differences between the two cases are highlighted. The results for the incident wave (the upper wave in the plot) overlap perfectly each other. On the other hand, even outside the boundary layer, the ref ected wave presents some differences between the two cases. This is the effect that the difference of viscous conditions near the wall have caused in the ref ected wave.

Multiple wall ref ection of an acoustic wave

This is the last test case done in collaboration with the University of Leicester and published as an AIAA conference proceedings in Rona et al. [START_REF] Rona | A numerical validation of a high-order finite-difference compact scheme for computational aeroacoustics[END_REF]. This problem is inspired by the benchmark cases §2.1.1 and §2.1.3. The innovation is the presence of two walls, on the bottom and right boundaries, forming a corner. It is aimed to test the ability of the solid boundary conditions of section §1.5 to handle multiple acoustic wave ref ections. This problem consists on an acoustic pulse located at the center of the domain which impacts against a corner as shown in f gure 2.10. The computational domain is -100 ≤ x ≤ 100, -100 ≤ y ≤ 100, and the spatial discretization is an equidistant Cartesian grid of 201 × 201 points. In this problem there is no incoming f ow, the governing equations are the non-linear Euler equations and the initial f ow conditions are a simplif cation of problem 1, category 3 in [89]:

p = p ∞ 1 + ε e » -(ln 2) " x 2 +y 2 9 «- ρ = ρ ∞ 1 + ε γ e » -(ln 2) " x 2 +y 2 9 «- u = 0 v = 0
where the reference values are p ∞ = 10 5 Pa, T ∞ = 298K and ε = 0.01.

Two boundary conditions have been used for the wall: Gloerfelt's boundary conditions and the 2 nd order ghost cells method. For the other boundaries, the non-ref ecting characteristic boundary conditions of Giles have been used. Both solid boundary conditions gave similar results. For clarity, only the results obtained using 2 nd order ghost cells are shown.

The results have been normalized as for the test case §2.1.1. An analytical solution has been derived by mirroring the solution of the single-wall ref ection problem §2.1.3 about the right wall and by adding the original and the mirrored pressure and density f elds. This gives:

p′ = ρ′ = 1 2α
∞ 0 e -ξ 2 /4α cos(ξt)[J 0 (ξη) + J 0 (ξζ) + J 0 (ξφ) + J 0 (ξµ)]ξ dξ

where α = [(ln 2)/9], η = [x 2 + y 2 ] 1/2 , ζ = [x 2 + (y + 200) 2 ] 1/2 , φ = [(x -200) 2 + y 2 ] 1/2 , µ = [(x -200) 2 + (y + 200) 2 ] 1/
2 and J 0 is a Bessel function of order 0. Figure 2.11 shows the propagation of the density perturbation at the non-dimensional times t = 60, 120 and 180. Contour levels have been selected as the guideline given in the f rst workshop on benchmark problems in CAA [89] for the problem 1, category 3, which are ρ′ = (-0.02, 0.01, 0.02, 0.04). To the right of the contours, the density perturbation distribution along the x-axis at y = 0 is shown. This monodimensional prof le is selected since it has a non-ref ecting boundary on the left and a solid boundary on the right.

At the time t = 60 the acoustic pulse has not reached yet any of the boundaries as seen in f gure 2.11(a). Due to the absence of an incoming f ow, it presents symmetric contour f eld and cross-section prof le. The numerical prediction overlaps the analytical solution, proving the good dispersive and dissipative properties of the numerical scheme in the interior of the computational domain. The density pulse has already impacted against the two walls and has gone through the non-ref ecting boundaries. The impact against the walls has caused local ref ections, which are apart from one-another and behave in a way similar to the previous case §2. 1.3. The agreement between the predicted results and the reference analytical solution is good. In reference to the cross-section f gure, it is important to mention that the right hand side normalized density perturbation features a maximum followed by a minimum, while in f gure 2.11(a) a density perturbation minimum is followed by a maximum. This fact conf rms that this is a ref ection from an incident wave.

The last f gure 2.11(c) shows the density perturbation at the time t = 180, where the ref ected waves from the bottom and right walls have intersected. The wave branch close to the corner results from the combined wall conditions at the corner. As observed in the contour f eld, there is no evidence that such condition generated any spurious numerical feature as the numerical predictions well match the reference solution along this wave branch. Where the waves goes through the non-ref ecting boundaries, there is a small deviation of order O(10 -3 ) between predicted and analytical solutions, as previously observed in f gure 2.7(c). 

Viscous test cases

The following test cases aim the validation of the code in the presence of a viscous f ow. For this reason, low Reynolds number wall-bounded f ows are selected: a boundary layer over a f at plate, and a plane channel f ow. Both conf gurations have been computed using the Navier-Stokes equations in a single block geometry.

Blasius boundary layer

This test case, proposed in the PhD thesis of Gloerfelt [START_REF] Gloerfelt | Bruit rayonne par un ecoulement affleurant une cavite: simulation aeroacoustique directe et application de methodes integrals[END_REF], was f rst implemented by Guaus [START_REF] Guaus | Analyse linéaire des instabilités dans les écoulements incompressibles à parois courbes compliantes[END_REF] during the development of the code. It was done to test the Gloerfelt wall boundary conditions [START_REF] Gloerfelt | Bruit rayonne par un ecoulement affleurant une cavite: simulation aeroacoustique directe et application de methodes integrals[END_REF], which were originally applied over the total f uxes (convective and viscous f uxes). Those results were improved by applying the wall conditions only over the convective f uxes. In this investigation the ghost cells method is tested using the two discretization schemes to calculate the pressure gradient described in §1.5.2: the 4 th order scheme derived for this purpose and a classic 2 nd order scheme.

This problem consists on a boundary layer over a f at plate without any pressure gradient. The f ow is considered compressible with a Mach number M = 0.2. The regime of the f ow is laminar, with a Reynolds number based on the boundary layer thickness at the inf ow Re δ = 516. The velocity is initialized with a numerical solution of the Blasius similarity equation; while pressure and temperature are initialized as homogeneous f elds at p ∞ = 10 5 P a and T ∞ = 298K, and density is computed using the equation of state for ideal gases ρ ∞ = p ∞ /rT ∞ . The computational grid is rectangular with 121 nodes in xand 81 nodes in y-direction. In the f ow direction the mesh is equidistant with an increment ∆x = 2.8 • 10 -6 m. In the normal direction the mesh is stretched near the wall with a 2% of geometric ratio increment to better capture the boundary layer, with a minimum value ∆y min = 1.4 • 10 -6 m which corresponds to y + = 0.27 at the inf ow. The time step is calculated according to the CFL stability criterion described in §1.3.2; for this geometry and for a Courant number of 0.65 it is found to be ∆t = 2.625 • 10 -9 s. The inf ow is located at ≈ 20δ from the origin of the boundary layer, and it extends to ≈ 9δ from the inf ow to the outf ow.

A buffer zone is added after the outf ow of the domain to avoid noise from numerical origin. This buffer zone contains 50 points and it is about 5 times the length of the domain, and consists on a very stretched mesh (with 2.5% of geometric ratio increment) and a f lter proposed by Lele [START_REF] Lele | Compact finite difference schemes with spectral-like resolution[END_REF]. Since there are no large eddies convected downstream, this buffer zone is not required, but it is added in order to test its implementation for future applications in more complex f ows (e.g. in section §2.3).

At the inf ow, a numerical solution of the Blasius similarity equation for a laminar boundary layer is imposed. Furthermore, in order to avoid numerical ref ections, the characteristic boundary conditions of Giles [START_REF] Giles | Non-reflecting boundary conditions for the Euler equations[END_REF][START_REF] Giles | Nonreflecting boundary conditions for Euler equation calculations[END_REF] described in §1.4.1 are used at the inf ow, outf ow and radiation boundaries. Four different boundary conditions (b.c.) have been used at the wall: Gloerfelt b.c. applied over the total f uxes, Gloerfelt b.c. applied over the convective f uxes, 2 nd order ghost cells and 4 th order ghost cells. The simulation is computed until a stationary solution is obtained, which for all cases is after 30000 iterations.

The computed results have been validated with a reference solution (the numerical solution of the 

η = y u ∞ ρ µ(x + x origin )
where x origin is the horizontal coordinate of the origin of the boundary layer. Prof les at different distances from the inf ow, where the analytical solution is imposed, have been checked to observe the inf uence of the non-ref ecting boundary condition. The results obtained with the different wall boundary conditions are compared. Figure 2.12 shows the results obtained with the 2 nd order ghost cells method at several locations: x/δ = 2.5, x/δ = 5.0 and x/δ = 7.5. These results are compared to the reference solution. Streamwise velocity corresponds to f gure 2.12(a), while normal velocity, which is more sensitive to numerical errors, is shown in f gure 2.12(b). All prof les collapse very well with the analytical solution, proving that there is no numerical inf uence from the boundary conditions. Moreover, it proves that pressure is constant through the f eld, i.e. there are no pressure gradients in both xand y-directions. These results are validated with the reference solution, and it is observed that the analytical solution is overlapped by the numerical predictions. Figure 2.13(b) shows the normal velocity prof les at the same location. Normal velocity is more sensitive to pressure f uctuations and numerical errors. In this f gure, it is shown that the Gloerfelt boundary condition applied over the total f uxes presents some discrepancies with respect to the analytical solution. The other three wall boundary conditions collapse very well with the analytical solution.

Poiseuille channel f ow

This problem was implemented during the f rst development of the code [START_REF] Guaus | Analyse linéaire des instabilités dans les écoulements incompressibles à parois courbes compliantes[END_REF], being taken from the PhD thesis of Gloerfelt [START_REF] Gloerfelt | Bruit rayonne par un ecoulement affleurant une cavite: simulation aeroacoustique directe et application de methodes integrals[END_REF] and inspired by a study of Poinsot and Lele [START_REF] Poinsot | Boundary conditions for direct simulations of compressible viscous flows[END_REF]. This case has been used to test, f rstly, the wall boundary conditions, and secondly, the characteristic boundary conditions at the outf ow. As the conf guration of the previous case §2.2.1, the results of the simulation are validated with a reference solution, being in this case the analytical solution for a Poiseuille channel f ow. This test case consists of a Poiseuille channel f ow moving at a Mach number M = 0.1. The Reynolds number based on the half-width of the channel h is Re h = 15, so the f ow is laminar and the viscous effects are important. The streamwise velocity is initialized with an approximation to the analytical solution, normal velocity as zero and pressure and temperature as homogeneous f elds:

u = u ∞ cos π 2 y h 2 v = 0 p = p ∞ T = T ∞
where u ∞ = M c, c is the ambient speed of sound, the initial reference values are p ∞ = 10 5 P a and T ∞ = 298.15K, and density is calculated as

ρ ∞ = p ∞ /rT ∞ .
The channel considered for the study has a length equal to 10 times the half-width of the channel, where h = 6.5 • 10 -6 m. The computational domain is an equidistant grid of 101 × 101 points, with a space increment of ∆x = 6.5 • 10 -7 m and ∆y = 1.3 • 10 -7 m (so ∆x = 5∆y). The time step is calculated according to the stability criterion described in §1.3.2; for this geometry and for a Courant number of 0.65 it is found to be ∆t = 2.44 • 10 -8 s.

Wall boundary conditions

The streamwise velocity and the temperature at the inf ow and outf ow are imposed to be the analytical solution for a Poiseuille f ow, while normal velocity is imposed to be zero. In addition, there is a pressure gradient imposed in the direction of the f ow. Furthermore, the characteristics of Giles described in §1.4.1 are used at the inf ow and outf ow boundaries in order to avoid numerical ref ections. For the wall boundary conditions, Gloerfelt wall boundary conditions and ghost cells with 2 nd and 4 th order approximations are used and compared. The simulation is computed until a stationary solution is obtained, after 20000 iterations.

In order to validate the results the analytical prof les for u velocity and temperature are used. Three different locations are selected, at different distances from the inf ow. The values of velocity are normalized by the freestream mean velocity u ∞ and temperature is normalized by the reference temperature T ∞ . The half-width of the channel h is used to normalize the xand y-coordinates.

The results are shown in f gure 2.14, where it is possible to see the prof les for the three wall boundary conditions. In the case of the u velocity, the agreement between predicted and analytical solutions is very good. On the other hand, the predicted results for the temperature differ from the analytical solution. The location where the error is smaller is at x/h = 10, the outf ow, as shown in f gure 2.14(c). Figures 2.14(a) show the prof les at the center of the channel and f gure 2.14(b) between the center and the outf ow, where the bigger difference compared to the analytical data might be due to the inf uence of the inf ow boundary condition. These results show that the establishment of the temperature prof le is approximately achieved after 10h.

Respect to the different boundary conditions, no difference can be appreciated in the velocity prof les. However, the temperature prof les obtained with Gloerfelt wall boundary conditions are slightly closer to the analytical solution than those from the ghost cells method, both for the 2 nd and 4 th order approximations. Right plots: adimensional temperature profile The pressure gradient has been compared with the analytical solution 3 2
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The results are shown in f gure 2.15(a), where it is observed that all boundary conditions give good agreement with the theoretical gradient.

Results for the normal velocity prof les have been checked and shown at the location x/h = 7.5 in f gure 2.15(b). The analytical solution for the normal velocity in a channel f ow is zero, but numerically an asymmetrical prof le of low-order-magnitude is obtained. For more clarity, only half of the channel is shown in f gure 2.15(b). It is observed that the magnitude of the velocity values obtained with the 

Outf ow boundary conditions

The streamwise velocity and the temperature at the inf ow are imposed to be the analytical solution for a Poiseuille f ow, while normal velocity is imposed to be zero. Giles characteristic boundary conditions are added to avoid ref ections. At the outf ow, the two characteristic formulations described in section §1.4 are used. For the Giles boundary condition, streamwise velocity and the temperature at the outf ow are imposed to be the analytical solution for a Poiseuille f ow. The Poinsot and Lele boundary condition does not need a reference prof le at the outf ow. For both formulations, a pressure gradient is imposed in the direction of the f ow.

At the walls, both the Gloerfelt condition and the ghost cells method are tested. After that, the Gloerfelt boundary condition is selected to study the inf uence of the relaxation parameter σ from equation (1.27). All the simulations are computed during 45000 iterations, in which a stationary solution is obtained.

As before, the computed prof les for u velocity and temperature are used for validation, as well as the pressure gradient. The same adimensional values are utilized: u/u ∞ for velocity, T /T ∞ for temperature, p/p ∞ for pressure and x/h and y/h for the geometrical coordinates.

Firstly the two wall boundary conditions are compared, using the characteristics of Poinsot and Lele with a coeff cient σ = 0.25. This value is chosen as in the article of Poinsot and Lele [START_REF] Poinsot | Boundary conditions for direct simulations of compressible viscous flows[END_REF]. In f gures 2.16(a) and 2.16(b) the two wall boundary conditions are compared. It is clearly shown that Gloerfelt condition gives a velocity prof le much closer to the analytical solution than the ghost cells method, in contrast to the f gures 2.14. In the previous case, where Giles linear characteristics were used at the outf ow, the difference between the two wall treatments was not so pronounced. In that case, a reference prof le is imposed at the outf ow and hence the inf uence of the solid boundaries is smaller. In the formulation of Poinsot and Lele no values are imposed at the outf ow, that is why the effect of the walls on the solution is enhanced. Since the Gloerfelt wall shows better agreement with the analytical solution than the ghost cells, it is selected to perform the study of the relaxation coeff cient σ. Several runs have been performed using different values: σ = 0.25 as in the study by Poinsot and Lele [START_REF] Poinsot | Boundary conditions for direct simulations of compressible viscous flows[END_REF], σ = 0.58 as used by Rudy and Strikwerda [START_REF] Rudy | A nonreflecting outflow boundary condition for subsonic Navier-Stokes calculations[END_REF], and three higher values which allow a larger relaxation σ = 0.75, 1.00, 1.25. These results are compared to the reference solution as well as the prediction obtained using Giles boundary conditions.

Figure 2.17 show the streamwise velocity and temperature prof les for the different values of sigma, at three locations. It is observed that in the interior of the channel, σ = 1.00 gives the most similar result to the Giles prediction, while at the outf ow this equivalence is achieved by σ = 0.75. This statement is valid for both u velocity and temperature. By comparison to the analytical solution, σ = 0.58 gives the best agreement for the velocity prof le. Regarding the temperature prof les, it is observed that the agreement increases with σ, so it is the higher one, σ = 1.25, the one which approaches more the reference solution.

Finally, f gure 2.18 displays the pressure gradient along the centerline of the channel, i.e. y/h = 0. It is diff cult to appreciate in the plot, but σ = 0.25 gives a gradient slightly different from the analytical solution. However, the deviation is not very signif cant since it is extremely small. All the other values of the coeff cient give excellent agreement with the reference gradient, as it did the Giles outf ow boundary.

In summary, regarding the pressure coeff cient, σ = 0.58 gives the best agreement for velocity prof les and no signif cant effect is found for the pressure gradient.

Multi-block test case

All the previous test cases involved single-block geometries. The last step in order to fully validate the code is to compute a problem involving a multi-block geometry. With this aim, the study of a f ow over a surface discontinuity was selected since it is a good preliminary test before simulating a cavity f ow.

Small review

Cavity f ow simulations are very complex mainly due to the two corners. The f rst one presents numerical diff culties due to the sudden f ow separation and the creation of a recirculation zone, which can lead to numerical diffusion. The second one receives the impact of the f ow which separates again from the horizontal wall creating another recirculation bubble.

The implementation of a backward-facing-step is the f rst test of the multi-block treatment and multiblock derivation. At the same time, the f rst corner is investigated in isolation, without the diff culties of having a recirculating f ow impacting against a second corner. Flows over a step have been widely used to study f ow separation and numerous publications can be found in the literature. The length of the primary recirculation region is often used for comparison between different numerical and experimental studies.

In the case of a backward-facing-step with an incoming boundary layer the f ow separates at the leading edge and creates a recirculation zone, whose length depends on the Reynolds number, f ow regime (laminar or turbulent) and the geometry. Several authors have investigated this f ow with a turbulent boundary layer [START_REF] Kang | Suboptimal feedback control of turbulent flow over a backward-facing step[END_REF][START_REF] Kostas | Particle image velocimetry measurements of a backward-facing step flow[END_REF][START_REF] Le | Direct numerical simulation of turbulent flow over a backwardfacing-step[END_REF][START_REF] Spazzini | Unsteady behavior of back-facing step flow[END_REF].

Another common step conf guration is a laminar channel f ow with a sudden expansion. This problem has been commonly used in the literature to evaluate the performance of numerical codes, and hence several numerical and experimental results are available for validation [9,[START_REF] Gartling | A test problem for outflow boundary conditions -flow over a backward-facingstep[END_REF][START_REF] Kaiktsis | Onset of three-dimensionality, equilibria, and early transition in flow over a backward-facing-step[END_REF][START_REF] Kim | Application of a fractional-step method to incompressible navier-stokes equation[END_REF]. In this problem, when the channel f ow reaches the expansion section, the velocity is suddenly reduced and hence there is a pressure increase. Fluid particles near the lower wall create a recirculation bubble downstream from the step, and one or several small recirculation zones are created at the upper wall.

The f nal aim of this investigation is the simulation of a cavity f ow with an incoming boundary layer. As a consequence, in order to match the characteristics of the cavity f ow, an incoming laminar boundary layer upstream from the step is desired. The effects of turbulence are out of the scope of this study, and the simulation of an expansion inside a channel presents some extra diff culties due to the numerical instabilities created inside the asymmetric bounded geometry.

After an extensive literature research, only two publications concerning f ows over a backward-facingstep with an incoming laminar boundary layer were found. They are a three-dimensional (3D) numerical investigation by Kaltenbach et al. [START_REF] Kaltenbach | Direct numerical simulation of flow separation behind a swept, rearward-facing step at Re=3000[END_REF] and an experimental and numerical study by Wengle et al. [START_REF] Wengle | The manipulated transitional backward-facing step flow: an experimental and direct numerical simulation investigation[END_REF], who used the same test case. As a consequence, the f ow and geometric parameters are selected accordingly to these two studies.

Backward-facing-step with an incoming boundary layer

This study consists on a thin boundary layer which suddenly faces a backward-facing-step, getting separated from the horizontal wall and creating a recirculation zone. The streamwise velocity f eld is initialized as a Blasius boundary layer as the problem from §2.2.1, with a Mach number M = 0.1. The Reynolds number based on the step height D and inlet freestream velocity is Re D = 2900, and based on the boundary layer thickness at the step is Re δ = 580, and the ratio between the boundary layer thickness δ and the step height is δ/D = 0.2. Normal velocity is initialized as zero, pressure as an homogeneous f eld at p ∞ = 10 5 P a and density as an homogeneous f eld calculated from ρ ∞ = p ∞ /rT ∞ , where

T ∞ = 298K.
The computational domain, shown in f gure 2.19, consists on an inlet section of 2D upstream from the step, a section of 20D downstream of the step and a buffer zone. The expansion ratio height outf low /height inf low is 1.09, where the inlet height is 11D. The grid is not equidistant, it is ref ned near the step in both the vertical and horizontal directions and close to the walls.

The domain is composed of 3 blocks: the inlet x ≤ 2 is block 1, and for x ≥ 2 and above y = 0 is block 2 and below y = 0 is block 3. Block 1 is composed of 61 × 200 points with a 2% of geometric ratio increment in both directions. Block 2 contains 387 × 200 points, and the geometric ratio increments are 0.7% and 2% in xand y-directions respectively. The grid in the f ow direction of block 3 is as block 2, and in the normal direction the number of points is 100 with 2.5% of geometric ratio increment.

The buffer zone is constructed in an equivalent way to the problem §2.2.1, i.e. a stretched mesh with a 2.5% geometric ratio increment and a f lter proposed by Lele [START_REF] Lele | Compact finite difference schemes with spectral-like resolution[END_REF]. It contains 50 points in the f ow direction.

The inf ow and radiation boundary conditions are the characteristics of Giles. Moreover, a numerical solution of the Blasius similarity equation for a laminar boundary layer is imposed at the inf ow. Since the mean velocity prof les at the outf ow are unknown, the characteristic formulation of Poinsot and Lele with σ = 1 is used at the outf ow. The 4 th order ghost cells method has been used for the solid boundaries, which are considered isothermal and non-slip. The time step is calculated according to the stability criterion described in §1.3.2; for this simulation a Courant number of 0.65 is used. The simulation is computed for a non-dimensional time of t ≃ 450D/u ∞ , where u ∞ is the mean freestream velocity in x-direction, calculated as u ∞ = M c ∞ , with c ∞ being the ambient speed of sound calculated as c ∞ = γp ∞ /ρ ∞ . A residence time of tr ≃ 220D/u ∞ is necessary to get a stationary solution and this data is not used for statistics.

The instantaneous vorticity contours ω during one period T are shown in f gure 2.20, where vorticity has been normalized by u ∞ /D and the absolute value has been taken. The incoming boundary layer separates at the leading edge forming a primary recirculating zone, and a smaller secondary vortex at the corner. The primary vortex becomes larger and larger, until it detaches from the leading edge and it is convected downstream. At that moment, the secondary vortex is attached to the incoming boundary layer, becoming the primary vortex and a new one is created at the corner, completing the period.

These results, however, cannot be validated with the studies of Kaltenbach et al. [START_REF] Kaltenbach | Direct numerical simulation of flow separation behind a swept, rearward-facing step at Re=3000[END_REF] and Wengle et al. [START_REF] Wengle | The manipulated transitional backward-facing step flow: an experimental and direct numerical simulation investigation[END_REF]. The former consists of experimental and 3D DNS simulations, and the latter is a 3D numerical investigation. Consequently, both of them involve three-dimensional effects which cannot be compared with the present 2D computation. Both publications report a free shear layer emanating from the leading edge, which for a long distance divides a turbulent separation region below and a non-turbulent above. Finally, the shear layer undergoes transition to turbulence prior to re-attachment to the horizontal wall.

It is for this reason that another 2D numerical simulation, using the commercial software FLUENT, has been performed. Numerical Simulation of low-order accuracy of the incompressible Navier-Stokes equations has been used. The computational domain for this case is of the same size as the high-orderscheme DNS, with a grid ref ned in y-direction near the walls and in the shear layer, while the grid in x-direction is equidistant. In total there are around 165000 points, in which the step is discretized with 30 points. The inf ow is def ned as a polynomial approximation of a laminar boundary layer [START_REF] Gloerfelt | Bruit rayonne par un ecoulement affleurant une cavite: simulation aeroacoustique directe et application de methodes integrals[END_REF]:

u(y) = u ∞ y δ 2 -2 y δ 2 + y δ 3 (2.1)
where u ∞ is the freestream velocity and δ is the boundary layer thickness at each streamwise position.

The results have been normalized in order to be compared to the compressible DNS results, and they are shown in f gure 2.21. It is seen that the agreement between both numerical predictions is very good.

To further cross-validate the results, a time history of the vorticity at (x, y) = (3D, 0) has been recorded to f nd the frequency of oscillation. The results of the Fast Fourier Transform (FFT) of the adimensional vorticity are displayed in f gure 2.22. As shown, the predicted frequencies of oscillation are St D = f D/u ∞ = 0.068 from the DNS and St D = 0.058 from FLUENT. It must be noted that the FLUENT results are much less accurate, and the FFT has been done using a less number of points, which might explain the slight difference of values. As it is to be described in chapter §3, cavity f ows present two modes of oscillation: shear layer mode, and wake mode. The presented f ow over a backward-facing-step behaves like a cavity f ow on wake mode: creating large vortices downstream from the step, which become larger and larger and separate from the incoming boundary layer. Cavity f ows on wake mode at low Mach number have been reported to oscillate at a Strouhal number St D = 0.064 [START_REF] Rowley | On self-sustained oscillations in twodimensional compressible flow over rectangular cavities[END_REF], giving good agreement with the obtained DNS results. This fact conf rms that they show the same phenomena, and it validates the results for the backward-facing-step.

Furthermore, as it is to be discussed in chapter §3, the wake mode of a cavity is extremely diff cult to observe in experiments and 3D simulations, which tend to lead to a shear layer mode. This might be the reason why the studies of Kaltenbach et al. [START_REF] Kaltenbach | Direct numerical simulation of flow separation behind a swept, rearward-facing step at Re=3000[END_REF] and Wengle et al. [START_REF] Wengle | The manipulated transitional backward-facing step flow: an experimental and direct numerical simulation investigation[END_REF] report different f ow physics than the present 2D investigation.

Conclusions

In this chapter several test cases have been performed in order to validate different parts of the code.

The non-dispersive and non-dissipative properties of the scheme are good, as proved by the aeroacoustic test cases §2.1.1, §2.1.2, §2.1.3 and §2.1.5. In all of them the results in the interior points perfectly overlap the analytical solutions, even with the waves propagating with a certain angle respect to the Cartesian grid. No extra f ltering is needed.

The non-ref ecting boundary conditions have been tested in problems §2.1.1, §2.1.2 and §2.2.2. The characteristic boundary conditions of Giles have been found to give very good results when the waves cross the boundaries perpendicularly ( §2.1.1), and present only small deviations when there is a tangential mean f ow ( §2.1.2). The asymptotic boundary conditions of Tam and Dong have been used only in the f rst problem §2.1.1, for which the results obtained are identical to those from the characteristic formulation.

The characteristic formulation of Poinsot and Lele gives the same results as the method of Giles in the aeroacoustic problems §2.1.1 and §2.1.2. The channel f ow in §2.2.2 has been used to study the inf uence of the relaxation coeff cient σ, where it is found that σ = 0.58 gives the best agreement for velocity prof les and no signif cant effect is found for the pressure gradient. The effectiveness of the boundary condition is validated, but a separate investigation of σ is required for each particular case.

The solid boundary conditions have been tested in §2.1.3, §2.1.4 and §2.1.5 for aeroacoustic applications. Both formulations, Gloerfelt and ghost cells (with a 2 nd and 4 th order schemes), have been validated, since all the results match very well with the analytical solutions. For the test case §2.1.4 there is no reference solution, but the results have been cross-validated and the differences observed due to the viscosity effects have been physically explained. Moreover, the multiple wall ref ection in problem §2.1.5 shows the good performance of the corner treatment.

The viscous test cases §2.2.1 and §2.2.2 have been used to test the effectiveness of the wall boundary conditions in very low Reynolds number f ows. Gloerfelt boundary conditions are designed to be applied over the convective f uxes, and it has been proved in §2.2.1 that they do give better accuracy than when they are applied over the total f uxes. Both kinds of boundary conditions (Gloerfelt and ghost cells) give satisfactory results. Only in the case of a channel, where the f ow is enclosed and there is no radiation boundary, the 4 th order non-centered scheme used in the ghost cells method creates oscillations of a very small magnitude in the normal velocity.

For the simulation of a cavity f ow, the Giles formulation is selected for the inf ow and radiation boundaries, and the method of Poinsot and Lele is to be used at the outf ow. The ghost cells boundary condition with a 4 th order scheme is chosen for the walls. All these conditions are integrated in a multi-block problem §2.3.2, consisting of a f ow over a backward-facing-step. The results show a good prediction of the instantaneous f ow f eld as well as the frequency of oscillation. Consequently, the numerical method is suitable for the simulation of unsteady f ows over surface discontinuities, such as a cavity.

Chapter 3

Cavity f ow simulation analysis

Ecoulements de cavité : résultats L'augmentation du transport aérien combiné à une préoccupation grandissante pour la préservation de l'environnement ont suscité l'intérêt pour les études aéroacoustiques des écoulements instationnaires autour des avions, ces écoulements produisant à la fois de fortes forces de trainées ainsi que de forts bruits aérodynamiques. Dans les configurations de type cavité, présentes dans de nombreuses applications industrielles, le développement de stratégies de contrôle d'écoulement pour la réduction de la trainée et du bruit est tout particulièrement intéressant. Or, dans la simulation numérique de ce type d'écoulement au-dessus de cavité, l'influence de la condition initiale a été peu étudiée mais pourrait jouer un rôle important quant aux résultats numériques obtenus. L'objectif de ce chapitre est d'étudier l'effet de cette condition initiale dans des simulations d'écoulement bidimensionnel au-dessus de cavités rectangulaires. Nous nous sommes tout particulièrement intéressés aux modes d'oscillation de l'écoulement, que l'on doit bien connaître si l'on veut plus tard contrôler l'écoulement.

Ecoulements de cavité

Les oscillations de l'écoulement au-dessus d'une cavité apparaissent au delà de nombres critiques de

Mach M et de longueur adimensionnelle de la cavité L/θ, où θ est l'épaisseur de quantité de mouvement de la couche limite à l'entrée de la cavité. [START_REF] Rockwell | Review -self-sustaining oscillations of flow past cavities[END_REF] le nomme le 'fluid-resonant mode'.

Le mode d'oscillation de type 'couche de cisaillement', appelé aussi mode de Rossiter, se caractérise par une séparation de la couche limite au premier coin supérieur de la cavité formant une couche de cisaillement oscillante qui impacte sur le mur vertical de la cavité en aval. Pour des nombres de Mach subsoniques suffisamment élevés, l'interaction entre les petites instabilités dans la couche de cisaillement avec la marche ascendante de la cavité génère des ondes de pression : une partie de ces ondes se propage vers l'amont, renforc ¸ant ainsi le lâcher tourbillonnaire dans le couche de cisaillement, et une autre partie s'échappe de la cavité en étant perc ¸ue au loin comme du bruit. Ce mécanisme est un mécanisme de résonance aéroacoustique auto-entretenu dans lequel les modes d'oscillation dépendent du nombre de Mach. Dans leur article de revue, Rockwell et Naudascher

Pour des nombres de Mach plus bas, les oscillations de l'écoulement sont dûes à l'instabilité de la couche de cisaillement au-dessus de la cavité, et les modes d'oscillation ne dépendent alors pas du nombre de Mach. Ce mécanisme est appelé un 'fluid-dynamic mode' par Rockwell et Naudascher [START_REF] Rockwell | Review -self-sustaining oscillations of flow past cavities[END_REF].

Quand les paramètres L/D, M , Re et/ou L/θ augmentent, l'écoulement n'oscille alors plus suivant un mode de couche de cisaillement mais suivant un mode de 'sillage'. Le mode de sillage se caractérise par le ré-attachement de l'écoulement à la paroi du fond de la cavité, et par une forte augmentation de la trainée. Des tourbillons de grande taille (environ la même taille que la hauteur de la cavité) sont créés au coin supérieur le plus en amont de la cavité, et éjectés en aval de la cavité. Ce lâcher tourbillonaire est très similaire à celui produit à l'arrière d'un culot, d'où le terme de sillage. C'est un phénomène auto-entretenu où la fréquence d'oscillation est pratiquement indépendante du nombre de Mach [START_REF] Rowley | On self-sustained oscillations in twodimensional compressible flow over rectangular cavities[END_REF], démontrant ainsi son caractère hydrodynamique et non de résonance aéroacoustique.

Les cavités peuvent être qualifiées de profondes, 'deep', ou peu profondes, 'shallow', suivant leur rapport largeur sur profondeur L/D. Rossiter [START_REF] Rossiter | Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[END_REF] définit comme profondes les cavités pour lesquelles L/D < 4, et peu profondes celles pour lesquelles L/D > 4, tandis que Sarohia [START_REF] Sarohia | Experimental investigation of oscillations in flows over shallow cavities[END_REF] utilise lui le seuil limite de 1 comme critère de discrimination des cavités. Etant donné que dans le cas subsonique les cavités avec L/D < 4 oscillent en mode couche de cisaillement, tandis que celles avec L/D > 4 peuvent osciller soit en mode couche de cisaillement soit en mode de sillage, c'est le critère de Rossiter que nous utiliserons. [START_REF] Bres | Numerical simulations of three dimensional instabilities in cavity flows[END_REF][START_REF] Gloerfelt | Compressible POD/Galerkin reduced-order model of self-sustained oscillations in a cavity[END_REF][START_REF] Rowley | On self-sustained oscillations in twodimensional compressible flow over rectangular cavities[END_REF][START_REF] Rowley | Cavity flow control simulations and experiments[END_REF], et qui consiste à simuler un écoulement de couche limite arrivant au-dessus d'une cavité profonde de rapport largeur sur profondeur L/D = 2. L'écoulement est compressible de nombre de Mach M = 0.6, son régime est laminaire avec un nombre de Reynolds basé sur la profondeur de cavité de Re D ≈ 1500.

Validation

La méthode numérique a été validée en reproduisant un cas test étudié par plusieurs auteurs

Cette configuration oscille en mode couche de cisaillement. La figure 3.9 montre les iso-contours de vorticité instantannée à deux instants différents de la période d'oscillation. La figure 3.10(a) représente quant à elle les iso-contours de dilation, et montre que la propagation des ondes acoustiques se fait dans une direction faisant un angle de 135 • par rapport à la direction aval. Ces résultats sont en bon accord avec ceux de Rowley et al. [START_REF] Rowley | Cavity flow control simulations and experiments[END_REF][START_REF] Rowley | On self-sustained oscillations in twodimensional compressible flow over rectangular cavities[END_REF].

Un maximum d'intensité acoustique de 154dB a été trouvé au voisinage du côté aval de la cavité, ce qui est en bon accord avec les résultats de Brès [21]. L'écoulement oscille à des nombres de Strouhal de

St 1 = f 1 L/u ∞ = 0.39 et St 2 = f 2 L/u ∞ = 0.

75, ce qui correspond aux modes de la formule de

Rossiter [START_REF] Rossiter | Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[END_REF] de l'équation 3.1, ainsi qu'aux prédictions de Gloerfelt [START_REF] Gloerfelt | Compressible POD/Galerkin reduced-order model of self-sustained oscillations in a cavity[END_REF].

Résultats pour une cavité profonde

Deux configurations différentes ont ensuite été sélectionnées afin d'étudier l'influence des conditions initiales : une cavité profonde et une autre peu profonde. Pour chacune de ces configurations, différentes conditions initiales ont été testées afin d'observer leur influence sur le changement de mode d'oscillation.

La première partie de cette étude concerne une cavité profonde de rapport largeur sur profondeur de L/D = 2 et à nombre de Mach M = 0.6. Les écoulements laminaires au-dessus des cavités profondes oscillent en mode de couche de cisaillement, mais il y a désaccord entre les auteurs sur le mode dominant. La figure 3.13 montre que l'amplitude des modes d'oscillation change dans le temps. Au début de la simulation nous trouvons deux modes de Rossiter (St 1 et St 2 ), mais ensuite l'amplitude du premier mode décroît jusqu'à complètement disparaître.

La vitesse d'écoulement à l'intérieur de la cavité est initialisée à zéro, et cinq conditions initiales différentes ont été implémentées au-dessus de la cavité : écoulement de couche limite de Blasius d'épaisseur δ croissante, écoulement de couche limite de Blasius d'épaisseur δ constante, approximation polynomiale d'une couche limite, écoulement uniforme de vitesse u ∞ , et enfin vitesse initiale nulle. Dans tous les cas nous convergeons vers la même fréquence d'oscillation correspondant au second mode de Rossiter. Cependant, avec la dernière condition initiale (vitesse initiale nulle), c'est le premier mode de Rossiter qui domine au début de la simulation. Nous avons également observé que la directivité de la radiation acoustique était plus prononcée quand le mode dominant est le second mode de Rossiter. Quant à l'intensité acoustique, la condition initiale ne semble avoir aucun effet sur elle.

Résultats pour une cavité peu profonde

La cavité peu profonde choisie pour cette étude a un rapport largeur sur profondeur de L/D = 4 et l'écoulement est à faible nombre de Mach M = 0.15. Pour cette configuration Rowley et al. [START_REF] Rowley | On self-sustained oscillations in twodimensional compressible flow over rectangular cavities[END_REF] ont trouvé une oscillation en mode de couche de cisaillement pour des nombres de Mach inférieur à 0.3 quand L/θ = 102, tandis que Larsson et al. [START_REF] Larsson | Aero acoustic investigation of an open cavity at low mach number[END_REF] ont trouvé une oscillation en mode de sillage pour les mêmes conditions d'écoulement et de géométrie pour un nombre de Mach de 0.15.

Ces deux études ont été réalisées par simulation numérique directe des équations bidimensionnelles compressibles de Navier-Stokes, en utilisant des schémas d'ordre élevé et des conditions aux limites non réfléchissantes. La seule différence apparente entre les deux simulations est la condition initiale. Rowley et al. a initialisé le champ de vitesse par un écoulement de couche limite de Blasius au-dessus de la cavité et nul à l'intérieur de la cavité [151], tandis que Larsson et al. a initialisé à zéro la totalité du champ d'écoulement (communication privé de l'auteur).

Nous avons donc considéré trois types de conditions initiales au-dessus de la cavité : écoulement uniforme, écoulement nul et écoulement de couche limite de Blasius. La première condition initiale (écoulement uniforme) conduit à un mode de couche de cisaillement oscillant suivant le second mode de Rossiter. La seconde condition initiale (écoulement nul) conduit à un mode de sillage, où le nombre de Strouhal est St D = f D/u ∞ = 0.061, la même valeur que celle trouvée par Larsson et al. [START_REF] Larsson | Aero acoustic investigation of an open cavity at low mach number[END_REF]. La dernière condition initiale (écoulement de couche limite) conduit à un mode de couche de cisaillement avec une modulation de basse fréquence.

Plusieurs simulations ont été réalisées en modifiant le nombre de Mach ou l'épaisseur de couche limite. Les résultats suggèrent que quand le nombre de Mach ou L/θ augmente l'ambiguité concernant le mode d'oscillation disparaît avec la dépendance de l'écoulement à la condition initiale.

Conclusions

Différentes configurations d'écoulement au-dessus d'une cavité ont été simulées. Pour les cavités profondes, les résultats de cette étude ainsi que d'études précédentes montrent que le mode dominant de l'oscillation de la couche de cisaillement peut être difficile à prédire. Suivant la condition intiale et le temps de simulation, le mode dominant trouvé est soit le premier soit le second mode de Rossiter.

Ceci suggère que pour le contrôle de ce type d'écoulement les fréquences ciblées devraient être les deux premiers modes de Rossiter, la focalisation sur la suppression/diminution d'un seul d'entre eux pouvant sans doute conduire à l'augmentation en amplitude de l'autre.

Introduction

The unsteady f ow over a surface cut-off produces the emission of acoustic waves. Flow control strategies for noise and drag reduction are being developed, especially in wall-bounded conf gurations with an industrial application such as cavities.

At the beginning of this chapter a literature review of cavity f ow physics is given ( §3.1), with a particular emphasis to shear layer and wake mode oscillations. Aeroacoustics and three-dimensional effects are also discussed.

It is observed that the inf uence of the initial condition is an issue to which has been given little attention in previous studies, but which might play an important role in the numerical results found for the cavity f ow oscillations. The objective of this chapter is to investigate the effect of the initial condition in 2D numerical simulations, relating the results to other 2D and 3D numerical studies as well as experimental results. The investigation is mainly focused on the oscillation modes, since they are of special interest for future applications of f ow control. Due to the importance of noise emission from cavities in the aeronautical and automotive industries, the aeroacoustics of rectangular cavities is also discussed.

A test case from the literature is repeated in order to validate the numerical method, boundary conditions and grid ( §3.2). After that, the inf uence of the initial condition on DNS simulations of laminar f ows over cavities is addressed.

For this aim, two different conf gurations are selected: a cavity of L/D = 2 and moderate Mach number M = 0.6, clearly oscillating in shear layer mode ( §3.3); and a cavity of L/D = 4 and low Mach number M = 0.15, whose results respect to the f ow regime are contradictory ( §3.4). For each conf guration different initial conditions are used, keeping all the other parameters constant, in order to observe the changes in oscillation modes due to the initial condition. Part of these results have been submitted as an article to Computers and Fluids [START_REF] Moret-Gabarro | Shear layer and wake mode dependance on numerical initial conditions in two-dimensional compressible cavity flows[END_REF].

The physics of cavity f ows

Cavity f ows are very complex even though the geometry is very simple. They have been largely studied from the 50's, experimentally [START_REF] Gharib | The effect of flow oscillations on cavity drag[END_REF][START_REF] Rossiter | Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[END_REF], theoretically [START_REF] Howe | cavity and aperture tones at very low mach numbers[END_REF][START_REF] Tam | On the tones and pressure oscillations induced by flow over rectangular cavities[END_REF] and by numerical simulations [START_REF] Rowley | On self-sustained oscillations in twodimensional compressible flow over rectangular cavities[END_REF][START_REF] Shieh | Comparison of two-and three-dimensional turbulent cavity flows[END_REF]. Cavities are often referred as being deep or shallow, where the length-to-depth ratio L/D is used as a cutoff. Rossiter [START_REF] Rossiter | Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[END_REF] def nes deep cavities as those with L/D < 4 while shallow cavities have L/D > 4, whereas according to Sarohia [START_REF] Sarohia | Experimental investigation of oscillations in flows over shallow cavities[END_REF] the cut-off is 1.

There is a good agreement between numerical and experimental studies concerning cavities with L/D < 4, which show that they oscillate in shear layer mode (see, for example, the studies cited in tables 3.6 and 3.7 at the appendix of this chapter). On the other hand, results of cavities with L/D ≥ 4 are ambiguous, since they oscillate in shear layer or wake mode depending on a wide range of parameters, as shown in table 3.8 (appendix of this chapter). It is for this reason that the cut-off of 4 used by Rossiter to def ne deep or shallow cavity is preferred for this work. The subsonic cavity f ows can be classif ed into non-resonant cavities, cavities oscillating in shearlayer mode, and cavities oscillating in wake mode, as illustrated in f gure 3.2.

Classif cation of cavity f ows

Non-resonant cavities Grace et al. [START_REF] Grace | Experimental investigation of the flow characteristics within a shallow wall cavity for both laminar and turbulent upstream boundary layers[END_REF] compared experimentally a non-resonant cavity of L/D = 4

with a laminar and a turbulent incoming boundary layer at very low Mach number. It is shown by the streamlines that the turbulent case presents a single vortex, while in the laminar case there is a main vortex localized next to the trailing edge, and a smaller vortex, counter-rotating, at the corner of the upstream wall as shown in f gure 3.2(a). On the other hand, Ukeiley and Murray [START_REF] Ukeiley | Velocity and surface pressure measurements in an open cavity[END_REF] observed a similar counter-rotating vortex near the leading wall for a turbulent f ow at M = 0.17 over a non-resonant cavity of L/D = 5.16. Hassan et al. [START_REF] Hassan | Non-oscillating/oscillating shear layer over a large deep cavity at low-subsonic speeds[END_REF] investigated by PIV experiments a deep cavity of L/D = 0.2 with an incoming turbulent boundary layer at 5 m/s, and found it to be non-resonant. Nonetheless, vortical structures are identif ed in the shear layer which are convected downstream and ejected over the trailing edge.

Shear-layer mode

The shear layer mode, also called Rossiter mode and illustrated in f gure 3.2(b), is characterized by an incoming boundary layer which separates at the leading edge of the cavity forming an oscillating shear layer which impacts at the downstream vertical wall. At high subsonic Mach numbers the interaction of the small instabilities in the shear layer with the forwardfacing-step generate pressure waves: part of them are propagated upstream and reinforce the vortex shedding in the shear layer, and another part escape the domain being perceived far-f eld as noise.

It is a self-sustained, f ow-acoustic resonance mechanism in which the oscillation modes depend on the Mach number. This mechanism is referred to as f uid-resonant mode in the review done by Rockwell and Naudascher [START_REF] Rockwell | Review -self-sustaining oscillations of flow past cavities[END_REF].

For lower Mach numbers, the oscillations of the f ow are due to the instability of the shear layer spanning over the cavity, in which there is a periodic inf ow and outf ow. This mechanism is described as a f uid-dynamic mode by Rockwell and Naudascher [START_REF] Rockwell | Review -self-sustaining oscillations of flow past cavities[END_REF], and the oscillation modes do not depend on the Mach number.

There is a third regime described in the review by Rockwell and Naudascher [START_REF] Rockwell | Review -self-sustaining oscillations of flow past cavities[END_REF], called f uidelastic mode, in which the oscillations are due to the elastic displacement of a solid boundary. This mode might be found, for example, when one part of the cavity is being actuated. This mode regime has attracted little attention and there are only a few studies available. For example, Cody et al. [START_REF] Cody | Challenges of investigating fluid-elastic lockin of a shallow cavity and a cantilevered beam at low mach numbers[END_REF] performed an experimental investigation to study the f uid-elastic lock-in of a shallow cavity, and they found that it is indeed diff cult to achieve.

Wake mode When the parameters L/D, M , Re and/or L/θ increase, the f ow no longer oscillates in shear layer mode but in wake mode. The wake mode is characterized by the reattachment of the f ow at the bottom wall of the cavity as displayed in f gure 3.2(c) and by a high increase of the drag. Large scale vortices (about the size of the cavity depth) are created at the leading edge and ejected downstream from the cavity. The shedding of vortices resembles those behind a bluff body, therefore its name. The system is self-sustained and the oscillation frequency becomes nearly independent of the Mach number [START_REF] Rowley | On self-sustained oscillations in twodimensional compressible flow over rectangular cavities[END_REF], showing that it is of hydrodynamic nature and not a f ow-acoustic resonant mechanism.

For transonic and supersonic f ows where shocks form above the cavity another classif cation exists: open, closed, transitionally open, and transitionally closed [START_REF] Grace | An overview of computational aeroacoustics techniques applied to cavity noise prediction[END_REF]. In open cavities the shear layer spanning over the cavity reattaches at the downstream wall, like in the shear-layer mode. In closed cavities the shear layer reattaches to the bottom wall, and there is a secondary separation before reaching the downstream wall. Transitionally closed cavities present one single shock wave which is a coalescence of the impingement shock and the exit shock. Finally, in transitionally open cavities there is a series of expansion and compression wavelets.

The cut-off between open and closed cavities is not clearly def ned. Plentovich et al. [START_REF] Plentovich | Experimental cavity pressure measurements at subsonic and transonic speeds[END_REF] and Tracy and Plentovich [START_REF] Tracy | Cavity unsteady-pressure measurements at subsonic and transonic speeds[END_REF] investigated experimentally subsonic and transonic turbulent f ows from M = 0.2 to M = 0.95 for cavities with 1 ≤ L/D ≤ 17. By static pressure measurements it was found that the transition between non-oscillating and open cavity occurs for L/D ratios varying from 6 to 8, and from open to closed cavities from 9 to 15, depending on the f ow and the Mach number [START_REF] Plentovich | Experimental cavity pressure measurements at subsonic and transonic speeds[END_REF]. From the unsteady pressure measurements it was concluded that open and transitional cavities are always resonant, but closed cavities might be resonant or not [START_REF] Tracy | Cavity unsteady-pressure measurements at subsonic and transonic speeds[END_REF].

Shear layer mode

In the pioneer experimental work of Krishnamurty [START_REF] Krishnamurty | Sound radiation from surface cutouts in high speed flows[END_REF] a cavity with L/D = 2 was investigated by hot-wire measurements and the Schlieren technique. Laminar and turbulent transonic f ows ranging from M = 0.7 to M = 0.95 were considered, and the results show that the laminar cases oscillated at a single frequency, while the turbulent cases presented two dominant frequencies.

Rossiter [START_REF] Rossiter | Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[END_REF] performed an experimental investigation involving a wide range of Mach numbers (0.4 ≤ M ≤ 1.2) and cavity length-to-depth ratios (1 ≤ L/D ≤ 10). From the obtained results and the idea of a feedback cycle for the cavity, Rossiter derived an empirical formula to predict the oscillation frequency:

St n = f n L u ∞ = n -α M + 1 κ , n = 1, 2, ... (3.1)
where St n is the Strouhal number of the mode n corresponding to the frequency f n , u ∞ is the mean f ow velocity, L is the cavity length, M is the Mach number and α and κ are empirical parameters, def ned experimentally by Rossiter as α = 0.25 and κ = 0.57.

Tam and Block [START_REF] Tam | On the tones and pressure oscillations induced by flow over rectangular cavities[END_REF] proposed an alternative model in which the f nite shear layer effects and the acoustic ref ections from the bottom and upstream wall were taken into account. According to their description of the acoustic wave generation process, during the downward motion of the cycle there is an inf ow of external f uid into the cavity, creating a compression wave which is propagated in all directions.

On the other hand, during the upward motion the shear layer shields the trailing edge from the external f ow and no pressure waves are emitted.

Tam and Block validated their alternative formula against experimental data for Mach number f ows from M = 0.05 to M = 0.4. The results show a very good agreement for Mach numbers greater than 0.2. Also the Rossiter formula has been shown to provide better agreement for high Mach number f ows [START_REF] Tam | The acoustic modes of a two-dimensional rectangular cavity[END_REF], when the f uid-resonant mode is present. Howe [START_REF] Howe | cavity and aperture tones at very low mach numbers[END_REF] studied theoretically very low Mach number f ows in order to cover this range.

Experimental and numerical results from the past years show, in general, good agreement with the Rossiter formula for the oscillation modes. However, the formula does not predict which is the dominant mode, and the results concerning this point are still ambiguous. Rossiter [START_REF] Rossiter | Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[END_REF] found that generally in deep cavities there is one peak much larger than others, showing that a periodic component predominates, while shallow cavities present two or more peaks, suggesting that the random component is more important.

Brès and Colonius [START_REF] Bres | Three-dimensional instabilities in compressible flows over open cavities[END_REF] performed a wide range of numerical simulations using 2D DNS including cavities of L/D = 1, 2, 4, with laminar subsonic f ows at 0.2 ≤ M ≤ 0.6 and several L/θ, f nding that, in general, higher Rossiter modes are found at higher Mach numbers and L/θ ratio. Previous results reported by Rowley et al. [START_REF] Rowley | On self-sustained oscillations in twodimensional compressible flow over rectangular cavities[END_REF], who also performed 2D DNS simulations in similar conf gurations, agree that higher Mach number f ows present a higher dominant mode.

Results from experiments and numerical simulations of a ducted cavity have suggested that the existence of an upper wall might create ref ections which produce an acoustic coupling, promoting an amplif cation of the modes or the harmonics. This fact was observed in the wind tunnel experiments performed by Forestier et al. [START_REF] Forestier | The mixing layer over a deep cavity at high subsonic speed[END_REF] of a turbulent f ow at M = 0.8 over a very deep cavity of L/D = 0.42. The f ow was found to be highly two-dimensional, but the dominant mode and its harmonics did not show good agreement with the Rossiter prediction. The same conf guration was studied by 3D LES by Larchevêque et al. [START_REF] Larchev Êque | Large-eddy simulation of a compressible flow past a deep cavity[END_REF], who found the same phenomenon for a ducted cavity, and verif ed that there was indeed a coupling, since by removing the upper wall the harmonics were reduced, and the second, third and fourth modes were recovered. By modifying the value of α into the Rossiter formula (3.1) a good prediction of the modes was obtained. Emmert et al. [START_REF] Emmert | Numerical study of aeroacoustic coupling in a subsonic confined cavity[END_REF] also found a coupling between the cavity f ow and the pressure oscillations in a ducted cavity by 3D LES.

It is well understood that the number of shear layer oscillations spanning over the cavity is related to the dominant oscillation mode. The f rst Rossiter mode corresponds to one single wave, the second mode to two waves, etc., as displayed in f gure 3.3. It was f rst observed by Gharib and Roshko [START_REF] Gharib | The effect of flow oscillations on cavity drag[END_REF] in their water experiments, and it has also been shown in the Schlieren images taken by Kegerise et al. [START_REF] Kegerise | Mode-switching and nonlinear effects in compressible flow over a cavity[END_REF] in a wind tunnel. Recently a phenomenon called mode-switching has been investigated. Mode-switching refers to a process in which the dominant energy changes temporally from one Rossiter mode to another. It was observed for the f rst time by Cattafesta et al. [START_REF] Cattafesta | Experiments on compressible flow-induced cavity oscillations[END_REF] in their experiments with a turbulent f ow over cavities of L/D = 2 and 4, and further described by the same team in Kegerise et al. [START_REF] Kegerise | Mode-switching and nonlinear effects in compressible flow over a cavity[END_REF]. Murray [START_REF] Murray | Flow Field Dynamics in Subsonic Cavity Flows[END_REF] reports as well mode-switching for turbulent f ows at low and medium subsonic Mach numbers in a cavity with L/D = 6. Mode-switching has also been found by 3D LES for M = 0.8 and L/D = 3 by Gloerfelt et al. [START_REF] Gloerfelt | Numerical evidence of mode switching in the flow-induced oscillations by a cavity[END_REF], M = 0.85 and L/D = 5 by Larchevêque et al. [START_REF] Larchev Êque | Large eddy simulation of a compressible flow in a three-dimensional open cavity at high reynolds number[END_REF] and M = 0.8 and L/D = 2 by Larchevêque et al. [START_REF] Larchev Êque | Large-eddy simulation of a subsonic cavity flow including asymmetric three-dimensional effects[END_REF] in turbulent f ows. For the author knowledge, mode-switching between dominant modes has not been reported for laminar f ows.

Wake mode

The wake mode was f rst observed experimentally by Gharib and Roshko [START_REF] Gharib | The effect of flow oscillations on cavity drag[END_REF] in an axisymmetric cavity in a water wind tunnel, where the f ow was incompressible and laminar. However, it has been rarely found in experiments and 3D simulations, hence this mode seems to be related to axisymmetric or twodimensional conf gurations.

The wake mode has been described for laminar f ows by 2D DNS simulations using incompressible equations [START_REF] Ask | An investigation of outlet boundary conditions for incompressible near field acoustics[END_REF][START_REF] Ask | Sound generation and radiation of an open two-dimensional cavity[END_REF] and compressible equations at low and medium subsonic Mach numbers [START_REF] Bres | Direct numerical simulations of three dimensional cavity flows[END_REF][START_REF] Colonius | Numerical investigation of the flow past a cavity[END_REF][START_REF] Larsson | Aero acoustic investigation of an open cavity at low mach number[END_REF][START_REF] Rowley | On self-sustained oscillations in twodimensional compressible flow over rectangular cavities[END_REF]. All these studies concern shallow cavities of L/D = 4, which oscillate at a Strouhal number in the range of 0.061 ≤ St D ≤ 0.064, proving that the oscillation frequency does not depend on the Mach number and so it is not related to acoustic feedback. [START_REF] Shieh | Comparison of two-and three-dimensional turbulent cavity flows[END_REF] investigated a turbulent f ow at M = 0.6 over a shallow cavity of L/D = 4.4 by 2D and 3D Detached Eddy Simulation (DES). They found that the two-dimensional simulation leads to wake mode with St D = 0.05, while the corresponding three-dimensional cavity oscillates in a shear layer mode. Brès [START_REF] Bres | Numerical simulations of three dimensional instabilities in cavity flows[END_REF] found by DNS simulations that the three-dimensional counterpart of a cavity oscillating in wake mode in 2D presents a shear layer mode if spanwise disturbances are introduced, and a wake mode if the f ow is initialized only with the time-averaged 2D results. The considered cavity was shallow with L/D = 4 and the f ow was laminar and subsonic. A similar result was found by Suponitsky et al. [START_REF] Suponitsky | On three-dimensionality and control of incompressible cavity flow[END_REF] in their incompressible 3D LES simulations. They found a wake mode in a 3D cavity when the f ow is two-dimensional, and a shear layer mode when the f ow is forced to be three-dimensional by introducing random sinusoidal disturbances at the inf ow, regardless of their amplitude and shape.

Shieh and Morris

Colonius et al. [START_REF] Colonius | Numerical investigation of the flow past a cavity[END_REF] and Rowley et al. [START_REF] Rowley | On self-sustained oscillations in twodimensional compressible flow over rectangular cavities[END_REF] found that for an L/D = 4 and M = 0.3, the f ow switches from the shear layer mode to the wake mode, being both present at different times. The same conf guration leads to a shear layer mode for M = 0.2 and to a wake mode for M = 0.4.

To feed the debate, low Mach number simulations over a cavity of L/D = 4, with similar Reynolds number and boundary layer thickness at the upstream edge of the cavity, have been found to present a shear layer mode [START_REF] Rowley | On self-sustained oscillations in twodimensional compressible flow over rectangular cavities[END_REF] or a wake mode [START_REF] Larsson | Aero acoustic investigation of an open cavity at low mach number[END_REF] in two different simulations. Both studies have been performed by Direct Numerical Simulation of the 2D compressible Navier-Stokes equations, using highorder schemes and non-ref ecting boundary conditions. The main apparent difference between both simulations is the initial condition, which motivated the idea of studying the oscillation modes depending on the numerical initial condition, which is presented in sections §3.3 and §3.4.

Three-dimensional effects

Cavity f ows have been described as highly three-dimensional both by experimental methods and 3D numerical simulations. Flow visualizations realized by Faure et al. [START_REF] Faure | Visualizations of the flow inside an open cavity at medium range reynolds numbers[END_REF] on deep cavities with 0.5 ≤ L/D ≤ 2 and widthto-depth ratio W/D = 6 showed the development of spanwise structures for very low Mach number laminar f ows. Similar results were obtained by Haigermoser et al. [START_REF] Haigermoser | Investigation of the flow in a rectangular cavity using tomographic and time-resolved PIV[END_REF] and Haigermoser [START_REF] Haigermoser | Investigation of cavity flows using advanced optical methods[END_REF] who performed an experimental investigation using tomographic Particle Image Velocimetry (PIV) in laminar and turbulent low Mach number f ows. For laminar cavity f ows a distortion of the vortex tubes was observed near the downstream wall, whereas for the turbulent case threedimensional structures in the form of a hairpin were distributed randomly inside the cavity as seen in f gure 3.4. Three-dimensionality of a turbulent f ow over a cavity of L/D = 6 was also studied experimentally by means of surface pressure measurements by Crook et al. [START_REF] Crook | Aeroacoustics of aircraft cavities[END_REF], who found a spanwise variation of the pressure distribution.

Chang et al. [START_REF] Chang | Analysis of the flow and mass transfer processes for the incompressible flow past an open cavity with a laminar and a fully turbulent incoming boundary layer[END_REF] reports the three-dimensionality of incompressible laminar and turbulent f ows over a cavity of L/D = 2 from their results from 3D LES. They describe how the spanwise vortices are disturbed in the spanwise direction as they approach the trailing edge, breaking into several hairpin-like vortices. Also from 3D LES results Larchevêque et al. [START_REF] Larchev Êque | Large-eddy simulation of a subsonic cavity flow including asymmetric three-dimensional effects[END_REF] report a spanwise asymmetry of the mean f ow in a cavity with L/D = 2 and W/D = 4.8 with an incoming turbulent f ow at M = 0.8.

By means of 3D DNS using incompressible equations Yao et al. [START_REF] Yao | Numerical simulation of incompressible laminar flow over three-dimensional rectangular cavities[END_REF] investigated a laminar f ow over several cavities (L/D = 1, 2, 4 and W/D = 3). Taylor-Görtler longitudinal vortices are found on the cavity bottom wall, and longitudinal vortex structures in the shear layer.

In order to explain these observations, Brès and Colonius [START_REF] Bres | Three-dimensional instabilities in compressible flows over open cavities[END_REF] performed a linear stability analysis of a wide range of conf gurations (L/D = 1, 2 and 0.2 ≤ M ≤ 0.6). Firstly 2D DNS simulations were performed and the steady cases were identif ed. The base steady f ow was used for the 3D linear stability analysis to characterize the 3D mode.

The three-dimensional mode has a spanwise wavelength of about one cavity depth, and oscillates at a frequency lower than the Rossiter instabilities (about one order of magnitude lower). It does not depend on the Mach number, so it is an hydrodynamic mode and not an acoustic one like the 2D Rossiter instabilities. It is described as a generic centrifugal instability related to the recirculating f ow near the downstream wall. 3D DNS simulations showed than when the centrifugal mode is present, the shear layer oscillations suffer a low frequency modulation [START_REF] Bres | Three-dimensional instabilities in compressible flows over open cavities[END_REF].

Aeroacoustics of cavity f ows

The unsteady f ow over cavities produces high aerodynamic noise. Surface discontinuities are present in numerous industrial conf gurations, so the reduction of acoustic waves emissions becomes an important target. As a consequence, aeroacoustic studies involving cavity f ows are of interest.

The acoustics of a cavity can be investigated experimentally by means of several methods, for instance by the Schlieren technique (e.g. [START_REF] Forestier | The mixing layer over a deep cavity at high subsonic speed[END_REF][START_REF] Krishnamurty | Sound radiation from surface cutouts in high speed flows[END_REF][START_REF] Zhang | An observation of pressure waves around a shallow cavity[END_REF]), which is a f ow visualization method which displays the acoustic waves, or by recording the pressure signal (e.g. [START_REF] Chatellier | Active control of the aeroacoustics of cavity flows from the downstream edge[END_REF][START_REF] Forestier | The mixing layer over a deep cavity at high subsonic speed[END_REF]), method that allows a calculation of the Overall Sound Pressure Level (OSPL).

Two ways of analyzing aeroacoustics by numerical methods have been already described in section §1.1: by a computational aeroacoustics algorithm or by the use of an acoustic analogy. High-orderscheme methods have been used in DNS [START_REF] Bres | Three-dimensional instabilities in compressible flows over open cavities[END_REF][START_REF] Gloerfelt | Direct computation of the noise radiated by a subsonic cavity flow and application of integral methods[END_REF][START_REF] Rowley | On self-sustained oscillations in twodimensional compressible flow over rectangular cavities[END_REF] and LES [START_REF] Gloerfelt | Numerical investigation of the coexistence of multiple tones in flow-induced cavity noise[END_REF] for low and medium subsonic Mach number laminar f ows, and in LES [START_REF] Emmert | Numerical study of aeroacoustic coupling in a subsonic confined cavity[END_REF][START_REF] Gloerfelt | Numerical evidence of mode switching in the flow-induced oscillations by a cavity[END_REF] and DES [START_REF] Shieh | Comparison of two-and three-dimensional turbulent cavity flows[END_REF] for acoustic prediction of turbulent f ows.

Acoustic analogies have been used in DNS using the compressible equations [START_REF] Larsson | Aero acoustic investigation of an open cavity at low mach number[END_REF] and incompressible equations [START_REF] Ask | An investigation of outlet boundary conditions for incompressible near field acoustics[END_REF][START_REF] Ask | Sound generation and radiation of an open two-dimensional cavity[END_REF]. Both studies concern a shallow cavity of L/D = 4 at low Mach number (0.15), and it is concluded that the use of incompressible equations introduces differences in the results due to the rapid geometrical changes and strong structures of the f ow [START_REF] Ask | Sound generation and radiation of an open two-dimensional cavity[END_REF]. Acoustic analogies have been also used for higher subsonic f ows in DNS [START_REF] Gloerfelt | Direct computation of the noise radiated by a subsonic cavity flow and application of integral methods[END_REF] and incompressible f ows in LES [START_REF] Suponitsky | On three-dimensionality and control of incompressible cavity flow[END_REF]. Recently, acoustic analogies have been applied to PIV data in order to extract the acoustic f eld of laminar [START_REF] Haigermoser | Application of an acoustic analogy to PIV data from rectangular cavity flows[END_REF] and turbulent [START_REF] Liu | Instantaneous pressure and material acceleration measurements using a four-exposure PIV system[END_REF] cavity f ows at very low Mach numbers.

As it has been described, the impingement of the shear layer into the trailing edge of the cavity produces pressure oscillations which escape the domain of the cavity and are perceived far-f eld as noise. In the early work of Krishnamurty [START_REF] Krishnamurty | Sound radiation from surface cutouts in high speed flows[END_REF] it was shown by the use of the Schlieren technique that the minimum L/D for which there is radiation of acoustic waves depends on the Mach number, proving that the minimum L/D decreases as Mach increases. A comparison of laminar and turbulent f ows showed that the radiated f eld is weaker for higher Reynolds numbers [START_REF] Krishnamurty | Sound radiation from surface cutouts in high speed flows[END_REF].

Krishnamurty observed that the acoustic waves propagate upstream for subsonic f ows as shown in f gure 3.5, and downstream for supersonic f ows [START_REF] Krishnamurty | Sound radiation from surface cutouts in high speed flows[END_REF]. This is in agreement with later deep cavity f ow investigations, which show a directivity of 130 • respect to the downstream direction for a M = 0.6 laminar f ow [START_REF] Gloerfelt | Numerical investigation of the coexistence of multiple tones in flow-induced cavity noise[END_REF], 135 • at M = 0.8 [START_REF] Forestier | The mixing layer over a deep cavity at high subsonic speed[END_REF], 150 • at very low Mach number [START_REF] Haigermoser | Application of an acoustic analogy to PIV data from rectangular cavity flows[END_REF] or 145 • at low and medium subsonic Mach numbers [START_REF] Colonius | Numerical investigation of the flow past a cavity[END_REF]. On the other hand, shallow cavities are found to display a more uniform directivity for very low Mach numbers [START_REF] Haigermoser | Application of an acoustic analogy to PIV data from rectangular cavity flows[END_REF], and an intense upstream radiation for higher Mach numbers, but in which there is also a very sharp acoustic pulse emitted at the trailing edge [START_REF] Colonius | Numerical investigation of the flow past a cavity[END_REF]. Ahuja and Mendoza [START_REF] Ahuja | Effects of cavity dimensions, boundary layer and temperature on cavity noise with emphasis on benchmark data to validate computational aeroacoustic codes[END_REF] also observed that shallower cavities produce a more uniform sound emission.

≈ 130 • -150 •
The numerical results obtained for a supersonic f ow at M = 1.5 by Rona and Brooksbank [START_REF] Rona | POD analysis of cavity flow instability[END_REF] and Zhang et al. [START_REF] Zhang | An observation of pressure waves around a shallow cavity[END_REF] display a directivity downstream, as observed by Krishnamurty [START_REF] Krishnamurty | Sound radiation from surface cutouts in high speed flows[END_REF].

The Overall Sound Pressure Levels are in general much higher than 100dB. For example, for a cavity of L/D = 1 and M = 0.6 the OSPL is found to be around 140-150dB at a distance of 3D from the cavity trailing edge, depending on the cavity width and the boundary layer thickness [START_REF] Gloerfelt | Numerical investigation of the coexistence of multiple tones in flow-induced cavity noise[END_REF]. According to the results of Gloerfelt et al. [START_REF] Gloerfelt | Numerical investigation of the coexistence of multiple tones in flow-induced cavity noise[END_REF], wide cavities are louder than narrow cavities, and they reason that it might be due to the higher spanwise coherence, which reinforces the feedback strength. The OSPL increase with the Mach number, f nding for a cavity with L/D = 2 approximate values of 149dB for M = 0.6, 153dB for M = 0.9 and 154 for M = 1.1 over the cavity opening at 0.2L upstream from the trailing edge [START_REF] Hamed | Direct numerical simulations of high speed flow over cavity[END_REF].

In the results by Shieh and Morris [START_REF] Shieh | Parallel computational aeroacoustic simulation of turbulent subsonic cavity flow[END_REF], where the 2D simulation leads to a wake mode and the 3D simulation to a shear layer mode, the acoustic levels between both f ow regimes can be compared. At a distance of 3D from the cavity corner in the direction in which the pressure waves are propagated (135 • ), the shear layer presents 132dB whereas the wake mode produces 135dB. Also Brès and Colonius [START_REF] Bres | Three-dimensional instabilities in compressible flows over open cavities[END_REF] observed higher OSPL values for 2D simulations, even though both 2D and 3D cavities were oscillating in shear layer mode.

Validation test case

The numerical method has been validated by reproducing a test case investigated by several authors [START_REF] Bres | Numerical simulations of three dimensional instabilities in cavity flows[END_REF][START_REF] Gloerfelt | Compressible POD/Galerkin reduced-order model of self-sustained oscillations in a cavity[END_REF][START_REF] Rowley | On self-sustained oscillations in twodimensional compressible flow over rectangular cavities[END_REF][START_REF] Rowley | Cavity flow control simulations and experiments[END_REF], consisting in a deep cavity of length-to-depth ratio L/D = 2 with an incoming boundary layer. The f ow is compressible with a Mach number M = 0.6, and its regime is laminar with a Reynolds number based on the cavity depth of Re D ≈ 1500. More f ow parameters are detailed in table 3.1, where δ is the boundary layer thickness and θ is the momentum thickness at the upstream cavity edge.

Conf guration

The computational domain, shown in f gure 3.6, consists of a non-equidistant mesh ref ned near the walls and around the shear layer spanning over the cavity. The length scales x and y are normalized by the cavity depth D. The number of grid points inside the cavity is 167×144, and over the cavity is 512×648, from which 25 × 648 grid points belong to the buffer zone.
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The y + at one cavity length unit upstream from the cavity is 0.3. Two other grids have been used in order to verify grid convergence, a f ner one with y + = 0.2 and a coarser one where y + = 0.7. The spectrum of the pressure f uctuations at the location (x, y) = (D, 7D) is displayed in f gure 3.7 and used for comparison. The reference case y + = 0.3 is represented by the blue solid line, the grid with y + = 0.2 by a black dashed line and the grid with y + = 0.7 by a red dash dot line. All three grids provide very similar frequency and amplitude, proving that the results are indeed grid independent. The solid boundary conditions have been implemented with ghost cells, where the 4 th order scheme has been used to calculate the pressure gradient. The walls are considered isothermal and non-slip. The inf ow condition is a laminar boundary layer def ned as the numerical solution of the Blasius similarity equation. The characteristic boundary conditions of Giles are used at both the inf ow and radiation boundaries. At the outf ow, the characteristics of Poinsot and Lele [START_REF] Poinsot | Boundary conditions for direct simulations of compressible viscous flows[END_REF] are used, where different values of the relaxation coeff cient from equation (1.27) are compared: σ = 0.25, σ = 1.00 and σ = 3.00. The pressure time history for the three simulations at the location (D, 7D) is shown in f gure 3.8. All simulations give identical results, being the three lines perfectly overlapped, and proving the relaxation coeff cient independence.

Results

This conf guration oscillates in a shear layer mode. The incoming boundary layer separates at the leading edge forming an oscillating shear layer, where the small disturbances are amplif ed by the Kelvin-Helmholtz instability. Its interaction with the trailing edge produces feedback of pressure waves, which disturb the shear layer at the upstream wall. A part of these acoustic waves escapes the domain of the cavity and are perceived far-f eld as noise. Inside the cavity, a recirculation region is generated next to the downstream wall, of about the same scale as the cavity depth. Figure 3.9 shows the instantaneous isocontours of vorticity at two different times of the oscillation period T , displaying the incoming boundary layer and the recirculating region near the downstream wall. The acoustic waves can be observed from the dilatation f eld:

Θ = ∂u ∂x + ∂v ∂y = - 1 ρ ∂ρ ∂t (3.2)
Figure 3.10(a) represents the dilatation isocontours which shows that the acoustic propagation occurs at an angle of approximately 135 • with respect to the downstream direction. These results are in good agreement with the studies of Rowley et al. [START_REF] Rowley | Cavity flow control simulations and experiments[END_REF][START_REF] Rowley | On self-sustained oscillations in twodimensional compressible flow over rectangular cavities[END_REF].

Both vorticity and dilatation f elds have been computed using several schemes for the derivatives of velocity. 2 nd , 4 th , 6 th order explicit and 6 th order compact schemes have been compared and gave the same results.

The directivity of the acoustic waves can also be observed in f gure 3.10(b), where the Overall Sound Pressure Levels (OSPL) are represented: OSP L = 20 log 10 P rms P ref (3.3) where P rms is the root mean square pressure and P ref is the reference sound pressure value, commonly 2 • 10 -5 Pa for air. It is observed that a maximum OSPL of 154dB is found near the trailing edge of the cavity. This value is in agreement with the results obtained by Brès [START_REF] Bres | Numerical simulations of three dimensional instabilities in cavity flows[END_REF], whose numerical predictions estimate a maximum of 162dB by 2D simulations and 160dB by 3D simulations.

Pressure f uctuations at the location (D, 7D) are used to perform a Fast Fourier Transform in order to obtain the frequency of oscillation. It is found that the f ow oscillates at a Strouhal number St 2 = f 2 L/u ∞ = 0.75, corresponding to the second Rossiter mode. The f rst peak in the spectra shown in f gure 3.11 is St 1 = f 1 L/u ∞ = 0.39 corresponding to the f rst Rossiter mode. These values are in good agreement with the values St 1 = 0.39 and St 2 = 0.72 predicted by Gloerfelt [START_REF] Gloerfelt | Compressible POD/Galerkin reduced-order model of self-sustained oscillations in a cavity[END_REF], as well as by the Rossiter formula [START_REF] Rossiter | Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[END_REF] from equation (3.1), which predicts St 1 = 0.32 and St 2 = 0.74 for a Mach number 0.6. 

Deep cavities

Laminar f ows over deep cavities with a length-to-depth ratio of 2 are found to oscillate in a shear layer regime. The oscillation modes have been widely described as the f rst and second Rossiter modes, yet there is still disagreement about which is the dominant one. The knowledge of the dominant mode is fundamental for the analysis of sound generation and for the application of f ow and noise control.

In general, numerical investigations in 2D report that the dominant mode is the f rst Rossiter mode for Mach numbers up to 0.6, while the second mode is found to be dominant for Mach numbers higher than 0.6, as detailed in table 3.6 in the appendix of this chapter. Nevertheless, Gloerfelt [START_REF] Gloerfelt | Compressible POD/Galerkin reduced-order model of self-sustained oscillations in a cavity[END_REF] f nds in a 2D DNS simulation at Mach 0.6 that the second mode is dominant, increasing the confusion.

To further investigate this phenomena at a Mach number 0.6, the same conf guration as in the validation section is taken, whose main parameters are shown in table 3.1 and whose main features have been described. Especially, the inf uence of the initial condition is to be studied, as well as the temporal evolution of the dominant mode.

Evolution of the oscillation modes

The initial condition considered here as the base case is the numerical solution of the Blasius similarity equation shown in the validation section §3.2. Three probes were located in the computational domain as displayed in f gure 3.12. P1 is placed above the cavity at (x, y) = (D, 7D), P2 inside the oscillating shear layer at (D, 0) and P3 at the bottom wall of the cavity at (1.5D, -D). The time history of pressure and vorticity f uctuations were taken at these three locations, and the wall shear stress was recorded by P3 (situated at the bottom wall). The computation was run during 18 domain f ow-through cycles, in which three windows were used in order to perform the Fast Fourier Transform, corresponding to the cycles 6 to 9, 9 to 12, and 14.5 to 18. It was found that the pressure, vorticity and wall shear stress spectra change with time, as illustrated by the pressure spectra in f gure 3.13.

At the initial stages of the simulation, between the cycles 6 and 9, two oscillation frequencies are found, St 2 (dominant) and St 1 , as shown in f gure 3.13. While the second Rossiter mode keeps a constant amplitude in time, the f rst mode decreases in amplitude until its disappearance, and only the second mode remains after 12 cycles, as shown in f gure 3.13. A similar phenomena was observed by Brès and Colonius [START_REF] Bres | Three-dimensional instabilities in compressible flows over open cavities[END_REF], but in their two-dimensional DNS simulations only the f rst Rossiter mode remained.

In brief, the dominant oscillation mode changes with time. However, it does not seem that there is a periodically mode-switching as it has been described in several turbulent f ow investigations [START_REF] Gloerfelt | Numerical evidence of mode switching in the flow-induced oscillations by a cavity[END_REF][START_REF] Kegerise | Mode-switching and nonlinear effects in compressible flow over a cavity[END_REF], since only the second mode remains and the others are not recovered. Then, the sensitivity of the dominant oscillating mode to the initial condition is to be investigated.

Effect of the initial condition

Several simulations have been computed with different initial conditions of velocity. It is important to mention that all the other physical parameters (Reynolds number, Mach number, boundary layer at the inf ow) and numerical conditions (grid, boundary conditions) remain constant. In all the cases pressure is initialized as p = p ∞ = 1.01325 • 10 5 P a and temperature as T = T ∞ = 298K throughout the domain, including the interior of the cavity. Density is calculated from the equation of state for ideal gases ρ ∞ = p ∞ /rT ∞ . Inside the cavity the velocity is initialized as zero.

The following initial conditions of velocity over the cavity have been tested: BLAS Both velocities are def ned from the numerical solution of the Blasius similarity equation, with boundary layer thickness δ increasing downstream.

CONS Both velocities are def ned from the numerical solution of the Blasius similarity equation, with boundary layer thickness constant from the inf ow, δ = δ inf low .

POLY The normal velocity is initialized as v = 0, and streamwise velocity is calculated from a polynomial approximation of a laminar boundary layer [START_REF] Gloerfelt | Bruit rayonne par un ecoulement affleurant une cavite: simulation aeroacoustique directe et application de methodes integrals[END_REF]:

u(y) = u ∞ y δ 2 -2 y δ 2 + y δ 3 (3.4)
where u ∞ is the freestream velocity and δ is the boundary layer thickness at each streamwise position.

UINF The streamwise velocity is initialized as u = u ∞ , and normal velocity as v = 0.

ZERO Both velocities are initialized as u = v = 0, like the interior of the cavity.

For all the cases the inf ow condition is kept constant, being the numerical solution of the Blasius similarity equation which gives δ/D = 0.28 at the upstream edge of the cavity. The three f rst initial conditions consist on boundary layers of different boundary layer thickness δ 0 at the upstream edge of the cavity, being δ 0 /D = 0.28 for BLAS, δ 0 /D = 0.12 for CONS and δ 0 /D = 0.23 for POLY. Furthermore, the initial condition POLY has a shape factor different from the Blasius value H = 2.59 of the other two cases. The last two test cases, UINF and ZERO, do not have an initial boundary layer thickness or shape factor. The simulations performed with the initial conditions POLY, CONS and UINF present a behavior similar to the test case BLAS. That is to say, there are two modes of oscillation during the f rst cycles, being the second one dominant, and after some cycles the f rst mode decreases in amplitude and only the second mode remains. However, it is observed that the amplitude of the f rst mode is smaller in these three cases than in the simulation using BLAS, and it decreases faster and it disappears earlier in the computation, approximately after 10 domain f ow-through cycles.

BLAS POLY CONS UINF ZERO

On the other hand, the computation using the initial condition ZERO presents a different evolution. Initially, during the cycles 6 to 9 the f ow oscillates with the f rst mode dominant and the second is of smaller amplitude. As before, the f rst mode decreases in amplitude, becoming smaller than the second mode after several cycles and f nally vanishing after 18 cycles (this simulation has been run for 21.5 cycles). Table 3.2 shows the Strouhal numbers obtained from the different initial conditions and the values predicted by the Rossiter formula. All initial conditions give similar results, being in agreement with the predictions obtained from the Rossiter formula, especially for the second mode. BLAS and UINF give a slightly better agreement for the f rst mode than the other cases. Figure 3.14 shows the instantaneous vorticity isocontours of the simulation ZERO while it is oscillating at the f rst Rossiter mode. It presents the same contour level values than the f ow oscillating at the second Rossiter mode, obtained with the initial condition BLAS and shown in f gure 3.9, but there is a slight difference between both f gures. It is known that the waves spanning over the cavity are related to the oscillation mode. In f gure 3.9 two waves can be seen along the shear layer, while f gure 3.14 shows a longer wave alone. This results suggest that the spectrum obtained for the ZERO case is not due to a numerical transient time of the simulation, but the physics of a cavity f ow oscillating at the f rst Rossiter mode are represented. Rossiter mode, as shown in f gure 3.10(a). Colonius et al. [START_REF] Colonius | Computation of sound generation and flow/acoustics instabilities in the flow past an open cavity[END_REF] show in their investigation that the acoustic radiation in shear layer regime is dominated by the second Rossiter mode, which could explain why the dilatation levels when the f rst mode is dominant are lower than when the dominant mode is the second. On the other hand, the directivity of the acoustic waves is the same.

As a conclusion, all initial conditions lead to the same f nal result, i.e. a f ow oscillating at the second Rossiter mode. Most of the initial conditions present the same evolution, yet BLAS keeps the f rst mode for longer time before damping. The initial condition ZERO converges to the same solution, even though at the beginning the f ow presents different physics, oscillating at the f rst Rossiter mode. Since the transient time is much longer, this simulation is computationally more expensive. This cavity f ow conf guration has been previously investigated, giving different results regarding the dominant mode. Rowley et al. [START_REF] Rowley | On self-sustained oscillations in twodimensional compressible flow over rectangular cavities[END_REF], Brès and Colonius [START_REF] Bres | Three-dimensional instabilities in compressible flows over open cavities[END_REF] and Hamed et al. [START_REF] Hamed | Direct numerical simulations of high speed flow over cavity[END_REF] f nd in their 2D numerical simulations the f rst Rossiter mode to be dominant. On the other hand, Krishnamurty [START_REF] Krishnamurty | Sound radiation from surface cutouts in high speed flows[END_REF] found the second Rossiter mode in his experiments, as well as Brès and Colonius [START_REF] Bres | Three-dimensional instabilities in compressible flows over open cavities[END_REF] in their 3D DNS simulations and Gloerfelt [START_REF] Gloerfelt | Compressible POD/Galerkin reduced-order model of self-sustained oscillations in a cavity[END_REF] in his 2D numerical investigation.

The linear stability analysis by Brès and Colonius [START_REF] Bres | Three-dimensional instabilities in compressible flows over open cavities[END_REF] shows that a cavity with an L/D = 2 and L/θ = 52.8, with Re D = 1500 and M = 0.6 is unstable. This result and the present investigation suggest that a f ow over this specif c cavity conf guration can oscillate at the f rst or second Rossiter modes, depending on the numerical initial conditions.

Regarding other deep cavity studies (e.g. list in table 3.7), experimental results and three-dimensional numerical simulations of laminar f ows show, in general, that the dominant mode is St 2 for length-todepth ratios higher than 0.8, and St 1 for L/D < 0.8. On the other hand, turbulent f ows seem to be much less predictable, since different authors f nd the dominant mode to change with the L/D ratio and/or Mach number, with similar inf ow conditions.

Overall Sound Pressure Levels

The Overall Sound Pressure Level has been computed for all the cases using 20 samples over 1 period at the end of the computation, where the second Rossiter mode is dominant. All initial conditions provide the same contours as BLAS, shown in f gure 3.10(b). A maximum OSPL level of 154dB is found at the trailing edge of the cavity. Both the distribution and the maximum OSPL are in good agreement with the results obtained by Brès [START_REF] Bres | Numerical simulations of three dimensional instabilities in cavity flows[END_REF] in his 3D simulations, for which a maximum of 160dB is estimated.

Since the oscillation modes change in time, the OSPL has been computed at different stages of the computation for the cases BLAS and ZERO. The early stages of the simulation BLAS show the same maximum levels and directivity than at the end of the computation, so the OSPL levels do not change while the second Rossiter mode is dominant, either if the f rst mode is present or not.

On the other hand, the distribution of the early stages of ZERO is a bit different, more similar to the 2D results of Brès [START_REF] Bres | Numerical simulations of three dimensional instabilities in cavity flows[END_REF], where there is a broadening of the isocontours, as shown in f gure 3.16. At the beginning of the ZERO computation the f rst mode is dominant, as it is in the 2D simulation of Brès [START_REF] Bres | Numerical simulations of three dimensional instabilities in cavity flows[END_REF]. These results suggest that the differences observed between several studies do not depend on the two-or three-dimensionality of the investigation, but on the dominant oscillation mode. There are other available results in the literature for the OSPL values of this conf guration which are worth mentioning here. By the use of 2D DNS simulations, Rowley et al. [START_REF] Rowley | On self-sustained oscillations in twodimensional compressible flow over rectangular cavities[END_REF] found a maximum of 180dB at the cavity edge, and Hamed et al. [START_REF] Hamed | Direct numerical simulations of high speed flow over cavity[END_REF] estimated 149dB at the cavity opening. Regarding experimental studies, for a similar conf guration but with a Reynolds number about 5 times higher, Krishnamurty [START_REF] Krishnamurty | Sound radiation from surface cutouts in high speed flows[END_REF] estimates 163dB based on def ections from f nite-fringe interferometry.

Effect of Mach number and boundary layer thickness

The results obtained from the 2D numerical simulations show that a M = 0.6 laminar f ow over a cavity of L/D = 2 oscillates at the frequency corresponding to the second Rossiter mode, but that in the f rst stages of the simulation the f rst Rossiter mode is also found. It has been mentioned as well that there is no agreement in the literature concerning the dominant mode in this particular test case. In general, as shown in table 3.6, cavity f ows at Mach numbers higher than 0.6 oscillate at St 2 whereas smaller Mach number f ows oscillate at St 1 .

According to the linear stability analysis of Brès and Colonius [START_REF] Bres | Three-dimensional instabilities in compressible flows over open cavities[END_REF], higher Rossiter modes are found for higher M and larger L/θ. From f gure 2 in [START_REF] Bres | Three-dimensional instabilities in compressible flows over open cavities[END_REF] (reproduced here in f gure 3.1) is also observed that this case is far from the stability zone. Consequently, it is thought that by approaching the stability zone (i.e. by reducing the Mach or the Reynolds number) the f ow will oscillate at the f rst Rossiter mode. For this reason another test case with M = 0.4, whose main parameters are detailed in table 3.3 has been performed. It is expected as well to f nd the f rst Rossiter mode in cavity f ows with a higher boundary layer thickness (i.e. smaller L/θ), since they are more stable. Two test cases, described in table 3 These new test cases have been computed with the same computational domain, grid and boundary conditions as the reference case.

To implement the test case with M = 0.4 the boundary layer thickness has been maintained, so L/θ = 52.8 as for the reference case. The simulation has been initialized with the condition UINF. The time history of pressure f uctuations has been recorded at the location P1 (above the cavity), and the three windows have been used to perform the FFT as before. The results are very similar to those from the reference case, in which between the cycles 6 and 9 both Rossiter modes are found, the f rst one reduces its amplitude in cycles 9 to 12, and f nally only the second Rossiter mode is found between the cycles 15 and 18. The value of the Strouhal number is St 2 = 0.77, in good agreement with the value St 2 = 0.81 predicted by the Rossiter formula.

For the next simulation, the Mach number is kept at M = 0.6 and the boundary layer thickness is increased so L/θ = 41.0, being closer to the stability zone. The simulation has been initialized with the condition UINF. The frequency of oscillation has been calculated as before, from the time history of pressure f uctuations over the cavity. Three windows corresponding to the cycles 6 to 9, 9 to 12 and 15 to 18 have been used, but in this case no differences are observed. All the FFT show only one frequency of oscillation, corresponding to the f rst Rossiter mode with St 1 = 0.41.

The boundary layer thickness has been increased even more in the last test case, where L/θ = 33.3 and M = 0.6. This case is in the limit of the stability zone, and two initial conditions have been used: UINF and ZERO. Both initial conditions give the same results. The time history of pressure f uctuations at P1 is displayed in f gure 3.17, where it is observed that the amplitude of the oscillations decays in time. The FFT of the pressure signal shows that the f ow oscillates at the f rst Rossiter mode and St 1 = 0.40. Brès and Colonius [START_REF] Bres | Three-dimensional instabilities in compressible flows over open cavities[END_REF] also found the f rst Rossiter mode for a case where the amplitude decreased in time until reaching a steady state. In their simulation, the parameters were L/θ = 53 and M = 0.325. These results prove that for larger boundary layer thickness, which correspond to more stable f ows, the main frequency of oscillation is the f rst Rossiter mode. A change of Mach number, from 0.6 to 0.4 has not shown any signif cant difference.

Shallow cavities

The f ow regime in shallow cavities of L/D = 4 is more complex to predict, since it can either present a shear layer mode or a wake mode, or even non oscillating mode depending on the geometry and inf ow conditions. Previous investigations show that shallow cavities, in general, oscillate in a shear layer mode for low Mach numbers or large momentum thickness, while they oscillate in a wake mode for high velocities or thin boundary layers.

However, the limit is not clear. Rowley et al. [START_REF] Rowley | On self-sustained oscillations in twodimensional compressible flow over rectangular cavities[END_REF] predicts shear layer mode for Mach numbers smaller than 0.3 when L/θ = 102, while Larsson et al. [START_REF] Larsson | Aero acoustic investigation of an open cavity at low mach number[END_REF] found a wake mode for the same f ow and geometry conditions at a Mach number 0.15. Both studies have been performed by Direct Numerical Simulation of the 2D full compressible Navier-Stokes equations, using high-order schemes and nonref ecting boundary conditions. The main apparent difference between both simulations is the initial condition. Rowley 

Conf guration

For this study, the case proposed by Larsson et al. [START_REF] Larsson | Aero acoustic investigation of an open cavity at low mach number[END_REF] is selected, consisting on a shallow cavity of L/D = 4, M = 0.15 and L/θ = 96.8. Other f ow parameters can be seen in table 3.4.

The computational domain, shown in f gure 3.18, consists on a non-equidistant mesh ref ned near the walls and around the shear layer spanning over the cavity. The length scales x and y are normalized by D. The number of grid points inside the cavity is 311 × 106, and over the cavity is 1061 × 648. The y + at one cavity length unit upstream from the cavity is 0.3. This cavity conf guration oscillates in wake mode, in which large eddies are convected downstream. In order to damp them before they reach the non-ref ecting downstream boundary, a large buffer zone is required. As displayed in f gure 3.18, this buffer zone is longer than the one for the deep cavity conf guration shown in f gure 3.6. In this case, the buffer zone is composed of 75 × 648 grid points. The characteristic boundary conditions of Giles are used at the inf ow and radiation boundaries. The inf ow condition is a laminar boundary layer def ned as the numerical solution of the Blasius similarity equation. At the outf ow, the characteristics of Poinsot and Lele [START_REF] Poinsot | Boundary conditions for direct simulations of compressible viscous flows[END_REF] are used, where the relaxation coeff cient is taken as σ = 1.00. The walls are considered isothermal and non-slip and are implemented with ghost cells with a 4 th order scheme.

Effect of the initial condition

Three initial conditions are selected in this case: BLAS, UINF and ZERO, who have been described previously in §3.3.2, and three probes are used in order to record the time history of pressure, vorticity and wall friction, as displayed in f gure 3.19. hence higher drag. This is the main feature of the wake mode. On the other hand, BLAS and UINF present a much lower wall friction, both about the same order of magnitude and one order of magnitude smaller than ZERO. These two initial conditions lead to a shear layer mode. Contrarily to the deep cavity test case, different initial conditions can lead to a different f ow regime for this particular shallow cavity. The cavity f ow in a wake mode is totally periodic and it presents only one oscillation mode, as shown in f gure 3.21. This spectrum has been calculated from the time-history of vorticity f uctuations at the position P2 (2D, 0). The Strouhal number is St D = f D/u ∞ = 0.061, in very good agreement with the value St D = 0.061 found by Larsson et al. [START_REF] Larsson | Aero acoustic investigation of an open cavity at low mach number[END_REF] for the same cavity conf guration and St D = 0.067 from Suponitsky et al. [START_REF] Suponitsky | On three-dimensionality and control of incompressible cavity flow[END_REF] for an incompressible f ow over an L/D = 4 cavity oscillating in wake mode. For similar cavities in wake mode but higher Mach numbers, Rowley et al. [START_REF] Rowley | On self-sustained oscillations in twodimensional compressible flow over rectangular cavities[END_REF] found values in the range St D = 0.061 to St D = 0.064, and Shieh and Morris [START_REF] Shieh | Parallel computational aeroacoustic simulation of turbulent subsonic cavity flow[END_REF] report St D = 0.054 for a cavity of L/D = 4.4 and M = 0.6.

In wake mode, the f ow spanning over the cavity reattaches at the bottom wall, creating a large vortex starting from the leading edge. In a similar manner to the f ow behind a backward-facing-step shown in §2.3.2, the vortex grows and a secondary vortex appears at the upstream corner. The primary vortex separates from the incoming boundary layer and it is ejected over the downstream corner. Then the secondary vortex is large enough and it reattaches the upstream boundary layer. Figure 3.22 shows the isocontours of vorticity at four different instants in time during one period of oscillation T . The ejection of the vortex over the trailing edge produces a low pressure zone at the cavity downstream wall, which corresponds to the lowest value of drag. On the other hand, the highest value of drag is found when the vortex has left the cavity only partially, and the downstream wall is exposed to the external f ow which is going inside the cavity. The cavity f ow initialized with the condition UINF, which oscillates in shear layer mode, is also perfectly periodic, as shown in f gure 3.20. From the time-history of vorticity f uctuations the frequency of oscillation is found to be St 2 = 1.00, as illustrated in f gure 3. The f ow over a shallow cavity oscillating in shear layer mode resembles the one from a deep cavity, described in section §3.3. Figure 3.24 shows the isocontours of vorticity, where the recirculation region next to the downstream corner is clearly displayed. Two waves are identif ed along the shear layer, corresponding to the oscillation in second Rossiter mode. A low frequency was also observed by Brès and Colonius [START_REF] Bres | Three-dimensional instabilities in compressible flows over open cavities[END_REF] in their 3D DNS simulations of a cavity L/D = 2, M = 0.6, f nding St 3D D = 0.026. It should be mentioned that the corresponding two-dimensional simulation did not present this modulation. Chang et al. [START_REF] Chang | Analysis of the flow and mass transfer processes for the incompressible flow past an open cavity with a laminar and a fully turbulent incoming boundary layer[END_REF] also observed in their 3D LES simulations of a laminar f ow over a cavity a low frequency modulation, which from their f gures can be estimated to be in the order of St 3D D ≈ 0.025 -0.03. They attribute this low modulation to a consequence of the shear layer interaction with the trailing edge and with the recirculating motions inside the cavity. [START_REF] Bres | Three-dimensional instabilities in compressible flows over open cavities[END_REF] showed by 3D linear stability analysis that this low frequency is a centrifugal three-dimensional instability, and predicted the centrifugal modes for several cavity conf gurations. This low frequency modulation, to the authors' knowledge, has not been observed in 2D numerical computations. Obviously the present results from two-dimensional simulations do not match the values predicted as centrifugal modes. It is not clear at the moment which is the origin of the low-frequency modulation, if it is purely a numerical artifact or it can have a physical explanation.

Brès and Colonius

Concerning the instantaneous vorticity f eld, there is no difference respect to the shear layer case without low-frequency modulation obtained with the initial condition UINF. It presents a recirculation region near the downstream wall as shown in f gure 3.24. In contrast to the deep cavity, where a directivity of 135 • respect to the stream direction was found, in this case the waves propagate in the direction of the f ow. This result is in agreement with the f ndings of Ahuja and Mendoza [START_REF] Ahuja | Effects of cavity dimensions, boundary layer and temperature on cavity noise with emphasis on benchmark data to validate computational aeroacoustic codes[END_REF], who report a f at directivity for shallow cavities.

Overall Sound Pressure Levels

The wake mode, shown in f gure 3.26(c), is louder than the two cases oscillating in shear layer mode. The cavity initialized with BLAS, oscillating in shear layer and a low-frequency mode, is about 5dB louder than the cavity initialized with UINF. 

Effect of Mach number and boundary layer thickness

The initial condition has been proved to have an important role in the oscillation regime of a low Mach number f ow spanning over a shallow cavity. The aim of this section is to investigate if such an effect is found for other conf gurations.

According to the study by Rowley et al. [START_REF] Rowley | On self-sustained oscillations in twodimensional compressible flow over rectangular cavities[END_REF], by increasing the Mach number the f ow changes from a shear layer mode to wake mode. For this reason, the Mach number has been increased to 0.4 and 0.6, maintaining L/θ = 96.8 as well as all the other parameters shown in table 3.5. The f ow has been initialized with UINF, which leads to a shear layer mode when M = 0.15. The new cases M = 0.4 and M = 0.6 oscillate in wake mode. This result suggest that moderate subsonic Mach number f ows always oscillate in wake mode, regardless of the initial condition.

The dependence on the boundary layer thickness is also investigated. For this study, the Mach number is kept at 0.15 and L/θ is reduced to 60 and 30, which implies a consequent modif cation of the other f ow parameters, who are shown in table 3.5 and compared with the base case. In this case the f ow is initialized with the initial condition ZERO, which develops a wake mode when L/θ = 96.8. The results show that when the boundary layer thickness increases, the f ow does not oscillate, independently of the initial condition.

Other combinations involving Mach numbers 0.4 and 0.6 and L/θ ≈ 30 and L/θ ≈ 60 have been computed. The f ow parameters as well as the oscillation mode are displayed in table 3.5. The cases at Mach number 0.6 are in good agreement with the results published by Rowley et al. [START_REF] Rowley | On self-sustained oscillations in twodimensional compressible flow over rectangular cavities[END_REF]. The results suggest that when the Mach number or L/θ increases, the ambiguity concerning the oscillation mode disappears, the resulting f ow becoming independent on the initial condition. This might be due to the natural instability of the f ow. 

Conclusions

Cavity f ow simulations for different conf gurations have been made, in which the inf uence of the initial condition has been studied. This is an issue to which little attention has been given, but which plays an important role in the numerical results.

Firstly a deep cavity of L/D = 2 and moderate Mach number M = 0.6, clearly oscillating in shear layer mode, is considered. The results of the present and previous studies show that the dominant mode of a cavity f ow oscillating in shear layer regime is diff cult to predict. Five initial conditions are used. One of them leads to a f ow oscillating at the f rst Rossiter mode at the beginning of the simulation, but later it changes to the second Rossiter mode. All the other initial conditions show that the dominant frequency corresponds to the second Rossiter mode.

The f ow presents some differences depending on the dominant oscillation mode. When the f ow oscillates at the f rst Rossiter mode, one vortex is found along the opening of the cavity. On the other hand two vortices are observed when the second Rossiter mode is dominant, and a more enhanced directivity of the acoustic radiation. Concerning the OSPL values, the initial condition does not seem to have an effect. If f ow control is to be applied, the frequencies aimed should be the f rst and second Rossiter modes, since the suppression of only one of them might lead to the increase of amplitude of the other one.

Higher Rossiter modes are usually found for higher Mach numbers and thinner boundary layers. A change of the boundary layer thickness shows that indeed for larger boundary layer thickness, which correspond to more stable f ows, the main frequency of oscillation is the f rst Rossiter mode. A change of Mach number, from 0.6 to 0.4, has not shown any signif cant difference.

The second test case of this investigation is a shallow cavity of L/D = 4, whose results respect to the f ow regime are contradictory. Here the initial condition has a more important effect, since the f ow regime has been found to change. Three initial conditions have been applied in a cavity with the following parameters: L/D = 4, M = 0.15 and L/θ = 96. If the initial condition is a uniform f ow, a shear layer mode is observed, while initializing with a zero mean f ow leads to wake mode. The third case is more particular: an initialization with a boundary layer leads to a shear layer mode with a low-frequency modulation of unknown origin. These results suggest that the initial condition should be carefully chosen.

The f ow parameters for which there is an ambiguity in the result are identif ed, showing that cavities with higher Mach number or boundary layer momentum thickness seem to be unaffected by the initial condition.

Appendix: review of cavity f ow studies

In this last section a review of cavity f ow studies is included, where the method of investigation and the main f ow parameters are given. The results concerning the oscillation mode are explained. For the deep cavities, the Rossiter modes which have been observed are given, pointing out which is the dominant one.

For shallow cavities, the oscillation regime (non-resonant, shear layer or wake mode) is given. If the cavity oscillates in shear layer mode, the Rossiter modes are described as for the deep cavities. When the cavity oscillates in wake mode, the frequency of oscillation is given. 

Deep cavities: 2D numerical simulations

Adjoint methods

Méthodes adjointes

Les méthodes adjointes sont basées sur l'utilisation des équations adjointes, obtenues mathématiquement par la définition d'un produit scalaire et d'intégration par parties pour des équations différentielles ou derivées partielles. Elles présentent un large éventail d'applications pour les problèmes de dynamique des fluides : l'analyse de la sensibilité et de la réceptivité, le calcul de la perturbation optimale et du contrôle optimal, ainsi que d'autres problèmes tels que l'optimisation de forme et l'optimisation de grille, la minimisation d'erreur, et l'optimisation de l'écoulement moyen.

Dans cette thèse, plusieurs utilisations des méthodes ajointes ont été étudiées. L'analyse de sensibilité a été réalisée pour les écoulement compressibles de canal et de cavité, comme nous le verrons au chapître §6. La perturbation optimale et le contrôle optimal ont été étudiés pour un écoulement de canal 2D incompressible en présence de perturbations 3D, dont les résultats sont ajoutés dans l'annexe §A.

Formulation

Nous présentons dans ce chapître la formulation adjointe pour un problème de minimisation des perturbations. Notez que bien que d'autres applications des méthodes adjointes peuvent être faites, seule l'application à la minimisation de perturbation est expliquée ici, car c'est elle qui est utilisée dans l'analyse de sensibilité. Afin de minimiser les perturbations de l'écoulement, la fonctionnelle Lagrangienne L(q ′ , q * ) définie par l'équation (4.5) est utilisée. La fonction coût J définie en (4.3) représente l'énergie des fluctuations d'état q ′ , q * les variables adjointes et N ′ (q) est l'opérateur linéarisé de Navier-Stokes. Le produit scalaire ., . est défini sur l'ensemble du domaine espace-temps comme indiqué dans l'équation (4.4). Par conséquent, la fonctionnelle Lagrangienne doit être minimisée par rapport à q ′ et q * . La minimisation de L(q ′ , q * ) par rapport à q * conduit au système direct (voir équation (4.7)).

Afin de dériver la fonctionnelle Lagrangienne par rapport à q ′ , elle doit tout d'abord être intégrée par parties, ce qui fait apparaître des termes de bord. Afin de simplifier la formulation du problème, ces termes de bord peuvent être annulés. Ainsi, les conditions 'terminales' du champ adjoint sont q * (t f ) = 0 et les perturbations initiales de l'écoulement sont q ′ (t 0 ) = 0. Finalement, la minimisation de L(q ′ , q * ) par rapport à q ′ conduit au système adjoint (4.14), où N ′ (q) * est l'opérateur adjoint de N ′ (q).

Analyse de sensibilité

La sensibilité est une quantité qui permet de quantifier les grandeurs de l'écoulement et de localiser les zones d'écoulement sensibles à des petites perturbations susceptibles donc, de modifier faiblement ou profondément cet écoulement. Elle permet ainsi de décrire comment les variables d'état d'un système sont affectées par la variation d'un de ses paramètres. Ces variations peuvent provenir de perturbations de l'écoulement moyen, de rugosités aux parois solides, etc. . . Un manière d'étudier les sensibilités est l'analyse de perturbation, qui peut être effectuée en utilisant les équations linéaires de perturbation. δ est une distribution de Dirac. Ainsi, pour trouver l'emplacement x c où un forc ¸age f ′ = δ(xx c )(tt 0 ) de la perturbation d'état q ′ modifiera le plus la perturbation d'état à l'emplacement x e et à un temps final t f , plusieurs simulations sont nécessaires. En fait, on doit faire une simulation pour chaque emplacement possible x c du forc ¸age afin de comparer leur effet à l'emplacement x e et au temps t f (voir figure 4.2). L'utilisation de méthodes adjointes constitue une manière alternative de réaliser une étude de sensibilité. A partir de l'identité adjointe définie à l'équation (4.10), on peut voir que q ′ et l'état adjoint q * vérifient la relation suivante : q ′ (x e , t f ) = q * (x c , t 0 ). Cette expression signifie que l'effet sur q ′ (x e , t f ) crée par un forc ¸age f ′ = δ(xx c )(tt 0 ) des équations directes est équivalent à l'effet sur q * (x c , t 0 ) crée par un forc ¸age g * = δ(xx e )(tt f ) des équations adjointes, comme illustré sur la figure 4.3.

Ceci constitue le principal avantage de l'utilisation des méthodes adjointes. Dans cet exemple, une seule simulation du système adjoint de t f à t 0 est nécessaire, où le forc ¸age des équations adjointes est placé en x e comme montré sur la figure 4.4. Le champ adjoint résultant nous donne alors la sensibilité du champ direct : plus la valeur de la variable adjointe est élevée, plus la sensibilité du champ direct est élevée. Ainsi, l'endroit où la valeur de q * est la plus forte nous indique l'emplacement x c où le forc ¸age des équations directes doit être placé à l'instant t 0 pour affecter le plus q ′ (x e , t f ). [START_REF] Cervi Ño | Perturbation and adjoint analyses of flow-acoustic interactions in an unsteady 2d jet[END_REF]. Les équations adjointes du §4.2.2 sont donc linéaires, elles se propagent 'inversement' en temps, et le champ adjoint est q * = [p * , (ρu) * , (ρv) * , ρ * ]. Notez que la pression adjointe est reliée à l'équation de continuité, alors que la densité adjointe est reliée à l'équation de l'énergie. [START_REF] Spagnoli | Etude numérique de sensibilité et contrôle optimal du bruit aéroacoustique généré par une couche de mélange compressible bidimensionelle[END_REF] utilisé pour des études de sensibilité et de contrôle optimal dans des couches de mélange.

L'adjoint des équations de Navier-Stokes compressibles

Nous avons donc implémenté l'adjoint des équations de Navier-Stokes compressibles instationnaires, en utilisant une approche continue suivie d'une discrétisation. Les simulations directes sont réalisées en utilisant les équations de Navier-Stokes écrites en variables conservatives [ρ, ρu, ρv, ρe], mais l'adjoint a été dérivé des équations de Navier-Stokes linéarisées écrites pour q

′ = [ρ ′ , (ρu) ′ , (ρv) ′ , p ′ ] ( §4.2.

1). L'avantage de cette formulation est qu'il est plus facile d'étudier et de contrôler la perturbation de pression, ce qui est crucial pour des études d'aéroacoustique. De plus, l'expression des équations adjointes en est relativement simplifiée. Cependant, deux simplifications ont été faites avant de dériver les équations adjointes : la viscosité µ a été supposée constante et le terme de dissipation visqueuse de l'équation de l'énergie, Φ ν , a été négligé. Ces simplifications sont basées sur la supposition que les variations spatiales et temporelles de la viscosité ainsi que la dissipation visqueuse dans l'équation de l'énergie n'ont pas d'effet significatif sur la propagation du bruit étant donné qu'elles agissent aux petites échelles

Implémentation

Le code adjoint est écrit en Fortran 90, et peut manipuler des configurations multi-blocs 2D. C'est une extension du code mono-bloc écrit par Anaïs Guaus à l'IMFT pour les équations d'Euler adjointes, et basé sur le code adjoint de Bruno Spagnoli

Les équations adjointes ont une forme similaire aux équations directes, les méthodes numériques requises pour leur implémentation sont donc du même ordre de complexité que les méthodes utilisées pour l'algorithme du champ direct. Il existe tout de même quelques subtiles différences surtout liées au fait que le champ direct intervient dans les équations adjointes. Tout d'abord, la zone tampon doit être placée à gauche, l''écoulement' dans la simulation adjointe se déplac ¸ant de la droite vers la gauche. Dans cette zone tampon nous n'avons cependant aucune information disponible sur le champ direct, et nous utiliserons donc le champ direct d'entrée dans toute cette zone. De plus, pour des raisons de stabilité numérique, le pas de temps dans la simulation adjointe est plus petit que celui de la simulation directe, et le champ direct devra donc être interpolé. En fait, pour réduire le problème du stockage, nous ne sauvons le champ direct que tous les 10 pas de temps et nous effectuons des interpolations.

La discrétisation spatiale utilisée pour les dérivées du premier ordre est la même que pour le code direct : schéma compact du 6 ème ordre 'progressive-regressive', proposé par Kloker [START_REF] Kloker | A robust high-resolution split-type compact FD scheme for spatial direct numerical simulation of boundary-layer transition[END_REF]. Pour les dérivées du second ordre un schéma compact du 6 ème ordre optimisé sur 5 points est introduit [cf. Table I, (VIII) [START_REF] Kloker | A robust high-resolution split-type compact FD scheme for spatial direct numerical simulation of boundary-layer transition[END_REF]]. Tout comme pour les simulations directes, un schéma de Runge-Kutta du 4 ème ordre est utilisé pour la discrétisation temporelle.

Introduction

Adjoint methods are based on the use of the adjoint operator of a given system of equations. The adjoint equations have a form similar to the direct equations, and so the numerical method required for its implementation is of the same complexity as the method used for the direct algorithm. However, some subtle differences exist which must be considered, and are highlighted in later sections.

At the beginning of this chapter the principles of the adjoint methods in fluid mechanic problems are given ( §4.1). After that, the mathematical formulation of the adjoint of the 2D compressible Navier-Stokes equations is detailed ( §4.2). Finally, its numerical implementation is presented ( §4.3).

Overview of the adjoint methods

Adjoint methods present a wide range of applications of interest in fluid dynamic problems: sensitivity and receptivity analysis, computation of the optimal perturbation and optimal control, and other optimization problems such as shape and grid optimization, error minimization, and optimal modification of the mean flow.

In this thesis several uses of the adjoint methods have been investigated. Sensitivity analysis has been performed for compressible channel and cavity flows, as it is going to be shown in chapter §6. A detailed explanation is given in §4.1.2. Receptivity analysis has not been done in this thesis, but it is closely related to sensitivity analysis and so a brief description is included. Optimal perturbation and optimal control have been studied for an incompressible 3D channel flow, whose results are added in the appendix §A. Other optimization problems which can be solved by the use of adjoint methods are outlined.

Formulation of the problem

There are different formulations of adjoint problems, and here the formulation for a variational approach to perturbation analysis is presented. Note that there are other applications of the adjoint methods, but only the perturbation minimization is explained since it is used in the sensitivity analysis.

First of all, the state of the system is defined as: q + N (q)q = 0 (4.1)

where q are the state variables and N (q) is the Navier-Stokes operator. Assuming very small perturbations of the state variables, the state system may be linearized as follows:

q′ + N ′ (q)q ′ = 0 (4.2)
where q ′ are small perturbations of q and N ′ (q) is the linearized Navier-Stokes operator. The linearized system given by equation (4.2) will be referred from now on as direct system.

The objective of this problem is to minimize the energy of the perturbations, which is given by the cost function J :

J (q) = 1 2 q, q (4.3) 
whose variation might be written as δJ (q, q ′ ) = q, q ′ , where q ′ must satisfy the direct system (4.2), and the inner product ., . is defined over the whole space-time domain:

q 1 , q 2 = t f t 0 Ω q 1 q 2 dΩ dt (4.4)
where Ω represents the spatial domain, which can be either 1D (x), 2D (x, y) or 3D (x, y, z), t 0 is the initial time and t f is the final time. This problem is called minimization under constraints, where the constraints are the direct system given in (4.2) and its boundary conditions.

The introduction of a Lagrangian functional L(q, q ′ , q * ) transforms the problem into an unconstrained minimization problem. The variation of L(q, q ′ , q * ) is expressed as: δL(q, q ′ , q * ) = δJ (q, q ′ ) + q * , q′ + N ′ (q)q ′ (4.5)

where q * are the Lagrange multipliers, later on referred as adjoint variables, and the objective is to minimize the Lagrangian functional with respect to q ′ and q * , so:

∂L(q, q ′ , q * ) ∂q ′ = 0 ∂L(q, q ′ , q * ) ∂q * = 0 (4.6)
It is straightforward to see that the minimization of L(q, q ′ , q * ) with respect to q * leads to the direct system:

∂L(q, q ′ , q * ) ∂q * = 0 ⇒ q′ + N ′ (q)q ′ = 0 [∀t ∈ (t 0 , t f ), ∀Ω] (4.7) 
On the other hand, the minimization of the Lagrangian function with respect to q ′ requires the manipulation of L(q, q ′ , q * ) in integral form: L(q, q ′ , q * ) = 1 2

t f t 0 Ω q ′2 dΩ dt + t f t 0 Ω q * q′ + N ′ (q)q ′ dΩ dt T 1 (4.8)
where the second term T 1 is developed by integration by parts, giving:

T 1 = t f t 0 Ω q * q′ dΩ dt + t f t 0 Ω q * N ′ (q)q ′ dΩ dt = Ω q * q ′ t f t 0 dΩ - t f t 0 Ω q * q ′ dΩ dt + t f t 0 Ω q * N ′ (q)q ′ dΩ dt T 2 (4.9)
At this point, the mathematical property of the adjoint operator of N ′ (q), N ′ (q) * , is introduced:

q * , N ′ (q)q ′ = N ′ (q) * q * , q ′ + BT spatial (4.10)

where the spatial boundary terms BT spatial can be made zero by taking the right conditions for q * to simplify the formulation. This relation is referred as the adjoint identity.

By using the adjoint identity given in (4.10), the term T 2 from equation 4.9 can be re-written as:

T 2 = t f t 0 Ω N ′ (q) * q * q ′ dΩ dt + BT spatial (4.11)
Inserting T 2 into equation (4.9), the term T 1 can be expressed as:

T 1 = Ω q * q ′ t f t 0 dΩ - t f t 0 Ω q * q ′ dΩ dt + t f t 0 Ω N ′ (q) * q * q ′ dΩ dt + BT spatial = Ω q * q ′ t f t 0 dΩ + -q * + N ′ (q) * q * , q ′ + BT spatial (4.12)
and inserting equation (4.12) into (4.8), the Lagrangian function becomes:

L(q, q ′ , q * ) = J (q, q ′ ) + -q * + N ′ (q) * q * , q ′ + Ω q * (t f )q ′ (t f ) dΩ - Ω q * (t 0 )q ′ (t 0 ) dΩ BTtemp +BT spatial (4.13) 
where the last terms BT temp are the temporal boundary terms. To simplify the formulation, the boundary terms can be made equal to zero if the right conditions at the spatial and temporal boundaries are chosen.

The terminal condition of the adjoint field is set to q * (t f ) = 0, so the first boundary term disappears. Then, at t = t 0 , i.e. at the initial time of the direct simulation, the perturbations of the flow are taken as q ′ (t 0 ) = 0, so the second term vanishes.

In summary, the minimization of L(q, q ′ , q * ) with respect to q ′ leads to:

∂L(q, q ′ , q * ) ∂q ′ = 0 ⇒ q -q * + N ′ (q) * q * = 0 [∀t ∈ (t 0 , t f ), ∀Ω] (4.14)
which is called adjoint system. Note that the adjoint system must be run backward in time (due to the negative sign in front of the temporal derivative). Moreover, the presence of q in the adjoint equations implies that a solution of the state system will be necessary in order to calculate the adjoint system.

Sensitivity analysis

Sensitivity describes where the flow is more affected by disturbances, how the system's state is affected by variations in one of its parameters [START_REF] Airiau | Boundary layer sensitivity and receptivity[END_REF]. The parameters which might modify the state are, for instance, external perturbations, roughness at a solid boundary, flow or fluid properties, etc. Sensitivity measures the effect of the forcing over the amplitude of the perturbations, i.e., it is a gradient of the amplitude of the perturbation due to external forcing.

Formulation

One way to investigate sensitivities is by perturbation analysis, which can be performed using the linearized perturbation equations or by a finite difference approach. The later consists on computing the flow field with a nonlinear solver twice: one without perturbation and another with small perturbations, and calculate their difference. The result is interpreted as the effect over the whole field of that particular perturbation [START_REF] Cervi Ño | Perturbation and adjoint analyses of flow-acoustic interactions in an unsteady 2d jet[END_REF].

origin of the forcing f ′ at t = t c which is the effect q ′ (x obs , t obs )?

x obs x c In other words, the problem can be formulated as a question: Q1: What is the effect on q ′ (x obs , t obs ) caused by applying a small forcing f ′ = δ(xx c )(tt c ) localized in space at x = x c and time at t = t c ?

In question Q1, q ′ are small perturbations of the state system, f ′ is the forcing of the right-hand-side of the direct equations, t obs is higher than t c , and δ represents a Dirac delta function which is zero when x = x c or t = t c . This question is illustrated in figure 4.1. Question Q1 is easy to calculate, since only one computation from t c to t obs of the direct system is required. A more complex question is: Q2: At which position x c (at a given time t c ) should the forcing f ′ of the state perturbation q ′ be applied, in order to affect the most the perturbation state at x obs and t obs ?

x 1 ? q ′ 1 (x obs , t obs )
x 2 ?

q ′ 2 (x obs , t obs )

x obs x obs x obs

x N ? As illustrated in figure 4.2 the question Q2 is more difficult to answer. Several computations are required, one for each possible origin x c of the forcing, in order to compare their effect in x obs at t obs . As a consequence, this method is computationally expensive.

q ′ N (x obs , t obs ) Highest q ′ (x obs , t obs ) ⇒ x = x c
An alternative way to perform sensitivity analysis is by the use of the adjoint methods. Let f ′ and g * be the direct and adjoint forcing. From the adjoint identity defined by equation (4.10) and (4.12), and taking q′ + N ′ (q) = f ′ andq * + N ′ (q) * = g * , and the boundary terms equal to zero, the following relation is found:

q * , f ′ = g * , q ′ (4.15)
which leads to the relation between q ′ and the adjoint state q * : q ′ (x obs , t obs ) = q * (x c , t c ) (4. [START_REF] Bewley | Flow control: new chanllenges for a new renaissence[END_REF] which means that the effect on q ′ (x obs , t obs ) created by a forcing f ′ = δ(xx c )(tt c ) on the direct equations is equivalent to the effect on q * (x c , t c ) caused by a forcing g * = δ(xx obs )(tt obs ) on the adjoint equations, as illustrated in figure 4.3.

q ′ (x obs , t obs )

x c x c q * (x c , t c )

x obs x obs g * f ′ q ′ (x obs , t obs ) = q * (x c , t c )

Figure 4.3 -Sensitivity analysis: relation between direct and adjoint variables

Thus question Q1 is in fact equivalent to ask: A1: What is the effect on q * (x c , t c ) caused by applying a forcing g * = δ(xx obs )(tt obs ) localized in space at x = x obs and time at t = t obs ? which requires one adjoint computation from t obs to t c . And from this, it is found that question Q2 is equivalent to: A2: At which position x c (at a given time t c ) is the highest value of q * when forcing the adjoint system with g * = δ(xx obs )(tt obs )? which is the main advantage of using adjoint methods. To answer the question A2 (and hence Q2) only one simulation of the adjoint system from t obs to t c is necessary, where the forcing of the adjoint equations is placed at x obs , as shown in figure 4.4. The resulting adjoint field gives the sensitivity of the direct flow, the higher the adjoint variable is, the higher the sensitivity of the flow is. Therefore, the highest value of q * indicates the position x c where the forcing of the direct equations should be applied at t c to affect the most q ′ (x obs , t obs ). 

q * q * q * q * q * q * q * q * q * q * x obs g * highest q * (x, t c ) ⇓ x = x c

Small literature review

Airiau et al. [START_REF] Airiau | Boundary layer sensitivity and receptivity[END_REF] used the adjoint of the Parabolized Stability Equations (PSE) to investigate the sensitivity of a 2D incompressible laminar boundary layer. Zymaris et al. [START_REF] Zymaris | Continuous adjoint approach to the Spalart-Allmaras turbulence model for incompressible flows[END_REF] derived the adjoint of the Spalart-Allmaras turbulence model using a continuous approach to study an incompressible turbulent duct flow.

An interesting research on a rounded backward-facing-step inside a S-shaped duct was performed by Marquet et al. [START_REF] Marquet | Direct and adjoint global modes of a recirculation bubble: lift-up and convective non-normalities[END_REF], in which the adjoint of the 3D incompressible Navier-Stokes equations was used. The adjoint pressure field shows that the highest sensitivity is found just upstream of the separation point. This result is going to be compared with those from the cavity flow in chapter §6.

The adjoint of the 2D incompressible Navier-Stokes equations was used to perform a structural sensitivity analysis of the flow behind a cylinder by Giannetti and Luchini [START_REF] Giannetti | Structural sensitivity of the first instability of the cylinder wake[END_REF] and Marquet et al. [START_REF] Marquet | Sensitivity analysis and passive control of cylinder flow[END_REF]. By taking the product of the direct and the adjoint fields, the resulting spatial structures allow the identification of the the core of the global instability, which is found to be at the end of the separation bubble [START_REF] Giannetti | Structural sensitivity of the first instability of the cylinder wake[END_REF]. Giannetti and Luchini [START_REF] Giannetti | Structural sensitivity of the first instability of the cylinder wake[END_REF] considered a forcing proportional to the perturbation velocity, while Marquet et al. [START_REF] Marquet | Sensitivity analysis and passive control of cylinder flow[END_REF] applied arbitrary base-flow modifications and specific modifications induced by a steady force.

Regarding compressible flows, the adjoint compressible Parabolized Stability Equations were used to investigate a boundary layer by Pralits et al. [START_REF] Pralits | Sensitivity analysis using adjoint parabolized stability equations for compressible flows[END_REF], and the adjoint of the full unsteady compressible Navier-Stokes equations were implemented to study a 2D jet [START_REF] Cervi Ño | Perturbation and adjoint analyses of flow-acoustic interactions in an unsteady 2d jet[END_REF] and a 2D mixing layer [START_REF] Barone | Receptivity of the compressible mixing layer[END_REF][START_REF] Spagnoli | Adjoint analysis for noise control in a two-dimensional compressible mixing layer[END_REF].

Cerviño et al. [START_REF] Cervi Ño | Perturbation and adjoint analyses of flow-acoustic interactions in an unsteady 2d jet[END_REF] applied forcing at a single frequency (2×, 5× and 20× the fundamental frequency of the 2D jet) and observed a broadening of the adjoint spectra, specially when forcing at higher frequencies. This phenomenon is attributed to the time-varying coefficients in the adjoint system. Barone and Lele [START_REF] Barone | Receptivity of the compressible mixing layer[END_REF] investigated a mixing layer initially separated by a plate. A strong adjoint field was observed within fast stream boundary layer below the plate, suggesting a receptivity mechanism which couples the mixing-layer instability with boundary layer modes. Spagnoli and Airiau [START_REF] Spagnoli | Adjoint analysis for noise control in a two-dimensional compressible mixing layer[END_REF] found in their analysis of a mixing layer a high pressure sensitivity at the inflow, and observed a broadening of the adjoint spectra as Cerviño et al. [START_REF] Cervi Ño | Perturbation and adjoint analyses of flow-acoustic interactions in an unsteady 2d jet[END_REF].

In summary, the literature search reveals that the adjoint of the full unsteady compressible Navier-Stokes equations have never been applied to investigate wall-bounded flows. Furthermore, there are no sensitivity analysis available for cavity flows, even though there is a study of an incompressible flow over backward-facing-step which can be used for comparison.

Receptivity analysis

Receptivity analysis explains how the instabilities respond to flow perturbations, by finding the initial amplitude and phase of the induced disturbance. It is a concept related to the sensitivity, but in this case the birth of the instabilities are described.

A classical way to study receptivity consists on solving the instability equations with different initial and boundary conditions. If the amplitude of the most amplified instability mode is to be found, several computations are required.

The adjoint method is much less computationally expensive. It is only needed to compute once the adjoint system backward in time. The solution of the adjoint system acts as a Green's function for the direct system. That is to say, for each external disturbance of the direct system, a scalar product of the initial condition times the Green's function provides with the result [START_REF] Luchini | Görtler vortices: a backward-in-time approach to the receptivity problem[END_REF]. Furthermore, for the steady boundary layer equations, Luchini and Bottaro [START_REF] Luchini | Görtler vortices: a backward-in-time approach to the receptivity problem[END_REF] show that any initial condition of the adjoint system will converge to the adjoint eigenfunction of the leading mode, given that is it far downstream.

The value of an adjoint variable at a given point indicates the response of the flow to forcing of the corresponding equation. For example, adjoint velocity shows the effect of momentum sources, adjoint pressure of a mass source and adjoint stream function of a vorticity source [START_REF] Hill | Adjoint systems and their role in the receptivity problem for boundary layers[END_REF].

Receptivity analysis using adjoint methods was first performed by Hill [START_REF] Hill | Adjoint systems and their role in the receptivity problem for boundary layers[END_REF], who derived the adjoint equations of the Orr-Sommerfeld problem for parallel flows, and extended the method to non-parallel flows by implementing the adjoint of the PSE [START_REF] Hill | Receptivity in non-parallel boundary layers[END_REF]. The adjoint of the PSE have been further used to investigate incompressible laminar boundary layers in 2D by Airiau [START_REF] Airiau | Non-parallel acoustic receptivity of a Blasius boundary layer using an adjoint approach[END_REF] and Airiau et al. [START_REF] Airiau | Boundary layer sensitivity and receptivity[END_REF]. Dobrinsky and Collis [38,[START_REF] Dobrinsky | Adjoint parabolized stability equations for receptivity prediction[END_REF] compared the performance of the adjoint PSE and the adjoint of the incompressible Navier-Stokes equations in 3D Blasius and Falkner-Skan boundary layers (also studied by Airiau [START_REF] Airiau | réceptivité et contrôle optimal d'écoulements cisaillés : approaches adjointes[END_REF]) and the boundary layer on a swept parabolic cylinder. The adjoint PSE are found to provide good results and to be more time efficient. The adjoint of the incompressible NS equations have been also applied to a circular pipe flow [START_REF] Tumin | Receptivity of pipe Poiseuille flow[END_REF] and the first Stokes problem [START_REF] Luchini | Linear stability and receptivity analyses of the Stokes layer produced by an impulsively started plate[END_REF].

Regarding the compressible Navier-Stokes equations, Barone and Lele [START_REF] Barone | Receptivity of the compressible mixing layer[END_REF] used them to investigate the receptivity of a mixing layer. No other receptivity studies using adjoint methods related to aeroacoustic instabilities have been found.

Optimal perturbation

An optimal perturbation is defined as the worst perturbation, the initial disturbance which maximizes the energy gain of the perturbation.

Most of the studies regarding optimal perturbations performed by adjoint methods concern boundary layer flows. Andersson et al. [START_REF] Andersson | Optimal disturbances and by-pass transition in boundary layers[END_REF] implemented the adjoint of the 3D boundary layer equations, and found for a turbulent flow the optimal perturbations to be streamwise vortices which yield to streamwise streaks. A similar approach was chosen by Luchini [START_REF] Luchini | Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations[END_REF] to study the Reynolds-number-independence instability of a Blasius boundary layer.

Zuccher et al. [START_REF] Zuccher | Algebraic growth in a Blasius boundary layer: nonlinear optimal disturbances[END_REF] studied nonlinear optimal disturbances, and observed that the largest transient growth is obtained for inlet streamwise vortices, which develop into streamwise streaks, as for the linear case. The 3D incompressible NS equations were used by Corbett and Bottaro [START_REF] Corbett | Optimal perturbations for boundary layers subject to streamwise pressure gradient[END_REF] on a boundary layer with adverse pressure gradient. Their study shows that streamwise oriented vortices produce the largest transient amplification, and that adverse pressure gradient increases the resulting growth.

A channel flow was studied by means of the 3D incompressible NS equations by Cossu et al. [START_REF] Cossu | Optimal secondary energy growth in a plane channel flow[END_REF]. Linear secondary optimal energy growth was investigated for an unsteady base flow containing finite amplitude primary transiently growing streaks. The primary and secondary growth are found to be based on the same physical mechanisms if the primary streaks are locally stable.

The adjoint of the steady compressible NS equations were implemented by Zuccher et al. and applied to a boundary layer over a flat plate [START_REF] Zuccher | Parabolic approach to optimal perturbations in compressible boundary layers[END_REF] and a boundary layer past a sharp cone [START_REF] Zuccher | Optimal disturbances in the supersonic boundary layer past a sharp cone[END_REF]. By comparing the growth factors for flat plates and cones, it is observed that the flow divergence has a stabilizing effect. Åkervik et al. [START_REF] Åkervik | Optimal growth, model reduction and control in a separated boundary layer flow using global eigenmodes[END_REF] studied optimal growth on a rounded shallow cavity. The energy growth shows a fast transient, followed by a oscillatory and exponentially growing trend.

Optimal control

Optimal control is the optimal forcing which minimizes a given cost function. The direct field is computed and then the sensitivity of the flow to control modifications is calculated with the adjoint system, the control is updated from the adjoint field and the updated control is used to recalculate the flow. An example of optimal control of perturbations of a channel flow is given in the appendix §A.

The most common method to control bounded flows is unsteady blowing and suction at the wall, with a zero-net-mass flux. This approach has been successfully applied to 3D incompressible boundary layer flows by using the adjoint of the boundary layer equations [START_REF] Cathalifaud | Algebraic growth in boundary layers: optimal control by blowing and suction at the wall[END_REF], incompressible NS [START_REF] Chevalier | Feedback and Adjoint Based Control of Boundary Layer Flows[END_REF] and PSE [START_REF] Walther | Optimal control of Tollmien-Schlichting waves in a developing boundary layer[END_REF].

In addition to boundary layer studies, the 3D incompressible NS equations have been applied to optimal control of channel flows [START_REF] Bewley | Optimal feedback control of turbulent channel flow[END_REF][START_REF] Bewley | DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms[END_REF][START_REF] Chevalier | Feedback and Adjoint Based Control of Boundary Layer Flows[END_REF][START_REF] Hogberg | Optimal control of transition initiated by oblique waves in channel flow[END_REF][START_REF] Luchini | Adjoint DNS of turbulent channel flow[END_REF]. Chang and Collis [START_REF] Chang | Active control of turbulent channel flows based on Large Eddy simulation[END_REF] derived the adjoint of the 3D LES and proved that it is a viable tool to obtain accurate results. Furthermore, Chang [START_REF] Chang | Approximate models for optimal control of turbulent channel flow[END_REF] proposes a hybrid LES/DNS approach in which the optimization is computed with the adjoint LES, while the direct flow is calculated by DNS. This hybrid method keeps the efficiency of the LES computations and the accuracy of DNS.

Chevallier [START_REF] Chevalier | Feedback and Adjoint Based Control of Boundary Layer Flows[END_REF] and Högberg [START_REF] Hogberg | Optimal control of transition initiated by oblique waves in channel flow[END_REF] compared the performance of adjoint-based optimal control (nonlinear approach) with that from linear feedback control based on the Riccatti equation. It is observed that the non-linear method can be more aggressive during the first stages since there is no direct limitation on the time derivative [START_REF] Hogberg | Optimal control of transition initiated by oblique waves in channel flow[END_REF].

Actually the time horizon over which the flow is optimized using adjoint methods is a very sensitive parameter. With a larger time window, the cost functional will better represent the optimal control objective [START_REF] Bewley | DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms[END_REF][START_REF] Chang | Active control of turbulent channel flows based on Large Eddy simulation[END_REF]. However, at the same time the difficulty of implementation increases, and the results might diverge due to the sensitivity of the adjoint equations to errors [START_REF] Bewley | DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms[END_REF][START_REF] Chang | Active control of turbulent channel flows based on Large Eddy simulation[END_REF][START_REF] Luchini | Adjoint DNS of turbulent channel flow[END_REF].

Steady suction at the wall was applied to control a boundary layer over a flat plate [START_REF] Pralits | Adjoint-based optimization of steady suction for disturbance control in incompressible flows[END_REF] and over a swept wing [START_REF] Pralits | Optimization of steady suction for disturbance control on infinite swept wings[END_REF], where both the adjoint of the PSE and the boundary layer equations were used. The boundary layer equations were also used in a boundary layer flow controlled by spanwise uniform wall suction [START_REF] Zuccher | Algebraic growth in a Blasius boundary layer: optimal and robust control by mean suction in the nonlinear regime[END_REF].

The first investigations of flow control in compressible flows were performed with the adjoint of the 2D compressible Euler equations, which were used to optimize the temporal and spatial distribution of wall-normal velocity for the transpiration boundary control [START_REF] Collis | Optimal control of aeroacoustic noise generated by cylinder vortex interaction[END_REF][START_REF] Collis | Optimal control of aeroacoustic flows: Transpiration boundary control[END_REF][START_REF] Collis | Optimal transpiration boundary control for aeroacoustics[END_REF]. After that an adjoint system of the semi-discretized compressible Navier-Stokes equations was derived and tested for two counterrotating vortices above a solid boundary [START_REF] Collis | Optimal control of unsteady compressible viscous flows[END_REF].

Recently the adjoint of the full unsteady compressible Navier-Stokes equations has been implemented for a mixing layer [START_REF] Freund | Adjoint-based control of free shear flow noise[END_REF][START_REF] Wei | A noise-controlled free shear flow[END_REF]. The control objective is the minimization of the mean square acoustic pressure, and the control is applied as right-hand-forcing of the governing equations in a small region near the inflow.

Good reviews on flow control mentioning the use of adjoint methods are those written by Bewley [START_REF] Bewley | Flow control: new chanllenges for a new renaissence[END_REF], Collis et al. [START_REF] Collis | Issues in active flow control: theory, control, simulation and experiment[END_REF] and Kim and Bewley [START_REF] Kim | A linear systems approach to flow control[END_REF].

Other optimization problems

Adjoint methods have also been used in fluid mechanics in other optimization problems: shape optimization, optimal modification of the base flow, minimization of the numerical error, grid optimization, etc. A complete review is out of the scope of this thesis, yet a few examples are mentioned to briefly describe these problems:

Shape optimization a

Carpentieri et al. [START_REF] Carpentieri | Adjoint-based aerodynamic shape optimization on unstructured meshes[END_REF] derived a discrete adjoint of an unstructured finite-volume formulation of the Euler equations. The shape of a 2D airfoil was optimized in order to reduce the drag coefficient under certain constraints. Both transonic and supersonic flows were considered.

Optimal modification of the base flow a

The optimal modification of the mean (linearly stable) flow consists on finding the minimum deformation of the mean flow which will create a subcritical instability. This problem was first proposed by Bottaro et al. [START_REF] Bottaro | The effect of base flow variation on flow stability[END_REF] in their investigation of a Couette flow.

Grid optimization a

Adjoint methods are used to optimize the grid in order to increase the accuracy of the initial problem. The position of the grid points can be optimized either by moving the original points, or by adding more points where necessary. Barthet et al. [START_REF] Barthet | Adjoint-based error correction applied to far-field drag breakdown on structured grid[END_REF] adapted the mesh around a 2D airfoil and a 3D wing by minimizing the computed uncertainty error. The adjoint field was used to calculate the correction and the error estimation.

Error minimization a

Minimization of the error aims to calculate a quantity (i.e. drag) with the highest accuracy, by reducing the numerical error derived from the different approximations. Venditti and Darfomal [START_REF] Venditti | Adjoint error estimation and grid adaptation for functional outputs: Application to quasi-one-dimensional flow[END_REF] estimated the error in the functional with respect to the value in a uniformly finer grid in a 1D problem. To complete the error optimization procedure, grid adaptation was also performed using adjoint methods.

Application to the compressible Navier-Stokes equations

In this study the adjoint of the full unsteady compressible Navier-Stokes equations is implemented, as it was done by Cerviño et al. [START_REF] Cervi Ño | Perturbation and adjoint analyses of flow-acoustic interactions in an unsteady 2d jet[END_REF] and Spagnoli [START_REF] Spagnoli | Etude numérique de sensibilité et contrôle optimal du bruit aéroacoustique généré par une couche de mélange compressible bidimensionelle[END_REF] for non-bounded flows.

From the two possible approaches, optimize-then-discretize and discretize-then-optimize, the continuous approach is taken, in which the adjoint equations are derived from the direct equations before the discretization is applied to both systems. This method is found to lead to adjoint systems easier to code and to understand [START_REF] Bewley | DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms[END_REF].

Navier-Stokes equations

The direct simulations are performed using the Navier-Stokes equations written in conservative form [ρ, ρu, ρv, ρe] as described in section §1.2, where ρ is the density, ρu = m x and ρv = m y are the xand y-momentum and e is the energy. On the other hand, the adjoint equations are derived from the Navier-Stokes equations written for q = [ρ, ρu, ρv, p], where p is the pressure, as it was previously done by Cerviño et al. [START_REF] Cervi Ño | Perturbation and adjoint analyses of flow-acoustic interactions in an unsteady 2d jet[END_REF] and Spagnoli [START_REF] Spagnoli | Etude numérique de sensibilité et contrôle optimal du bruit aéroacoustique généré par une couche de mélange compressible bidimensionelle[END_REF]. The advantage of this formulation is that pressure is easier to study and to control, which is of high importance in aeroacoustic investigations. Furthermore, the expression of the adjoint equations becomes simpler.

The dimensional governing equations (eq ρ , eq ρu , eq ρv , eq p ) are then expressed as: where µ is the dynamic viscosity which depends on the temperature T , γ is the ratio of specific heats, P r = 0.72 is the Prandlt number considered constant, c p is the specific heat at constant pressure and Φ ν is the viscous dissipation term of the energy equation.

∂ρ ∂t + ∂m x ∂x + ∂m y ∂y = 0 ∂m x ∂t + ∂(ρu 2 ) ∂x + ∂(ρuv) ∂y + ∂p ∂x - 4 

Adjoint Navier-Stokes equations

The mathematical process of differentiation of the non-linear NS equations naturally linearizes the adjoint equations. Thus, the obtained adjoint equations are linear, they are run backward in time and the adjoint state vector is q * = [p * , (ρu) * , (ρv) * , ρ * ], where (ρu) * = m * x and (ρv) * = m * y . Note that adjoint pressure is related to the continuity equation, while adjoint density is related to the energy equation, as shown in table 4.1 at the end of this section. The adjoint equations (eq * rho , eq * ρu , eq * ρv , eq * p ) are expressed as:
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In order to derive the adjoint system, two approximations have been made on the direct equations:

• Viscosity µ is considered constant.

• The viscous dissipation term of the energy equation Φ ν is neglected.

These simplifications are based on the assumption that spatial and temporal variations of viscosity and viscous dissipation in the heat equation do not have an important effect on sound propagation, since they take place only at small length scales [START_REF] Cervi Ño | Perturbation and adjoint analyses of flow-acoustic interactions in an unsteady 2d jet[END_REF]. The adjoint of the compressible Navier-Stokes equations without any simplification are given in the appendix §B, and the adjoint of the simplified NS in conservative form are given in the appendix §C. Moreover, in appendix §D the Euler equations in conservative form are included. The Lagrange multipliers [p * , (ρu) * , (ρv) * , ρ * ] are not used for the boundary conditions of the direct system u = v = 0 nor ∂p/∂y = 0, since automatically the direct system verifies these conditions.

As explained in §4.1, due to the integration by parts some boundary terms are obtained. For the adjoint compressible Navier-Stokes equations, they are: where δ indicates a variation of the variable.

BT = Ω p * δρ + m * x δm x + m * y δm y + ρ * δp T dx dy + X t f t 0 p * + um * x + γp ρ * ρ δm y + vm * x δm x + vρ * + m * y δp -uvm * x + γpv ρ * ρ δρ -µ m *
As described in §4.1.1, the boundary terms can be cancelled by selecting the right conditions at the spatial and temporal boundaries. The terminal condition on the adjoint variables q * (t f ) = 0 and the initial condition on the direct variables q ′ (t 0 ) = 0 cancel the temporal boundaries.

Respect to the spatial boundaries, the boundary terms can be neglected in the far-field where a nonreflecting boundary condition is applied, since no information is propagated into the computational domain of interest. On the other hand, when the domain is bounded by a wall, the boundary terms can not be ignored and must be used to derive the solid boundary conditions, as it is going to be detailed in §4.3.3.

For clarity, table 4.1 shows the correspondence between direct and adjoint variables and the equations, as well as the nomenclature for the forcings which are going to be used in chapter §5.

Equation

Direct variable Adjoint variable Forcing direct Forcing adjoint 4.1 -Relation between the equations and the direct and adjoint variables.

continuity ρ ′ p * f ′ ρ g * p x-momentum (ρu) ′ = m ′ x (ρu) * = m * x f ′ ρu g * ρu y-momentum (ρv) ′ = m ′ y (ρv) * = m * y f ′ ρv g * ρv energy p ′ ρ * f ′ p g * ρ Table

Numerical implementation

The adjoint code is written in Fortran 90 and can handle 2D multi-block configurations. It is an extension of the single block code implemented in IMFT by Anaïs Guaus for the adjoint Euler equations, which is based on the adjoint code of Bruno Spagnoli [START_REF] Spagnoli | Etude numérique de sensibilité et contrôle optimal du bruit aéroacoustique généré par une couche de mélange compressible bidimensionelle[END_REF] used to perform sensitivity analysis and optimal control of a mixing layer.

As stated at the beginning of the chapter, the adjoint equations have a form similar to the direct equations, hence they have a similar complexity and the same numerical tools can be used. That means that non-reflecting boundary conditions are used at the inflow, outflow and radiation boundaries, solid boundary conditions are applied at the walls, and high-order schemes are used for the spatial and temporal discretization.

On the other hand, the adjoint equations present several differences respect to the direct. It has been shown in §4.1.1 that the adjoint equations march backward in time and that they require the direct field at each temporal iteration. Furthermore, it is observed that the adjoint system is numerically more unstable. Due to these differences, some extra difficulties are encountered:

Buffer zone on the left a

Since the adjoint equations march backward in time, the flow in the adjoint simulation moves from right to left, contrarily to the direct simulation, so the buffer zone must be placed on the left side of the computational domain. For this buffer zone, the direct field is not available, so in order to initialize it the information from the inflow is copied all along the buffer zone.

Smaller time step a

The adjoint equations are more unstable than the direct equations. For this reason, a smaller time step is used, half of the ∆t used for the direct. Consequently, the direct fields must be interpolated.

Storage problem a

In order to run the adjoint, the direct field is necessary. For the channel flow test cases, where the grid is small and the flow is stationary, the storage of the direct field does not constitute a problem. However, the binary files containing the direct field of a cavity flow are much larger, and much more iterations of the direct flow are required. In order to decrease the data storage, and since the natural frequency of the cavity flow is very low, only 1 every 10 iterations are saved and then the direct fields are interpolated.

All the adjoint simulations have been performed using the same grid as the direct simulation, so no spatial interpolation has been performed.

Discretization

The spatial discretization used for the first order derivatives is the same as for the direct code: the 6 th order compact scheme, forward and backward, proposed by Kloker [START_REF] Kloker | A robust high-resolution split-type compact FD scheme for spatial direct numerical simulation of boundary-layer transition[END_REF] and shown by equations (1.5) and (1.6) in section §1.3.

In the adjoint equations there are several second order derivatives in explicit form which must be evaluated separately. For this reason, a 6 th order compact scheme optimized over a 5 points stencil is introduced [table I, (VIII) [START_REF] Kloker | A robust high-resolution split-type compact FD scheme for spatial direct numerical simulation of boundary-layer transition[END_REF]]. Let F be one adjoint variable q * i . For example, in x-direction the scheme is:

2 ∂ 2 F i-1 ∂x 2 + 11 ∂ 2 F i ∂x 2 + 2 ∂ 2 F i+1 ∂x 2 = 1 4∆x 2 (3F i-2 + 48F i-1 -102F i + 48F i+1 + 3F i+2 )
and the same formulation is implemented in y-direction. Due to the size of the stencil, different schemes are required at the boundaries. At the second and last but one points the scheme is, for example at the second point in x-direction [START_REF] Spagnoli | Etude numérique de sensibilité et contrôle optimal du bruit aéroacoustique généré par une couche de mélange compressible bidimensionelle[END_REF]:

∂ 2 F 1 ∂x 2 + 10 ∂ 2 F 2 ∂x 2 + ∂ 2 F 3 ∂x 2 = 1 ∆x 2 (12F 1 -24F 2 + 12F 3 )
where an equivalent formulation is used at the last but one point, and the same schemes are used in y-direction. Finally, the boundary schemes at the first and the last nodes are:

∂ 2 F 1 ∂x 2 = 1 ∆x 2 (2F 1 -5F 2 + 4F 3 -1F 4 ) ∂ 2 F 1 ∂y 2 = 1 ∆y 2 35 12 F 1 - 26 3 F 2 + 19 2 F 3 - 14 3 F 4 + 11 12 F 5
for the first point, and an equivalent formulation is used at the last point. The difference in the order of the schemes in x-and y-directions is due to historical development of the code. The code was firstly validated for a channel flow, where the diffusive fluxes in x (where the second derivatives appear) are much smaller than the diffusive fluxes in y.

When working with a non-equidistant mesh, for instance in x-direction, it is necessary to derive the variables F with respect to an equidistant mesh ξ and then apply the chain rule:

∂ 2 F ∂x 2 = ∂ 2 F ∂ξ 2 ∂ξ ∂x 2 + ∂F ∂ξ ∂ 2 ξ ∂x 2
where the terms ∂ξ/∂x and ∂ 2 ξ/∂x 2 are computed using a 6 th order compact centered scheme as in the direct code (1.12), and the terms ∂ 2 F/∂ξ 2 and ∂F/∂ξ are calculated by the schemes previously described for the first and second order derivatives.

The temporal discretization is done using a 4 th order Runge-Kutta scheme, as for the direct simulations.

Non-reflecting boundary conditions

At the non-reflecting boundaries, inflow, outflow and radiation, Spagnoli's characteristic boundary conditions for the adjoint equations are used [START_REF] Spagnoli | Etude numérique de sensibilité et contrôle optimal du bruit aéroacoustique généré par une couche de mélange compressible bidimensionelle[END_REF]. These boundary conditions are equivalent to the Giles characteristics for the linearized Euler equations described in §1.4.1 but written in this case for the adjoint field. As in it shown in the appendix §D, the eigenvalues of the Euler and adjoint Euler equations are the same, so they have the same characteristics.

The waves crossing the computational boundary are decomposed into outgoing and incoming waves (one vorticity, one entropy and two acoustic waves). Since the adjoint equations are already linear, no previous knowledge of the mean flow is required and the waves can be computed directly from the adjoint variables.

In this formulation, the characteristic waves for the 2D adjoint Euler equations written for the variables q * = [p * , (ρu) * , (ρv) * , ρ * ] are:

L * 1 = δ(ρv) * L * 2 = u δ(ρu) * + δp * L * 3 = c 2 δρ * + (u -c) δ(ρu) * + v δ(ρv) * + δp * L * 4 = c 2 δρ * + (u + c) δ(ρu) * + v δ(ρv) * + δp *
where δp * , δ(ρu) * , δ(ρv) * and δρ * are the fluctuations of the adjoint variables, L * 1 is a vorticity wave, L * 2 is an entropy wave and L * 3 and L * 4 are acoustic waves.

This method is also perfectly non-reflecting, that is to say, the incoming waves are imposed to be zero and the outgoing waves are calculated from the disturbances, so:

Inflow L * 3 is calculated, and L * 1 = L * 2 = L * 4 = 0 Outflow L * 1 , L * 2 and L * 4 are calculated and L * 3 = 0
The disturbances of the adjoint variables at the boundary are recovered from the characteristic waves as:

δp * = L * 2 + u 2c (L * 3 -L * 4 ) δ(ρu) * = 1 2c (-L * 3 + L * 4 ) δ(ρv) * = L * 1 δρ * = 1 c 2 -vL * 1 -L * 2 + 1 2 L * 3 + 1 2 L * 4
It should be considered that since the adjoint equations move backward in time, the adjoint flow moves from right to left and hence the right computational boundary is treated as an inflow, and the left computational boundary as an outflow, contrarily to the direct simulations.

Wall boundary conditions

For the author's knowledge, the adjoint compressible Navier-Stokes equations have not yet been applied to wall-bounded flows. That implies that solid boundary conditions are not available and so must be derived from the boundary terms.

The boundary terms from §4.2.2 are considered, where the terms involving t = t 0 and t = t f have already been cancelled. Applying non-slip conditions u = v = 0 to (for instance) an horizontal wall, the following terms are left: where δ is a variation of the variable. By taking (ρv) * = 0 the first two terms are cancelled, and (ρu) * = 0 eliminates the third term. The last term requires different conditions depending on the condition over temperature, i.e. if the wall is isothermal δT = 0 or adiabatic ∂T /∂y = 0.

x 2 x 1 t f t 0 (ρv) * δp -4/3(
Finally, it is found that the conditions over the adjoint variables in order to make the boundary terms equal to zero should be:

Isothermal (ρu) * = (ρv) * = ρ * = 0 Adiabatic (ρu) * = (ρv) * = ∂ρ * ∂y = 0
Both isothermal and adiabatic walls are implemented with and without ghost cells.

The implementation of the solid boundaries without ghost cells is quite straightforward: the values of (ρu) * and (ρv) * at the wall are directly imposed to be zero, while ρ * is imposed to be zero for an isothermal wall, and it is calculated from the gradient for an adiabatic wall. The gradient is calculated using an explicit 5 th order scheme, the same which is used for the boundary points (1.7).

The implementation of the wall boundary condition with ghost cells is equivalent to the one used for the direct code described in §1.5.2. The adjoint x-and y-momentum are imposed to be zero at the wall by mirroring the value of the first interior point. The same is done for the adjoint density when the wall is isothermal. For an adiabatic wall, the 4 th order scheme (1.43) derived for the direct system is used to calculate the adjoint density at the ghost cell.

Conclusions

Different uses of the adjoint methods in fluid mechanics have been described. In general, the adjoint equations are not the only possible method, but they are found to be a very efficient way, for example to perform sensitivity analysis.

Two approximations have been assumed in order to derive the adjoint of the compressible Navier-Stokes equations: the viscosity is considered constant, and the viscous dissipation term of the energy equation is neglected. These simplifications are done considering that dissipation in the heat equation does not have an important role in acoustics.

The implementation of the equations is equivalent to the direct simulation algorithm: high order schemes are used for the discretization and characteristic boundary conditions are used at the nonreflecting boundaries. The solid boundary conditions have been derived from the boundary terms, and have been implemented with and without ghost cells.

However, there are some differences between the direct and the adjoint codes. In the adjoint the buffer zone must be placed in the opposite computational boundary due to the backward marching in time. The direct field must be previously calculated and stored since the direct variables appear in the coefficients of the adjoint equations. Finally the adjoint system is found to be more unstable so a smaller time step is required.

Chapter 5

Validation of the adjoint algorithm

Validation du code adjoint

Comme expliqué au chapître précédent, les variables adjointes représentent les sensibilités, données qui ne sont pas disponibles expérimentalement. C'est pourquoi l'algorithme adjoint est validé en utilisant l'identité de Green-Lagrange.

Méthode

L'identité de Green-Lagrange s'exprime q * , f ′ = g * , q ′ (5.2), où q ′ représente la perturbation de la variable d'état q, q * la variable adjointe, et g * et f ′ sont respectivement les forc ¸ages des systèmes adjoint et direct. En conséquence, nous pouvons valider la formulation adjointe en forc ¸ant les deux systèmes avec la même fonction, et en comparant les champs direct et adjoint résultants. Nous considérerons ici des forc ¸ages de la quantité de mouvement suivant x et de la masse volumique, dont les formulations sont données aux équations (5.3) et (5.4).

Nous avons illustré l'utilisation de l'identité de Green-Lagrange au paragraphe §4.1.2 par un exemple, où le forc ¸age est une fonction Dirac. Les champs direct et adjoint vérifient alors l'identité suivante q ′ (x obs , t obs ) = q * (x c , t c ) (4.16), où x obs et x c sont respectivement les emplacements des forc ¸ages adjoint et direct, et t c et t obs les temps initial et final de la simulation directe.

Il n'est cependant pas possible numériquement d'effectuer un forc ¸age par une fonction Dirac, ceci créant une discontinuité. Néanmoins, en intégrant spatialement et temporellement l'équation (5.3) (ou (5.4)), les résultats des simulations directe et adjointe peuvent être comparés.

Cas test

Un écoulement en canal plan laminaire a été utilisé pour la validation du code adjoint, au vu des nombreux avantages qu'il présente. Premièrement, la géométrie se présente sous la forme d'un seul bloc, ce qui permet dans un premier temps d'éliminer les problèmes de connectivité entre les blocs. La géométrie pourra dans un second temps être divisée en plusieurs blocs afin de vérifier la bonne implémentation de la dérivation inter-blocs. Deuxièmement, l'écoulement est stationnaire, ce qui nous permet de choisir arbitrairement la fréquence du forc ¸age de l'adjoint qui n'affectera donc pas par résonnance le champ direct. Troisièmement, le maillage n'a pas besoin d'être très raffiné, ce qui simplifie les problèmes de stockage de données. Enfin, aussi bien la géométrie que l'écoulement présentent des symétries horizontale et verticale, ce qui facilite le travail de validation.

En effet, si nous choisissons des forc ¸ages de même fréquence et de même amplitude pour les deux systèmes direct et adjoint, les champs résultant présenterons tous deux une symétrie par rapport à l'axe du canal, et seront entre eux anti-symétrique par rapport à l'axe vertical de symétrie du canal (conséquence de l'évolution inverse en temps de l'adjoint par rapport au direct). Nous comparerons également l'évolution temporelle de l'intégration spatiale de (5.6) pour le forc ¸age de la quantité de mouvement suivant x, et de (5.8) pour le forc ¸age en masse volumique.

Résultats

Les étapes de validations ont été choisies afin de tester une par une les différentes implémentations numériques : le maillage et le pas de temps, les conditions aux limites et la dérivation multi-blocs. Le seul aspect qui ne peut être validé avec l'écoulement en canal plan est la bonne connectivité aux coins formés par des parois solides. Cependant, le traitement aux coins a été validé pour les simulations directes au chapître §2, et il ne présente aucune différence dans le code adjoint. Dans tous les cas, les forc ¸ages direct et adjoint sont placés sur l'axe du canal.

Des forc ¸ages de la quantité de mouvement suivant x et de la masse volumique sont étudiés pour des nombres de Mach de M = 0.1 et de M = 0.4, comme indiqué dans les tableaux 5.3 et 5. [START_REF] Airiau | réceptivité et contrôle optimal d'écoulements cisaillés : approaches adjointes[END_REF]

. Nous considérons les cas paroi isotherme et paroi adiabatique. Dans tous les cas, les forc ¸ages des systèmes direct et adjoint sont identiques, ils sont placés dans un premier temps au même endroit, puis à des emplacements différents.

Etude de la discrétisation Afin d'étudier le maillage et le pas de temps, nous avons considéré un

écoulement laminaire à un nombre de Reynolds Re h = 14, à nombre de Mach M = 0. Pour des parois isothermes, même si l'accord reste bon au centre du canal, la pression adjointe présente de forte amplification aux parois. L'expression des équations adjointes aux parois sont trouvées en appliquant les conditions connues aux parois (u w = v w = 0, ∂p/∂y = 0, (ρu) * w = (ρv) * w = ρ * w = 0). L'équation (5.10) montre clairement la relation qui existe entre le gradient de masse volumique adjointe et le gradient de pression adjointe. Lorsque l'on force l'équation de conservation de la masse adjointe, de fortes valeurs de masse volumique adjointe sont convectées du centre du canal vers les parois. Or, la condition paroi isotherme impose que ρ * = 0 aux parois. D'où de forts gradients de masse volumique adjointe aux parois.

Etude des conditions aux limites Pour cette étude, nous avons considéré un écoulement à M = 0.1 et à paroi isotherme. L'addition de zone tampon a montré que l'on pouvait ainsi supprimer les réflexions aux bords du domaine présentes pour des maillages raffinés. Les deux conditions aux limites caractéristiques (Giles, Poinsot et Lele) donnent les mêmes résultats. Ceci était attendu étant donné que les champs directs sont quasi identiques pour ces deux type de conditions. Enfin, l'utilisation de points fantômes aux parois solides améliore les résultats en supprimant les réflexions aux parois à la sortie d'écoulement pour des maillages raffinés.

Dérivation multi-blocs Afin de valider l'implémentation de la dérivation multi-blocs adjointe, le domaine de calcul a été divisé en deux blocs. Les résultats obtenus sont identiques à ceux obtenus avec un seul bloc.

Conclusions

En conclusion, de bons résultats ont été trouvés concernant le forc ¸age de la quantité de mouvement suivant x, en particulier dans le cas de parois adiabatiques. Dans le cas de parois isothermes, l'origine du forc ¸age doit être placé suffisamment loin des limites non réfléchissantes.

Dans le cas de forc ¸age de la masse volumique, nous obtenons de bons résultats dans le cas de parois adiabatiques pour de faibles nombres de Mach et de Reynolds. Dans le cas de parois isothermes, nous notons de fortes amplifications de pression adjointe aux parois. Nous devons cependant considérer que la perturbation a été placée très proche des parois, et nous pensons que ce problème devrait être réglé si nous plac ¸ons le forc ¸age suffisamment loin des parois solides. D'après l'étude de discrétisation, nous avons trouvé que diminuer le nombre CFL améliore les résultats, et que l'addition de zone tampon évite les réflexions aux bords du domaine. De même, l'utilisation de points fantômes aux parois solides prévient la formation de réflexions aux bords.

Introduction

The adjoint variables represent sensitivities, as explained in the previous chapter §4. Consequently, the adjoint code cannot be validated against experimental data. For this reason the adjoint algorithm is validated using the Green-Lagrange identity, as described in section §5.1. A plane laminar channel flow has been used for the validation of the code. This configuration presents several advantages:

Single block geometry: it consists of a single block, so no problems of connectivity are encountered.

In order to verify that the block derivation is well implemented, the geometry can be divided in several blocks.

Steady flow: the flow is steady, so the frequency of the adjoint can be chosen arbitrarily since the perturbations are not affected by a resonance of the direct flow. Furthermore, since there are no periods of the direct flow to be covered, the simulation time can be relatively short.

Small grid: since it is a simple flow, the grid does not require a lot of points and so there are no problems of data storage.

Symmetric problem: both the geometry and the flow are symmetric respect to the vertical and horizontal centerlines of the channel (the advantage and use of this symmetry will be further discussed in later sections).

The validation path has been carefully chosen in order to include all the numerical tools that have been implemented: computational grid and time step ( §5.2), non-reflecting and wall boundary conditions ( §5.5) and multi-block derivation ( §5.6). The only aspect which can not be validated using a channel flow is the connectivity of the corners. However, the treatment of the corners has been validated for the direct simulations in chapter §2, and it does not present any difference in the adjoint algorithm.

Finally, two different kinds of forcing are considered: x-momentum equation, related to velocity variations, in section §5.3, and density equation, related to aeroacoustics, in section §5.4.

Validation method

In §4.1.1 the mathematical formulation of the adjoint methods has been given, where the definition of an adjoint system is:

q * , N ′ (q)q ′ = N ′ (q) * q * , q ′ + BT (5.1)
where q ′ are the fluctuations of the state variables, q * are the adjoint variables, N ′ (q) is the linearized Navier-Stokes operator and N ′ (q) * is the adjoint operator of N ′ (q). The boundary terms BT can be cancelled if the boundary conditions are properly chosen. If f ′ and g * are the forcings applied on the direct and adjoint systems respectively, the Green-Lagrange identity is expressed as:

q * , f ′ = g * , q ′ (5.2)
Therefore, forcing an adjoint equation gives the sensitivity of the corresponding direct variable, which is equivalent to the effect on the adjoint field caused by forcing the direct system. As a consequence, the adjoint formulation can be validated by forcing both systems with the same function and comparing the resulting fields.

As a first validation test, the x-momentum sensitivity field is selected, for which it is required to force the x-momentum equation. For this particular case, the expression (5.2) is:

t f t 0 Ω (ρu) * f ′ ρu dΩdt = t f t 0 Ω g * ρu (ρu) ′ dΩdt (5.3)
where t 0 stands for the initial time and t f for the final time, Ω is the spatial domain, and f ′ ρu and g * ρu are the forcings of the direct and adjoint x-momentum equations as defined in table 4.1.

Since the main objective of developing this adjoint method is to perform noise control, the results for the sensitivity of pressure are of interest, for which the adjoint density equation is forced with g * ρ (it is reminded that adjoint density is related to the energy equation, while adjoint pressure is related to the continuity equation as indicated in table 4.1). On the left hand side, it is arbitrarily chosen to force the density equation with f ′ ρ , and then the expression (5.2) becomes:

t f t 0 Ω p * f ′ ρ dΩdt = t f t 0 Ω g * ρ p ′ dΩdt (5.4) 
In §4.1.2 the use of the Green-Lagrange identity has been illustrated with an example, where the forcing is a Dirac delta function. In that case the direct and adjoint fields follow the identity q ′ (x obs , t obs ) = q * (x c , t c ) (4.16), where x obs and x c are the locations of the adjoint and the direct forcing, and t c and t obs are the initial and the final time of the direct simulation. However, numerically, it is not possible to insert a Dirac delta function into the equations since it would create a discontinuity in the computational grid. As an approximation, a time-periodic Gaussian pulse of amplitude A and frequency ω p is used instead:

f ′ = g * = sin(ω p t) G(x, y), G(x, y) = A exp (x -x 0 ) 2 + (y -y 0 ) 2 σ 2 p (5.5)
Since the perturbation is just an approximation of a Dirac delta function, the identity (4.16) will not be exact. Nonetheless, by performing the spatial and temporal integrations of (5.3) or (5.4), the results of the direct and adjoint simulations can be compared.

A plane channel flow is considered for this study. The streamwise velocity isocontours are displayed in figure 5.1, where the dash dot lines indicate the symmetry of the configuration respect to the vertical and horizontal centerlines. Due to this double symmetry, if the origin of the pulse is the intersection of the dash dot lines, and the same frequency ω p and amplitude A are selected for both systems, the resulting fields will be symmetric with respect to the vertical centerline of the channel and respect to the time (as it is going to be illustrated in the coming sections). Consequently, the temporal evolution of the spatial integration of x-momentum can be compared as:

t f t 0 (ρu) * sin(ω p t a ) dt a ≈ t f t 0 (ρu) ′ sin(ω p t) dt (5.6)
where the spatial integrations of x-momentum are calculated as:

(ρu) * = Ω (ρu) * G(x, y)dΩ (ρu) ′ = Ω (ρu) ′ G(x, y)dΩ (5.7)
where the time for the adjoint is inverted as t a = t ft, with t f the terminal (final) time. An equivalent expression is used to compare the temporal evolution of the spatial integration of pressure when the forcing is applied to the density and adjoint density equations:

t f t 0 p * sin(ω p t a ) dt a ≈ t f t 0 p ′ sin(ω p t) dt (5.8)
where the spatial integrations of pressure are calculated as:

p * = Ω p * G(x, y)dΩ p ′ = Ω p ′ G(x, y)dΩ (5.9)
Two simulations are required in order to obtain the fluctuation fields of the direct system. Firstly, the simulation is computed without any perturbation, in order to get the nominal (reference) flow. Its initial condition is the analytical solution for a Poiseuille incompressible channel flow. Secondly, the simulation is calculated applying the periodic perturbation to the right-hand-side of the Navier-Stokes equations, giving the perturbed field. Taking the difference of these two fields the fluctuations are obtained.

Since the adjoint equations are linear, only one simulation is necessary to obtain the adjoint results. In the adjoint simulations, all variables are initialized as zero.

Study of the discretization

The first set of test cases concern the spatial discretization and the time step, and are listed in table 5.1. The flow is laminar with a Reynolds number based on the half-width of the channel Re h = 14, the Mach number is M = 0.1 and isothermal walls are considered. The forcing of both direct and adjoint equations is applied at the center of the channel, as shown in figure 5.2. The boundary conditions of the direct simulation are the characteristics of Giles [START_REF] Giles | Non-reflecting boundary conditions for the Euler equations[END_REF][START_REF] Giles | Nonreflecting boundary conditions for Euler equation calculations[END_REF] at the non-reflecting boundaries, and the solid boundary conditions of Gloerfelt [START_REF] Gloerfelt | Bruit rayonne par un ecoulement affleurant une cavite: simulation aeroacoustique directe et application de methodes integrals[END_REF] at the walls. Consequently, ghost cells have not been used for the adjoint simulations. In all cases the parameters from equation (5.5) are the same: A = 0.01u ∞ , ω p = 2π/100(∆t) ref and σ p = 10(∆y) ref , where the reference time step (∆t) ref and the reference space increment (∆y) ref are defined for an equidistant grid in y of 101 points and a Courant number CF L = 0.7. The CF L number is always referred to the direct system, being the time step of the adjoint system calculated as one half of the direct time step for stability reasons.

Grid

The sensitivity of x-momentum computed with an equidistant grid of 101 × 101 points and a CF L = 0.7 is used to illustrate the symmetry of the flow. Figure 5.3 shows the 2D fields for the direct and adjoint computations after several periods T . In the direct computations (on the left), the flow is moving from left to right, and so the fluctuations are propagated faster to the right. On the other hand, in the adjoint simulations (on the right) the time is inverted, and hence the perturbation is convected faster to the left. The results at these times show very good qualitative agreement between direct and adjoint simulations. 

Equidistant grid

Three different grids have been considered, as listed in table 5.1. The first one, with 101 × 101 points, corresponds to the grid used in the simulation of a Poiseuille channel flow implemented to validate the direct code ( §2.2.2). Since the direct flow does not present high gradients in the streamwise direction, an aspect ratio of ∆x/∆y = 5 could be taken to avoid unnecessary points. For the simulations where a periodic forcing is applied, it is required to verify if this grid is suitable or it needs to be refined.

The second grid considered contains 501 × 101 points, obtaining in this way an aspect ratio of ∆x/∆y = 1. The last grid keeps the aspect ratio of 5, but contains the double number of points in each direction, 201 × 201. The computations have been run during 10 periods, in which the pulse reaches the solid and the non-reflecting boundaries.

Since the flow is symmetric, and the same frequency and amplitude are selected for both systems, the resulting fields are symmetric with respect to the vertical center line of the channel and respect to the time. Consequently, the temporal evolution of the spatial integration of x-momentum defined in equation (5.6) can be compared as shown in figure 5.4, where the time of the adjoint simulation has been inverted as t a = t ft.

In all cases it is observed that there is a sudden change of the mean amplitude value of the direct results after approximately three periods. This instant in time corresponds to the moment when the pulse reaches for the first time the non-reflecting boundaries. As it is observed, the grid 101 × 101 gives good results regardless of the time step, even after the perturbation has reached the non-reflecting boundaries. On the other hand, the other two grids show some problems, and a different behavior depending on the CFL. Both grids give equivalent results.

For the bigger CFL (0.7), there is a deviation during the first period, i.e. before the pulse reaches any of the boundaries. A look on the 2D fields (not included) shows the creation of high numerical instabilities from the center of the channel. In the case of the 201 × 201 grid, the aspect ratio of the cells might explain the problem. In both cases, the problem is solved by taking a smaller time step.

For the smaller CFL (0.5), there is good agreement during the first 5 periods of the adjoint forcing, but after that the integral diverge. The deviation appears, approximately, after the perturbation has reached the non-reflecting boundaries.

In order to better understand the problem, the 2D direct and adjoint fields have been compared, as displayed by figure 5.5. Good agreement is found throughout the domain, except near the boundaries. These instants in time correspond approximately after 5 periods of both the direct and the adjoint forcing, and more or less when the pulse reaches the outflow of the direct simulation (the right boundary in the adjoint).

The reflections are formed at the corners of the right boundary and are propagated back into the computational domain, becoming more and more important. These images suggest that the reflection is created at the corner formed by a wall and the right non-reflecting boundary condition. There are no reflections in the other non-reflecting boundary. At first, it might seem contradictory that refining the grid leads to worse results. On the other hand, the grid which performs better is the one with a bigger ∆x. The characteristic boundary conditions are good to prevent reflection of small perturbations, but it can present problems when the perturbation is too large respect to the grid. Normally, a buffer zone with longer cell length help avoiding reflections. This might explain why the coarser grid behaves better than the finer grids. However, from these explanation, a question arises: are the results with the coarser grid accurate enough? In order to validate the accuracy of the coarse grid, the direct fields obtained using the three grids and a CF L = 0.7 have been integrated in space, and the resulting temporal evolutions of the spatial integrations (eq.(5.6)) have been compared in figure 5.6(a). It is proved that all grids provide the same results, so no accuracy is lost by the use of a coarser grid. Secondly, the first periods of the results of the adjoint simulations, using a CF L = 0.5, have been compared. All three grids provide very similar results, validating as well the grid independence of the results.

Finally, one last simulation is performed reducing the CFL even more: CF L = 0.3, using the grid 501 × 101. The results are equal than those obtained with a CF L = 0.5, where the integral starts diverging after 5 periods. This test case confirms that the time step is not responsible of the divergence.

As a conclusion, it is found that the accuracy of the results does not increase by using a more refined grid. On the other hand, the use of a finer grid requires a smaller time step, increasing significantly the computational time, as shown in table 5.2. This study has been performed in a 64bit computer, Intel(R) Furthermore, the use of a smaller ∆x creates problems at the right non-reflecting boundaries of the adjoint computational domain. This problem can be solved with the addition of a buffer zone, as explained in §5.5.1, or the use of ghost cells, as described in §5.5.3. The grid 101 × 101 is the one which performs better and it is computationally cheaper.

CFL

Non-equidistant grid

The implementation of a non-equidistant grid is not required in the case of a channel flow, but it is tested since it is necessary for the simulation of a cavity flow.

The grid with 101 × 101 points is taken for this study, where the grid is refined in y-direction with 1% of geometric ratio increment. The temporal evolution of the spatial integration is show in figure 5.7(a). It is observed that the adjoint curve deviates slightly with respect to the direct line, due to the high sensitivity of high-order-schemes to the quality of the grid [START_REF] Chung | Accuracy of high-order finite difference schemes on nonuniform grids[END_REF].

Two reasons might explain the introduction of errors: by refining the grid near the walls and main- 

Identical forcing at the direct and adjoint equations

In these group of test cases the periodic forcing is located at the center of the channel for both direct and adjoint simulations, as shown in figure 5.2.

The results are displayed in figure 5. [START_REF] Araya | Numerical assessment of local forcing on the heat transfer in a turbulent channel flow[END_REF]. In all cases it is observed that there is a sudden change of the mean amplitude value after approximately three periods, regardless of the wall condition and the Mach number. This instant in time corresponds to the moment when the pulse reaches for the first time the non-reflecting boundaries. It is shown that in all cases the agreement between direct and adjoint is good.

There is also very good agreement between the simulations computed using adiabatic wall boundary conditions (subfigures 5.8(a) and 5.8(b)) and the corresponding results with an isothermal wall (subfigures 5.8(c) and 5.8(d)).

It is observed that the maximum value of the amplitude for a flow at a Mach number M = 0.4 (where Re h = 58) is four times larger than the maximum for a flow at M = 0.1 (and Re h = 14). This is coherent since the amplitude of the perturbation is defined as 1% of the freestream velocity value, and there is a factor of 4 between both u ∞ . Figure 5.8 -Temporal evolution of the spatial integration of x-momentum given by eq. (5.6). Direct: TIME = t, adjoint: TIME = t a = t ft. Same frequency and position. Comparison of wall conditions and Mach numbers.

Forcing direct and adjoint equations at different positions

Several test cases have been performed using different origins for the direct and adjoint x-momentum forcing. The perturbation is placed at x = 2h for the direct simulation, and x = 8h for the adjoint simulation, as shown in figure 5.9. These positions are selected in order to preserve the symmetry of the problem, and hence to be able to compare the temporal evolution of the spatial integration of xmomentum given by equation (5.6). Adiabatic and isothermal walls have been considered at Mach numbers 0.1 and 0.4. The simulations have been run during 20 periods of the perturbation, in which the pulse reaches the solid and the nonreflecting boundaries.

Figure 5.10 shows the instantaneous isocontours of x-momentum after 19 periods of the perturbation, comparing the results obtained with both wall boundary conditions for a flow at M = 0.1. At this time, the perturbation has already reached both non-reflecting boundaries. The symmetry of the problem is illustrated, and good agreement between direct and adjoint fields is found when using an adiabatic wall. On the other hand some deviations near the non-reflecting boundaries can be observed in the case of an isothermal wall.

The results of the temporal evolution of the spatial integration are displayed in figure 5 two sudden changes of the mean value, corresponding to the moments when the perturbation reaches the inflow (first change) and the outflow (second change) of the computational domain. After that, the mean value is kept constant.

It is observed that using an adiabatic wall gives very good agreement between direct and adjoint results (figs. 5.11(a) and 5.11(b)), even though the amplitude of the adjoint oscillations is slightly smaller than those of the direct computation for a flow at M = 0.4.

On the other hand, it is shown in figures 5.11(c) and 5.11(d) that the use of an isothermal wall leads to a divergence of the results after reaching the non-reflecting boundaries. In the two-dimensional field displayed in figure 5.10 some deviations between direct and adjoint x-momentum isocontours were identified, which might cause the divergence of the evolution of the integrals.

It must be pointed out that the only difference between this test cases and the previous ones in §5.3.1 is the position of the forcing inside the computational domain. These results suggest that the forcing of the equations should be located far from the non-reflecting boundaries when using an isothermal wall. From these results it is concluded that an isothermal wall is more sensitive. However, neither buffer zone nor ghost cells have been used in these simulations. As it is to be shown in section §5.5 this problem might be solved by adding one of them.

Results for density forcing

This set of test cases concern the forcing of the density equation. Several Mach and Reynolds numbers have been considered as listed in table 5.4. Part of these results are published in the proceedings of the 19 ème Congrès Franc ¸ais de Mécanique (19 th French Congress of Mechanics) [START_REF] Moret-Gabarro | Validation of an adjoint method for compressible channel flow sensitivities[END_REF].

Two test cases with different origin of the direct and adjoint perturbations have been performed. In all the other simulations the parameters of the direct and adjoint forcing are identical. The origin of the forcing for each case is given in table 5.4, and the other parameters in equation (5.5) are: A = 0.01ρ ∞ , ω p = 2π/50∆t and σ p = 10∆y.

The computational grid is equidistant with 101 × 101 points, the CFL used is 0.7, and the simulations have been run during 40 periods of the perturbation. The walls have been implemented without ghost cells and no buffer zone has been added. 

Test cases

Identical forcing at the direct and adjoint equations

Five test cases have been performed by forcing direct and adjoint density at the center of the channel, using adiabatic wall boundary conditions and Mach numbers 0.1 and 0.4.

The flow at M = 0.1 and Re h = 14 is considered as the base case, whose results are displayed in figure 5.12, where the effect of the density perturbation is shown at different times. A good agreement between the direct and adjoint fields is seen in all the figures, yet there are slight discrepancies near the walls. However, it should be noticed that by forcing (ρu) * the agreement was better, as shown in figures 5.8(c). These small deviations might be caused by the fact that the viscous dissipation term of the energy equation Φ ν is neglected to derive the adjoint equations as explained in §4.2.2.

The first three plots of 5.12 show the first stages of the effect of the forcing, illustrating the direct and adjoint pressure fields at the end of periods 1, 2 and 3. At the end of the first period the perturbation has not yet reached any of the boundaries, and after 2 periods, the perturbation is reflected from both walls.

As observed in the following figures of 5.12, at the end of periods 5, 10 and 20, the pulse is constantly being reflected from both walls and is crossing the non-reflecting boundaries, leaving the computational domain without reflections. The isocontours do not show significant changes from period to period. That means that both the direct and adjoint simulations have reached a stationary state. The values of the adjoint pressure 5.13(b) differ from the direct pressure fluctuations 5.13(a) near the walls. However, even though the values are not the same, the higher sensitivities are found in the same place as the higher values of the direct field, and positive and negative isocontours are alternated in a similar way. Around the centerline of the channel (i.e. at the far field respect to the wall) the agreement is acceptable.

These first two cases have the same Mach number, M = 0.1, but different Reynolds number, Re h = 14 and Re h = 58. Both flows have the same u ∞ and same viscosity, so the size of the domain has been changed, i.e. the half-width of the channel h is four times larger in the second simulation. As the computational grid has been maintained, that implies that ∆x and ∆y have increased accordingly, and hence the time step ∆t. Since the velocity of the flow is the same, that means that the second simulation is less accurately resolved, reason which might explain the appearance of errors. c) and 5.13(d) show the direct and adjoint pressure isocontours at a higher Mach number M = 0.4 and Reynolds number Re h = 58. These parameters represent an increase of u ∞ of four times respect to the base case displayed in figure 5.12. The results show a better agreement between direct and adjoint fields, even though there are some small deviations near the walls and downstream from the perturbation source.

In this third case the geometrical parameters are the same as in the first case, and it is observed that since the grid resolution is better than in the second case so are the results. Nevertheless, the discrepancies between direct (5.13(c)) and adjoint (5.13(d)) isocontours are more important than in the first case (5.12). The difference between both is u ∞ , hence the Mach number and so the compressibility effects. It is reminded that the second simplification done to derive the adjoint equations is that the viscosity µ is considered constant. This assumption might cause bigger deviations as compressibility effects increase.

Finally an even higher Reynolds number of Re h = 4475 has been considered, and the results comparing two Mach numbers are displayed in figure 5.14. The same phenomena as in 5.13(b) and 5.13(a) is observed: at the center of the channel the agreement between direct and adjoint fields is acceptable, but it is not near the walls. As for the lower Reynolds, the higher values are found approximately at the same location, but their values differ.

In order to increase the Reynolds number the size of the channel h has been changed, but the computational grid has been kept constant, as for the second case explained above. Consequently, for these last cases the grid resolution is lower than for the base case. In summary, the best results are obtained for the lowest Mach and Reynolds numbers. When the Mach number increases so do the compressibility effects. Due to the simplifications applied to derive the adjoint equations, some slight errors near the walls are found. However, the adjoint system is still able to predict well the regions where the sensitivity is higher.

In order to change the Reynolds number the size of the channel h has been increased, obtaining larger space and time steps, which cause the adjoint system to deviate from the direct simulations. In all the cases, there are no problems of reflections at the non-reflecting boundaries.

Forcing direct and adjoint equations at different positions

Two test cases have been run where the origin of the forcing of density for the direct and the adjoint equations are different. The position of the perturbations are indicated in table 5.4 and are the same as in the x-momentum test cases described in §5.3.2. Firstly, a flow at M = 0.1 and Re h = 14 is taken, since these parameters gave the best agreement when forcing both equations at the same position. Secondly, a flow at M = 0.4 and Re h = 4475 is considered, to test a case which showed some deviations in the previous subsection. 

Isothermal wall

The last two test cases where the density equations are forced at the center of the channel have been done using isothermal walls. Buffer zone and ghost cells are not used. These results are exposed in a separate subsection since they represent a particular case. Mach numbers 0.1 and 0.4 have been used as listed in table 5.4.

Figure 5.17 displays the results for a flow at M = 0.1 at three different times: at the end of the 1 st , 2 nd and 5 th period. After one period of the perturbation, the direct and adjoint isocontours show very good agreement. Furthermore, it can be observed the good agreement between the isothermal wall and the previous results obtained with an adiabatic wall in figure 5.12.

On the other hand, the next plots, corresponding to the end of periods 2 and 5, present important deviations at the walls. It is seen that the adjoint pressure at the wall is significantly higher than the direct pressure fluctuations. Note that the error are not high-frequency oscillations related to the grid, since the profile is perfectly smooth. The adjoint pressure suddenly increases at the wall, presenting a high gradient. As observed in these figures, this amplification of p * remains near the wall and it is not convected towards the center of the channel, where the agreement between direct and adjoint fields is still good. The same phenomena is observed for a higher Mach number flow (M = 0.4).

The origin of this amplification in the particular case of an isothermal wall is investigated analytically using the adjoint equations which have been presented in §4.2.2. At the wall, several variables are known to be zero: Therefore, applying these conditions to the adjoint equations, only these terms remain:

      
∂p * ∂y = - γp ρ ∂ρ * ∂y - 4 3 µ ρ ∂ 2 (ρv) * ∂y 2 (5.10) ∂p * ∂t = γµp P rρ 2 ∂ 2 ρ * ∂y 2 (5.11) ∂p * ∂x = - µ ρ ∂ 2 (ρu) * ∂y 2
(5.12)

The equation (5.10) clearly demonstrates that there is a direct relation between the adjoint density gradient and the adjoint pressure gradient. When forcing the density equation, high values of density are convected from the center of the channel to the walls. On the other hand, the isothermal condition imposes ρ * = 0. The interaction of the perturbation with a zero value at the wall causes a large density gradient near the wall. This density gradient, as shown by equation (5.10), produces an amplification of the pressure gradient. In the case of an adiabatic wall, the condition imposed on adjoint density is ∂ρ * /∂y = 0, which avoids a large density gradient and hence a large pressure gradient at the wall.

From equation (5.11) it is seen that there is a temporal relation between the density gradient and pressure gradient, even though the effect of the second order derivative is more difficult to interpret.

Investigation of the boundary conditions

Several boundary conditions have been implemented in both the direct and the adjoint code, which need to be validated.

First of all, the study of the grid in section §5.2 indicates that a buffer zone might be needed at the right boundary of the adjoint computational domain. Thus the implementation of a buffer zone is investigated.

At the adjoint non-reflecting boundaries, only the method proposed by Spagnoli [START_REF] Spagnoli | Etude numérique de sensibilité et contrôle optimal du bruit aéroacoustique généré par une couche de mélange compressible bidimensionelle[END_REF] is used. Nevertheless, two different boundary conditions have been used for the direct simulations: Giles [START_REF] Giles | Non-reflecting boundary conditions for the Euler equations[END_REF][START_REF] Giles | Nonreflecting boundary conditions for Euler equation calculations[END_REF] and Poinsot and Lele [START_REF] Poinsot | Boundary conditions for direct simulations of compressible viscous flows[END_REF]. The adjoint results obtained with both direct fields are to be compared. It is not expected to find great differences, since the direct fields are similar, but since the formulation of Poinsot and Lele is used for the cavity simulations, it needs to be validated.

Finally, regarding the wall boundary conditions, two methods are used for both the direct and the adjoint: one with ghost cells, and another one without. Both implementations have to be validated.

The simulation parameters are the same as section §5.2: Re h = 14, M = 0.1, the wall is isothermal and the forcing of both the direct and the adjoint equations is applied at the center of the channel. Unless stated otherwise, the computational domain does not contain ghost cells.

Buffer zone

To investigate if the addition of a buffer zone can indeed suppress the undesired reflections the equidistant grid 501 × 101 from §5.2.1 is considered, where the CF L is 0.5. The implementation of the buffer zone consists of a stretched grid, as illustrated in figure 5.18. ∆x ∆x buf f er buffer zone Several test cases have been performed, considering different ratios R x = ∆x buf f er /∆x between the length of the last cell of the buffer zone and the length of the interior cells, and different geometric ratio increments. The addition of the filter proposed by Lele [START_REF] Lele | Compact finite difference schemes with spectral-like resolution[END_REF] previously used in the direct simulations is also tested. Table 5.5 presents a list of the test cases, where it is indicated if the buffer zone has solved the problem of the reflection at the corner () or if there are still reflections (#).

The results prove that a buffer zone is a suitable form of suppressing boundary reflections in finer grids. An example of the results is given in figure 5.19 for a buffer zone which contains 47 points and R x = 3. It is clearly observed that the numerical reflections have been avoided.

R x =
It is found that there is a minimum R x = 3 below which the buffer zone does not damp the perturbations and so reflections are still present. Two geometric ratio increments are compared and give good results. Taking a higher value reduces the number of points necessary and so reduces the computational time. Lastly, it is also observed that the addition of a filter does not have a significant effect, and it increases the computational time. Consequently, a buffer zone composed only of a stretched grid is sufficient to avoid reflections. 

Outflow boundary conditions of Poinsot and Lele

Three test cases have been performed for the validation of the characteristic boundary conditions of Poinsot and Lele [START_REF] Poinsot | Boundary conditions for direct simulations of compressible viscous flows[END_REF], where the relaxation coefficient is taken as σ = 0.58, the value which gave better prediction of the velocity field in the validation of the direct field reported in §2.2.2.

To start with, a test case which gave good results with Giles boundary conditions is repeated: a grid with 101×101 points and CF L = 0.7. The results of the spatial integration of the temporal evolution are shown in figure 5. 20(a). The agreement between direct and adjoint curves is very good and no differences respect to the previous case are observed. Secondly, a test case which diverged using Giles boundary conditions is taken: a grid with 501 × 101 points and CF L = 0.5. As displayed by figure 5.20(b), the adjoint results start diverging approximately at the same time as the previous case, so no improvements are obtained.

It has been proved that the reflections can be suppressed with the addition of a buffer zone, so a buffer zone is considered, where R x = 3 and the geometric ratio increment is 1.025. The results are presented in figure 5.20(c), where the adjoint curve overlaps the direct curve.

As a conclusion, both direct characteristic boundary conditions provide the same results. This finding was expected since the direct fields are very similar.

Wall boundary conditions

The validation of the ghost cells method is of extreme importance before simulating a cavity flow.

Several test cases including different Mach and Reynolds numbers, grids and CFL values have been performed. A list of the main parameters is given in table 5.6. In all the cases the wall is considered isothermal, the non-reflecting boundaries have been implemented with the Giles characteristic boundary conditions and no buffer zone has been added. is observed a good agreement between direct and adjoint curves, as it was for the other wall boundary condition.

Mach

The two test cases performed with a non-equidistant grid show results very similar to those obtained without ghost cells: for a CF L = 0.7 the adjoint curve deviates slightly with respect to the direct as shown in 5.21(c), problem that is solved by decreasing the CFL to 0.5 as displayed in 5.21(d).

The most remarkable results are those computed with an equidistant grid of 501 × 101 and a CF L = 0.5 in figure 5.21(b). When ghost cells were not used, the adjoint results diverged after approximately 5 periods. On the other hand, by the use of ghost cells a very good agreement between direct and adjoint is found.

In order to verify that there are no reflections, the two-dimensional adjoint x-momentum fields are inspected in figure 5.22. These instants in time correspond to the moment when the perturbation has reached both non-reflecting boundaries, and they are the same instants as the ones shown in figure 5.5 without ghost cells. No reflections can be seen near the boundaries, proving the good performance of this solid boundary conditions. This result suggest that the reflections were created at the points which belong to a wall and a non-reflecting boundary at the same time.

In conclusion, the wall boundary conditions with ghost cells seem to perform better, since they do not present reflections at the outflow even when the grid is very refined. The reason behind this improvement is that the corner point is no longer part of the wall, but only part of the outflow, hence avoiding the problem. As explained in §5.5.1, an alternative solution consists on the use of a buffer zone, in which the corner point is treated with the wall boundary conditions but no characteristic boundary conditions are applied. From these two methods, the ghost cells have the additional advantage that they are computationally cheaper, since the increase of number of points is smaller.

As a final test the Mach number is increased to M = 0.4. The computation is done with the grid of 101 × 101 and a CF L = 0.7. Good agreement is found between direct and adjoint results. A deeper study of the influence of the Mach and Reynolds numbers has been done in section §5.3. 

Multi-block derivation

In order to validate the implementation of the multi-block derivation, the computational domain is divided in two blocks, as illustrated in figure 5.24(a), and the results are compared with a single-block simulation.

To perform this study, the following parameters are taken: M = 0.4 and Re h = 58. The wall is considered isothermal and it is implemented with ghost cells. The adjoint x-momentum equation is forced at the center of the channel, whereas the direct equations are not forced. The grid is equidistant and contains 101 × 101 points, and the CFL used is 0.7. Figure 5.24(b) shows the results obtained with the multi-block configuration and a computational domain composed of one single block. As it can be seen, both results collapse perfectly, proving the good performance of the multi-block treatment.

The same test case has been repeated using the wall boundary conditions without ghost cells, and the same results have been found. 

Conclusions

The study of x-momentum forcing shows that good agreement is always found for adiabatic walls, and that the origin of the perturbation should be located far from the non-reflecting boundaries if an isothermal wall is to be used.

Adiabatic walls provide good results when forcing the density equation in low Mach and Reynolds number flows, but show some discrepancies for higher Mach and Reynolds numbers. Nevertheless, the results suggest that the algorithm can be used if only qualitative results are needed (i.e. to find where the sensitivity is higher), and the exact values are not relevant.

The use of an isothermal wall causes an amplification of pressure at the walls, even though the results at the interior domain are good. Nevertheless, it must be considered that the perturbation is located very close to the wall (which cannot be otherwise inside a channel). However, this will not be the case in a more realistic study of sensitivity. If the sensitivity of pressure is to be studied for acoustic purposes, the origin of the forcing will be placed further from the wall, and it is believed that in that case there will not be any numerical amplification at the wall.

From the study of the discretization is found that decreasing the CFL number improves the results, and a buffer zone avoids the reflections at the boundaries. The addition of a filter into the buffer zone does not have any significant effect. A uniform grid of 101 × 101 points is found to be optimal for the computation of a plane channel flow.

The boundary conditions have been tested, and it is found that solid boundaries with ghost cells provide better results than the other wall condition, since there are no reflections at the corners and so a buffer zone is not needed. The use of Giles characteristics, or the formulation of Poinsot and Lele in the direct code has no effect on the adjoint results. The multi-block derivation has been validated by dividing the computational domain into two blocks.

As a consequence, both ghost cells and buffer zone are used for the sensitivity analysis of a compressible cavity flow.

Chapter 6

Results of sensitivity analysis

Analyse de sensibilité

Le code adjoint décrit au chapître §4 et validé au chapître §5 a été utilisé pour réaliser une analyse de sensibilité pour deux configurations d'écoulement. La première configuration est un cas test académique simple, celui de l'écoulement de canal plan laminaire, identique à celui utilisé pour la validation du code adjoint, et implémenté en mono-bloc. La seconde configuration est le cas plus complexe de l'écoulement au-dessus d'une cavité, qui nécessite un traitement multi-blocs.

Tout au long de ce chapître, les termes 'inflow' (entrée d'écoulement), 'outflow' (sortie d'écoulement), 'upstream' (amont) et 'downstream' (aval) seront utilisés en référence à l'écoulement physique.

En conséquence, le 'inflow' sera à la limite gauche du domaine de calcul, le 'outflow' à la limite droite, l''upstream' désigne la zone située à la gauche de la source de perturbation et le 'downstream' la zone située à sa droite.

Dans cette étude de sensibilité, les équations adjointes ont été forcées à la position (x 0 , y 0 ). Le champ adjoint ( p * , (ρu) * , (ρv) * ou ρ * ) qui exhibe les valeurs les plus élevées nous désigne alors l'équation directe qui doit être forcée afin d'obtenir l'effet le plus important à la position (x 0 , y 0 ). L'emplacement (x c , y c ) où le champ adjoint a les valeurs les plus élevées nous indique quant à lui l'emplacement ou doit être placé le forc ¸age en question.

Chaque variable adjointe représente une sensibilité de l'écoulement à un forc ¸age spécifique, comme l'illustre la figure 6.1. (ρu) * et (ρv) * sont reliés à la variation de quantité de mouvement, respectivement dans les directions longitudinale et normale. Physiquement, ce type de perturbation peuvent être induites dans l'écoulement en l'accélérant tangentiellement ou verticalement (par exemple avec des contrôleurs plasma pour le cas tangentiel). p * , qui est relié à l'équation de continuité, peut être crée physiquement par ajout/suppression de masse (contrôleur type soufflage/aspiration). Enfin, ρ * est relié aux perturbations de l'énergie, qu'il peut être difficile de créer expérimentalement. 

ÉCOULEMENT DE CANAL PLAN

La configuration de canal plan consiste en un domaine rectangulaire de demi-hauteur

Résultats et conclusions

Plusieurs simulations ont été réalisées en forc ¸ant la quantité de mouvement adjointe suivant x, pour plusieurs conditions aux limites, et plusieurs nombres de Mach et de Reynolds. La perturbation la plus efficace trouvée est la perturbation de masse. Pour de faibles nombres de Mach et de Reynolds, l'emplacement le plus efficace pour agir sur l'écoulement se trouve aux parois, et en amont de l'emplacement ciblé. Nous avons trouvé qu'un écoulement était plus sensible à une accélération tangentielle lorsqu'il se déplac ¸ait entre des parois adiabatiques qu'entre des parois isothermes, mais, inversement, moins sensible à l'ajout de masse.

Une augmentation du nombre de Mach ou de Reynolds implique une augmentation des valeurs adjointes. Pour de fort nombres de Reynolds, la sensibilité à l'accélération tangentielle dépend uniquement de la distance à la zone ciblée et est la même aux parois et au centre du canal. Par contre, les régions où la pression adjointe est la plus forte reste localisée au voisinage de l'axe du canal.

ÉCOULEMENT DE CAVIT É

Nous considérons un écoulement au-dessus d'une cavité de rapport d'aspect longueur sur profondeur de L/D = 2, avec une couche limite incidente laminaire d'épaisseur δ/D = 0.28, à nombre de Mach de M = 0.6 (voir figure 6.19). Cette configuration est identique à celle présentée au paragraphe §3.3, où nous avons montré que l'écoulement oscillait en mode couche de cisaillement à la fréquence fondamentale f 0 , ce qui correspond au second mode de Rossiter St 2 . L'objectif ici est de rechercher comment doit être appliqué un forc ¸age de cet écoulement de cavité si l'on veut supprimer/atténuer le bruit qu'il émet, c'est-à-dire comment réduire les fluctuations de pression. Nous avons procédé de deux fac ¸ons : dans un premier temps nous avons cherché ce qui pouvait agir sur la fluctuation de quantité de mouvement suivant x au voisinage de la couche de cisaillement, et dans un second temps nous avons cherché ce qui pouvait agir sur la fluctuation de pression dans le champ lointain. Par conséquent, nous avons étudié des forc ¸ages des équations adjointes de la quantité de mouvement suivant x et de l'énergie comme listés au tableau 6.5.

Les détails des simulations directes sont donnés aux paragraphes §3.2 et §3.3. Les simulations adjointes sont initialisées avec toutes leur variables à zéro et en utilisant les conditions aux limites décrites au paragraphe §4, où des cellules fantômes ont été utilisées aux parois solides. Pour les calculs adjoints, le maillage des calculs directs a été modifié comme suit : la zone tampon a été déplacée à l'inflow (à la gauche du domaine de calcul au lieu de la droite). Le champ direct utilisé dans cette zone tampon est une copie de la condition d'entrée. Le pas de temps du calcul adjoint est ∆t adjoint = 1/2∆t direct .

Résultats et conclusions

Nous avons réalisé une analyse de sensibilité d'un écoulement au-dessus d'une cavité peu profonde en forc ¸ant les équations adjointes de quantité de mouvement suivant x et de conservation de la masse à différentes positions et fréquences. L'équation adjointe de quantité de mouvement suivant x a été forcée à différentes positions au voisinage de la couche de cisaillement. Les résultats montrent que c'est l'ajout de masse dans la couche limite en amont de la cavité qui agira le plus sur la perturbation de quantité de mouvement suivant x. Nous avons également trouvé que ce forc ¸age avait une action sur toute la couche de cisaillement, du coin amont au coin aval de la cavité, et jusqu'à une distance de l'ordre d'une épaisseur de cavité au-dessus de la couche de cisaillement.

Les résultats obtenus en forc ¸ant l'équation adjointe de conservation de la masse ont montrés que la fluctuation de pression loin de la cavité pouvait être contrôlée par ajout de masse dans la couche limite en amont de la cavité, et plus particulièrement au voisinage du coin amont de la cavité. Ainsi, un actionneur placé au voisinage de ce coin agira à la fois sur le bruit émis par la cavité et perc ¸u au loin, et sur les fluctuations de quantité de mouvement suivant x dans la couche de cisaillement.

La réponse fréquentielle du système adjoint montre qu'il oscille à la même fréquence que le système direct, qu'on le force à la fréquence fondamentale ou à une fréquence harmonique. Dans tous les cas, le spectre observé est assez dispersé.

Relations avec d'autres études

Cerviño et al. [START_REF] Cervi Ño | Perturbation and adjoint analyses of flow-acoustic interactions in an unsteady 2d jet[END_REF] et Spagnoli et Airiau [START_REF] Spagnoli | Adjoint analysis for noise control in a two-dimensional compressible mixing layer[END_REF] avaient réalisés des études de sensibilités aéroacoustiques, respectivement d'un jet 2D froid et d'une couche de mélange 2D. Dans ces deux études, les plus fortes valeurs de sensibilités ont été trouvées au voisinage de la la buse de sortie du jet et au départ de la couche de mélange. Les iso-contours de pression adjointe, représentés à la figure 6.31, nous montrent que les plus fortes valeurs se trouvent dans notre cas à la naissance de la couche de cisaillement (c'est-à-dire au coin amont de la cavité). La dispersion du spectre adjoint (voir notre résultats §6.2.5) a été aussi observé dans ces deux études. Cerviño et al. attribue cette dispersion au fait que les coefficients des équations adjointes ne sont pas constants mais qu'ils varient dans le temps à cause de l'instationnarité du champ direct. Åkervik et al. [START_REF] Åkervik | Optimal growth, model reduction and control in a separated boundary layer flow using global eigenmodes[END_REF] ont recherché les modes propres globaux d'une cavité arrondie peu profonde, et ils ont observé que la fonction propre adjointe la moins stable se trouvait au coin amont de la cavité. Ces résultats sont cohérents avec ceux trouvés dans cette thèse et exposés au paragraphe §6.2.4, où les plus fortes valeurs de pression adjointe se concentrent au voisinage du coin amont de la cavité. Marquet et al. [128] ont étudié les modes globaux adjoints d'un écoulement au-dessus d'une marche descendante arrondie placée à l'intérieur d'un conduit en forme de S, et ils ont également trouvé la pression adjointe maximale au point de separation. C'est pourquoi, dans la plupart des études concernant le contrôl actif ou passif d'écoulements audessus de cavités, les actionneurs sont placés au voisinage du coin amont de la cavité, où la sensibilité de l'écoulement est la plus forte.

Introduction

The adjoint algorithm described in chapter §4 and validated in chapter §5 has been used to perform sensitivity analysis of two flow configurations. The first one is a simple academic test case, a laminar plane channel flow as the one used for the validation in §5, implemented in a single block. The second one is a more complex flow of industrial interest, a cavity flow with an incoming boundary layer, which requires multi-block treatment.

The sensitivity analysis is performed using a periodic in time (sinusoidal) forcing which is applied to one of the adjoint equations. Each adjoint forcing has a different physical interpretation, as outlined in table 6.1. Then, the results for all the adjoint variables are obtained and observed. Each adjoint variable represents the sensitivity of the flow to a specific direct forcing as described in table 6.2 and illustrated in figure 6.1. The position in the adjoint field which has the highest value indicates the most sensitive region of the flow to that particular direct forcing. Table 6.1 gives the interpretation of each adjoint forcing. Adjoint x-momentum forcing gives the sensitivity of the x-momentum fluctuations. The interpretation of an adjoint y-momentum source is equivalent but in the normal direction. The adjoint density is related to the energy equation, thus forcing it indicates the sensitivity of pressure fluctuations. Finally, adjoint pressure corresponds to the equation of conservation of mass, hence it gives the sensitivity of density fluctuations. (ρu) * and (ρv) * are related to the variation of the perturbations of momentum in the streamwise and normal directions, respectively. Physically, these perturbations can be induced into the flow by accelerating it in the tangential or normal direction (technically a perturbation of x-momentum could be performed by a plasma controller, for example). Similarly, p * , related to the continuity equation, can be physically obtained by mass injection in any direction. Finally, ρ * represents variations of energy perturbations. Technically speaking, it is complex to create such a perturbation, but for example it could be done by some source of radiation in order to energize the flow at a specific position. For convenience, during the whole chapter the terms inflow, outflow, upstream and downstream are used respect to the direct flow. That is to say, the inflow is the left boundary, outflow is the right boundary, upstream means to the left of the source and downstream to the right.

Adjoint variable forced

Adjoint variable observed

Channel flow

The channel flow configuration consists on a rectangular domain of half-width h and length 10h. The grid is equidistant with 101 × 101 points for both the direct and the adjoint. For the direct simulation, the initial condition is the analytical solution for an incompressible Poiseuille channel flow, the inflow and outflow are the non-reflecting characteristic boundary conditions of Giles and the solid boundaries are implemented with Gloerfelt's wall boundary conditions.

The adjoint simulation is initialized with zeros in all variables, its boundary conditions are the ones described in chapter §4, and the forcing is applied to the adjoint x-momentum equation. Neither a buffer zone nor ghost cells have been used, since it has been found in the validation chapter §5 that for a forcing of (ρu) * they are not necessary and they do increment the computational time. The direct field has been stored at each temporal iteration ∆t direct which corresponds to a CF L = 0.7. Since ∆t adjoint = 1/2∆t direct , the direct fields are interpolated every two iterations of the adjoint simulation. Table 6.3 shows the test cases performed to study the sensitivity of the channel flow. In these cases, different wall boundary conditions, Mach number, Reynolds number and position of the forcing are compared. The positions are identified with a label: CENTER (center of the channel), WALL (near the upper wall) and OUTFLOW (near the outflow). They are described in more detail in section §6.1.2. The section(s) where the results are discussed is indicated. In all cases several periods have been computed, and the results correspond to a time when the perturbation has reached all the computational boundaries and then there are no significant changes from one period to another.

The forcing of the adjoint x-momentum equation follows the equation:

g * = A sin(ω p t) exp (x -x 0 ) 2 + (y -y 0 ) 2 σ 2 p (6.1)
where A = 0.01u ∞ , ω p = 2π/100∆t and σ p = 10∆y for all the cases, and the origin (x 0 , y 0 ) is given in table 6.3. Physically, it represents a variation of the perturbation of the x-momentum. 

Wall condition Mach

Interpretation of the adjoint variables

In this sensitivity analysis the adjoint x-momentum equation has been forced at (x 0 , y 0 ). That means that the adjoint fields will give the sensitivity of (ρu) ′ to different kinds of forcing of the direct equations. The adjoint field ( p * , (ρu) * , (ρv) * or ρ * ) which shows the highest values indicates the direct equation which must be forced to obtain the largest effect at (x 0 , y 0 ). The position with the highest value points out the origin of the before-mentioned forcing of the direct equation.

A channel flow at M = 0.1 and Re h = 14 with isothermal walls is considered, where the origin of the forcing (x 0 , y 0 ) is the CENTER of the channel as shown in figure 6.2. The figures of this section display the instantaneous isocontours of each variable at four moments equally spaced in time of a period T of oscillation.

To start with, the x-momentum field shown in figure 6.3 is investigated. The first figure 6.3(a) shows that around the source, and for a radius approximately equal to 1.5h, the sensitivity is the same near the walls and at the center of the channel. Further from the origin of the pulse, the sensitivity is higher near the walls. At this specific time, the sensitivity of the flow upstream and downstream from the momentum source seems approximately the same.

The next figures help to understand the temporal evolution of the sensitivity. At the center of the channel the values of the adjoint x-momentum decrease faster than near the solid boundaries, being almost insignificant after 2h -3h. It is interesting to observe in the last plot 6.3(d) that the sensitivity at the center of the channel is higher upstream.

The interpretation of these results is that in order to obtain a certain effect in the center of the channel, it is more efficient to apply acceleration in x-direction at the walls than at the interior part of the channel. It is also shown that when applying forcing at the centerline of the channel, the flow will be more affected downstream than upstream. The results show that, as expected, the values of adjoint y-momentum are higher near the source and that they decrease as the perturbation is convected upstream and downstream. Nevertheless, the (ρv) * fields do not point out any specific region of the computational domain (walls, centerline, etc) where the sensitivity is more important, since high values of (ρv) * are alternated in space and time. These results suggest that the effect caused at (x 0 , y 0 ) by a normal acceleration depends only on the distance between the origin of the forcing and (x 0 , y 0 ), regardless of the position respect to the solid boundaries. Figure 6.5 shows the results of ρ * , which resemble those of (ρu) * . The highest values are found near the perturbation source and close to the walls. The interpretation of these results is that an energy source will affect most the pressure perturbations at (x 0 , y 0 ) if it is placed near the origin (anti-noise actuator) or at the walls. At last, figure 6.6 displays the isocontours of p * which enhance the results of (ρu) * observed in figure 6.3. It is clearly highlighted that the most sensitive regions are the walls and the origin of the perturbation, being almost negligible elsewhere. At the walls, the sensitivity is significant until a distance of approximately 4h from the perturbation source.

In summary, an efficient way to modify streamwise velocity perturbations is by mass injection. Regarding the adjoint momentum fields, the results of (ρu) * indicate the most sensitive regions of the flow to tangential forcing, while the (ρv) * fields suggest that normal acceleration can be applied anywhere inside the computational domain and its effect will depend only on the distance.

Finally, it is found that the effect of introducing energy fluctuations is very small, moreover it is difficult to introduce energy perturbations into the flow in a real application. Therefore, in the next sections only the p * and (ρu) * fields will be investigated. 

Forcing at different positions

As explained in chapter §4, the origin of the forcing of the adjoint equations represents the location in the direct field where a certain effect is to be explored.

In this work, the objective is to study the origin of a longitudinal momentum perturbation in the far field, where the near field is understood as the solid boundaries. It is clear that in a channel flow there is no far field, but still it is possible to chose an origin of the perturbation at a certain distance from the wall, and observe the flow field close to the walls. The adjoint variables show the effect that some forcing at the walls (e.g. flow control by blowing and suction) would have in the far field. This is only an academic case, which is used as a previous test before dealing with a cavity flow. Several simulations have been performed (see in table 6.3), but only the results corresponding to a flow at a M = 0.1 and Re h = 14 with an isothermal wall are described in detail. figure 6.8 on the left side. As expected, the isocontours of x-momentum have lost the symmetry respect to the centerline of the channel. It is clearly illustrated that the sensitivity is much higher at the upper wall than nearby the lower wall. In fact, the values at the lower wall are not significant, hence there is no coupling between walls (i.e. forcing at one wall will not affect the flow at the other one).

It is observed that the sensitivity at the upper wall is higher upstream than downstream, whereas at the inner part of the channel higher values of adjoint x-momentum are found near the outflow. This is in contrast to the case CENTER shown in figure 6.3, where the highest values at the centerline of the channel were found upstream.

Comparing with the previous case CENTER, in this case the sensitivity at the upper wall is higher, even near the non-reflecting boundaries, meaning that a control can be placed further from the target point and be still effective.

Finally, the case OUTFLOW is presented in figure 6.8 on the right. It is seen that the isocontours of adjoint x-momentum are the same as for the case CENTER, but shifted 3h to the right. There is no influence of the outflow boundary, and it is displayed how the perturbation leaves the computational domain without reflections.

This case allows the study of the sensitivity at the far field respect to the origin of the perturbation. In figure 6.8(b) it is observed that at a distance of approximately 6h from the source the sensitivity is about the same at the centerline of the channel and near the walls. This tendency is maintained as the perturbation moves far upstream, and as displayed in figure 6.8(f) becomes very weak at 7h from the source. The physical interpretation is that for any position of the forcing (centerline or walls) the effect in the far field will not be very significant. The isocontours of adjoint pressure are shown in figure 6.9. As in the case CENTER, these results emphasize those of x-momentum. For the forcing at the WALL, the highest sensitivity is found at the upper wall, being the values at the lower wall very small and negligible at the centerline of the channel except near the origin. The results for the case OUTFLOW confirm that it is possible to apply mass injection in the far field (at a distance approximately of 7h) and still affect the flow at (x 0 , y 0 ).

A comparison of the three locations performed with other wall boundary and flow conditions give similar results: when the perturbation is near the upper wall, the highest values are found close to it, while for the other two cases the values are very high in the center of the channel near the perturbation source, and far from it the walls become more sensitive.

Effect of the wall boundary condition

The two solid boundary conditions (isothermal and adiabatic) implemented in the code are compared. Several computations have been performed, from which only the results obtained for a flow at M = 0.1 and Re h = 14 and forcing at the CENTER and the WALL are shown in figures 6.10 (x-momentum) and 6.11 (pressure). Figure 6.10 displays the results of (ρu) * using an adiabatic wall. The left plots correspond to the test case CENTER, and these results are compared to the isothermal case which was displayed in figure 6.3. In figures 6.3(a) and 6.10(a) it is seen that the isocontours are the same in the near field of the source, proving that there is no boundary effect. The only differences are found in the far field, near the non-reflecting boundaries. It is observed that the sensitivity is higher in the adiabatic case, specially along the centerline of the channel. However, in both cases the values seem to be higher upstream than downstream.

The results of the case WALL with an adiabatic condition are shown on the right in figure 6.10, and are compared with the isothermal condition displayed in figure 6.8. At the upper wall both boundary conditions provide very similar results, the values for the adiabatic case being slightly higher than the isothermal case. On the other hand, more differences are found for the sensitivity of the lower wall, which are emphasized in the far-field. In this case, the adiabatic wall presents higher isocontours.

Physically, these results mean than the effect of x-momentum forcing in a flow moving between adiabatic walls will propagate further and it will be more significant. The isothermal condition imposes the temperature at the wall, so it is thought that the flow will be more robust and resistant to changes. On the other hand, the results obtained for p * using an adiabatic wall differ significantly from the isothermal case. The isothermal results illustrated in 6.6 for the case CENTER did not show an important effect in the interior part of the channel. However, the adiabatic case shown in the left of 6.11 indicates a high sensitivity around the centerline of the channel, being the shape of the contour levels very similar to those of x-momentum. It must also be pointed out that the contour levels used in the adiabatic plots are about 4 times smaller than those of the isothermal case, indicating that the sensitivity of the flow is lower in the adiabatic case.

The case WALL confirms the findings of CENTER: the sensitivity to mass injection of a flow moving between two adiabatic walls is lower and more dispersed than in the case of isothermal walls. The simulations performed with other parameters are in agreement with these results.

Effect of the Mach number

In order to investigate the compressibility effects, two Mach numbers are compared: 0.1 and 0.4, and two positions of the adjoint forcing are selected, CENTER and WALL. The walls are considered isothermal. The x-momentum results displayed in figure 6.12 correspond to M = 0.4 and an isothermal wall. The equivalent results obtained at M = 0.1 are found in figures 6.3 for CENTER and 6.8 for WALL. The first remarkable difference between both flows are the contour levels: the minimum level at M = 0.4 is about five times the minimum level at M = 0.1, and the ratio between the maximum levels is 4. This indicates that the sensitivity increases with velocity. Figure 6.12 on the left shows the results of CENTER at M = 0.4. In this case the difference between the upstream part of the channel and the downstream part is more emphasized than for M = 0.1 (fig. 6.3). Downstream from the source the sensitivity depends only on the distance, and it is about the same in the centerline of the channel as near the walls. On the other hand, in the upstream part the sensitivity shows another pattern: the values at the walls are higher than those of the centerline, even though there is a significant sensitivity in the centerline (≈ 5h) further from the source than at the wall (≈ 4h). That means that forcing (ρu) ′ at the walls will have a stronger effect, but the forcing at the centerline will be convected further.

The results of adjoint x-momentum obtained for the case WALL at M = 0.4 are displayed in figure 6.12 on the right. In these plots an interesting phenomenon is observed: upstream from the source the highest sensitivity is found at the upper wall, like for M = 0.1 in figure 6.8, but at the downstream part the highest adjoint values are located near the lower wall. If flow control is to be applied at the walls, it should be placed at the upstream part of the upper wall, and at the downstream part of the lower wall respect to the target point.

The results of adjoint pressure have been compared as well. Figure 6.13 corresponds to M = 0.4, and the results for a M = 0.1 were shown in figures 6.6 for CENTER and 6.9 for WALL.

The isocontours of adjoint pressure differ from one Mach number to the other. For the case CENTER and the lower Mach number, all the isocontours were concentrated near the perturbation source and at the walls, and were almost the same upstream and downstream respect to the origin (x 0 , y 0 ) as displayed in 6.6. Contrarily, for a higher Mach number the most sensitive locations are the walls, but only upstream from the source as seen in 6.13. In addition, there are some regions in the interior part of the channel which are also sensitive, even though the contours are low.

For the case WALL and M = 0.4, it is found that the highest values are located only at the upper wall upstream from the source, even though there are some regions of lower sensitivity all over the computational domain. 1.9 • 10 -7 2.9 • 10 -7 3.9 • 10 -7 

Effect of the Reynolds number

Three Reynolds numbers are compared to study the viscosity effects. They are chosen in order to observe different kinds of channel flow: in the first case (Re h = 14) the laminar effects are very important, in the second case (Re h = 4475) they are much lower but the flow is still under the critical value for a plane channel flow of Re crit = 5572, and the last case (Re h = 6040) corresponds to a supercritical case.

The comparison has been done for a flow at M = 0.1, using isothermal walls and forcing the adjoint equations at the CENTER of the channel. The results of adjoint x-momentum can be seen in figures 6.14 (Re h = 4475) and 6.15 (Re h = 6040), where two instants of the temporal period are displayed. The results for the lower Reynolds number Re h = 14 have been previously reported in section §6.1.1 in figure 6.3.

It can be easily seen that the values of adjoint x-momentum increase with the Reynolds number, meaning that the flow becomes more sensitive to changes of longitudinal perturbations of x-momentum for high Reynolds numbers. This fact might be due to the lower viscosity effects.

For Re h = 4475 the sensitivity is found to depend only on the distance respect to the origin of the perturbation, being almost the same in the centerline of the channel and near the solid boundaries. Physically, it indicates that in order to obtain a certain effect at the target point, the forcing can be applied either at the centerline or at the walls, and that the intensity of the effect will depend only on the distance. For a lower Reynolds number the difference between centerline and walls is more important, as shown in figure 6.3, proving that the viscosity plays an important role in sensitivity.

The highest Reynolds Re h = 6040 presents positive contour levels similar to those for Re h = 4475, yet the negative contours indicate that the sensitivity of tangential forcing in a direction opposite to the flow is higher at the centerline than at the walls. Figures 6.16 and 6.17 display the results of adjoint pressure obtained for flows at Re h = 4475 and Re h = 6040 respectively. These figures can be compared with the lower Reynolds number of 14 in figure 6.6. The two new cases show a pattern very different from the old case Re h = 14. In figure 6.6 it was observed that the highest sensitivity values were located next to walls, whereas in figures 6.16 and 6.17 they are found around the centerline of the channel.

Effect of the direct flow

All the test cases presented in the previous subsections have been performed with a direct flow without any perturbation. It is desired to observe the differences when the direct flow is perturbed. Note that the adjoint variables are related to the perturbations of the state variables, hence the addition of the direct perturbation into the adjoint system will be of 2 nd order. It is then expected that the influence of the perturbations to the sensitivity will be negligible (2 nd order). Several tests have been performed, which are all listed in table 6.4, using different forcings, Reynolds number, Mach number and wall boundary conditions. The objective of these simulations is to verify that there are no non-linear effects.

The results which are going to be discussed in detail have been obtained for an isothermal wall and a flow at M = 0.1 and Re h = 4475, where the origin of the adjoint perturbation is at the CENTER of the channel. The forcing of the direct equations has been applied at the CENTER of the channel, with two different amplitude values: A = 0.01u ∞ and a bigger value of A = 0.1u ∞ . Figure 6.18 displays the instantaneous adjoint x-momentum fields for both cases (A = 0.01u ∞ and A = 0.1u ∞ ). The results obtained by forcing the direct equations are represented in the same plot as the previous results without any forcing. It is seen that the isocontours corresponding to the forced direct fields perfectly overlap those without any forcing.

The same phenomenon is observed when perturbing the flow at a different Mach number (0.4), Reynolds number (14 and 6040), using another wall condition (adiabatic), or even when the forcing is applied at other locations (WALL or OUTFLOW). These results demonstrate that small perturbations of the direct field do not change the sensitivity of the flow, since for all the test cases performed non-linear effects have not been observed. These finding is important, since it means that sensitivity analysis can be done without forcing the direct field, hence reducing the computational time and the complexity of the problem, and still find relevant results. Consequently, the sensitivity analysis of the cavity flow can be performed using a non-perturbed direct field.

Cavity flow

In this section a sensitivity analysis of a multi-block configuration of industrial interest has been done. The flow considered consists on a cavity with a length-to-depth ratio L/D = 2 with an incoming laminar boundary layer of thickness δ/D = 0.28 at a subsonic Mach number M = 0.6, as illustrated in figure 6.19. This is the configuration presented in section §3.3, where it is shown that the flow oscillates in shear layer mode and the main fundamental frequency f 2 corresponds to the second Rossiter mode 

Objective and details of the simulations

In chapter §3 the Rossiter mechanism present in a cavity flow oscillating in shear layer mode has been explained. This mechanism is schematically represented in figure 6.19. The incoming boundary layer separates at the leading edge, and the oscillating shear layer spanning over the cavity impinges against the trailing edge, creating pressure waves which are propagated at approximately 135 • respect to the flow direction.

The objective of this section is to investigate the ways in which forcing should be applied to the cavity flow in order to decrease the emission of acoustic waves, i.e. to reduce pressure fluctuations. This is performed in two manners: the first one consists on studying the longitudinal velocity perturbations impacting against the downstream corner, and the second one involves the pressure fluctuations in the far field. Therefore, forcing of the adjoint x-momentum and density equations is performed as listed in table 6.5, in which the section(s) where the results are discussed is indicated.

The forcing of the adjoint equations follows the expression:

g * = A sin(ω p t) exp (x -x 0 ) 2 + (y -y 0 ) 2 σ 2 p (6.2)
where σ p = 10∆y with ∆y the minimum space increment of the computational domain in the normal direction. The amplitude is A = 0.01u ∞ when forcing the x-momentum equation and A = 0.01ρ ∞ when forcing the density equation. The frequency f = ω p /2π is given in table 6.5.

The origin (x 0 , y 0 ) of the forcing in each case is indicated in the table 6.5 by a label, whose position in the computational domain is illustrated in figure 6.20. The forcing of adjoint x-momentum is located near the opening of the cavity, which is the region where the pressure fluctuations are originated. On the other hand, the forcing of adjoint density (the adjoint of the energy equation) is applied in the far field, corresponding to the area where the noise is of interest.

The details of the direct simulation are given in §3.2 and §3.3, but the main features are outlined here as a reminder. The grid is refined near the walls and around the shear layer spanning over the cavity. The non-reflecting characteristic boundary conditions of Giles [START_REF] Giles | Non-reflecting boundary conditions for the Euler equations[END_REF][START_REF] Giles | Nonreflecting boundary conditions for Euler equation calculations[END_REF] are used at the inflow and radiation boundaries, and the formulation of Poinsot and Lele [START_REF] Poinsot | Boundary conditions for direct simulations of compressible viscous flows[END_REF] is used at the outflow. The walls are isothermal and have been implemented with ghost cells ( §1.5.2). In addition, a buffer zone is placed on the right of the computational domain.

The adjoint simulations have been performed initializing all the variables as zero and using the boundary conditions described in §4, where ghost cells are used for the solid boundary conditions. The computational grid of the direct simulation is modified as follows: the buffer zone which was placed on the right is removed, and a buffer zone is located on the left of the computational domain. The number of points inside the buffer zone is 25, and the geometric ratio increment is 1.03. The direct field inside the adjoint buffer zone is copied from the inflow boundary. The adjoint time step is ∆t adjoint = 1/2∆t direct . Some simulations have been run during 10 periods of the direct flow, in which all the computational boundaries are crossed and the adjoint flow reaches a periodic state. Other simulations have been run during 40 periods in order to perform a FFT and study the frequencial response. The 40 periods of the direct flow which have been used in the adjoint simulations correspond to the periodic state of the cavity These results show that longitudinal velocity perturbations can be modified with energy forcing placed inside the boundary layer or near the leading edge. However, the values of the adjoint are weak, meaning that the effect caused is indeed rather small. Figures 6.22 and 6.23 show the isocontours of adjoint x-momentum and y-momentum respectively. In these cases the plot does not include the entire computational domain but only the near-field of the cavity, since in most of the computational domain the adjoint values are null. Only inside the upstream boundary layer and near the leading edge of the cavity there are significant values of sensitivity, even though some sensitive regions of lower values are also found inside the cavity.

The results in figure 6.22 indicate that tangential acceleration introduced into the flow at the upstream boundary layer will affect the most the velocity perturbations near the trailing edge. The highest value is located exactly at the leading corner, suggesting that applying control at this point will be the most efficient. Regarding normal acceleration, according to figure 6.23 it should be placed in the shear layer At last, figure 6.24 presents the isocontours of adjoint pressure, which represent the sensitivity to mass injection in any direction. These results agree well with figures 6.22 and 6.23, being the values of p * significant only inside the incoming boundary layer and inside the shear layer nearby the leading edge. Downstream respect to the cavity and in the far-field there are no sensitive regions. In summary, these results prove that the fluctuations of streamwise velocity over the downstream corner are created at the leading edge of the cavity, when the incoming boundary layer detaches from the wall and spans the opening of the cavity oscillating as a shear layer. As a consequence, if active control is to be applied, e.g. by acceleration or mass injection, it should be placed at the wall upstream from the cavity or even at the corner.

Forcing at different positions

Three more test cases have been performed in which the forcing of the adjoint equations is applied at the x-momentum equation. In these new cases the origin of the adjoint periodic perturbation has been changed to 1D, CENTER and UP, all of them placed in the near field of the cavity as illustrated in figure 6.20. The position 1D is placed at a distance D above the trailing edge of the cavity. Two other positions at distances 2D and 4.5D were investigated, but no relevant results were found (not included). These cases showed that in order to affect the longitudinal velocity perturbations in the far field, the control should be applied in the vicinity of the target point. The means that there is no relation between forcing velocity near the cavity and the fluctuations in the far field, proving that the area of interest to study velocity fluctuations is the near field.

On the other hand, at a distance D from the downstream corner the direct flow can be modified by introducing perturbations at the walls, as is it shown by the adjoint pressure isocontours in figure 6.25. As in the previous case DOWN, the highest values are found inside the upstream boundary layer. However, there are two differences respect to the case DOWN: the contour levels are one order of magnitude lower, and there are some sensitive regions at a distance D above the cavity.

As the values of p * are lower, it means that the flow at a distance D will be less modified by mass injection at the upstream wall. Moreover, the regions above the cavity with non-zero sensitivity values show that the flow at the target point might be changed with mass injection at any point along the line y = D upstream from (x 0 , y 0 ). These results suggest that the fluctuations induced by mass injection are mainly convected downstream.

In the case CENTER the origin of the perturbation is located at the center of the opening of the cavity, that is to say, approximately at the center of the oscillating shear layer. The adjoint pressure results are displayed in figure 6.26, where it is observed that the higher values are placed in the incoming boundary layer. As the case DOWN, in the far field and downstream from the cavity there are no regions where the sensitivity is significant.

The position UP is placed at a distance δ above the upstream corner of the cavity, and the results of adjoint pressure are shown in figure 6.27. This test case presents contour levels lower than DOWN and CENTER, but in the same order of magnitude. These isocontours do not add any new information respect to the previous cases, but confirm that mass injection in the incoming boundary layer will cause the largest effect on the velocity perturbations.

In summary, for all four cases DOWN, 1D, CENTER and UP the isocontours of adjoint pressure present similar results: the highest values are found at the upstream wall and nearby the upstream corner inside the shear layer. The interpretation of these findings is that by injecting mass at the leading edge, the longitudinal perturbations will be modified all along the shear layer spanning over the cavity, from one corner to another, and that even the flow moving above the cavity until a distance of D will be affected.

Comparing the adjoint pressure values of each figure 6.24, 6.25, 6.26 and 6.27 is found that the velocity perturbations (ρu) ′ will be more affected by mass injection near the downstream corner (i.e. the position DOWN), and in a less measure at the center of the shear layer (CENTER) and the upstream corner (UP). The effect on the freestream flow convected above the cavity at y = D will be lower, and negligible at y ≥ 2D.

Forcing of adjoint density

In this section the adjoint density equation (the adjoint of the energy equation) is forced, in order to study the sensitivity of pressure fluctuations p ′ , which are related to the noise. The origin of the perturbation is located in the far-field (FAR), as illustrated in figure 6.20, and its frequency is f 2 as indicated in table 6.5. Figure 6.28 shows the adjoint density isocontours for the whole computational domain. In the far field and near the source, the perturbation is expanded and propagated faster from right to left due to the backward-in-time marching of the adjoint system. It is observed that the sensitivity in this region is quite low.

The highest sensitivity values are concentrated in the incoming boundary layer and in the shear layer spanning over cavity, nearby the leading edge. The maximum value is found at the upstream corner. Moreover, at the bottom of the cavity there is also a region where the sensitivity is high. These results suggest that the position where a loudspeaker should be placed to modify pressure fluctuations in the far field is the wall upstream from the cavity or the bottom wall of the cavity.

Forcing of the density equation in a configuration with isothermal walls had been done in the validation chapter §5. That test case consisted on a plane channel flow and the forcing was placed near the walls. The results in §5.4.3 showed that there was an amplification of pressure at the wall. On the other Finally the results of adjoint pressure are displayed in figure 6. [START_REF] Chatellier | Theoretical and experimental investigations of low Mach number turbulent cavity flows[END_REF]. In this figure it is shown the propa-gation of the periodic perturbation, and a concentration of high sensitive values in the incoming boundary layer and inside the shear layer in the vicinity of the leading edge. That means that applying mass injection at the upstream horizontal wall is the most effective way to modify the pressure fluctuations in the far field.

In summary, the results of noise sensitivity show that far-field pressure fluctuations can be damped by applying forcing in the vicinity of the upstream corner of the cavity. It is also found that mass injection would be an efficient way to modify the flow.

Frequencial response

In order to study the frequencial response of the adjoint systems, two test cases have been run for 40 periods: forcing of adjoint x-momentum at the position DOWN and forcing of adjoint density at the position FAR, both of them at the fundamental frequency f 2 . The time history of the adjoint variables is recorded at four probes, corresponding to the far-field (P1), the middle of the shear layer spanning over the cavity (P2), the bottom wall of the cavity (P3) and the detaching boundary layer over the leading edge (P4), as shown in figure 6.32. It is easily seen that the amplitude of p * increases its order of magnitude with time. That is to say, the longer the forcing is applied, the higher is the effect at the target point. The periodic evolution of the values of adjoint pressure confirms the observations done from the instantaneous fields: the lowest values are found at the far-field (probe P1), and the highest ones near the leading edge of the cavity (probe P4).

It is also found in figure 6.33 that the adjoint oscillations have the same frequency as the direct flow. In order to confirm this fact, a FFT of the signal between the periods 20 and 0 (so the last 20 periods of the adjoint simulation) at P2 and P4 have been performed. The results of the Fourier-transformed adjoint pressure, p * , are displayed in figures 6.34 and 6.35 for the forcing of (ρu) * and ρ * , respectively. It is observed that in all cases the Strouhal number is approximately St ≈ 0.7, as for the direct flow, and a broadening of the spectra is present.

In the last part of this study the adjoint x-momentum equation is forced at the position DOWN at an harmonic of the fundamental frequency, 3f 2 , as described in table 6.5. Figure 6.36 shows the signal of adjoint pressure at the probes P1, P2 and P4.

The evolution of p * is different from the other two cases (shown in figure 6.33). In this case the amplitude at P4 is approximately constant (≈ 0.5 • 10 -5 ) between the periods 40 and 20, and starts modifying its value after that. When forcing at f 2 , during the first periods the amplitude is smaller, and after approximately 15 periods it is ≈ 0.5 • 10 -5 at P4. That means that in the short term it is more efficient to force with a frequency of 3f 2 , but in the long term a larger effect is obtained using f 2 .

Regarding the frequency of the adjoint oscillations, it is still ≈ f 2 , even though the equations are forced with an harmonic. There is also a broadening of the spectra as shown in figure 6.37.

Finally, figure 6.38 shows the instantaneous isocontours of adjoint pressure for a forcing at 3f 2 . The values of the contour levels are the same as for the forcing of x-momentum at f 2 . As in the other cases, the highest sensitivity is found at the boundary layer upstream from the cavity, and in the vicinity of the leading edge, and no significant values are found in the far-field. The sensitive region in this case is slightly larger than for f 2 , as seen in figure 6.24. This in accordance to the time-history, where it is found that the amplitudes at 3f 2 after 10 periods are larger than at f 2 . 

Discussion

It has been shown in §6.2.2 and §6.2.3 that mass injection located at the upstream wall of the cavity, nearby the leading edge is an efficient way to modify longitudinal velocity along the shear layer and over the downstream corner. Furthermore, in §6.2.4 it has been found that in order to decrease pressure fluctuations in the far field, mass injection in the incoming boundary layer can be applied.

Therefore, the introduction of mass injection at the wall, upstream from the leading edge, affects both the streamwise velocity and pressure fluctuations. Consequently, the results confirm that (ρu) ′ near the trailing edge and p ′ at the far field are related. This is the first time a sensitivity analysis of a cavity flow has been done, hence there are no results available for comparison. However, this work can be related to previous investigations.

Cerviño et al. [START_REF] Cervi Ño | Perturbation and adjoint analyses of flow-acoustic interactions in an unsteady 2d jet[END_REF] investigated a cold 2D jet at M = 0.5 using perturbation and adjoint analysis. In the adjoint sensitivity analysis three frequencies were used to force the adjoint equations: 2×, 5× and 20× the fundamental frequency. The results show a large broadening of the spectra, which is more pronounced for higher frequencies, in a similar way as the results displayed in §6.2.5. Cerviño et al. attribute the broadening of the spectra to the fact that the coefficients of the adjoint equations are not constant but they vary in time due to the unsteady direct flow. Spagnoli and Airiau [START_REF] Spagnoli | Adjoint analysis for noise control in a two-dimensional compressible mixing layer[END_REF] performed a sensitivity analysis of a 2D compressible mixing layer, in which the adjoint density equation was forced. Their results show that the areas of highest sensitivity are the inflow and the shear layer. The adjoint pressure isocontours in figure 6.31 also present the highest values inside the shear layer and at the birth of the shear layer (in this case, the leading corner). A large broadening of the spectra is also found.

Åkervik et al. [START_REF] Åkervik | Optimal growth, model reduction and control in a separated boundary layer flow using global eigenmodes[END_REF] investigated the global eigenmodes of a rounded shallow cavity, and observed that the maximum of the least stable adjoint eigenfunction was located at the upstream corner of the cavity. These results are in agreement with those reported in §6.2.4, where the highest values of adjoint pressure are concentrated in the vicinity of the leading edge of the cavity. Marquet et al. [START_REF] Marquet | Direct and adjoint global modes of a recirculation bubble: lift-up and convective non-normalities[END_REF] studied the adjoint global modes of a rounded backward-facing-step inside an S-shaped duct, where the adjoint pressure was also found to be maximum at the separation point.

Vesely [START_REF] Vesely | Investigation of flow in the proximity of walls at very low Reynolds number using PIV measurement techniques[END_REF] did an experimental research on passive control devices on low Mach number cavity flows. A ramp surface at the leading edge and porous surfaces at all the cavity walls were applied on a L/D = 4 cavity. The ramp surface was found to be more effective for drag reduction. The second configuration of the study was a cavity of L/D = 3, in which three geometry modifications were investigated: a rounded leading edge, a rounded trailing edge, and a trailing edge slant of 45 • . Again, the most effective method was found to be the one placed at the leading edge, in this case the rounded corner. These results are in agreement with the adjoint sensitivity analysis performed in §6.2.3, in which changes of velocity at the upstream corner has been found to affect most the flow.

Rossiter [START_REF] Rossiter | Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[END_REF] was the first one to insert small spoilers upstream from the cavity in order to suppress periodic pressure fluctuations. Other studies have reported suppression of cavity flow oscillations by applying passive control at the leading edge. For example, a cylinder rod located above the upstream corner has been found to reduce the SPL at the rear wall from 179 dB to 140 dB, both numerically [50] and experimentally [START_REF] Illy | Control of cavity flow by means of a spanwise cylinder[END_REF].

Several investigations can be found in the literature involving active control, either by open or closed loop. Most of them place the actuator in the vicinity of the upstream corner, where the flow has been proved to be more sensitive to velocity and pressure fluctuations in §6.2.2 and §6.2.4. Suponitsky et al. [START_REF] Suponitsky | On three-dimensionality and control of incompressible cavity flow[END_REF] introduced steady blowing and suction at the front and rear walls respectively, and found that the suction at the trailing edge had not a significant effect, even though helped to obtain a global zero-netmass flux inside the cavity. Unsteady blowing and suction [START_REF] Barbagallo | Control of an incompressible cavity flow using a reduced model based on global modes[END_REF], steady mass injection [START_REF] Hamed | Numerical simulations of fluidic control for transonic cavity flows[END_REF], pulsed mass injection [START_REF] Rizzetta | A high-order compact finite-difference scheme for large-eddy simulation of active flow control[END_REF] and streamwise air injection [START_REF] Rona | Control of transonic cavity flow instability by streamwise air injection[END_REF] are some examples of active control aimed to modify velocity fluctuations nearby or at the leading edge.

Changes of pressure fluctuations have also been used to control cavity flows from the upstream corner, for instance by a loudspeaker [START_REF] Rowley | Linear models for control of cavity flow oscillations[END_REF], a compression driver [START_REF] Little | Effects of open-loop and closedloop control on subsonic cavity flows[END_REF][START_REF] Samimy | Feedback control of subsonic cavity flows using reduced-order models[END_REF] or a synthetic jet [START_REF] Kourta | Analysis and control of cavity flow[END_REF][START_REF] Marsden | Direct noise computation of adaptive control applied to a cavity flow[END_REF]. Active control is not often applied at the trailing edge, but for example a vibrating plate at the downstream edge was successfully used to control noise emission [START_REF] Chatellier | Active control of the aeroacoustics of cavity flows from the downstream edge[END_REF][START_REF] Micheau | Active control of a selfsustained pressure fluctuation due to flow over a cavity[END_REF].

Conclusions

The adjoint fields obtained by forcing one of the adjoint equations show the sensitivity of the direct field to different kinds of forcing of the direct equations. The adjoint variable which shows the highest values indicate which kind of forcing is to be more effective. For both a channel flow and a cavity flow, the adjoint pressure presents the highest values, meaning that mass injection will be the most efficient way to modify the flow. The region of the computational domain with the highest values is the place where direct forcing will affect the most.

Several simulations have been done involving x-momentum forcing in channel flows with different wall boundary conditions, Mach and Reynolds numbers and base direct flow. At low Reynolds and Mach numbers the most efficient location to add forcing is at the walls, and upstream from the target point. It is found that a flow moving between adiabatic walls is more sensitive to tangential acceleration than in the case of isothermal walls, whereas it is less sensitive to mass injection than the isothermal case.

An increase of either the Mach or the Reynolds number implies an increase of the adjoint values. For high Reynolds numbers, the sensitivity to tangential mass injection depends only on the distance and it is the same at the walls and at the interior part of the channel. On the other hand, the regions where the adjoint pressure is higher are located around the centerline.

The sensitivity analysis of a cavity flow has been done by forcing the adjoint x-momentum and density equations at several positions and frequencies. The x-momentum equation has been forced at different positions in the near field of the cavity opening. The results show that mass injection at the upstream wall will affect most the longitudinal velocity perturbations. It is found that this forcing will modify the flow all along the shear layer, from the upstream to the downstream corner, and the near field flow up to a distance equivalent to the cavity depth.

The results obtained with forcing of the density equation prove that far-field pressure fluctuations can be controlled by mass injection at the upstream wall. Therefore, an actuator placed nearby the leading edge will affect both the pressure in the far field and the velocity fluctuations impacting against the trailing edge. These results are in good agreement with previous studies of separated flows, in which the highest sensitivity is found at the separation point [START_REF] Åkervik | Optimal growth, model reduction and control in a separated boundary layer flow using global eigenmodes[END_REF][START_REF] Marquet | Direct and adjoint global modes of a recirculation bubble: lift-up and convective non-normalities[END_REF].

The frequencial response of the adjoint system shows that it oscillates at the same frequency as the direct flow, either if the forcing of the adjoint equations is done at the fundamental frequency or one of its harmonics. The spectra presents a large broadening due to the unsteady coefficients of the adjoint equations, as reported previously by Cerviño et al. [START_REF] Cervi Ño | Perturbation and adjoint analyses of flow-acoustic interactions in an unsteady 2d jet[END_REF].

General conclusions

Conclusion générale

Le but de ce travail de thèse est d'étudier l'aéroacoustique d'écoulements au-dessus de cavités rectangulaires bidimensionnelles et de proposer des stratégies de réduction du bruit produit par ce type d'écoulement. Nous avons utilisé les méthodes adjointes, ce qui implique l'implementation d'un code direct pour simuler la physique de l'écoulement, et d'un code adjoint pour trouver sensitivités de l'écoulement aux forc ¸ages externes.

Conclusions des simulations directes

Le code direct est un code de calcul aéroacoustique, 'Computational Aeroacoustics' (CAA), qui résoud les équations bidimensionnelles compressibles de Navier-Stokes par simulation numérique directe, 'Direct Numerical Simulation' (DNS). Les discretisations spatiale et temporelle utilisent des schémas d'ordre élevés. Des conditions aux limites caractéristiques sont utilisées aux limites non réflexives, et deux formulations, une avec des cellules fantômes ('ghost cells') et une autre sans, sont utilisées aux parois solides.

Le code peut gérer des configurations multi-blocs rectangulaires avec des parois solides, avec ou sans cellules fantômes, sur n'importe quelle limite. Le problème de la dérivation multi-blocs est résolu en définissant des configurations de blocs différentes suivant la direction de dérivation calculée.

Plusieurs tests ont été réalisés en vu de valider les différents aspects du code : le calcul aéroacoustique, les effets visqueux, et les géométries multi-blocs. Les bons résultats de ces tests montrent que notre code est approprié pour simuler des écoulements instationnaires au-dessus de discontinuités de surface, tel que les cavités.

Même si les écoulements au-dessus de cavités ont été largement étudiés, l'influence de la condition initiale est un problème qui a encore peu retenu l'attention, mais qui joue un rôle important dans les résultats numériques. Dans cette étude, différentes conditions intiales ont été appliquées à deux configurations de cavité : une cavité profonde de rapport d'aspect L/D = 2 à nombre de Mach modéré M = 0. 

Pour les cavités peu profondes, nous avons trouvé que le régime d'oscillation de l'écoulement changeait avec la condition initiale choisie. Dans le cas étudié d'une cavité de rapport d'aspect

L/D = 4, à nombre de Mach M = 0.15 et avec L/θ = 96 une initialisation avec un écoulement uniforme conduit à une oscillation en mode couche de cisaillement, tandis qu'une initialisation à zéro conduit à une oscillation en mode de sillage. En outre, une initialisation avec une couche limite conduit à un mode de couche de cisaillement avec une modulation de basse fréquence. Ces résultats suggèrent que la condition intiale doit être choisie avec précaution.

Tout comme pour les cavités profondes, l'épaisseur de couche limite et le nombre de Mach ont été modifiés, montrant que les écoulements avec de plus forts nombres de Mach et des couches limites plus épaisses deviennent insensibles à la condition initiale.

Conclusions des simulations adjointes

Les méthodes adjointes sont des méthodes efficaces pour réaliser des analyses de sensitivité, comparées aux méthodes classiques tel que les analyses de perturbations. Si elles ont été déja utilisées dans le cas d'écoulements compressibles, nous nous plac ¸ons ici en plus en présence de parois solides.

Le code adjoint résoud les équations adjointes de Navier-Stokes compressibles, qui ont été dérivées sous forme continue puis discrétisées. Leur implémentation a été faite de manière équivalente à celle du code direct.

La validation du code adjoint a été réalisée en utilisant l'identité de Green-Lagrange. Les résultats ont montré la grande sensibilité des calculs adjoints au maillage, au pas de temps et aux conditions limites. De plus, l'addition de zones tampons ainsi que l'utilisation de cellules fantômes aux parois solides permet d'éviter certaines réflexions numériques aux coins. Enfin, les résultats avec des parois adiabatiques sont meilleurs que ceux avec des parois isothermes, qui nécessitent que l'origine du forc ¸age soit placé suffisament loin des limites du domaine.

Pour l'étude de sensitivité de l'écoulement de canal plan nous avons forcé l'équation adjointe de quantité de mouvement suivant x. Nous avons trouvé que, de manière générale, la meilleure fac ¸on d'agir sur la perturbation de quantité de mouvement suivant x était l'ajout de masse aux voisinage des parois et en amont de la zone ciblée.

Pour l'étude de sensitivité de l'écoulement au-dessus d'une cavité nous avons forcé l'équation ad-jointe de quantité de mouvement suivant x, puis l'équation adjointe de conservation de la masse à différentes positions et fréquences. Ces deux forc ¸ages conduisent au même type de résultat : la meilleure fac ¸on d'agir sur la perturbation de quantité de mouvement suivant x au voisinage de la couche de cisaillement ainsi que sur la perturbation de pression au loin est l'ajout de masse au voisinage du coin supérieur amont de la cavité. Ces résultats sont cohérents avec ceux de la littérature concernant ce type d'écoulement, pour lesquels la sensitivité la plus élevée a été trouvée au point de séparation [START_REF] Åkervik | Optimal growth, model reduction and control in a separated boundary layer flow using global eigenmodes[END_REF][START_REF] Marquet | Direct and adjoint global modes of a recirculation bubble: lift-up and convective non-normalities[END_REF].

La réponse fréquentielle du système adjoint montre qu'il oscille à la même fréquence que le système direct, que le forc ¸age des équations adjointes soit fait à la fréquence fondamentale ou bien à une fréquence harmonique. Le spectre du système adjoint présente une large dispersion en raison de l'instationnarité des coefficients des équations adjointes, dispersion observée également par Cerviño et al. [START_REF] Cervi Ño | Perturbation and adjoint analyses of flow-acoustic interactions in an unsteady 2d jet[END_REF].

Perspectives et travaux futurs

Pour appronfondir l'étude de l'influence des conditions initiales, il serait intéressant de réaliser des simulations tridimensionnelles, en particulier dans le cas de cavités peu profondes où la condition initiale joue un rôle important dans la sélection du mode d'oscillation. Le mode de sillage est communément considéré comme un artéfact des simulations bidimensionnelles, mais il a été aussi trouvé pour certaines conditions dans des études tridimensionnelles. Il pourrait être intéressant d'étudier quelles conditions, en 3D, conduisent à une oscillation en mode de cisaillement ou en mode de sillage afin de mieux comprendre la dynamique tridimensionnelle. Pour quel mode les composantes transverses deviennent-elles importantes? Comment ces composantes transverses conduisent l'écoulement à osciller suivant un mode plutôt qu'un autre? Il conviendrait également d'étudier plus précisément la modulation basse fréquence observée dans un des cas cavité peu profonde. Enfin, il est important d'étendre l'étude de sensitivité au cas des cavités peu profondes, afin d'avoir un autre outil d'analyse du rôle de cette condition initiale.

Il serait intéressant d'étendre l'analyse de sensibilité réalisée dans ce travail de thèse. Ainsi, afin de plus précisément étudier le bruit généré au loin par l'écoulement au-dessus de la cavité, un forc ¸age aux conditions limites 'lointaines' (limites non réfléchissantes) pourrait être fait. On pourrait également forcer 'globalement' le système adjoint (forc ¸age optimal) avec le champ direct.

Enfin, une étude de réceptivité, en initialisant le système adjoint avec le champ direct à un instant t = t f , sans forc ¸age, permettrait de conclure le travail d'analyse de sensibilité initié dans cette thèse.

Pour finir, une extension naturelle de ce travail est l'application des méthodes de contrôle optimal à la réduction du bruit aéroacoustique [START_REF] Babucke | Numerical Simulation of turbulent flows and noise generation[END_REF].

General conclusions

A numerical study has been performed to analyze the sensitivity of two-dimensional rectangular cavity flows and to find strategies to reduce the noise. Adjoint methods have been used, which require the implementation of a direct algorithm to simulate the physics of the flow, and an adjoint algorithm to find its sensitivity to external forcing.

Conclusions of the direct simulations

The direct algorithm consists on a Computational Aeroacoustics (CAA) code which solves the twodimensional compressible Navier-Stokes equations by Direct Numerical Simulation (DNS). A 6 th order compact scheme with a progressive-regressive formulation has been used for the spatial discretization of convective fluxes [START_REF] Kloker | A robust high-resolution split-type compact FD scheme for spatial direct numerical simulation of boundary-layer transition[END_REF], a 4 th order explicit scheme for the viscous fluxes and a classic 4 th order Runge-Kutta scheme for the time-marching. Characteristic boundary conditions are used at the non-reflecting boundaries, and two formulations are used at the walls, one with ghost cells and another one without. In the ghost cells method there are no points at the walls in order to avoid the singularity at the corner.

The code can handle any rectangular multi-block configuration with walls in any boundary (east, west, north or south) implemented with or without ghost cells. The problem of the multi-block derivation is solved by defining different configurations according to the direction in which the derivative is calculated. The ghost cells have been integrated into the dynamic block derivation, where the addition of blocks and ghost cells is done automatically by the algorithm. Several test cases have been performed in order to validate different aspects of the code: aeroacoustic properties, viscous effects, and multi-block geometries. The aeroacoustic properties include the non-dispersive and non-dissipative properties of the scheme and the performance of the non-reflecting and solid boundary conditions, which are investigated with CAA benchmark problems. To test the viscous effects two test cases at very low Reynolds numbers are simulated. Finally a laminar flow over a backward-facing-step is calculated to validate the multi-block derivation and the treatment of the corner. All test cases provide very good results, proving the suitability of the numerical method to simulate unsteady flows over surface discontinuities, such as a cavity.

Cavity flows have been largely studied from the 50's, experimentally, theoretically and by numerical simulations. However, the influence of the initial condition is an issue to which has been given little attention in previous studies, but which plays an important role in the numerical results. In this study different initial conditions are applied to two flow configurations: a cavity of L/D = 2 and moderate Mach number M = 0.6, clearly oscillating in shear layer mode; and a cavity of L/D = 4 and low Mach number M = 0.15, whose results respect to the flow regime are contradictory.

Deep cavities oscillate in shear layer mode or do not oscillate. The test case considered here oscillates in shear layer mode, even though the dominant mode is difficult to be predicted. Five initial conditions have been used, and all of them are found to converge to the same dominant frequency, corresponding to the second Rossiter mode. Nevertheless, one of the initial conditions is found to oscillate at the first Rossiter mode at the beginning of the simulation, and later change to the second mode. Different features are found, depending on the oscillation mode. It is observed that the number of vortices spanning over the cavity changes from one for the first Rossiter mode, to two for the second Rossiter mode, in agreement with previous studies. Concerning the OSPL values, the initial condition does not seem to have an effect. It is observed than when the flow oscillates at the second Rossiter mode, the directivity of the acoustic radiation is more enhanced than when the first mode is dominant. If flow control is to be applied, the frequencies aimed should be the first and second Rossiter modes, since the suppression of only one of them might lead to the increase of amplitude of the other one.

Finally the boundary layer thickness and the Mach number are modified to observe if there is any change in the dominant frequency. The results prove that for larger boundary layer thickness, which correspond to more stable flows, the main frequency of oscillation is the first Rossiter mode. A change of Mach number, from 0.6 to 0.4, has not shown any significant difference.

Shallow cavities can present a non-oscillating mode, a shear layer mode or a wake mode. It has been found here that the flow regime might change with the initial condition of the numerical simulation. In the specific case of a cavity with L/D = 4, M = 0.15 and L/θ = 96 an initialization with a uniform flow develops a shear layer cavity flow, while initializing with a zero mean flow leads to wake mode. Furthermore, an initialization with a boundary layer leads to a shear layer mode with a low-frequency modulation of unknown origin. The flow oscillating in wake mode presents higher drag and noise, hence to reduce them the flow can be forced to oscillate in shear layer mode. These results suggest that the initial condition should be carefully chosen.

As for the deep cavities, the boundary layer thickness and the Mach number are modified, showing that cavities with higher Mach number or boundary layer momentum thickness seem to be unaffected by the initial condition.

Conclusions of the adjoint simulations

The adjoint methods are found to be an efficient way to perform sensitivity analysis, respect to classic methods such as perturbation analysis. However, they have not yet been used to study compressible wall-bounded flows, which is done here for the first time.

The adjoint algorithm solves the adjoint of the compressible Navier-Stokes equations, which have been derived in continuous form and are discretized after that. High order schemes are used for the spatial and temporal discretizations in a way equivalent to the direct algorithm. Non-reflecting boundary conditions are used at the inflow, radiation and outflow and suitable solid boundary conditions are derived from the boundary terms. The wall boundary conditions have been implemented with and without ghost cells, mimicking the direct code.

The adjoint equations have some feature which imply some differences of implementation. They march backward in time and so a buffer zone must be placed on the left side of the domain instead of the right side. The direct variables appear in the coefficients of the equations, so the direct flow must be stored at each iteration, or every few iterations and then interpolate. Finally the adjoint system is found to be more unstable so a smaller time step is required.

The validation of the adjoint code has been done using the Green-Lagrange identity. The adjoint results are found to be very sensitive to the grid, time step and boundary conditions, and that the addition of a buffer zone or the use of ghost cells help avoiding undesired reflections. Adiabatic walls provide better results than isothermal walls, which require that the origin of the forcing is placed far from all the boundaries.

The sensitivity of a channel flow has been investigated by forcing the x-momentum equation. Different wall boundary conditions, Mach numbers, Reynolds numbers and base direct flow are compared. In general is found that the most efficient way to control the flow is by mass injection at the wall, upstream from the target point.

The sensitivity analysis of a cavity flow has been done by forcing the adjoint x-momentum and density equations at several positions and frequencies. By observing the adjoint pressure field, both kinds of forcing provide the equivalent results: mass injection at the upstream corner will affect most the longitudinal velocity perturbations all along the shear layer, from the upstream to the downstream corner, and the near field flow up to a distance equivalent to the cavity depth, as well as the pressure fluctuations in the far-field.

Therefore, an actuator placed nearby the leading edge will affect both the pressure in the far field and the x-momentum fluctuations impacting against the trailing edge. These results are in good agreement with previous studies of separated flows, in which the highest sensitivity is found at the separation point [START_REF] Åkervik | Optimal growth, model reduction and control in a separated boundary layer flow using global eigenmodes[END_REF][START_REF] Marquet | Direct and adjoint global modes of a recirculation bubble: lift-up and convective non-normalities[END_REF].

The frequencial response of the adjoint system shows that it oscillates at the same frequency as the direct flow, either if the forcing of the adjoint equations is done at the fundamental frequency or one of its harmonics. The spectra presents a large broadening due to the unsteady coefficients of the adjoint equations, as reported previously by Cerviño et al. [START_REF] Cervi Ño | Perturbation and adjoint analyses of flow-acoustic interactions in an unsteady 2d jet[END_REF].

Perspectives for future work

To deepen the study of the influence of the initial condition three-dimensional simulations could be performed, especially with shallow cavities where the initial conditions have a more important effect. The wake mode is known to be a two-dimensional artifact, but it has been found in a few three-dimensional studies using the adequate conditions. It might be interesting to study, in 3D, which conditions lead to a shear layer and which ones lead to a wake mode in order to understand more clearly the 3D dynamics.

Is there any transfer of energy towards the spanwise direction? At the leading edge? In which mode are the spanwise components more important? Do they help the flow to oscillate in one mode or the other? Moreover, the low-frequency modulation observed in one of the shallow cavity test cases needs further investigation, to identify the mechanism (numerical or physical) which triggers the flow into this mode.

It would be also interesting to extend the sensitivity analysis of the deep cavity performed in this thesis. Here a localized forcing in frequency and space has been considered. In order to investigate the far-field noise emitted by the unsteady cavity flow, boundary forcing (at the non-reflecting boundaries) of the adjoint equations could be done. Furthermore a global (optimal) forcing of the adjoint system can be performed using the direct field. A receptivity analysis can also be envisioned, in which the adjoint field is initialized with the direct field at a certain instant in time t f , and the adjoint algorithm is run without any forcing.

It is also important to extend the sensitivity analysis to shallow cavities. This may reveal the effect of the initial condition on the oscillation mode of the flow, trough a sensitivity or a receptivity analysis. Finally, a natural extension of this work is to use optimal control theory in order to reduce the aeroacoustic noise [START_REF] Babucke | Numerical Simulation of turbulent flows and noise generation[END_REF]. 

A.4 Conclusion

Active open-loop and closed-loop control of optimal instabilities amplified in a channel flow have been investigated. The control was carried out at both the upper and the lower wall by blowing and suction.

The state system considered is parabolic in time. We used both adjoint-based and Riccati-based control theories. In the adjoint-based method, we alternatively solve the state (forward time marching) and the adjoint (backward time marching) systems until convergence towards the optimal control. In the feedback control method, the control is the solution of a differential Riccati equation which marches in time. We show that the adjoint-based (open-loop) and the Riccati-based (closed-loop) control results are very similar, which is interesting since Riccati-based control may be difficult to implement for highdimensionnal system such as flow systems.

• conservation de la quantité de mouvement δ mi = δm i,t + m j δm i + m i δm j ρ

,j -m i m j δρ ρ 2 ,j

+ δp ,iδτ ij,j = 0 (B.13)

• conservation de l'énergie, avec la pression δ Ẽ = δp ,t +(u i δp+pδu i ) ,i +(γ-1)[u i,i δp+pδu i,i ] -(γ -1)(τ ij δu i,j + u i,j δτ ij ) δφ D +(γ-1)δq i,i = 0 (B.14)

• Loi de comportement pour les contraintes visqueuses :

δτ ij = δτ ij -δµ(T ) (u i,j + u j,i - 2 3 δ ij u k,k ) = τ ij /µ
-µ(T )(δu i,j + δu j,i -2 3 δ ij δu k,k ) = 0 (B.15)

• Loi de Fourier : δ qi = δq i + T ,i δk + kδT ,i = 0 (B.16)

B.2.3 Variations de la fonctionnelle

Maintenant il faut calculer tous les termes du type a * δ b, intégrer par parties une fois pour faire apparaître les variations des variables d'état. A chaque fois on mettra en évidence les termes de bords par [.]. 

   - p r ρ 2 -(q * i k) ,i + k ′ q * i T ,i -µ ′ τ * ij τ ij µ = 0 (B.43)

B.3.2 Equations simplifiées

En négligeant les variations de température de k et µ, et en exprimant q * i , on obtient 'plus simplement' : • δm i = 0 en entrée et sur les parois Les dimensions sont alors du type :

τ * ij = (γ -
F v =          
A * =             0 (γ -3)u 2 + (γ -1)v 2 2 -uv u[- γE ρ + (γ -1)(u 2 + v 2 )] 1 (3 -γ)u v γE ρ - (γ -1) 2 (3u 2 + v 2 ) 0 (1 -γ)v u (1 -γ)uv 0 γ -1 0 γu             B * =             0 -uv (γ -1)u 2 + (γ -3)v 2 2 v[- γE ρ + (γ -1)(u 2 + v 2 )] 0 v (1 -γ)u (1 -γ)uv 1 u (3 -γ)v γE ρ - (γ -
[ρ * ] [ρ] T = [m * i ] [ρ][V ] T = [E * ] [p] T = [E * ] [ρ][V ] 2 T
Les variables adjointes sont toujours fixées à une constante près, donc définir une dimension est toujours arbitraire. Cependant choisissons que :

[ρ * ] = [ρ][V ] 2
On en déduit :

[m * i ] = [ρ][V ], [E * ] = [ρ]
On peut aussi simplement choisir : 

A =            0 1 0 0 (γ -3)u 2 + (γ -1)v 2 2 (3 -γ)u (1 -γ)v γ -1 -uv v u 0 u[- γE ρ + (γ -1)(u 2 + v 2 )] γE ρ - (γ -1) 2 (3u 2 + v 2 ) (1 -γ)uv γu            B =            0 0 1 0 -uv v u 0 (γ -1)u 2 + (γ -3)v 2 2 (1 -γ)u (3 -γ)v γ -1 v[- γE ρ + (γ -1)(u 2 + v 2 )] -(1 -γ)uv γE ρ - (γ -1) 2 (u 2 + 3v 2 ) γv           
Pour calculer les caractéristiques il faut donner l'expression de E en fonction de la célérité du son et de la vitesse : Les conditions initiales et aux limites sont fonction des termes contenus dans la fonctionnelle J. Si J = 0 alors on doit vérifier : Les écoulements instationnaires au-dessus de surfaces discontinues produisent d'important bruit aérodynamique. L'objectif de ce travail de thèse est l'étude aéroacoustique d'écoulement au-dessus de cavités bidimensionnelles rectangulaires, et de trouver des stratégies de réduction du bruit. Des simulations numériques directes des équations bidimensionnelles de Navier-Stokes compressibles ont été réalisées afin d'étudier l'influence des conditions initiales sur le mode d'oscillation de l'écoulement pour des cavités profonde et peu profonde. Les résultats montrent que dans le cas de cavités profondes, l'écoulement oscille selon un régime de couche de cisaillement suivant le second mode de Rossiter, et ce quelle que soit la condition initiale choisie. En revanche, dans le cas de cavités peu profondes, le régime d'oscillation observé peut être en couche de cisaillement ou bien en mode de sillage suivant la condition initiale choisie. Une analyse de sensibilité d'écoulement dans le cas de cavités profondes a été réalisé en utilisant une méthode adjointe. Les équations adjointes ont été forcées par une perturbation localisée sinusoïdale soit de la quantité de mouvement suivant x adjointe (au voisinage de la couche de cisaillement), soit de la densité adjointe (loin de la cavité). Les résultats désignent une région de l'écoulement très sensible à l'ajout de masse, et localisée au voisinage du coin supérieur amont de la cavité. Par conséquent, un actionneur de type soufflage/aspiration placé au bord d'attaque de la cavité agira sur les fluctuations de quantité de mouvement suivant x au voisinage de la couche de cisaillement et sur les fluctuations de pression au loin. Mots clefs : Aéroacoustique numérique, écoulement de cavité, méthode adjointe, analyse de sensitivité
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Aeroacoustic investigation and adjoint analysis of subsonic cavity flows

The unsteady flow over surface discontinuities produces high aerodynamic noise. The aim of this thesis is to study the aeroacoustics of two-dimensional rectangular cavities and to find strategies for noise reduction. Direct Numerical Simulation of the compressible Navier-Stokes equations is performed to investigate the influence of the initial condition on the oscillation modes in deep and shallow cavities.

Results show that the deep cavity oscillates in shear layer regime at the second Rossiter mode regardless of the initial condition. On the other hand different initial conditions lead to a shear layer or wake mode in the shallow cavity case. A sensitivity analysis of the deep cavity is done by the use of adjoint methods.

Local sinusoidal perturbations of x-momentum and density are applied to the adjoint equations. The results show a high sensitivity region to mass injection at the upstream corner. Therefore an actuator placed at the leading edge will modify the velocity fluctuations reaching the trailing edge and hence the pressure fluctuations in the far-field.

Keywords: Computational Aeroacoustics, cavity flow, adjoint methods, sensitivity analysis
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 11 Figure 1.1 -Computational domain and boundary conditions.
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 a12 Figure 1.2 -Representation of the ghost cells method. Interior points •, ghost cells •
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 2316 Figure 1.6 -Dynamic block derivation with the use of ghost cells. Interior domain (-), ghost cells •, ghost cell at the corner •
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 21 Figure 2.1 -Initial conditions for the propagation of waves in an homogeneous media.
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 6725 where the reference values are p ∞ = 10 5 Pa, T ∞ = 298 K and u∞ = M x c ∞ , where M x = 0.5, c ∞ = γp ∞ /ρ ∞ =346 m/s is the ambient speed of sound, and ε = 0.01. The three boundary conditions detailed in section §1.4 are used at the non-ref ecting boundaries: Giles: Characteristics of Giles at all the non-ref ecting boundaries Poinsot and Lele: Characteristics of Poinsot and Lele with σ = 0.25 at the outf ow, and characteristics of Giles at the inf ow and radiation boundaries Tam and Dong: Asymptotic formulation of Tam and Dong at all the non-ref ecting boundaries Firstly the results using Giles are shown. After that, they are compared with the other two formulations.
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 2223 Figure 2.2 -Results for the propagation of 3 waves in a uniform flow. Left plots: non-dimensional density contours ρ′ , contour levels -0.02, 0.01, 0.02, 0.04; (-) analytical solution, (--) numerical prediction. Right plots: normalized density distribution ρ′ at y = 0, (-) analytical solution, ( ) numerical prediction
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 24 Figure 2.4 -Initial conditions for the propagation of waves in the presence of a mean flow in x-and y-directions.
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 252525 = u ∞ 1 + 0.04 (y -67) ε e » -(ln 2) (x-67) 2 +(y-67) 2 v = -0.04(x -67) ε u ∞ e » -(ln 2) (x-67) 2 +(y-67) 2where the reference values are p ∞ = 10 5 Pa,T ∞ = 298 K and u ∞ = M x c ∞ , where c ∞ = γp ∞ /ρ ∞ =346 m/s is the ambient speed of sound, M x = M y = 0.5 cos(45 • ) and ε = 0.01.
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 25 Figure 2.5 -Results for the propagation of 3 waves in a uniform flow at 45 • . Left plots: non-dimensional density contours ρ′ , contour levels -0.02, 0.01, 0.02, 0.04; (-) analytical solution, (--) numerical prediction. Right plots: normalized density distribution ρ′ , along the x-axis, (-) analytical solution, ( ) numerical prediction
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 2 Figure 2.5(a) corresponds to the time t = 60, when the waves have not yet reached any computational boundary. The acoustic wave is expanding radially and being convected at the same time as the entropy and the vorticity waves. The waves do not present any distortion and overlap perfectly the analytical solution.

  The computational domain is -100 ≤ x ≤ 100, 0 ≤ y ≤ 200, discretized with an equidistant

Figure 2 . 6 -

 26 Figure 2.6 -Initial density conditions for a single wall reflection of an acoustic pulse.
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 27 Figure 2.7 -Results for a single wall reflection in a uniform flow. Left plots: non-dimensional density contours ρ′ , contour levels 0.01, 0.05; (-) analytical solution, (--) numerical prediction. Right plots: normalized density distribution ρ′ , along the line x = y, (-) analytical solution, ( ) numerical prediction
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 28 Figure 2.8 -Initial conditions for a single wall reflection of an acoustic pulse in the presence of a boundary layer flow.
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 29 Figure 2.9 -Results for a single wall reflection in a boundary layer flow. Density contours 0.01, 0.05. Left plots: green solid line: Gloerfelt boundary condition; black dashed line: ghost cells. Right plots: blue solid line: Euler analytical solution; black dashed line: Navier-Stokes numerical prediction.
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 210 Figure 2.10 -Initial density conditions for a multiple wall reflection of an acoustic pulse.
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 2 Figure 2.11(b) shows the acoustic wave at the non-dimensional time t = 120. The density pulse has already impacted against the two walls and has gone through the non-ref ecting boundaries. The impact against the walls has caused local ref ections, which are apart from one-another and behave in a way similar to the previous case §2.1.3. The agreement between the predicted results and the reference analytical solution is good. In reference to the cross-section f gure, it is important to mention that the right hand side normalized density perturbation features a maximum followed by a minimum, while in f gure 2.11(a) a density perturbation minimum is followed by a maximum. This fact conf rms that this is a ref ection from an incident wave.
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 211 Figure 2.11 -Results for multiple wall reflection. Left plots: non-dimensional density contours ρ′ , contour levels -0.02, 0.01, 0.02, 0.04; (-) analytical solution, (--) numerical prediction. Right plots: normalized density distribution ρ′ at y = 0, (-) analytical solution, ( ) numerical prediction
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 2 Figure 2.13(a) shows the velocity prof les at x/δ = 7.5 for the four different boundary conditions.These results are validated with the reference solution, and it is observed that the analytical solution is overlapped by the numerical predictions. Figure2.13(b) shows the normal velocity prof les at the same location. Normal velocity is more sensitive to pressure f uctuations and numerical errors. In this f gure, it is shown that the Gloerfelt boundary condition applied over the total f uxes presents some discrepancies with respect to the analytical solution. The other three wall boundary conditions collapse very well with the analytical solution.
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 214 Figure 2.14 -Results for a Poiseuille channel flow of length = 10h. Comparison of Gloerfelt boundary condition with ghost cells method at different distances from the inflow. Left plots: adimensional streamwise velocity profile. Right plots: adimensional temperature profile
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 215 Figure 2.15 -Results for a Poiseuille channel flow of length = 10h. Adimensional profiles. Left: Pressure along the centerline of the channel (y = 0). Right: Normal velocity at x/h = 7.5 for half of the channel (0 < y < 1).
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 216 Figure 2.16 -Results for a Poiseuille channel flow of length = 10h. Adimensional profiles. Outflow: Poinsot and Lele with σ = 0.58. Comparison of Gloerfelt boundary condition with ghost cells method and analytical solution
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 21725218 Figure 2.17 -Results for a Poiseuille channel flow of length = 10h. Gloerfelt wall bc. Comparison of Giles boundary condition with Poinsot and Lele using different values for σ. Left plots: adimensional streamwise velocity profile. Right plots: adimensional temperature profile

Figure 2 . 19 -

 219 Figure 2.19 -Backward-facing-step: computational domain and grid. For clarity, only 1 every 5 points is displayed.
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 220221 Figure 2.20 -Instantaneous adimensional vorticity contours ωD/u ∞ during one period. 21 equidistant isocontours from 0 to 25. DNS prediction
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 222 Figure 2.22 -Results for backward-facing-step. Spectrum of vorticity fluctuations at (x, y) = (3D, 0).

Flows

  past rectangular cavities have been described previously by several authors. There are critical values of Mach number M , Reynolds number based on the cavity depth Re D and length of the cavity with respect to the momentum thickness L/θ beyond which oscillations appear as shown in f gure 3.1. These parameters trigger the f ow into the supercritical region of stability where it oscillates.

Figure 3 . 1 -

 31 Figure 3.1 -Schematic of the neutral stability curve for cavity flows. 2D stable , 2D unstable , 3D stable •, 3D unstable •. Results from Brès [21].

Figure 3 . 2 -

 32 Figure 3.2 -Classification of subsonic cavity flows
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 33 Figure 3.3 -Number of waves of the shear layer related to the oscillation mode

Figure 3 . 4 -

 34 Figure 3.4 -Three-dimensional effects in the form of a hairpin (Haigermoser et al.[86])

Figure 3 . 5 -

 35 Figure 3.5 -Directivity of the pressure waves emitted by a subsonic cavity flow oscillating in shear layer mode.

7 Figure 3 . 7 -

 737 Figure 3.7 -Spectrum of pressure fluctuations for several grids. L/D = 2, M = 0.6.

Figure 3 . 8 -

 38 Figure 3.8 -Pressure time history. L/D=2, M=0.6. Black dashed line: σ = 0.25, red solid line: σ = 1.00, green dash dot: σ = 3.00.

Figure 3 .

 3 Figure 3.9 -Instantaneous vorticity isocontours ωD/u ∞ , dashed negative values. L/D = 2, M = 0.6. Blasius initial condition, dominant mode St 2 .

Figure 3 . 10 -

 310 Figure 3.10 -Directivity of the acoustic waves. (a) Instantaneous dilatation, 21 equidistant isocontours from ΘD/u ∞ = -0.1 to 0.1, dashed negative values. (b) Overall Sound Pressure Levels from 138 to 154. L/D=2, M=0.6. Blasius initial condition, dominant mode St 2

2 Figure 3 . 11 -

 2311 Figure 3.11 -Spectrum of pressure fluctuations. L/D = 2, M = 0.6. Blasius initial condition.
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 312 Figure 3.12 -Probes to record time-history. L/D = 2

Figure 3 . 13 -

 313 Figure 3.13 -Spectrum of pressure fluctuations at P1 using 3 different windows. Translation of 0.5 of the y-axis for clarity. L/D = 2, M = 0.6. Blasius initial condition.
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 3314315 Figure 3.15 shows the dilatation isocontours of the simulation ZERO while it is oscillating at the f rst Rossiter mode. It presents lower contour values than those from a cavity oscillating at the second

Figure 3 . 16 -

 316 Figure 3.16 -Overall Sound Pressure Levels from 138 to 154. L/D = 2, M = 0.6. ZERO initial condition, dominant mode St 1 .

Figure 3 . 17 -

 317 Figure 3.17 -Pressure time history at P1. L/D = 2, M = 0.6, L/θ = 33.3.

Figure 3 . 18 -

 318 Figure 3.18 -Computational domain and grid. For clarity, only 1 every 10 points is displayed. L/D = 4.
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 3319 Figure 3.20 shows the time-history of wall friction at P3 (2D, -D) for the three test cases. It is clearly displayed that the ZERO initial condition develops a f ow with a much higher wall friction and
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 2320 Figure 3.20 -Wall friction time history at P3. L/D = 4, M = 0.15. Green dash dot: ZERO, red solid line: UINF, black dashed: BLAS.
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 321 Figure 3.21 -Spectrum of vorticity fluctuations at P2. L/D = 4, M = 0.15. Initial condition ZERO, wake mode.

Figure 3 . 22 -

 322 Figure 3.22 -Instantaneous vorticity isocontours ωD/u ∞ , dashed negative values. L/D = 4, M = 0.15. Initial condition ZERO, wake mode.

2 Figure 3 . 23 -

 2323 Figure 3.23 -Spectrum of vorticity fluctuations at P2. L/D = 4, M = 0.15. Initial condition UINF, shear layer mode.

Figure 3 . 24 -

 324 Figure 3.24 -Instantaneous vorticity isocontours ωD/u ∞ , dashed negative values. L/D = 4, M = 0.15. Initial condition UINF, shear layer mode.

Figure 3 . 25 -

 325 Figure 3.25 -Time history and spectrum of vorticity fluctuations at P2. L/D = 4, M = 0.15. Initial condition BLAS, shear layer mode with a low-frequency modulation.

  Furthermore, by 3D linear simulations of a cavity L/D = 4 and Mach number 0.3, they found a value of St 3D D = 0.011 for L/θ = 30.1, and St 3D D = 0.026 for L/θ = 60.2.

Figures 3 .

 3 Figures 3.26(a), 3.26(b) and3.26(c) show the Overall Sound Pressure Levels for the initial conditions BLAS, UINF and ZERO respectively. In contrast to the deep cavity, where a directivity of 135 • respect to the stream direction was found, in this case the waves propagate in the direction of the f ow. This result is in agreement with the f ndings of Ahuja and Mendoza[START_REF] Ahuja | Effects of cavity dimensions, boundary layer and temperature on cavity noise with emphasis on benchmark data to validate computational aeroacoustic codes[END_REF], who report a f at directivity for shallow cavities.

  Initial condition BLAS, shear layer mode with a lowfrequency modulation. Initial condition UINF, shear layer mode.

  Initial condition ZERO, wake mode.
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 326 Figure 3.26 -Overall Sound Pressure Levels isocontours. L/D = 4, M = 0.15.
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 41 Figure 4.1 -Sensitivity analysis: question Q1

Figure 4 . 2 -

 42 Figure 4.2 -Sensitivity analysis: question Q2

Figure 4 . 4 -

 44 Figure 4.4 -Sensitivity analysis: question A2

Figure 5 . 1 -

 51 Figure 5.1 -Isocontours of streamwise velocity. The dash dot lines indicate the symmetry of the configuration.

Figure 5 . 2 -

 52 Figure 5.2 -Computational domain and location of the perturbation: x-momentum forcing.

  x-momentum fluctuations, t = T y x (b) Adjoint x-momentum, t = T y x (c) x-momentum fluctuations, t = 2 T y x (d) Adjoint x-momentum, t = 2 T y x (e) x-momentum fluctuations, t = 3 T y x (f) Adjoint x-momentum, t = 3 T y x (g) x-momentum fluctuations, t = 4 T y x (h) Adjoint x-momentum, t = 4 T y x (i) x-momentum fluctuations, t = 5 T y x (j) Adjoint x-momentum, t = 5 T y x (k) x-momentum fluctuations, t = 6 T y x (l) Adjoint x-momentum, t = 6 T -3.25 • 10 -10 -2.625 • 10 -10 -2.00 • 10 -10 -1.375 • 10 -10 -7.50 • 10 -11 -1.25 • 10 -11 5.00 • 10 -11 1.125 • 10 -10 1.75 • 10 -10

Figure 5 . 3 -

 53 Figure 5.3 -Instantaneous isocontours of x-momentum, dashed negative values. Equidistant grid of 101 × 101 points, CF L = 0.7, isothermal walls. M = 0.1, Re h = 14.

Figure 5 . 4 -

 54 Figure 5.4 -Temporal evolution of the spatial integration of x-momentum given by eq.(5.6). Direct: TIME = t, adjoint: TIME = t a = t ft. Comparison of different equidistant grids and time steps.

  adjoint x-momentum, t = 5T y x (c) x-momentum fluctuations, t = 5T + εT y x Reflections (d) adjoint x-momentum, t = 5T + εT -3.25 • 10 -10 -2.625 • 10 -10 -2.00 • 10 -10 -1.375 • 10 -10 -7.50 • 10 -11 -1.25 • 10 -11 5.00 • 10 -11 1.125 • 10 -10 1.75 • 10 -10
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 55 Figure 5.5 -Isocontours of x-momentum after approximately 5 periods, dashed negative values. Grid 501 × 101, CF L = 0.5.
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 556 Figure 5.6 -Temporal evolution of the spatial integration of x-momentum given by eq.(5.6). Direct: TIME = t, adjoint: TIME = t a = t ft. Comparison of different equidistant grids

101 × 81 , 7 Figure 5 . 7 -

 10181757 Figure 5.7 -Temporal evolution of the spatial integration of x-momentum given by eq.(5.6). Direct: TIME = t, adjoint: TIME = t a = t ft. Comparison of different non-equidistant grids and time steps.

  Figure 5.9 -Computational domain and location of the perturbation: x-momentum forcing.

10 Figure 5 . 10 -Figure 5 . 11 -

 10510511 Figure 5.10 -Isocontours of x-momentum after 19 periods, dashed negative values. M = 0.1.

  adjoint pressure, t = 10T -2.75 • 10 -7 -2.25 • 10 -7 -1.75 • 10 -7 -1.25 • 10 -7 -0.75 • 10 -7 -0.25 • 10 -7 0.25 • 10 -7 0.75 • 10 -7 1.25 • 10 -7
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 512 Figure 5.12 -Isocontours of pressure at different times, dashed negative values. Equidistant grid of 101 × 101 points, CF L = 0.7, adiabatic walls. M = 0.1, Re h = 14.
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 513 Figure 5.13 -Isocontours of pressure after 5T , dashed negative values. Equidistant grid of 101 × 101 points, CF L = 0.7, adiabatic walls. Re h = 58, comparison of two Mach numbers.

Figures 5 .

 5 Figures 5.13(a) and 5.13(b) display the results after 5 periods for a flow at Re h = 58 and M = 0.1, which means an increase of Reynolds number of four times respect to the base case. It has been shown in the previous figure (5.12) that at this instant in time the perturbation has already reached all the computational boundaries.

Figures 5. 13

 13 Figures 5.13(c) and 5.13(d) show the direct and adjoint pressure isocontours at a higher Mach number M = 0.4 and Reynolds number Re h = 58. These parameters represent an increase of u ∞ of four times respect to the base case displayed in figure5.12. The results show a better agreement between direct and adjoint fields, even though there are some small deviations near the walls and downstream from the perturbation source.

  Figures 5.13(c) and 5.13(d) show the direct and adjoint pressure isocontours at a higher Mach number M = 0.4 and Reynolds number Re h = 58. These parameters represent an increase of u ∞ of four times respect to the base case displayed in figure5.12. The results show a better agreement between direct and adjoint fields, even though there are some small deviations near the walls and downstream from the perturbation source.

5 Figure 5 . 14 -

 5514 Figure 5.14 -Isocontours of pressure after 5T , dashed negative values. Equidistant grid of 101 × 101 points, CF L = 0.7, adiabatic walls. Re h = 4475, comparison of two Mach numbers.
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 575155105516 Figure 5.15 displays the results obtained for a flow at M = 0.1 and Re h = 14 at different times: after the periods 1, 5 and 10. After the first period the perturbation has not yet been reflected against the walls nor it has reached the non-reflecting boundaries. At the end of the periods 5 and 10 the isocontours look very similar, where the perturbation has interacted with the computational boundaries. Very good agreement is found between direct and adjoint pressure fields.The results of the second test case, where M = 0.4 and Re h = 4475, are shown in figure5.16. As expected, in this case the same deviations near the wall observed in figure5.14 are present.
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 517 Figure 5.17 -Isocontours of pressure at different times, dashed negative values. Equidistant grid of 101 × 101 points, CF L = 0.7, isothermal walls. M = 0.1, Re h = 14.
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 518 Figure 5.18 -Buffer zone

  t = 5T + εT -3.25 • 10 -10 -2.625 • 10 -10 -2.00 • 10 -10 -1.375 • 10 -10 -7.50 • 10 -11 -1.25 • 10 -11 5.00 • 10 -11 1.125 • 10 -10 1.75 • 10 -10
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 519 Figure 5.19 -Isocontours of adjoint x-momentum after approximately 5 periods (same instants in time as in figure 5.5), dashed negative values. Grid 501 × 101, CF L = 0.5. Buffer zone with 47 points and R x = 3. No filtering.

Figure 5 . 20 -

 520 Figure5.20 -Temporal evolution of the spatial integration of x-momentum given by eq.(5.6). Direct: TIME = t, adjoint: TIME = t a = t ft. Direct field calculated with Poinsot and Lele boundary conditions. Comparison of different equidistant grids and time steps.

101 × 101 × 5 Figure 5 . 21 -

 1011015521 Figure 5.21 -Temporal evolution of the spatial integration of x-momentum given by eq.(5.6). Direct: TIME = t, adjoint: TIME = t a = t ft. M = 0.1. Wall boundary conditions with ghost cells. Comparison of different grids and time steps.

  t = 5T + εT -3.25 • 10 -10 -2.625 • 10 -10 -2.00 • 10 -10 -1.375 • 10 -10 -7.50 • 10 -11 -1.25 • 10 -11 5.00 • 10 -11 1.125 • 10 -10 1.75 • 10 -10
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 522 Figure 5.22 -Isocontours of adjoint x-momentum after approximately 5 periods (same instants in time as figure 5.5), dashed negative values. Grid 501 × 101, CF L = 0.5. Wall boundary conditions with ghost cells.
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 523 Figure 5.23 -Temporal evolution of the spatial integration of x-momentum given by eq.(5.6). Direct: TIME = t, adjoint: TIME = t a = t ft. M = 0.4. Grid 101 × 101 equidistant, CF L = 0.7. Wall boundary conditions with ghost cells.
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 524 Figure 5.24 -Validation of a multi-block configuration. (a) Domain. (b) Results after 6 periods obtained with 1 block (green solid line) and 2 blocks (black dashed line).
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 61 Figure 6.1 -Interpretation of the adjoint variables
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 62 Figure 6.2 -Computational domain and location of the perturbation: forcing of adjoint x-momentum at CENTER.
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 63 Figure 6.3 -Instantaneous isocontours of (ρu) * during 1 period. Dashed negative values. Origin of the perturbation: CENTER. M = 0.1, Re h = 14, isothermal wall.
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 64 Figure 6.4 -Instantaneous isocontours of (ρv) * during 1 period. Dashed negative values. Origin of the perturbation: CENTER. M = 0.1, Re h = 14, isothermal wall.

Figure 6 .

 6 Figure 6.4 illustrates the (ρv) * instantaneous fields. The results show that, as expected, the values of adjoint y-momentum are higher near the source and that they decrease as the perturbation is convected upstream and downstream. Nevertheless, the (ρv) * fields do not point out any specific region of the computational domain (walls, centerline, etc) where the sensitivity is more important, since high values of (ρv) * are alternated in space and time.
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 65 Figure 6.5 -Instantaneous isocontours of ρ * during 1 period. Dashed negative values. Origin of the perturbation: CENTER. M = 0.1, Re h = 14, isothermal wall.

8 Figure 6 . 6 -

 866 Figure 6.6 -Instantaneous isocontours of p * during 1 period. Dashed negative values. Origin of the perturbation: CENTER. M = 0.1, Re h = 14, isothermal wall.

  Three different positions have been compared:

Figure 6 .

 6 Figure 6.8 displays the isocontours of adjoint x-momentum obtained when forcing the adjoint equations at WALL and OUTFLOW at three different times of the period of the perturbation. The results corresponding to the case CENTER have been described in §6.1.1 and shown in figure 6.3. The results obtained for the case WALL (with the adjoint forcing near the upper wall) are shown in
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 67 Figure 6.7 -Computational domain and location of the perturbation: forcing of adjoint x-momentum at different positions.

10 Figure 6 . 8 -

 1068 Figure 6.8 -Instantaneous isocontours of (ρu) * during 1 period. Dashed negative values. M = 0.1, Re h = 14, isothermal wall. Comparison of the position of the forcing

Figure 6 . 9 -

 69 Figure 6.9 -Instantaneous isocontours of p * during 1 period. Dashed negative values. M = 0.1, Re h = 14, isothermal wall. Comparison of the position of the forcing

  CENTER, t = T y x (f) WALL, t = T -5.5 • 10 -10 -4.0 • 10 -10 -2.5 • 10 -10 -1.0 • 10 -10 0.5 • 10 -10 2.0 • 10 -10 3.5 • 10 -10 5.0 • 10 -10 6.5 • 10 -10
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 610 Figure 6.10 -Instantaneous isocontours of (ρu) * during 1 period. Dashed negative values. M = 0.1, Re h = 14, adiabatic wall.

8 Figure 6 . 11 -

 8611 Figure 6.11 -Instantaneous isocontours of p * during 1 period. Dashed negative values. M = 0.1, Re h = 14, adiabatic wall.
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 612 Figure 6.12 -Instantaneous isocontours of (ρu) * during 1 period. Dashed negative values. M = 0.4, Re h = 58, isothermal wall.

  WALL, t = T -4.1 • 10 -7 -3.1 • 10 -7 -2.1 • 10 -7 -1.1 • 10 -7 -0.1 • 10 -7 0.9 • 10 -7
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 613 Figure 6.13 -Instantaneous isocontours of p * during 1 period. Dashed negative values. M = 0.4, Re h = 58, isothermal wall.
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 76147615466164 Figure 6.14 -Instantaneous isocontours of (ρu) * during 1 period. Dashed negative values. Origin of the perturbation: CENTER. Isothermal wall, M = 0.1, Re h = 4475
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 617 Figure 6.17 -Instantaneous isocontours of p * during 1 period. Dashed negative values. Origin of the perturbation: CENTER. Isothermal wall, M = 0.1, Re h = 6040

8 Figure 6 . 18 -

 8618 Figure 6.18 -Instantaneous isocontours of (ρu) * . Origin of the perturbation: CENTER. Isothermal wall, M = 0.1, Re h = 4475. Solid colored isocontours: no forcing applied on the direct equations. Black dashed line: forcing applied to the direct equations with two different amplitudes

frequency f 2 Figure 6 . 19 -

 2619 Figure 6.19 -Cavity flow simulation: configuration.
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 621 Figure 6.21 -Instantaneous isocontours of ρ * after 10 periods. Dashed negative values. Origin of the perturbation: DOWN, forcing of (ρu) * at the frequency f 2
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 6227623 Figure 6.22 -Instantaneous isocontours of (ρu) * after 10 periods. Dashed negative values. Origin of the perturbation: DOWN, forcing of (ρu) * at the frequency f 2
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 624 Figure 6.24 -Instantaneous isocontours of p * after 10 periods. Dashed negative values. Origin of the perturbation: DOWN, forcing of (ρu) * at the frequency f 2

10 - 8 . 6 Figure 6 . 25 -

 1086625 Figure 6.25 -Instantaneous isocontours of p * after 10 periods. Dashed negative values. Origin of the perturbation: 1D, forcing of (ρu) * at the frequency f 2

10 - 4 . 5 Figure 6 . 26 - 10 - 1 .

 1045626101 Figure 6.26 -Instantaneous isocontours of p * after 10 periods. Dashed negative values. Origin of the perturbation: CENTER, forcing of (ρu) * at the frequency f 2
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 627 Figure 6.27 -Instantaneous isocontours of p * after 10 periods. Dashed negative values. Origin of the perturbation: UP, forcing of (ρu) * at the frequency f 2
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 628 Figure 6.28 -Instantaneous isocontours of ρ * after 10 periods. Dashed negative values. Origin of the perturbation: FAR, forcing of ρ * at the frequency f 2
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 629 Figure 6.29 -Instantaneous isocontours of (ρu) * after 10 periods. Dashed negative values. Origin of the perturbation: FAR, forcing of ρ * at the frequency f 2
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 87108510831081108108108108108630101 Figure 6.30 -Instantaneous isocontours of (ρv) * after 10 periods. Dashed negative values. Origin of the perturbation: FAR, forcing of ρ * at the frequency f 2
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 631 Figure 6.31 -Instantaneous isocontours of p * after 10 periods. Dashed negative values. Origin of the perturbation: FAR, forcing of ρ * at the frequency f 2

Figures 6 .

 6 Figures 6.29 and 6.30 show the instantaneous results of adjoint momentum. Both x-and y-momentum contour levels present similar patterns. There is a small sensitive region exactly where the forcing is applied, even though it is weak. The highest values are found near the leading edge. The rest of the domain does not present significant values.
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 632 Figure 6.32 -Cavity flow simulation: probes to record the time-history.

Figure 6 .

 6 Figure 6.33 shows the time history of adjoint pressure at the probes P1, P2 and P4 where the adjoint time has been adimensionalized as t adim adj = t adim adj /T , with T being the fundamental period of the direct flow. The record at P3 is not included for clarity since it is of the same order of magnitude as P2. Figure6.33(a) corresponds to the forcing of x-momentum and 6.33(b) to the forcing of density. Note that the adjoint simulations start at the end of the 40 th period of the direct flow and moves backward in time.

Figure 6 .

 6 Figure 6.33 shows the time history of adjoint pressure at the probes P1, P2 and P4 where the adjoint time has been adimensionalized as t adim adj = t adim adj /T , with T being the fundamental period of the direct flow. The record at P3 is not included for clarity since it is of the same order of magnitude as P2. Figure6.33(a) corresponds to the forcing of x-momentum and 6.33(b) to the forcing of density. Note that the adjoint simulations start at the end of the 40 th period of the direct flow and moves backward in time.
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 633 Figure 6.33 -Time-history of adjoint pressure at P1 (black solid line), P2 (red long dashed line) and P4 (green dashed dotted line)
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 634635 Figure 6.34 -Spectra of the adjoint pressure corresponding to a forcing of adjoint x-momentum at DOWN at f 2 .
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 636637 Figure 6.36 -Time-history of adjoint pressure at P1 (black solid line), P2 (red long dashed line) and P4 (green dashed dotted line). Forcing of x-momentum at DOWN at 3f 2 .

Figure 6 .

 6 Figure 6.38 -Instantaneous isocontours of p * after 10 periods. Dashed negative values. Origin of the perturbation: DOWN, forcing of (ρu) * at the frequency 3f 2
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 1 Figure A.1 -(left) Control velocity at the walls -solid lines: upper wall -dashed lines: lower wall -thin lines: adjoint-based control -thick lines: Riccati-based control; (right) Energy amplification -solid line: Riccati-based control -dashed line: adjoint-based control.
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  δρ = 0 et δp = 0 en entrée • Pour une paroi isotherme δT = 0 et donc δp p

2 + v 2 ) 2 2

 2222 [ρ * ] = 1/[ρ], [m * i ] = 1/[m i ], [E * ] = 1/[E]On a fixé le vecteur adjoint s = [ρ * , m * x , m * y , E * ] T alors que pour donner des dimensions 'normales' aux variables adjointes on aurait dû choisir :s = [E * , m *x , m * y , ρ * ] pression est donnée à partir de l'équation de l'énergie :en fonction des variables de base on a alors F et G :(m 3 x + m x m 2 y ) (m 3 y + m y m 2 x )Les matrices A et B sont les suivantes :

1 y 0

 10 dx dt = 0 L'équation adjointe est une équation linéaire. Les caractéristiques de l'équation adjointe sont fonction des matrices A et B, indépendantes de s. Les valeurs propres de A et de sa transposée sont identiques, donc les caractéristiques de l'équations portent sur le champ direct, pas sur le champ adjoint :Det (ωI + αA t + βB t ) = 0 où (α, β) sont les directions caractéristiques.DOCTORAT DE L'UNIVERSITE DE TOULOUSEDélivré par : Institut National Polytechnique de Toulouse École doctorale : Mécanique, Energétique, Génie Civil, Procédés (MEGeP) Spécialité : Dynamique des fluides Soutenance : le 26 octobre 2009 Auteur : Laia MORET GABARRO Etude aéroacoustique et analyse par l'état adjoint d'un écoulement subsonique de cavité

  

  experimental aeroacoustics in Rome, time-resolved experimentation with Particle Image Velocimetry in Turin and reduced order modelling and f ow control in Toulouse.
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  §2.1.3) puis en présence d'une couche limite (cas §2.1.4). Le cas test Enfin, aucune solution analytique étant disponible pour ce cas, nous avons comparé nos résultats au cas fluide parfait, et nous avons également comparé les résultats obtenus pour différentes conditions aux limites de parois solides. Le dernier cas test consiste en une double réflexion d'une onde acoustique. Ce problème, inspiré des cas §2.1.1 et §2.1.3, implique la présence de deux parois solides, en bas et à droite du domaine, formant ainsi un coin. Une solution analytique a été calculée afin de la comparer aux résultats obtenus. Les cas tests §2.1.1, §2.1.3 et §2.1.5 ont été réalisés en collaboration avec l'Université de Leicester sur un programme concernant l'étude de schémas d'ordre élevé pour l'aéroacoustique numérique, et les resultats ont été publiés dans Rona et al.

§2.1.3 a été validé en utilisant la solution analytique donnée par

[89]

.

Le 

cas test §2.1.4 est une extension du cas précédent §2.1.3 aux équations de Navier-Stokes. Etant donné la présence d'une couche limite à la paroi solide, le maillage a été raffiné au voisinage de la paroi.

  , grace aux tests §2.1.1, §2.1.2, §2.1.3 et §2.1.5. Dans tous ces cas tests, les résultats obtenus coïncident parfaitement avec les solutions analytiques à l'intérieur du domaine de calcul, même dans le cas d'ondes qui se propagent dans une direction faisant un certain angle avec la grille cartésienne du maillage. Aucun filtrage supplémentaire n'a été nécessaire. Les conditions aux limites non réfléchissantes ont été également testées au travers des problèmes §2.1.1, §2.1.2 et §2.2.2. La condition aux limites caractéristique de Giles

  donne les mêmes résultats que la formulationde Giles pour les cas tests aéroacoustiques §2.1.1 et §2.1.2. L'écoulement de canal plan du cas test §2.2.2 a été utilisé pour étudier l'influence du coefficient de relaxation σ, et nous avons trouvé que σ = 0.58 est le coefficient qui donne les profils de vitesse les plus proches des profils de Poiseuille avec un gradient de pression correct. L'efficacité de la condition aux limites est ainsi validée, mais la valeur du coefficient σ optimum nécessite une nouvelle étude à chaque nouveau cas étudié. Les conditions aux limites aux parois solides ont été testées pour des applications aéroacoustiques dans les cas tests §2.1.3, §2.1.4 et §2.1.5. Deux formulations, celle de Gloerfelt [75] et celle des points de maillage 'fantômes' ('ghost cells' de 2 nd et 4 ème ordre), ont été validées, les résultats obtenus étant quasi identiques aux solutions analytiques. Pour le cas §2.1.4, nous avons pu expliquer physiquement les différences avec la solution analytique du cas Euler par les effets visqueux. Enfin, la double réflexion de paroi testée au paragraphe §2.1.5 montre la bonne performance du code de calcul dans le traitement des coins. Les problèmes §2.2.1 et §2.2.2 ont été utilisés pour tester l'efficacité de la condition aux parois solides pour des écoulements à très faible nombre de Reynolds. La condition aux limites de Gloerfelt doit être appliquée sur les flux convectifs uniquement, plutôt que sur la totalité des flux, et il a été en effet prouvé dans §2.2.1 qu'elle donne ainsi des résultats plus précis. Les deux types de conditions aux limites, Gloerfelt et 'ghost cells', donnent de bons résultats. Cependant, dans le cas d'un écoulement de canal plan, il est à noter que le schéma décentré du 4 ème ordre utilisé dans la méthode des 'ghost cells' crée des oscillations de très petites amplitudes de la composante normale de vitesse.

	Pour la simulation d'un écoulement au-dessus d'une cavité rectangulaire, nous avons donc choisi la
	formulation de Giles pour les limites d'entrée d'écoulement et de radiation, et la formulation de Poinsot
	et Lele pour la limite de sortie d'écoulement. Des conditions aux limites de type 'ghost cells' avec un schéma du 4 ème ordre seront utilisées pour les parois solides. Toutes ces conditions aux limites ont
	été testées dans la configuration multi-blocs du paragraphe §2.3.2, qui consiste en un écoulement au-dessus d'une marche descendante, où nous avons obtenu une bonne prédiction des champs instantannés
	d'écoulement ainsi que de la fréquence d'oscillation. La méthode numérique semble donc appropriée	à
	la simulation d'écoulements instationnaires au-dessus de surfaces solides discontinues, de type cavité.	
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 21 Overview of the validation test cases.

  Blasius similarity equation) given for the velocity prof les. Streamwise velocity has been normalized by the mean freestream velocity u ∞ , normal velocity has been adimensionalized with u ∞ Re 1/2 , and η represents the adimensional normal coordinate:

		8						
					x/δ = 2.5 Gloerfelt (total f uxes)	
				X	x/δ = 5.0 Gloerfelt (convective f uxes)	
		6		X	x/δ = 7.5 analytical solution ghost cells 2 nd order ghost cells 4 th order	
					analytical solution		
	η η	4						
		2						
		0	0 0	0.2 0.2	0.4 0.4	0.6 0.6	0.8 0.8	1 1
					u/u ∞ u/u ∞	
					(a) Streamwise velocity (a) Streamwise velocity	
		8						
					x/δ = 2.5 Gloerfelt (total f uxes)	
				X	x/δ = 5.0 Gloerfelt (convective f uxes)	
		6		X	x/δ = 7.5 analytical solution ghost cells 2 nd order ghost cells 4 th order	
					analytical solution		
	η η	4						
		2						
		0	0 0	0.2 0.2	0.4 v/(u ∞ 0.4 v/(u ∞	√ √	0.6 Re δ ) 0.6 Re δ )	0.8 0.8	1 1
					(b) Normal velocity (b) Normal velocity	
	Figure 2.12 -Results for a Blasius boundary layer. Adimensional velocity profiles with 2 nd order ghost cells at Figure 2.13 -Results for a Blasius boundary layer. Adimensional velocity profiles at x/δ = 7.5 from the inflow
				different x/δ from the inflow for different wall boundary conditions
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		8								
		6								buffer
										zone
	y	4								
		2								
		0								
		-4	-2	0	2	4	6	8	10	12	14
						x				

1 -Flow parameters for the validation test case.

Figure 3.6 -Computational domain and grid. For clarity, only 1 every 10 points is displayed. L/D = 2.
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 32 Oscillation modes obtained for different initial conditions compared to the Rossiter predictions.

	Rossiter

Table 3 . 3

 33 .3, have been computed to observe the oscillation response.

	Mach δ/D L/θ Re D Re θ dominant mode
	0.6	0.28 52.8 1491 56.4	St 2
	0.4	0.28 52.8 1489 56.4	St 2
	0.6	0.45 33.3 941 56.4	St 1
	0.6	0.37 41.0 1155 56.4	St 1

-Flow parameters and results of the different test cases of cavity L/D=2.
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 34 et al. initialized the velocity f eld as a laminar Blasius boundary layer over the cavity, and zero inside [151], while Larsson et al. initialized the whole f eld as zero (private communication with the author). Flow parameters of the shallow cavity test case.

	L/D Mach δ/D L/θ Re D Re θ	D[m]	U ∞ [m/s]
	4	0.15 0.31 96.8 1511 62.5 0.00045	51.9
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 35 Flow parameters and results of the different test cases of cavity L/D = 4. W = Wake mode; SL = Shear Layer mode; NO = No Oscillations.

	Mach δ/D L/θ Re D Re θ mode regime
	0.15 0.31 96.8 1511 62.5	SL/W
	0.15 0.50 60.1 940 62.6	NO
	0.15 1.00 30.0 470 62.6	NO
	0.4	0.31 96.9 1522 62.9	W
	0.4	0.52 57.8 895 62.0	SL
	0.4	1.04 28.8 448 62.2	NO
	0.6	0.31 96.2 1504 62.6	W
	0.6	0.50 60.1 940 62.6	SL
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 36 St 2 , St 3 , St 4 St 1 , St 2 *, St 3 3D kω St 1 , St 2 *, St 3

	Study	Method	L/D	Mach	Flow	Results
					regime	
	Brès and Colonius (2007,2008) [21, 23]	2D DNS	2	0.3	laminar St 2 *
		2D DNS		0.35 -0.6		St 1 *
	Gloerfelt (2001) [75]	2D DNS	2	0.7	laminar St 2 *
	Gloerfelt (2006) [76]	2D DNS	2	0.6	laminar St 1 , St 2 *
	Hamed et al. (2001) [87]	2D DNS	2	0.6	laminar St 1 *, St 2
				0.9, 1.1		St 1 , St 2 *
	Rona and Brooksbank (2003) [148] Rowley et al. (2002) [151]	2D k -ω, POD 2D DNS	3 2	1.5 0.2-0.6	turbulent St 2 * laminar St 1 *, St 2
				0.7-0.8		St 1 , St 2 *

-Review of deep cavity studies: 2D numerical simulations. St i represents the i th Rossiter mode, where St * indicates the dominant mode.
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 37 Review of deep cavity studies: experimental and 3D numerical simulations. St i represents the i th Rossiter mode, where St * indicates the dominant mode.

	Shallow cavities						
	Study	Method	L/D	Mach	Flow	Mode Results
					regime		
	Brès (2007) [21]	2D DNS	4	0.6	laminar	W	St D = 0.063
		3D DNS	4		L, no dis (1)	W	St D = 0.063
		3D DNS	4		L + dis (2)	SL	St 2 *
	Cattafesta et al. (1998) [26] experimental	4	0.6	turbulent	SL	mode switch
	Crook et al. (2007) [53]	experimental	6	<< 0.1	turbulent	SL	
	De and Henshaw	experimental	5	0.85	turbulent	SL	St 1 , St 2 *, St
	(2000) [55]						
	Debiasi and Samimy	experimental	4	M < 0.3	turbulent	SL	St 3 *
	(2004) [56]			0.32 -0.38 0.38 < M			St 2 , St 3 St 2 *
	Ethembabaoglu (1973) [59] experimental 4 -6 Geveci et al. (2004) [70] experimental 5 Gharib and Roshko experimental	<< 0.1 ≈ 0.1 low	turbulent turbulent laminar	SL SL SL	St 2 *, St 3 St 2 * L/θ < 127,St *
	(1987) [71]					SL	L/θ > 127,St *
						W	L/θ > 155
	Gloerfelt (2001) [75]	2D DNS	4	0.5	laminar	SL	L/θ = 63,St 2 *
						W	L/θ = 280
	Haigermoser (2009) [84]	experimental	4	<< 0.1	laminar	SL	St 2 *
	Kegerise et al. (2004) [104] experimental	4	0.2-0.6	turbulent	SL	mode switch
	Lai and Luo (2007) [112]	3D LES	5	0.85	turbulent	SL	St 1 , St 2 , St 3 *
	Larchevêque et al.	3D LES	5	0.85	turbulent	SL	mode switch
	(2004) [114]						
	Larsson et al. (2003) [116]	2D DNS	4	0.15	laminar	W	St D = 0.061
	Murray (2006) [136]	experimental	6	0.2 -0.8	turbulent	SL	mode switch
	Rossiter (1966) [150]	experimental	4	0.4	turbulent	SL	St 2 *, St 3
				0.9			St 1 , St 2 *, St
	Rowley et al. (2002) [151]	2D DNS	4	0.2,0.3	laminar	SL	St 2 *
				0.4-0.6		W	St D = 0.064
				0.7,0.8		W	St D = 0.061
	Shieh and Morris	2D DES	4.4	0.6	turbulent	W	St D = 0.05
	(2000) [158]						
	Shieh and Morris	2D DES	4.4	0.6	turbulent	W	St D = 0.05
	(2001) [159]	3D DES	4.4			SL	St 1 , St 2
	Suponitsky et al.	3D LES	4	<< 0.1	T, no dis (1)	W	St D = 0.067
	(2005) [164]				T + dis (2)	SL	St 2 *
	Ukeiley and Murray	experimental 5.16	0.17	turbulent	NO	
	(2005) [174]						
	Yao et al. (2004) [182]	3D DNS	4	<< 0.1	laminar	SL	
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 38 Review of shallow cavity studies. SL = shear layer mode, W = wake mode, NO = non-resonant. St D is the Strouhal number based on the cavity depth, St L is the Strouhal number based on cavity length, St i represents the i th Rossiter mode, where St * indicates the dominant mode. (1) no disturbances were imposed at the inflow.(2) disturbances were imposed at the inflow.

	Part II
	ADJOINT SIMULATIONS

  Pour des parois adiabatiques, les meilleurs résultats obtenus sont pour des faibles nombres de Mach et de Reynolds, que les forc ¸ages soient au même emplacement ou pas. Lorsque le nombre de Mach ou de Reynolds augmente, l'accord reste bon au centre du canal, mais nous notons des déviations entre direct et adjoint au voisinage des parois.

	Les résultats obtenus avec des maillages non uniformes sont plus sensibles à la qualité du maillage,
	et suggèrent l'importance du rapport d'aspect ∆x/∆y, en particulier au voisinage des parois
	solides, ainsi que du nombre de points de maillage à l'intérieur de la pertubation initiale.
	Forc ¸age de la quantité de mouvement suivant x En forc ¸ant identiquement les systèmes direct et adjoint
	(f ′ = g

1 et aux parois isothermes. Le tableau 5.1 résume les différents maillages (nombre de points, maillage uniforme ou non uniforme) et pas de temps considérés. La figure 5.3 illustre la symétrie de l'écoulement.

Les résultats obtenus en utilisant des maillages uniformes montrent que le maillage 101 × 101 donne de bons résultats pour tous les pas de temps considérés. Ce maillage sera celui utilisé pour la suite de la validation du code adjoint. Lorsque ∆x diminue, nous avons constaté que des réflexions apparaissent aux coins du domaine formés entre les parois solides et les limites non réfléchissantes, réflexions qui peuvent être supprimées en ajoutant des zones tampons après ces limites non réfléchissantes. * ), l'évolution temporelle des intégrations spatiales de g * (ρu) ′ et de (ρu) * f ′ s'accordent parfaitement, et ce quelque soit le nombre de Mach et la condition aux parois. Par contre, en plac ¸ant l'origine des forc ¸ages à des emplacements différents dans le système direct et le système adjoint, on note que les intégrations spatiales devient l'une de l'autre après plusieurs périodes de pulsation du forc ¸age dans le cas parois isothermes. L'accord reste très bon dans le cas de parois adiabatiques.

Forc ¸age de la masse volumique

Table 5 .

 5 

1 -Test cases to study the spatial and temporal discretization.

Table 5 .

 5 Core(TM)2 CPU at 2.40GHz and 4Gb of RAM.

	Grid	Direct Direct + forcing Adjoint
	0.7 101 × 101 0' 26" 0.7 501 × 101 2' 29" 0.7 201 × 201 3' 49"	0' 30" 2' 46" 4' 24"	1' 20" 6' 29" 10' 18"
	0.5 101 × 101 0' 39" 0.5 501 × 101 3' 30" 0.5 201 × 201 5' 46"	0' 42" 3' 56" 5' 54"	1' 52" 12' 7" 17' 42"
	0.3 501 × 101 6' 27"	7' 12"	18' 32"

2 -Computational time of the different test cases in a 64bit computer, Intel(R) Core(TM)2 CPU at 2.40GHz and 4Gb of RAM.. Format: minutes' seconds"

Table 5 . 4
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		Wall	Mach Reynolds	(x 0 , y 0 )
					direct adjoint
	Identical forcing	adiabatic	0.1	14	(5h,0) (5h,0)
		adiabatic	0.1	58	
		adiabatic	0.1	4475	
		adiabatic	0.4	58	
		adiabatic	0.4	4475	
		isothermal	0.1	14	
		isothermal	0.4	58	
	Different position adiabatic	0.1	14	(2h,0) (8h,0)
		adiabatic	0.4	4475	

-Test cases to study density forcing.
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 55 Test cases to study the buffer zone. () the buffer zone has solved the problem of reflections. (#) there are still reflections.

			Number of Geometric ratio Filter
		∆x buf f er /∆x	points	increment	
	#	1.8	25	1.025	no
	#	1.8	25	1.025	yes
		3	47	1.025	no
		3	47	1.025	yes
		5	67	1.025	no
		5	56	1.03	no

Table 5 . 6 -

 56 Test cases to study the solid boundary conditions with ghost cells.

		Reynolds	Grid	equidistant CFL
	0.1 0.1 0.1 0.1 0.4	14 14 14 14 58	101 × 101 101 × 101 101 × 101 501 × 101 101 × 101	YES NO NO YES YES	0.7 0.7 0.5 0.5 0.7

  h et de longueur 10h. Le maillage est uniforme avec 101 × 101 points, et identique pour les calculs direct et adjoint. Pour le calcul direct, la condition initiale est la solution analytique de Poiseuille d'un écoulement incompressible de canal plan, l'inflow et l'outflow ont des conditions aux limites caractéristiques non réfléchissantes de Giles, et les parois solides sont implémentées avec les conditions aux limites de Gloerfelt. La simulation adjointe est initialisée avec toutes ses variables à zéro, ses conditions aux limites sont celles décrites aux chapître §4, et le forc ¸age est appliqué à l'équation adjointe de quantité de mouvement suivant x (equation 6.1). Nous n'avons utilisé ni zone tampon, ni cellules fantômes. Le tableau 6.3 résume les différents cas test réalisés.

Direct sensitivity Adjoint equation of

  

	(ρu) *	(ρu) ′	x-momentum
	(ρv) *	(ρv) ′	y-momentum
	ρ *	p ′	energy
	p *	ρ ′	mass

Table 6 . 1 -

 61 Interpretation of the adjoint forcing.

Direct forcing

  

	(ρu) *	acceleration in x-direction
	(ρv) *	acceleration in y-direction
	ρ *	energy perturbations
	p *	mass injection

Table 6 . 2 -

 62 Interpretation of the adjoint variables.

Table 6 .

 6 2 and figure 6.1 show the interpretation of each adjoint field.

Position label Reynolds Section

  

	Isothermal Isothermal	0.1 0.4	CENTER CENTER CENTER WALL OUTFLOW CENTER WALL OUTFLOW	14 4475 6040 14 14 58 58 58	§6.1.1, §6.1.2, §6.1.3, §6.1.4, §6.1.5 §6.1.5 §6.1.5 §6.1.2, §6.1.3, §6.1.4 §6.1.2 §6.1.4 §6.1.4
	Adiabatic	0.1	CENTER WALL OUTFLOW	14 14 14	§6.1.3 §6.1.3
	Adiabatic	0.4	CENTER	58	
			WALL	58	
			OUTFLOW	58	

Table 6 . 3 -

 63 Sensitivity test cases for a channel flow. The positions are described in §6.1.2.

Wall condition Mach Position adjoint Position direct Amplitude Reynolds

  

	Isothermal	0.1	CENTER	CENTER	0.01u ∞	14
			CENTER	CENTER	0.01u ∞	4475
			CENTER	CENTER	0.1u ∞	4475
			CENTER	CENTER	0.01u ∞	6040
			CENTER	CENTER	0.1u ∞	6040
			CENTER	WALL	0.1u ∞	6040
			WALL	WALL	0.01u ∞	14
			OUTFLOW	OUTFLOW	0.01u ∞	14
	Isothermal	0.4	CENTER	CENTER	0.01u ∞	58
			WALL	WALL	0.01u ∞	58
	Adiabatic	0.1	CENTER	CENTER	0.01u ∞	14
	Adiabatic	0.4	CENTER	CENTER	0.01u ∞	58

Table 6 . 4 -

 64 Sensitivity test cases for a channel flow with forcing at the direct equations.

Forcing adjoint Frequency Position label Periods Section

  

	(ρu) * (ρu) * (ρu) * (ρu) * (ρu) * ρ *	f 2 f 2 f 2 f 2 3 f 2 f 2	DOWN 1D UP CENTER DOWN FAR	40 10 10 10 40 40	§6.2.2, §6.2.3, §6.2.5 §6.2.3 §6.2.3 §6.2.3 §6.2.5 §6.2.4, §6.2.5
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 65 Sensitivity test cases for a cavity flow. The positions are illustrated in figure6.[START_REF] Bottaro | The effect of base flow variation on flow stability[END_REF] 

  6, et une cavité peu profonde de rapport d'aspect L/D = 4 et à faible nombre de Mach M = 0.15. La cavité profonde oscille en mode de couche de cisaillement, même si le mode dominant est diffi-cile à prédire. Cinq conditions initiales ont été utilisées, et toutes convergent vers la même fréquence dominante, qui correspond au second mode de Rossiter. Cependant, pour une des condition initiale, l'écoulement commence à osciller selon le premier mode de Rossiter avant de passer au second mode de Rossiter d'oscillation. Si l'on veut contrôler ce type d'écoulement, nous devrons donc a priori cibler ces deux modes de Rossiter, étant donné que la suppression de l'un d'eux pourrait conduire à l'augmentation de l'autre. Enfin, nous avons modifié l'épaisseur de couche limite et le nombre de Mach afin d'observer leur influence sur le mode dominant d'oscillation. Les résultats ont montré que pour des couches limites plus épaisses, ce qui correspond à des écoulements plus stables, la fréquence principale d'oscillation correspond au premier mode de Rossiter. Quant à la modification du nombre de Mach, de 0.6 à 0.4, il n'a eu aucune influence sur le mode d'oscillation.

•

  Terme T 1 = p * δc T 1 = (p * δρ) ,t + (p * δm i ) ,ip * ,t δρp * ,i δm i (B.17) • Terme T 2 = m * i δ mi T 2 = (m * i δm i ) ,t + m * j m j δm i + m i δm j BT = (BT t ) ,t + (BT i ) ,i (B.25)On a :BT t = p * δρ + m * i δm i + ρ * δp et BT i = p * δm i [u i δp + γpδu i -(γ -1)(δu j τ ijContribution des différentes variationsδL = L p δp + L ρ δρ + L m i δm i + L u i δu i + L τ ij δτ ij + L q i δq i + L T δT + BT (B.27) 1. Contribution en δτ ij L τ ij = τ * ij -(γ -1)ρ * u i,j ,i p -(γ -1)(ρ * p) ,i + (γ -1)(τ ij ρ * ) ,j,i p -(γ -1)(ρ * p) ,i + (γ -1)(τ ij ρ * ) ,j

	Termes de bords Termes de bords temporels et spatiaux : • quantité de mouvement adjointe (δm i ) -m * i,t -p * ,i -(m * i,j + m * j,i ) 	m j ρ	
	+	1 ρ	 -ρ *			+(µ[τ * ij + τ * ji ]) ,j -	2 3	(µτ * jj ) ,i	 = 0 	(B.42)
						δφ D		
	+ • pression adjointe (δρ) -p * m i m j ,t + m * i,j ρ 2  -µ[τ * m * i + m * j ρ ji + τ * m j δm i -m * j ij ]δu j + µτ * jj + q * i kδT 3 m i m j δρ ρ 2 δu i 2 δφ D δφ D -m i ρ 2  -ρ * +(µ[τ * + m * i δp -δτ ij m * -δq i )] ij + τ * ji ]) ,j -2 3	(µτ * jj ) ,i	(B.26)
								+m * i,j	(B.28)
						δφ D		
	2. Contribution en δq i					
						L q i = q * i -(γ -1)ρ * ,i	(B.29)
	3. Contribution en δu i					
							+(µ[τ * ij + τ * ji ]) ,j -	2 3	(µτ * jj ) ,i	(B.30)
						δφ D		
	ρ m j δm i + m i δm j ρ L m i = -m * i,t -p * ,i --L p = -m * i,j i,t δm i -m * -m * 4. Contribution en δm i 5. Contribution en δp i,i -ρ * ,t -ρ * ,i u i + (γ -1)ρ * u i,i -m * j m i m j δρ ρ 2 + m * i δp -m * j δτ ij (m * i δτ ij ) ,j m i m j δρ ρ 2 -m * i,i δp + m * m * i,j + m * j,i m j ρ i,j δτ ij	,i (B.31) (B.18) (B.32)
	T 2 = (m * i δm i ) ,t + 6. Contribution en δρ	m * i + m * j ρ L ρ = -p * m j δm i -m * i ,t + m * i,j	m i m j δρ ρ 2 m i m j ρ 2	+ m * i δp -m * j δτ ij	,i	(B.33)
	-m * 7. Contribution en δk i,t δm i -	m * i,j + m * j,i	L k = q * i T ,i			(B.34)

ρ m j δm i + m * i,j m i m j δρ ρ 2 m * i,i δp + m * i,j δτ ij (B.19) j + ρ * L u i = -ρ * ,i p -(γ -1)(ρ * p) ,i + (γ -1)(τ ij ρ * ) ,j

  1)ρ * ∂u i En l'absence d'un contrôle avec une fonctionnelle contenant explicitement un terme intégral à l'instant terminal T , les conditions terminales du problème adjoint sont : Si l'objectif est d'annuler tous les termes de bords (éq. B.49), et bien il faut :

	On a :											k(γ -1) r	=	γµ P r
		-	m i ρ 2 -p	∂ρ * ∂x i	-(γ -1)	∂pρ * ∂x i	=	γp ρ	u i	∂ρ * ∂x i	+ (γ -1)	ρ * ρ	u i	∂p ∂x i
	B.4 Les conditions sur les bords			
	B.4.1 Les conditions terminales					
				m * i (x i , T ) = 0,		p * i (x i , T ) = 0,	ρ * i (x i , T ) = 0
																	∂x j	-	∂m * i ∂x j	(B.44)
														δφ D	
	• masse volumique adjointe : -∂ρ * ∂t -∂m * i ∂x i	-u i	∂ρ * ∂x i	+ (γ -1)ρ * ∂u i ∂x i	-	k(γ -1) r ρ	∂ 2 ρ * i ∂x 2	= 0	(B.45)
	• quantité de mouvement adjointe -∂m * i ∂t + 1 ρ -p ∂ρ * ∂x i -(γ -1) ∂pρ * ∂x i -µ[τ * ji + τ * -+ (γ -1) ∂p * ∂x i -δφ D m j ρ ∂τ ij ρ * ( ∂m * i ∂x j ∂x j +µ( + ∂τ * ∂m * j ∂x i ij ∂x j + ) ij ]δu j + µτ * jj + q * i kδT 3 δu i 2	∂τ * ji ∂x j	-	2 3	∂τ * jj ∂x i	) = 0	(B.46) (B.49)
	• pression adjointe (δρ) -∂p * ∂t m i m j + ρ 2	∂m * i ∂x j							
	-	m i ρ 2 -p	∂ρ * ∂x i	-(γ -1)	∂pρ * ∂x i	+ (γ -1)	∂τ ij ρ * ∂x j	+µ(	∂τ * ij ∂x j	+	∂τ * ji ∂x j	-	2 3	∂τ * jj ∂x i	)	(B.47)
	+	k(γ -1)p r ρ 2	∂ 2 ρ * i ∂x 2	= 0					δφ D

B.4.2 Les conditions sur les bords

Rappels des termes de bords : Termes de bords temporel et spatial :

BT = (BT t ) ,t + (BT i ) ,i (B.48)

On a :

BT t = p * δρ + m * i δm i + ρ * δp et BT i = p * δm i + m * i + m * j ρ m j δm im * j m i m j δρ ρ 2 + m * i δpδτ ij m * j + ρ * [u i δp + γpδu i -(γ -1)(δu j τ ij δφ D -δq i )]

2 Les équations adjointes C.2.1 La fonctionnelle à différentier

  Dans le cadre d'une minimisation d'une fonctionnelle on écrit :

					0								0	
		µ α Re	∂T ∂x	+	τ xx Re τ xy Re 1 Re (uτ xx + vτ xy )	         		G v =	         	µ α Re	∂T ∂y	+	τ yx Re τ yy Re Re (uτ yx + vτ yy ) 1	         
				L = J + s t ,	∂q ∂t	+		∂F ∂x	+	∂G ∂y	+	∂F v ∂x	+	∂G v ∂y
	C.2.2 Adjoint des équations d'Euler							
	Le calcul adjoint se fait en calculant :								
					δL = s t δ(	∂q ∂t	+	∂F ∂x	+		∂G ∂y	)

avec α = (γ -1) M 2 P r.

Le tenseur des contraintes visqueuses (τ ij ) est défini par :

τ ij = µ[(u i,j + u j,i) -2 3 u l,l δ ij ]

C.

3 Adjoint des termes visqueux

  Dans la suite nous ne calculerons que l'adjoint des termes visqueux. Il doit être mené en utilisant le calcul indiciel.Si on souhaite prendre en compte l'évolution de µ(T ) il faut alors écrire dans les variations :* i δτ ij )m * i,j δτ ij A ij = m * i,j δτ ij = m * i,j µ(δu i,j + δu j,iδu j ) -(µm * i,j ) ,j δu i -(µm * i,j ) ,i δu jEn permuttant parfois les indices i et j on obtient+ µ T m * i,j T ,j δu i + m * j,i T ,j δu i -Re (δu j τ ij + u j δτ ij ) -Re [τ ij δu j + u j δτ ij ]Regardons le détail de E * ,i u j δτ ij :E * ,i u j δτ ij = E * ,i u j τ ij µ δµ + µE * ,i u j (δu i,j + δu j,i -On permutte parfois les indices i et j et on a µ ,i = µ T T ,i :E * ,i u j δτ ij = E * ,i u j Finalement le terme B i2 est : δu j τ ij + u j δτ ij ] -E * ,j τ ij δu i -E * ,i u j T δT + j u i δu i + BT ]BT les termes de bords seront vus plus loin.+ µ T T ,j E * ,i u j + E * ,j u i -La variation peut aussi avoir la forme : δJ = J ρ δρ + J mx δm x + J my δm y + J E δE Considérons les dimensions dans le calcul de l'adjoint. Ainsi fait on a :

	En notation indicielle on trouve : • le terme de viscosité La variation de J s'écrit sous la forme : C.2.8 Les termes de bords
	1) γv ∂(s t Bδq) 2 = 0 + -B * ∂s ∂y ∂(s t Aδq) -A * ∂s γ -1 ∂s ∂t ∂x ∂(s t δq) -∂t + ∂x ∂y -[ δL = ∂s t ∂t δq + ∂s t ∂x Aδq + ∂s t ∂x Bδq] C.2.On pose pour le vecteur adjoint : 0 0 et les termes de bords : s = (s i ) = [ρ * , m * x , m * y , E * ] Le calcul adjoint se fait en calculant : J = s t δ( ∂F v ∂x + ∂G v ∂y ) J = 1 Re m * i (δτ ij ) ,j + E * δ µT ,i α ,i + δ(u j τ ij ) ,i (u 2 + 3v 2 ) C.2.4 Variation δT De l'expression de l'énergie totale on tire : δT = γ -1 r δE ρ -m x δm x + m y δm y ρ 2 + -E + m 2 x + m 2 y ρ δρ ρ 2 δµ = dµ dT δT = µ T δT et δ( µ α ) = δµ α m * i ∂ ∂x j δτ ij = ∂ ∂x j (m 2 3 δ ij δu l,l ) + δµ τ ij µ = m * i,j δµ τ ij µ + ∂ ∂x j (µm * i,j δu i ) + ∂ ∂x i (µm * i,j -2δ ij 3 ∂ ∂x l (µm * i,j δu l ) -(µm * i,j ) ,l δu l donc m * i ∂ ∂x j δτ ij = -m * i,j δµ τ ij µ + ∂ ∂x j (m * i δτ ij ) -∂ ∂x j (µm * i,j δu i ) + ∂ ∂x i (µm * i,j δu j )             + 2 3 ∂ ∂x j (µm * i,i δu j ) + µ m * i,jj δu i + m * i,ji δu j -2 3 m * i ∂ ∂x j δτ ij = -m * i,j δµ τ ij µ + ∂ ∂x j (m * i δτ ij ) -∂ ∂x j (µm * i,j δu i ) + ∂ ∂x j (µm * j,i δu i ) + 2 3 ∂ ∂x i (µm * j,j δu i ) + µ m * i,jj δu i + m * j,ij δu i -2 3 m * j,ji δu i 2 3 m * j,j T ,i δu i soit : On peut écrire (m * i,j + m * j,i ) ,j -2 3 m * j,ji = (m * i,j + 1 3 m * j,i ) ,j C.2.6 Terme de l'équation de l'énergie B i = E * ∂ ∂x i δ( µ α ∂T ∂x i ) + δu j τ ij + u j δτ ij Re On décompose en 2 termes : • le terme de flux de chaleur B i1 = E * α ∂ ∂x i [µδT ,i + δµT ,i ] = ∂ ∂x i E * α (µδT ,i + δµT ,i ) -E * ,i α [µδT ,i + δµT ,i ] = ∂ ∂x i E * α (µδT ,i + δµT ,i ) -µ α E * ,i δT + ∂ ∂x i µ α E * ,i -µ T E * ,i α T ,i δT = ∂ ∂x i E * α (µδT ,i + δµT ,i ) -µ α E * ,i δT + 1 α µ T T ,i E * ,i + µE * ,ii -µ T E * ,i α T ,i δT (C.2) = ∂ ∂x i E * α (µδT ,i + δµT ,i ) -µ α E * ,i δT + µ α E * Pour les termes visqueux δJ = 1 Re γ -1 r j T δE ρ + j u i -γ -1 r u i j T δm i ρ -γ -1 r [u 2 i -E ρ ρ ]j T -j u i u i δρ ,ii δT B i2 = E * Re ∂ ∂x i [δu j τ ij + u j δτ ij ] = ∂ ∂x i E E * ,i 2 3 δ ij δu l,l ) = E * ,i u j τ ij µ δµ + ∂ ∂x j µE * ,i u j δu i -∂ ∂x j µE * ,i u j δu i + ∂ ∂x i µE * ,i u j δu j -∂ ∂x i µE * ,i u j δu j -2 3 ∂ ∂x j µE * ,i u i δu j + 2 3 ∂ ∂x j µE * ,i u i δu j E * ,i u j δτ ij = E * ,i u j τ ij µ µ T δT + ∂ ∂x j µ(E * ,i u j + E * ,j u i )δu i -2µ 3 E * ,i u i δu j -µ ∂ ∂x j E * ,i u j + E * ,j u i -2 3 ∂ ∂x i E * ,j u j δu i -µ T T ,j E * ,i u j + E * ,j u i -2 3 T ,i E * ,j u j δu i Re × B i2 = ∂ ∂x i [E τ ij µ µ T δT -∂ ∂x j µ(E * ,i u j + E * ,j u i )δu i -2µ 3 E * ,i u i δu j + µ ∂ ∂x j E * ,i u j + E * ,j u i -2 3 ∂ ∂x i E * ,j u j δu i + µ T T ,j E * ,i u j + E * ,j u i -2 3 T ,i E * ,j u j δu i C.2.7 Les équations adjointes δJ = 1 Re [j On trouve j T = µ α E * ,ii -(m * i,j + E * ,i u j ) τ ij µ µ T j u i = µ (m * i,j + m * j,i ) ,j -2 3 m * j,ji -E * ,j τ ij compte tenu que : δT = γ -1 r δE ρ -m x δm x + m y δm y ρ 2 + -E + m 2 x + m 2 y ρ δρ ρ 2 δT = γ -1 r δE ρ -u i δm i ρ + ρu 2 i -E δρ ρ 2 et δu i = δm i ρ -m i δρ ρ 2 = δm i -u i δρ ρ finalement on a : BT = ∂ ∂x j m * i δτ ij -µ(m * i,j + m * j,i )δu i + 2 µm * i,i δu j 3 + ∂ ∂x i E * α (µδT ,i + δµT ,i ) -µ α E * ,i δT -∂ ∂x j µ(E * ,i u j + E * ,j u i )δu i -2µ 3 E * ,i u i δu j C.3 Dimensions i,ij δu m * m * i ∂ ∂x j δτ ij = -m * i,j τ ij µ µ T δT + ∂ ∂x j m * i δτ ij -µ(m * i,j + m * j,i )δu i + 2 3 µm * + µ T (m * i,j + m * j,i )T ,j -2 m * j,j T ,i 3 i,i δu j + µ (m * i,j + m * j,i ) ,j -2 3 m * j,ji + µ T (m * i,j + m * j,i )T ,j -2 3 m * -∂ ∂x j µ(E 2 3 ∂x i µE * ,j u j δu i 3 T ,i E * ,j u j 2 ∂ j,j T ,i δu i τ ij µ µ T δT + ∂ ∂x j µ(E * ,i u j + E * ,j u i )δu i -2µ 3 E * ,i u i δu j + µ E * ,i u j + E * ,j u i ,j -2 3 E * ,j u j ,i ρ * ( ∂ρ ∂t + ...) + m * i ( ∂m i ∂t + ...) + E * ( ∂E ∂t + ...)

C.2.5 Terme du à l'équation de la quantité de mouvement

j + µ T m * i,j T ,j δu i + m * i,j T ,i δu j -2 3 m * i,i T ,j δu j * * ,i u j + E * ,j u i ) -*

  L'équation adjointe, sans les conditions aux limites et les conditions initiales est alors :

	En posant que										
							δF = Aδq,	δG = Bδq
	il vient :										
				δL =		∂(s t δq) ∂t	+	∂(s t Aδq) ∂x	+	∂(s t Bδq) ∂y
					-[	∂s t ∂t	δq +	∂s t ∂x	Aδq +	∂s t ∂x	Bδq]
							∂s ∂t	+ A t ∂s ∂x	+ B t ∂s ∂y	= 0	(D.2)
	soit :	∂s ∂t	+	∂(A t s) ∂x	+	∂(B t s) ∂x	+ Cs = 0,	C = -	∂A t ∂x	-	∂B t ∂y
						γp ρ	,		E ρ	=	a 2 γ(γ -1)	+	u 2 + v 2 2
	Les valeurs propres des matrices A sont		
					u,		u,		u + a,	, u -a
	Les valeurs propres des matrices A sont				
					v,			v,		v + a,	, v -a
	D.3 Les équations adjointes			
	Dans le cadre d'une minimisation d'une fonctionnelle on écrit :
					L = J + s t ,	∂q ∂t	+	∂F ∂x	+	∂G ∂y
	Cherchons la variation δL = s t δ(	∂q ∂t	+	∂F ∂x		+	∂G ∂y	)

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Gloerfelt ghost, 2 nd ghost, 4 th analytical(a) x/h = 5 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Gloerfelt ghost, 2 nd ghost, 4 th analytical X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Gloerfelt ghost, 2 nd ghost, 4 th analytical(b) x/h = 7.5 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X -0.0002 0 0.0002

th order ghost cells method is higher than those of the other two boundary conditions. Furthermore, these results present small numerical oscillations near the walls. Note that the last point for this case (represented by a triangle ▽) does not correspond to the wall but to the f rst interior point, that is why its value is not zero.In wall-bounded f ows numerical oscillations may appear, specially with the use of a non-symmetric scheme at the boundary. It is believed that the origin of the oscillations in this case is due to the nonsymmetric 4 th order scheme used to compute the pressure at the ghost cells, and the absence of a radiation boundary which would allow the small pressure oscillations leave the domain. Nevertheless, the value of the v velocity in this worst case is in the order of O(10 -4 ), and in the other cases is in the order of O(10 -6).On the other hand, it is observed that these oscillations are not propagated inside the computational domain. Moreover, they do not contaminate the solutions of the other variables, since these oscillations are not appreciated in the streamwise velocity and temperature prof les shown in f gure 2.14. The reason of this fact might have two explanations. First, since these two prof les are symmetric (which is not the case for normal velocity) the oscillations created at both walls might cancel each other. Second, the magnitude of the values of u velocity and temperature are higher, making more diff cult the identif cation of small numerical f uctuations.
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taining the same number of points, the aspect ratio ∆x/∆y of the cells near the wall becomes higher than 5, and very few points are located inside the perturbation at the initial time.

These results are improved by three means. Firstly, by decreasing the time step, as displayed in figure 5.7(b). Secondly, by increasing the number of points in y-direction, obtaining a grid of 101 × 121 points (figure 5.7(c)). By refining the grid more points are located inside the initial perturbation. Finally, by reducing the number of points to 101 × 81, getting a better aspect ratio near the walls, whose results are shown in figure 5.7(d). In all three cases the adjoint results collapse very well with the direct results.

Results for x-momentum forcing

Several test cases have been computed applying forcing of x-momentum, using adiabatic and isothermal wall boundary conditions as listed in table 5.3. Two flow conditions are considered: M = 0.1 and Re h = 14, and M = 0.4 and Re h = 58, which corresponds to an increase of u ∞ of four times without modifying the geometry (i.e. the value of h).

In the first set of test cases the position (x 0 , y 0 ) and frequency ω p of the forcing is the same for both the direct and adjoint equations, as it was in the previous section. In the second group of test cases, the origin of the direct and adjoint perturbations is not the same. In all cases the other parameters in equation (5.5) are defined as: A = 0.01u ∞ , ω p = 2π/100∆t and σ p = 10∆y. The computational grid is composed of 101 × 101 equidistant points, the CFL used is 0.7, and the simulations have been run during 10 periods of the perturbation, in which the pulse reaches the solid and the non-reflecting boundaries. The wall boundary conditions have been implemented without ghost cells and no buffer zone has been used.

Part of these results are published in the proceedings of the 19 ème Congrès Franc ¸ais de Mécanique (19 th French Congress of Mechanics) [START_REF] Moret-Gabarro | Validation of an adjoint method for compressible channel flow sensitivities[END_REF]. flow, when it only oscillates at the second Rossiter mode.

UP

The data storage of the direct field for a cavity flow simulation is huge: one single binary file is about 11Mb, one fundamental period contains approximately 2400 iterations and some adjoint simulations have been computed during 40 periods of the direct flow. In order to decrease the data storage, each 10 th iteration of the direct flow is saved and then the direct fields are interpolated.

All the adjoint results displayed in this section are given in dimensional form, only the length scales (the x-and y-axis) have been normalized by D.

Forcing of adjoint x-momentum

In this section the adjoint x-momentum equation has been forced at a frequency f 2 at the position DOWN, located at a distance δ above the downstream corner, as displayed in figure 6.20. So, as in the previous section 6.1, the adjoint fields will give the sensitivity of (ρu) ′ to different kinds of forcing of the direct equations. Consequently, the field of each adjoint variable is to be explored in order to find the direct equation which should be forced.

The results of instantaneous adjoint density are shown in figure 6.21, where the whole computational domain is presented. These contours represent the sensitivity of (ρu) ′ to energy forcing. The highest values are found in the incoming boundary layer and in the shear layer spanning over the cavity, specially near the leading edge. Some significant values are located near the bottom wall of the cavity as well. It is observed that in the far field there are a few contour levels displayed which correspond to the lowest adjoint density values (in absolute value). They are found upstream from the cavity and in the direction of the propagation of the acoustic waves.

Appendix Appendix A

Optimal control in a channel flow

Adjoint-based and Riccati-based control comparison

A.1 Introduction

The goal here is to compare the control results for both the adjoint-based and Riccati-based control methods in a simple test case. We are interested on three-dimensionnal plane channel flow with an incompressible fluid. Small three-dimensionnal perturbations arise from receptivity mechanisms, growing from a laminar state to a non-linear saturated state which may lead laminar flow to transition to turbulence inducing higher shear stress and random processes.

The present study investigates the control by blowing and suction at the walls of the optimal perturbation. This perturbation is a subcritical instability characterized by an algebraic transient growth which may amplify its energy with such large growth rate that it triggers by-pass transition (see e.g. [START_REF] Gustavsson | Energy growth of three-dimensional disturbances in plane Poiseuille flow[END_REF][START_REF] Luchini | Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations[END_REF]. The goal of the control is to delay the transition towards turbulence and therefore to obtain a larger laminar zone.

Iterative (adjoint-based) control optimization strategies are appropriate for open-loop control optimizations, and are beginning to see successful applications in this regard (see e.g. [START_REF] Walther | Optimal control of Tollmien-Schlichting waves in a developing boundary layer[END_REF][START_REF] Cathalifaud | Algebraic growth in boundary layers: optimal control by blowing and suction at the wall[END_REF][START_REF] Gavarini | Optimal and robust control of streaks in pipe flow[END_REF][START_REF] Horberg | Linear optimal control applied to instabilities in spatially developing boundary layers[END_REF]). However, it is computationally quite difficult (if not impossible) to apply iterative, adjoint-based control optimization strategies in closed-loop setting to neutralize the effects of random flow disturbances that arise in nature. For such problems, feedback control strategies which can respond quickly and in a coordinated fashion to measurements of the flow system are necessary. However, subtle issues related to the infinite dimension and inflow/outflow conditions make the application of established feedback control strategies to such systems nontrivial [START_REF] Bewley | Optimal and robust control and estimation of linear paths to transition[END_REF].

First we present the two methods: the adjoint-based and the Riccati-based. Then the results are shown.

A.2 From an open-loop to a closed-loop control problem

A.2.1 Open-loop control: the adjoint-based method

Let's note q the state variable, that we assume to be solution of the following system:

where φ φ φ is the control variable, and q 0 is the initial state. (A.1) will be noted afterwards F (q, φ φ φ) = 0, and called constraint equation.

We are searching for a control φ φ φ whose goal is to minimized the energy of the state q over the time interval [0, T ]. This control will thus be referred as optimal. This control problem may be formulated as the minimization of the following cost function:

where ℓ is a penalization parameter used to prevent the energy of the control of reaching a too high value and * denotes the conjugate transpose. The choice of the value of ℓ depends on the cost of the control: if the control is expensive then ℓ should be large, otherwise ℓ may be small. The limit case ℓ → ∞ corresponds to a case where the control costs nothing, and can virtually have an infinite energy.

So we have an optimization problem under constraint to solve, which leads us to define the following lagrangian functionnal:

L(q, φ φ φ, ξ ξ ξ) = J (q, φ φ φ)ξ ξ ξ, F (q, φ φ φ)

where ξ ξ ξ is the adjoint variable, and •, • is the scalar product defined as: ξ ξ ξ, q = T 0 ξ ξ ξ * q dt.

Our optimisation problem thus becomes the search of φ φ φ and ξ ξ ξ such as L(q, φ φ φ, ξ ξ ξ) is stationnary, which leads us to solve the optimality system composed of:

• the constraint equation, given by ∂L ∂ξ ξ ξ = 0,

• the adjoint system, given by ∂L ∂q = 0,

• the optimality condition, given by ∂L ∂φ φ φ = 0.

Noted that the lagrangian function L defined in equation (A.3) can be expressed as:

which gives us the following adjoint system to solve:

ξ ξ ξ = Qq + A * ξ ξ ξ for 0 < t < T ξ ξ ξ = 0 at t = T (A.4)

A.3 Results

and the following optimality condition:

The principle of the open-loop method is to solve alternatively the direct (A.1) and adjoint (D.2) systems until convergence towards the optimal control φ φ φ.

A.2.2 Closed-loop control: the Riccati-based method

The key idea of the closed-loop formulation is to rely the direct and adjoint variables using a feedback law:

By replacing the relation (A.6) in (D.2), and by using the constraint (A.1), we obtain that X should be solution of the following differential Riccati equation:

Then, replacing ξ ξ ξ by its expression (A.6) into (A.5), we finally obtain that:

The principle of the closed-loop method is to solve at once the Riccati equation (A.7), and then to use the relation (A.8) to obtain the optimal control φ φ φ with respect to X for any state q.

A.3 Results

We applied both methods to control the optimal perturbation arising in a plane channel flow (see [START_REF] Bewley | Optimal and robust control and estimation of linear paths to transition[END_REF]). Notice also that the adjoint-based control seems to concentrate its energy preferably at the beginning of the control time interval. Consequently, the adjoint-based control seems more efficient for short control time interval such as [0, 300], which actually corresponds to the transient amplification phase of the optimal perturbation [START_REF] Bewley | Optimal and robust control and estimation of linear paths to transition[END_REF]. However for larger control time intervals, the Riccati-based control is overall more efficient.

Actually, the adjoint-based control is designed for a specific initial perturbation, namely the optimal one, which may explain why it is more efficient for short control time interval. On the other hand, Riccati-based control is designed to work whatever the initial perturbation is. The similarity of both control indicates that the adjoint-based control found for the optimal perturbation (open-loop control) should work for any perturbation as a closed-loop control.

Appendix B

Adjoint of the Navier-Stokes equations in non-conservative form B.1 Les équations de Navier-Stokes

On suppose c p = γr γ -1 constant.

Les variables sont :

La température est donnée par l'équation d'état :

Dans la suite on travaille en variables avec dimensions.

Les équations de NS se décomposent ainsi :

• conservation de la quantité de mouvement

• conservation de l'énergie, avec la pression

On conserve le terme de dissipation mais on surveille son inffluence.

• Loi de comportement pour les contraintes visqueuses :

• Loi de Fourier :

Les variables en . permettent de donner un nom simple aux équations et de considérer plus tard un terme de forc ¸age.

B.2 Calcul des équations adjointes B.2.1 Définition de la fonctionnelle et variation

On utilise des multiplicateurs de Lagrange (variables avec un exposant * ) :

On va chercher la variation de L sous la forme :

On va passer par une étape intermédiaire :

Dans la suite on considère aussi les variations de µ et de k :

B.2.2 Variations des équations d'état

On perturbe les équations de NS :

• la continuité δc = δρ ,t + δm i,i = 0 (B.12) [START_REF] Bottaro | The effect of base flow variation on flow stability[END_REF] avec (ρ * δu i τ ij ) ,j = (ρ * δu j τ ij ) ,i on a finalement :

On a :

On doit permuter aussi des indices i et j. Finalement :

Regroupement

On a :

B.3 Equations adjointes B.3.1 Equations complètes

On pose L q i = 0 et L τ ij pour ne pas avoir le gradient de la contrainte et de la densité de flux dans la variation de la fonctionnelle. On en déduit que :

On remarque que τ * ij n'est pas symmétrique.

• masse volumique adjointe (δp), comme une équation de continuité :

B.4 Les conditions sur les bords

• Pour une paroi isotherme, il suffit a priori d'avoir :

• Pour une paroi adiabatique, il faut q * i = 0 soit q * . n = 0

• pour une sortie il faut théoriquement : 

en fonction des variables de base on a alors F et G :