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Contexte général

L'étude et la simulation des écoulements fluides revêtent une grande importance dans de nombreux domaines, tels que l'aéronautique, l'ingénierie des fluides et la météorologie. Cependant, lorsqu'il s'agit de simuler des écoulements à faibles nombres de Mach, c'est-à-dire des écoulements à des vitesses bien inférieures à la vitesse du son, des problèmes numériques spécifiques se posent. En effet, lorsque le fluide atteint de faibles nombres de Mach, les ondes acoustiques se propagent très rapidement par rapport au fluide. Cela peut se produire sur seulement une partie du domaine et peut varier en fonction du temps, introduisant ainsi des contraintes numériques importantes. Les schémas numériques explicites classiquement utilisés perdent alors en précision et en stabilité. Ils perdent aussi en consistance dans la limite des faibles nombres de Mach et nécessitent souvent des pas de temps extrêmement petits pour suivre ces ondes acoustiques rapides, ce qui entraîne des coûts de calcul prohibitifs. Dans cette perspective, cette thèse se concentre sur le développement et l'étude d'un schéma numérique préservant de bonnes propriétés de stabilité et de consistance lorsque le fluide évolue vers des régimes à faibles nombres de Mach. Nous commencerons par nous intéresser aux équations d'Euler complet, qui permettent la modélisation de fluides compressibles et non visqueux. Nous étendrons ensuite notre travail au cas du modèle de Navier-Stokes, prenant en compte les effets visqueux du fluide.

Les équations d'Euler complet

Les équations d'Euler complet permettent de décrire l'écoulement de fluides compressibles et non visqueux en milieu continu. Elles permettent de modéliser et d'analyser le comportement des fluides en mouvement, qu'il s'agisse de l'écoulement de l'air autour d'un avion, de l'eau dans un canal ou même du sang dans les vaisseaux sanguins. Les équations sont obtenues à partir des lois de conservation de la masse, de la quantité de mouvement et de l'énergie du fluide considéré :

∂ t ρ + ∇ x • q = 0, (1.1a) 
∂ t q + ∇ x • q ⊗ q ρ + ∇ x p = 0, (1.1b) 
∂ t E + ∇ x • (E + p) q ρ = 0, (1.1c) 
où ρ(t, x) > 0 est la densité du fluide, q(t, x) = ρ(t, x)u(t, x) sa quantité de mouvement, u(t, x) le vecteur de vitesse de taille d (où d est la dimension de l'espace), E(t, x) l'énergie totale et p(t, x) la pression du fluide avec t ∈ R et x ∈ R d les variables de temps et espace. Nous fermons le système (nous sommes avec quatre variables et trois équations) avec une loi d'état reliant la pression aux autres variables ρ, q et E. Dans ce travail, nous considérons celle des gazs parfaits : 

E = p γ -1 + 1 2 |q| 2 ρ , (1.1d 
ρ = ρ/ρ 0 , ũ = u/u 0 , p = p/p 0 , Ẽ = E/p 0 , x = x/x 0 , t = t/t 0 , (1.2) 
où ρ 0 , p 0 , x 0 , t 0 et u 0 = x 0 /t 0 sont les ordres de grandeur des valeurs prises par le fluide pour les situations considérées. Alors

∂ρ ∂t (x, t) = ∂ ∂t ρ 0 ρ(x, t) = ρ 0 ∂ t ∂t ∂ ρ ∂ t (x, t) = ρ 0 t 0 ∂ ρ ∂ t (x, t) = ρ 0 u 0 x 0 ∂ ρ ∂ t (x, t),
où nous avons utilisé u 0 /x 0 = 1/t 0 . En faisant de même pour les autres termes du système (1.1), nous obtenons :

ρ 0 u 0 x 0 ∂ t ρ + ρ 0 u 0 x 0 ∇ x • q = 0, (1.3a) 
ρ 0 u 2 0 x 0 ∂ t q + ρ 0 u 2 0 x 0 ∇ x • q ⊗ q ρ + p 0 x 0 ∇ x p = 0, (1.3b) 
p 0 u 0 x 0 ∂ t Ẽ + p 0 ρ 0 u 0 ρ 0 x 0 ∇ x • ( Ẽ + p) q ρ = 0, (1.3c) 
p 0 p = (γ -1) p 0 Ẽ - ρ 2 0 u 2 0 2ρ 0 q2 ρ . (1.3d) Nous divisons respectivement par ρ 0 u 0 x 0 , ρ 0 u 2 0
x 0 , p 0 u 0 x 0 et p 0 les équations sur la densité (1.3a), la quantité de mouvement (1.3b), l'énergie (1.3c) et l'équation d'état (1.3d 

∂ t ρ + ∇ • q = 0, (1.4a) 
∂ t q + ∇ • q ⊗ q ρ + 1 ε ∇p = 0, (1.4b) 
∂ t E + ∇ • (E + p) q ρ = 0, (1.4c) 
E = p γ -1 + ε 2 |q| 2 ρ . (1.4d)
Le paramètre ε > 0 est relié au nombre de Mach M 0 à travers la relation

M 0 = u 0 c 0 = ε γ ou encore ε = γM 2 0 ,
où la vitesse du son est définie par c 0 = γp 0 /ρ 0 . Pour construire un schéma AP (Asymptotiquement Préservant) dans la limite bas-Mach, il faut, dans un premier temps identifier le modèle limite. Je rappelle dans le paragraphe ci-dessous les grandes lignes du passage à la limite dans le modèle d'Euler.

Limite bas-Mach pour les équations d'Euler

A la limite, c'est-à-dire lorsque ε (le nombre de Mach) tend vers 0, on obtient le modèle d'Euler incompressible (voir Section 2.1 pour les détails du passage à la limite). Formellement, la conservation de la quantité de mouvement, nous donne ∇p = 0, qui donne avec la loi d'état une énergie constante en espace. Avec des conditions aux limites bien choisies, l'équation d'énergie nous donne

∇ • u = 0, et donc l'incompressibilité.
Ainsi le modèle limite ε → 0 est le modèle d'Euler incompressible

∂ t ρ + ∇ • q = 0, (1.5a) 
∂ t q + ∇ • q ⊗ q ρ + ∇p 1 = 0, (1.5b) ∇ • u = 0, (1.5c) 
où l'on a supposé que p 1 , la correction d'ordre ε de la pression (p ε = p + εp 1 avec p ε la pression dans le système (1.4)), existe. On voit donc que pour des valeurs de ε élevées, l'écoulement est gouverné par des effets compressibles, tandis que dans la limite des faibles valeurs de ε, les équations compressibles convergent vers le régime incompressible.

1.5. Problématiques liées à la limite bas-Mach

Problématiques liées à la limite bas-Mach

Cette transition est particulièrement difficile à capter numériquement parce que les schémas classiquement utilisés pour discrétiser le système d'Euler compressible (1.4), sont explicites en temps et de type Godunov en espace. En effet, les schémas de Godunov sont des schémas conservatifs de type volumes finis bien adaptés pour des systèmes hyperbolique de lois de conservations comme le modèle d'Euler compressible qui peut se réécrire sous la forme

∂ t W + ∇ • F (W ) = 0,
où W = (ρ, q, E) est le vecteur des variables conservatives et 

F (W ) =      q q ⊗ q ρ + p I d (E + p) q ρ      ,

Consistance des schémas de type Godunov dans la limite bas-Mach

Commençons, par donner la semi-discrétisation du système (1.4) avec un schéma explicite :

ρ n+1 -ρ n ∆t + ∇ • q n = 0, (1.6a) q n+1 -q n ∆t + ∇ • q n ⊗ q n ρ n + 1 ε ∇p n = 0, (1.6b) E n+1 -E n ∆t + ∇ • (E n + p n ) q n ρ n = 0, (1.6c) 
E n+1 = p n+1 γ -1 + ε ρ n+1 |u n+1 | 2 2 . (1.6d)
Lorsque nous passons formellement, comme dans le cas continu, à la limite dans la semi-discretization, l'équation sur la quantité de mouvement nous donne ∇p n = 0 lors du calcul de la solution W n+1 . Cela impose uniquement une contrainte sur la condition initiale mais n'impose pas une discrétisation du modèle limite, soit : ∀n ≥ 0, ∇p n+1 = 0 et ∇ • u n+1 = 0. L'étude détaillée des problèmes de consistance à la limite des schémas explicites classiques de type Godunov a été effectuée pour la première fois par Guillard et Viozat [START_REF] Guillard | On the behaviour of upwind schemes in the low Mach number limit[END_REF]. En menant une analyse asymptotique sur le nombre de Mach pour un schéma upwind, les auteurs montrent que cette discrétisation autorise pour des faibles nombres de Mach, des fluctuations sur la pression de l'ordre du nombre de Mach (M ), soit de l'ordre de √ ε, tandis que dans le cas continu les fluctuations ne sont que de l'ordre de M 2 , c'est-à-dire ε. On ne retrouve donc pas le correct ordre de magnitude pour la pression et des résultats numériques montrent que la solution obtenue est parfois très loin de la solution incompressible. En modifiant la viscosité numérique du flux dans le schéma de Roe à l'aide d'un préconditionneur, il est possible de retrouver le bon ordre de magnitude. Il existe de nombreux travaux proposant des schémas de Godunov modifiés basés sur des méthodes de préconditionneurs pour résoudre ce problème de précision [START_REF] Turkel | Preconditioned methods for solving the incompressible and low speed compressible equations[END_REF][START_REF] Do | Application of time-iterative schemes to incompressible flow[END_REF][START_REF] Joel | A numerical method for solving incompressible viscous flow problems[END_REF][START_REF] Bram Van Leer | Characteristic time-stepping or local preconditioning of the Euler equations[END_REF][START_REF] Li | An All-Speed Roe-type scheme and its asymptotic analysis of low Mach number behaviour[END_REF][START_REF] Li | Mechanism of Roe-type schemes for all-speed flows and its application[END_REF]. Dans d'autres travaux, le comportement des schémas de type Godunov est étudié dans le régime faiblement compressible, voir [START_REF] Dellacherie | Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number[END_REF] ou [START_REF] Guillard | On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes[END_REF].

Stabilité des schémas classiques explicites

La stabilité des schémas explicites est assurée sous une condition C.F.L. reliée aux valeurs propres de la matrice jacobienne associée au flux F . En dimension d = 1, les valeurs propres sont données par Cela implique que pour des faibles valeurs du nombre de Mach, ∆t est très petit et le coût de calcul devient extrêmement élevé.

λ 1 = u - c √ ε , λ 2 = u, λ 3 = u + c √ ε , où c 2 = γp/ρ.

Travaux proposés dans la littérature

Nous avons évoqué des méthodes de préconditionneurs basées sur la modification des schémas de type Godunov utilisés pour le modèle compressible. Par ailleurs, il existe 1.6. Schémas asymptotiquement préservants des méthodes basées sur la résolution d'une équation sur la pression permettant de controler ses variations. On trouve leur origine dans les méthodes développées pour le modèle incompressible où une équation elliptique sur la pression apparait naturellement dans la reformulation de ce dernier (voir Section 2.1.2). La perte de consistance à faible nombre de Mach est corrigée à l'aide de méthodes de splitting avec correction de pression. Nous pouvons citer les travaux pionners de Harlow et Amsden [START_REF] Francis | Numerical calculation of almost incompressible flow[END_REF][START_REF] Amsden | A simplified MAC technique for incompressible fluid flow calculations[END_REF] avec un schéma de différences finies semi-implicite mais aussi des schémas volumes finis [START_REF] Kailash | Pressure based calculation procedure for viscous flows at all speeds in arbitrary configurations[END_REF]. De nombreux travaux sont proposés [START_REF] Bijl | A Unified Method for Computing Incompressible and Compressible Flows in Boundary-Fitted Coordinates[END_REF][START_REF] Klein | Asymptotic adaptive methods for multi-scale problems in fluid mechanics[END_REF][START_REF] Sewall | A time-accurate variable property algorithm for calculating flows with large temperature variations[END_REF][START_REF] Kheriji | Pressure correction staggered schemes for barotropic one-phase and two-phase flows[END_REF] [START_REF] Cordier | An Asymptotic-Preserving all-speed scheme for the Euler and Navier-Stokes equations[END_REF]. Dans [START_REF] Noelle | A Weakly Asymptotic Preserving Low Mach Number Scheme for the Euler Equations of Gas Dynamics[END_REF], le même splitting en temps que celui proposé dans [START_REF] Cordier | An Asymptotic-Preserving all-speed scheme for the Euler and Navier-Stokes equations[END_REF] est utilisé avec une décomposition de la pression proposée par R. Klein [START_REF] Klein | Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics[END_REF] dans le flux d'énergie. Dans [START_REF] Kheriji | On some implicit and semi-implicit staggered schemes for the shallow water and Euler equations[END_REF], une adaptation des algorithmes de correction de pression sur maillages décalés est proposée pour les équations de Saint-Venant et d'Euler complet puis étendue aux équations de Navier-Stokes [START_REF] Kheriji | An unconditionally stable staggered pressure correction scheme for the compressible Navier-Stokes equations[END_REF]. D'autres méthodes proposent un splitting basé sur la séparation entre les ondes matérielles ou de transport (lentes) et acoustiques (rapides) du modèle compressible. Dans les travaux de [START_REF] Chalons | Large Time Step and Asymptotic Preserving Numerical Schemes for the Gas Dynamics Equations with Source Terms[END_REF] pour Euler-friction puis pour Euler complet avec une équation d'état générale [START_REF] Chalons | An all-regime Lagrange-Projection like scheme for the gas dynamics equations on unstructured meshes[END_REF], le schéma semi-implicite développé est résolu avec une méthode de Lagrange-projection. Le système est divisé en un sous-système acoustique et un sous-système matériel. Le premier est traité de manière implicite, à l'aide d'une technique de relaxation pour faciliter le traitement des termes non linéaires, puis dans une seconde étape le système matériel est résolu explicitement.

M ε M ∆t ε M 0 M ∆t 0 ∆t → 0 ε → 0 ∆t → 0 ε → 0 Figure 1.
Dans cette thèse, nous nous intéressons au développement d'un schéma AP basé sur une discrétisation IMEX (Implicite-Explicite) [START_REF] Steven | Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations[END_REF][START_REF] Pareschi | Implicit-Explicit Runge-Kutta schemes for stiff systems of differential equations[END_REF] où le flux est séparé en une partie qui sera traitée de manière totalement explicite et une autre de manière totalement implicite. Dans ce cadre, nous faisons référence aux travaux de [START_REF] Dimarco | Study of a New Asymptotic Preserving Scheme for the Euler System in the Low Mach Number Limit[END_REF] pour le modèle d'Euler isentropique où un schéma d'ordre 1 est proposé avec un solveur de Rusanov [START_REF] Rusanov | The calculation of the interaction of non-stationary shock waves and obstacles[END_REF][START_REF] Eymard | Finite volume methods[END_REF] utilisé en espace. Une analyse de stabilité sur le système linéarisé leur permet également de définir la viscosité numérique nécessaire pour obtenir un schéma qui soit L 2 ou L ∞ stable. Dans [START_REF] Dimarco | Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime[END_REF], un schéma assurant la propriété TVD (total variational diminishing) et plus précis que le schéma d'ordre 1 est construit en couplant les discrétisations d'ordre 1 et 2. Ce nouveau schéma est ensuite utilisé dans une procédure MOOD (Multi-dimensional Optimal Order Detection) [START_REF] Clain | A high-order finite volume method for systems of conservation laws-Multi-dimensional Optimal Order Detection (MOOD)[END_REF][START_REF] Diot | Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials[END_REF] permettant de réduire les oscillations du schéma d'ordre 2. Dans [START_REF] Boscarino | All Mach Number Second Order Semi-implicit Scheme for the Euler Equations of Gas Dynamics[END_REF], une discrétisation sur maillages décalés est présentée pour le modèle d'Euler isentropique puis étendue au cas d'Euler complet avec le même splitting en temps proposé dans [START_REF] Dimarco | Study of a New Asymptotic Preserving Scheme for the Euler System in the Low Mach Number Limit[END_REF].

Dans [START_REF] Avgerinos | Linearly implicit all Mach number shock capturing schemes for the Euler equations[END_REF], deux schémas semi-implicites pour les équations d'Euler complet sont comparés, l'un avec un splitting sur la pression similaire à celui proposé dans [START_REF] Degond | All Speed Scheme for the Low Mach Number Limit of the Isentropic Euler Equations[END_REF] et l'autre avec un splitting de flux basé sur la séparation entre les ondes matérielles et acoustiques. Dans [START_REF] Dumbser | A conservative, weakly nonlinear semi-implicit finite volume scheme for the compressible Navier-Stokes equations with general equation of state[END_REF] un schéma volumes finis sur maillages décalés d'ordre 1 pour le modèle d'Euler complet. Le splitting IMEX utilisé pour la discrétisation en temps est inspiré de [START_REF] Vázquez-Cendón Eleuterio | Flux splitting schemes for the Euler equations[END_REF]. Cette discrétisation mène à la résolution d'une équation non linéaire sur la pression à l'aide d'une méthode itérative. Ce schéma peut traiter différentes lois d'états et traite aussi le cas des équations de Navier-Stokes avec un traitement explicite des termes diffusifs. Ces idées sont reprises dans [START_REF] Tavelli | A pressure-based semi-implicit spacetime discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier-Stokes equations at all Mach numbers[END_REF] pour développer des méthodes de Galerkine discontinues d'ordre élevé sur des maillages décalés également. Enfin elle sont aussi utilisées dans [START_REF] Boscheri | A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations[END_REF] pour construire un schéma volumes finis sur maillages colocalisés. Le même splitting en temps [START_REF] Vázquez-Cendón Eleuterio | Flux splitting schemes for the Euler equations[END_REF] est utilisé et en s'appuyant sur les résultats de [START_REF] Dimarco | Study of a New Asymptotic Preserving Scheme for the Euler System in the Low Mach Number Limit[END_REF] pour la construction d'un schéma L 2 stable, un solveur de Rusanov est utilisé sur la partie explicite et un solveur centré sur la partie implicite. De plus, le caractère bien posé du système non linéaire sur la pression à résoudre est prouvé puis une extension du schéma à l'ordre 2 en temps [START_REF] Steven | Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations[END_REF][START_REF] Pareschi | Implicit-Explicit Runge-Kutta schemes for stiff systems of differential equations[END_REF] et en espace est proposée. Un schéma volumes finis colocalisés avec un splitting similaire est également proposé dans [START_REF] Boscheri | High order pressure-based semi-implicit IMEX schemes for the 3D Navier-Stokes equations at all Mach numbers[END_REF] qui a l'avantage de résoudre une équation linéaire sur la pression pour la loi d'état des gazs parfaits. Ce schéma est également étendu à l'ordre 3 et aux équations de Navier-Stokes. [START_REF] Tavelli | A pressure-based semi-implicit spacetime discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier-Stokes equations at all Mach numbers[END_REF] avec des méthodes de Galerkine discontinues et les termes diffusifs explicites, [START_REF] Boscheri | An efficient second order all Mach finite volume solver for the compressible Navier-Stokes equations[END_REF] qui étend la discrétisation de [START_REF] Boscheri | A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations[END_REF] avec un traitement implicite des termes additionnels. Pour cela un double algorithme de Picard est utilisé pour résoudre l'équation de pression : une boucle pour approcher les termes visqueux qui sont ensuite injectés dans la seconde pour résoudre l'équation de pression. Afin de formellement passer à limite dans les équations de Navier-Stokes, nous présentons ci-dessous l'adimenssionnement du système. La limite sera ensuite détaillée dans la Section 3.1.1.

Le cas des équations de Navier-Stokes

Adimensionnement des équations de Navier-Stokes

Nous présentons brièvement l'adimensionnenment des équations de Navier-Stokes qui sont les suivantes

∂ t ρ + ∇ x • q = 0, (1.7a) 
∂ t q + ∇ x • q ⊗ q ρ + ∇ x p = ∇ x • σ, (1.7b) 
∂ t E + ∇ x • (E + p) q ρ = ∇ x • σ q ρ + ∇ x • (λ∇T ) , (1.7c) 
où la pression p et la température T du fluide sont données pour un gaz parfait par Pour adimensionner le modèle de Navier-Stokes compressible, nous introduisons les quantités suivantes :

E = p γ -1 + ε 2 |q| 2 ρ , T = p Rρ , (1.7d 
ρ = ρ/ρ 0 , ũ = u/u 0 , p = p/p 0 , Ẽ = E/p 0 , T = T /T 0 , x = x/x 0 , t = t/t 0 , (1.9) 
où ρ 0 , p 0 , x 0 , t 0 , u 0 = x 0 /t 0 et T 0 = p 0 /ρ 0 sont les ordres de grandeur des valeurs prises par le fluide pour les situations considérées. Alors

∂ρ ∂x (x, t) = ∂ ∂x ρ 0 ρ(x, t) = ρ 0 ∂ x ∂x ∂ ρ ∂ x (x, t) = ρ 0 x 0 ∂ ρ ∂ x (x, t) = ρ 0 x 0 ∂ ρ ∂ t (x, t), ∂ 2 T ∂x 2 (x, t) = T 0 x 2 0 ∂ 2 T ∂ x2 (x, t) = p 0 ρ 0 x 2 0 ∂ 2 T ∂ x2 (x, t).
Nous faisons de même pour les autres termes du système (1.7) et divisons respectivement par ρ 0 u 0 x 0 ,

ρ 0 u 2 0
x 0 , p 0 u 0 x 0 et p 0 les équations sur la densité, la quantité de mouvement, l'énergie et l'équation d'état. En définissant, comme pour les équations d'Euler, ε = ρ 0 u 2 0 /p 0 = γM 2 0 nous obtenons :

∂ t ρ + ∇ x • q = 0, (1.10a) 
∂ t q + ∇ x • q ⊗ q ρ + 1 ε ∇ x p = µ ρ 0 u 0 x 0 (∆ x ũ + ∇ x (∇ x • ũ)) , (1.10b) 
∂ t Ẽ + ∇ x • (( Ẽ + p) q ρ ) = εµ ρ 0 u 0 x 0 ∇ x • ∇ x ũ + (∇ x ũ) T ũ - 2 3 (∇ x • ũ) ũ + λ ρ 0 u 0 x 0 ∆ x T , (1.10c) p = (γ -1) Ẽ - ε 2 q2 ρ . (1.10d)
Enfin, en définissant les paramètres :

μ = µ ρ 0 u 0 x 0 , λ = λ ρ 0 u 0 x 0 ,
qui sont respectivement les coefficients de viscosité et de conductivité adimensionnnés, et en omettant les tildes nous obtenons le système de Navier-Stokes adimensionné :

∂ t ρ + ∇ • q = 0, (1.11a) ∂ t q + ∇ • q ⊗ q ρ + 1 ε ∇p = ∇ • σ, (1.11b) ∂ t E + ∇ • (E + p) q ρ = ε∇ • σ q ρ + ∇ • (λ∇T ) , (1.11c) 
E = p γ -1 + ε 2 |q| 2 ρ .
(1.11d) 

Introduction

We consider the modeling of a compressible fluid described by the compressible full Euler equations and we are interested in numerical methods valid in all Mach regimes. Let Ω ⊂ R d (d = 1, 2 or 3) be an open bounded domain, the full Euler equations in rescaled variables are given by Chapter 2. Full Euler equations

∂ t ρ + ∇ • q = 0,
(2.1a)

∂ t q + ∇ • q ⊗ q ρ + 1 ε ∇p = 0, (2.1b) 
∂ t E + ∇ • (E + p) q ρ = 0, (2.1c) 
with ρ(t, x) > 0 is the density of the fluid, q(t, x) = ρ(t, x)u(t, x) its momentum, u(t, x) its velocity field, E(t, x) its total energy and p(t, x) its pressure and where x ∈ Ω and t ∈ R + are the space and time variables. The pressure is given by an equation of state, here that of perfect gases:

E = p γ -1 + ε 2 |q| 2 ρ , (2.1d) 
with γ > 1 the given ratio of specific heats.

The rescaled parameter ε is related to the Mach number

M 2 = u 2 0 c 2 0 = ε γ ,
with c 2 0 = γ p 0 /ρ 0 , u 0 , p 0 and ρ 0 being the typical values of the velocity, pressure and density in the fluid. The previous system can be rewritten in compact form as

∂ t W (x, t) + ∇ • F (W (x, t)) = 0, (2.2) 
where W = (ρ, q, E) is the vector of conservative variables and

F (W ) =    q ρu ⊗ u + 1 ε p Id R 3 (E + p) u    , the flux.
In low Mach number regimes, the typical sound speed in the fluid, c 0 , is very large compared to the typical speed of the fluid itself, u 0 , and so ε is very small. It is well known that in such situations (see [START_REF] Toro | Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction[END_REF]), if an explicit scheme is used, the time step must satisfy a severe C.F.L. (Courant-Friedrichs-Levy) stability condition. Indeed, for d = 1, the Jacobian matrix associated to F is given by

DF (W ) =      0 1 0 1 2 (γ -3)u 2 (3 -γ)u γ -1 ε -γpu (γ -1)ρ + 1 2 (γ -2)εu 3 γp (γ -1)ρ + ε 2 (3 -2γ)u 2 γu     
, and its eigenvalues are

λ 1 = u -c/ √ ε, λ 2 = u, λ 3 = u + c/ √ ε,
with c 2 = γ p/ρ and u the fluid velocity. And, the C.F.L. condition, ensuring the stability of explicit schemes, for the time and space steps ∆t and ∆x, is given by

∆t ≤ ∆x max(|u ± c/ √ ε|) . (2.3) 
Then, for a given space step ∆x, the time step ∆t is of order √ ε and tends to 0 with ε. Furthermore, even if this constraint is satisfied, it is also well known (see [START_REF] Guillard | On the behaviour of upwind schemes in the low Mach number limit[END_REF], [START_REF] Guillard | On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes[END_REF] or [START_REF] Dellacherie | Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number[END_REF]) that explicit schemes suffer from a consistency problem in the limit ε → 0. They are not capable to capture the right asymptotic regime. A possible way to bypass these limitations is to use in the regions where ε is sufficiently small, the incompressible Euler equations obtained as the low Mach number limit of the compressible Euler equations (2.1). Here, we prefer to use the compressible model and an asymptotic preserving scheme as explained in Section 2.1.3. But, first, let us recall the formal low Mach number limit in the next section.

Low Mach number limit for the full Euler equations

The rigorous low Mach number limit of the compressible Euler system has been widely studied in the last years [START_REF] Klainerman | Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit[END_REF][START_REF] Klainerman | Compressible and incompressible fluids[END_REF][START_REF] Schochet | The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit[END_REF][START_REF] Asano | On the incompressible limit of the compressible Euler equation[END_REF][START_REF] Lions | Incompressible limit for a viscous compressible fluid[END_REF][START_REF] Metivier | The Incompressible Limit of the Non-Isentropic Euler Equations[END_REF][START_REF] Metivier | Averaging theorems for conservative systems and the weakly compressible Euler equations[END_REF][START_REF] Alazard | Incompressible limit of the nonisentropic Euler equations with the solid wall boundary conditions[END_REF]. Results in the case of non-isentropic Euler equations with general initial data can be found in [START_REF] Metivier | The Incompressible Limit of the Non-Isentropic Euler Equations[END_REF] in the space Ω = R d , in [START_REF] Alazard | Incompressible limit of the nonisentropic Euler equations with the solid wall boundary conditions[END_REF] for an exterior domain and in a bounded toroidal domain in [START_REF] Metivier | Averaging theorems for conservative systems and the weakly compressible Euler equations[END_REF]. Here, we briefly recall the formal limit. We denote by (ρ ε , q ε , E ε , p ε ) the solution of (2.1) with general initial conditions and with the impermeability boundary condition

u ε • ν = 0, on ∂Ω,
where ν is the unit normal to ∂Ω outward to Ω. Performing an asymptotic expansion such that:

ρ ε = ρ 0 + ερ 1 , q ε = q 0 + εq 1 , p ε = p 0 + εp 1 , E ε = E 0 + εE 1 ,
inserting the following expansions into the compressible Euler equations (2.1) and collecting the different order terms we obtain for all x ∈ Ω and t > 0,

ε -1 : ∇p 0 = 0, (2.4a) 
ε 0 : ∂ t ρ 0 + ∇ • q 0 = 0, (2.4b) 
∂ t q 0 + ∇ • q 0 ⊗ q 0 ρ 0 + ∇p 1 = 0, (2.4c) 
∂ t E 0 + ∇ • (E 0 + p 0 ) q 0 ρ 0 = 0, (2.4d) 
E 0 = p 0 γ -1 . (2.4e)
Chapter 2. Full Euler equations Note that, p 1 (x, t) = lim ε→0 1 ε (p ε (x, t)p 0 ) is the order one correction of the pressure. Since ∇p 0 (x, t) = 0, p 0 (x, t) = p 0 (t) then for all x ∈ Ω and t > 0

E 0 (x, t) = E 0 (t) = p 0 (t) γ -1 .
Integrating now (2.4d) on [0, T ] × Ω we obtain,

Ω E 0 (t) -E 0 (x, 0) dx + t 0 ∂Ω (E 0 (t) + p 0 (t) ) u 0 (x, t) • ν(x) dσ(x) dt = 0.
(2.5)

Using the boundary condition (??), we obtain for all t > 0,

|Ω| E 0 (t) - Ω E 0 (x, 0)dx = 0.
And so,

E 0 (t) = E 0 = 1 |Ω| Ω E 0 (x, 0) dx.
Thereafter, having constant energy and pressure, we recover from (2.4d) the incompressibility constraint

∇ • u 0 (x, t) = 0, (2.6) 
for all x ∈ Ω and t > 0. Finally, the "incompressible limit system" [START_REF] Alazard | Incompressible limit of the nonisentropic Euler equations with the solid wall boundary conditions[END_REF] writes

∂ t ρ 0 + ∇ • q 0 = 0, (2.7a) 
∂ t q 0 + ∇ • q 0 ⊗ q 0 ρ 0 + ∇p 1 = 0, (2.7b) 
∇ • u 0 = 0, (2.7c) 
E 0 = p 0 γ -1 = 1 |Ω| Ω E 0 (x, 0) dx. (2.7d) 
Let us note that p 1 is given implicitly by the incompressibility constraint (2.7c). We will see in the next section how an explicit equation can be recovered.

Reformulation of the incompressible limit model

In this section, we present the reformulation of the limit model and its equivalence with the original incompressible model. 1. The incompressible model M 0 given by (2.7) can be reformulated into RM 0 replacing the incompressibility constraint (2.7c) by an explicit equation for p 1 .

M 0 =⇒ RM 0
where the reformulated incompressible system noted RM 0 reads

∂ t ρ 0 + ∇ • q 0 = 0, (2.8a) 
∂ t q 0 + ∇ • q 0 ⊗ q 0 ρ 0 + ∇p 1 = 0, (2.8b) -∇ • 1 ρ 0 ∇p 1 = ∇ • (u 0 • ∇)u 0 , (2.8c) 
E 0 = p 0 γ -1 = 1 |Ω| Ω E 0 (x, 0) dx. (2.8d)
2. The reformulated incompressible Euler system RM 0 is equivalent to M 0 if and only if the initial condition is well prepared to the incompressible regime. More precisely

RM 0 =⇒ M 0 if and only if ∇ • u( • , 0) = 0.
Proof. Let us start by the proof of 1. To recover an explicit equation for the firstorder pressure correction p 1 , first we write the velocity equation:

ρ 0 ∂ t u 0 + ρ 0 (u 0 • ∇)u 0 + ∇p 1 = 0,
obtained by inserting the density equation into the momentum equation. Dividing this equation by ρ 0 ,

∂ t u 0 + (u 0 • ∇)u 0 + 1 ρ 0 ∇p 1 = 0, taking the divergence ∇ • ∂ t u 0 + ∇ • (u 0 • ∇)u 0 + ∇ • 1 ρ 0 ∇p 1 = 0, (2.9) 
and using the incompressibility constraint ∇ • u 0 = 0, the derivative in time ∇ • ∂ t u 0 vanishes and we obtain an elliptic equation for p 1 :

-∇ • 1 ρ 0 ∇p 1 = ∇ • (u 0 • ∇)u 0 . (2.10)
Thus, changing (2.7c) into (2.10), we obtain RM 0 .

Remark 1. In the literature, the reformulated model can be found written in physical variables with the density equation reduced to a transport equation and replacing (2.8b) by the velocity equation

ρ 0 ∂ t u 0 + ρ 0 (u 0 • ∇)u 0 + ∇p 1 = 0.
Let us now prove 2. From the momentum equation (2.8b), we can still recover (2.9). Then, using (2.8c) we obtain for all x ∈ Ω and t > 0

∂ t ∇ • u 0 = 0,
and thus

∇ • u 0 ( • , t) = ∇ • u 0 ( • , 0).
This shows that RM 0 =⇒ M 0 if and only if ∇ • u 0 ( • , 0) = 0.

In the next section, we address the numerical challenges that arise when dealing both with the compressible Euler model and its incompressible limit model.

Principle of asymptotic preserving schemes

First let us clarify that in the rescaled Euler system (2.1), our parameter ε is constant and is related to the reference Mach number. However, the physical Mach number can vary both in space and time. In practice, the schemes can be written on the non rescaled equations (1.1), but in order to study the low Mach number limit, it is convenient to work on the rescaled equations. In this section, in order to explain the numerical difficulties associated to the physical Mach number, we can equivalently consider in the rescaled system our parameter ε to vary in space and time.

The limit model (2.7) does no longer depend on ε and so is no more constrained by the small values of ε. But, it can be used only where ε is sufficiently small. Where ε takes on order one or intermediate values, the compressible Euler equations (2.1) must be used. Then, two models must be used which leads to other difficulties like the detection of the interface between the two models, the reconnection at the interface... For example, in Figure 2.1, we represent ε as a function of the space variable. Around 0.75 on the x-axis, the interface between the compressible (ε = 10 0 ) and incompressible (ε = 10 -5 ) regime is very sharp and so it is clear where to switch models. On the other side, between 0 and 0.4, the interface is more diffused and therefore it becomes difficult to know where we can switch models. For the intermediate values of ε the limit model is not valid yet, so it cannot be used and so we must put the interface for sufficiently small values of ε. But, the only valid model for intermediate values or order one values of ε is the compressible model and an explicit discretization starts to become rather costly due to the restrictive C.F.L. (2.3) even for intermediate values of ε. In addition, as already mentioned, it can suffer from consistency issues. Another possible solution consists in using only one model, the compressible Euler equations (2.1), valid everywhere and at every time. But, an asymptotic preserving scheme, free of the constraints related to the Mach number ε, must be used. Such schemes have been developed in the literature, see [START_REF] Degond | Mach-number uniform asymptoticpreserving gauge schemes for compressible flows[END_REF][START_REF] Degond | An Asymptotic Preserving scheme for the Euler equations in a strong magnetic field[END_REF][START_REF] Degond | All Speed Scheme for the Low Mach Number Limit of the Isentropic Euler Equations[END_REF][START_REF] Haack | An All-Speed Asymptotic-Preserving Method for the Isentropic Euler and Navier-Stokes Equations[END_REF][START_REF] Tang | Second order all speed method for the isentropic Euler equations[END_REF][START_REF] Grenier | An accurate low-Mach scheme for a compressible two-fluid model applied to free-surface flows[END_REF][START_REF] Bispen | Asymptotic preserving IMEX finite volume schemes for low Mach number Euler equations with gravitation[END_REF][START_REF] Dimarco | Study of a New Asymptotic Preserving Scheme for the Euler System in the Low Mach Number Limit[END_REF][START_REF] Boscarino | All Mach Number Second Order Semi-implicit Scheme for the Euler Equations of Gas Dynamics[END_REF][START_REF] Dimarco | Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime[END_REF] for the isentropic Euler system and [START_REF] Munz | Linearized Acoustic Perturbation Equations for Low Mach Number Flow with Variable Density and Temperature[END_REF][START_REF] Cordier | An Asymptotic-Preserving all-speed scheme for the Euler and Navier-Stokes equations[END_REF][START_REF] Noelle | A Weakly Asymptotic Preserving Low Mach Number Scheme for the Euler Equations of Gas Dynamics[END_REF][START_REF] Dumbser | A conservative, weakly nonlinear semi-implicit finite volume scheme for the compressible Navier-Stokes equations with general equation of state[END_REF][START_REF] Chalons | An all-regime Lagrange-Projection like scheme for the gas dynamics equations on unstructured meshes[END_REF][START_REF] Dimarco | Study of a New Asymptotic Preserving Scheme for the Euler System in the Low Mach Number Limit[END_REF][START_REF] Boscheri | A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations[END_REF] for the full Euler system. They permit to avoid the time step limitations, the schemes are said to be asymptotically stable. And, they lead to consistent approximations of the limit incompressible model when the Mach number goes to zero, this corresponds to the asymptotic consistency property.

In practice, a possible strategy to obtain asymptotic preserving finite volume schemes consists in using IMEX (implicit-explicit) methods ( [START_REF] Steven | Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations[END_REF], [START_REF] Pareschi | Implicit-Explicit Runge-Kutta schemes for stiff systems of differential equations[END_REF]). For such schemes, the C.F.L. restriction is only related to the part treated explicitly. In our case, the flux of the Euler system (2.1) is split into two parts

F = F e + F i .
The first one, F e , will be treated explicitly while the other one, F i , will be treated implicitly. This flux splitting must be well chosen in order to obtain both asymptotic stability and asymptotic consistency and such that the computational cost of the scheme is not too high especially when ε is of order 1, in compressible regimes. It is important to conserve the properties of the classical explicit schemes like the cost of the scheme and the preservation of stationary states. The goal is then to construct an asymptotic preserving scheme impliciting as few terms as possible.

If in the case of the isentropic Euler equations, the flux splitting is now well known, for the full Euler equations, it is not so clear since we can find different flux splittings in the literature leading to different asymptotic preserving schemes, see [START_REF] Cordier | An Asymptotic-Preserving all-speed scheme for the Euler and Navier-Stokes equations[END_REF][START_REF] Dumbser | A conservative, weakly nonlinear semi-implicit finite volume scheme for the compressible Navier-Stokes equations with general equation of state[END_REF][START_REF] Chalons | An all-regime Lagrange-Projection like scheme for the gas dynamics equations on unstructured meshes[END_REF][START_REF] Dimarco | Study of a New Asymptotic Preserving Scheme for the Euler System in the Low Mach Number Limit[END_REF][START_REF] Boscarino | All Mach Number Second Order Semi-implicit Scheme for the Euler Equations of Gas Dynamics[END_REF][START_REF] Boscheri | A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations[END_REF]. Here, in Section 2.2, based on the analysis of the asymptotic preserving properties (stability and consistency), we select the flux splitting for constructing an IMEX AP (asymptotic preserving) scheme and we compare it to the different flux splittings proposed in the literature. We propose in Section 2.3, a new linear asymptotic preserving scheme based on the non linear scheme proposed in [START_REF] Boscheri | A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations[END_REF]. We prove the asymptotic consistency as well as its preservation of contact discontinuities. Furthermore, we numerically show that an upwinding on the implicit numerical fluxes is necessary for ensuring the low oscillatory property. Then, using a Fourier linear stability analysis, we prove that this new AP scheme is linearly L 2 stable under a C.F.L. condition independent of the Mach number ε. Additionally, this Chapter 2. Full Euler equations analysis emphasizes that the upwinding on the implicit part improves the stability. Numerical simulations presented in Section 2.3.4 show the good behavior of the scheme in the non linear case. Like in [START_REF] Dimarco | Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime[END_REF] for the isentropic case, we propose in Section 2.4 a second order extension based on the ARS-IMEX scheme ( [START_REF] Steven | Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations[END_REF]) and we use in Section 2.4.5 a MOOD process (see [START_REF] Diot | Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials[END_REF], [START_REF] Diot | The Multidimensional Optimal Order Detection method in the three-dimensional case: very highorder finite volume method for hyperbolic systems[END_REF]) in order to preserve the low oscillatory properties of the order one scheme to the second order schemes.

Analysis of the flux splitting

Choice of the flux splitting

In order to build an IMEX finite volume AP scheme in low Mach number regimes, we must decide which terms should be treated implicitly and so, we must set a flux decomposition F = F i + F e . If an order 1 scheme is considered, the parts F e and F i will be respectively explicitly and implicitly discretized leading to the following semi-discretization

W n+1 -W n ∆t + ∇ • F e (W n ) + ∇ • F i (W n+1 ) = 0. (2.11) 
We can find different flux splittings in the literature leading to different asymptotic preserving schemes, see [START_REF] Cordier | An Asymptotic-Preserving all-speed scheme for the Euler and Navier-Stokes equations[END_REF][START_REF] Chalons | An all-regime Lagrange-Projection like scheme for the gas dynamics equations on unstructured meshes[END_REF][START_REF] Dumbser | A conservative, weakly nonlinear semi-implicit finite volume scheme for the compressible Navier-Stokes equations with general equation of state[END_REF][START_REF] Dimarco | Study of a New Asymptotic Preserving Scheme for the Euler System in the Low Mach Number Limit[END_REF][START_REF] Boscarino | All Mach Number Second Order Semi-implicit Scheme for the Euler Equations of Gas Dynamics[END_REF][START_REF] Thomann | An All Speed Second Order IMEX Relaxation Scheme for the Euler Equations[END_REF][START_REF] Boscheri | A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations[END_REF]. Let us first note that a fully implicit scheme (F e = 0, F i = F ) is of course asymptotic preserving but its cost, especially in compressible regimes, is too high due to the nonlinearity of the system. Moreover, the introduction of implicit terms increases the viscosity of the scheme and thus decreases its accuracy. Finally, an implicit treatment of the whole flux is not necessary to build an AP scheme. We therefore wish to treat implicitly as few terms as possible while guaranteeing the AP character of the scheme. Furthermore, in the case of an explicit scheme, F e = F and F i = 0, the semidiscretization reads

ρ n+1 -ρ n ∆t + ∇ • q n = 0, (2.12a) 
q n+1 -q n ∆t + ∇ • q n ⊗ q n ρ n + 1 ε ∇p n = 0, (2.12b) 
E n+1 -E n ∆t + ∇ • (E n + p n ) q n ρ n = 0, (2.12c) 
E n+1 = p n+1 γ -1 + ε ρ n+1 |u n+1 | 2 2 , (2.12d) 
and we have seen that it is not asymptotically stable. Moreover, the scheme is not asymptotically consistent either, meaning that we do not obtain a constant pressure and a divergence free velocity when ε tends to 0. Indeed, following the formal asymptotic limit in the continuous case, we can perform the formal asymptotic limit of the explicit semi-discretization. Then, multiplying (2.12b) by ε and passing to the limit gives only the constraint ∇p n = 0 on W n when W n+1 is calculated.

It does not impose ∇p n+1 = 0 and so an implicit discretization of the pressure gradient term in the momentum equation is necessary to obtain the asymptotic consistency. But, this is not sufficient since we must recover the incompressibility constraint ∇ • u n+1 = 0 from the energy equation like in the continuous case (see Section 2.1.1). This means that a part of the energy flux term (E + p) u must be treated implicitly. where the reformulated compressible system RM ε reads

M ε RM ε M 0 RM 0 ε → 0 ε → 0 Figure 2.
∂ t ρ + ∇ • q = 0, (2.13a) 
∂ t q + ∇ • q ⊗ q ρ + 1 ε ∇p = 0, (2.13b) 
∂ t ∂ t p γ p + u • ∇p γ p - 1 ε ∇ • 1 ρ ∇p = ∇ • (u • ∇) u , (2.13c) E = p γ -1 + ε 2 |q| 2 ρ .
(2.13d)

2. The reformulated compressible Euler system RM ε is conditionally equivalent to the compressible Euler system M ε . More precisely

RM ε =⇒ M ε if and only if ∂ t p( • , 0) = -u( • , 0) • ∇p( • , 0) -γp( • , 0) ∇ • u( • , 0).
Proof. Let us start by the proof of 1. We begin from (2.1)

∂ t ρ + ∇ • q = 0, ∂ t q + ∇ • q ⊗ q ρ + 1 ε ∇p = 0, ∂ t E + ∇ • (E + p) q ρ = 0.
The velocity equation is obtained from the momentum and mass conservation:

ρ ∂ t u + ρ (u • ∇) u + 1 ε ∇p = 0.
In the case of the incompressible system, we used the incompressibility constraint ∇ • u = 0 which comes from the limit of the energy equation and is no longer true in the compressible regime. But, we can still use the energy equation. Using the relations

E = k ε + p γ -1 , E + p = k ε + h,
where k ε = ε ρ |u| 2 2 is the kinetic energy, p γ-1 is the internal energy and h = γp γ-1 is the enthalpy. The energy equation gives

∂ t E + ∇ • ((E + p) u) = ∂ t k ε + ∂ t p γ -1 + ∇ • ((k ε + h) u) = ∂ t k ε + ∂ t p γ -1 + ∇ • (k ε u) + ∇ • γp γ -1 u = 0. Noting that γp γ -1 u = p u + 1 γ -1 p u and ∇ • (p u) = u • ∇p + p∇ • u, we get ∂ t k ε + ∂ t p γ -1 + ∇ • (k ε u) + u • ∇p + p∇ • u + 1 γ -1 ∇ • (p u) = 0.
Then, using the mass and velocity equations, we eliminate the kinetic part since

∂ t k ε + ∇ • (k ε u) + u • ∇p = εu • ρ ∂ t u + ρ (u • ∇) u + 1 ε ∇p + ε 2 |u| 2 (∂ t ρ + ∇ • (ρu)) = 0.
And so, having

∂ t p γ -1 + p∇ • u + 1 γ -1 ∇ • (p u) = 0,
the energy equation yields

∂ t p γ -1 + u • ∇p γ -1 + γp γ -1 ∇ • u = 0. (2.14)
Now, dividing the velocity equation ρ ∂ t u + ρ (u • ∇) u + 1 ε ∇p = 0 by ρ, and taking the divergence of the resulting equation we obtain an expression for ∇ • ∂ t u:

∇ • ∂ t u + ∇ • (u • ∇)u + 1 ε ∇ • 1 ρ ∇p = 0. (2.15) 
Then, dividing the internal energy equation (2.14) by the enthalpy γp γ-1 and taking the time derivative, the resulting equation is

∂ t ∂ t p γ p + u • ∇p γ p + ∇ • ∂ t u = 0.
We insert (2.15) into the previous equation and we obtain

∂ t ∂ t p γ p + u • ∇p γ p - 1 ε ∇ • 1 ρ ∇p = ∇ • (u • ∇) u , (2.16) 
which is the nonlinear pressure wave equation in the fluid. Thus, changing the energy equation (2.1c) into (2.16) we recover RM ε .

Let us prove 2. The mass and momentum equations yield an expression for ∂ t ∇ • u given by (2.15). Then, (2.13c) yields

∂ t ∂ t p γ p + u • ∇p γ p + ∇ • u = 0.
Integrating the above equation on time gives

∂ t p( • , t) γp( • , t) + u( • , t) • ∇p( • , t) γp( • , t) + ∇ • u( • , t) = ∂ t p( • , 0) γp( • , 0) + u( • , 0) • ∇p( • , 0) γp( • , 0) + ∇ • u( • , 0). (2.17)
Then, (2.17) holds the internal energy equation (2.14) if and only if it is satisfied at time t = 0. That is, if and only if

∂ t p( • , 0) = -u( • , 0) • ∇p( • , 0) -γp( • , 0) ∇ • u( • , 0). (2.18)
And, thus the energy equation (2.1c) is recovered if and only if (2.18) is satisfied.

Next, let us investigate the limit ε → 0 of RM ε and compare it to the reformulated incompressible model (see 2.1.2).

Limit of the reformulated compressible model and reformulated incompressible model

We prove the following Lemma.

Lemma 2.2.2. (Formal)

The limit of the reformulated compressible model RM ε given by (2.13) is not unconditionally equal to the reformulated incompressible model RM 0 given by (2.8).

More precisely lim

ε→0 RM ε = RM 0 if and only if ∂ t p( • , 0) = 0.
Proof. Let us first study the formal limit of RM ε . We denote by (ρ ε , q ε , E ε , p ε ) the solution of (2.13) with general initial conditions and the impermeability boundary condition u ε • ν = 0 on ∂Ω. Inserting the asymptotic expansion of the previous solution gives:

ε -1 : ∇p 0 = 0, (2.19a) 
∇ • 1 ρ 0 ∇p 0 = 0, (2.19b) 
ε 0 : ∂ t ρ 0 + ∇ • q 0 = 0, (2.19c) 
∂ t q 0 + ∇ • q 0 ⊗ q 0 ρ 0 + ∇p 1 = 0, (2.19d) 
d dt p 0 (t) γ p 0 (t) -∇ • 1 ρ 0 ∇p 1 = ∇ • (u 0 • ∇) u 0 , (2.19e) E 0 (t) = p 0 (t) γ -1 . (2.19f)
Using (2.19c) into (2.19d) and taking the divergence yields

∇ • ∂ t u 0 + ∇ • (u 0 • ∇)u 0 = -∇ • 1 ρ 0 ∇p 1 , (2.20) 
Inserting the result into the limit pressure equation (2.19e) gives

∂ ∂ t p 0 (t) γ p 0 (t) -∇ • u 0 (x, t) = 0. (2.21)
Integrating (2.21) on Ω and using the boundary condition u 0 • ν = 0 on ∂Ω, we obtain for all t > 0

∂ ∂t |Ω|p 0 (t) γ p 0 (t) - ∂Ω u 0 (x, t) • ν(x) dσ(x) = 0.
And so,

|Ω| ∂ ∂ t p 0 (t) γ p 0 (t) = 0. (2.22)
Then, with (2.19e) we recover the reformulated pressure equation

-∇ • 1 ρ 0 ∇p 1 = ∇ • (u 0 • ∇) u 0 .
Now, that we know the limit of RM ε we can prove under which condition it is equal to the reformulated incompressible model. In RM 0 , the state equation reads

E 0 = p 0 γ -1 = 1 |Ω| Ω E 0 (x, 0) dx,
whereas lim ε→0 RM ε only gives a constant pressure and energy in space but not in time. We have for all t > 0

E 0 (t) = p 0 (t) γ -1 .
Furthermore, integrating (2.21) in time and space gives for t > 0

p 0 (t) = p 0 (t) 1 |Ω| Ω ∂ t p 0 (x, 0) p 0 (x, 0) dx,
And so for all t ≥ 0,

∂ t p 0 ( • , t) = 0 if and only if ∂ t p 0 ( • , 0) = 0.
In this case, we recover for all t > 0

E 0 = p 0 γ -1 = 1 |Ω| Ω p 0 (x, 0) γ -1 dx = 1 |Ω| Ω E 0 (x, 0) dx.
To conclude on the remarks, the reformulation of the compressible model can be useful to better understand the transition to the low Mach number limit but the resulting system is not unconditionally equivalent. This also highlights the importance of constructing a scheme based on the conservative variables.
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From a numerical point of view, looking at the pressure wave equation of the reformulated Euler system (2.13)

∂ t ∂ t p γ p + u • ∇p γ p - 1 ε ∇ • 1 ρ ∇p = ∇ • (u • ∇) u , (2.23) 
we see that if the second order term in space

1 ε ∇ • 1 ρ ∇p ,
is explicit, we recover the classical constrained C.F.L. which imposes ∆t of the order of √ ε ∆x for ensuring the stability of the scheme.

Then, for constructing a scheme, for the Euler system (2.1), uniformly stable with respect to ε, the time discretization must lead to an implicit discretization of the above term and thus, we need an implicit discretization of the term

h ∇ • u = γ p γ -1 ∇ • u,
in equation (2.14). And, since we must work with the conservative variables, especially when ε is of order 1 to compute the entropic solution, we need an implicit discretization of the term ∇ • (h u) in the energy flux in the Euler equations.

Chosen flux splitting : asymptotic preserving properties

Following the previous analysis, we conclude that a possible choice for the flux splitting is given by

F e (W ) =   ρu ρu ⊗ u k ε (W ) u   , F i (W ) =   0 1 ε p Id R 3 h(W ) u   , (2.24) 
where

k ε (W ) = ε ρ |u| 2 /2 and h(W ) = γp γ-1 = γ (E -k ε (W )
). Note that this flux splitting was first introduced in [START_REF] Vázquez-Cendón Eleuterio | Flux splitting schemes for the Euler equations[END_REF] but not in the context of AP schemes in the low Mach number limit. The authors consider this flux splitting for building schemes which ensure the recognition of contact discontinuities and shear waves. The same splitting is used in [START_REF] Dumbser | A conservative, weakly nonlinear semi-implicit finite volume scheme for the compressible Navier-Stokes equations with general equation of state[END_REF][START_REF] Tavelli | A pressure-based semi-implicit spacetime discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier-Stokes equations at all Mach numbers[END_REF][START_REF] Boscheri | A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations[END_REF][START_REF] Boscheri | High order pressure-based semi-implicit IMEX schemes for the 3D Navier-Stokes equations at all Mach numbers[END_REF] for constructing an AP scheme in the low Mach number limit for the full Euler equations with a finite volume discretization on staggered grids in [START_REF] Dumbser | A conservative, weakly nonlinear semi-implicit finite volume scheme for the compressible Navier-Stokes equations with general equation of state[END_REF], on collocated grids in [START_REF] Boscheri | A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations[END_REF][START_REF] Boscheri | High order pressure-based semi-implicit IMEX schemes for the 3D Navier-Stokes equations at all Mach numbers[END_REF] and with a staggered DG (discontinuous Galerkine) method in [START_REF] Tavelli | A pressure-based semi-implicit spacetime discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier-Stokes equations at all Mach numbers[END_REF].

The semi-discretization writes

ρ n+1 -ρ n ∆t + ∇ • q n = 0, (2.25a 
)

q n+1 -q n ∆t + ∇ • q n ⊗ q n ρ n + 1 ε ∇p n+1 = 0, (2.25b) 
E n+1 -E n ∆t + ∇ • k ε (W n ) q n ρ n + ∇ • h(W n+1 ) q n+1 ρ n+1 = 0, (2.25c) E n+1 = p n+1 γ -1 + ε ρ n+1 |u n+1 | 2 2 . (2.25d)
Let us study its properties. We prove the following result Lemma 2.2.3. Assuming impermeability boundary conditions u • ν = 0 on ∂Ω, the semi-discretization (2.25) satisfies the following properties: (i)-Necessary condition for the asymptotic stability: In one dimension, each of the Jacobian matrices DF e and DF i have real eigenvalues. Those of DF e are bounded uniformly when ε tends to 0. (ii)-Asymptotic consistency: Formally passing to the limit ε tends to zero into the semi-discretization in time, we recover an approximation of the incompressible Euler equations (2.7). In particular, we have

E n+1 = p n+1 γ-1 = 1 
|Ω| Ω E 0 (x) dx, and so for all n ≥ 0,

∇p n+1 = ∇E n+1 = 0,
and for all n ≥ 1,

∇ • u n+1 = 0.
(iii)-Preservation of contact discontinuities:

Du n (x) = 0, ∇p n (x) = 0. ⇒ There exists a solution W n+1 such that Du n+1 (x) = 0, ∇p n+1 (x) = 0,
where

Du(x) = (∂ x j u i (x)) 1≤i,j≤d denotes the Jacobian matrix of u = (u 1 , • • • , u d ) ∈ R d .
Before proving this result, let us first make two important remarks.

1. Property (i) is related to the asymptotic stability of the scheme while Property (ii) is related to the asymptotic consistency and Property (iii) to the preservation of stationary incompressible solutions. Indeed, in the case of the isentropic Euler system, it has been shown in [START_REF] Dimarco | Study of a New Asymptotic Preserving Scheme for the Euler System in the Low Mach Number Limit[END_REF] with a one dimensional linear stability analysis, that for ensuring the asymptotic stability, the discretization must satisfy the following essential properties: the upwinding of the explicit numerical fluxes must be related only on the eigenvalues of the explicit matrix DF e , the Jacobian matrix of the explicit part of the flux. Then, the implicit part of the flux, F i , can be discretized with a centered solver. In this case, the scheme will be only L 2 stable and some oscillations may appear during the simulations but they are damped for long times. These oscillations can be removed, or at least reduced, using an upwind solver for the implicit part, this upwinding can be related on the eigenvalues of the implicit matrix DF i , the Jacobian matrix of the part of the flux which is implicitly discretized. These eigenvalues are proportional to 1/ √ ε and so the added numerical viscosity can be important in the low Mach number regime. Nevertheless, the C.F.L. stability condition of such IMEX schemes is only related to the eigenvalues of the explicit matrix DF e . Following this result, for ensuring the asymptotic stability of the scheme, it is necessary that each of the Jacobian matrices (DF e and DF i ) have real eigenvalues, and those of DF e must be uniformly bounded when ε tends to 0. Furthermore, let us note that the hyperbolicty of each "sub-matrix", DF e and DF i , is not required neither in the linear stability analysis conducted in Section 2.3.3, neither in the numerical scheme. Then, we assume that they could have multiple real eigenvalues and not be diagonalizable. Furthermore, Property (ii) shows that passing to the limit ε tends to zero into (2.11), (2.24), we recover an approximation of the incompressible Euler equations (2.7). Finally, it is important to note that a fluid with constant velocity and pressure is a "stationary solution" of the compressible and incompressible Euler equations. Then, Property iii) shows that the scheme preserves these stationary incompressible solutions and so contact discontinuities.

2. Note that the implicit treatment of the full "enthalpy term" in the energy equation is necessary for the asymptotic consistency: if we change the flux splitting by

F e (W ) =   ρ u ρu ⊗ u k ε (W ) u + β h(W ) u   , F i (W ) =    0 1 ε p Id R 3 (1 -β) h(W ) u    , with β ∈ [0, 1[, then Property (ii) is lost.
Indeed, formally passing to the limit ε tends to 0 into the momentum equation, we obtain like for β = 0, ∇p n+1 = ∇E n+1 = 0 for all n ≥ 0. Then, integrating on Ω the energy equation using the boundary condition u n •ν = 0 on ∂Ω for all n ≥ 0 (where ν is the unit normal to ∂Ω outward to Ω) gives:

|Ω|E n+1 = Ω E n (x)dx + ∂Ω (k n ε (x) βh n (x))u n (x) • ν(x) dσ(x) + ∂Ω (1 -β)h n+1 (x)u n+1 (x) • ν(x) dσ(x) = Ω E n (x)dx = Ω E 0 (x)dx.
Then, for all n ≥ 1, h n+1 = h n = γ Ω E 0 (x)dx. But now, the energy equation gives

E n+1 = E n -∆t β h n ∇ • u n -∆t (1 -β) h n+1 ∇ • u n+1 ,
and implies, for all n ≥ 1,

∇ • u n+1 = β β -1 ∇ • u n .
The incompressibility constraint is recovered only if β = 0 or if the initial velocity is well-prepared to the low Mach number regimes, that is, close to a divergence free velocity. And so, the energy flux splitting corresponding to β = 0 is the best one for ensuring the asymptotic consistency with general initial data. To the best of our knowledge, this is the first time that it is explained why this is the better choice for building a finite volumes IMEX AP scheme in the low Mach number limit.

Proof. Concerning assertion (i).

In one dimension, the Jacobian matrices DF e (W ) and DF i (W ) associated to respectively the explicit and implicit fluxes are given by

DF e (W ) =    0 1 0 -u 2 2u 0 -εu 3 3 2 εu 2 0    , DF i (W ) =    0 0 0 γ-1 2 u 2 -(γ -1)u γ-1 ε -γE ρ u + γε u 3 γE ρ -3εγ 2 u 2 γu    .
A simple calculation shows that the eigenvalues of DF e are given by 0 and u of multiplicity 2 while those of DF i are given by 0 and u/2 ± u 2 /4 + c 2 /ε where we recall that c 2 = γ p/ρ. It has been already proven in [START_REF] Boscheri | A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations[END_REF], that this spliting satisfies (ii) with initial conditions which are not necessarily well prepared to the low Mach number regime (that is, initial conditions with a pressure and a velocity that are not necessarily close to a constant and a divergence free vector field, respectively). Let us recall the proof. Formally passing to the limit ε tends to 0 into the momentum equation multiplied by ε, we obtain ∇p n+1 = 0 and thanks to the limit equation of state, we obtain ∇E n+1 = 0. Integrating, the limit of the energy equation and using the boundary condition (u n+1 • ν = u n • ν = 0 on ∂Ω where ν is the unit normal to ∂Ω outward to Ω) yields for all n ≥ 0,

|Ω|E n+1 = Ω E n (x)dx + ∂Ω k n ε (x) u n (x) • ν(x) dσ(x) + ∂Ω h n+1 (x)u n+1 (x) • ν(x) dσ(x) = Ω E n (x)dx = Ω E 0 (x)dx.
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We recover that for all n ≥ 0,

E n+1 = 1 |Ω| Ω E 0 (x) dx.
Then, E n+1 = E n for all n ≥ 1, and so using another time the limit energy equation:

E n+1 = E n -∆t h n+1 ∇ • u n+1 , we recover for all n ≥ 1, the incompressibility constraint ∇ • u n+1 (x) = 0,
for all x ∈ Ω. Moreover, if the initial data are well prepared, that is, if ∇E( • , 0) = 0 and so ∇E 0 = 0, then, E 1 = E 0 and we also recover

∇ • u 1 (x) = 0,
for all x ∈ Ω. Otherwise, if the initial data are not well prepared, that is, if

∇E( • , 0) = 0, then we have E 1 = 1 |Ω| Ω E 0 (x) dx and ∇ • u 1 (x) = - E 0 (x) -E 1 ∆t γE 1 , for all x ∈ Ω. Let us now prove (iii). If u n (x) = u ∈ R d and p n (x) = p > 0 are constant, then the mass equation gives ρ n+1 = ρ n -∆t u • ∇ρ n .
And, thanks to the momentum equation

ρ n+1 u n+1 = (ρ n -∆t u • ∇ρ n ) u - ∆t ε ∇p n+1 = ρ n+1 u - ∆t ε ∇p n+1 .
And so, there exists a solution such that u n+1 = u and p n+1 = p, since the previous equation yields ρ n+1 u = ρ n+1 u and the energy equation yields

E n+1 = E n -∆t u • ∇k n ε = p (γ -1) + ε ρ n |u| 2 2 -∆t u • ∇ ε ρ n |u| 2 2 = p (γ -1) + ε 2 |u| 2 (ρ n -∆t u • ∇ρ n ) .
And so, we recover the state equation

E n+1 = p (γ-1) + ε ρ n+1 |u| 2 2 .

State of the Art of all Mach number IMEX finite volume schemes

Let us look at the properties (i) -(iii) of Lemma 2.2.3 for some flux splittings found in the literature.

First family of splittings

It is not possible to be exhaustive, as there are far too many works on the subject, so we limit ourselves to flux splittings close to the one considered in this work. In the pioneering work [START_REF] Cordier | An Asymptotic-Preserving all-speed scheme for the Euler and Navier-Stokes equations[END_REF], the authors proposed the following semi-discretization:

ρ n+1 -ρ n ∆t + ∇ • q n = 0, (2.26a 
)

q n+1 -q n ∆t + ∇ • q n ⊗ q n ρ n + α ∇p n + (1/ε -α) ∇p n+1 = 0, (2.26b) E n+1 -E n ∆t + ∇ • (E n + p n ) q n+1 ρ n = 0, (2.26c) 
E n+1 = p n+1 γ -1 + ε ρ n |u n | 2 2 , (2.26d) 
and where α ≥ 0 must be well chosen for ensuring the asymptotic stability and avoid oscillations. In many test cases, the authors choose α = 0 but α = 10 is also considered. The previous semi-discretization can be rewritten as

W n+1 -W n ∆t + ∇ • F ( W n,n+1 ) = 0, with F ( W n,n+1 ) given by q n , ρ n u n ⊗ u n + α p n Id R 3 + 1 ε -α p n+1 Id R 3 , E n + p n ρ n q n+1 , (2.27) and ∇ • F ( W n,n+1 ) cannot be written in a conservative flux splitting form ∇ • F e (W n ) + ∇ • F i (W n+1
). And, even for α = 0, it is a multi-step method since p n depends on E n and (ρ n-1 , q n-1 ). Hence, it cannot either be written (in one dimension) into the non-conservative following form

A e ∂ x W n + A i ∂ x W n+1
. Then, (i) is meaningless and the semi-discretization is outside the scope of our study. Note that Property (ii) is satisfied up to O(∆t) but not (iii) in general. Let us briefly recall the proofs.

Proof. For the proof of (ii), passing to the limit into the momentum and state equations we have ∇p n+1 = ∇E n+1 = 0 for all n ≥ 0. Then integrating the energy equation on Ω and using the impermeability boundary condition gives

E n+1 = 1/|Ω| Ω E 0 (x)dx for all n ≥ 1. Noting that ρ n+1 = ρ n + O(∆t), the energy equation gives ∇ • ρ n+1 ρ n u n+1 = ∇ • ρ n + O(∆t) ρ n u n+1 = 0,
and so the incompressiblity constraint ∇ • u n+1 = 0 is recovered up to an error of O(∆t) for all n ≥ 1.

For the proof of (iii), if u n (x) = u ∈ R d and p n (x) = p > 0 are constant, the mass equation gives ρ n+1 = ρ n -∆t u • ∇ρ n . And thanks to the momentum equation

ρ n+1 u n+1 = ρ n+1 u -∆t(1/ε -α)∇p n+1 .
Therefore, there exists a solution such that u n+1 = u and p n+1 = p, since the previous equation yields ρ n+1 u = ρ n+1 u.

Then, using ρ n+1 = ρ n + O(∆t), the energy equation yields

E n+1 = E n -∆t u∇ • (E n + p n ) ρ n+1 ρ n = p (γ -1) + ε 2 ρ n-1 |u| 2 -∆t u • ∇ γ γ -1 p + ε 2 ρ n-1 |u| 2 ρ n + O(∆t) ρ n = p (γ -1) + ε 2 |u| 2 ρ n-1 -∆t u • ∇ρ n-1 + O(∆t 2 ).
And so, using the mass transport equation

ρ n = ρ n-1 -∆t u • ∇ρ n-1
, we recover the state equation

E n+1 = p (γ -1) + ε 2 ρ n |u| 2 ,
only up to O(∆t 2 ). The contact discontinuities are therefore not exactly preserved.

In [START_REF] Dimarco | Study of a New Asymptotic Preserving Scheme for the Euler System in the Low Mach Number Limit[END_REF], a modified flux splitting is proposed to obtain a one-step method. And so, the system can be rewritten in a non-conservative form as follows (in one dimension):

W n+1 -W n ∆t + A e (W n , W n+1 ) ∂ x W n + A e (W n+1 , W n ) ∂ x W n+1 = 0. (2.28) 
In this work, a first flux splitting was proposed having the advantage that it lead to a conservative flux splitting. The main advantages of having a conservative form are that the theoretical results obtained for Implicit-Explicit (IMEX) methods can be applied. Unfortunately, both its conservative and non-conservative versions, do not satisfy Property (i), in particular the eigenvalues associated to the explicit part are not always real. We will also prove that Property (ii) is satisfied but not Property (iii). Then, they are able to modify the original flux splitting to satisfy Property (i). This last flux splitting (2.32) is the one used in [START_REF] Dimarco | Study of a New Asymptotic Preserving Scheme for the Euler System in the Low Mach Number Limit[END_REF] and the analysis is given below (see Lemma 2.2.5).

First let us present and study the properties of the first non-hyperbolic splitting and its conservative version. The original splitting consists in setting α = 0 into (2.26) and changing into the energy equation

(2.26c), ∇ • (E n + p n )q n+1 /ρ n by ∇ • (E n + pn )q n+1 /ρ n where pn = (γ -1) (E n -ε ρ n |u n | 2 /2), then the energy equation is changed into E n+1 -E n ∆t + ∇ • γE - (γ -1)ε 2 |q| 2 ρ n q n+1 ρ n = 0. (2.29)
In [START_REF] Dimarco | Study of a New Asymptotic Preserving Scheme for the Euler System in the Low Mach Number Limit[END_REF], this semi-discretization is modified into a conservative one. This conservative semi-discretization is given by

W n+1 -W n ∆t + ∇ • F e (W n ) + ∇ • F i (W n+1 ) = 0, (2.30a) 
with

F e (W ) =         q q ⊗ q ρ - γ -1 2 |q| 2 ρ Id R 3 - (γ -1)ε 2 |q| 2 q ρ 2         , F i (W ) =        0 γ -1 ε E γEq ρ        . (2.30b)
It is obtained expressing p n+1 in the momentum equation in terms of W n and E n+1 using the state equation

E n+1 = p n+1 /(γ -1) + ε ρ n |u n | 2 /2.
Lemma 2.2.4. Assuming impermeability boundary conditions u • ν = 0 on ∂Ω, the semi-discretization (2.30) does not satisfy Properties (i) and (iii) of Lemma 2.2.3 but does satisfy Property (ii).

Proof. Let us prove (i). The Jacobian matrices DF e and DF i associated respectively to F e and F i are

DF e (W n ) =      0 1 0 γ -3 2 (u n ) 2 (3 -γ)u n 0 (γ -1)(u n ) 3 -(γ -1)ε 3(u n ) 2 2 , 0      , DF i(W n+1 ) =       0 0 0 0 0 γ -1 ε - γE n+1 (ρ n + 1) 2 0 γ ρ n+1       . (2.31)
Then, the eigenvalues of DF e are

(3 -γ) |u| 2 ± (γ -3) (γ -1) |u| 2 , 0.
Those of DF i are 0 with multiplicity 2 and γ/ρ. Since γ > 1, the explicit eigenvalues are complex when γ < 3 and so does not satisfy Property (i).

Remark 2. Let us note that, the non-conservative form (where the energy is given by (2.29) ) does not satisfy Property (i) either. The eigenvalues of the explicit matrix

A e (W n , W n+1 ) are (3 -γ) u n /2 ± (γ -3) (γ -1)|u n |/2 and γ q n+1 /ρ n . Those of the implicit matrix A i (W n , W n+1 ) are ± (γ -1) (E n + pn )/(ρ n+1 ε) and 0.
For the proof of (ii), passing to the limit in the momentum equation multiplied by ε and the state equation gives ∇E n+1 = ∇p n+1 = 0 for all n ≥ 0. Then, integrating on Ω the limit energy equation and using the boundary condition u n • ν = 0 on ∂Ω gives for all n ≥ 1,

E n+1 = E n = 1 |Ω| Ω E 0 (x)dx.
Using again the limit energy equation, we recover the incompressibility constraint

∇ • u n+1 = 0, Chapter 2. Full Euler equations for all n ≥ 1.
For the proof of (iii), if u n (x) = u ∈ R d and p n (x) = p > 0 are constant, then the mass equation gives ρ n+1 = ρ n -∆t u • ∇ρ n . Now, using the state equation, the momentum equation

ρ n+1 u n+1 = (ρ n -∆t u • ∇ρ n ) u -∆t/ε∇p n+1 = ρ n+1 u - ∆t/ε∇p n+1
. So u n+1 = u and p n+1 = p is a solution for the momentum equation. Now, the energy equation yields

E n+1 = E n + ∆t (γ -1)u • ∇ ε 2 ρ n |u| 2 -∆t γE n+1 q n+1 ρ n+1 = p (γ -1) + ε 2 ρ n-1 |u| 2 -∆t (γ -1)u • ∇p + ∆tu • ∇E n+1 = p (γ -1) + ε 2 |u| 2 ρ n-1 -∆tu • ∇ρ n = p (γ -1) + ε 2 |u| 2 ρ n + O(∆t 2 ),
where we used the mass equation ρ n = ρ n-1 -∆tu • ∇ρ n-1 twice. Thus, the state

E n+1 = p (γ-1) + ε 2 ρ n |u| 2 is not exactly satisfied.
To recover real eigenvalues for the explicit part, a non conservative flux splitting is proposed in [START_REF] Dimarco | Study of a New Asymptotic Preserving Scheme for the Euler System in the Low Mach Number Limit[END_REF]. It consists in replacing ∇ • (E n + p n )q n+1 /ρ n by ∇ • (E n + pn )q n+1 /ρ n but this time, an implicit discretization of the mass equation is considered. The semi-discretization is given by

ρ n+1 -ρ n ∆t + ∇ • q n+1 = 0, (2.32a 
)

q n+1 -q n ∆t + ∇ • q n ⊗ q n ρ n + 1 ε ∇p n+1 = 0, (2.32b) 
E n+1 -E n ∆t + ∇ • (E n + pn ) q n+1 ρ n = 0, (2.32c) 
E n+1 = p n+1 γ -1 + ε ρ n |u n | 2 2 , (2.32d) 
where we recall that pn = (γ-1)

(E n -ε ρ n |u n | 2 /2).
The density is treated explicitly into the energy flux in order to have an uncoupled scheme. Note that this flux splitting is also used in [START_REF] Boscarino | All Mach Number Second Order Semi-implicit Scheme for the Euler Equations of Gas Dynamics[END_REF].

The flux splitting can be rewritten in one dimension, into the form

A e ∂ x W n + A i ∂ x W n+1 (2.28)
where

A e (W n , W n+1 ) =      0 0 0 γ -3 2 (u n ) 2 (3 -γ)u n 0 - γE n (ρ n ) 2 + (γ -1)ε (u n ) 2 ρ n q n+1 -(γ -1)εu n q n+1 ρ n γ q n+1 ρ n      , A i (W n , W n+1 ) =      0 1 0 0 0 γ -1 ε 0 E n + pn ρ n 0      . (2.33)
Lemma 2.2.5. Assuming impermeability boundary conditions u • ν = 0 on ∂Ω, the semi-discretization (2.32) satisfies the necessary condition for asymptotic stability: Property (i) of Lemma 2.2.3 but does not satisfy Properties (ii) and (iii), respectively the asymptotic consistency and the preservation of contact discontinuities.

Proof. The eigenvalues of A e (W n , W n+1 ) are given by 0, γ q n+1 /ρ n , (3γ)u n and those of

A i (W n , W n+1 ) are ± γ -1 ε E n + pn ρ n , 0.
Then, Property (i) is satisfied. Formally passing to the limit into (2.32) yields ∇p n+1 = ∇E n+1 = 0 and E n+1 =

p n+1 γ-1 = 1/|Ω| Ω E 0 (x)
dx for all n ≥ 0. But, now, the energy equation gives the incompressibility constraint up to an error of order ∆t, since the energy equation gives for all n ≥ 1:

∇ • (q n+1 /ρ n ) = ∇ • (u n+1 ρ n+1 /ρ n ) = 0 and so, using the mass equation gives ∇ • ρ n+1 /ρ n u n+1 = ∇ • u n+1 -∆t∇ • ∇ • q n+1 /ρ n u n+1 = 0.
And so, the asymptotic consistency is obtained up to an error of order ∆t and (ii) is not exactly satisfied. Now, let us prove that (iii) is not satisfied in general. If u n (x) = u ∈ R d and p n (x) = p > 0 are constant, then we still have

ρ n+1 u n+1 = (ρ n -∆t u • ∇ρ n ) u -∆t/ε∇p n+1 .
And, if u n+1 = u and p n+1 = p, we obtain ρ n+1 u = (ρ n -∆t u • ∇ρ n ) u but thanks to the mass equation,

ρ n+1 = ρ n -∆t ∇ • (ρ n+1 u n+1 ) = ρ n -∆t u • ∇ρ n+1 = ρ n -∆t u • ∇ρ n ,
in general. We only get

ρ n+1 u = (ρ n -∆t u • ∇(ρ n + O(∆t) ) ) u = ρ n+1 u + O(∆t 2 ).
Then, there does not always exist a solution such that u n+1 = u and p n+1 = p.

Finally, let us note that with this family of flux splittings, an important advantage is that the resulting schemes can be solved in an uncoupled way. This is very important because it allows the construction of schemes with a not to high computational cost. This is especially true when dealing with multi-dimensional systems, it avoids solving large linear systems. The uncoupled form of the scheme is obtained with a reformulation of the energy equation like in the continuous case (see Section 2.2.1.1).

For the semi-discretization (2.32), we obtain inserting the expression of q n+1 given by (2.32b) into the energy equation (2.32c):

E n+1 = E n -∆t ∇ • E n + pn ρ n q n -∆t∇ • q n ⊗ q n ρ n -∆t 1 ε ∇p n+1 (2.34)
Then, replacing p n+1 by the state equation

p n+1 = (γ -1)(E n+1 -ε ρ n |u n | 2 ),
we obtain a linear equation on the unknown E n+1 . With this information the momentum can be updated with (2.32b) (where the pressure p n+1 is expressed with the state equation) and finally the density is given by (2.32a).

Second family of splittings

Let us remark that all considered flux splittings do not perfectly separate pressure and fluid waves. Indeed, the eigenvalues of the implicit part depend on the fluid velocity in each case. It is in fact possible to find such a flux splitting. Let us consider the flux splitting inspired by the operator splitting strategy like proposed in [START_REF] Chalons | An all-regime Lagrange-Projection like scheme for the gas dynamics equations on unstructured meshes[END_REF].

Then, the semi-discretization consists in an explicit treatment for the transport terms with the fluid velocity:

ρ n+1 -ρ n ∆t + ∇ • q n = 0, (2.35a 
) 

q n+1 -q n ∆t + ∇ • q n ⊗ q n ρ n + 1 ε ∇p n+1 = 0, (2.35b) E n+1 -E n ∆t + ∇ • E n q n ρ n + ∇ • p n+1 q n+1 ρ n+1 = 0, (2.35c) 
E n+1 = p n+1 γ -1 + ε ρ n+1 |u n+1 | 2 2 . ( 2 
u(x, 0) = u 0 (x) with ∇ • u 0 (x) = 0.
Proof. In one dimension, the Jacobian matrices associated to F e and F i are given by

DF e (W ) =     0 1 0 -u 2 2u 0 - u ρ E E ρ u     , DF i (W ) =       0 0 0 γ -1 2 u 2 -(γ -1)u γ -1 ε + εc 2 u γ - (γ -1)(γ -2) 2γ εu 2 - εc 2 γ + ε(γ -1)u 2 -(γ -1)u      
, where the eigenvalue of DF e is u of multiplicity 3 and those of the implicit matrix DF i are 0 and ± (γ -1) c 2 /(γ ε). Then, Property (i) is satisfied and we can see that this flux splitting perfectly separates the transport and the pressure waves since the eigenvalues of the implicit matrix do no more depend on u and those of the explicit matrix do not depend on c.

Let us look at the asymptotic consistency. Formally passing to the limit ε tends to 0 into the momentum equation multiplied by ε, we obtain ∇p n+1 = 0 and thanks to the limit equation of state, we obtain ∇E n+1 = 0. Integrating, the limit of the energy equation and using the boundary condition (u n+1 • ν = u n • ν = 0 on ∂Ω where ν is the unit normal to ∂Ω outward to Ω), we recover that for all n ≥ 0,

E n+1 = 1/|Ω| Ω E 0 (x) dx =< E 0 >.
And, using another time the limit energy equation we obtain

< E 0 > ∇ • u n (x) + (γ -1) < E 0 > ∇ • u n+1 (x) = 0,
for all n ≥ 1 and x ∈ Ω. And so, we recover Property (ii) if and only if ∇ • u 0 (x) = 0 that is if and only if the initial velocity is well-prepared to the low Mach number regime.

The flux splitting also satisfies Property (iii). Indeed, if u n (x) = u ∈ R d and p n (x) = p > 0 are constant, then the mass equation gives

ρ n+1 = ρ n -∆t u • ∇ρ n . Now, thanks to the momentum equation ρ n+1 u n+1 = (ρ n -∆t u • ∇ρ n ) u - ∆t/ε∇p n+1 = ρ n+1 u -∆t/ε∇p n+1 .
And so, there exists a solution such that u n+1 = u and p n+1 = p, since the previous equation yields ρ n+1 u = ρ n+1 u and the energy equation yields

E n+1 = E n -∆t u • ∇E n = p γ -1 + ε 2 ρ n |u| 2 -∆t u • ∇( ε 2 ρ n |u| 2 ) = p γ -1 + ε 2 ρ n+1 |u| 2 .
And so, the state equation is recovered.

Flux splitting considered

Let us conclude this section with a review of existing low Mach number IMEX schemes using the flux splitting (2.24). We recall the semi-discretization:

ρ n+1 -ρ n ∆t + ∇ • q n = 0, (2.36a 
)

q n+1 -q n ∆t + ∇ • q n ⊗ q n ρ n + 1 ε ∇p n+1 = 0, (2.36b) E n+1 -E n ∆t + ∇ • k ε (W n ) q n ρ n + ∇ • h(W n+1 ) q n+1 ρ n+1 = 0, (2.36c) E n+1 = p n+1 γ -1 + ε ρ n+1 |u n+1 | 2 2 .
(2.36d)

The first article in which (2.24) has been used for building an all Mach number scheme is [START_REF] Dumbser | A conservative, weakly nonlinear semi-implicit finite volume scheme for the compressible Navier-Stokes equations with general equation of state[END_REF], the scheme is based on staggered grids. In [START_REF] Boscheri | A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations[END_REF], an all Mach number Chapter 2. Full Euler equations scheme on collocated grids is presented. The scheme consists in discretizing in space the semi-discretization (2.36). The mass equation can be advanced since the implicit flux is zero on it, then a nonlinear system on the momentum and energy has to be solved with a Picard algorithm. The resolution of this nonlinear system can be prepared to the low Mach number regimes by reformulating it: inserting the expression of q n+1 into the energy equation and using the state equation, yields

E n+1 = p n+1 γ -1 + k n+1 ε = E n -∆t∇ • k n ε q n ρ n -∆t∇ • h n+1 ρ n+1 q n -∆t∇ • q n ⊗ q n ρ n + 1 ε ∇p n+1 ,
Then, one recovers the discretization of the pressure wave equation into the fluid and the resulting scheme reads

q n+1,exp = q n -∆t∇ • (ρ n u n ⊗ u n ), (2.37a) 
E n+1,exp = E n -∆t ∇ • (k n ε u n ), (2.37b) 
ρ n+1 = ρ n -∆t∇ • q n , (2.37c) 
ε γ -1 p n+1 -∆t 2 ∇ • h n+1 ρ n+1 ∇p n+1 = εE n+1,exp -εk n+1 ε -ε∆t∇ • h n+1 ρ n+1 q n+1,
exp , (2.37d)

q n+1 = q n+1,exp -∆t 1 ε ∇p n+1 , (2.37e 
)

E n+1 = E n+1,exp -∆t∇ • h n+1 q n+1 ρ n+1 . (2.37f) (2.37g)
where

k n+1 ε = k ε (W n+1 ) = ε ρ n+1 |u n+1 | 2 2 , h n+1 = γ p n+1 γ -1 .
Note that, (2.37d) yields to an elliptic equation for determining p n+1 , but it is still coupled with the momentum equation. In [START_REF] Boscheri | A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations[END_REF], this reformulation is done on the fully discretized equations (in time and space) leading to a five points discretization of the second order operator on the pressure into (2.37d). To avoid checkerboard effects a non standard discretization of the enthalpy γ p/((γ -1) ρ is introduced and then a Picard algorithm is used to solve this nonlinear system in terms of p and q.

An unlimited in time order 2 discretization is also proposed and multidimensional simulations (2D and 3D) are performed. Note that, in [START_REF] Boscheri | High order pressure-based semi-implicit IMEX schemes for the 3D Navier-Stokes equations at all Mach numbers[END_REF], such a discretization is also proposed and extended to the Navier-Stokes system but the proposed linearization yields an all speed scheme such that the asymptotic consistency is obtained up to an order ∆t term.

Here, we propose and study an all Mach number IMEX finite volume scheme also based on the flux splitting (2.24) but we prefer to discretize the previous reformulated semi-discrete equation instead of reformulating the full discrete one, thus, eliminating the checkerboard effect problems. Moreover, we propose a linearization of this reformulated equation in order to avoid the Picard algorithm for which the convergence is not always guaranteed during the simulations. The resolution is therefore uncoupled, since ρ is calculated first, then p, then q can be calculated and finally E is updated. We prove the asymptotic consistency on the semi-discretization as well as its preservation of contact discontinuities. Furthermore, we perform a linear stability analysis showing that our scheme is linearly L 2 stable and we propose a second order in space and time scheme. Then, we use a MOOD process to reduce the oscillations that are common for second order schemes.

2.3 Our new Order 1 AP scheme

A linear semi-discretization

Our linear first order all Mach number IMEX semi-discretization consists in replacing in (2.37d), the terms h n+1 and k n+1 ε by their values calculated with the explicit convected part of the conservative variables. It is given by

q n+1,exp = q n -∆t∇ • (ρ n u n ⊗ u n ), (2.38a) 
E n+1,exp = E n -∆t ∇ • (k n ε u n ), (2.38b 
)

ρ n+1 = ρ n -∆t∇ • q n , (2.38c) ε p n+1 γ -1 -∆t 2 ∇• h n+1,exp ρ n+1 ∇p n+1 = εE n+1,exp -εk n+1,exp ε -ε ∆t∇ • h n+1,exp ρ n+1 q n+1,exp , (2.38d 
)

q n+1 = q n+1,exp -∆t 1 ε ∇p n+1 , (2.38e) 
E n+1 = E n+1,exp -∆t∇ • γ p n+1 (γ -1) ρ n+1 q n+1 , (2.38f) 
where

k l ε = k ε (W l ) = ε |q l | 2 /(2ρ l
), for l ∈ {n, "n + 1, exp", n + 1} and the enthalpy in the pressure equation is defined by

h n+1,exp = h(W n+1,exp ) = γ (E n+1,exp -k ε (W n+1,exp )).
Note that the scheme is linear and uncoupled since ρ n+1 , p n+1 , q n+1 and E n+1 can be computed sequentially. Moreover, note that like in [START_REF] Boscheri | A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations[END_REF], we do not use the state equation for computing E n+1 but the conservative equation (2.38f). Indeed, using the equation of state (2.1d) leads to inconsistent results: in some shock test cases the intermediate state is not well calculated, see Figure 2.3. We do not obtain the entropic solution. The same problem was noticed for the nonlinear scheme proposed in [START_REF] Boscheri | A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations[END_REF]. Let us prove that this semi-discretization is asymptotically consistent and preserves the contact discontinuities: 0 >=< E 0 0 > for all n ≥ 0. Additionally, if the initial energy is well-prepared to the low Mach number regime, more precisely if lim ε→0 E(x, 0) = E 0 with E 0 constant, the semi-discretization (2.38) is asymptotically consistent. The formal low Mach number limit of the system gives p n+1 = (γ -1) E n+1 = (γ -1)E 0 and ∇ • u n+1 = 0 for all n ≥ 0.

Proof. If u n (x) = u ∈ R d and p n (x) = p > 0 are constant with E n (x) = p/(γ -1) + ε ρ n |u| 2 /2,
then the mass equation gives ρ n+1 = ρ n -∆t u • ∇ρ n . And we have

q n+1,exp = ρ n+1,exp u n+1,exp = ρ n u -∆tu • ∇ρ n u = ρ n+1 u, k n+1,exp ε = ε 2 ρ n+1,exp |u n+1,exp | 2 = ε 2 ρ n+1 |u| 2 , E n+1,exp = E n -∆t ε 2 |u| 2 u • ∇ρ n = p γ -1 + ε 2 ρ n |u| 2 -∆t ε 2 |u| 2 u • ∇ρ n = p γ -1 + ε 2 ρ n+1 |u| 2 , h n+1,exp = γp γ -1 .
Now, the pressure equation and energy equations lead to

p n+1 γ -1 = E n+1,exp -k n+1,exp ε -∆t∇ • γp γ -1 q n+1,exp ρ n+1 = p γ -1 -∆t∇ • γp γ -1 u = p γ -1 , E n+1 = p γ -1 + ε 2 ρ n+1 |u| 2 -∆t∇ • γ p u n+1 = p γ -1 + ε 2 ρ n+1 |u| 2 .
And so, there exists a solution W n+1 such that u n+1 = u and p n+1 = p. The semi-discretization (2.38) preserves the contact discontinuities.

Let us prove the asymptotic consistency. We perform an asymptotic expansion, assuming that all the quantities f l = f l 0 + ε f l 1 for l = n, "n + 1, exp" or n + 1, then we obtain:

ε -1 : ∇ • h n+1,exp 0 ρ n+1 0 ∇p n+1 0 = 0, (2.39a 
)

∇p n+1 0 = 0, (2.39b) 
ε 0 : q n+1,exp 0 = q n 0 -∆t∇ • (ρ n 0 u n 0 ⊗ u n 0 ), (2.39c) 
E n+1,exp 0 = E n 0 , (2.39d 
)

ρ n+1 0 = ρ n 0 -∆t∇ • q n 0 (2.39e) p n+1 0 γ -1 = E n 0 -∆t∇ • γ E n 0 ρ n+1 0 q n+1 0 , (2.39f 
)

q n+1 0 = q n+1,exp 0 -∆t∇p n+1 1 , (2.39g) 
E n+1 0 = E n 0 -∆t γp n+1 0 γ -1 ∇ • u n+1 0 . (2.39h)
where h n+1,exp 0 = γ E n 0 . Integrating the pressure equation (2.39f) on Ω and using the impermeability boundary condition u n+1 0

• ν = 0 on ∂Ω, we get |Ω| p n+1 0 γ -1 = Ω E n 0 (x) dx -∆t ∂Ω γ E n 0 (x)u n+1 0 (x) • ν(x)dσ(x) = Ω E n 0 (x) dx.
And so,

p n+1 0 = (γ -1) < E n 0 > with < E n 0 >= 1 |Ω| Ω E n 0 (x) dx. Now, integrating the energy equation on Ω gives < E n+1 0 >=< E n 0 >. By induction, we have for all n ≥ 0 p n+1 0 = (γ -1) < E 0 0 >, < E n+1 0 >=< E 0 0 > . Furthermore, assuming the initial energy is well-prepared i.e. E 0 0 = E 0 is constant, then then p n+1 0 = (γ -1) E 0 0 = (γ -1) E 0 .
In particular for n = 0, the pressure 44 Chapter 2. Full Euler equations equation writes

p 1 0 γ -1 = E 0 0 = E 0 0 -∆tγ E 0 0 ∇ • u 1 0 ,
and so ∇ • u 1 0 = 0. On the other side, the energy equation gives for n = 0,

E 1 0 = E 0 0 -∆t∇ • γ p 1 0 (γ -1) u 1 0 = E 0 0 = p 1 0 γ -1 .
By induction on the property "

p n+1 0 γ-1 = E n 0 = E 0 ", we obtain p n+1 0 γ-1 = E n+1 0 = E 0 and ∇ • u n+1 0 = 0 for all n ≥ 0.
Remark 3. For non well-prepared initial conditions, it is possible to recover the asymptotic consistency modifying the semi-discretization changing in (2.38f) the term γ p n+1 /(γ -1) in the flux by h n+1,exp . Let us briefly prove it. Performing an asymptotic expansion on the modified energy equation gives

E n+1 = E n 0 -∆t∇ • γ E n 0 ρ n+1 0 q n+1 0 . (2.40) 
And so by identification with the pressure equation (2.39f):

p n+1 0 γ -1 = E n 0 -∆t∇ • γ E n 0 ρ n+1 0 q n+1 0 , we have E n+1 0 = p n+1 0 γ -1 . Then, E n+1 0 is constant and integrating (2.40) on Ω gives E n+1 0 = E n 0 = 1 |Ω| Ω E 0 0 (x)dx for all n ≥ 1.
Therefore, the incompressibility constraint is retrieved for all n ≥ 1 without assuming well-prepared initial conditions.

However, this version of the semi-discretization leads to a less diffusive scheme in the L 2 stable version of the scheme (see next section) and so oscillations appear in some test cases (see Figure 2.4). These oscillations are diffused for large times and disappear in the L ∞ version of the scheme. They are the trace of the L ∞ instability of the L 2 stable version of the scheme which remains L 2 stable. We will see in the following that all L ∞ versions of the schemes, require an upwinding on the implicit flux proportional to 1/ √ ε and therefore does not allow to have an asymptotic accuracy. The L 2 versions, although showing oscillations, can be interesting for some test cases. This is why, even if the asymptotic consistency is obtained only for well prepared initial data, we choose to use the semi-discretisation (2.38). 

The order 1 schemes

In [START_REF] Dimarco | Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime[END_REF], it has been shown that a centered discretization for the implicit flux terms is sufficient to ensure an L 2 AP scheme if the explicit flux terms are discretized with an upwind discretization like Roe type solvers. The resulting scheme gives consistent and stable results but can present oscillations which are the signature of the non L ∞ stability. Since the scheme is L 2 stable, these oscillations do not propagate in the domain, remain localized and do not increase over time. This problem can be cured introducing an upwinding in the implicit discrete flux leading to the so-called L ∞ AP scheme.

L 2 stable discretization in one dimension

First, let us present the L 2 stable full discretizations in space and time for the previous semi-discretization (2.38). It is based on the modified Lax-Friedrichs solver for the explicit flux F e and a centered solver for the implicit flux F i .

We consider a uniform discretization in space and time for clarity, with ∆x > 0 and ∆t > 0 the space and time steps. The fully L 2 stable discrete version of (2.38) in one dimension reads

W n+1,exp j = W n j -∆t (F e ) n j+1/2 -(F e ) n j-1/2 ∆x , (2.41a) 
ρ n+1 j = ρ n j -∆t (F eρ ) n j+1/2 -(F eρ ) n j-1/2 ∆x , (2.41b) ε γ -1 p n+1 j - ∆t 2 ∆x h n+1,exp ρ n+1 j+1/2 p n+1 j+1 -p n+1 j ∆x - h n+1,exp ρ n+1 j-1/2 p n+1 j -p n+1 j-1 ∆x = εE n+1,exp j -εk n+1,exp j -ε ∆t ∆x h n+1,exp j+1 ρ n+1 j+1 q n+1,exp j+1 - h n+1,exp j-1 ρ n+1 j-1 q n+1,exp j-1 , (2.41c) 
q n+1 j = q n+1,exp j -∆t p n+1 j+1 -p n+1 j-1 2ε∆x , (2.41d 
)

E n+1 j = E n+1,exp j - ∆t 2∆x γ p n+1 (γ -1) ρ n+1 q n+1 j+1 - γ p n+1 (γ -1) ρ n+1 q n+1 j-1 , (2.41e)
where the explicit numerical flux (F e ) n = ((F eρ ) n , (F eq ) n , (F eE ) n ) is given by

(F e ) n j+1/2 = F e (W n j+1 ) + F e (W n j ) 2 -(D e ) n j+1/2 (W n j+1 -W n j ), (2.41f) 
where F e is given by (2.24) and with the explicit viscosity coefficient,

(D e ) n j+1/2 = 1 2 max |u n j+1 |, |u n j | ,
taken as half of the maximum explicit eigenvalues of DF e . In (2.41c), h/ρ at the interfaces is computed as the arithmetic average:

h n+1,exp ρ n+1 j+1/2 = 1 2 h n+1,exp j ρ n+1 j + h n+1,exp j+1 ρ n+1 j+1 .
In the following this scheme is called the Order 1 L 2 AP scheme.

L ∞ stable discretization in one dimension

Now, we present the scheme with an upwinding on the implicit fluxes. We first compute the L 2 stable solution W n+1,L2 j given by (2.41) and we add numerical dissipation as done for the explicit numerical flux (F e ) n j+1/2 , thus leading to a modified scheme for the density, momentum and energy equations.

W n+1 j =    ρ n+1,L2 j q n+1,L2 j E n+1,L2 j   + ∆t ∆x (D i ) n j+1/2 (W n+1 j+1 -W n+1 j ) -(D i ) n j-1/2 (W n+1 j -W n+1 j-1 ) , (2.42) 
where (D i ) n j+1/2 is the implicit viscosity coefficient, taken as half of the maximum implicit eigenvalue

(D i ) n j+1/2 := 1 2 max |λ i (W n j+1 )|, |λ i (W n j )| ,
where

|λ i (W )| = |u| 2 + u 2 4 + c 2 ε .
Let us note that, to avoid the computational effort of solving a nonlinear system, the numerical viscosity is applied after the calculation of the L 2 stable solution and the implicit viscosity (D i ) is chosen to be taken at time n and not n + 1. In the following, this scheme is called the Order 1 L ∞ stable scheme. Moreover, it is important to note that the upwinding on ρ must be applied after the calculation of the pressure, otherwise the scheme does not preserve exactly contact discontinuities (see Figure 2.5). and the modified one where the upwinding on the variable ρ is applied juster after calculing ρ n+1,L 2 with (2.41b) .

Modified nonlinear Order 1 AP scheme ( [11])

In numerical simulations, we compare our scheme to the scheme proposed in [START_REF] Boscheri | A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations[END_REF] slightly modified. Indeed, in [START_REF] Boscheri | A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations[END_REF] the reformulated pressure equation is calculated on the fully discretized scheme giving a discretization of the elliptical term in the pressure equation spread over 5 cells. Here, we prefer to discretize the reformulated pressure equation (2.37d) and obtain a discretization of the elliptic term spread over 3 cells. This modification allows for a less diffusive scheme. Furthermore, in [START_REF] Boscheri | A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations[END_REF], the implicit part of the energy flux γ/(γ -1) p/ρ q is discretized as the product of the centered approximations of γ/(γ -1) p/ρ and q, here we prefer to use the centered approximation of the quantity. This modification improves the convergence of the Picard algorithm. Then, the resulting nonlinear scheme, called NL Order 1 L 2 AP scheme consists in the following

ρ n+1 j = ρ n j -∆t (F eρ ) n j+1/2 -(F eρ ) n j-1/2 ∆x , (2.43a) ε γ -1 p n+1 j - ∆t 2 ∆x h n+1 ρ n+1 j+1/2 p n+1 j+1 -p n+1 j ∆x - h n+1 ρ n+1 j-1/2 p n+1 j -p n+1 j-1 ∆x = ε E n+1,exp j -k n+1 j -ε ∆t ∆x h n+1 ρ n+1 q n+1,exp j+1/2 - h n+1 ρ n+1 q n+1,exp j-1/2
, (2.43b)

q n+1 j = q n+1,exp j -∆t p n+1 j+1 -p n+1 j-1 2ε∆x , (2.43c 
)

E n+1 j = E n+1,exp j - ∆t 2∆x γ p n+1 (γ -1) ρ n+1 q n+1 j+1 - γ p n+1 (γ -1) ρ n+1 q n+1 j-1 . (2.43d)
We add the upwinding on the implicit part to the NL Order 1 L 2 AP scheme following the same process described in the previous section. We obtain the NL Order 1 L ∞ AP scheme.

One dimensional linear Fourier stability analysis

In this section, we consider d = 1. We linearize the Euler system (2.1) around a constant solution W = (ρ, q, E) such that ρ > 0 and p = Eε/2 q 2 /ρ > 0. We denote by u = q/ρ and c 2 = γ p/ρ. The linearized system is given by

∂ t W + A ∂ x W = 0, (2.44) 
where

A = DF (W ) = DF e (W ) + DF i (W ) with DF e (W ) =   0 1 0 -u 2 2 u 0 -ε u 3 3 2 ε u 2 0   , DF i (W ) =    0 0 0 γ-1 2 u 2 (1 -γ)u γ-1 ε -c 2 (γ-1) + γε u 3 2 c 2 γ-1 -γ εu 2 γu    .
(2.45)

The eigenvalues of A are

u - c √ ε , u, u + c √ ε .
We denote by P , the matrix of the eigenvectors of A, then P -1 AP = D where D is the diagonal matrix with the eigenvalues of A on the diagonal. The matrices P and P -1 are defined by

P =      1 1 1 u - c √ ε u u + c √ ε M c 2 2 (M -2) + c 2 γ -1 M c 2 2 M c 2 2 (M + 2) + c 2 γ -1      , P -1 =       M 4 ((γ -1)M + 2) - √ ε 2c ((γ -1)M + 1) γ -1 2c 2 (1 -γ) M 2 + 1 (γ -1)M 2 - γ -1 2c 2 M 4 ((γ -1)M -2) - √ ε 2c ((γ -1)M -1) γ -1 2c 2      
, with M = √ εu/c. We denote by V the coordinates of W in the eigenvectors basis, then W = P V and

∂ t V + D ∂ x V = 0. Since D is diagonal, 1 2 ∂ x (DV • V ) = 1 2 (D∂ x V ) • V + (D t ∂ x V ) • V = (D∂ x V ) • V.
Then, taking the scalar product of this equation with V , we obtain

∂ t V • V + (D ∂ x V ) • V = ∂ t V 2 2 (x, t) + ∂ x (DV • V ) = 0,
where • 2 is the Euclidean norm of R 3 . Integrating on the space domain and assuming periodic boundary conditions, we have

∂ t 1 0 V 2 2 (x, t) + (DV • V )(1, t) -(DV • V )(0, t) = ∂ t V L 2 (]0,1[) (t) = 0.
We recover for all t > 0,

V L 2 (]0,1[) (t) = V L 2 (]0,1[) (0).
Let us note that this result holds only in the eigenvector basis and is not true for W since the matrix A is not symmetric. Following this proof, using Fourier analysis, proving the decrease of the L 2 norm of the discretized vector V , we prove the L 2 stability of our Order 1 L 2 AP (2.41) and Order 1 L ∞ AP (2.42) schemes. We conclude this section with the same analysis for the nonlinear AP scheme NL Order 1 L 2 AP scheme (2.43).

To prove the L 2 stability of the scheme, we prove the decrease of the L 2 norm of the discretized vector V .

Linearization of our semi-discretization

We begin, linearizing the semi-discretized system (2.38) around W = (ρ, q, E) a constant solution. Then, we set W k = W + W k for k = n + 1, n, "n + 1, exp" and p n+1 = p + pn+1 . Using a Taylor expansion we get

W + W n+1,exp = W + W n -∆t ∂ x F e (W ) + DF e (W ) W n + o( ) .
Neglecting all terms of order greater than , an omitting the omitting the "checks" we obtain

W n+1,exp = W n -∆t DF e (W ) ∂ x W n ,
and so

ρ n+1,exp = ρ n -∆t ∂ x q n , q n+1,exp = q n + ∆t u 2 ∂ x ρ n -2 ∆t u ∂ x q n , E n+1,exp = E n + ∆t ε u 3 ∂ x ρ n -∆t 3 ε 2 u 2 ∂ x q n . (2.46)
Now the pressure equation gives

ε γ -1 (p + pn+1 ) -∆t 2 ∂ x H(W ) + o( ) ∂ x pn+1 = ε E + Ěn+1,exp -k(W ) -Dk(W ) W n+1,exp + o( ) -ε ∆t ∂ x H(W ) + DH(W ) W n+1,exp (q + qn+1,exp ) ,
where

H(W ) = γ E ρ - γ ε 2 q 2 ρ 2 = 1 γ -1 γ p ρ = c 2 γ -1 , DH(W ) = -γ E ρ 2 + γ ε u 2 ρ , -γ ε u ρ , γ ρ = - γ p (γ -1) ρ 2 + γ ε u 2 2 ρ , -γ ε u ρ , γ ρ = - c 2 (γ -1) ρ + γ ε u 2 2 ρ , -γ ε u ρ , γ ρ . Dk(W ) = (-ε/2 u 2 , ε u, 0),
Neglecting the error terms and omitting the "checks", we obtain

ε γ -1 p n+1 - c 2 γ -1 ∆t 2 ∂ 2 xx p n+1 = ε E n+1,exp + ε u 2 2 ρ n+1 -ε u q n+1,exp -ε ∆t c 2 γ -1 ∂ x q n+1,exp + q DH(W ) ∂ x W n+1,exp = ε E n+1,exp + ε u 2 2 ρ n+1 -ε u q n+1,exp -ε ∆t c 2 γ -1 ∂ x q n+1,exp -ε ∆t - c 2 u γ -1 + γ ε u 3 2 ∂ x ρ n+1 + ε ∆t γ ε u 2 ∂ x q n+1,exp -γ u ∂ x E n+1,exp ,
And so,

p n+1 - c 2 ε ∆t 2 ∂ 2 xx p n+1 = (γ -1) E n+1,exp + ε u 2 2 ρ n+1 -ε u q n+1,exp -∆t -c 2 u + γ (γ -1) u 3 2 ∂ x ρ n+1 -∆t c 2 -γ (γ -1) ε u 2 ∂ x q n+1,exp -∆tγ (γ -1) u ∂ x E n+1,exp ,
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Finally, for the energy equation, we obtain

E n+1 = E n+1,exp + ∆t c 2 (γ -1) ρ ∂ x ρ n+1 -∆t c 2 (γ -1) ∂ x q n+1 -∆t γ u γ -1 ∂ x p n+1 .
The resulting one dimensional linearized semi-discretized system reads:

W n+1,exp = W n -∆t DF e (W ) ∂ x W n , (2.47a 
)

ρ n+1 = ρ n+1,exp , (2.47b 
)

p n+1 -∆t 2 c 2 ε ∂ 2 xx p n+1 = (γ -1) E n+1,exp + ε u 2 /2 ρ n+1 -ε u q n+1,exp -∆t -c 2 u + γ (γ -1)/2 ε u 3 ∂ x ρ n+1 + c 2 -γ (γ -1) ε u 2 ∂ x q n+1,exp + γ (γ -1) u ∂ x E n+1,exp , (2.47c 
)

q n+1 = q n+1,exp - ∆t ε ∂ x p n+1 , (2.47d 
)

E n+1 = E n+1,exp + ∆t c 2 u γ -1 ∂ x ρ n+1 -∆t c 2 γ -1 ∂ x q n+1 -∆t γ u γ -1 ∂ x p n+1 .
(2.47e)

2.3.3.2 L 2 Stability of our Order 1 L 2 AP scheme
Discretizing the linearized semi-discretized system (2.47) with the Order 1 L 2 AP scheme, we obtain:

W n+1,exp j = W n j - ∆t ∆x DF e (W ) W n j+1 -W n j-1 2 - u 2 (W n j+1 -2 W n j + W n j-1 ) , (2.48a 
)

ρ n+1 j = ρ n+1,exp j , (2.48b) 
p n+1 j - c 2 ∆t 2 ε ∆x 2 (p n+1 j+1 -2 p n+1 j + p n+1 j-1 ) = (γ -1) E n+1,exp j + (γ -1) ε u 2 /2 ρ n+1 j -ε u q n+1,exp j - ∆t ∆x -c 2 u + γ (γ -1)/2 ε u 3 ρ n+1 j+1 -ρ n+1 j-1 2 - ∆t ∆x c 2 -γ (γ -1) ε u 2 q n+1,exp j+1 -q n+1,exp j-1 2 - ∆t ∆x γ (γ -1) u E n+1,exp j+1 -E n+1,exp j-1 2 
,
(2.48c)

q n+1 j = q n+1,exp j - ∆t ε ∆x p n+1 j+1 -p n+1 j-1 2 , (2.48d 
)

E n+1 j = E n+1,exp j + ∆t (γ -1) ∆x c 2 u ρ n+1 j+1 -ρ n+1 j-1 2 -c 2 q n+1 j+1 -q n+1 j-1 2 -γ u p n+1 j+1 -p n+1 j-1
2 .

(2.48e)

where F e is given by (2.24). We assume periodic boundary conditions. We prove the following result We denote by W 0 j = 1/∆x j ∆x (j-1) ∆x W 0 (x) dx, by (W n j ) the solution of (2.48) and

P V n (x) = W n (x) = W n j = P V n j if
x ∈](j -1) ∆x, j ∆x[ where P is the matrix of the eigenvectors of DF (W ). We set M ε = √ ε u/c. Then, for all M ε ∈]0, 25[ and all γ ∈ [1, 10], there exists C > 0 depending on γ, u, c and ε such that for all n ≥ 0

V n L 2 (]0,1[) ≤ C V 0 L 2 (]0,1[) .
Proof. We assume u > 0 for clarity. The same proof can be done for u < 0.

For l = n+1, n+1, exp or n, we define on

[0, 1[ W l (x) = W l j if x ∈ [(j -1) ∆x, j ∆x[ for j = 1, • • • , L = 1/∆x. Then, W l (x) = k∈Z Ŵ l (k)e 2 iπ k x with Ŵ l (k) = 1 0 W l (x) e -2 iπ k x dx, and W l = k∈Z Ŵ l (k). Then, (2.48a) reads W n+1,exp (x) = W n (x) -α DF e W n (x + ∆x) -W n (x -∆x) 2 + α u 2 (W n (x + ∆x) -2 W n (x) + W n (x -∆x)),
where α = ∆t ∆x and DF e is given by (2.45). Taking the Fourier transform of the resulting equation, we get

Ŵ n+1,exp (k) = B e w (k) Ŵ n (k),
where B e w (k) = (1α u (1cos ϕ)) I 3i α sin ϕ DF e , with ϕ = 2π k ∆x. Now, we can move into the eigenvector basis. Denoting by

V k = P -1 W k for k = n, "n + 1, exp" or 'n + 1 yields V k = P -1 Ŵ k . Multiplying Ŵ n+1,exp (k) by P -1 , we obtain P -1 Ŵ n+1,exp (k) = V n+1,exp (k) = P -1 B e w (k) P V n (k) = B e (k) V n (k),
where

B e (k) = P -1 B e w (k) P = (1 -α u (1 -cos ϕ)) I 3 -i α sin ϕ A e ,
with

A e = P -1 DF e P =    u 2 0 -u 2 u -c √ ε u u + c √ ε -u 2 0 u 2    . (2.49)
The Eigenvalues of B e (k) are given by

λ 1 = 1 -α u (1 -cos ϕ), λ 2 = λ 3 = 1 -α u (1 -cos ϕ) -i α u sin ϕ.
We have,

|λ 1 | 2 = 1 -α u (1 -cos ϕ) (2 -α u(1 -cos ϕ)), |λ 2,3 | 2 = 1 -2 α u (1 -cos ϕ) (1 -α u).
In order to have the spectral radius of B e (k), noted r(B e (k)), lower than one, we need

α u (1 -cos ϕ) (2 -α u(1 -cos ϕ)) ≥ 0 ⇔ (2 -α u(1 -cos ϕ)) ≥ 0,
and,

2 α u (1 -cos ϕ) (1 -α u) ≥ 0 ⇔ (1 -α u) ≥ 0, where 0 ≤ (1 -cos ϕ) ≤ 2.
Then, r(B e (k)) is lower than 1 under the C.F.L. condition uα ≤ 1, that is u ∆t ≤ ∆x.

Note that ρn+1 = ρn+1,exp . Now, the Fourier transforms of Eqs. (2.48c), (2.48d) and (2.48e) give

(1 + 2 α 2 c 2 ε (1 -cos ϕ)) pn+1 (k) = (γ -1) ε u 2 2 -i α u sin ϕ -c 2 + γ (γ -1)ε u 2 2 ρn+1,exp (k) -(γ -1) ε u + i α sin ϕ c 2 -γ (γ -1) ε u 2 qn+1,exp (k) + (γ -1) (1 -i α u sin ϕ γ) Ên+1,exp (k), qn+1 (k) = qn+1,exp (k) - α ε i sin ϕ pn+1 (k), Ên+1 (k) = Ên+1,exp (k) + α i sin ϕ c 2 u γ -1 ρn+1 - c 2 γ -1 qn+1 - γ u γ -1 pn+1 (k) , = Ên+1,exp (k) + α i sin ϕ c 2 u γ -1 ρn+1 -αi sin ϕ c 2 γ -1 q n+1,exp (k) -- c 2 α i sin ϕ ε (γ -1) + γ u γ -1 pn+1 (k) .
We note that pn+1 (k) given by the first equation only depends on the variables ρn+1,exp (k), qn+1,exp (k) and Ên+1,exp (k). So inserting the expression of pn+1 (k) into the equations for qn+1 (k) and Ên+1 (k), yields

Ŵ n+1 (k) =   ρn+1 (k) qn+1 (k) Ên+1 (k)   = B i w (k)   ρn+1,exp (k) qn+1,exp (k) Ên+1,exp (k)   = B i w (k) B e w (k) Ŵ n (k). (2.50)
where

B i w (k) is of the form B i w (k) =   1 0 0 c 21 c 22 c 23 c 31 c 32 c 33   .
By multipliying (2.50) by P -1 , we move into the eigenvector basis and have

V n+1 (k) = P -1 B i w (k) Ŵ n+1,exp (k) = P -1 B i w (k)P V n+1,exp (k) = B i (k) B e (k) V n (k), (2.51) 
where we used V n+1,exp (k) = B e (k) V n (k) and we noted B i (k) = P -1 B i w (k)P . Let us note that, we also have Therefore, the characteristic polynomial of B i (k)B e (k) reads

B i (k)B e (k) = P -1 B i w (k)P P -1 B e w (k)P = P -1 B i w (k) B e w ( 
det(B i (k) B e (k) -λ I 3 ) = (1 + αu(cos ϕ -1) -i αu sin ϕ -λ) d 11 -λ d 13 d 31 d 33 -λ .
One eigenvalue is directly given by

λ 1 = 1 -αu (1 -cos ϕ + i sin ϕ) ,
and we rewrite

det(B i (k) B e (k) -λ I 3 ) = (1 -αu (1 -cos ϕ + i sin ϕ) -λ) Q i (λ),
where Q i (λ) is a second order polynomial given by

Q i (λ) = λ 2 + a i λ + b i ,
with a i and b i complex coefficients. We refer to equation (51) in Appendix A for there explicit expressions obtained with the software Maple. There expression is given in terms of four variables: Since there exists at least one norm matrix

cf l = α u, M = M ε = √ ε u c , γ, ϕ = 2πk∆x.
• in R n (depending on B i (k) B e (k)), such that B i (k) B e (k) ≤ r(B i (k) B e (k)), we obtain V n+1 (k) ≤ B i (k) B e (k) V n (k) ≤ V n (k) ≤ • • • ≤ V 0 (k) .
But, all norms are equivalent in finite dimension then, there exists C 1 > 0 and C 2 > 0 depending on u, c and ε such that for all n ≥ 0,

C 1 V n (k) 2 ≤ V n (k) ≤ C 2 V n (k) 2 .
where • 2 is the Euclidean norm. And so,

C 1 V n (k) 2 ≤ V n (k) ≤ V 0 (k) ≤ C 2 V 0 (k) 2 ,
Furthermore, using Plancherel's theorem, we have that

V n 2 L 2 (]0,1[) = k∈Z | V n (k)| 2 = k∈Z V n (k) 2 2 .
Therefore, noting C = C 2 /C 1 > 0 we prove that for all n > 0

V n L 2 (]0,1[) ≤ C V 0 L 2 (]0,1[) .
Remark 4. Note that, this C.F.L. seems to be optimal, indeed for larger values of the C.F.L, i.e |u| ∆t/∆x = C with C > 1/γ, there exists γ such that the spectral radius is bigger than 1. In Figure 2.7 we show that for C = 1, the maximum modulus of the roots of Q i are greater than 1 from approximately γ = 2.5. However, for γ < 2.5, it is sufficient to assume |u| ∆t/∆x = 1. Let us now perform the stability analysis of the Order 1 L ∞ AP scheme. The Order 1 L ∞ AP scheme on the linearized system consists in the following

W n+1 j - |λ i | ∆t 2 ∆x W n+1 j+1 -2 W n+1 j + W n+1 j-1 = W n+1,L2 j , (2.52) 
where W n+1,L2 j is given by the Order 1 L 2 AP scheme (2.48) and where λ i is the maximum implicit eigenvalue associated to the implicit flux F i We denote by W 0 j = 1/∆x j ∆x (j-1) ∆x W 0 (x) dx, by (W n j ) the solution of (2.52) and

|λ i | = |u| 2 + u 2 4 + c 2 ε = |u| 1 2 + 1 4 + 1 M 2 ε ,
P V n (x) = W n (x) = W n j = P V n j if
x ∈](j -1) ∆x, j ∆x[ where P is the matrix of the eigenvectors of DF (W ). We set M ε = √ ε u/c. Then, for all M ε ∈]0, 25[ and all γ ∈ [1, 5], there exists C > 0 depending on γ, u, c and ε such that for all n ≥ 0

V n L 2 (]0,1[) ≤ C V 0 L 2 (]0,1[) .
Proof. We assume u > 0 for clarity. The same proof can be done for u < 0. We proceed like in the proof of the previous Lemma. We take the Fourier transform of (2.52). Noting ϕ = 2πk∆x, we obtain

(1 + |λ i | α) Ŵ n+1 j (k) - |λ i | 2 α e iϕ Ŵ n+1 j (k) - |λ i | 2 α e -iϕ Ŵ n+1 j (k) = (1 + |λ i | (1 -cos φ) ) Ŵ n+1 j (k) = 1 + α |u| 1/2 + 1/4 + 1/M 2 ε α (1 -cos φ) Ŵ n+1 j (k) = Ŵ n+1,L 2 j (k).
By multiplying the resulting equation by P -1 , we pass into the eigenvector basis of DF and using the coordinates of W (2.51), we obtain

P -1 β P V n+1 (k) = β V n+1 (k) = B i (k) B e (k) V n (k),
where

β = 1 + α u 1/2 + 1/4 + 1/M 2 ε (1 -cos ϕ) .
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Then, using the results of the proof of the previous Lemma, we obtain

det 1 β B i (k) B e (k) -λ I 3 = 1 β 3 det B i (k) B e (k) -β λ I 3 = 1 β 3 (1 -αu (1 -cos ϕ + i sin ϕ) -βλ) Q i (βλ) = 1 -αu (1 -cos ϕ + i sin ϕ) β -λ Q i (λ),
where

Q i (λ) = Q i (β λ) β 2 . We set u ∆t = ∆x,
and we denote by λ 2 (M ε , ϕ, γ) and λ 3 (M ε , ϕ, γ) the roots of Q i . As for the previous proof, we plot on Figure 2.9 the maximum modulus of the roots of We conclude with the linear stability analysis of the nonlinear scheme, we prove that the NL Order 1 L 2 AP scheme is L 2 stable. The scheme on the linearized system with periodic boundary conditions, is given by We denote by W 0 j = 1/∆x j ∆x (j-1) ∆x W 0 (x) dx and by (W n j ) the solution of (2.53) and P V n (x) = W n (x) = W n j = P V n j if x ∈](j -1) ∆x, j ∆x[ where P is the matrix of the eigenvectors of DF (W ). We set M ε = √ ε u/c. Then, for all M ε ∈]0, 25], there exists C > 0 depending on u, c and ε such that for all n ≥ 0

Q i that is f (M ε , γ) := max( max ϕ∈[0,2 π[ |λ 2 (M ε , ϕ, γ)|, max ϕ∈[0,2 π[ |λ 3 (M ε , ϕ, γ)|),
W n+1 j -W n j ∆t + DF e (W ) W n j+1 -W n j-1 2 ∆x - |u| 2 ∆x W n j+1 -2 W n j + W n j-1 + DF i (W ) W n+1 j+1 -W n+1 j-1 2 ∆x = 0, (2.53) 
for j = 1, • • • L = 1/∆x with W n 0 = W n L and W n L+1 = W n 1 . Lemma 2.3.4 (Stability of the NL Order 1 L 2 AP scheme). Let W 0 ∈ L 2 (]0, 1 
V n L 2 (]0,1[) ≤ C V 0 L 2 (]0,1[) .
Proof. We assume u > 0 for clarity. The same proof can be done for u < 0. We proceed like in the proof of the previous lemmas, we take the Fourier transform of (2.53) and move into the eigenvector basis of DF by multiplying the resulting equation by P -1 . We obtain

V n+1 (k) = B -1 i (k) V n+1,exp (k) = B -1 i (k) B e (k) V n (k),
where

B i (k) = I 3 + α i sin ϕ A i , B e (k) = 1 -α u (1 -cos ϕ) Id -α i sin ϕ A e ,
with ϕ = 2π k ∆x, A e = P -1 DF e P given by (2.49) and

A i = P -1 DF i P =    u 2 -c √ ε 0 u 2 -u + c √ ε 0 -u -c √ ε u 2 0 u 2 + c √ ε    .
(2.54)

The matrix B e (k) is the same as in the proof of Lemma 2.3.2, its eigenvalues are

λ e1 = 1 -α u (1 -cos ϕ), λ e2 = λ e3 = 1 -α u (1 -cos ϕ) -i α u sinϕ.
And

0 ≤ α u ≤ 1 =⇒ |λ ei | ≤ 1 for i = 1, 2, 3. Those of B i (k) are λ i1 = 1 + i sin ϕ α u/2 -α | sin ϕ| c 2 / √ ε + u 2 /4 , λ i2 = 1, λ i3 = 1 + i sin ϕ α u/2 + α | sin ϕ| c 2 / √ ε + u 2 /4 .

Now we set

α u = 1,
and a quite long calculus using the software Maple (see Appendix B for more details on the calculations) yields

det(B -1 i (k) B e (k) -λ I 3 ) = (cos ϕ -i sin ϕ -λ) P 2 (λ),
where

P 2 (λ) = λ 2 + c i λ + d i ,
and setting M ε = √ ε u/c the coefficients c i and d i are given by

c i = -M 2 ε 2 cos ϕ + sin 2 ϕ -i sin ϕ (1 -cos ϕ) M 2 ε + sin 2 ϕ + i sin ϕ M 2 ε , d i = M 4 ε (sin 2 ϕ cos ϕ + cos 2 ϕ -i sin ϕ cos ϕ (1 -cos ϕ)) (M 2 ε + sin 2 ϕ + i sin ϕ M 2 ε ) 2 + M 2 ε (sin 2 ϕ cos 2 ϕ -i sin 3 ϕ cos ϕ) (M 2 ε + sin 2 ϕ + i sin ϕ M 2 ε ) 2
.

We denote λ 1 = cos ϕi sin ϕ and by λ 2 (M ε , ϕ) and λ 3 (M ε , ϕ) the roots of P 2 .

We have |λ 1 | = 1 and we plot on Figure 2.11, on the left: the maximum modulus 

|λ 2 (M ε , ϕ)| and |λ 3 (M ε , ϕ)|, that is max(|λ 2 (M ε , ϕ)|, |λ 3 (M ε , ϕ)|)
g(M ε ) := max( max ϕ∈[0,2 π[ |λ 2 (M ε , ϕ)|, max ϕ∈[0,2 π[ |λ 3 (M ε , ϕ)|)
. This proves that for all M ε ∈]0, 25] and all ϕ ∈ [0, 2 π], the spectral radius of

B -1 i (k) B e (k), denoted by r(B -1 i (k) B e (k)
), is lower than 1. We conclude like in the proof of Lemma 2.3.2. Note that when sin ϕ = 0, P 2 reduces in P 2 (λ) = λ 2 -2 cos ϕ + cos 2 ϕ and det(B

-1 i (k) B e (k) -λ I 3 ) = (cos ϕ -λ) λ 2 -2 cos ϕ + cos 2 ϕ .

And we have

λ 1 = λ 2 = λ 3 = cos ϕ. Moreover, B i (k) = I 3 + α 2 i sin ϕ A i = Id and so det(B -1 i (k) B e (k) -λ I 3 ) = det(B e (k) -λ Id).
Therefore, the eigenvalues are those of B e (k) which when αu = 1 and sin ϕ = 0, are well given by λ e1 = λ e2 = λ e3 = cos ϕ.

Numerical results for order 1 schemes

In this part, we present several numerical test cases which show the good behavior of our new order 1 linear AP scheme (2.41), (2.42). We compare it to the nonlinear AP scheme (2.43) inspired by [START_REF] Boscheri | A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations[END_REF]. If not mentioned, the reference solution is computed using an order one explicit scheme with the Rusanov solver on a refined grid (N = 3000). For all test cases the space domain is set to Ω = [0, 1] and we choose γ = 1.4.

If not mentioned ε = 1.

Classical Riemann problems: The Sod, Lax and Contact problems

The initial data of the classical Riemann problems is given by

(ρ, u, p)(0, x) = w L = (ρ L , u L , p L ) if x < x d , w R = (ρ R , u R , p R ) otherwise,
where the initial left and right states values, w L and w R respectively, are summarized in Table 2 The Sod problem, represents a benchmarks in gas dynamics [START_REF] Toro | Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction[END_REF]. Its solution consists of a left-moving rarefaction fan, an intermediate contact discontinuity and a rightmoving shock wave, see Figure 2.12. The Mach number, M 2 = u 2 ρ/(γ p), ranges from 0 to 1. Since at x = 0 or x = 1, M = 0 and at x = 0.5, M ≈ 0.9. We can see that our new simpler scheme gives similar results to the NL AP scheme. The linearization of the nonlinear system does not alter the results.

Figure 2.12 -Sod problem for 200 cells. Comparison of our order 1 AP scheme (solid lines) with the NL AP scheme (dashed lines) for both L 2 and L ∞ discretizations.

The solution of the Lax problem also consists of a rarefaction wave, an intermediate contact discontinuity and a shock wave. This test case is more complex compared to the previous one due to the discontinuity in the initial velocity which is not present in the Sod problem. The results are again very similar with a slightly more diffusive behavior for our scheme (see the density profile).

The Contact problem is constituted of a right-moving contact discontinuity on the density with constant velocity and pressure see Figure 2.14. The exact solution is given by: ρ(x, t) = ρ(xt, 0), u(x, t) = u(x, 0) and p(x, t) = p(x, 0).

It is a particular incompressible solution and is used to test numerically the preservation of the contact discontinuities which is the property (iii) of Lemma 2.2.3. We can see that all schemes preserved the contact discontinuity showing again that the exact resolution of the nonlinear problem is not necessary. Note that the implicit upwinding, necessary to obtain the L ∞ stability property, introduces numerical diffusion as it is expected but does not appear to be necessary in these test cases. We will see in the next test case that without this upwinding, non-physical oscillations may appear.

Several interacting Riemann problems

The initial data is given by

ρ(0, x) = 1, u(0, x) =                        1 - ε 2 if x ∈ [0, 0.2[, 1 if x ∈ [0.2, 0.3], 1 + ε 2 if x ∈]0.3, 0.7[, 1 if x ∈ [0.7, 0.8], 1 - ε 2 if x ∈]0.8, 1], p(0, x) = 1, (2.55)
The system is supplemented with periodic boundary conditions. The results are given for different values of the Mach number: ε = 1, ε = 10 -1 and ε = 10 -2 respectively in Figures 2.15, 2.16 and 2.17. In each corresponding regime we observe oscillations on the density profile when using the L 2 discretization for both our linear AP schemes and also for the N L AP schemes. When using the L ∞ discretizations, these oscillations are significantly reduced. Note that we have also applied this upwinding to the N L AP scheme, the results are similar to those for our new linear scheme. This illustrates the need to add the upwinding on the L 2 discretization. Therefore, for the rest of the paper we will keep only the L ∞ AP scheme called Order 1 AP scheme. In Figure 2.19, in order to show the asymptotic stability of our scheme, we compare the time steps of our L ∞ AP scheme against the classical explicit one. On the left Figure 2.17 -Several interacting Riemann problems experiment. Comparison of our order 1 L ∞ AP scheme against our order 1 L 2 AP scheme and the nonlinear (N L) scheme. Results for ε = 10 -2 , t f inal = 0.015 with 1000 cells. picture for ε = 1, we can see that the time steps have the same order of magnitude. On the contrary, on the right picture for ε = 10 -2 , we observe that the time steps of the AP scheme are around 1/ √ ε = 10 times bigger than the ones required by an explicit method. This shows that the AP scheme can employ time steps which are independent of ε while time steps of explicit schemes remain close to the Mach number value. 

Low oscillating order 2 AP scheme

In this section, we extend our new linear AP scheme to second order accuracy in time and space. Like in [START_REF] Dimarco | Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime[END_REF][START_REF] Boscheri | A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations[END_REF], this extension is based on an Implict-Explicit (IMEX) Runge-Kutta approach [START_REF] Steven | Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations[END_REF][START_REF] Pareschi | Implicit-Explicit Runge-Kutta schemes for stiff systems of differential equations[END_REF][START_REF] Dimarco | Asymptotic Preserving Implicit-Explicit Runge-Kutta Methods for Nonlinear Kinetic Equations[END_REF][START_REF] Bispen | Asymptotic preserving IMEX finite volume schemes for low Mach number Euler equations with gravitation[END_REF]. In particular, we make use of the second order Ascher, Ruuth and Spiteri [START_REF] Steven | Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations[END_REF] scheme denoted in the sequel by ARS(2,2,2) which have been shown in [START_REF] Michel | On High-Precision L ∞ -stable IMEX Schemes for Scalar Hyperbolic Multi-scale Equations[END_REF] to be the better choice for order 2 discretizations. We recall that implicit methods of order higher than one for hyperbolic problems cannot be TVD nor L ∞ stable for unconstrained time steps [START_REF] Gottlieb | Strong Stability-Preserving High-Order Time Discretization Methods[END_REF] and this situation does not change when IMEX methods are employed [START_REF] Dimarco | Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime[END_REF]. To bypass this limitation, we use the same approach as in [START_REF] Dimarco | Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime[END_REF] for the isentropic Euler equations. The idea consists in blending together first and second order implicit time-space discretizations giving rise to an accurate but order 1 AP scheme which guarantees the preservation of the L ∞ stability and TVD property and, to use the order 2 scheme as often as possible by setting up a MOOD (Multidimensional Optimal Order Detection) method [START_REF] Clain | A high-order finite volume method for systems of conservation laws-Multi-dimensional Optimal Order Detection (MOOD)[END_REF]. We detail in the next sections the different steps of the scheme.

Order 2 AP semi-discretization in time

First, let us present the order 2 semi-discretization in time. The Butcher tableaux of the ARS(2,2,2) discretization are given in Table 2.2 where β = 1 -√ 2/2 and α = 1 -1/(2β). Remarking that α = β -1 and 1α = 2β, the following order Explicit 0 0 0 0 

β β 0 0 1 α 1 -α 0 α 1 -α 0 Implicit 0 0 0 0 β 0 β 0 1 0 1 -β β 0 1 -β β
W -W n ∆t + β ∇ • F e (W n ) + β ∇ • F i (W ) = 0, W n+1 -W n ∆t + ∇ • F (W ) + (1 -β)∇ • (F e (W ) -F e (W n )) + β∇ • (F i (W n+1 ) -F i (W )) = 0.
Following the reformulation and linearization used for the order 1 AP scheme, we 68 Chapter 2. Full Euler equations obtain

q ,exp = q n -β∆t∇ • (ρ n u n ⊗ u n ), (2.56a 
)

E ,exp = E n -β∆t ∇ • (k n ε u n ), (2.56b 
)

ρ = ρ n -β∆t∇ • q n , (2.56c) ε γ -1 p -β 2 ∆t 2 ∇ • h ,exp ρ ∇p = ε (E ,exp -k ,exp ) -εβ∆t∇ • h ,exp ρ q ,exp , (2.56d 
)

q = q ,exp -β∆t 1 ε ∇p , (2.56e) 
E = E ,exp -β∆t∇ • γp (γ -1)ρ q , (2.56f) 
where h ,exp = γ (E ,expk ε (W ,exp ).

W n+1,exp =   ρ n+1,exp q n+1,exp E n+1,exp   = W n -∆t[(β -1)∇ • F e (W n ) + (2 -β)∇ • F e (W ) + (1 -β)∇ • F i (W )], (2.57a) 
ρ n+1 = ρ n+1,exp (2.57b) 
ε γ -1 p n+1 -β 2 ∆t 2 ∇ • h n+1,exp ρ n+1 ∇p n+1
= ε E n+1,expk n+1,exp -εβ∆t∇ • h n+1,exp ρ n+1 q n+1,exp , (2.57c)

q n+1 = q n+1,exp - β∆t ε ∇p n+1 , (2.57d 
)

E n+1 = E n+1,exp -β∆t∇ • γp n+1 (γ -1)ρ n+1 q n+1 , (2.57e) 
with h n+1,exp = γ (E n+1,expk ε (W n+1,exp )).

Order 2 space discretization in one dimension

In order to extend the space accuracy to second order, we use classically the MUSCL technique [START_REF] Bram Van Leer | Towards the Ultimate Conservative Difference Scheme V. A Second-order Sequel to Godunov's Method[END_REF] and so a piecewise linear reconstruction of W n j given by

W n j (x) = W n j + σ n j (x -x j )
where α n j is a limited slope and is computed for each component using a minmod limiter:

α n j = minmod W n j+1 -W n j ∆x , W n j -W n j-1 ∆x
where the limiter is defined as

minmod(a, b) = 1 2 (sign(a) + sign(b)) min(|a|, |b|) =    a if |a| < |b|, ab > 0, b if |b| < |a|, ab > 0, 0 otherwise.
This piecewise linear reconstruction is used for defining the numerical flux at the interfaces using the notations introduced for the order 1 AP scheme

(F e ) n j+1/2 := F e (W n j+1,-) + F e (W n j,+ ) 2 -(D e ) n j+1/2 (W n j+1,--W n j,+ ), (2.58) 
where (D e ) n j+1/2 = 1 2 max |u n j,+ |, |u n j+1,-| and where

W n j,± = W n j x j ± ∆x 2 = W n j ± ∆x 2 σ n j .
In the momentum and energy equations the implicit flux F i is discretized with a centered solver which ensures second order accuracy in space so no reconstruction is needed. Moreover, we note that the discretization of the flux operator ∇ • h ρ ∇p j is also second order accurate. Indeed, its discreatization in one dimension reads:

1 ∆x 1 2 (φ i+1 + φ i ) ψ i+1 -ψ i ∆x - 1 2 (φ i + φ i-1 ) ψ i -ψ i-1 ∆x , (2.59) 
where we set φ = h ρ , ψ = p and

f k = f (x k ) for f = φ, ψ and k ∈ {i, i + 1, i -1}.
Using a Taylor expansion in terms of f (x i ) for f (x i+1 ) and f (x i-1 ), we have:

f (x i+1 ) = f (x i ) + ∆x∂ x f (x i ) + ∆x 2 2 ∂ 2 xx f (x i ) + ∆x 3 6 ∂ 3 xxx f (x i ) + O(∆x 4 ), (2.60) f (x i-1 ) = f (x i ) -∆x∂ x f (x i ) + ∆x 2 2 ∂ 2 xx f (x i ) - ∆x 3 6 ∂ 3 xxx f (x i ) + O(∆x 4 ). (2.61)
And so,

ψ i+1 -ψ i ∆x = ∂ x ψ i + ∆x 2 ∂ 2 xx ψ i + ∆x 2 6 ∂ 3 xxx ψ i + O(∆x 3 ), ψ i -ψ i-1 ∆x = ∂ x ψ i - ∆x 2 ∂ 2 xx ψ i + ∆x 2 6 ∂ 3 xxx ψ i + O(∆x 3 ), 1 2 (φ i+1 + φ i ) = φ i + ∆x 2 ∂ x φ i + ∆x 2 4 ∂ 2 xx φ i + O(∆x 3 ), 1 2 (φ i + φ i-1 ) = φ i - ∆x 2 ∂ x φ i + ∆x 2 4 ∂ 2 xx φ i + O(∆x 3 ).
Then, injecting those expressions into (2.59), gives

D(∂ x (φ∂ x ψ)) j = 1 ∆x 1 2 (φ i+1 + φ i ) ψ i+1 -ψ i ∆x - 1 2 (φ i + φ i-1 ) ψ i -ψ i-1 ∆x = 1 ∆x ∆x∂ x ψ i ∂ x φ i + ∆x∂ 2 xx ψ i φ i + O(∆x 3 ) = ∂ x (φ∂ x ψ) (x j ) + O(∆x 2 ).
The space accuracy with an upwind discretization of the implicit flux could also be increased. In that case, it would require a linear reconstruction of the fluxes 1 ε p I d and γp (γ -1)ρ q in the momentum and energy equations of (2.56)-(2.57). In our discretization, the pressures p and p n+1 are not defined as a function of the conservative variables (not defined with the state equation) since they are given respectively by (2.56d) when computing W and by (2.57c) for W n+1 . Therefore, the definition of the implicit numerical flux by using a piecewise linear reconstruction on the conservative variables (ρ, q, E) as done for the explicit part in (2.58) is not possible here. We also started to investigate a linear reconstruction on the primitive variables to compute the implicit fluxes 1 ε p I d and γp q (γ-1)ρ = γp u γ-1 but did not have time to go further in that direction. In this work, we propose to use a linear reconstruction only when adding numerical dissipation on the conservative variables. Moreover, numerical tests intend to show that adding implicit diffusion only at the end of the second step is sufficient (see Figure 2.20). As done for the Order 1 L ∞ stable scheme, we compute the L 2 stable solution W n+1,L2 j with (2.56)-(2.57), (2.58) and then add numerical dissipation on the conservative variables:

W n+1 j =    ρ n+1,L2 j q n+1,L2 j E n+1,L2 j    + β∆t ∆x (D i ) n j+1/2 ( W n+1 j+1,--W n+1 j,+ ) - β∆t ∆x (D i ) n j-1/2 ( W n+1 j,--W n+1 j-1,+ ) , (2.62)
where the implicit viscosity coefficient

(D i ) n j+1/2 = 1 2 max |λ i (W n j+1,-)|, |λ i (W n j,+ )| , (2.63) 
with |λ i (W )| = |u| 2 + u 2 4 + c 2
ε and where like in [START_REF] Dimarco | Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime[END_REF] 

W n+1 j,± = W n+1 j ± ∆x 2 σ n j .
Let us also remark that in this case, we impose explicit slopes for W n+1 j,± in order to avoid the nonlinearity arising from an implicit reconstruction of W n+1 j .

The accurate TVD AP scheme

It is well known that a second order discretization in space introduces oscillations which can be eliminated by using limiters such as the minmod limiter. The same problem occurs with time discretization. Indeed, using this second order discretization in time with an order 1 discretization in space leads to numerical oscillations. Comparison of the Order 2 AP schemes against a reference solution for various choices on the implicit upwinding. Results for "02 AP Di=0": no implicit upwinding added (green curve), for "02 AP Di =0 (+Step )": implicit upwinding added at the end of the first step, i.e, after computing W and at the end of second step (cyan curve) and for "02 AP Di =0": implicit upwinding added only at the end of the second step (red dashed curve). The cyan and red curves overlap intending to show that adding numerical viscosity only at the end of the second step (red dashed curve) is sufficient.

On Figure 2.21, we can see that the Order 2 AP scheme gives more accurate results than the Order 1 AP scheme but we can also remark that when the Mach number decreases oscillations appear. In [START_REF] Dimarco | Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime[END_REF], it has been proved for the following linear advection equation

∂ t w + c e ∂ x w + c i √ ε ∂ x w = 0, (2.64) 
where c e > 0 and c i > 0, that these oscillations are the result of the loss of the L ∞ stability and TVD (total variation diminishing) properties of the second order semi-discretisation. Let us recall that a scheme is L ∞ stable when for all n ≥ 0, and TVD when

w n+1 ∞ ≤ w n ∞ = max j∈{1...N } |w n j |,
T V (w n+1 ) ≤ T V (w n ) = N j=1 |w n j+1 -w n j |,
where w n j = w(x j , t n ). In [START_REF] Dimarco | Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime[END_REF], the equation (2.64) was discretized with an upwind scheme in space and similarly to the Euler equations, the slow scale was discretized explicitly and the fast scale (where we note a dependency in 1/ √ ε) implicitly. The full discretization of the order one scheme used reads

w n+1 j = w n j - ∆t ∆x c e (w n j -w n j-1 ) - ∆t ∆x c i √ ε (w n+1 j -w n+1 j-1 ). (2.65)
For the second-order time discretization, an ARS(2,2,2) scheme was used. Unfortunately, for the IMEX second order discretization in time the L ∞ stability and TVD properties can be recovered only if the time steps are of the order of that of the explicit semi-discretization and so constrained by the Mach number. It has been shown in [START_REF] Gottlieb | Strong Stability-Preserving High-Order Time Discretization Methods[END_REF] that there does not exist TVD implicit Runge-Kutta schemes with unconstrained time steps of order higher than one for an hyperbolic equation and this situation does not change when IMEX methods are employed [START_REF] Dimarco | Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime[END_REF].

To tackle this problem and obtain a L ∞ stable and TVD numerical semi-discretization more accurate than the Order 1 AP scheme, we introduce a convex combination between the order 1 and order 2 schemes, as proposed in [START_REF] Dimarco | Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime[END_REF] for the isentropic Euler equations:

W n+1 = (1 -θ)W n+1,01 + θW n+1,02 , (2.66) 
where W n+1,01 is given by the Order 1 AP scheme (2.38), W n+1,02 by the secondorder AP one (2.56)-(2.57) and θ ∈ [0, 1]. We aim to choose the largest possible value of θ to be as accurate as possible while ensuring the TVD property. We set θ to β 1-β = √ 2 -1 ≈ 0.4142 since in [START_REF] Dimarco | Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime[END_REF], it has been proved that this value is the largest possible value to ensure the TVD property in the case of the linear advection equation (2.64). It was shown for w n+1,01 computed with (2.65) and an upwind scheme with the ARS(2,2,2) second-order time-discretization for computing w n+1,02 . Finally, we obtain the following scheme referred as the TVD AP scheme

W -W n ∆t + β∇ • F e (W n ) + β∇ • F i (W ) = 0, (2.67a) W n+1 -W n ∆t + (1 -θ + θ(β -1))∇ • F e (W n ) + θ(2 -β)∇ • F e (W ) + θ(1 -β)∇ • F i (W ) + (1 -θ + θβ)∇ • F i (W n+1 ) = 0. (2.67b)
The space discretization is the same as for the Order 2 AP scheme where the explicit flux F e is given by (2.58) and the implicit flux is discretized with a centered solver. The upwinding on the implicit part is also added at the end of the second step. As done for the Order 1 L ∞ stable scheme, we compute the L 2 stable solution W n+1,L2 j with (2.67), (2.58) and then add numerical dissipation on the conservative variables:

W n+1 j =    ρ n+1,L2 j q n+1,L2 j E n+1,L2 j    + (1 -θ + θβ) ∆t ∆x (D i ) n j+1/2 (W n+1 j+1 -W n+1 j ) -(1 -θ + θβ) ∆t ∆x (D i ) n j-1/2 (W n+1 j, -W n+1 j-1 ) , (2.68) 
where W n+1,L2 j is computed with (2.67), (2.58) and

(D i ) n j+1/2 = 1 2 max |λ i (W n j+1 )|, |λ i (W n j )| .
In the following, this scheme is referred as the TVD AP scheme and defined by (2.67) in time and (2.58), (2.68) in space. Note that this scheme is more accurate than the Order 1 AP scheme but is still of order 1. We will see in Section 2.4.5, how we can bypass this limitation.

Remark 7. Our first choice was to perform a reconstruction on the conservative variables when adding the implicit upwinding with (2.68) as done for the Order 2 AP scheme with (2.62) (see Section 2.4.2 for more details). But, numerical tests showed that with this choice, spurious oscillations around shocks are not always eliminated. On Figure 2.22, we compare the results given on the density for the shock tube problem (see Section 2.4.5.1) with various values of the Mach number when: dissipation is added with reconstruction ("TVD AP Di =0 (W+/-)", blue curve) and when dissipation is added with (2.68) ("TVD AP Di =0", red dashed curve). We see that we obtain more accurate results with the reconstruction for ε = 1 and 10 -2 but for ε = 10 -4 oscillations are present with this choice. Therefore, in order to ensure the TVD property we choose to add the upwinding with (2.68). Comparison of the TVD AP schemes against a reference solution when: the upwinding is added at the end of the second step with a linear reconstruction on the conservative variables as done for the Order 2 AP scheme (blue curve) and when the upwinding is added at the end of the second step with (2.68) (red dashed curve). The results are more accurate with the reconstruction procedure but for ε = 10 -4 spurious oscillations around shocks are not completely eliminated and thus, the TVD proprety is lost in this case.

Numerical results

In this part, we present several numerical test cases which show the behavior of our AP schemes. We resume here, for eaech scheme, the corresponding discretization used:

-The Order 1 AP scheme is given by the full discretization (2.41), (2.42).

-The Order 2 AP scheme is given by the semi-discretization (2.56), (2.57) and the space discretization (2.58), (2.62). -The TVD AP scheme is given by the semi-discretization (2.67) and the space discretization (2.58), (2.68). In each presented test case we compare the Order 1 AP scheme (blue dotted line), the TVD AP scheme (red line) and the Order 2 AP scheme (green line) against a reference solution that is, if not mentioned, computed using an order one explicit scheme with the Rusanov solver on a refined grid (N = 3000). For all test cases the space domain is set to Ω = [0, 1] and we choose γ = 1.4. If not mentioned ε = 1.

On Figure 2.23, we see that with the constructed TVD AP scheme we are able as expected to obtain a more accurate first order scheme that ensures the TVD (Total variation diminishing) property. The scheme is less accurate than the Order 2 AP scheme but does not show any oscillation even as the Mach number decreases. 

Classical Riemann problems: The Sod, Lax and Contact (stiff ) problems

Here we validate the behavior of the TVD and Order 2 AP schemes for the Riemann problems introduced in Section 2.3.4.1. The initial data of the classical Riemann problems is given by

(ρ, u, p)(0, x) = w L = (ρ L , u L , p L ) if x < x d , w R = (ρ R , u R , p R ) otherwise.
The initial left and right states values, w L and w R respectively, are summarized in 

The 2D isentropic vortex : Numerical convergence

The isentropic vortex problem was initially introduced by [START_REF] Hu | Weighted Essentially Non-oscillatory Schemes on Triangular Meshes[END_REF] to test the accuracy of numerical methods since the analytical solution is regular and known. It corre- sponds to a flow characterized by (ρ ∞ , u ∞ , v ∞ , p ∞ ) = (1, 1, 1, 1) to which we add an isentropic vortex given by perturbations in (u, v) and the temperature T = p/ρ but no perturbation in the entropy S = p/ρ γ :

(δu, δv) = d 2π e 1-r 2 2 (-y, x), δT = - (γ -1)d 2 8γπ 2 e 1-r 2 , δS = 0,
where r = x 2 + y 2 and the vortex strength d = 5. The initial data is given by

(ρ, u, v, p)(0, x, y) = (ρ ∞ + δρ, u ∞ + δu, v ∞ + δv, p ∞ + δp), (2.69) 
where the perturbations for the density and pressure read δρ = (1 + δT ) 1/(γ-1) -1 and δp = (1 + δT ) γ/(γ-1) -1.

The domain is set to Ω = [-5, 5] 2 and periodic boundary conditions are used. The exact solution of this problem with the above initial data is the initial vortex convected with the mean velocity, i.e.,

W ex (t, x, y) = W 0 (x -u ∞ t, y -v ∞ t).
For details on the space discretization of the AP schemes in dimension two, see Section 3.2.4.

To assess the numerical order of accuracy, we compute the relative L 2 errors on the density for several uniform meshes:

e L2 = ||ρ n -ρ n ex || L 2 ||ρ n ex || L 2 = i,j |ρ n i,j -ρ ex (t n , x i , y j )| 2 i,j |ρ ex (t n , x i , y j )| 2 .
The L 2 errors are computed at t f inal = 1 and shown in logarithmic scale as a function of the number of cells on Figure 2.28 on the right. We get the right orders for each of the schemes. Note that the TVD AP scheme is of order 1 but with an error always lower than the first order schemes, which confirms that the accuracy has been increased. 

Mood procedure

Since we observed that in many situations the full second order AP scheme can be employed without formation of spurious oscillations and since the TVD AP scheme is only first-order accurate we aim in constructing an optimized AP scheme using the MOOD technique [START_REF] Diot | Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials[END_REF], [START_REF] Diot | The Multidimensional Optimal Order Detection method in the three-dimensional case: very highorder finite volume method for hyperbolic systems[END_REF] 

W n+1 = W n+1,O2 .
We refer to this algorithm as the AP-MOOD scheme for the Euler equations.

Detection criterion : Discrete maximum principle on u and p

The detection of these oscillations is a difficult problem. Many different detection criteria can be found in the literature such as the positivity of the density, a maximum principle on the physical quantities, on the conservative variables... Note that the maximum principle on physical or conservative quantities is not a property satisfied at the continuous level.

Here we prefer to choose a criterion based on a property verified by the continuous problem. It is known that at a continuous level and for a Riemann problem at least u or p satisfy the maximum principle. We propose to use this property for detecting spurious oscillations. We introduce a local detection criterion which relies on testing whether both u and p break the maximum principle at the same time.

For each cell j, we calculate the following bounds:

(u min ) n j = min(u n j-1 , u n j , u n j+1 ), (u max ) n j = max(u n j-1 , u n j , u n j+1 ), (p min ) n j = min(p n j-1 , p n j , p n j+1 ), (p max ) n j = max(p n j-1 , p n j , p n j+1 ).
We detect a loss of the maximum principle on u and p simultaneously on a given cell j ∈ 1, . . . , N if for f = p and u:

f n+1 j < m n f,j -tol or f n+1 j > M n f,j + tol, (2.70) 
where m n f,j = (f min ) n j , M n f,j = (f max ) n j and

tol = µ tol max j (f 0 j ) min j (f 0 j ) (max j (f 0 j ) -min j (f 0 j )).
The tolerance parameter µ tol allows us to relax the discrete maximum principle. It must be chosen such as not to activate the procedure too much in order to be as close as possible to the second-order solution, but so as to activate it enough to significantly reduce the oscillations. The best choice for µ tol is case-dependent and therefore its value is different for each test case. With this choice, we observe that oscillations are reduced and the accuracy of this AP-MOOD scheme is better than the one of the TVD AP scheme, see figures in Section 2.4.5.1.

Other considered detection criteria -Global criterion

We have also considered a global detection criterion as proposed in [START_REF] Dimarco | Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime[END_REF] for the isentropic case, this means that we detect a loss of the maximum principle on u and p simultaneously if for f = p and u:

f n+1 < m n f -tol or f n+1 j > M n f + tol, (2.71) 
where

m n f = min j (f n j ) and M n f = max j (f n j ).
We have replaced (f min ) n j and (f max ) n j by (f min ) n and (f max ) n . This method is less costly and the tolerance µ tol is less test case sensitive but in some cases, oscillations are not detected even diminishing µ tol . We can observe it for the Shock tube problem (see Section 2.4.5.1 for the test case description). In Figure 2.29, we compare for the velocity profile the results given using our local detection criterion (red line on the left), and using the global criterion (magenta line on the right). For each value of ε, we use the same number of cells and final times as in Section 2.4.5.1. We observe that the oscillations on the intermediate state are not well-captured when using the global criterion. Actually, they are at most detected only for the first two iterations even though we have set µ tol = 0 (i.e. the maximum principle on u and p is not relaxed). On the other hand, with the local criterion we have fixed µ tol = 1.4 × 10 -1 and we obtain much better results (red line on the left figures).

-Local correction procedure We also considered a local correction that is, we have changed Step In this case, the results are not satisfactory, with sometimes higher oscillations appearing in neighboring cells. We can observe it on Figure 2.30 where we obtain good results for ε = 10 -2 (top right) and ε = 10 -3 (top left) but not for ε = 10 -4 (bottom).

Results for the shock tube problem

We consider a Riemann problem with the following initial data: given by the four schemes in several regimes corresponding to different values of the Mach number: ε = 1, ε = 10 -2 , ε = 10 -3 and ε = 10 -4 . We observe that the Order 1 AP scheme is very diffusive while the Order 2 scheme better approximates the solution but presents oscillations increasing as the Mach number decreases. The TVD AP scheme shows almost no oscillation as the Mach number decreases. In red, we show the results of our AP-MOOD scheme which reduces significantly the oscillations produced by the Order 2 AP scheme and gives results as accurate as the Order 2 AP scheme. Chapter 3

ρ(0, x) = 1, u(0, x) = 1, p(0, x) = 1 + ε if x < 0.

Extension to the Navier-Stokes equations and two dimensional numerical tests

The content of this chapter is the subject of an article in preparation in collaboration with Marie-Hélène Vignal. 

Introduction

We consider the modeling of a compressible fluid described by the Navier-Stokes equations and we are interested in numerical methods valid in all Mach regimes.

Chapter 3. Extension to the Navier-Stokes equations and two dimensional numerical tests

Let Ω ⊂ R d (d = 1, 2 or 3) be an open bounded domain, the Navier-Stokes equations in rescaled variables are given by

∂ t ρ + ∇ • q = 0, (3.1a) ∂ t q + ∇ • q ⊗ q ρ + 1 ε ∇p = ∇ • σ, (3.1b) ∂ t E + ∇ • (E + p) q ρ = ε∇ • σ q ρ + ∇ • (λ∇T ) , (3.1c) 
with ρ > 0 the density of the fluid, q = ρU its momentum, U its velocity field, E its total energy, p its pressure given by an equation of state, here that of perfect gases:

E = p γ -1 + ε 2 |q| 2 ρ , (3.1d) 
with γ = c p /c v > 1 the ratio of specific heats.

The rescaled parameter ε is related to the Mach number

M 2 = U 2 0 c 2 0 = ε γ ,
with c 2 0 = γ p 0 /ρ 0 . U 0 , p 0 and ρ 0 being the typical values of the velocities, pressure and density in the fluid. On the right hand side of the system, the diffusion terms are reported. We have in the momentum equation the viscous stress tensor related to the derivatives of the velocity field U and given by

σ = µ ∇U + (∇U ) T - 2 3 µ (∇ • U ) I, (3.2) 
with I the identity matrix and µ the dynamical viscosity coefficient. While in the energy equation there are the viscous work σq/ρ and the conductive heat flux λ∇T where T is the fluid temperature and λ is the given thermal conductivity coefficient. Finally, for a perfect gas the temperature is given by the relation

p = RρT, (3.3) 
with R = c pc v the specific gas constant.

Remark 8. We have different relations between the parameters of the fluid mainly γ = c p /c v with c p the specific heat at constant pressure and c v the specific heat at constant volume. Moreover, since R = c pc v with c p > c v > 0, it gives the relations c v = R/(γ -1) and c p = γR/(γ -1). At last, sometimes the fluid can also be caracterized by the Prandtl number defined as the ratio of momentum diffusivity to thermal diffusivity, P r = µc p /λ = µγc v /λ.

The previous system can be rewritten in compact form as

∂ t W + ∇ • F (W ) = ∇ • G(W, ∇W ), (3.4) 
where W = (ρ, q, E) is the vector of conserved variables,

F (W ) =    q ρU ⊗ U + 1 ε p Id 3 R (E + p) U    ,
is the inviscid flux for the Euler equations and

G(W, ∇W ) =   0 σ ε σ U + λ∇T   ,
is the diffusion flux. In low Mach number regimes, the typical sound speed in the fluid, c 0 , is very large compared to the typical speed of the fluid itself, U 0 , and so ε is very small. In such situations, if an explicit scheme is used, the time step must satisfy a severe C.F.L. (Courant-Friedrichs-Levy) stability condition due to the acoustic waves. Indeed, for d = 1, the eigenvalues of the Jacobian matrix, DF (W ), are given by

λ 1 = u - c √ ε , λ 2 = u, λ 3 = u + c √ ε ,
with u the fluid velocity and c 2 = γ p/ρ. For d = 1, the diffusion flux may be rewritten with the help of the diffusion matrix [START_REF] Frieder Lörcher | A Discontinuous Galerkin Scheme based on a Space-Time Expansion II. Viscous Flow Equations in Multi Dimensions[END_REF]). Using the relation λ(γ-1) R = λ cv , the diffusion matrix reads

D(W ) as G(W, ∂ x W ) = D(W )∂ x W (see
D(W ) =       0 0 0 - 4µu 3ρ 4 3ρ µ 0 - 4µεu 2 3ρ + λ c v ( u 2 ρ - E ρ 2 ) εu ρ ( 4µ 3 - λ c v ) λ c v ρ      
, and its eigenvalues are

λ ν1 = 0, λ ν2 = 4µ 3ρ , λ ν3 = λ c v ρ .
Then, the C.F.L. condition ensuring the stability of explicit schemes, for the time and space steps ∆t and ∆x is given by

∆t ≤ 1 max |u ± c √ ε | ∆x + 2 max 4µ 3ρ , λ c v ρ ∆x 2 . ( 3 
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Then, for a given space step ∆x, the time step ∆t is of order √ ε and tends to 0 with ε. This constraint is still present even when the diffusive part is implicit. Furthermore, even if this constraint is satisfied, it is well known (see [START_REF] Guillard | On the behaviour of upwind schemes in the low Mach number limit[END_REF], [START_REF] Guillard | On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes[END_REF] or [START_REF] Dellacherie | Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number[END_REF]) that explicit schemes suffer from a consistency problem in the limit ε → 0. Indeed, they are not capable to capture the right asymptotic regime. A possible way to bypass these limitations is to use when ε is sufficiently small, the limit model obtained as the low Mach number limit of the compressible Navier-Stokes equations (3.1). Let us recall the formal low Mach number limit in the next section.

Low Mach number limit of the Navier-Stokes equations

The rigorous low Mach number limit of the isentropic Navier-Stokes equations has been well investigated in the last years [START_REF] Danchin | Zero Mach number limit for compressible flows with periodic boundary conditions[END_REF][START_REF] Desjardins | Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions[END_REF][START_REF] Lions | Incompressible limit for a viscous compressible fluid[END_REF][START_REF] Schochet | Fast singular limits of hyperbolic PDEs[END_REF]. The non-isentropic case is more complicated and results in the case of the Euler equations can be found in [START_REF] Metivier | The Incompressible Limit of the Non-Isentropic Euler Equations[END_REF][START_REF] Alazard | Incompressible limit of the nonisentropic Euler equations with the solid wall boundary conditions[END_REF][START_REF] Metivier | Averaging theorems for conservative systems and the weakly compressible Euler equations[END_REF]. For the rigorous low Mach number limit for the non-isentropic compressible Navier-Stokes equations one can refer to [START_REF] Alazard | Low Mach Number Limit of the Full Navier-Stokes Equations[END_REF] for the whole space domain and [START_REF] Dou | Low Mach number limit of full Navier-Stokes equations in a 3D bounded domain[END_REF] on a bounded domain. Here, we recall how to recover formally the limit model. We denote by (ρ ε , q ε , E ε , p ε , T ε ) the solution of (3.1) and assume that it converges towards (ρ 0 , q 0 , E 0 , p 0 , T 0 ) when ε tends to 0. In order to pass to the limit we consider the slip boundary condition

U ε • n = 0,
and the Neumann boundary condition

∂T ε ∂n = 0,
on ∂Ω where n is the unit normal to ∂Ω outward to Ω. Inserting the asymptotic expansion of (ρ ε , q ε , E ε , p ε , T ε ), we get:

ε -1 : ∇p 0 = 0, (3.6a) ε 0 : ∂ t ρ 0 + ∇ • q 0 = 0, (3.6b) 
∂ t q 0 + ∇ • q 0 ⊗ q 0 ρ 0 + ∇p 1 = ∇ • σ 0 , (3.6c) ∂ t E 0 + ∇ • (E 0 + p 0 ) q 0 ρ 0 = ∇ • λ ∇T 0 , (3.6d) E 0 = p 0 γ -1 , (3.6e) 
where

p 1 (x, t) = lim ε→0 1 ε (p ε (x, t) -p 0
) is the order one correction of the pressure and

σ 0 = µ ∇U 0 + (∇U 0 ) T - 2 3 µ ∇ • U 0 I,
with U 0 = q 0 /ρ 0 . Since ∇p 0 (x, t) = 0, p 0 (x, t) = p 0 (t) then for all x ∈ Ω and t > 0

E 0 (x, t) = E 0 (t) = p 0 (t) γ -1 .
Integrating now (3.6d) on [0, T ] × Ω we obtain,

Ω E 0 (t) -E 0 (x, 0) dx + t 0 ∂Ω (E 0 (t) + p 0 (t) ) u 0 (x, t) • ν(x) dσ(x) dt -λ t 0 ∂Ω ∂T 0 (x, t) ∂n(x) dσ(x) dt = 0. (3.7)
Using the boundary conditions we obtain for all t > 0,

|Ω| E 0 (t) - Ω E 0 (x, 0)dx = 0.
And so,

E 0 (t) = E 0 = 1 |Ω| Ω E 0 (x, 0) dx.
Thereafter, having constant energy and pressure and T 0 = p 0 Rρ 0 , we obtain from the energy equation (3.6d):

E 0 + p 0 ∇ • U 0 = γ p 0 γ -1 ∇ • U 0 = p 0 ∇ • λ ∇ 1 Rρ 0 ,
and so,

γ∇ • U 0 = (γ -1) ∇ • λ R ∇ 1 ρ 0 .
Finally, the low Mach number limit system [START_REF] Alazard | Low Mach Number Limit of the Full Navier-Stokes Equations[END_REF] reads

∂ t ρ 0 + ∇ • q 0 = 0, (3.8a) 
∂ t q 0 + ∇ • q 0 ⊗ q 0 ρ 0 + ∇p 1 = ∇ • σ 0 , (3.8b) γ∇ • U 0 = (γ -1)∇ • λ R ∇ 1 ρ 0 , (3.8c) E 0 = p 0 γ -1 = 1 |Ω| Ω E 0 (x, 0) dx. (3.8d)
Let us remark that unlike for the full Euler equations, we do not have the incompressibility constraint ∇ • U 0 = 0. This is due to the combined effects of large temperature variations and thermal conduction. Note that neglecting the heat conduction effects, i.e., setting λ = 0, we do obtain the Navier-Stokes incompressible model. Moreover, neglecting also the viscous forces, i.e., setting µ = 0, the low Mach number limit for the compressible Euler equations is recovered (see Section 2.1.1).

Chapter 3. Extension to the Navier-Stokes equations and two dimensional numerical tests

Asymptotic preserving schemes

First, let us clarify that the rescaled Navier-Stokes system (3.1) is used for the analysis. But, in practice, simulations are performed on the non rescaled Navier-Stokes system (1.7). In the rescaled system, our parameter ε is constant. In practice, it is like if we considered ε not constant and varying in space and time. The limit model (3.8) does no longer depend on the Mach number and so is no more constrained by the small values of ε. But, it can be used only where ε is sufficiently small. Where ε takes on order one or intermediate values, the Navier-Stokes equations (3.1) must be used. Then, two models must be used which leads to other difficulties like the detection of the interface between the two models, the reconnection at the interface... (see Section 2.1.3 for more details). A solution can be to construct an asymptotic preserving scheme which is consistent with the limit and free of the constraints related to the Mach number ε. Such schemes have been developed in the literature, see [START_REF] Degond | Mach-number uniform asymptoticpreserving gauge schemes for compressible flows[END_REF][START_REF] Degond | An Asymptotic Preserving scheme for the Euler equations in a strong magnetic field[END_REF][START_REF] Degond | All Speed Scheme for the Low Mach Number Limit of the Isentropic Euler Equations[END_REF][START_REF] Haack | An All-Speed Asymptotic-Preserving Method for the Isentropic Euler and Navier-Stokes Equations[END_REF][START_REF] Tang | Second order all speed method for the isentropic Euler equations[END_REF][START_REF] Grenier | An accurate low-Mach scheme for a compressible two-fluid model applied to free-surface flows[END_REF][START_REF] Bispen | Asymptotic preserving IMEX finite volume schemes for low Mach number Euler equations with gravitation[END_REF][START_REF] Dimarco | Study of a New Asymptotic Preserving Scheme for the Euler System in the Low Mach Number Limit[END_REF][START_REF] Boscarino | All Mach Number Second Order Semi-implicit Scheme for the Euler Equations of Gas Dynamics[END_REF][START_REF] Dimarco | Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime[END_REF] for the isentropic Euler system, [START_REF] Munz | Linearized Acoustic Perturbation Equations for Low Mach Number Flow with Variable Density and Temperature[END_REF][START_REF] Cordier | An Asymptotic-Preserving all-speed scheme for the Euler and Navier-Stokes equations[END_REF][START_REF] Noelle | A Weakly Asymptotic Preserving Low Mach Number Scheme for the Euler Equations of Gas Dynamics[END_REF][START_REF] Dumbser | A conservative, weakly nonlinear semi-implicit finite volume scheme for the compressible Navier-Stokes equations with general equation of state[END_REF][START_REF] Chalons | An all-regime Lagrange-Projection like scheme for the gas dynamics equations on unstructured meshes[END_REF][START_REF] Dimarco | Study of a New Asymptotic Preserving Scheme for the Euler System in the Low Mach Number Limit[END_REF][START_REF] Boscheri | A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations[END_REF] for the full Euler system or [START_REF] Degond | Mach-number uniform asymptoticpreserving gauge schemes for compressible flows[END_REF][START_REF] Cordier | An Asymptotic-Preserving all-speed scheme for the Euler and Navier-Stokes equations[END_REF][START_REF] Kheriji | An unconditionally stable staggered pressure correction scheme for the compressible Navier-Stokes equations[END_REF][START_REF] Dumbser | A conservative, weakly nonlinear semi-implicit finite volume scheme for the compressible Navier-Stokes equations with general equation of state[END_REF][START_REF] Tavelli | A pressure-based semi-implicit spacetime discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier-Stokes equations at all Mach numbers[END_REF][START_REF] Boscheri | High order pressure-based semi-implicit IMEX schemes for the 3D Navier-Stokes equations at all Mach numbers[END_REF][START_REF] Boscheri | An efficient second order all Mach finite volume solver for the compressible Navier-Stokes equations[END_REF] for the full Navier-Stokes system. They permit to avoid the time step limitations, the schemes are said to be asymptotically stable. And, they lead to consistent approximations of the limit incompressible model when the low Mach number goes to zero, this corresponds to the asymptotic consistency property. In practice, one strategy among others for constructing asymptotic preserving schemes is using IMEX methods [START_REF] Steven | Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations[END_REF][START_REF] Pareschi | Implicit-Explicit Runge-Kutta schemes for stiff systems of differential equations[END_REF]. The flux F is split into two parts,

F = F e + F i .
The first part F e will be treated explicitly while the second one, F i , implicitly. The choice of the decomposition F = F e + F i must be well chosen in order to obtain asymptotic stability, asymptotic consistency and with a reasonable computational cost. In Chapter 2, we defined, for the full Euler equations, criteria in order to choose correctly the right flux decomposition respecting the above properties. For the Navier-Stokes equations, we propose to use the same decomposition of F for the hyperbolic part, the one introduced by E.F. Toro and M.E. Vázquez-Cendón in [START_REF] Vázquez-Cendón Eleuterio | Flux splitting schemes for the Euler equations[END_REF] (see Chapter 2). With this choice, in dimension 1 the eigenvalues of the Jacobian matrix related to F e are given by λ 1 = λ 2 = u the fluid velocity and λ 3 = 0. Moreover, in the case of viscous flows, the time step must obey a quadratic restriction proportional to ∆x 2 / max(µ, λ), and this condition on the maximum time step can become rather severe for large values of µ or λ. To also overcome those restrictions, we propose to treat implicitly the diffusion flux. Since G contains only linear terms we consider that this choice of treatment adds a reasonable computational cost and allows us to use larger time steps in strongly viscous regimes as well. Then, for the chosen flux decomposition, the C.F.L. condition of such IMEX scheme is given by ∆t ≤ ∆x |u| .

In the next section, we present the proposed order 1 IMEX scheme based on a finite volume discretization in space. Following the same strategy as for the full Euler equations, the system is reformulated to solve a nonlinear equation on the pressure for which a linearization is proposed. This choice allows to avoid the use of an iterative method for solving it and the resolution is therefore uncoupled. Then, the asymptotic consistency is proved on the semi-discretization. Furthermore, we propose a second-order extension using an IMEX Runge-Kutta approach in time. Then, we show the good behavior of the order 2 scheme on a variety of two dimensional numerical tests involving non-viscous fluids, viscous fluids, fluids in presence of heat conduction. They take into account fluids in the compressible and low Mach number regimes.

3.2 Order 1 AP scheme

3.2.1 Semi-discretization in time 3.2.1.1 Order 1 discretization
For clarity, we consider a uniform discretization in time denoting by ∆t the time step. Using for F the flux decomposition proposed in [START_REF] Vázquez-Cendón Eleuterio | Flux splitting schemes for the Euler equations[END_REF] and treating the diffusion flux implicitly we rewrite the system in a conservative system form

W n+1 -W n ∆t + ∇ • F e (W n ) + ∇ • F i (W n+1 ) = ∇ • G W n+1 , ∇W n+1 . (3.9a)
where the explicit and implicit inviscid fluxes are given by

F e (W ) =   ρ U ρ U ⊗ U k ε U   , F i (W ) =    0 p ε I d h U    , with k ε = k ε (W ) = ερ|U | 2 /2
the kinetic energy and h = h(W ) = γ(Ek ε ) the specific enthalpy and where the implicit diffusion flux is given by

G(W, ∇W ) =   0 σ ε σ U + λ∇T   =     0 σ ε σ U + λ R ∇ p ρ     .
Then, we have

ρ n+1 = ρ n -∆t∇ • (ρ n U n ) , (3.10a 
) 

q n+1 = q n -∆t∇ • (ρ n U n ⊗ U n ) -∆t 1 ε ∇p n+1 + ∆t∇ • σ n+1 , (3.10b) E n+1 = E n -∆t∇ • (k n ε U n ) -∆t∇ • h n+1 U n+1 + ε∆t∇ • σ n+1 U n+1 + ∆tλ R ∆ p n+1 ρ n+1 , (3.10c) E n+1 = p n+1 γ -1 + k n+1 ε , ( 3 
p n+1 + k n+1 ε = E n+1,exp -∆t∇ • h n+1 ρ n+1 q n+1,exp - ∆t ε ∇p n+1 + ∆t∇ • σ n+1 + ε∆t∇ • σ n+1 q n+1 ρ n+1 + ∆tλ R ∆ p n+1 ρ n+1 , (3.11)
where W n+1,exp is the explicit convected part of the conservative variables,

W n+1,exp =   ρ n+1,exp q n+1,exp E n+1,exp   = W n -∆t∇ • F e (W n ) =   ρ n -∆t∇ • (ρ n U n ) q n -∆t∇ • (ρ n U n ⊗ U n ) E n -∆t∇ • (k n ε U n )   . (3.12)
Then, by passing the terms p n+1 to the left hand side and multiplying by ε, one obtains the discretization of an elliptic equation for determining the unknown pressure p n+1 :

ε γ -1 p n+1 -∆t 2 ∇ • h n+1 ρ n+1 ∇p n+1 - ε∆tλ R ∆ p n+1 ρ n+1 = -εk n+1 ε + εE n+1,exp -ε∆t∇ • h n+1 ρ n+1 q n+1,exp + ∆t∇ • σ n+1 + ε 2 ∆t∇ • σ n+1 q n+1 ρ n+1 . (3.13)
The equation on the unknown pressure is highly nonlinear, it is completely coupled with the momentum equation. Within the framework of finite volume schemes on collocated grids, the scheme proposed in [START_REF] Boscheri | A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations[END_REF], for the full Euler case, i.e., for λ = µ = 0, consists in solving (3.13) with the use of a Picard algorithm. In [START_REF] Boscheri | High order pressure-based semi-implicit IMEX schemes for the 3D Navier-Stokes equations at all Mach numbers[END_REF], a linearization of the kinetic term k ε is proposed for the state equation and the enthalpy h is treated explicitly resulting on a linear version for the pressure equation (3.13). The algorithm is also extended to the Navier-Stokes model discretizing the diffusive terms explicitly. In [START_REF] Boscheri | An efficient second order all Mach finite volume solver for the compressible Navier-Stokes equations[END_REF], following the strategy proposed in [START_REF] Boscheri | A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations[END_REF], it is extended to the Navier-Stokes equations considering as here, the diffusion flux term implicit.

The nonlinear pressure equation (3.13) is solved using two Picard iterates. A first loop is used to update the viscous terms and then in a second loop the new viscous values are used to solve the pressure equation. Here, we propose a linearization of the reformulated pressure equation (3.13) in order to simplify the scheme and reduce the computational cost. Following the same strategy as for the full Euler equations (see Section 2.3) for the inviscid part, the quantities h n+1 and k n+1 ε are approximated in the pressure equation by their explicit convected values k n+1,exp ε = k ε (W n+1,exp ) and h n+1,exp = h(W n+1,exp ). We propose to also approximate in the pressure equation the implicit viscous terms by their explicit convected values setting

σ n+1 = σ(W n+1,exp ), σ q ρ n+1 = σ(W n+1,exp ) q n+1,exp ρ n+1 . (3.14) 
We will see that the C.F.L. condition is not impacted by this strategy. Doing so, we obtain an elliptic linear equation for p n+1 . After expressing in the energy equation the temperature with the state equation T = p/(Rρ), the resulting semidiscretization reads

q n+1,exp = q n -∆t∇ • (ρ n U n ⊗ U n ) , (3.15a) 
E n+1,exp = E n -∆t ∇ • (k n ε U n ), (3.15b) 
ρ n+1 = ρ n -∆t∇ • (ρ n U n ) , (3.15c) 
ε γ -1 p n+1 -∆t 2 ∇ • h n+1,exp ρ n+1 ∇p n+1 - ε∆tλ R ∆ p n+1 ρ n+1 = -εk n+1,exp ε + εE n+1,exp -ε∆t∇ • h n+1,exp ρ n+1 q n+1,exp + ∆t∇ • σ n+1,exp + ε 2 ∆t∇ • σ n+1,exp q n+1,exp ρ n+1 , (3.15d) 
q n+1 -∆t∇ • σ n+1 = q n+1,exp -∆t 1 ε ∇p n+1 , (3.15e) 
E n+1 = E n+1,exp -∆t∇ • γp n+1 (γ -1)ρ n+1 q n+1 + ε∆t∇ • σ n+1 q n+1 ρ n+1 + ∆tλ R ∆ p n+1 ρ n+1 . (3.15f) 
The scheme consists in computing sequentially ρ n+1 with (3.15c) that is given explicitly, p n+1 with (3.15d) solving a linear system, q n+1 with (3.15e) solving again a linear system. Then σ n+1 is calculated to update E n+1 explicitly with (3.15f). Note that to compute q n+1 we need to solve a linear system since the viscous forces are taken implicitly. Moreover, the momentum equations are coupled through σ n+1 , so they are not solved independently. This implicit treatment allows us to have a condition on the time step ∆t that is not constrained. 

= (γ -1) < E 0 0 > + O(∆t 2 ) and < E n+1 0 >=< E 0
0 > for all n ≥ 0. Furthermore, if the initial energy is wellprepared to the low Mach number regime, more precisely if lim ε→0 E(x, 0) = E 0 with E 0 constant, the semi-discretization (3.15) is asymptotically consistent up to 96 Chapter 3. Extension to the Navier-Stokes equations and two dimensional numerical tests order O(∆t). The formal low Mach number limit of the system gives for all n ≥ 0

∇p n+1 0 = 0, E n+1 0 = p n+1 0 γ -1 + O(∆t 2 ) = E 0 + O(∆t 2 ), γ∇ • U n+1 0 = (γ -1) λ R ∆ 1 ρ n+1 0 + O(∆t).
Where for all functions f , f 0 = lim ε→0 f . Proof. Let us prove the asymptotic consistency. Reformulating the pressure equation (3.15d), we obtain

ε γ -1 p n+1 = -εk n+1,exp ε + εE n+1,exp + ε∆tλ R ∆ p n+1 ρ n+1 -ε∆t∇ • h n+1,exp ρ n+1 q n+1 + ∆t∇ • σ n+1,exp -σ n+1 + ε 2 ∆t∇ • σ n+1,exp q n+1,exp ρ n+1 . (3.16) 
Then, we perform an asymptotic expansion, assuming that all quantities f l = f l 0 + εf l 1 with l = n, (n + 1, exp), n + 1 we obtain:

ε -1 : ∇ • h n+1,exp 0 ρ n+1 0 ∇p n+1 0 = 0, (3.17a) 
∇p n+1 0 = 0, (3.17b) 
ε 0 : q n+1,exp 0 = q n 0 -∆t∇ • (ρ n 0 U n 0 ⊗ U n 0 ), (3.17c) 
E n+1,exp 0 = E n 0 , (3.17d) 
ρ n+1 0 = ρ n 0 -∆t∇ • (ρ n 0 U n 0 ) (3.17e) 
p n+1 0 γ -1 = E n 0 + ∆tλp n+1 0 R ∆ 1 ρ n+1 0 -∆t∇ • γ E n 0 U n+1 0 (3.17f) -∆t 2 ∇ • γ E n 0 ρ n+1 0 ∇ • σ n+1,exp 0 -σ n+1 0 , (3.17g) 
q n+1 0 = q n+1,exp 0 -∆t∇p n+1 1 + ∆t∇ • σ n+1 0 , (3.17h) 
E n+1 0 = E n 0 -∆t γp n+1 0 γ -1 ∇ • U n+1 0 + ∆tλp n+1 0 R ∆ 1 ρ n+1 0 . (3.17i) 
where h n+1,exp

0 = lim ε→0 γ E n+1,exp -k n+1,exp ε = γ E n 0 .
Integrating the pressure equation (3.17g) on Ω we obtain:

|Ω| p n+1 0 γ -1 = Ω E n 0 (x)dx + ∆tλ ∂Ω ∂T n+1 0 (x) ∂n(x) dσ(x) -∆t ∂Ω γE n 0 (x)U n+1 0 (x) • n(x) dσ(x) -∆t 2 ∂Ω γE n 0 (x) ρ n+1 0 (x) ∇ • σ n+1,exp 0 -σ n+1 0 • n(x) dσ(x),
where we recall that T n+1

0 = p n+1 0 /(Rρ n+1 0 ).
And so, using the boundary conditions U.n = 0 and ∂T ∂n = 0, we get:

p n+1 0 γ -1 = 1 |Ω| Ω E n 0 (x)dx- ∆t 2 |Ω| ∂Ω γE n 0 (x) ρ n+1 0 (x) ∇ • σ n+1,exp 0 -σ n+1 0 •n(x) dσ(x).
Moreover, integrating the energy equation (3.17i) on Ω gives

< E n+1 0 >=< E n 0 >, with < E n 0 >= 1/|Ω| Ω E n 0 (x)
dx for all n ≥ 0. By induction, we have for all n ≥ 0,

p n+1 0 γ -1 =< E 0 0 > +C n ∆t 2 , < E n+1 0 >=< E 0 0 >,
where C n is a constant arising from the approximation of the viscous terms in the pressure equation. For all n ≥ 0, it is given by

C n = - γ |Ω| ∂Ω E n 0 (x) ρ n+1 0 (x) ∇ • σ n+1,exp 0 -σ n+1 0 • n(x) dσ(x).
Furthermore, assuming the initial energy well-prepared, i.e., E 0 0 = E 0 is constant, then,

p n+1 0 γ -1 = E 0 0 + C n ∆t 2 = E 0 + C n ∆t 2 .
Therefore, for n = 0 the energy equation (3.17i) gives:

E 1 0 = E 0 0 -∆t γp 1 0 γ -1 ∇ • U 1 0 + ∆tλp 1 0 R ∆ 1 ρ 1 0 = E 0 -∆tγE 0 ∇ • U 1 0 -∆t 3 γ C 1 ∇ • U 1 0 + ∆tλp 1 0 R ∆ 1 ρ 1 0 .
And since the pressure equation (3.17g) reads for n = 0:

p 1 0 γ -1 = E 0 + ∆tλp 1 0 R ∆ 1 ρ 1 0 -∆tγ E 0 ∇ • U 1 0 -∆t 2 γ E 0 ∇ • 1 ρ 1 0 ∇ • σ 1,exp 0 -σ 1 0 .

Chapter 3. Extension to the Navier-Stokes equations and two dimensional numerical tests

We get,

E 1 0 = p 1 0 γ -1 + ∆t 2 γ E 0 ∇ • 1 ρ 1 0 ∇ • σ 1,exp 0 -σ 1 0 -∆t 3 γ C 1 ∇ • U 1 0 = p 1 0 γ -1 + C 1 ∆t 2 = E 0 + (C 1 + C 1 )∆t 2 ,
where

C 1 = γ E 0 ∇• 1 ρ 1 0 ∇ • σ 1,exp 0 -σ 1 0 -∆tγ C 1 ∇•U 1 0 . Let us note that if µ = 0, then C 1 = C 1 = 0 and so, E 1 0 = p 1 0 /(γ -1)
. By induction, for all n ≥ 0,

E n+1 0 = p n+1 0 γ -1 + O(∆t 2 ) = E 0 + O(∆t 2 ).
Thereafter, the energy equation (3.17i) yields

E 0 + O(∆t 2 ) = E 0 + O(∆t 2 ) -∆t γp n+1 0 γ -1 ∇ • U n+1 0 + ∆tλp n+1 0 R ∆ 1 ρ n+1 0 ,
and thus, we recover up to an order ∆t term, a discretization of the divergence equation for the velocity field in the limit model (3.8):

γ∇ • U n+1 0 = (γ -1)∇ • λ R ∇ 1 ρ n+1 0 + O(∆t).
This ends the proof and shows that our scheme is asymptotitcally consistent with the limit model up to O(∆t) assuming E 0 0 = E 0 .

Remark 9. Let us note that considering an inviscid fluid, i.e., setting µ = 0, we recover exactly a discretization of the limit model: for all n ≥ 0,

p n+1 0 γ -1 = E n+1 0 = E 0 , γ∇ • U n+1 0 = (γ -1)∇ • λ R ∇ 1 ρ n+1 0 .

Full discretization in one dimension

The discretization of the space domain follows the usual finite volume framework. The explicit flux F e is discretized with a Rusanov-type solver (3.24) and the implicit fluxes F i and G are discretized with a centered solver. The resulting scheme gives consistent and stable results but can present oscillations which are the signature of the non L ∞ stability. In Section 3.2.2.2, based on the results obtained for the Euler equations (see Section 2.3.4), we also propose a discretization where we add an upwinding on the implicit flux F i in order to eliminate the oscillations. For simplicity, we start by presenting the space discretizations in one dimension. Then we will present them in two dimensions omitting some details when the generalization is easily extended from the discretization of the one-dimensional setting. 

W n+1,exp =   ρ n+1,exp q n+1,exp E n+1,exp   =   ρ n -∆t∂ x (ρ n u n ) q n -∆t∂ x ρ n (u n ) 2 E n -∆t ∂ x (k n ε u n )   , (3.18) 
ρ n+1 = ρ n+1,exp , (3.19) 
ε γ -1 p n+1 -∆t 2 ∂ x h n+1,exp ρ n+1 ∂ x p n+1 - ε∆tλ R ∂ 2 xx p n+1 ρ n+1 = -εk n+1,exp ε + εE n+1,exp -ε∆t∂ x h n+1,exp ρ n+1 q n+1,exp + ∆t∂ x σ n+1,exp + ε 2 ∆t∂ x σ n+1,exp q n+1,exp ρ n+1 , (3.20) 
q n+1 -∆t∂ x σ n+1 = q n+1,exp -∆t 1 ε ∂ x p n+1 , (3.21) 
E n+1 = E n+1,exp -∆t∂ x γp n+1 (γ -1)ρ n+1 q n+1 + ε∆t∂ x σ n+1 q n+1 ρ n+1 + ∆tλ R ∂ 2 xx p n+1 ρ n+1 . (3.22) 
Now, we consider a uniform discretization in space and denote by ∆x > 0 the space step. The fully L 2 stable discrete version reads 

W n+1,exp j = W n j -∆t (F e ) n j+1/2 -(F e ) n j-1/2 ∆x , (3.23a) 
ρ n+1 j = ρ n+1,exp j , (3.23b) 
ε γ -1 p n+1 j - ∆t 2 ∆x h n+1,exp ρ n+1 j+1/2 p n+1 j+1 -p n+1 j ∆x - h n+1,exp ρ n+1 j-1/2 p n+1 j -p n+1 j-1 ∆x - ε∆tλ R ∂ 2 xx p n+1 ρ n+1 j = ε E n+1,exp j + ε∆t (σu) n+1,exp j+1/2 -(σu) n+1,exp j-1/2 ∆x -k n+1,exp j -ε ∆t 2∆x h n+1,exp j+1 ρ n+1 j+1 q n+1,exp j+1 + ∆t σ n+1,exp j+3/2 -σ n+1,exp j+1/2 ∆x - h n+1,exp j-1 ρ n+1 j-1 q n+1,exp j-1 + ∆t σ n+1,exp j-1/2 -σ n+1,exp j-3/2 ∆x , (3.23c) 
q n+1 j -∆t σ n+1 j+1/2 -σ n+1 j-1/2 ∆x = q n+1,exp j - ∆t ε p n+1 j+1 -p n+1 j-1 2∆x , (3.23d 
E n+1 j = E n+1,exp j + ε∆t (σu) n+1 j+1/2 -(σu) n+1 j-1/2 ∆x - ∆t 2∆x γp n+1 (γ -1)ρ n+1 q n+1 j+1 - γp n+1 (γ -1)ρ n+1 j-1 + ∆tλ R ∂ 2 xx p n+1 ρ n+1 j . (3.23e) 
The explicit numerical flux (F e ) n = ((F eρ ) n , (F eq ) n , (F eE ) n ) is the Rusanov solver and given by

(F e ) n j+1/2 := F e (W n j+1 ) + F e (W n j ) 2 -(D e ) n j+1/2 (W n j+1 -W n j ), (3.24) 
with (D e ) n j+1/2 the explicit viscosity coefficient, taken as half of the maximum explicit eigenvalue of the Jacobian matrix associated to (F x e ) n :

(D e ) n j+1/2 = 1 2 max |u n j+1 |, |u n j | .
Concerning the second order derivatives for the pressure (3.23c) and energy (3.23e) equations, we set

∂ 2 xx p n+1 ρ n+1 j = p n+1 ρ n+1 j+1 -2 p n+1 ρ n+1 j + p n+1 ρ n+1 j-1 ∆x 2 . In (3.23c), h ρ j+1/2
is computed as the arithmetic average:

h n+1,exp ρ n+1 j+1/2 = 1 2 h n+1,exp j ρ n+1 j + h n+1,exp j+1 ρ n+1 j+1 .
We are left with computing the viscous terms σ j+1/2 and (σu) j+1/2 . Let us note that in one dimension the viscous stress tensor is simply given by σ = 4 3 µ∂ x u and discretized by

σ j+1/2 = 4µ 3 (∂ x u) j+1/2 = 4µ 3 u j+1 -u j ∆x , ( σu 
) j+1/2 = σ j+1/2 u j+1/2 ,
where u j+1/2 = 1 2 (u j + u j+1 ). The discretization is now complete and we refer to this scheme as the Order 1 L 2 AP scheme.

Order 1 implicit upwinding

As mentionned before, choosing a centered discretization for the implicit inviscid flux F i leads to an L 2 stable scheme (see Section 2.3.4 for more details). In some cases, we may want to add some stabilization to reduce appearing spurious oscillations. Adding numerical dissipation on the implicit inviscid flux, we are able to construct an order 1 L ∞ stable scheme [START_REF] Dimarco | Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime[END_REF]. For that, we compute the L 2 stable solution 3.2. Order 1 AP scheme 101 W n+1,L2 j given by (3.23) and we add an upwinding as done for the explicit numerical flux (F e ) n j+1/2 , thus leading to a modified scheme for the density, momentum and energy equations.

W n+1 j =    ρ n+1,L2 j q n+1,L2 j E n+1,L2 j    + ∆t ∆x (D i ) n j+1/2 (W n+1 j+1 -W n+1 j ) -(D i ) n j-1/2 (W n+1 j -W n+1 j-1 ) . (3.25a) 
where (D i ) n j+1/2 is the implicit viscosity coefficient, taken as half of the maximum implicit eigenvalue

(D i ) n j+1/2 := 1 2 max |λ i (W n j+1 )|, |λ i (W n j )| , (3.25b) 
where

|λ i (W )| = |u| 2 + u 2 4 + c 2 ε .
As already mentioned in Chapter 2, the upwinding must be applied after the computation of all conservative variables. Moreover, it is important to note that the viscosity coefficient (D i ) depends on the scaling parameter ε. It is inversely proportional to the Mach number and may lead to excessive diffusion in the low Mach number regime, see Section 3.4.4 for illustration. Therefore, the proposed stabilization technique is used only if needed, depending on the problem to solve. We refer to the modified scheme (3.23)-(3.25) as the Order 1 L ∞ AP scheme. In Figure 3.1, we compare the density profiles for a 2D Riemman problem (see Section 3.4.1 for its description) computed with the Order 1 L 2 scheme (left) against the Order 1 L ∞ scheme (right). As expected, with an upwinding on the implicit flux we are able to eliminate the oscillations appearing when a centered discretization for the implicit part is chosen. However, the solution is also more diffused and it shows the need to extend the schemes to a higher order of accuracy.

Asymptotic stability : C.F.L. condition on the time step

For the full Euler equations, when we set µ = λ = 0, we conducted a one-dimensional linear Fourier stability analysis of the presented scheme (see Section 2.3). It proved on the linearized system that our Order 1 Moreover, we show numerically that the situation does not change in case of viscous flows. In Figure 3.2, we compare the time step sizes ∆t between different schemes for the first problem of Stokes (see Section 3.4.5 for its description) for which ε = 10 -6 . On the left figure, we compare the time step sizes between the explicit scheme and the Order 1 AP schemes. We observe that the time steps of the Order 1 L 2 AP scheme with an explicit discretization of the viscous terms are around 1/ √ ε = 10 3 times bigger than the ones required by the fully explicit scheme. With an implicit discretization of the viscous terms, the time steps sizes of our Order 1 L 2 and L ∞ AP schemes are even bigger. This shows that the AP schemes can employ time step sizes independently of the Mach number regime. On the right figure, we observe the advantages of an implicit discretization of the viscous terms in the case of highly viscous flows.

L 2 discretization in two dimensions

Let us consider a uniform space discretization where we denote by ∆x and ∆y the space steps respectively in x and y direction. A cell is labeled by the indices i, j, i and j for respectively the x and y directions. We denote by W i,j = (ρ i,j , q i,j , E i,j ) the conservative variables. The momentum is defined by q i,j = (ρU ) i,j = (ρu, ρv) i,j where u and v are the velocities in the x and y direction respectively. Then, the fully discrete scheme reads

W n+1,exp i,j =    ρ n+1,exp i,j q n+1,exp i,j E n+1,exp i,j    = W n i,j -∆t (∇ • F e (W n )) i,j , (3.26a) 
ρ n+1 i,j = ρ n+1,exp i,j , (3.26b) 
ε γ -1 p n+1 i,j -∆t 2 ∇ • h n+1,exp ρ n+1 ∇p n+1 i,j - ε∆tλ R ∆ p n+1 ρ n+1 i,j = ε E n+1,exp i,j -εk n+1,exp i,j + ε 2 ∆t∇ • σ n+1,exp q n+1,exp ρ n+1 i,j -ε∆t∇ • h n+1,exp ρ n+1 q n+1,exp + ∆t∇ • σ n+1,exp i,j , (3.26c) 
q n+1 i,j -∆t ∇ • σ n+1 i,j = q n+1,exp i,j - ∆t 2ε      p n+1 i+1,j -p n+1 i-1,j ∆x p n+1 i,j+1 -p n+1 i,j-1 ∆y      , (3.26d) 
E n+1 i,j = E n+1,exp i,j -∆t∇ • γp n+1 (γ -1)ρ n+1 q n+1 i,j + ε∆t∇ • σ n+1 q n+1 ρ n+1 i,j + ∆tλ R ∆ p n+1 ρ n+1 i,j . (3.26e) 
The discretization of the explicit fluxes and of the viscous terms is discussed bellow. , the explicit convected part of the conservative variables Let us first consider the discretization of the explicit convected part of the conservative variables. The discretization reads

W n+1,exp i,j = W n i,j -∆t (F x e ) n i+1/2,j -(F x e ) n i-1/2,j ∆x + (F y e ) n i,j+1/2 -(F y e ) n i,j-1/2
∆y .

(3.27)

For the explicit numerical fluxes (F x e ) n = (ρu) n , (ρu 2 ) n , (ρuv) n , (k ε u) n we consider a Rusanov solver. The fluxes are given by

(F x e ) n i+1/2,j := F x e (W n i+1,j ) + F x e (W n i+1,j ) 2 -(D x e ) n i+1/2,j (W n i+1,j -W n i,j ), (3.28) 
where (D x e ) n i+1/2,j the explicit viscosity coefficient, is taken as half of the maximum explicit eigenvalue of the Jacobian matrix associated to (F x e ) n :

(D x e ) n i+1/2,j = 1 2 max |u n i+1,j |, |u n i,j | .
Likewise, in the y direction the explicit fluxes (F y e ) n = (ρv) n , (ρuv) n , (ρv 2 ) n , (k ε v) n are given by

(F y e ) n i,j+1/2 := F y e (W n i,j+1 ) + F y e (W n i,j+1 ) 2 -(D y e ) n i,j+1/2 (W n i,j+1 -W n i,j ), (3.29) 
where (D y e ) n i,j+1/2 the explicit viscosity coefficient, is taken as half of the maximum explicit eigenvalue of the Jacobian matrix associated to (F y e ) n :

(D y e ) n i,j+1/2 = 1 2 max |v n i,j+1 |, |v n i,j | .
Let us note that the upwinding depends only on the fluid velocity.

In the next section, we present the discretization of the viscous terms.

Discretization of the viscous stress tensor and viscous forces

Let us remember that the viscous stress tensor is defined by

σ = µ ∇U + (∇U ) T - 2 3 µ (∇ • U ) I, where ∇U = ∂ x u ∂ y u ∂ x v ∂ y v and (∇ • U ) I = ∂ x u + ∂ y v 0 0 ∂ x u + ∂ y v . And so, σ = µ 3 4∂ x u -2∂ y v 3∂ y u + 3∂ x v 3∂ y u + 3∂ x v 4∂ y v -2∂ x u . (3.30) 
Moreover, the term ∇ • σ in the pressure equation (3.26c) and the momentum equations (3.26d) is given by:

∇ • σ = µ∆U + µ 3 ∇ (∇ • U ) = µ 3 4∂ 2 xx u + 3∂ 2 yy u + ∂ 2 xy v 3∂ 2 xx v + 4∂ 2 yy v + ∂ 2 yx u . (3.31) 
In order to compute the viscous term (∇ • σ) i,j , we need the velocity derivatives at the interfaces. They are discretized with a centered solver by

∇U i+1/2,j =    u i+1,j -u i,j ∆x u i+1,j+1 -u i+1,j-1 + u i,j+1 -u i,j-1 4∆y v i+1,j -v i,j ∆x v i+1,j+1 -v i+1,j-1 + v i,j+1 -v i,j-1 4∆y    ,
and

, ∇U i,j+1/2 =     u i+1,j+1 -u i-1,j+1 + u i+1,j -u i-1,j 4∆x u i,j+1 -u i,j ∆y v i+1,j+1 -v i-1,j+1 + v i+1,j -v i-1,j 4∆x v i,j+1 -v i,j ∆y     , (3.32) 
where the discretization of ∂ y f i+1/2,j for f = u, v is obtained as follows

(∂ y f ) i+1/2,j = 1 2 ((∂ y f ) i+1,j + (∂ y f ) i,j ) = 1 2 u i+1,j+1 -u i+1,j-1 2∆y + u i,j+1 -u i,j-1 2∆y = u i+1,j+1 -u i+1,j-1 + u i,j+1 -u i,j-1 4∆y .
Thus, the discretization of the second order derivatives ∂ 2 xx f and ∂ 2 yy f with (3.32) is given by:

∂ 2 xx f i,j = (∂ x f ) i+1/2,j -(∂ x f ) i-1/2,j ∆x = f i+1,j -2f i,j + f i+1,j ∆x 2 ,
and

∂ 2 yy f i,j = (∂ y f ) i,j+1/2 -(∂ x f ) i,j-1/2 ∆y = f i,j+1 -2f i,j + f i,j+1 ∆y 2 . 
Furthermore, the discretization of the crossed derivatives ∂ 2 yx f i,j = ∂ 2 xy f i,j reads:

∂ 2 yx f i,j = (∂ x f ) i,j+1/2 -(∂ x f ) i,j-1/2 ∆y = 1 2∆y u i+1,j+1 -u i-1,j+1 2∆x + u i+1,j-1 -u i-1,j-1 2∆x .
Then, the fully discretized momentum equations (3.26d) read

(ρu) n+1 i,j +µ∆t 2( 4 3∆x 2 + 1 ∆y 2 )u n+1 ij - 4 3∆x 2 (u n+1 i+1,j +u n+1 i-1,j )- 1 ∆y 2 (u n+1 i,j+1 +u n+1 i,j-1 ) - 1 12∆x∆y (v n+1 i+1,j+1 + v n+1 i-1,j-1 -v n+1 i-1,j+1 -v n+1 i+1,j-1 ) = (ρu) n+1,exp ij - ∆t ε p n+1 i+1,j -p n+1 i-1,j 2∆x , (ρv) n+1 i,j + µ∆t 2( 1 ∆x 2 + 4 3∆y 2 )v n+1 ij - 1 ∆x 2 (v n+1 i+1,j + v n+1 i-1,j ) - 4 3∆y 2 (v n+1 i,j+1 + v n+1 i,j-1 ) - 1 12∆x∆y (u n+1 i+1,j+1 + u n+1 i-1,j-1 -u n+1 i-1,j+1 -u n+1 i+1,j-1 ) = (ρv) n+1,exp ij - ∆t ε p n+1 i,j+1 -p n+1 i,j-1 2∆y . (3.33) 
Additionally, to compute the term ∇ • σ q ρ i,j in the pressure equation (3.26c) and in the energy equation (3.26e), the discretization of σ i+1/2,j and σ i,j+1/2 is given by (3.32) and the velocities at the interfaces are defined as the arithmetic average with

U i+1/2,j = 1 2 (U i+1,j + U i,j ) , U i,j+1/2 = 1 2 (U i,j+1 + U i,j ) . (3.34) 
We will skip the full discretization of the remaining terms since it can be easily derived from the one-dimensional case. We present in the next section, the order 2 extension of the proposed schemes.

Order 2 AP scheme

Semi-discretization in time

Let us first present the order 2 semi-discretization in time. Using the ARS(2,2,2) [START_REF] Steven | Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations[END_REF], the following order 2 semi-discretization in time scheme is obtained

W -W n ∆t + β ∇ • F e (W n ) + β ∇ • F i (W ) = β∇ • G(W , ∇W ), (3.35a) 
W n+1 -W n ∆t + (β -1) ∇ • F e (W n ) + (2 -β) ∇ • F e (W ) (3.35b) 
+(1 -β) ∇ • F i (W ) + β ∇ • F i (W n+1 ) = (1 -β) ∇ • G(W , ∇W ) + β∇ • G(W n+1 , ∇W n+1 ), (3.35c) with β = 1 -1/ √ 2.
Following the reformulation used for the order 1 AP scheme for each step, we have

Step 1:

W ,exp = W n -β∆t∇ • F e (W n ), (3.36a) ρ = ρ ,exp , (3.36b) 
ε γ -1 p -β 2 ∆t 2 ∇ • h ,exp ρ ∇p - εβ∆tλ R ∆ p ρ = ε (E ,exp -k ,exp ) -εβ∆t∇ • h ,exp ρ (q ,exp + β∆t∇ • σ ,exp ) + ε 2 β∆t∇ • σ ,exp q ,exp ρ , (3.36c) 
q -β∆t∇ • σ * = q ,exp -β∆t 1 ε ∇p , (3.36d) 
E = E ,exp -β∆t∇ • γp (γ -1)ρ q + εβ∆t∇ • σ q ρ + β∆tλ R ∆ p ρ , (3.36e) 
Step 2:

W n+1,exp = W n -∆t ((β -1)∇ • F e (W n ) + (2 -β) (∇ • F e (W ))) + ∆t ((1 -β) (∇ • F i (W ) -G(W ))) . (3.37a) 
ρ n+1 = ρ n+1,exp , (3.37b) 
ε γ -1 p n+1 -β 2 ∆t 2 ∇ • h n+1,exp ρ n+1 ∇p n+1 - εβ∆tλ R ∆ p n+1 ρ n+1 = εE n+1,exp -εk n+1,exp -εβ∆t∇ • h n+1,exp ρ n+1 q n+1,exp + β∆t∇ • σ n+1,exp + ε 2 β∆t∇ • σ n+1,exp q n+1,exp ρ n+1 , (3.37c) 
q n+1 -β∆t∇ • σ n+1 = q n+1,exp - β∆t ε ∇p n+1 , (3.37d) 
E n+1 = E n+1,exp -β∆t∇ • γp n+1 (γ -1)ρ n+1 q n+1 + β∆tλ R ∆ p n+1 ρ n+1 . (3.37e)
where

k l = k(W l ), h l = h(W l ) = γ(E l -k l
) and σ l = σ(W l ) for l =" , exp","n + 1, exp". In order to extend the space accuracy to second order, we classically use the MUSCL technique [START_REF] Bram Van Leer | Towards the Ultimate Conservative Difference Scheme V. A Second-order Sequel to Godunov's Method[END_REF] and so a piecewise linear reconstruction of W n j :

Order 2 space discretization in one dimension

W n j (x) = W n j + α n j (x -x j ), (3.38) 
where α n j is a limited slope and is computed for each component using a minmod limiter: dimensional numerical tests

α n j = minmod W n j+1 -W n j ∆x , W n j -W n j-1 ∆x
where the limiter is defined as

minmod(a, b) = 1 2 (sign(a) + sign(b)) min(|a|, |b|) =    a if |a| < |b|, ab > 0, b if |b| < |a|, ab > 0, 0 otherwise.
It picks out the flattest slope when they have the same sign. This piecewise linear reconstruction is used for defining the explicit numerical flux at the interfaces. Using the notations introduced for the Order 1 AP scheme

(F e ) n j+1/2 := F e (W n j+1,-) + F e (W n j,+ ) 2∆x -(D e ) n j+1/2 (W n j+1,--W n j,+ ), (3.39) 
where (D e ) n j+1/2 = 1 2 max |u n j,+ |, |u n j+1,-| and

W n j,± = W n j (x j ± ∆x 2 ) = W n j ± ∆x 2
, σ n j .

Second order space accuracy for the remaining terms

In the momentum (3.15e) and in the energy equations (3.15f) the implicit flux F i is discretized with a centered solver which ensures second order accuracy in space so no reconstruction is needed. Indeed, using a Taylor expansion in terms of ψ(x i ) for ψ(x i+1 ) and ψ(x i-1 ), we have:

ψ(x i+1 ) = ψ(x i ) + ∆x∂ x ψ(x i ) + ∆x 2 2 ∂ 2 xx ψ(x i ) + ∆x 3 6 ∂ 3 xxx ψ(x i ) + O(∆x 4 ), (3.40) ψ(x i-1 ) = ψ(x i ) -∆x∂ x ψ(x i ) + ∆x 2 2 ∂ 2 xx ψ(x i ) - ∆x 3 6 ∂ 3 xxx ψ(x i ) + O(∆x 4 ). (3.41)
Then, substracting (3.41) to (3.40) and dividing by 2∆x yields

∂ψ ∂x (x j ) = ψ i+1 -ψ i-1 2∆x + O(∆x 2 ),
where ψ k = ψ(x k ) for k = i + 1, i -1 and we set ψ = p and ψ = γp (γ-1)ρ q. Moreover, the viscous term

∂ x σ(x j ) = ∂ x ( 4µ 3 ∂ x u)(x j ) = 4µ 3 ∂ 2 xx u(x j ) is discretized by 4µ 3 u i+1 -2u i + u i-1 ∆x 2 .
Adding (3.40) and (3.41), dividing by ∆x 2 and rearranging the terms gives:

∂ 2 ψ ∂x 2 (x j ) = ψ i+1 -2ψ i + ψ i-1 ∆x 2 + O(∆x 2 ), with ψ k = ψ(x k ) for k = i + 1, i, i -1.
And so, setting ψ = u and ψ = p ρ shows that the discretizations of (∂ x σ) j and ∂ 2 xx p ρ j are second order accurate.
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Next, we show that the discretization of the following flux operators

∂ x h ρ ∂ x p j , ∂ x σ q ρ j ,
are also second order accurate. Setting for the first flux term φ = h ρ , ψ = p and for the second one φ = u and ψ = 4µ 3 u, there discretization reads

1 ∆x 1 2 (φ i+1 + φ i ) ψ i+1 -ψ i ∆x - 1 2 (φ i + φ i-1 ) ψ i -ψ i-1 ∆x , (3.42) 
with

ψ k = ψ(x k ) and φ k = φ(x k ) for k = i + 1, i, i -1.
Using the Taylor expansions for ψ i+1 (3.40) and ψ i-1 (3.41) and in terms of φ i for φ i+1 and φ i-1 we have:

ψ i+1 -ψ i ∆x = ∂ x ψ i + ∆x 2 ∂ 2 xx ψ i + ∆x 2 6 ∂ 3 xxx ψ i + O(∆x 3 ), ψ i -ψ i-1 ∆x = ∂ x ψ i - ∆x 2 ∂ 2 xx ψ i + ∆x 2 6 ∂ 3 xxx ψ i + O(∆x 3 ), 1 2 (φ i+1 + φ i ) = φ i + ∆x 2 ∂ x φ i + ∆x 2 4 ∂ 2 xx φ i + O(∆x 3 ), 1 2 (φ i + φ i-1 ) = φ i - ∆x 2 ∂ x φ i + ∆x 2 4 ∂ 2 xx φ i + O(∆x 3 ).
Then, injecting those expressions into (3.42) gives,

D(∂ x (φ∂ x ψ)) j = 1 ∆x 1 2 (φ i+1 + φ i ) ψ i+1 -ψ i ∆x - 1 2 (φ i + φ i-1 ) ψ i -ψ i-1 ∆x = 1 ∆x ∆x∂ x ψ i ∂ x φ i + ∆x∂ 2 xx ψ i φ i + O(∆x 3 ) = ∂ x (φ∂ x ψ) (x j ) + O(∆x 2 ).
This, concludes the extension to second order accuracy in space.

Order 2 implicit upwinding

For the Order 2 AP scheme, it is sufficient to add numerical diffusion on the implicit flux F i only at the end of the second step. Adding it in both steps would imply a higher computational cost for similar results. As done for the Order 1 AP scheme, we compute the L 2 stable solution W n+1,L2 j with (3.36)-(3.37), (3.39) and then add numerical dissipation on the conservative variables: ± ∆x 2 σ n j . Let us note that, as mentioned in Section 2.4, IMEX methods of order higher than one for hyperbolic problems cannot be TVD nor L ∞ stable for unconstrained time steps [START_REF] Gottlieb | Strong Stability-Preserving High-Order Time Discretization Methods[END_REF][START_REF] Dimarco | Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime[END_REF]. Thus, the scheme given by (3.36), (3.37) in time and (3.39), (3.43) in space, is still L 2 stable but the oscillations are reduced thanks to the upwinding on the implicit part. We now refer to this scheme as the Order 2 L 2,stab AP scheme.

W n+1 j =    ρ n+1,L2 j q n+1,L2 j E n+1,L2 j    + β∆t ∆x (D i ) n j+1/2 ( W n+1 j+1,--W n+1 j,+ ) - β∆t ∆x (D i ) n j-1/2 ( W n+1 j,--W n+1 j-1,+

Some details for the extension to the two-dimensional case

For the explicit operators the reconstruction procedure is simply carried out dimension by dimension where the linear polynomial writes

W n i,j (x, y) = W n i,j + α n x i,j (x -x i,j ) + α n y i,j (y -y i,j ), (3.44) 
and the limited slope α n x i,j = minmod(

W i+1,j -W i,j ∆x , W i,j -W i-1,j ∆x
). The slope in y direction is computed in the same manner. Concerning the implicit viscous stress tensor, we also prove the second order accuracy of the crossed derivatives. Indeed, their discretization reads:

1 2∆y ψ i+1,j+1 -ψ i-1,j+1 2∆x + ψ i+1,j-1 -ψ i-1,j-1 2∆x (3.45) 
Conducting a Taylor expansion in terms of ψ(x i , y j ) up to order four on the variables ψ(x i+1 , y j+1 ) and ψ(x i-1 , y j+1 ) we have:

ψ(x i+1 , y j+1 ) = ψ(x i , y j ) + ∂ x ψ(x i , y j )∆x + ∂yψ(x i , y j )∆y 

+
ψ(x i-1 , y j+1 ) = ψ(x i , y j ) + ∂ x ψ(x i , y j )(-∆x) + ∂yψ(x i , y j )∆y

+ 1 2 ∂ 2 xx ψ(x i , y j )∆x 2 + 1 2 ∂ 2 yy ψ(x i , y j )(∆y) 2 + ∂ 2 xy ψ(x i , y j )(-∆x)∆y + 1 6 ∂ 3 xxx ψ(x i , y j )(-∆x) 3 + 1 6 ∂ 3 yyy ψ(x i , y j )∆y 3 + 1 2 ∂ 3 xxy ψ(x i , y j )∆x 2 ∆y + 1 2 ∂ 3 xyy ψ(x i , y j )(-∆x)∆y 2 + O(∆x 4 ) + O(∆y 4 ). (3.47) 
And so:

ψ i+1,j+1 -ψ i-1,j+1 = 2∂ x ψ(x i , y j )∆x -2∂ 2 xy ψ(x i , y j )∆x∆y + 1 3 ∂ 3 xxx ψ(x i , y j )∆x 3 + ∂ 3 xyy ψ(x i , y j )∆x∆y 2 + O(∆x 4 ) + O(∆y 4 ), (3.48) 
Similarly, 

ψ i+1,j-1 -ψ i-1,j-1 = 2∂ x ψ(x i , y j )∆x -2∂
∂ 2 yx ψ(x i , y j ) = 1 2∆y ψ i+1,j+1 -ψ i-1,j+1 2∆x + ψ i+1,j-1 -ψ i-1,j-1 2∆x + O(∆x 4 ) + ∆y 4 ) ∆y∆x . (3.50)
Using the same arguments as for the one-dimensional case, second order accuracy is also guaranteed for the discretization of the remaining terms.

Two dimensional numerical results for the Euler and Navier-Stokes equations

In this part, we present several numerical test cases which show the good behavior of our AP schemes. Results are shown depending on the numerical test, for the Order 2 L 2 and L 2,stab AP schemes where we recall that in the L 2,stab AP scheme we applied an implicit upwinding (see Section 3.3.2.3) to reduce the appearing oscillations. We give below their corresponding discretization: -The Order 2 L 2 AP scheme is given by the discretization (3.36), (3.37) in time and (3.39) in space. -The Order 2 L 2,stab AP scheme is given by the discretization (3.36), (3.37) in time and (3.39), (3.43) in space. The numerical test cases chosen are in two dimensions and involve the Full Euler equations or the Navier-Stokes equations in both compressible and incompressible regimes. Here is the list of the 2D numerical tests with their respective description:

1. A 2D Riemann problem (Section 3.4.1): A classical benchmark for two dimensional gas dynamics. It assesses the correct performance of the scheme for the full Euler equations in presence of contact discontinuities and shock waves. The simulations are run with the Order 2 L 2 and L 2,stab AP schemes.

2. An Explosion problem (Section 3.4.2): An axi-symmetric flow is considered, for which a reference solution can be easily computed. The solution exhibits a contact discontinuity, a rarefaction wave, and a shock wave. The simulations are run considering the Euler equations with the Order 2 L 2 and L 2,stab AP schemes and considering the Navier-Stokes equations (µ = 0 and λ = 0) with the Order 2 L 2 AP scheme and the same scheme but with an explicit discretization of the viscous terms.

3. The Gresho vortex vortex problem (Section 3.4.3): A known stationary solution of both incompressible and compressible Euler equations. We illustrate the asymptotic properties of our Order 2 L 2 AP scheme in the incompressible regime for various small values of the Mach number. We also present the evolution of the kinetic energy for the Order 2 L 2 AP scheme when an unlimited slope is used instead of the minmod limiter. dimensional numerical tests 4. Smooth Gresho vortex: numerical convergence (Section 3.4.4): Numerical convergence tests are run for the Euler equations on the Smooth Gresho vortex problem. The correct convergence rates are observed for the Order 2 L 2 and L 2,stab AP schemes independently of independently of the Mach number regime. Moreover, as expected the errors do not depend on the Mach number for the Order 2 L 2 scheme whereas this not the case for the Order 2 L 2,stab scheme. given by the Order 2 L 2,stab AP scheme for a high Reynolds number.

If not mentioned, the specific gas constant R is set to 1 (c v = 2.5), the adiabatic constant γ to 1.4 and the time step size is given by

∆t n = C 1 γ max i,j |u n i,j | ∆x + γ max i,j |v n i,j | ∆y , (3.51) 
where the constant C = 0.45.

2D Riemann problem

We consider a two-dimensional Riemann problem introduced in [START_REF] Schulz-Rinne | Numerical solution of the Riemann problem for two-dimensional gas dynamics[END_REF]. We set Ω = [-0.5, 0.5] 2 and transmissive boundary conditions (∂W/∂n = 0). The initial data consists in four constant states defined in four quadrants. The initial constant states ( 1, 0.726, 0, 1 ) if x ≤ 0 , y > 0, ( 0.5313, 0, 0, 0.4 ) if x ≥ 0 , y > 0, ( 0.8, 0, 0, 1 ) if x ≤ 0 , y ≤ 0, ( 1, 0, 0.726, 1 ) if x ≥ 0 , y ≤ 0.

(3.52)

We set ε = 1, µ = λ = 0 and the final time is t end = 0.25. This configuration is referred to as 2DR98 "configuration F" in [START_REF] Schulz-Rinne | Numerical solution of the Riemann problem for two-dimensional gas dynamics[END_REF] and "configuration 12" in [START_REF] Lax | Solution of Two-Dimensional Riemann Problems of Gas Dynamics by Positive Schemes[END_REF]. For polytropic gas we can find between 15 and 19 different configurations such that, with constant initial states in each quadrant, a single elementary wave appears at each interface. The chosen configuration is constituted of two shocks moving respectively towards the right and top of the domain and two steady contact discontinuities in the bottom left part of the domain. The physical Mach number ranges between 0 and 1.14 in all the domain and for all times. In Figure 3.4, we display the density contour plots and isolines at the final time computed with the Order 2 L 2 AP scheme (top) and the Order 2 L 2,stab AP scheme (bottom). They are in good agreement with the reference solutions [START_REF] Schulz-Rinne | Numerical solution of the Riemann problem for two-dimensional gas dynamics[END_REF] and [START_REF] Lax | Solution of Two-Dimensional Riemann Problems of Gas Dynamics by Positive Schemes[END_REF] (see Figure 3.3). With both schemes the contact discontinuities are preserved and do not move with time. Furthermore, the interface computed with the L 2 AP scheme (when no implicit diffusion is added) is much sharper. However, looking at the isolines we see that the L 2 AP presents some spurious oscillations (top right) that do not appear when the stabilization procedure is applied (bottom right). In Figure 3.5, we present on the top left, the Mach number distribution calculated at each point by

M = √ ε |U | c = √ u 2 + v 2 γp ε ρ . (3.53) 
We also confirm that the velocities (bottom) have stayed constant along the contact discontinuities. 

Explosion problem

We consider the explosion problem proposed by [START_REF] Toro | Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction[END_REF] where we set Ω = [-1, 1] 2 and Dirichlet boundary conditions given by the initial condition (3.54) during all the simulation. Initially the fluid is at rest, with a higher density and pressure at the center of the domain, inside the circle of radius 0.4 and centered in (0, 0). The initial states are given by (ρ, p)(0, x, y) = (1, 1) if r < 0.4, (0.125, 0.1) otherwise, (u, v)(0, x, y) = (0, 0),

where r = x 2 + y 2 , ε = 1, λ = 0, t end = 0.25 and different values of µ. In the inviscid case, when µ = 0, since the flow is axi-symmetric, the reference solution can be computed solving a one-dimensional inhomogeneous system (see Chapter 17 in [START_REF] Toro | Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction[END_REF] for more details). We solve it using an order two explicit scheme with a Rusanov-type solver on a refined grid (N = 5000).

In Figure 3.6, we display the results for the Order 2 L 2 and L 2,stab AP schemes on a 100 × 100 grid for the inviscid case. On the top left, we show the physical Mach number distribution for the Order 2 L 2 AP scheme calculated at each point by (3.53). The other three are one-dimensional radial cuts along the x-axis for respectively the density, u velocity and pressure at time t = 0.25 for both schemes. We see that both schemes are able to correctly catch the shock front going towards the outside (x = 0.8), the contact discontinuity (around x = 0.6) and rarefecation wave propagating towards the origin. Around the shock, the L 2 scheme presents some oscillations and they are only slightly reduced by the L 2,stab scheme. Since the stabilization proposed is not sufficient for this problem, a solution would be to apply the MOOD procedure proposed in Section 2.4.5.

In Figure 3.7, we validate the correct implicit treatment of the viscous part. We compare the results given by the Order 2 L 2 AP scheme (squares) against the Order 2 L 2 AP scheme but with an explicit discretization of the viscous part (crosses). Results are displayed for µ = 10 -2 and 10 -3 . Looking at the profiles, we observe that in both cases we obtain the same results independently of the discretization. Moreover, Table 3.1 illustrates the advantage on the time step size of treating implicitly the viscous part. For µ = 10 -2 , the implicit discretization allows a time step that is 5.6 times bigger than with an explicit treatment. 

Gresho vortex: AP properties

We solve the Gresho vortex problem that is a known stationary solution of both incompressible and compressible Euler equations. Here we consider the modified setup [START_REF] Miczek | New numerical solver for flows at various Mach numbers[END_REF] used to check the ability of the numerical scheme to handle low Mach number flows. The solution, written in polar coordinates, reads

u φ (r) =    5r 0 ≤ r < 0.2, 2 -5r 0.2 ≤ r < 0.4, 0 r ≥ 0.4, p(r) =    p 0 + 12.5r 2 0 ≤ r < 0.2, p 0 + 12.5r 2 + 4[1 -5r -ln(0.2) + ln(r)] 0.2 ≤ r < 0.4, p 0 -2 + 4ln(2) r ≥ 0.4, ρ(r) = 1, (3.55) 
where u φ (r) is the angular velocity, r = (x -0.5) 2 + (y -0.5) 2 is the radius on the computational domain Ω = [0, 1] × [0, 1] and

p 0 = ρ γM 2 , ( 3.56) 
is expressed in terms of the Mach number. The density is constant (ρ = 1) and the divergence free velocity field can be obtained from u φ as

(u, v) = u φ .( -sin(φ), cos(φ) ) with φ = arctan y -y 0 x -x 0 .
At last, we set ε = 1, µ = λ = 0 and periodic boundary conditions. In Figure 3.8, we show the physical Mach number distribution with the the Order 2 L 2 AP scheme for different values of M after a full turn of the vortex at t = 0.4π. We see that our scheme is able to preserve the initial distribution (first subfigure) independently of the Mach number regime unlike classical discretizations for which the dissipation is related to M . To further check the asymptotic accuracy of our scheme we show in Figure 3.9 the ratio between the kinetic energy at each time step k(t) and the initial kinetic energy k(0) for the Mach numbers M = 10 -1 , 10 -2 , 10 -3 and two grid resolutions 40 × 40 and 80 × 80. The results are given for the Order 2 L 2 AP scheme with no limiter in space (left) and with the minmod limiter (right). We see in the graphs that for a same grid resolution the lines for the different Mach numbers are overlapping which shows that the loss of kinetic energy is independent of the chosen Mach regime. Comparing the two subfigures we see that the loss is mostly due to the limiter in space, 0.9825 (unlimited) against 0.92 (limited) for the coarser grid. The Order 2 unlimited scheme consists in replacing in the linear reconstruction (3.38) the limited slopes α n x i,j and α n y i,j by

α n x i,j = 1 2 W n i+1,j -W n i,j ∆x + W n i,j -W n i-1,j ∆x , α n y i,j = 1 2 W n i,j+1 -W n i,j ∆y + W n i,j -W n i,j-1
∆y .

(3.57) 

Smooth Gresho vortex: numerical convergence

In order to validate the second order accuracy of our scheme we propose to consider a smooth version of the Gresho vortex introduced by [START_REF] Thomann | An All Speed Second Order IMEX Relaxation Scheme for the Euler Equations[END_REF]. A smoothed velocity profile is proposed with an angular velocity that this time is twice continuously differentiable. Then, the pressure profile is calculated with this new velocity in order to get a stationary vortex. The solution, written in polar coordinates, reads

u φ (r) =    75r 2 -250r 3 0 ≤ r < 0.2, -4 + 60r -225r 2 + 250r 3 0.2 ≤ r < 0.4, 0 r ≥ 0.4, p(r) =      p 0 + 1406.5r 4 -7500r 5 + (10416 + 2 3 )r 6 0 ≤ r < 0.2,
p 0 + p 2 (r) 0.2 ≤ r < 0.4, p 0 + p 2 (r) r ≥ 0.4, ρ(r) = 1, (3.58) 
where u φ (r) is the angular velocity, r = (x -0.5) 2 + (y -0.5) 2 is the radius on the computational domain We set ε = 1, µ = λ = 0 and periodic boundary conditions everywhere.

Ω = [0, 1] × [0, 1], p 0 = ρ γM 2 ,
To assess the numerical order of accuracy, we compute the L 1 errors for several uniform meshes. The error L1 w for a variable w is computed as the ratio between the error of the scheme at the final time T and the exact solution (here the initial configuration):

L1 w = |w(x, y, T ) -w(x, y, 0)| L1 |w(x, y, 0)| L1 = i,j |w i,j (T ) -w i,j (0)| i,j |w i,j (0)| . ( 3.60) 
We present in Table 3.2 for each conservative variable w and various Mach regimes, the errors L1 w and convergence rates for the Order 2 L 2 AP scheme. The solution is smooth so, for the computation there is no limiter in space, the unlimited slope is given by (3.57).

The errors for the density and momentum are as expected independent of the Mach number regime and the desired convergence rates are reached with a small drop on the density. The errors for the energy are very small and they reach for the lowest Mach number regimes the tolerance of the linear solver used for the pressure equation. Let us now compare the L 1 error plots of the Order 2 L 2 AP scheme and the Order 2 L 2,stab AP scheme. The second one being the scheme where we added an upwinding on the implicit part related to the Mach number (3.43) to reduce the oscillations. In Figures 3.13-3.15, we show the results for the density and momentums in the x and y direction. In each case, the Order 2 scheme with no stabilization (left), reaches the expected converge rates and the errors do not depend on the Mach number regime, the error lines are overlapping. When we add the stabilization (right), we observe that the expected convergence rates are finally reached for finer meshes independently of the asymptotic regime. Moreover, the accuracy of the scheme depends on the Mach number which is consistent since the upwinding is higher as the Mach number decreases. In particular, from Figure 3.14 we have that for 320 × 320 points, taking M 1 = 10 -1 and M 3 = 10 -3 the ratio

L1 ρu (M 1 )/L1 ρu (M 3 ) = O(M 3 /M 1 ) = O(10 -2 ).
Concerning the error plots for the energy and pressure in Figure 3.16, the error becomes very small and reaches the tolerance of the solver used for the pressure equation. For these variables, the errors for the Order 2 L 2 AP scheme also depend on the Mach number regimes. 

First problem of Stokes

We simulate a test problem for which an analytical solution is known. In Stokes's first problem [START_REF] Gabriel | On the Effect of the Internal Friction of Fluids on the Motion of Pendulums[END_REF] we consider an incompressible viscous fluid in a semi-infinite plate.

The fluid is at rest and then suddenly a constant velocity is set at y = 0 (see definition sketch in Figure 3.17). The fluid is brought into motion by the action of the viscous stress at the bottom. Here we set Ω = [0, 1] × [0, 2] and the initial data are given by: ρ(0, x, y) = 1, u(0, x, y) = U if y = 0, 0 otherwise, v(0, x, y) = 0, p(0, x, y) = 1.

(3.61) with U = 1 , ε = 10 -6 and λ = 0. For a semi-infinite plate, the exact solution of the problem is

u(x, y, t) = U 1 -erf y 2 √ γµ , (3.62) 
with constant density, pressure and velocity v. For the simulations we consider periodic boundary conditions on the x direction and Dirichlet boundary conditions on the y direction. In particular we set the exact solution given by (3.62) for the velocity u and the initial condition for the other variables.

We run the simulations with the Order 2 L 2 AP scheme until the final time T = 30 with 5 × 100 points and for the viscosity coefficients µ = 10 -1 , µ = 10 -2 and µ = 10 -3 . In Figure 3.18, we show for each coefficient the u velocity contour plot at the final time (left) and compare our solution against the exact solution at different time levels (right). We compare it plotting the u velocity versus the wall distance. As expected, the disturbance caused by the impulsive motion of the boundary diffuses into the fluid as time progresses and faster when µ is bigger. In Figure 3.19, we present the density, the component of the velocity v and the pressure profiles for µ = 10 -2 at the final time T = 30 and we compare it with the incompressible solution. We see that our scheme is able to preserve the constant states of the limit model for each variable up to a satisfying error precision. 

Heat conduction

In order to validate our scheme in the presence of heat conduction, we consider the following simple problem initially proposed by [START_REF] Dumbser | High order ADER schemes for a unified first order hyperbolic formulation of Newtonian continuum mechanics coupled with electro-dynamics[END_REF] in one dimension. Following the same setting as is [START_REF] Boscheri | An efficient second order all Mach finite volume solver for the compressible Navier-Stokes equations[END_REF], we consider a fluid initially at rest, with a higher density at the center of the domain, inside the circle of radius 0.2 and centered in (0, 0). The initial states are given by ρ(0, x, y) = 2 if r < 0.2, 0.5 otherwise, (u, v)(0, x, y) = (0, 0), p(0, x, y) = 1, (3.65)

where r = x 2 + y 2 , ε = 1, λ = 10 -2 , µ = 10 -2 and t end = 1. We set transmissive boundary conditions (∂W/∂n = 0) everywhere. The following test case is well-known for the Navier-Stokes equations in the low Mach number regime. We consider a fluid in Ω = [0, 1] 2 with constant density and pressure and where the velocity is set to zero in all the domain except on the upper boundary where (u, v) = (1, 0). The other three walls are stationary and we impose a no slip boundary condition (u, v) = (0, 0). Then we expect the creation of a primary vortex at the center of the cavity and secondary vortices on the bottom corners as the Reynolds number increases (see sketch in Figure 3.26). The initial data are the following:

ρ(0, x, y) = 1, u(0, x, y) = 0 if y < 1, 1 if y = 1, v(0, x, y) = 0, p(0, x, y) = 1, (3.66 
) with ε = 10 -5 , no heat conduction λ = 0 and µ given by the Reynolds number R e . The Reynolds number is defined by R e = ρ 0 U 0 L/µ, where ρ 0 = 1, U 0 = 1 and L = 1 are respectively the characteristic density, velocity and lenght. Thus, we set µ = 1/R e . Moreover, in order to run the simulations we also impose a condition on the pressure: ∂p/∂n = 0 on all the walls. The simulation is run for different Reynolds numbers until a steady state is reached.

For each simulation we show the final Mach number M = √ ε|U |/c distribution, the u velocity contours along with the streamlines. We also compare the u and v velocity profiles along the lines y = 0 and x = 0 respectively with the reference solution given in [START_REF] Kirti | High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method[END_REF] for the incompressible Navier-Stokes equations. In Figure 3.27, we show the results from top to bottom for R e = 100, R e = 400 and R e = 1000 at times t = 20.0, t = 30.0 and t = 30.0 respectively. On the left row, we observe the Mach number varying in the range [0, 0.0027]. On the middle row, we see as expected a primary vortex moving towards the cavity center and the formation of secondary vortices on the bottom corners as the Reynold number dimensional numerical tests increases. On the right row, the velocity profiles are in good agreement with the reference solution [START_REF] Kirti | High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method[END_REF]. In Figure 3.28, we show the contour plots of the density, v velocity and pressure setting the Reynolds number to R e = 1000. We are again in agreement with the expected results. For the density we observe again the structure of the primary vortex and for the pressure some oscillations appear on the top corners. It is interesting to note that when adding the upwinding on the implicit part, the oscillations vanish (see Figure 3.29, bottom plot). This is at the cost of having a more diffusive scheme. We illustrate it showing the velocity streamlines for two grid resolutions. Indeed, Chapter 4

Conclusion and perspectives

Conclusion

In this thesis, we have developed and analyzed asymptotic preserving finite volume schemes for the Euler and Navier-Stokes equations in the low Mach number limit.

We presented in Chapter 1, the difficulties related to the simulation of low Mach number flows. When the acoustic waves are very fast compared to the fluid velocity, classical explicit schemes used for compressible fluids fail. They are not able to capture the correct asymptotic behavior of the flow and their stability is ensured under a very restrictive condition of type C.F.L. related to the Mach number. We then presented the interest and principles of asymptotic preserving (AP) schemes for multiscale models. In our context, they allow us to be consistent with the limit model when the Mach number tends to zero and stable independently of the Mach number. The scaling of the Euler and Navier-Stokes equations was also discussed.

Then, we studied and developed in Chapter 2, AP schemes for the full Euler model. We first studied the continuous system and detailed the formal low Mach number limit. In the limit, the incompressible Euler model is obtained and its reformulation yields an explicit equation for the pressure. We focused on the construction of a Finite Volume AP scheme based on IMEX (implicit-explicit) methods where the flux is split into two parts: one treated explicitly and one treated implicitly. The goal of this work was first to analyze the asymptotic properties of existing flux splittings in order to correctly choose the one for developing such schemes. We studied for some flux splittings, the hyperbolicity of the implicit and explicit flux operators, a necessary condition for the asymptotic stability, the asymptotic consistency formally passing to the limit in the semi-discretizations and the preservation of contact discontinuities. For the chosen flux splitting, we proposed a new linear AP scheme based on the non linear semi-discretization proposed in [START_REF] Boscheri | A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations[END_REF]. In particular, we proposed a linearization of the pressure equation obtained reformulating the semi-discretization. We also proved the asymptotic consistency and the preservation of contact discontinuities of the linear scheme. For the discretization in space, we used a Rusanov-type solver for the explicity part and a centered solver for the implicit part leading to an L 2 stable scheme. We also proposed adding an upwinding in the implicit part as well for obtaining a more stable scheme. Moreover, conducting a Fourier linear stability analysis we proved the L 2 stability of both proposed schemes under a C.F.L. condition related to the fluid velocity and independent of the Mach number. Additionally, it emphasized that the upwinding on the implicit

Chapter 4. Conclusion and perspectives

part improved the stability. We compared on a set of numerical tests our order 1 schemes against the nonlinear scheme proposed in [START_REF] Boscheri | A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations[END_REF] and thus showed the good behavior and robustness of our schemes. In the next section, we proposed an order 2 extension based on a Runge-Kutta IMEX scheme in time and MUSCL techniques in space. Based on the work [START_REF] Dimarco | Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime[END_REF] for the isentropic Euler equations, we were able to reduce the spurious oscillations classically observed for high order IMEX schemes.

For that, we relied on a MOOD type procedure based on physical detection criteria and the construction of a TVD AP scheme more precise than the order 1. We concluded this chapter with numerical tests assessing the increase in accuracy and low oscillating properties of the proposed optimized scheme and its performance on a large range of Mach number regimes.

In Chapter 3, we proposed an extension of the constructed AP schemes for the Navier-Stokes equations allowing us to simulate viscous flows as well. First, we detailed the formal low Mach number limit in the continuous model. At the limit, due to the temperature variations we do not recover the incompressible Navier-Stokes equations. The incompressibility constraint is retrieved only neglecting the effects of heat conduction. We also mentioned the stability constraints related to the presence of diffusive terms. In the next section, we presented the semi-discretiztion proposed that is based on the same flux splitting used in Chapter 2 for the Euler part ensuring the asymptotic stability and on an implicit treatment of the diffusive terms allowing us to be efficient also in highly viscous regimes. To obtain a simple linear scheme, we proposed following the same strategy as for the Euler equations, a linearization of the the viscous terms in the pressure equation. For the new proposed scheme the asymptotic consistency was also studied on the semi-discretization. For the space discretization, a Rusanov-type solver was used for the explicit part and a centered solver was proposed for the implicit part. We provided details on the full discretization in two dimensions and in particular on the discretization of the viscous stress tensor. Afterwards, the scheme was extended to second order accuracy and a stabilization procedure based on a upwinding of the implicit Euler flux was proposed. In the last section, we presented a number of two dimensional numerical tests for a wide range of Mach numbers assessing the good behavior and asymptotic properties of our order 2 schemes both for the full Euler and the Navier-Stokes equations.

To conclude, in this thesis we proposed a new simple linear asymptotic preserving method based on Finite Volume IMEX methods for the Euler and Navier-Stokes equations. Conducting an analyses of existing works, we were able to choose the better suited flux splitting for our problem and prove the asymptotic consistency in the low Mach number limit of the proposed semi-discretization. Moreover, throughout the choice made for the space discretization based on previous theoretical results and the L 2 linear stability analysis conducted for the full Euler case, we proved the asymptotic stability and robustness of the constructed order 1 schemes. Additionally, our method was extended up to second order accuracy and for the Euler case we were able to ensure low oscillatory properties using a correction procedure.

Perspectives

In future works, we aim to extend and improve the MOOD procedure proposed for the Euler equations to the Navier-Stokes system. We are also interested in developing high-order accurate asymptotic methods for the Euler or Navier-Stokes equations, with a focus on efficient implementation in 3D using parallelization techniques. This will enable us to simulate complex physical phenomena. Furthermore, we have noticed that in some cases, the upwinding used in the implicit part of the Euler flux to improve the stability can lead to excessive diffusion. This issue requires further investigation in order to appropriately choose the diffusion coefficient depending on the situation. Finally, we believe that the performance of asymptotic preserving schemes for multiscale models can be enhanced by employing domain decomposition techniques. By dividing the computational domain into different regions, each with its own better suited numerical approach, we can achieve better performance. Indeed, as we have mentioned in this thesis, the parameter ε, when it plays the role of the physical Mach number, can vary in the space-time domain. In regions where ε is of order 1, conventional explicit schemes are less constrained by the stability condition on the time step, they are more cost-effective and less diffusive compared to asymptotic preserving schemes. In regions where ε is close to 0, discretizing the asymptotic model seems to be the most appropriate solution. However, in intermediate regions where a classical discretization becomes expensive and the limit model is not yet valid, a discretization of the multiscale model with asymptotic preserving schemes is relevant (see Figure 4.1). The combination of these different approaches using domain decomposition techniques should result in highly efficient schemes.

Principle of AP schemes

A possible solution : AP schemes Use the multi-scale model M ε where you want.

Discretize it with a scheme preserving the limit ε → 0 ➠ The mesh is independent of ε : Asymptotic stability.

➠ You recover an approximate solution of M 0 when ε → 0 :

Asymptotic consistency

Asymptotically stable and consistent scheme Analysis and development of Finite Volume schemes asymptotically preserving in the low Mach number limit for the Euler and Navier-Stokes equations

Abstract

In this thesis, we develop and study asymptotic preserving (AP) schemes for the compressible Euler and Navier-Stokes equations in the low Mach number regime. For subsonic flows, the acoustic waves are very fast compared to the velocity of the fluid. From a numerical point of view, when the Mach number tends to zero, classical explicit schemes present two major drawbacks: they loose consistency in the limit and impose a very restrictive constraint on the time step to guaranty the stability of the scheme since they have to follow the fast acoustic waves. We propose a new linear asymptotic preserving scheme, with a C.F.L. condition independent of the Mach number, and asymptotically consistent, that is it degenerates into a consistent discretization of the limit model when the Mach number is sufficiently small. Moreover, for the Navier-Stokes equations we choose an implicit discretization of the diffusion terms such that we can use larger time steps in strongly viscous regimes as well. This type of schemes has been widely studied in the literature, in particular for the isentropic case but also for the full Euler or Navier-Stokes system with various methods. In this work, first we propose an AP scheme based on an IMEX (Implicit-Explicit) discretization in time and cell-centered finite volume in space. A low oscillating second order extension is also proposed with the use of a MOOD procedure to detect and reduce the oscillation classically appearing for high-order schemes.
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  ) avec R = c p -c v et γ = c p /c v le rapport des chaleurs spécifiques à pression et volume constant. Le tenseur des contraintes visqueuses σ est défini par σ = µ ∇u + (∇u) T -2 3 µ (∇ • u) I. (1.8) Les paramètre µ et λ sont respectivement les coefficients de viscosité et de conductivité du fluide.
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 21 Figure 2.1 -Parameter ε as a function of the space domain. At x = 0.75, the interface between the compressible and limit model is sharp while between x = 0 and x = 0.4, we observe a diffused interface.
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 23 Figure 2.3 -State equation versus energy equation : Solution of the Sod shock tube problem (see Section 2.3.4.1) at t f inal = 0.2 for 200 cells. Results for the Order 1 L 2 AP scheme using the equation of energy (2.38f) for updating the energy (pink lines) and using the equation of state (2.1d) for updating the energy (blue dotted lines).
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 231 The semi-discretization (2.38) satisfies Property (iii) of Lemma 2.2.3 and so preserves the contact discontinuities. Furthermore, assuming impermeability boundary conditions u • ν = 0 on ∂Ω, the semi-discretization (2.38) gives p n+1 0 = (γ -1) < E 0 0 > and < E n+1
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 24 Figure 2.4 -Lax problem (see Section 2.3.4.1) for 200 cells. Results for the order 1 L 2 AP and L ∞ AP schemes associated to the semi-discretization (2.38) (pink and red curves) and the modified one (blue and cyan curves).
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 25 Figure 2.5 -Contact problem (see Section 2.3.4.1) for 200 cells. Results for the Order 1 L ∞ AP schemes associated to the semi-discretization (2.38) (red curve) and the modified one where the upwinding on the variable ρ is applied juster after calculing ρ n+1,L 2 with (2.41b) .

Lemma 2 . 3 . 2 (L 2

 2322 Stability of our Order 1 L 2 AP scheme). Let W 0 ∈ L 2 (]0, 1[) and ∆x > 0 and ∆t > 0 the space and time steps satisfying the C.F.L. condition γ |u| ∆t = ∆x.

d 21 1 +

 1 k)P. Thanks to the software Maple (we refer to Appendix A for all the calculations obtained with the software), we see that the resulting matrix B i (k)B e (k) is of the form B i (k)B e (k) = αu(cos ϕ -1)i αu sin ϕ d 23 d
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 3 Our new Order 1 AP scheme 55 Then, setting cf l = 1/γ, such that,γ α u = 1,the coefficients a i and b i are expressed in terms of M ε , γ and ϕ. We denote byλ 2 (M ε , ϕ, γ), λ 3 (M ε , ϕ, γ), the roots of Q i . Hence, the eigenvalues of B i (k) B e (k) are λ 1 = 1αu(1cos ϕ + i sin ϕ),λ 2 and λ 3 . We always have |λ 1 | ≤ 1 since, as shown for the eigenvalues of A e , αu ≤ 1 implies |λ 1 | ≤ 1 and here we have αu = 1/γ ≤ 1. We plot on Figure 2.6, the maximum modulus of the roots of Q i as a function of M ε ∈]0, 25] and γ ∈ [1, 10] f (M ε , γ) := max( max ϕ∈[0,2 π[ |λ 2 (M ε , ϕ, γ)|, max ϕ∈[0,2 π[ |λ 3 (M ε , ϕ, γ)|).
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 26 Figure 2.6 -Stability of our Order 1 L 2 AP scheme (Lemma 2.3.2): Maximum modulus of the roots of Q i .
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 2723332 Figure 2.7 -Maximum modulus of the roots of Q i for C = 1 > 1/γ, i.e., under the C.F.L. condition |u| ∆t = ∆x instead of |u| ∆t = ∆x/γ.Remark 5. Also note that, for higher values of γ, this condition is not sufficient. Indeed, in Figure2.8), we plotted under the C.F.L. condition |u| ∆t = ∆x/γ, the maximum modulus of the roots of Q i for all M ε ∈]0, 25], all ϕ ∈ [0, 2 π] and all γ ∈[START_REF] Alazard | Incompressible limit of the nonisentropic Euler equations with the solid wall boundary conditions[END_REF][START_REF] Bram Van Leer | Characteristic time-stepping or local preconditioning of the Euler equations[END_REF]. The maximum modulus of the roots of Q i are greater than 1 from approximately γ = 11.
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 28 Figure 2.8 -Maximum modulus of the roots of Q i for higher values of γ under the C.F.L. condition |u| ∆t = ∆x/γ. with M ε = √ εu/c. We assume periodic boundary conditions and prove the following result: Lemma 2.3.3 (L 2 Stability of our Order 1 L ∞ AP scheme). Let W 0 ∈ L 2 (]0, 1[) and ∆x > 0 and ∆t > 0 the space and time steps satisfying the C.F.L. condition

  as a function of M ε ∈]0, 25] and γ ∈[START_REF] Alazard | Incompressible limit of the nonisentropic Euler equations with the solid wall boundary conditions[END_REF][START_REF] Asano | On the incompressible limit of the compressible Euler equation[END_REF].
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 292623342 Figure 2.9 -Stability of our Order 1 L ∞ AP scheme (Lemma 2.3.3): Maximum modulus of the roots of Q i .
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 210 Figure 2.10 -Maximum modulus of the roots of Q i for higher values of γ.

  [) and ∆x > 0 and ∆t > 0 the space and time steps satisfying the C.F.L. condition |u| ∆t = ∆x.
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 211 Figure 2.11 -Stability of the NL Order 1 L 2 AP scheme (Lemma 2.3.4): Maximum modulus of the roots of P 2 .
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 213 Figure 2.13 -Lax problem for 200 cells. Comparison of our order 1 AP scheme (solid lines) with the NL AP scheme (dashed lines) for both L 2 and L ∞ discretizations.
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 214 Figure 2.14 -Contact problem for 500 cells. Comparison of our order 1 AP scheme (solid lines) with the NL AP scheme (dashed lines) for both L 2 and L ∞ discretizations.

Figure 2 . 15 -

 215 Figure 2.15 -Several interacting Riemann problems experiment. Comparison of our order 1 L ∞ AP scheme against our order 1 L 2 AP scheme and the nonlinear (N L) scheme. ε = 1, t f inal = 0.04 with 200 cells.
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 216 Figure 2.16 -Several interacting Riemann problems experiment. Comparison of our order 1 L ∞ AP scheme against our order 1 L 2 AP scheme and the nonlinear (N L) scheme. Results for ε = 10 -1 , t f inal = 0.03 with 500 cells.
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 218 Figure 2.18 -Several interacting Riemann problems experiment. Comparison of our order 1 L ∞ AP scheme against our order 1 L 2 AP scheme and the nonlinear (N L) scheme. Results for ε = 10 -4 , t f inal = 0.006 with 3500 cells.

(a) ε = 1 ,

 1 final time t f inal = 0.04 for 200 cells (b) ε = 10 -2 , final time t f inal = 0.015 for 1000 cells

Figure 2 . 19 -

 219 Figure 2.19 -Several interacting Riemann problems experiment. Comparison of the time step sizes ∆t as a function of time between the classical and the AP scheme for different values of ε.
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 220 Figure 2.20 -Approximation of the physical variables ρ (top), u (bottom left) and p (bottom right) for a shock tube test case when ε = 10 -4 (see Section 2.4.5.1 for its description). Comparison of the Order 2 AP schemes against a reference solution for various choices on the implicit upwinding. Results for "02 AP Di=0": no implicit upwinding added (green curve), for "02 AP Di =0 (+Step )": implicit upwinding added at the end of the first step, i.e, after computing W and at the end of second step (cyan curve) and for "02 AP Di =0": implicit upwinding added only at the end of the second step (red dashed curve). The cyan and red curves overlap intending to show that adding numerical viscosity only at the end of the second step (red dashed curve) is sufficient.
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 221 Figure 2.21 -Approximations of the pressure for a shock tube test case (see Section 2.4.5.1 for its description) for different Mach numbers. Comparison of the first-order AP scheme (blue dotted line) and of the second-order in time AP scheme (red dashed line) against a reference solution (black solid line) for different values of ε: for ε = 1 (top left), for ε = 10 -2 (top right) and for ε = 10 -4 (bottom). An order 1 space discretization is used for the AP schemes.
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 222 Figure 2.22 -Approximations of the density for a shock tube test case (see Section 2.4.5.1 for its description) for different values of ε: for ε = 1 (top left), for ε = 10 -2 (top right) and for ε = 10 -4 (bottom).Comparison of the TVD AP schemes against a reference solution when: the upwinding is added at the end of the second step with a linear reconstruction on the conservative variables as done for the Order 2 AP scheme (blue curve) and when the upwinding is added at the end of the second step with (2.68) (red dashed curve). The results are more accurate with the reconstruction procedure but for ε = 10 -4 spurious oscillations around shocks are not completely eliminated and thus, the TVD proprety is lost in this case.
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 223 Figure 2.23 -Approximations of the pressure for a shock tube test case (see Section 2.4.5.1 for its description) for different Mach numbers: Comparison of the firstorder AP scheme (blue dotted line), the second-order AP scheme (green line) and of the TVD AP scheme (red line) against a reference solution (black solid line) for different values of ε: for ε = 1 (top left), for ε = 10 -2 (top right) and for ε = 10 -4 (bottom).
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 224 Figure 2.24 -Sod problem for 200 cells: Comparison of the first-order AP scheme (blue line), the second-order AP scheme (green line) and the TVD AP scheme (red line) against the reference solution (black solid line).
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 225 Figure 2.25 -Lax problem for 200 cells: Comparison of the first-order AP scheme (blue line), the second-order AP scheme (green line) and the TVD AP scheme (red line) against the reference solution (black solid line).
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 226 Figure 2.26 -Contact problem (stiff) for 500 cells: Comparison of the first-order AP scheme (blue line), the second-order AP scheme (green line) and the TVD AP scheme (red line) against the reference solution (black solid line).
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 227 Figure 2.27 -Isentropic vortex (Section 2.4.4): Left panels: Density (top) and pressure (bottom) profiles. Right panels: velocity in x direction (top) and velocity in y direction (bottom). Surface plots for the unlimited Order 2 AP scheme with 128 × 128 grid points.
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 228 Figure 2.28 -Isentropic vortex (Section 2.4.4): Logscale of the L 2 norm of the density error at time t f inal = 1 for the Order 1 and Order 2 unlimited AP (squares) and explicit schemes (triangles) and for the TVD AP scheme (dots) as a function of the number of cells.

3 of Algorithm 1 by 3 .

 3 If in a cell j, spurious oscillations are detected, we set W n+1 j = W n+1,T V D j where W n+1,T V D j is computed with the TVD AP scheme (2.67), (2.58), (2.68), otherwise set W n+1 j = W n+1,O2 j .
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 229 Figure 2.29 -Comparison of the local detection criterion (2.70) (red line on the left) and the global one (2.71) (magenta line on the right) against the reference solution (black solid line). Velocity profile for the shock tube problem (2.72) where ε = 10 -2 (top), ε = 10 -3 (middle) and ε = 10 -4 (bottom).

Figure 2 . 30 -

 230 Figure 2.30 -Results when applying a local procedure: replacing Step 3 of Algorithm 1 (magenta line). Velocity profile for the shock tube problem (2.72) where ε = 10 -2 (top left), ε = 10 -3 (top right) and ε = 10 -4 (bottom).

( a )

 a Shock tube problem for ε = 10 -2 at t f inal = 0.03 for 500 cells. (b) Shock tube problem for ε = 10 -3 at t f inal = 0.01 for 1000 cells. (c) Shock tube problem for ε = 10 -4 at t f inal = 0.0035 for cells. (d) Shock tube problem for ε = 10 -5 at t f inal = 0.0011 for cells.
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 231 Figure 2.31 -Shock tube problem (2.72): Comparison of the first-order AP scheme (black line), the second-order AP scheme (green line), the TVD AP scheme (blue line) and of the AP MOOD scheme fixing the tolerance µ tol = 1.4 × -1 (red line) against the reference solution (black solid line).

Chapter 2 .

 2 Full Euler equations (a) Results for ε = 10 -2 at t f inal = 0.015 for 1000 cells. (b) Results for ε = 10 -3 at t f inal = 0.01 for 2000 cells. (c) Results for ε = 10 -4 at t f inal = 0.006 for 3500 cells.

Figure 2 . 32 -

 232 Figure 2.32 -Several interacting Riemann problems (2.73): Comparison of the firstorder AP scheme (black line), the second-order AP scheme (green line), the TVD AP scheme (blue line) and of the AP-MOOD scheme fixing the tolerance µ tol = 5×10 -2 (red line) against the reference solution (black solid line).
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 943 Extension to the Navier-Stokes equations and two dimensional numerical testswherek n+1 ε = k ε (W n+1 ) and h n+1 = h(W n+1 ).Inserting the momentum equation (3.10b) into the implicit inviscid flux for the energy equation(3.10c), expressing E n+1 with the state equation we have
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 212321 Asymptotic consistency Lemma Assuming the boundary conditions U.n = 0 and ∂T /∂n = 0 on ∂Ω, the semi-discretization (3.15) gives p n+1 0

3. 2 .

 2 Order 1 AP scheme 99 3.2.2.1 Order 1 L 2 discretization Let us first recall the semi-discretization (3.15) in one dimension:

) 100 Chapter 3 .

 1003 Extension to the Navier-Stokes equations and two dimensional numerical tests

L 2

 2 AP scheme (3.23), (3.24) is stable under the C.F.L. condition γ∆t = |u|∆x. Furthermore, when adding the implicit upwinding on the implicit inviscid part (see Section 3.25), our Order 1 L ∞ AP scheme (3.23)-(3.25) is stable under the C.F.L. condition ∆t = |u|∆x. Then, both discretizations are asymptotically stable. The time step restriction does not depend on the Mach number and is only related to the fluid velocity.

Figure 3 . 1 -

 31 Figure 3.1 -2D Riemann problem (see Section 3.4.1 for its description): Density isolines with the Order 1 L 2 AP scheme (top) and the Order 1 L ∞ AP scheme (bottom).

Figure 3 . 2 -

 32 Figure 3.2 -Time step sizes ∆t as a function of time for the first problem of Stokes (see Section sec:stokes for its description): Left panel: Comparison of the Order 1 AP schemes against the explicit scheme for ε = 10 -6 and µ = 10 -2 . Right panel: Comparison of the Order 1 L 2 AP scheme against the Order 1 L 2 AP scheme with an explicit discretization of the viscous terms for ε = 10 -6 and with µ = 10 -2 and µ = 10 -3 .

Chapter 3 .

 3 Extension to the Navier-Stokes equations and two dimensional numerical tests 3.2.4.1 Discretization of W n+1,exp i,j

3. 3 . 2 . 1

 321 Second order space accuracy for the explicit flux F e

5 . 6 . 7 . 8 .

 5678 First problem of Stokes (Section 3.4.5): An incompressible viscous fluid (with µ = 0 and λ = 0) is considered for which an analytical solution is known. Simulations are run with the Order 2 L 2 AP scheme for various values of the viscosity coefficient. Double shear layer: Incompressible solution (Section 3.4.6): This test case is used to validate the asymptotic consistency of the Order 2 L 2 AP scheme for well-prepared initial data. The vorticty contours plots are shown at different times for the full Euler system and for the Navier-Stokes system (µ = 0 and λ = 0). Heat conduction (Section 3.4.7): This test case is a simple test in which convection is created mainly by heat conduction (µ = 0 and λ = 0). Results are shown for both Order 2 AP schemes. Lid-driven cavity flow: steady state incompressible solution (Section 3.4.8): This test case consists of a square cavity filled with a viscous fluid (µ = 0 and λ = 0) in an incompressible regime. The top moving wall brings the fluid into motion and a steady state is reached. Depending on the Reynolds number (inversely proportional to the viscosity coefficient), we can observe the formation of vortices. Results are given for various values of the Reynolds number with the Order 2 L 2 AP scheme and compare the results

3. 4 .

 4 Two dimensional numerical results for the Euler and Navier-Stokes equations 113 are the following (ρ, u, v, p)(0, x, y)

Figure 3 . 3 -

 33 Figure 3.3 -2D Riemann problem (Section 3.4.1): Density isolines. Reference solution "configuration 12" in [53].

Figure 3 . 4 -

 34 Figure 3.4 -2D Riemann problem (Section 3.4.1): Density contour plots (left) and density isolines (right). Top panels: Order 2 L 2 AP scheme, bottom panels: Order 2 L 2,stab AP scheme.
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 435 Figure 3.5 -2D Riemann problem (Section 3.4.1): Physical Mach number (top left), pressure (top right), u velocity (bottom left) and v velocity (bottom right) contour plots at time t = 0.25 with the Order 2 L 2 AP scheme for 400 × 400 points.

3. 4 .Figure 3 . 6 - 1 -

 4361 Figure 3.6 -Explosion problem (Section 3.4.2): Comparison of the Order 2 L 2 and L 2,stab AP schemes with the reference solution for the Euler equations on a 100× 100 grid. Top left: Mach number distribution (with the L 2 scheme). Others: onedimensional radial cuts along the x-axis for respectively the density (top right), the component u of the velocity (bottom left) and the pressure (bottom right) at time t = 0.25.

Figure 3 . 7 - 3 . 4 .

 3734 Figure 3.7 -Explosion problem (Section 3.4.2): u velocity (top left) , v velocity (top right) and pressure (bottom) one-dimensional cuts at time t = 0.25 and 100 × 100 points. Comparison between an implicit and explicit discretization of the viscous flux for the Order 2 L 2 AP scheme.

Figure 3 . 11 - 3 . 4 .Figure 3 . 12 -Chapter 3 .

 311343123 Figure 3.11 -Gresho vortex (Section 3.4.3): Pressure profile in the x and y direction at time T = 0.4π against the initial profile for the Mach number M = 10 -2 . Left and middle panels: Limited scheme with 41 × 41 versus 40 × 40 points. Right panel: Unlimited scheme with 40 × 40 points.

and p 2 3 )r 3 + 20156.25r 4 -22500r 5 + 6

 233456 (r) = 65.8843399322788 -480r + 2700r 2 -(9666 + 2 + 16ln(r). (3.59)

Figure 3 .

 3 Figure 3.13 -Smooth Gresho vortex (Section 3.4.4): L 1 errors for ρ. Order 2 L 2 AP scheme (left) versus Order 2 L 2,stab AP scheme (right).

Figure 3 .

 3 Figure 3.14 -Smooth Gresho vortex (Section 3.4.4): L 1 errors for ρu. Order 2 L 2 AP scheme (left) and Order 2 L 2,stab AP scheme (right).

Figure 3 . 15 -

 315 Figure 3.15 -Smooth Gresho vortex (Section 3.4.4): L 1 errors for ρv. Order 2 L 2 AP scheme (left) and Order 2 L 2,stab AP scheme (right).

3. 4 .Figure 3 . 16 -Chapter 3 .

 43163 Figure 3.16 -Smooth Gresho vortex (Section 3.4.4): L 1 errors for E and p. Order 2 L 2 AP scheme (left) and Order 2 L 2,stab AP scheme (right).

Figure 3 .

 3 Figure 3.17 -Stokes' first problem (Section 3.4.5): Definition sketch of the u velocity at the wall [22].

3. 4 .Figure 3 . 18 -Figure 3 . 20 -

 4318320 Figure 3.18 -Stokes' first problem (Section 3.4.5): Results for the viscosity coefficients µ = 10 -3 (top), µ = 10 -2 (middle) and µ = 10 -1 (bottom) with 5 × 100 points. Left: u-distribution contour plot at T = 30. Right: Comparison of the u velocity versus the wall distance against the exact solution at times t = 0.3, 1.0, 15 and 30.

3. 4 .Figure 3 . 21 -

 4321 Figure 3.21 -Double shear layer (Section 3.4.6): Vorticity contours for the full Euler equations, i.e., µ = 0, with the Order 2 L 2 AP scheme on a 128 × 128 grid at time t = 1.2 for decreasing values of ε.

Figure 3 . 22 -

 322 Figure 3.22 -Double shear layer (Section 3.4.6): Vorticity contours for the full Euler equations with the Order 2 L 2 AP scheme setting ε = 10 -3 at times t = 0.8, 1.2, 1.8 and 2.6 on a 128 × 128 (top) and a 256 × 256 grid.

Figure 3 .

 3 [START_REF] Degond | Mach-number uniform asymptoticpreserving gauge schemes for compressible flows[END_REF], displays one-dimensional cuts of the temperature and heat flux along the x axis for y = 0. The simulations are run with the Order 2 L 2 and L 2,stab AP schemes until t = 1.0. Since we start with a velocity equal to (0, 0), we have chosen a smaller time step until t = 0.01 (related to the eigenvalues of the jacobian matrix associated to the inviscid flux i.e |U | ± c) and then the usual restriction related only to the fluid velocity U .

Figure 3 . 25 - 3 . 4 .

 32534 Figure 3.25 -Heat conduction (Section 3.4.7): Temperature and heat flux at time t = 1.0 with the Order 2 L 2 and L 2,stab AP schemes for 101 × 101 points.

Figure 3 . 26 -

 326 Figure 3.26 -Lid driven cavity flow (Section 3.4.8): Geometry for the problem and expected vortex formation.

Figure 3 . 27 -

 327 Figure 3.27 -Lid driven cavity flow (Section 3.4.8): Results with the Order 2 L 2 AP scheme for various Reynolds numbers R e = 100 (top), Re = 400 (middle) and Re = 1000 (bottom) on a 100 × 100 grid. Mach number contours (left), u velocity contours with velocity streamlines (middle) and velocity profiles compared with the reference solution [81] (right).

3. 4 .

 4 Two dimensional numerical results for the Euler and Navier-Stokes equations 139looking at the two top figures in Figure3.29, we observe that we do not recover the structure of the secondary vortices on the coarser grid.

Figure 3 . 28 -

 328 Figure 3.28 -Lid driven cavity flow (Section 3.4.8): Results for Re = 1000 at t = 30.0 with the Order 2 L 2 AP scheme on a 100 × 100 mesh. Contours for the density (top left), v velocity (top right) and pressure (bottom).
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  Asymptotic preserving scheme (AP) ([S.Jin] kinetic → hydro) You can use the AP scheme only to reconnect M ε and M 0 ε = O(1)
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  Adimensionnenement des équations d'Euler complet dans d'autres, ou même des ondes rapides qui ne sont présentes que pendant de courtes durées par rapport à l'échelle d'observation. La valeur du nombre de Mach varie en fonction de l'espace et du temps, et seul le modèle d'Euler compressible est valable pour toutes les valeurs du nombre de Mach. Ces situations se produisent notamment dans le contexte des écoulements géophysiques et environnementaux. Il s'agit donc d'un problème multi-échelles et la simulation numérique de ces écoulements devient très complexe. Dans ce travail, je m'intéresse à l'analyse et au développement de méthodes numériques robustes et efficaces dans tous les régimes, allant du Mach lorsque le fluide passe d'un régime compressible à incompressible et vice-versa. Pour mettre en évidence cette transition, nous travaillons sur le système adimensionné en fonction du nombre de Mach que je présente dans le paragraphe ci-dessous.

) où γ = c p c v est le rapport des chaleurs spécifiques c p et c v à pression et volume constant, respectivement. En fonction du phénomène physique que l'on cherche à étudier, la vitesse du fluide peut prendre de très grandes ou de très petites vitesses. Dans le cas où sa vitesse est très petite comparée à la vitesse du son dans le fluide, c, celui-ci devient faiblement compressible et même incompressible. Le rapport entre ces vitesses est donné par le nombre de Mach M = |u| c , où |u| est la norme du vecteur vitesse. A la limite, lorsque M tend vers 0, le fluide devient incompressible, et dans ce cas, le modèle d'Euler incompressible peut être utilisé pour décrire l'écoulement. Cependant, il existe des situations dans lesquelles le fluide peut être légèrement compressible, ou des situations dans lesquelles le fluide présente des ondes de pression très rapides dans certaines régions du domaine et pas 1.3.

1.3 Adimensionnenement des équations d'Euler complet

Pour adimensionner le modèle d'Euler compressible nous introduisons les quantités suivantes :

  ], on y trouve notamment des discrétisations sur maillages colocalisés ou décalés et des formulations en variables physiques (ρ, u et p). Il est important de noter que ces méthodes sont souvent adaptées pour des fluides faiblement compressibles. En effet, dans ces régimes la reformulation est équivalente puisque les solutions sont régulières mais pour de plus grandes valeurs du nombre de Mach, où des ondes de choc peuvent se développer, elle peut entrainer une perte de la structure conservative des équations.

De plus, l'ensemble des techniques énoncées propose des solutions pour résoudre la consistance des schémas existants à faible nombre de Mach mais n'enlève pas la contrainte de type C.F.L. extrêmement restrictive. Elles demandent toutes de résoudre l'échelle des ondes acoustiques (rapides dans ce régime) pour préserver la stabilité du schéma. Notre travail consiste à développer un schéma qui soit à la fois consistant à la limite et stable sous une condition C.F.L. non contrainte par le nombre de Mach, avec un coût de calcul abordable. Ce type de schéma est connu sous le nom de schémas asymptotiquement préservants (AP).

1.6 Schémas asymptotiquement préservants

Cette classe de schémas fut introduite par Shi Jin

[START_REF] Shi | Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations[END_REF] 

dans le contexte des équations cinétiques et de leurs limite fluide ou diffusive. Ces schémas sont stables uniformément par rapport au paramètre ε, il est donc possible d'utiliser un maillage indépendant des petites échelles. De plus, ils sont asymptotiquement consistants : lorsque le paramètre ε → 0, ils redonnent une discrétisation du modèle limite qui lui est indépendant de ε (Figure

1

.1). Une communauté scientifique importante se consacre à l'étude et au développement de schémas AP pour différents modèles et différentes limites. Parmi ces travaux, nous pouvons citer

[START_REF] Degond | Mach-number uniform asymptoticpreserving gauge schemes for compressible flows[END_REF] 

pour le modèle de Navier-Stokes et sa limite bas-Mach basé sur une méthode de Gauge,

[START_REF] Degond | An Asymptotic Preserving scheme for the Euler equations in a strong magnetic field[END_REF] 

pour le modèle d'Euler-Lorentz et sa limite fluide de dérive, basé sur une reformulation du modèle. De nombreux schémas AP proposent une discrétisation semi-implicite où une partie des termes est traitée de manière explicite tandis que l'autre partie est traitée implicitement. Dans ce contexte, et pour des modèles similaires à celui considéré ici, nous citons par exemple les travaux de

[START_REF] Grenier | An accurate low-Mach scheme for a compressible two-fluid model applied to free-surface flows[END_REF] 

pour un modèle bi-fluide,

[START_REF] Degond | All Speed Scheme for the Low Mach Number Limit of the Isentropic Euler Equations[END_REF] 

pour le modèle d'Euler isentropique en introduisant un paramètre permettant de choisir le degrés d'implicitation du flux de pression. Il est ensuite étendu au cas d'Euler complet

  On s'intéresse également au cas des équations de Navier-Stokes qui nous permettent de prendre en compte les effets visqueux et de conduction du fluide. Elles sont constituées d'une partie non visqueuse, correspondant aux équations d'Euler, et d'une partie diffusive correspondant au tenseur des contraintes visqueuses et au flux de température. Pour étudier la limite à faibles nombres de Mach, nous travaillons aussi sur le système de Navier-Stokes adimensionné. Lorsque M → 0, le modèle tend vers un modèle limite. Il est intéressant de noter que lorsque les coefficients de viscosité et de conductivité sont nuls, nous retrouvons le modèle d'Euler incompressible. De plus, lorsque uniquement les effets conductifs sont négligeables, le modèle limite est celui de Navier-Stokes incompressible avec la contrainte d'incompressibilité ∇ • u = 0. Nous rencontrons les mêmes problématiques que dans le cas d'Euler complet : lorsque M → 0, les schémas classiques explicites ne sont pas stables et consistants avec le modèle limite. Généralement, les schémas AP proposés pour les équations d'Euler complet sont directement étendus au cas de Navier-Stokes. Les termes convectifs sont traités de manière identique et pour les termes diffusifs plusieurs choix sont possibles. Un traitement explicite est le plus simple mais impose une contrainte parabolique sur le pas de temps [41]. Nous avons où µ et λ sont respectivement les coefficients de viscosité et de conductivité du fluide et c v est la chaleur spécifique du fluide à volume constant. Cette contrainte peut devenir très restrictive dans les régimes fortement visqueux. Une autre solution est d'impliciter ces termes mais cela ajoute des termes non linéaires sur l'équation de pression qu'il faut traiter. De plus, puisque les équations sur la quantité de mouvement sont couplées à travers le tenseur des contraintes visqueuses cela demande la résolution d'un système linéaire qui grandit avec la dimension en espace. Parmi les travaux dans le contexte des schémas AP basés sur des méthodes IMEX avec un splitting en temps similaire à celui que nous utilisons, nous avons par example

	∆t ≤	2 max	∆x 2 4µ 3ρ	,	c v ρ λ	,
	1.7.1 Problématique					
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Table 2 .

 2 .1. For these test cases Dirichlet conditions are imposed at the boundaries. 1 -Initial data for the Sod and Contact problems

	Name	t f inal	x d		ρ	u	p
	Sod	0.2	0.5	w L w R	1 0.125	0 0	1 0.1
	Lax	0.14	0.5	w L w R	0.445 0.5	1.698 0	3.528 0.571
	Contact	0.3	0.5	w L w R	5 1	1 1	10 10
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 2 

2 -Butcher tableaux for the ARS(2,2,2) time discretization. Left panel: explicit tableau. Right panel: implicit tableau. 2 in time scheme is obtained:

Table 2 .

 2 [START_REF] Allegrini | Study of a new low oscillatory second order all Mach IMEX finite volume scheme for the full Euler equations[END_REF]. For all tests Dirichlet conditions are imposed at the boundaries. The results are shown for the Lax and Sod problem and for a stiff contact problem. On the stiff contact problem, the difference between the left and right initial states for the density is of order 10 5 .

	Name	t f inal	x d		ρ	u	p
	Sod	0.2	0.5	w L w R	1 0.125	0 0	1 0.1
	Lax	0.14	0.5	w L w R	0.445 0.5	1.698 0	3.528 0.571
	Stiff contact	0.5	0.25	w L w R	1000 0.01	1 1	10 5 10 5

Table 2 . 3

 23 

-Initial data for the Sod, Lax and Contact (stiff) problems

  (Multidimensional Optimal Order Detection). It consists in using at each time step the second-order oscillatory discretization (2.56)-(2.57) whenever possible, i.e., when no oscillations appear. Instead, if the numerical solution presents oscillations, we discard it and we replace it by the limited TVD AP scheme (2.67) the most accurate order 1 scheme. The procedure can be summarized by the following algorithm:

	Algorithm 1.	1. Compute a candidate solution W n+1,O2 using the second order
	AP scheme (2.56)-(2.57), (2.58);
	2. Detect in each cells if this candidate presents spurious oscillations applying
	the local detection criteria (see bellow);
	3. If in a cell j, spurious oscillations are detected then compute the solution with

the TVD AP scheme (2.67), (2.58), (2.68), W n+1 = W n+1,T V D . Otherwise, if for all cells the local detection criteria is satisfied, set

  ) .(3.43) 

		Chapter 3. Extension to the Navier-Stokes equations and two
	110	dimensional numerical tests
	where (D i ) n j+1/2 = 1/2 max |λ i (W n j+1,-)|, |λ i (W n j,+ )| and W n+1 j,± = W n+1 j

  , y j )∆x 3 + ∂ 3 xyy ψ(x i , y j )∆x∆y 2 + O(∆x 4 ) + O(∆y 4 ).

	3.4. Two dimensional numerical results for the Euler and Navier-Stokes
	equations	111
	And thus, adding (3.48) and (3.49) and dividing by 4∆y∆x we get
			2 xy ψ(x i , y j )∆x∆y
	+	1 3	∂ 3 xxx ψ(x i (3.49)

Table 3 .

 3 2 -Smooth Gresho vortex (Section 3.4.4): Convergence table at T = 0.4π and N ×N points for the Order 2 L 2 AP scheme. Errors given for the Mach numbers M = 10 -1 , 10 -2 and 10 -3 .

	3.4. Two dimensional numerical results for the Euler and Navier-Stokes
	equations								125
	M	N	L1 ρ	EOC ρ	L1 ρu	EOC ρu	L1 ρv	EOC ρv	L1 E	EOC E
		20 5.592e-02	-	1.448e-01	-	1.448e-01	-	2.163e-04	-
	10 -1	40 1.637e-02 1.77 1.637e-02 2.26 3.029e-02 2.26 5.620e-05 1.95 80 4.072e-03 2.00 4.739e-03 2.68 4.739e-03 2.68 1.932e-05 1.54
		160 1.028e-03 1.99 8.882e-04 2.42 8.882e-04 2.42 7.671e-06 1.33
		20 5.586e-02	-	1.451e-01	-	1.451e-01	-	8.704e-06	-
	10 -2	40 1.636e-02 1.77 2.986e-02 2.28 2.986e-02 2.28 1.106e-06 2.98 80 4.074e-03 2.01 4.831e-03 2.63 4.831e-03 2.63 1.279e-07 3.11
		160 1.026e-03 1.99 8.759e-04 2.46 8.759e-04 2.46 2.145e-08 2.58
		20 5.588e-02	-	1.451e-01	-	1.451e-01	-	9.579e-06	-
	10 -3	40 1.637e-02 1.77 2.988e-02 2.28 2.988e-02 2.28 3.986e-07 4.59 80 4.075e-03 2.01 4.823e-03 2.63 4.823e-03 2.63 8.008e-08 2.32
		160 1.026e-03 1.99 8.759e-04 2.46 8.759e-04 2.46 1.118e-08 2.84

  164 Appendix B. Modified non linear L 2 scheme [11] Dans cette thèse, nous développons et étudions des schémas asymptotiquement préservants (AP) pour les équations d'Euler complet et de Navier-Stokes dans le régime des faibles nombres de Mach. Pour les écoulements subsoniques, les ondes acoustiques sont très rapides par rapport à la vitesse du fluide. D'un point de vue numérique, lorsque le nombre de Mach tend vers zéro, les schémas classiques explicites présentent deux inconvénients majeurs : ils ne sont pas consistants à la limite et imposent une contrainte très restrictive sur le pas de temps pour garantir la stabilité du schéma, car ils doivent suivre les ondes acoustiques rapides. Nous proposons un nouveau schéma linéaire asymptotiquement préservant, avec une condition de type C.F.L. indépendante du nombre de Mach, et asymptotiquement consistent, c'est-à-dire qu'il donne une discrétisation du modèle limite lorsque le nombre de Mach est suffisamment petit. De plus, pour les équations de Navier-Stokes, nous choisissons une discrétisation implicite des termes de diffusion, ce qui nous permet d'utiliser de plus grands pas de temps dans les régimes fortement visqueux aussi. Ce type de schéma a été largement étudié dans la littérature, en particulier pour le cas isentropique, mais aussi pour le système d'Euler complet ou de Navier-Stokes avec différentes méthodes. Dans ce travail, nous proposons d'abord un schéma AP d'ordre 1 basé sur une discrétisation IMEX (Implicite-Explicite) en temps et volumes finis colocalisés en l'espace. Une extension d'ordre 2 est également proposée avec l'utilisation d'une procédure MOOD pour détecter et réduire les oscillations apparaissant classiquement avec les schémas d'ordre élevé.

(a) limited, N = 41 (b) limited, N = 40 (c) unlimited, N = 40

Figure 3.29 -Lid driven cavity flow (Section 3.4.8): Results for Re = 1000 at t = 30.0 with the Order 2 L 2,stab AP scheme. u velocity contours for 100 × 100 points (top left) versus 200×200 points (top right) and pressure contour for 100×100 points (bottom).

Remerciements

Chapter 2. Full Euler equations

Results for the Several interacting Riemann problems test case

We propose to also test the developed AP-MOOD scheme for the severe test case "Several interacting Riemann problems" introduced in Section (2.3.4.2). We remind the initial data below

p(0, x) = 1. (2.73)

In Figure 2.32, we show the physical variable profiles for decreasing values of ε: ε = 10 -2 , ε = 10 -3 and ε = 10 -4 . The tolerance in the detection criterion (2.70) is set to µ tol = 5 × 10 -2 . With this choice, we observe that the oscillations on the velocity and pressure are well captured by the AP-MOOD procedure.

Conclusion

In this chapter, we have developed and studied a new linear AP IMEX scheme for the compressible Euler system in the low Mach number limit. We have shown that the chosen flux splitting has good properties for all regimes from compressible to incompressible. We have proved that our resulting AP scheme is asymptotically consistent, it degenerates into a consistent discretization of the incompressible system when the Mach number is sufficiently small. We have performed a Fourier stability analysis showing that our scheme is linearly L 2 stable under a C.F.L. condition independent of the Mach number. Furthermore, we have constructed an accurate TVD first order scheme and using a MOOD process, we preserve the low oscillatory properties of the order one scheme to the second order scheme. One dimensional and two dimensional numerical experiments supported the proposed analysis. In the future, we aim in focusing on local domain decomposition techniques using this AP scheme, the classical scheme for the compressible Euler equations and the classical scheme for the incompressible Euler equations. In Figure 3.10, we focus on the pressure profile in the x and y direction and compare it against the initial condition. We can see that, even for M = 10 -3 , our scheme is able to capture the pressure perturbations and does not show any oscillation. It is worth mentioning that even on a coarser grid, (Figure 3.11), the initial distribution is maintained (left figure). Let us note that when using the limiter minmod, it is important to correctly initialize the data (here it is correctly initialized choosing an odd number of cells). If not, the calculated slopes may not preserve the circular symmetry of the problem and disrupt the initial solution (middle figure). As illustrated on the right subfigure, this is not the case for an unlimited slope (3.57). In Figure 3.12, the contour plots show that the density (left) remains constant except for some oscillations around r = 0.4. The middle and right subfigures are the velocity distribution in x and y direction respectively. 

Double shear layer: Incompressible solution

We consider a test case studied in [START_REF] Bell | A second-order projection method for the incompressible navier-stokes equations[END_REF] which consists of a double shear layer in a periodic domain. It is used to validate the asymptotic consistency of our scheme since for small values of ε we can compare our results with a reference solution computed solving the incompressible Navier-Stokes equations. We set Ω = [0, 1] 2 and periodic boundary conditions everywhere. The initial data are well prepared to the incompressible regime (divergence free velocity field and constant pressure) and are given by:

where λ = 0. The shear layer is initially perturbed by a vertical velocity of small amplitude. Then, each of the layers will evolve into large vortices and will be thinned between those rolls. One relevant quantity is the vorticity w

which we compute using a second order difference approximation.

As a reference solution for the incompressible Euler equations we can take the results given by [START_REF] Bell | A second-order projection method for the incompressible navier-stokes equations[END_REF] for 128×128 and 256×256 grid points in Figures 1 and2 respectively at times t = 0.4, 0.8, 1.2 and 1.8 (see Figure 3.20 for a snapshot of Figure 2 from [START_REF] Bell | A second-order projection method for the incompressible navier-stokes equations[END_REF]). In Figure 3.21, we show the contour vorticity plots for the full Euler equations, i.e., µ = 0, at time t = 1.2 for decreasing values of ε. We observe that for large values of ε the scheme does not capture the incompressible solution while for ε = 10 -3 and 10 -6 the results are in very good agreement. Therefore, for the following simulations we set ε = 10 -3 . In Figure 3.22, we present the vorticity evolution for the full Euler equations on two grid resolutions. We see that the main structure of the incompressible solution is captured. On the coarser grid (top), we observe on the thinned layer between the rolls the smearing of the solution while by using a finer grid (bottom) the smearing is significantly minimized. In Figure 3.23, we present on the finer grid the contour plots of the physical variables at time t = 1.2 with no viscosity. On the top left corner we see that the initial constant distribution for the density is maintained except for some local oscillations.

For the pressure (top right corner), the fluctuations on the domain are of order of the square Mach number, the Mach number varying in the range 0 to 0.0288. At the bottom, we find the velocity components u (left) and v (right);

We consider now the Navier-Stokes equations where we set the viscosity coefficient µ = 2.10 -4 . In Figure 3.24, the fundamental structure of the vorticity field is relatively similar to the Euler case (see Figure 3.22) with a slightly more diffusive structure and no smearing even on the coarser grid.