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RÉSUMÉ EN FRANÇAIS

Introduction

Aujourd’hui de nouveaux parcs éoliens sont en construction et toutes les prévisions annoncent
une forte hausse du nombre de parcs en France et en Europe pour les dix prochaines années.
Il est donc important de mettre en place des méthodes de suivi de santé fiables et robustes
pour assurer l’intégrité structurelle des éoliennes en utilisation. Les méthodes basées sur l’OMA
(Analyse Modale Opérationnelle) sont une solution, puisqu’elles permettent de suivre l’évolution
des propriétés modales de la structure (fréquences et déformées) au cours du temps à partir de
données issues de capteurs. Ces méthodes ont été appliquées à de nombreuses structures notam-
ment de génie civil, qui sont modélisées comme des systèmes linéaires temporellement invariants
(LTI). Cependant, la rotation d’une éolienne empêche de modéliser une telle structure comme
un système invariant, mais peut plutôt être modélisée comme un système linéaire temporelle-
ment périodique (LTP). Dès lors il est nécessaire d’étendre les méthodes OMA aux systèmes
temporellement périodiques, pour permettre le suivi des propriétés modales des éoliennes.

Pour cela la thèse se décompose en trois axes. Tout d’abord un état de l’art sur la modélisation
et l’analyse modale des éoliennes en rotation est effectué, avec l’objectif de déterminer le contenu
des mesures vibratoires qui pourrait être retrouvé sur une éolienne. Par la suite, cet état de
l’art est étendu aux méthodes d’identifications classiques et adaptées au problème éolien pour
en comprendre les limitations. Le deuxième axe de la thèse est dédié au développement d’une
méthode d’identification des éoliennes en rotation, basée sur l’analyse des vibrations des systèmes
LTP et l’approximation des modes de Floquet. Cette nouvelle approche est alors validée avec
un exemple d’identification d’éolienne opérationnelle, à partir de données simulées. Enfin, le
troisième axe est dédié à la détection de défauts pour les rotors d’éoliennes en adaptant une
méthode de la littérature, et en utilisant des capteurs positionnés au niveau des pales ou bien
de la tour. Dans les deux cas, la méthode utilise les meilleurs indicateurs de défauts obtenus à
partir de l’identification.

État de l’art

Pour débuter, l’état de l’art de l’analyse modale d’une éolienne en rotation et des systèmes
LTP en général est réalisé. Il en découle que deux méthodes peuvent être utilisées, les transfor-
mations MBC (Multi Blade Coordinates) pour les systèmes tournants composés d’un rotor et
la méthode de Floquet pour les systèmes LTP en général. Ces deux méthodes sont équivalentes
pour un rotor isotrope (pales du rotor avec les mêmes propriétés matérielles et géométriques)
et permettent d’obtenir les modes propres du système étudié. Ces modes propres appelés égale-
ment modes de Floquet, sont composés d’une composante temporelle permettant d’obtenir une
fréquence et un amortissement et d’une composante spatiale qui peut être interprétée comme
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une déformée périodique de la même période de rotation que le système. La différence entre ces
modes propres et les modes propres d’un système LTI est la déformée qui est constante dans le
cas d’un système LTI.

Pour continuer l’état de l’art, les méthodes OMA sont étudiées pour comprendre comment
les paramètres modaux sont obtenus à partir des mesures. Les méthodes OMA ont été appli-
quées à de nombreuses structures réelles, notamment de génie civil. Ces structures peuvent être
modélisées comme des systèmes LTI et d’après les hypothèses des méthodes OMA, ces dernières
ne peuvent être appliquées qu’à ce type de systèmes. Par la suite, dans la littérature, des mé-
thodes OMA ont été définies pour l’identification des systèmes LTP. Cependant elles ont toutes
des inconvénients qui empêchent leur utilisation pour le suivi de structures réelles. En effet, les
méthodes basées sur les fonctions de transferts harmoniques ont l’inconvénient de ne pas définir
théoriquement le nombre de modulations qui doivent être effectuées, de plus ces modulations
augmentent la dimension du signal, et donc le coup de calcul. Pour les méthodes basées sur
un pré-traitement des données avec les transformations MBC, l’inconvénient est que ces trans-
formations sont fausses dès lors que le rotor est anisotrope, ce qui est problématique pour un
suivi de structure et pour la détection de défaut, car un défaut engendre de l’anisotropie. Enfin,
la méthode SSI-LPTV, permet théoriquement d’identifier les modes de Floquet d’un système
LTP. Cependant cette méthode converge en nombre de périodes et non en temps, ce qui fait
qu’elle demande un temps de mesures trop important pour être utilisé en réalité dans le cas des
éoliennes. Par conséquent, il faut définir une nouvelle approche pour identifier les éoliennes en
rotation.

Pour conclure l’état de l’art, les méthodes de détection de défauts de rotor d’éolienne sont
étudiées. De nombreuses méthodes basées sur la détection du déséquilibre du rotor existent. Ces
méthodes permettent de détecter des défauts de pitch d’une pale ou bien des augmentations de
masses liées à l’accumulation de glace, qui sont des défauts courants. Cependant, très peu de
méthodes existent pour la détection de défauts structuraux des pales. Ainsi, une méthode de
détection de défauts structuraux pour les pales d’éoliennes opérationnelles pourra être définie.

Approximation de la dynamique d’une éolienne opérationnelle et
identification associée

Pour permettre l’identification des éoliennes opérationnelles et des systèmes LTP en général,
il est choisi d’approximer les vibrations libres de ces systèmes, c’est-à-dire approximer les modes
de Floquet. Cette approximation est basée sur la transformée de Fourier de la déformée pério-
dique, où seulement les composantes non négligeables sont sélectionnées (en utilisant le facteur
de participation). Cela entraîne une décomposition en modes propres équivalentes à celles des
systèmes LTI, où dans ce cas les modes propres sont les harmoniques de Fourier des modes de
Floquet. Cette approximation a pu être validée avec une application avec un modèle 5 degré
de liberté (DDL) d’éolienne en rotation, où en Figure 1, la PSD d’un decay test du modèle
est comparée avec les fréquences de l’approximation du système. Ainsi nous pouvons observer
une concordance entre les pics de la PSD et les fréquences de l’approximation, ce qui confirme
l’approximation. Ensuite, la convergence de l’approximation a pu être confirmée théoriquement,
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mais également avec un exemple sur le modèle 5 DDL d’éolienne. Dans la Figure 2, la déformée
périodique théorique d’un mode de Floquet est comparée à des déformées reconstruites à partir
de l’approximation, ainsi nous pouvons observer que l’approximation tend bien vers la valeur
théorique, validant l’approximation.
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Figure 1 – Comparaison des fréquences de l’approximation (lignes en pointillées) et la densité
de puissance spectrale d’un decay test du modèle 5DDL d’éolienne au niveau d’un DDL de rotor
(ligne bleue) et d’un DDL de la nacelle (ligne rouge) – approximation définie avec ϕmin=1%

0 1 2 3 4
Time (s)

5.0

2.5

0.0

2.5

5.0

Ac
ce

le
ra

tio
n 

(ra
d/

s²
)

(a) Rotor

0 1 2 3 4
Time (s)

4

2

0

2

4

Ac
ce

le
ra

tio
n 

(ra
d/

s²
) Y1(t)

min = 0.4

min = 0.2

min = 0.1

(b) Nacelle (Yaw)

Figure 2 – Comparaison sur une période de la partie réelle de la déformée périodique du mode
de Floquet de référence (ligne continue) avec différentes approximation (lignes en pointillées)
pour différents facteurs de participation minimum – Premier mode de Floquet correspondant à
des vibrations de Yaw

Par la suite, il est démontré théoriquement qu’il est possible d’identifier les harmoniques
de Fourier composant l’approximation peuvent bien être identifiées avec les méthodes OMA de
l’état de l’art, en particulier les méthodes sous-espace. Ainsi, l’identification de l’approximation a
notamment pu être validée avec un exemple d’identification du modèle d’éolienne multi-physique
DTU 10MW en rotation, avec une simulation avec un vent turbulent et une rotation variable.
En Figure 3, le diagramme de stabilité de l’identification est affiché et nous pouvons observer
que les alignements de modes identifiés correspondent aux lignes en pointillée représentant les
fréquences de l’approximation. Nous pouvons en conclure qu’il est bien possible d’identifier les
harmoniques de Fourier des modes de Floquet. Par conséquent, il est possible de suivre l’état
structurel d’une éolienne en rotation via l’identification des harmoniques de Fourier des modes
de Floquet.
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Figure 3 – Diagramme de stabilisation obtenu pour une identification du modèle d’éolienne
multi-physiques en utilisant des mesures de tour et de rotor, simulation avec un vent turbulent
et une vitesse variable - ( ) : fréquences de référence - (•) : fréquences identifiées

Détection de défaut via la détection d’anisotropie du rotor

Pour effectuer de la détection de défaut structurel d’un rotor d’éolienne, il faut en premier
lieu déterminer les meilleurs indicateurs de défaut qui peuvent être obtenus avec l’identification
des harmoniques de Fourier des modes de Floquet. D’après la littérature, les défauts peuvent
être détectés via le suivi d’anisotropie du rotor, dont les meilleurs indicateurs de défauts sont
les phases et amplitudes des déformées des modes de flexion du rotor (edge ou flap). Ceci est
confirmé avec le modèle de la DTU 10MW, où les phases et amplitudes des déformées des modes
de flexion edge sont environ 10 fois plus sensibles à une baisse de raideur d’une pale que les
fréquences de ces mêmes modes.

Une fois les indicateurs de défaut choisis, la méthode de détection de défaut peut être définie.
Ici une méthode de la littérature est adaptée, à savoir la Stochastic Subspace-based Damage
Detection. Cette méthode permet de détecter un changement dans le système étudié via le
changement de distribution d’un test statistique basé sur un résidu construit à partir des mesures
ou des résultats d’identification. Ainsi, un nouveau résidu est défini en fonction des phases et
amplitudes des déformées des modes de flexion egde identifiés. De plus, comme la détectabilité
des défauts est faible, il est décidé d’augmenter cette détectabilité avec l’utilisation d’un résidu
moyen, permettant de réduire la covariance et donc d’augmenter la détectabilité des défauts.
Pour valider cette méthode de détection de défaut, il est décidé d’appliquer la méthode à la
détection de perte locale de raideur ∆K d’une pale du modèle d’éolienne DTU 10MW, où les
harmoniques de Fourier sont identifiées à partir de mesures de moment en pied de pale. En
Figure 4, les résultats de la détection de défauts des différents endommagements sont résumés,
avec l’évolution des tests moyens et leurs histogrammes associés. En premier lieu nous pouvons
observer avec les histogrammes (Figure 4d) que le test ne réagit pas de la même manière pour
les différents défauts. Dans un second temps, il peut être conclu que le défaut est détecté dans
les cas ∆K2,3 et ∆K5,2 (∆K2,3 : perte de raideur sur la troisième pale sur une section entre
10 et 20% de la longueur de la pale ; ∆K5,2 : perte de raideur sur la deuxième pale sur une
section entre 40 et 50% de la longueur de la pale). De plus, avec cette méthode il a été possible

24



Résumé en français

de trouver la pale endommagée, une fois le défaut détecté. Enfin, la détection d’autres types de
défauts (ajout de masse et d’erreur d’angle de pitch) a également été testée.

0 50 100 150
Test index

0

20

40

60

Te
st

 v
al

ue

Reference test
95% threshold
Transition test
Damaged test: K2, 3 = 7.5%

(a) Évolution du test : ∆K2,3

0 50 100 150
Test index

0

5

10

15

20

Te
st

 v
al

ue

Reference test
95% threshold
Transition test
Damaged test: K3/4, 1 = 7.5%

(b) Évolution du test : ∆K3/4,1

0 50 100 150
Test index

0

50

100

150

200

Te
st

 v
al

ue

Reference test
95% threshold
Transition test
Damaged test: K5, 2 = 7.5%

(c) Évolution du test : ∆K5,2

0 25 50 75 100 125
Test value

0.00

0.05

0.10

0.15

0.20
D

en
si

ty

95% threshold
Reference test
Damaged test: K3/4, 1 = 7.5%
Damaged test: K2, 3 = 7.5%
Damaged test: K5, 2 = 7.5%

(d) Histogrammes des tests de détection de défaut

Figure 4 – Évolutions du test de détection de défaut en utilisant le résidu moyen (nbf = 10)
pour différentes localisations de l’endommagement simulé, associés avec les histogrammes des
différents tests (obtenues en utilisant le bootstrapping)

La détection de défaut a été réalisée en utilisant des mesures provenant du rotor, or cette
partie de l’éolienne est difficile à instrumenter. Ainsi, il est essayé d’effectuer de la détection de
défaut du rotor en utilisant des mesures provenant de la tour ou de la nacelle (c.a.d provenant
du fixed frame). Pour commencer, les indicateurs de défauts sont recherchés et parmi les plus
sensibles aux défauts, les fréquences des harmoniques de Fourier de flexion suivant edge et Side-
Side identifiables avec des mesures du fixed frame sont utilisées. Un résidu est construit en
utilisant ces indicateurs, rendus pour certains indépendants de la vitesse de rotation du rotor.
La détection de défaut est alors effectuée en utilisant une nouvelle fois la Subspace-based Damage
Detection method. Pour valider cette méthode et le choix du résidu associé, elle est appliquée à
la détection de différentes combinaisons de variations de raideurs globales du rotor et de la tour.
Avec la Figure 5, les histogrammes des différents tests de détection de défauts effectués pour les
différents endommagements sont affichés. Avec ces histogrammes, nous pouvons observer qu’il a
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été possible de détecter la présence d’un défaut dans tous les cas testés.
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Figure 5 – Histogrammes des tests de détection de défaut pour les différents endommagements
simulés, utilisation du résidu moyen (nbf = 10) et du bootstrapping (1000 combinaisons de
résidus)

Conclusion

Dans cette thèse, l’objectif était de surveiller une éolienne sans avoir à l’arrêter ni à interférer
avec son fonctionnement. Ainsi, le problème de la surveillance des éoliennes par analyse modale
opérationnelle a été traité. Le défi principal provient du fait qu’une éolienne en rotation entraîne
un caractère périodique au système, ce qui empêche l’utilisation des méthodes d’identification
des modes propres définie pour des structures temporellement invariantes telles que celles de
génie civil.

Pour permettre l’identification des modes propres des systèmes périodiques, une étude de la
dynamique des éoliennes en rotation a été réalisée. Ainsi, basée sur cette étude, une approxi-
mation des modes propres des éoliennes en rotation a pu être définie, où ces modes propres
sont définis comme une somme de modes propres d’une structure invariante. Par la suite, il a
été démontré théoriquement que les méthodes d’identification sous-espaces existantes peuvent
identifier correctement l’approximation définie précédemment. Puis ces méthodes ont été vali-
dées avec différents exemples d’identifications utilisant des données simulées à partir de modèles
d’éoliennes. Pour conclure le travail, la détection de défauts du rotor a été traitée, en utilisant
des mesures du rotor ou bien de la tour. Pour ces deux cas, les paramètres obtenus par identifi-
cation les plus sensibles aux défauts ont été recherchés et utilisés pour adapter une méthode de
détection de défaut de l’état de l’art. Pour les deux situations, il a été possible de détecter une
baisse de raideur d’une pale et de déterminer la pale endommagée lorsque des mesures du rotor
sont utilisées.

Tous ces travaux pourront être poursuivis notamment avec l’application des méthodes à des
données réelles, permettant de vérifier la robustesse des approches et surtout d’observer l’impact
des conditions opérationnelles et environnementales sur les harmoniques de Fourier des modes
de Floquet.
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ABSTRACT

In this thesis, the objective is to monitor the wind turbine without stopping or interfering
with its operation. Therefore, the monitoring of operating wind turbines is studied with Op-
erational Modal Analysis (OMA). OMA methods aim to estimate the modal parameters of a
structure based only on the outputs of an operating structure under ambient excitation such
as wind and waves. After presenting the studied system and the associated physical modeling,
the modal analysis of a rotating wind turbine is defined based on the Floquet modes, thanks
to the modeling of an operating wind turbine as a linear time periodic system coming from
the automatic field. Then, classical OMA methods used for invariant systems (for example civil
engineering structures) are presented, to understand how the modal parameters are retrieved
from the collected signals. Based on both studies, it is concluded that classical identification
methods cannot be used for the monitoring of operating wind turbines. Moreover, the methods
specifically designed for the rotating machines have drawbacks and also cannot be applied to
operating wind turbines. Consequently, it is needed to define a new identification procedure, to
adapt the classical OMA methods for the identification of the operating wind turbines. A second
objective is to develop damage detection methods focus on the rotor. For the damage detection
of wind turbine rotors, many methods have been developed for pitch and mass imbalance de-
tection, but only a few methods exist for blade stiffness change detection. Therefore, a damage
detection method from the literature needs to be adapted for the detection of stiffness changes
in a wind turbine rotor.

To enable the monitoring of operating wind turbines, firstly, the dynamical behavior of the
linear time periodic systems is approximated into linear time invariant systems under nonsta-
tionary inputs. This approximation is composed of the non-zero Fourier harmonics of the Floquet
modes. The approximation is validated using an academic model of a rotating wind turbine, and
a physical meaning of the approximation is given with an application on a multi-physics model
of a wind turbine (the DTU 10MW wind turbine model on OpenFAST ). Then, the state-space
representation of the approximation is defined, and it is demonstrated that the approximation
can be identified with a classical subspace method. Finally, the Stochastic Subspace Identifica-
tion (SSI) method is used to identify the approximation of wind turbine models, particularly
of the multi-physics model of a wind turbine under a turbulent wind and a variable rotational
speed. In all identifications, the identified modes correspond to the Fourier harmonics of the
Floquet modes defined by the approximation.

Secondly, based on the identification of the Fourier harmonics of the approximation, a damage
detection method for wind turbine rotors based on rotor anisotropy tracking can be defined.
To start, the damage sensitive parameters are searched and defined as the phase shift and
amplitude of the Fourier harmonics of the edge (in the rotor plane) bending mode shapes.
Also, the associated uncertainties are defined and validated. Then, a damage detection method
from the literature, namely the Statistical Subspace-based Damage Detection is adapted to the
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studied problem by defining a residual using the phase shift and amplitude of the edge bending
mode shapes. This method is applied with a gradually increasing difficulty, from the detection
and localization of a loss of stiffness of one blade of the academic model to the detection and
localization of a global loss of stiffness of one blade of the DTU 10MW wind turbine model
under a realistic variable wind. To continue using measurements with a fixed or limited length
and without concatenating the data, a mean residual is defined, conjointly with the associated
positive impact on the covariance of the residual that improves the damage detectability. The
mean residual is then used in a number of applications, and it is shown that it is possible
to detect and localize local stiffness losses, mass additions, and pitch errors. The effect of the
number of sensors, and their location, is also highlighted. However, since it may be difficult
to monitor the rotor, damage detection is also performed using the more common tower and
nacelle measurements. To do so, two methods are tested using new damage sensitive features. One
method for the appearance of new Fourier harmonics is based on the coherence of a signal and
its modulation with rotor speed. And one using the frequencies of the selected damage sensitive
Fourier harmonics, with the adaptation of Stochastic Subspace-based Damage Detection method.
With the latter, it is possible to detect smaller rotor stiffness losses than with the coherence and
to distinguish rotor and tower faults.
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Wind power generation in Europe (EU+UK) in 2022 reaches new records in terms of absolute
production (489 TWh) and for the share of onshore (14.1%) and offshore (3.2%) wind energy
in electricity production [46], which is directly related to the increase of installed onshore and
offshore capacity in Europe, which has doubled in the last decade (see Figure 6). Moreover, in
the latest central scenario of Wind Europe [46], the wind power capacity in Europe is expected
to increase by 129 GW in the next five years.

Figure 6 – Installed wind power capacity in Europe, 2013-2022 [46]

Regarding the actual installed capacity, given the prospects for growth in the number of wind
farms in the coming years, and the continuing quest to reduce maintenance costs, it is important
to implement reliable monitoring methods based on data collected during the operation of the
wind turbines. In order to increase the lifetime of wind turbines and to improve the planning
of maintenance operations. Operational Modal Analysis (OMA) methods are powerful methods
for monitoring structural properties by identifying the modal signature. Many OMA methods
have been developed for civil engineering applications, where the monitored structure can be
accurately modeled by linear time invariant (LTI) systems [17]. However, the rotation of the
rotor of a wind turbine breaks the LTI hypothesis, and these systems should rather be modeled
as linear time periodic (LTP) systems. Since they no longer meet the basic assumptions of
OMA, these LTI-based OMA methods need to be extended to LTP systems in order to enable
the monitoring of the operating wind turbines.

The objective of this thesis is to develop an efficient identification approach for operating
wind turbines and to develop damage detection methods with industrial applications. In this
thesis, the damage detection will be designed to focus on the rotor blades. In [5], the authors
give a review of different reliability studies. On average the hub and blades have a failure rate of
around 7.5% and the highest downtime as it is shown in Figure 7. It shows that it is important
to monitor this part of a wind turbine, even more knowing that damage on a blade can later
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lead to irreversible damage, for example, if a damaged blade hits the tower.

Figure 7 – Failure rates and associated downtime of the different components of a wind turbine
[5]

The manuscript is organized as follows: the first Part is dedicated to the state of the art.
In Chapter 1, the wind turbine modeling with the different involved physics is presented, as
the models used in the thesis. Then, the modal analysis of the wind turbine and of the linear
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time periodic systems, in general, are presented. The objective is to understand the dynamics
of a rotating wind turbine and what will compose the measurements. Then in Chapter 2, the
OMA methods are presented. The main objective is to understand the purpose of the methods
and why they can not be applied to rotating wind turbines. To continue, a brief review of the
identification method designed for the rotating wind turbine is performed, to understand the
choices made and the resulting drawbacks to develop a new approach. To finish a fault detection
method based on the identification results is presented, as it should be possible to adapt it to the
identification of operating wind turbines. Also, the damage sensitive parameters of the different
rotor faults are presented, conjointly with some damage detection methods.

Secondly, the second Part develops the first contribution of the thesis, within Chapter 3 the
definition of the approximation of the LTP system into an LTI system for subspace identification.
With this new approach, the system is approximated based on the Floquet modes decomposition
to be identified with the classical OMA methods. From the definition of the approximation, the
use of a subspace method is demonstrated. Finally, in Chapter 4 the approach is validated with
the identification of increasingly complex systems.

Finally, Part 3 develops the second contribution of the thesis, with fault detection based on
the identification results. In Chapter 5 the damage sensitive parameters are searched, namely
the phase shift and the amplitude of the rotor edge bending modes shapes. Then, the associated
uncertainties are defined and validated. Finally, it is shown that these parameters can be used
to detect rotor faults. Then, in Chapter 6, the Stochastic Subspace-based Damage Detection is
adapted for the detection of rotor faults, using the aforementioned damage sensitive parameters.
This method is validated on increasingly complex systems, to finally detect and localize a blade
with a local loss of stiffness. Also, it is shown that the method can be performed using different
kinds of measurements and that it is possible to detect different faults that can occur on a wind
turbine rotor. Finally, in Chapter 7, the damage detection of rotor faults using measurements
from the fixed frame (nacelle or tower) is assessed, where the objective is to determine if it is
possible to perform such damage detection. From the nacelle and tower measurements, the new
most damage sensitive features are searched and used in two damage detection methods.
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Chapter 1

WIND TURBINE

Abstract
In this Chapter, first, an introduction to the wind turbine area and the main elements of the modeling
of each part of the multi-physics problem are given. Also, the two models that will be used in the thesis
are presented. The first model is a phenomenological 5 degrees of freedom model of a wind turbine, used
to test and validate the methods that will be developed in the thesis, with low simulation time. The
second model is a more complex and realistic aero-servo-elastic model of a 10 MW wind turbine. Then,
the modal analysis of the wind turbine and periodic systems, in general, is presented. Where the two
methods that are used, the Floquet theory and the Multi-Blade-Coordinate transformation, are detailed.
It is clear that the dynamical behavior of periodic systems is different from the one of time invariant
systems. So, the modal parameters that will be searched in the signal of periodic systems will be different
from those of invariant systems.

1.1 Introduction

The State of the art of the thesis is divided into two parts. With the first part dedicated to
wind turbines. In this part, the modeling of wind turbine dynamics is introduced first. Then,
the two models of different complexity used in the thesis are presented. The first model is a
phenomenological model of 5 degrees of freedom of a rotating wind turbine, able to capture
the main physical behavior of the problem. The second model is a complex multi-physics finite
element model, to simulate realistic data. Finally, modal analysis for wind turbines is presented.

1.2 Wind turbine description

A schematic representation of a wind turbine is given in Figure 1.1 to introduce the main
components of such structure as well as the basic terminology to describe their motion.

Some basic definitions are recalled here for the understanding of the thesis:
— Rated wind speed: Speed at which the turbine reaches its maximum power.
— Hub: Center of the rotor where all the blades are attached, illustrated in Figure 1.1
— Pitch angle: Angle to varies the angle of attack of the blade, illustrated in Figure 1.1.

This variation of angle is used to reduce the aerodynamic efficiency of the rotor, when
the wind speed is over the rated wind speed

— Yaw angle: The angle between the nacelle and a reference line (e.g. North-South axis),
illustrated in Figure 1.1. This angle is adjusted so that the turbine is always in operation
facing the wind.

— Tilt angle: The angle between the nacelle and the a horizontal line parallel to the ground,
illustrated in Figure 1.1
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Figure 1.1 – Drawing of a wind turbine

— Azimuth angle: The angle that the rotor makes with respect to its original position, makes
it possible to follow the blades position.

— Fore-Aft (FA) motion: Motion of the wind turbine in the wind direction, illustrated in
Figure 1.1

— Side-Side (SS) motion: Motion of the wind turbine transverse to the wind direction,
illustrated in Figure 1.1

— Edgewise (edge) displacement: Deflection of the blades in the rotor plane, illustrated in
Figure 1.1

— Flapwise (flap) displacement: Deflection of the blades perpendicular to the rotor plane,
illustrated in Figure 1.1

For the full description and characterisation of a wind turbine, the interested reader could refer
to [19].

1.3 Common faults in wind turbine rotor

As said in the introduction, one of the objectives of the thesis is to perform damage detection
with a focus on the wind turbine blades. The different kinds of faults and damages on the blades
are then listed in Table 1.1. They impact the mechanical properties of the blades in different
ways and so have different consequences on the dynamic behavior of the structure.

Thus, a fault in the rotor can be the consequence of a pitch misalignment. This leads to a
change in the aerodynamic coefficients leading to a loss of power generation. Also, it changes
the orientation of the blade, leading to a change in the mechanical properties along the flap and
edge axis. It is also possible to observe an anisotropy in mass, that can be a consequence of ice
accumulation on a blade [79, 93]. This can also lead to a loss of power generation and higher
loads on shafts and bearings. Another fault is the anisotropy of stiffness, due for example to
fatigue or lightning strike [80], leading to crack propagation, delamination, or debonding of the
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composite material.

Name Modeling

Pitch error Change of the aerodynamic coefficients
and rotation of the structural properties

Ice accumulation Addition of mass
Crack Stiffness loss

Delamination Stiffness loss
Debonding Stiffness loss

Table 1.1 – Common faults in a wind turbine blade and associated modeling

1.4 Wind turbine modeling

A wind turbine is a complex rotating structure involving different physics that must be
modeled. Many books, as [19, 66], give an overview of the modeling, performance and design of
wind turbines. The main physics involved are briefly presented in the following.

Firstly, a modeling of the time and spatial evolution of the wind speed is presented. Secondly,
the aerodynamic load computation methods are introduced. Afterward, the methods to model
the mechanical part are presented. Then, the basics of wind turbine control are discussed. Finally,
the wind turbine models that are used for the rest of the thesis are briefly presented.

1.4.1 Wind modeling

A wind turbine is subjected to variable wind, and the variability of the wind can be expressed
in the frequency domain with a spectrum. In Figure 1.2, an example of the wind spectrum is
displayed, with different peaks associated with different time scales. Synoptic variations (associ-
ated with the passage of weather system) and diurnal peaks (driven by local thermal effects) are
important in prediction of wind and electricity power. The turbulent peak describes wind-speed
variations on shorter time-scales (typically seconds to minutes). This peak has the main effect
on the design and performance of a wind turbine. In general, only a few minutes or hours of
time evolution of a wind turbine are simulated. So, looking at Figure 1.2, only the turbulent
peak will have an impact on the time evolution of the wind. To define this turbulent peak, some
models exist, where the two mains models of spectra are the the Kaimal [78] and von Karman
[19], with the associated power spectra density defined as

Kaimal: Sk(f) =
4σ2

k
Lk
ū(

1 + 6f Lk
ū

) 5
3

(1.1)

von Karman: Sk(f) =
4σ2

k
Lk
ū(

1 + 70.8
(
f Lk

ū

)2
) 5

6
. (1.2)

Where f is the frequency, k the axis of the wind component (longitudinal, vertical or crosswise),
Lk the Kaimal length scale, ū the mean wind speed and σk the standard deviation of the
wind speed. From [19], the von Karman spectrum gives a good description for turbulence in
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wind tunnels, although the Kaimal spectrum may give a better fit to empirical observations of
atmospheric turbulence.

Figure 1.2 – Example of wind spectrum [19]

Once the spectrum of the wind has been defined, the time evolution can be computed.
From the power spectra density the amplitude of the different frequencies can be obtained with
A(f) =

√
S(f)2df , then the time evolution of the wind speed is obtained with the following

Fourier series

U(t) = Ū +
N∑

i=1
A(fi) cos (2πfit+ ϕi) , (1.3)

where ϕi is the phase shift associated with the frequency fi, which is modeled as a random value,
to have a stochastic wind speed.

However, to model the load on a wind turbine rotor due to the wind speed, a spatial evolution
of the wind speed is needed, as it is displayed in Figure 1.3. To do so, the software Turbsim
[74] can be used. To express the spatial evolution of the wind speed, two methods exist. The
first one uses the wind speed evolution at the hub height from one of the previous spectra and
vertical and horizontal shears. Those shears are expressing the evolution of the wind speed in the
two main directions of the wind speed grid. Two possible distributions have been proposed to
model this evolution due to ground roughness, respectively named logarithmic and power-law.
The power law of the mean wind profile is defined as

ū(z) = ū

(
z

zhub

)α

, (1.4)

with z the altitude of the considered point, zhub the altitude of the hub and α the vertical wind
shear coefficient. For the horizontal shear, it is often set to zero, considering that there is no
influence of the ground for example. A wind speed grid using a power law (called "Hub height"
wind in Turbsim) is illustrated in Figure 1.4 (a).

Although, expressing the wind speed only with the hub height wind speed and the different
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Figure 1.3 – Example of a grid of wind speed used in Turbsim [74]

shears is not representative of a real spatial distribution of the wind (called "Full field" wind in
Turbsim), as represented in Figure 1.4 (b). So, the spatial variability can be expressed using the
coherence between the spectra of all the points of a grid. The coherence between two points of
a grid (i and j) is defined as

Cohij (f) = |Sij(f)|√
Sii(f)Sjj(f)

, (1.5)

with Sij(f) the cross-spectral density between the two points and Sii(f) and Sjj(f) the spectral
density defined previously. In Turbsim, the coherence for an IEC (International Electrotechnical
Commission) [122] spectral model is defined as

Cohij (f) = exp

−a

√(
fr

ūhub

)2
+
(

0.12 r

Lc

)2
 , (1.6)

where r is the distance between the grid points, a is the coherence decrement and Lc is a
coherence scale parameters. The values of the two last parameters are defined in [74], with
a = 12 and Lc = 2.45 × min (30, hubheight).

So, with this method commonly used in engineering, once the time and spatial evolution of
the wind speed is modeled, the aerodynamic loads on the rotor due to the wind can be computed.
In the next section, the main method to compute the aerodynamic loads will be presented.

1.4.2 Aerodynamic loads computation

To model the behavior of a wind turbine, the aerodynamic forces due to the wind applied to
the structure have to be defined. This will also allow to determine the electrical power that a wind
turbine can theoretically deliver. Different methods can be used to compute the aerodynamics
loads on a wind turbine [61], with for example the Blade Element Momentum (BEM), the
computational Fluid Dynamics (CFD) or the Vortex methods. The BEM theory is the most
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Figure 1.4 – Comparison of wind speed grid, for two different spatial evolution modeling

common method used in the design modeling softwares, because it is the fastest of the mentioned
methods, with a good level a accuracy. This method is described in the Appendix A.

1.4.3 Structural modeling of a wind turbine

Once the aerodynamic loads are defined, the structural part of the wind turbine must be
modeled. Two major approaches are commonly employed for this modeling. A first method is
the classical finite element method, widely used in the modeling of structures. The latter is used
for example in the software Deeplines Wind [101], where the blades and the tower are modeled
using 3D non-linear beams elements, with large transformation for the blades (around 50 beam
elements per blade).

Another option is to reduce the problem size by projecting the wind turbine displacements
on its linear eigenmodes through modal decomposition [121, 120, 64]. With such approach used
in the software OpenFAST [94], where each part of the wind turbine is expressed through his
eigenmodes. The modal decomposition aims to model a system from its eigenmodes, which can
be used to express the displacements. Let us express the displacements u(x, t) as a function of
N eigenmodes:

u(x, t) =
N∑

i=1
Ai(x)qi(t), (1.7)

where Ai(x) represents the spatial evolution of the mode shape i and qi(t) the time parameter
associated to mode i. Therefore, the dynamic of the system is characterized by only N DOF. The
main advantage of this method is that it allows us to obtain a large spatial discretization with
few parameters, reducing drastically the problem size. The disadvantage is that the eigenmodes
of the different parts of the structure must be known, which requires a preliminary study. Also, it
is assumed that the linear eigenmodes of the components are sufficient to describe the dynamic
of the whole wind turbine. To define a wind turbine model in OpenFAST, the eigenmodes of the
tower and the blades are obtained with an eigenvalue decomposition, where both are modeled
using 3D beam finite elements. To do so, the software BModes [14] can be used.

In OpenFAST, an onshore wind turbine is defined with the eigenmodes of the main com-
ponents. For the blades, the two first flap bending modes and the first edge bending mode are
used. For the tower, the two first bending modes along Side-Side and Fore-Aft are used. Blades
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and tower are supposed to be clamped respectively on the hub and on the ground. Finally, the
first mode of torsional bending of the drive-train shaft is used. To those eigenmodes, the degree
of freedom (DOF) of the generator can be added, for a total of 15 DOF for a three-bladed rotor.

1.4.4 Wind turbine controller

A wind turbine has three distinct control regions illustrated in Figure 1.5. They are char-
acterized by the minimum and maximum allowed speeds of the wind turbine. The first region
is when the wind speed is lower than the minimum speed of the turbine, then the turbine is
stopped. The second region is when the wind speed is within the minimum and rated speed, in
this region the controller will adjust the rotation speed to optimize the electrical power produc-
tion. The last region is when the wind speed is above the rated speed. In this case, the wind
turbine rotates at its maximum speed, the presented controller adjusts the angle of attack of the
blades (pitch) to reduce the efficiency of the rotor and to have a constant power output. Other
types of controllers exist and are based on passive stalling to limit power in the last region.
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Figure 1.5 – Example of a speed control curve

The principles of wind turbine modeling have been introduced and the workflow of the
coupling between all the physics is displayed in Figure 1.6, where the modeling of an offshore
floating wind turbine is considered. The following Section is dedicated to the presentation of the
wind turbine models used in the thesis. The first model is an academic model of a simplified
wind turbine, able to mimic the main dynamic behaviors. The second model is a complex model
of a real-world wind turbine.

1.4.5 Wind turbine models used in the thesis

Academic model of a wind turbine

In order to test and validate the OMA methods that are developed in the thesis, it is needed
to have a simple model with low simulation time, but still able to represent the main dynamic
behaviors. In this context, a phenomenological model of an onshore wind turbine is used, the
latter is defined in [119] and represented in Figure 1.7. It has an isotropic rotor and a constant
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Figure 1.6 – Workflow of OpenFAST for a floating wind turbine [94]

rotational speed. This model is composed of 3 DOF representing the blade bending (one for each
blade) perpendicular to the rotor plane, and two DOF of nacelle bending. To define the system
equations, the Lagrange equations are used:

L = T − V (1.8)
d

dt

(
∂L
∂q̇

)
− ∂L
∂q

= δWq, (1.9)

where L is called the Lagrangian, with T the kinetic energy and V the potential energy. δWq

represents the virtual work of the external forces with respect to the parameter q. Then these
equations are resolved and linearized around the equilibrium solution (time t and azimuth an-
gle ψ), considering small deflections. Thus, the mass, damping, and stiffness matrices can be
computed, denoted M(t), C(t) and K(t), respectively, where

M(t) =



Jb 0 0 Jb cosψ1 −Jb sinψ1

0 Jb 0 Jb cosψ2 −Jb sinψ2

0 0 Jb Jb cosψ3 −Jb sinψ3

Jb cosψ1 Jb cosψ2 Jb cosψ3 Jx + 3
2Jb + J0 0

−Jb sinψ1 −Jb sinψ2 −Jb sinψ3 0 Jz + 3
2Jb + J0


, (1.10)

C(t) =



c1 0 0 −2ΩJb sinψ1 −2ΩJb cosψ1

0 c2 0 −2ΩJb sinψ2 −2ΩJb cosψ2

0 0 c3 −2ΩJb sinψ3 −2ΩJb cosψ3

0 0 0 cx −3ΩJb

0 0 0 3ΩJb cy


(1.11)
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and

K(t) =



G1 + Ω2Jb 0 0 0 0
0 G2 + Ω2Jb 0 0 0
0 0 G3 + Ω2Jb 0 0

Ω2Jb cosψ1 Ω2Jb cosψ2 Ω2Jb cosψ3 Gx 0
−Ω2Jb sinψ1 −Ω2Jb sinψ2 −Ω2Jb sinψ3 0 Gz


. (1.12)

Where, G1, G2, G3 denotes the bending stiffness of each blade, Jb the inertia of the blades, J0

the mass of the blades, Gx and Gz the stiffness of the motion of the nacelle with Jx and Jz the
associated inertia. These matrices are periodic of period T = 2π

Ω , with Ω the rotational speed.
The mechanical parameters are identical to those used by [119] and listed in Table 1.2 for the
reference case (isotropic, i.e. rotor where the three blades are identical).

Figure 1.7 – Wind turbine model [119]

Blade moment of inertia about root Jb 4 × 106 kg m2

Nacelle/tower tilt moment of inertia Jx 8 × 106 kg m2

Nacelle/tower yaw moment of inertia Jz 6 × 106 kg m2

Blade stiffness Gb 8 × 107 Nm
Nacelle/tower tilt stiffness Gx 7 × 108 Nm
Nacelle/tower yaw stiffness Gz 4 × 108 Nm
Blade damping cb 1 × 106 kg m2 s−1

Nacelle/tower tilt damping cx 1 × 106 kg m2 s−1

Nacelle/tower yaw damping cz 8 × 105 kg m2 s−1

Blade mass mb 12 × 103 kg
Distance from tower top to hub Ls 4 m

Table 1.2 – Parameter of the academic model of wind turbine

With the presented model, it is also possible to define a wind turbine with different blade
stiffness. However, to define a rotor with different blade mass and inertia, the Lagrange equation
needs to be derived without the assumption that the mass and inertia of the blades are identical.

This model will be used for the development and validation of the OMA methods. However,
the developed OMA methods must also be tested on a more realistic model. Thus, a second
more complex and realistic model of a wind turbine is also considered in this thesis.
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Reference wind turbine: DTU 10MW

In the rest of the thesis, the OMA methods will be also tested on complex numerical models of
wind turbines, due to a non-access to real data. Because of confidentiality issues, the DTU 10MW
reference wind turbine is employed, whose model is freely available (included the OpenFAST
model) [32], with a detailed documentation of the structure [7] and the controller [65].

The DTU 10MW is a large wind turbine, with a size comparable to the wind turbines
installed in the latest or under construction wind farms. The main properties of the wind turbine
are given in Table 1.3, with two configurations, namely onshore and offshore on a jacket. The
onshore version is used in this thesis. Figure 1.8 illustrates the behavior of the turbine, through
some parameters defined with the controller, namely the rotational speed, the pitch angle and
the electric power. These results highlight the different regions of the control. The first region
is not displayed as the wind turbine is stopped below 4 m/s of wind speed. From 4 to 11 m/s,
the power and the rotational speed are increasing with a pitch angle of 0°, corresponding to the
region 2. Above 11 m/s, the power and the rotational speed are constant while the pitch angle
increases in a similar way to the wind speed to reduce the efficiency of the rotor, corresponding
to the region 3.

Maximum power 10 MW
Rotational speed 4 to 9.6 rpm
Rotor diameter 178.3 m
Hub height 119 m

Wind speed
minimal: 4m/s
rated: 11.4 m/s

maximal: 25 m/s

Table 1.3 – Characteristic values of the DTU 10MW wind turbine
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Figure 1.8 – Evolution of control parameters of the DTU 10MW wind turbine function of the
wind speed

1.4.6 Conclusion

First, the different physics involved in the modeling of a wind turbine has been described,
namely the wind modeling, the aerodynamic loads from the wind speed evolution, the modeling of
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the structure, and finally the control. In the rest of the thesis, two models of wind turbines will be
employed. The academic model is enough to understand the problem of OMA of wind turbines.
The model of the theoretical wind turbine DTU 10MW, used with the software OpenFAST [94],
allows a coupling of the various physics, with a modeling of the structure by modal decomposition
and the aerodynamics loads computed with the BEM method. This complex model will allow
to compute data close to what can bee seen on experimental measurements.

In the following, the modal analysis of wind turbine is introduced, and more precisely the
modal analysis of linear time periodic systems with the Floquet theory. The objective is to
understand the dynamical behavior of a wind turbine and LTP systems in general.

1.5 Modal analysis of linear time periodic systems

One of the objective of the thesis is to monitor the modal parameters of wind turbines, so
it is needed to know them. A wind turbine with a constant rotational speed Ω can be modeled
as a linear time periodic (LTP) system as it is commonly done in the automatic field, and the
Floquet theory is the theory that enables to extend modal analysis for this type of system.

First, the dynamic model and the space-state representation of the LTP system are pre-
sented. Then, the modal analysis of linear time invariant (LTI) systems is recalled. After that,
LTP systems and their specificities are introduced and illustrated with a simple model. Then,
the dynamical model of an LTP system is defined, to express the associated state-space repre-
sentation. Finally, the modal analysis of an LTP system is presented with the Floquet theory
and the Multi-Blade Coordinate transformation.

1.5.1 Dynamic model of an LTP system

The motion of a wind turbine with a constant rotational speed Ω can be expressed as an
LTP system,

M(t)ü(t) + C(t)u̇(t) + K(t)u(t) = v(t), (1.13)

where u(t) ∈ Rm represents the displacements of the structure at the DOF of the system, and
M(t + T ) = M(t), C(t + T ) = C(t), K(t + T ) = K(t) are respectively the mass, damping and
stiffness periodic matrices. T = 2π

Ω represents the rotational period. v(t) represents the load on
the system. In the following, the mechanical system is expressed in a state-space form, from the
definition of the state vector x(t) ∈ Rn where n = 2m. For the next sections, the observation
y(t) ∈ Rr is also introduced.

x(t) =
[
u(t)
u̇(t)

]
and y(t) = Caü(t) + Cvu̇(t) + Cdu(t), (1.14)

where Ca, Cv and Cd are selection matrices. A noise w(t) can be added to the observation. w(t)
is assumed to be a Gaussian white noise. This leads to the following state-space expression:ẋ(t) = Ac(t)x(t) +Bc(t)v(t)

y(t) = C(t)x(t) +D(t)v(t) + w(t)
, (1.15)
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with

Ac(t) =
[

0 I

−M(t)−1K(t) −M(t)−1C(t)

]
,

C(t) =
[
Cd − CaM(t)−1K(t) Cv − CaM(t)−1C(t)

]
,

Bc(t) =
[

0
−M(t)−1

]
and D(t) = CaM−1(t).

All matrices are periodic of period T , with Ac(t) ∈ Rn×n, C(t) ∈ Rr×n, Bc(t) ∈ Rn×m and
D(t) ∈ Rr×m.

1.5.2 Recall: modal analysis of an LTI system

Before describing the modal analysis of an LTP system, let us remind the modal analysis
of an LTI system (like a stopped wind turbine). The dynamical behaviour of an LTI system is
described by the homogeneous equation such that

ẋh(t) = Axh(t), (1.16)

where xh(t) ∈ Rn the state vector and A ∈ Rn×n the state matrix. From this equation, the
solution is

xh(t) = exp (At)x(t0), (1.17)

where x(t0) is the initial condition. Assuming that A is diagonalizable, an eigenvalue decompo-
sition can be performed and the state vector can be expressed as

xh(t) = Ψ exp ([µ]t) Ψ−1x(t0), (1.18)

where Ψ ∈ Rn×n gather the n eigenvectors and [µ] a diagonal matrix with the associated
eigenvalues. From this, it is possible to express the state vector as a sum of n eigenmodes
composed of a spatial component, the eigenvector, and a time component, the eigenvalue.

xh(t) =
n∑

i=1
ψi exp(µit)qi(t0), (1.19)

with ψi the i–th eigenvector (the i–th column of Ψ) and µi the i–th eigenvalue defining the i–th
eigenmode. qi(t0) = ψ′

ix(t0) with ψ′
i the i–th row of Ψ−1 defines the initial conditions for each

eigenmode.
The modal analysis of an LTI system has been introduced, now the modal analysis of an

LTP system will be defined.

1.5.3 Definition and presentation of a simple LTP system

An LTP system is a system with time periodic coefficients. The simplest LTP system ex-
hibiting an oscillatory behaviour is perhaps the well-known Mathieu oscillator, which is a one
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DOF mass-spring system, with a periodic stiffness,

mÿ(t) + cẏ(t) + (k0 + k1 cos (ωAt)) y(t) = v(t). (1.20)

The stiffness of the system is periodic of period 2π
ωA

. In this section, the parameters are those
used in [111], with m = 1, k0 = 1, k1 = 1, c = 0.04 and ωA = 0.8.

To study the dynamic of an LTP system, a frequency spectrum analysis of the Mathieu
oscillator can be performed. In Figure 1.9a, the PSD of the free decay of the system is represented.
Six peaks are observable in the PSD and marked with dashed lines. However, the system is
composed of one DOF, so one should expect only one peak, to obtain a spectrum similar to
what can be obtained with an LTI system. After analyzing the frequency peaks, it can be
observed that all the peaks correspond to a modulation of the principal frequency. Indeed, the
peak with the highest amplitude is observed at f=0.16 Hz. The other observed peaks correspond
to f + hωA

2π , where h is the modulation displayed in Figure 1.9a.
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Figure 1.9 – Power spectral density (PSD) of the acceleration of the Mathieu oscillator for two
different simulations with ωA = 0.8

Then, another specificity of LTP systems is the modulation of the inputs. When the dy-
namic loading of the system (v(t) in Equation (1.20)) is a pure harmonic excitation like v(t) =
A cos(2πft), the response of the system is composed of modulated harmonics. For LTP systems,
the input frequency is modulated by the frequency of the system: f + kωA

2π (in the case of the
Mathieu oscillator), where k is an integer. In Figure 1.9b, the PSD of the Mathieu oscillator
obtained with an excitation frequency of 0.2 Hz is represented, with ωA

2π = fA = 0.127 Hz. More
peaks are present in this PSD with a harmonic excitation (Figure 1.9b) compared to the PSD
of the free decay (Figure 1.9a). Compared to the decay test, a total of 6 new peaks can be found
on the PSD, corresponding to the modulations 0, 1, -3, -2, 2, and -1 at the respective frequencies
0.2 (the input frequency), 0.33, 0.18, 0.05, 0.45 and 0.07 Hz. The second most important peak
is around 0.33 Hz.

Finally, as the system depends on its period ωA, the dynamic of the system vary regarding the
rotational speed. This evolution is often displayed with a Campbell diagram, which represents
the evolution of the natural frequencies with the rotational speed. As an example, Figure 1.10
shows the evolution of the frequency and damping of a peak (modulation h = 0) in the spectrum
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Figure 1.9a. One can see the clear variation in frequency and damping of such systems when the
rotational speed ωA varies. Those Campbell diagrams can be used to check if the frequencies
are not close to an eigenfrequency of other components of the system for some rotational speeds
and so to avoid any resonance. Also, they can be used for stability analysis, verifying that the
damping is positive.
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Figure 1.10 – Campbell diagram of the frequency and damping of the Mathieu oscillator

1.5.4 Floquet theory

The Floquet theory [49] is initially intended for the solving of linear differential equations
of periodic coefficients. From this theory, it is possible to express the eigenmodes of an LTP
system [116, 119, 118], with a spatial component and a time component.

The general solution of the differential equation (1.15) reads:

x(t) = Φ(t, t0)x(t0) +
∫ t

t0
Φ(t, τ)Bc(τ)v(τ)dτ, (1.21)

with Φ(t, t0) the fundamental matrix solution of the homogeneous problem. Looking first at the
homogeneous part of the differential equation:

ẋh(t) = Ac(t)xh(t) (1.22)

the fundamental matrix Φ(t, t0) is the solution of this equation such that:

xh(t) = Φ(t, t0)x(t0). (1.23)

To simplify Equation (1.23), the fundamental matrix can be expressed as Φ(t) := Φ(t, t0) =
Φ(t)Φ(t0)−1, with Φ(t0) = I the identity matrix. Also the monodromy matrix Q is defined by
Q = Φ(T ), where

Φ(t+ T ) = Φ(t)Q. (1.24)

The eigenvalues of Q are called the characteristic multipliers (λi), with ψi the associated
eigenvectors. The characteristic exponents (µi) are defined as

λi = exp (µiT ) . (1.25)
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The characteristic multipliers can be decomposed as λi = ℜ(λi) + ℑ(λi) + ikΩ, with k an
undetermined integer. The fundamental matrix can be factorized into a matrix of n independent
periodic vectors p(t) collected into the matrix P (t)

Φ(t) = P (t) exp (Rt) , (1.26)

with R = 1
T log (Q). The matrix R can be diagonalized, using the characteristic exponents and

the eigenvectors of Q,
R = Ψ [µ] Ψ−1. (1.27)

So the matrix Φ(t) can be expressed with the characteristic exponents

Φ(t) = P (t)Ψ exp ([µ] t) Ψ−1. (1.28)

Finally using Equation (1.28) and Equation (1.23), the state vector is expressed as a sum of n
Floquet modes

xh(t) =
n∑

j=1
Xj(t) exp (µjt) qj(t0) (1.29)

with qj(t0) = ψ′
jx(t0), ψ′

j the j–th row of the matrix Ψ−1 and Xj(t) = P (t)ψj the T-periodic
mode shape of the j–th Floquet mode.

The periodic mode shape can be expanded in a Fourier series,

Xj(t) =
∞∑

l=−∞
Xj,l exp (ilΩt) (1.30)

Introduced in Equation 1.29, it leads to a new definition of the state

xh(t) =
n∑

j=1

∞∑
l=−∞

Xj,l exp ((µj + ilΩ)t) qj(t0). (1.31)

By comparing this definition to the definition of the state vector of an LTI system in Equation
(1.19), it is clear that an LTP system can be seen as an LTI system with an infinite number of
eigenmodes.

Practical computation of the Floquet modes Based on [118], a method to compute the
Floquet modes of a system is proposed (when the matrix Ac(t) is known):

1. Determination of the fundamental matrix Φ(t). Solve the differential Equation
(1.22) for n different initial conditions. These initial conditions are a vector x(0) full of
zero except at index i where x(0)(i) = 1. Knowing that xh(t) = Φ(t)x(0) and that x(0)
is full of zero except at index i, it comes

x(t) = Φ(t)[i] (1.32)

with Φ[i] the i–th column of the fundamental matrix.

2. Computation of the Floquet multipliers using an eigenvalue decomposition of Q =
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Φ(T )
Q = Ψ [λi] Ψ−1 (1.33)

3. Computation of the Floquet exponents

µj = 1
T

log (λj) , with µj = −ξjωj + iωj

√
1 − ξ2

j . (1.34)

where ωj denotes the pulsation and ξj denotes the damping ratio.

4. Computation of the periodic mode shapes associated with each Floquet exponent
from Equation (1.29)

xj(t) = Xj(t) exp (µjt) qj(0) (1.35)

where Xj(t) is defined such as:

Xj(t) = Φ(t)ψj exp (−µjt) (1.36)

where ψj is the j–th eigenvector of Q associated with the j–th eigenvalue.

1.5.5 Coleman or Multi-Blade Coordinate (MBC) transformation

To study the eigenmodes of an LTP system, according to the Floquet theory, it is possible to
use a change of variables to express the LTP system as a time invariant system, which allows to
use the theory of invariant systems. A common approach in the rotor dynamics community is to
use the Multi-Blade-Coordinate transformation also called Coleman transformation, developed
for rotors with a minimum of 3 equally spaced identical blades [27, 13, 119, 123]. This method
enables an explicit definition of the change of variable. The difference between the Floquet
method and the MBC transformation is detailed in Section 1.5.7. Here, the method developed
in [13] is presented.

Let the LTP system be defined by the homogeneous equation:

ẋh(t) = A(t)xh(t), with A(t+ T ) = A(t), (1.37)

T = 2π
Ω the rotation period of the rotor, xh(t) the homogeneous part of the state vector, with

xh(t) =
[
u(t)
u̇(t)

]
. The displacement (u(t)) is defined with Nb DOF per blade and Ns DOF for the

tower and the nacelle (defined as the fixed frame). Thus, for a 3-bladed rotor, the displacement
vector follows this form

u(t) =
[
(uF )T u1

1 u1
2 u1

3 . . . uNb
1 uNb

2 uNb
3

]T
, (1.38)

where uF regroups the DOF of the fixed frame and uj
k denotes the j–th DOF of the k–th blade.

The Coleman transformation is defined by the following equation:

u(t) = T1(t)uNR(t), (1.39)
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with uNR(t) the new displacement vector,

uNR(t) =
[
(uF )T q1

0 q1
c q1

s . . . qNb
0 qNb

c qNb
s

]
, (1.40)

T1(t) =


I

t̃(t)
. . .

t̃(t)

 ∈ R(Ns+3Nb)×(Ns+3Nb) (1.41)

and

t̃(t) =


1 cosψ1(t) sinψ1(t)
1 cosψ2(t) sinψ2(t)
1 cosψ3(t) sinψ3(t)

 , (1.42)

where ψk(t) = Ωt+ 2π
3 (k− 1) denotes the azimuth angle of the k–th blade at the time instant t.

A physical signification can be given to these new coordinates, [62, 34]. The displacement of
the the j–th DOF of the k–th blade is defined as

uj
k(t) = qj

0 + qj
c cos(ψk(t)) + qj

s sin(ψk(t)). (1.43)

If uj(t) denotes a DOF of flapwise bending, then qj
0 denotes the collective flap, qj

c denotes the
tilt motion and qj

s denotes the yaw motion. The tilt and yaw motions are rotation of the rotor
related to the tilt angle and the yaw angle (see Section 1.2). If uj(t) denotes a DOF of edgewise
bending, then qj

0 denotes the collective edge, qj
c denotes the horizontal motion and qj

s denotes
the vertical motion of the rotor.

The objective is to express a change of variables for the state vector. The derivative of the
displacement is

u̇(t) = d

dt

(
T1(t)uNR(t)

)
(1.44)

= Ṫ1(t)uNR(t) + T1(t)u̇NR(t). (1.45)

So the change of variables of the state vector is defined by

x(t) = B(t)zB(t) (1.46)

with zB the new state vector

zB(t) =
[
uNR(t)
u̇NR(t)

]
(1.47)

and

B(t) =
[
T1(t) 0
Ṫ1(t) T1(t)

]
. (1.48)

Finally, the homogeneous equation of the system depending of the new coordinates can be
expressed

˙zB(t) = ABzB(t), with AB = B(t)−1
(
A(t)B(t) − Ḃ(t)

)
. (1.49)
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The AB matrix is time invariant only if the rotor is isotropic. Therefore, the transformation is
limited to an isotropic rotor. This limitation could be observed with measures on operational
wind turbines, which will be discussed in the following sections.

Once the change of variables is done, the eigenvalue decomposition can be performed. Thus,
using the results of the modal analysis of invariant systems

zB(t) = VB exp (ΛBt)V −1
B zB(0), (1.50)

with VB the eigenvectors of AB and ΛB the diagonal matrix gathering the eigenvalues of AB.
To recover the periodic mode shapes of MBC modes, the inverse transform on the eigenvectors
must be performed

Xj(t) = B(t)Vj , (1.51)

with Vj the j–th MBC eigenvector (also the j–th row of VB). Finally, from the system matrices
at one time instant t, it is possible to compute the MBC modes.

1.5.6 Example: MBC modes for rotor edge bending dynamics

Among all the MBC modes, a rotating wind turbine is characterized by three MBC modes
of the first edge-bending, namely the backward, forward and collective, with their corresponding
mode shapes in Figure 1.11. The specificity of backward and forward modes is that the corre-
sponding frequency seen on the tower is not the same as the one seen on the rotor. The cause of
this change of frequency will be presented by expressing the reaction forces due to the bending
of the blades in the non-rotating frame using the disposition displayed in Figure 1.12.
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Figure 1.11 – Mode shapes of the first edge bending modes, after the inverse MBC transforma-
tion, := undeformed wind turbine, := mode shape

Backward edge The Backward edge can be characterized by the phase shift between the
bending of the blades, coming from the inverse transform of the MBC eigenvectors (Equation
(1.51) and explained in [63]). With this mode, the bending of the second blade is late compared
to the bending of the first, with a phase shift of 2π

3 . Then, the bending of the third blade is also
late compared to the second, with also a phase shift of 2π

3 , which is equivalent to a phase shift
4π
3 or −2π

3 with the bending of the first blade. Considering those phase shifts, the reaction force
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Ωt

−→z1
−→y1

−→x1

Y⃗

X⃗

Z⃗

−→x2

−→x3

Figure 1.12 – Scheme of different bases in a wind turbine geometry

in the non-rotating frame for an isotropic rotor is

F⃗bck r = Abck cos(ωbckt)x⃗1 +Abck cos(ωbckt+ 2π
3 )x⃗2 +Abck cos(ωbckt− 2π

3 )x⃗3, (1.52)

where Abck is the amplitude of the reaction for each blades and ωbck the frequency of the backward
edge on the rotor. From this equation, the reaction force in the non-rotating frame is

F⃗bck r = Abck



cos(ωbckt) cos(Ωt) + cos(ωbckt+ 2π
3 ) cos(Ωt+ 2π

3 )

+ cos(ωbckt− 2π
3 ) cos(Ωt− 2π

3 )

(
Y⃗
)

cos(ωbckt) sin(Ωt) + cos(ωbckt+ 2π
3 ) sin(Ωt+ 2π

3 )

+ cos(ωbckt− 2π
3 ) sin(Ωt− 2π

3 )

(
Z⃗
) . (1.53)

Using trigonometric formulas, it can be simplified as

F⃗bck r = Abck


3
2 cos((ωbck − Ω)t)

(
Y⃗
)

− 3
2 sin((ωbck − Ω)t)

(
Z⃗
) . (1.54)

Consequently the frequency of the reaction force is ωbck−Ω
2π .

Studying the reaction moment, it can be concluded that it is null, as cos(x) + cos(x+ 2π
3 ) +

cos(x+ −2π
3 ) = 0, ∀ x ∈ R. Thus, the frequency of the reaction of the bending corresponding to

the backward edge in the tower is ωbck−Ω
2π , which corresponds to what is obtained with the MBC

transformation [63].

Forward edge Analogously to the Backward edge, the bendings of the blade of the Forward
edge are out of phase. Where the bending of the second blade is in advance of the bending of the
first, with a phase shift of −2π

3 . And the bending of the third blade is in advance of the bending
of the second, the phase shift to the bending of the first blade is 2π

3 . Thus, the reaction force
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corresponding to the blades bending in the rotational frame is

F⃗fw r = Afw cos(ωfwt)x⃗1 +Afw cos(ωfwt− 2π
3 )x⃗2 +Afw cos(ωfwt+ 2π

3 )x⃗3, (1.55)

where Afw is the amplitude of the reaction for each blades and ωbck the frequency of the forward
edge on the rotor. For the forward edge, the phase shift are the opposite of the backward edge.
From this equation, the reaction force in the non-rotating frame is

F⃗fw r = Afw



cos(ωfwt) cos(Ωt) + cos(ωfwt− 2π
3 ) cos(Ωt+ 2π

3 )

+ cos(ωfwt+ 2π
3 ) cos(Ωt− 2π

3 )

(
Y⃗
)

cos(ωfwt) sin(Ωt) + cos(ωfwt− 2π
3 ) sin(Ωt+ 2π

3 )

+ cos(ωfwt+ 2π
3 ) sin(Ωt− 2π

3 )

(
Z⃗
) . (1.56)

Using trigonometric formulas, it can be simplified as

F⃗fw r = Afw


3
2 cos((ωfw + Ω)t)

(
Y⃗
)

3
2 sin((ωfw + Ω)t)

(
Z⃗
) . (1.57)

Consequently the frequency of the reaction force is ωfw+Ω
2π .

Once again, studying the reaction moment, it can be concluded that it is null. Thus, the
frequency of the reaction of the bending corresponding to the forward edge in the tower is ωfw+Ω

2π ,
which again, corresponds to what is obtained with the MBC transformation [63].

Collective edge Finally, the Collective edge is the mode where the blades are bending in
phase, so, there is no phase shift between the bendings. Consequently, the reaction force of the
bending of the blade corresponding to the collective edge is

F⃗col r = Acol cos(ωcolt)x⃗1 +Acol cos(ωcolt)x⃗2 +Acol cos(ωcolt)x⃗3, (1.58)

where Acol is the amplitude of the reaction for each blades and ωcol the frequency of the collective
edge on the rotor. Expressed in the non-rotating frame

F⃗colr = Acol


cos(ωcolt) cos(Ωt) + cos(ωcolt) cos(Ωt+ 2π

3 ) + cos(ωcolt) cos(Ωt− 2π
3 )

(
Y⃗
)

cos(ωcolt) sin(Ωt) + cos(ωcolt) sin(Ωt+ 2π
3 ) + cos(ωcolt) sin(Ωt− 2π

3 )
(
Z⃗
) ,
(1.59)

leading to

F⃗colr = Acol


0
(
Y⃗
)

0
(
Z⃗
) (1.60)

Thus, the reaction force is null.
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By expressing the reaction moment in the rotating and then in the non-rotating frame

M⃗col r = Mcol cos(ωcolt)y⃗1 +Mcol cos(ωcolt)y⃗2 +Mcol cos(ωcolt)y⃗3 (1.61)

= 3Mcol cos(ωcolt)X⃗. (1.62)

So the reaction moment of the blades for the collective edge has the same frequency on the tower
as on the rotor, which again, corresponds to what is obtained with the MBC transformation.

Finally, with the simple analysis of the reactions of the edge bending modes of the rotor, it
has been demonstrated why the frequency are not the same looking at the tower or the rotor.
Also, it has been shown why the three edge bending modes does not have the same change of
frequency between the tower and the rotor.

1.5.7 Equivalence MBC-Floquet

In [119], it has been proven that the modes computed with the Floquet theory are identical
to the modes computed with the MBC transform for a system with an isotropic rotor. In this
example, the academic model of wind turbine is used to show again the equivalence between the
two approaches.

One way to compare the Floquet modes and the MBC modes is to compare the eigenvalues
and the associated periodic mode shapes obtained with each method. As the imaginary part of
the eigenvalue is undetermined (Equation (1.25)), the integer k should be identical between the
two methods. But, if the eigenvalues are changed, then the periodic mode shapes must also be
changed. Using Equation (1.36), the new periodic mode shape due to the addition of kΩ on the
imaginary part of the j–th eigenvalue is

X̃j(t) = Xj(t) exp (−ikΩt) , (1.63)

with X̃j(t) the new periodic mode shape associated with the new eigenvalue λ̃j = λj + ikΩ.
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(b) Fourth Floquet mode

Figure 1.13 – Comparison of normalized Fourier transforms of periodic mode shapes computed
with different methods, academic model of wind turbine

To compare two periodic mode shapes, a way is to compare their normalized Fourier trans-
forms. Figure 1.13 the normalized Fourier transforms of two Floquet modes of the academic
model of wind turbine presented previously, computed with the MBC and the Floquet method.

54



Wind turbine

For all the Floquet modes, the mean gap between the Fourier transforms is lower than 10−5,
which might be the consequence of the integration error during the computation of Φ(t). Com-
paring the eigenvalues, the relative gap has an order of magnitude lower than 10−8.

Then the same study is performed but with a model where the stiffness of one blade is reduced
by 1%, the mean gap between the Fourier transforms is around 10−4 for some Floquet modes,
and the relative gap between the eigenvalues is also around 10−4 for some Floquet modes. So,
there is an increase in the gap between the periodic modes shapes and the eigenvalues computed
with the Floquet method or the MBC method.

From this example, it can be concluded that for an isotropic rotor, the Floquet modes
obtained from the Floquet theory or by the MBC transformation are the same. Consequently,
for a system with an isotropic rotor, the Floquet modes can be computed using the MBC
transformation, which is easier compare to computing them using the Floquet theory, as it is
not needed to perform a time integration with the MBC transformation. However, for a system
with an anisotropic rotor, the only choice is to use the Floquet theory.

1.5.8 Floquet modes computation with OpenFAST

For a model of a wind turbine on OpenFAST, it is possible to compute the Floquet modes of
the structure. To begin, let us start with the MBC approach, as it was done in [13] on a model
of the NREL 5MW wind turbine. The first step is to obtain the matrices A(t) and C(t) (Defined
in Equation (1.15)). In OpenFAST it is possible to linearize the equations around an operating
point, with the theory described in [75]. To perform the linearization, the wind turbine will be
simulated under a constant wind speed (so with a constant rotational speed), then after the
stabilization of the wind turbine (around 10 to 25 periods/rotations), the linearization can be
computed, which gives the matrices A(t) and C(t) at the time step of linearization. Then from
the matrix A(t) the MBC/Floquet modes can be estimated using the methods defined in Section
1.5.5. To have the periodic mode shapes defined as

Yj(t) = C(t)Xj = C(t)B(t)Vj , (1.64)

it is needed to compute the observation matrix (C(t)) along a period, so along a rotor rotation.
Also to have a better estimation of the eigenmodes the mean matrix AB can be computed using
several linearizations, for example, the ones used for the computation of C(t).

As said before, if the rotor is anisotropic the MBC method can not be used to compute the
Floquet modes of a wind turbine. To compute the Floquet modes, the fundamental matrix is
needed, so, as described in Section 1.5.4 it is needed to solve the differential Equation (1.22) for
different initial conditions. To do so, still using the OpenFAST linearization, the matrix A(t) has
to be computed along a discretized period. Then, with those matrices, a time integration method
such as Euler or Runge-Kutta can be used. Then, the method described in Section 1.5.4 can
be used. Finally, the periodic mode shape associated with the Floquet modes can be computed
using the matrices C(t) obtained conjointly with A(t). Another method has been defined in
[113], where the exponential integrator is used.
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1.6 Conclusion

In this Chapter, first, wind turbine basics have been described, and the common faults of a
wind turbine rotor have been presented. Then, the two wind turbine model used in the thesis
have been defined. To finish, the modal analysis of the wind turbine has been defined, with
the different methods available, one using the Floquet theory and the other using the MBC
transformation. The modal analysis of wind turbines modeled as linear time periodic systems
gives us an overview of the specificities of such systems and the difference in the dynamical
behavior compared to the linear time invariant systems.

The next part of the state of the art is dedicated to operational modal analysis of wind
turbines, which is the main subject of this thesis. First, the operational modal analysis for in-
variant systems (civil engineering structures for example) is introduced, with a description of
the stochastic subspace identification method and the presentation of the associated uncertainty
computation method. Secondly, operational modal analysis dedicated to wind turbines is pre-
sented, with the main existing methods. Then, a damage detection and localization method for
time invariant system is defined. Finally, fault detection for wind turbine rotors is introduced,
with an overview of the existing method to detect those faults.
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Chapter 2

OPERATIONAL MODAL ANALYSIS AND

FAULT DETECTION

Abstract
In this second part of the state of the art, the Operational Modal Analysis methods used for invariant
systems (civil engineering structures for example) are presented first, to understand how the modal
parameters are retrieved from the signal. The Stochastic Subspace Identification (SSI) covariance-driven
method used in this thesis is especially detailed, with the associated uncertainty quantification of identified
parameters. It is shown that the assumptions of those methods cannot be respected when they are used for
the identification of wind turbines. Then, a review of the Operational Modal Analysis methods designed
for operating wind turbines points out that they all have drawbacks and cannot be used for real structures.
Consequently, it will be required to define a new approach. To finish, as one of the objectives of the thesis
is to perform damage detection, a state-of-the-art damage detection method based on identification results
is presented, namely the stochastic subspace-based damage detection and localization. Also, a brief review
of the damage detection method of wind turbine rotors is presented, showing that many methods have
been developed for pitch and mass imbalance detection, but only a few methods exist for the detection
of changes in blade stiffness.

2.1 Introduction

The second part of the state of the art is dedicated to operational modal analysis of wind
turbines, which is the main focus of this thesis. First, the operational modal analysis for in-
variant systems (civil engineering structures for example) is introduced, with a description of
the stochastic subspace identification method and the presentation of the associated uncertainty
computation method. Secondly, operational modal analysis dedicated to wind turbines and ro-
tating structures is presented, with a brief review of the existing methods. Then, a damage
detection and localization method for time invariant system using the operational modal analy-
sis framework is defined. Finally, fault detection for wind turbine rotors is introduced, with an
overview of the faults that can occur and the existing method to detect those faults.

2.2 Operational Modal Analysis (OMA) for LTI systems

In the previous Chapter, the modal analysis of the linear time invariant and time periodic
systems has been presented. The modal analysis gives us information on the dynamic of the
studied system, but how can it be possible to retrieve that information on a real structure?
To do so, the Experimental Modal Analysis (EMA) [115, 47] is wildly employed since decades
and used in many fields such as on an aircraft [15] or on a wind turbine blade [35]. With
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those methods, the modal parameters of the structure are estimated using the loads and a
few measurements of the structure. Where the measurements of the structure dynamics can be
accelerations, velocities, displacements, or strains for the civil engineering structures.

However, those methods require to apply and measure the loads/inputs and it is not al-
ways possible to apply/measure them especially on operating structures. So, Operational Modal
Analysis (OMA) method, also called output-only modal analysis, aims to estimate the modal
parameters of a system based on the outputs of a structure under ambient excitation sources
such as wind, traffic, and waves.

There are two classes of OMA methods, namely methods in the time domain and methods
in the frequency domain. The reader can refer to [17] for an introduction to those methods
and to [105] for a complete review. For the frequency domain methods, the simplest method
is the peak picking on the Fourier transform, where the eigenmodes of the studied system are
identified with the peaks of the Fourier transform of the outputs, with the frequency of the
eigenmodes corresponding to the frequency of the peaks and the mode shape is the amplitude
of the Fourier transform. The method has been extended to multiple measurements with the
Frequency Domain Decomposition (FDD) [18], using the Singular Value Decomposition of the
Power Spectral Density. Other frequency domain methods retrieve the system modal parameters
based on a fitting of a common denominator model to the Frequency Response Function (FRF),
such that the Least-Squares Complex Frequency (LSCF) domain method [60] or the Polymax
method [100]. In the time domain identification methods, there are many subspace methods
that originate from the system identification field in automatic control. Such as the Eigensystem
Realization Algorithm (ERA) [76], converted into the Natural Excitation Technique (NExT)
method [68] and the Stochastic Subspace Identification (SSI) [135, 99, 134] that identifies the
studied system as a state-space from the outputs. Two main versions of the SSI method exist,
the SSI data-driven based and the SSI covariance-driven (often name SSI-cov). Both versions
are based on the same theory, but they differ in the estimation of the system matrices. The SSI
data-driven uses the definition of the Kalman filter state to retrieve the system matrices from
the outputs whereas the SSI-covariance driven uses the correlations.

The OMA methods has been used in many fields, especially in civil engineering. Indeed, since
civil engineering structures are large, it is not possible to measure the external loading, making
OMA methods particularly relevant. Many applications of subspace methods applied to bridges
[109, 39, 17] or pylons [99, 108] can be found in the literature. Moreover, OMA is also used in
industry, as with the software ARTeMIS Modal of the company Structural Vibration solution,
to carry out OMA with the FDD method and the SSI method.

Finally, OMA methods rely on several assumptions regarding the statistical properties of the
excitation and the properties of the structure being identified. These assumptions will be detailed
in the next paragraph. Then, the subspace method called Stochastic Subspace identification
(SSI) used for this thesis will be presented. So, a method that estimated the uncertainty of the
identified modes from the empirical uncertainties of the correlations is introduced.

58



Operational modal analysis and fault detection

2.2.1 Classical OMA assumptions

Since the loading is unknown, its form must be assumed. In the OMA formalism, the loading
is considered as a white noise of zero mean and uncorrelated. This assumption is necessary to
remove the impact of the load in the identification results (Equation (2.8)). However, for real
structures, the load is never a real white noise. For example, in a wind turbine the main load is
the wind. But as the spectra of the wind are almost flat, it can be approximated as a white noise
[138]. However, as a wind turbine rotor is rotating, the spectrum of a blade load is no more flat,
with peaks with frequencies related to the rotational speed [127]. But if a harmonic is in the
load spectra, it will be identified as a system eigenmode jointly with the system eigenmodes. To
deal with this problem, it exists many methods to remove harmonics in signal, with a method
defined for subspace method in [54]. Moreover, in [12], it is demonstrated that the estimation
of the modal parameters with a subspace method is consistent for the identification of a system
under non-stationary noise excitation.

Another assumption concerns the behavior of the system: indeed, it is considered as a linear
time invariant. This important assumption is used to retrieve the eigenmodes of the studied
system. However, an invariant system can be non-linear but it can be supposed as linear if it
behaves around an operating point. So, for an operating wind turbine modeled as a time periodic
system, the identified eigenmodes will not correspond to the Floquet modes. So, the method can
not retrieve these modal parameters from the outputs.

2.2.2 Stochastic Subspace Identification (SSI)

In this thesis, the SSI covariance-driven is used, with a Hankel matrix defined as a product
of the matrix gathering the outputs (see Equation (2.14)). This particular method is used as
the eigenmodes are estimates using only the outputs correlations. Also, this method can be used
conjointly with related methods, such that an efficient computation method [41], an uncertainty
computation [40], and a damage detection method [11].

Let an LTI system be defined by the quadruplet of matrices (Ac, Bc, C, D), evolving under
a stationary Gaussian white noise excitation v(t)ẋ(t) = Acx(t) +Bcv(t)

y(t) = Cx(t) +Dv(t)
. (2.1)

With x(t) ∈ Rn and y(t) ∈ Rr. The solution of the system is

x(t) = exp (Act)x0 +
∫ t

0
exp (Ac(t− τ))Bcv(τ)dτ. (2.2)

Subspace methods exploit only outputs, so it is needed to express the system as a discrete time
state-space. Considering the time step of the output ∆t with the discrete time state vector xk

(with k = t
∆t), the solution of the system at a discrete time instant k is

xk = exp (Ack∆t)x0 +
k∑

i=1

∫ i∆t

(i−1)∆t
exp (Ac(k∆t− τ)))Bdτvi−1, (2.3)
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considering the zero-order hold hypothesis on the load. Then, it is possible to express the state
vector at the index k + 1 as a function of xk

xk+1 = exp (Ac∆t)xk +
∫ (k+1)∆t

k∆t
exp (Ac((k + 1)∆t− τ))Bcdτvk. (2.4)

Finally, the full discrete state-space can be expressedxk+1 = Axk +Bvk

yk = Cxk +Dvk

, (2.5)

with A = exp(Ac∆t) and B =
∫∆t

0 exp (Ac(∆t− τ))Bcdτ=(A− I)A−1
c Bc.

The SSI [135] aims to identify the eigenmodes of the system through the sample correlations.
The first step is to construct a Hankel matrix filled by correlations. A correlation matrix can be
expressed as a function of the system matrices, with

Ri = E
(
yk+iy

T
k

)
(2.6)

= lim
N→∞

1
N

N−1∑
k=0

(
yk+iy

T
k

)
(2.7)

= lim
N→∞

1
N

N−1∑
k=0

(
(Cxk+i +Dvk+i) yT

k

)
, (2.8)

where vk is independent of the past and is a Gaussian process of zero mean, consequently
lim

N→∞
1
N

∑N−1
k=0

(
Dvk+iy

T
k

)
= 0, for i > 0. Let us express xk+i function of xk+1

Ri = lim
N→∞

1
N

N−1∑
k=0

CAi−1xk+1 +
i−1∑
j=1

Aj−1Bvk+i−j

 yT
k

 . (2.9)

Analogously as before

Ri = lim
N→∞

1
N

N−1∑
k=0

((
CAi−1xk+1

)
yT

k

)
(2.10)

= CAi−1G, (2.11)

with

G = lim
N→∞

1
N

N−1∑
k=0

(
xk+1y

T
k

)
(2.12)

= AΣCT + S. (2.13)

Where the covariance matrix of the state vector Σ = E
(
xkx

T
k

)
= AΣAT + Q is defined by a

Lyapunov equation and S = E
(
Bvkv

T
k D

T
)

and Q = E
(
Bvkv

T
k B

T
)

function of the covariance
matrix of the input.

From the previous equations, it is clear that the correlations of the outputs depend on the
system matrices A and C, which contain the modal parameters of the studied system. So, the
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objective of the method is to estimate the matrices A and C from the Hankel matrix of the
correlations. The Hankel matrix can be constructed directly from matrices gathering the data

Ĥ = Y+ (Y−)T . (2.14)

Where Y+ ∈ R(p+1)r×N and Y− ∈ Rqr×N such that

Y+ = 1√
N


yq+1 yq+2 . . . yq+N

yq+2 yq+3 . . . yq+N+1
...

... . . . ...
yq+p+1 yq+p+2 . . . yq+p+N

 and Y− = 1√
N


yq yq+1 . . . yq+N−1

yq−1 yq . . . yq+N−2
...

... . . . ...
y1 y2 . . . yN

 .
(2.15)

p and q are the size parameters of the Hankel matrix with often p + 1 = q to have a square
matrix. Those parameters have to be set regarding the model order of the identified system, or
the number of eigenmodes that can be identified in the studied frequency range. Ĥ can be seen
as the Hankel matrix filled with the estimate of correlations R̂i,

Ĥ =


R̂1 R̂2 . . . R̂q

R̂2 R̂3 . . . R̂q+1
...

... . . . ...
R̂p+1 R̂p+2 . . . R̂p+q

 . (2.16)

The Hankel matrix can be factorized such that Ĥ = OpCq, where Op denotes the observability
matrix and Cq the controllability matrix, with Ĝ a consistent estimate of G.

Op =


C

CA
...

CAp

 and Cq =
[
Ĝ AĜ . . . Aq−1Ĝ

]
. (2.17)

In the LTI case, Op is full column rank and Cq is full row rank. The observability matrix is
obtained from a thin singular value decomposition of Ĥ and its truncation at the correct model
order n

Ĥ = USV T =
[
U1 U2

] [S1 0
0 S2

] [
V T

1
V T

2

]
, (2.18)

Op = U1S
1/2
1 , (2.19)

where S1 contains the first n singular values and U1 the n first columns of U .

Then, the observation matrix C is identified as the first block row of Op and the state
transition matrix A is identified in a least-squares sense

A = O†
p (1:p)Op (2:p+1), (2.20)

with Op (1:p) the first p blocks rows of Op, Op (2:p+1) the p last blocks rows and (·)† denotes
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the Moore-Penrose pseudo inverse. Then, the eigenmodes can be computed with the eigenvalue
decomposition of A

A = Ψ [λi] Ψ−1. (2.21)

The continuous time eigenvalues µi are found from the discrete time eigenvalues λi by

µi = log(λi)
∆t . (2.22)

Then the frequency (fi in Hz) and the damping (ξi in %) of the associated mode are defined
such that

fi = |µi|
2π and ξi = −100.ℜ (µi)

|µi|
. (2.23)

The observed mode shape matrix is found from

Φ = CΨ. (2.24)

Finally, from the outputs, it is possible to identify the eigenmodes of the underlying system
that can be identified with the selected sensors. There is also a variant with an efficient com-
putation [41] based on the QR decomposition of the observability matrix, which is used for the
rest of the thesis. Now let us present some applications on real structures and the uncertainty
quantification of the identified modes.

One of the challenges of the method is to asses the system order n, as it is not necessarily
known, especially for real structures where the system order depends on the number of DOF
which is infinite theoretically. In the method, the system order corresponds to the number of
eigenmodes that the signal contains, but some identified eigenmodes can correspond to the
noise/inputs. The eigenmodes of the noise can be detected by their damping value that can be
negative (a stable system has all its eigenvalues with positive damping), also those eigenmodes
depend on the value of the system order.
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Figure 2.1 – Example of stabilization diagram, from an identification of a 3 DOF mass-spring
model- ( ): theoretical frequencies - (•): identified frequencies

To determine the order of the system, a stabilization diagram is used [99], where the eigen-
modes are computed for different model orders. An example of a stabilization diagram is given
in Figure 2.1, obtained from the identification of a simple 3 DOF mass-spring model, conjointly
with the PSD of one DOF. One can see that the peaks of the PSD are corresponding to align-
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ments of frequencies of identified modes. So, with the stabilization diagram, the eigenmodes of
the system are detected with the alignments. Thus, at n = 3 (the theoretical model order) the
three identified eigenmodes are corresponding to the system eigenmodes. But as the model order
increases, other eigenmodes are identified, see 0.18 Hz at order 6 and 0.7 at order 7 for example.
They are corresponding to the noise. But they can be detected as they are not stable as the
model order increases, in contrast to the system eigenmodes. Also, the eigenmodes corresponding
to the noise can be detected and removed from the stabilization diagram using the associated
uncertainties, as they are much more uncertain than the eigenmodes of the structure.

2.2.3 Uncertainty quantification

The identification of structural modes with OMA is based on a stochastic modeling, so
identified modes are uncertain. Consequently, it can be an added value to estimate the associated
uncertainties of an identified mode during the monitoring of the structure.

The objective of the method is to compute the uncertainties of frequency, damping, and mode
shape of the modes identified from the collected data with a subspace method. The uncertainty
computation method is introduced in [108] using the first-order delta method, with an application
to a real structure in [107]. This method can be used with input-output and output-only subspace
methods [83, 84] and has been applied to different real structures [39, 108]. For all the applications
during the present thesis, an efficient version presented in [40] is used. In this section, some key
points of the method are presented.

Consider X and Y two matrices, with X = f(Y ). The distribution of the estimation Y (Ŷ ),
resp. of X (X̂), follow a Gaussian process. Let us consider that X̂ is close enough to X such
that ∆X = X̂ −X expresses a small perturbation of X (similarly with Y ). Using the first-order
Taylor approximation, the definition of the perturbation ∆X is

vec(∆X) = JX,Y vec(∆Y ) + o(∆Y ). (2.25)

where vec(x) denotes the vectorization of the matrix x and JX,Y = ∂vec(X)
∂vec(Y ) is the sensitivity of

X in relation to a change in Y .
Now, let us express the covariance matrix of X̂ (ΣX)

ΣX = 1
n− 1

n∑
j=1

(
X̂j −X

) (
X̂j −X

)T
(2.26)

= 1
n− 1

n∑
j=1

vec (∆X)j vec (∆X)T
j . (2.27)

Then, using Equation (2.25)

ΣX = 1
n− 1

n∑
j=1

JX,Y vec (∆Y )j vec (∆Y )T
j J T

X,Y . (2.28)

Finally, the covariance matrix of X is expressed as

ΣX = JX,Y ΣY J T
X,Y , (2.29)
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where ΣY is the covariance matrix of Y . This formula can be retrieved using the delta method
[95]. With this idea illustrated in Figure 2.2, a perturbation on the correlations can be trans-
ported to the identified mode parameters.

JX,Y

f(Y )
Distribution of X̂
with ΣX

Distribution of Ŷ
with ΣY

X

X̂

Ŷ

Y

Figure 2.2 – Illustrative example of the uncertainty propagation, based on the original figure in
[53]

To compute the uncertainties of the identified parameters computed with the SSI-cov, the
covariance matrix of the Hankel matrix is needed. In [40], using the formula of the variance of
the sample mean, the estimation of the covariance matrix of the Hankel matrix of correlations
is defined as

Σ̂H = 1
nb(nb − 1)

nb∑
j=1

(
hj − h̄

) (
hj − h̄

)T
. (2.30)

where hj is the vectorized Hankel matrix computed with the j–th of nb block of data and h̄ the
vectorized mean Hankel matrix. The Hankel matrix is filled of estimations of correlations, so
from the central limit theorem, it can be described by a Gaussian process. So the covariance of
the Hankel matrix is the start of the uncertainty computation, from this and the sensitivity of
all the steps of the SSI, the covariance matrices of the identified modes can be computed,

ˆcov(fi) = Jfi,HΣ̂HJ T
fi,H ,

ˆcov(ξi) = Jξi,HΣ̂HJ T
ξi,H ,

ˆcov(ϕi) = Jϕi,HΣ̂HJ T
ϕi,H . (2.31)

The sensitivities of the modal parameters regarding the Hankel matrix are obtained based on
the mathematical operations performed in the SSI method (Equation (2.18) to Equation (2.24)).
With all the steps to compute those sensitivities detailed in the aforementioned papers.

Once the uncertainties are computed for all the identified eigenmodes, they can be used
to remove the eigenmodes of the noise in the stabilization diagram. In Figure 2.3, the stabi-
lization diagram obtained with an identification of a 3 DOF mass-spring model is once again
displayed, but this time the uncertainties of the identified eigenmodes are computed and only the
eigenmodes with a relative standard deviation below 2.5% are displayed. Then compared to the
stabilization diagram in Figure 2.1, only the alignments that are corresponding to the system
eigenmodes remain. So, with the estimated uncertainties, the stabilization diagram has been
"cleaned" of the noise eigenmodes. This example shows that the estimation of the uncertainties
can be a helpful tool for system identification.
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Figure 2.3 – Example of stabilization diagram, from an identification of a 3 DOF mass-spring
model, with the estimation of the uncertainties- ( ): theoretical frequencies - (•): identified
frequencies and related standard deviations (error bars)

After performing an identification, it can be useful to compare the identified modes with ref-
erences modes and quantify the uncertainty of this comparison. The Modal Assurance Criterion
(MAC) [98] is a metric between 0 and 1, assessing the likelihood of two mode shapes being equal

MAC(ϕ, ψ) =

∣∣∣ϕHψ
∣∣∣2

(ϕHϕ) (ψHψ) . (2.32)

The MAC criterion has boundaries, 0 and 1, as a consequence when the mean value of
the MAC is near a boundary the criterion is not following a Gaussian law. In [58], where the
uncertainty quantification of the MAC criterion is studied, this problem was treated with the use
of inverse shifted chi-square distribution when the MAC criterion is near the upper boundary,
i.e. when the mode shapes are equal. In this case, the first-order delta method can not be used,
so a second order development is used to express the uncertainty of the MAC criterion. When
the mode shapes are different, the MAC criterion is described with a Gaussian distribution,
enabling the use of the first-order delta method.

The first-order delta method can be also used to compute the input and transfer matrix [56]
for an input-output method and the Modal Phase Collinearity (MPC) of the identified mode
shapes [55], and in general to all the quantities obtained from the identification of the modal
parameters.

2.2.4 Conclusion

Now that the principles of OMA for LTI systems as well as some methods to obtain modal
parameters and their uncertainties have been introduced, it has to be determined why the
existing methods are not transferable to wind turbines and have a better understanding of what
changes are needed to suit those methods for the identification of LTP systems.

2.3 OMA for wind turbine

Previous works have addressed the problem of OMA applied to wind power and rotating
machines in general [117, 69, 34]. In parallel, other research works have treated the subject
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of LTP system identification for the control of wind turbines with input-output identification
methods with the consideration of MIMO (Multiple Input Multiple Output) system [133] and
[110].

To apply an OMA method to wind turbines, some assumptions must be verified. First, the
loading must be an uncorrelated white noise. [127] showed with correlations of measurements
on a blade that the loading is not a white noise. Indeed, the loading is a sum of a white noise
and harmonics of the rotor rotation, which is not in agreement with the assumption. The second
assumption is that the system must be linear and time invariant, but when a wind turbine is
operational and the rotor is in motion, it behaves like an LTP system (see Section 1.5).

In this section, some OMA methods allowing to treat LTP systems are presented, but it
is assumed that the loading follows the classic assumption of OMA methods. First, the main
frequency domain method is presented. Second, two time domain methods are presented, one
that pre-processes the data and one that is a modification of a subspace method.

2.3.1 Frequency domain method

To identify an LTP system, there is a method called the HPS method (Harmonic Power
Spectrum) or HTF (Harmonic Transfer function) [3, 130, 111]. This approach was originally
defined for control purposes in [142, 143], to create a map between the inputs and outputs of an
LTP system. It is based on the Fourier transform and on a modulation of the measures.

Taking equation (1.29), it is possible to express each Floquet mode as an infinite sum of
modes. To do this, the periodic mode shape of the modes is expressed in Fourier series.

x(t) =
∞∑

m=−∞

n∑
j=1

Xj,m exp (imΩt) exp (µjt)x0. (2.33)

By expressing the measure and performing a Fourier series decomposition of the observation
matrix, one gets:

y(t) = C(t)x(t) =
n∑

j=1
C(t)Xj(t) exp (µjt)x0 (2.34)

=
∞∑

l=−∞

n∑
j=1

Yj,l exp ((µj + ilΩ)t)x0. (2.35)

To study a periodically variable system of period T = 2π
Ω with the HPS method, the measures

are modulated with the harmonics of the rotation. The mth modulated signal is given by:

ym(t) = y(t) exp (−imΩt) , (2.36)

with i =
√

−1. The Fourier transform of the modulated signals is defined as

Y (ω) =
[
. . . y−1(ω)T y0(ω)T y1(ω)T . . .

]
. (2.37)

Finally, analogous to a power spectrum of an LTI system, the Harmonic Power Spectrum is
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defined by:
SY Y (ω) = E

(
Y (ω)Y (ω)H

)
, (2.38)

with (·)H denotes the Hermitian transpose. Rewritten in term of eigenmodes:

SY Y (ω) =
2N∑
r=1

∞∑
l=−∞

C̄r,lW (ω)r,lC̄
H
r,l

[iω − (µr − ilΩ)] [iω − (µr − ilΩ)]H
, (2.39)

with all the terms involved defined in [3]. Thus, from the Equation (2.39), it can be seen that
the power spectrum will have peaks at the Floquet exponents (µr − ilΩ).

This method allows the identification of the Fourier components of the Floquet modes of an
LTP system, using the peak picking method or the Frequency Domain Decomposition (FDD)
method. However, this method has the drawback of not giving the theoretical number of modula-
tions needed for a proper identification, which does not make the method suitable for automation.

2.3.2 Subspace methods

As said in the introduction, it is not possible to apply a classical subspace method to an
LTP system. Many methods have been implemented to adapt the classical subspace methods to
the LTP system.

The first method developed consists in using the MBC transformation as a data pre-processing.
It leads to the identification of the eigenmodes of the transformed systems, i.e the eigenvalues
and eigenvectors of AB in Equation (1.49). However the MBC transformation is defined with
the assumption of isotropic rotors. In Section 2.3.4, it will be seen that this assumption is not
valid for real applications.

Tcherniak proposes a pre-processing of the data before the application of a classical subspace
method [130], the H-OMA-TD method (Harmonic OMA Time Domain), using results of the
harmonic power spectrum method. In fact, the same modulation of the signal with the harmonics
of the rotation is used, to then use a subspace method on the signal. However, this method suffer
of the same drawbacks than the HPS method.

Finally, Jhinaoui proposes a modification of the SSI method, with an identification of the
monodromy matrix of the system, called the SSI-LPTV method [71, 70]. This method identifies
LTP systems without approximation and without assumptions on the shape of the state matrices.
In the next section, this method is detailed, to understand how an LTP system can be fully
identified and the resulting drawbacks of this identification technique.

2.3.3 SSI-LPTV method

First, let us define the Lyapunov-Floquet transformation that expresses the state vector as
a time invariant system

x(t) = Φ(t)e−Rtz(t), with ż(t) = Rz(t), (2.40)
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where Φ(t) is the fundamental matrix and Q = Φ(T ) is the monodromy matrix and R =
1
T log(Q). So the new expression of the state-space isż(t) = Rz(t) + L(t)−1w(t)

y(t) = C̃(t)z(t) + v(t)
(2.41)

with L(t) = Φ(t) exp (−Rt) and C̃ = C(t)L(t).

Discretization

Let t = k∆t with ∆t be the time step of the measures, the discrete state system is then
defined as: zk+1 = Fzk + w̃k

yk = C̃k + vk

(2.42)

with F = exp (R∆t), C̃k = C̃(k∆t), vk = v(k∆t) and w̃k =
∫ (k+1)∆t

k∆t exp (Q(k + 1)∆t− s)(
L(s)−1w(s)

)
ds.

Parameters to identify

The objective is to identify the discrete exponents of Floquet (the eigenvalues of F )

µi = exp (λ∆t) . (2.43)

Then, the periodic eigenvectors must be identified. The vectors of the matrix F and of the matrix
R are identical to ϕλi

. Then the mode shapes are obtained with C̃k :

ψk,i = C̃kϕλi
. (2.44)

Construction of the Hankel matrix

In the same way as the SSI-cov method, the matrices of the system are identified from
correlations, with the construction of a Hankel matrix (see Section 2.2.2). Let Td = T

∆t be the
period of the discrete signal, with T the period of the system (the period must be known).

The variables zj+iTd
and yj+iTd

have the same dynamic behavior for the same j. Let us define
the Hankel matrix of covariances for the sequence j:

Ĥj
p,q = 1

NT

NT −1∑
i=0

Y +
j+iTd

(Y −
j+iTd

)T , (2.45)

where NT is the number of discrete period in the signal, and

Y +
j+iTd

=
[
yT

j+iTd
. . . yT

j+p+iTd

]
and Y −

j+iTd
=
[
yT

j−1+iTd
. . . yT

j−q+iTd

]
. (2.46)
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In the same way the covariance matrix with a lag time is defined:

Ĥj+1
p,q = 1

NT

NT −1∑
i=0

Y +
j+iTd

(Y −
j+(i+1)Td

)T . (2.47)

Then, the global Hankel matrix is:

Ĥp,q =
[
Ĥj

p,q

Ĥj+1
p,q

]
. (2.48)

Estimation of the observability matrix and the system matrices

Once the Hankel covariance matrix has been constructed, the observability matrix can be
identified using an SVD:

Ĥp,q = UnSnV
T

n (2.49)

Ôj
p = UnS

1
2
n . (2.50)

The observability matrix is defined as:

Oj
p =


C̃j

C̃j+1F
...

C̃j+1F
j+p

 . (2.51)

Consequently:
O↑

pF
Td = O↓

p (2.52)

with O↑
p the p+1 first bloc rows and O↓

p the p+1 last bloc rows. So it is possible to identify the
matrix F :

F̂ =
(
O↑ †

p O↓
p

) 1
Td . (2.53)

The matrix C̃j is identified as the first bloc rows of the observability matrix.
Finally the Floquet exponents are obtained with an eigenvalue decomposition of F̂ and the

physical eigenmodes are obtained from the Floquet exponents.

Conclusion

This method allows to identify the Floquet exponents associated with the amplitude of the
mode shapes at time j in the calculation of the correlations. Therefore, by repeating the method
for all discrete times of a period, it would be possible to identify the periodic mode shapes. Thus,
the Floquet modes can be completely identified. Based on this method, an associated uncertainty
computation method [73] and a fault detection method for rotor instability monitoring [72] have
been developed.

A disadvantage of this method is that it converges with the number of measured periods. The
authors recommend more than 2000 periods and at least 10 000 periods for a good estimation.
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Obtaining 2000 periods with a large wind turbine would require more than three hours of
measurements, with a constant rotational speed, which is not applicable. This method is more
suitable for structures with a high and constant rotational speed, such as helicopter rotors.

2.3.4 Application on operating structures

Once the OMA methods have been defined, it is necessary to be able to verify if the assump-
tions used are true. For this purpose, many wind turbines have been instrumented to apply the
methods, in particular the Multi-Blade-Coordinate method.
In a first step, applications to parked wind turbines or only to tower measures are presented,
which means studying time-invariant systems. In a second step, results of application of OMA
methods to operational wind turbines are presented.

Tower and parked rotor

The easiest way is to start by instrumenting a stopped wind turbine, which removes the
problem of studying LTP systems. To continue using classical OMA methods with an operational
wind turbine, one solution is to instrument only the tower (or the foundation for an offshore wind
turbine). Thus it is possible to follow the evolution of the natural frequencies of the structure,
as it has been performed on onshore [97, 96] and offshore [140, 139] wind turbines. This allows
to study the influence of the rotation speed on the identified eigenmodes. In [137], the authors
give a review on the identification of the operating offshore wind turbine, with a focus on the
identification using measurements from the tower for the identification of the damping.

Operating wind turbines

As mentioned in the introduction, many wind turbines have been instrumented, most of them
to use the Coleman transformations [36, 37, 104, 33]. As said before, the Coleman transforma-
tions assume an isotropic rotor but the applications show that the real structures do not verify
this assumption. Moreover, the transformations are sensitive to the placement of the sensors
[128, 146], which increases the difficulty to stay under the assumption of isotropic rotor.

When applying the MBC method to an anisotropic rotor, it is observed that the transfor-
mations do not filter the harmonics of the rotor rotation. This means that the OMA methods
will identify the rotation harmonics as modes.

2.3.5 Conclusion

So, it can be stated that the current methods of identification of linear periodically variable
systems are not applicable to wind turbines. Indeed, the MBC transformations cannot be applied
to wind turbines because the isotropy hypothesis is not respected [146]. For frequency methods
such as HPS (Harmonic Power Spectrum) [3, 111], the application seems difficult because of
the number of modulations to be performed. Theoretically, it is necessary to have an infinite
number of modulations, the authors advise two to three modulations. In the same way for the H-
OMA-TD method [126], the theoretical number of modulations is not applicable, moreover, it is
difficult to compare the results, because the subspace method identifies a lot of modes, compared
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to the theory. And, the modulation of the signal involves a large amount of data, which makes
the identification expensive in terms of computation time. Finally, despite the possibility of fully
identifying the Floquet modes without any assumptions on the rotor and pre-processing, the
SSI-LPTV cannot be used with operating wind turbines due to the convergence rate of the
identified parameters.

It shows us, that existing methods are not applicable to operating wind turbines and more
generally for LTP systems. It points out the need to develop OMA methods for operating wind
turbines. From the state of the art, two approaches seem promising. Develop an OMA method
for the LTP system based on Floquet theory or use a pre-processing of the data to treat an
invariant system, allowing the use of a classical OMA method. These two approaches will be
explored in the next part of the thesis.

To finish the state of art, the damage detection will be treated, with the presentation of
an identification based method designed for LTI systems and different existing methods for the
fault detection for wind turbine.

2.4 Stochastic subspace-based damage detection and localiza-
tion

When a system is identified and monitored, the next step is to perform damage detection.
The idea behind the procedure is that the change in the structure (such as the stiffness, the mass,
or the structure configuration) will have an impact on the identified parameters. Among all the
damage detection methods in the literature, two categories can be listed, namely the data-driven
methods and the model-based methods. For data-driven methods, few methods perform damage
detection using the time series or the spectra, with the drawback to dealing with damage features
of high dimension, which needs to use reduction techniques such that the Principal Component
Analysis (PCA) [129]. Others are based on the identified modal parameters [4]. For example, the
identified mode shape curvature can be monitored [29], which requires to have several sensors
along the structure. Also, the data-driven method can be based on machine learning to link
the signal or the modal parameters to a structural state [48, 6]. The machine learning methods
are powerful, however, they can be considered as black-box and need many training data to
be implemented. Then among the model-based methods, model updating is one of the most
used. The purpose of the method is to update the parameters of a model (for example a finite
elements model) by minimizing the distance between the model and the data. This distance can
be a function of the identified parameters [57] or directly on the data (with pre-processing) [52,
51]. To do so, it is needed to have a model that can be run quickly, as it is called many times
during the minimization, which is not the case for the computation of the Floquet modes for
the two models used in the thesis. As an indication, it takes 10 seconds for the academic model
and more than 1 hour for the DTU 10MW model (because the system matrices are obtained
with linearizations).

In this thesis, it is chosen to use the stochastic subspace-based damage detection and local-
ization based on the local approach defined in [11]. This method is a data-driven method that
links changes in the monitored features to changes in the system using model information, i.e.
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the sensitivities of the damage feature regarding the system parameters. Also, this method gives
a statistical framework that enables to assess a priori the performance of the damage detection.
Moreover, the possibility to isolate any change in the parametrization can be assessed [10], i.e.
the damaged element can be localized. Also, this method has been applied to real structures
with the example of road bridges [42, 39].

To present the damage detection method, first, the damage parametrization based on the
local approach is described. Then the different possible damage features are presented. To con-
tinue, the damage detection and the associated statistical framework are defined. After that,
two damage localization approaches are described. Finally, a method to regroup the redundant
parameters is presented.

2.4.1 Damage parametrization

The objective of the fault detection method is to detect a change in the system parameters,
represented as the vector θ ∈ Rh (for example it can regroups the stiffness or mass of the elements
of the structure), with behavior assumed as

H0 : θ = θ0 (reference system),

H1 : θ = θ0 + δ√
N

(damaged system),
(2.54)

where δ =
√
N (θ − θ0) is unknown but fixed. The definition of the change vector for statistical

analysis δ is for mathematical convenience, as it allows for the distribution of the residual to be
characterized in the following. It also implies that smaller changes in the monitoring parameters
θ can be detected with increasing the length of the signal (N), as ∆θ = θ − θ0 = δ/

√
N .

The change in the parameters will be sought through a so-called Gaussian residual vector
ζ ∈ Rl, estimated from a subspace identification using a signal of length N . The impact of a
change in the structure parameters on the residual can be modeled as a change in the mean of
the residual based on the central limit theorem and using the first-order Taylor approximation
[43], such that

ζ ∼

N (0,Σ) : H0

N (J δ,Σ) : H1
, (2.55)

where δ ∈ Rh is related to the unknown change under H1, J = ∂ζ
∂θ

1√
N

∈ Rl×h the sensitiv-
ity matrix of the residual with respect to the parameters and Σ the covariance matrix of the
residual under both H0 and H1. The sensitivity matrix can be defined theoretically, with some
definition depending on the chosen residual in [85] or empirically using the first-order Taylor
approximation.

As the first-order Taylor approximation is used, it is assumed that the change in the param-
eter is small (i.e. the local approach). Then to compute the sensitivity matrix J it is needed to
have a model corresponding to the structure. Consequently, it might be needed to first fit the
model to the data in H0.
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2.4.2 Standard residuals

To perform the damage detection, a residual must be defined first. Among many possibilities
among the possible Gaussian residuals, the residual was previously defined in [9] as

ζ =
√
Nvec

(
UT

2 Ĥ
)
, (2.56)

with Ĥ in Equation (2.18) and U2 the left null part of Ĥ. The issue with this residual is that
the associated test is not robust to the environmental conditions [42]. So, later in [42] a new
residual robust to the environmental conditions (as it is not a function of the covariance of the
inputs/noise) has been defined, such that

ζ =
√
Nvec

(
S (θ0)T Û1

)
, (2.57)

with Û1 the non-null left part of Ĥ and S (θ0)T the left null space of Op (θ0). Moreover, To
be robust to environmental conditions and take advantage of the identification of an identified
estimate of the modes, a residual has also been defined directly with the identified modal pa-
rameters. For example in [59], the residual is defined with the identified frequencies and mode
shapes,

ζ =
√
N (ẑ − z (θ0)) , (2.58)

with

ẑ =
[
f̂1 . . . f̂m ℜ

(
ϕ̂1
)T

. . . ℜ
(
ϕ̂m

)T
ℑ
(
ϕ̂1
)T

. . . ℑ
(
ϕ̂m

)T
]T

, (2.59)

the identified modal parameters and z (θ0) the modal parameters of the reference system.

To choose the residual to perform the damage detection, first, a residual robust to the
environmental conditions is needed. Then, a simple residual can be selected, to have an easier
computation of the residual and the sensitivity matrix. Finally, to improve the damage detection
a residual defined with the most damage sensitive features can be defined. Thereafter the choice
and the computation of a residual, the damage detection can be performed, based on a statistical
test.

2.4.3 Statistical damage detection

To detect a change in the residual distribution defined in Equation (2.55), the Generalized
Likelihood Ratio (GLR) is used,

GLR (ζ) = −2 log
supθ∈H0 p (ζ|θ0)
supθ∈H1 p (ζ|θ) , (2.60)

with the Gaussian distribution of the residual (ζ ∈ Rl) defined as

p(ζ) = 1
(2π)l det(Σ)1/2 exp

(
−1

2 (ζ − J δ)T Σ−1 (ζ − J δ)
)
. (2.61)
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From Equation (2.60) and the definition of the residual distribution, the GLR is defined as [11]

GLR = t = ζT Σ−1J
(
J T Σ−1J

)−1
J T Σ−1ζ, (2.62)

with δ∗ =
(
J T Σ−1J

)−1
J T Σ−1ζ the value that maximise the GLR test.

Proof. Let us proof Equation (2.62). First, Equation (2.61) can be inserted in Equation (2.60),
leading to

GLR (ζ) = −2 log
supθ∈H0 exp

(
−1

2ζ
T Σ−1ζ

)
supθ∈H1 exp

(
−1

2 (ζ − J δ)T Σ−1 (ζ − J δ)
) .

By simplifying the previous equation

GLR (ζ) = sup
θ∈H0

(
ζT Σ−1ζ

)
+ sup

θ∈H1

(
− (ζ − J δ)T Σ−1 (ζ − J δ)

)
= sup

θ∈H1

ζT Σ−1ζ − (ζ − J δ)T Σ−1 (ζ − J δ)

= sup
θ∈H1

ζT Σ−1J δ + (J δ)T Σ−1ζ − (J δ)T Σ−1J δ

= sup
θ∈H1

f(δ)

because log is an increasing function and θ ∈ H0 = θ0. To assess the maximum of the GLR, let
us find δ such that ∂f(δ)

∂δ = 0. Thus,

∂f(δ)
∂δ

= 0

⇔ 2ζT Σ−1J − 2 (J δ)T Σ−1J = 0

⇔ (J δ)T Σ−1J = ζT Σ−1J

⇔ δT = ζT Σ−1J
(
J T Σ−1J

)−1

⇔ δ =
(
J T Σ−1J

)−1
J T Σ−1ζ

Finally, the GLR is defined as

GLR (ζ) =ζT Σ−1J
(
J T Σ−1J

)−1
J T Σ−1ζ +

(
J
(
J T Σ−1J

)−1
J T Σ−1

)T

Σ−1ζ

−
(

J
(
J T Σ−1J

)−1
J T Σ−1

)T

Σ−1J
(
J T Σ−1J

)−1
J T Σ−1ζ

The Equation (2.62) is obtained

GLR (ζ) = t = ζT Σ−1J
(
J T Σ−1J

)−1
J T Σ−1ζ.
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From this test, the Fisher matrix can be defined

F = J T Σ−1J . (2.63)

This matrix can be seen as a ratio between the sensitivity and the covariance of the residual,
where the diagonal terms give the detectability of each parameter component and the non-
diagonal terms quantify the impact of one parameter component on the others and vice versa.
With this matrix, it is possible to assess the impact of a change in each parameter component
on the residual.

From the theory of the GLR, the statistical test is following a χ2 distribution [11] such as

t ∼

χ
2(ν, 0) : H0

χ2(ν, λ) : H1
, (2.64)

where ν is the number of degrees of freedom of the distribution equal to the dimension of the
parameter space, and λ is the non-centrality parameter such that

λ = δTFδ. (2.65)

Based on the properties of the χ2 distribution, the mean of the test denoted as t̄, will be t̄ = ν

under H0 and t̄ = ν + λ under H1.

For some applications, the sensitivity matrix might not be available, so theoretically, it is
not possible to perform the damage detection test. However in [42], the non parametric test has
been defined, replacing the sensitivity matrix with the identity matrix (J = I). So, the non
parametric test is defined as

tnp = ζT Σ−1ζ (2.66)

and is equivalent to the square of the Mahalanobis distance and is defined with the following
distribution

tnp ∼

χ
2(ν, 0) : H0

χ2(ν, λnp) : H1
, (2.67)

where the degree of freedom is the size of ζ and λnp = δT Σ−1δ.

From the theoretical distribution of the test (under both H0 and H1), it is possible a priori
to assess the minimal change that will be detected based on a given confidence level, here 95% is
considered. To do so, the method defined in [87] is used. First, the upper bound of the interval
that contains 95% of the reference test [0, tcrit] (leading to a probability of false alarm of 5%) is
computed, with ∫ tcrit

0
fχ2(ν, 0)(t)dt = 0.95. (2.68)

Then, the minimum non-centrality parameter (λmin) is defined such that
∫ tcrit

0
fχ2(ν, λmin)(t)dt = 0.05 (2.69)
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and estimated by minimizing the following function

g(λ) =
∣∣∣∣∫ tcrit

0
fχ2(ν, λ)(t)dt− 0.05

∣∣∣∣ . (2.70)

Then, from Equation (2.65) the associated minimum statistical change can be assessed and for
one parameter component

δh min =
√
λmin/Fhh, (2.71)

where Fhh corresponds to the contribution of the h–th parameter component in the Fisher
matrix. From the minimum 95%-level detectable statistical change, the associated minimum
95%-level detectable change in the h–th parameter component is

∆θh min = δh min√
N

. (2.72)

Also, from the value tcrit it is possible to compute the probability of detection of a statistical
change δ and the associated change ∆θ in the physical parameter θ (∆θ = θ − θ0). From the
distribution of the test and the non-centrality parameter associated with the change (Equation
(2.65)), the probability of detection (POD) is defined by

POD (∆θ) =
∫ ∞

tcrit

fχ2

(
ν,N∆θTF∆θ

)
(t)dt. (2.73)

Different distributions of the damage detection test are displayed in Figure 2.4. The impact
of the number of degrees of freedom on the distribution is illustrated in Figure 2.4a and an
example of distribution shift due to a parameter change in Figure 2.4b.
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Figure 2.4 – Examples of test distribution, function of the degree of freedom and the non-
centrality parameter of the χ2 function

In practical application, the covariance or sensitivity matrices can be badly conditioned,
leading to numerical errors during the computation. To avoid this, in [43] a numerical efficient
computation has been defined based on a QR decomposition of the normalized sensitivity matrix,

J̃ = Σ−1/2J = QR. (2.74)
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Then, the damage detection test become

t = ζT Σ−1/2QQT Σ−1/2ζ (2.75)

= αTα, (2.76)

with α = QT Σ−1/2ζ. The other advantage is the computational cost, if the QR decomposition
is performed before the test computation, there are fewer operations in Equation (2.76) than in
Equation (2.62).

2.4.4 Fault localization

Once the damage has been detected, the next step is to assess which parameter has changed.
To do so, the sensitivities are used as they link the change in the residual mean to a change in
the system parameters.

Direct localization

To localize a fault, the direct localization/isolation test [9] is evaluated first, where each
parameter component is individually tested for change. This test assumes that the change is
restricted to one statistical change component δh (J δ = Jhδh), where Jh corresponds to the
sensitivity of the parameter component of index h, leading to

th = ζT Σ−1Jh

(
J T

h Σ−1Jh

)−1
J T

h Σ−1ζ, (2.77)

with the following distribution

th ∼

χ
2(1, 0) : H0

χ2(1, λ) : H1
. (2.78)

For the direct test on the other parameter components (that have not changed), their respective
distribution is th̄ ∼ χ2

(
1, λ̄

)
under H1, with λ̄, the non centrality parameter defined as [43]

λ̄ = δ2
hFhh̄F

−1
h̄h̄
F T

hh̄
, (2.79)

where Fhh̄ = J T
h Σ−1Jh̄ and Fh̄h̄ = J T

h̄
Σ−1Jh̄. It means that under H1, when the changed

parameter component is tested, the test mean (denoted as t̄h) will be t̄h = 1 + λ, whereas
t̄h = 1 + λ̄ when an unchanged parameter component is tested.

From the direct localization test, it is possible to compute a quantification test, based on the
relation between the change of the mean of the residual and the fault. So, from [43] the fault
quantification test is defined as

δ̂h =
(
J T

h Σ−1Jh

)−1
J T

h Σ−1ζ. (2.80)

Under H1 and with J δ = Jhδh the distribution of the test is

δ̂h ∼ N
(
δh, F

−1
hh

)
. (2.81)
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Otherwise, if the tested parameter is not the actual changed parameter, the quantification follow

δ̂h ∼ N
(
F−1

hh Fhh̄δh̄, F
−1
hh

)
, (2.82)

see [43] for more details.
So, the associated fault quantification can be used jointly with the localization test to assess

the false positive. Indeed, if the considered parameters are the stiffness of a structure, the damage
will reduce those parameters. So, if a parameter has a non-negligible localization test but the
associated fault is positive, then it will be considered as a false positive; because the change in
the parameter has no physical meaning.

Minmax localization

The main issue with the previous damage localization method is that a test on a non-damaged
parameter can have a non-negligible test value for the localization and the quantification. To
avoid that, the minmax test has been defined in [8] and explained in [43]. In this test the
parameters are tested on the orthogonal space of the others, to avoid any assumptions about
the change of the non-tested parameters, which leads to a robust localization test. To begin, the
partial residuals are defined as:

ζh = J T
h Σ−1ζ (2.83)

ζh̄ = J T
h̄

Σ−1ζ, (2.84)

then, the robust residual of h against h̄ is

ζ∗
h = ζh − Fhh̄F

−1
h̄h̄
ζh̄. (2.85)

The Fisher matrix associated with the robust residual is then defined as

F ∗
h = Fhh − Fhh̄F

−1
h̄h̄
Fh̄h. (2.86)

Finally, the minmax localization test is defined as

tmm = ζ∗ T
h F ∗ −1

h ζ∗
h, (2.87)

with the following distribution

tmm ∼

χ
2(1, 0) : H0

χ2(1, λmm) : H1
. (2.88)

where λmm = δT
h F

∗
hδh is the non-centrality parameter associated with the test, which is inde-

pendent of δh̄.
As for the direct localization test, it is possible to compute an associated damage with the

minmax localization test.
δ̂mm

h = (F ∗
h )−1 ζ∗

h. (2.89)
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Associated with the following distribution

δ̂mm
h ∼ N

(
δh, (F ∗

h )−1
)
. (2.90)

Clearly, this damage quantification is theoretically an unbiased estimator.
However, it has to be noted that the invertibility of all matrices in the computation is guar-

anteed only when J has full column rank and Σ is positive definite. Consequently, it might not
be possible to perform the minmax test for some system parametrization, so, before performing
the test, the rank of the sensitivity matrix should be assessed.

2.4.5 Clustering of the redundant parameters

In a considered system parametrization, some parameters can have similar sensitivity, with
collinear sensitivity vectors, leading to a sensitivity matrix not full rank. Consequently, to per-
form the minmax test presented in the previous section, the parametrization has to be reduced.
Also, with the direct localization test Equation (2.77), parameters with similar sensitivities will
have the same values, and it will not be possible to assess the true damage localization. In [2, 86,
85], a method to regroup into clusters the parameters with similar sensitivities has been defined,
based on the hierarchical clustering. To perform this clustering, the following distance is used

di,j = 1 − J̃i
T J̃j

∥J̃i∥∥J̃j∥
, (2.91)

where J̃i = Σ−1/2Ji is the normalized sensitivity of the i–th parameter component. Once the
clusters have been defined, the associated sensitivities can be defined as the cluster center, with

J̃ c
k = 1

mk

∑
i∈Ck

J̃i, (2.92)

the sensitivity of the k–th cluster (Ck) composed of mk parameters.
As the sensitivities of the clusters are normalized, the tests definition have to be adapted.

Consequently, the damage detection, localization and quantification tests function of normalized
sensitivities are defined such that

t = ζT Σ−1/2J̃
(
J̃ T J̃

)−1
J̃ T Σ−1/2ζ (2.93)

th = ζT Σ−1/2J̃h

(
J̃ T

h J̃h

)−1
J̃ T

h Σ−1/2ζ (2.94)

δ̂h =
(
J̃ T

h J̃h

)−1
J̃ T

h Σ−1/2ζ. (2.95)

2.4.6 Conclusion

Consequently, with this method, based on data processing and model sensitivities, it is
possible to detect changes in system parameters and even more localize those changes. In Figure
2.5 a flowchart summarizes the presented method.

This damage detection method has been extended on LTP systems, based on the SSI-LPTV
identification method [72], and applied to simulated data of a helicopter on the ground. But as
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the SSI-LPTV method, it is not possible to apply this method to a wind turbine, because it
uses estimates that converge depending on the number of rotations in the signal. So, to apply
this method to a wind turbine, this method has to be adapted to the problem, similarly to the
identification method.

ModelMeasured signal Reference signal

Residual: ζResidual: ζ Sensitivity matrix: J

Covariance matrix: ΣDamage detection test (2.62)

test > tcrit?

Training period?

Theoretical tcrit

Estimation of tcrit

No damage de-
tected, the struc-

ture is undamaged

Damage localization
test (2.77) or (2.87): h
has the maximum test

δ̂h < 0? (2.80) or (2.89)
False positive, the

structure is undamaged

The structure is
possibly damaged in h

Subspace identificationSubspace identification First order series expansion

No

Yes

No

Yes

Damage quantification

No

Yes

Figure 2.5 – Flowchart of the stochastic subspace-based damage detection and localization

2.5 Fault detection of wind turbine

As it was said in the previous section, one of the objectives of OMA is to detect damage or
fault on a structure, looking at a change in the eigenmodes, i.e. a change in frequency, damping,
or mode shape. Previous papers and thesis [132] deal with the problem of damage detection
for a wind turbine. In this thesis, the focus will be on the rotor faults that are presented in
Section 1.3, but other structural parts can be damaged, such as the tower and the substructure
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for the offshore wind turbines. In [103], detection of scour of a fixed offshore wind turbine has
been performed, based on the tracking of the frequencies of the first bending modes of the
tower, with an application to real measurements. For the offshore wind turbines, the jacket is
a crucial part to monitor, several works have been done to explore the available techniques [82,
26], with an application to simulated data. Finally, the damage detection of a wind turbine can
be performed based only on the SCADA measurement, i.e. based on the electricity production
and on the environmental conditions. With those methods, it is studied if the wind turbine is
producing the electricity that it should produce, with a review in [124]. It has also been used
for the damage detection of an offshore wind turbine jacket based on machine learning in [25].
Those SCADA data can be also used for fatigue estimation as in [38, 31].

In [44], the type of damage that occurs on a wind turbine rotor and damage detection
methods have been explored. It has been shown that to monitor wind turbine rotor faults, a
solution is to monitor the anisotropy or the imbalance (mass or pitch anisotropy). This approach
will be exploited in the following of the thesis. First, the type of damages and faults leading
to an anisotropy of the rotor are introduced. Then, two methods based on two consequences of
stiffness anisotropy and imbalance are presented.

2.5.1 Imbalance detection

The detection of pitch misalignment and added mass called imbalance detection has been
treated in several papers. In [79] the imbalance is detected with the PSD of the electrical power,
then the nature and the severity are determined using blade measurements. In [20] the focus is on
pitch errors, based on tower measurements, where the detection localization and quantification
is performed using a multi-layer perceptron. In [67] the PSD of the rotational speed is used
as the damage feature and the support vector machine is chosen to perform mass imbalance
detection and quantification. All the cited works are performed on simulated data. But in [144]
the impact of icing on a blade on the PSD of tower accelerations is shown on real measurements.
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Figure 2.6 – Power Spectral Density (PSD) of Side-Side acceleration of the tower for two con-
figurations of the rotor with the DTU 10MW model

In all those papers the detection of rotor imbalance is based on the apparition of the first
harmonic of the rotation (called the 1P) in the fixed frame, namely the tower and the nacelle. In
Figure 2.6, PSD of tower accelerations along Side-Side for two configurations are displayed, one
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with an isotropic rotor and one with a rotor imbalance, where 1% of mass added is simulated.
This figure shows that a new peak appears with mass anisotropy. This new peak corresponds to
the first dashed line, which is the 1P ( Ω

2π ), and the second dashed line corresponds to the 3P.
Similar behavior can be seen along Fore-Aft with a pitch misalignment of one blade, where a
misalignment of 2° is simulated in Figure 2.7.
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Figure 2.7 – Power Spectral Density (PSD) of Fore-Aft acceleration at mid-tower for two con-
figurations of the rotor with the DTU 10MW model

However, the previous figures were obtained from simulations with a constant wind speed
and consequently a constant rotational speed. For a real wind turbine, the wind is turbulent
and consequently, the rotational speed is variable. In Figure 2.8, the PSD of the Side-Side and
Fore-Aft acceleration for respectively an add of mass and a pitch offset are displayed (both under
a turbulent wind).With a variable rotational speed, the frequencies of the harmonics are varying
during the simulation, or a PSD is averaging the frequencies. So, the intensity of the peaks is
lower and the peaks are wider. This can be seen in Figure 2.8, where for the addition of mass
the 1P peak has almost disappeared and totally disappears for the pitch offset. Consequently,
for real external conditions it is much more difficult to detect rotor imbalance and much more
sophisticated methods have to be used as in the methods presented at the beginning of the
section.
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Figure 2.8 – Power Spectral Density (PSD) of acceleration at mid-tower for two configurations
of the rotor with the DTU 10MW model, under turbulent wind (ū = 6.7 and σu = 20%)
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2.5.2 Rotor damage detection

In the literature, some methods defined for the detection of structural rotor faults can be
found for example in [131, 129], with detection of trailing edge opening on one blade of a small
wind turbine (225 kW). In those papers, the cross-covariance of rotor sensors is used as a damage
feature through a Mahalanobis distance. The issue with this method is its sensitivity to the
operational conditions that must be mitigated, as it is done in [112, 90, 50]. Also, this approach
does not provide localization information. Finally, in all the cited papers, a mechanical actuator
is installed on the monitored blade. So, it gives a signal with low covariance and constant external
conditions, which is not relevant to the real external conditions of a wind turbine blade.

The rotor faults can be seen as the apparition of anisotropy of stiffness, this kind of anisotropy
leads to a change in the mode shapes of whirling modes, i.e. the bending modes of the rotor along
flap and edge. In [126, 34], it has been shown that the anisotropy leads to a change in the phase
shift between blades and the amplitudes of bending. The phase shift is 10 times more sensitive
than the frequency, which makes it a very promising indicator to monitor wind turbines. Figure
2.9 illustrates with polar plots the evolution of the phase shift and the amplitude of periodic
modes shape of the simple wind turbine model. On the polar plots, each star represents a DOF
of the considered mode shape, with the coordinates of the star defined by the amplitude and
the phase shift of the DOF. In this example, the stiffness of the third blade varies from 100% to
75%. When compared to the first blade (chosen as the reference blade), the phase shift of the
second blade can vary by 60°. Differences between blades can be used for damage detection.
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Figure 2.9 – Polar plot of the evolution of mode shape of flap bending modes of the simple wind
turbine, function of the stiffness of one blade. Each star corresponds to a loss of 5% of stiffness
of the blade n°3

The stiffness anisotropy has also consequences on the fixed frame (nacelle and tower). The
apparition of the first harmonic of the rotation in the PSD due to a pitch misalignment or
an added mass has been mentioned previously, but the anisotropy (any type) leads also to the
apparition of new Fourier components in the Floquet modes for the whirling modes on the tower.
It has been treated in [125] for the stiffness anisotropy detection on a simple model of a wind
turbine (with three edge bending DOF and two nacelle DOF).
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2.5.3 Conclusion

Fault detection methods for wind turbine rotors have been introduced, with two main parts,
mass and pitch imbalance detection, which has been widely treated, and rotor damage detection.
For the latest, it has been shown that the stiffness anisotropy leads to significant changes in the
whirling mode shapes, with the example of the evolution of these modes of the academic model
of a wind turbine.

Consequently, the study of the evolution of mode shapes needs to be carried on, especially
with the analysis of the dynamical behavior changes of large wind turbines such as the model
of the DTU 10MW wind turbine. And might be used jointly with stochastic subspace-based
damage detection. But, to perform damage detection, the identification of the operating wind
turbines has to be performed.

2.6 Conclusion

To conclude, with the presentation of the Operational Modal Analysis methods designed for
the invariant systems, it has been understood that it is not theoretically possible to identify
the modal parameters of the time periodic systems with these methods, considering that one
of the main assumptions of the methods is that the system is time invariant. Then, with the
brief review of the OMA methods for the time periodic systems, it has been concluded that all
the existing methods have nonnegligible drawbacks and they can not be used to monitor real
structures. Consequently, a new identification procedure designed for the linear time periodic
system needs to be developed, where two approaches can be studied: develop an OMA method
for the LTP system based on Floquet theory or use a pre-processing of the data to treat an
invariant system, allowing the use of a classical OMA method.

To continue, a damage detection method that is using identification results has been pre-
sented. Using the hypothetical results of the identification of the operating wind turbines, it
should be possible to adapt this method to perform damage detection. Then, fault detection
methods designed for wind turbines are presented, conjointly with the damage indicators of the
different types of damage. For the detection of rotor imbalance (mass or pitch), some meth-
ods have been already defined and tested. However, the detection of structural faults in the
blades has not been addressed as much. Consequently, damage detection will focus mainly on
the detection of structural faults in the blades.

In the next part, the problem of the identification of the linear time periodic systems will be
treated, based on the approximation of the Floquet modes as a sum of invariant modes.
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Chapter 3

THEORETICAL APPROXIMATION OF LTP
SYSTEMS INTO LTI SYSTEMS AND

ASSOCIATED STATE-SPACE DESCRIPTION

Abstract
In this Chapter, the dynamical behavior of the linear time periodic systems is approximated into linear
time invariant systems under nonstationary inputs. This approximation is based on the Floquet theory
coupled with a Fourier decomposition. The approximation is firstly validated on the academic model of a
wind turbine and illustrated on the DTU 10MW wind turbine model. Then, the state-space representation
of the approximation is defined, and it is demonstrated that the approximation can be identified with a
classical subspace method.

3.1 Introduction

In the previous chapter, the dynamic behavior of a wind turbine and the Operational Modal
Analysis has been presented. More precisely, existing OMA methods for wind turbines have been
introduced and their limitations highlighted. The objective here is to propose an identification
method able to deal with rotating machines and operating wind turbines, more precisely a
method without any assumption on the rotor isotropy. The method proposed here is based on
the LTP modeling of the eigenmodes and relies on the existing OMA methods presented in
Section 2.2.

To achieve such objectives, it is proposed to approximate an LTP system as an LTI system
based on the Floquet theory (see Section 1.5.4) coupled with a Fourier decomposition. Once
this decomposition is performed, it is demonstrated that state-of-the-art OMA methods for LTI
systems can be employed for the Floquet-Fourier decomposition of LTP systems.

The chapter is organized as follows: the first section of the chapter is dedicated to the
approximation of LTP systems into LTI systems based on the study of the Floquet modes.
Secondly, the approximation is validated with a study on the academic model of wind turbine
and theoretically. Then, the physical meaning of the approximation is assessed. Finally, the state
representation of the approximation is defined to demonstrate that the approximation can be
identified with the SSI method.
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3.2 Approximation of Floquet modes

To begin let us recall the Floquet decomposition of the homogeneous part of an LTP system
of period T (fully described in Section 1.5.4). The solution of the homogeneous equation is

xh(t) = Φ(t)x(t0), (3.1)

with Φ(t) the fundamental matrix such as Φ(t + T ) = Φ(t)Q and x(t0) the initial conditions.
This fundamental matrix can be decomposed as

Φ(t) = P (t) exp (Rt) , (3.2)

with P (t) a T -periodic matrix and R = 1
T log (Q). The matrix R can be diagonalized, using the

characteristic exponents (µ)and the eigenvectors (Ψ) of Q, leading to

Φ(t) = P (t)Ψ exp ([µ] t) Ψ−1. (3.3)

Then it is possible to express the homogeneous part of the state vector (xh(t)) as a sum of
modes, namely the Floquet modes:

xh(t) =
n∑

j=1
Xj(t) exp (µjt) qj(t0) (3.4)

with qj(t0) = ψ′
jx(t0), ψ′

j the j–th row of the matrix Ψ−1 and Xj(t) = P (t)ψj the T-periodic
mode shape of the j–th Floquet mode.

Once the Floquet mode decomposition is done, the objective is to express the observation
vector as a finite sum of eigenmodes to obtain the description of a time invariant system (Equa-
tion (1.19)). The Floquet mode decomposition of the observation yh(t) (associated with the
observation matrix C(t)) is

yh(t) = C(t)
n∑

j=1
Xj(t) exp (µjt) qj(t0) (3.5)

=
n∑

j=1
Yj(t) exp (µjt) qj(t0), (3.6)

where Yj(t) = C(t)Xj(t) is the mode shape of the j–th Floquet mode, a periodic vector of period
T = 2π

Ω , which can then be expanded into a Fourier series:

Yj(t) =
∞∑

l=−∞
Yj,l exp (ilΩt) (3.7)

By combining Equations (3.6) and (3.7), the observation vector can be expressed as an infinite
sum of terms:

yh(t) =
n∑

j=1

∞∑
l=−∞

Yj,l exp ((µj + ilΩ) t) qj(t0) (3.8)

Most relevant components of the expansion of yh(t) are determined by the participation factor
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(modified compared to [16]), defined as:

ϕy
j,l = ∥Yj,l∥2∑∞

k=−∞ ∥Yj,k∥2 . (3.9)

By defining a minimal participation factor (ϕy
min), an approximation of the observation (ŷh(t)) is

constructed by truncating the series by keeping only terms with the highest participation factor,

ŷh(t) =
∑

(j,l),ϕy
j,l

≥ϕy
min

Yj,l exp ((µj + ilΩ) t) qj(0). (3.10)

ŷh(t) can then be expressed as a sum of ñ modes

ŷh(t) =
ñ∑

p=1
Yp exp (µ̄pt) qp(t0), (3.11)

where each index p corresponds to a pair (j, l), and µ̄p = µj + ilΩ and ñ is the number of modes
with a participation factor superior to the minimum threshold ϕy

min. Finally, the Floquet modes
of an LTP system have been approximated by a finite number of eigenmodes identical to those
of an LTI system (see Equation (1.19)), that are the Fourier harmonics of the Floquet modes.
Consequently, the dynamical behavior of an LTP system can be approximated by the behavior of
an LTI system, as it was illustrated in [1] with the Mathieu oscillator. Now, this approximation
will be validated using an academic model of a wind turbine.

3.3 Validation of the approximation

3.3.1 Example of the academic model

The previously defined approximation is applied on an example of an LTP system. Firstly, a
frequency analysis is performed to verify that the frequencies obtained with the approximation
model fit the frequencies of the real model. Secondly, the error of the approximation looking
at the periodic mode shapes is computed. Here, an academic model of a wind turbine is used
[119] as described in Section 1.4.5, with a rotational speed of 1.4 rad/s and an isotropic rotor.
For this example, the approximation is computed with a minimum participation factor (ϕy

min)
of 1%. A summary of the approximation is given in Table 3.1, where the Floquet modes are
computed using the method presented in Section 1.5.4. For example, the yaw motion Floquet
mode is composed of three Fourier harmonics with l=8, 7 and 6 for the id Number 1, 2 and 3
respectively, with µj = −0.0734 + 0.5616i.

The objective is to verify that the frequencies of the model approximation modes ( |µ̄p|
2π )

are fitting those of the wind turbine model. The observable frequencies of the wind turbine
are obtained based on a decay test (non-zero initial displacements and zero load). Precisely,
these frequencies are obtained by analysing the frequency peaks in PSD of the response. This
comparison is illustrated for the 5 DOF wind turbine (presented in Section 1.4.5) in Figure 3.1,
where the PSD of the accelerations of one rotor DOF and one tower DOF are represented. The
frequencies obtained from the approximation given in Table 3.1 are represented with dashed
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Floquet mode id Number Participation
factor (ϕy) Frequency (Hz) Damping (%) Sum of ϕy

Yaw motion
1 0.598 1.693 0.690

> 1 − 10−52 0.243 1.470 0.794
3 0.159 1.248 0.936

Pitch/tilt motion
4 0.409 1.813 0.598

> 1 − 10−55 0.300 1.590 0.682
6 0.291 1.367 0.794

Forward flap
7 0.632 0.641 0.324

> 1 − 10−58 0.233 0.864 0.240
9 0.134 1.087 0.191

Collective flap 10 1.000 0.746 0.267 1.000

Backward flap 11 0.990 0.670 0.230
> 1 − 10−5

12 0.010 0.448 0.344

Table 3.1 – Fourier harmonics of Floquet modes, with a minimum participation factor of 1%,
for a rotational speed of 1.4 rad/s

lines and referred by their id number.
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Figure 3.1 – Comparison of the frequencies of the approximation from Table 3.1 (dashed lines
and id number) and the Power Spectral Density (PSD) of a free decay of the 5DOF wind turbine
of a rotor DOF (blue line) and a tower DOF (red line) – (ϕmin) threshold of 1%

As seen in Figure 3.1, each peak in the PSD spectrum corresponds to one frequency among
the model approximation modes. And vice versa, all model approximation modes are observable
in the PSD. Moreover, a good alignment between the frequency peaks and the approximation
is observable. As a conclusion, approximating the homogeneous part of an LTP-system as an
LTI-system is plausible.

Then, a method to evaluate the approximation error is developed to compare the exact
periodic mode shapes with those reconstructed with the approximation. To reconstruct the
approximated periodic mode shape denoted Ŷj , an inverse Fourier transform is performed on
a Fourier series composed of zeros except on the components of the approximation. For the
approximation (presented in Table 3.1), the relative approximation error (∥Yj(t)−Ŷj(t)∥

∥Yj(t)∥ ) over the
period is below 0.05%, for all the DOF and for all the Floquet modes. So, in this example, the
Floquet modes are well approximated.

In Figure 3.2, the first reconstructed periodic mode shape is compared to the exact one on
two DOF, one of the rotor and one of the tower. To illustrate the impact of the truncation on
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the approximation, different minimum participation factor thresholds ϕy
min are considered. It

is clear that the lower the participation factor and the higher number of retained modes, the
better the approximation. Indeed, when ϕy

min is lower, more Fourier coefficients are retained
in the approximation and so a higher accuracy is reached. In the present case, a minimum
participation factor of 0.1 is required to obtain an accurate approximation. This can be confirmed
with an analysis of the participation factors values in Table 3.1.
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Figure 3.2 – Comparison over a period of the real part of the periodic mode shape of the reference
Floquet model (continuous line) with different approximations (dashed lines) for different values
of the minimum participation factor (ϕmin) – First Floquet mode corresponding to the Yaw
motion

From this study, it can be concluded that the approximation of the Floquet modes as a
finite number of Fourier harmonics selected based on the participation factor should be able
to describe the dynamical behavior of an LTP-system as long as the minimum participation is
carefully chosen.

3.3.2 Quantification of the approximation error

To wrap up the theoretical study, this approximation error will be quantified function of the
minimum participation factor. Precisely, the error on the periodic mode shape will be quantified.
First, with Ŷj(t) the approximation of the periodic mode shape of the j–th Floquet mode, the
Fourier series decomposition of the gap between the periodic mode shape and the approximation
writes

Yj(t) − Ŷj(t) =
∞∑

l=−∞
Yj,l exp (ilΩt) −

∑
l,ϕy

j,l
≥ϕy

min

Yj,l exp (ilΩt) (3.12)

=
∑

l,ϕy
j,l

<ϕy
min

Yj,l exp (ilΩt) , (3.13)

With the identity of Parseval, it comes

∥Yj(t) − Ŷj(t)∥ = 1
T

∫ T/2

−T/2
∥Yj(t) − Ŷj(t)∥2dt =

∑
l,ϕy

j,l
<ϕy

min

∥Yj,l∥2. (3.14)
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With Equation (3.9)

∥Yj,l∥2 = ϕy
j,l

∞∑
k=−∞

∥Yj,k∥2, (3.15)

leading to

∥Yj(t) − Ŷj(t)∥ =
∑

l,ϕy
j,l

<ϕy
min

ϕy
j,l

 ∞∑
k=−∞

∥Yj,k∥2

 . (3.16)

Furthermore, ∑
l,ϕy

j,l
<ϕy

min

ϕy
j,l = 1 −

∑
l,ϕy

j,l
≥ϕy

min

ϕy
j,l, (3.17)

as the sum of all the participation factors of a Floquet mode is 1. Consequently,

∥Yj(t) − Ŷj(t)∥ ≤

1 −
∑

l,ϕy
j,l

≥ϕy
min

ϕy
j,l

 ∞∑
k=−∞

∥Yj,k∥2. (3.18)

With the identity of Parseval ∑∞
k=−∞ ∥Yj,k∥2 = ∥Yj(t)∥, so the second term of the previous

equation is constant. Also,
lim

ϕy
min→0

∑
l,ϕy

j,l
≥ϕy

min

ϕy
j,l = 1, (3.19)

so
lim

ϕy
min→0

∥Yj(t) − Ŷj(t)∥ = 0, ∀ j ∈ [1 : n] and t ∈ R+. (3.20)

As a conclusion, the approximation error should tend to zero similarly to the minimum partic-
ipation factor. Now, the Floquet modes of the DTU 10MW wind turbine will be analysed to
understand the meaning of the approximation on a realistic model.

3.4 Analysis of Floquet modes

The objective of this section is to give insights into the physical meaning and representation
of Floquet modes and describe the associated approximation. Here, some Floquet modes of the
DTU 10MW wind turbine (defined in Section 1.4.5) are presented considering an isotropic rotor.
The periodic mode shapes are studied using different outputs. For the tower, four displacements
are used, along Fore-Aft (in the wind direction) and Side-Side (transverse to the wind direction)
directions at mid-tower and at tower top. For the rotor, the displacements from the undeflected
blade along flap (perpendicular to the rotor plane) and edge (in the rotor plane) directions for
each blade at mid-blade are used.

3.4.1 Floquet modes of the DTU 10MW

Before starting the study of the periodic mode shapes, the evolution of the Floquet modes
frequencies versus the rotational speed can be studied. As described in Section 1.5.8, from the
linearized matrices, the Floquet modes can be computed with the MBC transformation, as the
rotor is isotropic. Then, the modal analysis can be performed using the method described in
Section 1.5.5. Here, each simulation is performed with a constant wind speed of 7 m/s. The
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evolution of the frequencies can be displayed with a Campbell diagram.
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Figure 3.3 – Campbell Diagram of the MBC modes principal frequencies (|µj |/2π) of the DTU
10MW, only the frequencies from modes with a damping below 20% are displayed

In Figure 3.3, the evolutions of the frequencies of some MBC modes are displayed and
named according to the mode shapes. It can be seen that almost all the frequencies are constant
regarding the rotational speed. Also, this Campbell diagram gives an explanation for the names
of the edge-bending eigenmodes. The forward edge denotes the eigenmodes where the frequency
increases with the rotational speed and the backward edge denotes the eigenmodes where the
frequency decreases. The frequencies of those two eigenmodes are separated by 2 Ω

2π , with for
this model a central frequency around 1 Hz.

In the next sections, the studied system will be the DTU 10MW wind turbine rotating at 6
rpm.

3.4.2 Analysis of tower DOF

Theoretically, a Fourier transform of a periodic mode shape using only the components of the
tower DOF is composed of a single harmonic, if the rotor is isotropic. This harmonic corresponds
to the associated MBC mode, as it was introduced in [119]. In Figure 3.4, the periodic mode
shapes of the backward edge and the 1-Fore-Aft on tower DOF are displayed, with constant
values along the period. These mode shapes evolutions confirm that the periodic mode shapes
on the tower are composed of a single harmonic.

For the backward edge and the first Fore-Aft, the frequency of the associated eigenvalue is
0.9001 Hz and 0.257 Hz respectively. As a recall, the eigenvalue of a Floquet mode is defined
with ±kΩ in the imaginary part, where k is an undetermined integer (see Section 1.5.4). So if
the periodic mode shape is constant, the frequency of the associated Fourier component is the
frequency of the Floquet mode, computed with the characteristic exponent.

3.4.3 Analysis of rotor DOF

Here, the previous analysis is performed on the DOF of the rotor. In Figures 3.5 and 3.6,
the periodic mode shapes of the backward edge and the 1 Fore-aft on rotor DOF are displayed
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Figure 3.4 – Real part evolution of periodic mode shapes at tower DOF

with their associated Fourier transform. Figures 3.5.a and 3.6.a show that the periodic mode
shapes are not constant with the azimuth angle. For each mode the harmonics involved in the
Fourier transform are different. For the backward edge, only the harmonic h = 1 has a significant
contribution (amplitude of 0.85). This means that one Fourier component composes this periodic
mode shape at the rotor DOF, with a frequency equal to 0.9001 + Ω

2π =1.000 Hz. For the 1 Fore-
Aft mode, three different harmonics (h=-1,0,1) are involved with an amplitude of 0.2, 0.45, and
0.3 respectively. It means that three different Fourier harmonics will compose the approximation,
and one is the same as the one seen with the tower DOF (h=0).
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Figure 3.5 – Real part of the periodic mode shape of the backward edge at the rotor DOF

3.4.4 Mode shapes of the global structure

With the analysis of the periodic mode shapes through different DOF, it is clear that the
harmonics contributing to a Floquet mode depend on the DOF considered. Using those analyses,
the mode shapes of the Fourier harmonics are displayed on the global structure.

In Figures 3.7 and 3.8, the mode shapes of the Fourier harmonics of two Floquet modes
are displayed, namely the backward edge harmonics (h = −1 and h = 0) and the first Fore-
Aft (h = −1, h = 0 and h = 1) . It has to be noted that the rotor is rotating, so the mode
shapes are given at one specific azimuth angle and the mode shapes of the structure are given
with the undeflected structure as reference. To have a better view it is needed to consider the
vibrations and the rotation together (the animations can be seen in https://mybox.inria.fr/
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Figure 3.6 – Real part of the periodic mode shape of the 1 Fore-Aft at the rotor DOF
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Figure 3.7 – Different mode shapes from the Floquet mode of Backward edge

d/8c10b338c23a4a82a9ed/).

3.5 State-space expression of the approximation

The objective of this section is to express the state-space representation of the approximation.
Once these matrices are defined, they can be inserted in the state-space defined for an LTP
system (Equation (1.15)).

Equation (3.11) shows that the shape of the approximation of the observation ŷ(t) is the
same as the observation of an LTI system (only for the homogeneous part). So there must exist
a state-space composed of some state vector z(t) ∈ Rñ and the approximation of the observation
ŷ(t) such that the homogeneous part readsżh(t) = Ãzh(t)

ŷh(t) = C̃zh(t)
, (3.21)

with Ã and C̃ the transition and observation matrices of the approximation and zh(t) of the
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Figure 3.8 – Different mode shapes from the Floquet mode of 1 Fore-Aft

form

zh(t) =
ñ∑

p=1
Zp exp (µ̄pt) qp(t0). (3.22)

By injecting Equation (3.22) into Equation (3.21) and setting t0 to 0 (for a better readability)
it comes

ñ∑
p=1

Zpµ̄p exp (µ̄pt) qp(0) = Ã
ñ∑

p=1
Zp exp (µ̄pt) qp(0), (3.23)

and by expressing the sums in matrix form

Z [µ̄] exp([µ̄] t)q(0) = ÃZ exp([µ̄] t)q(0), (3.24)

with Z ∈ Rñ×ñ regrouping the amplitudes of the state vector Zp (one vector per column), [µ̄] a
diagonal matrix containing the eigenvalues of the approximation and q(0) ∈ Rñ regrouping the
scalar qp(0). So, the transition matrix is defined as

Ã = Z [µ̄] Z−1 ∈ Rñ×ñ. (3.25)
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With the observation matrix of the approximation (C̃) in Equation (3.21), and Equations
(3.11) and (3.22), it comes

ñ∑
p=1

Yp exp (µ̄pt) qp(0) = C̃
ñ∑

p=1
Zp exp (µ̄pt) qp(0). (3.26)

Or, in a matrix form
Φ̃ exp ([µ̄] t) q(0) = C̃Z exp ([µ̄] t) q(0) (3.27)

with Φ̃ ∈ Rr×ñ regrouping the amplitudes of the observations modes. The observation matrix C̃
is expressed as

C̃ = Φ̃Z−1 ∈ Rr×ñ. (3.28)

To express the full discrete state-space, the discrete transition matrix and the input matrix
are needed. First of all, let us define the observation of the state-space using Equation (1.21)

y(t) = C(t)Φ(t)x(0) + C(t)Φ(t)
∫ t

0
Φ(τ)−1Bc(τ)v(τ)dτ. (3.29)

Using the approximation of the observation of the homogeneous part (Equation (3.11)) and
Equations (3.27), the approximation of C(t)Φ(t) is defined in matrix form

C(t)Φ(t) ≃ Φ̃ exp ([µ̄] t) Ψ̃, (3.30)

with Ψ̃ such that q(0) = Ψ̃x(0). To express the approximation of Φ(τ)−1, the approximation of
the homogeneous part of the state-space is needed. With the same Fourier harmonics as ŷh(t)

x̂h(t) =
ñ∑

p=1
Xp exp (µ̄pt) qp(0), (3.31)

leads to the approximation
Φ(τ) ≃ X exp ([µ̄] τ ]) Ψ̃, (3.32)

with X ∈ Rn×ñ regrouping the vectors Xp. For simplicity, if one assumes t = k∆t (k an integer),
the approximation of the observation in discrete time is defined as

ŷk = Φ̃ exp ([µ̄] k∆t) q(0) + Φ̃ exp ([µ̄] k∆t)
k∑

i=1
Iivi−1, (3.33)

with
Ii =

∫ i∆t

(i−1)∆t
exp (− [µ̄p] τ) X †Bc(τ)dτ, (3.34)

where (·)† denotes the Moore-Penrose pseudo inverse and with the hypothesis of a zero-order
hold on v(t). With Equation (3.28), it is possible to express the observation matrix into ŷk+1

such that

ŷk+1 = C̃Z exp ([µ̄] (k + 1)∆t) q(0) + C̃Z exp ([µ̄] (k + 1)∆t)
k+1∑
i=1

Iivi−1. (3.35)
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The state vector in discrete time zk at time index k + 1 is expressed as

zk+1 = Z exp ([µ̄] (k + 1)∆t) q(0) + Z exp ([µ̄] (k + 1)∆t)
k+1∑
i=1

Iivi−1. (3.36)

Using the definition of zk

zk+1 = Ãzk + Bkvk. (3.37)

with Ã = exp
(
Ã∆t

)
and Bk = Z exp ([µ̄] (k + 1)∆t) Ik+1.

Finally, adding the term of the excitation in the observation leads to the discrete state-space
of the approximation defined as zk+1 = Ãzk + Bkvk

yk = C̃zk + Dkvk + w̃k

, (3.38)

with w̃k = wk + εy, k, where εy, k is the approximation error of the observation (supposed to be
with zero mean, independent with moments of same order as the noises). Bk and Dk = D(k∆t)
are periodic matrices of period Td = T

∆t . Assume Ã has all non zero distinct eigenvalues with
modulus less than 1.

Proof. let us prove the Td periodicity of Bk. Using Equations (3.33) and (3.34)

Bk = Z exp ([µ̄] (k + 1)∆t) Ik+1. (3.39)

Let us express Bk+Td
, so

Bk+Td
= Z exp ([µ̄] (k + 1)∆t) exp ([µ̄]Td∆t) Ik+Td+1, (3.40)

moreover

Ik+Td+1 =
∫ (k+Td+1)∆t

(k+Td)∆t
exp (− [µ̄] τ) X †Bc(τ)dτ (3.41)

=
∫ (k+1)∆t

(k)∆t
exp (− [µ̄] (τ + Td)) X †Bc(τ + Td)dτ. (3.42)

But Bc(τ) is a periodic matrix, so Bc(τ + Td) = Bc(τ) ∀τ ∈ R+, thus

Ik+Td+1 = exp (− [µ̄]Td∆t) Ik+1. (3.43)

Finally Bk = Bk+Td

The state-space expression of the approximation has been defined, now it will be demon-
strated that a subspace method can be used to identify the matrices Ã and C̃.

3.6 Subspace Factorization

The objective is to prove that a subspace method can be used to identify the Fourier har-
monics of the Floquet modes of the approximation defined in Equation (3.38). As, the Fourier
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harmonics can be retrieved in the matrices Ã and C̃, those two matrices need to be estimated
with the subspace method. Here the SSI covariance driven presented in Section 2.2.2 is used.
The first step is the computation of the Hankel matrix of correlations defined by

Ĥ = Y+ (Y−)T . (3.44)

Let us define the submatrices Ĥm,n of Ĥ by restriction to indices (m,n) m ∈ [1 : p+ 1] and
n ∈ [1 : q] by

Ĥm,n = Y+
m

(
Y−)T

n , (3.45)

with Y+
m the m–th block line of Y+ and (Y−)T

n the n–th block column of (Y−)T .

Y+
m =

[
yq+m yq+m+1 . . . yq+N+m−1

]
(
Y−)T

n =
[
yT

q+1−n yT
q+2−n . . . yT

q+N+1−n

]T
Let km = q +m+ k and kn = q + 1 − n+ k with km = kn +m+ n− 1, it yields

Ĥm,n = 1
N

N−1∑
k=0

(
C̃zkm + Dkmvkm + w̃km

) (
C̃zkn + Dknvkn + w̃kn

)T
. (3.46)

Let us define zkm function of zkn

zkm = Ãm+n−1
zkn +

m+n−1∑
j=1

Ãj−1Bkm−jvkm−j . (3.47)

From this expression, the submatrix of the Hankel matrix can be defined as

Ĥm,n = C̃Ãm+n−2 1
N

N−1∑
k=0

(
Ãzknz

T
kn

C̃T + Ãzknv
T
kn

DT
kn

+ Ãzknw̃
T
kn

)

+ 1
N

N−1∑
k=0

m+n−1∑
j=1

C̃Ãj−1 (Bkm−jvkm−jz
T
kn

C̃T + Bkm−jvkm−jv
T
kn

DT
kn

+ Bkm−jvkm−jw̃
T
kn

)

+ 1
N

N−1∑
k=0

(
Dkmvkmz

T
kn

C̃T + Dkmvkmv
T
kn

DT
kn

+ Dkmvkmw̃
T
kn

)

+ 1
N

N−1∑
k=0

(
w̃kmz

T
kn

C̃T + w̃kmv
T
kn

DT
kn

+ w̃kmw̃
T
kn

)
.

(3.48)
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Leading to

Ĥm,n = C̃Ãm+n−2 1
N

N−1∑
k=0

(
Ãzknz

T
kn

C̃T + Ãzknv
T
kn

DT
kn

+ Ãzknw̃
T
kn

)

+ C̃Ãm+n−2 1
N

N−1∑
k=0

(
Bknvknz

T
kn

C̃T + Bknvknv
T
kn

DT
kn

+ Bknvknw̃
T
kn

)

+ 1
N

N−1∑
k=0

m+n−2∑
j=1

C̃Ãj−1 (Bkm−jvkm−jz
T
kn

C̃T + Bkm−jvkm−jv
T
kn

DT
kn

+ Bkm−jvkm−jw̃
T
kn

)

+ 1
N

N−1∑
k=0

(
Dkmvkmz

T
kn

C̃T + Dkmvkmv
T
kn

DT
kn

+ Dkmvkmw̃
T
kn

)

+ 1
N

N−1∑
k=0

(
w̃kmz

T
kn

C̃T + w̃kmv
T
kn

DT
kn

+ w̃kmw̃
T
kn

)
.

(3.49)
Finally

Ĥm,n = C̃Ãm+n−2
Ĝn + o(1), (3.50)

with o(1) a matrix converging to zero with N , the demonstration is developed in Appendix C.1.
Applying Lemma 3 of [12] under the moment hypotheses presented in Appendix B.3, then

Ĝn(N) = 1
N

N−1∑
k=0

Ãzknz
T
kn

C̃T + Bknvknv
T
kn

DT
kn
. (3.51)

Firstly, assume that N is a multiple of Td,

Ĝn(N) = 1
N

Ã
N−1∑
k=0

[
zknz

T
kn

]
C̃T + 1

Td

Td∑
j=1

Bj
Td

N

∑
k̃j

[
vk̃j
vT

k̃j

]
DT

j , (3.52)

where k̃j denote the indices corresponding to the specific instants of the period and where Bj

and Dj are periodic matrices. Let us demonstrate that Ĝn and Ĥm,n converge.

Let l ∈ [1;Td[ an integer, the matrix Ĝn estimated with N + l data is defined as

Ĝn(N + l) = 1
N + l

Ã
N+l−1∑

k=0

[
zknz

T
kn

]
C̃T + 1

Td

Td∑
j=1

Bj
Td

N + l

∑
k̃j

[
vk̃j
vT

k̃j

]
DT

j

+ 1
N + l

N+l−1∑
k=N

Bknvknv
T
kn

DT
kn
.

(3.53)

The input and feedthrough matrices are bounded finite matrices and vk is bounded in moments,
supk≥0 E

(
∥Bkvkv

T
k Dk∥2

)
≤ C < ∞. So, with the theorem from Appendix B.4

lim
N→∞

1
N + l

N+l−1∑
k=N

Bknvknv
T
kn

DT
kn

= 0, (3.54)
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also

lim
N→∞

1
Td

Td∑
j=1

Bj
Td

N + l

∑
k̃j

[
vk̃j
vT

k̃j

]
DT

j = lim
N→∞

1
Td

Td∑
j=1

Bj
Td

N

∑
k̃j

[
vk̃j
vT

k̃j

]
DT

j . (3.55)

In Appendix C.2 it is proven that 1
N Ã

∑N−1
k=0

[
zknz

T
kn

]
C̃T converges to a unique limit. Conse-

quently, Ĝn(N) converges.

Let us express Ĝn+1(N). Ĝn+1(N) is Ĝn(N) shifted to the past. Precisely, Ĝn(N) is defined
with the index from q + 1 − n to q + N + 1 − n while Ĝn+1(N) is defined with the index from
q − n to q +N − n. So, Ĝn+1(N) can be expressed in function of Ĝn(N)

Ĝn+1(N) − Ĝn(N) = 1
N

N−1∑
k=0

Ãzkn+1z
T
kn+1C̃T + Bkn+1vkn+1v

T
kn+1DT

kn+1

− 1
N

N−1∑
k=0

Ãzknz
T
kn

C̃T + Bknvknv
T
kn

DT
kn

(3.56)

In Appendix C.2, it has been proven that the initial index had no impact on the limit of the
first term, consequently

Ĝn+1(N) − Ĝn(N) = 1
N

(
Bq+N+1−nvq+N+1−nv

T
q+N+1−nDT

q+N+1−n − Bq−nvq−nv
T
q−nDT

q−n

)
(3.57)

supk≥0 E
(
∥Bkvkv

T
k DT

k ∥2
)

≤ C < ∞, finally, with the theorem from Appendix B.4

lim
N→∞

(
Ĝn+1(N) − Ĝn(N)

)
= 0. (3.58)

Analogously for all i and all n such that 1 ≤ n < n + i ≤ q, lim
N→∞

(
Ĝn+i(N) − Ĝn(N)

)
= 0.

Finally, lim
N→∞

Ĝn(N) = G is invariant regarding the index n.

From the previous result, the matrix Ĥ can be expressed term by term as

lim
N→∞

Ĥ =


C̃G C̃ÃG . . . C̃Ãq−1

G

C̃ÃG C̃Ã2
G . . . C̃Ãq

G
...

... . . . ...
C̃Ãp

G C̃Ãp+1
G . . . C̃Ãp+q−1

G

 . (3.59)

The Hankel matrix can be factorized such that Ĥ = OpCq, where Op denotes the observability
matrix and Cq the controllability matrix,

Op =


C̃

C̃Ã
...

C̃Ãp

 and Cq =
[
G ÃG . . . Ãq−1

G
]
. (3.60)

The observability matrix and the controllability matrix are somewhat similar to those in
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Equation (2.17) derived under the usual LTI assumptions. Thus, the Fourier harmonics of the
approximation can be computed with the method used in the stochastic subspace identification
(Section 2.2.2). It implies that the computation of Gaussian confidence intervals is possible,
similar to what was presented in Section 2.2.3.

3.7 Conclusion

To enable the identification of the rotating wind turbines, defined as LTP systems, it has been
chosen to approximate them to perform identification with state-of-the-art methods. First, it has
been proposed to express an LTP system as an LTI system of finite size (under nonstationary
inputs). It is observed that only a few Fourier harmonics contribute to the Floquet modes, so
only a limited number of harmonics can be retained. If illustrated on a wind turbine model,
this description is valid for any LTP system. The LTI approximation and the impact of the
truncation have been tested and validated on an academic model of a wind turbine, as well as
the DTU 10MW wind turbine model. On the latter, Floquet modes are illustrated. After that,
the state-space expression of the approximation has been defined and the use of a subspace
method and the uncertainty computation has been demonstrated. A part of this work has been
presented during the conference Safeprocess [21].

To continue, the method of uncertainty quantification will be validated using an identification
of the academic model of wind turbine. Then the identification of the LTP systems approximation
will be tested on rotating wind turbine models.
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Chapter 4

VALIDATION OF THE IDENTIFICATION OF

THE APPROXIMATION

Abstract
This Chapter is dedicated to the validation and the application of the identification of the approximation.
To begin, the application of the uncertainty quantification method on the approximation of an LTP system
is validated, with an example of identification on the academic model of a wind turbine. Then, the SSI
method is used to identify the approximation of wind turbine models with a gradual complexity. Precisely,
from the identification of the academic model with a constant rotational speed, to the identification of
the DTU 10MW model under a turbulent wind and a variable rotational speed. In all identifications, the
identified modes correspond to the Fourier harmonics of the Floquet modes defined by the approximation.
Finally, it is shown that an existing identification method can also identify the approximation, but with
a higher computational cost and complexity.

4.1 Introduction

In the previous Chapter, an approximation of the free vibrations of LTP systems has been
defined, through the approximation of the Floquet modes as a sum of the non-zero Fourier
harmonics. This approximation has been validated theoretically and with a study of the aca-
demic model of wind turbine. Then, it has been demonstrated that theoretically the Stochastic
Subspace Identification can be used to identify the Fourier harmonics that compose the approx-
imation. So, the next step is to apply and validate the identification of the approximation of
LTP systems.

To do so, first, the uncertainty quantification from an identification of the approximation
of an LTP system is validated with a Monte Carlo simulation using the academic model of
wind turbine, as the uncertainties will be computed in every example of identification. Finally,
the method is validated on different examples with a gradually increasing difficulty, with a
comparison between the identified modes and the modes from the approximation.

4.2 Validation of the uncertainty quantification method

In the previous Chapter, it was demonstrated that the uncertainty quantification method
can be used in addition to the identification of LTP system approximation, now let us validate
it. Here, a Monte Carlo simulation is performed on the academic model of a wind turbine
(with the same conditions presented in Section 3.3) to compare the estimated uncertainties
with the empirical uncertainties. The model is identified using only the measurement of the
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accelerations of the rotor DOF. 1000 runs are performed for the Monte Carlo simulation to get
enough points and estimate accurately enough the order of magnitudes of the uncertainties. The
stochastic parameters of the simulations are the inputs generated with the same Gaussian law.
The generated data from the simulation are sampled at 25 Hz during 600 s. For each Monte
Carlo run, the identification of the wind turbine model is made in the same order, equal to
8. This choice is made as it represents the number of Fourier harmonics in the approximation
seen through the rotor DOF (i.e. the number of peaks in the PSD in Figure 3.1). Also, the
identifications are performed with the same Hankel matrix size (q+1=p=100). From the 1000
Monte Carlo runs, the average values and standard deviations are deduced for the frequency and
damping of each Fourier harmonic. They are compared to the average standard deviation values
computed with the uncertainty methods (denoted as estimation in the following). As these values
are also uncertain, 100 runs are performed and the average values. Results are summarized in
Table 4.1 and illustrated in Figure 4.1 for the fourth Fourier harmonic.
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Figure 4.1 – Histogram of the identified frequency and damping of the fourth Fourier harmonics
of the approximation and the comparison of the 95% confidence interval

In Figure 4.1, the histograms are obtained from the Monte Carlo simulation and the empirical
95% confidence interval (in red) based on the uncertainties of the identified frequencies and
damping. The estimated 95% confidence interval (in black) are computed based on the mean of
the estimated standard deviation. With this figure, it can be seen that for the studied Fourier
harmonic, the confidence intervals are close.

Frequency (Hz) Damping (%)
Id Number f σf MC ×10−3 σf est ×10−3 ξ σξ MC ×10−1 σξ est ×10−1

1 1.693 2.44 ± 0.10 2.25 ± 0.10 0.712 1.42± 0.06 1.32 ± 0.05
3 1.247 2.73 ± 0.12 2.53 ± 0.10 0.959 1.97± 0.09 2.06 ± 0.09
4 1.812 2.98 ± 0.13 3.00 ± 0.14 0.609 1.70± 0.07 1.63 ± 0.08
6 1.367 2.71 ± 0.12 2.52 ± 0.12 0.813 1.85± 0.08 1.85 ± 0.10
7 0.641 0.90 ± 0.04 0.77 ± 0.04 0.369 1.48± 0.06 1.29 ± 0.07
9 1.088 3.04 ± 0.13 2.44 ± 0.28 0.258 2.49± 0.11 2.40 ± 0.24
10 0.746 0.82 ± 0.04 0.79 ± 0.04 0.301 1.16± 0.05 1.08 ± 0.06
11 0.670 0.75 ± 0.04 0.70 ± 0.04 0.269 1.29± 0.06 1.00 ± 0.05

Table 4.1 – Comparison of the empirical standard deviation (σ· MC) and the estimated standard
deviation (σ· est) of the frequency and damping associated with there 95% confidence interval
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In Table 4.1, the standard deviations values of the frequency and damping of all the Fourier
harmonics can be compared, but as the values are uncertain, the confidence interval should
be compared instead. Using the central limit theorem (remind in Appendix B.2), the estimated
confidence interval of the estimated standard deviation is computed using the standard deviation
of the estimation, such that

CIest (95%) = 4 σ√
n
, (4.1)

for n estimations of the standard deviation used to compute the mean estimation (σ· est). Then,
the confidence interval of the empirical standard deviation (σ· MC) is based on the theorem of
Cochran

(n− 1) σ̂2

χ2
1−α/2,n−1

≤ σ2 ≤ (n− 1) σ̂2

χ2
α/2,n−1

, (4.2)

where σ̂2 is the estimation of the variance σ2 using a n random sample, α the parameter of the
confidence interval (α = 0.05 for a 95% confidence interval), χ2

α/2,n−1 and χ2
1−α/2,n−1 are the

appropriate left-hand and right-hand values respectively of a chi-square distribution with n− 1
degrees of freedom. The inequality leads to the following confidence interval

CIemp (95%) =
√

(n− 1) σ̂2

χ2
0.025,n−1

−
√

(n− 1) σ̂2

χ2
0.975,n−1

. (4.3)

So, as for the fourth Fourier harmonic, the empirical and estimated standard deviations are close
for the frequency and damping of all the identified Fourier harmonics. Then, the associated
95% confidence intervals can be compared, and one can see that all the confidence intervals
are crossing each other, except for a couple of frequencies (7 and 9) and damping (7 and 11).
Those results are similar to those described in [108] with an application to a steel beam. As
a conclusion, estimated uncertainties match with the empirical uncertainties, validating the
uncertainty computation associated with the identification of the approximation of LTP systems.

To continue the validation of the uncertainties of the identified modes, the uncertainties of
the mode shapes need to be validated. To do so, the uncertainty of the MAC is used, as it
is directly related to the mode shapes. As said in Section 2.2.3, the MAC follows a Gaussian
distribution when the mode shapes are different and an inverse shifted chi-square distribution
when the mode shapes are equal. To compare the Gaussian process, the standard deviation is
used, whereas for the chi square process, the lower bound of the 95% quantile is used (as the
upper bound is equal to 1).

Here the MAC (Equation (2.32)) is computed between the mode shapes of successive iden-
tification, meaning that the MAC matrix is computed 999 times (MAC(n, n+ 1), n ∈ [0, 999]).
First, the mean MAC matrix is analyzed and it is composed of values close to 1 or 0 because the
mode shapes of the different identified Fourier harmonics are identical or completely orthogonal.
Consequently, there are no MAC values that can be described with a Gaussian distribution and
this case cannot be studied with the selected example. So the MAC values that will be studied
will only be described with an inverse shifted chi-square distribution.

To validate the estimations of the uncertainties of the MAC, the diagonal values of the MAC
matrix are studied, as those MAC values are computed between the same mode shapes. Similarly
to the frequency and damping, empirical 95% confidence intervals are deduced from the 1000
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Monte Carlo runs and compared with the estimated 95% confidence interval obtained with the
means of 100 uncertainty computation. In Figure 4.2, the empirical and estimated lower bounds
of the 95% confidence intervals are displayed jointly with the histogram of the MAC values, for
two Fourier harmonics. Firstly, as expected, the shape of the histograms is close to the shape of
an inverse shifted chi-square distribution described in [58].
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Figure 4.2 – Histograms of MAC values for two Fourier harmonics with the empirical and
estimated confidence interval, ( ): Estimated 95% confidence interval, ( ): Empirical 95%
confidence interval

Secondly, the empirical and estimated lower bounds are close, 0.9994 for both the empirical
and the estimated for the 10–th Fourier harmonic, 0.9928 for the empirical and 0.9919 for the
estimated for the 11–th Fourier harmonic. But, as the estimations of the lower bounds are also
uncertain, the associated confidence intervals are needed. In Table 4.2, all the empirical and
estimated lower bounds of the confidence intervals are reported, with also the upper and lower
bounds of the estimated ones. For all the studied MAC values, the empirical lower bounds
are in the confidence interval of the estimated lower bounds, which validates the uncertainty
computation of the MAC (in the configuration of identical mode shapes, which validates also
the uncertainty quantification of the modes shape.

id Number MAC 1 − quantMC(5%) 1 − quantest(5%) lower bound
1 − quantest(5%)

upper bound
1 − quantest(5%)

1 0.9998 6.06·10−4 6.59·10−4 4.29·10−4 9.91·10−4

3 0.9997 8.87·10−4 1.02·10−3 5.59·10−4 2.17·10−3

4 0.9995 1.48·10−3 1.86·10−3 8.35·10−4 3.56·10−3

6 0.9996 1.16·10−3 1.45·10−3 7.81·10−4 3.15·10−3

7 0.9933 1.84·10−2 1.89·10−2 1.01·10−2 3.87·10−2

9 0.9848 4.55·10−2 3.93·10−2 1.70·10−2 8.03·10−2

10 0.9998 5.67·10−4 6.32·10−4 3.08·10−4 1.07·10−3

11 0.9973 7.17·10−3 8.15·10−3 3.00·10−3 3.39·10−2

Table 4.2 – Comparison of the empirical and estimated 5% quantile value of the MAC criterion
between same mode shapes
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4.3 Identification: application to an academic model of wind
turbine

The identification method has been defined, now the method will be validated comparing the
identified modal parameters (frequencies, dampings and mode shapes) with the corresponding
approximated values computed with the system matrices. To compare the identified parameters,
the previously validated uncertainty computation method will be used.

In this section, the identified system is the academic model of a wind turbine with the same
configuration that is used in Section 3.3. The simulated outputs are the accelerations of all the
DOF sampled at 25 Hz during 600 s. Two cases will be considered, first with the simulation of
the system at a constant rotational speed (Ω = 1.4 rad/s), and second with a simulation with
a variable rotational speed. Theoretically, the approximation and the identification are defined
for a system with a constant period, so using data computed with a simulation with a variable
rotational speed, it will be seen if it is possible to identify the approximation associated with
the studied system.

The approximation of the academic model of wind turbine is computed with a minimal
participation factor of 5%, and the rotational speed used to compute the Floquet modes is the
mean rotational speed of the simulation for each case.

4.3.1 Case 1: constant rotational speed

The identification is performed using simultaneously the acceleration corresponding to the
five DOF of the wind turbine model and the Hankel matrix is defined with p = 75. As said
in Section 2.2.2, the model order of the identified system is supposed to be unknown, so a
stabilization diagram is used to overcome this problem. The stabilization diagram of the iden-
tification is presented in Figure 4.3, where the frequencies of the identified modes computed for
order 2 to order 20 are displayed. Here, only the physical identified modes are displayed, with
a criteria on the damping: it should be positive (because the system is stable) and below 10%
(a user parameter defined from the studied system). Also, the uncertainties of the frequencies
are added to the diagram with error bars, which correspond to the standard deviations. Only
the identified modes with a standard deviation of frequency below 0.05 Hz are displayed in the
diagram. The dashed lines in the diagram represent the frequencies of the Fourier harmonics of
the approximation setting the reference frequencies.

It can be seen from Figure 4.3 that the alignment of the identified frequencies are corre-
sponding to the dashed lines. To extract the modal parameters of the stabilization diagram, a
clustering method described in Appendix E is used. Then, the identified parameters are com-
pared with the approximation in Table 4.3, where (·)ap denotes a quantity of the approximation
modes and (·)iden a quantity of the identified modes. In this comparison, the modes are paired
using the MAC criterion and the gap of frequency. For all modes, the identified frequencies are
close to the approximation, where almost all the approximation values are in the 99% confidence
interval defined as: fiden −3σf < fap < fiden +3σf . The same is seen for the damping. As all the
MAC values are 1, the mode shapes are also corresponding. Consequently, it can be concluded
that the identified modes are the modes defined in the approximation.
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Figure 4.3 – Stabilization diagram from acceleration measures of all DOF from a simulation
with a constant rotational speed - ( ): reference frequencies - (•): identified frequencies

fap (Hz) fiden (Hz) σf (Hz) ξap (%) ξiden (%) σξ (%) MAC
1.693 1.698 0.003 0.690 0.833 0.173 0.999
1.470 1.479 0.003 0.794 1.160 0.188 0.995
1.248 1.256 0.003 0.936 1.295 0.260 1.000
1.813 1.825 0.003 0.598 0.627 0.142 0.999
1.590 1.600 0.003 0.682 0.498 0.096 0.998
1.367 1.378 0.002 0.794 0.585 0.124 0.998
0.641 0.643 0.001 0.324 0.714 0.179 0.989
0.864 0.867 0.002 0.240 0.431 0.156 0.986
1.087 1.092 0.007 0.191 0.578 0.630 0.988
0.746 0.747 0.001 0.267 0.329 0.098 1.000
0.670 0.671 0.001 0.230 0.270 0.093 1.000
0.448 0.453 0.005 0.344 1.399 0.734 0.995

Table 4.3 – Summary of the identification results, academic model of wind turbine at constant
rotational speed

Now we will continue with outputs computed from a simulation with a variable rotational
speed, to be closer to real measures. Consequently, there will be much noise in the measurements
compared to the previous simulation. Also, the modal signature of the system will vary, which
should lead to an increase in the covariance of the identified values.

4.3.2 Case 2: variable rotational speed

The objective of this section is to perform the identification method on more realistic data,
so a simulation of the academic model of a wind turbine with a variable rotational speed is
performed. The rotational speed has a mean value of 1.807 rad/s, and the time series is computed
from a spectrum obtained with aero-servo-elastic wind turbine model (see Figure 4.4). This
variable rotational speed is directly injected if the system equations to simulate the wind turbine
dynamic.

The same identification presented in the previous section is performed using the new simu-
lated outputs. Once again, the objective is to compare the identified modal parameters with the
corresponding values of the Fourier harmonics of the approximation computed with the system
matrices.
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Figure 4.4 – Evolution of the rotational speed during the simulation
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Figure 4.5 – Stabilization diagram from acceleration measures of all DOF from a simulation
with a variable rotational speed - ( ): reference frequencies - (•): identified frequencies

To begin with, the stabilization diagram in Figure 4.5 can be compared with the previous
one (Figure 4.3). The error bars are wider compared to the previous identification, which is
particularly visible for the identified modes with the highest frequencies. Also, two Fourier
harmonics of the approximation are not identified in this example at about 0.4 Hz and about
1.22 Hz. The first one is the Fourier harmonic with the lowest frequency, corresponding to tower
displacements (see frequency n°12 in Figure 3.1). The other non-identified Fourier harmonic, with
a frequency around 1.2 Hz associated with rotor bending. Looking at the PSD of accelerations
used for the identification in Figure 4.6, the amplitude of the first PSD peak is much lower
compared to the others, explaining why this Fourier harmonic is not identified. One way to
identify it would be to use only tower data. The other non-identified Fourier harmonic is not
identified due to the high level of noise. Indeed, in Figure 4.6, no peak is seen around the
corresponding frequency.

The comparison between the identified modes and the Fourier harmonics of the approxima-
tion is summarized in Table 4.4, where once again the modal parameters are extracted using the
method described in Appendix E. As in the case with a constant rotational speed, the identified
frequencies and dampings are close to those of the Fourier harmonics of the approximation,
with the values of the approximation inside the 99% confidence intervals of the estimated values
(excepted for the damping of the Fourier harmonics at 1.762 Hz, first line in Table 4.4). Also, the
standard deviations are higher but with the same order of magnitude compared to the previous
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Figure 4.6 – PSD of an acceleration of a rotor DOF (blue) and a tower DOF (red) of the academic
model of a wind turbine with a variable rational speed, compared with the frequencies of the
Fourier harmonics of the approximation

identification. This is also the case for the MAC criterion between approximation and identified
mode shapes.

fap (Hz) fiden (Hz) σf (Hz) ξap (%) ξiden (%) σξ (%) MAC
1.762 1.754 0.005 0.659 1.152 0.190 1.000
1.475 1.471 0.002 0.787 0.911 0.143 0.999
1.187 1.178 0.004 0.978 1.047 0.284 0.999
1.882 1.893 0.005 0.570 0.881 0.294 1.000
1.594 1.594 0.002 0.673 0.590 0.130 0.999
1.306 1.303 0.005 0.821 1.490 0.414 0.999
0.654 0.655 0.001 0.352 0.344 0.180 1.000
0.942 0.939 0.004 0.244 1.318 0.267 0.998
0.768 0.769 0.001 0.259 0.405 0.113 1.000
0.696 0.697 0.002 0.217 0.432 0.117 1.000

Table 4.4 – Summary of the identification results, academic model of wind turbine at variable
rotational speed

Finally, it can be concluded that the modes of the approximation can be identified, even
with a variable rotational speed. Now let us test the method on much more realistic outputs,
computed with an aero-servo-elastic wind turbine model.

4.4 Identification: application to an aero-servo-elastic wind tur-
bine model

In this section, an identification of an aero-servo-elastic wind turbine model is performed.
Precisely, the data are simulated based on a model of the DTU 10MW wind turbine presented
in Section 1.4.5 with an isotropic rotor. The simulation is performed with a turbulent wind
and a rotational speed controlled by an external controller (Figure 4.7). The objective is to
confirm that the identified modes obtained with the current method are those computed with
the approximation, with data close to real measurements.

In the simulation, the rotor has a mean rotational speed of 6 rpm, so the approximation is
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computed, as in Section 3.4, by assuming a constant rotational speed of 6 rpm. A minimum
participation factor of 5% is applied to construct the approximation from the Floquet modes.

The data used in the identification are the Fore-Aft (FA) and Side-Side (SS) accelerations
of the mid-tower and tower top, and the flap and edge blade root bending moments. These two
sets of quantities do not have the same order of magnitude, so the data are normalized with the
norm of their time evolution before the identification. Once the identification is performed, the
mode shapes are re-normalized to come back to physical quantities. The data are sampled at 50
Hz during 600 s.
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Figure 4.7 – Evolution of the wind speed (black) and the rotational speed (blue) during the
simulation

4.4.1 Frequency spectrum analysis

The frequency analysis is composed of the study of the PSD of the different outputs, which
are displayed in Figure 4.8 for a blade root edge bending moment and in Figure 4.9 for a tower
acceleration along Side-Side. On these PSD, the frequencies of some Fourier harmonics of the
approximation are added, namely the two first Side-Side bending modes of the tower and the
harmonics of the three different Floquet modes corresponding to the bending of the blade along
edge (backward, forward and collective). It can be seen that frequency peaks in the PSD are
well estimated by the approximation. This illustrates once again the capacity of the method to
approximate accurately the dynamic of the turbine even though the system is more complex
and the rotational speed is varying.

With a frequency analysis some modes of the approximation have been identified, now a
subspace identification with uncertainty quantification will be performed, to finish the validation
and compare the identified modes with the approximation modes.

4.4.2 Subspace identification

In this last section, the identification of the DTU 10 MW wind turbine modal properties
is performed using the blade root bending moments and tower accelerations together, with
p = 200 and an order from 2 to 40. The proof of the use of the moments in the SSI is developed
in Appendix D.

The identified modes are displayed in Figure 4.10 using a stabilization diagram, comparing
the frequencies of the identified modes at different increasing orders and the frequencies of the
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Figure 4.8 – PSD of a blade root edge bending moment, with the comparison with the frequency
of specific approximation modes
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Figure 4.9 – PSD of the acceleration Side-Side at mid-tower, with the comparison with the
frequency of specific approximation modes

approximation (dashed lines), defining the reference. It can be seen in Figure 4.10, that the
modes obtained by the frequency spectrum analysis are properly identified. Once the modes are
identified and extracted with the method of Appendix E, they are matched with the approxi-
mation modes using the MAC, with a minimum matching value of 0.7. The modes are matched
twice, once using only the tower DOF, once using only the rotor DOF. Finally, eight identified
modes are matched with the approximation modes. They are reported in Table 4.5, where (·)ap

denotes a quantity of the approximation modes and (·)iden a quantity of the identified modes.
Some approximation modes, like the mode 2-FA and the flap bending modes, are not identified
due to their high damping ratios (more than 30% for the flap bending modes and around 13%
for the mode 2-FA).

The relative gap between the identified modes from the data and the approximation modes
computed from the model is lower than 1% for all the identified modes. It can be concluded that
the identified modes are corresponding to the approximation modes. So, for a realistic case, the
approximation modes can be identified with a classical OMA method.
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Figure 4.10 – Stabilization diagram from an identification with all the data, from a simulation
with a turbulent wind and a variable rotational speed- ( ): reference frequencies - (•): identified
frequencies

fap (Hz) fiden (Hz) σf (Hz) ξap (%) ξiden (%) σξ (%) MAC Names
Tower 2.349 2.351 0.003 0.869 0.987 0.124 1.000 2-SS

2.061 2.064 0.006 1.778 1.732 0.280 1.000 Col. edge
1.108 1.116 0.004 2.066 2.715 0.436 0.907 Fw. edge tower
0.901 0.892 0.006 1.908 2.252 0.274 0.975 Bck. edge tower
0.257 0.258 0.004 7.776 7.502 1.204 0.998 1-FA
0.253 0.253 0.001 0.275 0.352 0.277 0.744 1-SS

Rotor 2.061 2.064 0.006 1.778 1.732 0.280 0.969 Col. edge
1.008 1.010 0.011 2.269 1.771 1.184 0.759 Fw. edge rotor
1.001 1.001 0.005 1.719 1.792 0.417 0.915 Bck. edge rotor
0.257 0.258 0.004 7.776 7.502 1.204 0.983 1-FA

Table 4.5 – Summary of the identification results, with the matching of the identified modes
with the reference modes

4.5 Comparison with an existing method

As mentioned in Section 2.3, there are already some existing OMA methods developed for
wind turbines. Here, one existing subspace method is tested, the H-OMA-TD [130]. This method
is the closest to what has been done in this chapter. To compare the results of this method,
the data used in Section 4.3.1 are selected, namely the academic model of wind turbine with a
constant rotational speed.

This method is composed of two steps. First, the signal is modulated (extending the spatial
space of the data)

ym(t) = y(t) exp (−imΩt) ∈ Rr×N (4.4)

and
Y (t) =

[
y−m(t)T . . . y0(t)T . . . ym(t)T

]T
∈ R(2m+1)r×N (4.5)

is the modulated data. Secondly, these data are used to perform a subspace identification.
In this example, the modulation parameter is set to m = 2, so the spatial space is five

times larger compared to the original data space. Consequently, the identifications deal with five
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time more data, which significantly increases the computational time, from few seconds for the
original data to around 100 seconds using the modulated data.
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Figure 4.11 – Stabilization diagram computed with the H-OMA-TD method with all the DOF
from a simulation with a constant rotational speed. The blue dashed line ( ) corresponds to
an approximation frequency and the red dashed lines ( ) correspond to the modulation of this
frequency - (•): identified frequencies
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(a) H-OMA-TD, the blue dashed line corre-
sponds to approximation frequencies and the
red dashed lines correspond to the modulated
frequencies
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Figure 4.12 – Comparison of stabilization diagrams of two methods between 0.8 and 1.2 Hz

In Figure 4.11, the stabilization diagram from the identification of the modulated signal is
displayed. In Figure 4.12, a zoom of this stabilization diagram is compared with the same zoom of
the stabilization diagram from the identification with the original signal (Figure 4.3). These two
figures show that much more modes are identified with H-OMA-TD method. This is the result
of the modulation. With the chosen number of modulations, the theoretical number of identified
modes should be 5 times the number of identified modes obtained in Section 4.3.1. This leads to a
difficult analysis of the stabilization diagram. It must be noted that an uncertainty computation
method is not used here, since the increase of the spatial dimension by the modulation leads to
a higher computational cost, preventing the practical use of the method.

It is interesting to study how the modes appear in Figure 4.11. In fact, the identified modes
appear depending of their energy, and the modulated modes have the same energy as correspond-
ing non-modulated mode. That is why modes appear by groups in the stabilization diagram,
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with an example at the order 15, where the approximation modes and the corresponding mod-
ulation (the modes corresponding to the dashed lines) are identified at the same order. This
leads to a problem as the modes in a group have the same modal information, so it is needed to
identify the system at a higher order (order 30) compared to the classical SSI (order 20) to get
the same modal information (see Figure 4.12).

The identified modes corresponding to the approximation modes can be compared, selecting
the DOF corresponding to modulation 0 (y0(t) in Equation (4.5)). In table 4.6, the identification
results of the H-OMA-TD method and the SSI method are compared, with a comparison of the
gap to the Fourier harmonics of the approximation. Consequently, it can be concluded that the
two methods can identify with the same accuracy the approximation, as the order of magnitude
of the gap and the MAC are the same.

fap (Hz) ∆f (%)
H-OMA-TD

∆f (%)
SSI ξap (%) ∆ξ (%)

H-OMA-TD
∆ξ (%)

SSI
MAC

H-OMA-TD
MAC
SSI

1.693 0.5% 0.2% 0.690 0.241 0.098 0.999 0.999
1.470 0.5% 0.1% 0.794 0.281 0.084 0.996 0.995
1.248 0.6% 0.0% 0.936 0.314 0.044 1.000 1
1.813 0.6% 0.1% 0.598 0.132 0.161 1.000 0.999
1.590 0.7% 0.0% 0.682 0.153 0.031 0.995 0.998
1.367 0.8% 0.0% 0.794 0.159 0.048 0.998 0.998
0.642 0.2% 0.0% 0.324 0.352 0.037 0.993 0.989
0.864 0.2% 0.1% 0.240 0.242 0.052 0.985 0.986
1.087 0.2% 0.3% 0.191 0.154 0.232 0.990 0.988
0.746 0.2% 0.0% 0.267 0.102 0.040 1.000 1
0.670 0.2% 0.1% 0.230 0.033 0.006 1.000 1
0.448 0.3% 0.9% 0.344 0.049 1.005 0.995 0.995

Table 4.6 – Comparison of the identification results between the H-OMA-TD and the SSI

As mentioned before, there is a lot of identified modes due to the modulation. In Table 4.7, the
identified frequencies are clustered function of the modulation with the approximation frequency
as reference, with a total of 29 different harmonics of the approximation modes identified.

f (Hz) f − Ω
2π (Hz) f − 2 Ω

2π (Hz) f + Ω
2π (Hz) f + 2 Ω

2π (Hz)
1.7009 1.4780 1.2554 1.9237 2.1465
1.4780 1.2554 1.0326 1.7009 1.9237
1.2554 1.0326 0.8096 1.4780 1.7009
1.8234 1.6006 1.3776 2.0465 2.2699
1.6006 1.3776 1.1547 1.8234 2.0465
1.3776 1.1547 0.9318 1.6006 1.8234
0.6431 0.4201 0.1983 0.8659 1.0888
0.8659 0.6431 0.4201 1.0888
1.0888 0.8659 0.6431
0.7473 0.5245 0.3017 0.9701 1.1929
0.6719 0.4490 0.2262 0.8946 1.1174
0.4490 0.2262 0.6719 0.8946

Table 4.7 – Clustering of the frequencies of the identified modes

Finally, this method aims also to identify the participation factors of the identified modes
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(Equation (3.9)), to recompute the periodic mode shapes of the Floquet modes. To compute this
participation factor, the amplitude of the different modulations of the identified mode shapes
is used (as it is done with the Fourier transform). In Table 4.8, the identified participation
factors are compared to the theoretical ones, and the participation factor is computed with the
classical SSI. To compute the participation factor with the classical SSI, the amplitude of the
mode shapes corresponding to the harmonics of the same Floquet mode are compared. From
this study, it can be concluded that the two approaches give equivalent results, with a mean gap
of 0.015 for the H-OMA-TD and 0.013 for the classical SSI. However, it is easier to compute
the participation factor with the H-OMA-TD (as the harmonics of the same Floquet mode are
regrouped in one identified mode shape).

fiden (Hz) part. fact.
H-OMA-TD

part. fact.
SSI

theoretical
par. fact.

gap
H-OMA-TD

gap
SSI

1.701 0.450 0.430 0.465 0.015 0.034
1.478 0.291 0.324 0.296 0.005 0.028
1.255 0.240 0.245 0.239 0.000 0.006
1.823 0.364 0.339 0.371 0.007 0.031
1.601 0.310 0.341 0.317 0.007 0.024
1.378 0.307 0.320 0.312 0.005 0.007
0.643 0.474 0.480 0.483 0.010 0.004
0.866 0.266 0.296 0.294 0.027 0.002
1.089 0.185 0.224 0.223 0.038 0.002
0.747 0.960 1.000 1.000 0.040 0.000
0.672 0.884 0.902 0.908 0.024 0.006
0.449 0.092 0.098 0.092 0.000 0.007

Table 4.8 – Comparison of the identified participation factor with the H-OMA-TD with the
theoretical ones and the classical SSI

As a conclusion, this method does not give much more information as the developed approach
in this chapter. With the drawback to need much more computational time and the increasing
difficulty to post process the identification results. But the participation factors can be assessed
easily with the H-OMA-TD. So, this method could be interesting for specific applications requir-
ing the participation factors. However, the identified modes are not theoretically defined with
this method, as is it mentioned in the paper [130]. To have a better understanding of what is
identified, the background theory of the method need to be defined.

4.6 Conclusion

Before this study, it was understood that the LTP nature of the wind turbine modeling
would result in developing adequate LTP methods to extract relevant features. As such, many
methods have been developed in the literature with advantages and drawbacks. The output of
this chapter is that it is also adequate to perform classical LTI system identification approaches
on LTP systems. The resulting modes are the Fourier harmonics of the Floquet modes, and
they can be used to characterize the wind turbine properties based on sensor data. It has the
advantage of relying on the well studied SSI approach with all the benefits of the extensive
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background on such methods for LTI systems.
Then, after validating the uncertainty computation, the identification of the approximation

has been performed on data from different simulations of rotating wind turbines. For all the iden-
tifications, the identified modes are corresponding to the modes defined with the approximation
of the Floquet modes. Consequently, the classical OMA methods can be used to monitor the
eigenmodes of an operating wind turbine. The results obtained in Section 4.4 has been presented
during the conference EWSHM [23].

Finally, the identification approach has been compared to an existing identification method,
the H-OMA-TD. The existing method is similar to the defined approach, with just a modulation
of the data before the subspace identification. The results obtained with our new approach and
the existing method are similar, but the results of the new approach are simpler to analyze
and this new approach is less costly in terms of computational time. Consequently, the devel-
oped approach should be preferred, except for specific applications where the estimation of the
participation factor is mandatory.

In the following, the identification approach that has been defined will be used for fault
detection on a wind turbine rotor.
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Chapter 5

ROTOR ANISOTROPY TRACKING FOR

FAULT DETECTION

Abstract
To perform damage detection on a wind turbine rotor, it is needed to first find the most relevant damage
indicators. In this Part, it is chosen to perform damage detection of a wind turbine rotor based on the
tracking of rotor anisotropy due to a reduction of stiffness or an augmentation of mass of a blade. From
the literature, the phase shift and amplitude of the edge bending modes shape are the most sensitive
parameters to these variations. This is confirmed here with the example of the DTU 10MW wind turbine
model. Then, the uncertainties associated with the amplitude and phase shift of the mode shape are
defined and validated. To finish the chapter, a damage detection based on the comparison of the identified
amplitudes and phase shift jointly with their confidence intervals is defined. This method is applied for
the detection of a stiffness of 5% of one blade of the DTU 10MW wind turbine model, which shows that
the chosen damage indicators can be used for the detection of rotor faults.

5.1 Introduction

In the previous part, an approach for the identification of wind turbines has been defined
and validated on a realistic numerical example. Now, the objective is to exploit this approach to
develop a fault detection method, designed for the monitoring of wind turbines rotor. Precisely,
the detection of faults in the rotor will be studied based on the detection of rotor anisotropy.
As said in Section 1.3, the fault can be a reduction of stiffness, an augmentation of mass, or a
pitch angle error on a blade, all leading to rotor anisotropy. In this Chapter and in this Part
in general, the method will be developed considering a stiffness anisotropy. But, the validity of
the method for the detection of mass and pitch anisotropy will be discussed in Section 6.10.
To begin damage detection, it is proposed that the developed method will focus on the modal
parameters that are the most sensitive to rotor anisotropy. As mentioned in Section 2.5.2, those
parameters are the phase shift and the amplitude of the edgewise bending mode shapes.

The objective is to monitor a change in the dynamical behavior by comparing the identified
values for different states. As previously introduced in Section 2.2.3, the identified modes are
uncertain so comparisons have to consider the uncertainties of each monitored parameter.

The chapter is organized as follows. Firstly, the evolution of the Fourier harmonics regard-
ing the anisotropy is assessed for the model of the DTU 10MW wind turbine. Secondly, the
uncertainties of the phase shift and the amplitude will be defined and validated. Finally, an
OMA-based fault detection method using the statistical change of phase shift and amplitude is
defined and tested on two tests cases of increasing complexity.
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5.2 Modal analysis of a wind turbine with an anisotropic rotor

As presented in Section 2.5.2, the anisotropy of a wind turbine rotor leads to important
variations in the mode shape of the whirling Floquet modes (i.e. the edgewise bending modes).
In this Section, the objective is to assess the changes in the edgewise bending Fourier harmonics
of the DTU 10MW wind turbine model. Here, a model with a rotational speed of 6 rpm is
studied and an approximation defined with a minimum participation factor of 5 % is considered.
This approximation is defined using the same outputs used in Section 4.4, namely the Fore-Aft
(FA) and Side-Side (SS) accelerations of the mid-tower and tower top, and the flap and edge
blade root bending moments.

Beforehand, the Floquet modes of the model must be computed. However, as the rotor
is anisotropic the MBC transformation cannot be used. To compute the Floquet modes the
homogeneous equation (Equation (1.22)) is integrated with different initial conditions, with the
same method presented in Section 1.5.4. Precisely, the homogeneous equation is integrated with
the Runge-Kutta order 4 method (RK4) using 500 linearized matrices from a rotating period.

5.2.1 Analysis of the effects of the anisotropy of stiffness on Fourier harmon-
ics of the Floquet modes

To assess a change in the Fourier harmonics, the approximation is computed for three dif-
ferent global stiffness reductions of the third blade, namely 1%, 2.5% and 5%.

First, the change in the frequencies of the Fourier harmonics can be assessed. In Table 5.1,
the evolution of frequencies of the Fourier harmonics identified in Section 4.4 is summarized
depending on the stiffness loss of the damaged blade. Looking at the results, one can see that
whatever the loss in stiffness is, the frequency changes are small. Indeed, the difference of fre-
quencies between the structural states has a maximum of 0.015 Hz of difference for the Collective
edge. This order of magnitude is not significant enough to track such change in a real structure,
where the effects of varying environmental conditions will be important [45]. So, the change in
the mode shapes due to the anisotropy will be assessed, as it was introduced in Section 2.5.2.

Name Isotropic 99% of stiff 97,5% of stiff 95% of stiff.
2-SS 2.349 Hz 2.348 Hz 2.348 Hz 2.348 Hz

Col. Edge 2.061 Hz 2.058 Hz 2.054 Hz 2.046 Hz
Fw. Tower 1.108 Hz 1.107 Hz 1.106 Hz 1.105 Hz
Fw. Rotor 1.008 Hz 1.007 Hz 1.006 Hz 1.005 Hz
Bck. Rotor 1.001 Hz 0.999 Hz 0.995 Hz 0.988 Hz
Bck. Tower 0.901 Hz 0.899 Hz 0.896 Hz 0.888 Hz

1-FA 0.257 Hz 0.257 Hz 0.257 Hz 0.257 Hz
1-SS 0.253 Hz 0.253 Hz 0.253 Hz 0.253 Hz

Table 5.1 – Selected frequencies of the approximation function of the stiffness of the third blade

Figure 5.1 represents the evolution of the amplitude and the phase shift between the blades
on a polar plot for the different considered stiffness reductions, where each subfigure corresponds
to a different mode. First, it has to be noted that the first blade defines the reference, with an
amplitude always equal to 1 and a phase to 0. The choice of the reference blade will have an
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Figure 5.1 – Evolution of the polar plot of the edgewise bending mode shapes against the third
blade stiffness

impact on the values of phase shift and amplitude, but the global change compared to the
isotropic state is the same if another blade is taken as reference. Figures 5.1b and 5.1c show that
there is an important evolution of the phase shift for the Backward and Forward edge bending
modes coupled with an important evolution of their amplitude. Indeed, for the isotropic state,
the phase shift between each blade is 120° and the amplitude is equal to 1 for each blade. For a
stiffness loss of 5%, the phase shift decreases to about 50° and 190° for the 2nd and 3rd blades
for the Backward edge bending mode respectively, whereas the vibration amplitude decreases for
the 2nd blade and increases for the third one. Considering the Forward edge bending mode (2nd
at 240° and 3rd blade at 120° for the isotropic state), the amplitudes for each blade decrease,
but it decreases substantially for the 3rd blade (to about 0.2). The phase shift of the 3rd blade
remains somewhat constant and equal to 120°, whereas it decreases for the 2nd blade. The mode
shape of the Collective edge has a different evolution compared to the two others (see Figure
5.1a). Indeed, only the amplitude of the damaged blade is evolving with a reduction of the
amplitude according to the loss of stiffness. All these results illustrate the high sensitivity of the
phase shift and amplitude to rotor anisotropy and the relevance of tracking these parameters to
monitor a wind turbine.

Table 5.2 summarizes the MAC between the mode shapes of the isotropic state and the
anisotropic states. It confirms the graphical analysis, since a larger evolution of the MAC is
observed for the Backward and Forward edge mode shapes, meaning that the mode shape changes

120



Rotor anisotropy tracking for fault detection

Mode Stiff. 99% Stiff. 97.5% Stiff. 95%
Col. 0.999 0.996 0.982
Bck. 0.968 0.846 0.691
Fw. 0.973 0.849 0.704

Table 5.2 – MAC values computed between the isotropic and the anisotropic mode shapes of
the Fourier harmonics of edge bending for different anisotropy levels

are higher for those Fourier harmonics. It can be concluded that the mode shapes of the Backward
and the Forward edge have a similar sensitivity to anisotropy. The mode shape of the Collective
edge is less affected globally by the change scenarios since only the amplitude of the damaged
blade is affected by the rotor anisotropy.

To conclude, due to the high sensitivity regarding the anisotropy of the mode shapes of the
Fourier harmonics of edge bending, those mode shapes can be used to detect a stiffness loss on
one blade. Now, the difference due to mass or stiffness anisotropy will be presented. To find out
if it is possible to differentiate those two types of damage.

5.2.2 Difference between stiffness and mass anisotropy

The objective is to identify a structural fault from the dynamical behavior. In this section,
the differences in the dynamical behavior between an addition of mass and a loss of stiffness
are assessed. One question is whether the mode shapes of wind turbines are affected differently
depending on whether there is a mass addition or a loss of stiffness in one blade. To do so,
the MAC is used to compare the mode shapes of the Fourier harmonics of edge bending of the
system with mass anisotropy and the system with stiffness anisotropy.

Here, the modes from models with a stiffness decrease or with a mass increase in one blade
are compared. As the frequencies are usually too close to make the difference between the two
types of faults, the objective is to see if the mode shapes can be used to make this distinction.
Therefore, the mode shapes are compared thanks to the MAC. To simplify this analysis, it is
chosen to compare the mode shapes obtained with a ratio k/m almost equal, with k (resp. m)
the stiffness (resp. the mass) variation, as it translates roughly the expected frequency variation.
In this study, the mass anisotropy in the model is defined by a change of the density of the third
blade.

Stiffness anisotropy Mass anisotropy Col. Bck. Fw.
k=99 % m=101 % 1 0.9998 0.9996
k=97.5 % m=102.5 % 0.9999 0.9998 0.9998
k=95 % m=105 % 0.9993 0.9993 0.9997

Table 5.3 – MAC values computed between mode shapes of same Fourier harmonic with different
type of anisotropy for different anisotropy levels

Table 5.3 summarizes the MAC computed between the mode shapes of the Fourier harmonics
of edge bending of the system with mass anisotropy and the mode shapes of the system with
stiffness anisotropy. From Table 5.3, it can be seen that for the similar ratio stiffness/mass, the
mode shapes are very similar as the MAC criterion is very close to 1. The error might be due to
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the difference in the ratio ( 1
1.05 ̸= 0.95) and can also be the result of the integration error in the

computation of the Floquet modes. From this study, it can be concluded that it is not possible
to know if the anisotropy arises from a loss of stiffness or an addition of mass when analysing
the rotor mode shapes.

If the difference in the anisotropy cannot be seen with the rotor mode shapes, it might be seen
on the tower. First, the PSD at mid tower of the acceleration along Side-Side will be compared,
they are represented in Figure 5.2 for two different anisotropies.
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Figure 5.2 – PSD at mid-tower along Side-Side for different anisotropies, with the two dashed
lines corresponding to the harmonics of the rotation (1P and 3P)

In Figure 5.2, it can be seen that the first peak of the PSD (the 1P) does not have the same
amplitude, with an amplitude of about 10−6 dB for the mass anisotropy, equivalent to the 1SS
peak, and a negligible amplitude of about 10−9 dB for the stiffness anisotropy. Consequently,
the anisotropy in mass and stiffness can be differentiated with an analysis of the amplitude of
the 1P peak along Side-Side, as it was presented in Section 2.5.1.

The impact of the anisotropy on the dynamical behavior has been assessed for the model
of the DTU 10MW, with the confirmation that the anisotropy has an important impact on
the phase shift and the amplitude of edgewise bending mode shapes. Also, it has been shown
that the mass and stiffness anisotropies have a similar impact on the mode shapes, but these
two anisotropies can be distinguished using the amplitude of the 1P harmonic in the frequency
domain.

Now the uncertainties of the phase shift and the amplitude will be defined, to asses a more
precise change of the values obtained with the identification method, i.e. identified value and
the associated confidence interval.

5.3 Uncertainties of phase shift and amplitude

To assess the change in the identified edgewise bending mode shapes with the analysis of
the phase shift and the amplitude, the respective uncertainties are needed. In this Section, the
uncertainty quantification of the phase shift and the amplitude of the identified mode shapes is
defined, using the first-order delta method presented in Section 2.2.3. Since the method of the
literature enables the estimation of the uncertainties of the identified mode shapes, to compute
the uncertainties of the phase shift and the amplitude only the associated sensitivities regarding
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the mode shape are needed, with

ΣPi = JP,ϕΣϕi
J T

P,ϕ and Σai = Ja,ϕΣϕi
J T

a,ϕ (5.1)

for the i–th identified eigenmode.

5.3.1 Definition: Sensitivity of phase shift

First, let us define the phase shift Pj of a mode shape ϕ ∈ Rr at the DOF j. The mode shape
at the DOF j can be defined as

ϕj = aj exp (iPj)

= aj cos (Pj) + iaj sin (Pj) ,

where aj denotes the amplitude. From this expression, the phase shift can be defined as

Pj = arctan
(

ℑ(ϕj)
ℜ(ϕj)

)
. (5.2)

As it was introduced in Section 2.2.3, to estimate the uncertainty of a quantity, its sensitivity
from another quantity has to be defined. So, the sensitivity of the phase shift regarding the mode
shape is defined as

JP,ϕ =
[

∂P
∂ℜ(ϕ)

∂P
∂ℑ(ϕ)

]
∈ Rr×2r. (5.3)

First

∂Pj

∂ℜ(ϕj) = − ℑ(ϕj)
ℜ(ϕj)2

1

1 +
(

ℑ(ϕj)
ℜ(ϕj)

)2 (5.4)

= −ℑ(ϕj)
ℜ(ϕj)2 + ℑ(ϕj)2 (5.5)

= −ℑ(ϕj)
|ϕj |2

, (5.6)

analogously

∂Pj

∂ℑ(ϕj) = 1
ℜ(ϕj)

1

1 +
(

ℑ(ϕj)
ℜ(ϕj)

)2 (5.7)

= ℜ(ϕj)
ℜ(ϕj)2 + ℑ(ϕj)2 (5.8)

= ℜ(ϕj)
|ϕj |2

. (5.9)

Finally, the definition of JP,ϕ is

JP,ϕ =
[[

−ℑ(ϕk)
|ϕk|2

] [
ℜ(ϕk)
|ϕk|2

]]
, (5.10)

with
[

ℑ(−ϕk)
|ϕk|2

]
∈ Rr×r a diagonal matrix, as for

[
ℜ(ϕk)
|ϕk|2

]
.
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JP,ϕ is defined and non-zero if ϕ is non-zero for all degrees of freedom. This condition is
verified if the associated mode shape is seen through all the sensors. Actually, if a mode shape is
not seen on a sensor, it is not useful to compute the phase-shift and the associated uncertainty.

5.3.2 Definition: Sensitivity of amplitude

The amplitude (ai) of the DOF i of the mode shape ϕ is defined as

ai = |ϕi| =
√

ℜ(ϕi)2 + ℑ(ϕi)2. (5.11)

Analogously as previously, the sensitivity of the amplitude regarding the mode shape has to
be defined,

Ja,ϕ =
[

∂a
∂ℜ(ϕ)

∂a
∂ℑ(ϕ)

]
∈ Rr×2r. (5.12)

First
∂ai

∂ℜ(ϕi)
= ℜ(ϕi)

|ϕi|
, (5.13)

and
∂ai

∂ℑ(ϕi)
= ℑ(ϕi)

|ϕi|
. (5.14)

Finally, the sensitivity matrix (Ja,ϕ) is defined as

Ja,ϕ =
[[

ℜ(ϕk)
|ϕk|

] [
ℑ(ϕk)
|ϕk|

]]
, (5.15)

with
[

ℜ(ϕk)
|ϕk|

]
∈ Rr×r a diagonal matrix, as for

[
ℑ(ϕk)
|ϕk|

]
.

Like JP,ϕ, Ja,ϕ is defined and non-zero if ϕ is non-zero for all DOF. When the amplitude
at a sensor is zero , the associated distribution is not a Gaussian distribution, but may be a χ2

distribution as for the MAC when the value is 1.

5.3.3 Validation

To validate the definition of those new uncertainties, a Monte Carlo simulation is performed
to compare the estimated uncertainties with the empirical uncertainties. The validation here
is performed on the academic model, using the identification parameters from Section 4.2 for
the Monte Carlo simulation. To assess the distribution of the phase shift and amplitude, each
identified mode shape needs to have the same normalization and the same DOF setting the
reference. Here, it is chosen to divide the mode shape by one of its components

ϕ′ = ϕ

ϕj
, (5.16)

where ϕ′ is the normalized mode shape and j is the index of the component setting the normal-
ization. In this case, j is also the index for the reference phase. In the presented example the
blade one will be the DOF of reference, with a phase equal to 0 and an amplitude equal to 1.

In Figure 5.3, the identified mode shapes of two Fourier harmonics are displayed, with one
dot corresponding to one identification of the Monte Carlo simulation. This figure shows that
for the two displayed Fourier harmonics, the identified mode shapes are in the 99% confidence
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Figure 5.3 – Comparison of the identified phases shift and amplitudes with the estimated 99%
confidence interval (CI)

interval. To have a better comparison, the empirical and estimated standard deviations are
compared in Table 5.4, with the mean values associated with their 95% confidence intervals.
The latter shows that the empirical and the estimated uncertainties are similar, with the same
order of magnitude. Then, one can see that the confidence intervals are crossing each other for
all the phase shifts and amplitudes presented. Finally, it can be noted that the 10–th harmonic
had less uncertainties on the phase shift and the amplitude compared to the 11–th harmonic.

With the same arguments used in Section 4.2 it can be concluded that the estimation of the
estimated uncertainties of the phase shift and the amplitude is validated. They will now be used
for anisotropy tracking and fault detection.

Id Number and
blade Phase (°) σp MC σp est Amplitude σa MC

(
10−2) σa est

(
10−2)

10, blade 2 0 0.73±0.03 0.74±0.10 1 1.26±0.06 1.28±0.17
10, blade 3 0 0.74±0.03 0.73±0.09 1 1.23±0.05 1.28±0.19
11, blade 2 120 2.52±0.11 2.41±0.66 1 4.41±0.19 4.30±0.86
11, blade 3 -120 2.54±0.11 2.41±0.55 1 4.48±0.20 4.30±0.98

Table 5.4 – Comparison of the empirical and the estimated standard deviations for the phase shift
and amplitude of two selected Fourier harmonics, with the associated 95% confidence interval

5.4 Anisotropy tracking with operational modal analysis

The effects of the anisotropy on the Fourier harmonics has been presented and the uncertainty
computation of the key parameters has been defined. Now, a method to detect anisotropy based
on the identification of the edgewise bending modes is presented.

5.4.1 Method to detect rotor anisotropy

As told in the previous section, the identified modes obtained are uncertain. Thus, to deter-
mine if a mode shape has changed, it is necessary to compare the identified values taking into
account the associated uncertainties. The MAC criterion can be used to determine if two mode
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shapes are statistically distinct. As presented in Section 2.2.3, in [58] it has been shown that the
MAC follows different statistical laws depending on the compared mode shapes. If the compared
mode shapes are identical, the criterion follows a χ2 law and if the mode shapes are different, it
follows a Gaussian law. For the χ2 law, the confidence interval is defined with the lower bound
of the 95% quantile as the upper bound is 1. For the Gaussian law, the confidence interval is
computed based on the standard deviation.

The objective of the method is to assess changes in the mode shapes. To achieve such a goal,
an actual set of identified modes has to be compared to a reference set. Precisely, a change in
the rotor isotropy is sought through changes in the edgewise bending modes. The method to
detect anisotropy changes is composed of the following steps:

1. Identification of the reference state using only the blade root edge-moment: uncertainty
computation of the reference mode shape, amplitude and phase shift

2. Identification of the current state (potentially damaged) using only the blade root edge-
moment: uncertainty computation of the current mode shape, amplitude and phase shift

3. Comparison of the edgewise bending mode shapes and their associated uncertainties on
a polar plot. The compared estimated mode shapes are not corresponding to the same
state if the 95% confidence intervals do not cross each other

4. Computation of the MAC criterion and the associated uncertainties. If the MAC follows
a χ2 law, the mode shapes correspond to the same state, whereas if the MAC follows
a Gaussian law the mode shapes are corresponding to different states and anisotropy is
detected.

Now, this method will be tested, with a change scenario in the DTU 10MW rotor isotropy.

5.4.2 Case 1: 5% of stiffness loss on one blade under white noise wind

To start, the method is performed on an ideal case, with data from simulations where the
wind is defined with a Gaussian process. The objective is to be as close as possible to the
assumptions of the OMA-method and to have a simulation with a rotational speed close to a
constant rotational wind. The wind and the rotational speed of the wind turbine are given in
Figure 5.4a.

The method previously defined is used where the reference system is the wind turbine model
with an isotropic rotor and the damaged system is the same except that the third blade has a
reduction of 5% of global stiffness, as it was done in Section 5.2.

Figure 5.4(b-d) gathers the results from the identification and the estimated 95% CI of the
identified modes shapes of the edge bending modes. It can be seen that for all those modes, the
CI are separated by an important distance between them. This important variation in terms of
amplitude and phase shift tends to demonstrate that the mode shapes between the reference and
damaged configurations have substantially changed. It implies that the mode shape variations
are large enough to get the certitude that the mode shapes are different between the two states,
and so that a fault appeared in the system. In other words, the signature of the fault on this
mode shape is strong enough to ensure its detection with certitude.

In Table 5.5, the MAC and the uncertainties of each identified mode are summarized. For
all those modes, the identified value of the MAC is below the lower bounds of the 95% quantile
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(a) Evolution of the wind speed and rotational
speed during the simulation
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Figure 5.4 – Comparison of the edgewise bending mode shapes between the reference state and
the damaged state under a white noise wind

defined with the chi-square law (last column of Table 5.5). As it was developed in [58] and
introduced in Section 2.2.3, it can be concluded that the mode shapes used for the computation
of the MAC are different. It can be concluded that the graphical analysis of the confidence
intervals and the analysis of the MAC give the same result for the mode shape comparison.

Finally, from the analysis of the change of the mode shapes, it can be concluded that the
new state is damaged. Also, looking at the amplitude of the Collective edge mode shape, the
damage is localized on the third blade, as this blade is the only blade associated with a loss of
amplitude.

Name MAC value σMAC 95% quantile lower bound
Col. 0.9817 0.0030 0.9987
Bck. 0.7328 0.1245 0.8598
Fw. 0.7541 0.1018 0.8589

Table 5.5 – MAC criterion and respective uncertainties, under a white noise wind
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5.4.3 Case 2: 5% of stiffness loss on one blade under turbulent wind

The fault detection method was able to successfully detect and localize the damage on the
previous case. Now, let us try the method on more realistic data computed with a simulation
with a turbulent wind, where the reference and damaged states are identical to the previous
ones. Figure 5.5a represents the wind speed and the rotational speed of the rotor. Compared to
the previous case (see Figure 5.4a) the wind variation is much more important in this case, as
for the rotational speed. In Figures 5.5b, 5.5c and 5.5d, the phase shift and amplitudes for the
reference and damaged cases are represented for the three considered modes with their CI.
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Figure 5.5 – Comparison of the edgewise bending mode shapes between the reference state and
the damaged state under a turbulent wind

Figures 5.5b and 5.5d show that the CI are bigger compared to the previous case (see Figures
5.4d and 5.4b). Despite a larger uncertainty in the identification, the confidence intervals of the
Collective and Backward edge modes are not crossing each other. However, due to the increase
in the CI, the gap between them has been reduced. For the Forward edge mode (Figure 5.5c),
the confidence intervals are crossing each other, which means that it can not be stated that this
mode shape has changed. From this graphical analysis, it can be concluded that the Collective
and Backward edge mode shapes of the damaged state are different from those in the reference
state.
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Name MAC value σMAC 95% quantile lower bound
Col. 0.9827 0.0089 0.9913
Bck. 0.6672 0.1565 0.7853
Fw. 0.8063 0.1515 0.6846

Table 5.6 – MAC criterion and the respective uncertainties, under a turbulent wind

Table 5.6 summarizes the MAC and uncertainties of each mode. For the Collective and
Backward edge, the value of the identified MAC criterion is once again below the lower bounds
of the 95% quantile defined with a chi-square law modeling. This confirms that the mode shapes
of the damaged state are different from those of the reference state. Thus, despite the larger
uncertainty, it is still possible to detect the damaged state. However, it should be noted that the
detectability of a damage depends on two parameters, the process noise (here the turbulence
intensity) and the size of the damage. For example, with the selected simulation conditions it
is not possible to detect a stiffness loss of 2.5% on a blade. Then, the MAC of the Forward
edge mode seems to follow a chi-square law, meaning that the mode shapes are close or similar.
Consequently, the uncertainties of the MAC are once again validating the graphical analysis
based on the confidence intervals.

Finally, with the obtained results, it can be concluded that the analysis of the edgewise
bending mode shapes can be used to detect fault corresponding to a loss of 5% of stiffness
in one blade. Also, it is possible to use the amplitudes of the Collective mode shape for fault
localization.

5.5 Conclusion

Firstly, an analysis of the changes in the mode shapes of the edge bending eigenmodes has
allowed us to validate that the phase shift and the amplitude are highly sensitive to a change
of the stiffness or the mass of one blade. Secondly, the uncertainty computation for the phase
shift and the amplitude has been defined and validated with a Monte Carlo simulation using
the academic model of a wind turbine. Secondly, a fault detection method has been presented,
with the comparison of the phase and amplitude jointly with the respective uncertainties. This
method can detect a fault in a blade, on a realistic example with a loss of 5% of stiffness on one
blade. This work has been presented during the conference ISMA [24].

The method must be improved to develop a metric to quantify the probability of change in
a mode shape. To do so, methods based on the local approach presented in Section 2.4 will be
explored.
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Chapter 6

ROTOR FAULT DETECTION BASED ON

THE LOCAL APPROACH

Abstract
In this Chapter, damage detection is pursued with the adaptation of the Stochastic Subspace-based
Damage Detection, by defining a residual using the phase shift and amplitude of the edge bending mode
shapes. Then, it is applied with a gradually increasing difficulty, from the detection and localization of a
loss of stiffness of one blade of the academic model to the detection and localization of a global loss of
stiffness of one blade of the DTU 10MW wind turbine model under a realistic variable wind. To continue
and to increase the damage detectability using measurements with a fixed length and without concate-
nating the data, the mean residual is defined, conjointly with the associated impact on the covariance
of the residual. The mean residual is then used in a range of applications, showing that it is possible to
detect and localize local losses of stiffness, additions of mass, and pitch errors. The effect of the number
of sensors, and their location, is also highlighted.

6.1 Introduction

In the previous Chapter, efficient damage indicators of rotor faults have been defined with the
associated uncertainties, namely the phase shift and amplitude of the mode shapes of the Fourier
harmonics of edge bending. Then an OMA-based damage detection has been presented to show
that they can be used for damage detection. However, the presented method needs to compute
the uncertainty of the damage features for each identification, which can be time consuming for
continuous monitoring. Also to obtain a metric that quantifies the difference between the mode
shapes, the only option is to estimate the associated probabilities with a Monte-Carlo method,
which is also time consuming, as the MAC criterion gives just binary results for the comparison
of the mode shapes. Finally, the method does not provide any localization and estimation of
the damage. Consequently, the Stochastic Subspace-based Damage Detection based on the local
approach presented in Section 2.4 will be used and adapted for the detection of wind turbine
rotor fault. As presented in Section 2.4, since this data-driven method uses model information,
it should be possible to perform damage localization and quantification.

The Chapter is organized as follows. First, the new residual designed for the monitoring of
wind turbine rotors is presented. Then, the damage detection, localization, and quantification
are validated with the detection of a loss of stiffness of one blade of the academic model of a wind
turbine. To continue, the method is performed on data computed with the DTU 10MW wind
turbine model, with different complexity of the wind modeling. After that, the mean residual is
defined, to use several measurements to perform damage detection and then increase the damage
detectability. Then, the newly defined residual is tested and the performance is verified, with
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an application on the academic model of wind turbine. Afterward, the mean residual is used
to perform damage detection for the detection of local losses of stiffness on blades of the DTU
10MW wind turbine model. To finish, it is shown that the method can be used to detect the
other types of fault that occur on a wind turbine rotor, namely the addition of mass and the
pitch error. Also, it is shown that damage detection can also be performed without the model
information.

6.2 Definition of a new residual for the Stochastic Subspace-
based Damage Detection and localization

The damage detection method defined in the previous Chapter (Section 5.4) enables to
identify a global loss of stiffness of one blade through an analysis of the phase shift and amplitude
(in general the mode shape) of the edge bending Fourier harmonics. However, it is necessary to
compute the uncertainty at every identification, and there is no metric for damage localization.
Therefore, the damage detection and localization method presented in Section 2.4 will be used,
with a residual based on the phase shifts and the amplitudes of the Fourier harmonics of edge
bending.

Let us define the vector vi that gathers the phase shifts and the amplitudes of the i–th mode
shape (defined with r outputs)

vi =
[
pi

2 pi
3 . . . pi

r ai
2 ai

3 . . . ai
r

]T
. (6.1)

With this vector, it is possible to express a new residual

ζi =
√
N (v̂i − vi) ∈ R2(r−1), (6.2)

where v̂i is an estimate of vi using a data of length N . It has to be noted that this residual
is defined with r − 1 phases and amplitudes because one needs to be used to set the reference
(phase equal to 0 and amplitude equal to 1). Then, a residual that gathers the information of n
mode shapes can be defined, such that

ζ =
[
ζT

1 . . . ζT
n

]T
=

√
N
(
V̂ − V

)
∈ R2n(r−1), (6.3)

where V =
[
vT

1 . . . vT
n

]T
is the vector regrouping the phases and amplitudes of n mode shapes

(which can be called the damage sensitive vector). The phase and amplitude of the identified
mode shapes can be described with a Gaussian distribution, as they are a function of the mode
shapes which are described by a Gaussian distribution. This is confirmed in Section 5.3, with the
definition of the uncertainties of the phase and amplitude based on the first-order delta method,
assuming that the phase and amplitude are described by a Gaussian distribution.

In real operational conditions, it can be difficult to know the theoretical value of V , so an
estimate (V̂ 0) of this quantity in the reference state can be used instead. In this thesis, an
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average of (nf ) different estimates is used, such that

V̂ 0 = 1
nf

nf∑
j=1

V̂ (j), (6.4)

where V̂ (j) is an estimate of V using the j–th of the nf data sets. From this, similarly to [136],
a residual (ζ̃) function of the estimated reference can be defined,

ζ̃ =
√
N
(
V̂ − V̂ 0

)
= ζ −

√
N
(
V̂ 0 − V

)
. (6.5)

V̂ is an estimate of V using data of length N . Then, the distribution of the residual ζ
(Equation (6.3)) is defined by the following distribution

ζ =
√
N
(
V̂ − V

)
∼

N (0,Σ) : H0

N (J δ,Σ) : H1
, (6.6)

with the assumption that the effect of the parameter change on V is linear.

Now, let us take into account the estimated reference into the distribution of the residual (ζ̃
in Equation (6.5)). First, as V̂ (j) is computed using a data set of length N

√
N
(
V̂ (j) − V

)
∼ N (0,Σ) . (6.7)

As the different estimates are computed with disjointed data, they are independent, so,

nf∑
j=1

√
N
(
V̂ (j) − V

)
∼ N (0, nf Σ) . (6.8)

Consequently, using Equation (6.4) the distribution of the estimated reference is

√
N
(
V̂ 0 − V

)
∼ N

(
0, Σ
nf

)
. (6.9)

Finally, as the data used for the computation of the estimates V̂ and V̂ 0 are different, V̂ and
V̂ 0 are independent. So, the distribution of the residual ζ̃ is

ζ̃ ∼


N
(

0,Σ
(

1 + 1
nf

))
: H0

N
(

J δ,Σ
(

1 + 1
nf

))
: H1

. (6.10)

With this new residual, it will be possible to perform damage detection and localization on
operating wind turbine rotors using the Stochastic Subspace-based Damage Detection method.
To validate the use of this new residual, damage detection and localization will be performed on
the academic model of a wind turbine.
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6.3 Application to the academic model of wind turbine

In this example, the damage detection and localization method will be used to detect a loss of
stiffness on a blade DOF of the academic model of a wind turbine. The simulated measurements
will be computed for a model with a rotational speed of 1.4 rad/s under Gaussian noise, with a
signal 600 s long data sampled at 25 Hz.

6.3.1 Preliminary study

The first step is to compute the matrices that are needed to perform the different tests,
as it is shown in the flowchart Figure 2.5. So, with the system matrices, the sensitivity of
the phase shift and amplitude of the mode shape of the Fourier harmonics regarding a loss of
stiffness of each blade can be computed (leading to ν = 3). In this example, the first-order
Taylor approximation is used with ∆G = −0.1%. Then, the covariance matrix of the residual
needs to be estimated. Here, the covariance matrices of phases and amplitudes of the mode
shapes is estimated using the method presented in the previous Chapter (Section 5.3), where
the identification is performed using the accelerations of the rotor DOF. Consequently, with the
sensitivity and covariance matrices, the Fisher matrix (Equation (2.63)) can be computed. Thus,
it is possible to estimate the minimum 95%-level detectable parameter change (Equation (2.72))
and estimate the probability of detection of specific changes (Equation (2.73)), as a function of
the number of data sets used for the estimation of the reference (nf in Equation (6.4)).
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Figure 6.1 – Contribution of each identifiable Fourier harmonic to the damage detection of the
academic model of wind turbine

Before assessing the performance of the damage detection, the Fourier harmonics that will
be used to construct the residual need to be selected. To do so, the sensitivity matrix of each
identifiable harmonic will be studied. In Figure 6.1a, the norm of the sensitivity of each harmonic
is displayed. And one can see, that the harmonics 7, 9, 10, and 11 have the highest sensitivities.
However, the covariance of each harmonic needs to be taken into account. In Figure 6.1b, the
sum of the diagonal values of the Fisher matrix of each Fourier harmonic is displayed. And one
can see that three harmonics are corresponding to a value higher than the others, namely the
7, 10, and 11. Those harmonics are the harmonics of rotor flap bending of the Floquet modes
of Backward, Forward, and Collective flap (see Table 3.1). So the residual will be composed of
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those harmonics, namely 7, 10 and 11.
Once the residual has been designed, it is possible to compute the minimum 95%-level de-

tectable parameter change and the probability of detection (POD) of some damages, function
of the number of files used to compute the reference. In Table 6.1, the minimum 95%-level de-
tectable parameter change and the probability of detection of different changes in the parameters
are assessed. For simplicity, the relative change in one parameter component (∆θ = ∆θ/θ0) will
be used in this section. With Table 6.1, it can be seen that increasing the accuracy of the ref-
erence estimate has an impact on the minimum 95%-level detectable parameter change (which
is the same for all the parameter components) and on the probabilities of detection. But it can
be seen that from nf = 25, increasing further the accuracy of the reference does not improve
significantly the minimum 95%-level detectable parameter change and the POD estimations,
with a maximum gain of 0.03% on ∆θmin. So, a reference estimated with nf = 25 will be used in
this section. Also, the minimum identifiable parameter change and the probability of detection
are coherent: as 1.5% is below ∆θmin, the probability of detection is below 95%, and in contrast
2% and 2.5% are higher than ∆θmin, with an associated POD higher than 95%.

nf ∆θmin POD(1.5%) POD(2%) POD(2.5%)
5 1.94% 77.24% 96.12% 99.74%
10 1.86% 81.09% 97.43% 99.88%
25 1.81% 83.44% 98.08% 99.93%
50 1.79% 84.22% 98.27% 99.94%
100 1.78% 84.61% 98.37% 99.95%
200 1.78% 84.80% 98.41% 99.95%

Table 6.1 – Minimum 95%-level detectable change (∆θmin) and probabilities of detection (POD)
function of the number of data sets used for the estimation of the reference (nf )

In Section 2.4.4, the minmax localization method has been presented, but to apply this
method, the sensitivity matrix of the residual needs to be full rank. Unfortunately, with the
studied problem, the sensitivity matrix is not full rank, indeed the sensitivities of the parameters
are linearly dependent, with J1 +J2 +J3 = 0 (where Ji is the sensitivity of the i–th blade). The
physical meaning is that the anisotropy is identical if one blade has a drop of stiffness, or if the
two other blades have the opposite change of stiffness. Consequently, for the study of the wind
turbine rotors with the selected residual, it will be not possible to use the minmax localization
method.

The minimum 95%-level detectable parameter change and the probability of detection have
been assessed. Now, damage detection will be performed to validate the previous theoretical
study. To do so, the test is performed on data corresponding to 4 states of the model, namely
the reference one and three different damaged states, with a graduated stiffness reduction of G3,
precisely 1.5%, 2%, and 2.5%.

6.3.2 Damage detection

Before presenting the results the designation of the test in the figures have to be explained:
— Reference test: Distribution of the damage detection test performed on data correspond-

ing to the reference and healthy structure
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— Reference 95% quantile: Value of the upper bound of the 95% quantile of the damage
detection test performed on data corresponding to the reference and healthy structure

— Damaged test: Distribution of the damage detection test performed on data corresponding
to a damaged structure

After performing the damage detection test (1000 times per damaged state), the parameter
change is detected 790 times for the first damaged state, 973 times for the second, and 999
times for the third, corresponding to empirical POD of 79.0%, 97.3%, and 99.9%, respectively.
Those results are in agreement with the theoretical POD computed a priori (see Table 6.1 at
nf = 25) for ∆G3 = −2% and −2.5%. For ∆G3 = −1.5%, the empirical POD is lower than
the theoretical one, it might be due to the value of the simulated change being lower than the
95%-level detectable parameter change. Also, with the histograms of those tests, it is possible
to compare them with the theoretical distributions of the tests, see Figure 6.2. With this figure,
it can be seen, that for each state of the structure, the histograms of the tests are matching
with the theoretical distributions. Also, the mean of the tests can be studied. In Table 6.2, the
theoretical and empirical means are compared. For the different structure states, the theoretical
and empirical means are close, which confirms the theoretical statistical modeling. Consequently,
from the POD, the histograms, and the tests means, the damage detection test is assessed to
perform as predicted.
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Figure 6.2 – Comparison of the theoretical distributions and the histograms of the damage
detection tests

Reference ∆G3 = −1.5% ∆G3 = −2% ∆G3 = −2.5%
t̄th 3 14.83 24.03 35.86
t̄emp 2.79 13.67 22.94 35.25

Table 6.2 – Theoretical and empirical means of the damage detection tests, t̄th and t̄emp respec-
tively

6.3.3 Damage localization

To continue the application, the damage localization presented in Section 2.4.4 is performed.
Two cases can be studied, one with a POD lower than 95% (∆G3 = −1.5%) and one with a POD
higher than 95% (∆G3 = −2%). In Table 6.3, the means of the localization tests corresponding
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to 1.5% and 2% of stiffness loss of the third blade are compared with the theoretical means.
One can see that in both cases, the empirical and theoretical means are close. Consequently, it
confirms that the mean of the localization test is coherent with the theoretical distribution for
all the considered cases.

Tested parameter
Simulated damage G1 G2 G3

∆G3 = −1.5% t̄h th 3.66 4.61 12.83
t̄h emp 3.36 3.88 11.67

∆G3 = −2% t̄h th 5.72 5.63 22.03
t̄h emp 5.50 6.29 20.89

Table 6.3 – Theoretical and empirical means of the damage localization tests, t̄h th and t̄h emp

respectively, function of the tested parameters

So, the localization test is performing as it theoretically should. Also, to perform the damage
localization, the distributions of the different tests can be compared. In Figure 6.3, the box plots
of the localization test corresponding to the three different blades for the two first simulated
damages are displayed. In addition to a higher mean, the distribution of the test corresponding
to the damaged blade is much more shifted, which is the consequence of the χ2 distribution,
where the mean of the distribution depends on the non-centrality parameter which characterizes
the mean of the distribution.
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Figure 6.3 – Box plot of the damage localization tests, for the two first simulated damages

6.3.4 Damage quantification

Once the damage localization is performed, it can be confirmed with the damage quantifi-
cation (Equation (2.80)). In Table 6.4, the mean values of the damage quantification with the
associated 95% confidence intervals (computed based on the central limit theorem, remind in
Appendix B.2) are reported. Firstly, one can see that only the parameter G3 is associated with a
loss of stiffness, which confirms that the parameter has really changed. This difference in sign is
the consequence of the Fisher matrix, where the non diagonal values are all negative. Secondly,
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the estimated damage in G3 is close to the simulated damage for both studied simulated dam-
ages. So, for this model, the assumption of a linear effect of the parameter changes on the residual
is respected. Finally, the standard deviation of the damage quantification is around 0.43% for
the different estimations, and theoretically, it should be 0.42% (

√
1/F33 obtained based on the

distribution Equation (2.81)). This confirms that the damage quantification test is performing
as it theoretically should.

Simulated damage G1 G2 G3
∆G3 = 1.5% 0.68 ± 0.03 % 0.72 ± 0.03 % -1.43 ± 0.03 %
∆G3 = 2.% 0.93 ± 0.03 % 0.99 ± 0.03 % -1.95 ± 0.03 %

Table 6.4 – Mean values of the damage, associated with their 95% confidence interval

With the application of the damage detection, localization, and quantification method on the
academic model of a wind turbine, it has been confirmed that the method can be used to detect
and localize a fault in a rotating wind turbine rotor. To continue the validation, the method will
be performed on data from the DTU 10MW wind turbine model, with a wind load of different
complexity.

6.4 Application to the DTU 10 MW wind turbine model, hub
height wind

6.4.1 Simulation parameters

To continue with the validation, the damage detection and localization is performed on data
computed with the DTU 10MW model of wind turbine, to have data closer to real measurements.
The objective is to propose a framework that works continuously during the lifetime of a wind
turbine, so its robustness towards realistic environmental conditions must be ensured, which can
change a lot. For this purpose, real wind data are taken here. So, for each data set, the external
load, which is the wind, is computed based on in-filed data. The filed data are 10 minutes mean
wind speed from a Météo France buoy located in the golf of Gascony (See Figure 6.4). Those
data have been collected in 2021 and are free to use [92]. Based on the mean wind speed, the
"Hub Height" wind filed is computed using the software Turbsim (see Section 1.4.1), where the
turbulence intensity is automatically defined based on the IEC B norm.

The simulated data are 600 s long and sampled at 50 Hz as it is common in the wind turbine
field but the first 100 s are not used to remove the start up of the wind turbine, so N = 25000.
To have an operating wind turbine and to avoid any change in the structure, especially the pitch
angle of the blades, the mean wind speeds are selected between 4 and 11 m/s (see Figure 1.8 for
the pitch evolution of wind turbine model). This range contains almost 70% of the speed values,
as it is shown in Figure 6.5, with a histogram of all the wind speed values and an evolution of
the wind speed over one month. So, it can be concluded that the selected mean speed range
represents mainly the conditions of a wind turbine.

Then, to perform the identification and the different statistical tests, the edge bending Fourier
harmonics of the rotor will be identified using the edge bending blade root moments. Those
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Figure 6.4 – Localization of the meteorological buoys of Météo-France with accessible data [92],
the used buoy is circled
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Figure 6.5 – Wind speed values for the Gascogne buoy

outputs are used because it is easier to install sensors close to the hub. Finally, the simulated
damage will be a global stiffness reduction of the third blade of the rotor, along flap and edge.
So, there will be three parameters in the damage parametrization, one for the stiffness of each
blade.

6.4.2 Preliminary study

The first step of the preliminary study is to compute the sensitivities with the First order
Taylor approximation. To do so, the Floquet modes are computed for a small change of stiffness
for each blade (1% in the present case). Then, the identification can be performed using a
reference data set corresponding to an undamaged rotor, composed of 100 data sets, so nf = 100.
Then, from the study in Section 5.2, to build the residual, the phase shift and amplitude of the
Backward, Forward, and Collective edge bending mode shapes will be used.

In Figure 6.6a, the diagonal values of the Fisher matrix are displayed, where the residual
is built using each harmonic or all the Fourier harmonics of edge bending. From this Figure,
it is clear that the Collective edge is the harmonic that provides much information and the
Backward edge the least. But the damage detectability is better when all the Fourier harmonics
are selected. This is confirmed with the POD of different stiffness losses in Table 6.5, especially
with the lower damage. Indeed, for 1% of stiffness loss, the POD is almost two times higher
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with a residual constructed with all the harmonics, compared to the residual with only the
Collective edge. The POD of the last column of Table 6.5, can be visualized in Figure 6.6b, with
the theoretical distributions of the damage detection, for a residual composed of all the Fourier
harmonics of edge bending. This last residual will be used in the following.
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Figure 6.6 – Theoretical study of the damage detection applied to the DTU 10MW wind turbine
model

Stiffness
loss (%) Col. Bw. Fw. All egde

1 26.04 18.11 9.80 47.54
2,5 95.59 82.75 41.55 99.95
5 100.00 100.00 96.61 100.00

Table 6.5 – Theoretical probability of detection (%) for different stiffness losses and different
construction of the residual

Now, as the construction of the residual is stated and the associated theoretical performed
assessed, damage detection can be performed. For this damage detection, an estimated reference
will be used with nf = 100, as the data sets used for the computation of the covariance matrix
are used for the estimation of the reference.

6.4.3 Damage detection

Before assessing the performance of the damage detection test, it has to be verified that
the test follows its theoretical distribution for the training state (i.e. undamaged structure). In
Figure 6.7a, the test values are displayed against the mean wind speed during the simulation
used to compute the residual. In this figure, there is no clear correlation between the test
and the wind speed, with an estimated correlation coefficient of 0.19. Then, the distribution
of the test can be assessed; in Figure 6.7b, the histogram of the test is compared with the
theoretical distribution. It can be seen, that the shape of the histogram is close to the theoretical
distribution. However, there are more outliers in the test than it is predicted, this might be the
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consequence of identification errors. Consequently, it seems that there it is possible to perform
damage detection with variable wind conditions.
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Figure 6.7 – Study of the performance of the damage detection test

After that, the damage detection test is performed on three data sets, corresponding to a
different stiffness loss of the third blade, 1%, 2.5%, and 5%. In Figure 6.8, the histograms of
the test performed on each data set are displayed. First, it can be seen that the distribution
shifts to the right when the damage increases. But the shift for the tests corresponding to 1%
and 2.5% of stiffness loss seems to be reduced compared to the theory in Figure 6.6b. This is
confirmed by the empirical POD, with a probability of 15%, 89% for 1% and 2.5% of stiffness
loss, compared to 47.54% and 99.95% theoretically (last column of Table 6.5). The gap between
the empirical and theoretical POD can be also explained by the outliers in the tests, which are
increasing the estimated value of tcrit, 11.7 against 7.8 theoretically. Nevertheless, the stiffness
loss of one blade has been detected and the performance can be considered close to the theory
with ∆K3 = −2.5% and ∆K3 = −5%. So, the damage localization can be performed, to verify
if the position of the simulated damage is well isolated.

6.4.4 Damage localization and quantification

To assess the performance of the localization test, the cases corresponding to 2.5% and 5% of
stiffness losses are studied, as the damage is not enough detected for a loss of 1% of stiffness. In
Figure 6.9 the box plot of the localization is displayed for the two considered damages. With this
figure, it is clear that for both damages, the third blade is the parameter that is reacting the most
to the localization test. To confirm the localization, the quantification results can be studied. In
Table 6.6, the mean values of the quantification tests for all the parameters are reported, with
the values associated with their 95% confidence interval. With those mean values, it can be seen
that the estimated damage is negative only for the test corresponding to the third blade. So, it
confirm the results of the localization test.

To study more precisely the damage quantification results (Table 6.6), the results obtained
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Figure 6.8 – Histograms of the damage detection test
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Figure 6.9 – Box plot of the damage localization for the two studied cases

also for the data sets with ∆K3 = −1% can be studied. Looking at the mean values of the
quantification, it can be seen that there is a gap between those values and the simulated ones.
The gap is increasing more as the stiffness drop rises because the assumption of linear impact of
the damage is less accurate. Nevertheless, the damage quantification is a good estimation of the
simulated damage. Looking at the standard deviation of the damage quantification, it should be
0.45% theoretically (

√
1/F33 based on the distribution Equation (2.81)). For the first data set

corresponding to the first simulated damage, the mean standard deviation is 0.46%. However, for
the two other data sets, the mean standard deviation is respectively 0.62% and 0.77%. It seems
that the more the damage is important, the more the standard deviation increases, which is due

Stiffness
loss (%) Blade 1 Blade 2 Blade 3

1 0.66 ± 0.09 % 0.53 ± 0.09 % -0.83 ± 0.10%
2.5 1.22 ± 0.08 % 1.50 ± 0.15 % -1.98 ± 0.14 %
5 1.73 ± 0.09 % 2.65 ± 0.18 % -3.47 ± 0.19 %

Table 6.6 – Mean values of the damage quantification with the associated 95% confidence inter-
vals
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to the change in the covariance of the residual. So, the assumption of a constant covariance of
the residual is not verified for important damage.

To conclude this application of the damage detection method, it can be seen that it is
possible to detect and localize a global stiffness reduction of a blade, from data computed with
an aero-servo-elastic model of a wind turbine, even if all the assumptions of the method are not
respected.

6.5 Application to the DTU 10 MW wind turbine model, full
field wind

To continue the application of the damage detection, the damage detection will be performed
on data computed with a model where the wind is changed to full field modeling (see Section
1.4.1), to simulate data closer to the reals ones.

6.5.1 Preliminary study

First, the impact of the new wind modeling on damage detectability will be assessed, with
the same study performed in the last section. So, the covariance matrix is estimated, as it was
done in Section 6.4.2. To begin, with the diagonal values of the Fisher matrix function of the
Fourier harmonics in Figure 6.10a, it can be seen that the change of load had an important
impact on the Collective edge, with an increase of the covariance. For the two other harmonics,
there is less evolution of the covariance. The increase in the covariance can be understood by
comparing the "hub height" and the full field wind. As the full field wind add spatial turbulence,
the noise increase, which means that covariance increases. Consequently, the diagonal values of
the Fisher matrix for a residual composed of all the Fourier harmonics are reduced by almost
40%.
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Figure 6.10 – Study of the performance of the damage detection test, full field wind simulated

The reduction of the Fisher values has a direct impact on damage detection. In Figure 6.10b,
the theoretical distribution of the damage detection test is displayed. Compared to previous wind
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modeling Figure 6.6b, it is clear that the shift of the test has reduced. Which is logic, as the
shift is a direct function of the Fisher matrix (λ = δ2

hFhh). Following the reduction of the shift
in the distribution, there is a reduction in the probability of detection. In Table 6.7, the POD
for the different configurations of the residual are displayed and when they are compared to the
previous case (Table 6.5) the probabilities have reduced.

Stiffness
loss (%) Col. Bw. Fw. All egde

1 7.00 11.49 12.52 22.87
2,5 19.61 53.16 59.45 92.96
5 66.59 99.25 99.73 100.00

Table 6.7 – Theoretical probability of detection (%) for different stiffness loss and different
construction of the residual

Now that the preliminary study has been carried out, damage detection can be performed,
with the same simulated damages that have been presented in the previous section. For this
application, the residual constructed with the phase shift and the amplitudes of the three edge
bending modes shapes is once again used.

6.5.2 Damage detection

To verify the performance of the damage detection under the full field wind, the method is
applied to different data sets with the same damage presented in the previous section. For those
data sets, the environmental variability is again based on the real data of Météo-France. In Figure
6.11 the histograms of the damage detection test applied to the different states of the structure
are displayed. Compared to the theoretical distributions in Figure 6.10b, two main differences
can be seen. First, there is less shift than expected and the histogram corresponding to a loss
of 5% of stiffness has a wider spread. This is the consequence of the two main assumptions of
the method that are not fully respected, namely the linear effect of the damage on the residual
and the stability of the covariance matrix of the residual.
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Figure 6.11 – Histograms of the damage detection test, full field wind modeling
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Then, the empirical POD can be computed, with 16%, 67%, and 84% for respectively 1%,
2.5% and 5% of loss of stiffness. Compared to the theoretical values in Table 6.7 (last column),
for 2.5% and 5% of loss of stiffness, there is an important gap. This is the consequence of the
less important shift of the test corresponding to the damaged rotor, exactly like the previous
application with the other modeling of the wind. Despite this, it has been possible to detect a
loss of stiffness of one blade. To continue the damage localization will be performed.

6.5.3 Damage localization and quantification

As in the previous application, only the cases with a loss of 2.5% and 5% of loss of stiffness
are studied to assess the performance of the damage localization. In Figure 6.12 the box plot
of the localization tests of both simulated damages is displayed. The results are similar to the
previous application, with a much more important shift for the third blade, which is the damaged
blade in the simulations.
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Figure 6.12 – Box plot of the damage localization for the two studied cases, full field wind
modeling

Then the damage quantification is performed, to confirm the localization results. In Table 6.8,
the mean estimated damage with the associated 95% confidence intervals are displayed. Once
again, the quantification is confirming the localization, where only the third blade is associated
with a loss of stiffness. But, looking at the value, as for the previous application, it can be seen
that there is a gap between the estimated and the simulated damage. This is related to the lower
shift, which is directly linked to the estimated damage.

Stiffness
loss (%) Blade 1 Blade 2 Blade 3

1 0.26 ± 0.09 % 0.25 ± 0.17 % -0.44 ± 0.21%
2.5 0.74 ± 0.08 % 1.50 ± 0.25 % -2.12 ± 0.34 %
5 0.83 ± 0.11 % 2.28 ± 0.18 % -3.44 ± 0.56 %

Table 6.8 – Mean values of the damage quantification with the 95% confidence intervals, full
field wind modeling

To conclude this application, it can be stated that it has been possible to detect and localize
the damage simulated on the blades of the rotor. The impact of the new wind modeling has
been seen with an increase in the covariance of the residual, as the full field modeling adds
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spatial turbulence. Also, whereas the assumption of a linear impact of the damage and the
stability in the covariance of the residual are not respected in the application, it is possible
to use the Stochastic Subspace-based Damage Detection method. To be closer to the theory,
smaller damages can be searched, and to do so the damage detectability has to be increased.
From the theory of the damage detection method, the minimum parameter change that can be
detected directly depends on the length of the signal used for the identification of the residual.
In the next section, it will be shown how to increase damage detectability coupling identification
results instead of increasing the signal length.

6.6 Definition of the mean residual

6.6.1 Residual distribution

With the presented method, the value of the minimum detectable parameters changes de-
pends on two quantities, the covariance which is related to the external noise, which cannot be
changed, and the length of the signal. The latter can be adapted according to a targeted value.
However, in the wind turbine field, it is common to have a fixed length of the measurement to be
synchronized with the SCADA data. One option to is to concatenate the data and then identify
the residual. Another option is to identify the residual with all the data sets and then compute
a mean residual, which leads to an equivalent change in the distribution of the residual. The
last option is chosen because it allows to use residuals that have already been computed and the
formalism is equivalent to the estimation of the reference that has been introduced in Section
6.2.

The mean residual, function of the phase shifts and amplitudes of the edge bending modes
is defined as

ζ̄ =
√
N
(
V̄ − V

)
∈ R2n(r−1), (6.11)

with

V̄ = 1
nbf

nbf∑
j=1

(
V̂
)

j
, (6.12)

the mean of the phase shifts and amplitudes, computed with the values identified using nbf N

long files.
Let us define the distribution of this new residual, as it has been done in the previous Section

√
N

 1
nbf

nbf∑
j=1

(
V̂
)

j
− 1
nbf

nbf∑
j=1

V

 ∼


N
(

0, Σ
nbf

)
: H0

N
(

J δ, Σ
nbf

)
: H1

, (6.13)

then

ζ̄ ∼


N
(

0, Σ
nbf

)
: H0

N
(

J δ, Σ
nbf

)
: H1

(6.14)
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the distribution of the mean residual, computed with nbf identified residuals. Thereafter, the
minimum 95% detectable fault associated with the mean residual can be expressed as a function
of the minimum detectable fault defined in Equation (2.71),

δ̄h min = δh min√
nbf

. (6.15)

Consequently, nbf can be adjusted to detect a specific fault or parameter change.
Analogously, a mean residual computed using nbf identified residuals with a reference esti-

mated with nf identifications is defined as

ζ̄∗ ∼


N
(

0,Σ
(

1
nbf

+ 1
nf

))
: H0

N
(

J δ,Σ
(

1
nbf

+ 1
nf

))
: H1

. (6.16)

Now, as this new residual as been defined, it will be tested on data computed with the
academic model of wind turbine.

6.6.2 Application to the academic model of wind turbine

To start, the theoretical performance of the damage detection test and the impact of the
number of files used to compute the mean residual will be assessed, with this time the use of a
theoretical reference in the computation of the residual. Table 6.9 presents the minimum 95%
delectable fault and the probability of detection of a reduction of 0.5% of G3 function of the
number of files used to compute the mean residual. With this Table, it is clear that using several
files to compute the mean residual will improve the damage detectability. In Figure 6.13, the
evolution of the distribution of the detection test function of nbf is displayed and one can see
that as the damage detectability increases the shift increases also (and vice versa).

nbf 1 2 5 10 15 20 25 50
δmin 1.77% 1.25% 0.79% 0.56% 0.46% 0.40% 0.35% 0.25%

POD(∆G3 = −0.5%) 14.27 25.23 57.81 88.82 97.80 99.65 99.95 > 99.9

Table 6.9 – Minimum detectable fault and probability of detection function of the number of
files used in the mean residual (nbf )

To validate the mean residual, the damage detection will be performed with the modeling of
a change of -0.5% in G3. Before that, the optimal nbf has to be found, and looking at Table 6.9,
nbf = 15 seems to be the ideal parameter to choose,as it is a good compromise between the
POD (equal to almost 98%) and the number of data to manipulate.

Here, 1500 simulations of the wind turbine model are computed, both for the reference and
damaged state (∆G3 = 0.5%). To compute the mean residual, the 1500 residuals of each system
state are separated into 100 sets, to have completely independent mean residuals. In Figure 6.14,
the histograms of the damage detection tests using the mean residual are displayed, conjointly
with their theoretical distributions. Firstly, the histogram of the damage test corresponding to
the reference structure fits well with the theoretical distribution, although the limited number
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Figure 6.13 – Theoretical distribution of the damage detection test for ∆G3 = −0.5% and
different values of nbf

of tests is not sufficient to totally assess the distributions. Secondly, it can be seen that there
is a shift for the case corresponding to a change of 0.5% of G3, and this shift is corresponding
to the theoretical one, with an empirical POD of 97% compared to 97.8% theoretically. Those
two remarks are confirmed by looking at the mean of the damage detection in Table 6.10, where
the means of both tests are close to the theoretical values. So, it can be concluded that the
damage detection using the mean residual is performing as it should. Also, the positive effect of
the mean residual on the damage detectability can be assessed with the histogram of the test
when ∆G3 = −0.5% (see Figure 6.14), where the shift of the distribution is similar to the one
obtained with the test using initial residual for ∆G3 = −2% (see Figure 6.2).
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Figure 6.14 – Comparison of the theoretical distributions and the histograms of the damage
detection tests using the mean residual

Thereafter, the damage localization and quantification are performed. In Table 6.11, the
mean results are reported and clearly, the localization test is in agreement with its theoretical
distribution. Also, the damaged blade has been detected and the simulated parameter change
has been well estimated, with an empirical standard deviation of 0.11% equal to the theoretical
one. This example confirms the use of the localization and quantification test with the mean

147



Rotor fault detection based on the local approach

Reference ∆G3 = −0.5%
t̄th 3 23.50
t̄emp 3.04 24.20

Table 6.10 – Theoretical and empirical means of the damage detection tests using the mean
residual, t̄th and t̄emp respectively

residual.

Tested parameter
G1 G2 G3

t̄h th 5.69 6.54 21.5
t̄h emp 6.78 5.77 22.31
δ̄h 0.27 ± 0.02 0.23 ± 0.02 -0.51 ± 0.02%

Table 6.11 – Theoretical and empirical means of the damage localization and quantification tests
using the mean residual, function of the tested parameters

It has been shown that a mean residual over several data sets can be used to perform damage
detection and localization and improve damage detectability equivalently to increase the length
of the signal. However, in the studied case, the number of residuals and tests is not sufficient to
get a good estimation of the histogram. To improve this estimation, the bootstrapping and the
moving average methods are tested in the following.

6.6.3 Bootstrapping and moving average

To increase the number of mean residuals (and the number of tests) with a finite number
of identified damage sensitive vectors (1500/nbf = 100 in the previous Section), it is needed to
increase the number of combinations used to compute the mean residual. In Section 6.6.1 the
distribution of the mean residual is defined with independent damage sensitive vectors, so there
is no restriction on the combinations that are used, and one damage sensitive vector can be used
to compute several mean residuals. In this thesis, two methods are used, bootstrapping (with
N random combinations selected, 1000 or 250 in the following example) to validate the method
and the simple moving average to practice continuous monitoring.

To begin, the bootstrapping method is performed two times, one where the combinations are
made among 1000 residuals and the other among 250 residuals. In Figure 6.15 the histograms
associated with the two examples are displayed. Compared to the histogram obtained with-
out bootstrapping (see Figure 6.14), the histograms of both cases are closer to the theoretical
distributions, with a better match when the bootstrapping is performed using 1000 residuals
to construct the mean residuals. Then, the associated POD are 98.4% and 96.5%, respectively
for mean residual computed among 1000 and 250 damage sensitive vectors out of the available
1500. Those two values are close to the theoretical one (97.8%) and close to the one obtained
without bootstrapping (97%). Consequently, bootstrapping can be used to compute more mean
residuals to have a better estimation of the distribution of the tests, even if the number of dam-
age sensitive vectors is low. Concerning the mean value of the damage detection tests, t̄h emp is
equal to 2.99 for the reference state and 23.58 for the damaged state when 1000 residuals are
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used to compute all the mean residuals. While, t̄h emp is equal to 3.00 and 21.5 for the reference
state and damaged state, respectively, when 250 residuals are used. In both cases, the mean test
values are close to those obtained without the bootstrapping, and it has to be noted that the
combinations are random, as are the means values of the tests and the POD.
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(a) Use of 1000 residuals
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(b) Use of 250 residuals

Figure 6.15 – Histograms of the damage detection test for the two system states, with different
numbers of residuals to construct the mean residual with the bootstrapping

Then, the moving average can be performed using 1000 residuals. As nbf = 15, it means
that 986 mean residuals are computed for each system state. The mean residual is computed
such that

ζ̄(k) = 1
nbf

nbf −1∑
p=0

ζk+p, k ∈ [1, 1000 − (nbf − 1)] . (6.17)

Once the mean residuals have been computed, the damage detection test can be performed. As
the moving average is performed, the time evolution of the test can be displayed, in Figure 6.16a
the end of the reference state and the beginning of the damaged state are displayed, with the
last 60 damage sensitive vectors of the reference state and the first 60 of the damaged state.
With this figure, the shift of the distribution when the system is damaged can be clearly seen.
Also, during continuous monitoring, a mean residual corresponding to two different states of
the system can be computed. In Figure 6.16a, this transition is displayed in grey and each test
has its own distribution depending on the ratio between the number of residuals corresponding
to the reference state or the damaged state. Then the distribution of the damage detection
can be studied: in Figure 6.16b, the histograms computed with the mean residuals of the two
system states are displayed. For both system states, the histograms of the damage detection tests
are close to the theoretical distributions, with an empirical probability of detection of 98.28%.
Finally, as with the use of bootstrapping, the mean values of the different tests are close to the
mean of the tests obtained in the previous section, with a mean value of the test equal to 3.05
and 24.84 for respectively the reference and the damaged state.

With the two presented methods, it has been shown that using different combinations of
identified residuals to compute the mean residual can be useful to have more damage detection
tests. With both methods, the damage detection and localization test are following their theo-
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Figure 6.16 – Results of the damage detection using the mean residual and a moving average

retical distribution. However, it has to be reminded that both methods do not add information,
with negligible changes in the mean of the different tests. For the next studies, the mean residual
will be computed using the moving average, to replicate continuous monitoring.

6.7 Modeling of a local loss of stiffness on the DTU 10MW wind
turbine model

The mean residual presented in the previous section, enables the detection of small damages,
using more information to compute each test. Consequently, it will be possible to detect more
physical damages on the model of the DTU 10MW wind turbine. As presented in Section 2.5
there are many damages that can affect the wind turbine blades and as presented in [91], those
damages can be linked to local loss of stiffness. To do so, in this thesis, it is chosen to define a
fault parametrization with ten stiffness parameters per blade, each corresponding to 10% of the
blade length.

6.7.1 Computation of the sensitivities

Before the computation of the sensitivities of the new damage parametrization, the local loss
of stiffness has to be modeled. As presented in Section 1.4.5 the modeling is based on the modal
decomposition, built with the eigenmodes of each component of the system. Consequently, to
compute the sensitivities, the eigenmodes of a blade for all the damage locations have to be
computed. After that, the model of a wind turbine with a damaged rotor can be defined and
the Floquet mode decomposition and the approximation can be performed.

Once the Floquet modes have been computed for all the different locations of the damage,
the associated sensitivities can be computed, here a change of 5% of the stiffness is used. In
Figure 6.17, the sensitivities of the phase shift and amplitude of the edge bending mode shapes
are displayed, associated with the sensitivities of the frequencies. Firstly, one can see that the
phase shift and amplitude are much more sensitive than the frequencies, which was also the case
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Figure 6.17 – Absolute values of the sensitivities of the phase shift and amplitude of the edge
bending modes shapes and the sensitivities of the associated frequencies against the damage
location on the blade

for the global loss of stiffness (Section 5.2). Secondly, the three edge bending Fourier harmonics
do not have the same sensitivities, with the Backward and the Forward having almost decreasing
sensitivities as the damage is located close to the end of the blade. For the Collective, the
sensitivities of the amplitude are maximum when the damage is located around half of the blade.
Finally, the sensitivities of a local loss of stiffness are lower than the sensitivities corresponding
to a global loss of stiffness, which are around five times higher than the highest sensitivities,
for each harmonic. Also, the sum of the sensitivities of the local losses of stiffness has the same
order of magnitude than the global loss of stiffness.

To continue the study, a Fisher matrix using those new sensitivities can be computed. To do
so, the residual is composed of the phase shift and amplitude of the three edge bending modes
with the same wind condition as in Section 6.5. Also, all those parameters are numbered section
by section and in the order of the blades. So the number of the parameter of section i of blade
j is 3i + j, with i ∈ [0, 9] and j ∈ [0, 2]. In Figure 6.18a, the color map of the Fisher matrix is
displayed. As a reminder, the higher the value of a Fisher coefficient of a parameter, the more
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Figure 6.18 – Preliminary study using the full damage parametrization

sensitive the test will be to a variation in that parameter, since the non-centrality of the damage
detection test depends on that value. It can be seen that for parameters 21 to 29, the associated
matrix coefficients are lower. These components correspond to the parameters at the end of the
blades. Moreover, as the detectable fault directly depends on the Fisher matrix components (see
Equation (2.71)), the minimum detectable faults will be higher for these parameters. This is
shown in Figure 6.18b, where the values of the minimum detectable fault for each parameter are
given (computed from Equation (2.72)). One can see that the values are higher for parameters
21 to 29, with minimum detectable damages that represent a variation of more than 100% of
the healthy value. Consequently, with the selected residual, measurements, and signal length,
it is not possible to detect a loss of stiffness in the last 30% of the blades. As a consequence,
the corresponding parameters are removed from the parametrization in the following, leading
to 21 parameters representing the stiffness of the first 70% of the three blades. The incapacity
of detecting a fault with these measurements (blade root moments corresponding to the edge
bending) and this approach on the last 30% of the blades is a drawback. However, as presented
in [77], the end of the blade is much more subjected to erosion instead of crack appearance, with
a review on the prevention of blade erosion presented in [89].

From the 21 parameters, some can be redundant. So, the clustering method presented in
Section 2.4.5 is used to reduce the parametrization.

6.7.2 Clustering of the redundant parameters

To avoid redundant parameters over the 21 used in the parametrization of the model, clus-
tering is performed to group parameters of similar sensitivity based on the method detailed in
Section 2.4.5. Results are displayed with a dendrogram given in Figure 6.19a, where the dis-
tance displayed is the cumulative one to provide a better visualization of the clustering. From
the clustering, three main clusters can be distinguished, each one gathering the stiffness of a
blade. Smaller clusters are not distant enough to define a more refined localization. The final
parametrization is composed of three parameters and is displayed in Figure 6.19b. It can be
concluded from the clustering that it should be possible to localize the damaged blade. How-
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ever, it should not be possible to asses which part of the blade is damaged as the sensitivity of
parameters on the same blade are too similar. Those assumptions will be confirmed in the next
sections.
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Figure 6.19 – Results of the clustering of the rotor stiffness parameters

6.8 Detection and localization of local losses of stiffness

Once the damage parametrization is defined, it is possible to detect and localize different
damages. Here, it is chosen to simulate a loss of 7.5% of stiffness at different locations, namely
in the second section on the third blade, in the fifth section on the second blade, and between
the third and fourth section on the first blade, denoted ∆K2,3, ∆K5,2, and ∆K3/4,1 respectively.
The purpose of this selection of simulated damages is to test the capacity of the method to
detect and localize damages on different locations of the blade. For the last damage, it will also
be checked if the damage detection can deal with damages that are not following the damage
parametrization. The order of magnitude of the stiffness losses can be linked to a shear web
debonding, as it is presented in [91].

So, 100 data sets corresponding to each different damage will be used to compute the residual.
The reference and training data sets are those used in Section 6.5. Also, the covariance matrix
estimated in the aforementioned Section has been computed using 200 data sets, so as the
estimated reference, leading to nf = 200.

Looking at the values of the minimum 95% detectable faults (Figure 6.18b), the values are
higher than 15%. Therefore, the mean residual is needed to detect the simulated damages, where
nbf = 10 is used in the following. The objective of this application is to show that a local loss
of stiffness can be identified but also to replicate continuous monitoring. So, the moving average
method will be used.
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6.8.1 Damage detection

To begin, the performance of the damage detection can be assessed with the empirical POD.
In Table 6.12, all those probabilities are reported and one can see that while the values of damage
are the same, the POD are not the same. However, based on a preliminary study, the theoretical
POD of each damage should be higher than 99%. It means that the damage detection test is
not performing as well as it should, at least for two of the three damage cases.

Damage ∆K2,3 ∆K3/4,1 ∆K5,2
POD(%) 72.53 46.15 100

Table 6.12 – Empirical probability of detection

Those probabilities are illustrated in Figure 6.20, with the evolutions of the damage detection
tests and their associated histograms (computed using bootstrapping to have a better estimation
of the tests distribution). With those figures, it is clear that the shift of the damage detection test
is not the same considering the location of the loss of stiffness. For the first and second damages,
the shift of the damage detection is lower than expected with the theory, which explains why
the associated POD are lower than expected.

Despite the lower shifts than expected, it has been possible to detect different local losses
of stiffness, namely ∆K2,3 and ∆K5,2. However, for such a complex model, it is difficult to stay
under the assumption of the linear effects of the damage on the residual, which is why a lower
shift than expected can be obtained and why it is difficult to detect a damage scenario not
included in the parametrization. Moreover, the use of the mean residual to increase damage
detectability has enabled the identification of small damages, when empirical POD lower than
20% are obtained without the mean residual. To continue this example, damage localization and
quantification are performed.

6.8.2 Damage localization and quantification

Along with the damage detection, the damage localization test has been computed, where
each cluster (i.e. each blade) is tested. Also, the damage quantification is performed jointly with
the localization. The results of those tests are summarized in Table 6.13. Firstly, it can be seen
that for the first and the third simulated damages, the test with the highest shift is corresponding
to the damaged blade in the simulations. Also for those two simulated damages, the estimated
damage associated with the localization is negative, with a value close to the simulated one
for the third damage (on the second blade). For the second damage, the localization is not
conclusive, the localization test corresponding to the first blade is not the test with the highest
mean. Looking at the mean values, two parameters are associated with a stiffness loss.

Looking at the mean quantification values corresponding to the damaged blade in each
simulation, it is possible to explain the shift of the damage detection of the first and second
damages. As the estimated damage is directly linked to the shift (λ = δTFδ), if an estimated
damage is lower than the simulated one, the shift is also lower than the theoretical one. These
differences can be explained by the non-linear effects of the damages on the mean of the residual.

To conclude this application, it has been possible to detect local losses of stiffness in two
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Figure 6.20 – Evolutions of the damage detection test using the mean residual (nbf = 10) for
the different simulated damages, associated with the histogram obtained using bootstrapping

different locations and localize the damaged blade. After, it has been tested to localize more pre-
cisely the damage using the direct localization test considering the full parametrization (without
the last 30% of the blades). As the localization using the first parametrization gives the dam-
aged blade, only the parameters of that blade are tested in the new localization. In Figure 6.21,
the results of this localization are displayed for the third simulated damage (∆K5,2 = −7.5%).
Firstly, the distribution of the localization test shows that all the tests have a non-negligible dis-
tribution shift. Secondly, the mean values of the damage quantification are all negative, which
means that there is no false positive. Consequently, it is not possible to determine the exact
position of the damage on the blade. Similar results are obtained with the localization test on
the third blade for ∆K2,3 = −7.5%, where it is not possible to assess the precise location of the
damage on the third blade.

Also, it has been tested to detect and localize a loss of stiffness of the last section of one
blade, with a stiffness loss of 25% simulated. Even with a use of a mean residual with nbf = 20,
it has not been possible to detect and localize such damage, which confirms the study on the
Fisher matrix. This is due to the negligible impact of a loss of stiffness at the end of the blade
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Damage Test Blade 1 Blade 2 Blade 3

∆K2,3
Localization 3.70 7.50 16.28

Quantification 1.68 ±0.27% 2.62 ±0.38% -3.42±0.46%

∆K3/4,1
Localization 1.76 3.64 2.67

Quantification -0.78±0.26% -0.99±0.41% 1.20±0.24%

∆K5,2
Localization 3.77 38.62 9.00

Quantification 2.00±0.15% -6.52±0.64% 2.59±0.33%

Table 6.13 – Mean values of the localization and quantification tests, with the 95% confidence
intervals for the quantification
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Figure 6.21 – Results of the localization and quantification on the parameters of the second
blade, ∆K5,2 = −7.5%

on the considered residual.

6.9 Alternative selection of sensors

The previous results have been obtained using the blade root moments as unique sensors.
However, both detection and localization strongly depend on the sensor choice. The benefit
of completing the instrumentation will be demonstrated by using accelerations of the blades,
along edge, at 40% and 80% of the blade span. It is expected to get better results in terms of
detectability and localization as more information is available and more distributed along the
blades.

Today, it is not possible to install accelerometers on the wind turbine blade as the centrifugal
force is too important. But the recent progress in sensing based on computer vision [28, 88], will
perhaps enable the measurements of the displacements along the blades of a wind turbine.

6.9.1 Parametrization and clustering

The first step is to perform the clustering once again, as the sensitivities depend on the
sensor type and their location. In Figure 6.22a, the dendrogram of the hierarchical clustering is
displayed. Firstly, one can see that there is the same sub cluster in the three main clusters, which
means that it seems that it is possible to define more than one cluster inside a blade, leading
to future more accurate localization. Secondly, the distance between the clusters is much more
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Figure 6.22 – Results of the clustering of the rotor stiffness parameters, use of accelerations

important with this instrumentation compared to the previous one (see Figure 6.19a), which
means that the sensitivities are less collinear than with the moments. So, it is chosen to define
two clusters per blade, as illustrated in Figure 6.22b. Also, as with the previous instrumentation,
the theoretical minimum 95% detectable faults for the last 30% of the blades are too important
(more than 100%), so associated parameters are removed of the parametrization, which means
that a loss of stiffness at the end of one blade have a negligible effect on this new residual as well.
In general, such fault have a negligible effect on the mode shapes of the edge bending Fourier
harmonics.

6.9.2 Damage detection and localization

Once the parametrization has been defined, the damage detection can be performed, once
again with an estimated reference with nf = 200 and a mean residual with nbf = 10. Here
only the first and third simulated damages simulated in Section 6.8 are studied (∆K2,3 and
∆K5,2 respectively), as the final objective is to compare the localization results. Once the test is
performed, an empirical POD of 100% is obtained for the two simulated damages. Histograms
are given in Figure 6.23, where the shift between the distributions is obvious. Compare to the
previous instrumentation (see Figure 6.20d), the shift of the test corresponding to the damaged
structure is more important and always over the 95% threshold. This means that using two
accelerations per blade instead of one root moment gives more information and gives better
damage detectability.

The final step is to confirm that the localization has been improved. From the clustering, it
has been chosen that the parametrization will be composed of two clusters per blade. So, for the
damage localization, each cluster is tested using Equation (2.77), with conjointly the estimation
of the associated parameter change. In Figure 6.24, the results of the damage localization and
quantification of one damage case are displayed. Thus, it can be seen that the damage has been
well localized, as the cluster which includes the position of the simulated damage is the cluster
with the maximum shift. Also, the damage quantification gives an equivalent estimation of the
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Figure 6.23 – Histograms of the damage detection tests, use of the blade accelerations, obtained
using bootstrapping

damage compared to the use of the moment, which is close to the simulated damage. Similar
results are obtained for the second simulated damage, with the localization of the cluster which
includes the position of the simulated damage and an associated quantification close to the one
obtained with the moments.
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(b) Mean values of the damage quantification

Figure 6.24 – Results of the damage localization and quantification for a loss of 7.5% of stiffness
in the section 5 of the second blade, use of the accelerations

The localization test has also been performed using the full parametrization, to try to have a
more precise localization inside the damage cluster. For both simulated damages, the localization
tests corresponding to every parameter of the damaged cluster have equivalent shifts and the
associated estimated damage is negative. So, it is not possible to assess more precisely the
damage position.

From this study, it can be concluded that, with more and different sensors, it is possible to
improve the damage detectability and to localize the damage with a precision of almost half of
a blade. Furthermore, it shows that despite a limited number of sensors, the blade root moment
gives an equivalent damage detectability and enables the localization of the damaged blade. It
also has been tested to couple blade root moments and accelerations. If one acceleration per
blade is used with the moments (at 40% or 80%), there is no major improvement in the damage
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detection and the damage localization is equivalent to the one obtained using only the blade root
moments. Then it has been tested to couple the blade root moments with both accelerations
at 40% and 80%. The damage detection and localization are equivalent to those obtained using
only both accelerations on the blades, with just a higher shift of the damage detection test. So,
using both accelerations on each blade (with or without the blade root moments) is the only
configuration that enables localizing the damage with the best resolution.

6.10 Detection and localization of mass and pitch imbalance

In this chapter, works presented so far were focused on stiffness anisotropy, with the detection
of global or local stiffness losses. However, as presented in Section 2.5, in addition to stiffness
loss, other faults can occur in a wind turbine. The two other faults are the addition of mass
and pitch misalignment, also called mass and pitch imbalance. In this section, it will be tested
to perform damage detection and localization of mass and pitch imbalance on the DTU 10MW
wind turbine model. To perform damage detection, the sensors used are the edge bending blade
root moments.

6.10.1 Mass imbalance

As the studied damage is different from the previous applications, the sensitivities have to be
adjusted to the simulated damage. In Section 5.2.2 it has been shown that an addition of mass is
equivalent to a loss of stiffness. Consequently, the sensitivities of the global loss of stiffness can
be used for the addition of mass. But, in Section 6.8 a parametrization composed of the local
stiffness of the blades has been used, and it is important to see if this parametrization can be
used to detect and localize an addition of mass. To do so, the cosine between the sensitivities
of the global loss of stiffness and the clusters regrouping the local stiffness of each blade is
computed, with

cos (Ji,Jj) = J̃i
T J̃j

∥J̃i∥∥J̃j∥
, (6.18)

with J̃ = Σ−1/2J . For the sensitivities of each blade, the cosine value is higher than 0.99,
which means that the clusters of the sensitivities of local losses and the sensitivities of the global
losses are collinear. So the damage detection and localization should be equivalent using both
parametrizations, with the only difference in the damage quantification.

To apply the damage detection, simulated data of the DTU 10MW model under full-field
wind are used. The reference and training data sets are those used in Section 6.5. Then a global
addition of mass is simulated with three different data sets composed of 100 simulations, with
an increase of the third blade density of 0.5%, 1%, and 2.5%. Those values have been used in
the application of the rotor imbalance detection method presented in Section 2.5.1.

With the sensitivities of the global loss of stiffness, let us compute the theoretical probability
of detection of the simulated damages, to find an appropriate value of nbf . The probabilities are
reported in Table 6.14, using nb = 1 and nbf = 10. As the probabilities of detecting additions of
0.5% or 1% of mass are low, it can be concluded that it is needed to use the mean residual, and
nbf = 10 seems to be an appropriate value to detect the simulated values. It has to be noted
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that to have a probability higher than 95% for an addition of mass of 0.5%, a mean residual
with nbf > 25 is needed.

nbf ∆M3 = 0, 50% ∆M3 = 1% ∆M3 = 2, 50%
1 9.44 25.73 95.33
10 56.46 99.56 > 99.9

Table 6.14 – Theoretical POD of mass additions function of the number of files used to compute
the residual

The objective is to show that it is possible to detect and localize other damages than a loss of
stiffness. Therefore, the bootstrapping method is used to evaluate the performance of the mean
residual, with 1000 combinations to compute the mean residual for each simulated damage and
the training.

Sensitivity ∆M3 = 0, 50% ∆M3 = 1% ∆M3 = 2, 50%
Cluster of local losses 9.6% 43.3% 99.8%

Global loss 13.4% 48% 99.3%

Table 6.15 – Empirical POD of mass additions function of the sensitivities used to compute the
test. Obtained using bootstrapping

In Table 6.15, the empirical POD depending on the sensitivities are reported. First, it can
be seen that the difference between the probabilities using one or the other parametrization
is small, which is consistent with the collinearity analysis performed at the beginning of the
section. Also, it can be seen that the POD are lower than the theoretical ones for the two
different sensitivities. This is the consequence of a lower shift than what is obtained in the
theory. In Figure 6.25 the histograms of the damage detection tests are displayed and it can be
seen that the shift associated with the two smallest additions of mass is low. Also, it can be
seen that the distribution of the damage test corresponding to an addition of 2.5% of mass has
an important spread. This is the consequence of an increase of the covariance, as it has been
experienced in Section 6.5.
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Figure 6.25 – Histogram of the damage detection for an addition of mass, using the mean residual
(nbf = 10) and the bootstrapping
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To continue, the damage localization can be performed. In Table 6.16 the results of the
damage localization and quantification are reported, where those results are obtained using
the sensitivities of the global loss of stiffness. First, the low shifts obtained with the two first
damages are confirmed, where the mean estimated damages are lower than the simulated ones.
However, for the three simulated additions of mass, the damage is well localized, where the test
corresponding to the third blade has the highest value. Also, the associated estimated damages
are negatives, which corresponds to an addition of mass. Moreover, the change in the covariance
with the increase in the damage is confirmed by an increase in the standard deviation of the
estimated damages, when and addition of mass of 2.5% is simulated.

Damage Test Blade 1 Blade 2 Blade 3

∆M3 = 0.5% Localization 1.62 1.80 3.27
Quantification 0.05±0.01% -0.07±0.02% -0.07±0.02%

∆M3 = 1% Localization 4.36 5.27 17.72
Quantification 0.27±0.01% 0.32±0.02% -0.54±0.02%

∆M3 = 2.5% Localization 21.04 72.79 194.37
Quantification 0.64±0.01% 1.50±0.03% -2.02±0.04%

Table 6.16 – Mean values of the localization and quantification tests on data with simulations
of additions of mass, with the 95% confidence intervals for the quantification

To finish the application, the localization results obtained with the sensitivities of the global
loss of stiffness are compared to those obtained with the sensitivities of the local losses of stiffness.
To be concise, only the results of the addition of 1% of mass are compared, with all the values
reported in Table 6.17. Looking at the mean values, one can see that the mean values of the
localization tests are close. And as was explained at the beginning of the Section, the main
difference is obtained with the damage quantification. Compared to the mean damage estimated
using the sensitivities of a global loss, the mean damage is around 6 times higher when the
cluster of the local losses of stiffness is used.

Sensitivity Test Blade 1 Blade 2 Blade 3

Cluster of local losses Localization 4.15 5.31 15.67
Quantification 1.74±0.06% 2.09±0.11% -3.34±0.13%

Global loss Localization 4.36 5.27 17.72
Quantification 0.27±0.01% 0.32±0.02% -0.54 ±0.02%

Table 6.17 – Comparison of the mean values of the localization and quantification tests with
two different sensitivity matrices, applied on data with an addition of 1% of mass

To conclude this application, it has been shown that it is possible to use Stochastic Subspace-
based Damage Detection to detect and localize an addition of mass on a blade, with a perfor-
mance equivalent to the detection and localization of a global loss of stiffness on one blade.
Also, the detection and localization can be performed using the sensitivity of local or global
losses of stiffness. However, it must be noted that with the used method, it is not possible to
differentiate add of mass or loss of stiffness, but it can be done with a study of the tower or
nacelle accelerations, with the presence or not of the 1P harmonic along Side-Side.
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6.10.2 Pitch imbalance

After the loss of stiffness and the mass imbalance, the pitch imbalance is the other common
fault that occurs in a wind turbine rotor. A pitch error is different from a loss of stiffness or an
addition of mass, so the sensitivities corresponding to a pitch error are computed, using once
again the first-order Taylor approximation, with the computation of the Floquet modes for a
pitch error of 1°. Then, the cosine between the sensitivities of the pitch error and the clusters of
the sensitivities of the local loss of stiffness is computed and the values obtained are -0.3, 0.1,
and -0.4 for the first, second, and third blades, respectively. Consequently, the sensitivities of a
pitch error and a loss of stiffness are different, which means that the sensitivities of the pitch
error are needed to perform the detection and localization of such damage.

To continue, the theoretical performance of the detection test can be assessed, to then define
the damage scenarios according to those results. Using a single file to compute the residual,
the minimum 95% detectable fault is 4.78°, this value is higher than what is performed in the
bibliography. With nbf = 10 the minimum 95% detectable fault becomes 1.35°, which is closer
to the value obtained in the bibliography [20]. Consequently, three data sets are computed with
100 simulations of 600 s sampled at 50 Hz, with different pitch errors of the third blade, namely
a pitch error of 2°, -2°, and 4°. With the mean residual computed with nbf = 10, all the damage
should be detected. Also, as the pitch error can be negative or positive, a negative pitch error
is simulated to check if the sensitivities can take into account a negative pitch error. As for the
previous damage case, the objective is to show that it is possible to detect and localize other
damages than a loss of stiffness. Consequently, the bootstrapping method is used to assess the
performance of the mean residual, with 1000 combinations to compute the mean residual for
each simulated damage and the training.

In Table 6.18 the empirical POD are obtained using the sensitivities of the local losses of
stiffness or the sensitivities of the pitch error. With those probabilities, it can be seen that when
the sensitivities of the pitch error are used, the POD are higher (for the pitch error of 2° and 4°)
than the ones obtained with the sensitivities of the local losses of stiffness. This show that it is
important to use the sensitivities of the studied damage for damage detection. Then in Figure
6.26, the histograms of the damage detection test using the sensitivities of the pitch error are
displayed. With this Figure, it can be seen that the shift of the test for a pitch error of 2° is
more important than the one for an error of -2°. This show that the effect of the pitch error
on the residual is not linear. Also, with the important spread of the distribution for the test
corresponding to an error of 4°, it is clear that the covariance has changed compared to the
reference and training state (as for the global stiffness loss and the addition of mass). However,
it has been possible to detect a pitch error on one blade.

Sensitivity ∆p3 = 2° ∆p3 = −2° ∆p3 = 4°
Cluster of local
stiffness losses 37% 35% 80%

Pitch error 92% 38% 99%

Table 6.18 – Empirical POD of a pitch error function of the sensitivities used to compute the
test. Obtained using bootstrapping
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Figure 6.26 – Histograms of the damage detection test for a pitch error, using the mean residual
(nbf = 10) and the bootstrapping

To continue, the localization and quantification tests are performed with the both sensi-
tivities, to once again show that it is important to use the sensitivities corresponding to the
studied fault. But first, let us evaluate the performance using the sensitivities corresponding
to the pitch error. In Table 6.19 the mean results of the localization test and the associated
damage quantification are detailed. Looking at the localization results, for each simulated pitch
error, the test corresponding to the third blade (which is the damaged one) is the test with the
higher mean. For ∆p3 = −2°, the difference between the mean is small, because the shift due to
the damage is low. Then, the quantification can be studied. For the first pitch error, the mean
estimated damage is close to the simulated one. However, for the two others, there is a gap of
around 1° between the estimated and the simulated pitch error. As for the other examples, it is
because the assumption of the linear effect of the damage on the residual is not respected. Also,
it explains why the shift of the damage detection test is lower than expected for ∆p3 = −2°.
Nevertheless, for the three simulated pitch errors, the damaged blade has been localized and the
associated damage has the same order of magnitude as the simulated one.

Damage Test Blade 1 Blade 2 Blade 3

∆p3 = 2° Localization 13.91 3.22 30.25
Quantification -0.91±0.04° -0.34±0.04° 1.70±0.04°

∆p3 = −2° Localization 5.94 1.27 8.08
Quantification 0.60±0.03° -0.01±0.03° -0.88±0.02°

∆p3 = 4° Localization 49.07 4.37 81.99
Quantification -1.97±0.05° 0.14±0.05° 2.87±0.06°

Table 6.19 – Mean values of the localization and quantification tests on data with simulation of
pitch errors, with the 95% confidence intervals of the quantification

To finish this application, the localization and quantification using the sensitivities of the
local losses of stiffness can be studied and compared to the one presented before. In Table 6.20
the results obtained using the two different sensitivities for the data set with a pitch error of 2°
are detailed. To begin, the mean value of the localization test corresponding to the third blade
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obtained with the sensitivities of the local losses of stiffness is six times lower than the other. This
is linked to the lower shift obtained with damage detection (see the first line of Table 6.19). So,
it can not be stated that the third blade is damaged, even if the test corresponding to the third
blade has the highest shift. Then, the estimated damage associated with the localization test is
not related to the simulated damage, so it is difficult to use them to validate the localization
results.

Sensitivity Test Blade 1 Blade 2 Blade 3
Cluster of local
stiffness losses

Localization 2.35 1.78 5.65
Quantification -0.40±0.05% 1.03±0.08% -1.33±0.12%

Pitch error Localization 13.91 3.22 30.25
Quantification -0.91±0.04° -0.34±0.04° 1.70±0.04°

Table 6.20 – Comparison of the mean values of the localization and quantification tests with
two different sensitivity matrices, applied on data with a pitch error of 2°

In conclusion of this application, it can be stated that it is also possible to detect and localize
pitch angle errors on the rotor blades. Indeed, using the sensitivities related to the studied
damage, it has been possible to detect, localize and estimate the angle of an error of at least 2°
on one blade. However, it has been shown that the performance of the method decreases if the
sensitivities corresponding to the losses of stiffness are used. So, during continuous monitoring,
the detection and localization tests can be performed with both sensitivities and select the right
one function of the amplitude of the 1P harmonic along Fore-Aft in the measurement of the
tower and nacelle or if a decrease in the electricity production has been detected.

6.11 Performance of the non-parametric test

To perform the damage detection using the Stochastic Subspace-based Damage Detection
and localization, it is needed to have the sensitivity of the residual regarding the parameters of
the studied system. This means that it is necessary to have a model corresponding to the studied
system, which can not be possible sometimes. Consequently, the non-parametric test (Equation
(2.66)) has to be used to perform damage detection, with

tnp = ζT Σ−1ζ. (6.19)

Also, as said in the previous section, different types of damage can occur on a structure with
different associated sensitivities. So, the non-parametric test can be used without making any as-
sumption on the damage and the selection of the sensitivities. Then, based on other information,
perform the localization and quantification test using the appropriate sensitivities.

Here it is chosen to compare the empirical POD obtained in the previous Section obtained
with the parametric test, with the empirical POD obtained with the non-parametric test. The
non-parametric test has been performed with the same parameters used in the parametric test,
namely nf = 200 and nbf = 10. The bootstrapping method is used to have a better estimation
of the empirical probabilities. In Table 6.21, the empirical probabilities obtained for the three
types of simulated damages are reported. For each simulated damage, the POD obtained with
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the non-parametric test are close to those obtained with the parametric test.

Damage ∆K2,3 = −7.5% ∆K3/4,1 = −7.5% ∆K5,2 = −7.5%
Non-parametric 53,20% 18,10% 92,90%

Parametric 63,9% 19,6% 97,8%
Damage ∆M3 = 0, 50% ∆M3 = 1% ∆M3 = 2, 50%

Non-parametric 20% 44% 100%
Parametric 9,6% 43,3% 99,8%

Damage ∆p3 = 1° ∆p3 = −2° ∆p3 = 4°
Non-parametric 87% 56% 100%

Parametric 92% 38% 99%

Table 6.21 – Empirical POD of the different simulated damages using the non-parametric test,
compared to the probabilities obtained with the parametric test

From those examples, it can be concluded that the non-parametric test can also detect
damages of the same order of magnitude as the parametric test. So, the non-parametric test
can be used if there is no available sensitivity or if the type of damage is unknown. However, it
should be kept in mind that with this test it is not possible to localize the damage.

6.12 Conclusion

In this Chapter, the Stochastic Subspace-based Damage Detection based on the local ap-
proach has been adapted to the problem of the rotor faults, with the definition of a new residual
function of the most sensitive damage indicators, namely the phases shift and amplitudes of
the Fourier harmonics of edge bending. Then, this residual and the application of the damage
detection and localization method are validated with the detection and localization of a stiffness
loss of one blade, on data with a gradual complexity. Also, it has been demonstrated that the
residual (therefore the damage detection and localization) is not affected by the rotational speed.
This means that the damage detection can be performed during continuous monitoring, using
blade root sensors. The definition of the new residual and the detection and localization of a
rotor fault applied to the academic model of wind turbine has been presented at the Conference
IFAC World Congress [22].

Then to improve damage detectability, the mean residual is defined, to use several mea-
surements to compute the damage detection tests. The theory behind this new residual has
been validated on data computed with the academic model of wind turbine. Also, techniques
to improve the estimation of the test distribution and the probabilities of detection have been
validated. Then, after the modeling of the local loss of stiffness of the blades, it has been shown
that it is possible to detect and localize such damages, using the mean residual. Also, an alterna-
tive instrumentation of the blades has been tested, to show that the performance of the method
relies on the measurements used and that the method can be adapted to future measurement
techniques.

Finally, it has been shown that damage detection can be used to detect and localize the other
type of damage of wind turbine rotor, namely the addition of mass and the pitch error. With
the applications, it has been concluded that the mass addition can be detected and localized
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using the sensitivities of the local losses of stiffness, whereas the pitch error can be properly
detected and localized using the appropriate sensitivities. Then, it is shown that it is possible
to detect the three types of damage without any model information (i.e. the sensitivities) using
the non-parametric damage detection test.

In the different applications of the method on data computed with the DTU 10MW wind
turbine model, some limitations have been seen, especially with the assumption of the linear
impact of the damage on the residual. This limitation is inherent to the method and when it
is not respected it impacts mainly the shift of the distribution and the damage quantification.
To have a better estimation of the damage, other methods have to be used, such that the
model updating [52, 51, 57]. Nevertheless, the results of the quantification can be used as an
initialization point, of such methods.

As said previously, the presented method uses measurements on the rotor, but as it is a
rotating part it could be difficult to monitor it. Consequently, it is useful to define damage
detection methods for rotor faults using tower and nacelle measurements. To do so, in the next
Chapter, the best damage indicators of the rotor using tower and nacelle measurements will be
searched, and associated damage detection methods will be defined.
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Chapter 7

DETECTION OF DAMAGE OF THE ROTOR

USING MEASUREMENT FROM THE FIXED

FRAME

Abstract
In the previous chapters, the damage detection of the rotor was performed using rotor measurements.
However, since it may be difficult to monitor the rotor, in this Chapter, damage detection is also performed
using only the tower and nacelle measurements as this instrumentation is very common nowadays. So,
to define a damage detection method, the most sensitive damage features are searched and identified
as the appearance of new Fourier harmonics and the frequencies of the Fourier harmonics of edge and
Side-Side bending. Then, a damage detection method is presented for each damage sensitive feature. For
the appearance of new Fourier harmonics, an existing method is studied. This method is based on the
coherence of a signal and its modulation with rotor speed. It is shown that this method is more suitable for
rotor imbalance detection. Finally, the Stochastic Subspace-based Damage Detection method is adapted,
with the definition of a residual using the frequencies of the selected damage sensitive Fourier harmonics.
With this method, it is possible to detect smaller rotor stiffness losses than with the coherence and to
distinguish between rotor and tower faults.

7.1 Introduction

In the previous Chapters, efficient damage indicators of rotor faults using rotor measurements
were used and damage detection using those damage indicators has been defined. However, the
instrumentation of the rotor is difficult as it is a rotating part. So, it is easier to install sensors
on the tower and the nacelle (also called fixed frame) than on the rotor. Consequently, it has to
be assessed if it is possible to perform damage detection of rotor fault using measurements from
the fixed frame in order to propose a methodology adapted to current instrumentation.

The Chapter is organized as follows. To begin, efficient damage indicators are searched,
with a focus on the evolutions of the Floquet modes and the Fourier harmonics with the rotor
anisotropy. Then, a damage detection method of the literature using the coherence will be tested.
To finish, the Stochastic Subspace-based Damage Detection will be used, with a residual defined
with the frequencies of the Fourier harmonics that can be identified.

7.2 Search for sensitive damage indicators

The first step before performing damage detection is to find the best damage indicators. As
the studied systems are modeled as linear time periodic systems, let us study first the evolution
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of the Floquet modes and their associated approximation using only the tower/nacelle DOF.

7.2.1 Floquet modes evolution

To start the study, the academic model of wind turbine in the isotropic configuration is
studied, where the approximation is computed using the two DOF of the nacelle (θx and θz

in Figure 1.7). In Table 7.1, all the Fourier components of the Floquet modes are reported,
using the same id Number as the approximation using all the DOF (Table 3.1). All the Fourier
components reported in the Table 7.1 can be seen in Figure 3.1 with the PSD of the tower DOF.
With the approximation, it can be seen that there is no Fourier components corresponding to
the Floquet mode of Collective flap.

Floquet mode id Number Participation
factor (ϕy) Frequency (Hz) Damping (%)

Yaw motion 2 1.000 1.470 0.794
Pitch/tilt motion 5 1.000 1.590 0.682

Forward flap 8 1.000 0.864 0.240
Collective flap None
Backward flap 12 1.000 0.448 0.344

Table 7.1 – Fourier harmonics of Floquet modes, with a minimum participation factor of 1%, for
a rotational speed of 1.4 rad/s using the nacelle DOF, academic model of a wind turbine with
an isotropic rotor

Then the same study can be performed on the same system but where one blade is damaged
with a loss of stiffness of 5%. In Table 7.2 all the Fourier harmonics of the Floquet modes of
the approximation are detailed. One can see that there are three new Fourier harmonics in the
approximation, with the appearance of two Fourier harmonics for the Collective flap and one
for the Backward flap. Also, it seems that the evolution of the participation factor is much more
important than the evolution of the frequencies. In Figure 7.1, the evolution of the frequencies
of the principal Fourier harmonic and the evolution of the participation factor of the Backward
flap are presented against the stiffness loss of one blade up to 10%. With this Figure, it is clear
that the evolution of the participation factor is much more important than the evolution of the
associated frequency. So, it seems that the appearance of the new Fourier harmonics is a better
damage indicator than the evolutions of the frequencies.

This appearance of the new Fourier harmonics needs to be confirmed with identifications of
the damaged system. To do so, the academic model of a wind turbine is identified with a gradual
reduction of the stiffness of one blade, from 0.99% to 90% of stiffness with a step of 1%. Then, it
can be seen from which stiffness reduction new Fourier harmonics are identified. The first new
harmonic is identified from a stiffness of 95% and the second from a stiffness of 91%, in Table 7.3
the frequencies of the identified new harmonics are reported for different simulated stiffness with
the associated estimated standard deviation. The first identified new harmonic is one harmonic
of the Backward flap Floquet mode and the second is one of the Collective Floquet mode.
In Figure 7.1, it has been shown that the participation factor of one new harmonic increases,
meaning that the amplitude of this new harmonic also increases. Consequently, it should be
easier to identify the new harmonics. This is confirmed by the estimated standard deviation of
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Floquet mode id Number Participation
factor (ϕy) Frequency (Hz) Damping (%)

Yaw motion 2 1.000 1.466 0.797
Pitch/tilt motion 5 1.000 1.587 0.684

Forward flap 8 0.999 0.861 0.238

Collective flap New 0.916 0.963 0.207
New 0.083 0.518 0.384

Backward flap 12 0.639 0.444 0.350
New 0.361 0.889 0.175

Table 7.2 – Fourier harmonics of Floquet modes, with a minimum participation factor of 1%,
for a rotational speed of 1.4 rad/s using the nacelle DOF, academic model of wind turbine with
a stiffness reduction of 5% one one blade
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Figure 7.1 – Evolution of the Backward flap Floquet against the stiffness of one blade, academic
model of wind turbine

the identified frequencies. Indeed, for the first new harmonic, the standard deviation is divided
by five between the first time it is identified and the last simulation. So, with this example,
it has been shown that the appearance of new Fourier harmonics can be used to detect rotor
faults using nacelle measurement. To confirm it, the evolution of the Floquet modes of the DTU
10MW wind turbine model will be studied, using tower and mid-tower FA and SS accelerations.

Stiffness (%) 0.95 0.93 0.91 0.9
Identified frequencies (Hz) 0.894 0.890 0.964 0.886 0.958 0.885

σf (Hz) 0.010 0.004 0.006 0.003 0.004 0.002

Table 7.3 – New harmonics identified function of the simulated stiffness of one blade, associated
with the estimated standard deviation of the frequency (σf )

With the example of the academic model of a wind turbine, it has been shown that a loss
of stiffness of one blade can be detected with the appearance of new harmonics in the Floquet
modes. However, it happens only with the Floquet modes of rotor bending along flap, which are
the only blade bending modes in the academic model. For the DTU 10MW wind turbine model,
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there are the edge and flap bending modes, but as the damping of all the flap bending modes is
too high, only the edge bending modes can be identified. Thus, three Floquet modes have to be
studied, namely the Collective, Backward, and Forward edge. Looking at the Collective edge,
there are no new harmonics that appear with a loss of stiffness of one blade, which is perhaps
coming from the unchanging phase shift regarding the loss of stiffness of one blade (see Figure
5.1c). The two other Floquet modes can be studied: the participation factors of both Floquet
modes function of the stiffness of one blade are displayed in Figure 7.2. With the two evolutions
of the participation factor, it can be seen that a new Fourier harmonic is appearing in both
Floquet modes at h = 2 for the Backward edge and h = −2 for the Forward edge.
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Figure 7.2 – Participation factor of edge bending Floquet modes using only tower accelerations
function of the stiffness of one blade

However, the frequencies of the new Fourier harmonics are close to the frequency of other
Fourier harmonics. For the Backward edge, the harmonic h = 0 has a frequency of around 0.9
Hz, and the new harmonic (h = 2) is around 1.1 Hz. Whereas for the Forward edge, it is the
opposite, the harmonic h = 0 has a frequency around 1.1 Hz and the other new is around
(h = −2) 0.9 Hz. In Figure 7.3 PSD of mid-tower accelerations along Side-Side are compared,
with one from accelerations computed using a model with an isotropic rotor and one from
accelerations computed using a model where one blade has a loss of stiffness of 5%. With this
Figure, it can be seen that only one peak has been split, which means that two harmonics are
merged in a peak around 0.9 Hz. Also, the mode shapes of the harmonics with close frequencies
are very similar, with a MAC over 0.99. So, it will not be possible to distinguish the different
harmonics with identification for small damages. Indeed, for a global loss of stiffness of 10% on
one blade (which is large) and with the environmental conditions used in Section 4.4, it has
been possible to identify a new Fourier harmonic, but not for lower losses of stiffness. With
this global stiffness loss of 10%, the major harmonic of the Forward edge is identified with a
frequency of 1.108 Hz and another harmonic is identified with a frequency of 1.073 Hz which is
corresponding to the new harmonics of the Backward edge Floquet modes. So, the identification
of a new Fourier harmonic in the fixed frame is a sign of a highly damaged rotor, since it means
that there is a strong increase in the modal amplitude of the new harmonics associated with a
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significant shift in frequencies.
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Figure 7.3 – Comparison of the PSD of the acceleration at mid-tower along Side-Side with
accelerations from a model with an isotropic rotor and from a model where one blade has a loss
of stiffness of 5%. Accelerations obtained from a simulation with a constant wind speed

With this study, it has been concluded that damage on one blade can be detected with a
change in the Floquet modes with the appearance of new harmonics. However, it is not possible
to identify these harmonics with the DTU 10MW wind turbine model for small damages. So,
the evolution of the mode shapes and frequencies of the harmonics have to be studied for this
wind turbine model to find out if they are better damage indicators.

7.2.2 Evolution of the modes shapes and frequencies of the DTU 10MW

To find damage sensitive parameters, let us focus on the mode shapes and frequencies of
the Fourier harmonics of the DTU 10MW wind turbine model. So, first, let us compute the
sensitivity of the modes shapes along the tower DOF regarding a loss of stiffness of one blade of
all the identifiable Fourier harmonics. Once the sensitivities of the mode shapes are computed,
it can be seen that the order of magnitude is small, with around 10−2 at the maximum, which
is low compared to the sensitivities of the phase shift and amplitude computed in the Section
6.7. To confirm this, the MAC criterion is computed between the mode shapes obtained with a
model with an isotropic rotor and the mode shapes obtained with a model where one blade has
a stiffness loss of 5%. In Table 7.4, all the MAC are reported and one can see that the MAC is
close to 1 for all the Fourier harmonics. It means that the mode shapes of the Fourier harmonics
along the tower are not good damage sensitive parameters because they do not evolve enough
with the damage.

Names 1-SS 1-FA Bck. edge Fw. edge Col. edge 2-FA 2-SS
MAC >0.9999 >0.9999 0.9958 0.9992 >0.9999 >0.9999 >0.9999

Table 7.4 – MAC between the mode shapes of the DTU wind turbine model with an isotropic
rotor and the mode shapes of the DTU wind turbine model where a blade has a stiffness loss of
5%, identifiable Fourier harmonics using tower accelerations along Side-Side and Fore-Aft
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The frequencies can then be studied, with first the study of the sensitivities. In Table 7.5 the
sensitivities of the frequency of the different Fourier harmonics are detailed. One can see that
the sensitivity is maximum for the harmonics of edge bending and that the order of magnitude is
lower than the order of magnitude of the sensitivities of the amplitude and phase shift obtained in
Section 6.7. But, the covariance of the estimation of the frequencies is lower than the covariance
of the identified mode shape. As the damage detectability is a ratio between sensitivity and
covariance, the damage detectability may be equivalent. For the second tower bending harmonics,
the sensitivities are lower, with an order of magnitude around 10−2, but can give information
on the rotor damage. However, the sensitivities of the first tower bending harmonics are too low
to give information on the rotor damage.

Names 1-SS 1-FA Bck. edge Fw. edge Col. edge 2-FA 2-SS
Sensitivity 6.12 10−5 -2.40 10−3 2.26 10−1 1.10 10−1 3.08 10−1 2.34 10−2 2.25 10−2

Table 7.5 – Sensitivities of the frequencies of the identifiable Fourier harmonics using tower
accelerations (Ω=6 rpm)

To finish the study, it has to be noted that the frequencies of the Fourier harmonic can vary
with the rotational speed (see Section 1.5.3). In Table 7.6, all the frequencies function of the
rotational speed are reported. In the evolution, 4.9 rpm is chosen instead of 5 rpm because at
5 rpm the 3p harmonic is at 0.25 Hz (close to 1-FA and 1-SS) and the controller of the DTU
10MW wind turbine model is designed to avoid 5 rpm. Looking at the values, one can see that
two Fourier harmonics have an important evolution, namely the Backward and Forward edge.
For those Fourier harmonics, the frequencies are linearly dependant on the rotational speed with
theoretically

fbck = f̄bck − Ω
2π and ffw = f̄fw + Ω

2π . (7.1)

Where f̄bck and f̄fw are the frequencies of the Fourier harmonics that can be identified using
rotor sensors, with both frequencies around 1.0 Hz for the studied model. Then two other
frequencies are varying with an order of magnitude close to the sensitivity, namely the two Fore-
Aft bending Fourier harmonics. So, a change in the rotational speed can be seen as a fault, which
prevents the use of those harmonics. To conclude, the frequencies that can be used to perform
damage detection are the Fourier harmonic of the second Side-Side bending and all the Fourier
harmonics of edge bending, but with a correction using the rotational speed for the Backward
and the Forward edge.

In the previous Chapter (Section 5.2), it has been stated that the sensitivities of the frequen-
cies were small, however as there are no other damage indicators, the frequencies are the best
damage indicators when the system is monitored using only tower accelerations.

7.2.3 Additivity of the effects of the damage

In the previous Chapter, the damage detection was based on anisotropy tracking, which
means that there is no damage additivity in the damage indicators. Indeed, if the three blades
of the rotor have the same loss of stiffness, the rotor is still isotropic, so there are no changes in
the phase shift and the amplitudes compared to those of the non-damaged case. It is the same
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Rotational speed (rpm)
Name 4 4.9 6 7 8 9 9.6

2-FA 2.300 2.287 2.279 2.273 2.270 2.268 2.266
2-SS 2.351 2.351 2.351 2.351 2.351 2.351 2.351
Col. edge 2.059 2.060 2.062 2.063 2.065 2.066 2.068
Fw. edge 1.075 1.089 1.107 1.123 1.140 1.156 1.166
Bck. egde 0.934 0.918 0.901 0.883 0.865 0.849 0.839
1-FA 0.252 0.254 0.257 0.258 0.259 0.260 0.260
1-SS 0.253 0.253 0.253 0.253 0.253 0.253 0.253

Table 7.6 – Frequencies of the identifiable Fourier harmonics using tower accelerations function
of the rotational speed (Hz)

for the appearance of the new Fourier harmonics, it is linked to the rotor anisotropy. Thus, the
additivity of the effects of rotor damages on the frequencies of the Fourier harmonics has to be
assessed. To do so, the Floquet modes of the DTU 10MW wind turbine model are computed
for different stiffness losses in the rotor, all for a rotational speed of 6 rpm. In Figure 7.4, the
evolutions of the frequencies of the selected Fourier harmonics function of different stiffness loss
are displayed. First, it can be seen that the effect of the damage seems to be additive for the
Collective edge and the 2-SS, where the frequency of the harmonics for a loss of stiffness of 5%
on one blade or distributed on two blades are close. Then, with the evolution of the frequency
of the Backward and Forward edge, it can be seen that there is no damage additivity for both
Fourier harmonics. But the behaviors are different than the one obtained with the anisotropy.
In other words, it will not be possible to distinguish a loss of stiffness on one blade from a loss
of stiffness distributed on the rotor.

To conclude this study, it has been stated that the appearance of Fourier harmonics, is
directly linked to the rotor anisotropy, so with these damage indicators there is no damage
additivity. Then for the frequency of the Fourier harmonics, for one part of the harmonics, it
seems that the effects of the damages on the frequencies are additive and not for the other part.
So there is no true damage additivity with the frequencies, but using the sensitivities computed
for a stiffness loss of one blade, it is possible to have an estimation of the order of magnitude of
the global damage in the rotor, as it is not possible to assess the distribution of the damage on
the different blades. Damage detection based on the monitoring of the frequencies is presented
in Section 7.4. First, in the following section, a method to detect the appearance of the new
Fourier harmonics from the literature is tested.

7.3 Use of the coherence to detect new Fourier harmonics

In the previous Section, it has been shown that with the example of the DTU 10MW wind
turbine model, with anisotropy new Fourier harmonics are appearing but with a frequency close
to frequencies of harmonics that can be identified for a system with an isotropic rotor. In [125],
the author presents a method to detect the appearance of new Fourier harmonics, even when
these harmonics are close in the frequency space (and spatial space), using tower acceleration,
with an application to an academic model of a wind turbine. To detect the appearance of new
Fourier harmonics, the acceleration is modulated and the coherence is computed between the
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Figure 7.4 – Evolutions of the frequencies of the Fourier harmonics sensitive to a rotor damage
function of different stiffness losses in the rotor. 2b:= two damaged blades and 3b:= three
damaged blades

reference signal and the modulated one. The appearance of new Fourier harmonics should gives
new peaks in the coherence spectrum.

7.3.1 Description of the method

The method is designed knowing that the frequencies of the Fourier harmonics of the Back-
ward and Forward edge are separated by 2Ω/2π in the fixed frame. Consequently, a signal mea-
sured on the tower and the same signal with modulation of ±2Ω will have common frequency
contents. The k–th modulation of a signal y(t) is

yk(t) = y(t) exp (−ikΩt)

= y(t) exp (−ikψ(t))
, (7.2)

where Ω is the rotational speed and ψ(t) the azimuth angle of the rotor. In Figure 7.5 the
frequency content for a reference signal and a modulated (k = 2) one are displayed, for an
isotropic and an anisotropic rotor, with the example of the DTU 10MW wind turbine model at
6 rpm. In this Figure, it can be seen that when the rotor is isotropic, two frequencies are common
in the complex spectrum of a signal and its modulation. Then, for a signal from a model with
an anisotropic rotor, new frequencies are matching between the modulated and the reference
signal. First, with the appearance of the first harmonic of the rotational speed (1P, see Section
2.5.1) three frequencies are in common: two near the negative forward edge and two near the
backward edge. Then with the appearance of new Fourier harmonics, 4 other frequencies are in
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common. Consequently, new peaks should appear in the coherence spectrum when the rotor is
anisotropic.
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Figure 7.5 – Visualization of the frequencies of interest in the original and modulated signal
(k = 2), for an isotropic and anisotropic rotor (5% stiffness loss on one blade). •:= Frequency of
a new Fourier harmonic or harmonic of the rotational speed that is appearing with anisotropy

The coherence between two signals (real or complex) x(t) and y(t) is defined such that

γxy (ω) = |Gxy (ω)|2

Gxx (ω)Gyy (ω) , (7.3)

with Gxy (ω) the cross-spectrum between x(t) and y(t), Gxx (ω) the power spectral density of
x(t) and Gyy (ω) the power spectral density of y(t). All spectra are estimated using the Welch
method [141]. The coherence has values between 0 and 1, where 1 means that both signals have
the same frequency content at the frequency ω (|Gxy (ω)|2 = Gxx (ω)Gyy (ω)).

7.3.2 Distribution of the coherence

Before testing the damage detection using the coherence, the associated distribution need to
be studied to have a better understanding of the impact of the rotor anisotropy on the coherence
spectrum. To do so, the study is performed using a synthetic signal

x(t) = 0.01 cos (2π25t) + 0.05 cos (2π35t) + wx (7.4)

y(t) = 0.01 cos (2π(25 + 0.002)t) + 0.05 sin (2π35 + 0.002)t) + wy, (7.5)

where wx and wy are zero mean Gaussian noise, with a standard deviation of 0.02 and 0.05,
respectively. To estimate the distribution of the coherence, a Monte Carlo simulation is performed
with 1000 computations of the coherence. In Figure 7.6 the mean coherence spectrum of the
Monte-Carlo with the estimated empirical 95% confidence interval is displayed. First, one can see
that the coherence spectrum is composed of two peaks, with associated frequencies corresponding
to the frequencies of the harmonics that compose x(t) and y(t). Then, as the coherence is bounded
by zero, the lower bound of the confidence interval is close to 0 except for the peaks. So, it seems
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that the distribution of the coherence depends on the value of the coherence, with a peak or
noise.
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Figure 7.6 – Mean coherence spectrum, with the 95% estimated confidence interval ( ), 1024
values in the spectrum

To confirm the previous assumption, the histogram of the coherence is studied, with the
coherence at a frequency corresponding to a peak or to the noise. In Figure 7.7, the histograms
are displayed conjointly with a fit of an associated distribution, a χ2 for the noise, and a normal
law for a peak.
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Figure 7.7 – Histograms of the coherence for a frequency corresponding to a peak and a frequency
corresponding to the noise, with a fit of a distribution

With this Figure, it is clear that there is a good agreement between the fit and the histogram
for both cases, so it can be concluded that the coherence can be described by a normal law when
it is corresponding to a peak and described by a χ2 law when it is corresponding to the noise.
Consequently, if a peak appears in the coherence spectrum, the coherence at the associated
frequency will shift from a χ2 distribution to a normal distribution.
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In the next section, the coherence will be used to detect a stiffness loss of one blade, with
an application on data computed with the DTU 10MW wind turbine model with a gradual
complexity.

7.3.3 Application: detection of a stiffness loss on one blade

To test the approach, the method is applied on tower top Side-Side accelerations computed
with the DTU 10MW wind turbine model for different configurations of the rotor (600 s long
sampled at 50 Hz). The first study is performed with a wind defined as white noise with a mean
value of 7 m/s leading to a mean rotational speed of around 6 rpm and a 1P around 0.1 Hz.
The modulation is performed with k = 2 and the azimuth angle ψ(t) is estimated by time
integration using the rotational speed sampled at 1 Hz (the rotational speed has often not the
same sampling rate as the other measurements). The coherence between the acceleration and
the modulated one is computed with a spectrum composed of 2048 values, giving a frequency
resolution of around 0.025 Hz.
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Figure 7.8 – Coherence between the acceleration tower-top along Side-Side and the modulated
one, wind turbine model under white noise wind

In Figure 7.8 the coherence spectrum is displayed for different signals corresponding to
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different stiffness loss of one blade, with the zoom around the frequencies of interest of the
spectrum. First, looking around the harmonics of the rotational speed (Figure 7.8c), it can be
seen that three peaks appear with the loss of stiffness of one blade, with an increase of the
amplitude conjointly with the increase of the stiffness loss. The frequency of the peaks are
corresponding to the harmonic of the rotational speed as it was expected (see Figure 7.5). Then,
new peaks are appearing close to the frequency of the Backward and Forward edges. However,
the amplitude of those new peaks is low compared to the peaks around the harmonics of the
rotational speed, but it seems that two peaks appear around each frequency.

To continue the study, the method is applied once again on acceleration on the tower top
along Side-Side, but on data computed under turbulent wind (modeled as "hub-height"), to
test the method on more realistic data. In Figure 7.9, the coherence spectrum using the new
simulated accelerations, for the different states of the rotor is displayed, with zooms around the
frequencies of interest.
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Figure 7.9 – Coherence between the acceleration tower-top along Side-Side and the modulated
one, wind turbine model under turbulent wind

Compared to the previous spectrum (Figure 7.8), the main difference is around the harmonics
of the rotational speed, where the only remaining peak is corresponding to the modulation of the
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1P and -1P (-1P in the coherence spectrum). Also, the amplitude of the peak has been reduced,
from 0.8 to below 0.3. This might be due to the highly variable rotational speed, which leads to
time varying harmonics. Then, there are no more peaks around the frequency of the Backward
edge. But two peaks near the frequency of the Forward edge remain. Consequently, to detect the
loss of stiffness of one blade, the focus might be on the values of the coherence with a frequency
near the -1P and the Forward edge.

Finally, a complete study can be performed similarly to what has been done in Section
6.4. Thus the method is performed first on accelerations computed with the DTU 10MW wind
turbine model under a variable turbulent wind (modeled as "hub-height"). Then, the method is
performed on accelerations computed with a wind turbine model, where one blade has a loss
of stiffness of 5%, with 100 data sets for each rotor configuration. As the mean wind speed
is variable, the frequencies of interest are not the same for each simulation. So, to follow the
evolution of the coherence, the focus will be around the peaks of the Forward and Backward edge
and the -1P, ±2∆f (∆f : the coherence spectrum resolution) because the peaks in the coherence
spectra do not exactly correspond to the studied frequencies. The frequencies of interest are
estimated with an identification using the tower accelerations of each data set. With the mean
coherence spectrum displayed in Figure 7.10, it can be seen that there are no more coherence
peaks around the harmonics of the rotational speed. Then, one can see that the peaks around
the Backward and Forward edge have increased. So, the impact of the blade stiffness loss has
been detected with the coherence, using all the data sets available. Now the distributions of the
coherence will be studied, to see if there is a shift in the distributions.
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Figure 7.10 – Mean Coherence spectrum of each rotor configuration, with the dashed lines
corresponding to he frequencies of interest

Since there are no more coherence peaks around the harmonics of the rotational speed,
the study of the coherence will be focused on the Forward and Backward edge. In Figure 7.11
the histograms of the coherence spectra are compared around the frequencies of the Backward
and Forward edge. For the Forward edge (Figure 7.11a), the shift of the distribution at the
frequency ffw − ∆f and ffw + 2∆f can be seen. However, the distributions are not completely
distinct. The same can be stated with the coherence at the frequencies around the Backward
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edge at fbw − 2∆f and fbw − 2∆f in Figure 7.11b, where the distributions have shifted, but not
enough to be distinct. So, with this application, it can be concluded that it might be possible
to detect a stiffness loss of one blade using tower accelerations thanks to a change in the mean
of the coherence spectrum. But, other sophisticated methods need to be used conjointly to
perform damage detection during continuous monitoring (for example to have an automatic
detection of change in the coherence spectrum). This is due to the high noise in the spectra,
impeding the distinction between distributions associated with the reference and damaged states.
Consequently, the presented method seems not to be adapted to the detection of stiffness losses.
In the next section, the method will be used to detect mass imbalances, to find out whether it
is better suited to this problem.
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(b) Backward edge

Figure 7.11 – Histograms of the coherence around the frequencies of the Backward and Forward
edge, := histogram computed from accelerations of the reference rotor, := histogram
computed from accelerations of the damaged rotor

7.3.4 Application: detection of a addition of mass on one blade

To continue the application of the coherence to detect rotor imbalance using the measurement
from the fixed frame, the mass imbalance is studied. The main difference between the spectrum
of acceleration between a mass and stiffness anisotropy is the amplitude of the 1P harmonic along
Side-Side (see Figure 5.2). So, the first study is performed on an acceleration computed under
turbulent wind ("hub-height") from a wind turbine model with an isotropic rotor and a damaged
rotor with two different mass additions of 2.5% and 5%, respectively. Then it will be compared
to the results obtained in Figure 7.9, as the difference between the coherence spectra should be
localized around the harmonics of the rotational speed. So, in Figure 7.12, the coherence spectra
of each rotor configuration are displayed. The main difference between these spectra and those
obtained in Figure 7.9 is the amplitude of the peak at the frequency of -1P, which corresponds
to the coherence between the harmonic of the 1P of the acceleration. Also, it can be seen that
the value of the coherence is almost equal for this peak between an addition of mass of 2.5% or
5%. It means that the mass imbalance can be detected with the coherence at the frequencies of
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the harmonics of the rotational speed, and not at the frequencies of the Backward and Forward
edge.
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Figure 7.12 – Coherence between the acceleration tower-top along Side-Side and the modulated
one, wind turbine model under turbulent wind with an addition of mass

Then, a complete study can be performed similarly to the previous Section. So, the coherence
is computed first on accelerations computed with the reference wind turbine model under a
variable turbulent wind (modeled as "hub-height") with a total of 100 data sets. Then, the
method is performed on accelerations computed with a wind turbine model, where one blade
has an addition of mass of 1% (also 100 data sets) to have a damage value close to what has
been detected with the method in the literature.

In Figure 7.13a the mean coherence spectra are displayed around the harmonics of the
rotational speed. With this Figure, it is clear that a peak is appearing at the frequency of -1P.
Another one also appears close to the 1P but with a smaller amplitude. The second peak comes
from the modulation of the 1P and the 3P. Since the 3P has a lower amplitude than the 1P, it
can explain the lower amplitude of the second peak. It confirms that it is easier to detect the
mass imbalance than the stiffness imbalance due to the amplitude of the harmonic of the 1P.
Then, the distributions of the coherence can be studied. In Figure 7.13b, the histograms of the
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coherence values at the frequencies around the 1P are shown. For the coherence values at the
frequency of the 1P and below, the distributions have shifted, especially for the value at the
frequency of the 1P. Consequently, from this example, it can be concluded that the coherence
can be used to detect mass imbalance of the rotor, with the appearance of the 1P peak. However,
as for the detection of a stiffness loss, the study needs to be continued to have an automatic
detection of rotor imbalance, with the definition of an associated automatic detection method
like it is done for the study of the PSD (presented in Section 2.5.1).
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Figure 7.13 – Coherence results using the tower-top acceleration along Side-Side, addition of
mass on one blade

With this example, it can be seen that it is easier to detect an addition of mass than a loss
of stiffness with this method, as the addition of mass leads to the appearance of the 1P peak.
It is a preliminary work, but it seems that it is difficult to detect a small loss of stiffness with
this approach. Therefore, based on the previous study on the damage indicators, the detection
of stiffness losses of the rotor must be based on the monitoring of the frequencies.

7.4 Damage detection based on the frequencies

In Section 7.2, with the appearance of new Fourier harmonics in the Floquet modes, the
other damage indicators were the frequencies of the identifiable Fourier harmonics. To perform
damage detection using the frequencies, the stochastic subspace identification is used as it was
done in [59].

7.4.1 Definition of a residual

To perform damage detection with the Stochastic Subspace-based Damage Detection, a resid-
ual has to be defined. Based on the study performed in Section 7.2.2, the residual is composed of
the damage sensitive harmonics that are not varying with the rotational speed. So, the residual
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is defined as

ζ =
√
N
[
f̂1SS − f1SS f̂∗

bw − f∗
bw f̂∗

fw − f∗
fw f̂col − fcol f̂2SS − f2SS

]T
, (7.6)

where f̂k the estimation of the frequency fk and the normalized frequencies defined such that

f∗
bw = fbw + Ω

2π and f∗
fw = ffw − Ω

2π . (7.7)

In the same way, as for the previous residual in the previous Chapter, this residual can be
expressed function of an estimated reference. Also, it will be possible to use the mean residual
to reduce the covariance, and thus detect smaller damages. From this new residual, it will be
possible to define the statistical test using the sensitivities computed in Section 7.2.2. But as
some of the frequencies are also sensitive to tower damage it is chosen to add the associated
sensitivities. Also, it should be possible to distinguish a rotor fault from a tower fault. So, the
considered parametrization is composed of two parameters.

7.4.2 Theoretical performance

From the definition of the residual and the sensitivities, the Fisher matrix can be then
computed. To do so, the covariance matrix needs to be estimated. In this study, the simulated
data computed in Section 6.5 are used (simulations with turbulent full filed wind based on Météo-
France measurement, 600 s long sampled at 50 Hz), except that the tower top accelerations along
Fore-Aft and Side-Side are used to perform the identification instead of the blade root moments.
In Figure 7.14a, the diagonal values of the Fisher matrix function of the frequencies used to
construct the residual are displayed. With those diagonal values, it can be seen that the Fourier
harmonics corresponding to the Floquet modes of edge bending give the best detectability of the
rotor damage. Whereas, for the tower damage, the Fourier harmonics of the Floquet modes of
tower bending give the best detectability. Then, using the Fourier harmonics of all the Floquet
modes of the rotor and tower bending gives the best damage detectability of rotor and tower
damage.
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Figure 7.14 – Values of the Fisher matrix function of the considered residual
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With this parametrization, it is possible to use the minmax damage localization and quantifi-
cation method, as the sensitivity matrix is full column rank. This is confirmed in Figure 7.14b,
where the diagonal values of the Fisher matrix and the values of the minmax Fisher matrix
(defined in Equation (2.86)) have the same order of magnitude. This was not the case in the
previous Chapter, for example, where the sensitivities of the parameters were linearly dependent.

To finish the study of the theoretical performance, the probabilities of detection of some
simulated damages can be computed considering different residuals. The values are reported in
Table 7.7. First, the probabilities confirm the statement made at the beginning of the Section,
with the Fourier harmonics of the Floquet modes of edge bending giving the best damage
detectability of rotor fault and the Fourier harmonics of the Floquet modes of tower bending
the best damage detectability of tower fault. Then, for the different residual construction, the
probabilities are low. It means that the damage detectability needs to be improved. As it was
done in the previous Chapter, the mean residual can be used. To obtain a probability of detection
over 95% for a stiffness loss of 5% on a blade and 1% on the tower considering a residual composed
of all the Fourier harmonics, nbf = 10 can be chosen.

Damage All edge All SS All edge+2SS All modes
∆K3 = −1% 5.89% 5.02% 5.93% 5.94%

∆K3 = −2.5% 10.92% 5.13% 11.20% 11.27%
∆K3 = −5% 31.45% 5.51% 32.71% 33.02%

∆Ktower = −0.5% 5.03% 15.54% 14.36% 16.20%
∆Ktower = −1% 5.13% 50.43% 45.93% 52.82%

Table 7.7 – POD of different stiffness reductions of the tower or the rotor function of the definition
of the residual

7.4.3 Application: detection of different damage scenarios

As presented in the previous Section, the mean residual is used with nbf = 10 and as
the objective is to assess the possibility to use the frequency to perform damage detection,
bootstrapping is used. Also, the estimated reference is computed with the data-sets used during
the computation of the covariance matrix, with nf = 200.

To perform the damage detection, a residual composed of all the edge bending harmonics
and the second Side-Side harmonic is used. The first Side-Side harmonic is removed because
its frequency is close to the frequency of the third harmonic of the rotational speed in some
simulations, which happens when the rotational speed is close to 5.05 rpm. Nevertheless, the
first Side-Side harmonic does not give a lot of information on the damage as the probabilities
of detection and Fisher values for a residual constructed with all the harmonics or without the
1-SS are close (Figure 7.14 and Table 7.7). So, the performance of the damage detection is not
significantly affected by the removal of the first Side-Side harmonic.

To validate the damage detection using the frequencies, the test is performed on different
data sets. First, the same training data set as in Section 6.5 is used (with a wind modeled as
"nub-height"). Then, on data sets with different stiffness reductions of one or two blades. And,
to finish on data sets with a stiffness reduction of the tower and with stiffness reductions of the
tower and a blade.

184



Detection of damage of the rotor using measurement from the fixed frame

0 20 40 60 80 100 120
Test value

0.00

0.05

0.10

0.15

0.20

0.25

D
en

si
ty

Empirical 95% quantile
Reference test
Damaged test: K3 = 2.5%
Damaged test: K3 = 5%
Damaged test: K2 = 2.5% and K3 = 2.5%
Damaged test: Ktower = 1%
Damaged test: K3 = 2.5% and Ktower = 0.5%

Figure 7.15 – Histogram of the damage detection test for the different simulated damage sce-
narios, using the mean residual (nbf = 10) and bootstrapping (1000 combinations)

In Figure 7.15, the histogram of the test performed on the different data sets is displayed.
To begin, it can be seen that the shift of the distribution is important for all the tests computed
on data sets corresponding to a damaged structure. Then, the associated empirical probabilities
of detection are close to the theoretical ones for the stiffness reduction of one blade of 5% and
the stiffness reduction of the tower of 1%, with a value over 99.9% (100% theoretically). For a
stiffness loss of 2.5%, the empirical probability is 85.2%, which is over the theoretical one of 70%.
This gap can be the consequence of the assumption of the linear effect of the damage which is not
respected. Then, for the test computed on data where the tower and a blade are damaged, the
empirical probability is around 96.4% whereas the theoretical one is about 97.9%. The empirical
and theoretical probabilities are close, which means that the effect of loss of stiffness of the tower
and a blade are additive. Finally, looking at the results corresponding to the data set where two
blades are damaged, it can be seen with Figure 7.15 that the shift of the distribution is lower
than the one obtained for a loss of stiffness of 5% but higher than the one obtained for a loss of
stiffness of 2.5%. This result confirms the study performed in Section 7.2.3, where the damage
additivity is not perfect, but the assumption gives a good estimate of the order of magnitude of
the rotor damage. This will also be verified with the results of the quantification test.

In Table 7.8, the mean values of the localization and quantification tests are reported, with
the mean values of the quantification test associated with their empirical 95% confidence interval.
Let us start with the localization test. When the simulated damage is only on the rotor or the
tower, the damage is well localized for each simulated damage. The difference between the mean
values corresponding to the damaged parameter and the other is important because the minimax
test is used and theoretically only the localization test corresponding to the damaged parameter
should have a shift. For the test where damage is simulated on the rotor and on the tower, the
mean values of the two localization tests have the same order of magnitude.

Finally, the performance of the quantification test can be assessed. As the quantification is
linked to the shift of the distribution and as the empirical probabilities of detection are close to
the theoretical ones, it should be the same for the estimated damage. For the test corresponding
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Simulated damage Test Rotor Tower

∆K3 = −2.5% Localization 13.917 2.855
Quantification -3.37±0.04% 0.17±0.01%

∆K3 = −5% Localization 41.377 3.808
Quantification -5.92±0.04% 0.20±0.01%

∆K2 = −2.5% and ∆K3 = −2.5% Localization 20.639 2.747
Quantification -4.13±0.04% -0.16±0.01%

∆Ktower = −1% Localization 1.093 64.848
Quantification -0.18±0.04% -1.22±0.01%

∆K3 = −2.5% and ∆Ktower = −0.5% Localization 9.976 12.609
Quantification -2.75±0.05% -0.49±0.01%

Table 7.8 – Damage localization and quantification results using the minmax test

to a loss of stiffness of one blade or the tower, the estimated damage is close to the simulated
one, but higher. This is in agreement with the empirical probabilities of detection that are higher
than the theoretical ones. For the test corresponding to a simulation of a loss of stiffness of two
blades, the estimated damage is lower than the simulated one, as the shift of the distribution of
the damage detection test is lower than the theoretical one. Then, when the damage is simulated
on one blade and on the tower, the estimation of each damage is close to the simulated one,
thanks to the minmax test that gives an unbiased estimator.

To conclude, with the use of the frequencies of the identifiable Fourier harmonics, it has been
possible to detect and localize faults on the rotor and the tower, based on the model sensitivities
and signal processing. But, the performance of the damage detection is lower than the one based
on the phase shift and the amplitude (see Section 6.5), where a loss of stiffness of 5% on one
blade is detected without the use of the mean residual.

7.5 Conclusion

To conclude, using only measurements from the fixed frame, two main damage indicators
have been found. With the appearance of new Fourier harmonics and the evolutions of the
frequencies.

Whereas the new Fourier harmonics appear close to existing ones, which does not make it
possible to directly identify it for small damages, the use of coherence might be a solution. With
the use of coherence, it is theoretically possible to detect the appearance of the new Fourier
harmonics even if the associated frequencies are close to other ones. But, the method is sensitive
to the variable rotational speed. Consequently, the method is more suitable for the detection of
an addition of mass than a loss of stiffness, as the addition of mass leads to the appearance of
harmonics of the rotational speed. However, the detection of mass imbalance with the coherence
is close to the imbalance detection based on the appearance of the 1P in the PSD in the fixed
frame (with the methods briefly presented in Section 2.5.1). Consequently, a machine learning
method can be used jointly to perform imbalance detection with coherence.

Finally, the Stochastic Subspace-based Damage Detection based on the local approach has
been used using the frequencies of the Fourier harmonics to define a residual. With this method,
it has been possible to detect loss of stiffness of the rotor, with different combinations of damaged
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blades. Also, thank to the minmax test, it is possible to differentiate rotor damages and tower
damages.

This Chapter is a preliminary work for damage detection using the measurements of the fixed
frame to assess the potential of the damage indicators. To continue this work, both methods that
have been tested need to be applied to data computed under a full field wind and potentially
on real measurements.

However, damage detection using the frequencies can not be performed directly on a real
structure. Indeed, the frequencies of a structure are impacted by the temperature, as it is shown
in [145] on civil engineering structures and in [45] on a wind turbine. Consequently, to perform the
presented damage detection method, a correction of the temperature effect has to be performed
first, as it is done in [50] based on the Gaussian process.
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CONCLUSION AND PERSPECTIVES

Conclusion

In this thesis, the first objective was to define a new identification approach to perform
Operational Modal Analysis (OMA) on operating wind turbines. The second objective was to
define a fault detection method associated with the identification (i.e. the OMA methods), with
a focus on rotor faults. The main problem is that the rotation of the rotor of a wind turbine
breaks the Linear Time Invariant (LTI) hypothesis, and these systems should rather be modeled
as Linear Time Periodic (LTP) systems. Since the basic assumptions of OMA are no longer
fulfilled, these LTI-based OMA methods need to be extended to LTP systems. The approach
that is chosen in the thesis was to define the identification procedure based on the physics behind
the studied system. For damage detection, it is chosen to construct the method with the most
sensitive damage features that can be obtained with the new identification procedure.

To begin, the first Part was dedicated to the state of the art, to understand the modeling
of an operating wind turbine and the problem of performing OMA on it. Looking at the OMA
methods of the state of the art, the main challenge comes from the modeling of the operating
wind turbine, which goes against one of the assumptions of the OMA methods. Thus, some
methods have been developed to adapt the OMA methods to the problem of rotating machines
and LTP systems in general, but all those methods have non-negligible drawbacks and cannot
be used for the monitoring of operating wind turbines. Then, looking at the damage detection
methods designed for operating wind turbines, many methods are dealing with rotor imbalance
detection (mass or aerodynamic), but there are only few methods for the detection of structural
faults. Therefore, this problem is assessed in the thesis.

To continue, in the second Part, the problem of the identification of LTP systems is treated,
where it is chosen to approximate the eigenmodes of the LTP systems (called Floquet modes) as
a finite sum of eigenmodes of LTI systems. Precisely, each Floquet mode is approximated as the
sum of its Fourier harmonics with a non-zero amplitude. Then, this approximation is validated
with the example of an academic model of wind turbine and a physical meaning is given to the
Fourier harmonics of the Floquet modes. To continue, the validity of the identification of the
Fourier harmonics of the Floquet modes with the Stochastic Subspace Identification (SSI) is
demonstrated, based on the definition of the state-space representation of the approximation,
which is an LTI system under non-stationary inputs, precisely inputs with periodic moments.
Finally, the identification is performed using data from simulations of rotating wind turbines,
with a gradual complexity. In every case, the modes identified with the SSI are corresponding
to the Fourier harmonics of the Floquet modes of the model.

To finish, in the third Part, fault detection is treated, with the aim of using the identification
results as a basis. Also, based on the results of the state of the art, it is chosen to define the
damage detection method based on rotor anisotropy tracking. For this purpose, the parameters
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of the identified Fourier harmonics that are the most sensitive to the rotor anisotropy are sought,
and defined as the phase shift and the amplitude of the mode shapes of the edge bending (i.e. in
the rotor plane) Fourier harmonics. Firstly, it is shown that those damage indicators can be used
to detect rotor anisotropy with a single identification using the associated uncertainties. Secondly,
those damage indicators are used to define a new residual to adapt the Stochastic Subspace-
based Damage Detection to the detection of rotor faults. This damage detection method is then
applied with the detection and localization of a stiffness loss of one blade, on data with a gradual
complexity. For each application, it has been possible to detect a stiffness loss, assess which blade
is damaged, and estimate the order of magnitude of the damage. To continue, and to improve
damage detectability using fixed length measurements, the mean residual is defined and validated
with an application on data of an academic model of a wind turbine. After that, using the mean
residual, different local losses of stiffness simulated with an aero-servo-elastic wind turbine model
have been detected, as the damaged blade. Also, it is shown that the performance of the damage
detection and even more the damage localization depends on the sensors used in the identification
to construct the residual, with the example of the damage detection and localization using an
ideal instrumentation composed of two measurements of accelerations per blade (mid and end of
the blade) along the edge direction. Finally, the problem of wind turbine rotor damage detection
using fixed frame (nacelle and tower) measurement is assessed. Considering the parameter of
the identifiable Fourier harmonic, the most sensitive indicators are the shift of frequencies and
the appearance of new Fourier harmonics. The last indicator is difficult to monitor even with
dedicated methods from the literature. For the shift of the frequencies, the Stochastic Subspace-
based Damage Detection can be used by defining a residual function of the frequencies. This
damage detection is applied to data computed with an aero-servo-elastic model of a wind turbine,
with a simulated loss of stiffness of one blade.

To conclude, the two objectives of the thesis have been achieved thanks to the definition of
the approximation of the Floquet modes as a sum of eigenmodes of time invariant system, with
its associated state-space representation, allowing the use of the SSI. This has made it possible
to monitor the operating wind turbines through the identification of Fourier harmonics of the
Floquet modes.

Perspectives

From the work that has been carried out and the results obtained during the thesis, some
perspectives can be seen:

— Apply the identification procedure to real data from the rotor. To confirm that the
identification procedure can be used for a continuous monitoring of an operating wind
turbine.

— In addition to the identification, apply the damage detection methods defined in Chapter
6 and Chapter 7. One of the objectives will be to confirm that the damage detection test
based on phase shifts and amplitudes is not sensitive to wind conditions and especially to
temperature. For the temperature, since the residual is a function of the rotor anisotropy
and the rotor is exposed to the same temperature field, the test may be insensitive to the
temperature. For the damage detection based on the frequencies, it should be possible
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to estimate the effect of the temperature on the identified frequencies and try to remove
the effect, as it is mentioned in the conclusion of Chapter 7.

— Use model updating after the damage detection, localization, and quantification, to have
a better estimate of the state of the wind turbine, to avoid any assumptions on the
features used to perform the damage detection. However, there is a major challenge with
the model updating. Indeed, if the damage features are based on the harmonics of the
Floquet modes, it will be necessary to compute the Floquet modes of the model during
the optimization process, which is a costly operation. One option might be to use a
meta-model for the optimization.
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Appendix A

AERODYNAMIC LOADS MODELLING WITH

THE BEM THEORY

Here the theory of the Blade Element Momentum (BEM) is presented. In order to compute
the aerodynamic load from the properties of the wake and the wind turbine.

Actuator disc concept

U∞
Uw

UD

actuator disc

stream tube

Figure A.1 – Stream tube of a wind turbine

To begin, let’s determine the power extracted from the wind by the wind turbine, considered
as a uniform disk. To do this, let’s define a stream tube Figure A.1. Thus, we can define a flow
and deduce a relationship between the different speeds, according to the conservation of energy
of a non-compressible fluid:

U∞A∞ = UDAD = UwAw, (A.1)

where A∞ is the considered surface at the beginning of the steam tube, Ad is the surface swept
by the rotor and Aw the surface considered at the end.

The parameter a, the axial flow induction factor, is defined to quantify the change in speed
between the incident wind and the wind at the rotor, with UD = U∞(1−a). With the momentum
theory, it is possible to express In the same way the wind speed downstream of the rotor :

Uw = (1 − 2a)U∞. (A.2)

Thus, the change in momentum of the flow (∆M), with ρ the air density, is defined as:

∆M = (U∞ − Uw) ρADUD. (A.3)
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The change in momentum can be related to the force differential at the rotor, so we get(
p+

D − p−
D

)
AD = (U∞ − Uw) ρADU∞(1 − a), (A.4)

with p+
D and p−

D respectively the pressure ahead and behind the rotor. Finally, the power due to
the wind forces on the rotor can be expressed :

P = FUD = 2ρADU
3
∞a(1 − a)2. (A.5)

Furthermore, the theoretical power coefficient of a wind turbine can be defined:

Cp = 4a(1 − a)2, with P = 1
2CpρADU

3
∞. (A.6)

From the definition of the power coefficient, it is possible to calculate the theoretical maxi-
mum, called the Betz limit

dCp

da
= 4(1 − a)(1 − 3a) (A.7)

= 0 for a = 1
3 . (A.8)

Thus, the maximum power coefficient is Cp max = 0.593.

Rotor disc theory

U∞(1 − a)

2a′Ωr

U∞(1 − a)
ΩrRotor motion:

Figure A.2 – Tangential velocity across the rotor

Now let us consider the rotation of the rotor, which induces a rotation of the flow (Figure A.2).
To begin, let’s define the tangential flow velocity, as a function of the rotational speed Ω, the
radius r and the tangential flow induction factor a′ :

Vt = 2Ωra′. (A.9)

Once the two velocity components are defined, it is possible to define the torque produced by
the wind. The torque transmitted to the wind turbine can be defined as the change in angular
momentum of the flow.
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Assuming that each annular ring of radius r and of radial width δr is independent, the torque
increment associated with this element is equal to the momentum of the tangential velocity by
the radius of the considered element

δQ = ρδADU∞(1 − a)2Ωra′r (A.10)

with δAD the elementary surface swept by the surface element associated to the radius increment.
From the torque increment, we can express the associated power δP = δQΩ. Reusing the

definition of power,the relation between axial and tangential flow induction factor is

δP = 2ρδADU
3
∞a(1 − a)2. (A.11)

We then obtain the following equality

U2
∞a(1 − a) = Ω2r2a′. (A.12)

By setting λr = Ωr
U∞

the local speed ratio we obtain the relation

a(1 − a) = λ2
ra

′. (A.13)

Finally, we can express the power of the flow through a rotor element

δP =
(1

2ρU
3
∞2r2δr

)
4a′(1 − a)λ2

r , (A.14)

with two distinct parts, the power of the flow through the elementary ring (1
2ρU

3
∞2r2δr) and

the efficiency of the wind turbine (ηr = 4a′(1 − a)λ2
r).

Rotor blade theory

Once the speeds are obtained, we can calculate the aerodynamic loads on a blade section,
from the drag and lift loads. First, let’s define the relative speed of a blade at radius r

w =
√
U2

∞(1 − a)2 + Ω2r2(1 + a′)2. (A.15)

w
U∞(1 − a)

Ωr(1 + a′)

ϕ

β
α

Figure A.3 – Blade element velocities

The angle of attack is defined as α = ϕ − β (see Figure A.3), where β represents the pitch
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of the blade and ϕ is defined by the following equations:

sinϕ = U∞(1 − a)
w

(A.16)

cosϕ = Ωr(1 + a′)
w

. (A.17)

Finally, we can express the lift and drag forces for each element of length δr and chord c

δL = 1
2ρw

2cCLδr, (A.18)

δD = 1
2ρw

2cCDδr (A.19)

with CL and CD respectively the lift and drag coefficients of the aerodynamic profile for the
angle of attack α. This gives us the axial load and the torque on an element for N blades

δT = δL cosϕ+ δD sinϕ = 1
2ρw

2Nc (CL cosϕ+ CD sinϕ) δr, (A.20)

δQ = δTΩ. (A.21)

Blade Element Momentum (BEM)

Once the different loads are defined, the velocity field must be determined. For this the Blade
Element Momentum theory (BEM) [19] is used. This theory, widely used, considers that each
element of a blade interacts only with the flow passing through this part.

First, the variation of the axial momentum of the flow passing through the swept annular
can be written as:

ρU∞(1 − a)2πrδr2aU∞ = 4πρU2
∞a(1 − a)rδr. (A.22)

Then the loss of pressure of the flow downstream of the rotor inducing an additional load on the
annular is considered

F∆p = 1
2ρ(2a′Ωr)22πrδr. (A.23)

Consequently

1
2ρw

2Nc (CL cosϕ+ CD sinϕ) δr = 4πρ
(
U2

∞a(1 − a) + (a′Ωr)2
)
rδr, (A.24)

by simplifying the equation

w2

U2
∞
N
c

R
(CL cosϕ+ CD sinϕ) = 8π

(
a(1 − a) + (a′λµ)2

)
µ, (A.25)

with µ = r
R , λ = ΩR

U∞
the tip speed ratio and R the rotor radius.

In a second step, let us express the axial torque generated by an element of the rotor

(δL sinϕ− δD cosϕ) r = 1
2ρw

2Nc (CL sinϕ− CD cosϕ) rδr. (A.26)
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Using the angular momentum variation of the flow we obtain:

w2

U2
∞

Nc

R
(CL sinϕ− CD cosϕ) = 8πλµ2a′(1 − a). (A.27)

Usually we define
CL cosϕ+ CD sinϕ = CX

CL sinϕ− CD cosϕ = CY .
(A.28)

Finally from the equations A.25 and A.27, we can obtain the flow induction factors a and a′

a

1 − a
= σr

4 sin2 ϕ

(
CX − σr

4 sin2 ϕ
C2

Y

)
(A.29)

a

1 + a′ = σrCY

4 sinϕ cosϕ, (A.30)

with σr = Nc
2πµR the chord solidity. To determine the velocity field and thus obtain the forces

exerted on the rotor, the equations A.29 and A.30 must be solved iteratively for each rotor
element.
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Appendix B

LEMMA AND THEOREM USED

B.1 Law of large numbers [30]

Let X = {X1, X2, . . . , Xn, . . .} a sequence of independent random variable define with a
mean µ and a variance σ2. The sample average of X is defined as

X̄n = 1
n

n∑
i=1

Xi (B.1)

Weak law: The weak law of large numbers (also called law of Khinchin) states that the sample
average converges in probability towards the expected value

X̄n → µ when n → ∞. (B.2)

So, for any positive number ε
lim

n→∞
P
(∣∣∣X̄n − µ

∣∣∣ < ε
)

= 1. (B.3)

Strong law: The strong law of large numbers (also called law of Kolmogorov) states that the
sample average converges almost surely to the expected value

X̄n
a.s.→ µ when n → ∞. (B.4)

That is,
P
(

lim
n→∞

X̄n = µ
)

= 1. (B.5)

B.2 Central limit theorem [30]

Let X = {X1, X2, . . . , Xn, . . .} a sequence of independent random variable define with a
mean µ and a variance σ2. Then as n approaches infinity, the random variable

√
n
(
X̄n − µ

)
converge to a normal distribution N

(
0, σ2):

√
n
(
X̄n − µ

)
∼ N

(
0, σ2

)
. (B.6)

B.3 Lemma 3 of [12]

Let (vk)k≥0 and (zk)k≥0 be two sequences of square integrable vector valued random variables
defined over some probability space (Ω,G,P) and let (Gk)k≥0 be an increasing family of sub-σ-
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Lemma and theorem used

algebras of G such that:

sup
k≥0

E
(
∥vk∥2

)
≤ C < ∞, and lim

N→∞

N∑
k=0

∥zk∥2 = +∞ w.p.1 (B.7)

vk and zk are Gk-measurable, and E (vk|Gk−1) = 0. Then, for any j > 0, the following holds:

lim
N→∞

∑N
k=j vjz

T
k−j∑N

k=0 ∥zk∥2
= 0 w.p.1. (B.8)

If 1
N

∑N
k=0 ∥zk∥2 ≤ C < ∞, Equation (B.8) is equivalent to

lim
N→∞

1
N

N∑
k=j

vjz
T
k−j = 0 w.p.1. (B.9)

B.4 Theorem: Convergence of finite sum

Let xn n ∈ N a random variable with supk≥0 E
(∥∥∥xkx

T
k

∥∥∥2
)

≤ C < ∞, with ∥ · ∥ a p-norm
(1 < p < ∞). Let us define a new variable with

Xn =
∥∥∥∥∥ 1
n

n+a∑
k=n

xkx
T
k

∥∥∥∥∥ , a constant and < ∞. (B.10)

Using the Chebyshev inequality, with ε ∈ R > 0

P (|Xn| ≥ ε) ≤ E
(
|Xn|2

)
ε2 , (B.11)

using the definition of Xn

P (Xn ≥ ε) ≤ 1
ε2

1
n2E

∥∥∥∥∥
n+a∑
k=n

xkx
T
k

∥∥∥∥∥
2 (B.12)

≤ 1
ε2

1
n2E

(n+a∑
k=n

∥∥∥xkx
T
k

∥∥∥)2 (B.13)

≤ 1
ε2

1
n2E

(
a

n+a∑
k=n

∥∥∥xkx
T
k

∥∥∥2
)

(B.14)

≤ a2

ε2
1
n2 sup

k≥0
E
(∥∥∥xkx

T
k

∥∥∥2
)

(B.15)

Consequently, using Equation (B.15)

lim
N→∞

N∑
i=1

P (Xi ≥ ε) ≤ lim
N→∞

N∑
i=1

a2

ε2
1
i2

sup
k≥0

E
(∥∥∥xkx

T
k

∥∥∥2
)

(B.16)

≤ a2

ε2 sup
k≥0

E
(∥∥∥xkx

T
k

∥∥∥2
) N∑

i=1

1
i2
< ∞ (B.17)
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using the Borel-Cantelli lemma

lim
n→∞

Xn = lim
n→∞

∥∥∥∥∥ 1
n

n+a∑
k=n

xkx
T
k

∥∥∥∥∥ = 0 ∀ a ∈ N < ∞. (B.18)
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Appendix C

MATHEMATICAL PROOFS

C.1 Proof: Convergence of o(1)

First using Equation (3.49)

Sm,n(N) = Ĥm,n − C̃Ãm+n−2 1
N

N−1∑
k=0

(
Ãzknz

T
kn

C̃T + Bknvknv
T
kn

DT
kn

)
(C.1)

let us prove the convergence to zero of all parts of Sm,n(N), using Lemma 3 of [12]. Sm,n(N)
can be separated as follows

Sm,n(N) = Sm,n z(N) + Sm,n v(N) + Sm,n vB(N) + Sm,n vD(N) + Sm,n w(N). (C.2)

First

Sm,n v(N) = C̃Ãm+n−2 1
N

N−1∑
k=0

(
Bknvknz

T
kn

C̃T + Bknvknw̃
T
kn

)
(C.3)

Assuming N is a multiple of Td, similarly to (3.53)

Sm,n v(N) = C̃Ãm+n−2 1
Td

Td∑
l=1

Bl
Td

N

∑
kl

(
vkl
zT

kl
C̃T + vkl

w̃T
kl

)
, (C.4)

where kl denotes the indices at the same discrete time l in the period. Expressing zkl
function

of zkl−1

Sm,n v(N) = C̃Ãm+n−2 1
Td

Td∑
l=1

Bl
Td

N

∑
kl

(
vkl
zT

kl−1ÃT C̃T + vkl
vT

kl−1Bl−1C̃T + vkl
w̃T

kl

)
. (C.5)

vkl
and zkl

are square integrable random variables such that supk≥0 E
(
vkl
vT

kl

)
≤ C < ∞ and

lim
N→∞

1
N

∑
kl

∥zkl
∥2 ≤ C < ∞ (proof in Appendix C.2). Also, they are Yk-measurable and

E (vk|Yk−1) = 0, where Yk−1 denotes the family of variables y0 to yk−1. So using Lemma 3
of [12]

lim
N→∞

C̃Ãm+n−2 1
Td

Td∑
l=1

Bl
Td

N

∑
kl

vkl
zT

kl−1ÃT C̃T = 0. (C.6)

vk is a Gaussian white noise, so it is a sequence of independent variables with zero mean

lim
N→∞

C̃Ãm+n−2 1
Td

Td∑
l=1

Bl
Td

N

∑
kl

vkl
vT

kl−1Bl−1C̃T + vkl
w̃T

kl
= 0. (C.7)
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Finally, leading to
lim

N→∞
Sm,n v(N) = 0. (C.8)

Secondly, following the same steps as above,

Sm,n vB(N) = 1
N

N−1∑
k=0

m+n−2∑
j=1

C̃Ãj−1 (Bkm−jvkm−jz
T
kn

C̃T + Bkm−jvkm−jv
T
kn

DT
kn

+Bkm−jvkm−jw̃
T
kn

)
.

(C.9)

Leading to

Sm,n vB(N) = 1
N

m+n−2∑
j=1

N−1∑
k=0

C̃Ãj−1 (
ṽkm−jz

T
kn

C̃T + ṽkm−jv
T
kn

DT
kn

+ ṽkm−jw̃
T
kn

)
, (C.10)

where Bkvk = ṽk. zkn and ṽk are square integrable variables such that supk≥0 E
(
ṽkṽ

T
k

)
≤ C < ∞

and lim
N→∞

1
N

∑
kl

∥zkl
∥2 ≤ C < ∞. Also they are Yk-measurable and E (ṽk|Yk−1) = 0. km−j > kn

for 1 < j < m+ n− 2, so using Lemma 3 of [12]

lim
N→∞

1
N

m+n−2∑
j=1

N−1∑
k=0

C̃Ãj−1 (
ṽkm−jz

T
kn

C̃T
)

= 0. (C.11)

vk and w̃k are independent Gaussian process, so

lim
N→∞

Sm,n vB(N) = 0. (C.12)

Following with Sm,n vD(N),

Sm,n vD(N) = 1
N

N−1∑
k=0

(
v̄kmz

T
kn

C̃T + v̄kmv
T
kn

DT
kn

+ v̄kmw̃
T
kn

)
, (C.13)

where v̄k = Dkvk. With the same arguments used for the previous part lim
N→∞

Sm,n vD(N) = 0 .

Continuing with Sm,n w(N)

Sm,n w(N) = 1
N

N−1∑
k=0

(
w̃kmz

T
kn

C̃T + w̃kmv
T
kn

DT
kn

+ w̃kmw̃
T
kn

)
, (C.14)

zkn and w̃kn are square integrable variables such that supk≥0 E
(
w̃kw̃

T
k

)
≤ C < ∞, and

lim
N→∞

1
N

∑
kl

∥zkl
∥2 ≤ C < ∞. Also they are Yk-measurable and E (w̃k|Yk−1) = 0. So using

Lemma 3 of [12] ( as km > kn ∀k)

lim
N→∞

1
N

N−1∑
k=0

(
w̃kmz

T
kn

C̃T
)

= 0. (C.15)

Also w̃kn and vk are Gaussian white noise, so they are independent and with zero mean, thus

lim
N→∞

Sm,n w(N) = 0. (C.16)
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Finally,

Sm,n z(N) = C̃Ãm+n−2 1
N

N−1∑
k=0

(
zknv

T
kn

DT
kn

+ Ãzknw̃
T
kn

)
, (C.17)

expressed as function of the step kn − 1

Sm,n z(N) = C̃Ãm+n−1 1
N

N−1∑
k=0

((
Ãzkn−1 + Bkn−1vkn−1

)
vT

kn
DT

kn

+
(
Ãzkn−1 + Bkn−1vkn−1

)
w̃T

kn

)
.

(C.18)

Using ṽk and v̄k,

Sm,n z(N) = C̃Ãm+n−1 1
N

N−1∑
k=0

((
Ãzkn−1 + ṽkn−1

)
v̄T

kn
+
(
Ãzkn−1 + ṽkn−1

)
w̃T

kn

)
. (C.19)

Ãzkn−1 + ṽkn−1, ṽkn and w̃kn are square integrable variables such that supk≥0 E
(
w̃kw̃

T
k

)
≤

C < ∞, supk≥0 E
(
ṽkṽ

T
k

)
≤ C < ∞ and lim

N→∞
1
N

∑N−1
k=0 ∥Ãzk + ṽk∥2 ≤ C < ∞. Also they are

Yk-measurable, with E (w̃k|Yk−1) = 0 and E (ṽk|Yk−1) = 0. Thus, using the Lemma 3 of [12]
presented in Section B.3

lim
N→∞

Sm,n z(1) = 0. (C.20)

All the parts converge to zero, consequently Sm,n = o(1) converges to zero.

C.2 Proof of the convergence of 1
N

∑N
k=0 zkz

T
k

Let us express the state vector at the index k + Td as a function of the inputs and the state
vector at the index k,

zk+Td
= ÃTdzk +

Td∑
j=1

Ãj−1Bk+j−1vk+j−1. (C.21)

Let us define the extended state vector

Zk =
[
zT

k zT
k+1 . . . zT

k+Td−1

]T
∈ RñTd , (C.22)

also the extended input vector can be defined as

Vk =
[
vT

k vT
k+1 . . . vT

k+Td−1

]T
∈ RmTd . (C.23)

Using Equation (C.21) for any index a

Za+Td
= AZa + BVa, (C.24)
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with

A =


ÃTd 0 . . . 0

0 ÃTd . . . 0
...

... . . . ...
0 . . . ÃTd

 and B =


ÃTd−1Ba ÃTd−2Ba+1 . . . Ba+Td−1

ÃTd−1Ba+1 ÃTd−2Ba+2 . . . Ba

...
... . . . ...

ÃTd−1Ba+Td−1 ÃTd−2Ba . . . Ba+Td−2

 . (C.25)

From Equation (C.24), it is possible to express an LTI relation

ZK+1 = AZK + BVK , (C.26)

where
ZK =

[
zT

a+KTd
zT

a+KTd+1 . . . zT
a+KTd+Td−1

]T
, (C.27)

and similarly for VK . In other words, the new index K denotes the period index and a the initial
index in the vector Z0. Equation (C.26) defines an LTI-system of size ñTd where the matrix B
had a lines arrangement depending of a, thus,

lim
Ñ→∞

1
Ñ

Ñ∑
K=0

ZKZ
T
K = E

(
ZKZ

T
K

)
. (C.28)

To prove that 1
N

∑N
k=0 zkz

T
k converges, Equation (C.28) will be used. First,

ZKZ
T
k =

Td−1∑
l=0

za+KTd+lz
T
a+KTd+l. (C.29)

Consequently,

1
Ñ

Ñ∑
K=0

ZkZ
T
k = 1

Ñ

Ñ∑
K=0

Td−1∑
l=0

za+KTd+lz
T
a+KTd+l (C.30)

= Td
1
N

N∑
k=0

za+kz
T
a+k, with N = TdÑ , (C.31)

as 1
Ñ

∑Ñ
K=0 ZkZ

T
k converges, 1

N

∑N
k=0 za+kz

T
a+k also converges. Now let us prove that it converges

to the same limit ∀a > 0. Let us define a′ ̸= a, so

1
N

N∑
k=0

za+kz
T
a+k − 1

N

N∑
k=0

za′+kz
T
a′+k =



1
N

 N+a∑
k=N+a′

zkz
T
k −

a∑
k=a′

zkz
T
k

 , a > a′

1
N

−
N+a′∑

k=N+a

zkz
T
k +

a′∑
k=a

zkz
T
k

 , a < a′

. (C.32)

supk≥0 E
(
∥zkz

T
k ∥2

)
≤ C < ∞ , consequently, using the Chebyshev inequality and the Borel-

Cantelli lemma

lim
N→∞

(
1
N

N∑
k=0

za+kz
T
a+k − 1

N

N∑
k=0

za′+kz
T
a′+k

)
= 0 (C.33)
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Finally, 1
N

∑N
k=0 za+kz

T
a+k converges to the same limit ∀a ≥ 0.
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Appendix D

PROOF: MOMENTS AND

ACCELERATIONS COUPLING WITH SSI

The objective is to prove that bending moments can be used with other quantities such as
displacements, velocities, or accelerations as data in the SSI method.

First let us recall the state-space model and the system matricesxk+1 = Axk + Bvk

yk = Cxk + Dvk

, (D.1)

where the observation matrix is defined as

C =
[
Cd − CaM−1K Cv − CaM−1C

]
∈ Rr×n. (D.2)

Where Ca,Cv and Cd are the selection matrices of the degrees of freedom corresponding to the
different outputs, respectively for the acceleration, velocity and displacement associated with
the observations

y(t) = Ca
d2 u(t)
dt2

+ Cv
d u(t)
dt

+ Cdu(t) ∈ Rr. (D.3)

Now let us express the definition of the moments. With the Euler–Bernoulli beam theory,
the bending moment is defined as

Mi = −EIi
∂θi

∂x
, (D.4)

where E depends on the material properties, Ii depends on the geometrical properties and θi

denotes the rotation along the axis i (x is the parameter defining the distance along the neutral
axis). Also, the torsional moment is defined as

Mx = GJθx, (D.5)

where G depends on the material properties, J depends on the geometrical properties and θx de-
notes the torsional angle. As in finite element modeling, a linear operator between displacements
and moments T , a function of the material and geometrical properties can be defined,

M = Tu, (D.6)

where M gathers all the bending moments, u the displacements of the system and T the linear
operator.
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From this, the observation considering the moments can be expressed as

y(t) = Ca
d2 u(t)
dt2

+ Cv
d u(t)
dt

+ Cdu(t) + CmTu(t), (D.7)

where Cm denotes the selection matrix of the moments, then expressed as a function of the
system matrices

y(t) = (Cd + TCm)u(t) + Cv
d u(t)
dt

+ Ca

(
M−1v(t) − M−1C d u(t)

dt
− M−1Ku(t)

)
(D.8)

=
(
Cd + TCm − CaM−1K

)
u(t) +

(
Cv − CaM−1C

) d u(t)
dt

+ CaM−1v(t) (D.9)

=
[
Cd + TCm − CaM−1K Cv − CaM−1C

]
x(t) + CaM−1v(t) (D.10)

= Cx(t) + Dv(t). (D.11)

Comparing the new definition of the observation matrix (Equation D.10) with the reference
definition (Equation D.2), there is just a new term function of u, TCm.

Finally, let us study the identified mode shapes, depending on the type of output. With the
identified mode shapes defined as ϕy = CΨ, with r = n (all the DOF are measured).

ϕy = ϕ when Cd = In, Cv = 0, Ca = 0 and Cm = 0 (D.12)

ϕy = i [µ]ϕ when Cd = 0, Cv = In, Ca = 0 and Cm = 0 (D.13)

ϕy = − [µ]2 ϕ when Cd = 0, Cv = 0, Ca = In and Cm = 0, (D.14)

with [µ]ϕ the amplitude of velocities and [µ]2 ϕ the amplitude of accelerations.
Now, with moments and accelerations together

ϕy = CmTϕ+ Ca [µ]2 ϕ (D.15)

=
[
CmTϕ

−Caµ
2ϕ

]
(D.16)

Adding moments into the data does not affect the mode shapes of the output corresponding to
the accelerations. So, moments and accelerations can be used together with the SSI method and
with subspace methods in general.
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Appendix E

EXTRACTION OF THE IDENTIFIED

EIGENMODES FROM THE STABILIZATION

DIAGRAM

From the theory of the stochastic subspace identification, the system should be identified at
his theoretical order. However, for a complex model or a real structure the theoretical order is
unknown, so the stabilization diagram is used, which gives the values of the identified modal
parameters for several orders. The next question is how to extract the model parameters of
the stabilization diagram? The simplest answer is to extract the modal parameters at a specific
order, but it is difficult to select the order, even more for automated identification.

Many papers propose methods to extract the modal parameters from the stabilization dia-
gram, with most of them based on the clustering of the identified modes [106, 114, 102]. So, in
this thesis the extraction method is based on the clustering of the identified modes at selected
range of model order, based on the one presented in [81].

Extraction of the modal parameters of a stabilization diagram

1. Initialization of the cluster with the eigenmodes of the maximum order of the selected
range.

2. Loop on the cluster, with a descending order:

(a) For all the eigenmodes of the order compute the following distance with the existing
order

d = 1 −MAC + ∆f, (E.1)

with the MAC is computed between the mode shape of the eigenmode and the mode
shape of the cluster and ∆f the relative gap between the frequency of the eigenmode
and the frequency of the cluster.

(b) If there is no distance lower than a defined minimum value (dmin), the eigenmodes
define a new cluster.

(c) Otherwise, the eigenmodes is added with the cluster associated with the minimum dis-
tance and a new cluster center is computed with the mean of the frequency, damping,
eigenvalue and MAC between the eigenmodes of the cluster.

3. To finish, the cluster with of number of eigenmodes below a minimum values are deleted,
in order to remove the eigenmodes corresponding to the noise.
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Extraction of the identified eigenmodes from the stabilization diagram

Then, an example of the extraction results is presented, with the identification of the aca-
demic model of a wind turbine, presented in Section 4.3.1. In this example the range of model
order is between the order 2 and 20, the minimum distance is set to dmin = 0.01 and the mini-
mum eigenmodes per cluster is set to 2. In Figure E.1, the result of the extraction is displayed,
where each bar represents a cluster with the mean frequency and the number of eigenmodes
that compose the cluster.
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Figure E.1 – Results of the extraction of the eigenmodes of the stabilization diagram, for the
identification of the academic model at a constant rotational speed
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Titre : Analyse modale opérationnelle pour le suivi de santé structurelle des éoliennes 

Mots clés : Vibrations et analyse modale, Méthodes Sous-espaces, Détection de défaut,             
Éoliennes 

Résumé : Dans cette thèse, l’objectif est de 
surveiller une éolienne sans avoir à l’arrêter 
ni à interférer avec son fonctionnement. 
Ainsi, le problème de la surveillance des 
éoliennes par analyse modale opérationnelle 
est traité. Le défi principal provient du fait 
qu’une éolienne en rotation entraine un 
caractère périodique au système, ce qui 
empêche l’utilisation des méthodes 
d’identification des modes propres définie 
pour des structures temporellement 
invariantes telles que celles de génie civil. 
Pour permettre l’identification des modes 
propres des systèmes périodiques, une 
étude de la dynamique des éoliennes en 
rotation est réalisée. Ainsi, basée, sur cette 
étude, une approximation des modes propres 
des éoliennes en rotation est définie, où ces 
modes propres sont définis comme une 
somme de modes propres d’une structure 
invariante. 
 

Par la suite, il est démontré théoriquement 
que les méthodes d’identification sous 
espaces existantes peuvent identifier 
correctement l’approximation définie 
précédemment. Puis validé avec 
différents exemples d’identifications 
utilisant des données simulées à partir de 
modèles d’éoliennes.  
Pour conclure le travail, la détection de 
défaut du rotor est traitée, en utilisant des 
mesures du rotor ou bien de la tour. Pour 
ces deux cas, les paramètres obtenus par  
identification les plus sensibles aux 
défauts sont recherchés et utilisés pour 
adapter une méthode de détection de 
défaut de l’état de l’art.  Pour les deux 
situations, il a été possible de détecter 
une baisse de raideur d’une pale et de 
déterminer la pale endommagée lorsque 
des mesures du rotor sont utilisées. 

 

Title: Operational Modal Analysis (OMA) for wind turbines health monitoring 

Keywords: Vibration and modal analysis, Subspace methods, Damage detection, Wind                    
turbines 

Abstract: In this thesis, the objective is to 
monitor the wind turbine without stopping or 
interfering with its operation. So, the 
monitoring of operating wind turbines with 
Operational Modal Analysis is studied. The 
main challenge is the periodic behavior of a 
wind turbine, which prevent the use of the 
eigenmodes identification methods from the 
literature, defined for time invariant structures 
such as civil engineering ones. 
To enable the identification of the periodic 
system eigenmodes, a study of the 
dynamical behavior of the rotating wind 
turbine is carried on. Thus, an approximation 
of the rotating wind turbine eigenmodes is 
defined, where those eigenmodes are 
expressed as a sum of invariant system  

eigenmodes. 
Afterward, it is theoretically demonstrated that 
the existing subspace identification methods 
can correctly identify the previously defined 
approximation. Then, it is validated with 
different examples of identification using data 
computed with wind turbine models. 
To complete the work, damage detection of the 
rotor of a wind turbine is treated using rotor or 
tower measurements. For both cases, the most 
damage sensitive parameters obtained from 
the identification are searched and used to 
adapt a damage detection method from the 
state-of-the-art. In both configurations, it has 
been possible to detect a stiffness loss of one 
blade and asses the damaged blade when 
rotor measurements are used. 
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