
HAL Id: tel-04382842
https://theses.hal.science/tel-04382842

Submitted on 9 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards new methods for the integration and
interrogation of geo-referenced sensor data applied to
the environmental cloud for the benefit of agriculture

(CEBA)
Thi Thu Trang Ngo

To cite this version:
Thi Thu Trang Ngo. Towards new methods for the integration and interrogation of geo-referenced
sensor data applied to the environmental cloud for the benefit of agriculture (CEBA). Emerging
Technologies [cs.ET]. Université Clermont Auvergne, 2023. English. �NNT : 2023UCFA0032�. �tel-
04382842�

https://theses.hal.science/tel-04382842
https://hal.archives-ouvertes.fr

THÈSE PRÉSENTÉE

POUR OBTENIR LE GRADE DE

DOCTEUR DE

L’UNIVERSITÉ CLERMONT AUVERGNE

………..

ECOLE DOCTORALE DES SCIENCES POUR L’INGENIEUR

SPÉCIALITÉ : Informatique

Soutenue publiquement le 22/06/2023, par :

Thi Thu Trang NGO

Vers de nouvelles méthodes pour l’intégration et

l'interrogation des données de capteurs

géoréférencés appliquées au cloud environnemental au

bénéfice de l'agriculture (CEBA)

Sous la direction de M. François PINET

M. David SARRAMIA et Mme. Myoung-Ah KANG

Devant le jury composé de :

M. David SARRAMIA MCF, LPC, Université Clermont Auvergne Co-encadrant de thèse

M. Didier DONSEZ PR, LIG, Université Joseph Fourier - Grenoble 1 Rapporteur

M. Dino IENCO DR, TETIS, INRAE Occitanie-Montpellier Président

M. François PINET DR, TSCF, INRAE, Clermont-Auvergne-Rhône-Alpes Directeur de thèse

M. Jérôme DARMONT PR, ERIC, Université Lyon 2 Rapporteur

Mme. Myoung-Ah KANG MCF, LIMOS, Université Clermont Auvergne Co-encadrant de thèse

Titre : Vers de nouvelles méthodes pour l’intégration et l'interrogation des

données de capteurs géoréférencés appliquées au cloud environnemental au

bénéfice de l'agriculture (CEBA)

Résumé court : Les capteurs ont révolutionné divers domaines, tels que l'agriculture et le

suivi de l'environnement. Ils fonctionnent de manière autonome, collectent et transmettent

des données en utilisant des technologies sans fil. Cependant, l’intégration des données de

capteurs provenant de différents projets pose le défi de leur analyse et de la gestion des

données en raison du débit. Cette thèse propose trois contributions principales. Premièrement,

une méthode pour modéliser un entrepôt de données spatiales (SDW en anglais) en utilisant

la suite ELK et une architecture pour intégrer en continu les sources de données de capteurs

en les chargeant dans Elasticsearch. Deuxièmement, nous proposons un système basé sur des

techniques de médiation pour l'analyse en temps réel de flux de données spatiales avec une

intégration transparente. Troisièmement, nous proposons un modèle multidimensionnel

générique qui cible les données IoT compatibles avec l'API SensorThings.

Mots clés : Données géoréférencées, intégration de données, cloud, surveillance de

l'environnement, entrepôt de données, système de médiation, flux de données, ELK,

Elasticsearch.

Title: Towards new methods for the integration and interrogation of geo-

referenced sensor data applied to the environmental cloud for the benefit

of agriculture (CEBA)

Short abstract: The use of sensors has transformed various fields, such as agriculture and

the environmental monitoring. Sensors operate independently in remote locations and collect

data with wireless technologies. However, the integration of sensor data from different

projects poses the challenge of their analysis and data management due to throughput. This

thesis proposes three main contributions. First, a method to model a spatial data warehouse

(SDW) using the Elastic Stack (ELK) and an architecture, named IAT, as a streaming

Extract, Transform, Load (ETL) process to integrate various sensor data sources and load

them into Elasticsearch. Second, we propose a system based on mediation technique for the

real-time analysis of spatial data streams in combination with static data, with seamless

integration. Third, we propose a generic multidimensional model that targets IoT data using

the SensorThings API standard.

Keywords: Geo-referenced Data, Data Integration, Cloud, Environmental Monitoring,

Data Warehouse, Mediation System, Streaming Data, ELK Stack, Elasticsearch.

Towards new methods for the integration and

interrogation of geo-referenced sensor data applied

to the environmental cloud for the benefit

of agriculture (CEBA)

Thi Thu Trang NGO

Department of Computer Science

Doctoral School of Sciences for Engineering

Clermont Auvergne University, France

i

Abstract

In recent years, the widespread use of sensors has revolutionized many sectors, particularly in

agriculture and environmental applications, with the emergence of the Internet of Things

(IoT). Equipped with batteries, sensors can work autonomously in remote locations, without

the need for maintenance or repairs. They are typically deployed as clusters, where each

sensor collecting data on its surroundings and communicating wirelessly with one or several

gateways which are communicating to the cloud. The collected data is analyzed using various

techniques and visualizations to extract insights and drive decisions. This entire process is

known as the "sensor-to-decision chain". However, data analysis across heterogeneous

sources is a complex task, especially when considering data from sensors. One of the

difficulties is the interoperability issues due to different vendors in the market of sensors. The

Open Geospatial Consortium (OGC) has defined several standards for accessing sensor data

to overcome these issues. Additionally, stream processing presents numerous challenges due

to the high rate at which sensor data is generated.

In this thesis, we first address the problem of integrating and analyzing geo-referenced data

from multiple sources, we propose both a method and an architecture to represent and query a

spatial data warehouse (SDW) model with the ELK (Elasticsearch, Logstash, Kibana) stack.

We demonstrate how to implement a data warehouse of geo-referenced data in an ELK-based

architecture, with the use of a component called IAT (Integration and Aggregation Tool) that

operates like a streaming ETL to integrate different sensor data and load it into Elasticsearch.

We illustrate the approach with two multidimensional models relevant to environmental

sensor data and show the value of the system with some real-world user queries.

Additionally, we evaluate the system with a benchmark dataset with respect to several

aspects.

In the second part, we address the problem of big and streaming spatial data analysis, we

propose a system based on mediation techniques for analyzing spatial stream in real-time

with seamless integration. We also address the issue of integrating different data sources

under a uniform schema for efficient analysis. We propose an interface and a customized

ii

SQL grammar to express queries with streaming and spatial semantics. The proposed system

allows for an administrator to configure the system by designing a mediated schema and

defining the mappings between the mediated schema and the data sources. Users can express

queries on the mediated schema in a dedicated SQL grammar, and the system rewrites the

query into an Apache Spark application. The results are returned to the user continuously.

Moreover, we implement into the mediation system, an optimizer that overtakes the query

plans computed natively by Spark. Our experiments show that these optimizations improve

up to one order of magnitude the queries execution time.

Finally, we address the problem of modeling IoT sensor data. We propose a generic

multidimensional model for SensorThings API compatible data sources, which is based on

UML profile. Furthermore, we model the ETL process and present our proposal through a

case study.

iii

Résumé

Ces dernières années, l'utilisation généralisée de capteurs a révolutionné de nombreux

secteurs, notamment dans l'agriculture et les applications pour l’environnement, à la suite de

l'émergence de l'Internet des objets (IdO). Équipés de leurs propres batteries, les capteurs

peuvent fonctionner de manière autonome dans des endroits éloignés, sans nécessiter de

maintenance ou de contrôle. Ils sont généralement déployés en clusters, chaque capteur

collectant des données sur son environnement et communiquant sans fil avec une ou plusieurs

passerelles communiquant elles-mêmes avec un cloud. Les données collectées sont analysées

et visualisées à l'aide de diverses techniques afin d’en extraire des informations et prendre des

décisions. L'ensemble de ce processus est connu sous le nom de "sensor-to-decision chain".

Cependant, l'analyse de données provenant de sources hétérogènes est une tâche complexe,

surtout lorsqu'il s'agit de données de capteurs. L'une des difficultés réside dans les problèmes

d'interopérabilité dus aux différents fournisseurs de capteurs. L' « Open Geospatial

Consortium » (OGC) a défini plusieurs normes d'accès aux données de capteurs pour

surmonter ces problèmes. De plus, le traitement des flux de données présente de nombreux

défis en raison du débit élevé auquel les données des capteurs sont générées.

Dans cette thèse, nous abordons d’abord l’analyse de données spatiales avec des systèmes

NoSQL. Nous proposons à la fois une méthode et une architecture pour représenter et

interroger un modèle d'entrepôt de données spatiales (SDW) avec la pile ELK (Elasticsearch,

Logstash, Kibana). Nous démontrons comment mettre en œuvre un entrepôt de données

géoréférencées dans une architecture basée sur ELK, avec l'utilisation d'un composant appelé

IAT (Integration and Aggregation Tool) qui fonctionne comme un processus ETL (Extract-

Transform-Load) en continu pour intégrer différentes données de capteurs et les charger dans

Elasticsearch. Nous illustrons l'approche avec deux modèles multidimensionnels pertinents

pour les données de capteurs environnementaux et montrons la valeur du système avec

quelques requêtes réelles d'utilisateurs. En outre, nous évaluons le système avec un ensemble

de données de référence par rapport à plusieurs aspects.

Ensuite, nous présentons notre proposition de système basé sur des techniques de médiation

pour l'analyse de données spatiales statiques et temps réel avec une intégration transparente.

iv

Nous abordons la question de l'intégration de différentes sources de données sous un schéma

uniforme pour une analyse efficace. Nous proposons une interface et une grammaire SQL

personnalisée pour exprimer des requêtes avec une sémantique pour le traitement des données

spatiales et des flux. Le système proposé permet à un administrateur de configurer le système

en concevant un schéma global et en définissant les correspondances entre le schéma global

et les sources de données. Les utilisateurs peuvent exprimer des requêtes sur le schéma global

dans une grammaire SQL dédiée, et le système réécrit la requête en une application Apache

Spark. Le résultat est renvoyé à l'utilisateur en continu. De plus, nous implémentons dans le

système de médiation, un optimiseur qui surpasse les plans de requêtes calculés nativement

par Spark. Nos expériences montrent que ces optimisations améliorent le temps d'exécution

des requêtes.

Enfin, nous abordons la modélisation des données des capteurs IdO. Nous proposons un

modèle multidimensionnel générique pour les sources de données compatibles avec l'API

SensorThings, qui est basé sur le profil UML. En outre, nous modélisons le processus ETL et

présentons notre proposition au moyen d'une étude de cas.

v

Acknowledgements

This PhD journey has been enriching and challenging, filled with ups and downs, joy and

tears, and most importantly invaluable lessons. Fortunately, I have been surrounded by a

supportive community of individuals who have given me the strength to navigate through the

difficult times. It is with great pleasure that I express my gratitude to all of them for their

positive impact during this period.

First and foremost, I would like to express my sincere appreciation to my supervisors Prof.

François Pinet, Prof. David Sarramia, and Prof. Myoung-Ah Kang for granting me the

opportunity to participate in this project. I am grateful for their trust, technical expertise, and

invaluable guidance in the fields of scientific research, environment, and agriculture domain

over three years. Thank you for your support and guidance through the period of research and

writing of this thesis.

I would also like to express my gratitude to all the jury members of my defense. Many thanks

to Mr. Dino IENCO, Professor at TETIS INRAE Occitanie-Montpellier for accepting to

evaluate my work. I am equally grateful to Mr. Jérôme Darmont, Professor at University

Lumiere Lyon 2 and Mr. Didier Donsez, Professor at University Grenoble Alpes, for their

willingness read and review of my manuscript. I thank each of them in advance for their

guidance and valuable feedback.

My appreciation extends to the members of the “comite de these” as well. I am deeply

grateful to Mr. Chafik Samir, Professor at University Clermont Auvergne and Mr. Engelbert

Mephu Nguifo, Professor at University Clermont Auvergne and Mr. Didier Donsez, Professor

at University Grenoble Alpes and Mr. David Hill, Professor at University Clermont Auvergne

and Mr. Cyril Ray, Professor at University of Rennes, for their commitment to reviewing and

overseeing my thesis. I thank all of them in advance for their guidance and invaluable

feedback.

I would like to express my sincere gratitude to colleagues and professors at the LIMOS

laboratory. Special mention goes to Mr. Chafik Samir and Mr. Nguyen Viet Hung, as well as

vi

the PhD students Diego, Pedro, Tam, Mateus, Donald, Roxane, Hélène, Weixuan, Hieu,

Loan, Thao, Hoang, Valentin, postdoc Anis, and many others who made this journey

exceptional. I also extend my thanks to the administrative team at LIMOS, Mrs. Béatrice

Bourdieu, Mrs. Martine Caccioppoli, and the technical team at LIMOS, Mr. William Guyot

Lenat, for their assistance and support, thank you all.

I would like to acknowledge the French government IDEX-ISITE initiative 16-IDEX-0001

(CAP 20-25) for providing FEDER funding (European Regional Development Fund).

Additionally, I would like to express my gratitude to the ConnecSenS project and the CEBA

project for sharing their research materials and the agriculture and environment dataset. Their

support has greatly contributed to the evaluation of my contributions.

I would like to thank, particularly Mr. Sofian Maabout, Professor at University Bordeaux and

Mr. Fabien Baldacci, Professor at University Bordeaux for their invaluable guidance during

my master’s internship, which marked the early stages of my research journey. I am sincerely

grateful to all my dearest friends: Carole Blanc, Marie Beurton-Aimar, Vu Manh Tu, Le Van

Linh, Phuong Thao, Karim, Nabil, Mohamed, Abiodun, Charles, Nhung, Minh Huong, Lam,

and many others for their unwavering support and true friendship and love, and their presence

during challenging times.

Finally, I would like to express my deepest gratitude to my parents, my sisters, and my

beloved for their unwavering encouragement and support throughout this journey.

vii

Contents

Abstract ...i

Résumé ... iii

Acknowledgements .. v

Contents... vii

List of Figures .. x

List of Tables... xii

List of Abbreviations.. xiii

Publications’ Notes .. xv

Introduction .. 1

Chapter 1 BACKGROUND AND RELATED WORK ... 8

1.1 Concepts Related to Spatial Data ... 8

1.1.1 Spatial Data Definition ... 8

1.1.2 Spatio-temporal Data and Geo-referenced Data ... 9

1.1.3 Spatial Geometry Objects ..10

1.1.4 How to Describe Spatial Data in Database Systems? ..10

1.1.5 Vector Data Formats ..11

1.1.6 Spatial Query ..13

1.2 Sensor Data Access Standards ..15

1.2.1 Environmental Sensors and Sensor Network...15

1.2.2 OGC Data Access Standards ...17

1.2.2.1 OGC ...17

1.2.2.2 SOS ..18

1.2.2.3 SPS ..19

1.2.2.4 SensorThings API ..20

1.2.2.5 STA and SOS Comparison ...22

viii

1.3 Big Spatial Vector Data Management ..23

1.3.1 Big Data ..24

1.3.2 Big Spatial Vector Data ...25

1.3.3 Big Data Storage ...26

1.3.3.1 NoSQL Databases for Large Spatial Data ..26

1.3.3.2 ELK Stack ...29

1.3.3.1 Existing Systems based on ELK Stack for Spatial Data ..33

1.3.4 Big Data Processing ..34

1.3.4.1 Apache Spark ..34

1.3.4.2 GeoSpark ..37

1.4 Data Analytics and Integration ...38

1.4.1 Data Warehouses ...39

1.4.2.1 Modeling ..40

1.4.2.2 Conceptual Modeling of Spatial Data Warehouse ..42

1.4.2.3 Modeling ETL Process ..44

1.4.2 Mediation System ..46

1.5 CEBA Project ..47

1.6 Discussion and Summary ..49

Chapter 2 A NEW APPROACH BASED ON ELK STACK FOR THE ANALYSIS AND

VISUALIZATION OF GEO-REFERENCED SENSOR DATA .. 51

2.1 Introduction...51

2.2 How to Represent a Query and Implement a Spatial Data Warehouse with Elasticsearch?53

2.2.1 Sensor Data Representation ..53

2.2.2 Multidimensional Models ..54

2.2.3 System Architecture ...56

2.2.4 Data Cube, ETL and Queries ...58

2.2.4.1 Elasticsearch Data Cube and Query Workload ...58

2.2.4.2 Data Integration with IAT ...61

2.2.4.3 Dashboard on Kibana ...62

2.2.4.4 Textual Queries ...63

2.3 Evaluation and Experiment ...64

2.3.1 Dataset ...65

2.3.2 Hardware ..68

2.3.3 Evaluation of IAT ..68

2.3.4 Evaluation of Elasticsearch...69

ix

2.4 Discussion and Summary ..74

Chapter 3 A MEDIATION SYSTEM FOR CONTINUOUS SPATIAL QUERIES ON A UNIFIED

SCHEMA USING APACHE SPARK ... 76

3.1 Introduction...76

3.2 A Mediator for Continuous Spatial Queries ..77

3.2.1 Dedicated SQL Grammar ..78

3.2.2 Motivating Example ...80

3.2.3 System Architecture ...83

3.2.4 Mediator Algorithm and Components ...84

3.2.4.1 Query Parser ...85

3.2.4.2 Query rewriter ..86

3.2.4.3 Query Tuner ..88

3.2.4.4 Setup Configurations ..90

3.3 System Evaluation ...91

3.3.1 Dataset ...91

3.3.2 Hardware ..92

3.3.3 Metrics ...92

3.3.4 Experiments ...92

3.4 Discussion and Summary ..97

Chapter 4 MODELING DATA WAREHOUSE AND ETL FOR SENSORTHINGS API DATA 98

4.1 Introduction...98

4.2 Modeling Data Warehouse for SensorThings API Data ..99

4.2.1 The Data Warehouse Model Package ..99

4.2.2 A Generic Hypercube Model ..100

4.3 The ETL Modeling ..101

4.4 Case study ...103

4.5 Discussion and Summary ..106

CONCLUSION AND PERSPECTIVES ... 107

REFERENCES ... 111

Appendix A .. 120

Appendix B .. 123

x

Appendix C .. 125

List of Figures

Figure 1 CEBA architecture (Sarramia 2022). .. 2
Figure 2 A weather station and a wireless communication node collecting data in an

agricultural plot of INRAE Montoldre. ... 3
Figure 3 Components of Geo-referenced data (Roshannejad 1995). ... 9
Figure 4 Three fundamental geometries: point, line, polygon (Guting 1994). 10
Figure 5 An example of LoRaWAN architecture (Codeluppi 2020). 16
Figure 6 Core class diagram of O&M model (S. Cox 2007). .. 19
Figure 7 SensorThings data model – sensing part (Liang 2016). .. 20
Figure 8 ES field datatypes. ... 30
Figure 9 Query types in ES. ... 31
Figure 10 Example of maps visualization of Kibana (ELK stack 2022). 33
Figure 11 Phases of query planning in SparkSQL (M. a. Armbrust 2015). 35
Figure 12 Example of fact and dimension tables of the star schema model (Han 2012)......... 41
Figure 13 Example of fact and dimension tables of the snowflake schema model (Han 2012).

.. 42
Figure 14 The UML metamodel of the SDW core model package (K. Boulil 2012).............. 44
Figure 15 Aggregation example using the defined stereotype icons (Trujillo 2003). 45
Figure 16 Schematic representation of generic ingestion pipeline (Sarramia 2022). 49
Figure 17 Class diagram of OM_ComplexObservation conceptual model of four sensor

projects in CEBA. .. 54
Figure 18 Multi-dimensional conceptual model for the measurement fact (Model A). 56
Figure 19 Multi-dimensional conceptual model: geo object and measurement as fact (Model

B).. 56
Figure 20 System architecture. .. 57
Figure 21 A snippet of the target index schema. ... 59
Figure 22 A snippet of a document in the target index .. 59
Figure 23 Snippet of a query on two dimensions for model A. ... 60
Figure 24 Benchmark dashboard. .. 63
Figure 25 Query in ES query language and snippet of its result for Model B. 64
Figure 26 IAT pipelining processing time. .. 69
Figure 27 Execution time for Model A by query pattern. .. 71
Figure 28 Execution time for Model B by query pattern. .. 71
Figure 29 The execution time of Model A by varying the dataset size. 72
Figure 30 The execution time of Model B by varying the dataset size. 72
Figure 31 Comparison of execution time between two models with respect to dataset size. .. 73
Figure 32 Comparative evaluation of Elasticsearch and MongoDB with 4 years dataset. 74
Figure 33 Dedicated SQL grammar. .. 79
Figure 34 Local and integrated schema. .. 81
Figure 35 Running query example Q. .. 82
Figure 36 System architecture. .. 83
Figure 37 Procedure of rewriting queries. ... 85
Figure 38 Running query example Q: Query syntax tree. ... 86

xi

Figure 39 Running query example Q: Spark application DAG representation (A) and

Optimizer Spark application DAG representations (B). .. 89
Figure 40 Snippet of queries. ... 93
Figure 41 𝜆 = 1with 4 worker nodes. ... 95
Figure 42 𝜆 = 1 with 8 worker nodes. .. 95
Figure 43 𝜆 = 10 with 8 worker nodes... 96
Figure 44 𝜆 = 100 with 8 worker nodes. ... 96
Figure 45 SensorThings API data warehouse metamodel. .. 100
Figure 46 A generic hypercube of the STADW metamodel.. 101
Figure 47 The metamodel of ETL process design. .. 102
Figure 48 Model for the case study.. 104
Figure 49 The design of the ETL process for this case study. ... 105
Figure 50 Benchmark dashboard – visualization 1. .. 120
Figure 51 Benchmark dashboard – visualization 2. .. 121
Figure 52 Benchmark dashboard – visualization 3. .. 121
Figure 53 Benchmark dashboard – visualization 4. .. 122
Figure 54 Kibana – Visualization controller in default mode. .. 123
Figure 55 Kibana – Visualization metric controller. .. 124
Figure 56 Kibana – Visualization bucket controller. .. 124
Figure 57 Snippet of the local schema. .. 125
Figure 58 Snippet of the global schema. .. 126
Figure 59 Dedicated SQL grammar – part 1. ... 127
Figure 60 Dedicated SQL grammar – part 2. ... 128

xii

List of Tables

Table 1 Example of vector data in WKT, GML and GeoJSON formats. 13
Table 2 OGC-compliant join predicates and other spatial analysis functions (Ray 2011). 14
Table 3 Entity description of the STA data model (Liang 2016). ... 21
Table 4 Technical comparison between STA and SOS (Na 2007, Liang 2016, Santhanavanich

2018). ... 23
Table 5 The 10 most popular NoSQL databases (Guo 2020). ... 26
Table 6 Basic information about four database management systems for geospatial data. 28
Table 7 Comparison of architecture characteristics of Spark, Storm, Flink (Chintapalli 2016,

Inoubli 2018). ... 36
Table 8 The four most popular big spatio-temporal systems (M. M. Alam 2021). 38
Table 9 ETL mechanisms and icons of (Trujillo 2003). ... 45
Table 10 Dataset summary over 4 years. ... 67
Table 11 Common columns. .. 68
Table 12 Size of target index with 4 years of data. .. 69
Table 13 The relations in the integrated schema. .. 82
Table 14 Dataframe transformation description. ... 87
Table 15 Dataset of building and commune. ... 91
Table 16 Amount of shuffled data for three queries. ... 97

xiii

List of Abbreviations

API Application Programming Interface

BSD Big Spatial Data

BSVD Big Spatial Vector Data

CDC Change Data Capture

CEBA Environmental Cloud for the Benefit of Agriculture

DAG Directed Acyclic Graph

DBMS Database Management System

DFS Distributed File System

DW Data Warehouse

ELK stack Elasticsearch - Logstash - Kibana stack

ER Entity Relationship

ES Elasticsearch

ETL Extract-Transform-Load

GAV Global as View

GeoJSON Geographic JSON

GIS Geographic Information System

GISc Geographic Information Science

GML Geography Markup Language

HDFS Hadoop Distributed File System

IAT Integration and Aggregation Tool

IEEE Institute of Electrical and Electronics Engineers

IoT Internet of Things

JSON JavaScript Object Notation

LAV Local as View

LoRaWAN Long Range Wide-Area Network

LPWAN Low Power Wide Area Network Technology

MQTT Message Queuing Telemetry Transport

OGC Open Geospatial Consortium

OLAP Online Analytical Processing

RDD Resilient Distributed Dataset

xiv

SDW Spatial Data Warehouse

SOLAP Spatial OLAP

SOS Sensor Observation Service

SPE Streaming Processing Engine

SPS Sensor Planning Service

STA SensorThings API

STADW SensorThings API Data Warehouse

UML Unified Modeling Language

WKT Well-Known Text

XML Extensible Markup Language

xv

Publications’ Notes

Ngo, Thi Thu Trang, David Sarramia, Myoung-Ah Kang, and François Pinet. "An Analytical

Tool for Georeferenced Sensor Data based on ELK Stack." In 7th International Conference

on Geographical Information Systems Theory, Applications and Management,

SCITEPRESS-Science and Technology Publications (Ngo 2021).

Ngo, Thi Thu Trang, David Sarramia, Myoung-Ah Kang, and François Pinet. "A New

Approach Based on ELK Stack for the Analysis and Visualisation of Geo-referenced Sensor

Data." in the Springer Nature Computer Science journal (Ngo 2023).

Ngo, Thi Thu Trang, François Pinet, David Sarramia, and Myoung-Ah Kang. “A Mediation

System for Continuous Spatial Queries on a Unified Schema Using Apache Spark”. in

revision for the Big Earth Data journal (Taylor & Francis).

1

Introduction

In recent years, sensors have become widely used for many sectors especially in the

context of agriculture and environment Internet of Things (IoT). Billions of sensors are

connected to the Internet everyday creating a novel concept called IoT (Da Xu 2014).

Sensors are devices that measure physical quantities such as temperature, humidity,

pressure, and stream the measures to a central location for processing or storage, e.g.,

server, database. They are usually equipped with batteries that allow them to work

independently in remote places, e.g., space, forest, sea without need of maintenance or

repair. Most of the time, sensors are deployed as a cluster of nodes, where each is

collecting data about its surroundings and are all communicating through a wireless

network. Then, sensor data is analyzed using numerous analytical techniques and with

the help of visualization to extract insights and derive decisions. This process pipeline

has been named “sensor to decision chain” (Moßgraber 2018).

Analyzing sensor data is challenging due to the difficulties in integrating data from

diverse sources. Environmental monitoring, for example, relies on data from multiple

sources, including remote sensing, weather stations, or geographic information systems.

Integrating these diverse data sources can be complex, as the data can vary in format,

frequency, and quality. Poor data integration can result in incomplete or inconsistent

analysis results, making it difficult to extract meaningful insights. To address these

challenges, researchers have proposed various approaches, such as developing data

lakes to integrate and store the data in multiple formats. The Environmental Cloud for

the Benefits of Agriculture project (CEBA) presented in (Breton 2019) and (Sarramia

2022), is an example of such systems. The CEBA architecture comprises a data lake and

a set of tools and processes for the storage, retrieval, and analysis of geo-referenced

sensor data. As depicted in Figure 1, CEBA is composed of various components,

including Ingestion, Storage, Indexing, Cataloging, and a User Interface for data

sharing. The ELK stack (ELK stack 2022), including Beats and Logstash for data

ingestion and ElasticSearch for indexing, is utilized for ingestion and indexing

processes. Long-term data storage is facilitated by the relational database PostgreSQL,

2

while cataloging is achieved through the use of GeoNetwork. Data can be accessed and

searched through different endpoints, including APIs and message queue systems. The

main data flow in CEBA involves the ingestion of collected sensor data through

Logstash or Beats shippers.

Figure 1 CEBA architecture (Sarramia 2022).

For example, CEBA stores data collected by sensor networks managed by INRAE in

the experimental site of Montoldre in Allier. Figure 2 shows a weather station and a

wireless communication node to transmit the data using LoRaWAN (Long Range Wide-

Area Network) (Augustin 2016). The collected data are measurements such as air

temperature, soil moisture, rainfall. They help farmers to monitor the crop state and

manage agricultural operations. The detection of plant water stress can require

irrigation, while too much water can also lead to plant diseases, depending on other

factors (temperature, phenological stages of the plant, etc.). Consequently, all the

collected data are important to identify plant problems as soon as possible and to carry

out the appropriate agricultural actions.

3

Figure 2 A weather station and a wireless communication node collecting data in an

agricultural plot of INRAE Montoldre.

The purpose of this thesis is to address the issue of data analysis across heterogeneous

sources and show a concrete application in the development of CEBA. The process of

conducting a thorough analysis of data obtained from various sources can often prove to

be a complex task, owing to several contributing factors such as heterogeneity within

the data sets. The complexity is further increased when considering sensor data. Next,

we present some of these difficulties.

When conducting sensor data analysis, it is often necessary to integrate data from

different sensor devices. However, the heterogeneity of sensors and their data

management practices can cause interoperability issues, especially among devices from

different vendors. For instance, temperature sensors from different providers may

measure temperature using either Celsius or Fahrenheit. Also, sensors may support date

and time in different formats. To overcome the interoperability issues due to different

vendors in the market of sensors, Open Geospatial Consortium (OGC) (OGC 2022), a

non-benefit organization, has defined several standards for accessing sensor data. One

such standard is the SensorThings API (Liang 2016), which is a comprehensive data

model and set of requirements for implementing an API system to access sensor data.

4

This standard is novel in its simplicity of data modeling, facility of implementation

through REST, and support for event data. The analysis of sensor data presents

numerous challenges, particularly regarding the streaming nature of such data. Due to

the high rate at which sensor data is generated, conventional methods of data processing

often prove insufficient. New systems are designed to achieve exactly-once guarantee

processing with maximum throughput (Isah 2019).

Additionally, stream processing differs fundamentally with batch processing. Stream

processing uses the concepts of window and watermark (Isah 2019). Window serve to

limit the number of records processed by a query, either in terms of time intervals or a

specific quantity. In the context of time interval windows, watermark serve to define the

acceptable delay for records. These operations play a crucial role in the efficient and

effective processing of streaming data.

In the field of data analytics (M. M. Alam 2021), which involves dealing with

heterogeneous and numerous data sources, different techniques exist such as data

warehousing or mediation. The primary difference between these two techniques lies in

their approach to data storage. Let us consider a set of data sources 𝑆1 … 𝑆𝑛 , and a data

model 𝐺 specifically designed for analytics purposes. In data warehousing, a dedicated

datastore stores data represented in this analytics data model. Data from data sources

𝑆1 … 𝑆𝑛 is migrated to the analytics data model following a set of rules and

transformations, collectively known as Extract-Transform-Load (ETL). User queries are

written in accordance with the analytics data model 𝐺, and they are executed on the data

warehouse engine. Meanwhile, for mediation, data remains in its local storage. User

query 𝑞 is rewritten into 𝑞1 … 𝑞𝑛 following a set of mapping rules. Each query 𝑞𝑖 is

executed on the data source 𝑆𝑖. Answers to the queries are then integrated in the

mediation system. To summarize, data warehousing involves transforming the data and

loading into the analytics data storage, whereas mediation involves transforming the

queries to match the local storage schema.

Data warehousing is a prevalent technique utilized in the business domain, as it

provides fast query answering. Nonetheless, due to the need for the Extract-Transform-

Load (ETL) process, analyzes are predominantly carried out on historical data. Recent

techniques such as Streaming ETL and Change Data Capture (CDC) have been

5

proposed to circumvent this limitation. On the other hand, mediation is a technique that

allows for quicker adaptation to schema changes and enables querying of data as soon

as it is available. However, this technique comes at a high cost of data integration and

overburden query answering.

In this dissertation, we address the challenges of real-time collecting and analyzing geo-

referenced environmental data from heterogeneous sources. We focus on two popular

techniques in data integration for our proposals, i.e., data warehouse and mediation. The

paragraphs below present more precisely our contributions.

A method for designing data warehouses with ELK stack for near real time

analysis and visualization of geo-referenced sensor data.

Data warehouses and Online Analytical tools (OLAP) are efficient solutions to analyze

sensor information, as they allow users to visualize, aggregate, and summarize these

large sets of geo-referenced data at different scales. Data warehouses are often based on

relational data models (Jarke 2002, Inmon 2005, Pinet 2010), but this type of model is

not the most efficient for real-time sensor streams. (Bicevska 2017) discussed the

NoSQL-based data warehouse solutions and provided some encouraging points.

However, they focused on the early stage of this approach and the lack of reporting

tools compatible with NoSQL systems.

The ELK stack (ELK stack 2022) (i.e., Elasticsearch, Logstash and Kibana) can be a

useful and flexible solution to integrate and store these large heterogeneous data. In this

manuscript, we propose a method and a dedicated architecture to represent and query a

spatial data warehouse (SDW) model with ELK stack. The purpose of our approach is

to combine both advantages of ELK and data warehouse technology. Thus, the

manuscript shows how to implement a data warehouse of geo-referenced data in an

ELK-based architecture.

We illustrate the approach in two multidimensional models relevant to environmental

sensor data. We detail their implementation in Elasticsearch (also called ES), as well as

their respective queries. Moreover, we implement and present a component called IAT

(Integration and Aggregation Tool) that operates like a streaming ETL (Sabtu 2017)

driven by a user configuration, to integrate different sensor data and load it into

6

Elasticsearch. We show the value of the system with some real-world user queries and

evaluate it with a benchmark dataset with respect to several aspects.

A mediation system and architecture for real-time integration and analysis of geo-

referenced sensor data.

Big data management systems offer high efficiency in processing data and enabling

analytics. Tools such as Apache Spark (Zaharia 2012) and Apache Flink (Carbone

2015), have become the reference tools to process high volumes of data. Moreover, they

were also enriched with geospatial capabilities (Pandey 2018, Shaikh 2020).

However, these tools lack of support for real-time integrating different data sources

under a uniformed schema. Consider an example in which a physicist wants to analyze

IoT sensor data collected all around Europe. The physicist is interested in the quality of

air near buildings of industrial areas. Then, he/she must join data from different data

sources for his/her queries, e.g., streams of sensors, city buildings, industrial zones.

Suppose the physicist uses Apache Sedona (Yu 2015), (i) he/she must handle the

heterogeneity of data sources, e.g., documents, streams, relational database, and (ii)

he/she must manage each data source schema. The complexity of handling these issues

increases considerably with the number of data sources. Moreover, this task is not

straightforward for users without knowledge in big and streaming data integration.

In our work, we propose a system and architecture that is based on mediation technique

to analyze spatial stream-static data in real time with seamless integration. To that

purpose, we propose a customized SQL grammar to express queries with streaming and

spatial semantics. Given a set of local data sources and an application requirement: first,

an administrator configures the system, i.e., he/she designs a mediated schema and

defines the mappings between the mediated schema and the data sources. Second, users

express queries on the mediated schema using a dedicated SQL grammar and our

system rewrites the query into an Apache Spark application. Finally, the Apache Spark

application is submitted to an Apache Spark cluster and the result is returned to the user

continuously.

7

A generic data model for data warehousing IoT data and ETL processes.

OGC proposed SensorThings (Liang 2016) as a new data model to address

interoperability issues within the Internet of Things (IoT) systems. The model describes

the relationship of different entities: Thing, Sensor, Datastream, ObservedProperty,

Observation, and FeatureOfInterest. Furthermore, the standard includes an API for

CRUD (Create, Read, Update, Delete) operations. Despite its comprehensive design,

SensorThings is intended for transactional purposes rather than analytics. Recognizing

this limitation, this work presents a generic data model for warehousing SensorThings

IoT data.

Manuscript Organization

We first recall the literature relevant to this thesis in Chapter 1. We recall definitions

related to spatial data and summarize work relative to standards for sensor data, IoT

data modeling and data integration.

In Chapter 2, we present our proposal of a method and architecture to represent and

query a spatial data warehouse (SDW) model with the ELK stack. We demonstrate how

to implement a data warehouse of geo-referenced data in an ELK-based architecture,

with the use of a component called IAT (Integration and Aggregation Tool) that

operates like a streaming ETL to integrate different sensor data and load it into

Elasticsearch. We have published the architecture and data integration principle in (Ngo

2021). Experiments and evaluation were published in the Springer Nature Computer

Science journal (Ngo 2023).

In Chapter 3, we present our proposal of a system based on mediation techniques for

analyzing spatial stream-static data in real-time with seamless integration. This work is

in revision in the Big Earth Data journal.

In Chapter 4, we propose a work for a generic multidimensional model for analyzing

sensor data from SensorThings compatible data sources. Finally, we conclude the

manuscript by providing perspective for future work.

8

CHAPTER 1 BACKGROUND AND RELATED WORK

In this chapter, we give a general overview of work related to this dissertation. Our

research work is related to several research topics. They are mainly, (i) geo-referenced

sensor data, (ii) streaming data processing, and (iii) spatial data analytics. We will

provide concepts and state of the art of each of the above topics.

1.1 Concepts Related to Spatial Data

In this section, we present and describe the different types of geo-referenced data. Then,

we describe the common data formats, the vector data type presentation, and spatial

queries.

1.1.1 Spatial Data Definition

The origins of the term spatial data refer to the field of geographic information systems

(GIS) and the study of geographic information science (GISc). The first academic

papers that express the definition of spatial data are in the 1970s and 1980s, as GIS

technology and the GISc field were introduced. The paper of (Tomlinson 1974) is one

of the early academic research projects that described the definition of spatial data. In

this document, the author determined spatial data as “location-specific data … related to

the Earth’s surface”.

The encyclopedia of GIS (S. a. Shekhar 2007) determined, “spatial data is data related

to a location. Some examples include the population of a city, the type of soil in a

region, and data from remote-sensing satellites. In the first example, the city could be

considered as a location and the population is the data or a feature. In the second

example, the region is a collection of locations and the type of soil is the feature. Note

that a location may have one or more features. For example, it may be useful to

9

represent both the population and the average age group of a city”. In conclusion, the

term spatial data refers to data that is referenced and applies to a specific location on the

Earth.

1.1.2 Spatio-temporal Data and Geo-referenced Data

Spatio-temporal data, as defined by (Roshannejad 1995) represents a subcategory of

spatial data that include the integration of both spatial and temporal information.

Specifically, spatial data refers to the physical location of an object or phenomenon,

while temporal data refers to the progression of time. The integration of space and time

allows the analysis of the relationship and interactions between the physical location

and the movement of time of a particular entity. This wide range of subjects, including

data, processes, and events, is extensively employed within various fields, such as

computer science, physics, and geography.

Geo-referenced data, as a subcategory of spatial data, is defined in (Roshannejad 1995)

as "a phenomenon that is extended in three directions: spatial extent, temporal extent,

and aspatial extent". Figure 3 illustrates the main components of a geo-referenced

object, which includes spatial, temporal, and aspatial (also known as non-spatio-

temporal) elements. Among these components, the temporal element holds a special

role as it influences the other components. An example of geo-referenced data is the

temperature of water at the North Pole in December 2020, which illustrates the

intersection of spatial, temporal, and aspatial components.

Figure 3 Components of Geo-referenced data (Roshannejad 1995).

10

1.1.3 Spatial Geometry Objects

Geometry objects are one of the main components of spatial data. According to (Guting

1994): “the fundamental abstractions are point, line, and region. A point represents (the

geometric aspect of) an object for which only its location in space, but not its extent, is

relevant. For example, a city may be modeled as a point in a model describing a large

geographic area (a large scale map). A line (in this context always understood to mean

a curve in space, usually represented by a polyline, a sequence of line segments) is the

basic abstraction for facilities for moving through space, or connections in space (e.g.,

roads, rivers, cables for phone, electricity). A region is the abstraction for something

having an extent in 2-D space (e.g., a country, a lake, or a national park). A region may

have holes and may also consist of several disjoint pieces”. A region is also called a

polygon. Figure 4 presents the fundamental geometries point, line, and polygon.

Figure 4 Three fundamental geometries: point, line, polygon (Guting 1994).

1.1.4 How to Describe Spatial Data in Database Systems?

In general, there are three primary ways to describe spatial data in a traditional spatial

database system (S. Shekhar 2012):

• Graph data: often used for representing primarily network-based information,

such as transportation networks. For example, a map of the transportation

network in Paris can be represented using graph data.

• Raster data: geographical images consisting of a grid of cells. Each cell within a

raster has a location and set of attributes (e.g., satellite images providing the

remote sensing data of the Earth).

11

• Vector data: represents the real world features using spatial objects: points, lines,

polygons. A point can be represented as a pair of latitude and longitude in 2D or

a triad of latitude, longitude and altitude in 3D. Other shapes, such as a lake

shape, or a country area are represented as a series of points.

In our work, we consider the vector data in 2D presentation. In the next section we

detail the formats used to represent and store vector data.

1.1.5 Vector Data Formats

In this section, we present an overview of the three most popular open standards for

spatial vector data. These include the Well-Known Text (WKT) format, the Geography

Markup Language (GML) format, and the GeoJSON format. These standards are

designed for expressing basic geographical features, in conjunction with their associated

non-spatial attributes. Table 1 provides a comparison of these three data formats by

presenting the representation of the same object in each.

Well-Known Text (WKT) format (Lott 2015) is a text-based representation of vector

geometry objects that is widely used in the field of Geographical Information Systems

(GIS) and spatial data management. It has been an official OGC (Open Geospatial

Consortium) standard since 2015 and is currently considered as the ISO 19111-3:2019

standard (ISO 2019). WKT is a simple, human-readable representation of vector data,

which can be easily understood and edited by both humans and machines. It is

commonly used for data storage, data exchange, and data visualization in GIS

applications. WKT is also supported by many GIS software and libraries, making it a

versatile and widely supported format for vector data.

Geography Markup Language (GML) is a widely adopted open standard for encoding

and exchanging geospatial information. It is developed and maintained by the Open

Geospatial Consortium (OGC) and is expressed in XML. The GML specification, as

outlined in the literature (S. a. Cox 2003), provides a common schema language and

predefined properties for describing various types of geospatial features, such as points,

12

polygons, and observations, as well as coordinate reference systems, units of measure,

and other metadata. The format is designed to be extensible, allowing for the description

of a wide range of feature types, their properties, and relationships. Additionally, GML

has the capability to integrate a variety of forms of vector spatial data, as well as sensor

and other non-spatial data, making it a versatile and powerful format for encoding and

exchanging geospatial information.

GeoJSON is a lightweight format for encoding geospatial data that is based on

JavaScript Object Notation (JSON). It was published as a standard by the Internet

Engineering Task Force (IETF) as RFC 7946 (Butler 2016). GeoJSON is designed to

express data about geographical features, their properties, and their spatial extents. It

supports a variety of geospatial feature types, including Points, Line Strings, Polygons,

and multipart collections of these types. As such, it can be used to represent a wide

range of geographical features, including addresses, locations, streets, and more.

Data

format

Example

GeoJSON {

 "type": "Feature",

 "properties": {

 "name":"LIMOS"},

 "geometry": {

 "type": "Polygon",

 "coordinates": [

 [

 [3.111100, 45.759510],

 [3.110043, 45.759188],

 [3.111142, 45.758361],

 [3.111786, 45.758563],

 [3.111100, 45.759510]

]

]

 }

}

GML <ogr:FeatureCollection>

 <gml:boundedBy>

 <gml:Box>

 <gml:coord><gml:X>3.110043</gml:X><gml:Y>45.758361</gml:Y></gml:coord>

13

 <gml:coord><gml:X>3.111786</gml:X><gml:Y>45.75951</gml:Y></gml:coord>

 </gml:Box>

 </gml:boundedBy>

 <gml:featureMember>

 <ogr:geometryProperty><gml:Polygon

srsName="EPSG:4326"><gml:outerBoundaryIs><gml:LinearRing><gml:coordinates>3.1111,45.75951

3.110043,45.759188 3.111142,45.758361 3.111786,45.758563

3.1111,45.75951</gml:coordinates></gml:LinearRing></gml:outerBoundaryIs></gml:Polygon></ogr:geometryProperty>

 <ogr:name>LIMOS</ogr:name>

 </gml:featureMember>

</org:FeatureCollection>

WKT POLYGON ((3.1111 45.75951, 3.110043 45.759188, 3.111142 45.758361, 3.111786 45.758563, 3.1111 45.75951))

Table 1 Example of vector data in WKT, GML and GeoJSON formats.

1.1.6 Spatial Query

There are three fundamental spatial data queries and a large range of queries are made

of these three (Pandey 2018):

• Spatial range query is to return all objects s from a set of geometry objects S that

are inside the range R (e.g., return all museums within 10 km from Eiffel tower).

• Spatial join query is to consider at least two datasets of spatial data R and S, and

apply a join condition (e.g., intersect, contains, within) and return set of all pairs

(r,s) satisfying this condition (e.g., from two datasets restaurant and cinema,

return the cinemas that are in the same neighborhood of an Italian restaurant).

• K-Nearest Neighbors query (also called KNN query) is to take a set of objects S,

a query point p, and a number k >= 1 as input, and find a subset of S of size k

that are the nearest to p (e.g., return 5 nearest by restaurant).

Additionally, (Clementini 1996) defined topological operations Equals, Disjoint,

Intersects, Touches, Crosses, Within, Contains, and Overlaps as the Dimensionally

Extended Nine-Intersection Model (DE-9IM). Then, DE-9IM was adopted by OGC.

Later, it became OGC-compliant for join predicates and (M. M. Alam 2018)

implemented it in two most popular spatial processing systems SpatialHadoop (Eldawy

14

2015) and GeoSpark (Yu 2015). We recall in Table 2 the OGC-compliant join

predicates originally from the DE-9IM model and other spatial analysis functions.

Predicates/

Functions

Operation Description

Topological Relations (all pair joins)

Equals Polygon equals polygon Find the polygons that are spatially equal to other polygons.

Equals Point equals point Find the points that are spatially equal to other points.

Disjoint Polygon disjoint polygon Find the polygons that are spatially disjoint from other polygons.

Intersects Line intersects polygon Find the lines in edges merge table that intersect polygons.

Intersects Point intersects polygon Find the points in point merge table that intersect polygons.

Intersects Point intersects line Find the points in point merge table that intersect lines.

Touches Polygon touches polygon Find the polygons that touch polygons.

Touches Line touches polygon Find the lines in edges merge table that touch polygons.

Crosses Line crosses line Find first 5 lines that crosses other lines.

Crosses Line crosses polygon Find the lines in edges merge table that cross polygons.

Overlaps Polygon overlaps polygon Find the polygons that overlap other polygons.

Within Polygon within polygon Find the polygons that are within other polygons.

Within Line within polygon Find the lines in edges merge table that are inside the polygons.

Within Point within polygon Find the points in pointlm merge table that are inside the polygons.

Contains Polygon contains polygon Find the polygons that contain other polygons.

Spatial analysis

Distance Distance search Find all polygons in arealm merge table that are within 1000 distance

units from a given point.

Within Bounding box search Find all lines in edges merge table that are inside the bounding box of a

given specification.

Dimension Dimension of polygons Find the dimension of all polygons.

Envelope Envelope of lines Find the envelopes of the first 1000 lines.

Length Longest line Find the longest line.

Area Largest area Find the largest polygon.

Length Total line length Determine the total length of all lines.

Area Total area Determine the total area of all polygons.

Buffer Buffer of polygons Construct the buffer regions around one mile radius of all polygons.

ConvexHull Convex hull of polygons Construct the convex hulls of all polygons.

Table 2 OGC-compliant join predicates and other spatial analysis functions (Ray 2011).

15

1.2 Sensor Data Access Standards

In this section, we provide an overview of the OGC sensor data access standards. After

an introduction on environmental sensor networks, we will also compare the two most

widely utilized OGC data access standards in the context of modeling and exchanging

data from sensors and Internet of Things.

1.2.1 Environmental Sensors and Sensor Network

Environmental sensors are devices that are used to measure various physical and

chemical parameters of the environment, such as temperature, humidity, air quality,

light, sound, and other variables. These sensors can be used in a variety of applications,

such as weather forecasting, air quality monitoring, agriculture, and building

automation. They can be integrated into a range of devices such as smartphones, smart

home devices, and industrial control systems. The data collected from these sensors can

be very heterogeneous, meaning that it can have different formats, semantics, structures,

and levels of complexity. This can make it challenging to process and analyze the data,

as well as to integrate it with other data sources. Data may be collected at different

intervals or at different resolutions, which can make it difficult to compare or analyze

the data. This can lead to further heterogeneity in the data, as different organizations

may use different sensors, protocols, and methods for collecting and processing data. To

overcome these challenges, techniques such as data standardization, data cleaning, and

data integration can be used to make environmental sensor data more usable and

actionable. Many organizations developed standards for sensor data access and

interoperability.

Wireless communication systems are used for outdoor applications like in agriculture.

For example, LoRaWAN (Long Range Wide-Area Network) (Augustin 2016) is a low

power wide area network technology (LPWAN) that has been designed specifically for

use in IoT sensor environments. This technology is capable of transmitting small

messages of data over long distances. LoRaWAN has been extensively studied in the

literature. For example, (Haxhibeqiri 2018) highlights the advantages of LoRaWAN

16

over other LPWANs (e.g., SigFox (Sigfox 2023), NB-IoT (Wang 2017)), specifically in

terms of lower deployment costs and the ability to support private networks.

Additionally, LoRaWAN networks are known for their low power consumption and

simple deployment which helps to reduce the cost and complexity of setting up and

maintaining a network. (Terray 2020) leverages the use of LoRaWAN network in terms

of private networks compared with public networks in the hard environment such as

volcano monitoring. They highlighted that private network infrastructures can be

suitable to meet the specific needs and limitations of environment sensors which are

collecting data in hard environment conditions, whereas public networks are managed

independently by private companies and are not easily customizable. Furthermore, they

also highlight that investments in hardware and maintenance for a private network are

more cost-effective in the long-term and for a high number of connected sensors.

Additionally, the LoRaWAN network has the ability to handle the issue of message loss

in the communication between the sensor node and either the gateway or the server.

Figure 5 depicts LoRaWAN architecture for connections between sensor devices and

servers.

Figure 5 An example of LoRaWAN architecture (Codeluppi 2020).

17

1.2.2 OGC Data Access Standards

1.2.2.1 OGC

The Open Geospatial Consortium (OGC), established in 1994, is an international

voluntary consensus standards organization that develops and implements access

standards for geospatial data (OGC 2022). With over 500 voluntary consensus members

and more than 40 standard organizations, the OGC provides freely available standards

that are widely adopted in popular projects such as the Global Earth Observation

System of Systems (GEOSS) (Fritz 2008), and the European INSPIRE Directive

(Bartha 2011). These standards are open standards for geospatial data, with no license

fees required, and can be grouped into five categories, which are data encoding

standards, data access standards, processing standards, visualization standards, and

metadata and catalog services standards.

• Data encoding standards, the OGC provides such as the Geography Markup

Language (GML) standard (S. a. Cox 2003), which establishes a set of rules for

structuring format for spatial data.

• Data access standards, such as the Sensor Observation Services (SOS) (Na

2007) and SensorThings API (STA) (Liang 2016), provide access to geospatial

data via a network, allowing for actions such as GET and POST.

• Processing standards, such as the Web Processing Service (WPS) (WPS 2007),

provide the ability to monitor and control operations.

• Visualization standards, such as the Web Map Service (WMS) (WMS 2006),

provide a set of interfaces for requesting map images via the internet.

• Finally, metadata and catalog services standards, such as the Catalogue Services

for the Web (CSW) (CSW 2010), support the search and publication of

descriptions for data, services, and related objects.

In the context of sensor data modeling, the SOS and STA standards are particularly

noteworthy for sensor network, as they provide well-defined interfaces for accessing

measurements and observations collected from a wide variety of sensors. These

18

standards will be further examined in subsequent sections to demonstrate their modeling

approaches.

1.2.2.2 SOS

The Sensor Observation Service (SOS) is an official OGC standard since 2007,

designed to provide a standardized method for accessing and querying sensor

observations and metadata over the internet (Na 2007). This standard defines a set of

web service interfaces that enable clients to discover and retrieve sensor data, metadata,

and related information, such as sensor locations, capabilities, and quality information.

Additionally, the SOS standard specifies an encoding format for sensor observations

and metadata, based on the ISO/OGC Observation and Measurement (O&M) model (S.

Cox 2007) and the OGC SensorML model (Botts 2007), which are commonly used in

the sensor data community. The SOS standard provides a flexible and extensible

framework for integrating various types of sensors, platforms, and networks, thereby

supporting the interoperability of sensor data across different domains and applications.

This standard has been widely adopted in various domains such as environmental

monitoring, meteorology, and civil protection (Yang 2010, Fazio 2015).

The SOS standard is composed of three main components: Core, Enhanced, and

Transactional. The Enhanced and Transactional part primarily provide supplementary

methods to support the Core, such as the RegisterSensor, InsertObservation, and

GetFeatureOfInterest methods. The core component of SOS is the Observation. This

standard serves as a framework for sensor data modeling, utilizing the SensorML model

for metadata descriptions, and relying on the O&M model for the measurements. The

SensorML model includes inputs, outputs, and parameters for all processes, making it a

comprehensive representation of sensor systems. The O&M model is designed to

describe sensor observations and measurements with the core class diagram depicted in

Figure 6. The OM_Observation class is central to this model and comprises five

attributes (S. Cox 2007):

19

• phenomenonTime, which is mandatory, is described by TM_Object and

represents the time at which the result applies to the property of the feature-

of-interest.

• resultTime, also mandatory, is described by TM_Instant and indicates the

completion time of the entire observation.

• validTime, although optional, is described by TM_Period and specifies the

time period during which the result is intended to be used.

• resultQuality, also optional, is described by DQ_Element (ISO 19115-

1:2014 2014) and characterizes the quality of the result.

• parameter, which is optional, is described by NameValue, is used to specify

any arbitrary event-specific parameters.

Figure 6 Core class diagram of O&M model (S. Cox 2007).

1.2.2.3 SPS

The Sensor Planning Service (SPS) is a service interface that facilitates the planning of

tasks for sensors (Simonis 2011). It has been an official OGC standard since 2011. The

main function of the SPS is to provide a way for users to search for and request tasks for

sensors, and for the SPS to assign the tasks to the appropriate sensors. Once the sensor

20

completes the task, the SPS sends a web notification to the users and the collected data

is sent to the next step, such as the SOS. The SPS is a key component in the

management and coordination of sensor networks, and it plays a crucial role in the

efficient collection and dissemination of sensor data.

1.2.2.4 SensorThings API

The SensorThings API (STA) has been an official OGC standard since 2016. It is an

open solution that is specifically designed to interconnect Internet of Things (IoT)

sensing devices and geospatial data. STA is composed of two parts: the tasking part,

which is focused on controlling sensor devices, and the sensing part, which is dedicated

to sensing and collecting observations from sensors (Liang 2016). The core of STA is

the data model, which is depicted in Figure 7. This data model is created based on the

ISO/OGC Observations and Measurements (O&M) model (S. Cox 2007) and illustrates

the different entities and their properties, as well as the relationships between entities.

Figure 7 SensorThings data model – sensing part (Liang 2016).

21

STA conceptual data model is composed of mainly 8 entities. Table 3 provides a

specific description about each entity of STA:

Entity Name Description

Thing A Thing can be geo-referenced in different spaces. For example, in an environmental

context, a Thing may refer to a monitoring station, a river, or a moving ship. A Thing has

three attributes: name, description, and properties. Additionally, a Thing may be associated

with one or multiple Locations and Datastreams.

Location A Location represents the latest position of a Thing. For example, it may indicate the

position of the latest captured measurement. A Location has four attributes: name,

description, encodingType, and location. The encodingType attribute specifies the format of

the location attribute; its value is one of the ValueCode enumeration. The location attribute

contains the actual geographic coordinates of the Thing.

HistoricalLocation A HistoricalLocation expresses all positions of the Thing. It can provide the previous or the

latest location of the associated Thing together with the time.

Sensor A Sensor describes a sensing device or an observation producer that observes a property or

phenomenon with the goal of producing an estimate of the value of the property.

ObservedProperty An ObservedProperty represents a property that is observed, e.g., temperature, or humidity.

Datastream A Datastream describes a set of Observations of the same ObservedProperty which are

produced by the same Sensor and Thing.

Observation An Observation represents the main value of a property or a sensor. The event can be

numerical values in various formats i.e., JSON or array format. This entity is similar to the

O&M data model (S. Cox 2007). An Observation is linked to a time of collection, also

known as the phenomenonTime, which indicates when the observation was recorded. This

information is crucial to understand the context of the observation and to identify trends over

time.

FeatureOfInterest A FeatureOfInterest describes additional value of an Observation. FeatureOfInterest can

describe the location of the observation, e.g., FeatureOfInterest can be the geographical area

or volume sensed in the case of remote sensing.

Table 3 Entity description of the STA data model (Liang 2016).

There most relations are one-to-many, i.e., Thing and Datastream relation, Datastream

and Observation relation. From the relation we can see that a Datastream has exactly

one Thing, and a Thing can have zero to many Datastreams.

22

1.2.2.5 STA and SOS Comparison

SOS can be viewed as a standard for modeling using both sensorML and O&M data

models and presenting data based on SOAP (Simple Object Access Protocol). In the

context of data modeling and exchanging for sensor and IoT, the main limitation of this

standard is that these interfaces are not optimized to develop lightweight client

applications to explore and visualize observation data.

STA was developed by OGC to take over SOS standards for modeling and exchanging

sensor data and metadata. Their data model is mainly designed based on ISO/OGC

O&M data model. It also provides a HTTP interface (Hypertext Transfer Protocol) for

querying data. It combines two parts: (i) sensing part similar to SOS and (ii) tasking part

is similar to SPS. In the technical perspective, OGC STA is superior to OGC SOS in

several aspects, e.g., STA supports event-based data flows, primarily relying on the

Message Queuing Telemetry Transport (MQTT) protocol (Cohn 2014) which enables

stream processing of data.

Furthermore, OGC STA offers a range of benefits for the IoT community (Liang 2016).

Firstly, it enables the proliferation of new, high-value services with lower development

overhead and a wider reach. Secondly, it reduces risks, time, and cost across the full IoT

product cycle. Thirdly, it is a free, open solution that aligns with the key vision of IoT,

which is to provide low-cost and simple sensors. Lastly, it simplifies the connections

between devices-to-devices and devices-to-applications, facilitating the integration of

IoT devices and systems, making it easier for developers to create and deploy new

services and applications. Overall, the OGC STA is a valuable tool for the IoT

community, providing a standard for data models and communication protocols that

enables interoperability and scalability across a wide range of applications. We provide

a synthetic comparison of the common techniques between STA and SOS in Table 4,

based on existing comparisons (Na 2007, Liang 2016, Santhanavanich 2018).

23

Standard Model Name OGC STA

(SensorThings API)

OGC SOS

(Sensor Observation Service)

Published when 2016 2007

Original encoding JSON XML

Architecture style Resource Oriented Architecture Service Oriented Architecture

Binding REST SOAP

Capabilities to insert new sensors

and observation results

HTTP POST SOS specific interfaces, e.g.,

InsertSensor(), InsertResultTemplate(),

InsertResult(), 3D

Deleting existing sensors HTTP DELETE SOS specific interfaces, i.e.,

DeleteSensor()

3D location of a moving sensor Supported directly through

Location and HistoricalLocation

entity

Supported by SOS specific interfaces

Sensor metadata Supported. (OGC O&M

specification)

Supported. (OGC O&M specification)

Updating properties of existing

sensors or observations

HTTP PATCH and JSON PATCH Supported

Publish–subscribe Support

(similar message queue)

MQTT and SensorThings MQTT

Extension

Not supported

Deleting observations HTTP DELETE Not supported

Linked data support JSON-LD Not supported

Return only the properties

selected by the client

$select Not supported

Return multiple O&M entities

(e.g., FeatureOfInterest and

Observation) in one

request/response.

$expand

Not supported

Table 4 Technical comparison between STA and SOS (Na 2007, Liang 2016,

Santhanavanich 2018).

1.3 Big Spatial Vector Data Management

In this section, we provide an overview of the storage and processing technologies for

big spatial vector data. We present the concept of big data and big spatial vector data.

Then, we discuss about big data storage and processing systems.

24

1.3.1 Big Data

Big data, as defined by (De Mauro 2015), “represents the Information assets

characterized by such a High Volume, Velocity and Variety to require specific

Technology and Analytical Methods for its transformation into Value.”. It refers to

extremely large and complex data sets. These data sets can come from a variety of

sources, such as social media, sensor networks, and more. In the context of the

environment, big data can be used to monitor and study phenomena such as climate

change, natural disasters, and the spread of invasive species.

Managing and analyzing big data can present a number of challenges when using

traditional approaches, as highlighted in the literature by authors such as (X. L. Dong

2013) and (Patgiri 2016). One of the primary challenges is the volume of data, which is

often larger than traditional datasets. This can make it difficult to store and process the

data using conventional methods and may necessitate the use of specialized tools and

technologies such as cluster management and cloud computing. Another challenge is

the velocity of big data, which refers to the high frequency of incoming data. This can

make it difficult to process the data in real-time and may require the implementation of

specialized tools and technologies such as stream processing and real-time analytics.

The variety of big data can also pose a challenge, as it may come in different formats

and models from various sources. This can make it difficult to handle diverse data using

a single system and may necessitate the use of specialized tools and technologies such

as data integration and data warehousing. In addition, big data can also exhibit

inconsistencies and uncertainty, commonly referred to as veracity. Veracity challenges

can arise from the heterogeneous nature of data sources and the complexity of data

processing, which may impact the quality of data and the accuracy of analysis. Finally,

extracting useful information from big data can be a complex task due to the

heterogeneity of data sources, also referred to as value. The challenge is to handle big

data with heterogeneous sources. Overall, managing and analyzing big data can be a

significant challenge, requiring specialized tools and technologies, as well as skilled

personnel with expertise in big data management and analysis.

25

1.3.2 Big Spatial Vector Data

Big spatial data (BSD) refers to large and complex sets of data that possess spatial data

components (Eldawy 2015). Big spatial vector data (BSVD) is a subcategory of BSD in

vector format. In the context of IoT environmental monitoring, this geo-referenced data

may be generated in real-time. It is used to monitor and control various systems and

processes, as well as to analyze and visualize the data generated by IoT devices and

extract meaningful insights. The IoT, which refers to the network communication of

physical devices such as sensors and actuators that are connected to the internet and

able to communicate with each other and with other devices and systems, also plays a

key role in the generation and collection of BSD. It enables the collection of vast

amounts of data from a wide range of sources in real-time.

One of the main challenges in working with BSD, especially big spatial vector data in

the context of IoT is data management (Yao 2018) which includes the storage, retrieval,

and processing of large, complex sets of data coming from heterogeneous sources. This

requires the use of advanced data management techniques and technologies such as

distributed storage and processing, cloud computing, and NoSQL databases. Data

processing and data analysis is another important challenge in working with BSVD.

This includes the ability to handle the high volume, velocity, and variety of data, as well

as the ability to handle the real-time data processing and the real-time data analysis.

(Tatbul 2010) point out the challenges of integrating a streaming processing engine

(SPE) with other SPE or with DBMS (database management system). They note that the

research field is promising, and still open as new use cases appear, and systems are very

heterogeneous which makes integration harder.

Data visualization is another key challenge in working with BSVD. This includes not

only the ability to extract meaningful insights from the data, such as identifying

patterns, trends, but also the ability to represent the data in a clear and meaningful way,

through maps, graphs, and other visualizations. In the next sections, we first describe

the database model and storage. Next, we recall the different approaches for large

spatial databases and present the components of ELK stack. Then, we recall the data

processing and analytics concept.

26

1.3.3 Big Data Storage

The database model and storage are the fundamental step in data management. The

research community has made significant contributions for this area, particularly for Big

Spatial Data (Guo 2020). In this section, we discuss the different database models for

large spatial data. Then, we present in detail the ELK stack. We present as well existing

systems based on ELK stack for spatial data.

1.3.3.1 NoSQL Databases for Large Spatial Data

Generally, spatial data are principally stored into either relational SQL databases or

NoSQL databases. In the context of big spatial data, geospatial databases need to be

adaptable and scalable, with a flexible database schema and a fast query execution time.

However, relational SQL databases such as PostgreSQL (Momjian 2001) and its

extension PostGIS (Obe 2015), SQL Server (SQL Server 2023) are fixed schema

databases and limited in scalability. NoSQL databases (“not only SQL”) are non-

relational databases, they are distributed systems and have flexible storage schema (Guo

2020). There are six types of NoSQL database models: document, graph, wide-column,

key-value, multi-model, search engine. Table 5 presents these database models and their

corresponding popular NoSQL solutions.

Database Model Databases

Document MongoDB (Amirian 2014), Couchbase (Vatsavai 2012)

Graph Neo4j (Schmid 2015)

Wide-column Cassandra (Baralis 2017), HBase (Patroumpas 2014)

Key-value Redis (Lee 2015)

Multi-model Amazon DynamoBD (Sivasubramanian 2012)

Search engine Elasticsearch, Splunk, Solr (Zhen 2016)

Table 5 The 10 most popular NoSQL databases (Guo 2020).

(Guo 2020) concluded that “document databases are the best platform for geospatial

data processing, as they load fast and have a good execution time, good query

27

performance, and abundant geospatial functions and index methods.”. Additionally,

Elasticsearch can be categorized either as a search engine or document database model.

(Guo 2020) indicated as well that Elasticsearch and MongoDB are better than other

NoSQL databases in terms of supporting vector geometry functions.

Elasticsearch supports both streaming and geospatial data models and has significant

advantages over its competitors for analyzing geo-referenced streaming data thanks to

its design. On one hand, (Barnsteiner 2015) showed that Elasticsearch is as efficient as

native Time Series Database (TSDB) (openTSDB 2010) for time series data. On the

other hand, (Guo 2020) argued that Elasticsearch supports many geometry object

structures and functions as spatial DBMS. Moreover, its query engine supports

aggregation queries and connects natively to Kibana for building analytical dashboards.

In Table 6, we provide a comparative study of databases with spatial and temporal

capabilities. We show in this table that Elasticsearch provides important aggregation

functions, geospatial functions, formats and indexes. Elasticsearch is sufficiently

suitable for spatial data warehouse, with the streaming capabilities in addition.

InfluxDB is the reference solution for time-series data, however it lacks support for

spatial data types. InfluxDB (Naqvi 2017) contributors are currently working on this

feature but it is still experimental and limited. Moreover, document databases, e.g.

MongoDB, have been shown performing well with geospatial data queries, and

outperforming relational spatial databases such as PostGIS (Agarwal 2016,

Bartoszewski 2019). In the next subsections, we present Elasticsearch.

28

Table 6 Basic information about four database management systems for geospatial data.

D
a

ta
b

a
se

s
Q

u
e
ry

L
a

n
g

u
-

a
g

e

P
r
im

a
r
y

D
a

ta
b

a
se

M
o

d
el

S
e
c
o
n

d
a
r
y

D
a

ta
b

a
se

M
o

d
el

S
u

p
p

o
r
te

d

G
e
o
m

et
r
y

O
b

je
c
ts

M
a

in

S
u

p
p

o
rt

ed

G
e
o
m

et
r
y

F
u

n
c
ti

o
n

s

S
u

p
p

o
r
te

d

S
p

a
ti

a
l

In
d

e
x
e
s

G
eo

m
e
tr

y

D
a

ta

F
o

rm
a

t

V
is

u
a

li
sa

ti
o

n

F
e
a
tu

re

S
u

p
p

o
r
t

A
g
g
r
e
g
a
-

ti
o

n

Q
u

er
ie

s

M
o
n

g
o

d
b

(A
m

ir
ia

n
,

2
0

1
4
)

N
o

S
Q

L

D
o

cu
m

en
t

S
p

at
ia

l

D
B

M
S

,

S
e
a
rc

h

e
n
g

in
e
,

T
im

e

S
e
ri

es
 D

B
M

S

P
o

in
t,

L

in
e
S

tr
in

g
,

P
o

ly
g
o

n
,

M
u
lt

iP
o

in
t,

M

u
lt

iL
in

e
S

tr
in

g
,

M
u
lt

iP
o
ly

g
o
n

,

G
eo

m
e
tr

y
C

o
ll

ec
ti

o
n

$
g
e
o

In
te

rs
ec

ts
,

$
g
e
o

W
it

h
in

,
$
n

ea
r,

$
n
e
ar

S
p

h
er

e

2
d

sp
h

er
e

in
d

ex
,

2
d

in
d

ex
 b

a
se

d
 o

n

g
eo

h
a
sh

G
eo

JS
O

N

o
b
je

c
ts

,

L
e
g
a
cy

C

o
o
rd

in
a
te

P
ai

rs

M
o
n

g
o

D
B

C
h
a
rt

s

Y
es

P
o

st
G

IS

(O
b

e,

2
0

1
5
)

S
Q

L

S
p

at
ia

l
D

B
M

S

R
el

at
io

n
a
l

D
B

M
S

P
o

in
t,

L

in
e
S

tr
in

g
,

P
o

ly
g
o

n
,

M
u
lt

iP
o

in
t,

M
u
lt

iL
in

e
S

tr
in

g
,

M
u
lt

iP
o
ly

g
o
n

,

G
eo

m
e
tr

y
C

o
ll

ec
ti

o
n

S
T

_
C

o
n

ta
in

s,

S
T

_
In

te
rs

ec
ts

,

S
T

_
W

it
h

in
,

S
T

_
A

re
a
,

S
T

_
B

o
u

n
d

a
ry

,

S
T

_
C

en
tr

o
id

,

S
T

_
D

is
jo

in
t,

S
T

_
D

is
ta

n
ce

,
e
tc

.

(P
o

st
G

IS
,

2
0

2
2

)

R
-T

re
e

W
el

l-
k

n
o
w

n

te
x

t

(W
K

T
),

W

el
l-

k
n
o

w
n

b
in

ar
y

(W
K

B
),

G
eo

g
ra

p
h

ic

M
ar

k
-u

p

L
a
n
g

u
ag

e
(G

M
L

),

K
ey

h
o
le

M

ar
k
-u

p

L
a
n
g

u
ag

e
(K

M
L

),

G
eo

JS
O

N
,

S
c
al

a
b
le

V
ec

to
r

G
ra

p
h
ic

s
(S

V
G

)

A
rc

G
IS

Y

es

In
fl

u
x

D
B

(N
aq

v
i,

 2
0

1
7
)

N
o

S
Q

L

T
im

e

S
er

ie
s

D
B

M
S

N

o
t

a
v
a
il

ab
le

N

o
t

a
v
ai

la
b
le

-

ex
p

er
im

en
ta

l

N
o

t
av

a
il

ab
le

N

o
t

a
v
a
il

ab
le

G

ra
fa

n
a

Y
es

E
la

st
ic

se
ar

c
h

(E
la

st
ic

se
ar

ch
,

E
L

K
,

2
0
2

0
)

N
o

S
Q

L

S
e
a
rc

h
 e

n
g

in
e

S
p

at
ia

l
D

B
M

S
,

ti
m

e

se
ri

es

D
B

M
S

,

d
o
c
u
m

en
t

P
o

in
t,

L

in
e
S

tr
in

g
,

P
o

ly
g
o

n
,

M
u
lt

iP
o

in
t,

M
u
lt

iL
in

e
S

tr
in

g
,

M
u
lt

iP
o
ly

g
o
n

,

G
eo

m
e
tr

y
C

o
ll

ec
ti

o
n

g
eo

_
b
o

u
n
d

in
g

_
b

o
x

,
g

eo
_

d
is

ta
n

c
e,

g
eo

_
p
o

ly
g

o
n
,

g
eo

_
sh

ap
e:

(i
n
te

rs
ec

ts
,

d
is

jo
in

t,

w
it

h
in

,
c
o
n

ta
in

s)
,

g
eo

h
as

h

g
ri

d
,

g
eo

_
b
o

u
n
d

s,

g
eo

_
ce

n
tr

o
id

,

g
eo

_
li

n
e

G
eo

h
as

h
P

re
fi

x
T

re
e

a
n
d

Q
u

ad
P

re
fi

x
T

r

e
e

G
eo

JS
O

N
 a

n
d

 W
K

T

K
ib

an
a,

G
ra

fa
n

a

Y
es

29

1.3.3.2 ELK Stack

In this section, we present ELK stack and the comparison between Elasticsearch and its

competitors. The ELK stack is composed of four main open-source projects: Beats,

Logstash, Elasticsearch, and Kibana (Elasticsearch, ELK 2020). Beats are data shippers,

Logstash is a data processing pipeline, Elasticsearch is a document-oriented database,

and Kibana is a visualization tool.

Beats and Logstash

Beats are lightweight data shippers that mainly ship data from the source, such as files

or databases to Logstash. Logstash is a processing pipeline engine with real-time

pipelines. It ingests data from multiple sources, transforms, and ships the transformed

data to various destinations such as Elasticsearch (Bajer 2017). Each data processing

event of Logstash is processed in three main stages: (i) input stage specifies the input

source, (ii) filter stage regroups the transformations, and (iii) output stage defines the

destinations.

Elasticsearch

Elasticsearch (ES) is the heart of the ELK stack. It is an open-source search engine and

document-oriented distributed database with real-time and full-text searching. In ES,

records are called documents. The documents are JSON objects that are stored within an

Elasticsearch index. An ES Index is comparable to a database in the relational database

world. A document is similar to a row in a table and the document fields are table

attributes. An index field can take on various types e.g., a string, a number. The process

of mapping an index in ES is comparable to creating a database schema. It involves

defining the field types and overall structure of the ES index. ES is also designed as a

distributed database (Elasticsearch 2021). It extends the concept of relationship between

clusters, nodes, indexes and shards.

• A cluster can have one or multiple nodes.

• An ES index can be divided into one or several shards (partitions).

30

• Shards of an index can be populated across one or more nodes in the same

cluster.

Based on the relationship above, the greatest advantage of ES in terms of storage is

scalability and reliability.

• Scalability means that ES can easily increase the size of storage, e.g., adding

new nodes by configuring them in the same cluster, or adding new shards for an

existing index without suspending this index.

• Reliability means that if some nodes stop working, others in the same cluster can

take the workload of the failing one.

ES supports a varying number of field datatypes in a document (Elasticsearch, ELK

2020) which can be classified into four primary categories in ES (as illustrated in Figure

8). They are They are core datatypes (e.g., string, numeric, date, boolean), complex

datatypes (e.g., object for single JSON objects), geo datatypes, and specialised

datatypes (e.g., IP address).

Figure 8 ES field datatypes.

31

ES supports two groups of spatial data types: geo-point and geo-shape. Geo-point is a

pair of latitude and longitude data. Geo-shape includes a point or set of points (e.g.,

point, linestring, polygon, multipoint, multilinestring, envelope, and circle).

In the following, we summarize the query language of Elasticsearch. ES supports a DSL

query (Domain Specific Language) based on JSON data (Elasticsearch, ELK 2020). A

query structure combines three parts: (i) the API method; (ii) an address that includes

URL, index, type, and method; and (iii) query body. ES has five main query categories

of query types (Elasticsearch, ELK 2020): full-text queries, boolean queries, geo

queries, search template queries, and aggregation queries (as illustrated in Figure 9). ES

aggregation queries have two main types: (i) metric aggregation query and (ii) bucket

aggregation query. Metric aggregation queries aggregate the values of some fields over

a set of documents. The interesting metric aggregation queries for our project are

statistical queries (e.g., min, max, average) and geo function queries (e.g., geo-bound).

Bucket aggregation queries consist in grouping documents with respect to a field. There

are three main categories for bucket queries: (i) filter queries to compute one bucket, (ii)

range queries to compute buckets by some ranges, and (iii) term queries to compute one

bucket for each value with respect to some index field.

Figure 9 Query types in ES.

32

Kibana

Kibana is a tool designed for Elasticsearch that enables data visualization and

management (Bajer 2017, Tewtia 2021). It combines a variety of visualization methods,

such as charts, plots, maps, and data tables. Dashboards, which combine multiple

visualizations in a single interface, are a key feature of Kibana. Additionally, Kibana

provides a user-friendly interface for writing queries in the ES query language.

Elasticsearch and Kibana are commonly used together in various use cases for data

storage and visualization (Bajer 2017, Dubey 2018). The primary method of visualizing

geospatial data is through a map (Wilke 2019). Kibana offers the most common types of

spatial visualization maps such as point maps, choropleth maps, heat maps.

• A point map is the simplest method of visualizing spatial data, where filtered

data is presented as a point on the map e.g., a building, a farm.

• A choropleth map represents variations of a measure through coloration.

• A heat map describes a range of values using colors or shades.

Figure 10 presents an example of map visualization using Kibana (ELK stack 2022) for

tracking a flight in North USA. It displays the original and modified flight paths

between Logan international airport and Bangor international airport in the USA. It also

represents areas affected by bad weather through a heatmap and points indicating

lightning strikes. This visualization explains the main reason for modifying the flight

path.

33

Figure 10 Example of maps visualization of Kibana (ELK stack 2022).

1.3.3.1 Existing Systems based on ELK Stack for Spatial Data

(Quoc 2015) and (Bartlett 2019) proposed Elasticsearch as a scalable storage, and fast

querying engine for big spatial sensor data. Both papers showed that ES has the ability

to handle complex analytical spatiotemporal query functions. (Kramer 2020) provided a

software product to store and query different geospatial file formats such as geojson,

gml, cityml in both MongoDB for document storage, and Elasticsearch for indexing

data and fast searching. They used ES mainly for storing JSON files and to retrieve

them. (Bajer 2017) proposed ELK stack for managing IoT data. They argue that ELK

stack is appropriate for such use cases as it handles high insert throughput, has user-

34

friendly GUI for data visualization, and has comprehensive capabilities for spatio-

temporal queries. We indicate as well that the latest version of geonetwork (Geonetwork

2022), which is a well known geo-referenced data catalog has adopted Elasticsearch.

However, no prior work has used and evaluated Elasticsearch for data warehousing and

analytics in the context of streaming geo-referenced sensor data. It is this knowledge

gap that serves as a driving force for our contribution, as detailed in Chapter 2.

1.3.4 Big Data Processing

The processing, analysis, and extraction of valuable insights from large volume of data,

particularly big spatial data has become a significant challenge for various fields. In

response to this challenge, various tools have been developed (M. M. Alam 2021). In

this section, we present Apache Spark (Zaharia 2012) an open-source distributed

computer system proposed for rapid processing of large-scale big dataset and provide a

comparison with other well-established frameworks. Then, we present GeoSpark (Yu

2015), an extension of Apache Spark for spatial data processing.

1.3.4.1 Apache Spark

Apache Spark (Zaharia 2012) is a high-performance cluster computing system designed

to process large amounts of data efficiently. Unlike traditional systems such as Hadoop

(Shvachko 2010), which reply on disk-based storage, Spark operates primarily in-

memory. Spark’s core feature is the Resilient Distributed Databases (RDDs) data

abstraction, which involves distributing sets of items across a cluster of machines.

RDDs are created through parallelized transformations such as filtering, joining, or

grouping, and can be recovered in case of data loss thanks to their lineage that tracks

how each RDD was built from other datasets through transformations. This lineage

feature ensures fault tolerance of Spark by rebuilding lost data.

Spark’s workflow management is achieved through a Directed Acyclic Graph (DAG),

with nodes representing RDDs and edges representing RDD operations. RDDs can

35

undergo two types of transformations: narrow and wide. Transformations are operated

on partitions of RDDs. Narrow transformations do not require data to be shuffled across

partitions to produce the subsequent RDD. Conversely, wide transformations require

data to be shuffled across partitions to create the new RDD. Examples of operations that

require wide dependency include Reduce, GroupByKey, and OuterJoin, which initiate a

new stage and lead to stage boundaries.

Spark offers four primary modules, including (i) SparkSQL (M. a. Armbrust 2015) for

structured data processing and SQL operations, (ii) Spark Structured Streaming (M. a.

Armbrust 2018) for processing unbounded structured datasets, (iii) MLlib (Meng 2016)

for machine learning, and (iv) GraphX (Gonzalez 2014) for graph processing. These

modules make Spark a versatile and powerful tool for big data processing and analysis.

SparkSQL (M. a. Armbrust 2015) is a module of Spark designed explicitly for

processing structured data. It provides two primary features that enhance its

functionality. First, it presents a higher-level abstraction, called a DataFrame, which

structures data as a table with columns, much like a relational database. Second, it

includes a flexible optimizer, known as Catalyst, which is represented as a tree and

follows a general rule library for manipulating the tree. The Catalyst tree transformation

framework involves four phases: analysis, logical optimization, physical planning, and

code generation. Catalyst optimizes the query plan, as shown in the rounded rectangles

in Figure 11, by analyzing and optimizing a logical plan, proposing physical plans with

their respective costs, and generating code.

Figure 11 Phases of query planning in SparkSQL (M. a. Armbrust 2015).

36

Table 7 displays a comparison of the three popular big streaming frameworks,

highlighting their relevant aspects for streaming data processing (Chintapalli 2016,

Inoubli 2018). Apache Spark offers several processing approaches, such as real-time,

batch, and micro batch, making it a versatile choice. However, these features come at

the cost of higher latency and resource consumption. Additionally, Spark has the

advantage of supporting SQL and connecting natively to a wider range of data sources.

 Apache Spark (Zaharia

2012)

Apache Storm (Toshniwal

2014, Storm 2014)

Apache Flink (Carbone 2015)

Processing approach Real-time, Micro Batch

Streaming

Streaming - Trident Run time streaming

Streaming engine Spark streaming processes

data streams in micro-

batches

Designed as DAG with

spouts, bolts and streams used

to process data

A streaming engine for such

workloads; micro-batch, and

batch

Data format Discretized Stream or also

called DStream (it is a

continuous stream of data),

DataFrames

Tuples DataStream

Programming

languages

Python, Java, Scala Java, Scala Python, Java

Cluster manager Hadoop YARN (Vavilapalli

2013), Kubernetes,

Standalone, Apache Mesos

Zookeeper Hadoop YARN, Kubernetes

 Streaming query SparkSQL, Structured

Streaming

No No

Latency Few seconds Sub-second Sub-second

Sliding window Time based Time based and count based Time based

Message Exactly-once At-least-once Exactly-once

CPU consumption ** * ***

RAM consumption *** ** ***

Processing power 100x faster than Storm Millions of tuples per second

per nodes

1000s per nodes

Table 7 Comparison of architecture characteristics of Spark, Storm, Flink (Chintapalli

2016, Inoubli 2018).

While Spark and SparkSQL offer powerful data processing capabilities, they do not

have built-in support for spatial data and its operations. To address this limitation, we

37

present GeoSpark (Yu 2015) and compare it with the most widely used Spark-based

systems for spatial data handling in following sections.

1.3.4.2 GeoSpark

GeoSpark (Yu 2015) is an extension of Spark that enables the loading, processing, and

analysis of large-scale spatial data. It presents the Spatial RDD (SRDD), which

enhances the native RDD with spatial data types such as point, line, and polygon. It

supports fundamental spatial operations as well including range query, kNN query, and

join query.

To improve the speed of spatial query processing, GeoSpark incorporates several

indexing techniques, including Quad-Tree (Finkel 1974), and R-tree (Guttman 1984) for

the SRDD. These techniques, combined with the implementation of the Filter and

Refine model (Wood 2008), significantly improve the performance of spatial query.

Recently, GeoSpark has been endorsed by the Apache Foundation and has been

renamed Apache Sedona (Sedona 2022).

In addition to GeoSpark (Yu 2015), several other Spark-based systems have been

extended for spatial data processing, including SpatialSpark (You 2015), Simba (Xie

2016), SparkGIS (Baig 2017), and LocationsSpark (Tang 2020). Table 8 displays a

comparison of noteworthy spatial streaming frameworks for large-scale data.

38

Spatio-

temporal

Systems

Underlying

System/

Architecture

System

Type

Spatial

Data

Types

Partitioning Indexing Query

Language

Supported

Queries

Tornado

(Mahmood

2015)

Apache

Storm

Spatio-

textual

Stream

{srcid, oid,

(x, y), t,

text} A-

Grid

A-Grid Adaptive

Indexing

Global: Spatial

(A-Grid) Local:

Spatio-textual

(KD-Tree)

Atlas

(SQL-

Like)

Snapshot,

Continuous

(Range, kNN,

Join)

SSTD

(Chen

2020)

Apache

Storm

Spatio-

textual

Stream

Point QT-tree

(Spatial,

Textual)

Global: QT-tree

Local: Object,

Query

N/A Snapshot,

Continuous

(Range, kNN,

Top-k)

GeoFlink

(Shaikh

2020)

Apache Flink Spatial

Stream

Point Grid Grid-based N/A Continuous

(Range, kNN,

Join)

GeoSpark

(Apache

Sedona)

(Yu 2015)

Apache

Spark

Spatial

Stream

Point,

LineString,

Polygon,

Rectangle

Uniform-

Grid

Voronoi,

R-Tree,
Quad-Tree,

KDB-Tree

R-Tree, Quad-

Tree

Extended

Spark

SQL

Range, kNN,

Spatial Join,

Distance Join

Table 8 The four most popular big spatio-temporal systems (M. M. Alam 2021).

1.4 Data Analytics and Integration

Data analytics, as defined by (Rajaraman 2016), is “concerned with extraction of

actionable knowledge and insights from data.”. One process of data analytics is the data

integration which is the process of incorporating data from multiple sources into a

single view or location (Lenzerini 2002, X. L. Dong 2013). In general, data integration

has two well-known methods: data warehouse and mediation system. Data warehousing

consists in collecting and incorporating source data into a single data store. The process

consists in collecting data from heterogeneous sources, transforming, and storing data

into a single data repository. The transforming process regroups a variety of steps, such

as, cleaning, aggregating and joining data sources. Mediation system consists in

defining an integrated schema together with mappings between the integrated schema

and local schemas. In mediation systems, data remain in local sources and user queries

are rewritten through a mapping process. The resulting queries are run on top of the

local data stores. Any operation including different data sources, such as joins, are

executed by the mediation system. In this section, we first recall the fundamental spatial

queries concept. Then, we present data warehouse and mediation systems. Finally, we

present geospatial visualization with examples for spatial data analytics.

39

1.4.1 Data Warehouses

Data warehouses (DW) are designed specifically for analytical queries (Bedard 2001,

Inmon 2005, Wrembel 2006). In the context of data integration, a data warehouse is

usually a central hub for storing and organizing data from different sources. It may be

involved to clean and transform the incoming data as well as store them. Data in data

warehouses are organized into either facts or dimensions. They are generally modeled in

either star schema or snowflake schema. A fact is a focus of interest for the decision-

making process. It consists of measures or metrics. A dimension is a fact property, it

describes one of the fact’s analytical coordinates. Dimensions are used to aggregate data

(Jarke 2002). Data warehouses are usually described using multidimensional conceptual

models. The multidimensional data structures of data warehouses are the data cubes. A

popular analytical tool for data warehouses is the OLAP tool (Online Analytical

Processing). The main OLAP operations are roll up, drill down, slicing, and dicing

(Bedard 2001, Matei 2014).

Spatial data warehouses and spatial OLAP extend the concepts of a data warehouse and

OLAP (Bimonte 2010, K. Boulil 2012). In particular, they provide a method to store,

aggregate and analyze spatial data and geo-referenced environmental data (Nipun Garg

2011, Miralles 2011, K. a.-P. Boulil 2013). In spatial data warehouses, facts or

dimensions may consist of spatial objects.

Data warehouses require ETL processes to get data from sources (Lenzerini 2002,

Albrecht 2008, Bansal 2015). ETL consists of three processes: (i) extracting data from

multiple heterogeneous or homogeneous sources, (ii) transforming data and (iii) loading

the data into data warehouses. ETL process can be either batch ETL or Streaming ETL.

On one hand, batch ETL processes data in batches at a specific time. On the other hand,

streaming ETL processes data continuously. The later approach allows analysis of data

as soon as it is generated and collected from the sources.

Facts

In data warehousing, a fact is a key element that is critical for decision-making

processes (Jarke 2002). Essentially, a fact is a collection of measures or metrics that are

40

used to analyze and report on data. These measures are typically quantitative attributes,

such as temperature or air humidity. To perform detailed analysis, facts are associated

with dimensions that provide context to the data. A dimension is a fact property that

describes one of the fact's analytical coordinates. For example, to calculate the average

temperature of a specific city on a particular date or in a particular month, the

temperature values must be combined with dimensions such as time and location.

Dimensions

In data warehousing, dimensions play a determining role in aggregating data and

providing context to facts (Jarke 2002). A dimension is essentially a category that

organizes data into hierarchies and provides a level of granularity. For example, a

geography dimension might include hierarchies for country, department, and city. These

levels of hierarchy enable users to analyze data at different levels of detail. Dimensions

are used to slice and dice data for analytical queries and to access different levels of

granularity through drill-down and roll-up operations. This allows users to examine data

from different perspectives and gain deeper insights into the data.

1.4.2.1 Modeling

In this section, we present two schemas widely used to model data warehouses: star

schema (Kimball 1996), and snowflake schema (Gray 1998).

Star Schema

The star schema derives its name from its physical schema diagram, as it looks like a

star with a central fact table and multiple dimension tables surrounding it. Figure 12

illustrates an example of the star schema model for a relational database as presented by

(Han 2012). The schema comprises measurements of sales and four dimensions,

including time, item, branch, and location. The fact table contains two quantitative

attributes and foreign keys to the dimension tables. The main advantage of the star

schema is its simplicity, where each dimension has a direct relationship to the fact

entity, making it easy to comprehend and query. Additionally, it offers excellent

performance for aggregation queries and has a high ability to scale, making it an ideal

choice for large and complex data sets.

41

Figure 12 Example of fact and dimension tables of the star schema model (Han 2012).

Snowflake Schema

The Snowflake schema is a variation of the star schema model in data warehousing. Its

mainly distinguishing feature is the normalization of dimension tables, which

significantly reduces data redundancy. The normalized dimension tables are linked to

each other through foreign key relationships, similar to those found in a relational

database. Figure 13 provides an illustrative example of the Snowflake schema model for

a relational database, where the sale fact table closely resembles the fact table of the

Star schema in Figure 12. However, the main difference between these two schemas is

the representation of the dimension tables. For instance, in the Snowflake schema, the

single dimension table for items in the Star schema is normalized into two tables,

namely, item and supplier. The Snowflake schema may entail more complex queries

than the Star schema, but it offers a more flexible and scalable solution for managing

complex data sets.

42

Figure 13 Example of fact and dimension tables of the snowflake schema model (Han

2012).

1.4.2.2 Conceptual Modeling of Spatial Data Warehouse

One of the most essential steps for the data warehouse designing is to build conceptual

model. (K. a. Boulil 2015) has proposed a spatial data warehouse conceptual model.

The authors show that it is one of the most complete conceptual models for spatial data

warehouses based on the standard UML. We use this UML profile in our contribution in

Chapter 4.

A UML profile is an extension mechanism of UML metamodel to customize UML for

specific domains and use cases. Stereotypes, tag definitions, and constraints are utilized

in the definition of profiles, as identified by (OMG 2011) and are applied on UML

metaclasses such as class and association. A stereotype is an extension of a UML

metaclass, while tagged values indicate properties of a stereotype. Constraints provide

clarity on the definition of stereotypes and tagged values. At the model level,

stereotypes are described as (<<stereotype name>>), while tagged values are

represented as (<<tagged value name = value>>). (K. Boulil 2012) proposed a SDW

core model package to represent spatial data warehouse modeling using the UML

metamodel representation. Figure 14 displays the UML metamodel of the SWD core

43

model package. A model (<<SDWCoreModel >>) is composed of one or more

packages (<<Hypercube>>). A Hypercube describes a subject of analysis.

Each Hypercube includes a Fact class (<<Fact>>) and a set of dimensions

(<<Dimension>>). The Fact class combines a set of (<<Measure>>) properties. This set

of measures can be empty. Fact is linked to at least one dimension relationship

(<<DimRelationship>>). Each (<<Dimension>>) has a non-empty set of hierarchies

(<<Hierarchy>>) which represent a level of details for analyzing facts. Finally, each

(<<Hierarchy>>) includes one or multiple aggregation levels (<<AggLevel>>). Authors

have categorized dimensions, hierarchies, and aggregation levels into three groups:

spatial, temporal, and thematic. A spatial dimension (<<SpatialDimension>>) expresses

the location of factual data, whereas the temporal dimension

(<<TemporalDimension>>) refers to the time when the data occurred. Lastly, a

thematic dimension (<<ThematicDimension>>) holds context information.

A Spatial hierarchy (<<SpatialHierarchy>>) comprises of one or more spatial

aggregation levels, whereas a temporal hierarchy (<<TemporalHierarchy>>) consists of

one or more temporal aggregation levels. On the other hand. A thematic hierarchy

(<<ThematicHierarchy>>) includes thematic aggregation level. A thematic aggregation

level, also referred to as (<<ThematicAggLevel>>) consist of descriptive attributes. For

example, a spatial aggregation level is commune, while a temporal aggregation level is

time hour, and a thematic aggregation level is company.

44

Figure 14 The UML metamodel of the SDW core model package (K. Boulil 2012).

1.4.2.3 Modeling ETL Process

(Trujillo 2003) proposed an approach to formalize conceptual model for ETL process in

UML. This approach supports the user to design a complex ETL into a set of simple

processes. They proposed to define each ETL mechanism as a UML stereotype as

illustrated in Table 9. To simply representation of the ETL process, each stereotype has

a graphical icon. For example, the aggregation mechanism characterized by

Aggregation stereotype aggregates data based on some criteria. The ETL designer can

define the grouping criteria and the aggregation functions such as SUM, AVG, MIN,

and MAX in a note. Figure 15 represents a portion of an ETL process by using the

Trujillo ETL design approach.

45

Table 9 ETL mechanisms and icons of (Trujillo 2003).

Figure 15 Aggregation example using the defined stereotype icons (Trujillo 2003).

46

1.4.2 Mediation System

Mediation system provides a uniform view of data from different sources (Wiederhold

1992). In the context of data integration, mediation system is usually used to facilitate

the combination of data between different sources and formats. A mediation system

includes mediated schemas (also called global schemas) and mapping techniques. The

most popular techniques of mediation system are GAV (Global as View) and LAV

(Local as View) (Halevy 2001). GAV is a definition of relations in global schemas

based on relations in local schemas. LAV is a definition in local schemas on relations in

global schemas. When a query q is submitted, the mediation system (i) uses the

mapping (between global schema and sources) to rewrite the query q into a set queries

Q and then (ii) executes the queries q’Q on the corresponding data sources, (iii) gets

the results from data sources, (vi) merges the result and return it to user.

GAV

The Global As View (GAV) is a technique for mediating between different data sources

in the data integration. It involves creating a global view (also called integrated schema)

of the data from the different sources, which can then be queried as if it were a single,

unified data source (Halevy 2001). This allows for the data to be accessed and used in a

consistent and unified way, regardless of the data sources. This approach is applied to

the TSIMMIS integration system (Garcia-Molina 1997). In GAV method, the process of

rewriting queries is handled by the mediator, which is responsible for mapping the data

from the various sources into the common schema, and for resolving conflicts that may

arise between the sources. GAV is especially useful when you have data spread in

different places, different formats and different structures which need to be integrated

for a common purpose. However, GAV has the disadvantage of requiring rewriting

completely the mapping between local schemas and the integrated schemas whenever a

local schema changes.

LAV

The Local As View (LAV) includes defining the local sources as a set of views made on

the global schema (Halevy 2001). Unlike GAV, a change in a local schema only

requires updating the mapping between these local sources and the global schema.

47

However, LAV includes a more complex query rewriting process. Some projects

applied the LAV technique (T. Kirk 1995, Goasdoue 2000).

1.5 CEBA Project

The CEBA architecture, depicted in Figure 1, is designed based on the core requirement

that it can handle diverse data flows without any prerequisite regarding their structure

and content, while providing only minimal data analysis functionalities (Sarramia

2022). In terms of data management, the design incorporates four main functionalities:

ingestion, storage, cataloging, and access. Additionally, it includes a high-level

metadata management system, ensuring that datasets are accompanied by metadata at a

minimum.

Regarding IoT system data, the architecture specifically considers low-output sensor

networks such as LoRa (Augustin 2016) or SigFox (Sigfox 2023), characterized by low

velocity. The system offers near real-time access to this data, as defined by the specific

use case, along with access to historical and cold data. The ConnecSens project

(ConnecSenS 2015-2020), funded by the European Regional Development Fund

program of the European Union from 2015 to 2020 (ERDF 2023), has developed an

open-source data collection platform using LoRa. This project serves as a key partner in

the development of the IoT component within CEBA.

The CEBA is composed of the following layers:

• An ingestion layer that handles streaming data sources using Beats.

• A dual data storage layer that enables near real-time visualization and simple

data querying. It utilizes Logstash, ElasticSearch, Grafana, and PostgreSQL.

• A long-term data storage layer provided by PostgreSQL and an AWS S3

Mesocenter service.

• A data access and discovery layer facilitated by a website designed with the

Symfony framework and a GeoNetwork data catalog.

48

The CEBA architecture, displayed in Figure 1, consists of multiple servers that host one

or several services, along with a reverse proxy for security purposes. The architecture

includes the following servers:

• Sensor Data Server: This server receives and publishes data from LoRa sensor

networks, which are managed by the ConnecSens project. It utilizes Chirpstack,

Mosquito, and Paho library.

• Elastic Search Cluster: Comprising three servers, this cluster is responsible for

indexing and retrieval of data.

• Transport/Transformation and Visualization Server: This server hosts services

such as Filebeat, Logstash, and Grafana, which handle the transportation,

transformation, and visualization of data.

• Web Server: This server acts as a web server to serve various functionalities.

• Metadata Generation Server: This server manages the generation of metadata

using R and the geometa library.

• Data Catalog Server: Geonetwork is hosted on this server, which serves as the

data catalog.

• DBMS Servers: Two servers are dedicated to the Database Management System

(DBMS) PostgreSQL.

• Additionally, the AWS S3 service is hosted and managed by Mesocenter

Auvergne.

An ingestion multi-pipeline near real-time system has been developed using the Elastic

Stack to enable instant data visualization and handle diverse use cases (refer to Figure

16). This pipeline is capable of handling data inputs from different sources such as files,

databases, and data flows. In the case of data from sensor network deployments,

ingestion is accomplished by reading daily created files that are continuously updated

throughout the day. Technically, once a data file is created or updated with new data,

Filebeats, a lightweight shipper, sends the data to a data collector called Logstash, both

of which are components of the Elastic Stack (Elasticsearch, ELK 2020). Logstash

functions as a data streaming pipeline, receiving data from various sources (Input),

cleansing, and enriching each data point with relevant information (Filter), and directing

the data to the appropriate CEBA server (Output).

49

The data routing to appropriate storage locations is accomplished during indexing,

utilizing an index naming convention that incorporates the experiment name, the end

node's name, and the measurement date. This approach allows for the effortless

isolation and retrieval of variables, facilitating the generation of time series. This

strategy offers several benefits, including the storage and preservation of raw data via

files, as well as near real-time presentation to the user through indexing. Additionally, it

enables swift reindexing in the event of bugs or errors in data transmission.

The CEBA can efficiently integrate new data providers by ingesting data from various

sources, including databases through Logstash. Additionally, MQTT streams can be

ingested using Filebeat, expanding the capabilities of data ingestion.

Figure 16 Schematic representation of generic ingestion pipeline (Sarramia 2022).

1.6 Discussion and Summary

This thesis focuses on the integration and analysis of environmental sensor data, aiming

to provide systems and techniques to overcome challenges cited in this chapter. We

discussed in this chapter the main topics related to this research. We explained the

nature of data studied in this research which is mainly environmental sensor data

generated by sensors and other IoT devices. This data is mainly characterized by the

location, timestamp, and measurements. We described the standardization of sensor data

access by Open Geospatial Consortium (OGC) and provided a comparison of the two

models: the SensorThings API (STA) and the Sensor Observation Service (SOS). We

included a review of several topics related spatial vector data including different

database models used for storage and management of spatial vector data. We

highlighted the benefits of NoSQL data models and described in detail the ELK stack.

50

Additionally, we presented the data processing frameworks Apache Spark and its

adaptation for spatial vector data, Apache Sedona. Finally, we discussed the techniques

for data integration.

Our first contribution is related to spatial data warehouse and the ELK stack. Previous

literature has highlighted the advantages of NoSQL data models for spatial data,

regarding to query capabilities and performance. However, no prior work has used and

evaluated Elasticsearch for data warehousing and analytics in the context of streaming

geo-referenced sensor data. Hence, we propose a method and a dedicated architecture to

represent and query a spatial data warehouse (SDW) model with ELK stack. We

implement multidimensional models in Elasticsearch and propose analytical dashboards

with Kibana. We also evaluate the proposal with respect to several aspects.

Our second contribution aims to overcome the limit of data warehousing. Existing

literature studied data integration extensively, but the works focused on spatial data

integration do not address both streaming and large data sets. Additionally, existing

work for data integration in the context of Big Data does not consider neither streaming

nor spatial data, and data processing frameworks lack support for integrating different

data sources under a uniform schema. It is indeed difficult to handle integration of a

large number of heterogeneous data sources. Therefore, we propose stream data

integration with geospatial capabilities for real-time analytics of environmental data.

In a final chapter, we address the modeling of data warehouses for sensor data. We

propose a generic multidimensional model for data warehousing SensorThings-

compatible source.

51

CHAPTER 2 A NEW APPROACH BASED ON ELK

STACK FOR THE ANALYSIS AND VISUALIZATION OF

GEO-REFERENCED SENSOR DATA

The results obtained in this chapter have been presented in two scientific publications:

the 7th International Conference on Geographical Information System Theory,

Application and Management (Ngo 2021), and the Springer Nature Computer Science

journal (Ngo 2023).

2.1 Introduction

Data warehouses are a well-established methodology and system for conducting data

analysis, as described in Section 1.4.1 of Chapter 1. This approach involves aggregating

data from various sources, integrating it, and storing it in a centralized data repository.

Traditionally, data warehouses were built on top of relational databases, which provided

a robust and reliable foundation for data analysis. However, recent advancements in

data management have led to the emergence of NoSQL databases, which offer unique

advantages in terms of query capabilities, query answering performance, scalability, and

schema changes. As such, the literature has begun exploring the benefits of NoSQL

databases as an alternative to traditional relational data warehouses, as highlighted in

(Bicevska 2017). NoSQL databases have also emerged as a reliable option for

developing geospatial information systems, as highlighted in (Guo 2020). They

highlight the ability of NoSQL systems to manage big spatial data that exceeds the

capacity of traditional databases. These capabilities leverage NoSQL databases as an

interesting choice for handling large-scale geospatial data, which requires efficient and

scalable storage, retrieval, and analysis mechanisms.

In this chapter, we address the challenge of implementing a data warehouse of geo-

referenced data in a NoSQL system. Our proposed solution includes a dedicated

architecture and method for representing and quering a spatial data warehouse (SDW)

model using the ELK stack (ELK stack 2022). We note that we provided a

52

comprehensive description of the ELK Stack in Section 1.3.3.2 of Chapter 1. The choice

of the Elastic stack was made because it is a distributed solution, redundant at the data

level and scalable. It has a comprehensive query language and is efficient in terms of

query processing. Elastic stack is well suited for sensor data and spatiotemporal

analytics.

Our contributions include a model or SDW architecture based on the ELK stack, and a

performance evaluation for this type of architecture. To illustrate our approach, firstly

we demonstrate the implementation of two multidimensional models relevant to

environmental sensor data in Elasticsearch. Then, we present a streaming ETL

component called IAT (Integration and Aggregation Tool) for loading sensor data into

Elasticsearch. Finally, we show the comprehensive query capabilities of Elasticsearch

and its ability to handle a growing number of dimensions and data, offering a promising

approach to address the challenge of implementing a spatial data warehouse in a

NoSQL system. Our proposed SDW model and ELK stack architecture provide a

powerful and scalable solution for managing and analyzing large-scale geo-referenced

data in a NoSQL system.

Our proposed methods are tested on CEBA, an Environmental Cloud for the Benefits of

Agriculture project (Sarramia 2022). The main objective of CEBA is to afford a better

understanding of changes in environment quality over time. CEBA consists of several

components, including Elasticsearch, and collects data primarily from various sensors

deployed in Auvergne (France) for scientific projects such as (ConnecSenS 2015-2020).

The main data flows of CEBA consist of (i) collecting data primarily from sensor

sources, (ii) ingesting the collected sensor data in Logstash via Beats shippers, and then

(iii) storing the collected data, mainly in Elasticsearch database. However, CEBA lacks

an analytical component to analyze the ingested environmental sensor data.

To conclude, the contributions of this work are:

• A data warehouse architecture for geo-referenced sensor data based on the ELK

stack, which is composed of IAT for the ETL process.

• An illustration on two multidimensional models for geo-referenced sensor data.

• An example of the Kibana dashboard for the proposed multidimensional models.

53

• Evaluations of Elasticsearch for analytical queries on the models and IAT with

our benchmark dataset.

The chapter is organized as follows: in Section 2.2, we present our work and the

architecture composed of the ELK stack, along with the use case for analytical queries

and the dashboard on Kibana. We then present the evaluation of Elasticsearch and IAT

with our benchmark dataset, followed by a comparative evaluation with MongoDB.

2.2 How to Represent a Query and Implement a

Spatial Data Warehouse with Elasticsearch?

In this section, we present the main components and steps to represent and build a data

warehouse on top of Elasticsearch. We drive the presentation with the data from our use

case, which involves a set of sensors deployed in natural areas, that collect

environmental measurements.

2.2.1 Sensor Data Representation

In our proposed approach, we utilize the ISO/OGC Observation and Measurement

Standard, known as O&M (refer to Section 1.2.2.2 of Chapter 1), to describe our sensor

data model. Figure 17 depicts the conceptual model for the observations. The studied

observations includes four sensor data sources of CEBA, namely Auzon, Aydat,

Montoldre, and Zatu. Each data source has different measurements. The observation

classes of our project sensors inherit from the OM_ComplexObservation class, which

itself inherits from the OM_Observation class.

54

Figure 17 Class diagram of OM_ComplexObservation conceptual model of four sensor

projects in CEBA.

2.2.2 Multidimensional Models

To design multidimensional models, the UML profile proposed by (Pinet 2010)

specifically for environmental data warehouses is employed. In this profile, classes

serve as representations of both facts and levels of dimensions. A fact class comprises

measure attributes that are the focus of analysis, while a dimension is a hierarchy of

member classes, each of which represents a level of analysis in the dimension.

Associations between members are established through aggregated associations, which

are depicted using an arrow '<-' in the diagrams. At least one class of member in a

dimension must be linked to a fact class.

In model A, displayed in Figure 18, the fact consists of a set of measurement types that

allows users to analyze environmental factors across three dimensions: (i) time at four

levels of hierarchy (hourly, daily, monthly and yearly), (ii) location with four levels of

hierarchy (geographic coordinates, communes i.e., French towns or villages, French

departments, and French regions), and (iii) information with two levels of hierarchy

55

(physical sensor or device that collected the measures and scientific project during

which the data were collected).

In Model B, displayed in Figure 19, the fact is either geographic coordinates or

measures. This model enables users to aggregate the facts with respect to three

dimensions: (i) time, at four levels of hierarchy (hourly, daily, monthly and yearly), (ii)

location, with three levels of hierarchy (communes i.e., French towns or villages,

French departments, and French regions), (iii) information, with two levels of hierarchy

(sensor device information and scientific projects).

In a data warehouse, aggregations that one can compute are based on the facts and the

dimensions structure. The choice of model structure can result in different types of

queries. In Model B, where the fact can be either geographic coordinates or measures, it

allows for queries that target the location fact, such as determining the area covered by

each sensor device every hour. In Model A, aggregations are only based on numerical

values, with geographic location considered as a dimension. However, in Model B,

spatial aggregations on a geo-referenced attribute are possible due to the fact that

geographic location is treated as a fact rather than a dimension.

Throughout the remainder of this chapter, we refer mainly to the first model presented

as model A. Having described the initial data collected from the data sources and the

data cube models, we now proceed to present the architecture of our system, for

collecting and transforming data from the sensors to comply with the data cube models.

Additionally, we provide the aggregation queries for each model in Section 2.2.4.1, and

the aggregation queries for both models using Kibana, as outlined in Section 2.2.4.3.

56

Figure 18 Multi-dimensional conceptual model for the measurement fact (Model A).

Figure 19 Multi-dimensional conceptual model: geo object and measurement as fact

(Model B).

2.2.3 System Architecture

In this section, we present our proposed system architecturedisplayed in Figure 20. The

architecture consists of two main parts: (i) the ELK stack, which includes the pipeline

Beats, Logstash, Elasticsearch and Kibana, and (ii) the Integration and Aggregation

Tool (IAT), which is mainly responsible for populating the data cube in Elasticsearch

(ES).

57

Figure 20 System architecture.

In more detail, sensor data is collected by Beats and then transmitted to Logstash, which

listens continuously for new records generated by sensors and receives them from

Beats. We use Logstash to standardize the data coming from different sensors to ensure

consistency across the board. For instance, each sensor family may have its unique

timestamp column pattern or use different terminologies for measures, which may lead

to discrepancies in data. Furthermore, we suggest using Logstash to remove metadata

fields to ensure that only relevant data is processed. Next, IAT extracts the data from

different sources in Logstash and transforms them in order to comply with the data cube

models. The resulting output is stored in an Elasticsearch index. The IAT process is

user-configurable, which describes (i) the models (ii) the input data, as well as (iii) the

transformation process. The functionalities of IAT that are relevant to our use case are

(i) fields mapping, (ii) time window aggregation, and (iii) integration with external

sources. These functionalities of IAT are also explained in Section 2.2.4.2. Finally, we

use Kibana to create dashboards for visually analyze the data.

58

2.2.4 Data Cube, ETL and Queries

In this section, we provide a detailed representation and implementation for the data

cube and the ETL system, as well as their corresponding data visualization and textual

queries.

2.2.4.1 Elasticsearch Data Cube and Query Workload

We propose a streamlined approach to store the data cube by utilizing a single

Elasticsearch index. This method involves mapping the attributes in the dimensions and

facts of the models to fields in the ES index. Our use case demonstrates that both

models can be efficiently implemented within a single index. There are two primary

reasons for storing all the data cube in one index:

• Firstly, Elasticsearch does not perform well with join queries (Pilato 2017). As a

NoSQL system, it is not very efficient to join data from different indices

(although join queries do exist in ES). By keeping all the data in one index, we

avoid the performance issues that may raise from attempting to join data from

multiple indices.

• Secondly, ES is vertically scalable, meaning that larger indices do not

significantly impact ES query performance. In fact, fewer indices with more data

are generally recommended over many indices with little data. As a result,

storing all the data cube in a single index is a more efficient and practical

approach.

Figure 21 is a snippet of the ES index schema which stores the data cube. As an

example, field deviceID is mapped to deviceID in the dimension hierarchy “Sensor” in

both models, as detailed in Section 2.2.2.

59

Figure 21 A snippet of the target index schema.

Each record of the data cube is a document in the ES target index. A snippet of a

document from the target index (data cube) is illustrated in Figure 22. As we can see, it

contains all of the attributes, e.g., applicationID, year, senLocation, and windSpeed.

Figure 22 A snippet of a document in the target index

In the following, we present the analytical queries. Aggregation queries in ES are a

combination of two types of queries:

60

• Bucket aggregation query: given a set of documents in an ES index, this query

returns one or more buckets of the documents grouped by one and only one

field. Each document in the index belongs to at most one bucket. This query is

equivalent to a GROUP BY in SQL semantics.

• Metric aggregation query: given a set of documents, this query aggregates the

values of an index field by a metric function.

To achieve a GROUP BY operation with respect to several fields, ES query language

allows to compose several bucket queries in a nested manner.

Figure 23 Snippet of a query on two dimensions for model A.

We show a snippet of a query for Model A (refer to Figure 23). This aggregation query

groups documents by (2) time dimension (and more specifically the hour attribute), (3)

information dimension by the device name field. It then aggregates the values of each

measure in Model A and computes some statistical functions, such as temperature and

61

air humidity, as depicted in the figure. A visualization example of this query for

computing the average air humidity measure on the Kibana dashboard, is presented in

the visualization 3 in Section 2.2.4.3 (refer to Figure 24).

2.2.4.2 Data Integration with IAT

IAT is a dedicated streaming ETL (Extract, Transform, Load) application, specifically

designed to integrate sensor records into a data cube, named the target index. For our

use case, we have defined three essential functionalities for the transformation process:

(i) field mapping, (ii) time window aggregating, and (iii) integration with other data

sources via API. We detail the functionalities of IAT below:

• Field mapping is responsible for mapping fields between data sources and the

target ES index.

• Time window aggregation is used to continuously aggregate sensor records

based on their timestamp. This functionality is particularly useful when data

sources have different frequencies of record generation. The user defines the

configuration for time window aggregation. IAT then aggregates data within the

configuration window of time size. For example, if the user configures IAT to

aggregate sensor data in intervals of one hour, it will compute the average of all

measurement fields.

• IAT can integrate sensor data with additional data sources to enhance analytics,

such as commune and department in Model A and Model B.

The process is driven by a user configuration where the user specifies the parameters of

the functionalities described above. We share our implementation of IAT in GitHub1.

1 GitHub: https://github.com/AnnaNgo13/es_etl

https://github.com/AnnaNgo13/es_etl

62

2.2.4.3 Dashboard on Kibana

After populating the target index (data cube), we propose to design a dashboard on

Kibana to visualize interesting analytical queries based on model A described in Section

2.2.2. Figure 24 shows a snapshot of this dashboard with the following visualizations:

• Visualization 1 (top left): This visualization can be used to detect if sensors

having the same application id (i.e., concerning the same Project), deployed in

the same area and under similar conditions, collect highly divergent values,

which could be due to a defective sensor. To achieve this, we (i) filter by

application id and month, (ii) group by device names, and (iii) aggregate the

temperature measurement. We can see that one device detects low temperatures

compared to others for three days.

• Visualization 2 (bottom left): In this visualization, we want to see the impact of

battery voltage on the measurement values. If the battery loses power suddenly,

the measurement may become inaccurate. We can see in the visualization that

the drop in battery voltage occurred at the same time as a drop in temperature.

We can conclude that the battery issue impacts the temperature measurement.

• Visualization 3 (top right): In this visualization, we want to monitor the values

of some specific measurements.The values of a measurement should be in a

specific interval. Otherwise, the measurements should be inaccurate. In this

visualization, we see the variation of air humidity over time aggregated by

device. We can see that the values go below 60% (the expected minimum value)

during a time interval.

• Visualization 4 (bottom right): In this visualization, we aggregate sensors by geo

grid. By hovering over some cells, we get the aggregation of all measurements

collected by the sensors of this cell.

63

Figure 24 Benchmark dashboard.

Each visualization is presented on a higher scale in Appendix A (Figure 50, Figure 51,

Figure 52, Figure 53). The steps to create a visualization on Kibana are in Appendix B.

2.2.4.4 Textual Queries

Figure 25 shows an example of an analytical query related to Model B. The left-hand

side of the figure is the query in ES query language, while the right-hand side is a

snippet of its corresponding result. Recall that the ES query result is represented in

JSON format. This query aggregates documents by two buckets: (i) by dimension level

hour and (ii) by dimension level sensor name. It then operates two spatial functions on

the senLocation field in the aggregated documents: (i) geo centroid and (ii) geo bounds.

Geo centroid computes the weighted centroid from all coordinate values for the

senLocation field. Geo bounds computes a bounding box containing all geo values for

the senLocation field.

https://en.wikipedia.org/wiki/Centroid

64

Figure 25 Query in ES query language and snippet of its result for Model B.

2.3 Evaluation and Experiment

In this section, we evaluate the performance of our solution based on Elasticsearch for

sensor data warehousing and analytics and demonstrate the ability of our system to

handle real-time data collected by sensors for analytical queries. Our primary objective

is to analyze the scalability of the system, i.e., how the execution time performance

changes as the volumn of data increases. Specifically, we measure the query execution

time performance of the Elasticsearch engine, along with its memory and disk

consumption, and we evaluate the data ingestion through IAT. To evaluate the query

execution time, we run workloads based on the models presented above and measure

their execution time, as well as the disk and memory usage of Elasticsearch. Moerover,

we compare Elasticsearch to its direct competitor MongoDB with respect to analytical

queries execution time

65

2.3.1 Dataset

For the purpose of evaluating our system, we built a large dataset including collected

measurements of four different projects, i.e. Auzon, Aydat, Montoldre, Zatu.

The Auzon project focuses on the Allier ecosystem services, particularly the Allier river

and its hydraulic appendages in France. These areas are vital for biodiversity,

denitrification, recreation, and fishing leases. Monitoring the hydraulic appendages is

crucial as they serve as an indicator of changes in the river system, which is dynamic

and experiences temporary reconnection during floods and regular restoration actions.

The project utilizes the ConnecSens observation system, which deploys a network of

sensors to continuously monitor environmental variables such as water level,

temperature, and conductivity in the Allier river and its associated alluvial aquifers.

Aydat is a lake in south-central France, covering an area of 60 hectares and having a

small watershed of about 16.8 hectares. It has a maximum depth of 15 meters. The lake

is eutrophic and frequently experiences cyanobacterial blooms. It is part of the OLA

network, which focuses on studing lake ecosystems in France. OLA stands for

"Observatoire des Lacs" in French, and its English translation is Lakes Observatory. To

understand the lake's hydro-ecological processes and address the issue of cyanobacterial

proliferation, various sensor systems such as one HYDROLAB HL7 multiparameter

sonde, and three Aquatroll 200 data loggers are deployed. HYDROLAB HL7

multiparameter sonde comprises eight sensors (a conductivity sensor, Hach LDO®

Dissolved Oxygen Sensor, temperature sensor, turbidity Sensor, chlorophyll-a sensor,

blue and green algae sensor, rhodamine sensor, and finally a pressure sensor for water

depth measurement). These sensors use different transmission technologies (LoRa using

ConnecSens technology with a gateway connected to the internet for Aquatroll, Short

Message Service for HYDROLAB HL7) at least hourly. The collected data is sent to

CEBA, where reference datasets are created by projects associated with the observatory.

The Montoldre project is focused on studying the functioning of agrosystems at the

Montoldre site, which includes a 100-hectare farm used for research on sensor

networks. As part of the ConnecSens project, the goal is to deploy sensors to improve

66

understanding of water dynamics in agricultural plots. This involves implementing a

network of soil moisture and temperature sensors, along with a weather station, on

selected plots. The data collected from these sensors provides valuable information

about soil water content and its availability for corn crop growth.

The ZATU project (Zone Atelier Territoires Uranifères) is a part of the french LTSER

network since 2015, uses CEBA as a data repository and dataset catalog

(LeRéseauDesZonesAteliers 2023). ZATU’s research observatory, located in France,

focuses on studying the connections between ecology, society, and radioactivity. The

observatory generates diverse data from various disciplines, inlcuding a project

involving the development of a wireless radon sensor. In the future, the obervatory

plans to deploy multiple wireless sensor networks to measure variables such as air

randon (an exmample ad-hoc system has been designed by the LPC laboratory, this is a

physics laboratory of Clermont Ferrand, based on the Algade AER sensor system),

water level, temperature and flow (using HYDROLAB HL7 multiparameter sonde and

Aquatroll 200 data loggers), and weather with the data being uploaded and stored in

CEBA2.

The initial dataset obtained from the four projects comprises metadata in its original

format. Nonetheless, the dataset exhibits a considerable number of empty records and

incomplete measurement collections, particularly in the Auzon project dataset. Many

data frames related to system functioning, such as reboots, radio signal performance,

and battery levels, are not considered in this dataset. However, the interesting point is

field name reflects the meaning of the data it contains As a result, we have devised the

subsequent procedure to obtain a suitable dataset for the purpose of benchmarking our

proposal:

1. Remove irrelevant fields that do not provide valuable insights for the dataset,

such as "adr" and "fPort" configuration fields. For the Auzon dataset, we retain

14 out of 49 fields, which accounts for approximately 30% of the relevant data.

2 All these sensors have been deployed by January 2023 but were not available at the time of

the study.

67

2. Identify the relevant measurement code(s) within the dataset.

3. Drop empty rows in important columns and exclude uninteresting measurements

from the analysis.

4. Eliminate duplicated records based on a unique key computed by functional

dependencies. For example, for Auzon dataset, the key is (devEUI,

applicationID, data-node-timestampUTC, data-CNSSRFDataTypeId).

5. Merge rows based on the unique key or longitude and latitude.

6. Improve the understanding of field meanings and subsequently remove

unnecessary fields that do not contribute to the analysis.

7. Further refine the dataset by eliminating duplicate rows and increasing the data

frequency.

8. Augment the dataset to cover a four-year period, providing a broader temporal

perspective.

By implementing this process, we aim to gain a comprehensive understanding of the

data and improve its quality for subsequent analysis and interpretation across the four

projects.

Consequently, in the dataset, each sensor device contains approximately 1440 records

for every day, i.e., one record per minute. Table 10 describes the dataset built to

evaluate our system. The properties of each dataset are shown, e.g., the number of

collected records over four years, measurement columns, and the number of devices.

The columns related to dimensions are listed in Table 11. The dataset is available in a

public data repository3.

Data source (Projects) Auzon Aydat Montoldre Zatu

Number of measurement

columns

5 7 2 3

Number of devices 6 7 9 8

Number of dimension levels 14 14 12 10

Number of collected records 12501840 13910400 15552000 16911360

Size 5.12 GB 5.04 GB 5.28 GB 4.56 GB

Table 10 Dataset summary over 4 years.

3 https://drive.google.com/drive/folders/1ATdzq_p-jwrhPLyWkrfE_O8nCE8LD6s4?usp=sharing.

https://drive.google.com/drive/folders/1ATdzq_p-jwrhPLyWkrfE_O8nCE8LD6s4?usp=sharing

68

Common columns

Device ID

Device name

Application ID

Application name

Data-node-latitude

Data-node-longitude

Data-node-timestamp

Table 11 Common columns.

2.3.2 Hardware

We ran our experiments on a Linux Ubuntu machine with 16 GB RAM and a 6-core

Intel Core i5 CPU 8400 and 500 GB disk space. We used ELK stack version 7.6.0, and

Elasticsearch with one node and one shard, and we used a single node MongoDB

version 4.4.12.

2.3.3 Evaluation of IAT

As noted in Section 2.2.4.2, IAT consists of a pipeline that ingests data and transforms it

to follow the schema of the target index in Elasticsearch that represents the data cube. It

consists of three parts: (i) transforms the columns, (ii) aggregates records by time, and

(iii) adds additional information through external sources. These operations are

described by users in a configuration file. In the context of evaluation and to stress IAT,

we ingest the whole dataset presented above in one go, to evaluate its processing time.

The IAT source code as well as the mapping files for each data source are available in

GitHub (refer to Section 2.2.4.2). Figure 26 reports the time to pipeline data with

respect to different data intervals. We run this experiment with the Auzon data source.

We omit the other data sources as the results are similar. Generally, we can see that the

evolution of the processing time is linear with respect to the time intervals, which shows

that the processing time of one record is almost constant. The average processing time

of one record is around 2 milliseconds (ms).

69

Figure 26 IAT pipelining processing time.

2.3.4 Evaluation of Elasticsearch

In this section, we evaluate Elasticsearch performance in testing spatio-temporal

analytical queries for geo-referenced environmental sensor data. For each model

described in Section 2.2.2, we run its corresponding workload 10 times and we report

the performance indicators. For query execution time, we consider the value returned by

Elasticsearch in the query result body. The results confirm that ES is a reliable tool for

analytical queries in the context of environmental data. Note that the queries are

executed on the top of the target index which was populated by IAT. For this

experiment, we have configured IAT to aggregate the sensor records by windows of 60

minutes. We show in Table 12 the characteristic of the target index. The number of

fields of the target index is 20 including 10 measurement fields. The total number of

documents stored in the target index is 973089 with a total disk usage of 86 MB. The

smaller disk usage is due to the ES indexing and data compression. A dump file of the

target index content in JSON files is four times greater.

Number of fields 20

Number of measurement columns 10

Physical storage by ES 86 MB

Number of documents 973089

Table 12 Size of target index with 4 years of data.

3 months 6 months 12 months 24 months 48 months

 Processing time 199 392 808 1720 3400

128

256

512

1024

2048

4096

P
ro

cessin
g tim

e in
 seco

n
d

70

As explained in Section 2.2.4.1, the ES query engine provides two types of aggregation:

(i) bucket aggregation and (ii) metric aggregation. A bucket aggregation query consists

in grouping documents (records) by some fields while a metric aggregation query

performs a function on the field values of a set of documents. Hence, a general

analytical query consists of a composition of one or more bucket queries and only one

metric query.

For a fair and complete evaluation of ES query execution performance, we present

query patterns. Given a set of dimensions X of a multidimensional model, a query

pattern Q(X) represents all aggregation queries that include a bucket query (i.e., Group

By) for each dimension in X. For example, Q({“Information”,“Location”}) groups all

queries that group documents by both Location and Information dimensions. For the

following results, we evaluate ES query execution performance with respect to query

patterns. The execution time of a query pattern is the average execution time of queries

related to that pattern.

Therefore, we compare the query execution performance by: (i) different query patterns,

(ii) dataset size (time period of the dataset), and (iii) different models. Figure 27 and

Figure 28 display the execution time of queries for respectively Model A and Model B

for the different query patterns. The letter “T” is for the “Time” dimension, “L” is for

the “Location” dimension, and “I” is for the “Information” dimension. Note that queries

are executed without using the cache or pre-computed queries. As Elasticsearch engine

natively uses a query cache, the execution time reported by ES can often be 0 ms.

Hence, we clear the cache after each query execution to avoid misleading results.

Generally, we can see the same behavior for the two models. The average execution

time is slightly increasing with the number of bucket queries. For queries with two

buckets, we see that 𝑄({"T", "𝐿"}) in Figure 27 takes more time than other queries. This

query pattern groups documents by both the Time and the Location dimensions. Bucket

queries with these two dimensions take more time than those with the Information

dimension because the latter contain string attributes (encoded as keywords in the index

mapping) which are indexed by ES better than any other data types.

71

Figure 27 Execution time for Model A by query pattern.

Figure 28 Execution time for Model B by query pattern.

Figure 29 and Figure 30 show the variation with respect to the dataset size. The

execution time axis follows the power 2 logarithmic scale. We can see for both models

Q({"T"}) Q({"L"}) Q({"I"}) Q({"T","L"}) Q({"T","I"}) Q({"L","I"})
Q({"T","L","I"

})

3 months 83 75 55 130 55 55 140

6 months 102 85 77 185 77 60 196

12 months 107 122 131 198 125 97 275

24 months 215 223 185 309 157 196 352

48 months 233 355 327 340 279 359 489

0

100

200

300

400

500

in milliseconds

Q({"L"}) Q({"T"}) Q({"I"}) Q({"L","T"}) Q({"L","I"}) Q({"T","I"})
Q({"L","T","I"

})

3 months 59 14 50 61 54 19 80

6 months 70 45 57 111 77 38 130

12 months 100 62 92 135 100 67 171

24 months 133 83 113 156 138 91 218

48 months 167 126 219 194 193 165 268

0

50

100

150

200

250

300

in milliseconds

72

that the increase of the execution time is sub-linear with respect to the dataset size. This

shows that ES is not impacted by the size of the index.

Figure 29 The execution time of Model A by varying the dataset size.

Figure 30 The execution time of Model B by varying the dataset size.

Figure 31 shows the difference between the two models. The results include all query

patterns. We can see that the queries of Model B are faster. This is mainly due to the

difference in the Location dimension. For Model B, bucket queries are made on

3 months 6 months 12 months 24 months 48 months

1 bucket 71 88 120 208 305

2 buckets 80 107 140 221 326

3 buckets 140 196 275 352 489

64

128

256

512

in milliseconds

3 months 6 months 12 months 24 months 48 months

1 bucket 41 57 85 110 171

2 buckets 45 75 101 128 184

3 buckets 80 130 171 218 268

32

64

128

256

512

in milliseconds

73

keyword string fields which aggregate faster than the geo-point data type. The second

finding is similar to those in Figure 29 and Figure 30: the increase of the execution time

is sub-linear with respect to the dataset size.

Figure 31 Comparison of execution time between two models with respect to dataset

size.

Lastly, we run a comparative evaluation with MongoDB. We only consider MongoDB

because (i) it is the nearest database to ES in terms of features and capabilities, (ii) it

satisfies the requirements of CEBA for scalability, schema constraints and high

performance, and (iii) it is capable of handling geo-referenced sensor data warehousing.

Figure 32 shows the results. We run the query patterns presented before with our

benchmark dataset. The results show that ES outperforms MongoDB for all queries.

Note that we added indices in MongoDB for fields concerned by these queries. We

observed that MongoDB does not use the indices optimally during aggregation queries,

while ES leverages the indices for these benchmark queries.

Model A Model B

3 months 140 80

6 months 196 130

12 months 275 171

24 months 352 218

48 months 489 268

0

100

200

300

400

500

in milliseconds

74

Figure 32 Comparative evaluation of Elasticsearch and MongoDB with 4 years dataset.

2.4 Discussion and Summary

In this chapter, we presented our proposal of environmental sensor data warehousing

with ELK stack. We presented our use case which involves analyzing environmental

sensor data, deployed in the wild. We presented the architecture of the system,

composed of IAT for the ETL process, Elasticsearch for storage and analytics, and

Kibana for visualization. We provided multidimensional models and presented their

implementation in Elasticsearch. We also showed the query capabilities of ES and we

ran a set of experiments to assess the viability of our solution.

The experiments showed that Elasticsearch is able to efficiently handle growing

numbers of dimensions. We carried out a set of experiments to assess the value of our

solution based on ES for geo-referenced data analysis. The result showed that IAT

performs the ETL process efficiently. The time needed for the processing of the sensor

records and their loading into ES is linear to the size of the dataset. The reported time

for one record was around 2ms, which proves that IAT can process a data stream

efficiently with high throughput. Moreover, we showed that the evolution of the query

execution time is sublinear with respect to the dataset size. Also, we showed that

increasing the number of bucket queries in the aggregation query, i.e., including more

Q({"T"}) Q({"L"}) Q({"I"}) Q({"T","L"}) Q({"T","I"}) Q({"L","I"})
Q({"T","L","I"

})

ES 233 355 327 340 279 359 489

MongoDB 2580 3267 2637 3573 2931 3559 3002

0

1000

2000

3000

4000

in milliseconds

75

dimensions, does not significantly impact the query performance. The reported disk and

memory usage show that ES compresses the stored data without impacting the query

performance. These results show that our solution should manage use cases with bigger

datasets. Therefore, given Elasticsearch’s efficient query performance and resource

usage, in addition to its query capabilities for geo-referenced data analysis, it is a viable

tool for spatial data warehouse solutions.

For future work, we aim to provide Elasticsearch with additional spatial query

capabilities such as convex hull. We also want to investigate analyzing our use case data

with big spatial data systems such as Apache Spark. Moreover, we aim to add support

of OGC SensorThings API (Liang, 2016) to IAT in order to build sensor data

warehouses from sources in OGC Sensor Web.

To conclude, this chapter presents a promising approach to spatial data analysis using

data warehousing techniques with the ELK stack. Although this approach requires a

step of loading data into a centralized repository beforehand, the experimental results

demonstrate the efficiency and scalability of this proposal. Furthermore, the proposed

future work provides an interesting direction for further research in this field. In the next

chapter, we will explore real-time analysis of sensor data through mediation technique.

76

CHAPTER 3 A MEDIATION SYSTEM FOR

CONTINUOUS SPATIAL QUERIES ON A UNIFIED

SCHEMA USING APACHE SPARK

The results obtained in this chapter have been submitted to the Big Earth Data journal

(Taylor & Francis), currently in the second round of the revision process.

3.1 Introduction

Real-time decision-making necessitates the prompt processing of data as soon as it is

generated, to make timely and informed decisions. Traditional data warehousing, as

discussed in the previous chapter, involves a fixed multidimensional model and a prior

step of Extract, Transform, and Load (ETL). The technique of mediation offers an

alternative approach for integrating data from disparate sources without the need for

ETL. Specifically, given a set of data sources and their schemas 𝑆1, … , 𝑆𝑛, a global

schema 𝐺 and mappings between 𝐺 and 𝑆1, … , 𝑆𝑛 , mediation consists of rewriting a

query expressed on schema 𝐺 into a set of queries on the local data sources. In the

domain of spatial data integration with mediation technique, early work of (Boucelma

2003) introduced VirGIS, a WFS-Based spatial mediation system to integrate data from

heterogeneous GIS (Geographical Information Systems). It complies with the openGIS

standards and specifications such as GML (Geography Markup Language) and WFS

(Web Feature Service). However, no recent work tackled the challenges of analyzing

streaming data or large datasets associated with the sensor data through the mediation

technique.

Big spatial data frameworks such as Apache Spark can integrate and process large

datasets from different sources. However, these frameworks are hard to use when the

data sources are heterogeneous and numerous. To make complex streaming and spatial

data analysis accessible, we propose a novel system based on mediation technique for

stream-static data integration. The system allows administrators to configure a mediated

schema and mappings between it and the data sources. Users can then express queries in

77

the mediator SQL grammar, which the system rewrites into an Apache Spark (Zaharia

2012) application submitted to a Spark cluster.

We evaluate the proposed system with respect to different groups of queries and

demonstrate its superiority in handling spatial data and continuous spatial queries. The

contributions of this work are:

• A mediation system for integrating heterogeneous stream-static spatial data

sources.

• A dedicated SQL grammar for the expression of continuous spatial queries.

• Implementation of a query tuner in the mediation system.

• Evaluation of the mediation system with respect to several parameters.

The chapter is organized as follows: we introduce the mediator SQL grammar. Then we

describe the use case used to explain our work. We present the local schemas and

integrated schemas of our use case. Then, we present the architecture and the algorithms

of the mediation system. Finally, we evaluate the system with respect to several aspects

and we conclude and provide perspectives for future work.

3.2 A Mediator for Continuous Spatial Queries

In this section, we describe our proposal, a mediation system for integrating multiple

heterogeneous data sources. Our system utilizes Apache Sedona as a processing engine,

which we described in Section 1.3.4.2 of Chapter 1. Our main contribution is a mediator

that simplifies integration of both stream and static spatial data. We provide a dedicated

SQL grammar for the expression of continuous spatial queries. The mediator translates

user continuous spatial queries on the mediated schema into a Spark app. We apply the

GAV approach for the mediation. The mediator administrator defines the mapping of

entities of mediated schema to entities of local schemas.

78

3.2.1 Dedicated SQL Grammar

In this section, we describe the SQL syntax supported by our mediation system. The

syntax is dedicated to express queries with continuous spatial semantics. Figure 33

illustrates the grammar. The system supports data retrieval statement SELECT. This

statement is used to retrieve rows from relations in the mediated schema. Regarding the

SELECT statement, the system supports the clauses WHERE, GROUP BY, HAVING

and ORDER BY with the same semantics as in ANSI SQL. Additionally, we introduce

the clause WINDOW to express continuous queries. The WINDOW clause is used to

return results with respect to the sliding window. It accepts two parameters, (i) window

length and (ii) sliding length. Both parameters can be expressed in either seconds,

minutes, or hours. We note that this clause is not available in standard ANSI SQL.

Regarding the list of spatial functions and predicates, our mediation system supports

those adopted by OGC and detailed in Section 1.1.6 of Chapter 1 such as intersects,

distance. The grammar is presented on a higher scale in Appendix C (Figure 59 and

Figure 60).

79

Figure 33 Dedicated SQL grammar.

80

3.2.2 Motivating Example

We present our proposal by using a motivating use case example that involves

integrating four data sources. We begin by illustrating the local data sources. Then, we

describe the integrated schema that corresponds to the requirement of the data analysis.

Finally, we provide an example of a continuous query related to the integrated schema

that can be executed within our system.

Figure 34 displays the UML class diagram for the local data sources and the integrated

schema (IS).

• Data source 1 (S1) consist of two tables: (i) department and (ii) commune in

France. A department is an administrative region, while a commune refers to a

French town in France. The table schemas for these tables are as follows:

▪ S1.department(departmentCode,departmentName,regionName)

▪ S1.commune(communeCode, communeName, communeShape,

regionName, regionShape, departmentCode)

• Data source 2 (S2) stores the geographical coordinates of buildings, categorized

as industrial, residential, or administrative. The table schema for this source is as

follows:

▪ S2.building(boundaries, type)

• Data source 3 (S3) includes both static and stream data, with static information

stored in the device and measure tables, while the observations table contains

streaming data. The table schemas for this source are as follows:

▪ S3.observation(measureID, measureTime, value, location, deviceID)

▪ S3.device(deviceID, deviceName, applicationID, applicationName)

▪ S3.measure(measureID, measureName)

• Data source 4 (S4) represents a continuous stream of data collected by active

sensors, with each record containing a timestamp and location information. The

table schema for this source is as follows:

▪ S4.observation(measureName, measureTime, value, location, deviceID,

deviceName, applicationID, applicationName).

81

The requirement of the integration is to be able to analyze environmental indicators

around residential areas, industrial zones, etc. Hence the integrated schema has four

relations, Sensor, Building, Commune, Region. The relations in the integrated schema

are mapped to the relations of local schemas using the GAV mapping technique

(detailed in Section 1.4.2 of Chapter 1). These mappings are listed in Table 13.

Figure 34 Local and integrated schema.

Global schema Relations

G.region(regionName, geometry)  S1.department(departmentName, departmentCode, regionName)

G.region(regionName, geometry)  S1.commune(communeName, communeCode, communeShape, regionName,

regionShape, departmentCode)

G.commune(zipcode, name, geometry)  S1.commune(communeName, communeCode, communeShape, regionName,

regionShape, departmentCode)

G.building(geometry, type)  S2.building(boundaries, type)

82

G.sensor(deviceID, sensorName, applicationID,

applicationName, data_airHumidity,

data_temperature, location, timestamp)

 S3.observation(measureID, measureTime, value, location, deviceID) ∧
 S3.device(deviceID, deviceName, applicationID, applicationName) ∧
S3.measure(measureID, measureName), measureName=”temperature”

G.sensor(deviceID, sensorName, applicationID,

applicationName, data_airHumidity,

data_temperature, location, timestamp)

 S3.observation(measureID, measureTime, value, location, deviceID) ∧
 S3.device(deviceID, deviceName, applicationID, applicationName) ∧
 S3.measure(measureID, measureName), measureName=”airHumidity”

G.sensor(deviceID, sensorName, applicationID,

applicationName, data_airHumidity,

data_temperature, location, timestamp)

 S4.observation(measureName, measureTime, value, location, deviceID,

deviceName, applicationID, applicationName) , measureName=”temperature”

G.sensor(deviceID, sensorName, applicationID,

applicationName, data_airHumidity,

data_temperature, location, timestamp)

 S4.observation(measureName, measureTime, value, location, deviceID,

deviceName, applicationID, applicationName) , measureName=”airHumidity”

Table 13 The relations in the integrated schema.

One considers the following type of continuous queries that involves the aggregation of

sensor measurements within a specific geographic area over a time window: get

continuously an aggregation of sensor measurements in the last m units of time, every n

units of time, within a certain geographical area. In the context of our use case example

with the data sources we have considered, we could retrieve the average air temperature

and air humidity measured in the last hour within a 10 meters radius of building in

Clermont-Ferrand, France, every 10 minutes. This query can be expressed with our SQL

syntax within our system, as depicted in Figure 35. We note that letter “G” denotes the

global schema.

Figure 35 Running query example Q.

In the next sections, we will provide a more detailed explanation of the system

architecture and the mediator algorithm, as well as how the mediation system validates

and executes this query.

83

3.2.3 System Architecture

The system architecture of our mediation system is described in Figure 36, which

consists of two main components: the mediator and Apache Spark. The mediator is

composed of three components: query parser, query rewriter, and query tuner, all of

which we designed.

Figure 36 System architecture.

The workflow of our mediation system is as follows:

• First, the query parser uses a parser tree to analyze the input queries and match

the clauses with the mediator SQL grammar (refer to Section 3.2.4.1).

• Next, the mediator rewrites the query into a Spark application according to the

mappings provided by the administrator (refer to Section 3.2.4.2).

84

• Then the query tuner modifies the rewritten query according to a set of

optimization rules to achieve higher query execution performance (refer to

Section 3.2.4.3).

• Once a query is submitted to the Spark cluster, Spark workers ingest data from

the data sources and the continuous result is returned to the user.

We will provide a more detailed description of each component in the following

sections, explaining how they work together to achieve the desired behavior.

3.2.4 Mediator Algorithm and Components

We propose the global procedure, displayed in Figure 37, which takes a user input

query and generates Spark application. The procedure requires three inputs: (i) the user

query, (ii) the global schema configuration file, and (iii) the local schema configuration

file. Its output is the Directed Acyclic Graph (DAG) of Spark transformations.

The global procedure of our mediator involves five main steps as follows:

i. The query parser parses and builds the syntax tree.

ii. For each syntax tree, the query rewriter constructs a Directed Acyclic Graph

(DAG) transformation.

iii. The transformed DAGs are then combined into a single DAG.

iv. The tuner optimizes the DAG using methods such as push-down filter.

v. The resulting DAG is returned.

We delve into each of these steps in the subsequent subsections.

85

Procedure

 Input: User query Q on global schema, Global schema config, local schema config

 Output: DAG

1. // Query Parser

2. Parse and build syntax tree ST for Q

3. For each table Ti in query Q do

4. Parse and build syntax tree STi of the transformation query of the table Ti

5. // Query rewriter: For each syntax tree: map clauses to spark transformations and build a transformation DAG

6. Build transformation DAG D from syntax tree ST

7. For each STi in ST1…STn do

8. Build transformation DAG Di from syntax tree STi

9. // Assemble the different dags of transformations to make one DAG

10. Assemble D, D1,…Dn into one transformation DAG D

11. // Query tuner: push down filters, improve joins, …

12. Optimize D

13. // Get and return the DAG

14. Return D.

Figure 37 Procedure of rewriting queries.

3.2.4.1 Query Parser

In the mediator, a parser tree is implemented to parse the query and match the clauses

with regards to the grammar depicted in Figure 33. It also retrieves the expressions of

the clauses i.e., tables, columns, and predicates.

In our generic syntax, the WINDOW clause enables time window-based aggregations

and joins. The clause consists of two values: (i) window interval length and (ii) sliding

length. Consider a query with expression “WINDOW 1hour 30minutes”, suppose the

query processing starts at t0 = 12:00, the windows would be [12:00, 13:00], [12:30,

13:30], [13:00, 14:00], [13:30, 14:30], and so on. When a window end time is earlier

than the current time, the data related to this window is discarded. The parser is

implemented with two components: (i) Tokenizer and (ii) Validator. The tokenizer

separates the query into a list of tokens based on a predefined vocabulary, while the

validator validates whether the query respects the SQL grammar.

86

While validating the query by our grammar, the syntax tree is constructed with the

recognized items. The syntax tree for the running query example Q is displayed in

Figure 38.

Figure 38 Running query example Q: Query syntax tree.

3.2.4.2 Query rewriter

When a query is submitted, the mediator generates a Structured Streaming Spark

application, which can be represented as Directed Acyclic Graph (DAG) of

transformations on Spark dataframes. Conceptually, Spark dataframe is equivalent to a

table in relational databases. Each transformation is applied on a dataframe (also called

df) and produces a new dataframe. The initial dataframes in this workflow are those that

load data from the local sources specified in the query.

The transformations used in our query rewriting process are provided by the Spark

programming model and are listed in Table 14. As SQL is a declarative language and

the Spark programming model is functional, there is no one-to-one mapping between

SQL clauses and dataframe transformations.

87

Dataframe

Transformation

Description

select projects a set of columns. Column names are obtained from

<AttributeList> and <AggAttributeList>.

filter filters rows by the given condition. The condition is set using the criteria

defined in both <WCondition> and <HavingCondition>.

join joins two dataframes those columns are present in a predicate or a

function in <Wcondition>.

groupby groups the dataframe using a set of columns, which are defined in

<GroupbyExpressionList>. It also handles windowed grouping with

elements in <WindowList>.

agg computes aggregates for columns. The aggregation function and

aggregated column are specified in <AggAttributeList>.

sort sorts the dataframe by the column specified in OrderBy.

Table 14 Dataframe transformation description.

Therefore, query rewriter maps each subtree of the syntax tree to a spark transformation.

For instance, the expression “commune.zipcode=63000” in the WHERE clause is mapped

to the transformation df.filter(“zipcode=63000”), where df refers to the input dataframe of

this transformation. The inner joins that are defined implicitly in WHERE clause are as

well mapped to “join” transformations. For example, the expression:

Distance(“sensor.location”,”building.geometry”)<10m, is mapped to the transformation:

df_left.alias(“a”).join(df_right.alias(”b”),exprs=“Distance(“a.location”,”b.geometry”)<10m)

”.

Afterwards, the query rewriter assembles the transformations in the following order:

“filter” -> ”join” -> “select” -> “groupby” -> “agg”-> ”filter”-> “sort”, while respecting

the order of joins that matches the logic of the query. Figure 39 part A displays the

directed acyclic graph of transformations related to the running query example Q. The

initial dataframes (at the bottom) are loaded from data sources, and the output dataframe

containing continuous result of Q is the one that results from the “agg” transformation.

Note that even though the Spark app is implemented as a sequence of transformations,

however, the processing does not necessarily occur in the same order. Indeed, Apache

88

Spark has a property called lazy processing where the Spark engine creates one

optimized query plan for all the transformations. This technique optimizes parallel

processing with minimum shuffling and temporary disk storage. This is an important

advantage when working with Spark for integrating several data sources. Moreover,

Spark allows for further tuning of the execution. In the next section, we explain some

strategies that the mediator can integrate to achieve better performance, especially for

our use cases, i.e., integrating streaming and static data.

3.2.4.3 Query Tuner

The baseline construction of a Spark application, as presented earlier, may result in low

performance because it does not utilize Spark performance tuning capabilities. Although

Apache Spark has an optimizer engine, called Catalyst, in its Spark SQL engine, it may

not always achieve optimal performance. Hence, Spark allows developers with the

ability to tune their applications. For instance, when joining two dataframes, one can

choose how the two dataframes should be partitioned, and such choices can

significantly impact the processing performance.

To optimize the performance of our system, we have implemented a query tuner in the

query rewriter algorithm that performs two main operations:

• Push-down static-static operations.

• Broadcast join for stream-static joins.

89

Figure 39 Running query example Q: Spark application DAG representation (A) and

Optimizer Spark application DAG representations (B).

Figure 39 displays the logical plans of the query with and without tuning. Specifically,

Figure 39 part A shows that Spark first joins the static data source building and a

stream, then it joins the resulting data with the static data source commune. With this

method, each incoming record is compared to both commune and building sources.

90

As these data sources are static, the join result remains unchanged over time. Therefore,

we propose a strategy in the mediator to assemble the transformations that improve

overall execution performance. We propose to push down and run first all static-static

operations, i.e., which include only static data sources. Since, the results of these

operations do not change over time, we do not need to compute them for new incoming

stream records. Moreover, we implicitly cache the results in each worker of the cluster

by specifying a broadcast join, which persists the results of static-static joins in each

worker of the cluster. This enables Spark to use this cache copy for computing the join

with stream data, thereby improving the join performance by avoiding data shuffling

and precomputation. Figure 39 part B displays optimized DAG of transformations.

3.2.4.4 Setup Configurations

In this section, we explain the different inputs that a system administrator should

prepare to integrate the system for a specific use case such as the running query

example Q. The integration module takes two user configuration files: (i) local sources

and their schemas, (ii) global schema and the mapping.

Local schemas

The user defines (i) the data store of the local source, and (ii) the columns along with

their data types. The supported data stores for streaming sources such as Apache Kafka

(Kreps 2011), Logstash, or static sources such as files. The supported data types include

e.g., string, float, datetime, geo-object. Due to space limitation, a snippet of the local

schema configuration file for the motivating example is presented in Figure 57 in the

Appendix C.

Global schema and mapping

For each table, the user defines the local sources, the columns, and their data types. The

schema mapping is expressed in the transformation query using SQL. Due to space

limitation, a snippet of the configuration file for the motivating example is presented in

Figure 58 in the Appendix C.

91

3.3 System Evaluation

Several works have benchmarked Apache Spark (Karimov 2018) and Geospark (Yu

2015) which recently became Apache Sedona, and showed their superiority to

competitors such as (Pandey 2018), (M. M. Alam 2021). Hence, the evaluation in this

section focuses on the optimization technique of the mediator described in Section

3.2.4.3 and not on comparing Apache Sedona with its competitors.

3.3.1 Dataset

For the system evaluation, we use two real static datasets and synthetic streams. The

first real datasets, building is obtained from Open Street Map, and consists of over

423,284 polygons, each record represents a building and described by a polygon

(Eldawy 2015). The dataset size is over 70MB. The second real dataset, commune

contains over 35,228 polygons representing boundaries of communes (cities) in France

(Grégoire 2015). Its size is 40MB. These details are depicted in Table 15.

For the synthetic streams, we generate records with real-time timestamps and new

coordinates using a real sensor dataset. The coordinates are chosen randomly within a

defined range to ensure that queries yield results. The frequency of the generation of

streaming records is a variable parameter.

Dataset name Geometry Number of geometries Size

Building polygon 423284 74MB

Commune polygon 35228 40MB

Table 15 Dataset of building and commune.

92

3.3.2 Hardware

We deployed a Spark Cluster on 9 virtual machines: one master, and 8 workers. Each

machine is equipped of 2.60GHz Intel(R) Xeon(R) CPU E5-2650 v2 with 4 CPUs, and

8GB RAM, and running Linux Ubuntu. We used the distribution Apache Spark 3.2.2

with Python 3.6.

3.3.3 Metrics

(Karimov 2018) have listed metrics typically used for evaluating streaming systems,

such as latency, and throughput. In terms of latency, they have considered two types: (i)

event-time latency, which refers to the time interval between data generation and data

ingestion, and (ii) processing time latency, which is a time interval between ingestion

time and output time. For throughput, they have measured the maximum throughput and

proposed sustainable throughput, which is the system’s throughput without

backpressure, i.e., increasing latencies.

In our experiments in the following sections, we focus mainly the processing time

latency. As the query rewriting time by the mediator is negligible (few milliseconds),

we do not report it. Additionally, we also compare the size of shuffled data. We recall

that shuffled data is the amount of data moving between workers during data processing

to reorganize Spark data partitions. The less shuffled data, the better performance.

3.3.4 Experiments

To assess the benefits of the mediator and the optimization proposed in Section 3.2.4.3,

we define three different benchmark queries on our running example (refer to Section

3.2.2). These queries, intended to evaluate the system with respect to various aspects,

are presented in Figure 40. A brief description of each query is provided below:

93

• Q1: This query involves a spatial join between the stream and static sources.

• Q2: This query is similar to Q1 but includes a windowed aggregation on the

spatial join between the stream and static sources.

• Q3: This query is a windowed spatial join between the streams and static

sources.

Figure 40 Snippet of queries.

For each query, the mediator handles it with different strategies or methods. We report

the average time taken to process a single batch by Spark. The code of our system is

available on Github4. The applied methods are as follows:

• Method A: The mediator does not add any specific tuning to the query plan

generated by Spark SQL optimizer.

• Method B: The mediator pushes down the computation of joins between static

sources.

4 GitHub: https://github.com/AnnaNgo13/streamgeomed

https://github.com/AnnaNgo13/streamgeomed

94

• Method C: The mediator pushes down the computation of joins between static

sources and caches these results.

• Method D: This method includes the approach of method C and broadcasts the

sensor streaming results to all workers.

Consider  as the number of records generated by each source every ten seconds. Figure

41 displays the result with  = 1 and 4 Apache Spark workers. On the other hand,

Figure 42, Figure 43, and Figure 44 display the evaluation results with 8 Apache Spark

workers for respectively  = 1,  = 10, and  = 100. First, the results show that the

technique used in the method B does not provide a substantial improvement over the

baseline method. For example, in Figure 41, it is more interesting to filter the buildings

with respect to the sensor records rather than joining the whole datasets commune and

building. Note that Apache Sedona builds indexes for these two spatial datasets.

However, for higher  values, we can see in Figure 44, it shows that joining building

and commune first is more efficient because both datasets are indexed. Joining the

larger batch of streaming records with the dataset building has higher cost. Caching

overcomes this limitation of joining static datasets first. As displayed in Figure 42, even

for low  values, method C is faster than method A for all queries. The method D,

which we implemented in our system, further optimizes the queries. Caching avoids

precomputation of result that do not change over time, however this result (DAG) is

distributed over the cluster workers and requires data shuffling. Hence, the broadcast

join method significantly reduces data shuffling, as depicted in Table 16, and therefore

it reduces processing time by up to one order of magnitude. Although the broadcast join

method comes with a higher memory storage cost, the storage usage during the

benchmark queries evaluation was lower than 10 MB per worker machine.

95

Figure 41 𝜆 = 1with 4 worker nodes.

Figure 42 𝜆 = 1 with 8 worker nodes.

Q1 Q2 Q3

A 2.2 2 4

B 1.2 1.9 2.2

C 0.7 0.8 2.1

D 0.3 0.7 1.2

0

1

2

3

4

5

P
ro

ce
ss

in
g
 t

im
e

(s
ec

s)

Q1 Q2 Q3

A 2 1.9 3.7

B 1.2 1.8 2.2

C 0.7 0.6 2.1

D 0.1 0.5 0.9

0

1

2

3

4

5

P
ro

ce
ss

in
g
 t

im
e

(s
ec

s)

96

Figure 43 𝜆 = 10 with 8 worker nodes.

Figure 44 𝜆 = 100 with 8 worker nodes.

Q1 Q2 Q3

A 2.2 2 3.9

B 1.4 1.9 2.2

C 0.7 1 2

D 0.15 0.8 1

0

1

2

3

4

5

P
ro

ce
ss

in
g
 t

im
e

(s
ec

s)

Q1 Q2 Q3

A 2.6 2.4 4

B 1.4 2.3 2.15

C 0.7 1.2 2

D 0.15 1.1 1.5

0

1

2

3

4

5

P
ro

ce
ss

in
g
 t

im
e

(s
ec

s)

97

Method/ Query C D

Q1 160 MB 142 MB

Q2 164 MB 148 MB

Q3 5 MB 620 KB

Table 16 Amount of shuffled data for three queries.

3.4 Discussion and Summary

In this chapter, we proposed a mediator for integrating big and streaming data

developed on top of Apache Spark, we aimed at addressing the challenges researchers

face while analyzing streaming geo-referenced data without prior knowledge of big data

frameworks. Our system consists of query parser, query rewriter, and query tuner. In

this chapter, we discussed in detail how our mediator handles global and local schemas,

and mappings in configuration files, and translates user queries submitted in SQL

statements to an Apache Spark application. Furthermore, we also showed through

empirical evaluation that the optimization techniques we proposed in the mediator

significantly improve the execution performance of the benchmark queries as compared

to the native optimizer of Apache Spark.

98

CHAPTER 4 MODELING DATA WAREHOUSE AND

ETL FOR SENSORTHINGS API DATA

4.1 Introduction

In pursuit of interoperability among Internet of Things (IoT) systems, various

organizations have developed standards to deal with spatial data such as the Open

Geospatial Consortium (OGC) and the Institute of Electrical and Electronics Engineers

(IEEE). As discussed in section 1.2.2 of Chapter 1, OGC initially proposed the Sensor

Observation Service (SOS) as a standard for accessing sensor metadata and

observations. However, it has been acknowledged that SOS is not efficient in terms of

its complexity for integration with client applications. To address this limitation, OGC

subsequently developed the SensorThings API (refer to section 1.2.2.4 of Chapter 1). In

addition to providing a more convenient HTTP API interface, the SensorThings

standard includes the messaging protocol MQTT (Cohn 2014), which allows producing

events such as new Observation, creation of a Sensor, or the deletion of a Thing.

While the standards primarily focus on data access, they do not adequately address the

needs for data analysis. This presents a significant limitation in achieving analytical

capabilities on IoT data. Considering these constraints, this chapter presents an

approach for the design of a conceptual model for a data warehouse dedicated to sensor

data analysis. The proposed approach aims to fill the gap in the current state of the art

by providing a reliable approach for sensor data analysis.

There have been numerous studies on the development of approaches for conceptual

modeling for data warehouses (Jindal 2012). These models can be either ad-hoc or

based on established standards such as Unified Modeling Language (UML) and Entity-

Relationship (ER) models. Among these models, those based on UML have the

99

advantage of being easily understandable by users from diverse backgrounds as UML is

widely used across different disciplines.

UML-based models for data warehouses are typically implemented as UML profiles,

which propose extensions to UML using stereotypes, tagged values, and constraints. A

UML stereotype is a mechanism in UML for extending the vocabulary. It allows for the

definition of new model element types that are derived from existing UML element

types (e.g., class, attribute) but have additional semantics or notation. This allows for

the creation of domain-specific modeling languages that are tailored to the needs of

specific application domains.

In this chapter, we propose a generic multidimensional model for SensorThings-

compatible data sources using the UML profile proposed by (K. a. Boulil 2015). The

proposal of (K. a. Boulil 2015) is currently one of the most complete conceptual models

for spatial data warehouse based on UML profiles. We then illustrate it with a case

study and describe the corresponding ETL process using UML as well.

4.2 Modeling Data Warehouse for SensorThings API

Data

In this section, we firstly propose to redefine the UML metamodel of (K. a. Boulil

2015) for modeling and exchanging IoT sensor data sources that follows the

SensorThings API (STA) data model. Then, we propose a generic hypercube model for

this purpose.

4.2.1 The Data Warehouse Model Package

To design the generic UML model for STA data source, we define a UML metamodel

based on the main parts of the UML metamodel proposed in (K. a. Boulil 2015)

presented in Section 1.4.2.2 of Chapter 1. The SensorThings API data warehouse model

(STADW) depicted in Figure 45 is composed of one or more packages

100

(<<Hypercube>>). Each hypercube represents a subject of analysis. A Hypercube has a

fact class (<<Fact>>), and a list of dimensions (<<Dimension>>). The Fact class

combines a set of measure properties (<<Measure>>). This set can be empty. Fact is

linked to at least one dimension relationship (<<DimRelationship>>). Each dimension

package (<<Dimension>>) has a set of hierarchies (<<Hierarchy>>) which represent

level of details for analyzing facts. Finally, each (<<Hierarchy>>) includes one or

multiple level class (<<Level>>). The level has a set of attribute properties

(<<Attribute>>). Each hierarchy and level have a set of aggregation relationships

(<<AggRelationship>>). This set can be empty.

Figure 45 SensorThings API data warehouse metamodel.

4.2.2 A Generic Hypercube Model

Based on the metamodel presented above, in this section, we propose a generic

hypercube of the STADW. Figure 46 displays our generic hypercube model in UML.

This model comprises a fact and a set of dimensions. The Fact is represented by the

101

class (<<ObservedProperty>>) which the name is to be replaced by the actual observed

property in the case study. This class contains 𝑛 measure values. For dimension classes,

the STA hypercube model may have up to four dimensions: Sensor, Thing, Location

and Time. Sensor dimension and Thing dimension have one level of hierarchy and they

represent accordingly the Sensor entity and the Thing entity of STA data model. The

Location dimension have n levels of hierarchy, it represents geographical locations of

the measurements. These locations may be inferred from the FeatureOfInterest entity or

the Location entity of the STA data model. Finally, Time dimension has n level of

hierarchies as well. The time dimension represents a time collection of measures. This

information can be inferred from the Observation entity of the STA data model.

Figure 46 A generic hypercube of the STADW metamodel.

4.3 The ETL Modeling

In the context of data warehouse, the ETL process consists in extracting, transforming,

and loading data to the target schema. (Trujillo 2003) proposed an approach to model

ETL process in UML. Because this approach is also based on UML, it can be used in

complement the modeling method presented in Section 4.2. The approach of (Trujillo

102

2003) consists in decomposing an ETL complex process into simple processes. Each

process is described by an ETL mechanism or a UML stereotype. We aim to use their

proposal to design the ETL process for our STADW model presented in the previous

section. We display in Figure 47 the metamodel of the ETL process design.

Figure 47 The metamodel of ETL process design.

We recall the main transformations proposed by (Trujillo 2003):

• Wrapper: Transforms any data source into a data structure “Table”. This

mechanism allows us to define the attributes to keep as well as the

transformations required for each attribute.

• Aggregation: Groups the dataset with respect to a column or set of columns and

applies an aggregation function.

• Conversion: Converts the data type of a column or creates a new column from a

column.

• Join: Joins two datasets with respect to some columns.

• Loader: Loads the dataset into DW storage system.

We note that at the implementation level, each transformation should manipulate and

transform a data structure. This data structure can be either a bounded or unbounded set

of records.

103

4.4 Case study

In this section, our objective is to show an application of the generic schema to build a

data warehouse. We consider a simple case study where one wants to study a measure

Temperature, which is collected by several sensor devices in different areas in France.

Figure 48 displays the design of the hypercube of the STADW model for analyzing the

Temperature measure. Accordingly, Figure 49 displays the design of the ETL process.

The STADW model for Temperature measure is illustrated in Figure 48. We model the

dimension Time with one aggregation hierarchy that has three aggregation levels, i.e.,

hour, day, and month. We model the dimension Location with one aggregation

hierarchy that has three aggregation levels, i.e., point, department, and region.

Dimensions Thing and Sensor have one aggregation level as defined in the generic

model.

This multidimensional model outlined in this section necessitates the use of two distinct

data sources, namely, (i) SensorThingsAPI-compatible data source for sensor data and

(ii) French geographical data (Grégoire 2015). The ETL process, as illustrated in Figure

49, is comprised of a series of classes, each of which is responsible for a specific step in

the process. Each class is dependent on others, which is represented through a UML

association use. The required transformations at each step are defined in a yellow-

colored UML note. The initial step is Wrapper which transforms each native data

source into record-based data source and selects a subset of attributes. In this case study,

there are two wrapper classes ObservationWrapped and CityWrapped as there are two

data sources. SensorThingsApiRecord describes an aggregation mechanism where

sensor record is aggregated by time window, sensor device, thing and location. The time

window is set at one hour as the lowest level of hierarchy of the dimension Time is

hour. ConvertedRecord describes the conversion mechanism that convert the attribute

timeWindow into attributes hour, day, and month to match the Time dimension. Finally,

ExtendedRecord implements the join mechanism which merges the two data sources

with respect to geographical coordinates and then the resulting record is loaded to the

DW repository.

104

Figure 48 Model for the case study.

105

Figure 49 The design of the ETL process for this case study.

106

4.5 Discussion and Summary

In this chapter, we presented a preliminary study on the development of a generic

spatial data warehouse model based on IoT SensorThings API data model. Specifically,

we first revised the UML metamodel of (K. Boulil 2012) for spatial data warehouse,

and subsequently designed a generic hypercube for the STADW metamodel, which

enables allows analysis of observed properties of SensorThings API data model.

However, we acknowledge that the current generic design can be further improved to

enhance its analytics capabilities. To this end, future research efforts will involve

evaluating the generic schema with more complex analytical requirements and data

sources. We also aim to implement the case study DW and the corresponding ETL

process. Additionally, we aim to investigate the implementation of automated system to

develop the ETL process from the conceptual design to physical pipeline.

107

CONCLUSION AND PERSPECTIVES

This dissertation presents a study of data analysis for geo-referenced sensor data,

focusing on several key aspects. The first contribution of this work is the extension of

CEBA, a cloud environmental data lake for agriculture, with data analytics capabilities.

Our approach involves the collection and analysis of geo-referenced environmental data

through the ELK stack, which includes IAT for the ETL process, Elasticsearch for

storage and aggregation, and Kibana for visualization. We also provided and

implemented multidimensional models in Elasticsearch. Through a series of

experiments, we evaluated the viability of our solution, demonstrating that Elasticsearch

can handle a large number of dimensions and data, while IAT is highly efficient in

processing data streams with high throughput. Our results showed that query execution

time is sublinear with respect to the dataset size and increasing the number of bucket

queries did not significantly impact query performance. Additionally, we found that

Elasticsearch compresses stored data without affecting query performance, making it a

suitable option for managing larger datasets and implementing data warehouses.

Overall, our findings provide valuable insights into the design and implementation of

data analysis systems for geo-referenced sensor data, and especially in environmental

context.

In the second part, we present a mediator that has been specifically designed to facilitate

the integration of big and streaming data. The mediator is constructed using Apache

Spark as its query engine and is intended to simplify the analysis of streaming data

types, such as sensor data, for researchers who lack expertise in big data frameworks.

Our proposed system comprises three primary components: a query parser, a Spark

application writer, and tuner. We describe the proposed SQL grammar that enables

expressing continuous queries. We also describe how the mediator manages global and

local schemas and mappings using configuration files, and how it transforms user

queries into Apache Spark applications. Furthermore, we present empirical evidence

indicating that the mediator's optimization techniques are more effective than Apache

Spark's native SQL optimizer in improving query execution performance. In conclusion,

this mediator provides a solution for researchers working with streaming data, who may

108

not possess the necessary knowledge of big data frameworks, and enhances the

efficiency of data analysis.

In the third part, a preliminary investigation on the modeling of data warehouses for

SensorThings data sources was presented. To facilitate the analysis of sensor data, we

introduced a generic multidimensional model based on the Unified Modeling Language

(UML) profile proposed by (K. Boulil 2012). Furthermore, we present a use case was

presented to exemplify the practical application of the proposed approach. Overall, this

chapter contributes to the development of a conceptual framework for data warehousing

in the context of SensorThings data sources.

The problematic and challenges addressed in this dissertation along with our proposals

provide some orientations for future work:

Regarding our proposal in Chapter 2, we have highlighted the robust analytical query

capabilities of Elasticsearch concerning spatial data. In an effort to enhance its potential,

we aim to further investigate the integration of supplementary spatial query

functionalities, such as convex hull. In the field of multidimensional modeling, our

objective is to provide generic models that facilitate the representation of various use

cases related to environmental monitoring and sensor data analysis. Our preliminary

efforts in this regard, as detailed in Chapter 4, entail the creation of a generic

multidimensional model tailored to the OGC SensorThingsAPI data model.

In Chapter 3, we focused on the analysis of sensor data using the continuous queries for

real-time analysis. As part of our future work, we intend to enhance our system's

functionality to accommodate a more extensive range of data sources, both static and

streaming. To improve query performance, we employ optimization techniques such as

the pushdown of static-static joins and caching of partial results within the Apache

Spark application plan. We plan to extend our pushdown capabilities to include local

sources, capitalizing on any indexes present within the source databases, thereby

minimizing the volume of data ingested by the Spark engine. Additionally, our current

system requires the expertise of an integration administrator to establish mappings

between local and global schemas. To simplify this process, we propose investigating

109

dynamic mapping in the context of streaming and spatial data to enable automatic

inference of mappings during query execution, as recommended by (X. L. Dong 2009).

In Chapter 4, we introduced a generic multidimensional model for the analysis of

SensorThings data. A practical example was provided to illustrate its application. For

future work, we aim to evaluate the effectiveness of the proposed schema with more

complex analytical applications beyond the environmental domain of this dissertation.

We aim to apply the proposed design to various use cases to assess their efficacy for

end-users. Furthermore, we intend to investigate the development of an automated

system for the ETL process, from conceptual design to physical pipeline, dedicated to

multidimensional models based on the proposed generic schema.

The cloud solution CEBA is involved in Project PIA3 TERRA FORMA (2022-2029)

with a budget of 9.7 million euros. TERRA FORMA (TerraForma 2022) aims to design

and test on site observatories across multiple sites, providing a new multi-messenger

vision by integrating sensor data on human, biotic, and abiotic dynamics through five

work packages. In the work package 3 (WP3), an innovative and scalable

communication infrastructure with computing power will be developed to process data

generated by diverse sensors in real-time and feed it into databases.

Chapter 2 highlights the potential use of streaming data integration tool IAT with

CEBA. Leveraging the existing tool and CEBA's architecture, it can be repurposed to

design the data collection and ingestion infrastructure for TERRA FORMA by

deploying it on regional datacenters.

The work conducted in chapter 3 serves as a starting point, as TERRA FORMA

involves high-rate data flow and multiple systems deployed across several square

kilometers. This work will guide the development of CEBA's architecture to enable on-

demand high-rate data processing using containerized Kafka and Spark services. A

preliminary test bed, in collaboration with INRAE, is being conducted by a second-year

master student to validate the deployment of these tools and queries on top of the CEBA

infrastructure using INRAE's data (INRAE 2023) flows from weather stations and

farming robots.

110

The preliminary work in chapter 4 focuses on OGC SensorThingAPI for sensing, which

will be proposed to TERRA FORMA partners as a central standard. Additionally, it

emphasizes the need for work on the OGC O&M (Observations and Measurements)

standard to formalize the TERRA FORMA context. The work accomplished in chapter

4 will guide the development of CEBA's data management to ensure compliance with

OGC standards, including the adoption of the OGC WaterML standard (OCGwaterML

2016) for data produced in the University Clermont Auvergne water research center.

111

REFERENCES

De Mauro, Andrea and Greco, Marco and Grimaldi, Michele. 2015. "What is big data?

A consensual definition and a review of key research topics." AIP conference

proceedings. American Institute of Physics. 97--104.

Jarke, Matthias and Lenzerini, Maurizio and Vassiliou, Yannis and Vassiliadis, Panos.

2002. "Fundamentals of data warehouses." Springer Science & Business Media.

Inmon, William H. 2005. "Building the data warehouse." John wiley & sons.

Bicevska, Zane and Oditis, Ivo. 2017. "Towards NoSQL-based data warehouse

solutions." Procedia Computer Science. Elsevier. 104--111.

Sabtu, Adilah and Azmi, Nurulhuda Firdaus Mohd and Sjarif, Nilam Nur Amir and

Ismail, Saiful Adli and Yusop, Othman Mohd and Sarkan, Haslina and Chuprat,

Suriayati. 2017. "The challenges of extract, transform and loading (etl) system

implementation for near real-time environment." 2017 International Conference

on Research and Innovation in Information Systems (ICRIIS). IEEE.

Bajer, Marcin. 2017. "Building an IoT data hub with Elasticsearch, Logstash and

Kibana." 5th International Conference on Future Internet of Things and Cloud

Workshops (FiCloudW). IEEE. 63--68.

Alam, Md Mahbub and Torgo, Luis and Bifet, Albert. 2021. "A Survey on Spatio-

temporal Data Analytics Systems." arXiv preprint arXiv:2103.09883.

Guo, Dongming and Onstein, Erling. 2020. "State-of-the-Art Geospatial Information

Processing in NoSQL Databases." ISPRS International Journal of Geo-

Information. Multidisciplinary Digital Publishing Institute. 331.

Terray, Luca and Royer, Laurent and Sarramia, David and Achard, Cyrille and

Bourdeau, Etienne and Chardon, Patrick and Claude, Alexandre and Fuchet,

J'erome and Gauthier, Pierre-Jean and Grimbichler, David and others. 2020.

"From Sensor to Cloud: An IoT Network of Radon Outdoor Probes to Monitor

Active Volcanoes." Sensors. Multidisciplinary Digital Publishing Institute.

2755.

Bedard, Yvan and Merrett, Tim and Han, Jiawei. 2001. "Fundamentals of spatial data

warehousing for geographic knowledge discovery." Geographic data mining

and knowledge discovery (Citeseer) 2: 53--73.

Wrembel, Robert. 2006. Data Warehouses and OLAP: Concepts, Architectures and

Solutions: Concepts, Architectures and Solutions. Igi Global.

Matei, Adriana and Chao, Kuo-Ming and Godwin, Nick. 2014. "OLAP for

multidimensional semantic web databases." Enabling Real-Time Business

Intelligence. Springer. 81--96.

Bimonte, Sandro and Tchounikine, Anne and Miquel, Maryvonne and Pinet, Francois.

2010. "When spatial analysis meets OLAP: multidimensional model and

operators." International Journal of Data Warehousing and Mining (IJDWM).

IGI Global. 33--60.

Nipun Garg, Surabhi Mithal. 2011. "Spatial databases Spatial Data warehouses."

https://pdfs.semanticscholar.org/684a/4a2c41360e5965281ee09cabbb621f4400c

b.pdf.

Boulil, Kamal and Pinet, Francois and Bimonte, Sandro and Carluer, Nadia and

Lauvernet, Claire and Cheviron, Bruno and Miralles, Andre} and Chanet, Jean-

Pierre. 2013. "Guaranteeing the quality of multidimensional analysis in data

112

warehouses of simulation results: Application to pesticide transfer data produced

by the MACRO model." Ecological informatics. Elsevier. 41--52.

Lenzerini, Maurizio. 2002. "Data integration: A theoretical perspective." Proceedings of

the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of

database systems 233--246.

Albrecht, Alexander and Naumann, Felix. 2008. "Managing ETL Processes." NTII 8:

12--15.

Bansal, Srividya K and Kagemann, Sebastian. 2015. "Integrating big data: A semantic

extract-transform-load framework." Computer. IEEE. 42--50.

Tewtia, Hemant Kumar and Singh, Deepti. 2021. "COVID-19 Insightful Data

Visualization and Forecasting Using Elasticsearch." Computational Intelligence

Methods in COVID-19: Surveillance, Prevention, Prediction and Diagnosis.

Springer. 191--205.

Dubey, Shishir and Balaii, B and Rao, Dinesh and Rao, Deepak and others. 2018. "Data

Visualization on GitHub repository parameters using Elastic search and

Kibana." 2018 2nd International Conference on Trends in Electronics and

Informatics (ICOEI). IEEE. 554--558.

Quoc, Hoan Nguyen Mau and Le Phuoc, Danh. 2015. "An elastic and scalable

spatiotemporal query processing for linked sensor data." Proceedings of the 11th

International Conference on Semantic Systems. 17--24.

Bartlett, Rebecca. 2019. "Local geographic information storing and querying using

elasticsearch." Proceedings of the 13th Workshop on Geographic Information

Retrieval. 1--4.

Kramer, Michel. 2020. "GeoRocket: A scalable and cloud-based data store for big

geospatial files." SoftwareX. Elsevier. 100409.

Barnsteiner, Felix. 2015. Elasticsearch as a time series data store. 11.

https://www.elastic.co/blog/elasticsearch-as-a-time-series-data-store.

Agarwal, Sarthak and Rajan, KS. 2016. "Performance analysis of MongoDB versus

PostGIS/PostGreSQL databases for line intersection and point containment

spatial queries." Spatial Information Research. Springer. 671--677.

Bartoszewski, Dominik and Piorkowski, Adam and Lupa, Michal. 2019. "The

comparison of processing efficiency of spatial data for PostGIS and MongoDB

databases." International Conference: Beyond Databases, Architectures and

Structures. Springer. 291--302.

2014. ISO 19115-1:2014. Accessed March 2022.

https://www.iso.org/standard/53798.html.

Pilato, David. 2017. How to fetch data from multiple index using join like sql.

https://discuss.elastic.co/t/how-to-fetch-data-from-multiple-index-using-join-

like-sql/106131.

Liang, Steve and Huang, Chih-Yuan and Khalafbeigi, Tania. 2016. "OGC SensorThings

API Part 1: Sensing, Version 1.0." Open Geospatial Consortium.

Carbone, Paris and Katsifodimos, Asterios and Ewen, Stephan and Markl, Volker and

Haridi, Seif and Tzoumas, Kostas. 2015. "Apache flink: Stream and batch

processing in a single engine." Bulletin of the IEEE Computer Society Technical

Committee on Data Engineering. IEEE Computer Society.

Tatbul, Nesime. 2010. "Streaming data integration: Challenges and opportunities." 2010

IEEE 26th International Conference on Data Engineering Workshops (ICDEW

2010). IEEE. 155--158.

Kreps, Jay and Narkhede, Neha and Rao, Jun and others. 2011. "Kafka: A distributed

messaging system for log processing." Proceedings of the NetDB. 1--7.

113

Shaikh, Salman Ahmed and Mariam, Komal and Kitagawa, Hiroyuki and Kim,

Kyoung-Sook. 2020. "GeoFlink: A Distributed and Scalable Framework for the

Real-time Processing of Spatial Streams." Proceedings of the 29th ACM

International Conference on Information & Knowledge Management. 3149--

3156.

Armbrust, Michael and Xin, Reynold S and Lian, Cheng and Huai, Yin and Liu, Davies

and Bradley, Joseph K and Meng, Xiangrui and Kaftan, Tomer and Franklin,

Michael J and Ghodsi, Ali and others. 2015. "Spark sql: Relational data

processing in spark." Proceedings of the 2015 ACM SIGMOD international

conference on management of data. 1383--1394.

Karimov, Jeyhun and Rabl, Tilmann and Katsifodimos, Asterios and Samarev, Roman

and Heiskanen, Henri and Markl, Volker. 2018. "Benchmarking distributed

stream data processing systems." 2018 IEEE 34th International Conference on

Data Engineering (ICDE). IEEE. 1507--1518.

Yu, Jia and Wu, Jinxuan and Sarwat, Mohamed. 2015. "Geospark: A cluster computing

framework for processing large-scale spatial data." Proceedings of the 23rd

SIGSPATIAL international conference on advances in geographic information

systems. 1--4.

Pandey, Varun and Kipf, Andreas and Neumann, Thomas and Kemper, Alfons. 2018.

"How good are modern spatial analytics systems?" Proceedings of the VLDB

Endowment. VLDB Endowment. 1661--1673.

You, Simin and Zhang, Jianting and Gruenwald, Le. 2015. "Large-scale spatial join

query processing in cloud." 2015 31st IEEE international conference on data

engineering workshops. IEEE . 34--41.

Xie, Dong and Li, Feifei and Yao, Bin and Li, Gefei and Zhou, Liang and Guo, Minyi.

2016. "Simba: Efficient in-memory spatial analytics." Proceedings of the 2016

International Conference on Management of Data. 1071--1085.

Baig, Furqan and Vo, Hoang and Kurc, Tahsin and Saltz, Joel and Wang, Fusheng.

2017. "Sparkgis: Resource aware efficient in-memory spatial query processing."

Proceedings of the 25th ACM SIGSPATIAL international conference on

advances in geographic information systems. 1--10.

Tang, Mingjie and Yu, Yongyang and Mahmood, Ahmed R and Malluhi, Qutaibah M

and Ouzzani, Mourad and Aref, Walid G. 2020. "Locationspark: in-memory

distributed spatial query processing and optimization." Frontiers in big Data.

Frontiers. 30.

Wiederhold, Gio. 1992. "Mediators in the architecture of future information systems."

Computer. IEEE. 38--49.

Halevy, Alon Y. 2001. "Answering queries using views: A survey." The VLDB Journal.

Springer. 270--294.

Boucelma, Omar and Garinet, Jean-Yves and Lacroix, Zo'e. 2003. "The virGIS WFS-

based spatial mediation system." Proceedings of the twelfth international

conference on Information and knowledge management. 370--374.

Eldawy, Ahmed and Mokbel, Mohamed F. 2015. "Spatialhadoop: A mapreduce

framework for spatial data." 2015 IEEE 31st international conference on Data

Engineering. IEEE. 1352--1363.

Grégoire, David. 2015. France Geojson. https://github.com/gregoiredavid/france-

geojson.

Dong, Xin Luna and Halevy, Alon and Yu, Cong. 2009. "Data integration with

uncertainty." The VLDB Journal. Springer. 469--500.

114

Dong, Xin Luna and Srivastava, Divesh. 2013. "Big data integration." 2013 IEEE 29th

international conference on data engineering (ICDE). IEEE. 1245--1248.

Patgiri, Ripon and Ahmed, Arif. 2016. "Big data: The v's of the game changer

paradigm." 2016 IEEE 18th international conference on high performance

computing and communications; IEEE 14th international conference on smart

city; IEEE 2nd international conference on data science and systems

(HPCC/SmartCity/DSS). IEEE. 17--24.

Cox, Simon and Daisey, Paul and Lake, Ron and Portele, Clemens and Whiteside,

Arliss and Open, GIS. 2003. "geography markup language (GML)

implementation specification." OpenGIS Consortium, version.

Butler, Howard and Daly, Martin and Doyle, Allan and Gillies, Sean and Hagen, Stefan

and Schaub, Tim. 2016. "The geojson format."

Lee, Jae-Gil and Kang, Minseo. 2015. "Geospatial big data: challenges and

opportunities." Big Data Research. Elsevier. 74--81.

Bartha, Gabor and Kocsis, Sandor. 2011. "Standardization of geographic data: The

european inspire directive." European Journal of Geography 2: 79--89.

Fritz, Steffen and Scholes, Robert J and Obersteiner, Michael and Bouma, Jetske and

Reyers, Belinda. 2008. "A conceptual framework for assessing the benefits of a

global earth observation system of systems." IEEE Systems journal (IEEE) 2:

338--348.

Na, Arthur and Priest, Mark. 2007. "Sensor observation service." Implementation

Standard OGC 21.

Pinet, Francois and Schneider, Michel. 2010. "Precise design of environmental data

warehouses." Operational Research. Springer. 349--369.

Guting, Ralf Hartmut. 1994. "An introduction to spatial database systems." the VLDB

Journal. Springer. 357--399.

Simonis, Ingo and Echterhoff, Johannes. 2011. "OGC Sensor Planning Service

Implementation Standard." Open Geospatial Consortium Interface Standard:

Wayland, MA, USA.

Toshniwal, Ankit and Taneja, Siddarth and Shukla, Amit and Ramasamy, Karthik and

Patel, Jignesh M and Kulkarni, Sanjeev and Jackson, Jason and Gade, Krishna

and Fu, Maosong and Donham, Jake and others. 2014. "Storm@ twitter."

Proceedings of the 2014 ACM SIGMOD international conference on

Management of data. 147--156. https://storm.apache.org/.

Sedona, Apache. 2022. Apache Sedona. Accessed 11 2022. https://sedona.apache.org/.

Mahmood, Ahmed R and Aly, Ahmed M and Qadah, Thamir and Rezig, El Kindi and

Daghistani, Anas and Madkour, Amgad and Abdelhamid, Ahmed S and Hassan,

Mohamed S and Aref, Walid G and Basalamah, Saleh. 2015. "Tornado: A

distributed spatio-textual stream processing system." Proceedings of the VLDB

Endowment (VLDB Endowment) 8: 2020--2023.

Chen, Youmin and Lu, Youyou and Fang, Kedong and Wang, Qing and Shu, Jiwu.

2020. "uTree: a persistent B+-tree with low tail latency." Proceedings of the

VLDB Endowment. VLDB Endowment. 2634--2648.

Chintapalli, Sanket and Dagit, Derek and Evans, Bobby and Farivar, Reza and Graves,

Thomas and Holderbaugh, Mark and Liu, Zhuo and Nusbaum, Kyle and Patil,

Kishorkumar and Peng, Boyang Jerry and others. 2016. "Benchmarking

streaming computation engines: Storm, flink and spark streaming." 2016 IEEE

international parallel and distributed processing symposium workshops

(IPDPSW). IEEE. 1789--1792.

115

Inoubli, Wissem and Aridhi, Sabeur and Mezni, Haithem and Maddouri, Mondher and

Nguifo, Engelbert Mephu. 2018. "A comparative study on streaming

frameworks for big data." VLDB 2018-44th International Conference on Very

Large Data Bases: Workshop LADaS-Latin American Data Science. 1--8.

Vavilapalli, Vinod Kumar and Murthy, Arun C and Douglas, Chris and Agarwal,

Sharad and Konar, Mahadev and Evans, Robert and Graves, Thomas and Lowe,

Jason and Shah, Hitesh and Seth, Siddharth and others. 2013. "Apache hadoop

yarn: Yet another resource negotiator." Proceedings of the 4th annual

Symposium on Cloud Computing. 1--16.

Breton, Vincent. 2019. "CEBA, an Environmental cloud for the benefit of agriculture."

EGI Conference. https://indico.egi.eu/event/4431/contributions/10134/.

Da Xu, Li and He, Wu and Li, Shancang. 2014. "Internet of things in industries: A

survey." IEEE Transactions on industrial informatics (IEEE) 10 (4): 2233--

2243.

Roshannejad, A Asghar and Kainz, W. 1995. "Handling relations in Spatio-temporal

databases." In ACSM-ASPRS annual conference technical papers Vol. 4.

Autocarto 12. 1995.-pp. 119-126, 119--126. ACSM.

Shekhar, Shashi. 2012. Spatial big data challenges. Vol. 14, in Keynote at ARO/NSF

Workshop on Big Data at Large: Applications and Algorithms, Durham, NC.

Cox, S. 2007. "OGC Implementation Specification 07-022r1: Observations and

Measurements-Part 1-Observation schema. Open Geospatial Consortium." Tech.

Rep.

Cohn, Raphael J and Coppen, RJ and Banks, Andrew and Gupta, Rahul. 2014. "MQTT

version 3.1."

Santhanavanich, Thunyathep and Schneider, Sven and Rodrigues, Preston and Coors,

Volker. 2018. "INTEGRATION AND VISUALIZATION OF

HETEROGENEOUS SENSOR DATA AND GEOSPATIAL

INFORMATION." ISPRS Annals of Photogrammetry, Remote Sensing &

Spatial Information Sciences 4.

Eldawy, Ahmed and Mokbel, Mohamed F. 2015. "The era of big spatial data." 2015

31st IEEE International Conference on Data Engineering Workshops (IEEE)

42--49.

Alam, Md Mahbub and Ray, Suprio and Bhavsar, Virendra C. 2018. "A performance

study of big spatial data systems." Proceedings of the 7th ACM SIGSPATIAL

International Workshop on Analytics for Big Geospatial Data 1--9.

Clementini, Eliseo and Di Felice, Paolino. 1996. "A model for representing topological

relationships between complex geometric features in spatial databases."

Information sciences (Elsevier) 90 (1--4): 121--136.

Han, Jiawei and Kamber, Micheline and Pei, Jian. 2012. "Data warehousing and online

analytical processing." Data Mining (Morgan Kaufmann Boston, MA, USA) 4:

125--185.

Garcia-Molina, Hector and Papakonstantinou, Yannis and Quass, Dallan and

Rajaraman, Anand and Sagiv, Yehoshua and Ullman, Jeffrey and Vassalos,

Vasilis and Widom, Jennifer. 1997. "The TSIMMIS approach to mediation:

Data models and languages." Journal of intelligent information systems

(Springer) 8: 117--132.

T. Kirk, A. Y. Levy, Y. Sagiv, and D. Srivastava. 1995. "The Information Manifold." In

C. Knoblock and A. Levy, editors, Information Gathering from Heterogeneous,

Distributed Environments, Stanford University, Stanford, California.

116

Ray, Suprio and Simion, Bogdan and Brown, Angela Demke. 2011. "Jackpine: A

benchmark to evaluate spatial database performance." 2011 IEEE 27th

International Conference on Data Engineering (IEEE) 1139--1150.

Wilke, Claus O. 2019. "Fundamentals of data visualization: a primer on making

informative and compelling figures." (O'Reilly Media).

Tomlinson, Roger. 1974. Geographical Information Systems, Spatial Data Analysis and

Decision Making in Government. Doctoral thesis, University of London.

Haxhibeqiri, Jetmir and De Poorter, Eli and Moerman, Ingrid and Hoebeke, Jeroen.

2018. "A survey of LoRaWAN for IoT: From technology to application."

Sensors (Mdpi) 18 (11): 3995.

Lott, Roger. 2015. "Geographic information-well-known text representation of

coordinate reference systems." (Open Geospatial Consortium).

Augustin, Aloys and Yi, Jiazi and Clausen, Thomas and Townsley, William Mark.

2016. "A study of LoRa: Long range & low power networks for the internet of

things." Sensors (MDPI) 16 (9): 1466.

Wang, Y-P Eric and Lin, Xingqin and Adhikary, Ansuman and Grovlen, Asbjorn and

Sui, Yutao and Blankenship, Yufei and Bergman, Johan and Razaghi, Hazhir S.

2017. "A primer on 3GPP narrowband Internet of Things." IEEE

communications magazine (IEEE) 55 (3): 117--123.

Moßgraber, Jürgen and Hilbring, Désirée and van der Schaaf, Hylke and Hertweck,

Philipp and Kontopoulos, Efstratios and Mitzias, Panagiotis and Kompatsiaris,

Ioannis and Vrochidis, Stefanos and Karakostas, Anastasios. 2018. "The sensor

to decision chain in crisis management." Proceedings of the 15th ISCRAM

Conference.

Isah, Haruna and Abughofa, Tariq and Mahfuz, Sazia and Ajerla, Dharmitha and

Zulkernine, Farhana and Khan, Shahzad. 2019. "A survey of distributed data

stream processing frameworks." IEEE Access (IEEE) 7: 154300--154316.

Elasticsearch. 2020. ELK. Accessed 6 2021. https://www.elastic.co/elastic-stack.

2022. ELK stack. Accessed July 2022. https://www.elastic.co/what-is/elk-stack.

Elasticsearch. 2021. Creating a Visualization. Accessed June 2021.

https://www.elastic.co/guide/en/kibana/6.8/createvis.html.

—. 2021. Scalability and resilience: clusters, nodes, and shards. 4. Accessed June

2021.

https://www.elastic.co/guide/en/elasticsearch/reference/current/scalability.html.

2022. Geonetwork. Accessed March 2022. https://geonetwork-opensource.org/.

OGC. 2022. Open Geospatial Consortium. 10. Accessed October 2022.

https://www.ogc.org/.

Sigfox. 2023. Sigfox—The Global Communications Service Provider for the Internet of

Things (IoT). Accessed January 2023. https://www.sigfox.com/.

Codeluppi, Gaia and Cilfone, Antonio and Davoli, Luca and Ferrari, Gianluigi. 2020.

"LoRaFarM: A LoRaWAN-based smart farming modular IoT architecture."

Sensors (MDPI) 20 (7): 2028.

Yao, Xiaochuang and Li, Guoqing. 2018. "Big spatial vector data management: a

review." Big Earth Data (Taylor & Francis) 2 (1): 108--129.

Obe, Regina O and Hsu, Leo S. 2015. "PostGIS in Action." (Manning Publications

Co.).

2023. SQL Server. Accessed January 2023. https://learn.microsoft.com/en-

us/sql/relational-databases/spatial/spatial-data-sql-serve.

Amirian, Pouria and Basiri, Anahid and Winstanley, Adam. 2014. "Evaluation of data

management systems for geospatial big data." Computational Science and Its

117

Applications--ICCSA 2014: 14th International Conference, Guimaraes,

Portugal, June 30--July 3, 2014, Proceedings, Part V 14. Springer. 678--690.

Vatsavai, Ranga Raju and Ganguly, Auroop and Chandola, Varun and Stefanidis,

Anthony and Klasky, Scott and Shekhar, Shashi. 2012. "Spatiotemporal data

mining in the era of big spatial data: algorithms and applications." Proceedings

of the 1st ACM SIGSPATIAL international workshop on analytics for big

geospatial data. 1--10.

Schmid, Stephan and Galicz, Eszter and Reinhardt, Wolfgang. 2015. "Performance

investigation of selected SQL and NoSQL databases." Proceedings of the

AGILE. 1--5.

Baralis, Elena and Dalla Valle, Andrea and Garza, Paolo and Rossi, Claudio and

Scullino, Francesco. 2017. "SQL versus NoSQL databases for geospatial

applications." 2017 IEEE International Conference on Big Data (Big Data).

IEEE. 3388--3397.

Patroumpas, Kostas and Giannopoulos, Giorgos and Athanasiou, Spiros. 2014.

"Towards geospatial semantic data management: strengths, weaknesses, and

challenges ahead." Proceedings of the 22nd ACM SIGSPATIAL International

Conference on Advances in Geographic Information Systems. 301--310.

Zhen, LIU and Huadong, GUO and Changlin, WANG. 2016. Considerations on

geospatial big data. Vol. 46, in IOP Conference Series: Earth and

Environmental Science, 012058. IOP Publishing.

Yang, Jue and Zhang, Chengyang and Li, Xinrong and Huang, Yan and Fu, Shengli and

Acevedo, Miguel F. 2010. "Integration of wireless sensor networks in

environmental monitoring cyber infrastructure." Wireless Networks (Springer)

16: 1091--1108.

Fazio, Maria and Celesti, Antonio and Puliafito, Antonio and Villari, Massimo. 2015.

"Big data storage in the cloud for smart environment monitoring." Procedia

Computer Science (Elsevier) 52: 500--506.

Shvachko, Konstantin and Kuang, Hairong and Radia, Sanjay and Chansler, Robert.

2010. The hadoop distributed file system. Vol. 11, in 2010 IEEE 26th

symposium on mass storage systems and technologies (MSST), 1--10. Ieee.

Zaharia, Matei and Chowdhury, Mosharaf and Das, Tathagata and Dave, Ankur and

Ma, Justin and McCauly, Murphy and Franklin, Michael J and Shenker, Scott

and Stoica, Ion. 2012. "Resilient distributed datasets: A fault-tolerant abstraction

for in-memory cluster computing." 9th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 12). 15--28.

Ngo, Thi Thu Trang and Sarramia, David and Kang, Myoung-Ah and Pinet, Francois.

2021. "An Analytical Tool for Georeferenced Sensor Data based on ELK

Stack." 7th International Conference on Geographical Information Systems

Theory, Applications and Management. SCITEPRESS-Science and Technology

Publications. 82--89.

Shekhar, Shashi and Xiong, Hui. 2007. Encyclopedia of GIS. Springer Science &

Business Media.

Boulil, Kamal. 2012. Une approche automatisée basée sur des contraintes d’intégrité

définies en UML et OCL pour la vérification de la cohérence logique dans les

systemes SOLAP: Applications dans le domaine agri-environnemental. Doctoral

dissertation, Université Blaise Pascal-Clermont-Ferrand II.

OMG. 2011. "Unified Modeling Language (OMG UML)-Infrastructure(V2. 1.2)."

Available on: http://www. omg. org/spec/UML/2.4 1 (2.4): 1.

118

Armbrust, Michael and Das, Tathagata and Torres, Joseph and Yavuz, Burak and Zhu,

Shixiong and Xin, Reynold and Ghodsi, Ali and Stoica, Ion and Zaharia, Matei.

2018. "Structured streaming: A declarative api for real-time applications in

apache spark." Proceedings of the 2018 International Conference on

Management of Data 601--613.

Meng, Xiangrui and Bradley, Joseph and Yavuz, Burak and Sparks, Evan and

Venkataraman, Shivaram and Liu, Davies and Freeman, Jeremy and Tsai, DB

and Amde, Manish and Owen, Sean and others. 2016. "Mllib: Machine learning

in apache spark." The Journal of Machine Learning Research (JMLR. org) 17

(1): 1235--1241.

Gonzalez, Joseph E and Xin, Reynold S and Dave, Ankur and Crankshaw, Daniel and

Franklin, Michael J and Stoica, Ion. 2014. "Graphx: Graph processing in a

distributed dataflow framework." In 11th {USENIX} Symposium on Operating

Systems Design and Implementation ({OSDI} 14) 599--613.

Storm, Apache. 2014. ApacheStorm. Accessed 10 2022. https://storm.apache.org/.

Guttman, Antonin. 1984. "R-trees: A dynamic index structure for spatial searching."

Proceedings of the 1984 ACM SIGMOD international conference on

Management of data. 47--57.

Finkel, Raphael A and Bentley, Jon Louis. 1974. "Quad trees a data structure for

retrieval on composite keys." Acta informatica (Springer) 4: 1--9.

Trujillo, Juan and Lujan-Mora, Sergio. 2003. "A UML based approach for modeling

ETL processes in data warehouses." In Conceptual Modeling-ER 2003: 22nd

International Conference on Conceptual Modeling, Chicago, IL, USA, October

13-16, 2003. Proceedings 22, 307--320. Springer.

Ngo, Thi Thu Trang and Sarramia, David and Kang, Myoung-Ah and Pinet, Francois.

2023. "A New Approach Based on ELK Stack for the Analysis and

Visualisation of Geo-referenced Sensor Data." Springer Nature Computer

Science (Springer) 4 (3): 241. doi:https://doi.org/10.1007/s42979-022-01628-6.

ConnecSenS, Project. 2015-2020. http://www.lpc-

clermont.in2p3.fr/spip.php?article583.

WPS, OGC. 2007. OpenGIS® Web Processing Service Version: 1.0.0. Open Geospatial

Consortium Inc. Accessed March 2023. https://www.ogc.org/standard/wps/.

WMS, OGC. 2006. OpenGIS® Web Map Server Implementation Specification Version:

1.3.0. Open Geospatial Consortium Inc.

CSW, OGC. 2010. OGC® Catalogue Services Standard 2.0 Extension Package for

ebRIM Application Profile: Earth Observation Products Version: 1.0.0 . Open

Geospatial Consortium Inc.

Momjian, Bruce. 2001. PostgreSQL: introduction and concepts. Vol. 192. Addison-

Wesley New York.

ISO, 19162:2019. 2019. Accessed March 2023.

https://www.iso.org/obp/ui#iso:std:iso:19162:ed-2:v1:en.

Sivasubramanian, Swaminathan. 2012. Amazon dynamoDB: a seamlessly scalable non-

relational database service. Proceedings of the 2012 ACM SIGMOD

International Conference on Management of Data.

Naqvi, Syeda Noor Zehra and Yfantidou, Sofia and Zimanyi, Esteban. 2017. "Time

series databases and influxdb." Studienarbeit, Universite Libre de Bruxelles 12.

openTSDB. 2010. The scalable time series database. Accessed March 2021.

http://opentsdb.net/.

Rajaraman, V. 2016. "Big data analytics." Resonance (Springer) 21: 695--716.

Wood, Jordan. 2008. "Filter and Refine Strategy." In Encyclopedia of GIS. Springer US.

119

Miralles, A and Pinet, Francois and Carluer, Nadia and Vernier, Francoise and Bimonte,

S and Lauvernet, Claire and Gouy, Veronique}. 2011. "EIS pesticide: an

information system for data and knowledge capitalization and analysis."

Euraqua-peer scientific conference.

Gray, Paul and Watson, Hugh J. 1998. "Decision support in the data warehouse." In

Decision support in the data warehouse. Prentice Hall.

Kimball, Ralph. 1996. The data warehouse toolkit: practical techniques for building

dimensional data warehouses. John Wiley & Sons, Inc.

Goasdoue, Francois and Lattes, Veronique and Rousset, Marie-Christine. 2000. "The

use of CARIN language and algorithms for information integration: The Picsel

system." International Journal of Cooperative Information Systems (World

Scientific) 9 (04): 383--401.

Jindal, Rajni and Taneja, Shweta. 2012. "Comparative study of data warehouse design

approaches: a survey." International Journal of Database Management Systems

(Academy & Industry Research Collaboration Center (AIRCC)) 4 (1): 33.

Botts, Mike and Robin, Alexandre. 2007. "OpenGIS Sensor Model Language

(SensorML) Implementation Specification. Version 1.0. 0." Open Geospatial

Consortium.

Boulil, Kamal and Bimonte, Sandro and Pinet, Francois. 2015. "Conceptual model for

spatial data cubes: A UML profile and its automatic implementation." Computer

Standards & Interfaces (Elsevier) 38: 113--132.

Sarramia, David and Claude, Alexandre and Ogereau, Francis and Mezhoud, J'er'emy

and Mailhot, Gilles. 2022. "CEBA: A data lake for data sharing and

environmental monitoring." Sensors (MDPI) 22 (7): 2733.

LeRéseauDesZonesAteliers. 2023. STSER France Zones Ateliers. Accessed June 2023.

https://www.za-inee.org/fr/reseau.

ERDF. 2023. Accessed June 2023.

https://ec.europa.eu/regional_policy/funding/erdf_en.

TerraForma. 2022. Accessed June 2023. https://terra-forma.cnrs.fr/.

OCGwaterML. 2016. Accessed June 2023. https://www.ogc.org/standard/waterml/.

INRAE. 2023. Accessed June 2023. https://www.inrae.fr/en.

120

Appendix A

Figure 50 Benchmark dashboard – visualization 1.

121

Figure 51 Benchmark dashboard – visualization 2.

Figure 52 Benchmark dashboard – visualization 3.

122

Figure 53 Benchmark dashboard – visualization 4.

123

APPENDIX B

We can visualise our dataset in many forms, e.g., bar charts, line graphs. In this part, we

explain how to produce a visualization on Kibana (Elasticsearch, Creating a

Visualization 2021).

• Navigate to the visualization page by clicking on Visualize on the left panel on

Kibana home page.

• Select a visualization type, e.g., line, area, maps.

• Select the expected dataset index.

A metric and bucket aggregation query panel will be displayed by default as Figure 54.

Figure 54 Kibana – Visualization controller in default mode.

In the visualization controller, the metrics in Figure 55 are represented for the

visualization of Y axis and the buckets in Figure 56 are represented for the

visualization of the X axis. Consider the visualization 3 (see Figure 52) as a use case

example to monitor air humidity measurement by devices and hours: the Y axis shows

the value of air humidity received from each sensor, the device name and hours are

displayed across the X axis.

124

Figure 55 Kibana – Visualization metric controller.

Figure 56 Kibana – Visualization bucket controller.

125

Appendix C

Figure 57 Snippet of the local schema.

126

Figure 58 Snippet of the global schema.

127

Figure 59 Dedicated SQL grammar – part 1.

128

Figure 60 Dedicated SQL grammar – part 2.

	Abstract
	Résumé
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Publications’ Notes
	Introduction
	Chapter 1 BACKGROUND AND RELATED WORK
	1.1 Concepts Related to Spatial Data
	1.1.1 Spatial Data Definition
	1.1.2 Spatio-temporal Data and Geo-referenced Data
	1.1.3 Spatial Geometry Objects
	1.1.4 How to Describe Spatial Data in Database Systems?
	1.1.5 Vector Data Formats
	1.1.6 Spatial Query

	1.2 Sensor Data Access Standards
	1.2.1 Environmental Sensors and Sensor Network
	1.2.2 OGC Data Access Standards
	1.2.2.1 OGC
	1.2.2.2 SOS
	1.2.2.3 SPS
	1.2.2.4 SensorThings API
	1.2.2.5 STA and SOS Comparison

	1.3 Big Spatial Vector Data Management
	1.3.1 Big Data
	1.3.2 Big Spatial Vector Data
	1.3.3 Big Data Storage
	1.3.3.1 NoSQL Databases for Large Spatial Data
	1.3.3.2 ELK Stack
	1.3.3.1 Existing Systems based on ELK Stack for Spatial Data

	1.3.4 Big Data Processing
	1.3.4.1 Apache Spark
	1.3.4.2 GeoSpark

	1.4 Data Analytics and Integration
	1.4.1 Data Warehouses
	1.4.2.1 Modeling
	1.4.2.2 Conceptual Modeling of Spatial Data Warehouse
	1.4.2.3 Modeling ETL Process

	1.4.2 Mediation System

	1.5 CEBA Project
	1.6 Discussion and Summary

	Chapter 2 A NEW APPROACH BASED ON ELK STACK FOR THE ANALYSIS AND VISUALIZATION OF GEO-REFERENCED SENSOR DATA
	2.1 Introduction
	2.2 How to Represent a Query and Implement a Spatial Data Warehouse with Elasticsearch?
	2.2.1 Sensor Data Representation
	2.2.2 Multidimensional Models
	2.2.3 System Architecture
	2.2.4 Data Cube, ETL and Queries
	2.2.4.1 Elasticsearch Data Cube and Query Workload
	2.2.4.2 Data Integration with IAT
	2.2.4.3 Dashboard on Kibana
	2.2.4.4 Textual Queries

	2.3 Evaluation and Experiment
	2.3.1 Dataset
	2.3.2 Hardware
	2.3.3 Evaluation of IAT
	2.3.4 Evaluation of Elasticsearch

	2.4 Discussion and Summary

	Chapter 3 A MEDIATION SYSTEM FOR CONTINUOUS SPATIAL QUERIES ON A UNIFIED SCHEMA USING APACHE SPARK
	3.1 Introduction
	3.2 A Mediator for Continuous Spatial Queries
	3.2.1 Dedicated SQL Grammar
	3.2.2 Motivating Example
	3.2.3 System Architecture
	3.2.4 Mediator Algorithm and Components
	3.2.4.1 Query Parser
	3.2.4.2 Query rewriter
	3.2.4.3 Query Tuner
	3.2.4.4 Setup Configurations

	3.3 System Evaluation
	3.3.1 Dataset
	3.3.2 Hardware
	3.3.3 Metrics
	3.3.4 Experiments

	3.4 Discussion and Summary

	Chapter 4 MODELING DATA WAREHOUSE AND ETL FOR SENSORTHINGS API DATA
	4.1 Introduction
	4.2 Modeling Data Warehouse for SensorThings API Data
	4.2.1 The Data Warehouse Model Package
	4.2.2 A Generic Hypercube Model

	4.3 The ETL Modeling
	4.4 Case study
	4.5 Discussion and Summary

	CONCLUSION AND PERSPECTIVES
	REFERENCES
	Appendix A
	Appendix B
	Appendix C

