Graphs are used everywhere to represent interactions between entities, whether physical such as atoms, molecules or people, or more abstract such as cities, friendships, ideas, etc. Amongst all the methods of machine learning that can be used, the recent advances in deep learning have made graph neural networks the de facto standard for graph representation learning. This thesis can be divided in two parts. First, we review the theoretical underpinnings of the most powerful graph neural networks. Second, we explore the challenges faced by the existing models when training on real world graph data.

The powerfulness of a graph neural network is defined in terms of its expressiveness, i.e., its ability to distinguish non isomorphic graphs; or, in an equivalent manner, its ability to approximate permutation invariant and equivariant functions. We distinguish two broad families of the most powerful models. We summarise the mathematical properties as well as the advantages and disadvantages of these models in practical situations.

Apart from the choice of the architecture, the quality of the graph data plays a crucial role in the ability to learn useful representations. Several challenges are faced by graph neural networks given the intrinsic nature of graph data. In contrast to typical machine learning methods that deal with tabular data, graph neural networks need to consider not only the features of the nodes but also the interconnectedness between them. Due to the connections between nodes, training neural networks on graphs can be done in two settings: in transductive learning, the model can have access to the test features in the training phase; in the inductive setting, the test data remains unseen. We study the differences in terms of performance between inductive and transductive learning for the node classification task. Additionally, the features that are fed to a model can be noisy or even missing. In this thesis we evaluate these challenges on real world datasets, and we propose a novel architecture to perform missing data imputation on graphs.

Finally, while graphs can be the natural way to describe interactions, other types of data can benefit from being converted into graphs. In this thesis, we perform preliminary work on how to extract the most important parts of skin lesion images that could be used to create graphs and learn hidden relations in the data.

Résumé

Les graphes sont utilisés partout pour représenter les interactions, qu'elles soient physiques comme les atomes, les molécules ou les humains, ou plus abstraites comme les villes, les amitiés, les idées, etc. Parmi toutes les méthodes d'apprentissage automatique qui peuvent être utilisées, les dernières avancées en apprentissage profond font des réseaux de neurones de graphes la référence de l'apprentissage de représentation des graphes. Cette thèse se divise en deux parties. Dans un premier temps, nous faisons un état de l'art des fondations mathématiques des réseaux de neurones de graphes les plus puissants. Dans un second temps, nous explorons les défis auxquels sont confrontés ces modèles quand ils sont entraînés sur des jeux de données réels.

La puissance d'un réseau de neurones est définie par rapport à son expressivité, c'est-à-dire sa capacité à distinguer deux graphes non isomorphes ; ou, de manière équivalente, sa capacité à approximer les fonctions qui sont invariantes ou équivariantes par rapport aux permutations. Nous discernons deux grandes familles de modèles expressifs. Nous présentons leurs propriétés mathématiques ainsi que les avantages et les inconvénients de ces modèles lors d'applications pratiques.

En parallèle du choix de l'architecture, la qualité de la donnée joue un rôle crucial dans la capacité d'un modèle à apprendre des représentations utiles. Les réseaux de neurones de graphes sont confrontés à des problèmes spécifiques aux graphes. À l'inverse des modèles développés pour les données tabulaires, les réseaux de neurones de graphes doivent prendre en compte aussi bien les attributs des noeuds que leur interdépendance. À cause de ces liens, l'apprentissage d'un réseau de neurones sur des graphes peut se faire de deux manières : en apprentissage transductif, où le modèle a accès aux attributs des données de test pendant l'entraînement ; en apprentissage inductif, où les données de test restent cachées.

Nous étudions les différences en termes de performance entre l'apprentissage transductif et inductif pour la classification de noeuds. De plus, les attributs des noeuds peuvent être bruités ou manquants. Dans cette thèse, nous évaluons ces défis sur des jeux de données réels, et nous proposons une nouvelle architecture de réseau de neurones de graphes pour imputer les attributs manquants des noeuds d'un graphe.

Enfin, si les graphes sont le moyen privilégié de décrire les interactions, d'autres types de données peuvent aussi bénéficier d'une conversion sous forme de graphes. Dans cette thèse, nous effectuons un travail préliminaire sur l'extraction des parties les plus importantes d'images de lésions de la peau. Ces patches pourraient être utilisés pour créer des graphes et découvrir des relations latentes dans la donnée.
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Chapter 1 Introduction

Motivation

Graphs are mathematical objects that capture relations between entities. They represent physical interactions, such as between protons and electrons at the microscopic scale, and between galaxies at the macroscopic scale. They also represent informational interactions. For instance, we encounter graphs everywhere throughout our day: when we interact with other people on social networks, browse content on streaming platforms, buy products using online retailers, or when we search for the best itineraries for travelling from one place to another.

They are also used in science, where epidemiologists study the spread of the disease, chemists explore the properties of atoms and molecules, and programming code can be analyzed using its abstract syntax tree representation.

The manipulation of graph data can be divided into three types of tasks: node level tasks, such as node classification; edge level tasks, e.g., link prediction; and graph classification. Throughout the years, the treatment of graphs in different fields has generated a vast range of approaches. For instance, a widespread approach of learning with graphs is the computation of graph statistics, e.g., counting the number of times a pattern is appearing in a graph. Random walks, graph kernels, graph spectral theory, and the use of shallow embeddings, e.g., via the learning of an encoder and a decoder, are also active areas of research.

Most of these methods suffer from some common limitations. In particular, they do not scale efficiently to large scale graphs, because there is parameter sharing.

Additionally, these methods usually do not exploit the features of the nodes and the edges. Also, these approaches are designed to learn embeddings of the nodes encountered during training. They do not generalize to unseen nodes.

They are transductive rather than inductive.

One way to mitigate the scaling limitations is to use deep learning. Neural networks are models in which the parameters are stacked in layers. They allow the efficient learning of complex representations of input data using the automatic adjustment of parameters via loss optimization. Although the first models were theorized 70 years ago, the big breakthrough came with the advent of Graphical Processing Units (GPUs) and the creation of large scale datasets freely made available on the Web.

After the successes of deep learning in computer vision with Convolutional Neural Networks (CNNs) and in natural language processing with Recurrent Neural Networks (RNNs), new neural networks, Graph Neural Networks (GNNs),

were proposed for learning with graphs. The first major architecture was the Graph Convolutional Network (GCN) in 2016 [START_REF] Kipf | Semi-supervised classification with graph convolutional networks[END_REF]. Most

GNNs behave according to a message-passing framework:

The equations representing message passing neural networks (MPNNs) are Equations 4.1 and 4.2 to update the representation of a node, information is gathered from its neighbours. Figure 1.1 shows how the stacking of layers influences the update of a node. With a model of two layers, the node we want to update (the blue node), has received information from almost all the nodes in the graph, e.g., from all the green nodes.

Challenges of graph neural networks

The structure of graph data adds a layer of complexity to the training of neural networks. Indeed, GNNs rely on two elements: information, contained in the features of the nodes, edges, etc.; and the flow of information, represented by the interconnection between the nodes, e.g., the structure of the graph. These aspects raise challenges unique to graphs. In this thesis we address three of these issues: the difference between transductive and inductive learning, multilabel classification with graphs, and noise in the nodes of the graph. Specifically, we deal with node classification. In classification, a GNN predicts the label of a node by leveraging the information from the node and from its neighbours. Both the features of the node and the neighbours will push the model towards a label, but this label may be different in each case. The challenge is to determine which label to choose. This is illustrated in Figure 1.3. The features of the node we want to classify (in pink) are similar to those of a cat, but all the neighbours of the node (in green) are dogs. Is it a dog in cat's clothing having an identity crisis? Is it a cat living in a dog's neighbourhood? Which information is more valuable: the features or the neighbours?

Classification is also dependent on the quality of the data. In particular, GNNs may be confronted with noisy data, i.e., the features of the nodes have noise.

The message-passing nature of GNNs propagates the noise of a node to the rest of the graph, as illustrated by Figure 1.4. The influence of the noise differs according the location of the node in the graph, i.e., an affluent node will reach other nodes faster than a more isolated node, but the strength of the noise will be different.

Another way to improve the performance of GNNs is to tackle the problem of graph modelling, i.e., the construction of graph to represent interactions.

Improving the quality of the graphs will improve the quality of the predictions as well.

Contributions

Our contributions are the following:

• we present a survey of the most expressive GNNs, dividing the architectures into groups corresponding to the techniques used to increase expressiveness,

• we demonstrate the value of multilabel classification on a real world dataset.

In particular, multilabel classification helps perform a refined diagnosis of the errors made by a GNNs;

• we show that different GNNs behave differently in terms of noise;

• we empirically show that GNNs are the most vulnerable to noise which targets the most isolated nodes; 
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• we introduce a new GNN architecture for missing data imputation;

• we provide preliminary results for graph creation in medical related data using extracted patches.

Thesis outline

We organize the thesis as follows:

• Chapter 2 explains the main concepts related to graphs and graph learning, as well as the main methods of graph learning before graph neural networks.

• Chapter 3 presents the main ideas behind deep learning and graph neural networks. It also presents the most expressive types of graph neural networks, where expressiveness is the ability to distinguish non isomorphic graphs.

• Chapter 4 presents the most commonly used graph neural networks in practice, as well as some of the most respected benchmarks to compare architectures.

• Chapter 5 first introduces the concept of transductive and inductive learning, then shows the results of multilabel classification on a real world academic citation network.

• Chapter 6 presents an analysis of the performance of several graph neural networks when noise is injected into the features. The chapter concludes with a novel graph neural network architecture for missing data imputation.

• Chapter 7 presents preliminary work for generating graph data out of medical images.

• Chapter 8 concludes the thesis and offers perspectives for future work.

Moreover, this thesis is divided into two parts. The first part contains Chapters 2 and 3 and concerns the representation of graphs and the theoretical aspect of graph neural networks. The second part contains Chapters 4-7 and deals with practical applications of GNNs.

Publications

This thesis comprises the following articles that have been published internationally.

• Lachaud, G., Conde-Cespedes, P., and Trocan, M. (2022). Comparison between inductive and transductive learning in a real citation network using graph neural networks. In ASONAM 2022, 2022 (IEEE). 10.1109/ASONAM55673.2022.10068589.

• Lachaud, G., Conde-Cespedes, P., and Trocan, M. (2021). Entropy role on patch-based binary classification for skin melanoma. In ICCCI 2021. 

Part I

Graph Representation

Chapter 2

Introduction to graphs, and graph representation learning and signal processing

This chapter presents an overview of the mathematical concepts related to graphs and machine learning with graphs that will be used throughout the thesis. Specifically, Section 2.1 introduces the definition of graphs and related items, such as trees, directed acyclic graphs, etc. Section 2.2 defines the most common types of tasks done on graphs, e.g., node, edge, and graph level tasks. Section 2.3 concludes this chapter by mentioning some of fundamental techniques of machine learning with graphs. 

Graphs

Mathematical representation

Mathematically, a graph G is represented by a pair (V, E) consisting of a set of nodes (vertices) V and a set of edges E. Each edge can be expressed as a pair (u, v) of nodes u and v in V . Figure 2.1 shows an example of a graph, where each type of element (node, edge) has been highlighted, e.g., nodes appear in blue while edges appear in red.

An edge (u, v) can be directed, in which case we refer to u as the source and v as the target. If a graph is undirected, then (u, v) ∈ E ⇒ (v, u) ∈ E. When edges have a weight, e.g. e uv ∈ R d for some dimension d, we say that the graph is weighted. More generally, each node may possess features. When the nodes or the edges have the features, we can speak of an attributed graph.

The adjacency matrix associated with Figure 2.2(a) is Each node may possess features, which can take the form of scalar or vector values. The features may take categorical, discrete or continuous values.

             0 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0             
The dimensionality can be viewed as the size of the embeddings. The curse of dimensionality in machine learning refers to the exponential growth of the number of samples required to generalize.

The features of all the nodes are represented by a matrix X. If the features are continuous,

X ∈ R n×n d
, where n d is the dimensionality of the nodes's features.

Important definitions

Most of these definitions can be found in graph theory textbooks. See for example [START_REF] John | Graph Theory[END_REF]; [START_REF] Diestel | Graph Theory[END_REF].

A subgraph G S = (V S , E S ) of G is a graph where V S ⊂ V and E S ⊂ E. An induced subgraph is a subgraph where e = (u, v) ∈ (V S ) 2 for all edges in E S .
Note how a subgraph and an induced subgraph share the same nodes, but the induced subgraph can have more edges.

In other words, an induced subgraph contains all the edges connecting the nodes in the subgraph. Figure 2.3 illustrates this point, by showing both a graph (pink), a subgraph (green) and the induced subgraph with the same nodes (green as well).

A graph is said to be simple if it does not contain any loops or parallel edges.

A graph is acyclic if it does not contain any cycles. A path is a simple graph in which the vertices can be arranged in a linear sequence such that two vertices are neighbours if and only if they are consecutive in the sequence. Two nodes u and v are said to be connected if there exists a path from u to v. A graph is connected if every pair of vertices in the graph are connected.

A tree is a connected graph in which every pair of vertices is connected by only one path. A directed acyclic graph (DAG) is a directed graph whose underlying graph is a tree.

In some cases, it is important to identify a starting point in a graph. A rooted graph G v is a graph where v acts as the root node. Another term for rooted graph is egonet. Similarly, a rooted tree is a tree where one of the terminal nodes, e.g., nodes with a single neighbour, is taken as the root. 

Learning with graphs

Tasks performed on graphs can be divided into three categories, depending on the type of object they target: nodes, edges, or graphs. The tasks performed on nodes and edges are usually supervised. They require training on a subset of the graph with labelled items, e.g, nodes or edges, and predict values on unlabelled items. For this reason, it is often called semi-supervised learning. Clustering

In this thesis we will not deal with unsupervised learning.

, a central approach of unsupervised learning, is more often seen as a community detection task.

Node level tasks

Node-level tasks aim at predicting information about nodes. There are two ways this can be achieved: prediction on the node, e.g. classification or regression; or learning a node embedding that can be used in downstream applications. Given a node u ∈ V and its features x u , the task is to predict its label y u .

Many examples of node classification appear in social networks. For example, given conversations on social media where some of the messages are labelled, we want to predict the content of the other messages. Another application is learning user behaviour to detect abnormal users, e.g., bots.

Edge level tasks

Edge-level tasks aim at predicting information concerning the relations between the nodes. In a social network, this can amount to finding which users are friends. For a large online retailer, the goal is to predict which products will be most commonly bought together. In biology, determining how two proteins will react together is achieved by doing link prediction on protein-protein interaction networks. This is useful for deciding if two drugs treatments can be taken simultaneously. More formally, given a subset of edges E train of E, the goal is to predict the existence of the remaining edges, e.g. E \ E train .

Graph level tasks

Graph-level tasks aim at prediction information concerning the entire graph. For example, given a molecule graph, we want to predict some of its properties, such as its toxicity, its solubility, etc. Another well known use case of graph level tasks is programming code analysis, in which we use the programme's representation, such as the AST (Abstract Syntax Tree), to determine its behaviour.

Machine learning with graphs

Prior to the advent of deep learning, graph-based learning relied on methods such as exploiting the graph statistics, random walks, spectral graph theory, and graph coloring. We present some of these methods, because they play a role in the design and the analysis of GNNs. For more detailed surveys, we refer to the following books Hamilton; Ma and Tang (2021).

Graph statistics and random walks

To gain information about a graph, we can compute features such as the node degree depicted in Equation 2.1, which indicates how many neighbours a node has. To refine this measure and take into account the centrality of the neighbours, we can compute the eigenvector centrality, represented in Equation 2.2. Taken over all the nodes, this equation can be rewritten in the form of Equation 2.3 where it becomes apparent that λ is an eigenvalue of the matrix A, and e an associated eigenvector. We can ensure the posivity of the eigenvector centrality because A is a real square matrix with positive entries; by virtue of A strictly positive vector must have only positive entries.

Perron-Frobenius theorem

Meyer and Stewart (2023), there is a unique real-valued eigenvalue of largest magnitude, and its eigenvector can be taken to be strictly positive.

d u = v∈V A uv (2.1) e u = 1 λ v∈V A uv e v (2.2) λe = Ae (2.3)
Beyond centrality, we can use other measures such as

The higher the clustering coefficient, the higher the nodes are clustered together.

clustering coefficient which aims at quantifying how the nodes are clustered. This can be done at the global scale, e.g., as a measure of how the entire graph is clustered, or at the local scale. Equation 2.4 shows one version of a local clustering coefficient. This equation counts the number of triangles with u as one the vertices This number represent the number of edges that exist between two distinct neighbours of u (the numerator in the equation). The size of the set of all possible triangles represents the number of pairs of distinct neighbourhoods we can form (the denominator in the equation.)

taken over all such possible triangles. More generally, this approach can be extended to other structures, such as stars or squares, etc.

c u = |(v 1 , v 2 ) ∈ E : v 1 , v 2 ∈ N u | du 2
(2.4)

Instead of counting the exact number of paths or patterns in a graph, we can use random walks to get an approximation of the desired value. One of the biggest advantages of random walks is that it reduces the computational complexity required by exhaustive counts on a graph.

Graph spectral theory

In practice, it is common to use the Laplacian matrix L instead of the adjacency matrix. It is defined by Equation 2.5. The diagonal matrix D is the degree matrix.

Each entry diagonal entry represents the degree of a vertix, i.e., D uu is the degree

of node u. L = D -A (2.5)
The Laplacian has many interesting properties. For instance, the multiplicity of the 0 is equal to the number of connected components of the associated graph.

Instead of using the unnormalized version of the Laplacian, we can use the version, defined in Equation 2.6.

L = D -1/2 AD -1/2 (2.6)

Graph isomorphism and the Weisfeiler-Leman algorithm

The problem of graph isomorphism can be formulated mathematically in the following way. Given two graphs G 1 , G 2 , they are said to be isomorphic if they have the same number of nodes and if there exists a permutation that maps each node of G 1 to a node in G 2 , while preserving the structure, i.e., the edges.

One famous class of algorithms used for determining if two graphs are isomorphic is the Weisfeiler-Leman (WL) algorithm, also called 1-WL [START_REF] Weisfeiler | The reduction of a graph to canonical form and the algebra which appears therein[END_REF]. It can be viewed as a graph coloring scheme. Let c

(t)
i be the color of node i at step t. Then, the algorithm iterates according to Equation equation 2.7.

Each node updates its color at step t + 1 using its color and that of its neighbours at the previous step t. The mechanism used for the update is a hash function.

A comprehensive review of the use of WL in machine learning is presented in [START_REF] Morris | Weisfeiler and Leman go Machine Learning: The Story so far[END_REF].

c (t+1) v = HASH c (t) v , c (t) u | u ∈ N v (2.7)
Chapter 3

Deep learning and graph neural networks

This chapter presents the main ideas behind deep learning models. It also introduces the concept of graph neural networks and offers an analysis of the expressiveness of GNNs. Expressiveness can be viewed from different points of views. It can be viewed as the ability to distinguish distinct graphs, e.g.

differentiate between a toxic molecule and life-saving drug, between a pandemic outbreak and a seasonal flu, etc. Conversely, if two graphs are isomorphic, i.e., they are the same up to a permutation, expressiveness can be viewed in terms of the ability to assign the same result to the two graphs. More generally, since

GNNs must be insensitive to the order of the nodes, we can measure how well they can approximate any permutation invariant functions.

This chapter is divided as follows. Section 3.1 describes deep learning and neural networks, while Section 3.2 focuses on graph neural networks in particular.

Section 3.3 reviews the most expressive architectures of graph neural networks.

Section 3.4 concludes the chapter.

This chapter, more specifically Section 3.3, was the subject of one publication Ingrained in most architectures is the idea of shared weights: the same filter is applied on different parts of the input. For instance, if a filter in a CNN acts as an edge detector, it will be applied throughout the image to detect all the edges [START_REF] Krizhevsky | ImageNet classification with deep convolutional neural networks[END_REF]. Moreover, one of the reasons for the success of deep learning is the overparametrization of the networks: the models contain more parameters than the number of samples.

Φ = ϕ L • ϕ L-1 • . . . ϕ 1 (3.1)

Forward and backward propagation

A neural network operates in two ways: a forward pass and a backward pass.

During the forward pass, the model is fed inputs and produces outputs, such as classifying an image. The backward pass is used in the learning phase to adjust the parameters.

In practice, the forward pass is accomplished using matrices and tensors. This allows the models to be efficiently parallelized, meaning that several inputs can be processed at once, and the computations can sometimes be distributed upon several devices. Most deep learning libraries such as TensorFlow and PyTorch include native support for tensors.

In order to adjust the parameters, we use a loss function that computes how far our predictions are straying from the desired output. To decrease the loss, we want to move in the opposite direction of the gradient of the loss: this is the gradient descent algorithm. One of the key insights behind the success of deep learning is that the gradient can be backpropagated throughout the network using the chain rule of derivatives [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF].

Because the computational graph forms a directed acyclic graph, the backpropagation of the gradients throughout the graph can be performed efficiently. When a neural network is created, a computational graph is created (specifically, a directed acyclic graph). Each element's gradient in the graph is already known.

When the backward pass starts, the DAG is followed and the chain rule used to update the parameters.

Deep learning in practice

During the training of neural networks, there are a few reoccuring issues: the scalability of the models, exploding and vanishing gradients, overfitting. The depth of the networks, in particular creating very deep networks, is also an issue.

The speed gain obtained by performing computations on GPU instead of the CPU is such that most deep learning models are trained on GPU. Moreover, special processing units called TPU (Tensor Processing Units) have been designed

for the whole purpose of neural network computation. When the training data exceeds the memory of the GPU, we have to resort to mini-batch learning, as opposed to full-batch learning. A fixed number of samples are randomly drawn from the training data. In this case, we talk about stochastic gradient descent, because the training produces an estimate of the gradient. In addition to meeting the memory constraints, mini-batch learning acts as a regularizer and helps reduce overfitting of the model to the training data.

Other means of regularization include the usual weight penalization schemes, i.e., imposing constraints such as l 1 or l 2 norms on the weights. An approach specific to deep learning is the use of dropout: during the training phase, neurons are randomly removed. This prevents a strong reliance on specific neurons.

Very deep networks, e.g., networks that have more than 100 layers, can be created using skip-connections introduced in [START_REF] He | Deep Residual Learning for Image Recognition[END_REF]. Deep networks are faced with the problem of vanishing and exploding gradients. The deeper the network, the bigger the effect. To counteract this effect, one solution is to normalize the inputs and perform additional normalization at each layer. This solution has the added benefit of preventing the network from being too sensible to a single feature.

Graph neural networks

Overview

Graph neural networks first emerged in the context of extending recurrent neural networks to handle structured data [START_REF] Sperduti | Supervised neural networks for the classification of structures[END_REF]. For more complete surveys of graph neural networks, see [START_REF] Zhang | Deep learning on graphs: A survey[END_REF][START_REF] Wu | A comprehensive survey on graph neural networks[END_REF].

The layers of a GNN are usually of two types (Ma and Tang, 2021): they can be graph filters, which operate on the nodes' hidden representations and produce new hidden representations. They behave according to Equation 3.2. The layers can also be graph pooling layers, in which case the graph is coarsened into a smaller graph. The pooling layers follow Equation 3.3.

H (l+1) = σ l g l (S, H (l) ) (3.2) S (l+1) , H (l+1) = pool(S (l) , H (l) ) (3.3)
Here, g l is a filter function that modifies the input signal H (l) while preserving the structure of the graph, represented by S; pool is a function that reduces the node dimension of the graph, e.g., if S (l) ∈ R n l ×n l , then S (l+1) ∈ R n l+1 ×n l+1 with n l+1 < n l .

Most of the leading GNNs now follow a structure similar to the one introduced in [START_REF] Gilmer | Neural message passing for quantum chemistry[END_REF]: the hidden representation of a node is updated using the hidden representation of its neighbors. This framework, called the Message-Passing Neural Network (MPNNs) framework was also independently derived in [START_REF] Battaglia | Relational inductive biases, deep learning, and graph networks[END_REF]. MPNNs are sometimes called spatial GNNs because they rely on an aggregation scheme using the information coming from the neighbours of a node to update the node's representation. More formally, the MPNN graph filter takes the form of Equations 3.4 and 3.5.

m (l+1) v = AGGREGAT E h (l) u | u ∈ N v (3.4) h (l+1) v = U P DAT E h (l) v , m (l+1) v (3.5)
AGGREGAT E is a function that maps the multiset of the neighbors' representations into a single vector, e.g., the sum operator; the U P DAT E operator can be a linear mapping of the concatenation of h , e.g.,

W × h (l+1) v , m (l+1) v 
for some weight matrix W . U P DAT E can also be the sum of h .

The other type of graph filters are often called spectral filters and rely on either the Laplacian L or the adjacency matrix A to update the representation of the nodes. These filters follow Equation 3.6 and are also commonly used in practice [START_REF] Bruna | Spectral networks and locally connected networks on graphs[END_REF][START_REF] Defferrard | Convolutional neural networks on graphs with fast localized spectral filtering[END_REF][START_REF] Wu | Simplifying graph convolutional networks[END_REF]. The function p l (S) is a polynomial of S, where S = L or S = A, f l can be a learnable function such as a neural network.

H (l+1) = σ l p l (S)f l (H (l) ) (3.6)
The distinction between spectral and spatial GNNs has more to do with the field of study from which the network is derived than in true differences between the architectures; indeed the authors in [START_REF] Balcilar | Analyzing the expressive power of graph neural networks in a spectral perspective[END_REF] show that both spectral and spatial GNNs can be expressed in terms of a more general framework. For more comprehensive reviews of all the GNN architectures, see [START_REF] Wu | A comprehensive survey on graph neural networks[END_REF][START_REF] Zhang | Deep learning on graphs: A survey[END_REF].

Permutation equivariance and invariance

Because the ordering in which the nodes are given is arbitrary, GNNs must be designed to make this order irrelevant (Bronstein et al., 2021). Mathematically, this translates to permutation invariance and equivariance: given a permutation matrix P, a function f is said to be permutation invariant if Equation 3.7 holds; likewise, f is said to be permutation equivariant if Equation 3.8 holds.

f (P XP T ) = f (X) (3.7) f (P XP T ) = P f (X) (3.8)

Expressiveness and Weisfeiler-Leman

Measuring the expressive power of GNNs serves two purposes: to find the type of tasks that GNNs can solve and the ones it cannot; and to compare architectures to find more expressive ones. Using GNNs instead of traditional neural networks such as Multi-Layer Perceptrons (MLPs), which have been adapted to handle graph structured data, is motivated by the fact that GNNs are exponentially more expressive. That is, increasing the number of layers of a GNN creates exponentially more equivalence classes of rooted graphs than it does for MLPs [START_REF] Chen | On graph neural networks versus graph-augmented MLPs[END_REF]. Moreover, the depth and width of a GNN play a vital role in the expressiveness of the model. If the model is not wide enough or deep enough, there are some properties of a graph that it cannot capture, such as cycle detection, perfect coloring, and shortest path [START_REF] Loukas | What graph neural networks cannot learn: Depth vs width[END_REF].

When we analyze the expressiveness of a family of GNNs, the expressive power is usually represented in two different ways: the ability to distinguish nonisomorphic graphs, or the ability to approximate any permutation invariant function on graphs. The works of (Xu et al., 2019b;[START_REF] Morris | Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks[END_REF] launched a vast area of research surrounding the expressiveness of GNNs, in terms of their limitations and the ways in which these limitations can be uplifted (Maron et al., 2019a).

While the Weisfeiler-Leman (see Section 2.3.3) is known to fail at distinguishing some graphs, it performs well in most cases [START_REF] Cai | An optimal lower bound on the number of variables for graph identification[END_REF]. For this reason, it is often used as the reference when determining the expressive power of a GNN. The two concurrent works (Xu et al., 2019b;[START_REF] Morris | Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks[END_REF] proved that standard MPNNs, without node features, are at most as powerful as the 1-WL test. Additionally, (Xu et al., 2019b) proposed the Graph Isomorphism Network (GIN) and proved that the architecture is as powerful at the 1-WL test.

The WL tests can be extended to k-WL where k ≥ 2 [START_REF] Douglas | The Weisfeiler-Lehman Method and Graph Isomorphism Testing[END_REF]. Instead of coloring a single node, we color tuples of size k.

Let v i ∈ V k be a k-tuple of G, i.e. v i = (v i1 , . . . , v i k ) where v ij ∈ V for j ∈ [k].
For the k-WL, we define the neighborhood of a tuple v i to be

N j (v i ) = (v i1 , . . . , v ij-1 , u, v ij+1 , v i k ) | u ∈ V . (3.9)
Similarly, for Folklore WL (k-FWL) [START_REF] Douglas | The Weisfeiler-Lehman Method and Graph Isomorphism Testing[END_REF], a variant of the WL algorithms that uses a different update rule, the neighborhood of v i is defined as

N F u (v i ) = (u, v i2 , . . . , v i k ), (v i1 , u, . . . , v i k ), . . . , (v i1 , . . . , v i k-1 , u) . (3.10)
Using these neighborhoods, the update rule for k-WL follows Equation 3.11, while k-FWL follows Equation 3.12.

c (t+1) vi = HASH c (t) vi , c (t) u | u ∈ N j (v i ), j ∈ [k] (3.11) c (t+1) vi = HASH c (t) vi , c (t) u | u ∈ N F j (v i ), j ∈ [n]
(3.12)

Most expressive GNNs

In this section, we present an overview of the approaches used to improve the expressiveness of GNNs. We restrict ourselves to approaches that have mathematical theorems that prove that the architectures are indeed at least as expressive as the standard GNNs. We distinguish two main groups, which are represented in Figure 3.2. On the one hand, there are models that achieve the highest level of expressiveness by using higher order data, such as hypergraph data, at the cost of intensive computational requirements. On the other hand, more recent models, while not as powerful as higher order methods, manage to be more expressive than standard GNNs while being computationally efficient, by using node identification or by incorporating graph substructure information in the model.

Higher Order Networks and Universal Approximation

Compared to a maximally expressive standard graph neural network such as the Graph Isomorphism Network (GIN) (Xu et al., 2019b), higher order networks gain expressiveness by incorporating knowledge about the hypergraph data, such as hyperedges between sets of nodes [START_REF] Morris | Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks[END_REF]. Moreover, instead of building the layers in the network to be permutation invariant, non-invariant functions can be used then summed over all the set of permutations to produce permutation invariant functions [START_REF] Murphy | Relational pooling for graph representations[END_REF].

Building network layers that work on tuples of nodes instead of single nodes requires using tensors of higher dimension. Instead of having an input feature matrix X ∈ R n×d with an adjacency matrix A ∈ {0, 1} n×n , a hyper-graph can be represented using a tensor X ∈ R n k ×d (Maron et al., 2019b). In this manner, X i represents the features of node i, x i,j of edge (i, j), X i,j,l of the hyper edge (i, j, l), and so on.

Because the ordering of the nodes is arbitrary, the GNN layers should be designed to be either permutation equivariant or invariant. A composition of an equivariant layer with an invariant layer leads to an invariant function. In (Maron et al., 2019b), the authors characterize all such types of linear layers. Namely, given a permutation matrix P and a function vec that vectorizes a tensor, a linear layer L ∈ R 1×n k is invariant if and only if it follows Equation 3.13: [START_REF] Abboud | Random feature in learning[END_REF] Random feature in learning, 2021, [START_REF] Sato | Node coloring[END_REF] Node coloring, 2020, [START_REF] Dasoulas | Coloring graph neural networks for node disambiguation[END_REF] Anchor sets, 2019, [START_REF] You | Position-aware graph neural networks[END_REF] Identity-aware GNNs, 2021, [START_REF] You | Identity-aware graph neural networks[END_REF] Substructure awareness (Section 3.3.2)

P k vec(L) = vec(L) (3.
Local subgraph templates, 2021, [START_REF] Thiede | Autobahn: Automorphismbased graph neural nets[END_REF] Automorphism templates, 2021, (Xu et al., 2021a) Small graph orbit counting, 2021, [START_REF] Bouritsas | Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting[END_REF] Structural coefficients, 2022, [START_REF] Wijesinghe | Rooted subgraphs[END_REF] Rooted subgraphs, 2021, [START_REF] Zhao | From stars to subgraphs: Uplifting any GNN with local structure awareness[END_REF][START_REF] Zhang | des modèles et met en évidence le mécanisme implicite de réduction de bruit présent dans certains modèles. De plus, le bruit a un effet néfaste plus important lorsqu'il concerne les noeuds les plus isolés[END_REF] Figure 3.2: Overview of mathematically expressive GNNs. Red boxes refer to sections of the chapter; and blue boxes represent ideas introduced by specific papers.

The authors (Maron et al., 2019b) further provide a basis for the space of invariant and equivariant layers, alongside their dimension.

Instead of trying to directly create an invariant layer, one can use arbitrary functions and sum over all the permutations. This was first proposed in [START_REF] Murphy | Relational pooling for graph representations[END_REF]. Given X f eatures,id the feature matrix concatenated with a one-hot encoding of a position of the node, f a GNN, a Relational Pooling GNN (RP-GNN) layer follows Equation 3.15. π is a permutation of the nodes of G. The one-hot encoding added to X is permuted with π while X remains fixed. This prevents the sum from reducing to a single element. Furthermore, selecting the permutations on which to perform the sum can eliminate the factorial complexity induced by all the permutations.

f RP (G) = 1 |V|! π∈Π |V| f (π(A), X f eatures,π(id) ) (3.15)
Building equivariant and invariant layers raises a question: can the network approximate any invariant or equivariant function, i.e., can GNNs act as universal approximators? Provided that the tensors have a high enough dimension, (Maron et al., 2019c) proved that models based on the linear layers defined above can indeed approximate any invariant functions. Specifically, networks using layers that are equivariant or invariant for a group G can be expressed as in Equation 3.16:

ϕ = m • h • σ l (L d ) • • • • • σ 1 (L 1 ) (3.16)
where m is a multi-layer perceptron that flattens the output, h is a function that is invariant for the group G, and L i are the equivariant layers for the group G that follow Equation 3.14.

Similarly, in addition to providing a different proof of the result from (Maron et al., 2019c) regarding the universality of the linear layers following Equation 3.13 with respect to invariant functions, the authors of [START_REF] Keriven | Universal invariant and equivariant graph neural networks[END_REF] show that, given a sufficient tensor size, equivariant networks can approximate any equivariant function.

In terms of graph isomorphism, k-order GNNs, that is, GNNs that use a korder tensor as input such as hypergraphs, are more expressive than GNNs.

Specifically, since k-WL are known to be strictly more powerful than (k -1)-WL for k ≥ 2, and k-WL and (k -1)-FWL have the same expressive power, adapting k-WL for GNNs leads to more expressive GNNs (Maron et al., 2019a;[START_REF] Morris | Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks[END_REF]. Thus, k-order GNNs are as powerful as k-WL (Maron et al., 2019a).

The problem with k-order GNNs is that they are computationally expensive.

Universality results for computationally reasonable GNNs were first proven in [START_REF] Azizian | Expressive power of invariant and equivariant graph neural networks[END_REF], additionally showing that Folklore GNNs are the most expressive for a given k.

To design GNNs that are more powerful than 1-WL while still being computationally efficient, we must exploit node properties such as their identification and the substructures that they belong to.

Computationally Efficient and Powerful Networks

Instead of exploiting higher order knowledge, GNNs can obtain higher expressiveness than the GIN architecture by adding information about the node being updated. This can take several forms: adding features to the nodes to make them identifiable [START_REF] Dasoulas | Coloring graph neural networks for node disambiguation[END_REF]; using the structure of the local subgraphs to adapt the way information is transmitted [START_REF] Thiede | Autobahn: Automorphismbased graph neural nets[END_REF]; using rooted graphs instead of trees centered around the nodes being updated.

Instead of using higher-order networks, finding more expressive architectures than standard GNNs can be done by looking at the failure cases of MPNNs.

Most of the failures can be attributed to two related causes: the anonymity of nodes in the message passing stage, where it is impossible to keep track of where the information is coming from [START_REF] Loukas | What graph neural networks cannot learn: Depth vs width[END_REF]; and the lack of substructure awareness from MPNNs [START_REF] Chen | Can graph neural networks count substructures?[END_REF].

Mitigating node anonymity is the subject of Section 3.3.2, while injecting substructure awareness into MPNNs is discussed in Section 3.3.2.

Node Identification

MPNNs cannot distinguish information coming from identical nodes (i.e., nodes with the same features and same degree). One way to remedy this problem is to color each identical node with a different color. This is the process introduced in [START_REF] Dasoulas | Coloring graph neural networks for node disambiguation[END_REF] with the k-CLIP (Colored Local Iterative Procedure) algorithm. All the nodes with identical attributes are mapped into groups V 1 , . . . , V K . Within each group, each node is assigned a distinct color, by concatenating the color attribute, e.g., a one-hot encoding, with the features of the node. k different coloring C k are chosen out of all the possible colorings. A standard MPNN is trained for each coloring, and the final output is given by Equation 3.17:

h G = ψ max c∈C k v∈V h c v,L (3.17)
where h G is the graph readout of the network, ψ is a learnable function, and

h c v,L
is the hidden representation of node v at the last layer L of the network using the coloring c. Compared to a standard MPNN, the complexity of k-CLIP has an extra k factor that corresponds to the number of colorings used. CLIP can be used with all the K k=1 |V k | possible colorings, in which case it is named ∞ CLIP . While the ∞ CLIP is a universal approximator [START_REF] Dasoulas | Coloring graph neural networks for node disambiguation[END_REF], it suffers from an exponential growth with respect to the size of the

V k , k ∈ [K].
k-CLIP is a random algorithm, e.g., two different runs might lead to two different colorings. It is more efficient than ∞ CLIP , and universality results can still be obtained for its expectancy [START_REF] Dasoulas | Coloring graph neural networks for node disambiguation[END_REF].

When a GNN has a sufficient number of layers, a node is feeding back information to itself in its update: in an undirected graph, a node is a neighbor of its neighbor. For example, given the graph in Figure 3.3a and the trees of height 1 starting from each of its nodes in Figure 3.3b, B is a neighbor of A. With a standard MPNN, A will be used to update B, which in turn will be used to update A, with no indication of the provenance of the information. Therefore, as shown in [START_REF] You | Identity-aware graph neural networks[END_REF], graphs with different structures can have the same GNN computational graph. To alleviate this problem, the authors propose to introduce identity-aware GNNs (ID-GNNs), where they use ego networks (rooted graphs) in which the root is colored and thus can be identified in the computational graph. Figure 3.3c shows the ego networks of height 1 for each of the nodes in the graph of Figure 3.3a. An ID-GNN layer follows Equations 3.18 and 3.19, where M ESSAGE 0 and M ESSAGE 1 can be MLPs, attention mechanisms, etc. M ESSAGE 0 is the message function for neighbors of the root node, while M ESSAGE 1 is the message function to update the root node. This set of equations are similar to Equations 3.4 and 3.5, except that the root node of the ego graphs is identified and its message is used differently than for the rest of the nodes. There is almost no added complexity compared to a standard MPNN: by setting M ESSAGE 0 = M ESSAGE 1 , we recover a standard MPNN. However, ID-GNNs can differentiate graphs that a Graph Isomorphism Network (Xu et al., 2019b) cannot, making them strictly more powerful than the 1-WL test [START_REF] You | Identity-aware graph neural networks[END_REF].

m (l+1) v = AGGREGAT E M ESSAGE 0 (h (l) u ) | u ∈ N v (3.18) h (l+1) v = U P DAT E M ESSAGE 1 (h (l) v ), m (l+1) v (3.19)
A simpler approach consists in simply assigning a random feature to each node at the beginning of the learning phase. Namely, the node feature matrix X is concatenated with a matrix R ∈ R N ×dr where R is a feature matrix that was sampled from a random distribution. rGIN, the architecture obtained by adding the random feature assignment to a standard GIN, can distinguish graphs that GIN cannot [START_REF] Sato | Node coloring[END_REF]. The random features ensure that graphs that would lead to the same GNN computational graphs otherwise, will produce different graphs most of the time. Additionally, random node initialization allows MPNNs to become universal approximators without requiring higher order tensors [START_REF] Abboud | Random feature in learning[END_REF].

Instead of using the neighborhood of each node, one can use anchor sets, which consist of nodes sampled from the graphs. In [START_REF] You | Position-aware graph neural networks[END_REF], the authors pro-

pose the Position-aware Graph Neural Network. At each layer, k sets S i , i ∈ [k]
of nodes are chosen. Then, for each node v, a message m v,i is computed between v and the nodes in S i , as in Equation 3.20. Finally, the hidden representation is updated by aggregating the messages from all the anchor sets, as shown in Equation 3.21. MPNNs use rooted trees to update notes. If the features are identical, MPNNs with a single layer will treat nodes B and F as the same; if the network uses the rooted graph instead, it will distinguish B and F .

m (l) v,i = AGGREGAT E h (l) u | u ∈ S i (3.20) A B C D E F
h (l+1) v = AGGREGAT E m (l) v,i | i ∈ [k] (3.21)
Removing the dependency on the neighborhood of the nodes changes the objective function of the network. Following [START_REF] You | Position-aware graph neural networks[END_REF], the representation learning objective of a GNN is written in Equation 3.22. ϕ represents the neural network parameterized by θ. Nodes u and v are sampled according to V train , the distribution of nodes in the training set. S u is the q-hop neighborhood graph of u, parameterized by q, the maximum distance to u. S u and S v are sampled according to p(V), the distribution of the set of nodes in the graph. d z is a similarity metric, and d y is a target similarity metric. By contrast, the learning objective of a P-GNN is written in Equation 3.23, where S is an anchor set, sampled from the distribution p(V). P-GNN can share information across the whole graph using common anchors between nodes, while a standard GNN is restricted to the nodes in the neighborhood. This makes P-GNN able to approximately capture properties that GNNs cannot capture, such as the shortest paths in the network.

min θ E [L(d z (ϕ θ (u, S u ), ϕ θ (v, S v )) -d y (u, v))] (3.22) min θ E [L(d z (ϕ θ (u, S), ϕ θ (v, S)) -d y (u, v))] (3.23)
In place of identifying each node, the expressiveness of MPNNs can also be improved by making them aware of the substructures found in the graph.

Substructure Awareness

One area of interest is whether MPNNs can count substructures. That is, given a graph structure or pattern, can an MPNN count the number of times that such structure, up to isomorphisms, appears in the graph? The authors of [START_REF] Chen | Can graph neural networks count substructures?[END_REF] show that MPNNs cannot count patterns with three or more nodes.

However, MPNNs can perform subgraph-count of star-shaped patterns. Looking at k-WL tests, the authors further show that finite k-WL cannot perform an induced-subgraph-count of patterns that have more than a given number of nodes.

MPNNs rely on a star-shaped aggregation pattern: they aggregate information coming from neighbors to a central node (see Equations 3.4 and 3.5). For example, in Figure 3.3a, node C and E are treated in the same way to update node F . However, C and E do not have the same structural information, as

C is part of a triangle with B and F , while E forms one of the endpoints of a path of length 2 with F . To capture this information, [START_REF] Thiede | Autobahn: Automorphismbased graph neural nets[END_REF] proposes the Autobahn architecture. Given a list of template graphs, at each layer, the network decomposes the graph into a collection of subgraphs that are isomorphic to the templates. A single neuron in the Autobahn is applied to subgraphs that match the list of templates. The activation from the different templates are combined using narrowing and promotion functions that allow us to, respectively, extend or decrease the number of nodes that an activation function takes. The authors [START_REF] Thiede | Autobahn: Automorphismbased graph neural nets[END_REF] argue that if the templates are carefully chosen, Autobahn can match the expressiveness of higher order networks.

In a similar work, the authors of (Xu et al., 2021a) propose the GRaph Automor-Phic Equivalence (GRAPE) network, which uses automorphism groups in a similar manner to Autobahn [START_REF] Thiede | Autobahn: Automorphismbased graph neural nets[END_REF]. They focus on template search using genetic algorithms: templates are produced from a pool, and mutated via edge mutation or node mutation until a satisfactory template has been produced.

The authors (Xu et al., 2021a) further show that GRAPE can distinguish certain graphs that MPNNs cannot distinguish.

By contrast, in [START_REF] Bouritsas | Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting[END_REF], the authors propose using a list of small connected graphs to directly add structural features to nodes and edges by counting the number of times a node (or an edge) acts as a member of an orbit of one the graphs. For example, in Figure 3.3c, node C acts as a point in a triangle for the A rooted graph, but as one end of a path of length 3 in the D rooted path.

The structural features can be concatenated with the original features and a GNN is trained on the new features. The authors [START_REF] Bouritsas | Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting[END_REF] show that under certain conditions on the subgraph matching, this type of architecture, called Graph Substructure Networks (GSN), can be strictly more powerful than MPNNs and 1-WL.

On the topic of substructures, a new hierarchy of local isomorphisms between subgraphs is proposed in [START_REF] Wijesinghe | Rooted subgraphs[END_REF]: subgraph isomorphism, overlap isomorphism and subtree isomorphism. Let S u be the neighborhood subgraph of u. It is the subgraph induced by Ñu = N u ∪ u. The overlap subgraph between two adjacent vertices u and v is defined by can be normalized for the network operations. With this ω, GraphSNN is more powerful than 1-WL [START_REF] Wijesinghe | Rooted subgraphs[END_REF].

S uv = S u ∩ S v . Let S = {S v |v ∈ V} and S * = {S vu |(v, u) ∈ E}.
m (l) a = AGGREGAT E 0 ω(S v , S vu ), h (l) u | u ∈ N v (3.24) m (l) v = AGGREGAT E 1 ({{(ω(S v , S vu ) | u ∈ N v }}) h (l) v (3.25) h (l+1) v = U P DAT E(m (l) a , m (l) v ) (3.26) ω(S v , S vu ) = |E vu | |V vu | • |V vu -1| |V vu | λ (3.27)
Alternatively, instead of relying on structural coefficients or graph templates, we can exploit the rooted subgraphs of each node. In this setting, we employ a network uplifting scheme where a base GNN is used to compute node representations, which are fed to an outer GNN. In [START_REF] Zhao | From stars to subgraphs: Uplifting any GNN with local structure awareness[END_REF], the authors use rooted graphs to compute three types of information: the centroid encoding, which is obtained when the node is the root of the rooted graph; the subgraph encoding, which represents the information from the other nodes in the rooted graph; and the context encoding, which represents the information that the node carries in the other rooted graphs. Let G (l) [N k (v)] be the v rooted graph with height k, with the node representations from layer l.

Let GN N (l) = P OOL GN N (l) (EM B (l) (i|G (l) [N k (v)])|i ∈ N k (v)
) be the inner GNN, with P OOL GN N (l) the pooling operator after the last layer of the GNN, and EM B (l) (i|G (l) ) the embeddings before the pooling operation of the GNN. Let

d (l)
u|v be the encoding of distance from node u to v at layer l [START_REF] Li | Distance encoding: Design provably more powerful neural networks for graph representation learning[END_REF]. Let σ be the sigmoid function, ⊙ the element-wise product. The GNN As Kernel (GNN-AK) architecture follows Equations 3.28-3.31. The authors [START_REF] Zhao | From stars to subgraphs: Uplifting any GNN with local structure awareness[END_REF] prove that this GNN-AK is strictly more powerful than 2-WL and not less powerful than 3-WL.

h (l+1) v,subgraph = P OOL GN N σ d (l) u|v ⊙ EM B i | G (l) [N k (v)] , i ∈ N k (v) (3.28) h (l+1) v,centroid = EM B v | G (l+1) [N k (v)] (3.29) h (l+1) v,context = P OOL CON T EXT σ d (l) u|v ⊙ EM B v | G (l) [N k (u)] , v ∈ N k (u) (3.30) h (l+1) v = U P DAT E h (l+1) v,subgraph , h (l+1) v,centroid , h (l+1) v,context (3.31) 
WL and MPNNs encode a rooted subtree for each node. This is illustrated in This might prevent the network from learning useful information at the graph level. Instead, [START_REF] Zhang | des modèles et met en évidence le mécanisme implicite de réduction de bruit présent dans certains modèles. De plus, le bruit a un effet néfaste plus important lorsqu'il concerne les noeuds les plus isolés[END_REF] proposes to learn subgraph representations centered around rooted graphs. Let G h v be be the rooted graph of v with height h, and N (v|G h w ) the neighborhood of v within w's rooted subgraph. A layer of Nested Graph Neural Network (NGNN) follows Equations 3.32 and 3.33. In the last layer, the representation of node w is obtained by performing a readout, as shown in Equation 3.34 where L is the last layer and R 0 is the readout function.

These new representations can be used as an input to a second GNN to perform graph-level tasks. These nested architectures are strictly more powerful than 1-WL [START_REF] Zhang | des modèles et met en évidence le mécanisme implicite de réduction de bruit présent dans certains modèles. De plus, le bruit a un effet néfaste plus important lorsqu'il concerne les noeuds les plus isolés[END_REF].

m (l+1) v,G h w = AGGREGAT E h (l) u,G h w | u ∈ N (v | G h w (3.32) h (l) v,G h w = U P DAT E h (l) v,G h w , m (l+1) v,G h w (3.33) h w = R 0 h L v,G h w | v ∈ G h w (3.34)
While graphs may be difficult to distinguish, it is usually easier to distinguish subgraphs. With this in mind, [START_REF] Bevilacqua | Equivariant subgraph aggregation networks[END_REF] propose using bags of subgraphs that can then be readout, and on which a set operation can be performed. There can be different policies in selecting the subgraphs. These methods are more powerful than 1-WL.

Discussion

In this section, we summarise the results concerning the expressiveness of GNNs, and we provide outlooks for future works.

Summary

The early works regarding GNN expressiveness were focused on two goals:

providing bounds for MPNNs, and overcoming those bounds. The works of (Xu et al., 2019b;[START_REF] Morris | Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks[END_REF] established Weisfeiler-Leman tests as the standard of comparison when it comes to expressiveness of GNNs. The higher-order

Weisfeiler-Leman tests provide a template for higher-order GNNs [START_REF] Douglas | The Weisfeiler-Lehman Method and Graph Isomorphism Testing[END_REF].

Higher-order methods also arise when trying to design GNN layers that are universal approximators or invariant (Maron et al., 2019c) or equivariant functions [START_REF] Keriven | Universal invariant and equivariant graph neural networks[END_REF]. To this end, hypergraphs with tensors containing hyperedges data are required (Maron et al., 2019b).

With higher-order networks, the complexity grows exponentially with the number of nodes. This makes these networks computationally expensive, and alternatives must be crafted to handle large graphs. Approaches with low overhead compared to a standard MPNNs include some form of node identification. This can be achieved by adding colors to each node [START_REF] Dasoulas | Coloring graph neural networks for node disambiguation[END_REF], using rooted graphs [START_REF] You | Identity-aware graph neural networks[END_REF], fixing sets of nodes that are used to update all the nodes in the graph [START_REF] You | Position-aware graph neural networks[END_REF], or by adding random features to the nodes [START_REF] Abboud | Random feature in learning[END_REF][START_REF] Sato | Node coloring[END_REF].

To retain part of the expressiveness of higher-order networks, subgraphs can be used as templates on which to perform the convolutions. This breaks the star-shaped pattern of MPNN convolutions and allows for other patterns such as triangles, circles, etc. A network with a good selection of templates can be viewed as a higher-order network where only a few substructures are used [START_REF] Thiede | Autobahn: Automorphismbased graph neural nets[END_REF]. These templates can be searched via genetic algorithms (Xu et al., 2021a).

Substructures can also be used to add structural information to the nodes. This can be achieved by counting the roles a node plays in different templates and adding this information to the features [START_REF] Bouritsas | Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting[END_REF]. Alternatively, structural coefficients which take into account the shapes of neighborhoods can inject structural information into the network [START_REF] Wijesinghe | Rooted subgraphs[END_REF].

On top of the previous methods, GNNs can be used a building block for other

GNNs. An inner GNN using rooted graphs can be used to produce hidden representations that are fed into an outer GNN [START_REF] Zhang | des modèles et met en évidence le mécanisme implicite de réduction de bruit présent dans certains modèles. De plus, le bruit a un effet néfaste plus important lorsqu'il concerne les noeuds les plus isolés[END_REF]. Moreover, each node can be updated using three types of information: the centroid information, when the node is the root of the rooted graph; the subgraph information, which is the information coming from its neighbors; and the context information, which is the information it contributes to rooted graphs where it is not the root [START_REF] Zhao | From stars to subgraphs: Uplifting any GNN with local structure awareness[END_REF].

All the expressiveness results of the architectures discussed in this chapter are presented in Table 3.1. The table contains only results that have a mathematical proof in the associated paper. In some cases, this could mean that higher bounds can exist that have not been proven. Conversely, new architectures that are developed today could have a high expressiveness, but since no mathematical proof is provided, the evidence is only empirical.

Future work

To the best of our knowledge, there has yet been no papers investigating the expressive power of methods that combine the methods presented in Section 3.3.2.

For example, can the gains made in mathematical expressiveness from adding node identifiers be combined with the ones made from using nested graph neural networks? Or do these gains have the same root, rendering the combination as powerful as either of the methods individually?

Another way to improve expressiveness is to extend GNNs to more complex structures such as cell complexes, of which graphs are special cases [START_REF] Bodnar | Weisfeiler and lehman go cellular: CW networks[END_REF]. Graphs can be seen as part of a bigger framework of geometric objects, which can be worked on using geometric deep learning (Bronstein et al., 2021). A possible line of work would be to explore other types of structures that share profound links with graphs, and create efficient architectures that can be adapted to graphs. 

Architecture Expressiveness

GIN (Xu et al., 2019b) 1-WL k-GNN [START_REF] Morris | Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks[END_REF] (k-1)-WL RP-GNN [START_REF] Murphy | Relational pooling for graph representations[END_REF] strictly superior to GIN PPGN (Maron et al., 2019a) 3-WL ∞ CLIP [START_REF] Dasoulas | Coloring graph neural networks for node disambiguation[END_REF] universal approximator ID-GNN [START_REF] You | Identity-aware graph neural networks[END_REF] >1-WL rGIN [START_REF] Sato | Node coloring[END_REF] >1-WL, universal approximator PGNN [START_REF] You | Position-aware graph neural networks[END_REF] greater than MPNN Autobahn [START_REF] Thiede | Autobahn: Automorphismbased graph neural nets[END_REF] depends on the templates, can achieve k-GNN performance GRAPE (Xu et al., 2021a) stricly more powerful than MPNN GSN [START_REF] Bouritsas | Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting[END_REF] more powerful than MPNN and 1-WL under conditions. GraphSNN [START_REF] Wijesinghe | Rooted subgraphs[END_REF] > 1 -W L GNN-AK [START_REF] Zhao | From stars to subgraphs: Uplifting any GNN with local structure awareness[END_REF] >2-WL, ≥ 3-WL NGNN [START_REF] Zhang | des modèles et met en évidence le mécanisme implicite de réduction de bruit présent dans certains modèles. De plus, le bruit a un effet néfaste plus important lorsqu'il concerne les noeuds les plus isolés[END_REF] > 1-WL

Part II

Learning

Chapter 4

GNNs in practice

This chapter introduces the most frequently used GNNs in real world application, as well as the datasets on which our experiments are performed. The most used GNNs differ from the most expressive ones because of the computational cost one the most expressive GNNs is prohibitive when we want to perform classification on large graphs. Additionally, standard GNNs can outperform the most expressive architectures on real world datasets.

This chapter is divided as follows. Section 4.1 presents the most commonly used GNN architectures, as well as some of the tricks that can be used to improve their performance. Section 4.2 presents the dataset we are using in our experiments, discusses the splitting of data, the difference between transductive and inductive learning, and the choice of node features. 

GNNs in practice

In the first part of this thesis, we focused on the theoretical background of deep learning and graph neural networks. In this part, we present more empirical results. In particular, this first chapter takes a look at empirically and historically important graph neural networks and datasets.

Some of the more important advances in the field of GNNs include the formalization of the generic architecture of a GNN and the exploration of various neighbourhood selection schemes. Furthermore, the development of new architectures has mostly relied on adapting successful techniques from other domains, such as attention mechanisms and knowledge distillation, or on exploiting unique properties of graph stuctured data, such as reversible GNNs or GNNs that leverage information from multihop neighbours. Another particularity of GNNs is the possibility to leverage the graph information in the design of the features. Besides, the dependencies between nodes play a role in how a graph is split between training and test data, which can affect model performance. In the rest of this section we present the main concepts that will be used throughout the paper.

Message Passing Neural Framework

As presented in the first part of this thesis, most GNNs follow the message passing neural network (MPNN) framework (see Section 3.2.1) introduced in [START_REF] Gilmer | Neural message passing for quantum chemistry[END_REF]. The network aggregates information about the neighbors of a node to produce messages that are used to update the hidden representation of each node. More formally, let G = (V, E) be a graph where V is the set of vertices and E the set of edges. h l v represents the features of a node v at the layer l, and H l the feature matrix for all the nodes. e vw represents the edge from node v to node w. If X denotes the node features matrix, we have by convention H 0 = X. An update from layer l to layer l + 1 takes the form

m l+1 v = w∈Nv M l (h l v , h l w , e vw ) (4.1) h l+1 v = U l (h l v , m l+1 v ) (4.2)
where M l and U l are respectively the message and update functions of layer The three architectures, GCN, GAT, and GRAPHSAGE, that we describe next play an important role in the evolution of graph neural networks. They took the field away from signal processing and into the deep learning era; they added the paramount attention mechanism, and started the sampling thread that allowed the architectures to scale to large graphs with more than a billion of nodes.

Graph Convolutional Networks

Graph Convolutional Networks (GCNs) were introduced in [START_REF] Kipf | Semi-supervised classification with graph convolutional networks[END_REF]. They are one of the earliest forms of MPNNs. They extend the concept of spectral convolutions on graphs by approximating the convolution with Chebyshev polynomials [START_REF] Defferrard | Convolutional neural networks on graphs with fast localized spectral filtering[END_REF]. A GCN layer follows Equation 4.3.

σ represents an activation function, such as the ReLU function. D is the nor-malized degree matrix, Ã the normalized adjacency matrix. W l represents the parameters of the layer.

H l+1 = σ D-1 2 Ã D-1 2 H l W l (4.3)
A GCN is usually composed of several of these layers, with the activation function of the last layer being a softmax to output probabilities. 

Graph Attention Networks and attention mechanisms

h (l+1) u = σ v∈Nu α (l) uv W (l) h (l) v (4.4) α (l)
uv is the normalized attention coefficient at layer l of node v with respect to u, that is, it indicates how important the features of node v are to node u. The coefficients are retrieved by computing the attention coefficients then performing a softmax for normalization. More formally, with e (l) uv the attention coefficients at layer l and a the attention mechanism, α

(l)
uv and e (l) uv can be computed using Equations 4.5 and 4.6.

e (l) uv = a W (l) h (l) u , W (l) h (l) v (4.5) α (l) uv = exp(e (l)
uv )

w∈Nu exp(e

(l) uw ) (4.6)
The attention mechanism can be any function that takes as input two vectors, with the same dimension as the product

W (l) h (l)
u and outputs a real value. For example, a can be a feed-forward neural network.

GraphSAGE and neighbourhood selection

GraphSAGE (Graph SAmple and aggreGatE) is a type of GNN and MPNN introduced in [START_REF] Hamilton | Inductive representation learning on large graphs[END_REF]. It is designed with the goal of performing inductive learning, i.e. to generate node embeddings for unseen data. It follows Equations 4.7-4.9. N v represents a sampling of N v . Usually, N v produces a fixed-size set. CONCATENATE is the concatenation operator. Equation 4.7 can be generalized by using a different operator from the sum operator, provided that the operator is still permutation invariant, i.e. produces the same result regardless of the order of the nodes.

h l+1 Nv = σ W l 1 | N v | +1 h l v + v∈Nv h l u (4.7) h l+1 v = σ W l • CONCATENATE h l v , h l Nv (4.8) h l+1 v = h l+1 v ∥h l+1 v ∥ (4.9)
While the neighbourhood function can be defined arbitrarily, in practice we draw a uniform sample of fixed size from the neighbors of the node. This draw is performed for every layer. The choice of neighbourhoods for each node can affect the performance of the network. Classical graph neural networks such as Graph Convolutional Networks Kipf and Welling (2017) used the full neighbourhoods of each node. To be able to handle larger graphs, some approaches use the same sampling scheme as GraphSAGE while trying to preserve the graph structure as in Cluster-GCN [START_REF] Chiang | Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks[END_REF].

GNN advanced tricks

In this section, we present some of the tricks that can be used to improve the performance of GNNs. These tricks can be applied to virtually all GNNs.

Reversible GNNs: the challenge of GPU size

GNNs are memory intensive, to the point that many models cannot be run with large datasets on standard GPUs. Most of the memory cost comes from having to store the features tensor of the whole graph at each layer. To solve this problem, reversible graph neural networks have been proposed in Liu et al.

(2019); Li et al. (2021a). The idea is to propagate the information from layer to layer using a chain of operations that will be performed in an inverse way for the backpropagation. It increases the time complexity in order to decrease the space complexity.

Self-knowledge distillation

Another approach used for decreasing memory load is knowledge distillation [START_REF] Hinton | Distilling the knowledge in a neural network[END_REF]. A large neural network is trained while smaller networks try to approximate its results. The large network acts as a teacher and the smaller networks as students. Using this principle, it was shown in [START_REF] Zhang | Be Your Own Teacher: Improve the Performance of Convolutional Neural Networks via Self Distillation[END_REF] that an efficient way to implement knowledge distillation is to train the early layers of a network as the students and the whole network as the teacher.

Adaptive Graph Diffusion Networks (AGDN): the challenge of oversmoothing

In addition to memory constraints, adding layers to GNNs can lead to oversmoothing the features, where the information of a single node is drowned in the information coming from everywhere in the graph [START_REF] Li | DeepGCNs: Can GCNs Go As Deep As CNNs?[END_REF].

Nodes that are one-hop apart are the direct neighbours, those that are 2-hop apart are the neighbours of the neighbours, and so on.

One way to counteract this effect is to try and retrieve information at each layer from different hop-neighbourhoods. One example of such architecture was proposed in [START_REF] Sun | Adaptive Graph Diffusion Networks with Hop-Wise Attention[END_REF].

Dataset

Most of our experiments in this thesis are performed on one dataset: the academic citation network that comprises all the papers in the arXiV Computer Science repository. In this section we provide a description of this dataset. We also discuss the question of splitting a graph dataset, the difference between transductive and inductive learning, and the choice of features.

Overview

ogbn-arxiv is a dataset from the Open Graph Benchmark (OGB) [START_REF] Hu | Open graph benchmark: Datasets for machine learning on graphs[END_REF].

It is an academic citation network that contains all the papers in the arXiV Computer Science repository. It contains 169,343 nodes and 1,166,243 edges. Each node has a 128 feature vector. These features represent the average embeddings of the words in the title and the abstract. These embeddings are obtained using a word2vec model [START_REF] Mikolov | Efficient estimation of word representations in vector space[END_REF]. The features are normalized. The splitting of the dataset between train, validation and test is done using the year in which the articles were published: the papers up to 2017 are in the train set.

Those published in 2018 are in the validation set. Papers from 2019 and 2020 constitute the test set.

The labels in the dataset represent the category Each category is denoted by two letters; their full name can be found at https://arxiv.org/corr/ subjectclasses.

of the paper, e.g. machine learning, computer vision, etc. Each paper is labelled by the authors and the arXiv moderators; these labels are assigned a number between 0 and 39, representing the 40 categories of the arXiv CS (Computer Science) repository.

In our discussion of transductive and inductive learning, we also use the ogbn-papers100M and ogbn-mag datasets from OGB. We briefly describe them in the remainder of the section.

ogbn-papers100M is a dataset constructed in a similar way to ogbn-arxiv, except that it contains more than 111 million papers and that the classification task is performed on the subset of papers that corresponds to all the papers published on the arXiv website; it is not restricted to computer science and there are 172 subject areas.

ogbn-mag is a heterogeneous graph which contains about 736,000 papers, 1.1 million papers, 8,700 institutions and 60,000 fields of studies. The features of the nodes are constructed with the same approach that was used for creating the features of ogbn-arxiv. The task is to predict the venue of the paper.

Dataset split

A naive approach to splitting a graph between train, validation and test sets, is In [START_REF] Hu | Open graph benchmark: Datasets for machine learning on graphs[END_REF], the authors proposed splitting the dataset with respect to the year of publication of the papers, on the basis that this reflects one of the real world applications of GNNs, which is to predict the category of new papers using only already published papers; furthermore, they argue it is a more challenging task than just randomly splitting between train, validation and test.

Thus, the split is the following: the train set consists of all papers published before 2018; the validation set has all the papers published in 2018; and the test comprises all the papers from 2019 (inclusive) onwards.

Transductive and inductive learning

Due to the interconnectedness of nodes in graph data, it is not possible to create a series of independent examples to be fed to a neural network, as can be done in computer vision with images or in natural language processing with sequences of text input. Thus, there are two approaches for splitting a dataset 

Graph Information Aided Node feature exTraction (GI-ANT)

The choice of features associated with each node and edge can play a significant In node classification, a GNN is using both the features of a node and its neighbours to determine its label. In some cases, this means that the features will push the model towards one label, while the neighbours will push it towards another. Furthermore, the notion of a correct label for a node can be blurred in settings where there are overlaps between the labels. In Section 5.3, we explore the problem of multilabel classification in an academic citation network. 

Introduction

A graph distribution can change over time. Attributes of users of social networks change. A hundred years ago, papers were written by individual people, there were fewer collaborations and the number of papers each paper cited was smaller.

Contributions came from a few countries [START_REF] Dong | A century of science: Globalization of scientific collaborations, citations, and innovations[END_REF]. In a social network, an event can change the structure of the graph.

Another aspect of working with social graphs is that classification is not always perfect: while we can establish that a molecule is toxic or not, putting labels on people is more complicated, because the categories are not entirely distinct.

Users can like several genres of music and have different groups of friends.

Furthermore, a user can change over time: their taste of music can evolve, friendships can end while new ones are forged. Additionally, some categories can encompass or overlap with other categories.

In many cases, classification tasks require neural networks to produce multiple labels: images have several elements, sentences can be related to different topics, and nodes in a graph may be related to several classes via different neighbours.

Multilabel classification for each type of data led to the development of specialized network architectures [START_REF] Nam | Large-Scale Multi-label Text Classification -Revisiting Neural Networks[END_REF][START_REF] Wang | CNN-RNN: A Unified Framework for Multi-label Image Classification[END_REF][START_REF] Lanchantin | Neural message passing for multi-label classification[END_REF].

In the context of a changing graph, the distribution shift may cause issues in the performance of GNNs in different settings: transductive and inductive learning. Evaluating GNNs in these two settings provides a better comparison ground between the architectures. Several explanations are possible as to why an architecture achieves the same performance in transductive and inductive learning: the train and test dataset may have the same distribution, or the architecture is failing to capture relevant information in the transductive setting.

Another point of interest is the nature of the shift: is it a structural shift, e.g., the way nodes are linked together has changed; or a semantic shift? An example of a structural shift is science moving towards collaborations and away from single author contributions. One example of a semantic shift is a field, such as computer vision, changing from handmade features to embeddings generated by deep learning approaches.

In this chapter, we analyze the behaviour of several GNNs on a graph that has a known distribution shift (see Section 4.2.3). We evaluate the GNNs in both transductive and inductive learning. We consider two sets of features for the nodes: the original ones, and improved ones proposed by some authors. We find that performance between transductive and inductive learning is similar.

We then focus on the errors made by a GNN. We find that these errors are of three types. The first type of error is due to the the use of a common A semantic field represents the set of words that are related to a topic. By analogy, the semantic field can describe the values that the features from the nodes of a given class take.

semantic field between two classes and the over-representation of one class compared to the other, which leads to misclassification of the small class in favour of the large one. The second type is due to a similar semantic field with multiple interactions between the classes. The third type is due to classes which sit at the intersection of other classes, e.g. robotics and human computer interaction.

Transductive and inductive learning

In contrast to image and text data, graphs cannot easily be divided into multiple datasets, because nodes are interconnected with each other. In order to train a GNN, we must create a training set on which the model is trained; a validation set whose purpose is to find the best model; and a test set containing unseen data to see if the model is performing well. 

Since most of the GNN entries on the Open Graph Benchmark leaderboard

The leaderboard is available online at this address:

https://ogb.stanford.edu/ docs/leader_nodeprop/.

train their models in a transductive setting, there is a spread of information from the validation and the test data to the training data.

In conjunction with exploiting the features of nodes in the test set, most methods use label information as a way to augment the features of the nodes: given a set of features X f eats , a one hot encoding vector is used to represent the label of the node. The new features X onehot are then concatenated with X f eats to produce the input features X. For the elements outside of the training set, the label is first left empty; i.e. all the entries in the one hot vector are set to zero. Then the vector is filled by applying a softmax to the output logits of the GNN. If there is information from the test set that is contained in the validation data, it means that the network will indirectly try to produce the best label features for the test nodes that are used in classifying the validation nodes. It is thus trying to fit the test data.

Experiments

We compare the performance of models trained in two different settings: trans- Each model is trained for 2,000 epochs. At the end, the model weights saved are the ones which led to the best validation accuracy. Additionally, each model is trained for 10 runs in order to mitigate the fluctuation in accuracy over each run.

Table 5.1 shows the results of the training computations in a transductive setting.

The difference between validation and test accuracy is also shown in the last column. Table 5.2 shows the results of the same models in the inductive setting. We see that in the transductive learning setting, the Deep RevGAT model achieves the best accuracy with the smallest number of layers. Using selfknowledge distillation with more layers actually worsens the performance. The increase in the difference between validation and test accuracy indicates that the model is trying to fit the validation data, and that the validation data and test data are not completely similar. This is expected because the addition of new papers to the citation network may change the structure of the graph, and the model might not be able to predict these unforeseen structures.

In the inductive setting, the performance of the model with self-knowledge distillation increases with the number of layers, while the gap between validation and test accuracy decreases. The model with 5 layers and knowledge distillation achieves the best test accuracy of all the models trained with inductive learning.

The performance is close to the one from the top model in the transductive setting.

Models trained on the same dataset in transductive and in inductive learning usually achieve better test accuracy in transductive learning [START_REF] Xu | Inductive representation learning on temporal graphs[END_REF].

This is an expected behaviour because the transductive model already had access to test data in the training phase. The fact that the models achieve similar performances in transductive and inductive settings may be an indication that the models are not fully exploiting the information available during training, and that new architectures are needed to leverage it. Indeed, the fact that the AGDN model trained with the original features has a higher test accuracy than its validation accuracy suggests that the model is slightly underfitting the data, and that either the features must be changed, or the model needs to be modified to better exploit the data.

The use of features that exploit the graph topology, created with the GIANT framework, could partly explain why the gap between transductive and inductive learning is small: because the features are created using the entire graph, some of the test information is already embedded in the features of the training nodes.

Since the AGDN model trained with the original features achieves comparable accuracy in both settings, the GIANT extracted features cannot account for the small gap.

In the inductive setting, directly encoding the label information as part of the nodes features using a one-hot encoding scheme does not seem to improve performance. While the Deep RevGAT model with 3 layers trained with label features performs better than the model trained solely on the GIANT features, adding self-knowledge distillation reduces the difference.

The most likely reason why the models achieve comparable results in transductive and inductive settings is that each model uses some form of neighbourhood sampling in the training phase. This makes the models more robust and acts as a regularizer in preventing overfitting to the data. The importance of edges coming from validation and test data is reduced as they do not systematically appear in the sampled edges.

Error analysis and multilabel classification

The experiments in the remainder of the chapter will be performed in the transductive setting only. We now turn analyse the errors made by the GNNs. For these experiments, we use a GAT with the original features of the graph.

Single class classification

In this section, we use a single class classification approach. A deep analysis of the misclassifications will lead us to explore a multilabel approach in Section 5.3.2.

For all the experiments, we use a 24GB NVidia RTX GPU. The code is written in Python, Pytorch and PyTorch Geometric [START_REF] Fey | Fast Graph Representation Learning with PyTorch Geometric[END_REF]. We use the OGB (Open Graph Benchmark) [START_REF] Hu | Open graph benchmark: Datasets for machine learning on graphs[END_REF] package to get the ogbn-arxiv dataset.

To analyze the misclassification errors made by the model, we need to go beyond the accuracy score and look at the confusion matrix on the test set, which will help us see where it fails to generalize. The value at row c i and column c j indicates the number of times the model has assigned the label c j to a node from c i , divided by the total number of nodes of category c i in the test set. The rows have been normalized and each one adds up to 100.

Each value outside the diagonal is a mistake made by the model.

The categories were ordered in such a way that the small classes occupy the first columns while the middle of the matrix is for the most populated classes and the rest of the columns represent mostly middle-sized classes. A subset of the full confusion matrix is displayed in Figure 5.2 with the categories that are discussed in the rest of the paper. despite the fact that these categories have approximately the same number of nodes in the training set. This suggests that some categories display more cohesiveness than others, and that the network is able to detect this pattern.

Still on the topic of categories with little representation, we see systematic misattribution for nodes in the mm (Multimedia) and gr (Graphics) categories, which are classified as cv. Considering that the three subjects likely share a similar terminology, and that the initial features of the nodes were based on the words in the title and the abstract, there is little hope, without changing the features, to correctly predict these classes.

Next, we are faced with subject areas that are intrinsically interdisciplinary, which means they exploit ideas from other areas of research. The most eminent representative of these categories is hc (Human Computer Interaction). By design, HCI tends to capitalize on the advances in various fields, e.g. computer vision, natural language processing, and study the impact, positive or negative, they can have on users. In ogbn-arxiv, this will be reflected in two manners: hc nodes have neighbours that can belong to other classes, and two hc nodes can have vastly different features.

Finally, the error which is the key factor in driving down the accuracy is the confusion between categories within a group of similar categories. This is exemplified with the categories cv (Computer Vision), lg (Machine Learning), ai (Artificial Intelligence), cl (Computation and Language, mostly natural language processing) and ne (Neural and Evolutionary Computation). About 30% of ai nodes in the test set are incorrectly attributed to one of the aforementioned classes, while 20% of lg nodes and 35% of ne nodes are similarly misclassified.

All these categories mutually fuel the research of the others. The two biggest reasons for the misclassification are a combination of two causes mentioned earlier: many nodes from these categories share a similar terminology, e.g.

papers on neural networks have similar characteristics; and the nodes cite papers from all the areas in the group.

Considering the overlapping themes of some categories, as well as the interdisciplinary content of some papers, a multilabel classification approach is preferable to the single label classification task. Firstly, it allows a finer grained categorization of papers, distinguishing between papers in the robotics field that have a computer vision component with those that have a natural language processing component. Secondly, it helps concentrate on the bigger errors made by the neural networks: those in which the category is not in the top predictions.

Multilabel classification approach

Instead of focusing only on the top prediction of the model, we retrieve the three most likely predicted classes of our GAT model for each node in the test set. The set of estimated probabilities is usually obtained by applying a softmax activation function to the last layer of the neural network; in the case of multiclass classification, to make a prediction, we simply output the category which is associated with the highest probability. We compute the number of times the correct category is the prediction (accuracy, or top 1), as well as the number of times it appears in the two (top 2) or three (top 3) categories with the highest estimated probabilities. Overall, while the model achieves 72.4% accuracy, the right category is in the two highest predictions 87.3% of the time, a 15% increase.

In the top 3, this number rises to 92.4%. Results for each category are presented in Tables 5.4 and5 We see that, within a group of non-mutually exclusive categories, there are some classes that attract most of the predictions, such as the cv and cl which are in the group of artificial intelligence related categories. These leads to poor accuracy scores for the lg and ai classes. However, when we look at the three highest estimated probabilities, the network gets most of the lg and ai samples right.

For example, node 1 in Figure 5.3 belongs to the lg category, which is the second prediction of the model. Similarly, nodes 2, 3, 5 and 7 all belong to the ai category, which is the second or the third prediction from the model.

Additionally, the top three predictions are either related to the true category, or to the category of the neighbours. For example, node 1 has neighbours that belong to the ai, lg, cv, cl categories. This means that the model is properly learning from the information contained in the neighbours. Nodes with neighbours from different categories than themselves will rarely be classified in the correct category, but the top predictions of the model will most often be related to the content of the paper. This suggests that focusing on a single category is not sufficient to properly classify a paper, and that a better way is to look at the first two or three predictions to get a meaningful categorization of the paper. Node 1 is a paper from the ai category, but it cites papers from the cv category; thus it is likely to contain a sizable amount of information related to computer vision, even if it is not the main theme of the paper.

We also observe that the challenges faced by interdisciplinary categories remain when we observe the top three predictions: the model correctly has hc in its top three predictions in only 53% of the cases. Node 4 and node 7 in Figure 5.3 illustrate the situation. Node 1 only has lg neighbours, while node 2 only has cv neighbours. Furthermore, hc is not in the first three predictions of the model.

Discussion

In this chapter we studied the difference between transductive and inductive learning for citation networks where the graphs have been converted to undirected graphs and the train, validation and test sets have been constructed using the temporal information of the nodes. We saw that the training datasets contain many edges from the validation and test sets: one fifth of the edges in the training set of ogbn-mag are from the validation or test set, while two thirds of the edges in ogbn-arxiv come from outside of the training set.

To analyze the importance of these edges, we trained state of the art GNNs in an inductive setting where the training set contains only edges from within the training set. We found that the networks achieved similar performances in either a transductive or inductive setting. This may be due to the neighbourhood sampling methods used by most GNNs that reduce overfitting to the data. This also suggests that current models can be improved, as models usually perform better in transductive settings.

Furthermore, we observed that the gap between validation and test accuracy was lower in the inductive setting than in the transductive setting. This is an indication that the models trained in the inductive setting were better at generalizing than their counterparts trained in the transductive setting. Moreover, this suggests that new architectures will likely be able to improve on the current results.

In this chapter, we also trained a GNN on the same dataset, reframing the problem as a multilabel classification problem where a node may belong to more than one category with a given probability. For instance, a paper in the robotics category might tackle a computer vision problem, while another one might deal with a natural language processing task. We found that considering the top three predicted classes, the real class was present in more than 92% of the cases.

In addition, we observed that the categories in the top predictions are usually related to the true category, or to the category of the neighbours of the paper.

These results validate the multilabel approach.

Some perspectives for future works include performing a similar analysis on bigger datasets to generalize our findings. The multilabel approach is likely to extend to other domains, as objects in social networks or other real world data do not usually belong exclusively to one class. Furthermore, a different set of features can be explored to improve discrimination between classes.

Chapter 6

Noisy features and missing data imputation

This chapter deals with the noise in nodes features and its impact on GNN 

Noise in data

Noise in attributes

Most types of data contain some degree of noise. It can take many forms, such as blur in images, spelling or grammar mistakes in text; parts can be missing or distorted in audio and video recordings. The impact of noise on machine learning models varies with the severity of the noise Dodge and Karam (2016).

For instance, noise in the background of an image is less important than the background noise of an audio recording in a crowded train station. Additionally, noise can occur naturally or can be artificially injected to produce errors.

In graph structured data, the noise takes two forms: noise in the structure of the graph, and noise in the features and labels. Noise in the structure alters how nodes are connected together via the edges. Edges can be added or deleted.

For example, in a social network where the nodes represent people and the edges indicate friendship, removing edges will hide the friendship between two people. In this way, a group of people forming a community might appear as disjoint groups of individuals.

Noise in the features covers the noise in the features of the nodes and the edges.

As an illustration, in a products network, edges between two products indicate how many times they were bought together [START_REF] Chiang | Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks[END_REF]. Because the company selling the products may have different selling points, the information can take time to be aggregated. During this time, the weight of the edges does not represent the correct number of items sold together. In a different vein, social networks such as Facebook and Twitter, each record different information about their users, so each user of both networks may have different features on each platform. Classification using one or the other social network will produce different outcomes.

The importance of noise in graph structured data is twofold: noise in the structure impacts how the information propagates through the graph; and noise in the features changes the messages that are passed. Firstly, many of the machine learning approaches used in graph representation learning involve a flow of information through the neighborhood of the nodes. Indeed, in Graph Neural Networks (GNNs), most models follow a Message Passing Neural Network (MPNN) framework [START_REF] Gilmer | Neural message passing for quantum chemistry[END_REF]. In this framework, a message is computed between a node and each of its neighbours, and these messages are aggregated to form the new node's representation.

Secondly, while the structure determines the nodes used to update the graph's representation, it is the features that create the representation. For instance, in a social network, wrong hobbies may be attributed to a user. When machine learning models try to predict what the hobbies of their friends are, they will use the wrong hobbies which will lead to classification errors. These errors will spread to the friends of the friends, and might spread through the whole graph.

The impact of noise on the learning of GNNs can be amplified by the manner in which the learning is performed. There are two possible settings: transductive and inductive learning. In transductive learning, the GNN model has access to the validation and test features at training time; only the labels are hidden. In contrast, in inductive learning, the model is trained exclusively on the training nodes. These settings reflect different real life scenarios [START_REF] Yang | Revisiting semisupervised learning with graph embeddings[END_REF].

Transductive learning can be applied to the classification of products in an online retail store; the labelled nodes represent the bestselling items, and the goal is to predict the category of the rest of the items. In this case, the aim is to predict the category of known nodes. With respect to inductive learning, an example is the prediction of the behaviour of new users in a social network. The model must generalize to unseen nodes.

Missing data

Missing data is a problem that occurs across a wide range of domains. For example, in medical related domains, data can be missing as a result of a patient being treated by different providers, or resorting to multiple laboratories which do not centralize their data [START_REF] Wells | Strategies for handling missing data in electronic health record derived data[END_REF]. Incomplete data can have several causes: the information is not available, e.g. if a sensor is malfunctioning, it will stop recording measurements; the information is missing at random, i.e. no external cause can explain the incompleteness; or the information is missing due to an underlying reason, e.g. a person in a survey refuses to answer some questions [START_REF] Titterington | Missing data analysis: Making it work in the real world[END_REF].

Amongst its other successes, deep learning has helped promote several ways of performing feature imputation, i.e. filling the missing values based on the observed values. For example, auto-encoders use a two step process that first learns a compact encoding of the data, similar to compression, and tries to decode the compact representation so as to maximize the similarity with the input [START_REF] Vincent | Extracting and composing robust features with denoising autoencoders[END_REF]. In a different vein, Generative Adversarial Networks In this chapter, we address the issue of the scalability of GRAPE: we propose a mini-batch version that works on datasets which do not fit in GPUs for full batch training. We test our architecture on a dataset which cannot be used with the original GRAPE, due to memory issues. Additionally, we present simple preprocessing and post-processing steps that allow GRAPE to be applied to graph structured data, compared to only tabular data in the original paper [START_REF] You | Handling missing data with graph representation learning[END_REF].

Traditional approaches to solve feature imputation tasks include methods such as the Expectation-Maximization algorithm [START_REF] Dempster | Maximum Likelihood from Incomplete Data Via the EM Algorithm[END_REF], k-nearest neighbours (k-NN) [START_REF] Troyanskaya | Missing value estimation methods for DNA microarrays[END_REF], and matrix completion [START_REF] Candès | Exact matrix completion via convex optimization[END_REF]. These approaches may suffer from scalability issues, such as using a k-NN on millions of observations; or do not generalize to unseen observations. For example, matrix completion requires retraining to fit the new data.

Many types of data can be seen as specific cases of graph data, e.g. an image is an euclidean grid, a sentence is a tree. Graphs and graph-based neural networks, Graph Neural Networks (GNNs), can be used to take into account the structural information of the data while imputing the missing features. Matrix completion approaches can be extended to graphs [START_REF] Kalofolias | Matrix completion on graphs[END_REF], while GNNs can be used to impute missing data by treating observations and features as part of a bipartite graph [START_REF] You | Handling missing data with graph representation learning[END_REF]. In graphs, missing features can be imputed by propagating the other features in the graph [START_REF] Rossi | On the unreasonable effectiveness of feature propagation in learning on graphs with missing node features[END_REF].

Deep learning approaches can face issues in terms of GPU or TPU memory when the data becomes too large. In this setting, several approaches can alleviate the problem: sampling the data to create mini-batches [START_REF] Chiang | Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks[END_REF];

optimizing the architecture by removing less influential parameters [START_REF] Wu | Simplifying graph convolutional networks[END_REF]; or performing a trade-off in time and space complexity by using reversible operations that can be computed sequentially Li et al. (2021a).

GNN's treatment of noise

The problem of noise in graph data has been mostly studied from the point of view of noise or attacks in the structure of the graph, or in the labels.

With respect to the structure, a powerful way of disturbing the graph is to use a gradient-based attack, called projected gradient descent (PGD) Xu et al. (2019a), which tries to find the smallest perturbations that produce the greatest decrease in performance. To protect the GNN against such attacks, more sophisticated aggregation schemes than the mean operator, such as the Soft Medoid Geisler et al. (2020) or the Soft Median aggregators [START_REF] Geisler | Robustness of graph neural networks at scale[END_REF], must be devised.

The noise is often considered from the point of view of the downstream task, e.g. what matters is not how noisy the features are, it is how noisy labels are and how the metrics of the model are impacted by the noise. Li et al. (2021b) explore in great depth how neural networks react to noisy labels. [START_REF] Dai | NRGNN: Learning a label noise resistant graph neural network on sparsely and noisily labeled graphs[END_REF] propose an architecture that is robust against noisy labels in graphs.

Instead of relying on robust architectures against noise, a different approach consist in denoising the data. This can be achieved using the graph filtering properties of GNNs [START_REF] Rey | Untrained graph neural networks for denoising[END_REF]. Another example is the use of graph convolutions to denoise mesh data [START_REF] Shen | GCN-Denoiser: Mesh denoising with graph convolutional networks[END_REF].

Apart from additive noise, missing data can contribute to the noise. In this case, the features can be reconstructed using graph neural networks. One approach is to create a bipartite graph consisting of observations and features; the edges between the nodes representing the value of the feature for a given observation.

A GNN is then trained to perform edge weight prediction [START_REF] You | Handling missing data with graph representation learning[END_REF].

Alternatively, the features of the nodes can be propagated to the neighbours to fill in the missing values [START_REF] Rossi | On the unreasonable effectiveness of feature propagation in learning on graphs with missing node features[END_REF].

Recent studies have also shown that certain architectures of GNNs possess an internal implicit denoising mechanism Ma et al. (2021). This mechanism is studied in more depth in [START_REF] Liu | How Powerful is Implicit Denoising in Graph Neural Networks[END_REF].

Parallel to the effort of denoising data, there are works which focus on creating better features that leverage the topological information available in graphs [START_REF] Chien | Node feature extraction by self-supervised multi-scale neighborhood prediction[END_REF].

Noisy features

Most Noise in features can take several forms, the most common of which is additive noise, e.g. the input can be expressed as the sum of a "clean" input and an extra term. For example, the noise component can be Gaussian noise. The noise can be entirely random, or follow an underlying pattern. For example, missing data in clinical studies is not always random, but may have a latent cause, such as the patient refusing to disclose personal information [START_REF] Titterington | Missing data analysis: Making it work in the real world[END_REF]. Similarly, if the categories contain the values "wolf" and "dog", the noise may not entirely be random.

More formally, given X the feature matrix of a graph G, we define X noisy to be the feature matrix with additive noise. If we add random noise sampled from a normal distribution with probability p, X noisy follows Equation 6.1. Here X uv designates the feature v of node u.

(X noisy ) uv =    X uv + ϵ, ϵ ∼ N (0, 1) with probability p X uv otherwise . (6.1)
By definition of a graph, the nodes are interconnected and are therefore not independently identically distributed. This means that the noise in one node can influence the other nodes. This raises the question: where is a GNN most vulnerable to noisy data? Is it when the noise is random, or when the noise targets a specific set of nodes, e.g. the most influential or the most isolated nodes. If the noise targets the nodes with the highest degree, the noise will reach more nodes faster than if it targets the nodes with the smallest degree. However, GNNs will often assign less importance to the features of the most influential nodes, because the more some information is used, the less it has discriminating power.

To model the targeting of nodes according to the degree, we can define a probability p that a feature will contain noise, and some threshold t representing the minimal degree that a node must have to be corrupted. The noise targeting the high degree nodes can be expressed by Equation 6.2.

(X noisy ) uv =    X uv + ϵ, ϵ ∼ N (0, 1) with probability p if u.degree ≥ t X uv otherwise (6.2)
Conversely, targeting the small degree nodes can be done using Equation 6.3, where t is the maximal value of the degrees of the target nodes.

(X noisy ) uv =    X uv + ϵ, ϵ ∼ N (0, 1) with probability p if u.degree ≤ t X uv otherwise (6.3)
While Equations 6.2 and 6.3 look similar, they only overlap when there is no noise, or when all the nodes are noisy.

Problem Definition

In this section, we first present the dataset on which our experiments are made.

The architectures we chose, GCN, GAT, and GraphSAGE, each represent fundamental ideas of GNNs:

• GCN belongs to the family of spectral GNNs which exploit properties of the Laplacian matrix of the graph Wang and Zhang (2022);

• GAT leverages the attention mechanism, which has achieved state-of-theart results in many fields, e.g. with Transformers in NLP Devlin et al.

(2019);

• GraphSAGE uses a sampling mechanism which becomes essential when we scale GNNs to larger graphs [START_REF] Chiang | Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks[END_REF].

We train the models on different versions of the dataset which we modified by adding noise to the features. We investigate three types of noise:

• We add random noise to the graph, as per Equation 6.1;

• We add noise to nodes, according to Equation 6.2, starting with the nodes with the highest degree and proceeding to the nodes with the smallest degree;

• We add noise to nodes, according to Equation 6.3, starting with the nodes with the smallest degree and procedding to the nodes with the highest degree.

The experiments are performed in two settings:

• Transductive learning, where the model has access to the full graph at training time; only the validation and test labels are hidden.

• Inductive learning, where the model is trained on the subgraph of the whole graph that contains only nodes in the training data. In this setting, edges between train and test nodes do not appear at training time.

Each model is trained for 1,000 epochs. The validation accuracy is used to select the best model. We perform 5 runs to account for the randomness of the parameter initialization and the noise addition.

Random noise perturbation

In this section, we assume that the noise is distributed randomly, i.e. follows Equation 6.1.

Transductive setting

The results of training a GCN, a GAT and GraphSAGE in the transductive setting with a randomly added noise are shown in Figure 6.1.

Figure 6.1: Training, validation and test accuracy of three models of GNNs in the transductive learning setting. The horizontal axis corresponds to the percentage of features to which noise has been added, i.e., p in Equation 6.1.

The sharpest decrease in accuracy occurs when p ∈ [0, 0.2]. When p ≥ 0.2, the decrease follows a gentler slope. Because citation networks tend to be scale-free networks [START_REF] Barabási | Emergence of Scaling in Random Networks[END_REF], there are nodes in the networks, called hubs, from which we can reach almost all the nodes in the graph in a few hops. Formally speaking, the diameter of the graph, which is the greatest distance between two nodes, is small compared to the number of nodes. Thus, when p = 0.2, the noise has already spread throughout the graph.

In GCN and GraphSAGE, the generalization error between train and validation is increasing as p increases. This is due to the fact that these models do not possess any graph specific regularizing mechanism. Indeed, the weighting of the neighbours for the GCN in Equation 4. The way people used the platform between these two dates evolved as well.

Additionally, the structure can change as a result of periodical events. As an illustration, the subgraph of Twitter related to rugby will see yearly spikes of interest during the championship seasons, such as the Six Nations Tournament and the Champions Cup, and every four years when the World Cup takes place.

Secondly, the shift can also take place with respect to the features or the labels.

For instance, what was considered rock music in the 1980s might not be labelled as such nowadays. Or the physical attributes of football players in the 1960s are very different from those of the current star players. In our case, the structural aspect of citation networks, and scientific collaborations at large, has been consistent for a long period of time. Indeed, the number of citations has followed a steady exponential growth for the last hundred years [START_REF] Dong | A century of science: Globalization of scientific collaborations, citations, and innovations[END_REF]. This means that the shift has occured with respect to the features and the labels.

Adding noise to the features undoes the distributional shift caused by the changing of features over time. When a certain level of noise is reached, the only remaining difference between nodes in the validation and the test set is structural. This explains the results of Figure 6.1, in which by the time all the nodes have been tampered with, there is no difference between the validation and test accuracy of the GCN and GraphSAGE models.

In the case of the GAT, going back to Equations 4.4-4.6, the α l uv performs an implicit assignment of different importances to the neighbours. This mechanism allows the model to downgrade the importance of nodes once their representation contains enough noise to negatively influence the learning process, e.g. when the nodes contribute to misclassifying other nodes. In short, the GAT performs regularization via attention.

Inductive setting

The results of training a GCN, a GAT and GraphSAGE in the inductive setting with a randomly added noise are shown in Figure 6.2. Figure 6.2: Training, validation and test accuracy of three models of GNNs in the inductive learning setting. The horizontal axis corresponds to the percentage of features to which noise has been added, e.g. p in Equation 6.1.

The first observation is that overall, the test accuracy is lower in the inductive learning setting than in the transductive learning setting. This is expected, because the inductive task is inherently a more challenging task than the transductive one [START_REF] Yang | Revisiting semisupervised learning with graph embeddings[END_REF] When p = 1, there is still a generalization error between the validation and test accuracy in the GCN model. The lower accuracy is explained by the fact that inductive learning is inherently a more challenging task than transductive learning [START_REF] Yang | Revisiting semisupervised learning with graph embeddings[END_REF]. The gap is the result of structural differences between the training graph and the full graph. For example, since nodes become popular slowly over time, the structure may have evolved as the result of the formation of new hubs.

Conversely, the generalization error almost disappears in the case of GraphSAGE. This is the result of the sampling mechanism, which appears in Equation 4.7.

The sampling acts as a regularizer, which also explains why the gap between the train and validation accuracy is smaller than with the GCN. Since the sampling prevents overfitting to the structure, the gap represents the information lost via noise. When p ≥ 0.4, most of the information in the features has been drowned in the noise.

In contrast, GAT's performance present several peculiarities. Firstly, the model performs considerably worse than in the transductive setting. It also achieves a smaller test accuracy than its GCN and GraphSAGE counterparts, with the accuracy dropping below the 50% mark. Secondly, the model presents a wider range of outcomes for the different runs. This is an indication that the model is converging to different local minima at each run. Additionally, the low training accuracy indicates that the model performs excessive regularization. This regularization is performed via the attention mechanism presented in Equations 4.4-4.6. When we consider the backpropagation phase Lecun et al.

(1998) of a single node, we see that the noise will be amplified in two ways.

In the first part, neighbours who share the same class as the node, but whose features have been tampered with so that they push the model to misclassify the node, will see their α l uv coefficient reduced, e.g. the model will attribute less importance to these nodes. In the second part, neighbours with a different class but whose features push the model to correctly classify the nodes, will have an increased α l uv coefficient. In other words, information will be silenced while noise will be amplified.

High degree node perturbation

In this section, we assume that the noise targets the high degree nodes first, according to Equation 6.2.

Transductive setting

The results of training a GCN, a GAT and GraphSAGE in the transductive setting with noise progressively added to the nodes, starting with the nodes with the highest degree, are shown in Figure 6.3. The horizontal axis represents the proportion of nodes that contain noise, e.g. the normalized t in Equation 6.2.

Each color represents a different amount of noisy features per nodes, e.g. the p in Equation 6.2. We investigate three settings: minimal noise, with p = 10%; medium noise, with p = 50%; and high noise, with p = 90% . Figure 6.3: Training, validation and test accuracy of three models of GNNs in the transductive learning setting. The horizontal axis corresponds to the percentage of nodes to which noise has been added. The noise targets the nodes with the highest degree first then proceeds in a decreasing manner. The percentage indicates how many of the features of each node are tampered with, e.g. 0.1 means 10% of the features contain added noise.

For a given t < 1 and any p, the test accuracy of each model is higher than in the random noise setting.

Noise that spreads from an influential node will go through many nodes to reach the most isolated ones, by which time the effects of the noise will have been dampened. This phenomenon can be visualized with the following experiment, similar to the small world experiment de Sola Pool and Kochen (1978): the goal is to reach the best coverage of the U.S. population with the smallest group of people, in the sense that we want to select a group that minimizes the distance between any individual in the whole population and the group, e.g. each person is at least 5 hops away from the group.

If you select the members of the groups by taking the people with the highest degree, you will target people from the big cities. But you will miss the people from isolated areas. Moreover, while some people will not be within reach of a member of the group, others will be within reach of several members. When, instead of selecting the people by their degree, you pick them randomly, you reduce the overlapping of the coverage and you increase the chance of selecting members that can reach the isolated nodes. Regarding our experiment, this means what when the noise is added to the high degree nodes, some nodes will not encounter any noise because they will be beyond reach of the L neighbourhood of the high degree nodes, where L is the number of layers of the GNN.

Note that this also applies to GNNs with skip connections Xu et al. (2021b), although the depth the GNN then exceeds L.

Looking at GCN and GAT, we see a only a relatively small drop in performance until at least t ≥ 0.4. This can be explained by going back to the equations of each model. In the GCN case, the node-wise update rule can be expressed by Equation 6.4. T is the transpose operator.

h l+1 u = (W l ) T v∈Nu∪{u} 1 dv du h l u (6.4)
The weighting of the nodes in the update rule depends doubly on the degree of the nodes: the degree of the target node, i.e. the node that is updated, and the degree of the source node, that is, the neighbour from which the edge starts. At a local level, considering only a single node update, which can be done by fixing the u, the nodes with the highest degree will always have lower importance than the other nodes. More formally, given a node u, two neighbours v 1 and v 2 such

that d v1 > d v2 , we have (1/d v1 ) -1/2 < (1/d v2 )
-1/2 . Likewise, given two nodes u 1 and u 2 who share a common neighbour v, by the same reasoning we find that if d u1 > d u2 , u 2 will have a greater weight than u 1 . This means that the GCN's explicit weighting scheme devalues the contributions from high degree nodes.

This also means that targeting the high degree nodes is the least efficient way of propagating noise in a GCN model.

Regarding the GAT model, the unnormalized attention coefficient between two nodes u and v, given by Equation 4.5, is a(W l h l u , W l h l v ) where a is the attention mechanism. a can be any learnable function. For example, in the original paper [START_REF] Velickovic | Graph attention networks[END_REF], it is given by Equation 6.5. Θ is the weight vector of the mechanism and ∥ is the concatenation operator.

e l u v = LeakyRELU(Θ T [W l h l u ∥W l h l v ]) (6.5) 
The loss used in the training is the cross-entropy loss, given by Equation 6.6. K is the number of classes, e.g. 40 in our case. x is the features of the node, y its label, represented as a one-hot encoding; and ŷ the prediction of the GNN. ŷ is usually taken to be a probability distribution, i.e.

K i=0 ŷi = 1. The predicted category is the one with the highest score.

l(x, y) = K i=0 -y i log(ŷ i ) (6.6)
When the noise targets the high degree nodes, enough noise will push the model to misclassify nodes. In terms of loss, this means that the noise will increase the loss of the model. During the backpropagation stage, the weights will be modified using gradient descent to decrease the loss. Let u be a node and v 1 one its neighbours. If v 1 contains noise that results in decreasing the score of the prediction of the correct class of u, the loss increases. To reduce the loss, the model will change its weights, and will reduce the importance of v 1 in updating u, by lowering α uv1 . Because the high degree nodes will be involved in many computations, the same reasoning shows that the overall importance of these nodes will decrease. In short, the attention mechanism will silence the noise.

In terms of the percentage of features altered, we observe two phenomena: when only a few features are modified, e.g. p = 0.1, the performance deteriorates only slightly; and whether we set p = 0.5 or p = 0.9, the performance is similar. The second point was already observed in Section 6.2.2 regarding random noise: beyond a certain amount of noise, the performance plateaus as the noise has spread through the whole graph and there is nothing else remaining to tamper with.

A very likely explanation for the first phenomenon is the fact that many types of GNN perform some form of implicit denoising during their training phase Ma et al. (2021). In particular, the authors of Ma et al. (2021) show that GCN and GAT can be seen as solving a specific form of denoising problem. This idea of denoising is further investigated in [START_REF] Liu | How Powerful is Implicit Denoising in Graph Neural Networks[END_REF], in which the authors explore how denoising is impacted by the connectivity and the size of the graph, as well as by the architecture.

Inductive setting

The results of training a GCN, a GAT and GraphSAGE in the inductive setting with noise progressively added to the nodes, starting with the nodes with the highest degree, are shown in Figure 6.4.

Figure 6.4: Training, validation and test accuracy of three models of GNNs in the inductive learning setting. The horizontal axis corresponds to the percentage of nodes to which noise has been added. The noise targets the nodes with the highest degree first then proceeds in a decreasing manner.

While GraphSAGE's performance in the transductive setting was the poorest of the three models, in the transductive setting it is on par with the other models.

The reason for the early drop in accuracy in the transductive and inductive settings, e.g. when p ∈ [0, 0.2], is likely the over-representation of high degree nodes in the sampling of the neighbours. When looking at the neighbourhood sampling of all the nodes, the nodes with high degree will appear multiple times.

Thus, the sampling allows the noise to spread faster. As the noise fills the whole graph, the inductive mechanism of GraphSAGE starts to be more influencial in reducing the overall noise of the messages.

In contrast with the previous experiments, we see that the validation and test gap reaches a minimum around p = 0.6, and starts increasing again when p > 0.6.

In all likelihood, this is due to the fact that apart from the papers who cite and are cited by few others, the newer papers tend to have less citations on average than the older ones, because there needs to be a certain period of time before the paper starts getting cited. By targeting the nodes with the higher degree first, we are creating a distributional shift. Indeed, the models are trained on nodes with noise while the nodes in the validation and test set contain less noise in average. This leads to the models's generalizing capabilities to decrease.

Small degree node perturbation

In this section, we assume that the noise targets the small degree nodes first, according to Equation 6.3.

Transductive setting

The results of training a GCN, a GAT and GraphSAGE in the transductive setting with noise progressively added to the nodes, starting with the nodes with the smallest degree, are shown in Figure 6.5.

Figure 6.5: Training, validation and test accuracy of three models of GNNs in the transductive learning setting. The horizontal axis corresponds to the percentage of nodes to which noise has been added. The noise targets the nodes with the smallest degree first then proceeds in an ascending manner.

The model performance drops sharply when t ∈ [0, 0.3], then it levels off. A similar reasoning from Section 6.2.3 about the degrees of the nodes shows that the GCN model will amplify the noise: the values of the nodes with the smallest degree are weighted with the largest coefficients. Likewise, the GAT will start by penalizing heavily the small degree nodes. Only when enough noise is present in the graph will the attention mechanism be able to rescale the importance of the noisy nodes.

Because GraphSAGE proceeds with a fixed neighbourhood sampling size, there is no neighbourhood sampling for the nodes with small degree: all their neighbours are considered. Therefore, GraphSAGE has no regularizing mechanism for small degree nodes. The lack of weighting, whether implicit or explicit, does not allow GraphSAGE to penalize the noisy nodes in any other way than by modifying the model's parameters, which results in low generalizing capabilities as the model is trying to fit against the noise.

We observe that, whether the noise is randomly distributed across the nodes or whether it targets high degree or small degree nodes, the presence of noise in the nodes's features is more important than the quantity of features modified. In other words, t is more important than p. Increasing t will decrease the accuracy more than if we increase p.

Inductive setting

The results of training a GCN, a GAT and GraphSAGE in the transductive setting with noise progressively added to the nodes, starting with the nodes with the smallest degree, are shown in Figure 6.6.

Figure 6.6: Training, validation and test accuracy of three models of GNNs in the inductive learning setting. The horizontal axis corresponds to the percentage of nodes to which noise has been added. The noise targets the nodes with the smallest degree first then proceeds in an ascending manner.

Except for the GAT, the validation accuracy is actually higher than the test accuracy. This indicates that the model is not learning properly. It is just fitting the noisy training data. The gap is consistent regardless of the amount of noise.

This result hearkens back to the spread of fake news which can start more easily as a rumour then spread to infect the whole population [START_REF] Shu | Fake news detection on social media: A data mining perspective[END_REF]. The graph can be more easily subverted by targeting the more isolated nodes which do not possess enough information about the rest of the graph to stave off the noise.

In whatever way the features are corrupted, the difference between transductive and inductive learning is amplified with the noise.

Extension to other types of architectures

In this section, we go beyond the GCN, GAT and GraphSAGE models to look at two other models: the Graph Isomorphism Network (GIN) Xu et al. (2019b),

which is an MPNN model provably more powerful at discerning certain graph structures than GCN and GraphSAGE; and Simple Graph Convolution (SGC) [START_REF] Wu | Simplifying graph convolutional networks[END_REF], a GNN which simplifies the computations performed in the GCN and contains only a single layer.

Graph Isomorphism Network

A single layer of the GIN model follows Equation 6.7. MLP l is a multi-layer perceptron. ϵ (l) is either a learnable parameter, or a fixed scalar value. We see that the overall performance of the model, both in transductive and inductive learning, is far below that of the architectures studied above. This is due to the multilayer perceptron, or fully connected layer, that allows the model to weight each feature individually. This makes the model more sensitive to variations in the features. We also see a decrease followed by an increase in the accuracy when we increase p. This variation reflects the complexity of the task:

h l v = MLP l 1 + ϵ (l) • h l-1 v + u∈Nv h l-1 u (6.
when half the features are noisy, the model can learn to assume that half the inputs are noisy. When the ratio between clean and noisy features is different, the model might constantly oscillate to find a suitable value. This can be seen by the divergence in outcome which is less pronounced in the transductive case when p = 0.6.

Simple Graph Convolution

The SGC model was conceptualized as a simplification of the GCN. By writing

S = D-1/2 Ã D-1/2
, the SGC model follows Equation 6.8. σ denotes an activation function, like the Softmax operator. K is a hyperparameter of the model. Θ

represents the parameters of the model.

ŷ = σ(S K XΘ) (6.8) S K
gives the maximal depth of the neighbourhood that can be achieved. If S is the adjacency matrix, then S K can represent K-hop neighbourhoods at most.

In comparison with the GCN model, the SGC first performs the matrix multiplication S K , then combines the resulting power matrix with the parameters.

The results of the training of the SGC with random noise in transductive and inductive learning are shown in Figure 6.8. Figure 6.8: Training, validation and test accuracy of the SGC model in the transductive and inductive learning settings. The horizontal axis corresponds to the percentage of nodes to which noise has been added. The noise targets the nodes with the smallest degree first then proceeds in an ascending manner.

We observe that the performance decreases smoothly with the noise. This is expected because SGC is part of the architectures which exhibit implicit denoising behaviour Ma et al. (2021). However, because the model has a single layer, it is not possible to incrementally penalize the noise, which explains why the accuracy is lower than with the other models.

Missing data imputation

In this section, we extend the GRAPE architecture to the mini-batch setting that allows the model to work on datasets that do not fit in the GPU memory. We briefly describe the sampling approaches that are suitable for GRAPE learning.

We also introduce lightweight preprocessing and post-processing steps that allow GRAPE to perform feature imputation on graph structured data. v is e uv . At each layer of GRAPE, a message is computed for each node using its neighbours, and the message is combined with the node's representation at the previous layer to obtain the new representation.

GRAPE

More formally, let AGG l denote the aggregation function of layer l, e.g. the mean or max function. Let CONCAT denote the function that concatenates tensors.

Let P (l) , Q (l) and W (l) be trainable weights for the layer l. Then the forward pass of the GRAPE model is described by Equations 6.9-6.11.

n (l) v = AGG l σ P (l) • CONCAT(h (l-1) v , e (l-1) uv ) | ∀u ∈ N (v, E) (6.9) h (l) v = σ Q (l) • CONCAT h (l-1) v , n (l) v (6.10) 
e (l) uv = σ W (l) • CONCAT e (l-1) uv , h (l) u , h (l) v (6.11) 
To obtain the missing value of feature v of node u, a feedforward neural networks can be used on h

(L)
u and h (L) v .

Scalable GRAPE

In order for GRAPE to work with graphs that do not fit in the GPU memory, we must introduce a sampling scheme that produces mini-batches on which the model can be trained. We present the modified version of GRAPE to scale for graphs that exceed the GPU memory. The algorithm appears in Algorithm 1, which is adapted from [START_REF] You | Handling missing data with graph representation learning[END_REF]. SAMPLE is a function that takes a graph as input and produces mini-batches according to a sampling strategy. )) There are several strategies that can be used to produce the mini-batches. A more complete survey of approaches used for large scale graph training can be found in [START_REF] Keyu Duan | A Comprehensive Study on Large-Scale Graph Training: Benchmarking and Rethinking[END_REF]. Due to the nature of the graph, e.g. a bipartite graph, the use of cluster based sampling, such as ClusterGCN [START_REF] Chiang | Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks[END_REF] that create clusters based on graph partitioning algorithms such as METIS Karypis and Kumar (1998), does not fit our approach.

| ∀u ∈ N (v, B.edges) h (l) v ← σ Q (l) • CONCAT h (l-1) v , n (l) v e (l) uv = σ W (l) • CONCAT e (l-1) uv , h (l) u , h ( 

GRAPE for graph data

Given a graph G = (V, E) with X ∈ R |V|×d , we can create an undirected bipartite graph G bp = (V bp , E bp ) where V bp contains two types of nodes: the observations and the features. E bp contains the edges between the observations and the nodes, and the weight of the edges represent the value of the feature. We have

|V bp | = |V| + d and |E bp | = |V| × d.
We also add a node identification attribute to the bipartite graph.

To apply GRAPE to graph structured data, we can use the following workflow, which is also demonstrated in Figure 6.9.

• a bipartite graph is created using the input graph;

• GRAPE is trained on the bipartite graph to predict the missing edges;

• the node identifier allows the mapping of the predicted edges to the features in the original graph. 

Experiments

In this section, we present the experiments performed on a graph dataset whose associated bipartite graph does not fit in the GPU. We first investigate the training behaviour under different missing data regimes, then we perform an ablation study of the different parameters of the model.

Training behaviour

We train the mini-batch GRAPE model for 20 epochs. We use the Mean Absolute Error (MAE) as the loss function. The training and validation loss for different levels of missing data are shown in Figure 6.10.

We observe overfitting of the training data in the regime of extreme missing data, e.g. when we have less than 1% of the feature values. Conversely, the validation Figure 6.10: Train (line) and validation (dashed line) loss for different percentage of observed data. The lower the percentage, the higher the percentage of missing data. Under extreme scarcity, the model starts overfitting the training data. loss starts increasing again after a certain number of epochs when there is a scarcity of observable features.

Ablation study

We evaluate the impact of the hyperparameters in the learning process. We test the influence of the model capacity, e.g. the hidden dimensions for the nodes and the edges. We also explore the influence of dropout. We investigate the importance of the number of layers in the model, as well as the batch size. The test MAE for the different runs appear in Table 6.1. Reducing the model capacity, both in terms of the number of layers and the dimensions of the layers, improve performance, except in the case of extreme scarcity of observable data. This can be explained by the fact that a smaller model will overfit less, as it does not possess the capacity to interpolate the train data entirely.

Conversely, the fewer the observable features are, the more reducing the batch size will decrease the performance of the model. This is likely due to the fact that in a sparse feature regime, the model will fit entirely the training data of the batch, e.g. small training loss, but this will not generalize to unseen features.

A possible explanation for the lack of performance improvement when using dropout is that the mini-batch is already acting as a regularizer, so the effects of dropping edges is less significant than in a full batch setting. When the observable features are sparse, the effect of dropout is stronger as it helps alleviate the overfitting of the model.

Discussion

In this chapter we investigate the sensitivity of different types of graph neural networks, especially message passing neural networks, to the noise in the features of the nodes. We explored different types of noise: random noise, where noise is added randomly to the features; noise which targets the high degree nodes;

and noise which targets the small degree nodes. GNNs are trained both in the transductive setting and in the inductive learning, i.e. with and without access to the test data at training time. We find that weighting mechanisms, whether they are explicit, as in the GCN, or implicit, such as the attention mechanism in the GAT, help reduce the influence and the propagation of the noise.

We also found that some architectures present an implicit denoising mechanism that allows the model to maintain a certain level of accuracy under the presence of noise. Furthermore, architectures which lack this mechanism exhibit a more chaotic pattern of learning.

Out of the three types of noise, the noise targeting the small degree nodes first is the most challenging for the models. This reflects the fact that these nodes are more isolated; thus noise will have a relatively higher impact than it would for nodes with more neighbours.

We find that random noise in transductive learning leads to overfitting of the data. In inductive learning, the gap between training and validation accuracy is large, as well as the gap between validation and test accuracy.

In this chapter, we also proposed a new GNN architecture for missing data imputation. We extend the GRAPE architecture to handle mini-batches. We also add preprocessing and post-processing steps to perform feature imputation on graphs with GRAPE. Experiments show that mini-batch GRAPE performs well under different schemes of missing data, with performance decreasing when more than 99% of the features are missing. The ablation study shows that the model performs better with fewer layers and that the batch sampling acts as a good regularizer when there are enough observations.

Perspectives for future works regarding noisy features include analyzing similar types of perturbations for categorical features, and in temporal graphs. Regarding missing data imputation, perspectives include extending the model to incorporate the structural information of graphs when using GRAPE with graph data. et al. (2014).

Introduction

A judicious choice of patches reduces the importance of noise and focuses on the most important parts of the image. Two approaches of selecting the patches used for classification are to score the patches individually based on a given metric, or to compare each patch with the other patches of an image and rank the similarity between the patches. In the first approach, the patches can be scored using entropy, while the second approach relies on a similarity measure between images.

On one hand, entropy is used in information theory as a way to quantify the level of information of an object. Higher entropy means that there is more information in the object. For instance, a random noise image has high entropy while a unicolored one has very low entropy. Entropy plays an important role in data compression where it provides the lower bound on the storage required to compress an object without loss of information [START_REF] Shannon | A mathematical theory of communication[END_REF]. Entropy can also be used for object reconstruction using the principle of maximum entropy, which aims at selecting the most uniform probability distribution amongst multiple candidate distributions. It can be used for image reconstruction where the candidates are the set of missing pixels [START_REF] Skilling | Maximum entropy image reconstruction-general algorithm[END_REF]. It applies to text data as well [START_REF] Nigam | Using maximum entropy for text classification[END_REF]. Entropy can also be used in image texture analysis [START_REF] Chun Zhu | Minimax entropy principle and its application to texture modeling[END_REF] and texture synthesis. 

Proposed method

Dataset description and pre-processing

The ISIC archive database (see [START_REF] Rotemberg | A patient-centric dataset of images and metadata for identifying melanomas using clinical context[END_REF]) contains images of skin lesions which can be benign or malignant; other images can also have an unknown status. The image resolution varies across the datasets. The archive also has an API

The API is accessible here: https: //isic-archive.com/api/v1 which can be used to get information about images or to retrieve lesion masks created by expert users. Our goal is to perform binary classification using patches of images. Our target variable has two labels Originally, the ISIC challenge had more refined categories. Here we use only 2.

indicating whether the lesion is benign or malignant.

All the data pre-processing steps are described in Figure 7.1: 1. We download images from the ISIC archive, as well as the masks that are annotations from experts and indicate the lesion location.

2. We select all the malignant images with a mask. We sample the same number of benign images.

3. We create square patches of width 32, 64, 128 and 256. The patches are taken from the region of the interest of the image, as defined by the downloaded masks.

4. We compute the entropy of the patches, and use it to extract a subset of patches. This is explained in section 7.2.2.

5. We compute a spectral measure of similarity between a patch and all the patches of the same image; we use this measure to extract a subset of patches. The details are in section 7.2.3.

6. We train a classifier on all the datasets we have created in the two previous steps. We divide the images in three groups: 90% of the images are in the train set, with 20% of the train set reserved for validation; the remaining 10% constitute the test set.

Entropy

We are interested in the study of the behavior of the Shannon entropy Shannon (1948) of the images. The formula used for the calculation of entropy is the following:

H = - M k=0 p k log 2 (p k ) (7.1)
where M is the highest intensity of a pixel (in our case, 255), and p k is the probability associated with the pixel intensity k in the grayscale image. In practice, the entropy is computed using histograms to estimate the probabilities.

The entropy can take values between 0 and log 2 (255) ≈ 8. Although the images in the dataset are in the RGB format, the entropy is computed on the grayscale version of the images. Our choice was motivated by the fact that there is no consensus on how to compute the entropy of an RGB image: Equation 7.1 does not have a canonical generalization to RGB images, while RGB conversion to grayscale is standardized in the ITU-R Recommendation BT.601-2. Table 7.3 shows the mean, standard deviation and some quantiles of entropy.

We observe that, as the patch size grows, so does the entropy. This is expected because the more pixels we have, the more likely they are to have different intensities, which lead to a higher entropy. Also, the entropy for larger patch sizes is slightly more centered around the mean, which may be due to the fact that larger patch sizes will average some of the more extreme patches of smaller size. For example, instead of having multiple small patches of low and high entropy, a larger patch containing all the small patches will have a more average entropy.

We are interested in the impact of the entropy on the training of a classifier:

whether it is faster to train on a dataset with low entropy than with a dataset with standard entropy; and whether a dataset with higher entropy is harder to train on. We split the created patches in three groups for each patch size :

• one containing the patches with entropy below the 15-th quantile, referred to as low. • one with the patches entropy above the 85-th quantile, referred to as high.

• the last one with patches having entropy between the 42.5-th and 57.5-th quantiles, referred to as intermediate. Our choice for the quantile values is motivated by having the entropy be equally distant from the other groups, and keeping the same number of samples to make time comparisons meaningful.

We further extract two datasets for each patch size:

• a low dataset, whose patches are all the patches that rank below 30-th quantile of entropy with respect to the other patches of the same image.

• a high dataset, with entropy above the 70-th quantile.

Mean Exhaustive Minimum Distance (MEMD) criterion

The first methods of similarity measure usually consisted in computing certain features on a given image, such as the Haralick features [START_REF] Haralick | Textural Features for Image Classification[END_REF], and then comparing the features obtained for different images. More recent techniques dealing with the structural similarity in textures have been proposed

in [START_REF] Zujovic | partie d'un ensemble encore plus grand. Au-delà des relations les physiques, les graphes permettent de représenter des concepts plus abstraits. Chaque jour notre vie baigne dans les graphes, que cela soit lors d'interactions avec d'autres personnes sur les réseaux sociaux, lorsque nous surfons sur les plateformes de contenu vidéo, lorsque nous achetons des produits sur internet, ou bien lorsque nous utilisons le GPS pour nous rendre d'un point à un autre[END_REF] and [START_REF] Qin | Similarity measure and learning with gray level aura matrices (GLAM) for texture image retrieval[END_REF]. Handling color or hyperspectral images is often done using histograms [START_REF] Yuan | Cheriyadat. Factorization-Based Texture Segmentation[END_REF], but histograms require a large amount of data to get good estimates of the spectral distribution. A new criterion to evaluate the similarity of two images was proposed in [START_REF] Havlíček | Texture spectral similarity criteria[END_REF]. This approach does not require histograms and generalizes to any number of channels. Let ρ be the distance induced by a vector metric.

When writing A i,j , the other dimensions representing the channels are implied.

A i,j denotes the pixel of A at coordinates (i, j). Similarly, B k,l is the pixel of B at coordinates (k, l). The MEMD criterion ζ is defined by Equation 2.

ζ(A, B) = 1 M (i,j)∈⟨A⟩ min (k,l)∈U {ρ(A i,j , B k,l )} (7.2)
The lower the score is, the more similar images A and B are. Inversely, the higher the score, the higher the difference between the two images. The score can take values between 0 and 255. A score of 0 happens when we compare one image to itself; a score of 255 happens when we compare a white image with a black one.

To improve the computation time, [START_REF] Havlíček | Optimized Texture Spectral Similarity Criteria[END_REF] suggested that the pixels of both the images be sorted with respect to the chosen norm. Finding the minimum distance between the pixels of the two images then comes down to choosing the closest unprocessed neighbour in the sorted array. In the special case where A and B are of the same size, we can simply match the first element of the sorted pixels of A with the first of element of the sorted pixels of B, and so on.

We compute the MEMD score of each patch with respect to all the other patches of the same image, and we average the scores. Figure 7.5 shows the distribution of the MEMD score at varying patch sizes. We observe two peaks. The first one on the left corresponds to the patches that are representative of the overall image, and the one on the right corresponds to the patches that are more unique.

The reason why we only have two peaks is that the images of the lesion all share similar elements: a little bit of skin, the lesion, and some noise such as hair, a ruler, etc. The distinction between the lesion and the skin is quite drastic, meaning that few patches are going to be equally similar to skin and lesion. The variation in scores is in part due to the different number of patches per image.

The more patches an image has, the less extreme the MEMD score of the patches will be. The patches with a score of 0 are from images that have only one patch.

This happens for big patch sizes where the region of interest is too small to get more patches.

Similarly to what was done in Section 7.2.2, we create datasets using the same quantiles for the MEMD score.

Both the datasets created in the entropy section and in this section are taken by extracting 15% or 30% of the patches of an image. Thus, the datasets have 15%

and 30% of the total number of patches in Table 7.2. with respect to m, the number of patches in the image. There is a trade-off between space and time complexity, where vectorizing part of the process using higher order tensors allows for faster computation but requires more space. Though ResNets can be arbitrary deep, provided we have the computing resources to train the model, e.g. using 101 or 152 layers, we followed Yilmaz and Trocan (2020) and used the 50-layer version. Since we are interested in binary classification, e.g. whether the lesion is benign or malignant, we remove the last layer of the network, designed for multiclass classification, and replace it with a max pooling layer followed by a Dense layer with a sigmoid activation.

Network architecture and tuning parameters

The optimizer used for the model is the Adam optimizer Kingma and Ba ( 2015)

with a learning rate of 0.001. We use a binary cross-entropy loss for the training.

The model is trained for 10 epochs, with early stopping if the validation loss stops decreasing after 3 consecutive epochs.

Each dataset is split in the following way for training: 90% for training, of which 20% goes to validation, and 10% for testing.

Results

Training time

All the experiments were performed on a device with a 3.60 GHz Intel CPU, 32Gb of RAM and an NVidia Titan XP, running on Ubuntu. The code was written in Python and Tensorflow. The computation of the entropy was done using Pillow.

To account for the fact that a neural network may take more time to converge based on the random initialization of the parameters, we train 10 instances of a ResNet50 on each dataset. We display the 30-th quantile, the median and the 70-th quantile of the training time of the instances in Tables 7.4 and 7.5. Regarding the entropy datasets, we observe a tendency of faster convergence for datasets with higher entropy compared to datasets with lower entropy. Lower entropy means that the distribution of pixel intensity concentrates on fewer pixels than it does for higher entropy. This concentration makes for smoother textures, which might be harder for the classifier to learn. Higher entropy datasets have more salient features that more discernible and thus more easily learnable by the network.

As for the MEMD datasets, the dataset composed of patches with higher score tends to converge faster than the dataset with lower score. This might be ex- plainable by the fact that a low MEMD score means a high similarity of the patch with the rest of the image, while a high score indicates a distinctive spectral texture compared with the other patches of the same image. Thus, the higher score patches capture the more unique features of the lesion, while the lower score patches are more representative of the overall texture of the lesion. The high representativeness of a patch might extend to patches of low score from another image, while the unique features are probably different between images.

Therefore, the dataset with high score is richer in more unique patches, which provide more information than the similar patches contained in the lower score dataset. This, in turn, makes the network training converge faster for the dataset with higher score patches.

We see that the dataset with the highest entropy tends to be the fastest to converge.

Since a higher entropy usually indicates that more information is present in the patch, we could expect the neural network to take longer to train. Conversely, a dataset with lower entropy would train faster because the patches would have less discriminating features, and the network would quickly classify them.

A possible explanation for this discrepancy is that patches with higher entropy might share a similar structure or have patterns not present for other patches, and thus are more recognizable by the network, while patches with lower entropy might have less salient features, which makes it harder for the classifier to classify them.

Concerning the training for the dataset with intermediate entropy, it seems to take longer to converge for smaller patch sizes compared to training on datasets with more extreme entropy, but reaches similar speeds in comparison with the other datasets when we increase the patch size. A reason for this could be that, for lower patch sizes, patches with average entropy might be more diverse than patches with lower or higher entropy, and the network will require more time to analyze the patterns. When the patches are bigger, a patch can be composed of smaller zones which vary greatly in entropy, but have an average entropy when we look at the entirety of the patch. Therefore, these patches would be easier to classify, which would lead to a faster training time.

Additionally, we investigate combining predictions from several patches of an image to classify the image. We train a Resnet for 10 epochs and choose the weights that result in the best validation loss. To classify an image from the test set, we individually classify its patches and aggregate the results. Let P i be the set of patches from an image I i , |P i | the number of patches selected from the image, f be the classifier that maps a patch to 0 for a benign patch and 1 for a malignant one. The prediction ŷ is given by the Equation 3.

ŷi =    0 if 1 |P| p∈Pi f (p) < 0.5 1 otherwise (7.3)

Accuracy

These interpretations are borne out by the results of the experiments presented in Table 7.6. We observe that the classification accuracy is higher for datasets with high entropy or high MEMD than for datasets with low entropy or low MEMD. For the 128 × 128 patches, the accuracy does not improve when we select more patches: it stagnates around 50%. This indicates that this patch size is too small to properly discriminate the lesions. The problem is not about the number of patches but about the fact that small patches do not contain enough information to determine the status of the lesion. We believe that this situation holds also for even smaller patches, e.g. 32 × 32 or 64 × 64 patches. Conversely, for the case of 256 × 256 patches, we remark that using too few patches results in very low accuracy (around 25%); however, the accuracy increases considerably when we select more patches (30% of 15%), achieving 71% accuracy for patches of high entropy. This accuracy is similar to the 74% accuracy obtained by the authors of [START_REF] Favole | Melanoma Detection Using Deep Learning[END_REF] when training on the whole region of interest with a ResNet50. The lower accuracy for the low MEMD and low entropy datasets, compared with the high MEMD and entropy datasets, suggests that it is not sufficient to select more patches to reach a higher level of accuracy; it is also important to select appropriate patches. to the fact that the masks cannot perfectly capture the lesion, there will always be some part of the skin that will be present in the mask. Since the skin has more uniform texture than the lesion, it is likely that patches of skin will have the lowest score. The datasets extracted using the entropy converge faster than the datasets extracted with the MEMD criterion. We hypothesize that a likely explanation is that patches extracted with the entropy share similar distributions of pixels, albeit sometimes shifted. The entropy quantifies the distribution of pixel intensity: the higher the entropy, the closer the pixel distribution will be to the uniform distribution. Thus, the patches from entropy extracted datasets are similar across the images, and this similarity is learnable by the network. On the other hand, datasets extracted using the MEMD criterion do not provide any quantifiable information about the pixel distribution. Their score is only indicative of how representative the patch is with respect to the image. The network might thus be confronted with a wider variety of patches which leads to a longer training time.

Discussion

We examined the role of entropy and the MEMD criterion on the training time of a CNN for patch-based binary classification. The preprocessing is longer with the MEMD criterion because we have to compare patches two by two, whereas entropy requires a single computation per patch. We found that higher entropy leads to faster convergence than lower entropy; similarly, a higher MEMD score, which indicates that the patch does not resemble other patches from the same image, also leads to faster convergence. In terms of accuracy, the models trained on the higher entropy dataset or the higher MEMD are more performant than the models trained on the lower entropy or lower MEMD datasets. We also found that creating patch datasets using an absolute measure of information, such as entropy, makes the network train faster than when the datasets were created using a similarity measure. We also observed that patch size plays a significant role in the classifier accuracy, with small patches leading to poor results, regardless of the percentage of patches used.

Some perspectives to this work can be to explore the use of segmentation to obtain the regions of interest, increasing the number of images we can work with, and see if the results are comparable. Another possibility can be to analyze the effects resizing an image has on its entropy to quantify the loss of information, and the impact it can have on classification using resized images.

Additionally, these patches can be used as nodes in a graph, where the links can reflect the distance between the patches. A perspective would be to convert the patches into a graph and perform classsifiation using graph neural networks.

Chapter 8

Conclusion and perspectives

Conclusions

In this thesis, we proposed a grouping of the theoretically most expressive GNNs, and we empirically tackled the issues of multilabel classification, transductive and inductive learning, and learning with noise in the features. We also experimented with patch creation in medical images.

Contributions

In Chapter 3, we reviewed the most expressive GNNs. We find that they could be divided into different groups representing the techniques used for increasing their expressiveness compared to standard GNNs. Methods that rely on highorder tensors, e.g., tensors that represent hyper-edges or permutations, are the most expressive methods, but they are also the most expensive computationally.

Methods relying on node identification and substructure awareness can reach similar levels of expressiveness while being computationally more efficient.

In Chapter 5, we showed the importance of choosing between transductive and inductive learning, and between single and multilabel classification. On the one hand, in the transductive setting, the leak of information from the test set to the train set is detrimental to the quality of the evaluation of the models; besides, it can hide overfitting. On the other hand, many node classification tasks should be framed as multilabel tasks, in order to take into account the relations that might exist between the labels.

In Chapter 6, we investigated the performance of GNNs when we added noise to the features of the nodes. We empirically exhibited implicit noise reduction mechanisms that exist in some architectures. Furthermore, the noise that impacts the models the most is the noise that targets the nodes with the fewest neighbours.

Regarding missing features, we proposed a novel GNN architecture that imputes the missing values.

In Chapter 7, we used two information measures, entropy and a spectral texture criterion, to extract patches out of images of skin lesions and performed classification using CNNs. We find that the choice of patches greatly influences the accuracy of the model.

Short Term Perspectives

We plan to continue the work related to the conversion of medical images into graphs, and the study of noise in dynamic networks.

Medical imaging and graphs:

We empirically showed that we can extract patches from medical images using measures such as entropy or other criteria to perform classification. There are limitations to this approach. For instance, the size of the patch was fixed, while the images were of varying size. Moreover, there was no additional processing of the patches: the features used by the CNN were the pixels of the patch. We want to extend this approach in three ways:

• use a more suitable way of extracting regions of interest, e.g., segmentation using deep learning.

• design better features for the extracted regions, e.g., find low dimensional embeddings that capture the properties of the region, such as its shape, its texture, its volume, etc.

• create a graph where the nodes can be the extracted regions; the edges can represent similarities between the nodes, such as their distance.

Then, a GNN can be trained on the generated graph. The goal would be then to expand the approach for node tracking in 3 dimensional images. For instance, 3D medical images can be viewed as stacks of 2D cuts. We can generate inter-layer edges which link nodes from different cuts. We can then train a GNN to perform node tracking, similar to particle tracking done with the Large Hadron Collider (LHC).

Dynamic graphs:

In our experiments, we treated the academic citation network as a static graph; the use of graph neural networks on temporal or dynamic graphs is still rare. One of our goals will be to contribute to the main libraries for deep learning with graphs, e.g., PyTorch Geometric, to provide easier access to dynamic graphs and GNNs on dynamic graphs.

We then plan to extend our work from Chapter 6 to dynamic graphs. In particular, we would like to study the temporal impact of noise, e.g., find how a GNN reacts against strong ponctual noise or againt low intensity noise that spans across time. Furthermore, we would like to propose a GNN architecture for missing data imputation in dynamic graphs.

Long Term Perspectives

One of the recurring themes of this thesis is the importance of the features of nodes and of edges in graphs. Much of the research regarding the theoretical properties of graph neural networks has been done with the assumption that the nodes have no features, or only discrete features. The role of features in the learning of GNNs on different types of graphs, e.g., social networks, road networks, molecule graphs, is still largely unexplored. Features are seen as a means to an end; they are used insomuch as they improve the performance of a model. To make an analogy with images, it is as if the quality of the image is irrelevant, so long as we can classify the image properly. Designing methods to estimate the quality of the features would help curate graph datasets, which in turn would facilitate research on graphs.

One of the most important obstacles faced during the thesis was the issue of scalability. This can manifest itself in two ways: either the graphs are too large to fit into the GPU memory, or the GNNs have too many parameters to fit into the memory. Expecting to solve the problem by increasing the GPU or TPU memory is pointless, because social graphs will increase likewise. While we used node sampling to address this issue in our architecture for missing data imputation, there are still other approaches to explore.

As mentioned in the short term perspectives, dynamic graphs, and especially deep learning on dynamic graphs, is still a vastly underexplored topic. One of the main reasons behind this is the lack of appropriate libraries. As the software matures, the tools to process dynamic graphs will improve, and there will be interesting problems to tackle. One particular topic, beyond the study of noise, is the explainability of dynamic graph neural networks. This will be all the more important as there will be three competing sources of information used by GNNs: temporal information, semantic information, and structural information. Furthermore, the study of dynamic graphs can provide insights into the emergence of distribution shifts in the data. For instance, in an academic citation network, the dominant topics change over the years; similarly, there are trends in social media which evolve over time.

Taking a step back, graph neural networks are just one among many approaches that can be used to solve graph related tasks. In the greater scheme of things, GNNs can be viewed from multiple lenses. For instance, graph filters are the fundamental tools behind graph signal processing [START_REF] Ortega | Graph Signal Processing: Overview, Challenges and Applications[END_REF]. In addition, graph filters, and GNNs in general, are designed to be permutation invariant or equivariant. Preserving this symmetry is what defines GNNs in the same way that being translation invariant is at the core of CNNs. This idea of symmetry is at the core of geometric deep learning, where the purpose is to design neural networks that respect the symmetries of a given structure Bronstein et al. (2021). Exploring and bridging the different fields of studies related to graphs will help foster new ideas that will constitute the core of tomorrow's architectures.

One last axis of future research is to combine the aforementioned perspectives and apply them to medical data. This data takes several shapes, such as Electronic Health Records (EHRs), CT scans, MRI, fitness activity, etc. The connection and the curation of the components are still in their beginnings. There are privacy, political, economical and societal issues that need to be addressed in order to move forward. One of the technical challenges is the creation of appropriate embeddings for all the types of data, so that they can used conjointly. Recent advances in Large Language Models and generative models look promising. Constructing a complex graph out of this data could help exhibit previously hidden patterns in the data.

De manière similaire aux réseaux de neurones convolutionnels (CNNs) qui opèrent sur des images, et les réseaux de neurones récurrents (RNNs) qui opèrent principalement sur de la donnée textuelle, les réseaux de neurones de graphes (GNNs) manipulent des graphes. En quelques années, les GNNs se sont beaucoup développé, aussi bien avec la découverte de nouvelles architectures qu'avec l'établissement de fondements théoriques de plus en plus solides.

Les défis des réseaux de neurones de graphes

Parmi les défis que doivent relever les GNNs, nous en avons identifié trois spécifiques aux graphes qui seront traités dans la thèse : la différence entre l'apprentissage transductif et inductif, le choix de la classification multilabel, et la présence de bruit dans les attributs d'un graphe.

En tout premier lieu, l'apprentissage d'un GNN peut s'effectuer de deux manières : de manière transductive, c'est-à-dire que le GNN a accès aux données de test non labelisées pendant l'apprentissage; ou de manière inductive, où le GNN n'a accès qu'au sous-graphe formé par les noeuds de l'ensemble d'entraînement.

Une autre spécificité de l'apprentissage sur graphe est l'interdépendance entre 

Vers la création de graphes

Au-delà de l'apprentissage à proprement parlé sur les graphes, il y a la question de la construction des graphes. Si certains graphes émergent naturellement comme la représentation la plus appropriée d'un phénomène, d'autres graphes peuvent être le fruit d'un long travail visant à décrire un système complexe. En ce sens, la création de graphes joue un rôle aussi important que l'apprentissage sur les graphes.

Contributions

Les contributions principales de cette thèse sont les suivantes :

• nous montrons les différences empiriques de performances de plusieurs modèles dans le cas de l'apprentissage transductif et inductif.

• nous montrons d'une part l'utilité de la classification multilabel pour l'analyse d'erreurs, et d'autre part sa pertinence pour la sélection d'architectures.

• nous faisons une étude empirique approfondie de l'influence du bruit dans les attributs sur l'apprentissage d'un GNN. En particulier, nous trouvons que les performances d'un modèle sont le plus dégradées lorsque le bruit cible les noeuds les plus isolés.

• nous proposons une nouvelle architecture de GNN qui permet l'imputation d'attributs manquants dans les données tabulaires ou les données de type graphe.

• nous présentons des résultats préliminaires sur la création de graphes à partir d'images médicales. Dans une deuxième partie, les principales méthodes d'apprentissage sur les graphes, à l'exception des réseaux de neurones de graphes, sont préséntés. En outre, les méthodes les plus importantes sont:

• les méthodes statistiques, comme le calcul de statistiques élémentaires sur les graphes et les marches aléatoires.

• l'apprentissage de représentations de faible dimension, à l'aide d'encodeurs et décodeurs.

• le traitement de signal de graph (graph signal processing), qui traite les attributs d'un graphe comme un signal à transmettre.

• les algorithmes itératifs de coloration de graphes, avec en particulier l'algorithme de Weisfeiler-Leman. 

1. 1 5 (

 15 Transmission of information in a MPNN model with two layers. The node we update is the blue node at the top. The red nodes represent the nodes involved in the update of our node in the first layer of the model. The green nodes represent those involved in the update of our node after the second layer. . . . . . . . . . . . 1.2 Difference between transductive and inductive learning. (a) the model has access to both the train and test nodes at training time. (b) the model has only access to the train nodes at training time. 1.3 Node classification on a node where the features indicate a label (cat), and the neighbours indicate another label (dog). . . . . . 1.4 Noise propagation after two layers. The red node is the noisy node; the deep blue nodes are the nodes impacted by the noise. (a) the noisy node has the fewest neighbours in the graph. (b) the noisy node has the most neighbours in the graph. . . . . . . 2.1 Example of a graph. Nodes are colored in blue and edges in red. The graph is the combination of the set of vertices and the set of edges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Examples of the main types of graphs. . . . . . . . . . . . . . . . 2.3 Example of a graph and its subgraphs. Note that (b) and (c) differ in the set of edges that are included in the subgraph. . . . xii GUILLAUME LACHAUD 2.4 Examples of special graphs. . . . . . . . . . . . . . . . . . . . . . 3.1 Example of a neural network. The x i represent the inputs; o 1 is the output of the network. . . . . . . . . . . . . . . . . . . . . . . 3.2 Overview of mathematically expressive GNNs. Red boxes refer to sections of the chapter; and blue boxes represent ideas introduced by specific papers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Example of a graph with its rooted trees and rooted subgraphs. The rooted subgraphs incorporate structural information that is lost in rooted trees. MPNNs use rooted trees to update notes. If the features are identical, MPNNs with a single layer will treat nodes B and F as the same; if the network uses the rooted graph instead, it will distinguish B and F . . . . . . . . . . . . . . . . . 5.1 Node in the training set with neighbours in all the graph. . . . . 5.2 Subset of the confusion matrix. . . . . . . . . . . . . . . . . . . . 5.3 Top 3 predictions for a few nodes in the graph. The pie chart represents the probability assigned by the model to the the first three categories. For each node with a piechart, the label of the first prediction is the one on top, the second prediction the one in the middle and the third prediction the one at the bottom. The nodes without piecharts are the neighbours of the nodes on which we do the predictions, and have their true label written inside them. 6.1 Training, validation and test accuracy of three models of GNNs in the transductive learning setting. The horizontal axis corresponds to the percentage of features to which noise has been added, i.e., p in Equation 6.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 Training, validation and test accuracy of three models of GNNs in the inductive learning setting. The horizontal axis corresponds to the percentage of features to which noise has been added, e.g. p in Equation 6.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3 Training, validation and test accuracy of three models of GNNs in the transductive learning setting. The horizontal axis corresponds to the percentage of nodes to which noise has been added. The noise targets the nodes with the highest degree first then proceeds in a decreasing manner. The percentage indicates how many of the features of each node are tampered with, e.g. 0.1 means 10% of the features contain added noise. . . . . . . . . . . . . . . . . 6.4 Training, validation and test accuracy of three models of GNNs in the inductive learning setting. The horizontal axis corresponds to the percentage of nodes to which noise has been added. The noise targets the nodes with the highest degree first then proceeds in a decreasing manner. . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5 Training, validation and test accuracy of three models of GNNs in the transductive learning setting. The horizontal axis corresponds to the percentage of nodes to which noise has been added. The noise targets the nodes with the smallest degree first then proceeds in an ascending manner. . . . . . . . . . . . . . . . . . 6.6 Training, validation and test accuracy of three models of GNNs in the inductive learning setting. The horizontal axis corresponds to the percentage of nodes to which noise has been added. The noise targets the nodes with the smallest degree first then proceeds in an ascending manner. . . . . . . . . . . . . . . . . . . . . . . . . . 6.7 Training, validation and test accuracy of the GIN model in the transductive (left) and inductive (right) learning settings. The horizontal axis corresponds to p in Equation 6.1. . . . . . . . . . 6.8 Training, validation and test accuracy of the SGC model in the transductive and inductive learning settings. The horizontal axis corresponds to the percentage of nodes to which noise has been added. The noise targets the nodes with the smallest degree first then proceeds in an ascending manner. . . . . . . . . . . . . . . 6.9 Example of the use of GRAPE on graph data. Edges and features are omitted for clarity. Enlarge the figure . . . . . . . . . . . . . 6.10 Train (line) and validation (dashed line) loss for different percentage of observed data. The lower the percentage, the higher the percentage of missing data. Under extreme scarcity, the model starts overfitting the training data. . . . . . . . . . . . . . . . . . 7.1 Data pre-processing workflow . . . . . . . . . . . . . . . . . . . . 7.2 Example of a malignant skin lesion and its mask. . . . . . . . . . 7.3 Example of patches of different size of the image from Figure 7.2. 7.4 Distribution of patch entropy. (a)-(d) are taken for square patches of size 32, 64, 128 and 256 pixels. . . . . . . . . . . . . . . . . . . 7.5 Distribution of MEMD score for patches of size (a) 32 × 32 (b) 64 × 64 (c) 128 × 128 and(d) 256 × 256 . . . . . . . . . . . . . . 7.6 Image of a mask and its lesion. . . . . . . . . . . . . . . . . . . . 7.7 Patches of low and high MEMD scores. . . . . . . . . . . . . . . 7.8 Patches of low and high entropy . . . . . . . . . . . . . . . . . . 1 Vue d'ensemble des GNNs les plus expressifs. . . . . . . . . . . List of Tables 3.1 Expressiveness of GNNs. Expressiveness is given with respect to how the authors proved the results. GIN corresponds to the most powerful standard MPNN. . . . . . . . . . . . . . . . . . . . . . 4.1 Distribution of Edges in Train, Validation and Test. . . . . . . . . 4.2 Top 5 Classes (By Size) and Per Year in obn-arxiv. Only the 3 Most Prominent Classes Are Shown. . . . . . . . . . . . . . . . . . . . 4.3 Top 5 Classes (By Size) and Per Year in obn-arxiv, continued. Only the 4th and 5th most prominent classes are shown. . . . . . . . . 5.1 Validation and Test Accuracy for Transductive Learning. AGDN is trained with the original features. . . . . . . . . . . . . . . . . 5.2 Validation and Test Accuracy for Inductive Learning. The Best Score is Highlighted in Bold. KD Stands for Knowledge Distillation. 5.3 Top 3 score on training, validation and test . . . . . . . . . . . . 5.4 (Part 1) Top 3 category predicted by the GAT model. The train size represents the percentage of nodes in the training set that are from each category. The test column indicates the number of nodes from the test set that are in each category. . . . . . . . . . Part 2) Top 3 category predicted by the GAT model. The train size represents the percentage of nodes in the training set that are from each category. The test column indicates the number of nodes from the test set that are in each category. . . . . . . . . . 6.1 Ablation study for the mini-batch version of GRAPE. The baseline model has batch size b = 14000, number of layers l = 3, dropout = 0.0 (no dropout), hidden dimension n l = 64. The values in the table represent the test MAE. All the errors have to be multiplied by 10 -2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1 Number of patches for different patch sizes . . . . . . . . . . . . 7.2 Number of patches for each patch size . . . . . . . . . . . . . . . 7.3 Entropy statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4 Quantiles of training time for datasets of different entropy and patch size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5 Quantiles of training time for datasets of varying MEMD score and patch size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.6 Test accuracy (in percentage) for the different datasets. For a

  Figure 1.1: Transmission of information in a MPNN model with two layers. The node we update is the blue node at the top. The red nodes represent the nodes involved in the update of our node in the first layer of the model. The green nodes represent those involved in the update of our node after the second layer.
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 12 Figure 1.2: Difference between transductive and inductive learning. (a) the model has access to both the train and test nodes at training time. (b) the model has only access to the train nodes at training time.
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 3 Figure 1.3: Node classification on a node where the features indicate a label (cat), and the neighbours indicate another label (dog).

  Figure 1.4: Noise propagation after two layers. The red node is the noisy node; the deep blue nodes are the nodes impacted by the noise. (a) the noisy node has the fewest neighbours in the graph. (b) the noisy node has the most neighbours in the graph.
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  Figure 2.2 shows an undirected, a directed, and a weighted graph sharing the same underlying graph. Associated with each graph is an adjacency matrix A. If the graph is unweighted, then A ∈ {0, 1} |V |×|V | where A uv = 1 if and only if (u, v) ∈ E. If the graph is undirected, then A is symmetric. If the graph is weighted, the coefficient A uv corresponds to the weight of e uv .
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 21 Figure 2.1: Example of a graph. Nodes are colored in blue and edges in red. The graph is the combination of the set of vertices and the set of edges.

  Figure 2.3: Example of a graph and its subgraphs. Note that (b) and (c) differ in the set of edges that are included in the subgraph.

Figure 2

 2 Figure 2.4: Examples of special graphs.

  Figure 3.1: Example of a neural network. The x i represent the inputs; o 1 is the output of the network.

  (a) A graph with 6 nodes. A, D, and E have degree 2, B and F have degree 3 and C has degree 4. Rooted trees with depth 1 for each node. If the nodes have identical features and are not identified, the computational tree of MPNN for A, D, and E are the same. subgraphs with depth 1 for each node. Compared with the routed trees, the A rooted graph is distinguishable from D.
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 33 Figure 3.3: Example of a graph with its rooted trees and rooted subgraphs. The rooted subgraphs incorporate structural information that is lost in rooted trees. MPNNs use rooted trees to update notes. If the features are identical, MPNNs with a single layer will treat nodes B and F as the same; if the network uses the rooted graph instead, it will distinguish B and F .
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 3 Figure 3.3a,b. The nodes in red in Figure 3.3b are updated using information from the nodes in blue. Information about edges between the nodes in blue is lost.

l.

  The changes compared to Equations 3.4 and 3.5 from Section 3.2.1 are the addition of the e vw in the message computation, and the use of the sum (Σ) operator, instead of the more generic AGGREGATE function. While the theoretical guarantees exposed in the first part of the thesis hold for any aggregate function, in practice the most commonly used function is the sum operator.

  Attention mechanisms were introduced in[START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF] in the context of natural language processing, with the goal of learning the most important parts of a sentence, e.g., which part of the sentence contains the meaning. Inspired by their success, they were imported to GNNs with the introduction of the Graph Attention neTwork (GAT) in[START_REF] Velickovic | Graph attention networks[END_REF] and remain part of most of the leading architectures Chien et al. (2021); Sun and Wu (2020); Sun et al. (2021). The update rule is presented in Equation 4.4.

  to randomly assign each node to one group. This is what was done in[START_REF] Yang | Revisiting semisupervised learning with graph embeddings[END_REF] on graphs like CiteSeer, Cora and Pubmed[START_REF] Sen | Collective Classification in Network Data[END_REF]. Similarly, the authors of[START_REF] Chiang | Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks[END_REF] follow a randomized split without validation set for training their model. By contrast, the authors of[START_REF] Hu | Open graph benchmark: Datasets for machine learning on graphs[END_REF], who incorporated the Amazon dataset in[START_REF] Chiang | Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks[END_REF] as the ogbn-products in OGB, recommend using a split that relies on the sales ranking of the products: the most sold items are in the training set while the most rarely sold ones are in the test set. The authors further argue that this split matches the behaviour of real-world applications where, due to the cost of labelling data, the most important nodes are labelled first and a model is used to infer the labels of the less important nodes.

  between training and test data: the unlabeled features of the test nodes can be used during the training phase of the model, or they can be ignored. The first approach corresponds to transductive learning, while the latter corresponds to inductive learning[START_REF] Yang | Revisiting semisupervised learning with graph embeddings[END_REF]. In transductive learning, the model tries to predict labels of nodes already seen in the training phase, while the model in inductive learning is tested on unseen nodes. Inductive learning is therefore better suited to improve the generalization power of a model. The concepts of transductive and inductive learning are related to the choice of neighbourhood. In the transductive setting, the neighbours of the training nodes can belong to the validation and test sets; in this case, only their features are known at training time. In the inductive setting, the neighbours of the training nodes are restricted to other training nodes. The nature of the dataset, more specifically the way it evolves over time, can influence the preferred mode of learning, i.e., whether we should use transductive or inductive learning Yang et al. (2016). It is especially important in temporal graphs Rossi et al. (2020); Xu et al. (2020).When training a GNN on a social citation networks from OGB, ogbn-arxiv, ogbnmag and ogbn-papers100M, the recommended data split by the authors of[START_REF] Hu | Open graph benchmark: Datasets for machine learning on graphs[END_REF] is to put all the papers published before 2018 in the training set; those published in 2018 in the validation set and the rest in the test set. Table4.1 shows the distribution of nodes and edges in ogbn-arxiv, ogbn-mag and ogbn-papers100M, as well as the number of edges that have a source and a target node in a different part of the data split, e.g., one node in the train set and the other in the test set. We see that in ogbn-arxiv, a model trained in a transductive setting can exploit about 200, 000 edges, of which only 40% are in the training set. The phenomenon is less important in ogbn-mag where 80% of the edges are in the training set. Considering only the edges between labeled nodes, which account for a small portion of all the edges, ogbn-papers100M has also 80% of its edges coming from the training set.Citation networks change over time, as fields grow in importance while others dwindle. This is shown in Tables 4.2 and 4.3 which contain the most frequently occurring class per year in the ogbn-arxiv dataset. Some classes, such as the cv class (Computer Vision) were not present in the top 5 before suddenly reaching second then first position, as it happened between 2013 and 2015. These distribution changes emphasize the importance of inductive learning: GNNs need to be trained to be able to adapt to these changes.

  role in the efficiency of a classifier. Most methods of feature extraction using raw data, such as word2vec[START_REF] Mikolov | Efficient estimation of word representations in vector space[END_REF] orBERT Devlin et al. (2019) do not leverage the graph topology when constructing the new features. The Graph Information Aided Node feature exTraction (GIANT) framework was proposed inChien et al. (2021) to incorporate the graph topology in the feature extraction.At the time of writing, the success of ChatGPT has initiated a new wave of

  with the difference between transductive and inductive learning, as well as the problem of multilabel classification. When a graph evolves over time, the distribution of the nodes changes. This distribution shift is reflected when the dataset is split into training and test sets. Training a GNN with (transductive) or without (inductive) access to the unlabelled test data leads to different performances from the models. Section 5.2 evaluates and compares state-of-the-art GNNs on node classification in an academic citation network.

Section 5 .

 5 4 concludes the chapter. The results presented in Section 5.2 were published in Lachaud et al. (2022b), while the work in multilabel classification from Section 5.3 was presented in Lachaud et al. (2022a).
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 51 Figure 5.1: Node in the training set with neighbours in all the graph.

  ductive and inductive learning. In the first setting, the model has access to the training data and the unlabeled validation and test data. In the second setting, the model has only access to the training data. Each setting follows the same temporal split presented in Section 4.2. A practical way to remove the edges going from or to unlabeled nodes is to generate the subgraph of the network that contains only the nodes within the given set. The architectures we compare are the best performing architectures on the ogbnarxiv dataset. Specifically, we train Deep RevGAT Li et al. (2021a) and Adaptive Graph Diffusion Network (AGDN) Sun and Wu (2020) models. The Deep RevGAT architecture follows the message passing neural framework Gilmeret al. (2017). It is aGAT Velickovic et al. (2018) which has been converted to a reversibleGNN Li et al. (2021a) to remove the memory constraints imposed by the storing of a feature matrix for each layer of a traditional GNN. We explore the importance of self-knowledge distillation[START_REF] Zhang | Be Your Own Teacher: Improve the Performance of Convolutional Neural Networks via Self Distillation[END_REF] by training the Deep RevGAT with and without knowledge distillation. Additionally, we investigate the importance of feature selection, using either the original features, the features extracted with the GIANT framework, and the features with added label information.All the experiments are performed with a 24 GB Nvidia RTX GPU. The code is written in Python, PyTorch and DGL (Deep Graph Library)[START_REF] Wang | Deep graph library: A graph-centric, highly-performant package for graph neural networks[END_REF].The ogbn-arxiv dataset is taken fromOGB Hu et al. (2020). Several Deep RevGAT are trained with a different number of layers. The AGDN model is trained on the original features both with and without using a bag of tricks presented in[START_REF] Wang | Bag of Tricks for Node Classification with Graph Neural Networks[END_REF] that can improve performance.
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 52 Figure 5.2: Subset of the confusion matrix.

  .5, alongside the relative size of the category in the training set (given in percentage) and its population in the test set. The arXiv categories in bold are the ones discussed in the text. Additionally, a representation of the top 3 predictions for some nodes is presented in Figure 5.3.
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 53 Figure 5.3: Top 3 predictions for a few nodes in the graph. The pie chart represents the probability assigned by the model to the the first three categories. For each node with a piechart, the label of the first prediction is the one on top, the second prediction the one in the middle and the third prediction the one at the bottom. The nodes without piecharts are the neighbours of the nodes on which we do the predictions, and have their true label written inside them.

(

  GANs) combine two networks where one feeds into the other: the first network (generator) tries to generate artificial input while the other network (discriminator) learns to classify the data as artificial or real. In feature imputation, the generator imputes the missing values while the discriminator tries to find which values where imputed and which ones were observed Yoon et al. (2018). GRAPE You et al. (2020) achieved state-of-the-art performance on the problem of feature imputation by reframing the learning objective as a graph representation problem: the data is viewed as a bipartite graph with two types of nodes: the observations and the features. The edges between the nodes are the observed features, where the weight of the edge is the value of the feature. The feature imputation is done by training a Graph Neural Network (GNN) on the graph.

  Graph Neural Networks (GNNs) work by propagating information through the graph. They adhere to the message passing neural network (MPNNs) framework. What separates each MPNN architecture is the mechanism by which information is transferred. For instance, GCNs Kipf and Welling (2017) use an explicit weighting scheme based on the degree of the nodes, while GATs Velickovic et al. (2018) employ an implicit weighting scheme by assigning a different importance to each node via the attention mechanism.

  3 is proportional only to the degrees of the nodes. Similarly, in Equation 4.7, the regularizing mechanism of Graph-SAGE is its sampling of neighbourhoods. In transductive learning, the effects of regularization by sampling are lessened by the fact that the model samples from the whole graph.Concerning the generalization error between validation and test, its existence in the first place is a result of a distribution shift that occurs between the different splits. This shift can manifest itself when the splitting of the dataset is not random. For instance, a good split for the Amazon dataset of products Chiang et al. (2019) is to split according to the number of sold items, because it is easier and more useful to label the bestselling items first and put them in the training set, and try to expand the labelling to the less popular items. Likewise, in citation or social networks, a challenging and natural split is to use the date information: the older nodes represent the training set while the test set comprises the most recent nodes Hu et al. (2020). The distribution shift can have two causes: the structure of the graph can change, or the features can evolve. Firstly, the pattern in the edges between the nodes can change over time. For example, between 2006 and 2012, the Facebook graph changed drastically as the company expanded to other states and countries.

  . Having access to the test data at training time allows the model to fit the structure of the graph. Moreover, if there is a change in the feature distribution between training and validation, the model can adapt to this change at training time in the transductive setting.

  Figure 6.7.
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 67 Figure 6.7: Training, validation and test accuracy of the GIN model in the transductive (left) and inductive (right) learning settings. The horizontal axis corresponds to p in Equation 6.1.

GRAPE

  [START_REF] You | Handling missing data with graph representation learning[END_REF] is a GNN architecture adapted from the GraphSAGE model[START_REF] Hamilton | Inductive representation learning on large graphs[END_REF]. The nodes used in GRAPE are of two types: observations and features. The graph is bipartite, where each edge has one end in the set of observations, and the other end in the set of features. An edge e uv between observation u and feature v means that observation u's value of feature

B

  .nodes and B.edges represent respectively the set of nodes and of edges in the mini-batch; we have B.nodes ⊆ V and B.edges ⊆ E. Algorithm 1 Sample-based GRAPE forward propagation. for B ∈ SAMPLE(G) do for v ∈ B.nodes do for l ∈ {1, . . . , L} do n

  et al. (2017), the node sampling strategy works by sampling a subset of the neighbours of each node and training the model on the induced subgraph. The sampling can be expanded beyond 1-hop neighbours by sampling the neighbourhood of the neighbours. The space complexity of the sampling strategy is O(B L ), where B is the number of neighbours sampled, compared to O(D L ) with D the average node degree for batch training using the full neighbourhood of each node.

  Figure 6.9: Example of the use of GRAPE on graph data. Edges and features are omitted for clarity. Enlarge the figure

  On the other hand, the Mean Exhaustive Minimum Distance (MEMD) is a criterion that was introduced in[START_REF] Havlíček | Texture spectral similarity criteria[END_REF] to compare two images by trying to find the best pairing of pixels from the first and the second image; the criterion score then indicates how similar the images are. A low score indicates that the images are similar, and a high score that the image are

Figure 7 . 1 :

 71 Figure 7.1: Data pre-processing workflow

  Figure 7.2: Example of a malignant skin lesion and its mask.

  Figure 7.3: Example of patches of different size of the image from Figure 7.2.

Figure 7 .

 7 Figure 7.4 shows the distribution of entropy amongst the patches for different patch sizes.

  Figure 7.4: Distribution of patch entropy. (a)-(d) are taken for square patches of size 32, 64, 128 and 256 pixels.

Following

  the notation from Havlíček and Haindl (2021), let A and B be two images, which can have multiple channels. Let M = min(#A, #B), with #A and #B the number of pixels in A and B. Let ⟨A⟩ be the set of pairs of coordinates for the pixels of A, and U the unprocessed pairs of coordinates of pixels of B.

Figure 7 . 5 :

 75 Figure 7.5: Distribution of MEMD score for patches of size (a) 32 × 32 (b) 64 × 64 (c) 128 × 128 and(d) 256 × 256

Following

  [START_REF] Yilmaz | Benign and Malignant Skin Lesion Classification Comparison for Three Deep-Learning Architectures[END_REF] and[START_REF] Favole | Melanoma Detection Using Deep Learning[END_REF] who compared classifiers for the same task and dataset, we use a ResNet50 for the classification.ResNet50[START_REF] He | Deep Residual Learning for Image Recognition[END_REF], is a 50-layer convolutional neural network, which contains residual units between convolutional blocks (stacks of convolutional layers) with identity mappings interspersed, to help propagate the gradient and mitigate the problem of vanishing and exploding gradients[START_REF] Glorot | Understanding the difficulty of training deep feedforward neural networks[END_REF].

Figure 7 .

 7 Figure 7.6 and Figure 7.7 illustrate the role of MEMD in patch selection. The patch on the left of Figure 7.7 is one of the patches with the lowest MEMD score for the image, while the patch on the right has one of the highest scores. Due

  Figure 7.6: Image of a mask and its lesion.

  Figure 7.8: Patches of low and high entropy

  les noeuds : ils ne peuvent pas être considérés comme indépendants et identiquement distribués. Lors de la classification, il faut prendre en compte les attributs des noeuds et son voisinage. Ces deux informations peuvent être en contradiction. Au même titre que de bruit dans la structure ou dans les labels du graphe, la présence de bruit dans les attributs d'un noeud ou d'un lien ont des répercussions qui dépassent l'élément en question. L'interdépendance mentionnée plus haut fait que le bruit se propage dans le graphe. Le choix d'un GNN pour une tâche donnée doit donc prendre en considération la possibilité d'une présence de bruit dans la donnée.

  la représentation mathématique des graphes et les types de tâches qui sont effectués dessus, à savoir les tâches sur les noeuds comme la classification de noeuds, les tâches sur les liens comme la prédiction de liens, et les tâches sur les graphes.

  profond repose sur la création de réseaux de neurones composés de plusieurs couches contenant chacune des paramètres. Ces couches sont de deux natures : les filtres, qui visent à obtenir une représentation de plus en plus abstraite et complexe de la donnée initiale, et les couches de pooling, qui visent à réduire la granularité de la donnée. Les filtres sont souvent associés à des fonctions d'activation non-linéaires, telles que la sigmoïde ou la ReLU (Rectified Linear Unit).Ces réseaux fonctionnent en deux étapes. Pour l'inférence, ou la prédiction, les entrées sont passées à travers le réseau, et la sortie représente la prédiction du réseau. Cela se nomme la forward pass. Pour l'apprentissage, une fonction de perte est utilisée. Son gradient est rétropropagé à travers le réseau, de sorte que les paramètres sont modifiés pour diminuer le coût du modèle par rapport à cette fonction de perte. L'obtention des dérivés des paramètres du modèle s'efffectue par une application successive du théorème de dérivation des fonctions composées. Cette étape s'appelle la backward pass. qui peuvent être apportées à ces architectures. Dans une deuxième partie, nous présentons l'un des jeux de données sur lequel nous avons effectué la plupart de nos expériences, ainsi que les différentes manières de travailler dessus, tel l'apprentissage transductif et l'apprentissage inductif.Deux problèmes qui se rencontrent lorsque l'on compare des architectures sur certains jeux de données sont la différence entre l'apprentissage transductif et l'apprentissage inductif, et la classification multilabel. Le premier problème a notamment lieu lorque l'on traite des graphes temporels en tant que graphes statiques. Selon la manière dont le graphe a été découpé en ensemble d'entraînement et ensemble de test, il peut y avoir une fuite d'information, dans l'apprentissage transductif, depuis l'ensemble de test vers l'ensemble d'entraînement (car les graphes sont souvent convertis en graphes non dirigés lors du prétraitement). Cela peut fausser l'évaluation des modèles. Le second problème concerne la classification des noeuds. Dans certains cas, un noeud peut appartenir à plusieurs classes. L'évaluation d'un modèle pose alors la question suivante : est-ce l'architecture avec la plus grande précision, ou bien celle qui contient le plus souvent la classe correcte dans ces premières prédictions, qui est la meilleure ? Ce problème peut être vu autrement, du point de vue la corrélation entre les labels. En effet, il peut exister des liens causaux entre les labels. Deux classes peuvent avoir un champs sémantique (en ce qui concerne les attributs) similaires. Dans ce chapitre, nous traitons de ces problèmes sur un graphe de citation académique. 6 Chapitre 6: Attributs avec bruit et imputation d'attributs manquants Alors que la qualité d'une image ou d'un texte est souvent observable par un être humain, celle d'un graphe est plus difficile à déterminer. Elle se décompose en trois parties : la qualité de la structure du graphe, celle des attributs et celle des labels. Étant donné l'incertitude portant sur la qualité des attributs, il est important qu'un GNN soit résistant au bruit. Dans ce chapitre, nous comparons les performances des GNNs les plus répandus face au bruit. En particulier, nous évaluons la précision face à plusieurs sortes de bruit : du bruit aléatoire, ou du bruit s'attaquant soit aux noeuds les plus influents, soit aux noeuds les plus isolés. Cela nous permet d'observer un mécanisme de réduction de bruit implicite pour certaines architectures. De plus, le bruit entraînant la plus grande perturbation est le bruit s'attaquant au noeuds les plus isolés. Une autre source de bruit est la donnée manquante. Pour pallier ce manque, nous proposons une nouvelle architecture de GNN capable d'imputer les attributs manquants sur des données de type tabulaire ou de type graphe. En amont de l'apprentissage sur les graphes se pose la question de la création d'un graphe. En prenant l'exemple d'une image ou d'un texte, il y a certains des éléments constituants qui sont plus importants que les autres. L'objectif est alors double : extraire les informations de l'objet afin d'obtenir la représentation la plus compacte, et maintenir la structure qui lie les éléments entre eux. Ce chapitre présente un travail préliminaire effectué sur des lésions de la peau. L'objectif est d'extraire les patches d'une image à l'aide d'un critère tel que l'entropie, et d'évaluer les performances d'un modèle (ici, un CNN) sur ces patchs. Cette démarche peut permettre par la suite de créer des graphes à l'aide de ces patches et d'y ajouter d'autres informations médicales pour obtenir une donnée plus riche et atteindre des meilleures performances. Dans cette thèse, nous avons tout d'abord présenté la représentation théorique des réseaux de neurones de graphes, que cela soit dans leur forme générale ou dans les formes les plus puissantes en terme d'expressivité, ainsi que la manière Ce travail a pour but d'ouvrir la voie à la création de graphes issus de l'imagerie en 3D, où les liens entre les noeuds n'indiquent plus forcément un voisinage intra-coupe, mais peuvent aussi représenter un voisinage inter-coupe, i.e., entre deux pores de coupes différentes. Le deuxième axe, concernant les graphes dynamiques, serait de prolonger les résultats préséntés dans cette thèse, en particulier ceux du Chapitre 6. La question est d'étudier le rôle de bruit dans un graphe dynamique. Il ne s'agit plus seulement de s'attaquer aux noeuds isolés ou affluents, mais d'évaluer l'aspect temporel du bruit, par exemple étudier comment réagit un GNN face à du bruit ponctuel (d'un point de vue temporel) de forte intensité, ou bien face à du bruit continu de faible intensité. De la même manière que nous avons proposé une architecture pour l'imputation de données manquantes pour les données tabulaires et les données de type graphe, l'objectif serait de concevoir une méthode permettant d'imputer les données manquantes dans un graphe dynamique. Dans une perspective plus long terme, l'uns des objectifs de l'étude des réseaux dynamiques, du bruit et des données médicales serait la mise en place d'un système robuste pouvant servir d'aide au diagnostic pour les médecins ou la recherche médicale. L'étude du bruit, en parallèle de travaux sur l'explicabilité des GNNs, permettrait de fournir des résultats utilisables par les médecins. L'intégration de données médicales de plusieurs genres, comme les IRM, CT Scan, compte-rendus médicaux, etc., dans un unique graphe permettrait une vision d'ensemble plus élargie du suivi médical d'un patient, et de déceler des motifs cachés dans la donnée.
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.1 Deep learning 3.1.1 Overview

  

	Contents are divided in two categories: filters, which create an abstract representation of	
	the input; and pooling layers, also known as coarsening or downsampling opera-	
	3.1 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 tors, which reduce the dimensions of the inputs as they go through the network.
	3.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 3.1 shows an example of a neural network. The inputs on the left are propagated throughout the layers. The main families of neural networks, such	24
	3.1.2 Forward and backward propagation . . . . . . . . . . . . 25 as multilayer perceptrons, convolutional neural networks (CNNs), recurrent
	neural networks (RNNs), graph neural networks (GNNs) are distinguished by	
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	3Deep learning architectures are models that automatically learn representations
	of raw data. They consist in stacks of layers of parameters, interspersed with
	Lachaud et al. (2022c). non-linear activation functions, as shown in Equation 3.1. Each layer ϕ l , for
	l = 1, . . . , L, can contain a non-linear activation function, like the ReLU or the
	sigmoid functions, and the symbol • represents the composition operator. Layers

  , S vu ′ ) if S vu and S vu ′ are complete graphs and S vu has more vertices than S vu ′ ; (2) local denseness: ω(S v , S vu ) > ω(S v , S vu ′ ) if S vu and S uv ′ have the same number of vertices, but S vu has more edges; (3) isomorphic invariant: ω(S v , S vu ) > ω(S v , S vu ′ ) if S vu and S vu ′ are isomorphic.Based on these criteria, the authors in[START_REF] Wijesinghe | Rooted subgraphs[END_REF] propose the GraphSNN architecture. It follows Equations 3.24-3.26. Equation 3.27 is an example of a valid ω function, parameterized by λ > 0. |V

Structural coefficients for nodes and their neighbors can be obtained by defining a function ω ∈ S × S * → R that have the following properties: (1) local closeness: ω(S v , S vu ) > ω(S v vu | is the number of vertices of S u v, and |E vu | its number of edges. Furthermore, the ω(S v , S vu )
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 3 1: Expressiveness of GNNs. Expressiveness is given with respect to how the authors proved the results. GIN corresponds to the most powerful standard MPNN.
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Table 4 .

 4 1: Distribution of Edges in Train, Validation and Test.

	Graph	Detail	number of edges edges overlap
	arxiv	full graph	1,166,243	-
	arxiv	self-loops, reverse edges	2,484,941	-
	arxiv	train subgraph	829,007	-
	arxiv	validation subgraph	86,671	-
	arxiv	test subgraph	167,883	-
	arxiv	train and validation	1,351,570	435,892
	arxiv	train and test	1,710,834	713,944
	arxiv	validation and test	506,098	251,544
	mag	full graph (only citations)	5,416,271	-
	mag	self-loops, reverse edges	11,568,931	-
	mag	train subgraph	8,389,507	-
	mag	validation subgraph	177,111	-
	mag	test subgraph	123,583	-
	mag	train and validation	10,149,426	1,582,808
	mag	train and test	9,575,822	1,060,732
	mag	validation and test	533,884	231,190
	papers100M full graph (only citations)	1,615,685,872	-
	papers100M	self-loops, reverse edges	3,342,431,700	-
	papers100M	train subgraph	21,315,319	-
	papers100M	validation subgraph	330,045	-
	papers100M	test subgraph	639,152	-
	papers100M	train and validation	24,506,366	2,861,002
	papers100M	train and test	25,144,635	3,190,164
	papers100M	validation and test	1,583,153	613,956

Table 4 .

 4 2: Top 5 Classes (By Size) and Per Year in obn-arxiv. Only the Most Prominent Classes Are Shown.

	Year Class 1	size	Class 2	Size	Class 3	Size
	2019	lg	8690 (21.88%)	cv	8584 (21.62%)	cl	4075 (10.26%)
	2018	cv	6846 (22.97%)	lg	4458 (14.96%)	cl	(9.56%)
	2017	cv	4326 (20.18%)	it	2597 (12.11%)	lg	(9.86%)
	2016	cv	2646 (16.19%)	it	2525 (15.45%)	lg	(8.41%)
	2015	it	2210 (18.36%)	cv	1453 (12.07%)	lg	(8.38%)
	2014	it	1755 (19.17%)	cv	705 (7.70%)	ds	631 (6.89%)
	2013	it	1617 (19.88%)	ai	927 (11.40%)	lg	(7.12%))
	2012	it	1316 (20.45%)	lg	680 (10.57%)	ai	(8.50%))
	2011	it	1142 (25.80%)	ds	384 (8.67%)	lo	246 (5.56%)
	2010	it	940 (26.37%)	ds	298 (8.36%)	lo	240 (6.73%)

Table 4 .

 4 3: Top 5 Classes (By Size) and Per Year in obn-arxiv, continued. Only the 4th and 5th most prominent classes are shown.

	Year Class 4	Size	Class 5	Size
	2019	it	2256 (5.68%)	ro	1602 (4.03%)
	2018	it	2273 (7.63%)	ai	1232 (4.13%)
	2017	cl	1753 (8.18%)	ai	933 (4.35%)
	2016	cl	1185 (7.25%)	ds	850 (5.20%)
	2015	ds	736 (6.12%)	si	532 (4.42%)
	2014	lg	593 (6.48%)	ni	483 (5.28%)
	2013	ds	552 (6.79%)	ni	441 (5.42%)
	2012	ds	433 (6.73%)	ni	341 (5.30%)
	2011	ni	223 (5.04%)	ai	217 (4.90%)
	2010	ni	210 (5.89%)	ai	189 (5.30%)

Large-Language Model (LLM) extracted features GRA;

[START_REF] He | Explanations as Features: LLM-Based Features for Text-Attributed Graphs[END_REF]

.

Table 5 .

 5 1: Validation and Test Accuracy for Transductive Learning. AGDN is trained with the original features.

	Model	Validation accuracy Test accuracy Validation and test gap
	RevGAT, teacher, 2 layers	76.99 ± 0.06	75.98 ± 0.12	1.01
	RevGAT, KD 2 layers	77.13 ± 0.10	76.17 ± 0.15	0.96
	RevGAT, 3 layers	77.13 ± 0.06	75.95 ± 0.11	1.18
	RevGAT, KD 3 layers	76.93 ± 0.08	75.61 ± 0.15	1.32
	RevGAT, 5 layers	77.11 ± 0.06	75.80 ± 0.12	1.31
	RevGAT, KD, 5 layers	77.24 ± 0.09	75.97 ± 0.09	1.27
	AGDN, original features	-	73.46 ± 0.17	-
	AGDN with BoT	-	74.10 ± 0.15	-

Table 5 .

 5 2: Validation and Test Accuracy for Inductive Learning. The Best Score is Highlighted in Bold. KD Stands for Knowledge Distillation.

	Model	Validation accuracy Test accuracy Validation and test gap
	RevGAT, 2 layers,	76.75 ± 0.08	75.91 ± 0.14	0.84
	RevGAT, KD, 2 layers,	76.74 ± 0.05	75.81 ± 0.13	0.93
	RevGAT, 3 layers,	76.78 ± 0.08	76.04 ± 0.10	0.74
	RevGAT, KD, 3 layers,	76.78 ± 0.09	75.97 ± 0.09	0.81
	RevGAT, 5 layers,	76.84 ± 0.05	76.00 ± 0.10	0.84
	RevGAT, KD, 5 layers,	76.85 ± 0.06	76.07 ± 0.07	0.78
	RevGAT(3), no label features,	76.54 ± 0.09	75.83 ± 0.10	0.71
	RevGAT(3,KD), no label features,	76.63 ± 0.08	75.97 ± 0.06	0.66
	AGDN, original features,	72.47 ± 0.12	73.20 ± 0.17	-0.73
	AGDN with BoT,	73.62 ± 0.07	74.00 ± 0.07	-0.38
	AGDN, GIANT features,	76.28 ± 0.17	75.38 ± 0.22	0.9

Table 5

 5 

	.3: Top 3 score on training, validation and test
	dataset top 1 top 2 top 3
	train	79.31 90.36 94.14
	valid	73.62 87.76 92.73
	test	72.27 87.25 92.36

Table 5 .

 5 4: (Part 1) Top 3 category predicted by the GAT model. The train size represents the percentage of nodes in the training set that are from each category. The test column indicates the number of nodes from the test set that are in each category.

	subject top 1 top 2 top 3 train size (%)	test
	cv	91.83 98.10 98.99	10.99
	lg	69.27 91.30 96.38	7.69
	it	90.56 96.28 97.54	17.91
	cl	92.74 97.06 98.27	4.77
	ai	49.14 71.13 82.68	5.70
	ds	69.87 86.85 92.43	5.97
	ni	55.12 84.32 91.12	4.46
	cr	67.04 82.18 87.91	3.15
	dc	52.73 75.12 83.07	3.23
	lo	67.94 90.18 94.13	3.96
	ro	70.91 88.77 94.63	1.83
	si	68.40 82.61 88.18	3.14
	gt	74.16 87.40 91.55	2.76
	sy	63.72 79.47 84.96	2.06
	se	62.00 76.24 81.81	1.69
	ir	46.52 77.47 90.13	1.48
	cc	51.59 71.88 87.25	2.47
	db	63.41 74.43 83.37	1.78
	ne	44.90 64.97 82.96	1.42
	os	8.33 25.00 50.00	0.08
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	6.1.3 GNN's treatment of noise . . . . . . . . . . . . . . . . . .
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	6.2.3
	The work regarding noisy features in Section 6.2 is currently under review. The
	work regarding missing data imputation was published in Lachaud et al. (2023).

learning. Specifically, we deal with two types of noise: noisy features and missing features. Noise can arise from many situations, such as faulty sensors or misinformation. It can occur randomly or target specific nodes, e.g., target the most influent nodes or the most isolated ones. Section 6.1 present an overview of the problem of noise in graph data. Section 6.2 explores the impact of noise in the features on the training of state-of-the-art GNNs, in both transductive and inductive settings. Section 6.3 presents a novel GNN architecture to impute missing features. Section 6.4 concludes the chapter. Contents 6.1 Noise in data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.1.1 Noise in attributes . . . . . . . . . . . . . . . . . . . . . . 76 6.1.2 6.2.4 Small degree node perturbation . . . . . . . . . . . . . . 6.2.5 Extension to other types of architectures . . . . . . . . . . 6.3 Missing data imputation . . . . . . . . . . . . . . . . . . . . . . . 6.3.1 GRAPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.2 Scalable GRAPE . . . . . . . . . . . . . . . . . . . . . . . 6.3.3 GRAPE for graph data . . . . . . . . . . . . . . . . . . . . 6.3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.5 Training behaviour . . . . . . . . . . . . . . . . . . . . . . 6.3.6 Ablation study . . . . . . . . . . . . . . . . . . . . . . . . 6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 6 .

 6 1: Ablation study for the mini-batch version of GRAPE. The baseline model has batch size b = 14000, number of layers l = 3, dropout = 0.0 (no dropout), hidden dimension n l = 64. The values in the table represent the test MAE. All the errors have to be multiplied by 10 -2 .

	Model	Test MAE for % of missing features
		20	50	90	95	99	99.5
	Baseline	8.82 8.83 9.40 9.76 12.5 13.5
	dropout = 0.2 9.11 9.10 9.45 9.80 11.2 10.6
	l = 1	8.87 8.85 9.00 9.20 11.2 11.9
	n l = 16	8.85 8.83 8.95 9.40 11.0 20.0
	b = 1000	8.71 9.02 9.53 11.2 16.8 18.0

Table 7
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	.1: Number of patches for different patch sizes
	patch size number of patches
	32 × 32	4,886,969
	64 × 64	1,173,052
	128 × 128	270,821
	256 × 256	58,253

Table 7 .

 7 2: Number of patches for each patch size

	Patch size Number of patches
	32 × 32	4, 889, 969
	64 × 64	1, 173, 052
	128 × 128	270, 821
	256 × 256	58, 253

Table 7

 7 

			.3: Entropy statistics	
					quantile
	patch size mean standard deviation	15	42.5	57.5	85
	32	3.974	0.779	3.247 3.85 4.104 4.71
	64	4.456	0.765	3.75 4.335 4.588 5.191
	128	4.903	0.747	4.223 4.795 5.047 5.633
	256	5.319	0.735	4.66 5.229 5.475 6.029

Table 7 .

 7 4: Quantiles of training time for datasets of different entropy and patch size

			Quantile of training time (in seconds)
	patch size entropy 30	50 (median)	70
	32	high	1350.7	2013.2	2781.4
	32	low	1534.9	2906.7	3078.5
	64	high	291.0	382.9	441.9
	64	low	290.6	338.3	414.2
	128	high	155.0	204.6	220.0
	128	low	204.8	255.0	255.4
	256	high	142.4	152.2	189.7
	256	low	189.6	226.4	226.5

Table 7 .

 7 5: Quantiles of training time for datasets of varying MEMD score and patch size

			Quantile of training time (in seconds)
	patch_size memd_score	30	50 (median)	70
	32	high	3150.4	3254.8	3258.9
		low	3256.4	3260.0	3260.9
	64	high	465.3	495.1	527.0
		low	564.4	691.9	986.3
	128	high	241.5	281.9	387.9
		low	256.6	357.7	373.1
	256	high	189.7	245.2	264.4
		low	215.4	226.7	275.2

Table 7 .

 7 6: Test accuracy (in percentage) for the different datasets. For a given patch size, the test images are the same for each method.

	Dataset	low MEMD high MEMD low entropy high entropy
	128 × 128, 15% patches	46.7	50.5	46.2	52.7
	128 × 128, 30% patches	43.9	51.6	39.6	52.7
	256 × 256, 15% patches	27.2	26.3	25.1	32.0
	256 × 256, 30% patches	45.5	57.2	52.7	71.0
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