
HAL Id: tel-04383168
https://theses.hal.science/tel-04383168

Submitted on 9 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extensions and Applications of Graph Neural Networks
Guillaume Lachaud

To cite this version:
Guillaume Lachaud. Extensions and Applications of Graph Neural Networks. Artificial Intelligence
[cs.AI]. Sorbonne Université, 2023. English. �NNT : 2023SORUS434�. �tel-04383168�

https://theses.hal.science/tel-04383168
https://hal.archives-ouvertes.fr

Sorbonne Université
École doctorale no130: Informatique, Télécommunications et Électronique

Laboratoire d’Informatique, Signal et Image, Electronique et Télécommunications

Extensions and Applications of Graph Neural
Networks

thèse
présentée par

Guillaume Lachaud

soutenance prévue le 28 septembre 2023

pour obtenir le grade de docteur de Sorbonne Université

discipline: Informatique

Thèse dirigée par:
Mme Maria Trocan Professeure, ISEP

Thèse encadrée par:
Mme Patricia Conde-Cespedes Professeure associée, ISEP

Rapporteurs:
M. Dan Istrate Professeur (HDR), UTC
M. Behçet Uğur Töreyin Professeur, Informatics Institute (ITU), İstanbul Teknik Üniversitesi

Membres du jury:
Mme Anissa Mokraoui Professeure, L2TI, Université Sorbonne Paris Nord, Présidente du jury
M. Christophe Marsala Professeur, LIP6, Sorbonne Université

Abstract

Graphs are used everywhere to represent interactions between entities, whether
physical such as atoms, molecules or people, or more abstract such as cities,
friendships, ideas, etc. Amongst all the methods of machine learning that can be
used, the recent advances in deep learning havemade graph neural networks the
de facto standard for graph representation learning. This thesis can be divided
in two parts. First, we review the theoretical underpinnings of themost powerful
graph neural networks. Second, we explore the challenges faced by the existing
models when training on real world graph data.

The powerfulness of a graph neural network is defined in terms of its expressive-
ness, i.e., its ability to distinguish non isomorphic graphs; or, in an equivalent
manner, its ability to approximate permutation invariant and equivariant func-
tions. We distinguish two broad families of the most powerful models. We
summarise the mathematical properties as well as the advantages and disad-
vantages of these models in practical situations.

Apart from the choice of the architecture, the quality of the graph data plays
a crucial role in the ability to learn useful representations. Several challenges
are faced by graph neural networks given the intrinsic nature of graph data. In
contrast to typical machine learning methods that deal with tabular data, graph
neural networks need to consider not only the features of the nodes but also
the interconnectedness between them. Due to the connections between nodes,
training neural networks on graphs can be done in two settings: in transductive
learning, the model can have access to the test features in the training phase; in
the inductive setting, the test data remains unseen. We study the differences
in terms of performance between inductive and transductive learning for the
node classification task. Additionally, the features that are fed to a model can
be noisy or even missing. In this thesis we evaluate these challenges on real
world datasets, and we propose a novel architecture to perform missing data
imputation on graphs.

Finally, while graphs can be the natural way to describe interactions, other types
of data can benefit from being converted into graphs. In this thesis, we perform
preliminary work on how to extract the most important parts of skin lesion
images that could be used to create graphs and learn hidden relations in the
data.

Résumé

Les graphes sont utilisés partout pour représenter les interactions, qu’elles
soient physiques comme les atomes, les molécules ou les humains, ou plus
abstraites comme les villes, les amitiés, les idées, etc. Parmi toutes les méthodes
d’apprentissage automatique qui peuvent être utilisées, les dernières avancées
en apprentissage profond font des réseaux de neurones de graphes la référence
de l’apprentissage de représentation des graphes. Cette thèse se divise en deux
parties. Dans un premier temps, nous faisons un état de l’art des fondations
mathématiques des réseaux de neurones de graphes les plus puissants. Dans
un second temps, nous explorons les défis auxquels sont confrontés ces modèles
quand ils sont entraînés sur des jeux de données réels.

La puissance d’un réseau de neurones est définie par rapport à son expressivité,
c’est-à-dire sa capacité à distinguer deux graphes non isomorphes ; ou, de
manière équivalente, sa capacité à approximer les fonctions qui sont invariantes
ou équivariantes par rapport aux permutations. Nous discernons deux grandes
familles demodèles expressifs. Nous présentons leurs propriétésmathématiques
ainsi que les avantages et les inconvénients de ces modèles lors d’applications
pratiques.

En parallèle du choix de l’architecture, la qualité de la donnée joue un rôle crucial
dans la capacité d’unmodèle à apprendre des représentations utiles. Les réseaux
de neurones de graphes sont confrontés à des problèmes spécifiques aux graphes.
À l’inverse des modèles développés pour les données tabulaires, les réseaux
de neurones de graphes doivent prendre en compte aussi bien les attributs des
nœuds que leur interdépendance. À cause de ces liens, l’apprentissage d’un
réseau de neurones sur des graphes peut se faire de deuxmanières : en apprentis-
sage transductif, où le modèle a accès aux attributs des données de test pendant
l’entraînement ; en apprentissage inductif, où les données de test restent cachées.
Nous étudions les différences en termes de performance entre l’apprentissage
transductif et inductif pour la classification de nœuds. De plus, les attributs des
nœuds peuvent être bruités ou manquants. Dans cette thèse, nous évaluons ces
défis sur des jeux de données réels, et nous proposons une nouvelle architecture
de réseau de neurones de graphes pour imputer les attributs manquants des
nœuds d’un graphe.

Enfin, si les graphes sont le moyen privilégié de décrire les interactions, d’autres
types de données peuvent aussi bénéficier d’une conversion sous forme de
graphes. Dans cette thèse, nous effectuons un travail préliminaire sur l’extraction
des parties les plus importantes d’images de lésions de la peau. Ces patches
pourraient être utilisés pour créer des graphes et découvrir des relations latentes
dans la donnée.

Contents

Acknowledgements . 1

1 Introduction 3

1.1 Motivation . 3

1.2 Challenges of graph neural networks 4

1.3 Contributions . 7

1.4 Thesis outline . 9

1.5 Publications . 10

I Graph Representation 11

2 Introduction to graphs, and graph representation learning and signal
processing 13

2.1 Graphs . 14

2.1.1 Mathematical representation 14

2.1.2 Important definitions . 16

2.2 Learning with graphs . 19

vi GUILLAUME LACHAUD

2.2.1 Node level tasks . 19

2.2.2 Edge level tasks . 19

2.2.3 Graph level tasks . 20

2.3 Machine learning with graphs . 20

2.3.1 Graph statistics and random walks 20

2.3.2 Graph spectral theory . 21

2.3.3 Graph isomorphism and the Weisfeiler-Leman algorithm 22

3 Deep learning and graph neural networks 23

3.1 Deep learning . 24

3.1.1 Overview . 24

3.1.2 Forward and backward propagation 25

3.1.3 Deep learning in practice 26

3.2 Graph neural networks . 27

3.2.1 Overview . 27

3.2.2 Permutation equivariance and invariance 29

3.2.3 Expressiveness and Weisfeiler-Leman 29

3.3 Most expressive GNNs . 30

3.3.1 Higher Order Networks and Universal Approximation . 31

3.3.2 Computationally Efficient and Powerful Networks 34

3.4 Discussion . 42

3.4.1 Summary . 42

3.4.2 Future work . 43

CONTENTS vii

II Learning 45

4 GNNs in practice 47

4.1 GNNs in practice . 48

4.1.1 Message Passing Neural Framework 49

4.1.2 Graph Convolutional Networks 49

4.1.3 Graph Attention Networks and attention mechanisms . . 50

4.1.4 GraphSAGE and neighbourhood selection 51

4.1.5 GNN advanced tricks . 52

4.2 Dataset . 53

4.2.1 Overview . 53

4.2.2 Dataset split . 54

4.2.3 Transductive and inductive learning 54

4.2.4 Graph Information AidedNode feature exTraction (GIANT) 56

5 Social networks and multilabel classification 59

5.1 Introduction . 60

5.2 Transductive and inductive learning 61

5.2.1 Experiments . 63

5.3 Error analysis and multilabel classification 66

5.3.1 Single class classification 66

5.3.2 Multilabel classification approach 69

5.4 Discussion . 73

viii GUILLAUME LACHAUD

6 Noisy features and missing data imputation 75

6.1 Noise in data . 76

6.1.1 Noise in attributes . 76

6.1.2 Missing data . 78

6.1.3 GNN’s treatment of noise 80

6.2 Noisy features . 81

6.2.1 Problem Definition . 82

6.2.2 Random noise perturbation 84

6.2.3 High degree node perturbation 87

6.2.4 Small degree node perturbation 92

6.2.5 Extension to other types of architectures 94

6.3 Missing data imputation . 96

6.3.1 GRAPE . 96

6.3.2 Scalable GRAPE . 97

6.3.3 GRAPE for graph data . 98

6.3.4 Experiments . 99

6.3.5 Training behaviour . 99

6.3.6 Ablation study . 101

6.4 Discussion . 102

7 Patch Extraction in Medical Imaging 105

7.1 Introduction . 106

7.2 Proposed method . 108

CONTENTS ix

7.2.1 Dataset description and pre-processing 108

7.2.2 Entropy . 111

7.2.3 Mean Exhaustive Minimum Distance (MEMD) criterion 113

7.2.4 Network architecture and tuning parameters 116

7.3 Results . 117

7.3.1 Training time . 117

7.3.2 Accuracy . 119

7.4 Discussion . 122

8 Conclusion and perspectives 123

8.1 Conclusions . 123

8.1.1 Contributions . 123

8.2 Short Term Perspectives . 124

8.3 Long Term Perspectives . 125

Résumé étendu en français 149

1 Chapitre 1: Introduction . 149

1.1 Les défis des réseaux de neurones de graphes 150

1.2 Vers la création de graphes 150

1.3 Contributions . 151

2 Chapitre 2: Introduction aux graphes, à l’apprentissage de représen-
tations et au traitement du signal des graphes 151

3 Chapitre 3: Apprentissage profond et réseaux de neurones de
graphes . 152

x GUILLAUME LACHAUD

4 Chapitre 4: Utilisation des GNNs en pratique 153

5 Chapitre 5: Apprentissage transductif et inductif, et classification
multilabel . 155

6 Chapitre 6: Attributs avec bruit et imputation d’attributs manquants155

7 Chapitre 8: Conclusion et perspectives 156

7.1 Conclusions . 156

7.2 Perspectives . 157

List of Figures

1.1 Transmission of information in a MPNNmodel with two layers.
The node we update is the blue node at the top. The red nodes
represent the nodes involved in the update of our node in the first
layer of the model. The green nodes represent those involved in
the update of our node after the second layer. 5

1.2 Difference between transductive and inductive learning. (a) the
model has access to both the train and test nodes at training time.
(b) the model has only access to the train nodes at training time. 6

1.3 Node classification on a node where the features indicate a label
(cat), and the neighbours indicate another label (dog). 7

1.4 Noise propagation after two layers. The red node is the noisy
node; the deep blue nodes are the nodes impacted by the noise.
(a) the noisy node has the fewest neighbours in the graph. (b)
the noisy node has the most neighbours in the graph. 8

2.1 Example of a graph. Nodes are colored in blue and edges in red.
The graph is the combination of the set of vertices and the set of
edges. 15

2.2 Examples of the main types of graphs. 15

2.3 Example of a graph and its subgraphs. Note that (b) and (c)
differ in the set of edges that are included in the subgraph. . . . 17

xii GUILLAUME LACHAUD

2.4 Examples of special graphs. 18

3.1 Example of a neural network. The xi represent the inputs; o1 is
the output of the network. 25

3.2 Overview of mathematically expressive GNNs. Red boxes refer to
sections of the chapter; and blue boxes represent ideas introduced
by specific papers. 32

3.3 Example of a graph with its rooted trees and rooted subgraphs.
The rooted subgraphs incorporate structural information that is
lost in rooted trees. MPNNs use rooted trees to update notes. If
the features are identical, MPNNs with a single layer will treat
nodes B and F as the same; if the network uses the rooted graph
instead, it will distinguish B and F 37

5.1 Node in the training set with neighbours in all the graph. 62

5.2 Subset of the confusion matrix. 67

5.3 Top 3 predictions for a few nodes in the graph. The pie chart
represents the probability assigned by the model to the the first
three categories. For each node with a piechart, the label of the
first prediction is the one on top, the second prediction the one in
the middle and the third prediction the one at the bottom. The
nodeswithout piecharts are the neighbours of the nodes onwhich
we do the predictions, and have their true label written inside them. 72

6.1 Training, validation and test accuracy of three models of GNNs in
the transductive learning setting. The horizontal axis corresponds
to the percentage of features to which noise has been added, i.e.,
p in Equation 6.1. 84

6.2 Training, validation and test accuracy of three models of GNNs
in the inductive learning setting. The horizontal axis corresponds
to the percentage of features to which noise has been added, e.g.
p in Equation 6.1. 86

LIST OF FIGURES xiii

6.3 Training, validation and test accuracy of three models of GNNs in
the transductive learning setting. The horizontal axis corresponds
to the percentage of nodes to which noise has been added. The
noise targets the nodes with the highest degree first then proceeds
in a decreasing manner. The percentage indicates how many of
the features of each node are tampered with, e.g. 0.1 means 10%
of the features contain added noise. 88

6.4 Training, validation and test accuracy of three models of GNNs in
the inductive learning setting. The horizontal axis corresponds to
the percentage of nodes to which noise has been added. The noise
targets the nodes with the highest degree first then proceeds in a
decreasing manner. 91

6.5 Training, validation and test accuracy of three models of GNNs
in the transductive learning setting. The horizontal axis corre-
sponds to the percentage of nodes to which noise has been added.
The noise targets the nodes with the smallest degree first then
proceeds in an ascending manner. 92

6.6 Training, validation and test accuracy of three models of GNNs in
the inductive learning setting. The horizontal axis corresponds to
the percentage of nodes to which noise has been added. The noise
targets the nodes with the smallest degree first then proceeds in
an ascending manner. 93

6.7 Training, validation and test accuracy of the GIN model in the
transductive (left) and inductive (right) learning settings. The
horizontal axis corresponds to p in Equation 6.1. 95

6.8 Training, validation and test accuracy of the SGC model in the
transductive and inductive learning settings. The horizontal axis
corresponds to the percentage of nodes to which noise has been
added. The noise targets the nodes with the smallest degree first
then proceeds in an ascending manner. 96

6.9 Example of the use of GRAPE on graph data. Edges and features
are omitted for clarity. Enlarge the figure 99

xiv GUILLAUME LACHAUD

6.10 Train (line) and validation (dashed line) loss for different percent-
age of observed data. The lower the percentage, the higher the
percentage of missing data. Under extreme scarcity, the model
starts overfitting the training data. 100

7.1 Data pre-processing workflow . 108

7.2 Example of a malignant skin lesion and its mask. 109

7.3 Example of patches of different size of the image from Figure 7.2. 109

7.4 Distribution of patch entropy. (a)-(d) are taken for square patches
of size 32, 64, 128 and 256 pixels. 112

7.5 Distribution of MEMD score for patches of size (a) 32 × 32 (b)
64× 64 (c) 128× 128 and(d) 256× 256 115

7.6 Image of a mask and its lesion. 120

7.7 Patches of low and high MEMD scores. 121

7.8 Patches of low and high entropy 121

1 Vue d’ensemble des GNNs les plus expressifs. 154

List of Tables

3.1 Expressiveness of GNNs. Expressiveness is given with respect to
how the authors proved the results. GIN corresponds to the most
powerful standard MPNN. 44

4.1 Distribution of Edges in Train, Validation and Test. 56

4.2 Top 5 Classes (By Size) and Per Year in obn-arxiv. Only the 3 Most
Prominent Classes Are Shown. 57

4.3 Top 5 Classes (By Size) and Per Year in obn-arxiv, continued. Only
the 4th and 5th most prominent classes are shown. 57

5.1 Validation and Test Accuracy for Transductive Learning. AGDN
is trained with the original features. 64

5.2 Validation and Test Accuracy for Inductive Learning. The Best
Score is Highlighted in Bold. KD Stands for Knowledge Distillation. 64

5.3 Top 3 score on training, validation and test 69

5.4 (Part 1) Top 3 category predicted by the GAT model. The train
size represents the percentage of nodes in the training set that
are from each category. The test column indicates the number of
nodes from the test set that are in each category. 70

xvi GUILLAUME LACHAUD

5.5 (Part 2) Top 3 category predicted by the GAT model. The train
size represents the percentage of nodes in the training set that
are from each category. The test column indicates the number of
nodes from the test set that are in each category. 71

6.1 Ablation study for the mini-batch version of GRAPE. The baseline
model has batch size b = 14000, number of layers l = 3, dropout =
0.0 (no dropout), hidden dimension nl = 64. The values in the
table represent the test MAE. All the errors have to be multiplied
by 10−2. 101

7.1 Number of patches for different patch sizes 110

7.2 Number of patches for each patch size 110

7.3 Entropy statistics . 112

7.4 Quantiles of training time for datasets of different entropy and
patch size . 117

7.5 Quantiles of training time for datasets of varying MEMD score
and patch size . 118

7.6 Test accuracy (in percentage) for the different datasets. For a
given patch size, the test images are the same for each method. . 120

Acknowledgements

This thesiswould not have been possiblewithoutmy advisors,Maria andPatricia,
for whom I am particularly grateful. Thank you for the long journey, filled with
arduous tasks but ultimately exceedingly rewarding: it opened up new paths
for my life and career that I will gladly embark on. The growth I needed, you
gave me, and for that I am eternally thankful!

A thesis cannot be done without advisors, and so too can it be carried out
only with a jury. My thanks therefore go to Professors Dan Istrate and Behçet
Uğur Toreyin for accepting to review my manuscript; and to Professors Anissa
Mokraoui and Christophe Marsala for accepting to be part of the jury.

Although this adventure is essentially a solitary journey, it cannot be undertaken
without companions you encounter on the road. Too many people deserve
thanks that I will necessarily miss some; I apologise in advance and will still
endeavour to perform this perilous exercice.

Je tiens évidemment à remercier tous les membres du personnel de l’ISEP, dont
je connais certains depuis presque huit ans à présent. Ma gratitude va tout
particulièrement pour Gilles, avec lequel nos conversations sont comme un
bon vin qui vieillit bien, et pour lequel des nouvelles saveurs se découvrent
avec le temps ; qui eut cru que nous nous embarquerions dans cette grande
aventure qu’est la Roue du Temps ? Les sujets de discussions ne manquaient
déjà pas, mais la thèse a été l’occasion d’en trouver bien d’autres, et je souhaite
que l’après-thèse en fournisse encore davantage. Mes remerciements s’étendent
bien sûr à Zakia, Yousra, Bahareh, Céline, Lionel, Madjid, Nouredine, Saad,
Maurras, Christophe, Frédéric, Xun, Matthieu, Louis-Joseph, Karim, Iteb, Iyeb,
Mohammed, Nicole, Carole, Samantha, Sébastien, Ziqi, Béatrice, Hang, Yue,
Thomas, Ahmed, Sabrina, Nour, Edith, Valérie, Nicole, Emmanuelle, Florence,
Lina, Wafa, Pierre, Jérémie, Hedi, Raja, Hervé, Jérôme, Henri, ainsi qu’à tous
ceux que j’ai oubliés. Je remercie également Hélène avec laquelle j’espère des
collaborations futures, et Joséphine qui est un beau rayon de soleil (je n’ai pas
oublié les crêpes, promis !). Je pense aussi à tous les étudiants qui je l’espère
m’ont fait devenir un meilleur enseignant.

En remerciant les membres de l’ISEP, je ne peux oublier ceux qui en contrôlent
les portes (bien plus Saint-Pierre que Cerbère) : les agents de sécurité Jimmy
et Romuald. Ce sont avec eux que les journées commencent et se terminent ; je
peux dire sans hésitation que ces journées n’auraient pas été aussi bonnes sans
eux.

My attention must now turn to the main companions of this thesis: my fellow
PhD students. Without order and with a similar gratitude, I must thank them all:
Mariam, Louis, Ayoub, Seoyoung, Fahim, Dalhatu, Shufan, Jade, Tatty, Eduardo,
Idowu, Masoud, Hongxiu, Dayu, Yaya, Xia, Kevin, Xuanbang, Xiaodong, Lina,
Stéphane, Souha, Tristan, Ana. I must also thank the interns that shared our
lunches: Bastien, Lorenzo, Ferdinand, Ehsan, and Katty & Rohan. Abdul, Mr
President, you have a bright future ahead, and I can’t wait to be there with you
to witness these beautiful days.

Je remercie aussi mes amis (je ne préfère pas commencer la liste, elle serait
nécessairement incomplète... les aléas de la mémoire !), les clubs d’aïkido et de
judo de la Celle Saint-Cloud, en particulier les maîtres Jean-Paul, Alexandre,
Guy et Philippe qui me transmettent leur passion à chaque séance. Je remercie
également

"C’est dans cette salle"... à tout honneur tout seigneur, ces remerciements seraient
incomplets si j’oubliais ceux qui ont vécu au jour le jour avec moi, à savoir les
locataires de la mythique L307 ! Arthur, 8 ans déjà, d’ingénieur à docteur, un
beau chemin qui j’espère continuera dans les années à venir.

Viennent maintenant les trois Mousquetaires de cette salle, sans lesquelles cette
thèse serait bien différente.
Naty, eres una persona maravillosa! Las palabras no pueden hacerte justicia. Te
mereces lo mejor y lo tendrás. Un gran abrazo!
楠，你真行！我对你感激涕零。一帆风顺！

Abir, ma3ndich klame bach nchoukrek.

Enfin, je tiens tout particulièrement à remercier toute ma famille,
Mes parents, mon frère, ma grand-mère, mon papy,
Ceux qui sont là, ceux à venir, et ceux qui sont partis.

Chapter 1

Introduction

1.1 Motivation

Graphs are mathematical objects that capture relations between entities. They
represent physical interactions, such as between protons and electrons at the
microscopic scale, and between galaxies at the macroscopic scale. They also rep-
resent informational interactions. For instance, we encounter graphs everywhere
throughout our day: when we interact with other people on social networks,
browse content on streaming platforms, buy products using online retailers, or
when we search for the best itineraries for travelling from one place to another.
They are also used in science, where epidemiologists study the spread of the dis-
ease, chemists explore the properties of atoms andmolecules, and programming
code can be analyzed using its abstract syntax tree representation.

The manipulation of graph data can be divided into three types of tasks: node
level tasks, such as node classification; edge level tasks, e.g., link prediction; and
graph classification. Throughout the years, the treatment of graphs in different
fields has generated a vast range of approaches. For instance, a widespread
approach of learning with graphs is the computation of graph statistics, e.g.,
counting the number of times a pattern is appearing in a graph. Random walks,
graph kernels, graph spectral theory, and the use of shallow embeddings, e.g.,
via the learning of an encoder and a decoder, are also active areas of research.

4 GUILLAUME LACHAUD

Most of these methods suffer from some common limitations. In particular, they
do not scale efficiently to large scale graphs, because there is parameter sharing.
Additionally, these methods usually do not exploit the features of the nodes
and the edges. Also, these approaches are designed to learn embeddings of the
nodes encountered during training. They do not generalize to unseen nodes.
They are transductive rather than inductive.

One way to mitigate the scaling limitations is to use deep learning. Neural net-
works are models in which the parameters are stacked in layers. They allow the
efficient learning of complex representations of input data using the automatic
adjustment of parameters via loss optimization. Although the first models were
theorized 70 years ago, the big breakthrough came with the advent of Graphical
Processing Units (GPUs) and the creation of large scale datasets freely made
available on the Web.

After the successes of deep learning in computer vision with Convolutional Neu-
ral Networks (CNNs) and in natural language processing with Recurrent Neural
Networks (RNNs), new neural networks, Graph Neural Networks (GNNs),
were proposed for learning with graphs. The first major architecture was the
Graph Convolutional Network (GCN) in 2016 Kipf and Welling (2017). Most
GNNs behave according to a message-passing framework:The equations representing

message passing neural networks
(MPNNs) are Equations 4.1 and 4.2

to update the represen-
tation of a node, information is gathered from its neighbours. Figure 1.1 shows
how the stacking of layers influences the update of a node. With a model of two
layers, the node we want to update (the blue node), has received information
from almost all the nodes in the graph, e.g., from all the green nodes.

1.2 Challenges of graph neural networks

The structure of graph data adds a layer of complexity to the training of neural
networks. Indeed, GNNs rely on two elements: information, contained in the
features of the nodes, edges, etc.; and the flow of information, represented by
the interconnection between the nodes, e.g., the structure of the graph. These
aspects raise challenges unique to graphs. In this thesis we address three of these
issues: the difference between transductive and inductive learning, multilabel
classification with graphs, and noise in the nodes of the graph. Specifically, we
deal with node classification.

1.2 Challenges of graph neural networks 5

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

Figure 1.1: Transmission of information in a MPNN model with two layers. The
node we update is the blue node at the top. The red nodes represent the nodes
involved in the update of our node in the first layer of the model. The green
nodes represent those involved in the update of our node after the second layer.

6 GUILLAUME LACHAUD

In node and edge level tasks, the way we generate train and test datasets results
in two settings of learning: transductive learning and inductive learning. Most
splits of a graph will create pairs of nodes linked by an edge where one node is
in the training set and the other in the test set. In transductive learning, all the
nodes are used during the training phase; the model has access to the unlabelled
features of the test nodes. In inductive learning, only the subgraph induced by
the train nodes is used for training. This is illustrated in Figure 1.2. The full
graph is shown in Figure 1.2-(a), with the training nodes in green and the test
nodes in pink. In transductive learning, the model has access to both the green
and pink nodes at training time. In inductive learning, the model has access to
only the green nodes, which are reproduced in Figure 1.2-(b) in red. Hence, the
graph structure on which the model is trained in different in both settings.

(a) Transductive learning. The training nodes
are in green, the test nodes in pink.

(b) Inductive learning. The training
nodes are in red.

Figure 1.2: Difference between transductive and inductive learning. (a) the
model has access to both the train and test nodes at training time. (b) the model
has only access to the train nodes at training time.

In classification, a GNNpredicts the label of a node by leveraging the information
from the node and from its neighbours. Both the features of the node and the
neighbours will push themodel towards a label, but this label may be different in
each case. The challenge is to determine which label to choose. This is illustrated
in Figure 1.3. The features of the node we want to classify (in pink) are similar to
those of a cat, but all the neighbours of the node (in green) are dogs. Is it a dog in
cat’s clothing having an identity crisis? Is it a cat living in a dog’s neighbourhood?
Which information is more valuable: the features or the neighbours?

Classification is also dependent on the quality of the data. In particular, GNNs

1.3 Contributions 7

Figure 1.3: Node classification on a node where the features indicate a label
(cat), and the neighbours indicate another label (dog).

may be confronted with noisy data, i.e., the features of the nodes have noise.
The message-passing nature of GNNs propagates the noise of a node to the
rest of the graph, as illustrated by Figure 1.4. The influence of the noise differs
according the location of the node in the graph, i.e., an affluent node will reach
other nodes faster than a more isolated node, but the strength of the noise will
be different.

Another way to improve the performance of GNNs is to tackle the problem
of graph modelling, i.e., the construction of graph to represent interactions.
Improving the quality of the graphs will improve the quality of the predictions
as well.

1.3 Contributions

Our contributions are the following:

• we present a survey of the most expressive GNNs, dividing the archi-
tectures into groups corresponding to the techniques used to increase
expressiveness,

• wedemonstrate the value ofmultilabel classification on a realworld dataset.
In particular, multilabel classification helps perform a refined diagnosis of
the errors made by a GNNs;

• we show that different GNNs behave differently in terms of noise;

• we empirically show that GNNs are the most vulnerable to noise which
targets the most isolated nodes;

8 GUILLAUME LACHAUD

(a) Small degree node

(b) High degree node

Figure 1.4: Noise propagation after two layers. The red node is the noisy node;
the deep blue nodes are the nodes impacted by the noise. (a) the noisy node has
the fewest neighbours in the graph. (b) the noisy node has the most neighbours
in the graph.

1.4 Thesis outline 9

• we introduce a new GNN architecture for missing data imputation;

• we provide preliminary results for graph creation in medical related data
using extracted patches.

1.4 Thesis outline

We organize the thesis as follows:

• Chapter 2 explains the main concepts related to graphs and graph learn-
ing, as well as the main methods of graph learning before graph neural
networks.

• Chapter 3 presents the main ideas behind deep learning and graph neural
networks. It also presents the most expressive types of graph neural
networks, where expressiveness is the ability to distinguish non isomorphic
graphs.

• Chapter 4 presents the most commonly used graph neural networks in
practice, as well as some of the most respected benchmarks to compare
architectures.

• Chapter 5 first introduces the concept of transductive and inductive learn-
ing, then shows the results of multilabel classification on a real world
academic citation network.

• Chapter 6 presents an analysis of the performance of several graph neural
networks when noise is injected into the features. The chapter concludes
with a novel graph neural network architecture for missing data imputa-
tion.

• Chapter 7 presents preliminary work for generating graph data out of
medical images.

• Chapter 8 concludes the thesis and offers perspectives for future work.

Moreover, this thesis is divided into two parts. The first part contains Chapters 2
and 3 and concerns the representation of graphs and the theoretical aspect of

10 GUILLAUME LACHAUD

graph neural networks. The second part contains Chapters 4-7 and deals with
practical applications of GNNs.

1.5 Publications

This thesis comprises the following articles that have been published interna-
tionally.

• Lachaud, G., Conde-Cespedes, P., and Trocan, M. (2022). Comparison be-
tween inductive and transductive learning in a real citation network using
graphneural networks. InASONAM2022, 2022 (IEEE). 10.1109/ASONAM55673.2022.10068589.

• Lachaud, G., Conde-Cespedes, P., and Trocan, M. (2021). Entropy role
on patch-based binary classification for skin melanoma. In ICCCI 2021.
10.1007/978-3-030-88113-9_26.

• Lachaud, G., Conde-Cespedes, P., and Trocan, M. (2022). Graph neural
networks-based multilabel classification of citation network. In ACIIDS
2022. 10.1007/978-3-031-21967-2_11.

• Lachaud, G., Conde-Cespedes, P., and Trocan, M. (2022). Mathematical
expressiveness of graph neural networks. Mathematics 10, 4770.

• Lachaud, G., Conde-Cespedes, P.C., and Trocan, M. (2022). Patch selection
for melanoma classification. In ICCCI 2022. 10.1007/978-3-031-16014-1_13.

• Lachaud, G., Conde-Cespedes, P.C., and Trocan, M. (2023). Scalable Miss-
ing Data Imputation with Graph Neural Networks. In IWCIM 2023, IEEE
ICASSP 2023 Satelite Workshop.

Part I

Graph Representation

Chapter 2

Introduction to graphs, and
graph representation learning
and signal processing

This chapter presents an overview of themathematical concepts related to graphs
andmachine learningwith graphs thatwill be used throughout the thesis. Specif-
ically, Section 2.1 introduces the definition of graphs and related items, such as
trees, directed acyclic graphs, etc. Section 2.2 defines the most common types of
tasks done on graphs, e.g., node, edge, and graph level tasks. Section 2.3 con-
cludes this chapter by mentioning some of fundamental techniques of machine
learning with graphs.

Contents

2.1 Graphs . 14

2.1.1 Mathematical representation 14

2.1.2 Important definitions . 16

2.2 Learning with graphs . 19

14 GUILLAUME LACHAUD

2.2.1 Node level tasks . 19

2.2.2 Edge level tasks . 19

2.2.3 Graph level tasks . 20

2.3 Machine learning with graphs . 20

2.3.1 Graph statistics and random walks 20

2.3.2 Graph spectral theory . 21

2.3.3 Graph isomorphism and the Weisfeiler-Leman algorithm 22

2.1 Graphs

2.1.1 Mathematical representation

Mathematically, a graph G is represented by a pair (V,E) consisting of a set of
nodes (vertices) V and a set of edges E. Each edge can be expressed as a pair
(u, v) of nodes u and v in V . Figure 2.1 shows an example of a graph, where each
type of element (node, edge) has been highlighted, e.g., nodes appear in blue
while edges appear in red.

An edge (u, v) can be directed, in which case we refer to u as the source and
v as the target. If a graph is undirected, then (u, v) ∈ E ⇒ (v, u) ∈ E. When
edges have a weight, e.g. euv ∈ Rd for some dimension d, we say that the graph
is weighted. More generally, each node may possess features. When the nodes or
the edges have the features, we can speak of an attributed graph.The adjacency matrix associated

with Figure 2.2(a) is

0 1 1 0 0 0 0

1 0 0 1 0 0 0

1 0 0 1 0 1 0

0 1 1 0 1 1 0

0 0 0 1 0 0 1

0 0 1 1 0 0 1

0 0 0 0 1 1 0

Figure 2.2 shows
an undirected, a directed, and a weighted graph sharing the same underlying
graph.

Associated with each graph is an adjacency matrixA. If the graph is unweighted,
then A ∈ {0, 1}|V |×|V | where Auv = 1 if and only if (u, v) ∈ E. If the graph is
undirected, then A is symmetric. If the graph is weighted, the coefficient Auv

corresponds to the weight of euv .

Each nodemay possess features, which can take the form of scalar or vector values.

2.1 Graphs 15

Figure 2.1: Example of a graph. Nodes are colored in blue and edges in red. The
graph is the combination of the set of vertices and the set of edges.

(a) Undirected graph (b) Directed graph (c) Weighted graph

Figure 2.2: Examples of the main types of graphs.

16 GUILLAUME LACHAUD

The features may take categorical, discrete or continuous values.The dimensionality can be viewed
as the size of the embeddings. The
curse of dimensionality in machine
learning refers to the exponential
growth of the number of samples

required to generalize.

The features
of all the nodes are represented by a matrix X . If the features are continuous,
X ∈ Rn×nd , where nd is the dimensionality of the nodes’s features.

2.1.2 Important definitions

Most of these definitions can be found in graph theory textbooks. See for example
Bondy and Murty (2008); Diestel (2012).

A subgraph GS = (V S , ES) of G is a graph where V S ⊂ V and ES ⊂ E. An
induced subgraph is a subgraph where e = (u, v) ∈ (V S)2 for all edges in ES .Note how a subgraph and an

induced subgraph share the same
nodes, but the induced subgraph

can have more edges.

In
other words, an induced subgraph contains all the edges connecting the nodes in
the subgraph. Figure 2.3 illustrates this point, by showing both a graph (pink),
a subgraph (green) and the induced subgraph with the same nodes (green as
well).

A graph is said to be simple if it does not contain any loops or parallel edges.
A graph is acyclic if it does not contain any cycles. A path is a simple graph in
which the vertices can be arranged in a linear sequence such that two vertices
are neighbours if and only if they are consecutive in the sequence. Two nodes
u and v are said to be connected if there exists a path from u to v. A graph is
connected if every pair of vertices in the graph are connected.

A tree is a connected graph in which every pair of vertices is connected by only
one path. A directed acyclic graph (DAG) is a directed graph whose underlying
graph is a tree.

In some cases, it is important to identify a starting point in a graph. A rooted
graphGv is a graph where v acts as the root node. Another term for rooted graph
is egonet. Similarly, a rooted tree is a tree where one of the terminal nodes, e.g.,
nodes with a single neighbour, is taken as the root.

2.1 Graphs 17

0

1

2

3

4

5

6

7

8

9

10

11

12

13

(a) Full graph

0

1

2

3

4

5

6

7

8

9

10

11

12

13

(b) Subgraph

0

1

2

3

4

5

6

7

8

9

10

11

12

13

(c) Induced Subgraph

Figure 2.3: Example of a graph and its subgraphs. Note that (b) and (c) differ
in the set of edges that are included in the subgraph.

18 GUILLAUME LACHAUD

(a) Tree

(b) Directed Acyclic Graph (DAG) (c) Path

Figure 2.4: Examples of special graphs.

2.2 Learning with graphs 19

2.2 Learning with graphs

Tasks performed on graphs can be divided into three categories, depending on
the type of object they target: nodes, edges, or graphs. The tasks performed on
nodes and edges are usually supervised. They require training on a subset of the
graph with labelled items, e.g, nodes or edges, and predict values on unlabelled
items. For this reason, it is often called semi-supervised learning. Clustering In this thesis we will not deal with

unsupervised learning.
, a

central approach of unsupervised learning, is more often seen as a community
detection task.

2.2.1 Node level tasks

Node-level tasks aim at predicting information about nodes. There are two ways
this can be achieved: prediction on the node, e.g. classification or regression; or
learning a node embedding that can be used in downstream applications. Given
a node u ∈ V and its features xu, the task is to predict its label yu.

Many examples of node classification appear in social networks. For example,
given conversations on social media where some of the messages are labelled,
we want to predict the content of the other messages. Another application is
learning user behaviour to detect abnormal users, e.g., bots.

2.2.2 Edge level tasks

Edge-level tasks aim at predicting information concerning the relations between
the nodes. In a social network, this can amount to finding which users are
friends. For a large online retailer, the goal is to predict which products will be
most commonly bought together. In biology, determining how two proteins will
react together is achieved by doing link prediction on protein-protein interaction
networks. This is useful for deciding if two drugs treatments can be taken
simultaneously. More formally, given a subset of edges Etrain of E, the goal is
to predict the existence of the remaining edges, e.g. E \ Etrain.

20 GUILLAUME LACHAUD

2.2.3 Graph level tasks

Graph-level tasks aim at prediction information concerning the entire graph. For
example, given a molecule graph, we want to predict some of its properties, such
as its toxicity, its solubility, etc. Another well known use case of graph level tasks
is programming code analysis, in which we use the programme’s representation,
such as the AST (Abstract Syntax Tree), to determine its behaviour.

2.3 Machine learning with graphs

Prior to the advent of deep learning, graph-based learning relied on methods
such as exploiting the graph statistics, randomwalks, spectral graph theory, and
graph coloring. We present some of these methods, because they play a role in
the design and the analysis of GNNs. For more detailed surveys, we refer to the
following books Hamilton; Ma and Tang (2021).

2.3.1 Graph statistics and random walks

To gain information about a graph, we can compute features such as the node
degree depicted in Equation 2.1, which indicates how many neighbours a node
has. To refine this measure and take into account the centrality of the neighbours,
we can compute the eigenvector centrality, represented in Equation 2.2. Taken over
all the nodes, this equation can be rewritten in the form of Equation 2.3 where it
becomes apparent that λ is an eigenvalue of the matrix A, and e an associated
eigenvector. We can ensure the posivity of the eigenvector centrality because A is
a real square matrix with positive entries; by virtue ofA strictly positive vector must have

only positive entries.
Perron-Frobenius theorem

Meyer and Stewart (2023), there is a unique real-valued eigenvalue of largest
magnitude, and its eigenvector can be taken to be strictly positive.

du =
∑
v∈V

Auv (2.1)

eu =
1

λ

∑
v∈V

Auvev (2.2)

2.3 Machine learning with graphs 21

λe = Ae (2.3)

Beyond centrality, we can use other measures such as The higher the clustering coefficient,
the higher the nodes are clustered
together.

clustering coefficient which
aims at quantifying how the nodes are clustered. This can be done at the global
scale, e.g., as a measure of how the entire graph is clustered, or at the local
scale. Equation 2.4 shows one version of a local clustering coefficient. This
equation counts the number of triangles with u as one the vertices This number represent the number

of edges that exist between two
distinct neighbours of u (the
numerator in the equation). The
size of the set of all possible
triangles represents the number of
pairs of distinct neighbourhoods we
can form (the denominator in the
equation.)

taken over all
such possible triangles. More generally, this approach can be extended to other
structures, such as stars or squares, etc.

cu =
|(v1, v2) ∈ E : v1, v2 ∈ Nu|(

du

2

) (2.4)

Instead of counting the exact number of paths or patterns in a graph, we can use
random walks to get an approximation of the desired value. One of the biggest
advantages of random walks is that it reduces the computational complexity
required by exhaustive counts on a graph.

2.3.2 Graph spectral theory

In practice, it is common to use the Laplacianmatrix L instead of the adjacency
matrix. It is defined by Equation 2.5. The diagonal matrix D is the degree matrix.
Each entry diagonal entry represents the degree of a vertix, i.e.,Duu is the degree
of node u.

L = D −A (2.5)

The Laplacian has many interesting properties. For instance, the multiplicity of
the 0 is equal to the number of connected components of the associated graph.
Instead of using the unnormalized version of the Laplacian, we can use the
version, defined in Equation 2.6.

L̃ = D−1/2AD−1/2 (2.6)

22 GUILLAUME LACHAUD

2.3.3 Graph isomorphism and the Weisfeiler-Leman algorithm

The problem of graph isomorphism can be formulated mathematically in the
following way. Given two graphs G1, G2, they are said to be isomorphic if they
have the same number of nodes and if there exists a permutation that maps each
node of G1 to a node in G2, while preserving the structure, i.e., the edges.

One famous class of algorithms used for determining if two graphs are isomor-
phic is the Weisfeiler–Leman (WL) algorithm, also called 1-WL (Weisfeiler and
Leman, 1968). It can be viewed as a graph coloring scheme. Let c(t)i be the color of
node i at step t. Then, the algorithm iterates according to Equation equation 2.7.
Each node updates its color at step t+1 using its color and that of its neighbours
at the previous step t. The mechanism used for the update is a hash function.
A comprehensive review of the use of WL in machine learning is presented
in (Morris et al., 2021).

c(t+1)
v = HASH

((
c(t)v ,

{{
c(t)u | u ∈ Nv

}}))
(2.7)

Chapter 3

Deep learning and graph
neural networks

This chapter presents the main ideas behind deep learning models. It also
introduces the concept of graph neural networks and offers an analysis of the
expressiveness of GNNs. Expressiveness can be viewed from different points
of views. It can be viewed as the ability to distinguish distinct graphs, e.g.
differentiate between a toxic molecule and life-saving drug, between a pandemic
outbreak and a seasonal flu, etc. Conversely, if two graphs are isomorphic, i.e.,
they are the same up to a permutation, expressiveness can be viewed in terms
of the ability to assign the same result to the two graphs. More generally, since
GNNs must be insensitive to the order of the nodes, we can measure how well
they can approximate any permutation invariant functions.

This chapter is divided as follows. Section 3.1 describes deep learning and neural
networks, while Section 3.2 focuses on graph neural networks in particular.
Section 3.3 reviews the most expressive architectures of graph neural networks.
Section 3.4 concludes the chapter.

This chapter, more specifically Section 3.3, was the subject of one publication
Lachaud et al. (2022c).

24 GUILLAUME LACHAUD

Contents

3.1 Deep learning . 24

3.1.1 Overview . 24

3.1.2 Forward and backward propagation 25

3.1.3 Deep learning in practice 26

3.2 Graph neural networks . 27

3.2.1 Overview . 27

3.2.2 Permutation equivariance and invariance 29

3.2.3 Expressiveness and Weisfeiler-Leman 29

3.3 Most expressive GNNs . 30

3.3.1 Higher Order Networks and Universal Approximation . 31

3.3.2 Computationally Efficient and Powerful Networks 34

3.4 Discussion . 42

3.4.1 Summary . 42

3.4.2 Future work . 43

3.1 Deep learning

3.1.1 Overview

Deep learning architectures are models that automatically learn representations
of raw data. They consist in stacks of layers of parameters, interspersed with
non-linear activation functions, as shown in Equation 3.1. Each layer ϕl, for
l = 1, . . . , L, can contain a non-linear activation function, like the ReLU or the
sigmoid functions, and the symbol ◦ represents the composition operator. Layers

3.1 Deep learning 25

are divided in two categories: filters, which create an abstract representation of
the input; and pooling layers, also known as coarsening or downsampling opera-
tors, which reduce the dimensions of the inputs as they go through the network.
Figure 3.1 shows an example of a neural network. The inputs on the left are
propagated throughout the layers. The main families of neural networks, such
as multilayer perceptrons, convolutional neural networks (CNNs), recurrent
neural networks (RNNs), graph neural networks (GNNs) are distinguished by
the types of filters they use.

Φ = ϕL ◦ ϕL−1 ◦ . . . ϕ1 (3.1)

x1

x2

x3

x4

w11

w12

w13

w14

w21

w22

w23

w24

o1

Figure 3.1: Example of a neural network. The xi represent the inputs; o1 is the
output of the network.

Ingrained in most architectures is the idea of shared weights: the same filter is
applied on different parts of the input. For instance, if a filter in a CNN acts as
an edge detector, it will be applied throughout the image to detect all the edges
Krizhevsky et al. (2017). Moreover, one of the reasons for the success of deep
learning is the overparametrization of the networks: the models contain more
parameters than the number of samples.

3.1.2 Forward and backward propagation

A neural network operates in two ways: a forward pass and a backward pass.
During the forward pass, the model is fed inputs and produces outputs, such as
classifying an image. The backward pass is used in the learning phase to adjust
the parameters.

26 GUILLAUME LACHAUD

In practice, the forward pass is accomplished using matrices and tensors. This
allows the models to be efficiently parallelized, meaning that several inputs can
be processed at once, and the computations can sometimes be distributed upon
several devices. Most deep learning libraries such as TensorFlow and PyTorch
include native support for tensors.

In order to adjust the parameters, we use a loss function that computes how far
our predictions are straying from the desired output. To decrease the loss, we
want to move in the opposite direction of the gradient of the loss: this is the
gradient descent algorithm. One of the key insights behind the success of deep
learning is that the gradient can be backpropagated throughout the network using
the chain rule of derivatives Lecun et al. (1998).

Because the computational graph forms a directed acyclic graph, the backpropa-
gation of the gradients throughout the graph can be performed efficiently. When
a neural network is created, a computational graph is created (specifically, a
directed acyclic graph). Each element’s gradient in the graph is already known.
When the backward pass starts, the DAG is followed and the chain rule used to
update the parameters.

3.1.3 Deep learning in practice

During the training of neural networks, there are a few reoccuring issues: the
scalability of the models, exploding and vanishing gradients, overfitting. The
depth of the networks, in particular creating very deep networks, is also an issue.

The speed gain obtained by performing computations onGPU instead of the CPU
is such that most deep learning models are trained on GPU. Moreover, special
processing units called TPU (Tensor Processing Units) have been designed
for the whole purpose of neural network computation. When the training
data exceeds the memory of the GPU, we have to resort to mini-batch learning,
as opposed to full-batch learning. A fixed number of samples are randomly
drawn from the training data. In this case, we talk about stochastic gradient
descent, because the training produces an estimate of the gradient. In addition
to meeting the memory constraints, mini-batch learning acts as a regularizer and
helps reduce overfitting of the model to the training data.

3.2 Graph neural networks 27

Other means of regularization include the usual weight penalization schemes, i.e.,
imposing constraints such as l1 or l2 norms on the weights. An approach specific
to deep learning is the use of dropout: during the training phase, neurons are
randomly removed. This prevents a strong reliance on specific neurons.

Very deep networks, e.g., networks that havemore than 100 layers, can be created
using skip-connections introduced in He et al. (2016). Deep networks are faced
with the problem of vanishing and exploding gradients. The deeper the network,
the bigger the effect. To counteract this effect, one solution is to normalize the
inputs and perform additional normalization at each layer. This solution has
the added benefit of preventing the network from being too sensible to a single
feature.

3.2 Graph neural networks

3.2.1 Overview

Graph neural networks first emerged in the context of extending recurrent
neural networks to handle structured data (Sperduti and Starita, 1997). For
more complete surveys of graph neural networks, see (Zhang et al., 2022; Wu
et al., 2021).

The layers of a GNN are usually of two types (Ma and Tang, 2021): they can be
graph filters, which operate on the nodes’ hidden representations and produce
new hidden representations. They behave according to Equation 3.2. The layers
can also be graph pooling layers, in which case the graph is coarsened into a
smaller graph. The pooling layers follow Equation 3.3.

H(l+1) = σl

(
gl(S,H

(l))
)

(3.2)

S(l+1), H(l+1) = pool(S(l), H(l)) (3.3)

Here, gl is a filter function that modifies the input signal H(l) while preserving
the structure of the graph, represented by S; pool is a function that reduces the
node dimension of the graph, e.g., if S(l) ∈ Rnl×nl , then S(l+1) ∈ Rnl+1×nl+1

28 GUILLAUME LACHAUD

with nl+1 < nl.

Most of the leading GNNs now follow a structure similar to the one introduced
in (Gilmer et al., 2017): the hidden representation of a node is updated using
the hidden representation of its neighbors. This framework, called the Message-
Passing Neural Network (MPNNs) framework was also independently derived
in Battaglia et al. (2018). MPNNs are sometimes called spatial GNNs because
they rely on an aggregation scheme using the information coming from the
neighbours of a node to update the node’s representation. More formally, the
MPNN graph filter takes the form of Equations 3.4 and 3.5.

m(l+1)
v = AGGREGATE

({{
h(l)u | u ∈ Nv

}})
(3.4)

h(l+1)
v = UPDATE

(
h(l)v ,m(l+1)

v

)
(3.5)

AGGREGATE is a function that maps the multiset of the neighbors’ repre-
sentations into a single vector, e.g., the sum operator; the UPDATE opera-
tor can be a linear mapping of the concatenation of h(l+1)

v and m
(l+1)
v , e.g.,

W ×
[
h
(l+1)
v ,m

(l+1)
v

]
for some weight matrix W . UPDATE can also be the

sum of h(l)v andm(l+1)
v .

The other type of graph filters are often called spectral filters and rely on either
the Laplacian L or the adjacency matrix A to update the representation of the
nodes. These filters follow Equation 3.6 and are also commonly used in prac-
tice (Bruna et al., 2014; Defferrard et al., 2016; Wu et al., 2019). The function
pl(S) is a polynomial of S, where S = L or S = A, fl can be a learnable function
such as a neural network.

H(l+1) = σl

(
pl(S)fl(H

(l))
)

(3.6)

The distinction between spectral and spatial GNNs has more to do with the field
of study from which the network is derived than in true differences between the
architectures; indeed the authors in (Balcilar et al., 2021) show that both spectral
and spatial GNNs can be expressed in terms of a more general framework. For
more comprehensive reviews of all the GNN architectures, see (Wu et al., 2021;
Zhang et al., 2022).

3.2 Graph neural networks 29

3.2.2 Permutation equivariance and invariance

Because the ordering in which the nodes are given is arbitrary, GNNs must be
designed to make this order irrelevant (Bronstein et al., 2021). Mathematically,
this translates to permutation invariance and equivariance: given a permutation
matrix P, a function f is said to be permutation invariant if Equation 3.7 holds;
likewise, f is said to be permutation equivariant if Equation 3.8 holds.

f(PXPT) = f(X) (3.7)
f(PXPT) = Pf(X) (3.8)

3.2.3 Expressiveness and Weisfeiler-Leman

Measuring the expressive power of GNNs serves two purposes: to find the
type of tasks that GNNs can solve and the ones it cannot; and to compare
architectures to find more expressive ones. Using GNNs instead of traditional
neural networks such as Multi-Layer Perceptrons (MLPs), which have been
adapted to handle graph structured data, is motivated by the fact that GNNs
are exponentially more expressive. That is, increasing the number of layers of a
GNN creates exponentially more equivalence classes of rooted graphs than it
does for MLPs (Chen et al., 2021). Moreover, the depth and width of a GNN
play a vital role in the expressiveness of the model. If the model is not wide
enough or deep enough, there are some properties of a graph that it cannot
capture, such as cycle detection, perfect coloring, and shortest path (Loukas,
2020).

When we analyze the expressiveness of a family of GNNs, the expressive power
is usually represented in two different ways: the ability to distinguish non-
isomorphic graphs, or the ability to approximate any permutation invariant
function on graphs. The works of (Xu et al., 2019b; Morris et al., 2019) launched
a vast area of research surrounding the expressiveness of GNNs, in terms of
their limitations and the ways in which these limitations can be uplifted (Maron
et al., 2019a).

While the Weisfeiler-Leman (see Section 2.3.3) is known to fail at distinguishing
some graphs, it performs well in most cases (Cai et al., 1992). For this reason,

30 GUILLAUME LACHAUD

it is often used as the reference when determining the expressive power of a
GNN. The two concurrent works (Xu et al., 2019b; Morris et al., 2019) proved
that standard MPNNs, without node features, are at most as powerful as the
1-WL test. Additionally, (Xu et al., 2019b) proposed the Graph Isomorphism
Network (GIN) and proved that the architecture is as powerful at the 1-WL test.

The WL tests can be extended to k-WL where k ≥ 2 (Douglas, 2011). Instead
of coloring a single node, we color tuples of size k. Let vi ∈ V k be a k-tuple of
G, i.e. vi = (vi1 , . . . , vik)where vij ∈ V for j ∈ [k]. For the k-WL, we define the
neighborhood of a tuple vi to be

Nj(vi) =
({

(vi1 , . . . , vij−1
, u, vij+1

, vik) | u ∈ V
})
. (3.9)

Similarly, for Folklore WL (k-FWL) (Douglas, 2011), a variant of the WL al-
gorithms that uses a different update rule, the neighborhood of vi is defined
as

NF
u (vi) =

(
(u, vi2 , . . . , vik), (vi1 , u, . . . , vik), . . . , (vi1 , . . . , vik−1

, u)
)
. (3.10)

Using these neighborhoods, the update rule for k-WL follows Equation 3.11,
while k-FWL follows Equation 3.12.

c(t+1)
vi = HASH

((
c(t)vi ,

{{
c(t)u | u ∈ Nj(vi), j ∈ [k]

}}))
(3.11)

c(t+1)
vi = HASH

((
c(t)vi ,

{{
c(t)u | u ∈ NF

j (vi), j ∈ [n]
}}))

(3.12)

3.3 Most expressive GNNs

In this section, we present an overview of the approaches used to improve
the expressiveness of GNNs. We restrict ourselves to approaches that have
mathematical theorems that prove that the architectures are indeed at least as
expressive as the standard GNNs. We distinguish two main groups, which are
represented in Figure 3.2. On the one hand, there are models that achieve the
highest level of expressiveness by using higher order data, such as hypergraph
data, at the cost of intensive computational requirements. On the other hand,

3.3 Most expressive GNNs 31

more recent models, while not as powerful as higher order methods, manage to
be more expressive than standard GNNs while being computationally efficient,
by using node identification or by incorporating graph substructure information
in the model.

3.3.1 Higher Order Networks and Universal Approximation

Compared to a maximally expressive standard graph neural network such as the
Graph Isomorphism Network (GIN) (Xu et al., 2019b), higher order networks
gain expressiveness by incorporating knowledge about the hypergraph data,
such as hyperedges between sets of nodes (Morris et al., 2019). Moreover, instead
of building the layers in the network to be permutation invariant, non-invariant
functions can be used then summed over all the set of permutations to produce
permutation invariant functions (Murphy et al., 2019).

Building network layers that work on tuples of nodes instead of single nodes
requires using tensors of higher dimension. Instead of having an input feature
matrix X ∈ Rn×d with an adjacency matrix A ∈ {0, 1}n×n, a hyper-graph can
be represented using a tensor X ∈ Rnk×d (Maron et al., 2019b). In this manner,
Xi represents the features of node i, xi,j of edge (i, j), Xi,j,l of the hyper edge
(i, j, l), and so on.

Because the ordering of the nodes is arbitrary, the GNN layers should be de-
signed to be either permutation equivariant or invariant. A composition of an
equivariant layerwith an invariant layer leads to an invariant function. In (Maron
et al., 2019b), the authors characterize all such types of linear layers. Namely,
given a permutation matrix P and a function vec that vectorizes a tensor, a linear
layer L ∈ R1×nk is invariant if and only if it follows Equation 3.13:

P
⊗

k vec(L) = vec(L) (3.13)

where ⊗ is the Kronecker product. Similarly, a linear layer L ∈ Rnk×nk is
equivariant if and only if it follows Equation 3.14.

P
⊗

2k vec(L) = vec(L) (3.14)

32 GUILLAUME LACHAUD

GNNs and MPNNs

Higher-order networks
(Section 3.3.1)

Invariant networks,
2019 (Maron et al., 2019c)

Equivariant networks,
2019, (Keriven and Peyré,

2019)

Relational pooling,
2019, (Murphy et al.,

2019)

Computationally efficient
networks (Section 3.3.2)

Node identification
(Section 3.3.2)

Random features

Random node
initialization,

2021, (Abboud et al.,
2021)

Random feature in
learning, 2021, (Sato et al.,

2021)

Node coloring,
2020, (Dasoulas et al.,

2020)

Anchor sets, 2019, (You
et al., 2019)

Identity-aware GNNs,
2021, (You et al., 2021)

Substructure awareness
(Section 3.3.2)

Local subgraph templates,
2021, (Thiede et al., 2021)

Automorphism templates,
2021, (Xu et al., 2021a)

Small graph orbit
counting, 2021, (Bouritsas

et al., 2021)

Structural coefficients,
2022, (Wijesinghe and

Wang, 2022)

Rooted subgraphs,
2021, (Zhao et al., 2022;
Zhang and Li, 2021)

Figure 3.2: Overview of mathematically expressive GNNs. Red boxes refer to
sections of the chapter; and blue boxes represent ideas introduced by specific
papers.

3.3 Most expressive GNNs 33

The authors (Maron et al., 2019b) further provide a basis for the space of invariant
and equivariant layers, alongside their dimension.

Instead of trying to directly create an invariant layer, one can use arbitrary
functions and sumover all the permutations. Thiswas first proposed in (Murphy
et al., 2019). Given Xfeatures,id the feature matrix concatenated with a one-hot
encoding of a position of the node, f a GNN, a Relational Pooling GNN (RP-
GNN) layer follows Equation 3.15. π is a permutation of the nodes of G. The
one-hot encoding added toX is permuted with π while X remains fixed. This
prevents the sum from reducing to a single element. Furthermore, selecting the
permutations onwhich to perform the sum can eliminate the factorial complexity
induced by all the permutations.

fRP (G) =
1

|V|!
∑

π∈Π|V|

f(π(A), Xfeatures,π(id)) (3.15)

Building equivariant and invariant layers raises a question: can the network
approximate any invariant or equivariant function, i.e., can GNNs act as uni-
versal approximators? Provided that the tensors have a high enough dimen-
sion, (Maron et al., 2019c) proved that models based on the linear layers defined
above can indeed approximate any invariant functions. Specifically, networks
using layers that are equivariant or invariant for a group G can be expressed as
in Equation 3.16:

ϕ = m ◦ h ◦ σl(Ld) ◦ · · · ◦ σ1(L1) (3.16)

wherem is a multi-layer perceptron that flattens the output, h is a function that
is invariant for the group G, and Li are the equivariant layers for the group G
that follow Equation 3.14.

Similarly, in addition to providing a different proof of the result from (Maron
et al., 2019c) regarding the universality of the linear layers following Equa-
tion 3.13 with respect to invariant functions, the authors of (Keriven and Peyré,
2019) show that, given a sufficient tensor size, equivariant networks can approx-
imate any equivariant function.

In terms of graph isomorphism, k-order GNNs, that is, GNNs that use a k-
order tensor as input such as hypergraphs, are more expressive than GNNs.

34 GUILLAUME LACHAUD

Specifically, since k-WL are known to be strictly more powerful than (k − 1)-WL
for k ≥ 2, and k-WL and (k− 1)-FWL have the same expressive power, adapting
k-WL for GNNs leads to more expressive GNNs (Maron et al., 2019a; Morris
et al., 2019). Thus, k-order GNNs are as powerful as k-WL (Maron et al., 2019a).

The problem with k-order GNNs is that they are computationally expensive.
Universality results for computationally reasonable GNNs were first proven
in (Azizian and Lelarge, 2021), additionally showing that Folklore GNNs are
the most expressive for a given k.

To design GNNs that are more powerful than 1-WL while still being computa-
tionally efficient, we must exploit node properties such as their identification
and the substructures that they belong to.

3.3.2 Computationally Efficient and Powerful Networks

Instead of exploiting higher order knowledge, GNNs can obtain higher expres-
siveness than the GIN architecture by adding information about the node being
updated. This can take several forms: adding features to the nodes to make them
identifiable (Dasoulas et al., 2020); using the structure of the local subgraphs
to adapt the way information is transmitted (Thiede et al., 2021); using rooted
graphs instead of trees centered around the nodes being updated.

Instead of using higher-order networks, finding more expressive architectures
than standard GNNs can be done by looking at the failure cases of MPNNs.
Most of the failures can be attributed to two related causes: the anonymity of
nodes in the message passing stage, where it is impossible to keep track of where
the information is coming from (Loukas, 2020); and the lack of substructure
awareness from MPNNs (Chen et al., 2020).

Mitigating node anonymity is the subject of Section 3.3.2, while injecting sub-
structure awareness into MPNNs is discussed in Section 3.3.2.

3.3 Most expressive GNNs 35

Node Identification

MPNNs cannot distinguish information coming from identical nodes (i.e., nodes
with the same features and same degree). One way to remedy this problem
is to color each identical node with a different color. This is the process in-
troduced in (Dasoulas et al., 2020) with the k-CLIP (Colored Local Iterative
Procedure) algorithm. All the nodes with identical attributes are mapped into
groups V1, . . . , VK . Within each group, each node is assigned a distinct color, by
concatenating the color attribute, e.g., a one-hot encoding, with the features of
the node. k different coloring Ck are chosen out of all the possible colorings. A
standard MPNN is trained for each coloring, and the final output is given by
Equation 3.17:

hG = ψ

(
max
c∈Ck

∑
v∈V

hcv,L

)
(3.17)

where hG is the graph readout of the network, ψ is a learnable function, and
hcv,L is the hidden representation of node v at the last layer L of the network
using the coloring c. Compared to a standard MPNN, the complexity of k-CLIP
has an extra k factor that corresponds to the number of colorings used. CLIP
can be used with all the∏K

k=1 |Vk| possible colorings, in which case it is named
∞CLIP. While the∞CLIP is a universal approximator (Dasoulas et al., 2020), it
suffers from an exponential growth with respect to the size of the Vk, k ∈ [K].
k-CLIP is a random algorithm, e.g., two different runsmight lead to two different
colorings. It is more efficient than∞CLIP, and universality results can still be
obtained for its expectancy (Dasoulas et al., 2020).

When a GNN has a sufficient number of layers, a node is feeding back informa-
tion to itself in its update: in an undirected graph, a node is a neighbor of its
neighbor. For example, given the graph in Figure 3.3a and the trees of height
1 starting from each of its nodes in Figure 3.3b, B is a neighbor of A. With a
standard MPNN, A will be used to update B, which in turn will be used to
update A, with no indication of the provenance of the information. Therefore,
as shown in (You et al., 2021), graphs with different structures can have the
same GNN computational graph. To alleviate this problem, the authors propose
to introduce identity-aware GNNs (ID-GNNs), where they use ego networks
(rooted graphs) in which the root is colored and thus can be identified in the
computational graph. Figure 3.3c shows the ego networks of height 1 for each of

36 GUILLAUME LACHAUD

the nodes in the graph of Figure 3.3a. An ID-GNN layer follows Equations 3.18
and 3.19, whereMESSAGE0 andMESSAGE1 can be MLPs, attention mecha-
nisms, etc. MESSAGE0 is the message function for neighbors of the root node,
whileMESSAGE1 is the message function to update the root node. This set of
equations are similar to Equations 3.4 and 3.5, except that the root node of the
ego graphs is identified and its message is used differently than for the rest of the
nodes. There is almost no added complexity compared to a standard MPNN: by
settingMESSAGE0 =MESSAGE1, we recover a standard MPNN. However,
ID-GNNs can differentiate graphs that a Graph IsomorphismNetwork (Xu et al.,
2019b) cannot, making them strictly more powerful than the 1-WL test (You
et al., 2021).

m(l+1)
v = AGGREGATE

({{
MESSAGE0(h

(l)
u) | u ∈ Nv

}})
(3.18)

h(l+1)
v = UPDATE

(
MESSAGE1(h

(l)
v),m(l+1)

v

)
(3.19)

A simpler approach consists in simply assigning a random feature to each node
at the beginning of the learning phase. Namely, the node feature matrix X is
concatenated with a matrix R ∈ RN×dr where R is a feature matrix that was
sampled from a random distribution. rGIN, the architecture obtained by adding
the random feature assignment to a standard GIN, can distinguish graphs that
GIN cannot (Sato et al., 2021). The random features ensure that graphs that
would lead to the same GNN computational graphs otherwise, will produce
different graphs most of the time. Additionally, random node initialization
allows MPNNs to become universal approximators without requiring higher
order tensors (Abboud et al., 2021).

Instead of using the neighborhood of each node, one can use anchor sets, which
consist of nodes sampled from the graphs. In (You et al., 2019), the authors pro-
pose the Position-aware Graph Neural Network. At each layer, k sets Si, i ∈ [k]

of nodes are chosen. Then, for each node v, a messagemv,i is computed between
v and the nodes in Si, as in Equation 3.20. Finally, the hidden representation
is updated by aggregating the messages from all the anchor sets, as shown in
Equation 3.21.

m
(l)
v,i = AGGREGATE

({{
h(l)u | u ∈ Si

}})
(3.20)

3.3 Most expressive GNNs 37

A

B

C D

EF

(a) A graph with 6 nodes. A, D, and E have degree 2, B and F have
degree 3 and C has degree 4.

A

B C

B

A C F

C

A B F D

D

C E

E

D F

F

B C E

(b) Rooted trees with depth 1 for each node. If the nodes have identical
features and are not identified, the computational tree of MPNN for A,
D, and E are the same.

A

B

C A

B

C

F

A

B

C

F

D

C D

E EF

D

B

C

F E

(c) Rooted subgraphs with depth 1 for each node. Compared with the
routed trees, the A rooted graph is distinguishable fromD.

Figure 3.3: Example of a graph with its rooted trees and rooted subgraphs. The
rooted subgraphs incorporate structural information that is lost in rooted trees.
MPNNs use rooted trees to update notes. If the features are identical, MPNNs
with a single layer will treat nodes B and F as the same; if the network uses the
rooted graph instead, it will distinguish B and F .

38 GUILLAUME LACHAUD

h(l+1)
v = AGGREGATE

({{
m

(l)
v,i | i ∈ [k]

}})
(3.21)

Removing the dependency on the neighborhood of the nodes changes the ob-
jective function of the network. Following (You et al., 2019), the representation
learning objective of a GNN is written in Equation 3.22. ϕ represents the neural
network parameterized by θ. Nodes u and v are sampled according to Vtrain,
the distribution of nodes in the training set. Su is the q-hop neighborhood graph
of u, parameterized by q, the maximum distance to u. Su and Sv are sampled ac-
cording to p(V), the distribution of the set of nodes in the graph. dz is a similarity
metric, and dy is a target similarity metric. By contrast, the learning objective of
a P-GNN is written in Equation 3.23, where S is an anchor set, sampled from the
distribution p(V). P-GNN can share information across the whole graph using
common anchors between nodes, while a standard GNN is restricted to the
nodes in the neighborhood. This makes P-GNN able to approximately capture
properties that GNNs cannot capture, such as the shortest paths in the network.

min
θ

E [L(dz(ϕθ(u, Su), ϕθ(v, Sv))− dy(u, v))] (3.22)

min
θ

E [L(dz(ϕθ(u, S), ϕθ(v, S))− dy(u, v))] (3.23)

In place of identifying each node, the expressiveness of MPNNs can also be
improved by making them aware of the substructures found in the graph.

Substructure Awareness

One area of interest is whether MPNNs can count substructures. That is, given
a graph structure or pattern, can an MPNN count the number of times that such
structure, up to isomorphisms, appears in the graph? The authors of (Chen
et al., 2020) show that MPNNs cannot count patterns with three or more nodes.
However,MPNNs can perform subgraph-count of star-shaped patterns. Looking
at k-WL tests, the authors further show that finite k-WL cannot perform an
induced-subgraph-count of patterns that have more than a given number of
nodes.

MPNNs rely on a star-shaped aggregation pattern: they aggregate informa-
tion coming from neighbors to a central node (see Equations 3.4 and 3.5). For

3.3 Most expressive GNNs 39

example, in Figure 3.3a, node C and E are treated in the same way to update
node F . However, C and E do not have the same structural information, as
C is part of a triangle with B and F , while E forms one of the endpoints of
a path of length 2 with F . To capture this information, (Thiede et al., 2021)
proposes the Autobahn architecture. Given a list of template graphs, at each
layer, the network decomposes the graph into a collection of subgraphs that
are isomorphic to the templates. A single neuron in the Autobahn is applied
to subgraphs that match the list of templates. The activation from the different
templates are combined using narrowing and promotion functions that allow us to,
respectively, extend or decrease the number of nodes that an activation function
takes. The authors (Thiede et al., 2021) argue that if the templates are carefully
chosen, Autobahn can match the expressiveness of higher order networks.

In a similar work, the authors of (Xu et al., 2021a) propose the GRaph Automor-
Phic Equivalence (GRAPE) network, which uses automorphism groups in a
similar manner to Autobahn (Thiede et al., 2021). They focus on template search
using genetic algorithms: templates are produced from a pool, and mutated via
edge mutation or node mutation until a satisfactory template has been produced.
The authors (Xu et al., 2021a) further show that GRAPE can distinguish certain
graphs that MPNNs cannot distinguish.

By contrast, in (Bouritsas et al., 2021), the authors propose using a list of small
connected graphs to directly add structural features to nodes and edges by
counting the number of times a node (or an edge) acts as a member of an orbit
of one the graphs. For example, in Figure 3.3c, nodeC acts as a point in a triangle
for the A rooted graph, but as one end of a path of length 3 in theD rooted path.
The structural features can be concatenatedwith the original features and a GNN
is trained on the new features. The authors (Bouritsas et al., 2021) show that
under certain conditions on the subgraph matching, this type of architecture,
called Graph Substructure Networks (GSN), can be strictly more powerful than
MPNNs and 1-WL.

On the topic of substructures, a new hierarchy of local isomorphisms between
subgraphs is proposed in (Wijesinghe andWang, 2022): subgraph isomorphism,
overlap isomorphism and subtree isomorphism. Let Su be the neighborhood
subgraph of u. It is the subgraph induced by Ñu = Nu ∪ u. The overlap
subgraph between two adjacent vertices u and v is defined by Suv = Su∩Sv . Let
S = {Sv|v ∈ V} and S∗ = {Svu|(v, u) ∈ E}. Structural coefficients for nodes and

40 GUILLAUME LACHAUD

their neighbors can be obtained by defining a function ω ∈ S×S∗ → R that have
the following properties: (1) local closeness: ω(Sv, Svu) > ω(Sv, Svu′) if Svu and
Svu′ are complete graphs and Svu has more vertices than Svu′ ; (2) local denseness:
ω(Sv, Svu) > ω(Sv, Svu′) if Svu and Suv′ have the same number of vertices, but
Svu has more edges; (3) isomorphic invariant: ω(Sv, Svu) > ω(Sv, Svu′) if Svu and
Svu′ are isomorphic.

Based on these criteria, the authors in (Wijesinghe and Wang, 2022) propose
the GraphSNN architecture. It follows Equations 3.24–3.26. Equation 3.27 is
an example of a valid ω function, parameterized by λ > 0. |Vvu| is the number
of vertices of Suv, and |Evu| its number of edges. Furthermore, the ω(Sv, Svu)

can be normalized for the network operations. With this ω, GraphSNN is more
powerful than 1-WL (Wijesinghe and Wang, 2022).

m(l)
a = AGGREGATE0

({{(
ω(Sv, Svu), h

(l)
u

)
| u ∈ Nv

}})
(3.24)

m(l)
v = AGGREGATE1 ({{(ω(Sv, Svu) | u ∈ Nv}})h(l)v (3.25)

h(l+1)
v = UPDATE(m(l)

a ,m(l)
v) (3.26)

ω(Sv, Svu) =
|Evu|

|Vvu| · |Vvu − 1|
|Vvu|λ (3.27)

Alternatively, instead of relying on structural coefficients or graph templates,
we can exploit the rooted subgraphs of each node. In this setting, we employ
a network uplifting scheme where a base GNN is used to compute node rep-
resentations, which are fed to an outer GNN. In (Zhao et al., 2022), the au-
thors use rooted graphs to compute three types of information: the centroid
encoding, which is obtained when the node is the root of the rooted graph; the
subgraph encoding, which represents the information from the other nodes
in the rooted graph; and the context encoding, which represents the informa-
tion that the node carries in the other rooted graphs. Let G(l)[Nk(v)] be the v
rooted graph with height k, with the node representations from layer l. Let
GNN (l) = POOLGNN(l)(EMB(l)(i|G(l)[Nk(v)])|i ∈ Nk(v)) be the inner GNN,
with POOLGNN(l) the pooling operator after the last layer of the GNN, and
EMB(l)(i|G(l)) the embeddings before the pooling operation of the GNN. Let
d
(l)
u|v be the encoding of distance from node u to v at layer l (Li et al., 2020). Let
σ be the sigmoid function, ⊙ the element-wise product. The GNN As Kernel

3.3 Most expressive GNNs 41

(GNN-AK) architecture follows Equations 3.28–3.31. The authors (Zhao et al.,
2022) prove that this GNN-AK is strictly more powerful than 2-WL and not less
powerful than 3-WL.

h
(l+1)
v,subgraph = POOLGNN

({(
σ
(
d
(l)
u|v

)
⊙ EMB

(
i | G(l)[Nk(v)]

))
, i ∈ Nk(v)

})
(3.28)

h
(l+1)
v,centroid = EMB

(
v | G(l+1)[Nk(v)]

)
(3.29)

h
(l+1)
v,context = POOLCONTEXT

({(
σ
(
d
(l)
u|v

)
⊙ EMB

(
v | G(l)[Nk(u)]

))
, v ∈ Nk(u)

})
(3.30)

h(l+1)
v = UPDATE

(
h
(l+1)
v,subgraph, h

(l+1)
v,centroid, h

(l+1)
v,context

)
(3.31)

WL and MPNNs encode a rooted subtree for each node. This is illustrated in
Figure 3.3a,b. The nodes in red in Figure 3.3b are updated using information
from the nodes in blue. Information about edges between the nodes in blue is lost.
This might prevent the network from learning useful information at the graph
level. Instead, (Zhang and Li, 2021) proposes to learn subgraph representations
centered around rooted graphs. Let Gh

v be be the rooted graph of v with height
h, and N (v|Gh

w) the neighborhood of v within w’s rooted subgraph. A layer of
Nested Graph Neural Network (NGNN) follows Equations 3.32 and 3.33. In the
last layer, the representation of node w is obtained by performing a readout, as
shown in Equation 3.34 where L is the last layer and R0 is the readout function.
These new representations can be used as an input to a second GNN to perform
graph-level tasks. These nested architectures are strictly more powerful than
1-WL (Zhang and Li, 2021).

m
(l+1)

v,Gh
w
= AGGREGATE

({{
h
(l)

u,Gh
w
| u ∈ N (v | Gh

w

}})
(3.32)

h
(l)

v,Gh
w
= UPDATE

(
h
(l)

v,Gh
w
,m

(l+1)

v,Gh
w

)
(3.33)

hw = R0

(
hLv,Gh

w
| v ∈ Gh

w

)
(3.34)

While graphs may be difficult to distinguish, it is usually easier to distinguish
subgraphs. With this in mind, (Bevilacqua et al., 2022) propose using bags
of subgraphs that can then be readout, and on which a set operation can be
performed. There can be different policies in selecting the subgraphs. These
methods are more powerful than 1-WL.

42 GUILLAUME LACHAUD

3.4 Discussion

In this section, we summarise the results concerning the expressiveness of GNNs,
and we provide outlooks for future works.

3.4.1 Summary

The early works regarding GNN expressiveness were focused on two goals:
providing bounds for MPNNs, and overcoming those bounds. The works of (Xu
et al., 2019b; Morris et al., 2019) established Weisfeiler–Leman tests as the stan-
dard of comparison when it comes to expressiveness of GNNs. The higher-order
Weisfeiler–Leman tests provide a template for higher-order GNNs (Douglas,
2011).

Higher-order methods also arise when trying to design GNN layers that are
universal approximators or invariant (Maron et al., 2019c) or equivariant func-
tions (Keriven and Peyré, 2019). To this end, hypergraphs with tensors contain-
ing hyperedges data are required (Maron et al., 2019b).

With higher-order networks, the complexity grows exponentially with the num-
ber of nodes. This makes these networks computationally expensive, and alter-
natives must be crafted to handle large graphs. Approaches with low overhead
compared to a standard MPNNs include some form of node identification. This
can be achieved by adding colors to each node (Dasoulas et al., 2020), using
rooted graphs (You et al., 2021), fixing sets of nodes that are used to update all
the nodes in the graph (You et al., 2019), or by adding random features to the
nodes (Abboud et al., 2021; Sato et al., 2021).

To retain part of the expressiveness of higher-order networks, subgraphs can
be used as templates on which to perform the convolutions. This breaks the
star-shaped pattern of MPNN convolutions and allows for other patterns such as
triangles, circles, etc. A networkwith a good selection of templates can be viewed
as a higher-order network where only a few substructures are used (Thiede
et al., 2021). These templates can be searched via genetic algorithms (Xu et al.,
2021a).

Substructures can also be used to add structural information to the nodes. This

3.4 Discussion 43

can be achieved by counting the roles a node plays in different templates and
adding this information to the features (Bouritsas et al., 2021). Alternatively,
structural coefficients which take into account the shapes of neighborhoods can
inject structural information into the network (Wijesinghe and Wang, 2022).

On top of the previous methods, GNNs can be used a building block for other
GNNs. An inner GNN using rooted graphs can be used to produce hidden
representations that are fed into an outer GNN (Zhang and Li, 2021). More-
over, each node can be updated using three types of information: the centroid
information, when the node is the root of the rooted graph; the subgraph infor-
mation, which is the information coming from its neighbors; and the context
information, which is the information it contributes to rooted graphs where it is
not the root (Zhao et al., 2022).

All the expressiveness results of the architectures discussed in this chapter are
presented in Table 3.1. The table contains only results that have a mathematical
proof in the associated paper. In some cases, this could mean that higher bounds
can exist that have not been proven. Conversely, new architectures that are
developed today could have a high expressiveness, but since no mathematical
proof is provided, the evidence is only empirical.

3.4.2 Future work

To the best of our knowledge, there has yet been no papers investigating the ex-
pressive power of methods that combine the methods presented in Section 3.3.2.
For example, can the gains made in mathematical expressiveness from adding
node identifiers be combined with the ones made from using nested graph neu-
ral networks? Or do these gains have the same root, rendering the combination
as powerful as either of the methods individually?

Another way to improve expressiveness is to extend GNNs to more complex
structures such as cell complexes, of which graphs are special cases (Bodnar
et al., 2021). Graphs can be seen as part of a bigger framework of geometric
objects, which can be worked on using geometric deep learning (Bronstein et al.,
2021). A possible line of work would be to explore other types of structures that
share profound links with graphs, and create efficient architectures that can be
adapted to graphs.

44 GUILLAUME LACHAUD

Table 3.1: Expressiveness of GNNs. Expressiveness is given with respect to how
the authors proved the results. GIN corresponds to the most powerful standard
MPNN.

Architecture Expressiveness
GIN (Xu et al., 2019b) 1-WL

k-GNN (Morris et al., 2019) (k-1)-WL
RP-GNN (Murphy et al., 2019) strictly superior to GIN
PPGN (Maron et al., 2019a) 3-WL
∞CLIP (Dasoulas et al., 2020) universal approximator
ID-GNN (You et al., 2021) >1-WL
rGIN (Sato et al., 2021) >1-WL, universal approximator
PGNN (You et al., 2019) greater than MPNN

Autobahn (Thiede et al., 2021) depends on the templates, can
achieve k-GNN performance

GRAPE (Xu et al., 2021a) stricly more powerful than MPNN
GSN (Bouritsas et al., 2021) more powerful than MPNN and

1-WL under conditions.
GraphSNN (Wijesinghe and Wang,

2022)
> 1−WL

GNN-AK (Zhao et al., 2022) >2-WL, ≥ 3-WL
NGNN (Zhang and Li, 2021) > 1-WL

Part II

Learning

Chapter 4

GNNs in practice

This chapter introduces themost frequently usedGNNs in realworld application,
as well as the datasets on which our experiments are performed. The most
used GNNs differ from the most expressive ones because of the computational
cost one the most expressive GNNs is prohibitive when we want to perform
classification on large graphs. Additionally, standard GNNs can outperform the
most expressive architectures on real world datasets.

This chapter is divided as follows. Section 4.1 presents the most commonly used
GNN architectures, as well as some of the tricks that can be used to improve their
performance. Section 4.2 presents the dataset we are using in our experiments,
discusses the splitting of data, the difference between transductive and inductive
learning, and the choice of node features.

Contents

4.1 GNNs in practice . 48

4.1.1 Message Passing Neural Framework 49

4.1.2 Graph Convolutional Networks 49

4.1.3 Graph Attention Networks and attention mechanisms . . 50

48 GUILLAUME LACHAUD

4.1.4 GraphSAGE and neighbourhood selection 51

4.1.5 GNN advanced tricks . 52

4.2 Dataset . 53

4.2.1 Overview . 53

4.2.2 Dataset split . 54

4.2.3 Transductive and inductive learning 54

4.2.4 Graph Information AidedNode feature exTraction (GIANT) 56

4.1 GNNs in practice

In the first part of this thesis, we focused on the theoretical background of deep
learning and graph neural networks. In this part, we present more empirical
results. In particular, this first chapter takes a look at empirically and historically
important graph neural networks and datasets.

Some of the more important advances in the field of GNNs include the for-
malization of the generic architecture of a GNN and the exploration of various
neighbourhood selection schemes. Furthermore, the development of new ar-
chitectures has mostly relied on adapting successful techniques from other
domains, such as attention mechanisms and knowledge distillation, or on ex-
ploiting unique properties of graph stuctured data, such as reversible GNNs
or GNNs that leverage information from multihop neighbours. Another par-
ticularity of GNNs is the possibility to leverage the graph information in the
design of the features. Besides, the dependencies between nodes play a role
in how a graph is split between training and test data, which can affect model
performance. In the rest of this section we present the main concepts that will
be used throughout the paper.

4.1 GNNs in practice 49

4.1.1 Message Passing Neural Framework

As presented in the first part of this thesis, most GNNs follow the message
passing neural network (MPNN) framework (see Section 3.2.1) introduced in
Gilmer et al. (2017). The network aggregates information about the neighbors of
a node to produce messages that are used to update the hidden representation
of each node. More formally, let G = (V, E) be a graph where V is the set of
vertices and E the set of edges. hlv represents the features of a node v at the
layer l, andH l the feature matrix for all the nodes. evw represents the edge from
node v to node w. IfX denotes the node features matrix, we have by convention
H0 = X . An update from layer l to layer l + 1 takes the form

ml+1
v =

∑
w∈Nv

Ml(h
l
v, h

l
w, evw) (4.1)

hl+1
v = Ul(h

l
v,m

l+1
v) (4.2)

where Ml and Ul are respectively the message and update functions of layer
l. The changes compared to Equations 3.4 and 3.5 from Section 3.2.1 are the
addition of the evw in the message computation, and the use of the sum (Σ) op-
erator, instead of the more generic AGGREGATE function. While the theoretical
guarantees exposed in the first part of the thesis hold for any aggregate function,
in practice the most commonly used function is the sum operator.

The three architectures, GCN, GAT, and GRAPHSAGE, that we describe next
play an important role in the evolution of graph neural networks. They took the
field away from signal processing and into the deep learning era; they added the
paramount attention mechanism, and started the sampling thread that allowed
the architectures to scale to large graphs with more than a billion of nodes.

4.1.2 Graph Convolutional Networks

Graph Convolutional Networks (GCNs) were introduced in Kipf and Welling
(2017). They are one of the earliest forms of MPNNs. They extend the concept of
spectral convolutions on graphs by approximating the convolution with Cheby-
shev polynomials Defferrard et al. (2016). A GCN layer follows Equation 4.3.
σ represents an activation function, such as the ReLU function. D̃ is the nor-

50 GUILLAUME LACHAUD

malized degree matrix, Ã the normalized adjacency matrix. W l represents the
parameters of the layer.

H l+1 = σ
(
D̃− 1

2 ÃD̃− 1
2H lW l

)
(4.3)

AGCN is usually composed of several of these layers, with the activation function
of the last layer being a softmax to output probabilities.

4.1.3 Graph Attention Networks and attention mechanisms

Attentionmechanismswere introduced in Bahdanau et al. (2015) in the context of
natural language processing, with the goal of learning the most important parts
of a sentence, e.g., which part of the sentence contains the meaning. Inspired by
their success, they were imported to GNNs with the introduction of the Graph
Attention neTwork (GAT) in Velickovic et al. (2018) and remain part of most
of the leading architectures Chien et al. (2021); Sun and Wu (2020); Sun et al.
(2021). The update rule is presented in Equation 4.4.

h(l+1)
u = σ

(∑
v∈Nu

α(l)
uvW

(l)h(l)v

)
(4.4)

α
(l)
uv is the normalized attention coefficient at layer l of node v with respect to u,

that is, it indicates how important the features of node v are to node u. The
coefficients are retrieved by computing the attention coefficients then performing
a softmax for normalization. More formally, with e(l)uv the attention coefficients
at layer l and a the attention mechanism, α(l)

uv and e(l)uv can be computed using
Equations 4.5 and 4.6.

e(l)uv = a
(
W (l)h(l)u ,W (l)h(l)v

)
(4.5)

α(l)
uv =

exp(e
(l)
uv)∑

w∈Nu
exp(e

(l)
uw)

(4.6)

4.1 GNNs in practice 51

The attention mechanism can be any function that takes as input two vectors,
with the same dimension as the productW (l)h

(l)
u and outputs a real value. For

example, a can be a feed-forward neural network.

4.1.4 GraphSAGE and neighbourhood selection

GraphSAGE (Graph SAmple and aggreGatE) is a type of GNN and MPNN
introduced in Hamilton et al. (2017). It is designed with the goal of performing
inductive learning, i.e. to generate node embeddings for unseen data. It follows
Equations 4.7-4.9. Nv represents a sampling of Nv. Usually, Nv produces a
fixed-size set. CONCATENATE is the concatenation operator. Equation 4.7 can
be generalized by using a different operator from the sum operator, provided
that the operator is still permutation invariant, i.e. produces the same result
regardless of the order of the nodes.

hl+1
Nv

= σ

(
W l

(
1

| Nv | +1

(
hlv +

∑
v∈Nv

hlu

)))
(4.7)

hl+1
v = σ

(
W l · CONCATENATE

(
hlv, h

l
Nv

)) (4.8)

hl+1
v =

hl+1
v

∥hl+1
v ∥

(4.9)

While the neighbourhood function can be defined arbitrarily, in practice we draw
a uniform sample of fixed size from the neighbors of the node. This draw is
performed for every layer. The choice of neighbourhoods for each node can affect
the performance of the network. Classical graph neural networks such as Graph
Convolutional Networks Kipf and Welling (2017) used the full neighbourhoods
of each node. To be able to handle larger graphs, some approaches use the same
sampling scheme as GraphSAGE while trying to preserve the graph structure as
in Cluster-GCN Chiang et al. (2019).

52 GUILLAUME LACHAUD

4.1.5 GNN advanced tricks

In this section, we present some of the tricks that can be used to improve the
performance of GNNs. These tricks can be applied to virtually all GNNs.

Reversible GNNs: the challenge of GPU size

GNNs are memory intensive, to the point that many models cannot be run
with large datasets on standard GPUs. Most of the memory cost comes from
having to store the features tensor of the whole graph at each layer. To solve
this problem, reversible graph neural networks have been proposed in Liu et al.
(2019); Li et al. (2021a). The idea is to propagate the information from layer to
layer using a chain of operations that will be performed in an inverse way for
the backpropagation. It increases the time complexity in order to decrease the
space complexity.

Self-knowledge distillation

Another approach used for decreasing memory load is knowledge distillation
Hinton et al. (2015). A large neural network is trained while smaller networks
try to approximate its results. The large network acts as a teacher and the smaller
networks as students. Using this principle, it was shown in Zhang et al. (2019)
that an efficient way to implement knowledge distillation is to train the early
layers of a network as the students and the whole network as the teacher.

Adaptive Graph Diffusion Networks (AGDN): the challenge of oversmooth-
ing

In addition to memory constraints, adding layers to GNNs can lead to over-
smoothing the features, where the information of a single node is drowned in
the information coming from everywhere in the graph Li et al. (2019).Nodes that are one-hop apart are

the direct neighbours, those that are
2-hop apart are the neighbours of

the neighbours, and so on.

One
way to counteract this effect is to try and retrieve information at each layer from
different hop-neighbourhoods. One example of such architecture was proposed in
Sun and Wu (2020).

4.2 Dataset 53

4.2 Dataset

Most of our experiments in this thesis are performed on one dataset: the aca-
demic citation network that comprises all the papers in the arXiV Computer
Science repository. In this section we provide a description of this dataset. We
also discuss the question of splitting a graph dataset, the difference between
transductive and inductive learning, and the choice of features.

4.2.1 Overview

ogbn-arxiv is a dataset from the Open Graph Benchmark (OGB) Hu et al. (2020).
It is an academic citation network that contains all the papers in the arXiV Com-
puter Science repository. It contains 169,343 nodes and 1,166,243 edges. Each
node has a 128 feature vector. These features represent the average embeddings
of the words in the title and the abstract. These embeddings are obtained using
a word2vec model Mikolov et al. (2013). The features are normalized. The
splitting of the dataset between train, validation and test is done using the year
in which the articles were published: the papers up to 2017 are in the train set.
Those published in 2018 are in the validation set. Papers from 2019 and 2020
constitute the test set.

The labels in the dataset represent the category Each category is denoted by two
letters; their full name can be found
at https://arxiv.org/corr/
subjectclasses.

of the paper, e.g. machine learn-
ing, computer vision, etc. Each paper is labelled by the authors and the arXiv
moderators; these labels are assigned a number between 0 and 39, representing
the 40 categories of the arXiv CS (Computer Science) repository.

In our discussion of transductive and inductive learning, we also use the ogbn-
papers100M and ogbn-mag datasets from OGB. We briefly describe them in the
remainder of the section.

ogbn-papers100M is a dataset constructed in a similar way to ogbn-arxiv, except
that it contains more than 111 million papers and that the classification task is
performed on the subset of papers that corresponds to all the papers published
on the arXiv website; it is not restricted to computer science and there are 172
subject areas.

ogbn-mag is a heterogeneous graph which contains about 736,000 papers, 1.1

https://arxiv.org/corr/subjectclasses
https://arxiv.org/corr/subjectclasses

54 GUILLAUME LACHAUD

million papers, 8,700 institutions and 60,000 fields of studies. The features of
the nodes are constructed with the same approach that was used for creating
the features of ogbn-arxiv. The task is to predict the venue of the paper.

4.2.2 Dataset split

A naive approach to splitting a graph between train, validation and test sets, is
to randomly assign each node to one group. This is what was done in Yang et al.
(2016) on graphs like CiteSeer, Cora and Pubmed Sen et al. (2008). Similarly,
the authors of Chiang et al. (2019) follow a randomized split without validation
set for training their model. By contrast, the authors of Hu et al. (2020), who
incorporated the Amazon dataset in Chiang et al. (2019) as the ogbn-products in
OGB, recommend using a split that relies on the sales ranking of the products:
the most sold items are in the training set while the most rarely sold ones are
in the test set. The authors further argue that this split matches the behaviour
of real-world applications where, due to the cost of labelling data, the most
important nodes are labelled first and a model is used to infer the labels of the
less important nodes.

In (Hu et al., 2020), the authors proposed splitting the dataset with respect
to the year of publication of the papers, on the basis that this reflects one of
the real world applications of GNNs, which is to predict the category of new
papers using only already published papers; furthermore, they argue it is a more
challenging task than just randomly splitting between train, validation and test.
Thus, the split is the following: the train set consists of all papers published
before 2018; the validation set has all the papers published in 2018; and the test
comprises all the papers from 2019 (inclusive) onwards.

4.2.3 Transductive and inductive learning

Due to the interconnectedness of nodes in graph data, it is not possible to
create a series of independent examples to be fed to a neural network, as can be
done in computer vision with images or in natural language processing with
sequences of text input. Thus, there are two approaches for splitting a dataset
between training and test data: the unlabeled features of the test nodes can be

4.2 Dataset 55

used during the training phase of the model, or they can be ignored. The first
approach corresponds to transductive learning, while the latter corresponds to
inductive learning Yang et al. (2016). In transductive learning, the model tries
to predict labels of nodes already seen in the training phase, while the model
in inductive learning is tested on unseen nodes. Inductive learning is therefore
better suited to improve the generalization power of a model.

The concepts of transductive and inductive learning are related to the choice of
neighbourhood. In the transductive setting, the neighbours of the training nodes
can belong to the validation and test sets; in this case, only their features are
known at training time. In the inductive setting, the neighbours of the training
nodes are restricted to other training nodes. The nature of the dataset, more
specifically the way it evolves over time, can influence the preferred mode of
learning, i.e., whether we should use transductive or inductive learning Yang
et al. (2016). It is especially important in temporal graphs Rossi et al. (2020); Xu
et al. (2020).

When training a GNN on a social citation networks from OGB, ogbn-arxiv, ogbn-
mag and ogbn-papers100M, the recommended data split by the authors of Hu
et al. (2020) is to put all the papers published before 2018 in the training set;
those published in 2018 in the validation set and the rest in the test set. Table 4.1
shows the distribution of nodes and edges in ogbn-arxiv, ogbn-mag and ogbn-
papers100M, as well as the number of edges that have a source and a target node
in a different part of the data split, e.g., one node in the train set and the other in
the test set. We see that in ogbn-arxiv, a model trained in a transductive setting
can exploit about 200, 000 edges, of which only 40% are in the training set. The
phenomenon is less important in ogbn-mag where 80% of the edges are in the
training set. Considering only the edges between labeled nodes, which account
for a small portion of all the edges, ogbn-papers100M has also 80% of its edges
coming from the training set.

Citation networks change over time, as fields grow in importance while others
dwindle. This is shown in Tables 4.2 and 4.3 which contain the most frequently
occurring class per year in the ogbn-arxiv dataset. Some classes, such as the cv
class (Computer Vision) were not present in the top 5 before suddenly reaching
second then first position, as it happened between 2013 and 2015. These distri-
bution changes emphasize the importance of inductive learning: GNNs need to
be trained to be able to adapt to these changes.

56 GUILLAUME LACHAUD

Table 4.1: Distribution of Edges in Train, Validation and Test.

Graph Detail number of edges edges overlap
arxiv full graph 1,166,243 -
arxiv self-loops, reverse edges 2,484,941 -
arxiv train subgraph 829,007 -
arxiv validation subgraph 86,671 -
arxiv test subgraph 167,883 -
arxiv train and validation 1,351,570 435,892
arxiv train and test 1,710,834 713,944
arxiv validation and test 506,098 251,544
mag full graph (only citations) 5,416,271 -
mag self-loops, reverse edges 11,568,931 -
mag train subgraph 8,389,507 -
mag validation subgraph 177,111 -
mag test subgraph 123,583 -
mag train and validation 10,149,426 1,582,808
mag train and test 9,575,822 1,060,732
mag validation and test 533,884 231,190

papers100M full graph (only citations) 1,615,685,872 -
papers100M self-loops, reverse edges 3,342,431,700 -
papers100M train subgraph 21,315,319 -
papers100M validation subgraph 330,045 -
papers100M test subgraph 639,152 -
papers100M train and validation 24,506,366 2,861,002
papers100M train and test 25,144,635 3,190,164
papers100M validation and test 1,583,153 613,956

4.2.4 Graph Information Aided Node feature exTraction (GI-
ANT)

The choice of features associated with each node and edge can play a significant
role in the efficiency of a classifier. Most methods of feature extraction using
raw data, such as word2vec Mikolov et al. (2013) or BERT Devlin et al. (2019)
do not leverage the graph topology when constructing the new features. The
Graph Information Aided Node feature exTraction (GIANT) framework was
proposed in Chien et al. (2021) to incorporate the graph topology in the feature
extraction.

At the time of writing, the success of ChatGPT has initiated a new wave of

4.2 Dataset 57

Table 4.2: Top 5 Classes (By Size) and Per Year in obn-arxiv. Only the 3 Most
Prominent Classes Are Shown.

Year Class 1 size Class 2 Size Class 3 Size
2019 lg 8690 (21.88%) cv 8584 (21.62%) cl 4075 (10.26%)
2018 cv 6846 (22.97%) lg 4458 (14.96%) cl 2849 (9.56%)
2017 cv 4326 (20.18%) it 2597 (12.11%) lg 2114 (9.86%)
2016 cv 2646 (16.19%) it 2525 (15.45%) lg 1374 (8.41%)
2015 it 2210 (18.36%) cv 1453 (12.07%) lg 1008 (8.38%)
2014 it 1755 (19.17%) cv 705 (7.70%) ds 631 (6.89%)
2013 it 1617 (19.88%) ai 927 (11.40%) lg 579 (7.12%))
2012 it 1316 (20.45%) lg 680 (10.57%) ai 547 (8.50%))
2011 it 1142 (25.80%) ds 384 (8.67%) lo 246 (5.56%)
2010 it 940 (26.37%) ds 298 (8.36%) lo 240 (6.73%)

Table 4.3: Top 5 Classes (By Size) and Per Year in obn-arxiv, continued. Only the
4th and 5th most prominent classes are shown.

Year Class 4 Size Class 5 Size
2019 it 2256 (5.68%) ro 1602 (4.03%)
2018 it 2273 (7.63%) ai 1232 (4.13%)
2017 cl 1753 (8.18%) ai 933 (4.35%)
2016 cl 1185 (7.25%) ds 850 (5.20%)
2015 ds 736 (6.12%) si 532 (4.42%)
2014 lg 593 (6.48%) ni 483 (5.28%)
2013 ds 552 (6.79%) ni 441 (5.42%)
2012 ds 433 (6.73%) ni 341 (5.30%)
2011 ni 223 (5.04%) ai 217 (4.90%)
2010 ni 210 (5.89%) ai 189 (5.30%)

Large-Language Model (LLM) extracted features GRA; He et al. (2023).

Chapter 5

Social networks and
multilabel classification

This chapter deals with the difference between transductive and inductive learn-
ing, as well as the problem of multilabel classification. When a graph evolves
over time, the distribution of the nodes changes. This distribution shift is re-
flected when the dataset is split into training and test sets. Training a GNN with
(transductive) or without (inductive) access to the unlabelled test data leads to
different performances from the models. Section 5.2 evaluates and compares
state-of-the-art GNNs on node classification in an academic citation network.

In node classification, a GNN is using both the features of a node and its neigh-
bours to determine its label. In some cases, this means that the features will
push the model towards one label, while the neighbours will push it towards
another. Furthermore, the notion of a correct label for a node can be blurred
in settings where there are overlaps between the labels. In Section 5.3, we ex-
plore the problem of multilabel classification in an academic citation network.
Section 5.4 concludes the chapter.

The results presented in Section 5.2 were published in Lachaud et al. (2022b),
while the work in multilabel classification from Section 5.3 was presented in
Lachaud et al. (2022a).

60 GUILLAUME LACHAUD

Contents

5.1 Introduction . 60

5.2 Transductive and inductive learning 61

5.2.1 Experiments . 63

5.3 Error analysis and multilabel classification 66

5.3.1 Single class classification 66

5.3.2 Multilabel classification approach 69

5.4 Discussion . 73

5.1 Introduction

A graph distribution can change over time. Attributes of users of social networks
change. A hundred years ago, papers were written by individual people, there
were fewer collaborations and the number of papers each paper citedwas smaller.
Contributions came from a few countries Dong et al. (2017). In a social network,
an event can change the structure of the graph.

Another aspect of working with social graphs is that classification is not always
perfect: while we can establish that a molecule is toxic or not, putting labels
on people is more complicated, because the categories are not entirely distinct.
Users can like several genres of music and have different groups of friends.
Furthermore, a user can change over time: their taste of music can evolve,
friendships can end while new ones are forged. Additionally, some categories
can encompass or overlap with other categories.

In many cases, classification tasks require neural networks to produce multiple
labels: images have several elements, sentences can be related to different topics,
and nodes in a graph may be related to several classes via different neighbours.
Multilabel classification for each type of data led to the development of special-
ized network architectures (Nam et al., 2014; Wang et al., 2016; Lanchantin et al.,
2019).

5.2 Transductive and inductive learning 61

In the context of a changing graph, the distribution shift may cause issues in
the performance of GNNs in different settings: transductive and inductive
learning. Evaluating GNNs in these two settings provides a better comparison
ground between the architectures. Several explanations are possible as to why
an architecture achieves the same performance in transductive and inductive
learning: the train and test dataset may have the same distribution, or the
architecture is failing to capture relevant information in the transductive setting.

Another point of interest is the nature of the shift: is it a structural shift, e.g., the
way nodes are linked together has changed; or a semantic shift? An example
of a structural shift is science moving towards collaborations and away from
single author contributions. One example of a semantic shift is a field, such as
computer vision, changing from handmade features to embeddings generated
by deep learning approaches.

In this chapter, we analyze the behaviour of several GNNs on a graph that has
a known distribution shift (see Section 4.2.3). We evaluate the GNNs in both
transductive and inductive learning. We consider two sets of features for the
nodes: the original ones, and improved ones proposed by some authors. We
find that performance between transductive and inductive learning is similar.
We then focus on the errors made by a GNN. We find that these errors are of
three types. The first type of error is due to the the use of a common A semantic field represents the set

of words that are related to a topic.
By analogy, the semantic field can
describe the values that the features
from the nodes of a given class take.

semantic
field between two classes and the over-representation of one class compared to
the other, which leads to misclassification of the small class in favour of the large
one. The second type is due to a similar semantic field with multiple interactions
between the classes. The third type is due to classes which sit at the intersection
of other classes, e.g. robotics and human computer interaction.

5.2 Transductive and inductive learning

In contrast to image and text data, graphs cannot easily be divided into multiple
datasets, because nodes are interconnected with each other. In order to train a
GNN, we must create a training set on which the model is trained; a validation
set whose purpose is to find the best model; and a test set containing unseen
data to see if the model is performing well.

62 GUILLAUME LACHAUD

Figure 5.1: Node in the training set with neighbours in all the graph.

When the graph can dynamically evolve over time, as is the case for social net-
works or citation networks, the splitting is usually based on the temporality of
the nodes: the earliest nodes are put in the training data and the most recent
nodes form the test data. This is coherent with the goal of most of the applica-
tions using temporal graphs: being able to predict future nodes features, edges
creation, etc., using a model trained on the existing data.

In transductive learning, the nodes in the training data might have access to
the features of the nodes in the validation and test sets. Consider the node
in Figure 5.1. For simplification purposes, edges between other nodes than
the central nodes are removed. The edges are represented as undirected, and
the self-loop has been added. Here the node has 48 neighbours (not counting
itself) with the following distribution: 13 nodes are in the training set, 16 in
the validation data and 19 in the test set. Each additional training node might
contain other edges with nodes in the validation data and test data. After several
layers of a GNN, and depending on the locality of the node in the graph, the
node has received information about many of the nodes in the validation and
test sets. In the inductive setting, the model is trained using only the subset
of nodes in the training data; in our example, this represents the blue nodes.
Since most of the GNN entries on the Open Graph Benchmark leaderboardThe leaderboard is available online

at this address:
https://ogb.stanford.edu/

docs/leader_nodeprop/.

train
their models in a transductive setting, there is a spread of information from the
validation and the test data to the training data.

In conjunction with exploiting the features of nodes in the test set, most methods
use label information as a way to augment the features of the nodes: given a set
of featuresXfeats, a one hot encoding vector is used to represent the label of the

https://ogb.stanford.edu/docs/leader_nodeprop/
https://ogb.stanford.edu/docs/leader_nodeprop/

5.2 Transductive and inductive learning 63

node. The new features Xonehot are then concatenated with Xfeats to produce
the input features X . For the elements outside of the training set, the label is
first left empty; i.e. all the entries in the one hot vector are set to zero. Then the
vector is filled by applying a softmax to the output logits of the GNN. If there is
information from the test set that is contained in the validation data, it means
that the network will indirectly try to produce the best label features for the test
nodes that are used in classifying the validation nodes. It is thus trying to fit the
test data.

5.2.1 Experiments

We compare the performance of models trained in two different settings: trans-
ductive and inductive learning. In the first setting, the model has access to the
training data and the unlabeled validation and test data. In the second setting,
the model has only access to the training data. Each setting follows the same
temporal split presented in Section 4.2. A practical way to remove the edges
going from or to unlabeled nodes is to generate the subgraph of the network
that contains only the nodes within the given set.

The architectures we compare are the best performing architectures on the ogbn-
arxiv dataset. Specifically, we train Deep RevGAT Li et al. (2021a) and Adaptive
Graph Diffusion Network (AGDN) Sun and Wu (2020) models. The Deep
RevGAT architecture follows the message passing neural framework Gilmer
et al. (2017). It is a GAT Velickovic et al. (2018) which has been converted to a
reversible GNN Li et al. (2021a) to remove the memory constraints imposed by
the storing of a feature matrix for each layer of a traditional GNN. We explore
the importance of self-knowledge distillation Zhang et al. (2019) by training
the Deep RevGAT with and without knowledge distillation. Additionally, we
investigate the importance of feature selection, using either the original features,
the features extracted with the GIANT framework, and the features with added
label information.

All the experiments are performed with a 24 GB Nvidia RTX GPU. The code is
written in Python, PyTorch and DGL (Deep Graph Library) Wang et al. (2019).
The ogbn-arxiv dataset is taken fromOGBHu et al. (2020). Several Deep RevGAT
are trained with a different number of layers. The AGDNmodel is trained on

64 GUILLAUME LACHAUD

the original features both with and without using a bag of tricks presented in
Wang et al. (2021) that can improve performance.

Each model is trained for 2,000 epochs. At the end, the model weights saved are
the ones which led to the best validation accuracy. Additionally, each model is
trained for 10 runs in order to mitigate the fluctuation in accuracy over each run.

Table 5.1 shows the results of the training computations in a transductive setting.
The difference between validation and test accuracy is also shown in the last
column. Table 5.2 shows the results of the same models in the inductive setting.

Table 5.1: Validation and Test Accuracy for Transductive Learning. AGDN is
trained with the original features.

Model Validation accuracy Test accuracy Validation and test gap
RevGAT, teacher, 2 layers 76.99± 0.06 75.98± 0.12 1.01
RevGAT, KD 2 layers 77.13± 0.10 76.17± 0.15 0.96

RevGAT, 3 layers 77.13± 0.06 75.95± 0.11 1.18
RevGAT, KD 3 layers 76.93± 0.08 75.61± 0.15 1.32

RevGAT, 5 layers 77.11± 0.06 75.80± 0.12 1.31
RevGAT, KD, 5 layers 77.24± 0.09 75.97± 0.09 1.27

AGDN, original features - 73.46± 0.17 -
AGDN with BoT - 74.10± 0.15 -

Table 5.2: Validation and Test Accuracy for Inductive Learning. The Best Score
is Highlighted in Bold. KD Stands for Knowledge Distillation.

Model Validation accuracy Test accuracy Validation and test gap
RevGAT, 2 layers, 76.75± 0.08 75.91± 0.14 0.84

RevGAT, KD, 2 layers, 76.74± 0.05 75.81± 0.13 0.93

RevGAT, 3 layers, 76.78± 0.08 76.04± 0.10 0.74
RevGAT, KD, 3 layers, 76.78± 0.09 75.97± 0.09 0.81

RevGAT, 5 layers, 76.84± 0.05 76.00± 0.10 0.84
RevGAT, KD, 5 layers, 76.85± 0.06 76.07± 0.07 0.78

RevGAT(3), no label features, 76.54± 0.09 75.83± 0.10 0.71
RevGAT(3,KD), no label features, 76.63± 0.08 75.97± 0.06 0.66

AGDN, original features, 72.47± 0.12 73.20± 0.17 −0.73
AGDN with BoT, 73.62± 0.07 74.00± 0.07 −0.38

AGDN, GIANT features, 76.28± 0.17 75.38± 0.22 0.9

5.2 Transductive and inductive learning 65

We see that in the transductive learning setting, the Deep RevGAT model
achieves the best accuracy with the smallest number of layers. Using self-
knowledge distillation with more layers actually worsens the performance. The
increase in the difference between validation and test accuracy indicates that the
model is trying to fit the validation data, and that the validation data and test
data are not completely similar. This is expected because the addition of new
papers to the citation network may change the structure of the graph, and the
model might not be able to predict these unforeseen structures.

In the inductive setting, the performance of the model with self-knowledge
distillation increases with the number of layers, while the gap between validation
and test accuracy decreases. The model with 5 layers and knowledge distillation
achieves the best test accuracy of all the models trained with inductive learning.
The performance is close to the one from the top model in the transductive
setting.

Models trained on the same dataset in transductive and in inductive learning
usually achieve better test accuracy in transductive learning Xu et al. (2020).
This is an expected behaviour because the transductive model already had
access to test data in the training phase. The fact that the models achieve similar
performances in transductive and inductive settings may be an indication that
the models are not fully exploiting the information available during training,
and that new architectures are needed to leverage it. Indeed, the fact that the
AGDN model trained with the original features has a higher test accuracy than
its validation accuracy suggests that the model is slightly underfitting the data,
and that either the features must be changed, or the model needs to be modified
to better exploit the data.

The use of features that exploit the graph topology, created with the GIANT
framework, could partly explainwhy the gap between transductive and inductive
learning is small: because the features are created using the entire graph, some
of the test information is already embedded in the features of the training nodes.
Since the AGDN model trained with the original features achieves comparable
accuracy in both settings, the GIANT extracted features cannot account for the
small gap.

In the inductive setting, directly encoding the label information as part of the
nodes features using a one-hot encoding scheme does not seem to improve

66 GUILLAUME LACHAUD

performance. While the Deep RevGAT model with 3 layers trained with label
features performs better than the model trained solely on the GIANT features,
adding self-knowledge distillation reduces the difference.

The most likely reason why the models achieve comparable results in transduc-
tive and inductive settings is that each model uses some form of neighbourhood
sampling in the training phase. This makes the models more robust and acts
as a regularizer in preventing overfitting to the data. The importance of edges
coming from validation and test data is reduced as they do not systematically
appear in the sampled edges.

5.3 Error analysis and multilabel classification

The experiments in the remainder of the chapter will be performed in the trans-
ductive setting only. We now turn analyse the errors made by the GNNs. For
these experiments, we use a GAT with the original features of the graph.

5.3.1 Single class classification

In this section, we use a single class classification approach. A deep analy-
sis of the misclassifications will lead us to explore a multilabel approach in
Section 5.3.2.

For all the experiments, we use a 24GB NVidia RTX GPU. The code is written in
Python, Pytorch and PyTorch Geometric (Fey and Lenssen, 2019). We use the
OGB (Open Graph Benchmark) (Hu et al., 2020) package to get the ogbn-arxiv
dataset.

To analyze the misclassification errors made by the model, we need to go beyond
the accuracy score and look at the confusion matrix on the test set, which will
help us see where it fails to generalize. The value at row ci and column cj
indicates the number of times the model has assigned the label cj to a node
from ci, divided by the total number of nodes of category ci in the test set. The
rows have been normalized and each one adds up to 100.Each value outside the diagonal is a

mistake made by the model.
The categories were

ordered in such a way that the small classes occupy the first columns while

5.3 Error analysis and multilabel classification 67

the middle of the matrix is for the most populated classes and the rest of the
columns represent mostly middle-sized classes. A subset of the full confusion
matrix is displayed in Figure 5.2 with the categories that are discussed in the
rest of the paper.

Figure 5.2: Subset of the confusion matrix.

We first observe that the size of the category in the training set, as represented
by the “train size” column in Tables 5.4 and 5.5 is not a sufficient indicator of
poor performance. The model achieves low accuracy on such categories as ar
(Hardware Architecture) and pf (Performance) but successfully classifies nodes
from gt (Computer Science and Game Theory) and sc (Symbolic Computing),
despite the fact that these categories have approximately the same number
of nodes in the training set. This suggests that some categories display more
cohesiveness than others, and that the network is able to detect this pattern.

Still on the topic of categories with little representation, we see systematic mis-
attribution for nodes in the mm (Multimedia) and gr (Graphics) categories,
which are classified as cv. Considering that the three subjects likely share a

68 GUILLAUME LACHAUD

similar terminology, and that the initial features of the nodes were based on
the words in the title and the abstract, there is little hope, without changing the
features, to correctly predict these classes.

Next, we are faced with subject areas that are intrinsically interdisciplinary,
which means they exploit ideas from other areas of research. The most eminent
representative of these categories is hc (Human Computer Interaction). By
design, HCI tends to capitalize on the advances in various fields, e.g. computer
vision, natural language processing, and study the impact, positive or negative,
they can have on users. In ogbn-arxiv, this will be reflected in two manners: hc
nodes have neighbours that can belong to other classes, and two hc nodes can
have vastly different features.

Finally, the error which is the key factor in driving down the accuracy is the
confusion between categories within a group of similar categories. This is
exemplifiedwith the categories cv (Computer Vision), lg (Machine Learning), ai
(Artificial Intelligence), cl (Computation andLanguage,mostly natural language
processing) and ne (Neural and Evolutionary Computation). About 30% of
ai nodes in the test set are incorrectly attributed to one of the aforementioned
classes, while 20% of lg nodes and 35% of ne nodes are similarly misclassified.
All these categories mutually fuel the research of the others. The two biggest
reasons for the misclassification are a combination of two causes mentioned
earlier: many nodes from these categories share a similar terminology, e.g.
papers on neural networks have similar characteristics; and the nodes cite papers
from all the areas in the group.

Considering the overlapping themes of some categories, as well as the interdisci-
plinary content of some papers, a multilabel classification approach is preferable
to the single label classification task. Firstly, it allows a finer grained categoriza-
tion of papers, distinguishing between papers in the robotics field that have a
computer vision component with those that have a natural language processing
component. Secondly, it helps concentrate on the bigger errors made by the
neural networks: those in which the category is not in the top predictions.

5.3 Error analysis and multilabel classification 69

5.3.2 Multilabel classification approach

Instead of focusing only on the top prediction of the model, we retrieve the
three most likely predicted classes of our GAT model for each node in the test
set. The set of estimated probabilities is usually obtained by applying a softmax
activation function to the last layer of the neural network; in the case ofmulticlass
classification, to make a prediction, we simply output the category which is
associated with the highest probability. We compute the number of times the
correct category is the prediction (accuracy, or top 1), as well as the number of
times it appears in the two (top 2) or three (top 3) categories with the highest
estimated probabilities. Overall, while the model achieves 72.4% accuracy, the
right category is in the two highest predictions 87.3% of the time, a 15% increase.
In the top 3, this number rises to 92.4%. Results for each category are presented
in Tables 5.4 and 5.5, alongside the relative size of the category in the training
set (given in percentage) and its population in the test set. The arXiv categories
in bold are the ones discussed in the text. Additionally, a representation of the
top 3 predictions for some nodes is presented in Figure 5.3.

Table 5.3: Top 3 score on training, validation and test

dataset top 1 top 2 top 3
train 79.31 90.36 94.14
valid 73.62 87.76 92.73
test 72.27 87.25 92.36

We see that, within a group of non-mutually exclusive categories, there are some
classes that attract most of the predictions, such as the cv and clwhich are in the
group of artificial intelligence related categories. These leads to poor accuracy
scores for the lg and ai classes. However, when we look at the three highest
estimated probabilities, the network gets most of the lg and ai samples right.
For example, node 1 in Figure 5.3 belongs to the lg category, which is the second
prediction of themodel. Similarly, nodes 2, 3, 5 and 7 all belong to the ai category,
which is the second or the third prediction from the model.

Additionally, the top three predictions are either related to the true category, or to
the category of the neighbours. For example, node 1 has neighbours that belong
to the ai, lg, cv, cl categories. This means that the model is properly learning
from the information contained in the neighbours. Nodes with neighbours

70 GUILLAUME LACHAUD

Table 5.4: (Part 1) Top 3 category predicted by the GAT model. The train size
represents the percentage of nodes in the training set that are from each category.
The test column indicates the number of nodes from the test set that are in each
category.

subject top 1 top 2 top 3 train size (%) test
cv 91.83 98.10 98.99 10.99 10477
lg 69.27 91.30 96.38 7.69 10740
it 90.56 96.28 97.54 17.91 2849
cl 92.74 97.06 98.27 4.77 4631
ai 49.14 71.13 82.68 5.70 1455
ds 69.87 86.85 92.43 5.97 1414
ni 55.12 84.32 91.12 4.46 1250
cr 67.04 82.18 87.91 3.15 1869
dc 52.73 75.12 83.07 3.23 1246
lo 67.94 90.18 94.13 3.96 733
ro 70.91 88.77 94.63 1.83 2066
si 68.40 82.61 88.18 3.14 1041
gt 74.16 87.40 91.55 2.76 627
sy 63.72 79.47 84.96 2.06 419
se 62.00 76.24 81.81 1.69 808
ir 46.52 77.47 90.13 1.48 892
cc 51.59 71.88 87.25 2.47 345
db 63.41 74.43 83.37 1.78 481
ne 44.90 64.97 82.96 1.42 628
os 8.33 25.00 50.00 0.08 36

5.3 Error analysis and multilabel classification 71

Table 5.5: (Part 2) Top 3 category predicted by the GAT model. The train size
represents the percentage of nodes in the training set that are from each category.
The test column indicates the number of nodes from the test set that are in each
category.

subject top 1 top 2 top 3 train size (%) test
cy 17.13 43.12 59.33 1.12 654
cg 75.72 85.62 90.42 1.64 313
dm 26.02 54.65 78.81 1.71 269
pl 47.41 74.09 81.87 1.39 386
hc 20.10 36.82 52.89 0.77 622
dl 76.17 81.78 85.05 1.21 214
fl 55.45 73.18 80.00 1.02 220
sd 77.47 89.89 94.95 0.50 475
ma 6.28 27.62 62.76 0.43 239
et 57.89 74.64 81.82 0.44 209
mm 22.46 52.94 66.31 0.42 187
sc 83.10 88.73 88.73 0.52 71
ce 28.36 44.78 52.99 0.42 134
na 33.33 55.56 70.37 0.48 54
gr 11.33 56.16 77.34 0.22 203
pf 10.00 34.17 52.50 0.26 120
ms 57.83 79.52 84.34 0.30 83
ar 45.98 65.52 74.71 0.27 87
oh 0.00 1.96 3.92 0.33 51
gl 0.00 0.00 0.00 0.02 5

72 GUILLAUME LACHAUD

Figure 5.3: Top 3 predictions for a few nodes in the graph. The pie chart repre-
sents the probability assigned by the model to the the first three categories. For
each node with a piechart, the label of the first prediction is the one on top, the
second prediction the one in the middle and the third prediction the one at the
bottom. The nodes without piecharts are the neighbours of the nodes on which
we do the predictions, and have their true label written inside them.

from different categories than themselves will rarely be classified in the correct
category, but the top predictions of the model will most often be related to the
content of the paper. This suggests that focusing on a single category is not
sufficient to properly classify a paper, and that a better way is to look at the first
two or three predictions to get a meaningful categorization of the paper. Node 1
is a paper from the ai category, but it cites papers from the cv category; thus it
is likely to contain a sizable amount of information related to computer vision,
even if it is not the main theme of the paper.

We also observe that the challenges faced by interdisciplinary categories remain
when we observe the top three predictions: the model correctly has hc in its
top three predictions in only 53% of the cases. Node 4 and node 7 in Figure 5.3
illustrate the situation. Node 1 only has lg neighbours, while node 2 only has cv
neighbours. Furthermore, hc is not in the first three predictions of the model.

5.4 Discussion 73

5.4 Discussion

In this chapter we studied the difference between transductive and inductive
learning for citation networks where the graphs have been converted to undi-
rected graphs and the train, validation and test sets have been constructed using
the temporal information of the nodes. We saw that the training datasets con-
tain many edges from the validation and test sets: one fifth of the edges in the
training set of ogbn-mag are from the validation or test set, while two thirds of
the edges in ogbn-arxiv come from outside of the training set.

To analyze the importance of these edges, we trained state of the art GNNs in
an inductive setting where the training set contains only edges from within
the training set. We found that the networks achieved similar performances in
either a transductive or inductive setting. This may be due to the neighbourhood
sampling methods used by most GNNs that reduce overfitting to the data. This
also suggests that current models can be improved, as models usually perform
better in transductive settings.

Furthermore, we observed that the gap between validation and test accuracy
was lower in the inductive setting than in the transductive setting. This is an
indication that the models trained in the inductive setting were better at gen-
eralizing than their counterparts trained in the transductive setting. Moreover,
this suggests that new architectures will likely be able to improve on the current
results.

In this chapter, we also trained a GNN on the same dataset, reframing the
problem as a multilabel classification problemwhere a node may belong to more
than one category with a given probability. For instance, a paper in the robotics
category might tackle a computer vision problem, while another one might deal
with a natural language processing task. We found that considering the top
three predicted classes, the real class was present in more than 92% of the cases.
In addition, we observed that the categories in the top predictions are usually
related to the true category, or to the category of the neighbours of the paper.
These results validate the multilabel approach.

Some perspectives for future works include performing a similar analysis on
bigger datasets to generalize our findings. The multilabel approach is likely to

74 GUILLAUME LACHAUD

extend to other domains, as objects in social networks or other real world data
do not usually belong exclusively to one class. Furthermore, a different set of
features can be explored to improve discrimination between classes.

Chapter 6

Noisy features and missing
data imputation

This chapter deals with the noise in nodes features and its impact on GNN
learning. Specifically, we deal with two types of noise: noisy features and
missing features. Noise can arise frommany situations, such as faulty sensors or
misinformation. It can occur randomly or target specific nodes, e.g., target the
most influent nodes or the most isolated ones. Section 6.1 present an overview
of the problem of noise in graph data. Section 6.2 explores the impact of noise
in the features on the training of state-of-the-art GNNs, in both transductive
and inductive settings. Section 6.3 presents a novel GNN architecture to impute
missing features. Section 6.4 concludes the chapter.

The work regarding noisy features in Section 6.2 is currently under review. The
work regarding missing data imputation was published in Lachaud et al. (2023).

Contents

6.1 Noise in data . 76

6.1.1 Noise in attributes . 76

76 GUILLAUME LACHAUD

6.1.2 Missing data . 78

6.1.3 GNN’s treatment of noise 80

6.2 Noisy features . 81

6.2.1 Problem Definition . 82

6.2.2 Random noise perturbation 84

6.2.3 High degree node perturbation 87

6.2.4 Small degree node perturbation 92

6.2.5 Extension to other types of architectures 94

6.3 Missing data imputation . 96

6.3.1 GRAPE . 96

6.3.2 Scalable GRAPE . 97

6.3.3 GRAPE for graph data . 98

6.3.4 Experiments . 99

6.3.5 Training behaviour . 99

6.3.6 Ablation study . 101

6.4 Discussion . 102

6.1 Noise in data

6.1.1 Noise in attributes

Most types of data contain some degree of noise. It can take many forms, such
as blur in images, spelling or grammar mistakes in text; parts can be missing
or distorted in audio and video recordings. The impact of noise on machine
learning models varies with the severity of the noise Dodge and Karam (2016).

6.1 Noise in data 77

For instance, noise in the background of an image is less important than the
background noise of an audio recording in a crowded train station. Additionally,
noise can occur naturally or can be artificially injected to produce errors.

In graph structured data, the noise takes two forms: noise in the structure of
the graph, and noise in the features and labels. Noise in the structure alters
how nodes are connected together via the edges. Edges can be added or deleted.
For example, in a social network where the nodes represent people and the
edges indicate friendship, removing edges will hide the friendship between two
people. In this way, a group of people forming a community might appear as
disjoint groups of individuals.

Noise in the features covers the noise in the features of the nodes and the edges.
As an illustration, in a products network, edges between two products indicate
how many times they were bought together Chiang et al. (2019). Because the
company selling the products may have different selling points, the information
can take time to be aggregated. During this time, the weight of the edges does
not represent the correct number of items sold together. In a different vein,
social networks such as Facebook and Twitter, each record different information
about their users, so each user of both networks may have different features on
each platform. Classification using one or the other social network will produce
different outcomes.

The importance of noise in graph structured data is twofold: noise in the struc-
ture impacts how the information propagates through the graph; and noise in
the features changes the messages that are passed. Firstly, many of the machine
learning approaches used in graph representation learning involve a flow of
information through the neighborhood of the nodes. Indeed, in Graph Neural
Networks (GNNs), most models follow a Message Passing Neural Network
(MPNN) framework Gilmer et al. (2017). In this framework, a message is
computed between a node and each of its neighbours, and these messages are
aggregated to form the new node’s representation.

Secondly, while the structure determines the nodes used to update the graph’s
representation, it is the features that create the representation. For instance, in
a social network, wrong hobbies may be attributed to a user. When machine
learning models try to predict what the hobbies of their friends are, they will
use the wrong hobbies which will lead to classification errors. These errors will

78 GUILLAUME LACHAUD

spread to the friends of the friends, and might spread through the whole graph.

The impact of noise on the learning of GNNs can be amplified by the manner in
which the learning is performed. There are two possible settings: transductive
and inductive learning. In transductive learning, the GNN model has access to
the validation and test features at training time; only the labels are hidden. In
contrast, in inductive learning, the model is trained exclusively on the training
nodes. These settings reflect different real life scenarios Yang et al. (2016).
Transductive learning can be applied to the classification of products in an
online retail store; the labelled nodes represent the bestselling items, and the
goal is to predict the category of the rest of the items. In this case, the aim is
to predict the category of known nodes. With respect to inductive learning, an
example is the prediction of the behaviour of new users in a social network. The
model must generalize to unseen nodes.

6.1.2 Missing data

Missing data is a problem that occurs across a wide range of domains. For
example, in medical related domains, data can be missing as a result of a patient
being treated by different providers, or resorting to multiple laboratories which
do not centralize their data Wells et al. (2013). Incomplete data can have several
causes: the information is not available, e.g. if a sensor is malfunctioning, it
will stop recording measurements; the information is missing at random, i.e. no
external cause can explain the incompleteness; or the information is missing
due to an underlying reason, e.g. a person in a survey refuses to answer some
questions Graham (2009).

Amongst its other successes, deep learning has helped promote several ways
of performing feature imputation, i.e. filling the missing values based on the
observed values. For example, auto-encoders use a two step process that first
learns a compact encoding of the data, similar to compression, and tries to
decode the compact representation so as to maximize the similarity with the
input Vincent et al. (2008). In a different vein, Generative Adversarial Networks
(GANs) combine two networks where one feeds into the other: the first network
(generator) tries to generate artificial input while the other network (discrimi-
nator) learns to classify the data as artificial or real. In feature imputation, the

6.1 Noise in data 79

generator imputes the missing values while the discriminator tries to find which
values where imputed and which ones were observed Yoon et al. (2018).

GRAPEYou et al. (2020) achieved state-of-the-art performance on the problem of
feature imputation by reframing the learning objective as a graph representation
problem: the data is viewed as a bipartite graph with two types of nodes: the
observations and the features. The edges between the nodes are the observed
features, where the weight of the edge is the value of the feature. The feature
imputation is done by training a Graph Neural Network (GNN) on the graph.

In this chapter, we address the issue of the scalability of GRAPE: we propose
a mini-batch version that works on datasets which do not fit in GPUs for full
batch training. We test our architecture on a dataset which cannot be used with
the original GRAPE, due to memory issues. Additionally, we present simple
preprocessing and post-processing steps that allow GRAPE to be applied to
graph structured data, compared to only tabular data in the original paper You
et al. (2020).

Traditional approaches to solve feature imputation tasks include methods such
as the Expectation-Maximization algorithm Dempster et al. (1977), k-nearest
neighbours (k-NN) Troyanskaya et al. (2001), and matrix completion Candès
and Recht (2009). These approaches may suffer from scalability issues, such
as using a k-NN on millions of observations; or do not generalize to unseen
observations. For example, matrix completion requires retraining to fit the new
data.

Many types of data can be seen as specific cases of graph data, e.g. an image is
an euclidean grid, a sentence is a tree. Graphs and graph-based neural networks,
Graph Neural Networks (GNNs), can be used to take into account the structural
information of the data while imputing the missing features. Matrix completion
approaches can be extended to graphs Kalofolias et al. (2014), while GNNs can
be used to impute missing data by treating observations and features as part of
a bipartite graph You et al. (2020). In graphs, missing features can be imputed
by propagating the other features in the graph Rossi et al. (2022).

Deep learning approaches can face issues in terms of GPU or TPUmemorywhen
the data becomes too large. In this setting, several approaches can alleviate
the problem: sampling the data to create mini-batches Chiang et al. (2019);

80 GUILLAUME LACHAUD

optimizing the architecture by removing less influential parameters Wu et al.
(2019); or performing a trade-off in time and space complexity by using reversible
operations that can be computed sequentially Li et al. (2021a).

6.1.3 GNN’s treatment of noise

The problem of noise in graph data has been mostly studied from the point of
view of noise or attacks in the structure of the graph, or in the labels.

With respect to the structure, a powerful way of disturbing the graph is to use a
gradient-based attack, called projected gradient descent (PGD) Xu et al. (2019a),
which tries to find the smallest perturbations that produce the greatest decrease
in performance. To protect the GNN against such attacks, more sophisticated
aggregation schemes than the mean operator, such as the Soft Medoid Geisler
et al. (2020) or the Soft Median aggregators Geisler et al. (2021), must be devised.

The noise is often considered from the point of view of the downstream task, e.g.
what matters is not how noisy the features are, it is how noisy labels are and how
the metrics of the model are impacted by the noise. Li et al. (2021b) explore in
great depth how neural networks react to noisy labels. Dai et al. (2021) propose
an architecture that is robust against noisy labels in graphs.

Instead of relying on robust architectures against noise, a different approach
consist in denoising the data. This can be achieved using the graph filtering
properties of GNNs Rey et al. (2022). Another example is the use of graph
convolutions to denoise mesh data Shen et al. (2022).

Apart from additive noise, missing data can contribute to the noise. In this case,
the features can be reconstructed using graph neural networks. One approach
is to create a bipartite graph consisting of observations and features; the edges
between the nodes representing the value of the feature for a given observation.
A GNN is then trained to perform edge weight prediction You et al. (2020).
Alternatively, the features of the nodes can be propagated to the neighbours to
fill in the missing values Rossi et al. (2022).

Recent studies have also shown that certain architectures of GNNs possess an
internal implicit denoisingmechanismMa et al. (2021). Thismechanism is studied

6.2 Noisy features 81

in more depth in Liu et al. (2022).

Parallel to the effort of denoising data, there are works which focus on creating
better features that leverage the topological information available in graphs
Chien et al. (2022).

6.2 Noisy features

MostGraphNeuralNetworks (GNNs)work bypropagating information through
the graph. They adhere to the message passing neural network (MPNNs) frame-
work. What separates each MPNN architecture is the mechanism by which
information is transferred. For instance, GCNs Kipf and Welling (2017) use
an explicit weighting scheme based on the degree of the nodes, while GATs
Velickovic et al. (2018) employ an implicit weighting scheme by assigning a
different importance to each node via the attention mechanism.

Noise in features can take several forms, the most common of which is additive
noise, e.g. the input can be expressed as the sum of a “clean” input and an extra
term. For example, the noise component can be Gaussian noise. The noise can
be entirely random, or follow an underlying pattern. For example, missing data
in clinical studies is not always random, but may have a latent cause, such as the
patient refusing to disclose personal information Graham (2009). Similarly, if
the categories contain the values “wolf” and “dog”, the noise may not entirely
be random.

More formally, given X the feature matrix of a graph G, we define Xnoisy to be
the feature matrix with additive noise. If we add random noise sampled from a
normal distribution with probability p, Xnoisy follows Equation 6.1. Here Xuv

designates the feature v of node u.

(Xnoisy)uv =

Xuv + ϵ, ϵ ∼ N (0, 1) with probability p
Xuv otherwise

. (6.1)

By definition of a graph, the nodes are interconnected and are therefore not
independently identically distributed. This means that the noise in one node

82 GUILLAUME LACHAUD

can influence the other nodes. This raises the question: where is a GNNmost
vulnerable to noisy data? Is it when the noise is random, or when the noise
targets a specific set of nodes, e.g. the most influential or the most isolated
nodes. If the noise targets the nodes with the highest degree, the noise will reach
more nodes faster than if it targets the nodes with the smallest degree. However,
GNNs will often assign less importance to the features of the most influential
nodes, because the more some information is used, the less it has discriminating
power.

To model the targeting of nodes according to the degree, we can define a proba-
bility p that a feature will contain noise, and some threshold t representing the
minimal degree that a node must have to be corrupted. The noise targeting the
high degree nodes can be expressed by Equation 6.2.

(Xnoisy)uv =

Xuv + ϵ, ϵ ∼ N (0, 1) with probability p if u.degree ≥ t
Xuv otherwise

(6.2)

Conversely, targeting the small degree nodes can be done using Equation 6.3,
where t is the maximal value of the degrees of the target nodes.

(Xnoisy)uv =

Xuv + ϵ, ϵ ∼ N (0, 1) with probability p if u.degree ≤ t
Xuv otherwise

(6.3)

While Equations 6.2 and 6.3 look similar, they only overlap when there is no
noise, or when all the nodes are noisy.

6.2.1 Problem Definition

In this section, we first present the dataset on which our experiments are made.
The architectures we chose, GCN, GAT, and GraphSAGE, each represent funda-
mental ideas of GNNs:

6.2 Noisy features 83

• GCN belongs to the family of spectral GNNs which exploit properties of
the Laplacian matrix of the graph Wang and Zhang (2022);

• GAT leverages the attention mechanism, which has achieved state-of-the-
art results in many fields, e.g. with Transformers in NLP Devlin et al.
(2019);

• GraphSAGE uses a sampling mechanism which becomes essential when
we scale GNNs to larger graphs Chiang et al. (2019).

We train the models on different versions of the dataset which we modified by
adding noise to the features. We investigate three types of noise:

• We add random noise to the graph, as per Equation 6.1;

• We add noise to nodes, according to Equation 6.2, starting with the nodes
with the highest degree and proceeding to the nodes with the smallest
degree;

• We add noise to nodes, according to Equation 6.3, starting with the nodes
with the smallest degree and procedding to the nodes with the highest
degree.

The experiments are performed in two settings:

• Transductive learning, where the model has access to the full graph at train-
ing time; only the validation and test labels are hidden.

• Inductive learning, where the model is trained on the subgraph of the whole
graph that contains only nodes in the training data. In this setting, edges
between train and test nodes do not appear at training time.

Each model is trained for 1,000 epochs. The validation accuracy is used to
select the best model. We perform 5 runs to account for the randomness of the
parameter initialization and the noise addition.

84 GUILLAUME LACHAUD

6.2.2 Random noise perturbation

In this section, we assume that the noise is distributed randomly, i.e. follows
Equation 6.1.

Transductive setting

The results of training a GCN, a GAT and GraphSAGE in the transductive setting
with a randomly added noise are shown in Figure 6.1.

Figure 6.1: Training, validation and test accuracy of three models of GNNs in the
transductive learning setting. The horizontal axis corresponds to the percentage
of features to which noise has been added, i.e., p in Equation 6.1.

The sharpest decrease in accuracy occurs when p ∈ [0, 0.2]. When p ≥ 0.2, the
decrease follows a gentler slope. Because citation networks tend to be scale-free
networks Barabási and Albert (1999), there are nodes in the networks, called
hubs, from which we can reach almost all the nodes in the graph in a few hops.
Formally speaking, the diameter of the graph, which is the greatest distance
between two nodes, is small compared to the number of nodes. Thus, when
p = 0.2, the noise has already spread throughout the graph.

In GCN and GraphSAGE, the generalization error between train and validation
is increasing as p increases. This is due to the fact that these models do not
possess any graph specific regularizing mechanism. Indeed, the weighting of
the neighbours for the GCN in Equation 4.3 is proportional only to the degrees
of the nodes. Similarly, in Equation 4.7, the regularizing mechanism of Graph-
SAGE is its sampling of neighbourhoods. In transductive learning, the effects
of regularization by sampling are lessened by the fact that the model samples

6.2 Noisy features 85

from the whole graph.

Concerning the generalization error between validation and test, its existence in
the first place is a result of a distribution shift that occurs between the different
splits. This shift can manifest itself when the splitting of the dataset is not
random. For instance, a good split for the Amazon dataset of products Chiang
et al. (2019) is to split according to the number of sold items, because it is easier
and more useful to label the bestselling items first and put them in the training
set, and try to expand the labelling to the less popular items. Likewise, in citation
or social networks, a challenging and natural split is to use the date information:
the older nodes represent the training set while the test set comprises the most
recent nodes Hu et al. (2020).

The distribution shift can have two causes: the structure of the graph can change,
or the features can evolve. Firstly, the pattern in the edges between the nodes
can change over time. For example, between 2006 and 2012, the Facebook graph
changed drastically as the company expanded to other states and countries.
The way people used the platform between these two dates evolved as well.
Additionally, the structure can change as a result of periodical events. As an
illustration, the subgraph of Twitter related to rugby will see yearly spikes of
interest during the championship seasons, such as the Six Nations Tournament
and the Champions Cup, and every four years when the World Cup takes place.

Secondly, the shift can also take place with respect to the features or the labels.
For instance, what was considered rock music in the 1980s might not be labelled
as such nowadays. Or the physical attributes of football players in the 1960s are
very different from those of the current star players. In our case, the structural
aspect of citation networks, and scientific collaborations at large, has been con-
sistent for a long period of time. Indeed, the number of citations has followed a
steady exponential growth for the last hundred years Dong et al. (2017). This
means that the shift has occured with respect to the features and the labels.

Adding noise to the features undoes the distributional shift caused by the chang-
ing of features over time. When a certain level of noise is reached, the only
remaining difference between nodes in the validation and the test set is struc-
tural. This explains the results of Figure 6.1, in which by the time all the nodes
have been tampered with, there is no difference between the validation and test
accuracy of the GCN and GraphSAGE models.

86 GUILLAUME LACHAUD

In the case of the GAT, going back to Equations 4.4-4.6, the αl
uv performs an

implicit assignment of different importances to the neighbours. This mechanism
allows the model to downgrade the importance of nodes once their represen-
tation contains enough noise to negatively influence the learning process, e.g.
when the nodes contribute to misclassifying other nodes. In short, the GAT
performs regularization via attention.

Inductive setting

The results of training a GCN, a GAT and GraphSAGE in the inductive setting
with a randomly added noise are shown in Figure 6.2.

Figure 6.2: Training, validation and test accuracy of three models of GNNs in the
inductive learning setting. The horizontal axis corresponds to the percentage of
features to which noise has been added, e.g. p in Equation 6.1.

The first observation is that overall, the test accuracy is lower in the inductive
learning setting than in the transductive learning setting. This is expected,
because the inductive task is inherently a more challenging task than the trans-
ductive one Yang et al. (2016). Having access to the test data at training time
allows the model to fit the structure of the graph. Moreover, if there is a change
in the feature distribution between training and validation, the model can adapt
to this change at training time in the transductive setting.

When p = 1, there is still a generalization error between the validation and
test accuracy in the GCN model. The lower accuracy is explained by the fact
that inductive learning is inherently a more challenging task than transductive
learning Yang et al. (2016). The gap is the result of structural differences between
the training graph and the full graph. For example, since nodes become popular

6.2 Noisy features 87

slowly over time, the structure may have evolved as the result of the formation
of new hubs.

Conversely, the generalization error almost disappears in the case of GraphSAGE.
This is the result of the sampling mechanism, which appears in Equation 4.7.
The sampling acts as a regularizer, which also explains why the gap between the
train and validation accuracy is smaller than with the GCN. Since the sampling
prevents overfitting to the structure, the gap represents the information lost via
noise. When p ≥ 0.4, most of the information in the features has been drowned
in the noise.

In contrast, GAT’s performance present several peculiarities. Firstly, the model
performs considerably worse than in the transductive setting. It also achieves
a smaller test accuracy than its GCN and GraphSAGE counterparts, with the
accuracy dropping below the 50%mark. Secondly, the model presents a wider
range of outcomes for the different runs. This is an indication that the model is
converging to different local minima at each run. Additionally, the low training
accuracy indicates that the model performs excessive regularization.

This regularization is performed via the attention mechanism presented in
Equations 4.4-4.6. When we consider the backpropagation phase Lecun et al.
(1998) of a single node, we see that the noise will be amplified in two ways.
In the first part, neighbours who share the same class as the node, but whose
features have been tampered with so that they push the model to misclassify
the node, will see their αl

uv coefficient reduced, e.g. the model will attribute less
importance to these nodes. In the second part, neighbours with a different class
but whose features push the model to correctly classify the nodes, will have an
increased αl

uv coefficient. In other words, information will be silenced while
noise will be amplified.

6.2.3 High degree node perturbation

In this section, we assume that the noise targets the high degree nodes first,
according to Equation 6.2.

88 GUILLAUME LACHAUD

Transductive setting

The results of training a GCN, a GAT and GraphSAGE in the transductive setting
with noise progressively added to the nodes, starting with the nodes with the
highest degree, are shown in Figure 6.3. The horizontal axis represents the
proportion of nodes that contain noise, e.g. the normalized t in Equation 6.2.
Each color represents a different amount of noisy features per nodes, e.g. the
p in Equation 6.2. We investigate three settings: minimal noise, with p = 10%;
medium noise, with p = 50%; and high noise, with p = 90% .

Figure 6.3: Training, validation and test accuracy of three models of GNNs in the
transductive learning setting. The horizontal axis corresponds to the percentage
of nodes to which noise has been added. The noise targets the nodes with
the highest degree first then proceeds in a decreasing manner. The percentage
indicates how many of the features of each node are tampered with, e.g. 0.1
means 10% of the features contain added noise.

For a given t < 1 and any p, the test accuracy of each model is higher than in the
random noise setting.

Noise that spreads from an influential node will go throughmany nodes to reach
the most isolated ones, by which time the effects of the noise will have been
dampened. This phenomenon can be visualized with the following experiment,
similar to the small world experiment de Sola Pool and Kochen (1978): the goal
is to reach the best coverage of the U.S. population with the smallest group of
people, in the sense that we want to select a group that minimizes the distance
between any individual in the whole population and the group, e.g. each person
is at least 5 hops away from the group.

If you select the members of the groups by taking the people with the highest
degree, you will target people from the big cities. But you will miss the people

6.2 Noisy features 89

from isolated areas. Moreover, while some people will not be within reach of a
member of the group, others will be within reach of several members. When,
instead of selecting the people by their degree, you pick them randomly, you
reduce the overlapping of the coverage and you increase the chance of selecting
members that can reach the isolated nodes. Regarding our experiment, this
means what when the noise is added to the high degree nodes, some nodes will
not encounter any noise because they will be beyond reach of the L neighbour-
hood of the high degree nodes, where L is the number of layers of the GNN.
Note that this also applies to GNNs with skip connections Xu et al. (2021b),
although the depth the GNN then exceeds L.

Looking at GCN and GAT, we see a only a relatively small drop in performance
until at least t ≥ 0.4. This can be explained by going back to the equations of
each model. In the GCN case, the node-wise update rule can be expressed by
Equation 6.4. T is the transpose operator.

hl+1
u = (W l)T

∑
v∈Nu∪{u}

1√
d̂vd̂u

hlu (6.4)

The weighting of the nodes in the update rule depends doubly on the degree of
the nodes: the degree of the target node, i.e. the node that is updated, and the
degree of the source node, that is, the neighbour from which the edge starts. At
a local level, considering only a single node update, which can be done by fixing
the u, the nodes with the highest degree will always have lower importance than
the other nodes. More formally, given a node u, two neighbours v1 and v2 such
that dv1 > dv2 , we have (1/dv1)−1/2

< (1/dv2)
−1/2. Likewise, given two nodes

u1 and u2 who share a common neighbour v, by the same reasoning we find that
if du1

> du2
, u2 will have a greater weight than u1. This means that the GCN’s

explicit weighting scheme devalues the contributions from high degree nodes.
This also means that targeting the high degree nodes is the least efficient way of
propagating noise in a GCN model.

Regarding the GAT model, the unnormalized attention coefficient between two
nodes u and v, given by Equation 4.5, is a(W lhlu,W

lhlv) where a is the attention
mechanism. a can be any learnable function. For example, in the original paper
Velickovic et al. (2018), it is given by Equation 6.5. Θ is the weight vector of the
mechanism and ∥ is the concatenation operator.

90 GUILLAUME LACHAUD

eluv = LeakyRELU(ΘT [W lhlu∥W lhlv]) (6.5)

The loss used in the training is the cross-entropy loss, given by Equation 6.6. K
is the number of classes, e.g. 40 in our case. x is the features of the node, y its
label, represented as a one-hot encoding; and ŷ the prediction of the GNN. ŷ is
usually taken to be a probability distribution, i.e. ∑K

i=0 ŷi = 1. The predicted
category is the one with the highest score.

l(x, y) =
K∑
i=0

−yi log(ŷi) (6.6)

When the noise targets the high degree nodes, enough noise will push the model
to misclassify nodes. In terms of loss, this means that the noise will increase
the loss of the model. During the backpropagation stage, the weights will be
modified using gradient descent to decrease the loss. Let u be a node and v1
one its neighbours. If v1 contains noise that results in decreasing the score of
the prediction of the correct class of u, the loss increases. To reduce the loss, the
model will change its weights, and will reduce the importance of v1 in updating
u, by lowering αuv1

. Because the high degree nodes will be involved in many
computations, the same reasoning shows that the overall importance of these
nodes will decrease. In short, the attention mechanism will silence the noise.

In terms of the percentage of features altered, we observe two phenomena: when
only a few features are modified, e.g. p = 0.1, the performance deteriorates only
slightly; and whether we set p = 0.5 or p = 0.9, the performance is similar. The
second point was already observed in Section 6.2.2 regarding random noise:
beyond a certain amount of noise, the performance plateaus as the noise has
spread through the whole graph and there is nothing else remaining to tamper
with.

A very likely explanation for the first phenomenon is the fact that many types
of GNN perform some form of implicit denoising during their training phase
Ma et al. (2021). In particular, the authors of Ma et al. (2021) show that GCN
and GAT can be seen as solving a specific form of denoising problem. This idea
of denoising is further investigated in Liu et al. (2022), in which the authors

6.2 Noisy features 91

explore how denoising is impacted by the connectivity and the size of the graph,
as well as by the architecture.

Inductive setting

The results of training a GCN, a GAT and GraphSAGE in the inductive setting
with noise progressively added to the nodes, starting with the nodes with the
highest degree, are shown in Figure 6.4.

Figure 6.4: Training, validation and test accuracy of three models of GNNs in the
inductive learning setting. The horizontal axis corresponds to the percentage
of nodes to which noise has been added. The noise targets the nodes with the
highest degree first then proceeds in a decreasing manner.

While GraphSAGE’s performance in the transductive setting was the poorest of
the three models, in the transductive setting it is on par with the other models.
The reason for the early drop in accuracy in the transductive and inductive
settings, e.g. when p ∈ [0, 0.2], is likely the over-representation of high degree
nodes in the sampling of the neighbours. When looking at the neighbourhood
sampling of all the nodes, the nodes with high degree will appear multiple times.
Thus, the sampling allows the noise to spread faster. As the noise fills the whole
graph, the inductive mechanism of GraphSAGE starts to be more influencial in
reducing the overall noise of the messages.

In contrast with the previous experiments, we see that the validation and test gap
reaches a minimum around p = 0.6, and starts increasing again when p > 0.6.
In all likelihood, this is due to the fact that apart from the papers who cite and
are cited by few others, the newer papers tend to have less citations on average
than the older ones, because there needs to be a certain period of time before

92 GUILLAUME LACHAUD

the paper starts getting cited. By targeting the nodes with the higher degree
first, we are creating a distributional shift. Indeed, the models are trained on
nodes with noise while the nodes in the validation and test set contain less noise
in average. This leads to the models’s generalizing capabilities to decrease.

6.2.4 Small degree node perturbation

In this section, we assume that the noise targets the small degree nodes first,
according to Equation 6.3.

Transductive setting

The results of training a GCN, a GAT and GraphSAGE in the transductive setting
with noise progressively added to the nodes, starting with the nodes with the
smallest degree, are shown in Figure 6.5.

Figure 6.5: Training, validation and test accuracy of three models of GNNs in the
transductive learning setting. The horizontal axis corresponds to the percentage
of nodes to which noise has been added. The noise targets the nodes with the
smallest degree first then proceeds in an ascending manner.

The model performance drops sharply when t ∈ [0, 0.3], then it levels off. A
similar reasoning from Section 6.2.3 about the degrees of the nodes shows that
the GCNmodel will amplify the noise: the values of the nodes with the smallest
degree are weighted with the largest coefficients. Likewise, the GAT will start by
penalizing heavily the small degree nodes. Only when enough noise is present
in the graph will the attention mechanism be able to rescale the importance of
the noisy nodes.

6.2 Noisy features 93

Because GraphSAGE proceeds with a fixed neighbourhood sampling size, there
is no neighbourhood sampling for the nodes with small degree: all their neigh-
bours are considered. Therefore, GraphSAGE has no regularizing mechanism
for small degree nodes. The lack of weighting, whether implicit or explicit, does
not allow GraphSAGE to penalize the noisy nodes in any other way than by
modifying themodel’s parameters, which results in low generalizing capabilities
as the model is trying to fit against the noise.

We observe that, whether the noise is randomly distributed across the nodes or
whether it targets high degree or small degree nodes, the presence of noise in
the nodes’s features is more important than the quantity of features modified. In
other words, t is more important than p. Increasing t will decrease the accuracy
more than if we increase p.

Inductive setting

The results of training a GCN, a GAT and GraphSAGE in the transductive setting
with noise progressively added to the nodes, starting with the nodes with the
smallest degree, are shown in Figure 6.6.

Figure 6.6: Training, validation and test accuracy of three models of GNNs in the
inductive learning setting. The horizontal axis corresponds to the percentage
of nodes to which noise has been added. The noise targets the nodes with the
smallest degree first then proceeds in an ascending manner.

Except for the GAT, the validation accuracy is actually higher than the test
accuracy. This indicates that the model is not learning properly. It is just fitting
the noisy training data. The gap is consistent regardless of the amount of noise.
This result hearkens back to the spread of fake news which can start more easily

94 GUILLAUME LACHAUD

as a rumour then spread to infect the whole population Shu et al. (2017). The
graph can be more easily subverted by targeting the more isolated nodes which
do not possess enough information about the rest of the graph to stave off the
noise.

In whatever way the features are corrupted, the difference between transductive
and inductive learning is amplified with the noise.

6.2.5 Extension to other types of architectures

In this section, we go beyond the GCN, GAT and GraphSAGE models to look at
two other models: the Graph Isomorphism Network (GIN) Xu et al. (2019b),
which is an MPNN model provably more powerful at discerning certain graph
structures than GCN and GraphSAGE; and Simple Graph Convolution (SGC)
Wu et al. (2019), a GNN which simplifies the computations performed in the
GCN and contains only a single layer.

Graph Isomorphism Network

A single layer of the GIN model follows Equation 6.7. MLPl is a multi-layer
perceptron. ϵ(l) is either a learnable parameter, or a fixed scalar value.

hlv = MLPl

((
1 + ϵ(l)

)
· hl−1

v +
∑
u∈Nv

hl−1
u

)
(6.7)

Compared with the GCN equation, the multi-layer perceptron adds more ex-
pressivity: it allows the model to adjust on a feature per feature basis, which
results in more degrees of freedom. It can capture more patterns than the ex-
plicit weighting on the degrees of the nodes. The results of the training of the
GIN with random noise in transductive and inductive learning are shown in
Figure 6.7.

We see that the overall performance of the model, both in transductive and
inductive learning, is far below that of the architectures studied above. This is
due to the multilayer perceptron, or fully connected layer, that allows the model

6.2 Noisy features 95

Figure 6.7: Training, validation and test accuracy of the GIN model in the
transductive (left) and inductive (right) learning settings. The horizontal axis
corresponds to p in Equation 6.1.

to weight each feature individually. This makes the model more sensitive to
variations in the features. We also see a decrease followed by an increase in the
accuracy when we increase p. This variation reflects the complexity of the task:
when half the features are noisy, the model can learn to assume that half the
inputs are noisy. When the ratio between clean and noisy features is different,
the model might constantly oscillate to find a suitable value. This can be seen by
the divergence in outcome which is less pronounced in the transductive case
when p = 0.6.

Simple Graph Convolution

The SGC model was conceptualized as a simplification of the GCN. By writing
S = D̃−1/2ÃD̃−1/2, the SGCmodel follows Equation 6.8. σ denotes an activation
function, like the Softmax operator. K is a hyperparameter of the model. Θ
represents the parameters of the model.

ŷ = σ(SKXΘ) (6.8)
SK gives the maximal depth of the
neighbourhood that can be
achieved. If S is the adjacency
matrix, then SK can represent
K-hop neighbourhoods at most.

In comparison with the GCN model, the SGC first performs the matrix multi-
plication SK , then combines the resulting power matrix with the parameters.
The results of the training of the SGC with random noise in transductive and

96 GUILLAUME LACHAUD

inductive learning are shown in Figure 6.8.

Figure 6.8: Training, validation and test accuracy of the SGC model in the
transductive and inductive learning settings. The horizontal axis corresponds to
the percentage of nodes to which noise has been added. The noise targets the
nodes with the smallest degree first then proceeds in an ascending manner.

We observe that the performance decreases smoothly with the noise. This is
expected because SGC is part of the architectures which exhibit implicit denois-
ing behaviour Ma et al. (2021). However, because the model has a single layer,
it is not possible to incrementally penalize the noise, which explains why the
accuracy is lower than with the other models.

6.3 Missing data imputation

In this section, we extend the GRAPE architecture to the mini-batch setting that
allows the model to work on datasets that do not fit in the GPU memory. We
briefly describe the sampling approaches that are suitable for GRAPE learning.
We also introduce lightweight preprocessing and post-processing steps that
allow GRAPE to perform feature imputation on graph structured data.

6.3.1 GRAPE

GRAPE You et al. (2020) is a GNN architecture adapted from the GraphSAGE
model Hamilton et al. (2017). The nodes used in GRAPE are of two types:
observations and features. The graph is bipartite, where each edge has one end

6.3 Missing data imputation 97

in the set of observations, and the other end in the set of features. An edge euv
between observation u and feature v means that observation u’s value of feature
v is euv. At each layer of GRAPE, a message is computed for each node using its
neighbours, and the message is combined with the node’s representation at the
previous layer to obtain the new representation.

More formally, letAGGl denote the aggregation function of layer l, e.g. the mean
or max function. Let CONCAT denote the function that concatenates tensors.
Let P (l), Q(l) and W (l) be trainable weights for the layer l. Then the forward
pass of the GRAPE model is described by Equations 6.9-6.11.

n(l)v = AGGl

(
σ
(
P (l) · CONCAT(h(l−1)

v , e(l−1)
uv)

)
| ∀u ∈ N (v, E)

) (6.9)

h(l)v = σ
(
Q(l) · CONCAT

(
h(l−1)
v , n(l)v

))
(6.10)

e(l)uv = σ
(
W (l) · CONCAT

(
e(l−1)
uv , h(l)u , h(l)v

))
(6.11)

To obtain themissing value of feature v of node u, a feedforward neural networks
can be used on h(L)

u and h(L)
v .

6.3.2 Scalable GRAPE

In order for GRAPE to work with graphs that do not fit in the GPU memory, we
must introduce a sampling scheme that produces mini-batches on which the
model can be trained. We present the modified version of GRAPE to scale for
graphs that exceed the GPU memory. The algorithm appears in Algorithm 1,
which is adapted from You et al. (2020). SAMPLE is a function that takes a
graph as input and produces mini-batches according to a sampling strategy.
B.nodes and B.edges represent respectively the set of nodes and of edges in the
mini-batch; we have B.nodes ⊆ V and B.edges ⊆ E .

98 GUILLAUME LACHAUD

Algorithm 1 Sample-based GRAPE forward propagation.
for B ∈ SAMPLE(G) do

for v ∈ B.nodes do
for l ∈ {1, . . . , L} do

n
(l)
v ←

AGGl

(
σ(P (l) · CONCAT(h(l−1)

v , e
(l−1)
uv))

| ∀u ∈ N (v,B.edges)
)

h
(l)
v ← σ

(
Q(l) · CONCAT

(
h
(l−1)
v , n

(l)
v

))
e
(l)
uv = σ

(
W (l) · CONCAT

(
e
(l−1)
uv , h

(l)
u , h

(l)
v

))
end for

end for
end for

Node-wise sampling

Introduced in Hamilton et al. (2017), the node sampling strategy works by
sampling a subset of the neighbours of each node and training the model on the
induced subgraph. The sampling can be expanded beyond 1-hop neighbours
by sampling the neighbourhood of the neighbours. The space complexity of
the sampling strategy is O(BL), where B is the number of neighbours sampled,
compared to O(DL) with D the average node degree for batch training using
the full neighbourhood of each node.

There are several strategies that can be used to produce the mini-batches. A
more complete survey of approaches used for large scale graph training can be
found in Duan et al. (2022). Due to the nature of the graph, e.g. a bipartite graph,
the use of cluster based sampling, such as ClusterGCN Chiang et al. (2019) that
create clusters based on graph partitioning algorithms such as METIS Karypis
and Kumar (1998), does not fit our approach.

6.3.3 GRAPE for graph data

Given a graph G = (V, E)withX ∈ R|V|×d, we can create an undirected bipartite
graph Gbp = (Vbp, Ebp) where Vbp contains two types of nodes: the observations
and the features. Ebp contains the edges between the observations and the
nodes, and the weight of the edges represent the value of the feature. We have

6.3 Missing data imputation 99

|Vbp| = |V|+ d and |Ebp| = |V| × d. We also add a node identification attribute
to the bipartite graph.

To apply GRAPE to graph structured data, we can use the following workflow,
which is also demonstrated in Figure 6.9.

• a bipartite graph is created using the input graph;

• GRAPE is trained on the bipartite graph to predict the missing edges;

• the node identifier allows the mapping of the predicted edges to the fea-
tures in the original graph.

1

2

3

4

5

[0.5, ?, 0.2]

[0.3, 0.1, 0.4]

1

2

3

4

5

F1

F2

F3

0.5

0.4

0.3
0.1

?
0.2

1

2

3

4

5

F1

F2

F3

0.5

0.4

0.3
0.1

0.30.2

1

2

3

4

5

[0.5, 0.3, 0.2]

[0.3, 0.1, 0.4]

Create bipartite

graph Impute features

with GRAPE
Map impute features

back to the original graph

Figure 6.9: Example of the use of GRAPE on graph data. Edges and features are
omitted for clarity. Enlarge the figure

6.3.4 Experiments

In this section, we present the experiments performed on a graph dataset whose
associated bipartite graph does not fit in the GPU.We first investigate the training
behaviour under different missing data regimes, then we perform an ablation
study of the different parameters of the model.

6.3.5 Training behaviour

We train the mini-batch GRAPE model for 20 epochs. We use the Mean Absolute
Error (MAE) as the loss function. The training and validation loss for different
levels of missing data are shown in Figure 6.10.

We observe overfitting of the training data in the regime of extreme missing data,
e.g. when we have less than 1% of the feature values. Conversely, the validation

100 GUILLAUME LACHAUD

Figure 6.10: Train (line) and validation (dashed line) loss for different percentage
of observed data. The lower the percentage, the higher the percentage of missing
data. Under extreme scarcity, the model starts overfitting the training data.

6.3 Missing data imputation 101

loss starts increasing again after a certain number of epochs when there is a
scarcity of observable features.

6.3.6 Ablation study

We evaluate the impact of the hyperparameters in the learning process. We test
the influence of the model capacity, e.g. the hidden dimensions for the nodes
and the edges. We also explore the influence of dropout. We investigate the
importance of the number of layers in the model, as well as the batch size. The
test MAE for the different runs appear in Table 6.1.

Table 6.1: Ablation study for the mini-batch version of GRAPE. The baseline
model has batch size b = 14000, number of layers l = 3, dropout = 0.0 (no
dropout), hidden dimension nl = 64. The values in the table represent the test
MAE. All the errors have to be multiplied by 10−2.

Model Test MAE for % of missing features
20 50 90 95 99 99.5

Baseline 8.82 8.83 9.40 9.76 12.5 13.5
dropout = 0.2 9.11 9.10 9.45 9.80 11.2 10.6

l = 1 8.87 8.85 9.00 9.20 11.2 11.9
nl = 16 8.85 8.83 8.95 9.40 11.0 20.0
b = 1000 8.71 9.02 9.53 11.2 16.8 18.0

Reducing the model capacity, both in terms of the number of layers and the
dimensions of the layers, improve performance, except in the case of extreme
scarcity of observable data. This can be explained by the fact that a smaller
model will overfit less, as it does not possess the capacity to interpolate the train
data entirely.

Conversely, the fewer the observable features are, the more reducing the batch
size will decrease the performance of the model. This is likely due to the fact
that in a sparse feature regime, the model will fit entirely the training data of
the batch, e.g. small training loss, but this will not generalize to unseen features.

A possible explanation for the lack of performance improvement when using
dropout is that the mini-batch is already acting as a regularizer, so the effects of
dropping edges is less significant than in a full batch setting. When the observ-
able features are sparse, the effect of dropout is stronger as it helps alleviate the

102 GUILLAUME LACHAUD

overfitting of the model.

6.4 Discussion

In this chapter we investigate the sensitivity of different types of graph neural net-
works, especially message passing neural networks, to the noise in the features
of the nodes. We explored different types of noise: random noise, where noise
is added randomly to the features; noise which targets the high degree nodes;
and noise which targets the small degree nodes. GNNs are trained both in the
transductive setting and in the inductive learning, i.e. with and without access
to the test data at training time. We find that weighting mechanisms, whether
they are explicit, as in the GCN, or implicit, such as the attention mechanism in
the GAT, help reduce the influence and the propagation of the noise.

We also found that some architectures present an implicit denoising mechanism
that allows the model to maintain a certain level of accuracy under the presence
of noise. Furthermore, architectures which lack this mechanism exhibit a more
chaotic pattern of learning.

Out of the three types of noise, the noise targeting the small degree nodes first
is the most challenging for the models. This reflects the fact that these nodes are
more isolated; thus noise will have a relatively higher impact than it would for
nodes with more neighbours.

We find that random noise in transductive learning leads to overfitting of the
data. In inductive learning, the gap between training and validation accuracy is
large, as well as the gap between validation and test accuracy.

In this chapter, we also proposed a new GNN architecture for missing data
imputation. We extend the GRAPE architecture to handle mini-batches. We also
add preprocessing and post-processing steps to perform feature imputation on
graphs with GRAPE. Experiments show that mini-batch GRAPE performs well
under different schemes of missing data, with performance decreasing when
more than 99% of the features are missing. The ablation study shows that the
model performs better with fewer layers and that the batch sampling acts as a
good regularizer when there are enough observations.

6.4 Discussion 103

Perspectives for future works regarding noisy features include analyzing similar
types of perturbations for categorical features, and in temporal graphs. Re-
garding missing data imputation, perspectives include extending the model to
incorporate the structural information of graphs when using GRAPEwith graph
data.

Chapter 7

Patch Extraction in Medical
Imaging

This chapter deals with the problem of extracting patches in medical images.
The goal is to find the patches with the most information for image classification
with Convolutional Neural Networks (CNNs). In this chapter, we study the
role of entropy and a spectral based similarity criterion on the training time of
a neural network. We use the region of interest of the image to maximize the
relevance of the patches for the classification task. The use of patches instead of
the whole image allows us to study the influence of entropy at different scales.
We evaluate two metrics: the time it takes for the CNN to converge, and the
accuracy of the model.

Section 7.1 presents a brief overview of medical imaging, patch-based classifica-
tion and information measures. Section 7.2 introduces the dataset and the two
criteria we use: the ISIC dataset, entropy, and the Mean Exhaustive Minimum
Distance criterion. Section 7.3 presents the results, in terms of training time and
accuracy. Section 7.4 concludes this chapter.

The results in this chapter were published in Lachaud et al. (2021, 2022d).

106 GUILLAUME LACHAUD

Contents

7.1 Introduction . 106

7.2 Proposed method . 108

7.2.1 Dataset description and pre-processing 108

7.2.2 Entropy . 111

7.2.3 Mean Exhaustive Minimum Distance (MEMD) criterion 113

7.2.4 Network architecture and tuning parameters 116

7.3 Results . 117

7.3.1 Training time . 117

7.3.2 Accuracy . 119

7.4 Discussion . 122

7.1 Introduction

Convolutional Neural Networks (CNNs) have become one of the most effective
machine learning solutions for computer vision problems such as classification,
object detection, face recognition, etc. More specifically, CNNs are extensively
used for medical image processing tasks. The main goal of this field is to ex-
tract relevant clinical information or knowledge from medical images. One can
mention, for instance, computer-aided diagnosis of cancer using classification
methods Anwar et al. (2018). Cancer is one of the leading causes of deaths
worldwide Ritchie and Roser (2018).Early diagnosis is considered in

terms of one of the four stages of
cancer, not in terms of time since

the onset of the disease. These two
notions can coincide, but a cancer
can also stay in stage I for decades.

Stage IV, the final stage, is when the
cancer has metastasized, i.e., has

spread to other sites.

However, if the cancer is diagnosed early,
chances of survival are far greater than for later stages Siegel et al. (2021). For
this reason, there has been a lot of research focused on leveraging deep learning
to improve cancer diagnosis and prognosis, especially in breast cancer Yala et al.
(2019), skin cancer Esteva et al. (2017), and lung cancer Marentakis et al. (2021).

Medical images can be widely different depending on their source, such as CT
(Computed Tomography) scans, MRI (Magnetic Resonance Imaging) images,

7.1 Introduction 107

dermoscopy, etc. Typically, image classification tasks take as input the entire
image. However, in some situations training an image patch, that is, a subset of
the entire image, might be preferable. Not only is this less time consuming, but
it can also improve the classifier performance in some particular situations. For
instance, in Hou et al. (2016), the authors claimed that in cancer subtypes classi-
fication, the decision is mostly based on cellular-level visual features observed
on image patch scale. Another example where patch based classification was
preferred over pixel based classification is presented in Roy et al. (2019) where
this approach was used for classification of breast histology. One can find other
applications of patch-based classification in Rousseau et al. (2011) and Zhang
et al. (2014).

A judicious choice of patches reduces the importance of noise and focuses on
the most important parts of the image. Two approaches of selecting the patches
used for classification are to score the patches individually based on a given
metric, or to compare each patch with the other patches of an image and rank
the similarity between the patches. In the first approach, the patches can be
scored using entropy, while the second approach relies on a similarity measure
between images.

On one hand, entropy is used in information theory as a way to quantify the
level of information of an object. Higher entropy means that there is more
information in the object. For instance, a random noise image has high entropy
while a unicolored one has very low entropy. Entropy plays an important role
in data compression where it provides the lower bound on the storage required
to compress an object without loss of information Shannon (1948). Entropy can
also be used for object reconstruction using the principle of maximum entropy,
which aims at selecting the most uniform probability distribution amongst
multiple candidate distributions. It can be used for image reconstruction where
the candidates are the set of missing pixels Skilling and Bryan (1984). It applies
to text data as well Nigam et al. (1999). Entropy can also be used in image
texture analysis Zhu et al. (1997) and texture synthesis.

On the other hand, the Mean Exhaustive Minimum Distance (MEMD) is a
criterion that was introduced in Havlíček and Haindl (2019) to compare two
images by trying to find the best pairing of pixels from the first and the second
image; the criterion score then indicates how similar the images are. A low
score indicates that the images are similar, and a high score that the image are

108 GUILLAUME LACHAUD

ISIC archive

Download images

Download masks

Select all malignant images
+

sample same number of benign images

Split the region of interest
in square patches

Classifiy
on subset of patches

Figure 7.1: Data pre-processing workflow

different. This can be extended to patches, where we compare a single patch
with several patches by averaging the scores.

The dataset we used in this study comes from the ISICThe data is publicly available at
https://www.isic-archive.com

archive (International
Skin Imaging Collaboration). Because of the lethality of melanoma cancer, the
ISIC project was created to help improve skin cancer diagnosis via imaging data.
They started an annual challenge in 2016 Gutman et al. (2016), and from 2019
onwards, the challenges have focused on dermoscopic image classification, with
multiple diagnostic categories Rotemberg et al. (2021). The researchers who
had the best results on the 2019 ISIC challenge Gessert et al. (2020a) studied
patch-based classification on the HAM10000 dataset Tschandl et al. (2018) in
Gessert et al. (2020b). They took multiple patches from each image and used
an attention-based approach to combine the information from the patches and
classify the images.

7.2 Proposed method

7.2.1 Dataset description and pre-processing

The ISIC archive database (see Rotemberg et al. (2021)) contains images of
skin lesions which can be benign or malignant; other images can also have an
unknown status. The image resolution varies across the datasets. The archive
also has an APIThe API is accessible here: https:

//isic-archive.com/api/v1
which can be used to get information about images or to retrieve

lesion masks created by expert users. Our goal is to perform binary classification
using patches of images. Our target variable has two labelsOriginally, the ISIC challenge had

more refined categories. Here we
use only 2.

indicating whether
the lesion is benign or malignant.

All the data pre-processing steps are described in Figure 7.1:

https://www.isic-archive.com
https://isic-archive.com/api/v1
https://isic-archive.com/api/v1

7.2 Proposed method 109

(a) Image (b) Mask

Figure 7.2: Example of a malignant skin lesion and its mask.

(a) 32× 32 (b) 64× 64 (c) 128× 128 (d) 256× 256

Figure 7.3: Example of patches of different size of the image from Figure 7.2.

110 GUILLAUME LACHAUD

Table 7.1: Number of patches for different patch sizes

patch size number of patches
32× 32 4,886,969
64× 64 1,173,052
128× 128 270,821
256× 256 58,253

1. We download images from the ISIC archive, as well as the masks that are
annotations from experts and indicate the lesion location.

2. We select all the malignant images with a mask. We sample the same
number of benign images.

3. We create square patches of width 32, 64, 128 and 256. The patches are
taken from the region of the interest of the image, as defined by the down-
loaded masks.

4. We compute the entropy of the patches, and use it to extract a subset of
patches. This is explained in section 7.2.2.

5. We compute a spectral measure of similarity between a patch and all the
patches of the same image; we use this measure to extract a subset of
patches. The details are in section 7.2.3.

6. We train a classifier on all the datasets we have created in the two previous
steps.

Table 7.2: Number of patches for each patch size

Patch size Number of patches

32× 32 4, 889, 969
64× 64 1, 173, 052

128× 128 270, 821
256× 256 58, 253

We divide the images in three groups: 90% of the images are in the train set,
with 20% of the train set reserved for validation; the remaining 10% constitute
the test set.

7.2 Proposed method 111

7.2.2 Entropy

We are interested in the study of the behavior of the Shannon entropy Shannon
(1948) of the images. The formula used for the calculation of entropy is the
following:

H = −
M∑
k=0

pk log2(pk) (7.1)

where M is the highest intensity of a pixel (in our case, 255), and pk is the
probability associated with the pixel intensity k in the grayscale image. In
practice, the entropy is computed using histograms to estimate the probabilities.
The entropy can take values between 0 and log2(255) ≈ 8. Although the images
in the dataset are in the RGB format, the entropy is computed on the grayscale
version of the images. Our choice was motivated by the fact that there is no
consensus on how to compute the entropy of an RGB image: Equation 7.1 does
not have a canonical generalization to RGB images, while RGB conversion to
grayscale is standardized in the ITU-R Recommendation BT.601-2.

Figure 7.4 shows the distribution of entropy amongst the patches for different
patch sizes.

Table 7.3 shows the mean, standard deviation and some quantiles of entropy.
We observe that, as the patch size grows, so does the entropy. This is expected
because the more pixels we have, the more likely they are to have different
intensities, which lead to a higher entropy. Also, the entropy for larger patch
sizes is slightly more centered around the mean, which may be due to the fact
that larger patch sizes will average some of the more extreme patches of smaller
size. For example, instead of having multiple small patches of low and high
entropy, a larger patch containing all the small patches will have a more average
entropy.

We are interested in the impact of the entropy on the training of a classifier:
whether it is faster to train on a dataset with low entropy than with a dataset
with standard entropy; and whether a dataset with higher entropy is harder to
train on. We split the created patches in three groups for each patch size :

• one containing the patches with entropy below the 15-th quantile, referred
to as low.

112 GUILLAUME LACHAUD

(a) (b)

(c) (d)

Figure 7.4: Distribution of patch entropy. (a)-(d) are taken for square patches
of size 32, 64, 128 and 256 pixels.

Table 7.3: Entropy statistics

quantile
patch size mean standard deviation 15 42.5 57.5 85

32 3.974 0.779 3.247 3.85 4.104 4.71
64 4.456 0.765 3.75 4.335 4.588 5.191
128 4.903 0.747 4.223 4.795 5.047 5.633
256 5.319 0.735 4.66 5.229 5.475 6.029

7.2 Proposed method 113

• one with the patches entropy above the 85-th quantile, referred to as high.

• the last one with patches having entropy between the 42.5-th and 57.5-th
quantiles, referred to as intermediate. Our choice for the quantile values is
motivated by having the entropy be equally distant from the other groups,
and keeping the same number of samples to make time comparisons
meaningful.

We further extract two datasets for each patch size:

• a low dataset, whose patches are all the patches that rank below 30-th
quantile of entropy with respect to the other patches of the same image.

• a high dataset, with entropy above the 70-th quantile.

7.2.3 Mean Exhaustive Minimum Distance (MEMD) criterion

The first methods of similarity measure usually consisted in computing certain
features on a given image, such as the Haralick features Haralick et al. (1973),
and then comparing the features obtained for different images. More recent
techniques dealing with the structural similarity in textures have been proposed
in Zujovic et al. (2009) andQin andYang (2004). Handling color or hyperspectral
images is often done using histograms Yuan et al. (2015), but histograms require
a large amount of data to get good estimates of the spectral distribution. A new
criterion to evaluate the similarity of two images was proposed in Havlíček and
Haindl (2019). This approach does not require histograms and generalizes to
any number of channels.

Following the notation from Havlíček and Haindl (2021), let A and B be two
images, which can have multiple channels. LetM = min(#A,#B), with #A

and#B the number of pixels inA andB. Let ⟨A⟩ be the set of pairs of coordinates
for the pixels of A, and U the unprocessed pairs of coordinates of pixels of B.
Let ρ be the distance induced by a vector metric. When writing Ai,j , the other

dimensions representing the
channels are implied.

Ai,j denotes the pixel of A
at coordinates (i, j). Similarly, Bk,l is the pixel of B at coordinates (k, l). The
MEMD criterion ζ is defined by Equation 2.

114 GUILLAUME LACHAUD

ζ(A,B) =
1

M

∑
(i,j)∈⟨A⟩

min
(k,l)∈U

{ρ(Ai,j , Bk,l)} (7.2)

The lower the score is, the more similar imagesA andB are. Inversely, the higher
the score, the higher the difference between the two images. The score can take
values between 0 and 255. A score of 0 happens when we compare one image to
itself; a score of 255 happens when we compare a white image with a black one.

To improve the computation time, Havlíček and Haindl (2021) suggested that
the pixels of both the images be sorted with respect to the chosen norm. Finding
the minimum distance between the pixels of the two images then comes down
to choosing the closest unprocessed neighbour in the sorted array. In the special
case where A and B are of the same size, we can simply match the first element
of the sorted pixels of Awith the first of element of the sorted pixels of B, and
so on.

We compute the MEMD score of each patch with respect to all the other patches
of the same image, and we average the scores. Figure 7.5 shows the distribution
of the MEMD score at varying patch sizes. We observe two peaks. The first
one on the left corresponds to the patches that are representative of the overall
image, and the one on the right corresponds to the patches that are more unique.
The reason why we only have two peaks is that the images of the lesion all
share similar elements: a little bit of skin, the lesion, and some noise such as
hair, a ruler, etc. The distinction between the lesion and the skin is quite drastic,
meaning that few patches are going to be equally similar to skin and lesion. The
variation in scores is in part due to the different number of patches per image.
The more patches an image has, the less extreme the MEMD score of the patches
will be. The patches with a score of 0 are from images that have only one patch.
This happens for big patch sizes where the region of interest is too small to get
more patches.

Similarly to what was done in Section 7.2.2, we create datasets using the same
quantiles for the MEMD score.

Both the datasets created in the entropy section and in this section are taken by
extracting 15% or 30% of the patches of an image. Thus, the datasets have 15%
and 30% of the total number of patches in Table 7.2.

7.2 Proposed method 115

(a) (b)

(c) (d)

Figure 7.5: Distribution of MEMD score for patches of size (a) 32×32 (b) 64×64
(c) 128× 128 and(d) 256× 256

In the rest of the chapter, we use the max norm for ρ, i.e. ρ : x 7→ ∥x∥∞ =

maxi|xi|, where xi are the coordinates of x. The distance induced by the max
norm is (x, y) 7→ ∥x− y∥∞. Because the sorting of the pixels is done based
on the norm of a single pixel, and the min is computed using the distance
between two pixels, the optimization via sorting is not compatible with pixels
with multiple channels. Indeed, let p1 = [135, 18, 89], p2 = [130, 16, 86] and
p3 = [12, 134, 1]. If we sort the pixels by the max norm, we get P = [p2, p3, p1].
Selecting the closest matching pixel using the proposed method in Havlíček and
Haindl (2021) would make us pair p2 with p3, which leads to ζ(p2, p3) = 118.
But p2 and p1 are clearly a better match, with ζ(p2, p1) = 5. To alleviate the
complications imposed by having multiple channels, we convert the images to
grayscale before computing the MEMD score. Since grayscale images have only
one channel, the optimization via sorting works.

The computation of the average MEMD of all the patches of an image has O(m2)

116 GUILLAUME LACHAUD

with respect to m, the number of patches in the image. There is a trade-off
between space and time complexity, where vectorizing part of the process using
higher order tensors allows for faster computation but requires more space.

7.2.4 Network architecture and tuning parameters

Following Yilmaz and Trocan (2020) and Favole et al. (2020) who compared
classifiers for the same task and dataset, we use a ResNet50 for the classification.
ResNet50 He et al. (2016), is a 50-layer convolutional neural network, which
contains residual units between convolutional blocks (stacks of convolutional
layers) with identity mappings interspersed, to help propagate the gradient and
mitigate the problem of vanishing and exploding gradients Glorot and Bengio
(2010).

Though ResNets can be arbitrary deep, provided we have the computing re-
sources to train the model, e.g. using 101 or 152 layers, we followed Yilmaz and
Trocan (2020) and used the 50-layer version. Since we are interested in binary
classification, e.g. whether the lesion is benign or malignant, we remove the last
layer of the network, designed for multiclass classification, and replace it with a
max pooling layer followed by a Dense layer with a sigmoid activation.

The optimizer used for the model is the Adam optimizer Kingma and Ba (2015)
with a learning rate of 0.001. We use a binary cross-entropy loss for the training.

The model is trained for 10 epochs, with early stopping if the validation loss
stops decreasing after 3 consecutive epochs.

Each dataset is split in the following way for training: 90% for training, of which
20% goes to validation, and 10% for testing.

7.3 Results 117

7.3 Results

7.3.1 Training time

All the experiments were performed on a device with a 3.60 GHz Intel CPU,
32Gb of RAMand anNVidia Titan XP, running onUbuntu. The codewaswritten
in Python and Tensorflow. The computation of the entropy was done using
Pillow.

To account for the fact that a neural network may take more time to converge
based on the random initialization of the parameters, we train 10 instances of a
ResNet50 on each dataset. We display the 30-th quantile, the median and the
70-th quantile of the training time of the instances in Tables 7.4 and 7.5.

Table 7.4: Quantiles of training time for datasets of different entropy and patch
size

Quantile of training time (in seconds)
patch size entropy 30 50 (median) 70

32 high 1350.7 2013.2 2781.4
32 low 1534.9 2906.7 3078.5
64 high 291.0 382.9 441.9
64 low 290.6 338.3 414.2
128 high 155.0 204.6 220.0
128 low 204.8 255.0 255.4
256 high 142.4 152.2 189.7
256 low 189.6 226.4 226.5

Regarding the entropy datasets, we observe a tendency of faster convergence for
datasets with higher entropy compared to datasets with lower entropy. Lower
entropymeans that the distribution of pixel intensity concentrates on fewer pixels
than it does for higher entropy. This concentration makes for smoother textures,
which might be harder for the classifier to learn. Higher entropy datasets have
more salient features that more discernible and thus more easily learnable by
the network.

As for the MEMD datasets, the dataset composed of patches with higher score
tends to converge faster than the dataset with lower score. This might be ex-

118 GUILLAUME LACHAUD

Table 7.5: Quantiles of training time for datasets of varying MEMD score and
patch size

Quantile of training time (in seconds)
patch_size memd_score 30 50 (median) 70

32 high 3150.4 3254.8 3258.9
low 3256.4 3260.0 3260.9

64 high 465.3 495.1 527.0
low 564.4 691.9 986.3

128 high 241.5 281.9 387.9
low 256.6 357.7 373.1

256 high 189.7 245.2 264.4
low 215.4 226.7 275.2

plainable by the fact that a lowMEMD score means a high similarity of the patch
with the rest of the image, while a high score indicates a distinctive spectral
texture compared with the other patches of the same image. Thus, the higher
score patches capture the more unique features of the lesion, while the lower
score patches are more representative of the overall texture of the lesion. The
high representativeness of a patch might extend to patches of low score from
another image, while the unique features are probably different between images.
Therefore, the dataset with high score is richer in more unique patches, which
provide more information than the similar patches contained in the lower score
dataset. This, in turn, makes the network training converge faster for the dataset
with higher score patches.

We see that the datasetwith the highest entropy tends to be the fastest to converge.
Since a higher entropy usually indicates that more information is present in the
patch, we could expect the neural network to take longer to train. Conversely, a
dataset with lower entropy would train faster because the patches would have
less discriminating features, and the network would quickly classify them.

A possible explanation for this discrepancy is that patches with higher entropy
might share a similar structure or have patterns not present for other patches, and
thus are more recognizable by the network, while patches with lower entropy
might have less salient features, whichmakes it harder for the classifier to classify
them.

7.3 Results 119

Concerning the training for the dataset with intermediate entropy, it seems to
take longer to converge for smaller patch sizes compared to training on datasets
with more extreme entropy, but reaches similar speeds in comparison with the
other datasets when we increase the patch size. A reason for this could be that,
for lower patch sizes, patches with average entropy might be more diverse than
patches with lower or higher entropy, and the network will require more time to
analyze the patterns. When the patches are bigger, a patch can be composed of
smaller zones which vary greatly in entropy, but have an average entropy when
we look at the entirety of the patch. Therefore, these patches would be easier to
classify, which would lead to a faster training time.

Additionally, we investigate combining predictions from several patches of an
image to classify the image. We train a Resnet for 10 epochs and choose the
weights that result in the best validation loss. To classify an image from the test
set, we individually classify its patches and aggregate the results. Let Pi be the
set of patches from an image Ii, |Pi| the number of patches selected from the
image, f be the classifier that maps a patch to 0 for a benign patch and 1 for a
malignant one. The prediction ŷ is given by the Equation 3.

ŷi =

0 if
(

1
|P|
∑

p∈Pi
f(p)

)
< 0.5

1 otherwise
(7.3)

7.3.2 Accuracy

These interpretations are borne out by the results of the experiments presented
in Table 7.6. We observe that the classification accuracy is higher for datasets
with high entropy or high MEMD than for datasets with low entropy or low
MEMD. For the 128 × 128 patches, the accuracy does not improve when we
select more patches: it stagnates around 50%. This indicates that this patch size
is too small to properly discriminate the lesions. The problem is not about the
number of patches but about the fact that small patches do not contain enough
information to determine the status of the lesion. We believe that this situation
holds also for even smaller patches, e.g. 32× 32 or 64× 64 patches. Conversely,
for the case of 256× 256 patches, we remark that using too few patches results in
very low accuracy (around 25%); however, the accuracy increases considerably
when we select more patches (30% of 15%), achieving 71% accuracy for patches

120 GUILLAUME LACHAUD

of high entropy. This accuracy is similar to the 74% accuracy obtained by the
authors of Favole et al. (2020) when training on the whole region of interest
with a ResNet50.
Table 7.6: Test accuracy (in percentage) for the different datasets. For a given
patch size, the test images are the same for each method.

Dataset low MEMD high MEMD low entropy high entropy
128× 128, 15% patches 46.7 50.5 46.2 52.7
128× 128, 30% patches 43.9 51.6 39.6 52.7
256× 256, 15% patches 27.2 26.3 25.1 32.0
256× 256, 30% patches 45.5 57.2 52.7 71.0

The lower accuracy for the low MEMD and low entropy datasets, compared
with the high MEMD and entropy datasets, suggests that it is not sufficient to
select more patches to reach a higher level of accuracy; it is also important to
select appropriate patches.

Figure 7.6 and Figure 7.7 illustrate the role of MEMD in patch selection. The
patch on the left of Figure 7.7 is one of the patches with the lowest MEMD score
for the image, while the patch on the right has one of the highest scores. Due
to the fact that the masks cannot perfectly capture the lesion, there will always
be some part of the skin that will be present in the mask. Since the skin has
more uniform texture than the lesion, it is likely that patches of skin will have
the lowest score.

(a) Malignant lesion (b) Mask of the lesion

Figure 7.6: Image of a mask and its lesion.

Similarly, Figure 7.8 shows, for the same image, patches that belong in the low
entropy and the high entropy dataset. The patch on the left has a smoother

7.3 Results 121

(a) Patch with low MEMD score (b) Patch with high MEMD score

Figure 7.7: Patches of low and high MEMD scores.

texture and the pixels have similar intensity. The patch on the right does not
have the same regularity.

(a) Patch with low entropy score (b) Patch with high entropy score

Figure 7.8: Patches of low and high entropy

The datasets extracted using the entropy converge faster than the datasets ex-
tracted with the MEMD criterion. We hypothesize that a likely explanation is
that patches extracted with the entropy share similar distributions of pixels,
albeit sometimes shifted. The entropy quantifies the distribution of pixel in-
tensity: the higher the entropy, the closer the pixel distribution will be to the
uniform distribution. Thus, the patches from entropy extracted datasets are

122 GUILLAUME LACHAUD

similar across the images, and this similarity is learnable by the network. On
the other hand, datasets extracted using the MEMD criterion do not provide
any quantifiable information about the pixel distribution. Their score is only
indicative of how representative the patch is with respect to the image. The
network might thus be confronted with a wider variety of patches which leads
to a longer training time.

7.4 Discussion

We examined the role of entropy and the MEMD criterion on the training time
of a CNN for patch-based binary classification. The preprocessing is longer with
the MEMD criterion because we have to compare patches two by two, whereas
entropy requires a single computation per patch. We found that higher entropy
leads to faster convergence than lower entropy; similarly, a higher MEMD score,
which indicates that the patch does not resemble other patches from the same
image, also leads to faster convergence. In terms of accuracy, the models trained
on the higher entropy dataset or the higher MEMD are more performant than
the models trained on the lower entropy or lower MEMD datasets. We also
found that creating patch datasets using an absolute measure of information,
such as entropy, makes the network train faster than when the datasets were
created using a similarity measure. We also observed that patch size plays a
significant role in the classifier accuracy, with small patches leading to poor
results, regardless of the percentage of patches used.

Some perspectives to this work can be to explore the use of segmentation to
obtain the regions of interest, increasing the number of images we canwork with,
and see if the results are comparable. Another possibility can be to analyze the
effects resizing an image has on its entropy to quantify the loss of information,
and the impact it can have on classification using resized images.

Additionally, these patches can be used as nodes in a graph, where the links can
reflect the distance between the patches. A perspective would be to convert the
patches into a graph and perform classsifiation using graph neural networks.

Chapter 8

Conclusion and perspectives

8.1 Conclusions

In this thesis, we proposed a grouping of the theoretically most expressive
GNNs, and we empirically tackled the issues of multilabel classification, trans-
ductive and inductive learning, and learning with noise in the features. We also
experimented with patch creation in medical images.

8.1.1 Contributions

In Chapter 3, we reviewed the most expressive GNNs. We find that they could
be divided into different groups representing the techniques used for increasing
their expressiveness compared to standard GNNs. Methods that rely on high-
order tensors, e.g., tensors that represent hyper-edges or permutations, are the
most expressive methods, but they are also the most expensive computationally.
Methods relying on node identification and substructure awareness can reach
similar levels of expressiveness while being computationally more efficient.

In Chapter 5, we showed the importance of choosing between transductive and
inductive learning, and between single and multilabel classification. On the one
hand, in the transductive setting, the leak of information from the test set to the

124 GUILLAUME LACHAUD

train set is detrimental to the quality of the evaluation of the models; besides, it
can hide overfitting. On the other hand, many node classification tasks should
be framed as multilabel tasks, in order to take into account the relations that
might exist between the labels.

In Chapter 6, we investigated the performance of GNNs when we added noise
to the features of the nodes. We empirically exhibited implicit noise reduction
mechanisms that exist in some architectures. Furthermore, the noise that impacts
themodels themost is the noise that targets the nodeswith the fewest neighbours.
Regardingmissing features, we proposed a novel GNN architecture that imputes
the missing values.

In Chapter 7, we used two information measures, entropy and a spectral texture
criterion, to extract patches out of images of skin lesions and performed classifi-
cation using CNNs. We find that the choice of patches greatly influences the
accuracy of the model.

8.2 Short Term Perspectives

We plan to continue the work related to the conversion of medical images into
graphs, and the study of noise in dynamic networks.

Medical imaging and graphs: We empirically showed that we can extract
patches from medical images using measures such as entropy or other criteria
to perform classification. There are limitations to this approach. For instance,
the size of the patch was fixed, while the images were of varying size. Moreover,
there was no additional processing of the patches: the features used by the CNN
were the pixels of the patch. We want to extend this approach in three ways:

• use a more suitable way of extracting regions of interest, e.g., segmentation
using deep learning.

• design better features for the extracted regions, e.g., find low dimensional
embeddings that capture the properties of the region, such as its shape, its
texture, its volume, etc.

• create a graph where the nodes can be the extracted regions; the edges can

8.3 Long Term Perspectives 125

represent similarities between the nodes, such as their distance.

Then, a GNN can be trained on the generated graph. The goal would be then to
expand the approach for node tracking in 3 dimensional images. For instance,
3Dmedical images can be viewed as stacks of 2D cuts. We can generate inter-layer
edges which link nodes from different cuts. We can then train a GNN to perform
node tracking, similar to particle tracking done with the Large Hadron Collider
(LHC).

Dynamic graphs: In our experiments, we treated the academic citation network
as a static graph; the use of graph neural networks on temporal or dynamic
graphs is still rare. One of our goals will be to contribute to the main libraries
for deep learning with graphs, e.g., PyTorch Geometric, to provide easier access
to dynamic graphs and GNNs on dynamic graphs.

We then plan to extend ourwork fromChapter 6 to dynamic graphs. In particular,
we would like to study the temporal impact of noise, e.g., find how a GNN reacts
against strong ponctual noise or againt low intensity noise that spans across
time. Furthermore, we would like to propose a GNN architecture for missing
data imputation in dynamic graphs.

8.3 Long Term Perspectives

One of the recurring themes of this thesis is the importance of the features of
nodes and of edges in graphs. Much of the research regarding the theoretical
properties of graph neural networks has been done with the assumption that
the nodes have no features, or only discrete features. The role of features in
the learning of GNNs on different types of graphs, e.g., social networks, road
networks, molecule graphs, is still largely unexplored. Features are seen as a
means to an end; they are used insomuch as they improve the performance of a
model. To make an analogy with images, it is as if the quality of the image is
irrelevant, so long as we can classify the image properly. Designing methods to
estimate the quality of the features would help curate graph datasets, which in
turn would facilitate research on graphs.

One of the most important obstacles faced during the thesis was the issue of

126 GUILLAUME LACHAUD

scalability. This can manifest itself in two ways: either the graphs are too large to
fit into the GPU memory, or the GNNs have too many parameters to fit into the
memory. Expecting to solve the problem by increasing the GPU or TPUmemory
is pointless, because social graphs will increase likewise. While we used node
sampling to address this issue in our architecture for missing data imputation,
there are still other approaches to explore.

As mentioned in the short term perspectives, dynamic graphs, and especially
deep learning on dynamic graphs, is still a vastly underexplored topic. One
of the main reasons behind this is the lack of appropriate libraries. As the
software matures, the tools to process dynamic graphs will improve, and there
will be interesting problems to tackle. One particular topic, beyond the study
of noise, is the explainability of dynamic graph neural networks. This will be
all the more important as there will be three competing sources of information
used by GNNs: temporal information, semantic information, and structural
information. Furthermore, the study of dynamic graphs can provide insights
into the emergence of distribution shifts in the data. For instance, in an academic
citation network, the dominant topics change over the years; similarly, there are
trends in social media which evolve over time.

Taking a step back, graph neural networks are just one among many approaches
that can be used to solve graph related tasks. In the greater scheme of things,
GNNs can be viewed from multiple lenses. For instance, graph filters are the
fundamental tools behind graph signal processing Ortega et al. (2018). In
addition, graph filters, and GNNs in general, are designed to be permutation
invariant or equivariant. Preserving this symmetry is what defines GNNs in
the same way that being translation invariant is at the core of CNNs. This
idea of symmetry is at the core of geometric deep learning, where the purpose
is to design neural networks that respect the symmetries of a given structure
Bronstein et al. (2021). Exploring and bridging the different fields of studies
related to graphs will help foster new ideas that will constitute the core of
tomorrow’s architectures.

One last axis of future research is to combine the aforementioned perspectives
and apply them to medical data. This data takes several shapes, such as Elec-
tronic Health Records (EHRs), CT scans, MRI, fitness activity, etc. The con-
nection and the curation of the components are still in their beginnings. There
are privacy, political, economical and societal issues that need to be addressed

8.3 Long Term Perspectives 127

in order to move forward. One of the technical challenges is the creation of
appropriate embeddings for all the types of data, so that they can used con-
jointly. Recent advances in Large Language Models and generative models look
promising. Constructing a complex graph out of this data could help exhibit
previously hidden patterns in the data.

Bibliography

GRAD/Train Your Own GNN Teacher: Graph-Aware Distillation on Textual
Graphs.pdf at main · cmavro/GRAD. https://github.com/cmavro/GRAD/.

Ralph Abboud, İsmail İlkan Ceylan, Martin Grohe, and Thomas Lukasiewicz.
The surprising power of graph neural networks with random node initializa-
tion. In Zhi-Hua Zhou, editor, Proceedings of the Thirtieth International Joint Con-
ference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-
27 August 2021, pages 2112–2118. ijcai.org, 2021. doi: 10.24963/ijcai.2021/291.

Syed Muhammad Anwar, Muhammad Majid, Adnan Qayyum, Muhammad
Awais, Majdi Alnowami, and Muhammad Khurram Khan. Medical Image
Analysis using Convolutional Neural Networks: A Review. Journal of Medical
Systems, 42(11):226, November 2018. ISSN 0148-5598, 1573-689X. doi: 10.1007/
s10916-018-1088-1.

Waiss Azizian and Marc Lelarge. Expressive power of invariant and equivariant
graph neural networks. In 9th International Conference on Learning Representa-
tions, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine
translation by jointly learning to align and translate. In Yoshua Bengio and
Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015.

Muhammet Balcilar, Guillaume Renton, Pierre Héroux, Benoit Gaüzère,
Sébastien Adam, and Paul Honeine. Analyzing the expressive power of
graph neural networks in a spectral perspective. In 9th International Conference

130 GUILLAUME LACHAUD

on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net, 2021.

Albert-László Barabási and Réka Albert. Emergence of Scaling in Random
Networks. Science (New York, N.Y.), 286(5439):509–512, October 1999. ISSN
0036-8075, 1095-9203. doi: 10.1126/science.286.5439.509.

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,
Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo,
Adam Santoro, Ryan Faulkner, Caglar Gulcehre, Francis Song, Andrew Bal-
lard, Justin Gilmer, George Dahl, Ashish Vaswani, Kelsey Allen, Charles Nash,
Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli,
Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Relational in-
ductive biases, deep learning, and graph networks. arXiv:1806.01261 [cs, stat],
October 2018.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan,
Chen Cai, Gopinath Balamurugan, Michael M. Bronstein, and Haggai Maron.
Equivariant subgraph aggregation networks. In The Tenth International Con-
ference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, YuguangWang, Pietro Liò, Guido F.
Montúfar, and Michael M. Bronstein. Weisfeiler and lehman go cellular: CW
networks. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin,
Percy Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural
Information Processing Systems 34: Annual Conference on Neural Information
Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, Virtual, pages
2625–2640, 2021.

John Adrian Bondy and Uppaluri Siva Ramachandra Murty. Graph Theory.
Springer Publishing Company, Incorporated, 2008.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, andMichael M. Bronstein.
Improving Graph Neural Network Expressivity via Subgraph Isomorphism
Counting, July 2021.

Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Ge-
ometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges.
arXiv:2104.13478 [cs, stat], May 2021.

BIBLIOGRAPHY 131

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral net-
works and locally connected networks on graphs. In Yoshua Bengio and Yann
LeCun, editors, 2nd International Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014.

Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the
number of variables for graph identification. Combinatorica, 12(4):389–410,
December 1992. ISSN 1439-6912. doi: 10.1007/BF01305232.

Emmanuel J. Candès and Benjamin Recht. Exact matrix completion via convex
optimization. Foundations of Computational Mathematics, 9(6):717–772, 2009.
doi: 10.1007/s10208-009-9045-5.

Lei Chen, Zhengdao Chen, and Joan Bruna. On graph neural networks versus
graph-augmented MLPs. In 9th International Conference on Learning Repre-
sentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net,
2021.

Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural
networks count substructures? In Hugo Larochelle, Marc’Aurelio Ranzato,
Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances
in Neural Information Processing Systems 33: Annual Conference on Neural In-
formation Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, Virtual,
2020.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph
Convolutional Networks. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 257–266, July 2019.
doi: 10.1145/3292500.3330925.

Eli Chien, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, Jiong Zhang, Ol-
gica Milenkovic, and Inderjit S. Dhillon. Node Feature Extraction by Self-
Supervised Multi-scale Neighborhood Prediction. arXiv:2111.00064 [cs], Oc-
tober 2021.

Eli Chien, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, Jiong Zhang, Olgica
Milenkovic, and Inderjit S. Dhillon. Node feature extraction by self-supervised
multi-scale neighborhood prediction. In The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenRe-
view.net, 2022.

132 GUILLAUME LACHAUD

Enyan Dai, Charu Aggarwal, and Suhang Wang. NRGNN: Learning a label
noise resistant graph neural network on sparsely and noisily labeled graphs.
In Feida Zhu, Beng Chin Ooi, and Chunyan Miao, editors, KDD ’21: The 27th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual
Event, Singapore, August 14-18, 2021, pages 227–236. ACM, 2021. doi: 10.1145/
3447548.3467364.

George Dasoulas, Ludovic Dos Santos, Kevin Scaman, and Aladin Virmaux.
Coloring graph neural networks for node disambiguation. In Christian
Bessiere, editor, Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, IJCAI 2020, pages 2126–2132. ijcai.org, 2020. doi:
10.24963/ijcai.2020/294.

Ithiel de Sola Pool and Manfred Kochen. Contacts and influence. Social Networks,
1(1):5–51, January 1978. ISSN 0378-8733. doi: 10.1016/0378-8733(78)90011-4.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional
neural networks on graphs with fast localized spectral filtering. In Proceed-
ings of the 30th International Conference on Neural Information Processing Systems,
NIPS’16, pages 3844–3852, Red Hook, NY, USA, December 2016. Curran Asso-
ciates Inc. ISBN 978-1-5108-3881-9.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from
Incomplete Data Via the EM Algorithm. Journal of the Royal Statistical Society:
Series B (Methodological), 39(1):1–22, 1977. ISSN 2517-6161. doi: 10.1111/j.
2517-6161.1977.tb01600.x.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-Training of deep bidirectional transformers for language understanding.
In Jill Burstein, Christy Doran, and Thamar Solorio, editors, Proceedings of
the 2019 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis,
MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 4171–4186.
Association for Computational Linguistics, 2019. doi: 10.18653/v1/n19-1423.

Reinhard Diestel. Graph Theory, volume 173 of. Graduate texts in mathematics,
593, 2012.

Samuel F. Dodge and Lina J. Karam. Understanding how image quality affects
deep neural networks. InEighth International Conference onQuality ofMultimedia

BIBLIOGRAPHY 133

Experience, QoMEX 2016, Lisbon, Portugal, June 6-8, 2016, pages 1–6. IEEE, 2016.
doi: 10.1109/QoMEX.2016.7498955.

Yuxiao Dong, Hao Ma, Zhihong Shen, and Kuansan Wang. A century of science:
Globalization of scientific collaborations, citations, and innovations. In Proceed-
ings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, Halifax, NS, Canada, August 13 - 17, 2017, pages 1437–1446.
ACM, 2017. doi: 10.1145/3097983.3098016.

B. L. Douglas. The Weisfeiler-Lehman Method and Graph Isomorphism Testing,
January 2011.

Keyu Duan, Zirui Liu, Peihao Wang, Wenqing Zheng, Kaixiong Zhou, Tianlong
Chen, Xia Hu, and ZhangyangWang. A Comprehensive Study on Large-Scale
Graph Training: Benchmarking and Rethinking, October 2022.

Andre Esteva, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M. Swetter,
Helen M. Blau, and Sebastian Thrun. Dermatologist-level classification of skin
cancer with deep neural networks. Nature, 542(7639):115–118, February 2017.
ISSN 0028-0836, 1476-4687. doi: 10.1038/nature21056.

Florent Favole, Maria Trocan, and Ercüment Yilmaz. Melanoma Detection
Using Deep Learning. In Ngoc Thanh Nguyen, Bao Hung Hoang, Cong Phap
Huynh, Dosam Hwang, Bogdan Trawiński, and Gottfried Vossen, editors,
Computational Collective Intelligence, volume 12496, pages 816–824. Springer
International Publishing, Cham, 2020. ISBN 978-3-030-63006-5 978-3-030-
63007-2. doi: 10.1007/978-3-030-63007-2_64.

Matthias Fey and Jan Eric Lenssen. Fast Graph Representation Learning with
PyTorch Geometric. arXiv:1903.02428 [cs, stat], April 2019.

Simon Geisler, Daniel Zügner, and Stephan Günnemann. Reliable graph neural
networks via robust aggregation. In Hugo Larochelle, Marc’Aurelio Ranzato,
Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances
in Neural Information Processing Systems 33: Annual Conference on Neural In-
formation Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, Virtual,
2020.

Simon Geisler, Tobias Schmidt, Hakan Sirin, Daniel Zügner, Aleksandar Bo-
jchevski, and Stephan Günnemann. Robustness of graph neural networks at
scale. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy

134 GUILLAUME LACHAUD

Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural Informa-
tion Processing Systems 34: Annual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, December 6-14, 2021, Virtual, pages 7637–7649,
2021.

Nils Gessert, Maximilian Nielsen, Mohsin Shaikh, René Werner, and Alexander
Schlaefer. Skin lesion classification using ensembles of multi-resolution Ef-
ficientNets with meta data. MethodsX, 7:100864, 2020a. ISSN 22150161. doi:
10.1016/j.mex.2020.100864.

Nils Gessert, Thilo Sentker, Frederic Madesta, Rudiger Schmitz, Helge Kniep,
Ivo Baltruschat, Rene Werner, and Alexander Schlaefer. Skin Lesion Clas-
sification Using CNNs With Patch-Based Attention and Diagnosis-Guided
Loss Weighting. IEEE Transactions on Biomedical Engineering, 67(2):495–503,
February 2020b. ISSN 0018-9294, 1558-2531. doi: 10.1109/TBME.2019.2915839.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, andGeorge E.
Dahl. Neural message passing for quantum chemistry. In Doina Precup and
YeeWhye Teh, editors, Proceedings of the 34th International Conference onMachine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of
Proceedings of Machine Learning Research, pages 1263–1272. PMLR, 2017.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Yee Whye Teh and D. Mike Titterington, edi-
tors, Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics, AISTATS 2010, Chia Laguna Resort, Sardinia, Italy, May 13-15, 2010,
volume 9 of JMLR Proceedings, pages 249–256. JMLR.org, 2010.

JohnWGraham. Missing data analysis: Making it work in the real world. Annual
review of psychology, 60:549–576, 2009.

David Gutman, Noel C. F. Codella, Emre Celebi, Brian Helba, Michael Marchetti,
Nabin Mishra, and Allan Halpern. Skin Lesion Analysis toward Melanoma
Detection: A Challenge at the International Symposium on Biomedical Imag-
ing (ISBI) 2016, hosted by the International Skin Imaging Collaboration (ISIC).
arXiv:1605.01397 [cs], May 2016.

William L. Hamilton. Graph Representation Learning. Synthesis Lectures on
Artificial Intelligence and Machine Learning, 14(3):1–159.

BIBLIOGRAPHY 135

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation
learning on large graphs. In Proceedings of the 31st International Conference on
Neural Information Processing Systems, NIPS’17, pages 1025–1035, Red Hook,
NY, USA, December 2017. Curran Associates Inc. ISBN 978-1-5108-6096-4.

Robert M. Haralick, K. Shanmugam, and Its’Hak Dinstein. Textural Features
for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics,
SMC-3(6):610–621, November 1973. ISSN 0018-9472, 2168-2909. doi: 10.1109/
TSMC.1973.4309314.

Michal Havlíček and Michal Haindl. Texture spectral similarity criteria. IET
Image Processing, 13(11):1998–2007, 2019. ISSN 1751-9667. doi: 10.1049/iet-ipr.
2019.0250.

Michal Havlíček and Michal Haindl. Optimized Texture Spectral Similarity
Criteria. In Krystian Wojtkiewicz, Jan Treur, Elias Pimenidis, and Marcin
Maleszka, editors, Advances in Computational Collective Intelligence, volume
1463, pages 644–655. Springer International Publishing, Cham, 2021. ISBN
978-3-030-88112-2 978-3-030-88113-9. doi: 10.1007/978-3-030-88113-9_52.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 770–778, Las Vegas, NV, USA, 2016.
IEEE. ISBN 978-1-4673-8851-1. doi: 10.1109/CVPR.2016.90.

Xiaoxin He, Xavier Bresson, Thomas Laurent, and Bryan Hooi. Explanations as
Features: LLM-Based Features for Text-Attributed Graphs, May 2023.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in
a neural network. CoRR, abs/1503.02531, 2015.

L. Hou, D. Samaras, T. M. Kurc, Y. Gao, J. E. Davis, and J. H. Saltz. Patch-based
convolutional neural network for whole slide tissue image classification. In
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
2424–2433, 2016. doi: 10.1109/CVPR.2016.266.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. Open graph benchmark: Datasets for
machine learning on graphs. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, andHsuan-Tien Lin, editors,Advances in Neural

136 GUILLAUME LACHAUD

Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, Virtual, 2020.

Vassilis Kalofolias, Xavier Bresson, Michael M. Bronstein, and Pierre Van-
dergheynst. Matrix completion on graphs. CoRR, abs/1408.1717, 2014.

George Karypis and Vipin Kumar. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM J. Sci. Comput., 20(1):359–392, 1998.
doi: 10.1137/S1064827595287997.

Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph
neural networks. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer,
Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 7090–7099, 2019.

Diederik P. Kingma and Jimmy Ba. Adam: Amethod for stochastic optimization.
CoRR, abs/1412.6980, 2015.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. In 5th International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net, 2017.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification
with deep convolutional neural networks. Communications of the ACM, 60(6):
84–90, May 2017. ISSN 0001-0782, 1557-7317. doi: 10.1145/3065386.

Guillaume Lachaud, Patricia Conde-Cespedes, and Maria Trocan. Entropy
role on patch-based binary classification for skin melanoma. In International
Conference on Computational Collective Intelligence, pages 324–333. Springer,
2021.

Guillaume Lachaud, Patricia Conde Céspedes, and Maria Trocan. Graph neural
networks-based multilabel classification of citation network. In Ngoc Thanh
Nguyen, Tien Khoa Tran, Ualsher Tukeyev, Tzung-Pei Hong, Bogdan Trawin-
ski, and Edward Szczerbicki, editors, Intelligent Information and Database Sys-
tems - 14th Asian Conference, ACIIDS 2022, Ho Chi Minh City, Vietnam, November
28-30, 2022, Proceedings, Part II, volume 13758 of Lecture Notes in Computer
Science, pages 128–140. Springer, 2022a. doi: 10.1007/978-3-031-21967-2_11.

BIBLIOGRAPHY 137

Guillaume Lachaud, Patricia Conde Céspedes, and Maria Trocan. Comparison
between inductive and transductive learning in a real citation network using
graph neural networks. In IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining, ASONAM 2022, Istanbul, Turkey, November
10-13, 2022, pages 534–540. IEEE, 2022b. doi: 10.1109/ASONAM55673.2022.
10068589.

Guillaume Lachaud, Patricia Conde-Cespedes, and Maria Trocan. Mathematical
expressiveness of graph neural networks. Mathematics, 10(24):4770, 2022c.

Guillaume Lachaud, Patricia Conde Conde-Cespedes, and Maria Trocan. Patch
selection for melanoma classification. In Ngoc Thanh Nguyen, Yannis
Manolopoulos, Richard Chbeir, Adrianna Kozierkiewicz, and Bogdan Trawin-
ski, editors, Computational Collective Intelligence - 14th International Conference,
ICCCI 2022, Hammamet, Tunisia, September 28-30, 2022, Proceedings, volume
13501 of Lecture Notes in Computer Science, pages 148–159. Springer, 2022d. doi:
10.1007/978-3-031-16014-1_13.

Guillaume Lachaud, Patricia Conde-Cespedes, and Maria Trocan. Scalable
Missing Data Imputation with Graph Neural Networks. In IWCIM 2023,
ICASSP 2023 Satelite Workshop, 2023.

Jack Lanchantin, Arshdeep Sekhon, and Yanjun Qi. Neural message passing
for multi-label classification. In Ulf Brefeld, Élisa Fromont, Andreas Hotho,
Arno J. Knobbe, Marloes H. Maathuis, and Céline Robardet, editors, Machine
Learning and Knowledge Discovery in Databases - European Conference, ECML
PKDD 2019, Würzburg, Germany, September 16-20, 2019, Proceedings, Part II,
volume 11907 of Lecture Notes in Computer Science, pages 138–163. Springer,
2019. doi: 10.1007/978-3-030-46147-8_9.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, November
1998. ISSN 1558-2256. doi: 10.1109/5.726791.

Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. DeepGCNs:
Can GCNs Go As Deep As CNNs? In 2019 IEEE/CVF International Conference
on Computer Vision (ICCV), pages 9266–9275, Seoul, Korea (South), October
2019. IEEE. ISBN 978-1-72814-803-8. doi: 10.1109/ICCV.2019.00936.

Guohao Li, Matthias Müller, Bernard Ghanem, and Vladlen Koltun. Training
graph neural networks with 1000 layers. In Marina Meila and Tong Zhang,

138 GUILLAUME LACHAUD

editors, Proceedings of the 38th International Conference on Machine Learning,
ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine
Learning Research, pages 6437–6449. PMLR, 2021a.

Jingling Li, Mozhi Zhang, Keyulu Xu, John Dickerson, and Jimmy Ba. How
does a neural network’s architecture impact its robustness to noisy labels? In
Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and
Jennifer Wortman Vaughan, editors, Advances in Neural Information Processing
Systems 34: Annual Conference on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, Virtual, pages 9788–9803, 2021b.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding:
Design provably more powerful neural networks for graph representation
learning. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-
Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Sys-
tems 2020, NeurIPS 2020, December 6-12, 2020, Virtual, 2020.

Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin Swersky. Graph
normalizing flows. In HannaM.Wallach, Hugo Larochelle, Alina Beygelzimer,
Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 13556–13566, 2019.

Songtao Liu, Zhitao Ying, Hanze Dong, Lu Lin, Jinghui Chen, and Dinghao Wu.
How Powerful is Implicit Denoising in Graph Neural Networks. In NeurIPS
2022 Workshop: New Frontiers in Graph Learning, November 2022.

Andreas Loukas. What graph neural networks cannot learn: Depth vs width. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

Yao Ma and Jiliang Tang. Deep Learning on Graphs. Cambridge University Press,
2021.

Yao Ma, Xiaorui Liu, Tong Zhao, Yozen Liu, Jiliang Tang, and Neil Shah. A
unified view on graph neural networks as graph signal denoising. In Gianluca
Demartini, Guido Zuccon, J. Shane Culpepper, Zi Huang, and Hanghang
Tong, editors, CIKM ’21: The 30th ACM International Conference on Information

BIBLIOGRAPHY 139

and Knowledge Management, Virtual Event, Queensland, Australia, November 1 - 5,
2021, pages 1202–1211. ACM, 2021. doi: 10.1145/3459637.3482225.

Panagiotis Marentakis, Pantelis Karaiskos, Vassilis Kouloulias, Nikolaos Kelekis,
Stylianos Argentos, Nikolaos Oikonomopoulos, and Constantinos Loukas.
Lung cancer histology classification from CT images based on radiomics
and deep learning models. Medical & Biological Engineering & Computing,
59(1):215–226, January 2021. ISSN 0140-0118, 1741-0444. doi: 10.1007/
s11517-020-02302-w.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably
powerful graph networks. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors,
Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 2153–2164, 2019a.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant
and equivariant graph networks. In 7th International Conference on Learning Rep-
resentations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019b.

Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the univer-
sality of invariant networks. In Kamalika Chaudhuri and Ruslan Salakhutdi-
nov, editors, Proceedings of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pages 4363–4371. PMLR, 2019c.

Carl D Meyer and Ian Stewart. Matrix Analysis and Applied Linear Algebra. SIAM,
2023.

Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. In Yoshua Bengio and Yann LeCun,
editors, 1st International Conference on Learning Representations, ICLR 2013,
Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings, 2013.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric
Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and Leman Go Neural:
Higher-Order Graph Neural Networks. Proceedings of the AAAI Conference on
Artificial Intelligence, 33:4602–4609, July 2019. ISSN 2374-3468, 2159-5399. doi:
10.1609/aaai.v33i01.33014602.

140 GUILLAUME LACHAUD

ChristopherMorris, Yaron Lipman, HaggaiMaron, Bastian Rieck, NilsM. Kriege,
Martin Grohe, Matthias Fey, and Karsten Borgwardt. Weisfeiler and Leman
go Machine Learning: The Story so far, December 2021.

Ryan L. Murphy, Balasubramaniam Srinivasan, Vinayak A. Rao, and Bruno
Ribeiro. Relational pooling for graph representations. In Kamalika Chaudhuri
and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Con-
ference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA, volume 97 of Proceedings of Machine Learning Research, pages 4663–4673.
PMLR, 2019.

Jinseok Nam, Jungi Kim, Eneldo Loza Mencía, Iryna Gurevych, and Johannes
Fürnkranz. Large-Scale Multi-label Text Classification — Revisiting Neural
Networks. In Toon Calders, Floriana Esposito, Eyke Hüllermeier, and Rosa
Meo, editors,Machine Learning and Knowledge Discovery in Databases, volume
8725, pages 437–452. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.
ISBN 978-3-662-44850-2 978-3-662-44851-9. doi: 10.1007/978-3-662-44851-9_
28.

Kamal Nigam, John Lafferty, and Andrew McCallum. Using maximum entropy
for text classification. In IJCAI-99 Workshop on Machine Learning for Information
Filtering, volume 1, pages 61–67. Stockholom, Sweden, 1999.

Antonio Ortega, Pascal Frossard, Jelena Kovačević, José M. F. Moura, and Pierre
Vandergheynst. Graph Signal Processing: Overview, Challenges and Applica-
tions, March 2018.

Xuejie Qin and Yee-Hong Yang. Similarity measure and learning with gray level
aura matrices (GLAM) for texture image retrieval. In Proceedings of the 2004
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
2004. CVPR 2004., volume 1, pages I–I, June 2004. doi: 10.1109/CVPR.2004.
1315050.

Samuel Rey, Santiago Segarra, Reinhard Heckel, and Antonio G. Marques. Un-
trained graph neural networks for denoising. IEEE Trans. Signal Process., 70:
5708–5723, 2022. doi: 10.1109/TSP.2022.3223552.

Hannah Ritchie and Max Roser. Causes of death. Our World in Data, 2018.

BIBLIOGRAPHY 141

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico
Monti, and Michael Bronstein. Temporal Graph Networks for Deep Learning
on Dynamic Graphs. arXiv:2006.10637 [cs, stat], October 2020.

Emanuele Rossi, Henry Kenlay, Maria I. Gorinova, Benjamin Paul Chamberlain,
Xiaowen Dong, and Michael M. Bronstein. On the unreasonable effectiveness
of feature propagation in learning on graphs with missing node features. In
Bastian Rieck and Razvan Pascanu, editors, Learning on Graphs Conference, LoG
2022, 9-12 December 2022, Virtual Event, volume 198 of Proceedings of Machine
Learning Research, page 11. PMLR, 2022.

Veronica Rotemberg, Nicholas Kurtansky, Brigid Betz-Stablein, Liam Caffery,
Emmanouil Chousakos, Noel Codella, Marc Combalia, Stephen Dusza, Pas-
cale Guitera, David Gutman, Allan Halpern, Brian Helba, Harald Kittler,
Kivanc Kose, Steve Langer, Konstantinos Lioprys, Josep Malvehy, Shenara
Musthaq, Jabpani Nanda, Ofer Reiter, George Shih, Alexander Stratigos,
Philipp Tschandl, Jochen Weber, and H. Peter Soyer. A patient-centric dataset
of images and metadata for identifying melanomas using clinical context. Sci-
entific Data, 8(1):34, 2021. ISSN 2052-4463. doi: 10.1038/s41597-021-00815-z.

François Rousseau, Piotr A. Habas, and Colin Studholme. A supervised patch-
based approach for human brain labeling. IEEE Trans. Medical Imaging, 30
(10):1852–1862, 2011. doi: 10.1109/TMI.2011.2156806.

Kaushiki Roy, Debapriya Banik, Debotosh Bhattacharjee, and Mita Nasipuri.
Patch-based system for Classification of Breast Histology images using deep
learning. Comput. Medical Imaging Graph., 71:90–103, 2019. doi: 10.1016/j.
compmedimag.2018.11.003.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features
strengthen graph neural networks. In Carlotta Demeniconi and Ian Davidson,
editors, Proceedings of the 2021 SIAM International Conference on Data Mining,
SDM 2021, Virtual Event, April 29 - May 1, 2021, pages 333–341. SIAM, 2021.
doi: 10.1137/1.9781611976700.38.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. Collective Classification in Network Data. AI Magazine, 29
(3):93, September 2008. ISSN 0738-4602, 0738-4602. doi: 10.1609/aimag.v29i3.
2157.

142 GUILLAUME LACHAUD

Claude E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27(3):379–423, 1948. doi: 10.1002/j.1538-7305.1948.tb01338.x.

Yuefan Shen, Hongbo Fu, Zhongshuo Du, Xiang Chen, Evgeny Burnaev, Denis
Zorin, Kun Zhou, and Youyi Zheng. GCN-Denoiser: Mesh denoising with
graph convolutional networks. ACM Trans. Graph., 41(1):8:1–8:14, 2022. doi:
10.1145/3480168.

Kai Shu, Amy Sliva, Suhang Wang, Jiliang Tang, and Huan Liu. Fake news
detection on social media: A data mining perspective. SIGKDD Explor., 19(1):
22–36, 2017. doi: 10.1145/3137597.3137600.

Rebecca L. Siegel, Kimberly D. Miller, Hannah E. Fuchs, and Ahmedin Jemal.
Cancer Statistics, 2021. CA: A Cancer Journal for Clinicians, 71(1):7–33, January
2021. ISSN 0007-9235, 1542-4863. doi: 10.3322/caac.21654.

John Skilling and RK Bryan. Maximum entropy image reconstruction-general
algorithm. Monthly notices of the royal astronomical society, 211:111, 1984.

A. Sperduti and A. Starita. Supervised neural networks for the classification
of structures. IEEE Transactions on Neural Networks, 8(3):714–735, May 1997.
ISSN 1045-9227, 1941-0093. doi: 10.1109/72.572108.

Chuxiong Sun and Guoshi Wu. Adaptive Graph Diffusion Networks with Hop-
Wise Attention. arXiv:2012.15024 [cs], December 2020.

Chuxiong Sun, Hongming Gu, and Jie Hu. Scalable and Adaptive Graph Neural
Networks with Self-Label-Enhanced training. arXiv:2104.09376 [cs], July 2021.

Erik H. Thiede, Wenda Zhou, and Risi Kondor. Autobahn: Automorphism-
based graph neural nets. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N.
Dauphin, Percy Liang, and Jennifer Wortman Vaughan, editors, Advances in
Neural Information Processing Systems 34: Annual Conference on Neural Informa-
tion Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, Virtual, pages
29922–29934, 2021.

Olga G. Troyanskaya, Michael N. Cantor, Gavin Sherlock, Patrick O. Brown,
Trevor Hastie, Robert Tibshirani, David Botstein, and Russ B. Altman. Missing
value estimation methods for DNA microarrays. Bioinform., 17(6):520–525,
2001. doi: 10.1093/bioinformatics/17.6.520.

BIBLIOGRAPHY 143

Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. The HAM10000 dataset, a
large collection of multi-source dermatoscopic images of common pigmented
skin lesions. Scientific Data, 5(1):180161, December 2018. ISSN 2052-4463. doi:
10.1038/sdata.2018.161.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. Graph attention networks. In 6th International Confer-
ence on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 -
May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.
Extracting and composing robust features with denoising autoencoders. In
William W. Cohen, Andrew McCallum, and Sam T. Roweis, editors, Machine
Learning, Proceedings of the Twenty-Fifth International Conference (ICML 2008),
Helsinki, Finland, June 5-9, 2008, volume 307 of ACM International Conference
Proceeding Series, pages 1096–1103. ACM, 2008. doi: 10.1145/1390156.1390294.

Jiang Wang, Yi Yang, Junhua Mao, Zhiheng Huang, Chang Huang, and Wei Xu.
CNN-RNN: A Unified Framework for Multi-label Image Classification. In
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
2285–2294, Las Vegas, NV, USA, June 2016. IEEE. ISBN 978-1-4673-8851-1. doi:
10.1109/CVPR.2016.251.

MinjieWang, Da Zheng, Zihao Ye, QuanGan,Mufei Li, Xiang Song, Jinjing Zhou,
ChaoMa, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang
Li, and Zheng Zhang. Deep graph library: A graph-centric, highly-performant
package for graph neural networks. arXiv preprint arXiv:1909.01315, 2019.

Xiyuan Wang and Muhan Zhang. How powerful are spectral graph neural net-
works. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári,
Gang Niu, and Sivan Sabato, editors, International Conference on Machine Learn-
ing, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of
Proceedings of Machine Learning Research, pages 23341–23362. PMLR, 2022.

Yangkun Wang, Jiarui Jin, Weinan Zhang, Yong Yu, Zheng Zhang, and David
Wipf. Bag of Tricks for Node Classification with Graph Neural Networks.
arXiv:2103.13355 [cs], July 2021.

Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form
and the algebra which appears therein. nti, Series, 2(9):12–16, 1968.

144 GUILLAUME LACHAUD

Brian J Wells, Kevin M Chagin, Amy S Nowacki, and Michael W Kattan. Strate-
gies for handling missing data in electronic health record derived data. Egems,
1(3), 2013.

Asiri Wijesinghe and Qing Wang. A new perspective on "How Graph Neural
Networks Go Beyond Weisfeiler-Lehman?". In The Tenth International Confer-
ence on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022.

Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and
Kilian Q.Weinberger. Simplifying graph convolutional networks. In Kamalika
Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th Interna-
tional Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, volume 97 of Proceedings of Machine Learning Research, pages
6861–6871. PMLR, 2019.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S. Yu. A comprehensive survey on graph neural networks. IEEE Trans.
Neural Networks Learn. Syst., 32(1):4–24, 2021. doi: 10.1109/TNNLS.2020.
2978386.

Da Xu, Chuanwei Ruan, Evren Körpeoglu, Sushant Kumar, and Kannan Achan.
Inductive representation learning on temporal graphs. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net, 2020.

Fengli Xu, Quanming Yao, Pan Hui, and Yong Li. Automorphic equivalence-
aware graph neural network. In Marc’Aurelio Ranzato, Alina Beygelzimer,
Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan, editors, Ad-
vances in Neural Information Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, Virtual,
pages 15138–15150, 2021a.

Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong,
and Xue Lin. Topology attack and defense for graph neural networks: An
optimization perspective. In Sarit Kraus, editor, Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China,
August 10-16, 2019, pages 3961–3967. ijcai.org, 2019a. doi: 10.24963/ijcai.2019/
550.

BIBLIOGRAPHY 145

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful
are graph neural networks? In 7th International Conference on Learning Repre-
sentations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019b.

Keyulu Xu, Mozhi Zhang, Stefanie Jegelka, and Kenji Kawaguchi. Optimization
of graph neural networks: Implicit acceleration by skip connections and more
depth. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th
International Conference onMachine Learning, ICML 2021, 18-24 July 2021, Virtual
Event, volume 139 of Proceedings of Machine Learning Research, pages 11592–
11602. PMLR, 2021b.

Adam Yala, Constance Lehman, Tal Schuster, Tally Portnoi, and Regina Barzilay.
A Deep Learning Mammography-Based Model for Improved Breast Cancer
Risk Prediction. Radiology, 292(1):60–66, July 2019. ISSN 0033-8419, 1527-1315.
doi: 10.1148/radiol.2019182716.

Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-
supervised learning with graph embeddings. In Maria-Florina Balcan and
Kilian Q. Weinberger, editors, Proceedings of the 33nd International Conference
on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016,
volume 48 of JMLRWorkshop and Conference Proceedings, pages 40–48. JMLR.org,
2016.

Ercument Yilmaz and Maria Trocan. Benign and Malignant Skin Lesion Classifi-
cation Comparison for Three Deep-Learning Architectures. In Ngoc Thanh
Nguyen, Kietikul Jearanaitanakij, Ali Selamat, Bogdan Trawiński, and
Suphamit Chittayasothorn, editors, Intelligent Information and Database Systems,
volume 12033, pages 514–524. Springer International Publishing, Cham, 2020.
ISBN 978-3-030-41963-9 978-3-030-41964-6. doi: 10.1007/978-3-030-41964-6\
_44.

Jinsung Yoon, James Jordon, and Mihaela van der Schaar. GAIN: Missing
data imputation using generative adversarial nets. In Jennifer G. Dy and
Andreas Krause, editors, Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,
2018, volume 80 of Proceedings of Machine Learning Research, pages 5675–5684.
PMLR, 2018.

146 GUILLAUME LACHAUD

Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks.
In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of
the 36th International Conference on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning
Research, pages 7134–7143. PMLR, 2019.

Jiaxuan You, Xiaobai Ma, Daisy Yi Ding, Mykel J. Kochenderfer, and Jure
Leskovec. Handling missing data with graph representation learning. In
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, Virtual, 2020.

Jiaxuan You, Jonathan Michael Gomes Selman, Rex Ying, and Jure Leskovec.
Identity-aware graph neural networks. In Thirty-Fifth AAAI Conference on Arti-
ficial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of
Artificial Intelligence, IAAI 2021, the Eleventh Symposium on Educational Advances
in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pages
10737–10745. AAAI Press, 2021.

Jiangye Yuan, Deliang Wang, and Anil M. Cheriyadat. Factorization-Based
Texture Segmentation. IEEE Transactions on Image Processing, 24(11):3488–
3497, November 2015. ISSN 1941-0042. doi: 10.1109/TIP.2015.2446948.

Fan Zhang, Yang Song, Weidong Cai, Min-Zhao Lee, Yun Zhou, Heng Huang,
Shimin Shan, Michael J. Fulham, and David Dagan Feng. Lung nodule clas-
sification with multilevel patch-based context analysis. IEEE Transactions
on Biomedical Engineering, 61(4):1155–1166, 2014. doi: 10.1109/TBME.2013.
2295593.

Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chenglong Bao, and
Kaisheng Ma. Be Your Own Teacher: Improve the Performance of Convolu-
tional Neural Networks via Self Distillation. In 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 3712–3721, Seoul, Korea (South),
October 2019. IEEE. ISBN 978-1-72814-803-8. doi: 10.1109/ICCV.2019.00381.

Muhan Zhang and Pan Li. Nested graph neural networks. In Marc’Aurelio Ran-
zato, Alina Beygelzimer, YannN. Dauphin, Percy Liang, and JenniferWortman
Vaughan, editors, Advances in Neural Information Processing Systems 34: An-

BIBLIOGRAPHY 147

nual Conference on Neural Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, Virtual, pages 15734–15747, 2021.

Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on graphs: A survey.
IEEE Trans. Knowl. Data Eng., 34(1):249–270, 2022. doi: 10.1109/TKDE.2020.
2981333.

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs:
Uplifting any GNN with local structure awareness. In The Tenth International
Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29,
2022. OpenReview.net, 2022.

SongChunZhu, YingNianWu, andDavidMumford. Minimax entropy principle
and its application to texture modeling. Neural Computation, 9(8):1627–1660,
1997. doi: 10.1162/neco.1997.9.8.1627.

Jana Zujovic, Thrasyvoulos N. Pappas, and David L. Neuhoff. Structural simi-
larity metrics for texture analysis and retrieval. In 2009 16th IEEE International
Conference on Image Processing (ICIP), pages 2225–2228, Cairo, Egypt, Novem-
ber 2009. IEEE. ISBN 978-1-4244-5653-6. doi: 10.1109/ICIP.2009.5413897.

Résumé en Français

1 Chapitre 1: Introduction

Les graphes sont les objets les plus simples permettant de décrire les relations
entre plusieurs entités. Ils sont présent tout autour de nous, du microscopique
avec les atomes constitués de protons, de neutrons et d’électrons interagissant
entre eux, jusqu’aumacroscopique avec les planètes qui orbitent autour du Soleil
au sein d’une galaxie qui fait elle-même partie d’un ensemble encore plus grand.

Au-delà des relations les physiques, les graphes permettent de représenter des
concepts plus abstraits. Chaque jour notre vie baigne dans les graphes, que cela
soit lors d’interactions avec d’autres personnes sur les réseaux sociaux, lorsque
nous surfons sur les plateformes de contenu vidéo, lorsque nous achetons des
produits sur internet, ou bien lorsque nous utilisons le GPS pour nous rendre
d’un point à un autre. En science, les graphes peuvent s’utiliser pour suivre
l’évolution d’une épidémie au sein d’une population ou bien à l’échellemondiale;
le code des langages de programmation peut être analysé en utilisant sa structure
d’arbre.

La manipulation de ces graphes recquiert des outils adaptés et performants. Au
contraire des approches traditionnelles d’apprentissage machine qui reposent
sur des fondations et des modèles statistiques robustes, l’apprentissage profond
(deep learning) est une approche orientée sur la donnée. Les premiers réseaux de
neurones sont apparus il y a 70 ans, mais c’est avec l’apparition des processeurs
graphiques (GPU) et l’accumulation de données sur internet que leur essor a
vraiment eu lieu.

150 GUILLAUME LACHAUD

De manière similaire aux réseaux de neurones convolutionnels (CNNs) qui
opèrent sur des images, et les réseaux de neurones récurrents (RNNs) qui
opèrent principalement sur de la donnée textuelle, les réseaux de neurones de
graphes (GNNs)manipulent des graphes. En quelques années, les GNNs se sont
beaucoup développé, aussi bien avec la découverte de nouvelles architectures
qu’avec l’établissement de fondements théoriques de plus en plus solides.

1.1 Les défis des réseaux de neurones de graphes

Parmi les défis que doivent relever les GNNs, nous en avons identifié trois
spécifiques aux graphes qui seront traités dans la thèse : la différence entre
l’apprentissage transductif et inductif, le choix de la classification multilabel, et
la présence de bruit dans les attributs d’un graphe.

En tout premier lieu, l’apprentissage d’unGNNpeut s’effectuer de deuxmanières
: de manière transductive, c’est-à-dire que le GNN a accès aux données de test
non labelisées pendant l’apprentissage; ou de manière inductive, où le GNN n’a
accès qu’au sous-graphe formé par les nœuds de l’ensemble d’entraînement.

Une autre spécificité de l’apprentissage sur graphe est l’interdépendance entre
les nœuds : ils ne peuvent pas être considérés comme indépendants et iden-
tiquement distribués. Lors de la classification, il faut prendre en compte les
attributs des nœuds et son voisinage. Ces deux informations peuvent être en
contradiction.

Au même titre que de bruit dans la structure ou dans les labels du graphe, la
présence de bruit dans les attributs d’un nœud ou d’un lien ont des répercussions
qui dépassent l’élément en question. L’interdépendance mentionnée plus haut
fait que le bruit se propage dans le graphe. Le choix d’un GNN pour une tâche
donnée doit donc prendre en considération la possibilité d’une présence de bruit
dans la donnée.

1.2 Vers la création de graphes

Au-delà de l’apprentissage à proprement parlé sur les graphes, il y a la question
de la construction des graphes. Si certains graphes émergent naturellement

Introduction aux graphes 151

comme la représentation la plus appropriée d’un phénomène, d’autres graphes
peuvent être le fruit d’un long travail visant à décrire un système complexe. En
ce sens, la création de graphes joue un rôle aussi important que l’apprentissage
sur les graphes.

1.3 Contributions

Les contributions principales de cette thèse sont les suivantes :

• nous montrons les différences empiriques de performances de plusieurs
modèles dans le cas de l’apprentissage transductif et inductif.

• nous montrons d’une part l’utilité de la classification multilabel pour
l’analyse d’erreurs, et d’autre part sa pertinence pour la sélection d’architectures.

• nous faisons une étude empirique approfondie de l’influence du bruit dans
les attributs sur l’apprentissage d’un GNN. En particulier, nous trouvons
que les performances d’un modèle sont le plus dégradées lorsque le bruit
cible les nœuds les plus isolés.

• nous proposons une nouvelle architecture deGNNqui permet l’imputation
d’attributs manquants dans les données tabulaires ou les données de type
graphe.

• nous présentons des résultats préliminaires sur la création de graphes à
partir d’images médicales.

2 Chapitre 2: Introduction aux graphes, à l’apprentissage
de représentations et au traitement du signal des
graphes

Ce chapitre présente la représentation mathématique des graphes et les types
de tâches qui sont effectués dessus, à savoir les tâches sur les nœuds comme la
classification de nœuds, les tâches sur les liens comme la prédiction de liens, et
les tâches sur les graphes.

152 GUILLAUME LACHAUD

Dans une deuxième partie, les principales méthodes d’apprentissage sur les
graphes, à l’exception des réseaux de neurones de graphes, sont préséntés. En
outre, les méthodes les plus importantes sont:

• les méthodes statistiques, comme le calcul de statistiques élémentaires sur
les graphes et les marches aléatoires.

• l’apprentissage de représentations de faible dimension, à l’aide d’encodeurs
et décodeurs.

• le traitement de signal de graph (graph signal processing), qui traite les
attributs d’un graphe comme un signal à transmettre.

• les algorithmes itératifs de coloration de graphes, avec en particulier
l’algorithme de Weisfeiler-Leman.

3 Chapitre 3: Apprentissage profond et réseaux de
neurones de graphes

L’apprentissage profond repose sur la création de réseaux de neurones composés
de plusieurs couches contenant chacune des paramètres. Ces couches sont de
deux natures : les filtres, qui visent à obtenir une représentation de plus en plus
abstraite et complexe de la donnée initiale, et les couches de pooling, qui visent
à réduire la granularité de la donnée. Les filtres sont souvent associés à des
fonctions d’activation non-linéaires, telles que la sigmoïde ou la ReLU (Rectified
Linear Unit).

Ces réseaux fonctionnent en deux étapes. Pour l’inférence, ou la prédiction, les
entrées sont passées à travers le réseau, et la sortie représente la prédiction du
réseau. Cela se nomme la forward pass. Pour l’apprentissage, une fonction de
perte est utilisée. Son gradient est rétropropagé à travers le réseau, de sorte
que les paramètres sont modifiés pour diminuer le coût du modèle par rapport
à cette fonction de perte. L’obtention des dérivés des paramètres du modèle
s’efffectue par une application successive du théorème de dérivation des fonc-
tions composées. Cette étape s’appelle la backward pass.

GNNs dans la pratique 153

Chaque type de réseau de neurones, e.g., les réseaux de neurones convolution-
nels (CNNs), les réseaux de neurones récurrents (RNNs), ou les réseaux de
neurones de graphes (GNNs), respectent un type de symétrie. Par exemple, les
CNNs sont invariants par translation. En ce qui concerne les GNNs, comme
l’ordre des nœuds est arbitraire, ils doivent être invariants aux permutations.
La spécificité des GNNs repose sur la manière dont les filtres sont constru-
its : ils peuvent suivre une approche dite spectrale, faisant appel à la matrice
d’adjacence ou au Laplacien du graphe, ou une approche dite spatiale faisant
appel au voisinage des nœuds. Bien que d’origine différentes, ces approches
peuvent être regroupées.

Chaque GNN a un niveau d’expressivité correspodndant à sa capacité à dis-
tinguer deux graphes non isomorphes ou, de manière équivalente, à approximer
toute fonction équivariante par permtuation. Au-delà d’une architecture de
GNN standard, on peut construire des architectures plus expressives. Cette con-
struction se fait généralement d’une des deux manières suivantes. La première
manière consiste à exploiter de manière exhaustive l’information accessible,
comme par exemple en sommant sur l’ensemble des permutations, ou bien en
utilisant les hyper-liens qui relient plus de deux nœuds ensemble. La deuxième
approche consiste à identifier les nœeuds lors de l’apprentissage, ou à encoder
de l’information sur le voisinage de chaque nœud. La Figure 1 présente une
synthèse des architectures les plus expressives.

4 Chapitre 4: Utilisation des GNNs en pratique

Bien que certaines architectures sont théoriquements les plus expressives, elles ne
sont pas pour autant nécessairement les plus appropriées lors de l’apprentissage
sur des jeux de données réels. Il y a plusieurs raisons à cela. D’une part, les
résultats théoriques se focalisent souvent sur des graphes sans attributs, alors que
la plupart des graphe réels ont des attributs. D’autre part, le temps d’exécution
de ces méthodes est assez long. De plus, certains résultats empiriques montrent
que des réseaux moins expressifs peuvent obtznir des meilleurs résultats.

Dans ce chapitre, nous présentons plusieurs de ces architectures, à savoir le GCN
(Graph Convolutional Network), GAT (Graph Attention neTwork) et Graph-
SAGE (Graph Sample and AGregatE), ainsi que plusieurs des améliorations

154 GUILLAUME LACHAUD

GNNs and MPNNs

Higher-order networks
(Section 3.3.1)

Invariant networks,
2019 (Maron et al., 2019c)

Equivariant networks,
2019, (Keriven and Peyré,

2019)

Relational pooling,
2019, (Murphy et al.,

2019)

Computationally efficient
networks (Section 3.3.2)

Node identification
(Section 3.3.2)

Random features

Random node
initialization,

2021, (Abboud et al.,
2021)

Random feature in
learning, 2021, (Sato et al.,

2021)

Node coloring,
2020, (Dasoulas et al.,

2020)

Anchor sets, 2019, (You
et al., 2019)

Identity-aware GNNs,
2021, (You et al., 2021)

Substructure awareness
(Section 3.3.2)

Local subgraph templates,
2021, (Thiede et al., 2021)

Automorphism templates,
2021, (Xu et al., 2021a)

Small graph orbit
counting, 2021, (Bouritsas

et al., 2021)

Structural coefficients,
2022, (Wijesinghe and

Wang, 2022)

Rooted subgraphs,
2021, (Zhao et al., 2022;
Zhang and Li, 2021)

Figure 1: Vue d’ensemble des GNNs les plus expressifs.

Apprentissage transductif et inductif, multilabel 155

qui peuvent être apportées à ces architectures. Dans une deuxième partie, nous
présentons l’un des jeux de données sur lequel nous avons effectué la plupart
de nos expériences, ainsi que les différentes manières de travailler dessus, tel
l’apprentissage transductif et l’apprentissage inductif.

5 Chapitre 5: Apprentissage transductif et inductif,
et classification multilabel

Deux problèmes qui se rencontrent lorsque l’on compare des architectures sur
certains jeux de données sont la différence entre l’apprentissage transductif
et l’apprentissage inductif, et la classification multilabel. Le premier prob-
lème a notamment lieu lorque l’on traite des graphes temporels en tant que
graphes statiques. Selon la manière dont le graphe a été découpé en ensemble
d’entraînement et ensemble de test, il peut y avoir une fuite d’information,
dans l’apprentissage transductif, depuis l’ensemble de test vers l’ensemble
d’entraînement (car les graphes sont souvent convertis en graphes non dirigés
lors du prétraitement). Cela peut fausser l’évaluation des modèles.

Le second problème concerne la classification des nœuds. Dans certains cas,
un nœud peut appartenir à plusieurs classes. L’évaluation d’un modèle pose
alors la question suivante : est-ce l’architecture avec la plus grande précision,
ou bien celle qui contient le plus souvent la classe correcte dans ces premières
prédictions, qui est la meilleure ? Ce problème peut être vu autrement, du
point de vue la corrélation entre les labels. En effet, il peut exister des liens
causaux entre les labels. Deux classes peuvent avoir un champs sémantique (en
ce qui concerne les attributs) similaires. Dans ce chapitre, nous traitons de ces
problèmes sur un graphe de citation académique.

6 Chapitre 6: Attributs avec bruit et imputationd’attributs
manquants

Alors que la qualité d’une image ou d’un texte est souvent observable par un
être humain, celle d’un graphe est plus difficile à déterminer. Elle se décompose

156 GUILLAUME LACHAUD

en trois parties : la qualité de la structure du graphe, celle des attributs et celle
des labels. Étant donné l’incertitude portant sur la qualité des attributs, il est
important qu’un GNN soit résistant au bruit.

Dans ce chapitre, nous comparons les performances des GNNs les plus répan-
dus face au bruit. En particulier, nous évaluons la précision face à plusieurs
sortes de bruit : du bruit aléatoire, ou du bruit s’attaquant soit aux nœuds les
plus influents, soit aux nœuds les plus isolés. Cela nous permet d’observer un
mécanisme de réduction de bruit implicite pour certaines architectures. De plus,
le bruit entraînant la plus grande perturbation est le bruit s’attaquant au nœuds
les plus isolés.

Une autre source de bruit est la donnéemanquante. Pour pallier cemanque, nous
proposons une nouvelle architecture de GNN capable d’imputer les attributs
manquants sur des données de type tabulaire ou de type graphe.

En amont de l’apprentissage sur les graphes se pose la question de la création
d’un graphe. En prenant l’exemple d’une image ou d’un texte, il y a certains
des éléments constituants qui sont plus importants que les autres. L’objectif est
alors double : extraire les informations de l’objet afin d’obtenir la représentation
la plus compacte, et maintenir la structure qui lie les éléments entre eux.

Ce chapitre présente un travail préliminaire effectué sur des lésions de la peau.
L’objectif est d’extraire les patches d’une image à l’aide d’un critère tel que
l’entropie, et d’évaluer les performances d’un modèle (ici, un CNN) sur ces
patchs. Cette démarche peut permettre par la suite de créer des graphes à l’aide
de ces patches et d’y ajouter d’autres informations médicales pour obtenir une
donnée plus riche et atteindre des meilleures performances.

7 Chapitre 8: Conclusion et perspectives

7.1 Conclusions

Dans cette thèse, nous avons tout d’abord présenté la représentation théorique
des réseaux de neurones de graphes, que cela soit dans leur forme générale ou
dans les formes les plus puissantes en terme d’expressivité, ainsi que la manière

Conclusions et perspectives 157

dans laquelle ils s’inscrivent dans la continuité des méthodes traditionnelles.

Nous avons montré l’importance du choix du type d’apprentissage, e.g., trans-
ductif ou inductif, classification simple ou multilabel. D’une part, la fuite
d’information de l’ensemble de test vers l’ensemble d’entraînement dans l’apprentissage
transductif nuit à la qualité de l’évaluation des modèles, en même temps qu’il
peut masquer un éventuel surapprentissage. D’autre part, de nombreux prob-
lèmes de classification de nœuds devraient être posés comme des problèmes de
classification multilabel, afin de prendre en compte les relations pouvant exister
entre les labels.

La présence de bruit dans les attributs influence les performances des modèles
et met en évidence le mécanisme implicite de réduction de bruit présent dans
certains modèles. De plus, le bruit a un effet néfaste plus important lorsqu’il
concerne les nœuds les plus isolés. En ce qui concerne les attributs manquants,
nous avons montré, en proposant une nouvelle architecture, que les GNNs
pouvaient être utilisés pour imputer les valeurs manquantes.

En dernier lieu, nous avons entamé une réflexion sur la création de graphes à
partir de données provenant de l’imagerie médicale. Cette création doit se faire
en respectant deux contraintes fondamentales : extraire la représentation la plus
compacte qui préserve la structure de la donnée.

7.2 Perspectives

Les perspectives à court terme se concentrent sur deux axes principaux : pour-
suivre le travail sur la conversion d’images médicales en graphes, et l’étude de
bruit dans les réseaux dynamiques.

En ce qui concerne les graphes d’images médicales, l’objectif est d’obtenir une
représentation qui permette de dépasser les résultats actuels des réseaux convo-
lutionnels, en exploitant les données structurelles des graphes. L’un des premiers
points concerne la définition des attributs. Par exemple, pour une image des
pores présents dans l’œil humain, si un pore est représenté par un nœud, quels
attributs doit avoir ce nœud ? De plus, quels doivent être les liens entre les pores
? Faut-il que tous les nœuds soient reliés entre eux, ou bien seulement les voisins
géographiques ?

158 GUILLAUME LACHAUD

Ce travail a pour but d’ouvrir la voie à la création de graphes issus de l’imagerie
en 3D, où les liens entre les nœuds n’indiquent plus forcément un voisinage
intra-coupe, mais peuvent aussi représenter un voisinage inter-coupe, i.e., entre
deux pores de coupes différentes.

Le deuxième axe, concernant les graphes dynamiques, serait de prolonger les
résultats préséntés dans cette thèse, en particulier ceux du Chapitre 6. La ques-
tion est d’étudier le rôle de bruit dans un graphe dynamique. Il ne s’agit plus
seulement de s’attaquer aux nœuds isolés ou affluents, mais d’évaluer l’aspect
temporel du bruit, par exemple étudier comment réagit un GNN face à du bruit
ponctuel (d’un point de vue temporel) de forte intensité, ou bien face à du bruit
continu de faible intensité.

De la mêmemanière que nous avons proposé une architecture pour l’imputation
de données manquantes pour les données tabulaires et les données de type
graphe, l’objectif serait de concevoir une méthode permettant d’imputer les
données manquantes dans un graphe dynamique.

Dans une perspective plus long terme, l’uns des objectifs de l’étude des réseaux
dynamiques, du bruit et des données médicales serait la mise en place d’un
système robuste pouvant servir d’aide au diagnostic pour les médecins ou la
recherche médicale. L’étude du bruit, en parallèle de travaux sur l’explicabilité
des GNNs, permettrait de fournir des résultats utilisables par les médecins.
L’intégration de données médicales de plusieurs genres, comme les IRM, CT
Scan, compte-rendus médicaux, etc., dans un unique graphe permettrait une
vision d’ensemble plus élargie du suivi médical d’un patient, et de déceler des
motifs cachés dans la donnée.

	Acknowledgements
	Introduction
	Motivation
	Challenges of graph neural networks
	Contributions
	Thesis outline
	Publications

	I Graph Representation
	Introduction to graphs, and graph representation learning and signal processing
	Graphs
	Mathematical representation
	Important definitions

	Learning with graphs
	Node level tasks
	Edge level tasks
	Graph level tasks

	Machine learning with graphs
	Graph statistics and random walks
	Graph spectral theory
	Graph isomorphism and the Weisfeiler-Leman algorithm

	Deep learning and graph neural networks
	Deep learning
	Overview
	Forward and backward propagation
	Deep learning in practice

	Graph neural networks
	Overview
	Permutation equivariance and invariance
	Expressiveness and Weisfeiler-Leman

	Most expressive GNNs
	Higher Order Networks and Universal Approximation
	Computationally Efficient and Powerful Networks

	Discussion
	Summary
	Future work

	II Learning
	GNNs in practice
	GNNs in practice
	Message Passing Neural Framework
	Graph Convolutional Networks
	Graph Attention Networks and attention mechanisms
	GraphSAGE and neighbourhood selection
	GNN advanced tricks

	Dataset
	Overview
	Dataset split
	Transductive and inductive learning
	Graph Information Aided Node feature exTraction (GIANT)

	Social networks and multilabel classification
	Introduction
	Transductive and inductive learning
	Experiments

	Error analysis and multilabel classification
	Single class classification
	Multilabel classification approach

	Discussion

	Noisy features and missing data imputation
	Noise in data
	Noise in attributes
	Missing data
	GNN's treatment of noise

	Noisy features
	Problem Definition
	Random noise perturbation
	High degree node perturbation
	Small degree node perturbation
	Extension to other types of architectures

	Missing data imputation
	GRAPE
	Scalable GRAPE
	GRAPE for graph data
	Experiments
	Training behaviour
	Ablation study

	Discussion

	Patch Extraction in Medical Imaging
	Introduction
	Proposed method
	Dataset description and pre-processing
	Entropy
	Mean Exhaustive Minimum Distance (MEMD) criterion
	Network architecture and tuning parameters

	Results
	Training time
	Accuracy

	Discussion

	Conclusion and perspectives
	Conclusions
	Contributions

	Short Term Perspectives
	Long Term Perspectives

	Résumé étendu en français
	Chapitre 1: Introduction
	Les défis des réseaux de neurones de graphes
	Vers la création de graphes
	Contributions

	Chapitre 2: Introduction aux graphes, à l'apprentissage de représentations et au traitement du signal des graphes
	Chapitre 3: Apprentissage profond et réseaux de neurones de graphes
	Chapitre 4: Utilisation des GNNs en pratique
	Chapitre 5: Apprentissage transductif et inductif, et classification multilabel
	Chapitre 6: Attributs avec bruit et imputation d'attributs manquants
	Chapitre 8: Conclusion et perspectives
	Conclusions
	Perspectives

