
HAL Id: tel-04383350
https://theses.hal.science/tel-04383350

Submitted on 9 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integration of constraint satisfaction problems and
ontologies for the formalization and exploitation of

knowledge in system configuration
Maryam Mohammadamini

To cite this version:
Maryam Mohammadamini. Integration of constraint satisfaction problems and ontologies for the
formalization and exploitation of knowledge in system configuration. Other. Institut National Poly-
technique de Toulouse - INPT, 2023. English. �NNT : 2023INPT0126�. �tel-04383350�

https://theses.hal.science/tel-04383350
https://hal.archives-ouvertes.fr

En vue de l'obtention du

DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE
Délivré par :

Institut National Polytechnique de Toulouse (Toulouse INP)
Discipline ou spécialité :

Présentée et soutenue par :

Titre :

Rapporteurs :

Membre(s) du jury :
MME CATHERINE DA CUNHA, ECOLE CENTRALE DE NANTES, Président

M. ABDOURAHIM SYLLA, INP DE GRENOBLE, Membre
MME ELISE VAREILLES, ISAE-SUPAERO, Membre

M. MICHEL ALDANONDO, ECOLE NLE SUP DES MINES ALBI CARMAUX, Membre
M. THIERRY COUDERT, ECOLE NATIONALE D'INGENIEURS DE TARBES, Membre

Mme MARYAM MOHAMMADAMINI

Genie industriel

Intégration de problèmes de satisfaction de contraintes et d'ontologies
pour la formalisation et l'exploitation de connaissances dans la

configuration de systèmes

le lundi 4 décembre 2023

Ecole doctorale :
Systèmes (EDSYS)

Unité de recherche :
Laboratoire Génie de Production de l'ENIT (E.N.I.T-L.G.P.)

Directeur(s) de Thèse :
M. THIERRY COUDERT
MME ELISE VAREILLES

M. ALI SIADAT, ENSAM - ARTS ET METIERS PARISTECH
M. CHRISTOPHE MERLO, ESTIA BIDART

I

Acknowledgements

First of all, I would like to express my deep gratitude to my Ph.D. supervisors, Professors

Thierry Coudert, Élise Vareilles, and Michel Aldanondo, for their continuous support and

guidance. I also want to thank them for their understanding, and patience. They gave me a

multitude of academic life lessons and kept me on track during these three years of my Ph.D.

I am grateful to ENIT and ISAE for providing me the resources and infrastructure I required

for my research. I would also like to express my gratitude to Eliane, Marie, Cécile, and Caroline,

the administrative staff, for their help and companionship. Furthermore, I would like to

especially thank Professor Laurent Geneste for his support and guidance during this thesis.

Working in the LGP research laboratory and interacting with incredible researchers has been a

real pleasure. My friends in the laboratory made my stay in Tarbes an exciting journey. They

include, but are not limited to: Hajar, Faheem, Piere, Mabrouk, Serge, Sadegh, Majid, Rida,

Virag, Maryam, Mona, Océane, Kholoud, Rogers.

I would like to express my gratitude to my amazing husband Seyed Reza Hosseini for his

tolerance, selflessness, and love. Moreover, I would like to thank my parents, especially my

mother, and my in-laws, for their prayers, support, and encouragement.

Additionally, I would like to express my gratitude to Professors Ali Siadat, Christophe Merlo,

Catherine Da Cunha, and Abdourahim Sylla for their acceptance to be part of my jury and for

all of their suggestions.

Finally, I would like to give all praise to God, the greatest of benefactors, whose support has

enabled me to complete this thesis.

II

III

List of Contents

1. General introduction ... 1

1.1. Context ... 1

1.2. Research questions and scientific problems .. 3

1.3. Contributions .. 3

1.4. Thesis outline ... 4

2. Bibliographic study .. 7

2.1. System and system configuration .. 8

2.1.1. System definition ... 8

2.1.2. System configuration and configuration activity ... 9

2.1.3. Aiding configuration with a configurator .. 14

2.1.4. Synthesis .. 15

2.2. Knowledge formalization for system configuration .. 15

2.2.1. Knowledge management process .. 16

2.2.2. Descriptive view versus structural view of a system ... 17

2.2.3. Commonality of models .. 20

2.2.4. Abstraction, generalization, specialization, inheritance principles 21

2.2.5. Synthesis .. 23

2.3. Different approaches for system configuration .. 23

2.3.1. Criteria for comparing different system configuration approaches 24

2.3.2. Ontology and system configuration ... 27

2.3.3. UML, SysML and system configuration ... 32

2.3.4. CSP and system configuration ... 36

2.3.5. CBR and system configuration .. 41

2.3.6. Hybrid approach and system configuration ... 44

2.3.7. Synthesis .. 47

2.4. Synthesis .. 48

3. Knowledge formalization for system configuration ... 51

3.1. GA, GADM, and GASM definition ... 52

3.1.1. Generic Artifact definition and example ... 52

3.1.2. Generic Artifact Descriptive Model definition .. 53

3.1.3. Generic Artifact Structural Model definition .. 55

3.1.4. Synthesis .. 58

3.2. Ontology of GA, GADM, and GASM ... 59

3.2.1. Taxonomy of Generic Artifacts ... 59

3.2.2. Taxonomy of Generic Artifact Descriptive Models .. 61

IV

3.2.3. Taxonomy of Generic Artifact Structural Models ... 69

3.2.4. Synthesis .. 78

3.3. Update of GA(i), GADM(i), and GASM(i)
j .. 79

3.3.1. Update of Generic Artifacts ... 79

3.3.2. Update of Generic Artifact Descriptive Models .. 80

3.3.3. Update of Generic Artifact Structural Models .. 83

3.3.4. Synthesis .. 86

3.4. Single-model approach or multi-model approach? .. 86

3.5. Synthesis .. 88

4. Knowledge reuse for system configuration .. 91

4.1. CTO knowledge reuse for system configuration ... 92

4.1.1. CTO configuration activity .. 92

4.1.2. Consequences of modeling propositions ... 98

4.1.3. Synthesis .. 99

4.2. ETO knowledge reuse for system configuration.. 100

4.2.1. From CTO towards ETO configuration activity .. 100

4.2.2. Adaptation of CTO instances to ETO configuration ... 104

4.2.3. Synthesis .. 116

4.3. CTO-ETO knowledge reuse... 117

4.4. Synthesis .. 120

5. Use case and its implementation in OPERA: a bike example .. 123

5.1. OPERA software and use case presentation .. 124

5.1.1. OPERA software ... 124

5.1.2. Use case presentation ... 124

5.2. Knowledge formalization for system configuration .. 125

5.2.1. GA and GADM Creation ... 126

5.2.2. GASM Creation ... 128

5.2.3. GA Generalization ... 130

5.2.4. GA Specialization .. 136

5.3. Knowledge reuse for system configuration ... 139

5.3.1. System configuration using the descriptive view .. 139

5.3.2. System configuration using the structural view .. 142

5.3.3. GAI and GADI building .. 145

5.3.4. GADI modification .. 146

5.3.5. GASI modification .. 149

5.4. Synthesis .. 156

6. Conclusions and scientific perspectives ... 157

V

6.1. Conclusions .. 157

6.2. Scientific perspectives.. 160

Bibliographic references .. 163

VI

List of Figures

Figure 1. Thesis outline .. 6

Figure 2. Artifact .. 9

Figure 3. MTS, ATO, MTO, CTO and ETO .. 13

Figure 4. Knowledge management process .. 16

Figure 5. Different views ... 17

Figure 6. Different relations in system configuration .. 19

Figure 7. Example of commonality of models ... 21

Figure 8. Example of using generalization and specialization ... 23

Figure 9. Knowledge formalization for system configuration ... 52

Figure 10. A.GA ... 53

Figure 11. Bike.GA example .. 53

Figure 12. GADM and its translation into a CSP ... 54

Figure 13. An example of a Bike.GADM and its translation into a CSP 55

Figure 14. UML model of GA, GADM and GASM with its translation into a CSP 57

Figure 15. Example of a Bike.GASMj and its translation into a CSP 58

Figure 16. An example of Wheel.GA(2) generalization ... 60

Figure 17. Specialization of A.GA(i) ... 60

Figure 18. An example of Bike.GA(2) specialization .. 60

Figure 19. GAs taxonomy with specialization and generalization ... 61

Figure 20. An example of MountainWheel.GADM(2) and CityWheel.GADM(2) with their CSP

 .. 64

Figure 21. An example of GADM generalization with their CSP ... 65

Figure 22. Specialization of A.GADM(i) ... 67

Figure 23. An example of Bike.GADM(2) specialization .. 68

Figure 24. GADMs taxonomies ... 69

Figure 25. An example of MountainWheel.GASM(2)
j and CityWheel.GASM(2)

j 72

Figure 26. An example of Wheel.GASM(2)
j generalization ... 73

Figure 27. Specialization of A.GASM(i)
j ... 76

Figure 28. An example of Bike.GASM(2)
j specialization .. 77

Figure 29. GASMs taxonomies .. 78

Figure 30. An example of GA(i) update for a family of bikes ... 79

Figure 31. An example of Bike.GADM(2) update ... 81

Figure 32. Example of propagation of Bike.GADM(2) updates into CityBike.GADM(3) 82

Figure 33. An example of Bike.GASM(2)
j update ... 84

Figure 34. Example of propagation of Bike.GASM(2)
j updates to CityBike.GASM(3)

j 85

Figure 35. An example of single-model approach ... 87

Figure 36. An example of multi-model approach .. 88

Figure 37. An example of our proposed approach ... 88

Figure 38. Knowledge reuse for system configuration .. 92

Figure 39. Example of creation of an instance of a CTO.Bike.GASM(2)
j 94

Figure 40. UML diagram for CTO.GAI(i), CTO.GADI(i) and CTO.GASI(i)
j and their translation

into their corresponding CSP ... 95

Figure 41. Flowchart for knowledge reuse in CTO configuration: GADI configuration 96

Figure 42. Flowchart for knowledge reuse in CTO configuration: GASI configuration 97

Figure 43. Flowchart for knowledge reuse in ETO situations: GADI configuration 102

Figure 44. Flowchart for knowledge reuse in ETO situations: GASI configuration 103

Figure 45. An example of ETO.Mirror.GAI(i) .. 105

Figure 46. Build a new ETO.GADI(i) and its translation into a CSP 106

VII

Figure 47. An example of building a ETO.Mirror.GADI(i) and its translation into a CSP 107

Figure 48. ETO.GASI(i) and its translation into a CSP ... 109

Figure 49. Example of a new ETO.Mirror.GASI(i) and its translation into a CSP 110

Figure 50. Example of modifying ETO.Wheel.GADI(2) and its translation into a CSP 112

Figure 51. Example of modifying ETO.Bike.GASI(2)
1 and its translation into a CSP 116

Figure 52. Flowchart for knowledge reuse in CTO-ETO configuration: GADI configuration

 .. 119

Figure 53. Flowchart for knowledge reuse in CTO-ETO configuration: GASI configuration

 .. 120

Figure 54. Scope of bike use case .. 125

Figure 55. Taxonomy of GAs and the description of Bike.GA(2) ... 126

Figure 56. Bike.GADM(2) before filtering constraints .. 127

Figure 57. Bike.GADM(2) after filtering constraints ... 128

Figure 58. Bike.GASM(2)
1 ... 129

Figure 59. MountainWheel.GADM(2) ... 130

Figure 60. CityWheel.GADM(2) .. 131

Figure 61. Wheel.GADM(2) ... 132

Figure 62. GADMs taxonomy before and after generalization .. 132

Figure 63. MountainWheel.GASM(2)
1 ... 134

Figure 64. CityWheel.GASM(2)
1 .. 135

Figure 65. Wheel.GASM(2)
1 .. 136

Figure 66. CityBike.GADM(3) ... 137

Figure 67. GADMs taxonomy before and after specialization .. 137

Figure 68. CityBike.GASM(3)
1 ... 138

Figure 69. CTO.Bike.GADI(2) ... 140

Figure 70. CTO solution of CTO.Bike.GADI(2) .. 142

Figure 71. CTO solution of CTO.MountainWheel.GADI(3) ... 143

Figure 72. CTO.MountainWheel.GASI(3)
1 .. 143

Figure 73. Solution for CTO.Tire.GADI(2) ... 144

Figure 74. Solution of CTO.MountainWheel.GASI(3)
1 ... 145

Figure 75. ETO.Mirror.GAI(i) ... 145

Figure 76. ETO.Mirror.GADI(i) .. 146

Figure 77. ETO.Wheel.GAI(2) and ETO.Wheel.GADI(2) ... 147

Figure 78. Modified ETO.Wheel.GADI(2) .. 148

Figure 79. ETO solution of modified ETO.Wheel.GADI(2) .. 149

Figure 80. Solution of ETO.Bike.GADI(2) .. 150

Figure 81. ETO.Bike.GASI (2)
1 .. 151

Figure 82. Modified ETO.Bike.GASI(2)
1 ... 152

Figure 83. CTO solution for CTO.Wheel.GASI(2) .. 153

Figure 84. CTO solution for CTO.Frame.GAI(2) .. 154

Figure 85. CTO solution for CTO.Seat.GAI(2) ... 155

Figure 86. ETO solution for ETO.Mirror.GAI(i) .. 155

List of Tables

Table 1. Requirements .. 26

Table 2. Different approaches for system configuration .. 48

VIII

List of acronyms

BOM Bill Of Material

CBR Case-Based Reasoning

CSP Constraint Satisfaction Problem

CTO Configure-To-Order

CTO.GADI(i) Generic Artifact Descriptive Instance (at level i) created during the

CTO configuration activity

CTO.GADI(i)(CSP) Generic Artifact Descriptive Instance (at level i) created during the

CTO configuration activity mapped into a CSP

CTO.GAI(i) Generic Artifact Instance (at level i) created during the CTO

configuration activity

CTO.GASI(i)
j Generic Artifact Structural Instance (at level i and with version j)

created during the CTO configuration activity

CTO.GASI(i)
j(CSP) Generic Artifact Structural Instance (at level i and with version j)

created during the CTO configuration activity mapped into a CSP

CTO.rq CTO requirement

CTO.solution CTO solution obtained at the end of CTO configuration activity

EB Experience Base

ETO Engineer-To-Order

ETO.GADI(i) Generic Artifact Descriptive Instance (at level i) created during the

ETO configuration activity

ETO.GADI(i)(CSP) Generic Artifact Descriptive Instance (at level i) created during the

ETO configuration activity mapped into a CSP

ETO.GAI(i) Generic Artifact Instance (at level i) created during the ETO

configuration activity

ETO.GASI(i)
j Generic Artifact Structural Instance (at level i and with version j)

created during the ETO configuration activity

ETO.GASI(i)
j(CSP) Generic Artifact Structural Instance (at level i and with version j)

created during the ETO configuration activity mapped into a CSP

ETO.rq ETO requirement

ETO.solution ETO solution obtained at the end of ETO configuration activity

GA(i) Generic Artifact (at level i)

IX

GADI(i) Generic Artifact Descriptive Instance (at level i)

GADM(i) Generic Artifact Descriptive Model (at level i)

GADM(i)(CSP) Generic Artifact Descriptive Model (at level i) mapped into a CSP

GAI(i) Generic Artifact Instance (at level i)

GASI(i)
j Generic Artifact Structural Instance (at level i and with version j)

GASM(i)
j Generic Artifact Structural Model (at level i and with version j)

GASM(i)
j(CSP) Generic Artifact Structural Model (at level i and with version j)

mapped into a CSP

GMB Generic Model Base

KFC Knowledge Formalization Criteria

KPI Key Performance Indicator

KRC Knowledge Reuse Criteria

SysML Systems Modeling Language

UML Unified Modeling Language

X

1

1. General introduction

1.1. Context .. 1

1.2. Research questions and scientific problems .. 3

1.3. Contributions ... 3

1.4. Thesis outline .. 4

In this chapter, we present the general introduction. In section 1.1, we address the context of

this Ph.D. thesis. Then, in section 1.2, we define our research questions and scientific problems.

In section 1.3, we explain the contributions of this thesis. Finally, in section 1.4, we end up with

the outline of the thesis.

1.1. Context

Mass customization has emerged as a powerful concept for competitive advantage in the

manufacturing industry. It allows companies to provide customized products that fit each user’s

requirements at a competitive price while remaining productive (Pine II et al., 1993), (Kotha &

Pine, 1994). Additionally, in the fourth industrial revolution, also known as Industry 4.0,

companies must respond rapidly to the wide-ranging requirements of many users and provide

solutions to meet their requirements (Rüßmann et al., 2015). To achieve this, configuration

tools can be employed.

This thesis focuses on the context of system configuration. System configuration can be

considered as a type of design activity where systems are defined from a set of predefined

subsystems and components while considering a set of restrictions on how the subsystems and

components can be combined (Soininen et al., 1998), (Felfernig et al., 2014). The systems

considered in this thesis are technical and physical (or tangible) systems (e.g., cars, computers,

bicycles, …). Furthermore, we consider systems, subsystems, or components as artifacts. An

artifact can be defined as an object that is intentionally produced for a certain purpose (Hilpinen,

1992, 1999). As presented in (Guillon, Ayachi, et al., 2021), the term artifact refers to a result

of human activity.

To support the configuration activity and find solutions that satisfy users’ requirements,

configuration tools called Configurators (Tiihonen & Soininen, 1997) or Product Configuration

Software (PCS) (Myrodia et al., 2017) are employed. A configurator is composed of two parts:

1) a Knowledge Base and 2) a Processing Unit. On the one hand, the Knowledge Base stores

generic models, each representing a family of artifacts with all possible options and variants.

To address the system configuration problem, generic models must first be created by experts

and then exploited to fulfill requirements of users. On the other hand, the Processing Unit assists

the user in the configuration activity and thus in finding the specific solution that is consistent

with both the generic model and the user's needs. In this thesis, the two phases of formalization,

leading to the populating of the knowledge base with generic models, and knowledge reuse,

using the process unit to support the configuration activity, are studied.

Chapter 1: General introduction

2

In the knowledge formalization phase, the experts are responsible for collecting, validating,

formalizing and updating the knowledge about the artifact families, always including the

different options and variants, as well as the different relationships and sometimes their

structure, in order to create generic models that are consistent with the diversity of possible

solutions in the catalog. This thesis considers two views of the same artifact: a descriptive and

a structural view (Erens & Wortman, 1996), (Aldanondo & Vareilles, 2008). These two views

allow the same artifact to be configured either by a novice user, who only needs to consider the

functional and operational requirements, or by a more expert user, who also needs to consider

the technical requirements of the system. The descriptive view explains what the artifact is by

giving information about its key attributes and performance indicators. In descriptive view, the

artifact is considered as a black box without revealing its internal workings or components. On

the contrary, the structural view explains how the artifact is composed of, i.e. its bill of

materials. In the structural view, the artifact can be considered as a white box where the list and

quantity of each of its artifacts (subsystems and components) appear.

For experts, it is not that easy to collect, validate, formalize and update knowledge for system

configuration, as they may have to develop the attributes or structure of existing artifact

families, or even design entirely new families with novel attributes and structures. As a result,

it is necessary to create, maintain and update generic models (J. Zhang et al., 2005) with

sometimes some commonality between them. When several artifacts have commonality, the

corresponding knowledge can be gathered into generic models in order to facilitate creation,

maintenance and update. Moreover, it is necessary for experts to be able to check the

consistency of all the formalized knowledge in order to validate it and authorize its reuse.

In the knowledge reuse phase, generic models are exploited to configure systems and meet

users’ requirements. Knowledge reuse enables reasoning on generic models whether it

represents a descriptive view or a structural view. In this thesis, we consider interactive

configuration (Janota et al., 2010), (Vareilles, 2015), which is an iterative process of removing

solutions from solution space or eliminating options that are no longer consistent with the

choices made by the user and the generic model. Through an iterative process, the user

progressively specifies his requirements and converges toward a solution. This configuration

activity is called Configure-To-Order (CTO).

In the era of mass customization and Industry 4.0, different user requirements must be met.

However, these requirements can sometimes go beyond the scope of formalized knowledge. It

means that these out-of-standard requirements, called non-standard requirements (Sylla,

Guillon, Vareilles, et al., 2018), cannot be fulfilled by the formalized generic models. Therefore,

to meet these non-standard requirements, an engineering activity has to be carried out, during

the configuration activity. This engineering activity is called ETO (Engineer-To-Order). These

types of requirements are then called ETO requirements and they have to be formalized, and

capitalized. In such a context, the configuration activity has to be modified in order to provide

solutions that meet the ETO requirements.

Chapter 1: General introduction

3

1.2. Research questions and scientific problems

According to what we explained in the context, in this thesis, the following Research Questions

(RQ) and Scientific Problems (SP) are specifically studied and discussed. The first two are

related to the knowledge formalization phase and the last two are related to the knowledge reuse

phase.

RQ 1. Is it possible to define an ontology of generic models to better manage knowledge,

allowing a clear distinction between descriptive and structural views for system configuration?

• SP 1. How can we benefit from the association of ontologies, constraint

satisfaction problems, commonality and inheritance principles to better

formalize knowledge and define generic models for system configuration?

RQ 2. How can ETO requirements be processed during configuration activity?

• SP 2. How can the configuration activity be adapted to formalize and capitalize

ETO requirements?

1.3. Contributions

The contributions of this thesis can be summarized as follows:

- Contribution 1: To answer the first research question, we propose to associate ontologies,

CSP approaches, and inheritance principles to create an ontology of generic models. This

association allows us to better manage knowledge, by creating generic models at different levels

of abstraction, following their commonality and mainly thanks to the

generalization/specialization relation. The use of the CSP approach allows to formalize

relations between the characteristics of the families of artifacts, to check their consistency and

to facilitate their reuse using reasoning mechanisms such as constraint filtering. This approach

facilitates the maintenance, creation and updating of the generic models, as they are organized

in a hierarchical structure. This ontology of generic models is based on the principles of

commonality: common attributes between several models are aggregated at the top level. In this

way, the model at the highest level contains only the knowledge that is common to all the

models, while the lower levels contain only the knowledge that is specific to them. This

ontology exists for artifact families, and a clear distinction is made between descriptive and

structural views. At the end of the knowledge formalization step, an ontology of generic models

can be reached, where consistent generic models are structured from the most general to the

most specialized.

- Contribution 2: To answer the second research question, we propose to adapt Configure-To-

Order (CTO) configuration activity to ETO configuration activity in order to fulfill ETO

requirements. Our proposal allows us to first select generic models then build instances of

generic models, related to descriptive view and/or structural view at a certain level of

abstraction. Then, using a generic process for knowledge reuse in CTO, interactively configure

instances to fulfill requirements of user. For each artifact, it is possible, if structural view exists,

to dive or not into its bill-of-material in order to configure it more finely. At the end of the

Chapter 1: General introduction

4

knowledge reuse in CTO, a CTO solution is found and then it is capitalized in an experience

base allowing recommendations for future configurations. Following this, we propose another

generic process dedicated to the reuse of knowledge to meet the ETO requirements. In this way,

we propose an adaptation of CTO to ETO by 1) building completely new instances or

2) modifying existing instances. These modifications of instances during ETO configuration

are represented as different cases, relevant to either the descriptive or structural view. At the

end of the configuration, an ETO solution is proposed to the user and then it is capitalized in an

experience base allowing for future reuse and updates of formalized generic models. For a

system to deliver, as some requirements can be fulfilled by a CTO activity and others by an

ETO activity, the integration of both processes is also studied. This situation results in solutions

comprising CTO and ETO artifacts.

1.4. Thesis outline

As illustrated in Figure 1, the rest of the thesis is organized as follows:

- In Chapter 2, a literature review about related issues to our work such as system and

system configuration, knowledge formalization for system configuration, and different

approaches for system configuration are presented. We have highlighted the CTO and ETO

requirements as well as eight criteria necessary for effective formalization and reuse of generic

models. Each approach identified is analyzed in the light of these eight criteria. Scientific gaps

are identified and research questions are presented accordingly.

- In Chapter 3, our first research question (RQ 1: Is it possible to define an ontology of

generic models to better manage knowledge, allowing a clear distinction between descriptive

and structural views for system configuration?) is answered which focuses on formalizing

knowledge for system configuration. Our first contribution is presented, which entails defining

generic models at various abstraction levels, notated (i). Models of Generic Artifacts, notated

GA(i) are firstly defined along with their classification in a taxonomy. To provide a clear

representation of the artifacts families and of the relations between their characteristics,

descriptive and structural views are distinguished. The descriptive view is represented by a

Generic Artifact Descriptive Model, notated GADM(i) while the structural view is represented

by a Generic Artifact Structural Model, notated GASM(i)
j, where j denotes the possible

alternatives for the structural views. CSP formalism is used to represent relationships and check

consistency of the generic models. Based on commonality, generalization/specialization and

inheritance principles, processes which allow to generalize and specialize these models are

defined. Then, they are classified in their respective taxonomy. The three taxonomies

(GA, GADM and GASM) constitutes the whole ontology in our approach: i.e. consistent, well

described and structured pieces of knowledge which can be reused to configure systems.

- In Chapter 4, our second research question (RQ 2: How can ETO requirements be

processed during configuration activity?) is addressed which deals with knowledge reuse for

system configuration. Our second contribution involves proposing a knowledge reuse process

aimed at meeting ETO requirements of users in the ETO situation. First, the CTO situation is

taken into account. A generic process allows to create instances of generic models and to

configure them in order to fulfill standard requirements, i.e, requirements which can be met

Chapter 1: General introduction

5

using formalized knowledge without any modifications. The configuration is done interactively

with the user using the CSP and filtering mechanisms and leads to a CTO solution. Based on

the CTO configuration process, an ETO configuration process which allows to configure

systems in ETO situation is proposed. Reusing formalized generic models chosen in the

taxonomies, and modifying them in order to meet non-standard ETO requirements, the process

allows to reach an ETO solution for the system configuration. Finally, as the system

configuration is a mix between CTO situation and ETO situation, the integration of both

processes is proposed and leads to solutions where some artifacts have been configured with

respect to the generic models (CTO configuration) and others are defined after a design phase

(ETO configuration).

- In Chapter 5, a simple but realistic case study of bicycle families is presented to illustrate

some of our proposals for the two phases of knowledge formalization and reuse. It is

implemented on the OPERA software which has been developed in the context of the ANR1

project. This case study allows to verify that all our proposals are consistent and feasible.

- Finally, in Chapter 6, the conclusions of this research work and also scientific

perspectives are presented.

1
 Project n° ANR-16-CE10-0010

Chapter 1: General introduction

6

Figure 1. Thesis outline

7

2. Bibliographic study

2.1. System and system configuration .. 8

2.1.1. System definition .. 8

2.1.2. System configuration and configuration activity .. 9

2.1.2.1. User requirements ... 10

2.1.2.2. Configuration strategies .. 11

2.1.2.3. Configuration solutions .. 13

2.1.3. Aiding configuration with a configurator ... 14

2.1.4. Synthesis ... 15

2.2. Knowledge formalization for system configuration .. 15

2.2.1. Knowledge management process .. 16

2.2.2. Descriptive view versus structural view of a system .. 17

2.2.3. Commonality of models .. 20

2.2.4. Abstraction, generalization, specialization, inheritance principles 21

2.2.5. Synthesis ... 23

2.3. Different approaches for system configuration ... 23

2.3.1. Criteria for comparing different system configuration approaches 24

2.3.2. Ontology and system configuration .. 27

2.3.2.1. Ontology definition ... 27

2.3.2.2. Ontologies for system configuration .. 28

2.3.2.3. Advantages and drawbacks of using ontology ... 29

2.3.3. UML, SysML and system configuration .. 32

2.3.3.1. UML definition ... 32

2.3.3.2. SYsML Definition .. 33

2.3.3.3. UML and SysML for system configuration ... 34

2.3.3.4. Advantages and drawbacks of using UML and SysML 34

2.3.4. CSP and system configuration .. 36

2.3.4.1. CSP definition ... 36

2.3.4.2. CSP for system configuration ... 38

2.3.4.3. Advantages and drawbacks of using CSP .. 39

2.3.5. CBR and system configuration ... 41

2.3.5.1. CBR definition .. 41

2.3.5.2. CBR for system configuration .. 42

2.3.5.3. Advantages and drawbacks of using CBR ... 42

2.3.6. Hybrid approach and system configuration .. 44

2.3.6.1. Hybrid approach definition ... 44

Chapter 2: Bibiliographic study

8

2.3.6.2. Hybrid approach for system configuration ... 44

2.3.6.3. Advantages and drawbacks of using hybrid approaches 45

2.3.7. Synthesis ... 47

2.4. Synthesis .. 48

In this chapter, we have conducted a literature review to find clues to answer our research

questions. In this way, first, we present relevant articles on system and system configuration in

section 2.1 to provide an understanding of system configuration which is the context of this

thesis, and the definitions that exist in this domain. This section specifically describes the

concept of ETO and CTO requirements. Then, we provide the state of the art on the knowledge

formalization for system configuration in section 2.2 to discuss the topics that are important in

modeling knowledge for system configuration and in answering our first research question. We

argue for the need to have at least two corresponding views of an artifact: a descriptive and a

structural one, on the notion of commonality, as well as the principles of abstraction,

generalization/specialization and inheritance. We then discuss and analyze different approaches

to system configuration in section 2.3, based on eight important criteria for knowledge

formalization and reuse. Finally, we summarize the elements presented in this chapter in section

2.4 and we justify our research questions.

2.1. System and system configuration

In this section, we first study system definition in section 2.1.1 and then, system configuration

and configuration activity in section 2.1.2. Subsequently, we study aiding or assisting

configuration with a configurator in section 2.1.3. Finally, we conclude the section in 2.1.4.

2.1.1. System definition

In this section, we clarify the notion of systems following the definitions found in the literature.

(Kauffman, 1980) mentioned that “a system is a collection of parts which interact with each

other to function as a whole.” (Kossiakoff et al., 2011) stated that a system is defined as “a set

of interrelated components working together toward some common objectives.” (Kim, 1999)

presented a system as any collection or group of parts that interact, interrelate, or depend on

each other to form a unified whole that serves a specific purpose. Keeping in mind that all the

parts are somehow related and interdependent. (McLucas & Ryan, 2005) mentioned that a

system is made up of subsystems, while subsystems are made up of further components. A

subsystem is part of a larger system that performs a specific function within the larger system.

A component is a part or element of a larger system that contributes to the overall function of

the system without any decomposition.

Systems can be technical (e.g., airplanes, robots, cars, computers) or non-technical (e.g.,

economic system, societal systems). In this thesis, we focus our work on technical systems.

Technical systems refer to a collection of sub-systems and components that work together to

perform a specific task or achieve a particular goal. In (Guillon, Ayachi, et al., 2021), systems,

subsystems, components, services, and modules of a system are considered as artifacts. An

artifact is an object that is intentionally made for a specific goal (Hilpinen, 1992, 1999). It refers

Chapter 2: Bibiliographic study

9

to an outcome of human activity. It can be either tangible, such as physical component,

intangible, such as service, or mixed, such as servitized products, regarding the concept it

represents. An artifact can be decomposed into other artifacts (Guillon, Ayachi, et al., 2021).

In this thesis, we consider systems, subsystems, or components as technical and physical

artifacts, as illustrated in Figure 2. Systems can consist of subsystems and components.

Subsystems can consist of additional subsystems or components, whereas a component itself

cannot consist of other elements.

Figure 2. Artifact

2.1.2. System configuration and configuration activity

In this section, we delve into the literature on system configuration, including the definitions of

system configuration, configuration activity, and configuration model. Then, we discuss

customer requirements and strategies for achieving system configuration. The section

concludes by mentioning configuration solutions as outputs of configuration activity.

(Mittal & Frayman, 1989) presented the first definition of product configuration, in which a

product is designed after assembling some components taking into account that their connection

is only possible in specific ways. (Sabin & Weigel, 1998) mentioned that product configuration

can be considered a specific type of design activity that involves choosing and organizing

components in a specific way to meet certain specifications. These components are usually part

of a predefined set and interact with each other in predetermined ways. The act of selecting and

arranging the right combination of parts is a key aspect of the configuration activity. (Soininen

et al., 1998) stated that product configuration can be defined “as the problem of designing a

product using a set of predefined components while considering a set of restrictions on how the

components can be combined”.

(Felfernig, Friedrich, et al., 2000) stated that a configuration activity can be described by

specifying a set of components and their properties, such as attributes and their allowed values,

connection points (ports) between them, and any constraints on the possible configurations of

these components. These details provide a comprehensive understanding of the components

and the conditions under which they can be legally configured to achieve the desired result.

(Oddsson & Ladeby, 2014) provided a review article on product configuration which stated that

a configuration activity involves combining predefined entities, which may be physical or non-

physical, and determining their properties in a manner that satisfies specified requirements

while also respecting constraints and following legal combinations of interfaces.

Chapter 2: Bibiliographic study

10

The configuration model is one of the foundations of configuration problems. According to

(Soininen et al., 1998), a configuration model “specifies the entities that may appear in a

configuration, their properties, and the rules on how the entities and their properties can be

combined.” (Forza & Salvador, 2008) defined a configuration model or product model as “a

formal representation of the links between the characteristics of a product and the documents

that describe each product variant”. (Oddsson & Ladeby, 2014) defined a product configuration

model as “an abstract representation or description, describing the structure of the product, the

entities the product consists of, and the rules on how the entities and their properties can be

combined.” (Männistö et al., 2001) explained that configuration models are also known as

generic models. The term ‘generic’ is used because a single model represents multiple product

variants. (Männistö et al., 2001) proposed a generic product configuration model by factorizing

all the information shared by all the products in a production line. (Erens & Wortman, 1996)

stated that a generic product model is used to describe product families with well-defined

relations between components and that these components themselves can be described as

product families.

In this thesis, all the definitions outlined in papers related to product configuration are

applicable in the context of system configuration. However, in system configuration, a product

can be interchanged with a tangible system comprising subsystems and components, which are

considered as tangible artifacts. In this thesis, we mainly use the term "generic model" instead

of "configuration model". Following (Erens & Wortman, 1996), a generic model encompasses

knowledge about a family of artifacts including their structure, all possible options, variants,

and various relations (that will be explained in section 2.2.1).

In the configuration problem, in addition to the generic models, there are other foundations

described in the following sections. The next section is dedicated to user requirements.

2.1.2.1. User requirements

User requirements are another foundation of the configuration problem. They refer to the

specific needs or preferences of a user that a system must meet in order to be considered as

suitable for their use. User requirements are gathered through an interactive process where the

user can progressively input their preferences or needs into a configurator. The configurator

then uses this information to reach a configuration solution that meets the user's requirements

(i.e. a desirable configuration). There are a number of ways in which we classify user

requirements. There are several ways of classifying user requirements, depending on the type

of requirement (functional or technical), whether it is standard or not (included in the catalog

or not), and whether it is open to negotiation or not.

Following the typology proposed in systems engineering, user needs can be either functional

and operational needs or technical needs (Sage, 1992). Functional requirements define what the

system must do. Operational requirements concern the way the system is operated. Technical

requirements concern the way the system is built. These three needs make it possible to

recognize that, depending on the type of user, novice or expert, different needs may be

expressed for all or part of the system. Therefore, at least two views, a descriptive view (for

Chapter 2: Bibiliographic study

11

functional and operational requirements) and a functional view (for technical requirements) of

the same system, must be considered.

(Pitiot et al., 2014) proposed to distinguish the most important requirements for a user, which

are called "non-negotiable requirements" while the remaining requirements are called

"negotiable requirements." Non-negotiable requirements are critical to the user and cannot be

questioned. They must be met by the solution system to fully satisfy the user. They can be either

functional, operational or technical requirements, or performance criteria such as the price or

weight of a system. Negotiable requirements are not critical to the user and can be discussed.

Similar to non-negotiable requirements, they can be either functional, operational or technical

requirements, or performance criteria such as the price or weight of a system. This negotiable

nature of requirements has to be taken into account.

(Sylla, Guillon, Vareilles, et al., 2018) defined "standard requirements" and "non-standard

requirements". Standard requirements are those that are consistent with the catalog and the

generic model. Taken together, these requirements result in a system that can be implemented

using all the proposed components and subsystems. In contrast, non-standard requirements are

not covered by the catalog and the generic model. They result from a combination of choices

that have never been implemented before, or from a very specific need. This standardization of

requirements must be taken into account in our proposals.

In line with the previous definitions, we propose, in this thesis, to distinguish between two types

of requirements, defined as follows: CTO requirements and ETO requirements.

Definition 1: CTO Requirements

CTO requirements are standard requirements (or requirements expressed as such), whether

negotiable or non-negotiable. They relate to a functional, operational or technical aspect of

the system to be configured. They are therefore systematically considered during the

configuration process.

Definition 2: ETO Requirements

ETO requirements are non-negotiable, non-standard requirements that affect a functional,

operational or technical aspect of the system to be configured. They are therefore specifically

addressed in the configuration activity by a specific design activity.

Up to this point, we have explained two foundations of configuration problems: generic models

and user requirements. In the subsequent section, we will discuss various strategies that can be

employed to accomplish system configuration.

2.1.2.2. Configuration strategies

System configuration can be achieved through various production strategies such as Make-To-

Stock (MTS), Assemble-To-Order (ATO), Make-To-Order (MTO), Engineer-To-Order (ETO),

and Configure-To-Order (CTO) which are explained in the following.

Chapter 2: Bibiliographic study

12

• Make-To-Stock (MTS) Make-To-Stock (MTS) is a production process that typically

involves producing the ready-to-use system before receiving the customer's order. The

customer's orders are usually fulfilled from an inventory of ready-to-use systems, which

are replenished through production orders (Rudberg & Wikner, 2004).

• Assemble-To-Order (ATO) In Assemble-To-Order (ATO) (Wortmann et al., 1997),

(Brière-Côté et al., 2010), components are kept in stock and there is a Bill of Materials

(BOM) for each potential system, which is a list of subsystems and components,

including their quantities, used to build that system (Hegge & Wortmann, 1991). When

a customer's order is received for a particular system, the supplier initiates the assembly

operations and provides the customer with a ready-to-use system, such as a computer, a

car, etc.

• Make-To-Order (MTO) In Make-To-Order (MTO) (Wortmann et al., 1997), (Brière-

Côté et al., 2010), raw materials are kept in stock and a BOM and routing exist for each

potential system. Routing refers to the sequence of operations and steps required to build

a system. Upon receiving an order from a customer for a specific system, the supplier

can utilize the corresponding BOM and routing to initiate the manufacturing and

assembly operations of the required system. This process allows the supplier to provide

the customer with a ready-to-use system, such as windows, doors, etc. For such systems,

the length and width of the plates are cut according to the customer's requirements.

• Engineering-to-order (ETO) In situations where it is not possible to meet all the

customer's requirements using predefined systems, it may be necessary to develop a new

system or adapt an existing one, leading to an Engineering-To-Order (ETO) situation

(Wortmann et al., 1997), (Sylla, Guillon, Ayachi, et al., 2018), (Johnsen & Hvam, 2019).

ETO involves the creation of customized systems based on customers' specific

requirements (Brière-Côté et al., 2010), (Sylla, Guillon, Vareilles, et al., 2018). In many

cases, both the finished system and its components are unique and have not been

previously designed. Therefore, in ETO, the engineering phase can be partially or

completely performed.

(Sylla, Guillon, Vareilles, et al., 2018) distinguished between light and heavy ETO. The

term "light" ETO is used by some companies or software providers when the

requirements can be almost completely met and only minor adaptations are required. On

the other hand, when many adaptations must be made to existing solutions and/or new

solutions must be entirely defined, this activity is called "heavy" ETO. ETO demands

significant collaboration with the customer and, like CTO, proposes the BOM and

routing at the end of the configuration. There are fewer studies on ETO as for example

(Brière-Côté et al., 2010), (Elgh, 2011). However, (Sylla, Guillon, Vareilles, et al.,

2018) focused on the bridge between CTO and ETO. They studied the extension of

configuration models usually used in CTO to ETO situations.

• Configure-To-Order (CTO) Configure-To-Order (CTO) is a flexible manufacturing

strategy that can accommodate or support various production methods, including MTS,

ATO, MTO, and partially ETO (Sylla, Guillon, Vareilles, et al., 2018). CTO allows

Chapter 2: Bibiliographic study

13

companies to manufacture products based on customer demand, while still maintaining

a level of standardization.

Through CTO, customers can choose from a range of pre-designed system options and

configurations that are then assembled or manufactured to meet their specific

requirements. This strategy can enhance production efficiency, decrease lead times, and

increase customer satisfaction. By leveraging CTO, companies can also gain greater

flexibility and agility in their manufacturing processes, enabling them to quickly adapt

to changing customer requirements and market demands.

As illustrated in Figure 3, the MTS strategy is characterized by short lead times, low product

variety or diversity, and high product volume. The ATO production process is characterized by

short lead times, a low product variety, and high product volume. The MTO strategy is

characterized by rather long lead times, a rather high product variety, and a rather low product

volume. CTO can cover MTS, ATO and MTO, and partially ETO. ETO is characterized by

long lead times, a high product variety and a low product volume.

Figure 3. MTS, ATO, MTO, CTO and ETO

2.1.2.3. Configuration solutions

A configuration solution is the outcome of the configuration activity. It is a set of components

and a detailed description of how they should be connected to create a product that meets all

the requirements (Mittal & Frayman, 1989). According to (Sabin & Weigel, 1998), a solution

must provide a list of selected components, i.e. a bill-of-materials or BOM, as well as the

product's structure and arrangement. (Soininen et al., 1998) represented that a configuration

specifies precisely what a real-world product instance should be like. (Oddsson & Ladeby,

2014) stated that a configuration is the result of the configuration activity, which describes the

entity structure of the product and the connections between the entities in the set, meeting the

given requirements.

In this thesis, we distinct two types of solutions: 1) CTO solutions which can be achieved at the

end of configuration in CTO situations and 2) ETO solutions that can be reached at the end of

configuration in ETO situations.

To assist or aid the users during configuration activity, it is essential to utilize a configurator.

Hence, the following section is dedicated to this subject.

Chapter 2: Bibiliographic study

14

2.1.3. Aiding configuration with a configurator

Two types of configuration processes exist: autonomous configuration and interactive

configuration (Yang & Dong, 2012), (Monge, 2019). Autonomous configuration or batch

configuration involves the user providing all requirements at once and requesting a solution.

Then a decision support system automatically carries out the configuration process and checks

if all the requirements are consistent. Interactive configuration, on the other hand, involves the

user inputting requirements one by one. After each user requirement, a specific routine

processes them and removes the solutions that are no longer possible. The solution is built step

by step by selecting requirements that are consistent with the set of remaining solutions.

Regardless of whether the configuration is automatic or interactive, the result is a CTO solution

or a statement indicating that there is no CTO solution. In this thesis, we mainly focus on

interactive configuration.

According to (Janota et al., 2010) and (Vareilles, 2015), interactive configuration is a process

that involves iteratively removing solutions from the solution space until reaching a solution

that meets the user requirements. (Van Hertum et al., 2016), and (Falkner et al., 2020)

mentioned that interactive configuration involves both a user and a configurator. The user's

objective is to configure a system that meets all their requirements, while the configurator is a

digital tool that assists the configuration activity by deducing the effects of the user's choices.

Configurators (Tiihonen & Soininen, 1997) are utilized to aid or assist the configuration activity

and find solutions that meet the requirements of users. (Aldanondo & Vareilles, 2008), defined

a configurator as a software tool that assists the person responsible for the configuration

activity. It consists of a Knowledge Base (KB) that stores generic models and a Processing Unit

(PU) that assists the user in the configuration activity to find a solution. The KB serves as a

repository for generic models, allowing users to retrieve a relevant generic model. The PU is

responsible to assist the user in the configuration activity. It may present the user with a set of

allowed values (or choices) based on the generic models stored in the KB. As the user makes

choices, the PU may update its allowed values to ensure that the user’s choices are consistent

with the generic model.

The aim of a configurator is to ensure that the configured system is consistent with the generic

model (all constraints are met) and the requirements (Aldanondo & Vareilles, 2008). (Oddsson

& Ladeby, 2014) mentioned that in the literature, the three terms configurator, product

configuration system, and configuration system are frequently used interchangeably and they

refer to the software application. It was mentioned that a product configurator can be defined

as “a configuration system, which is a software-based system that supports the user in the

creation of product specifications by restricting how predefined entities (physical or non-

physical) and their properties (fixed or variable) may be combined.” In this thesis, we only use

the term "configurator".

Following (Janota et al., 2010) and (Vareilles, 2015), we consider interactive configuration in

which a user progressively defines her/his requirements (i.e. restriction of the characteristics of

systems, subsystems, or components), then the configurator removes inconsistent values with

the generic model and proposes allowed ones to the user. This process continues until a unique

Chapter 2: Bibiliographic study

15

solution is proposed to the user. It should be noticed that in this thesis, the user is an actor of

the company who need to configure systems by reusing formalized knowledge. She/he can be

a designer, a representative of the customer, an expert or any person involved in system

configuration.

2.1.4. Synthesis

In this section, to understand our first research question " Is it possible to define an ontology of

generic models to better manage knowledge, allowing a clear distinction between descriptive

and structural views for system configuration?", we first established a literature review on

system configuration and we defined generic models. The context of this thesis was related to

technical and tangible system configuration. We considered that all definitions given for the

product configuration in the literature can also be applied to the system configuration. From

now on, whenever we use the term "artifacts", it refers to technical and physical (or tangible)

systems, subsystems and components. Moreover, to understand our second research question

"How can ETO requirements be processed during configuration activity?", we provided a

literature review on configuration activity. We defined interactive configuration and different

types of users’ requirements. We also explained which types of requirements may arise in CTO

and ETO situations.

Since in this thesis, we aim to first formalize knowledge for system configuration, the following

section is dedicated to this subject.

2.2. Knowledge formalization for system configuration

In this section, we delve into the literature review on formalizing knowledge for system

configuration. However, in section 2.2.1, we study the knowledge management process by

briefly representing its different steps. Since knowledge formalization is one of the crucial

phases in our thesis, we explore relevant topics that aid in the formalization of knowledge for

system configuration. Thus, in section 2.2.2, we study the descriptive view and structural view

of a system, and then we study the notation of “commonality of models” in section 2.2.3.

Subsequently, we present a literature review on the principles of abstraction, generalization and

specialization in section 2.2.4. Finally, we provide a synthesis of the section in 2.2.5.

Chapter 2: Bibiliographic study

16

2.2.1. Knowledge management process

Following (Alavi & Leidner, 2001) and (Venkatraman & Venkatraman, 2018), Knowledge

management is a systematic process for extracting, formalizing, validating, storing, sharing,

and utilizing knowledge within a company as illustrated in Figure 4.

Figure 4. Knowledge management process

First of all, let's focus on the four knowledge formalization steps and see how our thesis fits in:

− Knowledge extraction is the process of identifying and capturing knowledge from various

sources such as documents, databases, experts and experiments. In this thesis we assume

that the available knowledge has already been identified and extracted by experts. This

process is therefore naturally outside the scope of this thesis.

− Knowledge formalization is the process of transforming available knowledge into explicit,

structured, and standardized forms such as rules, models, ontologies, taxonomies that can

be easily managed and reused. In this thesis, knowledge formalization is the core of the first

research question (RQ 1) and leads to generic model ontologies.

− Knowledge validation is the process of verifying the accuracy, completeness, relevance,

and consistency of formalized knowledge through expert reviews, testing, simulations, and

can involve assessing their applicability in real-world situations (verifying their reality). In

this thesis, knowledge validation consists of checking the consistency of generic models.

− Knowledge storage is the process of storing formalized and validated knowledge in a central

repository or database that can be easily accessed, searched, updated, and retrieved by

authorized users. In this thesis, we store formalized generic models in a generic model base.

Now, let's focus on the two steps of knowledge reuse and see how our thesis fits into them:

− Knowledge sharing is the process of disseminating formalized and validated knowledge to

individuals or groups who need it for their tasks or decision-making processes, through

various channels such as training, mentoring, communities of practice, forums, wikis, or

social media (Abdullah et al., 2008). In this thesis, the existence a generic model base and

Chapter 2: Bibiliographic study

17

of generic model ontologies implies that knowledge can be shared and reused to create, or

enrich, new or existing generic models. In this thesis, knowledge sharing is part of the

answer of our first research question (RQ 1).

− Knowledge reuse is the process of leveraging existing formalized and validated knowledge

to solve new problems, by adapting, combining, or refining it as needed. In this thesis,

knowledge reuse consists of the use of formalized generic models to configure systems,

taking into account both CTO and ETO requirements. This process is the core of the second

research question (RQ 2).

As we need to differentiate between descriptive and structural views in order to formalize

knowledge, the subsequent section is dedicated to this topic.

2.2.2. Descriptive view versus structural view of a system

In the literature, researchers defined products from different views. For instance, (Jiao & Tseng,

1999) identified three views for a product family: functional, behavioral, and structural.

Functional view represents the functions that the product family perform, behavioral view

represents its behavior, and structural view represents its physical structure. Meanwhile,

(Arana, 2007) defined three views for a generic product model: functional, technological, and

physical. Functional view presents the product's main features. Technological view shows the

design solutions used to meet the requirements, and physical view gives a detailed breakdown

of the product's structure, like a bill of materials. (Aldanondo & Vareilles, 2008) proposed

generic models based on both descriptive and physical views. The descriptive view defines the

product's properties, while the physical view defines the product's physical components and

their quantities. For users who lack expertise in product composition, configuring using a

physical view can be challenging. To make configuration possible for these users, a descriptive

view of the product is incorporated alongside the physical view. Moreover, it allows the user to

make choice on configuring descriptive view or structural view. With regards to the literature,

in this thesis, we define artifact families from two views: descriptive view and structural view

(Figure 5). In the following, a detailed explanation of each of these views are presented.

Figure 5. Different views

Descriptive view which is interesting for users focuses on the characteristics rather than

physical structure (Aldanondo et al., 2003). Descriptive view only shows the key features or

attributes and indicators of a family of artifacts. Each attribute and indicator have therefore a

definition domain and relations are needed to describe the possible solutions. Here are their

definitions:

− (Soininen et al., 1998) stated that attributes represent the characteristics of a concept or

object. (Yang et al., 2012) mentioned that attributes are parametric properties of a

component. (Bettman & Park, 1980) used concrete descriptive attributes, meaning that they

Chapter 2: Bibiliographic study

18

were based on reality, as well as their domains to represent an attribute-based evaluation

approach. In this thesis, we follow the definition of (Soininen et al., 1998) and (Bettman &

Park, 1980), and we define attributes as one of the characteristics that are used to describe

the family of artifacts. Attributes can be symbolic, continuous, or discrete and their domain,

which can be either a list or a range of values. Symbolic attributes are represented by a list

of symbols. They are discrete as they can only take on specific numbers of distinct values.

For instance, the color of a bike is a symbolic attribute with a discrete domain comprising

a list of values such as {Red, Blue, Black}. Continuous attributes can take any value within

a specific range or interval. They are typically represented by real numbers and have an

infinite number of possible values within the defined range. For example, the weight of a

bike is a continuous attribute with a domain that's an interval, such as between 10 and 30

kg. Any weight within this range is possible. Discrete attributes are similar to symbolic ones

in that they have a finite domain, but they are represented by integers rather than symbols.

They can be a list of integers or a set of intervals. For example, the wheel diameter of a bike

is a discrete attribute, with a domain composed either of a list of integers such as

{20, 21, 22, 26, 27, 28} inches, or a set of intervals such as {[20,22], [26,28]} inches.

− In addition to attributes, there are Key Performance Indicators (KPIs). (Guillon, Ayachi, et

al., 2021) mentioned that KPIs can be used to compare commercial offers, and more

specifically to compare systems. They divided the relevant KPIs into economic indicators,

time indicators, and confidence indicators. Although KPIs are a specific type of continuous

attributes with specific semantic, in this thesis, we distinguish them and we use attributes

to describe the family of artifacts while we use KPIs to assess the family of artifacts. Both

attributes and KPIs have domains that specify their possible values.

− In the descriptive view, in addition to the attributes and KPIs, there are relationships

between them that enable the set of possible solutions to be described and evaluated.

(Aldanondo et al., 2003). These relations are defined within a family of artifacts, signifying

that they are internal relations linking only values of attributes and KPI (Guillon, 2019).

On the other hand, structural view which is interesting for experts focuses on the physical

structure (Aldanondo et al., 2003). The structural view shows the bill-of-materials or BOM of

a family of systems, i.e. the exact quantity of each item (sub-system or component) that makes

up the top system. Since each item has indicators the methods to aggregate these indicators is

needed to compute the ones of the top system. Moreover, relations between the items or

between their attributes are required to present the allowed solutions. In follows, their

definitions are presented:

− Following (Hegge & Wortmann, 1991), a BOM represents a quantified list of components,

used to build a product family. These components are a family themselves. The most

common approach in the manufacturing industry for modeling product structure is using a

BOM, as stated by (Cao & Hall, 2020). A BOM can be single-level or multiple-level

(Andersen, 1993). A single-level BOM represents one level of composition, while a multi-

level BOM represents several levels of composition. In this thesis, we only focus on a single

level of composition for each artifact.

Chapter 2: Bibiliographic study

19

− Every item within BOM has a KPI (Djefel et al., 2008). To determine the KPIs of a system,

the KPIs of all items composing it must be aggregated. Each KPI requires a unique method

for aggregation from a single level of composition to the system. Different functions, such

as SUM, AVERAGE, MIN, MAX, etc., can be used to define an aggregation method of

KPIs. In this thesis, we limit ourselves to two KPIs of Weight and Cost. Following (Djefel

et al., 2008) and (Guillon et al., 2017) for these two KPIs, the aggregation method chosen

is the function SUM.

− In the structural view, the main relation between items is through composition or

aggregation, although other types of relations between them can exist (Arana, 2007) such

as require, exclude, incompatibility, and compatibility relations. (Blecker & Friedrich,

2006) identified four categories of relations: 1) relations between distinct items, 2) relations

between an item and attributes of different items, 3) relations between attributes of different

items, 4) relations between attributes within an item. (Blecker & Friedrich, 2006) stated that

compositional relations contain parts with assigned minimum and maximum cardinalities

(to specify their numbers). The composition relations specify mandatory or optional

components in the system structure (Cao & Hall, 2020). (Yang & Dong, 2013) defined three

configuration rules: inclusion rules, exclusion rules, and resource rules. An inclusion rule

specifies that, for a component to be included in the configuration, another component must

also be present. A requisition rule is directional (Yang et al., 2012). Exclusion rules prohibit

two components from existing in the same configuration. Resource relation specifies that

the amount of resource consumed by components in a configuration must be less than or

equal to that of the resources offered by components in the same configuration. (Felfernig

et al., 2014) stated that usually compatibilities relations are used in cases where the number

of allowed combinations of components is low. It represents two components needs to be

in a configuration. However, in incompatibility relation they cannot be in a configuration.

(Yang et al., 2012) mentioned that a port relation enforces that the corresponding ports of

two components should be physically connected in a configuration. In this thesis, according

to (Blecker & Friedrich, 2006), we consider two categories of relations: 1) relations between

different artifacts, and 2) relations between attributes and/or KPIs of different artifacts. As

illustrated in Figure 6, in this thesis, system configuration involves various types of relations

including require relation, exclude relation and compatibility relation.

Figure 6. Different relations in system configuration

In addition to descriptive and structural views of a system, the concept of commonality of

models is significant in formalizing knowledge for system and creating an ontology of generic

models. The following section is dedicated to this matter.

Chapter 2: Bibiliographic study

20

2.2.3. Commonality of models

The purpose of this section is to provide a clear understanding of the concept of commonality

using definitions sourced from literature. Our discussion begins by explaining the reasons for

utilizing this particular concept.

According to (Baker, 1985), commonality in product design refers to using standardized

components in designing and manufacturing multiple products within a product family or

product line. By using common components, manufacturers can reduce costs, improve quality,

and speed up production time, as well as enhance product flexibility and customization by

allowing customers to choose different options while still using common components.

Similarly, (Blecker & Friedrich, 2006) stated that through commonality, components are

standardized and shared while maintaining the variety of the end products.

Several studies, such as (Siddique et al., 1998) and (Thevenot & Simpson, 2006), have focused

on measuring commonality. They introduced the concept of Percent Commonality (%C), which

is an index for quantifying platform commonality. According to (Siddique et al., 1998), %C is

calculated by dividing the number of common components between two platforms by the total

number of components in both platforms. The resulting value is then multiplied by 100 to obtain

a percentage. It can be used to assess the level of commonality between different platforms.

According to (Thevenot & Simpson, 2006), %C is based on three main viewpoints:

(1) component, (2) component-component connections, and (3) assembly. Component

viewpoint measures the percentage of components that are common between the products in

the family. Component-component connections viewpoint measures the percentage of common

connections between components. Assembly viewpoint measures the percentage of common

assemblies between the products in the family. Each of these viewpoints results in a percentage

of commonality, which can then be combined to determine an overall measurement of

commonality for a platform by using appropriate weights for each item.

In this thesis, the term "commonality" is defined as the quantity of shared or common

knowledge among multiple generic models whether it is their characteristics, or structure. This

concept of commonality is used to create a hierarchy of generic models with different levels of

abstraction.

Figure 7 illustrates the commonality of two independent generic models (number one and two).

These generic models are presented by circles. In Figure 7, rectangles are used to present

artifacts, curves to indicate relations between different artifacts or within an artifact, and straight

lines between artifacts to indicate composition relations. The commonality of two models are

identified: four common artifacts and two common relations. Each model possesses two

specific artifacts exclusively dedicated to itself, along with a specific relation within an artifact

(shown in bold).

Chapter 2: Bibiliographic study

21

Figure 7. Example of commonality of models

To define models at different levels of abstraction we need to use generalization or

specialization relationships between generic models, so the following section is dedicated to

this topic.

2.2.4. Abstraction, generalization, specialization, inheritance principles

In this section, based on the literature, first, we represent the concept of abstraction levels, the

principles of generalization and specialization. Then, we present the principles of inheritance

which directly linked to the one of specialization. After that, we study taxonomy.

Abstraction, in general, is a fundamental concept in computer science and software engineering

(Ben-Ari, 1998). The process of abstraction can also be referred to as modeling, and is closely

related to the concepts of theory and design (Comer et al., 1989). Models can also be considered

a type of abstraction due to their generalization of aspects of reality. In software engineering

and computer science, abstraction is:

• the process of removing or generalizing physical, spatial, or temporal details (Colburn

& Shute, 2007) or attributes in the study of systems in order to focus attention on details

of greater importance; (Kramer, 2007) it is similar in nature to the process of

generalization;

• the creation of abstract concept objects by reflecting common features or attributes of

various non-abstract objects or systems under study (Kramer, 2007) - the result of the

process of abstraction.

Computer science commonly presents levels of abstraction, each representing a different model

of the same information and processes, but with different levels of detail. Each level uses an

expressive system with a unique set of objects and compositions that apply only to a particular

domain.

The idea of generalization was initially introduced in simulation programming languages, as

noted by (Pedersen, 1989). (Khoshafian et al., 1991) described generalization as a bottom-up

approach, wherein a set of similar classes is treated as a generic class. In generalization,

numerous individual differences between classes are disregarded (Ohira et al., 2011).

Specialization, which was also first introduced in simulation programming languages, has two

types: single and multiple specializations, according to (Pedersen, 1989) and (Taivalsaari,

1996). Single specialization implies that a child class has all the properties of its parent class

and additional specific properties. Multiple specializations imply that a child class has all the

properties of its parent classes. Specialization is a top-down approach (Khoshafian et al., 1991)

that creates a hierarchy of classes, enabling the reuse of existing class to generate new classes

Chapter 2: Bibiliographic study

22

downwards (Ohira et al., 2011). Classes that are further away from the general class are more

specialized, according to (Kamsu Foguem et al., 2008).

(Cardelli, 1984) stated that the concept of inheritance was first introduced in simulation

programming languages. (Frohlich, 2002) defined inheritance informally as a mechanism that

transforms an “ancestor” class into a “descendent” class by adding new features. (Taivalsaari,

1996) and (Simons, 2004) represented that inheritance allows for the creation of new classes

based on existing ones. This is done by specifying the properties or characteristics that differ

from the properties of existing classes, while all other properties are automatically inherited

from the existing classes and incorporated into the new class (Krótkiewicz, 2018). Inheritance

has several properties: transitivity, non-reflectivity, non-symmetry, and without cycles. The

inheritance relationship is transitive, meaning that a parent or superclass can also be a child or

subclass of another class, thus inheriting all the properties of its ancestors. Inheritance is non-

reflective, meaning that if class A inherits from class B, then class B does not inherit from class

A. Inheritance is non-symmetrical, meaning that if class A inherits from class B, it does not

imply that class B inherits from class A. Inheritance is without cycles, meaning that there can

be no circular dependencies in the inheritance hierarchy. This is also known as acyclic

inheritance. An important feature of the concept of inheritance is its polymorphism.

Polymorphism comes from the Greek and means that it can take several forms. Inheritance

polymorphism, also known as specialization, is the ability to redefine a method in classes

inheriting from a base class. It is then possible to call an object's method without worrying about

its intrinsic type. This makes it possible to abstract the details of the specialized classes of an

object family, masking them with a common interface (which is the base class).

(Sciore, 1989), mentioned that a set of "is a" relationships between classes forms a class

hierarchy. Taxonomy is a form of classification and a fundamental mechanism for organizing

knowledge (Wand et al., 1995). (Gartner, 2016) stated that taxonomy is a classification of terms

or concepts of a domain organized in a hierarchical structure. (Van Heijst et al., 1997) explained

that an ontology for a specific domain describes a taxonomy of concepts that define the semantic

interpretation of the knowledge. (Kamsu Foguem et al., 2008) noted that since ontology is the

heart of any knowledge description, ontological objects are typically described as a set of

concepts and a set of relations between them. These sets can be ordered to form a taxonomy of

concepts. (Nickerson et al., 2013) proposed a method to develop a taxonomy in an information

system domain, emphasizing the importance of taxonomies in understanding and analyzing

complex domains. (Guillon, Villeneuve, et al., 2021) defined a taxonomy as a specific type of

ontology because it allows for structuring the knowledge. (Tumnark et al., 2019) mentioned

taxonomy only includes "is a" relationships, while ontology includes cardinality and other

restrictions.

In this thesis we combine the principles of generalization, specialization, inheritance, taxonomy

and commonality to structure and formalize knowledge at different levels of detail or

abstraction. This formalized knowledge can then be reused to generalize, specialize and create

a taxonomy of generic models. By organizing knowledge at different levels of abstraction, the

process of formalizing knowledge does not require starting from scratch. In addition, any

change made to a generic model at a particular level of abstraction in the taxonomy is

Chapter 2: Bibiliographic study

23

propagated to all generic models at lower levels of abstraction through the principles of

inheritance and specialization. By creating generic models at a lower level of abstraction, it is

possible to focus only on their specific knowledge. The principle of inheritance polymorphism

allows experts to specialize high-level knowledge at the level in question.

For instance, as illustrated in Figure 8, generic models at varying levels of abstraction are

created through generalization and specialization. Initially, two independent generic models

(number one and two) are created. As explained in Figure 7, their commonality is identified

(i.e. four artifacts and two relations). Then, using generalization, a new generic model is created

at a higher abstraction level (number three) which only possess the commonality of models. In

addition, using specialization, a new model (number four) is created at a lower abstraction level.

This new model comprises both the inherited knowledge from model number three, as well as

its own specific knowledge (i.e. three artifacts and three relations shown in bold).

Figure 8. Example of using generalization and specialization

In the following, the synthesis of this section is presented.

2.2.5. Synthesis

In this section, we began by introducing the knowledge management process, followed by an

outline of two essential phases: knowledge formalization and knowledge reuse. We mainly

focused on concepts related to our first research question "Is it possible to define an ontology

of generic models to better manage knowledge, allowing a clear distinction between descriptive

and structural views for system configuration?". Therefore, we provided a literature review on

descriptive and structural views. Additionally, we delved into the concepts of: commonality of

models, abstraction, generalization and specialization which play important role in knowledge

formalization.

2.3. Different approaches for system configuration

This section is dedicated to the various approaches that can be used for system configuration,

including the ontology approach, Unified Modeling Language (UML), Systems Modeling

Language (SysML), Constraint Satisfaction Problem (CSP), Case-based reasoning (CBR), and

hybrid approaches. In order to compare these different approaches, we have developed a list of

eight criteria necessary for effective formalization and reuse of generic models. For each

approach, we provide a definition and an explanation of its different elements. We then evaluate

Chapter 2: Bibiliographic study

24

them against our eight criteria and conclude with their advantages and disadvantages,

distinguishing between knowledge formalization and knowledge reuse.

We therefore begin by defining our eight evaluation criteria, then present the ontology-based

approaches, the UML and SysML approach, the CSP, the CBR and then the methods that

hybridize the previous approaches. We conclude this section with a table summarizing our

analysis.

2.3.1. Criteria for comparing different system configuration approaches

Based on the literature on system configuration and the needs expressed by experts and users,

we have drawn up the following list of eight essential criteria for establishing, maintaining and

updating generic models, and for using them effectively. Four criteria are dedicated to the

knowledge modeling phase and four to the knowledge reuse phase, as synthesized in Table 1.

For each criterion, the response options are as follows: Yes, No or Difficult.

In knowledge formalization, the criteria are:

− KFC1: Clearly distinguish between descriptive and structural views: The

studied approach allows for a clear formalization of descriptive view and structural

view. As explained in section 2.2.2, the descriptive view details the identity of the

family of artifacts by providing an overview of its key attributes and KPIs,

regardless of its structure. On the other hand, the structural view reveals the

composition of the family of artifacts. The need to separate descriptive view from

structural view arises from different interests and levels of expertise of the person

who is in charge of configuration in knowledge reuse step. It is therefore essential

to create this distinction between descriptive and structural views in knowledge

formalization for system configuration.

− KFC2: Better structure knowledge for later reuse in modeling: The studied

approach makes it possible to easily reuse the formalized generic models either

partially or entirely in order to formalize new ones. As explained in section 2.2.4,

we need to structure knowledge for system configuration to avoid the repetitive and

time-consuming process of knowledge formalization, knowledge maintenance and

knowledge update. A taxonomy of knowledge seems to be a good way to reduce the

workload of experts. The different approaches will therefore be evaluated on this

particular point.

− KFC3: Explicitly formalize generic models at different levels of abstraction:

The studied approach enables to take advantage of the commonality of generic

models in order to formalize generic models at a higher level of abstraction using

generalization. Reversely, the studied approach enables to use inheritance principles

in order to formalize generic models at a lower level of abstraction using

specialization. Consequently, the approach makes it possible to formalize generic

models at different levels of abstraction. As mentioned in section 2.2.4, we need to

formalize generic models at different levels of abstraction in order to better manage

knowledge for system configuration. Any modifications made at a generic model at

Chapter 2: Bibiliographic study

25

a more abstraction level is propagated to all generic models at lower abstraction

level. It therefore enables distributing changes throughout the model hierarchy.

− KFC4: Unquestionably validate the consistency of the knowledge: The studied

approach allows to validate the generic models during their formalization and

guarantee the consistency of the solution space (i.e. the set of all possible solutions

that these models can generate). As mentioned in section 2.2.1, we need to validate

the consistency of the knowledge since it ensures that the knowledge embedded in

our models is reliable, and does not contain contradictory information. This is

necessary, as inconsistencies can threaten the integrity of the models and lead to no

results.

In knowledge reuse phase, the criteria are:

− KRC1: Configure descriptive and/or structural views for the same model

according to the configuration requirements: The studied approach makes it

possible to configure an artifact according to either its descriptive view or its

structural view. Consequently, the studied approach enables to make this choice

during the configuration activity (configuring only descriptive view or configuring

both descriptive view and structural view). As explained in section 2.2.2, this need

is required since it enables the users who are interested only in the attributes of the

artifact, to configure its descriptive view and it enables those who are interested in

the structure of the artifact to configure its structural view. Therefore, configuring

both views allows the model to be applied more broadly, to meet a wide range of

user requirements.

− KRC2: Formalize and capitalize ETO requirements during configuration: The

studied approach enables to formalize ETO requirements during configuration

activities to configure artifacts and capitalize solutions for further reuse. As

explained in sections 2.1.2.1 and 2.1.2.2, the need to formalize and capitalize ETO

requirements during configuration arises from the necessity to address ETO

requirements. The different approaches will therefore be evaluated on this particular

point.

− KRC3: Configure according to several levels of abstraction for the same

knowledge model according to the configuration requirements: The studied

approach makes it possible to configure an artifact with its sub-systems and/or

components at different levels of abstraction. It enables to decide at the beginning

of the configuration activity at which level of abstraction the artifact has to be

configured. As mentioned in KFC3 and regarding the explanations of section 2.2.4,

generic models are created at different levels of abstraction. Therefore, the need of

configuring according to several abstraction level arises from the complex nature of

knowledge models and the varying requirements of users. Not all users require or

benefit from the same level of detail. Some may require an artifact at a high-level of

abstraction, focusing on common knowledge. Other users may need an artifact at a

lower level of abstraction, containing much more specific and detailed knowledge.

Chapter 2: Bibiliographic study

26

− KRC4: Interactively configure a system: The studied approach makes it possible

to interactively configure an artifact. Consequently, the studied approach enables to

define a requirement then remove inconsistent solutions from solution space and

repeating it iteratively until obtaining a solution. As explained in section 2.1.3, this

need is required since interactive configuration allows users to actively shape the

solution, making decisions throughout the process. Through the iterative refinement

of the solution space, where inconsistent solutions are progressively eliminated, the

system converges towards a solution that aligns closely with the defined

requirements. This gives dynamism and adaptability to the configuration activity

and enables us to respond to changing requirements.

Table 1. Requirements

Requirements for system configuration

KFC1: Clearly distinguish between descriptive and structural

views

KFC2: Better structure knowledge for later reuse in modelling

KFC3: Explicitly formalize generic models at different levels

of abstraction

KFC4: Unquestionably validate the consistency of the

knowledge

KRC1: Configure descriptive and/or structural views for the

same model according to the configuration requirements

KRC2: Formalize and capitalize ETO requirements during

configuration

KRC3: Configure according to several levels of abstraction

for the same knowledge model according to the configuration

requirements

KRC4: Interactively configure a system

In the upcoming section, we will discuss various approaches that can be utilized to meet the

needs for formalizing and reusing knowledge in system configuration, which we have presented

earlier.

Chapter 2: Bibiliographic study

27

2.3.2. Ontology and system configuration

In this section, we begin by reviewing the ontology used in systems configuration. Next, we

will explore the application of this ontology in the context of systems configuration. Finally,

we will evaluate this approach on the basis of our predefined criteria.

2.3.2.1. Ontology definition

According to (Gruber, 1993), an ontology is "an explicit specification of a conceptualization".

Other researchers, such as (Gruber, 1995), and (Borst et al., 1997) have expanded upon this

definition. Then, (Studer et al., 1998) defined an ontology as "a formal, explicit specification of

a shared conceptualization".

Several key elements are typically included in an ontology such as classes (or concepts),

individuals or objects, and relations.

Ontology Classes: Classes are the primary formalized elements of the domain (Reyes-Peña &

Tovar-Vidal, 2019). (Noy & McGuinness, 2001) mentioned that for modeling class hierarchies,

there are three approaches: top-down, bottom-up, and middle-out. The top-down approach

involves starting with the most general class and then refining it to more specific classes. In

contrast, the Bottom-up approach is starting with the most specific classes and moves towards

general ones. The middle-out approach involves starting with the most crucial classes and then

proceeding to either more general or more specific classes.

Ontology Individuals: Individuals are the representation of the main objects within the domain

(Reyes-Peña & Tovar-Vidal, 2019).

Ontology Relations: Relations are links between the classes (Reyes-Peña & Tovar-Vidal,

2019). For instance, generalization or specialization relations between classes and sub-classes

help to organize the classes in a hierarchical structure (Hadzic et al., 2009), known as a

taxonomy. In addition, relations between two classes allow modeling aggregation or

composition. While other types of relations in an ontology include Associates with, Instance

of, etc. (Hanafi et al., 2018).

Ontology Development Process: (Noy & McGuinness, 2001) proposed that the process of

developing an ontology involves seven steps: (1) determining the domain and scope, (2) reusing

previous ontologies if they exist, (3) developing a terminology, (4) developing classes and class

hierarchies, (5) defining properties, (6) defining property constraints, and (7) defining

individuals. After completing these steps, it is necessary to evaluate the ontology to ensure it

works properly through testing reasoning algorithms, checking the consistency of classes and

properties, and validating inferences.

Reasoning refers to the process of automatically inferring or determining new knowledge that

has not been explicitly stated from the existing information represented in the ontology (Riboni

& Bettini, 2011). It helps to automatically deduce new conclusions from the formalized

knowledge expressed in the ontology. Reasoning in the ontology can be used for tasks such as

determining the relationships between different concepts in the ontology, checking

Chapter 2: Bibiliographic study

28

inconsistencies in the ontology (Riboni & Bettini, 2011), and answering queries about the

knowledge represented in the ontology.

The specific reasoning capabilities of an ontology depend on the formalism used to represent

the ontology and the reasoning tools that are available for that formalism. Rule-based reasoning

involves using a set of rules to infer new knowledge from the information represented in the

ontology (Zhai et al., 2018). The relations are typically specified in a logical language, such as

SWRL2 (Semantic Web Rule Language), and can be used to infer relations between classes,

perform classifications, and identify inconsistencies in the ontology.

SWRL provides powerful deductive reasoning capabilities (Zhai et al., 2018). A SWRL rule

consists of two parts: an antecedent (body) and a consequent (head). Both parts consist of zero

or several atoms separated by an arrow “→”. For instance, (Atom ^ Atom ^ …) → (Atom ^

Atom ^...). The consequent of an SWRL rule is triggered if and only if every atom in the

antecedent is satisfied. Because the antecedent can be satisfied multiple times, SWRL rules

support iteration and fire for every combination of values that satisfy the antecedent. It means

that we cannot change values or remove inconsistent ones, we can only add new properties.

Therefore, SWRL does not support non-monotonic reasoning (DeBellis, 2021). For more

information refer to (Van Harmelen et al., 2008).

2.3.2.2. Ontologies for system configuration

Ontologies have been used in the domain of system configuration. (Soininen et al., 1998)

proposed a general ontology that includes modeling concepts to represent knowledge in the

domain of configuration. This ontology allows structuring and representing knowledge in this

domain. Two review articles on product configuration, (L. L. Zhang, 2014) and (Oddsson &

Ladeby, 2014), presented various definitions in this field and discussed prospects. (Ming et al.,

2017) mentioned that ontology not only captures and documents information but also facilitates

reusing the previous information to effect new decisions when requirements change. (Lyu et

al., 2017) is a review paper that mentioned that research on ontology-based product modeling

mainly focuses on how product knowledge in a domain can be represented and extracted in a

formalized way, and then interpreted and reused in other domains.

(Yang et al., 2008) and (Yang et al., 2009) proposed an ontology-based approach to formalize

knowledge for product configuration. They used Web Ontology Language (OWL) to define

knowledge about the product and its components and Semantic Web Rule Language (SWRL)

to define the constraints. Then, the configuration system is implemented using Java Expert

System Shell (JESS). The proposed approach was applied to the configuration of a ranger

drilling machine in the first paper and it was applied to a case for the personal computer in the

second paper. Similarly, (Dong et al., 2011) and (Shen et al., 2012) developed an ontology-

based approach to model knowledge for service product configuration. They used OWL, and

SWRL to model knowledge and then employed the JESS rule engine to implement

configuration processes.

2 https://www.w3.org/Submission/SWRL/

https://www.w3.org/Submission/SWRL/

Chapter 2: Bibiliographic study

29

(Xuanyuan et al., 2016) proposed a rule-based ontological formalism to represent the product

structure and constraints of a product configuration. In this way, OWL and SWRL were used;

as well as, the Jess reasoner to validate the consistency of the ontology and to develop valid

product configurations. (Zhou et al., 2017) proposed a method to improve cutting tool

configuration while reducing carbon emissions for the machining processes. The method used

an ontology-based approach considering carbon emissions, SWRL language to create rules to

reason feasible cutting tool configurations, and an evaluation method to find the optimal

configuration and applied it on a vortex shell workpiece.

(Cao & Hall, 2020) proposed an ontology-based method to configure modular buildings. It used

SWRL and Semantic Query Enhanced Web Rule Language (SQWRL) to formalize

configuration constraints such as composition, cardinality, compatibility, and dependency.

(Esheiba et al., 2021) proposed a hybrid knowledge-based recommender system that makes use

of ontologies to capture knowledge about customer requirements, products, services, and

production. As well as constraint programming for encoding the variants of product-service

systems. The case study focused on the laser machine domain.

2.3.2.3. Advantages and drawbacks of using ontology

In this section, we assess the ontology based on our eight criteria. For each criterion, there are

three possible outcomes: Yes, No and Difficult. We justify our answers by referring to the

literature review.

In knowledge formalization, the criteria for ontology are evaluated as follow:

− KFC1: Clearly distinguish between descriptive and structural views: YES

In essence, the key to distinguishing between descriptive and structural views in an ontology

lies in the systematic and structured definition of classes, attributes, relations, and hierarchies.

Ontologies allow modeling knowledge about different artifacts, their characteristics (such as

attributes), KPIs and the relation between them (descriptive view). Moreover, ontology allows

to formalize relationships (such as composition). Other relations such as require and exclude as

well as KPIs aggregation methods can be formalized within an ontology by means of rules

(structural view). However, ontologies have difficulties in representing all relations required

for formalizing knowledge in system configuration, such as compatibility between artifacts or

their characteristics.

In (Soininen et al., 1998), (Yang et al., 2008), (Yang et al., 2009), (Dong et al., 2011) and (Shen

et al., 2012), they formalized knowledge in the domain of configuration, separating descriptive

and structural views. First, they used OWL to define knowledge about the product and its

components and then SWRL to define the constraints.

− KFC2: Better structure knowledge for later reuse in modeling: YES

Ontologies are designed to structure knowledge in a standardized and reusable format. The

formal definitions and hierarchies established, such as taxonomies, make them well-suited for

modeling across various contexts. Their inherent taxonomic structure enables systematic

organization and ease of reuse.

Chapter 2: Bibiliographic study

30

In the study by (Yang et al., 2008), a methodology was introduced that organizes configuration

models hierarchically. This structure enables deriving domain-specific configuration

knowledge by reusing or inheriting classes. The base of this methodology is a configuration

meta-model from which specific domain knowledge can be derived.

Another study by (Yang et al., 2009) presented a comprehensive configuration ontology model

that defines the fundamental terminologies and relationships relating to the product

configuration domain. The paper demonstrates the derivation of domain-specific configuration

models through ontology inheritance from the general model, enabling the accurate

representation of specific product configuration knowledge.

− KFC3: Explicitly formalize generic models at different levels of abstraction:

YES

Hierarchical nature of ontology allows for different levels of abstraction. Ontologies allow

modeling knowledge about artifacts at different levels of abstraction. Using ontology, the

generalization or specialization relations between classes and sub-classes can be defined in

order to formalize general to specific classes, allowing for varying levels of detail (Hadzic et

al., 2009). These class hierarchies referred to as taxonomies can be modeled using top-down or

bottom-up approaches (Noy & McGuinness, 2001), (Polenghi et al., 2022). The top-down

approach consists in starting with the most general class, then refining it to obtain more specific

classes. The bottom-up approach, on the other hand, starts with the most specific classes and

works towards the general classes.

− KFC4: Unquestionably validate the consistency of the knowledge: DIFFICULT

To validate the consistency of knowledge within an ontology, reasoning tools are employed.

These tools can infer new knowledge and highlight inconsistencies based on the established

logical rules and relationships. Using OWL, which is based on Description Logics,

configuration models gain clear logical semantics, as highlighted by both (Yang et al., 2008)

and (Yang et al., 2009). This permits reasoning and the detection of inconsistencies within

knowledge bases, including checking for class subsumption and concept inconsistency.

However, ensuring the unquestionable validation of ontology consistency can be challenging.

As explained previously, ontologies have difficulties in representing compatibility relations

between artifacts or their characteristics. Some rules can be formalized within an ontology and

applied using a reasoner. However, that does not allow to prohibit inconsistent attribute values

and thus, it is not that easy to check the consistency of the formalized knowledge using

ontology.

In knowledge reuse, the criteria for ontology are evaluated as follow:

− KRC1: Configure descriptive and/or structural views for the same model

according to the configuration requirements: YES

Using ontologies, it is possible to reuse and configure formalized configuration models. For

instance, (Yang et al., 2008) and (Yang et al., 2009) used an inference engine (i.e. JESS rule

engine) in their study to carry out configuration process. They defined user requirements in the

form of constraints, such as constraints on characteristics (or attributes) of a component. At the

Chapter 2: Bibiliographic study

31

end of configuration, solutions were obtained consists of the component individuals, the

assignment of values to properties of these individuals and the connection relations among

components. These solutions satisfied all constraints and customer requirements. To the best of

our knowledge, no study in the literature has addressed configuring both descriptive and

structural views and providing solutions for each.

− KRC2: Formalize and capitalize ETO requirements during configuration: YES

While ontologies are adept at capturing general knowledge structures, ETO requirements can

be intricate and highly specific. This might necessitate ontology manipulation or extensions.

We did not find any paper related to this criterion. However, to our knowledge, after creating

an instance of model according to what the user wants, we can add attributes and values within

the instance manually. Therefore, we can formalize and capitalize ETO requirements during

configuration.

− KRC3: Configure according to several levels of abstraction for the same

knowledge model according to the configuration requirements: YES

As explained before, ontologies allow modeling knowledge about artifacts at different levels of

abstraction. It enables to decide at which level of abstraction the artifact has to be configured.

Therefore, given the hierarchical structure of ontologies, it is possible to focus on different

levels of abstraction. Parent classes offer higher abstraction levels, while child classes provide

lower abstraction level containing detailed knowledge. We did not find any paper in the

literature which directly addresses this criterion. However, as far as we know, a class can be

selected either at higher abstraction levels or lower abstraction levels, then its instance can be

created. Then, it can be configured using ontologies.

− KRC4: Interactively configure a system: DIFFICULT

Interactive configuration requires rapid interaction with user. While ontologies provide

structured knowledge, rapid interactions, especially with vast ontologies to fulfill different

requirements, is not that easy. Therefore, it is difficult to reason on the formalized knowledge

and solve the configuration problem interactively using ontology. Although some rules can be

formalized within an ontology and applied using a reasoner. However, that does not allow to

prohibit inconsistent attribute values and thus, it is not possible to configure systems.

In conclusion, ontology seems to be particularly adept at formalizing knowledge, distinguishing

between descriptive and structural views, and facilitating knowledge structuring for future reuse

in modeling. Its hierarchical nature allows for flexibility in levels of abstraction, making it

suitable for various modeling purposes. While ontologies are intrinsically structured, they may

face challenges in areas like interactive configurations.

The following section is devoted to the Unified Modeling Language and Systems Modeling

Language.

Chapter 2: Bibiliographic study

32

2.3.3. UML, SysML and system configuration

In this section, we commence with an examination of the ontology employed in systems

configuration. Following that, we delve into the utilization of this ontology within the realm of

systems configuration. Lastly, we assess the effectiveness of this approach based on our

predetermined criteria.

"In this section, we initiate our examination by assessing the ontology applied in systems

configuration. Subsequently, we delve into the practical implementation of this ontology within

the framework of systems configuration. Lastly, we assess the effectiveness of this approach

against our predetermined criteria."

In this section, we commence by examining the ontology employed in systems configuration.

Following that, we will delve into the utilization of this ontology within the domain of systems

configuration. Ultimately, we will assess this approach based on our predetermined criteria.

2.3.3.1. UML definition

The definition of Modeling Language (ML) has been represented by (Rumbaugh et al., 1999)

as a language that focuses on the conceptual and physical representation of a system.

Conceptual representation provides an abstract or high-level representation of a system's

components, relationships, and interactions to understand its functionality and behavior without

getting into implementation details. Physical representation, on the other hand, is the concrete

or low-level representation of a system's components. Unified Modeling Language (UML) is

the most widely used object-oriented modeling language, as noted by (Petre, 2013),

(Hutchinson et al., 2014). (Clark & Evans, 1997) defined UML as a collection of graphical

models that express the properties of an object-oriented design. (Rumbaugh et al., 1999) stated

that UML is "a graphical language for visualizing, specifying, constructing, and documenting

the artifacts3 of a system".

UML diagrams: UML provides various diagrams that represent a system using 14 diagrams,

grouped into two categories, allowing for the modeling of both its structure and behavior (Clark

& Evans, 1997), (Language et al., 1997), (Rumbaugh et al., 1999), and (Mkhinini et al., 2020).

Structural diagrams, such as class diagrams, depict the static elements of a system and their

relationships (Clark & Evans, 1997). Meanwhile, behavior diagrams show the dynamic

behavior of objects in a system and changes over time (Clark & Evans, 1997), (Rumbaugh et

al., 1999). The UML class diagram is commonly used (Dobing & Parsons, 2006), and it is the

most important structural model (Clark & Evans, 1997). UML use case diagrams offer a high-

level overview of the system's functionality from the user's perspective, with each use case

representing a specific functionality that the system must deliver to its users4.

A UML class diagram has different elements including classes, attributes, and relationships. A

class is a group of objects that share attributes, operations, relationships, and semantics

(Wesley, 2015). An attribute is a property or characteristic of a class. UML has three types of

3 An artifact in software development is an item created or collected during the development process. Example

of artifacts includes use cases, requirements, design, code, executable files, etc.
4 https://en.wikipedia.org/wiki/Use_case_diagram

https://en.wikipedia.org/wiki/Use_case_diagram

Chapter 2: Bibiliographic study

33

relations: association, generalization, and aggregation; Association represents a structural

relationship between two classes, showing how one class is related to another one.

Generalization represents a "is a" relationship between classes, where a child inherits the

structure and behavior of a parent (Clark & Evans, 1997), (Rumbaugh et al., 1999). Aggregation

is a special type of association, representing a structural relationship between a whole and its

components or parts (Rumbaugh et al., 1999).

UML is a modeling language, not a reasoning or inference engine. UML does not support

automated reasoning or inference. However, it can be used in combination with other tools that

do support monotonic reasoning, such as Object Constraint Language (OCL) (Omg, 2012)

which is a modeling language to specify and validate constraints on the model. These

constraints can then be used to check the consistency and correctness of the model. This enables

the modeler to reason about the system being modeled, identify potential issues, and ensure that

the model adheres to specified requirements and constraints. (Queralt & Teniente, 2006)

proposed a method for reasoning on structural conceptual schemas specified in UML with OCL

integrity constraints. This approach contains two steps: 1) translating the UML class diagram

and the OCL constraints into a first-order logic representation, and 2) using the CQC Method,

which performs constraint-satisfiability checks, to carry out the reasoning and validation tasks.

(Berardi et al., 2005) addressed the challenge of reasoning on UML class diagrams and showed

that it can be quite a complex task. (Pérez & Porres, 2019) proposed a framework for reasoning

based on Constraint Logic Programming.

2.3.3.2. SYsML Definition

The Systems Modeling Language (SysML) is another modeling language particularly designed

for systems engineering applications. It is a standard from the Object Management Group

(OMG), developed in March 2003. It allows the representation of systems and product

architecture, their behavior, and functionalities (Balmelli, 2007). SysML supports the

specification, analysis, design, verification, and validation of complex systems (Hause, 2006).

SysML diagrams: SysML offers a wider variety of diagrams than UML, including diagrams

such as requirements, parametric, and allocations diagrams, which are not available in UML

(Balmelli, 2007). SysML diagrams can define system requirements, behavior, structure and

parametric relationships (Hause, 2006). (Guillon, 2019) mentioned the system structure can be

represented by block definition diagrams and internal block diagrams, while the behavior

diagrams include the use case diagram, activity diagram, sequence diagram and state machine

diagram. The requirement diagram captures requirements hierarchies and the derivation,

satisfaction, verification and refinement relationships, while the parametric diagram represents

constraints on system parameter values such as performance, reliability and mass properties to

support engineering analysis. As pointed out by (Fiorèse et al., 2012), the functional block

diagram of SysML shows the set of functions that the product to be designed must fulfill. There

are four behavioral diagrams formalized in the SysML: the use case diagram, the sequence

diagram, the activity diagram and the state diagram. Modeling the behavioral view of the

product is particularly relevant during the complete design of the product, if the system is

accepted by the customer. Physical block diagram of SysML shows the internal structure of the

block, i.e. its decomposition into physical components (Guillon, 2019).

Chapter 2: Bibiliographic study

34

2.3.3.3. UML and SysML for system configuration

UML and OCL can be employed in the domain of system configuration. (Felfernig, Jannach, et

al., 2000) proposed an approach using UML to define a product configuration knowledge base.

(Felfernig, Friedrich, et al., 2000) defined logic-based formal semantics for UML constructs,

allowing to generate logical sentences and to process them by a problem solver. (Felfernig,

2007) represented configuration knowledge and built configuration models using UML and

OCL as standard configuration knowledge representation languages. This standard

representation of configuration knowledge facilitates the integration of configuration

technologies into software environments managing complex products and services.

Configuration systems supporting this standard representation are easier to integrate and

improve the technological support for implementing a company's mass customization strategy.

(Felfernig et al., 2014) used a graphical configuration knowledge representations approach that

is UML to formalize configuration models relying on the notation of class diagrams; without

the need for additional notations such as component or sequence diagrams. (Rigger et al., 2021)

proposed a method to formalize knowledge for product configuration during the development

of an engineering system using SysML.

2.3.3.4. Advantages and drawbacks of using UML and SysML

In this section, we provide the advantages and drawbacks of utilizing UML and SysML for

knowledge formalization, as well as for knowledge reuse.

− KFC1: Clearly distinguish between descriptive and structural views: YES

UML and SysML are a powerful approach for formalizing knowledge about systems. They

provide a set of diagrams to illustrate various aspects of systems, from their architecture and

structure to their behavior and interactions.

In a study by (Felfernig et al., 2014), they used UML to create a model for configuring personal

computers (PCs). They used class diagrams to define the PC's structure, including its parts and

how they fit together. Some basic relations about how these parts can be combined were directly

included in the model, others were represented textually.

In another study by (Rigger et al., 2021), they employed SysML to build a configuration model.

They showed how to create product designs and define relations within these designs. They did

this by adding variables and constraints directly into the product design using diagrams.

− KFC2: Better structure knowledge for later reuse in modeling: YES

In (Felfernig et al., 2014), through UML's class diagrams, one can create a taxonomy by

hierarchically organizing classes, thus better structure knowledge that can be reused in different

models.

In (Rigger et al., 2021), a hierarchical component structures is created using SysML which

facilitate the reuse of components for formalization of configuration models. In their work, they

created a package named “product architecture” that holds details about the system's hierarchy

and the blocks that are used.

Chapter 2: Bibiliographic study

35

− KFC3: Explicitly formalize generic models at different levels of abstraction:

YES

In the context of modeling, UML and SysML provide a valuable framework for creating generic

models at various levels of abstraction. This flexibility allows modelers to begin with high-level

system concepts and gradually refine them into more detailed concepts.

In (Felfernig et al., 2014), UML is used to formalizing specialization and generalization

relationships. They defined a class as a child of another class, with the child class inheriting all

attributes and behaviors from its parent class. Additionally, (Rigger et al., 2021) illustrate how

SysML offers generalization relationships between blocks and allows for the definition of

abstract elements.

− KFC4: Unquestionably validate the consistency of the knowledge: DIFFICULT

UML intrinsically lacks reasoning capabilities essential for validating the consistency of a

model. To add constraints to UML models and reasoning on them, auxiliary tools like the

Object Constraint Language (OCL) can be employed.

(Felfernig, 2007) explains how OCL helps represent relations in customizable products and

services using UML and then check the consistency. Similar to UML, SysML does not

inherently possess capabilities to validate the consistency or accuracy of the represented

knowledge.

− KRC1: Configure descriptive and/or structural views for the same model

according to the configuration requirements: NO

UML and SysML have limitations when it comes to configuration of models based on specific

requirements. Using them alone, configuration process cannot be performed directly. The

models created using UML and SysML are static in nature, meaning that while they can

illustrate different variants, or configurations, they cannot be configured based on requirements.

− KRC2: Formalize and capitalize ETO requirements during configuration: YES

There is no paper in the literature about this criterion. However, to our knowledge, it is possible

to formalize ETO requirements using UML and SysML. After creating an instance of the

formalized configuration model, a new attribute, a new value of attribute or a new relation

between the classes can be added manually.

− KRC3: Configure according to several levels of abstraction for the same

knowledge model according to the configuration requirements: NO

While UML and SysML enable experts to formalize knowledge about systems at varying levels

of abstraction, they inherently cannot configuration the model based on varying configuration

requirements. There is no paper in the literature about this criterion.

Chapter 2: Bibiliographic study

36

− KRC4: Interactively configure a system: NO

UML and SysML do not inherently support interactive configuration. When using UML and

SysML, systems can be modeled to show different configurations, but these formalized models

cannot be interactively configured based on user inputs.

In conclusion, UML and SysML appear to be powerful approaches for formalizing knowledge.

Their intrinsic ability to distinguish between descriptive and structural views, creating models

at different levels of abstraction, and structuring knowledge in a taxonomy makes them suitable

for modeling systems. However, challenges arise when it comes to checking consistency of

formalized knowledge, configuring models at different levels of abstraction (either descriptive

or structural) and specifically interactive configurations. In this PhD, both knowledge

formalization and knowledge reuse are considered, therefore UML and SysML are not selected

since they cannot fulfill our requirements related to knowledge reuse.

The following section is dedicated to the constraint satisfaction problem approach.

2.3.4. CSP and system configuration

In this subsection, we first recall the constraint satisfaction problems commonly used in system

configuration (Felfernig et al., 2014). Second, we see how CSP can be used for system

configuration. We then go on to evaluate this approach with respect to our criteria.

2.3.4.1. CSP definition

A Constraint Satisfaction Problem, notated CSP, is an approach to formalize knowledge and

reason on it to find solutions compatible with the problem. The definition of constraint

satisfaction problem was firstly proposed by (Montanari, 1974), in which, a CSP is defined as

a triplet {X, D, C} where:

• X = {x1, x2, …, xk} is a finite set of variables,

• D = {d1, d2, …, dk} is a finite set of domains - one for each variable of X,

• C = {c1, c2, …, cm} is a finite set of constraints on variables. Constraints represent

restrictions on the combination of variables values.

CSP Variables: Variables are objects that can take on a variety of values (Tsang, 1993). The

domain of a variable is a set of all possible values that can be assigned to the variable (Tsang,

1993). The variables can vary in their types, including symbolic or numerical, discrete or

continuous (Vareilles, 2005). :

• Symbolic variables are represented by a list of symbols. Symbolic variables are discrete

variables, since they have a finite domain.

• Numerical variables are represented by a list of integers, a list of reals, intervals of

integer values, or intervals of reals. Numerical variables can be discrete (having a finite

domain or a set of discontinuous intervals), or continuous (having a set of continuous

intervals).

Chapter 2: Bibiliographic study

37

CSP Constraints: Constraints on a set of variables restrict the combination of values that these

variables can take simultaneously (Tsang, 1993), (Ghedira, 2013). In a CSP, compatibility

constraints and activation constraints can be distinct (Vareilles, 2005), (Rossi et al., 2006), as

can global constraints (Tsang, 1993). They are explained respectively as follows.

Compatibility constraints define the possible combinations of values between several variables

(Mittal & Falkenhainer, 1990), (Vareilles, 2005). (Tsang, 1993) also mentioned compatibility

constraints are described by lists of combinations of allowed or forbidden values. Compatibility

constraints can be formalized in the form of tables or mathematical (or numerical) functions

(Vareilles, 2005). As explained in (Vareilles, 2005), (Rossi et al., 2006), (Monge, 2019),

compatibility tables represented in tabular form, the explicit list of authorized values to consider

and numerical functions represented in a mathematical form, the implicit allowed combinations

of variable values.

Activation constraints modify the structure of the solution space by adding or removing

variables or constraints from the current problem (Mittal & Falkenhainer, 1990). As proposed

by (Mittal & Falkenhainer, 1990), there are four types of activation constraints: Require,

Always require, Require not, and Always require not. (Mittal & Falkenhainer, 1990) defined

them as follows. The fundamental activity constraint is "require" which establishes a variable's

activity through the assignment of values to a set of active variables. The "always require"

constraint expands on the require constraint by requiring a variable's activity based on the

activity of other variables, regardless of their current value. The "require not" constraint

specifies an inconsistency between an assignment of values to a set of active variables and the

activity of another variable. Similarly, the "always require not" constraint extends the concept

of the require not constraint by precluding a variable's activity based on the activity of other

variables, regardless of their present value.

The term global constraint appeared in the late 1980s (Beldiceanu et al., 2007). Global

constraints are considered as classes of constraints that are defined using a formula of arbitrary

arity (a formula that involves any number of variables). On the other hand, (Van Harmelen et

al., 2008) pointed out a global constraint is a constraint over a sequence of variables. The use

of global constraints makes it easier to construct a CSP model. (Tsang, 1993) highlighted that

the all-different constraint, which requires that all variables in the constraint must be unique, is

a classic example of a global constraint. (Beldiceanu et al., 2005) presented a catalog of global

constraints. (Simonis, 2007) stated that global constraints help model complex problems as they

provide high-level constraint abstractions that simplify the creation of large-scale models.

CSP Solution: A solution of a CSP is a complete instantiation of all the active variables

satisfying all the constraints (Barták et al., 2010). An instantiation is an assignment of values

to the variables, i.e. each variable as one and only one value. There are two types of

instantiation: partial and complete. In a partial instantiation, only a subset of variables is

instantiated, the solution is under construction.

CSP processing: Resolving a CSP involves various solving techniques and filtering

techniques. Solving techniques are capable of systematically exploring the entire search space

and producing providing all solutions to a problem. The Backtrack algorithm is the most widely

Chapter 2: Bibiliographic study

38

used basic search technique, first introduced by (Golomb & Baumert, 1965). This technique

employs a depth-first strategy, utilizing a backtracking technique that returns to the previous

state if the current partial assignment is found to be inconsistent. In contrast, incomplete solving

techniques do not thoroughly explore the search space and instead rely on an opportunistic

exploration of the set of complete assignments. These techniques only produce a subset of

solutions and require an assignment evaluation and comparison function. Examples include the

Tabu search technique by (Glover & Laguna, 1993), and Simulated annealing by (Kirkpatrick

et al., 1983). These incomplete techniques are often used to tackle larger problems.

Filtering techniques utilize constraints actively to make inferences about the problem (Van

Beek & Dechter, 1997). The main goal of filtering techniques is to detect locally or completely

inconsistent partial assignments (Van Beek & Dechter, 1997), (Debruyne & Bessiere, 1997).

(Rossi et al., 2006) stated that one of the most widely used techniques is the arc consistency,

first introduced by (Montanari, 1974) for discrete CSP. (Debruyne & Bessiere, 1997) extended

arc consistency to numerical CSP by the mean of Bound-consistency. This method checks the

consistency of each value in the domain of a variable with each constraint separately (Bessière,

1994), (Vareilles, 2005) and (Rossi et al., 2006). (Bessiere, 1991) mentioned the arc consistency

filters locally, but does not guarantee a problem has a solution.

There are several degrees of filtering, each corresponding to the number of variables involved

in the local consistency check. The higher the degree, the more effective the detection of

inconsistent combinations, but the longer the detection process takes (Vareilles, 2005). Filtering

methods include node consistency (Mackworth, 1977), arc consistency (Mackworth, 1977),

path consistency (Mackworth, 1977), and k-consistency (Freuder, 1978). These filtering

techniques allow reflecting choices on the current problem by eliminating inconsistent values.

The search for solutions becomes interactive, relying on a sequence of coherent choices that

lead to one or multiple solutions.

When comparing solving and filtering techniques, filtering techniques improve solving

techniques. For example, forward checking, developed by (Haralick & Elliott, 1980), combines

arc consistency filtering with a backtracking algorithm.

2.3.4.2. CSP for system configuration

The CSP approach has been used to formalize knowledge and reason on it in configuration

problems (Felfernig et al., 2014). The utilization of CSPs in system configuration problems has

been so extensive that it has earned a dedicated chapter in the Handbook of Constraint

Programming (Junker, 2006).

(Tsang, 1993) stated that configuration problems can be formulated as constraint problems. The

application of CSP in system configuration involved defining a system as a fixed and finite set

of component variables. Each of these component variables held property variables and port

variables to represent connections with other components. The domains of variables were

limited to a finite and discrete set. Restrictions on which component combinations were valid

were represented using compatibility constraints. The solution of CSP involved assigning a

value to each variable and determining the final configuration.

Chapter 2: Bibiliographic study

39

(Xie et al., 2005) employed CSP to model and solve an engineering product configuration

problem. The goal was to define a methodology for a generic configurator that can handle

complex constraints, in an engineering product configuration problem.

(Aldanondo & Vareilles, 2008) proposed a constraint-based approach in the domain of product

configuration and showed how it can be extended to upstream Requirements Configuration and

downstream Process Configuration. The CSP modeling framework was used to identify

configuration elements and formalize these elements. In their work they formalized descriptive

and then physical view of the product after that they associated these two views.

(Tidstam et al., 2016) proposed the modeling and solving of the CSP as an aid during the

inspection of configuration rules. Their objective was to develop CSP variations that could

automate manual tasks involved in the development of vehicle configuration rules.

(Männistö et al., 2001) defined a novel mechanism based on generic models of product

individuals organized into a specialization hierarchy to support multiple abstraction levels. For

creating such hierarchies, they defined a set of transformation operations on models.

2.3.4.3. Advantages and drawbacks of using CSP

This section evaluates the constraint satisfaction problems using our eight criteria. For each of

them, three modalities are possible: Yes, No and Difficult. We argue our answers in the light

of the literature review.

In knowledge formalization, the criteria for CSP are assessed as follow:

− KFC1: Clearly distinguish between descriptive and structural views: YES

Configuration problems naturally take into account different views of the family of systems to

be configured. Different views, functional, physical or assembly, are considered. In

(Aldanondo & Vareilles, 2008) and (L. L. Zhang et al., 2013), a descriptive and a structural

view of a family of systems are clearly defined in a single generic configuration model, defined

as a constraint satisfaction problem. The variables and constraints in the model are thus

artificially grouped according to whether they belong to one view or the other. The two views

are linked by a set of constraints that define the solution space.

− KFC2: Better structure knowledge for later reuse in modeling: YES

We have only found work by (Shen et al., 2012) and (Guillon, Ayachi, et al., 2021) that uses

ontologies and taxonomies in system configuration. In their work, (Shen et al., 2012) proposes

a PES (Product Extension Service) configuration model in the case of servicisation. The

configuration is supported by a model called PESCO (Product Extension Services

Configuration Ontologies), which consists of three sub-ontologies: (1) a service sub-ontology

(SO), (2) a product sub-ontology (PO), and (3) a customer sub-ontology (CO). In (Guillon,

Ayachi, et al., 2021)’s work, the business knowledge required to develop proposals is structured

using a taxonomy in which each concept is associated with a CSP: variables are associated with

each concept in the taxonomy, and business rules are formalized in the form of constraints. All

elements of the model are thus formalized in the form of a tree structure of concepts associated

to CSPs, which are then reused as appropriate to create generic models.

Chapter 2: Bibiliographic study

40

− KFC3: Explicitly formalize generic models at different levels of abstraction:

DIFFICULT

We have only found the work of (Männistö et al., 2001), which refers to a level of abstraction

in system configuration. In their work, (Männistö et al., 2001) proposed a complete generic

model, including all levels of abstraction of all items of the model. The generic model therefore

corresponds to the complete tree of abstraction and the authors conclude that the generic model

can become very difficult to understand and manage.

− KFC4: Unquestionably validate the consistency of the knowledge: YES

Filtering and resolution methods can be used to validate the consistency of knowledge models.

This makes it possible to (1) verify the completeness of the solution set, by a complete

resolution of the CSP, which can be costly in terms of time and space, and (2) partially verify

the solution space by more or less strong filtering.

In knowledge reuse, the criteria for CSP are assessed as follow:

− KRC1: Configure descriptive and/or structural views for the same model

according to the configuration requirements: DIFFICULT

In (Aldanondo & Vareilles, 2008) and (L. L. Zhang et al., 2013), the generic model with its

different views is used to configure both the descriptive and the functional view of a family of

systems. As the two views are intrinsically coupled, it is not possible to obtain a solution that

only includes the descriptive part of the system (in the CSP sense). In fact, the assignment is

only partial if only the descriptive view has been configured. The rest of the variables have

therefore to be assigned to any consistent values.

− KRC2: Formalize and capitalize ETO requirements during configuration: YES

(Bonev & Hvam, 2013) and (Sylla, Guillon, Vareilles, et al., 2018) have studied how ETO

requirements can be tackle during configuration activity. They have studied the impacts of ETO

requirements on configuration activity and have proposed various ETO configuration

requirements.

− KRC3: Configure according to several levels of abstraction for the same

knowledge model according to the configuration requirements: DIFFICULT

In (Männistö et al., 2001), it is proposed to configure systems thanks to the complete generic

model including all abstraction levels of all elements of the model. For each subsystem and

component, the user has to choose between different variants and options before configuring it.

Some branches of the tree are therefore cut during the configuration activity, and this process

leads to the minimal BOM that is consistent with the model and the user's requirements.

− KRC4: Interactively configure a system: YES

Interactive configuration can be achieved using filtering techniques. Depending on the filtering

algorithms used (arc consistency, path consistency, etc.), inconsistent values will be more or

Chapter 2: Bibiliographic study

41

less well removed from the space of possibilities. A compromise must therefore be found

between filtering quality and response time.

In conclusion, CSPs seem to be a good candidate to partially answer our research questions,

both in terms of knowledge formalization and reuse. Undoubtedly, CSPs can be used to

formalize and reason about any kind of configuration knowledge in order to interactively

configure systems. Unfortunately, CSPs suffer from their lack of structure and the difficulty of

simply reusing parts of generic models.

The following section is devoted to the Case-Based Reasoning (CBR) approach.

2.3.5. CBR and system configuration

In this section, we will start by defining the CBR. Then, we'll delve into how this CBR is applied

in the context of systems configuration. Lastly, we will assess this approach using the criteria

we have defined.

2.3.5.1. CBR definition

The Case-Based Reasoning (CBR) approach (Kolodner, 1992), (Aamodt & Plaza, 1994) is an

approach that is based on the idea that similar problems have similar solutions. This approach

allows solving a new problem by finding similar problems solved in the past and reusing the

knowledge and information of those problems. In other words, this approach solves new

problems by finding similar past cases that have been solved previously and adapting their

solutions to the new situation.

The main elements of CBR approaches are cases, and similarity functions. A case or an

experience is described as a problem situation (Aamodt & Plaza, 1994). Each case is described

by a set of attributes whose definition domain has been previously fixed. The set of attributes

of a case allows to describe the problem encountered and the proposed solution. When a case

is stored in a database, each of its attributes must be filled in and assigned a unique value.

Moreover, (Xu et al., 2009) mentioned that typically, the case consists of two parts: 1) the

problem and the description of the attributes of the case, and 2) the solution to the problem. A

previous case or source case refers to a past problem situation that has been studied in a way

that its related knowledge and information can be reused to solve a new similar problem in the

future (Aamodt & Plaza, 1994). A case base is a database of previously solved problems and

their solutions (Aamodt & Plaza, 1994).

A distance measure, called similarity, is used to classify the different cases in the case base

(source cases) in relation to their similarity to the submitted problem (target case). There are

two types of similarity measures: 1) local similarity measure (Bergmann, 2002) is the similarity

between the values of the domains of the attributes taken two by two, 2) global similarity

measure is the similarity, related to cases, aggregates the local similarities to determine the

global similarity between two cases.

A CBR system is made up of five phases: Define, Retrieve, Reuse, Revise, and Retain

(Kolodner, 1992), (Aamodt & Plaza, 1994). The Define phase involves describing a new

problem to compare it with past problems stored in the case base. The Retrieve phase involves

Chapter 2: Bibiliographic study

42

searching for and selecting the most similar cases in the case base. In the Reuse phase,

knowledge related to the retrieved cases is adapted by humans to propose an initial solution. In

the Revise phase, the initial solution is tested and compared to the actual solution, and if

necessary, revised to make it more suitable. Finally, in the Retain phase, the new problem and

its related information are stored in the case base.

There are two types of uses for case-based reasoning: (1) interpretation and (2) problem-solving

(Kolodner, 1992), (Marling et al., 2002). Interpretation involves using past cases to evaluate

new cases. Problem-solving involves adapting a solution to a past problem, to meet the

requirements of the new situation. (Shaharin et al., 2019) mentioned that the main advantage

of the CBR, is that it allows to solve problems based on the experiences gained from previous

cases that led to providing effective solutions. CBR can be used to support the reuse of

knowledge by retrieving and adapting solutions from the case base to new product

configurations. Cases help a reasoner to focus reasoning on important parts of a problem by

pointing out what features of a problem are the important ones (Kolodner, 1992).

2.3.5.2. CBR for system configuration

(Tseng et al., 2005), applied the CBR approach to perform actual product configuration, aiming

to reuse previous successful reasoning cases. (Lee & Lee, 2005) also used the CBR for product

configuration. (Yang et al., 2008) employed the CBR approach to solve product configuration

problems, but noted that it is useful when knowledge is incomplete and does not support the

reuse of product structure knowledge and constraints. (Xu et al., 2009) introduced an extended

object model for case-based reasoning in product configuration design. This model adopts

various methods of knowledge expression such as constraints, rules, and objects. It supports all

processes of case-based reasoning in product configuration design such as case representation,

indexing, retrieving, and case revision. A metering pump product configuration design system

was developed based on this model to support customized products.

2.3.5.3. Advantages and drawbacks of using CBR

In this section, we assess the CBR using our eight criteria, with three possible modalities for

each: Yes, No, and Difficult. We substantiate our responses based on the insights from the

literature review.

Regarding knowledge formalization, the assessment criteria for CBR are evaluated as follows:

− KFC1: Clearly distinguish between descriptive and structural views: YES

In (Sylla et al., 2021), they propose object-oriented case representation model which allows to

evaluate systems performance. In their object-oriented representation, each case is defined as a

class which is described by a set of attribute-value pairs. Classes are hierarchically organized

and may consist of one or more sub classes.

− KFC2: Better structure knowledge for later reuse in modeling: YES

(Stahl & Bergmann, 2000) proposed the idea of recursive CBR and applied it for product

configuration. The approach structures products hierarchically into sub-components and

recursively applies CBR to find best-matching alternative sub-components, thereby avoiding

Chapter 2: Bibiliographic study

43

huge portions of the knowledge acquisition effort. The presented approach assumes a limited

number of dependencies between the different sub-problems in the application domain to be

efficient. This approach is particularly suited to the customization of structured products in

Electronic Commerce applications.

− KFC3: Explicitly formalize generic models at different levels of abstraction:

YES

(Bergmann & Wilke, 1996) develop a general framework for representing cases at different

levels of abstraction, which is useful for analyzing existing and designing new approaches in

case-based reasoning. The purpose of an abstraction hierarchy in case-based reasoning is to

organize cases into levels of abstraction, with each level representing a different degree of

detail.

− KFC4: Unquestionably validate the consistency of the knowledge: NO

In the existing literature, we have not identified any studies that specifically address this

particular criterion. To the best of our knowledge, there is no intrinsic mechanism in CBR to

validate the consistency of the knowledge.

− KRC1: Configure descriptive and/or structural views for the same model

according to the configuration requirements: YES

(Sylla et al., 2021) proposes a method for retrieving the most similar cases from the case base

using CBR approach. At the first step, the structure of the case base is exploited to directly

retrieve relevant previous cases to the target case. The case base structure contains general

knowledge about which systems are of the same type and which systems are not of the same

type. Once a new system must be evaluated, its properties are extracted to identify the relevant

class in the case base class hierarchy. Only cases that are instances of the class of the target case

and those that are instances of its parent classes are considered. Then, a similarity measure is

used to rank the retrieved cases based on their similarity to the target case. The most similar

cases are then selected and used to propose an initial solution.

− KRC2: Formalize and capitalize ETO requirements during configuration: YES

CBR can be employed to formalize and capitalize on ETO requirements during configuration.

By using past cases or solutions, CBR allows for tailoring specific configurations to meet ETO

requirements.

(Sylla et al., 2021) The paper proposes a CBR approach for the evaluation of complex systems

in ETO industrial situations. The proposed CBR system can be used to evaluate both a complete

system and a part of the system. The authors propose a generic approach that allows for the

retrieval of the most similar cases in both situations.

− KRC3: Configure according to several levels of abstraction for the same

knowledge model according to the configuration requirements: DIFFICULT

In their proposed approach (Bergmann & Wilke, 1996), represented cases at multiple levels of

detail can be reused. It means their approach enables the retrieval of appropriate cases at the

Chapter 2: Bibiliographic study

44

same levels of detail when searching for similar cases to a new one. However, to our knowledge,

if the cases are not formalized and stored in a structured way, reusing them to configure in this

step will be difficult.

− KRC4: Interactively configure a system: NO

In CBR, the adaptation of case is done based on the user requirements. To the best of our

knowledge there is no paper to discuss specifically interactive configuration using CBR, in

which users provide input progressively converging to a solution.

In conclusion, CBR enables us to formalize knowledge at different levels of abstraction, in a

structured way and at different levels of abstraction. However, it has difficulties when it comes

to checking consistency and interactive configuration. Therefore, in this thesis, we will not

consider CBR.

The following section is devoted to the hybrid approach.

2.3.6. Hybrid approach and system configuration

In this section, we start by the definition of hybrid approach. Next, we explore how this hybrid

approach can be applied to system configuration. Finally, we assess this approach based on our

criteria.

2.3.6.1. Hybrid approach definition

(Stumptner, 1997) defined hybrid approach as an approach that employs several representations

and reasoning mechanisms.

2.3.6.2. Hybrid approach for system configuration

In the literature, a few papers worked on the hybrid approaches, such as the use of CSP and

CBR approaches by (Vareilles et al., 2012), CBR and ontology by (Romero Bejarano et al.,

2014).

(Vareilles et al., 2012) proposed an approach to aiding design decisions that combines the

strengths of CSP and CBR. CSP is an approach that uses a constraint model and a constraint

filtering mechanism to solve design problems, while CBR enables to solve problems by

retrieving similar past cases and adapting them to the current problem. The authors propose to

use both approaches together to take advantage of their strengths. They suggest that the

knowledge base of CSP can be used to represent explicit knowledge in the form of constraints,

while the case base of CBR can be used to represent contextual knowledge in the form of past

cases. (Romero Bejarano et al., 2014) addressed the fulfillment of requirements for CBR

processes in system design. The proposed method defines an integrated CBR process in line

with system engineering principles and establishes an ontology to capture knowledge about the

design. Based on the ontology, models are provided for requirements and solutions

representation, followed by a recursive CBR process suitable for system design. (Guillon,

Villeneuve, et al., 2021) proposed to build and deployed a knowledge-based system (KBS)

combining the following approaches: ontology, CSP, and CBR in order to capture, formalize,

Chapter 2: Bibiliographic study

45

and reuse knowledge relevant to bids. A case study from a company building electrical parts of

harbor lifting devices was illustrated.

2.3.6.3. Advantages and drawbacks of using hybrid approaches

In this section, we assess the hybrid approaches against our eight criteria. For each criterion,

there are three potential modalities: Yes, No, and Difficult. Our justifications for these

assessments are based on our review of the existing literature.

In knowledge formalization, the criteria for hybrid approaches are assessed as follow:

− KFC1: Clearly distinguish between descriptive and structural views: YES

In (Romero Bejarano et al., 2014), they defined an ontology to represent knowledge about

system design, including characteristics, domains, and constraints. Moreover, to design a

system, they break it into subsystem. In their study (Guillon, Villeneuve, et al., 2021),

developed a knowledge-based system (KBS) with the aim of assisting companies in the bid

development process. They identified several concepts (associating to components family) and

formalized a BOM (at three levels of decomposition). They represented the knowledge using

ontology. Moreover, they defined Business rules by means of constraints (using CSP).

− KFC2: Better structure knowledge for later reuse in modeling: YES

In (Romero Bejarano et al., 2014), using ontology, a hierarchical structure of concepts is defined

representing a taxonomy. Moreover, the paper proposes an integrated approach that combines

Recursive CBR (RCBR) with system engineering principles to improve the system design

process. The paper explains that the RCBR approach involves decomposing the initial system

into a hierarchy of subsystems, and retrieving a solution for each subsystem. If there are

unsolved subproblems, the system is recursively carried out to find sub solutions. In (Guillon,

Villeneuve, et al., 2021), concepts are structured in a taxonomy a taxonomy is created to

structure concepts and group concepts together.

− KFC3: Explicitly formalize generic models at different levels of abstraction:

YES

In (Romero Bejarano et al., 2014), they create an ontology. At the core of this ontology is the

most general concept called "System" which doesn't have any parent concepts. The relationship

between concepts in the ontology is established through edges that signify generalization and

specialization. This means that any concept inherits the characteristics of its parent concepts.

− KFC4: Unquestionably validate the consistency of the knowledge: YES

In their study (Vareilles et al., 2012), the authors integrated CBR with constraint filtering, which

narrows down variable domains based on constraints during the design process. By employing

constraint filtering, inputs to the CBR system are of higher quality and more efficient, as

constraints reduce possible input variations.

Chapter 2: Bibiliographic study

46

− KRC1: Configure descriptive and/or structural views for the same model

according to the configuration requirements: YES

In the approach proposed by (Romero Bejarano et al., 2014), there are two scenarios to consider

based on the designer's choices: 1) When the designer decides to decompose the system solution

into multiple subsystems, the RCBR process is applied to develop each subsystem solution at a

lower level. This entails the designer specifying dedicated subsystem requirements for each of

them. Once these subsystem solutions are developed, they are integrated to form the final

system solution, with values assigned to the variables. 2) Alternatively, if the solution is not

comprised of subsystems, the development process concludes after the adaptation task.

− KRC2: Formalize and capitalize ETO requirements during configuration: YES

In their study (Romero Bejarano et al., 2014), three different scenarios are defined for the

process of determining a solution:

Scenario 1: This scenario comes into play when there are no suitable existing solutions, and a

solution needs to be created from scratch.

Scenario 2: In cases where a suitable solution already exists, it is selected for reuse. Then, a

check is performed. If the chosen solution meets all the clear requirement constraints, there is

no need for further adjustments, and the solution is ready.

Scenario 3: If the selected solution does not meet the requirement constraints, it is copied and

adapted to align with the new requirements.

This adaptation process can range from making minor adjustments to completely restructuring

the solution, depending on the complexity of the required changes.

− KRC3: Configure according to several levels of abstraction for the same

knowledge model according to the configuration requirements: YES

In the study (Romero Bejarano et al., 2014), they focused on addressing the requirement of

integrating the Case-Based Reasoning (CBR) process with modular and hierarchical

engineering design processes. Their objective was to promote system reuse in a structured

manner, adhering to established system engineering standards, where systems could be

systematically reused across various levels.

− KRC4: Interactively configure a system: YES

The paper (Vareilles et al., 2012) propose an innovative approach to combine ontology and

CBR, emphasizing their collaborative interaction rather than a sequential process. These

approaches exchange and share knowledge to reach a solution. In the proposed approach,

ontology and CBR are employed in an interactive way, where designers gradually input their

requirements, progressively reducing the solution space until complete the design.

In conclusion, existing hybrid approaches in the literature can fulfill some of our criteria. For

instance, the association of CSP and CBR enables to check the consistency of model and

interactively configure. In contrast, the association of ontology and CBR enable to formalize

Chapter 2: Bibiliographic study

47

knowledge distinguishing descriptive and structural view, better structure knowledge and

formalize at different levels of abstraction.

The following section is devoted to the synthesis of this section.

2.3.7. Synthesis

In this section, we have started by identifying the main criteria for formalizing and reusing

knowledge for system configuration. Therefore, we have identified 4 criteria for knowledge

formalization including KFC1: Clearly distinguish between descriptive and structural views,

KFC2: Better structure knowledge for later reuse in modeling, KFC3: Explicitly formalize

generic models at different levels of abstraction and KFC4: Unquestionably validate the

consistency of the knowledge. Moreover, we have identified 4 criteria for knowledge reuse

including KRC1: Configure descriptive and/or structural views for the same model according

to the configuration requirements, KRC2: Formalize and capitalize ETO requirements during

configuration, KRC3: Configure according to several levels of abstraction for the same

knowledge model according to the configuration requirements and KRC4: Interactively

configure a system.

Next, we have explained various approaches in the domain of system configuration, such as

ontology, UML/SysML, CSP, CBR, and hybrid approaches. Following a comprehensive

evaluation of each approach based on our eight criteria, we have drawn conclusions regarding

their respective advantages and drawbacks, making a clear distinction between the phases of

knowledge formalization and knowledge reuse. The result of this comparison is represented in

Table 2. For each criterion, the response options are as follows: ‘Y’ represent Yes, ‘N’ shows

No and ‘D’ means Difficult. As shown, using the ontology, it is possible to fulfill KFC1, KFC2,

KFC3, KRC1, KRC2, KRC3 however it is difficult to fulfill KFC4 and KRC4. Using the UML

and SysML, it is possible to fulfill KFC1, KFC2, KFC3, KRC2, however it is difficult to fulfill

KFC4. It is not possible to fulfill KRC1, KRC3 and KRC4. Using CSP, it is possible to fulfill

KFC1, KFC2, KFC4, KRC2, and KRC4 however it is difficult to fulfill KFC3, KRC1, KRC3.

Using the CBR, it is possible to fulfill KFC1, KFC2, KFC3, KRC1, and KRC2 however it is

difficult to fulfill KRC3. It is not possible to fulfill KFC4, and KRC4. Using the association of

CSP and CBR, it is possible to fulfill KFC4, and KRC4. Using the association of Ontology and

CBR, it is not possible to fulfill KFC4, and KRC4.

In this thesis, to fulfill all of our criteria for both knowledge formalization and knowledge reuse,

the association of ontologies and CSPs approaches are selected. Ontology enable us to create

generic models at higher level of abstraction or at lower level of abstraction. CSPs enable us to

formalize different relations linking artifacts and their characteristics. Moreover, it allows to

check the consistency of formalized knowledge and perform interactive configuration.

Chapter 2: Bibiliographic study

48

Table 2. Different approaches for system configuration

The following section is dedicated to the synthesis of the chapter.

2.4. Synthesis

This thesis is related to the configuration of technical and physical systems. Therefore, in

section 2.1, we established a literature review on system configuration and configuration

activity and we defined generic models. We defined interactive configuration and different

types of customer requirements. We also explained which types of requirements are fulfilled in

CTO and ETO situations.

In section 2.2, first, we briefly presented knowledge management process. Then, we mainly

focused on knowledge formalization and the topics which are important to our first research

R
eq

u
ir

em
en

ts

O
n

to
lo

g
y

U
M

L
/

S
y
sM

L

C
S

P

C
B

R

C
S

P
 +

 C
B

R

O
n

to
lo

d
y
 +

 C
B

R

O
n

to
lo

d
y
 +

 C
S

P
 +

 C
B

R

KFC1: Clearly distinguish between descriptive and

structural views
Y Y Y Y N Y Y

KFC2: Better structure knowledge for later reuse in

modeling
Y Y Y Y N Y Y

KFC3: Explicitly formalize generic models at different

levels of abstraction
Y Y D Y N Y N

KFC4: Unquestionably validate the consistency of the

knowledge
D D Y N Y N N

KRC1: Configure descriptive and/or structural views for

the same model according to the configuration

requirements

Y N D Y N Y N

KRC2: Formalize and capitalize ETO requirements

during configuration
Y Y Y Y N Y N

KRC3: Configure according to several levels of

abstraction for the same knowledge model according to

the configuration requirements:

Y N D D N Y N

KRC4: Interactively configure a system D N Y N Y N N

Chapter 2: Bibiliographic study

49

question. Therefore, we provided a literature review on descriptive and structural views. We

explained why we need to distinguish these two views and each one is composed of which

elements. Additionally, we delved into the concept of commonality of models, abstraction,

generalization and specialization principles as well as inheritance, which allows us to create

generic models at different levels of abstraction.

In section 2.3, we have started by identifying the main criteria for formalizing and reusing

knowledge for system configuration. Then, we have presented and compared different

approaches including ontology, UML/SysML, CSP, CBR, and hybrid approaches that can be

used to formalize and reuse knowledge for system configuration. After assessing each approach

against our eight criteria we have concluded with their advantages and disadvantages, while

separating between knowledge formalization and knowledge reuse. Ultimately, we have chosen

the association of ontologies and CSPs as the most suitable option, since it fulfils our criteria.

Based on the literature review, we found out there is lack of papers on the formalization of

generic models at various abstraction level while separating two different views of descriptive

and structural. To address this scientific gap, we must answer our first research question in

chapter 3 "Is it possible to define an ontology of generic models to better manage knowledge,

allowing a clear distinction between descriptive and structural views for system

configuration?". Therefore, in chapter 3, we will define descriptive view and structural view for

a family of artifacts, then create an ontology of generic models after that explain the update of

generic models. We will employ the associations of ontologies, CSPs, commonality and

inheritance principles.

On the other hand, regarding the literature review, we identified lack of study on the reusing

formalized generic models either descriptive or structural, and at different abstraction levels to

fulfill ETO requirements during configuration. To address this scientific gap, we must answer

our second research question in chapter 4 "How can ETO requirements be processed during

configuration activity?". Thus, in chapter 4, we will define instances of descriptive view and

structural view for a family of artifacts, then define three generic process for CTO knowledge

reuse, ETO knowledge reuse and CTO-ETO knowledge reuse. We will adapt CTO

configuration activity towards ETO configuration activity to meet ETO requirements.

Part of our literature review has been published in:

• Maryam Mohammad Amini, Michel Aldanondo, Élise Vareilles, Thierry Coudert.

Twenty Years of Configuration Knowledge Modeling Research. Main Works, What To

Do Next?. IEEM 2021 - International Conference on Industrial Engineering and

Engineering Management, Dec 2021, Singapore. pp.1328-1332.

Chapter 2: Bibiliographic study

50

51

3. Knowledge formalization for system configuration

3.1. GA, GADM, and GASM definition .. 52

3.1.1. Generic Artifact definition and example ... 52

3.1.2. Generic Artifact Descriptive Model definition ... 53

3.1.3. Generic Artifact Structural Model definition .. 55

3.1.4. Synthesis ... 58

3.2. Ontology of GA, GADM, and GASM .. 59

3.2.1. Taxonomy of Generic Artifacts .. 59

3.2.2. Taxonomy of Generic Artifact Descriptive Models ... 61

3.2.3. Taxonomy of Generic Artifact Structural Models .. 69

3.2.4. Synthesis ... 78

3.3. Update of GA(i), GADM(i), and GASM(i)
j ... 79

3.3.1. Update of Generic Artifacts .. 79

3.3.2. Update of Generic Artifact Descriptive Models ... 80

3.3.3. Update of Generic Artifact Structural Models .. 83

3.3.4. Synthesis ... 86

3.4. Single-model approach or multi-model approach? ... 86

3.5. Synthesis .. 88

This chapter is devoted to our first research question: "Is it possible to define an ontology of

generic models to better manage knowledge, allowing a clear distinction between descriptive

and structural views for system configuration?" In chapter 2, we have highlighted the absence

of work on knowledge formalization for system configuration to create generic models at

various levels of abstraction, separating descriptive and structural views.

In response to this gap, we propose to combine commonality, ontologies, CSP approaches, and

inheritance principles to define the concept of Generic Artifact, notated GA(i) and its two views:

the Generic Artifact Descriptive Model, notated GADM(i), and the Generic Artifact Structural

Model, notated GASM(i)
j. GA(i), GADM(i), and GASM(i)

j are the core of our first contribution and

lead to the proposition of three taxonomies to better manage knowledge in system

configuration. In this chapter, we will explore how commonality, ontologies, CSP approaches,

and inheritance principles can help to define GA(i), GADM(i), and GASM(i)
j. In section 3.1, we

start with a formal definition of each of them, then in section 3.2 we discuss how they can be

generalized, specialized and structured within an ontology. In section 3.3, we explain how they

can be updated. After that, in section 3.4, we provide a discussion about the benefits of our

proposal. Finally, in section 3.5 we synthesize the chapter.

We adopt the knowledge management process explained in chapter 2, for system configuration

knowledge formalization. As illustrated in Figure 9, the process involves extracting knowledge

(step 1), formalizing it into generic models representing both descriptive and structural views

Chapter 3: Knowledge formalization for system configuration

52

at different levels of abstraction (step 2), validating the generic models by checking their

consistency (step 3), and finally storing the ontologies of consistent generic models in a Generic

Model Base (GMB) (step 4). The process is iterative, allowing experts to go back and forth

between these four steps as needed (represented by arrows). In the following section, the

formalization of knowledge for system configuration and checking its consistency is

investigated. As explained in section 2.2, the first step about knowledge extraction is not

considered in the thesis.

Figure 9. Knowledge formalization for system configuration

3.1. GA, GADM, and GASM definition

This section is devoted to the definition of GA, GADM, and GASM. First, in section 3.1.1, the

definition of Generic Artifact, notated GA, is proposed, followed by the definition of its

descriptive view, formalized by Generic Artifact Descriptive Model, notated as GADM in

section 3.1.2. Then in section 3.1.3, the definition of its structural view which is formalized as

Generic Artifact Structural Model notated as GASM is provided. Finally, the synthesis of this

section is given in section 3.1.4.

3.1.1. Generic Artifact definition and example

As mentioned in chapter 2, we consider technical and tangible systems, subsystems, or

components as Artifacts. Systems can be composed of a set of subsystems and components.

Subsystems can be composed of a set of subsystems or components; a component cannot be

composed. Subsystems and components correspond to tangible parts of systems to be

configured (Guillon, Ayachi, et al., 2021).

Definition 3: Generic Artifact or GA

A Generic Artifact or a GA is a semantically unambiguous conceptual view of a family of

artifacts. A GA is characterized by a prototypical name and a description of the family of

artifacts it represents.

Following definition 3, a GA is defined by a name and a description. As shown in Figure 10, a

generic artifact named A is denoted A.GA. For example, as represented in Figure 11, a GA

representing the family of bikes is defined as follows:

− Bike.GA: the name Bike evokes a clear mental image of a bike.

Chapter 3: Knowledge formalization for system configuration

53

− Description: A bike is a vehicle with two wheels that you ride by sitting on it and pushing

two pedals with your feet (Collins, 1982).

A GA does not explicitly represent any knowledge about features of a relevant family of

artifacts nor its structure. However, it provides a clear understanding of the family of artifacts

it represents. Once the GA has been created, it is stored in a taxonomy of GA.

Figure 10. A.GA

Figure 11. Bike.GA example

The next section is dedicated to the definition of the descriptive view of a GA.

3.1.2. Generic Artifact Descriptive Model definition

As explained in chapter 2 and in response to KFC1, a GA needs to be described by its key

features or key attributes, and KPIs, without showing any information about its internal

functioning. It is therefore considered as a black box where a set of configured attributes lead

to a particular assessed solution. We, therefore, introduce this descriptive view as a GADM and

define it as follows.

Definition 4: Generic Artifact Descriptive Model or GADM

The descriptive view of a GA, is named Generic Artifact Descriptive Model and notated

GADM. The GADM consists of the key attributes of the family of artifacts with their

domains, KPIs with their domains, and allowed or forbidden relations between attributes

and/or KPIs values to describe the possible solutions of the artifact family without

considering its structure. A GADM is associated to one and only one GA, and vice versa.

Following the definition, a GADM describes its associated GA thanks to:

− Name: we suggest that the GADM be given the same name as the GA to better establish

the link between GA and GADM.

− Description: it is a statement that describes how the GADM currently looks. The

description of a GADM can be similar to the description of its GA. It can contain an

explanation of the functions or roles of the GA.

− Attributes with their domains: list of key descriptive attributes and their valid domain that

describe the current GA,

− KPIs with their domains: list of key performance indicators and their valid domains that

are needed to assess the current GA,

− Relations between attributes and/or KPIs values: list of relations between attributes

and/or KPIs values that describe the solution space of the current GA. These relations allow

Chapter 3: Knowledge formalization for system configuration

54

or forbid certain combinations of attributes and/or KPIs values, thus they define the possible

characteristics of the GA with the associated performances.

To formalize and check the knowledge consistency of a GADM, we propose to map it within a

CSP denoted GADM(CSP):

− Attributes and domains are mapped to variables and domains of the CSP,

− KPIs and domains are also mapped to variables and their corresponding domains,

− Relations between attributes and/or KPIs of GADM are represented in terms of

compatibility tables and numerical functions.

This formalization of GADM as a CSP allows us to use filtering techniques to ensure the local

consistency of the GADM knowledge, as expressed in KFC4.

To create a GADM, first of all, the corresponding GA is required. Then, the same name as GA

is given, and then description, attributes with their domains, KPIs with their domains, and

relations between attributes and/or KPIs values must be defined. Once the GADM has been

described, it is translated into a CSP. In this way, the consistency of the GDAM knowledge is

checked. This process is iterative, meaning that the experts can modify the GADM knowledge

at any time (adding attributes, modifying definition domains, relationships, etc.), then re-

translate it into the CSP to check its accuracy. The consistency of the GADM can therefore be

checked at each new iteration to validate the formalized knowledge. Once the GADM has been

created and validated, it is stored in a taxonomy of GADM.

As illustrated in Figure 12, a GADM is the descriptive view of a GA, which is mapped into a

CSP (notated GADM(CSP)). For a GA, one and only one GADM can be defined.

Figure 12. GADM and its translation into a CSP

For instance, a GADM of a bike family is represented in Figure 13 along with its CSP. In

Bike.GADM, three attributes of Color, User and RingBell are defined. In Bike.GADM, two

relations are defined. One relation represents that different colors are suitable for certain users

and also cost and weight depends on them. The other relation represents that the quantity of

ring bells depends on the user.

Three attributes and two KPIs in Bike.GADM corresponds to five variables in the CSP of

Bike.GADM. Moreover, the relations in Bike.GADM are translated into compatibility tables

linking the compatible values of variables. For example, the first relation in Bike.GADM is

translated into a compatibility table that links the compatible values of four variables of User,

Color, Weight, and Cost. The second relation is translated into a table of compatibility linking

the compatible values of two variables of User and RingBellQty, containing two tuples.

Chapter 3: Knowledge formalization for system configuration

55

Constraint filtering is then applied and the domains of variables are restricted. For instance, the

initial domain of Weight is {[0, 35]} but after filtering the constraints, it becomes {[2, 35]}.

Figure 13. An example of a Bike.GADM and its translation into a CSP

The next section is devoted to the definition of the structural view of a GA.

3.1.3. Generic Artifact Structural Model definition

As explained in chapter 2 and in response to KFC1, a GA can also be seen by its internal

structure and its internal functioning explanations. In the particular case of system

configuration, it corresponds to the Bill of Material (BOM) of an artifact. We, therefore,

introduce this white box of a GA as a complementary view of a GADM, named Generic Artifact

Structural Model (GASM). We define it as follows.

Definition 5: Generic Artifact Structural Model or GASMj

The structural view of a GA, is named Generic Artifact Structural Model and notated GASM.

A GASM is always associated with a GA and describes its structure as a single-level BOM

by a quantified list of its existing GAs and their relations (including KPIs assessment). A GA

can be associated to several GASM presenting different versions of the BOM. We therefore

identify each GASM in order to differentiate them in the knowledge model, by an index j.

The notation of GASM is then GASMj.

The GASM definition process is iterative, recursive and bottom-up. The process is bottom-up

because the creation of a GASM requires the prior creation of a GA and its GADM. If a GA

constituting a GASM also has a GASM, the latter is indirectly associated with the GASM being

defined. A GA may have several associated GASMs with different details or versions on the

single level nomenclature, noted as GASMj.

Following the definition, a GASMj consists of:

− Name: The name of the GASMj must clearly indicate its content. As several GASMj may be

associated with the same GA, this is important for better structuring of knowledge to

differentiate them. We suggest naming a GASMj by concatenating the name of its associated

GA and additional information describing its structure.

Chapter 3: Knowledge formalization for system configuration

56

− Description: it is a statement describing how the GASMj currently looks, or what the current

GASMj consists of.

− GASMj composition (quantity, GA): list of pairs of quantity and GAs from which the

GASMj is composed at the first level of composition.

− KPIs aggregation methods: list of methods to evaluate the KPIs of the current

corresponding GASM according to the GADM associated to the GA and their quantities.

− Relations between GAs or between attributes and/or KPIs of GAs: list of relations

within the GASMj that describe all the solution space of the current GASMj. The relations

within GASMj can have different types including (Arana, 2007), (Blecker & Friedrich,

2006): Require relations between GAs, Exclude relations between GAs, and Compatibility

relations between GAs, or between attributes and/or KPIs of different GAs.

As for GADM, to check the knowledge consistency (KFC4), we map a GASMj to a CSP,

denoted GASMj(CSP), as follows:

− In GASMj(CSP), each GA is substituted by its GADM(CSP), and the quantities correspond

to variables and domains.

− KPIs aggregation methods are formalized as constraints linking all the relevant KPIs of the

GADM(CSP) composing the current GASMj(CSP).

− Relations are expressed in terms of compatibility tables and numerical functions on all

relevant and available variables, coming either from the current GASMj(CSP) and all the

variables of the GADM(CSP).

To create a GASMj, you first need the corresponding GA. A relevant and discriminating name

and description must then be defined. The experts can then concentrate on its nomenclature by

identifying the elements that make it up: the list of quantity / GA pairs is thus established. The

relationships between the different GAs are also defined. Once the GASMj has been described,

it is translated into a CSP or GASMj(CSP). The consistency of GASMj(CSP) is then checked

using filtering algorithms. This process is iterative, meaning that the experts can modify the

GASMj knowledge at any time (adding attributes, modifying definition domains, relationships,

etc.), then re-translate it into the CSP to check its accuracy. The consistency of the GASMj can

therefore be checked at each new iteration to validate the formalized knowledge. Once the

GASMj has been created and validated, it is stored in a taxonomy of GASM.

As shown in Figure 14, a GASMj is the structural view of a GA, which is mapped into a CSP.

For a GA, from zero to many GASMj can be defined. Since a GA can have several structures

corresponding to several ways to represent its composition (i.e. different versions of the BOM),

it can have many GASMj. However, a GA can have no GASMj if the GA is related to a family

of artifacts that is not composed (i.e. a component). Every GASMj is translated into a CSP

(notated GASMj(CSP)).

Chapter 3: Knowledge formalization for system configuration

57

Figure 14. UML model of GA, GADM and GASM with its translation into a CSP

In the example of Figure 15, Bike.GASMj, the jth GASM of a bike family (i.e. Bike.GA),

composed of two or three Wheel.GA and one Seat.GA, is illustrated. Two KPIs aggregation

methods related to Weight and Cost are defined. They represent respectively that the weight is

the sum of the weights of its GAs and the cost is the sum of the costs of its GAs. This relation

indicates that if the bike's user is a child, then the material of the seat must be plastic.

As represented, the CSP of Bike.GASMj contains the CSP of Bike.GADM, in addition, the GAs

in Bike.GASMj are substituted by their CSP in the CSP of Bike.GASMj. The quantities of GAs

in Bike.GASMj corresponds to variables in its CSP. KPIs aggregation methods are translated

into constraints (i.e. numerical functions). Moreover, a relation in Bike.GASMj is translated into

a compatibility table in Bike.GASMj(CSP) that links the compatible values of the variable User

of Bike.GADM and the variable Material of Seat.GADM. This compatibility table consists of

two tuples. Then, constraint filtering is applied to obtain a consistent piece of knowledge for

the future configuration of bikes.

Chapter 3: Knowledge formalization for system configuration

58

Figure 15. Example of a Bike.GASMj and its translation into a CSP

In the following, the synthesis of this section is presented.

3.1.4. Synthesis

To address our initial research question, it is necessary to establish consistent generic models

presenting descriptive and structural views of the same artifact. In this section, the concept of

Generic Artifact, as well as its descriptive view or GADM and structural view or GASMj has

been introduced and defined.

After their definition, we have explained how these models are linked together by a family of

artifacts and how they can be translated as a CSP. A simple but realistic bike example illustrates

our proposals.

This proposal answers directly to the need of presenting two complementary views of an artifact

(descriptive and structural) in the knowledge model (KFC1) and ensures the consistency of

knowledge during its formalization (KFC4).

In the following section, we explain how we can use these views to formalize knowledge at

different levels of abstraction (KFC3) and create an ontology (KFC2) that gathers GA, GADM,

and GASM, by the use of generalization and specialization relations as well as commonality

and inheritance principles.

Chapter 3: Knowledge formalization for system configuration

59

3.2. Ontology of GA, GADM, and GASM

As explained in chapter 2, ontologies rely on generalization and specialization relations and

composition of classes and allow several levels of abstraction. Based on that, we propose to use

the concept of commonality, also defined in chapter 2, in addition to these properties of

ontologies to create an ontology of families of artifacts and therefore better manage knowledge

in system configuration (answers to KFC2 and KFC3).

This section is dedicated to the definition of the respective ontology of GA, GADM, and

GASM. Therefore, in section 3.2.1, the taxonomy of Generic Artifact is proposed. Then, in

section 3.2.2, the taxonomy of the Generic Artifact Descriptive Model is defined. After that, in

section 3.2.3, the taxonomy of the Generic Artifact Structural Model is proposed. Finally, in

section 3.2.4, the synthesis of the section is represented. All the proposals are illustrated on

examples.

3.2.1. Taxonomy of Generic Artifacts

Whatever GA is considered, it can be generalized or specialized into another GA, respectively

at a higher or lower level of abstraction. We note GA(i) a GA at level of abstraction i, GA(i-1) its

generalization and GA(i+1) its specialization.

Definition 6: Generic Artifact Generalization or GA(i-1)

GA generalization is the process of creating a more generalized GA (notated GA(i-1)) based

on the commonality of several GA(i) and the factorization of their common knowledge at a

higher level of abstraction.

Based on commonality principle, this process involves two steps:

Step 1) Identify the commonality of at least two existing GA(i) (mainly based on the analysis of

their descriptions),

Step 2) Define a relevant name and description of the GA(i-1).

For example, as illustrated in Figure 16, MountainWheel.GA(3) and CityWheel.GA(3) are

generalized into Wheel.GA(2) because of their commonality. In the description of

MountainWheel.GA(3), it is stated that “A mountain wheel is a circular component that is

intended to rotate on an axle bearing for mountain environment”, while in the description of

CityWheel.GA(3), it is mentioned that “A city wheel is a circular component that is intended to

rotate on an axle bearing for urban environment”. To generalize MountainWheel.GA(3) and

CityWheel.GA(3) into Wheel.GA(2), the description of Wheel.GA(2) must be written in a way that

it is applicable in both environments. The Wheel.GA(2) is then created and is described as

follows: “A wheel is a circular component that is intended to rotate on an axle bearing”.

Chapter 3: Knowledge formalization for system configuration

60

Figure 16. An example of Wheel.GA(2) generalization

Definition 7: Generic Artifact Specialization or GA(i+1)

GA specialization is the process of creating a more specific GA (notated GA(i+1)) based on an

existing GA (GA(i)) and its modification (restriction and enrichment) with specific knowledge

at a lower level of abstraction (i+1).

Based on inheritance principle, this process involves two steps:

Step 1) Duplicate the knowledge of GA(i) into the knowledge of GA(i+1),

Step 2) Modify the inherited name and description of GA(i+1).

Figure 17 represents a partial taxonomy with three GA (A.GA(i) and B1.GA(i+1) and B2.GA(i+1)).

A.GA(i) is specialized into B1.GA(i+1) and B2.GA(i+1).

For example, as represented in Figure 18, Bike.GA(2) is specialized into a CityBike.GA(3) and

MountainBike.GA(3). To specialize Bike.GA into CityBike.GA(3), its description must be

modified and it must be mentioned that the city bikes are designed for urban areas. On the other

hand, to specialize Bike.GA(2) into MountainBike.GA(3), its description needs to be modified and

it must be emphasized that mountain bikes are suitable for mountain areas.

Figure 17. Specialization of A.GA(i)

Figure 18. An example of Bike.GA(2) specialization

Therefore, the taxonomy of GAs is a partial ontology in this thesis. All the GAs are structured

in a taxonomy that represents the "is a" relationship between GAs (Sciore, 1989). This

taxonomy classifies GAs hierarchically, according to their generalization or specialization of

Chapter 3: Knowledge formalization for system configuration

61

knowledge. For instance, Figure 19 illustrates two taxonomies of GAs. First, System.GA(1) is

defined as the most general GA because we consider artifacts as tangible and technical systems.

In other words, Bike.GA(2), CityWheel.GA(2), MountainWheel.GA(2), Seat.GA(2), Light.GA(2) and

Brake.GA(2) are generalized into System.GA(1). Conversely, System.GA(1)
 is specialized into

several children (i.e. Bike.GA(2), CityWheel.GA(2), MountainWheel.GA(2), Seat.GA(2),

Light.GA(2), and Brake.GA(2)). Then, as explained in Figure 16 and Figure 18, because of their

commonality, CityWheel.GA(3), and MountainWheel.GA(3) are generalized into Wheel.GA(2). As

Bike.GA(2) was not considered as sufficiently specific, it is specialized into CityBike.GA(3), and

MountainBike.GA(3). Every descendant inherits the knowledge of his ancestors. Therefore, after

the generalization and specialization CityBike.GA(3), MountainBike.GA(3) and also Wheel.GA(2)

are added to the taxonomy of GAs.

Figure 19. GAs taxonomy with specialization and generalization

The generalization or specialization of a GA(i) implies that its GADM (notated GADM(i)) is also

respectively generalized or specialized. The following section is dedicated to the taxonomy of

GADM and the processes of generalization and specialization.

3.2.2. Taxonomy of Generic Artifact Descriptive Models

When a GA(i) is generalized or specialized, its associated GADM(i) has also to be generalized or

specialized, defining different levels of abstraction for the descriptive views.

Definition 8: Generic Artifact Descriptive Model Generalization or GADM(i-1)

GADM generalization is the process of creating a more general GADM (notated GADM(i-1))

based on the commonality of several GADM(i) and the factorization of their common

knowledge at a higher level of abstraction.

The process of GADM generalization can be described as follows:

Step 1) Identify the commonality of at least two existing GADM(i): since in GADM

generalization, GADM(i-1) allows to gather the commonality of GADM(i), it is essential to first

identify this commonality. The commonality of a set of GADM(i) is defined as the common

knowledge among them including attributes with their domains, KPIs with their domains, and

relations. Therefore, the expert identifies: 1) the attributes, and KPIs that are shared across all

the GADM(i) as well as their domains, along with 2) the common relations between their values.

The commonality is defined by:

Chapter 3: Knowledge formalization for system configuration

62

− Common attributes and KPIs with their domains are identified: GADM(i-1) gathers

the common attributes and KPIs among all GADM(i). For each common attribute or

KPI, the union of their domains in all the GADM(i) has to be achieved in order to

encompass all the specific domains.

− Common relations between attributes and/or KPIs values are identified: GADM(i-1)

gathers the common relations among all GADM(i).

Step 2) Factorize the commonality into the knowledge of GADM(i-1): the identified commonality

(i.e. common attributes and KPIs, union of their domains, and common relations) are factorized

into the GADM(i-1).

In order to guarantee the consistency of knowledge of GADM ontology, we strongly

recommend that factorized knowledge cannot be modified in any of the GADM(i) that has been

considered. In each GADM, we therefore need to tag elements (attributes, domains, and

relations) that are inherited or generalized as ‘I’ to distinguish them from specific knowledge

tagged by ‘S’. We strongly recommend that inherited elements can only be used to refine the

common knowledge into specific knowledge.

Step 3) Define a relevant name and the description of the GADM(i-1): to generalize at least two

GADM(i) into a GADM(i-1), after factorizing the commonality of the GADM(i) into the knowledge

of GADM(i-1), a common name and description for the GADM(i-1) need to be defined to reflect

its more generalized nature.

Since the GADMs are mapped to a CSP, the generalization follows exactly the same principle,

notated GADM(i-1)(CSP):

− Attributes, KPI and their domains are mapped to variables and domains of the CSP, prefixed

by I or S to know if attributes have been inherited or not. Domains on the generalized

GADM(i-1)(CSP) are unified to cover all the knowledge,

− Relations between attributes and/or KPIs of GADM are represented in terms of

compatibility tables and numerical functions, marked as I or S, as well as their tuples.

In Figure 20, MountainWheel.GADM(2) and CityWheel.GADM(2), that are two independent

GADM as illustrated on the left part of Figure 19, are represented with their CSP.

MountainWheel.GADM(2) consists of two specific attributes of Diameter and Material, and two

KPIs of Weight and Cost (inherited from System.GADM(1)) as well as a relation indicating that

any diameter of mountain wheels cannot be associated with any material and the cost and weight

of mountain wheels depends on them. They are tagged by 'S' except Weight and Cost that are

tagged by ‘I’ (inherited from System.GADM(1)). MountainWheel.GADM(2) is then translated into

a CSP. In MountainWheel.GADM(2)(CSP), attributes, and KPIs are represented by four

variables. The relation is translated into a compatibility table linking compatible values of four

variables of S: Diameter, S: Material, I: Weight, and I: Cost. It consists of three tuples.

CityWheel.GADM(2) consists of three attributes of Diameter, Material, and InnerTubeQty, two

inherited KPIs of Weight and Cost as well as two relations. One represents that any diameter

of the city wheel cannot be associated with any material and the cost and weight of the city

Chapter 3: Knowledge formalization for system configuration

63

wheel depend on them. The other relation indicates that the quantity of the inner tube depends

on the diameter of the city wheel. They are tagged by 'S' except Weight and Cost which are

tagged by ‘I’. CityWheel.GADM(2) is then translated into a CSP. In CityWheel.GADM(2)(CSP),

attributes, and KPIs corresponds to five variables. The first relation is translated into a

compatibility table linking compatible values of the variables S: Diameter, S: Material, I:

Weight, and I: Cost. It contains three tuples. The second relation is also translated into a

compatibility table that links compatible values of the variables S: Diameter and S:

InnerTubeQty. It contains two tuples.

An instance of GADM generalization for families of wheels is shown in Figure 21.

MountainWheel.GADM(3) and CityWheel.GADM(3) are generalized into Wheel.GADM(2). Then,

it is translated into a CSP. In Wheel.GADM(2), two attributes of Diameter and Material that are

common among attributes of MountainWheel.GADM(3) and CityWheel.GADM(3) are factorized

and they are tagged by ‘S’. Moreover, two KPIs of Weight and Cost that are common are

factorized in Wheel.GADM(2). They are tagged by ‘I’ because they are inherited from

System.GADM(1). In Wheel.GADM(2), the union of the domains of attributes and KPIs are

considered. For example, in Wheel.GADM(2), the domain of attribute Diameter is {[16, 26]}

which is the union of {[16, 26]} and {[17, 24]} which are respectively the domain of Diameter

in MountainWheel.GADM(3) and in CityWheel.GADM(3). In Wheel.GADM(3), one relation that

is common among the relations of MountainWheel.GADM(3) and CityWheel.GADM(3) is

factorized. It represents that any diameter cannot be associated with any material, and also cost

and weight depends on them. It is tagged by ‘S’ (because it is specific to Wheel.GADM(2)).

Initially, in MountainWheel.GADM(3) and CityWheel.GADM(3), attributes and relations were

tagged by ‘S’. However, after creating Wheel.GADM(2), the tags of two attributes (Diameter

and Material) and the tag of the first relation that are inherited from Wheel.GADM(2) has been

changed from ‘S’ to ‘I’.

In Wheel.GADM(2)(CSP), four variables of Diameter, Material, Cost and Weight that are

common among variables of MountainWheel.GADM(3)(CSP) and CityWheel.GADM(3)(CSP)

are factorized. For the variables, the union of their domains is considered in

Wheel.GADM(2)(CSP). For instance, in Wheel.GADM(2)(CSP), the filtered domain of the

attribute Diameter is {16, 18, 20, 22, 24, 26} which is the union of {16, 18, 20, 22, 24, 26} and

{18, 20, 22, 24} that are respectively the filtered domain of Diameter in

MountainWheel.GADM(3) and in CityWheel.GADM(3). Among the constraints (compatibility

tables), those that link the same variables are taken into account, and among the tuples of these

constraints, only the common tuples are taken into account. Therefore, the constraint linking

the variables Diameter, Material, Weight and Cost is common. The first two tuples are common,

but not the third one. If there are two compatibility tables linking different variables they remain

specific to each GADM. Constraint filtering is then applied and the domains of variables are

restricted. It is important to notice that the tags of variables (i.e. Diameter and Material) and a

constraint inherited from Wheel.GADM(2) is changed from ‘S’ to ‘I’ due to generalization

process. Therefore, in MountainWheel.GADM(3)(CSP) and CityWheel.GADM(3)(CSP), the tags

of the two first tuples are changed to ‘I’ while the third one remains ‘S’.

Chapter 3: Knowledge formalization for system configuration

64

Figure 20. An example of MountainWheel.GADM(2) and CityWheel.GADM(2) with their CSP

Chapter 3: Knowledge formalization for system configuration

65

Figure 21. An example of GADM generalization with their CSP

In the following section, we give the definition of GADM specialization.

Chapter 3: Knowledge formalization for system configuration

66

Definition 9: Generic Artifact Descriptive Model Specialization or GADM(i+1)

GADM specialization is the process of creating a more specific GADM (notated GADM(i+1))

based on an existing GADM(i) and its modification (restriction and enrichment) with specific

knowledge at a lower level of abstraction.

A GADM (GADM(i)) can be specialized into another specialized GADM (GADM(i+1)) if GA(i)

has been previously specialized into GA(i+1). The GADM(i) specialization is a four-step process:

Step 1) Duplicate the knowledge of GADM(i) into the knowledge of GADM(i+1): each GADM(i+1)

inherits all the knowledge of its GADM(i) including attributes with their domains, KPIs with

their domains, and relations between attributes and/or KPIs values. This first step of

specialization provides the opportunity for experts in terms of modeling to reuse an existing

GADM (here GADM(i)) and create new ones (GADM(i+1)) by reusing previously formalized

knowledge and specializing it. In each GADM(i+1), all the knowledge (attributes, domains, and

relations) is tagged by ‘I’ as inherited.

Step 2) Modify the inherited name and description of GADM(i+1): to specialize a GADM(i) into

a GADM(i+1), after duplicating the knowledge of the GADM(i) into the GADM(i+1), we need to

modify the inherited name and description from GADM(i). In addition, we modify the

description of GADM(i+1) by adding more details compared to the description of GADM(i) to

describe why the GADM(i+1) is more specialized than the GADM(i).

Step 3) Narrow the inherited knowledge of GADM(i+1): In order to guarantee the consistency of

knowledge of GADM ontology, we strongly recommend that inherited knowledge can only be

restricted. An expert can narrow (or specialize) the inherited knowledge of GADM(i+1) to restrict

the solution space and to make the inherited knowledge more precise and accurate by taking

two actions: 1) restricting the inherited domains of attributes and/or KPIs, 2) restricting the

inherited relations between attributes and/or KPIs values.

− Restrict the inherited domains of attributes and/or KPIs: the inherited domains of

attributes and KPIs can be restricted by the expert based on his knowledge about not

allowed values. These values are then removed from the domains of attributes and/or

KPIs in the GADM(i+1). It is important to notice that the expert is allowed to restrict

the inherited domains of attributes and/or KPIs, but not allowed to delete the

inherited attributes or KPIs because they are common characteristics that belong to

GADM(i).

− Restrict the inherited relations between attributes and/or KPIs values: the inherited

relations between attributes and/or KPIs values can also be restricted. The inherited

relations can be restricted but they cannot be removed since they are part of the

GADM(i) knowledge (common knowledge).

Chapter 3: Knowledge formalization for system configuration

67

Step 4) Enrich the knowledge of GADM(i+1): after narrowing or restricting the inherited

knowledge of GADM(i+1), in this step, the expert can enrich the inherited knowledge. By

enriching the knowledge, we mean adding knowledge that is specific to the family of artifacts.

There are two ways to enrich the knowledge of GADM(i+1): 1) defining new attributes with their

domains, 2) defining new relations between attributes and/or KPIs values. In each GADM(i+1),

all the specific knowledge (attributes, domains, and relations) is tagged by ‘S’ as specific to this

particular GADM(i+1).

− Define new attributes (with their domains): the expert can add new attributes with

their domains only dedicated to GADM(i+1), in addition to what it inherits from

GADM(i). This allows the expert to create a GADM(i+1) with specific characteristics

(i.e. attributes with their domains).

− Define new relations between attributes and/or KPIs values: the expert can add new

relations only dedicated to GADM(i+1). These relations can be defined to link

1) values of inherited attributes or KPIs and new attributes, and 2) values of new

attributes. They are dedicated to the GADM(i+1), in addition to all the relations that

a GADM(i+1) inherits from its GADM(i).

Since the GADMs are mapped to a CSP, the specialization follows exactly the same principle,

notated GADM(i+1)(CSP):

− Attributes, KPI and their domains are mapped to variables and domains of the CSP, prefixed

by ‘I’ or ‘S’ to know if attributes have been inherited or not.

− Relations between attributes and/or KPIs of GADM are represented in terms of

compatibility tables and numerical functions, marked as ‘I’ or ‘S’, as well as their tuples.

As represented in Figure 22, similar to the specialization of A.GA(i), the specialization of

A.GADM(i) is created. A.GADM(i) is specialized into B.GADM(i+1). Then, B.GADM(i+1) is

translated into a CSP. It means that A.GADM(i)(CSP) is specialized into B.GADM(i+1)(CSP).

Figure 22. Specialization of A.GADM(i)

An instance of GADM specialization for families of bikes is shown in Figure 23. As illustrated

on the right part of Figure 19, Bike.GADM(2) is specialized into CityBike.GADM(3). Then, it is

translated into a CSP (Bike.GADM(2)(CSP)). In CityBike.GADM(3), attributes, KPIs and

Chapter 3: Knowledge formalization for system configuration

68

relations that are inherited from Bike.GADM(2), are tagged by ‘I’ while the attributes and

relations that are only dedicated to CityBike.GADM(3) are tagged by ‘S’.

In CityBike.GADM(3), the domain of an attribute is restricted (the Pink color is removed in the

domain of the attribute Color of CityBike.GADM(3)), a new attribute with its domain is added

(S: LightQty), a relation is restricted and a new relation is defined. Then, in the CSP of the

CityBike.GADM(3), the forbidden value of the variable Color (Pink) is deleted from its domain,

a new variable with its corresponding domain is added (S: LightQty), and existing constraints

are restricted by adding tuples. The new tuple that is tagged by ‘S’ is added to indicate that the

user ‘Man’ is only compatible with the color ‘Blue’, the weight ‘30’ and the cost ‘4000’. It

means that a man can only have a blue city bike. A new compatibility table is added. It indicates

the relations between the user and the quantity of lights. A ‘Child’ bike user only requires one

light but an adult bike user (‘Man’ or ‘Woman’) needs two lights. Note that the deleted value

is removed from the constraints as well. Constraint filtering is applied and the domains of

variables are restricted. All the new elements that has been added or the modified elements are

represented in bold in Figure 23.

Figure 23. An example of Bike.GADM(2) specialization

Chapter 3: Knowledge formalization for system configuration

69

A GADMs taxonomy is derived from the taxonomy of GAs (illustrated in Figure 19) to classify

GADMs based on their common knowledge (i.e. characteristics). As an example, Figure 24

represents a taxonomy of GADMs which is compliant with the related taxonomy of GAs. The

most general GADM, System.GADM(1), is defined by characteristics common to all GADMs

(mainly KPIs). It is the parent of several specialized GADMs, such as Bike.GADM(2),

CityWheel.GADM(2), MountainWheel.GADM(2), Seat.GADM(2), Light.GADM(2) and

Brake.GADM(2). Corollary, Bike.GADM(2), CityWheel.GADM(2), MountainWheel.GADM(2),

Seat.GADM(2), Light.GADM(2) and Brake.GADM(2) are generalized into System.GADM(1).

Additionally, CityWheel.GADM(3) and MountainWheel.GADM(3) are generalized into

Wheel.GADM(2). Bike.GADM(2) is specialized into CityBike.GADM(3) and

MountainBike.GADM(3). After generalization and specialization, the taxonomy of GADMs is

represented in Figure 24. During GADM specialization, all specialized GADMs inherit the

characteristics of their ancestors. Therefore, Bike.GADM(2), Wheel.GADM(2), Seat.GADM(2),

Light.GADM(2) and Brake.GADM(2) inherit all the characteristics of System.GADM(1).

CityBike.GADM(3) and MountainBike.GADM(3) inherits all the characteristics of Bike.GADM(2),

which includes the characteristics of System.GADM(1) as well. Moreover, CityWheel.GADM(3)

and MountainWheel.GADM(3) inherits all the characteristics of Wheel.GADM(2).

Figure 24. GADMs taxonomies

The generalization or specialization of a GA(i) implies that its GASM(i) is also respectively

generalized or specialized. The following section is dedicated to the taxonomy of GASM.

3.2.3. Taxonomy of Generic Artifact Structural Models

When a GA(i) has been generalized or specialized, GASM(i)
j its also have to be generalized or

specialized leading to different levels of abstraction for the structural views.

Definition 10: Generic Artifact Structural Model Generalization or GASM(i-1)
j

GASM generalization is the process of creating a more general GASM, notated GASM(i-1)
j,

based on the commonality of several and GASM(i)
j the factorization of their common

knowledge at a higher level of abstraction.

Chapter 3: Knowledge formalization for system configuration

70

The process of GASM(i)
j generalization involves the following steps:

Step 1) Identify the commonality of at least two existing: since GASM(i)
j in GASM

generalization, a GASM(i-1)
j is defined which gathers the commonality of all specialized , first

GASM(i)
j of all, the commonality among the different GASM(i)

j must be identified. Commonality

of several GASM(i)
j is defined as the quantity of common knowledge among them. Thus, the

expert identifies 1) the GAs that are shared across all the GASM(i)
j and their quantities, 2) the

common KPIs aggregation methods as well as 3) the common relations between GAs or

between attributes and/or KPIs values of GAs.

− Common GA(i) with their quantities are identified: GASM(i-1)
j gathers the common

GAs among all GASM(i)
j. Therefore, any GA(i) that are specific to only one or a few

of the GASM(i)
j are not considered. Moreover, among GA(i) from the same family but

with different levels of abstraction, the most general one is considered. For each GA

the union of their quantities in all the GASM(i)
j are considered.

− Common KPIs aggregation methods are identified: GASM(i-1)
j gathers the common

KPIs aggregation methods among all GASM(i)
j in which only common GA(i) and the

union of their quantities are considered.

− Common relations between GA(i) or between attributes and/or KPIs values of GA(i)

are identified: GASM(i-1)
j gathers the common relations among all GASM(i)

j. Thus,

any relations that are specific to only one or a few of the are not considered GASM(i)
j.

Step 2) Factorize the commonality into the knowledge of GASM(i-1)
j: the identified commonality

(i.e. common GAs, the union of their quantities, common KPIs aggregation methods, and

common relations) are factorized into GASM(i-1)
j. In order to guarantee the consistency of

knowledge of GASM ontology, we strongly recommend that factorized knowledge cannot be

modified in any of the that GASM(i-1) has been considered. In each GASM, we therefore need

to tag elements (attributes, domains and relations) that are inherited or generalized as ‘I’ to

distinguish them from specific knowledge tagged by ‘S’. As for GADM, we strongly

recommend that inherited elements can only be used to refine the common knowledge into

specific knowledge

Step 3) Define a description of the GASM(i-1)
j: to generalize (at least) two in GASM(i)

j to a

GASM(i-1)
j, after factorizing the commonality of the GASM(i)

j into the GASM(i-1)
j, a common

name and description for the GASM(i-1)
j must be defined which represents the more generalized

nature of the GASM(i-1)
j.

Since the GASMs are mapped to a CSP, the GASM generalization follows exactly the same

principle, notated GASM(i-1)
j(CSP):

− Attributes, KPI and their domains are mapped to variables and domains of the CSP, prefixed

by ‘I’ or ‘S’ to know if attributes have been inherited or not. Domains on the generalized

GASM(i-1)
j(CSP) are unified to cover all the knowledge,

Chapter 3: Knowledge formalization for system configuration

71

− Relations between attributes and/or KPIs of GADM are represented in terms of

compatibility tables and numerical functions, marked as ‘I’ or ‘S’, as well as their tuples.

MountainWheel.GASM(2)
j and CityWheel.GASM(2)

j are two independent GASMs with their

CSPs are illustrated in Figure 25. MountainWheel.GASM(2)
j consists of one Rim.GA(2), one

Tire.GA(2), KPIs aggregation methods related to Weight and Cost (which have been inherited

from the System.GASM(1)
1), as well as a relation representing that the diameter of mountain

wheel, rim and tire must be equal due to tire mounting. They are tagged by 'S' since they

represent the knowledge that is specific to MountainWheel.GASM(2)
j.

MountainWheel.GASM(2)
j is then translated into a CSP. In MountainWheel.GASM(2)

j(CSP), the

CSP of MountainWheel.GADM(3) is embedded. GAs in MountainWheel.GASM(2)
j are

substituted by their CSP in the CSP of MountainWheel.GASM(2)
j. The quantities of GAs in

MountainWheel.GASM(2)
j corresponds to variables in its CSP. KPIs aggregation methods are

translated into two constraints (numerical functions). Moreover, a relation in

MountainWheel.GASM(2)
j is translated into two numerical functions in

MountainWheel.GASM(2)
j(CSP) indicating that the Diameters of MountainWheel.GADM(2),

Rim.GADM(2), and Tire.GADM(2) are equal. In MountainWheel.GASM(2)
j(CSP), KPI are tagged

‘I’ as they have been inherited and the rest is tagged by ‘S’ as they are specific.

As represented in Figure 25. CityWheel.GASM(2)
j consists of one Rim.GA(2), one Tire.GA(2), one

InnerTube.GA(2), KPIs aggregation methods related to Weight and Cost (which have been

inherited from the System.GASM(1)
1), a relation representing that the diameter of the city wheel,

rim and tire must be equal due to tire mounting as well as another relation representing that the

diameter of the city wheel, and inner tube must be equal. KPI are tagged ‘I’ as they have been

inherited and the rest is tagged by ‘S’ as they are specific.

An example of generalization is represented in Figure 26. MountainWheel.GASM(3)
j and

CityWheel.GASM(3)
j are generalized into Wheel.GASM(2)

j. Since MountainWheel.GASM(3)
j and

CityWheel.GASM(3)
j are both composed of one Rim.GA(2), and one Tire.GA(2), these common

GAs, and the union of their quantities are factorized into Wheel.GASM(2)
j. For KPIs aggregation

methods, only the same formulas can be generalized, otherwise they remain specific to the

related GASM. Therefore, since the same formula is used in MountainWheel.GASM(3)
j and

CityWheel.GASM(3)
j for Weight and Cost, they can be generalized. In Wheel.GASM(2)

j, one

relation that is common among the relations of MountainWheel.GASM(3)
j and

CityWheel.GASM(3)
j is factorized. It represents the fact that, due to tire mounting, the diameter

of wheel, rim and tire must be equal. In Wheel.GASM(2)
j, everything, but KPI, is tagged by ‘S’.

Initially, in MountainWheel.GASM(2)
j and CityWheel.GASM(2)

j, GAs, KPIs aggregation

methods, and relations are tagged by ‘S’ as they are only dedicated to their specific GASM.

However, after generalization, i.e. Wheel.GASM(2)
j is created, the knowledge inherited from

Wheel.GASM(2)
j in MountainWheel.GASM(3)

j and CityWheel.GASM(3)
j will be tagged by ‘I’. It

should be noted that for the KPIs aggregation methods if both GAs and their quantities are the

same then they are tagged by ‘I’, otherwise they are tagged by ‘S’. For example, in

MountainWheel.GASM(3)
j, since the GAs and their quantities are similar to Wheel.GASM(2)

j,

KPIs aggregation methods are tagged by ‘I’. However, in CityWheel.GASM(3)
j, in addition to

Chapter 3: Knowledge formalization for system configuration

72

Rim.GA(2) and Tire.GA(2), there is InnerTube.GA(2) which is not common (it is only specific to

CityWheel.GASM(3)
j).

Wheel.GASM(2)
j, MountainWheel.GASM(3)

j and CityWheel.GASM(3)
j are mapped into their

respective CSP: Wheel.GASM(2)
j(CSP), MountainWheel.GASM(3)

j(CSP) and

CityWheel.GASM(3)
j(CSP). All their inherited variables are tagged ‘I’ and all their specific

knowledge is tagged ‘S’.

Figure 25. An example of MountainWheel.GASM(2)
j and CityWheel.GASM(2)

j

Chapter 3: Knowledge formalization for system configuration

73

Figure 26. An example of Wheel.GASM(2)
j generalization

Chapter 3: Knowledge formalization for system configuration

74

In the following section, the definition of GASM specialization is given.

Definition 11: Generic Artifact Structural Model Specialization or GASM(i+1)
j

GASM specialization is the process of creating a more specific GASM, notated GASM(i+1)
j,

based on an existing GASM(i)
j and its modification (restriction and enrichment) with specific

knowledge at a lower level of abstraction.

A general GASM GASM(i)
j can be specialized into another specialized GASM GASM(i+1)

j if

GA(i) has already been specialized into GA(i+1) . This GASM specialization is a four-step

process:

Step 1) Duplicate the knowledge of GASM(i)
j into the knowledge of GASM(i+1)

j: following the

principles of specialization described in (Männistö et al., 2001), we propose that GASM(i+1)
j

inherits all the knowledge of its GASM(i)
j, which includes all the GAs composing GASM(i)

j with

their quantities, the methods to aggregate the KPIs of GAs, and all the relations linking GAs or

attributes and/or KPIs of GAs. Consequently, in our proposed model, GASM(i)
j gathers all the

common knowledge among all specialized GASM(i+1)
j. This step facilitates the modeling

process for experts as they can reuse the common knowledge capitalized in GASM(i)
j to build a

new GASM(i+1)
j.

Step 2) Modify the inherited name and description of GASM(i+1)
j: after duplicating the

knowledge of GASM(i)
j into GASM(i+1)

j, we have to modify the name and description inherited

from GASM(i)
j. This requires changing the name of GASM(i)

j to GASM(i+1)
j anywhere within the

GASM(i+1)
j. Additionally, we modify the description of GASM(i+1)

j by providing more specific

information than what was contained in the original description of GASM(i)
j.

Step 3) Narrow the inherited knowledge of GASM(i+1)
j: In order to guarantee the consistency of

knowledge of GASM ontology, we strongly recommend that inherited knowledge can only be

restricted. The expert can narrow or specialize the inherited knowledge of GASM(i+1)
j - GASM

composition (quantity, GA(i)), KPIs aggregation methods, and relations between GA(i), or

between attributes and/or KPIs of different GA(i) - by 1) restricting the inherited quantities of

GA(i), 2) replacing an inherited GA(i) by a more specialized GA(i) and 3) restricting the inherited

relations between attributes and/or KPIs values of GA(i) which are explained as follows:

− Restrict the inherited quantities of GA(i): the expert can restrict the inherited

quantities of GAs composing GASM(i+1)
j. This allows them to i) remove an optional

GA(i) (for example, change the quantity from {[0, 1]} to {0}), ii) consider an optional

GA(i) as mandatory (e.g. change its quantity from {[0, 1]} to {1}), or iii) restrict the

quantity of a mandatory GA(i) (for instance, from {[2, 4]} to {3}). Then, KPIs

aggregation methods must be updated. Note that in the GASM specialization,

enlarging the domains of quantities is not allowed.

Chapter 3: Knowledge formalization for system configuration

75

− Replace inherited GA(i) by more specialized GA(i): in addition to restricting inherited

quantities, the expert can also replace inherited GAs with more specialized ones in

GASM(i+1)
j. This specialization process is only allowed for GAs belonging to the

same family line. For instance, Wheel.GA(2) can be replaced by CityWheel.GA(3) that

is one of its descendants in the taxonomy of GAs. These replaced GA(i) must be

considered in the KPIs aggregation methods. Replacing a Wheel.GA(2) by a

CityWheel.GA(3) is allowed but replacing a Seat.GA(2) by a Light.GA(2) is not

allowed.

− Restrict the inherited relations between GA(i) or between attributes and/or KPIs of

GA(i): in GASM(i+1)
j, the expert can restrict the inherited relations between GA(i) or

between attributes and/or KPIs values of GA(i). However, it is not possible to remove

inherited relations because they are inherited from the knowledge of GASM(i)
j that

is common to all GASM(i+1)
j.

Step 4) Enrich the knowledge of GASM(i+1)
j: in this step, the expert can enrich the knowledge

of GASM(i+1)
j by adding specific knowledge that only belongs to the specific family of artifacts.

They can enrich the knowledge of GASM(i+1)
j by 1) adding new GA(i) specific to the GASM(i+1)

j

with their quantities and 2) defining new relations between GA(i) or between attributes and/or

KPIs values of GA(i) which are explained as follows:

− Add new GA(i) specific to GASM(i+1)
j with their quantities: one or more new GA(i)

can be added to GASM(i+1)
j with their quantities only specific to the GASM(i+1)

j.

These newly identified GA(i) with their quantities enable the expert to model the

GASM(i+1)
j based on specific knowledge of the family of artifacts that do not belong

to its parent. These new GA(i) and their quantities must be considered in the KPIs

aggregation methods.

− Define new relations between GA(i) or between attributes and/or KPIs values of

GA(i): new relations only belonging to GASM(i+1)
j can be defined. These relations

can link 1) the inherited GA(i) and new GA(i), 2) only new GA(i), 3) attributes and/or

KPIs values of inherited GA(i) and new GA(i), and 4) attributes and/or KPIs values of

new GA(i).

Since the GASMs are mapped to a CSP, the specialization follows exactly the same principle,

notated GASM(i+1)
j(CSP):

− In GASM(i+1)
j(CSP), each GA(i) is substituted by its GADM(i)(CSP), and the quantities

correspond to variables and domains, prefixed by I or S to know if attributes have been

inherited or not. .

− KPIs aggregation methods are used as inherited (marked as ‘I’) or redefined as constraints

linking all the relevant KPIs of the GADM(i)(CSP) composing the current GASM(i+1)
j(CSP).

− Relations are expressed in terms of compatibility tables and numerical functions on all

relevant and available variables, coming either from the current GASM(i+1)
j(CSP) and all the

variables of the GADM(i)(CSP), marked as I or S, as well as their tuples.

Chapter 3: Knowledge formalization for system configuration

76

As shown in Figure 27, similar to the specialization of A.GA(i) (see Figure 17), the specialization

of A.GASM(i)
j is created in which A.GASM(i)

j is specialized into B.GASM(i+1)
j. Then,

B.GASM(i+1)
j is mapped into CSP.

Figure 27. Specialization of A.GASM(i)
j

The example of Figure 28 illustrates GASM specialization for families of bikes, where

Bike.GASM(2)
j is specialized into CityBike.GASM(3)

j. The GADMs are represented but not their

GADM(CSP) for better clarity. CityBike.GASM(3)
j is translated into CSP

(CityBike.GASM(3)
j(CSP)). In CityBike.GASM(3)

j, GAs with their quantities, KPIs aggregation

methods and relations that are inherited from Bike.GASM(2)
j, are tagged by ‘I’ while the GAs

with their quantities and relations that are uniquely dedicated to CityBike.GASM(3)
j are tagged

by ‘S’.

In CityBike.GASM(3)
j, Wheel.GA(2) is replaced by a more specialized GA(i) (S: CityWheel.GA(3))

and its quantity is restricted to {2}. A new GA(i) is added (S: Light.GA(2)) and a relation is

restricted (the user ‘Man’ is only compatible with the material ‘carbon’). A new relation is also

added (between user and light color). Then, CityBike.GASM(3)
j is translated into the CSP

(CityBike.GASM(3)
j(CSP)), in which the CSP of the CityBike.GADM(3) is embedded. Moreover,

in this CSP, the domain of the variable WheelQty is restricted by adding a compatibility table.

The embedded CSP corresponding to Wheel.GADM(2) is replaced by a more specialized CSP

Chapter 3: Knowledge formalization for system configuration

77

(S: CityWheel.GADM(3)(CSP)). A new CSP is added (S: Light.GADM(2)(CSP)). A new variable

with its corresponding domain is added (S: LightQty). An existing constraint is restricted by

adding a tuple which is tagged by ‘S’ (representing that if the user of city bike is a man, it is

only compatible with the material carbon for the seat). Two constraints related to KPIs

aggregation methods are updated. A new compatibility table is added (linking the color of light

to the users of a city bike). Constraint filtering is applied leading to the restriction of the domains

of the variables, removing inconsistent values.

Figure 28. An example of Bike.GASM(2)
j specialization

Chapter 3: Knowledge formalization for system configuration

78

By applying the generalization or specialization process, a taxonomy of GASMs is created

based on the GAs taxonomy to classify GASMs according to their common knowledge

including the structure, KPIs aggregation methods, and relations between GA(i) or between

attributes and/or KPIs of GA(i). An example of this taxonomy is illustrated in Figure 29 along

with the GAs taxonomy (represented in Figure 19). The most general GASM

(System.GASM(1)
1), is described by common knowledge among all GASMs, and is the parent

of several specialized GASMs, including Bike.GASM(2)
j, CityWheel.GASM(2)

j and

MountainWheel.GASM(2)
j. CityWheel.GASM(3)

j and MountainWheel.GASM(3)
j are generalized

into Wheel.GASM(2)
j. Furthermore, Bike.GASM(2)

j is specialized into CityBike.GASM(3)
j, and

MountainBike.GASM(3)
j. Since in GASM specialization, all specialized GASMs inherit the

knowledge of their ancestors, Bike.GASM(2)
j, and Wheel.GASM(2)

j inherit all the knowledge of

System.GASM(1)
1. CityBike.GASM(3)

j and MountainBike.GASM(3)
j inherit all the knowledge of

Bike.GASM(2)
j, including the knowledge of System.GASM(1)

1. CityWheel.GASM(3)
j and

MountainWheel.GASM(3)
j inherit all the knowledge of Wheel.GASM(2)

j.

Figure 29. GASMs taxonomies

In the following, the synthesis of this section is provided.

3.2.4. Synthesis

In this section, we have focused on our first research question: "Is it possible to define an

ontology of generic models to better manage knowledge, allowing a clear distinction between

descriptive and structural views for system configuration?" by defining the generalization and

specialization process of generic models. Our approach involved defining and proposing

methods for GA(i-1) generalization and GA(i+1) specialization. Based on that, we defined GADM(i-

1) generalization and GADM(i+1) specialization as well as GASM(i-1)
j generalization and

GASM(i+1)
j specialization.

Our proposed approach allows for the creation of GAs, GADMs, and GASMs at different levels

of abstraction using commonality, generalization and specialization relations and by applying

inheritance principles which can help to better manage knowledge separating their descriptive

views and structural views and defining three taxonomies of GA(i), GADM(i), and GASM(i)
j.

These three taxonomies are closely related and they are the ontology for system configuration.

In the following section, we explain how we can update GAs, GADMs, and GASMs.

Chapter 3: Knowledge formalization for system configuration

79

3.3. Update of GA(i), GADM(i), and GASM(i)
j

The experts need to frequently update generic models due to several reasons. Firstly, the

structure of the system may change over time due to new GAs being added and old GAs being

removed. Therefore, updating the generic models is essential to ensure that it accurately

represents the current structure of the systems. Secondly, as new information becomes available

about the modeled systems, generic models may need to be updated to incorporate this

information. For example, if new information is discovered about the relations between

components, the model may need to be updated to reflect this. Thirdly, as new techniques or

methods are developed for creating systems, the model may need to be updated. Therefore, this

helps to keep generic models up to date and improve them.

This section is dedicated to the update of GA(i), GADM(i), and GASM(i)
j. Therefore, first, in

section 3.3.1, the GA update is proposed, followed by the GADM update in section 3.3.2, and

then the update of GASM is defined in section 3.3.3. Finally, the synthesis of the section is

represented in section 3.3.4.

3.3.1. Update of Generic Artifacts

A GA can undergo one or multiple updates following the evolution of designs, technologies,

components, etc. The definition of GA update is given below.

Definition 12: Generic Artifact update

GA update is a process of updating a current GA(i) by modifying or updating its knowledge.

To update a GA(i), its description must be updated.

As represented in the example of Figure 30, Bike.GA(2) is updated only by updating its

description. As the description of Bike.GA(2) has been updated, the expert has to check the

description of all the descendants of Bike.GA(2) and modify them if necessary. In the example

of Figure 30, the description of the Bike.GA(2) is shortened as well as the description of the

CityBike.GA(3) and the description of MountainBike.GA(3). These modifications have to be done

manually by the expert by checking all the descriptions of the descendants of the updated GA(i)

(Bike.GA(2) in this example).

Figure 30. An example of GA(i) update for a family of bikes

Chapter 3: Knowledge formalization for system configuration

80

The following section is dedicated to the GADM(i) update.

3.3.2. Update of Generic Artifact Descriptive Models

GADMs need to be updated because the characteristics of the system may be changed or

modified over time, new attributes may be added, or old attributes may be removed. Thus, a

GADM can undergo one or multiple updates.

Definition 13: Generic Artifact Descriptive Model Update

GADM update is a process of updating the current GADM(i) by updating (modifying,

removing or adding) its knowledge including elements such as attributes with their domains,

KPIs with their domains, and relations between attributes and/or KPIs values.

GADM(i) update is a four steps process:

Step 1) Update description of GADM(i),

Step 2) Update attributes with their domains,

Step 3) Update KPIs with their domains,

Step 4) Update relations between attributes and/or KPIs values.

All modifications made to the GADM(i) are applied into GADM(i+1) and its descendants as well,

making it easy for experts to design and update GADMs.

We map the updated GADM(i) within its CSP (GADM(i)(CSP)) as follows.

Step 1) Update attributes with their domains corresponds to updating the variables with their

domains,

Step 2) Update KPIs with their domains corresponds to updating the variables with their

domains,

Step 3) Update relations corresponds to updating the constraints.

Then, the consistency of the updated GADM(i) has to be checked by propagating the constraints.

The example of Figure 31 illustrates the updating of the Bike.GADM(2) of Figure 13,

Bike.GADM(2) is updated by removing values of the attribute Color (values Pink and Gray are

removed), removing an attribute (RingBellQty is removed), adding a new attribute with its

domain (Size ∈ {XS, S, M, L, XL}), restricting the domain of the Cost KPI

(Cost ∈ {[500, 4500]}) as well as removing the relation related to the removed attribute

(RingBellQty). Bike.GADM(2)(CSP) is updated as well. The values Pink and Gray are removed

from the domain of variable Color and also from the constraint, the variable RingBellQty is

removed, the variable Size is added with its domain, the constraint which linked RingBellQty

with the User type is removed, the domain of cost is restricted (its lower bound is changed to

‘500’), and the lower bound of cost in the compatibility table is also changed to ‘500’. Then,

constraint filtering is applied and the domains of variables are restricted.

Chapter 3: Knowledge formalization for system configuration

81

Figure 31. An example of Bike.GADM(2) update

All the modifications made in Bike.GADM(2) are propagated to all the descendants. This means

that CityBike.GADM(3) and MountainBike.GADM(3) will be updated as well. However, every

modification must be changed by the expert in charge of the knowledge update. As shown in

Figure 32, in CityBike.GADM(3), the Gray value of the attribute Color is removed, the attribute

RingBellQty is removed, Size that is a new attribute with its domain is added, the domain of

the Cost KPI is restricted to {[500, 4500]}, the relation related to the deleted attribute

RingBellQty is removed. The CSP of CityBike.GADM(3) is also updated. The value Gray is

removed from the domain of the variable Color as well as from the constraint. The variable

RingBellQty is removed. The variable Size is added with its domain. The constraint linking

RingBellQty to User is removed. The domain of cost is restricted. Then, constraint filtering is

applied and the domains of variables are restricted.

Chapter 3: Knowledge formalization for system configuration

82

Figure 32. Example of propagation of Bike.GADM(2) updates into CityBike.GADM(3)

The following section is dedicated to the GASM(i)
j update.

Chapter 3: Knowledge formalization for system configuration

83

3.3.3. Update of Generic Artifact Structural Models

A GASM(i)
j needs to be updated when the structural view of the system has changed. New GA(i)

may be added, GA(i) may be removed or GA(i) may be changed into the structure.

Definition 14: Generic Artifact Structural Model Update

GASM update is a process of updating a current GASM(i)
j by updating (modifying, removing

or adding) its knowledge including GASM composition (quantity, GA(i)), KPIs aggregation

methods, and relations between GA(i), or between attributes and/or KPIs of GA(i).

This GASM(i)
j update is a four steps process:

Step 1) Update the description of GASM(i)
j,

Step 2) Update identified GA(i) belonging to GASM(i)
j with their quantities,

Step 3) Update aggregation methods for each KPI of GASM(i)
j,

Step 4) Update relations between GA(i) or between attributes and/or KPIs values of GA(i).

Note that any modifications made to GASM(i)
j are inherited by its specialized GASM(i+1)

j and all

its descendants, which helps experts to design and update GASMs.

We propose to map the updated GASM(i)
j within CSP (GASM(i)

j(CSP) is updated).

Step 1) Update identified GA(i) with their quantities corresponds to updating existing CSPs and

the domains of variables,

Step 2) Update relations corresponds to updating the constraints. It also includes updating the

constraints related to KPIs aggregation methods.

Then, the consistency of the updated GASM(i)
j needs to be checked by filtering the constraints.

As illustrated in Figure 33, Bike.GASM(2)
j (represented in Figure 15) is updated by replacing

Wheel.GA(2) with Wheel2.GA(2) and restricting its quantity to 3, changing the quantity of

Seat.GA from 1 to 2, and adding a new GA(i) (Frame.GA(2)). Then, Bike.GASM(2)
j(CSP) is

updated as well. The domain of variable Wheel2Qty is changed to 3, the domain of variable

SeatQty is changed to 2, a new variable is added (FrameQty), Wheel.GADM(2)(CSP) is replaced

with Wheel2.GADM(2)(CSP), and a new CSP is added i.e. Frame.GADM(2)(CSP). Two

constraints corresponding to KPIs aggregation methods are updated by taking into account

Wheel2.GA(2), and Frame.GA(2).

Chapter 3: Knowledge formalization for system configuration

84

Figure 33. An example of Bike.GASM(2)
j update

Every modification in Bike.GASM(2)
j is inherited by all its descendants. However, in Figure 34,

only the case of CityBike.GASM(3)
j is shown. Every modification must be changed by the expert.

As shown in Figure 34, Wheel.GA(2) is replaced with Wheel2.GA(2) (Wheel2 is a GA

corresponding to another family of wheels) and its quantity is restricted to 3, the quantity of

Seat.GA(2) is changed to 2, and Frame.GA(2) is added. The CSP of CityBike.GASM(3)
j is also

updated. The domains of variables WheelQty and SeatQty are respectively changed to 3 and 2,

FrameQty which is a new variable is added, Wheel.GADM(2)(CSP) is replaced with

Wheel2.GADM(2)(CSP), and Frame.GADM(2)(CSP) is added. Two constraints corresponding to

KPIs aggregation methods are updated by considering Wheel2.GA(2), and Frame.GA(2).

Chapter 3: Knowledge formalization for system configuration

85

Figure 34. Example of propagation of Bike.GASM(2)
j updates to CityBike.GASM(3)

j

The synthesis of this section is represented as follows.

Chapter 3: Knowledge formalization for system configuration

86

3.3.4. Synthesis

In this section, we have defined processes that enables to update GA(i), GADM(i), and GASM(i)
j.

After their definition, we have explained how their corresponding CSP can be updated. This

proposal facilitates the maintenance and updates of generic models since when a GA, GADM,

and GASM at a higher level of abstraction is updated, the changes or modifications are

propagated into all the lower-level GAs, GADMs and GASMs (all the descendants) by the

expert. Therefore, it is not required to modify descendants separately. Consequently, it reduces

the efforts required for managing and updating formalized knowledge. Moreover, when a GA,

GADM or GASM is updated, the propagation of the updates requires to check the validity of

all the descendants. Therefore, that participates to the content of validity of the formalized

knowledge.

The following section is dedicated to the discussion of our proposed approach.

3.4. Single-model approach or multi-model approach?

To formalize and manage generic models in the domain of system configuration, assuming a

set of system families, a single-model approach, following the proposal of Männistö (Männistö

et al., 2001) and a multi-model approach can be employed.

In the single-model approach (Männistö et al., 2001), only one generic model is created that

represents all the families of systems. This generic model incorporates all the knowledge and

diversity relevant to all families of systems. As the model becomes more complex, it can

become difficult to maintain, and update. It can also become difficult to comprehend and

interpret it because it contains all the knowledge for the families of systems. The knowledge

about the different families of systems is mixed up. This can lead to errors and inconsistencies,

and it can also make it difficult to identify and resolve problems when they occur. The generic

model can become too large and complex, making validation and knowledge maintenance

difficult to perform.

On the other hand, the multi-model approach consists of multiple (several) generic models, each

one representing a specific family of systems. This means that each generic model contains

only the knowledge and diversity relevant to a specific family of systems. Generic models are

simpler, and the knowledge is easier to understand. However, there may be redundant

knowledge modeling when two system families share similar components or attributes (Erens

& McKay, 1994).

The use of a single-model approach can often result in a complex model, which may be difficult

to comprehend, maintain and update. On the other hand, a multi-model approach may lead to

redundancy, where similar models share common knowledge. However, our proposed approach

addresses these concerns by using the concept of commonality of generic models and through

generalization and specialization relations as well as inheritance principles, which make it

possible to define generic models at different levels of abstraction.

In Figure 35, a single approach is represented for a simplified bike example while in Figure 36,

a multi-model approach is shown. In Figure 37, our approach is represented in which there

Chapter 3: Knowledge formalization for system configuration

87

exists a bike model at a higher level of abstraction containing the commonality of lower level

models. This model is created by generalizing the CityBike model and MountainBike model.

Conversely, the Bike model is specialized into the CityBike model and MountainBike model.

When a new bike needs to be designed, the generic bike model can be reused and specialized.

This reduces the amount of knowledge modeling activity that is required. The experts can focus

on innovation while reusing the elements that remain common to all bikes.

In the different sections, we have presented a taxonomy of Generic Artifacts (GA), a taxonomy

of Generic Artifact Descriptive Models (GADM), and a taxonomy of Generic Artifact

Structural Models (GASM). All these taxonomies are strongly connected and they constitute

an ontology for system configuration. In the different models, we have associated constraint

satisfaction problems (CSP). The main advantage is that they constitute a powerful formalism

to model knowledge for system configuration. They allow to formalize all the allowed

characteristics for systems, subsystems, and components. Using filtering techniques, it is

possible to check the consistency of the models and remove inconsistent characteristics.

Therefore, it is a first step for validating the formalized knowledge before storing it.

In the proposed modeling approach, we have dissociated descriptive views from structural

views. This is important for knowledge reuse. Either the expert of the knowledge is only

interested in descriptive characteristics of the systems to configure (the colors, the quantity of

windows, the power of the engine, etc.), or she/he is interested in their deep structure (the choice

of components, their bill of material, the characteristics of a specific component, etc.)

In the proposed modeling approach, generic models are defined at various levels of abstraction

which facilitate the maintenance and update of generic models. If the expert wants to change

the characteristics of the systems (change the cost, update the colors, add a new attribute…) or

change the structure of systems (replace a wheel by a new one, add a new component to the

system, etc.), he/she can update the generic model at a higher level of abstraction, in that case,

the modifications are inherited by all the descendants. On the other hand, if the expert wants to

create new systems, he/she can reuse the generic model at a higher level of abstraction since it

contains the commonality of several systems and then enrich it with specific knowledge which

is only dedicated to the relevant system. Therefore, the expert can define new generic models

at a lower level of abstraction which are much more specific.

Figure 35. An example of single-model approach

Chapter 3: Knowledge formalization for system configuration

88

Figure 36. An example of multi-model approach

Figure 37. An example of our proposed approach

In the following, the synthesis of this chapter is represented.

3.5. Synthesis

The first objective of our research work is to formalize knowledge for system configuration.

This chapter presents our first contribution, a knowledge formalization process for system

configuration using the association of ontologies, CSP approaches, and inheritance principles

to create generic models, which comes in response to our first research question: "Is it possible

to define an ontology of generic models to better manage knowledge, allowing a clear

distinction between descriptive and structural views for system configuration?"

Our proposal in section 3.1, allows modeling knowledge about a family of artifacts and creating

generic models while distinguishing descriptive views and structural views (KFC1). Therefore,

after defining a GA, we describe its descriptive view by a GADM, and its structural view by

GASM if necessary. We formalize each of these views as CSP to check their consistency during

the formalization process (KFC4) and illustrate our proposal on a simple bike example.

Our proposal in section 3.2, allows for creating an ontology of generic models. We proposed

processes for GA generalization and specialization of GA(i), GADM(i), and GASM(i)
j, then their

translation into CSP. It allows creating generic models at different levels of abstraction (KFC3),

structuring them from the most general one to the most specialized one, using generalization

and specialization relations and by employing the concept of commonality and inheritance

principles. This approach allows us to better manage knowledge, facilitate maintenance, and

update (KFC2). Depending on whether the attributes, indicators, and relationships of the GA,

GADM, and GASM are inherited or specific to the element, they are tagged with 'I' or 'S'

respectively. This ensures the consistency of the model ontologies by tracing the origin of the

knowledge.

Chapter 3: Knowledge formalization for system configuration

89

Our proposals in section 3.3, enable us to update generic models to improve them and keep

them up to date. Therefore, first, we defined the update of GA. Our proposals allow us to better

manage knowledge since modifications applied on the GA(i), GADM(i), and GASM(i)
j at a high

level of abstraction are propagated to all the GAs, GADM, or GASMs at lower levels of

abstraction.

This contribution was featured in the three following conference papers:

• Maryam Mohammad Amini, Thierry Coudert, Élise Vareilles, Michel Aldanondo.

Integration of Ontologies and Constraint Satisfaction Problems for Product

Configuration. IEEM 2021 - International Conference on Industrial Engineering and

Engineering Management, Dec 2021, Singapore, France. pp.578-582,

• Maryam Mohammad Amini, Thierry Coudert, Élise Vareilles, Michel Aldanondo.

System Configuration Models: Towards a Specialization Approach. MIM 2022 - 10th

IFAC Conference on Manufacturing Modelling, Management and Control, Jun 2022,

Nantes, France. pp.1189 - 1194, ⟨10.1016/j.ifacol.2022.09.551⟩.

• Élise Vareilles, Thierry Coudert, Michel Aldanondo, Maryam Mohammad Amini.

Capitalisation de connaissances en configuration de biens et de services : vers une

meilleure gestion de la communalité des modèles. CIGI QUALITA MOSIM 2023, Jun

2023, Trois-Rivières, Canada. 8 p.

The next chapter begins the second step of this thesis, dedicated to reusing formalized

knowledge. This chapter contains our second contribution, devoted to our second research

question, "How can ETO requirements be processed during configuration activity? "

Chapter 3: Knowledge formalization for system configuration

90

91

4. Knowledge reuse for system configuration

4.1. CTO knowledge reuse for system configuration ... 92

4.1.1. CTO configuration activity ... 92

4.1.1.1. CTO configuration principles ... 93

4.1.1.2. Generic model instances ... 93

4.1.1.3. Generic model instance processing .. 96

4.1.2. Consequences of modeling propositions... 98

4.1.3. Synthesis ... 99

4.2. ETO knowledge reuse for system configuration ... 100

4.2.1. From CTO towards ETO configuration activity ... 100

4.2.2. Adaptation of CTO instances to ETO configuration .. 104

4.2.2.1. Build ETO GADI or ETO GASI .. 105

4.2.2.2. Modify GADI or GASI ... 110

4.2.3. Synthesis ... 116

4.3. CTO-ETO knowledge reuse .. 117

4.4. Synthesis .. 120

This chapter is dedicated to our second research question: "How can ETO requirements be

processed during configuration activity?" In chapter 2, we have highlighted the absence of study

about reusing formalized generic models either descriptive or structural, and at various levels

of abstraction to fulfill non-negotiable non-standard requirements of users in ETO situations.

In response to this gap, we propose a reusing process in this chapter, which constitutes our

second contribution.

Before moving on to ETO situations, we start with CTO situations where system configuration

is performed. Therefore, we formalize knowledge reuse in CTO situations in Section 4.1, where

the objective is to meet the CTO requirements as defined in Chapter 2 taking into account our

proposals. In section 4.2 we describe the knowledge reuse step in ETO situations, where the

objective is to meet the ETO requirements of the users, as defined in Chapter 2. In section 4.3,

we explain the link between the knowledge reuse step in CTO and ETO situations. Finally, in

section 4.4 we summarize the chapter.

As illustrated in Figure 38, we adopt the knowledge management process explained in chapter

2, for system configuration knowledge reuse. All the generic models that exist in the GMB can

be shared. Then, stored generic models are reused to meet user requirements in both CTO and

ETO situations. Finally, at the end of the configuration activity, the results of the configuration,

i.e. the solutions (outputs) are stored in an Experience Base (EB). Experts can use the EB to

update the generic models (as explain in Chapter 3.4) to add new solutions to the catalog.

However, this topic is out of the scope of this thesis.

Chapter 4: Knowledge reuse for system configuration

92

Figure 38. Knowledge reuse for system configuration

4.1. CTO knowledge reuse for system configuration

This section is dedicated to knowledge reuse in CTO situations through which system

configuration can be achieved. First, in section 4.1.1, configuration activity in CTO situations

is presented with regards to our proposals. Then, in section 4.1.2, the consequence and impact

of the previous modeling propositions are clearly discussed. Finally, in section 4.1.3, the

synthesis of the section is provided.

4.1.1. CTO configuration activity

First, we describe how our proposals on knowledge formalization can be applied in CTO

situations where all requirements expressed by the user can be met by exploiting formalized

generic models stored in the GMB. In this thesis, we refer to configuration activity in CTO

situation as "CTO configuration activity". As defined in chapter 2, we consider CTO

Requirements as standard requirements (or requirements expressed as such), whether

negotiable or non-negotiable, meaning that the choices made by a user are consistent with the

current attributes’ domains. In CTO configuration activity, CTO requirements can be fulfilled

as they are supported by the generic models. To achieve this, after selecting a relevant generic

model, two topics play an important role: 1) generic model instance creation and 2) generic

model instance processing. In the first one, the definitions of GA, GADM and GASM instances,

respectively GAI, GADI and GASI are provided and in the second one, the configuration of

these instances in order to reach a solution is described.

Chapter 4: Knowledge reuse for system configuration

93

4.1.1.1. CTO configuration principles

In order to configure a system which meets the CTO requirements, the user needs first to

identify what the generic models necessary for the configuration according to descriptive and

structural views are.

CTO configuration activity refers to an interactive process by which systems are tailored to

meet CTO requirements. It involves defining user requirements, applying constraint filtering

mechanisms, and deleting inconsistent solutions according to the constraints and choices made

by the user until reaching a solution.

By reading the GA name and description (as defined in Chapter 3, definition 3), a GA

corresponding to the family of systems the user wants to configure is selected in the taxonomy

of GA.

As mentioned in chapter 3, a GA is associated to its specific GADM which corresponds to its

descriptive view. The GA can also be linked to various GASM which describe several versions

of its structural view. Therefore, once the user has selected the GA, its associated GADM is

automatically selected and the user have to decide whether selecting a version of GASM (if it

exists) or not. It depends on the kind of configuration the user wants to carry out. If the user

wants to configure a system with only the descriptive view, only the GADM is necessary. If the

user is also interested by the structural view of the system to configure, one GASM has to be

selected among the different available versions.

4.1.1.2. Generic model instances

In order to configure a system, it is necessary to create instances of generic models formalized

during the knowledge formalization process (see chapter 3). These instances are: Generic

Artifact Instance (GAI), Generic Artifact Descriptive Instance (GADI) and Generic Artifact

Structural Instance (GASI). These instances are defined as follows:

Definition 15: Generic Artifact Instance or GAI(i) in CTO

A Generic Artifact Instance, notated GAI(i) is an instance of the selected GA(i), at a certain

level of abstraction i, which is created during the CTO configuration activity in order to

answer to CTO requirements expressed by a user. It is structured as the corresponding GA(i)

(with a description). We denoted it as CTO.GAI(i).

For instance, an instance of Bike.GA(i) is denoted CTO.Bike.GAI(i).

Definition 16: Generic Artifact Descriptive Instance or GADI(i) in CTO

A Generic Artifact Descriptive Instance, notated CTO.GADI(i) is the instance of the GADM(i)

associated to a selected CTO.GAI(i). It contains the same elements than the corresponding

GADM: description, list of attributes and domains, list of KPIs and domains and list of

relations.

Chapter 4: Knowledge reuse for system configuration

94

This CTO.GADI(i) is used during the CTO configuration as the descriptive view. Within the

CTO.GADI(i), the attributes domains and KPIs domains will be restricted following the user’s

requirements and the relations between attributes using filtering mechanisms. Thus, every

CTO.GADI(i) is mapped into a corresponding CSP denoted CTO.GADI(i)(CSP).

Definition 17: Generic Artifact Structural Instance or GASI(i)
j in CTO

A Generic Artifact Structural Instance, notated GASI(i)
j is the instance of a GASM(i)

j when a

GASM(i)
j is chosen by the user. It is used when a structural view of the GAI(i) is necessary for

the CTO configuration. As a GASM(i)
j contains a list of couples (quantity, GA(i)) corresponding

to its structure, for every GA(i) in the GASM(i)
j, an instance CTO.GAI(i) is created in the GASI(i)

j

(see Figure 39). A GASI(i)
j is mapped into its corresponding CSP denoted GASI(i)

j(CSP). We

denoted it as CTO.GASI(i)
j.

Figure 39. Example of creation of an instance of a CTO.Bike.GASM(2)
j

The UML diagram of Figure 40 illustrates the different generic models, their instances and the

relations between them. For a specific CTO configuration activity, a CTO.GAI(i) is an instance

of a GA(i). A GA(i) can be associated to one or zero CTO.GAI(i). If a GA(i) has not been selected

by the user, that GA(i) will have no associated CTO.GAI(i). A CTO.GADI(i) is an instance of a

GADM(i), which is mapped into its CTO.GADI(i)(CSP). A GADM(i) can be associated to zero or

one CTO.GADI(i)(CSP) (if a GA(i) is selected for the CTO configuration, its CTO.GADI(i) is

instantiated). A CTO.GASI(i)
j is an instance of a GASM(i)

j which is mapped into its

CTO.GASI(i)
j(CSP). A CTO.GASI(i)

j is created only when the structural view is considered as

necessary by the user during the CTO configuration. For a CTO.GAI(i), only one CTO.GADI(i)

is built and one or zero CTO.GASI(i)
j is built (following the necessity of structural view or not).

Chapter 4: Knowledge reuse for system configuration

95

Figure 40. UML diagram for CTO.GAI(i), CTO.GADI(i) and CTO.GASI(i)
j and their translation into their

corresponding CSP

The aim of CTO configuration is to reach a CTO solution which meet all the CTO requirements.

A CTO requirement and a CTO solution are defined as follows.

Definition 18: CTO requirement

A CTO requirement corresponds to the selection of a value from the domain of an attribute.

We denoted it as CTO.rq.

Definition 19: CTO solution

A CTO solution for a CTO.GAI(i) corresponds to a set of attributes where the domains have

been restricted to singletons during the CTO configuration activity by respecting the defined

constraints. For the KPIs, ranges of values for a solution are accepted as they can correspond

to some lack of knowledge, uncertainties or several possibilities. During the CTO

configuration, if the choice to use the structural view is made, the CTO solution integrates

the CTO instance GASI(i)
j. Then, the bill of material is also part of the solution. We denoted

it as CTO.Solution.

Chapter 4: Knowledge reuse for system configuration

96

4.1.1.3. Generic model instance processing

In order to configure systems in CTO situations by exploiting the instances of the selected

generic models, a generic model processing activity has to be performed. The generic process

for knowledge reuse in CTO is proposed in Figure 41 and Figure 42. It is a recursive process

based on a sub-process denoted “Configure CTO GAI” composed of two parts: one dedicated

to the descriptive view, denoted “Configure CTO GADI” (Figure 41) and one optional,

dedicated to the structural view, denoted “Configure CTO GASI” (Figure 42).

Figure 41. Flowchart for knowledge reuse in CTO configuration: GADI configuration

Chapter 4: Knowledge reuse for system configuration

97

Figure 42. Flowchart for knowledge reuse in CTO configuration: GASI configuration

In this CTO knowledge reuse process, a GA(i) is first selected by the user. The instance

CTO.GAI(i) is created with the instance CTO.GADI(i). Then, the CTO.GAI(i) and the CTO.GADI(i)

are provided to the “Configure CTO GAI” sub-process. Using the CTO.GADI(i), the user

launches the “Configure CTO GADI” sub-process and defines one requirement CTO.rq

restricting the domain of a variable in the CSP. A constraint filtering mechanism is applied

using the corresponding CSP (i.e. the CTO.GADI(i)(CSP)). If one empty domain is obtained, the

CTO knowledge reuse process ends with no solution. Otherwise, the definition of requirements

and the filtering are continued until all filtered domains for attributes contain singletons (i.e. a

single value). Then, a CTO solution for the CTO.GAI(i) is proposed to the user. It corresponds

to a set of couples (attribute, value) or (variable, value). The KPIs can either have an interval

or a single value in their domains.

Chapter 4: Knowledge reuse for system configuration

98

Then, the user is asked to express if the structural view is necessary or not. If it is not necessary,

the configuration is over and the solution is stored in the Experience Base (EB) and the user

can exploit the obtained CTO solution. If the structural view is necessary, the user launches the

“Configure CTO GASI” sub-process and has to select one version of the GASM(i)
j thanks to its

description. Then, an instance CTO.GASI(i)
j is created. Therefore, for each CTO.GAI(i) which

belongs to CTO.GASI(i)
j, its quantity has to be defined and the sub-process “Configure GAI” is

reused recursively. The CTO knowledge reuse process ends when all the CTO.GAI(i) have been

configured and the CTO.GASI(i)
j KPI are aggregated. Then, the instantiated CTO.GASI(i)

j is

added to the CTO solution.

At the end of the CTO knowledge reused process, the solution (which can be only descriptive

or which can include a bill-of-material - i.e. structural) is stored into the EB. This will enable

later reuse of the system configuration experience in similar situations. However, this is not

described in this thesis.

In the following section, we explain what are the consequences of our proposals mentioned in

chapter 3 in CTO knowledge reuse for system configuration.

4.1.2. Consequences of modeling propositions

This section is dedicated to the consequences and impact of our proposals on knowledge reuse

in CTO situations. Therefore, first, descriptive view versus structural view and then multi-level

abstraction modeling are explained.

• Descriptive view versus structural view

As mentioned in chapter 3, the descriptive view of a GA(i) is defined by a Generic Artifact

Descriptive Model (GADM(i)), while its structural view is defined by a Generic Artifact

Structural Model (GASM(i)
j).

When a user selects a GA(i), its associated GADM(i) is selected as well. It implies that the choice

of GADM(i) is predetermined since each GA(i) is linked to only one GADM(i). On the other hand,

the selected GA(i) can have multiple GASM(i) associated with it or none at all.

Once the user selects a GA(i) and builds an instance of GADM(i), the CTO configuration of

CTO.GADI(i) begins. During the CTO configuration of the CTO.GADI(i), the user decides

whether to configure GASM as well. If the user wants to configure GASM, first, she/he selects

one version of GASM from the available GASMs. To select one GASM, the user can compare

different GASMs based on their KPIs.

On the other hand, since a GASM(i)
j is defined recursively, it is composed of several GA(i).

Therefore, for each GA(i), the user needs to decide whether to configure only GADM(i) or

configure both GADM(i) and GASM(i)
j. It's important to note that for each GA(i), the

configuration of GADM(i) is mandatory however, a decision on which GASM(i)
j be configured

and how deeply depends entirely on the model and user's decision.

Chapter 4: Knowledge reuse for system configuration

99

• Multi-level abstraction modeling

In chapter 3, we have explained that at the end of the knowledge formalization, three

taxonomies of GA, GADM, and GASM are created. Each of them can be defined at different

levels of abstraction.

From the GAs taxonomy, first, the user can select either a general or a specialized GA. In the

case that the user selects a GA at a higher level of abstraction (GA(i-1)), both the associated

GADM and GASMs are also generic and at higher level of abstraction (respectively

GADM(i-1) and GASM(i-1)
j). It is important to notice that the user selects a GA(i) when none of

the specialized GAs (GA(i)) can fulfill requirements this choice can be made by looking at

GA(i)’s name and description. Once the user has selected GA(i-1), an instance of its associated

GADM (notated CTO.GADI(i-1)) is configured and an instance of its associated GASM (notated

CTO.GASI(i-1)
j) can be configured as well. During configuration, the user can access the

common body of knowledge to meet their requirements.

On the other hand, when a user selects a specialized GA at a lower level of abstraction (GA(i+1)),

both the associated GADM and GASMs are also specialized in nature and at a lower level of

abstraction (respectively GADM(i+1) and GASM(i+1)
j). Once the user has selected GA(i+1), an

instance of its associated GADM (notated CTO.GADI(i+1)) is configured and an instance of its

associated GASM (notated CTO.GASI(i+1)
j) can also be configured. During configuration, the

user can access a more restricted but enriched body of knowledge to fulfill their particular

requirements.

In the following, the synthesis of the chapter is presented.

4.1.3. Synthesis

To address our second research question, it is required to first study CTO situations. Therefore,

this section was dedicated to the CTO knowledge reuse. First, we briefly explained about

generic model selection. Then, we discussed CTO configuration activity. We began by defining

the CTO principles and the generic model instances used for CTO configuration. Generic

Artifact Instance (CTO.GAI(i)), Generic Artifact Descriptive Instance (CTO.GADI(i)) and

Generic Artifact Structural Instance definition (CTO.GASI(i)
j) were defined. Then, a generic

CTO knowledge reuse process has been detailed. It enables to provide CTO solutions to meet

CTO requirements.

Second, we explained the impact of our proposals related to knowledge formalization in CTO

situations including selecting and configuring descriptive and/or structural views and selecting

and configuring according to different levels of abstraction.

After describing the knowledge reuse in CTO situations, we need to move towards knowledge

reuse in ETO situations which is the subject of the following section.

Chapter 4: Knowledge reuse for system configuration

100

4.2. ETO knowledge reuse for system configuration

This section is devoted to knowledge reuse in ETO situations. Therefore, in section 4.2.1, the

transition from CTO to ETO configuration activity is studied. Then, in section 4.2.2, the

adaptation of CTO instances to ETO is discussed. Finally, in section 4.2.3, the section is

synthesized.

4.2.1. From CTO towards ETO configuration activity

In CTO configuration activity, it is not possible to fulfill all types of requirements, particularly

ETO requirements which are out of the generic models (as mentioned in chapter 2, sections

2.1.2.1 and 2.1.2.2). To address them, engineering activities are required. In our proposals, this

is taken into account by a process which enables modifying existing pieces of knowledge or

creating new ones. Therefore, ETO requirements must be fulfilled during configuration activity

in ETO situation. In this thesis, we will refer to configuration activity in ETO situation as "ETO

configuration".

The definition of an ETO requirements is given below.

Definition 20: ETO requirement

An ETO requirement corresponds to a need that cannot be expressed with the current

instance. It may involve selecting a value outside the possible domain of an attribute, adding

elements to the nomenclature, or choosing combinations not authorized by the underlying

model. We denoted it as ETO.rq.

In order to perform an ETO configuration activity, we formalize a generic process for

knowledge reuse in ETO situations by means of the flowchart of Figure 43 and Figure 44. Some

parts of this process are similar to the generic processes of Figure 41 and Figure 42 for CTO

configuration. It enables to reuse formalized pieces of knowledge allowing to modify them in

order to meet ETO requirements. This process starts by asking to the user to check if a relevant

GA(i) corresponding to the requirements is available. If it is the case, this GA(i) is selected in the

taxonomy of GAs with it associated GADM(i). Otherwise, a new ETO.GAI(i) is created with its

ETO.GADI(i). This corresponds to the realization of an engineering activity where a new system

or family of systems has to be designed. Following the necessity or not to have a structural view

for this new ETO.GAI(i), an ETO.GASI(i) is created or not. It is important to notice that only

instances are created and not generic models such as GA, GADM or GASM. Indeed, these new

pieces of knowledge are created to answer to ETO requirements but they are not yet validated

as standard knowledge. Therefore, every new element created or modified during this ETO

configuration process is embedded in an instance and it cannot be considered as standard

knowledge. If every GAI, GADI and GASI are created -we can talk about a heavy ETO

solution- no modification is required so this ETO solution can be proposed then capitalized in

an EB. Note that the definitions of these instances are given in the next section.

Then, the sub-process denoted “Configure ETO GAI” is performed. It is a recursive process

which enables to configure a GAI to meet the ETO requirements. This sub-process starts by the

definition by the user of one ETO requirement denoted ETO.rq. With regard to this requirement,

Chapter 4: Knowledge reuse for system configuration

101

the modification of the GADI is performed. Four cases are taken into account and this step will

be described in the section 4.2.2.2. We denoted it as ETO.GAI(i) to distinguish it from the

CTO.GAI(i).

Therefore, the ETO.GADI(i) is manually configured. That means that a restriction of the

domains following the ETO.rq is done. This cannot be done automatically using a filtering

mechanism because all the new added elements will be removed as they are not considered as

consistent with the knowledge. The definition of CTO/ETO requirements by the user and the

ETO.GADI(i) modification is continued until all the domains contains single values. Then, an

ETO solution is obtained for the GAI(i). It corresponds to a set of couples (attribute, value) or

(variable, value). The KPIs can have a range in their domains. The ETO solution is stored into

the EB

If the structural view is required for ETO configuration, the user has to select the right version

of the GASM and create an instance denoted ETO.GASI(i)
j (or to use the GASI which has been

created at the beginning of the process).

If it is necessary to meet ETO requirements, the modification of the ETO.GASI(i)
j is performed

following five complementary cases (see section 4.2.2.2). This step enables to obtain a modified

ETO.GASI(i)
j. Then, for each GAI(i) which belongs to the ETO.GASI(i)

j, the sub-process

“Configure ETO GAI” is performed recursively. At the end of the modification of the

ETO.GASI(i)
j, it is added to an ETO solution.

At the end of the ETO knowledge reused process, the ETO solution is stored into the EB. This

will enable later reuse of the system configuration experience in similar situations, as well as

the update of the GAs, GADMs, and GASMs stored in the GMB. However, this is not described

in this thesis.

The definition of an ETO solution are given below.

Definition 21: ETO solution

An ETO solution for a GA(i) corresponds to a set of attributes whose domains are restricted

to singletons during the configuration activity, free from the constraints defined by the

generic model. If a dive into the structural view has been performed, the ETO solution has a

nomenclature (which may or may not be consistent with the knowledge model). We denoted

it as ETO.solution.

Chapter 4: Knowledge reuse for system configuration

102

Figure 43. Flowchart for knowledge reuse in ETO situations: GADI configuration

Chapter 4: Knowledge reuse for system configuration

103

Figure 44. Flowchart for knowledge reuse in ETO situations: GASI configuration

Chapter 4: Knowledge reuse for system configuration

104

In the following section, we will discuss how to adapt from CTO instances to ETO

configuration.

4.2.2. Adaptation of CTO instances to ETO configuration

As mentioned before, in ETO configuration activity, to meet ETO requirements it may be

required to modify the attributes, structure, or relations of the existing instances. Or even it may

be needed to define entirely new attributes or relations for instance. This means that instances

in CTO need to be adapted in order to meet the user's ETO requirements. Therefore, in this

section, first, the definition of instances in ETO is represented. Then, in section 4.2.2.1, building

new instances is discussed. After that in section 4.2.2.2 modifications of existing instances are

proposed.

Definition 22: Generic Artifact Instance or GAI(i) in ETO

A Generic Artifact Instance, notated GAI(i) is a completely new instance or a modified one

which is defined during ETO configuration activity in order to answer to ETO requirements

of users. We denoted it as ETO.GAI(i) to distinguish it from the CTO.GAI(i).

Since the selected GA(i) is linked to a GADM(i), it is necessary to build an instance of the

GADM(i).

Definition 23: Generic Artifact Descriptive Instance or GADI(i) in ETO

A Generic Artifact Descriptive Instance, notated GADI(i) is either a completely new instance

or a modified one. It is defined during ETO configuration activity to answer to ETO

requirements of users. It enables to use a descriptive view of the ETO.GAI(i) during ETO

configuration. We denoted it as ETO.GADI(i).

When the choice to use the structural view is made, among several GASMs that the selected

GA(i) can be associated with, the user has to choose one. Therefore, it is necessary to build an

instance of the selected GASM.

Definition 24: Generic Artifact Structural Instance or GASI(i)
j in ETO

An instance of a GASM is denoted GASI, which can be either a completely new instance or

a modified one. It is an element that enable to define a structural view for an ETO.GAI(i)

during the ETO configuration activity to meet ETO requirements. We denoted it as

ETO.GASI(i)
j.

Chapter 4: Knowledge reuse for system configuration

105

4.2.2.1. Build ETO GADI or ETO GASI

This section is dedicated to the definition of new instances based on ETO requirements of the

user. Initially, the definition of GAI build is proposed, followed by the definition of GADI

build. Finally, the definition of GASI build is provided.

During the ETO configuration activity, the user may require a GA(i) that does not exist in the

taxonomy of GAs. We, therefore, build a new instance of GA(i) as follows.

Definition 25: GAI building in ETO

GAI building is a process of creating a new GAI(i) in ETO configuration activity to satisfy

ETO requirements of users that cannot be met by reusing any of the GA(i) in GMB. We

denoted it as ETO.GAI(i).

As for knowledge formalization to create a ETO.GAI(i), it is necessary to assign a name and

provide a description. For instance, in Figure 45, a new ETO.GAI(i) representing an instance of

the family of mirrors is defined. This new ETO.GAI(i) is built since the user demands

Mirror.GA(i) however, this GA(i) does not exist in the taxonomy of GAs. In ETO.Mirror.GAI(i),

the name Mirror conveys a vivid mental image of a mirror. Its description is provided as well.

Although a ETO.GAI(i) does not explicitly represent knowledge about the attributes or structure

of an instance of artifacts family, it offers a clear comprehension of the instance. Note that once

the new ETO.GAI(i) is built, it will not be stored within the GAs taxonomy (in the GMB), but it

will be stored in the experience base.

Figure 45. An example of ETO.Mirror.GAI(i)

When a ETO.GAI(i) is created, it is necessary to create its associated ETO.GADI(i) in order to

obtain a descriptive view of the ETO.GAI(i). The descriptive view or GADI(i) will enable to

perform the ETO configuration activity by using the descriptive view.

Definition 26: GADI building in ETO

We define GADI building as a process of creating a new GADI(i) in ETO configuration

activity to satisfy ETO requirements of users that cannot be met by reusing the formalized

knowledge. It corresponds to the descriptive view of its associated ETO.GAI(i). We denoted

it as ETO.GADI(i).

Chapter 4: Knowledge reuse for system configuration

106

Similar to a GADM(i), ETO.GADI(i) is characterized by:

− Name: It shares the same name as the ETO.GAI(i), providing a clear mental representation

of the ETO.GADI(i).

− Description: It offers a statement that portrays the current appearance of the ETO.GADI(i).

This description can be the same as the ETO.GAI(i)’s description or it can be more detailed.

− Attributes with their domains: It includes a list of key descriptive attributes and their valid

domains, which depict the characteristics of the current ETO.GAI(i). The domain can include

the uncertainty of each attribute.

− KPIs with their domains: It consists of a list of key performance indicators and their valid

domains, which are necessary for evaluating the performance of the current ETO.GAI(i). The

corresponding domains of KPIs also take into account the uncertainty associated with them.

It means that the domain of KPIs can be a range or a singleton.

− Relations between attributes and/or KPIs values (not mandatory): It involves a list of

relations that describe the solution space of the current ETO.GAI(i). These relations

determine which combinations of attribute and/or KPI values are allowed or forbidden,

thereby defining the possible characteristics of the ETO.GAI(i) along with its associated

performances. This can be helpful to update the generic models stored in the GMB.

To formalize an ETO.GADI(i), we propose mapping it within a CSP:

− Attributes and domains correspond to variables and domains of the CSP,

− KPIs and domains are also treated as variables with their corresponding domains,

− Relations between attributes and/or KPIs of ETO.GADI(i) are expressed by employing

compatibility tables and numerical functions.

By formalizing the ETO.GADI(i) as a CSP, we can apply filtering techniques to check and

maintain the consistency of the ETO.GADI(i).

Figure 46 represents a new ETO.GAI(i), and its associated ETO.GADI(i) which are mapped into

a CSP notated ETO.GADI(i)(CSP).

Figure 46. Build a new ETO.GADI(i) and its translation into a CSP

Chapter 4: Knowledge reuse for system configuration

107

For example, Figure 47 illustrates an ETO.GADI(i) of an instance of mirror family which is built

since the user wants Mirror.GADM(i) but this GADM(i) is not present in the taxonomy of

GADMs. Therefore, this new ETO.GADI(i) is built and then translated into a CSP. In

ETO.Mirror.GADI(i), there is one attribute (Diameter) and two KPIs (Weight and Cost), which

correspond to three variables in Mirror.GADI(i)(CSP). It should be noted that

ETO.Mirror.GAI(i) and ETO.Mirror.GADI(i) are built to meet ETO requirements. This is why

the term "ETO" is used in ETO.Mirror.GAI(i), ETO.Mirror.GADI(i) and its CSP.

Figure 47. An example of building a ETO.Mirror.GADI(i) and its translation into a CSP

During the ETO configuration activity, the user may require to use a structural view for an

ETO.GAI(i).

Definition 27: GASI building in ETO

We define GASI building as a process of creating a new GASI in ETO configuration activity

to satisfy ETO requirements of users that cannot be met by reusing the formalized knowledge

in GMB. We denoted it as ETO.GASI(i).

Therefore, an instance ETO.GASI(i) has to be created. It is important to notice that it is not an

instance of an existing GASM(i)
j but it is built specifically during the ETO configuration activity

in order to meet the ETO requirements of the user.

As for a GASM(i)
j, an ETO.GASI(i) is characterized by:

− Name: It refers to the same name as the ETO.GAI(i) and aims to create a vivid mental image

of the ETO.GASI(i).

− Description: It provides a statement that describes the current appearance or composition

of the ETO.GASI(i).

− GASI composition (quantity, GAI(i)): It is a list of pairs consisting of the quantity and

GAI(i) (existing GAI(i) and new ones) that make up the first level of GASI composition.

− KPIs aggregation methods: It comprises a list of methods used to evaluate the KPIs of the

associated ETO.GADI(i) based on its GAI(i)s and their quantities.

Chapter 4: Knowledge reuse for system configuration

108

− Relations between GAI(i)s or between attributes and/or KPIs of GAI(i)s (not

mandatory): It represents a list of relations within the ETO.GASI(i) that define the entire

solution space of the current ETO.GASI(i). These relations enable updating the generic

models stored in the GMB.

In order to formalize an ETO.GASI(i), our proposal involves mapping ETO.GASI(i) within a CSP

in the following manner:

− Each GAI(i) in the GASI composition is substituted by its corresponding CSP, while the

quantities are represented by variables and domains,

− KPIs aggregation methods are formalized as constraints that establish links between all

KPIs associated with the composition of the current ETO.GASI(i),

− Relations are formalized by employing compatibility tables and numerical functions. As

explained in section 3.1.3 the relations within ETO.GASI(i) can have different types.

Consequently, the corresponding CSP consists of two parts: one for the ETO.GADI(i) and

another for the ETO.GASI(i).

In order to build a ETO.GASI(i), firstly, a name (the same as the ETO.GAI(i)'s name) and a

description must be defined to the ETO.GASI(i). Then, the GAI(i)s that belong to the ETO.GASI(i),

along with their quantities have to be defined. Furthermore, aggregation methods for each KPI

of ETO.GASI(i) must be defined. Additionally, relations between attributes and/or KPI values

of the GAI(i)s, must be established.

CSP allows to apply filtering techniques on every GAI(i) locally. In this way, it ensures the

consistency of the newly built ETO.GASI(i). However, this ETO.GASI(i) will not be stored in the

GMB, but it will be stored into the experience base for reusing.

Similar to GASM, the process of defining ETO.GASI(i) is also iterative, recursive and bottom-

up. Meaning that a GAI(i) within a ETO.GASI(i) can have its own GASI(i)
j, and a new ETO.GASI(i)

cannot be defined without first building a new ETO.GAI(i) and a new ETO.GADI(i).

Figure 48 illustrates that one new ETO.GASI(i) is built for a new ETO.GAI(i), which is then

mapped into a CSP.

Chapter 4: Knowledge reuse for system configuration

109

Figure 48. ETO.GASI(i) and its translation into a CSP

For instance, Figure 49 shows ETO.Mirror.GASI(i), as an instance representing a structural view

for a family of mirrors. Based on the user requirements, ETO.Mirror.GASI(i) is composed of

one ETO.Glass.GAI(i) and one ETO.MirrorFrame.GAI(i). The CSP of ETO.Mirror.GASI(i)

encompasses the CSP of the ETO.Mirror.GADI(i). In Mirror.GASI(CSP), GAI(i) within

ETO.Mirror.GASI(i)
 are replaced with their CSP and quantities of both GAI(i)

(ETO.MirrorFrame.GAI(i) and ETO.Glass.GAI(i)) are represented by variables. KPIs

aggregation methods are also formalized as constraints (represented as numerical functions). A

relation in ETO.Mirror.GASI(i) exists: different materials of the mirror frame are only

appropriate for the certain shape of the glass. This relation is formalized using a table of

compatibility in the CSP of the ETO.Mirror.GASI(i) which links the compatible values of the

variables ‘Shape’ (from ETO.Glass.GADI(i)) and ‘Material’ (from ETO.MirrorFrame.GADI(i)).

Finally, constraint filtering is applied to ensure the consistency of the new ETO.Mirror.GASI(i).

Note that since ETO.Mirror.GASI(i) is built to meet ETO requirements, therefore in both

ETO.Mirror.GASI(i) and its CSP the letter ‘E’ is used for the list (quantity, GAI(i)), KPIs

aggregation methods, relations, variables, CSPs, and constraints. For a compatibility table, the

tag ‘E’ is written in the columns and tuples. However, for numerical functions, the tag ‘E’ is

written at the beginning of the constraint.

Chapter 4: Knowledge reuse for system configuration

110

Figure 49. Example of a new ETO.Mirror.GASI(i) and its translation into a CSP

The following section is dedicated to the modification of instances.

4.2.2.2. Modify GADI or GASI

During ETO configuration, users may require attributes, structure, or relations that does not

exist in the formalized knowledge models for configuration. Therefore, in order to fulfill these

ETO requirements, existing instances must be modified leading to modifications in the solution

space. Therefore, in this section which is devoted to the modification of instances, first, the

definitions of GADI and GASI modification are proposed.

Definition 28: GADI modification

GADI modification is the process of modifying or adapting the current GADI during ETO

configuration by enriching the available knowledge to meet ETO requirements. This may

lead to an ETO solution for the GAI(i) that will be stored in the EB. This modification turns

the CTO.GADI(i) into an ETO.GADI(i).

This GADI modification is a two-step process:

Step 1) Modify the name and description of the current ETO.GADI(i) (if necessary),

Step 2) Enrich the knowledge of the current ETO.GADI(i): based on the work of (Sylla, Guillon,

Vareilles, et al., 2018) four cases are proposed. Therefore, the user can enrich the knowledge

of the current ETO.GADI(i) by adding specific knowledge in order to meet ETO requirements.

To enrich the knowledge, the following four cases for ETO.GADI(i) modifications are explained

as follows:

Chapter 4: Knowledge reuse for system configuration

111

− Case 1: Enlarge the domains of existing attributes: since the user requires one value

of an attribute which is outside the current domains of attribute, this new value must

be added to the domains of attribute. It enables to define an ETO.GADI(i) with new

characteristics according to what the user wants.

− Case 2: Define new combinations of attributes and/or KPIs values: the user wants a

new combination of attributes and/or KPIs values that is beyond the existing ones.

Therefore, a relation must be extended in order to link at least two incompatible

values of attributes and/or KPIs within an existing constraint.

− Case 3: Define new attributes with their domains: since the user requires a new

attribute that does not previously exist, a new attribute with its domain must be

defined. This allows the user to define an ETO.GADI(i) with specific characteristics

(i.e. attributes with their domains).

− Case 4: Define new relations between attributes and/or KPIs values: the user may

need for a relation that does not currently exist, aiming to establish a link between

attributes and/or KPIs values. Alternatively, the user may wish to explicitly

represent the allowed or forbidden combinations of attributes and/or KPIs values.

Therefore, the user must add a new relation that can link new attributes with existing

attributes, or new attributes. This is the only case where the solution space is not

enlarged.

We propose to modify the CSP (ETO.GADI(i)(CSP)) as follows:

− Case1: Enlarging the domains of attributes or KPIs corresponds to adding new

values to the corresponding domains of variables. In this case, constraint filtering

must not be applied since there may exist a constraint that after filtering, will delete

the added values.

− Case 2: Defining new combinations of attributes and/or KPIs values corresponds to

adding new tuples to the existing compatibility tables. The user extends the

constraint by adding a new tuple that links at least two previous incompatible values

of variables. It should be noted that this case mainly deals with compatibility tables.

Therefore, if there is a numerical function, the user needs to modify it manually.

− Case 3: Defining new attributes with their domains corresponds to adding new

variables and their corresponding domains.

− Case 4: Defining new relations corresponds to adding new constraints in

ETO.GADI(i)(CSP) either compatibility tables or numerical functions).

For instance, as represented in Figure 50, in order to meet ETO requirements,

ETO.Wheel.GADI(2) is modified. The requirement of the user can be related to a better

resistance to shocks during off-road utilization of wheel. As no solution exists to meet this

requirement, the ETO.Wheel.GADI(2) must be modified. This modification will correspond to

the result of an engineering activity performed by designers. Then, it is translated into a CSP

(ETO.Wheel.GADI(2)(CSP)). The user wants the diameter of the wheel to be 29, therefore in

Chapter 4: Knowledge reuse for system configuration

112

ETO.Wheel.GADI(2), the domain of the attribute Diameter is enlarged and the value ‘E:29’ is

added into the domain. In the CSP of ETO.Wheel.GADI(2), the new value ‘E:29’ is added to the

domain of the variable Diameter. Note that before 29, E is written to represent that this value is

added to fulfill the ETO requirement. That corresponds to the case 1.

The user wants a wheel with 28 spokes. To define this requirement in ETO.Wheel.GADI(2), a

new attribute with its domain is added (E: SpokeQty in {28}). In the CSP of

ETO.Wheel.GADI(2), a new variable with its corresponding domain is added (E: SpokeQty).

That corresponds to the case 3.

The user wants to express the fact that a wheel with the diameter 29, a material steel, a weight

of 3, and a cost of 600 € are now compatible. Therefore, to meet this requirement, an existing

relation is extended in ETO.Wheel.GADI(2), while in the CSP of ETO.Wheel.GADI(2), an

existing constraint is extended by adding a new tuple (tagged using E), indicating that Diameter

‘29’ is compatible with the material ‘Steel’, the weight ‘3’, and the cost ‘600’. That corresponds

to the case 2.

The user needs to define a relation between the quantity of spokes and wheel diameter.

Therefore, in ETO.Wheel.GADI(2), a new relation indicating that the quantity of spoke depends

on the diameter is defined. Then, in ETO.Wheel.GADI(2)(CSP), a new compatibility table is

added linking the compatible values of variables I: Diameter and E: SpokeQty. Note that

constraint filtering is not applied thus the domains of variables are not restricted. That

corresponds to the case 4.

Figure 50. Example of modifying ETO.Wheel.GADI(2) and its translation into a CSP

In this example, only the descriptive view is necessary. The user doesn’t need to take into

account how the Wheel.GAI is composed. Therefore, the ETO configuration consists in

modifying the instance Wheel.GADI of Wheel.GASM and to manually configure it. For instance,

if the user wants that the diameter of the wheel is exactly ‘29’, the configuration is done

manually removing all the incompatible values from the variables domains. In the example of

Figure 50, this will lead to a solution where the diameter is ‘29’, the material is ‘steel’, the

weight is ‘3’, the quantity of spokes is ‘28’ and the cost is ‘600’.

Chapter 4: Knowledge reuse for system configuration

113

Similarly, in order to meet the user’s requirements, a GASI may be modified. This is related to

the decision taken by the user to use the structural view.

Definition 29: GASI modification

GASI modification is a process of modifying or adapting a GASI during ETO configuration

by enriching their knowledge to meet ETO requirements. This may lead to an ETO solution

that will be stored in the EB. This modification turns the CTO.GASI(i)
j into an ETO.GASI(i)

j.

GASI modification is a two-step process:

Step 1) Modify the name and description of the current ETO.GASI(i)
j (if necessary),

Step 2) Enrich the knowledge of the current ETO.GASI(i)
j: based on (Sylla, Guillon, Vareilles,

et al., 2018) five cases are proposed. The user can enrich the knowledge of the current

ETO.GASI(i)
j by adding specific knowledge to fulfill ETO requirements:

The BOM is modified in the following three cases.

− Case 1: Enlarge the quantity domains of GAI(i) within ETO.GASI(i)
j: the user wants

a quantity outside the existing domains of quantities. Therefore, to meet this

requirement the new value of quantity must be added to the domain which did not

previously exist. For example, enlarging a quantity of a GAI(i) from {[0, 1]} to {[0,

1], 3} will allow to use 0, 1 or 3 GAI(i) within the ETO.GASI(i)
j. Enlarging the

quantities domains of GAI(i) increases the solution space. After enlarging the

quantities of GAI(i), KPIs aggregation methods must be updated.

− Case 2: Replace a GAI(i) with another GAI(i) within ETO.GASI(i)
j: the user may

require another GAI(i) existing in the taxonomy instead of a GAI(i) within

ETO.GASI(i)
j. In addition, the user may require to replace a GAI(i) with another GAI(i)

which has been previously modified (resulting from previous ETO cases). Then,

after replacing the GAI, KPIs aggregation methods need to be updated. Replacing a

GAI(i) with a modified ETO.GAI(i) can increase the solution space.

− Case 3: Add new or existing GAI(i) with their quantity domains to the ETO.GASI(i)
j:

the user may request a new GAI(i) with its quantity domain to be added to the

structural view. Therefore, to fulfill this requirement, one or more GAI(i), whether

they are new or existing, along with their quantities, must be defined. Then, they are

integrated into the current ETO.GASI(i)
j. This allows to define an ETO.GASI(i)

j with

a specific structure based on the user requirements. Then, KPIs aggregation methods

need to be updated. These new GAI(i) which have been added to the ETO.GASI(i)
j

make the solution space increase.

Chapter 4: Knowledge reuse for system configuration

114

The knowledge is modified in the following two cases.

− Case 4: Define new combinations of attributes and/or KPIs values of GAI(i): the user

demands a new combination of attributes and/or KPIs values of GAI(i)s that were not

allowed. Thus, a relation must be extended to link at least two incompatible values

of attributes and/or KPIs of various GAI(i). Adding this new combination of

attributes and/or KPIs values of GAI(i) increases the solution space. This case is

similar to case 2 of ETO.GADI(i) modification which was related to the relations

within each ETO.GADI(i). However, here the modification of the ETO.GASI(i)
j is

related to the relations between attributes and/or KPIs values of different GAI(i)

within the ETO.GASI(i)
j.

− Case 5: Define new relations between GAI(i) or between attributes and/or KPIs

values of GAI(i): the user may require a new relation that does not exist between

GAI(i) or between attributes and/or KPIs values of the GAI(i) which compose the

ETO.GASI(i)
j. The user may require to explicitly represent the allowed or forbidden

combinations of GAI(i) or combination of attributes and/or KPIs values of GAI(i).

Thus, new relations must be defined which can link i) new GAI(i) with existing

GAI(i), ii) new GAI(i), iii) attributes and/or KPIs values of new GAI(i) and existing

ones, or iv) attributes and/or KPIs values of new GAI(i). This case is very similar to

case 4 of ETO.GADI(i) modification. However, here the relations between different

GAI(i)s (or between attributes and/or KPIs values of different GAI(i)) are considered.

We propose to modify the CSP as follows in ETO.GASI(i)
j(CSP).

− Case 1: Enlarging the quantities of GAI(i) corresponds to adding new values to the

corresponding domains of variables,

− Case 2: Replacing a GAI(i) with another GAI(i) corresponds to replacing an existing

CSP with another CSP,

− Case 3: Adding new or existing GAI(i) with their quantities corresponds to adding

new CSPs and new variables.

− Case 4: Defining new combinations of attributes and/or KPIs values of GAI(i)s

corresponds to adding new tuples to the compatibility tables. The user extends the

constraint by adding new constraint tuples linking at least two incompatible values

of variables of GAI(i)s.

− Case 5: Defining new relations corresponds to adding new constraints. These new

relations are formalized as constraints that can be compatibility tables or numerical

functions.

For example, as shown in Figure 51, to meet user’s ETO requirements, the ETO.Bike.GASI(2)
1

is modified and then it is translated into a CSP in which the CSP of the Bike.GADI(2) is

embedded. The user wants to replace the existing Wheel.GAI(2) with the modified Wheel.GAI(2).

To fulfill this requirement, in ETO.Bike.GASI(2)
1, Wheel.GAI(2) is replaced with the modified

one (E: Wheel.GAI(2)). The letter ‘E’ at the beginning of the Wheel.GAI(2) represents that this

Chapter 4: Knowledge reuse for system configuration

115

GAI has been modified in ETO configuration activity. In ETO.Bike.GASI(2)
1(CSP),

Wheel.GASI(2)(CSP) which is an embedded CSP is replaced with E: Wheel.GASI(2)(CSP) which

is a modified CSP since its corresponding Wheel.GADI(2) is modified.

In this example, the user wants a bike with two seats. Thus, to meet this requirement in

Bike.GASI(2)
1 the quantity of a Seat.GAI(2) is enlarged and the value ‘E: 2’ is added to the

quantity. Moreover, in ETO.Bike.GASI(2)
1(CSP), the mentioned value is added to the domain of

the variable SeatQty. It is related to the case 1.

The user wants also a bike with a mirror. Therefore, in ETO.Bike.GASI(2)
1 a new GAI with its

quantity is added (i.e. E: ({1}, Mirror.GAI(i))). In addition, in ETO.Bike.GASI(2)
1(CSP), a new

CSP is added (E: Mirror.GASI(i)(CSP)) as well as a new variable corresponding to its quantity

is added (E: MirrorQty). It is related to the case 3.

The user wants to define a relation between the categories of bike users and the material of the

seat. Therefore, in ETO.Bike.GASI(2)
1, a relation is extended (E: the user child is only

compatible with the material ‘carbon’). Moreover, in ETO.Bike.GASI1(CSP) an existing

constraint is enlarged by adding a tuple that links incompatible values of Bike.GADI(2).User and

Seat.GADI(2).Material. It is related to the case 4.

The user wants also to define a relation between the quantity of mirrors and the quantity of

seats. Therefore, in ETO.Bike.GASI(2)
1, a new relation is added (E: Quantity of mirror depends

on the quantity of seat). In addition, this relation in ETO.Bike.GASI(2)
1(CSP) is translated into

a new compatibility table linking the compatible values of Seat.GADI(2).SeatQty and

E: Mirror.GADI(i).MirrorQty. If there is only one seat, there can be one or two mirrors. But if

there are two seats, it is mandatory to have two mirrors. This situation is also related to the case

5.

In ETO.Bike.GASI(2)
1(CSP), two constraints related to KPIs aggregation methods are updated.

In which, whatever is modified during configuration is tagged with ‘E’ otherwise it is not

tagged. It is important to notice that constraint filtering is not applied to check the consistency

of the built ETO.Bike.GASI(2)
1(CSP). The ETO configuration activity has to be performed

manually. If the user wants two seats, the solution will be quantity of two mirrors. If the bike is

for a child, the material of the seat will be ‘carbon’. It is done manually.

Chapter 4: Knowledge reuse for system configuration

116

Figure 51. Example of modifying ETO.Bike.GASI(2)
1 and its translation into a CSP

In the following section, the synthesis of the ETO configuration activity is presented.

4.2.3. Synthesis

In this section, we have focused on our second research question: " How can ETO requirements

be processed during configuration activity?" by adapting configuration activity. Our approach

involved proposing an adaptation of CTO to ETO by 1) creating a new GADI or GASI and

2) modifying GADI or GASI.

For the modification of ETO.GADI(i), based on the work of (Sylla, Guillon, Vareilles, et al.,

2018) four cases were proposed. While, for the modification of ETO.GASI(i)
j five cases were

proposed and the translation into a CSP was proposed as well (ETO.GASI(i)
j(CSP)). All these

cases were discussed which enables us to meet non-negotiable non-standard requirements, also

referred to as ETO requirements. They are first formalized during configuration and then

capitalized by storing the obtained ETO solutions of GADI or GASI in an EB at the end of

configuration.

Chapter 4: Knowledge reuse for system configuration

117

Furthermore, our approach enables us to interactively configure an instance each time user

defines one requirement. In situations where new GADI or GASI are built, the consistency of

these instances is checked to ensure that they are consistent pieces of knowledge ready to be

integrated into the current instance. However, during GADI or GASI modification, the

consistency of instances cannot be checked using filtering techniques because all the added

values will be removed.

ETO configuration activity is guided by the formalized knowledge. All the standard generic

models (GA, GADM, GASM) which have been defined beforehand and stored into the

knowledge base can be reused, adapted, modified or completed by the user according to the

non-negotiable and non-standard requirements (ETO requirements). Following the

requirements and the level of expertise of the user, either descriptive view or structural view

can be exploited. During the ETO configuration activity, the generic models are instances (GAI,

GADI, GASI). They are instantiated from generic models or they are created specifically to

answer to ETO requirements. All the generic model instances modifications or creations

correspond to engineering activities performed by designers who have changed the standard

generic model instances of systems. The ETO configuration is then performed manually by the

user, checking manually that every constraint is satisfied and every variable value belongs to

its validity domain. This is due to the fact that the user cannot modify all the constraints

belonging to the generic model instances (integrating all the added values). This can only be

done during knowledge formalization and not during knowledge reuse. However, for every new

instance, the user is allowed to define constraints which will enable to check its consistency.

However, as they are activities which are performed out of the knowledge formalization

process, most of the time, no constraint is created. At the end of an ETO configuration activity,

the obtained models (GAI, GADI, GASI) are stored into an Experience Base. This enable to

reuse them during the knowledge formalization process. Every model which has been created

specifically to answer to ETO requirements can be standardized and translated from instances

to generic models. Moreover, in order to answer to new requirements, instances can be reused,

adapted and modified. However, the exploitation of system configuration experiences is not

treated in this thesis.

4.3. CTO-ETO knowledge reuse

We have proposed two generic processes for knowledge reuse. One process is focused on CTO

configuration (described in section 4.1), while the other one is focused on ETO configuration

(presented in section 4.2). Initially, we assumed that the user can only be in either the CTO or

ETO context and cannot switch between the two. However, in reality, users may have both

CTO and ETO requirements. This means that a user might begin by defining requirements that

can be fulfilled by reusing the generic model and then proceed to those that cannot.

Consequently, a user may start with the CTO configuration and later shift to the ETO

configuration. The generic process for knowledge reuse in both CTO and ETO configuration is

illustrated in Figure 52 and Figure 53. The CTO-ETO process is designed to support the

following scenarios. Each scenario describes a different path a user might take to meet their

specific requirements, depending on whether those requirements can be met using standard

Chapter 4: Knowledge reuse for system configuration

118

models (CTO) or require additional engineering (ETO), and whether they involve only the

descriptive view of the selected GA(i) or its structural view as well.

Scenario 1: we start with configuration of the descriptive view in CTO then shifting to the

configuration of descriptive view in ETO. This scenario begins with the configuration of

descriptive view in CTO. However, since the user's requirements cannot be met by reusing the

existing generic models, the CTO is shifted into ETO. This shift involves modifying GADI(i)

and then manually configuring in order to meet ETO requirements. The user is not interested to

configure structural view. Therefore, at the end of configuration, an ETO solution is proposed

then capitalized in an EB.

Scenario 2: we start with configuration of the descriptive view in CTO, then shifting to

the configuration of descriptive view in ETO, and subsequently continuing with the

configuration of structural view in ETO. Similar to the previous scenario, due to the ETO

requirements of the user, the shifting from CTO to ETO is required (related to the configuration

of descriptive view). Then, since the user wants to use the structural view, the configuration of

GASI is performed in ETO. Note that the GAI(i)s within GASI(i)
j are configured by implementing

the sub process of “Configure CTO GAI”. The output here is an ETO solution (including the

result of a configured GADI(i) plus a configured GASI(i)
j).

Scenario 3: we start with the configuration of the descriptive view in CTO, then configure

the structural view in CTO and ultimately shifting to the configuration of structural view

in ETO. In this scenario, the GADI(i) is configured in CTO. However, configuring the structural

view in CTO is not possible. Therefore, the shifting from CTO to ETO is required, in which the

GASI(i)
j must be modified. The output is an CTO solution (the output of GADI configuration)

and an ETO solution (the output of GASI configuration).

With regard to these three scenarios, the solutions for such a configuration process can be of

three different types:

1) 100% CTO.GAI(i), if all the requirements were expressed in terms of the selected generic

models; the CTO process, presented in section ,4.1.1.3 has been carried out from start to finish.

2) 100% ETO.GAI(i), if all the requirements are outside the possibilities offered by the generic

models - the ETO process, presented in section 4.2.1, has been carried out from start to finish.

3) CTO-ETO.GAI(i), where some of the requirements were supported by the generic models and

some were not. In this case, the GAI(i) solution contains elements marked CTO and others

marked ETO.

Chapter 4: Knowledge reuse for system configuration

119

Figure 52. Flowchart for knowledge reuse in CTO-ETO configuration: GADI configuration

Chapter 4: Knowledge reuse for system configuration

120

Figure 53. Flowchart for knowledge reuse in CTO-ETO configuration: GASI configuration

4.4. Synthesis

The second objective of our research work is to reuse or exploit the formalized generic models

for system configuration. This chapter presents our second contribution, a knowledge reuse

process for system configuration by adapting the CTO configuration activity to meet ETO

requirements. It comes in response to our second research question: "How can ETO

requirements be processed during configuration activity?"

Our proposals in section 4.1, allow us to select a generic model, following the needs of

descriptive or structural view, then configure the instance of this generic model in CTO

configuration activity to meet CTO requirements. Therefore, we first defined Generic Artifact

Descriptive Instance (GADI(i)) for the descriptive view and Generic Artifact Structural Instance

(GASI(i)
j) for the structural view and illustrated how these instances can be configured to meet

Chapter 4: Knowledge reuse for system configuration

121

user requirements. In this section, a generic process for knowledge reuse in CTO is proposed

and leads to CTO.GAI(i) solution.

Our proposals in section 4.2, are dedicated to knowledge reuse in ETO situations in order to

fulfill non-negotiable non-standard requirements in the ETO configuration activity. Therefore,

we proposed adapting CTO configuration activity towards ETO through either building new

GADI or GASI or modifying existing ones. To formalize ETO requirements, we defined four

cases for GADI modification and five cases for GASI modification, then formalized these cases

using CSP. The ultimate goal was to capitalize ETO solutions obtained in the ETO

configuration activity in an Experience Base (EB). Each of the attributes, values, KPIs, KPIs

aggregation methods, constraints and tuples can be tagged by the letter ‘E’ to capitalize the

ETO knowledge. This modifications of the tags to (S/I) to (E) is propagated to GAI, GADI and

GASI. In this section, a generic process for knowledge reuse in ETO is proposed and leads to

ETO.GAI(i) solution.

Our proposals in section 4.3, are dedicated to link between knowledge reuse in both CTO and

ETO situations in order to fulfill both CTO and ETO requirements for system configuration. In

this way, several scenarios are explained, and a generic process is illustrated using a flowchart.

Considering both CTO and ETO requirements leads to a solution that is partly configured

according to a generic model and partly designed for specific requirements. The solution is

therefore made up of CTO and ETO artifacts in varying proportions, depending on the user's

needs.

This research led to an oral presentation at the SAGIP 2023 conference:

• Maryam Mohammad Amini, Thierry Coudert, Elise Vareilles, Michel Aldanondo,

Integration of constraint satisfaction problems and ontologies for the formalization and

exploitation of knowledge in system configuration, SAGIP 2023, Marseille.

In the next chapter, we illustrate our proposals related to knowledge formalization and

knowledge reuse on a simplified but realistic example of a bicycle and its implementation in

OPERA, a software developed in the context of the ANR project OPERA (ANR-16-CE10-

0010) for system configuration and risk management.

Chapter 4: Knowledge reuse for system configuration

122

123

5. Use case and its implementation in OPERA: a bike

example

5.1. OPERA software and use case presentation ... 124

5.1.1. OPERA software ... 124

5.1.2. Use case presentation .. 124

5.2. Knowledge formalization for system configuration .. 125

5.2.1. GA and GADM Creation .. 126

5.2.2. GASM Creation .. 128

5.2.3. GA Generalization .. 130

5.2.4. GA Specialization ... 136

5.3. Knowledge reuse for system configuration ... 139

5.3.1. System configuration using the descriptive view ... 139

5.3.2. System configuration using the structural view .. 142

5.3.3. GAI and GADI building ... 145

5.3.4. GADI modification ... 146

5.3.5. GASI modification .. 149

5.4. Synthesis .. 156

In Chapter 3, we have presented our first contribution: a knowledge formalization process for

system configuration using the association of ontologies, CSP approaches, commonality and

inheritance principles to create generic models at different levels of abstraction. Chapter 4 is

devoted to our second contribution: a knowledge reuse process for system configuration by

adapting the CTO configuration activity to ETO configuration activity in order to meet ETO

requirements.

In this chapter, we illustrate our proposals on a simplified but realistic example of a bicycle

configuration implemented on the OPERA software. In section 5.1, we start with a short

presentation of the OPERA software followed by the use case presentation. Then, in section

5.2, we illustrate our proposals for knowledge formalization in system configuration. Some

examples of chapter 3 are implemented using the OPERA software. In section 5.3, we illustrate

our proposals for knowledge reuse in system configuration (CTO situation and ETO situation).

Finally, in section 5.4 we synthesize the chapter.

Chapter 5: Use case and its implementation in OPERA: a bike example

124

5.1. OPERA software and use case presentation

This section is devoted to the introduction of the OPERA software tool and the use case.

5.1.1. OPERA software

The OPERA project (acronym for "Outils logiciels et ProcEssus pour la Réponse à Appels

d'offres") was initiated in November 2016 with funding from the ANR5 and began in November

2016. Its primary objective is to provide bidding companies with knowledge-based support

tools, enabling them to efficiently and confidently develop relevant bids when responding to

invitations to tender. The consortium responsible for this endeavor consists of three research

laboratories, namely CGI at IMT Mines Albi, ESTIA Recherche, and LGP at ENIT, along with

four industrial partners - AES, Altran, Axsens, and Mécanuméric.

The OPERA software has been developed in order to formalize knowledge and build solutions

in the situation of call for tenders. Firstly, by means of the OPERA software, experts can

formalize knowledge on solutions for systems or services that can be delivered. It is possible to

formalize knowledge on systems and services along with their realization process. Moreover,

it is possible to formalize knowledge on risks which can arise during the process realization

(the identified risks, their probability of occurrence, their impacts on the process and the

activities to mitigate them). Then, it is possible to implement CSPs and to propagate constraints

using filtering methods in order to maintain the consistency of the models. Secondly, according

to customer’s requirements, the user can configure solutions interactively (systems/services and

processes can be configured) using constraint propagation (Guillon, Ayachi, et al.,

2021), (2) evaluate these solutions according to the risks and to the confidence the user has on

the requirements satisfaction (Sylla, Guillon, Vareilles, et al., 2018). Then, the user is helped to

select a solution which fulfill all the requirements and in which she/he is confident.

In this thesis, we use the OPERA software as a system configuration software to implement and

then verify our proposals for the knowledge formalization and knowledge reuse phases. The

OPERA software has been chosen because it stands out as a tool that allows to: (1) formalize

an ontology of generic models for system configuration following descriptive views and

structural views (GA, GADM and GASM)), (2) handle different levels of abstraction for these

generic models, (3) create instances in order to interactively configure systems.

5.1.2. Use case presentation

In this chapter, as illustrated in Figure 54, we check our proposals on a simplified but realistic

example of knowledge formalization and knowledge reuse phases for bicycle configuration.

We consider that a bike is only composed of two or three wheels, one seat, and one frame. To

illustrate our proposal related to the knowledge formalization phase, first, we illustrate generic

models creation (i.e. GA, GADM and GASM creation) on a bike example. Then, we illustrate

GA generalization on a wheel example, in which City Wheel and Mountain Wheel generic

models are generalized into Wheel generic models. Then, we show GA specialization on a bike

5 Project n° ANR-16-CE10-0010

Chapter 5: Use case and its implementation in OPERA: a bike example

125

example in which Bike generic models are specialized into City Bike and Mountain Bike

generic models.

To illustrate our proposal related to the knowledge reuse phase, first, we illustrate GADI

filtering on a bike example. We present GASM selection on a wheel example, in which we

select one version among two versions of a wheel (i.e. mountain wheel and city wheel). We

illustrate GAI and GADI building on the mirror example. We show GADI modification on the

instance of a wheel, in which we decided to add an attribute and a new constraint. We represent

GASI modification on an instance of a bike where we decided to only add a new GAI

(corresponding to a mirror) and a new constraint (the number of seats is constrained by the

number of mirrors).

Figure 54. Scope of bike use case

5.2. Knowledge formalization for system configuration

This section is devoted to the application of our knowledge formalization proposals, described

in Chapter 3, to the previously presented case study of bicycle configuration. First, in section

5.2.1, Bike.GA(2) and Bike.GADM(2) are defined. In section 5.2.2, Bike.GASM(2)
1 is created. In

section 5.2.3, MountainWheel.GA(3) and CityWheel.GA(3) are generalized into Wheel.GA(2), and

in section 5.2.4, Bike.GA(2) is specialized into CityBike.GA(3) and MountainBike.GA(3).

Chapter 5: Use case and its implementation in OPERA: a bike example

126

5.2.1. GA and GADM Creation

First, we create the taxonomy of GAs. The most general GA is System.GA(1). It is specialized

into several GAs as represented in Figure 55. For every GA, a name and a description are given

(the Figure 55 only shows the taxonomy of GAs and the Bike.GA(2) description).

Figure 55. Taxonomy of GAs and the description of Bike.GA
(2)

Therefore, for every GA, the corresponding GADM (descriptive view) is created. That leads to

the creation of the GADM taxonomy (not represented)

Associated to System.GA(1), we define System.GADM(1) as the most general GADM, containing

two KPIs: Weight with a validity domain of {[0, 35]} and Cost with a validity domain of

{[0, 4500]}. As we create all the other GADMs as a specialization of System.GADM(1), they

inherit the Cost and Weight with the same domain.

We take the example of Bike.GADM(2), as illustrated in Figure 13. Then, we define

Bike.GADM(2) as shown in Figure 56. To do so, we define three specific attributes. Two KPIs

are inherited. We also define two constraints (compatibility tables). These tables represent

sequences of compatible values for both attributes and KPIs. For instance, in the first

compatibility tables, the first value of every tuple corresponds to the value of the variable

‘User’, the second one corresponds to the value of the variable ‘Color’, the third one

corresponds to the value of the variable ‘Weight’ and the last one corresponds to the value of

the variable ‘Cost’. In the second table, the values correspond to the compatible values of the

variables ‘User’ and ‘RingBellQty’ respectively.

Filtering these constraints leads to restricting the initial domains of the attributes and KPIs in

order to obtain a consistent generic model. As represented in Figure 57, after filtering

constraints, the initial domain of Weight is restricted to {[2, 35]} and for Cost to {[100, 4500]}

which are represented in green boxes. The Bike.GADM(2) becomes a consistent piece of

knowledge corresponding to the descriptive view of Bike.GA(2) which will be reused later in the

knowledge reuse section..

Chapter 5: Use case and its implementation in OPERA: a bike example

127

Figure 56. Bike.GADM
(2)

 before filtering constraints

Chapter 5: Use case and its implementation in OPERA: a bike example

128

Figure 57. Bike.GADM
(2)

 after filtering constraints

5.2.2. GASM Creation

We use the example of Figure 15 to create Bike.GASM(2)
1, the first version of the structural view

of Bike.GA(2). It is composed of two or three Wheel.GA(2) and one Seat.GA(2). We have also

included a Frame.GA(2). We create Bike.GASM(2)
1 (associated to Bike.GADM(2)) as illustrated in

Figure 58. We define its description. It should be noticed that in the OPERA software, we can

define explicitly the quantity of GAs if they are a constant. If the quantity of a GA is a range or

interval, a variable corresponding to the quantity of GA needs to be defined in the GASM. In

our example, the quantity of Seat.GA(2) and Frame.GA(2) is ‘1’, however, for Wheel.GA(2) the

variable WheelQty is added since the quantity of wheel is an interval {[2, 3]}.

We define a constraint (compatibility table) in which the first and second values of every tuple

respectively correspond to the value of the variable ‘User’ of Bike.GADM(2) and the variable

‘Material’ of Seat.GADM(2). We define two constraints (numerical functions) to aggregate the

Cost and Weight for Bike.GADM(2). The first one represents the Weight for Bike.GADM(2) is

equal to the sum of the weights of all GAs composing Bike.GASM(2)
1 regarding their quantities.

Similarly, the second one represents the Cost for Bike.GADM(2) is equal to the sum of the costs

of all GAs composing Bike.GASM(2)
1 considering their quantities. After constraint filtering, as

Chapter 5: Use case and its implementation in OPERA: a bike example

129

shown in Figure 58, the domains of Cost and Weight are further restricted to {[2.8, 17]} and

{[215, 2210]} and the domain of variables ‘User’ (for Bike.GADM(2)) and ‘Material’ (for

Seat.GADM(2)) are not changed.

In the Figure 58, one can observe that Wheel.GA(2) has its own GASM as it is composed of

Rim.GA(2) and Tire.GA(2). Bike.GASM(2)
1 is then a consistent piece of knowledge representing

the first version of the structural view of Bike.GA(2).

Figure 58. Bike.GASM
(2)

1

Chapter 5: Use case and its implementation in OPERA: a bike example

130

5.2.3. GA Generalization

As indicated in section 3.2.1, generalization enables to create a GA at a higher level of

abstraction using the commonality of specific existing GAs. The generalization of GAs implies

that both the associated GADM and GASM are also generalized.

First, we create MountainWheel.GA(2) (not represented here), MountainWheel.GADM(2),

CityWheel.GA(2) (not represented here) and CityWheel.GADM(2), using the example of Figure

20. We define MountainWheel.GADM(2) as illustrated in Figure 59: we define two attributes,

two inherited KPIs (there are inherited from System.GADM(1)), and a compatibility table. In this

compatibility table, the values of the tuples respectively correspond to the values of the

attributes and KPIs ‘Diameter’, ‘Material’, ‘Weight’, and ‘Cost’. Similarly, we define

CityWheel.GADM(2) as shown in Figure 60. For this GADM, we define three attributes and two

inherited KPIs. Two compatibility tables are also defined. In the first compatibility table, the

values of tuples respectively correspond to values of the variables ‘Diameter’, ‘Material’,

‘Weight’, and ‘Cost’. In the second one, the first and second values correspond to the values of

‘Diameter’ and ‘InnerTubeQty’ respectively. The domains of variables are represented after

filtering the constraints for MountainWheel.GADM(2) and CityWheel.GADM(2).

Figure 59. MountainWheel.GADM(2)

Chapter 5: Use case and its implementation in OPERA: a bike example

131

Figure 60. CityWheel.GADM(2)

To create Wheel.GADM(2) by generalization of MountainWheel.GADM(2) and

CityWheel.GADM(2), we refer to Figure 21. Based on the commonality of

MountainWheel.GADM(2) and CityWheel.GADM(2), we define Wheel.GADM(2) as illustrated in

Figure 61. MountainWheel.GADM(2) and CityWheel.GADM(2) are moved to the lower level (they

become MountainWheel.GADM(3) and CityWheel.GADM(3) as illustrated in Figure 62). We

define two common attributes (Diameter and Material), two common KPIs (Weight and Cost)

as well as a common table of compatibility linking the compatible values of the following

attributes and KPIs respectively: ‘Diameter’, ‘Material’, ‘Weight’ and ‘Cost’. As shown in

Figure 61, after filtering this constraint, the domain of ‘Diameter’ is restricted to

{16, 18, 20, 22, 24, 26}, the domain of weight to [{0.2, 5}] and the domain of cost to

[{50, 1200}].

To summarize, in the OPERA software, we can define GADMs at different levels of

abstraction. However, the tags ‘I’ and ‘S’ which we used in our proposal to distinguish the

inherited and specific characteristics (i.e. attributes, KPIs, domains, relations) cannot be

defined.

Chapter 5: Use case and its implementation in OPERA: a bike example

132

Figure 61. Wheel.GADM(2)

Figure 62 illustrates the taxonomy of GADMs before and after generalization. In this taxonomy,

it is represented that System.GADM(1) is defined as the most general GADM.

Figure 62. GADMs taxonomy before and after generalization

The generalization also implies the GASMs. Therefore, we define Bike.GASM(2) which is

associated to Bike.GA(2) and Bike.GADM(2). It is the generalization of CityWheel.GASM(2)
1and

MountainWheel.GASM(2)
1which have to be firstly created.

We consider Figure 25 to define CityWheel.GASM(2)
1and MountainWheel.GASM(2)

1. We create

MountainWheel.GASM(2)
1 as illustrated in Figure 63. First, we define its description. Then, we

add Rim.GA(2) and Tire.GA(2) (they have to be created first). Since the quantity of both GAs are

‘1’, we can define them directly in OPERA. Moreover, we define two constraints (numerical

functions) in order to represent the equality between the diameter of the MountainWheel, the

diameter of the Rim and the diameter of the Tire. We also define two constraints (numerical

functions) to aggregate Weights and Costs.

Chapter 5: Use case and its implementation in OPERA: a bike example

133

Similarly, we create CityWheel.GASM(2)
1 as represented in Figure 64. To do so, we add

Rim.GA(2), Tire.GA(2), InnerTube.GA(2) with quantities ‘1’. We define a constraint (compatibility

table) to represent the quantity of inner tube must be ‘1’ in a city wheel. We define three

numerical functions as well. The first one shows that the diameters of the city wheel and rim

are equal, the second one represents the diameters of the city wheel and tire are equal and the

last one shows that the diameters of the city wheel and inner tube are equal. Moreover, we

define two numerical functions to aggregate weights and costs (respectively the sum of the

weights and costs of Rim.GADM(2) and Tire.GADM(2)).

For both MountainWheel.GASM(2)
1and CityWheel.GASM(2)

1, constraint filtering is applied in

order to obtain consistent generic models. The domains of the variables of Figure 59 and Figure

60 are the ones obtained after filtering.

Chapter 5: Use case and its implementation in OPERA: a bike example

134

Figure 63. MountainWheel.GASM(2)
1

Chapter 5: Use case and its implementation in OPERA: a bike example

135

Figure 64. CityWheel.GASM(2)
1

We take the example provided in Figure 26, to define Wheel.GASM(2)
1using the generalization

principle. Based on the commonality of MountainWheel.GASM(2)
1 and CityWheel.GASM(2)

1, we

therefore define Wheel.GASM(2)
1 as represented in Figure 65. We made it up of one Rim.GA(2),

and one Tire.GA(2). We define two constraints (numerical functions) to indicate that: 1) the

diameter of the wheel and rim are equal and 2) the diameter of the wheel and tire are equal.

Additionally, we define two numerical functions for the aggregation of weights and costs.

Finally, MountainWheel.GASM(2)
1 and CityWheel.GASM(2)

1are moved to the lower level (they

become MountainWheel.GASM(3)
1 and CityWheel.GASM(3)

1.

Chapter 5: Use case and its implementation in OPERA: a bike example

136

Figure 65. Wheel.GASM(2)
1

5.2.4. GA Specialization

We take the example of Figure 23, which represents the specialization of Bike.GADM(2) into

CityBike.GADM(3). We therefore define CityBike.GADM(3) as illustrated in Figure 66. To do so,

the knowledge of Bike.GADM(2) is inherited by CityBike.GADM(3). In OPERA, the attributes,

KPIs, and their domains are inherited however the constraints must be added manually.

CityBike.GADM(3) is now characterized by three inherited attributes (Color, User and

RingBellQty), two inherited KPIs (Weight and Cost), and two inherited constraints (the first

and second compatibility tables represented in Figure 66). Then, we narrow the inherited

knowledge. In this way, we remove the value ‘Pink’ from the domain of attribute ‘Color’. We

restrict the first constraint by adding a new tuple indicating that the user ‘Man’, the color ‘Blue’,

the weight ‘30’, and the cost ‘4000’ are compatible. Then, we enrich the knowledge of

CityBike.GADM(3). To do that, we add ‘LightQty’ with the domain {[1, 2]}. Moreover, we

define a new constraint (compatibility table). In this table, the values respectively correspond

to the compatible values of ‘User’ and ‘LightQty’. After filtering these constraints, the domains

of variables are restricted as shown in Figure 66.

Chapter 5: Use case and its implementation in OPERA: a bike example

137

Figure 66. CityBike.GADM(3)

Figure 67 illustrates the taxonomy of GADMs before and after specialization. It illustrates that

Bike.GADM(2) is specialized into CityBike.GADM(3) and MountainBike.GADM(3). Note that in

this section only the illustration of the creation of CityBike.GADM(3) is shown.

Figure 67. GADMs taxonomy before and after specialization

We use the example of Figure 28, in which Bike.GASM(2)
1 is specialized into CityBike.GASM(3)

1.

Then, we define CityBike.GASM(3)
1 as illustrated in Figure 68. To do so, first, we define its

description then we associate CityBike.GASM(3)
1 to CityBike.GADM(3). We also define

Chapter 5: Use case and its implementation in OPERA: a bike example

138

Wheel.GA(2), Seat.GA(2) and Light.GA(2) as its composing GAs. We associate each GA to its

corresponding GADM. We define two variables corresponding to the quantity of Wheel.GA(2)

and quantity of Light.GA(2). We define a constraint (compatibility table) to restrict the domain

of variable ‘WheelQty’ to ‘2’. We add ‘LightQty’ with its domain. We add a new tuple to a

compatibility table. The first value corresponds to the value of User’ from CityBike.GADM(2)

and the second one corresponds to the value of ‘Material’ (from Seat.GADM(2)). Additionally,

we define a new compatibility table, in which the first value corresponds to the value of ‘User’

(from CityBike.GADM(2)) and the second one corresponds to the value of ‘Color’ (from

Light.GADM(2)). We also define two numerical functions to aggregate weights and costs.

Finally, we apply constraint filtering, which narrows domains and removes inconsistent values.

Figure 68. CityBike.GASM(3)
1

In this second section, we have shown that it is possible to formalize knowledge for system

configuration using the OPERA software. All the generic models we obtained are stored in

Chapter 5: Use case and its implementation in OPERA: a bike example

139

taxonomies and they constitute an ontology of generic models. All the elements are consistent

pieces of knowledge. Then, it is necessary to verify that this knowledge can be reused and the

following section is dedicated to the knowledge reuse for system configuration.

5.3. Knowledge reuse for system configuration

This section is dedicated to the illustration of our knowledge reuse process (explained in chapter

4) through examples of bicycle configuration. In section 5.3.1 and 5.3.2, knowledge reuse in

CTO situation is shown. The creation and configuration of a solution using the descriptive view

CTO.Bike.GADI(2) is presented in section 5.3.1. In section 5.3.2, the exploitation of the structural

view MountainWheel.GASM(3)
1 (first version of the structural view of Mountain.Wheel) in CTO

situation is described. In section 5.3.3, 5.3.4 and 5.3.5, knowledge reuse in ETO situation is

presented. First, in section 5.3.3, the creation of a new mirror (ETO.Mirror.GAI(i) and

ETO.Mirror.GADI(i)) is presented. In section 5.3.4, the modification of the descriptive view

ETO.Wheel.GADI(2) is described and, finally the modification of the structural view

ETO.Bike.GASI(2)
1 is represented in section 5.3.5.

5.3.1. System configuration using the descriptive view

We refer to Figure 41, which represents the generic process for knowledge reuse in CTO

situation, to configure the descriptive view of a bike instance by following a few steps:

- Step 1: Select Bike.GA(2): In this use case, the user wants to configure a bike. Therefore,

Bike.GA, representing a family of bikes, is selected from the GAs taxonomy. We,

therefore, can use its associated GADM from the GADMs taxonomy.

- Step 2: Create instances of Bike.GA(2) and Bike.GADM(2): We create CTO.Bike.GAI(2)

and CTO.Bike.GADI(2) as illustrated in Figure 69.

Chapter 5: Use case and its implementation in OPERA: a bike example

140

Figure 69. CTO.Bike.GADI(2)

- Step 3: User defines a requirement: The user defines that the bike is for a woman by

restricting the domain of the “User” variable.

- Step 4: Apply constraint filtering: the OPERA software filters the values of attributes

and KPIs based on the user's requirement. For example, the defined CTO requirement

(User = {Woman}), impacts the domains of one attribute and two KPIs (Color, Weight

and Cost). Therefore, after propagation, the filtered domain of these variables are as

Chapter 5: Use case and its implementation in OPERA: a bike example

141

follows: Color = {Pink, Red}, RingBellQty = {0}, Weight = {[15, 30]} and

Cost {[500, 3000]} as represented in Figure 70.

Since no filtered domains are empty and the domain of all filtered domains of attributes

are not singletons, allowed values (represented in green boxes) are proposed to the user.

- Step 5: User defines a second requirement: the color of the bike has to be pink.

- Step 6: Apply constraint filtering: in the OPERA software, constraint filtering is applied.

In this case, this doesn’t impact the domains of Weight and Cost. Therefore,

Weight = {[15, 30]} and Cost = {[500, 3000]} remain as illustrated in Figure 70. There

is no empty domain and all the values of attributes are singletons therefore a solution

can be proposed.

- Step 7: Propose a CTO solution: based on the user requirements, a CTO solution is

obtained in CTO.Bike.GADI(2) which is illustrated in Figure 70. In this solution the user

is ‘Woman’, the color is ‘Pink’, the quantity of ringbell is ‘0’, the weight is {[15, 30]}

and the cost is {[500, 3000]}. In this solution, the domains of attributes are singleton

while the domains of KPIs are ranges due to the uncertainty on the values of the Cost

and Weight.

- Step 8: Decide on using the structural view if exists: the user decides whether a

structural view (detailed configuration of components and sub-components) is

necessary. In this example, the user is not interested in configuring the structural view.

Therefore, a CTO solution is proposed for CTO.Bike.GADI(2): User = {Woman},

Color = {Pink}, RingBellQty = {0}, Weight = {[15, 30]} and Cost {[500, 3000]}.

Chapter 5: Use case and its implementation in OPERA: a bike example

142

Figure 70. CTO solution of CTO.Bike.GADI(2)

5.3.2. System configuration using the structural view

As explained in section 4.1.1, it is possible to configure the structural view of a GAI during a

CTO configuration activity. We use the flowchart for knowledge reuse in CTO configuration

which is shown in Figure 42. In this case, the configuration of a MountainWheel is performed

using its structural view.

- Step 1: Configure the descriptive view of CTO.MountainWheel.GAI(3): first, the

descriptive view of CTO.MountainWheel.GAI(3) (i.e. CTO.MountainWheel.GADI(3)) is

configured and then a CTO solution is proposed (Figure 71): the diameter is ‘20’, the

material is ‘Aluminum’, the weight is {[0.2, 3]} and the cost is {[50, 600]}.

Chapter 5: Use case and its implementation in OPERA: a bike example

143

Figure 71. CTO solution of CTO.MountainWheel.GADI(3)

- Step 2: Decide on using the structural view if it exists: in this example, the user is

interested to configure the structural view of CTO.MountainWheel.GAI(3).

- Step 3: Select one version of MountainWheel.GASM(3) among

MountainWheel.GASM(3)
1 and MountainWheel.GASM(3)

2, on the basis of their

descriptions. In this example, the first version MountainWheel.GASM(3)
1 is chosen.

- Step 4: Create an instance of MountainWheel.GASM(3)
1: We create

CTO.MountainWheel.GASI(3)
1 as shown in Figure 72.

Figure 72. CTO.MountainWheel.GASI(3)
1

- Step 5: Define the quantity of all GAIs: since CTO.MountainWheel.GASI(3)
1 is

composed of one CTO.Rim.GAI(2) and one CTO.Tire.GAI(2), their quantities are defined

as follows: RimQty = {1}, TireQty = {1}

- Step 6: Select CTO.Tire.GAI(2) and configure it: to configure CTO.Tire.GAI(2), its

descriptive view is configured (similar to section 5.3.1). At the end of the configuration,

as shown in Figure 73, a CTO solution is found for CTO.Tire.GADI(2): Diameter = {20},

Cost = {[48, 70]}, Weight = {[0.7, 1.5]}.

Chapter 5: Use case and its implementation in OPERA: a bike example

144

Figure 73. Solution for CTO.Tire.GADI(2)

- Step 7: Select Rim.GAI(2) and configure it: at the end of configuration, a CTO solution

is found: Diameter = {20}, Cost = {[48, 70]}, Weight = {[0.7, 1.5]}.

There are no more GAIs and all the configured GAIs have a solution.

- Step 8: Aggregate the KPIs for CTO.MountainWheel.GASI(3)
1: in OPERA, after filtering

constraints, the calculated Cost and Weight are obtained as follows (Figure 74):

Weight = {[1.3, 3]} and Cost = {[298, 470]}.

- Step 9: Propose a CTO solution: finally, the set of all solutions for the CTO.Rim.GAI(2)

and CTO.Tire.GAI(2) construct the CTO solution for CTO.MountainWheel.GASI(3)
1. The

solution for the structural view CTO.MountainWheel.GASI(3)
1 is: the

CTO.MountainWheel.GASI(3)
1 is composed of one CTO.Rim.GAI(2) and one

CTO.Tire.GAI(2).

Chapter 5: Use case and its implementation in OPERA: a bike example

145

Figure 74. Solution of CTO.MountainWheel.GASI(3)
1

5.3.3. GAI and GADI building

As explained in section 4.2.2, during the ETO configuration activity, the user may need a GA

that does not belong to the GAs taxonomy. In our example, the user needs a mirror that isn’t

available in the taxonomy. Therefore, to satisfy this user requirement, we need to build a new

instance of the mirror family in the OPERA software (i.e. ETO.Mirror.GAI(i)), illustrated in

Figure 75. Note that we define the level (i) as we don’t know yet if this generic artifact will be

added to the GAs taxonomy later nor its hierarchical level. We create its associated GADI

represented in Figure 45. To meet ETO requirements, ETO.Mirror.GADI is built as shown in

Figure 76. We define the attribute Diameter with domain {[10, 80]}, the KPI Weight with

domain {[0.2, 0.9]} and the KPI Cost with domain {[30, 70]}. For this ETO.Mirror.GAI, the

user decides that there is no need to create a structural view.

Figure 75. ETO.Mirror.GAI(i)

Chapter 5: Use case and its implementation in OPERA: a bike example

146

Figure 76. ETO.Mirror.GADI(i)

5.3.4. GADI modification

As explained in section 4.2.1, ETO requirements can be satisfied during ETO configuration

activity by modifying an existing GADI (i.e. an instance of an existing GADM which belongs

to the GADMS taxonomy). The generic process for reusing knowledge in ETO (for GADI

configuration) is illustrated in Figure 43 by means of a flowchart.

- Step 1: Select an existing GA in the taxonomy: the user selects Wheel.GA(2) and

therefore, the configuration will be based on an instance of it.

- Step 2: Create an instance of Wheel.GA(2) and Wheel.GADM(2): as illustrated in Figure

77, ETO.Wheel.GAI(2) and ETO.Wheel.GADI(2) are created.

Chapter 5: Use case and its implementation in OPERA: a bike example

147

Figure 77. ETO.Wheel.GAI(2) and ETO.Wheel.GADI(2)

- Step 3: User defines ETO requirements: the user has two requirements: 1) she/he wants

a wheel with 28 spokes, 2) she/he wants to define a relation between the quantity of

spokes and the diameter of wheel. The wheel diameters of ‘20’, ‘24’ and ‘26’ are only

compatible with quantities ‘16’, ‘18’, ‘20’ and ‘22’. The diameter of ‘28’ is only

compatible with the quantities ‘24’ and ‘26’.

Step 4: Modify ETO.Wheel.GADI(2): to fulfill these ETO requirements,

ETO.Wheel.GADI(2) must be modified. We, therefore, use the example of Figure 50.

However, here, we only define two cases (3 and 4) which are respectively related to

defining a new attribute with its domain and defining a new relation. As represented in

Figure 78, we modify ETO.Wheel.GADI(2). To do that, we add the attribute SpokeQty

with the domain {28}, and then we define a new compatibility table. The first value

corresponds to the value of the attribute SpokeQty and the second one corresponds to

the value of Diameter. As we do not apply constraint filtering, the domains of attributes

and KPIs are not restricted during this step.

Chapter 5: Use case and its implementation in OPERA: a bike example

148

Figure 78. Modified ETO.Wheel.GADI(2)

- Step 5: Manually configure ETO.Wheel.GADI(2): since the quantity of spoke is ‘28’, due

to the new constraint the diameter can be ‘24’ or ‘26’. The user selects ‘26’. Then, due

to the first constraint, the diameter ‘26’ is only compatible with the material ‘Steel’ or

‘Carbon’. The user selects ‘Carbon’. Then, the domains of Weight and Cost have to be

manually restricted to Weight = {[0.3, 5]}, Cost = {[200, 1200]} following the

constraints of ETO.Wheel.GADI(2). The domain of all attributes are then reduced to

singletons.

- Step 6: Propose an ETO solution: the proposed ETO solution is illustrated in Figure 79

where the quantity of spokes is ‘28’, the diameter is ‘26’, the material is ‘Carbon’, the

weight is {[0.3, 5]}, and the cost is {[290, 1200]}. It should be noticed that the solution

obtained here differs from the ones presented in chapter 4, because we are focusing on

just two specific cases.

Chapter 5: Use case and its implementation in OPERA: a bike example

149

Figure 79. ETO solution of modified ETO.Wheel.GADI(2)

5.3.5. GASI modification

As mentioned in section 4.2.1, ETO requirements can be satisfied during ETO configuration

activity by modifying GASI. We use the generic process for reusing knowledge in ETO shown

in Figure 44.

- Step 1: Bike.GA(2) is selected and then ETO.Bike.GAI(2) and ETO.Bike.GADI(2) are

created. Then, the descriptive view of ETO.Bike.GAI(2) is manually configured,

interactively with the user as represented on Figure 80. The user wants a bike for a

‘Child’. The first constraint within ETO.Bike.GADI(2) represents that the user ‘Child’ is

only compatible with the colors ‘Blue’, ‘Red’ and ‘Gray’ which the user selects ‘Blue’.

Then, the user manually restricts the domains of weight and cost to {[2, 15]} and

{[100, 2000]} respectively. The second constraint within ETO.Bike.GADI(2) represents

that for a user ‘Child’, the quantity of RingBell is ‘1’. The domains of attributes are

singletons we, therefore, propose an ETO solution based only on the descriptive view.

Chapter 5: Use case and its implementation in OPERA: a bike example

150

Figure 80. Solution of ETO.Bike.GADI(2)

- Step 2: As a structural view is available for Bike.GA(2), the user wants to configure a

structural view of ETO.Bike.GAI(2).

- Step 3: The user selects Bike.GASM (2)
1, the first version of the structural view of

Bike.GA(2) in the taxonomy of GASMs.

- Step 4: Create an instance of Bike.GASM (2)
1: we define ETO.Bike.GASI (2)

1 as shown in

Figure 81.

Chapter 5: Use case and its implementation in OPERA: a bike example

151

Figure 81. ETO.Bike.GASI (2)
1

- Step 5: Modify ETO.Bike.GASI (2)
1: we take the example of Figure 51 in chapter 4.

However, we only consider cases 3 and 5. We modify ETO.Bike.GASI (2)
1 as represented

in Figure 82. Since the user wants a bike with a mirror, we add the ETO.Mirror.GAI

with quantity ‘1’ in ETO.Bike.GASI (2)
1. It is necessary to add the attribute ‘MirrorQty’

in ETO.Bike.GASI (2)
1. Moreover, the user wants to define a relation between the

quantity of mirrors and the quantity of seats. Therefore, we define a new table of

compatibility in which the first value corresponds to the value of ‘SeatQty’ and the

second one corresponds to the value of ‘MirrorQty’.

Chapter 5: Use case and its implementation in OPERA: a bike example

152

Figure 82. Modified ETO.Bike.GASI(2)
1

- Step 6: Define the quantity of all GAI: the user wants a bike with two wheels, one seat,

one frame and one mirror. Note that if we have one mirror, we must have one seat due

to the added compatibility table within ETO.Bike.GASI (2)
1.

- Step 7: Select CTO.Wheel.GAI(2) and configure it: the user is interested in configuring

both the descriptive view and structural view of CTO.Wheel.GAI(2) without any

modifications (CTO configuration). At the end of the CTO configuration, the result of

configuring CTO.Wheel.GADI(2) is (Figure 83): Diameter = {16}, Material =

{Aluminum}, Weight = {[0.2, 3]}, Cost = {[50, 600]}. The result of configuring

CTO.Wheel.GASI(2)
1 is (Figure 83): CTO.Wheel.GASI(2)

1 is composed of one

CTO.Rim.GAI(2) and one CTO.Tire.GAI(2). There is a constraint representing that the

diameters of wheel, rim and tire are equal. The CTO.Rim.GAI(2) is configured as follows:

Diameter = {16}, Weight = {[0.2, 0.6]}, Cost = {[25, 200]}. The CTO.Tire.GAI(2) is

configured as follows: Diameter = {16}, Weight = {[0.2, 0.8]}, Cost = {[30, 50]}.

Chapter 5: Use case and its implementation in OPERA: a bike example

153

The weight and cost of CTO.Wheel.GADI(2) are aggregated as follows:

Weight = {[0.4, 1.4]} and Cost = {[55, 250]}.

Figure 83. CTO solution for CTO.Wheel.GASI(2)

- Step 8: Select CTO.Frame.GAI(2) and configure it without modifications (CTO

configuration) (Figure 84): the user selects the color ‘Blue’ for the seat. Due to the

compatibility table defined within CTO.Frame.GADI(2), the color ‘Blue’ is only

compatible with materials ‘Aluminum’ and ‘Carbon’ which the user selects ‘Carbon’.

Then, the Weight and Cost are manually restricted to {[2, 7]} and {[300, 600]}.

Chapter 5: Use case and its implementation in OPERA: a bike example

154

Figure 84. CTO solution for CTO.Frame.GAI(2)

- Step 9: Select and configure CTO.Seat.GAI(2) (Figure 85): Since the user is ‘Child’, the

material of CTO.Seat.GADI(2) is ‘Plastic’ due to the first constraint defined in

ETO.Bike.GASI (2)
1. Then, considering the compatibility table defined within

CTO.Seat.GADI(2), material ‘Plastic’ is compatible with colors ‘Pink’, ‘Blue’ and

‘Gray’ which the user selects ‘Pink’. Then, the weight and cost are manually restricted

to {[0.5, 0.8]}, {[5, 100]}. Since the domain of all attributes has been reduced to

singletons, we propose a CTO solution for CTO.Seat.GADI(2) in the Figure 85.

Chapter 5: Use case and its implementation in OPERA: a bike example

155

Figure 85. CTO solution for CTO.Seat.GAI(2)

- Step 10: Select and configure ETO.Mirror.GAI (Figure 86): as explained before

ETO.Mirror.GAI and ETO.Mirror.GADI are created. The user decides to only configure

the descriptive view of ETO.Mirror.GAI, not its structural view. The user selects the

value ‘30’ for the diameter of the mirror among the ranges of {[10, 80]}. The weight

and cost remain {[0.2, 0.9]} and {[30, 70]}. This corresponds to an ETO solution for

the mirror.

Figure 86. ETO solution for ETO.Mirror.GAI(i)

Chapter 5: Use case and its implementation in OPERA: a bike example

156

- Step 11: Manually aggregate the KPIs for ETO.Bike.GASI (2)
1: the user aggregates the

weight and cost and then obtains respectively the following domains: {[3.5, 11.5]} and

{[445, 1270]}.

- Step 12: Propose an ETO solution: the solution is the integration of all previous

solutions.

In this illustration, one can remark that it mixes CTO configuration with ETO configuration.

For some parts of the system to configure, no modifications were necessary and the CTO

process were carried out. But for other parts, modifications were necessary and the ETO

configuration process were carried out.

5.4. Synthesis

This chapter is devoted to the illustration of our proposals explained in chapters 3 and 4 using

the OPERA software, in order to check and validate them. We therefore apply our two

contributions on a simple but realistic case study for the configuration of bicycles.

In section 5.1, we introduced the OPERA software and we presented the use case. In section

5.2, we defined our proposals concerning the knowledge formalization for system

configuration. In OPERA, we can define GADMs at different levels of abstraction. Moreover,

we can define different GASMs. As well as we can configure them to ensure their consistency.

In section 5.3, we defined our proposals related to knowledge reuse for system configuration.

In OPERA, we are able to define GADIs and GASIs, configure them, and meet ETO

requirements by modifying the instances. In the last section, we mixed CTO configuration and

ETO configuration in order to fulfill the requirements: the formalized knowledge on some parts

of the bicycle had to be modified using ETO configuration process and other ones didn’t

necessitate any modifications and were configured using the CTO configuration process. Then,

we have shown that it is possible to associate both processes.

In the next chapter, we present the conclusions of this PhD thesis and scientific perspectives.

157

6. Conclusions and scientific perspectives

6.1. Conclusions ... 157

6.2. Scientific perspectives ... 160

In this chapter, we provide an overview of our research and we propose ideas and directions for

future research. First, in section 6.1, we address the conclusions of this Ph.D. We then conclude

with some scientific perspectives in section 6.2.

6.1. Conclusions

This PhD focuses on formalization and reuse of knowledge for system configuration. Chapter 1

serves as an initial introduction to this PhD thesis. The chapter describes briefly the two main

steps of knowledge formalization and knowledge reuse. The dissertation's research questions

and principal contributions are then introduced in this first chapter, followed by an overview of

its structure and main concepts.

In Chapter 2, the focus is on the specifics of system configuration and presents a comprehensive

analysis of the state of the art in system configuration. Based on the literature review, we have

identified two scientific gaps: 1) formalize generic models at different levels of abstraction for

system configuration distinguishing descriptive view and structural view (topic of our first

research question), and 2) meet the user's ETO requirements during the configuration process,

These ETO requirements can be either descriptive or structural and can operate at varying

abstraction levels. For this bibliographic study, in order to evaluate the existing works and

approaches, eight criteria have been identified. Four criteria are related to the knowledge

formalization phase and four criteria are related to the reuse phase. Finally, the comparison of

the different approaches according to the eight criteria led us to choose the association of

ontologies and CSPs.

In this PhD, responses to the two research questions have been proposed:

RQ 1. “Is it possible to define an ontology of generic models to better manage knowledge,

allowing a clear distinction between descriptive and structural views for system configuration?”

The first research question is answered in Chapter 3 which leads to our first contribution. This

contribution targeted the phase of knowledge formalization. We formalized an ontology of

generic models using the association of ontologies, CSPs, commonality, and inheritance

principles. Our approach improves knowledge management by creating generic models

hierarchically at various abstraction levels using ontologies, from the most general one to the

most specialized one. This enables experts to easier maintain and update models. Our approach

also enables a clear distinction to be made between descriptive and structural views of the same

system. In the descriptive view, the key attributes, indicators of the system, and the relations

between their values are formalized while avoiding details of its structure. This view is

interesting for novice or non-expert users. In the structural view, the BOM of the system, KPIs

aggregation methods, and the relations between the items composing it are formalized. This

Chapter 6: Conclusions and scientific perspectives

158

view is interesting for expert users. In this way, we have defined the concept of Generic

Artifacts at the level (i), notated GA(i), and its two distinct views: the descriptive view, notated

GADM(i) and the structural view, notated GASM(i)
j using CSP to model several relations and

ensure the consistency of the models. CSP allows for the formalization of relations between

artifacts or between their characteristics using constraints and provides the opportunity to use

constraint filtering to delete inconsistent values and only keep consistent ones. Then, based on

the commonality of generic models, we formalized a new model at a higher level of abstraction

using the generalization mechanism. This model only contains the common knowledge among

models. Moreover, we formalized a new generic model at a lower level of abstraction using

inheritance principles and the specialization mechanism. This model is refined and enriched

based on what’s specific for their new model. Therefore, in the same general model (regardless

of the descriptive GADM(i) and structural GASM(i)
j view), knowledge may have either been

inherited, denoted as 'I', or deliberately added, denoted as 'S'. This notation clearly indicates the

quantity of both general and specific knowledge in a general model. Our approach makes the

formalization process quicker and in a more structured way. Moreover, it facilitates

maintenance and update allowing to keep generic models up to date. When we make a change

to a high-level model, all related specific models will inherit those updates.

RQ 2. “How can ETO requirements be processed during configuration activity?”

The second research question is answered in Chapter 4 which leads to our second contribution.

Our second contribution has focused on the phase of knowledge reuse. We proposed a

knowledge reuse process by adapting the CTO configuration activity to fulfill ETO

requirements. Therefore, our approach first covers CTO situations and we highlight what our

proposals imply in CTO configuration. First, in the classical way, the user has to select a generic

model, or GA(i) at a certain level of abstraction. An instance of his descriptive view is created,

noted GADI(i) then configured. Once the descriptive view or GADI(i), has been configured, the

user can decide whether or not to configure one of its structural views or GASI(i)
j
 to meet the

CTO's requirements. If this is the case, the user enters a new configuration cycle for each item

or GAI of the BOM. Configuration is complete when all the attributes of all the GADI(i) in the

BOM are set to a single value. A CTO-solution has then been found. After that, our focus shifted

to pure ETO situations. We proposed a generic process for knowledge reuse in ETO. The

adaptation of configuration activity towards ETO involved either creating new instances or

modifying existing ones to meet ETO requirements, which corresponds to performing

engineering activities. We proposed several cases for modifying both GADI and GASI in order

to formalize ETO requirements using CSP. During the creation or modification of GADI or

GASI for ETO, we need to ensure their consistency. In the case of modification, constraint

filtering cannot be used for consistency checks since it will result in deleting the added values

or inconsistency. Instead, the consistency check is done by the expert user manually. Once the

ETO configuration activity is complete, the resulting solutions are stored in an Experience Base

(EB). Storing them allows for future reuse of solutions and update of formalized generic

models. Moreover, we proposed a generic process for knowledge reuse in CTO- ETO which

links between CTO and ETO and allows to fulfill both CTO and ETO requirements.

Chapter 6: Conclusions and scientific perspectives

159

In Chapter 5, the thesis takes a practical turn by implementing some of our proposals. This is

achieved by using a real bicycle example in the OPERA software. After briefly introducing the

OPERA mock-up, our bike example focuses:

1) For the formalization phase: on the creation of generic artifacts GA(i) and their corresponding

descriptive, GADM(i) and structural views, GASM(i)
j (sections 5.2.1 and 5.2.2). We also

demonstrate the concepts of generalization (section 5.2.3) and specialization (section 5.2.4) of

models, using the examples of wheel and bicycle families, respectively.

2) For the knowledge reuse phase: for CTO requirements, on selecting and configuring BOM

components (sections 5.3.1 and 5.3.2), while for ETO requirements, on defining a new

component during configuration (section 5.3.3), as well as modifying a component (section

5.3.4) and the structure of the BOM (section 5.3.5).

In conclusion, this thesis has made:

• two notable contributions to knowledge management in system configuration.

• one experiment of our proposals on a software mock-up.

Additionally, we have presented four papers at international conferences and one at a national

oral presentation.

• Maryam Mohammad Amini, Michel Aldanondo, Élise Vareilles, Thierry Coudert.

Twenty Years of Configuration Knowledge Modeling Research. Main Works, What To

Do Next?. IEEM 2021 - International Conference on Industrial Engineering and

Engineering Management, Dec 2021, Singapore, France. pp.1328-1332,

• Maryam Mohammad Amini, Thierry Coudert, Élise Vareilles, Michel Aldanondo.

Integration of Ontologies and Constraint Satisfaction Problems for Product

Configuration. IEEM 2021 - International Conference on Industrial Engineering and

Engineering Management, Dec 2021, Singapore, France. pp.578-582,

• Maryam Mohammad Amini, Thierry Coudert, Élise Vareilles, Michel Aldanondo.

System Configuration Models: Towards a Specialization Approach. MIM 2022 - 10th

IFAC Conference on Manufacturing Modelling, Management and Control, Jun 2022,

Nantes, France. pp.1189 - 1194, ⟨10.1016/j.ifacol.2022.09.551⟩,

• Élise Vareilles, Thierry Coudert, Michel Aldanondo, Maryam Mohammad Amini.

Capitalisation de connaissances en configuration de biens et de services : vers une

meilleure gestion de la communalité des modèles. CIGI QUALITA MOSIM 2023, Jun

2023, Trois-Rivières, Canada. 8 p.

(Amini, Aldanondo, et al., 2021)

(Amini, Coudert, et al., 2021)

(Amini et al., 2022)

(Vareilles et al., 2023)

Chapter 6: Conclusions and scientific perspectives

160

6.2. Scientific perspectives

The two contributions summarized above open up various perspectives for future research. This

section represents the main ones following each contribution.

Perspective 1: Considering multiple inheritance in knowledge formalization

In our knowledge formalization phase, we limited the specialization to the single inheritance,

in which a child inherits the knowledge from one of the parents. However, when we delve

deeper into knowledge formalization, the concept of multiple inheritance emerges as a

potentially richer and more complex concept (Cardelli, 1984). This concept allows a child to

inherit knowledge from at least two parents. For instance, let's consider we have formalized two

generic models: one representing ‘Child Bikes’ and the other representing ‘City Bikes’. Thanks

to multiple inheritance we can create a new generic model for ‘Child City Bikes’ which inherits

the features and structures of both ‘Child Bikes’ and ‘City Bikes’ models. The multiple

inheritance facilitates the formalization of a richer model by inheriting features and structures

from several parent models, resulting in a more detailed and specific child model. Efficiency is

another key benefit since the formalized generic models can be used to define a new model

rather than starting from scratch.

However, multiple inheritance is not without any challenges. One is the increased complexity

that results from merging multiple parent models, which can make the child model more

difficult to understand and maintain. Conflict resolution is another obstacle; when features or

attributes from different parent models come into conflict, it can be difficult to determine which

feature should take priority or how it should be merged. Moreover, it is essential to ensure that

the child model does not inherit contradictory features from its parents, and therefore maintains

the consistency of knowledge.

The idea would be to first formalize multiple inheritance for generic models (i.e. GA, GADM,

and GASM multiple inheritance), then propose formalization processes. These processes

should tackle challenges like dealing with complex situations and resolving conflicts. To do

this, the following papers can be investigated as a good basis and their ideas can be adapted.

(Simons, 2005) examined the theoretical challenges and resolution of conflicts related to

multiple inheritance in object-oriented programming. Ducournau in (Ducournau et al., 1992)

developed conflict resolution mechanisms in multiple inheritance in Object-Oriented

Programming. (Ducournau & Privat, 2011) provided insights on the semantics of multiple

inheritance.

Perspective 2: Considering intangible artifacts in knowledge formalization

In our knowledge formalization, we only considered tangible artifacts such as technical

systems. However, nowadays configurations are not just limited to tangible artifacts; they also

involve intangible artifacts like services. Services such as maintenance or training play an

important role in customer satisfaction and loyalty. Moreover, customized services can provide

a significant competitive advantage.

Chapter 6: Conclusions and scientific perspectives

161

Future work should therefore focus on the formalization of generic models for intangible

artifacts at different levels of abstraction and its link with the models for tangible artifacts. The

idea is to create an ontology of generic models for services, in which generic models are

structured from the most general one to the most specialized one. To achieve this, we must

investigate how to define processes for both generalization and specialization of services

models. Before that, we must first define the descriptive view and structural view of a family

of services, therefore we need to adapt our proposals to the services. For instance, in the

descriptive view, the features, KPIs, and the constraints linking their values can be defined

while in the structural view the service components, their relations, and KPIs aggregation

methods can be formalized. The following papers can be investigated as a good basis and their

ideas can be adapted.

(Guillon, Ayachi, et al., 2021) studied Product-Service Systems, also called PSS which allows

the combination of different types of artifacts (components, subsystems, service components,

and modules) in a unique technical solution architecture. They also formalized processes for

artifacts. (Dong et al., 2011) proposed an ontology-based approach for modeling knowledge for

service products, adapting product configuration concepts to the service sector. They mentioned

that based on the literature, components have properties, constraints, and resources. They

employed languages like OWL and SWRL to formalize the knowledge of services. (Shen et al.,

2012) proposed an ontology-based approach for formalizing configuration knowledge related

to Product Extension Services (PESs). They began by creating meta-ontologies, which

encompassed sub-ontologies for services, products, and customers, providing a foundation for

the general PES configuration domain. The knowledge was then formalized using OWL, and

SWRL.

Perspective 3: Measuring the level of ETO in knowledge reuse

In our knowledge reuse phase, we proposed processes for reusing knowledge in CTO, ETO,

and CTO-ETO. However, we did not discuss the level of ETO. In reality, most of the time we

deal with CTO-ETO in which user requirements are CTO requirements and some are ETO

requirements. Among ETO requirements it can be related to Light ETO or Heavy ETO (Sylla,

Guillon, Vareilles, et al., 2018). Therefore, it seems to be interesting to understand the quantity

of engineering activities required to fulfill ETO requirements.

A third perspective concerns the ideas for the development of an indicator to measure the

percentage of ETO within a configuration. The following works (Siddique et al., 1998) and

(Thevenot & Simpson, 2006) can be considered as good references to give us some ideas. In

their work, they proposed an index for measuring platform commonality, named Percent

Commonality (%C) then measured it based on different views, which we explained in Chapter

2, page 24. We can adapt their proposals to our context.

In our proposals for knowledge formalization and knowledge reuse, we defined three distinct

tags: ‘I’ for ‘Inherited’, ‘S’ for ‘Specific’, and ‘E’ for ‘ETO’. In ETO, all three tags ‘E’, ‘S’,

and ‘I’ are used. While, in CTO, only the tags ‘I’ and ‘S’ are used. The idea would be to use

these tags in order to calculate the level of ETO for GADI and GASI. To achieve the level of

ETO for GADI, first, the level of ETO for its elements (i.e. attributes, attributes domains,

Chapter 6: Conclusions and scientific perspectives

162

relations, and constraint tuples) must be calculated and then percentages must be integrated

using a method. On the other hand, to obtain the level of ETO for GASI, first, it must be figured

out how to compute the ETO level for each GAI composing it. Then, how to propagate the ETO

level to the higher level of composition (e.g. from the component level to the subsystem level

and then to the system level). Moreover, the level of ETO for other elements such as quantity

domains, relations, and constraints tuples must be calculated as well. Finally, a method must be

defined to integrate these percentages of ETO.

163

Bibliographic references

Aamodt, A., & Plaza, E. (1994). Case-Based Reasoning: Foundational Issues, Methodological

Variations, and System Approaches. AI Communications, 7(1), 39–59.

https://doi.org/10.3233/AIC-1994-7104

Abdullah, R., Ibrahim, H., Atan, R., Napis, S., Selamat, M. H., Haslina, N., Hernazura, S., &

Jamil, H. (2008). The Development of Bioinformatics Knowledge Management System

with Collaborative Environment. IJCSNS International Journal of Computer Science and

Network Security, 8(2), 309–319.

Alavi, M., & Leidner, D. E. (2001). Review: Knowledge management and knowledge

management systems: Conceptual foundations and research issues. MIS Quarterly:

Management Information Systems, 25(1), 107–136. https://doi.org/10.2307/3250961

Aldanondo, M., Hadj-Hamou, K., Moynard, G., & Lamothe, J. (2003). Mass customization and

configuration: Requirement analysis and constraint based modeling propositions.

Integrated Computer-Aided Engineering, 10(2), 177–189. https://doi.org/10.3233/ICA-

2003-10207

Aldanondo, M., & Vareilles, E. (2008). Configuration for mass customization: how to extend

product configuration towards requirements and process configuration. Journal of

Intelligent Manufacturing, 19(5), 521–535. https://doi.org/10.1007/s10845-008-0135-z

Amini, M. M., Aldanondo, M., Vareilles, E., & Coudert, T. (2021). Twenty Years of

Configuration Knowledge Modeling Research. Main Works, What To Do Next?. In 2021

IEEE International Conference on Industrial Engineering and Engineering Management,

1328–1332. https://doi.org/10.1109/IEEM50564.2021.9673037

Amini, M. M., Coudert, T., Vareilles, E., & Aldanondo, M. (2021). Integration of Ontologies

and Constraint Satisfaction Problems for Product Configuration. In 2021 IEEE

International Conference on Industrial Engineering and Engineering Management, 578–

582. https://doi.org/10.1109/IEEM50564.2021.9672918

Amini, M. M., Coudert, T., Vareilles, E., & Aldanondo, M. (2022). System Configuration

Models: Towards a Specialization Approach. MIM 2022 - 10th IFAC Conference on

Manufacturing Modelling, Management and Control, 55(10), 1189–1194.

https://doi.org/10.1016/j.ifacol.2022.09.551

Andersen, B. (1993). Modelling Product Structures by Generic Bills-of-Materials. Production

Planning & Control, 4(3), 286–286. https://doi.org/10.1080/09537289308919447

Arana, J. (2007). Product Modeling and Configuration Experiences. Mass Customization

Information Systems in Business (pp. 33–58). IGI Global. https://doi.org/10.4018/978-1-

59904-039-4.ch002

Baker, K. R. (1985). Safety stocks and component commonality. Journal of Operations

Management, 6(1), 13–22. https://doi.org/10.1016/0272-6963(85)90031-2

Balmelli, L. (2007). An overview of the systems modeling language for products and systems

development. Journal of Object Technology, 6(6), 149–177.

https://doi.org/10.5381/jot.2007.6.6.a5

Barták, R., Salido, M. A., & Rossi, F. (2010). Constraint satisfaction techniques in planning

and scheduling. Journal of Intelligent Manufacturing, 21(1), 5–15.

https://doi.org/10.1007/s10845-008-0203-4

164

Beldiceanu, N., Carlsson, M., Demassey, S., & Petit, T. (2007). Global Constraint Catalogue:

Past, Present and Future. Constraints, 12(1), 21–62. https://doi.org/10.1007/s10601-006-

9010-8

Beldiceanu, N., Carlsson, M., & Rampon, J.X. (2005). Global Constraint Catalog.

Ben-Ari, M. (1998). Constructivism in computer science education. ACM SIGCSE Bulletin,

30(1), 257–261. https://doi.org/10.1145/274790.274308

Berardi, D., Calvanese, D., & De Giacomo, G. (2005). Reasoning on UML class diagrams.

Artificial Intelligence, 168(1–2), 70–118. https://doi.org/10.1016/j.artint.2005.05.003

Bergmann, R., & Wilke, W. (1996). On the role of abstraction in case-based reasoning. In

European Workshop on Advances in Case-Based Reasoning, 28–43.

https://doi.org/10.1007/BFb0020600

Bessiere, C. (1991). Arc-consistency in dynamic constraint satisfaction problems. AAAI

Conference on Artificial Intelligence, 221–226.

Bessière, C. (1994). Arc-consistency and arc-consistency again. Artificial Intelligence, 65(1),

179–190. https://doi.org/10.1016/0004-3702(94)90041-8

Bettman, J. R., & Park, C. W. (1980). Effects of Prior Knowledge and Experience and Phase of

the Choice Process on Consumer Decision Processes: A Protocol Analysis. Journal of

Consumer Research, 7(3), 234. https://doi.org/10.1086/208812

Blecker, T., & Friedrich, G. (2006). Mass Customization: Challenges and Solutions (Vol. 87).

Springer Science & Business Media. https://doi.org/10.1007/0-387-32224-8

Bonev, M., & Hvam, L. (2013). Performance measures for mass customization strategies in an

ETO environment. In 20th European Operations Management Association Conference.

Borst, P., Akkermans, H., & Top, J. (1997). Engineering ontologies. International Journal of

Human-Computer Studies, 46(2–3), 365–406. https://doi.org/10.1006/ijhc.1996.0096

Brière-Côté, A., Rivest, L., & Desrochers, A. (2010). Adaptive generic product structure

modelling for design reuse in engineer-to-order products. Computers in Industry, 61(1),

53–65. https://doi.org/10.1016/j.compind.2009.07.005

Cao, J., & Hall, D. (2020). Ontology-based Product Configuration for Modular Buildings.

Proceedings of the International Symposium on Automation and Robotics in Construction

(ISARC), October, 171–176. https://doi.org/10.22260/ISARC2020/0026

Cardelli, L. (1984). A semantics of multiple inheritance. In International symposium on

semantics of data types (pp. 51–67). https://doi.org/10.1007/3-540-13346-1_2

Clark, T., & Evans, A. (1997). Foundations of the Unified Modeling Language. In Proceedigs

of the 2nd Northern Formal Methods Workshop.Springer.

Colburn, T., & Shute, G. (2007). Abstraction in Computer Science. Minds and Machines, 17(2),

169–184. https://doi.org/10.1007/s11023-007-9061-7

Collins, D. (1982). Bike. Collins English Dictionary. Retrieved from:

https://www.collinsdictionary.com/dictionary/english/bike#google_vignette

Comer, D. E., Gries, D., Mulder, M. C., Tucker, A., Turner, A. J., & Young, P. R. (1989).

Computing as a discipline. Communications of the ACM, 32(1), 9–23.

https://doi.org/10.1145/63238.63239

DeBellis, M. (2021). A practical guide to building OWL ontologies using Protégé 5.5 and

165

plugins. URL: https://www. researchgate. net/publication/351037551_A_Practical

_Guide_to_Building_OWL_Ontologies_Using_Protege_55_and_Plugins(дата

звернення: 11.05. 2023).

Debruyne, R., & Bessiere, C. (1997). Some Practicable Filtering Techniques for the Constraint

Satisfaction Problem. Proceedings 15th International Joint Conference on Artificial

Intelligence (IJCAI), 412–417.

Djefel, M., Vareilles, É., Aldanondo, M., & Gaborit, P. (2008). Vers le couplage de la

conception produit et de la planification projet via une approche par contraintes. JFPC

2008 - Quatriemes Journees Francophones de Programmation Par Contraintes, 397–402.

Dobing, B., & Parsons, J. (2006). How UML is used. Communications of the ACM, 49(5), 109–

113. https://doi.org/10.1145/1125944.1125949

Dong, M., Yang, D., & Su, L. (2011). Ontology-based service product configuration system

modeling and development. Expert Systems with Applications, 38(9), 11770–11786.

https://doi.org/10.1016/j.eswa.2011.03.064

Ducournau, R., Habib, M., Huchard, M., & Mugnier, M. L. (1992). Monotonic conflict

resolution mechanisms for inheritance. ACM SIGPLAN Notices, 27(10), 16–24.

https://doi.org/10.1145/141937.141939

Ducournau, R., & Privat, J. (2011). Metamodeling semantics of multiple inheritance. Science

of Computer Programming, 76(7), 555–586. https://doi.org/10.1016/j.scico.2010.10.006

Elgh, F. (2011). Modeling and management of product knowledge in an engineer-to-order

business model. In 18th International Conference on Engineering Design (ICED 11) -

Impacting Society Through Engineering Design.

Erens, F., & McKay, A. (1994). Product modelling using multiple levels of abstraction

instances as types. Computers in Industry, 24(1), 17–28. https://doi.org/10.1016/0166-

3615(94)90005-1

Erens, F., & Wortman, H. (1996). Generic product modeling for mass customization.

Implementation Road Map, January, 1–23.

Esheiba, L., Elgammal, A., Helal, I. M. A., & El-Sharkawi, M. E. (2021). A Hybrid Knowledge-

Based Recommender for Product-Service Systems Mass Customization. Information,

12(8), 296. https://doi.org/10.3390/info12080296

Falkner, A., Haselböck, A., Krames, G., Schenner, G., Schreiner, H., & Taupe, R. (2020).

Solver Requirements for Interactive Configuration. JUCS - Journal of Universal

Computer Science, 26(3), 343–373. https://doi.org/10.3897/jucs.2020.019

Felfernig, A. (2007). Standardized configuration knowledge representations as technological

foundation for mass customization. IEEE Transactions on Engineering Management,

54(1), 41–56. https://doi.org/10.1109/TEM.2006.889066

Felfernig, A., Friedrich, G. E., & Jannach, D. (2000). UML as domain specific language for the

construction of knowledge-based configuration systems. International Journal of Software

Engineering and Knowledge Engineering, 10(4), 449–469. https://doi.org/10.1016/S0218-

1940(00)00024-9

Felfernig, A., Hotz, L., Bagley, C., & Tiihonen, J. (2014). Knowledge-Based Configuration:

From Research to Business Cases. Newnes.

Felfernig, A., Jannach, D., & Zanker, M. (2000). Contextual Diagrams as Structuring

Mechanisms for Designing Configuration Knowledge Bases in UML. In International

166

Conference on the Unified Modeling Language (pp. 240–254). Springer, Berlin,

Heidelberg. https://doi.org/10.1007/3-540-40011-7_17

Forza, C., & Salvador, F. (2008). Application support to product variety management.

International Journal of Production Research, 46(3), 817–836.

https://doi.org/10.1080/00207540600818278

Freuder, E. C. (1978). Synthesizing constraint expressions. Communications of the ACM,

21(11), 958–966. https://doi.org/10.1145/359642.359654

Frohlich, P. H. (2002). Inheritance decomposed. Inheritence Workshop at ECOOP.

Gartner, R. (2016). The Taxonomic Urge. Metadata: Shaping Knowledge from Antiquity to the

Semantic Web (pp. 65–75).

Ghedira, K. (2013). Constraint satisfaction problems: csp formalisms and techniques. John

Wiley & Sons.

Golomb, S. W., & Baumert, L. D. (1965). Backtrack Programming. Journal of the ACM, 12(4),

516–524. https://doi.org/10.1145/321296.321300

Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge

Acquisition, 5(2), 199–220. https://doi.org/10.1006/knac.1993.1008

Gruber, T. R. (1995). Toward principles for the design of ontologies used for knowledge

sharing. International Journal of Human - Computer Studies, 43(5–6), 907–928.

https://doi.org/10.1006/ijhc.1995.1081

Guillon, D. (2019). Assistance à l’élaboration d’offres du produit au service : proposition d’un

modèle générique centré connaissances et d’une méthodologie de déploiement et

d’exploitation. Doctoral dissertation, Ecole des Mines d'Albi-Carmaux.

Guillon, D., Ayachi, R., Vareilles, É., Aldanondo, M., Villeneuve, É., & Merlo, C. (2021).

Product⋎service system configuration: a generic knowledge-based model for commercial

offers. International Journal of Production Research, 59(4), 1021–1040.

https://doi.org/10.1080/00207543.2020.1714090

Guillon, D., Sylla, A., Vareilles, E., Aldanondo, M., Villeneuve, E., Merlo, C., Thierry, C., &

Geneste, L. (2017). Configuration and Response to calls for tenders : an open bid

configuration model. In 19th Configuration Workshop.

Guillon, D., Villeneuve, E., Merlo, C., Vareilles, E., & Aldanondo, M. (2021). ISIEM: A

methodology to deploy a knowledge-based system to support bidding process. Computers

& Industrial Engineering, 161(June), 107638. https://doi.org/10.1016/j.cie.2021.107638

Hadzic, M., Wongthongtham, P., Dillon, T., & Chang, E. (2009). Ontology-based multi-agent

systems. Germany: Springer Berlin Heidelberg.

Hanafi, R., Mejri, L., & Ghezala, H. H. Ben. (2018). Toward a domain ontology for computer

projects resolution: Project memory challenge. In KEOD - 10th International Conference

on Knowledge Engineering and Ontology Developmen (pp. 245-252)

Haralick, R. M., & Elliott, G. L. (1980). Increasing tree search efficiency for constraint

satisfaction problems. Artificial Intelligence, 14(3), 263–313.

https://doi.org/10.1016/0004-3702(80)90051-X

Hause, M. (2006). The SysML Modelling Language. Fifteenth European Systems Engineering

Conference, September, 1-12.

Hegge, H. M. H., & Wortmann, J. C. (1991). Generic bill-of-material: a new product model.

167

International Journal of Production Economics, 23(1–3), 117–128.

https://doi.org/10.1016/0925-5273(91)90055-X

Hilpinen, R. (1992). On artifacts and works of art 1. Theoria, 58(1), 58–82.

Hilpinen, R. (1999). Artifact. Stanford Encyclopedia of Philosophy.

Hutchinson, J., Whittle, J., & Rouncefield, M. (2014). Model-driven engineering practices in

industry: Social, organizational and managerial factors that lead to success or failure.

Science of Computer Programming, 89, 144–161.

Janota, M., Botterweck, G., Grigore, R., & Marques-Silva, J. (2010). How to Complete an

Interactive Configuration Process?. In 36th Conference on Current Trends in Theory and

Practice of Computer Science (pp. 528-539). https://doi.org/10.1007/978-3-642-11266-

9_44

Jiao, J., & Tseng, M. M. (1999). An Information Modeling Framework for Product Families to

Support Mass Customization Manufacturing. CIRP Annals, 48(1), 93–98.

https://doi.org/10.1016/S0007-8506(07)63139-4

Johnsen, S. M., & Hvam, L. (2019). Understanding the impact of non-standard customisations

in an engineer-to-order context: A case study. International Journal of Production

Research, 57(21), 6780–6794. https://doi.org/10.1080/00207543.2018.1471239

Junker, U. (2006). Configuration. In Handbook of Constraint Programming (Vol. 2, Issue C,

pp. 837–873). Elsevier. https://doi.org/10.1016/S1574-6526(06)80028-3

Kamsu Foguem, B., Coudert, T., Béler, C., & Geneste, L. (2008). Knowledge formalization in

experience feedback processes: An ontology-based approach. Computers in Industry,

59(7), 694–710. https://doi.org/10.1016/j.compind.2007.12.014

Kauffman, D. L. (1980). Systems One: An Introduction to Systems Thinking. Future Systems,

Incorporated, 1–42.

Khoshafian, S., Blumer, R., & Abnous, R. (1991). Inheritance and generalization in intelligent

SQL. Computer Standards & Interfaces, 13(1–3), 213–220. https://doi.org/10.1016/0920-

5489(91)90029-Y

Kim, D. H. (1999). Introduction to systems thinking. Waltham, MA: Pegasus Communications.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing.

Science, 220(4598), 671–680. https://doi.org/10.1126/science.220.4598.671

Kolodner, J. L. (1992). An introduction to case-based reasoning. Artificial Intelligence Review,

6(1), 3–34. https://doi.org/10.1007/BF00155578

Kossiakoff, A., Sweet, W. N., Seymour, S. J., & Biemer, S. M. (2011). Systems Engineering

Principles and Practice. John Wiley & Sons

Kotha, S., & Pine, B. J. (1994). Mass Customization: The New Frontier in Business

Competition. The Academy of Management Review, 19(3), 588.

https://doi.org/10.2307/258941

Kramer, J. (2007). Is abstraction the key to computing?. Communications of the ACM, 50(4),

36–42. https://doi.org/10.1145/1232743.1232745

Krótkiewicz, M. (2018). A novel inheritance mechanism for modeling knowledge

representation systems. Computer Science and Information Systems, 15(1), 51–78.

https://doi.org/10.2298/CSIS170630046K

168

Language, M., Breu, R., Hinkel, U., Hofmann, C., Klein, C., Paech, B., Rumpe, B., & Thurner,

V. (1997). Towards a Formalization of the Unified Modeling Language. In ECOOP'97

Object-Oriented Programming: 11th European Conference Jyväskylä, Finland, 1997

Proceedings 11 (pp. 344-366).

Lee, H. J., & Lee, J. K. (2005). An effective customization procedure with configurable

standard models. Decision Support Systems, 41(1), 262–278.

https://doi.org/10.1016/j.dss.2004.06.010

Lyu, G., Chu, X., & Xue, D. (2017). Product modeling from knowledge, distributed computing

and lifecycle perspectives: A literature review. Computers in Industry, 84, 1–13.

https://doi.org/10.1016/j.compind.2016.11.001

Mackworth, A. K. (1977). Consistency in networks of relations. Artificial Intelligence, 8(1),

99–118. https://doi.org/10.1016/0004-3702(77)90007-8

Männistö, T., Peltonen, H., Soininen, T., & Sulonen, R. (2001). Multiple abstraction levels in

modelling product structures. Data & Knowledge Engineering, 36(1), 55–78.

https://doi.org/10.1016/S0169-023X(00)00034-3

McLucas, A. C., & Ryan, M. J. (2005). Meeting Critical Real-World Challenges in Modelling

Complexity: What System Dynamics Modelling Might Learn From Systems Enginee.

Proceedings of the 23rd International Conference of the System Dynamics Society, July.

Ming, Z., Wang, G., Yan, Y., Dal Santo, J., Allen, J. K., & Mistree, F. (2017). An Ontology for

Reusable and Executable Decision Templates. Journal of Computing and Information

Science in Engineering, 17(3), 1–13. https://doi.org/10.1115/1.4034436

Mittal, S., & Falkenhainer, B. (1990). Dynamic Constraint Satisfaction Problems. Proceedings

Eighth National Conference on Artificial Intelligence, 25–32.

http://link.springer.com/10.1007/978-81-322-3972-7_10

Mittal, S., & Frayman, F. (1989). Towards a Generic Model of Configuration Tasks. In IJCAI

International Joint Conference on Artificial Intelligence (Vol. 89, pp. 1395-1401).

Mkhinini, M. M., Labbani-Narsis, O., & Nicolle, C. (2020). Combining UML and ontology:

An exploratory survey. Computer Science Review, 35, 100223.

https://doi.org/10.1016/j.cosrev.2019.100223

Monge, L. G. (2019). Knowledge-based configuration : a contribution to generic modeling ,

evaluation and evolutionary optimization. Doctoral dissertation, Ecole des Mines d'Albi-

Carmaux.

Montanari, U. (1974). Networks of constraints: Fundamental properties and applications to

picture processing. Information Sciences, 7(C), 95–132. https://doi.org/10.1016/0020-

0255(74)90008-5

Myrodia, A., Kristjansdottir, K., & Hvam, L. (2017). Impact of product configuration systems

on product profitability and costing accuracy. Computers in Industry, 88, 12–18.

https://doi.org/10.1016/j.compind.2017.03.001

Nickerson, R. C., Varshney, U., & Muntermann, J. (2013). A method for taxonomy

development and its application in information systems. European Journal of Information

Systems, 22(3), 336–359. https://doi.org/10.1057/ejis.2012.26

Noy, F. N., & McGuinness, D. L. (2001). Ontology Development 101: A Guide to Creating

Your First Ontology. Stanford Knowledge Systems Laboratory.

Oddsson, G., & Ladeby, K. R. (2014). From a literature review of product configuration

169

definitions to a reference framework. Artificial Intelligence for Engineering Design,

Analysis and Manufacturing, 28(4), 413–428.

Ohira, Y., Hochin, T., & Nomiya, H. (2011). Introducing Specialization and Generalization to

a Graph-Based Data Model. In Knowledge-Based and Intelligent Information and

Engineering Systems: 15th International Conference. https://doi.org/10.1007/978-3-642-

23866-6_1

Omg. (2012). OMG Object Constraint Language (OCL) v2.3.1. 03(January), 246.

https://www.omg.org/spec/OCL/2.3.1/PDF

Pedersen, C. H. (1989). Extending ordinary inheritance schemes to include generalization. In

Conference proceedings on Object-oriented programming systems, languages and

applications (pp. 407-417). https://doi.org/10.1145/74878.74920

Pérez, B., & Porres, I. (2019). Reasoning about UML/OCL class diagrams using constraint

logic programming and formula. Information Systems, 81, 152–177.

https://doi.org/10.1016/j.is.2018.08.005

Petre, M. (2013). UML in practice. In 35th International Conference on Software Engineering

(pp. 722–731).

Pine, B. J., Victor, B., & Boynton, A. C. (1993). Making mass customization work. Harvard

Business Review, 71(5), 108-11.

Pitiot, P., Aldanondo, M., & Vareilles, E. (2014). Concurrent product configuration and process

planning: Some optimization experimental results. Computers in Industry, 65(4), 610–621.

https://doi.org/10.1016/j.compind.2014.01.012

Polenghi, A., Roda, I., Macchi, M., Pozzetti, A., & Panetto, H. (2022). Knowledge reuse for

ontology modelling in Maintenance and Industrial Asset Management. Journal of

Industrial Information Integration, 27(July 2021).

https://doi.org/10.1016/j.jii.2021.100298

Queralt, A., & Teniente, E. (2006). Reasoning on UML class diagrams with OCL constraints.

In International Conference on Conceptual Modeling, 497–512.

https://doi.org/10.1007/11901181_37

Reyes-Peña, C., & Tovar-Vidal, M. (2019). Ontology: Components and Evaluation, a Review.

Research in Computing Science, 148(3), 257–265. https://doi.org/10.13053/rcs-148-3-21

Riboni, D., & Bettini, C. (2011). OWL 2 modeling and reasoning with complex human

activities. Pervasive and Mobile Computing, 7(3), 379–395.

https://doi.org/10.1016/j.pmcj.2011.02.001

Rigger, E., Fleisch, R., & Stankovic, T. (2021). Facilitating configuration model formalization

based on systems engineering. In ConfWS, 1–8.

Romero Bejarano, J. C., Coudert, T., Vareilles, E., Geneste, L., Aldanondo, M., & Abeille, J.

(2014). Case-based reasoning and system design: An integrated approach based on

ontology and preference modeling. Artificial Intelligence for Engineering Design,

Analysis and Manufacturing, 28(1), 49–69. https://doi.org/10.1017/S0890060413000498

Rossi, F., Van Beek, P., & Walsh, T. (Eds.). (2006). Handbook of Constraint Programming.

Elsevier.

Rudberg, M., & Wikner, J. (2004). Mass customization in terms of the customer order

decoupling point. Production planning & control, 15(4), 445-458.

170

Rumbaugh, J., Jacobson, I., & Booch, G. (1999). The Unified Modeling Language Reference

Manual. In Addison Wesley.

Rüßmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Engel, P., & Harnisch, M.

(2015). Industry 4.0: The future of productivity and growth in manufacturing industries.

In Boston consulting group, 9(1), 54-89.

Sabin, D., & Weigel, R. (1998). Product configuration frameworks-a survey. IEEE Intelligent

Systems, 13(4), 42–49. https://doi.org/10.1109/5254.708432

Sage, A. P. (1992). Systems engineering. John Wiley & Sons.

Sciore, E. (1989). Object specialization. ACM Transactions on Information Systems, 7(2), 103–

122. https://doi.org/10.1145/65935.65936

Shaharin, S., Saad, A., Hashim, M., & Ubaidullah, N. H. (2019). Current Trends in the

Integration of Case-Based Reasoning and Semantic Web. International Journal of

Academic Research in Business and Social Sciences, 9(14).

https://doi.org/10.6007/IJARBSS/v9-i14/6518

Shen, J., Wang, L., & Sun, Y. (2012). Configuration of product extension services in

servitisation using an ontology-based approach. International Journal of Production

Research, 50(22), 6469–6488. https://doi.org/10.1080/00207543.2011.652744

Siddique, Z., Rosen, D. W., & Wang, N. (1998). On the applicability of product variety design

concepts to automotive platform commonality. Proceedings of the ASME Design

Engineering Technical Conference. https://doi.org/10.1115/DETC98/DTM-5661

Simonis, H. (2007). Models for Global Constraint Applications. Constraints, 12(1), 63–92.

https://doi.org/10.1007/s10601-006-9011-7

Simons, A. J. H. (2004). The Theory of Classification, Part 10: Method Combination and Super-

Reference. The Journal of Object Technology, 3(1), 43.

https://doi.org/10.5381/jot.2004.3.1.c4

Simons, A. J. H. (2005). The Theory of Classification Part 17: Multiple Inheritance and the

Resolution of Inheritance Conflicts. The Journal of Object Technology, 4(2), 15.

https://doi.org/10.5381/jot.2005.4.2.c2

Soininen, T., Tiihonen, J., Männistö, T., & Sulonen, R. (1998). Towards a general ontology of

configuration. Artificial Intelligence for Engineering Design, Analysis and Manufacturing,

12(4), 357–372. https://doi.org/10.1017/S0890060498124083

Stahl, A., & Bergmann, R. (2000). Applying Recursive CBR for the Customization of

Structured Products in an Electronic Shop. In European Workshop on Advances in Case-

Based Reasoning, 297–308.

Studer, R., Benjamins, V. R., & Fensel, D. (1998). Knowledge engineering: Principles and

methods. Data & Knowledge Engineering, 25(1–2), 161–197.

https://doi.org/10.1016/S0169-023X(97)00056-6

Stumptner, M. (1997). An overview of knowledge‐based configuration. Ai Communications,

10(2), 111–125.

Sylla, A., Coudert, T., & Geneste, L. (2021). A case-based reasoning (CBR) approach for

engineer-to-order systems performance evaluation. IFAC-PapersOnLine, 54(1), 717–722.

https://doi.org/10.1016/j.ifacol.2021.08.182

Sylla, A., Guillon, D., Ayachi, R., Vareilles, E., Aldanondo, M., Coudert, T., & Geneste, L.

171

(2018). How to deal with engineering-to-order product/system configuration?. In ConfWS

2018-20th Configuration Workshop (Vol. 2220, pp. 103-108).

Sylla, A., Guillon, D., Vareilles, E., Aldanondo, M., Coudert, T., & Geneste, L. (2018).

Configuration knowledge modeling: How to extend configuration from assemble/make to

order towards engineer to order for the bidding process. Computers in Industry, 99, 29–

41. https://doi.org/10.1016/j.compind.2018.03.019

Taivalsaari, A. (1996). On the Notion of Inheritance. ACM Computing Surveys, 28(3), 438–

479. https://doi.org/10.1145/243439.243441

Thevenot, H. J., & Simpson, T. W. (2006). Commonality indices for assessing product families.

Product Platform and Product Family Design: Methods and Applications, 107–129.

https://doi.org/10.1007/0-387-29197-0_7

Tidstam, A., Malmqvist, J., Voronov, A., & Knut, A. (2016). Formulating constraint

satisfaction problems for the inspection of configuration rules. AI EDAM, 30(3), 313–328.

https://doi.org/10.1017/S0890060415000487

Tiihonen, J., & Soininen, T. (1997). Product configurators - information system support for

configurable products. Technical Report TKO-B137, Helsinki University of Technology,

Finland.

Tsang, E. (1993). Foundations of Constraint Satisfaction. In Academic Press Limited.

https://doi.org/10.1057/jors.1995.93

Tseng, H.E., Chang, C.C., & Chang, S.H. (2005). Applying case-based reasoning for product

configuration in mass customization environments. Expert Systems with Applications,

29(4), 913–925. https://doi.org/10.1016/j.eswa.2005.06.026

Tumnark, P., Cardoso, P., Cabral, J., & Conceição, F. (2019). An Ontology to Integrate Multiple

Knowledge Domains of Training-Dietary-Competition in Weightlifting: A Nutritional

Approach. ECTI Transactions on Computer and Information Technology (ECTI-CIT),

12(2), 140–152. https://doi.org/10.37936/ecti-cit.2018122.135896

Van Beek, P., & Dechter, R. (1997). Constraint tightness and looseness versus local and global

consistency. Journal of the ACM, 44(4), 549–566. https://doi.org/10.1145/263867.263499

Van Harmelen, F., Lifschitz, V., & Bruce Porter, (Eds.). (2008). Handbook of knowledge

representation. Elsevier.

Van Heijst, G., Schreiber, A. T., & Wielinga, B. J. (1997). Using explicit ontologies in KBS

development. International Journal of Human-Computer Studies, 46(2–3), 183–292.

https://doi.org/10.1006/ijhc.1996.0090

Van Hertum, P., Dasseville, I., Janssens, G., & Denecker, M. (2016). The KB paradigm and its

application to interactive configuration. Theory and Practice of Logic Programming,

17(1), 91–117. https://doi.org/10.1017/S1471068416000156

Vareilles, É. (2005). Conception et approches par propagation de contraintes : contribution à

la mise en œuvre d’ un outil d’aide interactif. Doctoral dissertation, Toulouse: Institut

Nationale Polytechnique de Toulouse .

Vareilles, É. (2015). Configuration interactive et contraintes : connaissances , filtrage et

extensions. Mémoire d´HDR, Albi France: Écoles de Mines .

Vareilles, É., Aldanondo, M., Codet De Boisse, A., Coudert, T., Gaborit, P., & Geneste, L.

(2012). How to take into account general and contextual knowledge for interactive aiding

design: Towards the coupling of CSP and CBR approaches. Engineering Applications of

172

Artificial Intelligence, 25(1), 31–47. https://doi.org/10.1016/j.engappai.2011.09.002

Vareilles, É., Coudert, T., Aldanondo, M., & Mohammad-amini, M. (2023). Capitalisation de

connaissances en configuration de biens et de services : vers une meilleure gestion de la

communalité des modèles. CIGI QUALITA MOSIM 2023.

Venkatraman, S., & Venkatraman, R. (2018). Communities of Practice Approach for

Knowledge Management Systems. Systems, 6(4), 36.

https://doi.org/10.3390/systems6040036

Wand, Y., Monarchi, D. E., Parsons, J., & Woo, C. C. (1995). Theoretical foundations for

conceptual modelling in information systems development. Decision Support Systems,

15(4), 285–304. https://doi.org/10.1016/0167-9236(94)00043-6

Wesley, P. A. (2015). Unified Modeling Language User Guide. Pearson Education India.

Wortmann, J. C., Muntslag, D. R., & Timmermans, P. J. M. (1997). Customer-driven

manufacturing. In Customer-driven Manufacturing. Springer Dordrecht.

https://doi.org/10.1007/978-94-009-0075-2_4

Xie, H., Henderson, P., & Kernahan, M. (2005). Modelling and solving engineering product

configuration problems by constraint satisfaction. International Journal of Production

Research, 43(20), 4455–4469. https://doi.org/10.1080/00207540500142381

Xu, Z. W., Sheng, Z. Q., & Xie, H. L. (2009). Product Configuration Knowledge Modeling

Using Extend Object Model. Applied Mechanics and Materials, 16–19, 394–398.

https://doi.org/10.4028/www.scientific.net/AMM.16-19.394

Xuanyuan, S., Li, Y., Patil, L., & Jiang, Z. (2016). Configuration semantics representation: A

rule-based ontology for product configuration. SAI Computing Conference (SAI), 734–

741. https://doi.org/10.1109/SAI.2016.7556062

Yang, D., & Dong, M. (2012). A constraint satisfaction approach to resolving product

configuration conflicts. Advanced Engineering Informatics, 26(3), 592–602.

https://doi.org/10.1016/j.aei.2012.03.008

Yang, D., & Dong, M. (2013). Applying constraint satisfaction approach to solve product

configuration problems with cardinality-based configuration rules. Journal of Intelligent

Manufacturing, 24(1), 99–111. https://doi.org/10.1007/s10845-011-0544-2

Yang, D., Dong, M., & Chang, X.-K. (2012). A dynamic constraint satisfaction approach for

configuring structural products under mass customization. Engineering Applications of

Artificial Intelligence, 25(8), 1723–1737. https://doi.org/10.1016/j.engappai.2012.07.010

Yang, D., Dong, M., & Miao, R. (2008). Development of a product configuration system with

an ontology-based approach. Computer-Aided Design, 40(8), 863–878.

https://doi.org/10.1016/j.cad.2008.05.004

Yang, D., Miao, R., Wu, H., & Zhou, Y. (2009). Product configuration knowledge modeling

using ontology web language. Expert Systems with Applications, 36(3), 4399–4411.

https://doi.org/10.1016/j.eswa.2008.05.026

Zhai, Z., Martínez Ortega, J.F., Lucas Martínez, N., & Castillejo, P. (2018). A Rule-Based

Reasoner for Underwater Robots Using OWL and SWRL. Sensors, 18(10), 3481.

https://doi.org/10.3390/s18103481

Zhang, J., Wang, Q., Wan, L., & Zhong, Y. (2005). Configuration-oriented product modelling

and knowledge management for made-to-order manufacturing enterprises. International

Journal of Advanced Manufacturing Technology, 25(1–2), 41–52.

173

Zhang, L. L. (2014). Product configuration: A review of the state-of-the-art and future research.

International Journal of Production Research, 52(21), 6381–6398.

https://doi.org/10.1080/00207543.2014.942012

Zhang, L. L., Vareilles, E., & Aldanondo, M. (2013). Generic bill of functions, materials, and

operations for SAP 2 configuration. International Journal of Production Research, 51(2),

465–478. https://doi.org/10.1080/00207543.2011.652745

Zhou, G., Lu, Q., Xiao, Z., Zhou, C., Yuan, S., & Zhang, C. (2017). Ontology-based cutting

tool configuration considering carbon emissions. International Journal of Precision

Engineering and Manufacturing, 18(11), 1641–1657. https://doi.org/10.1007/s12541-017-

0193-2

174

175

176

Integration of constraint satisfaction problems and ontologies for the formalization and

exploitation of knowledge in system configuration

This thesis focuses on system configuration, a design activity involving the assembly of

predefined subsystems and components. The key challenge is formalizing knowledge for

system configuration at various levels of abstraction distinguishing descriptive and structural

views and then reusing it to meet Engineer-To-Order (ETO) requirements. The first

contribution is a knowledge formalization process for system configuration using ontologies,

Constraint Satisfaction Problems (CSPs), commonality and inheritance principles. This process

facilitates the creation of generic models at different abstraction levels, ensuring their

consistency, maintenance, and update. Descriptive and structural views provide comprehensive

system representations. The second contribution is a knowledge reuse process for system

configuration by adapting a Configure-To-Order (CTO) configuration process to an ETO

configuration process to meet ETO requirements. Instances of generic models are created,

descriptive and/or structural, then configured by using a generic process to meet ETO

requirements. Obtained solutions are capitalized in an experience base. Finally, proposals are

illustrated on a bicycle example, implemented and tested on the OPERA platform, a system

configuration software.

Keywords: System Configuration, Knowledge Formalization, Knowledge Reuse, Ontology,

Constraint Satisfaction Problems

Intégration de problèmes de satisfaction de contraintes et d'ontologies pour la

formalisation et l'exploitation de connaissances dans la configuration de systèmes

Cette thèse se concentre sur la configuration des systèmes, une activité de conception

impliquant l'assemblage de sous-systèmes et de composants prédéfinis. Le principal défi

consiste à formaliser des connaissances pour la configuration de systèmes à différents niveaux

d'abstraction en distinguant les vues descriptives et structurelles, puis à les réutiliser pour

répondre aux exigences de l’ingénierie ETO. La première contribution est un processus de

formalisation des connaissances pour la configuration de systèmes utilisant les ontologies, les

problèmes de satisfaction des contraintes (CSP) et les principes de communalité et d'héritage.

Ce processus facilite la création de modèles génériques à différents niveaux d'abstraction,

garantissant leur cohérence, leur maintenance et leur mise à jour. Les vues descriptives et

structurelles fournissent des représentations complètes du système. La deuxième contribution

est un processus de réutilisation des connaissances pour la configuration de systèmes en

adaptant un processus de configuration à la commande (CTO) à un processus de configuration

ETO pour répondre aux exigences ETO. Des instances de modèles génériques descriptives et/ou

structurelles sont créées, puis configurées à l'aide d'un processus générique pour répondre aux

exigences de l'ETO. Les solutions obtenues sont capitalisées dans une base d'expérience. Enfin,

les propositions sont illustrées sur un exemple de bicyclette, mises en œuvre et testées sur la

plate-forme OPERA, un logiciel de configuration de systèmes.

Mots Clés : Configuration de systèmes, Formalisation des connaissances, Réutilisation des

connaissances, Ontologies, Problèmes de satisfaction de contraintes

	List of Contents
	List of Figures
	List of acronyms
	1. General introduction
	1.1. Context
	1.2. Research questions and scientific problems
	1.3. Contributions
	1.4. Thesis outline

	2. Bibliographic study
	2.1. System and system configuration
	2.1.1. System definition
	2.1.2. System configuration and configuration activity
	2.1.3. Aiding configuration with a configurator
	2.1.4. Synthesis

	2.2. Knowledge formalization for system configuration
	2.2.1. Knowledge management process
	2.2.2. Descriptive view versus structural view of a system
	2.2.3. Commonality of models
	2.2.4. Abstraction, generalization, specialization, inheritance principles
	2.2.5. Synthesis

	2.3. Different approaches for system configuration
	2.3.1. Criteria for comparing different system configuration approaches
	2.3.2. Ontology and system configuration
	2.3.3. UML, SysML and system configuration
	2.3.4. CSP and system configuration
	2.3.5. CBR and system configuration
	2.3.6. Hybrid approach and system configuration
	2.3.7. Synthesis

	2.4. Synthesis

	3. Knowledge formalization for system configuration
	3.1. GA, GADM, and GASM definition
	3.1.1. Generic Artifact definition and example
	3.1.2. Generic Artifact Descriptive Model definition
	3.1.3. Generic Artifact Structural Model definition
	3.1.4. Synthesis

	3.2. Ontology of GA, GADM, and GASM
	3.2.1. Taxonomy of Generic Artifacts
	3.2.2. Taxonomy of Generic Artifact Descriptive Models
	3.2.3. Taxonomy of Generic Artifact Structural Models
	3.2.4. Synthesis

	3.3. Update of GA(i), GADM(i), and GASM(i)j
	3.3.1. Update of Generic Artifacts
	3.3.2. Update of Generic Artifact Descriptive Models
	3.3.3. Update of Generic Artifact Structural Models
	3.3.4. Synthesis

	3.4. Single-model approach or multi-model approach?
	3.5. Synthesis

	4. Knowledge reuse for system configuration
	4.1. CTO knowledge reuse for system configuration
	4.1.1. CTO configuration activity
	4.1.2. Consequences of modeling propositions
	4.1.3. Synthesis

	4.2. ETO knowledge reuse for system configuration
	4.2.1. From CTO towards ETO configuration activity
	4.2.2. Adaptation of CTO instances to ETO configuration
	4.2.3. Synthesis

	4.3. CTO-ETO knowledge reuse
	4.4. Synthesis

	5. Use case and its implementation in OPERA: a bike example
	5.1. OPERA software and use case presentation
	5.1.1. OPERA software
	5.1.2. Use case presentation

	5.2. Knowledge formalization for system configuration
	5.2.1. GA and GADM Creation
	5.2.2. GASM Creation
	5.2.3. GA Generalization
	5.2.4. GA Specialization

	5.3. Knowledge reuse for system configuration
	5.3.1. System configuration using the descriptive view
	5.3.2. System configuration using the structural view
	5.3.3. GAI and GADI building
	5.3.4. GADI modification
	5.3.5. GASI modification

	5.4. Synthesis

	6. Conclusions and scientific perspectives
	6.1. Conclusions
	6.2. Scientific perspectives

	Bibliographic references

