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In this chapter, we present the general introduction. In section 1.1, we address the context of 

this Ph.D. thesis. Then, in section 1.2, we define our research questions and scientific problems. 

In section 1.3, we explain the contributions of this thesis. Finally, in section 1.4, we end up with 

the outline of the thesis. 

1.1. Context  

Mass customization has emerged as a powerful concept for competitive advantage in the 

manufacturing industry. It allows companies to provide customized products that fit each user’s 

requirements at a competitive price while remaining productive (Pine II et al., 1993), (Kotha & 

Pine, 1994). Additionally, in the fourth industrial revolution, also known as Industry 4.0, 

companies must respond rapidly to the wide-ranging requirements of many users and provide 

solutions to meet their requirements (Rüßmann et al., 2015). To achieve this, configuration 

tools can be employed. 

This thesis focuses on the context of system configuration. System configuration can be 

considered as a type of design activity where systems are defined from a set of predefined 

subsystems and components while considering a set of restrictions on how the subsystems and 

components can be combined (Soininen et al., 1998), (Felfernig et al., 2014). The systems 

considered in this thesis are technical and physical (or tangible) systems (e.g., cars, computers, 

bicycles, …). Furthermore, we consider systems, subsystems, or components as artifacts. An 

artifact can be defined as an object that is intentionally produced for a certain purpose (Hilpinen, 

1992, 1999). As presented in (Guillon, Ayachi, et al., 2021), the term artifact refers to a result 

of human activity.  

To support the configuration activity and find solutions that satisfy users’ requirements, 

configuration tools called Configurators (Tiihonen & Soininen, 1997) or Product Configuration 

Software (PCS) (Myrodia et al., 2017) are employed.  A configurator is composed of two parts: 

1) a Knowledge Base and 2) a Processing Unit. On the one hand, the Knowledge Base stores 

generic models, each representing a family of artifacts with all possible options and variants. 

To address the system configuration problem, generic models must first be created by experts 

and then exploited to fulfill requirements of users. On the other hand, the Processing Unit assists 

the user in the configuration activity and thus in finding the specific solution that is consistent 

with both the generic model and the user's needs. In this thesis, the two phases of formalization, 

leading to the populating of the knowledge base with generic models, and knowledge reuse, 

using the process unit to support the configuration activity, are studied. 
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In the knowledge formalization phase, the experts are responsible for collecting, validating, 

formalizing and updating the knowledge about the artifact families, always including the 

different options and variants, as well as the different relationships and sometimes their 

structure, in order to create generic models that are consistent with the diversity of possible 

solutions in the catalog. This thesis considers two views of the same artifact: a descriptive and 

a structural view (Erens & Wortman, 1996), (Aldanondo & Vareilles, 2008). These two views 

allow the same artifact to be configured either by a novice user, who only needs to consider the 

functional and operational requirements, or by a more expert user, who also needs to consider 

the technical requirements of the system. The descriptive view explains what the artifact is by 

giving information about its key attributes and performance indicators. In descriptive view, the 

artifact is considered as a black box without revealing its internal workings or components. On 

the contrary, the structural view explains how the artifact is composed of, i.e. its bill of 

materials. In the structural view, the artifact can be considered as a white box where the list and 

quantity of each of its artifacts (subsystems and components) appear.  

For experts, it is not that easy to collect, validate, formalize and update knowledge for system 

configuration, as they may have to develop the attributes or structure of existing artifact 

families, or even design entirely new families with novel attributes and structures. As a result, 

it is necessary to create, maintain and update generic models (J. Zhang et al., 2005) with 

sometimes some commonality between them. When several artifacts have commonality, the 

corresponding knowledge can be gathered into generic models in order to facilitate creation, 

maintenance and update. Moreover, it is necessary for experts to be able to check the 

consistency of all the formalized knowledge in order to validate it and authorize its reuse. 

In the knowledge reuse phase, generic models are exploited to configure systems and meet 

users’ requirements. Knowledge reuse enables reasoning on generic models whether it 

represents a descriptive view or a structural view. In this thesis, we consider interactive 

configuration (Janota et al., 2010), (Vareilles, 2015), which is an iterative process of removing 

solutions from solution space or eliminating options that are no longer consistent with the 

choices made by the user and the generic model. Through an iterative process, the user 

progressively specifies his requirements and converges toward a solution. This configuration 

activity is called Configure-To-Order (CTO). 

In the era of mass customization and Industry 4.0, different user requirements must be met. 

However, these requirements can sometimes go beyond the scope of formalized knowledge. It 

means that these out-of-standard requirements, called non-standard requirements (Sylla, 

Guillon, Vareilles, et al., 2018), cannot be fulfilled by the formalized generic models. Therefore, 

to meet these non-standard requirements, an engineering activity has to be carried out, during 

the configuration activity. This engineering activity is called ETO (Engineer-To-Order). These 

types of requirements are then called ETO requirements and they have to be formalized, and 

capitalized. In such a context, the configuration activity has to be modified in order to provide 

solutions that meet the ETO requirements. 
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1.2. Research questions and scientific problems  

According to what we explained in the context, in this thesis, the following Research Questions 

(RQ) and Scientific Problems (SP) are specifically studied and discussed. The first two are 

related to the knowledge formalization phase and the last two are related to the knowledge reuse 

phase. 

RQ 1. Is it possible to define an ontology of generic models to better manage knowledge, 

allowing a clear distinction between descriptive and structural views for system configuration? 

• SP 1. How can we benefit from the association of ontologies, constraint 

satisfaction problems, commonality and inheritance principles to better 

formalize knowledge and define generic models for system configuration? 

RQ 2. How can ETO requirements be processed during configuration activity?  

• SP 2. How can the configuration activity be adapted to formalize and capitalize 

ETO requirements? 

1.3. Contributions  

The contributions of this thesis can be summarized as follows: 

- Contribution 1: To answer the first research question, we propose to associate ontologies, 

CSP approaches, and inheritance principles to create an ontology of generic models. This 

association allows us to better manage knowledge, by creating generic models at different levels 

of abstraction, following their commonality and mainly thanks to the 

generalization/specialization relation. The use of the CSP approach allows to formalize 

relations between the characteristics of the families of artifacts, to check their consistency and 

to facilitate their reuse using reasoning mechanisms such as constraint filtering. This approach 

facilitates the maintenance, creation and updating of the generic models, as they are organized 

in a hierarchical structure. This ontology of generic models is based on the principles of 

commonality: common attributes between several models are aggregated at the top level. In this 

way, the model at the highest level contains only the knowledge that is common to all the 

models, while the lower levels contain only the knowledge that is specific to them. This 

ontology exists for artifact families, and a clear distinction is made between descriptive and 

structural views. At the end of the knowledge formalization step, an ontology of generic models 

can be reached, where consistent generic models are structured from the most general to the 

most specialized. 

- Contribution 2: To answer the second research question, we propose to adapt Configure-To-

Order (CTO) configuration activity to ETO configuration activity in order to fulfill ETO 

requirements. Our proposal allows us to first select generic models then build instances of 

generic models, related to descriptive view and/or structural view at a certain level of 

abstraction. Then, using a generic process for knowledge reuse in CTO, interactively configure 

instances to fulfill requirements of user. For each artifact, it is possible, if structural view exists, 

to dive or not into its bill-of-material in order to configure it more finely. At the end of the 
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knowledge reuse in CTO, a CTO solution is found and then it is capitalized in an experience 

base allowing recommendations for future configurations. Following this, we propose another 

generic process dedicated to the reuse of knowledge to meet the ETO requirements. In this way, 

we propose an adaptation of CTO to ETO by 1) building completely new instances or                    

2) modifying existing instances. These modifications of instances during ETO configuration 

are represented as different cases, relevant to either the descriptive or structural view.  At the 

end of the configuration, an ETO solution is proposed to the user and then it is capitalized in an 

experience base allowing for future reuse and updates of formalized generic models. For a 

system to deliver, as some requirements can be fulfilled by a CTO activity and others by an 

ETO activity, the integration of both processes is also studied. This situation results in solutions 

comprising CTO and ETO artifacts. 

1.4. Thesis outline  

As illustrated in Figure 1, the rest of the thesis is organized as follows: 

- In Chapter 2, a literature review about related issues to our work such as system and 

system configuration, knowledge formalization for system configuration, and different 

approaches for system configuration are presented. We have highlighted the CTO and ETO 

requirements as well as eight criteria necessary for effective formalization and reuse of generic 

models. Each approach identified is analyzed in the light of these eight criteria.  Scientific gaps 

are identified and research questions are presented accordingly. 

- In Chapter 3, our first research question (RQ 1: Is it possible to define an ontology of 

generic models to better manage knowledge, allowing a clear distinction between descriptive 

and structural views for system configuration?) is answered which focuses on formalizing 

knowledge for system configuration. Our first contribution is presented, which entails defining 

generic models at various abstraction levels, notated (i). Models of Generic Artifacts, notated 

GA(i) are firstly defined along with their classification in a taxonomy. To provide a clear 

representation of the artifacts families and of the relations between their characteristics, 

descriptive and structural views are distinguished. The descriptive view is represented by a 

Generic Artifact Descriptive Model, notated GADM(i) while the structural view is represented 

by a Generic Artifact Structural Model, notated GASM(i)
j, where j denotes the possible 

alternatives for the structural views. CSP formalism is used to represent relationships and check 

consistency of the generic models. Based on commonality, generalization/specialization and 

inheritance principles, processes which allow to generalize and specialize these models are 

defined. Then, they are classified in their respective taxonomy. The three taxonomies             

(GA, GADM and GASM) constitutes the whole ontology in our approach: i.e. consistent, well 

described and structured pieces of knowledge which can be reused to configure systems.  

- In Chapter 4, our second research question (RQ 2: How can ETO requirements be 

processed during configuration activity?) is addressed which deals with knowledge reuse for 

system configuration. Our second contribution involves proposing a knowledge reuse process 

aimed at meeting ETO requirements of users in the ETO situation. First, the CTO situation is 

taken into account. A generic process allows to create instances of generic models and to 

configure them in order to fulfill standard requirements, i.e, requirements which can be met 
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using formalized knowledge without any modifications. The configuration is done interactively 

with the user using the CSP and filtering mechanisms and leads to a CTO solution. Based on 

the CTO configuration process, an ETO configuration process which allows to configure 

systems in ETO situation is proposed. Reusing formalized generic models chosen in the 

taxonomies, and modifying them in order to meet non-standard ETO requirements, the process 

allows to reach an ETO solution for the system configuration. Finally, as the system 

configuration is a mix between CTO situation and ETO situation, the integration of both 

processes is proposed and leads to solutions where some artifacts have been configured with 

respect to the generic models (CTO configuration) and others are defined after a design phase 

(ETO configuration).  

- In Chapter 5, a simple but realistic case study of bicycle families is presented to illustrate 

some of our proposals for the two phases of knowledge formalization and reuse. It is 

implemented on the OPERA software which has been developed in the context of the ANR1 

project. This case study allows to verify that all our proposals are consistent and feasible. 

- Finally, in Chapter 6, the conclusions of this research work and also scientific 

perspectives are presented. 

 
1
 Project n° ANR-16-CE10-0010 
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In this chapter, we have conducted a literature review to find clues to answer our research 

questions. In this way, first, we present relevant articles on system and system configuration in 

section 2.1 to provide an understanding of system configuration which is the context of this 

thesis, and the definitions that exist in this domain. This section specifically describes the 

concept of ETO and CTO requirements. Then, we provide the state of the art on the knowledge 

formalization for system configuration in section 2.2 to discuss the topics that are important in 

modeling knowledge for system configuration and in answering our first research question.  We 

argue for the need to have at least two corresponding views of an artifact: a descriptive and a 

structural one, on the notion of commonality, as well as the principles of abstraction, 

generalization/specialization and inheritance. We then discuss and analyze different approaches 

to system configuration in section 2.3, based on eight important criteria for knowledge 

formalization and reuse. Finally, we summarize the elements presented in this chapter in section 

2.4 and we justify our research questions. 

2.1. System and system configuration 

In this section, we first study system definition in section 2.1.1 and then, system configuration 

and configuration activity in section 2.1.2. Subsequently, we study aiding or assisting 

configuration with a configurator in section 2.1.3. Finally, we conclude the section in 2.1.4.  

2.1.1. System definition  

In this section, we clarify the notion of systems following the definitions found in the literature. 

(Kauffman, 1980) mentioned that “a system is a collection of parts which interact with each 

other to function as a whole.” (Kossiakoff et al., 2011) stated that a system is defined as “a set 

of interrelated components working together toward some common objectives.” (Kim, 1999) 

presented a system as any collection or group of parts that interact, interrelate, or depend on 

each other to form a unified whole that serves a specific purpose. Keeping in mind that all the 

parts are somehow related and interdependent. (McLucas & Ryan, 2005) mentioned that a 

system is made up of subsystems, while subsystems are made up of further components. A 

subsystem is part of a larger system that performs a specific function within the larger system. 

A component is a part or element of a larger system that contributes to the overall function of 

the system without any decomposition.  

Systems can be technical (e.g., airplanes, robots, cars, computers) or non-technical (e.g., 

economic system, societal systems).  In this thesis, we focus our work on technical systems. 

Technical systems refer to a collection of sub-systems and components that work together to 

perform a specific task or achieve a particular goal. In (Guillon, Ayachi, et al., 2021), systems, 

subsystems, components, services, and modules of a system are considered as artifacts. An 

artifact is an object that is intentionally made for a specific goal (Hilpinen, 1992, 1999). It refers 
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to an outcome of human activity. It can be either tangible, such as physical component, 

intangible, such as service, or mixed, such as servitized products, regarding the concept it 

represents. An artifact can be decomposed into other artifacts (Guillon, Ayachi, et al., 2021).  

In this thesis, we consider systems, subsystems, or components as technical and physical 

artifacts, as illustrated in Figure 2. Systems can consist of subsystems and components. 

Subsystems can consist of additional subsystems or components, whereas a component itself 

cannot consist of other elements. 

 

Figure 2. Artifact 

2.1.2. System configuration and configuration activity  

In this section, we delve into the literature on system configuration, including the definitions of 

system configuration, configuration activity, and configuration model. Then, we discuss 

customer requirements and strategies for achieving system configuration. The section 

concludes by mentioning configuration solutions as outputs of configuration activity.  

(Mittal & Frayman, 1989) presented the first definition of product configuration, in which a 

product is designed after assembling some components taking into account that their connection 

is only possible in specific ways. (Sabin & Weigel, 1998) mentioned that product configuration 

can be considered a specific type of design activity that involves choosing and organizing 

components in a specific way to meet certain specifications. These components are usually part 

of a predefined set and interact with each other in predetermined ways. The act of selecting and 

arranging the right combination of parts is a key aspect of the configuration activity. (Soininen 

et al., 1998) stated that product configuration can be defined “as the problem of designing a 

product using a set of predefined components while considering a set of restrictions on how the 

components can be combined”.  

(Felfernig, Friedrich, et al., 2000) stated that a configuration activity can be described by 

specifying a set of components and their properties, such as attributes and their allowed values, 

connection points (ports) between them, and any constraints on the possible configurations of 

these components. These details provide a comprehensive understanding of the components 

and the conditions under which they can be legally configured to achieve the desired result. 

(Oddsson & Ladeby, 2014) provided a review article on product configuration which stated that 

a configuration activity involves combining predefined entities, which may be physical or non-

physical, and determining their properties in a manner that satisfies specified requirements 

while also respecting constraints and following legal combinations of interfaces.  
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The configuration model is one of the foundations of configuration problems. According to 

(Soininen et al., 1998), a configuration model “specifies the entities that may appear in a 

configuration, their properties, and the rules on how the entities and their properties can be 

combined.” (Forza & Salvador, 2008) defined a configuration model or product model as “a 

formal representation of the links between the characteristics of a product and the documents 

that describe each product variant”. (Oddsson & Ladeby, 2014) defined a product configuration 

model as “an abstract representation or description, describing the structure of the product, the 

entities the product consists of, and the rules on how the entities and their properties can be 

combined.” (Männistö et al., 2001) explained that configuration models are also known as 

generic models. The term ‘generic’ is used because a single model represents multiple product 

variants. (Männistö et al., 2001) proposed a generic product configuration model by factorizing 

all the information shared by all the products in a production line. (Erens & Wortman, 1996) 

stated that a generic product model is used to describe product families with well-defined 

relations between components and that these components themselves can be described as 

product families. 

In this thesis, all the definitions outlined in papers related to product configuration are 

applicable in the context of system configuration. However, in system configuration, a product 

can be interchanged with a tangible system comprising subsystems and components, which are 

considered as tangible artifacts. In this thesis, we mainly use the term "generic model" instead 

of "configuration model". Following (Erens & Wortman, 1996), a generic model encompasses 

knowledge about a family of artifacts including their structure, all possible options, variants, 

and various relations (that will be explained in section 2.2.1). 

In the configuration problem, in addition to the generic models, there are other foundations 

described in the following sections. The next section is dedicated to user requirements. 

2.1.2.1. User requirements  

User requirements are another foundation of the configuration problem. They refer to the 

specific needs or preferences of a user that a system must meet in order to be considered as 

suitable for their use. User requirements are gathered through an interactive process where the 

user can progressively input their preferences or needs into a configurator. The configurator 

then uses this information to reach a configuration solution that meets the user's requirements 

(i.e. a desirable configuration). There are a number of ways in which we classify user 

requirements. There are several ways of classifying user requirements, depending on the type 

of requirement (functional or technical), whether it is standard or not (included in the catalog 

or not), and whether it is open to negotiation or not.  

Following the typology proposed in systems engineering, user needs can be either functional 

and operational needs or technical needs (Sage, 1992). Functional requirements define what the 

system must do. Operational requirements concern the way the system is operated. Technical 

requirements concern the way the system is built. These three needs make it possible to 

recognize that, depending on the type of user, novice or expert, different needs may be 

expressed for all or part of the system. Therefore, at least two views, a descriptive view (for 
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functional and operational requirements) and a functional view (for technical requirements) of 

the same system, must be considered.      

(Pitiot et al., 2014) proposed to distinguish the most important requirements for a user, which 

are called "non-negotiable requirements" while the remaining requirements are called 

"negotiable requirements." Non-negotiable requirements are critical to the user and cannot be 

questioned. They must be met by the solution system to fully satisfy the user. They can be either 

functional, operational or technical requirements, or performance criteria such as the price or 

weight of a system. Negotiable requirements are not critical to the user and can be discussed. 

Similar to non-negotiable requirements, they can be either functional, operational or technical 

requirements, or performance criteria such as the price or weight of a system. This negotiable 

nature of requirements has to be taken into account.       

(Sylla, Guillon, Vareilles, et al., 2018) defined "standard requirements" and "non-standard 

requirements".  Standard requirements are those that are consistent with the catalog and the 

generic model. Taken together, these requirements result in a system that can be implemented 

using all the proposed components and subsystems. In contrast, non-standard requirements are 

not covered by the catalog and the generic model. They result from a combination of choices 

that have never been implemented before, or from a very specific need. This standardization of 

requirements must be taken into account in our proposals.  

In line with the previous definitions, we propose, in this thesis, to distinguish between two types 

of requirements, defined as follows: CTO requirements and ETO requirements.  

Definition 1: CTO Requirements 

CTO requirements are standard requirements (or requirements expressed as such), whether 

negotiable or non-negotiable. They relate to a functional, operational or technical aspect of 

the system to be configured. They are therefore systematically considered during the 

configuration process. 

 

Definition 2: ETO Requirements 

ETO requirements are non-negotiable, non-standard requirements that affect a functional, 

operational or technical aspect of the system to be configured. They are therefore specifically 

addressed in the configuration activity by a specific design activity. 

 

Up to this point, we have explained two foundations of configuration problems: generic models 

and user requirements. In the subsequent section, we will discuss various strategies that can be 

employed to accomplish system configuration. 

2.1.2.2. Configuration strategies 

System configuration can be achieved through various production strategies such as Make-To-

Stock (MTS), Assemble-To-Order (ATO), Make-To-Order (MTO), Engineer-To-Order (ETO), 

and Configure-To-Order (CTO) which are explained in the following. 
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• Make-To-Stock (MTS) Make-To-Stock (MTS) is a production process that typically 

involves producing the ready-to-use system before receiving the customer's order. The 

customer's orders are usually fulfilled from an inventory of ready-to-use systems, which 

are replenished through production orders (Rudberg & Wikner, 2004).  

• Assemble-To-Order (ATO)  In Assemble-To-Order (ATO) (Wortmann et al., 1997), 

(Brière-Côté et al., 2010), components are kept in stock and there is a Bill of Materials 

(BOM) for each potential system, which is a list of subsystems and components, 

including their quantities, used to build that system (Hegge & Wortmann, 1991). When 

a customer's order is received for a particular system, the supplier initiates the assembly 

operations and provides the customer with a ready-to-use system, such as a computer, a 

car, etc. 

• Make-To-Order (MTO) In Make-To-Order (MTO) (Wortmann et al., 1997), (Brière-

Côté et al., 2010), raw materials are kept in stock and a BOM and routing exist for each 

potential system. Routing refers to the sequence of operations and steps required to build 

a system. Upon receiving an order from a customer for a specific system, the supplier 

can utilize the corresponding BOM and routing to initiate the manufacturing and 

assembly operations of the required system. This process allows the supplier to provide 

the customer with a ready-to-use system, such as windows, doors, etc. For such systems, 

the length and width of the plates are cut according to the customer's requirements. 

• Engineering-to-order (ETO) In situations where it is not possible to meet all the 

customer's requirements using predefined systems, it may be necessary to develop a new 

system or adapt an existing one, leading to an Engineering-To-Order (ETO) situation 

(Wortmann et al., 1997), (Sylla, Guillon, Ayachi, et al., 2018), (Johnsen & Hvam, 2019). 

ETO involves the creation of customized systems based on customers' specific 

requirements (Brière-Côté et al., 2010), (Sylla, Guillon, Vareilles, et al., 2018). In many 

cases, both the finished system and its components are unique and have not been 

previously designed. Therefore, in ETO, the engineering phase can be partially or 

completely performed.  

(Sylla, Guillon, Vareilles, et al., 2018) distinguished between light and heavy ETO. The 

term "light" ETO is used by some companies or software providers when the 

requirements can be almost completely met and only minor adaptations are required. On 

the other hand, when many adaptations must be made to existing solutions and/or new 

solutions must be entirely defined, this activity is called "heavy" ETO. ETO demands 

significant collaboration with the customer and, like CTO, proposes the BOM and 

routing at the end of the configuration. There are fewer studies on ETO as for example 

(Brière-Côté et al., 2010), (Elgh, 2011).  However, (Sylla, Guillon, Vareilles, et al., 

2018) focused on the bridge between CTO and ETO. They studied the extension of 

configuration models usually used in CTO to ETO situations.   

• Configure-To-Order (CTO) Configure-To-Order (CTO) is a flexible manufacturing 

strategy that can accommodate or support various production methods, including MTS, 

ATO, MTO, and partially ETO (Sylla, Guillon, Vareilles, et al., 2018). CTO allows 
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companies to manufacture products based on customer demand, while still maintaining 

a level of standardization. 

Through CTO, customers can choose from a range of pre-designed system options and 

configurations that are then assembled or manufactured to meet their specific 

requirements. This strategy can enhance production efficiency, decrease lead times, and 

increase customer satisfaction. By leveraging CTO, companies can also gain greater 

flexibility and agility in their manufacturing processes, enabling them to quickly adapt 

to changing customer requirements and market demands.  

As illustrated in Figure 3, the MTS strategy is characterized by short lead times, low product 

variety or diversity, and high product volume. The ATO production process is characterized by 

short lead times, a low product variety, and high product volume. The MTO strategy is 

characterized by rather long lead times, a rather high product variety, and a rather low product 

volume. CTO can cover MTS, ATO and MTO, and partially ETO. ETO is characterized by 

long lead times, a high product variety and a low product volume. 

 

Figure 3. MTS, ATO, MTO, CTO and ETO 

2.1.2.3. Configuration solutions  

A configuration solution is the outcome of the configuration activity. It is a set of components 

and a detailed description of how they should be connected to create a product that meets all 

the requirements (Mittal & Frayman, 1989). According to (Sabin & Weigel, 1998), a solution 

must provide a list of selected components, i.e. a bill-of-materials or BOM, as well as the 

product's structure and arrangement. (Soininen et al., 1998) represented that a configuration 

specifies precisely what a real-world product instance should be like. (Oddsson & Ladeby, 

2014) stated that a configuration is the result of the configuration activity, which describes the 

entity structure of the product and the connections between the entities in the set, meeting the 

given requirements.  

In this thesis, we distinct two types of solutions: 1) CTO solutions which can be achieved at the 

end of configuration in CTO situations and 2) ETO solutions that can be reached at the end of 

configuration in ETO situations. 

To assist or aid the users during configuration activity, it is essential to utilize a configurator. 

Hence, the following section is dedicated to this subject. 
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2.1.3. Aiding configuration with a configurator  

Two types of configuration processes exist: autonomous configuration and interactive 

configuration (Yang & Dong, 2012), (Monge, 2019). Autonomous configuration or batch 

configuration involves the user providing all requirements at once and requesting a solution. 

Then a decision support system automatically carries out the configuration process and checks 

if all the requirements are consistent. Interactive configuration, on the other hand, involves the 

user inputting requirements one by one. After each user requirement, a specific routine 

processes them and removes the solutions that are no longer possible. The solution is built step 

by step by selecting requirements that are consistent with the set of remaining solutions.  

Regardless of whether the configuration is automatic or interactive, the result is a CTO solution 

or a statement indicating that there is no CTO solution. In this thesis, we mainly focus on 

interactive configuration. 

According to (Janota et al., 2010) and (Vareilles, 2015), interactive configuration is a process 

that involves iteratively removing solutions from the solution space until reaching a solution 

that meets the user requirements. (Van Hertum et al., 2016), and (Falkner et al., 2020) 

mentioned that interactive configuration involves both a user and a configurator. The user's 

objective is to configure a system that meets all their requirements, while the configurator is a 

digital tool that assists the configuration activity by deducing the effects of the user's choices. 

Configurators (Tiihonen & Soininen, 1997) are utilized to aid or assist the configuration activity 

and find solutions that meet the requirements of users. (Aldanondo & Vareilles, 2008), defined 

a configurator as a software tool that assists the person responsible for the configuration 

activity. It consists of a Knowledge Base (KB) that stores generic models and a Processing Unit 

(PU) that assists the user in the configuration activity to find a solution. The KB serves as a 

repository for generic models, allowing users to retrieve a relevant generic model. The PU is 

responsible to assist the user in the configuration activity. It may present the user with a set of 

allowed values (or choices) based on the generic models stored in the KB. As the user makes 

choices, the PU may update its allowed values to ensure that the user’s choices are consistent 

with the generic model.  

The aim of a configurator is to ensure that the configured system is consistent with the generic 

model (all constraints are met) and the requirements (Aldanondo & Vareilles, 2008). (Oddsson 

& Ladeby, 2014) mentioned that in the literature, the three terms configurator, product 

configuration system, and configuration system are frequently used interchangeably and they 

refer to the software application. It was mentioned that a product configurator can be defined 

as “a configuration system, which is a software-based system that supports the user in the 

creation of product specifications by restricting how predefined entities (physical or non-

physical) and their properties (fixed or variable) may be combined.” In this thesis, we only use 

the term "configurator". 

Following (Janota et al., 2010) and (Vareilles, 2015), we consider interactive configuration in 

which a user progressively defines her/his requirements (i.e. restriction of the characteristics of 

systems, subsystems, or components), then the configurator removes inconsistent values with 

the generic model and proposes allowed ones to the user. This process continues until a unique 
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solution is proposed to the user. It should be noticed that in this thesis, the user is an actor of 

the company who need to configure systems by reusing formalized knowledge. She/he can be 

a designer, a representative of the customer, an expert or any person involved in system 

configuration.  

2.1.4. Synthesis  

In this section, to understand our first research question " Is it possible to define an ontology of 

generic models to better manage knowledge, allowing a clear distinction between descriptive 

and structural views for system configuration?", we first established a literature review on 

system configuration and we defined generic models. The context of this thesis was related to 

technical and tangible system configuration. We considered that all definitions given for the 

product configuration in the literature can also be applied to the system configuration. From 

now on, whenever we use the term "artifacts", it refers to technical and physical (or tangible) 

systems, subsystems and components. Moreover, to understand our second research question 

"How can ETO requirements be processed during configuration activity?", we provided a 

literature review on configuration activity. We defined interactive configuration and different 

types of users’ requirements. We also explained which types of requirements may arise in CTO 

and ETO situations. 

Since in this thesis, we aim to first formalize knowledge for system configuration, the following 

section is dedicated to this subject. 

2.2. Knowledge formalization for system configuration  

In this section, we delve into the literature review on formalizing knowledge for system 

configuration. However, in section 2.2.1, we study the knowledge management process by 

briefly representing its different steps. Since knowledge formalization is one of the crucial 

phases in our thesis, we explore relevant topics that aid in the formalization of knowledge for 

system configuration. Thus, in section 2.2.2, we study the descriptive view and structural view 

of a system, and then we study the notation of “commonality of models” in section 2.2.3. 

Subsequently, we present a literature review on the principles of abstraction, generalization and 

specialization in section 2.2.4. Finally, we provide a synthesis of the section in 2.2.5.  

 

 

 

 

 

 

 

 



Chapter 2: Bibiliographic study 

 

16 

2.2.1. Knowledge management process 

Following (Alavi & Leidner, 2001) and (Venkatraman & Venkatraman, 2018), Knowledge 

management is a systematic process for extracting, formalizing, validating, storing, sharing, 

and utilizing knowledge within a company as illustrated in Figure 4.  

 

Figure 4. Knowledge management process 

First of all, let's focus on the four knowledge formalization steps and see how our thesis fits in:  

− Knowledge extraction is the process of identifying and capturing knowledge from various 

sources such as documents, databases, experts and experiments. In this thesis we assume 

that the available knowledge has already been identified and extracted by experts. This 

process is therefore naturally outside the scope of this thesis. 

− Knowledge formalization is the process of transforming available knowledge into explicit, 

structured, and standardized forms such as rules, models, ontologies, taxonomies that can 

be easily managed and reused. In this thesis, knowledge formalization is the core of the first 

research question (RQ 1) and leads to generic model ontologies. 

− Knowledge validation is the process of verifying the accuracy, completeness, relevance, 

and consistency of formalized knowledge through expert reviews, testing, simulations, and 

can involve assessing their applicability in real-world situations (verifying their reality). In 

this thesis, knowledge validation consists of checking the consistency of generic models.  

− Knowledge storage is the process of storing formalized and validated knowledge in a central 

repository or database that can be easily accessed, searched, updated, and retrieved by 

authorized users. In this thesis, we store formalized generic models in a generic model base. 

Now, let's focus on the two steps of knowledge reuse and see how our thesis fits into them:  

− Knowledge sharing is the process of disseminating formalized and validated knowledge to 

individuals or groups who need it for their tasks or decision-making processes, through 

various channels such as training, mentoring, communities of practice, forums, wikis, or 

social media (Abdullah et al., 2008). In this thesis, the existence a generic model base and 
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of generic model ontologies implies that knowledge can be shared and reused to create, or 

enrich, new or existing generic models. In this thesis, knowledge sharing is part of the 

answer of our first research question (RQ 1). 

− Knowledge reuse is the process of leveraging existing formalized and validated knowledge 

to solve new problems, by adapting, combining, or refining it as needed. In this thesis, 

knowledge reuse consists of the use of formalized generic models to configure systems, 

taking into account both CTO and ETO requirements. This process is the core of the second 

research question (RQ 2). 

As we need to differentiate between descriptive and structural views in order to formalize 

knowledge, the subsequent section is dedicated to this topic. 

2.2.2. Descriptive view versus structural view of a system 

In the literature, researchers defined products from different views. For instance, (Jiao & Tseng, 

1999) identified three views for a product family: functional, behavioral, and structural. 

Functional view represents the functions that the product family perform, behavioral view 

represents its behavior, and structural view represents its physical structure. Meanwhile, 

(Arana, 2007) defined three views for a generic product model: functional, technological, and 

physical. Functional view presents the product's main features. Technological view shows the 

design solutions used to meet the requirements, and physical view gives a detailed breakdown 

of the product's structure, like a bill of materials. (Aldanondo & Vareilles, 2008) proposed 

generic models based on both descriptive and physical views. The descriptive view defines the 

product's properties, while the physical view defines the product's physical components and 

their quantities. For users who lack expertise in product composition, configuring using a 

physical view can be challenging. To make configuration possible for these users, a descriptive 

view of the product is incorporated alongside the physical view. Moreover, it allows the user to 

make choice on configuring descriptive view or structural view. With regards to the literature, 

in this thesis, we define artifact families from two views: descriptive view and structural view 

(Figure 5). In the following, a detailed explanation of each of these views are presented.  

 

Figure 5. Different views 

Descriptive view which is interesting for users focuses on the characteristics rather than 

physical structure (Aldanondo et al., 2003). Descriptive view only shows the key features or 

attributes and indicators of a family of artifacts. Each attribute and indicator have therefore a 

definition domain and relations are needed to describe the possible solutions. Here are their 

definitions:   

− (Soininen et al., 1998) stated that attributes represent the characteristics of a concept or 

object. (Yang et al., 2012) mentioned that attributes are parametric properties of a 

component. (Bettman & Park, 1980) used concrete descriptive attributes, meaning that they 
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were based on reality, as well as their domains to represent an attribute-based evaluation 

approach. In this thesis, we follow the definition of (Soininen et al., 1998) and (Bettman & 

Park, 1980), and we define attributes as one of the characteristics that are used to describe 

the family of artifacts. Attributes can be symbolic, continuous, or discrete and their domain, 

which can be either a list or a range of values. Symbolic attributes are represented by a list 

of symbols. They are discrete as they can only take on specific numbers of distinct values. 

For instance, the color of a bike is a symbolic attribute with a discrete domain comprising 

a list of values such as {Red, Blue, Black}. Continuous attributes can take any value within 

a specific range or interval. They are typically represented by real numbers and have an 

infinite number of possible values within the defined range. For example, the weight of a 

bike is a continuous attribute with a domain that's an interval, such as between 10 and 30 

kg. Any weight within this range is possible. Discrete attributes are similar to symbolic ones 

in that they have a finite domain, but they are represented by integers rather than symbols. 

They can be a list of integers or a set of intervals. For example, the wheel diameter of a bike 

is a discrete attribute, with a domain composed either of a list of integers such as                  

{20, 21, 22, 26, 27, 28} inches, or a set of intervals such as {[20,22], [26,28]} inches. 

− In addition to attributes, there are Key Performance Indicators (KPIs). (Guillon, Ayachi, et 

al., 2021) mentioned that KPIs can be used to compare commercial offers, and more 

specifically to compare systems. They divided the relevant KPIs into economic indicators, 

time indicators, and confidence indicators. Although KPIs are a specific type of continuous 

attributes with specific semantic, in this thesis, we distinguish them and we use attributes 

to describe the family of artifacts while we use KPIs to assess the family of artifacts. Both 

attributes and KPIs have domains that specify their possible values. 

− In the descriptive view, in addition to the attributes and KPIs, there are relationships 

between them that enable the set of possible solutions to be described and evaluated.  

(Aldanondo et al., 2003). These relations are defined within a family of artifacts, signifying 

that they are internal relations linking only values of attributes and KPI (Guillon, 2019).  

On the other hand, structural view which is interesting for experts focuses on the physical 

structure (Aldanondo et al., 2003). The structural view shows the bill-of-materials or BOM of 

a family of systems, i.e. the exact quantity of each item (sub-system or component) that makes 

up the top system. Since each item has indicators the methods to aggregate these indicators is 

needed to compute the ones of the top system. Moreover, relations between the items or 

between their attributes are required to present the allowed solutions. In follows, their 

definitions are presented:   

− Following (Hegge & Wortmann, 1991), a BOM represents a quantified list of components, 

used to build a product family. These components are a family themselves. The most 

common approach in the manufacturing industry for modeling product structure is using a 

BOM, as stated by (Cao & Hall, 2020). A BOM can be single-level or multiple-level 

(Andersen, 1993). A single-level BOM represents one level of composition, while a multi-

level BOM represents several levels of composition. In this thesis, we only focus on a single 

level of composition for each artifact. 
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− Every item within BOM has a KPI (Djefel et al., 2008). To determine the KPIs of a system, 

the KPIs of all items composing it must be aggregated. Each KPI requires a unique method 

for aggregation from a single level of composition to the system. Different functions, such 

as SUM, AVERAGE, MIN, MAX, etc., can be used to define an aggregation method of 

KPIs. In this thesis, we limit ourselves to two KPIs of Weight and Cost. Following (Djefel 

et al., 2008) and (Guillon et al., 2017) for these two KPIs, the aggregation method chosen 

is the function SUM.  

− In the structural view, the main relation between items is through composition or 

aggregation, although other types of relations between them can exist (Arana, 2007) such 

as require, exclude, incompatibility, and compatibility relations. (Blecker & Friedrich, 

2006) identified four categories of relations: 1) relations between distinct items, 2) relations 

between an item and attributes of different items, 3) relations between attributes of different 

items, 4) relations between attributes within an item. (Blecker & Friedrich, 2006) stated that 

compositional relations contain parts with assigned minimum and maximum cardinalities 

(to specify their numbers). The composition relations specify mandatory or optional 

components in the system structure (Cao & Hall, 2020). (Yang & Dong, 2013) defined three 

configuration rules: inclusion rules, exclusion rules, and resource rules. An inclusion rule 

specifies that, for a component to be included in the configuration, another component must 

also be present. A requisition rule is directional (Yang et al., 2012). Exclusion rules prohibit 

two components from existing in the same configuration. Resource relation specifies that 

the amount of resource consumed by components in a configuration must be less than or 

equal to that of the resources offered by components in the same configuration. (Felfernig 

et al., 2014) stated that usually compatibilities relations are used in cases where the number 

of allowed combinations of components is low. It represents two components needs to be 

in a configuration. However, in incompatibility relation they cannot be in a configuration. 

(Yang et al., 2012) mentioned that a port relation enforces that the corresponding ports of 

two components should be physically connected in a configuration. In this thesis, according 

to (Blecker & Friedrich, 2006), we consider two categories of relations: 1) relations between 

different artifacts, and 2) relations between attributes and/or KPIs of different artifacts. As 

illustrated in Figure 6, in this thesis, system configuration involves various types of relations 

including require relation, exclude relation and compatibility relation. 

 

Figure 6. Different relations in system configuration 

In addition to descriptive and structural views of a system, the concept of commonality of 

models is significant in formalizing knowledge for system and creating an ontology of generic 

models. The following section is dedicated to this matter. 
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2.2.3. Commonality of models  

The purpose of this section is to provide a clear understanding of the concept of commonality 

using definitions sourced from literature. Our discussion begins by explaining the reasons for 

utilizing this particular concept. 

According to (Baker, 1985), commonality in product design refers to using standardized 

components in designing and manufacturing multiple products within a product family or 

product line. By using common components, manufacturers can reduce costs, improve quality, 

and speed up production time, as well as enhance product flexibility and customization by 

allowing customers to choose different options while still using common components. 

Similarly, (Blecker & Friedrich, 2006) stated that through commonality, components are 

standardized and shared while maintaining the variety of the end products.  

Several studies, such as (Siddique et al., 1998) and (Thevenot & Simpson, 2006), have focused 

on measuring commonality. They introduced the concept of Percent Commonality (%C), which 

is an index for quantifying platform commonality. According to (Siddique et al., 1998), %C is 

calculated by dividing the number of common components between two platforms by the total 

number of components in both platforms. The resulting value is then multiplied by 100 to obtain 

a percentage. It can be used to assess the level of commonality between different platforms. 

According to (Thevenot & Simpson, 2006), %C is based on three main viewpoints:                      

(1) component, (2) component-component connections, and (3) assembly. Component 

viewpoint measures the percentage of components that are common between the products in 

the family. Component-component connections viewpoint measures the percentage of common 

connections between components. Assembly viewpoint measures the percentage of common 

assemblies between the products in the family. Each of these viewpoints results in a percentage 

of commonality, which can then be combined to determine an overall measurement of 

commonality for a platform by using appropriate weights for each item.  

In this thesis, the term "commonality" is defined as the quantity of shared or common 

knowledge among multiple generic models whether it is their characteristics, or structure. This 

concept of commonality is used to create a hierarchy of generic models with different levels of 

abstraction.  

Figure 7 illustrates the commonality of two independent generic models (number one and two). 

These generic models are presented by circles. In Figure 7, rectangles are used to present 

artifacts, curves to indicate relations between different artifacts or within an artifact, and straight 

lines between artifacts to indicate composition relations. The commonality of two models are 

identified: four common artifacts and two common relations. Each model possesses two 

specific artifacts exclusively dedicated to itself, along with a specific relation within an artifact 

(shown in bold).  
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Figure 7. Example of commonality of models 

To define models at different levels of abstraction we need to use generalization or 

specialization relationships between generic models, so the following section is dedicated to 

this topic. 

2.2.4. Abstraction, generalization, specialization, inheritance principles  

In this section, based on the literature, first, we represent the concept of abstraction levels, the 

principles of generalization and specialization. Then, we present the principles of inheritance 

which directly linked to the one of specialization. After that, we study taxonomy.   

Abstraction, in general, is a fundamental concept in computer science and software engineering 

(Ben-Ari, 1998). The process of abstraction can also be referred to as modeling, and is closely 

related to the concepts of theory and design (Comer et al., 1989). Models can also be considered 

a type of abstraction due to their generalization of aspects of reality. In software engineering 

and computer science, abstraction is: 

• the process of removing or generalizing physical, spatial, or temporal details (Colburn 

& Shute, 2007) or attributes in the study of systems in order to focus attention on details 

of greater importance; (Kramer, 2007) it is similar in nature to the process of 

generalization;  

• the creation of abstract concept objects by reflecting common features or attributes of 

various non-abstract objects or systems under study (Kramer, 2007) - the result of the 

process of abstraction.  

Computer science commonly presents levels of abstraction, each representing a different model 

of the same information and processes, but with different levels of detail. Each level uses an 

expressive system with a unique set of objects and compositions that apply only to a particular 

domain. 

The idea of generalization was initially introduced in simulation programming languages, as 

noted by (Pedersen, 1989). (Khoshafian et al., 1991) described generalization as a bottom-up 

approach, wherein a set of similar classes is treated as a generic class. In generalization, 

numerous individual differences between classes are disregarded (Ohira et al., 2011).  

Specialization, which was also first introduced in simulation programming languages, has two 

types: single and multiple specializations, according to (Pedersen, 1989) and (Taivalsaari, 

1996). Single specialization implies that a child class has all the properties of its parent class 

and additional specific properties. Multiple specializations imply that a child class has all the 

properties of its parent classes. Specialization is a top-down approach (Khoshafian et al., 1991) 

that creates a hierarchy of classes, enabling the reuse of existing class to generate new classes 
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downwards (Ohira et al., 2011). Classes that are further away from the general class are more 

specialized, according to (Kamsu Foguem et al., 2008).   

(Cardelli, 1984) stated that the concept of inheritance was first introduced in simulation 

programming languages. (Frohlich, 2002) defined inheritance informally as a mechanism that 

transforms an “ancestor” class into a “descendent” class by adding new features. (Taivalsaari, 

1996) and (Simons, 2004) represented that inheritance allows for the creation of new classes 

based on existing ones. This is done by specifying the properties or characteristics that differ 

from the properties of existing classes, while all other properties are automatically inherited 

from the existing classes and incorporated into the new class (Krótkiewicz, 2018).   Inheritance 

has several properties: transitivity, non-reflectivity, non-symmetry, and without cycles. The 

inheritance relationship is transitive, meaning that a parent or superclass can also be a child or 

subclass of another class, thus inheriting all the properties of its ancestors. Inheritance is non-

reflective, meaning that if class A inherits from class B, then class B does not inherit from class 

A. Inheritance is non-symmetrical, meaning that if class A inherits from class B, it does not 

imply that class B inherits from class A. Inheritance is without cycles, meaning that there can 

be no circular dependencies in the inheritance hierarchy. This is also known as acyclic 

inheritance. An important feature of the concept of inheritance is its polymorphism. 

Polymorphism comes from the Greek and means that it can take several forms. Inheritance 

polymorphism, also known as specialization, is the ability to redefine a method in classes 

inheriting from a base class. It is then possible to call an object's method without worrying about 

its intrinsic type. This makes it possible to abstract the details of the specialized classes of an 

object family, masking them with a common interface (which is the base class).  

(Sciore, 1989), mentioned that a set of "is a" relationships between classes forms a class 

hierarchy. Taxonomy is a form of classification and a fundamental mechanism for organizing 

knowledge (Wand et al., 1995). (Gartner, 2016) stated that taxonomy is a classification of terms 

or concepts of a domain organized in a hierarchical structure. (Van Heijst et al., 1997) explained 

that an ontology for a specific domain describes a taxonomy of concepts that define the semantic 

interpretation of the knowledge. (Kamsu Foguem et al., 2008) noted that since ontology is the 

heart of any knowledge description, ontological objects are typically described as a set of 

concepts and a set of relations between them. These sets can be ordered to form a taxonomy of 

concepts. (Nickerson et al., 2013) proposed a method to develop a taxonomy in an information 

system domain, emphasizing the importance of taxonomies in understanding and analyzing 

complex domains. (Guillon, Villeneuve, et al., 2021) defined a taxonomy as a specific type of 

ontology because it allows for structuring the knowledge. (Tumnark et al., 2019) mentioned 

taxonomy only includes "is a" relationships, while ontology includes cardinality and other 

restrictions.  

In this thesis we combine the principles of generalization, specialization, inheritance, taxonomy 

and commonality to structure and formalize knowledge at different levels of detail or 

abstraction. This formalized knowledge can then be reused to generalize, specialize and create 

a taxonomy of generic models. By organizing knowledge at different levels of abstraction, the 

process of formalizing knowledge does not require starting from scratch. In addition, any 

change made to a generic model at a particular level of abstraction in the taxonomy is 
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propagated to all generic models at lower levels of abstraction through the principles of 

inheritance and specialization. By creating generic models at a lower level of abstraction, it is 

possible to focus only on their specific knowledge. The principle of inheritance polymorphism 

allows experts to specialize high-level knowledge at the level in question.  

For instance, as illustrated in Figure 8, generic models at varying levels of abstraction are 

created through generalization and specialization. Initially, two independent generic models 

(number one and two) are created. As explained in Figure 7, their commonality is identified 

(i.e. four artifacts and two relations). Then, using generalization, a new generic model is created 

at a higher abstraction level (number three) which only possess the commonality of models. In 

addition, using specialization, a new model (number four) is created at a lower abstraction level. 

This new model comprises both the inherited knowledge from model number three, as well as 

its own specific knowledge (i.e. three artifacts and three relations shown in bold).  

 

Figure 8. Example of using generalization and specialization 

In the following, the synthesis of this section is presented. 

2.2.5. Synthesis  

In this section, we began by introducing the knowledge management process, followed by an 

outline of two essential phases: knowledge formalization and knowledge reuse. We mainly 

focused on concepts related to our first research question "Is it possible to define an ontology 

of generic models to better manage knowledge, allowing a clear distinction between descriptive 

and structural views for system configuration?". Therefore, we provided a literature review on 

descriptive and structural views. Additionally, we delved into the concepts of: commonality of 

models, abstraction, generalization and specialization which play important role in knowledge 

formalization.  

2.3. Different approaches for system configuration  

This section is dedicated to the various approaches that can be used for system configuration, 

including the ontology approach, Unified Modeling Language (UML), Systems Modeling 

Language (SysML), Constraint Satisfaction Problem (CSP), Case-based reasoning (CBR), and 

hybrid approaches. In order to compare these different approaches, we have developed a list of 

eight criteria necessary for effective formalization and reuse of generic models. For each 

approach, we provide a definition and an explanation of its different elements. We then evaluate 
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them against our eight criteria and conclude with their advantages and disadvantages, 

distinguishing between knowledge formalization and knowledge reuse.  

We therefore begin by defining our eight evaluation criteria, then present the ontology-based 

approaches, the UML and SysML approach, the CSP, the CBR and then the methods that 

hybridize the previous approaches. We conclude this section with a table summarizing our 

analysis.    

2.3.1. Criteria for comparing different system configuration approaches 

Based on the literature on system configuration and the needs expressed by experts and users, 

we have drawn up the following list of eight essential criteria for establishing, maintaining and 

updating generic models, and for using them effectively. Four criteria are dedicated to the 

knowledge modeling phase and four to the knowledge reuse phase, as synthesized in Table 1. 

For each criterion, the response options are as follows: Yes, No or Difficult. 

In knowledge formalization, the criteria are:  

− KFC1: Clearly distinguish between descriptive and structural views: The 

studied approach allows for a clear formalization of descriptive view and structural 

view. As explained in section 2.2.2, the descriptive view details the identity of the 

family of artifacts by providing an overview of its key attributes and KPIs, 

regardless of its structure. On the other hand, the structural view reveals the 

composition of the family of artifacts. The need to separate descriptive view from 

structural view arises from different interests and levels of expertise of the person 

who is in charge of configuration in knowledge reuse step. It is therefore essential 

to create this distinction between descriptive and structural views in knowledge 

formalization for system configuration.  

− KFC2: Better structure knowledge for later reuse in modeling: The studied 

approach makes it possible to easily reuse the formalized generic models either 

partially or entirely in order to formalize new ones. As explained in section 2.2.4, 

we need to structure knowledge for system configuration to avoid the repetitive and 

time-consuming process of knowledge formalization, knowledge maintenance and 

knowledge update. A taxonomy of knowledge seems to be a good way to reduce the 

workload of experts. The different approaches will therefore be evaluated on this 

particular point.  

− KFC3: Explicitly formalize generic models at different levels of abstraction: 

The studied approach enables to take advantage of the commonality of generic 

models in order to formalize generic models at a higher level of abstraction using 

generalization. Reversely, the studied approach enables to use inheritance principles 

in order to formalize generic models at a lower level of abstraction using 

specialization. Consequently, the approach makes it possible to formalize generic 

models at different levels of abstraction. As mentioned in section 2.2.4, we need to 

formalize generic models at different levels of abstraction in order to better manage 

knowledge for system configuration. Any modifications made at a generic model at 
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a more abstraction level is propagated to all generic models at lower abstraction 

level. It therefore enables distributing changes throughout the model hierarchy.  

− KFC4: Unquestionably validate the consistency of the knowledge: The studied 

approach allows to validate the generic models during their formalization and 

guarantee the consistency of the solution space (i.e. the set of all possible solutions 

that these models can generate). As mentioned in section 2.2.1, we need to validate 

the consistency of the knowledge since it ensures that the knowledge embedded in 

our models is reliable, and does not contain contradictory information. This is 

necessary, as inconsistencies can threaten the integrity of the models and lead to no 

results.  

In knowledge reuse phase, the criteria are: 

− KRC1: Configure descriptive and/or structural views for the same model 

according to the configuration requirements: The studied approach makes it 

possible to configure an artifact according to either its descriptive view or its 

structural view. Consequently, the studied approach enables to make this choice 

during the configuration activity (configuring only descriptive view or configuring 

both descriptive view and structural view). As explained in section 2.2.2, this need 

is required since it enables the users who are interested only in the attributes of the 

artifact, to configure its descriptive view and it enables those who are interested in 

the structure of the artifact to configure its structural view. Therefore, configuring 

both views allows the model to be applied more broadly, to meet a wide range of 

user requirements.  

− KRC2: Formalize and capitalize ETO requirements during configuration: The 

studied approach enables to formalize ETO requirements during configuration 

activities to configure artifacts and capitalize solutions for further reuse. As 

explained in sections 2.1.2.1 and 2.1.2.2, the need to formalize and capitalize ETO 

requirements during configuration arises from the necessity to address ETO 

requirements. The different approaches will therefore be evaluated on this particular 

point.  

− KRC3: Configure according to several levels of abstraction for the same 

knowledge model according to the configuration requirements: The studied 

approach makes it possible to configure an artifact with its sub-systems and/or 

components at different levels of abstraction. It enables to decide at the beginning 

of the configuration activity at which level of abstraction the artifact has to be 

configured. As mentioned in KFC3 and regarding the explanations of section 2.2.4, 

generic models are created at different levels of abstraction. Therefore, the need of 

configuring according to several abstraction level arises from the complex nature of 

knowledge models and the varying requirements of users. Not all users require or 

benefit from the same level of detail. Some may require an artifact at a high-level of 

abstraction, focusing on common knowledge. Other users may need an artifact at a 

lower level of abstraction, containing much more specific and detailed knowledge.  
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− KRC4: Interactively configure a system: The studied approach makes it possible 

to interactively configure an artifact. Consequently, the studied approach enables to 

define a requirement then remove inconsistent solutions from solution space and 

repeating it iteratively until obtaining a solution. As explained in section 2.1.3, this 

need is required since interactive configuration allows users to actively shape the 

solution, making decisions throughout the process. Through the iterative refinement 

of the solution space, where inconsistent solutions are progressively eliminated, the 

system converges towards a solution that aligns closely with the defined 

requirements. This gives dynamism and adaptability to the configuration activity 

and enables us to respond to changing requirements.  

Table 1. Requirements 

Requirements for system configuration 

KFC1: Clearly distinguish between descriptive and structural 

views 

KFC2: Better structure knowledge for later reuse in modelling 

KFC3: Explicitly formalize generic models at different levels 

of abstraction 

KFC4: Unquestionably validate the consistency of the 

knowledge 

KRC1: Configure descriptive and/or structural views for the 

same model according to the configuration requirements 

KRC2: Formalize and capitalize ETO requirements during 

configuration 

KRC3: Configure according to several levels of abstraction 

for the same knowledge model according to the configuration 

requirements 

KRC4: Interactively configure a system 

 

In the upcoming section, we will discuss various approaches that can be utilized to meet the 

needs for formalizing and reusing knowledge in system configuration, which we have presented 

earlier. 
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2.3.2. Ontology and system configuration  

In this section, we begin by reviewing the ontology used in systems configuration. Next, we 

will explore the application of this ontology in the context of systems configuration. Finally, 

we will evaluate this approach on the basis of our predefined criteria. 

2.3.2.1. Ontology definition 

According to (Gruber, 1993), an ontology is "an explicit specification of a conceptualization". 

Other researchers, such as (Gruber, 1995), and (Borst et al., 1997) have expanded upon this 

definition. Then, (Studer et al., 1998) defined an ontology as "a formal, explicit specification of 

a shared conceptualization".  

Several key elements are typically included in an ontology such as classes (or concepts), 

individuals or objects, and relations.  

Ontology Classes: Classes are the primary formalized elements of the domain (Reyes-Peña & 

Tovar-Vidal, 2019). (Noy & McGuinness, 2001) mentioned that for modeling class hierarchies, 

there are three approaches: top-down, bottom-up, and middle-out. The top-down approach 

involves starting with the most general class and then refining it to more specific classes. In 

contrast, the Bottom-up approach is starting with the most specific classes and moves towards 

general ones. The middle-out approach involves starting with the most crucial classes and then 

proceeding to either more general or more specific classes. 

Ontology Individuals: Individuals are the representation of the main objects within the domain 

(Reyes-Peña & Tovar-Vidal, 2019).  

Ontology Relations: Relations are links between the classes (Reyes-Peña & Tovar-Vidal, 

2019). For instance, generalization or specialization relations between classes and sub-classes 

help to organize the classes in a hierarchical structure (Hadzic et al., 2009), known as a 

taxonomy. In addition, relations between two classes allow modeling aggregation or 

composition. While other types of relations in an ontology include Associates with, Instance 

of, etc. (Hanafi et al., 2018).  

Ontology Development Process: (Noy & McGuinness, 2001) proposed that the process of 

developing an ontology involves seven steps: (1) determining the domain and scope, (2) reusing 

previous ontologies if they exist, (3) developing a terminology, (4) developing classes and class 

hierarchies, (5) defining properties, (6) defining property constraints, and (7) defining 

individuals. After completing these steps, it is necessary to evaluate the ontology to ensure it 

works properly through testing reasoning algorithms, checking the consistency of classes and 

properties, and validating inferences.  

Reasoning refers to the process of automatically inferring or determining new knowledge that 

has not been explicitly stated from the existing information represented in the ontology (Riboni 

& Bettini, 2011). It helps to automatically deduce new conclusions from the formalized 

knowledge expressed in the ontology. Reasoning in the ontology can be used for tasks such as 

determining the relationships between different concepts in the ontology, checking 
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inconsistencies in the ontology (Riboni & Bettini, 2011), and answering queries about the 

knowledge represented in the ontology.  

The specific reasoning capabilities of an ontology depend on the formalism used to represent 

the ontology and the reasoning tools that are available for that formalism. Rule-based reasoning 

involves using a set of rules to infer new knowledge from the information represented in the 

ontology (Zhai et al., 2018). The relations are typically specified in a logical language, such as 

SWRL2 (Semantic Web Rule Language), and can be used to infer relations between classes, 

perform classifications, and identify inconsistencies in the ontology. 

SWRL provides powerful deductive reasoning capabilities (Zhai et al., 2018). A SWRL rule 

consists of two parts: an antecedent (body) and a consequent (head). Both parts consist of zero 

or several atoms separated by an arrow “→”. For instance, (Atom ^ Atom ^ …) → (Atom ^ 

Atom ^...). The consequent of an SWRL rule is triggered if and only if every atom in the 

antecedent is satisfied. Because the antecedent can be satisfied multiple times, SWRL rules 

support iteration and fire for every combination of values that satisfy the antecedent. It means 

that we cannot change values or remove inconsistent ones, we can only add new properties. 

Therefore, SWRL does not support non-monotonic reasoning (DeBellis, 2021). For more 

information refer to (Van Harmelen et al., 2008). 

2.3.2.2. Ontologies for system configuration 

Ontologies have been used in the domain of system configuration. (Soininen et al., 1998) 

proposed a general ontology that includes modeling concepts to represent knowledge in the 

domain of configuration. This ontology allows structuring and representing knowledge in this 

domain. Two review articles on product configuration, (L. L. Zhang, 2014) and (Oddsson & 

Ladeby, 2014), presented various definitions in this field and discussed prospects. (Ming et al., 

2017) mentioned that ontology not only captures and documents information but also facilitates 

reusing the previous information to effect new decisions when requirements change. (Lyu et 

al., 2017) is a review paper that mentioned that research on ontology-based product modeling 

mainly focuses on how product knowledge in a domain can be represented and extracted in a 

formalized way, and then interpreted and reused in other domains.  

(Yang et al., 2008) and (Yang et al., 2009) proposed an ontology-based approach to formalize 

knowledge for product configuration. They used Web Ontology Language (OWL) to define 

knowledge about the product and its components and Semantic Web Rule Language (SWRL) 

to define the constraints. Then, the configuration system is implemented using Java Expert 

System Shell (JESS). The proposed approach was applied to the configuration of a ranger 

drilling machine in the first paper and it was applied to a case for the personal computer in the 

second paper. Similarly, (Dong et al., 2011) and (Shen et al., 2012) developed an ontology-

based approach to model knowledge for service product configuration. They used OWL, and 

SWRL to model knowledge and then employed the JESS rule engine to implement 

configuration processes.  

 
2 https://www.w3.org/Submission/SWRL/ 

https://www.w3.org/Submission/SWRL/
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(Xuanyuan et al., 2016) proposed a rule-based ontological formalism to represent the product 

structure and constraints of a product configuration. In this way, OWL and SWRL were used; 

as well as, the Jess reasoner to validate the consistency of the ontology and to develop valid 

product configurations. (Zhou et al., 2017) proposed a method to improve cutting tool 

configuration while reducing carbon emissions for the machining processes. The method used 

an ontology-based approach considering carbon emissions, SWRL language to create rules to 

reason feasible cutting tool configurations, and an evaluation method to find the optimal 

configuration and applied it on a vortex shell workpiece.  

(Cao & Hall, 2020) proposed an ontology-based method to configure modular buildings. It used 

SWRL and Semantic Query Enhanced Web Rule Language (SQWRL) to formalize 

configuration constraints such as composition, cardinality, compatibility, and dependency. 

(Esheiba et al., 2021) proposed a hybrid knowledge-based recommender system that makes use 

of ontologies to capture knowledge about customer requirements, products, services, and 

production. As well as constraint programming for encoding the variants of product-service 

systems. The case study focused on the laser machine domain. 

2.3.2.3. Advantages and drawbacks of using ontology  

In this section, we assess the ontology based on our eight criteria. For each criterion, there are 

three possible outcomes: Yes, No and Difficult. We justify our answers by referring to the 

literature review.  

In knowledge formalization, the criteria for ontology are evaluated as follow:  

− KFC1: Clearly distinguish between descriptive and structural views: YES  

In essence, the key to distinguishing between descriptive and structural views in an ontology 

lies in the systematic and structured definition of classes, attributes, relations, and hierarchies. 

Ontologies allow modeling knowledge about different artifacts, their characteristics (such as 

attributes), KPIs and the relation between them (descriptive view). Moreover, ontology allows 

to formalize relationships (such as composition). Other relations such as require and exclude as 

well as KPIs aggregation methods can be formalized within an ontology by means of rules 

(structural view). However, ontologies have difficulties in representing all relations required 

for formalizing knowledge in system configuration, such as compatibility between artifacts or 

their characteristics.  

In (Soininen et al., 1998), (Yang et al., 2008), (Yang et al., 2009), (Dong et al., 2011) and (Shen 

et al., 2012), they formalized knowledge in the domain of configuration, separating descriptive 

and structural views. First, they used OWL to define knowledge about the product and its 

components and then SWRL to define the constraints.  

− KFC2: Better structure knowledge for later reuse in modeling: YES 

Ontologies are designed to structure knowledge in a standardized and reusable format. The 

formal definitions and hierarchies established, such as taxonomies, make them well-suited for 

modeling across various contexts. Their inherent taxonomic structure enables systematic 

organization and ease of reuse. 
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In the study by (Yang et al., 2008), a methodology was introduced that organizes configuration 

models hierarchically. This structure enables deriving domain-specific configuration 

knowledge by reusing or inheriting classes. The base of this methodology is a configuration 

meta-model from which specific domain knowledge can be derived.  

Another study by (Yang et al., 2009) presented a comprehensive configuration ontology model 

that defines the fundamental terminologies and relationships relating to the product 

configuration domain. The paper demonstrates the derivation of domain-specific configuration 

models through ontology inheritance from the general model, enabling the accurate 

representation of specific product configuration knowledge. 

− KFC3: Explicitly formalize generic models at different levels of abstraction: 

YES 

Hierarchical nature of ontology allows for different levels of abstraction. Ontologies allow 

modeling knowledge about artifacts at different levels of abstraction. Using ontology, the 

generalization or specialization relations between classes and sub-classes can be defined in 

order to formalize general to specific classes, allowing for varying levels of detail (Hadzic et 

al., 2009). These class hierarchies referred to as taxonomies can be modeled using top-down or 

bottom-up approaches (Noy & McGuinness, 2001), (Polenghi et al., 2022). The top-down 

approach consists in starting with the most general class, then refining it to obtain more specific 

classes. The bottom-up approach, on the other hand, starts with the most specific classes and 

works towards the general classes. 

− KFC4: Unquestionably validate the consistency of the knowledge: DIFFICULT  

To validate the consistency of knowledge within an ontology, reasoning tools are employed. 

These tools can infer new knowledge and highlight inconsistencies based on the established 

logical rules and relationships. Using OWL, which is based on Description Logics, 

configuration models gain clear logical semantics, as highlighted by both (Yang et al., 2008) 

and (Yang et al., 2009). This permits reasoning and the detection of inconsistencies within 

knowledge bases, including checking for class subsumption and concept inconsistency. 

However, ensuring the unquestionable validation of ontology consistency can be challenging. 

As explained previously, ontologies have difficulties in representing compatibility relations 

between artifacts or their characteristics. Some rules can be formalized within an ontology and 

applied using a reasoner. However, that does not allow to prohibit inconsistent attribute values 

and thus, it is not that easy to check the consistency of the formalized knowledge using 

ontology.  

In knowledge reuse, the criteria for ontology are evaluated as follow: 

− KRC1: Configure descriptive and/or structural views for the same model 

according to the configuration requirements: YES  

Using ontologies, it is possible to reuse and configure formalized configuration models. For 

instance, (Yang et al., 2008) and (Yang et al., 2009) used an inference engine (i.e. JESS rule 

engine) in their study to carry out configuration process. They defined user requirements in the 

form of constraints, such as constraints on characteristics (or attributes) of a component. At the 
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end of configuration, solutions were obtained consists of the component individuals, the 

assignment of values to properties of these individuals and the connection relations among 

components. These solutions satisfied all constraints and customer requirements. To the best of 

our knowledge, no study in the literature has addressed configuring both descriptive and 

structural views and providing solutions for each.  

− KRC2: Formalize and capitalize ETO requirements during configuration: YES 

While ontologies are adept at capturing general knowledge structures, ETO requirements can 

be intricate and highly specific. This might necessitate ontology manipulation or extensions. 

We did not find any paper related to this criterion. However, to our knowledge, after creating 

an instance of model according to what the user wants, we can add attributes and values within 

the instance manually. Therefore, we can formalize and capitalize ETO requirements during 

configuration.  

− KRC3: Configure according to several levels of abstraction for the same 

knowledge model according to the configuration requirements:  YES 

As explained before, ontologies allow modeling knowledge about artifacts at different levels of 

abstraction. It enables to decide at which level of abstraction the artifact has to be configured. 

Therefore, given the hierarchical structure of ontologies, it is possible to focus on different 

levels of abstraction. Parent classes offer higher abstraction levels, while child classes provide 

lower abstraction level containing detailed knowledge. We did not find any paper in the 

literature which directly addresses this criterion. However, as far as we know, a class can be 

selected either at higher abstraction levels or lower abstraction levels, then its instance can be 

created. Then, it can be configured using ontologies.  

− KRC4: Interactively configure a system: DIFFICULT 

Interactive configuration requires rapid interaction with user. While ontologies provide 

structured knowledge, rapid interactions, especially with vast ontologies to fulfill different 

requirements, is not that easy. Therefore, it is difficult to reason on the formalized knowledge 

and solve the configuration problem interactively using ontology. Although some rules can be 

formalized within an ontology and applied using a reasoner. However, that does not allow to 

prohibit inconsistent attribute values and thus, it is not possible to configure systems.  

In conclusion, ontology seems to be particularly adept at formalizing knowledge, distinguishing 

between descriptive and structural views, and facilitating knowledge structuring for future reuse 

in modeling. Its hierarchical nature allows for flexibility in levels of abstraction, making it 

suitable for various modeling purposes. While ontologies are intrinsically structured, they may 

face challenges in areas like interactive configurations.  

The following section is devoted to the Unified Modeling Language and Systems Modeling 

Language. 
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2.3.3. UML, SysML and system configuration  

In this section, we commence with an examination of the ontology employed in systems 

configuration. Following that, we delve into the utilization of this ontology within the realm of 

systems configuration. Lastly, we assess the effectiveness of this approach based on our 

predetermined criteria. 

"In this section, we initiate our examination by assessing the ontology applied in systems 

configuration. Subsequently, we delve into the practical implementation of this ontology within 

the framework of systems configuration. Lastly, we assess the effectiveness of this approach 

against our predetermined criteria." 

In this section, we commence by examining the ontology employed in systems configuration. 

Following that, we will delve into the utilization of this ontology within the domain of systems 

configuration. Ultimately, we will assess this approach based on our predetermined criteria. 

2.3.3.1. UML definition 

The definition of Modeling Language (ML) has been represented by (Rumbaugh et al., 1999) 

as a language that focuses on the conceptual and physical representation of a system. 

Conceptual representation provides an abstract or high-level representation of a system's 

components, relationships, and interactions to understand its functionality and behavior without 

getting into implementation details. Physical representation, on the other hand, is the concrete 

or low-level representation of a system's components. Unified Modeling Language (UML) is 

the most widely used object-oriented modeling language, as noted by (Petre, 2013), 

(Hutchinson et al., 2014). (Clark & Evans, 1997)  defined UML as a collection of graphical 

models that express the properties of an object-oriented design. (Rumbaugh et al., 1999) stated 

that UML is "a graphical language for visualizing, specifying, constructing, and documenting 

the artifacts3 of a system".  

UML diagrams: UML provides various diagrams that represent a system using 14 diagrams, 

grouped into two categories, allowing for the modeling of both its structure and behavior (Clark 

& Evans, 1997), (Language et al., 1997), (Rumbaugh et al., 1999), and (Mkhinini et al., 2020).  

Structural diagrams, such as class diagrams, depict the static elements of a system and their 

relationships (Clark & Evans, 1997). Meanwhile, behavior diagrams show the dynamic 

behavior of objects in a system and changes over time (Clark & Evans, 1997), (Rumbaugh et 

al., 1999). The UML class diagram is commonly used (Dobing & Parsons, 2006), and it is the 

most important structural model (Clark & Evans, 1997). UML use case diagrams offer a high-

level overview of the system's functionality from the user's perspective, with each use case 

representing a specific functionality that the system must deliver to its users4.  

A UML class diagram has different elements including classes, attributes, and relationships. A 

class is a group of objects that share attributes, operations, relationships, and semantics 

(Wesley, 2015). An attribute is a property or characteristic of a class. UML has three types of 

 
3 An artifact in software development is an item created or collected during the development process. Example 

of artifacts includes use cases, requirements, design, code, executable files, etc. 
4 https://en.wikipedia.org/wiki/Use_case_diagram 

https://en.wikipedia.org/wiki/Use_case_diagram
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relations: association, generalization, and aggregation; Association represents a structural 

relationship between two classes, showing how one class is related to another one. 

Generalization represents a "is a" relationship between classes, where a child inherits the 

structure and behavior of a parent (Clark & Evans, 1997), (Rumbaugh et al., 1999). Aggregation 

is a special type of association, representing a structural relationship between a whole and its 

components or parts (Rumbaugh et al., 1999).  

UML is a modeling language, not a reasoning or inference engine. UML does not support 

automated reasoning or inference. However, it can be used in combination with other tools that 

do support monotonic reasoning, such as Object Constraint Language (OCL) (Omg, 2012) 

which is a modeling language to specify and validate constraints on the model. These 

constraints can then be used to check the consistency and correctness of the model. This enables 

the modeler to reason about the system being modeled, identify potential issues, and ensure that 

the model adheres to specified requirements and constraints. (Queralt & Teniente, 2006) 

proposed a method for reasoning on structural conceptual schemas specified in UML with OCL 

integrity constraints. This approach contains two steps: 1) translating the UML class diagram 

and the OCL constraints into a first-order logic representation, and 2) using the CQC Method, 

which performs constraint-satisfiability checks, to carry out the reasoning and validation tasks. 

(Berardi et al., 2005) addressed the challenge of reasoning on UML class diagrams and showed 

that it can be quite a complex task. (Pérez & Porres, 2019) proposed a framework for reasoning 

based on Constraint Logic Programming.  

2.3.3.2. SYsML Definition 

The Systems Modeling Language (SysML) is another modeling language particularly designed 

for systems engineering applications. It is a standard from the Object Management Group 

(OMG), developed in March 2003. It allows the representation of systems and product 

architecture, their behavior, and functionalities (Balmelli, 2007). SysML supports the 

specification, analysis, design, verification, and validation of complex systems (Hause, 2006).  

SysML diagrams: SysML offers a wider variety of diagrams than UML, including diagrams 

such as requirements, parametric, and allocations diagrams, which are not available in UML 

(Balmelli, 2007). SysML diagrams can define system requirements, behavior, structure and 

parametric relationships (Hause, 2006). (Guillon, 2019) mentioned the system structure can be 

represented by block definition diagrams and internal block diagrams, while the behavior 

diagrams include the use case diagram, activity diagram, sequence diagram and state machine 

diagram. The requirement diagram captures requirements hierarchies and the derivation, 

satisfaction, verification and refinement relationships, while the parametric diagram represents 

constraints on system parameter values such as performance, reliability and mass properties to 

support engineering analysis. As pointed out by (Fiorèse et al., 2012), the functional block 

diagram of SysML shows the set of functions that the product to be designed must fulfill. There 

are four behavioral diagrams formalized in the SysML: the use case diagram, the sequence 

diagram, the activity diagram and the state diagram. Modeling the behavioral view of the 

product is particularly relevant during the complete design of the product, if the system is 

accepted by the customer. Physical block diagram of SysML shows the internal structure of the 

block, i.e. its decomposition into physical components (Guillon, 2019).  
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2.3.3.3. UML and SysML for system configuration  

UML and OCL can be employed in the domain of system configuration. (Felfernig, Jannach, et 

al., 2000) proposed an approach using UML to define a product configuration knowledge base.  

(Felfernig, Friedrich, et al., 2000) defined logic-based formal semantics for UML constructs, 

allowing to generate logical sentences and to process them by a problem solver. (Felfernig, 

2007) represented configuration knowledge and built configuration models using UML and 

OCL as standard configuration knowledge representation languages. This standard 

representation of configuration knowledge facilitates the integration of configuration 

technologies into software environments managing complex products and services. 

Configuration systems supporting this standard representation are easier to integrate and 

improve the technological support for implementing a company's mass customization strategy. 

(Felfernig et al., 2014) used a graphical configuration knowledge representations approach that 

is UML to formalize configuration models relying on the notation of class diagrams; without 

the need for additional notations such as component or sequence diagrams. (Rigger et al., 2021) 

proposed a method to formalize knowledge for product configuration during the development 

of an engineering system using SysML. 

2.3.3.4. Advantages and drawbacks of using UML and SysML  

In this section, we provide the advantages and drawbacks of utilizing UML and SysML for 

knowledge formalization, as well as for knowledge reuse. 

− KFC1: Clearly distinguish between descriptive and structural views: YES  

UML and SysML are a powerful approach for formalizing knowledge about systems. They 

provide a set of diagrams to illustrate various aspects of systems, from their architecture and 

structure to their behavior and interactions.  

In a study by (Felfernig et al., 2014), they used UML to create a model for configuring personal 

computers (PCs). They used class diagrams to define the PC's structure, including its parts and 

how they fit together. Some basic relations about how these parts can be combined were directly 

included in the model, others were represented textually.  

In another study by (Rigger et al., 2021), they employed SysML to build a configuration model. 

They showed how to create product designs and define relations within these designs. They did 

this by adding variables and constraints directly into the product design using diagrams.  

− KFC2: Better structure knowledge for later reuse in modeling: YES 

In (Felfernig et al., 2014), through UML's class diagrams, one can create a taxonomy by 

hierarchically organizing classes, thus better structure knowledge that can be reused in different 

models.  

In (Rigger et al., 2021), a  hierarchical component structures is created using SysML which 

facilitate the reuse of components for formalization of configuration models. In their work, they 

created a package named “product architecture” that holds details about the system's hierarchy 

and the blocks that are used. 



Chapter 2: Bibiliographic study 

 

35 

− KFC3: Explicitly formalize generic models at different levels of abstraction: 

YES 

In the context of modeling, UML and SysML provide a valuable framework for creating generic 

models at various levels of abstraction. This flexibility allows modelers to begin with high-level 

system concepts and gradually refine them into more detailed concepts.  

In (Felfernig et al., 2014), UML is used to formalizing specialization and generalization 

relationships. They defined a class as a child of another class, with the child class inheriting all 

attributes and behaviors from its parent class. Additionally, (Rigger et al., 2021) illustrate how 

SysML offers generalization relationships between blocks and allows for the definition of 

abstract elements.  

− KFC4: Unquestionably validate the consistency of the knowledge: DIFFICULT 

UML intrinsically lacks reasoning capabilities essential for validating the consistency of a 

model. To add constraints to UML models and reasoning on them, auxiliary tools like the 

Object Constraint Language (OCL) can be employed. 

(Felfernig, 2007) explains how OCL helps represent relations in customizable products and 

services using UML and then check the consistency. Similar to UML, SysML does not 

inherently possess capabilities to validate the consistency or accuracy of the represented 

knowledge. 

− KRC1: Configure descriptive and/or structural views for the same model 

according to the configuration requirements: NO 

UML and SysML have limitations when it comes to configuration of models based on specific 

requirements. Using them alone, configuration process cannot be performed directly. The 

models created using UML and SysML are static in nature, meaning that while they can 

illustrate different variants, or configurations, they cannot be configured based on requirements.  

− KRC2: Formalize and capitalize ETO requirements during configuration: YES 

There is no paper in the literature about this criterion. However, to our knowledge, it is possible 

to formalize ETO requirements using UML and SysML. After creating an instance of the 

formalized configuration model, a new attribute, a new value of attribute or a new relation 

between the classes can be added manually.  

− KRC3: Configure according to several levels of abstraction for the same 

knowledge model according to the configuration requirements:  NO 

While UML and SysML enable experts to formalize knowledge about systems at varying levels 

of abstraction, they inherently cannot configuration the model based on varying configuration 

requirements. There is no paper in the literature about this criterion. 
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− KRC4: Interactively configure a system: NO  

UML and SysML do not inherently support interactive configuration. When using UML and 

SysML, systems can be modeled to show different configurations, but these formalized models 

cannot be interactively configured based on user inputs.  

In conclusion, UML and SysML appear to be powerful approaches for formalizing knowledge. 

Their intrinsic ability to distinguish between descriptive and structural views, creating models 

at different levels of abstraction, and structuring knowledge in a taxonomy makes them suitable 

for modeling systems. However, challenges arise when it comes to checking consistency of 

formalized knowledge, configuring models at different levels of abstraction (either descriptive 

or structural) and specifically interactive configurations. In this PhD, both knowledge 

formalization and knowledge reuse are considered, therefore UML and SysML are not selected 

since they cannot fulfill our requirements related to knowledge reuse. 

The following section is dedicated to the constraint satisfaction problem approach. 

2.3.4. CSP and system configuration 

In this subsection, we first recall the constraint satisfaction problems commonly used in system 

configuration (Felfernig et al., 2014). Second, we see how CSP can be used for system 

configuration. We then go on to evaluate this approach with respect to our criteria. 

2.3.4.1. CSP definition 

A Constraint Satisfaction Problem, notated CSP, is an approach to formalize knowledge and 

reason on it to find solutions compatible with the problem. The definition of constraint 

satisfaction problem was firstly proposed by (Montanari, 1974), in which, a CSP is defined as 

a triplet {X, D, C} where: 

• X = {x1, x2, …, xk} is a finite set of variables,  

• D = {d1, d2, …, dk} is a finite set of domains - one for each variable of X,  

• C = {c1, c2, …, cm} is a finite set of constraints on variables. Constraints represent 

restrictions on the combination of variables values. 

CSP Variables: Variables are objects that can take on a variety of values (Tsang, 1993). The 

domain of a variable is a set of all possible values that can be assigned to the variable (Tsang, 

1993). The variables can vary in their types, including symbolic or numerical, discrete or 

continuous (Vareilles, 2005). :  

• Symbolic variables are represented by a list of symbols. Symbolic variables are discrete 

variables, since they have a finite domain. 

• Numerical variables are represented by a list of integers, a list of reals, intervals of 

integer values, or intervals of reals. Numerical variables can be discrete (having a finite 

domain or a set of discontinuous intervals), or continuous (having a set of continuous 

intervals). 
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CSP Constraints: Constraints on a set of variables restrict the combination of values that these 

variables can take simultaneously (Tsang, 1993), (Ghedira, 2013). In a CSP, compatibility 

constraints and activation constraints can be distinct (Vareilles, 2005), (Rossi et al., 2006), as 

can global constraints (Tsang, 1993). They are explained respectively as follows. 

Compatibility constraints define the possible combinations of values between several variables  

(Mittal & Falkenhainer, 1990), (Vareilles, 2005). (Tsang, 1993) also mentioned compatibility 

constraints are described by lists of combinations of allowed or forbidden values. Compatibility 

constraints can be formalized in the form of tables or mathematical (or numerical) functions 

(Vareilles, 2005). As explained in (Vareilles, 2005), (Rossi et al., 2006), (Monge, 2019), 

compatibility tables represented in tabular form, the explicit list of authorized values to consider 

and numerical functions represented in a mathematical form, the implicit allowed combinations 

of variable values. 

Activation constraints modify the structure of the solution space by adding or removing 

variables or constraints from the current problem (Mittal & Falkenhainer, 1990). As proposed 

by (Mittal & Falkenhainer, 1990), there are four types of activation constraints: Require, 

Always require, Require not, and Always require not. (Mittal & Falkenhainer, 1990) defined 

them as follows. The fundamental activity constraint is "require" which establishes a variable's 

activity through the assignment of values to a set of active variables. The "always require" 

constraint expands on the require constraint by requiring a variable's activity based on the 

activity of other variables, regardless of their current value. The "require not" constraint 

specifies an inconsistency between an assignment of values to a set of active variables and the 

activity of another variable. Similarly, the "always require not" constraint extends the concept 

of the require not constraint by precluding a variable's activity based on the activity of other 

variables, regardless of their present value. 

The term global constraint appeared in the late 1980s (Beldiceanu et al., 2007). Global 

constraints are considered as classes of constraints that are defined using a formula of arbitrary 

arity (a formula that involves any number of variables). On the other hand, (Van Harmelen et 

al., 2008) pointed out a global constraint is a constraint over a sequence of variables. The use 

of global constraints makes it easier to construct a CSP model. (Tsang, 1993) highlighted that 

the all-different constraint, which requires that all variables in the constraint must be unique, is 

a classic example of a global constraint. (Beldiceanu et al., 2005) presented a catalog of global 

constraints. (Simonis, 2007) stated that global constraints help model complex problems as they 

provide high-level constraint abstractions that simplify the creation of large-scale models.  

CSP Solution: A solution of a CSP is a complete instantiation of all the active variables 

satisfying all the constraints (Barták et al., 2010). An instantiation is an assignment of values 

to the variables, i.e. each variable as one and only one value. There are two types of 

instantiation: partial and complete. In a partial instantiation, only a subset of variables is 

instantiated, the solution is under construction.  

CSP processing: Resolving a CSP involves various solving techniques and filtering 

techniques. Solving techniques are capable of systematically exploring the entire search space 

and producing providing all solutions to a problem. The Backtrack algorithm is the most widely 
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used basic search technique, first introduced by (Golomb & Baumert, 1965). This technique 

employs a depth-first strategy, utilizing a backtracking technique that returns to the previous 

state if the current partial assignment is found to be inconsistent. In contrast, incomplete solving 

techniques do not thoroughly explore the search space and instead rely on an opportunistic 

exploration of the set of complete assignments. These techniques only produce a subset of 

solutions and require an assignment evaluation and comparison function. Examples include the 

Tabu search technique by (Glover & Laguna, 1993), and Simulated annealing by (Kirkpatrick 

et al., 1983). These incomplete techniques are often used to tackle larger problems.  

Filtering techniques utilize constraints actively to make inferences about the problem (Van 

Beek & Dechter, 1997). The main goal of filtering techniques is to detect locally or completely 

inconsistent partial assignments (Van Beek & Dechter, 1997), (Debruyne & Bessiere, 1997). 

(Rossi et al., 2006) stated that one of the most widely used techniques is the arc consistency, 

first introduced by (Montanari, 1974) for discrete CSP. (Debruyne & Bessiere, 1997) extended 

arc consistency to numerical CSP by the mean of Bound-consistency. This method checks the 

consistency of each value in the domain of a variable with each constraint separately (Bessière, 

1994), (Vareilles, 2005) and (Rossi et al., 2006). (Bessiere, 1991) mentioned the arc consistency 

filters locally, but does not guarantee a problem has a solution.  

There are several degrees of filtering, each corresponding to the number of variables involved 

in the local consistency check. The higher the degree, the more effective the detection of 

inconsistent combinations, but the longer the detection process takes (Vareilles, 2005). Filtering 

methods include node consistency (Mackworth, 1977), arc consistency (Mackworth, 1977), 

path consistency (Mackworth, 1977), and k-consistency (Freuder, 1978). These filtering 

techniques allow reflecting choices on the current problem by eliminating inconsistent values. 

The search for solutions becomes interactive, relying on a sequence of coherent choices that 

lead to one or multiple solutions.  

When comparing solving and filtering techniques, filtering techniques improve solving 

techniques. For example, forward checking, developed by (Haralick & Elliott, 1980), combines 

arc consistency filtering with a backtracking algorithm. 

2.3.4.2. CSP for system configuration  

The CSP approach has been used to formalize knowledge and reason on it in configuration 

problems (Felfernig et al., 2014). The utilization of CSPs in system configuration problems has 

been so extensive that it has earned a dedicated chapter in the Handbook of Constraint 

Programming (Junker, 2006).   

(Tsang, 1993) stated that configuration problems can be formulated as constraint problems. The 

application of CSP in system configuration involved defining a system as a fixed and finite set 

of component variables. Each of these component variables held property variables and port 

variables to represent connections with other components. The domains of variables were 

limited to a finite and discrete set. Restrictions on which component combinations were valid 

were represented using compatibility constraints. The solution of CSP involved assigning a 

value to each variable and determining the final configuration.  
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(Xie et al., 2005) employed CSP to model and solve an engineering product configuration 

problem. The goal was to define a methodology for a generic configurator that can handle 

complex constraints, in an engineering product configuration problem.  

(Aldanondo & Vareilles, 2008) proposed a constraint-based approach in the domain of product 

configuration and showed how it can be extended to upstream Requirements Configuration and 

downstream Process Configuration. The CSP modeling framework was used to identify 

configuration elements and formalize these elements. In their work they formalized descriptive 

and then physical view of the product after that they associated these two views. 

(Tidstam et al., 2016) proposed the modeling and solving of the CSP as an aid during the 

inspection of configuration rules. Their objective was to develop CSP variations that could 

automate manual tasks involved in the development of vehicle configuration rules.  

(Männistö et al., 2001) defined a novel mechanism based on generic models of product 

individuals organized into a specialization hierarchy to support multiple abstraction levels. For 

creating such hierarchies, they defined a set of transformation operations on models. 

2.3.4.3. Advantages and drawbacks of using CSP  

This section evaluates the constraint satisfaction problems using our eight criteria. For each of 

them, three modalities are possible: Yes, No and Difficult. We argue our answers in the light 

of the literature review.  

In knowledge formalization, the criteria for CSP are assessed as follow:  

− KFC1: Clearly distinguish between descriptive and structural views: YES  

Configuration problems naturally take into account different views of the family of systems to 

be configured. Different views, functional, physical or assembly, are considered. In  

(Aldanondo & Vareilles, 2008) and (L. L. Zhang et al., 2013), a descriptive and a structural 

view of a family of systems are clearly defined in a single generic configuration model, defined 

as a constraint satisfaction problem. The variables and constraints in the model are thus 

artificially grouped according to whether they belong to one view or the other. The two views 

are linked by a set of constraints that define the solution space.   

− KFC2: Better structure knowledge for later reuse in modeling: YES 

We have only found work by (Shen et al., 2012) and (Guillon, Ayachi, et al., 2021) that uses 

ontologies and taxonomies in system configuration. In their work, (Shen et al., 2012) proposes 

a PES (Product Extension Service) configuration model in the case of servicisation. The 

configuration is supported by a model called PESCO (Product Extension Services 

Configuration Ontologies), which consists of three sub-ontologies: (1) a service sub-ontology 

(SO), (2) a product sub-ontology (PO), and (3) a customer sub-ontology (CO). In (Guillon, 

Ayachi, et al., 2021)’s work, the business knowledge required to develop proposals is structured 

using a taxonomy in which each concept is associated with a CSP: variables are associated with 

each concept in the taxonomy, and business rules are formalized in the form of constraints. All 

elements of the model are thus formalized in the form of a tree structure of concepts associated 

to CSPs, which are then reused as appropriate to create generic models. 
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− KFC3: Explicitly formalize generic models at different levels of abstraction: 

DIFFICULT 

We have only found the work of (Männistö et al., 2001), which refers to a level of abstraction 

in system configuration. In their work, (Männistö et al., 2001) proposed a complete generic 

model, including all levels of abstraction of all items of the model. The generic model therefore 

corresponds to the complete tree of abstraction and the authors conclude that the generic model 

can become very difficult to understand and manage.  

− KFC4: Unquestionably validate the consistency of the knowledge: YES 

Filtering and resolution methods can be used to validate the consistency of knowledge models. 

This makes it possible to (1) verify the completeness of the solution set, by a complete 

resolution of the CSP, which can be costly in terms of time and space, and (2) partially verify 

the solution space by more or less strong filtering.  

In knowledge reuse, the criteria for CSP are assessed as follow: 

− KRC1: Configure descriptive and/or structural views for the same model 

according to the configuration requirements: DIFFICULT 

In (Aldanondo & Vareilles, 2008) and (L. L. Zhang et al., 2013), the generic model with its 

different views is used to configure both the descriptive and the functional view of a family of 

systems. As the two views are intrinsically coupled, it is not possible to obtain a solution that 

only includes the descriptive part of the system (in the CSP sense). In fact, the assignment is 

only partial if only the descriptive view has been configured. The rest of the variables have 

therefore to be assigned to any consistent values.  

− KRC2: Formalize and capitalize ETO requirements during configuration: YES 

(Bonev & Hvam, 2013) and (Sylla, Guillon, Vareilles, et al., 2018) have studied how ETO 

requirements can be tackle during configuration activity. They have studied the impacts of ETO 

requirements on configuration activity and have proposed various ETO configuration 

requirements.  

− KRC3: Configure according to several levels of abstraction for the same 

knowledge model according to the configuration requirements:  DIFFICULT 

In (Männistö et al., 2001), it is proposed to configure systems thanks to the complete generic 

model including all abstraction levels of all elements of the model. For each subsystem and 

component, the user has to choose between different variants and options before configuring it. 

Some branches of the tree are therefore cut during the configuration activity, and this process 

leads to the minimal BOM that is consistent with the model and the user's requirements. 

− KRC4: Interactively configure a system: YES 

Interactive configuration can be achieved using filtering techniques. Depending on the filtering 

algorithms used (arc consistency, path consistency, etc.), inconsistent values will be more or 
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less well removed from the space of possibilities. A compromise must therefore be found 

between filtering quality and response time.  

In conclusion, CSPs seem to be a good candidate to partially answer our research questions, 

both in terms of knowledge formalization and reuse. Undoubtedly, CSPs can be used to 

formalize and reason about any kind of configuration knowledge in order to interactively 

configure systems. Unfortunately, CSPs suffer from their lack of structure and the difficulty of 

simply reusing parts of generic models.  

The following section is devoted to the Case-Based Reasoning (CBR) approach. 

2.3.5. CBR and system configuration  

In this section, we will start by defining the CBR. Then, we'll delve into how this CBR is applied 

in the context of systems configuration. Lastly, we will assess this approach using the criteria 

we have defined. 

2.3.5.1. CBR definition 

The Case-Based Reasoning (CBR) approach (Kolodner, 1992), (Aamodt & Plaza, 1994) is an 

approach that is based on the idea that similar problems have similar solutions. This approach 

allows solving a new problem by finding similar problems solved in the past and reusing the 

knowledge and information of those problems. In other words, this approach solves new 

problems by finding similar past cases that have been solved previously and adapting their 

solutions to the new situation. 

The main elements of CBR approaches are cases, and similarity functions. A case or an 

experience is described as a problem situation (Aamodt & Plaza, 1994). Each case is described 

by a set of attributes whose definition domain has been previously fixed. The set of attributes 

of a case allows to describe the problem encountered and the proposed solution. When a case 

is stored in a database, each of its attributes must be filled in and assigned a unique value. 

Moreover, (Xu et al., 2009) mentioned that typically, the case consists of two parts: 1) the 

problem and the description of the attributes of the case, and 2) the solution to the problem. A 

previous case or source case refers to a past problem situation that has been studied in a way 

that its related knowledge and information can be reused to solve a new similar problem in the 

future (Aamodt & Plaza, 1994). A case base is a database of previously solved problems and 

their solutions (Aamodt & Plaza, 1994).   

A distance measure, called similarity, is used to classify the different cases in the case base 

(source cases) in relation to their similarity to the submitted problem (target case). There are 

two types of similarity measures: 1) local similarity measure (Bergmann, 2002) is the similarity 

between the values of the domains of the attributes taken two by two, 2) global similarity 

measure is the similarity, related to cases, aggregates the local similarities to determine the 

global similarity between two cases.  

A CBR system is made up of five phases: Define, Retrieve, Reuse, Revise, and Retain 

(Kolodner, 1992), (Aamodt & Plaza, 1994). The Define phase involves describing a new 

problem to compare it with past problems stored in the case base. The Retrieve phase involves 



Chapter 2: Bibiliographic study 

 

42 

searching for and selecting the most similar cases in the case base. In the Reuse phase, 

knowledge related to the retrieved cases is adapted by humans to propose an initial solution. In 

the Revise phase, the initial solution is tested and compared to the actual solution, and if 

necessary, revised to make it more suitable. Finally, in the Retain phase, the new problem and 

its related information are stored in the case base. 

There are two types of uses for case-based reasoning: (1) interpretation and (2) problem-solving 

(Kolodner, 1992), (Marling et al., 2002). Interpretation involves using past cases to evaluate 

new cases. Problem-solving involves adapting a solution to a past problem, to meet the 

requirements of the new situation.  (Shaharin et al., 2019) mentioned that the main advantage 

of the CBR, is that it allows to solve problems based on the experiences gained from previous 

cases that led to providing effective solutions. CBR can be used to support the reuse of 

knowledge by retrieving and adapting solutions from the case base to new product 

configurations. Cases help a reasoner to focus reasoning on important parts of a problem by 

pointing out what features of a problem are the important ones (Kolodner, 1992).  

2.3.5.2. CBR for system configuration  

(Tseng et al., 2005), applied the CBR approach to perform actual product configuration, aiming 

to reuse previous successful reasoning cases. (Lee & Lee, 2005) also used the CBR for product 

configuration. (Yang et al., 2008) employed the CBR approach to solve product configuration 

problems, but noted that it is useful when knowledge is incomplete and does not support the 

reuse of product structure knowledge and constraints. (Xu et al., 2009) introduced an extended 

object model for case-based reasoning in product configuration design. This model adopts 

various methods of knowledge expression such as constraints, rules, and objects. It supports all 

processes of case-based reasoning in product configuration design such as case representation, 

indexing, retrieving, and case revision. A metering pump product configuration design system 

was developed based on this model to support customized products.  

2.3.5.3. Advantages and drawbacks of using CBR  

In this section, we assess the CBR using our eight criteria, with three possible modalities for 

each: Yes, No, and Difficult. We substantiate our responses based on the insights from the 

literature review.  

Regarding knowledge formalization, the assessment criteria for CBR are evaluated as follows: 

− KFC1: Clearly distinguish between descriptive and structural views: YES 

In (Sylla et al., 2021), they propose object-oriented case representation model which allows to 

evaluate systems performance. In their object-oriented representation, each case is defined as a 

class which is described by a set of attribute-value pairs. Classes are hierarchically organized 

and may consist of one or more sub classes. 

− KFC2: Better structure knowledge for later reuse in modeling:  YES 

(Stahl & Bergmann, 2000) proposed the idea of recursive CBR and applied it for product 

configuration. The approach structures products hierarchically into sub-components and 

recursively applies CBR to find best-matching alternative sub-components, thereby avoiding 
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huge portions of the knowledge acquisition effort. The presented approach assumes a limited 

number of dependencies between the different sub-problems in the application domain to be 

efficient. This approach is particularly suited to the customization of structured products in 

Electronic Commerce applications.  

− KFC3: Explicitly formalize generic models at different levels of abstraction: 

YES 

(Bergmann & Wilke, 1996) develop a general framework for representing cases at different 

levels of abstraction, which is useful for analyzing existing and designing new approaches in 

case-based reasoning. The purpose of an abstraction hierarchy in case-based reasoning is to 

organize cases into levels of abstraction, with each level representing a different degree of 

detail.  

− KFC4: Unquestionably validate the consistency of the knowledge: NO 

In the existing literature, we have not identified any studies that specifically address this 

particular criterion. To the best of our knowledge, there is no intrinsic mechanism in CBR to 

validate the consistency of the knowledge.  

− KRC1: Configure descriptive and/or structural views for the same model 

according to the configuration requirements: YES 

(Sylla et al., 2021) proposes a method for retrieving the most similar cases from the case base 

using CBR approach. At the first step, the structure of the case base is exploited to directly 

retrieve relevant previous cases to the target case. The case base structure contains general 

knowledge about which systems are of the same type and which systems are not of the same 

type. Once a new system must be evaluated, its properties are extracted to identify the relevant 

class in the case base class hierarchy. Only cases that are instances of the class of the target case 

and those that are instances of its parent classes are considered. Then, a similarity measure is 

used to rank the retrieved cases based on their similarity to the target case. The most similar 

cases are then selected and used to propose an initial solution. 

− KRC2: Formalize and capitalize ETO requirements during configuration: YES 

CBR can be employed to formalize and capitalize on ETO requirements during configuration. 

By using past cases or solutions, CBR allows for tailoring specific configurations to meet ETO 

requirements.  

(Sylla et al., 2021) The paper proposes a CBR approach for the evaluation of complex systems 

in ETO industrial situations. The proposed CBR system can be used to evaluate both a complete 

system and a part of the system. The authors propose a generic approach that allows for the 

retrieval of the most similar cases in both situations.  

− KRC3: Configure according to several levels of abstraction for the same 

knowledge model according to the configuration requirements:  DIFFICULT 

In their proposed approach (Bergmann & Wilke, 1996), represented cases at multiple levels of 

detail can be reused. It means their approach enables the retrieval of appropriate cases at the 
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same levels of detail when searching for similar cases to a new one. However, to our knowledge, 

if the cases are not formalized and stored in a structured way, reusing them to configure in this 

step will be difficult. 

− KRC4: Interactively configure a system: NO 

In CBR, the adaptation of case is done based on the user requirements. To the best of our 

knowledge there is no paper to discuss specifically interactive configuration using CBR, in 

which users provide input progressively converging to a solution. 

In conclusion, CBR enables us to formalize knowledge at different levels of abstraction, in a 

structured way and at different levels of abstraction. However, it has difficulties when it comes 

to checking consistency and interactive configuration. Therefore, in this thesis, we will not 

consider CBR. 

The following section is devoted to the hybrid approach. 

2.3.6. Hybrid approach and system configuration 

In this section, we start by the definition of hybrid approach. Next, we explore how this hybrid 

approach can be applied to system configuration. Finally, we assess this approach based on our 

criteria. 

2.3.6.1. Hybrid approach definition 

(Stumptner, 1997) defined hybrid approach as an approach that employs several representations 

and reasoning mechanisms.  

2.3.6.2. Hybrid approach for system configuration  

In the literature, a few papers worked on the hybrid approaches, such as the use of CSP and 

CBR approaches by (Vareilles et al., 2012), CBR and ontology by (Romero Bejarano et al., 

2014). 

(Vareilles et al., 2012) proposed an approach to aiding design decisions that combines the 

strengths of CSP and CBR. CSP is an approach that uses a constraint model and a constraint 

filtering mechanism to solve design problems, while CBR enables to solve problems by 

retrieving similar past cases and adapting them to the current problem. The authors propose to 

use both approaches together to take advantage of their strengths. They suggest that the 

knowledge base of CSP can be used to represent explicit knowledge in the form of constraints, 

while the case base of CBR can be used to represent contextual knowledge in the form of past 

cases. (Romero Bejarano et al., 2014) addressed the fulfillment of requirements for CBR 

processes in system design. The proposed method defines an integrated CBR process in line 

with system engineering principles and establishes an ontology to capture knowledge about the 

design. Based on the ontology, models are provided for requirements and solutions 

representation, followed by a recursive CBR process suitable for system design. (Guillon, 

Villeneuve, et al., 2021) proposed to build and deployed a knowledge-based system (KBS) 

combining the following approaches: ontology, CSP, and CBR in order to capture, formalize, 
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and reuse knowledge relevant to bids. A case study from a company building electrical parts of 

harbor lifting devices was illustrated. 

2.3.6.3. Advantages and drawbacks of using hybrid approaches  

In this section, we assess the hybrid approaches against our eight criteria. For each criterion, 

there are three potential modalities: Yes, No, and Difficult. Our justifications for these 

assessments are based on our review of the existing literature. 

In knowledge formalization, the criteria for hybrid approaches are assessed as follow:  

− KFC1: Clearly distinguish between descriptive and structural views: YES 

In (Romero Bejarano et al., 2014), they defined an ontology to represent knowledge about 

system design, including characteristics, domains, and constraints. Moreover, to design a 

system, they break it into subsystem. In their study (Guillon, Villeneuve, et al., 2021), 

developed a knowledge-based system (KBS) with the aim of assisting companies in the bid 

development process. They identified several concepts (associating to components family) and 

formalized a BOM (at three levels of decomposition). They represented the knowledge using 

ontology. Moreover, they defined Business rules by means of constraints (using CSP). 

− KFC2: Better structure knowledge for later reuse in modeling: YES 

In (Romero Bejarano et al., 2014), using ontology, a hierarchical structure of concepts is defined 

representing a taxonomy. Moreover, the paper proposes an integrated approach that combines 

Recursive CBR (RCBR) with system engineering principles to improve the system design 

process. The paper explains that the RCBR approach involves decomposing the initial system 

into a hierarchy of subsystems, and retrieving a solution for each subsystem. If there are 

unsolved subproblems, the system is recursively carried out to find sub solutions. In (Guillon, 

Villeneuve, et al., 2021), concepts are structured in a taxonomy a taxonomy is created to 

structure concepts and  group concepts together. 

− KFC3: Explicitly formalize generic models at different levels of abstraction: 

YES 

In (Romero Bejarano et al., 2014), they create an ontology. At the core of this ontology is the 

most general concept called "System" which doesn't have any parent concepts. The relationship 

between concepts in the ontology is established through edges that signify generalization and 

specialization. This means that any concept inherits the characteristics of its parent concepts.  

− KFC4: Unquestionably validate the consistency of the knowledge: YES 

In their study (Vareilles et al., 2012), the authors integrated CBR with constraint filtering, which 

narrows down variable domains based on constraints during the design process. By employing 

constraint filtering, inputs to the CBR system are of higher quality and more efficient, as 

constraints reduce possible input variations. 
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− KRC1: Configure descriptive and/or structural views for the same model 

according to the configuration requirements: YES 

In the approach proposed by (Romero Bejarano et al., 2014), there are two scenarios to consider 

based on the designer's choices: 1) When the designer decides to decompose the system solution 

into multiple subsystems, the RCBR process is applied to develop each subsystem solution at a 

lower level. This entails the designer specifying dedicated subsystem requirements for each of 

them. Once these subsystem solutions are developed, they are integrated to form the final 

system solution, with values assigned to the variables. 2) Alternatively, if the solution is not 

comprised of subsystems, the development process concludes after the adaptation task. 

− KRC2: Formalize and capitalize ETO requirements during configuration: YES 

In their study (Romero Bejarano et al., 2014), three different scenarios are defined for the 

process of determining a solution:  

Scenario 1: This scenario comes into play when there are no suitable existing solutions, and a 

solution needs to be created from scratch. 

Scenario 2: In cases where a suitable solution already exists, it is selected for reuse. Then, a 

check is performed. If the chosen solution meets all the clear requirement constraints, there is 

no need for further adjustments, and the solution is ready. 

Scenario 3: If the selected solution does not meet the requirement constraints, it is copied and 

adapted to align with the new requirements.  

This adaptation process can range from making minor adjustments to completely restructuring 

the solution, depending on the complexity of the required changes. 

− KRC3: Configure according to several levels of abstraction for the same 

knowledge model according to the configuration requirements:  YES 

In the study (Romero Bejarano et al., 2014), they focused on addressing the requirement of 

integrating the Case-Based Reasoning (CBR) process with modular and hierarchical 

engineering design processes. Their objective was to promote system reuse in a structured 

manner, adhering to established system engineering standards, where systems could be 

systematically reused across various levels. 

− KRC4: Interactively configure a system: YES 

The paper (Vareilles et al., 2012) propose an innovative approach to combine ontology and 

CBR, emphasizing their collaborative interaction rather than a sequential process. These 

approaches exchange and share knowledge to reach a solution. In the proposed approach, 

ontology and CBR are employed in an interactive way, where designers gradually input their 

requirements, progressively reducing the solution space until complete the design.  

In conclusion, existing hybrid approaches in the literature can fulfill some of our criteria. For 

instance, the association of CSP and CBR enables to check the consistency of model and 

interactively configure. In contrast, the association of ontology and CBR enable to formalize 
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knowledge distinguishing descriptive and structural view, better structure knowledge and 

formalize at different levels of abstraction. 

The following section is devoted to the synthesis of this section. 

2.3.7. Synthesis 

In this section, we have started by identifying the main criteria for formalizing and reusing 

knowledge for system configuration. Therefore, we have identified 4 criteria for knowledge 

formalization including KFC1: Clearly distinguish between descriptive and structural views, 

KFC2: Better structure knowledge for later reuse in modeling, KFC3: Explicitly formalize 

generic models at different levels of abstraction and KFC4: Unquestionably validate the 

consistency of the knowledge. Moreover, we have identified 4 criteria for knowledge reuse 

including KRC1: Configure descriptive and/or structural views for the same model according 

to the configuration requirements, KRC2: Formalize and capitalize ETO requirements during 

configuration, KRC3: Configure according to several levels of abstraction for the same 

knowledge model according to the configuration requirements and KRC4: Interactively 

configure a system. 

Next, we have explained various approaches in the domain of system configuration, such as 

ontology, UML/SysML, CSP, CBR, and hybrid approaches. Following a comprehensive 

evaluation of each approach based on our eight criteria, we have drawn conclusions regarding 

their respective advantages and drawbacks, making a clear distinction between the phases of 

knowledge formalization and knowledge reuse. The result of this comparison is represented in 

Table 2. For each criterion, the response options are as follows: ‘Y’ represent Yes, ‘N’ shows 

No and ‘D’ means Difficult. As shown, using the ontology, it is possible to fulfill KFC1, KFC2, 

KFC3, KRC1, KRC2, KRC3 however it is difficult to fulfill KFC4 and KRC4. Using the UML 

and SysML, it is possible to fulfill KFC1, KFC2, KFC3, KRC2, however it is difficult to fulfill 

KFC4. It is not possible to fulfill KRC1, KRC3 and KRC4. Using CSP, it is possible to fulfill 

KFC1, KFC2, KFC4, KRC2, and KRC4 however it is difficult to fulfill KFC3, KRC1, KRC3. 

Using the CBR, it is possible to fulfill KFC1, KFC2, KFC3, KRC1, and KRC2 however it is 

difficult to fulfill KRC3. It is not possible to fulfill KFC4, and KRC4. Using the association of 

CSP and CBR, it is possible to fulfill KFC4, and KRC4. Using the association of Ontology and 

CBR, it is not possible to fulfill KFC4, and KRC4. 

In this thesis, to fulfill all of our criteria for both knowledge formalization and knowledge reuse, 

the association of ontologies and CSPs approaches are selected. Ontology enable us to create 

generic models at higher level of abstraction or at lower level of abstraction. CSPs enable us to 

formalize different relations linking artifacts and their characteristics. Moreover, it allows to 

check the consistency of formalized knowledge and perform interactive configuration.   
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Table 2. Different approaches for system configuration 

 

The following section is dedicated to the synthesis of the chapter. 

2.4. Synthesis 

This thesis is related to the configuration of technical and physical systems. Therefore, in 

section 2.1, we established a literature review on system configuration and configuration 

activity and we defined generic models. We defined interactive configuration and different 

types of customer requirements. We also explained which types of requirements are fulfilled in 

CTO and ETO situations. 

In section 2.2, first, we briefly presented knowledge management process. Then, we mainly 

focused on knowledge formalization and the topics which are important to our first research 
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KFC1: Clearly distinguish between descriptive and 

structural views 
Y Y Y Y N Y Y 

KFC2: Better structure knowledge for later reuse in 

modeling 
Y Y Y Y N Y Y 

KFC3: Explicitly formalize generic models at different 

levels of abstraction 
Y Y D Y N Y N 

KFC4: Unquestionably validate the consistency of the 

knowledge 
D D Y N Y N N 

KRC1: Configure descriptive and/or structural views for 

the same model according to the configuration 

requirements 

Y N D Y N Y N 

KRC2: Formalize and capitalize ETO requirements 

during configuration 
Y Y Y Y N Y N 

KRC3: Configure according to several levels of 

abstraction for the same knowledge model according to 

the configuration requirements:   

Y N D D N Y N 

KRC4: Interactively configure a system D N Y N Y N N 
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question. Therefore, we provided a literature review on descriptive and structural views. We 

explained why we need to distinguish these two views and each one is composed of which 

elements. Additionally, we delved into the concept of commonality of models, abstraction, 

generalization and specialization principles as well as inheritance, which allows us to create 

generic models at different levels of abstraction.  

In section 2.3, we have started by identifying the main criteria for formalizing and reusing 

knowledge for system configuration. Then, we have presented and compared different 

approaches including ontology, UML/SysML, CSP, CBR, and hybrid approaches that can be 

used to formalize and reuse knowledge for system configuration. After assessing each approach 

against our eight criteria we have concluded with their advantages and disadvantages, while 

separating between knowledge formalization and knowledge reuse. Ultimately, we have chosen 

the association of ontologies and CSPs as the most suitable option, since it fulfils our criteria.  

Based on the literature review, we found out there is lack of papers on the formalization of 

generic models at various abstraction level while separating two different views of descriptive 

and structural. To address this scientific gap, we must answer our first research question in 

chapter 3 "Is it possible to define an ontology of generic models to better manage knowledge, 

allowing a clear distinction between descriptive and structural views for system 

configuration?". Therefore, in chapter 3, we will define descriptive view and structural view for 

a family of artifacts, then create an ontology of generic models after that explain the update of 

generic models. We will employ the associations of ontologies, CSPs, commonality and 

inheritance principles. 

On the other hand, regarding the literature review, we identified lack of study on the reusing 

formalized generic models either descriptive or structural, and at different abstraction levels to 

fulfill ETO requirements during configuration. To address this scientific gap, we must answer 

our second research question in chapter 4 "How can ETO requirements be processed during 

configuration activity?". Thus, in chapter 4, we will define instances of descriptive view and 

structural view for a family of artifacts, then define three generic process for CTO knowledge 

reuse, ETO knowledge reuse and CTO-ETO knowledge reuse. We will adapt CTO 

configuration activity towards ETO configuration activity to meet ETO requirements. 

Part of our literature review has been published in: 

• Maryam Mohammad Amini, Michel Aldanondo, Élise Vareilles, Thierry Coudert. 

Twenty Years of Configuration Knowledge Modeling Research. Main Works, What To 

Do Next?. IEEM 2021 - International Conference on Industrial Engineering and 

Engineering Management, Dec 2021, Singapore. pp.1328-1332. 
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This chapter is devoted to our first research question: "Is it possible to define an ontology of 

generic models to better manage knowledge, allowing a clear distinction between descriptive 

and structural views for system configuration?" In chapter 2, we have highlighted the absence 

of work on knowledge formalization for system configuration to create generic models at 

various levels of abstraction, separating descriptive and structural views.  

In response to this gap, we propose to combine commonality, ontologies, CSP approaches, and 

inheritance principles to define the concept of Generic Artifact, notated GA(i) and its two views: 

the Generic Artifact Descriptive Model, notated GADM(i), and the Generic Artifact Structural 

Model, notated GASM(i)
j. GA(i), GADM(i), and GASM(i)

j are the core of our first contribution and 

lead to the proposition of three taxonomies to better manage knowledge in system 

configuration. In this chapter, we will explore how commonality, ontologies, CSP approaches, 

and inheritance principles can help to define GA(i), GADM(i), and GASM(i)
j. In section 3.1, we 

start with a formal definition of each of them, then in section 3.2 we discuss how they can be 

generalized, specialized and structured within an ontology. In section 3.3, we explain how they 

can be updated. After that, in section 3.4, we provide a discussion about the benefits of our 

proposal. Finally, in section 3.5 we synthesize the chapter. 

We adopt the knowledge management process explained in chapter 2, for system configuration 

knowledge formalization. As illustrated in Figure 9, the process involves extracting knowledge 

(step 1), formalizing it into generic models representing both descriptive and structural views 
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at different levels of abstraction (step 2), validating the generic models by checking their 

consistency (step 3), and finally storing the ontologies of consistent generic models in a Generic 

Model Base (GMB) (step 4). The process is iterative, allowing experts to go back and forth 

between these four steps as needed (represented by arrows). In the following section, the 

formalization of knowledge for system configuration and checking its consistency is 

investigated. As explained in section 2.2, the first step about knowledge extraction is not 

considered in the thesis. 

 

Figure 9. Knowledge formalization for system configuration 

3.1. GA, GADM, and GASM definition  

This section is devoted to the definition of GA, GADM, and GASM. First, in section 3.1.1, the 

definition of Generic Artifact, notated GA, is proposed, followed by the definition of its 

descriptive view, formalized by Generic Artifact Descriptive Model, notated as GADM in 

section 3.1.2. Then in section 3.1.3, the definition of its structural view which is formalized as 

Generic Artifact Structural Model notated as GASM is provided. Finally, the synthesis of this 

section is given in section 3.1.4. 

3.1.1. Generic Artifact definition and example  

As mentioned in chapter 2, we consider technical and tangible systems, subsystems, or 

components as Artifacts. Systems can be composed of a set of subsystems and components. 

Subsystems can be composed of a set of subsystems or components; a component cannot be 

composed. Subsystems and components correspond to tangible parts of systems to be 

configured (Guillon, Ayachi, et al., 2021).   

Definition 3: Generic Artifact or GA 

A Generic Artifact or a GA is a semantically unambiguous conceptual view of a family of 

artifacts. A GA is characterized by a prototypical name and a description of the family of 

artifacts it represents. 

 

Following definition 3, a GA is defined by a name and a description. As shown in Figure 10, a 

generic artifact named A is denoted A.GA. For example, as represented in Figure 11, a GA 

representing the family of bikes is defined as follows: 

− Bike.GA: the name Bike evokes a clear mental image of a bike. 
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− Description: A bike is a vehicle with two wheels that you ride by sitting on it and pushing 

two pedals with your feet (Collins, 1982). 

A GA does not explicitly represent any knowledge about features of a relevant family of 

artifacts nor its structure. However, it provides a clear understanding of the family of artifacts 

it represents. Once the GA has been created, it is stored in a taxonomy of GA. 

 

Figure 10. A.GA 

 

Figure 11. Bike.GA example 

The next section is dedicated to the definition of the descriptive view of a GA. 

3.1.2. Generic Artifact Descriptive Model definition  

As explained in chapter 2 and in response to KFC1, a GA needs to be described by its key 

features or key attributes, and KPIs, without showing any information about its internal 

functioning. It is therefore considered as a black box where a set of configured attributes lead 

to a particular assessed solution. We, therefore, introduce this descriptive view as a GADM and 

define it as follows. 

Definition 4: Generic Artifact Descriptive Model or GADM 

The descriptive view of a GA, is named Generic Artifact Descriptive Model and notated 

GADM. The GADM consists of the key attributes of the family of artifacts with their 

domains, KPIs with their domains, and allowed or forbidden relations between attributes 

and/or KPIs values to describe the possible solutions of the artifact family without 

considering its structure. A GADM is associated to one and only one GA, and vice versa. 

 

Following the definition, a GADM describes its associated GA thanks to:  

− Name: we suggest that the GADM be given the same name as the GA to better establish 

the link between GA and GADM. 

− Description: it is a statement that describes how the GADM currently looks. The 

description of a GADM can be similar to the description of its GA. It can contain an 

explanation of the functions or roles of the GA.  

− Attributes with their domains: list of key descriptive attributes and their valid domain that 

describe the current GA, 

− KPIs with their domains: list of key performance indicators and their valid domains that 

are needed to assess the current GA,  

− Relations between attributes and/or KPIs values: list of relations between attributes 

and/or KPIs values that describe the solution space of the current GA. These relations allow 
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or forbid certain combinations of attributes and/or KPIs values, thus they define the possible 

characteristics of the GA with the associated performances.  

To formalize and check the knowledge consistency of a GADM, we propose to map it within a 

CSP denoted GADM(CSP): 

− Attributes and domains are mapped to variables and domains of the CSP, 

− KPIs and domains are also mapped to variables and their corresponding domains, 

− Relations between attributes and/or KPIs of GADM are represented in terms of 

compatibility tables and numerical functions. 

This formalization of GADM as a CSP allows us to use filtering techniques to ensure the local 

consistency of the GADM knowledge, as expressed in KFC4. 

To create a GADM, first of all, the corresponding GA is required. Then, the same name as GA 

is given, and then description, attributes with their domains, KPIs with their domains, and 

relations between attributes and/or KPIs values must be defined. Once the GADM has been 

described, it is translated into a CSP. In this way, the consistency of the GDAM knowledge is 

checked. This process is iterative, meaning that the experts can modify the GADM knowledge 

at any time (adding attributes, modifying definition domains, relationships, etc.), then re-

translate it into the CSP to check its accuracy. The consistency of the GADM can therefore be 

checked at each new iteration to validate the formalized knowledge. Once the GADM has been 

created and validated, it is stored in a taxonomy of GADM.  

As illustrated in Figure 12, a GADM is the descriptive view of a GA, which is mapped into a 

CSP (notated GADM(CSP)). For a GA, one and only one GADM can be defined. 

 

Figure 12. GADM and its translation into a CSP 

For instance, a GADM of a bike family is represented in Figure 13 along with its CSP. In 

Bike.GADM, three attributes of Color, User and RingBell are defined. In Bike.GADM, two 

relations are defined. One relation represents that different colors are suitable for certain users 

and also cost and weight depends on them. The other relation represents that the quantity of 

ring bells depends on the user.  

Three attributes and two KPIs in Bike.GADM corresponds to five variables in the CSP of 

Bike.GADM. Moreover, the relations in Bike.GADM are translated into compatibility tables 

linking the compatible values of variables. For example, the first relation in Bike.GADM is 

translated into a compatibility table that links the compatible values of four variables of User, 

Color, Weight, and Cost. The second relation is translated into a table of compatibility linking 

the compatible values of two variables of User and RingBellQty, containing two tuples. 
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Constraint filtering is then applied and the domains of variables are restricted. For instance, the 

initial domain of Weight is {[0, 35]} but after filtering the constraints, it becomes {[2, 35]}.  

 

Figure 13. An example of a Bike.GADM and its translation into a CSP 

The next section is devoted to the definition of the structural view of a GA. 

3.1.3. Generic Artifact Structural Model definition 

As explained in chapter 2 and in response to KFC1, a GA can also be seen by its internal 

structure and its internal functioning explanations. In the particular case of system 

configuration, it corresponds to the Bill of Material (BOM) of an artifact. We, therefore, 

introduce this white box of a GA as a complementary view of a GADM, named Generic Artifact 

Structural Model (GASM). We define it as follows. 

Definition 5: Generic Artifact Structural Model or GASMj 

The structural view of a GA, is named Generic Artifact Structural Model and notated GASM. 

A GASM is always associated with a GA and describes its structure as a single-level BOM 

by a quantified list of its existing GAs and their relations (including KPIs assessment). A GA 

can be associated to several GASM presenting different versions of the BOM. We therefore 

identify each GASM in order to differentiate them in the knowledge model, by an index j. 

The notation of GASM is then GASMj.   

 

The GASM definition process is iterative, recursive and bottom-up. The process is bottom-up 

because the creation of a GASM requires the prior creation of a GA and its GADM. If a GA 

constituting a GASM also has a GASM, the latter is indirectly associated with the GASM being 

defined. A GA may have several associated GASMs with different details or versions on the 

single level nomenclature, noted as GASMj. 

Following the definition, a GASMj consists of: 

− Name: The name of the GASMj must clearly indicate its content. As several GASMj may be 

associated with the same GA, this is important for better structuring of knowledge to 

differentiate them. We suggest naming a GASMj by concatenating the name of its associated 

GA and additional information describing its structure.   
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− Description: it is a statement describing how the GASMj currently looks, or what the current 

GASMj consists of. 

− GASMj composition (quantity, GA): list of pairs of quantity and GAs from which the 

GASMj is composed at the first level of composition. 

− KPIs aggregation methods: list of methods to evaluate the KPIs of the current 

corresponding GASM according to the GADM associated to the GA and their quantities.  

− Relations between GAs or between attributes and/or KPIs of GAs: list of relations 

within the GASMj that describe all the solution space of the current GASMj. The relations 

within GASMj can have different types including (Arana, 2007), (Blecker & Friedrich, 

2006): Require relations between GAs, Exclude relations between GAs, and Compatibility 

relations between GAs, or between attributes and/or KPIs of different GAs. 

As for GADM, to check the knowledge consistency (KFC4), we map a GASMj to a CSP, 

denoted GASMj(CSP), as follows:  

− In GASMj(CSP), each GA is substituted by its GADM(CSP), and the quantities correspond 

to variables and domains.  

− KPIs aggregation methods are formalized as constraints linking all the relevant KPIs of the 

GADM(CSP) composing the current GASMj(CSP). 

− Relations are expressed in terms of compatibility tables and numerical functions on all 

relevant and available variables, coming either from the current GASMj(CSP) and all the 

variables of the GADM(CSP). 

To create a GASMj, you first need the corresponding GA. A relevant and discriminating name 

and description must then be defined. The experts can then concentrate on its nomenclature by 

identifying the elements that make it up: the list of quantity / GA pairs is thus established. The 

relationships between the different GAs are also defined. Once the GASMj has been described, 

it is translated into a CSP or GASMj(CSP). The consistency of GASMj(CSP) is then checked 

using filtering algorithms. This process is iterative, meaning that the experts can modify the 

GASMj knowledge at any time (adding attributes, modifying definition domains, relationships, 

etc.), then re-translate it into the CSP to check its accuracy. The consistency of the GASMj can 

therefore be checked at each new iteration to validate the formalized knowledge. Once the 

GASMj has been created and validated, it is stored in a taxonomy of GASM. 

As shown in Figure 14, a GASMj is the structural view of a GA, which is mapped into a CSP. 

For a GA, from zero to many GASMj can be defined. Since a GA can have several structures 

corresponding to several ways to represent its composition (i.e. different versions of the BOM), 

it can have many GASMj. However, a GA can have no GASMj if the GA is related to a family 

of artifacts that is not composed (i.e. a component). Every GASMj is translated into a CSP 

(notated GASMj(CSP)). 
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Figure 14. UML model of GA, GADM and GASM with its translation into a CSP 

In the example of Figure 15, Bike.GASMj, the jth GASM of a bike family (i.e. Bike.GA), 

composed of two or three Wheel.GA and one Seat.GA, is illustrated. Two KPIs aggregation 

methods related to Weight and Cost are defined. They represent respectively that the weight is 

the sum of the weights of its GAs and the cost is the sum of the costs of its GAs. This relation 

indicates that if the bike's user is a child, then the material of the seat must be plastic. 

As represented, the CSP of Bike.GASMj contains the CSP of Bike.GADM, in addition, the GAs 

in Bike.GASMj are substituted by their CSP in the CSP of Bike.GASMj. The quantities of GAs 

in Bike.GASMj corresponds to variables in its CSP. KPIs aggregation methods are translated 

into constraints (i.e. numerical functions). Moreover, a relation in Bike.GASMj is translated into 

a compatibility table in Bike.GASMj(CSP) that links the compatible values of the variable User 

of Bike.GADM and the variable Material of Seat.GADM. This compatibility table consists of 

two tuples. Then, constraint filtering is applied to obtain a consistent piece of knowledge for 

the future configuration of bikes. 
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Figure 15. Example of a Bike.GASMj and its translation into a CSP 

In the following, the synthesis of this section is presented. 

3.1.4. Synthesis  

To address our initial research question, it is necessary to establish consistent generic models 

presenting descriptive and structural views of the same artifact. In this section, the concept of 

Generic Artifact, as well as its descriptive view or GADM and structural view or GASMj has 

been introduced and defined.  

After their definition, we have explained how these models are linked together by a family of 

artifacts and how they can be translated as a CSP. A simple but realistic bike example illustrates 

our proposals.  

This proposal answers directly to the need of presenting two complementary views of an artifact 

(descriptive and structural) in the knowledge model (KFC1) and ensures the consistency of 

knowledge during its formalization (KFC4). 

In the following section, we explain how we can use these views to formalize knowledge at 

different levels of abstraction (KFC3) and create an ontology (KFC2) that gathers GA, GADM, 

and GASM, by the use of generalization and specialization relations as well as commonality 

and inheritance principles. 
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3.2. Ontology of GA, GADM, and GASM  

As explained in chapter 2, ontologies rely on generalization and specialization relations and 

composition of classes and allow several levels of abstraction. Based on that, we propose to use 

the concept of commonality, also defined in chapter 2, in addition to these properties of 

ontologies to create an ontology of families of artifacts and therefore better manage knowledge 

in system configuration (answers to KFC2 and KFC3). 

This section is dedicated to the definition of the respective ontology of GA, GADM, and 

GASM. Therefore, in section 3.2.1, the taxonomy of Generic Artifact is proposed. Then, in 

section 3.2.2, the taxonomy of the Generic Artifact Descriptive Model is defined. After that, in 

section 3.2.3, the taxonomy of the Generic Artifact Structural Model is proposed. Finally, in 

section 3.2.4, the synthesis of the section is represented. All the proposals are illustrated on 

examples. 

3.2.1. Taxonomy of Generic Artifacts 

Whatever GA is considered, it can be generalized or specialized into another GA, respectively 

at a higher or lower level of abstraction. We note GA(i) a GA at level of abstraction i, GA(i-1) its 

generalization and GA(i+1) its specialization. 

Definition 6: Generic Artifact Generalization or GA(i-1) 

GA generalization is the process of creating a more generalized GA (notated GA(i-1)) based 

on the commonality of several GA(i) and the factorization of their common knowledge at a 

higher level of abstraction. 

 

Based on commonality principle, this process involves two steps: 

Step 1) Identify the commonality of at least two existing GA(i) (mainly based on the analysis of 

their descriptions), 

Step 2) Define a relevant name and description of the GA(i-1).  

For example, as illustrated in Figure 16, MountainWheel.GA(3) and CityWheel.GA(3) are 

generalized into Wheel.GA(2) because of their commonality. In the description of 

MountainWheel.GA(3), it is stated that “A mountain wheel is a circular component that is 

intended to rotate on an axle bearing for mountain environment”, while in the description of 

CityWheel.GA(3), it is mentioned that “A city wheel is a circular component that is intended to 

rotate on an axle bearing for urban environment”. To generalize MountainWheel.GA(3) and 

CityWheel.GA(3) into Wheel.GA(2), the description of Wheel.GA(2) must be written in a way that 

it is applicable in both environments. The Wheel.GA(2) is then created and is described as 

follows: “A wheel is a circular component that is intended to rotate on an axle bearing”.  
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Figure 16. An example of Wheel.GA(2) generalization 

Definition 7: Generic Artifact Specialization or GA(i+1)  

GA specialization is the process of creating a more specific GA (notated GA(i+1)) based on an 

existing GA (GA(i)) and its modification (restriction and enrichment) with specific knowledge 

at a lower level of abstraction (i+1). 

 

Based on inheritance principle, this process involves two steps: 

Step 1) Duplicate the knowledge of GA(i) into the knowledge of GA(i+1), 

Step 2) Modify the inherited name and description of GA(i+1). 

Figure 17 represents a partial taxonomy with three GA (A.GA(i) and B1.GA(i+1) and B2.GA(i+1)). 

A.GA(i) is specialized into B1.GA(i+1) and B2.GA(i+1).  

For example, as represented in Figure 18, Bike.GA(2) is specialized into a CityBike.GA(3) and 

MountainBike.GA(3). To specialize Bike.GA into CityBike.GA(3), its description must be 

modified and it must be mentioned that the city bikes are designed for urban areas. On the other 

hand, to specialize Bike.GA(2) into MountainBike.GA(3), its description needs to be modified and 

it must be emphasized that mountain bikes are suitable for mountain areas. 

 

Figure 17. Specialization of A.GA(i) 

 

Figure 18. An example of Bike.GA(2) specialization 

Therefore, the taxonomy of GAs is a partial ontology in this thesis. All the GAs are structured 

in a taxonomy that represents the "is a" relationship between GAs (Sciore, 1989). This 

taxonomy classifies GAs hierarchically, according to their generalization or specialization of 
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knowledge. For instance, Figure 19 illustrates two taxonomies of GAs. First, System.GA(1) is 

defined as the most general GA because we consider artifacts as tangible and technical systems. 

In other words, Bike.GA(2), CityWheel.GA(2), MountainWheel.GA(2), Seat.GA(2), Light.GA(2) and 

Brake.GA(2) are generalized into System.GA(1). Conversely, System.GA(1)
 is specialized into 

several children (i.e. Bike.GA(2), CityWheel.GA(2), MountainWheel.GA(2), Seat.GA(2), 

Light.GA(2), and Brake.GA(2)). Then, as explained in Figure 16 and Figure 18, because of their 

commonality, CityWheel.GA(3), and MountainWheel.GA(3) are generalized into Wheel.GA(2). As 

Bike.GA(2) was not considered as sufficiently specific, it is specialized into CityBike.GA(3), and 

MountainBike.GA(3). Every descendant inherits the knowledge of his ancestors. Therefore, after 

the generalization and specialization CityBike.GA(3), MountainBike.GA(3) and also Wheel.GA(2) 

are added to the taxonomy of GAs. 

 

Figure 19. GAs taxonomy with specialization and generalization 

The generalization or specialization of a GA(i) implies that its GADM (notated GADM(i)) is also 

respectively generalized or specialized. The following section is dedicated to the taxonomy of 

GADM and the processes of generalization and specialization.  

3.2.2. Taxonomy of Generic Artifact Descriptive Models 

When a GA(i) is generalized or specialized, its associated GADM(i) has also to be generalized or 

specialized, defining different levels of abstraction for the descriptive views. 

Definition 8: Generic Artifact Descriptive Model Generalization or GADM(i-1) 

GADM generalization is the process of creating a more general GADM (notated GADM(i-1)) 

based on the commonality of several GADM(i) and the factorization of their common 

knowledge at a higher level of abstraction. 

 

The process of GADM generalization can be described as follows: 

Step 1) Identify the commonality of at least two existing GADM(i): since in GADM 

generalization, GADM(i-1) allows to gather the commonality of GADM(i), it is essential to first 

identify this commonality. The commonality of a set of GADM(i) is defined as the common 

knowledge among them including attributes with their domains, KPIs with their domains, and 

relations. Therefore, the expert identifies: 1) the attributes, and KPIs that are shared across all 

the GADM(i) as well as their domains, along with 2) the common relations between their values. 

The commonality is defined by:  
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− Common attributes and KPIs with their domains are identified: GADM(i-1) gathers 

the common attributes and KPIs among all GADM(i). For each common attribute or 

KPI, the union of their domains in all the GADM(i) has to be achieved in order to 

encompass all the specific domains. 

− Common relations between attributes and/or KPIs values are identified: GADM(i-1) 

gathers the common relations among all GADM(i).  

Step 2) Factorize the commonality into the knowledge of GADM(i-1): the identified commonality 

(i.e. common attributes and KPIs, union of their domains, and common relations) are factorized 

into the GADM(i-1). 

In order to guarantee the consistency of knowledge of GADM ontology, we strongly 

recommend that factorized knowledge cannot be modified in any of the GADM(i) that has been 

considered. In each GADM, we therefore need to tag elements (attributes, domains, and 

relations) that are inherited or generalized as ‘I’ to distinguish them from specific knowledge 

tagged by ‘S’. We strongly recommend that inherited elements can only be used to refine the 

common knowledge into specific knowledge.  

Step 3) Define a relevant name and the description of the GADM(i-1): to generalize at least two 

GADM(i) into a GADM(i-1), after factorizing the commonality of the GADM(i) into the knowledge 

of GADM(i-1), a common name and description for the GADM(i-1) need to be defined to reflect 

its more generalized nature. 

Since the GADMs are mapped to a CSP, the generalization follows exactly the same principle, 

notated GADM(i-1)(CSP): 

− Attributes, KPI and their domains are mapped to variables and domains of the CSP, prefixed 

by I or S to know if attributes have been inherited or not. Domains on the generalized 

GADM(i-1)(CSP) are unified to cover all the knowledge, 

− Relations between attributes and/or KPIs of GADM are represented in terms of 

compatibility tables and numerical functions, marked as I or S, as well as their tuples.  

In Figure 20, MountainWheel.GADM(2) and CityWheel.GADM(2), that are two independent 

GADM as illustrated on the left part of Figure 19, are represented with their CSP.  

MountainWheel.GADM(2) consists of two specific attributes of Diameter and Material, and two 

KPIs of Weight and Cost (inherited from System.GADM(1)) as well as a relation indicating that 

any diameter of mountain wheels cannot be associated with any material and the cost and weight 

of mountain wheels depends on them. They are tagged by 'S' except Weight and Cost that are 

tagged by ‘I’ (inherited from System.GADM(1)). MountainWheel.GADM(2) is then translated into 

a CSP. In MountainWheel.GADM(2)(CSP), attributes, and KPIs are represented by four 

variables. The relation is translated into a compatibility table linking compatible values of four 

variables of S: Diameter, S: Material, I: Weight, and I: Cost. It consists of three tuples. 

CityWheel.GADM(2) consists of three attributes of Diameter, Material, and InnerTubeQty, two 

inherited KPIs of Weight and Cost as well as two relations. One represents that any diameter 

of the city wheel cannot be associated with any material and the cost and weight of the city 
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wheel depend on them. The other relation indicates that the quantity of the inner tube depends 

on the diameter of the city wheel. They are tagged by 'S' except Weight and Cost which are 

tagged by ‘I’. CityWheel.GADM(2) is then translated into a CSP. In CityWheel.GADM(2)(CSP), 

attributes, and KPIs corresponds to five variables. The first relation is translated into a 

compatibility table linking compatible values of the variables S: Diameter, S: Material, I: 

Weight, and I: Cost. It contains three tuples. The second relation is also translated into a 

compatibility table that links compatible values of the variables S: Diameter and S: 

InnerTubeQty. It contains two tuples. 

An instance of GADM generalization for families of wheels is shown in Figure 21. 

MountainWheel.GADM(3) and CityWheel.GADM(3) are generalized into Wheel.GADM(2). Then, 

it is translated into a CSP. In Wheel.GADM(2), two attributes of Diameter and Material that are 

common among attributes of MountainWheel.GADM(3) and CityWheel.GADM(3) are factorized 

and they are tagged by ‘S’. Moreover, two KPIs of Weight and Cost that are common are 

factorized in Wheel.GADM(2). They are tagged by ‘I’ because they are inherited from 

System.GADM(1). In Wheel.GADM(2), the union of the domains of attributes and KPIs are 

considered. For example, in Wheel.GADM(2), the domain of attribute Diameter is {[16, 26]} 

which is the union of {[16, 26]} and {[17, 24]} which are respectively the domain of Diameter 

in MountainWheel.GADM(3) and in CityWheel.GADM(3). In Wheel.GADM(3), one relation that 

is common among the relations of MountainWheel.GADM(3) and CityWheel.GADM(3) is 

factorized. It represents that any diameter cannot be associated with any material, and also cost 

and weight depends on them. It is tagged by ‘S’ (because it is specific to Wheel.GADM(2)). 

Initially, in MountainWheel.GADM(3) and CityWheel.GADM(3), attributes and relations were 

tagged by ‘S’. However, after creating Wheel.GADM(2), the tags of two attributes (Diameter 

and Material) and the tag of the first relation that are inherited from Wheel.GADM(2) has been 

changed from ‘S’ to ‘I’. 

In Wheel.GADM(2)(CSP), four variables of Diameter, Material, Cost and Weight that are 

common among variables of MountainWheel.GADM(3)(CSP) and CityWheel.GADM(3)(CSP) 

are factorized. For the variables, the union of their domains is considered in 

Wheel.GADM(2)(CSP). For instance, in Wheel.GADM(2)(CSP), the filtered domain of the 

attribute Diameter is {16, 18, 20, 22, 24, 26} which is the union of {16, 18, 20, 22, 24, 26} and 

{18, 20, 22, 24} that are respectively the filtered domain of Diameter in 

MountainWheel.GADM(3) and in CityWheel.GADM(3). Among the constraints (compatibility 

tables), those that link the same variables are taken into account, and among the tuples of these 

constraints, only the common tuples are taken into account. Therefore, the constraint linking 

the variables Diameter, Material, Weight and Cost is common. The first two tuples are common, 

but not the third one. If there are two compatibility tables linking different variables they remain 

specific to each GADM. Constraint filtering is then applied and the domains of variables are 

restricted. It is important to notice that the tags of variables (i.e. Diameter and Material) and a 

constraint inherited from Wheel.GADM(2) is changed from ‘S’ to ‘I’ due to generalization 

process. Therefore, in MountainWheel.GADM(3)(CSP) and CityWheel.GADM(3)(CSP), the tags 

of the two first tuples are changed to ‘I’ while the third one remains ‘S’. 
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Figure 20. An example of MountainWheel.GADM(2) and CityWheel.GADM(2) with their CSP 
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Figure 21. An example of GADM generalization with their CSP 

In the following section, we give the definition of GADM specialization. 
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Definition 9: Generic Artifact Descriptive Model Specialization or GADM(i+1) 

GADM specialization is the process of creating a more specific GADM (notated GADM(i+1)) 

based on an existing GADM(i) and its modification (restriction and enrichment) with specific 

knowledge at a lower level of abstraction. 

 

A GADM (GADM(i)) can be specialized into another specialized GADM (GADM(i+1)) if GA(i)   

has been previously specialized into GA(i+1). The GADM(i) specialization is a four-step process: 

Step 1) Duplicate the knowledge of GADM(i) into the knowledge of GADM(i+1): each GADM(i+1) 

inherits all the knowledge of its GADM(i) including attributes with their domains, KPIs with 

their domains, and relations between attributes and/or KPIs values. This first step of 

specialization provides the opportunity for experts in terms of modeling to reuse an existing 

GADM (here GADM(i)) and create new ones (GADM(i+1)) by reusing previously formalized 

knowledge and specializing it. In each GADM(i+1), all the knowledge (attributes, domains, and 

relations) is tagged by ‘I’ as inherited. 

Step 2) Modify the inherited name and description of GADM(i+1): to specialize a GADM(i) into 

a GADM(i+1), after duplicating the knowledge of the GADM(i) into the GADM(i+1), we need to 

modify the inherited name and description from GADM(i). In addition, we modify the 

description of GADM(i+1) by adding more details compared to the description of GADM(i) to 

describe why the GADM(i+1) is more specialized than the GADM(i). 

Step 3) Narrow the inherited knowledge of GADM(i+1): In order to guarantee the consistency of 

knowledge of GADM ontology, we strongly recommend that inherited knowledge can only be 

restricted. An expert can narrow (or specialize) the inherited knowledge of GADM(i+1) to restrict 

the solution space and to make the inherited knowledge more precise and accurate by taking 

two actions: 1) restricting the inherited domains of attributes and/or KPIs, 2) restricting the 

inherited relations between attributes and/or KPIs values.  

− Restrict the inherited domains of attributes and/or KPIs: the inherited domains of 

attributes and KPIs can be restricted by the expert based on his knowledge about not 

allowed values. These values are then removed from the domains of attributes and/or 

KPIs in the GADM(i+1). It is important to notice that the expert is allowed to restrict 

the inherited domains of attributes and/or KPIs, but not allowed to delete the 

inherited attributes or KPIs because they are common characteristics that belong to 

GADM(i). 

− Restrict the inherited relations between attributes and/or KPIs values: the inherited 

relations between attributes and/or KPIs values can also be restricted. The inherited 

relations can be restricted but they cannot be removed since they are part of the 

GADM(i) knowledge (common knowledge). 
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Step 4) Enrich the knowledge of GADM(i+1): after narrowing or restricting the inherited 

knowledge of GADM(i+1), in this step, the expert can enrich the inherited knowledge. By 

enriching the knowledge, we mean adding knowledge that is specific to the family of artifacts. 

There are two ways to enrich the knowledge of GADM(i+1): 1) defining new attributes with their 

domains, 2) defining new relations between attributes and/or KPIs values. In each GADM(i+1), 

all the specific knowledge (attributes, domains, and relations) is tagged by ‘S’ as specific to this 

particular GADM(i+1). 

− Define new attributes (with their domains): the expert can add new attributes with 

their domains only dedicated to GADM(i+1), in addition to what it inherits from 

GADM(i). This allows the expert to create a GADM(i+1) with specific characteristics 

(i.e. attributes with their domains).  

− Define new relations between attributes and/or KPIs values: the expert can add new 

relations only dedicated to GADM(i+1). These relations can be defined to link              

1) values of inherited attributes or KPIs and new attributes, and 2) values of new 

attributes. They are dedicated to the GADM(i+1), in addition to all the relations that 

a GADM(i+1) inherits from its GADM(i).  

Since the GADMs are mapped to a CSP, the specialization follows exactly the same principle, 

notated GADM(i+1)(CSP): 

− Attributes, KPI and their domains are mapped to variables and domains of the CSP, prefixed 

by ‘I’ or ‘S’ to know if attributes have been inherited or not.  

− Relations between attributes and/or KPIs of GADM are represented in terms of 

compatibility tables and numerical functions, marked as ‘I’ or ‘S’, as well as their tuples.  

As represented in Figure 22, similar to the specialization of A.GA(i), the specialization of 

A.GADM(i) is created. A.GADM(i) is specialized into B.GADM(i+1). Then, B.GADM(i+1) is 

translated into a CSP. It means that A.GADM(i)(CSP) is specialized into B.GADM(i+1)(CSP). 

 

Figure 22. Specialization of A.GADM(i) 

An instance of GADM specialization for families of bikes is shown in Figure 23. As illustrated 

on the right part of Figure 19, Bike.GADM(2) is specialized into CityBike.GADM(3). Then, it is 

translated into a CSP (Bike.GADM(2)(CSP)). In CityBike.GADM(3), attributes, KPIs and 
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relations that are inherited from Bike.GADM(2), are tagged by ‘I’ while the attributes and 

relations that are only dedicated to CityBike.GADM(3) are tagged by ‘S’.  

In CityBike.GADM(3), the domain of an attribute is restricted (the Pink color is removed in the 

domain of the attribute Color of CityBike.GADM(3)), a new attribute with its domain is added     

(S: LightQty), a relation is restricted and a new relation is defined. Then, in the CSP of the 

CityBike.GADM(3), the forbidden value of the variable Color (Pink) is deleted from its domain, 

a new variable with its corresponding domain is added (S: LightQty), and existing constraints 

are restricted by adding tuples. The new tuple that is tagged by ‘S’ is added to indicate that the 

user ‘Man’ is only compatible with the color ‘Blue’, the weight ‘30’ and the cost ‘4000’. It 

means that a man can only have a blue city bike. A new compatibility table is added. It indicates 

the relations between the user and the quantity of lights. A ‘Child’ bike user only requires one 

light but an adult bike user (‘Man’ or ‘Woman’) needs two lights. Note that the deleted value 

is removed from the constraints as well. Constraint filtering is applied and the domains of 

variables are restricted. All the new elements that has been added or the modified elements are 

represented in bold in Figure 23. 

 

Figure 23. An example of Bike.GADM(2) specialization 
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A GADMs taxonomy is derived from the taxonomy of GAs (illustrated in Figure 19) to classify 

GADMs based on their common knowledge (i.e. characteristics). As an example, Figure 24 

represents a taxonomy of GADMs which is compliant with the related taxonomy of GAs. The 

most general GADM, System.GADM(1), is defined by characteristics common to all GADMs 

(mainly KPIs). It is the parent of several specialized GADMs, such as Bike.GADM(2), 

CityWheel.GADM(2), MountainWheel.GADM(2), Seat.GADM(2), Light.GADM(2) and 

Brake.GADM(2). Corollary, Bike.GADM(2), CityWheel.GADM(2), MountainWheel.GADM(2), 

Seat.GADM(2), Light.GADM(2) and Brake.GADM(2) are generalized into System.GADM(1).  

Additionally, CityWheel.GADM(3) and MountainWheel.GADM(3) are generalized into 

Wheel.GADM(2). Bike.GADM(2) is specialized into CityBike.GADM(3) and 

MountainBike.GADM(3). After generalization and specialization, the taxonomy of GADMs is 

represented in Figure 24. During GADM specialization, all specialized GADMs inherit the 

characteristics of their ancestors. Therefore, Bike.GADM(2), Wheel.GADM(2), Seat.GADM(2), 

Light.GADM(2) and Brake.GADM(2) inherit all the characteristics of System.GADM(1). 

CityBike.GADM(3) and MountainBike.GADM(3) inherits all the characteristics of Bike.GADM(2), 

which includes the characteristics of System.GADM(1) as well. Moreover, CityWheel.GADM(3) 

and MountainWheel.GADM(3) inherits all the characteristics of Wheel.GADM(2). 

 

Figure 24. GADMs taxonomies 

The generalization or specialization of a GA(i) implies that its GASM(i) is also respectively 

generalized or specialized. The following section is dedicated to the taxonomy of GASM.  

3.2.3. Taxonomy of Generic Artifact Structural Models 

When a GA(i) has been generalized or specialized, GASM(i)
j its also have to be generalized or 

specialized leading to different levels of abstraction for the structural views. 

Definition 10: Generic Artifact Structural Model Generalization or GASM(i-1)
j 

GASM generalization is the process of creating a more general GASM, notated GASM(i-1)
j,  

based on the commonality of several and GASM(i)
j the factorization of their common 

knowledge at a higher level of abstraction. 
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The process of GASM(i)
j generalization involves the following steps: 

Step 1) Identify the commonality of at least two existing: since GASM(i)
j in GASM 

generalization, a GASM(i-1)
j is defined which gathers the commonality of all specialized , first 

GASM(i)
j of all, the commonality among the different GASM(i)

j must be identified. Commonality 

of several GASM(i)
j is defined as the quantity of common knowledge among them. Thus, the 

expert identifies 1) the GAs that are shared across all the GASM(i)
j and their quantities, 2) the 

common KPIs aggregation methods as well as 3) the common relations between GAs or 

between attributes and/or KPIs values of GAs. 

− Common GA(i) with their quantities are identified: GASM(i-1)
j gathers the common 

GAs among all GASM(i)
j. Therefore, any GA(i) that are specific to only one or a few 

of the GASM(i)
j are not considered. Moreover, among GA(i) from the same family but 

with different levels of abstraction, the most general one is considered. For each GA 

the union of their quantities in all the GASM(i)
j are considered.  

− Common KPIs aggregation methods are identified: GASM(i-1)
j gathers the common 

KPIs aggregation methods among all GASM(i)
j in which only common GA(i) and the 

union of their quantities are considered. 

− Common relations between GA(i) or between attributes and/or KPIs values of GA(i) 

are identified: GASM(i-1)
j gathers the common relations among all GASM(i)

j. Thus, 

any relations that are specific to only one or a few of the are not considered GASM(i)
j. 

Step 2) Factorize the commonality into the knowledge of GASM(i-1)
j: the identified commonality 

(i.e. common GAs, the union of their quantities, common KPIs aggregation methods, and 

common relations) are factorized into GASM(i-1)
j. In order to guarantee the consistency of 

knowledge of GASM ontology, we strongly recommend that factorized knowledge cannot be 

modified in any of the that GASM(i-1) has been considered. In each GASM, we therefore need 

to tag elements (attributes, domains and relations) that are inherited or generalized as ‘I’ to 

distinguish them from specific knowledge tagged by ‘S’. As for GADM, we strongly 

recommend that inherited elements can only be used to refine the common knowledge into 

specific knowledge 

Step 3) Define a description of the GASM(i-1)
j: to generalize (at least) two  in GASM(i)

j to a 

GASM(i-1)
j, after factorizing the commonality of the GASM(i)

j into the GASM(i-1)
j, a common 

name and description for the GASM(i-1)
j must be defined which represents the more generalized 

nature of the GASM(i-1)
j. 

Since the GASMs are mapped to a CSP, the GASM generalization follows exactly the same 

principle, notated GASM(i-1)
j(CSP): 

− Attributes, KPI and their domains are mapped to variables and domains of the CSP, prefixed 

by ‘I’ or ‘S’ to know if attributes have been inherited or not. Domains on the generalized 

GASM(i-1)
j(CSP) are unified to cover all the knowledge, 
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− Relations between attributes and/or KPIs of GADM are represented in terms of 

compatibility tables and numerical functions, marked as ‘I’ or ‘S’, as well as their tuples.  

MountainWheel.GASM(2)
j and CityWheel.GASM(2)

j are two independent GASMs with their 

CSPs are illustrated in Figure 25. MountainWheel.GASM(2)
j consists of one Rim.GA(2), one 

Tire.GA(2), KPIs aggregation methods related to Weight and Cost (which have been inherited 

from the System.GASM(1)
1), as well as a relation representing that the diameter of mountain 

wheel, rim and tire must be equal due to tire mounting. They are tagged by 'S' since they 

represent the knowledge that is specific to MountainWheel.GASM(2)
j. 

MountainWheel.GASM(2)
j is then translated into a CSP. In MountainWheel.GASM(2)

j(CSP), the 

CSP of MountainWheel.GADM(3) is embedded. GAs in MountainWheel.GASM(2)
j are 

substituted by their CSP in the CSP of MountainWheel.GASM(2)
j. The quantities of GAs in 

MountainWheel.GASM(2)
j corresponds to variables in its CSP. KPIs aggregation methods are 

translated into two constraints (numerical functions). Moreover, a relation in 

MountainWheel.GASM(2)
j is translated into two numerical functions in 

MountainWheel.GASM(2)
j(CSP) indicating that the Diameters of MountainWheel.GADM(2), 

Rim.GADM(2), and Tire.GADM(2) are equal. In MountainWheel.GASM(2)
j(CSP), KPI are tagged 

‘I’ as they have been inherited and the rest is tagged by ‘S’ as they are specific.  

As represented in Figure 25. CityWheel.GASM(2)
j consists of one Rim.GA(2), one Tire.GA(2), one 

InnerTube.GA(2), KPIs aggregation methods related to Weight and Cost (which have been 

inherited from the System.GASM(1)
1), a relation representing that the diameter of the city wheel, 

rim and tire must be equal due to tire mounting as well as another relation representing that the 

diameter of the city wheel, and inner tube must be equal. KPI are tagged ‘I’ as they have been 

inherited and the rest is tagged by ‘S’ as they are specific.   

An example of generalization is represented in Figure 26. MountainWheel.GASM(3)
j and 

CityWheel.GASM(3)
j are generalized into Wheel.GASM(2)

j. Since MountainWheel.GASM(3)
j and 

CityWheel.GASM(3)
j are both composed of one Rim.GA(2), and one Tire.GA(2), these common 

GAs, and the union of their quantities are factorized into Wheel.GASM(2)
j. For KPIs aggregation 

methods, only the same formulas can be generalized, otherwise they remain specific to the 

related GASM. Therefore, since the same formula is used in MountainWheel.GASM(3)
j and 

CityWheel.GASM(3)
j for Weight and Cost, they can be generalized. In Wheel.GASM(2)

j, one 

relation that is common among the relations of MountainWheel.GASM(3)
j and 

CityWheel.GASM(3)
j is factorized. It represents the fact that, due to tire mounting, the diameter 

of wheel, rim and tire must be equal. In Wheel.GASM(2)
j, everything, but KPI, is tagged by ‘S’. 

Initially, in MountainWheel.GASM(2)
j and CityWheel.GASM(2)

j, GAs, KPIs aggregation 

methods, and relations are tagged by ‘S’ as they are only dedicated to their specific GASM. 

However, after generalization, i.e. Wheel.GASM(2)
j is created, the knowledge inherited from 

Wheel.GASM(2)
j in MountainWheel.GASM(3)

j and CityWheel.GASM(3)
j will be tagged by ‘I’. It 

should be noted that for the KPIs aggregation methods if both GAs and their quantities are the 

same then they are tagged by ‘I’, otherwise they are tagged by ‘S’. For example, in 

MountainWheel.GASM(3)
j, since the GAs and their quantities are similar to Wheel.GASM(2)

j, 

KPIs aggregation methods are tagged by ‘I’. However, in CityWheel.GASM(3)
j, in addition to 
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Rim.GA(2) and Tire.GA(2), there is InnerTube.GA(2) which is not common (it is only specific to 

CityWheel.GASM(3)
j).  

Wheel.GASM(2)
j, MountainWheel.GASM(3)

j and CityWheel.GASM(3)
j are mapped into their 

respective CSP: Wheel.GASM(2)
j(CSP), MountainWheel.GASM(3)

j(CSP) and 

CityWheel.GASM(3)
j(CSP). All their inherited variables are tagged ‘I’ and all their specific 

knowledge is tagged ‘S’.  

 

Figure 25. An example of MountainWheel.GASM(2)
j and CityWheel.GASM(2)

j 
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Figure 26. An example of Wheel.GASM(2)
j generalization 
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In the following section, the definition of GASM specialization is given. 

Definition 11: Generic Artifact Structural Model Specialization or GASM(i+1)
j 

GASM specialization is the process of creating a more specific GASM, notated GASM(i+1)
j, 

based on an existing GASM(i)
j and its modification (restriction and enrichment) with specific 

knowledge at a lower level of abstraction. 

 

A general GASM GASM(i)
j can be specialized into another specialized GASM GASM(i+1)

j if  

GA(i) has already been specialized into GA(i+1) . This GASM specialization is a four-step 

process: 

Step 1) Duplicate the knowledge of GASM(i)
j into the knowledge of GASM(i+1)

j: following the 

principles of specialization described in (Männistö et al., 2001), we propose that GASM(i+1)
j 

inherits all the knowledge of its GASM(i)
j, which includes all the GAs composing GASM(i)

j with 

their quantities, the methods to aggregate the KPIs of GAs, and all the relations linking GAs or 

attributes and/or KPIs of GAs. Consequently, in our proposed model, GASM(i)
j gathers all the 

common knowledge among all specialized GASM(i+1)
j. This step facilitates the modeling 

process for experts as they can reuse the common knowledge capitalized in GASM(i)
j to build a 

new GASM(i+1)
j.  

Step 2) Modify the inherited name and description of GASM(i+1)
j: after duplicating the 

knowledge of GASM(i)
j into GASM(i+1)

j, we have to modify the name and description inherited 

from GASM(i)
j. This requires changing the name of GASM(i)

j to GASM(i+1)
j anywhere within the 

GASM(i+1)
j. Additionally, we modify the description of GASM(i+1)

j by providing more specific 

information than what was contained in the original description of GASM(i)
j. 

Step 3) Narrow the inherited knowledge of GASM(i+1)
j: In order to guarantee the consistency of 

knowledge of GASM ontology, we strongly recommend that inherited knowledge can only be 

restricted. The expert can narrow or specialize the inherited knowledge of GASM(i+1)
j - GASM 

composition (quantity, GA(i)), KPIs aggregation methods, and relations between GA(i), or 

between attributes and/or KPIs of different GA(i) - by 1) restricting the inherited quantities of 

GA(i), 2) replacing an inherited GA(i) by a more specialized GA(i) and 3) restricting the inherited 

relations between attributes and/or KPIs values of GA(i) which are explained as follows: 

− Restrict the inherited quantities of GA(i): the expert can restrict the inherited 

quantities of GAs composing GASM(i+1)
j. This allows them to i) remove an optional 

GA(i) (for example, change the quantity from {[0, 1]} to {0}), ii) consider an optional 

GA(i) as mandatory (e.g. change its quantity from {[0, 1]} to {1}), or iii) restrict the 

quantity of a mandatory GA(i) (for instance, from {[2, 4]} to {3}). Then, KPIs 

aggregation methods must be updated. Note that in the GASM specialization, 

enlarging the domains of quantities is not allowed.  
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− Replace inherited GA(i) by more specialized GA(i): in addition to restricting inherited 

quantities, the expert can also replace inherited GAs with more specialized ones in 

GASM(i+1)
j. This specialization process is only allowed for GAs belonging to the 

same family line. For instance, Wheel.GA(2) can be replaced by CityWheel.GA(3) that 

is one of its descendants in the taxonomy of GAs. These replaced GA(i) must be 

considered in the KPIs aggregation methods. Replacing a Wheel.GA(2) by a 

CityWheel.GA(3) is allowed but replacing a Seat.GA(2) by a Light.GA(2) is not 

allowed. 

− Restrict the inherited relations between GA(i) or between attributes and/or KPIs of 

GA(i): in GASM(i+1)
j, the expert can restrict the inherited relations between GA(i) or 

between attributes and/or KPIs values of GA(i). However, it is not possible to remove 

inherited relations because they are inherited from the knowledge of GASM(i)
j that 

is common to all GASM(i+1)
j.  

Step 4) Enrich the knowledge of GASM(i+1)
j: in this step, the expert can enrich the knowledge 

of GASM(i+1)
j by adding specific knowledge that only belongs to the specific family of artifacts. 

They can enrich the knowledge of GASM(i+1)
j by 1) adding new GA(i) specific to the GASM(i+1)

j  

with their quantities and 2) defining new relations between GA(i) or between attributes and/or 

KPIs values of GA(i) which are explained as follows: 

− Add new GA(i) specific to GASM(i+1)
j with their quantities: one or more new GA(i) 

can be added to GASM(i+1)
j with their quantities only specific to the GASM(i+1)

j. 

These newly identified GA(i) with their quantities enable the expert to model the 

GASM(i+1)
j based on specific knowledge of the family of artifacts that do not belong 

to its parent. These new GA(i) and their quantities must be considered in the KPIs 

aggregation methods. 

− Define new relations between GA(i) or between attributes and/or KPIs values of 

GA(i): new relations only belonging to GASM(i+1)
j can be defined. These relations 

can link 1) the inherited GA(i) and new GA(i), 2) only new GA(i), 3) attributes and/or 

KPIs values of inherited GA(i) and new GA(i), and 4) attributes and/or KPIs values of 

new GA(i).  

Since the GASMs are mapped to a CSP, the specialization follows exactly the same principle, 

notated GASM(i+1)
j(CSP):  

− In GASM(i+1)
j(CSP), each GA(i) is substituted by its GADM(i)(CSP), and the quantities 

correspond to variables and domains, prefixed by I or S to know if attributes have been 

inherited or not. .  

− KPIs aggregation methods are used as inherited (marked as ‘I’) or redefined as constraints 

linking all the relevant KPIs of the GADM(i)(CSP) composing the current GASM(i+1)
j(CSP). 

− Relations are expressed in terms of compatibility tables and numerical functions on all 

relevant and available variables, coming either from the current GASM(i+1)
j(CSP) and all the 

variables of the GADM(i)(CSP), marked as I or S, as well as their tuples. 
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As shown in Figure 27, similar to the specialization of A.GA(i) (see Figure 17), the specialization 

of A.GASM(i)
j is created in which A.GASM(i)

j is specialized into B.GASM(i+1)
j. Then, 

B.GASM(i+1)
j is mapped into CSP. 

 

Figure 27. Specialization of A.GASM(i)
j 

The example of Figure 28 illustrates GASM specialization for families of bikes, where 

Bike.GASM(2)
j is specialized into CityBike.GASM(3)

j. The GADMs are represented but not their 

GADM(CSP) for better clarity. CityBike.GASM(3)
j is translated into CSP 

(CityBike.GASM(3)
j(CSP)). In CityBike.GASM(3)

j, GAs with their quantities, KPIs aggregation 

methods and relations that are inherited from Bike.GASM(2)
j, are tagged by ‘I’ while the GAs 

with their quantities and relations that are uniquely dedicated to CityBike.GASM(3)
j are tagged 

by ‘S’. 

In CityBike.GASM(3)
j, Wheel.GA(2) is replaced by a more specialized GA(i) (S: CityWheel.GA(3)) 

and its quantity is restricted to {2}. A new GA(i) is added (S: Light.GA(2)) and a relation is 

restricted (the user ‘Man’ is only compatible with the material ‘carbon’). A new relation is also 

added (between user and light color). Then, CityBike.GASM(3)
j is translated into the CSP 

(CityBike.GASM(3)
j(CSP)), in which the CSP of the CityBike.GADM(3) is embedded. Moreover, 

in this CSP, the domain of the variable WheelQty is restricted by adding a compatibility table. 

The embedded CSP corresponding to Wheel.GADM(2) is replaced by a more specialized CSP      
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(S: CityWheel.GADM(3)(CSP)). A new CSP is added (S: Light.GADM(2)(CSP)). A new variable 

with its corresponding domain is added (S: LightQty). An existing constraint is restricted by 

adding a tuple which is tagged by ‘S’ (representing that if the user of city bike is a man, it is 

only compatible with the material carbon for the seat). Two constraints related to KPIs 

aggregation methods are updated. A new compatibility table is added (linking the color of light 

to the users of a city bike). Constraint filtering is applied leading to the restriction of the domains 

of the variables, removing inconsistent values. 

 

Figure 28. An example of Bike.GASM(2)
j specialization 

 



Chapter 3: Knowledge formalization for system configuration 

78 

By applying the generalization or specialization process, a taxonomy of GASMs is created 

based on the GAs taxonomy to classify GASMs according to their common knowledge 

including the structure, KPIs aggregation methods, and relations between GA(i) or between 

attributes and/or KPIs of GA(i). An example of this taxonomy is illustrated in Figure 29 along 

with the GAs taxonomy (represented in Figure 19). The most general GASM 

(System.GASM(1)
1), is described by common knowledge among all GASMs, and is the parent 

of several specialized GASMs, including Bike.GASM(2)
j, CityWheel.GASM(2)

j and 

MountainWheel.GASM(2)
j. CityWheel.GASM(3)

j and MountainWheel.GASM(3)
j are generalized 

into Wheel.GASM(2)
j. Furthermore, Bike.GASM(2)

j is specialized into CityBike.GASM(3)
j, and 

MountainBike.GASM(3)
j. Since in GASM specialization, all specialized GASMs inherit the 

knowledge of their ancestors, Bike.GASM(2)
j, and Wheel.GASM(2)

j inherit all the knowledge of 

System.GASM(1)
1. CityBike.GASM(3)

j and MountainBike.GASM(3)
j inherit all the knowledge of 

Bike.GASM(2)
j, including the knowledge of System.GASM(1)

1. CityWheel.GASM(3)
j and 

MountainWheel.GASM(3)
j inherit all the knowledge of Wheel.GASM(2)

j. 

 

Figure 29. GASMs taxonomies 

In the following, the synthesis of this section is provided. 

3.2.4. Synthesis  

In this section, we have focused on our first research question: "Is it possible to define an 

ontology of generic models to better manage knowledge, allowing a clear distinction between 

descriptive and structural views for system configuration?" by defining the generalization and 

specialization process of generic models. Our approach involved defining and proposing 

methods for GA(i-1) generalization and GA(i+1) specialization. Based on that, we defined GADM(i-

1) generalization and GADM(i+1) specialization as well as GASM(i-1)
j generalization and 

GASM(i+1)
j specialization. 

Our proposed approach allows for the creation of GAs, GADMs, and GASMs at different levels 

of abstraction using commonality, generalization and specialization relations and by applying 

inheritance principles which can help to better manage knowledge separating their descriptive 

views and structural views and defining three taxonomies of GA(i), GADM(i), and GASM(i)
j. 

These three taxonomies are closely related and they are the ontology for system configuration. 

In the following section, we explain how we can update GAs, GADMs, and GASMs. 
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3.3. Update of GA(i), GADM(i), and GASM(i)
j  

The experts need to frequently update generic models due to several reasons. Firstly, the 

structure of the system may change over time due to new GAs being added and old GAs being 

removed. Therefore, updating the generic models is essential to ensure that it accurately 

represents the current structure of the systems. Secondly, as new information becomes available 

about the modeled systems, generic models may need to be updated to incorporate this 

information. For example, if new information is discovered about the relations between 

components, the model may need to be updated to reflect this. Thirdly, as new techniques or 

methods are developed for creating systems, the model may need to be updated. Therefore, this 

helps to keep generic models up to date and improve them. 

This section is dedicated to the update of GA(i), GADM(i), and GASM(i)
j. Therefore, first, in 

section 3.3.1, the GA update is proposed, followed by the GADM update in section 3.3.2, and 

then the update of GASM is defined in section 3.3.3. Finally, the synthesis of the section is 

represented in section 3.3.4. 

3.3.1. Update of Generic Artifacts 

A GA can undergo one or multiple updates following the evolution of designs, technologies, 

components, etc. The definition of GA update is given below. 

Definition 12: Generic Artifact update 

GA update is a process of updating a current GA(i) by modifying or updating its knowledge. 

 

To update a GA(i), its description must be updated.  

As represented in the example of Figure 30, Bike.GA(2) is updated only by updating its 

description. As the description of Bike.GA(2) has been updated, the expert has to check the 

description of all the descendants of Bike.GA(2) and modify them if necessary. In the example 

of Figure 30, the description of the Bike.GA(2) is shortened as well as the description of the 

CityBike.GA(3) and the description of MountainBike.GA(3). These modifications have to be done 

manually by the expert by checking all the descriptions of the descendants of the updated GA(i) 

(Bike.GA(2) in this example). 

 

Figure 30. An example of GA(i) update for a family of bikes 
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The following section is dedicated to the GADM(i) update. 

3.3.2. Update of Generic Artifact Descriptive Models 

GADMs need to be updated because the characteristics of the system may be changed or 

modified over time, new attributes may be added, or old attributes may be removed.  Thus, a 

GADM can undergo one or multiple updates. 

Definition 13: Generic Artifact Descriptive Model Update 

GADM update is a process of updating the current GADM(i) by updating (modifying, 

removing or adding) its knowledge including elements such as attributes with their domains, 

KPIs with their domains, and relations between attributes and/or KPIs values. 

 

GADM(i) update is a four steps process:  

Step 1) Update description of GADM(i), 

Step 2) Update attributes with their domains, 

Step 3) Update KPIs with their domains, 

Step 4) Update relations between attributes and/or KPIs values. 

All modifications made to the GADM(i) are applied into GADM(i+1) and its descendants as well, 

making it easy for experts to design and update GADMs.   

We map the updated GADM(i) within its CSP (GADM(i)(CSP)) as follows. 

Step 1) Update attributes with their domains corresponds to updating the variables with their 

domains, 

Step 2) Update KPIs with their domains corresponds to updating the variables with their 

domains, 

Step 3) Update relations corresponds to updating the constraints. 

Then, the consistency of the updated GADM(i) has to be checked by propagating the constraints. 

The example of Figure 31 illustrates the updating of the Bike.GADM(2) of Figure 13, 

Bike.GADM(2) is updated by removing values of the attribute Color (values Pink and Gray are 

removed), removing an attribute (RingBellQty is removed), adding a new attribute with its 

domain (Size ∈ {XS, S, M, L, XL}), restricting the domain of the Cost KPI                                  

(Cost ∈ {[500, 4500]}) as well as removing the relation related to the removed attribute 

(RingBellQty). Bike.GADM(2)(CSP) is updated as well. The values Pink and Gray are removed 

from the domain of variable Color and also from the constraint, the variable RingBellQty is 

removed, the variable Size is added with its domain, the constraint which linked RingBellQty 

with the User type is removed, the domain of cost is restricted (its lower bound is changed to 

‘500’), and the lower bound of cost in the compatibility table is also changed to ‘500’. Then, 

constraint filtering is applied and the domains of variables are restricted.  
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Figure 31. An example of Bike.GADM(2) update 

All the modifications made in Bike.GADM(2) are propagated to all the descendants. This means 

that CityBike.GADM(3) and MountainBike.GADM(3) will be updated as well. However, every 

modification must be changed by the expert in charge of the knowledge update. As shown in 

Figure 32, in CityBike.GADM(3), the Gray value of the attribute Color is removed, the attribute 

RingBellQty is removed, Size that is a new attribute with its domain is added, the domain of 

the Cost KPI is restricted to {[500, 4500]}, the relation related to the deleted attribute 

RingBellQty is removed. The CSP of CityBike.GADM(3) is also updated. The value Gray is 

removed from the domain of the variable Color as well as from the constraint. The variable 

RingBellQty is removed. The variable Size is added with its domain. The constraint linking 

RingBellQty to User is removed. The domain of cost is restricted. Then, constraint filtering is 

applied and the domains of variables are restricted.  
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Figure 32. Example of propagation of Bike.GADM(2) updates into CityBike.GADM(3) 

The following section is dedicated to the GASM(i)
j update. 
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3.3.3. Update of Generic Artifact Structural Models 

A GASM(i)
j needs to be updated when the structural view of the system has changed. New GA(i) 

may be added, GA(i) may be removed or GA(i) may be changed into the structure.  

Definition 14: Generic Artifact Structural Model Update 

GASM update is a process of updating a current GASM(i)
j by updating (modifying, removing 

or adding) its knowledge including GASM composition (quantity, GA(i)), KPIs aggregation 

methods, and relations between GA(i), or between attributes and/or KPIs of GA(i). 

 

This GASM(i)
j update is a four steps process:  

Step 1) Update the description of GASM(i)
j, 

Step 2) Update identified GA(i) belonging to GASM(i)
j with their quantities, 

Step 3) Update aggregation methods for each KPI of GASM(i)
j, 

Step 4) Update relations between GA(i) or between attributes and/or KPIs values of GA(i). 

Note that any modifications made to GASM(i)
j are inherited by its specialized GASM(i+1)

j and all 

its descendants, which helps experts to design and update GASMs.   

We propose to map the updated GASM(i)
j within CSP (GASM(i)

j(CSP) is updated). 

Step 1) Update identified GA(i) with their quantities corresponds to updating existing CSPs and 

the domains of variables, 

Step 2) Update relations corresponds to updating the constraints. It also includes updating the 

constraints related to KPIs aggregation methods. 

Then, the consistency of the updated GASM(i)
j needs to be checked by filtering the constraints. 

As illustrated in Figure 33, Bike.GASM(2)
j (represented in Figure 15) is updated by replacing 

Wheel.GA(2) with Wheel2.GA(2) and restricting its quantity to 3, changing the quantity of 

Seat.GA from 1 to 2, and adding a new GA(i) (Frame.GA(2)). Then, Bike.GASM(2)
j(CSP) is 

updated as well. The domain of variable Wheel2Qty is changed to 3, the domain of variable 

SeatQty is changed to 2, a new variable is added (FrameQty), Wheel.GADM(2)(CSP) is replaced 

with Wheel2.GADM(2)(CSP), and a new CSP is added i.e. Frame.GADM(2)(CSP). Two 

constraints corresponding to KPIs aggregation methods are updated by taking into account 

Wheel2.GA(2), and Frame.GA(2). 
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Figure 33. An example of Bike.GASM(2)
j update 

Every modification in Bike.GASM(2)
j is inherited by all its descendants.  However, in Figure 34, 

only the case of CityBike.GASM(3)
j is shown. Every modification must be changed by the expert. 

As shown in Figure 34, Wheel.GA(2) is replaced with Wheel2.GA(2) (Wheel2 is a GA 

corresponding to another family of wheels) and its quantity is restricted to 3, the quantity of 

Seat.GA(2) is changed to 2, and Frame.GA(2) is added. The CSP of CityBike.GASM(3)
j is also 

updated. The domains of variables WheelQty and SeatQty are respectively changed to 3 and 2, 

FrameQty which is a new variable is added, Wheel.GADM(2)(CSP) is replaced with 

Wheel2.GADM(2)(CSP), and Frame.GADM(2)(CSP) is added. Two constraints corresponding to 

KPIs aggregation methods are updated by considering Wheel2.GA(2), and Frame.GA(2). 
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Figure 34. Example of propagation of Bike.GASM(2)
j updates to CityBike.GASM(3)

j 

The synthesis of this section is represented as follows. 
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3.3.4. Synthesis 

In this section, we have defined processes that enables to update GA(i), GADM(i), and GASM(i)
j. 

After their definition, we have explained how their corresponding CSP can be updated. This 

proposal facilitates the maintenance and updates of generic models since when a GA, GADM, 

and GASM at a higher level of abstraction is updated, the changes or modifications are 

propagated into all the lower-level GAs, GADMs and GASMs (all the descendants) by the 

expert. Therefore, it is not required to modify descendants separately. Consequently, it reduces 

the efforts required for managing and updating formalized knowledge. Moreover, when a GA, 

GADM or GASM is updated, the propagation of the updates requires to check the validity of 

all the descendants. Therefore, that participates to the content of validity of the formalized 

knowledge.  

The following section is dedicated to the discussion of our proposed approach. 

3.4. Single-model approach or multi-model approach? 

To formalize and manage generic models in the domain of system configuration, assuming a 

set of system families, a single-model approach, following the proposal of Männistö (Männistö 

et al., 2001) and a multi-model approach can be employed. 

In the single-model approach (Männistö et al., 2001), only one generic model is created that 

represents all the families of systems. This generic model incorporates all the knowledge and 

diversity relevant to all families of systems. As the model becomes more complex, it can 

become difficult to maintain, and update. It can also become difficult to comprehend and 

interpret it because it contains all the knowledge for the families of systems. The knowledge 

about the different families of systems is mixed up. This can lead to errors and inconsistencies, 

and it can also make it difficult to identify and resolve problems when they occur. The generic 

model can become too large and complex, making validation and knowledge maintenance 

difficult to perform. 

On the other hand, the multi-model approach consists of multiple (several) generic models, each 

one representing a specific family of systems. This means that each generic model contains 

only the knowledge and diversity relevant to a specific family of systems. Generic models are 

simpler, and the knowledge is easier to understand. However, there may be redundant 

knowledge modeling when two system families share similar components or attributes (Erens 

& McKay, 1994). 

The use of a single-model approach can often result in a complex model, which may be difficult 

to comprehend, maintain and update. On the other hand, a multi-model approach may lead to 

redundancy, where similar models share common knowledge. However, our proposed approach 

addresses these concerns by using the concept of commonality of generic models and through 

generalization and specialization relations as well as inheritance principles, which make it 

possible to define generic models at different levels of abstraction. 

In Figure 35, a single approach is represented for a simplified bike example while in Figure 36, 

a multi-model approach is shown. In Figure 37, our approach is represented in which there 
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exists a bike model at a higher level of abstraction containing the commonality of lower level 

models. This model is created by generalizing the CityBike model and MountainBike model. 

Conversely, the Bike model is specialized into the CityBike model and MountainBike model. 

When a new bike needs to be designed, the generic bike model can be reused and specialized. 

This reduces the amount of knowledge modeling activity that is required. The experts can focus 

on innovation while reusing the elements that remain common to all bikes. 

In the different sections, we have presented a taxonomy of Generic Artifacts (GA), a taxonomy 

of Generic Artifact Descriptive Models (GADM), and a taxonomy of Generic Artifact 

Structural Models (GASM). All these taxonomies are strongly connected and they constitute 

an ontology for system configuration. In the different models, we have associated constraint 

satisfaction problems (CSP). The main advantage is that they constitute a powerful formalism 

to model knowledge for system configuration. They allow to formalize all the allowed 

characteristics for systems, subsystems, and components. Using filtering techniques, it is 

possible to check the consistency of the models and remove inconsistent characteristics. 

Therefore, it is a first step for validating the formalized knowledge before storing it.  

In the proposed modeling approach, we have dissociated descriptive views from structural 

views. This is important for knowledge reuse. Either the expert of the knowledge is only 

interested in descriptive characteristics of the systems to configure (the colors, the quantity of 

windows, the power of the engine, etc.), or she/he is interested in their deep structure (the choice 

of components, their bill of material, the characteristics of a specific component, etc.) 

In the proposed modeling approach, generic models are defined at various levels of abstraction 

which facilitate the maintenance and update of generic models. If the expert wants to change 

the characteristics of the systems (change the cost, update the colors, add a new attribute…) or 

change the structure of systems (replace a wheel by a new one, add a new component to the 

system, etc.), he/she can update the generic model at a higher level of abstraction, in that case, 

the modifications are inherited by all the descendants. On the other hand, if the expert wants to 

create new systems, he/she can reuse the generic model at a higher level of abstraction since it 

contains the commonality of several systems and then enrich it with specific knowledge which 

is only dedicated to the relevant system. Therefore, the expert can define new generic models 

at a lower level of abstraction which are much more specific.  

 

Figure 35. An example of single-model approach 
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Figure 36. An example of multi-model approach 

 

Figure 37. An example of our proposed approach 

In the following, the synthesis of this chapter is represented. 

3.5. Synthesis 

The first objective of our research work is to formalize knowledge for system configuration. 

This chapter presents our first contribution, a knowledge formalization process for system 

configuration using the association of ontologies, CSP approaches, and inheritance principles 

to create generic models, which comes in response to our first research question: "Is it possible 

to define an ontology of generic models to better manage knowledge, allowing a clear 

distinction between descriptive and structural views for system configuration?"  

Our proposal in section 3.1, allows modeling knowledge about a family of artifacts and creating 

generic models while distinguishing descriptive views and structural views (KFC1). Therefore, 

after defining a GA, we describe its descriptive view by a GADM, and its structural view by 

GASM if necessary. We formalize each of these views as CSP to check their consistency during 

the formalization process (KFC4) and illustrate our proposal on a simple bike example. 

Our proposal in section 3.2, allows for creating an ontology of generic models. We proposed 

processes for GA generalization and specialization of GA(i), GADM(i), and GASM(i)
j, then their 

translation into CSP. It allows creating generic models at different levels of abstraction (KFC3), 

structuring them from the most general one to the most specialized one, using generalization 

and specialization relations and by employing the concept of commonality and inheritance 

principles. This approach allows us to better manage knowledge, facilitate maintenance, and 

update (KFC2). Depending on whether the attributes, indicators, and relationships of the GA, 

GADM, and GASM are inherited or specific to the element, they are tagged with 'I' or 'S' 

respectively. This ensures the consistency of the model ontologies by tracing the origin of the 

knowledge. 
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Our proposals in section 3.3, enable us to update generic models to improve them and keep 

them up to date. Therefore, first, we defined the update of GA. Our proposals allow us to better 

manage knowledge since modifications applied on the GA(i), GADM(i), and GASM(i)
j at a high 

level of abstraction are propagated to all the GAs, GADM, or GASMs at lower levels of 

abstraction. 

This contribution was featured in the three following conference papers:  

• Maryam Mohammad Amini, Thierry Coudert, Élise Vareilles, Michel Aldanondo. 

Integration of Ontologies and Constraint Satisfaction Problems for Product 

Configuration. IEEM 2021 - International Conference on Industrial Engineering and 

Engineering Management, Dec 2021, Singapore, France. pp.578-582,  

• Maryam Mohammad Amini, Thierry Coudert, Élise Vareilles, Michel Aldanondo. 

System Configuration Models: Towards a Specialization Approach. MIM 2022 - 10th 

IFAC Conference on Manufacturing Modelling, Management and Control, Jun 2022, 

Nantes, France. pp.1189 - 1194, ⟨10.1016/j.ifacol.2022.09.551⟩. 

• Élise Vareilles, Thierry Coudert, Michel Aldanondo, Maryam Mohammad Amini. 

Capitalisation de connaissances en configuration de biens et de services : vers une 

meilleure gestion de la communalité des modèles. CIGI QUALITA MOSIM 2023, Jun 

2023, Trois-Rivières, Canada. 8 p. 

The next chapter begins the second step of this thesis, dedicated to reusing formalized 

knowledge. This chapter contains our second contribution, devoted to our second research 

question, "How can ETO requirements be processed during configuration activity? "  
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This chapter is dedicated to our second research question: "How can ETO requirements be 

processed during configuration activity?" In chapter 2, we have highlighted the absence of study 

about reusing formalized generic models either descriptive or structural, and at various levels 

of abstraction to fulfill non-negotiable non-standard requirements of users in ETO situations. 

In response to this gap, we propose a reusing process in this chapter, which constitutes our 

second contribution. 

Before moving on to ETO situations, we start with CTO situations where system configuration 

is performed. Therefore, we formalize knowledge reuse in CTO situations in Section 4.1, where 

the objective is to meet the CTO requirements as defined in Chapter 2 taking into account our 

proposals. In section 4.2 we describe the knowledge reuse step in ETO situations, where the 

objective is to meet the ETO requirements of the users, as defined in Chapter 2. In section 4.3, 

we explain the link between the knowledge reuse step in CTO and ETO situations. Finally, in 

section 4.4 we summarize the chapter. 

As illustrated in Figure 38, we adopt the knowledge management process explained in chapter 

2, for system configuration knowledge reuse. All the generic models that exist in the GMB can 

be shared. Then, stored generic models are reused to meet user requirements in both CTO and 

ETO situations. Finally, at the end of the configuration activity, the results of the configuration, 

i.e. the solutions (outputs) are stored in an Experience Base (EB). Experts can use the EB to 

update the generic models (as explain in Chapter 3.4) to add new solutions to the catalog. 

However, this topic is out of the scope of this thesis. 
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Figure 38. Knowledge reuse for system configuration 

4.1. CTO knowledge reuse for system configuration  

This section is dedicated to knowledge reuse in CTO situations through which system 

configuration can be achieved. First, in section 4.1.1, configuration activity in CTO situations 

is presented with regards to our proposals. Then, in section 4.1.2, the consequence and impact 

of the previous modeling propositions are clearly discussed. Finally, in section 4.1.3, the 

synthesis of the section is provided.  

4.1.1. CTO configuration activity 

First, we describe how our proposals on knowledge formalization can be applied in CTO 

situations where all requirements expressed by the user can be met by exploiting formalized 

generic models stored in the GMB. In this thesis, we refer to configuration activity in CTO 

situation as "CTO configuration activity". As defined in chapter 2, we consider CTO 

Requirements as standard requirements (or requirements expressed as such), whether 

negotiable or non-negotiable, meaning that the choices made by a user are consistent with the 

current attributes’ domains. In CTO configuration activity, CTO requirements can be fulfilled 

as they are supported by the generic models. To achieve this, after selecting a relevant generic 

model, two topics play an important role: 1) generic model instance creation and 2) generic 

model instance processing. In the first one, the definitions of GA, GADM and GASM instances, 

respectively GAI, GADI and GASI are provided and in the second one, the configuration of 

these instances in order to reach a solution is described. 
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4.1.1.1. CTO configuration principles 

In order to configure a system which meets the CTO requirements, the user needs first to 

identify what the generic models necessary for the configuration according to descriptive and 

structural views are.  

CTO configuration activity refers to an interactive process by which systems are tailored to 

meet CTO requirements. It involves defining user requirements, applying constraint filtering 

mechanisms, and deleting inconsistent solutions according to the constraints and choices made 

by the user until reaching a solution.  

By reading the GA name and description (as defined in Chapter 3, definition 3), a GA 

corresponding to the family of systems the user wants to configure is selected in the taxonomy 

of GA. 

As mentioned in chapter 3, a GA is associated to its specific GADM which corresponds to its 

descriptive view. The GA can also be linked to various GASM which describe several versions 

of its structural view. Therefore, once the user has selected the GA, its associated GADM is 

automatically selected and the user have to decide whether selecting a version of GASM (if it 

exists) or not. It depends on the kind of configuration the user wants to carry out. If the user 

wants to configure a system with only the descriptive view, only the GADM is necessary. If the 

user is also interested by the structural view of the system to configure, one GASM has to be 

selected among the different available versions.   

4.1.1.2. Generic model instances 

In order to configure a system, it is necessary to create instances of generic models formalized 

during the knowledge formalization process (see chapter 3). These instances are: Generic 

Artifact Instance (GAI), Generic Artifact Descriptive Instance (GADI) and Generic Artifact 

Structural Instance (GASI). These instances are defined as follows: 

Definition 15: Generic Artifact Instance or GAI(i) in CTO 

A Generic Artifact Instance, notated GAI(i) is an instance of the selected GA(i), at a certain 

level of abstraction i, which is created during the CTO configuration activity in order to 

answer to CTO requirements expressed by a user. It is structured as the corresponding GA(i) 

(with a description). We denoted it as CTO.GAI(i). 

 

For instance, an instance of Bike.GA(i) is denoted CTO.Bike.GAI(i). 

Definition 16: Generic Artifact Descriptive Instance or GADI(i) in CTO 

A Generic Artifact Descriptive Instance, notated CTO.GADI(i) is the instance of the GADM(i) 

associated to a selected CTO.GAI(i). It contains the same elements than the corresponding 

GADM: description, list of attributes and domains, list of KPIs and domains and list of 

relations. 
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This CTO.GADI(i) is used during the CTO configuration as the descriptive view. Within the 

CTO.GADI(i), the attributes domains and KPIs domains will be restricted following the user’s 

requirements and the relations between attributes using filtering mechanisms. Thus, every 

CTO.GADI(i) is mapped into a corresponding CSP denoted CTO.GADI(i)(CSP). 

Definition 17: Generic Artifact Structural Instance or GASI(i)
j in CTO 

A Generic Artifact Structural Instance, notated GASI(i)
j is the instance of a GASM(i)

j when a 

GASM(i)
j is chosen by the user. It is used when a structural view of the GAI(i) is necessary for 

the CTO configuration. As a GASM(i)
j contains a list of couples (quantity, GA(i)) corresponding 

to its structure, for every GA(i) in the GASM(i)
j, an instance CTO.GAI(i) is created in the GASI(i)

j 

(see Figure 39). A GASI(i)
j is mapped into its corresponding CSP denoted GASI(i)

j(CSP). We 

denoted it as CTO.GASI(i)
j. 

 

 

Figure 39. Example of creation of an instance of a CTO.Bike.GASM(2)
j 

The UML diagram of Figure 40 illustrates the different generic models, their instances and the 

relations between them. For a specific CTO configuration activity, a CTO.GAI(i) is an instance 

of a GA(i). A GA(i) can be associated to one or zero CTO.GAI(i). If a GA(i) has not been selected 

by the user, that GA(i) will have no associated CTO.GAI(i). A CTO.GADI(i) is an instance of a 

GADM(i), which is mapped into its CTO.GADI(i)(CSP). A GADM(i) can be associated to zero or 

one CTO.GADI(i)(CSP) (if a GA(i) is selected for the CTO configuration, its CTO.GADI(i) is 

instantiated). A CTO.GASI(i)
j is an instance of a GASM(i)

j which is mapped into its 

CTO.GASI(i)
j(CSP). A CTO.GASI(i)

j is created only when the structural view is considered as 

necessary by the user during the CTO configuration. For a CTO.GAI(i), only one CTO.GADI(i) 

is built and one or zero CTO.GASI(i)
j is built (following the necessity of structural view or not). 
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Figure 40. UML diagram for CTO.GAI(i), CTO.GADI(i) and CTO.GASI(i)
j and their translation into their 

corresponding CSP 

The aim of CTO configuration is to reach a CTO solution which meet all the CTO requirements. 

A CTO requirement and a CTO solution are defined as follows.  

Definition 18: CTO requirement 

A CTO requirement corresponds to the selection of a value from the domain of an attribute. 

We denoted it as CTO.rq. 

 

Definition 19: CTO solution 

A CTO solution for a CTO.GAI(i) corresponds to a set of attributes where the domains have 

been restricted to singletons during the CTO configuration activity by respecting the defined 

constraints. For the KPIs, ranges of values for a solution are accepted as they can correspond 

to some lack of knowledge, uncertainties or several possibilities. During the CTO 

configuration, if the choice to use the structural view is made, the CTO solution integrates 

the CTO instance GASI(i)
j. Then, the bill of material is also part of the solution. We denoted 

it as CTO.Solution. 
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4.1.1.3. Generic model instance processing 

In order to configure systems in CTO situations by exploiting the instances of the selected 

generic models, a generic model processing activity has to be performed. The generic process 

for knowledge reuse in CTO is proposed in Figure 41 and Figure 42. It is a recursive process 

based on a sub-process denoted “Configure CTO GAI” composed of two parts: one dedicated 

to the descriptive view, denoted “Configure CTO GADI” (Figure 41) and one optional, 

dedicated to the structural view, denoted “Configure CTO GASI” (Figure 42). 

 

Figure 41. Flowchart for knowledge reuse in CTO configuration: GADI configuration 
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Figure 42. Flowchart for knowledge reuse in CTO configuration: GASI configuration  

In this CTO knowledge reuse process, a GA(i) is first selected by the user. The instance 

CTO.GAI(i) is created with the instance CTO.GADI(i). Then, the CTO.GAI(i) and the CTO.GADI(i) 

are provided to the “Configure CTO GAI” sub-process. Using the CTO.GADI(i), the user 

launches the “Configure CTO GADI” sub-process and defines one requirement CTO.rq 

restricting the domain of a variable in the CSP. A constraint filtering mechanism is applied 

using the corresponding CSP (i.e. the CTO.GADI(i)(CSP)). If one empty domain is obtained, the 

CTO knowledge reuse process ends with no solution. Otherwise, the definition of requirements 

and the filtering are continued until all filtered domains for attributes contain singletons (i.e. a 

single value). Then, a CTO solution for the CTO.GAI(i) is proposed to the user. It corresponds 

to a set of couples (attribute, value) or (variable, value). The KPIs can either have an interval 

or a single value in their domains. 
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Then, the user is asked to express if the structural view is necessary or not. If it is not necessary, 

the configuration is over and the solution is stored in the Experience Base (EB) and the user 

can exploit the obtained CTO solution. If the structural view is necessary, the user launches the 

“Configure CTO GASI” sub-process and has to select one version of the GASM(i)
j thanks to its 

description. Then, an instance CTO.GASI(i)
j is created. Therefore, for each CTO.GAI(i) which 

belongs to CTO.GASI(i)
j, its quantity has to be defined and the sub-process “Configure GAI” is 

reused recursively. The CTO knowledge reuse process ends when all the CTO.GAI(i) have been 

configured and the CTO.GASI(i)
j KPI are aggregated. Then, the instantiated CTO.GASI(i)

j is 

added to the CTO solution.  

At the end of the CTO knowledge reused process, the solution (which can be only descriptive 

or which can include a bill-of-material - i.e. structural) is stored into the EB. This will enable 

later reuse of the system configuration experience in similar situations. However, this is not 

described in this thesis.  

In the following section, we explain what are the consequences of our proposals mentioned in 

chapter 3 in CTO knowledge reuse for system configuration.  

4.1.2. Consequences of modeling propositions 

This section is dedicated to the consequences and impact of our proposals on knowledge reuse 

in CTO situations. Therefore, first, descriptive view versus structural view and then multi-level 

abstraction modeling are explained.  

• Descriptive view versus structural view 

As mentioned in chapter 3, the descriptive view of a GA(i) is defined by a Generic Artifact 

Descriptive Model (GADM(i)), while its structural view is defined by a Generic Artifact 

Structural Model (GASM(i)
j).  

When a user selects a GA(i), its associated GADM(i) is selected as well. It implies that the choice 

of GADM(i) is predetermined since each GA(i) is linked to only one GADM(i). On the other hand, 

the selected GA(i) can have multiple GASM(i) associated with it or none at all.  

Once the user selects a GA(i) and builds an instance of GADM(i), the CTO configuration of 

CTO.GADI(i) begins. During the CTO configuration of the CTO.GADI(i), the user decides 

whether to configure GASM as well. If the user wants to configure GASM, first, she/he selects 

one version of GASM from the available GASMs. To select one GASM, the user can compare 

different GASMs based on their KPIs.  

On the other hand, since a GASM(i)
j is defined recursively, it is composed of several GA(i). 

Therefore, for each GA(i), the user needs to decide whether to configure only GADM(i) or 

configure both GADM(i) and GASM(i)
j. It's important to note that for each GA(i), the 

configuration of GADM(i) is mandatory however, a decision on which GASM(i)
j be configured 

and how deeply depends entirely on the model and user's decision. 
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• Multi-level abstraction modeling   

In chapter 3, we have explained that at the end of the knowledge formalization, three 

taxonomies of GA, GADM, and GASM are created. Each of them can be defined at different 

levels of abstraction.  

From the GAs taxonomy, first, the user can select either a general or a specialized GA. In the 

case that the user selects a GA at a higher level of abstraction (GA(i-1)), both the associated 

GADM and GASMs are also generic and at higher level of abstraction (respectively        

GADM(i-1) and GASM(i-1)
j). It is important to notice that the user selects a GA(i) when none of 

the specialized GAs (GA(i)) can fulfill requirements this choice can be made by looking at 

GA(i)’s name and description. Once the user has selected GA(i-1), an instance of its associated 

GADM (notated CTO.GADI(i-1)) is configured and an instance of its associated GASM (notated 

CTO.GASI(i-1)
j) can be configured as well. During configuration, the user can access the 

common body of knowledge to meet their requirements. 

On the other hand, when a user selects a specialized GA at a lower level of abstraction (GA(i+1)), 

both the associated GADM and GASMs are also specialized in nature and at a lower level of 

abstraction (respectively GADM(i+1) and GASM(i+1)
j). Once the user has selected GA(i+1), an 

instance of its associated GADM (notated CTO.GADI(i+1)) is configured and an instance of its 

associated GASM (notated CTO.GASI(i+1)
j) can also be configured. During configuration, the 

user can access a more restricted but enriched body of knowledge to fulfill their particular 

requirements. 

In the following, the synthesis of the chapter is presented. 

4.1.3. Synthesis  

To address our second research question, it is required to first study CTO situations. Therefore, 

this section was dedicated to the CTO knowledge reuse. First, we briefly explained about 

generic model selection. Then, we discussed CTO configuration activity. We began by defining 

the CTO principles and the generic model instances used for CTO configuration. Generic 

Artifact Instance (CTO.GAI(i)), Generic Artifact Descriptive Instance (CTO.GADI(i)) and 

Generic Artifact Structural Instance definition (CTO.GASI(i)
j) were defined. Then, a generic 

CTO knowledge reuse process has been detailed. It enables to provide CTO solutions to meet 

CTO requirements. 

Second, we explained the impact of our proposals related to knowledge formalization in CTO 

situations including selecting and configuring descriptive and/or structural views and selecting 

and configuring according to different levels of abstraction.  

After describing the knowledge reuse in CTO situations, we need to move towards knowledge 

reuse in ETO situations which is the subject of the following section. 
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4.2. ETO knowledge reuse for system configuration  

This section is devoted to knowledge reuse in ETO situations. Therefore, in section 4.2.1, the 

transition from CTO to ETO configuration activity is studied. Then, in section 4.2.2, the 

adaptation of CTO instances to ETO is discussed. Finally, in section 4.2.3, the section is 

synthesized. 

4.2.1. From CTO towards ETO configuration activity  

In CTO configuration activity, it is not possible to fulfill all types of requirements, particularly 

ETO requirements which are out of the generic models (as mentioned in chapter 2, sections 

2.1.2.1 and 2.1.2.2). To address them, engineering activities are required. In our proposals, this 

is taken into account by a process which enables modifying existing pieces of knowledge or 

creating new ones. Therefore, ETO requirements must be fulfilled during configuration activity 

in ETO situation. In this thesis, we will refer to configuration activity in ETO situation as "ETO 

configuration". 

The definition of an ETO requirements is given below. 

Definition 20: ETO requirement 

An ETO requirement corresponds to a need that cannot be expressed with the current 

instance. It may involve selecting a value outside the possible domain of an attribute, adding 

elements to the nomenclature, or choosing combinations not authorized by the underlying 

model. We denoted it as ETO.rq. 

 

In order to perform an ETO configuration activity, we formalize a generic process for 

knowledge reuse in ETO situations by means of the flowchart of Figure 43 and Figure 44. Some 

parts of this process are similar to the generic processes of Figure 41 and Figure 42 for CTO 

configuration. It enables to reuse formalized pieces of knowledge allowing to modify them in 

order to meet ETO requirements. This process starts by asking to the user to check if a relevant 

GA(i) corresponding to the requirements is available. If it is the case, this GA(i) is selected in the 

taxonomy of GAs with it associated GADM(i). Otherwise, a new ETO.GAI(i) is created with its 

ETO.GADI(i). This corresponds to the realization of an engineering activity where a new system 

or family of systems has to be designed. Following the necessity or not to have a structural view 

for this new ETO.GAI(i), an ETO.GASI(i) is created or not. It is important to notice that only 

instances are created and not generic models such as GA, GADM or GASM. Indeed, these new 

pieces of knowledge are created to answer to ETO requirements but they are not yet validated 

as standard knowledge. Therefore, every new element created or modified during this ETO 

configuration process is embedded in an instance and it cannot be considered as standard 

knowledge. If every GAI, GADI and GASI are created -we can talk about a heavy ETO 

solution- no modification is required so this ETO solution can be proposed then capitalized in 

an EB. Note that the definitions of these instances are given in the next section. 

Then, the sub-process denoted “Configure ETO GAI” is performed. It is a recursive process 

which enables to configure a GAI to meet the ETO requirements. This sub-process starts by the 

definition by the user of one ETO requirement denoted ETO.rq. With regard to this requirement, 
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the modification of the GADI is performed. Four cases are taken into account and this step will 

be described in the section 4.2.2.2. We denoted it as ETO.GAI(i) to distinguish it from the 

CTO.GAI(i). 

Therefore, the ETO.GADI(i) is manually configured. That means that a restriction of the 

domains following the ETO.rq is done. This cannot be done automatically using a filtering 

mechanism because all the new added elements will be removed as they are not considered as 

consistent with the knowledge. The definition of CTO/ETO requirements by the user and the 

ETO.GADI(i) modification is continued until all the domains contains single values. Then, an 

ETO solution is obtained for the GAI(i). It corresponds to a set of couples (attribute, value) or 

(variable, value). The KPIs can have a range in their domains. The ETO solution is stored into 

the EB 

If the structural view is required for ETO configuration, the user has to select the right version 

of the GASM and create an instance denoted ETO.GASI(i)
j (or to use the GASI which has been 

created at the beginning of the process). 

If it is necessary to meet ETO requirements, the modification of the ETO.GASI(i)
j is performed 

following five complementary cases (see section 4.2.2.2). This step enables to obtain a modified 

ETO.GASI(i)
j. Then, for each GAI(i) which belongs to the ETO.GASI(i)

j, the sub-process 

“Configure ETO GAI” is performed recursively. At the end of the modification of the 

ETO.GASI(i)
j, it is added to an ETO solution.  

At the end of the ETO knowledge reused process, the ETO solution is stored into the EB. This 

will enable later reuse of the system configuration experience in similar situations, as well as 

the update of the GAs, GADMs, and GASMs stored in the GMB. However, this is not described 

in this thesis.  

The definition of an ETO solution are given below.  

Definition 21: ETO solution 

An ETO solution for a GA(i) corresponds to a set of attributes whose domains are restricted 

to singletons during the configuration activity, free from the constraints defined by the 

generic model. If a dive into the structural view has been performed, the ETO solution has a 

nomenclature (which may or may not be consistent with the knowledge model). We denoted 

it as ETO.solution. 
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Figure 43. Flowchart for knowledge reuse in ETO situations: GADI configuration 
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Figure 44. Flowchart for knowledge reuse in ETO situations: GASI configuration 
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In the following section, we will discuss how to adapt from CTO instances to ETO 

configuration.  

4.2.2. Adaptation of CTO instances to ETO configuration 

As mentioned before, in ETO configuration activity, to meet ETO requirements it may be 

required to modify the attributes, structure, or relations of the existing instances. Or even it may 

be needed to define entirely new attributes or relations for instance. This means that instances 

in CTO need to be adapted in order to meet the user's ETO requirements. Therefore, in this 

section, first, the definition of instances in ETO is represented. Then, in section 4.2.2.1, building 

new instances is discussed. After that in section 4.2.2.2 modifications of existing instances are 

proposed.  

Definition 22: Generic Artifact Instance or GAI(i) in ETO 

A Generic Artifact Instance, notated GAI(i) is a completely new instance or a modified one 

which is defined during ETO configuration activity in order to answer to ETO requirements 

of users. We denoted it as ETO.GAI(i) to distinguish it from the CTO.GAI(i). 

 

Since the selected GA(i) is linked to a GADM(i), it is necessary to build an instance of the 

GADM(i). 

Definition 23: Generic Artifact Descriptive Instance or GADI(i) in ETO 

A Generic Artifact Descriptive Instance, notated GADI(i) is either a completely new instance 

or a modified one. It is defined during ETO configuration activity to answer to ETO 

requirements of users. It enables to use a descriptive view of the ETO.GAI(i) during ETO 

configuration. We denoted it as ETO.GADI(i). 

 

When the choice to use the structural view is made, among several GASMs that the selected 

GA(i) can be associated with, the user has to choose one. Therefore, it is necessary to build an 

instance of the selected GASM. 

Definition 24: Generic Artifact Structural Instance or GASI(i)
j in ETO 

An instance of a GASM is denoted GASI, which can be either a completely new instance or 

a modified one. It is an element that enable to define a structural view for an ETO.GAI(i) 

during the ETO configuration activity to meet ETO requirements. We denoted it as 

ETO.GASI(i)
j. 
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4.2.2.1. Build ETO GADI or ETO GASI  

This section is dedicated to the definition of new instances based on ETO requirements of the 

user. Initially, the definition of GAI build is proposed, followed by the definition of GADI 

build. Finally, the definition of GASI build is provided. 

During the ETO configuration activity, the user may require a GA(i) that does not exist in the 

taxonomy of GAs. We, therefore, build a new instance of GA(i) as follows. 

Definition 25: GAI building in ETO 

GAI building is a process of creating a new GAI(i) in ETO configuration activity to satisfy 

ETO requirements of users that cannot be met by reusing any of the GA(i) in GMB. We 

denoted it as ETO.GAI(i). 

 

As for knowledge formalization to create a ETO.GAI(i), it is necessary to assign a name and 

provide a description. For instance, in Figure 45, a new ETO.GAI(i) representing an instance of 

the family of mirrors is defined. This new ETO.GAI(i) is built since the user demands 

Mirror.GA(i) however, this GA(i) does not exist in the taxonomy of GAs. In ETO.Mirror.GAI(i), 

the name Mirror conveys a vivid mental image of a mirror. Its description is provided as well. 

Although a ETO.GAI(i) does not explicitly represent knowledge about the attributes or structure 

of an instance of artifacts family, it offers a clear comprehension of the instance. Note that once 

the new ETO.GAI(i) is built, it will not be stored within the GAs taxonomy (in the GMB), but it 

will be stored in the experience base. 

 

Figure 45. An example of ETO.Mirror.GAI(i) 

When a ETO.GAI(i) is created, it is necessary to create its associated ETO.GADI(i) in order to 

obtain a descriptive view of the ETO.GAI(i). The descriptive view or GADI(i) will enable to 

perform the ETO configuration activity by using the descriptive view. 

Definition 26: GADI building in ETO 

We define GADI building as a process of creating a new GADI(i) in ETO configuration 

activity to satisfy ETO requirements of users that cannot be met by reusing the formalized 

knowledge. It corresponds to the descriptive view of its associated ETO.GAI(i). We denoted 

it as ETO.GADI(i). 
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Similar to a GADM(i), ETO.GADI(i) is characterized by: 

− Name: It shares the same name as the ETO.GAI(i), providing a clear mental representation 

of the ETO.GADI(i). 

− Description: It offers a statement that portrays the current appearance of the ETO.GADI(i). 

This description can be the same as the ETO.GAI(i)’s description or it can be more detailed. 

− Attributes with their domains: It includes a list of key descriptive attributes and their valid 

domains, which depict the characteristics of the current ETO.GAI(i). The domain can include 

the uncertainty of each attribute. 

− KPIs with their domains: It consists of a list of key performance indicators and their valid 

domains, which are necessary for evaluating the performance of the current ETO.GAI(i). The 

corresponding domains of KPIs also take into account the uncertainty associated with them. 

It means that the domain of KPIs can be a range or a singleton. 

− Relations between attributes and/or KPIs values (not mandatory): It involves a list of 

relations that describe the solution space of the current ETO.GAI(i). These relations 

determine which combinations of attribute and/or KPI values are allowed or forbidden, 

thereby defining the possible characteristics of the ETO.GAI(i) along with its associated 

performances. This can be helpful to update the generic models stored in the GMB. 

To formalize an ETO.GADI(i), we propose mapping it within a CSP: 

− Attributes and domains correspond to variables and domains of the CSP, 

− KPIs and domains are also treated as variables with their corresponding domains, 

− Relations between attributes and/or KPIs of ETO.GADI(i) are expressed by employing 

compatibility tables and numerical functions. 

By formalizing the ETO.GADI(i) as a CSP, we can apply filtering techniques to check and 

maintain the consistency of the ETO.GADI(i). 

Figure 46 represents a new ETO.GAI(i), and its associated ETO.GADI(i) which are mapped into 

a CSP notated ETO.GADI(i)(CSP).  

 

Figure 46. Build a new ETO.GADI(i) and its translation into a CSP 
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For example, Figure 47 illustrates an ETO.GADI(i) of an instance of mirror family which is built 

since the user wants Mirror.GADM(i) but this GADM(i) is not present in the taxonomy of 

GADMs. Therefore, this new ETO.GADI(i) is built and then translated into a CSP. In 

ETO.Mirror.GADI(i), there is one attribute (Diameter) and two KPIs (Weight and Cost), which 

correspond to three variables in Mirror.GADI(i)(CSP). It should be noted that 

ETO.Mirror.GAI(i) and ETO.Mirror.GADI(i) are built to meet ETO requirements. This is why 

the term "ETO" is used in ETO.Mirror.GAI(i), ETO.Mirror.GADI(i) and its CSP. 

 

Figure 47. An example of building a ETO.Mirror.GADI(i) and its translation into a CSP 

During the ETO configuration activity, the user may require to use a structural view for an 

ETO.GAI(i). 

Definition 27:  GASI building in ETO 

We define GASI building as a process of creating a new GASI in ETO configuration activity 

to satisfy ETO requirements of users that cannot be met by reusing the formalized knowledge 

in GMB. We denoted it as ETO.GASI(i). 

 

Therefore, an instance ETO.GASI(i) has to be created. It is important to notice that it is not an 

instance of an existing GASM(i)
j but it is built specifically during the ETO configuration activity 

in order to meet the ETO requirements of the user. 

As for a GASM(i)
j, an ETO.GASI(i) is characterized by: 

− Name: It refers to the same name as the ETO.GAI(i) and aims to create a vivid mental image 

of the ETO.GASI(i). 

− Description: It provides a statement that describes the current appearance or composition 

of the ETO.GASI(i).   

− GASI composition (quantity, GAI(i)): It is a list of pairs consisting of the quantity and 

GAI(i) (existing GAI(i) and new ones) that make up the first level of GASI composition. 

− KPIs aggregation methods: It comprises a list of methods used to evaluate the KPIs of the 

associated ETO.GADI(i) based on its GAI(i)s and their quantities. 

 



Chapter 4: Knowledge reuse for system configuration 

108 

− Relations between GAI(i)s or between attributes and/or KPIs of GAI(i)s (not 

mandatory): It represents a list of relations within the ETO.GASI(i) that define the entire 

solution space of the current ETO.GASI(i). These relations enable updating the generic 

models stored in the GMB.   

In order to formalize an ETO.GASI(i), our proposal involves mapping ETO.GASI(i) within a CSP 

in the following manner: 

− Each GAI(i) in the GASI composition is substituted by its corresponding CSP, while the 

quantities are represented by variables and domains, 

− KPIs aggregation methods are formalized as constraints that establish links between all 

KPIs associated with the composition of the current ETO.GASI(i), 

− Relations are formalized by employing compatibility tables and numerical functions. As 

explained in section 3.1.3 the relations within ETO.GASI(i) can have different types. 

Consequently, the corresponding CSP consists of two parts: one for the ETO.GADI(i) and 

another for the ETO.GASI(i). 

In order to build a ETO.GASI(i), firstly, a name (the same as the ETO.GAI(i)'s name) and a 

description must be defined to the ETO.GASI(i). Then, the GAI(i)s that belong to the ETO.GASI(i), 

along with their quantities have to be defined. Furthermore, aggregation methods for each KPI 

of ETO.GASI(i) must be defined. Additionally, relations between attributes and/or KPI values 

of the GAI(i)s, must be established.  

CSP allows to apply filtering techniques on every GAI(i) locally. In this way, it ensures the 

consistency of the newly built ETO.GASI(i). However, this ETO.GASI(i) will not be stored in the 

GMB, but it will be stored into the experience base for reusing. 

Similar to GASM, the process of defining ETO.GASI(i) is also iterative, recursive and bottom-

up. Meaning that a GAI(i) within a ETO.GASI(i) can have its own GASI(i)
j, and a new ETO.GASI(i) 

cannot be defined without first building a new ETO.GAI(i) and a new ETO.GADI(i).  

Figure 48 illustrates that one new ETO.GASI(i) is built for a new ETO.GAI(i), which is then 

mapped into a CSP.  
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Figure 48. ETO.GASI(i) and its translation into a CSP 

For instance, Figure 49 shows ETO.Mirror.GASI(i), as an instance representing a structural view 

for a family of mirrors. Based on the user requirements, ETO.Mirror.GASI(i) is composed of 

one ETO.Glass.GAI(i) and one ETO.MirrorFrame.GAI(i). The CSP of ETO.Mirror.GASI(i) 

encompasses the CSP of the ETO.Mirror.GADI(i). In Mirror.GASI(CSP), GAI(i) within 

ETO.Mirror.GASI(i)
 are replaced with their CSP and quantities of both GAI(i) 

(ETO.MirrorFrame.GAI(i) and ETO.Glass.GAI(i)) are represented by variables. KPIs 

aggregation methods are also formalized as constraints (represented as numerical functions). A 

relation in ETO.Mirror.GASI(i) exists: different materials of the mirror frame are only 

appropriate for the certain shape of the glass. This relation is formalized using a table of 

compatibility in the CSP of the ETO.Mirror.GASI(i) which links the compatible values of the 

variables ‘Shape’ (from ETO.Glass.GADI(i)) and ‘Material’ (from ETO.MirrorFrame.GADI(i)). 

Finally, constraint filtering is applied to ensure the consistency of the new ETO.Mirror.GASI(i). 

Note that since ETO.Mirror.GASI(i) is built to meet ETO requirements, therefore in both 

ETO.Mirror.GASI(i) and its CSP the letter ‘E’ is used for the list (quantity, GAI(i)), KPIs 

aggregation methods, relations, variables, CSPs, and constraints. For a compatibility table, the 

tag ‘E’ is written in the columns and tuples. However, for numerical functions, the tag ‘E’ is 

written at the beginning of the constraint. 
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Figure 49. Example of a new ETO.Mirror.GASI(i) and its translation into a CSP 

The following section is dedicated to the modification of instances. 

4.2.2.2. Modify GADI or GASI  

During ETO configuration, users may require attributes, structure, or relations that does not 

exist in the formalized knowledge models for configuration. Therefore, in order to fulfill these 

ETO requirements, existing instances must be modified leading to modifications in the solution 

space. Therefore, in this section which is devoted to the modification of instances, first, the 

definitions of GADI and GASI modification are proposed. 

Definition 28:  GADI modification 

GADI modification is the process of modifying or adapting the current GADI during ETO 

configuration by enriching the available knowledge to meet ETO requirements. This may 

lead to an ETO solution for the GAI(i) that will be stored in the EB. This modification turns 

the CTO.GADI(i) into an ETO.GADI(i). 

 

This GADI modification is a two-step process: 

Step 1) Modify the name and description of the current ETO.GADI(i) (if necessary), 

Step 2) Enrich the knowledge of the current ETO.GADI(i): based on the work of (Sylla, Guillon, 

Vareilles, et al., 2018) four cases are proposed. Therefore, the user can enrich the knowledge 

of the current ETO.GADI(i) by adding specific knowledge in order to meet ETO requirements. 

To enrich the knowledge, the following four cases for ETO.GADI(i) modifications are explained 

as follows: 
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− Case 1: Enlarge the domains of existing attributes: since the user requires one value 

of an attribute which is outside the current domains of attribute, this new value must 

be added to the domains of attribute. It enables to define an ETO.GADI(i) with new 

characteristics according to what the user wants.  

− Case 2: Define new combinations of attributes and/or KPIs values: the user wants a 

new combination of attributes and/or KPIs values that is beyond the existing ones. 

Therefore, a relation must be extended in order to link at least two incompatible 

values of attributes and/or KPIs within an existing constraint.  

− Case 3: Define new attributes with their domains: since the user requires a new 

attribute that does not previously exist, a new attribute with its domain must be 

defined. This allows the user to define an ETO.GADI(i) with specific characteristics 

(i.e. attributes with their domains).  

− Case 4: Define new relations between attributes and/or KPIs values: the user may 

need for a relation that does not currently exist, aiming to establish a link between 

attributes and/or KPIs values. Alternatively, the user may wish to explicitly 

represent the allowed or forbidden combinations of attributes and/or KPIs values. 

Therefore, the user must add a new relation that can link new attributes with existing 

attributes, or new attributes. This is the only case where the solution space is not 

enlarged. 

We propose to modify the CSP (ETO.GADI(i)(CSP)) as follows:  

− Case1: Enlarging the domains of attributes or KPIs corresponds to adding new 

values to the corresponding domains of variables. In this case, constraint filtering 

must not be applied since there may exist a constraint that after filtering, will delete 

the added values.  

− Case 2: Defining new combinations of attributes and/or KPIs values corresponds to 

adding new tuples to the existing compatibility tables. The user extends the 

constraint by adding a new tuple that links at least two previous incompatible values 

of variables. It should be noted that this case mainly deals with compatibility tables. 

Therefore, if there is a numerical function, the user needs to modify it manually. 

− Case 3: Defining new attributes with their domains corresponds to adding new 

variables and their corresponding domains.  

− Case 4: Defining new relations corresponds to adding new constraints in 

ETO.GADI(i)(CSP) either compatibility tables or numerical functions).  

For instance, as represented in Figure 50, in order to meet ETO requirements, 

ETO.Wheel.GADI(2) is modified. The requirement of the user can be related to a better 

resistance to shocks during off-road utilization of wheel. As no solution exists to meet this 

requirement, the ETO.Wheel.GADI(2) must be modified. This modification will correspond to 

the result of an engineering activity performed by designers. Then, it is translated into a CSP 

(ETO.Wheel.GADI(2)(CSP)). The user wants the diameter of the wheel to be 29, therefore in 
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ETO.Wheel.GADI(2), the domain of the attribute Diameter is enlarged and the value ‘E:29’ is 

added into the domain. In the CSP of ETO.Wheel.GADI(2), the new value ‘E:29’ is added to the 

domain of the variable Diameter. Note that before 29, E is written to represent that this value is 

added to fulfill the ETO requirement. That corresponds to the case 1. 

The user wants a wheel with 28 spokes. To define this requirement in ETO.Wheel.GADI(2), a 

new attribute with its domain is added (E: SpokeQty in {28}). In the CSP of 

ETO.Wheel.GADI(2), a new variable with its corresponding domain is added (E: SpokeQty). 

That corresponds to the case 3. 

The user wants to express the fact that a wheel with the diameter 29, a material steel, a weight 

of 3, and a cost of 600 € are now compatible. Therefore, to meet this requirement, an existing 

relation is extended in ETO.Wheel.GADI(2), while in the CSP of ETO.Wheel.GADI(2), an 

existing constraint is extended by adding a new tuple (tagged using E), indicating that Diameter 

‘29’ is compatible with the material ‘Steel’, the weight ‘3’, and the cost ‘600’. That corresponds 

to the case 2. 

The user needs to define a relation between the quantity of spokes and wheel diameter. 

Therefore, in ETO.Wheel.GADI(2), a new relation indicating that the quantity of spoke depends 

on the diameter is defined. Then, in ETO.Wheel.GADI(2)(CSP), a new compatibility table is 

added linking the compatible values of variables I: Diameter and E: SpokeQty. Note that 

constraint filtering is not applied thus the domains of variables are not restricted. That 

corresponds to the case 4. 

 

Figure 50. Example of modifying ETO.Wheel.GADI(2) and its translation into a CSP 

In this example, only the descriptive view is necessary. The user doesn’t need to take into 

account how the Wheel.GAI is composed. Therefore, the ETO configuration consists in 

modifying the instance Wheel.GADI of Wheel.GASM and to manually configure it. For instance, 

if the user wants that the diameter of the wheel is exactly ‘29’, the configuration is done 

manually removing all the incompatible values from the variables domains. In the example of 

Figure 50, this will lead to a solution where the diameter is ‘29’, the material is ‘steel’, the 

weight is ‘3’, the quantity of spokes is ‘28’ and the cost is ‘600’. 
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Similarly, in order to meet the user’s requirements, a GASI may be modified. This is related to 

the decision taken by the user to use the structural view. 

Definition 29:  GASI modification 

GASI modification is a process of modifying or adapting a GASI during ETO configuration 

by enriching their knowledge to meet ETO requirements. This may lead to an ETO solution 

that will be stored in the EB. This modification turns the CTO.GASI(i)
j into an ETO.GASI(i)

j. 

 

GASI modification is a two-step process: 

Step 1) Modify the name and description of the current ETO.GASI(i)
j (if necessary), 

Step 2) Enrich the knowledge of the current ETO.GASI(i)
j: based on (Sylla, Guillon, Vareilles, 

et al., 2018) five cases are proposed. The user can enrich the knowledge of the current 

ETO.GASI(i)
j by adding specific knowledge to fulfill ETO requirements: 

The BOM is modified in the following three cases. 

− Case 1: Enlarge the quantity domains of GAI(i) within ETO.GASI(i)
j: the user wants 

a quantity outside the existing domains of quantities. Therefore, to meet this 

requirement the new value of quantity must be added to the domain which did not 

previously exist. For example, enlarging a quantity of a GAI(i) from {[0, 1]} to {[0, 

1], 3} will allow to use 0, 1 or 3 GAI(i) within the ETO.GASI(i)
j. Enlarging the 

quantities domains of GAI(i) increases the solution space. After enlarging the 

quantities of GAI(i), KPIs aggregation methods must be updated. 

− Case 2: Replace a GAI(i) with another GAI(i) within ETO.GASI(i)
j: the user may 

require another GAI(i) existing in the taxonomy instead of a GAI(i) within 

ETO.GASI(i)
j. In addition, the user may require to replace a GAI(i) with another GAI(i) 

which has been previously modified (resulting from previous ETO cases). Then, 

after replacing the GAI, KPIs aggregation methods need to be updated. Replacing a 

GAI(i) with a modified ETO.GAI(i) can increase the solution space. 

− Case 3: Add new or existing GAI(i) with their quantity domains to the ETO.GASI(i)
j: 

the user may request a new GAI(i) with its quantity domain to be added to the 

structural view. Therefore, to fulfill this requirement, one or more GAI(i), whether 

they are new or existing, along with their quantities, must be defined. Then, they are 

integrated into the current ETO.GASI(i)
j. This allows to define an ETO.GASI(i)

j with 

a specific structure based on the user requirements. Then, KPIs aggregation methods 

need to be updated. These new GAI(i) which have been added to the ETO.GASI(i)
j 

make the solution space increase. 
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The knowledge is modified in the following two cases. 

− Case 4: Define new combinations of attributes and/or KPIs values of GAI(i): the user 

demands a new combination of attributes and/or KPIs values of GAI(i)s that were not 

allowed. Thus, a relation must be extended to link at least two incompatible values 

of attributes and/or KPIs of various GAI(i). Adding this new combination of 

attributes and/or KPIs values of GAI(i) increases the solution space. This case is 

similar to case 2 of ETO.GADI(i) modification which was related to the relations 

within each ETO.GADI(i). However, here the modification of the ETO.GASI(i)
j is 

related to the relations between attributes and/or KPIs values of different GAI(i) 

within the ETO.GASI(i)
j. 

− Case 5: Define new relations between GAI(i) or between attributes and/or KPIs 

values of GAI(i): the user may require a new relation that does not exist between 

GAI(i) or between attributes and/or KPIs values of the GAI(i) which compose the 

ETO.GASI(i)
j. The user may require to explicitly represent the allowed or forbidden 

combinations of GAI(i) or combination of attributes and/or KPIs values of GAI(i). 

Thus, new relations must be defined which can link i) new GAI(i) with existing 

GAI(i), ii) new GAI(i), iii) attributes and/or KPIs values of new GAI(i) and existing 

ones, or iv) attributes and/or KPIs values of new GAI(i). This case is very similar to 

case 4 of ETO.GADI(i) modification. However, here the relations between different 

GAI(i)s (or between attributes and/or KPIs values of different GAI(i)) are considered. 

We propose to modify the CSP as follows in ETO.GASI(i)
j(CSP). 

− Case 1: Enlarging the quantities of GAI(i) corresponds to adding new values to the 

corresponding domains of variables, 

− Case 2: Replacing a GAI(i) with another GAI(i) corresponds to replacing an existing 

CSP with another CSP, 

− Case 3: Adding new or existing GAI(i) with their quantities corresponds to adding 

new CSPs and new variables. 

− Case 4: Defining new combinations of attributes and/or KPIs values of GAI(i)s 

corresponds to adding new tuples to the compatibility tables. The user extends the 

constraint by adding new constraint tuples linking at least two incompatible values 

of variables of GAI(i)s. 

− Case 5: Defining new relations corresponds to adding new constraints. These new 

relations are formalized as constraints that can be compatibility tables or numerical 

functions.  

For example, as shown in Figure 51, to meet user’s ETO requirements, the ETO.Bike.GASI(2)
1 

is modified and then it is translated into a CSP in which the CSP of the Bike.GADI(2) is 

embedded. The user wants to replace the existing Wheel.GAI(2) with the modified Wheel.GAI(2). 

To fulfill this requirement, in ETO.Bike.GASI(2)
1, Wheel.GAI(2) is replaced with the modified 

one (E: Wheel.GAI(2)). The letter ‘E’ at the beginning of the Wheel.GAI(2) represents that this 
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GAI has been modified in ETO configuration activity. In ETO.Bike.GASI(2)
1(CSP), 

Wheel.GASI(2)(CSP) which is an embedded CSP is replaced with E: Wheel.GASI(2)(CSP) which 

is a modified CSP since its corresponding Wheel.GADI(2) is modified.  

In this example, the user wants a bike with two seats. Thus, to meet this requirement in 

Bike.GASI(2)
1 the quantity of a Seat.GAI(2) is enlarged and the value ‘E: 2’ is added to the 

quantity. Moreover, in ETO.Bike.GASI(2)
1(CSP), the mentioned value is added to the domain of 

the variable SeatQty. It is related to the case 1. 

The user wants also a bike with a mirror. Therefore, in ETO.Bike.GASI(2)
1 a new GAI with its 

quantity is added (i.e. E: ({1}, Mirror.GAI(i))). In addition, in ETO.Bike.GASI(2)
1(CSP), a new 

CSP is added (E: Mirror.GASI(i)(CSP)) as well as a new variable corresponding to its quantity 

is added (E: MirrorQty). It is related to the case 3. 

The user wants to define a relation between the categories of bike users and the material of the 

seat. Therefore, in ETO.Bike.GASI(2)
1, a relation is extended (E: the user child is only 

compatible with the material ‘carbon’). Moreover, in ETO.Bike.GASI1(CSP) an existing 

constraint is enlarged by adding a tuple that links incompatible values of Bike.GADI(2).User and 

Seat.GADI(2).Material. It is related to the case 4.  

The user wants also to define a relation between the quantity of mirrors and the quantity of 

seats. Therefore, in ETO.Bike.GASI(2)
1, a new relation is added (E: Quantity of mirror depends 

on the quantity of seat). In addition, this relation in ETO.Bike.GASI(2)
1(CSP) is translated into 

a new compatibility table linking the compatible values of Seat.GADI(2).SeatQty and                                       

E: Mirror.GADI(i).MirrorQty. If there is only one seat, there can be one or two mirrors. But if 

there are two seats, it is mandatory to have two mirrors. This situation is also related to the case 

5. 

In ETO.Bike.GASI(2)
1(CSP), two constraints related to KPIs aggregation methods are updated. 

In which, whatever is modified during configuration is tagged with ‘E’ otherwise it is not 

tagged. It is important to notice that constraint filtering is not applied to check the consistency 

of the built ETO.Bike.GASI(2)
1(CSP). The ETO configuration activity has to be performed 

manually. If the user wants two seats, the solution will be quantity of two mirrors. If the bike is 

for a child, the material of the seat will be ‘carbon’. It is done manually. 
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Figure 51. Example of modifying ETO.Bike.GASI(2)
1 and its translation into a CSP 

In the following section, the synthesis of the ETO configuration activity is presented. 

4.2.3. Synthesis  

In this section, we have focused on our second research question: " How can ETO requirements 

be processed during configuration activity?" by adapting configuration activity. Our approach 

involved proposing an adaptation of CTO to ETO by 1) creating a new GADI or GASI and      

2) modifying GADI or GASI. 

For the modification of ETO.GADI(i), based on the work of (Sylla, Guillon, Vareilles, et al., 

2018) four cases were proposed. While, for the modification of ETO.GASI(i)
j five cases were 

proposed and the translation into a CSP was proposed as well (ETO.GASI(i)
j(CSP)). All these 

cases were discussed which enables us to meet non-negotiable non-standard requirements, also 

referred to as ETO requirements. They are first formalized during configuration and then 

capitalized by storing the obtained ETO solutions of GADI or GASI in an EB at the end of 

configuration.  
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Furthermore, our approach enables us to interactively configure an instance each time user 

defines one requirement. In situations where new GADI or GASI are built, the consistency of 

these instances is checked to ensure that they are consistent pieces of knowledge ready to be 

integrated into the current instance. However, during GADI or GASI modification, the 

consistency of instances cannot be checked using filtering techniques because all the added 

values will be removed. 

ETO configuration activity is guided by the formalized knowledge. All the standard generic 

models (GA, GADM, GASM) which have been defined beforehand and stored into the 

knowledge base can be reused, adapted, modified or completed by the user according to the 

non-negotiable and non-standard requirements (ETO requirements). Following the 

requirements and the level of expertise of the user, either descriptive view or structural view 

can be exploited. During the ETO configuration activity, the generic models are instances (GAI, 

GADI, GASI). They are instantiated from generic models or they are created specifically to 

answer to ETO requirements. All the generic model instances modifications or creations 

correspond to engineering activities performed by designers who have changed the standard 

generic model instances of systems. The ETO configuration is then performed manually by the 

user, checking manually that every constraint is satisfied and every variable value belongs to 

its validity domain. This is due to the fact that the user cannot modify all the constraints 

belonging to the generic model instances (integrating all the added values). This can only be 

done during knowledge formalization and not during knowledge reuse. However, for every new 

instance, the user is allowed to define constraints which will enable to check its consistency. 

However, as they are activities which are performed out of the knowledge formalization 

process, most of the time, no constraint is created. At the end of an ETO configuration activity, 

the obtained models (GAI, GADI, GASI) are stored into an Experience Base. This enable to 

reuse them during the knowledge formalization process. Every model which has been created 

specifically to answer to ETO requirements can be standardized and translated from instances 

to generic models. Moreover, in order to answer to new requirements, instances can be reused, 

adapted and modified. However, the exploitation of system configuration experiences is not 

treated in this thesis. 

4.3. CTO-ETO knowledge reuse  

We have proposed two generic processes for knowledge reuse. One process is focused on CTO 

configuration (described in section 4.1), while the other one is focused on ETO configuration 

(presented in section 4.2). Initially, we assumed that the user can only be in either the CTO or 

ETO context and cannot switch between the two. However, in reality, users may have both 

CTO and ETO requirements. This means that a user might begin by defining requirements that 

can be fulfilled by reusing the generic model and then proceed to those that cannot. 

Consequently, a user may start with the CTO configuration and later shift to the ETO 

configuration. The generic process for knowledge reuse in both CTO and ETO configuration is 

illustrated in Figure 52 and Figure 53. The CTO-ETO process is designed to support the 

following scenarios. Each scenario describes a different path a user might take to meet their 

specific requirements, depending on whether those requirements can be met using standard 
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models (CTO) or require additional engineering (ETO), and whether they involve only the 

descriptive view of the selected GA(i) or its structural view as well. 

Scenario 1: we start with configuration of the descriptive view in CTO then shifting to the 

configuration of descriptive view in ETO. This scenario begins with the configuration of 

descriptive view in CTO. However, since the user's requirements cannot be met by reusing the 

existing generic models, the CTO is shifted into ETO. This shift involves modifying GADI(i) 

and then manually configuring in order to meet ETO requirements. The user is not interested to 

configure structural view. Therefore, at the end of configuration, an ETO solution is proposed 

then capitalized in an EB. 

Scenario 2: we start with configuration of the descriptive view in CTO, then shifting to 

the configuration of descriptive view in ETO, and subsequently continuing with the 

configuration of structural view in ETO. Similar to the previous scenario, due to the ETO 

requirements of the user, the shifting from CTO to ETO is required (related to the configuration 

of descriptive view). Then, since the user wants to use the structural view, the configuration of 

GASI is performed in ETO. Note that the GAI(i)s within GASI(i)
j are configured by implementing 

the sub process of “Configure CTO GAI”. The output here is an ETO solution (including the 

result of a configured GADI(i) plus a configured GASI(i)
j).  

Scenario 3: we start with the configuration of the descriptive view in CTO, then configure 

the structural view in CTO and ultimately shifting to the configuration of structural view 

in ETO. In this scenario, the GADI(i) is configured in CTO. However, configuring the structural 

view in CTO is not possible. Therefore, the shifting from CTO to ETO is required, in which the 

GASI(i)
j must be modified. The output is an CTO solution (the output of GADI configuration) 

and an ETO solution (the output of GASI configuration). 

With regard to these three scenarios, the solutions for such a configuration process can be of 

three different types: 

1) 100% CTO.GAI(i), if all the requirements were expressed in terms of the selected generic 

models; the CTO process, presented in section ,4.1.1.3 has been carried out from start to finish. 

2) 100% ETO.GAI(i), if all the requirements are outside the possibilities offered by the generic 

models - the ETO process, presented in section 4.2.1, has been carried out from start to finish. 

3) CTO-ETO.GAI(i), where some of the requirements were supported by the generic models and 

some were not. In this case, the GAI(i) solution contains elements marked CTO and others 

marked ETO.  
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Figure 52. Flowchart for knowledge reuse in CTO-ETO configuration: GADI configuration 
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Figure 53. Flowchart for knowledge reuse in CTO-ETO configuration: GASI configuration 

4.4. Synthesis  

The second objective of our research work is to reuse or exploit the formalized generic models 

for system configuration. This chapter presents our second contribution, a knowledge reuse 

process for system configuration by adapting the CTO configuration activity to meet ETO 

requirements. It comes in response to our second research question: "How can ETO 

requirements be processed during configuration activity?"  

Our proposals in section 4.1, allow us to select a generic model, following the needs of 

descriptive or structural view, then configure the instance of this generic model in CTO 

configuration activity to meet CTO requirements. Therefore, we first defined Generic Artifact 

Descriptive Instance (GADI(i)) for the descriptive view and Generic Artifact Structural Instance 

(GASI(i)
j) for the structural view and illustrated how these instances can be configured to meet 
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user requirements. In this section, a generic process for knowledge reuse in CTO is proposed 

and leads to CTO.GAI(i) solution. 

Our proposals in section 4.2, are dedicated to knowledge reuse in ETO situations in order to 

fulfill non-negotiable non-standard requirements in the ETO configuration activity. Therefore, 

we proposed adapting CTO configuration activity towards ETO through either building new 

GADI or GASI or modifying existing ones. To formalize ETO requirements, we defined four 

cases for GADI modification and five cases for GASI modification, then formalized these cases 

using CSP. The ultimate goal was to capitalize ETO solutions obtained in the ETO 

configuration activity in an Experience Base (EB). Each of the attributes, values, KPIs, KPIs 

aggregation methods, constraints and tuples can be tagged by the letter ‘E’ to capitalize the 

ETO knowledge. This modifications of the tags to (S/I) to (E) is propagated to GAI, GADI and 

GASI. In this section, a generic process for knowledge reuse in ETO is proposed and leads to 

ETO.GAI(i) solution. 

Our proposals in section 4.3, are dedicated to link between knowledge reuse in both CTO and 

ETO situations in order to fulfill both CTO and ETO requirements for system configuration. In 

this way, several scenarios are explained, and a generic process is illustrated using a flowchart. 

Considering both CTO and ETO requirements leads to a solution that is partly configured 

according to a generic model and partly designed for specific requirements. The solution is 

therefore made up of CTO and ETO artifacts in varying proportions, depending on the user's 

needs.  

This research led to an oral presentation at the SAGIP 2023 conference:   

• Maryam Mohammad Amini, Thierry Coudert, Elise Vareilles, Michel Aldanondo, 

Integration of constraint satisfaction problems and ontologies for the formalization and 

exploitation of knowledge in system configuration, SAGIP 2023, Marseille. 

In the next chapter, we illustrate our proposals related to knowledge formalization and 

knowledge reuse on a simplified but realistic example of a bicycle and its implementation in 

OPERA, a software developed in the context of the ANR project OPERA (ANR-16-CE10-

0010) for system configuration and risk management. 
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In Chapter 3, we have presented our first contribution: a knowledge formalization process for 

system configuration using the association of ontologies, CSP approaches, commonality and 

inheritance principles to create generic models at different levels of abstraction. Chapter 4 is 

devoted to our second contribution: a knowledge reuse process for system configuration by 

adapting the CTO configuration activity to ETO configuration activity in order to meet ETO 

requirements. 

In this chapter, we illustrate our proposals on a simplified but realistic example of a bicycle 

configuration implemented on the OPERA software. In section 5.1, we start with a short 

presentation of the OPERA software followed by the use case presentation. Then, in section 

5.2, we illustrate our proposals for knowledge formalization in system configuration. Some 

examples of chapter 3 are implemented using the OPERA software. In section 5.3, we illustrate 

our proposals for knowledge reuse in system configuration (CTO situation and ETO situation). 

Finally, in section 5.4 we synthesize the chapter.  
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5.1. OPERA software and use case presentation  

This section is devoted to the introduction of the OPERA software tool and the use case. 

5.1.1. OPERA software 

The OPERA project (acronym for "Outils logiciels et ProcEssus pour la Réponse à Appels 

d'offres") was initiated in November 2016 with funding from the ANR5 and began in November 

2016. Its primary objective is to provide bidding companies with knowledge-based support 

tools, enabling them to efficiently and confidently develop relevant bids when responding to 

invitations to tender. The consortium responsible for this endeavor consists of three research 

laboratories, namely CGI at IMT Mines Albi, ESTIA Recherche, and LGP at ENIT, along with 

four industrial partners - AES, Altran, Axsens, and Mécanuméric. 

The OPERA software has been developed in order to formalize knowledge and build solutions 

in the situation of call for tenders. Firstly, by means of the OPERA software, experts can 

formalize knowledge on solutions for systems or services that can be delivered. It is possible to 

formalize knowledge on systems and services along with their realization process. Moreover, 

it is possible to formalize knowledge on risks which can arise during the process realization 

(the identified risks, their probability of occurrence, their impacts on the process and the 

activities to mitigate them). Then, it is possible to implement CSPs and to propagate constraints 

using filtering methods in order to maintain the consistency of the models. Secondly, according 

to customer’s requirements, the user can configure solutions interactively (systems/services and 

processes can be configured) using constraint propagation (Guillon, Ayachi, et al., 

2021), (2) evaluate these solutions according to the risks and to the confidence the user has on 

the requirements satisfaction (Sylla, Guillon, Vareilles, et al., 2018). Then, the user is helped to 

select a solution which fulfill all the requirements and in which she/he is confident. 

In this thesis, we use the OPERA software as a system configuration software to implement and 

then verify our proposals for the knowledge formalization and knowledge reuse phases. The 

OPERA software has been chosen because it stands out as a tool that allows to: (1) formalize 

an ontology of generic models for system configuration following descriptive views and 

structural views (GA, GADM and GASM)), (2) handle different levels of abstraction for these 

generic models, (3) create instances in order to interactively configure systems. 

5.1.2. Use case presentation 

In this chapter, as illustrated in Figure 54, we check our proposals on a simplified but realistic 

example of knowledge formalization and knowledge reuse phases for bicycle configuration. 

We consider that a bike is only composed of two or three wheels, one seat, and one frame. To 

illustrate our proposal related to the knowledge formalization phase, first, we illustrate generic 

models creation (i.e. GA, GADM and GASM creation) on a bike example. Then, we illustrate 

GA generalization on a wheel example, in which City Wheel and Mountain Wheel generic 

models are generalized into Wheel generic models. Then, we show GA specialization on a bike 
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example in which Bike generic models are specialized into City Bike and Mountain Bike 

generic models. 

To illustrate our proposal related to the knowledge reuse phase, first, we illustrate GADI 

filtering on a bike example. We present GASM selection on a wheel example, in which we 

select one version among two versions of a wheel (i.e. mountain wheel and city wheel). We 

illustrate GAI and GADI building on the mirror example. We show GADI modification on the 

instance of a wheel, in which we decided to add an attribute and a new constraint. We represent 

GASI modification on an instance of a bike where we decided to only add a new GAI 

(corresponding to a mirror) and a new constraint (the number of seats is constrained by the 

number of mirrors). 

 

Figure 54. Scope of bike use case 

5.2. Knowledge formalization for system configuration 

This section is devoted to the application of our knowledge formalization proposals, described 

in Chapter 3, to the previously presented case study of bicycle configuration. First, in section 

5.2.1, Bike.GA(2) and Bike.GADM(2) are defined. In section 5.2.2, Bike.GASM(2)
1 is created. In 

section 5.2.3, MountainWheel.GA(3) and CityWheel.GA(3) are generalized into Wheel.GA(2), and 

in section 5.2.4, Bike.GA(2) is specialized into CityBike.GA(3) and MountainBike.GA(3). 
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5.2.1. GA and GADM Creation  

First, we create the taxonomy of GAs. The most general GA is System.GA(1). It is specialized 

into several GAs as represented in Figure 55. For every GA, a name and a description are given 

(the Figure 55 only shows the taxonomy of GAs and the Bike.GA(2) description). 

 

Figure 55. Taxonomy of GAs and the description of Bike.GA
(2)

 

Therefore, for every GA, the corresponding GADM (descriptive view) is created. That leads to 

the creation of the GADM taxonomy (not represented) 

Associated to System.GA(1), we define System.GADM(1) as the most general GADM, containing 

two KPIs: Weight with a validity domain of {[0, 35]} and Cost with a validity domain of 

{[0, 4500]}. As we create all the other GADMs as a specialization of System.GADM(1), they 

inherit the Cost and Weight with the same domain. 

We take the example of Bike.GADM(2), as illustrated in Figure 13. Then, we define 

Bike.GADM(2) as shown in Figure 56. To do so, we define three specific attributes. Two KPIs 

are inherited. We also define two constraints (compatibility tables). These tables represent 

sequences of compatible values for both attributes and KPIs. For instance, in the first 

compatibility tables, the first value of every tuple corresponds to the value of the variable 

‘User’, the second one corresponds to the value of the variable ‘Color’, the third one 

corresponds to the value of the variable ‘Weight’ and the last one corresponds to the value of 

the variable ‘Cost’. In the second table, the values correspond to the compatible values of the 

variables ‘User’ and ‘RingBellQty’ respectively.  

Filtering these constraints leads to restricting the initial domains of the attributes and KPIs in 

order to obtain a consistent generic model. As represented in Figure 57, after filtering 

constraints, the initial domain of Weight is restricted to {[2, 35]} and for Cost to {[100, 4500]} 

which are represented in green boxes. The Bike.GADM(2) becomes a consistent piece of 

knowledge corresponding to the descriptive view of Bike.GA(2) which will be reused later in the 

knowledge reuse section..  
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Figure 56. Bike.GADM
(2)

 before filtering constraints 
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Figure 57. Bike.GADM
(2)

 after filtering constraints 

5.2.2. GASM Creation  

We use the example of Figure 15 to create Bike.GASM(2)
1, the first version of the structural view 

of Bike.GA(2). It is composed of two or three Wheel.GA(2) and one Seat.GA(2). We have also 

included a Frame.GA(2). We create Bike.GASM(2)
1 (associated to Bike.GADM(2)) as illustrated in 

Figure 58. We define its description. It should be noticed that in the OPERA software, we can 

define explicitly the quantity of GAs if they are a constant. If the quantity of a GA is a range or 

interval, a variable corresponding to the quantity of GA needs to be defined in the GASM. In 

our example, the quantity of Seat.GA(2) and Frame.GA(2) is ‘1’, however, for Wheel.GA(2) the 

variable WheelQty is added since the quantity of wheel is an interval {[2, 3]}. 

We define a constraint (compatibility table) in which the first and second values of every tuple 

respectively correspond to the value of the variable ‘User’ of Bike.GADM(2) and the variable 

‘Material’ of Seat.GADM(2). We define two constraints (numerical functions) to aggregate the 

Cost and Weight for Bike.GADM(2). The first one represents the Weight for Bike.GADM(2) is 

equal to the sum of the weights of all GAs composing Bike.GASM(2)
1 regarding their quantities. 

Similarly, the second one represents the Cost for Bike.GADM(2) is equal to the sum of the costs 

of all GAs composing Bike.GASM(2)
1 considering their quantities. After constraint filtering, as 
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shown in Figure 58, the domains of Cost and Weight are further restricted to {[2.8, 17]} and 

{[215, 2210]} and the domain of variables ‘User’ (for Bike.GADM(2)) and ‘Material’ (for 

Seat.GADM(2)) are not changed.   

In the Figure 58, one can observe that Wheel.GA(2) has its own GASM as it is composed of 

Rim.GA(2) and Tire.GA(2). Bike.GASM(2)
1 is then a consistent piece of knowledge representing 

the first version of the structural view of Bike.GA(2). 

 

Figure 58. Bike.GASM
(2)

1 



Chapter 5: Use case and its implementation in OPERA: a bike example 

 

130 

5.2.3. GA Generalization  

As indicated in section 3.2.1, generalization enables to create a GA at a higher level of 

abstraction using the commonality of specific existing GAs. The generalization of GAs implies 

that both the associated GADM and GASM are also generalized.  

First, we create MountainWheel.GA(2) (not represented here), MountainWheel.GADM(2), 

CityWheel.GA(2) (not represented here) and CityWheel.GADM(2), using the example of Figure 

20. We define MountainWheel.GADM(2) as illustrated in Figure 59: we define two attributes, 

two inherited KPIs (there are inherited from System.GADM(1)), and a compatibility table. In this 

compatibility table, the values of the tuples respectively correspond to the values of the 

attributes and KPIs ‘Diameter’, ‘Material’, ‘Weight’, and ‘Cost’. Similarly, we define 

CityWheel.GADM(2) as shown in Figure 60. For this GADM, we define three attributes and two 

inherited KPIs. Two compatibility tables are also defined. In the first compatibility table, the 

values of tuples respectively correspond to values of the variables ‘Diameter’, ‘Material’, 

‘Weight’, and ‘Cost’. In the second one, the first and second values correspond to the values of 

‘Diameter’ and ‘InnerTubeQty’ respectively. The domains of variables are represented after 

filtering the constraints for MountainWheel.GADM(2) and CityWheel.GADM(2). 

 

Figure 59. MountainWheel.GADM(2) 

 

 



Chapter 5: Use case and its implementation in OPERA: a bike example 

 

131 

 

Figure 60. CityWheel.GADM(2) 

To create Wheel.GADM(2) by generalization of MountainWheel.GADM(2) and 

CityWheel.GADM(2), we refer to Figure 21. Based on the commonality of 

MountainWheel.GADM(2) and CityWheel.GADM(2), we define Wheel.GADM(2) as illustrated in 

Figure 61. MountainWheel.GADM(2) and CityWheel.GADM(2) are moved to the lower level (they 

become MountainWheel.GADM(3) and CityWheel.GADM(3) as illustrated in Figure 62). We 

define two common attributes (Diameter and Material), two common KPIs (Weight and Cost) 

as well as a common table of compatibility linking the compatible values of the following 

attributes and KPIs respectively: ‘Diameter’, ‘Material’, ‘Weight’ and ‘Cost’. As shown in 

Figure 61, after filtering this constraint, the domain of ‘Diameter’ is restricted to                         

{16, 18, 20, 22, 24, 26}, the domain of weight to [{0.2, 5}] and the domain of cost to                  

[{50, 1200}]. 

To summarize, in the OPERA software, we can define GADMs at different levels of 

abstraction. However, the tags ‘I’ and ‘S’ which we used in our proposal to distinguish the 

inherited and specific characteristics (i.e. attributes, KPIs, domains, relations) cannot be 

defined.  
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Figure 61. Wheel.GADM(2) 

Figure 62 illustrates the taxonomy of GADMs before and after generalization. In this taxonomy, 

it is represented that System.GADM(1) is defined as the most general GADM.  

 

Figure 62. GADMs taxonomy before and after generalization 

The generalization also implies the GASMs. Therefore, we define Bike.GASM(2) which is 

associated to Bike.GA(2) and Bike.GADM(2). It is the generalization of CityWheel.GASM(2)
1and 

MountainWheel.GASM(2)
1which have to be firstly created. 

We consider Figure 25 to define CityWheel.GASM(2)
1and MountainWheel.GASM(2)

1. We create 

MountainWheel.GASM(2)
1 as illustrated in Figure 63. First, we define its description. Then, we 

add Rim.GA(2) and Tire.GA(2) (they have to be created first). Since the quantity of both GAs are 

‘1’, we can define them directly in OPERA. Moreover, we define two constraints (numerical 

functions) in order to represent the equality between the diameter of the MountainWheel, the 

diameter of the Rim and the diameter of the Tire. We also define two constraints (numerical 

functions) to aggregate Weights and Costs. 
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Similarly, we create CityWheel.GASM(2)
1 as represented in Figure 64. To do so, we add 

Rim.GA(2), Tire.GA(2), InnerTube.GA(2) with quantities ‘1’. We define a constraint (compatibility 

table) to represent the quantity of inner tube must be ‘1’ in a city wheel. We define three 

numerical functions as well. The first one shows that the diameters of the city wheel and rim 

are equal, the second one represents the diameters of the city wheel and tire are equal and the 

last one shows that the diameters of the city wheel and inner tube are equal. Moreover, we 

define two numerical functions to aggregate weights and costs (respectively the sum of the 

weights and costs of Rim.GADM(2) and Tire.GADM(2)). 

For both MountainWheel.GASM(2)
1and CityWheel.GASM(2)

1, constraint filtering is applied in 

order to obtain consistent generic models. The domains of the variables of Figure 59 and Figure 

60 are the ones obtained after filtering. 
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Figure 63. MountainWheel.GASM(2)
1 
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Figure 64. CityWheel.GASM(2)
1 

We take the example provided in Figure 26, to define Wheel.GASM(2)
1using the generalization 

principle. Based on the commonality of MountainWheel.GASM(2)
1 and CityWheel.GASM(2)

1, we 

therefore define Wheel.GASM(2)
1 as represented in Figure 65. We made it up of one Rim.GA(2), 

and one Tire.GA(2). We define two constraints (numerical functions) to indicate that: 1) the 

diameter of the wheel and rim are equal and 2) the diameter of the wheel and tire are equal. 

Additionally, we define two numerical functions for the aggregation of weights and costs. 

Finally, MountainWheel.GASM(2)
1 and CityWheel.GASM(2)

1are moved to the lower level (they 

become MountainWheel.GASM(3)
1 and CityWheel.GASM(3)

1. 
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Figure 65. Wheel.GASM(2)
1 

5.2.4. GA Specialization  

We take the example of Figure 23, which represents the specialization of Bike.GADM(2) into 

CityBike.GADM(3). We therefore define CityBike.GADM(3) as illustrated in Figure 66. To do so, 

the knowledge of Bike.GADM(2) is inherited by CityBike.GADM(3). In OPERA, the attributes, 

KPIs, and their domains are inherited however the constraints must be added manually. 

CityBike.GADM(3) is now characterized by three inherited attributes (Color, User and 

RingBellQty), two inherited KPIs (Weight and Cost), and two inherited constraints (the first 

and second compatibility tables represented in Figure 66). Then, we narrow the inherited 

knowledge. In this way, we remove the value ‘Pink’ from the domain of attribute ‘Color’. We 

restrict the first constraint by adding a new tuple indicating that the user ‘Man’, the color ‘Blue’, 

the weight ‘30’, and the cost ‘4000’ are compatible. Then, we enrich the knowledge of 

CityBike.GADM(3). To do that, we add ‘LightQty’ with the domain {[1, 2]}. Moreover, we 

define a new constraint (compatibility table). In this table, the values respectively correspond 

to the compatible values of ‘User’ and ‘LightQty’. After filtering these constraints, the domains 

of variables are restricted as shown in Figure 66. 

 

 

 



Chapter 5: Use case and its implementation in OPERA: a bike example 

 

137 

 

Figure 66. CityBike.GADM(3) 

Figure 67 illustrates the taxonomy of GADMs before and after specialization. It illustrates that 

Bike.GADM(2) is specialized into CityBike.GADM(3) and MountainBike.GADM(3). Note that in 

this section only the illustration of the creation of CityBike.GADM(3) is shown. 

 

Figure 67. GADMs taxonomy before and after specialization 

We use the example of Figure 28, in which Bike.GASM(2)
1 is specialized into CityBike.GASM(3)

1. 

Then, we define CityBike.GASM(3)
1 as illustrated in Figure 68. To do so, first, we define its 

description then we associate CityBike.GASM(3)
1 to CityBike.GADM(3). We also define 
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Wheel.GA(2), Seat.GA(2) and Light.GA(2) as its composing GAs. We associate each GA to its 

corresponding GADM. We define two variables corresponding to the quantity of Wheel.GA(2) 

and quantity of Light.GA(2). We define a constraint (compatibility table) to restrict the domain 

of variable ‘WheelQty’ to ‘2’. We add ‘LightQty’ with its domain. We add a new tuple to a 

compatibility table. The first value corresponds to the value of User’ from CityBike.GADM(2) 

and the second one corresponds to the value of ‘Material’ (from Seat.GADM(2)). Additionally, 

we define a new compatibility table, in which the first value corresponds to the value of ‘User’ 

(from CityBike.GADM(2)) and the second one corresponds to the value of ‘Color’ (from 

Light.GADM(2)). We also define two numerical functions to aggregate weights and costs. 

Finally, we apply constraint filtering, which narrows domains and removes inconsistent values. 

 

Figure 68. CityBike.GASM(3)
1 

In this second section, we have shown that it is possible to formalize knowledge for system 

configuration using the OPERA software. All the generic models we obtained are stored in 
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taxonomies and they constitute an ontology of generic models. All the elements are consistent 

pieces of knowledge. Then, it is necessary to verify that this knowledge can be reused and the 

following section is dedicated to the knowledge reuse for system configuration. 

5.3. Knowledge reuse for system configuration  

This section is dedicated to the illustration of our knowledge reuse process (explained in chapter 

4) through examples of bicycle configuration. In section 5.3.1 and 5.3.2, knowledge reuse in 

CTO situation is shown. The creation and configuration of a solution using the descriptive view 

CTO.Bike.GADI(2) is presented in section 5.3.1. In section 5.3.2, the exploitation of the structural 

view MountainWheel.GASM(3)
1 (first version of the structural view of Mountain.Wheel) in CTO 

situation is described. In section 5.3.3, 5.3.4 and 5.3.5, knowledge reuse in ETO situation is 

presented. First, in section 5.3.3, the creation of a new mirror (ETO.Mirror.GAI(i) and 

ETO.Mirror.GADI(i)) is presented. In section 5.3.4, the modification of the descriptive view 

ETO.Wheel.GADI(2) is described  and, finally the modification of the structural view 

ETO.Bike.GASI(2)
1 is represented in section 5.3.5.  

5.3.1. System configuration using the descriptive view  

We refer to Figure 41, which represents the generic process for knowledge reuse in CTO 

situation, to configure the descriptive view of a bike instance by following a few steps: 

- Step 1: Select Bike.GA(2): In this use case, the user wants to configure a bike. Therefore, 

Bike.GA, representing a family of bikes, is selected from the GAs taxonomy. We, 

therefore, can use its associated GADM from the GADMs taxonomy. 

- Step 2: Create instances of Bike.GA(2) and Bike.GADM(2): We create CTO.Bike.GAI(2) 

and CTO.Bike.GADI(2) as illustrated in Figure 69. 
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Figure 69. CTO.Bike.GADI(2) 

- Step 3: User defines a requirement: The user defines that the bike is for a woman by 

restricting the domain of the “User” variable. 

- Step 4: Apply constraint filtering: the OPERA software filters the values of attributes 

and KPIs based on the user's requirement. For example, the defined CTO requirement               

(User = {Woman}), impacts the domains of one attribute and two KPIs (Color, Weight 

and Cost). Therefore, after propagation, the filtered domain of these variables are as 
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follows: Color = {Pink, Red}, RingBellQty = {0}, Weight = {[15, 30]} and                    

Cost {[500, 3000]} as represented in Figure 70. 

Since no filtered domains are empty and the domain of all filtered domains of attributes 

are not singletons, allowed values (represented in green boxes) are proposed to the user.  

- Step 5: User defines a second requirement: the color of the bike has to be pink. 

- Step 6: Apply constraint filtering: in the OPERA software, constraint filtering is applied. 

In this case, this doesn’t impact the domains of Weight and Cost. Therefore,            

Weight = {[15, 30]} and Cost = {[500, 3000]} remain as illustrated in Figure 70. There 

is no empty domain and all the values of attributes are singletons therefore a solution 

can be proposed. 

- Step 7: Propose a CTO solution: based on the user requirements, a CTO solution is 

obtained in CTO.Bike.GADI(2) which is illustrated in Figure 70. In this solution the user 

is ‘Woman’, the color is ‘Pink’, the quantity of ringbell is ‘0’, the weight is {[15, 30]} 

and the cost is {[500, 3000]}. In this solution, the domains of attributes are singleton 

while the domains of KPIs are ranges due to the uncertainty on the values of the Cost 

and Weight. 

- Step 8: Decide on using the structural view if exists: the user decides whether a 

structural view (detailed configuration of components and sub-components) is 

necessary. In this example, the user is not interested in configuring the structural view. 

Therefore, a CTO solution is proposed for CTO.Bike.GADI(2):    User = {Woman},                  

Color = {Pink}, RingBellQty = {0}, Weight = {[15, 30]} and Cost {[500, 3000]}. 
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Figure 70. CTO solution of CTO.Bike.GADI(2) 

5.3.2. System configuration using the structural view  

As explained in section 4.1.1, it is possible to configure the structural view of a GAI during a 

CTO configuration activity. We use the flowchart for knowledge reuse in CTO configuration 

which is shown in Figure 42. In this case, the configuration of a MountainWheel is performed 

using its structural view. 

- Step 1: Configure the descriptive view of CTO.MountainWheel.GAI(3): first, the 

descriptive view of CTO.MountainWheel.GAI(3) (i.e. CTO.MountainWheel.GADI(3)) is 

configured and then a CTO solution is proposed (Figure 71): the diameter is ‘20’, the 

material is ‘Aluminum’, the weight is {[0.2, 3]} and the cost is {[50, 600]}. 
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Figure 71. CTO solution of CTO.MountainWheel.GADI(3) 

- Step 2: Decide on using the structural view if it exists: in this example, the user is 

interested to configure the structural view of CTO.MountainWheel.GAI(3). 

- Step 3: Select one version of MountainWheel.GASM(3) among 

MountainWheel.GASM(3)
1 and MountainWheel.GASM(3)

2, on the basis of their 

descriptions. In this example, the first version MountainWheel.GASM(3)
1 is chosen. 

- Step 4: Create an instance of MountainWheel.GASM(3)
1: We create 

CTO.MountainWheel.GASI(3)
1 as shown in Figure 72.  

 

Figure 72. CTO.MountainWheel.GASI(3)
1 

- Step 5: Define the quantity of all GAIs: since CTO.MountainWheel.GASI(3)
1 is 

composed of one CTO.Rim.GAI(2) and one CTO.Tire.GAI(2), their quantities are defined 

as follows: RimQty = {1}, TireQty = {1} 

- Step 6: Select CTO.Tire.GAI(2) and configure it: to configure CTO.Tire.GAI(2), its 

descriptive view is configured (similar to section 5.3.1). At the end of the configuration, 

as shown in Figure 73, a CTO solution is found for CTO.Tire.GADI(2): Diameter = {20}, 

Cost = {[48, 70]}, Weight = {[0.7, 1.5]}. 
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Figure 73. Solution for CTO.Tire.GADI(2) 

- Step 7: Select Rim.GAI(2) and configure it: at the end of configuration, a CTO solution 

is found: Diameter = {20}, Cost = {[48, 70]}, Weight = {[0.7, 1.5]}. 

There are no more GAIs and all the configured GAIs have a solution.  

- Step 8: Aggregate the KPIs for CTO.MountainWheel.GASI(3)
1: in OPERA, after filtering 

constraints, the calculated Cost and Weight are obtained as follows (Figure 74): 

Weight = {[1.3, 3]} and Cost = {[298, 470]}. 

- Step 9: Propose a CTO solution: finally, the set of all solutions for the CTO.Rim.GAI(2) 

and CTO.Tire.GAI(2) construct the CTO solution for CTO.MountainWheel.GASI(3)
1. The 

solution for the structural view CTO.MountainWheel.GASI(3)
1 is: the 

CTO.MountainWheel.GASI(3)
1 is composed of one CTO.Rim.GAI(2) and one 

CTO.Tire.GAI(2). 
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Figure 74. Solution of CTO.MountainWheel.GASI(3)
1 

5.3.3. GAI and GADI building 

As explained in section 4.2.2, during the ETO configuration activity, the user may need a GA 

that does not belong to the GAs taxonomy. In our example, the user needs a mirror that isn’t 

available in the taxonomy. Therefore, to satisfy this user requirement, we need to build a new 

instance of the mirror family in the OPERA software (i.e. ETO.Mirror.GAI(i)), illustrated in 

Figure 75. Note that we define the level (i) as we don’t know yet if this generic artifact will be 

added to the GAs taxonomy later nor its hierarchical level. We create its associated GADI 

represented in Figure 45.  To meet ETO requirements, ETO.Mirror.GADI is built as shown in 

Figure 76. We define the attribute Diameter with domain {[10, 80]}, the KPI Weight with 

domain {[0.2, 0.9]} and the KPI Cost with domain {[30, 70]}. For this ETO.Mirror.GAI, the 

user decides that there is no need to create a structural view. 

 

Figure 75. ETO.Mirror.GAI(i) 
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Figure 76. ETO.Mirror.GADI(i) 

5.3.4. GADI modification 

As explained in section 4.2.1, ETO requirements can be satisfied during ETO configuration 

activity by modifying an existing GADI (i.e. an instance of an existing GADM which belongs 

to the GADMS taxonomy). The generic process for reusing knowledge in ETO (for GADI 

configuration) is illustrated in Figure 43 by means of a flowchart. 

- Step 1: Select an existing GA in the taxonomy: the user selects Wheel.GA(2) and 

therefore, the configuration will be based on an instance of it. 

- Step 2: Create an instance of Wheel.GA(2) and Wheel.GADM(2): as illustrated in Figure 

77, ETO.Wheel.GAI(2) and ETO.Wheel.GADI(2) are created. 
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Figure 77. ETO.Wheel.GAI(2) and ETO.Wheel.GADI(2) 

- Step 3: User defines ETO requirements: the user has two requirements: 1) she/he wants 

a wheel with 28 spokes, 2) she/he wants to define a relation between the quantity of 

spokes and the diameter of wheel. The wheel diameters of ‘20’, ‘24’ and ‘26’ are only 

compatible with quantities ‘16’, ‘18’, ‘20’ and ‘22’. The diameter of ‘28’ is only 

compatible with the quantities ‘24’ and ‘26’. 

Step 4: Modify ETO.Wheel.GADI(2): to fulfill these ETO requirements, 

ETO.Wheel.GADI(2) must be modified. We, therefore, use the example of Figure 50. 

However, here, we only define two cases (3 and 4) which are respectively related to 

defining a new attribute with its domain and defining a new relation. As represented in 

Figure 78, we modify ETO.Wheel.GADI(2). To do that, we add the attribute SpokeQty 

with the domain {28}, and then we define a new compatibility table. The first value 

corresponds to the value of the attribute SpokeQty and the second one corresponds to 

the value of Diameter. As we do not apply constraint filtering, the domains of attributes 

and KPIs are not restricted during this step. 
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Figure 78. Modified ETO.Wheel.GADI(2) 

- Step 5: Manually configure ETO.Wheel.GADI(2): since the quantity of spoke is ‘28’, due 

to the new constraint the diameter can be ‘24’ or ‘26’. The user selects ‘26’. Then, due 

to the first constraint, the diameter ‘26’ is only compatible with the material ‘Steel’ or 

‘Carbon’. The user selects ‘Carbon’. Then, the domains of Weight and Cost have to be 

manually restricted to Weight = {[0.3, 5]}, Cost = {[200, 1200]} following the 

constraints of ETO.Wheel.GADI(2). The domain of all attributes are then reduced to 

singletons. 

- Step 6: Propose an ETO solution: the proposed ETO solution is illustrated in Figure 79 

where the quantity of spokes is ‘28’, the diameter is ‘26’, the material is ‘Carbon’, the 

weight is {[0.3, 5]}, and the cost is {[290, 1200]}. It should be noticed that the solution 

obtained here differs from the ones presented in chapter 4, because we are focusing on 

just two specific cases. 
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Figure 79. ETO solution of modified ETO.Wheel.GADI(2) 

5.3.5. GASI modification 

As mentioned in section 4.2.1, ETO requirements can be satisfied during ETO configuration 

activity by modifying GASI. We use the generic process for reusing knowledge in ETO shown 

in Figure 44. 

- Step 1: Bike.GA(2) is selected and then ETO.Bike.GAI(2) and ETO.Bike.GADI(2) are 

created. Then, the descriptive view of ETO.Bike.GAI(2) is manually configured, 

interactively with the user as represented on Figure 80. The user wants a bike for a 

‘Child’. The first constraint within ETO.Bike.GADI(2) represents that the user ‘Child’ is 

only compatible with the colors ‘Blue’, ‘Red’ and ‘Gray’ which the user selects ‘Blue’. 

Then, the user manually restricts the domains of weight and cost to {[2, 15]} and     

{[100, 2000]} respectively. The second constraint within ETO.Bike.GADI(2) represents 

that for a user ‘Child’, the quantity of RingBell is ‘1’. The domains of attributes are 

singletons we, therefore, propose an ETO solution based only on the descriptive view. 
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Figure 80. Solution of ETO.Bike.GADI(2) 

- Step 2: As a structural view is available for Bike.GA(2), the user wants to configure a 

structural view of ETO.Bike.GAI(2). 

- Step 3: The user selects Bike.GASM (2)
1, the first version of the structural view of 

Bike.GA(2) in the taxonomy of GASMs. 

- Step 4: Create an instance of Bike.GASM (2)
1: we define ETO.Bike.GASI (2)

1 as shown in 

Figure 81. 
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Figure 81. ETO.Bike.GASI (2)
1 

- Step 5: Modify ETO.Bike.GASI (2)
1: we take the example of Figure 51 in chapter 4. 

However, we only consider cases 3 and 5. We modify ETO.Bike.GASI (2)
1 as represented 

in Figure 82. Since the user wants a bike with a mirror, we add the ETO.Mirror.GAI 

with quantity ‘1’ in ETO.Bike.GASI (2)
1. It is necessary to add the attribute ‘MirrorQty’ 

in ETO.Bike.GASI (2)
1. Moreover, the user wants to define a relation between the 

quantity of mirrors and the quantity of seats. Therefore, we define a new table of 

compatibility in which the first value corresponds to the value of ‘SeatQty’ and the 

second one corresponds to the value of ‘MirrorQty’. 
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Figure 82. Modified ETO.Bike.GASI(2)
1 

- Step 6: Define the quantity of all GAI: the user wants a bike with two wheels, one seat, 

one frame and one mirror. Note that if we have one mirror, we must have one seat due 

to the added compatibility table within ETO.Bike.GASI (2)
1. 

- Step 7: Select CTO.Wheel.GAI(2) and configure it: the user is interested in configuring 

both the descriptive view and structural view of CTO.Wheel.GAI(2) without any 

modifications (CTO configuration). At the end of the CTO configuration, the result of 

configuring CTO.Wheel.GADI(2) is (Figure 83): Diameter = {16}, Material = 

{Aluminum}, Weight = {[0.2, 3]}, Cost = {[50, 600]}. The result of configuring 

CTO.Wheel.GASI(2)
1 is (Figure 83): CTO.Wheel.GASI(2)

1 is composed of one 

CTO.Rim.GAI(2) and one CTO.Tire.GAI(2). There is a constraint representing that the 

diameters of wheel, rim and tire are equal. The CTO.Rim.GAI(2) is configured as follows: 

Diameter = {16}, Weight = {[0.2, 0.6]}, Cost = {[25, 200]}. The CTO.Tire.GAI(2) is 

configured as follows: Diameter = {16}, Weight = {[0.2, 0.8]}, Cost = {[30, 50]}. 
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The weight and cost of CTO.Wheel.GADI(2) are aggregated as follows: 

Weight = {[0.4, 1.4]} and Cost = {[55, 250]}. 

 

Figure 83. CTO solution for CTO.Wheel.GASI(2) 

- Step 8: Select CTO.Frame.GAI(2) and configure it without modifications (CTO 

configuration) (Figure 84): the user selects the color ‘Blue’ for the seat. Due to the 

compatibility table defined within CTO.Frame.GADI(2), the color ‘Blue’ is only 

compatible with materials ‘Aluminum’ and ‘Carbon’ which the user selects ‘Carbon’. 

Then, the Weight and Cost are manually restricted to {[2, 7]} and {[300, 600]}. 
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Figure 84. CTO solution for CTO.Frame.GAI(2) 

- Step 9: Select and configure CTO.Seat.GAI(2) (Figure 85): Since the user is ‘Child’, the 

material of CTO.Seat.GADI(2) is ‘Plastic’ due to the first constraint defined in 

ETO.Bike.GASI (2)
1. Then, considering the compatibility table defined within 

CTO.Seat.GADI(2), material ‘Plastic’ is compatible with colors ‘Pink’, ‘Blue’ and 

‘Gray’ which the user selects ‘Pink’. Then, the weight and cost are manually restricted 

to {[0.5, 0.8]}, {[5, 100]}. Since the domain of all attributes has been reduced to 

singletons, we propose a CTO solution for CTO.Seat.GADI(2) in the Figure 85. 
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Figure 85. CTO solution for CTO.Seat.GAI(2) 

- Step 10: Select and configure ETO.Mirror.GAI (Figure 86): as explained before 

ETO.Mirror.GAI and ETO.Mirror.GADI are created. The user decides to only configure 

the descriptive view of ETO.Mirror.GAI, not its structural view. The user selects the 

value ‘30’ for the diameter of the mirror among the ranges of {[10, 80]}. The weight 

and cost remain {[0.2, 0.9]} and {[30, 70]}. This corresponds to an ETO solution for 

the mirror. 

 

Figure 86. ETO solution for ETO.Mirror.GAI(i) 



Chapter 5: Use case and its implementation in OPERA: a bike example 

 

156 

- Step 11: Manually aggregate the KPIs for ETO.Bike.GASI (2)
1: the user aggregates the 

weight and cost and then obtains respectively the following domains: {[3.5, 11.5]} and 

{[445, 1270]}. 

- Step 12: Propose an ETO solution: the solution is the integration of all previous 

solutions. 

In this illustration, one can remark that it mixes CTO configuration with ETO configuration. 

For some parts of the system to configure, no modifications were necessary and the CTO 

process were carried out. But for other parts, modifications were necessary and the ETO 

configuration process were carried out. 

5.4. Synthesis  

This chapter is devoted to the illustration of our proposals explained in chapters 3 and 4 using 

the OPERA software, in order to check and validate them. We therefore apply our two 

contributions on a simple but realistic case study for the configuration of bicycles. 

In section 5.1, we introduced the OPERA software and we presented the use case. In section 

5.2, we defined our proposals concerning the knowledge formalization for system 

configuration. In OPERA, we can define GADMs at different levels of abstraction. Moreover, 

we can define different GASMs. As well as we can configure them to ensure their consistency. 

In section 5.3, we defined our proposals related to knowledge reuse for system configuration. 

In OPERA, we are able to define GADIs and GASIs, configure them, and meet ETO 

requirements by modifying the instances. In the last section, we mixed CTO configuration and 

ETO configuration in order to fulfill the requirements: the formalized knowledge on some parts 

of the bicycle had to be modified using ETO configuration process and other ones didn’t 

necessitate any modifications and were configured using the CTO configuration process. Then, 

we have shown that it is possible to associate both processes. 

In the next chapter, we present the conclusions of this PhD thesis and scientific perspectives. 
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In this chapter, we provide an overview of our research and we propose ideas and directions for 

future research. First, in section 6.1, we address the conclusions of this Ph.D. We then conclude 

with some scientific perspectives in section 6.2. 

6.1. Conclusions  

This PhD focuses on formalization and reuse of knowledge for system configuration. Chapter 1 

serves as an initial introduction to this PhD thesis. The chapter describes briefly the two main 

steps of knowledge formalization and knowledge reuse. The dissertation's research questions 

and principal contributions are then introduced in this first chapter, followed by an overview of 

its structure and main concepts.  

In Chapter 2, the focus is on the specifics of system configuration and presents a comprehensive 

analysis of the state of the art in system configuration. Based on the literature review, we have 

identified two scientific gaps: 1) formalize generic models at different levels of abstraction for 

system configuration distinguishing descriptive view and structural view (topic of our first 

research question), and 2) meet the user's ETO requirements during the configuration process, 

These ETO requirements can be either descriptive or structural and can operate at varying 

abstraction levels. For this bibliographic study, in order to evaluate the existing works and 

approaches, eight criteria have been identified. Four criteria are related to the knowledge 

formalization phase and four criteria are related to the reuse phase. Finally, the comparison of 

the different approaches according to the eight criteria led us to choose the association of 

ontologies and CSPs.  

In this PhD, responses to the two research questions have been proposed: 

RQ 1. “Is it possible to define an ontology of generic models to better manage knowledge, 

allowing a clear distinction between descriptive and structural views for system configuration?” 

The first research question is answered in Chapter 3 which leads to our first contribution. This 

contribution targeted the phase of knowledge formalization. We formalized an ontology of 

generic models using the association of ontologies, CSPs, commonality, and inheritance 

principles. Our approach improves knowledge management by creating generic models 

hierarchically at various abstraction levels using ontologies, from the most general one to the 

most specialized one. This enables experts to easier maintain and update models. Our approach 

also enables a clear distinction to be made between descriptive and structural views of the same 

system. In the descriptive view, the key attributes, indicators of the system, and the relations 

between their values are formalized while avoiding details of its structure. This view is 

interesting for novice or non-expert users. In the structural view, the BOM of the system, KPIs 

aggregation methods, and the relations between the items composing it are formalized. This 
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view is interesting for expert users. In this way, we have defined the concept of Generic 

Artifacts at the level (i), notated GA(i), and its two distinct views: the descriptive view, notated 

GADM(i) and the structural view, notated GASM(i)
j using CSP to model several relations and 

ensure the consistency of the models. CSP allows for the formalization of relations between 

artifacts or between their characteristics using constraints and provides the opportunity to use 

constraint filtering to delete inconsistent values and only keep consistent ones. Then, based on 

the commonality of generic models, we formalized a new model at a higher level of abstraction 

using the generalization mechanism. This model only contains the common knowledge among 

models. Moreover, we formalized a new generic model at a lower level of abstraction using 

inheritance principles and the specialization mechanism. This model is refined and enriched 

based on what’s specific for their new model. Therefore, in the same general model (regardless 

of the descriptive GADM(i) and structural GASM(i)
j view), knowledge may have either been 

inherited, denoted as 'I', or deliberately added, denoted as 'S'. This notation clearly indicates the 

quantity of both general and specific knowledge in a general model. Our approach makes the 

formalization process quicker and in a more structured way. Moreover, it facilitates 

maintenance and update allowing to keep generic models up to date. When we make a change 

to a high-level model, all related specific models will inherit those updates.  

RQ 2. “How can ETO requirements be processed during configuration activity?” 

The second research question is answered in Chapter 4 which leads to our second contribution. 

Our second contribution has focused on the phase of knowledge reuse. We proposed a 

knowledge reuse process by adapting the CTO configuration activity to fulfill ETO 

requirements. Therefore, our approach first covers CTO situations and we highlight what our 

proposals imply in CTO configuration. First, in the classical way, the user has to select a generic 

model, or GA(i) at a certain level of abstraction. An instance of his descriptive view is created, 

noted GADI(i) then configured. Once the descriptive view or GADI(i), has been configured, the 

user can decide whether or not to configure one of its structural views or GASI(i)
j
 to meet the 

CTO's requirements. If this is the case, the user enters a new configuration cycle for each item 

or GAI of the BOM. Configuration is complete when all the attributes of all the GADI(i) in the 

BOM are set to a single value. A CTO-solution has then been found. After that, our focus shifted 

to pure ETO situations. We proposed a generic process for knowledge reuse in ETO. The 

adaptation of configuration activity towards ETO involved either creating new instances or 

modifying existing ones to meet ETO requirements, which corresponds to performing 

engineering activities. We proposed several cases for modifying both GADI and GASI in order 

to formalize ETO requirements using CSP. During the creation or modification of GADI or 

GASI for ETO, we need to ensure their consistency. In the case of modification, constraint 

filtering cannot be used for consistency checks since it will result in deleting the added values 

or inconsistency. Instead, the consistency check is done by the expert user manually. Once the 

ETO configuration activity is complete, the resulting solutions are stored in an Experience Base 

(EB). Storing them allows for future reuse of solutions and update of formalized generic 

models. Moreover, we proposed a generic process for knowledge reuse in CTO- ETO which 

links between CTO and ETO and allows to fulfill both CTO and ETO requirements. 
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In Chapter 5, the thesis takes a practical turn by implementing some of our proposals. This is 

achieved by using a real bicycle example in the OPERA software. After briefly introducing the 

OPERA mock-up, our bike example focuses: 

1) For the formalization phase: on the creation of generic artifacts GA(i) and their corresponding 

descriptive, GADM(i) and structural views, GASM(i)
j (sections 5.2.1 and 5.2.2). We also 

demonstrate the concepts of generalization (section 5.2.3) and specialization (section 5.2.4) of 

models, using the examples of wheel and bicycle families, respectively.  

2) For the knowledge reuse phase: for CTO requirements, on selecting and configuring BOM 

components (sections 5.3.1 and 5.3.2), while for ETO requirements, on defining a new 

component during configuration (section 5.3.3), as well as modifying a component (section 

5.3.4) and the structure of the BOM (section 5.3.5). 

In conclusion, this thesis has made: 

• two notable contributions to knowledge management in system configuration.  

• one experiment of our proposals on a software mock-up. 

Additionally, we have presented four papers at international conferences and one at a national 

oral presentation. 

• Maryam Mohammad Amini, Michel Aldanondo, Élise Vareilles, Thierry Coudert. 

Twenty Years of Configuration Knowledge Modeling Research. Main Works, What To 

Do Next?. IEEM 2021 - International Conference on Industrial Engineering and 

Engineering Management, Dec 2021, Singapore, France. pp.1328-1332,  

• Maryam Mohammad Amini, Thierry Coudert, Élise Vareilles, Michel Aldanondo. 

Integration of Ontologies and Constraint Satisfaction Problems for Product 

Configuration. IEEM 2021 - International Conference on Industrial Engineering and 

Engineering Management, Dec 2021, Singapore, France. pp.578-582,  

• Maryam Mohammad Amini, Thierry Coudert, Élise Vareilles, Michel Aldanondo. 

System Configuration Models: Towards a Specialization Approach. MIM 2022 - 10th 

IFAC Conference on Manufacturing Modelling, Management and Control, Jun 2022, 

Nantes, France. pp.1189 - 1194, ⟨10.1016/j.ifacol.2022.09.551⟩, 

• Élise Vareilles, Thierry Coudert, Michel Aldanondo, Maryam Mohammad Amini. 

Capitalisation de connaissances en configuration de biens et de services : vers une 

meilleure gestion de la communalité des modèles. CIGI QUALITA MOSIM 2023, Jun 

2023, Trois-Rivières, Canada. 8 p. 

(Amini, Aldanondo, et al., 2021) 

(Amini, Coudert, et al., 2021) 

(Amini et al., 2022) 

(Vareilles et al., 2023) 
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6.2. Scientific perspectives  

The two contributions summarized above open up various perspectives for future research. This 

section represents the main ones following each contribution.  

Perspective 1: Considering multiple inheritance in knowledge formalization 

In our knowledge formalization phase, we limited the specialization to the single inheritance, 

in which a child inherits the knowledge from one of the parents. However, when we delve 

deeper into knowledge formalization, the concept of multiple inheritance emerges as a 

potentially richer and more complex concept (Cardelli, 1984). This concept allows a child to 

inherit knowledge from at least two parents. For instance, let's consider we have formalized two 

generic models: one representing ‘Child Bikes’ and the other representing ‘City Bikes’. Thanks 

to multiple inheritance we can create a new generic model for ‘Child City Bikes’ which inherits 

the features and structures of both ‘Child Bikes’ and ‘City Bikes’ models. The multiple 

inheritance facilitates the formalization of a richer model by inheriting features and structures 

from several parent models, resulting in a more detailed and specific child model. Efficiency is 

another key benefit since the formalized generic models can be used to define a new model 

rather than starting from scratch. 

However, multiple inheritance is not without any challenges. One is the increased complexity 

that results from merging multiple parent models, which can make the child model more 

difficult to understand and maintain. Conflict resolution is another obstacle; when features or 

attributes from different parent models come into conflict, it can be difficult to determine which 

feature should take priority or how it should be merged. Moreover, it is essential to ensure that 

the child model does not inherit contradictory features from its parents, and therefore maintains 

the consistency of knowledge.  

The idea would be to first formalize multiple inheritance for generic models (i.e. GA, GADM, 

and GASM multiple inheritance), then propose formalization processes. These processes 

should tackle challenges like dealing with complex situations and resolving conflicts. To do 

this, the following papers can be investigated as a good basis and their ideas can be adapted. 

(Simons, 2005) examined the theoretical challenges and resolution of conflicts related to 

multiple inheritance in object-oriented programming. Ducournau in (Ducournau et al., 1992) 

developed conflict resolution mechanisms in multiple inheritance in Object-Oriented 

Programming. (Ducournau & Privat, 2011) provided insights on the semantics of multiple 

inheritance.  

Perspective 2: Considering intangible artifacts in knowledge formalization 

In our knowledge formalization, we only considered tangible artifacts such as technical 

systems. However, nowadays configurations are not just limited to tangible artifacts; they also 

involve intangible artifacts like services. Services such as maintenance or training play an 

important role in customer satisfaction and loyalty. Moreover, customized services can provide 

a significant competitive advantage. 



Chapter 6: Conclusions and scientific perspectives 

 

161 

Future work should therefore focus on the formalization of generic models for intangible 

artifacts at different levels of abstraction and its link with the models for tangible artifacts. The 

idea is to create an ontology of generic models for services, in which generic models are 

structured from the most general one to the most specialized one. To achieve this, we must 

investigate how to define processes for both generalization and specialization of services 

models. Before that, we must first define the descriptive view and structural view of a family 

of services, therefore we need to adapt our proposals to the services. For instance, in the 

descriptive view, the features, KPIs, and the constraints linking their values can be defined 

while in the structural view the service components, their relations, and KPIs aggregation 

methods can be formalized. The following papers can be investigated as a good basis and their 

ideas can be adapted. 

(Guillon, Ayachi, et al., 2021) studied Product-Service Systems, also called PSS which allows 

the combination of different types of artifacts (components, subsystems, service components, 

and modules) in a unique technical solution architecture. They also formalized processes for 

artifacts. (Dong et al., 2011) proposed an ontology-based approach for modeling knowledge for 

service products, adapting product configuration concepts to the service sector. They mentioned 

that based on the literature, components have properties, constraints, and resources. They 

employed languages like OWL and SWRL to formalize the knowledge of services. (Shen et al., 

2012) proposed an ontology-based approach for formalizing configuration knowledge related 

to Product Extension Services (PESs). They began by creating meta-ontologies, which 

encompassed sub-ontologies for services, products, and customers, providing a foundation for 

the general PES configuration domain. The knowledge was then formalized using OWL, and 

SWRL. 

Perspective 3: Measuring the level of ETO in knowledge reuse  

In our knowledge reuse phase, we proposed processes for reusing knowledge in CTO, ETO, 

and CTO-ETO. However, we did not discuss the level of ETO. In reality, most of the time we 

deal with CTO-ETO in which user requirements are CTO requirements and some are ETO 

requirements. Among ETO requirements it can be related to Light ETO or Heavy ETO (Sylla, 

Guillon, Vareilles, et al., 2018). Therefore, it seems to be interesting to understand the quantity 

of engineering activities required to fulfill ETO requirements.  

A third perspective concerns the ideas for the development of an indicator to measure the 

percentage of ETO within a configuration. The following works (Siddique et al., 1998) and 

(Thevenot & Simpson, 2006) can be considered as good references to give us some ideas. In 

their work, they proposed an index for measuring platform commonality, named Percent 

Commonality (%C) then measured it based on different views, which we explained in Chapter 

2, page 24. We can adapt their proposals to our context. 

In our proposals for knowledge formalization and knowledge reuse, we defined three distinct 

tags: ‘I’ for ‘Inherited’, ‘S’ for ‘Specific’, and ‘E’ for ‘ETO’. In ETO, all three tags ‘E’, ‘S’, 

and ‘I’ are used. While, in CTO, only the tags ‘I’ and ‘S’ are used. The idea would be to use 

these tags in order to calculate the level of ETO for GADI and GASI. To achieve the level of 

ETO for GADI, first, the level of ETO for its elements (i.e. attributes, attributes domains, 
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relations, and constraint tuples) must be calculated and then percentages must be integrated 

using a method. On the other hand, to obtain the level of ETO for GASI, first, it must be figured 

out how to compute the ETO level for each GAI composing it. Then, how to propagate the ETO 

level to the higher level of composition (e.g. from the component level to the subsystem level 

and then to the system level). Moreover, the level of ETO for other elements such as quantity 

domains, relations, and constraints tuples must be calculated as well. Finally, a method must be 

defined to integrate these percentages of ETO. 
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Integration of constraint satisfaction problems and ontologies for the formalization and 

exploitation of knowledge in system configuration 

This thesis focuses on system configuration, a design activity involving the assembly of 

predefined subsystems and components. The key challenge is formalizing knowledge for 

system configuration at various levels of abstraction distinguishing descriptive and structural 

views and then reusing it to meet Engineer-To-Order (ETO) requirements. The first 

contribution is a knowledge formalization process for system configuration using ontologies, 

Constraint Satisfaction Problems (CSPs), commonality and inheritance principles. This process 

facilitates the creation of generic models at different abstraction levels, ensuring their 

consistency, maintenance, and update. Descriptive and structural views provide comprehensive 

system representations. The second contribution is a knowledge reuse process for system 

configuration by adapting a Configure-To-Order (CTO) configuration process to an ETO 

configuration process to meet ETO requirements. Instances of generic models are created, 

descriptive and/or structural, then configured by using a generic process to meet ETO 

requirements. Obtained solutions are capitalized in an experience base. Finally, proposals are 

illustrated on a bicycle example, implemented and tested on the OPERA platform, a system 

configuration software. 

Keywords: System Configuration, Knowledge Formalization, Knowledge Reuse, Ontology, 

Constraint Satisfaction Problems 

 

Intégration de problèmes de satisfaction de contraintes et d'ontologies pour la 

formalisation et l'exploitation de connaissances dans la configuration de systèmes 

Cette thèse se concentre sur la configuration des systèmes, une activité de conception 

impliquant l'assemblage de sous-systèmes et de composants prédéfinis. Le principal défi 

consiste à formaliser des connaissances pour la configuration de systèmes à différents niveaux 

d'abstraction en distinguant les vues descriptives et structurelles, puis à les réutiliser pour 

répondre aux exigences de l’ingénierie ETO. La première contribution est un processus de 

formalisation des connaissances pour la configuration de systèmes utilisant les ontologies, les 

problèmes de satisfaction des contraintes (CSP) et les principes de communalité et d'héritage. 

Ce processus facilite la création de modèles génériques à différents niveaux d'abstraction, 

garantissant leur cohérence, leur maintenance et leur mise à jour. Les vues descriptives et 

structurelles fournissent des représentations complètes du système. La deuxième contribution 

est un processus de réutilisation des connaissances pour la configuration de systèmes en 

adaptant un processus de configuration à la commande (CTO) à un processus de configuration 

ETO pour répondre aux exigences ETO. Des instances de modèles génériques descriptives et/ou 

structurelles sont créées, puis configurées à l'aide d'un processus générique pour répondre aux 

exigences de l'ETO. Les solutions obtenues sont capitalisées dans une base d'expérience. Enfin, 

les propositions sont illustrées sur un exemple de bicyclette, mises en œuvre et testées sur la 

plate-forme OPERA, un logiciel de configuration de systèmes. 

Mots Clés : Configuration de systèmes, Formalisation des connaissances, Réutilisation des 

connaissances, Ontologies, Problèmes de satisfaction de contraintes 
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