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Titre: Mesure du bruit du supercourant à l’équilibre dans un anneau supraconducteur-normal et relation
courant-phase des états de bord hélicaux du ditellure de tungstène
Mots clés: Transport quantique, isolant topologique, fluctuations de courant

Résumé: Une jonction SNS formée par un
matériau non-supraconducteur (N) entre deux con-
tacts supraconducteurs (S) peut être traversée par
un supercourant porté par des états liés d’Andreev
(ABS) qui est déterminé par la différence de phase
supraconductrice aux bornes des contacts supra-
conducteurs. La valeur de ce courant et sa dy-
namique sont des sondes très sensibles des pro-
priétés de transport cohérent et topologique dans
le matériau non-supraconducteur. Une première
expérience dans laquelle un fil mésoscopique (Au)
est inséré dans un anneau supraconducteur a per-
mis d’explorer la dynamique des ABS. A tempéra-
ture finie, les fluctuations thermiques des ABS
doivent donner lieu à des fluctuations du super-
courant et donc à une dissipation à fréquence finie
dont l’amplitude dépend de leur temps de relax-
ation comme prédit par le théorème fluctuation-
dissipation. En couplant cet anneau à un ré-
sonateur supraconducteur nous avons réussi à
mesurer indépendamment les fluctuations du su-

percourant à l’équilibre et la dissipation qui appa-
rait quand on soumet l’anneau à un flux magné-
tique oscillant. Cette expérience constitue la pre-
mière confirmation de ce théorème dans une jonc-
tion SNS. Dans une seconde partie, nous avons
mis en évidence le caractère topologique du ditel-
lure de tungstène (WTe2) à travers la mesure de
la relation supercourant/phase en utilisant un dis-
positif d’interférence quantique supraconducteur
(SQUID) asymétrique, constitué de deux jonctions
SNS en parallèle. La forme en dent de scie de la
relation courant-phase pour une facette latérale du
cristal et la survie du supercourant à fort champ
magnétique révèlent le caractère balistique et uni-
dimensionnel du transport le long de certaines
arêtes sur plus de 500 nm. Ceci est une signa-
ture de la présence d’états unidimensionnels pro-
tégés du désordre dans ce matériaux confirmant
les prédictions d’une phase proche d’un isolant
topologique d’ordre supérieur pour ce matériau.
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Abstract: An SNS junction formed by a non-
superconducting material (N) between two super-
conducting contacts (S) can sustain a supercur-
rent carried by Andreev bound states (ABS) which
is determined by the superconducting phase dif-
ference across the superconducting contacts. The
value of this current and its dynamics are very sen-
sitive probes of the coherent and topological trans-
port properties in the non-superconducting mate-
rial. An initial experiment in which a mesoscopic
wire (Au) is inserted into a superconducting ring
has made it possible to explore the dynamics of the
ABS. At finite temperature, thermal fluctuations
in ABS should give rise to fluctuations in the su-
percurrent and therefore to a finite-frequency dis-
sipation, the amplitude of which depends on their
relaxation time, as predicted by the fluctuation-
dissipation theorem. By coupling this ring to a su-
perconducting resonator, we were able to measure
independently the fluctuations in the supercurrent

at equilibrium and the dissipation that occurs when
the ring is subjected to an oscillating magnetic flux.
This experiment constitutes the first confirmation
of this theorem in an SNS junction. In the sec-
ond part, we demonstrated the topological char-
acter of tungsten ditelluride (WTe2) by measuring
the supercurrent/phase relation using an asymmet-
ric superconducting quantum interference device
(SQUID), consisting of two SNS junctions in par-
allel. The sawtooth shape of the current-phase
relation for a lateral facet of the crystal and the ro-
bustness of the supercurrent at high magnetic field
reveals the ballistic and one-dimensional charac-
ter of the transport along certain edges over more
than 500 nm. This is a signature of the presence of
one-dimensional states protected from disorder in
this material, confirming the predictions of a phase
close to a higher-order topological insulator for this
material.
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Synthèse en français
Cette thèse porte sur les propriétés fondamentales du supercourant qui passe à

travers un matériau non-supraconducteurs, autrement dit les propriétés des jonc-
tions SNS (S pour supraconducteur et N pour normal). Les notions utiles à la com-
préhension générale de ce travail de thèse dans son ensemble sont introduites dans
le premier chapitre de ce manuscrit, intitulé Transport quantique et réponse
linéaire. En particulier sont introduites dans ce chapitre les bases théoriques de
la supraconductivité par effet de proximité et les différentes charactéristiques du
supercourant dans une jonction supraconductrice hybride, ainsi que les bases du for-
malisme de la réponse linéaire. Ce chapitre se termine par le modèle des fluctuations
du supercourant d’un système à deux niveaux (le point de contact quantique) et de
sa conductance, permettant d’introduire une des premières motivations de ce travail
de thèse : la mesure du bruit du supercourant dans une jonction SNS dans le régime
long diffusif.

Mesure du bruit du supercourant dans un anneau supraconducteur-
normal

Le deuxième chapitre de ce manuscrit (et premier chapitre expérimental) de ce
manuscrit est consacrée à la mesure à la fois des fluctuations de supercourant à
l’équilibre thermique et à la conductance d’une jonction longue diffusive. A cause de
la grande non-linéarité de ces objets, une attention particulière est portée sur la dé-
finition d’un régime linéaire d’une jonction SNS nous permettant à la fois de définir
une conductance et de rester dans le domaine de validité du théorème fluctuation-
dissipation et de mesurer indépendemment les deux quantités qui nous intéressent.
Tout d’abord, la jonction est placée dans un anneau supraconducteur. Via l’applica-
tion d’un champ magnétique, un flux magnétique permet de contrôler la différence
de phase supraconductrice entre les deux interfaces NS de la jonction. L’anneau
est inductivement couplé à un résonateur supraconducteur, ce qui permet à la fois
de convertir le bruit en courant de l’anneau en bruit en tension pour les mesures
de bruit et de polariser l’anneau avec une phase alternative pour les mesures de
conductance. Le montage expérimental est complété par l’utilisation d’un amplifi-
cateur cryogénique fabriqué par Y. Jin et Q. Dong (Centre de Nanosciences et de
Nanotechnologies) connecté directement au résonateur.

Une importante partie de ce travail est la calibration de la mesure. A phase
nulle, où flux nul, la température électronique ainsi que la valeur des éléments du
circuit sont déterminés via la mesure du spectre de bruit en tension ainsi que du
coefficient de transmission. La mesure du coefficient de transmission en fonction de
la différence de phase supraconductrice - ou plutôt sa différence par rapport au cas
où la différence phase est nulle - nous donne accès séparément aux composantes
réactive (inductance) et dissipative (conductance) de la réponse de la jonction à
une excitation. La relation courant-phase de la jonction est extraite via l’inductance
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Figure 1 – Dispositif expérimental et de l’échantillon étudié dans le chapitre 2
de ce manuscrit. (a) Schéma de principe de la mesure. La jonction SNS est placée
dans un anneau supraconducteur, formant un anneau NS, inductivement couplé à
un résonateur supraconducteur directement connecté à l’amplificateur cryogénique.
Grâce à ce dispositif expérimental, en utilisant le même échantillon, il est possible
de mesurer la réponse de l’anneau à une excitation en phase (représenté par une ex-
citation sur le résonateur, position "1"), et sans excitation (représenté par la position
"2". (b) Image au microscope optique du résonateur supraconducteur, les méandres
en molybdène-rhénium représentant la partie inductive du résonateur (la partie ca-
pacitive est soudée sur le porte-échantillon et n’est pas représentée ici). Le cadre
vert est un zoom sur l’anneau, encadré par les pointillés rose. Le cadre bleu montre
l’inductance de couplage, tandis que la jonction (dont la partie normale est un fil
d’or) est encadré en rouge.

mesurée, et sa forme et l’évolution en température confirment le régime long diffusif.
La conductance est également obtenue et est à comparer au bruit en courant mesuré
sur le même échantillon, et est présenté en Fig. 2.

Premièrement, la bonne thermalisation entre le résonateur et l’anneau est confir-
mée via l’utilisation de la même valeur de température électronique. De plus, l’accord
entre les lignes de base (indépendante en phase), est une vérification du théorème
pour le résonateur seul tandis que la partie dépendante en phase est la vérification
de ce même théorème pour l’anneau NS.

Enfin, il nous est possible de dissocier la réponse de la jonction de la réponse

10



Figure 2 – Théorème fluctuation-dissipation dépendant de la différence de phase su-
praconductrice. Comparaison entre les fluctuations du courant (carrés) et la conduc-
tance (lignes pleines).

de l’anneau en prenant en compte les effets d’écrantage du champ magnétique. Il
vient que la conductance de la jonction est quasiment indépendante de la différence
de phase supraconductrice mais fortement dépendante de la température en 1/T ,
contrastant avec la conductance d’un métal dans l’état normal. Dans une dernière
partie de ce chapitre, des calculs numériques via un modèle de liaisons fortes et
une première approche théorique nous permette d’expliquer ces phénomènes, due en
particulier à la symétrie électron-trou imposée par la supraconductivité.

(b)(a)

Figure 3 – (a) La conductance de la jonction est indépendente de la phase. (b)
Cependent, elle dépend fortement de la température, et à basse température peut
atteindre jusqu’à cinq fois la conductance du même matériau dans l’état normal.
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Des états unidimensionnels et balistiques aux arêtes du ditellure
de tungstène

Le troisième chapitre de ce manuscrit est consacrée à la révélation expérimen-
tale d’états balistiques charnières d’un matériau topologique, matériaux introduits
dans une première partie de ce chapitre. En particulier, nous nous concentrons sur
le ditellure de tungstène (WTe2). Ce dernier est un matériau riche de par ses nom-
breuses propriétés topologiques : ces dix dernières années, il a été théorisé et mon-
tré expérimentalement qu’en monocouche le WTe2 est un isolant quantique de spin,
c’est-à-dire que sa surface est isolante mais que ses bords présentent des états conduc-
teurs. De plus, la direction de propagation des électrons au bord est associé au spin
(verrouillage spin-impulsion), ce qui entraîne une protection topologique face à, par
exemple, une rétrodiffusion sur une impureté non-magnétique. En multicouche, le
WTe2 est un matériau plus complexe : il a été montré qu’il s’agit d’un matériau de
Weyl de type II, induisant des états de surface topologiques. De récentes études expé-
rimentales ont cependant montré l’existence d’états unidimensionnels sur les arêtes
du ditellure de tungstène, sans pour autant discriminer leur caractère topologique ou
non. Une description plus approfondie du matériau est l’objet de la seconde partie
de ce chapitre. L’objectif de cette expérience est de déterminer la nature de ces états
de bords. Pour ce faire, nous souhaitons mesurer la relation courant-phase d’une
jonction SNS où le matériau non-supraconducteur est le bord d’un multicouche de
WTe2. Expérimentalement cela passe par la fabrication d’un dispositif d’interférence
quantique supraconducteur (squid) asymétrique, consistant dans notre cas en deux
jonctions SNS en parallèle, une de référence et l’autre à sonder. Dans notre expé-
rience, la jonction de référence est placée dans le volume du WTe2. Enfin, le courant
critique du squid en fonction du champ magnétique est la somme des courants cri-
tiques des deux jonctions, ce qui en première approximation fait que l’on mesure le
courant critique de la jonction de référence modulée par la relation courant-phase de
la jonction que l’on souhaite sonder. Les détails de cette technique, de la fabrication
et les techniques de mesure sont l’objet respectivement des parties 3, 4 et 5 de ce
manuscrit.

Finalement, la dernière partie de ce chapitre est une description et une analyse
des résultats obtenus, résumé dans la figure 4. Grâce à la branche du squid qui sert
de jonction de référence, nous avons pu déterminer le caractère diffusif (c’est-à-dire
topologiquement triviaux) des états conducteurs du WTe2 en volume et surface. La
partie d’intérêt nous donne une relation courant-phase qui ressemble à une dent
de scie (Fig. 4(d), forme caractéristique d’une jonction SNS dans le régime long et
balistique. De plus, la valeur de ce supercourant nous permet de déterminer qu’il
existe cinq canaux de conduction balistiques dans notre échantillon, coïncidant avec
le nombre d’arêtes visibles en microscopie électronique (Fig. 4(c)). De plus, la survie
d’un supercourant à fort champ (jusqu’à 2 T), donne des indices sur le caractère
unidimensionnels de ces états. Ces expériences confirment donc la présence d’états
balistiques unidimensionnels aux bords du WTe2, indiquant un possible caractère
topologique.
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Figure 4 – (a) Un isolant topologique 2D ou un isolant topologique d’ordre deux en
2D présente des états de conductions hélicaux à ses bords. Ces états ont différentes
propriétés topologiques, par exemple le verrouillage spin-impulsion qui associe le
signe d’un spin à une direction de propagation, amenant à une protection contre la
rétrodiffusion par une impureté non-magnétique. A l’aide de la supraconductivité
par effet de proximité, il est possible de sonder la nature de ces états hélicaux,
comme par exemple en mesurant la relation courant-phase d’une jonction SNS à
base de ces matériaux topologiques. (b) Expérimentalement, cela est possible en
utilisant un squid asymétrique, fait à partir de deux jonctions SNS en parallèle
(bleu : supraconducteur, jaune : métal non-supraconducteur). (c) La jonction de
référence de ce squid asymétrique est fabriquée dans le volume du WTe2, et une
jonction au bord de ce même échantillon est la jonction que nous souhaitons étudier
(rectangle vert). En mesurant le courant critique du squid (qui est la somme des
courants passant dans les deux jonctions), nous avons accès à la relation courant-
phase de la jonction au bord. (d) La relation courant-phase mesurée est une dent
de scie, évoluant très peu avec la température. Cette forme est représentative d’une
jonction SNS dans le régime long et balistique, indiquant que le courant au bord du
WTe2 est transporté par des états balistiques sur une distance de plus de 500 nm.
Cette mesure est une preuve supplémentaire du caractère topologique du WTe2.
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Introduction, summary, and organization of the
manuscript

This thesis deals with the fundamental properties of the supercurrent through
a non-superconducting link inserted in a superconducting ring. A magnetic flux
controls the phase difference across the link and modulates the properties of the
supercurrent.
A first question we adressed (both theoretically and experimentally) is how to char-
acterize the dissipation in such a system. Experimentally the ring configuration is
ideal in an oscillating magnetic field which modulates the phase difference, realiz-
ing a phase biasing of this non-connected ring. The non-dissipative current is in
phase with the ac excitation ; the dissipative current is out-of-phase. By measuring
both the noise and the ac magnetic susceptibility of such an SNS (superconductor-
normal-superconducor) ring we not only verified the fluctuation-dissipation theorem
for hybrid superconducting junction but we also have demonstrated a peculiar in-
crease of the conductance (dissipation) at low temeprature specific to a normal metal
proximitized by a superconductor. Tight-binding simulations suggest that this dis-
sipation is mostly due to transitions between Andreev levels that are symmetric
around the Fermi energy, a hallmark of the electron-hole symmetry induced by the
superconductor. Consequently, in contrast with the Drude conductance of a normal
metal, the conductance of the hybrid junction is temperature dependent (it decreases
with temperature as 1/T) and experimentally can reach up to five times the Drude
conductance of a non-superconducting metal. The main results are summarized in
Fig. 5.
A second part of this thesis is devoted to reveal the presence of helical states at
the hinges of a topological material, tungsten ditelluride. For this, we measure the
flux-dependence of the critical current of an asymmetric dc squid in which we used a
topological material, WTe2, as the weak link. The goal is to reveal the helical states
that are supposed to carry the supercurrent ballistically. The reference junction
used for this squid is on the surface of the thick WTe2 crystal whereas the smaller
critical current jjunction is due to the helical states at the hinges of the crystal. By
measuring the critical current of the squid, we access the current-phase relation of
the hinge states and reveal the ballistic transport of those states over a distance
(500 nm) which is ten time the elastic mean free path of the electrons. A summary
is found in Fig. 6.
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Figure 5 – (a) The SNS ring (green : junction, red : ring, blue : superconducting
resonator) has a supercurrent modulated by the phase difference between the two
superconducting boundaries. This phase difference is controlled using a magnetic
flux ϕdc. On top of this dc flux, an oscillating ac flux ϕac is added by coupling an rf
resonator to the ring. The ring’s response in turn modifies the resonator’s resonance
frequency and quality factor. Those shifts are directly related to the magnetic sus-
ceptibility of the ring. (b) the imaginary part of the magnetic susceptibility. This
quantity is related to the conductance of the SNS ring and is phase dependent. The
plot shows the phase dependent conductance of the ring. (c) The noise of the ring is
measured with no ac excitation. The noise is due to thermally activated transitions
between Andreev levels that carry current with an alternating sign : the current thus
fluctuates around a mean value. The schematics here shows a fluctuating supercur-
rent with time. The quantity of interest is not the current itself but the current noise,
which is defined here as the Fourier transform of the correlator current-current. (d)
The measurement of the conductance and the supercurrent noise of the same sample
allows us to compare the two quantities using the fluctuation-dissipation theorem.
(e) The temperature dependence of the conductance of the SNS junction, that we
explain by the electron-hole symmetry imposed by the superconducting boundaries.
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Figure 6 – (a) A 2D topological insulator or 3D second-order topological insulator
has helical conducting states at its edges. These state present different topological
properties, such as the spin-momentum locking or the protection from backscatter-
ing. Using the superconducting proximity effect, the idea is to probe the nature of
these channels, by measuring their current-phase relation. (b) To do so, the tool we
use is the dc asymmetric squid, consisting of two SNS junctions in parallel (blue :
superconductor, yellow : normal metal). (c) The reference junction of this squid
is fabricated using the bulk of WTe2 and by measuring the critical current (which
is the sum of the current going through the two junctions), we get acces to the
current-phase relation of the hinge junction highlighted in the green rectangle. (d)
The current-phase relation measured is a sawtooth. This shape is a tell-tale sign
that the current through the hinge flows ballistically over 500 nm. This is due to
the topological character of WTe2

.
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Organization of the thesis
The organisation of this manuscript is the following :
— In the introductive chapter, we introduce all the general notions needed to

understand the idea of this work. We start by a short introduction on the
mesoscopic scale. We introduce also the scattering formalism and Kubo for-
malism to define the conductance in mesoscopic physics. A part is dedicated
to the superconductivity proximity effect and we finally give a short deriva-
tion to the fluctuation-dissipation theorem in a superconducting quantum
point contact to introduce the second chapter.

— In the chapter Supercurrent noise in a phase-biased superconductor-
normal ring in thermal equilibrium, we detail the measurements of
thermal noise and conductance. Section 2.1 details the principle of the ex-
periments and give a theoretical insight on the quantities we want to measure.
The experimental part starts with section 2.2 in which we detail the setup
before the calibration and technical part of section 2.3. The experimental
results are detailed in section 2.4, and a discussion on the results and the
comparison with numerical simulations can be found in section 2.5.

— In the chapter Ballistic hinge states in multilayer tungsten ditel-
luride, we start by an introduction on the (higher order) topological insu-
lators in section 3.1, with a focus on the specific S/topological insulator/S
junction. In section 3.2, we present briefly WTe2. The principle of the
experiment is detailed in section 3.3. Sections 3.4 and 3.5 deal with the
fabrication of the samples and the measurement techniques used during this
PhD. Finally, the results are detailed and discussed in section 3.6.
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1 - Quantum transport and linear response the-
ory

1.1 . Electronic transport at the mesoscopic scale

1.1.1 . A matter of length scale
In the field of quantum transport, the phenomena we are interested in take place

in system with a large number of atoms, electrons or other quantum objects but in a
reasonable size so that these phenomena have to be describe by quantum mechanics
: mesoscopic physics is then first a matter of length scale.
The first length scale we describe is maybe the most important one to consider:
the phase coherence length Lφ. It is the distance range in which the phase of an
electron, is well defined. This means that electronic interferences are possible within
this range, and these interferences give rise to quantum effects. However phase
coherence is limited by a lot of processes, for instance inelastic collisions such as
electron-phonon ones or electron-electron interactions.
Thus, to consider a system to be coherent and for the rest of this section, we consider
a system of characteristic size L < Lφ. Transport properties are controlled by
electrons near the Fermi level. Considering this, we need to take into account the
length scale associated with the electronic wavefunction : the Fermi wavelength
λF . Last but not least, the elastic mean free path le of an electron is an important
quantity to consider when studying transport as it determines the nature of transport
of the considered system.

Lφ

le

λF

Inelastic processes Inelastic processes

Figure 1.1 – Summary of the typical length scales of a mesoscopic system : Lφ is
the phase coherence length, le the elastic mean free path (the mean distance between
elastic collisions) and λF the Fermi wavelength.

— If the electron can travel from one end of the conductor to the other without
scattering, i.e. if le > L, the system is said to be ballistic.

— Otherwise, the electron scatters and we are entering a diffusive regime : the
system is then diffusive.

1.1.2 . Conductance of a mesoscopic system
Electronic transport is generally described by the conductivity σ, which is clas-

sicaly an intrinsic characteristic of a system, independent of the geometry of the
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conductor or the environment. However experimentally the measured quantity is
the conductance G, and more precisely the current I in response of an applied volt-
age via Ohm’s law I = GV and the conductivity is obtained via G = σS/L. In this
classical picture, the conductance is seen as coming from the scattering of the charge
carriers. Two approaches, at first glance radically different, give a more precise def-
inition of conductance. The first one we describe is the Landauer approach [1] that
we describe briefly in section 1.2.1 and Kubo and Greenwood approach, subject of
section 1.2.2.

1.2 . Theoretical approach of quantum transport

1.2.1 . Landauer formalism : the scattering approach
Landauer’s approach consists on seeing the conductor we want to probe the

conductance of as a barrier, and the wires used to send the current to the conductor
as waveguides. The conductor is describe by its transmission coefficient τ .

The four wire conductance of one channel is given by :

G = 2e2

h
τ (1.1)

where the factor 2 is for the spin degeneracy. Even for a ballistic wire, for which
τ = 1, there is still a finite resistance given by :

RQ = h

2e2 = 12.9 kΩ (1.2)

which is the quantum of resistance. This finite resistance comes from the contacts
which then play a major role in quantum transport experiments. To access the
intrinsic properties of the materials we want to study, we develop a technique which
does not require any contacts. To describe these systems, Kubo formalism is more
suited as it describes the local conductance, and it is presented in the following.

1.2.2 . Linear response theory and quantum transport
This section aims at giving the readers the basic tools of linear response theory

and a derivation of the fluctuation-dissipation theorem to understand the first part
of the manuscript. It is heavily inspired by C. Texier lectures notes [2] and T. T.
Heikkilä’s book [3], and G. Montambeaux and E. Akkermans’ book [4]

(a) Kubo formula : general formulation

The Kubo approach of quantum transport can be summed up as follows : we
consider a conductor first at equilibrium. This conductor will be perturbed by an
external potential, yielding the creation of an electric field E⃗ which yields in the
linear response a current density j⃗ = σE⃗. To compute σ, we need to introduce in
the Hamiltonian of the system a term related to the electric field. The correct way
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to do it is by introducing the vector potential A(t) such that :

E⃗ = −∂A

∂t
and ∇⃗ × A⃗ = 0 (1.3)

and the Hamiltonian is written :

H = [p⃗+ eA⃗(t)]2
2m + V (r⃗) (1.4)

And considering that the current density j⃗ is given by :

j⃗ = Tr(ρĵ) (1.5)

where ĵ is the current density operator and ρ(t) the density matrix, solution of the
following equation :

iℏ
∂ρ

∂t
= [H, ρ] (1.6)

ρ is generally written as ρ = ρ0+δρ with ρ0 the density matrix at equilibrium, i.e.
in the case A⃗ = 0⃗. To take into account the perturbation starting at t = −∞ we can
add a relaxation term to equation 1.6. This relaxation term is of the form −iγδρ(t)
in equation 1.6 and taking the limit γ → 0. ℏ/γ can be interpreted as the lifetime
of the electrons in the conductor before it escapes in the reservoirs, mimicking the
relaxation due to inelastic collisions. Introducing this term in equation 1.6 yields :

iℏ
∂ρ

∂t
= [H, ρ] − iγ(ρ(t) − ρeq(t)) (1.7)

where ρeq describes the total system at thermodynamic equilibrium.
The linear response approximation consists on keeping in the expression of δρ(t)

and δρeq(t) only the linear terms in A⃗(t). Therefore, we rewrite the Hamiltonian of
equation 1.4 :

H = H0 + H1(t)

H0 = p⃗2

2m + V (r⃗)

H1(t) = e

2m(p⃗ · A⃗+ A⃗ · p⃗)

(1.8)

and equation 1.7 can be written :

iℏ
∂δρ

∂t
= [H0, δρ(t)] + [H1, δρ0] − iγ(δρ(t) − δρeq(t)) (1.9)

We write in a basis (|n⟩, εn) of eigenstates of H0 the Fourier transform of equation
1.9 :

⟨n|δρ(ω)|l⟩ = [f(εn) − f(εl)]⟨n|H1|l⟩ − iγ⟨n|δρeq(ω)|l⟩
(εn − εl) − ℏω − iγ

(1.10)
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with f(εn) the occupation of the state |n⟩. If we assume δρeq to be stationary, we
have :

⟨n|δρeq(ω)|l⟩ = f(εn) − f(εl)
εn − εl

⟨n|H1(ω)|l⟩ (1.11)

and we can also write the current density operator as ĵ = ĵ0 + ĵ1 :

ĵ0 = − e

2m(n̂p⃗+ p⃗n̂)

ĵ1 = − e2

2m(n̂A⃗+ A⃗n̂)
(1.12)

such that the current density j⃗ given by equation 1.5 can be written :

j⃗ = Tr(ρ0ĵ1) + Tr(δρ(t)ĵ0)

= −A(ω)[nee
2

m
+ e2

m2Ω
∑

n,n ̸=l

f(εn) − f(εl)
εn − εl

εn − εl − iγ

εn − εl − ℏω − iγ
|⟨n|p⃗|l⟩|2

] (1.13)

From which we can deduce the conductivity using j⃗ = σE⃗ = iωσA⃗. It takes the
form :

σ = i

ω

[nee
2

m
+ e2

m2Ω
∑

n,n ̸=l

f(εn) − f(εl)
εn − εl

εn − εl − iγ

εn − εl − ℏω − iγ
|⟨n|p⃗|l⟩|2

]
(1.14)

To simplify this expression, we use the following sum rule called "f-sum rule" :

ne + 1
mΩ

∑
n,n ̸=l

f(εn) − f(εl)
εn − εl

|⟨n|p⃗|l⟩|2 = 0 (1.15)

and by taking the matrix element of the current operator defined as jnl = −e/m⟨n|p|l⟩,
we arrive at :

σ = i
ℏ
Ω
∑

n,n ̸=l

f(εn) − f(εl)
εn − εl

|jnl|2

εn − εl − ℏω − iγ
(1.16)

whose real part, the dissipative component, is then :

Reσ(ω) = −πℏ
Ω

∑
n,n ̸=l

f(εn) − f(εl)
ℏω

|jnl|2δγ(εn − εl − ℏω) (1.17)

This last equation is the general formulation of the Kubo formula for a disorder
conductor in a wire geometry. The fonction δγ appearing is a δ function "enlarged"
by the relaxation term γ, such that :

δγ(x) = γ/π

x2 + γ2 (1.18)
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The expression of the Drude conductance can be obtained from equation 1.17
if the level spacing δ is the smallest energy scale. In this case, when ω, γ → 0,
equation 1.17 can be written :

σDrude = ne2τ

m
(1.19)

with τ the elastic scattering rate. It is worth noticing that in σ of equation 1.17
only the non-diagonal term of the current operator ĵ which is not the case in a ring
geometry as we detail in the following.

(b) In a ring geometry

The formalism detailed above is valid only for a wire geometry, but in this
PhD we considered the case of a ring. Due to its geometry, the conductance of a
mesoscopic ring is different than the conductance of a simple wire. For instance,
the sum rule we used in the last paragraphs doesn’t hold anymore as the position
operator x can take several values. However, with this ring geometry, a controllable
experimental parameter exists : the flux Φ(t) = Φdc + δΦ(t) (with δΦ ≪ ΦDC). We
derive here a few expressions, inspired by [5] and [6], and we start by introducing
the necessary ingredients to derive the conductance of an isolated mesoscopic ring.
First, we notice that due to the ring geometry, the potential and the wavefunctions
are necessarily periodic in angle, meaning :

V (r, θ + 2π, z) = V (r, θ, z) and|Ψ(r, θ, z)⟩ = |Ψ(r, θ + 2π, z)⟩ (1.20)

We control the flux. The flux is related to the expression of the vector potential via
:

A(t) = A0 + δA(t) = Φ(t)/L (1.21)

And we still consider equation 1.7. To find the sum rule needed to solve this problem,
we consider the changes in the Hamiltonian in second order of the experimentally
controllable quantity δΦ. The changes δH reads :

δH = −eδΦ
L

(
p− eA

m

)
+ 1

2m

(
eδΦ
L

)2
(1.22)

The change in energy of state n caused by this variation is evaluated using second
order perturbation theory. The energy εn reads :

εn(Φ + δΦ) = εn(Φ) + ⟨n|δH|n⟩ +
∑
l ̸=n

|⟨n|δH|l⟩|2

εn − εl

= εn(Φ) + ∂εn

∂Φ δΦ + 1
2
∂2εn

∂Φ2 (δΦ)2

(1.23)

A comparison of the first order term gives :

∂εn

∂Φ = −⟨n|j|n⟩ = −jnn (1.24)
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and the second order term yields a new sume rule for the ring geometry :

1
m

+ 2
∑

l

|⟨n|j|l⟩|2

εn − εl
= L2

e2
∂2εn

∂Φ2 (1.25)

This new sum rule yields a new expression for the conductivity of the ring, which
can be decomposed in three parts [5] :

σ(ω) = σper + σD + σND (1.26)

with

σper = i

Ω
L2

ω

∂

∂Φ
∑

n

fnjnn (1.27)

is linked to the presence of permanent current via the term jnn = −∂En/∂Φ. This
term is purely reactive and stands for the response of the current when the flux is
time-dependent. The two other terms are more interesting for the purpose of this
manuscript. The term σD, "diagonal conductivity" (in a sense that it takes into
account only the diagonal elements of the operator ĵ), reads :

σD = i

Ω
L2

γ − iℏω
∑

n

∂fn

∂Φ jnn (1.28)

and is due to the finite relaxation time of the electrons. The term proporitonal to
−∂En

∂Φ links this dissipation term to the current in the ring. Finally, the non-diagonal
term (in a sense that it takes into account the off-diagonal term of ĵ)

σND = i

Ω
e2

m2

∑
n,l ̸=n

fn − fl

εn − εl

|jnl|2

εn − εl − ℏω − iγ
(1.29)

takes into account the transitions between levels in the ring. This contribution is
exactly equal to the one of equation 1.17, hence it includes in the continous limit
also the Drude conductance of the system.

1.2.3 . The fluctuation-dissipation theorem
(a) Noise and fluctuations

To characterize experimentally the noise, the spectrum analyzer measured the
power it receives on a frequency bandwidth ∆f and gives a quantity Sv(f) the noise
power density (V2/Hz) which can be written :

Sv(f) = 1
∆f

∑
[f,f+∆f ]

|V 2(f)| (1.30)

This noise power density is related to the Fourier transform of the autocorrelation
function (Wiener-Khintchine theorem) :

Sv(f) ≡
∫ +∞

−∞
⟨V (t)V (t− τ)⟩ei2πfτdτ (1.31)
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(b) Historical overview

The link between the response of a system and the fluctuations started long
before the proper theorem was derived by Kubo. In 1926 already Johnson observed
that the voltage across an ordinary conductor is subject to fluctuations [7], and
Nyquist derived a first expression linking dissipation and fluctuations :

Sv(f) = 4kBTR (1.32)

where R is the resistance. If we consider a conductor, the well-known Joule heating
dissipates power as P = RI2. However, even if ⟨I⟩ = 0, fluctuations appear. Johnson
and Nyquist attributed the non-zero voltage fluctuations to the thermal agitation of
the electrons, creating a small but rapidly oscillating current in the conductor.

However for decades a more general form of this relation lacked until Callen and
Welton proposed a more general link between those two quantities in 1957 [8]. They
generalized Johnson, Nyquist and Einstein’s results to one simple relation :

Sv(f) = 2hf coth ( hf

2kBT
)Re(Z(f)) (1.33)

known as the "quantum version" of the Johnson-Nyquist relation (or "generalized
Nyquist relation" by Callen and Welton). Z(ω) in this expression is the "generalized"
impedance of a system. This assumption was later expanded by Kubo [9] within
the linear response theory, and we will describe a bit more this general result in the
following.

(c) Derivation using linear response theory

For the sake of simplicity and because it is the main interest of this manuscript,
we focus in the following on the current response to an external field. The field
is described by the vector potential A(t) and it couples to the current density as
j ×A(t). The response functions reads :

χjj(t) = i

ℏ
θ(t)⟨[j(t), j(0)]⟩ (1.34)

Let’s define now the current fluctuations, defined by :

Sj(t) = ⟨j(t)j(0)⟩
= Tr(e−βH0eiH0tj(0)e−iH0tj(0))

(1.35)

One can show that

Sj(t) = ⟨j(−t− iℏβ)j(0)⟩ = Sj(−t− iℏβ) (1.36)

or in Fourier space :

Sj(ω) = eβℏωSj(−ω) (1.37)
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This function has two other properties that we will use :

S∗
j (t) = Sj(−t) , Im(Sj(t)) = Sj(t) − Sj(−t)

2i (1.38)

using this, we can write

Im(Sj(t)) = 1
2i [j(t), j(0)] (1.39)

relating fluctuations to the susceptibility by :

χjj(t) = −2
ℏ
θ(t)Im(Sj(t)) (1.40)

Again, in Fourier space it becomes :

Im(Sj(ω)) = −iℏImχjj(ω) (1.41)

We combine equations (1.37) and (1.38) to obtain :

Im(Sj(ω)) = 1 − eβℏω

2i Sj(ω) (1.42)

and we recover a general expression of the fluctuation-dissipation theorem :

Sj(ω) = ℏIm(χjj(ω))[coth (βℏω/2) + 1] (1.43)

If we derive the response function as follows :

j(ω) = σ(ω)E(ω)
= iωσ(ω)A(ω)
= χjj(ω)A(ω)

(1.44)

we can relate the conductivity to the susceptibility via :

σ(ω) = χjj(ω)
iω

(1.45)

we obtain directly the link between the fluctuations of the system, represented by
Sj(ω) and the dissipation represented by the finite conductance σ(ω)/ At tempera-
ture T ≪ ω, one recovers the expression of the Johnson-Nyquist noise of equation
(1.32) but expressed in terms of current fluctuations.

The fluctuation-dissipation theorem, as long as it is verified, tells us that a mea-
surement of current noise and conductance are equivalent. However, there exists
several advantages in measuring noise : at high-frequency measuring the conduc-
tance of a system is not trivial. Some systems may be very sensitive to even very
small perturbations, and dynamical effects can be a nuisance in these case (e.g. the
Zener effect).

We try in the following to apply such concepts in the case of a normal metal in
between two superconducting leads, and we start with a description of the super-
conducting proximity effect.
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1.3 . Superconducting proximity effect

The superconducting proximity effect is a phenomenon occuring when a super-
conductor (S) is placed in contact with a non-superconducting material (described as
"normal" N, "insulating" I, etc.) and the latter inherits the properties of a supercon-
ductor. This effect was first described theoretically by Josephson in 1962 [10] when
the two superconducting materials are coupled by an insulating barrier called the
weak link and observed a year later by Anderson and Rowell [11]. We first describe
briefly the S-I-S junctions and the DC and AC Josephson effects. We then replace
the insulating barrier by a normal metal and described how the proximity effect is
changed in this case to finally described the different types of SNS junctions.

1.3.1 . DC and AC Josephson effect
We develop in this section the two Josephson equations that serve as the basis of

the proximity effect. To do so, we consider the case of the SIS junction represented
in Fig. 1.2. The superconductors are described by their wavefunctions written

ψj = √
njeiφj j = 1, 2 (1.46)

where nj are the density of Cooper pairs and φj are the superconducting phases.
If the electric potential difference across the junction is V , the energy difference
between the two superconductors is 2eV as the charge of a Cooper pair is 2e.

S I S

µ
1

µ
2

Figure 1.2 – Sketch of the considered Josephson junction, with in blue the su-
perconductors (S) and in yellow the insulating barrier (I). The superconductors are
described by their wavefunctions ψj = √

njeiφj , j = 1, 2. The dashed line represents
|ψj | across the junction. The energy difference between the two superconductors is
given by µ2 − µ1 = 2eV if a voltage V is applied.

The evolution the system is given by the coupled Schrödinger equations :

iℏ
∂ψ1
∂t

= µ1ψ1 + κψ2

iℏ
∂ψ2
∂t

= µ2ψ2 + κψ1

(1.47)

where κ is a constant representing the coupling between the two superconductor.
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We incorporate eq. 1.46 into eq. 1.47 to obtain :

ℏ
∂n1
∂t

= −ℏ
∂n2
∂t

= 2κ√
n1n2 sin(φ2 − φ1)

ℏ
∂(φ2 − φ1)

∂t
= µ2 − µ1 = 2eV

(1.48)

The time-derivative of the density of Cooper pairs ∂tnj yields a current I.
Writing φ = φ2 − φ1 the phase difference between the two superconductors, and
I0 = 2κ√

n1n2/ℏ equations 1.48 can be rewritten as :

I = I0 sin(φ) (1.49)
∂φ

∂t
= 2eV

ℏ
(1.50)

known as the Josephson equations. Equation 1.49 shows that even at zero bias, a
non-dissipative current flows through the non-superconducting link and this current
is modulated by the phase difference between the two superconductors : this is the
DC Josephson effect, and the relation between the current and the phase is called the
Current-Phase Relation (CPR). Once a voltage bias is applied, the phase difference
varies according to eq. 1.50 : even for a time-independent V , the supercurrent
will oscillate at frequency 2eV/ℏ. These two equations are the building block of
the proximity effect. In the SIS picture, the Cooper pairs can tunnel from one
superconducting lead to the other, yielding a supercurrent in the insulating part of
the junction.

In SNS junctions, the proximity effect is not due to the tunneling of the Cooper
pairs but takes its origin from an other mechanism called Andreev reflection [12],
whose derivation relies on the excitations inside a superconductor.

1.3.2 . Bogoliubov-de Gennes equations and Andreev reflection :
the NS interface

The elementary excitations in a superconductor are superpositions of electrons
and holes quasiparticles called Bogoliubon. Formally, these excitations are described
by spinors, with one component describing the electronic part and the other the hole.
These spinors are derived from the Bogoliubov-de Gennes equations :(

H − EF ∆(r⃗)
∆∗(r⃗) EF −H∗

)(
u(r⃗)
v(r⃗)

)
= E

(
u(r⃗)
v(r⃗)

)
(1.51)

where H is the Hamiltonian in absence of superconductivity, EF the Fermi en-
ergy and ∆ the superconducting order parameter. This formalism is well suited
to describe inhomogenous superconductivity or at an interface when ∆ = ∆0eiφ is
space-dependent, therefore it is the one used to formally describe the problem at
the NS interface.

Let us describe the problem at the NS interface. When an electron coming from
the normal metal arrives at the NS interface, what it sees is a gap ∆ in the density
of states of the superconductor : there are no available states for the electron to
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enter and it has to be reflected or to penetrate as an evanescent wave. This last
process leads to the reflection as a hole of an electron arriving at the NS interface :
this is the Andreev reflection depicted in Fig. 1.3.

E

h

e-

EF

SN

h

e-

Figure 1.3 – (a) An electron of energy EF +ε and wavevector kF +δk/2 is reflected
as a hole of energy EF − ε and momentum −kF + δk/2. (b) Illustration of the
Andreev reflection. The incident electron is retro-reflected as a hole. This process
is equivalent of a transfer of Cooper pair inside the superconductor.

The Andreev reflection can be summarized as follows : the incident electron of
energy εe = EF + ϵ where EF and wavevector ke = kF + ∆k/2 arrives at the NS
interface and is reflected as a hole of energy εh = EF − ε and wavevector kh =
−kF + ∆k/2. The Cooper pair has energy 2ε so that the energy is conserved in the
process. The incoming electron and the reflected hole have quasi equal wavevectors
(the difference being 2ε/ℏvF ) but opposite direction of motion shown in Fig. 1.3(b)
: the Andreev reflection is a retro-reflection. At the interface, the hole acquires a
phase φ+ arccos(ε/∆), where φ is the phase of the superconductor, which is addeed
to the original electron phase φe. If the quasiparticle arriving at the interface is a
hole, it will also be retro-reflected as an electron. The inverse process also exists : if
a Cooper pair arrives at the NS interface, it is transmitted as an electron-hole pair.

1.3.3 . Andreev bound states : the SNS junction
In an SNS junction, the Andreev reflection occurs at the two NS interfaces, as

depicted in Fig. 1.4.
These reflections impose phase-dependent boundary conditions on the eigen-

states of the non-superconducting region, that can be obtained by solving the
Bogolioubov-de Gennes equations, and are coherent superpositions of electron and
hole wavefunctions that are called Andreev bound states (ABS). Let us consider
the case of ballistic transport in the normal region, and the electrons/holes travel
perpendicularly to the NS interface. We describe each superconductor by its order
parameter ∆eiφL,R (L = left, R = right) and consider a Cooper pair coming from
the left superconducting lead :

— This Cooper pair is first transmitted in the normal metal as an electron-
hole pair at the left interface. The electron has energy ε slightly above EF
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Figure 1.4 – Andreev reflections at both ends of a SNS junction, leading to the
formation of entangled electron-hole bound states, called Andreev bound states.

and the the hole has an energy −ϵ. Their phases are linked by the relation
φe,L − φh,L = arccos(ε/∆)) − φL.

— While propagating in the normal metal of length LN , the electron acquires
a phase keL. Its phase when arriving at the right interface is then φe,R =
φe,L + keLN .

— Another Andreev reflection occurs at the right interface and the electron is
reflected as a hole. The phase of this hole is φh,R = φe,R +φR +arccos(ε/∆).

— The hole is propagating from the right to the left interface, acquiring a phase
khLN when it arrives at the left interface.

This corresponds to a complete cycle, and the energy of the ABS can be found by
equating the phase shift acquires during this cycle to an integer multiple of 2π, which
corresponds to :

2εnLN

ℏvF
+ 2 arccos(εn

∆ ) ± φ = 2πn n ∈ N (1.52)

in which we wrote φ = φL −φR as the superconducting phase difference and vF the
Fermi velocity. Equation 1.52 can be rewritten by replacing the term 2εnLN/ℏvF

by εnLN/ξS∆ where ξS = ℏvF /2∆ is the superconducting coherence length. This
equation can also be extended in the case of a disorder normal metal by considering
an impurity potential given by V (x) = Vsδ(x− a) (in 1D) yielding :

LNεn

ξS∆ + 2 arccos (εn

∆ ) ± α = 2πn [13] (1.53)

where the phase α is given by :

cosα = τ cosφ+ (1 − τ) cos(LN − 2a
ξS

εn

∆ ) (1.54)

where we introduced a finite transmission τ . Equation 1.53 gives the Andreev spec-
trum of the system. As we can see from this equation, the spectrum highly depends
on the relative magnitude between ξS and LN . This allows us to make a first din-
stinction between two limits :
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— The short junction limit, LN < ξS .
— The long junction limit, LN > ξS .

And a further distinction can be made when the transport in the normal metal is
ballistic or diffusive, depending on the relative magnitude between le (the elastic
mean free path) and LN :

— The junction is said to be ballistic if le > LN .
— The junction is said to be diffusive if le < LN .

(a) Ballistic transport in the short and long regime

For simplicity, we consider first the short junction for a single channel of trans-
mission τ . In this case, equation 1.53 when the first term is neglected gives :

ε± = ±∆
√

1 − τ sin2(φ/2) (1.55)

When the junction is clean, i.e. if we take τ = 1, at phase φ = π the spectrum
is degenerates and there is no gap in the Andreev spectrum, but the degeneracy is
lifted when τ < 1 and it open a gap at phase π given by :

δ = 2∆
√

1 − τ (1.56)

It is worth noticing that the energy spectrum doesn’t depend on the length of
the normal metal LN in this case.

In the long ballistic limit, without the presence of an impurity, the spectrum is
linear for ε ≪ ∆, according to :

εn = [((2n+ 1)π ∓ φ] ξS

LN
(1.57)

and we observe a degeneracy when the phase is an multiple of π. However, the
spectrum is no more linear when the energy gets close to the superconducting gap.
When we take into account the impurity, the spectrum becomes more rounded but
also lifts the degeneracy as in the short regime, also opening a gap. Spectra in the
short and long regime and in presence or not of an impurity are plotted in Fig. 1.5.

(b) Diffusive transport in the short and long regime

In the diffusive regime, the number of channels is not defined and we have to de-
fine a number of independent effective conduction channels denoted Meff = Mle/LN

and M computed as in the ballistic case. Several ABS states of different trans-
missions coexist in the normal metal. In the short regime, the diffusive Andreev
spectrum is also given by :

E±
n ±

√
1 − τn sin2(φ/2) (1.58)

and instead of calculating the sum of the Meff effective conducting channels, it is
usually done by integration using the probability of transmission given by :

P (τ) = π

2e2RN

1
τ
√

1 − τ
[14] (1.59)
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(b)(a)

Figure 1.5 – Ballistic Andreev spectrum. (a) Short junction with (solid line) and
without (dashed line) the presence of an impurity. The impurity opens a gap at
phase π given by δ = ∆

√
1 − τ , lifting the degeneracy. (b) Long junction with (solid

line) and without (dashed line) the presence of an impurity. The impurity rounds
the spectrum while lifting the degeneracies at 0, π and 2π. From [13].

RN being the normal state resistance. In the long diffusive regime, this approach is
not possible, and the calculation of the spectrum can be either done using Green for-
malism or by numerical diagonalization of the Bogoliubov-de Gennes Hamiltonian.
The spectra shown in Fig. 1.6 are obtained this way.

(b)(a)

Figure 1.6 – Diffusive spectrum in the (a) short junction regime and (b) long
junction regime. In the latter, a phase-dependent gap of amplitude much smaller
than the superconducting gap appears : the minigap. From [15].

The long diffusive regime is interesting because of the apparition of a gap of
amplitude much lower than ∆ appearing. This so-called minigap is phase-dependent,
and yields a new energy scale to the system, that we discuss in the following section.
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(c) Characteristic energy scales

Up to now we described the different regimes in terms of length scales, but it
can be more interesting to describe them in terms of energy scale. The first one
is indeed the superconducting gap ∆, which we can compare to the characteristic
energy of the ABS, the Thouless energy, defined as :

ET h = ℏ
T

(1.60)

with T the time for the Andreev pair to cross the junction, depending on the
transport regime in each junction. This defines the Thouless energy as :

Eb
T h = ℏvF

LN
for ballistic transport

Ed
T h = ℏD

L2
N

for diffusive transport
(1.61)

with D ≈ 1
dvF le the diffusion coefficient in dimension d. This allows us to rewrite

the definition of the short and long regime with :

∆ ≪ ET h for a short junction
∆ ≫ ET h for a long junction

(1.62)

In the case of the long diffusive junction, the phase-dependent gap is also an im-
portant energy scale. Its amplitude and phase-dependence are given by the following
equation :

Eg(φ) = 3.1ET h × | cos(φ2 )| (1.63)

1.3.4 . Current-phase relations
The derivation of the Andreev spectra in the different regimes of the previous

sections is a first step towards the current-phase relations of the SNS junctions,
which are more complex than the first Josephson relation of equation 1.49. The
current carried by one Andreev level is given by :

in(φ) = 2π
Φ0

∂εn

∂φ
(1.64)

with Φ0 = h/2e the superconducting quantum of flux. The total supercurrent in
the junction is the sum of the single level currents multiply by their occupation
probability given by the Fermi-Dirac distribution :

I(φ) =
∑

n

fF D(εn)in(φ)

= 2π
Φ0

∑
n

fF D(εn)∂εn

∂φ

(1.65)

The phase-dependence of the ABS spectrum then directly yields the phase-dependence
of the current-phase relation and are summarized in Fig. 1.7
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Figure 1.7 – Shape of the Current-Phase Relations in various regimes (a) In the
short regime, for τ = 1 (black) and τ = 0.9 (orange). (b) In the long regime, with
ballistic transport (black) and diffusive transport (orange).

As for the phase-dependence and the shape of the CPR, the amplitude of the
critical current can also be deduced from the regime we consider, by the product
eRNIc where RN is the normal state resistance and Ic the critical current at zero
temperature [16] :

— For a short ballistic junction eRNIc = π∆ [17]
— For a short diffusive junction eRNIc = 2.07∆ [18]
— For a long ballistic junction eRNIc = 10.82ET h [19]
— For a long diffusive junction, eRNIc = ET h. [20]
We discuss now only the long junction. For a ballistic junction the normal state

resistance is given by the quantum of resistance, RN = RQ independent of the
junction’s geometry. This yields directly :

Ib
c = ℏvF

eRQLN
(1.66)

whereas in the diffusive case, RN can be developed using the Drude model. In this
case, we have :

RN = ρLN

S
= m

ne2
LN

S

vF

le
(1.67)

with D ∝ vF le, this yields a 1/L3
N dependence for the critical current :

Id
c ∝ ne

m

l2e
L3

N

(1.68)

and we can compare the current in a ballistic junction with the critical current in
the diffusive junction, yielding :

Ib
c

Id
c

∝
(LN

le

)2 (1.69)

The amplitude of the supercurrent is helpful to discriminate between ballistic
and diffusive transport in a long SNS junction, and is therefore a powerful tool to
study the transport in any kind of material.

36



1.4 . Noise and conductance of a superconducting junction : a
two-level toy model

We consider in this part a superconducting quantum point contact of perfect
transmission to illustrate the fluctuation-dissipation theorem in the simplest case of
superconducting junction.

1.4.1 . Supercurrent noise in a superconducting and perfectly trans-
mitting quantum point contact

We consider the case described by Averin and Imam in 1996 [21].

2
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Figure 1.8 – Energy spectrum of our toy model and supercurrent fluctuations. The
energy spectrum of a short ballistic junction, with one occupied level (filled green
circle) and the excited state at the same phase (empty green circle). These two states
carried an opposite supercurrent. The filled state can be thermally excited and the
excited state can relax, yielding to the fluctuations in supercurrent, highlighted by
the green arrows on the right graph.

Fig. 1.8 represents the energy spectrum with respect to the superconducting
phase difference φ. We consider a two level system, with respective energies :

E± = ±∆ cos(φ2 ) (1.70)

yielding a current per level :

I± = ∓∆
2 sin(φ2 ) = ∓I(φ) (1.71)

We consider now te instantaneous occupancy n± = 0, 1 of each state Epm. We thus
have the relations :

n+ + n+ = 1 (1.72)

∆n = n+ − n− = ±1 (1.73)
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The total current at a given phase is the sum of the two single-level weighted by
their occupation probability. In our case, we have :

I(t) = n+(t)I+ + n−(t)I−

= n+(t)I+ − n−(t)I+

= ∆n(t)I+

(1.74)

If we consider a finite relaxation time τ between the two states, the difference
∆n obeys a master equation :

d∆n
dt

= −∆n− ∆n
τ

(1.75)

where ∆n is the occupation at thermal equilibrium. With n+,− = fF D(±E(φ)), we
get ∆n = tanh βE(φ)

2 where β = 1/kBT and we can solve eq. (1.75).

∆n(t) = (∆n(0) − ∆n) exp (− t

τ
) + ∆n (1.76)

Using ∆n(t) we can compute the current autocorrelation function :

⟨I(t)I(0)⟩ = ⟨([∆n(0)2 − ∆n∆n(0)]e−t/τ + ∆n∆n(0))I2
+⟩

= [(∆n2 − ∆n2)e−t/τ + ∆n2]I2
+

(1.77)

It is easier to compute :

⟨I(t)I(0)⟩ − ⟨I(0)⟩2 = [∆n2 − ∆n2]e−t/τI2
+

= (1 − tanh2((φ)/2))e−t/τI2
+

= 1
cosh2(βE(φ)

2 )
e−t/τI2

+

(1.78)

And the current noise spectrum can be defined as :

SI(ω) = 2 × Re(F(⟨I(t)I(0)⟩)

= 2 1
cosh2(βE(φ)

2 )
I2

+ × Re( 1
1/τ + iωτ

)

= 2 I2(φ)
cosh2(βE(φ)

2 )
τ

1 + ω2τ2

(1.79)

where the factor 2 accounts for the negative and positive frequencies.

1.4.2 . Conductance of the quantum point contact
We introduce a small time-dependent component in the superconducting phase

difference of the junction and we want to detail the response of the system to such
perturbation.

φ(t) = φ0 + δφe−iωt (1.80)
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with δφ ≪ φ0. Hence now we have I(t) = ∆
2 sin(φ0+δφe−iωt

2 ) with :

sin(φ0 + δφe−iωt

2 ) ≈ sin(φ0
2 ) + cos(φ0

2 )δφe−iωt (1.81)

by keeping only the first order contributions. The small perturbation in φ yields a
small perturbation in ∆n that we write :

∆n(t) = ∆n(φ(t)) + δ∆n(t) (1.82)

where ∆n(φ(t)) is an "instantaneous" equilibrium : it follows adiabatically the phase.
Equation 1.75 is now :

d∆n(t)
dt

= −∆n(t) − ∆n(φ(t))
τ

(1.83)

yielding the following equation for δ∆n(t) :

d∆n(t)
dt

= ∂δ∆n
∂t

+ ∂∆n
∂φ

∂φ

∂t

= −iωδ∆n(t) + ∂E

∂φ

∂∆n
∂E

(−iω)δφe−iωt

= −δ∆n
τ

(1.84)

Developing the derivatives, eq. 1.84 can be expressed as :

−δ∆n
τ

= −iωδ∆n+ iωδφe−iωt ∆
2 sin(φ(t)/2)β2

1
cosh2(βE(φ)/2)

(1.85)

in which we recognize the expression of I(φ(t)), so that we get :

δ∆n = iωφI(φ)β2
1

cosh2(βE(φ)/2)
τ

iωτ − 1 (1.86)

We incorporate this expression in I(t), and keep only the first order terms :

I(t) = [∆2 sin(φ0/2) + ∆
2 δφe−iωt cos(φ0/2)](∆n+ δ∆n)

= ∆
2 [sin(φ0/2) tanh(βE(φ)/2)

+ δφe−iωt cos(φ/2) tanh(βE(φ)/2)

+ sin(φ/2) τ

iωτ − 1 iωδφe−iωt sin(φ/2)β2
1

cosh2(βE(φ)/2)
]

(1.87)

The admittance Y of the system is defined as :

Y = δI(φ(t))
iωδφe−iωt

(1.88)
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The part of interest here is the conductance, i.e. the real part of the admittance Y .
We finally get :

G = 1
2kBT

I2(φ)
cosh2(βE(φ)/2)

τ

1 + (ωτ)2 (1.89)

Similar to the expression of conductance for a metallic ring derived by Büttiker and
Landauer in 1985 [22]. As pointed out by Averin, Bardas, Imam and by Yeyati and
Martin Rodero [21, 23], the phase-dependence of G(φ) gives the phase-dependence
of the supercurrent noise due to the fluctuation-dissipation theorem. With our two-
level model, the direct comparison between equations (1.79) and (1.89), we obtain
directly :

SI(φ) = 4kBTG(φ) (1.90)

This derivation shows that we can, from simple arguments, expect a supercurrent
thermal noise for a superconducting junction. This supercurrent thermal noise is
associated with a finite conductance via the fluctuation-dissipation theorem.

In this PhD, we investigated a long junction in the long diffusive regime, that is
to say we investigated a system we much more channel than the one describe above.
We summarize the contributions to the conductance of such system in the following
section.

1.4.3 . Susceptibility of a long diffusive SNS junction
The analytical derivation of χ using linear response theory has been done pre-

viously by B. Dassonneville, and the next section summarizes this work to further
understand the results that are presented in this work. Before going to the analysis
on the susceptibility, we describe briefly the system we are interested in : the long
diffusive SNS junction. In this case, we consider the Andreev spectrum shown in
Fig. 1.6(b)).

The response of the diffusive NS ring is obtained the same way we obtained the
response of the normal ring in section 1.2.2. In this part, we recall results described
in [24] and explain the different mechanisms behind the susceptibility in our system.

We recall first that several energy scales coexist in this system : temperature
kBT , frequency ℏω, minigap Eg and inelastic relaxation hγ. If we consider kBT ≪
Eg (for instance at phase 0), thermal excitations are suppressed and then a priori
no fluctuations in the supercurrent are expected.

We start with ω small compared to the other energy scales and internal time
scales of the junction. In this case, the system follows adiabatically the excitation
and the susceptibility is just the derivative of the supercurrent with respect to the
phase. This term is due to the phase-dependence of the Andreev spectrum and does
not depend on the frequency : it is a purely reactive term and it is written :

χ′ = −2π
Φ0

∂I

∂φ

χ′′ = 0
(1.91)
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When the frequency is of the order of magnitude to the inelastic scattering rate γ,
some levels are driven out-of-equilibrium due to the dynamic variations of Andreev
states within the same level [18]. This contribution is noted χD for diagonal as
it stems from the diagonal elements of the current matrix Jnm. This quantity is
complex, meaning its imaginary part describes a dissipative behaviour.

χD = − iω

γ − iω

∑
n

|Jnn|2∂fn

∂εn
(1.92)

This expression is similar to the diagonal conductivity presented in section 1.2.2
and is only due to the finite relaxation time towards equilibrium.

Finally, we compare ω to the minigap. The excitation can induce transition
between levels, even when the temperature is lower than the minigap.

χND = −
∑

n,n ̸=m

|Jnm|2 fn − fm

ϵn − ϵm

iℏω
i(ϵn − ϵm) − iℏω + ℏγ

(1.93)

The three mechanisms presented are illustrated and summarized in Fig. 1.9.

Figure 1.9 – Different mechanism responsible of the non-zero susceptibility. (Left)
: when the excitation frequency is small compared to the other energy scales, the sys-
tem follows adiabatically the excitation. The quantity measured is then the deriva-
tive of the current-phase relation and is purely reactive. (Middle) When the the
frequency is on the order of the inelastic scattering rate of the ABS. The dissipative
component is directly related to the non-dissipative current flowing at equilibrium
and is denoted χD. (Right) Illustration of the microwave induced transitions, when
ω > Eg > T . From [24].

In the previous experiments in our group, the resonators were multimode and
working at higher frequency (≈ GHz) whereas we chose to work with a single mode
resonator to prevent the coupling with the electromagnetic environment. The main
idea for the future is to probe the supercurrent noise in a junction made with a
topological insulator, for instance bismuth nanowires [25], Bi4Br4 or WTe2, materials
studied in our group. In those experiment, it has been shown that γ is within the kHz
([26]) to the GHz frequency scale. The topological signatures resides in the diagonal
contribution [27]. Working in the regime where χD is maximal (i.e. ωτin = ω/γ ≈ 1)
hints towards the working frequency interesting and relevant for the experiment.

The main goal of this first experiment is to verify that we are able to measured
the supercurrent thermal noise of the NS ring and understand its link to dissipation
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in the relatively well known case of an SNS junction. The measurements on the
gold-based SNS junctions [28, 29], as well as the theoretical predictions for the
long and diffusive SNS junction [15] allows to work on a well known system. By
measuring both the susceptibility and the thermal noise (and ensuring the validity
of the fluctuation-dissipation theorem for such hybrid systems), we provide a way
of determining the conductance of these devices without any contact at thermal
equilibrium.
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2 - Supercurrent noise in a phase-biased superconductor-
normal ring in thermal equilibrium

In SNS junctions, the supercurrent is mediated via ABS controlled by the phase
difference between the two superconductors. Theory has long predicted significant
noise of such supercurrent in equilibrium due to thermal excitation between the
ABSs. Via the fluctuation-dissipation theorem (FDT), this leads to a finite dissipa-
tive conductance that coexists with the supercurrent bit is hidden in dc measure-
ment. In this part of the thesis we directly measure the supercurrent noise at radio
frequency in a phase-biased SNS ring inductively coupled to a superconducting res-
onator. We also measure the admittance of the same system whose real part is the
dissipative conductance and quantitatively verify the FDT relation of the SNS ring.

In section 2.1 we detail the concept of conductance for a phase-biased Joseph-
son junction in a ring geometry and show how to measure it via radio frequency
susceptibility measurement. Section 2.2 is dedicated to the description of the exper-
imental setup, the fabrication of the sample and the modeling of the transmission
measurement. In section 2.3 we describe the calibration precedure and present the
experimental results on section 2.4. Finally we give theoretical insights using nu-
merical calculations to analyze these results in section 2.5.

2.1 . Conductance of a phase-biased Josephson junction in a ring
geometry.

2.1.1 . Defining the conductance of a superconducting junction
Classically, the conductance of a normal conductor is defined by the small vari-

ations of current induced by a small variation of voltage in the linear regime :

G = ∂I

∂V
(2.1)

However for a SNS junction, this standard way of measuring becomes hard to imag-
ine. If we current bias an SNS junction, a supercurrent exists until the critical
current is reached, characterized by a jump in the resistance : there is no linear
regime. A rigorously pure DC voltage bias is impossible considering that the DC
resistance of the junction is 0 and, even if it was, the AC Josephson effect would
result in a non-linear regime.

However, the conductance can be well defined at finite frequency and measured
by realizing a flux biasing in a ring geometry. This gives, according to Lenz law :

V = −∂Φ
∂t

(2.2)

The flux Φ through the ring is related to the superconducting phase difference
φ by :

φ = −2π Φ
Φ0

(2.3)
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where Φ0 = h/2e is the superconducting flux quantum. Applying a time-dependent
flux means controlling the phase difference of the junction : this is the so-called
phase biasing. Indeed, it is equivalent to apply a voltage :

V = Φ0
2π

∂φ

∂t
(2.4)

This phase/flux biasing allows to define a susceptibility :

χ = ∂I

∂Φ (2.5)

In the linear regime, all the physics is encoded in this response function. χ is
complex and we further decompose it into its real and imaginary part χ = χ′ + iχ′′.
The real part χ′ represents the in-phase response of the system to a finite frequency
phase-biasing and is seen as an inductive response in the following. The out-of-phase
part χ′′ represents the dissipative response, i.e. the conductance of the ring, and is
obtained via the relation :

G = χ′′

ω
(2.6)

The susceptibility is directly related to the admittance Y of the system using :

Y = iωχ (2.7)

The ring geometry and the application of a flux then allows us to extract the
admittance of the system. However, using this method, we extract the ring’s re-
sponse to an excitation and not directly the junction’s one. In the subsequent part,
we detail the effect of flux screening in our measurement.

2.1.2 . Ring’s response and junction’s response : screening effect
Due to the finite inductance of the loop and the diamagnetic nature of the

superconducting junction, the flux that modifies the phase difference across the
junction and the flux passing through the ring are not exactly equal : this is the
screening effect. We consider the case of the isolated ring represented in Fig. 2.1.

int

ext

Figure 2.1 – Sketch for the screening effect. The junction is represented as a cross
whereas the black lines represent the superconducting ring. The red dashed box can
be seen as a "black box". This black box is the physical object we probe.

44



The current in the junction evolves with Φint, so that the current phase relation
is given by IJ(Φint). However, the ring’s response χring is obtained via Φext

χring = ∂IS

∂Φext
(2.8)

whereas the junction’s response is given by

χj = ∂IS

∂Φint
(2.9)

The external and internal flux are linked by the relation :

Φint = Φext + LlIS(Φint) (2.10)

where Ll is the inductance of the superconducting loop. Equation 2.10 gives a direct
relation between the ring’s response and the junction’s response :

χring = ∂IS

∂Φext

= χJ
∂Φint

∂Φext

= χJ(1 + Llχring)

(2.11)

inverting this last equation gives the relation between χring and χJ :

χring = χj

1 − Llχj
(2.12)

We now know what quantity we want to measure, and in the next section we in-
troduce the experimental setup used to measure either the susceptibility, either the
thermal noise of such systems.

2.1.3 . Susceptibility measurement : coupling a Josephson junction
to a resonator

In this part we present the basic ideas to measure the response of a SNS junction
to a finite frequency excitation. This technique has been developed by H. Bouchiat
and B. Reulet and consists on coupling inductively the ring to a superconducting
resonator, as illustrated in Fig. 2.2(a). This technique has been used previously in
our group to study the dynamical effects of long SNS junction [30], to probe the
mechanism behind dissipation in hybrid superconducting systems [24] and applied
to more exotic materials such as higher-order topological insulators [27]. To measure
the susceptibility, we need a DC component ΦDC and an AC component ΦAC . The
DC flux is provided by a superconducting coil creating a DC magnetic field. The
AC phase bias is provided by the superconducting resonator. The current in the
resonator oscillates at a frequency ω and creates an AC flux ΦAC = δΦ sin(ωt)
in the loop. This AC phase bias generates a current response in the loop. This
current generates in turn an AC flux and modifies the resonance of the resonator
and its quality factor. Those shifts in resonance frequency and quality factor are
the quantities measured experimentally. The reactive and dissipative part of the
susceptibility can be deduced from δf and δ(1/Q) respectively, which will be derived
later (see equations 2.32 and 2.33). By scanning ΦDC , we vary the phase from 0 to
2π and probe the whole spectrum of the junction, as illustrated in Fig. 2.2(b).
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(a) (b)
φ(t) = φDC+δφsin(ωt)

-0.3

0.0

0.3

ε/
Δ

1.00.50.0
Φ /Φ0

Figure 2.2 – Principle of the experiment. (a) the NS ring is inductively coupled to a
superconducting resonator, the latter being characterized by its resonance frequency
fr and quality factor Q. The supercurrent in the resonator oscillates at frequency
ωr = 2πfr providing a small AC flux ΦAC inside the ring, modifying the current in
the loop. This ac current modifies the resonance frequency and quality factor of the
resonator. Those shifts are related to the susceptibility χ of the ring as detailed in
section 2.2.3. From [31]. (b) Illustration of the phase biasing on the long diffusive
Andreev spectrum. By scanning the phase φDC from 0 to 2π, we probe the entire
spectrum.

2.1.4 . Noise measurement in the same configuration
Whereas in the susceptibility measurement the resonator is excited via the ac

generator, in the noise measurement no power is sent to the resonator. This means
that ΦAC = 0 in this measurement and we only vary ΦDC . What we measure is
the time dependence of the voltage at the output of the resonator, and the noise
is obtained from the Fourier transform of this signal using an oscilloscope with the
spectrum analysis function (TELEDYNE Lecroy HRO WaveRunner 6 Zi). Finally,
because Because of the small coupling between the ring and the resonator, the
expected noise signal is small and we had to develop a cryogenic amplifier adapted
for this measurement.

2.2 . Experimental setup

Now that the principle of the experiment has been introduced, we detail the
specificity of the experiment. We start by introducing the amplifier used in our
experiment in section 2.2.1. This amplifier is directly connected to the sample (the
superconducting resonator coupled to the ring), and we detail its fabrication before
describing the sample and its fabrication process in section 2.2.2. Finally, we link the
junction’s inductance and conductance to the ring’s and to the physical quantities
measured in section 2.2.3, and detail the terms appearing in the total thermal noise
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we measure.

2.2.1 . The CryoHEMT amplifier
The primary tool for building this experiment is chosing the best amplifier to

detect the noise. Several tests were performed to optimize the amplifier.
We are looking for a setup that allows us to measure directly the total voltage across
the resonator. For microwave systems, the standard technique is to use RF ampli-
fiers with an input impedance of 50 Ω. This adds a lot of dissipation in the circuit,
resulting in the reduction of the quality factor. The conventional solution it to use
a coupling capacitance, but it acts as a voltage divider and by definition a fraction
of the signal is lost.
To preserve both the quality factor and access the whole signal, the idea we had was
to use a high impedance amplifier (whose impedance was higher than the resonator’s
impedance on resonance) designed in collaboration with Y. Jin’s team. At high fre-
quency, the current noise dominates. The CryoHEMT fabricated by their team are
very low noise. The current noise increases with frequency, going from 0.06 fA/

√
Hz

at 1kHz to 2 fA/
√

Hz at 1MHz, while the voltage noise decreases from 1.4 nV/
√

Hz
to 0.25 nV/

√
Hz within the same frequency range [32]. Above 200 MHz the current

noise of such amplifier is too important and is one of the reasons we limited our
experiment to about 100 MHz, which could be sufficient for adapting the system to
topological insulators. We further discuss some characteristics of this amplifier as
well as its advantages in our systems by detailing the circuit model shown in Fig. 2.3

4.2 K< 200 mK

Figure 2.3 – Circuit model of the cryogenic HEMT amplifier design, modeled as
voltage-controlled current source, directly connected to the resonator. The resonator
is coupled to the RF power source via the coupling capacitance Cc and is thermally
anchored to the mixing chamber of the dilution refrigerator, reaching temperatures
of the order of the mK range. The amplifier is placed on the 4.2 K stage.

— The input impedance of the amplifier is Rin = 1.3 GΩ at 100 MHz, consid-
erably larger than the loss resistance of the resonator, preserving the quality
factor of the resonator.
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— The output impedance is Zout = Rds||RL = 50 Ω and it matches the impedance
of the transmission line.

— The transconductance is σ = 42.5 mS, giving an unloaded gain σZout = 2.26.
— The loaded gain (obtained when connecting a 50Ω at the output of the am-

plifier) g = 1.13 is small, but it limits the Miller effect [33], which changes
Cgs and Cgd to Ca = Cgs + (1 + g)Cgd the effective input capacitance of the
amplifier. The bigger the gain, the bigger the effective capacitance yielding
to an effect on the resonance frequency 1/

√
LC and quality factor Q = RCω,

(with C = Creso + Ca + Cc ≈ Creso).
The signal is further amplified using three cascaded room temperature amplifiers

with low voltage noise (the voltage noise of the first amplifier is around 1 nV/
√

Hz),
adapted to 50 Ω for a total measured gain at 100 MHz of 14125.

2.2.2 . Sample fabrication
(a) Design of the resonator

The superconducting resonator has then to match the working frequency of the
amplifier. The resonator is fabricated using a LC circuit by e-beam lithography. To
reach a frequency range on the order of 100 MHz, one needs relatively high value
for L and C. We start with the inductive component. Since the inductance is pro-
portional to the length (see eq. 2.13), the meander lines should be long enough to
reach these relatively low frequencies and it makes the fabrication harder. To avoid
the problem of size, we chose a material with a non-negligible kinectic inductance
and use a coplanar stripline resonator as shown in Fig. 2.4. The total inductance
L = Lgeo + Lkin is generated by the superconducting meander lines, where the geo-
metric inductance Lgeo is determined by the length of the meander while the kinetic
inductance Lkin is determined by the superconducting gap ∆ and the disorder. We
can approximate them via the relation :

Lgeo ≈ µ0 × l

Lkin = R□h

2π2∆0
× l

w

(2.13)

where l and w are respectively the length and the width of the meander lines, R□ =
R/□ is the material’s square resistance and depends also on the metal thickness.
80 nm thick Molybdenum-Rhenium compound was used as the superconducting
material. Its kinetic inductance per square is LK,□ = 9 pH/□. Using this material
has several advantages :

— The superconducting meander lines can be shorter and then fits in the win-
dow of the e-beam lithography : if only the geometric inductance was consid-
ered, the resonator could not fit in a square of 2 mm × 2 mm. This problem
can be solved using a material with relatively high kinetic inductance.

— The design of the coupling inductance, in parallel with the junction (see Fig.
2.4). The signal we want to measure is proportional to LcIc with Lc the
value of the coupling inductance. Thanks to the kinetic inductance and by
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playing with the geometry (with the number of "squares"), a correct coupling
can be obtain even on a small length.

Because it is hard to fit a high enough capacitance in a square 2 mm × 2 mm designed
by e-beam lithography, we use lumped components mounted on a printed circuit
board directly bonded to the resonator for both the coupling capacitance to the
RF generator and for the capacitance of the resonator. We use special capacitances
working at low temperature [34]. A picture of the fabricated system resonator and
the coupling to the NS ring is shown in Fig. 2.4, and the values of the inductances
and capacitances considered are detail in tab. 2.1

Figure 2.4 – Optical image of the sample. (a) The SNS ring, (magenta dashed
lines) and the SNS junction (red rectangle). The inductive coupling Lc is highlighted
by the blue rectangle. (b) A large scale image of the sample, showing the SNS ring
(magenta rectangle) and the superconducting meander lines. Scale bar : 60µm

Lreso 40 nH
Creso 47 pF
Lc 200 pH
Cc 1.2 pF

Table 2.1 – Designed inductances of the resonator and the coupling to the junction,
and chosen resonator’s and coupling capacitance to the generator.

(b) Lithography and metal deposition

The sample is fabricated with two steps of standard electron beam lithography.
We use a chemical semi-amplified positive e-beam resist (CSAR) [35] with high
spatial resolution on a SiO2/Si chip.

— The first lithography step defines the normal part of the NS ring, the red
rectangle on Fig. 2.4. It is a wire of length l = 1.5 µm and width w = 100 nm.
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5 nm of titanium and 100 nm of gold are then deposited by electron-beam
evaporation.

— After deposition and a second deposition of resist, there is a second step
of e-beam lithography to define the superconducting meander lines and the
coupling inductance.

— Once the resonator is defined, we etch slightly the gold wire by ion beam
etching (IBE) to improve the contact between the gold wire and the metal
deposited in the next step.

— Shortly after IBE, 80 nm of MoRe is deposited by sputtering in Argon gas.

Finally, the chip is dipped in dioxolane for about an hour for the lift-off process.

2.2.3 . Modeling the transmission and noise measurements

(a) Transmission measurement : inductance and conductance of the
ring

In this part we model the SNS ring coupled to the resonator and obtain the link
between the total inductance, the inductance of the ring and its relation with the in-
ductance of the junction, as well as its dissipative part i.e. the effective conductance
of the ring. We start by describing the circuit consisting of the SNS junction incon-
porated in the resonator, forming the NS ring. In this part, we consider the sample
as presented in the optical image Fig. 2.4. We build step by step the expressions
of the inductance of the system as a function of the admittance (or equivalently
susceptibility) of the junction.

In the following process, the circuit is modeled with :

— Zj = iωLj + 1/Gj = 1/Yj is the impedance of the junction.
— Lc is the coupling inductance, closing the loop. It is shared with the super-

conducting resonator.
— Ll is the inductance of the loop, including the coupling inductance closing it.

Therefore, the loop without considering the coupling inductance is described
by the inductance Ll − Lc. These two values can be approximated by their
designed value.

— Lreso is the intrinsic inductance of the closed superconducting resonator,
therefore Lreso −Lc is the total inductance due to the meander lines and the
inductance to be considered during the calculation.

— Greso is the total conductance of the resonator.

We start first by writing the impedance of
the NS ring.

Z(Φ) = iωLc + ω2L2
c

iωLl + 1/Yj(Φ) (2.14) Zj( ) Lc

Ll

i
-Lc
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Zring

Lreso
Lreso - LC

Z LC

To the previous circuit we add the intrin-
sic inductance of the resonator Lreso − Lc

since the ring and the resonator share the
coupling inductance. This step is to trans-
form the circuit on the left to the totally
equivalent circuit on the right, Zring de-
scribing the impedance of the ring. It
reads :

Zring(Φ) = + ω2L2
c

iωLl + 1/Yj(Φ) (2.15)

If our case we can assume Zring ≪ ωLreso and we
have for the conductance of the resonator with the
NS ring :

(iωLreso + Zring(Φ))−1 ≈ 1
iωLreso

+ Zring(Φ)
ω2L2

reso

(2.16)

This is the transformation represented on the
right, to which we added the conductance of the
resonator Greso to modelize the losses.

Zring/   Lreso
2 Lreso Greso

Y*

Finally, this yields the admittance of the system consisting of the ring coupled to
the resonator Y ∗

Y ∗(Φ) = 1
iωLreso

+ L2
c

L2
reso

Yj(Φ)
1 + LlYj(Φ) +Greso (2.17)

And by expressing this in terms of the susceptibility χj = −iωYj , which we decom-
pose in real and imaginary part as χj = χ′

j + iχ′′
j , we get :

iωY ∗ = 1
Lreso

− L2
c

L2
reso

χ′
j + iχ′′

j

1 − Llχ
′
j − iLlχ

′′
j

+ iωGreso

= 1
Lreso

− L2
c

L2
reso

χ′
j(1 − Llχ

′
j) − Ll(χ′′

j )2 + iχ′′
j

(1 − Llχ
′
j)2 + (Llχ

′′
j )2 + iωGreso

≈ 1
Lreso

− L2
c

L2
reso

χ′
j

1 − Llχ
′
j

− i
L2

c

L2
reso

χ′′
j

(1 − Llχ
′
j)2 + iωGreso

(2.18)

where the approximation is made because we only considered the experimentally
relevant limit, Llχ

′′
j | ≪ |Llχ

′
j | < 1. In equation (2.18), the real part represent the

the inductance L∗ and the imaginary part the conductance G∗ of the equivalent
circuit, yielding :
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1
L∗ = 1

Lreso
− κ

χ′
j(Φ)

1 − Llχ
′
j(Φ) = 1

Lreso
− κ

Lring
(Φ) (2.19)

G∗ = Greso − κ
χ′′

j (Φ)
(1 − Llχ

′
j(Φ))2 = Greso − κGring(Φ) (2.20)

with :

κ = L2
c

L2
reso

(2.21)

the inductive coupling coefficient,

Lring =
χ′

j

1 − Llχ
′
j

(2.22)

Gring =
χ′′

j

(1 − Llχ
′
j)2 (2.23)

the ring contribution to both the inductance and the conductance of the system. It
does not correspond to what we called Zring since it does not include the coupling
between the ring and the resonator, but it is similar in expression to the screening
effect defined in equation 2.12 linking the ring’s response to the junction’s, justifying
this name.

(b) Transmission coefficient and quantities measured

We consider now the whole measuring circuit, shown in figure 2.5(b) and first
derive the expression of the transmission coefficient Γ(ω) defined in equation 2.25.
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(a)

(b)

CC

Sample

- 20 dB

- 20 dB

- 20 dB

RF in RF out

CryoHEMT

Room temperature
amplifiers

50 K

4 K

100 mK

T
MC

Figure 2.5 – (a) Sketch of the wiring in the dilution refrigerator. On the 50K,
4K and the mixing chamber stage of the refrigerator we put three attenuators. The
sample (SNS ring and resonator) is coupled to the RF lines via the two coupling
capacitances highlighted in pink. The CryoHEMT (blue) is placed in the 4K stage of
the dilution refrigerator, and outside the refrigerator the three cascaded amplifiers
are sketched in red. (b) Circuit model of the measurement setup, from the RF source
to the CryoHEMT amplifier and the measured voltage. The blue part represents the
sample, thermally anchored to the mixing chamber whose temperature is withing
the experiment going from tens to hundreds of mK. The attenuators are modeled as
a T-shaped resistor network with b the attenuation factor.

The left part of the sketch is the RF source. The blue part is thermally anchored
to the mixing chamber. The cryogenic amplifier described in the first part of this
chapter in on the 4K stage of the dilution refrigerator. There are three attenuators
along the transmission line from the input, and they are described by the T-shaped
resistor network in the drawing with b the attenuation factor and Z0 = 50 Ω. The
coupling between the RF generator and the resonator is described by its admittance
Yc. It reads :
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Yc = 1
Z0 + 1/(jωCc)

= ω2C2
cZ0

1 + ω2C2
cZ

2
0

+ jω
Cc

1 + ω2C2
cZ

2
0

≈ Gc + jωCc

(2.24)

The total conductance Gtot = G∗ + Gc with Gc = ω2
rC

2
cZ0 and Cc = 1.2 pF, is

due to the coupling between the generator and the resonator. It adds a very small
effective conductance Gc in parallel to the resonator, preserving its quality factor.
The transmission coefficient is defined by :

Γ = Vout

Vin

∣∣∣∣
Zout=Z0

(2.25)

where Vout,in are defined in Fig. 2.5. Defining Yreso = Greso//Lreso//Creso, Γ reads
:

Γ = IoutZ0
Vin

= −σVaZ0
2Vin

= −Z0
2 × Va

V1
× V1
Vin

≈ σZ0
2

2
b

× Yc

Yc + Yreso

≈ −σZ0
b

× Gc + jωCc

Gtot + i[ωCtot − 1
ωL∗ ]

≈ − (σZ0/b)[iωCc/(Gtot)]
1 + i 1

Gtot

√
Ctot
L∗ ( ω

ωr
− ωr

ω )

(2.26)

This derivation yields the model for the transmission coefficient and the definition
of the resonance frequency and quality factor.

|Γ| = Γr√
[1 +Q2(ω/ωr − ωr/ω)2]

(2.27)

ωr = 1/
√
L∗Ctot (2.28)

Q = 1/[L∗Gtotωr] (2.29)
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It is directly seen that a change in the total inductance will lead to a change in
the resonance frequency ωr. Similarly, the change in the quality factor due to the
variation of inductance and conductance can be calculated.

δωr

ωr
= −δL∗

2L∗ ≈ Lreso

2 δ( 1
L∗ ) (2.30)

δ( 1
Q

) = δωr

2Qωr
+ L∗ωrδGtot ≈ LresoωrδGtot (2.31)

The approximation is made because experimentally relevant. As we will show later,
L∗ωrδGtot is two orders of magnitude higher than δωr/2Qωr. We have seen that
these changes are coming from the ring, and we finally arrive at the expression of
Lring and Gring with respect to the physical quantities measured δωr and δ(1/Q)

δ( κ

Lring
) = 2

Lreso

δωr

ωr
(2.32)

δ(κGring) = 1
ωrLreso

δ( 1
Q

) (2.33)

(c) Current fluctuations of the circuit

Let us noW derive the expression for the noise of the circuit. We consider the
very same circuit shown in Fig. 2.5 but this time the input is shorted by a 50Ω
resistance Z0. The main noise sources of the system are the following :

— The SNS junction generates the supercurrent noise we want to measure. We
denote it SI,j .

— Due to its finite conductance, the resonator is also a noise source and it obeys
the fluctuation-dissipation theorem [36]. In terms of current noise, we write
this contribution 4kBTGreso.

— The amplifier contributes to the total noise of the system. The internal
current and voltage noise SI,a and SV,a are considered decorrelated. Their
contribution to the total current noise is denoted SI,amp.

The simplified circuit is represented in Fig. 2.6 where the thermal contribution to
the noise is noted SI,th and the amplifier’s contribution SI,amp.

g

SI,ampL* CtotSI,thGtot

Figure 2.6 – Simplified circuit model considering the noise, with g the total gain
including the room temperature amplifiers.

Similarly to what has been done for the transmission measurement, we can
decompose the total thermal current noise coming from the ring coupled to the
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resonator by :

SI,th = 4kBTGreso + κSI,ring (2.34)

with

SI,ring = SI,j

(1 − Ll/Lj)2 (2.35)

The amplifier contribution to the current noise is obtained by adding the two
internal noise contributions. To do so, we transform the internal voltage noise into
an effective current noise.

Yj Yreso
Ca

Va

VampYc

Figure 2.7 – Circuit model to convert the internal voltage noise of the amplifier
into a current noise.

Fig. 2.7 shows the circuit model considered for the conversion. We have a
voltage source Va and we want to derive the expression of the measured Vamp across
the capacitance. This circuit is equivalent to a voltage divider, and we can write
Vamp as

Vamp = (iωCa)−1

(iωCa)−1 + 1
Yreso+Yj+Yc

× Va

= Yc + Y ∗

Yc + Y ∗ + iωCa
× Va

(2.36)

because Yc +Y ∗ + iωCa represents the total admittance of the system, we finally get
:

Iamp = (Yc + Y ∗) × Va (2.37)

and finally, since the current (resp. voltage) noise can be written as Si = ⟨I2⟩ (resp.
Sv = ⟨V 2⟩) and we can add the two sources independently, we get

SI,amp = SI,a + SV,a × |Yc + Y ∗|2 (2.38)

What we measure is in fact the total voltage noise spectrum Sv(f),

Sv(f) = SV,th(f) + SV,amp(f) (2.39)

and the conversion to current noise is SI(f) = Sv(f) × |Y ∗ + Yc + iωCa|2. The
dependence of SI,amp on Y ∗ yields a significant phase-dependence of this term in
the noise. Thus, a precise calibration of all the terms involved in SI,amp and the
further separation of this term to obtain SI,th is needed. Those are the key challenges
of the experiment.
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2.3 . Calibration procedure

The quantitative knowledge of the circuit elements shown in Fig. 2.5 is important
to extract quantitatively and further analyse the supercurrent noise and compare it
to the dissipation measurement. Several parameters have to be taken into account :

— The exact temperature to be considered, detailed in the first part of this
section.

— The calibration of the circuit elements is the subject of the second part.
— The transmission measurement and the precise extraction of δωr(Φ) and

δ(1/Q)(Φ).

2.3.1 . Electronic temperature
At cryogenic temperature, the thermalization of the electrons is difficult due to

weak electron-phonon coupling [37]. The best way to calibrate the exact electronic
temperature is by measuring the SV − T relation. To do so, we measured the noise
close to the resonance and assumed at high temperature SV (T ) ≈ 4kBT/Greso +
constant. The temperature dependent part yields the exact electronic temperature,
whereas the constant part includes the noise coming from the amplifier.
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Figure 2.8 – Calibration of the electronic temperature. (a) Sv(f) as measured
close to the resonance. The displayed temperatures are the temperature of the
mixing chamber. (b) Relation between the voltage noise on resonance SV (fr) and
T , and the fitted linear relation.

Fig. 2.8 shows the measured voltage noise without any applied field. By taking the
value of the noise on resonance, the linear extrapolation SV = a×T +b is performed
on the two high T (above TMC = 100 mK) where we assume the correspondance
between the mixing chamber temperature and the electronic temperature (TMC =
T ). The fit yields a = 2.2×10−19 V2Hz−1K−1 and b = 2.4×10−19 V2Hz−1. At lower
temperatures, where the data points deviates from the linear relation the electronic
temperatures are determined by inverting the SV −T relation : T = [SV (TMC)−b]/a.
The summarized conversion between mixing chamber temperatures and electronic
temperature is listed in Tab. 2.2.

Greso(T,Φ = 0) can also be extracted from a : Greso = 4kB/a. The obtained
values are summarized in table 2.3 and will be discussed in section 2.3.2.

We acknowledge the lack of points for the linear fit in temperature. Fortunately
it seems to be sufficient for the purpose of this experiment as will be seen in section
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TMC(mK) T (mK)
10 50
30 45
50 60
100 100
200 200

Table 2.2 – Mixing chamber and electronic temperatures.

2.4.2. It is nevertheless a point to take care of for further experiments of this kind.
The second point that can be disturbing is the non-monotonic change from TMC to
T , as for instance TMC = 10 mK is in fact hotter that TMC = 30 mK. Very short
powercuts occured during the experiments that could have affected the specification
of the dilution refrigerator. This doesnt’ affect the further presented experimental
results as the experiments performed at one temperature didn’t suffer from any
perturbation of this kind as they were done on the minimum of time required and
any possible drift in that time is taken into account. The precise calibration of
the circuit elements presented in the next part is also done independently for every
temperature.

2.3.2 . Calibration of circuit elements
The quantitative comparison between the supercurrent noise and the ac admit-

tance of the ring needs precise calibration of all circuit elements. Still at phase φ = 0,
this is done by measuring Γ(ω) and SV (ω). For calibration the ring contribution is
neglected since the inductive coupling coefficient κ = L2

c/L
2
reso is small and won’t

affect the calibrated parameters.

Figure 2.9 – Calibration of circuit elements at T = 200mK using the models for
(a) Γ(f) with eq. 2.27 and (b) Sv(f) with eq. 2.39. (c) Zoomed-in plot of (b)
closer to the resonance.

We explain the calibration process for one temperature only (T = 200 mK), but
the process is the same for all the temperatures, yielding a few difference in certain
parameters, all detailed below. As for the electronic temperature measurement, the
calibration is done at zero magnetic field and we assume Φ = 0.

58



— By measuring Γ(f) as shown in Fig. 2.9(a) (solid lines) and fitting it to eq.
2.27, we obtain Q = 105 and fr = 117.5 MHz.

— Greso is directly obtained from the SV −T relation. At 200mK, Greso = 246.5
µS.

— Since Q = 1/L∗Gtotωr, we get Ctot = 35pF and Lreso = 52.5nH. This value
of inductance is consistent with the resonator design, for which we expected
40nH for the calculated geometric and kinetic inductances 2.13. The obtained
Ctot is assumed constant with temperature.

The amplifier parameters SI,a, SV,a, Ca are obtained via a fit of the total voltage
noise spectrum SV (f) to equation 2.39, assuming SI,th = 4kBTGreso (only at phase
0) and fixing Ctot as 35 pF. This assumption is made because we don’t expect the
total capacitance to be affected too much by temperature or field. The result is dis-
played in Fig. 2.9(b) and Fig. 2.9(c) is a closer look on the spectrum on resonance.
Our model fits the entire spectrum and not only the resonant part, which is impor-
tant in the understanding of the measured fluctuations : for instance the asymmetry
observed in 2.9 far from the resonance is due to the finite Ca and Sv,a. Those quan-
tities could not be obtained if we took into consideration only the resonance.
Small drifts can occur due to temperature or time since the measurements can be
long (two days at least for 20 points in phase at a given temperature). To com-
pensate these phenomena we re-calibrate at zero field for each temperature. The
calibrated values for the circuit elements obtained via this method are listed in Ta-
ble 2.3 and they will be the ones used in the quantitative analysis coming in further
sections.

T (mK) 200 100 60 50 45
Greso (µS) 246.5 245.5 235.8 236.3 237.7

1/Lreso (µH-1) 19.1 19.1 19.0 19.0 19.0
Ca (pF) 0.21 0.21 0.14 0.14 0.14√

SI,a (fA/
√

Hz) 93.5 94.7 96.6 95.2 96.8√
SV,a (nV/

√
Hz) 0.26 0.25 0.25 0.25 0.24

Table 2.3 – Summary of the calibrated circuit parameters

The fact that Greso decreases as temperature decreases as expected (the lower
the temperature, the lower the losses) indicates that our method is reliable.

2.3.3 . Calibration of transmission measurement
As stated in section 2.2.3, the physical quantities measured are the resonance

frequency shift and inverse quality factor shift. In this section, we detail how we
obtain these quantities and how we calibrate this measurement to quantitatively
compare it to the noise measurement. We want to measure variations of δf with a
precision of δf/f < 10−6. To achieve this accuracy we use a frequency modulation
technique. The setup diagram for measuring δf and δ(1/Q) is shown in Fig. 2.10.

The generator produces an FM-modulated signal whose center frequency ωn is
close to the resonance of the resonator, and its modulation depth is noted ωm. The
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Figure 2.10 – Setup diagram for measuring δf and δ(1/Q). The figure is repro-
duced from [24] as the measurement process is similar.

modulation frequency ωf is around 1 kHz to avoid 1/f noise. The instantaneous
frequency reads ω(t) = ωn + ωm cos(ωf t). The signal is sent to the resonator in
the dilution refrigerator (DUT in Fig. 2.10) and the transmitted amplified signal is
demodulated using the same signal split from the generator output.
Thus, the ouput of the mixer Vr is a low-frequency signal oscillating at the modula-
tion frequency ωf . This signal is then sent to two lockin-in amplifiers detecting at
ωf and 2ωf (respectively green and red in the figure).

— The ouput V1 is a dc signal proportional to ∂Re(Γ)
∂ω , which is 0 on resonance.

V1 is sent to a PID module feeding back to the local oscillator of the signal
generator. When the magnetic flux is sweeped, the feedback loop is closed
and the local oscillator adjusts the center rf frequency ωn such that V1 is
always 0, and outputs the resonance frequency shift with respect to the flux.

— Due to the feedback loop, the resonator stays on resonance during the sweep
and the second lockin output has a variation δV2(ϕ) on top of a large back-
ground V2(0) with respect to the flux.

This last quantity is related to 1/Q and thus to Gring. On resonance, it can be
shown [29] that the relation between δ(1/Q) and V2 reads :

δ( 1
Q

) = − 1
αQ(0)

δV2
V2(0) (2.40)

Q(0) = 105 is determined from the fit of Γ(f) in section 2.3.2. The coefficient α needs
to be determined in our experiment. When ωm ≪ ωr/Q, one can show that α = 3
[29]. However in our experiment ωm is chosen around ωr/Q to improve the signal-to-
noise ratio of V2. To determine α we start by measuring V2(f) and comparing with
the numerical calculation. The numerical calculation uses the analytical expression
of Re(Γ) detailed in equation 2.27 and ω(t) = ωn + ωm cos(ωf t) we obtain the
calculated V2 by taking the second Fourier component of Re(Γ).
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Fig. 2.11 shows a remarkable agreement between the model and the experimental
data. This measurement setup then allows us to detect a very small variation of
both the inverse inductance of the order of 1 nH−1 and in conductance of the order
of 1 µS.

Figure 2.11 – Example of the calibration at T = 50 mK.(a) Normalized second
harmonic V2 of Re(Γ) with respect to f (squares) and model obtained from numerical
calculations (solid lines). (b) Directly measured δV2 normalized by V2(0) (left axis)
and the obtained δ(1/Q) using the calibrated α.
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2.4 . Fluctuation and dissipation measurement : the SNS ring

The experimental results for both the transmission and noise are presented in
this part. The first section describes the measurement of the inductance and con-
ductance, to be compared with a DC control sample. The second section describes
the noise measurement, along with the data processing and extraction of the super-
current noise coming from the ring. Finally, we compare both experiments to check
the fluctuation-dissipation for a NS ring.

2.4.1 . Inductance and conductance of the NS ring
(a) Inductances and current-phase relation

We explained in section 2.2.3 that the variations of inductance and conductance
of the ring are linked to the shifts of resonance frequency and quality factor derived
in equation 2.32 and (2.33). We start with the variations of the inductance of the
ring. By equation 2.32 we get the results shown in Fig. 2.12.
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Figure 2.12 – Phase variation of the ring’s inductance with respect to the flux,
directly obtained from the measurement of the frequency shift using equation 2.32.
On the right axis the directly measured δf/f as a guide to the equivalence between
δf/f and δ(1/Lring).

The experimental result shown in Fig. 2.12 is the relative variation of the ring’s
inductance. It can be written more explicitely :

δ( 1
Lring

) = 1
Lring

(Φ) − 1
Loff

(2.41)

in which Loff is the reference value of inductance of the ring, taken at Φ = 0 in our
experiment. In order to obtain the absolute 1/Lring, we need to determine Loff .
This is done by first considering that we are working at relatively low frequency
hence the adiabatic regime seems to be the regime to consider at least for the reactive
contribution. In this case, by neglecting the screening effect, the inverse inductance
can be written :
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1
Lring

= ∂Is

∂Φ (2.42)

With Is the current-phase relation. The offset in equation 2.41 adds a linear back-
ground in the CPR. To obtain the absolute Lring we follow this recipe :

1. We start by integrating the obtained δ(1/Lring) as if we assumed Loff to be
0.

2. This yields a "tilted" CPR shown in Fig. 2.13(a). The linear background is
plotted as a guide to the eye and the slope corresponds to Loff .

3. This Loff is added to the δ( 1
Lring

) of Fig. 2.12 to obtain the absolute Lring.
4. This process is repeated using the corrected 1/Lring until Is(Φ) has no more

linear background and is periodic in Φ0, which is the only allowed form of
the CPR (shown in Fig. 2.13(b)).

The result of this procedure is shown in Fig. 2.14
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Figure 2.13 – Removing the offset in 1/Lring can be done by integrating the CPR.
(a) When directly integrated, the CPR (red, solid) has a tilted shape, the black
dashed lines highlight the linear background to be removed. (b) When this linear
background is removed, the CPR is periodic in Φ0 : the offset has been determined.

Removing this linear background in the CPR would yield the current-phase
relation as shown in Fig. 2.13(b). But in our case, the screening effects has a non-
negligible impact and we can’t assume Lring = Lj for the following. Taking into
account this effect and with the absolute Lring yields :

1
Lj

(Φ) = 1/Lring(Φ)
1 + Ll/Lring(Φ) (2.43)

with Ll = 250 pH dominated by LC (measured) and Ll −Lc thus estimated. In Fig.
2.15 we provide a comparison between Lj and Lring for all the temperatures.

The difference between the inductance of the ring Lring and the inductance of
the junction Lj decreases with temperature. Indeed, the screening is characterized
by :

β = Ll/Lj = 2πLlIc(T )
Φ0

(2.44)
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Figure 2.14 – Absolute Lring obtained after adding the obtained Loff following
the process described above.
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Figure 2.15 – Comparison between L−1
ring (circles) and L−1

j (solid) when the screen-
ing contribution is taken into account (a) at T = 45, 50 and 60 mK. (b) at T = 100,
200 mK.
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Figure 2.16 – (a) CPR obtained via numerical integration of 1/Lj at all tempera-
ture. (b) Temperature evolution of the critical current directly read from the CPR.

and Ic decreases exponentially with temperature. This is further seen by integration
of 1/Lj(Φ) : The shape of the CPR is reminiscent of the long diffusive junction,
similar to a distorted sine and becoming more and more sinusoidal with increasing
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temperature (2.16(a)). By taking the maximal value of the CPR at every tempera-
ture, we build the Ic(T ) shown in Fig. 2.16(b) and fit it to :

Ic(T ) ∝ exp(−kBT/3.6ET h) (2.45)

which is the behaviour expected for a diffusive long SNS junction when the temper-
ature is higher than ET h [19]. We thus obtain the Thouless energy of the system,
ET h = 30 mK, in good agreement with previous experiments on a similar system
[29], and with a control DC sample detailed later.

Finally, the total inductance of the system L∗ can be obtained by adding the
calibrated Lreso and by equation 2.19 we obtain the inductance of the total system
vs. the phase plotted in Fig. 2.17.
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Figure 2.17 – Total inductance of the system using the directly measured 1/Lring

and the obtained Loff from the process described above. The resonator’s induc-
tance Lreso is added to finally obtain the phase-dependence of the whole circuit’s
inductance.

(b) Conductance

Similarly we can obtain the variation of conductance of the ring only with equa-
tion 2.33, shown in Fig. 2.18. Once again there is a offset to be taken into account
to obtain the absolute Gring, along with the screening effect on the measured con-
ductance. This time, the absolute Gring reads :

Gring = Gj

(1 − Ll/Lj)2 (2.46)

with Lj obtained in the previous section. To obtain this offset, we follow the process
proposed in [29]. We first calculate the ratio :

r = |δGring|
|δ(1/Lring)| (2.47)
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Figure 2.18 – δGring obtained after the directly measured δ(1/Q), following equa-
tion 2.33.

where δ refers to the amplitude of variation over phase of the considered quantity
and is read directly from the measurement in Fig. 2.12 and 2.18. It correspond in
our case to the difference between Φ = 0 and Φ = 0.5Φ0. For the expressions of
Lring and β, we write :

∣∣∣∣∣δ
(

1
Lring

)∣∣∣∣∣ = 1
Lring

(0) − 1
Lring

(0.5Φ0)

=
χ′

j(0.5Φ0)
1 − β(0.5Φ0) −

χ′
j(0)

1 − β(0)

= 1
Ll

β(0.5Φ0) − β(0)
[1 − β(0.5Φ0)] [1 − β(0)]

(2.48)

For the conductance, we assume the same values of Gj at phase 0 and π, yielding
Gj(0.5Φ0) = Gj(0) = G0. This assumption approximates the junction to be very
weakly phase-dependent, and it will be proven true in a later section (see section
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2.5) Therefore the difference |δGring| is written :

|δGring| = G0

[1 − β(0.5Φ0)]2
− G0

[1 − β(0)]2

= G0
[β(0.5Φ0) − β(0)][2 − β(0.5Φ0) − β(0)]

[1 − β(0.5Φ0)]2 [1 − β(0)]2

= G0
β(0.5Φ0) − β(0)

[1 − β(0.5Φ0)] [1 − β(0)]

×
[ 1

1 − β(0) + 1
1 − β(0.5Φ0)

]
(2.49)

Combining equations (2.48) and (2.49) we arrive at :

r = LlG0

[ 1
1 − β(0) + 1

1 − β(0.5Φ0)

]
(2.50)

with β(0, 0.5Φ0) and r respectively read and calculated from the measurement. The
obtained G0 is used to buid the screening contribution of the measured conductance
:

Gs(Φ) = G0
(1 − β(Φ))2 (2.51)

and it can be plotted : The offset is obtained by equating Gring(0) and Gs(0).
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Figure 2.19 – Phase-dependent screening contribution to the measured conduc-
tance using equation 2.51. The phase-dependence of this conductance doesn’t come
from the conductance directly but from the inductance via the screening term β(Φ).

Using this method we obtain the absolute Gring and the contribution to Gring of
the screening term. In Fig. 2.20 we plot the obtained Gring and provide a direct
comparison with Gs.
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Figure 2.20 – (a) Absolute Gring with considered offset, obtained by equation
Gs(0) and Gring(0). (b) Comparison between the absolute Gring and the screening
contribution Gs. We see that almost all the phase dependence of the conductance
is due to screening.

It can be seen from Fig. 2.20(b) that the screening contribution provides most of
the phase-depence of the conductance. Finally, now that the offset and the screening
term has been obtained, we can obtain the junction’s conductance alone by inverting
equation 2.46, plotted in Fig. 2.21.
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Figure 2.21 – Conductance of the junction alone : it is almost phase-independent
(especially at high temperature), but also very strongly temperature dependent.
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The weak phase-dependence of the junction will be discussed in the last section of
this chapter. The other striking feature of the conductance is its strong temperature
dependence. By taking the mean-value of Gj (which can be approximated by the
value at Φ = 0.5Φ0), we can plot Gj(T ) and fit it to the expression ([38, 39, 29]):

Gj(T ) = GN (1 + T ∗

T
) (2.52)

whose result is shown in Fig. 2.22. The strong temperature dependance is a key
difference between the SNS junction and the normal metal that seems surprising as
the usual representation of the conductance, the Drude conductance, is temperature
independent.

GN = 96 mS, T* = 180 mK

T (K)

Figure 2.22 – Gj vs T with both axes in logarithmic scale.

The fit yields GN = 96 mS and T∗ = 180 mK, that is six times the Thouless
energy obtained from the fit in Fig. 2.16(b). On top of the strong temperature
dependence, we note the enhanced conductance compared to GN , with Gj going
from 2 × GN at 200 mK up to 5 × GN at very low temperature. We discuss and
provide an explanation of these results in section 2.5.

Finally, by adding the calibrated conductances of all the circuit elements we
consider, we can plot the overall conductance of the system Gtot shown in Fig. 2.23.
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Figure 2.23 – Conductance of the whole circuit. The phase-dependent part is due
to the ring, whereas the background comes from the calibrated circuit elements. The
huge difference in order of magnitude compare to the results presented in Fig. 2.18
is due to the coupling factor κ ≈ 10−5.

(c) Comparison with a gold-based SNS control sample.

To further validate the experiment, we fabricated a gold-based SNS junction us-
ing a process similar to the one presented in section 2.2. The measurement performed
in the DC limit yields the differential resistance curve presented in Fig. 2.24.
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Figure 2.24 – Two wires differential resistance measurement of the control sample.
The sweep in both direction of the current highlights the hysteretic behaviour. The
jump between the low bias and the high bias region yields the normal state resistance
RN = 7 Ω, hence GN = 143 mS. The retrapping current is Irt = 200 nA and the
switching current is Isw = 360 nA. This yields a product eRNIc ≈ 48 mK ≪ ∆.

The transition from the supercurrent state to the normal state occurs at a value
of switching current of Isw = 360 nA whereas the retrapping current Irt = 200 nA,
comparable in order of magnitude to measured critical current of the NS ring at
low temperature shown in Fig. 2.16. The jump of resistance between the low bias
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and high bias region yields RN,dc = 7 Ω, hence GN,dc = 143 mS. There is a factor
of roughly 1.5 between the RF (obtained from the fit) and the DC measurement.
This could be explained by the different aspect ratios and/or mean-free paths of the
two gold wires, as it can be seen from the product eRNIC giving 24 mK for the RF
sample and 45 mK for the RF sample. These comparable values confirm the results
of this measument.

2.4.2 . Noise and validation of the FDT
(a) Extraction of the supercurrent thermal noise

In this part, we present the results on the noise measurement and the extraction
of the quantities of interest. A comparison between the measured conductance of
both the whole circuit and the ring is also given, leading to the validation of the
fluctuation-dissipation theorem for a superconducting system.
The noise is measured by putting a 50 Ω resistance at the input of the circuit
presenting on Fig. 2.5, during the same cooldown as the one for the transmission
measurement. The voltage spectrum Vn is measured by an oscilloscope with the
spectrum analysis function that converts the time-domain voltage into the voltage
spectrum. This voltage spectrum is then converted into the noise spectrum by

Sv(f) = V 2
n

g2 ×RBW
(2.53)

where RBW = 954 Hz is the resolution bandwidth and g the gain of the measure-
ment setup. Each spectrum is averaged 104 times. One spectrum measurement thus
takes around 2 hours to complete, and for 20 points in a complete period in Φ0 a
bit more than 40 hours. Indeed the measured noise is the total noise of the circuit.
The part of interest is the thermal noise that we need to extract. As it was shown in
section 2.2.3 the voltage noise originating from the amplifier is itself frequency and
phase-dependent (see Fig. 2.25(a)). Using the calibrated circuit elements of table
2.3, we can reconstruct the term SV,amp and substract it to get only the thermal
part, as shown in Fig. 2.25(b)

The extracted SV,th is a very small contribution of the total noise and its phase
variation is even smaller (see Fig. 2.26(a)). The corresponding current noise SI,th =
|Y ∗ + Yc + iωCa|2 × SV,th is obtained and plotted around resonance at phase 0 and
π in Fig. 2.26(b).

In the limit kBT ≫ hf , the noise should be frequency-independent. This is
indeed the case in our experiment since hf = 6 mK. Therefore we can calculate the
mean value and standard error around the resonance frequency to further reduce
the data uncertainty using :

SI,th = 1
N

N∑
n=1

SI,th(fn)

∆SI,th =
√∑N

n=1[SI,th(fn) − SI,th]2
N(N − 1)

(2.54)
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Figure 2.25 – (a) Example of the total voltage noise spectrum directly measured,
at phase 0 and π. (b) Illustration of the different contributions at phase 0. The
total voltage noise (thick solid line) is the sum of the effective amplifier voltage noise
SV,amp (thin solid lines) and the total thermal voltage noise SV,th, which is obtained
by subtracting SV,amp from SV .
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Figure 2.26 – (a) Closer look at the thermal voltage noise obtained from the
extraction, at phase 0 and π. (b) Corresponding current noise. The dashed lines
represent the mean value around resonance, and the phase-variation of this value is
distinguisable from the uncertainty.

where N ∼ 200 is the number of data points. Once the mean values are obtained
at each phase, we can finally plot the phase-dependent SI,th, with an example at
T = 50 mK in Fig. 2.27(a). A linear background appears in SI,th. This linear
background could be coming from a small drift in Greso with time. We can check
the validity of the FDT by comparing the measured conductance to SI,th/4kbT . In
Fig. 2.27(b) we show the difference in conductance between the uncorrected and the
corrected Gtot : Gcorrected = Graw + slope. Since the response of the system should
be periodic, removing the slope in either the conductance or the noise is justified,
and adding the linear background to Gtot removes the linear background in SI,th as
shown in Fig. 2.27(c).
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Figure 2.27 – Thermal noise and slope correction at T = 50 mK. (a) Example of
SI,th(Φ) directly obtained with the process described above. The linear background
we observe is explained by the drift of Greso with time. (b) The slope correction on
Gtot mimics the drift of Greso with time, even if Gtot must be periodic in Φ0. The
filled squares to Gtot obtained from inverting SI,th = 4kBTG and the unfilled square
is obtained by adding the linear background, shown in dashed line.(c) Thermal
current noise SI,th obtained after the slope correction.

(b) Verification of the fluctuation-dissipation theorem

The validation of the fluctuation-dissipation theorem is given by

SI,th(Φ) = 4kBTGtot(Φ) (2.55)

We verify the fluctuation-dissipation theoreml for the whole system by comparing
the noise measured with 4kbTGtot(Φ) where Gtot(Φ) is deduced from the transmis-
sion measurement. The direct comparison between those two terms is plotted in
Fig. 2.28. Several conclusions can be made :

— The plotted quantities are SI,th the total thermal noise and Gtot the total
conductance.

— The quantitative agreement between the noise and the conductance for the
phase independent baseline is the verification of the FDT for the resonator
alone (which we assumed to be correct only at phase 0).

— The quantitative agreement between the phase-dependent parts is a direct
demonstration of the FDT for the ring.

— The temperature entering in equation 2.55 is identical from the ones ob-
tained in Fig. 2.8 giving the electronic temperature of the measurement
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circuit. This result indicates a good thermalization between the Andreev
bound states and the resonator. This is otherwise not trivial to confirm
experimentally.

Figure 2.28 – Phase-dependent fluctuation-dissipation theorem : Comparison be-
tween SI,th (squares) and 4kBTGtot (solid lines). (Left) At T = 45, 50 and 60 mK.
(Right) At T = 100 and 200 mK.

This measurement and experimental verification of the fluctuation-dissipation
for such hybrid superconducting device paves the way for new studies on noise on
more exotic system, and may be applied in the future to the topological SNS junction
whose supercurrent thermal noise should reveal evidence of topological protection
between the Andreev levels. [40]
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2.5 . Understanding phase and temperature dependence of the
conductance

The experimental results on the phase-dependence of Lj and Gj shown in section
2.4.1 can be a bit surprising in comparison with previous work from our group [29, 15,
27] in which the measured inductances and conductances are indeed strongly phase-
dependent in a different range of frequency and temperature. This is nevertheless
not the case in our system (Fig. 2.21), in which a weak phase-dependence is observed
only at low temperature and disappears completely at high temperatures. The other
striking feature is the confirmation of the strong temperature dependence of the
junction’s conductance, which exceeds at low temperature the Drude conductance.
In this section, we provide an explanation of the observed weak phase-dependence of
the conductance and its temperature dependence. We begin by performing numerical
simulations and further calculations using linear response theory.

2.5.1 . Tight-binding model for the long diffusive SNS ring

We can write the Bogoliubov-de Gennes Hamiltonian describing the SNS junc-
tion as :

H =
(
H − EF ∆

∆∗ EF −H∗

)
(2.56)

with H the Hamiltonian without superconductivity, EF the Fermi level, ∆ = ∆0e
iφ

the complex superconducting order parameter in which φ incorporates the phase
difference between the two superconducting leads. ∆ = 0 in the normal part of
the junction. The considered lattice is a two-dimensional square lattice of lattice
parameter a, and this Hamiltonian is further discretized into :

H =
N∑

n=1
[ϵiσz + ∆0e

iφσx]|i⟩⟨i| +
∑
i ̸=j

tijσz|i⟩⟨j| (2.57)

with the classical notations : i for the i-th site, N the total number of sites (normal
and superconducting), σx,z the Pauli matrices, ϵi the onsite potential and ti,j = −t
the hopping term non-zero only when i and j are nearest neighbors. Considering half-
filling, we chose EF = 4t so that the onsite potential reads ϵi = 4t−EF +Vi = Vi, with
Vi the on-site random disorder uniformly distributed within range [−D,D] (D being
the disorder strength). Parameters are D = 0.4t and ∆ = 0.05t., length L = 160a
and width W = 20a so that the aspect ratio L/W = 8 reflects the experimental one.
The Andreev spectrum calculated by diagonalizing the Hamiltonian for each phase
between 0 and 2π and the obtained spectrum is shown in Fig. 2.29
From this spectrum, the minigap Eg = 6.2ℏvF le/2L2 = 0.005t [42] is read at phase
φ = 0. Because ℏvF = 2ta in this tight-binding model, the mean-free path can
be calculated and is le ≈ 20a. The obtained superconducting coherence length
ξ = ℏvF /2∆ ≈ 20a, so that finally ξ, le ≈ L/10, yielding a long diffusive regime.
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Figure 2.29 – Obtained Andreev spectrum from calculation using [41]. This spec-
trum is characteristic of a long diffusive junction. The important parameters are
L = 160a, W = 20a, D = 0.4t, ∆ = 0.05t. We obtain Eg = 0.005t, ξ ≈ le ≈ 20a.

The current operator is computed in [15] and it reads :

Jnm = ⟨n|(ℏ/i)∇|m⟩

= ℏ
i

∑
l,l′

⟨n|xl, yl⟩⟨xl, yl|∇|xl′ , yl′⟩⟨xl′ , yl′ |m⟩

= ℏ
l

∑
l

Ψe∗
n (xl, yl)[Ψe

m(xl + 1, yl) − Ψe
m(xl, yl)]

+ Ψh∗
n (xl, yl)[Ψh

m(xl + 1, yl) − Ψh
m(xl, yl)]

(2.58)

where Ψe/h
n (xl, yl) corresponds to the electron/hole components of the wavefunction

at position (xl, yl). From this expression and using linear response theory [29, 15],
the junction conductance at finite frequency ω is :

Gj = GD +GND

GD = −ℏ
∑

n

|Jnn|2 hγ

(ℏω)2 + (hγ)2
∂fn

∂En

GND = −ℏ
∑

n̸=m

|Jnm|2 hγ

[ℏω − (En − Em)]2 + (hγ)2
fn − fm

En − Em

(2.59)

with γ the inelastic scattering rate and f the Fermi-Dirac distribution.

2.5.2 . Phase dependence of GD and GND

We now dig into more details of the response function. We remind that the
relative magnitudes between the working frequency ω, the inelastic scattering rate
γ (equivalently τ−1

in ), Eg the minigap and temperature T define the shape of the
inductance (the reactive response) and the conductance (the dissipative response)
as a function of phase. The first observation is that the shape of the inductance
Lj hints towards the adiabatic regime. In this case the inductance is given by
the derivative of the current-phase relation of the junction (a sine with additional
harmonics), consistent with the previous work from the group [29]. This was used
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when we integrated Lj in order to obtain the CPR of the junction. The conductance
is a bit more difficult to understand at first glance. There is a big difference between
the ring’s conductance Gring and the junction’s one Gj . As explained before, the
phase-dependence observed via Gring is dominated by screening effects, whereas the
conductance Gj of the junction is nearly phase-independent. Let us summarize the
different time and energy scales :

— The working frequency is around 117 MHz, leading to hf = 6 mK ≪ kBT
in the experiment. This frequency is smaller than the frequency previously
investigated.

— Furthermore, from Ic(T) obtained in Fig. 2.16(b) we get ETh = 30 mK and
Eg(φ = 0) = 3.1ET h. Hence, at high temperature, we have kBT ≫ Eg ≫ hf.

The last relevant quantity to be determined in the ordering is then γ. The previous
experiments performed in our group [29] yielded γ ≈ 5 GHz for T > 500 mK.
However the present experiment was performed at much lower temperature. Two
other considerations differentiate the experiments :

— They used multimode resonators, whereas here use a single-mode resonator.
The use of a single-mode resonator should reduce the inelastic scattering
caused by the environment. [43]

— The quality of the gold wire : in the previous experiment they used Au 6.9
(99.9999% pure gold) and in our case we used Au 5.9.

limiting the comparisons with the previous experiments. In order to estimate the
range of γ, we perform the numerical simulations with several values of γ to see
which order of magnitude yields a result similar to the one of the experiment. To
simulate the high temperature behaviour, the parameters used are :

— Eg = 0.005t
— kBT = 4Eg

— hf = 0.02Eg

The calculated Gj and its two components are shown in Fig. 2.30.
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= GjGND + GD = Gj

G
/G

Figure 2.30 – Calculated Gj(ϕ) with kBT = 4Eg, ℏω = 0.02Eg and in (a) hγ =
0.5Eg, in (b) hγ = Eg. A slightly higher hγ than Eg weakens the phase-dependence
of Gj . The curves are normalized by Gπ = Gj(0.5Φ0). GD is 0 at Φ = 0.5Φ0 and is
offset for the comparison with GND.

The result for hγ ∼ Eg is similar to the experimental result. Then, in order to
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recover the weak phase-dependence of the conductance and considering the results
already obtained, the regime to consider is the following :

hf ≪ Eg ≲ hγ ≲ kBT (2.60)

This is further seen analytically when taking the expressions of GD and GND of
equations 2.59. In both GD and GND, we can use ℏω = 0 since the frequency is the
lowest energy scale. ∂fn/∂ϵn is proportional to 1/T . Therefore we rewrite GD as :

GD ∝ − 1
(γT )

∑
n

|Jnn|2 (2.61)

The main difficulty is in simplifying GND as the energy difference between levels
appear in its expression. We are interested in the phase-dependence, which the
spectrum of Fig. 2.29 shows that the largest phase dependence comes from the
states closes to the Fermi energy and from levels that are symmetrical around it.
Considering the phase dependance, we can argue that En − Em < Eg. From the
calculated Gj using our model and shown in Fig. 2.30, the regime closer to the
experiment yields hγ > Eg. Considering that the higher the levels, the less the
contribution, the second term can be approximated by its derivative :

fn − fm

En − Em
≈ ∂fn

∂En
(2.62)

yielding

GND ∝ − 1
γT

∑
n̸=m

|Jnm|2 (2.63)

Finally, the total conductance can be written :

Gj ∝ 1
γT

(∑
n

|Jnn|2 +
∑

n̸=m

|Jnm|2
)

(2.64)

≈ 1
γT

Tr(J2) (2.65)

where we extended the sum to all the levels since the contribution of the highest levels
is negligible. The trace of the current operator does not depend on the Aharonov-
Bohm phase because

Tr(H) = m

2e2 Tr(J2) + Tr(V ) (2.66)

does not depend on the phase, as it can be seen in [15] and detailled in Fig. 2.31.
This simple analysis reveals explains the unexpected phase-indepedence of the

conductance of the SNS junction. From the simple expression of equation 2.65, we
also recover the temperature dependence observed experimentally and predicted in
[38].
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Figure 2.31 – (Top) |Jn,−n|2 for n = 1, 2, 3 calculated from the exact diagonal-
ization of the Bogolioubov-de Gennes equations for a long diffusive SNS junction.
The inset is the calculated |Jnn|2. The addition of these two quantities is almost
phase-independent, and the higher n is, the less phase-dependent is the matrix ele-
ment. (Bottom) |J−1,m|2 and |J1,−m|2 (inset) with m = 1, 2, 3, 7. Again, the main
contribution comes from n = −m as explained in the main text. J1,−m is at least
an order of magnitude lower.
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2.6 . General conclusion

In this PhD work, we have demonstrated that the supercurrent flowing through
an SNS junction is actually noisy, i.e. the supercurrent presents thermal fluctuations
at equilibrium. This has been done thanks to the high freqyency set-up based
on a ultrasensitive cryogenic amplifier, which allowed us to detect independently
the conductance and the noise of the junction. The careful comparison between
these two quantities yields a first experimental demonstration of the FDT in an
SNS junction. Indeed, although FDT tells us that conductance and noise yields
the same information, they are not equivalent experimentally. Equilibrium noise
measurements, although more challenging, provide a unique advantage over other
measurements that involve sample biasing, for which the linear regime can not be
maintained over the full current versus phase relation.
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3 - Ballistic hinge states in multilayer tungsten
ditelluride

This chapter is devoted to the study of multilayer tungsten ditelluride and its
supposed higher order topological insulator phase. This part can be divided into
three main components :

— In the first part, we give a short introduction to topology in condensed matter
physics in section 3.1. We develop two main properties of the topological
insulators : band inversion and topological protection. We finally describe
the superconducting proximity effect in those systems.

— A second part is dedicated to the presentation of tungsten ditelluride, the
material probed during this PhD, as well as some of its properties. This is
the purpose of section 3.2.

— Finally, the last sections are dedicated to the experiments we perform, from
the principle of the experiment 3.3, fabrication 3.4, measurement techniques
3.5 and the results obtained 3.6.

3.1 . Introduction to topological insulators

This introduction to topology in condensed matter is inspired by M. O. Goer-
big’s lecture notes [44] and online courses available online from Delft University of
Technology [45].

3.1.1 . Topological band structure
Electronic properties of a material can be determined by their band structure.

A material is said to be insulating if its Fermi level lies in the gap between the
conduction and valence bands. Contrary to a conventional insulator, a topological
insulator is characterized by a band inversion [46], in which the curvature of the
bands (the mass, m ∝ (∂2E/∂k2)−1, changes sign). The first model of topologi-
cal insulator proposed in [47] proposed that a strong spin-orbit coupling gaps the
crossing point of the inverted bands and non trivial topology can emerge in the bulk
material. This non trivial topology manifests itself as the presence of conducting
states at the surface as stated by the bulk-edge correspondence principle. This idea
is summarized in Fig. 3.1.

The first example of 3D material insulating in the bulk and conducting in the
surface is BixSb1−x [50, 51]. In a 2D TI, the surface is insulating and the 1D edges
are conducting. This was theoretically expected and measured a year later in HgTe
quantums wells [52, 53]. In 2017 and 2018, the idea of higher-order topological insu-
lators emerged, characterized by gapped bulk and surface states but 1D conducting
hinges [54, 55, 56, 57]. A second (higher) order topological insulator is characterized
by a double-band inversion, illustrated in Fig. 3.2.

A simple classification can be made depending on the dimension of the material
and the dimension of conduction :
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band inversion with SOCband inversion without SOCtrivial insulator

(a) (b) (c)

Figure 3.1 – Schematic representation of band inversion and comparison with a
trivial insulator. (a) Band structure of a trivial insulator. The valence band is
represented in blue and the conduction band in red. There is a gap between the two
bands and the Fermi energy (not represented) is between the valence and conduction
band. (b) Band structure and band inversion without (or with weak) spin-orbit
coupling. The band inversion is illustrated with the switching between the red and
blue curves between the two crossing points, and corresponds to a change in the sign
of mass m ∝ (∂2E/∂k2)−1. (c) When combined, band inversion and SOC leads to
gapped bulk states but metallic surface states, represented by the black solid lines.
Adapted from [48, 49].

Figure 3.2 – Illustration of the double-band inversion. The red and blue linesare
inverted twice. The black solides lines are gapped surface states and the green lines
the conducting hinge states. Adapted from [49].

— A material of dimension d, conducting in dimension d − 1 and lower is said
to be a first-order topological insulator.

— A material of dimension d, insulating in dimension d and d−1 but conducting
in dimension d− 2 is said to be a second-order topological insulator.

An example of this classification is shown in Fig. 3.3.
These materials convey specific properties compared to an ordinary insulator. In

particular, their conducting states are protected by the conservation of a topological
invariant as explained below.
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First-order

Topological Insulators

Second-order

Topological Insulators

Figure 3.3 – First-order and second order topological insulators in various di-
mensions. The first-order TIs of dimension d (left column) exhibit conduction in
dimension d− 1, whereas the second order TIs of the same dimension show conduc-
tion only in dimension d− 2.

3.1.2 . Topological protection and spin-momentum locking
Let us consider the case of a 2D topological insulator, with an insulating bulk and

conducting edges. The symmetry and presence of SOC impose that edge states are
helical : their spin is tied to the momentum direction : this is the spin-momentum
locking.

This spin-momentum lockin is of major importance as it protects the states from
disorder. For instance backscattering is forbidden for a non-magnetic impurity since
backscattering requires spin-flip event. This process is illustrated in Fig. 3.4

Figure 3.4 – Illustration of the spin-momentum locking and topological protection
on a 2D topological insulator. The surface of the material is insulating and the
direction of motion of the electrons at the hinges is associated to a spin. For an
electron to backscatter on the grey impurity, it spins should change sign (from red
to blue). The helical states "ignore" the impurity.

3.1.3 . Superconducting proximity effect and topological insulators
In this PhD, we were interested only in 1D helical states, that is to say that

the material we probed were either a 2D topological insulator or a 3D second-order
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topological insulator. In this part, we discuss the effect of induced superconductivity
on the edge states of the topological insulator.

We consider the junction of Fig. 3.5, and the calculated Andreev spectrum in
the short and long junction regimes.

(c)

(a) (b)

Figure 3.5 – (a) Representation of the S/QSHI/S junction considered, with spin-
determined ballistic channels at the edges represented by the two opposite arrows.
(b) Andreev spectrum in the case of the short junction as calculated in [40]. (c)
Andreev spectrum calculated in the long regime in [58]. The change of slope in the
spectrum is highlighted by the two green arrows. From [58].

The two spectra are very similar to the ballistic junctions presented in 1.5.
However, contrary to the conventional case, the level crossed at π and so the state
with minimum energy corresponds to two different level in a full period. If we take
the example of the short junction, the state of minimum energy is the state with
energy ε+ between −π and π, whereas between π and 2π it is the state with energy
ϵ−. The crossing at phase π is protected by the conservation of a topological number
called the fermion parity (which corresponds to the number of fermions on one edge).
This fermion parity conversation makes the spectra period in 4π instead of 2π as in
a conventional SNS junction : this is refered to as the fermion parity anomaly. [40]

This 4π-periodicity should be seen in the current-phase relation as it is the
derivative of the Andreev spectrum. However, quasiparticle poisoning and non-
adiabatic transitions may restore the 2π-periodicity of the conventional junction. If
we take the example of the spectrum presented in Fig. 3.5, this would be equivalent
for the ABS to follow the negative energy branch, hence a similar spectrum as
the ballistic but spin-degenerate ABS. However the ballistic CPR with a critical
current of eET h/ℏ, is a tell-tale sign of topological transport in these material [58]
as illustrated in Fig. 3.6, and it was one of the first indication of Bismuth being a
HOTI [25].
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(a) (b)

Short junction Long junction

Figure 3.6 – CPR of topological junction in the (a) short and (b) long limit.
The dashed green line represent the conventional ballistic junction whose CPR is
2π-periodic. The red and blue continuous lines represent the current of the positive
and negative energy branches of the spectrum, yielding the 4π-periodic CPR. In
the long regime, the factor 2 difference in the amplitude of the current is a sign of
4π-periodicity. Adapted from [58].

3.2 . Topological phases of Tungsten Ditelluride

Tungsten ditelluride (WTe2) is one example of transition metal dichalcogenide
(TMDs). TMDs are materials of the form MX2 where M is a transition metal atom
(M = W, Mo for instance) and X a chalcogen atom (O, S, Se, Te, Po and Lv) 1

whose first interest was their nature close to graphene but with different electronic
properties : they are layered materials with weak Van der Waals interactions between
the layers.

In 2014 it has been proposed that monolayers of MX2 are QSHI [59] with the
1T’- structure shown in Fig. 3.7.

Among the TMDs, monolayer WTe2 is the perfect candidate to observe the
quantum spin Hall effect as it grows naturally in the 1T’ structure. Monolayer
WTe2 was shown to be a perfect insulator with edge conduction [61, 62], STM
measurements shown the existence of the topological states [63] and the quantum
spin Hall effect has been observed up to 100 K in 2018 [64].

The case of the 3D crystal is however more complex. In the form of a 3D crystal,
or multilayer, WTe2’s structure is changed towards its Td-phase, illustrated in Fig.
3.7. The first striking property of WTe2 is its extremely large magnetoresistance
[65], taking its origin from the compensation of the electrons and holes pockets [66,
67, 68].

However, the first topological phase identified for multilayer WTe2 was its Type-
II Weyl semimetallic state [69], whose typical band structure is illustrated in Fig.
3.8.

First experimental evidences of this Weyl nature were shortly found : extra
quantum oscillations of the resistance due to the Weyl orbits [70] or asymmetric
Josephson effect [71, 72]. Theoretical predictions concluded that WTe2 would exhibit

1. The ones generally studied are Sulfur, Selenium and Telluride. Polonium and Liver-
morium are highly radioactive.
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Figure 3.7 – Structure of WTe2. W atoms are in green, Te atoms in purple. (Left)
in its monolayer form. This structure is characterized by the mirror plane Ma and
the screw rotate symmetry C2a. (Right) in its multilayer form. In this case, the
rotational symmetry is broken. From [60].

Figure 3.8 – Typical band structure of the two possibles Weyl semimetals (WSM).
(Left) Type I with point-like Fermi surface. (Right) Type II. The cones are tilted
and the Weyl point is the touching point between the electron and hole pockets.
WTe2 was predicted to be the first example of type II WSM. From [69].

8 Weyl points [73]. However, the Fermi arcs (surface) states observed in ARPES
measurement were not sufficient to justify the existence of Weyl nodes in WTe2 [74].

It seems that WTe2 is a quantum spin Hall insulator when exfoliated up to its
monolayer (1T’ structure), but that the 3D crystal exhibits an other topological
phase (1Td structure). A theoretical investigation [75] first made the prediction
of a HOTI phase existing in multilayer WTe2. The surface states were found to
be inconsistent with the Fermi arc scenario from ARPES measurement and were
suggested to be "vestiges of a HOTI phase, close in parameter space" [75]. This
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could be explained by the relative resemblance between the 1Td and the 1T’ crystal
structure : under realistic experimental conditions, a small strain could annihilate
the Weyl points and results in a HOTI phase [76, 75]. This HOTI phase takes its
origin from double band inversion, like bismuth. [77], and illustrated in Fig. 3.9

Figure 3.9 – Origin of the HOTI phase of multilayer WTe2. The nodal
line semimetal phase is another type of topological phase, not described in this
manuscript. The double band inversion process is seen without and with SOC. In
the first case, it results in a higher-order topology in a bulk-gapless system, whereas
in the second case we recover the higher-order topological insulating phase. From
[75].

Even if it exhibits a HOTI phase, i.e. it has topological conducting states at
its hinges, WTe2 remains a semimetal, and the distinction between topological and
non-topological states in a non-superconducting system is difficult. This led to the
first experiments [78, 79, 80] performed on multilayer WTe2 using the Josephson
effect. The three experiments indicate the existence of topological hinge states only
along its a-axis, as summarized in Fig. 3.10. However, the ballistic nature remained
elusive in these experiments. This idea is the purpose of our experiment. To do so,
we measure the current-phase relation of the states localized at the hinges of WTe2.

3.3 . Current-Phase Relations measurements

Since the CPR is one of the best tool to probe the nature of transport in a
conductor, we introduce in this section the tool used during this work : the asym-
metric DC Supercurrent QUantum Interference Device (SQUID). We start with an
introduction on the DC SQUID.

3.3.1 . Superconducting Quantum Interference Device
The DC SQUID consists on two Josephson junctions in parallel, illustrated in

Fig. 3.11. We consider that these junctions, indexed by i = 1, 2, are described
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(a)
(b)

Figure 3.10 – (a) Calculated wavefunction of the hinge states as a function of
the position of the position in multilayer WTe2, in the case of a conducting bulk.
The edge states along the b-axis are merged into the bulk states but this is not the
case along the a-axis. Furthermore, they show that the hinge states are localized
on opposite hinges of the flake. (b) Current spatial distribution for a thick WTe2-
based SNS junctions. The bulk states are uniformly distributed along the b-axis,
hence the threshold at 0.2 µA/µm. The peaks appearing at the edges of the current
distribution correspond to the edges of the flake when the leads are parallel to the
b-axis, i.e. the states are localized along the a-axis. From [78].

by their critical current Ic,i and a generic current-phase relation fi(φi) with φi the
phase difference between the superconducting leads of junction i, such that we have
:

Ii = Ic,ifi(φi), i = 1, 2 (3.1)

We apply a magnetic field B imposing a flux Φext = B × S.
The fluxoid quantization gives the relation between the phase difference for both

junctions and the flux :

φ1 = φ2 + 2πΦext

Φ0
+ 2πn (3.2)

and we can write the total current in the SQUID, recalling that the CPRs are 2π-
periodic :

I(φ1, φ2) = Ic,1f1(φ1) + Ic,2f2(φ2)

= Ic,1f1(φ2 + 2πΦext

Φ0
) + Ic,2f2(φ2)

= Ic,1f1(φ2 + 2πB × S

Φ0
) + Ic,2f2(φ2)

= I(B,φ2)

(3.3)
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B

Figure 3.11 – Sketch of a DC Superconducting QUantum Interference Device
(SQUID). The superconducting parts are drawn in blue and the normal part of the
junction in yellow. The surface of the SQUID is highlighted by the black dashed line.
When we apply a magnetic field B perpendicular to the SQUID, a flux Φext passes
through the surface. The red solid line corresponds to the current going through the
two junctions placed in parallel, described by their phase difference φi with i = 1,
2. The total current in the SQUID is thus I = I1 + I2.

The measured quantity is not the current-phase relation of the whole SQUID
but its maximal value, i.e. the critical current of the SQUID. For clarity we change
the notations with i1 = Iu and I2 = Iref and we consider an asymmetric situation
in which Ic,ref ≫ Iu. The critical current of the SQUID is defined as :

Ic(B) = maxφ2 [I(B,φ2)]
= I(B,φmax

2 )

≈ Iu(φmax
2 + 2πB × S

Φ0
) + Ic,ref

(3.4)

with Ic,ref = maxφ2 [Iref (φ2)] = Iref (φmax
2 ) is the phase that maximized the current

in this junction. From this equation we see that the only magnetic field dependence
comes from the term Iu(φmax

2 + 2πB×S
ϕ0

. The critical current of the asymmetric DC
SQUID shows modulations that is the CPR of the unknown junction, which has a
lower critical current than the reference junction. An illustration of the quantity
measured can be seen in Fig. 3.12

This perfect scenario however doesn’t take into account other effects of the mag-
netic field that can happen in a SNS junction, such as the diffraction phenomena,
which is the subject of the next subsection.

3.3.2 . Diffraction phenomena in a single Josephson junction
(a) General derivation

As a consequence of the wavelike nature of the Cooper pair, a striking feature
of the Josephson junction are the diffraction phenomena of the supercurrent when
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Figure 3.12 – Illustration of the critical current of a SQUID. From this curve, it
can be seen that the reference junction has a critical current of 3 µA (blue dashed
line), and the CPR of the unknown junction is a sine (red) with critical current 1
µA (green arrow). The period ∆B is given by the surface of the SQUID.

magnetic fields are applied. These phenomena, first described with the SIS junction,
still exist in the case of the SNS junction. Inspired by [81], we start by recalling the
diffraction effect in a Josephson junction. This leads to explaining the shape of the
diffraction pattern in the case of a SNS junction placed in a perpendicular field as
it will be important to understand the experimental results later on. We consider a
2D Josephson junction of length L along the x-axis and width w along the y-axis.
The junction is placed in a magnetic field in the perpendicular direction −→

B = B0
−→uz.

The junction is represented in Fig. 3.13.

-W/2

W/2

L

x

y B

Figure 3.13 – Sketch of the Josephson junction we consider for the following deriva-
tion. Superconductors are in blue and the weak link in yellow. The normal part is of
length L (x-axis) and width w (y-axis). A magnetic field is applied perpendicularly
to the junction, on the z-axis.

We have chosen the gauge −→
A = −By−→ux with −→

A the vector potential and we
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introduce the gauge-invariant phase-difference

θ = φ− 2π
Φ0

∫ −→
A · d−→r (3.5)

with φ the superconducting phase difference between the two superconducting leads.
The phase acquired by a pair transmitted ballistically from a vertical coordinate y
across the junction reads :

θ = φ+ 2πΦ
Φ0

y

w
(3.6)

with Φ = BLw the flux inside the insulating part. The Dynes and Fulton description
[82] allows for the computation of the supercurrent based on a few approximations :

— The low-transparency of the interfaces. This approximations yields a sinu-
soidal current-phase relation for one state.

— The supercurrent flows perpendicularly to the leads and the supercurrent
density only depends on the y coordinate.

This yield the total current in the considered junction to be expressed as :

I(Φ, φ) =
∫ w/2

−w/2
dyj(y) sin(φ+ 2πΦ

Φ0

y

w
) (3.7)

and j(y) is the current density profile of the junction. The total current results
from the weighted integration over all the CPRs. Similarly to the calculation pre-
sented in section 3.3.1 for the DC SQUID, if we maximize with respect to φ equation
3.7, we obtain the critical current with respect to Φ (equivalently B) and the so-
called diffraction pattern Ic(B) 2. This transformation can be seen as the Fourier
transform of the current distribution F [j(y)]:

Ic(B) = maxφ|I(Φ, φ)|
= F [j(y)]

(3.8)

The approximation of Ic(B) being the Fourier transform of the current distri-
bution is technically only true when the CPR consider is purely sinusoidal and the
geometry purely rectangular. However, we will see in the following that this defi-
nition can be extended and it was used in particular to evidence the edge states of
topological insulator.

(b) Uniform current distribution : Fraunhofer pattern

In the case of a uniform current distribution, j(y) can be expressed as :

j(y) = Ic

w
(3.9)

2. We wish to avoid any confusion between I(φ) the current-phase relation and Ic(Φ) the
diffraction pattern with Φ the flux, hence the choice of Ic(B) for the notation.
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and we can inject this expression onto equation 3.8. It yields the standard Fraunhofer
pattern :

Ic(B)
Ic(B = 0) = | sinc(π Φ

Φ0
)| (3.10)

Barone and Paterno [83] performed the calculations on SIS junction with dif-
ferent geometry, highlighting the dependence on the shape of the junction of the
diffraction pattern. For comparison we show the difference between the rectangular
geometry we deal with and a circular geometry in Fig. 3.14.
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0.0
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(0
)

-4 -2 0 2 4φ /φ0

Figure 3.14 – (Left) Fraunhofer pattern calculated for a rectanguler junction fol-
lowing equation 3.10 : the central peak and the second maximum are distant by
1.5ϕ0 and ϕ0 after. (Right) Theoretical curve for a circular junction, from [83]. The
periodicity changes in the circular junction as well as the amplitudes of the differ-
ent lobes : for instance the second maximum is before ϕ = 1.5ϕ0 and the distance
between those maxima becomes irregular.

(c) SNS case : the example of the long diffusive junction

The case of the SNS junction is a bit harder to describe as a sinusoidal CPR
doesn’t exist with current flowing only perpendicularly to the superconducting leads.
Let us take the case of the diffusive junction, for which the Fourier decomposition
of the current-phase relation can be written :

I(φ) =
∑

n

Ic,n sin(nφ) (3.11)

For which we summarize the results obtained theoretically for the diffusive by
Cuevas and Bergeret [84] and experimentally by our group [85] in 3.15. The aspect
ratio of the junction plays a major role in the diffusive SNS case. The larger and
shorter (W ≪ L, with W the width and L the length) the junction is, the more
the diffraction pattern we observe is similar to the one presented in Fig. 3.14.
On the other hand it highly differs from the Fraunhofer case when L ≫ W with a
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gaussian diffraction pattern decaying . The diffraction pattern in a diffusive junction
is then more complex and a specific attention will be given to it when we present
our experimental results.

Figure 3.15 – (a) Diffraction pattern for several aspect ratio. L = 8ξ is fixed and
the width W varies from L/16 to 25L. From [84].

It is important to note that all the phenomena describe can coexist within the
SQUID experiment : for instance a gaussian pattern could be modulated by a sinu-
soidal CPR, as illustrated in Fig. 3.16 where the example of two sinusoidal Josephson
junctions have been put in parallel but with Ic,ref ≫ Ic,u.
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Figure 3.16 – Example of a pattern calculated using Iref (φ) = Ic,ref sin(φ) and
a gaussian decay, and the junction "probed" is described by I,u(φ) = Ic,u sin(φ) an
no decay with field. The example is calculated with Ïc,ref = 10 × Ic,u. The gaussian
decay of the reference junction is plotted in black solid lines, whereas the measured
pattern is plotted in red.
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Now that the principle of the experiment has been explained, the following sec-
tion is about the fabrication of the asymmetric DC SQUID.

3.4 . Device fabrication

In this part, we describe the fabrication process from exfoliation of the WTe2
crystals to the superconducting material deposition. We also discuss the SQUID
geometry and the choice of the superconducting material.

3.4.1 . Exfoliation and transfer
(a) Exfoliation

The crystals were grown by R. Cava and L. Schoop’s group from Princeton
University and we follow a process similar to the one presented in S. Wu et. al [64]
for the exfoliation. The crystal used in our experiment has a residual-resistance ratio
(rrr) of 1000, indicating the good quality of the material. For one sample, two silicon
chips (usual undoped Si/SiO2) were cleaned in ultrasonic baths, first with acetone
and then with isopropanol. An optional O2 plasma cleaining step was performed.
The exfoliation takes place in a glovebox filled with argon with a low water and
oxygen level (below 1ppm) as WTe2 thin flakes are very sensitive to air and oxidize
easily.

— We use adhesive tape and deposit a needle-shaped crystal of WTe2 on it.
By using a second piece of tape we glue and tear ("exfoliate") the crystal as
slowly as possible, from 7 to 10 times, along the direction of the needle.

— The chip on which we deposit the flakes is heated at 90°C five minutes prior
to deposition. It eases the peeling step.

— For a better deposition, the tape is gently rubbed with the back of the
tweezers.

— The tape is the peeled very slowly (0.5mm/sec)
At this stage, many flakes are visible on the chip, see Fig. 3.17. Because of its
crystalline structure, the long edge should correspond to the a-axis. The flake is
selected at this stage and we just need to transfer it to a clean substrate for the
further steps.

(b) Transfer

We use a standard transfer technique, similar to the one used for graphene, to
transfer the flake of interest in a second chip prepared prior to the exfoliation.

To pick up the flakes, we first prepare a glass slide with a polycarbonate (PC) film
covering a polydimethylsiloxane (PDMS) cube as illustrated in Fig. 3.18. When the
flake is seen through the glass slide under the microscope, we follow this procedure :

— First we touch with the PC film the silicon chip close to the region of the
flake of interest.

— We increase the temperature of the stage at 120°C. The contact region
spreads and covers the flake due to thermal expansion.
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Figure 3.17 – Optical image right after the exfoliation step. Scale bar (top left) is
15 µm.

Figure 3.18 – Sketch of the transfer "device", constiting of a glass slide, PDMS
and PC film. From [86].

— We stop the heating and let the stage cool naturally. The film retracts
because of the temperature decrease, and picks up the flake.

The flake is then on the PC film. To drop off the flake on the clean chip :
— When the PC film and the substrate are in contact, we slowly increase the

temperature up to 180°C.
— We slowly remove the glass slide.
— At some point, the PC film melts onto the chip. The flake is then on the
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clean chip, cover by the PC film.
Due to its rather high thickness, the flake can be exposed to air without destroying
it and is not protected with BN. The chip is soaked in chloroform for about 20
minutes to remove the PC film. After the exfoliation, the transfer and the cleaning,
we obtain the flake presented in Fig. 3.19.

Figure 3.19 – Chosen flake after transfer onto a clean chip. It is around 60 µm
long along the a-axis and 40 µm long along the b-axis, and 200nm thick (determined
by AFM measurements)

.

3.4.2 . Sample design
The idea using a huge flake of WTe2 is to use the metallic nature of the bulk

to build the reference junction at the same time as we fabricate the junction on
the edge of the flake. However, we need to make sure that the junction in the bulk
will indeed be the junction with the highest critical current. To do so, the simplest
way is to minimize the length of the junction. One could also fabricate a wide
junction, but it increases the risks of directly connecting the two superconducting
banks, creating a shortcut. To solve this problem, we design the junction to have a
hourglass shape, for which we expect the most important contribution to come from
the shortest part. The superconducting banks are placed not too far in the bulk
when connecting the edges to avoid possible contribution from the bulk states. For
the loop, since WTe2’s resistance shows a very anisotropic behaviour (the resistance
along the b-axis is twice the one along the a-axis according to [78]), the loop is
designed with a rectangular shape. Dimensions are chosen such that the period of
oscillations should be around ∆B ≈ 2 G, accessible experimentally.

The design of the sample and its size scales are sketched in Fig. 3.20. The loop
has a surface Sloop = 14.4 µm2 and the length of the edge junction is designed to be
500 nm.

96



1.2 µm

12 µm

L    = 500 nm
edge

Figure 3.20 – Design of the SQUID using the bulk of WTe2 for the reference
junction. In grey the part of the flakes not affected by the superconducting proximity
effect. In blue the superconductors and in yellow the normal part of the junctions.
The hourglass geometry is the subject of section 3.6.1. The edge junction is 500 nm
long, and we represented with the red and blue arrows the helical current expected
to flow in this junction.

3.4.3 . Lithography and metal deposition
The lithography process is similar to the one presented in the first part of this

manuscript. We use standard electron beam lithography with a chemical semi-
amplified positive e-beam resist. The high spatial resolution is important for this
sample because of the thin contact between the edges and the superconducting leads.
Before the metal deposition, an argon ion-beam etching step of four seconds is per-
formed to remove possible oxide coming from the small amount of time the flake
saw air.

A thin film (8 nm) of Palladium is first deposited by sputtering. Palladium diffuses
into the flake on a short distance, yielding a PdTex alloy which is superconducting
hence allowing transparent interface [87]. 80 nm of Niobium are deposited (also by
sputtering) directly after the palladium as the superconducting leads. Finally the
sample is soaked into 1-3 dioxolane for the lift-off process. A SEM image of the
sample is shown in fig 3.21.

3.5 . Measurement techniques.

Once the sample is ready, we place it in a dilution refrigerator at the center of
a superconducting magnet. Two techniques are used to measure the interference
pattern of the sample.

3.5.1 . Differential resistance
At a fixed B field, we measure is the differential resistance of the sample. To

do so, the sample is biased with a DC current bias IDC to which a small oscillating
current is added iac at low frequency (a few hundred of Hz at most), represented in
Fig. 3.22 : the voltage sources are in series with the two resistances to current bias
the sample. We measure the voltage drop vm across the sample after amplification
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1µm

Figure 3.21 – Scanning electron microscope image of the considered sample in the
following of this manuscript. The bulk junction has hourglass shape to ensure that
it carries a higher supercurrent than the edge junction. The green-squared picture
is a zoom on the edge junction, showing a few "terraces", of width between 40 nm
and 100 nm.

using a lock-in amplifier, yielding R(idc) = vm
iac

≈ dV
dI (Idc).

Let us assume that we start the current sweep at IDC = 0. The sample is supercon-
ducting and then the measured vac is zero. When IDC exceeds the critical current
of the SQUID, the SQUID becomes resistive and a finite voltage is measured. The
difference between the low bias and high bias region is the normal state resistance
of the two junctions in parallel.

x100

Rdc

Rac

Vac Vdc vm

Figure 3.22 – Electronic circuit for the standard differential resistance measure-
ment. The measured voltage vm across the sample can be converted into resistance
by the relation dV/dI = vm/iac.

3.5.2 . Counter technique
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The other method consists on measuring the switching current only. 3 rather than
the full dV/dI(IDC). To do so, the sample is biased with a linearly increasing current
(a ramp) of period 1/f (with f around 17 Hz in our experiment). When the current
reaches the switching current value, the sample becomes non-superconducting and
a finite voltage appears. The time ∆t between the beginning of the ramp and the
superconducting-to-normal transition is measured repeatedly using a counter and
the measured time is averaged over a hundred times.

In practice, we use an arbitrary function generator producing a voltage ramp of
amplitude Vpp, in series with a resistance Rp to produce a current bias that is swept
linearly in a period 1/f . When the maximal voltage is reached, the generator goes
back to 0 also linearly but with a faster rate to prevent any damage to the sample.
This asymmetry in the ramp is characterized by a skewness parameter (also called
duty, between 0 and 1), so that the ramp goes from 0 to Vpp in a time skewness/f
and from Vpp to zero in a time (1 − skewness)/f . Time can be converted to the
current via 3.12. The offset Voff corresponds to Imin slightly negative and is chosen
to ensure that the measurement starts from the superconducting state of the sample.

Ic = 1
Rp

(
Voff + Vpp

skewness
(
∆t× f

))
(3.12)

The principle of the experiment is presented in Fig. 3.23

Wavefunc�on
generator

Rp

junc�on x100 Counter

synchroniza�on(a) (b)

Figure 3.23 – (a) Counter technique principle for the measurement of the switching
current. (b) Blue : voltage ramp produced by the generator. Red : voltage appearing
across the junction when it enters the resistive state. The time difference ∆t between
the start of the ramp and the voltage jump is measured. Note the asymmetry and
the small offset in the ramp.

3.5.3 . Advantages and drawbacks of the two techniques.
The two techniques described above are equivalent for the measurement we want

to perform : by measuring the differential resistance we can extract the value of
current where the transition occurs, which is directly obtained using the counter
technique. The latter is indeed faster : the average time needed for a single point in
field is on the order of 10 seconds, whereas the differential resistance measurement
takes several minutes per point. However, the counter technique is very dependent

3. In this experiment, we do not measure the exact critical current
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on the resistance of the sample considered : the lower the resistance the lower
the voltage across the junction hence the measurement becomes harder. Although
both techniques have been used for the sample we are studying, we show only the
differential resistance measurement in the main part of this manuscript.

3.6 . Current-phase relation of topological hinge states in multi-
layer tungsten ditelluride

3.6.1 . Characterization of the reference junction.
(a) Conductance model for the hourglass junction

Now that the sample is ready and that we have the techniques to measure the
critical current oscillations, we start by confirming that the hourglass-shaped junc-
tion is indeed the reference junction. To do so, we start by studying the differential
resistance versus dc current (dV/dI(IDC)) of the whole SQUID. A first result at T
= 20 mK and 0 magnetic field is shown in Fig. 3.24.
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RN~ 1Ω

T = 20 mK
B =0

IC ~ 7 µA

Figure 3.24 – Differential resistance curve taken at 0 field and T = 20 mK. The
critical current, highlighted by the blue circle, is about 7 µA. The jump in resistance,
i.e. the difference between the low bias and high-bias region is the resistance of the
sample, about 1 Ω here. The non-zero resistance of 161.3 Ω is due to the filtered dc
lines from the room temperature stage of the refrigerator to the sample, visible in
the two wires measurement.

The jump of resistance is the equivalent resistance of the two junctions in parallel.
We argue that this resistance is dominated by the bulk junction :

1
Rtot

= 1
Rbulk

+ 1
Redge

where edge/bulk stands for their respective junctions

∝ L−1
bulk + L−1

edge

(3.13)

with Lbulk/edge the lengths of the junctions. The smallest length in the SQUID is
the "crossing" point of the hourglass, hence it is the part that contributes the most
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to the resistance. To further elaborate this statement, we consider the hourglass
junction only, illustrated in Fig. 3.25 with the relevant parameters : ymax = 0.73
µm, lz = 200 nm is the thickness of the flake, and d = 2.21 µm the length of the
diagonal of the hourglass (used to calculate the angle), l(ymax) = 2.06 µm.

l

l(y)

2α

max

-y

0

max

x

d

y

Figure 3.25 – Sketch of the hourglass-shaped junction with relevant parameters.
The colored part represents the superconducting leads and we wish to determine
the conductance of the white part. ymax = 0.73 µm, d = 2.21 µm. lz = 200 nm
the thickness of the flake, and l(ymax) = 2.06 µm are not written in the sketch for
clarity.

We assume the junction to be symmetric and for the calculations we can only
consider the top triangular shape (half of the hourglass) starting at y = 0 up to
y = ymax. We define an elementary conductance g(y) as :

g(y) = σ
S

2l(y) + l0
(3.14)

with S = t× dy and σ = 2 MS/m the conductivity. The angle α is defined as :

tan(α) = y

l(y) (3.15)

which can be computed and we have tan(α) = 0.35. This allows to write the
elementary conductance :

g(y) = σtdy

2 y
tan(α) + l0

(3.16)

so that the total conductance of the junction is :

G = 2 ×
∫ ymax

0

σt

2y/ tan(α) + l0
dy

= σt tan(α) ln( 2ymax

tan(α)l0
+ 1)

(3.17)

Quantitatively, we obtain :

R = 1
G

= 1 − 1.5Ω similar to the experiment (3.18)
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With the expression of G obtained in equation 3.17, we can compute an effective
length for the hourglass junction using

G = σS

Leff
(3.19)

with

Leff = 2ymax

ln( 2ymax

l0 tan(α)+1)
× 1

tan(α)

= 0.94 µm
(3.20)

and the hourglass junction is equivalent, as a first approximation, to a rectangular
junction of width w = 2ymax and length Leff , as illustrated in Fig. 3.26

eff
L

max
2y

Figure 3.26 – The hourglass junction, in the following of the characterization, will
be seen as its equivalent rectangular junction of width w = 2ymax and length Leff ,
much simpler to study.

This Leff will be used in the next parts to compute the Thouless energy and
the aspect ratio of the equivalent rectangular junction.

(b) Temperature dependence of the reference junction

Let us take a look now at the temperature dependence. The differential resistance
curve presented in Fig. 3.24 is recorded at different temperatures and we observe a
decrease in the critical current, and the variation with temperature is presented in
Fig. 3.27. The decrease is fitted with the exponential decrease of a diffusive junction
(similar to the fit presented in Fig. 2.16 of chapter 2, from [19]), yielding a Thouless
energy ET h = 68 mK

This result is further corroborated by the rectangular junction approximation
for which we can compute the Thouless energy as :

ET h = ℏD
L2

eff

= ℏvF le
3L2

eff

≈ 40 mK

(3.21)

giving a similar order of magnitude. It confirms the diffusive nature of transport in
the hourglass-shaped junction.
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Figure 3.27 – Temperature dependence of the critical current at B = 0 measured
using the differential resistance method. The fit using the exponential law for a
diffusive junction yields ET h = 68 mK.

(c) Diffraction pattern of the reference junction

We have seen in section 3.3.2 that a long diffusive SNS junction under a magnetic
field could yield a diffraction pattern whose shape depends strongly on the aspect
ratio W/L. We perform the differential resistance measurement at various fields,
and the result is shown in Fig. 3.28

The frontier between the black and red regions in this figure represents the
SQUID’s critical current evolution with the magnetic field. It can be separated into
two components : one huge background, decreasing quickly with the magnetic field,
and a modulation which should be the CPR of the edge junction and is the subject
of section 3.6.2. The background seems to rebound at 10 mT, 15 mT and 20 mT.
This is reminescent of a Fraunhofer-like interference pattern, that we characterize
by calculating the effective aspect ratio of the hourglass-junction using :

w

Leff
= 2ymax

Leff
≈ 1.5 (3.22)

Due to this aspect ratio and the hourglass geometry, the diffraction pattern we
observe can not be fitted to the usual Fraunhofer function of eq. 3.10, as it seems
closer to the case L = 10ξ in Fig. 3.15(a), and yet it is still a rough approximation.
It is important to notice that we don’t have any analytical expression for this field
dependence in our geometry, and we can only describe it with the previous qualitative
arguments.

In conclusion we approximate the reference junction as a diffusive long junction of
rectangular shape with an effective aspect ratio of 1.5, explaining the slow variations
of 3.28. In the following, we focus on the edge junction, which is expected to carry
the signatures of the topological hinge states.
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Figure 3.28 – Differential resistance vs external applied field, between -4 mT and
100 mT. The y-axis represents the dc current flowing through the sample, the x-
axis the field. The color represents the resistance of the junction : it switches
from a superconducting state (black) to a resistive state (red) when the dc current
reached the critical current of the SQUID. The envelop represented by the yellow
interface between the black and red curve (when it is well defined, mostly at low
field) represents the behaviour of the critical current with the magnetic field. This
pattern is obtained at T = 20 mK.

3.6.2 . Current-phase relation of the edge junction

(a) Parallel and effective field

Let us first describe the orientation of the magnetic field with respect to the
SQUID. The magnetic field is mainly oriented parallel to the plane of the SQUID,
but because the sample is slightly tilted there is a small component perpendicular
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to the SQUID that allows us to measure the interferences in the device.
To observe the modulation of the critical current of the SQUID over a period of

the CPR, one should thread a quantum of flux Φ0 = h
2e through the surface of the

SQUID.
The experimentally period is 2.3 mT, and it corresponds to an expected period of

0.13 mT (from ∆B = Φ0/S, with S = 14.4 µm2). This means that the perpendicular
component of the field is 6% of the applied field only, and most of the applied field
is parallel to the plane defined by the SQUID.

The orientation of the field with respect to the sample is sketched in Fig. 3.29

B
b

c

-1.0 0.0 1.0
Φ /Φ0

Figure 3.29 – (Left) From the background, a modulation of period 2.3 mT can
be seen. Since we attributed the background behaviour to the reference junction,
this period in magnetic field is associated with the SQUID area of 14.4 µm2, i.e.
0.13 mT, meaning that only 6% of the applied field is perpendicular to the SQUID.
The bottom axis represents the flux going through the SQUID. (Right) Exaggerated
orientation of the magnetic field on the (b,c) plane. The real field is even closer to
the b-axis.

(b) Extraction of the CPR and low field behaviour

We now discuss the modulation seen on top of the huge diffraction pattern. The
modulation is clearly seen in a range of -4 mT and 4 mT and therefore we focus first
on this range of field. The results at T = 250, 350, 600 and 700 mK are plotted in
Fig. 3.30.

The first step is to extract the critical current of the SQUID. To do so, we need a
proper definition of the supercurrent. We choose to take the current associated with
the mean value of the jump of resistance : if the system has a finite resistance Rs in
the superconducting region and Rr in the resistive state, the current associated to
(Rr +Rs)/2 is taken as the critical current 4. The extraction of the critical current

4. The non-zero resistance of the superconducting state is not observed due to the filtered
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Figure 3.30 – Interference pattern at (a) T = 20 mK(b) T = 250 mK (c) T = 350
mK(d) T = 700 mK, with a field between -4 and 4mT only. The black region is the
superconducting state and the red region is the resistive state. The critical current
lies between the black and red regions. The decrease in the critical current is clearly
visible and is attributed to the reference junction as argued in section 3.6.1. A first
step in the analysis is to extract the critical current of the SQUID.

is illustrated in the differential measurement curve of Fig. 3.31(a). By doing so at
every point in field, we can extract the Ic(B) dependence of the SQUID, and rebuild
the envelop of the interference pattern, see 3.31(b).

The critical current versus field low for T = 250 to 700 mK is shown in Fig. 3.32.
The extracted signal already shows a ressemblance with a sawtooth, especially at
higher temperature when the effect of the diffraction is reduced.

The extraction of the critical current is however not sufficient to analyze quan-
titatively the CPR and we need to remove the diffraction pattern. Since there is no

DC lines from the room temperature stage of the refrigerator and the sample which are
observed in a two wires measurement
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Figure 3.31 – (a) The critical current is defined here as the value associated with
the jump in resistance : if Rs is the resistance in the superconducting state (low
current bias region) and Rr in the resistive state (high bias region), we necessarily
have a current value associated to (Rr + Rs)/2. This point is taken at every field,
and we obtain the result of (b) the Ic(B) law is extracted, represented by the blue
solid lines.
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Figure 3.32 – Ic(B) extracted for T = 250, 350, 600 and 700 mK. We see that, as
the temperature increases, the diffraction effect on the reference junction is reduced
and at 600 and 700 mK a sawtooth-like shape is already visible.

analytical expression, we filter the signal numerically. The Fourier transform of each
interference pattern is calculated. The diffraction effect can be associated with the
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low frequencies of the Fourier decomposition, and removing the first three harmonics
we can extract the modulation only. An exemple of this low-frequency cut is shown
Fig. 3.33 together with all the extracted current-phase relations. The amplitude
of these CPRs doesn’t seem to change with temperature and stays at around 150
nA for the range of temperature we investigated, but it seems more rounded as the
temperature increases than the long ballistic CPR expected for a topological edge
channel.

500

0

-500
 I

c
 (

n
A

)

-4 -2 0 2 4
B(mT)

 250mK

 350mK

 600mK

 700mK

-200

-100
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100

 I
S
 (
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)

-4 -2 0 2 4
 B (mT)

Figure 3.33 – (Left) The low-frequency cut applied at T = 350 mK as an example.
Using this method, we obtain the CPR centered around 0 and the critical current
can be read directly from the curve, yielding Ic ≈ 150 nA. (Right) Results for T =
250, 350, 600 and 700 mK. The curves are offset for clarity. The sawtooth shape
seems more rounded at higher temperature.

We distinguish two possibilities to explain the roundness of the CPR :
— A non-perfect interface yields change in the energy spectrum of the Andreev

states, even in the case of a TI/S interface. The critical current of a S/TI/S
junction decreases even if the jump remains abrupt at phase π. [88, 89].

— Temperature might reduce the importance of the highest harmonics first.
When reaching high enough temperature (for instance, ET h), the CPR might
gets closer to a sine.

To take into account these effects, we introduce a term e−an/n in the Fourier
decomposition of the sawtooth, such that it reads :

Isaw(φ) = Ic

∑
n

e−an

n
sin(nφ) (3.23)

such that it places the decomposition in between the two extreme cases of a perfect
ballistic transport (where the amplitude of the harmonics is proportional to 1/n) and
diffusive transport (for which they decrease as 1/n2). The Fourier decomposition
(see Fig. 3.34(a)) can thus be fitted to exp(−an)/n with respect to n, as shown in
Fig. 3.34(b).

This damping term a is a general term describing the non-perfect ballistic nature
of the transport. To take into account this effect, we expand the definition of a by
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Figure 3.34 – (a) FFT performed on the sawtooth obtained for T = 250 mK. The
seven first harmonics are used for the fit using equation 3.23. (b) Fit of the amplitude
of the harmonics. We obtain a = 0.29. The 1/n (black dashed lines) and 1/n2

(orange dashed lines) behaviours are plotted to show that the actual dependence on
n lies in between, indicating the non perfect ballistic nature of the hinge states.

the relation :

e−an = tne−nT/ET h (3.24)

→ a = − ln (t) + T

ET h
(3.25)

from [25], where t is the transmission in the normal part of the junction, rep-
resenting a finite coherence length for instance, assumed to be temperature inde-
pendent. A linear fit using equation 3.25 is thus performed in order to obtain the
Fourier decomposition of the CPR, see Fig. 3.35

Nevertheless, these results are to be taken carefully as it can be seen from the
error bars especially at T = 700 mK. However the order of magnitudes tend to favor
an interpretation in terms of topological hinge states :

— The sawtooth-like CPR points to ballistic transport, over more than 500 nm.
— ET h = 1.39 K < ∆ ≈ 5 K indicates the long junction regime.
We can compare with the expected values for the Thouless energy and the critical

current. In the ballistic regime, the Thouless energy is defined in equation 1.61. With
vF between 1 × 105 m/s and 3 × 105 m/s [59, 90], we get :

1.4 K < Eedge
T h < 4.2 K (3.26)

and the experimental value is within this range. Following [58], we can compute the
current carried by one conducting channel ich :

ich = eET h

ℏ
≈ 30 nA

(3.27)
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Figure 3.35 – damping term versus T. The linear fit performed yields t ≈ 0.88±0.01
and ET h = 1.39 ± 0.05 K

In a very simple approximation, the number of conducting channels is given by the
measured critical current divided by this value. Experimentally it yields 160/30 ≈ 5
conducting channels.

If we replace ich = eET h/ℏ by evF /L and take the values found in literature, one
gets N = 2-6 depending on the values of vF taken. This is consistent with the SEM
image of the sample shown in Fig. 3.21 in which we see 4 terrasses (equivalently
4 topological hinges) but also with the localization of the edge states calculated in
[78] and the theoretical aspects depicted [91], illustrated in Fig. 3.36

(a) (b)

a
b

c

Figure 3.36 – (a) One out of two hinges is topological in a perfectly rectangular
sample. (b) In our sample, several terraces can be seen in the SEM pictures. A
possible interpretation is depicted in this sketch. The topological hinge states are
marked by red dots, the flake is in blue and the superconducting leads in grey.

Knowing ET h and t and fixing them, we can rebuild the CPR calculation using
the following equation :

i(φ) = Ic

∑
n

(−1)n

n
tn × e− nT

ET h sin (nφ) (3.28)
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where the case t = 1 and ET h ≫ T represents the perfect sawtooth-shaped CPR
of the long ballistic channel. The results in comparison with the four experimental
points presented is shown in Fig. 3.37
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Figure 3.37 – Calculated CPR with equation 3.28 (solid lines). The experimental
data are the unfilled diamonds. (a) T = 250 mK, (b) T = 350 mK, (c) T = 600
mK, (d) T = 700 mK.

3.6.3 . High field behaviour.
The high field behaviour of the supercurrent can give as well some insights about

the topological protection. For topologically protected states in multilayer WTe2 a
superconducting behaviour was still observed up to 1 T [78, 79, 80]. On Fig. 3.38
is shown the magnetic field dependence of the supercurrent over a large range of
magnetic field, at T = 19 mK and T = 490 mK.

From this measurement we distinguish three zones :
— The first one where the modulation by the sawtooth is clearly visible. (green

rectangle)
— The sawtooth disappears and the shape of modulation is less clear. (blue

rectangle)
— There is no modulation anymore but quasi constant supercurrent with critical

value ∼ 150 nA. (yellow rectangle)
The first zone is the one where the asymmetric SQUID regime takes places and

we detailed the results in the previous sections. In the intermediate regime and
because of the exponentiel decrease of the critical current in the diffusive regime,
both junctions have similar critical current values, hence the SQUID becomes sym-
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Figure 3.38 – Interference pattern at (a) T = 490 mK, up to ≈ 20 × Φ0. (b)
T = 19 mK, up to ≈ 250 × Φ0. The green rectangle highlights the zone where
the modulation is a sawtooth, the blue rectangle the zone where the modulation
is less clear and the last zone where the critical current is almost constant, being
modulated in a higher range of field.

metric but with one sine-like CPR and the other one with a sawtooth-like CPR.
At high field, the critical current of the diffusive junction is negligible and only the
supercurrent carried by the topological hinge states survives with the amplitude of
the CPR extracted previously.

We corroborate the behaviour of the interference pattern with numerical calcu-
lations on Fig. 3.39. We can tune the calculations by chosing for each junction the
critical current, their respective CPR and their dependence in magnetic field. To
reproduce the experimental data of Fig. 3.38, we chose :

— For the reference junction : I(φ) = Ic,ref × sin(φ), Ic = 1 µA and the field
dependence is approximated by the Fraunhofer function Ic(B) = Ic| sinc(B×
S/ϕ0)|, with S four times smaller than the SQUID area.

— for the edge junction : the CPR is a sawtooth, with Ic = 150 nA and no
dependence in magnetic field.

An other possibility is that the helical channels interfere with each other. In
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Figure 3.39 – Numerical modelisation of the interference pattern. (Left) Re-
gion where the sawtooth is clearly visible. (Middle) Modulation of the critical
current when the two junctions have a similar critical current. (c) The roughly
B-independent critical current. The three graphs are represented at the same scale
for ease of the comparison with the experiment.

the case of two channels, we would recover the situation illustrated in Fig. 3.40 as
the channels would be symmetric, and their orientation is quasi-perpendicular to
the field (see Fig. 3.29 and Fig. 3.36). Additionnally, the Zeeman dephasing could
be at the origin of the amplitude and phase modulation we observed for very high
Φ/Φ0, but more experiments are necessary to evidence this effect and is still subject
to investigation.

If we assume now that we have two (long) ballistic channels localized at different
hinges of the normal part of the junction. In this case, the current distribution can
be written :

j(y) ∝ 1
2[δ(y − y1/2) + δ(y + y2/2)] (3.29)

with y1 and y2 the positions on the y-axis of the two conducting channels. In the
symmetric case, that is to say if Ic,1 = Ic,2, this would correspond to a triangular
shape interference pattern as in Fig. 3.40. Two main properties emerge from this
pattern :

— The critical current never goes to zero.
— In the symmetric case, the triangle oscillates from ic to 2ic.
This interference pattern can also be modified by the addition of an other de-

phasing term, call the Zeeman term, defined for a junction with two helical pairs of
opposite helicities. This Zeeman dephasing reads :

φZ = φ1 − φ2 ≈ ( L1
ℏvF,1

g1 cos(θ1) − L2
ℏvF,2

g2 cos(θ2))µBB (3.30)

with Li, vF,i and gi the lengths, Fermi velocities and g factors of the respectives
channels. An interference pattern between two long ballistic channels is shown in
Fig. 3.41.
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Figure 3.40 – Interference pattern obtained for two long ballistic states at the
edges of a junction with the same critical current ic. One notices that the critical
current never goes to zero in this case and oscillates between ic and 2ic.

Figure 3.41 – DC symmetric SQUID interference pattern with a Zeeman dephasing
term taken into account, for two long ballistic channels. From [92].

3.7 . Conclusion and perspectives.

We have measured the current-phase relation of a WTe2-based Josephson junc-
tion (a Weyl semimetal in bulk) by using an asymmetric SQUID. For a junction
made from the edge of a multilayer flake along the a-axis, we have detected a clear
sawtooth behavior up to high magnetic field. This can be interpreted as the presence
of ballistic helical hinge states over 500 nanometers. This is in agreement with the
prediction that bulk WTe2 could present such 1d hinge states as vestiges of a HOTI
phase very close in the parameter space. [75]

This work opens the way to further investigations on topological physics using
WTe2. A first measurement that could be performed using the DC squid mea-
surement on two opposites hinges could lead to measure the phase shift due to the
coupling between the spins and a Zeeman field, yielding the spin-dependence on
transport. For other signatures, experiments similar to the ones presented in [93]
should reveal the existence of the loop currents along the hinges of WTe2, in both
the normal and the superconducting states. Obviously, as it is proposed in the first
chapter, WTe2 could be used as a material for measurement of the thermal noise
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of a topological SNS junction [40, 94], or to observe the effect of a high-frequency
irradiation on topological systems [95].
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Conclusion
We have demonstrated that a current flowing through an SNS junction is ac-

tually noisy, i.e presents thermal fluctuations at equilibrium. This has been done
by designing a high frequency set-up based on a ultrasensitive cryogenic amplifier,
which allowed us to detect independently the conductance and the noise of the junc-
tion. The careful comparison between these two quantities yields a first experimental
demonstration of the FDT in an SNS junction. This result shows that supercur-
rent noise is a fundamental tool to probe mesoscopic systems. Indeed, although
FDT tells us that conductance and noise yields the same information, they are not
equivalent experimentally. Equilibrium noise measurements, although more chal-
lenging, provide a unique advantage over other measurements that involve sample
biasing. Indeed, in some cases the linear regime can not be maintained over the full
current versus phase relation. This is especially true in the context of topological
materials, whose Andreev spectra display true crossings at π, and for which Zener
transitions can occur. A true equilibrium measurement, with no excitation, has a
clear advantage in this case. In addition, we gave a first theoretical insight to the
temperature dependence of the conductance of an SNS junction, highlighting the
role of the electron-hole symmetry imposed by the superconductor. [96]

In a second part, we have measured the current-phase relation of a WTe2-based
Josephson junction (a Weyl semimetal in bulk) by using an asymmetric SQUID. For
a junction made from the edge of a multilayer flake along the a-axis, we have detected
a clear sawtooth behavior up to high magnetic field. This can be interpreted as the
presence of ballistic helical hinge states over 500 nanometers. This is in agreement
with the prediction that bulk WTe2 could present such 1d hinge states as vestiges
of a HOTI phase very close in the parameter space. [75]

A perspective of this work is to measure the current fluctuations in a topological
insulator. A clear signature of the topological protection, which yields a true crossing
of ABS at phase π is expected in dissipation and more directly in the equilibrium
noise [40, 94]. This crossing should manifest through strong current fluctuations
that we plan to measure at finite frequency and ultimately in the time domain. This
could be done with monolayer WTe2 or BiBr4 another HOTI candidate studied in
the group.
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