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1 | Overview & introduction
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The realization of quantum computing devices is one of the pressing challenges

in today’s research and, although the last decades showed impressive advances in

controlling and manipulating quantum systems, key obstacles on this path are still

to overcome. Progress on both the experimental and theoretical side is necessary to

reduce the error rates of the underlying hardware to make useful and programmable

devices possible. In general, quantum systems need to be well isolated as they rapidly

loose their coherence due to the interaction with the environment. However, they

can not be entirely shielded from their surroundings, since a coupling to an ancillary

system is necessary for readout and to perform operations. Techniques to protect

quantum information encoded in quantum bits (qubits) from decoherence are referred

to as Quantum-Error-Correction (QEC). The concept is based on encoding quantum

information in a larger Hilbert space, allowing to detect and correct for errors. One

main route consists in encoding a logical qubit into several physical qubits, such that

noise only induces transitions from a code state to states outside of the code manifold.

These spurious transitions are detected without revealing the logical qubit by mea-

suring the error syndromes of the code, allowing to correct for errors. The objective

lies in constructing logical qubits with significantly longer coherence times than their

physical constituents. An implementation of such error-correcting codes, targeting

sufficiently low logical error rates to perform useful computations however require

a vast number of physical qubits [1]. In recent years, a more hardware-efficient ap-

proach, called bosonic QEC, has been developed, in which the logical qubit is encoded
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Chapter 1. Overview & introduction

in the infinite-dimensional Hilbert space of a harmonic oscillator. Recent experiments

showed promising results for the Binomial code [2] and the Cat code [3],[4].

In 2001, Gottesman, Kitaev, and Preskill (GKP) introduced a different bosonic en-

coding, in which the code states are Gaussian-weighted superpositions of displaced

squeezed states. In this approach, the quantum information is encoded non-locally

in a grid-shaped pattern in phase space and equal protection against logical bit- and

phase flips. This encoding is considered to be a promising approach, especially since

all Clifford operations can be performed by Gaussian operations and homodyne de-

tection. However, the code state preparation remained an experimental challenge

until recent experimental advances. The group of Jonathan Home demonstrated the

preparation and error correction of GKP states in the motional degree of freedom of

a trapped ion [5],[6] and similar experiments were performed with superconducting

circuits in the group of M. Devoret [7]. The error correction scheme relies in both

instances on repeated measurements of the error syndromes of the code via condi-

tional interactions with a two-level system and feedback displacements. Bit-flip errors

of the two-level system during the interaction cause displacement errors of the state

that can lead to flip errors of the logical qubit. The code manifold can therefore not

be stabilized in a fault-tolerant manner, as errors from the ancillary system lead to

direct logical errors. Multiple schemes have been proposed to solve this key problem,

including controlling the state of the harmonic oscillator with a multiple-level ancilla

[8], a flag qubit [9], or by using a noise biased qubit with a suppressed bit-flip error

rate [10].

This manuscript presents another route that is based on using a GKP state as an

ancilla, that is tailored and prepared in an asymmetric manner with respect to its

quadratures. Our proposal does not require any new experimental tools, except for a

tune-able quadrature-quadrature interaction between the target and ancilla oscilla-

tor. This type of interaction, that consist of a balanced sum of a Beam-splitter and a

Two-mode squeezing Hamiltonian has not been experimentally realized to this date.

This chapter gives an overview of the basic concepts and notations on the evo-

lution of quantum systems and quantum error correction that are relevant for this

manuscript. Further we introduce the GKP code in its infinite- and finite-energy form.

Chapter 2, reviews the GKP code state preparation and error-correction with an an-

cillary two-level-system, that has been demonstrated in recent experiments [5],[7]. We

present the key measurement circuits and feedback strategies and outline the main

limitations, that we aim to solve in the succeeding chapters. In chapter 3, we present

2



1. A quantum bit and its environment

and study the dynamics of the error-correction circuit with an ancillary GKP state.

An asymmetric preparation of the ancilla state paired with a coupling of a single an-

cilla quadrature to the target oscillator is presented, that allows to limit the error

propagation to the target oscillator. The error-correction scheme is adapted for the

finite-energy code states in chapter 4, in which a specific limit of the GKP ancilla state

is chosen that coincides with a squeezed cat state. We give numerical simulation

results for state-of-the-art error rates that are realistic in near-term experiments.

1 A quantum bit and its environment

We give a brief introduction to main concepts in Quantum Information theory that

are relevant in this manuscript. One of the main cornerstones in quantum physics is

that a physical system can be in a linear superposition of d states labeled by |k⟩, that

are elements of a Hilbert space H,

|Ψ⟩ =
d∑

k=1
ck |k⟩ , (1.1)

with complex amplitudes ck, which fulfill
∑
k |ck|2 = 1. In the field of quantum

information science, these physical systems of dimension d are generally referred to

as qu-dits, which can encode information in the coefficients ck. A general quantum

state, that is a statistical ensemble of l pure states weighted by pl, is described by a

density operator,

ρ =
∑
l

pl |Ψl⟩ ⟨Ψl| . (1.2)

The most simple, non-trivial quantum system consists of only two distinct states,

which is referred to as a quantum bit (qubit) in analogy with classical information

theory or a two-level system (TLS). We denote the two basis states as |0⟩/|1⟩ or occa-

sionally as |g⟩/|e⟩, indicating the ground and excited state of the physical system. The

state of a TLS is often expressed in terms of two angles θ and φ

|Ψ⟩ = cos( θ2) |0⟩ + eiφ/2sin( θ2) |1⟩ , (1.3)

that allow to describe the TLS states using the Bloch sphere representation. A

global phase of the TLS, eiϕ |Ψ⟩, is irrelevant as it does not alter the probability am-
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Chapter 1. Overview & introduction

plitudes. Any single hermitian qubit operator O = aII + axσx + ayσy + azσz can be

decomposed in terms of the identity I and the 2 × 2 Pauli operators

σx = |0⟩ ⟨1| + |1⟩ ⟨0| σy = i |1⟩ ⟨0| − i |0⟩ ⟨1| σz = |0⟩ ⟨0| − |1⟩ ⟨1| . (1.4)

The Pauli operators σi fulfill the commutations relations [σi, σj ] = 2iϵijkσk, where

ϵijk is the Levi-Civita symbol. The common convention, in which |0⟩ / |1⟩ are chosen as

the eigenstates |±z⟩ with eigenvalue ±1 of the σz operator, is used. The eigenstates

of the remaining Pauli operators are |±x⟩ = 1√
2(|−z⟩ ± |+z⟩ and |±y⟩ = 1√

2(|−z⟩ ± i |+z⟩.
The density operator can be similarly expressed in terms of the Pauli operators by

ρ = 1
2(I + n⃗σ⃗), with σ⃗ = (σx,σy,σz) and the Bloch vector n⃗ = (⟨σx⟩ , ⟨σy⟩ , ⟨σz⟩), that

encodes the state information. A rotation by an angle φ around the σi axis of the

Bloch sphere is given by ei
φ
2 σi = cos(φ2 )1 + i sin(φ2 )σi.

An observable in quantum mechanics is given by a hermitian operator O that

can be expressed as a sum of projection operators O =
∑
i λiPi weighted with the

respective with eigenvalue λi. For an initial state, described by a density matrix ρ, the

conditional state after the measurement, the post-measurement state, is given by

ρ+ = PiρPi

pi
, (1.5)

where pi = Tr(ρPi) is the probability to find the eigenvalue λi. In order to ex-

tract information about the physical system without performing a direct projective

measurement, it can be further coupled to an ancillary system (ancilla). Before the

interaction, the composite state is described by |Ψs⟩ = |ψa⟩ ⊗ |θb⟩, with |ψa⟩ being the

state of the target and |θb⟩ of the ancilla system. We consider a general coupling of

strength χ of an operator A on the target and an operator B on the ancilla system,

described by the Hamiltonian Hint = −χA ⊗ B. The corresponding unitary operator

for a time t is given by

Uint(t) =
∑
k

eiχtbkA ⊗ |kb⟩ ⟨kb| , (1.6)

where B =
∑
k bk |kb⟩ ⟨kb| has been expressed in its diagonal form with eigenstates

|kb⟩. The composite state after the interaction for a time T reads
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1. A quantum bit and its environment

Uint(T ) (|ψa⟩ ⊗ |θb⟩) =
∑
k

(eiχTbkA |ψa⟩ ⊗ |kb⟩) =
∑
k

(Mk |ψa⟩ ⊗ |kb⟩). (1.7)

Upon a measurement of the ancilla system in one of the eigenstates |kb⟩ and tracing

it out, the density operator of the post-measurement state of the initial target state

ρa = |ψa⟩ ⟨ψa|, is given by

ρa+ = MkρaM†
k

pk
, (1.8)

where the probability to find the ancilla in the eigenstate |kb⟩ is given by pk =
Tr(MkρaM†

k). The set of measurement operators Mk defines a Positive Operator Valued

Measurement (POVM). Measurements of a target observable described by an operator

Oa, which do not alter the eigenstates of Oa, are called Quantum Non-demolition

(QND) measurements. In this case Oa and Uint(t) commute, such that

OaUint(t)(|µa⟩ ⊗ |θb⟩) = µUint(t)(|µa⟩ ⊗ |θb⟩), (1.9)

where |µ⟩ is an eigenstate of the operator Oa with eigenvalue µ. In the remaining

chapters of this thesis, the symbol of the tensor product for composite systems is

omitted.

These kind of operations are included in the most general description of the evo-

lution of a quantum system, by a completely-positive trace-preserving (CPTP) map

ρ′ = M[ρ]. The Kraus representation of a CPTP map is given by

ρ′ =
∑
y

MyρM†
y, (1.10)

and in the case of measurements of a continuous variable y (for instance, a ho-

modyne detection) by ρ′ ∝
∫
dyM(y)ρM†(y). The set of Kraus operators {My} need to

fulfill the completeness relation
∑
y M†

yMy = 1 (respectively
∫
dyM†(y)M(y) ∝ 1), en-

suring that the trace is preserved through this channel. In particular, in this thesis,

we will consider the case where a measurement corresponding to a set of Kraus oper-

ators My is followed by a feedback control based on the outcome y, corresponding to

the unitary evolution operator Ry.
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Chapter 1. Overview & introduction

Flip errors of a qubit induced by noise can be described by a CPTP map. The

evolution of an idling qubit corrupted by a bit-flip with probability p is modeled by the

map

M0 =
√

1 − p I M1 = √
pσx (1.11)

A similar formula holds for phase-flip errors, by replacing σx with σz, where with

probability p a Pauli error σi and with probability 1 − p no error occurs.

The Lindblad master equation equivalently describes a quantum system interact-

ing with the environment and can be derived from the Kraus operator representation

(as for instance found in [11]).

dρ

dt
= −i[H, ρ] +

∑
k

(LkρL†
k − 1

2{L†
kLk, ρ}) (1.12)

The first term represents the unitary evolution given by the Hamiltonian operator

H. Whereas the other terms describe possible transitions the system undergoes due

to the interaction with the environment.
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2. Concepts of quantum error correction (QEC)

2 Concepts of quantum error correction (QEC)

The main objective of quantum error correction (QEC) lies in the protection of quan-

tum information in the presence of noise. The general spirit is to encode a qubit - often

referred to as the logical qubit - into a subspace of a larger Hilbert space, allowing to

detect and correct for errors

α |0⟩ + β |1⟩ → α |0L⟩ + β |1L⟩ .

The logical states |0L⟩ / |1L⟩, can for instance represent states of a composite sys-

tem of many physical qubits equipped with a multi-qubit code (i.e. Shor-, Steane-,

Repetition-, Surface-code, etc.) or in the realm of bosonic codes, states in the infinite

Hilbert space of a harmonic oscillator.

An error correction scheme in classical error-correction is based on encoding infor-

mation in additional (redundant) copies that allow to verify if a bit-flip error occurred.

For instance, by encoding 0 → 000 and 1 → 111 respectively, a single bit-flip error can

be distinguished by comparison with the remaining, un-flipped bits. This is referred

to as error-correction by repetition, or the Repetition code. A similar strategy is not

directly applicable for encoding information in quantum bits. Indeed, a classical bit

can be copied easily, as its state can be inferred by a direct measurement, without a

back-action perturbing the information encoded in the state. A similar measurement

of a TLS along an axis σi, projects the qubit in one of the eigenstates of σi. Such a

measurement yields solely a single classical bit and is insufficient to reconstruct the

quantum state |Ψ⟩ = α |0⟩ + β |1⟩. In fact, it is fundamentally impossible to generate

an exact copy of a quantum state, which has been coined the No-Cloning theorem [12].

In the field of quantum error correction, a generic code needs to fulfill the Knill-

Laflamme condition [13]. Considering a quantum system described by a state ρ,

subject to a noisy channel for which the density operator evolves according to the

Kraus map ρ′ =
∑
y EkρE†

k, where the Ek describe the error processes. Any correctable

error needs to satisfy the Knill-Laflamme condition [13] for any codeword |j⟩ and |k⟩ ,

⟨j| E†
mEn |k⟩ = amnδjk, (1.13)

with amn being coefficients and δjk the Kronecker Delta. This guarantees that the

codewords remain orthogonal under the action of any operator in the set {Ek} and

for any linear combination of Ek. If this condition is satisfied, there exists a unitary

7



Chapter 1. Overview & introduction

recovery map R[ρ′] =
∑
l Rlρ

′R†
l to bring the state ρ′ back to the code space .

3 Encoding quantum information in a harmonic oscillator

Bosonic codes exploit the infinite Hilbert space of a harmonic oscillator to encode

a logical qubit. This approach is commonly praised as a hardware-efficient path

towards realizing fault-tolerant computations, as a logical qubit can be robustly en-

coded and corrected in a single harmonic oscillator.

Figure 1.1: A sketch of a quantum harmonic oscillator, indicating the ladder operators a and
a† for the evenly spaced energy levels.

3.1 A quantum harmonic oscillator

The general Hamiltonian of a quantum harmonic oscillator with the position Q and

momentum operator P, a generalized mass m and frequency ω is given by

HQHO = P2

2m + mω2

2 Q2 = ℏω(a†a + 1
2), (1.14)

which is factorized above using the so-called creation and annihilation operators

a = 1√
2(q+ ip) and a† = 1√

2(q− ip). By defining Q0 =
√

2ℏ
mω and P0 =

√
2ℏmω the reduced

quadrature operators read q = Q
Q0

and p = P
P0

with the commutator −i[q,p] = 1. The

eigenstates of the position/momentum operator, q |q⟩ = q |q⟩ respectively p |p⟩ = p |p⟩
form each an orthogonal basis of the Hilbert space. These states are orthogonal, but

non-normalizeable, ⟨q|q′⟩ = δ(q− q′) (⟨p|p′⟩ = δ(p− p′)), where δ(y) is the Dirac delta dis-

tribution. The basis states are related by the Fourier transform |q⟩ = 1√
2π

∫
dp e−iqp |p⟩ .

From the commutation relations [a,a†] = 1, [H,a†] = ℏωa† and [H,a] = −ℏωa, one im-

mediately deduces that the eigenstates form an evenly spaced ladder by the transition

energy ℏω. The eigenstates of the Hamiltonian H |n⟩ = En |n⟩ are commonly referred to

as Fock states. In the remainder of this thesis, the reduced quadrature operators q

8



3. Encoding quantum information in a harmonic oscillator

and p and the convention ℏ = 1 is used.

In usual physical implementations of oscillators, the dominant error channel is

energy decay over time. The Kraus map representation for this process for a small

time interval dt (see for instance in [11]) is given by

ρ(t+ dt) =
∑

Mkρ(t)M†
k Mk =

√
(1−e−κdt)k

k! e−κdt
2 a†a ak (1.15)

In numerical simulations, the series is often truncated to consider only single de-

excitation events during short timescales dt

M0 = 1 − κdt
2 a†a M1 =

√
κdta, (1.16)

where M1 describes the decay event with probability κdt and M0 the no-decay evolu-

tion. Similarly, the energy gain process can be formulated by replacing a with a†.

3.2 Coherent states and squeezed coherent states

An important family of states are the eigenstates of the annihilation operator a, the

so-called coherent or Glauber states [14]

a |α⟩ = α |α⟩ (1.17)

In contrast to the Fock states, they belong to the Gaussian state family, as they

can be equivalently defined as the vacuum state |0⟩ displaced in phase space by

an amplitude α (|α⟩ = D(
√

2α) |0⟩). The displacement operator is defined as D(γ) =
e−i(Re(γ)p−Im(γ)q). Displacements in phase space generally do not commute

D(γ)D(β) = D(β)D(γ) e(γβ∗−γ∗β)/2, (1.18)

solely if the geometric phase φ = −i
2 (γβ∗ − γ∗β), accumulated along the closed

phase-space trajectory entailed by D(γ)D(β)D(−γ)D(−β) amounts to multiples of 2π.

Another family of Gaussian states which posses a smaller variance in one quadra-

ture at the expense of the other, are called squeezed states. They are eigenstates of

the transformed mode operator

9



Chapter 1. Overview & introduction

as = S(ζ) a S†(ζ) = a cosh(ζ) − a† sinh(ζ), (1.19)

where the squeezing operator is given by S(ζ) = e
− 1√

2 (ζa2−ζ∗a†2)
with ζ being the

squeezing strength. The quadrature operators transform accordingly as

qs = S(ζ) q S†(ζ) = q e−ζ ps = S(ζ) p S†(ζ) = p eζ . (1.20)

3.3 Cat codes

In this section, we review the the 2-component cat code, which is based on the su-

perposition of two coherent states in phase space with opposite phase. The even and

odd photon number cat states are +1/−1 eigenstates of the photon number parity

operator P = eiπa†a, given by

|C+
α ⟩ = 1√

2(|−α⟩ + |α⟩) |C−
α ⟩ = 1√

2(|−α⟩ − |α⟩). (1.21)

The properties of the cat states can be made more apparent in their respective q

and p representation

|C+
α ⟩ ∝

∫
dq′ e−q′2/2σ2(|q = −α+ q′⟩ + |q = α+ q′⟩) ∝

∫
dp′ e−p′2σ2/2 cos(αp′) |p = p′⟩ (1.22)

|C−
α ⟩ ∝

∫
dq′ e−q′2/2σ2(|q = −α+ q′⟩ − |q = α+ q′⟩) ∝

∫
dp′ e−p′2σ2/2 sin(αp′) |p = p′⟩ ,

with α being real. In its q-representation, the wavefunctions are superpositions of

two Gaussian states with variance σ2 spaced by 2α. In the conjugate quadrature p,

the respective wavefunction is represented by a cosine/sine with frequency α and a

Gaussian envelope with variance 1
σ2 . The parameter σ signifies possible squeezing and

equals 1, for the ordinary cat states. In fact, the wave function of the Schroedinger

cat states are very particular as their support overlap in the q-distribution and are

distinct by π
2α in p. Small noise processes, inducing small displacements can lead

to transitions between the two states and therefore they are very suitable as sen-

sor states for large values of α [15]. Whereas their symmetric superposition states
1√
2(|C+

α ⟩ ± |C−
α ⟩ ≈ |±α⟩) have distant support in the q-quadrature. The following con-

vention is used for the logical code states and its superposition states
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4. GKP code

|+L⟩ = |C+
α ⟩ |0L⟩ = 1√

2(|+L⟩ + |−L⟩) = |α⟩ +O(e−2|α|2) (1.23)

|−L⟩ = |C−
α ⟩ |1L⟩ = 1√

2(|+L⟩ − |−L⟩) = |−α⟩ +O(e−2|α|2).

Since |C+
α ⟩ / |C−

α ⟩ have an even/odd photon number they are exactly orthogonal

⟨C+
α |C−

α ⟩ = 0, whereas their superpositions have a non-zero overlap (⟨0L|1L⟩ = O(e−|α|2)).
However, for large α this overlap becomes negligible. Given that the wave-function

support of the |0L⟩ / |1L⟩ states are very distant, the Cat code is shown to have expo-

nential suppression in the number of photons n = α2 against bit-flip errors, whereas

the phase flip rate increases only linearly [16]. Given this robustness in one quadra-

ture, Cat states have recently attracted interest as candidates for noise-biased qubits

[10],[17]. In the next section, we introduce the GKP code that can correct for small

displacements in phase space.

4 GKP code

In 2001, Gottesman, Kitaev, and Preskill introduced an encoding designed to correct

for small shift errors in both quadratures of phase space [18]. In this section, the code

states are introduced as well as their corresponding stabilizer and logical Pauli error

operators. In the stabilizer framework, the code space is spanned by the simultaneous

eigenspace of two commuting displacement operators Sq and Sp = 0 with eigenvalue

+1,

Sq = ei
2π
α q = D(i2π

α ) Sp = e−i2αp = D(2α). (1.24)

Sq and Sp are displacement operators in phase space and encode the value of q

mod α (qm) and p mod π
α (pm). Since the stabilizer operators commute, the modular

quadratures qm and pm are simultaneously measurable. Bit flips (XL : |0L⟩ ↔ |1L⟩) and

phase flips (ZL : |+L⟩ ↔ |−L⟩) in the GKP encoding are displacements by half of the

period compared to the stabilizer operators (XL
2 = Sp and ZL

2 = Sq),

XL = e−iαp = D(α) ZL = ei
π
αq = D(iπα) YL = ei(

π
αq−αp) = D(α+ iπα). (1.25)

The area of the lattice cell 2α · 2π
α , spanned by the stabilizers amounts to 4π such

that the Pauli errors anti-commute with themselves and commute with the stabilizer

11



Chapter 1. Overview & introduction

operators. It should be stressed that for a square unit cell α = π
α =

√
π, YL = iZLXL

corresponds to a displacement along the diagonal in the grid, whose length differs

from the other Pauli operators by
√

2.

The eigenstates |+ZL⟩ and |−ZL⟩ of the Pauli ZL operator with eigenvalues ±1 span

the code space. This condition dictates the position variable of the logical states to be

a multiple of 2α. The logical |−ZL⟩ is derived from the action of the bit-flip operator

(|−ZL⟩ = XL |+ZL⟩). The non-normalized code states read

|+ZL⟩ =
∞∑

t=−∞
|q = 2tα⟩ |−ZL⟩ =

∞∑
t=−∞

|q = (2t+ 1)α⟩ . (1.26)

In the conjugate quadrature p, the codewords are represented by

|+ZL⟩ =
∞∑

t=−∞
(|p = 2tπα⟩ + |p = (2t+ 1)πα⟩) (1.27)

|−ZL⟩ =
∞∑

t=−∞
(|p = 2tπα⟩ − |p = (2t+ 1)πα⟩).

Figure 1.2: The q/p wavefunction representation (Ψ(r) in figures represent the real part of the
wavefunction, the imaginary part is zero) for the GKP code states |±ZL⟩ (left), |±XL⟩ (right)

The symmetric superposition states |±XL⟩, are unique eigenstates of the Pauli XL

operator

12



4. GKP code

|+XL⟩ = 1√
2(|+ZL⟩ + |−ZL⟩) =

∞∑
t=−∞

|p = 2tπα⟩ (1.28)

|−XL⟩ = 1√
2(|+ZL⟩ − |−ZL⟩) =

∞∑
t=−∞

|p = (2t+ 1)πα⟩ .

and expressed in the position q basis as

|+XL⟩ =
∞∑
t=∞

(|q = 2tα⟩ + |q = (2t+ 1)α⟩) (1.29)

|−XL⟩ =
∞∑

t=−∞
(|q = 2tα⟩ − |q = (2t+ 1)α⟩).

The |±XL⟩ states have an analogous representation in q (p) as the |±ZL⟩ states in p

(q).

4.1 Error detection and decoding

Given the distant support of the GKP-codewords in both q and p, small shift errors

are correctable. A measurement of the stabilizer operators, corresponding to a mea-

surement of q mod α or p mod π
α , captures the modular peak shift information without

revealing the logical state information. Assuming a GKP code state |ΨL⟩ is affected by

an error of the form |ΨL⟩ → |Ψ′
L⟩ = e−iϵp |ΨL⟩ (as depicted in Fig. 1.3), the action of the

stabilizer Sq = ei
2π
α q reads

Sq e
−iϵp |ΨL⟩ = e

2π
α ϵ[q,p] e−iϵp ei

2π
α q |ΨL⟩ = ei

2π
α ϵ e−iϵp |ΨL⟩ , (1.30)

where the Baker-Campbell-Hausdorff formula (eXeY = eYeXe[X,Y], if X and Y com-

mute with [X,Y]) and the invariant action of the stabilizer on |ΨL⟩ has been used. A

measurement of the phase θ = 2π
α ϵ ∈ [−π, π] unambiguously reveals the error ϵ if

|ϵ| < π
2α . The shift error is simply corrected by applying a feedback displacement

D(− θα
2π ). A similar argumentation is valid for errors in the momentum quadrature eiϵq

by the application of the stabilizer operator Sp = e−i2αp. A displacement error that

exceeds half the distance of a Pauli error, is wrongly decoded and a feedback dis-

13



Chapter 1. Overview & introduction

placement leads to a logical error. Therefore, errors are correctable in the GKP code

if the magnitude of the displacement in phase space is smaller than α
2 along q and π

2α

along p respectively.

Figure 1.3: Sketch of wave function representation of logical GKP code states |±ZL⟩. A shift
error ϵ along the q-quadrature can be detected by measurements of the stabilizer operator Sq
of the code. Displacements that exceed α

2 , highlighted by the yellow region, lead to a wrong
decoding.

4.2 Finite-energy GKP code states

The logical states of the GKP encoding can be understood as coherent superpositions

of infinitely squeezed states, which are not realistic given that they have infinite energy

and are unbound in phase space. The finite-energy GKP states |Ψ∆⟩ are related to

the infinite-energy version |Ψ∞⟩ by the non-unitary operator |Ψ∆⟩ = e−∆a†a |Ψ∞⟩ [19],

where ∆ sets the envelope width in q and p. Further, the finite-energy stabilizer

operators are derived from this relation

S∆
q = e−∆a†a Sq e

∆a†a = ei
2π
α (cosh(∆)q+i sinh(∆)p) (1.31)

S∆
p = e−∆a†a Sp e

∆a†a = e−i2α(cosh(∆)p−i sinh(∆)q).

which still fulfill the commutation relation [S∆
q ,S∆

p ] = 0. The finite energy states

are superposition of squeezed coherent states (squeezing parameter ζ = ln( 1
∆)) with

a bounded envelope function. The +1-eigenstates of these stabilizer operators have

equal peak and envelope variance in the quadratures q and p. Here, we define the

code states with a peak variance σ2 in q ( 1
∆2 in p) and envelope variance ∆2 in q ( 1

σ2

in p).
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4. GKP code

|+Z∆
L ⟩ ∝

∑
t

e− 1
2∆2 (2tα)2

∫
dq e− 1

2σ2 (q−2tγα)2
|q⟩ ∝

∑
t

e− σ2
2 (t πα )2

∫
dp e− ∆2

2 (p−tγ πα )2
|p⟩ (1.32)

|−Z∆
L ⟩ ∝

∑
t

e− 1
2∆2 (α(2t+1))2

∫
dq e− 1

2σ2 (q−(2t+1)γα)2
|q⟩ ∝

∑
t

e− σ2
2 (t πα )2

∫
dp e− ∆2

2 (p−tγ πα )2
|p⟩

with γ−2 = 1 − σ2

∆2 being chosen for a symmetric description with respect to q/p.

Equivalently the code states can be expressed in terms of a continuous envelope func-

tion for which the peak and envelope positions are decoupled. In this representation,

the states are of the form

|+Z∆
L ⟩ ∝

∫
dq e− q2

2∆2
∑
t

e
− γ2

2σ2 (q−2tαγ )2
|q⟩ ∝

∫
dq e− σ2p2

2
∑
t

e
− γ2∆2

2 (p−t πγα )2
|p⟩ . (1.33)

|−Z∆
L ⟩ ∝

∫
dq e− q2

2∆2
∑
t

e
− γ2

2σ2 (q−(2t+1)αγ )2
|q⟩ ∝

∫
dq e− σ2p2

2
∑
t

e
− γ2∆2

2 (p−t πγα )2
|p⟩ .

In chapter 4, will treat GKP states with a non-Gaussian normalizing envelope, that

are defined by the number of q-peaks n weighted by a Binomial distribution.

|A⟩2n+1 ∝
n∑

t=−n

∫
dq

( 2n
n+t

)
e− 1

2σ2 (q−2tα)2
|q⟩ ∝

∫
dp e− σ2p2

2 cos2n(αp) |p⟩ (1.34)

|C⟩2n ∝
n+1∑
t=−n

∫
dq

(2n+1
n+t

)
e− 1

2σ2 (q−(2t−1)α)2
|q⟩ ∝

∫
dp e− σ2p2

2 cos2n+1(αp) |p⟩

The states |A⟩2n+1 represent the |+ZL⟩ code states with an odd number (2n + 1) of

peaks and |C⟩2n the |−ZL⟩ code states with an even number (2n) of peaks. In figure

1.4, the family of states is visualized for different values of n. Squeezed Schroedinger

Cat states can be interpreted as a limit case of this GKP state family, as the identifi-

cation |C⟩2 ≡ |C+
α ⟩ ∝

∫
dq e− q2

2σ2 (|q − α⟩ + |q + α⟩) ∝
∫
dp e− σ2p2

2 cos(αp) |p⟩ can be made.

In the next chapter, we review error-correction schemes for the finite-energy code

states using Rabi-type interactions with an ancillary two-level system, to realize the

necessary modular measurements of the phase space quadratures.
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Chapter 1. Overview & introduction

Figure 1.4: Wave function representation (Top: Ψ(q), Down: Ψ(p)) of the Binomial GKP states
(eq. 2.18) as a function of the number of q peaks n. (Left) Wavefunction representation of
|A⟩2n+1 states and (Right) |C⟩2n states .
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The first experiment [7] to stabilize GKP states were based on measurements of the

GKP error-syndromes through a Ramsey-type sequence in which the target oscillator

is coupled to an ancillary two-level system, as seen in figure 2.1. By the Hamiltonian

Hr = −γ rσz with an controlable interaction rate γ, the value of the modular position

or momentum operators rm = qm,pm is mapped to the TLS.

Figure 2.1: Error syndrome detection circuit: Measurement sequence of the stabilizer operators
Sq/Sp realized using the gates ei

π
αqσz/eiαpσz and a Ramsey type-readout of the ancillary TLS.

The ancillary TLS initialized in |g⟩, is prepared in the state |+⟩ = 1√
2(|g⟩ + |e⟩) via a first

π
2 -pulse (exp(iπ4σy)). It then interacts with the oscillator via a conditional displacement gate
(orange and purple blocks) by which the value of the modular coordinate qm or pm is mapped
to the TLS phase. The TLS is then measured along the axis σx, σy in the equatorial plane (by
a TLS readout in the σz basis preceded by a π

2 pulse with the appropriate phase). Feedback
displacements D(ϵ)/D(iϵ) conditioned to the TLS detection outcomes are applied to the oscillator
state to correct for the shift errors along q/p.

The detailed measurement sequence is represented in figure 2.1. The TLS, initially
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Chapter 2. Error correction with an ancillary two-level system

in |g⟩, is first prepared in |+⟩ = (|e⟩+ |g⟩)/
√

2 by a π
2 rotation around σy. The interaction

Hamiltonian is then activated for a time T to perform the evolution described by the

operator

Ur(T ) = e−iγTrσz = |g⟩ ⟨g| e+iγTr/2 + |e⟩ ⟨e| e−iγTr/2 . (2.1)

Ur(T ) results in a TLS-state-dependent displacement of the target state along the

r⊥ quadrature

|Ψ⟩ = 1√
2(|g⟩ eiγTr/2 + |e⟩ e−iγTr/2) |ψ⟩ , (2.2)

for a general state |ψ⟩ of the harmonic oscillator. Conversely, this evolution can

be seen as a rotation of the TLS of phase θ = γT in the equatorial plane (σx-σy) of

the Bloch sphere (see figure 2.2). The interaction strength/duration is chosen to be

γTq = π
α (γTp = α), to realize a measurement of q mod α (p mod π

α ). Thereby, the TLS

phase encodes the stabilizer information (⟨Sr⟩ = ⟨σx − iσy⟩). A second Ramsey pulse
π
2 pulse is applied that maps the states |±ϕR⟩ = 1√

2(|g⟩ ± eiϕR |e⟩) to the basis states

|g⟩ / |e⟩. The final state can be written after some re-arrangement as

|Ψf ⟩ ∝ (|g⟩ sin(1
2(γTr + ϕR)) |ψ⟩ + |e⟩ cos(1

2(γTr + ϕR)) |ψ⟩ . (2.3)

Figure 2.2: Peak shift error detection via the TLS. Sketch of the composite state: q-probability
distribution distinct in colour) and representation of the TLS in the Bloch sphere σx-σy plane.
(a): Preceding the interaction, the GKP state is displaced by a shift error δ along q and the
TLS is initialized in |+⟩. (b) During the interaction (e−iγTqσz ), the TLS Bloch vector precesses
in the σx-σy plane conditioned on the q-value of the GKP state (indicated by a coloured Bloch
vector associated to the respective peak). The interaction strength is chosen such that the
corresponding Bloch vectors refocus to the same angle encoding solely the value of δ of the
modular coordinate without revealing more information on q.

Accordingly, the Kraus operators for the TLS measurement outcomes |g⟩ / |e⟩ are
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1. Feedback strategies

q-Error correction p-Error correction (2.4)

Mg = sin(παq + ϕR
2 ) Ng = sin(αp + ϕR

2 )

Me = cos(παq + ϕR
2 ) Ne = cos(αp + ϕR

2 ).

In this thesis, we will often refer to these measurement sequences of the stabilizer

operators based on a Ramsey-type sequence with a TLS as TLS-Sr stabilizer mea-

surements that are denoted by R. A single measurement sequence allows to extract

a single classical bit of information of the stabilizer phase. In order to acquire a

more accurate value of the shift error, multiple measurement rounds are necessary,

a procedure known as phase estimation [20]. In the next section, different feedback

strategies conditioned on the outcomes of the TLS measurements are discussed.

1 Feedback strategies

An exact readout of the stabilizer phase (peak shift error), corresponding to an in-

finitely long bit-string, requires an infinite number of rounds. Terhal et al. [21] have

proposed optimized phase-estimation schemes in finite-time by adjusting, at each

round the phase ϕr of the TLS measurement and/or of the applied feedback displace-

ment length ϵ. The probabilities for a measurement of the TLS along σx (ϕR = 0) are

given by P±σx = 1
2(1 ± ⟨Re(Sq)⟩) and along σy (ϕR = π

2 ) by P±σy = 1
2(1 ± ⟨Im(Sq)⟩).

In the case of non-adaptive phase-estimation, n · σx and n · σy measurements are

performed, to equally probe the real and imaginary part of the stabilizer operator.

The Kraus operator Mk,l, after n cycles for k · σ+x and l · σ+y outcomes followed by a

feedback displacement ϵk,l for a q-error correction cycle is given by

Mk,l ∝ D(ϵk,l)[
√(n

k

)
cos(παq)k sin(παq)n−k

√(n
l

)
cos(παq + π

4 )l sin(παq + π
4 )n−l]. (2.5)

The feedback length ϵk,l is applied to maximize ⟨Re(Sq)⟩, or other figure of merits

that have been introduced specific to the GKP code.

In the adaptive phase estimation, the measurement axis ϕR is varied in each round

l as a function of the previous measurement settings [20], resulting in the Kraus

operator
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Chapter 2. Error correction with an ancillary two-level system

Ml ∝ D(ϵ)
n∏
l=1

cosl(παq + ϕR[l]). (2.6)

Terhal et al. computed an analytical formula for the conditional feedback displace-

ment ϵ after n rounds, which is found in [21]. Maximal information is extracted within

one round for the measurement axis being chosen along the angle ϕR[l] = θ[l] + π
2 , ex-

actly orthogonal to the value θ[l] of qm estimated from the outcomes of rounds prior to

l.

Figure 2.3: Comparison of different feedback strategies for GKP state preparation. 1−⟨Re(Sq)⟩
as a function of Sq measurement rounds n with an ancillary TLS. Family of curves depict non-
adaptive, adaptive phase estimation and Markovian feedback for ideal displacement (chosen to
maximize Re(Sq)) and constant feedback as a fraction of the lattice parameter (α = a).

An alternative, equivalent strategy is to keep the measurement angle fixed, but

to apply a feedback displacement by ±ϵl = −q±
l , where q±

l is the estimated modular

position after the measurement round l that yielded an outcome ±. Thus after the

feedback displacement has been applied, the estimated modular position before the

round l + 1 begins is then ql+1 = 0. It follows that the optimal measurement angle is

ϕR = π
2 for all rounds. This strategy is referred to as Markovian since the feedback

displacement is proportional to the outcome ±1 of the measurement round.

In figure 2.3, we represent the evolution of 1−⟨Re(Sq)⟩ under n rounds of adaptive/non-
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2. Error correction for finite-energy code states

adaptive phase estimation and adaptive Markovian feedback, from an initial broad

Gaussian state1. In all three cases, 1 − ⟨Re(Sq)⟩ decreases, indicating that the oscilla-

tor state converges toward the GKP manifold. Unsurprisingly, the adaptive methods

yield equal results, slightly surpassing the non-adaptive method. However, computing

the values θl in the adaptive methods require non-trivial Bayesian filtering based on

the whole measurement record of previous rounds. In [7], a simpler strategy, in which

the feedback displacement length is fixed, was employed. In figure 2.3 we observe, in

the non-adaptive Markovian case, longer feedback displacements allow a more rapid

initial decrease of 1 − ⟨Re(Sq)⟩, which however saturates to a smaller value with re-

spect to shorter feedback displacements.

[22],[5] recently proposed that the Markovian feedback D±ε can be applied au-

tonomously, without the need of TLS detection (Fig. 2.4). By extending the unitary

operator in eq. 2.1, by e−iϵpσY

Ucoh = e−iϵpσY ei
π
αqσZ (2.7)

the feedback is applied in a coherent manner. The TLS needs to be reset after the

sequence in order to re-use it2.

Figure 2.4: Equivalence of Ramsey-type measurement sequence of the stabilizer Sq with TLS
measurement-based feedback and the autonomous sequence in eq. 2.7, in which the feedback is
applied via e−iϵpσY .

2 Error correction for finite-energy code states

A similar error correction scheme applies to the finite-energy code states. However,

since the corresponding finite-energy stabilizers are non-unitary operators, an analo-

gous measurement scheme would necessitate the implementation of a non-hermitian

1In the numerical simulations, we consider infinite-energy states and compute the evolution in terms of the
probability distributions on a periodic interval. More details on the numerical methods are presented in chapter
3.

2This can prove to be advantageous for platforms where the autonomous reset is faster and/or less noisy than
measurement-based reset.
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Hamiltonian. Recently, [22], [5], [23] have proposed (and experimentally realized in

[5], [24]) sequences to effectively perform measurements of the finite-energy stabiliz-

ers. In this section, these sequences are discussed in detail as they are of relevance

in chapter 4.

A measurement of the infinite-energy stabilizer operator Sq (Sp), described in the

first part of this chapter, entails a conditional displacement by D±i πα
(D±α), that leads

to an expansion of the envelope to higher photon numbers. In the experiment by

[7], the envelope has been stabilized by interleaving stabilizer measurements with

measurements of the modular operator q,p,mod 2π
η with much longer period in phase

space (η << 1). This measurement is simply performed via the unitary Uη = eiηrσz . The

corresponding Kraus operators for Markovian feedback are

Mη
− = D−α sin(ηq + π

4 ) Nη
− = D−i πα

sin(ηp + π
4 ). (2.8)

Mη
+ = D+α cos(ηq + π

4 ) Nη
+ = D+i πα

cos(ηp + π
4 ).

with a conditional feedback D±α (D±i πα
) to recenter the oscillator state. These dis-

placements by half the GKP lattice period induce deterministic flips of the logical qubit

and have to be accounted for in software. An intuitive understanding of the correction

mechanism is shown in Fig. 2.5.

[22] and [5] introduced an alternative method in which the correction of the enve-

lope is performed simultaneously as the stabilizer measurement. In other words, one

directly performs a measurement of the finite-energy stabilizers S∆
q and S∆

p introduced

in eq. 1.31. They consider the following sequence of two conditional displacements

to measure S∆
q (the measurement of S∆

p is analogous by a rotation of the quadratures

by an angle π
2 , q⊥ = p, p⊥ = −q)

Uη = ei
π
αqσZe−iηpσY . (2.9)

Note, that the first conditional displacement is conditioned on the Pauli operator σy
of the TLS. One obtains such an altered gate by flanking a σz conditional displacement

with π
2 and −π

2 TLS rotations around σx. We can rewrite this expression as
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2. Error correction for finite-energy code states

Figure 2.5: State-envelope correction: (a) Sketch of initial finite-energy GKP state (for simplicity
only 3 peaks) and TLS prepared in |+x⟩ represented in the σx-σy plane of the Bloch sphere.
(b) The unitary eiηpσz rotates the Bloch vector in the σx-σy plane conditioned on the p value of
the GKP state (shaded regions are associated to the spread of Bloch vectors corresponding to
the respective coloured peak). (c) Bloch vector copies, corresponding to the orange peak have
a higher probability to lead to an outcome |+y⟩ and therefore the measurement-back-action
leads to a suppression of the population of the green peak. (Intuition highlighted by bright and
dark half-discs) (d) Similar argument for a TLS outcome |−y⟩, for which the population of the
orange peak is suppressed. Corrective feedback displacements by a multiple of ±π

α alpha along p
(respectively ±α along q) have to be applied to recenter the state envelope. These displacements
by half the GKP lattice period induce deterministic flips of the logical qubit.

Uη = ei
π
αqσZe−iηpσY = + e−i παq cos(ηp) |g⟩ ⟨g| + ei

π
αq cos(ηp) |e⟩ ⟨e| (2.10)

+ e−i παq sin(ηp) |g⟩ ⟨e| − ei
π
αq sin(ηp) |e⟩ ⟨g| .

Applying this operator to a general oscillator state |ψ⟩ and a TLS prepared in
1√
2(|g⟩ + |e⟩), the composite state results in

|Ψ⟩ = (e−i παq cos(ηp − π
4 ) |g⟩ + ei

π
αq cos(ηp + π

4 ) |e⟩) |ψ⟩ . (2.11)

For the particular initial TLS state, this evolution is equal to that resulting from

the application of the non-unitary operator

OC = e−i παq cos(ηp − π
4 ) |g⟩ ⟨g| + ei

π
αq cos(ηp + π

4 ) |e⟩ ⟨e| . (2.12)

At first order in η (indicated by ≃)
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Chapter 2. Error correction with an ancillary two-level system

OC = 1√
2 [e−i παq(cos(ηp) + sin(ηp)) |g⟩ ⟨g| + ei

π
αq(cos(ηp) − sin(ηp)) |e⟩ ⟨e|)] (2.13)

≃ 1√
2(e−i παq eηp |g⟩ ⟨g| + ei

π
αq e−ηp |e⟩ ⟨e|) = e

ηπ
2α√

2 e
−i(παq+ηp)σz ,

where the last line is equivalent to a Rabi-type gate with the operator e−∆a†a q e∆a†a =
cosh(∆)q + i sinh(∆)p that has been introduced in chapter 1, Sec 4.2 on the finite en-

ergy GKP states. Here with tanh(∆) = π
ηα , realizing an effective measurement of the

finite energy stabilizer S∆
q .

Analogously to the measurement of the infinite stabilizer Sq, that was probed via

the unitary operator ei
π
αqσz, this sequence effectively maps information from S∆

q onto

the TLS, which is measured to obtain up to one bit of information. [22] and [5] then

considered a Markovian feedback strategy, in which the TLS is measured along σy,

before applying proportional feedback by ±ϵ, which gives the Kraus operators

M− = D−ϵ [sin(παq + π
4 ) cos(ηp) + i cos(παq + π

4 ) sin(ηp)] (2.14)

M+ = D+ϵ [cos(παq + π
4 ) cos(ηp) − i sin(παq + π

4 ) sin(ηp)].

Figure 2.6: Measurement sequence for finite-energy stabilizer operators with TLS measurement
and manual feedback is equivalent to a coherent feedback and reset of the qubit.

Anew, the measurement along the σy axis and the corresponding feedback can

be performed in a coherent manner, as visualized in Fig 4.21, by adding the unitary

operator e−iϵpσY .

USBSq = e−iϵpσY ei
π
αqσZe−iηpσY . (2.15)

and a reset of the TLS after the interaction. The optimal value of ϵ is found to be

equal to η, which maximizes the state purity in steady state (under repeated rounds

of the sequence for the q and p quadrature). Royer et al. [22] coined 4.21 the Small-

Big-Small (SBS) sequence indicating the length of the displacements. Further, they

derived an additional sequence
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2. Error correction for finite-energy code states

UBSBq = ei
π
αqσZe−i4ηpσY ei

π
αqσZ , (2.16)

equivalently stabilizing the finite energy states, referred to as the Big-Small-Big

(BSB) sequence. The sequence for the conjugate quadrature is simply found by rotat-

ing the quadratures (q⊥ = p,p⊥ = −q).

Figure 2.7: We simulate the evolution of the oscillator state under repeated SBS correction
rounds (see eq. 4.21) along the q and p quadrature, and extract the logical qubit lifetime Tz,
plotted against the control parameter η = ϵ for several oscillator single-photon lifetimes Tcav
(encoded in color). The optimal value of ϵ depends on Tcav.

As for the SBS sequence, the control parameter η sets the size of the GKP grid

envelope in phase space. Note that, when considering single-photon dissipation of

the oscillator, the envelope size, and therefore η, needs to be optimized to maximize

the logical qubit lifetime. Intuitively, the envelope size should be wide enough for the

grid peaks to be narrow and well separated from one another. We recall that for a

pure GKP state, the envelope function along one quadrature is the Fourier transform

of the peak function on the conjugate quadrature. On the other hand, an increasing

grid state envelope, increases its average photon number, and therefore photon loss

induces a stronger distortions of the code state. For a given oscillator lifetime, there

is an optimal envelope size, that is set by η in the SBS sequence. In Fig. 2.7, the

lifetime of the logical qubit is plotted for different oscillator lifetimes Tcav as a function
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Chapter 2. Error correction with an ancillary two-level system

of η = ϵ, showing a maximum that is shifted towards higher values of ϵ for shorter

cavity lifetimes.

2.1 Phase-swap sequence for an infinitely squeezed cat state

In this section, we show that the BSB-sequence introduced in the earlier section,

described through the unitary operator

UBSBp(ϵ) = eiαpσZe−iϵqσY eiαpσZ ∝ e−iαp cos(ϵq) e−iαp |g⟩ ⟨g| + eiαp cos(ϵq) eiαp |e⟩ ⟨e| (2.17)

− eiαp sin(ϵq) e−iαp |e⟩ ⟨g| + e−iαp sin(ϵq) eiαp |g⟩ ⟨e| ,

realizes a phase-swap sequence between an infinitely squeezed cat state and a

TLS. We recall the Binomial GKP states from section 4.2 in chapter 1

|A⟩2n+1
σ ∝

n∑
t=−n

∫
dq

( 2n
n+t

)
e− 1

2σ2 (q−2tα)2
|q⟩ ∝

∫
dp e− σ2p2

2 cos2n(αp) |p⟩ (2.18)

|C⟩2n
σ ∝

n+1∑
t=−n

∫
dq

(2n+1
n+t

)
e− 1

2σ2 (q−(2t−1)α)2
|q⟩ ∝

∫
dp e− σ2p2

2 cos2n+1(αp) |p⟩ .

We use a short hand notation for an infinitely squeezed cat state |C⟩2
σ=0 = |q = −α⟩+

eiϕ |q = +α⟩, with an initial phase eiϕ and consider the TLS being prepared in |+⟩ ini-

tially,

UBSBp |+⟩ |C⟩2
0 ∝ |g⟩ e−iαp(cos(ϵq) e−iαp + sin(ϵq) eiαp) (|−α⟩ + eiϕ |+α⟩) (2.19)

+ |e⟩ eiαp(cos(ϵq) eiαp − sin(ϵq) e−iαp) (|−α⟩ + eiϕ |+α⟩)

= |g⟩ e−iαp[cos(ϵq)(|−2α⟩ + eiϕ |0⟩) + sin(ϵq) (|0⟩ + eiϕ |2α⟩)]

+ |e⟩ eiαp[cos(ϵq)(|0⟩ + eiϕ |2α⟩) − sin(ϵq) (|−2α⟩ + eiϕ |0⟩)]

By choosing ϵ = π
4α , a conditional ∓π pulse is applied for the population centered

at |±2α⟩ that results in

UBSBp |+⟩ |C⟩2
0 ∝ |g⟩ e−iαp[eiϕ |0⟩ + eiϕ |2α⟩] + |e⟩ eiαp[|0⟩ + eiϕ − |−2α⟩] (2.20)

=(|g⟩ eiϕ + |e⟩)(|−α⟩ + |+α⟩).
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3. Error propagation from the TLS

In the case of a cat state with infinite squeezing, the BSB sequence realizes a

perfect phase swap. For finite squeezing, the sequence generates minor populations

as well at the positions |±3α⟩.

Figure 2.8: Equivalence of the finite-energy GKP stabilizer sequence UBSBp and a phase-swap
sequence between an infinitely squeezed cat state and a TLS. Initially the TLS and the infinitely
squeezed cat state with a phase µ = eiϕ are in a separable product state. Schematic of wave
function representation Ψ(q) depicts the TLS state corresponding to the respective q-peak po-
sition for each step of the BSB sequence. For a value of ϵ = π

4α in the conditional displacement
gate e−iϵqσY , a conditional ∓π pulse is performed that results in a destructive interference of
populations at the positions |q = ±3α⟩ when the last gate eiαpσZ is applied. At the end of the
sequence a perfect phase swap is realized for infinitely squeezed peaks. In the case of finitely
squeezed peaks the sequence generates minor populations as well at the positions |q = ±3α⟩.

3 Error propagation from the TLS

We now analyze the impact of the two types of TLS errors, namely bit-flips and phase-

flips, during the error correction protocol. For simplicity, we focus on the case of

infinite-energy GKP states and expect qualitatively similar results for the finite-energy

case.
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Chapter 2. Error correction with an ancillary two-level system

3.1 Bit-flips of the TLS

We consider bit-flips induced by absorption or emission of the TLS energy in the

environment, at respective rates Γ+ and Γ−. Their effect on the density matrix of the

system is modeled by Lindblad dissipators
√

Γ+D[σ+] and
√

Γ−D[σ−], where σ+ and

σ− are respectively the raising and lowering operators of the TLS. Each dissipator D[L]
yields, over an infinitesimal time-step dt, an evolution of the density matrix

dρ = dtD[L](ρ) = dt
(
LρL† − 1

2(L†Lρ + ρL†L)
)
. (2.21)

We focus on the case Γ+ = Γ− = Γ1/2 and briefly describe the most general case

Γ+ ̸= Γ− at the end of this section. Note that this particular case of equal rates of TLS

excitation and de-excitation applies to current superconducting circuits experiments.

Indeed, the control sequence employed in these experiments to generate conditional

displacements includes regular flips of the TLS on a timescale much shorter than its

energy relaxation time [7, 24]. As a result, TLS relaxation events, which are natively

much more frequent than excitation events (Γ+ ≪ Γ− ≃ Γ1), effectively induce tran-

sitions from any eigenstate of the TLS to the other with equal probability over the

course of a conditional displacement.

We consider the effect of bit-flips during the application of a conditional displace-

ment gate UCD
qb

= ei
π

2α
qσz along the p quadrature of an oscillator—the calculation is

directly adaptable to the case of a conditional displacement along q. We assume this

gate to be performed by the application of a Rabi-like Hamiltonian—also known as

longitudinal coupling Hamiltonian

HCD
q = −χqσz (2.22)

with constant rate χ = π
2αTCD

over the gate duration TCD (the coupling Hamiltonian is

then turned off until the following gate). In the weak noise limit Γ1TCD ≪ 1, we unravel

the effect of bit-flips as stochastic collapses onto the ground state |g⟩ or the excited

state |e⟩ [25], each occurring with probability Γ1dt/2 in a time-interval of duration dt

around any given flip time 0 < terr < TCD
3. From an arbitrary initial state described by

the density matrix ρ and when such a flip occurs, the non-normalized density matrix

of the system after the gate (endpoint of the quantum trajectory) is ρ±
terr

= O±
terr

ρO±†
terr

,

3Intuitively, this unravelling corresponds to the case where an observer in the environment detects the emission
or absorption of a photon with a high-bandwidth photo-counter.
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3. Error propagation from the TLS

where the non-Hermitian evolution operators O±
terr

read

O±
terr

= Γ1dt

2 eiχ(TCD−terr)qσz P± eiχterrqσz

= Γ1dt

2 e±i π
2α

(1−2τerr)q P±,

(2.23)

with P− = |g⟩⟨e| and P+ = |e⟩⟨g| the operators respectively modelling a collapse onto

|g⟩ or |e⟩, and τerr = 1 − terr/TCD defined as in Fig. 1a. O±
terr

thus collapses the TLS and

displaces the oscillator state along p by ± π
2α(1 − 2τerr) ∈ I = [− π

2α ,
π

2α ].

In the protocol described in this work, conditional displacement gates are imme-

diately followed by a measurement of the σy Pauli operator of the TLS—yielding a

random outcome when the TLS has been collapsed onto |g⟩ or |e⟩—whose outcome

controls a feedback displacement by ±ϵ along q. Then recombining all trajectories to

model our proportional (memoryless) feedback strategy and tracing out the TLS, the

oscillator density matrix reads

ρ′ = (1 − pBF )UCD
q ρUCD†

q + pBFρI (2.24)

where pBF = Γ1TCD ≪ 1 is the total bit-flip probability during the gate and ρI denotes

the density matrix ρ randomly displaced by ±ϵ along q and by a length uniformly

sampled in I along p.

In the general case, in which the TLS excitation and de-excitation rates are not

equal, one also needs to account for the partial collapse of the TLS state during the

no-flip evolution. This evolution commutes with the conditional displacement gate

and only unbalances the relative amplitude of probability of the two conditionally dis-

placed copies of ρ, thereby reducing the contrast of the subsequent TLS measurement

similarly to the phase-flips of the TLS described in the next section.

3.2 Phase-flips of the TLS

By comparison with bit-flips, phase-flips of the TLS are simpler to model. Indeed, in

the quantum trajectory approach described above, they correspond to σz gates ran-

domly applied to the TLS over any time-interval of duration dt with probability Γϕ

2 dt,

where Γϕ is the TLS pure dephasing time. Since σz commutes with the interaction

Hamiltonian, phase-flips are equivalently modeled as a σz gate applied after the gate

with probability pPF = Γϕ

2 TCD (in the weak noise limit). By flipping the sign of the

subsequently measured σy Pauli operator, this error results in an erroneously ap-

plied feedback displacement. We set pPF = pBF /2, typical of superconducting circuit
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Chapter 2. Error correction with an ancillary two-level system

experiments, in all simulations performed in this work.

Note that TLS readout errors have an impact similar to phase-flips, but may cause

more damage when the TLS is actively reset based on the measurement outcome,

yielding a TLS erroneously prepared in | − x⟩ for the subsequent ancilla preparation

round (see Fig. 2b). Experimentally, such reset errors may be mitigated by repeating

the reset procedure in |g⟩, assuming the measurement to be Quantum Non Demoli-

tion for the |g⟩ state [26, 27]. Readout errors are not modeled in this work.

In conclusion, phase-flips of the TLS lead to errors in the measurement of the

stabilizer operators of the oscillator. Nevertheless, when stabilizing infinite energy

states, the measurement is Quantum-Non-Demolition, in the sense that the oscillator

state is not impacted by the measurement (in the absence of applied feedback). Thus,

measurement errors induced by phase-flips can be robustly suppressed by repeat-

ing the sequence (TLS preparation - quadrature gate - TLS readout) and performing

a majority vote on the TLS readout outcomes before applying a corrective feedback

displacement on the oscillator. On the other hand, bit-flips of the TLS during the

conditional displacement gate directly propagate as random shifts of the oscillator,

yielding logical errors with probability 1
2 .

This is the major bottleneck in progressing further towards fault-tolerant quan-

tum computation with GKP qubits directly stabilized with a TLS ancilla. Indeed, while

evidence exists that logical errors stemming from any intrinsic noise channel of the os-

cillator are exponentially suppressed when the noise strength decreases with respect

to the repetition rate of correction rounds [? ? ], the rate of propagated errors de-

creases at best linearly with respect to the probability of a bit-flip of the ancillary TLS

during conditional displacement gates4. Various strategies were proposed [28],[10]

to mitigate this advert effect, but unleashing the full potential of GKP qubits will re-

quire to suppress propagating errors at a level beyond the reach of state-of-the-art

hardware [8, 29].

4This scaling is achieved by keeping the repetition rate of correction rounds constant.
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This chapter is dedicated to the error-correction of infinite-energy states with a

second bosconic mode. We focus on the Steane-type error correction protocol (pro-

posed for GKP states in [18] ) as illustrated in figure 3.1. The scheme was outlined

in the seminal paper by Gottesman, Kitaev and Preskill [18], followed by abbreviated

schemes that are more adapted to Quantum Optics experiments [30] and protocols

based on state-teleportation have been introduced recently [31],[32]. In this scheme,

the stabilizer phase of the target mode - encoding the shift error information - is

transferred to the ancilla via a quadrature-quadrature coupling. The ancilla stabilizer

information is then measured by a quadrature readout, and the outcome controls a
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Chapter 3. Error correction for infinite-energy states with a GKP ancilla

corrective feedback displacement that is applied to the target mode.

Commonly, a discussion on the GKP ancilla state preparation is widely omitted

in a variety of these proposals and often assumed to be ideal. In this respect, the

challenge of preparing/stabilizing GKP states is transferred to the ancilla oscillator.

For instance, if the ancilla is prepared from vacuum through a series of TLS-based

measurements of its stabilizer operators, bit-flips of the TLS induce long shifts of its

state, which propagate through the quadrature gate as long shifts to the target oscil-

lator, causing logical errors. In our work, we consider such a TLS-based preparation

of the ancilla, but tailor it in order to robustly suppress the error propagation to the

target mode.

The ancillary mode b is prepared by repeated TLS-stabilizer measurements (see

chapter 2), each followed by a feedback displacement proportional to its outcome

(Markovian feedback strategy, see chapter 2 Sec. 1). We refer to the TLS preparation

that consist of the sequence {Conditional displacement gate, TLS readout, Propor-

tional feedback} as a single preparation round. We label the preparation round for the

respective stabilizer Sqb/Spb by Rqb
and Rpb

.

The stabilizer operators of the target a and ancilla b mode with the according lattice

parameters α and β are given by

Sqa = ei
2π
α

qa = D(i2π
α

) Spa = e−i2αpa = D(2α) (3.1)

Sqb = e
iπ

β
qb = D(iπ

β
) Spb = e−i2βpb = D(2β)

With this choice, the ancilla oscillator acts as sensor to displacements of the target

oscillator and does not necessarily need to encode a whole logical qubit. Indeed, the

unit cell for the ancilla is chosen to be 2π, and there exists a single +1 eigenstate of the

stabilizer operators Sqb and Spb, |ø⟩b =
∑
n∈Z |qb = n2β⟩b. The Hamiltonian of the two-

mode quadrature-quadrature interaction to transfer the target shift error information

to the ancilla is given by a quadrature-quadrature coupling of the form

H = γ rarb = g

2(ab† e−iϕ∆ + a†b eiϕ∆ + ab e−iϕΣ + a†b† eiϕΣ) (3.2)

where ri = qi cos(ϕi) + pi sin(ϕi), ϕΣ = ϕa + ϕb and ϕ∆ = ϕa − ϕb. The interaction

consists of a balanced sum of a Beam-Splitter (HBS = ab† e−iϕ∆ + a†b eiϕ∆ ) and a Two-

mode squeezing interaction (HTMSQ = ab e−iϕΣ + a†b† eiϕΣ ). The corresponding unitary
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Figure 3.1: (a) Measurement circuit of the Steane-type type error correction sequence. Subse-
quent to the quadrature gate eiθqaqb , the target error information is detected by a measurement
of the Sr⊥

b
stabilizer, possibly in a non-QND manner by performing a homodyne detection of

the r⊥
b quadrature. (b) Schematic of wavefunction representation of the infinite-energy target

Ψa(ra) and ancilla Ψb(r⊥
b ) state before and after the quadrature gate. (Top) Initial compos-

ite state, with the target state (individually coloured peaks for clarity) displaced along ra and
the ancilla state is assumed to be perfectly initialized. (Bottom) The ancilla state is displaced
conditioned on the ra value of the target state along the r⊥

b quadrature. The multi-coloured
ancilla peaks highlight that the ancilla state solely encodes the target shift error and not reveals
any information about the logical state. Thereby, the ⟨Sra⟩ value is transferred to ancilla ⟨Sr⊥

b
⟩

value. (c) We remind the TLS-stabilizer sequence that will be depicted by the simplified icon
on the right, denoted by Rrb

.
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operators eiθrarb, realizes conditional displacements of the oscillator quadratures

eiθrarb : ra → ra r⊥
a → r⊥

a + θrb rb → rb r⊥
b → r⊥

b + θra, (3.3)

where r⊥
i denotes a rotation of ri by an angle of π

2 (q⊥
i = pi and p⊥

i = −qi). The

interaction parameter θ = γT =
√
π
β for a square target lattice α = π

α =
√
π, with T being

the interaction time, is chosen in order to maintain the lattice structure of both modes

after the gate. Subsequent to the quadrature-quadrature interaction, a shift error of

the target mode along ra is encoded in r⊥
b quadrature and vice versa. More precisely,

the stabilizer phase information is transferred from the target to the ancilla mode

Sr⊥
b

→ Sr⊥
b

Sra. The error syndrome of the target oscillator can therefore be extracted

by a readout of the ancilla r⊥
b quadrature, which can be of destructive nature, such

that typically a homodyne measurement is considered. Shift errors of the ancilla in r⊥
b

perturb the readout of the target stabilizer information. In this case, or for imperfect

readout, the stabilizer phase information can be faithfully reconstructed by repeated

error correction cycles with a fresh ancilla state and by averaging the measurement

outcomes. Subsequently, a feedback shift is applied to the target state to bring it

back to the code manifold. We call this sequence consisting of {the preparation of the

ancilla state, the quadrature gate, ancilla readout and conditional feedback on the

target oscillator} an ra-error correction cycle, labelled by Cra. Given the symmetry of

the quadrature gate, the back-action on the target state in terms of stabilizer oper-

ators is given by Sr⊥
a

→ Sr⊥
a

S2
rb

. Shift errors of the ancilla along the quadrature rb,

propagate to the target r⊥
a quadrature, potentially resulting in flip errors of the logical

qubit.

In this chapter, we will further describe how ancilla errors, either stemming from

intrinsic noise or from long displacements induced by bit-flips of the the TLS, propa-

gate to the target mode. Focusing on periodic, infinite energy oscillator states (chap-

ter 4 is dedicated to finite-energy states), we derive an ancilla preparation scheme

that suppresses these propagating errors. We optimize the parameters of our error-

correction protocol and analyze its performance in the case where both the target and

the ancillary oscillator are affected by quadrature noise. Quadrature noise induces

uniform diffusion of the oscillator state in phase-space with a given diffusion constant

κ and is commonly considered when analyzing performances of GKP error-correction

schemes [18], as it induces random displacements of grid states but preserves their

periodicity.
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1. Propagation of GKP-ancilla errors

1 Propagation of GKP-ancilla errors

In this section, the propagation of ancilla shift errors for the error correction gates

of the form eiθrarb is discussed in more detail. Ancilla shift errors eiδrb along the

r⊥
b quadrature, commute with the quadrature gate ([eiγTrarb , eiδrb ] = 0) and perturb

the subsequent r⊥
b -quadrature readout. Therefore, these errors propagate indirectly

via an incorrect feedback applied to the target mode. These kind of errors can be

mitigated by an adapted feedback strength and repetitions of the error-correction

cycle. In this sense, they propagate similarly as the phase flip errors of the TLS

(discussion in chapter 2, Sec 1). On the other hand, shift errors µ in the rb quadrature

before or during the interaction at a time instant 0 < tf < T propagate to the target

mode in the following manner,

eiγ(T−tf )rarb eiµr⊥
b eiγtf rarb = eiγ(T−tf )µra eiµr⊥

b eiγTrarb . (3.4)

with ri = {qi,pi} and r⊥
i = {pi,−qi}. This error propagation is the unavoidable

back-action of the quadrature gate, which symmetrically maps target ra errors to to

the ancilla r⊥
b quadrature, allowing the target error detection via the ancilla. Indeed,

the length of ancilla displacement errors caused by intrinsic noise channels does not

depend on β, so that propagated displacement errors scale as 1
β . If these propagated

displacement errors are short enough, they can be corrected in a subsequent Cr⊥
a

cy-

cle. However, bit-flip errors σx during the TLS-stabilizer measurement rounds Rpb

result in random displacements along the ancilla qb quadrature sampled from the

interval [−β, β]. They propagate to the target as displacements in the whole interval

[
√
π,

√
π] along ra during a Cr cycle.

The strategy for the ancilla preparation in this thesis is based on two key obser-

vations. First, the measurements of the target stabilizer operators can be performed

via the gates eiθraqb, where we exploit the liberty to solely couple to the ancilla via the

qb quadrature. Therefore, the ancilla state properties and preparation can be tailored

with respect to the qb quadrature, as displacement errors along qb are the only source

of directly propagating errors to the target oscillator. In other words, the ancilla can

be asymmetrically prepared, with a focus on a very sharp and reliably centered peak

distribution in qb - ⟨Sqb
⟩ close to 1 - at the expense of a less resolved peak distribution

in pb. Admittedly, displacement errors of the ancilla state along pb lead to an inac-

curate phase-estimation of the target stabilizer value ⟨Sra⟩ after a single cycle of the

Steane error-correction scheme, but as previously noted, this cycle can be repeated

and the measurement outcomes averaged to mitigate these kind of errors. Second, in

the TLS-based preparation of the ancillary oscillator state, bit-flip errors of the TLS
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only induce long displacement errors along qb if they occur during a Rpb
correction

round. On the other hand, during a Rqb
correction round, as far as the qb distribu-

tion is concerned, they solely result in an inaccurately extracted information and can

similarly mitigated by repetitions of the Rqb
round. In the next section, we detail the

ancilla state-preparation that is tailored with respect to the choice of the oscillator-

oscillator interaction.

2 GKP-ancilla preparation

A core idea of our proposal is to prepare the ancilla state by a large number of Rpb
cor-

rection rounds Np followed by a large number of Rqb
correction rounds Nq, as depicted

in figure 3.2. With this ordering, large shift errors in the qb distribution, originating

from TLS bit-flip errors during Rpb
rounds are corrected by the subsequent Rqb

rounds.

Figure 3.2: Schematic displaying the circuit for the asymmetric ancilla state preparation by a
large number of Rpb

correction rounds Np followed by a large number of Rqb
correction rounds

Nq.

In the following, we analyze and numerically simulate the ancilla state evolution

under such a sequence of preparation rounds. We make use of the state periodicity in

the quadratures qb and pb - preserved through the evolution as detailed below - and of

the fact that the modular quadrature operators qb mod 2β and pb mod π
β commute to

describe the states with periodic, classical probability distributions Qb and Pb. These

distributions are the diagonal elements of the state density matrix expressed in the

Zak basis.

2.1 Zak basis

The dynamics of our system is conveniently described in the Zak basis [33] of the

oscillators, which is the basis formed by displaced GKP states within one GKP unit
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cell of each oscillator GKP lattice. Equivalently, the Zak basis for each oscillator can

be seen as the joint eigenbasis of the GKP code stabilizers. Zak states are defined as

|u, v⟩a = e−iupa+ivqa | + Z⟩ = e
i
2uv

∑
n∈Z

ei2nvα|n2α+ u⟩qa

|u′, v′⟩b = e−iu′pb+iv′qb |ø⟩ = e
i
2u

′v
∑
m∈Z

ei2mv
′β|2mβ + u′⟩qb

(3.5)

where we use the convention α =
√
π, u ∈ [−α, α], v ∈ [−π

α ,
π
α ] , u′ ∈ [−β, β] and

v′ ∈ [−π
β ,

π
β ].

We will later use the following properties :

Momentum basis representation

|u, v⟩a = e− i
2uv

∑
n∈Z

e−inu π
α |nπ

α
+ v⟩pa

|u′, v′⟩b = e− i
2u

′v′ ∑
m∈Z

e
−imu′ π

β |mπ

β
+ v′⟩pb

.
(3.6)

Displacements (for Zak states of either mode)

e−iwp|u, v⟩ = e− i
2wv|u+ w, v⟩

e+iwq|u, v⟩ = e
i
2wu|u, v + w⟩.

(3.7)

where u+w and v+w are to be considered as modular coordinates (respectively mod-

ulo 2α or 2β and modulo π
α or π

β ).

We now show that, if the target mode is initialized in the | ± Z⟩ logical basis, the

states of both the ancillary and target modes are described by diagonal density matri-

ces in their respective Zak bases throughout the ancilla preparation and Steane-type

error correction. Therefore, they can be represented by periodic probability distri-

butions. Moreover, these distributions are separable between the two parameters of

each Zak basis:

ρa(t) =
∫
u

∫
v
Qa(u)Pa(v)|u, v⟩⟨u, v|a

ρb(t) =
∫
u′

∫
v′
Qb(u′)Pb(v′)|u′, v′⟩⟨u′, v′|b

(3.8)

We also give evolution rules for these distributions throughout correction rounds and

cycles, on which the numerical simulations used in this thesis are based.
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2.2 State evolution through a preparation round

For simplicity, we focus on the evolution during Rq rounds, and the results can be

directly adapted to the case of Rp rounds (subscripts are dropped for simplified nota-

tion). A Rq round labeled by j (Np + 1 ≤ j ≤ Np + Nq) starts with a TLS initialization

in the +1 eigenstate of its Pauli operator σx, followed by a conditional displacement

gate UCD
q = eiζqσz where ζ = π

2β . The TLS is then measured along σy, and a feedback

displacement by ±ϵj is applied along q depending on the outcome (as shown in detail

in chapter 2, Sec. 1). We recall the Kraus operators corresponding to the two possible

outcomes are

M− = e−iϵjpcos(ζq + π

4 ) M+ = e+iϵjpcos(ζq − π

4 ). (3.9)

If no TLS flip occurred during the gate, which happens with probability pNF =
1 − pPF − pBF (where pBF and pPF are the respective bit- and phase-flip probabilities

during a conditional displacement gate, that are supposed to be much smaller than

1), the non-normalized conditional probability distributions for the two initial q/p-

probability distributions Qj−1(u)/Pj−1(v) read

Q±,NF
j−1 (u) = pNF

(1
2 ± 1

2sin
(π
β

(u± ϵj)
))
Qj−1(u± ϵj) P±,NF

j−1 (v) = pNFPj−1(v).

(3.10)

As detailed in chapter 2, phase flips of the TLS during the gate, occurring with

probability pPF , lead to a erroneously applied feedback displacement, yielding the

non-normalized conditional probability distributions

Q±,PF
j−1 (u) = pPF

(1
2 ± 1

2sin
(π
β

(u∓ ϵj)
))
Qj(u∓ ϵj) P±,PF

j−1 (v) = pPFPj−1(v), (3.11)

while bit-flips of the TLS during the gate, occurring with probability pBF , yield no mea-

surement back-action, but a randomly applied feedback displacement along qb and a

long random displacement along pb. The corresponding non-normalized conditional

probability distributions read

QBFj−1(u) = pBF

2
(
Qj−1(u+ ϵj) +Qj−1(u− ϵj)

)
PPFj−1(v) = pBF

β

π
. (3.12)

After recombining all conditional probability distributions to model the memoryless

feedback strategy, the probability distributions are given by
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QFBj−1(u) =
(1

2 + 1 − 2pPF − pBF

2 sin
(π
β

(u+ ϵj)
))
Qj−1(u+ ϵj)

+
(1

2 − 1 − 2pPF − pBF

2 sin
(π
β

(u− ϵj)
))
Qj−1(u− ϵj)

PFBj−1(v) =(1 − pBF )Pj−1(v) + pBF
β

π
.

(3.13)

At the end of the round, we apply an effective quadrature noise channel, which con-

volves the probability distributions with periodic normal distributions Gq and Gp, re-

spectively defined on [−β, β] and [− π
2β ,

π
2β ], both with variance σ2 = κTround. At the

beginning of the following round, we thus get a state of the form (3.8) with probability

distributions

Qj(u) = QFBj−1 ∗G(u) Pj(v) = PFBj−1 ∗G(v). (3.14)

The evolution of the ancilla state through a Rp round is simply obtained by the

exchange q ↔ p in the above formulas. Overall, repeated Rq and Rp rounds preserve

the ancilla state periodicity in both quadratures qb and pb. Note that in simulations,

we assume the ancilla density matrix in the Zak basis to be the identity at the start

of the preparation (uniform Qb and Pb distributions), but this hypothesis can be lifted

since the state after the preparation depends negligibly on the initial conditions for all

considered preparation parameters (see Sec. 3.1).

2.3 Effective modelling quadrature noise channel

Quadrature noise at rate κ is modeled by two Lindblad dissipators
√
κD[q] and

√
κD[p]

yielding, over an infinitesimal time-step dt, an evolution of the oscillator density matrix

dρ = dtD[L](ρ) = dt
(
LρL† − 1

2(L†Lρ + ρL†L)
)

(3.15)

Its effect can equivalently be modeled by the application of stochastic evolution

operators

Uq
dt = ei

√
κdWqq

Up
dt = ei

√
κdWpp

(3.16)

where dWq and dWp are independent Wiener processes characterized by dWq = dWp = 0
and dW 2

q = dW 2
p = dt
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2.3.1 Effective noise channel after a conditional displacement gate

We here consider a conditional displacement gate applied on the q quadrature of the

ancillary oscillator reading

UCD
q = eiθqσz , (3.17)

where θ = π
2β and, for simplicity, we dropped the subscript b to designate the ancillary

oscillator quadrature. It is straightforward to adapt the following calculation to the

case of a conditional displacement along the p quadrature.

When the gate is applied in finite time TCD and in presence of quadrature noise,

we use Trotter decomposition over N = TCD
dt steps to write the stochastic evolution

over a single trajectory

ŨCD
q =

N∏
j=1

(
ei

θ
N

qσzei
√
κdW j

q qei
√
κdW j

p p)
(3.18)

where all Wiener processes dW j
q , dW j

p are independent. Using Baker-Campbell-Hausdorff

formula, we reorder this product to put the noise terms in front

ŨCD
q =

N∏
j=1

(
e−i

√
κdW j

p
jθ
N

σz
) N∏
j=1

(
ei

√
κdW j

q q ei
√
κdW j

p p) N∏
j=1

(
ei

θ
N

qσz
)

(3.19)

The second and last products correspond to a quadrature noise channel applied

for a duration TCD after an error-free conditional displacement gate UCD
q . Our effec-

tive noise model neglects the first term, which rotates the TLS Bloch vector around

the σz axis conditioned on the stochastic trajectory of the oscillator state due to q

noise during the gate. Its physical interpretation is clear: random displacements of

the oscillator that occur at the beginning of the gate (j → N ) leave an imprint on the

TLS phase similarly to displacements having occurred before the gate, while displace-

ments of the oscillator that occur toward the end of the gate (j → 1) impact negligibly

the TLS phase. By discarding this information in our effective noise model and ap-

plying a quadrature noise channel after the gate, we thus expect to underestimate

the accuracy of the re-centering feedback displacement controlled by the TLS readout

outcome since this feedback displacement would partially correct for shift errors hav-

ing occurred during the gate in the case of exact noise modeling. This approximation

should negligibly impact the ancillary oscillator preparation and phase-estimation in

the limit κTCD ≪ 1.
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2.3.2 Effective noise channel after a quadrature gate

We follow a similar reasoning for the quadrature gate

Uquad
qa

= eiθqaqb (3.20)

where θ =
√
π/β. Here, for simplicity, we consider qa and qb quadrature noise only—pa

and pb noise terms commute trivially through the gate—and decompose the noisy gate

over N = Tquad
dt steps as

Ũquad
q =

N∏
j=1

(
ei

θ
N

qaqbei
√
κdW j

pa paei
√
κdW j

pb
pb

)
(3.21)

where all Wiener processes dW j
pa

, dW j
pb

are independent. Using Baker-Cambpbell-

Hausdorff formula, we reorder this product to place the noise terms in front

Ũquad
q = eiϕ

N∏
j=1

(
ei

√
κdW j

pa pa e−i
√
κdW j

pb
jθ
N

qa
) N∏
j=1

(
ei

√
κdW j

pb
pb e−i

√
κdW j

pa
jθ
N

qb
) N∏
j=1

(
ei

θ
N

qaqb
)

(3.22)
where ϕ is an irrelevant global phase that can be neglected. We see two new noise

terms having appeared form this reordering. First, an extra pa quadrature noise

term, correlated to the ancillary mode qb noise during the gate. Since, in our pro-

tocol, we do not measure the Sqb
stabilizer following the gate, it can be modeled as

random displacements of the target state along pa, with zero mean value and variance

(
√
κθ
N

∑
j jdW

j
pb)2 → κ θ

2

3 Tquad, where the last limit is taken for N → ∞. We account for

this term by renormalizing the pa quadrature noise term during the gate following

κ → κ(1 + θ2

3 ). Note that its effect could be partially mitigated by measuring the Sqb

stabilizer at the end of the cycle and decoding the information it contains. Second, an

extra pb quadrature noise term, correlated to the target mode qa noise during the gate.

In analogy to the conditional displacement gate detailed in the previous section, it is

interpreted as partial information on the noise-induced displacements of the target

oscillator during the gate, mapped to the ancillary mode stabilizer Spb
. We neglect

this term in our simplified model, and thereby expect to slightly underestimate the

performances of our protocol.

2.4 Emergent dynamics entailed by repeated preparation rounds

In absence of noise, the dynamics in these modular coordinates entailed by repeated

Rb rounds is captured by a classical random walk along rb, whose steps are biased

toward rb = 0 mod r0 (q0 = 2β and p0 = π
β ) as seen in eq. 3.10. In the limit of short feed-

back displacements ϵ ≪ r0, the evolution of the periodic probability distribution Rb of
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Chapter 3. Error correction for infinite-energy states with a GKP ancilla

the ancilla rb-coordinate is governed by a Fokker-Planck equation with rb-dependent

drift velocity v0(rb) = ϵ
Tround

sin(2π rb
r0

) and uniform diffusion constant D0 = ϵ2

2Tround
. As

far as Rb is concerned, the noise model we consider preserves this structure and only

slightly renormalizes these parameters in the weak noise limit. Indeed, quadrature

noise at rate κ ≪ 1/Tround adds a small contribution to the total diffusion constant

D = D0 + κ
2 . Bit-flips of the TLS - occurring with small probability pBF during each

conditional displacement gate - and phase-flips occurring with small probability pPF

during each round - lead to erroneously applied feedback displacements that decrease

the drift velocity to v = pNF v0 where pNF = 1 − pBF − 2pPF .

Figure 3.3: Periodic probability distributions of a square ancilla state (β =
√

π
2 ) prepared

from the identity state (uniform distributions) by Np + Nq TLS-based preparation rounds, for
Np = 50 and varying Nq (encoded in color), in presence of quadrature noise of strength κ =
(105 Tround)−1 and TLS flip errors with probabilities pBF = 2pPF = 0.002. The length of
feedback displacements {ϵj}{1≤j≤Np} concluding Rp rounds (respectively {ϵj}{Np+1≤j≤Np+Nq}
concluding Rq rounds) decreases from π

4β (respectively β/2) to (κTround)1/2 following a 1/j
(respectively 1/(j−Np)) law. This sequence of feedback displacements minimizes the width of the
distributions central peak (the black dashed line in the bottom panel is a periodic Gaussian with
minimum variance Vmin, see text). The tails of the Qb distribution (plain lines) are exponentially
suppressed as Nq increases. While the tails of the Pb distribution increase as bit-flips of the TLS
during Rqb

generate random shifts along pb, and its central peak deflates under the action of
quadrature noise.

After a large number of Rrb
rounds, Rb approaches a periodic normal distribution,

as shown in figure 3.3, with variance D
Γ , where Γ = limrb→0(v(rb)/rb) is the drift rate

around rb = 0. Thus, decreasing ϵ results in sharper rb peaks for the ancilla grid state,

with a minimum variance Vmin = (κTround)1/2r0/(2πpNF ) reached for ϵmin = (κTround)1/2.

However, the convergence time to this steady-state becomes increasingly long as ϵ de-

creases, since the diffusion constant D drops quadratically to 0, and the drift velocity

v vanishes for |rb| → r0
2 . Therefore, the Rb population situated in these neighborhoods

remains trapped for an increasingly long time, resulting in persisting tails of the Rb
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3. Target mode error-correction in presence of quadrature noise

distribution.

We mitigate this advert effect by varying the feedback displacement length ϵj (with

1 ≤ j ≤ Np for Rp rounds, Np + 1 ≤ j ≤ Np + Nq for Rq rounds), starting with long dis-

placements to evacuate the Rb population lying near |rb| = r0
2 and ending with short

displacements of order ϵmin. The feedback value ϵj interpolates in-between these ex-

treme values with a 1/j law. With this strategy, we observe in numerical simulations

that the Qb distribution displays both a minimum-width central peak and tails expo-

nentially suppressed for increasing values of Nq (see Fig. 3.3, right bottom). Thereby

a robust protection of the target oscillator from shift errors that have propagated

through the quadrature gate is ensured. We note that all numerical results presented

are obtained by directly computing the evolution of the periodic distributions of the

oscillators - encoded as vectors of N Fourier coefficients, with N ∼ 60−120 (see Sec 4)

- and not the evolution of the quantum state of the system, which drastically reduces

the simulation time. The only approximation made, is the modeling of noise as an ef-

fective quantum channel applied in-between perfect gates, which leads to a negligible

underestimation of the error-correction performance.

As the Rb distribution is being ’sharpened’ by repeated Rr rounds, random dis-

placements triggered by bit-flips of the ancilla uniformize the R⊥
b distribution along

the conjugate quadrature and quadrature noise deflates its central peak. In figure

3.3, the former have no impact on the final Qb distribution, which is prepared last

and assumed to be uniform before the ancilla preparation. On the other hand, they

have a dramatic effect on the Pb distribution as Nq increases, since the probability

1 − (1 − pBF )Nq of at least a single bit-flip having occurred during the Rqb
rounds

approaches 1, yielding a uniform Pb distribution. Therefore, Nq cannot be arbi-

trarily large for the prepared ancilla state to be a useful resource for Steane-type

error-correction cycles. This is all the more true when correcting against intrinsic

noise of the target oscillator, which requires to minimize the total preparation time

(Np + Nq)Tround. We turn now to the dynamics of the probability distributions of the

target oscillator.

3 Target mode error-correction in presence of quadrature noise

This ancillary state is now considered as a resource for a Steane-type error correc-

tion protocol, that consists of alternating error-correction cycles Cra with ra = qa, pa.

For simplicity we perform the calculation for a qa-error correction cycle Cq, but it is
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completely analogous for the conjugate quadrature pa. Subsequent to the quadrature

gate Uquad
qa

= eiθqaqb where θ =
√
π
β , phase-estimation of the ancilla Spb

stabilizer (see

next section) is performed, corresponding to a partial measurement in the Zak basis

of the ancilla. A feedback displacement f(m) along qa is applied based on the outcome

m ∈ [− π
2β ,

π
2β ]. The preparation of the ancilla for the next cycle concludes the cycle. We

suppose the target state to be of the form in eq. (3.8) when the jth cycle begins. After

the ancilla preparation, which also yields a state of the form (3.8) with probability

distributions Qb,Np+Nq+1 and Pb,Np+Nq+1, abbreviated to Qb and Pb for simplicity, the

joint state of the system reads

ρ0
j−1 =

∫
u

∫
v

∫
u′

∫
v′
Qaj−1(u)Paj−1(v)Qb(u′)Pb(v′) |u, v⟩⟨u, v|a |u′, v′⟩⟨u′, v′|b dudvdu′dv′ (3.23)

After the quadrature gate, the state reads

ρ1
j−1 =

∫
Qaj−1(u)Paj−1(v)Qb(u′)Pb(v′) |u, v+θu′⟩⟨u, v+θu′|a |u′, v′+θu⟩⟨u′, v′+θu|b dudvdu′dv′,

(3.24)
where for simplified notation the integral signs have been combined and the sub-

script dropped. The phase-estimation of the ancilla Spb
stabilizer yielding an outcome

m, is modeled by the application of the Kraus operator Mm =
∫
du′ |u′,m⟩⟨u′,m|b. After

tracing out the ancilla, the un-normalized target oscillator density matrix conditioned

on the outcome m reads

ρmaj−1 =
∫
Qaj−1(u)Paj−1(v)Qb(u′)Pb(m− θu) |u, v + θu′⟩⟨u, v + θu′|a dudvdv′. (3.25)

After a feedback displacement by f(m) and summing over all outcomes m to model

the memoryless feedback strategy, we get

ρFBaj−1 =
∫
Qaj−1(u)Paj−1(v)Qb(u′)Pb(m−θu) |u+f(m), v+θu′⟩⟨u+f(m), v+θu′|a dudvdv′dm.

(3.26)
Given that the probability distributions are periodic functions and that the integrals

are defined over their whole domains, we find that this state is of the form in eq. (3.8)
with probability distributions

QFBaj−1(u) =
∫
m
Qaj−1(u− f(m))Pb

(
m− θ(u− f(m))

)
dm (3.27)

PFBaj−1(v) =
∫
u′
Paj−1(v − θu′)Qb(u′) du′. (3.28)

Finally, we apply an effective noise channel accounting for quadrature noise affect-
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ing the ancilla during the quadrature gate and the following Nq + Np re-preparation

rounds of the ancilla. This effective channel convolves the probability distribution Qa

with a periodic normal distribution Ga of variance σ2 = κ
(
Tquad + (Nq +Np)Tround

)
, and

the probability distribution Pa with a periodic normal distribution G̃a with slightly

larger variance to account for the renormalized quadrature noise κ → κ̃ during the

quadrature gate ( see section 2.3.2). We thus get the target state at the beginning of

the following cycle (of form in eq. (3.8)) with probability distributions

Qaj (u) = QFBaj−1(u) ∗Ga(u) Paj (v) = PFBaj−1(v) ∗ G̃a(v). (3.29)

The evolution of the target oscillator state during a Cp error-correction cycle is de-

rived through similar calculations, inverting the role of Qaj and Paj . Therefore, if the

target is initialized in a state of form eq. (3.8), e.g. when prepared in | + Z⟩, it re-

mains so indefinitely. In order to extract the logical flip rate under a particular set of

error-correction parameters, one simply needs to compute the evolution of Qa through

successive Cq and Cp cycles.

After some number of cycles Nc, the logical qubit is decoded and its z Bloch sphere

coordinate reads

z(Nc) =
∫
u
QaNc

(u)Θ(u)du (3.30)

where Θ is a step function with value +1 on [−
√
π

2 ,
√
π

2 ] and −1 elsewhere. By fitting the

decay of z(Nc) with an exponential function, one extracts the logical flip rate κlog. In

section 4, we present a more efficient method to extract this same rate.

We note that with the Zak basis we chose, constructed from the logical | +Z⟩ basis

states, we cannot directly simulate the decay of other logical Pauli operators. One

could do so by considering alternative Zak basis definitions. However, the square

GKP code symmetry properties ensure that the three components of the logical Bloch

vector decay with respective rates κz = κx = κy/
√

2 = κlog.

3.1 Phase-estimation of the ancilla

In the previous section, we considered the phase-estimation of the Spb stabilizer as

perfect and instantaneous. Since this measurement can be destructive for the ancil-

lary oscillator state, homodyne detection is typically considered. However, the time

the ancillary field takes to leak out of the resonator to be detected is at least a few 1/κ.

This is not a viable option for error-correction, which requires that κTcycle << 1. This
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problem could be partly circumvented by mapping the value of pb to a supplementary,

low-Q resonator via a quadrature gate [34],[35], but we found that, for a quadrature-

quadrature interaction strength of the same order as for the one between the target

and ancillary oscillators, the operation would similarly limit the error-correction cycle

duration. Moreover, combined photon collection and homodyne detection efficiencies

are in practice limited to η ⩽ 1/2 across all experimental platforms, which would re-

sult in a too low phase-estimation accuracy. Alternatively, we consider estimating the

phase of Spb through repeated TLS-based measurement rounds. Conveniently, the

outcome of the Rp rounds preparing the ancilla state for the following cycle can be

straightforwardly decoded to reconstruct the phase of Spb at the end of the current

cycle, with sufficient accuracy for error-correction.

In order to justify this approach and estimate the phase-estimation accuracy, we

first suppose that the ancillary oscillator is in a Zak-diagonal state of the form (3.8)
with a Pb probability distribution given by a Dirac-peak in p0, whose value is to de-

tect. Over a number Np of Rp preparation rounds, this distribution is on average

shifted and broadened by the feedback displacements {±ϵj}1≤j≤Np applied at the end

of each round. Denoting m = {±mj}1≤j≤Np a particular measurement record and

ϕ(m) =
∑Np

i=1mjϵj the total applied displacement, the ancilla p-distribution after re-

preparation reads

Pmp0 (p) = δ(p− p0 − ϕ(m)). (3.31)

Averaging over all possible measurement outcomes, the ancilla distribution after re-

preparation reads

Pp0(p) =
∑
m

Pp0(m)δ(p− p0 − ϕ(m))dm

=
∫
ϕ

Πp0(ϕ)δ(p− p0 − ϕ)dϕ
(3.32)

where Pp0(m) is the probability of the measurement record m and the distribution

Πp0(ϕ) =
∑
m Pp0(m)δ(ϕ− ϕ(m))dm becomes smooth when Np is large.

We simply propose to estimate p0 with pm = −ϕ(m) for a given measurement record

m. The accuracy of the Spb phase-estimation is characterized by an error distribution

Ep0(τ) where τ = pm − p0

Ep0(τ) =
∫
ϕ

Πp0(ϕ)δ(−ϕ− p0 + τ)dϕ = Pp0(τ) (3.33)

The last equality simply signifies that the phase-estimation accuracy is as good as the
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ancilla re-preparation.

Crucially, we observe that for all the re-preparation sequences used in this work,

the error distribution Ep0(τ) depends negligibly on p0 (see Fig. 3.4). This is simply un-

derstood as the long feedback kicks ϵj applied during the first few Rp rounds quickly

erase the memory of its prior state. Note that this justifies a posteriori the hypothe-

sis made in the previous section that the ancilla density matrix is the identity prior

to re-preparation: any initial state would yield the same prepared state. As for the

finite-accuracy of the Spb phase-estimation this method yields, it can be modeled by

an ideal phase-estimation preceded by a convolution of the ancilla Pb probability dis-

tribution with the error function E = PNp, where PNp is the distribution describing the

ancilla state prepared by a number Np of Rp rounds as detailed in Sec. 4.1 (used that

PNp is an even distribution).

Figure 3.4: Phase-estimation of the ancilla. We compute the Pp0 distribution of the ancilla
(plain lines) prepared by a number Np = 20 of Rp rounds from a narrow Gaussian distribution
(standard deviation σ ∼ 0.1) centered at p0 (dashed lines, p0 encoded in color). The feedback
displacements applied after each round and the ancilla rectangularity parameter are the ones
returned by gradient ascent (see section 4) to minimize the logical error rate for pBF = 2pPF =
0.005 and κTround = 2.10−5. We pick these example parameters—in particular the small number
of preparation rounds—as the a priori less favourable situation for the prepared ancilla state
not to depend on the initial condition p0. We observe that the final distributions corresponding
to different initial states do not differ significantly, justifying our approach to using phase-
estimation.
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In our reasoning, we omitted shifts of the ancilla distribution entailed by flips of

the TLS and intrinsic quadrature noise of the ancilla. The former only entails shifts

of the ancilla Q probability distribution during Rp rounds. The effect of the latter is a

blurring of the P distribution as it is being measured and re-prepared. We model it by

including quadrature noise in the numerical computation of PNp, by which we expect

to slightly underestimate the accuracy of the phase-estimation. Indeed, by supposing

that PNp is solely broadened by the total feedback displacement distribution Π(ϕ), we

overestimate the spread of Π(ϕ) and thus the spread of E = PNp.

3.2 Target state evolution through an error correction cycle

To highlight the suppression of TLS error back-propagation to the target mode, we

first consider the case of a noiseless ancilla and target oscillator (κ = 0). Since the cy-

cle duration is irrelevant in that limit, we allow the ancilla to be prepared with a large

number Np → ∞ of Rp rounds. Following the reasoning that has been outlined in the

previous section, the ancilla periodic distribution along pb is, at this stage, infinitely

narrow for the appropriate choice of pb feedback displacements limj→Np ϵj = 0. Subse-

quent to the following Nq rounds, it reads Pb(pb) = pno flipδ(pb) + (1 − pno flip)β/π, where

pno flip = (1−pBF )Nq is the probability that no bit-flip of the TLS occurred during the Rq

rounds. Moreover, we assume the Spb phase-estimation succeeding the quadrature

gate to be perfect - it can consist of an infinite sequence of non-destructive TLS-

based phase-estimation rounds. For a given sequence of qb-feedback displacements

{ϵj}Np+1≤j≤Np+Nq applied after each Rq preparation round and feedback-law f govern-

ing the length of ra-feedback displacements applied after each error-correction cycle,

we simulate the evolution of the target oscillator periodic distribution Qa - compactly

encoded in a N-Fourier coefficient vector - over alternating Cq and Cp cycles.

We showed that the distribution quickly converges from an arbitrary to a meta-

stable state with two peaks centered at qa = 0 and qa =
√
π, as expected from a state

close to the GKP code manifold. A slow dynamics then comes into play, for which

the respective amplitude of the two peaks equilibrate as the logical qubit relaxes to

the fully mixed logical state. We extract the convergence rate Γconv toward the code

manifold - in units of T−1
cycle, with Tcycle = Tquad + (Np +Nq)Tround- and the logical z-error

probability per cycle plog by spectral analysis of a N ×N evolution matrix (see Sec. 4).

These values are represented in figure 3.5 as a function of Nq, for various values

of the TLS bit-flip probabilities per preparation round pBF (the phase-flip probability

is set to pPF = pBF /2). For each value Nq, the length of the ancilla feedback dis-
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3. Target mode error-correction in presence of quadrature noise

placements {ϵj}Np+1≤j≤Np+Nq and the feedback function f are determined by gradient

ascent to minimize the logical error probability (see Sec 4.4). When Nq → 0, the

Qb-distribution is widely spread, so that the back-action of the Cp cycles entails long

random shifts of the target state along qa, increasing plog. In the opposite limit Nq → ∞,

Pb is a near-uniform distribution as pno flip → 0, resulting in a strong blurring of the

error-syndromes extracted from the target oscillator. As a result, the amplitude of the

optimal feedback function f drops to 0 (see Sec 4.4), and thereby the convergence rate

to the code manifold (see inset in figure 3.5). For Nq = ∞ (infinitely narrow Qb distri-

bution) and f = 0, one expects the target state to remain unchanged through both the

Cq and Cp rounds, so that the logical error rate is strictly speaking 0. However, this

is not a regime that is considered in our logical error estimate by spectral analysis,

which assumes a slow exponential decay of the logical qubit, after a fast convergence

toward the code manifold (see Sec 4 for details). For the optimal preparation round

number, plog decreases exponentially as pBF decreases. Moreover the corresponding

convergence time 1/Γconv remains of the order a few Tcycle, so hat spurious shift errors

of the target oscillator are corrected within a few error-correction cycles.

3.3 Logical error rate in presence of quadrature noise

By considering quadrature noise on both oscillators with rate κ, the number Np of

Rp preparation rounds, their respective feedback displacements and the Spb
phase-

estimation strategy need be optimized to limit the total cycle duration. As in the case

of no dissipation, the evolution of Qa is simulated and the logical error rate extracted

and the control parameters are optimized by gradient ascent - except for Np and Nq

which are swept. In figure 3.5b we give the minimum error rate - in units of Tround

and assuming a quadrature gate time Tquad = 5Tround - found for various noise values.

The detailed figures on the control parameters are presented in Sec. 4.4. Again, we

find that the logical errors are robustly suppressed as the coherence time of the TLS

and the oscillators increases. The coherence time of the logical qubit surpasses the

one of the bare oscillator lifetimes by two orders of magnitude for κTround = 4.10−5 and

pBF = 10−3.
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a)

b)

Figure 3.5: a) Logical error probability plog per correction cycle as a function of the number Nq

of Rq preparation rounds in each cycle, in absence of intrinsic oscillator noise and for various
TLS flip probabilities per round (encoded in color, with pPF = pBF /2.). We allow Np → ∞
and assume perfect Spb phase-estimation in this dissipation-less case. For each value of Nq,
remaining control parameters are optimized by gradient ascent. The minimum value of plog
appears to be exponentially small as pBF decreases. Inset: convergence rate toward the code
manifold, decreasing with the probability of a single TLS flip to have occurred over the Rq

preparation rounds. b) Logical error rate κlog in units of Tround as a function of the oscillators
quadrature noise rate κ and TLS flip probabilities encoded in color as in (a). Phase-estimation
is performed by decoding the measurement outcomes of the Rp rounds and its finite accuracy
is accounted for in simulation. For a round number Np = Nq swept from 20 to 100—Np and
Nq were varied independently for a few noise values, not leading to significant improvement of
performances—we optimize remaining control parameters by gradient ascent, and report the
minimum value of κlog as a function of the preparation round number.
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4. Efficient numerical estimate of the logical error rate

4 Efficient numerical estimate of the logical error rate

Computing the evolution of the ancilla and target states under the form of classical

probability distributions Qa, Pa, Qb and Pb as detailed in the previous sections greatly

reduces the cost of numerical simulation compared to a description in terms of den-

sity matrices in the Fock basis. Typically, one keeps track of the distributions as

two vectors of length N0 = 1000. In this section, we further reduce simulation costs

by representing the probability distributions in Fourier domain, as vectors of length

N ∼ 60 − 120 Fourier coefficients. The evolution of Qb and Pb over each preparation

round is performed by the application of a distinct N ×N matrix, and the evolution of

Qa and Pa over each correction cycle is performed by the application of a single N ×N

matrix. The logical decay rate over a given parameter set is then extracted by spectral

analysis of the latter matrix. Moreover, we efficiently compute the gradient of this

rate with respect to the continuous parameters of the protocol (length of the feedback

displacements {ϵj}1≤j≤Np+Nq applied after each Rp and Rq round, Fourier coefficients

{fk}1≤k≤Nf ≤N of the feedback function f , rectangularity R =
√

π
2

1
β of the ancilla GKP

lattice), which greatly facilitates their optimization.

In order to simplify calculations, we consider in the following the re-scaled periodic

distributions defined over [−π, π]

Πqa(ϕ) = 1√
π
Qa(

ϕ√
π

)

Πqb
(ϕ) = β

π
Qb(

βϕ

π
)

Πpb
(ϕ) = 1

2βPb(
ϕ

2β )

(3.34)

and define the Fourier coefficients of a 2π-periodic distribution g as g(k) = 1
2π

∫ π
−π g(ϕ)e−ikϕdϕ.

The evolution of the Pa probability distribution is not computed as it is equivalent to

that of Qa. We also consider the re-scaled feedback shifts epj = 2ϵjβ for 1 ≤ j ≤ Np,

eqj = ϵj
π
β for Np + 1 ≤ j ≤ Np +Nq, phase-estimation outcomes at the end of each cycle

ψ = m2β and the feedback function F (ψ) =
√
πf( ψ2β ).

4.1 Ancilla preparation

We revisit the evolution described in Sec. 4.1 to write it in a form adapted to the en-

coding in the Fourier domain. The ancilla is in the identity state before preparation,

with Fourier coefficients Π(k)
pb,0 = Π(k)

qb,0 = δk/(2π), where δ is the Kronecker symbol.

During the j-th Rp round, the Πpb
distribution evolves after TLS readout and appli-
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cation of a feedback displacement following Eq. (3.13), which in rescaled coordinates

reads

ΠFB
pb,j−1(ϕ) =

(1
2 + 1 − pF

2 sin
(
Φ + ej

))
Πpb,j−1(ϕ+ ej) +

(1
2 − 1 − pF

2 sin
(
ϕ− ej

))
Πpb,j−1(ϕ− ej)

(3.35)
where we used the shorthand notation pF = pBF + 2pPF Expanding this expression in

powers of ej, we get

ΠFB
pb,j−1(ϕ) ≃ 1

2

nmax∑
n=0

enj
n!

(∂nΠpb,j−1(ϕ)
∂ϕn

(1 + (−1)n) + ∂n(Πpb,j−1(ϕ)sin(ϕ))
∂ϕn

(1 − (−1)n)
)

(3.36)

Note that for nmax = 2, one recovers a Fokker-Planck equation, with drift velocity

e(1 − pF ) sin(ϕ)/Tround and diffusion constant e2/(2Tround) as described in Sec. 2.2. In

Fourier domain, this expression translates to

ΠFB (k)
pb,j−1 =

∑
n even

(ikej)n

n! Π(k)
pb,j−1 +

∑
n odd

(1 − pF )(ikej)n

n!
1
2i(Π

(k−1)
pb,j−1 − Π(k+1)

pb,j−1). (3.37)

The distribution is then convolved with a Gaussian kernel modeling the effect of

quadrature noise (see eq. (3.14)). In Fourier domain, it reads

Π(k)
pb,j

= ΠFB
pb,j−1 (k)e− 1

2κpTroundk
2 (3.38)

where κp = 2πκ/R2 is the rescaled quadrature noise rate. After Np rounds, the phase-

estimation error function E is inferred from the distribution Πpb,Np (see Sec. 4.1). The

Πqb,Np distribution is still uniform at this stage.

Through the sequence of Rq rounds, the Πpb
evolves due to quadrature noise and

random displacements induced by bit-flips of the TLS as

Π(k)
pb,Np+Nq+1 = (1 − pBFtot )Π(k)

pb,Np+1e
−πNqκpk2 + pBFtot

δk
2π , (3.39)

where pBFtot = 1 − (1 − pBF )Nq is the probability for at least one bit-flip to have occurred.

As for the Πqb
distribution, it evolves through Rq rounds following the same rules as

Πpb
through Rp rounds (eqs. (3.37, 3.38)), albeit with a re-scaled quadrature noise

strength κq = 2πκR2 for the Gaussian kernel convolution.

Overall, we thus compute the prepared ancilla state under the form of two N-

dimensional vectors of Fourier coefficients (−N−1
2 ≤ k ≤ N+1

2 ), and obtain the phase-

estimation error-function under the same form. Moreover, it is straightforward to

compute the gradient of each vector with respect to each feedback displacement
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length ej, as well as with respect to the grid rectangularity parameter R, by taking

the derivative of the formulas given above and applying chain rules.

4.2 Target oscillator dynamics in Fourier domain

We revisit the target oscillator evolution over a pair of Cqa/Cpa cycles, labeled j and j+1,

described in Sec. 4 to translate it in Fourier domain. The ancilla distributions before

the quadrature gate are Πqb,Np+Nq (abbreviated to Πqb
) and Πpb,Np+Nq , as computed in

the previous section. As detailed in Sec. 3.1, we model the inaccuracy of the p̃b detec-

tion by convolving Πpb,Np+Nq with an error distribution E = Πpb,Np—which is a simple

vector multiplication in Fourier domain—and denote the resulting distribution by Πpb
.

During the Cqa cycle, the initial target oscillator distribution Πqa,j−1 is first evolved

with the left expression in (3.27) modelling the quadrature gate followed by phase

estimation of Spb whose outcome controls a feedback displacement applied to the

target oscillator. In re-scaled coordinates, this evolution reads

ΠFB
qa,j−1(ϕ) =

∫ π

−π
Πqa,j−1

(
ϕ+ F (ψ)

)
Πpb

(
ψ − 2(ϕ+ F (ψ))

)
dψ (3.40)

We now expand this expression in powers of the re-scaled feedback displacement

F (ψ) applied to the target oscillator, and truncate the series at nT (nT = 30 for all

simulations performed in this work). We then get

ΠFB
qa,j−1(ϕ) ≃

∫ π

−π

nT∑
n=0

Fn(ψ)
n!

∂n

∂ϕn

(
Πqa,j−1(ϕ)Πpb

(
ψ − 2ϕ

))
dψ

=
nT∑
n=0

1
n!

∂n

∂ϕn

(
Dn(ϕ)Πqa,j−1(ϕ)

) (3.41)

where we defined the generalized Fokker-Planck coefficient functions Dn

Dn(ϕ) =
∫ π

−π
Fn(ψ)Πpb

(ψ − 2ϕ)

= (Fn ∗ Πpb
)(2ϕ)

(3.42)

(we use that Πpb
is even in the last equality). In Fourier domain, this translates to

ΠFB (k)
qa,j−1 =

nT∑
n=0

(ik)n

n!
( N∑
l=−N

D(k−l)
n Πqa,j−1

(l)
)

(3.43)
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and the Fourier coefficients of Dn are computed with

D(k)
n =

(Fn ∗ Πpb
)( k

2 ) = 2π(F ∗̃n)( k
2 )Π( k

2 )
pb if k even

0 if k odd
(3.44)

where ∗̃n denotes the n-fold discrete convolution product defined as (u∗̃v)(k) =
∑N
l=−N u

(k−l)v(l).

In simulations, we truncate this sum in order to maintain a 2nF + 1 structure for the

Fourier coefficient vectors.

The distribution is then convolved with a Gaussian kernel Ga modeling the effect

of quadrature noise during the Cq cycle (left equation in (3.29)), then convolved with

the Πqb
distribution to model the backaction of the quadrature gate in the following

Cpa cycle (right equation in (3.27), replacing Pa → Qa), and again convolved with a

Gaussian kernel G̃a modeling the effect of quadrature noise during the Cpa cycle (right

equation in (3.29) replacing Pa → Qa). In Fourier domain, it reads

Π(k)
qa,j+1 = 2πΠ(k)

qb
e− k2σ2

tot
2 ΠFB (k)

qa,j−1 (3.45)

with σ2
tot = 2κTcycle + θ2

3 κTquad.

Combining Eq. (3.43) and Eq. (3.45), the evolution through the two cycles can be

expressed under a matrix form

Πk
qa,j+1 =

N∑
l=−N

MklΠl
qa,j−1. (3.46)

Note that M is real when F is odd, which is the case in the following.

4.3 GKP qubit decoherence rate and convergence rate to the code manifold by spectral
analysis of the evolution matrix

The evolution matrix M is the Fourier transform of a stochastic matrix. As such, it

shares the same eigenspectrum {λi} where we arrange the eigenvalues in decreasing

magnitude order. In particular λ0 = 1, and |λi| ≤ 1 for i ≥ 1.

In the regime where the logical flip probability per cycle is small, we find that the

spectrum is gapped with |λj | ≪ |λ1| for j > 1. Qualitatively, this gap indicates a fast

convergence of the system to a 2D-manifold of probability vectors (distributions), at a

rate

Γconv = −log(|λ2|)/(2Tcycle). (3.47)
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We interpret this fast dynamics as a convergence of the target oscillator state to a

meta-stable state in the vicinity the GKP code manifold. It is followed by a slow

relaxation, within this manifold, to the steady-state of the system—the probability

distribution Π0 obtained by inverse Fourier transform of the eigenvector attached to

λ0—at a rate

κlog = −log(λ1)/(2Tcycle). (3.48)

In this expression, we have used that, since M is real and λ1 does not have a conju-

gate eigenvalue, λ1 is real. We interpret this slow dynamics as the relaxation of the

GKP qubit towards the mixed logical state.

We confirm this intuition by representing the probability distributions Π0 and Π1

corresponding to λ0 and λ1 in Fig. 3.6, for cycle parameters allowing a robust protec-

tion of the GKP qubit. Π0 displays two peaks of equal height centered in Φ = 0 and

ϕ = π, as expected from a state close to the code manifold and decoded as the fully

mixed logical state. With the proper normalization, Π0 + Π1 displays a single peak

centered in ϕ = 0, as expected from a state close to the code manifold and is decoded

as the logial state | + Z⟩.

This spectral analysis in Fourier domain is a powerful tool to estimate the decay

rate of the z-component of the GKP qubit Bloch vector. We compared its results to

brute-force computation of the evolution of the target oscillator state, encoded as a

probability vector, over a large number of error-correction cycles (see Sec. 4) before

fitting the decay of the decoded z-component of the GKP qubit Bloch vector. Both

methods agree quantitatively when the oscillators state is encoded in a sufficiently

long Fourier vector of length 2nF + 1, and when the Taylor expansion in Eq. (3.36)
and Eq. (3.41) is truncated at a sufficiently high order nT (not shown). In practice, we

found that nF = nT = 30 was sufficient for all numerical simulations presented in this

thesis, except to estimate the smallest decay rates of Fig. 3.5 and to obtain the real-

domain distributions with no visible ripples presented in Fig. 3.3, for which nF = 60
was used. Given the small matrix size involved, spectral analysis in Fourier domain

is significantly faster than brute-force simulation in the real domain. It also allows us

to estimate the convergence rate to the code manifold Γconv, as represented in Fig. 3.3.

Furthermore, for a given feedback parameter set, the method allows us to compute

the gradient of λ1 with respect to the cycle continuous parameters (length ej of the

ancilla feedback displacements, Fourier coefficients F (k) of the feedback function and

ancilla rectangularity R). To this end, we first take the derivative of the evolution

rules for the target and the ancilla probability distributions (see Sec. 4 ), respectively
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Figure 3.6: Eigenvectors of the stochastic evolution matrix M . For κTround = 2/10000, pBF =
1/1000, Np = Nq = 60 and all other parameters optimized by gradient ascent, we represent
the inverse Fourier transform of the eigenvectors of M with largest eigenvalues λ0 = 1 and
λ1 = 1 − 1.3 × 10−5, respectively labeled byΠ0 and Π1. Rescaled to a unit L1 norm, Π0 is
the probability distribution of the target mode steady-state under error-correction (Πqa,j with
j → ∞ in Sec. 4). This state is close to the code manifold, with narrow peaks centered at
ϕ = 0 mod π and is decoded as the fully mixed state of the GKP qubit. Π1 has a null L1
norm, and is here re-scaled to the same L∞ norm as Π0. Given that λ1 is close to 1 and that
a gap exists with the next largest eigenvalue (λ2 = 0.55), a general state converges in a few
correction cycles to a probability distribution Π0 + ζΠ1, where ζ is an excellent approximation
of the z-component of the GKP qubit Bloch vector when the peaks of Π0 and Π1 are sufficiently
narrow.
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through a cycle and through a round, and apply chain rules to obtain the derivative

of the evolution matrix M with respect to a given parameter x. Each component of the

gradient is then given by
∂λ1
∂x

= PL1 ·M · PR1
PL1 · PR1

(3.49)

where (·) denotes the matrix product and PL1 and PR1 are respectively left and right

eigenvectors of M for the eigenvalue λ1.

4.4 Optimizing continuous parameters by gradient ascent

For a given set of noise values κTround, pBF and pPF (pPF = pBF /2 throughout this

work) and a givenamount of preparation round numbers Nq and Np, we optimize all

remaining correction parameters by gradient ascent to maximize the value of λ1. In

detail, we consider the vectors

A = {∂λ1
∂ej

}{1≤j≤Np}

B = {∂λ1
∂ej

}{Np+1≤j≤Np+Nq}

C = { ∂λ1

∂F
(k)
s

}{1≤k≤kmax
}

D = {∂λ1
∂R

}

(3.50)

where we defined F
(k)
s = (F (k) − F (−k))/(2i). This choice constrains the feedback func-

tion F to the odd sector, ensuring that the target probability distribution remains

symmetric at all time. We limited the number of free Fourier coefficients of F to

N ′ = 10 < N to limit aberrations entailed by Fourier series truncation during the

convolution step (3.44). Pushing N ′ to larger values—and increasing N accordingly to

avoid aberrations—did not lead to significant improvement in error-correction perfor-

mances.

At each step l of the gradient ascent—for a total number of steps L = 100—we

update the parameter values in the following manner

{ej}l+1
{1≤j≤Np} = {ej}l{1≤j≤Np} + a

A

|A|
∆l

{ej}l+1
{Np+1≤j≤Np+Nq} = {ej}l{Np+1≤j≤Np+Nq} + b

B

|B|
∆l

{F (k)
s }l+1

{1≤k≤kmax} = {F (k)
s }l{1≤k≤kmax

+ c
C

|C|
∆l

{R}l+1 = {R}l + d
D

|D|
∆l,

(3.51)

57



Chapter 3. Error correction for infinite-energy states with a GKP ancilla

Figure 3.7: Optimization of error-correction parameters by gradient ascent. The continuous
control parameters of our protocol are optimized from an initial guess (black dashed line) by gra-
dient ascent to minimize the logical error probability (represented as a function of the ascent step
number l in bottom panels). We represent, in rescaled coordinates, the feedback displacements
ej applied after each Rp preparation round (j ≤ Np, first line), after each Rq preparation round
(j > Np, second line) and the feedback law F controlling the displacements that are applied
to the target oscillator as a function of the phase-estimation outcome ψ (third line) returned
by the gradient ascent algorithm for Nq = Np = 60 rounds. We vary the TLS flip probability
(pBF = 2pPF encoded in color in the left column, κTround = 10−5 is fixed) and the quadrature
noise strength (κTround encoded in color in the right column, pBF = 2pPF = 5.10−4 is fixed).
Compared to the initial guess of ej ∝ 1/j, gradient ascent favours a more rapid decrease to short
displacements after a number of rounds of the order of 10.
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where ∆l is a linear function of l decreasing from 1 to 1/20 from l = 1 to l = L, and we

use as initial guess parameters

e0
j = eief

ef + (ei − ef ) j
Np

for j ≤ Np

e0
j = eief

ef + (ei − ef ) j−Np

Nq

for j > Np

F (k)
s

0 = −f1δk−1

R0 = 1.

(3.52)

The initial guess for the ancilla feedback displacements {ej} is a truncated 1/j func-

tion with initial value ei of order 2π to suppress the tails of the Πpb
and Πqb

distri-

butions, and final value ef of the order of (κTround)1/2 to minimize the width of the

distributions central peak (see Sec. 2.2). The 1/j power law was chosen to maximize

the reduction rate of the distributions central peak width, while ensuring that this

width reaches 0 when n → ∞, in absence of intrinsic noise of the oscillator. The initial

guess for the feedback law f is a simple sine function of amplitude f1. In practice,

we empirically adjust the parameters ei = π/2, ef = 0.05 and f1 = 0.2 to minimize the

logical qubit decay rate after gradient ascent. Indeed, we observe that the final value

of λ1—and the correction parameters—returned by the gradient ascent algorithm de-

pends slightly on the initial guess, indicating the existence of multiple local minima of

λ1 (not shown). The rugged aspect of {ej}l+1
{Np+1≤j≤Np+Nq} observed after gradient ascent

for some noise values (see Fig. 3.7) tends to confirm this complex structure. More re-

fined gradient ascent techniques may avoid these issues, but were not attempted in

this work.
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Figure 3.8: Supplemental data to figure 3.5. We represent the optimal control parameters re-
turned by the gradient ascent algorithm—except for the number Nq = Np of ancilla preparation
rounds which is swept to obtain the optimal value Nmin

q — for the noise figures corresponding to
the data shown in figure 3.5. We represent only the average value of the feedback displacements
applied to the ancilla after Rp rounds (ejmin for j ≤ Np) and Rq rounds (ejmin for j > Np)—
both increasing with quadrature noise as the targeted variance of the distributions central peak
increases—and the first Fourier coefficient of the function F controlling the feedback displace-
ment applied to the target oscillator.
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In chapter 3, the Steane-type error correction scheme for infinite-energy states

and quadrature noise affecting both the target and ancilla state has been consid-

ered. This simplified model allows a drastic reduction in the cost of the numerical

simulations. In this chapter, we adapt the error-correction scheme for the realistic,

finite-energy code words and tailor the ancilla preparation and readout according to

realistic hardware requirements. First, we derive the evolution for an error-correction

cycle, in which the target interacts with the ancilla oscillator via a quadrature gate

and is then destructively measured by a homodyne detection. We demonstrate that

this idealized error-correction cycle stabilizes the finite-energy code in the target mode

and how the target state properties are inherited from the ancilla state. Second, we

present an optimized ancilla preparation and readout scheme, based on conditional

displacements with a TLS only. that is merged with the asymmetric state-preparation

sequence introduced in chapter 3, to guarantee the suppression of non-correctable

errors propagating from the ancillary system. Further, we demonstrate that a TLS-

readout fares better than an ideal homodyne detection for a very asymmetric limit of

the GKP ancilla state with solely two peaks in the q-quadrature, in terms of error-

correction performance. Finally, we extract by numerical simulations the coherence

time of the logical qubit encoded in the target oscillator, when stabilized by repeated
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Chapter 4. Error-correction with finite energy states

error-correction cycles. By optimizing the ancilla preparation, we demonstrate that

the coherence time of the logical qubit can be extended beyond the break-even point,

for state of the art parameters.

1 Ancilla readout by homodyne detection

In this section, the Kraus map corresponding to the quadrature gate exp(i
√
π
β raqb)

and subsequent homodyne detection of the ancilla pb quadrature is computed for an

ancilla prepared in a pure finite-energy grid state with a Gaussian envelope. The

ancilla state |∅⟩b is given in the continuous envelope representation, which is more

convenient for the following analysis since the peak and envelope displacements are

decoupled

|∅⟩b ∝
∫
dq e

− q2

2d2
q

∑
n

e
− (q−2nβ)2

2s2
q |qb = q⟩ ∝

∫
dp e−

s2
qp2

2
∑
n

e
−

d2
q
2 (p−nπβ )2

|pb = p⟩ , (4.1)

with g−2 = 1− s2
q

d2
q
. For simplified notation, we consider the corrections of the ancilla

(as well for the target) lattice cell to be negligible in this chapter, g = 1, and the final

result can be re-scaled at the end if necessary. Subsequent to the quadrature gate,

the composite state for an initial ancilla state |∅⟩b =
∫
dpΨb(p) |pb = p⟩ and a pure

initial target state |Ψa⟩ =
∫
drΨa(r) |ra = r⟩ (ra = qa or ra = pa ) is given by

eiθraqb |∅⟩b |Ψa⟩ ∝
∫
dr

∫
dp eiθrqbΨb(p) |pb = p⟩ Ψa(r) |ra = r⟩ (4.2)

∝
∫
dr

∫
dpΨb(p) |pb = p+ θr⟩ Ψa(r) |ra = r⟩ ,

with θ =
√
π
β . The readout of the ancilla pb-distribution, performed by an ideal

homodyne detection with outcome y, is modelled by the projection on a pb eigenstate

|pb = y⟩,

⟨pb = y| eiθraqb |∅⟩b |Ψa⟩ ∝
∫
dr

∫
dpΨb(p) ⟨pb = y|pb = p+ θr⟩ Ψa(r) |ra = r⟩ (4.3)

∝
∫
drΨb(y − rθ)Ψa(r) |ra = r⟩ . (4.4)

(4.5)
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1. Ancilla readout by homodyne detection

Figure 4.1: Sketch of target and ancilla wavefunction, depicted as infinitely narrow peaks for
simplicity. For clarity, the target peaks are coloured individually. (Top) Initial target state
qa-distribution with a peak shift error ε and displaced envelope. The ancilla peaks and envelope
are assumed to be perfectly centered in pb. (Bottom) The quadrature-quadrature interaction
exp(i

√
π
β qaqb) performs a displacement of the ancilla state along pb conditioned on qa. Here, the

ancilla and target states are entangled, with quantum correlations loosely represented by colored
separated wavefunctions. In contrast to the periodic infinite energy GKP states, the displaced
ancilla copies corresponding to the respective qa peaks, only partially overlap (highlighted by
the multicoloured ancilla peaks). This leads to a controlled collapse of the target state envelope.
Given the symmetry of exp(i

√
π
β qaqb), the ancilla information is analogously encoded in the

target distribution.

The corresponding Kraus operator is given by

My ∝
∑
n

e−
s2

q
2 (raθ−y)2

e
−

d2
q
2 (raθ−y−nπβ )2

. (4.6)

.

For simplicity, the measurement outcome is re-scaled y
θ → y, such that the respec-

tive Kraus operators for a qa/pa-error correction cycle (Cqa/Cpa ) read accordingly
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Chapter 4. Error-correction with finite energy states

Myq ∝
∑
n

e−
s2

qθ2

2 (qa−yq)2
e−

d2
qθ2

2 (qa−nα−yq)2 (4.7)

Myp ∝
∑
n

e−
s2

qθ2

2 (pa−yp)2
e−

d2
qθ2

2 (pa−nπα−yp)2
.

The important parameters controlling the dynamics are πd2
q

β2 and πs2
q

β2 , respectively.

In absence of intrinsic oscillator errors, a square ancilla lattice cell (β =
√
π) can be

considered for simplicity since for different values of β are unchanged if one adapts

the quadrature gate parameter θ and uses the re-scaled variances d2
qθ

2 → d2
q and

s2
qθ

2 → s2
q. The full Kraus map describing a single Cra-error correction cycle for an

initial target state ρa, is given by

K[ρa] =
∫
dyD(γy)MyρaM†

yD†(γy), (4.8)

with a feedback displacement D(γy) conditioned on the outcome y (subscript of y

omitted).

Given that the expression of the Kraus operators in equation 4.7 are of similar

Gaussian-comb shape as the code state distributions, we present in Appendix A an

efficient formalism, describing the dynamics of the target qa/pa-probability distribu-

tions under the Kraus map in eq. 4.8. We show that for an initial target r-probability

distribution P0(r) (subscript a is dropped for simplified notation),

P0(r) =
∑
n

e
− (r−ϵ)2

∆2
r e

− (r−n2α−ϕ)2

σ2
r := G[∆2

r , σ
2
r , 2α, ϵ, ϕ], (4.9)

that is defined by the peak/envelope variance σ2
r/∆2

r, the shift error ϕ/ϵ in r and

by the lattice spacing α =
√
π. In this representation, the two logical target states are

identified for r = q, by the parameter choice {ϵ = 0, ϕ = 0} (|+ZL⟩) and {ϵ = 0, ϕ = α}
(|−ZL⟩) respectively. For an outcome y of the homodyne detection at the end of a single

Cr cycle (Mr
2 =:

∑3
λ=0G[s−2

q , d−2
q , 2α, y, y+αλ2 ], see Appendix A), the resulting conditional

target probability distribution is given by
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1. Ancilla readout by homodyne detection

G[∆2
r , σ

2
r , 2α, ϵ, ϕ]

3∑
λ=0

G[s−2
q , d−2

q , 2α, y, y + αλ2 ] =
3∑

λ=0

∑
k

fk,λG[∆̃2
r , σ̃

2
r , 2α, ϵ̃, ϕ̃− (2k−λ

2 )ασ2
r

σ2
r+d−2

q
]

(4.10)

with fk,λ = e
− (ϵ−y)2

∆2
r+s−2

q e
−

(α(2k−
λ
2 )−(ϕ−y))2

σ2
r +d−2

q and ∆̃2
r = ∆2

rs
−2
q

∆2
r+s−2

q
, σ̃2

r = σ2
rd

−2
q

σ2
r+d−2

q
, ϵ̃ = y∆2

r+ϵs−2
q

∆2
r+s−2

q
,

ϕ̃ = yσ2
r+ϕd−2

q

σ2
r+d−2

q
. The probability distribution is that of a mixture of grid states, with

the same reduced peak/envelope variance σ̃2
r/∆̃2

r and displaced by ϕ̃ − (2k−λ
2 )ασ2

r

σ2
r+d−2

q
and

ϵ̃ respectively. For sufficiently narrow target and ancilla p-peaks and assuming that

the initial grid state is close to a code state (ϕmodα << 1) , the grid state labeled

by (k = 0, λ = 0) (respectively (k = 0, λ = 2)) in the sum of eq. 4.10 referred to as

dominant copy, dominates over the others when ϕ is close to 0 (respectively when ϕ

is close to α). Given a homodyne detection outcome y, a proportional feedback γi is

applied to recenter the ϕ and ϵ distribution. The feedback for the ϕ-distribution is

given by γϕ = − yσ2
r

σ2
r+d−2

q
and for the ϵ-distribution by γϵ = − y∆2

r

∆2
r+s−2

q
. The new position

after feedback of the dominating peak is at ˜̃ϕmodα, with ˜̃ϕ = ϕ
1+σ2

rd
2
q
, and ˜̃ϵ = ϵ

1+∆2
rs

2
q
.

Since | ˜̃ϕmodα| < |ϕmodα| and |˜̃ϵ| < |ϵ| the dominant copy is re-centered.

Note that the spurious copies of the main grid are not re-centered by this feedback

displacement, and may lead to logical errors. Thus, when stabilizing finite energy

states, logical errors occur in the absence of any intrinsic error channels of the os-

cillator. This is expected for any error-correction scheme since the grid peaks have a

finite width and extend beyond the interval [−α
2 ,

α
2 ] around their center of mass. These

errors occur with vanishingly small probability for very narrow target and ancilla p-

peaks σr, sp → 0.

We now neglect the spurious copies and focus on the dominant features of the

target grid state. At the end of the Cr cycle, this state has reduced envelope and peak

variances σ̃2
r/∆̃2

r compared to the initial state. During the error-correction cycle in

the conjugate quadrature Cr⊥
a

, the target ra-distribution is convolved with the ancilla

qb-distribution, transforming the variances as

˜̃σ2
r = σ̃2

r + s2
q = σ2

r
1+σ2

rd
2
q

+ s2
q

˜̃∆2
r = ∆̃2

r + d2
q = ∆2

r
1+∆2

rs
2
q

+ d2
q . (4.11)

while ϕ and ϵ are not affected. By repeating n Cra and Cr⊥
a

cycles, the target distribu-
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tion converges toward a centered grid state (since ˜̃ϕmodα and ˜̃ϵ decrease in absolute

value) with variances that quickly converge toward a limit cycle (steady state found

from equation 4.11).

σ2
±r∞ = s2

q

2 (
√

1 + 4
s2

qd
2
q

± 1) ∆2
±r∞ = d2

q

2 (
√

1 + 4
s2

qd
2
q

± 1), (4.12)

hereafter denoted as ’breathing oscillations’. The ± signifies the difference between

the minimum and maximum of the target peak and envelope variances of the quadra-

ture r as they expand by s2
q and d2

q, respectively due to the convolution during the Cr⊥
a

cycle. Given that the probability distributions along q and p breath in phase oppo-

sition, the target average photon number (⟨na⟩ = 1
2(⟨q2

a⟩ + ⟨p2
a⟩ − 1)) in steady state is

constant and given by

n̄∞ = 1
2(∆2

+r∞ + ∆2
−r∞ − 1) = d2

q

2

√
1 + 4

s2
qd

2
q

− 1
2 . (4.13)

In order to test the predictions of this simplified Gaussian comb model, we exactly

compute the evolution of the target oscillator density matrix under repeated Cq and Cp
cycles (using the Kraus map defined in eq. 4.8) and represent the evolution of ⟨q2

a⟩
and ⟨na⟩ in figure 4.2. In these simulations we vary the variance d2

q of the ancilla en-

velope (encoded in color), and adapt the variance s2
q = d2

q

n̄4
∞−d4

q/4 to target a fixed photon

number of n̄∞ = 7.5, according to eq. 4.13. The results match our simplified model

predictions (dotted lines) quantitatively.

Further, we estimate a confinement rate onto the breathing steady state with the

following reasoning. We consider the case in which, after a large number of cycles

that brought the target oscillator state to the breathing steady state, we displace it by

ϕ << α, for instance along q. We show that this offset is reduced after each following

Cq cycle by a factor 1
1+σ2

rd
2
q
, yielding a confinement rate Γconf = ln(1 + σ2

rd
2
q)/Tcycle.

1.1 Choice of ancilla parameters

We give now a qualitative discussion on the choice of the ancilla grid state parameters

considered in the following sections. The variances σ2
r± of the target peaks increase

with the ancilla peak variance s2
q (eq 4.11). Thus in absence of photon dissipation, sq

should be chosen as small as possible in order to reduce σr and thus suppress logical

errors. However, the mean photon number ⟨na⟩ diverges when sq,→ 0 as dp → ∞.

When considering photon dissipation, a too low value of sq results in a large sensi-
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1. Ancilla readout by homodyne detection

Figure 4.2: Numerical Fock-simulation on the target state dynamics under the Kraus map in
eq. 4.8. The expectation values ⟨q2

a⟩ and ⟨na⟩ are plotted over multiple error correction cycles
for different values of dq = 1

0.25 ,
1

0.30 ,
1

0.35 ,
1

0.40 for a target average photon number of n̄∞ = 7.5.

tivity to dissipation. Thus the optimal choice of sq results from a trade-off that we

numerically investigate in Sec. 3. The optimization also needs to take into account

the duration of the ancilla state preparation, which is more time-consuming for small

values of sq, as detailed in Sec 1 in chapter 2.

We now turn to the ancilla envelope variance d2
q. For a given value of σr+, the

confinement rate Γconf onto the breathing steady state increases with the ancilla q-

envelope variance d2
q. Intuitively, a large q-envelope ancilla state (narrow p-peaks)

allows to extract more information per cycle, and thus enforces a faster convergence

toward the code space. Such a large confinement rate is desirable when considering

intrinsic error channels of the target oscillator as errors are corrected faster. On the

other hand increasing dq too far results in a large photon number in the target oscil-

lator (eq. 4.13). This results again in an enhanced sensitivity to photon loss. We thus

also expect the optimal choice of dq to result from a trade-off between the two effects,
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which will be analyzed in a future work.

One can partially evade this trade-off by considering, instead of a centered ancilla

grid state

| ∅⟩b ∝
∫
dq e

− q2

2d2
q

∑
n

e
− (q−2nβ)2

2s2
q |qb = q⟩ dq→0−→

∫
dq e

− q2

2s2
q |qb = q⟩ , (4.14)

which reduces to a squeezed state when dq → 0, yielding a null confinement rate,

an off-centered state

|∅⟩b ∝
∫
dq e

− q2

2d2
q

∑
n

e
− (q−(2n+1)β)2

2s2
q |qb = q⟩ sq<<dq<<1−→

∫
dq e

− q2

2s2
q (|qb = q − β⟩ + |qb = q + β⟩),

(4.15)

which reduces to a squeezed cat state for sq << dq << 1. Intuitively, in the limit

sq → 0, the squeezed cat behaves as an ancillary TLS that can encode up to one bit

of information about the target mode stabilizers after the quadrature gate (see next

section). We thus expect a non-zero confinement rate onto the code manifold as in the

case of an actual TLS ancilla (numerical simulations in section 2 of chapter 4). The

breathing oscillations of the target oscillator are minimal in this regime, as the target

r-envelope expands by
√
π during a Cr⊥ cycle.

Besides sq and dq, the remaining parameter that has not been discussed so far,

is the ancilla grid state rectangularity, which is encoded in the interaction parame-

ter θ =
√
π
β . In chapter 3, this parameter has been tuned by gradient-ascent based

optimization. These optimized simulations were made by a simplified error model, in

which the oscillators were subject to quadrature noise only. Similar efficient simula-

tions of photon loss is the subject of future work. An adaption of θ, effectively re-scales

the ancilla q-peak and envelope width as s̃q = θsq and d̃q = θdq respectively and all the

previous results need to be re-scaled accordingly. In numerical simulations presented

in chapter 3 and 4, the rectangularity is optimized for a minimal average photon num-

ber in the ancilla oscillator ([36]). As stressed earlier, a homodyne readout detection

is limited by the finite detection efficiency and duration. In the following section, we

present how the target peak and envelope error information can be detected via the

additional TLS, that is in place for the preparation of the ancilla state, to circumvent
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2. Ancilla preparation and readout by TLS-based measurements

these limitations.

2 Ancilla preparation and readout by TLS-based measurements

In the previous section, we demonstrated that the Steane-type error correction scheme

with homodyne detection and appropriate feedback, stabilizes the finite-energy code

manifold in the target oscillator, whose properties are set by those of the finite-energy

ancilla state. In this section, the 2-peak (cat state) ancilla is considered, in order to

limit the average photon number in the target and ancilla oscillator.

2.1 Peak-shift error detection of the target oscillator

This section focuses on the retrieval of the peak-shift error which has been mapped to

the phase of the infinite-energy stabilizer operator of the ancilla Spb. Since the width of

the ancilla grid-state pb-envelope, dp = 1
sq

, is irrelevant to this discussion, we assume it

for now to be infinite (sq → 0) for simplicity. In this limit, we write the non-normalized

ancilla state as |∅⟩b = (|qb = −β⟩ + |qb = β⟩) ∝
∫
dp cos(βp) |pb = p⟩. The Kraus map

on the target density matrix ρa for an ideal homodyne detection, directly found from

equation 4.8, is given by K[ρa] ∝
∫ π
β

−π
β
dyD(γy) cos(

√
πra − βy) ρa cos(

√
πra − βy) D†(γy),

for an outcome y and a proportional feedback displacement by D(γy). This is formally

equivalent to a single round of phase estimation with an ancilla TLS being measured

along an axis defined by the stochastic angle ϕ = −βymod 2π in the σx-σy plane of

the Bloch sphere (see chapter 2, Sec. 1). Therefore, at most one bit of information is

extracted about the target stabilizer value ⟨Sra⟩.

Instead of a homodyne detection, we consider now the phase-swap/BSB sequence

between an infinitely-squeezed cat state and a TLS, that has been presented in chap-

ter 2, Sec 2.8. We consider the target oscillator to be in a pure state |ψ⟩a for simplicity

(the result can be easily generalized to a general state ρa). The composite state |Ψ⟩ of

the two oscillators and the TLS after the quadrature gate ei
√
π
β raqb reads

|Ψ′⟩ = e
i

√
π
β raqb |Ψ⟩ = e

i

√
π
β raqb [ 1√

2(|g⟩ + |e⟩) (|qb = −β⟩ + |qb = +β⟩) |ψ⟩a] (4.16)

= 1√
2(|g⟩ + |e⟩)(|qb = −β⟩ e−i

√
πra + |qb = +β⟩ e+i

√
πra) |ψ⟩a .

By applying the phase-swap/BSBp sequence,
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|Ψ′′⟩ = UBSBp( π8β ) |Ψ′⟩ = 1√
2(|g⟩ e+i

√
πra + |e⟩ e−i

√
πra) (|qb = −β⟩ + |qb = +β⟩) |ψ⟩a (4.17)

.

with UBSBp(ηq) = eiβpbσZe−i2ηqqbσY eiβpbσZ , the modular operator e+i2
√
πra is trans-

ferred from the ancilla state to the TLS state that now encodes the stabilizer in-

formation (⟨σx − iσy⟩ = ⟨Sra⟩). By rewriting the expression in terms of the states

|±ϕR
⟩ = 1√

2(|e⟩±eiϕR |g⟩), where ϕR sets an angle in the σx-σy plane of the Bloch sphere,

one receives

|Ψ′′⟩ = 1
2(|+ϕR

⟩ cos(
√
πra + ϕR

2 ) + |−ϕR
⟩ sin(

√
πra + ϕR

2 )) |ψ⟩a (|qb = −β⟩ + |qb = +β⟩)
(4.18)

After measuring the TLS in the |±ϕR
⟩ basis, and tracing out both the ancilla and

the TLS, the post-TLS measurement states are

ρa,+ = cos(
√
πra + ϕR

2 )ρacos(
√
πra + ϕR

2 ) ρa,− = sin(
√
πra + ϕR

2 )ρasin(
√
πra + ϕR

2 ).
(4.19)

The corresponding Kraus map is equivalent to a direct single TLS-stabilizer mea-

surement of the target oscillator along the axis ϕR. As discussed in section 1, for small

displacement errors of the target state, a measurement along the σy-axis corresponds

to extracting maximum information. We refer to this sequence (BSBp + TLS measure-

ment along σy) as the BSB+p readout. In comparison with the Kraus map modeling

of the homodyne ancilla detection, the BSB+p readout is formally equivalent to a ho-

modyne detection with post-selection on the outcomes y± = ± π
4β + 2πl, with l ∈ Z.

In figure 4.3, we compare the preparation of a GKP code state in the target oscil-

lator, by performing a homodyne detection versus the BSB+p readout of the ancilla.

Here, we solely numerically simulate the evolution of the probability distributions of

a periodic target state, using the techniques that have been introduced in chapter

2, Sec. 1. The figure of merit 1 − ⟨Sqa⟩ is visualized as a function of the number of

error correction cycles. For simplicity, the optimal feedback is chosen to maximize

⟨Re(Sqa)⟩ for each possible measurement outcome for both the homodyne and TLS-

based detection.
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2. Ancilla preparation and readout by TLS-based measurements

Figure 4.3: Target state preparation with homodyne versus TLS-based readout of an ancilla
grid state with 2 peaks in the qb-distribution. We consider the evolution of an infinite-energy,
periodic target state (similar numerical simulation techniques as in chapter 2, Sec. 1), in absence
of TLS and oscillator errors. The target oscillator, initially in vacuum, is prepared in a grid state
by multiple correction cycles. After the quadrature gate exp(i

√
π
β raqb), the ancilla oscillator is

measured by a homodyne detection or by performing the BSB+p sequence with a TLS that is
subsequently measured along the σy axis. A feedback displacement is applied that is chosen to
maximize Re(Sqa) in both cases.

Given that a measurement of the TLS along σy yields more information than along

any other angle, the BSB+p readout fares better than homodyne detection. In the

remaining part of this chapter, the TLS-based detection will be the preferred choice

of readout, since it outperforms homodyne detection even for unit efficiency and does

not project the ancilla pb distribution onto a single peak. In the next section, we focus

on the envelope correction, that is similarly performed via the TLS coupled to the

ancilla oscillator and multiple rounds of TLS-based phase estimation.

2.2 Envelope-shift error detection of the target oscillator

We consider now the 2-qb-peak ancilla state for finite squeezing values, which we refer

to as (squeezed) cat ancilla. In Sec 1, we showed that after a quadrature gate with

the target, a measurement of the ancilla pb quadrature sharpens and re-centers the

target peak and envelope position. In this section, we substitute the homodyne de-

tection with a sequence of TLS-based measurements of the ancilla, which simultane-

ously re-prepares the ancilla for the following error-correction cycle. In chapter 3, we

illustrated that a sequence of TLS-Spb measurements followed by feedback displace-

ments, does not only re-prepare the ancilla in a sharply distributed state, but further

allows to estimate the value of pb modβ prior to the re-preparation, by decoding the

records of the TLS measurements. More generally, by performing repeated TLS-eiηpb

measurements, one prepares a sharp distribution of the modular variable pb mod 2π
η

and accesses its value prior to the sequence. If 2π
η is chosen much larger than the
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Chapter 4. Error-correction with finite energy states

Figure 4.4: Schematic of target envelope correction mechanism, (similar to schematic in Fig.
2.5). For simplicity the target peaks are assumed to have much larger squeezing than the ancilla
peaks. (a) Composite-state-representation before the interaction. Target qa-state distribution
with a shift error and ancilla pb-state distribution perfectly centered. The TLS is initially

prepared in the state |+x⟩ (b) Subsequent to the entangling gate ei
√
π
β qaqb , from the perspective

of the target state, the ancilla state is displaced by along the pb quadrature conditioned on the
qa value. By applying a conditional displacement gate eiηpbσz between the ancilla and the TLs,
a Bloch vector (copy) rotates in the σx-σz plane conditioned on the value of pb (correlated with
the qa value of the target oscillator). (c),(d) A projective measurement of the TLS, |+z⟩ / |−z⟩
collapses (highlighted by the shaded half-discs) the ancilla distribution - and consequently the
target distribution.
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2. Ancilla preparation and readout by TLS-based measurements

pb-distribution, an infinite sequence of such measurements yields the equivalent in-

formation as a homodyne detection (found for instance in [25]). However, the accuracy

of this effective homodyne detection is limited for a finite measurement round number.

In detail, a single TLS-eiηpb round gives a single classical bit of information about

the ancilla/target envelope position. By multiple measurement rounds, corresponding

to the Kraus operators M+ = cos(ηpb + π
4 ) and M− = sin(ηpb + π

4 ), an estimate of

the ancilla- and in turn of the target-envelope position can be computed based on

the TLS measurement records {mj}. For the ancilla being in a momentum state at

p0 <<
1
η , the probabilities of each measurement outcome m during a round read P± =

1
2(1∓sin(2ηp0)). Following [37], one can compute an effective homodyne measurement

rate as

Γ = 1
2Troundp

2
0

(
∑
mmPm)2∑

m(m−m)2Pm
≃ 4η2

Tround
. (4.20)

Therefore, using small values of η to perform an effective homodyne detection of

the pb, results in a small measurement rate.

We resolve this conundrum by measuring the ancilla state in two steps. First, we

use a single BSB+p readout as described in the previous section to measure pb modπ
β .

This allows to access the target peak-shift error syndrome, i.e. information on the

phase of the infinite-energy stabilizer Sra (during a Cr cycle). At this stage, the an-

cilla no longer encodes information on the target modular position, but still about

on the target envelope position. Second, we perform a sequence of TLS-eiηpb rounds

with small value of η to perform a measurement of pb mod2π
η ∼ pb and to retrieve this

envelope shift error syndrome. The corresponding measurment rate is small, so that

over a finite sequence of rounds, it models a effective weak homodyne measurement.

Nevertheless, as illustrated in figure 4.4, one does not need to measure pb very accu-

rately to recover the envelope-shift error syndrome.

In order to estimate the number of rounds needed to accurately retrieve the envelope-

shift error, we compute in numerical simulations the quantum trajectories corre-

sponding to all possible measurement records of a cycle, where the ancilla detection

is performed by this a ’two-step’ measurement scheme. The target and ancilla states

are assumed to be pure before the cycle begins, so that for a given record m, the pu-

rity of the target mode density matrix after tracing out the ancilla mode Tr(Trb(ρab)2)
informs about the residual entanglement between the two modes at the end of the
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Chapter 4. Error-correction with finite energy states

cycle. In figure 4.5, we plot this quantity, averaged over all possible records, as a

function of the number of TLS-ei2ηpb rounds. A few rounds, 4 − 10, suffice to success-

fully dis-entangle the two modes and retrieve the information of the target envelope

encoded in the the ancilla pb distribution .

Figure 4.5: After performing of the entangling gate ei
√
π
β raqb , the target information encoded

in the squeezed cat ancilla state is extracted by a single BSB+p measurement and multiple
TLS- ei2ηpb measurements. The residual entanglement between the target and the ancilla is
estimated by the purity Tr(Trb(ρab)2) of the density matrix ρab after tracing out the ancilla
mode b. The purity Tr(Trb(ρab)2) is plotted versus the number of ei2ηpb rounds for different
values of η = 0.025, 0.05, 0, 075, 0.10, 0.125.

Once, the ancilla oscillator shares minimal residual entanglement with the target,

it can be faithfully discarded, or reused for the next error-correction cycle. Subse-

quently, a corrective feedback displacement e±in2
√
πr⊥

a /e±ik πβ qb by a multiple (n, k) of

the stabilizer periods, needs to be applied to recenter the target/ancilla state enve-

lope. In numerical simulations, the expectation value of the target ⟨ra⟩ and ancilla

⟨pb⟩ position is tracked and the according feedback is rounded to the nearest multi-

ple of the stabilizer period. Since TLS-Spb and TLS-eiηpb sequences can lead to shift

errors along the qb quadrature if a TLS σx error occurs, successive TLS-Sqb mea-

surement rounds are necessary to guarantee a robust suppression of non-correctable

errors. In the next section an optimized version of the readout scheme, that is merged

with the asymmetric-preparation sequence, is presented, which allows a more rapid

error-correction cycle.
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3. Optimized readout scheme

3 Optimized readout scheme

In the previous section, we demonstrated how the target information can be readout

by TLS-Spb and TLS-eiηpb measurement rounds. This readout sequence leaves the

ancilla approximately in the state |∅⟩b, albeit in the event of a TLS σx error during

the conditional displacement of the TLS-Spb sequence, randomly displaced along qb.

A series of TLS-Sqb measurements are necessary to suppress these errors that would

directly propagate to the target oscillator in the following error correction cycle Cr, as

demonstrated in chapter 3. In this section, an optimized readout scheme is presented

that is merged with the re-preparation of the ancilla state, enabling a faster error-

correction cycle.

For this optimized readout-scheme, adaptations of the finite-energy stabilizer mea-

surement sequences proposed by [22], [5] are considered, that have been discussed

in detail in chapter 2. We demonstrate how the target information encoded in the

ancilla oscillator can be recovered by multiple measurement sequences of the finite

stabilizer operators S∆
pb

and S∆
qb

, that simultaneously prepare the ancilla state for the

next error-correction cycle. We recall the respective SBSr and BSBr sequences

USBSr = e−i δr
2 r⊥

b σY eiωrrbσZe−i ηr
2 r⊥

b σY (4.21)

UBSBr = eiωrrbσZe−i2ηrr⊥
b σY eiωrrbσZ ,

where ωq = π
2β and ωp = β. We remind that the last conditional displacement

in the USBSr (UBSBr ) sequence can be replaced by a direct TLS detection along σy

(σz) and an active feedback displacement of e∓i δr
2 r⊥

b (e±iωrrb ) conditioned on the TLS

detection outcome. We will further use the latter sequences based on active feedback

and refer to them as SB+r and BS+r. A key difference of the two sequences is that the

TLS measurement after the SB+r sequence yields information on the stabilizer value

⟨Srb⟩ and for the BS+r information on ⟨ei2ηrr⊥
b ⟩. These represent exactly the operator

values that are necessary to extract the target peak and envelope shift information

as presented in the previous section. The corresponding Kraus operators for the two

respective sequences are
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Chapter 4. Error-correction with finite energy states

J±
SBr

(ηr) = 1√
2 [e−iωrrb sin(ηr2 r⊥

b + π
4 ) ± i eiωrrb cos(ηr2 r⊥

b + π
4 )] (4.22)

J±
BSr

(ηr) = 1√
2 [cos(2ηrr⊥

b ) e±iωrqb ∓ sin(2ηrr⊥
b ) e∓iωrrb ]

In the previous section we have seen that in the case of an infinitely squeezed

cat ancilla state, the BSB+p sequence extracts the target stabilizer information and

fares better than the homodyne readout. However, since this sequence is based on

two conditional-displacements of length β along qb, it is more favourable to use the

SB+p sequence in presence of TLS errors, as it entails only a single conditional dis-

placement by β. Therefore, for the target peak shift detection, the SB+p sequence

(eiβpbσZe−i ηp
2 qbσY ) is chosen. The conditional displacement e−i ηp

2 qbσY realizes a partial

measurement of the qb envelope and eiβpbσZ serves as a coherent feedback. The subse-

quent TLS detection along σy accesses the stabilizer value ⟨Im(Spb)⟩. In this manner,

both the ancilla and target shift error can be extracted and corrected without expand-

ing the ancilla envelope along qb.

For the detection of the target envelope position, we propose to perform multiple

rounds of the BS+q sequence (e−i2ηqpbσY e
i
π
2β qbσZ ). A TLS- measurement along σz con-

tains information on pb mod π
ηq

, which allows to recover the target mode envelope-shift

error syndrome as detailed in the previous section. In this manner, the target peak

and envelope shift information encoded in the pb quadrature, is probed via TLS-S∆
rb

(SB+r- and BSB+r-type sequences) measurements of the ancilla oscillator, as illus-

trated in figure 4.6. A detailed discussion on the choice of the control parameter ηr
and the feedback strengths for a specific setting, is presented in the last part of this

chapter.

Figure 4.6: Measurement circuits of the SB+p sequence (left) and the BS+q sequence (right) to
extract the ancilla/target peak and envelope information. Based on the TLS detection records,
feedback displacements on both the ancilla and the target oscillator are applied.

In figure 4.7 a circuit summarizing a full Cq cycle is illustrated. First, the tar-

get (a) and ancilla oscillator (b) are entangled via the quadrature-gate e
i

√
π
β qaqb. The
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4. Error-correction beyond the break-even point with state of the art superconducting circuits

target peak and envelope shift error information, thereby encoded in the ancilla pb-

distribution, is extracted via measurements of the finite-energy stabilizers (TLS-S∆
rb

),

as proposed above. Conditioned on the records of the TLS detection outcomes, correc-

tive feedback displacements are applied to both the target and the ancilla oscillator.

We consider in this circuit the 2-peak ancilla limit, for which a single TLS-S∆
pb

mea-

surement suffices to readout the target peak shift error. This allows to merge the

readout sequence with the asymmetric preparation sequence for a robust ancilla er-

ror suppression, resulting in a faster error correction cycle. However, interleaving

the ancilla readout and re-preparation is not entirely straightforward, as the control

parameters for the optimal feedback strategies that have been considered in chapter

3 are not compatible with the bounds of ηq in the BS+q sequence, for the optimal

readout of the pb envelope position (see figure 4.5). In the next section, we present

numerical simulation results for this error correction scheme and a detailed discus-

sion on the feedback strategies and control values for the ancilla preparation.

Figure 4.7: Circuit representation of a single qa-error-correction cycle Cqa . The error syn-
dromes of the target oscillator a are encoded in the ancilla oscillator b via the quadrature-
gate exp(i

√
π
β qaqb). In the case of a squeezed cat ancilla state, the target peak shift error is

detected via a single TLS-S∆
pb

measurement round. The envelope shift error is detected by
multiple TLS-S∆

qb
measurement rounds. Ancilla TLS-S∆

rb
measurement rounds Rrb

are depicted
by the generic icons defined in figure 4.6 and either represent a SB+r or BS+r sequence. The
feedback displacements applied to the target and the ancilla mode are conditioned on the TLS
detection outcomes. Simultaneously, the readout sequence consitutes the core of the asymmetric
re-preparation of the ancilla state, allowing it to be reused for the following pa-error correction
cycle Cpa .

4 Error-correction beyond the break-even point with state of the art
superconducting circuits

A principle sketch of our experimental proposal is visualized in Fig. 4.8, in which a

non-linear element mediates the quadrature-quadrature interaction between two har-
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Chapter 4. Error-correction with finite energy states

monic oscillators, illustrated as 3D microwave (post-)cavities. The non linear element

can represent a three wave mixing element, for instant a SNAIL device or a four-wave

mixing element [38]. The ancilla oscillator is further coupled to a TLS - depicted by a

transmon and a readout resonator - that is required for the ancilla state preparation.

In this sense, the ancilla mode b, can be interpreted as a buffer between the target

mode a and the noisy TLS, preventing the propagation of non-correctable errors.

Figure 4.8: Schematic of a principle setup in the framework of super-conducting circuits: Two 3D
microwave post-cavities hosting the target (a) and ancilla (b) mode are coupled by a non-linear
element (NL, possibly a pumped SNAIL device [38]) that mediates the quadrature-quadrature
interaction. An additional TLS (transmon + readout resonator) is coupled uniquely to the
ancilla b mode for the ancilla state preparation and readout. The Wigner function depicted in
the a/b mode highlights, the choice of a symmetric/asymmetric GKP state (squeezed cat state).

In this section, we give a step-by-step description of a full error-correction cy-

cle Cra, that presents and justifies the exact choice of of the control parameters in

the TLS-stabilizer sequences Rrb
for the squeezed cat ancilla state, supported by nu-

merical simulations (performed with the QUTIP library [39]). In part, the numerical

optimization for the ancilla re-preparation is preformed by Lindblad simulations on

the ancilla oscillator + TLS subsystem1.

As introduced in the previous section, the target stabilizer phase information ⟨Sra⟩
is recovered via the SB+p sequence and a feedback displacement on the target by

ε conditioned on the TLS detection outcome is applied (J1±
SBp

= e±iεraJ±
SBp

( π2β )). The

optimal value of ηSp = π
2β is found in numerical simulations, as visualized in figure 4.9

(right panel), that depicts the probability for a ⟨σy⟩ = ±1 TLS detection outcome for a

1Full Lindblad simulations of the composite system (2 harmonic oscillators + 1 TLS) is computationally costly
and untenable for sufficiently large values of the Fock space truncation of the harmonic oscillators. Therefore, the
time-discrete Kraus map representation is used to simulate the dynamics of our error-correction scheme, to avoid
including the TLS directly. For this reason, the corresponding Kraus operators have been given for the specific
gate sequences throughout this thesis. The joint quantum state of the two harmonic oscillators is represented by
a N2 × N2 density matrix, with the Fock space truncation N = 120.
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4. Error-correction beyond the break-even point with state of the art superconducting circuits

squeezed cat ancilla state displaced by D(iπ4 ). Furthermore, ηSp agrees with the value

for which the BSBp sequence realizes a phase swap between an infinitely squeezed

cat state and a TLS (see chapter 2, Sec 2.8). A single SB+p round gives a close to

unity readout of the ancilla phase information. However, an SB+p round entails a

conditional displacement along the ancilla qb-quadrature by β, that maps the 2-peak

ancilla state (support at {|qb = −β⟩ , |qb = β⟩}) to a three-peak ancilla state (support at

{|qb = −2β⟩ , |qb = 0⟩ , |qb = +2β⟩}) in a deterministic manner.

Figure 4.9: Readout of the ancilla phase information ⟨Spb⟩ for a squeezed cat state with β =
2
√
π, that is prepared by the SBSr sequence. (Left) Probability to detect the TLS in ⟨σy⟩ = ±1

(corresponding to the Kraus operators J1±
SPp

) is visualized versus a displacement D(iε) along
pb for a squeezing of the ancilla qb-peaks that is set by ηq = 0.02 in the state-preparation. The
optimal value of ηSp = π

2β is found by a sweep of ηSp (Right) for the ancilla state displaced by
D(iπ4 ) and for different values of ηq in the state-preparation.

A second SB+p sequence (J2±
SPp

= e
±i π4β qbJ±

SPp
( π4β )) is used, to reinitialize the two-

peak ancilla and to efficiently suppress the population at the outer peaks, generated

at −(2n + 1)β and (2n + 1)β (n > 1), by choosing ηp = π
4β and a feedback displacement

of e±i π4β qb to reinitialize the ⟨Spb⟩ value of the ancilla oscillator.

In all the following numerical simulations, the two SB+p sequences are fixed and

referred to as the S∆
pb

readout. The residual optimization focuses on the control pa-

rameters and the number of TLS-S∆
q (BS+q) rounds. The control parameter ηq sets the

ancilla qb-peak (pb-envelope) variance and can be varied under repeated BS+q rounds

for an optimal readout of the pb-envelope position information. First, we consider the

dynamics in absence of TLS and intrinsic oscillator errors, to benchmark the control

parameters and number of BS+q rounds that are necessary for the optimal envelope

size of the target state. Conditioned on the measurement records of all the n BS+q

rounds, a feedback displacement e±i2m
√
πr⊥

a /e±ik πβ qb by a multiple (m, k) of the stabi-

lizer periods, on both the target and the ancilla oscillator is applied. In figure 4.10,
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Chapter 4. Error-correction with finite energy states

the average photon number of the target and ancilla in steady state is depicted as a

function of the value ηq for different round numbers.

Figure 4.10: Average photon number of the ancilla and target oscillator in steady state versus
the values ηq in the BS +q (ηq) sequence for 4 and 6 rounds. For small values of η < 0.12
envelope is not stable for target and ancilla state for only 4 BS +q (ηq) rounds.

The ancilla properties and therefore the value of ηq are chosen according to an

optimal average photon number of the target oscillator for its given bare lifetime.

4.1 Suppression of TLS-induced errors

In the next part, we focus on the optimization of the optimal number of TLS-S∆
qb

rounds in the presence of TLS errors. First, we consider the ancilla re-preparation, by

performing Lindblad simulations on the subsystem of the ancilla oscillator + TLS only.

In figure 4.11, numerical simulations results are presented for the specific SB+p and

BS+q sequences that have been proposed in this section. The qb/pb-ancilla probability

distributions P (qb)/P (pb) are illustrated for two different TLS decay T1 = 200µs/20µs
and de-phasing times Tϕ = 300µs/30µs. The ancilla state is assumed to be prepared

initially in absence of any errors (orange curve). After the S∆
pb

readout, a family of

curves depict the re-preparation of the ancilla qb-quadrature for n BS+q rounds with

a fixed value of ηq = 0.12. At least 4-6 BS+q rounds are necessary to extract sufficient

information to stabilize the target envelope size, and additional rounds are performed

to suppress errors along the qb quadrature that have been generated by Terrors dur-

ing the S∆
pb

readout.

80



4. Error-correction beyond the break-even point with state of the art superconducting circuits

In order to quantify the propagating errors, regarding the expectation values of

the stabilizer operators, is not sufficient. Any single scalar quantity can not assess a

’proper’ ancilla state in this specific setting. We recall that for a single quadrature gate

e
i

√
π
β raqb, shift errors along qb beyond the modular interval [−β/2, β/2] directly trans-

late in displacements of the target state exceeding [−
√
π

2 ,
√
π

2 ], and are therefore non

correctable. The integral over the ancilla qb-probability distribution |Ψn(qb)|2 outside

this interval gives the logical error probability

A0(n) = 1 −
∫ β/2

−β/2
|Ψn(qb)|2dqb. (4.23)

However, shift errors close to the border of the interval are highly likely to result in

a non-correctable error within the next error-correction cycle, if no or not an adequate

corrective feedback has been applied. By acknowledging repeated measurements and

propagating errors within subsequent rounds, we define further the quantities

Ak(n) = 1 −
∫ β/2

−β/2
(|Ψn(qb)|2)∗kdqb. (4.24)

where the respective moment Ak(n) corresponds to the probability that a logical

error is induced, subsequent to k successive ra-error detection gates exp(i
√
π
β raqb), in

absence of any error correction measure for the accumulating shifts in the r⊥
a quadra-

ture. By choosing large values of ηq, the contribution of directly propagating error

contribution expressed by A0, is suppressed more rapidly, However at the cost of in-

creasing Ak for higher values of k, since the target peaks are convolved by broader

ancilla qb-peaks in each cycle Cr and accumulate to result in logical errors.

In the case of long TLS lifetimes (left column of Fig. 4.11), A0 is suppressed with

the number of BS+q rounds, while the next higher Ak moments are not impacted

substantially, whereas it is the case for shorter TLS lifetimes (right column of Fig.

4.11). As stressed throughout this thesis, the additional BS+q rounds perturb the

ancilla pb distribution, that will encode the target error information in the succeeding

error-correction cycle, as visualized in the probability distribution of the ancilla state

P (p). To note, the BS+q rounds generate minor peaks at |qb ± 3β⟩ (visible in Fig. 4.11)

in the ancilla qb-distribution, which are suppressed by the TLS-S∆
pb

sequence in the

succeeding error-correction cycle.

In summary, given that the optimal control values for a fast and efficient readout

of the target envelope information are small compared to the ancilla lattice constant β,

a large number of BS+q rounds are necessary to correct errors in the qb-distribution
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Chapter 4. Error-correction with finite energy states

Figure 4.11: Analysis of TLS-induced errors during the ancilla preparation Rrb
rounds. The q/p-

ancilla probability distributions P (q)/P (p) are illustrated for an initial ancilla state, prepared
in absence of TLS errors (orange). The family of curves show the ancilla distributions after
n = 0, 10, 20, 30 BS+q rounds subsequent to the TLS-S∆

pb
readout. The suppression of the

according first Ak moments as a function of the round number n are depicted below.

of the ancilla state, preventing a rapid error correction cycle Cr. In principle, once

the envelope information is recovered, large values of ηq can be applied, to decrease

A0 at the cost of increasing higher Ak moments. However, for the final BS+q rounds,

ηq needs to be decreased to small values as it dictates the peak variance of the qb-
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distribution. In order to reduce the number of TLS-S∆
qb

rounds, we propose to use

the SB+q sequence with the Kraus operators J±
SBq

= e±i
δq

2 pbJ±
SBq

(ηq), in addition right

before the BS+q rounds. The freedom to choose the value δq much larger and inde-

pendently of ηq is exploited, allowing large feedback displacements without measuring

strongly the ancilla pb-envelope position as it is the case in the BS+q sequence.

It should be strongly emphasized, that this sequence is introduced for a faster

correction of errors in the qb-distribution, at the expense of perturbing slightly the en-

velope information contained in the ancilla pb-distribution. In figure 4.12, we depict

the impact of the additional SB+q rounds (for δq = ηq) on the average photon number

of the ancilla and target mode in steady state, that signifies the information loss of

the target envelope position. In numerical simulations, we find the optimum of ηq in

the SB+q sequence (for minimal perturbation of the envelope position information)

corresponds to the value used in the succeeding BS+q rounds, that sets the qb-peak

variance for the next error correction cycle. In summary, the error correction scheme

is modified by applying a first batch of M SB+q rounds with large feedback displace-

ments, followed by N-M BS+q rounds, after the TLS-S∆
pb

readout.

Figure 4.12: Analysis on the impact of additional SB+q rounds on the steady state envelope
size. Numerical simulations of the error correction scheme in figure 4.7 for M SB+q rounds,
where the parameters of the sequence are chosen to be δq = ηq = 0.06 followed by a fixed number
of 6 BSBq rounds with ηq = 0.06. The average photon number in steady state is plotted versus
the number of SB+q rounds M.

The optimal value of the feedback displacement δq(m) at each round m are found
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by an optimization algorithm (BFGS-algorithm, scipy library [40]), in which the differ-

ent Ak moments are used as the objective to be minimized. The number of rounds M

are chosen such that residual TLS-induced errors during the SB+p rounds are bal-

anced with the intrinsic oscillator and TLS errors that accumulate during the SB+q

and BS+q rounds. Moreover, M can not be taken too large, as the measurement

back-action slightly perturbs the envelope information and prevents an efficient sta-

bilization of the target envelope (see figure 4.12).

Figure 4.13: Numerical simulations on the optimized ancilla error suppression for a fixed number
of N = 12/16 (left/right column) Rq rounds for a TLS with T1 = 200µs, Tϕ = 300µs. The
Rq rounds are partitioned in M SB+q and N -M = 6 BS+q rounds (separated by the vertical
dashed line). The top row shows the optimized feedback values with respect to the moments A0
and A4 for each round n. For clarity, the control parameter ηq = 0.12 during the BS+q rounds
is kept constant. The lower row depicts the behaviour of the first Ak moments over the rounds
n, for the two different feedback strategies A0/A4, that are distinguished in dotted/dashed line-
styles.

In the end of this chapter, we turn to the numerical simulations of the error-

correction circuit in presence of TLS errors (σx, σz) and photon loss. Since a full
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sweep over all free parameters is numerically exhaustive, we fix the number of N Rqb

rounds and use the optimal values for the ancilla preparation optimized with regard

to a respective Ak as an input. For illustration, we give an example in figure 4.13 for a

fixed number of M = 6/10 SB+q rounds with varying δq(m) and N-M = 6 BS+q rounds

with fixed value of ηq = 0.12, to show the optimal feedback values and the suppression

of the first Ak values. The first M rounds with large feedback displacements allow a

rapid correction of large shift errors along qb (reducing A0) and the successive BS+q

rounds extract the envelope information and simultaneously further correct the an-

cilla peaks in qb. More qualitatively, the SB+q rounds suppress A0 faster at the cost

of increasing the higher Ak moments temporarily. The successive BS+q rounds with

small ηq values reduce the latter contributions, to minimize the propagation of errors.

In the end, the strength ηq in the BS+q sequence, that is kept fixed for clarity in these

curves, can also be decreasingly varied (in a small interval, for the optimal extraction

of the envelope information) to improve the preparation of ancilla-qb distribution even

further.

In figure 4.14, we depict the lifetime of the logical qubit, as a function of different

feedback strategies that have been individually optimized on the different Ak values.

An approximate error model is used to include the impact of TLS errors during the

Rb rounds, with which we update the density matrix of the composite system ρa,b.

Considering a Rb round on the ancilla system only (for instance for state preparation),

for a single TLS error that happens with probability pl, the ancilla state results in

ρ′
b = plρb + (1 − pl)ρerrb . We then consider such an event happening when the target and

ancilla state are entangled and that the composite state evolves as

ρ′
a,b = pl ρa,b + (1 − pl) Trb(ρa,b) ⊗ ρerrb = plρa,b + Trb(ρa,b) ⊗ (ρ′

b − pl ρb). (4.25)

where we take Tra(ρa,b) as an input for ρb and ρ′
b is computed in numerical simu-

lations for the respective Rb round that is used. This is under the approximation of

small residual entanglement shared (at the end of the cycle Cr) between the two modes

to justify the partial trace over the mode a. For more rapid simulations, we further

approximate Trb(ρa,b) by the initial ancilla input state at the start of the two-mode

simulations, such that ρerrb can be pre-computed. The specific error rates in these

simulations were: Tint = 5µs, TCD = 1µs, Tosc = 2ms, T1 = 100µs, Tϕ = 200µs and a Fock

space truncation value of N = 120.

We demonstrate an substantial increase with respect to the bare lifetime of the

harmonic oscillators and of the TLS for this set of values. In this parameter regime

the feedback strategy for high values of k in Ak is optimal, since the large feedback
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Figure 4.14: Numerical simulation results on the logical qubit lifetime of the target oscillator
as a function of the feedback strategies that are optimized on the respective Ak values. (Left)
The explicit values of the feedback displacements for M = 10 SB+q rounds δq(m) and for the
L = N −M = 6 SB+q rounds ηq(l) are plotted on the left. The dashed vertical line separates
the two batches. (Right) Extracted logical qubit lifetime is plotted versus the different feedback
strategies that have been optimized on the respective Ak values.

strengths for k being small are too large for that given round number M to reinitialize

the narrow ancilla qb-peak distribution.
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5 | Conclusion

In this thesis, we addressed the issue of error propagation in GKP error-correction

schemes and presented a hardware-efficient proposal to robustly suppress logical er-

rors that are induced by the noise of the ancillary system. To this date, experiments

that demonstrated state-preparation and correction were based on a two-level-system

ancilla [5],[6],[7],[24]. We have extensively reviewed and presented the strengths and

roadblocks of this approach in chapter 2. In particular, bit-flips of the TLS during the

instrumental conditional displacement gates entail uncorrectable errors.

This problem can be circumvented by error-correction with a bosonic ancilla pre-

pared in a GKP-state. However, in previously proposed schemes [41], [9], the ancilla

preparation has been mostly omitted. In this thesis, we showed that by exploiting the

liberty to couple to a single quadrature of the ancilla in the Steane error-correction

circuit and tailoring the ancilla preparation accordingly, the logical errors induced by

noise propagation from the TLS can be robustly suppressed. In chapter 3, we demon-

strated that for infinite energy states both TLS errors and quadrature noise on the

target and ancillary oscillators, the logical qubit coherence time can be extended by

more than an order of magnitude beyond that of the embedding hardware for values

within reach of state-of-the-art superconducting circuit experiments.

In chapter 4, we adapted this protocol to finite energy states. In that case, the fi-

nite squeezing of the ancilla will contribute to uncorrectable errors in the target state.

However, we focused on the limit of a very asymmetric ancilla state, which coincides

with a squeezed cat state. We demonstrated that a readout of the target stabilizer

information encoded in the ancilla via a TLS outperforms a homodyne readout, even

for unit efficiency. Further we presented an optimized readout sequence of the target

error-syndromes that is merged with the asymmetric ancilla preparation. This allows

a significant reduction of the error-correction cycle duration which is crucial to effi-

ciently correct errors induced by intrinsic noise of the target oscillator. For hardware

parameters that are realistic in the domain of superconducting circuits, we demon-

strate that the logical qubit lifetime surpasses substantially the break-even point.
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Chapter 5. Conclusion

Our proposal is tailored to minimal hardware requirements and control techniques

for near-term experiments. Except for the tuneable quadrature-quadrature gate, it

only requires the conditional displacement gates that have already been demonstrated

in the framework of trapped ions [5] and superconducting circuits [7],[24]. As pro-

posed in [21] the quadrature-quadrature gate can be engineered through single-mode

squeezing and Beam-splitter operations, which have been individually demonstrated.

Moreover, this gate is a matter of active experimental research and are central to

implement logical gates in the GKP code.
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A | Appendix to chapter 4

1 Gaussian comb formalism for error correction with homodyne detec-
tion readout

A general Gaussian comb distribution

P (q) =
∑
t

e− (q−ϵ)2

∆2 e− (q−n2α−ϕ)2

σ2 := G[∆2, σ2, 2α, ϵ, ϕ], (A.1)

is characterized by 5 quantities, the peak/envelope variance σ2/∆2 of the wave-

function, the peak/envelope shift error ϕ/ϵ and the lattice spacing α. In this rep-

resentation the two logical target states are identified by ϵ = 0, ϕ = 0 (|+ZL⟩) and

ϵ = 0, ϕ = α (|−ZL⟩) respectively.

The product of two Gaussian combs, with equal lattice spacing 2α, can be ex-

pressed as a sum of Gaussian combs

G[∆2, σ2, 2α, ϵ, ϕ]G[d2, s2, 2α, e, f ] = e
− (ϵ−e)2

∆2+d2
∑
k

e
− ((ϕ−f)−2kα)2

σ2+s2 G[∆̃2, σ̃2, 2α, ϵ̃, ϕ̃− 2kα σ2

σ2+s2 ]

(A.2)

with ∆̃2 = ∆2d2

∆2+d2 , σ̃2 = σ2s2

σ2+s2 , ϵ̃ = e∆2+ϵd2

∆2+d2 , ϕ̃ = fσ2+ϕs2

σ2+s2 .

In order to describe the dynamics of a single error-correction cycle in terms of the

target probability distribution, P ′(qa) = M2
rP (qa), the operator Mr

Mr ∝
∑
n

e− 1
2d2 (qa−r)e− 1

2s2 (qa−nα−r)2
. (A.3)

.
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Appendix A. Appendix to chapter 4

is represented in the Gaussian comb representation by rewriting it in terms of the

period 2α

G[2d2, 2s2, α, r, r] = G[2d2, 2s2, 2α, r, r] +G[2d2, 2s2, 2α, r, r + α]. (A.4)

By using equation A.2, the expression for M2
r can be derived

Mr
2=̂

∑
λi,λj∈{0,1}

G[2d2, 2s2, 2α, r, r + λiα]G[2d2, 2s2, 2α, r, r + λjα] (A.5)

=
∑

λi,λj∈{0,1}
(
∑
k

e− 1
4s2 ((λi−λj)α−2kα)2

G[d2, s2, 2α, r, r + (λi−λj)α
2 − kα]).

This expression can be rewritten in a compact form as the sum over four Gaussian

combs centered at {0, α2 , α,
3α
2 },

Mr
2=̂

∑
λi,λj∈{0,1}

e− (2kα−λiα)2

4s2 G[d2, s2, α, r, r + λjα+ λiα
2 ] (A.6)

We consider the dynamics of one q-error correction cycle, the product of the q-

probability distribution of a general target state and the expression of M2
r in equation

A.6. For clarity, the multiplication with a single Gaussian comb in the M2
r expression

indexed by λ = {0, 1, 2, 3} is computed below

G[∆2, σ2, 2α, ϵ, ϕ]G[d2, s2, 2α, r, r + αλ2 ] (A.7)

= e
− (ϵ−r)2

∆2+d2
∑
k

e
−

(2kα−(ϕ−(r+α
λ
2 ))2

σ2+s2 G[∆̃2, σ̃2, 2α, ϵ̃, ϕ̃− 2kα σ2

σ2+s2 ]

with ∆̃2 = ∆2d2

∆2+d2 , σ̃2 = σ2s2

σ2+s2 , ϵ̃ = r∆2+ϵd2

∆2+d2 ,ϕ̃ = (r+αλ2 )σ2+ϕs2

σ2+s2

This formalism allows to describe the dynamics by solely updating the variances

∆2 and σ2 and the distributions of ϵ and ϕ.

General initial distributions for the peak and envelope shift errors ϵ and ϕ are

considered
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1. Gaussian comb formalism for error correction with homodyne detection readout

P (ϕ) =
∫
dϕ0 P (ϕ0) δ(ϕ− ϕ0) (A.8)

P (ϵ) =
∫
dϵ0 P (ϵ0) δ(ϵ− ϵ0)

A single peak in ϕ and ϵ, transforms according to equation A.7 as

δ(ϕ− ϕ0) δ(ϵ− ϵ0) → e
− (ϵ0−r)2

∆2+d2
∑
k

e
−

(2kα−ϕ0+r+kα
λ
2 )2

σ2+s2 δ(ϕ− ϕ̃− 2kα σ2

σ2+s2 ) δ(ϵ− ϵ̃). (A.9)

Subsequent to the quadrature readout, a corrective feedback proportional to the

outcome r, to re-center the peak γϕr and envelope γϵr position is applied

e
− (ϵ0−r)2

∆2+d2
∑
k

e
−

(2kα−ϕ0−r−kα
λ
2 )2

σ2+s2 δ(ϕ− (r+kαλ2 )(1+γϕ)σ2+ϕs2

σ2+s2 − 2kα σ2

σ2+s2 ) δ(ϵ− r(1+γϵ)∆2+ϵd2

∆2+d2 )

(A.10)

Further, the expression is integrated over all possible outcomes r, resulting in

e
− 1

∆̂2 (ϵ−ηϵϵ0)2 ∑
k

e− 1
σ̂2 (ϕ−ηϕϕ0−2kαωϕ)2

(A.11)

with ∆̂2 = ∆4(1+γϵ)2

∆2+d2 , σ̂2 = σ4(1+γσ)2

σ2+s2 ,ηϕ = σ2(1+γσ)+s2

σ2+s2 ,ηϵ = ∆2(1+γϵ)+d2

∆2+d2 and ωϕ = σ2γσ

σ2+s2 .

Therefore, the probability distributions in ϕ and ϵ evolve as

P (ϕ) =
∫
dϕ0P (ϕ0)

∑
k

e− 1
σ̂2 (ϕ−ηϕϕ0−2kαωϕ)2

(A.12)

P (ϵ) =
∫
dϵ0P (ϵ0)e− 1

∆̂2 (ϵ−ηϵϵ0)2

The error correction cycle in p, realized through eiθrraqb, represents for the q-

probability distribution a convolution with the q-distribution of the ancilla. Solely,

the variances of both the peaks and envelope are updated accordingly

∆̃2 = ∆2 + d2
2 σ̃2 = σ2 + s2

2 (A.13)
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with s2
2/d

2
2 being the ancilla q-peak/envelope variance.
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ABSTRACT 

 
This thesis focuses on the GKP code that allows for generic error-correction of a qubit encoded in 
a harmonic oscillator. Recent experiments have demonstrated the stabilization of the code 
manifold based on Rabi interactions with an ancillary two-level system. However, these schemes 
suffer from uncorrectable logical flips triggered by ancilla relaxation errors during the interaction. 
This thesis, proposes a protocol to stabilize the GKP code in a target mode by mapping its error 
syndromes to an ancillary GKP mode via a quadrature-quadrature interaction. In contrast to 
previously proposed schemes, coupling to solely one ancilla quadrature allows tailoring the ancilla 
state and its preparation accordingly to ensure a strong suppression of back-propagating errors to 
the target mode. The error-syndrome information is retrieved and the ancilla efficiently re-
initialized using similar techniques demonstrated in the recent GKP experiments. For realistic 
system parameters, numerical simulations confirm the robust suppression of ancilla induced 
logical errors and show an enhancement of the logical qubit lifetime by an order of magnitude 
beyond the break-even point. 

MOTS CLÉS 

 
Correction d'erreur quantique, Circuits supracondacteur, Codes bosoniques 

RÉSUMÉ 

 
Cette thèse porte sur le code GKP qui permet la correction d'erreur générique d'un qubit 
codé dans un oscillateur harmonique. Des expériences récentes ont démontré la 
stabilisation de la variété de code basée sur les interactions de Rabi avec un système 
auxiliaire à deux niveaux. Cependant, ces schémas souffrent de retournements logiques 
non corrigibles déclenchés par des erreurs de relaxation ancilla pendant l'interaction. 
Cette thèse propose un protocole pour stabiliser le code GKP dans un mode cible en 
cartographiant ses syndromes d'erreur à un mode GKP auxiliaire via une interaction 
quadrature-quadrature. Contrairement aux schémas précédemment proposés, le 
couplage à une seule quadrature auxiliaire permet d'adapter l'état auxiliaire et sa 
préparation en conséquence pour assurer une forte suppression des erreurs de rétro-
propagation vers le mode cible. Les informations sur le syndrome d'erreur sont 
récupérées et l'auxiliaire réinitialisé efficacement en utilisant des techniques similaires 
démontrées dans les récentes expériences GKP. Pour des paramètres système réalistes, 
les simulations numériques confirment la suppression robuste des erreurs logiques 
induites par les auxiliaires et montrent une amélioration de la durée de vie du qubit 
logique d'un ordre de grandeur au-delà du seuil de rentabilité. 

 
 
 
KEYWORDS 

 
Quantum error correction, Superconducting circuits, Bosonic codes 
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