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Introduction

The study of in and out-of-equilibrium quantum many-body physics is known
to be a fascinating subject, as it comes with challenging questions. Some of
these questions include: How do hydrodynamic theories and degree of freedom
reduction emerge from a quantum system at large scales? What is the large-
time behavior of a given system, and does it relax? Can the quantum nature
of a system be relevant at a large scale; and how can we characterize the dy-
namics of entanglement entropy? In this thesis, we will utilize the framework
of non-interacting spinless fermions as a simple model to explore these ques-
tions related to quantum statistical physics. In doing so, we will delve into
various domains of physics and mathematics, including random matrices, quan-
tum physics, integrability, statistical physics, large deviations, and differential
equations. Each of these domains is interesting in its own right, but what is
even more fascinating are the numerous connections between them. Indeed,
it has long been a scientific and philosophical quest to define objects through
their relationships with their environments, rather than as intrinsically defined
entities. Furthermore, when a connection between two systems is identified, a
natural question arises: does this connection persist under generalizations of
either of the systems?

Returning to the case of non-interacting fermions, we will explore how the
well-known mapping to random matrices in one dimension can be employed
to predict statistical features of non-interacting fermions in higher dimensions.
In the context of out-of-equilibrium physics, we will examine the statistics of
noninteracting fermions at the edge of propagating fronts. Additionally, we will
investigate how the hydrodynamic theory for integrable systems is modified in
the presence of local inhomogeneities or defects.

Random Matrix, History and Applications. The origins of random
matrix theory can be traced back to two parallel stories. One of these stories
began when Wishart [4] introduced the first random matrix ensemble while
working on multivariate statistics. At the time, he was studying the proper-
ties of covariance matrices, and in particular, the statistical properties of their
eigenvalues.

The other story begins with the discovery by Fermi in the 30s of narrow res-
onances in the scattering of slow neutrons on nuclei [5]. This was a surprising
result, as nuclear physicists at the time were used to studying the physics of
electrons, which can be approximated by a weakly coupled regime. In contrast,
these results led Bohr [6] to conclude that physicists were dealing with a system
of particles in a strongly coupled regime. Wigner showed that the scattering
process was a function of the nuclear Hamiltonian spectrum [7], but because of
the many-body strong coupling, finding exactly the spectrum was a really hard
problem, such that the theory seemed to be in a dead end. However, Wigner
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soon realized that he could let go of the exact structure of the spectrum and
study only its statistical features. Wigner, who had a particular interest in the
spacing distribution of the spectrum [8], "accidentally" read Wishart’s article
about two decades after its publication, this led to the further development
of Random Matrix Theory (RMT). It is worth noting that this was a shift in
the paradigm of statistical physics. Previously, statistical physics had focused
on ensembles of configurations for a fixed Hamiltonian. With RMT, the focus
shifted to ensembles of Hamiltonians for which only the symmetry properties
were fixed. For example, in the modeling of a system with time reversal sym-
metry, the Hamiltonians would be real symmetric matrices.

RMT has a wealth of mathematical objects associated with it, including op-
erators, differential equations, determinants, polynomials, and path integrals.
As a result, RMT naturally intersects with various fields, such as statistics,
group theory, real and complex analysis, topology, algebraic geometry and num-
ber theory. On the physical side, RMT has applications beyond nuclear physics,
including subject close to traditional physics as a conjectured role in chaotic
quantum systems [9], and links with condensed matter [10], two-dimensional
gravity [11]. It has also found diverse applications in less traditional physics
areas such as computational neuroscience [12], biology [13], genetics [14], and
financial dynamics [15].

Noninteracting fermions and equilibrium properties. Statistical
physics is the domain of physics that asks the question: How can macroscopic
theories like thermodynamics and hydrodynamics be recovered from microscopic
knowledge? Hence, it asks about the behavior of a large assembly of either
classical or quantum particles. In this thesis, we will focus on the quantum
case, specifically on noninteracting fermions as the main physical system of
interest. The interest and limitations of noninteracting fermions arise from
their simplicity, which allows for exact computations, while they are subject to
the Pauli exclusion principle [16], inducing nontrivial correlations.

In this regard, an interesting application of RMT lies in its relation to non-
interacting fermions [17]. For certain specific potentials, the ground state of
noninteracting fermions can be mapped to the eigenvalues of specific random
matrix ensembles. On one side, noninteracting fermions are subject to the Pauli
exclusion principle, which keeps them apart. This manifest itself as the prob-
ability density function P (x1, ..., xN) of a gas of N fermions cancels when two
fermions occupy the same position xi = xj. On the other side, it is well-known
that eigenvalues in RMT tend to repel each other, in certain cases mimicking
the statistical properties of noninteracting fermions. These mappings have led
to the study of noninteracting fermions with specific potentials using known
results from RMT.

For trapped noninteracting fermions which can be mapped to a random ma-
trix ensemble, local correlations exhibit universal local statistics. Universality
here means that the statistics have the same limit for large numbers of fermions
(or large matrices) regardless of the specific potential. At this stage, it was nat-
ural to ask whether these properties would hold for potentials that could not be
related to RMT or at non-zero temperature. These questions were addressed
using different methods, including the Local Density Approximation (LDA) [18,
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19], where the fermionic gas is considered to be locally translation invariant.
Out of equilibrium dynamics. A first method to measure equilibrium

statistics was given by Johnson [20] when he measured electric current fluctua-
tions induced by thermal fluctuations in a resting conductor. Later, the interest
in current fluctuations was renewed when it was found that an additional type
of noise, appears when the system is driven out of equilibrium. This effect
was given the name of shot noise. This study of shot noise which is an out-
of-equilibrium statistical properties, was driven by Landauer and Büttiker [21,
22], it assumes the system of interest to be in a Non-Equilibrium Steady State
(NESS), typically a state with non-zero currents. Therefore, it was naturally
that in the following years, the question of the out-of-equilibrium dynamics
arose: How is such a NESS reached from some initial state?

An interesting tool regarding this question are quantum quenches [23–25].
A quench starts with the preparation of a system in the equilibrium state of
a given Hamiltonian Ĥ0, then the Hamiltonian is abruptly changed to a new
Hamiltonian Ĥ. Depending on the nature of the quench, the large-time dy-
namics can result in an equilibrium state, a NESS, or a state with persistent
oscillations. The nature of the quench can vary, typical examples are a change
in the interaction [26], or in a potential [24]. A quench is called a partitioning
protocol when two initially independent systems with different states are joined
together at the initial time, allowing for the flow of particles from one system
to the other [27]. In particular, the Landauer-Büttiker formalism emerges when
considering a partitioning protocol with a scattering defect at the junction of
the two half systems [28–30].

Integrable systems and quantum quenches. Roughly, integrable sys-
tems are systems with more conserved quantities than degrees of freedom. These
systems, have proven to be useful in the context of quantum quenches as they
have allowed, in some cases, to obtain exact results [31–33]. It seems that
at large time, instead of relaxing towards equilibrium state describe by Gibbs
Ensemble, integrable systems relax towards steady states described by the so
called Generalized Gibbs Ensemble (GGE) [34], thus giving a different ther-
modynamic. Furthermore, integrable systems recently led to the emergence
of a hydrodynamic theory for such systems called Generalised Hydrodynamics
(GHD) [35, 36]. Being a hydrodynamic theory, GHD is valid only in the Euler
scaling limit, that is when the system varies smoothly in both space and times.
GHD has been further generalized to systems with weak integrability break-
ing induced by additional potentials [37], particle loss [38], or inhomogeneous
interactions [39].

The manuscript is organised in the following way.
In the first chapter I introduce general notions of RMT. A description of

the Gaussian Unitary Ensemble (GUE), first introduced by Wigner, is given as
a Hermitian matrix with random complex independent coefficients following a
Gaussian distribution. The Wishart Laguerre (WL) ensemble, also known as
the Laguerre Unitary Ensemble (LUE), is also introduced. It was originally
found by Wishart in the study of statistics as a covariance matrix. Both of
these ensembles are related to the unitary group (hence their names) as their
probability is invariant under unitary conjugation. The change of variables
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from the matrix coefficients to the eigenvalues induces a Jacobian equal to a
Vandermonde determinant, given by detλj−1

i =
∏
i<j

(λi − λj). Consequently, the

eigenvalues are not independent variables; instead, they are correlated and tend
to repel each other. Furthermore, we discuss the fact that some ensembles of
RMT (including GUE and WL) have the nice property of belonging to the class
of Determinantal Point Processes (DPP), a type of random point process for
which the n-point correlations can be obtained as a determinant of a two-point
function called the kernel.

A description of the Coulomb gas method is then provided. This method
allows for predictions regarding large matrices by mapping the eigenvalues to
a one-dimensional charged gas with two-dimensional Coulomb repulsion. We
explain how the presented unitary ensembles can be mapped to trapped non-
interacting fermions, whose correlations can therefore be obtained from the
aforementioned kernel K(x, x′). We discuss how, in the large matrix limit,
the kernel exhibits similar local statistics for both random matrix ensembles.
The Wigner function is then defined, it provides a phase space description of
quantum physics while accounting for the Heisenberg uncertainty principle that
prevents it from being a phase space density. The Local Density Approximation
is an ansatz for the Wigner function that yields the kernel in the limit of a large
number of fermions, even for trapping potentials that have no random matrix
counterpart. Finally, we introduce the Full Counting Statistics (FCS), that is
the statistics of the number of fermions within a given interval. We discuss
how it can be computed using methods such as Painlevé transcendents or the
Coulomb gas approach in the large deviation regime (large interval).

In the last section of the first chapter, I present the results of my first
article [1]. It involves the computation of the probability of a hole of size R at
the center of a noninteracting fermion gas in a d-dimensional harmonic trap.
This is achieved using angular decomposition to map the problem onto the
one-dimensional Wishart-Laguerre ensemble. The probability is studied across
different regimes and the results are matched together. In the microscopic hole
regime, our result is found to agree with previous numerical tests. Additionally,
we discover a nontrivial relation between a product of Fredholm determinants
of the Bessel kernel and a Fredholm determinant of the d-dimensional extension
of the sine kernel.

In the second chapter we turn ourselves to the out-of-equilibrium dynamics
of noninteracting fermions. We introduce the notion of quench. Then the
main aspects of GHD are briefly reviewed in the simple case of free fermions
and the Lieb-Liniger model, i.e. a Bose gas whose particles interact through
a Dirac delta potential. We also provide an introduction to the Landauer-
Büttiker formalism, which describes current fluctuations across a defect in a
NESS. Then, in the case of a partitioning protocol, we discuss how the behavior
of the system in the large system size ℓ and large time t limit can lead to either
a state described by a GGE or a NESS with currents, depending on how time is
scaled with respect to the system size. Typically, the system relaxes to an GGE
if the particles are scattered many times at the boundaries, i.e., when t

ℓ
≫ 1,

while a NESS with currents is obtained when the boundaries do not play a role,
i.e., if t

ℓ
≪ 1.
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In the next sections, we present results mostly coming from my second and
third articles [2, 3]. We study a partitioning protocol for noninteracting fermions
with a delta Dirac defect V (x) = gδ(x) in between the two subsystems. Because
the fermions are noninteracting, the study of correlations can be reduced to
the study of a time-dependent generalization of the kernel. From this quench,
depending on the time scales, we show how the system attains either a GGE or
a NESS with currents. Additionally, we also discuss the dynamics and give an
exact formula for the kernel at all times, studying its large-time decay, which is
found to follow a power law. We also consider the low initial temperature limit,
which allows us to compare the resulting current in the NESS to previous results
obtained in the framework of Conformal Field Theory (CFT). The current we
find is different as a consequence of the nature of the delta Dirac defect, which
is not a conformal defect.

We then provide a generalization of the partitioning protocol with a Dirac
delta defect to a general compactly supported defect V (x) characterized by
a scattering matrix and possible bound states. Additionally, we extend our
results to the space-time correlations of the NESS that is reached at large time.
Interestingly, whether the defect is a delta Dirac or a general defect, we found
non-local correlations at large time. These are correlations between symmetric
points far away from the impurity, i.e., lim

t→∞
K(x,−x) ̸= 0, and they have a

physical interpretation in terms of scattering.
Finally, in the last section, we give a brief description of the generalization

of GHD that describes the effect of the defect. Surprisingly, this generalization
of GHD cannot reproduce the non-local correlations lim

t→∞
K(x,−x). Hence, we

propose an Euler scaling of the Fourier transform of the Wigner function which,
together with the aforementioned generalization of GHD, allows us to reproduce
the non-local correlations.

In the third chapter, we first introduce a partitioning protocol for fermions
on a lattice. The system is prepared in a step-like condition, i.e., only the left
half-space is filled. As a consequence, a quantum front arises propagating from
left to right. Interestingly, in large time, the correlations at the edge of the front
are found to be similar to the correlations at the edge of GUE, namely Airy
statistics [40]. This result is a direct consequence of the fact that the velocity
v(k) at momentum k on the lattice has a global maximum v(k) ∼ sin(k). Hence,
in the case of free fermions in the continuum, as the velocity has no extremum
v(k) = k, we do not expect the large-time emergence of Airy statistics at the
edge of the quantum front.

In this chapter, however, we discuss an unpublished result. We propose a
different partitioning protocol that leads to the emergence of Airy statistics at
the edge of the quantum front. This is achieved by changing the initial condition.
Instead of a step-like initial condition, the fermions are prepared in the ground
state of the inverse power-law potential V (x) = c

|x|γ . Then, we turn off the
potential and let the fermions evolve freely. The study of the semiclassical limit
(or small Planck constant) of the Wigner function in the initial state yields the
emergence of Airy statistics at the edge of the quantum front.

Please note that the boxed equations correspond to new results obtained
during this thesis.
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Résumé

L’étude de la physique des systèmes à n coprs quantique à l’équilibre et hors
équilibre est reconnue comme un sujet fascinant, car elle soulève des questions
complexes. Certaines de ces questions incluent : Comment les théories hydro-
dynamiques et la réduction des degrés de liberté émergent-elles d’un système
quantique à grande échelle ? Quel est le comportement à long terme d’un sys-
tème donné, et relaxe-t-il vers un état stationaire? La nature quantique d’un
système peut-elle être pertinente à grande échelle, et comment pouvons-nous
caractériser la dynamique de l’entropie d’intrication ? Dans cette thèse, nous
étudierons des gaz de fermions sans spin et sans interaction comme modèle sim-
ple pour explorer ces questions liées à la physique statistique quantique. Ce
faisant, nous plongerons dans divers domaines de la physique et des mathéma-
tiques, notamment les matrices aléatoires, la physique quantique, l’intégrabilité,
la physique statistique, les grandes déviations et les équations différentielles.
Chacun de ces domaines est intéressant en soi, mais ce qui est encore plus fasci-
nant, ce sont les nombreuses connexions entre eux. En effet, il s’agit depuis
longtemps d’une quête scientifique et philosophique de définir des objets et des
propriétés par l’intermédiaire leurs relations avec leur environnement, c’ést a
dire contextuellement plutôt que comme des entités intrinsèquement définies.
De plus, lorsqu’une connexion entre deux systèmes est identifiée, une question
naturelle se pose : cette connexion se généralise t-elle?

Revenons au cas des fermions sans interaction, nous étudierons comment la
correspondance bien connue avec les matrices aléatoires en une dimension peut
être utilisée pour prédire les caractéristiques statistiques des fermions sans inter-
action en dimensions supérieures. Dans le contexte de la physique hors équilibre,
nous examinerons la statistique des fermions sans interaction au bord des fronts
de propagation. En outre, nous étudierons comment la théorie hydrodynamique
pour les systèmes intégrables est modifiée en présence d’inhomogénéités ou de
défauts localisé.

Matrice aléatoire, histoire et applications. Les origines de la théorie
des matrices aléatoires remontent à deux histoires parallèles. L’une de ces his-
toires commence lorsque Wishart [4] introduisit le premier ensemble de matrices
aléatoires alors qu’il travaillait sur les statistiques multivariées. À l’époque, il
étudiait les propriétés des matrices de covariance et, en particulier, les propriétés
statistiques de leurs valeurs propres.

L’autre histoire commence avec la découverte par Fermi, dans les années 30,
de pics de résonances étroits dans la diffusion de neutrons lents sur des noyaux
atomiques. Ce résultat était surprenant, car les physiciens nucléaires de l’époque
étaient habitués à étudier la physique des électrons, qui peut être approximée
par un régime faiblement couplé. En revanche, ces résultats ont conduit Bohr
[6] à conclure que l’on faisait face à un système de particules dans un régime
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fortement couplé. Wigner a montré que le processus de diffusion dépendait du
spectre de l’hamiltonien nucléaire [7], mais en raison du couplage fort entre de
nombreuses paticules, trouver exactement le spectre était un problème très diffi-
cile, de sorte que la théorie semblait être dans une impasse. Cependant, Wigner
s’est rapidement rendu compte qu’il pouvait se passer de la structure exacte
du spectre et n’étudier que ses propriétés statistiques. Wigner, qui s’intéressait
particulièrement à la distribution de la distance entre les valeurs propres suc-
cessives du spectre, lu par hasard l’article de Wishart environ deux décennies
après sa publication, ce qui conduisit au développement de la théorie des matri-
ces aléatoires. Remarquons qu’il s’agit d’un changement dans le paradigme de
la physique statistique. Auparavant, la physique statistique s’était concentrée
sur les ensembles de configurations pour un hamiltonien fixe. Avec les matri-
ces aléatoires, on se tourne vers des ensembles d’hamiltoniens aléatoires pour
lesquels seules les propriétés de symétrie sont fixées. Par exemple, dans la mod-
élisation d’un système avec symétrie de renversement temporel, l’hamiltoniens
est nécessairement une matrice symétrique réelle.

La theorie des matrices aléatoires est associée à une multitude d’objets math-
ématiques, en particulier des opérateurs, des équations différentielles, des déter-
minants, des polynômes et des intégrales de chemin. Par conséquent, cette theo-
rie recoupe naturellement divers domaines, tels que la statistique, la théorie des
groupes, l’analyse réelle et complexe, la topologie, la géométrie algébrique et la
théorie des nombres. Sur le plan physique, la theorie des matrices aléatoires a
des applications au-delà de la physique nucléaire, y compris des sujets proches
de la physique traditionnelle comme un rôle conjecturé dans les la theorie du
chaos pour les systèmes [9], ainsi que des liens avec la matière condensée [10], la
gravité bidimensionnelle [11]. Elle a également trouvé diverses applications dans
des domaines moins traditionnels de la physique, tels que les neurosciences com-
putationnelles [12], la biologie [13], la génétique [14], et la dynamique financière
[15].

Fermions sans interactions et propriétés à l’équilibre. La physique
statistique est le domaine de la physique qui pose la question suivante : "Com-
ment les théories macroscopiques telles que la thermodynamique et l’hydrodyn-
amique peuvent-elles être obtenues à partir de données microscopiques ? Elle
s’intéresse donc au comportement d’un grand ensemble de particules classiques
ou quantiques. Dans cette thèse, nous nous concentrerons sur le cas quantique,
en particulier les gaz de fermions sans interaction seront les principaux systèmes
physiques d’intérêt. Les avantanges et les limites des fermions sans interaction
proviennent de leur simplicité, celle-ci permet des calculs exacts, alors qu’ils
sont soumis au principe d’exclusion de Pauli [16] qui induit des corrélations non
triviales entre les particules.

À cet égard, une application intéressante de la théorie des matrices aléatoires
réside dans sa relation avec les fermions sans interaction [17]. Pour certains
potentiels spécifiques, l’état fondamental des fermions sans interaction est lié
aux propriété statistiques des valeurs propres de certains ensembles de matrices
aléatoires spécifiques. D’un côté, les fermions sans interaction sont soumis au
principe d’exclusion de Pauli, qui tend à les éloigner. Cela se manifeste par
le fait que la fonction de densité de probabilité P (x1, ..., xN) d’un gaz de N
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fermions s’annule lorsque deux fermions occupent la même position xi = xj.
D’autre part, il est bien connu que les valeurs propres des matrices aléatoires
ont tendance à se repousser les unes les autres, imitant dans certains cas les pro-
priétés statistiques des fermions sans interaction. Ces liens ont permis d’étudier
les fermions piégés sans interaction en utilisant les propriétés des matrices aléa-
toires.

Pour les fermions piégés sans interaction qui peuvent être mis en correspon-
dance avec un ensemble de matrices aléatoires, les corrélations locales présentent
un caractère statistique universel. L’universalité signifie ici que les fonctions de
correlation ont la même limite pour si nombre de fermions est grand (ou si les
matrices sont grandes) et ce indépendament du potentiel. À ce stade, il est
naturel de se demander si ces propriétés subsistent pour des potentiels pour
lesquels il n’existe pas de relation entre les fermions et les matrices aléatoires,
ou si la température est non nulle. Ces questions ont été abordées à l’aide de
différentes méthodes, notamment l’approximation de la densité locale [18, 19],
où le gaz fermionique est considéré comme localement invariant par translation.

Dynamique hors équilibre. Une première méthode pour mesurer les
statistiques d’équilibre fut donnée par Johnson [20] lorsqu’il mesura les fluctu-
ations du courant électrique induites par les fluctuations thermiques dans un
conducteur à l’équilibre thermique. Plus tard, l’intérêt pour les fluctuations de
courant a été renouvelé lorsqu’il a été constaté qu’un type de bruit supplémen-
taire apparaissait lorsque le système était mis dans un état hors équilibre. Cet
effet a été baptisé "shot noise". L’étude du shot noise, qui est une propriété
statistique hors équilibre, a été menée par Landauer et Büttiker [21, 22], elle
suppose que le système étudié se trouve dans un état stationaire hors équilibre,
typiquement un état avec des courants non nuls. C’est donc naturellement que,
dans les années qui ont suivi, la question de la dynamique hors équilibre s’est
posée : Comment un tel état stationaire hors équilibre est-il atteint à partir
d’un certain état initial ?

Les quenches quantiques constituent un outil intéressant pour répondre à
cette question [23–25]. Un quench commence par la préparation d’un système
dans l’état d’équilibre d’un hamiltonien donné Ĥ0, ensuite l’hamiltonien est
brusquement remplacé par un autre hamiltonien Ĥ. Selon la nature du quench,
la dynamique à grande échelle peut aboutir à un état d’équilibre, un état sta-
tionaire hors équilibre ou un état avec des oscillations persistantes. La na-
ture du quench peut varier, les exemples typiques étant un changement dans
l’interaction [26], ou d’un potentiel [24]. Un quench est appelé "partition-
ing protocol" lorsque deux systèmes initialement indépendants avec des états
différents sont réunis au moment initial, ce qui induit un flux de particules
d’un système à l’autre [27]. En particulier, le formalisme de Landauer-Büttiker
émerge lorsqu’on considère un protocole de partition avec une impureté semi-
réfléchissante à la jonction des deux demi-systèmes [28–30].

Systèmes intégrables et Quenches quantiques. De façon grossière, les
systèmes intégrables sont des systèmes dont les quantités conservées sont plus
nombreuses que les degrés de liberté. Ces systèmes se sont avérés utiles dans le
contexte des quenches quantiques car ils ont permis, dans certains cas, d’obtenir
des résultats exacts [31–33]. Il semble qu’au lieu de s’équilibrer à grand temps
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vers un état respectant l’ensemble de Gibbs, les systèmes intégrables relax-
ent vers des états stationaire décrits par l’ensemble de Gibbs généralisé [34],
ce qui conduit à des propriétés thermodynamiques différentes. En outre, les
systèmes intégrables ont récemment conduit à l’émergence d’une théorie hydro-
dynamique pour de tels systèmes appelée hydrodynamique généralisé (GHD)
[35, 36]. Etant une théorie hydrodynamique, l’hydrodynamique généralisé n’est
valable que dans la limite d’Euler, c’est-à-dire lorsque les propriétés intensives
varient lentement, à la fois dans l’espace et dans le temps. La GHD a été
généralisée aux systèmes avec un écart léger à l’intégrabilité, cela peut se faire
en ajoutant; un potentiel [37], la perte de particules [38], ou des interactions
inhomogènes [39].

Le manuscript est organisé de la façon suivante.
Dans le premier chapitre, j’introduis des notions générales de matrices

aléatoires. Une description de l’ensemble unitaire gaussien (GUE), introduit
pour la première fois par Wigner, est donnée sous la forme d’une matrice her-
mitienne avec des coefficients aléatoires complexes indépendants suivant une dis-
tribution gaussienne. L’ensemble de Wishart Laguerre (WL), également connu
sous le nom d’ensemble unitaire de Laguerre (LUE), est également présenté. Il
a été découvert à l’origine par Wishart dans le cadre de l’étude des statistiques
en tant que matrice de covariance. Ces deux ensembles sont liés au groupe
unitaire (d’où leur nom) car leur distribution de probabilité est invariante par
conjugaison unitaire. Le changement de variables des coefficients de la matrice
aux valeurs propres induit un jacobien égal à un déterminant de Vandermonde,
donné par detλj−1

i =
∏
i<j

(λi − λj). Par conséquent, les valeurs propres ne sont

pas des variables indépendantes ; au contraire, elles sont corrélées et ont ten-
dance à se repousser. En outre, nous discutons du fait que certains ensembles
de RMT (y compris GUE et WL) ont la propriété intéressante d’appartenir
à la classe des processus ponctuels déterminants (DPP), un type de processus
ponctuel aléatoire pour lequel les corrélations à n points peuvent s’écrire comme
le déterminant d’une fonction à deux points appelée noyau.

Une description de la méthode du gaz de Coulomb est ensuite donnée. Cette
méthode permet de faire des prédictions sur les grandes matrices en faisant cor-
respondre les valeurs propres à un gaz chargé unidimensionnel avec une répul-
sion de Coulomb bidimensionnelle. Nous expliquons comment les ensembles
unitaires présentés peuvent être mis en correspondance avec des fermions sans
interaction piégés, dont les corrélations peuvent ainsi être obtenues à partir du
noyau K(x, x′) mentionné ci-dessus. Nous discutons comment, dans la limite
des grandes matrices, le noyau présente des statistiques locales similaires pour
les deux ensembles de matrices aléatoires. La fonction de Wigner est ensuite
définie, elle fournit une description de l’espace de phase en physique quantique
tout en tenant compte du principe d’incertitude d’Heisenberg, ce qui empêche
d’en faire une densité de probabilité dans l’espace de phase. L’approximation
de la densité locale est un ansatz de la fonction de Wigner qui donne le noyau
dans la limite d’un grand nombre de fermions, même pour les potentiels de
piégeage qui n’ont pas de contrepartie en théorie des matrices aléatoires. Enfin,
nous introduisons la "Full Counting Statistic" (FCS), c’est-à-dire le statistique
du nombre de fermions dans un intervalle donné. Nous discutons de la manière
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dont elle peut être obtenue à l’aide de méthodes telles que les transcendants
de Painlevé ou dans le régime de grande déviation par l’approche du gaz de
Coulomb.

Dans la dernière section du premier chapitre, je présente les résultats de mon
premier article [1]. Il s’agit du calcul de la probabilité d’un trou de taille R au
centre d’un gaz de fermions sans interaction dans un piège harmonique de di-
mension d. Pour ce faire, on utilise la décomposition angulaire pour se ramener a
un problème unidimensionel exprimé en terme d’ensemble de Wishart-Laguerre.
Cette probabilité est étudiée pour différents régimes et les résultats sont mis en
correspondance. Dans le régime des trous microscopiques, notre résultat est en
accord avec les tests numériques précédents. En outre, nous découvrons une
relation non triviale entre un produit de déterminants de Fredholm du noyau
de Bessel et un déterminant de Fredholm de l’extension d-dimensionnelle du
noyau sinusoïdal (sine kernel).

Dans le deuxième chapitre, nous nous intéressons à la dynamique hors
équilibre des fermions sans interaction. Nous introduisons la notion de quench.
Ensuite, les principaux aspects de la dynamique hors équilibre sont briève-
ment passés en revue dans le cas simple des fermions libres et du modèle de
Lieb-Liniger, c’est-à-dire un gaz de Bose dont les particules interagissent par
l’intermédiaire d’un potentiel delta de Dirac. Nous présentons également le for-
malisme de Landauer-Büttiker, qui décrit les fluctuations de courant à travers
une impureté dans un état stationaire hors équilibre. Ensuite, dans le cas d’un
partitioning protocol, nous examinons comment le système se comporte dans la
limite de la grande taille ℓ et de grand temps t. En particulier selon la façon
dont les deux limites sont considérés, cela peut conduire à un GGE ou à un état
non stationaire hors équilibre avec des courants. Typiquement, le système se
détend vers un GGE si les particules rebondissent de nombreuses fois aux bords
du système, c’est-à-dire lorsque t

ℓ
≫ 1, tandis qu’un état non stationaire hors

équilibre avec des courants est obtenu lorsque les frontières ne jouent aucun
rôle, c’est-à-dire si t

ℓ
≪ 1.

Dans les sections suivantes, nous présentons des résultats provenant prin-
cipalement de mes deuxième et troisième articles [2, 3]. Nous étudions un
protocole de partitionnement pour des fermions sans interaction avec un défaut
delta de Dirac V (x) = gδ(x) entre les deux sous-systèmes. Comme les fermions
n’interagissent pas, l’étude des corrélations peut être réduite à l’étude d’une
généralisation temporelle du noyau. A partir de ce quench, en fonction des
échelles de temps, nous montrons comment le système atteint soit un GGE, soit
un état stationaire hors équilibre. En outre, nous discutons de la dynamique
et donnons une formule exacte pour le noyau à tout moment, et étudions sa
décroissance à grand temps, qui suit une loi de puissance. Nous considérons
également la limite de basse température initiale, ce qui nous permet de com-
parer le courant résultant dans le NESS aux résultats précédents obtenus dans
le cadre de la théorie des champs conformes (CFT). Le courant que nous trou-
vons est différent en raison de la nature du défaut delta de Dirac, qui n’est pas
un défaut conforme.

Nous donnons ensuite une généralisation du protocole de partitionnement



Résumé 13

avec un défaut Dirac delta à un défaut général à support compact V (x) car-
actérisé par une matrice de diffusion et de possibles états liés. De plus, nous
étendons nos résultats aux corrélations spatio-temporelles du NESS qui est at-
teint en temps long. L’un de nos résultat les plus intéressant, est que nous
avons trouvé des corrélations non-locales de part et d’autre de l’impureté. Il
s’agit de corrélations entre des points symétriques éloignés de l’impureté, c’est-
à-dire lim

t→∞
K(x,−x) ̸= 0, et elles ont une interprétation physique en termes de

transmission et reflection à travers l’impureté.
Enfin, dans la dernière section, nous donnons une brève description d’une

généralisation de la GHD qui permet de décrir l’effet du défaut. De manière
surprenante, cette généralisation de la GHD ne permet pas de reproduire les
corrélations non-locales lim

t→∞
K(x,−x) que nous avons trouvé. Nous proposons

donc une nouvelle limite d’Euler de la transformée de Fourier de la fonction de
Wigner qui, associée à la généralisation de la GHD mentioné ci-dessus, permet
de reproduire les corrélations non locales manquantes.

Dans le troisième chapitre, nous introduisons tout d’abord un partitioning
protocol pour les fermions sur un réseau. Le système est préparé de façon à ce
que seul le demi-espace gauche soit rempli. En conséquence, un front quantique
apparaît, et se propage de gauche à droite. Il est intéressant de noter qu’en
temps long, les corrélations au bord du front se révèlent être similaires aux
corrélations au bord du GUE, à savoir les statistiques d’Airy [40]. Ce résultat
est une conséquence directe du fait que la vélocité v(k) pour la longueur d’onde k
sur le réseau a un maximum global v(k) ∼ sin(k). Par conséquent, dans le cas de
fermions libres dans le continu, comme la vitesse n’a pas d’extremum v(k) = k,
nous ne nous attendons pas à l’émergence à grande échelle de statistiques d’Airy
au bord du front quantique.

Dans ce chapitre, cependant, nous discutons d’un résultat non publié. Nous
proposons un partitioning protocol différent qui conduit à l’émergence de statis-
tiques d’Airy au bord du front quantique. Pour ce faire, nous modifions la
condition initiale. Au lieu d’une condition initiale en escalier, les fermions
sont préparés dans l’état fondamental du potentiel de loi de puissance inverse
V (x) = c

|x|γ . Ensuite, nous désactivons le potentiel et laissons les fermions
évoluer librement. L’étude de la limite semi-classique de la fonction de Wigner
dans l’état initial permet d’observer l’émergence de statistiques d’Airy au bord
du front quantique.

Veuillez noter que les équations encadrées correspondent à de nouveaux ré-
sultats obtenus au cours de cette thèse.
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Chapter 1

Fermions Equilibrium Statistics
and Random Matrix Theory

1.1 Point Processes and Random Matrix Theory

1.1.1 Point Processes and Correlations

At first, random matrices look like simple objects, consisting of matrices filled
with random coefficients. However, they unveil a plethora of phenomena, the
most notable being the strong coupling of their eigenvalues. Specifically, the
eigenvalues are not independent random variables and tend to repel each other.
This property was what drew Wigner’s attention to them, as it reproduces the
level spacing of heavy nuclei spectra.

To appreciate the significance of the eigenvalue behavior, we must first grasp
the concept of point processes. A point process is a set of points together with a
measure or a density function defined on the space of configurations. In the case
of a random matrix ensemble of size N , the eigenvalues represent an example
of such a point process. More precisely, we say it is an N -point point process
because the number of point is fixed to N .

The simplest type of point process is one where the points occur indepen-
dently from each other. This is known as a Poisson point process [41], where
the number of points ND in a region D of space follows a Poisson distribution
with parameter λ

Pr(ND = n) =
λn

n!
e−λ. (1.1)

Given a one dimensional point process, we are interested in the spacing
distribution between two consecutive points. For Poisson process it is well
known that this distribution follows

P (S) =
1

D
e−

S
D , (1.2)

with D the mean spacing between 2 consecutive points. Now, we can compare
this with the spacing distribution of nucleus spectrum, such a typical spacing
is plotted in Fig. 1.1. The figure clearly shows that the eigenvalues repel each
other, as evidenced by the spacing distribution canceling at zero. This means
that the eigenvalues cannot be described by a Poisson process with the spacing
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Figure 1.1: Typical level spacing distribution of nucleus spec-
trum eigenvalue [8]. S is the spacing and D its mean value.

distribution given by Eq. (1.2). Instead, the figure suggests that the distribution

P (s) = 4
S

D
e−2 S

D (1.3)

fits the data well. It is the search of a point process that would exhibit this
property that led Wigner to RMT. The distribution Eq. (1.3) is now commonly
referred to as the Wigner surmise.

This is the main ingredient that pushed Wigner towards the study of RMT
when he was working on the spectrum of heavy nuclei. Let us now present the
Gaussian Unitary Ensemble (GUE) that was first introduces by Dyson, [42], we
will do this following the RMT book of Mehta [43].

1.1.2 Gaussian Unitary Ensemble

The GUE is defined on the space of N × N Hermitian matrices by the prob-
ability P (M)dM that the matrix M belongs to the volume element dM =∏
i≤j

Re[dMij]
∏
i<j

Im[dMij] with the following conditions (in the following, bold

characters will indicate vectors or matrices)

• The probability distribution is invariant under unitary conjugation, hence
the name of the ensemble

P (M′)dM′ = P (M)dM, (1.4)
M′ = UMU†, U ∈ U(N), (1.5)

where U is unitary.

• Linearly independent components of M are also statistically independent.
Which implies that P (M) is a product of functions, each of which depends
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on a single variable

P (M) =
∏
i≤j

f
(0)
ij (Re[Mij])

∏
i<j

f
(1)
ij (Im[Mij]). (1.6)

A more intuitive definition of GUE is given by

M =
1

2
√
2α

(X+XT ) +
i

2
√
2α

(Y −YT ), (1.7)

where T is the transpose of a matrix, and X,Y being two N × N matrices
for which each entries are Gaussian i.i.d random variables N (0, 1). As each
upper diagonal entry of the matrix follows independent Gaussian laws (real
or imaginary, and with different variances depending on them being on the
diagonal) the probability distribution turns out to simplify to

P (M) ∼ e−α2TrM2

. (1.8)

Since the Lebesgue measure is invariant under unitary conjugation, the density
probability is also invariant.

Eigenvalue distribution. Let us focus our attention on point processes.
Indeed, the matrices of the GUE are Hermitian hence they can be diagonalised
as M = UDU† with real valued eigenvalues D = diag(λ) and unitary change of
basis U. The unitary matrix U (or eigenvector matrix) and the eigenvalues are
random variables. Because of the fundamental properties of the GUE, Eq. (1.4),
and (1.6), U can be shown to be independent from the eigenvalues. Additionally,
it is identically distributed on the space of unitary matrix U(N), that is, it
follows the Haar measure. On the other side, the eigenvalues give an example
of a point process. If on one side, the entries of the matrix are independent, on
the other side, the eigenvalues are strongly correlated random variables. The
joint probability distribution function (JPDF) of the eigenvalues PGUE(λ) can
be found by integrating over the uniform Haar distribution of U. The change
of variable M → {λ,U} produces a Jacobian factor which after some rows and
column manipulations transforms into a squared Vandermonde determinant.
Indeed the infinitesimal matrix can be written

dM = UdM′U†, dM′ = dHD−DdH+ dD, (1.9)

where dH = U†dU. The Jacobian involved from dM to dM′ is equal to one.
However, writing the coefficients dM′

i,j = dHi,j(λj − λi) + dλiδij, and taking
into account the fact that the off diagonal entries are complex, we see that
the Jacobian for M′ → {λ,U} is the square of a Vandermonde determinant
| det J | ∼ ∏

i<j

(λi − λj)
2. Hence one can show that the JPDF is given by

PGUE(λ) =
1

ZGUE
N

∏
i<j

(λi − λj)
2e

−α2
∑
i
λ2
i
, (1.10)

where ZGUE
N is a normalisation constant. Therefore, we see that the eigenvalues
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repel each other as the JPDF decreases to zero when two eigenvalues are brought
close to each other. One might ask for a more intuitive understanding of this
repulsion. Let us consider the case where two eigenvalues are at the same
position. In this case, instead of having N eigenspaces with one eigenvalue, we
have N − 2 eigenspaces with one eigenvalue, and one with two of them. This
restricts U to be sampled in a sub-manifold of the space of the unitary group
U(N) with a lower dimension than the unitary group, that is a null-measure
subspace with respect to the Haar measure. Hence the probability of having
two eigenvalues at the same position is zero which is consistent with Eq. (1.10).

Generalisation. The GUE is just one example of a family of random matrix
ensemble used in nuclear physics to describe systems with different symmetries.
In the 60’s, Dyson classified these ensembles according to the type of symme-
try they describe [42]. The GUE, for instance, corresponds to Hamiltonians
with broken time-reversal symmetry, such as those in the presence of magnetic
fields. However, if one assumes that the system is time-reversible, two addi-
tional ensembles arise depending on the total spin of the system. If the spin
of the nucleus is an integer (i.e., if it is a boson), the matrices representing the
Hamiltonian are required to be symmetric. On the other hand, if the spin is a
half-integer (i.e., if it is a fermion), the matrices become quaternionic. These
ensembles have a probability distribution that is invariant under conjugation
with elements of the orthogonal group O(n) (in the case of integer spin) and
the symplectic group Sp(2n,R) (in the case of half-integer spin). This is in con-
trast to the invariance with respect to the unitary group characteristic of GUE
(Eq. (1.4)). These resulting ensembles are known as the Gaussian Orthogonal
Ensemble (GOE) and the Gaussian Symplectic Ensemble (GSE), respectively.
Similarly to the GUE, these ensembles exhibit eigenvalue repulsion, as the joint
probability density function contains a term

∏
i<j

|λi − λj|β, where β = 1 for the

GOE, β = 4 for the GSE, while we already saw that β = 2 for the GUE (Eq.
(1.10)).

Since the beginning, we have focused on the link with nuclear physics. How-
ever, the main reason why we are interested in RMT is because some matrix
ensembles can be mapped to the statistics of trapped spinless noninteracting
fermions. In particular we will see latter that the GUE of size N is equivalent
to N non interacting fermions in a harmonic trap at zero temperature.

1.1.3 Wishart-Laguerre Ensemble

The Wishart-Laguerre ensemble (WL) is another random matrix ensemble [43,
44]. They were first introduced as covariance matrix by Wishart and play a role
for Principal Component Analysis (PCA) a method used in statistics for data
compression. The WL matrix is defined as

W = X†X, (1.11)

where X is an M × N complex matrix with M ≥ N and X† is the adjoint
matrix of X. Note that if X represent M sampling of an N dimensional centered
random variable X⃗, then W is the empirical covariance between the N entries of
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X. It is Hermitian, and diagonalisable with real positive eigenvalues. The PCA
was introduced by Pearson [45]. It results from the extraction of the largest
eigenvalues of W together with their corresponding eigenvectors. This gives
information about how X⃗ typically spreads.

In order to define the WL ensemble we need the entries of the matrix X
to be independent, identical, centered Gaussian random variables with variance
1√
b
. Without loss of generality, this is equivalent to

P (X) ∼ e−bTrX†X. (1.12)

The measure is also different here as the Hermitianity condition of GUE matrices
has been relaxed, it is given by dX =

∏
i,j

dXij

Eigenvalue distribution. The eigenvalues are real positive and they form
a point process. Similarly to the case of the GUE, the change of variable from
the matrix entries to the eigenvalues introduce a Jacobian which is equal to a
Vandermonde determinant. Hence the eigenvalues repel each other and they
obey the following JPDF

PWL(λ) =
1

ZWL
M,N

∏
i<j

(λi − λj)
2
∏

i,j≤N

λM−N
i e

−b
∑
i
λi

, (1.13)

where ZWL
M,N is a normalisation constant. Similarly to the case of the GUE, we

will see that the WL eigenvalues can be mapped to the ground state of non
interacting fermions in a potential V (x) = Ax2 + B

x2 .
Generalisation. Similarly to the generalisation of GUE to GOE and GSE,

the WL ensemble can be generalised to include real or quaternionic X matrices
[43]. In that case, the ensemble studied in this section is renamed Laguerre
Unitary Ensemble (LUE) and the two others are called respectively Laguerre
Orthogonal Ensemble (LOE) and Laguerre Sympleptic Ensemble (LSE).

The case M < N is called inverse Wishart-Laguerre, it has M strictly posi-
tive eigenvalues and N −M null eigenvalues. The JPDF is the same as (1.13),
but reversing M and N [46, 47].

1.1.4 Density, Correlation Function and the Coulomb Gas

1.1.4.1 Density and Correlations

In this section, we would like to focus on the eigenvalue density. It turns out
that in the large N limit the density will converge towards its mean value.
We also expect this mean value to have a limit shape when N is taken large.
Another reason for looking at this limit is that, because of the Vandermonde
repulsion, the mean density exhibits oscillations at finite N which makes it
harder to compute. We start by introducing the density function

ρ(λ,N) =
1

N

∑
i

δ(λ− λi). (1.14)
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This function of λ is a random variable, therefore, by defining the mean as
⟨...⟩ =

´ ∏
i

dλi...P (λ), where P (λ) is the eigenvalue JPDF of the studied matrix

ensemble (whether it is GUE, as given in Eq. (1.10), or WL, as given in Eq.
(1.13)), we obtain the mean density

ρ̃(λ,N) = ⟨ρ(λ,N)⟩ . (1.15)

Note that this is also the marginal distribution of the JPDF, i.e.

ρ̃(λ,N) =

ˆ N∏
i=2

dλiP (λ, λ2, ..., λN), (1.16)

such that the mean density is normalised to unity as
´
dλρ̃(λ,N) = 1.

A similar object for the study of correlations is the two point density

ρ(λ, λ′, N) =
1

N(N − 1)

∑
i ̸=j

δ(λ− λi)δ(λ
′ − λj), (1.17)

and its mean, which is a two variables marginal distribution

ρ̃(λ, λ′, N) = ⟨ρ(λ, λ′, N)⟩ =
ˆ N∏

i=3

dλiP (λ, λ
′, λ3, ..., λN). (1.18)

The two point density is normalised as
´
dλdλ′ρ̃(λ, λ′, N) = 1. This is related

to the two points correlation function R2(λ, λ
′) = N(N − 1)ρ̃(λ, λ′, N).

More generally, we introduce the n-point correlation function, which will be
a central object to this thesis

Rn(λ1, ..., λn) =
N !

(N − n)!

ˆ N∏
i=n+1

dλiP (λ1, ..., λn, λn+1, ..., λN). (1.19)

It can also be written as the mean of an n-point random variable as for the one
and two points cases.

1.1.4.2 Coulomb Gas Method

The Coulomb gas for GUE. Now we introduce a useful method to understand
the behaviour of those point processes in the largeN limit. This method is based
on an analogy with a gas of particles [44]. Additionally, in this analogy, the large
N limit translates into a low temperature limit. Indeed, one can rewrite (1.10)
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as

PGUE(λ) =
1

ZGUE
N

e−EN (λ), (1.20)

EN(λ) = α2
∑
i

λ2i −
∑
i ̸=j

ln |λi − λj|, (1.21)

ZGUE
N =

ˆ ∏
i

dλie
−EN (λ). (1.22)

This way we interpret GUE as the Boltzmann weight of one dimensional parti-
cles in the canonical ensemble at inverse temperature one. The effective energy
EN(λ) is the sum of two contributions, a harmonic confinement and the two
dimensional Coulomb repulsion between two charges of the same sign (i.e. a
logarithmic repulsive potential).

Large N limit. We expect the λi to converge towards a limit density at
large N . The eigenvalues are rescaled as follows {xi} = { α√

N
λi} such that all

terms of the effective energy EN(λ) are of the same magnitude. In order to
describe our problem as a functional of this density, we rescale the one and two
points density function as

ρ(λ,N) =
α√
N
n(

α√
N
λ), n(x) =

1

N

∑
i

δ(x− xi), (1.23)

ρ(λ, λ′, N) =
α2

N
n(

α√
N
λ,

α√
N
λ′), (1.24)

n(x, x′) =
1

N(N − 1)

∑
i ̸=j

δ(x− xi)δ(x
′ − xj). (1.25)

Here n(x) and n(x, x′) are normalised dimensionless functions and we are look-
ing for their mean values in the large N limit. In term of those functions, the
effective energy in Eq. (1.20) can be written

EN(λ) =N
2

ˆ
R
dxn(x)x2 − N(N − 1)

2
ln(

N

α2
) (1.26)

−N(N − 1)

¨
R2

dxdx′n(x, x′) ln |x− x′|. (1.27)

The two-point function can be written in terms of the one-point function
as n(x, x′) = N

N−1
n(x)n(x′) − 1

N−1
n(x)δ(x − x′) such that in the large N limit

keeping only the first order contributions, we obtain the effective energy as a
functional of the one-point function n

PGUE(λ) =
1

ZN

e−N2E[n], (1.28)

E[n] =

ˆ
R
dxn(x)x2 −

¨
R2

dxdx′n(x)n(x′) ln |x− x′|+ o(1),
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where ZN = ( N
α2 )

−N2

2 ZGUE
N and ZGUE

N is now a path integral over density func-
tions. For finite N the mean density was given by the minimisation of the free
energy of our system. However, now that we rescaled the problem we see that
the inverse temperature is N2 such that we only need to understand the zero
temperature problem as N → ∞. Therefore, we only need to minimize the en-
ergy or identically solve the saddle point equation for the path integral ZGUE

N .
The functional minimisation with respect to n gives

δ[E[n] + µ(
´
n− 1)]

δn
|n=n∗ = 0, (1.29)

where we enforce normalisation of the density with the Lagrange multiplier µ,
while n∗ is the solution of the equation. This leads to the following integral
equation

2

ˆ
R
dx′n∗(x′) ln |x− x′| = µ+ x2, x ∈ I, (1.30)

where I is the support of n∗. It is easier to work with the derivative of this
equation with respect to x

 
R
dx′

n∗(x′)

x− x′
= x, x ∈ I, (1.31)

where
ffl

is the Cauchy principal value integral. The question is how to invert
this equation in order to get the optimal density n∗. Fortunately, a formula
introduced by Tricomi [48] allows to solve such singular equations. This formula
concerns the slightly more general equation

 
R
dx′

f(x′)

x− x′
= g(x), x ∈ [a, b], (1.32)

with a general source function g(x), and f(x) the unknown of the equation with
compact support [a, b]. The solution is then given by

f(x) =
1

π
√
(b− x)(x− a)

(
c−

 b

a

dx′

π

√
(b− x′)(x′ − a)

x− x′
g(x′)

)
, (1.33)

where c =
´ b

a
dxf(x) is a constant. In our case, the c = 1 to ensure normalisa-

tion, and the source function is g(x) = x. With this particular source function,
the principal value can be computed exactly. The system being symmetric we
expect that a = −b. We also expect the density n∗ to be continuous and to
cancel at the edges of its support, hence n∗(a) = n∗(b) = 0. This constraints
allows to completely determine the solution which yields

I = [−
√
2,
√
2], (1.34)
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and, the eigenvalue density converges towards the celebrated Wigner semicircle
law plotted in Fig. 1.2,

ρ̃(λ,N) ≃
N→∞

α√
N
n∗(

α√
N
λ), n∗(x) =

1

π

√
2− x21I(x), (1.35)

where 1I(x) is the indicator function on I. As expected, the eigenvalues tend
to distribute near the center of the potential. However, the confinement effect is
limited by the Coulomb repulsion such that the eigenvalues spread on a region of
size ∼

√
N . It should be noted that the density at the edges x = ±

√
2 vanishes

as a square root, which is a universal feature of random matrix models at their
edges, known as soft edges. This phenomenon occurs when the potential is
continuous at the edge, as is the case in Eq. (1.28) where the potential is simply
x2 and smooth everywhere. However, in later examples, we will encounter
different regimes which we will call hard edges.

Figure 1.2: For the GUE the one particle density distribution takes
in the large N limit the form of the Wigner semicircle (1.35), which

has a finite support [−λedge, λedge] with λedge =
√
2N
α .

The Coulomb gas for Wishart-Laguerre ensemble. This Coulomb
gas method is in fact way more general than what we saw on the GUE and it
can be implemented for many matrix ensembles including GOE, GSE, and LUE
ensembles. Here we give an outline of the path and result when this approach
is applied to the WL ensemble.

For simplicity, we fix the constant defined in (1.1.3) to b = 1. The equivalent
of equation (1.20) would imply an effective potential energy of the form

EM,N(λ) =
∑
i

(λi − (M −N) ln(λi))−
∑
i ̸=j

ln |λi − λj|. (1.36)
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Now we want to take the large N while keeping M ≥ N . We also want to keep
M proportional to N by defining c = N

M
, otherwise if M ∼ N1+ϵ, ϵ > 0 the

logarithmic part of the potential dominates the effective energy Eq. (1.36).The
correct rescaling of the eigenvalues that will ensure all terms of the effective
energy EM,N(λ) are of same magnitude is {xi} = {λi

N
}. This leads to the

redefinition of the problem as

PWL(λ) =
1

ZN,c

e−N2E[n], (1.37)

E[n] =

ˆ
R+

dxn(x)x− (
1− c

c
)

ˆ
R+

dxn(x) ln(x) (1.38)

−
¨

(R+)2
dxdx′n(x)n(x′) ln |x− x′|+ o(1), } (1.39)

with ZN,c a renormalisation constant. Now we take the large N limit, this is
equivalent to the low temperature limit such that we have to minimize the pre-
vious energy E[n]. This minimisation is encoded in Eq. (1.29), when expanded
it yields

2

ˆ
R+

dx′n∗(x′) ln |x− x′| = µ+ x− (
1− c

c
) lnx, x ∈ I, (1.40)

where µ is the Lagrange multiplier associated with the normalisation constraints´
dxn∗(x). Deriving this equation with respect to x gives

 
R
dx′

n∗(x′)

x− x′
=

1

2
− (

1− c

2c
)
1

x
, x ∈ I, (1.41)

Similarlly to the case of the GUE Coulomb gas, we use Tricomi formula Eq.
(1.33)

n∗(x) =
1

π
√
(b− x)(x− a)

(
1−

 b

a

dx′

π

√
(b− x′)(x′ − a)

x− x′

[
1

2
− 1− c

2c

1

x′

])
(1.42)

Fortunately, this Cauchy principal value can be computed explicitly. Addition-
ally, we expect the density n∗(x) to be a continuous function and to vanish at
the edge of its support [a, b]. This gives the support

I = [ξ−, ξ+], ξ± = (
1√
c
± 1)2. (1.43)

and, the density distribution at large N and fixed c is given by

ρ̃(λ,N) ≃
N→∞

1

N
n∗(

λ

N
), n∗(x) =

1

2πx

√
(x− ξ−)(ξ+ − x)1I(x). (1.44)

This is the celebrated Marchenko-Pastur distribution [49]. As in the case of
the GUE Coulomb gas the interpretation is simple. The eigenvalues tend to
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distribute near the minimum of the potential λmin = N 1−c
c

. However, because
of the Coulomb repulsion they spread on a region of size ∼ N . In the case
M = N or the limit c = 1 we have ξ− = 0, ξ+ = 4, and the optimal density is

n∗(x) =
1

2π

√
4− x

x
. (1.45)

The density exhibits a square root vanishing at x = 4, indicating a soft edge
behavior. However, at x = 0, the density diverges as the inverse of a square
root, indicating a hard edge. This is due to the fact that the logarithmic term
in (1.36) vanishes when M = N , leaving only a linear potential with a hard wall
potential, encoded in the fact that the eigenvalues have to be strictly positive.
We will see later that correlations have universal behaviour at such different
edges. Meanwhile for 1 > c > 0, i.e. M > N , the gas has simply two soft edges.

Figure 1.3: The Coulomb gas density for the Wishart-Laguerre
ensemble with c = 1, see Eq. (1.45). Left edge is a hard edge
where eigenvalues accumulates as ∼ 1√

x
. The right edge is a soft

edge with a ∼ √
xedge − x behaviour.

Generalisation. Here, we have extracted the one particle mean density
using the Coulomb gas method, we want to add few things.

• This one particle density can be extracted from various methods some
of which will be presented latter. This includes Orthogonal Polynomials,
Stieltjes Transform self-equation [50, 51], and semi-classical approxima-
tion. Orthogonal polynomials and the Stieltjes transform are commonly
used objects in the study of RMT. The semi-classical approximation, is a
well-known approximation of quantum mechanics, it can be applied as a
consequence of the fact that GUE can be mapped to fermionic systems.

• From the one particle density much information can be extracted. The
mean of the maximum (resp minimum) eigenvalue ⟨λmax⟩ (resp ⟨λmin⟩)
corresponds to the edge of the density. The mean eigenvalue for large
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Figure 1.4: The Coulomb gas density for the Wishart-Laguerre
ensemble with c ̸= 0, see Eq. (1.44). It has two soft edges where

the density behaves as ∼
√
|xedge − x|.

N is given by ⟨λ⟩ =
´
dλλρ̃(λ,N). More generally the Coulomb gas

method gives access to all linear statistics i.e.
N∑
i=1

f(λi) where f is a given

function (see [52–54]). In the large N limit, this becomes equivalent to´
dλf(λ)n(λ), for example f(λ) = λn leads to the nth moment.

1.2 Noninteracting Fermions

1.2.1 Determinantal Point Process

The matrix ensembles introduced previously (the GUE and the LUE) have a
particular structure that is characteristic of a specific class of point processes,
namely Determinantal Point Process (DPP) [55]. Examples of DPP can be
constructed from the zeros of random series [56], or spanning trees on a graph.
In order for a point process to be a DPP, we need additional conditions.

Definition. For any DPP on R there exists a kernel K : R × R → R
verifying

∀n ≤ N, Rn(x1, ...xn) = det
1≤i,j≤n

K(xi, xj), (1.46)

where Rn is the correlation function defined as in (1.19). It is worth noting that
DPPs have a very restrictive structure that makes them amenable to many com-
putations. Specifically, all statistical information about a DPP can be extracted
from its kernel, making it a central object in the study of DPPs.

Additionally, it can be shown that if a kernel verifies the following three
conditions

• The kernel is trace-class: TrK = N ,
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• positive: ∀x1, ..., xN ∈ R det
1≤i,j≤N

K(xi, xj) ≥ 0,

• self-reproducing:
´
dyK(x, y)K(y, z) = K(x, z),

then it generates a point process with probability distribution P (λ1, ..., λN) =
1
N !

det
1≤i,j≤N

K(xi, xj). It is important to note that a determinantal point process

does not define uniquely a kernel because the correlation functions are invariant
under the transformation K ′(x, y) = f(x)K(x, y)f−1(y). The kernel is also as-
sociated to an integral operator on L2(R) defined as K̃[ϕ](x) =

´
dyK(x, y)ϕ(y).

This view of the kernel as a trace-class operator will lead us later to introduce
Fredholm Determinant. For now, let us just remark that points of DPP nat-
urally repel each other as a consequence of the fundamental property of DPP
(1.46).

Link with trapped fermions. Let us consider a simple example of DPP.
We consider N noninteracting spinless fermions in a one dimensional trapping
potential V . The system is described by the N body Hamiltonian

Ĥ =
N∑
i=1

p̂2i
2m

+ V (x̂i), (1.47)

where p̂i and x̂i are the momentum and position operators of the i-th fermions.
The Hamiltonian is just the sum of a single particle Hamiltonian. It is Hermitian
and therefore can be diagonalised. Let us write {ϵk, ϕk(x)} the corresponding
ordered energies and orthonormal eigenfunctions. Now the ground state wave-
function is given by the Slater determinant

ψN(x1, ..., xN) =
1√
N !

det
1≤i,j≤N

ϕj(xi), (1.48)

which corresponds to filling the N first level with one fermion following the
Fermi exclusion principle. In quantum mechanics, the probability distribution
is given by the squared modulus of the wave function, hence the JPDF is given
by

P (x1, ..., xN) = |ψN(x1, ..., xN)|2 =
1

N !
| det
1≤i,j≤N

ϕj(xi)|2. (1.49)

Now we rewrite the JPDF using the kernel K(x, y) in the following compact
manner

P (x1, ..., xN) =
1

N !
det

1≤i,j≤N
K(xi, xj), (1.50)

K(x, y) =
N∑
k=1

ϕ∗
k(x)ϕk(y), (1.51)

where ∗ is the complex conjugate. In order to show that we have an example
of DPP we need to verify the three conditions (1.2.1).
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• The trace condition results from the normalisation of the eigenfunctions

TrK =

ˆ
R
dx

N∑
k=1

|ϕk(x)|2 = N. (1.52)

• Positivity is obtained by writing the determinant of the kernel as a squared
modulus

det
1≤i,j≤N

K(xi, xj) = | det
1≤i,j≤N

ϕj(xi)|2 ≥ 0. (1.53)

• The self-reproducing property arises from the orthonormalization of the
eigenfunctions, as

ˆ
dyK(x, y)K(y, z) =

∑
k,k′≤N

ϕ∗
k(x)(

ˆ
dyϕk(y)ϕ

∗
k′(y))ϕk′(z) (1.54)

= K(x, z). (1.55)

This leads to the conclusion that trapped fermions is an example of DPP,
hence, the n-point correlations Eq. (1.19) can be computed from the kernel
Eq. (1.50) using the DPP definition Eq. (1.46). Note that for noninteracting
fermions, the DPP definition Eq. (1.46) can be obtained as a consequence of
Wick’s theorem [57]. Among those correlations, a particular case is the particle
mean density defined by ρ(x) = R1(x), which is normalised to N

ˆ
dxρ(x) = N (1.56)

and given by the kernel as

ρ(x) = K(x, x). (1.57)

For most potentials V (x), solving the eigenvalue problem and computing the
kernel or the density exactly is a challenging task. However, it can be achieved
for certain specific cases. We provide two examples below.

Harmonic trap and GUE. In the case of a harmonic potential

V (x) =
1

2
mω2x2, (1.58)

it is well known that the wave-functions are related to the Hermite polynomials
by

ϕk(x) =

(
α√
π2kk!

)1/2

e−
α2x2

2 Hk(αx), k ∈ N, (1.59)

whereHk(y) are the Hermite polynomials, and α =
√
mω/ℏ. Notice the conven-

tion, here the integers k start at zero, while it starts at one in Eq. (1.48). The
single particle energy levels are given by ϵk = (k+ 1

2
)ℏω. Now when computing
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the JPDF (1.49), the Gaussian factors get out of the determinant

P (x1, ..., xN) =
1

N !

N−1∏
i=0

α√
π2ii!

e
−α2

∑
i
x2
i | det

1≤i,j≤N
Hj−1(αxi)|2. (1.60)

We are left with the computation of a determinant composed of Hermite poly-
nomials. The N -th first Hermite polynomials constitute a basis for polynomials
of degree N − 1. This property allows with rows and columns manipulation
to translate the previous determinant to a Vandermonde determinant (up to a
constant)

det
1≤i,j≤N

Hj−1(αxi) ∼ det
1≤i,j≤N

xj−1
i =

∏
i<j

(xi − xj). (1.61)

In the end, the Gaussian factor from Eq. (1.60) together with the squared Van-
dermonde determinant reproduce Eq. (1.10), and the JPDF of the N fermions
is the same as the JPDF of GUE [19]

P (x1, ..., xN) = PGUE(λ1, ..., λN), {xi} ↔ {λi}. (1.62)

Meanwhile, the finite N kernel of this process is given by

K(x, y) = e−α2 x2+y2

2

N−1∑
k=0

α√
π2kk!

Hk(αx)Hk(αy) (1.63)

which, using the Christoffel-Darboux formula for orthogonal polynomial [43,
44], simplifies to

K(x, y) =
e−α2 x2+y2

2√
π2N(N − 1)!

HN(αx)HN−1(αy)−HN(αy)HN−1(αx)

x− y
. (1.64)

In that case, the density can be computed exactly in the large N limit,The
result matches with the semicricle law (1.35).

Potential V (x) = Ax2 + B/x2 on R+,∗ and LUE. Here we consider the
potential on the positive half line

V (x) =
b2

2
x2 +

a2 − 1
4

2x2
. (1.65)

For simplicity, we set m = 1, and ℏ = 1. In that case, the hard wall gives the
boundary condition ϕk(0) = 0, and one can find that the wave-functions are
related to the generalised Laguerre polynomials La

k of degree k and parameter
a by

ϕk(x) = cke
− b

2
x2

xa+
1
2La

k(bx
2), (1.66)

where k is a positive integer and ck =
√

2ba+1k!
(k+a)!

a normalisation constant. Their
eigenenergies are given by ϵk = b(2k + a + 1). Again, using properties of or-
thogonal polynomials one constructs the JPDF which contains a Vandermonde
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determinant

P (x1, ..., xN) =
1

Za,N

e
−b

∑
i
x2
i

N∏
i=1

x2a+1
i

∏
i<j

(x2i − x2j)
2, (1.67)

where 1
Za,N

is a normalisation constant. Making the change of variable {λi} =

{x2i } and a =M −N yields

P (λ1, ..., λN) =
1

2NZa,N

∏
i<j

(λi − λj)
2
∏

i,j≤N

λM−N
i e

−b
∑
i
λi

. (1.68)

This is the eigenvalue distribution of the WL ensemble, given by Eq. (1.13),
with the normalization constant ZWL

M,N matched to 2NZa,N .
Meanwhile, for finite N , the kernel of the process is given by

K(x, y) = (xy)a+
1
2 e−

b
2
(x2+y2)

N−1∑
k=0

2ba+1k!

(k + a)!
La

k(bx
2)La

k(by
2). (1.69)

Using the Christoffel-Darboux formula [43, 44], the kernel is reduced to

K(x, y) =
N !2ba(xy)a+

1
2 e−

b
2
(x2+y2)

(N + a− 1)!
(1.70)

× La
N−1(bx

2)La
N(by

2)− La
N(bx

2)La
N−1(bx

2)

x2 − y2
. (1.71)

Similarly to the case of GUE and the harmonic oscillator, the density can be
computed in the large N limit, which yields back the Marchenko-Pastur distri-
bution Eq. (1.44) if a is of order N or Eq. (1.45) if a is of order one.

We have seen that for some specific potentials, trapped fermions can be
mapped to random matrix models. Now it is time to evoke universal statistical
properties of RMT.

1.2.2 Statistical Universality

From here, an interesting point concerning RMT is that it locally exhibits uni-
versality in its statistics. This means that the local behavior of the system is
independent of the specific matrix ensemble being considered.

Bulk behaviour. For noninteracting fermions in the harmonic trap Eq.
(1.64), or in the potential V (x) = b2

2
x2 +

a2− 1
4

2x2 Eq. (1.70), in the bulk of the
density ρN(x), the interparticle distance ℓN(x) is defined as

ˆ x+ℓN (x)

x

dyρN(y) ≃ ℓN(x)ρN(x) ∼
1

N
, (1.72)

i.e. on average, one particle has to be found in the interval [x, x+ ℓN(x)]. Now
taking two generics x and y with typical distance of order ℓN(x). Then in the
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large N limit, it can be shown that the exact formulae Eq. (1.64) and (1.70) of
the kernels for noninteracting fermions in both traps that it converges towards
the sine kernel [17, 19, 43] as

K(x, y) ≃
N→∞

1

ℓ(x)
KSine(

x− y

ℓ(x)
), (1.73)

where ℓ(x) = 1
πNρN (x)

and the sine kernel is defined as

KSine(z) =
sin(z)

πz
. (1.74)

Eventually, through a more comprehensive study, it has been established that
this property can be extended to trapped fermions, even for systems that are
not directly equivalent to a random matrix ensemble. Later on, we will explore
a method that enables us to prove this universality in the context of trapped
fermions. Additionally, on the side of RMT similar eigenvalue correlation where
found to be universal [58] even for matrix ensembles that have no mapping to
noninterecting fermions.

Soft Edge behaviour. Now let us shift our focus to the statistics at the
edges of the GUE spectrum. In these regions, the interparticle distance becomes
large, and the equation Eq. (1.73) is no longer valid. Instead, we encounter a
different behavior characterized by

ˆ xedge

xedge−wN

dyρN(y) ≃
ˆ wN

0

dy
α√
N

√
2
√
2Ny

α
∼ 1

N
, (1.75)

with xedge =
√
2N
α

the positive edge of the spectrum, and let wN denote the
interparticle distance at the edge. In this regime, the interparticle distance is
constrained to be of the order of 1

N1/6 . Additionally, if we set

wN =
1√

2αN1/6
, (1.76)

it can be shown the kernel has the scaling limit

K(x, y) ≃
N→∞

KAi(
x− xedge
wN

,
y − xedge
wN

), (1.77)

with KAi the celebrated Airy kernel [59, 60]

KAi(x, y) =
Ai(x)Ai′(y)− Ai(y)Ai′(x)

x− y
, (1.78)

and Ai is the Airy function. This result is also valid at the soft edge of the
LUE. Intuitively, near the edge, if one linearizes the potential, the Schrödinger
equation leads to a differential equation whose solutions are Airy functions. This
result can be utilized to obtain finite N corrections to the one-point density,
revealing that the semicircle starts to oscillate and then exponentially decays
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after the edge. This behavior allows the matching of the infinite N density
which is singular (it has a discontinuity in the derivative) with a regular finite
N density.

Hard edges. For the LUE, the universality at the soft edge remains valid
if M = cN as N → ∞, where c is a strictly positive constant. However, if
M = N + a with a fixed a, then the two edges exhibit different behaviors. The
right edge remains a soft edge with the Airy kernel, while the left edge of the
spectrum approaches zero where the eigenvalues accumulate (see Fig. 1.3, 1.4),
and this edge is referred to as a hard edge. The typical interparticle distance
can be evaluated from the one-point density using the standard method

ˆ ℓN

0

dyρN(y) ∼
1

N
, ℓN ∼ 1√

N
, (1.79)

and the kernel has the scaling form

K(x, y) ≃
N→∞

2k2F
√
xyKBe

a (k2Fx
2, k2Fy

2), (1.80)

where kF =
√
2µ is the Fermi momentum and µ ≃ 2bN is the chemical potential

(i.e. the energy of the last eigenstate fulfilled). The Bessel kernel [61] is defined
using the Bessel function Ja as

KBe
a (b, b′) =

1

4

ˆ 1

0

dzJa(
√
bz)Ja(

√
b′z) (1.81)

=

√
b′J ′

a(b
′)Ja(b)−

√
bJ ′

a(b)Ja(b
′)

2(b− b′)
. (1.82)

Similarly, hard edges can also be found for noninteracting fermions in a hard
box, which corresponds to a system that has a related random matrix ensemble.
For each of this local universal kernels, formula (1.46), allows to recover local
correlation functions. We saw how, for certain random matrix ensembles, the
correlations in the bulk are governed by the sine kernel (1.73). Now, we want
to present an approximation that shows the presence of the sine kernel in the
bulk of a fermionic gas with a smooth potential, even if there is no mapping
to a random matrix ensemble for this potential. Before doing so, we need to
introduce the so called Wigner function.

1.2.3 Wigner function

In quantum mechanics, the position probability density function is given by
the squared modulus of the wave function, ρ(x) = |ψ(x)|2, where ρ represents
the spatial density. Similarly, the momentum density function is related to the
squared modulus of the Fourier transform of the wave function, ρ̂(p) = |ψ̂(p)|2,
where ψ̂ is the Fourier transform of ψ, and ρ̂ represents the momentum density.
However, due to the uncertainty principle, a well-defined joint probability den-
sity function (JPDF) in the position-momentum phase space (x,p) cannot be
obtained.
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To address this issue, Wigner introduced the concept of the Wigner function
in 1932 [62]. The Wigner function provides an attempt at describing the phase-
space properties of quantum systems. For a wave function of N fermions in one
dimension, the Wigner function is defined as follows:

WN(x, p) =

ˆ +∞

−∞

dy

2πℏ

N∏
i=2

dxie
ipy
ℏ ψ∗(x+

y

2
, x2, ..., xN)ψ(x−

y

2
, x2, ..., xN).

(1.83)
From this, integrating over momentum, or position space, yields the spatial and
momentum particle densities

ˆ +∞

−∞
dpWN(x, p) = ρN(x),

ˆ +∞

−∞
dxWN(x, p) = ρ̂N(p),

¨ +∞

−∞
dxdpWN(x, p) = N. (1.84)

With the definition

ρN(x) = ⟨
N∑
i=1

δ(x− xi)⟩ , ρ̂N(p) = ⟨
N∑
i=1

δ(p− pi)⟩ , (1.85)

where ⟨...⟩ is the average over the quantum state of wave function ψ. Note that
the two densities are well normalised

´
dxρN(x) =

´
dpρ̂N(p) = N . However,

the Wigner function does not represent a probability distribution as it can take
negative values, although it remains a real-valued function.

In the case of noninteracting fermions, it can be related to the kernel through
the Weyl transform

W (x, p) =

ˆ +∞

−∞

dy

2πℏ
e

ipy
ℏ K(x+

y

2
, x− y

2
). (1.86)

Together with its inversion formula

K(x, x′) =

ˆ +∞

−∞
dpe−i pℏ (x−x′)W (

x+ x′

2
, p). (1.87)

Now we want to delve into the semiclassical behaviour of the Wigner function.

1.2.4 Local Density Approximation (LDA)

In the case of trapped fermions, the Local Density Approximation [18, 19] as-
sumes that in the large N → ∞ limit, the trapping potential varies slowly
compared to the inter-particle distance, such that the gas can be locally con-
sidered a translation invariant free fermionic gas. This is formalised by writing
the Wigner function in a ground state of Fermi momentum pF at position x
as the ground state Wigner function of a free fermionic gas and local Fermi
momentum pF (x) =

√
2m(p2F − V (x)). Hence, the Wigner function is excepted
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to behave as
WN(x, p) ≃

N→∞

1

2πℏ
Θ(µ−H(x, p)), (1.88)

where Θ(x) is the Heaviside theta function, µ =
p2F
2m

is the chemical potential,
and H(x, p) = p2

2m
+ V (x) is the classical one particle Hamiltonian of a particle

in a smooth potential. The space density is straightforwardly given by

ρN(x) ≃
N→∞

ˆ +∞

−∞

dp

2πℏ
Θ(µ−H(x, p)) =

1

πℏ
√
2m(µ− V (x)), (1.89)

where the density is implicitly zero if µ < V (x), and vanishes at the edges
V (xedge) = µ as a square root ρN(x) ≃

√
|xedge − x|. Note that this is false for

the hard edge of LUE, which has a non smooth potential. Remark also that
in the case of the harmonic potential, this gives back the Wigner semi-circle
law (1.35) as well as in the case of the potential V (x) = b2

2
x2 +

a2− 1
4

2x2 it yields
back the Marchenko-Pasture distribution (1.44). Furthermore, substituting the
classical Wigner function (1.88) into the relation (1.87) one gets

K(x, x′) ≃
N→∞

ˆ +∞

−∞

dp

2πℏ
e−i pℏ (x−x′)Θ(µ−H(x̃, p)) =

1

ℓN(x̃)
KSine(

x− x′

ℓN(x̃)
),

(1.90)
where x̃ = x+x′

2
, KSine is the Sine kernel defined in (1.73), with ℓN(x̃) =

1
πρN (x̃)

is the local interparticle distance. The LDA is known to accurately describe the
density and correlations of fermions in the bulk region, where the system can be
approximated as a free gas with translational invariance over the interparticle
mean distance ℓN(x̃). However, the LDA fails near the edges of the system
where ℓN(x̃) diverges. One notable advantage of the LDA compared to the
previous RMT method is its ability to provide the kernel for noninteracting
fermions in any smooth potential, extending beyond the scope of systems that
can be mapped to a Random Matrix ensemble.

We provide a detailed justification for the assumption made for the Wigner
function (1.88) in the Section 3.1.1 of the third Chapter. Additionally, in this
section, we refine our result beyond the LDA in a way that allows to recover
the soft edge Airy kernel at the edges of noninteracting fermionic gases even in
the absence of a mapping to RMT. In fact the Airy kernel was proven recently
to remain valid at the edges of some interacting systems [63].

Remark. As we work now with fermions rather than eigenvalues of a ran-
dom matrix, we can also be interested in the statistics of momentum. Indeed,
from the Wigner function, we already defined a momentum density ρ̂N(p) (1.84),
similarly, an equivalent of the kernel but for momentum can be defined. We
point out that statistics in momentum space has also attracted attention for
noninteracting fermions [64, 65], or interacting bose gas [66–68]. This also comes
with time of flight experiments [69, 70] measuring the momentum statistics.

We already mentioned that the kernel can be used to compute correlation
functions; however, these are not the only relevant objects to study. In the next
subsections, we will illustrate how the kernel can be used to extract the Full
Counting Statistics (FCS) through Painlevé transcendents.
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1.2.5 Full Counting Statistics and Fredholm Determinant

The FCS of a random variable is the data of all the moments of that random
variable. In our case, we are particularly interested in the FCS of the number of
fermions NI within an interval I. Therefore, the FCS provides us with informa-
tion regarding the physical behavior of the fermionic gas under consideration.
The FCS has attracted significant attention and has been obtained in various
scenarios, such as for noninteracting trapped fermions [40], or in a rotating trap
[71], as well as for interacting trapped fermions [72], in momentum space for
interacting bosons [73], and in out-of-equilibrium setups [28, 29, 40, 74, 75].
Now, we aim to highlight a relationship between the FCS and the kernel.

Let us consider the ground state of a fermionic system with its corresponding

kernel, denoted as K. If I is a given interval, then NI =
N∑
i=1

1I(xi), where 1I is

the indicator function on the set I is a random variable. This random variable
counts the number of fermions present in the interval I. In this context, the
FCS is given by ⟨zNI⟩, which is the moment generating function of NI . The
cumulants or connected moments are denoted as ⟨N n

I ⟩c and are defined by

ln ⟨etNI⟩ =
∑
n≥1

tn

n!
⟨N n

I ⟩c . (1.91)

Using the fact that 1I(xi) is a binary random variable, we can rewrite the
generating function as follows

⟨zNI⟩ = ⟨
N∏
i=1

(1− (1− z)1I(xi))⟩. (1.92)

Using Cauchy-Binet formula [76]

N ! det[

ˆ
dxh(x)fi(x)gj(x)] =

ˆ
dx1...dxN det[fi(xj)] det[gk(xl)]

N∏
i=1

h(xi),

(1.93)
one can show that the generating function can be expressed as

⟨zNI⟩ = Det(1− (1− z)KI), (1.94)

where the determinant is a Fredholm determinant defined as Det(1 − K) =

Exp(−∑
i≥1

TrKi

i
), and KI is the integral operator, whose kernel is the kernel

K restricted to the interval I. Fredholm determinant where introduced by
Fredholm in [77] while studying integral equations. For example, in order to
get the hole probability, that is, the probability that there are no fermions in
the interval, we evaluate the equation (1.94) at z = 0

P (NI = 0) = Det(1−KI). (1.95)
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Hence, we have translated the FCS question into a Fredholm Determinant prob-
lem. Before diving into the methods to solve this problem, let us give a little
more context to FCS.

1.2.6 Entropy and Full Counting Statistics

One reason why there is so much enthusiasm towards computing the FCS is be-
cause of its connection with entanglement entropy [78, 79]. The entanglement
entropy is a useful tool in quantum many-body physics for detecting phase tran-
sitions or long-range order. One important characteristic of the von Neumann
entropy is how it scales with the size of the system. In the ground state of
gapped systems, the von Neumann entropy follows an area law [80] , meaning it
scales with the area of the system as S ∼ ℓd−1 (where ℓ is the system size and d
is the dimension). This property has garnered attention as systems obeying the
area law can be efficiently represented using tensor networks. However, in crit-
ical or gappless systems, the area law is broken and a logarithmic correction is
introduced S ∼ ℓd−1 ln ℓ [81]. Let us now define the order-q Rényi entanglement
entropy as

Sq =
1

1− q
lnTrρqI , (1.96)

where ρI is the reduced density matrix ρI = TrIcρ, with Ic the complementary
set of I. This gets reduced to the von Neumann entropy in the q → 1 limit

S1 = −TrρI ln ρI . (1.97)

Note that from the knowledge of the full Rényi entropies, one can extract the
spectrum of ρI . A quantum state is said to follow area law if the entropy grows
proportionally to the boundary between I and Ic. An interesting property of
entanglement entropy is that area law is common for ground states of gapped
quantum many-body systems [79].

In the case of free fermions, the entanglement entropies can be computed in
any dimension d [82]. Additionally, a generic relation was shown to hold between
the FCS and entanglement entropies in the ground state of a noninteracting
fermionic system [83, 84]

Sq =
∑
m≥2

αq,m ⟨Nm
I ⟩c , (1.98)

where the coefficients αq,m are given by integral relations. In the case of q = 1,
we have αq,m = (2π)m|Bm|

m!
, where Bm are the Bernoulli numbers.

In the special case of the random matrix ensembles GUE, in the limit of
large interval size (taken after the large N limit), the random variable NI is
Gaussian [85]. Hence, using (1.98), the Rényi entropies depend only on the
variance ⟨N 2

I ⟩c [86]

Sq =
π2

6
(1 +

1

q
) ⟨N 2

I ⟩c . (1.99)
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1.2.7 Painlevé Transcendents

Now that we understand the significance of studying FCS, let us delve into
the computation of Fredholm determinants, which can be challenging. Fortu-
nately, there is a useful connection with Painlevé transcendents that enables
the computation of certain Fredholm determinants.

Sine kernel. For the Sine kernel, the probability E(n, s) of having n
fermions in an interval of size s in the bulk, is given by

E(n, s) =
(−1)n

n!

∂nDsine(s, λ)

∂nλ
|λ=1, (1.100)

withDsine(s, λ) = Det(1−λKsine,[0,s]), andKsine,[0,s] is the sine kernel Eq. (1.74)
restricted to the interval [0, s]. It was shown [87] that

Dsine(s, λ) = Exp

(ˆ πs

0

dx
σ(x, λ)

x

)
, (1.101)

where σ is the solution to the Painlevé V equation

(xσ′′)2 + 4(xσ′ − σ)(xσ′ − σ + (σ′)2) = 0, (1.102)

along with the boundary condition σ(x, λ) ≃ −λ
π
x as x → 0 and ′ = d

dx
. The

point is that this equation can be then used to extract the asymptotic behaviour
of E(n, s).

Airy kernel. From the Airy kernel, we can compute the maximal eigenvalue
density distribution for GUE. We rescale the maximal eigenvalue as indicated
by (1.75) λmax = xedge + wNχ2. Now, if the cumulative distribution of the
random variable χ2 is F2(s) = P (χ2 ≤ s). It can be written as a Fredholm
determinant

F2(s) = Det(1−KAi,[s,∞[), (1.103)

where KAi,[s,∞[ is the Airy kernel restricted to the interval [s,∞[. Again, one
can recast this as

F2(s) = Exp

(
−
ˆ ∞

s

dx(x− s)q2(x)

)
. (1.104)

It was shown by Tracy and Widom [60, 88], that q(x) obeys the Painlevé II
equation

q′′ = xq + 2q3, (1.105)

together with the boundary condition q(x) ≃ Ai(x), as x → ∞. This is the
celebrated Tracy Widom (TW) distribution (see Fig. 1.5). The tail of the
distribution is given by

F ′
2(s) ∼

{
exp(− |s|3

12
), s→ −∞

exp(−4s3/2

3
), s→ +∞ (1.106)

Notice the asymmetry, which can be qualitatively understood as follows: for
s < 0, all the gas is pushed towards lower eigenvalues, while for s > 0, only one
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eigenvalue needs to be larger than s (see [89]).
Note that similar expressions can be found from Painlevé II equation for the

maximal eigenvalue of GOE and GSE [90].

Δλmax∼N
-1/6

≃exp(-
4 s3/2

3
)≃exp(-

s
3

12
)

-5 -4 -3 -2 -1 1 2
s

0.1

0.2

0.3

0.4

ℱ '2(s)

Figure 1.5: Plot of the Tracy-Widom distribution F ′
2(s). No-

tice the asymmetric behaviour.

Bessel kernel. We close this chapter with the relation between the Bessel
kernel and Painlevé equation. As shown by Tracy and Widom [61], the hole
probability for the Bessel process DBe,a(s, λ = 1) = Det(1 − KBe

a,[0,s]) can be
written

DBe,a(s, λ = 1) = Exp

(
−
ˆ s

0

dx
σ(x, a)

x

)
, (1.107)

where σ is the solution of the Painlevé III equation

(xσ′′)2 + σ′(σ − xσ′)(4σ′ − 1)− a2(σ′)2 = 0. (1.108)

Note that in the large a limit, if rescaled properly, the Bessel function converges
to the Airy function and so does the Bessel kernel to the Airy kernel as

lim
a→∞

22/3a4/3KBe
a (a2 + 22/3a4/3b̃, a2 + 22/3a4/3b̃′) = KAi(−b̃,−b̃′). (1.109)

Particularly, this implies that

DBe,a(s, λ = 1) ≃
a→∞

F2(
a2 − s

22/3a4/3
). (1.110)

Hence, in this limit, the smallest eigenvalue follows the TW distribution.
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1.2.8 Large Deviation, the Coulomb Gas Approach

The Painlevé equation method presented in the previous section allows for the
computation of the typical density distribution of the smallest and largest eigen-
values. However, in the large deviation regime, when x is taken far away from
the edge of the gas, the limiting kernels we used (Sine, Airy, Bessel) are no
longer valid, and the Painlevé method breaks down. In this regime, one could
attempt to compute the spacing distribution or the probability density of the
largest eigenvalue directly from the JPDF of a given matrix ensemble by inte-
grating out the remaining degrees of freedom. However, this direct approach
proves to be too difficult. Therefore, we need an alternative method. Here, we
illustrate how the Coulomb Gas method [91, 92] can be extended to recover
the large deviation regime by retaining only the information relevant to this
question. We will focus on the case of the smallest eigenvalue λmin of the WL
(1.13), as it will be the case of interest for us later on.

We recall that for the WL, in the limit of large M and N with a fixed ratio

c = N
M

, the edge of the gas is determined by Nξ−, where ξ− =
(

1√
c
− 1
)2

(see
Eq. (1.44)). We have previously mentioned that for c < 1, the edge is soft, and

λmin = Nξ− + ξ
2/3
− c1/6N1/3χ, (1.111)

where χ follows the TW distribution.
Large deviation to the right, the pushed gas. In term of JPDF of

the eigenvalues, the cumulative probability of the minimal eigenvalue Pmin(t) =
P (λmin ≥ t) can be written

Pmin(t) =
Z(t)

Z(0)
, (1.112)

Z(t) =

ˆ ∞

t

...

ˆ ∞

t

dλ1...dλN
∏
i<j

(λi − λj)
2
∏

i,j≤N

λM−N
i e

−
∑
i
λi

. (1.113)

Note that Z(0) = ZWL
M,N . The interpretation is a Coulomb gas with an additional

hard wall at position t that constrains the eigenvalues to be larger than t. Now
we just need to recast this as a Coulomb Gas problem, following the idea of Eq.
(1.37) in Sec. (1.1.4.2). Z(t) which can be understood as a partition function
is written as the following path integral

Z(t = Ns) =

ˆ
Dne−N2Es[n],

Es[n] =

ˆ ∞

s

dxn(x)x− (
1− c

c
)

ˆ ∞

s

dxn(x) ln(x)

−
¨ ∞

s

dxdx′n(x)n(x′) ln |x− x′|+ o(1), (1.114)

where the path integral
´
Dn runs over all density function normalised to unity

i.e. such that
´
dxn(x) = 1. The interpretation is that Z(t) is the partition

function of a pushed Coulomb Gas, that is to say a Coulomb Gas but with the
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additional constraint of a hard wall at position t pushing the particles to its
right. Again, we solve this in the large N limit with a saddle point approxima-
tion over the path with the correct Lagrange multiplier

δ[Es[n] + µ(
´∞
s
dxn(x)− 1)]

δn
|n=n∗

s
= 0. (1.115)

The end is a bit technical. It is useful to differentiate the previous equation,
then the minimal density is found using Tricomi formula Eq. (1.33). Finally,
the probability is given by

Pmin(t = Ns) = e−N2Φmin
+ (s), t > Nξ−, (1.116)

Φmin
+ (s) = Es[n

∗
s]− E0[n

∗
0]. (1.117)

The minimizing density is illustrated in Fig. 1.6. One can refer to [92] for
the exact expressions of n∗

t and Et[n
∗
t ] which are a bit cumbersome. Note that

Eξ− [n
∗
ξ−
] = E0[n

∗
0], as putting a hard wall at the left of the edge of the gas has

no influence. This allows to verify that the previous equation is well normalised.

Figure 1.6: Left: The gas is pushed to the right; hence the
density is deformed towards a higher energy configuration. Par-
ticles accumulate at the edge with a 1√

λ−λmin
divergence. Right:

one particle is pulled to the left away from the gas.

Large deviation to the left, the pulled gas. Here we keep the Coulomb
Gas in the usual configuration without a wall hence it is still described by the
density n∗ from (1.44). However, we will constrain one eigenvalue to be pulled
away from the gas support at position t. This will have an energy cost equal
to the sum of the potential energy of the pulled particle plus the interaction
energy between the pulled particle and the rest of the gas

∆E(t) = t−N(
1− c

c
) ln t−

∑
i

ln |t− λi|. (1.118)
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This cost can be evaluated using the Coulomb Gas density and the scaling
t = Ns (this is illustrated on the right panel of Fig. 1.6)

∆E(Ns) = N(∆e(s)− 1

c
lnN), ∆e(s) = s−(

1− c

c
) ln s−

ˆ
dxn∗(x) ln |s−x|,

(1.119)
in the end

Pmin(t = Ns) = e−NΦmin
− (s), t < Nξ−, (1.120)

Φmin
− (s) = ∆e(s)−∆e(ξ−). (1.121)

Note that the expansion of Φmin
+ (s) and Φmin

− (s) in the limit s→ ξ− gives

Φmin
+ (s) ≃

s→ξ+−

1

12ξ2−c
1/2

(s− ξ−)
3, (1.122)

Φmin
− (s) ≃

s→ξ−−

4

3ξ−c1/4
(ξ− − s)3/2, (1.123)

which matches with the left and right asymptotics of the TW distribution, as
given by Eq. (1.106). In addition, the large argument asymptotes are given by

Φmin
+ (s) ≃

s→+∞
s− 1− c

c
ln s+ (

3

2
− Eξ− [n

∗
ξ− ]), (1.124)

Φmin
− (s) ≃

s→0
−1− c

c
ln s+ (2

1− c

c
ln

1− c

c
+

ln c

c
− ξ− − 2

√
ξ−).

Linear Statistics. The method of pushed and pulled Coulomb gas can
be generalized to compute the large deviations of the aforementioned linear
statistics. For example in [52, 53] the large deviation of the number N+ of
positive eigenvalues was computed. More precisely, if N+ = cN with c > 1/2,
the computation involve the minimisation of the Coulomb gas for the GUE
Eq. (1.29) with the additional constraint that

´∞
0
dxn(x) = c. The resulting

minimal density has a support with two components (for 1/2 < c < 1) with
both soft and hard edges. This method was also used to compute the large
deviations of linear statistics at the edge of GUE [54].

1.3 Statistics of noninteracting fermions in higher
dimensions d > 1

In higher dimensions, even if the DPP structures is kept for noninteracting
fermions, few results are known. This is due to the fact that we loose gener-
ically the simple exact mapping to RMT. However, some results for the hole
probability in two specific examples in d = 2

• in mathematics, for the zeroes of random series in the complex plane

• in the Ginibre ensemble of random matrices, whose eigenvalues are com-
plex and hence, spreads in a two dimensional space. It transposes to non-
interacting fermions in a harmonic trap rotating at a critical frequency
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such that the problem can be mapped to the lowest Landau levels of
a quantum Hall system. In that case, there are exact formulae for the
probability that there is no eigenvalue inside a disk [71, 93].

Apart from these examples, very few results are known when it comes to the
hole probability of noninteracting fermions in dimension d > 1. In order to
explore the higher dimensional properties of noninteracting fermionic gases, we
proceed in this section to the computation of the hole probability for noninter-
acting fermions trapped in a d-dimensional harmonic potential.

1.3.1 Angular decomposition: from d dimensions to one
dimension

The system considered here is noninteracting fermions in dimension d with unit
m = ℏ = 1, and the single particle Hamiltonian

Ĥ =
p2

2
+ V (r̂) (1.125)

where V is a central potential, and r̂ = |x̂| with a small abuse of notation. The
ground state is obtained as a Slater determinant where all the eigenstates of the
single particle Hamiltonian Ĥ in (1.125) are occupied up to the Fermi energy
µ.

The main trick to compute the hole probability in this rotationnaly in-
variant system is to use the spherical coordinates x = (r,θ) where θ is a
d − 1 dimensional angular vector [64]. The Hamiltonian Ĥ can be written
as Ĥ = −1

2
r1−d∂r

(
rd−1∂r

)
+ 1

2r2
L̂2+V (r), and commutes with the angular mo-

mentum operator L̂. The eigenfunctions of Ĥ thus take the form ψn,L(r,θ) =

r
1−d
2 χn,l(r)YL(θ) where the d-dimensional spherical harmonics YL(θ), labeled

by the set of angular quantum numbers L, are eigenfunctions of L̂2 with eigen-
values ℓ(ℓ + d − 2), ℓ = 0, 1, . . . , which defines the angular sector. The radial
parts χn,ℓ(r) are the eigenfunctions of a collection of 1D radial Hamiltonians
Ĥℓ = −1

2
∂2r + Vℓ(r), r ≥ 0, with potentials

Vℓ(r) = V (r) +
a2 − 1

4

2r2
, a = ℓ+

d

2
− 1 (1.126)

with eigenenergies ϵn,ℓ, n = 0, 1, . . . , each with degeneracy

gd(ℓ) =
(2ℓ+ d− 2)Γ(ℓ+ d− 2)

Γ(ℓ+ 1)Γ(d− 1)
, if ℓ ≥ 1, and gd(0) = 1. (1.127)

In the ground state of the N fermions, each angular sector the lowest mℓ

energy levels are occupied, i.e n = 0, . . . ,mℓ − 1, such that ϵn,ℓ ≤ µ and
N =

∑
ℓ gd(ℓ)mℓ. The ground state wavefunction is given by Ψ0(x1, · · · ,xN) =

1√
N !

det1≤i,j≤N [ψki
(xj)], where ki = (ni,Li) labels the single particle eigenfunc-

tion of the occupied eigenstates. We assume here that the ground state is
non-degenerate (i.e., the last level is fully occupied, see discussion in [64]).
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We now compute the hole probability P (R) as the probability that there is
no fermion in the sphere of radius R centred on the origin.

P (R) =
N∏
i=1

ˆ
|xi|>R

ddxi |Ψ0(x1, · · · ,xN)|2 . (1.128)

Using the Cauchy-Binet formula (see e.g. [64, 82]) it can be written as a deter-
minant

P (R) = det
1≤i,j≤N

[δij − Aij] (1.129)

in terms of the overlap matrix Aij =
´
|x|≤R

ddxψ∗
ni,Li

(x)ψnj ,Lj
(x). Using the

orthogonality of the spherical harmonics, the angular integration gives Aij =

δLi,Lj
A(ℓ)

ij with A(ℓ)
ij =

´ R

0
dr χni,ℓi(r)χnj ,ℓi(r). Hence the matrix A is diagonal in

the variables Li, and the determinant factorises over the angular sectors [64]

P (R) =

ℓmax(µ)∏
ℓ=0

Pℓ(R)
gd(ℓ) , (1.130)

Pℓ(R) = det
1≤i,j≤mℓ

[
δij − A(ℓ)

ij

]
,

where Pℓ(R) is the probability that the interval [0, R] is empty in the ground
state of mℓ noninteracting fermions described by the single particle Hamiltonian
Ĥℓ. Note that formulae (1.129) and (1.130) are valid for any central potential
V (r).

We start by studying the 1D radial problem to obtain Pℓ(R) within each ℓ
sector, and then we evaluate the product (1.130). For a general potential V (r)
this is a difficult problem, however in the case of the harmonic oscillator we
can make further progress by using a connection to the random matrix theory
[44, 94, 95]. Indeed in the case V (r) = 1

2
r2, the potential (1.126) turns into

(1.65) with b = 1, and the eigenfunctions are given by equation (1.66) with
χn,ℓ(r) = ϕn(r), the eigenenergies are ϵn,ℓ = 2n + a + 1, where a = ℓ + d

2
− 1.

The number of occupied states in the ground state within the ℓ sector is thus
mℓ = Int(µ−ℓ−d/2

2
+1), where Int(z) denotes the integer part of z (i.e., the floor

function). Note that mℓ = 0 for ℓ > ℓmax(µ) = µ − d
2

(where µ is integer for
even d and half-integer for odd d).

We already saw that up to the change of variable {x2i } = {λi}, together with
mℓ = N and a =M −N = ℓ+ d

2
− 1, this is equivalent to the JPDF (1.13)

PWL(λ) =
1

ZWL
M,N

∏
i<j

(λi − λj)
2
∏

i,j≤N

λM−N
i e

−b
∑
i
λi

(1.131)

which is in case of a positive integer a = M −N (hence even dimension d)
(see [96] for the case M < N) corresponds to LUE or WL ensemble.

The calculation of Pℓ(R) is then equivalent to computing the cumulative
distribution function (CDF) of the smallest eigenvalue λmin in the WL ensemble,



Chapter 1. Fermions Equilibrium Statistics and Random Matrix Theory 44

i.e.
Pℓ(R) = Prob(λmin > R2) (1.132)

This CDF was studied in several works [61, 97–101] in RMT. In particular in
[97] a useful determinantal formula was found in the case where a =M −N is
a positive integer. Translated into the fermion problem in the case of d an even
integer, Pℓ(R) is given by a a × a determinant (with a = ℓ + d

2
− 1). Together

with (1.130) it gives an exact formula for the hole probability for N fermions in
the d-dimensional harmonic potential, displayed in Eqs. (74) and (75) in [102].
It allows to plot the exact hole probability for a small number of fermions.

1.3.2 Large N limit: Microscopic and Macroscopic Regime

We now consider the limit of a large number of fermions, N ≫ 1, equivalently
large Fermi energy. In this limit there are two distinct regimes, a microscopic
and a macroscopic one. The mean density of fermions is given by the LDA
(1.89) (or its generalisation in dimension d)

ρ(r) = cdkF (r)
d, cd =

1

2dπd/2Γ(1 + d/2)
, kF (r) =

√
2µ− r2 (1.133)

for the harmonic oscillator [17]. Near the center of the trap, the typical distance
between particles is thus 1/kF (0) = 1/

√
2µ, which defines the microscopic scale,

R = O(1/kF (0)). On the other hand, the edge of the Fermi gas is a sphere of
macroscopic radius Re =

√
2µ ≫ 1/kF (0) which defines the macroscopic scale,

R = O(Re).
Free Fermions and Microscopic Regime. We first obtain, in the case of

free fermions (i.e., V = 0), an exact formula for the probability P (R) = Pd(kFR)
(in the ground state). Here kF =

√
2µ is the Fermi wave vector and µ is

the Fermi energy. Before giving details of the derivation, we write the main
result. The scaling function Pd(z) can be expressed as a product of Fredholm
determinants associated to the so-called hard edge Bessel kernel, well known
in random matrix theory (RMT), see Eqs. (1.136), (1.137), (1.138) below. Its
asymptotic behaviour at small distance is given as z → 0 by

Pd(z) = 1−Bdz
d +

d

(d+ 2)2
B2

dz
2d+2 +O(z3d+2, z2d+4) (1.134)

with Bd = 1
2dΓ(1+ d

2
)2

(see [102] for higher orders), which generalizes the result
for d = 1 in which case the level spacing distribution is given by p(s) ∝ P′′

1(s).
At large distance one finds that the hole probability decays super-exponentially

Pd(z) ∼
z→∞

exp(−κdzd+1) , κd =
2

(d+ 1)2Γ(d+ 1)
. (1.135)

This result agrees for d → 1 with κ1 = 1
2

obtained in [87]. The plot of
− d

dz
Pd(z) is shown in Fig. 1.7 and represents the scaled probability density of
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d=2

d=3

d=2 z→0 asymptotic

d=3 z→0 asymptotic
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Figure 1.7: Plot of − d
dzPd(z) vs. z in dimension d = 2, 3 from

a numerical evaluation (thick line) of (1.138) using (1.136). At
small z it is well described by the asymptotics (lighter line) from
(1.134). Inset: same plot in semi-logarithmic scale, which fits

well with the large z super-exponential behavior in (1.135).

dimension d numerics [104] exact result
d = 1 0.5 1

2

d = 2 0.1175± 0.0007 1
9
= 0.1111

d = 3 0.02287± 0.0003 1
48

= 0.02083
d = 4 0.00392± 0.00015 1

300
= 0.00333

Table 1.1: Comparison between our exact result (1.135) for κd
(last column) and the numerical estimates of Ref. [104].

the position of the fermion closest to the origin. We can also compare these
results with the numerical data analysis of [103, 104] for free fermions. In
that work the power law zd+1 in the exponential was conjectured to hold in all
dimensions, and the coefficient κd was measured numerically. The comparison
with our analytic prediction is presented in Table 1.1. Although the agreement
is quite good the exact values lie somewhat outside of the error bars, which
suggests that obtaining numerically the true asymptotic requires larger values
of z.

In the microscopic regime (Harmonic potential) we find that the hole prob-
ability takes the scaling form P (R) ≃ Pd(kF (0)R), where Pd(z) is the same
universal scaling function as obtained above for free fermions, with a non uni-
versal scale 1/kF (0). This universality extends to any microscopic sphere lo-
cated anywhere inside the bulk in the presence of a general smooth potential.
For a sphere centered around x, kF (0) is replaced by kF (r = |x|) defined in
(1.133).
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In order to show how we get this result we must come back to the decom-
position in angular sectors (1.130) and (1.132). Since µ is large in each sector
the number of fermions mℓ ≃ (µ − ℓ)/2 is also large. It is easy to see that
only sectors with ℓ = O(1) contribute to the product in (1.130). Indeed, the
centrifugal energy (a2 − 1/4)/(2r2) in Vℓ(r) in (1.126) must remain at most of
O(µ), and therefore for r ∼ 1/

√
µ only values of a = O(1) are allowed. Hence

one can approximate mℓ ≃ µ/2 for all ℓ in that regime. Note that the potential
term V (r) = 1

2
r2 is negligible, hence it is identical to free fermions.

This regime corresponds in the RMT context to the so-called hard edge
scaling regime, see (1.80). In that regime themℓ eigenvalues of the WL ensemble
of parameter a, with mℓ large, are of order λi = O(1/mℓ). More precisely, the
scaled eigenvalues bi = 4mℓλi follow the Bessel process of order a = ℓ+d/2− 1,
described by the kernel (1.81). where Ja(z) is the Bessel function of index a.
The hole probability in the ℓ sector is given as a Fredholm determinant [55, 105]

Fa(b) := Prob(bmin > b) = Det(I −KBe
a,[0,b]) , (1.136)

where bmin = mini bi and P[0,b] is the projector on the interval [0, b]. We recall
that this FD can be expressed as logFa(b) = −

´ b

0
ds σ(s)

s
from the solution σ(s)

of the Painlevé III equation (1.108) with the asymptotic σ(s) ≃ s1+a

22a+2Γ(1+a)Γ(2+a)

at small s. For even space dimension d, i.e., integer a, as discussed above, there
are other representations for the hole probability, which in this microscopic
regime lead to the remarkably simple formula [97]

Fa(b) = e−b/4 det
1≤j,k≤a

Ij−k(
√
b) , (1.137)

where In(x) is the modified Bessel function. Using formula (1.130), we obtain
that in this scaling regime, the hole probability P (R) for the fermions in any
dimension d, takes the scaling form P (R) ≃ Pd(kF (0)R), where the scaling
function is given as an infinite product

Pd(z) =
+∞∏
ℓ=0

Fℓ+ d
2
−1(z

2)gd(ℓ) . (1.138)

This result, which we derived for the harmonic oscillator (with kF (0) =
√
2µ)

holds asymptotically for large N for any smooth trapping potential. In addition,
it is exact for free fermions in d dimensions, with kF =

√
2µ. Note that for free

fermions, an alternative formula exists using the d-dimensional extension of the
sine-kernel [17, 103]

Kd(r, r
′) =

Jd/2(|r− r′|)
(2π|r− r′|)d/2 . (1.139)

The hole probability is given as a Fredholm determinant

Pd(z) = Det(I −Kd,|r|<z) =
+∞∏
ℓ=0

Det(I −KBe
ℓ+d/2−1,[0,z2])

gd(ℓ) (1.140)
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where Kd,|r|<z is the previous kernel restricted to |r| < z. We found that the
formulae (1.138) and (1.140) are in fact equivalent which is not a trivial property.
Both formulae can be expanded in small z, leading to Eq. (1.134) and pushed
to higher orders in [102]. While the expansion of (1.140) is straightforward,
expanding (1.138) requires to solve the Painlevé III equation at small arguments.
The formula (1.138) however allows to study the asymptotic behavior of P(z)
at large z, as we now show.

In the large z limit one needs the asymptotics of Fa(b) at large b. One can
check [102] that the asymptotics of the infinite product in (1.138) is dominated
by large values of ℓ, for which the decay of Fa(b) occurs on scale b ∼ ℓ2. This
double limit for (1.137) was studied, using Coulomb gas techniques, in the con-
text of lattice QCD in [106, 107] and later in the study of the longest increasing
subsequence of random permutations [108] (see also [92]) and it was shown to
take the scaling form (with a ∼ ℓ)

Fa(b) ∼ exp

[
−ℓ2ϕ+

(
γ =

√
b

ℓ

)]
,

ϕ+(γ) = θ(γ − 1)

(
γ2

4
− γ +

1

2
log γ +

3

4

)
,

(1.141)

where θ(x) is the Heaviside function. Inserting this expression into (1.138),
approximating the sum over ℓ by an integral, using gd(ℓ) ≃ 2ℓd−2

Γ(d−1)
at large ℓ,

one obtains

Pd(z) ∼ exp

[
− 2

Γ(d− 1)

ˆ +∞

0

dℓℓdϕ+

(z
ℓ

)]
(1.142)

leading to our main result (1.135), with κd = 2
Γ(d−1)

´ +∞
1

dγ
γd+2ϕ+(γ) =

2
(d+1)2Γ(d+1)

.
Note that the calculations of [106, 108] use the formula (1.137) valid only for
even d, however we obtained (1.141) in any d using the Painlevé equation [102].

Macroscopic Regime. The microscopic regime previously presented de-
scribes typical fluctuations of the hole. Now we want to study the macroscopic
fluctuations of the hole, that is the regime of large deviation. In one dimension,
this was done using the Coulomb gas method, here we will see that the decom-
position in angular sectors, allows to recast the problem in term of Coulomb
gas. In the case of a hole of macroscopic size, R = O(Re) the probability P (R)
is very small and is characterized by a large deviation form

P (R) ∼ exp
(
−(kF (0)Re)

d+1Ψ(R̃ = R/Re)
)

(1.143)

where the rate function Ψ(R̃) is not universal and depends on some details of
the potential V (r). Here we calculate it explicitly in the case of the harmonic
potential V (r) = 1

2
r2, in which case Re =

√
2µ = kF (0). The function Ψ(R̃) is

given in (1.148) and plotted in Fig. 1.8. It is related to the large deviations in
the WL ensemble of random matrices (see Section 1.2.8 [92]). Its behavior at
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Figure 1.8: Large deviation function Ψ(R̃) vs. R̃ = R√
2µ

in
dimension 2. The numerical evaluation (Red line) compares well
with the small R̃ asymptotic (Purple line) itself matching with
Eq. (1.135), and(1.144). It also fits well to the large R̃ behavior

(Green line) from Eq. (1.145).

small argument is found to be

Ψ(R̃) ≃
R̃→0

κdR̃
d+1 (1.144)

which matches smoothly with the large distance behavior from microscopic
scales, see Eq. (1.135). For large R̃ it behaves as

Ψ(R̃) ≃
R̃→∞

1

2dΓ(d+ 1)
R̃2 − d− 1

2dΓ(d+ 2)
ln R̃ (1.145)

and in d = 1 it is exactly Ψ(R̃) = 1
2
R̃2, as found for GUE matrices [53, 102].

Let us give more details on the derivation. Since µ is large, in each angular
sector the number of fermions is again mℓ ≃ (µ− ℓ)/2, however in this regime
the product in (1.130) is controlled by the values of ℓ = O(µ). We saw already
(see Fig. 1.4) that in this regime the spectrum of the WL matrices has support
on the interval [Nζ−, Nζ+] with ζ± = (1 ± 1√

c
)2. The correspondence with

fermions shows that within each ℓ sector, the mean fermion density ρℓ(r) has
support [r−(ℓ), r+(ℓ)] with

r±(ℓ)
2 = λ± = mℓζ± ≃ µ±

√
µ2 − ℓ2. (1.146)

For each sector ℓ, there are a priori three different scaling regimes for Pℓ(R) =
Prob(λmin > R2) when R = O(

√
µ) and ℓ = O(µ). Indeed, we mentioned
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previously that the smallest eigenvalue λmin of a WL random matrix (1.131)
exhibits three regimes [89]. We came to the conclusion that the product (1.130)
is dominated by the angular sectors that are described by the pushed Coulomb
gas regime. In that case, following Section 1.2.8, we see that Pℓ(R) reads

Pℓ(R) ∼ e
−2m2

ℓΦ+

(
R2−mℓζ−

mℓ
, ℓ
mℓ

)
(1.147)

In computing the logarithm of (1.130), the sum is truncated up to ℓmax

such every angular sectors in the pushed Coulomb gas regime are taken into
account. Then we approximate the sum over ℓ by an integral and gd(ℓ) ≃ 2ℓd−2

Γ(d−1)
.

Performing the change of variable v = ℓ/µ we obtain the large deviation formula
for the hole probability in the form (1.143) with kF (0)Re = 2µ and R̃ = R/

√
2µ

with the rate function

Ψ(R̃) =

ˆ vmax(R̃)

0

dv
vd−2(1− v)2

2d+1Γ(d− 1)
Φ+

(
4R̃2

1− v
− (1−

√
1 + αv)

2, αv

)
(1.148)

where αv = 2v
1−v

and vmax(R̃) = 2R̃
√
1− R̃2 for R̃2 < 1/2 and vmax(R̃) = 1

for R̃2 > 1/2. The function Φ+(z, α) being quite complicated, the integral in
(1.148) has been evaluated numerically in Fig. 1.8. It exhibits a transition of
high order at R̃ = 1/

√
2 1 and the asymptotics of Ψ(R̃) can be extracted (see

[102]) resulting in (1.144), and (1.145).

1.3.3 Numerical evaluation of the free fermion hole prob-
ability

To evaluate numerically the free fermion hole probability Pd(z) we need to eval-
uate the product of Fredholm determinants in Eq. (1.138) associated to the
Bessel process where Fa(b = z2) is given in (1.136). This was performed using
the Bornemann’s method, an algorithm that allows to compute such determi-
nant in an efficient manner [109]. At this point one has to tune parameters on
which the precision of the result depends. We made sure that those parameters
ensure high enough precision by running multiple numerical tests. Because we
cannot compute an infinite number of determinants, we use the fact that for
a given z, high enough ℓ does not influence the total product. In practice, we
cut the product at ℓ = ℓmax(z) = Int(1.1

√
z) and checked that the product

converges when ℓmax(z) goes from 0 to Int(1.1
√
z). For z < 16 we just set

ℓmax(z) = 4.

1A detailed calculation shows that the transition is of sixth order, i.e., the sixth derivative
is discontinuous.
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Article 1

Hole Probability for Noninteracting Fermions in
a d-dimensional Trap [1]

Abstract. The hole probability, i.e., the probability that a region is void
of particles, is a benchmark of correlations in many body systems. We com-
pute analytically this probability P (R) for a sphere of radius R in the case of
N noninteracting fermions in their ground state in a d-dimensional trapping
potential. Using a connection to the Laguerre-Wishart ensembles of random
matrices, we show that, for large N and in the bulk of the Fermi gas, P (R) is
described by a universal scaling function of kFR, for which we obtain an exact
formula (kF being the local Fermi wave-vector). It exhibits a super exponential
tail P (R) ∝ e−κd(kFR)d+1 where κd is a universal amplitude, in good agreement
with existing numerical simulations. When R is of the order of the radius of the
Fermi gas, the hole probability is described by a large deviation form which is
not universal and which we compute exactly for the harmonic potential. Similar
results also hold in momentum space.
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Chapter 2

Non-equilibrium Dynamics of
Noninteracting Fermions in
Presence of a Defect.

In Chapter 1, we discussed the equilibrium properties of noninteracting fermions
in one dimension. In the simplest cases, this was done by solving the time-
independent Schrödinger equation,

Ĥϕ = ϵϕ, (2.1)

where,

Ĥ = − ∂2x
2m

+ V̂ , (2.2)

is the one-particle Hamiltonian, leading to a set of eigenfunctions and eigenen-
ergies {ϵk, ϕk} with k = 1, 2, 3... such that the ground state is ϕ1. From this
knowledge we demonstrated how the kernel can be built. For example we gave
the kernel in the ground state of the system with N fermions

K(x, x′) =
N∑
k=1

ϕ∗
k(x)ϕk(x

′). (2.3)

Then we demonstrated how the kernel allows us to compute many interesting
quantities, such as the particle density, the n-point correlations Eq. (1.46), the
FCS Eq. (1.94) and the entanglement entropies Eq. (1.96).

Now we turn our attention to the non-equilibrium problem that arises from
the time-dependent Schrödinger equation

iℏ∂tϕ = Ĥϕ. (2.4)

Because the Hamiltonian in Eq. (2.2) is quadratic in the creation/annihilation
operators and does not involve any interactions, the determinantal structure
of the system remains unaffected. This means that the n-point correlation
functions at time t can be computed using equation (1.46) together with the
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following time-dependent kernel

K(x, x′; t) =
N∑
k=1

ϕ∗
k(x, t)ϕk(x

′, t), (2.5)

where ϕk(x, t) is the solution of Eq. (2.4) with initial condition ϕk(x, t = 0) =
ϕk(x). Hence, in the non-equilibrium context, the kernel still allows for the
computation of various interesting quantities such as n-point correlation func-
tions, density, FCS, and entanglement entropies. Hence, the time-dependent
kernel will be a central object to this chapter.

Additionally to those quantities, non-equilibrium problems are characterised
by non zero currents. For example, the particle current is defined as

J(x, t) =
1

2i

N∑
k=1

[ϕ∗
k(x, t)∂xϕk(x, t)− ∂xϕ

∗
k(x, t)ϕk(x, t)] (2.6)

It turns out to have a simple expression in term of time dependent kernel

J(x, t) =
1

2i
[(∂y − ∂x)K(x, y; t)]y=x . (2.7)

From the Schrödinger equation, the current J(x, t) satisfies the conservation
equation for the fermion number

∂tρ(x, t) + ∂xJ(x, t) = 0 , (2.8)

where ρ(x, t) = K(x, x; t) is the time dependent density. Similarly, the continu-
ity equation for the energy density can be obtained from the kernel (2.172).

Quenches. The study of out of equilibrium quantum dynamics is very
vast. Here we will focus on one simpler set-up that has attracted a lot of
attention in the community both from the theoretical and the experimental
perspective [23, 110–112], namely quantum quenches. Typically, we start the
system in the ground state, or thermal state |ψt=0⟩ of some Hamiltonian Ĥ0.
Then, we allow the system to evolve with the time-dependent Hamiltonian
Ĥ(t) = λ(t)Ĥ0 + (1 − λ(t))Ĥ, where λ(t) is a function that goes from one to
zero in a very short time and then remains to zero. This means that we quickly
transit from Ĥ0 to Ĥ

Ĥ0 →
δt
Ĥ (2.9)

We say that the Hamiltonian is quenched. Of course the nature of the quench
can be varied. Sometimes an interaction is changed [26, 113]. Different kind of
systems can be studied, for example Luttinger liquids [114, 115] led to inter-
esting results [33, 116–121], critical system have been investigated using CFT
tools [121–125]. The quench can be performed either on an integrable system
[126–128] which can yields exact computations, or on a non integrable system
[129, 130].

One simple case is the homogeneous quench in which both Ĥ0, and Ĥ are
space translation invariant. In the absence of translational invariance things
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get more complicated and quenches can be split in two main categories.

• One with initial inhomogeneous Hamiltonian. For example, the initial
state can be the equilibrium state of a Hamiltonian with some trapping
potential. Then, if the trapping potential is suppressed at initial time,
we will speak of a trap release [131–133]. Among those one dimensional
inhomogeneous initial Hamiltonian quench protocol, one will be of par-
ticular interest for us, the partitioning protocol [24, 31, 36, 134–139]. In
that case, the initial Hamiltonian Ĥ0 is built such that the initial state is
a tensor product of left half and right half state

|ψt=0⟩ = |ψR⟩ ⊗ |ψL⟩ . (2.10)

In the case of spin chains or lattice, this can be achieved when the Hamil-
tonian Ĥ0 is the sum of two Hamiltonians, one for the right half of the
system and one for the left half

Ĥ0 = ĤR + ĤL (2.11)

while in the continuum, the initial Hamiltonian would contain a non-
penetrable potential barrier V̂ .

Ĥ0 = Ĥ ′
0 + V̂ (2.12)

Each state |ψR/L⟩ would typically be a thermal state, hence characterised
by left and right inverse temperatures βR/L, and chemical potentials µR/L.
Then the Hamiltonian is quenched in such a manner that the left and
right part are not independent anymore, which might lead to non zero
flows breaking equilibrium. In this context one can study the statistics at
the edge of the propagating front [40, 74]

• The second category is when the post quench Hamiltonian Ĥ is inhomo-
geneous. This can typically be done by switching on a local defect [123,
140–143].

Remark. Here we will study a quench that belongs to both categories, and we
will show that a new effect arises that was not present in each case taken alone.

From here many questions arise. For example does the system relax to some
non-equilibrium Steady State (NESS), that is a state with stationary mean
values for observable ⟨Ô⟩. If so is it described by a GGE, does it have non
zero currents, how to characterise the correlations in such state? One of the
additional element of the quench set-up is of course the dynamic, i.e. how does
the system approach the NESS? If one prepares the system with an empty left
initial state, arises the question of the FCS of the number of particles N[x,+∞[

that has crossed the position x [40, 74]. This eventually also brings up the
question of the entanglement entropy dynamics.

Integrable Systems. Before diving into the details of our system of inter-
est, we want to give a little context. A very particular property of free fermions
is that each particle conserves its energy and momentum, which places them
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in the wider category of systems known as integrable systems. Classically, in-
tegrable systems are characterized by having enough conserved quantities that
the dynamics are restricted to a submanifold of the phase space, leading to pe-
riodic or quasi-periodic behavior. For integrable quantum systems with many
degrees of freedom, an exciting theory in construction postulates the emergence
of a new kind of hydrodynamic theory [35, 36]. Here, following [144–146] we
will give a brief introduction to this theory called Generalised Hydrodynamics
(GHD).

2.1 Generalised Hydrodynamics

2.1.1 Thermalisation and the Gibbs Ensemble

Thermalization of Classical Systems. A question that emerged as a conse-
quence of equilibrium statistical mechanics is whether a many-body system, ini-
tialized far from equilibrium, will or will not relax towards equilibrium. Whether
we speak of classical or quantum systems, the consensus is that integrable sys-
tems are very peculiar as they do not thermalize, whereas non-integrable sys-
tems are expected to thermalize. Following [147], we start by giving a brief de-
scription of the mechanism of relaxation for non-integrable systems. Let us focus
first on the thermalization of classical systems. A system is said to be Liouville
non-integrable if the Hamiltonian system has strictly more degrees of freedom
than global first integrals of motion. This is a necessary and, in most cases,
sufficient condition for the system to be chaotic, which means that phase space
trajectories with close initial conditions exponentially spread with time, making
long-term predictions impossible. This is illustrated on Fig. 2.1 where we repre-
sent the motion of a particle in two two-dimensional cavities. The system on the
right has two degrees of freedom and only one conserved quantity (the energy),
making it non-integrable. The system on the left, however, has an additional
conserved quantity (angular momentum) and is therefore integrable. We can
observe that in the integrable case, the motion exhibits regular patterns. On
the other hand, in the non-integrable case, the motion is completely erratic, and
trajectories with close initial conditions quickly become uncorrelated in terms
of position and direction after a few bounces. In this framework, the mechanism
typically used to explain thermalization is ergodicity. A classical ergodic system
is one in which trajectories X(t) in phase space (or equivalently, the microstate
space) with initial condition X(0) uniformly and randomly explore the entire
phase space. For an isolated system, this means that for a trajectory of fixed
energy E the time average O(X(t)) = lim

τ→∞
1
τ

´ τ

0
dtO(X(t)) is equivalent to the

microcanonical average of the observable ⟨O⟩ME = 1
V

´
H(X)∈[E,E+dE]

dXO(X)

where H(X) is the energy of the phase space point, and V is the volume of the
space over which the integral is performed

O(X) = ⟨O⟩ME . (2.13)
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Figure 2.1: (a) Trajectory in a circular billiard, the system is
integrable. (b) Trajectory in the Bunimovich stadium. Angular
momentum is no more conserved, hence the motion is chaotic.

The figure originates from [148]

Crucially, this implies that the time average is independent of the initial mi-
crostate X(0), and we recover the expected properties of thermodynamic. How-
ever, proving ergodicity for a given system can be a challenging task, and it has
been achieved for only a few systems. Examples of systems which where proven
to be ergodic are two hard balls in a d-dimensional (d ≥ 2) rectangular box
[149], and a particle on the two dimensional torus with a central potential
[150]. More recently, the ergodicity hypothesis has been questioned as some
non-ergodic systems seem to exhibit statistical mechanics properties [151].

While the thermalization of classical systems remains an open question, it
can also be asked in the framework of quantum mechanics.

Observable needs to be local. For now, we assume the system to be
homogeneous in the initial state |ψ(0)⟩ and with homogeneous Hamiltonian. At
the initial time, we quench (or turn on) the Hamiltonian Ĥ governing the sys-
tem’s evolution. The evolution of the state is given by |ψ(t)⟩ =∑k cke

−iϵkt |ψk⟩,
where {ϵk, |ψk⟩} are the eigenenergies and eigenstates of Ĥ, and ck = ⟨ψk|ψ(0)⟩
are the overlap between the initial state and the eigenstates. Often, we start by
defining the system at finite size L, then, in order to recover statistical prop-
erties, we take the thermodynamic limit, that is the large system size limit.
Now, given a local observable Ô, we want to know if it is going to relax in the
thermodynamic and large-time limit, i.e. if its mean value has a well-defined
limit lim

t→∞
lim
L→∞

⟨Ô⟩t. Then if we have relaxation, the second question is to know
if this large time limit reproduces statitical mechanics ensembles. The mean
value of the observable Ô at time t is given by

⟨Ô⟩t =
∑
k,k′

c∗kck′e
i(ϵk−ϵk′ )tOk,k′ (2.14)

with Ok,k′ = ⟨ψk|Ô|ψk′⟩. Because the dynamic of the quantum system under
consideration is unitary, it is a bit optimistic to believe that every observable
will relax. Indeed, if we take Ô = |ψ1⟩ ⟨ψ2| + |ψ2⟩ ⟨ψ1| which is a well defined
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observable. Then it is immediate to see that its mean value will have remanent
oscillations at large time with pulsation ω = ϵ2− ϵ1. The particular property of
such observable is that it is highly non-local. In order to observe relaxation, we
restrict our study to observable ÔA, local in the sense that it acts as identity
outside some finite support A. The physical intuition behind the relaxation of
local observables is that the complement Ac of the support acts as a bath i.e.
as an infinite system on the subsystem A. This justification also emphasizes
the necessity of considering the thermodynamic limit.

ETH. The relaxation of local observables still remains an open question.
However, the beginning of an answer emerged in the 90s with two papers by
Deutsch and Srednicki [152, 153], introducing the concept of the Eigenstate
Thermalization Hypothesis (ETH).
ETH is an ansatz for the matrix elements of an observable Ô in the eigenbasis
of a Hamiltonian that reads

Ok,k′ = O(Ek,k′)δk,k′ + e−S(Ek,k′ )/2fO(Ek,k′ , ωk,k′)Rk,k′ , (2.15)

where S(E) is the thermodynamic entropy at energy E, Ek,k′ =
Ek+Ek′

2
, ωk,k′ =

Ek′ − Ek. Additionally, O(E) and fO(E,ω) are smooth functions. O(E) is
identical to the expectation value in the Microcanonical Ensemble (ME) at
energy E and Rk,k′ is a real or complex normal random variable with mean zero
and unit variance. The random elements Rk,k′ depends on the symmetry of
the Hamiltonian. If the Hamiltonian has time reversal symmetry they are real,
otherwise they are complex. The typical behaviour of an observable following
ETH is illustrated in Fig. 2.2. Following [147] we can start understanding

Figure 2.2: Typical behaviour of the mean value ⟨Ô⟩t of an
observable following ETH. The mean value approaches its time
average and the oscillations around this time average are expo-

nentially small in the system size.
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relaxation by looking at the time average defined in Eq. (2.13) which kills the
off-diagonal part of Eq. (2.14)

⟨Ô⟩t =
∑
k

Ok,k|ck|2. (2.16)

This is called the Diagonal Ensemble (DE) and it is defined by the density
matrix

ρ̂DE =
∑
k

|ck|2 |ψk⟩ ⟨ψk| . (2.17)

Then if the energy fluctuations in the diagonal ensemble are sufficiently small,
the time average of ⟨Ô⟩t will coincide with the Microcanonical Ensemble whose
density matrix is given by ρ̂ME =

∑
Ek∈[E,E+dE]

|ψk⟩ ⟨ψk|

⟨Ô⟩t ≃ O(⟨E⟩) ≃ OME. (2.18)

Furthermore, the long time average of the temporal fluctuations can be com-
puted, and proven to be smaller that the exponential of the entropy

σ2
O = lim

τ→∞

1

τ

ˆ τ

0

dt ⟨Ô⟩2t −
(
1

τ

ˆ τ

0

dt ⟨Ô⟩2t
)2

(2.19)

=
∑
k ̸=k′

|Ok,k′ |2|ck|2|ck′ |2 (2.20)

≤ maxk,k′|Ok,k′|2 ≃ e−S(Ek,k′ ). (2.21)

Because the entropy is an extensive quantity, we conclude that the long time
average of the temporal fluctuations are exponentially small in the system size.
In that sense, ETH gives a better understanding of thermalisation.

Connection to Random Matrix Theory. This being said we would like
to have an intuition on which systems verify ETH. The answer lies in RMT.
Indeed, it has been argued [9, 152] that fro quantum chaotic systems, the spec-
trum of the Hamiltonian locally mimics the local statistical properties of GOE
(or GUE if time reversal symmetry is broken) spectrum, such that the spacing
distribution follows the Wigner surmise. Knowing this, let us compute the av-
erage ⟨Ok,k′⟩GOE of Ok,k′ over a GOE (resp GUE) of size N . The observable
can be diagonalised as Ô =

∑
iOi |i⟩ ⟨i| such that Ok,k′ =

∑
iOi ⟨ψk|i⟩ ⟨i|ψk′⟩.

Then computing the mean and variance of the diagonal and off-diagonal Ok,k′

results from the properties of GOE (resp GUE) eigenvectors. This leads to the
conclusion that

⟨Ok,k′⟩GOE =

{
⟨O⟩GOE if k = k′

0 if k ̸= k′
(2.22)

⟨|Ok,k′ |2⟩GOE − | ⟨Ok,k′⟩GOE |2 =
{
O(N−1) if k = k′

1
N
⟨O2⟩GOE

(2.23)
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where ⟨O⟩GOE = 1
N

∑
iOi, and ⟨O2⟩GOE = 1

N

∑
iO

2
i , if we assume the eigenvalue

Oi do not scale with N , we conclude that both ⟨O⟩GOE and ⟨O2⟩GOE are of order
one in N . One can check that this properties are reproduced by the following
ansatz

Ok,k′ ≃ ⟨O⟩GOE δk,k′ +

√
⟨O2⟩GOE

N
Rk,k′ (2.24)

where Rk,k′ are random variables with zero mean and unit variance real for
GOE and complex for GUE. The conclusion is that if the Hamiltonian is a true
random matrix, Ok,k is independent of k, and the off-diagonal terms Ok,k′ are
exponentially small in the system size. One can clearly see the similarity with
ETH (2.15). If the Hamiltonian was a true random matrix the system would
relax, however, this RMT approach is not sufficient to describe real systems.
The next step was done by Srednicki [153] who gave ETH, i.e. the generaliza-
tion of the RMT prediction that is needed to describe observables in physical
systems.

2.1.2 Integrable Systems and the Generalised Gibbs En-
semble (GGE)

Integrable systems do not thermalise. We saw that quantum many-body
chaotic systems are expected to thermalize at large time. Now we will focus on
integrable systems which on the contrary do not thermalize in large time. We

Figure 2.3: Absorption
images in the first oscilation
cycle of a quenched 1d Bose

gas [126].

give a short introduction to integrable systems
and the so called GHD, i.e. the hydrodynam-
ical theory of integrable systems following the
review [144]. Those ideas started arising in the
2000s after the experimental realization of a
quench for an integrable system [126]. In this
experiment, the authors reproduce the equiv-
alent of a quantum Newton’s cradle where a
rubidium gas contained in a one-dimensional
harmonic trap is kicked into an initial non-
equilibrium state. After many collisions, one
would expect the gas to thermalize due to dif-
fusive effect. However, the gas shows persistent
oscillations, remaining as long as the system
stays isolated. This can be explained by notic-
ing that in the studied regime, the gas is well
modeled by the Lieb-Liniger model (LL), which
is an integrable model. In integrable models,
thermalization cannot happen due to the pres-
ence of an infinite number of conserved charges.

Generalized Gibbs Ensemble. Around
the same time, theoretical considerations car-
ried out in [34] gave intuitions on the long time
behaviour of integrable systems. To be more
precise, it was shown that these systems would
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relax not to a thermal state, but that local observables would obey the statistics
of the Generalized Gibbs Ensemble (GGE). This can be formulated as follows

⟨ÔA⟩GGE = Tr[ρ̂GGEÔA], (2.25)

where ÔA is the local observable of reference, and ρ̂GGE is the density matrix
defined as

ρ̂GGE =
1

ZGGE

e−
∑

i βiQ̂i . (2.26)

Here, ZGGE is a normalization factor, and Q̂i are the local conserved charges,
i.e., charges that commute with the Hamiltonian and with each other

[Ĥ, Q̂i] = 0,

[Q̂i, Q̂j] = 0. (2.27)

The charges are said to be local in the sense that Q̂i =
´
dxQ̂i,x, where the

integral (or the sum for discrete systems) is performed over all space and Q̂i,x

is a local observable as previously defined. The system is descibed by the gen-
eralized inverse temperatures βi which are fixed by the initial condition, such
that ⟨Q̂i⟩GGE = ⟨Q̂i⟩t=0 in order to satisfy conservation of charges.

Note also that relaxation to either the Gibbs Ensemble or the GGE can be
expressed as an ergodic principle. This is achieved by assuming that in the final
state, minimal information is retained about the initial state such that, one just
needs to maximize the entropy of the systems. Then, for each conserved quan-
tity, different Lagrange multipliers are introduced depending on which mean
quantities are conserved. For example, in the canonical ensemble, where the
mean energy is fixed, the Lagrange multiplier is the inverse temperature β.
In the case of the GGE, the Lagrange multipliers are the generalized inverse
temperatures βi.

2.1.3 An example of Integrable Systems: Free Fermions

A simple example of an integrable system are free fermions with periodic bound-
ary conditions. The Hamiltonian can be written in second quantization (for
convenience, we work with ℏ = 1 and m = 1)

Ĥ =

ˆ L/2

−L/2

dx
1

2
∂xĉ

†
x∂xĉx, (2.28)

where ĉx, and ĉ†x are the fermionic creation and annihilation field operators
with the corresponding anti-commutation relation {ĉx, ĉ†y} = δ(x− y), and the
periodicity condition ĉx = ĉx+L. In first quantization it reads

Ĥ = −
N∑
j=1

1

2
∂2xj

. (2.29)
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The Hamiltonian can be diagonalised in terms of the fermionic mode occupation
operators

Ĥ =
∞∑

k=−∞

k2

2
n̂k, n̂k = ĉ†kĉk, (2.30)

where ĉk is the free fermionic operator defined as

ĉk =

ˆ L/2

L/2

dxϕ∗
pn(x)ĉx, ϕk(x) =

e−ikx

√
L
, k =

2πn

L
. (2.31)

Conserved charges. The system exhibits local conserved charges [154]

Q̂j =
∑
k

kjn̂k. (2.32)

The n̂k are also conserved charges but they are not local. The Q̂j are local in
the sense that they can be written as one-point differential operators

Q̂j =
1

L

∑
k

ˆ
dxdykje−ik(x−y)ĉ†xĉy, (2.33)

=

ˆ
dxdy

[
1

L

∑
k

kje−ik(x−y)

]
ĉ†xĉy,

=

ˆ
dxQ̂j(x),

with Q̂j(x) = ĉ†x(−i)j∂jxĉx. They commute with the Hamiltonian, and also
between each other [Ĥ, Q̂j] = 0 , [Q̂j, Q̂i] = 0 such that they are conserved by
the dynamics generated by the Hamiltonian. Note that they include the total
number of fermions operator N̂ = Q̂0, the total momentum operator P̂ = Q̂1,
and the Hamiltonian Ĥ = Q̂2

2
. Now, the conserved charge operator density

obeys the continuity equation

∂tQ̂j(x) = i[Ĥ, Q̂j(x)] = −∂xĴj(x), (2.34)

where the currents are defined as

Ĵj(x) =
i(−i)j

2
(∂xĉ

†
x∂

j
xĉx − ĉ†x∂

j+1
x ĉx). (2.35)

Microstate and Macrostate. A microstate is typically expressed as an
eigenstate in the momentum respresentation

|k1, ..., kN⟩ =
1

LN/2

N∏
i=1

η̂†ki |0⟩ , (2.36)
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where |0⟩ is the vacuum state, and N the total number of fermions. The eigen-
states are, in fact, simultaneous eigenvectors of all charges

Q̂j |k1, ..., kN⟩ =
N∑
i=1

kji |k1, ..., kN⟩ , qj(k) = kj. (2.37)

Now we consider the Thermodynamic Limit (TD), i.e., we take L → ∞, and
N → ∞ with fixed ratio ρ = N

L
(in the following we just denote it by L→ ∞).

This allows to define a macrostate for each function ρ(k) : R → [0, 1]. The
macrostate is defined as the set of microstates {|k1, ..., kN⟩} such that

2π

L
number of ki in [k, k + dk[= ρ(k)dk. (2.38)

The function ρ(k) is often called the root density. We see that many microstates
corresponds to one macrostate and from the root density one can extract the
mean value of different observables. For example, the relation Eq. (2.37) sim-
plifies in the TD limit to

1

L

N∑
i=1

kji ≃
L→∞

ˆ +∞

−∞

dk

2π
qj(k)ρ(k). (2.39)

This allows to write

⟨k1, ..., kN |Q̂j(x)|k1, ..., kN⟩ ≃
L→∞

ˆ +∞

−∞

dk

2π
qj(k)ρ(k). (2.40)

We see that in the TD limit, the expectation value of the conserved charges is the
same for all microstates, i.e., it depends only on the macrostate. Reciprocally,
the relation Eq. (2.32) can be inverted such that imposing the expectation
values lim

L→∞
1
L
Tr[ρ̂Q̂j] = qj fixes uniquely the macrostate ρ(k). It is worth asking

what the current mean value is; a simple intuitive guess could be that it depends
on the density ρ(k) as

⟨k1, ..., kN |Ĵj(x)|k1, ..., kN⟩ ≃
L→∞

ˆ +∞

−∞

dk

2π
qj(k)v(k)ρ(k), (2.41)

where v(k) is the group velocity of the stable excitations. This is easy to prove
in the context of free fermions in the continuum, it turns out to be also valid in
the context of spin chains [155].

Similarly, in the TD limit, the two-point correlation depends only on the
root density as

⟨k1, ..., kN |ĉ†xĉy|k1, ..., kN⟩ =
1

L

N∑
j=1

e−ikj(x−y), (2.42)

≃
L→∞

ˆ +∞

−∞

dk

2π
e−ik(x−y)ρ(k),
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such that again it depends only on the macrostate. Additionally, using Wick’s
theorems, this fact remains valid for all multi-point correlation functions with
a finite number of points.

Excitations. Finally, we would like to characterise excitations. For a given
macrostate, excitations are defined on a specific microstate |k1, ..., kN⟩ by the
free fermionic operator. It can be a particle excitation

ĉ†k |k1, ..., kN⟩ , k /∈ {ki}, (2.43)

in which case the conserved charges difference will be positive and given by
∆Qj(k) = kj. Otherwise, it can be a hole excitation

ĉk |k1, ..., kN⟩ , k ∈ {ki}, (2.44)

in which case the conserved charges difference will be negative and given by
∆Qj(k) = −kj. The group velocity of the stable excitations is given by the
dispersion relation ϵ(k) as

v(k) = ϵ′(k), (2.45)

which in our special case is just v(k) = k.
Free Fermions on a Lattice. Now, we introduce a slightly more com-

plicated model, free fermions on a lattice (again with periodic boundary con-
ditions). We introduce it because it will have a different relationship to GHD.
Indeed, for free fermions in the continuum, GHD is exact, whereas for free
fermions on the lattice it is valid only in the latter defined Euler scaling limit
(2.67). The Hamiltonian is given by

Ĥ =
L∑

j=1

−J(ĉ†j ĉj+1 + ĉ†j+1ĉj)− µĉ†j ĉj, (2.46)

where ĉ†j, and ĉj are fermionic creation and annihilation operators. It can be
diagonalised as

Ĥ =
L∑
i=1

ϵ(ki)n̂ki , ki =
2πi

L
, (2.47)

where the mode operator are defined as n̂k = ĉ†kĉk, ĉk =
L∑

j=1

ĉje
−ikj, and the

dispersion relation is given by ϵ(k) = −2J cos(k)− µ. From here all the discus-
sion on microstates and macrostates and the properties Eqs. (2.42-2.41-2.45)
translate well, from free fermions in the continuum to free fermions on the
lattice.

Interacting Integrable Systems. The case of interacting systems is more
complicated. Let us briefly review how the previous properties are modified in
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that case. A typical example of an integrable interacting system is the Lieb-
Liniger model [156]. It represents a one-dimensional Bose gas with delta inter-
actions, where the first and second quantized Hamiltonians are written as

Ĥ = −
N∑

m=1

∂2xm
+
∑
m̸=j

gδ(xm − xj), (2.48)

Ĥ =

ˆ L/2

L/2

dx∂xĉ
†
x∂xĉx + gĉ†xĉ

†
xĉxĉx.

This model correctly describes quantum gases in an appropriate regime. For
example, the Newton’s cradle experiment [126] is described by the LL model.
Note that the LL model can be seen as an interpolation between free bosons
at g = 0 and the Tonks-Girardeau model (the infinite g limit) [157] which has
some relation to free fermions. From here, the conserved charges Q̂j and their
associated currents Ĵj can be constructed. The microstates |k1, ..., kN⟩, i.e., the
eigenstates, can be expressed in terms of the Bethe ansatz [158], where the wave
function is written as

ψk1,...,kN (x1, ..., xN) =
1

N
∑
P∈SN

sgn(P)ei
∑

j kPj
xj
∏
j>k

(kPj
− kPk

− ig), (2.49)

where N is a normalisation, SN is the set of permutations of N elements and
sgn(P) the signature of such a given permutation. The interpretation of the
Bethe ansatz is simple: the first part is just a superposition of plane waves with
permuted momenta. The momenta are only permuted because of the conserved
charges. For non-integrable model, the set of momenta would change to take
into account the redistribution of momenta each time there is a collision. The
second part ensures boundary conditions at the edges, xm = xj, and it encodes
the interaction. This part is model-dependent. Now, the significant difference
from noninteracting systems is that the momenta km are not independent; in-
stead, they obey a non-trivial set of quantization conditions called the Bethe
equations, which are written in their logarithmic form as

1 ≤ m ≤ N, 2πnm = kmL+
∑
j ̸=m

θ(km − kj), θ(k) = i ln

(
ig + k

ig − k

)
. (2.50)

Hence, we see that there is two way to describe the state, either with the data
of the set of N half-integers nm, or with the data of a set of N momenta km.

Following [144], it is possible to define a macrostate in a similar fashion to
the case of free theories, i.e. through a density ρ(k) of the roots km of the Bethe
equations. This density is defined as

number of km in [k, k + dk[= Lρ(k)dk. (2.51)

Interestingly, as a microstate can be defined in term of half-integers np, it is
also possible to define a macrostate through the density function χ(z) for the
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half-integers nm defined as

number of nm/L in [z, z + dz[= Lχ(z)dz. (2.52)

Both of those densities (2.51) and (2.52) are related by the counting function
z(k) defined as

ρ(k)dk = χ(z(k))
dz

dk
dk, (2.53)

The counting function z(k) can be obtained from the thermodynamic limit
of the Bethe equations (2.50). This leads to the definition of the occupation
function ϑ(k) = χ(z(k)) which is also constrained by the Bethe equations (2.50)
in the thermodynamic limit resulting in the form of the integral equation

1

2π
+

ˆ
dq

2π
K(k − q)ρ(q) =

ρ(k)

ϑ(k)
, K(k) =

2g

g2 + k2
. (2.54)

Most of the properties of the density functions, such as equations Eq. (2.40),
remain valid. However, the formula Eq. (2.41) for the mean current is slightly
modified. Indeed, here comes the main difference between interacting and non-
interacting systems, as the excitation group velocity v(k) in formula (2.41) is
now dependent on the state through the density function ρ. The usefulness of
the occupation function ϑ(k) becomes apparent when one tries to compute the
group velocity of an excitation which is given by

vρ(k) =
q′2(k)

q′1(k)
. (2.55)

Here, q2(k) and q1(k) appear naturally when one considers an excitation over a
microstate and then translate the result in term of macrostate. At a microscopic
scale, a typical excitation is a particle-hole excitation, i.e. a particle occupying
a half-integer nh is exited to a previously empty half-integer np. Let us denote
by {nm} the set of half-integers describing the microstate before the excitation
and {ñm} the one describing the state after the excitation. Both sets have their
related Bethe equations and momenta

1 ≤ m ≤ N, 2πnm = kmL+
∑
j ̸=m

θ(km − kj), (2.56)

1 ≤ m ≤ N, 2πñm = kmL+
∑
j ̸=m

θ(k̃m − k̃j).

From here, manipulations of those two sets of equations and of their thermody-
namic limit yields the definition of q2(k) and q1(k) (see [144] for more details)

qn(k) = kn −
ˆ

dq

2π
nqn−1f(q|k), (2.57)

f(k|k′)−
ˆ

dq

2π
ϑ(k)K(k − q)f(q|k′) = ϑ(k)θ(k − k′)

2π
.

Henceforth, we know how to compute the excitation group velocity, in order to
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emphasis its dependence on the macrostate, we will denote it as vρ(k) such that
the current in a macrostate (2.41) is modified as

⟨k1, ..., kN |Ĵj(x)|k1, ..., kN⟩ ≃
L→∞

ˆ +∞

−∞

dk

2π
qj(k)vρ(k)ρ(k), (2.58)

which will be essential when we attempt to construct a hydrodynamic theory
in the next section.

2.1.4 Hydrodynamics for Integrable Systems

Now, we want to move away from the hypothesis of homogeneity. The tool for
that is hydrodynamics, which allows a spatial description at a mesoscopic scale.
It can emerge from both classical and quantum systems and provides a dynam-
ical evolution towards possible relaxation. The strength of hydrodynamics lies
in the massive reduction of the number of degrees of freedom from a micro-
scopic to a mesoscopic description. By mesoscopic, we mean a scale larger than
the microscopic scale but smaller than the macroscopic scale. Hydrodynamics
assumes that properties of the fluid do not vary on the mesoscopic scale. In
other words, hydrodynamics is an emergent universal theory for the low-energy
dynamics of many-body systems.

GHD equation. Here we want to sketch how the ideas of hydrodynamics
can be applied to quantum integrable systems. The first attempts to do so date
back to 2016 by two independent groups [35, 36]. Let us we consider a quantum
system evolving via the Schrödinger equation. The density matrix will evolve
according to ρ̂(t) = Û †(t)ρ̂(0)Û(t), where ρ̂(0) is the initial density matrix, and
Û(t) = e−iĤt is the evolution operator. Then, the mean values of local operators
are simply given by ⟨Ô(x)⟩t = Tr[ρ̂(t)Ô(x)]. From the Heisenberg viewpoint,
a local observable Ô(x, t) follows the unitary evolution Ô(x, t) = Û †(t)ÔÛ(t)
such that ⟨Ô(x)⟩t = Tr[ρ̂(0)Ô(x, t)]. If additionally, the system is integrable,
there is a set of conserved charges density operator Q̂j(x) together with their
associated current Ĵj(x). Considering the evolution of the charge density gives
the continuity equations

∀n ∈ N, ∂tQ̂n(x, t) = i[Ĥ, Q̂n(x, t)] = −∂xĴn(x, t). (2.59)

Now these equations lead for the mean charge qn(x, t) = Tr[ρ̂(0)Q̂n(x, t)], and
mean charge current jn(x, t) = Tr[ρ̂(0)Ĵn(x, t)] to the following set of equations

∀n ∈ N, ∂tqn(x, t) = −∂xjn(x, t). (2.60)

On the other hand, we assume that the system is initially prepared in a state
with very smooth variation, such that it locally resembles a macrostate ρx,t=0(k),



Chapter 2. Non-equilibrium Dynamics of Noninteracting Fermions in
Presence of a Defect. 67

hence the mean charge and charge current Eqs. (2.40-2.58) generalise to

Tr[ρ̂(0)Q̂n(x)] ≃
L→∞

ˆ +∞

−∞

dk

2π
qn(k)ρx,t=0(k), (2.61)

Tr[ρ̂(0)Ĵn(x)] ≃
L→∞

ˆ +∞

−∞

dk

2π
qn(k)vρx,t=0(k)ρx,t=0(k).

Now, following the idea of hydrodynamics, we let the system evolve after the
quench for a long enough time such that local relaxation happens. This allows
us to describe the system as a macrostate at each position such that

Tr[ρ̂(0)Q̂n(x, t)] ≃
L→∞

ˆ +∞

−∞

dk

2π
qn(k)ρx,t(k), (2.62)

Tr[ρ̂(0)Ĵn(x, t)] ≃
L→∞

ˆ +∞

−∞

dk

2π
qn(k)vρx,t(k)ρx,t(k).

Combining this with Eq. (2.60) we obtain the set of equations

∀n ∈ N,
ˆ +∞

−∞

dk

2π
qn(k)

[
∂tρx,t(k) + ∂x(vρx,t(k)ρx,t(k))

]
= 0. (2.63)

The set of functions {qn(k)} form a basis of functions (for the case of free
fermions and LL model this is just the monomial basis qn(k) = kn), such that
we obtain the GHD equation

∂tρx,t(k) + ∂x(vρx,t(k)ρx,t(k)) = 0, (2.64)

where vρx,t is model dependent. In the particular case of free fermions studied
previously, GHD equation simplifies to

∂tρx,t(k) + ϵ′(k)∂xρx,t(k) = 0, (2.65)

where ϵ′(k) = k is the dispersion relation.
GHD and free fermions. Now we want to come back to two simple cases

where GHD can be proven rigorously, namely free fermions on the lattice or in
the continuum. For free fermions in the continuum (2.28), the Wigner function
(1.83) follows the time evolution

∂tW (x, k, t) + k∂xW (x, k, t) = 0. (2.66)

This can be obtained from (2.241) in the absence of potential V (x), or directly
from the Schrödinger equation. The equation (2.66) implies that GHD is exact
in that case which is true only for free fermions in the continuum. Generally, it
is believed that GHD is valid in the Euler scaling limit, i.e. when |x| and t are
growing to infinity but with fixed ratio x

t

ρx,t(k) = lim
Λ→∞

W (x = xΛ, k, t = tΛ). (2.67)

For example, for free fermions on a lattice (2.46), the Wigner function can
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still be defined; its evolution is slightly different from (2.66), as the gradient is
turned into a discrete gradient. This means that the free version of GHD (2.65)
is recovered only in the Euler limit when the discrete gradient converges to the
continuous gradient ∂x.

Now let us make a few remarks:

• In the case of free fermions, the velocity v(k) being independent from the
macrostate ρx,t(k), the GHD equation (2.64) can be solved analytically
using the method of characteristics. However in the interacting case, the
GHD equation (2.64) is much harder to solve, in most cases, this is done
using numerical methods.

• Interestingly, GHD can be generalised for system with weak integrability
breaking. This weak integrability breaking can take the form of a particle
loss [38], an inhomogeneous potential [37], inhomogeneous interactions
[39] or a non-integrable defect [130]. In all these cases collision integrals
were used [159].

2.2 Landauer-Büttiker Formalism
Noninteracting fermions with a defect. Starting now, we will investigate
the effect of defect on the dynamics of noninteracting fermions. By a defect
or an impurity, we mean a potential that varies on a microscopic length scale.
The physics of defects has attracted attention in the context of equilibrium
systems in particular with the so called "Friedel oscillations" [160–162]. Friedel
oscillations are a quantum mechanical analogue of electric charge screening,
representing the local perturbation of a Fermi gas (such as in a metallic system)
around a defect. In [163], the exact density around a delta function impurity
was obtained, including the density at distances shorter than the inter-particle
distance, which had not been given before. Later on, this was generalized to
an attractive delta function impurity (which can support a bound state) in an
inhomogeneous Fermi gas [164]. Moreover, in the case of multiple impurities, the
Casimir effect was also studied [165, 166]. Finally, the dynamic of an impurity
in a fermionic gas was also considered [167] in which case Friedel oscillations
are also observed.

The physics of defects has also attracted attention for systems driven out of
equilibrium. It has been proven to be relevant in the context of both electronic
systems and cold atoms [168–171]. In this section, we will focus on the effect
of local defects or impurities on the out-of-equilibrium dynamics. We start
by an overview of the Landauer-Büttiker formalism [21, 172], which treats the
current fluctuations in conductors. In the simplest cases, this is modeled as two
terminals connected through an impurity represented by a scattering matrix.
The system is in a NESS and the current, and current fluctuations are affected
by the impurity. Later, we will move on to the study of a quench with an
impurity in the post-quench Hamiltonian. The quench in question will be a
partitioning protocol with an impurity at the junction of the two systems. This
will allow us to observe the dynamical relaxation to a NESS and to recover the
Landauer-Büttiker formalism.
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Historically, the Landauer-Bütikker formalism arises from the investigation
of electric noise sources in mesoscopic conductors. As a first approximation,
this noise can be decomposed into two components: thermal noise (or Johnson-
Nyquist noise) and noise arising from the discrete nature of the charge carriers
(or shot noise). Latter on, Landauer, Bütikker and Martin proposed a quantum
treatment of the problem [21, 22, 172, 173].

Thermal Noise. Here, we will review the Landauer-Bütikker formalism fol-
lowing [174, 175]. The investigation of thermal noise began when Johnson [20]
measured a temperature-dependent electromotive force in conductors. John-
son’s intuition was that this electromotive force, or its related electric current,
was caused by the thermal agitation of electric charge carriers. This was soon
theoretically explained by Nyquist [176] for a conductor at thermal equilibrium.
Assuming equipartition for a mode of frequency ν with resistance Rν , he found
the square of the voltage at frequency ν to be

E2
ν = 4RνkBT, (2.68)

with kB the Boltzmann constant, and T the temperature. This result estab-
lishes a connection between electric current fluctuations and conductance, which
is related to the fluctuation-dissipation theorem. This relation allows for the
measurement of noise through conductivity measurements. However, this ex-
pression fails at low temperatures. Specifically, the periodic current Iν can be
related with the number of charge carriers passing through the conductor. This
implies that thermal fluctuations are related to the occupation numbers n of
a given mode. As the charge carriers are fermions, they obey the Fermi-Dirac
statistics such that for an energy ϵ, ⟨n⟩ = f with f = 1

eβ(ϵ−µ)+1
, where µ is the

chemical potential and β the inverse temperature. Because there can be only
zero or one fermion in a mode, n2 = n and the fluctuations are given by

⟨(n− ⟨n⟩)2⟩ = f(1− f), (2.69)

such that this product has to play a role in the thermal noise.
Shot Noise. Shot noise is much different as it only exists in the presence of

a current, i.e. in a non-equilibrium set-up. To briefly explain what shot noise
is, let us imagine one single particle scattering on a defect and being reflected
with probability R or transmitted with probability T . The incident state has
an occupation number nin, similarly the reflected and transmitted states are
characterised by nR and nT . Additionally we assume that there is an incoming
particle on the defect with a probability following the Fermi-Dirac statistics
⟨nin⟩ = f . The reflected and transmitted states obviously follow ⟨nR⟩ = Rf ,
and ⟨nT ⟩ = Tf . Because there is at most one particle in the incident state,
we know that at most one of the left and right channel is occupied such that
⟨nRnT ⟩ = 0. This helps to compute the second moments which are given by

⟨(nR − ⟨nR⟩)2⟩ = Rf(1−Rf),

⟨(nT − ⟨nT ⟩)2⟩ = Tf(1− Tf), (2.70)
⟨(nR − ⟨nR⟩)(nT − ⟨nT ⟩)⟩ = −TRf 2.
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The first thing to notice is that in the absence of a mean current trough the
defect, that is when ⟨nT ⟩ = 0, there is no fluctuation ⟨(nT − ⟨nT ⟩)2⟩ = 0, and
therefore no current fluctuations either. This is the reason why we call the shot
noise a non-equilibrium noise.

In the limit where the transmission factor T or the Fermi factor f is small,
the fluctuations of the transmitted number are equal to its mean value:

⟨(nT − ⟨nT ⟩)2⟩ ≃ Tf = ⟨nT ⟩ . (2.71)

This implies that the current fluctuations are proportional to the current:

⟨(I − ⟨I⟩)2⟩ ∼ ⟨I⟩ . (2.72)

This property is characteristic of Poissonian statistics. It is easy to see that,
because of the (1− Tf) factor, the fluctuations ⟨(nT − ⟨nT ⟩)2⟩ from Eq. (2.70)
are suppressed compared to Poissonian fluctuations.

Finally, if the situation is such that charge carriers arrive individually on the
defect, the previous computation allows to compute the transmitted current
fluctuations. However if one adds multiple incoming leads on the scattering
defect, or if the particles are not well separated in time, the situation turns
to be more complicated and one has to handle new effects arising from Pauli
exclusion principle. For example if two particles arrives at the same time on
the defect, they cannot end up in the same lead. This problem was treated in
the general case by Landauer and Büttiker [21, 22].

This method typically applies to noninteracting systems in the steady state.
We consider a two-terminal (Right/Left) system with one transverse channel
(see Fig. 2.4) for which we impose thermal equilibrium for each channel through
the Fermi factors

fR/L(E) =
1

eβR/L(E−µR/L) + 1
, (2.73)

with βR/L, right and left inverse temperature, and µR/L, right and left chem-
ical potential. In the general case treated by Büttiker [21, 173], there are
multiple transverse channels which correspond to transverse mode quantifi-
cation of wires of dimensions strictly larger than one. The method can be
generalized to more terminals and channels, but it is only useful to consider
this simplified case for later one-dimensional quenches and partitioning proto-
cols. Now, for a given terminal, we distinguish between the mode of particle
coming in the defect, from the mode of particle coming out of the defect to-
gether with their respective annihilation and creation operators at energy E,
âR/L(E), â†R/L(E), and b̂R/L(E), b̂†R/L(E) (a for in-coming mode and b for out-
coming mode). They verify the canonical fermionic anti-commutation relations
{âi(E), â†j(E ′)} = δi,jδ(E−E ′), {b̂i(E), b̂†j(E ′)} = δi,jδ(E−E ′) where the indices
i and j take values R and L. The occupation numbers are given by the oper-
ators n̂in,R/L(E) = â†R/L(E)âR/L(E), and n̂out,R/L(E) = b̂†R/L(E)b̂R/L(E). The
in-coming and out-coming modes are related through the scattering matrix S
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Figure 2.4: Two-terminal scattering problem for the case of a
single transverse channel (figure taken from [174]).

introduced by John Wheeler [177]:(
b̂L(E)

b̂R(E)

)
= S

(
âL(E)
âR(E)

)
, S =

(
tL rR
rL tR

)
, (2.74)

where the scattering matrix is a unitary matrix S†S = 1, and the transmission
and reflection coefficients are implicitly dependent on the energy E. Addi-
tionally the scattering matrix verify SS† = 1 which implies that |tR| = |tL|
and |rR| = |rL|. The advantage of this method from Landauer [22] is that
the fermionic properties are encoded into the anti-commutation relations such
that the rest of the computation is just a matter of algebraic manipulation. In
contrast, in [173] the Pauli principle has to be checked for each possible config-
uration of in-coming and out-coming particles. An other advantage is that the
results can be easily generalised to bosonic statistics.

The left and right particle current operators are defined in the usual way,

ĴR/L(x, t) =
ℏ

2mi

[
ψ̂†
R/L(x, t)∂xψ̂R/L(x, t)− (∂xψ̂

†
R/L(x, t))ψ̂R/L(x, t)

]
, (2.75)

where the field operators are given by

ψ̂R/L(x, t) =

ˆ
dE

e−iEt/ℏ√
2πℏv(E)

[
âR/L(E)e

ikx + b̂R/L(E)e
−ikx

]
, (2.76)

ψ̂†
R/L(x, t) =

ˆ
dE

eiEt/ℏ√
2πℏv(E)

[
â†R/L(E)e

−ikx + b̂†R/L(E)e
ikx
]
,

with v(E) =
√

2E
m

the velocity of the carriers. From Eqs. (2.79) and (2.76),
differentiating with respect to x we obtain the simpler expression for the current

ĴR/L(x, t) =
1

ℏ

¨
dEdE ′ei

E−E′
ℏ t
[
b̂†R/L(E)b̂R/L(E

′)− â†R/L(E)âR/L(E
′)
]
.

(2.77)
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Now, let us say that we want to obtain the mean current. In order to do that
we assume that the thermal equilibrium of the two reservoirs is not affected by
the defect such that the incoming left and right particle follows Fermi-Dirac
statistics

⟨â†i (E)âj(E ′)⟩ = δi,jδ(E − E ′)fi(E), (2.78)

where i and j indicate left or right terminal, and δi,j is the Kroenecker delta
symbol encoding the absence of correlations between the two reservoirs incom-
ing particles. From here, using the scattering matrix (2.74) it is possible to
compute the mean current. The mean current is found to be stationary, hence
independent of both x and of the subscript R/L (because of particle conserva-
tion)

⟨Ĵ⟩ =
ˆ

dE

2πℏ
T (E) (fL(E)− fR(E)) , (2.79)

where T (E) = |tR(E)|2 = |tL(E)|2 is the transmission probability. This result
is interesting but in order to match with the result of Johnsson and Nyquist
[20, 176] we would like to compute the noise, i.e. the second cumulant of the
current. Similarly to the mean current, the current noise can be obtain using
(2.77), which yields one of the main result of the Landauer-Bütikker formalism

⟨(Ĵ − ⟨Ĵ⟩)2⟩ =
ˆ

dE

2πℏ
[
T (fL(1− fL) + fR(1− fR)) + T (1− T ) (fL − fR)

2] ,
(2.80)

where the energy dependencies of T (E), fL(E), and fR(E) are implicit. Here,
the first term is the contribution of thermal equilibrium noise, while the second
term is the contribution of non-equilibrium or shot noise. It can be verified that
only the first term remains if the current is zero, ⟨Ĵ⟩ = 0, while only the second
term remains at zero temperature. Note that the second term is of second
order in the Fermi factors. At high energies, the Fermi distribution function is
equivalent to the Maxwell-Boltzmann distribution, and the shot noise term is
negligible compared to the thermal noise.

Latter on, Levitov and Lesovik [178, 179] completed the investigations on
current fluctuations by computing the full counting statistics (1.91)

ln(χ(λ)) =

ˆ
dE

2πℏ
ln(χE(λ)), (2.81)

χE(λ) = 1 + T (eiλ − 1)fL(1− fR) + T (e−iλ − 1)fR(1− fL),

where, χ(λ) = ⟨eiλĴ⟩ is the imaginary argument moment generating function.
This can be used for example to compute the skewness or third cumulant of the
current. More recently, Klich provided a more simple and elegant proof of the
formula [180].

In the Landauer-Büttiker formalism, the current and its cumulants are sta-
tionary at all times. It is also interesting to study a quench scenario, more
precisely, a partitioning protocol with a scattering defect or impurity in the
middle, where the observables will relax in time towards a non-equilibrium sta-
tionary state. This was done in [28], where it was shown numerically that the



Chapter 2. Non-equilibrium Dynamics of Noninteracting Fermions in
Presence of a Defect. 73

stationary state after a quench exhibits the Landauer-Büttiker FCS. This result
was later extended by [29, 30] to theoretical studies.

2.3 Relaxing to a GGE or a NESS with currents
As a warm-up, we first consider quenches in the absence of a defect. On this
simple example, we will see how a quench can lead to either a NESS with cur-
rents or a GGE without currents at different time scales (from now on we will
just refer to NESS and GGE). To illustrate this, we consider a partitioning pro-
tocol for one-dimensional free fermions as done in [134]. We prepare a system
of size ℓ into two independent halves, [− ℓ

2
, 0] (left L) and [0, ℓ

2
] (right R). Each

half is in a thermal state characterised by its own left and right chemical poten-
tials µR/L and inverse temperatures βR/L. The results presented in the article
[134] are given at zero chemical potential, but they can be easily generalized to
non-zero left and right chemical potentials µR/L. Then depending on how the
time limit is taken two scenarios can occur:

• The thermodynamic limit ℓ → ∞ is taken before the infinite time limit
t→ ∞. In this case, the boundaries play no role, and the system relaxes
to a NESS with non-zero currents.

• For a large system size, the time is taken to be larger compared to the
system size t

ℓ
→ ∞, allowing the particles to be reflected on the boundaries

multiple times. However, the time should not be too large t
ℓ2

→ 0 to
avoid revivals (see [181] for more details on revivals). In this case, around
the defect, the gas relaxes towards a GGE. The effect of boundaries is
illustrated in Fig. 2.5.

Initial State. Here, we illustrate the result of [134] but with a slightly more
general set up as we allow left and right chemical potential µR/L to be non zero.
The system is prepared in a thermal tensor state, i.e. the kernel can be written
as the sum of two thermal kernels

K0(x, x
′) = KL(x, x

′) +KR(x, x
′), (2.82)

where,

KL(x, x
′) = θ(−x)θ(−x′)

∞∑
n=1

4

ℓ
fL(kn) sin(knx) sin(knx

′), (2.83)

KR(x, x
′) = θ(x)θ(x′)

∞∑
n=1

4

ℓ
fR(kn) sin(knx) sin(knx

′), kn =
2πn

ℓ
,

and θ(x) is the Heaviside theta function. We recall that fR/L are the Fermi
factors for free fermions given by

fR/L(k) =
1

eβR/L(
k2

2
−µR/L) + 1

. (2.84)
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It is clear from this expression that within each half of the system, the eigen-
states of an infinite quantum well with a size of ℓ

2
are occupied according to the

Fermi-Dirac statistics.
Dynamical Evolution. From here the evolution follows the usual rule Eq.

(2.5), which yields

K(x, x′; t) = KL(x, x
′; t) +KR(x, x

′; t), (2.85)

KR/L(x, x
′; t) =

∑
ka,kb

ϕ∗
ka(x)ϕkb(x

′)e−i(E(ka)−E(kb))t (2.86)

×
ˆ ℓ/2

ℓ/2

dydy′ϕka(y)KR/L(y, y
′)ϕ∗

kb
(y′), (2.87)

where the ka/b takes value ka/b = πn
ℓ
, n ∈ N∗, and ϕka/b are the eigenfunctions

of of the infinite quantum of size ℓ (free particle within a box) well namely

ϕk(x) =

√
2

ℓ

{
sin(kx), if k = 2πn

ℓ

cos(kx), if k = (2n+1)π
ℓ

. (2.88)

Relaxation to the GGE. Here, we consider the large time limit such that

t

ℓ
→ ∞, and

t

ℓ2
→ 0. (2.89)

If we also require that the density is fixed (which is achieved by fixing βR/L and
µR/L), then, the authors of [134] argued, based on numerical tests (we provide
a theoretical argument for this in Section 2.5) that the kernel has a limit,

lim
ℓ→∞

ℓ≪t≪ℓ2

K(x, x′; t) = K∞(x, x′), (2.90)

K∞(x, x′) =

ˆ ∞

0

dk

2π
(fL(k) + fR(k)) (sin(kx) sin(kx

′) + cos(kx) cos(kx′)) .

Because the kernel is real, there is no current (2.7). This way of writing the
kernel is advantageous because it highlights that only the diagonal part, where
ka = kb, of Eq. (2.87) contributes. This can also be proven to obey the GGE
(2.26) associated with the initial condition (2.82). Another way of writing the
kernel, using plane waves, provides a better physical interpretation of the result

K∞(x, x′) =

ˆ +∞

−∞

dk

2π

(
fL(k) + fR(k)

2

)
e−ik(x−x′). (2.91)

We see that plane waves are filled with the mean of left and right Fermi factors,
as if they had been diluted in the box of size two times larger.

Similar conclusions where obtained in the case of a trap release [133]. The
authors studied the classical limit of a trap release of a noninteracting fermionic
gas on a circle (see Fig. 2.5). They conclude that the gas relaxes to GGE and
found universal power law relaxation together with oscillations of the density.
Additionally they concluded that the power law exponent depends only on the
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shape of the potential at its local extrema. Similarly, the authors of [132]
investigated the release of noninteracting fermions from a harmonic trap on a
circle, taking into account the full quantum dynamics. Their findings were in
line with those of the classical treatment [133] discussed above. They observed
that the kernel exhibited power-law relaxation with an exponent of 3

2
, which

agrees with the universal behavior identified in the classical analysis.

Figure 2.5: Illustration of the dynamical evolution of a gas of
free fermions in a box of size ℓ. Here, we represent the Wigner
function, defined by Eq. (1.83), in the classical limit given by
Eq. (1.88), which follows the Liouville evolution Eq. (2.66). At
initial time, both half systems are in grounds state such that
only the left half space is filed up to Fermi momentum pF . The
middle panel illustrates evolution at time t = 3ℓ

pF
. This illustra-

tion demonstrates that as the gas passes through the boundaries
multiple times, the observables such as density and kernel will
eventually relax to a stationary value. However, the large time
Wigner function does not describe a thermal equilibrium state.

Relaxation to a NESS with currents. On the other side, we can first
take the thermodynamic limit (defined as ℓ → ∞ with fixed densities, i.e.,
fixed βR/L and µR/L), and then the infinite time limit t → ∞. In that case,
using stationary phase approximation, the kernel can be shown to exhibit the
following stationary behavior

lim
t→∞

lim
ℓ→∞

K(x, x′; t) = K∞(x, x′; t), (2.92)

K∞(x, x′) =

ˆ ∞

0

dk

2π
(fL(k) + fR(k)) (sin(kx) sin(kx

′) + cos(kx) cos(kx′)) ,

+ i (fL(k)− fR(k)) (cos(kx) sin(kx
′)− sin(kx) cos(kx′)) .

We observe that compared to Eq. (2.91), there are additional non-diagonal
terms that persist in the large time limit. These non-diagonal terms are complex
and hence responsible for a non-zero particle (2.7) and energy (2.174) currents.
Once again, the kernel is more readable if written in terms of plane waves

K∞(x, x′) =

ˆ +∞

−∞

dk

2π
(θ(k)fL(k) + θ(−k)fR(k)) e−ik(x−x′). (2.93)
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This integral can be interpreted as plane waves originating from the left (or
right) with positive (or negative) velocities, corresponding to the left (or right)
initial thermal condition. The particle current (2.7) is a consequence of the
asymmetry between positive and negative values of k. It is independent of x
and given by

J =

ˆ +∞

0

dk

2π
k (fL(k)− fR(k)) , (2.94)

Which is consistent with the stationary current given in the Landauer-Büttiker
formalism (2.79) with T (E) = 1. Additionally, one can verify that this state
cannot be described as a GGE

Euler scaling limit or ray regime. Furthermore, instead of computing
the kernel at fixed positions x, and x′, it is possible to compute the large time
limit along positions that scale with times x = ξt + y, and x′ = ξ′t + y′. This
is called ray regime or Euler scaling limit. Here, along the rays, the system
relaxes to a stationary state called a Local Quasi Stationary State (LQSS)

lim
t→∞

lim
ℓ→∞

K(ξt+ y, ξ′t+ y′; t) =

{
0 if ξ ̸= ξ′

Kξ(y, y
′)

, (2.95)

Kξ(y, y
′) =

ˆ +∞

−∞

dk

2π
(θ(k > ξ)fL(k) + θ(ξ > k)fR(k)) e

−ik(y−y′),

where we used the notation θ(x > y) = θ(x− y).
Now, we aim to study both of these regimes within the context of the parti-

tioning protocol, considering the presence of an additional scattering defect at
the junction between the two systems. This was done for lattice noninteracting
fermions in [143] where is was shown that the NESS is reached.

In the next sections, we show how the NESS can be obtained for fermions
in the continuum. First, in Section 2.4, we present the results for the case of
a delta Dirac impurity V (x) = gδ(x), at zero temperature or with general left
and right thermal states in Section 2.4.4. For the same quench, we discuss in
Section 2.4.5 the large time decay to the NESS, and in Section 2.4.6 a compar-
ison with Conformal Field Theory in the low temperature limit. These results
are discussed in my second paper [2]. Then, in Section 2.6, we generalize this
approach to multi-time correlations for a partitioning protocol with a general
defect, i.e., a scattering matrix (2.74), and possible bound states. This work is
presented in my third paper [3]. In between these two parts, in Section 2.5 we
will also provide a theoretical argument for the relaxation to the GGE in the
presence of a delta defect. Finally, in Section 2.7 we will consider the relation-
ship between the semiclassical limit or GHD and the partitioning protocol with
a defect. We observe that a part of the correlations in the Euler scaling limit is
not predicted by the semiclassical method, and we propose an extension of this
method that allows us to recover these missing correlations.
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2.4 Partitioning protocol with a delta Dirac de-
fect: NESS with currents

Here, we will consider a partitioning protocol with different ground states for
the left and right initial systems. Subsequently, we will join the two systems
together with a delta Dirac impurity in between. We first take the thermody-
namic limit with fixed left and right densities and then the large time limit. In
this double limit, the system relaxes to a NESS, which we will characterize.

Model. We consider N noninteracting fermions in one dimension and in
the presence of a delta impurity at the origin described by the single particle
Hamiltonian Ĥg

Ĥg = −1

2
∂2x + gδ(x) . (2.96)

We work here in units where the fermion mass is unity and ℏ = 1. In these
units, g denotes the strength of the impurity, first we consider only the repulsive
defect (g > 0), but latter we will also consider the attractive case (g < 0). To
fully specify the model we define it on the interval [−ℓ/2, ℓ/2] with a hard wall
boundary condition (i.e., vanishing wave-function at x = ±ℓ/2). We will be
eventually be interested in the problem on the full line obtained by taking the
limit ℓ→ +∞, with fixed fermion densities.

Initial state. The system is prepared at t = 0 in the ground state of
the many body Hamiltonian with g = +∞, associated to the single particle
Hamiltonian Ĥ∞. This corresponds to imposing a hard-wall at x = 0, so that
the system is cut into two independent halves x > 0 and x < 0 at t = 0. We will
denote by NL and NR respectively the number of fermions in the left (x < 0)
and right (x > 0) halves. Let us introduce ϕL

n(x) and ϕR
n (x), with n = 1, 2, · · · ,

the normalized eigenfunctions of the single particle Hamiltonian Ĥ∞

ϕL
n(x) = θ(−x)

√
4

ℓ
sin(kn x) , ϕR

n (x) = θ(x)

√
4

ℓ
sin(kn x) , (2.97)

where
kn =

2πn

ℓ
. (2.98)

The corresponding energy levels are ϵn = 1
2
k2n = 2π2n2

ℓ2
which are doubly degen-

erate (L,R).
The kernel of this ground state can be shown to be the sum of a left and

right part
K0(x, x

′) = KL(x, x
′) +KR(x, x

′) , (2.99)

where

KL(x, x
′) = θ(−x)θ(−x′)

NL∑
n=1

4

ℓ
sin

(
2πnx

ℓ

)
sin

(
2πnx′

ℓ

)
, (2.100)

KR(x, x
′) = θ(x)θ(x′)

NR∑
n′=1

4

ℓ
sin

(
2πn′x

ℓ

)
sin

(
2πn′x′

ℓ

)
. (2.101)
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In particular, the mean fermion density is given by ρ(x, t = 0) = K0(x, x) =
ρL(x) + ρR(x) with ρR/L(x) = KR/L(x, x), where ρL(x) and ρR(x) denote re-
spectively the average fermion density to the left and to the right of the origin.
We also define the Fermi momenta of the left and right half-spaces associated
to the initial condition

kL = kNL
=

2πNL

ℓ
, kR = kNR

=
2πNR

ℓ
, (2.102)

and the corresponding Fermi energies

µL =
k2L
2

, µR =
k2R
2
, (2.103)

which will be useful in the following.
Dynamical Evolution. We now consider the time evolution for t > 0

described by the single particle Hamiltonian Ĥg (2.96) with a finite strength g
of the impurity at x = 0. We denote ψL

n (x, t) the solution of the Schrödinger
equation i∂tψ

L
n (x, t) = Ĥgψ

L
n (x, t) with initial condition ψL

n (x, t = 0) = ϕL
n(x),

and similarly ψR
n (x, t) with ψR

n (x, t = 0) = ϕR
n (x) where ϕR/L

n (x) are given in
Eq. (2.97). Under this evolution, the n-point correlations keep its determinantal
structure Eq. (2.5), and the time dependent correlation kernel K(xi, xj; t) reads

K(x, x′, t) = KL(x, x
′, t) +KR(x, x

′, t), (2.104)

where

KL(x, x
′, t) =

NL∑
n=1

ψL∗
n (x, t)ψL

n (x
′, t) , KR(x, x

′, t) =

NR∑
n=1

ψR∗
n (x, t)ψR

n (x
′, t) .

(2.105)
Here we compute the time evolution of the density ρ(x, t), of the kernel

K(x, x′, t) and of the current J(x, t). Since we are interested in the large time
behavior of the bulk of the system, we will take the limit ℓ→ +∞ before taking
t → +∞. More precisely we will take the limit ℓ → +∞, NR/L → +∞ with
fixed kL and kR, i.e. with fixed mean densities

ρL =
2NL

ℓ
=
kL
π

, ρR =
2NR

ℓ
=
kR
π
, (2.106)

or equivalently with fixed Fermi energies µL, µR (see Eq. (2.103)).
Main results. In this section we present our main results. The first one

is the expression for the kernel K(x, x′, t) in the thermodynamic limit ℓ→ +∞
at any fixed time t. It is a lengthy although fully explicit expression which is
given in (2.144) as a sum of terms which are given respectively in (2.145), (B.3),
(B.8), (B.9) and (B.12). From this expression one can read the time dependent
density from (1.57) and the current from (2.7).

The subsequent results concern the large time behavior obtained from the
kernel, once the thermodynamic limit is taken. We have found that there are
actually two different scaling regimes. The first one is the NESS where x, x′ =
O(1) and the second one is the regime of rays where both x, x′ = O(t). Since
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the analytical computations of the asymptotic behaviors are quite tricky, we
have carefully checked numerically our main predictions, which are shown in
Figs. 2.6, 2.7 and 2.8 below.

As we will see below some of these results (but not all) can also be obtained
from a heuristic semi-classical method which relies on the momentum dependent
transmission and reflection coefficients T (k) and R(k), which for a delta function
impurity are given by

T (k) =
k2

k2 + g2
, R(k) = 1− T (k) =

g2

k2 + g2
. (2.107)

The results presented here are derived from first principles, starting from from
an exact expansion over the eigenfunctions of the many-body system.

2.4.1 NESS regime: fixed x and x′

The first regime corresponds to fixed spatial positions x, x′ with t → +∞. In
this case, the kernel, the density and the particle current reach a stationary
limit which we compute explicitly, namely

ρ(x, t) → ρ∞(x) , J(x, t) → J∞ , K(x, x′; t) → K∞(x, x′) . (2.108)

Note that from the fermion number conservation in Eq. (2.8) the current is
constant in space in the large time limit. From the symmetry of the problem
under the change x→ −x, these observables satisfy the following relations

ρ∞(x)|kL,kR = ρ∞(−x)|kR,kL , J∞|kR,kL = −J∞|kL,kR , (2.109)
K∞(x, x′)|kL,kR = K∞(−x,−x′)|kR,kL .

Density. For the density we find, for x > 0

ρ∞(x > 0) =
kR
π

−
ˆ kR

kL

dk

2π

k2

g2 + k2
+
g

π

ˆ kR

0

dk
k sin(2k|x|)− g cos(2kx)

g2 + k2
.

(2.110)

Note that ρ∞(x < 0) is obtained from this expression Eq. (2.110) together with
the symmetry relation (2.109). This result for ρ∞(x) is shown in Fig. (2.6) and
compared with a numerical evaluation of the exact formula for ρ(x, t) (from
(2.143) with x = x′) at a relatively large time.

Let us now discuss a few salient features of this result. Far from the impurity,
which is located at x = 0, the stationary density profile approaches a constant
which is different on both sides and given by

lim
x→±∞

ρ∞(x) =
ρL + ρR

2
±
ˆ kR

kL

dk

2π

g2

g2 + k2
. (2.111)
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Numerical Simulation

Analytic Results

Asymptotic values

-1.0 -0.5 0.5 1.0
x
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ρ∞(x)

0

ρ∞(x)

x

Figure 2.6: Plot of the mean fermion density ρ∞(x) (in orange) as a
function of x in the presence of a repulsive impurity (g > 0) in the NESS
given by Eq. (2.110) for ρR = 4, ρL = 2 and g = 10. The oscillating
behavior of ρ∞(x) is the non-equilibrium analog of the Friedel oscillations
[160]. The asymptotic values for ρ∞(±∞) given by (2.112) are indicated
as horizontal dashed lines. These analytical results are compared with a
numerical evaluation (blue) of ρ(x, t) evaluated from the exact formula
in (2.143) with x = x′ for large time t = ℓ

4πρR
and system size ℓ = 50.

The agreement is excellent. Although large, this time has to be small
enough so that the fastest fermions traveling at speed kR have not been
reflected by the boundaries at x = ± ℓ

2 . This is achieved if kRt < ℓ
2 , i.e.,

if t < tℓ =
ℓ

2πρR
.

These asymptotic values can also be predicted by the semi classical method (see
Section 2.7) and written in the equivalent form

ρ∞(+∞) =
kR
π

−
ˆ kR

kL

dk

2π
T (k) , ρ∞(−∞) =

kL
π

+

ˆ kR

kL

dk

2π
T (k) , (2.112)

in terms of the transmission coefficient T (k) given in Eq. (2.107). The mean
density is continuous at x = 0 but exhibits a cusp, with different left and right
derivatives given by

ρ′∞(0+) =

ˆ kR

0

dk

π

2k2g

k2 + g2
, ρ′∞(0−) = −

ˆ kL

0

dk

π

2k2g

k2 + g2
. (2.113)

At variance with the equilibrium case (see below), this cusp is asymmetric.
Finally, the result for ρ∞(x) can be compared to the result obtained in [164]

for the mean density ρeq(x) of the equilibrium problem, i.e. in the ground state
with Fermi energy µ =

k2F
2

in the presence of a repulsive delta impurity of
strength g > 0 (see formula (60) and (138) there with λ = g)

ρeq(x) =
kF
π

+
g

π

ˆ kF

0

dk
k sin(2k|x|)− g cos(2kx)

k2 + g2
. (2.114)

We see that for kL = kR = kF the NESS density coincides with the equilibrium
(ground state) density (as discussed latter, this holds only in the absence of
bound state, that is for g ≥ 0). This is quite interesting since the initial state
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in the present work is far from the ground state of the system in the presence
of the impurity. An explanation for this property is that the components of the
initial state on the excited states correspond to fermionic waves (quasi particles)
propagating towards the edges of the system. If the observation time is smaller
than tℓ =

ℓ
2πρR

, such that the fastest fermions traveling at speed kR have not
been reflected yet, i.e. kRt < ℓ

2
, we expect relaxation to the equilibrium state

for kL = kR (and to the NESS for kL ̸= kR). This will always occur if the limit
ℓ→ +∞ is taken first.

Current. In addition, in the NESS, we show that there is a non zero particle
current given by

J∞ = −
ˆ kR

kL

dk

2π

k3

k2 + g2
=

1

2π

(
µL − µR +

g2

2
ln

(
g2 + 2µR

g2 + 2µL

))
, (2.115)

which can alternatively be expressed, using the transmission coefficient T (k)
given in Eq. (2.107), as

J∞ = −
ˆ kR

kL

dk

2π
k T (k) . (2.116)

This result can also be obtained by a semi-classical method, see Section 2.7.
The current is shown in Fig. 2.7 for ρR = 4, ρL = 2 (note that it is negative in
that case). Its maximal (absolute) value is reached for g = 0 when there is no
defect. In that case one finds J∞ = 1

2π
(µL − µR) which corresponds to a unit

conductance e2/h. In the limit g → +∞ it vanishes as

J∞ =
1

2πg2
(µ2

L − µ2
R) +O

(
1

g4

)
, (2.117)

which shows, as expected, that for a very strong defect the system is effectively
cut into two almost independent halves.

Kernel. Finally we also obtain the kernel in the NESS which reads explicitly
for x, x′ > 0

K∞(x > 0, x′ > 0) =

ˆ kR

0

dk

π
cos (k(x− x′))−

ˆ kR

kL

dk

2π

k2

k2 + g2
e−ik(x−x′)

(2.118)

+

ˆ kR

0

dk

π

gk sin (k(x+ x′))− g2 cos (k(x+ x′))

k2 + g2
,

while for x > 0, x′ < 0 it reads
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Numerical Simulation

Analytical Results
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Figure 2.7: Plot of the current J∞ (orange solid line) in the
NESS as a function of g, the strength of the delta impurity,
as given by formula Eq. (2.115), with ρR = 4, ρL = 2. It is
compared with a numerical evaluation (blue dots) of the exact
expression of J(x = 0, t), obtained from Eq. (2.143) together
with (2.7), for large time t = ℓ2

8πNR
= tℓ/2 and system size ℓ = 50

for several values of g.

K∞(x > 0, x′ < 0) =

(ˆ kR

0

+

ˆ kL

0

)
dk

2π

k

k2 + g2
(k cos(k(x− x′)) + g sin(k(x− x′))

(2.119)

+i

ˆ kR

kL

dk

2π

k

k2 + g2

(
k sin k(x− x′)− g cos k(x− x′) + ge−ik(x+x′)

)
,

the other cases being obtained by symmetry (see (2.109)). This result can be
expressed in a more compact form as

K∞(x, x′) =

(ˆ kL

0

+

ˆ kR

0

)
dk

2π

[
ϕ∞
−,k(x)ϕ

∞
−,k(x

′) + ϕ∞
+,k(x)ϕ

∞
+,k(x

′)
]

+

ˆ kR

kL

dk

2π

[
(g + ik)√
g2 + k2

ϕ∞
−,k(x)ϕ

∞
+,k(x

′) +
(g − ik)√
g2 + k2

ϕ∞
−,k(x

′)ϕ∞
+,k(x)

]
,

(2.120)

where the ϕ∞
±,k are defined as the large ℓ limit of the Hamiltonian’s eigenfunc-

tions (2.132), and (2.133)

ϕ∞
±,k(x) = lim

ℓ→∞

√
ℓ

2
ϕ±,k(x),

ϕ∞
−,k(x) = sin(kx),

ϕ∞
+,k(x) =

k cos(kx) + g sin(k|x|)√
g2 + k2

. (2.121)

The advantage of this form Eq. (2.120), resides in the fact that we see on the
first line real diagonal terms in the Hamiltonian basis which produce no current
(2.7), and on the second line complex off-diagonal (but degenerate) terms which
contain all information on the current (2.115). The kernel simplifies in the limit
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where the points x, x′ → ∞. In this limit, keeping x− x′ = O(1) one finds the
asymptotic behavior

K∞(x, x′) ≃
ˆ kR

0

dk

π
cos(k(x− x′))−

ˆ kR

kL

dk

2π

k2

k2 + g2
e−ik(x−x′), .(2.122)

On the other hand, if x→ +∞ and x′ → −∞ with x+ x′ = O(1) one finds

K∞(x, x′) ≃ i

ˆ kR

kL

dk

2π

kg

k2 + g2
e−ik(x+x′) , (2.123)

while the asymptotic kernel, for x, x′ → ∞, vanishes for generic value of x′/x
different from ±1.

In Section 2.7 we discuss the semi-classical method or GHD results in pres-
ence of a defect. It cannot reproduce the full expressions in Eq. (2.120), which
is not surprising because microscopic details are erased when we take the Euler
scaling limit (2.67). As expected, it does predict the asymptotic form in (2.122).
More surprisingly, we will see that the result (2.123) cannot be predicted by this
semi-classical method.

2.4.2 Ray regime or LQSS (Large time regime with ξ = x/t

fixed)

The second regime corresponds to both x, t→ ∞ with a fixed ratio ξ = x/t, i.e.
along rays. In this case the density and the current reach finite limits, which
are only functions of the scaling variable ξ

ρ(x, t) → ρ̃(ξ) , J(x, t) → J̃(ξ) . (2.124)

Note that the fermion number conservation Eq. (2.8) implies that these two
functions must be related via

∂ξJ̃(ξ) = ξ∂ξ ρ̃(ξ) . (2.125)

All the results below in that regime hold for any g (positive or negative)
since the bound state (that exists for g < 0) does not contribute in that limit.

Density. We find through explicit calculation of the large time limit, that
the scaling function for the density reads

ρ̃(ξ) =
kL + kR

2π
+ sgn(ξ)

(ˆ kR

kL

dk

2π
R(k) +

ˆ kR

kL

dk

2π
T (k)Θ(|ξ| − k)

)
.

(2.126)

A plot of ρ̃(ξ) is shown in the right panel of Fig. 2.8, together with an exact
evaluation at finite time illustrating the convergence. Note that ρ̃(ξ) is a con-
tinuous function of ξ except at ξ = 0 where it has a jump discontinuity. The
values on each side of the jumps at ξ = 0± are found to agree with the large
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Figure 2.8: Asymptotic density (left panel) and current (right
panel) at large time in the regime of rays ξ = x/t fixed. (Orange)
Plots of ρ̃(ξ) and J̃(ξ) as a function of ξ = x/t as given in Eqs.
2.129 and 2.128 for ρR = 4, ρL = 2 and g = 10. (Blue) For
comparison, ρ(x, t) and J(x, t) are plotted versus ξ = x/t for
t = ℓ

4πρR
= tℓ/2 and ℓ = 50. In this problem there are 2 pairs of

light cones at |ξ| = kR = 4π and |ξ| = kL = 2π. On this scale
the density exhibits a jump at ξ = 0, which is rounded on a scale
x = O(1) in the NESS (see Fig. 2.6) with a perfect matching as
ξ → 0±, see Eq. (2.128) (the oscillations visible here for ξ ≈ 0

are actually part of the NESS regime).

distance limit of the density obtained the NESS regime, i.e.

ρ̃(0±) = lim
x→±∞

ρ∞(x) . (2.127)

This matching shows that there is no additional intermediate regime between
the NESS x = O(1), and the regime of rays x = O(t).

Current. For the scaling function of the current we obtain, again through
explicit calculation of the large time limit

J̃(ξ) = −
ˆ kR

kL

dk

2π
k T (k)Θ(k − |ξ|) , (2.128)

where T (k) is given in (2.107). A plot of J̃(ξ) is shown in the right panel of Fig.
2.8, together with an exact evaluation at finite time illustrating the convergence.
The function J̃(ξ) is a continuous function of ξ everywhere. One can check that
the conservation equation Eq. (2.125) is obeyed, including at the point ξ = 0
(the delta function in ∂ξρ̃(ξ) is cancelled by the factor ξ in Eq. (2.125)). Note
that in this model there are two pairs of light cones at ξ = ±kL and ξ = ±kR
respectively. Outside these two light cones (|ξ| > max(kR, kL)) the current
vanishes at large time. Inside these two light cones (|ξ| < min(kR, kL)) the
current is constant and equal to its value in the NESS (and so is the density).

Kernel. We have found by explicit calculation that in this ray regime the
kernel K(x = ξt, x′ = ξ′t, t) vanishes unless ξ = ξ′ or ξ = −ξ′. More precisely
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one obtains the limiting scaling forms for y, y′ = O(1)

lim
t→+∞

K(ξt+ y,±ξt+ y′) = K±
ξ (y, y

′) . (2.129)

The expression for K+
ξ (y, y

′) is obtained as

K+
ξ (y, y

′) = −sign(ξ)

ˆ kR

kL

dk

2π
T (k)e−isign(ξ)k(y−y′)Θ(k − |ξ|)

+

ˆ kR

0

dk

π
cos(k(y − y′))Θ(ξ) +

ˆ kL

0

dk

π
cos(k(y − y′))Θ(−ξ).

(2.130)

where we recall that T (k) = k2/(k2 + g2). Note that K+
ξ (y, y

′) is a function
of y − y′ only. From this expression (2.130) in the limit of coinciding points
one recovers the density ρ̃(ξ) in Eq. (2.126) (using R(k) = 1 − T (k)) and the
current J(ξ) in Eq. (2.128) using (2.7). It is important to note that the kernel
(2.130) matches exactly in the limit ξ → 0+ with the result (2.122) for the
kernel K∞(x, x′) of the NESS in the large distance limit x, x′ > 0.

The expression for K−
ξ (y, y

′) is given by

K−
ξ (y, y

′) = i sign(ξ)

ˆ kR

kL

dk

2π

gk

g2 + k2
e−isign(ξ)k(y+y′)Θ(k − |ξ|) . (2.131)

This measures the quantum correlation between opposite rays. Once again the
kernel (2.131) matches exactly in the limit ξ → 0+ with the result (2.123) for the
kernel K∞(x, x′) of the NESS in the limit of very separated points x > 0, x′ < 0.

Notice the following important points:

• If there is either no inhomogeneity in the initial state (like in [140]) or an
inhomogeneous initial state without defect (like in [134] or (2.95)) then
there is no opposite rays correlation K−

ξ (y, y
′) = 0, hence this is a new

phenomenon due to the inhomogeneity of the Hamiltonian (2.96) and the
asymmetry in the left and right initial chemical potential µR/L.

• It is important to remark that the results for the density (2.126), the cur-
rent (2.128) and the kernel at coinciding rays (2.130) can be also obtained
using the semi-classical method as we will see in Section 2.7. However the
result for K−

ξ (y, y
′) for opposite rays in Eq. (2.131) cannot be obtained

from this semi-classical method. Indeed, it contains additional informa-
tion about correlations between two opposite rays i.e. between two points
far away from the defect and almost symmetric with respect to the de-
fect. Physically, it corresponds to a particle that is either reflected or
transmitted at the defect.
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2.4.3 Derivation of the NESS

2.4.3.1 Exact kernel at Finite Time and Finite Size.

The Hamiltonian eigenbasis. First we derive an exact formula for the kernel
at any time t in a system with of size ℓ. This will be the starting point for the
asymptotic analysis for ℓ → +∞ and subsequently for the computation of the
large time limit performed latter on.

In order to proceed, we need the eigenbasis of Ĥg. We first consider here
g > 0, and a finite interval x ∈ [−ℓ/2, ℓ/2] and specify further Ĥg by imposing
the vanishing of the wavefunctions at x = ±ℓ/2. The eigenfunctions of Ĥg are
either even or odd in x, respectively labelled by a subscript ’+’ or ’−’. The odd
eigenfunctions do not feel the delta impurity (since they vanish at the location
of the impurity) hence they read

ϕ−,q(x) =

√
2

ℓ
sin(qx) , q ∈ Λ− =

{
2πn

ℓ
, n ∈ N∗

}
, (2.132)

where we denote Λ− the lattice of possible values for the wavevector q.
The even eigenfunctions are also plane waves, and denoted by ϕ+,q(x), but

with a different quantization condition on q. They read

ϕ+,q(x) =
1√

(g2 + q2) ℓ
2
+ g

(q cos(qx) + g sin(q|x|)) , (2.133)

with the quantification condition (see Fig. (2.9))

q cos

(
qℓ

2

)
+ g sin

(
qℓ

2

)
= 0 ⇔ e−iqℓ = −q − ig

q + ig
, (2.134)

i.e., qℓ = −2atan(q/g) +mπ, which defines the lattice of possible wavevectors
q ∈ Λ+

Λ+ =

{
q, q cos(

qℓ

2
) + g sin(

qℓ

2
) = 0 ∩ q > 0

}
. (2.135)

Note that q and −q correspond to the same state, hence the condition q > 0.
Equivalently the states can be labeled by the strictly positive integers m ∈ N∗

(see Fig. (2.9)).
Finally, both the odd and even eigenstates ϕ±,q(x) are associated to the

eigenenergy

E(q) =
q2

2
. (2.136)

Time Dependent Kernel. As discussed above, see Eq. (2.104), the time
dependent kernel splits into two parts

K(x, x′; t) = KL(x, x
′; t) +KR(x, x

′; t), (2.137)
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Figure 2.9: Graphical representation of the quantization con-
dition in Eq. (2.134). It is plotted here for g = ±1 and ℓ = 10.
The intersection points − q

g = tan( qℓ2 ) generate the lattice q ∈ Λ+

(2.135). The lattice Λ− corresponds to the roots of the equation
0 = tan( qℓ2 ) = sin( qℓ2 ) (see Eq. (2.132)). Therefore the two lat-
tices Λ+ and Λ− are intertwined. For g < 0 the situation is
almost the same but now − q

g has a positive slope. Note that for
g < 0, there is an additional bound state which cannot be shown

on this figure.

where each component evolves independently

KR/L(x, x
′; t) =

NL∑
n=1

ψR/L∗
n (x, t)ψR/L

n (x′, t) . (2.138)

Since the ψR/L
n ’s evolve according to the Schrödinger equation with Hamiltonian

Ĥg in Eq. (2.96) these components can be rewritten using the real time Green’s
function

G(x, y, t) = ⟨x|e−iĤgt|y⟩ =
∑

σ=±,q∈Λσ

ϕσ,q(x)ϕ
∗
σ,q(y)e

−iE(q)t , (2.139)

where the eigenfunctions ϕσ,q(x) of Ĥg are given in (2.132) and (2.133). This
leads to

KR/L(x, x
′; t) =

ˆ ℓ/2

−ℓ/2

dydy′G∗(x, y, t)G(x′, y′, t)KR/L(y, y
′) . (2.140)

The time evolution of the total kernel is thus obtained as the sum as in (2.137).
Let us first study KR(x, x

′; t) in Eq. (2.140). Inserting the decomposition
(2.139) of the Green’s function together with the explicit expression of KR(y, y

′)
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in Eq. (2.101) we obtain

KR(x, x
′, t) =

∑
σa=±,ka∈Λσa

∑
σb=±,kb∈Λσb

∑
k∈Λ−,k≤kR

ϕ∗
σa,ka(x)ϕσb,kb(x

′)ei(E(ka)−E(kb))t

ˆ ℓ/2

0

dy

√
4

ℓ
ϕσa,ka(y) sin(ky)

ˆ ℓ/2

0

dy′
√

4

ℓ
ϕ∗
σb,kb

(y′) sin(ky′) , (2.141)

where, we have just reorganized the discrete sums and the integrals over y and
y′. The same manipulations can be performed for KL(x, x

′, t). The overlap
integrals over y and y′ can be performed explicitly, which gives

KR/L(x, x
′, t) =

∑
σa=±,ka∈Λσa

∑
σb=±,kb∈Λσb

∑
k∈Λ−,k≤kR/L

ϕ∗
σa,ka(x)ϕσb,kb(x

′)ei(E(ka)−E(kb))t

×

 1√
2
δσa,−δk,ka ±

23/2

ℓ

kka

(k2 − k2a)
√
g2 + k2a +

2g
ℓ

δσa,+


×

 1√
2
δσb,−δk,kb ±

23/2

ℓ

kkb

(k2 − k2b )
√
g2 + k2b +

2g
ℓ

δσb,+

 , (2.142)

where, in the last two factors in brackets, the + sign refers to KR and the − to
KL. To compute the full kernel we add the two halves and develop the product
to get

K(x, x′, t) =

(
NR∑
n=1

+

NL∑
n=1

)
1

2

2

ℓ
ϕ∞
−, 2πn

ℓ
(x)ϕ∞

−, 2πn
ℓ
(x′)︸ ︷︷ ︸

A=AR+AL

(2.143)

+

 ∑
k∈Λ−,k≤kR

+
∑

k∈Λ−,k≤kL

 ∑
ka∈Λ+,kb∈Λ+

2

(
2

ℓ

)3 ϕ∞
+,ka

(x)ϕ∞
+,kb

(x′)√
g2 + k2a

√
g2 + k2b

× k2kakb
(k2a − k2)(k2b − k2)

ei(E(ka)−E(kb))t︸ ︷︷ ︸
B=BR+BL

+
∑

k∈Λ−,kL<k≤kR

∑
kb∈Λ+

(
2

ℓ
)2ϕ∞

−,k(x)
ϕ∞
+,kb

(x′)√
g2 + k2b

kkb
k2 − k2b

ei(E(k)−E(kb))t

︸ ︷︷ ︸
C

+
∑

k∈Λ−,kL<k≤kR

∑
ka∈Λ+

(
2

ℓ
)2ϕ∞

−,k(x
′)
ϕ∞
+,ka

(x)√
g2 + k2a

kka
k2 − k2a

ei(E(ka)−E(k))t

︸ ︷︷ ︸
D

,

which is the sum of four terms denoted A = AR + AL, B = BR + BL, C,D
as indicated in the equation. These terms satisfy the symmetries: A(x, x′)
is real and symmetric, B(x, x′) = B∗(x′, x) and D(x, x′) = C∗(x′, x). Here
ϕ∞
±,k(x) is defined in (2.121). Additionally, for simplicity, we have replaced the
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normalisation constant of the wave functions by their large system size limits,
see [2] for the exact formula.

Let us make a few remarks:

• Symmetries: Since the initial kernel is unchanged under the simultaneous
transformation (kL, kR, x) → (kR, kL,−x) and because of the invariance of
Ĥg under parity transformation x→ −x, it follows that K(x, x′, t) is also
unchanged under (kL, kR, x) → (kR, kL,−x). The density ρ(x, t) has thus
the same invariance and the current satisfies JkL,kR(x, t) = −JkR,kL(−x, t).
This property is the finite time analog of the relations valid for the NESS
stated in Eq. (2.109).

• Contribution to the current: Since the term A is real, it does not contribute
to J(x, t), i.e., JA(x, t) = 0 (see Eq. (2.7)). It is easy to see that the termB
gives only an odd contribution to the current, i.e. JB(x, t) = −JB(−x, t).
Hence the term B cannot contribute to J∞, the current in the NESS, which
is uniform. It does however contribute to ρ∞(x). The current in the NESS
is thus only determined by C +D which gives an even contribution at all
time t, i.e., JC+D(x, t) = JC+D(−x, t).

2.4.3.2 Double limit of the kernel ℓ→ +∞, and t→ +∞.

Let us recall that we take the limit ℓ→ ∞ while fixing the left and right initial
densities 2NR/L

ℓ
= ρR/L =

kR/L

π
. Then we take the large time limit. Here we

consider the case of a repulsive impurity g > 0 – the analysis of an attractive
impurity g < 0 is performed in Section 2.6.4. This computation is possible
thanks to a contour integration trick that we explain in a general version in
Appendix A. From the exact expression for the kernel in (2.143), one can write

K(x, x′, t) = AL(x, x
′)+AR(x, x

′)+D∗(x′, x, t)+D(x, x′, t)+BL(x, x
′, t)+BR(x, x

′, t) ,
(2.144)

where we have used the relation D(x, x′, t) = C∗(x′, x, t). We now consider the terms
AR/L, BR/L and D separately.

The term A(x, x′): From (2.143) we see that it is time independent and, in the large
ℓ limit, it is given by the reflected sine-kernel (see e.g. [182, 183])

AR/L(x, x
′) = lim

ℓ→∞

1

ℓ

NR/L∑
n=1

sin

(
2πnx

ℓ

)
sin

(
2πnx′

ℓ

)
(2.145)

=

ˆ kR/L

0

dk

2π
ϕ∞−,k(x)ϕ

∞
−,k(x

′) ,
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where, ϕ∞−,k(x) = sin(kx) defined in (2.121). We see that the limit of A(x, x′) is the
first term of (2.120).

The term D(x, x′, t): From (2.143) the term D is given by a double sum

D = D(x, x′, t) =
4

ℓ2

∑
kb∈Λ+

kR∑
k∈Λ−,k=k+L

hx,x′,t(k, kb)

k − kb
(2.146)

with kL = 2πNL/ℓ, k+L = 2π(NL + 1)/ℓ and kR = 2πNR/ℓ and we recall that the
lattices Λ− and Λ+ are defined in Eqs. (2.132) and (2.135) respectively. We have also
defined the function 1

hx,x′,t(k, kb) =
ϕ∞−,k(x

′)ϕ∞+,kb
(x)√

g2 + k2b

kkb
k + kb

e−
i
2
(k2−k2b )t , (2.147)

where ϕ∞±,k(x) is defined in (2.121). Taking the limit ℓ → ∞ of (2.146) to obtain a
double integral is very delicate due to the presence in the sum of a pole 1

k−kb
and the

fact that the two lattices Λ− and Λ+ are intertwined (see Fig. 2.9). However, thanks
to the method introduced in Appendix A, D can be written as the following contour
integral

D(x, x′, t) =
4

ℓ2

∑
kb∈Λ+

ˆ
Γ0

dk

2π

ℓ

eiℓk − 1

hx,x′,t(k, kb)

k − kb
, (2.148)

where the contour Γ0 is a union of very small circles centered around the points k = 2πn
ℓ

with NL+1 ≤ n ≤ NR and oriented clockwise (see Fig. 2.10). This equality (2.148) is
valid because the factor ℓ

eiℓk−1
has poles at points k = 2πn

ℓ , hence, the equality results
from the residue theorem. The circles should be small enough so that the contour
does not enclose any point k = kb ∈ Λ+. We now deform the contour Γ0 into the
closed clockwise contour γδ which is the rectangle with the four corners k+L − 2πδ

ℓ − iϵ,
k+L − 2πδ

ℓ + iϵ, kR + 2πδ
ℓ + iϵ, kR + 2πδ

ℓ − iϵ, represented in Fig. 2.10. The parameter
0 < δ < 1 is chosen small enough so that the contour does not contain any point kb
of Λ+ located to the left of k+L and to the right of kR. During this deformation one
encounters only the poles at k = kb ∈ Λ+∩]k+L , kR[. Taking into account the residues
associated to these poles one obtains

D(x, x′, t) =
4

ℓ2

( ∑
kb∈Λ+

˛
γδ

dk

2π

ℓ

e−iℓk − 1

hx,x′,t(k, kb)

k − kb

+ 2πi
∑

kb∈Λ+∩]k+L ,kR[

ℓ

2π

1

e−iℓkb − 1
hx,x′,t(kb, kb)

)
. (2.149)

Where the second line are the residue. Until now this is an exact rewriting ofD(x, x′, t)
in Eq. (2.146) valid for any ℓ. For any kb ∈ Λ+, using the second relation in (2.134),
or equivalently using the result (A.10), one can evaluate the factor

1

e−iℓkb − 1
= −(

kb + ig

2kb
) . (2.150)

1Since we are eventually interested in the large ℓ limit we omitted in (2.147) the unim-
portant extra factor 2g/ℓ in the denominator in (2.143), which should be restored to obtain
finite ℓ formula.
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Figure 2.10: Illustration of the contours Γ0 (upper panel) and
γδ (lower panel) used in Eqs. (2.148) and (2.149) respectively.
In red we represent the poles of D(x, x′, t) in (2.148) at k = kb.

We now take the large ℓ and large time limit successively on Eq. (2.149). We already
argued in Section A that the integral over γδ vanishes in that limit because the factor

e−i k
2

2
t

e−iℓk − 1
, (2.151)

contained in the integral decays in the double limit when it is evaluated on γδ. In fact,
the decay of the integral over γδ in (2.149) is more complex, this decay is explained
in details in Appendix B. In the end, only the residue part of (2.149) remains in the
double limit ℓ → +∞, and t → +∞. Together, the double limit of D and C yields
the second line of (2.120) (we recall that C(x, x′, t) = D∗(x, x′, t) such that we also
know the double limit of C(x, x′, t)).

The term B(x, x′, t): We now give the double limit limit of BL(x, x
′) and BR(x, x

′)
defined in (2.143). Each term can be decomposed as the sum of two terms

BR/L(x, x
′, t) = Boff-diag

R/L (x, x′, t) +Bdiag
R/L(x, x

′) (2.152)

where the first term comes from the terms ka ̸= kb in the triple sum in (2.143), this
part decays to zero in the large system size and large time limit,

Boff-diag
R/L (x, x′, t) →

ℓ→∞
t→∞

0 (2.153)

while the second one comes from the terms ka = kb and does not depend on time.
The second term in (B.8) that is the diagonal part is equal to

Bdiag
R/L(x, x

′) =

ˆ kR/L

0

dk

2π
ϕ∞+,k(x)ϕ

∞
+,k(x

′) , (2.154)
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where the ϕ∞+,k(x) are defined in (2.121). The equation (B.12) yields the second term
of the first line of (2.120). Again, we refer to Appendix B for details on the decay of
Boff-diag

R/L (x, x′, t) which is a non trivial task.
In summary we have considered all term A, B, C, D of (2.144) and proven the

relaxation to the NESS described by the kernel (2.120) in the double limit ℓ → +∞,
and t → +∞. Now, we are going to discuss the case where the system relaxes to a
GGE after a quench with identical initial conditions but in a different limit.

2.4.4 NESS from finite temperature initial state
Now we want to generalize this result to a wider initial condition. We choose the
left and right initial state to be in a thermal state with different temperatures TR/L

on both sides of the impurity and with associated chemical potential µR/L. We will
see that the NESS kernel (2.120) has a simple generalisation in term of Fermi-Dirac
statistics. A difference also lies in the large-time decay to the NESS, which will be
discussed in a later section.

Initial condition at finite temperature. The described initial state is a ther-
mal product state, i.e. is is associated to a density matrix that is the density matrix
of two thermal state density matrix ρ̂ = ρ̂L ⊗ ρ̂R, such that both half system are
independent. This amounts to take the initial kernel at t = 0

K(x, x′, t = 0) = KL(x, x
′) +KR(x, x

′), (2.155)

with,

KL(x, x
′) = Θ(−x)Θ(−x′)∑∞

n=1
4
ℓfL

(
2πn
ℓ

)
sin
(
2πnx
ℓ

)
sin
(
2πnx′

ℓ

)
,

KR(x, x
′) = Θ(x)Θ(x′)

∑∞
n′=1

4
ℓfR

(
2πn′

ℓ

)
sin
(
2πn′x

ℓ

)
sin
(
2πn′x′

ℓ

)
, (2.156)

and where

fR/L(k) =
1

exp(βR/L(
k2

2 − µR/L)) + 1
, (2.157)

is the Fermi factor with βR/L = 1/TR/L. The density of fermions in the initial state
is now related to the chemical potentials via

ρR/L =

ˆ +∞

0

dk

π
fR/L(k) . (2.158)

The calculation proceeds in the same way as for TR/L = 0 but with some integral
contour modification. For example, when computing the large time behavior of D in
(2.143), the integral contours Γ0 in Eq. (2.148) and γδ′ in (2.149) are changed (see
Fig. 2.12). Notice that this change in the contours will affect the large time decay.
We present here only the result for g > 0.
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Results at finite temperature. In the NESS regime x = O(1) the full kernel
is given by

K∞(x, x′) =

ˆ ∞

0

dk

2π
(fR(k) + fL(k))

[
ϕ∞−,k(x)ϕ

∞
−,k(x

′) + ϕ∞+,k(x)ϕ
∞
+,k(x

′)
]

+ (fR(k)− fL(k))

[
(g + ik)√
g2 + k2

ϕ∞−,k(x)ϕ
∞
+,k(x

′) +
(g − ik)√
g2 + k2

ϕ∞−,k(x
′)ϕ∞+,k(x)

]
.

(2.159)

This result is very similar to the kernel at zero temperature (2.120) but with the
corresponding Fermi factors. From this one can extract the density, which retains
a cusp at x = 0 even at finite temperature. The current in the NESS at finite
temperature is obtained as

J∞ = −
ˆ ∞

0
dk
fR(k)− fL(k)

2π
k T (k) . (2.160)

We display its low temperature expansion in the case µL = µR =
k2F
2

J∞ =
π

6
(T 2

L − T 2
R)

g2

(g2 + k2F )
2
+

7π3

15

g2

(g2 + k2F )
4
(T 4

L − T 4
R) +O(T 6

R, T
6
L). (2.161)

Note that in the absence of impurity, for g = 0, one has instead (for any µR/L)

J∞|g=0 =
µL − µR

2π
+

1

2π
(TLe

−µL/TL − TRe
−µL/TR), (2.162)

which generalizes the standard zero temperature result. Reversely, one can show that
the current is proportional to TR ∼ TL at high temperature, which is consistent with
the case g = 0 performed in [134].

In the ray regime ξ = x/t = O(1) the kernel is obtained from Eqs. (2.129), (2.130),
and (2.131) by replacing the integrals over finite intervals to integral on half infinite
line with adequate Fermi factors

ˆ kR/L

0

dk

2π
→

ˆ +∞

0

dk

2π
fR/L(k) (2.163)

ˆ kR

kL

dk

2π
→

ˆ +∞

0

dk

2π
(fR(k)− fL(k)) .

For simplicity, we only give the resulting current which is given by

J̃(ξ) = −
ˆ ∞

0
dk
fR(k)− fL(k)

2π
kT (k)Θ(k − |ξ|), (2.164)

and it is plotted with the density in Fig. 2.11.
Remark: Note that the above initial state is quite different from the one considered

in the lattice model in Ref. [143] which has purely local correlations. These correspond
to two independent systems of free lattice fermions on a ring (as can be seen by
writing the Fourier decomposition of δxx′) while the initial kernel considered here
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Figure 2.11: Plot of the asymptotic density ρ̃(ξ) and current
J̃(ξ) in the ray regime as a function of ξ = x/t for non zero
temperature as given by Eq. (2.164) for ρR = 4, ρL = 2 and
g = 10. The temperatures are identical on both sides with TL =
TR equal to 1 (orange curve) and 10 (blue curve). We notice
that the singularities at the light cones ξ = ±kR/L are rounded

compared to the zero temperature case shown in Fig. 2.8.

corresponds instead to two independent systems of fermions in hard boxes. It is
however possible to match the two sets of results (lattice and continuum) but only in
the double limit βR/L → 0 with µR/L → +∞ of our kernel with βR/LµR/L = αR/L

where ν ± µ = 1
1+e

αL,R are the initial densities on each side of the origin.
Matching between finite and zero temperature. Here, we give some details

of the finite temperature calculation. The process is very close to the zero temperature
computation. One starts from the initial kernel defined in (2.156). Again, the kernel
can be decomposed into terms A, B, C, and D (2.143), but the sums are slightly
different. Let us take the example of D. Instead of having a sum over k as in
(2.146), where k ∈]kL, kR], the sum runs over the complete set Λ− and contains a
Fermi factor. In other words, we have the following transformation

∑kR
k∈Λ−,k=k+L

→∑
k∈Λ−

(fR(k)− fL(k)).
The contour γδ in Fig. 2.10 is now replaced by the semi-infinite rectangular

contour γδ′ with horizontal width 2ϵ shown in Fig. 2.12 (top right panel). A formula
analogous to (2.149) can be written where the integrand in the first term now contains
the additional factor fR(k) − fL(k) while the sum in the second term contains the
additional factor fR(kb) − fL(kb) and kb is now summed over the whole lattice Λ+.
This formula is valid however only provided the contour γδ′ does not enclose a pole of
the Fermi factors. Recall that the Fermi factor fR/L(k) has poles at k = ±kR/L

n with

kR/L
n =

√
k2R/L + 2(2n+ 1)iπT , n ∈ Z . (2.165)

Hence we need to choose
ϵ <

√
k2R/L + 2iπT , (2.166)

which we will assume from now on. The limit ℓ→ +∞ can now be performed and as
before (see Appendix A) the contribution of the upper half of γ′δ (i.e., for Im(k) > 0)
vanishes in that limit. Then in the large time limit, it is the lower half of γ′δ that will
decay, resulting in the last of the fourth term of (2.159).

Now we want to understand what happens to the integral contour if we take the
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Figure 2.12: Modification of the contour of integration for
nonzero temperature. The top left part shows the zero tem-
perature contour γδ, while the top right panel shows the contour
γδ′ used at finite temperature. The red dots are the poles of the
Fermi functions which, at low temperature, are located approx-
imately along two vertical lines going through kL and kR. As
explained in the text the residues at these poles can be used to
recover the results in the T → 0 limit, using the contour γδ′′

shown on the lower panel.

temperature to zero. In the above formula we have assumed that ϵ satisfies the bound
in (2.166) such that the contour γ′δ does not enclose any pole of the Fermi factors.
However these poles get closer to the real axis when the temperature goes to zero.
In other words the bound (2.166) becomes ϵ < πT

kR
at low T . So one can ask how is

the T = 0 recovered. The answer is illustrated in the Fig. 2.12. The contour γδ′ can
be deformed into the contour γδ′′ as shown in the third panel in Fig. 2.12. Consider
for instance the term C. One notes that as T → 0 the contribution of the part of
the contour to the left of kL and the part of the contour to the right of kR vanishes.
Hence the result is indentical in that limit to the one obtained from the previously
considered contour γδ (see first panel in Fig. 2.12), and to the T = 0 result.

2.4.5 Large time decay to the NESS
One of the main advantages of considering a quench is that it encompasses the dy-
namics. In this section, we will discuss how the NESS is reached at large times and
how this dependence is influenced by the initial state having zero or non-zero left and
right temperatures TR/L.

Zero Temperature. We have also obtained the large time decay at zero tem-
perature of the kernel K(x, x′, t) towards its value in the NESS for g > 0. It yields a
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power law decay modulated by time oscillations

∆K(x, x′, t) = K(x, x′, t)−K∞(x, x′) ≃
t→∞

1

t5/2
. (2.167)

From it one extract the density and the current. The detailed decay of the density is
found to be

ρ(x, t)− ρ∞(x) ≃ − 1

π2g4
(1 + g|x|)2 1

t3
(
1

kL
+

1

kR
) (2.168)

− 4(1 + g|x|)
g(2π)3/2t5/2

(kR cos(kRx) + g sin(kR|x|)
k2R(g

2 + k2R)
cos(

k2Rt

2
− π

4
)

+
kL cos(kLx) + g sin(kL|x|)

k2L(g
2 + k2L)

cos(
k2Lt

2
− π

4
)
)

+
4(1 + g|x|)
g2(2π)3/2t5/2

(
sin(kLx)

k2L
cos(

k2Lt

2
− π

4
)− sin(kRx)

k2R
cos(

k2Rt

2
− π

4
)

)
.

Hence the leading decay is t−5/2 modulated by oscillations, together with a 1/t3

term which is non oscillating. We also find that the current has also a leading algebraic
decay as t−5/2 modulated by oscillations. Note that power law decays with oscillations
have been obtained in other systems of noninteracting fermions [31, 133].

Notice that this results are not valid in the ray regime, at finite temperature and
for g = 0.

Finite Temperature. The decay in time to the NESS is different at finite T . It
follows a power law together with time oscillations:

∆K(x, x′, t) = ∆K = K −K∞ ≃ t−2 . (2.169)

It is slower that the result obtained at zero temperature, where we found an oscillating
t−5/2 decay dominated by k = kR/L (see Eq. (2.167)).

2.4.6 Energy current and CFT in the NESS
Conformal Field Therory (CFT) has been widely used to make prediction for quantum
quenches [125, 184]. In the case of partitioning protocol with a defect between the two
systems, the CFT prediction for the energy current was given in [123]. Let us compute
the energy current in the NESS, first we recall the definition of the energy current in
quantum mechanics for a single particle with a Hamiltonian Ĥ = −1

2∂
2
x + V (x) and

described by the wavefunction ψ(x, t), see e.g. [185]. The local energy q(x, t) and
energy current jq(x, t) are given by

q(x, t) =
1

2
(∂xψ(x, t)

∗)(∂xψ(x, t)) + ψ(x, t)∗V (x)ψ(x, t) , (2.170)

jq(x, t) = −Re
(
i(Ĥψ)(x, t)∗∂xψ(x, t)

)
. (2.171)

The total averaged energy is recovered from
´
dx q(x, t) = ⟨ψ|Ĥ|ψ⟩ while q(x, t) and

jq(x, t) obey the conservation equation (from the Schrödinger equation)

∂tq(x, t) + ∂xjq(x, t) = 0 . (2.172)
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For noninteracting fermions with the initial condition considered here (see Section
2.4), each state ψn

L/R(x, t) evolves independently, hence the total local energy Q(x, t)

and energy current JQ(x, t) are given by the corresponding sums of the one-body
contributions weighted by the Fermi factors. The time dependent energy current is
thus given by

J
L/R
Q (x, t) =

∞∑
n=1

fL/R(kn)Im
(
(Ĥgψ

n
L/R)(x, t)

∗∂xψ
n
L/R(x, t)

)
, (2.173)

where kn = 2πn
ℓ and Ĥg is the single-particle Hamiltonian with a delta-impurity in

Eq. (2.96). This can also be written in term of the kernel

JQ(x, t) = Im
(
Ĥg,x∂yK(x, y)|x=y

)
, (2.174)

where Ĥg,x is the Hamiltonian applied with respect to the variable x. In the case
where there is no potential (which is true here if x ̸= 0), then

JQ(x, t) =
1

4i
(∂x∂

2
y − ∂2x∂y)K(x, y)|x=y. (2.175)

Thus, the explicit calculation can be performed either from (2.173) using the contour
integral method A, or directly from the exact stationary kernel (2.120), and (2.159).
Both paths yield the same result, i.e. in the large time limit the energy current JQ(x, t)
converges to an asymptotic constant value JQ,∞ which reads

JQ,∞ = −
ˆ ∞

0

dk

2π
(fR(k)− fL(k))kE(k)T (k) , E(k) =

k2

2
. (2.176)

In the low temperature limit, using Sommerfeld expansion, one obtains the current
expansion (in the case µL = µR =

k2F
2 )

JQ,∞ =
π

12

k2F (2g
2 + k2F )

(g2 + k2F )
2

(T 2
L − T 2

R)−
7π3

30

g4

(g2 + k2F )
4
(T 4

L − T 4
R) +O(T 6

R, T
6
L) .

(2.177)
It is interesting to compare the first term in this low-temperature expansion with a
result for the energy current obtained in [123]. In that case, the current is obtained
for a quantum quench where two systems represented by two different CFT are glued
together at initial time with a defect at the junction

JCFT
Q,∞ = c

π

12
cos2 α(T 2

L − T 2
R) , (2.178)

where c is the central charge. A simple derivation of this result was given in [123]
for free Majorana fermions (corresponding to c = 1/2). In that work cos2 α is the
transmission coefficient of the defect, i.e. the analog of T (kF ) here. However the
coefficient of T 2

L − T 2
R that we obtain here in (2.177) is not equal to π

12T (kF ) as
would be predicted by the model of [123] taking into account that here c = 1. The
discrepancy can be understood as follows. One can show that for a general dispersion
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relation E(k) our formula (2.177) becomes to leading order for small TL and TR

JQ,∞ ≃ π

12

1

kF
(∂k(E(k)T (k))) |k=kF (T 2

L − T 2
R) . (2.179)

Performing the derivative with respect to k in (2.179) we obtain two terms. The first
one is ∝ E′(kF )T (kF )/kF = T (kF ) and coincides with the result of [123]. The addi-
tional term ∝ E(kF )T

′(kF )/kF is non zero when the transmission coefficient depends
on the momentum k, which is not the case in [123] as they consider a conformal defect
i.e. a defect that acts similarly for any k. In our case, the defect is not a conformal
defect, this explains the discrepancy (see Appendix C for an example of a conformal
defect). This additional term is negligible compared to the first one only when the
impurity strength is small, i.e., g ≪ kF .

Note that in the absence of the impurity, i.e. for g = 0, the low-temperature
expansion of JQ,∞ reads for arbitrary µL/R

JQ,∞|g=0 =
µ2L − µ2R

4π
+

π

12
(T 2

L − T 2
R) (2.180)

− 1

2π
(T 2

Le
−µL/TL − T 2

Re
−µR/TR) +O(e−2µL/TL , e−2µR/TR).

Note that the second term agrees with the formula (2.178) with full transmission.
After characterizing the NESS reached in the double limit ℓ→ ∞ followed by t→ ∞,
we now give a description of what happens when the particles start interacting with
the boundaries.

2.5 Partitioning protocol with a delta Dirac de-
fect: relaxation to a GGE

Again, we consider N noninteracting fermions in one dimension and in the presence
of a delta impurity as in (2.4). This time, instead of taking the large time limit after
the thermodynamic limit, which led in the previous section to the emergence of a
NESS, we simultaneously take both limits such that the particles are reflected at the
boundaries. This is done following the discussion in (2.3), where we let t

ℓ → ∞ and
t
ℓ2

→ 0. It was argued numerically in [134] to yield a GGE (in the absence of a
defect). As we have not discussed this regime in our paper [2], we want to give here a
theoretical argument, explaining why the GGE should persist in the presence of the
delta defect. We define the limit as follows

ℓ→ ∞,

{
t = ℓa if a ̸= 1

t = ℓ
k∗ if a = 1

. (2.181)

We begin with the expression Eq. (2.143) where the kernel is is divided in terms A,
B, C, and D. We claim that depending on the value of a, this leads to the different
regimes

• If a ∈]0, 1[, we recover the NESS regime, and the limit (2.181) leads to a sta-
tionary kernel equal to Eq. (2.120). The kernel is the sum of the non-zero large
time limit terms A, B, C, and D from the previous section (2.143). We stress
that while A and B correspond to the diagonal ensemble (2.17) in the eigenbasis
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of the Hamiltonian Ĥg, C and D, which contain the current, are off-diagonal
terms, this means that the kernel does not match the diagonal ensemble (2.17).
We also stress that this kernel does not correspond to the kernel given by GGE
(2.26) with initial condition (2.99).

• If a ∈]1, 2[, the limit (2.181) leads to a GGE (2.26) obtained from the initial
state (2.99). It is characterised by the kernel

Keq(x, x
′) =

(ˆ kL

0

dk

2π
+

ˆ kR

0

dk

2π

)(
ϕ∞−,k(x)ϕ

∞
−,k(x

′) + ϕ∞+,k(x)ϕ
∞
+,k(x

′)
)
,

(2.182)

where, ϕ∞±,k(x) are defined in (2.121). It has no current (2.7) because it has no
imaginary part. This time the kernel is equal to the large time limit of A, B,
in this limit, we see that only the diagonal elements survive, hence the kernel
matches with the diagonal ensemble (2.17). Note that this kernel (2.182) is the
mean of two equilibrium kernels in presence of a delta impurity found in [164];
one with Fermi momentum kL and one with Fermi momentum kR.

• If a = 1, even if we have no proof yet, we believe that this limit leads to a
crossover regime between the NESS regime and the GGE regime. More pre-
cisely, when k∗ = 0, it corresponds to the GGE regime, while as k∗ → ∞, it
corresponds to the NESS. The intuition behind this is that waves with wave
number k have a velocity v(k) = k, hence they will bounce on the boundaries a
number of time of order ∼ k

k∗ . This implies that waves with k < k∗ will not be
affected by the boundaries, leading to NESS physics. On the other hand, waves
with k ≫ k∗ will bounce multiple times on the boundary, getting dephased,
and leading to the GGE. Note that this regime can be described by the GHD
extension given in Section 2.7.3; however, this predicts local correlations only,
whereas in this system, we also expect non-local correlations.

• If a = 2: This case leads to possible revivals such that there is no observed
NESS or GGE in this limit. A quantum revival is a phenomenon where the
wave function periodically comes back to its initial form [186].

2.5.1 The NESS regime is still observed for a < 1

If a ∈]0, 1[, we argue that one can proceed as in Section (2.4.3.2). The term A(x, x′)
in (2.143) is independent of time so it will converge to the same value. For the terms
B, C, and D of (2.143) we will still use the method from Appendix A used in Section
2.4.3.2 and nothing is changed. Indeed, let us consider the term D. We can still
express it as a contour integral, similar to (2.149). However, this time the factor
(2.151) of the integrand of (2.149) is given by

e−i k
2

2
t

e−ikℓ − 1
= e−i

k21−k22
2

ℓa ek1k2ℓ
a

e−ik1ℓeℓk2 − 1
, (2.183)

with k = k1 + ik2, k1 > 0 and t = ℓa. Now, we recall that in the Appendix A, a
key-point was the decay to zero of the factor (2.183) in the double limit lim

t→∞
lim
ℓ→∞

for

Im[k] = k2 ̸= 0. Therefore, the method will be valid if this factor also goes to zero in
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the limit (2.181). In this limit, the factor is equivalent to

e−i k
2

2
t

e−ikℓ − 1
≃

ℓ→∞

 e−i
k21−k22

2
ℓaeik1ℓek2ℓ(k1ℓ

a−1−1) if k2 > 0

−e−i
k21−k22

2
ℓaek1k2ℓ

a if k2 < 0
. (2.184)

From this it is easy to see that if k2 ̸= 0 the factor (2.183) goes to zero

lim
ℓ→∞

e−i k
2

2
t

e−ikℓ − 1
= 0 if a ∈]0, 1[. (2.185)

As a consequence, we recover the NESS regime (2.120) for a ∈]0, 1[. However, if a > 1
the behaviour of the factor (2.183) is different and

for a ∈]1, 2[, lim
ℓ→∞

e−i k
2

2
t

e−ikℓ − 1
=

{
+∞ if k2 > 0

0 if k2 < 0
, (2.186)

the factor does not decay to zero, indicating that the result from the Appendix A
cannot be used anymore. Therefore, we expect to encounter a new regime for which
we will need a new method.

Critical value t = ℓ
k∗ . Before explaining how the system reaches the GGE regime

when a ∈]1, 2[, let us give details on the critical value a = 1, t = ℓ
k∗ . In that case,

(2.184) has the following limit

lim
ℓ→∞

e−i k
2

2
t

e−ikℓ − 1
=


+∞ if k2 > 0 and k1 > k∗

0 if k2 > 0 and k1 < k∗

0 if k2 < 0

, (2.187)

such that the method from the Appendix A can be applied only to a part of the sums
(that is k < k∗) in terms B, C, and D. Indeed if k < k∗ then in the integral contour
γδ from Fig. 2.10, the real part of k verifies Re[k] < k∗ such that the factor (2.183)
decays. For the rest of the sum (that is k > k∗), the method from Appendix A cannot
be applied, therefore we expect a new regime.

Note that the local part of the kernel can be described in terms of GHD (see
Section 2.7.3). However, the full kernel K(x, x′, t = ℓ

k∗ ) remains unknown, whether it
is obtained from an extension of GHD or an exact computation.

2.5.2 An argument for the GGE regime for 1 < a < 2

Now we will give an argument for the emergence of the GGE regime (2.182) when
1 < a < 2. We start from the exact finite time finite system size decomposition of the
kernel (2.143). A and Bdiag are time independent, so they have the same behaviour as
for 0 < a < 1 and relax to the same stationary non zero component. Additionally, we
already explained why we cannot use the method from the Appendix A to compute
C, D and Boff-diag. We want to argue why each of them decay to zero . We recall that
D(x, x′, t) = C∗(x′, x, t) such that we restrict to the study of D, concerning Boff-diag

its decay is shown with similar methods. First we give D(x, x′, t = ℓa) from (2.146)
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D(x, x′, t = ℓa) =
4

ℓ2

∑
kb∈Λ+

kR∑
k∈Λ−,k=k+L

hx,x′,t=0(k, kb)e
− iℓa

2
(k2−k2b )

k − kb
(2.188)

where the function hx,x′,t(k, kb) is defined in (2.147), and the lattice Λ± are defined
in (2.135), (2.132). Here we just took the time dependent exponential factor out of
hx,x′,t(k, kb). The remaining hx,x′,t=0(k, kb) is a continuous function that is irrelevant
for the rest of the argument. The sum can also be performed over the index n and
m such that k = kn = 2πn

ℓ ∈ Λ− and kb = qm ∈ Λ+. From (2.135), with a repulsive
potential g ≥ 0, it is possible to show that (see also Fig. 2.9)

qm =
(2m+ 1)π

ℓ
+
ϕm
ℓ
, ϕm ∈ [0, π]. (2.189)

Furthermore, {ϕm}m∈N is a decreasing sequence such that lim
m→∞

ϕm = 0, and ϕm = 0 if
g = 0 which means that ϕm is non zero only in presence of the defect. For convenience,
we also define

θn,m = ℓ(qm − kn), (2.190)

such that θn,n+p = (2p + 1)π + ϕn+p. Using (2.135) the definition of Λ+, we obtain
the large ℓ behaviour

θn,n+p ≃
ℓ→∞

2(p+ 1)π − 2 arctan(
kn
g
) = fp(kn). (2.191)

Now, we proceed with a variable manipulation in the sum (2.188), where we enforce
the constraint m = n+ p and run the sum over p instead of m. This yields

D(x, x′, t = ℓa) =

+∞∑
p=−NR

Dp, (2.192)

Dp =

NR∑
n=NL+1

θ(n+ p)
4

ℓ2
hx,x′,t=0(kn, qn+p)e

− iℓa

2
(k2n−q2n+p)

kn − qn+p
.

Inserting (2.190) leads to

Dp = −
NR∑

n=NL+1

θ(n+ p)
4

ℓ

hx,x′,t=0(kn, qn+p)e
i(knθn,n+pℓa−1+θ2n,n+pℓ

a−2)

θn,n+p
. (2.193)

The important part of this step is that now, according to (2.191), in the large
ℓ limit, and for a fixed p, θn,n+p will not change sign and will remain outside of an
interval [−ϵ, π] containing zero (ϵ > 0), as n goes from NL + 1 to NR, or equivalently
kn ∈]kL, kR]. In simpler terms, we find that Dp does not have any poles along n.
However, the trade-off for this result is that we now have a double sum with only one
factor of 1

ℓ , which means that we cannot rewrite it as a double integral in the limit of
large ℓ.

Let us focus onDp, in the large ℓ limit with fixed p. The reason why we can restrict
to p fixed, is because the part of the sum (2.188) with p of order ℓ (or equivalently

1
k−kb

= O(1)) contains no pole, and therefore can be treated as a double integral which
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decays to zero in the large ℓ limit whether a ∈]0, 1[ or a ∈]1, 2[. Now it appears that
for a ∈]1, 2[

Dp ≃
ℓ→∞

−
ˆ kR

kL

2dk

fp(k)π
hx,x′,t=0(k, k)e

ifp(k)knℓa−1
, (2.194)

which is just the Fourier transform F̂ (ξ) with a large argument ξ = fp(kn)ℓ
a−1 of a

discontinuous compactly supported function F (k) with hard edges at kL and kR. The
Fourier transform of such a function decrease at least as F̂ (ξ) ≃

ξ→∞
ξ−1. In order to

conclude the argument, we recall that fp(k) doesn’t approach 0 and varies slowly with
k such that we roughly replace it by fp(k) ∼ 2(p+ 1) + 1/2. This yields

D ≃
ℓ→∞

+∞∑
p=−∞

F̂ (fp(kn)ℓ
a−1)

fp(kn)
≲

+∞∑
p=−∞

ℓ1−a

(2(p+ 1) + 1/2)2
≃ ℓ1−a. (2.195)

At fixed ℓ the sum over p converges, and we obtain the decrease in ℓ. Note that this
demonstration cannot be performed for the critical value a = 1, t = ℓ

k∗ and k > k∗ as
in this case, Fourier transform argument in (2.195) does not grow to infinity. Hence,
another method needs to be introduced in order to obtain the kernel in that limit.

2.6 Quench with a General Defect
From the previous sections, while the formulae for the kernel (Eqs. (2.118) and
(2.119)) may appear somewhat cumbersome, they seem to have dependencies on the
reflection and transmission coefficients of the delta impurity. To clarify these depen-
dencies, we introduce a more general setup, which was the focus of the third article
[3]. In The first Section 2.6.1 we will present a quench with a general defect charac-
terised by its reflection and transmission coefficients. Such a general defect also comes
with bound states whose effect is discussed in Section 2.6.4. In Section 2.6.2, we ex-
tend our computation to the space-time extended kernel which allows computations
of multi-time correlations. Then, in Section 2.6.5 we apply this to the computation of
density-density space-time correlations for which algebraic decay are found. In Sec-
tion 2.6.3 we present another way to compute the kernel by using the method from
Appendix A directly on the wave function instead of using it on the kernel. This
method is simpler to implement and provides a better physical intuition of the result.

2.6.1 Model
The defect We consider N noninteracting fermions in one dimension in the presence
of a finite size impurity modeled by a potential. The evolution at t > 0 is governed
by the single particle Hamiltonian

Ĥ = −1

2
∂2x + V (x) . (2.196)

For simplicity, the potential V (x) is localized in the region [−a
2 ,

a
2 ] and does not possess

any bound state (i.e., a repulsive impurity). Outside of this region the eigenfunctions
of Ĥ are plane waves ∼ e±ikx with amplitudes related through a scattering matrix
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similar to (2.74)

S(k) =

(
tL(k) rR(k)
rL(k) tR(k)

)
, (2.197)

where rR/L(k) and tR/L(k) are right and left momentum dependent reflection and
transmission coefficients. The current conservation and time reversal symmetry leads
to the following constraint

rL(k) = eiφL(k) cos θ(k) , rR(k) = eiφR(k) cos θ(k) (2.198)

tR(k) = tL(k) = t(k) = ie
i
2
(φR(k)+φL(k)) sin θ(k).

Examples of scattering potentials together with the expression of their transmission
and reflection coefficients can be found in Appendix C. Similarly to (2.132) and
(2.133), the eigenstates of Ĥ form a two component family ϕ±,k(x) with k ∈ Λ±.
The fermions are confined in a hard box of size ℓ with ℓ > a such that Λ± is defined
by the hard-box boundary condition

Λ± = {k ∈ R+|ϕ±,k(
ℓ

2
) = 0} . (2.199)

In the simpler case of a symmetric potential rR(k) = rL(k) = r(k), and the eigenstates
of Ĥ are either odd (−) or even (+), they take the form

ϕ−,k(x) = sgn(x)cℓ,−,k cos(k(|x| − δ−k )) k ∈ Λ−, (2.200)
ϕ+,k(x) = cℓ,+,k cos(k(|x| − δ+k )) k ∈ Λ+,

where the phase shifts kδ±k are related to the scattering coefficients as

r(k) + t(k) = e−2ikδ+k , r(k)− t(k) = e−2ikδ−k . (2.201)

These eigenfunctions are normalized on [− ℓ
2 ,

ℓ
2 ] and the normalization prefactor cℓ,±,k

becomes k-independent and ±-independent at large ℓ with cℓ,±,k ≃
√

2
ℓ .

The initial condition. We also give a more general initial condition. We describe
the initial state with an impenetrable defect such that both left and right system are
independent at initial time. This defect is described by the single particle Hamiltonian
Ĥ0

Ĥ0 = −1

2
∂2x + V0(x) , (2.202)

where V0(x) is another potential localized in the region [−a
2 ,

a
2 ] and characterized by

a scattering matrix

S0 =

(
0 rR0 (k)

rL0 (k) 0

)
, |rL0 (k)|2 = |rR0 (k)|2 = 1 . (2.203)

The potential V0(x) is sufficiently divergent at x = 0 so that the system is cut in two
halves with tR0 (k) = tL0 (k) = 0. The initial N -body density matrix ρ̂ = ρ̂L ⊗ ρ̂R is the
tensor product of left and right density matrices ρ̂L/R, each describing equilibrium at
temperature TL/R with chemical potentials µL/R. In the zero temperature case, this
amounts to consider the ground state with a fixed number of fermions NL/R on each
side.
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The normalized eigenfunctions ϕR/L
k (x) of the initial Hamiltonian Ĥ0 vanish for

x ∈ R−/+ and can be written outside the interval [−a
2 ,

a
2 ]

ϕRk (x) = c0ℓ cos(k(|x| − δRk ))θ(x− a

2
), k ∈ ΛR (2.204)

ϕLk (x) = c0ℓ cos(k(|x| − δLk ))θ(−
a

2
− x), k ∈ ΛL

with c0ℓ ≃
√

4
ℓ at large ℓ. The phase shifts δR/L

k are related to the reflection coefficients
as

r
R/L
0 (k) = e−2ikδ

R/L
k , (2.205)

while the lattices ΛR and ΛL are defined as follows

ΛR/L =

{
k ∈ R+|ϕR/L

k (± ℓ
2
) = 0

}
. (2.206)

In the quench with a delta defect, the initial state (2.99) (or (2.156) at finite tem-
perature) was characterised only by the left and right inverse temperature βR/L, and
chemical potential µR/L. This time, in addition to those, the initial state also depends
on the reflection coefficients rR/L

0 (k) or equivalently the phase shifts δR/L
k of the initial

defect.

2.6.2 Space-time extended kernel
We want to extend our result to the space-time m point density correlation functions,
defined for 0 ≤ t1 ≤ · · · ≤ tm and all distinct space time points (xi, ti) as

Rm(x1, t1; ...;xm, tm) = Tr(ρ̂d̂(xm, tm) . . . d̂(x1, t1)), (2.207)

where d̂(x, t) = ĉ†x,tĉx,t is the density operator in the Heisenberg representation, and
ĉx,t, ĉ

†
x,t, are the fermionic creation and annihilation field operators in the Heisenberg

picture. This object generalise the correlation function (1.49). For noninteracting
fermions they can be expressed as an m × m determinant involving the so-called
space-time extended kernel (see [187])

Rm(x1, t1; ...;xm, tm) = det
1≤i,j≤m

K(xi, ti;xj , tj) . (2.208)

The space-time extended kernel is defined as follow

K(x, t;x′, t′) = Trρ̂T ĉ†x,tĉx′,t′ , (2.209)

T ĉ†x,tĉx′,t′ = ĉ†x,tĉx′,t′θ(t ≥ t′)− ĉx′,t′ ĉ
†
x,tθ(t

′ > t).

It is a generalisation of the time dependent kernel (2.5) such that K(x, t;x′, t) =
K(x, x′; t). In addition to density-density correlation, the current correlations can
also be extracted from the space-time extended kernel [188]. The space-time extended
kernel can be written as a generalisation of the kernel (2.104), such that

K(x, t;x′, t′) = KR(x, t;x
′, t′) +KL(x, t;x

′, t′) , (2.210)
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where

KR/L(x, t;x
′, t′) =

∑
k∈ΛR/L

(fR/L(k)− θ(t′ > t))ψ
R/L,∗
k (x, t)ψ

R/L
k (x′, t′) . (2.211)

we recall that fR/L(k) = 1/(1 + eβR/L(µR/L− k2

2
)) are the right and left Fermi factors,

and ψR/L
k (x, t) is the solution of the Schrödinger equation i∂tψ

R/L
k (x, t) = Ĥψ

R/L
k (x, t)

with the initial condition ψ
R/L
k (x, 0) = ϕ

R/L
k (x), where ϕ

R/L
k (x) are given in Eq.

(2.204).

2.6.3 The limit wave function
NESS regime. Now we want to obtain the kernel (2.210) in the large system size limit
followed by the large time limit. In the case of the delta defect, we demonstrated how
the contour integral method presented in Appendix A could be directly applied to the
kernel, for example to compute the term D, or B (2.143). For the latter, this required
the method to be applied twice in a row (see Appendix B), or to be generalised to
higher order poles. Here we present an alternative method that not only provides an
intuitive interpretation of the computation in term of scattering, but also significantly
simplify it. This method involves applying the contour integral method of Appendix
A directly to the single-particle time evolved initial eigenfunctions ψR/L

k (x, t) of the
kernel Eq. (2.211) as explained below.

The exact formula for ψR/L
k (x, t) is an infinite superposition which involves the

overlaps of the eigenstates ϕR/L
k (x) = ψ

R/L
k (x, t = 0) of the pre-quench Hamiltonian

Ĥ0 with the eigenstates ϕσ,k(x) of the post-quench Hamiltonian Ĥ

ψ
R/L
k (x, t) =

∑
σ=±1,k′∈Λσ

ϕσ,k′(x)e
−i k

′2
2

t ⟨ϕσ,k′ |ϕR/L
k ⟩ . (2.212)

The asymptotic form of this superposition is obtained using a contour-integral repre-
sentation which leads to

ψ
R/L
k (x, t) =

1√
ℓ
(e−i k

2

2
tχ

R/L
k (x) + δχ

R/L
k,ℓ (x, t)),

lim
ℓ→∞

δχ
R/L
k,ℓ (x, t) = δχ

R/L
k (x, t),

lim
t→∞

δχ
R/L
k (x, t) = 0.

(2.213)

See [188] for expressions of δχR/L
k,ℓ (x, t), δχR/L

k (x, t), and details of the proof including
how we deal with the fact that the potential has a non zero size (which was not
the case of the delta defect). The result (2.213) can be interpreted as follows, the

first term of the first line 1√
ℓ
e−i k

2

2
tχ

R/L
k (x) is the only relevant part in the NESS

reached in the double limit ℓ → ∞, t → ∞, while the second term 1√
ℓ
δχ

R/L
k,ℓ (x, t)

contains information on finite system size corrections and large time decay to the
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NESS. Additionally, the leading contributions χR/L
k (x) are given by

χR
k (x) =

{
(e−ikx + rR(k)e

ikx)eikδ
R
k if x > a

2

tR(k)e
−ikxeikδ

R
k if x < −a

2

(2.214)

χL
k (x) =

{
tL(k)e

ikxeikδ
L
k if x > a

2

(eikx + rL(k)e
−ikx)eikδ

L
k if x < −a

2

(2.215)

where we recall that r(k) and t(k) are the reflection and transmission coefficients

(2.197). In this result (2.213) the time-dependence ∝ e−i k
2

2
t is simply the one of a

free particle of energy k2

2 , while the factor 1√
ℓ

ensures the normalization of ψR/L
k (x, t).

The form of χR/L
k (x) in (2.214) and (2.215) can be qualitatively understood in term

of particle scattering as follows. Away from the impurity, at time t = 0, from (2.204)
a particle can have momentum k or −k (everywhere k > 0). Consider a space time
point (x, t) with x = O(1) > 0 and t large and first ask how a particle starting from
the left of the impurity can reach (x, t). As shown in Fig. 2.13 a), there is a single
possible initial position such that a particle with initial momentum k reaches (x, t).
Since it crosses the barrier, it collects a factor t(k). This accounts for the first line in
(2.215). It contains a single term, with phase factor eikδLk , since particles with initial
momentum −k escape to −∞ (the phase factor information they carry e−ikδLk is lost).
For particle starting from the right of the impurity, one similarly interprets the two
terms in the first line in (2.214). Indeed, one sees from Fig. 2.13 b) that there are two
possible initial positions such that a particle with initial momentum −k reaches (x, t)
either (i) directly (leading to the factor e−ikx) or after one reflection (which changes
−k into k leading to the factor r(k)eikx). Of course this semi-classical argument is
deceptively simple, since in reality momentum is not a quantum number here and
the true wave function is a complicated superposition. However we show here that
it becomes exact at large time. Thus, although the final result is intuitively simple,
the convergence to the large time limit is nontrivial. It can be extracted from the
exact expression for the subleading part δχR/L

k,ℓ (x, t) (see [188]). Although we did not
perform an exhaustive analysis it is easy to see that the decay is generically algebraic
in time (with possible oscillations).

Remark: The above arguments were made for |x| > a/2, i.e., outside the defect,
where the wave-functions and their analytic continuations are controlled. However we
also concluded that the asymptotic formulae Eqs. (2.214), and (2.215) generalize to
any x = O(1) (including inside the impurity) but with an extended formula for χR/L

k

1√
ℓ
χ
R/L
k (x) = 1√

2

(
ϕ+,k(x)e

ik(δ
R/L
k −δ+k ) + σR/Lϕ−,k(x)e

ik(δ
R/L
k −δ−k )

)
(2.216)

where σR = 1 and σL = −1. Here k ∈ R+ and ϕ±,k(x) denote the two eigenstates of
Ĥ (2.200) which become degenerate in the infinite size limit with eigenenergy k2

2 .
Kernel. By definition of the space-time extended kernel is given by Eq. (2.211)

Since we have already obtained the large ℓ limit of the individual wave-functions
ψ
R/L
k (x, t), see (2.213), it is natural to inject their expressions into the formula (2.211).

Indeed, as ℓ→ ∞, it turns out that one can safely replace 1
ℓ

∑
k∈ΛR/L by

´ +∞
0

dk
2π , i.e.,



Chapter 2. Non-equilibrium Dynamics of Noninteracting Fermions in
Presence of a Defect. 107

space
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time

0
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0
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b)

d)

Figure 2.13: Interpretation of (2.214)-(2.215), see text for details. a) A particle
starts from the left with momentum k and reaches (x > 0, t) after being transmitted
(solid green), while the −k component (dotted red) get lost at −∞. b) Starting from
the right with −k it reaches (x, t) either directly, or after one reflection. c) Same as
top left for the ray regime, the ray x/t = ξ is black solid line. d) The trajectories (in
red) inside the black "hat" shape have k < |ξ|: they do not meet the impurity and
carry the memory of the initial state (2.229). The other trajectories (in blue) have

k > |ξ| and are similar to those in the subfigure b) leading to (2.230).

there is no singularity in this summation. This leads to

lim
ℓ→∞

KR/L(x, t;x
′, t′) =

´
R/L,τ

dk
2π (e

−i k
2

2
tχ

R/L
k (x) + δχ

R/L
k (x, t))∗ (2.217)

×(e−i k
2

2
t′χ

R/L
k (x′) + δχ

R/L
k (x′, t′))

= K∞,R/L(x, t;x
′, t′) + δKR/L(x, t;x

′, t′), (2.218)

where we have split the limiting kernel in two parts, defined as

K∞,R/L(x, t;x
′, t− τ) =

ˆ ∞

0

dk

2π

(
fR/L(k)− θ(−τ)

)
ei

k2

2
τχ

R/L
k (x)∗χ

R/L
k (x′) (2.219)

and δKR/L(x, t;x
′, t−τ) is an integral containing products of χR/L

k (x) and δχR/L
k (x, t).

Note that we have set t′ = t− τ . Let us consider now the limit t, t′ → +∞ with fixed
τ . We claim that

lim
t→∞

δKR/L(x, t;x
′, t− τ) = 0. (2.220)

Since we have shown (2.213) in the previous section that δχR/L
k (x, t) decays to zero

in the large time limit it would be natural to arrive at this conclusion. However this
simple information is not enough to obtain (2.220). In fact, showing this decay is not
a trivial task and has to be performed with much care similarly to the case of the
delta defect quench treated in Appendix B. The present final result agrees perfectly
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with the conclusions of Ref. [2], which indicates that our simpler method works.
Finally, this yields lim

t→∞
lim
ℓ→∞

K(x, t;x′, t− τ) = K∞(x, x′, τ) with

K∞(x, x′, τ) =

ˆ ∞

0

dk

2π
(fL(k)− θ(−τ)) ei k

2

2
τχL

k (x)
∗χL

k (x
′)

+

ˆ ∞

0

dk

2π
(fR(k)− θ(−τ)) ei k

2

2
τχR

k (x)
∗χR

k (x
′) . (2.221)

We use the convention θ(0) = 0. Substituting the explicit form of the function χR/L
k (x)

from (2.214) and (2.215) in (2.221) we find

K∞(x > a
2 , x

′ > a
2 , τ) =

´∞
0

dk
2π (fL(k)− fR(k))e

i( k
2

2
τ−k(x−x′))|t(k)|2

+
´∞
0

dk
π (fR(k)− θ(−τ)) ei k

2

2
τ
(
cos(k(x− x′)) + Re[rR(k)e

ik(x+x′)]
)

K∞(x > a
2 , x

′ < −a
2 , τ) =

´∞
0

dk
2π (fR(k)− θ(−τ)) ei k

2

2
τ tR(k)e

ik(x−x′)

+
´∞
0

dk
2π (fL(k)− θ(−τ)) ei k

2

2
τ t∗L(k)e

−ik(x−x′)

+
´∞
0

dk
2π (fL(k)rL(k)tL(k)

∗ + fR(k)rR(k)
∗tR(k))e

i k
2

2
τe−ik(x+x′) , (2.222)

together with the other regions obtained using the symmetry K∞(x, x′, τ)|L,R =
K∞(−x,−x′, τ)|R,L (we recall that rL(k)tL(k)

∗ + rR(k)
∗tR(k) = 0). Note that the

initial phase shifts eikδR/L cancel in the kernel. As expected K∞(x, x′, τ) vanishes at
large |τ |, with algebraic decay see [3]. In particular, from (2.222), one obtains the
density ρ∞(x) = K∞(x, x, 0) in the NESS, which reads, for |x| > a/2

ρ∞(x) =

ˆ ∞

0

dk

2π
(fL(k)− fR(k))|t(k)|2

+

ˆ ∞

0

dk

π
fR(k)

(
1 + Re[r(k)ei2kx]

)
.

(2.223)

Similarly, from (2.222) one also obtains the current in the NESS using (2.7), which
yields

J∞ =

ˆ ∞

0

dk

2π
(fL(k)− fR(k))k|t(k)|2 . (2.224)

Again, this result agrees with the current in the Landauer-Bütikker formalism (2.79).
For fL(k) = fR(k) the first and fourth line in (2.222) vanish and one can check that
one recovers the thermal equilibrium (in the absence of bound states).

To summarize, one of the advantages of limit wavefunction method is its compu-
tational efficiency, as it directly yields the time-independent part of the kernel (2.221)
using only the limit wave function (2.214). However, when studying the decay towards
this time-independent part, it is necessary to consider the complete kernel (as the de-
cay (2.213) of the wave function alone is not a sufficient information). This involves
proving the large time decay of multiple singular and oscillating integrals, similar to
those discussed in the Appendix B.

Remark: Following the remark (2.216), the kernel in the NESS takes the general
form for any x, x′, τ = O(1) (including in the support of the defect), in terms of
the eigenfunctions of the evolution Hamiltonian Ĥ considered here (which does not
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possess any bound state)

lim
ℓ→∞
t→∞

KR/L(x, t;x
′, t− τ) =

´
R/L,τ

dk
2πe

i k
2

2
τ
(
ϕ−,k(x)

∗ϕ−,k(x
′) + ϕ+,k(x)

∗ϕ+,k(x
′)

±(ϕ+,k(x)
∗ϕ−,k(x

′)eik(δ
+
k −δ−k ) + ϕ−,k(x)

∗ϕ+,k(x
′)e−ik(δ+k −δ−k ))

)
. (2.225)

Comparing with our previous work in the case of a delta impurity and τ = 0, this
is the decomposition from (2.143) and (2.120) in term A, B, C, and D. We see that
the "diagonal terms" called A and B there (which are real and do not carry current)
correspond to the first two terms respectively in (2.225), while the terms noted C and
D (which carry the current in the NESS) correspond to the last two terms in (2.225).

The ray regime. We also computed the asymptotic kernel at large time when
distances are scaled with time x = O(t), i.e., setting x = ξt + y with ξ, y = O(1) .
Again we first obtain the asymptotic form of the wave function [188]

ψ
R/L
k (x = ξt+ y, t) ≃

ℓ→∞
t→∞

1√
ℓ
e−i k

2

2
tχ

R/L
ξ,k (x = ξt+ y) , (2.226)

where we have defined

χR
ξ,k(x) =


θ(k > −ξ)t(k)e−ikxeikδ

R
k if ξ < 0

θ(k < ξ)eikxe−ikδRk if ξ > 0

+(e−ikx + θ(k > ξ)r(k)eikx)eikδ
R
k

(2.227)

χL
ξ,k(x) =


θ(k > ξ)t(k)eikxeikδ

L
k if ξ > 0

θ(k < −ξ)e−ikxe−ikδLk if ξ < 0

+(eikx + θ(k > −ξ)r(k)e−ikx)eikδ
L
k .

(2.228)

Since x = ξt + y (2.226) exhibits fast oscillations in time ∝ e−i k
2

2
t±iξkt. The forms

(2.227) and (2.228) can be understood by an extension to the ray regime of the ar-
gument given in the NESS, see Fig. 2.13 c) and d). It can also be summarized by
considering the "light cone" with slopes ±k originating from the impurity, see Fig.
2.14. Outside of it, i.e., for |ξ| > k, ψR/L(x, t) recovers the initial condition up to a

time propagation phase e−i k
2

2
t, i.e.,

1√
ℓ
χ
R/L
ξ,k (x) = ϕ

R/L
k (x) for |ξ| > k . (2.229)

Inside the cone, i.e., for |ξ| < k, ψR/L(x, t) is given by the extrapolation to the ray
regime (with x = ξt+ y) of the form obtained above in the NESS (for x = O(1)), in
Eqs. (2.227) and (2.228), i.e.,

χ
R/L
ξ,k (x) = χ

R/L
k (x) , for |ξ| < k . (2.230)

We now compute the kernel in the ray regime from Eqs. (2.210) and (2.211).
Again, [188] it turns out that in the limit ℓ→ ∞ followed by t→ ∞ with x, x′ = O(t),
one can simply inject the asymptotic forms (2.226) in the formula for the kernel (2.210)
as was done in (2.211), and replace the discrete sums by integrals . We thus use the
same procedure that brought us from (2.211) to (2.221), but here using χR/L

ξ,k instead
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time

spaceimpurity

|ξ|<k
|ξ|>k|ξ|>k

(x=ξt,t)

(x=ξt,t)

Figure 2.14: For a given initial momentum k, the space-time is
divided in two regions (at large time). If |ξ| > k the initial condition
is unaffected by the impurity. In blue: the two trajectories arriving
at (x, t) with phase factors e±ik(x−δLk ), explaining (2.229). However
for |ξ| < k the possible trajectories (red) are affected by the impurity,

giving back the bottom part of Fig. 2.13.

of χR/L
k . When scaling2 x = ξt+ y, and x′ = ξ′t+ y′, because of oscillatory behaviors

of χR/L
ξ,k , the kernel has a non zero limit only if ξ = ±ξ′. For these two cases, we obtain

lim
ℓ→∞
t→∞

K(ξt+ y, t; ξ′t+ y′, t− τ) =


0 if ξ ̸= ±ξ′
K+

ξ (y, y′, τ), ξ′ = ξ

K−
ξ (y, y′, τ), ξ′ = −ξ

(2.231)

with the following explicit expressions

K+
ξ (y, y′, τ) =

ˆ ∞

0

dk

π
(fR(k)θ(ξ) + fL(k)θ(−ξ)− θ(−τ)) ei k

2

2
τ cos(k(y − y′))

+

ˆ ∞

0

dk

2π
s(ξ)(fL(k)− fR(k))e

i k
2

2
τ |t(k)|2e−is(ξ)k(y−y′)θ(k − |ξ|),

K−
ξ (y, y′, τ) =

ˆ ∞

0

dk

2π
s(ξ)(fL(k)− fR(k))e

i k
2

2
τ r(k)t(k)∗e−is(ξ)k(y+y′)θ(k − |ξ|),

where s(ξ) = θ(ξ)− θ(−ξ) is the sign of ξ. For simplicity, we give the result only
for a symmetric potential such that rR(k) = rL(k). One can check that the ray regime
matches the large distance behavior of the NESS in the following sense

lim
|y|,|y′|→∞
y∓y′=O(1)

K∞(y, y′, τ) = lim
ξ→0+

K±
ξ (y, y′, τ) . (2.232)

Interestingly, while the above formula for K+ can also be obtained from a semi-
classical argument based on the Wigner function [2, 143] or Section 2.7, this is not the

2Alternatively one could define the large t limit of K(ξt+ y, t; ξ′(t− τ) + y′, t− τ) which
amounts to a simple shift y′ → y′ − ξ′τ in our formula.
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case for K−. 3 Instead, in the present framework, the correlations between (−x, t)
and (x, t) arise naturally from trajectories which start from the same point (e.g. from
the right with momentum −k) and are either reflected or transmitted. In the kernel,
the interferences between these two trajectories result from the product of the first
and the third line in (2.227) when computing χR

−ξ,k(x, t)
∗χR

ξ,k(x, t) [see (2.221)].
At large time the mean density along rays thus converges ρ(ξt, t) → ρ̃(ξ) given by

ρ̃(ξ > 0) = ρR +

ˆ ∞

0

dk

2π
(fL(k)− fR(k))|t(k)|2θ(k − |ξ|) , (2.233)

and the same for ξ < 0 exchanging R and L. Here ρR/L =
´∞
0

dk
π fR/L(k) are the

initial mean densities. The function ρ̃(ξ) exhibits a jump discontinuity at ξ = 0,
ρ̃(0+)−ρ̃(0−) =

´
L,R

dk
π |t(k)|2. Similarly the current along rays converges to J(ξt, t) →

J̃(ξ) with

J̃(ξ) =

ˆ ∞

0

dk

2π
(fL(k)− fR(k))k|t(k)|2θ(k − |ξ|) . (2.234)

2.6.4 Defect with bound states
In order to have a completely general defect, one has to take into account a defect
with bound states. We will see that the effect of such defect is to destroy the NESS
as it produces permanent time oscillations. We consider the NESS regime when V (x)

admits a sequence of bound states ϕκ(x), κ ∈ Λb of energies −κ2

2 . In that case the
asymptotic large time kernel K = Ks +Kb is the sum of two pieces: (i) one due to
scattering states, Ks, identical to the one obtained above (ii) one due to bound states,
Kb = KR

b +KL
b , where

K
R/L
b (x, t;x′, t′) =

∑
κ′,κ′′∈Λb

ϕκ′(x)ϕκ′′(x′)e−i(κ
′2
2

t−κ′′2
2

t′)C
R/L
κ′,κ′′ , (2.235)

with

C
R/L
κ′,κ′′ = ⟨ϕκ′ |(1 + eβR/L(Ĥ

R/L
0 −µR/L))−1|ϕκ′′⟩. (2.236)

In the particular case V (x) = gδ(x) (g < 0 in order to have a bound state) and
V0(x) = lim

g→∞
gδ(x), there is one bound state for κ′ = −g and the overlap is

⟨ϕ−g|ϕR/L
k ⟩ ≃

ℓ→∞

√−g
√

4

ℓ

k

k2 + g2
, (2.237)

which leads to

C
R/L
−g,−g = −2g

ˆ ∞

0

dk

π

(
fR/L(k)− θ(t′ − t)

) k2

(k2 + g2)2
, (2.238)

3Indeed an exact calculation of the Wigner function W (x, p), see [3], unveils the existence
of a δ(p) peak, which is shown to be a quantum signature of the finite limit of the correlations
along opposite rays.
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and we recover the kernel

K
R/L
b (x, t;x′, t′) = 2g2eg(|x|+|x′|)e−i g

2

2
(t−t′)

ˆ ∞

0

(
fR/L(k)− θ(t′ − t)

) dk
π

k2

(k2 + g2)2
,

(2.239)
which coincides with the result obtained in [2].

When there are at least two bound states the total NESS kernel exhibits permanent
oscillations in time. These oscillations also occur in the density and current. Note that
these oscillations contain information about the overlap of the initial wave functions
with the post-quench bound states (and about the fact that V0 has or not bound
states), while in the absence of bound states of V (x), only the scattering coefficients
remains relevant at large time. In particular one finds that the post-quench bound
states are always partially empty in the NESS. See [189] for the relation between the
scattering coefficients and the bound states. Finally, bound states do not contribute
to the kernel in the ray regime since their wave-functions decrease exponentially at
large |x| (see [2, 3] for details). For related results in the presence of bound states see
[29, 143, 190].

2.6.5 Density-density time correlation
Finally, we apply our result for the time extended kernel (2.221) to the study of the
connected correlation function of the density at two distinct space-time points in the
NESS with initial zero temperature TR/L = 0 in left and right systems. It is obtained
from the kernel in the NESS using (2.207)-(2.208) as

lim
t→+∞

⟨ρ̂(x′, t+ τ)ρ̂(x, t)⟩c = −K∞(x, x′;−τ)K∞(x′, x, τ) . (2.240)

In the large τ limit the behavior of this correlation depends on the ratios ζ = x
τ and

ζ ′ = x′

τ . As shown in Fig. 2.15 there are several sectors in the (ζ, ζ ′) plane, where the
decay of the correlation at large time is of the form ∼ τ−αC(ζ, ζ ′) where α depends on
the sector.(see [188] for details). As compared to the equilibrium case in the absence
of a defect for which α = 3/2 for all (ζ, ζ ′) [191], the stationary temporal correlations
in the NESS in the presence of an impurity exhibits a richer behavior, in particular
regions with a slower decay. In addition, we have shown that the response function
reaches a stationary limit limt→+∞

δ⟨ρ̂(x,t)⟩
δf(x′,t−τ) |f=0 which we have expressed in terms of

the kernel K∞(x, x′, τ) [188].

2.7 A GHD approach to scattering
In this section, we will review the possibility of describing the partitioning proto-
cols discussed in Sections 2.4 and 2.6 using GHD. We will start by explaining the
predictions of semiclassical 2.7.1 or naive GHD 2.7.2 and why they fail to describe
correlations in the ray regime Eq. (2.231). Then, in Section 2.7.3 we discuss a gener-
alization of GHD for scattering defects. We will notice that while this generalization
can provide the kernel on equal rays K+

ξ (y, y′) Eq. (2.231), it cannot predict the
kernel on opposite rays, denoted as K−

ξ (y, y′) Eq. (2.231). Finally, in Section 2.7.4
we expose a work in progress. We examine a field ρ derived from a rescaling of the
Fourier-transformed Wigner function, similar to the Euler scaling limit Eq. (2.67).
Then, we explain how this field can be incorporated into the generalization of GHD
to reproduce the kernel on opposite rays K−

ξ (y, y′).
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Figure 2.15: The density-density correlation in the NESS
(2.240) at zero temperature exhibits different power law regimes
for large τ = t′ − t and x = ζτ, x′ = ζ ′τ . The figure is plotted
for kR < kL, where kR/L =

√
2µR/L are the initial left and right

Fermi momentum.

2.7.1 Wigner function semiclassical dynamics
We consider noninteracting fermions evolving within a potential V (x). In the case of
a partitioning protocol with a defect, we want to explore the possibility of predicting
the kernel Eq. (2.231) at τ = 0 without performing exact computations, but instead,
using a semiclassical approximation.

When looking for semiclassical approximation, we prefer working with the Wigner
function Eq. (1.83) rather than with the kernel. The initial step involves writing
the propagation equation of the Wigner function for noninteracting fermions with a
potential V (x), it is derived directly from the Schrödinger equation

∂tW (x, p, t) + p∂xW (x, p, t) =
i

ℏ

(
V (x− iℏ

2
∂p)− V (x+

iℏ
2
∂p)

)
W (x, p, t). (2.241)

From here, it is common to expand the potential in a power series such that

∂tW (x, p, t) + p∂xW (x, p, t) =
2

iℏ

∞∑
n=0

V (2n+1)(x)

(2n+ 1)!
(
iℏ∂p
2

)2n+1W (x, p, t), (2.242)

where V (n)(x) is the n-th derivative of the potential at point x. The semiclassical dy-
namics result directly from retaining the first-order term in ℏ of the power expansion,
resulting in:

∂tW (x, p, t) + p∂xW (x, p, t) = V ′(x)∂pW (x, p, t). (2.243)

Note that considering the next order was also explored in [187]. However, if we
retain only the first term, we have the Liouville propagation, which can be solved
by considering the dynamics of classical particles in the presence of the potential
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V (x). Consequently, particles with energy higher than the potential barrier will pass
through it entirely, experiencing full transmission, while particles with lower energy
will be reflected back, resulting in complete reflection (see Fig. 2.16). In other words,
this equation cannot capture the tunneling effect that leads to partial scattering i.e.
we have either R(k) = 0, and T (k) = 1, or R(k) = 1, and T (k) = 0. It is worth
noting that similar results can be obtained when employing the Van Vleck-Gutzwiller
propagator [192, 193] which can be used to study the semiclassical behavior of the
Wigner function [194].

Figure 2.16: Illustration of the semiclassical evolution of the
Wigner function. The system is initialized in the ground state,
where only the left half of the system is filled up to momentum
pL. The illustration represents the NESS that emerges at large
times. The part of the Wigner function with an energy higher
than the maximum of the potential, p2

2m > maxxV (x), experi-
ences full transmission, while the part of the Wigner function
with lower energy, p2

2m < maxxV (x), undergoes complete reflec-
tion. Consequently, the Wigner function is always either equal
to 0 or 1

2πℏ and never takes an intermediate value between the
two. Note that this behavior will change later when we consider

a GHD extension, as shown, in Fig. 2.17.

This is not surprising, considering that at zero temperature, the self-reproducing
property of the kernel Eq. (1.2.1), which can be shown to hold true for the time-
dependent kernel Eq. (2.5), implies that the Wigner function takes values of either
zero or 1

2πℏ in the semiclassical limit

lim
ℏ→0

2πℏW (x, p, t) = 0 or 1. (2.244)

Whereas, we would imagine this function to take value between zero and one in
presence of scattering, for example it could be equal to the reflection R(p) = |r(p)|2
or the transmission T (p) = |t(p)|2 coefficient after getting through the potential.
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2.7.2 GHD and scattering
One might wonder what the prediction of GHD is within this framework. Interestingly,
it turns out that GHD yields the same prediction as the semiclassical limit ℏ → 0.
Let us first consider the evolution of the conserved charge Q̂j from Eq. (2.32), in the
presence of a potential V (x). In this dynamics, the charges are no longer conserved.
Instead, they follow continuity equations that couple the charges together, resulting
in:

∀n ∈ N, ∂tQ̂n(x, t) = −∂xĴn(x, t)− i
n∑

j=1

(−i)j
(
n

j

)
Q̂n−j(x)V

(j)(x) (2.245)

with
(
n
j

)
= n!

(n−j)!j! the binomial coefficients and Ĵn(x, t) the charge current (2.35).
Now using the procedure which yields the GHD equations in Section 2.1.4 results in
the following equation [37]

∂tρx,t(p) + ϵ′(p)∂xρx,t(p) = V ′(x)∂pρx,t(p), (2.246)

which yields results similar to those of the semiclassical limit Eq. (2.243), where
particles are either fully transmitted if their energy is higher than the height of the
potential barrier or fully reflected otherwise.

We want to gain a more intuitive understanding of why GHD produces this type of
physics. This effect arises due to the condition that GHD is valid when the potential
is taken in the infinitely smooth limit, meaning that the variations in the potential
occur on a significantly larger scale than the microscopic scale. Specifically, when we
take the Euler scaling limit Eq. (2.67), the potential is rescaled as:

VΛ(x) = V (
x

Λ
) = V (x̃). (2.247)

From here, one can provide a heuristic argument by comparing the length of the
potential with the tunneling length in the large Λ limit. This can be formalized using
the WKB approximation as follows. The WKB approximation gives the transmission
probability of an incoming wave with energy E smaller than the height of the potential
barrier as [195]

T (E) ∼ exp

(
−2

ˆ x2

x1

dx

√
2m

ℏ2
(VΛ(x)− E)

)
(2.248)

∼ exp

(
−2Λ

ℏ

ˆ x̃2

x̃1

d̃x
√

2m(V (x̃)− E)

)
,

where x1, x2 (respectively x̃1, x̃2) are the two turning points of the barrier VΛ(x)
(respectively V (x̃)) for a wave of energy E. Hence, we observe that in the limit
of a smooth potential (Λ → ∞), the transmission coefficient is either zero or one.
This is also true in the semiclassical limit (ℏ → 0), unless the potential and energy are
rescaled by a factor of ℏ2. This can also be observed at the level of the series expansion
in Eq. (2.242). The truncation of the first term, which leads to total reflection or
total transmission, can only be performed when ℏ is small or when Λ is large (as
V

(2n+1)
Λ = V 2n+1(x)

Λ2n+1 ).
Therefore, neither a direct application of the semiclassical limit nor the GHD with

a smooth potential can effectively describe the physics of partial scattering.
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2.7.3 Euler scaled dynamics
Here, we present an extension to GHD [142, 143, 196] that allows for better results
than the direct application of semiclassical approximation or GHD presented in the
previous section. Specifically, it provides the kernel K+

ξ (y, y′, τ = 0) in the ray regime
along equal rays (ξ = ξ′) as given in Eq. (2.129). However, it cannot predict the kernel
along different rays (ξ ̸= ξ′), particularly K−

ξ (y, y′, τ = 0), which represents the kernel
along opposite rays (ξ = −ξ′). These correlations where proven to be essential in the
computation of Renyi entropies (1.96), for example the entropy of a subsystem I far
away from the defect was found in [197] to be a functional of the equal rays correlation
K+

ξ (y, y′). However, it was shown [198] that the correlation on opposite rays K−
ξ (y, y′)

contributes to the entanglement entropy or mutual information MI1,I2 = SI1 +SI2 −
SI1∩I2 between two subsystems I1 and I2 far away from the defect and symmetric
with respect to the defect.

This approximation yields the dynamics of ρx,t(p), i.e. the Wigner function in the
Euler scaling limit (2.67), with a potential of fixed size (in contrast to the smooth
potential required for GHD, as indicated in Eq. (2.247)). Consequently, we can
consider the potential to have a compact support of size zero once the Euler limit is
taken. For simplicity, we will now denote the Euler position x = x

Λ and time t = t
Λ as

just x and t. In Euler limit, the Wigner function corresponding to the initial kernel
(Eq. (2.210)) can be expressed as:

ρx,t=0(p) =
1

2πℏ
fL(p)θ(−x) +

1

2πℏ
fR(p)θ(x) (2.249)

where fR/L(p) are the left and right Fermi factors corresponding to the associated
initial thermal states (see Fig. 2.17 for a representation at temperature zero). Notice
that while the Euler limit of the Wigner function is quite simple and has a disconti-
nuity as a function of the position, the full Wigner function would exhibits complex
oscillations close to the impurity and remains continuous in the position varible for
most conventional defects. Once the system is prepared with (2.249), we let the system
evolve according to the following two rules:

• For x ̸= 0 i.e. outside of the trap (we recall that in the Euler limit, the trap
has no size), the Wigner function follows the free evolution, which corresponds
to the Liouville dynamics

(∂t + p∂x)ρx,t(p) = 0. (2.250)

In simple terms, a patch of the Wigner function moves with a velocity of p along
the x-axis.

• During the free evolution of the Wigner function, when a patch of the Wigner
function crosses the potential at x = 0, it undergoes transmission (retaining
its free evolution but multiplied by a factor T (p)) or reflection (multiplied by a
factor R(p) and changing momentum from p to −p) (see Fig. 2.17).

In [196], this evolution was written in term of the following equation:

(∂t + p∂x)ρx,t(p) = δ(x)|p|R(p)
(
ρx=0σ ,t(−p)− ρx=0−σ ,t(p)

)
, (2.251)

σ =

{
+ if p > 0

− if p < 0
,



Chapter 2. Non-equilibrium Dynamics of Noninteracting Fermions in
Presence of a Defect. 117

a b

c d

a' b'

c' d'

Figure 2.17: Illustration of the Euler limit of the Wigner func-
tion ρ (Eq. (2.67)) (top) and the Euler limit of the Fourier-
transformed Wigner function ρ (Eq. (2.257))(bottom). Both are
given at the initial time t = 0 (left) in the ground state, where
only the left half-space is filled up to momentum pL (in this
case, ρ is equal to zero). Additionally, we represent their time
evolution (right), which involves reflection and transmission coef-
ficients. We choose a symetric potential such that rL(p) = rR(p)
and tL(p) = tR(p). Additionally, we indicated the sectors a, d,
a′ and d′ where ρ and ρ are moving towards the defect at x = 0,
and the sectors b, c, b′ and c′ where ρ and ρ are moving away

from the defect at x = 0.

where ρx=0±,t(p) is understood as lim
x→0±

ρx,t(p) (i.e., the left or right limit of ρ, since

it is discontinuous in x at x = 0). In the equation (2.251), the first term on the right-
hand side represents the positive flux of particles reflected from momentum −p to
momentum p, while the second term represents the negative flux of particles reflected
from momentum p to momentum −p. Note that the source terms depends only on
particle coming towards the defect (that is on ρ in sectors a and d of Fig. 2.17).

This evolution of ρ can be solved and yields for x > 0

2πℏρx,t(p) = (fL(p)T (p) + fR(p)R(p))θ(k >
x

t
) + fR(p)θ(k <

x

t
), (2.252)

and for x < 0

2πℏρx,t(p) = (fR(p)T (p) + fL(p)R(p))θ(k <
x

t
) + fL(p)θ(k >

x

t
), (2.253)

Substituting this into the formula for the kernel Eq. (1.87) enables us to recover
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the equal rays part of the kernel K+
ξ (y, y′, τ = 0) in the ray regime Eq. (2.231).

However, as previously mentioned, it does not predict the kernel for opposite rays
K−

ξ (y, y′, τ = 0), nor does it capture the microscopic details, i.e., the full kernel (Eq.
(2.222)).

2.7.4 Another Euler scaled field
Now, we aim to propose an extension of the previous Section 2.7.3 that predicts
the non-local correlations i.e. the kernel for opposite rays K−

ξ (y, y′, τ = 0). We
would like to emphasize that this is still a work in progress. The first step is to
understand which part of the Wigner function contains this information. From the
exact kernel Eq. (2.222) and the Kernel ray regime Eq. (2.231), one can compute
the Wigner function exactly (see [188] for exact expression of the Wigner function),
and its Euler limit precisely matches Eqs. (2.252-2.253). While it is evident that the
microscopic details vanish when we take the Euler limit, it is not apparent why the
opposite rays should also vanish. In fact, in the exact Wigner function, the opposite
rays K−

ξ correspond to a delta Dirac component W−(x, p) = δ(p)f(x), where f(x)
is a function localized around the impurity. This function f(x) vanishes in the Euler
limit, i.e., lim

|x|→∞
f(x) = 0. Thus, when the Euler scaling limit is taken, the information

concerning the opposite rays is lost.
In order to isolate the information describing the opposite rays K−

ξ , we need to
isolate this δ(p) in the Wigner function. Hence, we consider the Fourier transform of
the following Wigner function (this will spread the δ(p) in Fourier space)

W (x, p, t) =

ˆ
dxdp

πℏ
W (x, p, t)e−

2i
ℏ (px−xp) (2.254)

=

ˆ
dx

πℏ
K(x− x, x+ x, t)e−

2i
ℏ px.

We also provide the kernel as a functional of W :

K(x, x′, t) =

ˆ
dpe

ip
ℏ (x+x′)W (

x′ − x

2
, p, t). (2.255)

Interestingly, this functions obeys the equation

(∂t + p∂x)W (x, p, t) =
i

ℏ
(V (−x− iℏ∂p

2
)− V (x− iℏ∂p

2
))W (x, p, t). (2.256)

It has similarities to Eq. (2.241), where the left-hand side corresponds to the Liouville
dynamics (now in Fourier space), and the right-hand side arises from the interaction
with the potential. Analogously to Eq. (2.67), we can define a new Euler limit by
scaling the Fourier space position variable instead of the real space position variable.
This can be accomplished as follows:

ρx,t(p) = lim
Λ→∞

W (x = xΛ, p, t = tΛ). (2.257)

Because we know the exact kernel, and hence, the exact Wigner function, we can
compute exactly ρ, this leads to (for simplicity, we have omitted the Euler limit i.e.



Chapter 2. Non-equilibrium Dynamics of Noninteracting Fermions in
Presence of a Defect. 119

made the replacement

{
x → x

t → t
in the following equation and in Fig. 2.17 )

2πℏρx,t(p) = (rR(p)t
∗
R(p)fR(p) + r∗L(p)tL(p)fL(p))θ ((tp− x)sgn(x)) . (2.258)

Here, it is crucial to remark that this evolution is surprisingly simple (see Fig. 2.17).
It seems to follow the Liouville dynamics away from the defect x ̸= 0. Near the defect,
it is coupled to ρ which act as a source. Hence we propose the following dynamic for
the two fields ρ and ρ:

• For x ̸= 0 and x ̸= 0 i.e. outside of the trap (we recall that in the Euler limit,
the trap has no size), the ρ and ρ follow the free evolution, which corresponds
to the Liouville dynamics

(∂t + p∂x)ρx,t(p) = 0, (2.259)
(∂t + p∂x)ρx,t(p) = 0. (2.260)

• During the free evolution, when a patch of ρx,t(p) crosses the potential at x = 0,
it undergoes transmission (retaining its free evolution but multiplied by a factor
T (p)) or reflection (multiplied by a factor R(p) and changing momentum from
p to −p).

• Additionally, when a patch of ρ crosses the potential at x = 0 and momen-
tum p, it acts as a source for ρ at position x = 0 and momenta p = ±p. To
be more precise, ρx=0−,t(p > 0) generates a flux ρx=0−,t(p > 0)r∗L(p)tL(p) for
ρx=0,t(p) and another flux ρx=0−,t(p > 0)r∗L(−p)tL(−p) for ρx=0,t(−p). Simi-
larly, ρx=0+,t(p < 0) generates a flux ρx=0+,t(p < 0)rR(p)t

∗
R(p) for ρx=0,t(p) and

another flux ρx=0+,t(p < 0)rR(−p)t∗R(−p) for ρx=0,t(−p) (see Fig. 2.17).

In the spirit of (2.251), we propose the following equation summing up the dynamics
and coupling of ρ and ρ:

(∂t + p∂x)ρx,t(p) = δ(x)|p|R(p)
(
ρx=0σ ,t(−p)− ρx=0−σ ,t(p)

)
, (2.261)

(∂t + p∂x)ρx,t(p) = δ(x)
(
r∗L(p)tL(p)ρx=0−,t(|p|) + rR(p)t

∗
R(p)ρx=0+,t(−|p|)

)
,

where we recall that σ =

{
+ if p > 0

− if p < 0
and ρx=0±,t(p) is understood as lim

x→0±
ρx,t(p).

Once this is done, the solution of the differential equations (2.261) is given by Eqs.
(2.252), (2.253) and (2.258). Then, we can reconstruct the equal rays correlations
K+

ξ (y, y′, τ = 0) by plugging ρ in the appropriate expression (1.87) of the kernel as a
functional of the Wigner function. We also reconstruct the opposite rays correlations
K−

ξ (y, y′, τ = 0) by plugging ρ in the appropriate expression (2.255) of the kernel as
a functional of the Fourier transform of Wigner function.

From here multiple remarks and questions arise:

• Does the kernel K(x, x′, t) admits a similar equation to (2.261) in the Euler
scaling limit?

• We know that the two equations (2.261) are correct in our quench with a non-
interacting defect and free fermions, but we are uncertain if they remain valid
in a more general setup.
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• One relevant question to ask is whether there are any additional coupling terms
from ρ to ρ in the equations (2.261). On the mathematical side, a hint comes
from the fact that the two equations for the dynamics of W and W (2.241-
2.256) are exactly the same for a symmetric potential V (x) = V (−x). This
implies that the two equations (2.261) must be symmetric if the potential is
symmetric. Hence, there must be two additional terms to the equation, one of
them being a coupling from ρ to ρ. However, on the physical side, it is unclear
how to create an initial condition where ρ is nonzero in the sector of phase space
where ρ is moving towards the defect (that is, the sectors b′ and c′ of Fig. 2.17).
Hence, even if this coupling term exists mathematically, the question of finding
a physical setting where it is nonzero remains open.

• Multiple generalizations can be considered; for example, in a quench with mul-
tiple defects far away from each other. This includes the case of a defect in
the middle of a hard box (the two hard walls can be seen as totally reflecting
defects) discussed in Section 2.5. In particular, for the critical regime a = 1
whose kernel is unknown.

• Of course, another generalization is the quench of an interacting gas and inter-
acting defect. In that case, it could be that particles are scattered by the defect
with different momenta (in our case, the momenta of scattered particles are just
opposite).
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Article 2

Quench dynamics of noninteracting fermions
with a delta impurity [2]

Abstract We study the out-of-equilibrium dynamics of noninteracting fermions
in one dimension and in continuum space, in the presence of a delta impurity potential
at the origin whose strength g is varied at time t = 0. The system is prepared in its
ground state with g = g0 = +∞, with two different densities and Fermi wave-vectors
kL and kR on the two half-spaces x > 0 and x < 0 respectively. It then evolves for
t > 0 as an isolated system, with a finite impurity strength g. We compute exactly
the time dependent density and current. For a fixed position x and in the large
time limit t → ∞, the system reaches a non-equilibrium stationary state (NESS).
We obtain analytically the correlation kernel, density, particle current, and energy
current in the NESS, and characterize their relaxation, which is algebraic in time. In
particular, in the NESS, we show that, away from the impurity, the particle density
displays oscillations which are the non-equilibrium analog of the Friedel oscillations.
In the regime of “rays”, x/t = ξ fixed with x, t→ ∞, we compute the same quantities
and observe the emergence of two light cones, associated to the Fermi velocities kL
and kR in the initial state. Interestingly, we find non trivial quantum correlations
between two opposite rays with velocities ξ and −ξ which we compute explicitly. We
extend to a continuum setting and to a correlated initial state the analytical methods
developed in a recent work of Ljubotina, Sotiriadis and Prosen, in the context of a
discrete fermionic chain with an impurity. We also generalize our results to an initial
state at finite temperature, recovering, via explicit calculations, some predictions of
conformal field theory in the low energy limit.
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Article 3

Stationary time correlations for fermions after a
quench in the presence of an impurity [3]

Abstract We consider the quench dynamics of non-interacting fermions in one
dimension in the presence of a finite-size impurity at the origin. This impurity is
characterized by general momentum-dependent reflection and transmission coefficients
which are changed from r0(k), t0(k) to r(k), t(k) at time t = 0. The initial state is at
equilibrium with t0(k) = 0 such that the system is cut in two independent halves with
rR0 (k), rL0 (k) respectively to the right and to the left of the impurity. We obtain the
exact large time limit of the multi-time correlations. These correlations become time
translationally invariant, and are non-zero in two different regimes: (i) for x = O(1)
where the system reaches a non-equilibrium steady state (NESS) (ii) for x ∼ t, i.e.,
the ray-regime. For a repulsive impurity these correlations are independent of rR0 (k),
rL0 (k), while in the presence of bound states they oscillate and memory effects persist.
We show that these nontrivial relaxational properties can be retrieved in a simple
manner from the large time behaviour of the single particle wave functions.
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Chapter 3

Quantum propagating front and
the edge of the Wigner Function

The phenomenon we want to highlight here was inspired by the result of [40]. This
article consider fermions on a lattice introduced in (2.46) with J = 1/2. Initially, the
system is prepared in a step like condition filling every sites of the left system half

⟨c†mcn⟩ =
{
δi,j n,m ≤ 0

0 else
. (3.1)

Now we are interested in the observable equivalent to the time-dependent kernel for
lattice fermions, i.e. Cm,n(t) = ⟨c†m(t)cn(t)⟩ where cn(t) is the time evolved fermionic
creation operator in the Heisenberg picture. More precisely, a propagating front mov-
ing from left to right emerges, and we are interested in the correlation around this
front. It can be shown that the density in the large time limit takes a scaling form
(see Fig. 3.1)

ρn(t) ≃


1 if x/t < −1
arccos(x/t)

π if − 1 < x/t < 1

0 if 1 < x/t

. (3.2)

The correlations can be computed in large time with a saddle point approximation.
However, near the quantum front, the saddle point is by definition located at the
maximum of the velocity v(k) = ϵ′(k) (the dispersion relation is ϵ(k) = − cos(k))
that is the saddle point is at v(k∗) = sin(k∗) = 1. This implies that the expansion
around the saddle point at the quantum front involves a third order term ∼ k3 which
eventually leads to the emergence of the Airy kernel [40]

Cm,n(t) ≃ in−m(
2

t
)1/3KAi(

m− t

( t2)
1/3

,
n− t

( t2)
1/3

). (3.3)

We see that t1/3 emerge as a characteristic length. Note that Wick theorem implies
that the phase factor in−m in front of the kernel is irrelevant for the density-density
correlations.

Now we compare this with fermions in the continuum. In that case, the dispersion
relation is ϵ(k) = k2

2 , therefore the velocity v(k) = k has no extremum. This implies
that we will never witness the emergence of the Airy kernel as it is the case for
fermions in the lattice [40]. Despite this, we propose a quench protocol for fermions
in the continuum where the Airy kernel Eq. (1.77) arises at the edge of the quantum
front. The main trick is to change the initial condition. Instead of a domain wall
initial condition, we prepare the system in the ground state of the inverse power-law
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Figure 3.1: Illustration of the density ρn(t) = Cn,n(t). On the left
panel, we plot the large time scaling form of the density (3.2). We observe
the propagation of a front in the density. On the right panel, we show
the density rescaled around the front which follows Eq. (3.3). There is a

staircase structure at the edge of the front.

potential V (x) = c
|x|γ , such that only the left half-space is filled up to the Fermi

momentum pF . Then, at the initial time, we turn off the potential, allowing the
fermions to freely propagate. From here, the statistics at the edge of the quantum
front can be related to the Wigner function in the initial state. Therefore, following
[199], we examine the initial state Wigner function corresponding to the ground state
of the inverse power-law potential, and we demonstrate the emergence of the Airy
kernel Eq. (1.77) at the edge of the quantum front.

This chapter is divided into two sections. The first section is dedicated to the study
of the initial condition, that is the equilibrium properties of non interacting fermions
in the inverse power law potential V (x) = c

|x|γ . More precisely, our goal is to explore
the properties of the semiclassical limit of the Wigner function introduced previously
(1.83). In this limit, Berry [200] showed that the Wigner function for a single particle
within a potential could be expressed in term of Airy function. Latter, this result was
generalised to the ground state of N particles [199, 201]. In that case, the Wigner
function has an edge called the "Fermi surf", which is completely characterized by
the classical one-particle Hamiltonian of the system. In one dimension, the Fermi surf
is a closed curve that separates the phase space in two parts, the Wigner function
being equal to zero outside and 1

2πℏ inside. Note that this result is the starting point
of the LDA (1.2.4). It turns out that, for large but finite N fermions in a smooth
potentials, close to generic points on the Fermi surf, the Heaviside theta function of
the LDA (1.88) is smoothed around the Fermi surf. Furthermore, in these conditions,
the Wigner function can be expressed in terms of Airy functions (3.5) in a way such
that the kernel at the edge of the gas is none other than the Airy kernel. The result
of the first section is the study of the Wigner function around the Fermi surf in the
particular case of the inverse power law potential V (x) = c

|x|γ , which turns out to
exhibit different behaviors.

In the second part, we introduce a quench where noninteracting fermions are
prepared in the ground state of the inverse power law potential V (x) = c

|x|γ , occupying
only the left half of the system. This way the initial condition corresponds to the
Wigner function studied in the first section. Then, the potential is quenched to zero,
allowing the fermions to evolve freely. Consequently, a quantum front (or the edge of
the gas) propagates from left to right. The result of this second section, which is a
consequence of the first section, lies in the emergence of the Airy kernel around the
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quantum front.

3.1 Airy statistics and the Wigner function
First, let us provide a detailed justification for the LDA and the assumption made
for the Wigner function in (1.88). By doing so, we will also refine this assumption
beyond the LDA.

3.1.1 Short time expansion of the propagator and the
semiclassical Limit

In this section, we will refer to the "semiclassical limit" as the large N → ∞ limit.
We will later establish a connection between this limit and the ℏ → 0 limit, justifying
the chosen terminology. Before going further, let us introduce the "Fermi surf" [201],
that is the edge of the Wigner function in the semiclassical limit defined by

H(xe, pe) = µ. (3.4)

We recall that the Fermi surf is the separation between the bulk and the exterior of the
Wigner function in the classical limit (1.88). Moving to the semiclassical limit means
that we consider first order finite N correction. As a consequence, the Fermi surf
of the "classical" Wigner function Eq. (1.88) softens up with the following universal
scaling [199]

WN (x, p) ≃
N→∞

W(a)

2πℏ
=

1

2πℏ

ˆ ∞

22/3a
dzAi(z), (3.5)

a =
H(x, p)− µ

eN
, eN = (

ℏ2

2
(p2eV

′′(xe) + (V ′(xe))
2)1/3, (3.6)

where Ai is the Airy function. We say this scaling is universal in the sense that it is
valid for any smooth potential as long as eN ̸= 0. Note that we called "classical" the
result (1.88) which does not consider the first order corrections, i.e. corresponds to
ℏ = 0, while we call "semiclassical" the small but finite ℏ (respectively large but finite
N) regime Eq. (3.5). Note that

W(a) ≃
{
1 if a→ −∞
(8π)−1/2a−3/4 exp

(
−4

3a
3/2
)

if a→ +∞
(3.7)

such that the Wigner function is equal to 1
2πℏ within the bulk, and zero outside,

giving a first order smooth version of the classical limit (1.88). Furthermore, using
the formula from the book [202]

ˆ
dk

π
e−ik(p−q)Ai(k2 + p+ q) = 22/3Ai(21/3p)Ai(21/3q), (3.8)

together with the formula (1.87) and some smart changes of variables, one can show
that the kernel at the edges of the gas is the Airy kernel (1.77) for any smooth potential

Kµ(x, x
′) ≃

N→∞
KAi(

x− xedge
wN

,
y − xedge
wN

), wN =

(
ℏ2

2mV ′(xedge)

)1/3

. (3.9)
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Fermi surf

bulk

Figure 3.2: Representation of the Fermi surf for the harmonic
potential. We also represent in red, the width of the Wigner
function in the semiclassical limit around the Fermi surf. Ad-
ditionally, the vertical line in blue is the integral contour of the
formula (1.87) which leads to the recovery of the Airy kernel at

the edge of the gas (3.9).

where xedge is the particle density edge defined by V (xedge) = µ, not to be confused
with the Fermi surf (xe, pe) (see Fig. 3.2).

Imaginary Time Propagator. In order to prove this to be true, We consider a
system of noninteracting trapped fermions with a single-particle Hamiltonian Ĥ, wave
functions, and eigenenergy family ϕk, ϵk, in the ground state with chemical potential
µ (or equivalently a finite number of N fermions). We note Kµ the kernel

Kµ(x, x
′) =

∞∑
k=0

ϕ∗k(x)ϕk(x
′)Θ(µ− ϵk). (3.10)

Note that in the case of a non-trapping potential the family {ϕk, ϵk} have a continu-
ously indexed component, and the previous sum turns into an integral. Our method
relies on the imaginary quantum propagator

G(x, x′, t) = ⟨x′|e− Ĥt
ℏ |x⟩ = t

ℏ

ˆ ∞

0
dµe−

µt
ℏ Kµ(x, x

′). (3.11)

The last formula can be inverted to give the kernel as

Kµ(x, x
′) =

ˆ
C

dt

2πit
e

µt
ℏ G(x, x′, t), (3.12)

where C is the Bromwich contour in the complex plane. Hence putting together Eq.
(3.12), and (1.86), yields the expression for the Wigner function of N fermions in the
ground state

WN (x, p) =
1

2πℏ

ˆ
C

dt

2πit
e

µt
ℏ

ˆ +∞

−∞
dye

ipy
ℏ G(x+

y

2
, x− y

2
, t). (3.13)
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The propagator obeys the following equation

ℏ∂tG(x, x′, t) =
(

ℏ2

2m
∂2x − V (x)

)
G(x, x′, t), G(x, x′, 0) = δ(x− x′). (3.14)

Now, using the Feynamnn-Kac formula, the solution of this equation can be written
as a path integral [203]. This can then be written in term of a Brownian bridge [17]

G(x+
y

2
, x− y

2
, t) =

√
m

2πℏt
e−

my2

2ℏt ⟨exp(− t

ℏ

ˆ 1

0
duV (x+ y(

1

2
− u) +

√
ℏt
m
Bu))⟩B.

Here B is a Brownian bridge that is a Brownian process on u ∈ [0, 1] with zero mean
and correlation ⟨BuBu′⟩B = min(u, u′) − uu′, hence B0 = B1 = 0. From here, the
argument is that in the semiclassical limit (where µ is large), the Wigner function,
given by Eq. (3.13), will be dominated by short-time contributions. Therefore, we
proceed with the short-time expansion of the propagator. There is a saddle point at
y = itp, so we make the change of variable y = itp

m +
√

ℏt
m ỹ which yields (appendix of

[199])

WN (x, p) =
1

2πℏ

ˆ
C

dt

2πit
e(µ−

p2

2m
−V (x)) t

ℏ+S(x,p) (3.15)

S(x, p) = ln⟨exp
(
− t

ℏ

ˆ 1

0
du

[
V (x+

itp

m
+

√
ℏt
m
ỹ(

1

2
− u) +

√
ℏt
m
Bu)− V (x)

])
⟩B,ỹ,

with ⟨...⟩B,ỹ =
´ dỹ√

2π
e−

ỹ2

2 ⟨...⟩B.
Recovering the LDA/classical limit. Now, our goal is to justify the LDA

(1.88). In order to do so, we expand V in (3.15) around xe at small time t and we
stop to the zeroth order in time. The two potentials V in (3.15) cancels, which yields
S(x, p) ≃ 0, and therefore

WN (x, p) =
1

2πℏ

ˆ
C

dt

2πit
e(µ−

p2

2m
−V (x)) t

ℏ =
1

2πℏ
Θ(µ−H(x, p)). (3.16)

This is the ansatz of the LDA (1.88). The only missing part in our argument is a
justification for the short time expansion. In the large chemical potential µ limit, this
expansion was justified in [199].

The semiclassical limit. Now, we want to push this method to higher order
expansion. We choose a point close to the edge, (x, p) ≃ (xe, pe), and we want to
expand V in (3.15) around xe. The expansion is achieved in detail in the Appendix
D considering the fluctuations of the Brownian bridge Bu. The expansion is found to
be valid under the conditions given in the Appendix in Eqs. (D.1), and (D.5). For
now let us assume that those conditions are satisfied, then, the expansion yields the
following result

WN (x, p) ≃
N→∞

1

2πℏ

ˆ
C

dt

2πit
e(µ−H(x,p)) t

ℏ+
t3

24ℏ (p
2
eV

′′(xe)+V ′(xe)2), (3.17)

=
1

2πℏ

ˆ
C

dτ

2πiτ
e−22/3aτ+ τ3

3 =
W(a)

2πℏ
,

where a was defined in Eq. (3.5). This is the Airy scaling discussed above in Eq.
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Limit Near the gas edge Away from the gas edge
µ→ +∞ γ > 2 ∅
ℏ → 0 ∀γ ∀x if γ < 1 or if xγ−1 ≪

√
mc

ℏ√µ

Table 3.1: Summary of the conditions under which the Wigner function exhibits
the Airy scaling (3.5) along the Fermi surf (see Fig. 3.3) for the ground state in the

inverse power law potential.

(3.5). The authors of [199] then argue that in most generic confining potential, the
condition Eqs. (D.1) and (D.5) are verified in the large µ→ ∞ limit, which allows to
recover the universal scaling Eq. (3.5) and (3.9). From now on, the conditions Eqs.
(D.1) and (D.5) will be essential if one wants to know whether the Wigner functions
follows the Airy scaling (3.5) in a specific region of the Fermi surf.

While the Airy scaling (3.5) is generally valid for generic points, it has been found
to be absent at certain specific points for certain potentials. For instance, when
examining the Wigner function of potentials V (x) ∼ x2n with 2 ≤ n, it is clear that
eN defined in (3.5) becomes zero at xe = 0, such that, the Airy scaling is not valid.
This phenomenon is discussed in [65], where the authors obtained the momentum
coordinate kernel at the edge of the momentum density and found it to differ from
the Airy kernel. Another example is provided by the inverse power law potential
V (x) =

ℏ2(ν2− 1
4
)

2m|x|γ , for which the kernel at the edge of the density was determined in
[182]. This analysis shows the emergence of the Airy kernel if γ > 2. Knowing this, we
aim to extend the analysis to the full Wigner function and investigate the conditions
under which the Wigner function exhibits the Airy scaling (3.5) for the inverse power
law potential.

Remark. It is interesting to note that the expansion of the propagator can be
obtained from an expansion around the classical path, as demonstrated in [204]. In
the case of an inverse power law potential V (x) = c

xγ , there are two such paths: a
direct path and an indirect path with a turning point [205, 206]. However, when using
the imaginary time propagator in the small ℏ limit, the contribution from the indirect
path is subleading such that the two different methods yield identical results.

3.1.2 The Inverse Repulsive Power Law Potential V (x) =
c

|x|γ

Here for purpose that will become clear in the next section 3.2 we want to extend the
previous analysis to the special case of the non-confining potential V (x) = c

|x|γ with
c > 0. We show that for this potential, the Airy scaling Eq. (3.5) in the large µ limit
is valid only under tight conditions, that is for γ > 2 and close to the edge of the gas
(or equivalently on the part of the Fermi surf Eq. (3.4) where pe ≃ 0). Our main
result lies in the fact that the Airy scaling remains valid on a wider part of the Fermi
surf under the small ℏ limit. More precisely in the small ℏ limit, the Airy scaling is
valid on the complete Fermi surf if γ ≤ 1, and only for ℏxγ−1

e ≪ 1 if γ > 1. Our
results are summarized in the table 3.1 and figure 3.3.

In the article [199], the analysis was carried out with ℏ = 1. Here, we reintroduce
ℏ specifically in conditions Eq. (D.1) and (D.5). We realize that the limit ℏ → 0
leads to the Airy scaling (3.5) on a wider part of the Fermi surf than in the large
µ limit. Before diving into the details, let us briefly review some known facts about
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Near the gas edge

Away from the gas edge

Fermi surf

Figure 3.3: Illustration of the Fermi surf of the Wigner function
for the ground state of the repulsive inverse power law potential
V (x) = c

|x|γ . We specify the two region of the Fermi surf defined
in terms of x of order one or taken large where x is defined in

(3.23).

noninteracting fermions in the presence of the inverse power law potential V (x) = c
|x|γ ,

when c ∼ ℏ2.
The c =

ℏ2(ν2− 1
4
)

2m barrier. First, in [182], the case where c =
ℏ2(ν2− 1

4
)

2m was
studied. Notice that if γ = 2, the potential is equivalent to a centrifugal barrier,
which corresponds to the effective potential generated by the angular decomposition
introduced in Eq. (1.126) in the absence of a background potential V (r). First, let
us mention that if the potential is scaled like this to be proportional to ℏ2, taking the
limit µ→ ∞ and taking the limit ℏ → 0 yields identical results. This will not be true
when we will consider c of order one. In both limits of large µ or small ℏ, we have the
same behaviour depending on the value of γ:

• 0 < γ < 1: In that case, the barrier is penetrable, meaning that there exist
eigenstates that do not vanish at x = 0.

• 1 ≤ γ < 2: The barrier is impenetrable (and it is for all 1 ≤ γ). By rescaling the
Schrödinger equation, the potential can be neglected and the kernel is similar
to the hard-wall kernel

K(x, x′) ∼ Khw(kFx, kF , x
′), (3.18)

Khw(u, u
′) =

sin(u− u′)

π(u− u′)
− sin(u+ u′)

π(u+ u′)
,

with kF =
√
2mµ
ℏ the Fermi wavenumber.

• γ > 2: On the contrary, in that case, the potential cannot be neglected and,
the kernel is the Airy kernel.
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• γ = 2: In this case, we already mentioned that the kernel is the Bessel kernel.
This case connects 1 ≤ γ < 2 with γ > 2. Indeed, for ν = 1

2 the Bessel kernel
is identical to the hard wall kernel, this can be seen at the level of the wave
function as J1/2(x) =

√
2
πx sinx. On the other side, for ν → ∞, if properly

rescaled, the Bessel kernel converges to the Airy kernel. Again this can be seen
as a consequence of (ν/2)1/3Jν(ν + (ν/2)1/3x) = Ai(−x).

Now we want to address the following questions:

• What happens if we keep c fixed while taking the limit ℏ → 0 and µ→ ∞?

• Does the Wigner function exhibits the Airy scaling in one of those limits? If it
does, on which part of the Fermi surf? We will distinguish two regions, close to
the edge of the gas and away from the edge of the gas (see Fig. 3.3).

For the part of the Fermi surf close to the edge of the gas, looking at the Schrödinger
equation for the propagator (3.14), one concludes that the potential term is not neg-
ligible if and only if ℏ2µ

2−γ
γ ≪ 1. Hence, we expect to recover the Airy kernel under

this condition. The conditions under which the Fermi surf exhibits the Airy scaling
(3.5) are summarised in the table (3.1).

The inverse square potential, γ = 2. Now, we want to study the Wigner
function close to the Fermi surf in the inverse power law potential. Before examining
the general inverse power law potential, we start with a particular case, the inverse
squared potential. For γ = 2, the eigenfunctions are known such that one can compute
exactly the Wigner function. We know that the Airy kernel is recovered when ν → ∞,
for fixed c, which is equivalent to taking the ℏ → 0 limit, as ν =

√
1
4 + 2mc

ℏ2 . Therefore,
we consider the Wigner function in the latter limit and prove that is exhibits the Airy
scaling (3.5). In this case, the single-particle eigenfunctions ϕp form a continuously
indexed family, and they are related to the Bessel function through the following
expression

ϕp(x) =

√
px

ℏ
Jν

(px
ℏ

)
, (3.19)

with ν = ≃
ℏ→0

√
2mc
ℏ . This leads to the following expression for the Wigner function

[207]

W (x, p) =
1

2πℏ3

ˆ pF

0
p′dp′

ˆ 2x

−2x
dye

iνy
xα(p)

√
(x+

y

2
)(x− y

2
) (3.20)

×Jν(ν
x+ y/2

xα(p′)
)Jν(ν

x− y/2

xα(p′)
),

where xα(p′) =
√
2mc
p′ is the turning point (i.e. the point where p′2

2 = V (xα)) for
a wave of impulsion p′. Using the integral representation for the Bessel function
Jν(x) =

1
2π

´ π
−π dτe

i(ντ−x sin(τ)) in (3.20) leads to

W (x, p) =
1

(2πℏ)3

ˆ pF

0
p′dp′

ˆ 2x

−2x
dy

ˆ π

−π
dτ1dτ2

√
x2 − y2

4
eiνF (τ1,τ2,p′,y)

F (τ1, τ2, p
′, y) = τ1 + τ2 −

x+ y
2

xα(p′)
sin(τ1)−

x− y
2

xα(p′)
sin(τ2) +

y

xα(p)
(3.21)
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In the small ℏ limit, ν → ∞, hence, Eq. (3.21) is a four-dimensional saddle point
integral. We notice that the y dependent integral converges towards a delta Dirac
function in the small ℏ limit. including a delta function. When expanding the function
F to second order, the delta Dirac part, that is the term proportional to y constrain
τ1 and τ2 such that their second derivative contributions cancels out. Therefore one
has to push the expansion to third order resulting, for a phase space point taken close
to the Fermi surf (x, p) ≃ (xe, pe), in the Airy scaling limit Eq. (3.5). However, we
find that the following additional condition must be satisfied

xpℏ
mc

≪ 1 . (3.22)

A few remarks are in order:

• Notice that if the Airy scaling was given by the semiclassical limit ℏ → 0, it
would not be possible to obtain it solely from the large µ limit.

• The condition Eq. (3.22) results from two phenomena. First, the higher-order
term in the expansion of the saddle point function F (τ1, τ2, p′, y) contains pow-
ers of xpℏ

c such that the expansion cannot be performed if the aforementioned
condition is violated. Second, the integration space in the saddle point integral
is constrained by the aforementioned delta function in the small ℏ limit. This
delta function restricts the integration space to a two dimensional subspace.
This subspace has a characteristic width ∆ ≃ (xpℏc )−1/3 along one integration
axis, such that the saddle point can not be performed when the condition is not
valid, i.e. when ∆ ≪ 1.

• Typically p is lower or close to
√
2mµ and the condition (3.22) is not satisfied

away from the potential that is for large x ∼ ℏ−1.

The inverse power law potential, γ ≥ 0. In order to generalise the result
obtained for γ = 2, we apply the short time propagator expansion (3.1.1) method
to the inverse power law potential. Note that one could worry about the fact that
the potential is not smooth anymore and exhibits a diverging singularity eventually
invalidating the previous analysis. In fact, this is not a problem, as long as the
singularity is repulsive, in this case the propagator from (3.15) is still well defined.

Near the gas edge. We want to look at the Wigner function near the gas edge
that is where the particle density vanishes i.e. when pe = 0, and xe = xedge = ( cµ)

1/γ

(see Fig. 3.3). This is done by rescaling the Fermi surf as

xe = xxedge, (3.23)

pe =
√

2mµ(1− x−γ),

where x ∈ [1,+∞[. Then we consider the different limits (large µ or small ℏ) with
x̃ fixed. This case turns out to be simple as the conditions Eqs. (D.1), and (D.5)
depend only on one dimensionless parameter and the expansion of the propagator is
valid if

ℏ2µ
2−γ
γ

mc
2
γ

≪ 1 . (3.24)

Hence, we find the Airy scaling Eq. (3.5) in two different limits, for µ→ ∞, γ > 2,
or for ℏ → 0 with any γ > 0. In other words, the limit ℏ → 0 is more universal as it
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works for any value of γ. Notice that if we set c = ℏ2(ν2− 1
4
)

2m , the previous condition
becomes

1

m(ν2 − 1
4))

2
γ

(
ℏ2

µ
)
γ−2
γ ≪ 1. (3.25)

This is consistent with the discussion on the small c ∼ ℏ2 barrier (3.1.2) where the
small ℏ and the large µ limit where equivalent.

Away from the gas edge. We look at the Wigner function for xedge ≪ xe and
pe ≃

√
2mµ (see Fig. 3.3) or equivalently x→ ∞ in (3.23). This time the conditions

Eqs. (D.1) and (D.5) yield Eq. (D.11) (see Appendix D), such that, in the limits of
interest, the Airy scaling is correct only if the following condition is satisfied

ℏ√µxγ−1
e√

mc
≪ 1 (3.26)

Let us make a few remarks on this condition:

• The large µ limit does not satisfy the condition (3.26), hence, there is no Airy
scaling at large µ, and large xe.

• In the case of the small c =
ℏ2(ν2− 1

4
)

2m barrier, again, the large µ and small ℏ
limit play the same role and there is no Airy scaling at large xe.

• The condition matches (3.22) for γ = 2.

• There is a change of behavior at γ = 1. For γ > 1 the Airy scaling is recovered
for small ℏ as long as xe is small enough to verify Eq. (3.26). For γ ≤ 1 the
Airy scaling is recovered for any xe.

• The question that remains open is how the Wigner function behaves near the
Fermi surf when the condition Eq. (3.26) is broken as x is taken large.

3.2 Airy kernel at the quantum front
Now let us give details on the chosen quench protocol.

Initial condition. Instead of having a domain wall release like in [40]. The system
is prepared in the ground state of noninteracting fermions with the impenetrable
barrier V (x) = c/|x|γ , studied in Section 3. This ground state is such that only the
left half space is filled up to Fermi momentum pF or chemical potential µF =

p2F
2 . We

will study the dynamics of the Wigner function introduced in Eq. (1.83). Equation
(3.4) allows us to define the "Fermi surface". For the inverse power law potential (see
Fig. 3.3), this gives

p2e
2

+
c

|xe|γ
=
p2F
2
, (3.27)

pe(x) =

√
p2F − 2c

|x|γ ,

xe(p) = −(
2c

p2F − p2
)
1
γ .

We have already discussed the fact that around the Fermi surf, for small ℏ, the Wigner
function exhibits the Airy scaling Eq. (3.5).
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Quench. Later, we will quench the trap and consider the free evolution of
fermions, producing a positive current (from left to right). For free fermions, the
dynamical evolution of the Wigner function (2.241) is reduced to the Liouville dy-
namics (2.259) such that

W (x, p, t) =W (x− pt, p, t = 0) =W0(x− pt, p) (3.28)

where W0(x, p) is the Wigner function at initial time. This implies that the Fermi
surf will be deformed with time as in Fig. 3.4 following

x(p, t) = xe(p) + pt. (3.29)

Fermi surf Fermi surf at time t

t=0 t>0

Figure 3.4: Plot of the Fermi surf for the inverse power law potential
(red line, left) and its free evolution at time t (red line, right). We also
plot the line tangent to the Fermi surf at the quantum front (xedge(t), p(t))
(blue, right) and its backward time propagation, i.e., the tangent to the
point (x(t), p(t)) (blue, left). These two tangent lines appear in (3.35),
where in the first line of the equation the integral is performed over a line
parallel to the right tangent line, and in the second line of the equation,
the integral is performed over a line parallel to the left tangent line. Thus,
in the large time limit, the computation of the kernel (3.35) probes the
edge properties of the Wigner function in the inverse power law potential
away from the center of the potential (xe → −∞), leading to the Airy

kernel at the quantum front (3.36).

Therefore, we will observe a quantum front, i.e., the point where the density
vanishes in the classical limit, propagating to the right. We look for the position
xedge(t) of the propagating quantum front, which is given by xedge(t) = maxp x(p, t).
This obeys the equation ∂px(p(t), t) = 0, defining the corresponding point p(t) and
x(t) = xe(p(t)), which is the projection of the quantum front on the Fermi surface of
the initial Wigner function

x′e(p(t)) + t = 0, (3.30)

p′e(x(t)) +
1

t
= 0. (3.31)

Because the front is moving to the right, xedge(t) is a monotonous function of t, hence
by construction x(t) and p(t) are also monotonous, they have the following large time
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limit (see Fig. 3.4)

lim
t→∞

xedge(t) = +∞, (3.32)

lim
t→∞

x(t) = −∞,

lim
t→∞

p(t) = pF ,

and the three of them are linked by the relation

xedge(t) = x(t) + tp(t). (3.33)

Their large time asymptotics are

p(t) ≃
t→∞

pL − 1

(γt)
γ

γ+1

(
c

pL
)

1
γ+1 (3.34)

x(t) ≃
t→∞

−(
γct

pL
)

1
1+γ

The Liouville dynamics gives the time dependent kernel at time t as a functional of
the initial Wigner function

K(x, x′, t) =

ˆ
dpe−i pℏ (x−x′)W (

x+ x′

2
, p, t) (3.35)

=

ˆ
dpe−i pℏ (x−x′)W0(

x+ x′

2
− pt, p)

As illustrated in Fig. 3.4, the integral (3.35) giving the kernel at the quantum front
xedge(t) is performed over a line parallel to the Fermi surf at the quantum front of the
Wigner function at time t. In the second line of (3.35), the integral is now performed
on a line parallel to the line tangent to the Fermi surf of the initial Wigner function
at the point (x(t), p(t)). Thus, using the Airy scaling (3.5) demonstrated in the first
section to be valid for the inverse power law potential under the condition (3.26), it
is possible to show that along the quantum front, the kernel can be expressed in term
of Airy as

K(x, x′, t) ≃ − 1

w(t)
e−

i
ℏ (p(t)(x−x′)+

(x−xedge(t))
2

2t
−

(x′−xedge(t))
2

2t
)

×KAi(
x− xedge(t)

w(t)
,
x′ − xedge(t)

w(t)
),

w(t) = t(
ℏ2|p′′e(x(t))|

2
)1/3 = (ℏ2

γ + 1

2
(
pL
γc

)1/(γ+1))1/3t
2γ+1
3(γ+1) .

(3.36)

• Notice that the phase in front of the kernel is not relevant for a determinantal
process (1.46) as det |ef(xi)−f(xj)K(xi, xj)]i,j = det |K(xi, xj)|i,j . However in
the case of non-equilibrium dynamics of fermions, observables like the current
are affected. Indeed, we recal that the current is a functional of the kernel as

J [K(x, y, t)] (x, t) =
1

2i
(∂y − ∂x)K(x, y, t)|x=y. (3.37)
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This implies that the phase modify the current as

J
[
ef(x)−f(y)K(x, y, t)

]
(x, t) = J [K(x, y, t)] (x, t) + if ′(x)ρ(x, t), (3.38)

where ρ(x, t) = K(x, x, t). In our specific case, because the Airy kernel alone
produce no current this yields

J(x, t) =

(
p(t) +

x− xedge(t)

t

)
ρAi

(
x− xedge(t)

w(t)

)
(3.39)

where we used the notation ρAi(x) = KAi(x, x). Notice that the first term
can be interpreted as a consequence of the motion of the quantum front with
velocity p(t).

• Here, the Airy kernel at the quantum front is already present at initial time.
This does not have to be the case, for example if the initial potential behaves like
the power law potential for large x but has a derivative that cancels precisely at
the edge of the gas (V ′(xedge) = 0). Then, the Wigner function at initial time
exhibits the Airy scaling (3.5) only far away from edge of the gas, such that we
expect the Airy kernel to appear only in the large time limit.

• In [187], a small ℏ analysis of the Wigner function propagation within a potential
is done. The conclusion is that if present at initial time, the Airy scaling (3.5)
would persist at short time (up to some rescaling of the width eN ).

• The Airy kernel (3.36) is valid only if the initial time Wigner function exhibits
the Airy scaling at position x(t), that is if x(t) verifies the condition (3.26) from
the first section.

• This quench set up appears as possible experimental protocol to probe the edge
of the ground state Wigner function for xe away from the edge of the gas, within
potentials with power law decay at infinity like the inverse power law potential.
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Conclusion and Perspectives

In this thesis, we have aimed to highlight the utilization of noninteracting fermions
as an exactly solvable model, allowing for the exploration of nontrivial many-body
statistics both in-equilibrium and out-of-equilibrium scenarios. On the side of equi-
librium statistics, we discussed how the mathematical tool box of Random Matrix
Theory could be used to obtain the hole probability in ground state and in any di-
mensions. Remarkably, this investigation revealed an intriguing connection (1.140)
between Fredholm determinants of kernels that were initially unrelated. A natural
research direction would be to extend our results to the Full Counting Statistics and
the finite temperature properties. This would eventually lead to a generalisation of
the aforementioned connection between Fredholm determinants.

On the side of out-of-equilibrium statistics, we have explored various quench pro-
tocols. We investigated the ground state statistics of a noninteracting fermionic gas
in a slowly decaying potential (such as the inverse power law potential). We paid
particular attention to the edge of the Wigner function, which led in large time to
the emergence of the Airy kernel at the edges of propagating front for fermions in the
continuum. It would be interesting to investigate whether these phenomena can be
observed in the context of cold atoms experiments.

Additionally, we have conducted a detailed study on the dynamics of noninter-
acting fermions in the presence of a defect, which refers to a potential that varies on
a microscopic scale. Depending on the time scales involved, we have observed relax-
ation to either a Non Equilibrium Steady State or a Generalized Gibbs Ensemble.
In our investigations, we have obtained space-time multi-point correlations and have
observed power-law relaxation towards the Non Equilibrium Steady State. Further-
more, we have compared our findings with Conformal Field Theory. In the presence
of bound states of the defect, we have characterized persistent oscillations at large
timescales. Interestingly, we have also uncovered non-local correlations between dis-
tant points located symmetrically across the defect. These correlations fall beyond
the scope of the current Generalized Hydrodynamics (GHD) theory in the presence
of a defect. Therefore, we have proposed a potential extension or an alternative Euler
scaling limit to describe the propagation of these correlations. In this extension, the
gas is described by the usual root density from GHD along with an additional field.
These two objects are coupled only in the vicinity of the defect, while they propagate
freely elsewhere. This raises several intriguing questions. On the theoretical front, it
is not clear how to prove the evolution of the two fields. It can also be asked, how does
the additional field behave in the presence of multiple far away defects. Additionally,
one may wonder how this generalization applies to interacting integrable gas. Indeed,
while it is expected that the root density will evolve according to the GHD equations
away from the defect, the behavior of the additional field remains uncertain. Simi-
lar questions arise regarding the interpretation of this field in terms of the so-called
"quasi-particle". Finally, the alternative Euler scaling limit can be used to investigate
correlations between particles that spread out from the defect with different momenta,
rather than just opposing momenta. This could potentially prove useful for studying
defects that are more sophisticated than those considered in this thesis.
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Appendix A

A trick for Sum with Poles on a
Lattice.

The goal of this appendix is to explain clearly and in a full general form the trick used
to prove the relaxation to the NESS in Sections 2.4.3 and 2.6.3.

Typically, we will want to compute the thermodynamic limit followed by the large
time limit of sums defined as (for example D(x, x′, t) in (2.146))

Sk =
∑
k′∈Λ′

1

ℓ

F (k, k′)

k − k′
e−i k

′2
2

t, (A.1)

where F (k, k′) is a continuous function. The sum is performed over the lattice Λ′

defined by

Λ′ = {k′ ∈ R|e2ik′( ℓ
2
−δ′

k′ ) + 1 = 0, k′ > 0}, (A.2)

with k′δ′k′ typically a continuous function of k′. Similarly, k belongs to a lattice Λ
defined as

Λ = {k ∈ R|e2ik( ℓ
2
−δk) + 1 = 0, k′ > 0}. (A.3)

δ and δ′ are two different functions such that, both lattices have no common elements,
ensuring that there is no division by zero. The role of the function kδk and k′δ′k′
will latter be related to the transmission and reflection coefficient of the scattering
potential. Latter we might be interested in double or triple sums running over both
lattices Λ and Λ′ such as ∑

k∈Λ,k′∈Λ′

1

ℓ2
F (k, k′)

k − k′
e−i k

′2−k2

2
t, (A.4)

But most of the main ingredient can be understood by examining only the original
sum (A.1), the main point is that it contains a pole such that, one cannot replace (in
the limit ℓ→ ∞) the discrete sum over k′ ∈ Λ′ by an integral. Instead we introduce a
contour integral method which is a generalisation of the one used in [143] which allows
us to take this limit. To be precise, the method used in [143] would allow to compute
the sum (A.4) only if at least one of the two lattices Λ and Λ′ was the periodic lattice
{2πn

ℓ , n ∈ N∗}.
Now we will write the sum over k′ as a contour integral in the complex plane for

k′. With this goal in mind we introduce the function

gδ′,ℓ(k
′) =

−1

e−ik′(ℓ−2δ′
k′ ) + 1

, (A.5)
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Im(k')

Re(k')

Im(k')

Re(k')

k k

Γ-

Γ+Γ0

Figure A.1: Illustration of the contour Γ0 in the complex k′

plane, and its deformation into the union of three different con-
tours, i.e., Γ+, Γ− and the small counter-clockwise red circle

around k′ = k.

The Eq. (A.2) implies that gδ′,ℓ(k′) has poles on each element k′ of the lattice Λ′ with
residue

− 1

∂k′e−ik′(ℓ−2δ′
k′ )

=
1

(iℓ− 2∂k′(k′δ′k′))e
−ik′(ℓ−2δ′

k′ )
= − 1

iℓ− 2i∂k′(k′δ′k′)
= − 1

iℓ
(1 +O(1/ℓ)),

(A.6)
This allow us to write the discrete sum in the expression (A.1) as an integral over a
contour Γ0 equal to the union of small clockwise circular contours around each element
of Λ′ as shown in Fig. A.1

1

ℓ

∑
k′∈Λ′

· · · =
ˆ
Γ0

dk′

2π
gδ′,ℓ(k

′) . . . (A.7)

leading to

Sk =

ˆ
Γ0

dk′

2π
gδ′,ℓ(k

′)
F (k, k′)

k − k′
e−i k

′2
2

t. (A.8)

Assuming that the integrand has a singularity only at k′ = k (within a strip around
the positive real axis) we can now deform this contour into the union of a larger
contour Γ = Γ− ∪ Γ+ (see Fig. A.1)that encloses all the previous ones, and of a tiny
contour around k. Computing the residue associated to this pole at k′ = k we obtain

Sk = −igδ±,ℓ(k)F (k, k)e
−i k

2

2
t +

´
Γ−∪Γ+

dk′

2π gδ′,ℓ(k
′)F (k,k′)

k−k′ e
−i k

′2
2

t. (A.9)

Using the quantification condition for k ∈ Λ from Eq. (A.3) we can eliminate ℓ and
obtain

−2igδ′,ℓ(k) =
eik(δk−δ′k)

sin(k(δk − δ′k))
= (cot(k(δk − δ′k)) + i), (A.10)

such that

Sk =
eik(δk−δ′k)

sin(k(δk − δ′k))

F (k, k)

2
e−i k

2

2
t +

ˆ
Γ−∪Γ+

dk′

2π
gδ′,ℓ(k

′)
F (k, k′)

k − k′
e−i k

′2
2

t. (A.11)

Under this form, we can now take the large ℓ→ +∞ limit. The limiting value of the
function gδ±,ℓ(k

′) for k′ ∈ Γ− ∪ Γ+ is (for Im(k′) ̸= 0)

gδ′,ℓ(k
′) →

ℓ→∞

{
0 if k′ ∈ Γ+

−1 if k′ ∈ Γ−
. (A.12)
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As a consequence, we are left with the residue part and the Γ− integral part only

lim
ℓ→∞

Sk =
eik(δ

R/L
k −δ±k )

sin(k(δk − δ′k))

F (k, k)

2
e−i k

2

2
t −

ˆ
Γ−

dk′

2π

F (k, k′)

k − k′
e−i k

′2
2

t, (A.13)

while the Γ+ integral part gives information on the finite size corrections (see Fig.
A.1). Now we want to take the large time limit. The idea is that only the residue
part will remain at large time, while the Γ− integral gives information about finite
time corrections. Indeed if we write k′ = k′1 + ik′2, with k′2 ≤ 0 on Γ−, then

e−i k
′2
2

t = e−i
k′21 −k′2

2
tek

′
1k

′
2t →

t→∞
0. (A.14)

Here we would like to conclude that the integral in (A.13) decays to zero in the
large time limit lim

t→∞
because the integrand of this same integral does decay to zero

(A.14) on the contour Γ−. However, we stress that this is not a sufficient information
to conclude to the decay of the integral in (A.13). In fact when we will compute
exactly double or triple sum like (A.4), the contour integral in (A.11) will turn in
double or triple integral with singularities. Then, one needs to to carefully checke the
decay of the integrals to zero using dominated convergence theorem. Note that the
decay is dominated by the vertical part of Γ+ and Γ−, in the vicinity of k = 0. As
a conclusion, in the double limit lim

t→∞
lim
ℓ→∞

only the residue part of (A.13) remains,

while the integral part of (A.13) encodes the large time decay.
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Appendix B

Convergence of B and D to the
NESS

Here we present the exact decay of the kernel (2.104) to the NESS kernel (2.120) in
the double limit ℓ → ∞, t → ∞ starting from a quench with a delta Dirac impurity.
Although most of the details presented here was present in the supplementary mate-
rials of our paper [2], we give here some slight modifications that allows for a better
understanding of the existence of a limit for the kernel large time t.
The term D(x, x′, t): From (2.143) the term D is given by a double sum

D = D(x, x′, t) =
4

ℓ2

∑
kb∈Λ+

kR∑
k∈Λ−,k=k+L

hx,x′,t(k, kb)

k − kb
, (B.1)

with kL = 2πNL/ℓ, k+L = 2π(NL + 1)/ℓ and kR = 2πNR/ℓ and we recall that the
lattices Λ− and Λ+ are defined in Eqs. (2.132) and (2.135) respectively. We have also
defined the function 1

hx,x′,t(k, kb) =
ϕ∞−,k(x

′)ϕ∞+,kb
(x)√

g2 + k2b

kkb
k + kb

e−
i
2
(k2−k2b )t , (B.2)

where ϕ∞±,k(x) is defined in (2.121). Taking the limit ℓ → ∞ of (B.1) to obtain a
double integral is very delicate due to the presence in the sum of a pole 1

k−kb
and the

fact that the two lattices Λ− and Λ+ are intertwined (see Fig. 2.9). Let us first state
the result and give its derivation below. One finds

lim
ℓ→∞

D(x, x′, t) =

ˆ +∞

0

dkb
π

[ˆ
γc

dk

π

hx,x′,t(k, kb)

k − kb

]
+

ˆ kR

kL

dkb
π

(
−i+ g

kb

)
hx,x′,t(kb, kb) . (B.3)

The first line of (B.3) is an integral over a contour that we denote γc consisting in
straight lines in the complex k-plane, forming a half-rectangle as represented in Fig.
B.1. Its value does not depend on the parameter ϵ > 0 since hx,x′,t(k, kb) as a function
of k does not have poles in the strip [kL, kR] − iR+. In addition to the derivation
given below we have carefully checked numerically this formula (B.3) for a variety of
function h which share the same properties.

1Since we are eventually interested in the large ℓ limit we omitted in (B.2) the unimportant
extra factor 2g/ℓ in the denominator in (2.143), which should be restored to obtain finite ℓ
formula.
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Im(k)

Re(k)kL kR

-

Figure B.1: Illustration of the contour γc over which the inte-
gral over k in the first line of (B.3) is performed.

Let us now give the derivation of this result in Eq. (B.3). This is done using
the method introduced above (A), which reduces here to a simpler case. First, we
notice that Λ− = Λ′ through (A.2) if we set e−2ikδ′k = e−2ikδ−k = −1, this does define
the periodic lattice Λ−. Similarly, Λ+ can be defined as Λ through (A.3) by setting
e−2ikδk = e−2ikδ+k = k−ig

k+ig , yielding a non periodic lattice Λ+. Because the lattice
Λ′ = Λ− is periodic, the function gδ−,ℓ(k

′) of (A.5) has the simple expression

gδ−,ℓ(k
′) =

1

e−ik′ℓ − 1
. (B.4)

Now we can replace the discrete sum over k in (B.1) by a contour integral as follows

D(x, x′, t) =
4

ℓ2

∑
kb∈Λ+

ˆ
Γ0

dk

2π

ℓ

eiℓk − 1

hx,x′,t(k, kb)

k − kb
, (B.5)

where the contour Γ0 is a union of very small circles centered around the points k = 2πn
ℓ

with NL + 1 ≤ n ≤ NR and oriented clockwise (see Fig. 2.10). The circles should be
small enough so that the contour does not enclose any point k = kb ∈ Λ+. We now
deform the contour Γ0 into the closed clockwise contour γδ which is the rectangle with
the four corners k+L − 2πδ

ℓ − iϵ, k+L − 2πδ
ℓ + iϵ, kR+ 2πδ

ℓ + iϵ, kR+ 2πδ
ℓ − iϵ, represented in

Fig. 2.10. The parameter 0 < δ < 1 is chosen small enough so that the contour does
not contain any point kb of Λ+ located to the left of k+L and to the right of kR. During
this deformation one encounters only the poles at k = kb ∈ Λ+∩]k+L , kR[. Taking into
account the residues associated to these poles one obtains

D(x, x′, t) =
4

ℓ2

( ∑
kb∈Λ+

˛
γδ

dk

2π

ℓ

e−iℓk − 1

hx,x′,t(k, kb)

k − kb

+ 2πi
∑

kb∈Λ+∩]k+L ,kR[

ℓ

2π

1

e−iℓkb − 1
hx,x′,t(kb, kb)

)
. (B.6)

Until now this is an exact rewriting of D(x, x′, t) in Eq. (B.1) valid for any ℓ.
For any kb ∈ Λ+, using the second relation in (2.134), or equivalently using the result
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(A.10), one can evaluate the factor

1

e−iℓkb − 1
= −1

2
− i

2

g

kb
. (B.7)

We now take the large ℓ limit on Eq. (B.6). The factor 1
e−iℓk−1

→ 0 for Im k > 0

and 1
eiℓk−1

→ −1 for Im k < 0. Hence the k integral in (B.6) over the clockwise
closed contour γδ becomes the k integral over the clockwise half-rectangle in (B.3). In
addition the sum over kb becomes an integral in the large ℓ limit. This leads to the
result (B.3).

The term B(x, x′, t): We now give the large ℓ limit of BL(x, x
′) and BR(x, x

′) defined
in (2.143). Each term can be decomposed as the sum of two terms

BR/L(x, x
′, t) = Boff-diag

R/L (x, x′, t) +Bdiag
R/L(x, x

′) (B.8)

where the first term comes from the terms ka ̸= kb in the triple sum in (2.143), while
the second one comes from the terms ka = kb and does not depend on time. We
obtain the first term in (B.8) as

Boff-diag
R (x, x′, t) =

ˆ ∞

0

ˆ ∞

0

dka
π

dkb
π
Fx,x′(ka, kb)e

1
2
i(k2a−k2b )t (B.9)

×
[
1

2π

(
kb log(

kb+kR
|kb−kR|)− ka log(

ka+kR
|ka−kR|)

k2a − k2b
) +

g

2(k2a − k2b )
(Θ(kR − ka)−Θ(kR − kb))

)]
,

where we have defined the function

Fx,x′(ka, kb) = 2
ϕ∞+,ka

(x)√
g2 + k2a

ϕ∞+,kb
(x′)√

g2 + k2b

kakb (B.10)

where the ϕ∞+,k(x) are defined in (2.121). The second term in (B.8) is obtained in the
large ℓ limit as

Bdiag
R (x, x′) =

ˆ kR

0

dka
2π

Fx,x′(ka, ka)
(g2 + k2a)

2k2a
. (B.11)

The terms Boff-diag
L (x, x′, t) and Bdiag

L (x, x′) are simply obtained from Boff-diag
R (x, x′, t)

and Bdiag
R (x, x′) by substituting kR → kL in Eqs. (B.9) and (B.12) leading for the

diagonal part to

Bdiag
R/L(x, x

′) =

ˆ kR/L

0

dk

2π
ϕ∞+,k(x)ϕ

∞
+,k(x

′) . (B.12)

Let us gives a summary of the proof of Eqs. (B.9), and (B.12). This can be
achieved in two ways that are useful for different reasons.

1. First, BR/L(x, x
′, t) in (2.143) is split into a diagonal Bdiag

R/L(x, x
′) and an off-

diagonal Boff-diag
R/L (x, x′, t) part. For the off-diagonal part, one uses the method

A on the sum
∑

k∈Λ−,k≤kR/L

that has two single poles, one at k = ka and one at

k = kb, this yields (B.9). For the diagonal part, since ka = kb, we now have
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a pole of order two at k = ka = kb, requiring a generalization of the method.
This yields an integral part that decays in the thermodynamic limit, along with
a residue part which is (B.12).

2. Starting from BR/L(x, x
′, t) in (2.143), instead of using the method (A) on the

sum
∑

k∈Λ−,k≤kR/L

, one could apply this method twice, first to the sum
∑

ka∈Λ+

, and

then to the sum
∑

kb∈Λ+

. This would result in the sum of four terms. One term is

time independent and is equals Bdiag
R/L(x, x

′, t). This means that the three other

terms yields a new expression of Boff-diag
R/L (x, x′). The difference is that they all

contain at least one integral in the complex plane together with exponential
factors decaying in the large time limit (Note that in (B.9) the exponential
factors oscillate without decay). It is worth noting that this approach yields
the desired result without requiring any generalization of an order two pole of
the method from Appendix A.

Large Time Limit: Stationary state at fixed position x. In the previous
section we have obtained the expression of the kernel in the thermodynamic limit
limℓ→+∞K(x, x′, t) in (2.144) together with (B.8), as a sum of several terms. Now we
can take the limit t → +∞ of each term in this expression for fixed positions x and
x′ to obtain

K∞(x, x′) = lim
t→+∞

lim
ℓ→+∞

K(x, x′, t) . (B.13)

• In (2.144) and (B.8) the terms AR/L(x, x
′) and Bdiag

R/L(x, x
′) are independent of

time.

• The term D(x, x′, t) goes to a finite limit D∞(x, x′) where only the last term
in (B.3) (coming from the residues) survives at large time. Indeed, as already

mentioned, the first integral of Eq. (B.3) contains a term e−i k
2

2
t. As k ∈ γc,

one can write k = k1 + ik2 with k1 > 0 and k2 < 0, which yields e−i k
2

2
t =

e−i
k21−k22

2
tek1k2t, and thus the integrand decays in large time. Using this fact,

together with the dominated convergence theorem, it can be shown that the
integral decays to zero in the large time limit. The decay is found to follow a
power law with oscillations, which is discussed in Section 2.4.5. From the last
term in (B.3) we obtain

D∞(x, x′) =
1

2

ˆ kR

kL

dk

π
(g − ik)

ϕ∞−,k(x
′)ϕ∞+,k(x)√
g2 + k2

. (B.14)

• Finally, it is possible to show that Boff−diag
R/L (x, x′, t) decays to zero. This is hard

to see on the expression (B.9) obtained from (1), although one could guess that
the oscillations coming from the exponential factors are the cause of the decay.
A proper proof is obtained in a similar fashion to the decay of D(x, x′, t) using
the decaying exponential factors obtained from the second path (2). However,
the expression (B.9) obtained from the first path (1) is more convenient when
it comes to showing that the decay of Boff−diag

R/L (x, x′, t) follows a power law (see
Section 2.4.5).

Putting all terms together we find the result for K∞(x, x′) given in Eq. (2.120).
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Appendix C

Some examples of impurity
potentials and their scattering
coefficients

Here we just list few examples of potentials for which the scattering coefficients are
known

The delta barrier. In the case V (x) = gδ(x) one has

t(k) =
k

k + ig
, r(k) =

−ig
k + ig

(C.1)

The double delta barrier. In the case V (x) = g(δ(x−a
2 )+δ(x+

a
2 )) [doubledelta]

one has

t(k) = k2

g2(e2ika−1)+k2+2ikg
, r(k) = −ig eika(k−ig)+e−ika(k+ig)

g2(e2ika−1)+k2+2ikg
(C.2)

Note that r(0) = −1 unless ag = −1 in which case r(0) = 0, and t(0) = −1.
The square barrier potential. In the case V (x) = V0θ(|x| < a/2), i.e., a

square barrier of length a and height V0 (which can be negative if the potential is an
attractive well) with k1 =

√
k2 − 2V0), one has [195]

t(k) = e−iak

cos(k1a)−i
k21+k2

2kk1
sin(k1a)

, r(k) =
ie−ika(k21−k2) sin(ak1)

2kk1 cos(ak1)−i(k2+k21) sin(ak1)
(C.3)

Note that r(0) = −1 unless sin(ak1) = 0.

The delta derivative barrier. From [208] for the more general potential with
no symmetry, V (x) = g1δ(x) + g2δ

′(x), one has

t(k) =
1− g22

1 + g22 + ig1k
, rR(k) =

g2 − ig1k
1 + g22 + ig1k

, rL(k) =
−g2 − ig1k
1 + g22 + ig1k

(C.4)

If g1 = 0, this is an example of a defect such that the scattering coefficients are
independent on k. Defects with that property have been studied in the context of
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conformal defects. Additionally we have r(0) ̸= −1.

Impurities in series. It is useful to consider the transfer matrix M, which reads(
C
D

)
= M

(
A
B

)
, M =

(
tL − rLrR

tR
rR
tR

− rL
tR

1
tR

)
(C.5)

Consider now two distinct symmetric impurities, the first one at x = 0, the second at
x = a. The total transfer matrix is

M =

(
t2 − r22

t2
r2
t2

− r2
t2

1
t2

)(
eika 0
0 e−ika

)(
t1 − r21

t1
r1
t1

− r1
t1

1
t1

)
(C.6)

which leads to the scattering coefficients of the combined system

tR = tL = t1t2eiak

1−r1r2e2iak
, rR =

r2−r1e2iak(r22−t22)
1−r1r2e2iak

, rL =
r1−r2e2iak(r21−t21)

1−r1r2e2iak
(C.7)

The most general case is

tR = eiaktR1tR2
1−e2iakrL2rR1

, rR = rR2 +
e2iaktL2rR1tR2
1−e2iakrL2rR1

, (C.8)

rL = rL1 +
e2iaktL1rL2tR1
1−e2iakrL2rR1

, tL = eiaktL1tL2
1−e2iakrL2rR1

Hence if tR1 = tL1 and tR2 = tL2 from time invariance, one has also tR = tL as
expected.

Remark. If one translates both impurities by δ the scattering matrix is multiplied
by e2ikδ. This allows to check the case of two delta impurities given above.
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Appendix D

Short time propagator expansion

Here we give some details on the short time propagator expansion presented in the
appendix of [199]. We carefully restore the ℏ factors in order to perform the small ℏ
analysis.

General smooth potential. We consider the Wigner function written as (3.15)
at a point near the Fermi surf (x, p) ≃ (xe, pe). The small time expansion of Eq.
(3.15) is valid if the arguments of V in Eq. (3.13) are small compared to x ≃ xe. In
other words, we require that the following conditions hold:{

pet
mxe

≪ 1,
ℏt

mx2
e
≪ 1.

(D.1)

Considering the Brownian bridge, the expansion to order 3 results in

S(x, p) ≃ − t
2

m
(
1

24
+

1

12
)V ′′(xe) +

t3

24mℏ
(V ′(xe))

2

− t3

m2
[− 1

24ℏ
p2eV

′′(xe) + ℏ(
1

640
+

1

480
+

1

240
)V ′′′′(xe)] +O(t4). (D.2)

because we want to recover the Airy function, we want the second order to be
negligible. Let us assume that, in the end, the only remaining term is

S(x, p) ≃ t3

24mℏ
(
p2e
m
V ′′(xe) + V ′(xe)

2). (D.3)

Then we can make the change of variable t = 22/3ℏτ/eN in the integral (3.15), with

eN = ℏ/tN =
ℏ2/3

(2m)1/3
(
p2e
m
V ′′(xe) + V ′(xe)

2)1/3, (D.4)

and the Airy scaling emerges (see Eq. (3.17)). If we assume that the integral is
dominated by t ∼ tN , we obtain the condition for neglecting the discarded terms in
(D.2) as

t2

m
V ′′(xe) ≃

t2NV (xe)

mx2e
≪ 1, (D.5)

ℏV ′′′′(xe) ≪
1

ℏ
p2eV

′′(xe) +
m

ℏ
V ′(xe)

2 ≃ t−3
N . (D.6)

Hence, the Airy sclaing is valid if the conditions (D.1) and (D.5) are satisfied.
Conditions for the inverse power law potential. Now we apply the short

time expansion to the special case of the inverse power law potential. This is done by
checking in which regime (D.1) and (D.5) are satisfied.
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For the part of the Fermi surf near the edge of the gas (see Fig. 3.3) we parametrize
the Fermi surf as

xe = xxedge (D.7)

pe =
√
2µ(1− x−γ), (D.8)

where we recall that xedge = ( cµ)
1/γ . With this scaling, the conditions (D.1), and

(D.5) lead to

petN
xe

≃ (
√
ωxγ−1)1/3 ≪ 1, (D.9)

ℏtN
x2e

≃ (ω2xγ−4)1/3 ≪ 1,

t2NV
′′(xe) ≃

( ω

xγ+2

)1/3
≪ 1,

ℏV ′′′′(xe)t
3
N ≃ ω

x2
≪ 1,

where ω = ℏ2

µ
2−γ
γ c

2
γ

such that near the gas edge (that is x of order one), the expansion

of Eq. (3.15) and hence the Airy scaling is valid if the single condition

ω =
ℏ2

µ
2−γ
γ c

2
γ

≪ 1 (D.10)

is satisfied, which yields (3.24). The main commentary to do here is that we need
either ℏ to be small or, if γ > 2, we need µ to be large.

Now, we examine the part of the Fermi surf, away from the edge of the gas (see
Fig. 3.3), that is for p ∼ √

mµ and xe as large as we want. First taking x → ∞ in
(D.9) we see that the third and fourth line of (D.9) which corresponds to (D.5) are
always satisfied. Therefore, we can focus on the two first line of (D.9), that is on
(D.1). This yields

petN
xe

≃
(
ℏµ1/2xγ−1

e

c

)1/3

≪ 1 (D.11)

ℏtN
x2e

≃
(
ℏ4xγ−4

e

cµ

)1/3

≪ 1

Because the first condition is more restrictive than the second one, in the limits of
interest (ℏ → 0 or µ→ ∞ with xe large), the Airy scaling is correct only if the second
condition is satisfied

ℏ√µxγ−1
e

c
≪ 1 , (D.12)

which is (3.26). The conclusion is that µ → ∞ cannot satisfy the required condition
for the emergence of the Airy scaling (3.5). However, this is possible at small ℏ, if
γ < 1 on the complete Fermi surf, and if γ > 1 only for xe < ℏ1/(1−γ).
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ABSTRACT 

This thesis explores the study of noninteracting fermion gases. Due to their nature, these gases allow us to 
obtain many analytical results that remain inaccessible in the case of interacting systems, while accounting 
for many non-trivial physical effects. Being subject to the Pauli principle, many relations exist between 
fermions at equilibrium and random matrix theory. In this thesis, we examine if these relations are 
preserved and, if so, how they manifest in other contexts. Hence, we study the statistical properties of 
fermion gases in higher dimensions, which is the focus of chapter one, as well as their behaviour when 
driven out-of-equilibrium, explored in chapters two and three. 
In the second chapter, we investigate the effect of an impurity on the out-of-equilibrium dynamics of 
fermions, particularly observing the emergence of non-local correlations. After introducing the 
hydrodynamic theory for integrable systems, it appears that this theory cannot predict the aforementioned 
non-local correlations. Therefore, we propose a quantum extension of the hydrodynamic theory.  
In the third chapter, we observe the emergence of Airy statistics at the edge of a quantum propagating front 
for free fermions in the continuum.  
Beyond the results presented in this thesis, this manuscript examines new perspectives on those 
interconnected fields of research. 

MOTS CLÉS 

 
Dynamique hors équilibre, matrices aléatoires, hydrodynamique généralisée, fermions 
sans interaction, systèmes inhomogènes. 

RÉSUMÉ 

Cette thèse de doctorat porte sur l'étude de gaz de fermions sans interaction. En raison de leur nature, ces 
gaz permettent d'obtenir de nombreux résultats analytiques qui restent inaccessibles en présence 
d'interactions tout en rendant compte d'effets physiques non triviaux. Étant soumis au principe de Pauli, de 
nombreuses relations existent entre les fermions à l'équilibre et la théorie des matrices aléatoires. Dans cette 
thèse, nous examinons si ces liens sont préservés et comment ils se traduisent dans d'autres contextes. 
Ainsi, nous étudions les propriétés statistiques de ces gaz dans un espace de dimension quelconque, ce qui 
est l'objet du chapitre un, ou lorsque ces gaz ne sont pas à l'équilibre, ce qui est l'objet des chapitres deux et 
trois. 
Dans le chapitre deux, nous discutons de l'effet d'une impureté sur la dynamique hors équilibre, en 
particulier, nous observons l'émergence de corrélations non locales. Dans ce contexte, après avoir introduit 
la théorie hydrodynamique pour les systèmes intégrables, nous constatons que celle-ci ne permet pas 
d'expliquer les corrélations non-locales observées. Pour pallier à cela, nous envisageons une extension 
quantique de cette théorie. 
Dans le chapitre trois, nous observons l'émergence de statistiques d'Airy au bord d'une vague de fermions 
dans le continu.  
Au-delà des résultats obtenus lors du doctorat, ce manuscrit est l'occasion de présenter de nouvelles 
perspectives de recherche sur ces sujets interconnectés. 
 

KEYWORDS 

 
Out-of-equilibrium dynamics, random matrix theory, generalised hydrodynamics, 
noninteracting fermions, inhomogeneous systems. 
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