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INTRODUCTION

Motivation

As sensors and data storage capacities become increasingly affordable, the amount

of data generated each year continues to grow at an unprecedented rate. This profu-

sion of data presents a unique opportunity to gain a deeper understanding of our

world. In particular, the repeated collection of data over a same object or system

offers invaluable insights into its dynamics. From industrial systems to biological

ecosystems, these systems often exhibit intricate behavior and remain only partially

understood. Observational data over time is a valuable resource to extract meaning-

ful patterns and derive global behavior models of these systems.

To illustrate this motivation, let’s consider a production line in a factory. Industrial

processes often involve both human operators and machines, each having their own

dynamics while interacting with each other. Despite having documentation for the

machines and operator task procedures, obtaining a precise, global view of the com-

plex system’s functioning is often challenging. The automatic inference of behavior

models from observational data offers the possibility to get a non-biased and com-

prehensive understanding of such system. These models should precisely capture

timing constraints that impact the dynamical behavior and enable to depict the in-

teractions between different entities. Beyond their informative purpose, these mod-

els should enable system control and monitoring. Moreover, such models and their

inference process should be interpretable by a human to ensure the user’s trust.

The research problem addressed in this thesis is the automatic inference of sys-

tem behavior models from times series data. The requirements for precise timing

consideration, interpretability, versatility, and interactions support led us to select

the formalism of Timed Automata (TAs) introduced by Alur and Dill (1994). TAs are

state-based machines that incorporate discrete semantics along with a quantitative

consideration of time.

To introduce TAs, let’s consider a lamp that has two light intensity levels, con-

trolled via a switch. This lamp has three states: off, on with normal intensity, and

1
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on with bright intensity. Its state changes with the occurrence of an event: a switch

press. If the lamp is off, a press will switch it on with a normal intensity. To obtain a

bright light, the switch must be pressed again quickly (within 2 seconds) after the ini-

tial press. Otherwise, the lamp will simply switch off. Figure 1 displays a TA modeling

OFF light bright

press
c := 0

press
c ∈ [0, 2]

press
c ∈ [3,+∞]

press

Figure 1 – TA modeling a lamp with variable light intensity.

the functioning of this lamp. The TA states correspond to the states of the lamp (OFF,

light, bright), and the possible state changes are represented by transitions labeled

with the event that triggers them (press). Additionally, these transitions are labeled

with timing constraints using temporal variables called clocks (c), constraining the

state changes based on time. For example, the two switch presses must occur within

two seconds to get a bright light, indicated by the value of clock c being set to 0 at the

first press (c := 0) and determining the next transition (c ∈ [0, 2] or c ∈ [3,+∞]).

In the last decade, learning TAs from event sequences have been an active field of

research, leading to several algorithms capable of producing TAs given discrete ob-

servational data (Verwer, Weerdt, and Witteveen 2010; Verwer, Weerdt, and Witteveen

2012; Pastore, Micucci, and Mariani 2017; Tappler et al. 2019). Furthermore, the high

expressiveness of TA formalism has led to the development of various tools for mon-

itoring and verifying their properties.

Another advantage of TAs is the possibility of considering multiple TAs simultane-

ously, said to be in interaction, and synchronizing their transitions via shared events.

Let’s imagine a road junction two traffic lights, one for the vehicles and the second for

the pedestrians. The vehicle traffic light can be green, orange, or red, indicating that

the road users can cross the intersection, that they should proceed with caution, or

that they must stop, respectively. The pedestrian traffic light can be green or red, indi-

cating whether it is safe or not for the pedestrians to cross the road. The traffic lights

are synchronized, ensuring that both lights are not green simultaneously. Pedestri-

ans can also request a green light by pressing a button (if at least some time have

elapsed since the last color change). Figure 2 displays two interacting automata, each

one modeling one of the traffic lights. The transition from green to red for the vehicle

2
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Gcar

Ocar

Rcar

c = 90request
c > 30

change
c = 10

change
c := 0

(a) Vehicles.

Rped.

Gped.

change
c := 0

change
c = 30

(b) Pedestrian.

Figure 2 – Two interacting TAs modeling the functioning of the car and pedestrian
traffic lights at a junction.

traffic light can either be triggered by the “request” event, or because the maximal

delay is reached. Then, the shared event “change” will synchronize the color changes

of the traffic lights, ensuring both are never green at the same time.

Challenges

The automatic inference of TAs from observational data faces several challenges.

Learning Timed Automaton from discrete observational data

Automatically inferring a system’s behavior model in the form of a TA solely from

observational data is not a straightforward task. If the resulting model adheres too

closely to the data, the training data must be exhaustive, otherwise any new — yet

similar — data will be inconsistent with the model. In practice, it is rare to have ex-

haustive training data, and it is impossible to assess anyway. On the other hand, if

the model generalizes too much from the observations, it may lack power to predict

future behavior or to check new observations. Thus, achieving a good balance be-

tween generalization and precision poses a significant challenge in TA learning. Ad-

ditionally, identifying complex timing constraints based on multiple clocks remains

an open question.

3
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Time series discretization for Discrete Event System learning

TAs are well-suited for modeling Discrete Event System (DES), where state changes

are caused by event occurrences, such as the lamp with variable light intensity. How-

ever, observational data may take the form of numerical time series, especially when

events are not explicitly known, and systems are observed via sensors. In such cases,

an additional step is required to identify events in the numerical data, a task referred

to as time series discretization (Figure 3). The choice of the discretization method, for

0 5 10 15 20 25
0

1

2

3

4

5

Low (L)

Medium (M)

High (H)

MHHHHHMML L LMMMMMMHHHHHHHHMML L

(a)

M

H

L

High
c ∈ [1, 6]
c := 0

Medium
c ∈ [5, 8]
c := 0

Low
c ∈ [2, 2]
c := 0

Medium
c ∈ [3, 3]
c := 0

(b)

Figure 3 – From a time series to a Timed Automaton. Here, the time series is dis-
cretized by binning its value range. The resulting discrete values (Low (L), Medium
(M) and High (H)) are interpreted as events for the TA learning.

instance SAX (Lin et al. 2003) or Persist (Mörchen and Ultsch 2005), can strongly im-

pact the resulting discrete event sequences and, subsequently, the learned TA. Hence,

accurately discretizing time series is a crucial challenge to enable successful TA learn-

ing.

Interacting Timed Automata learning

While an algorithm has been proposed to simultaneously learn interacting TAs

given interaction sequences (Vain, Kanter, and Anier 2019), learning interacting TAs

from event sequences without knowing the interactions remains an underexplored

area. When there are no shared events in the event sequences, it has been proposed

to independently learn TAs from event sequences recorded at the same time and

to synchronize the TAs using shared clocks (Vain, Miyawaki, et al. 2009). Learning

4
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interacting TAs from time series is even less explored. One work has been done to

model biological regulatory networks (Ben Abdallah et al. 2017). Starting from pre-

discretized multivariate time series and a priori knowledge of which components in-

teract, they were able to learn small TAs whose transitions are conditioned by the

others. The time series were pre-processed because an inadequate discretization can

hide the synchronizations. Thus, the final challenge is to learn interacting TAs from

time series without further knowledge.

Contributions and publications

To address these challenges, this thesis makes four contributions to the fields of

Discrete Event System (DES) modeling, TA learning, time series discretization, and

anomaly detection:

1. A novel algorithm for learning TAs from timed event sequences;

2. The first time series discretization method designed for Discrete Event System

(DES) models learning;

3. A time series anomaly detection approach based on ensembles of TAs;

4. The first synchronization-preserving discretization algorithm for multivariate

time series, allowing learning interacting TAs from time series.

We now describe each contribution in more detail.

First contribution. The first contribution of this thesis extends the state of the

art in TA learning. We propose a new algorithm, called TAG, to learn TAs from timed

event sequences corresponding to executions of the system. The learned automaton

has a single clock and the state change transitions are deterministic given an event

sequence. Experiments shows that TAG achieves a better balance between general-

ization and precision than the state-of-the-art algorithms. This work has been the

subject of two publications in international conferences:

— Lénaïg Cornanguer (May 2021), « Passive learning of Timed Automata from logs

(Student Abstract) », in: Proceedings of the AAAI Conference on Artificial Intel-

ligence 35.18, Section: AAAI Student Abstract and Poster Program, pp. 15773–

15774

5
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— Lénaïg Cornanguer, Christine Largouët, Laurence Rozé, and Alexandre Termier

(June 2022), « TAG: Learning Timed Automata from Logs », in: Proceedings of the

AAAI Conference on Artificial Intelligence 36.4, pp. 3949–3958, ISSN: 2374-3468,

2159-5399, DOI: 10.1609/aaai.v36i4.20311

It has also been presented during two invited talks in the following workshops and

seminars:

— SUPSEC Workshop Fall 2022: AI for supervision (September 2022, Rennes).

— IRIF Verification Seminar (March 2023, Paris).

Second and third contributions. The second contribution is in two parts, it is

dedicated to the identifications of what makes a good discretization to learn TAs.

First, we studied an existing time series discretization method called Persist (Mörchen

and Ultsch 2005), which had a property that interested us. We modified it to make it

more suited to produce discrete event sequences relevant for TA learning. This work

was presented in a workshop:

— Lénaïg Cornanguer, Christine Largouët, Laurence Rozé, and Alexandre Termier

(Feb. 2023), « Persistence-Based Discretization for Learning Discrete Event Sys-

tems from Time Series », in: MLmDS 2023 - AAAI Workshop When Machine Learn-

ing meets Dynamical Systems: Theory and Applications, Washington (DC), United

States, pp. 1–6

Then, we identified other criteria and combined them all in a new discretization

method, specifically designed for TA learning called MOODES. This method, which

is the third contribution, has the particularity to produce multiple discrete event se-

quences for a same time series. We exploited this particularity to learn ensembles of

TAs and to perform explainable and online anomaly detection in time series. A pa-

per gathering MOODES and the anomaly detection approach is in submission for an

international publication.

Fourth contribution. The last contribution is an ongoing work. In this work, we

address the problem of learning interacting TAs from time series. The difficulty lies

not only in identifying events in time series, but also in identifying synchronization

events across multiple variables. We propose a new discretization algorithm for mul-

tivariate time series that aims to identify and preserve the synchronizations across

6
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variables, if any. The resulting event sequences can be used to learn interacting TAs

with a classical TA learner. A paper is in preparation.

Thesis outline

This thesis is divided into two parts. Part I lays the foundation of TA learning for

DES modeling. Observational data of such systems typically consist of discrete event

sequences.

Chapter 1. This chapter details the background on the representation of a sys-

tem using the Discrete Event System subclass. Then, we focus on TA, the formalism

chosen in this thesis. Finally, we present the state of the art in TA learning, especially

in passive setting, i.e., from historical data and without interaction with the system.

Chapter 2. In this chapter, we introduce Timed Automata Generator (TAG), a

novel algorithm for passively learning TAs from timed event sequences. It is exten-

sively evaluated on synthetic data, along with a comparison to state-of-the-art algo-

rithms. An additional experiment on television program logs concludes the chapter

and illustrates the interpretability of the learned models.

In Part II, we move from discrete event sequences to time series. In order to bridge

the gap between the numerical data and the discrete semantics of DESs, we study in

particular the discretization task.

Chapter 3. We begin this part by presenting several existing techniques for dis-

cretizing univariate or multivariate time series. We then turn our attention to another

challenge in time series analysis, the discovery of rules in time series.

Chapter 4. This chapter is dedicated to the development of the discretization

method specifically designed for learning DES models. We also present an applica-

tion in anomaly detection in time series based on ensembles of TAs learned from

historical data and modeling the normal behavior of a system.

7
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Chapter 5. The last chapter addresses the problem of learning the model of be-

havior of systems with multiple components in interaction. We propose to discretize

multivariate time series taking into account the synchronizations between the vari-

ables. This allows the learning of TAs in interaction.

8



PART I

Timed Automata learning from event

sequences
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INTRODUCTION OF THE PART

The classic way to understand a complex physical, or software system is to per-

form a manual analysis of that system, in order to produce a model, that should be as

accurate as possible. This process is tedious and extremely time-consuming for the

human(s) performing it, especially when the system is large and has many possible

states. Because of this complexity, it is not done in practice for most running systems.

Instead, the systems are designed to produce detailed logs (timed event sequences),

that can help to detect odd behaviors on the fly, or at least allow performing a post-

mortem analysis after a failure happened.

In this part, we tackle the problem of discovering a human-understandable global

temporal model of the system that has generated the event sequences.

We first present a comprehensive review of the state of the art in modeling the

behavior of Discrete Event System (DES) by exploring various modeling formalisms,

before focusing on Timed Automaton (TA) and on the problem of inferring a TA from

event sequences. We then present Timed Automata Generator (TAG), a novel TA learn-

ing algorithm with one unique parameter, which produces models that achieve a

better balance between precision and generalization than the state-of-the-art algo-

rithms. After a thorough evaluation of TAG, we present an application in data mining

on real data by exploiting TA expressivity and tool support.

10



CHAPTER 1

STATE OF THE ART AROUND TIMED

AUTOMATA

This chapter is dedicated to the presentation of the state of the art around TA

learning from timed event sequences. First, we introduce DESs and the formalisms

for modeling them. After a focus on the formalism of TA, we present the existing al-

gorithm to automatically learn TAs.

1.1 Modeling the behavior of Discrete Event System

A system is an ensemble of interrelated entities interacting with each other and

with the environment. The origin of the term system is the ancient Greek word σύστημα,

which can be translated as a whole composed of several parts 1. Modeling a system

is creating an abstract representation of this whole and/or its parts and their interac-

tions.

1.1.1 Discrete-Event System

DESs is a subclass of dynamic systems in systems theory. DES are widely used

in control, monitoring, and diagnosis of dynamical systems, because they are much

more convenient to conceptualize than more complex classes of systems based on

ordinary or partial differential equations.

Generalities about Discrete Event Systems

Let’s start with some general definitions about systems theory, an interdisciplinary

study that explore complex systems as interconnected components interacting with

1. Liddell-Scott-Jones, Greek-English Lexicon (LSJ). Accessible online:
https://stephanus.tlg.uci.edu/lsj/eid=104344
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Part I, Chapter 1 – State of the art around Timed Automata

each other, forming a whole that is more than the sum of its parts. It provides a frame-

work to study how multiple objects or concepts, associated together, fulfill a function.

Systems theory can be applied to fields as diverse as sociology and mechanics. Here,

we will focus on systems theory from a computer science perspective.

The upper part of Figure 1.1 schematically presents what is a system. A system is

System
Inputs Outputs

Environment

Modelu(t) y=g(u)

Figure 1.1 – System modeling process.

first defined by its boundaries, which delineate what belongs to the system and what

belongs to its environment. In addition to its components, a system is characterized

by data that provide information about its current state. This data, often collected

from sensors, includes variables that are directly related to the system, and variables

that come from the environment but affect the system’s behavior. The variables di-

rectly affected by the system itself are called output variables:

y = [y1, ..., ym]T , with m the number of output variables.

while the variables that come from the environment are called input variables:

u = [u1, ..., up]T , with p the number of input variables,

Behind the system, there is some mathematical relation between those input and

output variables:

y = g(u).

The nature of this relation is one of the main way to classify systems. In the most

basic systems, called static systems, the output of a system at a given time y(t) is

independent of the past values of inputs u(τ) with τ < t. As soon as some memory of

12



1.1. Modeling the behavior of Discrete Event System

the former inputs applied to the system is required to know what will be its reaction

to a new input, the system is said to be dynamic, which corresponds to the majority

of studied systems. It is then possible to determine what will be the dynamic system’s

behavior (i.e., its reaction) by knowing its state.

A system’s state refers to its current condition at a particular moment, as a snap-

shot of it, and defines what its behavior will be. Cassandras and Lafortune (2008) give

the following definition of a state:

Definition: State

The state of a system at time t0 is the information required at t0 such that the output

y(t), for all t ≥ t0, is uniquely determined from this information and from u(t),

t ≥ t0.

The state x(t) of a system at a given time t can be determined with the initial con-

dition of the system, its initial state, and all the input variables values since then. The

set of possible values that the system’s state can take, called state space of the system,

is generally continuous, and the evolution of the system’s state can be visualized as a

state trajectory.

Example: Car system

Let’s take the example of a car system. All the mechanical components of the car

constitute the system, while the driver and everything around the car is its environ-

ment. We can collect data related to the car and its functioning, such as its velocity,

the orientation of its wheel, the wind force, the shape of the road, and the position

of the accelerator pedal controlled by the driver. It is important to note that by se-

lecting different variables or setting the system’s boundary at a different location,

for example by including the driver in the system, will lead to a different definition

of the system, which may be just as valid as this one.

The wind force, the shape of the road, and the position of the accelerator pedal

are input variables that affect the system but come from the environment. The car’s

velocity and the orientation of its wheels are output variables, they are the reaction

of the system to the input variables.

This system is dynamic because the behavior of the car is not constant over time

given the same input. For example, the car’s velocity depends not only on the cur-

rent position of the accelerator pedal, but also on its position in the past, as well as

the current and past slope of the road. Thus, the history of input variables deter-

13
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mines the state of the car system, which in turn determines the value of its output

variables. The state space of this system is continuous, and it can be visualized as a

trajectory of the different variables, such as velocity and orientation, over time.

We now introduce a subclass of systems called Discrete Event System (DES). In

a DES, the state space isn’t continuous, but defined in a set of discrete states. The

system’s state evolution can now be visualized as a piecewise constant function with

jumps from one discrete state value to another. Describing the dynamical behavior of

a DES is easier because there are distinct and well-defined individual state changes.

The state change of a DES, called transition, is triggered by an event.

Definition: Event

An event is the instantaneous occurrence of something noteworthy.

An event can be a specific action, or the result of some conditions on variable val-

ues, and can occur at any time. The system is said to be event-driven, the dynamic is

determined by the occurrence of events that trigger the state changes. Event-driven

is opposed to time-driven where the system’s state changes at each discrete time

point with potentially the occurrence of an event synchronously. Cassandras and

Lafortune (Cassandras and Lafortune 2008) give the following definition of a Discrete

Event System (DES):

Definition: Discrete Event System (DES)

A Discrete Event System is a discrete-state, event-driven system, that is, its state

evolution depends entirely on the occurrence of asynchronous discrete events over

time.

We can define input and output events. Input events are external to the system

and generated by the environment, while output variables are internally generated

by the system, generally in reaction to the inputs. The state changes of a DES are

triggered by the input events. Yet, an output event can indirectly cause a state change

by causing a subsequent input to occur.

Example: Elevator system

Let’s now consider an elevator system. This DES consists of several elevators and

their controls, while the users of the elevators are part of the environment. The

state of the system is the configuration of the elevators floor and doors (e.g., a first
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elevator is on the second floor with the doors open, and a second is on the second

floor with the doors closed). This state representation is discrete. Transitions be-

tween states are triggered by input events from the environment: a user pressing

a floor or door button. In response to the input events, the output events are the

elevator movements.

A DES can be stochastic or deterministic. It is important to note that the mean-

ing of the term deterministic is not the same in automata theory and in system the-

ory. A system is stochastic if at least one of its output variables is a random variable.

Consequently, the behavior of such system can be described only probabilistically.

In a stochastic system, the system state cannot be determined only based on the in-

puts history and initial state, and the initial state itself may not be precisely defined.

Therefore, the evolution of a stochastic system can only be characterized by proba-

bility distributions over the state space, rather than a defined trajectory. In this the-

sis, we focus on deterministic DES known to be a subclass sufficient to describe a

wide range of real-world systems. They are computationally less demanding to ana-

lyze than stochastic systems, and they are much more easier to conceptualize by end

users, making them more practical for many applications.

Generalities about Discrete Event System modeling

Sommerville (2016) defines system modeling as “the process of developing ab-

stract models of a system, with each model presenting a different view or perspective

of that system”. The first important aspect of this definition is that the model is an

abstraction, a simplified representation of the system that highlights important char-

acteristics of the complex system. Second, there is not a single model for a given sys-

tem. There are a multitude of models, each designed to highlight specific aspects. The

general process of system modeling is illustrated in Figure 1.1. It consists of defining

a mathematical relationship between the inputs u(t), the outputs y(t), and the states

x(t), that fits the observed behavior of the system, and this mathematical relation

is called the dynamics of the system. Modeling a system is almost inevitable when

studying a system. It gives a representation of it that can be manipulated, simulated,

controlled, or analyzed, and the modeling process itself helps to understand how the

system of interest works. Many different representations can correspond to the same

system and will provide complementary information and usage possibilities.
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First, the models can be designed from different perspectives, corresponding to

different aspects of the system we are interested in. There is no universal perspective

classification, it depends on the kind of systems being modeled. In this thesis, we will

focus on the behavioral perspective, which corresponds to the way a system reacts to

environmental inputs given its state.

Example: Elevator modeling perspectives

Let’s take the example of the elevator system. Some modeling perspectives could

be:

— Structural perspective: How are the internal physical components of the ele-

vators interconnected.

— Functional perspective: Which mechanisms are involved in each operation.

— Behavioral perspective: How are coordinated the movements of the different

elevators to optimize efficiency and minimize user’s waiting times.

Once the perspective is chosen, different levels of abstraction can be used for the

representation. Cassandras and Lafortune (Cassandras and Lafortune 2008) describe

three levels of abstraction to model DES:

— Untimed (or logical) abstraction level,

— Timed abstraction level,

— Stochastic abstraction level.

Again, the choice of abstraction level depends on the final task and on the system be-

ing modeled. Having more information sometimes only add unnecessary complexity.

Because DES are event-driven, time may be superfluous to model the dynamic of a

system. When modeling the car, a logical model may be sufficient to describe the me-

chanical operations. However, to model the behavior of the car while interacting with

other road users, time becomes critical. In that case, a timed representation is much

more useful than an untimed representation. The third stochastic abstraction level is

beyond the scope of this thesis, interested readers can read the dedicated chapters of

Cassandras and Lafortune (2008) for an overview.

Modeling the behavior of a DES is identifying the possible transitions between

the discrete states based on the event occurrences. The behavior of a DES can be

described as a sequence of events that occur during the system’s execution. In this

context, the set of possible events e (also referred to as symbol) is called the alphabet
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and is denoted Σ. An execution of the system can be written as an event sequence

(also referred to as word or string ) where ei ∈ Σ are the successive events:

〈e1, e2, ..., en〉

It is possible to include temporal information, giving a timed event sequence (also

referred to timed word or timed string ) where ei are the successive events ei ∈ Σ and

ti ∈ T their timestamp of occurrence:

〈(e1, t1), (e2, t2), ..., (en, tn)〉

The set of all (timed) event sequences corresponding to possible executions of

the system is called the (timed) language model of the system, noted L. The (timed)

language consists of all the behaviors of the system. However, manipulating directly

a (timed) language model of a DES is not convenient for many applications, and

this raw information is hard to grasp/comprehend. Fortunately, many modeling for-

malisms can be used to represent those languages and manipulate them more easily.

We describe in the next sections multiple common untimed and timed formalisms

for DES modeling.

1.1.2 Untimed models

The behavior of a DES can be described using an untimed formalism. In such

models, time is considered qualitatively with the ordering of the events. Modeling a

DES using an untimed formalism is less complex than using a higher level of abstrac-

tion, the resulting model is easier to comprehend, and its use is less computationally

demanding. We introduce the main untimed mathematical formalisms suitable for

DES modeling, namely automata and Petri nets.

Finite State Automata

The most basic way to model a DES is to use the formalism of Finite State Au-

tomata (FSAs). Finite State Automata (FSAs) is a mathematical model to represent

languages composed of words (or event sequences). A FSA is a state machine, it has a

finite set of states and transitions. The events are labeling transitions between states,

and the set of possible events at each step depends on the current state.
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Definition: Finite State Automaton (FSA)

A non-deterministic FSA A is a tuple 〈Q,Q0,Σ, δ, F 〉where:

— Q is a finite set of states,

— Q0 ⊆ Q is a finite set of initial states,

— Σ is a finite set of events or symbols called alphabet,

— δ : Q× Σ→ Q is a transition function,

— F ⊆ Q is a finite set of accepting (or final) states.

The language of a FSA is the set of event sequences that are accepted by the au-

tomaton, i.e. for which there exists a sequence of transitions, or path, that starts from

an initial state q ∈ Q0 and ends in an accepting state q ∈ F .

Definition: Path

A path in a FSA A = 〈Q,Q0, δ,Σ, F 〉 is a sequence of transitions

〈(qi, ai, qi+1), (qi+1, ai+1, qi+2), ..., (qn−1, an−1, qn)〉

with ∀i ∈ [1...n], (qi, ai, qi+1) ∈ δ.

A FSA can be represented graphically by a directed labeled graph as in Figure 1.2.

The language of the automaton represented in the figure is any string starting and

s0 s1
a

b

Figure 1.2 – Graphical representation of a FSA. The states are represented by circles.
The transitions are represented by arrows from a source state to a destination state
and are labeled by the triggering event. The initial state has an incoming arrow with-
out source state. The final states are identified by a double circle.

ending with an a, with a symbol b between every two a (e.g. 〈a〉, 〈aba〉, 〈ababa〉), which

corresponds to the following regular expression: a(ba)∗.
It is easy to draw a parallel between FSAs and DESs. The finite set of states of the

FSA represents the states of the system, the event-triggered transitions correspond

to the labeled automaton’s transitions. To an execution of the system corresponds a

path in the automaton, which starts from an initial state and ends in a final state, and
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1.1. Modeling the behavior of Discrete Event System

the language of the automaton describes the behavior of the system.

In practice, FSAs are often deterministic, meaning that if an event occurs in a cur-

rent state, there is only one possible next state. Consequently, there is no uncertainty

about the current state given an event sequence because there is a unique corre-

sponding path. In a Deterministic Finite Automaton (DFA), there is only one initial

state, and there is only one possible outgoing transition from a state for a given sym-

bol.

Definition: Deterministic Finite Automaton (DFA)

A DFA A = 〈Q,Q0, δ,Σ, F 〉 is a FSA where:

— q0 ∈ Q is the only initial state,

— ∀q ∈ Q, ∀a ∈ Σ, |δ(q, a)| ≤ 1.

The FSA in Figure 1.2 is deterministic.

Mealy and Moore machines

Mealy and Moore machines are a special kind of DFA with output events in ad-

dition to the classical inputs events that form the alphabet Σ of a DFA, and no final

state. Both machines respond to environmental inputs by producing outputs. In a

Mealy machine (Figure 1.3a), the output is determined by both the current state and

the input event. The output labels the transition along the corresponding input. In

contrast, in a Moore machine (Figure 1.3b), the output is determined by the current

state only. The output label the corresponding state.

s0 s1

a/x

b/y

(a) Mealy machine.

s0/x s1/y
a

b

(b) Moore machine.

Figure 1.3 – Graphical representations of a Mealy machine and a Moore machine. In
a Mealy machine, the transitions are labeled with an input (a and b) and an output (x
and y). In a Moore machine, the transitions are labeled with an input and the states
with their name and output.
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Definition: Mealy machine

A Mealy machine M is a tuple 〈Q, q0,Σ, O, λ〉where:

— Q is a finite set of states,

— q0 is the initial state,

— Σ is the input alphabet,

— O is the output alphabet,

— δ : Q× Σ→ Q is a transition function,

— λ : Q× Σ→ O is a output function.

Definition: Moore machine

A Moore machine M is a tuple 〈Q, q0,Σ, O, λ〉where:

— Q is a finite set of states,

— q0 is the initial state,

— Σ is the input alphabet,

— O is the output alphabet,

— δ : Q× Σ→ Q is a transition function,

— λ : Q→ O is a output function.

Generally, fewer states are needed for a Mealy machine than for a Moore machine

because multiple transitions labeled with different outputs can have the same source

state. The main difference lies in their reactivity. In practice, the current state of these

machines is updated at regular intervals (on clock ticks). When an input is received,

the output of the Mealy machine is updated immediately while the output of the

Moore machine is changed on the next tick when the state has changed. Depending

on the application, one or the other characteristic may be more desirable.

Common applications for Mealy and Moore machines include models for cipher

machines in cryptography, digital circuit design (e.g., for timing control and data

transmission), control of reactive systems that require inputs and outputs (e.g., for

sensors and actuators), and design and implementation of communication proto-

cols.
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Petri nets

One of the alternative to automata for DESs modeling is Petri nets, proposed by

Petri (1962). In contrast to FSAs, they are not specifically designed to represent lan-

guages. Petri nets can represent concurrent processes with shared information or re-

sources, while FSA are designed to represent sequential processes with a single event

at a time. Consequently, the structure and the interpretation differ. Let’s take an ex-

ample to introduce the Petri net structure:

Example: Petri net of a computer system

Let’s consider a computer system where a resource (e.g. a memory area) must be

allocated to some processes. The resource allocation is a system event. This event

corresponds to a transition in the Petri net. Before performing this resource allo-

cation, the resource must be available at the right place. The resource corresponds

to tokens in the Petri net, and the pre condition about the resource availability is

checked in places where the tokens must be. When the pre condition holds, the

transition is enabled, i.e., that it can be fired, but the firing is not mandatory. The

firing of the transition corresponds to the event occurrence: the resources are con-

sumed so the tokens are removed from the pre condition place, and a resource

appears somewhere else, in the post condition place.

A Petri net has places, transitions, arcs, and tokens. An arc goes from a place to a

transition or from a transition to a place. The places at the source (resp. destination)

of the arc are called input or preset (resp. output or postset) places. The places hold

a number of tokens and the distribution of tokens over the places is called marking.

The marking will constrain which transitions are enabled, i.e., which could occur.

Arcs have a weight which corresponds to a tokens number. A transition is enabled

if all its input places have at least the token number associated with the connecting

arc. When a transition is fired, the input places lose as many tokens as the weight of

their connecting arc, and the output places gain as many tokens as the weight of their

connecting arc. The sum of lost tokens by the input places can be different from the

sum of tokens gained by the output places, meaning that there might be an infinite

set of possible markings for a finite Petri net.
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Definition: Petri net

A Petri net N is a tuple 〈P, T, F,W,m0〉where:

— P is a finite set of places,

— T is a finite set of transitions,

— F ⊆ (P × T ) ∪ (T × P ) is a set of (directed) arcs, or flow relation,

— W : ((P × T ) ∪ (T × P ))→ N is the arc weight mapping,

— m0 : P → N is the initial marking representing the initial distribution of to-

kens.

A Petri net can be represented graphically as in Figure 1.4, and this graphical rep-

resentation is sometimes called a Petri net graph to distinguish it from the mathe-

matical model Petri net.

P1 t1

P2

P3

t2
P4

Figure 1.4 – Graphical representation of a Petri net. The places are represented by cir-
cles. The transitions are represented by rectangles. Tokens represent resources held
by a place, and are symbolized by a black dot. The absence of label on the arcs means
that their weight is 1. With this marking (token distribution), only transition t2 is en-
abled.

Petri Nets are mainly used to model systems with concurrent events with con-

straints on the concurrence, precedence, frequency of these occurrences (Peterson

1977). For example, Petri nets are well suited to model manufacturing systems, trans-

portation systems, or biological systems.

Petri nets and FSAs expressiveness are not equivalent.

The language of a Petri net represents the set of all possible sequences of transi-

tion occurrences that it can generate, while the language of a FSA is the set of all pos-

sible sequences of events it can generate. While it is in some cases possible to trans-

late a FSA into a Petri net without changing the formalism (Badouel, Bernardinello,
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and Darondeau 2015), it is sometimes necessary to label the transitions of the Petri

net. Instead of recognizing sequences of transitions, a labeled Petri net will recognize

sequences of labels along the runs of the Petri net. This enables a labeled Petri net to

recognize any language that can be recognized by a Finite State Automaton (Valk and

Vidal-Naquet 1981). Conversely, not all languages of Petri nets are regular languages,

consequently they cannot be represented by a regular expression or a FSA.

1.1.3 Timed models

When timing becomes critical for a DES, the formalisms presented in the previous

section may not be expressive enough to accurately represent the system’s behavior

Time has to be considered quantitatively, and with ways to constrain events accord-

ingly. First, we give various definitions related to time representation, and then vari-

ous timed extensions of automata and Petri nets.

Modeling time

Furia et al. (2010) have realized a survey on time modeling in different domains of

computing. We only present here the notions of clock, delay, timer, age, and lifetime

that will be used in the timed formalisms presented later.

Let’s first define clocks and the related notions.

Definition: Clock

A clock c is a non-negative real-valued variable, whose value increases continu-

ously at a constant rate as time elapses.

Definition: Clock valuation

A clock valuation v on a set of clocks c ∈ C over a domain T is a function v : c → T

which assigns a time value to each clock.

The domain T can be the ensemble of non-negative real numbers R≥0, the ensem-

ble of non-negative integer numbers Z≥0, or a given set of timestamps. If we consider

time as a discrete domain, we can define a clock tick.

Definition: Clock tick

A clock tick is a discrete event that simulates the passage of time by incrementing

the value of a clock variable.
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In addition to the natural evolution of the clocks, two operations can be per-

formed on them: they can be reset, and their value can be checked.

Definition: Clock reset

A clock reset cr : c→ 0 is an operation assigning the value 0 to the clock c.

A clock reset allows to change the reference time point to measure the elapsed

time since a specific moment.

The value of the clocks can be checked to constraint a behavior according to time.

Definition: Clock constraint

For a set C of clocks defined on T , with x, y ∈ C and t ∈ T , a clock constraint α is of

the form α = x ∼ t | x− y ∼ t | ¬α | (α ∧ α), where{<,≤,=,≥, >}.

Other concepts are specifically designed to address the relative representation of

time. We first introduce delays, that are usually used to represent waiting time be-

tween processes. Delays are a way to measure time relatively to a specific event.

Definition: Delay

A delay δ is the positive difference between two clock valuations.

A delay can be measured using a clock by resetting it at the time we want as ref-

erence, and then checking its value. Otherwise, it is possible to constraint a behavior

by using a delay interval.

Definition: Delay constraint

A delay constraint for a delay δ is an expression of the form t1 ≤ δ ≤ t2. It is usually

specified using an interval [t1, t2] with t1, t2 ∈ T and t2 ≥ t1.

Timers are an alternative way to consider time in a relative manner. They are

mainly used when an action needs to be triggered after a specific amount of time.

In contrast to clocks variables whose value increases, timers are set to a specific value

and then decrease until reaching zero.

Definition: Timer

A timer is a positive real-valued variable, whose value decreases as time elapses.
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The advantage of timers over clocks is that there is no need to keep in memory

clock constraints, but the time constraint is pre-defined and precise.

Finally, age and lifetime are two terms to express the value of a clock that is (gen-

erally) set to zero at a specific event, and increases continuously without restriction

nor reset.

Timed versions of Moore and Mealy machines

Before describing the classical timed version of FSAs, we describe the timed ver-

sion of Moore and Mealy machines which are less complex. Multiple timed versions

of Moore and Mealy machines were proposed in the literature. Indeed, the simplicity

of Moore and Mealy machines and their inputs and outputs make of them popular

formalisms for some applications.

Timed Moore Machines (TMM) were proposed as a less expressive alternative to

the classical timed version of FSAs for applications such as manufacturing control

systems design and asynchronous circuit design. The states have a lifetime (finite or

infinite) and the transition function δ is decomposed into an external transition func-

tion δext that specifies state changes due to external inputs and an internal transition

function δint that specifies state changes due to the state lifetime.

Time delay Mealy machines were introduced to model PLC software (Caldwell,

Cardell-Oliver, and French 2016). They accept any input at any time, have a unique

clock that is reset at each input and that measures the time elapsed before the next

output, and have outputs associated with guards on these delays.

Mealy machine with timers (MMT) were introduced by Vaandrager and Jonsson

(2018) for communication protocol modeling. They use timers instead of clocks, and

timer’s value can be set to a specific value or paused on a transition. There are no

guards, when a timer reach zero, a timeout internal input occurs.

Timed versions of Petri net

Several ways to include timing variables in Petri nets have been proposed, often

named by identical or similar names, which can create confusion. The timing vari-

ables are either associated to the places, the transitions, the arcs, the token, or a com-

bination of these. Their signification also varies, from delay, age, to duration. The

following list is not exhaustive.
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The first attempt was proposed by Ramchandani (1973) with the aim of represent-

ing the time to complete an action, by adding firing duration on transition: transition

firing is not instantaneous. The input tokens are removed when the transition starts

to be fired, and the output tokens are created only at the end of the firing. This for-

malism is often referred to as Timed Transition Petri Net.

Around the same time, Merlin (1974) proposed another version referred to as Time

Petri Nets, where transition firing is instantaneous, but transitions cannot fire before

a certain delay once enabled (Figure 1.5a). The delay is associated to the transition. If

P1 t1

P2

P3

t2

[0, 0] [2, 3]

P4

(a) Time Petri net with delay on transitions.

P1 t1

[0, 5]

P2

1

P3

2 1

t2
[2, 3]

[2, 3]

P4

2

(b) Timed (arc) Petri net with token with age.

Figure 1.5 – Graphical representations of Petri nets with timing variables.

the interval upper bound is reached the transition is fired (urgency).

Finally, Walter (1983) has proposed Timed Petri nets, where the time constraints

are associated with the arcs from a place to a transition instead of the transition di-

rectly. In this model, tokens have an age, which is the time elapsed since their cre-

ation. A token in place p can be used by a transition t if its age satisfies the constraint

on the flow relation from p to t. One often uses the term Timed arcs Petri nets to refer

to this model.

Merlin’s Time Petri Nets seem to be the most popular timed version of Petri nets.

For a survey on the role of time in Petri nets, we refer readers to Bowden (2000).

Timed Automata

Timed Automata (TAs) are FSA extended with of set of clocks, timing constraints,

and clock resets on transitions. They were introduced by Alur and Dill (1994) and

have since been extensively studied in the literature. Figure 1.6 is a graphical repre-

sentation of a TA.
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S0 S1 S2

a
c := 0

b
c > 3

c

b
c > 3

Figure 1.6 – Graphical representations of a TA. The clocks (here only c) can be reset
(c := 0) and their values constraint the transitions.

In a TA, the concepts of state and transition differ from those in an untimed au-

tomaton. The state of a TA is a couple composed of a location (equivalent of a FSA

state) and a clock valuation: (q, v). Thus, a transition between two states can either be

time elapsing, or an effective transition between locations:

— Delay transition: (q, v) τ−→ (q, v + τ),

— Discrete transition: (q, v) a−→ (q′, v′).

In the original definition, the clock constraints (Const(C)) are associated with the

(discrete) transitions and referred to as guards, but many definitions may also include

clock constraints on locations referred to as invariants (not discussed here) (Alur

1999).

This leads to the following definitions.

Definition: Timed Automata (TAs)

A non-deterministic Timed Automaton A ∈ NTA is a tuple A = (Q,Σ, C, E , Q0, F )
where:

— Q is a finite set of locations,

— Σ is a finite set of events or symbols,

— C is a finite set of clocks,

— E ⊆ Q× Σ× Const(C)× 2C ×Q is a finite set of transitions,

— Q0 ⊆ Q is a finite set of initial locations,

— F ⊆ Q is a finite set of final locations.

The tuple (q, a, g, r, q′) ∈ E is a transition where:

— q and q′ are the source location and destination location, respectively,

— a is the symbol that triggers the transition,

— g is a guard i.e., clock constraints that must be satisfied for the transition to

be enabled,

27



Part I, Chapter 1 – State of the art around Timed Automata

— r is the set of clocks being reset on the transition.

A path in a TA is a sequence of transition that can be followed to reach a given

state q from an initial state q0:

q0
g1,a1−−−→ q1

g2,a2−−−→ ...
gp,ap−−−→ q

The timed language of a TA is the set of timed event sequences for which there

exists a path from an initial location to an accepting location qp in the automaton.

There is a run of the automaton along this path, i.e., a sequence of state transitions:

(q0, v0) τ1−→ (q0, v0 + τ1) a1−→ (q1, v1) τ2−→ (q1, v1 + τ2)... ak−→ (qk, vk)

It is important to note that here, we defined a TA with final state acceptance, however

there exists many more acceptance conditions such as the Büchi and Muller accep-

tance conditions (Alur and Dill 1994). In function of this acceptance condition, the

definition of the timed language will be different.

TAs are mainly used in model-checking, controller synthesis, and planning.

1.1.4 Conclusion on Discrete Event Systems modeling formalisms

DESs are event-driven systems whose behavior can be defined in terms of se-

quences of events over time. This behavior can be modeled on different levels of

abstraction, from a logical to a timed and probabilistic representation. The main for-

malisms for such models are finite automata and Petri nets, and their various exten-

sions.

In this thesis, we are interested in modeling DESs from observational data, where

time is critical for the system’s behavior, and with the hypothesis that the observa-

tions contain all the information needed to know the system’s state. In this context,

the timed level of abstraction is the most appropriate. Within the timed formalisms

presented, we choose TAs over a timed version of Petri Nets for the following reasons:

— Language representation: TAs are specifically designed to represent timed lan-

guages, and their dedicated structure is more convenient for a precise analysis

of the temporal behavior;

— Expressivity: TAs have been proven to be more expressive than (bounded) Time
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Petri Nets (Bérard et al. 2005);

— Extensive literature: TAs and their properties have been extensively studied and

used, forming a larger available literature;

— Composability: In order to represent complex systems, TAs can be easily com-

posed to form a complex model, in contrast to timed versions of Petri nets;

— Tool support: Many tools have been developed to use TAs, in particular for sim-

ulation, model-checking, and controller synthesis.

1.2 A focus on Timed Automata

The formalism of TA being in the center of this work, we make a focus on what are

the usual practical uses of these models, and we define some common subclasses of

TAs that can be found in the literature.

1.2.1 Decision problems for Timed Automata

Besides being useful by design by allowing the modeling of systems, TAs are specif-

ically adapted for system’s properties verification and system’s control.

Model checking

Model checking is a formal verification technique to determine if the model of a

system satisfies some given properties or requirements. The typical requirements are

liveness (something good is ensured), safety (something bad will never happen) and

reachability (something can happen). Given a state-graph model of the system, and

a property, generally expressed in temporal logic, the model-checker gives a binary

answer, whether the property holds or not, and provides a counter-example in the

latter case.

There are two main kinds of model-checkers. The first one explores all possible

systems states and check whether they are consistent with the properties. The second

one, called symbolic methods (Burch et al. 1992), were introduced to confine the state

explosion problem of the first ones. They manipulate states by sets and use a boolean

encoding.
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Symbolic methods for TA model-checking have been implemented in several tools

such as KRONOS (Bozga et al. 1998) and UPPAAL (Bengtsson et al. 1996). Nowa-

days, UPPAAL is the main model checker for TA, with many extensions such as UP-

PAAL SMC (Bulychev et al. 2012) to support probabilistic models. UPPAAL queries

are based on Temporal Computation Tree Logic (TCTL) (Alur, Courcoubetis, and Dill

1993), a temporal logic where time can be considered quantitatively and using bounded

intervals. A basic UPPAAL query, here translated as “Are we sure to reach location loc1
with the value of clock c under 10?”, will look like the following:

A <> Automaton.loc1 and c < 10

whereAmeans “for all path”,<>means “some state in a path”. UPPAAL SMC extends

the basic query language of UPPAAL with queries related to the stochastic behavior

of systems. For the latter, simulations of the system are performed and some statis-

tical tests are realized on the results to obtain the query’s answer with a degree of

confidence. A UPPAAL SMC query using statistical model checking, here translating

to “What is the probability to reach location loc1 with the value of clock c under 10

within t time units?”, will look like the following:

Pr[<= t](<> Automaton.loc1 and c < 10)

where Pr[<= t] means the “probability that the property is satisfied within t time

units”.

For a tutorial on how to use UPPAAL SMC, readers are referred to David et al. (2015).

Model checking on TAs using UPPAAL have been applied to the verification of

communication protocols (Ravn, Srba, and Vighio 2010), model-driven software de-

velopment (Yang et al. 2016), and at industrial level (Larsen, Lorber, and Nielsen

2018).

Controller synthesis

Let’s consider a system’s model and a set of specifications that the system should

satisfy. Controller synthesis addresses how to control the model’s behavior to ensure

that the specifications are met. The controller can usually only partially control the

model’s behavior. It can therefore be seen as a game to find the best input sequences

to adhere to the specifications. It can also be seen as an optimization problem.
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The system is typically modeled by a TA. The controller can send inputs that will

trigger TA transitions, or let time pass (Asarin et al. 1998). Controller synthesis using

TA is interesting for many fields such as robotics (Zhou, Maity, and Baras 2016) or

cyber-physical systems (Canadas et al. 2018), as it allows controlling the behavior of

real-time systems that can have complex timing specificities.

1.2.2 Timed Automata subclasses

TAs are powerful models to describe the behavior of DESs. However, their high

expressiveness comes with a computational cost, and in some cases, the full formal-

ism may be overly complex for the task. Consequently, several subclasses of TAs have

been defined for various applications, making their use and analysis more efficient.

Additionally, other subclasses have been defined to match more closely to the prop-

erties of the modeled system. We present some of them that will be used in the re-

mainder of this thesis.

Deterministic Timed Automata

The term deterministic carries different meanings in systems theory versus au-

tomata theory. A TA is said to be determinist if the run of a timed event sequence

always leads to the same state sequence, and if there is one unique initial state. In

such automaton, there can’t be two transitions outgoing from the same location la-

beled with the same event and overlapping timing constraints.

Definition: Deterministic Timed Automaton

A Timed Automaton A is deterministic if |Q0| = 1 and for every q ∈ Q and every

a ∈ Σ, if there exists (q, a, g1, r, q
′) ∈ T and (q, a, g2, r, q

′′) ∈ T , q′ = q′′ or g1 ∧ g2 is

unsatisfiable.

Determinism is a common property, most TAs subclasses can have a deterministic

equivalent subclass.

One-clock Automata

A one-clock TA is a TA with only one clock. This subclass is especially convenient

to model systems in order to check its properties (model checking). Notably, while
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classical property checking on TAs induces a computational blow-up due to the tim-

ing constraints in comparison to property checking on untimed graphs, it is largely

limited for this particular subclass and properties expressed in a specific temporal

logic (TCTL≤,≥, subclass of the TCTL logic) (Laroussinie, Markey, and Schnoebelen

2004).

Real-Time Automata

A Real-Time Automaton (RTA) has only one clock reset on each transition that

measures the delay between two events. The time constraints are generally repre-

sented in the form of an interval of acceptable delay. It can be used to model the

behavior of systems where the time dependencies are local (between two events).

In the original formulation by (Dima 2001), the temporal constraints and events

are carried by the locations. For convenience, Dima (2001) also defined transition-

labeled RTA, which is now commonly referred to as RTA and correspond to the sub-

class defined below.

Definition: Real-Time Automaton (RTA)

A RTAA is a tuple 〈Q,Σ, δ, Q0, F 〉where:

— Q is a finite set of locations,

— Σ is a finite set of symbols called alphabet,

— δ ⊆ Q×Σ× Int×Q is a transition function with Int the set of intervals whose

bounds are in Q≥0 ∪ {∞},

— Q0 ⊆ Q is a finite set of initial locations,

— F ⊆ Q is a finite set of final locations.

Event-Recording Automata

In an Event-Recording Automaton (ERA) (Alur, Fix, and Henzinger 1999), each dis-

tinct event a ∈ Σ is associated to a clock that is reset when the event occurs. The

clocks (CΣ) measure the time elapsed since the last occurrence of the corresponding

event. This kind of automata have multiple clocks and clock resets that are easily in-

terpretable. An interesting property of ERAs’s is that any ERA can be transformed into

an equivalent deterministic one.
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Probabilitic Deterministic Real-Time Automata

In addition to a structure of a Deterministic Real-Time Automaton (DRTA) (cf.

definition of Deterministic TA), a Probabilitic Deterministic Real-Time Automaton

(PDRTA) has probability parameters: an event probability distribution and a tempo-

ral probability distribution on each location.

Definition: Probabilitic Deterministic Real-Time Automaton (PDRTA)

A PDRTAA is a tuple 〈A′, H,S, T 〉where:

— A′ = 〈Q,Σ,∆, q0〉 is a DRTA without final locations,

— H is a finite set of bins (time intervals) [v, v′], v, v′ ∈ N, known as the histogram,

— S is a finite set of event probability distributions Sq = {Pr(a|q)|a ∈ Σ, q ∈ Q},

— T is a finite set of time-bin probability distributions Tq = {Pr(h|q)|h ∈ H, q ∈
Q}.

This subclass was introduced by Verwer, Weerdt, and Witteveen (2012) to allow

TAs learning with positive data only.

Timed I/O Automata

To facilitate the modeling of large and complex systems, TAs can be monitored

jointly using synchronizations (Alur, Fix, and Henzinger 1999). The synchronizations

are classically events shared by multiple automata as presented in the Introduction.

When a shared event occurs, the transitions of the TAs are synchronized.

Kaynar et al. (2006) 2 introduced a more precise definition for the synchroniza-

tions with the formalism of Timed I/O Automata (TIOA) (Figure 1.7). TIOAs are TA

A0 A1 A2

activateP1
c1 < 10 activateP1

c1 > 2

endP1!
c1 < 24 r(c1)

endP1! c1 < 24 r(c1)

activateP1 c1 > 11

B0

B1

B2
endP1?
c2 > 10
r(c2)

activateP2
c2 < 3

endP2 9 < c2 < 16

Figure 1.7 – Graphical representation of two parallel TIOAs. Pairs of input and outputs
events are followed respectively by ? and !.

2. Reedited in 2011
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with input and output (replacing the shared events) to model the interactions be-

tween a system and its environment, as well as between components.

Definition: Timed I/O Automata (TIOA)

A Timed I/O AutomataA is a tuple 〈B, I, O,H〉where:

— B is a Timed Automaton,

— I, O, H partition B’s event set E into inputs, outputs, and internal events re-

spectively.

This formalism enables the parallel composition of TIOAs, allowing to synchro-

nize their transitions via pairs of input and output. Outputs are locally controlled by

at most one automaton, and transitions labeled with these events can be triggered at

any time. Input event labeled transitions can be triggered only if a transition with the

corresponding output event is triggered in a parallel automaton, in addition to clock

constraints satisfaction. The synchronization between the output labeled transition

and the input labeled transition is instantaneous.

Events that are not involved in synchronization, the internal events, are also lo-

cally controlled by the automata and cannot be shared between automata.

Another way to compose multiple TAs is to use shared clocks. It is not the case with

TIOAs, the synchronization is restricted to shared pair of input/output. Therefore,

parallel TIOAs can have different clock rates.

1.3 Timed Automata learning

Presently, TAs used for model checking or controller synthesis are most of the time

modeled by a system’s expert. This process is time- and money- consuming, and de-

mands a complete and unbiased knowledge about the system. To allow a wiser use of

TAs, it would be more convenient to have methods to automatically infer such mod-

els.

TA learning is the task of inferring a TA H that is equivalent of a target TA A, i.e.,

that accepts the same language. Many TA learning approaches are based on gram-

matical inference algorithms which is the process of learning grammar and untimed

automata, an active field of research in the 70s (De la Higuera 2010).

Two main directions are being explored: the active learning and the passive learn-

ing of TAs. In active learning, the model is learned via interactions with the system to

34



1.3. Timed Automata learning

confirm or infirm hypotheses about it. In passive learning, the model is learned from

data related to the system, usually taking the form of event sequences.

The main challenge of TA learning remains the identification of multiple clocks

and their resets. Most of the existing approaches focus on the learning of a subclass

of TAs to reduce the complexity of the task.

It is important to note that due to the grammatical inference heritage, the term

state is often used in place of location in TA learning by analogy with the untimed au-

tomata learning field. From now, state will refer to location unless specified, whatever

the possible value of the clocks.

1.3.1 Active learning

In the active learning setting, a learner learns a concept from a teacher by asking

queries (Grinchtein 2008). In active TAs learning, the concept to learn is the language

of the TA. The learning process is based on two kinds of queries:

— Membership query: Does the word w belong to L(A)?

— Equivalence query: Does the language of the hypothesized model L(H) is the

same as L(A)?

In the case of equivalence queries, the teacher supplies a counterexample if the an-

swer is negative, i.e., a word from L(A) (language of target automaton) or L(H) (lan-

guage of hypothesized automaton) that does not belong to the other language.

The most famous active (untimed) automata learning algorithm is the L* algo-

rithm proposed by Angluin in 1987 (Angluin 1987). It introduced the notion of obser-

vation table to store the queries’ answer. Once the observation table satisfies some

properties, it can be used to obtain an automaton consistent with it.

Most active learning algorithms for TA are derived from Angluin’s algorithm, and

differ on how the observation table is filled (Henry, Jéron, and Markey 2020; R. Xu, An,

and Zhan 2022). Identifying the temporal constraints is complex and causes a blow-

up in the number of queries required to infer the timed language. Consequently, most

algorithms learn a subclass instead of directly a TA.

Other approaches explore alternatives for the equivalence queries that are often

not possible in practice. Tang et al. (2022) proposed to learn deterministic one-clock

TAs with a conformance testing approach combining random testing and mutation-

based testing to replace exact equivalence queries. Shen et al. (2020) also learn deter-
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ministic one-clock TAs and replace the equivalence query by sampling in the context

of Probably Approximately Correct (PAC) learning.

1.3.2 Passive learning

In practice, it may not always be possible to query the system to obtain member-

ship or equivalence information. In the passive setting, no interaction with the sys-

tem is allowed to guide the learning process and the learner must produce a model

that is consistent with a given input sample S. This input sample consists of a set of

words that belong to the language of the target automaton A (referred to as positive

data, S+), and potentially a set of words that do not belong to the language of A (re-

ferred to as negative data,S−). The goal of the learning process is to construct a Timed

AutomatonH that is consistent with S, i.e., that correctly accepts or rejects the words

in S, and ideally that has the same language asA. Three main approaches have been

proposed and are presented in the following section.

Real-Time Identification (RTI)

Real-Time Identification (RTI) (Verwer, Weerdt, and Witteveen 2012) is an algo-

rithm for learning TA from positive and negative data. More precisely, it learns a sub-

class of TA called DRTAs where the timing constraints are delay between consecutive

events, and with accepting and rejecting states. RTI is based on grammatical infer-

ence algorithm called Evidence-Driven State-Merging (EDSM) in a red-blue frame-

work (Lang, Pearlmutter, and Price 1998). After an automaton initialization phase,

it generalizes the model and identifies temporal constraints with state merges and

transition splits. The final automaton accepts all the positive traces and rejects all the

negative ones.

The learning is realized in the red-blue framework, states of the automaton are

red, blue, or uncolored:

— A red state belongs to the core of the automaton that is assumed to be correct;

— A blue state is part of the fringe of the core and is candidate for a state merge;

— An uncolored state belongs to the untouched part of the initialized automaton.

The first step of this algorithm is the creation of an automaton that is almost a

transposition of the input sample. It serves as a basis for the generalization that fol-

lows. It consists of constructing a tree-shaped automaton called Augmented Prefix
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R

B

B

a [1, 8]

b [1, 8] a [1, 8]

b [1, 8]

c [1, 8]
a [1, 8]

Figure 1.8 – APTA constructed from the input sample S = S+ = {〈a : 8〉, 〈b : 2 a :
6〉} ∪ S− = {〈b : 5 c : 3〉, 〈a : 1 b : 4 a : 3〉} in RTI. The letters R and B indicate
respectively a red and a blue state

Tree Acceptor (APTA) from the input sequences, disregarding the temporal values.

In this Augmented Prefix Tree Acceptor (APTA), an event sequence corresponds to a

path from the initial state in the automaton, with each event of the sequence labeling

a transition between two states. The state at the end of the path is either accepting

if the sequence was from the positive sample or rejecting if the sequence was from

the negative sample. The other states are neither accepting nor rejecting, and this is

the reason this automaton is said to be “augmented”. In this initial automaton, there

exists only one path from the initial state to any other state, and two states share the

beginning of their paths as long as the sequences of events leading to them are the

same. Two sequences can be identical in their untimed version, which should imply

belonging to the same set of positive or negative sequences, and corresponding to the

same path. However, if they have different time values, one can be positive and the

other rejecting. As a consequence, in the automaton in construction by RTI, a state

can be both accepting and rejecting. At the end of the initialization, the transitions

are labeled with a guard whose lower bound and upper bound are equal to the mini-

mal and maximal time values observed in the whole input sample. Finally, states are

colored to prepare the next step: the only red state is the initial state, and the desti-

nation state of its outgoing transitions (children) are blue. An example is displayed in

Figure 1.8. The resulting automaton is a valid DRTA that is consistent with the input

sample. However, it contains a lot of redundancy and it provides no more informa-

tion than the raw input sample. To obtain a model that is more compact, generalized,

and with relevant temporal information, three operations can be performed on the

automaton: the merge of two states, a transition split, or a state coloring.

State merging is the main operation for the generalization. Two states can be merged
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a b

a

b

(a) Before.

a

b

a

b

(b) After.

Figure 1.9 – Merge of the two states in the dashed ellipse in RTI (example from Verwer,
Weerdt, and Witteveen (2012)). The crossed out state is a rejecting state. Timed guards
and state colors are not indicated.

if one is red and the other is blue, and ideally if there is no conflict in event sequences

acceptance (i.e., one rejecting and the other accepting). The merge of two states con-

sists of the accumulation of the incoming and outgoing transitions of both states into

a new one, and the suppression of the old states. If one of the old states was accept-

ing (resp. rejecting), the new state is also accepting (resp. rejecting). The new state is

colored in red. A merge can cause an undeterministic transition choice from the new

state and RTI must learn a deterministic automaton. Consequently, the problematic

transitions and their destination states are also merged, which can recursively hap-

pen. This process is called determinization process, and during it, the state color re-

quirement for the merges is suspended. When two transitions are merged, they have

the same symbol but can have different timed guards. The new guard takes as lower

bound and upper bound the smallest lower bound and greatest upper bound of the

old ones. Finally, the uncolored children of the red states are colored in blue to main-

tain the blue fringe.

Transition split is the operation to extract relevant temporal information. A tran-

sition can be split if its destination is a blue state. The result of a split of transition

q
[t1,t2]−−−→ q′ on a time value t is two new transitions q

[t1,t]−−→ q1 and q
[t+1,t2]−−−−→ q2. The part

of the automaton formerly accessed by q′ will be divided by reconstructing the APTA

from the new states q1 and q2. A transition split can solve the problem of a state that

both rejecting and accepting.

The last operation is a state coloring and control the learning process. A blue state

is colored in red if it cannot be merged with any red state.

The choice of the operation to be performed, i.e., merging, splitting, or coloring,

and its location in the automaton and the value t for the split, is based on an ev-
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idence value. The authors propose multiple versions of the evidence value. One of

them count the number of merges of both accepting states or both rejecting states

(determinization process included) induced by the operation, minus the count of

merge of rejecting and accepting states.

Real-Time Identification from positive data (RTI+)

Real-Time Identification from positive data (RTI+) (Verwer, Weerdt, and Witteveen

2010) is an adaptation of the RTI algorithm to learn TA from positive data only. More

precisely, it learns a subclass of TA called Probabilitic Deterministic Real-Time Au-

tomaton (PDRTA) which is similar to DRTAs, but includes probabilities for the events

and the time value given the current state, and do not have final states. Learning a

probabilistic model when there is no negative data to constrain the model’s gener-

alization is a classic strategy in grammatical inference. The input sample S+ can be

seen as a sample drawn from the PDRTA probability distributions. Thus, the learn-

ing task becomes finding the automaton that is the most likely to have generated the

data.

The APTA creation, the state merging and the transition split operations are the

same as in RTI, but without the considerations about accepting or rejecting states.

The difference is that the evidence value to choose which operation to perform is

replaced by a likelihood-ratio test.

Given two models H and H ′ (one before the operation and the other after), H

being more constrained thanH ′, the likelihood-ratio test statistic is computed as fol-

lows: LR = likelihood(S+,H)
likelihood(S+,H′) . likelihood(S+, H) returns the maximized likelihood of the

data S+ with the model H, and depends on the probability parameters of the model.

Note that the likelihood under the larger model H ′ will always be greater than the

likelihood under H. To obtain a statistical evidence of whether the operation should

be performed or not, we need to consider the number of parameters saved by the

nested model H (i.e., the model obtained after the merge, or before the split), which

is the goal of the likelihood-ratio test.

Timed k-Tail

Timed k-Tail (TkT) (Pastore, Micucci, and Mariani 2017) is a passive TA learning

approach developed to model the behavior of software systems, to further test and
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analyze them. The algorithm is specifically designed to handle potentially nested op-

eration sequences, such as sequences of method calls where a method can call an-

other one. Their algorithm learns a TA where an operation starts on a transition, caus-

ing the reset of a clock associated to this operation, and ends in another one, with the

clock value being checked with a guard. Figure 1.10 displays an example of TA that

processPhoneOrder :B 
r(t)

processItem :E 
7≤ t≤18, 3≤ c2≤10

processItem :B 
4≤ t≤19, r(c2), r(c6)

processPhoneOrder :E  processWebOrder :E 

processWebOrder :B 
r(t)

checkAvailability :B 
5≤ t≤20, r(c3), r(c7)

checkAvailability :E
20≤ t≤25, 3≤ c7≤5

checkAvailability :E
6≤ t≤13, 1≤ c3≤4

processItem :E 
23≤ t≤30, 7≤ c6≤11

Figure 1.10 – A TA learned by Timed k-Tail (from Pastore, Micucci, and Mariani
(2017)). The initial state has an incoming arrowhead with no source.

Timed k-Tail learns. It has two kinds of clocks: a global clock, t, that is only reset on

the first event of a sequence and measures the time elapsed since the beginning of

an execution, and local clocks ci which are associated to pairs of transitions. Each

operation has two corresponding events, the beginning indicated by B, and the end

indicated by E.

Initially, a tree-shaped automaton is constructed from the input sequences where

every branch that starts from the initial state is a sequence. Each pair of transitions

(beginning and end of an operation) is associated to a new local clock that is reset

when the operation starts and whose value is checked with a guard when the op-

eration ends. The global clock is reset on the first transition of every sequence and

checked on every transition. The clock equality constraints are set on the observed

values.

The next step involves generalizing the model through state merges. The merg-

ing criterion is borrowed from a grammatical inference algorithm called k-Tail (Bier-

mann and Feldman 1972). In the k-Tail algorithm, each state accepts a unique set of

suffix strings of maximal length k called k-tail (see Figure 1.11). In Timed k-Tail, k-
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{a} {λ, b} {λ}
a

b

b

Figure 1.11 – Automaton obtained with the k-Tail algorithm for the input sample
{a, ab, abb} and k = 1.

tails are called k-future and correspond to sequences of events of maximal length k

accepted by a state. For example, in Figure 1.10, the k-future of the initial state with

k = 2 is the following set of sequences:

{〈processPhoneOrder:B processPhoneOrder:E〉,

〈processWebOrder:B processWebOrder:E〉}

If two states in the initialized automaton have the same k-future, they are consid-

ered to correspond to the same state and are merged together. When two states are

merged, their incoming and outgoing transitions are accumulated on one state and

the other state is deleted. Transitions having the same source and destination states

and corresponding to the same event are also merged. Merging transitions consists

of accumulating the clock constraints and resets on one transition and deleting the

other(s).

The last step is the generalization of the temporal constraints. Clocks that are both

reset and checked on the same transitions are considered to be the same and are

renamed with the same name. The clock constraints are then summarized by keeping

an interval bounded by the minimal and maximal clock equality constraint observed,

potentially enlarged with a tolerance strategy.

Each clock obtained by Timed k-Tail is related to a single pair of events, it is mea-

suring its duration. If there are no nested operations, the begin event transitions can

be removed and the clocks on the end event transitions can be reduced to a delay

since the last event.

GenProgTA

Tappler et al. (Tappler et al. 2019) have proposed an original approach for TA

learning based on genetic programming. It is incorporated in the framework of test-
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based learning enabling verification: in order to perform verification on system un-

der test, we learn a model of it. Typically, the system is a software system on which

we can execute test cases (roughly, sequences of actions) and record the system re-

sponse. Therefore, they want to learn a model that produces the same outputs as the

system under test in response to some given inputs. To use the formalism of TA, they

need to divide the alphabet into a set of input actions and a set of output actions.

The learned TA has inputs and outputs, is (input and output) deterministic, input-

enabled (any input may be received in any state), and output urgent (outputs must

be produced as soon as the guard is satisfied).

The outline is the following: They generate test sequences used to test the system, and

get the corresponding timed traces consisting of the inputs and the outputs. Then,

they use a genetic algorithm to learn a TA that should be deterministic and consis-

tent with the set of the timed traces.

Genetic Algorithms are a kind of algorithm inspired by the biological process of

natural selection (Goldberg 1989). In the general setup, a population of individuals

evolves generation after generation, becoming more and more adapted to several

criteria. The algorithm starts from an initial population. Every individual is evaluated

on the basis of the defined criteria presented below. The better the individuals were

evaluated, the greater are their chances to be selected for the reproduction step. The

individuals for the next generation are created by applying crossovers and mutations

to the selected individuals. A crossover consists of the recombination of two parts of

two individuals. A mutation is a slight modification of the individual.

The mutations can be applied on the states (merge/split/addition), on the edges

(addition/split/removing of an edge, modification of an edge destination), on the

clock constraints (addition/modification/removing of a guard), on the clock resets

(addition/modification/removing). The crossover of two automata consist of their

product with a random selection of the guards and clock reset of one parent or the

other for the edges they have in common. Finally, a simplification operation allows

simplifying an automaton without changing its semantic, for example by removing

unreachable states. The automata are evaluated using a fitness function that com-

bines determinism requirement, size of the model (number of edges), and consis-

tence with the timed traces. Each objective is assigned a weight that the user can

adjust based on their preferences.

Besides the stochastic nature of the approach that can lead to different local op-
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1.3. Timed Automata learning

tima, the main drawback of this approach is the number of parameters. For example,

the user has to specify the number of clocks, and an approximate upper bound for

the clock constraints, in addition to all the classical parameters that come with a ge-

netic algorithm (population size, number of population, operation probabilities...).

However, it is the only method of this state of the art that is able to learn a TA that has

multiple clock and allow clock resets without restriction.

The source code of GenProgTA, as well as the data used in the experiments, are

not publicly available.

1.3.3 Conclusion on Timed Automata learning

Table 1.1 summarizes the state of the art in passive TA learning, with the algo-

rithms advantages and limitations.
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CHAPTER 2

TAG: PASSIVE LEARNING OF TIMED

AUTOMATA FROM LOGS

The first contribution of this thesis is an algorithm to passively learn a Timed Au-

tomaton (TA) from event sequences, called Timed Automata Generator (TAG). TAG

has a single parameter controlling the generalization level of the model. Its scala-

bility is studied experimentally, along with a comparison with the State-of-the-Art

algorithms. We also present a study case using real data and an application in data

mining via model checking.

2.1 Motivation

TA is an expressive formalism to model Discrete Event System (DES). By includ-

ing temporal constraints quantitatively, along with event-based transitions between

states, it enables a fine description of the temporal dynamic behavior of the modeled

system. Modeling a system with a TA is time-consuming, and can lead to erroneous

or biased models, as it entirely depends on the expert comprehension of the system.

Consequently, the automatic inference of TA has received a lot of attention in the last

two decades. A first strategy is to interact with the system to iteratively construct the

automaton describing the system’s reaction, and is refereed as active learning. Here,

we choose the passive learning strategy that only rely on observational data related

to the system.

Several algorithms have been proposed to learn TAs from a sample of positive

event sequences, namely Real-Time Identification from positive data (RTI+), Timed

k-Tail (TkT), and GenProgTA (described in Section 1.3.2). Yet, these algorithms have

drawbacks in terms of number of parameters, or in terms of the determinism or pre-

cision of their output. Based on this observation, our objective was to develop a new

algorithm to overcome these limitations and combine their strengths.
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Part I, Chapter 2 – TAG: Passive learning of TA from logs

2.2 General presentation

The outcome is TAG, which stands for Timed Automata Generator, a novel al-

gorithm to learn Deterministic Real-Time Automata (DRTAs) from positive times-

tamped event sequences. It has a single parameter that controls the level of abstrac-

tion of the model. The learned automaton accepts all the event sequences of the in-

put sample.

2.2.1 Language subclass learned

The TAs learned by TAG are DRTAs. As presented in Section 1.2, a DRTA is a TA

where the temporal constraints take the form of intervals of acceptable delay since

the last event. In addition, the transition triggered by the event is deterministically

chosen given this delay.

During the learning process, TAG learns the DRTA structure and the delays, plus

additional information about timing and transition probability that are not included

in the formalism. The additional timing information relates to a global clock gt that

measures the time elapsed since the beginning of a run of the automaton. The transi-

tion probability p corresponds to the fraction of time that a specific transition is trig-

gered relative to the other outgoing transitions of its source state. In other words, it

represents the likelihood of that transition being taken, with the sum of probabilities

for all transitions from a state equaling 1. Both global clock and transition probabili-

ties are indicative, it has no consequence on the DRTA semantic and this information

is not used during the learning process. The determinism does not rely on them: only

the event and the time delay since the last event are necessary to determine the next

transition in a current state.

Finally, we consider that all the states of the DRTA are in the set of final states.

When displaying graphically TAG’s automata (Figure 2.1), we label the states with

an index assigned when the state is created. For more clarity, we also omit the con-

straints on the global clock and the probabilities when it is not necessary.

2.2.2 TAG’s algorithm outline

TAG constructs a TA from an input sample. The input sample is composed of posi-

tive timestamped event sequences that the learned automaton must accept, meaning

46



2.3. Algorithm

S0

S1

S2

S3

S4

a [0, 20]
p=1.0

gt[0, 559]

c [0, 4]
p=0.1

gt[0, 489]

b [10, 20]
p=0.5

gt[10, 573]

c [5, 20]
p=0.4

gt[6, 520]

c [0, 20]
p=1.0

gt[14, 588]

d [0, 20]
p=1.0

gt[19, 592]

e [0, 20]
p=1.0

gt[8, 540]

Figure 2.1 – A DRTA learned by TAG. In addition to the classical semantics, we add in-
dicative timing constraints on the global clock indicated with a gt before the interval,
and transition probabilities p. There is no particular shape for the final states because
all states are final.

that there will be a path for each sequence.

The idea of the algorithm is to first produce an automaton, which is basically a

graphical representation of the input sample with all its redundancies. The automa-

ton will then be factorized on these structurally redundant parts to obtain a more

compact TA. After this size reduction, it may be necessary to refine the automaton in

function of the time to extract temporal determinism situations.

Those constitute the three steps of TAG:

1. Automaton initialization

2. Generalization and size reduction

3. Temporal refinement

The automaton initialization consists of transition and state creations. Then, the au-

tomaton is structurally transformed during the generalization and temporal refine-

ment steps via two main operations: state merging and transition splitting (only on

temporal refinement step).

2.3 Algorithm

Algorithm 1 summarizes the learning process. The input sample S consists of
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Algorithm 1 TAG

Require: an input S = {S+} ∈ P((Σ× N0)∗)
Return: a DRTAA = 〈Q,Σ, E , q0〉 consistent with S meaning that ∀s ∈ S, s ∈ L(A)

1: A = initTA(S) . Step 1: Automaton initialization
2: while some states have the same k-future do . Step 2: Generalization and size

reduction
3: A = merge(A)
4: end while
5: repeat . Step 3: Temporal refinement
6: while some transitions can be split do
7: A = split(A)
8: end while
9: SAVE =A

10: A = merge(A)
11: until SAVE =A
12: return A

timed event sequences (events from an alphabet Σ, associated to delays from N0).

After a tree-shaped automaton initialization (line 1), the second step of TAG con-

sists in reducing the automaton size by merging all the states that can be merged

together (lines 2 to 4). Two states can be merged if, from both states, the same events

sequences can happen to the system within the k next transitions (the k-future).

When no more states can be merged, the algorithm attempts to capture the temporal

logic of the system with transition splits (lines 5 to 11). The split of transitions creates

a temporal determinism where time influences the system’s evolution. During this

step, merges can also be realized, but only if no more transition split is needed and if

the merge won’t be canceled by a split. TAG ceases when no more split or merge can

be done.

We now detail the automaton initialization and the operations of state merging

and transition splitting.

2.3.1 Automaton initialization

A Prefix Tree Acceptor (PTA) is a tree-shaped automaton where the states are as-

sociated with the sequence of events that label the transitions leading to it from the

initial state. All the descendants of a state have the same path prefix from the initial

state.
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The automaton initialization consists of the construction of a PTA, a DRTA corre-

sponding to the untimed part of the input sample, enriched with the observed time

intervals. In this PTA, there is a path starting from the initial state for every sequence,

and the sequences sharing a prefix share the beginning of their paths.

Algorithm 2 initTA

Require: an input S = {S+} ∈ P((Σ× T )∗)
Return: a DRTAA = 〈Q,Σ, E , q0〉 consistent with S meaning that ∀s ∈ S, s ∈ L(A)

1: A : 〈Q : q0,Σ : Σ, E : ∅, q0 : q0〉
2: for s in S do
3: A =integrate(s,A)
4: end for

First, an automaton with a single state called initial state is created. Then, the ini-

tialization with the input sample is performed sequence by sequence (Algorithm 2).

The order of the sequences in the sample does not change the result of the initializa-

tion operation.

Algorithm 3 integrate : TS(Σ, T )×A → A
Require: an input s ∈ TS(Σ, T ) and a DRTA A
Return: a DRTA consistent with {s} ∪ L(A)

1: s = 〈(a0, t0) . . . (an, tn)〉
2: q = q0
3: for all i ∈ {x|1 ≤ x ≤ n} do
4: r = r + ti
5: if ∃(q, ai, g, q′) ∈ E then
6: if not ti ∈ g then
7: g = [min(gmin, ti),max(gmax, ti)]
8: end if
9: q = q′

10: else
11: Q = Q ∪ {qnew}
12: E = E ∪ {(q, ai, [ti, ti], qnew)}
13: q = qnew
14: end if
15: end for

The integration of a sequence’s corresponding path in the PTA is described in Al-

gorithm 3. For each new sequence, the integration starts from the initial state (line 2
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of Algorithm 3). A sequence is composed of tuples of events and time delay with the

last event. For each tuple (event ai, time delay ti), there are two possible cases:

— The current state has an outgoing transition labeled with the corresponding

event: If needed, the guard of this transition is extended to include the new ob-

served delay ti (lines 7), and its destination state becomes the current state (line

9).

— The current state has no outgoing transition labeled with the corresponding

event: A new transition labeled with ai and outgoing from the current state is

created, its guard is initialized with [ti, ti] (line 12). Its destination state is also

created (line 11) and become the current state (line 13).

At the end of the initialization process, the automaton is consistent with the input

sample S+, meaning that it accepts all its sequences. It accepts exactly the untimed

sequences (and their prefixes, since there is no particular set of final states). How-

ever, it accepts more timed sequences than the input sample, because of the guard

extensions (line 7).

S0 S1
S2 S3

S4

a [2, 3]
p=1.0

b [6, 6]
p=0.5

c [5, 5]
p=1.0

d [1, 1]
p=0.5

Figure 2.2 – A Timed Automaton initialized with a set of timestamped event se-
quences.

Example: Automaton initialization

We consider the following input sample composed of two sequences:

{〈 (a, 2) (b, 6) (c, 5)〉, 〈(a, 3) (d, 1) 〉}

Figure 2.2 presents the automaton initialized by this input sample.

First, an initial state S0 is created, it will be the starting state for each sequence.

The first tuple of the first sequence is (a, 2). Starting from S0, there is no transition

labeled with the event a, therefore, a transition is created towards a new state, S1,

and labeled with the event a and the guard [2, 2]. Now considering the second pair

(b, 6), a transition must be created from S1 to a new state S2, and this transition is
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labeled with the event b and the guard [6, 6]. This process is repeated until the end

of the sequence. The evaluation of the next sequence restarts from the initial state.

Since the first pair (a, 3) displays an event already carried by an outgoing transition

of S0, there is no need to create a new transition, and the time interval of the tran-

sition labeled with a is extended to [2, 3] to accept this new temporal value. Then, a

new transition is created from S1 for the last pair (d, 1).

2.3.2 State merging

State merging is the operation that induces generalization and reduces the size of

the automaton. Merge operations occur during second and third steps of TAG.

Algorithm 4 merge
Require: a DRTA A.
Return: a DRTA A.

1: q1, q2 = choose_location_to_merge() . based on k-futures
2: state_merge(q1, q2)
3: whileA is not determinist do . determinization process
4: e1, e2 = find_undeterministic_transitions()
5: e1 = (qs, a, g1, qd,1) and e2 = (qs, a, g2, qd,2)
6: if qd,1 6= qd,2 then state_merge(qd,1, qd,2)
7: transition_merge(e1, e2)
8: end while
9: return A

The initial reason for a state merge is the similarity of to states, evaluated on the

notion of k-future (described below). The states to merge are searched in a breadth-

first order (line 1 in Algorithm 4). When two states with the same k-future are found,

they are merged (line 2). The resulting state has a non deterministic choice of transi-

tion. Consequently, other merges not based on the notion of k-future (lines 6 and 7)

must be performed to return to a deterministic automaton.

k-future

As in k-Tail and Timed k-Tail, two states are considered to correspond to the same

state by TAG if their k-futures are identical, i.e., if the states offer the same paths in

the short-term.
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Definition: k-future of a state

The k-future of a state q of a DRTAA is the set of event sequences {a1, . . . , ap} with

p <= k such that there is a finite path 〈(q, a1, g1, q1), . . . , (qp−1, ap, gp, qp)〉 inA.

By controlling the length of the event subsequences that are compared, the pa-

rameter k allows tuning the trade-off between generalization and over-fitting of the

model. If the input sample is exhaustive or if detecting wrong behavior is more im-

portant than having a small and easily interpretable model, k should be increased. Its

default value is set to 2.

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

a
[0, 10]

d
[2, 5]

c
[1, 6]

a
[0, 8]

c
[5, 8]

b
[1, 10]

d
[0, 7]

b
[2, 3]

a
[4, 10]

b
[1, 6]

e
[3, 3]

c
[0, 10]

(a) Before.

S0

S1

S2

S3

S4

S5

S6

S7

S11

a
[0, 10]

d
[2, 5]c

[1, 6]

a
[0, 10]

c
[0, 10]

b
[1, 10]

d
[0, 7]

b
[2, 3]

e
[3, 3]

(b) After.

Figure 2.3 – A state merge (with determinization process).

Example: k-future

Let’s consider the automaton of Figure 2.3a, and k = 2, the number of future events

to consider per sequence. The k-future of the state S2 is a set of two sequences:

{〈a, b〉, 〈c〉}, with 〈a, b〉 corresponding to the path going through S2, S3 and S4, and

〈c〉 corresponding to the path going through S2 and S6. In this automaton, there is

another state having the same k-future: S8. TAG will consider that these two states

correspond to the same system’s state and should be merged.
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State merge

Two reasons can motivate a state merge: the states either have the same k-future,

or the merge is required to solve a determinism issue (caused by a previous state

merge).

Algorithm 5 state_merge

Require: a (D)RTAA, two states q1 and q2
Return: a (D)RTA such that L(A) ⊆ L(merge(A)).

1: for all e ∈ Ein(q2) do
2: replace e = (q, a, g, q2) with (q, a, g, q1)
3: end for
4: for all e ∈ Eout(q2) do
5: replace e = (q2, a, g, q) with (e1, a, g, q).
6: end for
7: Q = Q− {q2}
8: if q2 = q0 then q0 = q1
9: return A

Merging two states consists in accumulating their outgoing (Eout) and incoming

(Ein) transitions on the first state and to delete the second (procedure described in

Algorithm 5).

q1

a
g1

q2
a
g2

(a) Before.

a
g1

q2
a
g2

(b) After.

Figure 2.4 – State merge of q1 and q2 (without determinization process). The states are
merged because they have the same k-future (with k=1). The incoming and outgoing
transitions of the two states are accumulated on one and the other is deleted. The
resulting automaton is not deterministic (considering that g1 and g2 overlap).

As it can be seen in Figure 2.4, because of the transition accumulation, this op-

eration results most of the time in a non-deterministic automaton where multiple

transitions have the same event and the same new source state.
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Determinization process

Algorithm 6 transition_merge

Require: a (D)RTAA, two transtions e1 = (qs, a, g1, qd) and e2 = (qs, a, g2, qd)
Return: a (D)RTA such that L(A) ⊆ L(merge(A)).

1: let e1 = (qs, a, g1 ∪ g2, qd)
2: E = E − {e2}
3: return A

The determinization process consists in realizing all the merges necessary to de-

terminize the automaton (lines 3 to 8 in Algorithm 4). It is necessary after a state

merge based on the k-futures.

A non-determinism is caused by transitions with the same source state and same

event. These transitions should be merged into one. But if the transitions have a dif-

ferent destination state, the merge is not directly possible because a single transition

cannot lead to multiple states. Therefore, the destination states of the transitions

need to be merged first. Once the transitions have the same destination state, they

can be merged by extending the time interval of one of the transitions to encompass

both time intervals, and removing the other transition (Algorithm 6).

Example: State merge

Let’s consider the automaton of Figure 2.3a. S2 and S8 have the same k-future with

k = 2 (see previous example). Figure 2.3b present the result of this merge. In ad-

dition to the merge of S2 and S8, other pairs of states and transitions have been

merged during the determinization process (S6 and S12, S3 and S9, and S4 and

S10).

2.3.3 Transition splitting

The transition split is the main operation of the temporal refinement. It allows

distinguishing paths in the automaton where time is determinant for the behavior. It

leads to the creation of an additional transition and of a new state. The split proce-

dure relies on both automaton and input sequences analysis.

The following explanations are supported by Figure 2.5. Let’s consider a transition

e (Figure 2.5a):

e : q a−−−−−−→
[τmin,τmax]

q′
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q q’

Qpart1

Qpart2

a
[τmin, τmax]

(a) Before.

q q’

q"

Qpart1

Qpart2

a
[τ + 1, τmax]

a
[τmin, τ ]

(b) After.

Figure 2.5 – Transition splitting.

The state q′ has outgoing transitions whose destination states are either in the subsets

of states Qpart1 or Qpart2 (with Qpart1 ⊆ Q, Qpart2 ⊆ Q and Qpart1

⋂
Qpart2 = ∅).

Let’s consider the input sequences Se ⊆ S whose path goes through e.

The transition e is splittable on time value τ ∈ [τmin, τmax] if in Se ∈ S:

— e is triggered with a time value t ≤ τ when the path goes toward Qpart1 ,

— e is triggered with a time value t > τ when the path goes toward Qpart2 .

Additionally, e must be the only incoming transition of q′.

In such case, the transition e is replaced by two transitions e1 and e2, each one

leading exclusively to Qpart1 or Qpart2 (Figure 2.5b):

e1 : q a−−−−→
[τmin,τ ]

q′ and e2 : q a−−−−−−→
[τ+1,τmax]

q′′

We qualify the transitions e1 and e2 of twinned transitions.

After a split, all the sequences of the input sample are still accepted by the au-

tomaton.

S0

S1 S2

S3 S4

S5

a
[0, 10]

b
[2, 7]

b
[5, 8]

a
[0, 4]

c
[1, 3]

(a) Before.

S0

S1 S2

S3 S4

S6 S5

a
[0, 10]

b
[2, 4]

b
[5, 8]

a
[0, 4]

b
[5, 7] c

[1, 3]

(b) After.

Figure 2.6 – An example of transition split.
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Example: Transition split

Let’s consider the following event sequences:

{〈 (a, 2) (b, 8) 〉, 〈 (a, 10) (b, 5) 〉,

〈 (b, 7) (c, 1) 〉, 〈 (b, 5) (c, 3) 〉,

〈 (b, 4) (a, 4) 〉, 〈 (b, 2) (a, 0) 〉}

They have been used to construct the automaton displayed in Figure 2.6a. From

the event sequences, we can see that the transition between S0 and S3 (in red) is

triggered either with a delay lower than 5, and then followed by an event a, or with

a greater delay, and then followed by an event c. By knowing the time value, we

already know which will be the next event. There is a temporal determinism, and

the paths can be separated sooner. The result of the split is displayed in Figure 2.6b.

Algorithm 7 split

Require: a DRTA A = (Q,Σ, E , q0) and S ∈ P(TS(Σ, T ))
Return: a DRTA consistent with S

1: (e, τ, Qpart2) = choice_transition_to_split(A)
2: e = (q, a, [τmin, τmax], q′), τ ∈ [τmin, τmax], and Qpart2 ⊆ Q
3: modify e guard to [τmin, τ ]
4: add a new state q′′ toQ
5: add a new transition e2 = (q, a, [τ + 1, τmax], q′′) to E
6: for enext = (q′, a, g, qnext) ∈ E with qnext ∈ Qpart2 do
7: change enext source state to q′′

8: end for
9: return A

Algorithm 7 presents the split procedure. In line 1, a splittable transition e is iden-

tified, as well as the time value τ that create the determinism, and a subset of states

Qpart2 that is exclusively reached when e is triggered with a time value above τ . A new

transition e2 and its destination state q′′ are created (lines 4 and 5), and the guard of

e is divided between e and e2. Then the outgoing transitions of q′′ are partitioned be-

tween q′ and q′′ according to whether their destination state is in Qpart2 or not (lines 6

to 8).
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2.3.4 Additional considerations on the temporal refinement

During the temporal refinement step, both transition splits and state merges can

be performed. Transition splits have the priority, a merge will only be considered if

no split is possible. The reason for this is that a split modifies the k-future of certain

states and may make a state merge possible.

During this step, an overlapping-guards requirement is added for the state merges.

Besides from having the same k-future, the guards of at least one pair of transitions

labeled with the same event must overlap so that it does not cancel a split. Since this

requirement does not apply in step 2 (generalization step), it does not prevent the

merge of states having the same k-future, unless the paths do lead to different behav-

ior out of the scope of the k-future.

S3 S4 S5 S6

a
[2, 3]

b
[6, 6]

c
[0, 5]

S7 S8 S9 S10a
[4, 6]

b
[0, 5]

d
[1, 4]

(a) Unmerged parts

S3 S4 S5 S6

S10

a
[2, 6]

b
[0, 6]

c
[0, 5]

d
[1, 4]

(b) Merged parts

Figure 2.7 – Two parts of the automaton that would have been successively merged
and then split in the absence of the guard non overlapping requirement.

Example: Overlapping-guards requirement for merging states

Figure 2.7 illustrates the need for this requirement. S3 and S7 have the same k-

future with k = 2. In step 2, they have been merged, leading to the automaton of

Figure 2.7b. In step 3, TAG identifies from the input sample that knowing the tem-

poral value when triggering the transition from S4 to S5 allows us to know which

will be the next transition. Therefore, the transition from S4 to S5 is split. The same

happens to the transition from S3 to S4 and we get the automaton of Figure 2.7a.

Those splits have been applied because we already know what will be the last

event (c or d) while being in S3 thanks to the timing information. There is a tempo-

ral determinism on the behavior, and the paths have been separated for a good rea-

son. Without the overlapping-guards requirement, S3 and S7 would be re-merged

with the determinism procedure, returning to the automaton from Figure 2.7b (and

creating an infinite loop between 2.7a and 2.7b). This is the reason of the overlapping-
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guard requirement in step 3, the states are not merged because the guard intersec-

tion is empty ([0, 5] ∩ [6, 6] = ∅), and therefore it would have led to a split.

2.4 Consistency proof

Theorem. The DRTA learned by TAG is consistent with the input sample S, i.e., for a

set of sequences s ∈ S, S ⊆ L(TAG(S)) 1.

Proof. We recall that a sequence s =< (a1, t1), . . . , (an, tn) > is consistent with an

automatonA if there is a finite path inA starting in the initial state:

q0
a1−→
g1

q1 → . . .
an−→
gn

qn

with ∀i ∈ [1..n] ti ∈ gi.
The language ofA consists of all the timed event sequences consistent with it.

To show that S is included inL(TAG(S)), it is sufficient to show the following three

lemmas:

Lemma 1. If s ∈ S then s ∈ L(Init(S))
All sequences of S are accepted by the automaton after the initialization step.

Lemma 2. If s ∈ L(A) then s ∈ L(merge(A))
If a sequence is accepted by the automaton, then it is also accepted after a state merge

in the automaton.

Lemma 3. If s ∈ L(A) then s ∈ L(split(A))
If a sequence is accepted by the automaton, then it is also accepted after a transition

split in the automaton.

If these three lemmas are verified, the TA constructed by the initialization step

is consistent with S, and the state merging and transition splitting operations don’t

change this.

We now demonstrate the three lemmas.

1. L(TAG(S)) is the language of the automaton learned by TAG from an input sample S.
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2.4.1 Lemma 1: If s ∈ S then s ∈ L(Init(S))

Proof. The initialization consists in taking each sequence s of S and, if necessary,

modifying the automaton to accept s. The modifications of the automaton can only

increase the timed language of the automaton. There are three possible cases:

— There is already a path in the automaton for s: the automaton is unmodified

and therefore still accepts the previously processed sequences.

— There is a path in the automaton for s if we disregard the time values: the guards

are extended to accept the new observed time values, a guard g becoming g′ ⊂ g,

which only increase the possible time values for the event sequences.

— There is no path in the automaton for s: transitions are added from the state

where the path stops, which does not suppress any existing path.

2.4.2 Lemma 2: If s ∈ L(A) then s ∈ L(merge(A))

Proof. A merge of two states based on identical k-future induces this first state merge,

then successive state merges and transition merges during the determinization pro-

cess (as detailed in Section 2.3.2). It is therefore necessary to show that the sequences

s ∈ S are still accepted after the operations of state merging and transition merging.

Merge of two states

Let’s consider the states q1 and q2, and their sets of incoming and outgoing transitions

E1,in and E1,out, and E2,in and E2,out, respectively. Merging two states consists in accu-

mulating their outgoing and incoming transitions on the first state (q1) and to delete

the second (q2).

For e ∈ E2,in, e = q
a−→
g
q2 becomes e = q

a−→
g
q1 and is added to E1,in. For e ∈ E2,out,

e = q2
a−→
g
q becomes e = q1

a−→
g
q and is added to E1,out.

There are two possible cases for the sequences s ∈ S originally going through the

deleted state q2:

— s was going through a transition e′ = E2,in then a transition e′′ ∈ E2,out: the desti-

nation state of e′ and the source state of e′′ are now q1.

— s was going through a transition e′ ∈ E2,in then stopping in q2: the destination

state of e′ is now q1 and s stops in q1.
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For the sequences originally going through q1, the original incoming and outgoing

transitions remains in E1,in and E1,out. In all cases, the paths are not discontinued. This

holds for any merge of state, therefore how are selected the states to merge has no

impact on the proof.

Merge of two transitions

Two transitions can be merged only if they have the same source state, the same

event, and the same destination state. The result of the merge of e1 = q
a−→
g1

q′ and

e2 = q
a−→
g2

q′ is a single transition e1 = q
a−−→

gnew
q′ with gnew ⊆ g1 and gnew ⊆ g2 since

gnew = g1 ∪ g2. This operation deleted no path.

2.4.3 Lemma 3: If s ∈ L(A) then s ∈ L(split(A))

q q’

Qpart1

Qpart2

a
[τmin, τmax]

(a) Before.

q q’

q"

Qpart1

Qpart2

a
[τ + 1, τmax]

a
[τmin, τ ]

(b) After.

Figure 2.5 – Transition splitting. (repeated from page 55)

Proof. As in Section 2.3.3, let’s consider a transition e = q
a−−−−−−−−→

[ti,min,ti,max]
q′ (Figure 2.5a).

The state q′ has outgoing transitions whose destination states are either in the subsets

of states Qpart1 or Qpart2 from Q (with Qpart1

⋂
Qpart2 = ∅).

In the input sequences s ∈ S, the sequence subsets σe and their associated path

subsets πe corresponding to the passage through e can take the two following forms:

— The sequence continues: σe = {...(a, ti)(ai+1ti+1)...} and πe = ...q
a−→
gi

q′
ai+1−−→
gi+1

qi+1...

with gi = [ti,min, ti,max] and either qi+1 ∈ Qpart1 or qi+1 ∈ Qpart2 .

— The sequence stops after the transition: σe = {...(a, ti)} and πe = ...q
ai−→
gi
q′

with gi = [ti,min, ti,max].

The transition e is splittable on time value τ ∈ [τmin, τmax] if for all σe and πe in the

sequences continuing:
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— qi+1 ∈ Qpart1 when ti ≤ τ ,

— qi+1 ∈ Qpart2 when ti > τ .

For the sequences stopping after e, ti can have any value in [τmin, τmax].

The split consists in distinguishing the paths leading toQpart1 from the paths lead-

ing to Qpart2 . A new state q′′ is created, and e is replaced by two new transitions:

e1 : q a−−−−→
[τmin,τ ]

q′ and e2 : q a−−−−−−→
[τ+1,τmax]

q′′

The source state of the transitions originally outgoing from q′ and having a source

state in Qpart1 is replaced by q′′. When a sequence was passing through e with a delay

ti ≤ τ , its path now goes through e1 and either stops or continue to Qpart1 , and when

a sequence was passing through e with a delay ti > τ , its path now goes through e2

and either stops or continue to Qpart2 . The other paths remain unchanged because q′

originally only had one incoming transition, the splitted transition. Consequently, all

the sequences s ∈ S are still accepted by the automaton.

2.5 Experiments on synthetic data

To evaluate TAG, we addressed five questions:

Q1. How does the parameter k impact the result?

Q2. How does the state merging order impact the result?

Q3. What is the contribution of each operation to the result?

Q4. How does TAG compete with the State-of-the-Art algorithms?

Q5. How does TAG scale with the complexity of the data?

This evaluation is based on synthetic data in order to have a ground truth and to

control the complexity of the learning task.

2.5.1 Method

TA learning from observational data can be hard to evaluate because of the ab-

sence of ground truth about the model to obtain. As long as the automaton accepts

the whole input sample, it is impossible to assess that a model is better than another
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without any additional positive or negative data. In order to have a ground truth to

evaluate TAG, we realized experiments on synthetic timed event sequences gener-

ated from synthetic model TAs. The goal is therefore to recover the model TA at the

origin of the timed event sequences. Figure 2.6 presents the experimental workflow

for each target automaton.

1. Target TA generation

Number of states
Alphabet size
Outdegree...

TA generator

Target automaton

S0

S2

S3

S1

e [0, 7]

c [7, 12]

e [8, 20]

a [3, 9]

b [7, 15]

d [11, 14]

c [10, 16]

2. Event sequences generation

S0

S2

S3

S1

e [0, 7]

c [7, 12]

e [8, 20]

a [3, 9]

b [7, 15]

d [11, 14]

c [10, 16]

Number of positive sequences
Number of negative sequences

Sequences generator

Positive sequences
(learning & validation)

a:4 a:1 a:9 b:3 a:14 a:12 a:9 a:2
a:16 b:14
a:14 a:3 a:10 b:2 b:16 a:12 b:4 b:15
a:5 b:15
b:14
a:9 a:3

Negative sequences
(validation)

d:6 b:15 b:15
d:5 b:15 a:9
d:14 a:6

3. TA learning

a:4 a:1 a:9 b:3 a:14 a:12 a:9 a:2
a:16 b:14
a:14 a:3 a:10 b:2 b:16 a:12 b:4 b:15

Positive learning sequences

RTI+

S0

S4

S1

S5

S2

S3

b [0, 20]

e [12, 15]

a [11, 14]

c [3, 8]

a [9, 9]
a [7, 8]

e [9, 14]

d [5, 17]

c [1, 13]

a [13, 14]

TkT

S0

S5

S7

S3

S6

S2

S4

S1

e [0, 20]

a [2, 4]

e [3, 4]c [5, 10]

d [16, 19]

d [1, 2]

d [3, 13]

e [14, 16]

e [9, 13]

c [1, 15]

d [2, 14]
b [4, 17]

b [0, 2]

c [8, 9]

TAG

S0

S2

S3

S1

e [0, 7]

c [7, 12]

e [8, 20]

a [3, 9]

b [7, 15]

d [11, 14]

c [10, 16]

Learned TA

4. Learned TA evaluation

S0

S2

S3

S1

e [0, 7]

c [7, 12]

e [8, 20]

a [3, 9]

b [7, 15]

d [11, 14]

c [10, 16]

Each learned automaton
d:6 b:15 b:15
d:5 b:15 a:9
d:14 a:6

Negative
validation
sequences

a:5 b:15
b:14
a:9 a:3

Positive
validation
sequences

Precision
Recall
F1-score

Figure 2.6 – Experimental workflow.
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Timed Automata generation

The first task is to generate synthetic model TAs.

The model TAs consist in randomly generated DRTAs that are consistent with

some user defined parameters. The parameters and their default value are the fol-

lowing:

— Alphabet size (5): number of different events,

— State number (10),

— Outdegree (1.5): average number of outgoing transitions per state,

— Twinned-transitions proportion (0.25): transitions from the same state labeled

with the same event but having non-overlapping guards, these twinned-transitions

create an untimed undeterminism,

— Minimal and maximal interval bounds ([0, 20]).

It is important to note that the alphabet size is naturally constraint by the state num-

ber and the outdegree, as well as the twinned transition proportion is constraint by

the outdegree. An example of generated automaton with these default values is dis-

played in Figure 2.7.

S0

S5

S2

S9 S8

S6

S4

S1

S3

S7

d
[17, 20]

c
[7, 8]

e
[8, 12]

b
[1, 6]

c
[11, 19]

d
[9, 19]

c
[5, 6]

d
[0, 16]

d
[2, 14]

c
[4, 11]

b
[15, 17]

e
[6, 15]

a
[1, 5]

b
[1, 14]

e
[8, 12]

Figure 2.7 – Example of generated automaton.

The generated automaton is output in a DOT file to be easily reused by other pro-

grams.
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The source code in Python is available on a public repository 2 and Appendix A

presents how to use it.

Timed event sequences generation

Timed event sequences belonging or not in the language of a given TA can be

generated to be used as input sample for a TA learner or to evaluate a learned model.

Positive timed event sequences

To generate positive timed event sequences, we randomly select each event from

the current state’s outgoing transitions, independent of the previously selected events.

The timed event sequences generator can take into account the probabilities on the

transitions. The delay is also chosen uniformly at random within the interval corre-

sponding to the event’s transition. If there is no designated final state, then each state

has an equal probability of being the final one in the sequence. If a final state is de-

fined, then each state is associated with a probability that the sequence will end if it

passes through it. Each timed event sequence is generated independently of the oth-

ers.

Other more sophisticate approaches exists such as Barbot, Basset, and Donze (2023)

that proposes a sampling method that favor a better distribution over the language of

the TA. It could be interesting to apply this sampling strategy for future experiments.

Negative timed event sequences

For the negative timed event sequences, the objective was to generate data that

was close but not consistent with the automaton. The generation procedure is the

same as for the positive timed event sequences, but with a probability to insert an er-

ror at each transition. The error can be a time value outside the guard of the selected

transition, or a time value and an event corresponding to a transition outgoing from

another state than the current one. There is a single error per negative timed event

sequence.

2. https://gitlab.inria.fr/lcornang/tag
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Evaluation metrics

To evaluate the learned TAs with the synthetic timed event sequences, two accu-

racy scores were selected. Given a set of test event sequences tsstest = tss+, tss−, an

automaton learned using positive event sequences tsstrain (with tsstrain ∩ tsstest = ∅)
should accept all the positive timed event sequences tss+ and reject all the negative

timed event sequences tss−. We define the scores using the notations of Table 2.1.

Table 2.1 – Confusion matrix.

Consistency with learned TA
Accepted
(tssaccepted)

Rejected
(tssrejected)

Consistency with
model TA

Accepted
(tss+)

True positive
(tssaccepted ∩ tss+)

False negative
(tssrejected ∩ tss+)

Rejected
(tss−)

False positive
(tssaccepted ∩ tss−)

True negative
(tssrejected ∩ tss−)

The True Positive Rate (TPR), also called recall, is the probability for an event se-

quence consistent with the model to be recognized by the learned automaton. It is an

estimation of the part of the language of the model automaton that is well learned.

TPR = |tssaccepted ∩ tss+|
|tss+|

The Positive Predictive Value (PPV), also called precision, is the probability for an

event sequence recognized by the learned automaton to be consistent with the model

automaton.

PPV = |tssaccepted ∩ tss+|
|tssaccepted|

A high recall and precision are both desired, but are in practice rather impossible

to have simultaneously. As we haven’t a specific field of application, we consider them

equally important. The F1-score is the harmonic mean of these two measures. Aiming

for a good F1-score leads us to a good trade-off between recall and precision.

PPV = 2× PPV × TPR
PPV + TPR
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Runtime evaluation

The runtime was measured on a MacBook Pro with an Intel Core i9 processor

clocked at 2,4 GHz and a memory of 16 Go 2667 MHz DDR4. We report the median

and the interquartile range, all factor’s combination included.

Statistical tests

The significance of a factor effect on the scores is assessed through a variance

analysis (ANOVA) with a risk α = 0.05. The significance of a difference on the scores

between two configurations is assessed through a pairwise t-test with a risk α = 0.05.

On the figures, a star indicates a statistical difference at risk below α = 0.05.

2.5.2 TAG’s parameter and operations impact

These experiments were realized from 200 model TAs generated with the default

values, and with 500 positive timed event sequences for each model TA for the learn-

ing plus 100 negative and 100 positive sequences for the evaluation.

Impact of the state search order for merges

The merge of two states modify the k-future of some states because of the de-

terminization process. Consequently, depending on the order in which the states

are merged, the resulting automaton may be different. To evaluate this impact and

choose a state search strategy, four orders were tested for TA learning with TAG on

the same synthetic data. When the situation arises in grammatical inference, in the

absence of heuristic, the states are generally evaluated from the initial state of a Pre-

fix Tree Acceptor (PTA), i.e., the states corresponding to event sequences beginning

first (Oncina and García 1992; Carrasco and Oncina 1994).

Four state search orders were tested with different hypothesis. The first strategy is

breadth-first search (BFS) (Figure 2.8a), in analogy to grammatical inference and with

the idea that equivalent states are expected to be found at the same position in the

PTA. The second strategy is depth-first search (DFS) (Figure 2.8b), which can be seen

as a factorization of the automaton per timed event sequence. The last strategy is

bottom-up breadth-first search (BUBFS) (Figure 2.8c), which could allow a reduction

of the runtime by skipping the determinism process. Finally, as a control strategy, a

random choice within the candidates for merging was also tested (Figure 2.8d).
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1

2 3

4 5 6

7 8

(a) Breadth-first
search (BFS).

1

2 7

3 6 8

4 5

(b) Depth-first search
(DFS).

8

6 7

3 4 5

1 2

(c) Bottom-up
breadth-first search

(BUBFS).

3

8 1

2 6 5

7 4

(d) Random (R).

Figure 2.8 – Search order strategies for state merging candidates.
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Figure 2.9 – F1-score and runtime in function to the search order.

The runtime (Figure 2.9a) is slightly shorter on average with BUBFS as expected,

but the difference with the other search orders is not statistically significant due to

the dispersion.

Regarding the recall and precision of the learned models, there is no recall differ-
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ence, but the random and bottom-up breadth-first search lead to a loss of precision

in comparison to BFS and DFS, resulting in a better F1-score for those strategies (Fig-

ure 2.9b).

The selected search strategy for TAG is the breadth-first search because there is no

result improvement in using a depth-first search, and this strategy is more studied in

the automata learning field.

Impact of parameter k

The parameter k controls the level of generalization in the learned model by tun-

ing the degree of similarity that two states must have in order to merge.
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Figure 2.10 – Mean precision and recall in according to the value of parameter k.

As k increases, the precision tends to increase while the recall decreases (Fig-

ure 2.10): the model accepts less new timed event sequences and is closer to the input

sample. However, the gain in precision is inferior to the loss of recall.

Besides from these experimental results, the adequate value for k is application

specific. First, the dependencies between events may be more or less long. Addition-

ally, there can be a visual impact and thus an interpretability impact if the model is

meant to be human-understandable. Therefore, the default value is set to k = 2, let-

ting the user freedom to tune it in function to its application and its needs.

Regarding the runtime, increasing k increases the time necessary for the learning

process, probably because of the time required to compute the k-futures that tends

to have more branching.
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Ablation study

To confirm the importance of each steps of TAG, the learning was also realized

with TAG ablated versions of the algorithm. The compared versions consist of either:

— Only the first step (tree-shaped automaton initialization),

— The two first steps (initialization and merges),

— All the steps (initialization, merges, and splits).

0.7

0.8

0.9

1.0

F1 score Precision Recall

Components

Initialization

Initialization +
merges

Initialization +
merges +
splits

Figure 2.11 – Ablation study on recall, precision and F1-score.

Figure 2.11 compares the precision, the recall, and the F1-score obtained for the

learned TA.

With only the initialization, the precision is maximal since there is no generalization,

the automaton language corresponds to the input traces (plus the values inside the

guard intervals). For the same reason, the recall is lower than with the merges and the

splits.

Merges induce a significant augmentation of the recall by generalizing the model.

Lastly, TAG recall and precision are improved by the splits, leading to a better F1-

score.

Beyond these positive results on synthetic random data, the importance of the

splits becomes more evident in the case of systems where some events would happen

after a first event only within a limited time window and never otherwise. In an TA

learned with splits, the timed condition would be necessary to access this part of the

TA.
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2.5.3 Scalability experiment

To study how TAG and the state-of-the-art algorithms scale with the complexity

of the input data, we identified multiple factors possibly inferring the runtime and

model quality. There are two types of factors. The first factors are inherent to the ex-

pected model:

— The alphabet size (number of different events),

— The number of states of the system,

— The outdegree (average number of outgoing transitions per state),

— The proportion of twinned-transitions (transitions from the same state labeled

with the same event but having non-overlapping guards), these twinned-transitions

create an untimed undeterminism.

In real life, these factors are not controllable, as the expected model depends on the

studied system. The second type of factor is related to the learning process and these

can be, to some extent, adjusted by the user:

— The size of the input sample tsstrain i.e., the number of timed event sequences

the algorithms will have to process,

— TAG’s parameter k, already studied in Section 2.5.2.

Table 2.2 – Factors order and values (default value in bold).

Factor Tested values

Alphabet size 2, 4, 5, 6, 8, 10, 15
Outdegree 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5

State number
4, 6, 8, 10, 15, 25, 50, 75,
100, 500

Twinned transitions
proportion

0, 0.10, 0.25, 0.50, 0.7

Number of timed event sequences 50, 100, 500, 1000, 2500

We defined a set of values to test for each factor (Table 2.2). To assess the effects of

each factor separately, we varied them one at a time. When one factor varies, the oth-

ers have a fixed value (in bold in Table 2.2). We then ranked these factors according

to the estimated impact they would have on the model quality and the runtime. We

tested the factors in order of increasing impact (average estimated impact on model

quality and runtime), which corresponds to the order of the factors in Table 2.2.
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We generated 200 TA per factor combination to gain confidence in the results.

The learning datasets are composed of runs of these model TAs (tsstrain), each run

being a timed event sequence. For the evaluation of the learned TA, we also generated

100 other timed event sequences consistent with the model and 100 event sequences

inconsistent with the model (tsstest = tss+, tss−).
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Figure 2.12 – Impact of the alphabet size of the model TA on TAG.

The precision and the recall are relatively stable and even tends to increase with

an alphabet size ranging from 4 to 15 (Figure 2.12). With an alphabet size of 2, the

recall almost reaches 1 at the cost of a low precision. This can be explained by over

generalized automata because of the limited number of possible k-future and there-

fore the many possible merges.

Globally, there is no impact of the alphabet size on the runtime.

Outdegree

The increase of the outdegree (Figure 2.13) penalize both recall and precision,

with a bigger impact on the latter. Automata with a high outdegree naturally have

a larger language, which make their identification with the same number of example

harder. The bigger loss of precision indicates that in addition to recognize fewer se-

quences of the model TA, the part of sequences wrongly recognized also increases,

which may indicate that the realized merges are not the good one.

There is an important impact of the outdegree on the runtime, with an exponen-

tial evolution and a factor 5 on average between an outdegree of 1 and of 2.5. It means
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Figure 2.13 – Impact of the outdegree of the model TA on TAG.

that more merges and splits were necessary for the learning process.
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Figure 2.14 – Impact of the state number of the model TA on TAG.

All recall, precision, and runtime are affected by an increasing state number, with

the same analyze as for the outdegree (Figure 2.14).

Twinned transitions proportion

The precision decreases when the twinned transition proportion grows. Missed

splits leads to timed event sequences wrongly accepted. There is no statistically sig-

nificant evolution of the recall, which stays high.
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Figure 2.15 – Impact of the number of timed event sequences of the model TA on TAG.

Surprisingly, the runtime decreases as the twinned transition proportion increases,

but in smaller proportion as for the other factors.
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Figure 2.16 – Impact of the number of timed event sequences of the model TA on TAG.

The recall increases with the number of timed event sequences in the input data

sample (Figure 2.16), with a stabilization of the score at 500 timed event sequences for

our parameter’s combination. This doesn’t come along with a loss in precision, which

stays close to 1. This gain in quality is due to a larger representation of the language

of the model automaton in the input sample, allowing a better identification.

It is at the cost of the runtime because the PTA is naturally bigger and requires
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more merges (and splits). The runtime augmentation seems to be linear with the

number of timed event sequences.

2.5.4 Comparison with the State-of-the-Art algorithms

To compare TAG to the State-of-the-Art algorithms presented Section 1.3.2, we

also tested RTI+ and TkT on the data of TAG’s scalability experiment (Section 2.5.3).

We were not able to test GenProgTA because their source code is not available, and

their implementation does not allow the addition of new data. The Figures of the

results obtained for each factor are available in Appendix B.

Table 2.3 – Comparison of the runtime on the scalability experiment data.

Algorithm Median (s) IQR (s)

TAG 0.466 0.249
TkT 0.646 0.064
RTI+ 0.218 0.247

Globally, the runtime of the three algorithms is comparable, with RTI+ being faster

than TkT and TAG (Table 2.3). This can at least partly be explained by the languages

in which they are coded (C++ for RTI+, Java for TkT, and Python for TAG).
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Figure 2.17 – Comparison of the quality scores on the scalability experiment data.
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Regarding the scores (Figure 2.17), TAG significantly outperforms the other algo-

rithms thanks to a precision not reached by the other algorithms while keeping a

competitive recall. It is important to note that TkT does not try to learn deterministic

TAs in absence of nested operation, contrarily to TAG and RTI+. Consequently, there

will be multiple paths possible in TkT’s automata for a single timed event sequence,

increasing its chance to be accepted. Therefore, its recall naturally tends to be higher

and its precision lower. RTI+’s low precision is mostly due to its bad management of

the timing constraints.

There are some differences in the impact of the factors on the quality of the mod-

els of the three algorithms. TkT is less impacted by the outdegree than the other al-

gorithms, it may be because it has no determinism requirement and thus continue

to allow many behaviors even for a same event sequence (its precision does decrease

as the other). TAG’s precision is less impacted by the state number than the others,

while its recall is more. It may generalize less in situation of state explosion because

the k-future becomes more complex merge after merge.

2.5.5 Conclusion on the experiment on synthetic data

The quality of the models learned by TAG is affected by the complexity of the tar-

get model. The factors reducing the part of the language represented in the input

sample such as the outdegree or the state number penalize the recall and the preci-

sion of the models. On the contrary, increasing the part of the language represented

with more timed event sequences increases the quality of the TA. A high twinned

transitions proportion affects the precision because a missed split is more critical

than a missed merge by allowing incorrect timed event sequences. Finally, TAG can

learn a TA in less than one second on average (0.7010 s), with an extremum of 16 s for

2500 timed event sequences in the input sample.

2.6 Experiment on real data: TV logs

To assess TAG’s ability to learn an interpretable and exploitable model from real

data, we used the logs of the programs of the Canadian TV channel CBC Windsor

(Canadian Radio-television and Telecommunications Commission 2015). The objec-

tive was to recover the model of a day of programs summarizing the information in
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the logs.

We first used the data of the Friday mornings of August 2020. These sequences

are expected to be similar and thus lead to a compact model. Then, we used the data

of every day of July and August 2020, which corresponds to the Canadian summer

school vacations. Here, the sequences are more varied, for example the programs

broadcasted in the Sundays are not the same as the programs of the Fridays. Con-

sequently, the corresponding automaton is more complex, but information can still

be obtained from such model.

2.6.1 Method

Table 2.4 display an extract of the data. The logs are divided by day from 6:00 AM

to 5:59 AM. Regarding the Friday morning logs, the sequences stop at 12:00 AM. The

logs contain, among others, information about the class of the program (commercial

message, promotion for a program...), its category (program for children, news...),

its starting and duration, or its title. A timed event sequence is composed by the se-

quence of entries class (or category for the program class) and the delay since the last

entry (i.e., the duration of the last entry).

2.6.2 Friday mornings subset

The TA learned by TAG with the TV logs of the Friday mornings (329 events) is

shown in Figure 2.18. The guards are originally in seconds and have been formatted

to make the figure more comprehensible. The first guard in bracket limits the delay of

occurrence after the last event. The second guard in brackets preceded by the letter

“t” corresponds to the value of a global clock started at 6:00 AM in the initial state and

never reset.

This TA has 6 states, 10 transitions, and 6 distinct events. This TA shows that after

the morning news, which lasts about one hour (A on the figure), and a session of ads

or program promotions, films and/or children’s programs follow one another until

11:00 AM (B on the figure). Children’s programs are more probable, and these pro-

grams are frequently cut by interstitials. Then, the ads and program’s teasers are back

and cut children’s programs until the 12:00 AM news (C on the figure). The interest of

the probabilities and the guards on the global clock is demonstrated here, since they

provide substantial information for the system comprehension.
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Figure 2.18 – Learned TA from the Friday morning logs of a Canadian TV channel.

2.6.3 July and August subset

Table 2.5 – Queries translated in natural language, result, and execution time.

Query Result Time (s)

What is the probability to watch one hour of children’s
program without interruption? [0.07,0.08]

0.722

If we watch this channel all the day long, are we sure to
have, at some point, a children’s program?

No 0.003

Between 10h and 11h, what is the probability to watch
a children’s program? [0.46,0.56]

0.049

Globally, is it more probable to have a film than a chil-
dren’s program?

No 0.011

The TA learned with the whole data of July and August (54065 events) is naturally

much bigger since the time slot is wider and the day types differ. 15240 merges and

12 splits were necessary. It has 65 states, 125 transitions, and 14 distinct events.
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2.7. Conclusion

To obtain information from the automaton learned from the summer data, we can

take advantage of both the classical expressiveness of TAs and the probabilities asso-

ciated with TAG’s TA transitions. We formulated questions about the TV programs

using logical queries answered by a model-checking algorithm (Section 1.2.1). We

used UPPAAL SMC Bulychev et al. 2012, a probabilistic model-checking tool for TAs

for TAs. The result of UPPAAL SCM queries is obtained by monitoring simulations of

the system and by statistical hypothesis testing. The answer is an interval of proba-

bility with a confidence of 0.95 of being within. We used both classical UPPAAL and

UPPAAL SMC queries and for the latter, the number of simulations was fixed at 10000.

Table 2.5 presents the queries submitted to the model-checker translated in nat-

ural language, the results, and the execution time. For instance, the first question in

Table 2.5 was submitted to the model-checker as follows:

E <> Actions.S_CHILDREN_PROGRAMS and Automaton.d > 3600

In less time than a human would take to analyze even the first TV programs automa-

ton, the responses to useful questions.

2.7 Conclusion

The main contribution of this chapter is TAG, a TA passive learning algorithm

from logs of real-time systems. The subclass of TA learned by TAG is a DRTA with

an additional global clock and probabilities on transitions. The algorithm is based on

two operations, state merges and transition splits, that are applied on an initialized

prefix tree automaton. A state merge requires identical k-future and the transition

split is applied where it brings out a temporal determinism. The unique parameter

k offers a trade-off between precision and recall of the learned model, depending on

the application domain or the desired level of interpretability.

Experiments on synthetic data have shown that it produces models that achieve

a better trade-off between recall and precision than the State-of-the-Art TA passive

learners. An additional experiment on real data demonstrates the interpretability of

the learned models.
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INTRODUCTION OF THE PART

Nowadays, systems’ observational data often take the form of time series, thanks

to the proliferation of sensors that record data, mostly numerical, over time. Conse-

quently, most of the new machine learning and data analysis techniques are specif-

ically designed for numerical and continuous data, and achieve good performance.

However, these methods often face challenges such as the need for a significant amount

of data to fine-tune their parameters, computational complexity, and a lack of ex-

plainability. Meanwhile, symbolic methods, such as TAs-based methods, which do

not suffer from these limitations and have an extensive literature, have been over-

looked due to their direct inapplicability to this type of data. The discretization of

continuous data bridges the gap between symbolic methods and time series, by con-

verting the time series into sequences of symbols (interpreted as events).

The second part of this thesis primarily focuses on the discretization problem to

enable the learning of TAs from time series. An application of anomaly detection in

time series based on TA is also presented.

We begin by considering the discretization problem in a univariate setting, and fo-

cus on identifying event sequence characteristics that are conducive to learning TAs

with TAG. First, we modify an existing discretization algorithm, Persist, whose score,

the persistence, is interesting for learning TAs. Afterward, we extract this score and

combine it with other identified key characteristics. The result is MOODES, a multi-

objective optimization-based approach for time series discretization specifically de-

signed for TA learning. Finally, we propose an approach for detecting anomalies in

time series data based on ensembles of TAs that take advantage of MOODES’ ability

to produce multiple discretization solutions.

Secondly, we address the multivariate problem and investigate the identification

of interactions between components of a system. The aim here is to learn synchro-

nized TA (Timed I/O Automata). We propose a discretization algorithm that identifies

and preserves the synchronizations between variables.
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CHAPTER 3

STATE OF THE ART AROUND TIME SERIES

Before investigating discretization methods specifically designed for TA learning,

we present existing methods related to time series discretization, as well as tech-

niques for rule discovery in time series where the problem is related to interaction

identification.

Let’s first recall the definition of a time series.

Definition: Time series

A (univariate) time series {xt}, t ∈ T is an ordered collection of values recorded over

time domain T .

Formally, time series values can be either numerical or categorical, however, time

series is commonly associated with numerical values. In this manuscript, the term

“time series” is employed for numerical time series while categorical data is associ-

ated to “event sequences”.

Definition: Multivariate time series

A multivariate time series {Xt}, t ∈ T is an ordered collection of vectors of values

recorded over time domain T .

A multivariate time series can be decomposed into multiple univariate time se-

ries.

3.1 Time series discretization

Time series discretization, also known as symbolization, is a pre-processing step

used to reduce the dimensionality of the data, to reduce noise, or to enable the use of

symbolic methods.
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Definition: Time series discretization

The discretization of a real-valued signal consists in converting it into a sequence

of discrete symbols.

Discretization techniques differ in the rules used to map the continuous data

points to the discrete symbols. This implies partitioning either the value range of the

variable(s) x, or the time domain T . The partition limits are referred to as cutpoints

or breakpoints.

Example: Time series discretization via cutpoints in value range

Figure 3.1 displays a univariate time series that was recorded at regular time step.

The blue lines represent cutpoints, which create a partition of the value range into

bins or intervals that are each associated with a symbol (a, b, ...). Each data point

can then be replaced by the symbol of the interval it falls in (cccdddcba...) (Algo-

rithm 8). Furthermore, it can be summarized even more by keeping only the se-

quence of different symbols associated to their duration ((c, 3), (d, 3), (c, 1), (b, 1),

(a, 2)...).
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Figure 3.1 – Discretization of a time series. The blue lines correspond to cutpoints on
the value range of the variable, and form intervals corresponding to symbols (a,b,...).
The time series is discretized by replacing each value by the corresponding symbol
(cccdddcba...).

We provide a non-exhaustive list of discretization techniques, from the simplest

to methods that consider multiple dimensions (variables) of the time series.
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3.1. Time series discretization

Algorithm 8 Discretization via cutpoints in value range

Require: a set of cutpoints cps, a univariate time series ts
Return: a discretized time series discretized_ts

1: discretized_ts = empty vector of the same size as ts
2: alphabet = vector containing the different symbols
3: for index = 0 to |ts| − 1 do
4: symbol = 0
5: while ts[index] ≥ cps[symbol] and symbol < |cps| do
6: symbol = symbol + 1
7: end while
8: discretized_ts[index] = alphabet[symbol]
9: end for

10: return discretized_ts

3.1.1 Univariate discretization

The univariate discretization methods transform a time series defined in a single

dimension into a sequence of symbols.

Equal Width and Equal Frequency Discretization

Partitioning the value range into n bins of equal width is the most straightforward

approach to determining cutpoints. The discretization displayed in Figure 3.1 is an

Equal Width Discretization (EWD).

To better account for the true value distribution of the time series, the Equal Fre-

quency Discretization (EFD) partitions the value range into n bins of equal frequency.

It is especially recommended over an EWD when the data is unevenly distributed.

Symbolic Aggregate approXimation

Symbolic Aggregate approXimation (SAX) (Lin et al. 2003) is a time series symbolic

representation that is widely used in the literature. It relies on the hypothesis that

time series usually have a Gaussian distribution. Figure 3.2 illustrates the approach.

First, the dimension of the data is reduced by applying a Piecewise Aggregate Ap-

proximation (PAA) on the normalized time series. The time domain is divided into w

equal-sized bins. In the PAA representation, each point takes the mean value of its

bin.
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Figure 3.2 – SAX representation of a time series. The normalized time series is in gray
and its Piecewise Aggregate Approximation (PAA) representation is in black and bold
(w = 6). The cutpoints in blue were set according an EWD of the Gaussian curve
(k = 4).

Then, under the assumption that normalized time series have a normal distri-

bution, an equal frequency binning of the Gaussian curve is performed, giving the

cutpoints. The time series data points are replaced by the symbol of the bin in which

their value falls in the PAA representation.

SAX requires two parameters, the number of time intervals w for the PAA and the

number of symbols k.

There exists several variations of SAX such as aSAX (Pham, Le, and Dang 2010)

that overcome the Gaussian distribution assumption by using the k-means algorithm

after the PAA, or 1d-SAX (Malinowski et al. 2013) that takes into account the trend of

the segments in addition to the mean value.

Persist

Persist is a method proposed by Mörchen and Ultsch (2005) that produces cut-

points in the value range to discretize a univariate time series. It was employed as

preprocessing step to find patterns in time series in a language called Time Series

Knowledge Representation (TSKR) (Mörchen and Ultsch 2007).

Persist is based on the assumption that the time series are the reflection of an

underlying process that consists of recurring persisting states, and it aims to restore

these states in the form of symbols in a discretized version of the time series. Mörchen
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and Ultsch state that “if there is no temporal structure in the time series, the symbols

[in its discretized version] can be interpreted as independent observations of a ran-

dom variable according to the marginal distribution of symbols”. Thus, the idea is to

look for symbols showing a persisting behavior, by creating symbols whose proba-

bility of repetition will be much higher than their probability of occurrence. In other

words, the probability to have a symbol repeating itself should be much higher than

the probability to have this symbol at any time step, disregarding the previous sym-

bol.

The breakpoints are iteratively chosen in a set of candidate cutpoints according to

a score called persistence score. This persistence score measures how high the repe-

tition probability of the symbols is compared to their probability of occurrence. The

set of candidates is initialized by an equal frequency binning (with a number of bins

fixed to 100 by default) (line 2 in Algorithm 9). At each iteration, the function best_cp

Algorithm 9 Persist

Require: univariate time series ts, a maximal number of symbols kmax
Return: a set of breakpoints cps and the associated persistence scores scores

1: cps = ∅
2: candidates = equal_frequency_binning(ts, 100) . percentiles
3: k = 1
4: scores = []
5: while k < kmax do
6: (new_cp, new_score) = best_cp(ts, cps, candidates)
7: cps = cps ∪ new_cp
8: candidates = candidates− new_cp
9: scores = scores ∪ new_score

10: k = k + 1
11: end while
12: return cps, scores

individually tests every candidate cutpoint added to the already selected cutpoints

(cps). The candidate increasing persistence score the most is returned with its score.

Persist stops when the maximal number of symbols is reached and return the cut-

points and the scores associated to each number of symbol. The user can choose the

number of cutpoints to keep by selecting the one associates to the highest persistence

score, or using expert knowledge.

87



Part II, Chapter 3 – State of the art around time series

ABBA

ABBA (Elsworth and Güttel 2020), which stands for Adaptive Brownian Bridge-

based Aggregation, is a time series discretization method in two phases: dimension

reduction, and clustering.
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Figure 3.3 – ABBA steps (from Elsworth and Güttel (2020)).

It first approximates the time series via an adaptive piecewise linear continuous

approximation resulting in a sequence of 2-tuples consisting of the length of each

segment and its incremental value (Figure 3.3a). The incremental value of a segment

is the difference of value between its start and its end.

Then, the segments are clustered based on their length and increment using the

k-Means (Figure 3.3b). It is possible to give more importance to one or the other by

putting a bigger weight.

The number of symbols k can be provided as parameter or set automatically by

choosing the smallest k giving a cluster variance under a given tolerance.

3.1.2 Multivariate discretization

When multiple variables related to a same system are measured and recorded over

a same time period, it results in multidimensional data called multivariate time se-

ries. Performing the discretization of each dimension independently is a common

practice. However, it may be interesting to consider all the dimensions at the same

time to take into account the interdependencies and interactions between the vari-

ables.
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3.1. Time series discretization

We now present some approaches to discretize multidimensional data. We omit

here methods dedicated to time series classification that use the class of the labeled

training set to guide the discretization.

Classical clustering algorithms

Many clustering algorithms can be used to discretize time series, the clusters cor-

responding to symbols. The objects clustered will typically be the value vectors at

each time point, or segments (over multiple time points) of the time series. In the first

case, the time domain is not taken into account. Among the clustering techniques,

the k-means seems the more popular for (multivariate) time series discretization. It

is also possible to perform a hierarchical clustering. Zolhavarieh, Aghabozorgi, and

Teh (2014) present an overview of how the clustering algorithms can be applied to

cluster time series subsequences.

Interaction-Preserving Discretization

Interaction-Preserving Discretization (IPD) (Nguyen et al. 2014) is an unsuper-

vised data discretization method that aim to preserve the interactions between vari-

ables. It was not designed for time series, but it is still worth to mention for its interac-

tion preservation strategy. Their discretization partition the domain of each variable

Xi [mini,maxi] into k bins. The authors state that to preserve the interactions, two

regions in one dimension should only be in the same bin if and only if the objects in

those regions have similar multivariate joint distributions in the other dimensions.

Example: Interaction-Preserving Discretization

Figure 3.4 illustrates the need for such discretization. Figure 3.4.a represents data

in three dimensions (X1, X2, X3). In each dimension taken separately, the data is

uniformly distributed from -0.5 to 0.5. A univariate discretization method would

not be able to find any relevant way to partition the data. However, when all the

dimensions are considered together, four evident clusters (in blue, red, green, and

cyan) are visible. Data points reunited in a same cluster have similar multivariate

joint distributions in the different dimensions.

First, they proceed to an equal-width segmentation in the time space (b1, b2...

for X1 in Figure 3.4). Then, they merge two consecutive regions (e.g. b1 and b2) if
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(a) (b)

(c) (d)

Figure 3.4 – Interaction-Preserving Discretization (from Nguyen et al. (2014)).

the multivariate distributions are statistically similar. They propose a new interac-

tion distance and define the task of multivariate discretization in terms of the Min-

imum Description Length (MDL). The resulting objective scores enable to balance

the interaction preservation and the information retained in the discretized time se-

ries. They propose two algorithms to select the breakpoints, one based on dynamic

programming and the second on a fast greedy heuristic.

Symbolic Dynamic

In the context of dynamical systems, a system can be described by a set of vari-

ables whose values change over time according to a specific function. When the state

space is continuous, it is called phase space. Dynamic filtering is the partition of
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3.2. Rule mining in time series

a multidimensional phase space sub-spaces associated to a symbol (α, β... in Fig-

ure 3.5). The continuous phase trajectory (in blue) is then discretized using these
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Figure 3.5 – From the continuous phase space to the Finite State Automaton (FSA)
(adatpted from S. Gupta and Ray (2007)).

symbols, this practice is referred to as symbolic dynamic (S. Gupta and Ray 2007). The

cutpoints can be placed such that he sub-spaces are equally sized, using threshold

from expert knowledge, or such that the entropy of the resulting symbolic sequence

is maximized.

S. Gupta and Ray (2007) use symbolic dynamic to model the behavior of dynam-

ical systems from time series for early anomaly detection. They obtain a symbol se-

quence from the train phase trajectory, which is used to construct an (untimed) FSA.

New data is also transformed into symbol sequence. Next, to assess whether the new

sequence is abnormal, they compare the frequency of FSA state visits with the train

sequence to the new sequence.

3.2 Rule mining in time series

The task of identifying a synchronization event between two time series is related

to the task of rule mining in time series. Rule mining is the search for meaningful pat-

terns or rules in time series. An example of rule could be: if A occurs, then B will occur.

A and B can be specific shapes, trends, or else values. This task is often preceded by a

discretization step to obtain the objects over which the rules will be mined.

Identifying synchronization between two components modeled by Timed I/O Au-

tomata (TIOAs) models can be viewed as searching a rule in the form if A occurs in
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the time series of the first component being modeled, then B also occurs in the time

series of the second component. For that reason, we now present an overview of ex-

isting methods for rule mining in time series.

3.2.1 Sequential rule mining

Das et al. (1998) introduced the rule discovery in time series problem. They want

to identify patterns such that when a shape A happens in the time series, then a shape

B happens within a certain delay. The mined rules are of the formA
T=⇒ B, meaning if

A occurs, then B occurs within time T.

The time series is first segmented in the time domain with a fixed window size. The

resulting subsequences are clustered using the k-Means algorithm and each cluster

is associated to a symbol. The rules are formed with these symbols, and are selected

in function of their frequency and confidence and can be ranked. No search method

is proposed, all the possible rules have to be tested.

This work has been extended by Shokoohi-Yekta et al. (2015). They define a rule

with an antecedentRa, its consequentRc, the maximum expected delay between the

twomaxlag, and the threshold distance used to trigger a subsequence match t. An ex-

ample of rule is presented in Figure 3.6. A MDL-inspired scoring function is proposed

500 1000 1500 2000 2500 3000

0 90 0 60

Figure 3.6 – Sequential rule discovery in bird vocalization (from Shokoohi-Yekta et al.
(2015)). Two instances of the rule on the right are identified (antecedent in orange,
consequent in green).

to evaluate the rules. A good rule, and therefore a good prediction of the consequent

given an antecedent, will save many bits 1.

The time series is first discretized using an EWD on the normalized data. However,

contrarily to the article of Das et al. (1998), the symbols are not used individually as

antecedent and consequent. It is only performed to enable the MDL scoring function.

1. The MDL principle (Rissanen 1978) states that the best hypothesis (or model) for a given set of
data is the one that results in the shortest description length when both the hypothesis and the data
are encoded together.
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3.2. Rule mining in time series

The antecedents and consequents are subsequences of the time series, found by an

iterative search.

These works can be applied to multivariate time series to obtain rules where the

antecedent and the consequent are from different dimension.

3.2.2 Allen’s temporal relation-based rule mining

A
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A is-overlapped-by B

A finishes B

A during B
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A equals B
A starts B

A contains B
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B is-met-by A

B after A

B during A

time

Figure 3.7 – Allen temporal relations (from Höppner (2001)).

Höppner (2001) proposed a more general vision of rule mining, yet specifically

dedicated to multivariate time series. The rules are based on the Allen’s temporal

logic (Allen 1983) (Figure 3.7) which offers a wider way to define the temporal re-

lationship between subsequences. In this paper, the rules are mined in multivariate

time series with already labeled intervals. The temporal relations that always state

in the labeled sequences are stored in a bivariate matrix in which the nature of the

relation between two labels in stored.

Example: Rule mining from labeled sequences

Figure 3.8 display two labeled sequences and the temporal relations found in the

matrices. The first matrix presents the temporal relations within a single sequence,

and the second matrix also includes the relations between sequences. A always oc-

curs before B (and therefore B after A). B does not always occur before A (see last
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Figure 3.8 – Temporal relation extracted from labeled interval sequence (from Höpp-
ner (2001)).

occurrence of B). No rule can be identified for E or any label with a single occur-

rence. Finally, A always overlaps C, and C always overlaps B.

A handful of works have followed this paper to improve the search algorithm,

or to handle unlabeled data by adding a discretization step before the search. For

instance, Moskovitch and Shahar (2015) proposed a discretization method and im-

proved a temporal relations enumeration algorithm, with the final objective of time

series classification. The discretization is supervised, the cutpoints in the value range

are created such that the symbol distributions of the different time series classes are

the most differentiated. After the discovery of time interval related patterns in the

now symbolic sequences, the classification is performed on the patterns.

94



CHAPTER 4

UNIVARIATE DISCRETIZATION FOR

TIMED AUTOMATA LEARNING

In order to learn TAs from observational data that takes the form of time series,

a discretization step must be performed to obtain discrete symbolic sequences that

can be injected to TAG. The symbols will be interpreted as events.

The choice of a discretization method has a significant impact on the character-

istics of the resulting discretized sequence. Therefore, it is crucial to consider the

desired characteristics when selecting a discretization method, rather than viewing

it as a pre-processing step of little importance. Here, the discretized sequences will

be used to learn TAs with TAG. Often, TA learning is not the final task, the inferred

model is then employed for another application such as model-checking or anomaly

detection. Consequently, it becomes necessary not only to examine the characteris-

tics required for TA learning, but also how it will impact the resulting model and its

usability for the final task.

TAG has not been developed for a specific application and aims to capture the

global behavior of the system being modeled. One natural application of a system’s

behavior model is to compare new observations with it in order to detect abnor-

mal sequences. Anomaly detection, which extensively studies the use of untimed au-

tomata on event sequences, is specifically dedicated to this task. In this chapter, we

study what is a good discretization method for learning TAs with TAG, which will be

subsequently employed for online anomaly detection in time series.

To achieve this, we begin by adapting an existing algorithm for time series dis-

cretization whose hypothesis is close to our problematic, then we combine its score,

the persistence, to other relevant characteristics for TA learning. Additionally, we pro-

pose an anomaly detection on time series based on ensemble of TAs.
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4.1 Persist with Wasserstein distance

As presented in Section 3.1.1, Persist (Mörchen and Ultsch 2005) is an algorithm

that produces cutpoints to discretize time series. It is based on the hypothesis that

the data originates from a process characterized by recurring persisting states, where

persisting indicates that a state (expressed here as symbols) tends to persist over con-

secutive time steps.

Persist’s hypothesis is also relevant in the context of TAs learning. We assume that

the behavior of the observed system exhibits regularities over time, and that the time

spent in a given state is determinant for the future behavior. Moreover, when learning

a TA from time series data, if inappropriate state changes arise due to data noise re-

maining after the discretization, the learned temporal constraints will become com-

pletely inaccurate, concealing the actual state transitions. Therefore, it can be inter-

esting to minimize symbol changes in the discrete sequences to retain only the nec-

essary and meaningful transitions.

With the goal of using Persist to discretize the time series for TAs learning with

TAG, we examine the Persist algorithm and propose two modifications to improve its

applicability and effectiveness.

4.1.1 Persistence score

Persist generates cutpoints in the value range of a time series and associates the

intervals formed with symbols. The time series datapoints can then be replaced by

the symbol of the interval they fall in the discretized sequence. It aims to set cut-

points such that the symbols are persisting in the discretized sequence. This notion

of persistence for a symbol is evaluated by comparing its probability of occurrence

(marginal probability), with its probability to repeat itself over two consecutive time

steps. This comparison is based on the Kullback-Leibler (KL) divergence (Kullback

and Leibler 1951). The persistence score summarizes the persistence of all the sym-

bols, and is used to decide the creation of new cutpoints.

The KL divergence measures how different a probability distribution P is from

another probability distribution Q. For discrete probability distributions defined on
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4.1. Persist with Wasserstein distance

X , the KL divergence is defined as follows:

DKL(P ||Q) =
∑
x∈X

P (x) log(P (x)
Q(x))

This divergence is not symmetric (DKL(P ||Q) 6= DKL(Q||P )). This is why Mörchen

and Ultsch use a symmetric version obtained as follows:

SKL(P,Q) = 1
2(DKL(P ||Q) +DKL(Q||P ))

In Persist, the probability distributions P andQ are discrete two-binned probabil-

ity distributions, and are based on the probability of occurrence of the symbols (P (s))

and their probability of repetition (Pr(s)):

P = (P (s), 1− P (s)),

Q = (Pr(s), 1− Pr(s)).

Symbol repetition is when the symbol occurring at time t − 1 is the same as the one

occurring at time t.

The persistence score for a symbol s is computed from the KL divergence between

its probabilities of repetition and occurrence as follows:

Persistence(s) = sgn(Pr(s)− P (s))SKL(P,Q)

The first element of the equation (sgn(Pr(s) − P (s))) allows favoring only the cases

where the probability of repetition is superior to the probability of occurrence, other-

wise, it will contribute negatively to global persistence score. Finally, the global per-

sistence score for the whole set of cutpoints is the mean of each symbol persistence

score:

Persistence = 1
|Σ|

k∑
s∈Σ

Persistence(s)

The symmetric KL divergence between two probability distributions with two pos-

sible outcomes as here is represented in Figure 4.1. One of the properties of the KL di-

vergence is that it has no upper bound, a property inherited by the persistence score.

The shape of the surface produced by this divergence is also particular. The symmet-

ric KL divergence is null when the probability distributions are equal, and increases
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Figure 4.1 – Symmetric KL divergence between two probability distributions with two
possible outcomes P = (p, 1− p) and Q = (q, 1− q).

non-linearly as the difference between the distribution grows. To achieve a high value

of symmetric KL, p or q (i.e., Pr(s) or P (s)) have to be close to 0 or 1. The direct conse-

quence of these observations is that the persistence score based on the KL divergence

will focus on extreme cases.
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Figure 4.2 – Two candidate cutpoints, each creating two symbols (s1 and s2).

s P(s) Pr(s)

s1 0. 97 0.99
s2 0.03 0.62

(a) Cutpoint 1

s P(s) Pr(s)

s1 0.54 0.92
s2 0.47 0.94

(b) Cutpoint 2

Table 4.1 – Two candidate cutpoints, each creating two symbols (s1 and s2). The KL
divergence will give a better score to cutpoint 1.
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4.1. Persist with Wasserstein distance

Example: Persist’s cutpoints selection with the Kullback-Leibler divergence

Table 4.1 and Figure 4.2 illustrate this phenomenon. In this example, at the begin-

ning of the algorithm, the first cutpoint will be selected to create two symbols. Two

candidate cutpoints are examined. The first cutpoint (Table 4.1a) will create a first

symbol that covers almost the entire discretized time series and thus has a prob-

ability of occurrence and repetition close to 1, and a second symbol that almost

never occurs and doesn’t show a particularly recurring behavior. The second cut-

point (Table 4.1b) will create two symbols about equally probable and with very

high probabilities of repetition (greater than 0.90). Persist based on the KL diver-

gence will choose cutpoint 1. The discretized version of the time series in Figure 4.2

will consist of the succession of about 90 “s1”, then a few “s2” and again “s1” until

the end, while it would have consisted of an alternation of persistent “s1” and “s2”

if cutpoint 2 had been chosen.

4.1.2 Improving Persist for Timed Automata learning

Probability distribution comparison

The persistence score computed with the KL divergence tendency to favor ex-

treme cases is not favorable to the learning of global and generalized model of behav-

ior in the form of a TA. Based on this observation, the replacement of the KL diver-

gence by another measure of difference between probability distribution is studied.

The Wasserstein distance (Kantorovich 1960), also called Kantorovitch distance,

Kantorovitch-Rubinstein distance, or earth mover’s distance, is another measure of

difference between probability distributions. It corresponds to the minimal cost to

transform a distribution P in another distribution Q in the same space. The Wasser-

stein p-distance between two probability distributions P and Q is defined by the fol-

lowing equation where Γ(P,Q) are all the possible joint distributions for (X, Y ) with

marginal probability distributions P and Q:

Wp(P,Q) = inf
γ∈Γ(P,Q)

(E(x,y)∼γd(x, y)p)1/p

In the case of discrete probability distributions with only two possible outcomes,
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the Wasserstein distance becomes a simple subtraction and is defined as follows:

W (P,Q) = |P (x1)−Q(y1)|
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Figure 4.3 – Wasserstein distance between two probability distributions with two pos-
sible outcomes P = (p, 1− p) and Q = (q, 1− q).

This distance is symmetric, bounded, easier to compute in our settings than the

KL divergence, and it increases linearly as the difference between the distributions

grows (Figure 4.3).

Therefore, we use the Wasserstein distance to measure how the probability of oc-

currence of the symbols and their probability of repetition are different in the score

of persistence in place of the KL divergence:

PersistenceW (s) = sgn(Pr(s)− P (s))W(P,Q)

Example: Persist’s cutpoints selection with the Wasserstein distance

In front of the choice presented in table 4.1, the persistence score computed with

the KL divergence will be higher for cutpoint 1 while the persistence score com-

puted with the Wasserstein distance will be higher for cutpoint 2. The Wasserstein

distance leads here to a discretized time series with more persisting symbols, better

respecting the initial intuition of the persistence score.
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4.1. Persist with Wasserstein distance

Candidate cutpoints initialization

Finally, Persist’s candidate cutpoints initialization based on an equal frequency

(EF) binning allows having more possible cutpoints in high-density regions. However,

some time series such as electrocardiograms have a structure that could be missed

with this kind of binning. In such cases, an equal-width (EW) binning can be prefer-

able. It is then important to let the user choose in function of the structure of its data.

We re-implemented Persist (originally coded for MATLAB) in Python with the pos-

sibility to choose between the KL divergence and the Wasserstein distance, and be-

tween an equal-frequency or equal-width binning. It is available online 1.

4.1.3 Experiment on a classification task

To assess the impact of the two alterations on the discretization quality, we con-

ducted two experiments. Although the ultimate goal of this chapter is anomaly detec-

tion, we opted to evaluate the algorithm’s performance on a time series classification

task due to the abundance of recognized datasets in this domain. The first objective

was to evaluate the raw discretization quality offered by Persist with and without the

proposed alterations. Then, we examined its effectiveness in discretizing time series

for TAs learning.

Method

Raw classification performance

We first want to evaluate the amount of information retained in the data after dis-

cretization. For a quantitative evaluation, we choose a classification task, as higher

classification performance indicates better retention of information in the discretized

time series. We conducted this evaluation on 111 datasets of the Time Series Classifi-

cation Repository 2 (univariate datasets only).

For each dataset, we utilized Persist to generate a set of cutpoints based on the

training subset. The train and test time series were then discretized using those cut-

points for the classification task. We trained a Random Forest classifier (arbitrary

1. Link to the repository of Persist re-implementation in Python: https://gitlab.inria.fr/
lcornang/persist_discretization

2. Anthony Bagnall, Jason Lines, William Vickers and Eamonn Keogh, The UEA & UCR Time Series
Classification Repository, www.timeseriesclassification.com
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choice) with 100 trees with the discretized train subset. The classification was then

performed on the discretized test subset. The accuracy, which is the rate of correct

classifications, was used to measure the classification performance.

We tested Persist using either the KL divergence or the Wasserstein distance, and

either an equal frequency binning or an equal width binning for the candidate cut-

points initialization. Additionally, we compared the results with the well-known SAX

method (presented in Section 3.1.1) to have a performance baseline. Unlike Persist,

a number of symbols must be given for SAX. We used a number of symbols ranging

from 2 to 10, a time interval width of 2, and we report all these results.

Classification performance with Timed Automata

We are interested in Persist to enhance the learning of TA for the underlying sys-

tem behind the time series. To evaluate its improvement, we need to evaluate the

learned models. Figure 4.4 illustrates the experimental setup.

TATA TA

Train Test

Discretization
(Persist)

Discretization

TAG

Accepted Not 
accepted

One color per class
time series (ℝ)
discretized time series (Σ)

Figure 4.4 – Time series classification using TAs learned after a discretization step.

As in the first experiment, Persist and SAX were used to discretize the time series.

However, instead of using the discretized data to train a classifier, we used it to learn

one discrete event model per class. For each class, the corresponding discretized train

time series were provided to TAG (see Section 2), which produced a TA. Then the dis-
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4.1. Persist with Wasserstein distance

cretized test time series were injected into the TAs. More precisely, each automaton

received the discretized test time series of its own class, and an equal number of dis-

cretized test time series from other classes. The objective was to ensure that each

automaton correctly accepts the data of its own class while rejecting the others. The

accuracy was computed as the rate of successful acceptance or rejection by the au-

tomaton.

The Time Series Classification repository gathers time series of various types (mo-

tion, sensor, traffic, image, spectrographs...). The image and spectrographs types dif-

fer from the others as they consist of shapes converted into pseudo time series. As

this type of data is not relevant to the problem of modeling dynamical systems, these

datasets were excluded from the experiment.

Results

Raw classification performance

Figure 4.5 displays the accuracy achieved according to the discretization method.

The classification performance is increased by the replacement of the KL divergence
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Figure 4.5 – Classification accuracy with random forest for the different discretization
strategies. The diamond indicates the mean value. EF: equal-frequency, EW: equal-
width.

by the Wasserstein distance. The initialization of the candidate breakpoints by an

equal frequency binning leads generally to a better performance, however, it depends

on the dataset which confirms our hypothesis. Thanks to the Wasserstein distance,
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using Persist globally leads to better results than using SAX in this setup. This indi-

cates that Persist using the Wasserstein distance allows a good information retention

in the discretized data.

Classification performance with Timed Automata

Using automata to perform a classification task is unusual and not optimal. In-

deed, each automaton is meant to represent a normal global behavior. There is no

emphasis for the modeling on what makes the data of the different classes singular.

For this reason, we cannot expect as good performances as while using a real classi-

fier. Nevertheless, it is interesting to compare the classification performance accord-

ing to the discretization method. If the discretization method is pertinent for discrete

event modeling, a good part of the information contained in the time series would be

retained in the models and therefore leading to good classification performance.

Figure 4.6 displays the classification accuracy using TAs. When using SAX, the
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Figure 4.6 – Classification accuracy with timed automata for the different discretiza-
tion strategies.

classification performance suffers the most from the use of TAs. Persist, in particular

while using the Wasserstein distance and an equal-width binning, preserves a bet-

ter classification accuracy. This confirms the interest in using an improved version of

Persist to preprocess time series for TAs learning.

To provide an insight of this experiment, we show the discretization and the dis-

crete event models obtained for one dataset (Chinatown dataset). It consists of the

pedestrian traffic along the day in a street of Melbourne. The goal is to classify the
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4.1. Persist with Wasserstein distance

days between weekend and weekday. Figure 4.7 shows instances of time series from

this dataset. The best accuracy using TAs for the classification was obtained using the
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Figure 4.7 – Instances of time series from the Chinatown dataset and breakpoints se-
lected by Persist (on the whole train set) with the Wasserstein distance and an equal-
width binning.

breakpoints from Persist with the Wasserstein distance and an equal-width binning

(accuracy results in Table 4.2). These breakpoints are shown in Figure 4.7 and the in-

Discretization method Accuracy

Persist (KL, EF) 0.686
Persist (Wasserstein, EF) 0.687
Persist (KL, EW) 0.780
Persist (Wasserstein, EW) 0.819
SAX 0.652

Table 4.2 – Classification accuracy with timed automata for the Chinatown dataset.
EF: equal-frequency, EW: equal-width.

tervals they create can be associated with a symbol (very low to very high). Figure 4.8

displays the TA learned for each class. One can note that the activity in the street in

generally higher during the night (until 3 or 4 a.m.) on weekends than on weekdays.

The street also shows a more pronounced affluence during the weekend than in the

weekdays afternoons. On weekdays, the end of the day is either calm, or more ani-

mated than during weekend days (with a lower probability, so probably one specific

day of the week).
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Figure 4.8 – Discrete event model learned for each class of the Chinatown dataset.

4.2 Multi-objective optimization-based discretization for

Discrete-Event Systems

In the previous section, we altered an existing discretization method called Per-

sist (Mörchen and Ultsch 2005) by replacing the probability distribution divergence

used in its score, the persistence. In order to go further in the development of a spe-

cific time series discretization method for TA learning, we want to combine this score

with other criteria that are desirable for the resulting discrete event sequences. As a

result, we formulate a Multi-Objective Optimization Problem (MOOP) with conflict-

ing objectives. This section presents this MOOP, called Multi-Objective Optimization

discretization for Discrete-Event Systems (MOODES), and the discretization strategy

developed around it.
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4.2.1 Multi-Objective Optimization Problem

Objectives

Three criteria were identified as desirable qualities for discretized time series used

to learn a discrete-event timed model of normal behavior.

1. First, having a small number of distinct symbols is preferable in order to keep

an interpretable, generalizing, and not too complex model. It will also ease the

learning process.

2. However, too few distinct symbols induces an important loss of information be-

tween the real-valued data and the discretized data. Minimizing the dispersion

of real values corresponding to a same symbol allows counterbalancing such

loss of information.

3. Finally, the information contained in a time series not only lies in each individ-

ual value but in their arrangement, i.e., in its structure. The persistence score

is based on the assumption that the temporal structure of a time series can be

preserved if the discretized TS has persisting symbols.

The criteria to optimize are therefore the number of distinct symbols (f1), the

intra-symbol value dispersion (f2), and the symbols’ persistence (f3).

Given a time series x = (x1, ..., xn) defined on R and its discretized version y =
(y1, ..., yn) where each value is replaced by a categorical value from an alphabet s ∈ Σ,

these three objectives are formalized as follows:

min f1(x, y) = |Σ|

min f2(x, y) =
∑
s∈Σ

∑
xj∈Xs

‖ xj − X̄s ‖2

given Xs = {xi|yi = s}i∈[1..n]

max f3(x, y) = 1
|Σ|

∑
s∈Σ

PersistenceW (s)

In this multi-objective optimization problem (MOOP), the objectives are conflict-

ing, it is impossible to optimize all the objectives at the same time. There exists multi-

ple way to map the time series data points to symbols, each exhibiting distinct trade-
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offs between the objectives. To identify the best subset of solutions, we use the con-

cept of dominance. A solution x1 is said to dominate another solution x2 if it is at least

as good for all the objectives and strictly better for at least one. A solution that is not

dominated by any other solution is said to be Pareto optimal and the set of Pareto

optimal solutions is called the Pareto-optimal set (Sawaragi, Nakayama, and Tanino

1985) (Figure 4.9). One way to find those solutions making a compromise between

f2

f
1

Pareto set solutions
Dominated solutions

Figure 4.9 – Objective function space for two objective functions to minimize.

the conflicting objectives is to use a Genetic Algorithm (GA).

Solutions

The criteria are defined on both the time series x and its discretized version y.

Therefore, the solutions are the mapping between x and y. To limit the optimization

process, we need to set a kind of mapping. The time series values will be mapped to

symbols using cutpoints in the value range of x. The solutions are therefore sets of

cutpoints represented by an ordered vector of real values (Figure 4.10). The transfor-

mation of x into y is described in Algorithm 8.

4.2.2 Multi-Objective Optimization Problem solving

Genetic Algorithms are a kind of algorithm inspired by the biological process of

natural selection (Goldberg 1989). In the general setup, a set of solutions, called pop-

ulation of individuals, evolves generation after generation, becoming more and more

adapted to several criteria. The algorithm starts from an initial population. Every in-

dividual is evaluated on the basis of the defined criteria. The better the individuals

were evaluated, the greater are their chances to be selected for the reproduction step.
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Figure 4.10 – On the left, a set of cutpoints that creates intervals of values
([0,0.8],[0.8,2.9]...). Each interval corresponds to a symbol (a,b,...). The time series is
discretized by replacing each value by the corresponding symbol (dddeeddb...).

Algorithm 8 discretization (repeated from page 85)

Require: a set of cutpoints cps, a univariate time series ts
Return: a discretized time series discretized_ts

1: discretized_ts = empty vector of the same size as ts
2: alphabet = vector containing the different symbols
3: for index = 0 to |ts| − 1 do
4: symbol = 0
5: while ts[index] ≥ cps[symbol] and symbol < |cps| do
6: symbol = symbol + 1
7: end while
8: discretized_ts[index] = alphabet[symbol]
9: end for

10: return discretized_ts

During the reproduction step, the individuals for the next generation are created by

applying crossovers and mutations to the selected individuals. A crossover is the re-

combination of two parts of two individuals. A mutation is a slight modification of the

individual. The exact mechanisms for selecting individuals or the convergence crite-

rion will depend on the genetic algorithm chosen (for example, NSGA-III (Deb and

Jain 2014) is a well-known GA). The choice of algorithm does not impact the result if

the GA converges well.

MOODES is not a new genetic algorithm, it should be seen as a configuration:

individual encoding, objective functions, mutations, crossover.

A generic pseudo-code for MOODES is presented in Algorithm 10. The exact pro-
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cedure will depends of the chosen genetic algorithm. The input is a time series or a

Algorithm 10 MOODES

Require: a univariate time series ts
Return: an ensemble E of sets of cutpoints cps

1: E = population_initialization(ts)
2: while not converged do
3: for each cps in E do
4: discretized_ts = discretization(ts, cps)
5: evaluation(discretized_ts, ts)
6: end for
7: individual_selection(E)
8: mutations(E)
9: crossovers(E)

10: converged = no more evolution in Pareto set solution space
11: end while
12: E = keep non-dominated solutions in E
13: return E

set of time series corresponding to a same variable. For simplicity, we consider here a

single time series ts. The result will be a set of individuals, the sets of cutpoints, mak-

ing tradeoff between the conflicting objectives. The first population of individuals is

initialized using the optimal solutions obtained by the k-means on the time series

(minimization of the value dispersion per symbol), plus random solutions (line 1).

The individuals are evaluated according to the three previously defined criteria (lines

3 to 6). This step requires the discretization of the time series with each solution. The

results for the different criteria do not have to be combined since we use the concept

of solution dominance. The selection (line 7) does not only keep the best solutions

that are non-dominated (the Pareto set), it also keeps other good solutions to avoid

local optima and preserve the diversity of the population. After the selection, three

kinds of mutations can be applied to the individuals (line 8):

— The addition of a cutpoint of random value,

— The suppression of a cutpoint,

— Or a small shift of the value of one of the cutpoints using a Laplace noise.

As crossover method (line 9), we apply the simulated binary crossover, which is used

in optimization problems having continuous variables to simulate the classical sin-

gle point for binary-coded problems (Deb and Agrawal 1995). When there is no more
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improvement for the different objectives among the individuals of the Pareto set,

MOODES terminates and outputs the non-dominated solutions.

4.2.3 Solution selection

Usually, a single solution is selected from the Pareto set. We first considered find-

ing the best solution among the solutions obtained with the genetic algorithm. In the

absence of preference among the criteria, the solution can be chosen randomly, or

using a solution selection method. We present two solution selection methods.

TOPSIS

TOPSIS (Hwang and Yoon 1981) is based on the concepts of fictive best and worst

solutions. The Positive Ideal Solution (PIS) (resp. Negative Ideal Solution (NIS)) is the

combination of the best (resp. worst) observed values for each normalized objective.

The selected solution should have the shortest Euclidean distance from the PIS and

the greatest Euclidean distance from the NIS. When there is a preference among the

objectives, each criterion has a weight and an impact that is positive or negative.

Given the distance between a solution i and the PIS d∗i , and the distance between i

and the NIS d−i , the similarity to the PIS is computed as follows:

C∗i = d−i
d∗i + d−i

The solution ranking is realized in decreasing order of similarity to the Positive Ideal

Solution C∗i .

Trade-off ranking

Jaini and Utyuzhnikov (2017) proposed to select the solution making the most

compromises among the others. They measure the trade-off degree (DT) of a solution

Ak as the sum of its distance with all the other solutions.

DTk =
q∑
i=1

d(Ak, Ai)

with k ranging from 1 to the number of solutions q
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and d(A1, A2) = (
m∑
j=1

(A1
j − A2

j)2) 1
2 .

In function of the shape of the Pareto front, this method won’t select the same indi-

vidual than TOPSIS. A limitation is that this requires a well-distributed Pareto front.

A

B

Trade-off ranking

TOPSIS

f2

f1

Figure 4.11 – Difference between TOPSIS and trade-off ranking (adapted from Jaini
and Utyuzhnikov (2017)).

Example: Difference between TOPSIS and trade-off ranking (example from Jaini

and Utyuzhnikov (2017))

Figure 4.11 illustrates a case where two objective functions f1 and f2 are to be min-

imized, the ideal solution is at the intersection of the two axes. Two possible Pareto

front (A and B) are represented. The circles and triangles are solutions of the Pareto

set. In the case of the Pareto front A, TOPSIS will select one of the blue circle so-

lutions which are extreme solutions. Trade-off ranking will select a solution that is

more balanced under the assumption that the Pareto front is well distributed.

4.2.4 Evaluation of the solution selection techniques

To evaluate if the solution selection technique has an impact on the quality of the

resulting automata, an experiment on a classification task was realized. MOODES has

been applied to 68 univariate classification datasets 3 from the Time Series Classifi-

cation Repository. For each dataset, the time series have been discretized using the

different solutions of the Pareto set, and a TA has been learned for each class and each

3. The experiment was not performed on all the datasets after analysis of the first results.
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solution (see Section 4.1.3 for more detail about discretized time series based classi-

fication based on TA). Then, the classification performance of the automata corre-

sponding to each solution of the MOOP were evaluated.
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Figure 4.12 – Score percentiles distribution for each solution technique over all
datasets.

The classification performance was evaluated with the precision, the recall, and

the F1-score for all the solutions. The percentile achieved by TOPSIS and trade-off

ranking’s solutions within the whole Pareto set was computed. A Pareto set solution

was also chosen randomly for each dataset as control, and its percentile computed

as well. Figure 4.12 shows this percentile distribution on all datasets. The classifica-

tion performance of the automata corresponding to solutions selected by TOPSIS or

trade-off ranking are globally at the bottom of the upper half. Therefore, neither of

them allow selecting a solution that will lead to the best TA-based classification per-

formance. Yet, they still seem to be a better option than a selection at random that

should have led to a uniform percentile distribution from 0 to 1 with a median at 0.5

with more samples.
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4.2.5 Conclusion on MOODES

MOODES is a discretization approach based on a Multi-Objective Optimization

Problem (MOOP) for system’s behavior model learning in the form of TAs. The ob-

jectives are the minimization of alphabet size of the future model, the maximization

of the symbols’ persistence, and the minimization of the dispersion of values from

the original time series corresponding to a same symbol. The MOOP is solved using

a genetic algorithm that will produce multiple solutions that are non-dominated and

make different tradeoff between the objectives.

Due to the absence of positive results during the study of the solution selection

methods within the Pareto set, and the chosen final task which is anomaly detection,

the strategy is to keep all the solutions. Consequently, for a single variable, multiple

discretization cutpoints are obtained. The TAs learned with them will correspond to

the system viewed from different perspectives. Thus, the behavior model obtained

will be an ensemble of TAs. This should improve the anomaly detection performance

by capturing different aspects of the behavior, thus increasing the capacity to detect

the anomalies in the time series and increasing the resistance to noise.

MOODES evaluation for TA-based anomaly detection on time series compared to

other discretization methods is presented in the next section, after a description of

the anomaly detection method from ensemble of TA.

4.3 Timed Automata-based anomaly detection on time

series

In this section, we propose a novel approach for anomaly detection on time series

based on ensembles of TA. This method takes advantage of both TAG (presented in

Section 2) and MOODES (presented in Section 4.2). It is evaluated on synthetic data

and on realistic data from a water distribution system challenge.

4.3.1 Motivation

In a Cyber-Physical System (CPS), physical elements are monitored thanks to com-

putation processes based on networked sensor data. Examples of CPS include indus-

trial control systems, autonomous cars and health monitoring systems. They enable
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the automatic control of complex and critical systems in real-time. The counterpart

of their automation is that is makes malfunctions harder to detect by the users and

their networked operation increases their vulnerability to attacks. Consequently, it is

important to have an anomaly detection strategy along their functioning. The chal-

lenge is not only to detect the anomalies as fast as possible but also to locate the faulty

component in real-time and to explain to end-users what happened on the system.

Sensor data, which often takes the form of time series, is a precious source of infor-

mation about the system’s state to detect the anomalies.

Anomaly detection in time series is an active field of research. An extensive overview

of anomaly detection techniques for Time Series (TS) and other temporal data has

been carried out by M. Gupta et al. (2014). Currently, the approaches based on statis-

tical and deep learning techniques are the most widely used given the good accuracy

scores they offer on the benchmark datasets and most of the recent publications are

exploring autoencoders (Audibert et al. 2020) and transformers (J. Xu et al. 2021) so-

lutions. The drawback of these approaches is that it is difficult to get an interpretable

justification for their decision, which can complicate the human decision, leading

to distrust and concerns about the corrective action to be taken. In addition, these

algorithms often require a considerable amount of data for their training.

Here, we propose an alternative approach based on behavior model of the system,

enabling to locate and explain anomalies in real-time. The behavior models take the

form of TAs automatically inferred by TAG, and the gap between continuous data and

symbolic semantic is bridged by MOODES discretization method.

4.3.2 Anomaly detection with ensemble of Timed Automata

Figure 4.13 presents the overview of the TA-based anomaly detection method. We

first describe the left part, which relate to the learning of the behavior models realized

offline. Then, we delve into the online anomaly detection part on the right.

Models learning

This anomaly detection method is based on models of normal behavior of the

system. Any new data that deviates from these models will be considered anomalous.

The models take the form of an ensemble of TA for each component of the system.

The learning part is realized offline from historical time series data related to the
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Figure 4.13 – Approach overview.

system, which must be free of anomalies. We assume that each component has its

own time series data. For each component, its respective time series data is pro-

vided to MOODES, which generates multiple discretization solutions. All solutions

are retained, resulting in multiple event sequences for each time series. These event

sequences are used independently by TAG to produce a Deterministic Real-Time Au-

tomaton (DRTA). This results in an ensemble of DRTAs representing different aspects

of the component’s normal behavior.

Overview of the anomaly detection

Anomaly detection is performed in an online setting, meaning that new observa-

tions arrive continuously. The data must be classified as normal or abnormal at each

time step (right part of Figure 4.13). Algorithm 11 outlines the online anomaly detec-

tion procedure for all components of the system.

For now, we omit the calibration step (lines 1 to 3). At each time step, new obser-

vations are received (line 4). It consists of one data point per component or variable.

These new observations are discretized using the same sets of cutpoints that were

used to discretize the historical data for the TAs learning step (line 10). The consis-
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Algorithm 11 Anomaly detection (online)

Require: new streaming multivariate time series obs, a sample of historical data
without anomaly calib_mts, ensemble E of pairs of TA and associated cutpoints
(ta, cps) for each variable

1: for each ts in calib_mts do
2: τ = threshold_calibration(ts, E) . different for each component
3: end for
4: while new incoming multivariate observation obs do
5: t = t+ 1
6: for each variable observation pt in obs do
7: E is the ensemble corresponding to the variable
8: ASE,t = 0
9: for each (ta, cps) in E do

10: symbol = discretization(pt, cps)
11: ata,t = is_inconsistent(symbol, ta) . return 0 if consistent else 1
12: ASE,t = ASE,t + ata,t
13: end for
14: ASE,t = ASE,t

|E|

15: CuDASE,t = ∑wsize
i=0

ASE,t−i

i+1
16: if CuDASE,t > τ then an anomaly is detected
17: end for
18: end while

tency with each TA is checked (line 11), and the proportion of inconsistencies within

the ensemble of TA gives an anomaly score (line 14). Since high peaks of anomaly

scores are as alarming as smaller but recurring peaks, we compute an “augmented”

score that takes into account the historical scores for the same component (lines 15

to 18) Finally, an alert is raised if the augmented anomaly score is over a threshold

(line 16), fixed during the calibration step (line 2).

In addition to the anomaly alert, we also offer as explanations the components

where the anomalies were found, as well as the nature of the inconsistencies within

the models.

We now detail each step.

TA-based anomaly detection

The consistency between the new observations with the TAs is checked in line 11

of Algorithm 11.
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The TAs are monitored continuously, i.e. their current state and clock value, which

depends on the history of events, is known and actualized in real-time. When the

anomaly detection begin and the first data arrives, the TAs are in their initial state.

When a new event occurs, if the current state has an outgoing transition labeled with

that event and a timing constraint concurring with the observed delay, the transition

is triggered and the current state is now the destination state of the transition.

An inconsistency can arise for three reasons:

— Alphabet inconsistency: If the event isn’t in the automaton alphabet, it means

that the value doesn’t correspond to the usual values of the component.

— Symbolic inconsistency: If the event belongs to the alphabet, but there is no

transition with this symbol from the current state, the value is considered as

unusual given the previous observations.

— Temporal inconsistency: If there is a transition with the required event, but the

delay with the last event doesn’t meet the timing constraint of the transition, it

means that the duration of the event is unusual.

When an inconsistency occurs, the automaton returns to its initial state.

S0 S1 S2

a
[0, 10] c

[2,+∞]

b
[0, 24]

a [0, 24]

b [11,+∞]

Figure 4.14 – Example of Timed Automaton.

Example: Anomaly detection with a TA

Let’s consider the TA presented in Figure 4.14.

Initially, the current state is S0, and the value of the clock that measures the de-

lay between two events is 0. The first observation is a: there is a transition from the

current state labeled with a and whose guard is respected, therefore the new cur-

rent state is S1. There is no new event for 10 time steps, so the current state does

not change either. After a c event, the current state is updated to S2. Then, an event

a happens after 30 time steps. This is a temporal inconsistency: there is a transition

with that event from the current state, but the guard [0, 24] is not respected. Con-

sequently, an anomaly is raised, the current state is reset to S0, and the clock value
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reset to 0.

In the same manner, from S2, an event b in place of a would also be a symbolic

anomaly, and an event d (or any other unknown event) would be an alphabetic

inconsistency.

Anomaly score

In a component’s ensemble, some automata may have detected an anomaly, while

some others not. There are multiple ways to combine the predictions of the models

in an ensemble, such as taking the maximal score value or using a majority voting

approach (Zhao 2017). We apply the simplest combination method, which is an un-

weighted average of the score of all models.

For each automata ensemble E (i.e., component), the anomaly score at time t

noted ASE,t corresponds to the ratio of automata where an inconsistency was found,

giving a score between 0 and 1:

ASE,t = 1
|E|

∑
A∈E

aA,t

where aA,t =

1, if inconsistency,

0, otherwise.

This anomaly score is computed from line 8 to line 14 of Algorithm 11.

A high peak of anomaly score at a given time is alarming because it means that

the observation is not consistent with many behavior models. The deviation from

normal behavior is clear, so an alert should be raised. However, the observation of

smaller but recurring spikes should also be considered as alarming because it means

that over a short period of time, many behavior models have found unexpected data.

Those multiple small deviations should also result in raising an alert. To take this into

consideration, we don’t directly place a threshold on the anomaly score, but rather

compute an augmented anomaly score that enhances the anomaly score at a given

time based on the anomaly scores previously observed. Unlike smoothing measures

such as the Exponential Moving Average (EMA), our measure can only increase the

value in function of the past values, and not decrease it. Indeed, when an anomaly

starts, the fact that no anomaly was detected just before is normal, and the anomaly

score should not be reduced because of it. This Cumulative Decayed Anomaly Score
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(CuDAS) is computed as follows:

CuDASE,t =
wsize∑
i=0

ASE,t−i
i+ 1

In Algorithm 11, CuDAS is computed from line 15 to line 18.

The value of the window sizewsize that controls the number of past anomaly score

values to take into account has actually little importance, since the contribution of

values far from the current timestamp quickly becomes negligible.

Filtering

Model-based anomaly detection techniques are particularly sensitive to false alarms

because a slight deviation from the learned normal behavior may lead to raising

an alarm. Such alarm may not be an anomaly, but just a normal behavior that has

not been captured in the learning phase. Because we use multiple models for each

CPS component, this further increases the risk of false alarms, leading to non-zero

anomaly scores. To mitigate this, we want to filter the anomalies that will be actu-

ally raised according to the CuDAS. Zohrevand and Glässer (2020) have realized on

overview about automatic false alarm mitigation in anomaly detection. Many meth-

ods rely on the data distribution, which require a large amount of data to get a reliable

fit. Here, this filtering must be performed online, to be able to raise the alerts as soon

as suspicious data arrives. We realize this filtering based on a threshold fixed after a

calibration step that learns a basal error noise for each component.

We want to learn the basal error noise of our ensembles of models to set a proper

threshold for each component. To do so, we need a calibration step which is per-

formed at line 2 in Algorithm 11. During a certain amount of time, new observations

are injected into the models and the anomaly scores are computed. Under the as-

sumption that no real anomaly occurred during that time period, the maximal value

of cumulative anomaly score obtained or a high percentile can be used as threshold.

An anomaly score under this threshold will be considered as ordinary noise. It is nec-

essary to use data that wasn’t used to learn the models, otherwise those observations

would all be consistent with them.
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Output

When an alert is raised at a given time step, an explanation is provided. A log re-

porting a single anomaly will look like this: “Anomaly at time t on automaton a of

component c: maximal time delay exceeded by x time units for transition from state

s1 to state s2 with event e". When considering all reported anomalies, automata en-

sembles with an anomaly score above the threshold are listed in decreasing order of

score. The ratio of automata with inconsistency in their ensembles is given, as well as

the nature of the inconsistencies given in the form of the ratio of alphabet, symbolic,

and timing anomalies. Furthermore, the user can have access to the automata indi-

vidually and can display them to see the problematic paths. With this information,

the system supervisor(s) can diagnose the situation as described in the experimenta-

tion section and implement corrective actions.

4.3.3 Experiment on synthetic data

To validate the approach, we conducted an experiment on simple synthetic time

series. The anomaly detection is performed on data generated randomly and in which

anomalies were injected.

Method

We generated two datasets: one with noise and one without, each consisting of

5 variables. The design principle for each time series (variable) is a pattern that is

repeated with or without noise (Figure 4.15). These patterns were generated using a

Gaussian random walk with a random standard deviation, and have the same length.

The noise is drawn from a Laplacian distribution.

Each pattern was repeated for 1000, 500 and 750 time units, resulting in the train-

ing, calibration, and test time series. We then injected anomalies into the test time

series (one anomaly per time series at a distinct time step, plus one time series free

of anomaly). The anomalies last 50 time units and consist of the following:

— Random values;

— Values multiplied by a factor 1.5;

— Slowed pattern with a factor 1.5 (Figure 4.16);

— Reversed pattern.
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Figure 4.15 – Time series patterns.
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Figure 4.16 – Subset of the test time series for variable 3. The pattern is slowed from
x = 250 to x = 300.

The learning time series are given as input to MOODES that produces an ensem-

ble of discretization solutions for each variable. The learning, calibration and test

time series of each variable can then be discretized, and TAG is used to learn an

ensemble of TA per variable. The calibration data is used for the calibration of the

anomaly detector, and the anomaly detection is performed on the test data.

Results

Table 4.3 presents the values for the recall, precision, and F1-score.

In the case of data without noise, the calibration thresholds were set to 0 dur-

ing the calibration since the pattern was exactly repeated and the calibration data

perfectly matched the learning data. In the test data, the pattern was also exactly re-

peated (excluding during anomalies). Except for a small period where the injected
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Table 4.3 – Anomaly detection performances on synthetic data.

Noise TPR PPV F1

No 0.97 0.89 0.928
Yes 0.995 0.786 0.878

anomaly resulted in normal data, the automata successfully detected the anomalies,

leading to a positive anomaly score (which automatically is over the threshold). How-

ever, due to the cumulative effect of the CuDAS, an anomaly flag continued to be

raised during the cumulative window size after the anomaly ended. Consequently,

the precision is not equal to 1. This effect is generally minimized with a non-zero

calibration threshold.
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(b) Data with noise.

Figure 4.17 – Detected and real anomaly period.

In the case of data with noise, the anomalies were well detected, but there were

more false alarms due to the presence of noise (Figure 4.17).

In addition to these global results, one may look at the generated automata to get

an explanation of the anomalies. For instance, the timed automaton shown in Fig-

ure 4.18 detected an anomaly while in state S3. It received an event discretized as

“2” after a duration of 10 time units. The transition guard indicates that this duration
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Figure 4.18 – Timed automaton for variable 3.

should have been at most 8, so an anomaly was raised. In the data, it can be found

that it corresponds to a slowed instance of the input pattern in the automaton vari-

able, confirming the correct detection, and detecting it due to a time delay exceeding

the guard was consistent with the nature of this anomaly.

4.3.4 Experiment on BATADAL challenge

The approach have then be tested on a reference anomaly detection dataset called

BATADAL. The BATtle of the Attack Detection ALgorithms (BATADAL) (Taormina et

al. 2018) is a challenge that was organized within the Water Distribution Systems

Analysis Symposium in 2016. Participants were asked to propose online anomaly de-

tection systems for CPS. For this, they were given simulated data from sensors on

physical assets in a Water Distribution System (WDS). This experiment aims to evalu-

ate the approach on more complex and realistic data, and to compare its quantitative

and interpretability performances with the other techniques for anomaly detection

in time series.

Data

The water distribution system, represented in Figure 4.19, consists of 7 water tanks

fed by 11 pumps and 5 valves (actuators) via pipes from a single reservoir. These phys-

ical assets are monitored and controlled by network devices such as Programmable

Logic Controllers (PLCs) and a Supervisory Control and Data Acquisition (SCADA)

system. PLCs control the pumps and valves according to the tank’s water level and

record the water flow in the actuators, the inlet and outlet pump pressure, and the

water flow passing through the pumps. Especially, the pumps are activated when the
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Figure 4.19 – Aerial view of BATADAL water distribution system. The nodes corre-
spond to the junctions and the edges to the pipes. (Adapted from Taormina et al.
2018)

water level falls below a threshold and deactivated when the water level exceeds an-

other threshold. The SCADA system stores the readings provided by the PLCs and

coordinates the operations in the WDS.

The data consists of the hourly SCADA readings for the 43 variables (tank lev-

els, actuator status, flow in actuators, actuator inlet and outlet pressure measured

at junctions). A first dataset contains 365 days of data without any attack. A second

dataset contains 174 days with attacks partially labeled. The third dataset (test) is the

one on which the anomaly detection methods are evaluated and contains 87 days of

data. Additionally, the normal settings for the (de)activation of the actuators depend-

ing on tank levels are known.
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Attack description

There are seven attacks to detect in the test dataset, ranging in duration from 30

hours to 100 hours. During the attacks, the attacker gains control of PLCs to change

actuators settings, directly (de)activate actuators, or alter readings arriving to PLCs.

At the same time, they partially replace actual traffic information between the PLCs

and the SCADA system with previously recorded data (replay attacks) to hide effects

of the attack.

Existing approaches

Several works have tackled this challenge. Most are presented in the main pub-

lication of the challenge (Taormina et al. 2018). The method that achieves the best

results (Housh and Ohar 2018) is specific to WDS. Water demand in the network was

estimated with a Mixed Integer Linear Programming (MILP) optimization, using a

software for WDS modeling to generate the corresponding data. The error between

the simulated data and the actual BATADAL data was used to raise the anomalies.

Other approaches are based on Principal Component Analysis (PCA), to separate the

normal data from the abnormal data spaces (Abokifa et al. 2017; Giacomoni, Gatsis,

and Taha 2017; Quiñones-Grueiro et al. 2019). The use of Variational Auto-Encoder

(VAE) has also been widely investigated (Chandy et al. 2017; Gjorgiev and Gievska

2020; Stojanović et al. 2022). Other deep learning techniques have been applied to

BATADAL such as Recurrent Neural Networks (RNN) to predict tank levels based on

the other variables (Brentan et al. 2017). Finally, classification techniques have been

tested, using Random Forests or by checking if the normal actuator activation rules

were respected (Aghashahi et al. 2017; Pasha, Kc, and Somasundaram 2017).

If these methods can, for some, reach high performances in anomaly detection,

they are either application-specific, require negative data, or their output lacks ex-

plainability. In order to intervene on the system when an alert is raised, end users

should have the localization of the component that presents an abnormal behavior

and explanations about why it is considered abnormal.

Method

We adapted our approach to the BATADAL challenge.
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Discretization and model learning

To learn the CPS behavior models, we used the first dataset, which contains be-

nign data only. We discretized the time series of the pressure values and the flows

in actuators using the different solutions produced by MOODES. For the level of the

tanks, we took advantage of the expert knowledge and directly fixed the activator acti-

vation threshold as discretization cutpoints because this allows us to check the com-

pliance with the settings (threshold). Although it is a specificity of this challenge, this

allows us to make a fairer comparison with the other approaches since it was done

by almost all of them. From the discretized data, we used TAG to learn the behav-

ior models, getting an ensemble of TAs for each pressure and actuator flow sensor,

and a unique TA for each tank and actuator status to consider jointly. For MOODES,

we used as genetic algorithm NSGA-III (Deb and Jain 2014). We initialized the first

population of individuals with solutions having a minimal intra-symbol dispersion

for a number of symbols between 2 and 20 using the k-Means algorithm, and with

random individuals. We set the population size to 500. For the generalization param-

eter of TAG, we choose the default value (k = 2). Automata guard corresponds to the

minimal and maximal delay observed with a 3σ tolerance during consistency check.

Anomaly detection

We performed the anomaly detection on the third dataset, which contains mali-

cious attacks. To fix the threshold to filter the anomalies, we used the 1000 first obser-

vations of the second dataset because we know that no attack was performed during

this period and they were not used to train the models. Since the actuator status and

flow correspond to the same component in the physical system, we consider their re-

sults jointly at the time to filter the anomalies. Finally, most attacks in BATADAL are at

least partially concealed with replay attacks (replacement of the real readings by pre-

viously recorded data). The received data corresponds to true data and therefore has

no reason to be considered as anomalous by the TA. Therefore, we also checked for

each TA of pressure and flow if the event sequence was not repeating itself in terms of

event and duration. We kept in memory the last 50 events and raised a replay anomaly

if a repetition of at least 10 events is observed.
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Evaluation of the discretization method impact

To confirm the interest in a discretization method specifically dedicated to our

purpose, we also performed the experiment using other discretization methods. In

place of MOODES and keeping the same experimental setup for the rest, we used

Persist (the algorithm from which our persistence score in MOODES comes) and SAX

(both presented in Section 3.1.1). While Persist finds an optimal number of symbols

by itself, SAX requires the number of symbols as a parameter. We produced the dis-

cretization representation for a number of symbols varying from 2 to 20, using the

same number for all the components. We only present the best results (three sym-

bols).

Furthermore, to evaluate the benefit of using an ensemble of models, we also

tested MOODES with a method that selects only one unique individual in the Pareto

set. Let us assume that the ideal individual is a fictitious individual whose score for

each objective is the best-observed value among true individuals. To select the unique

individual, we used TOPSIS, presented in Section 4.2.3. As with Persist and SAX, the

anomaly detection was performed using a unique automaton per component.

Evaluation of the anomaly detection performance

To evaluate our method’s anomaly detection performance, we computed recall,

precision, and F1-score. Recall or True Positive Rate (TPR) is the ratio of abnormal

periods actually labeled as abnormal. Precision or Positive Predictive Value (PPV) is

the ratio of timestamps labeled as abnormal when there was indeed an anomaly. F1-

score is the harmonic mean of these two measures. To evaluate the interpretability

of our output, we also make reports of the detected anomalies during the attacks. We

compute the total CuDAS (Cumulative Decayed Anomaly Score) which is the sum

of the CuDAS of the components where an anomaly was detected over the attack

period. We rank the components in order of their contribution to this total CuDAS

and present the distribution of the nature of their anomalies.

Results

We present the results obtained in terms of quantitative performance and inter-

pretability of the output.
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Anomaly detection performance

Table 4.4 presents our approach’s anomaly detection performance using TA en-

sembles learned from data discretized by MOODES (our discretization method), and

using a single TA learned from data discretized by Persist, by SAX, or by MOODES but

with solution selection by TOPSIS. What stands out is the benefit of using MOODES,

Table 4.4 – Anomaly detection performance of our TA-based approach in function of
the discretization method.

Discretization method TPR PPV F1

MOODES (TA ensemble) 0.826 0.724 0.772
MOODES + TOPSIS

(single TA)
0.455 0.678 0.544

Persist 0.388 0.681 0.495
SAX 0.420 0.435 0.427

which is specially designed for discrete-event model learning. The interest in the en-

semble of models is also clear in comparison with the results using a single model

per component (MOODES vs. MOODES + TOPSIS). The significant gain in recall is

even joined by an improvement in precision, which confirms the robustness to noise

brought by the ensembles. The mapping between the real attack periods and the de-
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Figure 4.20 – Detected and real attack period.

tected periods is shown in Figure 4.20. The real attacks are well detected, and there

are few false positives immediately before or after them: the start and stop of the real

anomaly period are well detected by our approach. Without surprise, our method

doesn’t reach the performance of the WDS-specific method (Housh and Ohar 2018)

which achieves a F1-score of 0.970. However, we achieve a much higher performance
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than the state-of-the-art most interpretable method (Pasha, Kc, and Somasundaram

2017) which is based on rules and obtained a F1-score of 0.483, while the explanatory

potential of our method (shown in next section) is not reached by the aforementioned

approaches. We also outperform State-of-the-Art methods based on large deep neu-

ral network models such as Anomaly Transformer (J. Xu et al. 2021) or USAD (Au-

dibert et al. 2020) (with a classical evaluation protocol instead of the point-adjust

method). Table 4.5 summarizes those results.

Table 4.5 – Comparison of the anomaly detection performance of different ap-
proaches.

Discretization method TPR PPV F1

WDS-specific method (Housh and Ohar 2018) 0.953 0.987 0.970
MOODES (TA ensemble) 0.826 0.724 0.772

USAD (Audibert et al. 2020) 0.561 0.312 0.401
Rule-based method (Pasha, Kc, and Somasundaram 2017) 0.329 0.905 0.483

Anomaly Transformer (J. Xu et al. 2021) 0.059 0.250 0.095

Ablation study on anomaly detection

As explained above, we made some adjustments to the general approach to fit

to the challenge, which are a simple check for repeated event sequences (i.e., re-

play attack) and the use of tanks and actuators automata to check the compliance

with the given activation threshold. To complete the ablation study on the discretiza-

tion method and to provide transparent results, we also present the results to the

challenge using only the ensembles of automata learned after a discretization by

MOODES (Table 4.6). Although these adaptations to the challenge increase the per-

Table 4.6 – Ablation study on the anomaly detection part.

Experimental settings TPR PPV F1

All checks 0.826 0.724 0.772
No replay check 0.597 0.670 0.631

No actuator status and
tank level coherence check

0.816 0.706 0.757

formance (in particular for checking replay attacks), the performance is delivered for

the most part by our new approach.
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Table 4.7 – Contribution to the sum of CuDAS all components included (%) and
anomaly type distribution during attacks 4 and 1 for the components whose part of
total CuDAS is over 10%.

%
Alphabetic

Symbolic
Temporal

Replay
low high short long

PU1 0.61 0.97 0 0.01 0.01 0 0
PU2 0.27 0 0 0 0 1 0

(a) Attack 4

%
Alphabetic

Symbolic
Temporal

Replay
low high short long

J256 0.56 0 0 0.51 0.04 0.43 0.02
J302 0.18 0 0 0.01 0.25 0.74 0
PU4 0.11 0 0 0 0 0 1

(b) Attack 1

Anomaly explanation

Modeling the behavior of each component allows to locate the anomalies. Using

TA is also useful to understand the anomalies.

Let’s take the example of the fourth attack, which consists in the malicious activa-

tion of a pump (PU3). Because it has never been activated in the dataset containing

normal data only, no behavior model has been learned for it. However, we still man-

aged to detect the anomaly. Table 4.7a presents a report for the period of this attack.

Pump PU1 was the main component affected by the anomalies, followed by pump

PU2. Most of the anomalies for PU1 were alphabetic (unknown symbol correspond-

ing to low flow value), while they were temporal for PU2 (too long delays between

transitions). Those two pumps are next to pump PU3 and supply water in the same

area. Because PU3 was maliciously activated in a continuous manner, it wasn’t nec-

essary to activate PU1 causing its flow to be abnormally low (alphabetic anomaly),

and PU2 was kept activated for less time than usual (temporal anomaly).

During the first attack, the level thresholds of tank T3 which controls the acti-

vation of two pumps (PU3 and PU4) were maliciously modified. In addition, replay

attacks were launched on the tank level and the pump flow data to mask the attack.

Table 4.7b presents a report for the period of this attack. The component responsi-
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ble for the most anomalies is the downstream junction of pump PU4 (J256) where its

outlet pressure is measured. Anomalies are mostly temporal (irregular delay between

transitions) and symbolic the rest of the time (non-existing transitions). Changing the

thresholds caused PU4 over activation and deactivation, which was detected through

its outlet pressure in spite of the replay attack (which also was detected for PU4).

Thanks to these reports, corrective actions could be carried out on the affected com-

ponents.

4.3.5 Conclusion on the anomaly detection approach

This section described a new approach for time series anomaly detection based

on behavior models in the form of TAs, and which takes advantage of MOODES’ abil-

ity to generate multiple discretization solutions. The great advantage of using TAs to

describe system behavior is their ability to provide explanations about the nature of

anomalies and their location (component) in the system. Experimental results em-

phasize the significant role of the discretization method and confirm the interest in

a specific one. The robustness to noise has been provided by the ensembles of timed

automata that reinforce the modeling of the possible behaviors for each component

of the system. Our performance in anomaly detection is effective and outperforms

other comparable methods based on symbolic discretization (SAX, Persist) or pro-

viding interpretable results on the BATADAL challenge. Thanks to TAs, useful and

detailed explanations are provided to qualify and locate the anomaly.
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CHAPTER 5

SYNCHRONIZATION-PRESERVING

DISCRETIZATION

In the previous chapters, our analysis primarily focused on individual systems and

their internal behavior, overlooking the interactions between systems or components

within a system. In this chapter, we shift our attention toward the identification of a

specific type of interaction: the synchronization. Based on the formalism of Timed

I/O Automata, we propose to identify, given a multivariate time series, events from

different variables whose occurrences are synchronized. The result of this ongoing

work is a synchronization-preserving discretization algorithm for multivariate time

series. The method is validated on synthetic data.

5.1 Problematic

In a system composed of multiple components, each component has its own in-

ternal dynamic, plus a global dynamic resulting of the interactions with the other

components. These interactions can take the form of synchronization, i.e., the coor-

dination of operations from different processes or components.

Example: Synchronization between components

Let’s consider a production line in a factory with two robotic arms performing dif-

ferent operations on a same product (Figure 5.1). Each arm as has its own set of

operations, which can be executed simultaneously and independently on the prod-

uct. However, certain operations require synchronization between the two arms to

ensure proper sequencing.

In particular, the first arm must lift the product after completing its operations

so that the second arm can perform a final operation on it (Figure 5.1). The first

arm cannot lift the product immediately after completing its own operations, it
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Figure 5.1 – Two robotic arms cooperating (from Gan, Dai, and Li (2013)).

must wait for the second arm to complete its operations. Similarly, the second arm

cannot perform its final operation until the first arm has lifted the product.

Some operations of the arms are synchronized. Consequently, the behavior of

each arm cannot be fully captured without considering the other arm.

To model such systems, the formalism of Timed I/O Automata (TIOA) (Kaynar et

al. 2006) (Figure 1.7), which was presented in Section 1.2.2, is particularly adapted. A

A0 A1 A2

activateP1
c1 < 10 activateP1

c1 > 2

endP1!
c1 < 24 r(c1)

endP1! c1 < 24 r(c1)

activateP1 c1 > 11

B0

B1

B2
endP1?
c2 > 10
r(c2)

activateP2
c2 < 3

endP2 9 < c2 < 16

Figure 1.7 – Graphical representation of two parallel Timed I/O Automata (TIOAs).
Pairs of input and outputs events are followed respectively by ? and !. (repeated from
page 33)

TIOA is a Timed Automaton whose events are partitioned into a set of input events,

a set of output event, and a set of internal events. Input and output events, generally

indicated by a ? and ! and simply referred to as inputs and outputs, respectively, are

used for the synchronization between multiple TIOAs. Input event labeled transitions

can be triggered only if a transition with the corresponding output event is triggered

in a parallel automaton. In Figure 1.7, the transition from stateB0 toB1, labeled with

input event endP1?, is possible only if the transition from A1 to A0 or the transition
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from A2 to A0, both labeled with output event endP1!, is triggered in the other au-

tomaton. The other transitions can be triggered independently. In this example, this

synchronization prevents the activation of a process (P2) before the end of a process

(P1) in another component.

Given two event sequences with identified inputs and outputs, each sequence

corresponding to a component of a system and recorded at the same time, it is pos-

sible to learn TIOAs (one per component) with any classical passive TA learner. Each

component will be modeled individually and the input and output events will be han-

dled as classical events. The synchronization will then be ensured by the program

used to monitor the TIOAs.

If the events are not distinguished between internal, input, and output in the

event sequences, and input and output of a pair do not have the same name, the

pairs of input and output can be identified using for example a pattern mining al-

gorithm (Mannila, Toivonen, and Inkeri Verkamo 1997) that will identify the events

occurring simultaneously within the sequences.

However, learning TIOAs from raw multivariate time series is much more chal-

lenging. Let’s first clarify the meaning of synchronization in the context of time series.

In a multivariate time series, a synchronization is a pattern of the form: if i occurs

in one variable, then o is occurring in another variable, where i and o are particular

shapes, trends, or values, and correspond to the input and output, respectively.

In rule mining (in time series), the i and o used for the rule are typically mined

from event sequences obtained by a discretization step that has assigned the same

symbol or event to time series segments having a similar shape, trend, or value. Here,

we argue that a bad discretization could hide the synchronizations. If a segment in-

volved in a synchronization is associated with the wrong discrete event due to noise

or an inadequate discretization method, the synchronization will not be detected in

the discretized sequences. Hence, the challenge is to discretize the time series with-

out hiding the synchronizations.

Example: Hidden synchronization after a bad discretization

Let’s examine the time series represented in Figure 5.2, where a and b are two vari-

ables. We observe that when the value of a is around 0.5, the value of b reaches a

value around 1 shortly thereafter. This is the result of synchronization between the

components corresponding to each variable behind the observed time series. If the

discretization associates the yellow segments with the same event in each variable,
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let say o for variable a and i for variable b, it will be possible to find the synchroniza-

tion in the resulting event sequences because when i occurs in one variable, then o

is systematically occurring.

However, even though this time series is simple, it contains noise. For instance,

the last segment of a may be associated with a different event than the two other

yellow segments, let say h, because its mean value is lower than the others. In this

case, i will not only occur when o occurs, but also when h occurs. As a result, the

rule is not verified, and the synchronization is hidden.

a

b t

1

0.5

0

1

0.5

0
t

Figure 5.2 – Two time series with hidden synchronization (indicated in yellow).

Starting from a segmented multivariate time series, we propose to perform the

discretization and the synchronization search jointly, by constraining the segments

labeling (i.e., the discretization) inside each variable with the co-occurrences across

the variables. Discretizing a time series consists in associating similar segments with

a same discrete event. We will address this problem using a clustering algorithm.

Meanwhile, searching for synchronized events in two sequences is searching for events

that occur simultaneously. Our method combines both thanks to a new data struc-

ture and an algorithm to identify synchronized events in time series. At present, this

method can only be applied to multivariate time series with two variables, i.e., of di-

mension 2, and with the hypothesis that if there are several pairs of synchronizing

events, one of the variables has the inputs and the other has the outputs.
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5.2 Synchronization discovery in time series

Before describing our synchronization-preserving discretization algorithm, we de-

scribe individually the time series discretization strategy to obtain an event sequence,

and the synchronization discovery task given two event sequences. Then, we present

how to combine these two tasks with the introduction of a new data structure dedi-

cated to the discovery of synchronization across time series.

5.2.1 Discretization via agglomerative hierarchical clustering

We first present a discretization method based on the clustering of the segments

of a univariate time series (or a single variable of a multivariate time series), where all

the segments of a same cluster will be associated with a same event. It is important

to note that, by definition, an event is instantaneous, while a segment can cover mul-

tiple timestamps. Therefore, technically, the start of the segment corresponds to the

event’s occurrence, and no new event happens during the segment period.

Agglomerative hierarchical clustering (Hastie, Tibshirani, and Friedman 2009) ref-

ers to the clustering of objects based on a similarity measure, that starts by assigning

each object to an individual cluster and then iteratively merges the clusters based

on their similarity. In the context of time series discretization, the objects can be the

datapoints or the segments of a segmented time series, and each cluster is associated

with a symbol or event. Here, we will consider segments 1 (a1, a2 ... in Figure 5.3a).

Starting from a configuration where each segment constitutes an individual cluster

(and therefore a distinct event), the clusters are progressively merged by pair accord-

ing to their similarity. At the upper level, all the segments are in the same cluster.

To determine which individual clusters to merge, any relevant object similarity mea-

sure can be utilized. When there are more than one object in the clusters, we must

use a linkage measure that evaluates the similarity between the clusters. Examples of

linkage measures include average linkage, which corresponds to the average distance

between the objects in the first cluster and the objects in the second cluster, and com-

plete linkage, which corresponds to the maximal pairwise distance between objects

of the first cluster and of the second cluster. The hierarchical agglomeration of clus-

ters can be represented using a dendrogram (Figure 5.3b), where the individual clus-

1. Please note that the segmentation problem is not addressed here, a review of the rich literature
on the subject has been done by Mörchen (2006).
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a
a1

a3a2 a5

a4

t

(a) Time series.

a1a2a3 a4a5

(b) Dendrogram.

Figure 5.3 – A segmented time series and the agglomerative hierarchical clustering
dendrogram. In the dendrogram, the root is indicated by the triangle, the internal
nodes by the circles, and the leaves correspond to the segments of the time series (a1,
a2...).

ters are the leaves, the (non-individual) clusters are internal nodes, and the cluster

grouping all the objects is the root. Many combinations of clusters can be obtained

from the agglomerative hierarchical clustering. The final clusters can be obtained by

cutting the dendrogram at a fixed height or with a pre-fixed number of clusters. Back

to the context of time series discretization, all the segments in a same cluster will be

labeled with the same symbol or event.

Example: Time series discretization using agglomerative hierarchical clustering

Figure 5.4b shows the result of the discretization case presented in Figure 5.3b. The

dendrogram was cut following the red line, which create two clusters. If we asso-

ciate the cluster composed of segments a3, a5 and a2 with event h1, and the cluster

composed of segments a4 and a1 with event h2, we can discretize the time series as

illustrated in Figure 5.4a.

5.2.2 Bivariate synchronization discovery

We now present a method to mine synchronized pairs of events given two event

sequences. In this section, we will be considering discrete event sequences, the ap-

proach will be applied to time series later.

In TIOA formalism, the input and the output of a pair typically have the same

name, associated with a ? and a !, respectively. Yet, in real data, they may have a totally

different name. It is then necessary to search which events form a pair of synchro-
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Figure 5.4 – Result of the agglomerative hierarchical clustering dendrogram. Accord-
ing to the red cutline, there are two resulting clusters (h1 and h2). The resulting event
sequence is displayed below the time series.

nizing input and output. Given two discrete event sequences, identifying the events

corresponding to pairs of input and output consists of finding the events from each

event sequence that co-occur.

Let’s first define what is meant by event co-occurrence. According to the formal-

ism of TIOAs, the synchronization is instantaneous, there is no delay between the

output and the input, therefore the input and output events should occur at the same

time. In real settings, there can be a delay between the output event issue, the re-

ception, and the input event reaction. Consequently, we accept a (positive) delay be-

tween the output event and the input event occurrences, as long as there are no inter-

mediate events occurring between them. We still do not permit input to happen prior

to output. Consequently, we need to distinguish two notions of event co-occurrence

based on which event may happen with a delay.

Definition: Events co-occurrence

Given two sequences composed of tuple of events e and their timestamp of occur-

rence t:

s1 = 〈(e1,i, t1,i)|∀i ∈ [1,m]〉

s2 = 〈(e2,j, t2,j)|∀j ∈ [1, n]〉

An event e1,i leading co-occurs with an event e2,j if: t2,j−1 < t1,i ≤ t2,j ∧ t1,i+1 > t2,j

An event e1,i trailing co-occurs with an event e2,j if: t2,j ≤ t1,i < t2,j+1 ∧ t1,i−1 < t2,j

Figure 5.5 illustrates the definitions of leading and trailing co-occurrence. An event
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t1,i t1,i+1

t2,j−1 t2,j t2,j+1

(a) Leading co-occurs.

t1,it1,i−1

t2,j−1 t2,j t2,j+1

(b) Trailing co-occurs.

Figure 5.5 – Intervals of possible values if e1,i leading or trailing co-occurs with e2,j .

leading co-occurring with another happens at the same time or precedes it (without

intermediate event), while an event trailing co-occurring with another happens at the

same time or after (without intermediate event). During a synchronization, the input

event trailing co-occurs with the output event and the output event leading co-occurs

with the input event. By not allowing intermediate events between the occurrence of

two co-occurring events, an event can leading co-occurs with at most one event and

can trailing co-occurs with at most one event.

Example: Timed I/O Automata synchronization with different names

Let’s consider the automata displayed in Figure 5.6a corresponding to two variables

A andB. Let’s assume that the events “send” and “receive” correspond to an output

and an input, respectively. As a consequence, the transition fromB1 toB2 (labeled

with input “receive”) is possible only if the transition from A1 to A0 (labeled with

output “send”) is triggered in the other automaton. We now consider that we don’t

know that “send” and “receive” form a pair of synchronizing events.

Figure 5.6b presents two event sequences (one for each automaton or variable).

At 10:00:00, the events “do” (for automaton A) and “lift” (for automaton B) have

occurred, followed by “send” and “receive” 5 seconds later, then “do” for automa-

ton A without new event for B, etc. From such sequences, it is possible to identify

which events correspond to pairs of input and output by searching the events that

only occurs when a specific event in the other variable also occurs. Here, it is the

case for the event “receive” that only occurs if “send” is the last event occurring in

the other variable.

It can be noted that at 10:00:45, we observe the event “send” without observing

“receive” in the other variable. The reason is that “send” is an output while “receive”

is an input. A transition labeled by an output may be triggered at any time, while

a transition labeled by an input may be triggered only if a transition labeled by

the corresponding output is triggered. Intuitively, it is possible to send something

140



5.2. Synchronization discovery in time series

without the recipient being ready to receive it. On the contrary, it is impossible to

receive something that was never sent. In TIOAs, “the recipient [not] being ready to

receive it” translates as “the automaton having the input is currently not in a state

with a transition labeled with the input”.

A0 A1

do
c1 < 10 r(c1)

send
c1 > 2 r(c1)

B0 B1

B2

lift
c2 < 10 r(c2)

receive
c2 > 2
r(c2)

push
c2 > 2
r(c2)

(a) Timed Automata (A on the top, B below).

timestamp A B
10:00:00 do lift
10:00:05 send receive
10:00:14 do -
10:00:16 - push
10:00:19 - lift
10:00:23 send -
10:00:24 - receive
10:00:26 do push
10:00:30 - lift
10:00:35 send receive
10:00:41 - push
10:00:43 do -
10:00:45 send -
10:00:50 - lift
10:00:52 do -
10:00:55 send receive

(b) Event sequences.
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(c) Co-occurrence matrix.

Figure 5.6 – Bivariate synchronization discovery in event sequences.

We propose an alternative method to classical pattern mining algorithms for iden-

tifying co-occurring pairs of events in event sequences. While it may look less effi-

cient at this point, it will be useful when discretization and synchronization search

will be combined in the next section. To identify the co-occurring events, we pro-

pose to create a co-occurrence matrix for each candidate pair of input and output

events (i.e., two matrices for each possible pair of events). In this matrix, the rows

correspond to the occurrences of the candidate input event, and the columns to the
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occurrences of the candidate output event. The matrix cells are filled with a “1” if the

row event trailing co-occurred with the column event, and a “0” otherwise. If all the

rows in the matrix contain a “1”, the events can be considered as a pair of synchro-

nizing events, with the event from the rows being the input, and the event from the

columns the output.

Example: Co-occurence matrix

We still consider the automata displayed in Figure 5.6a, the output “send” and

the input “receive”, and the execution sequences shown in Figure 5.6b. The co-

occurence matrix for candidate output event “send” and input event “receive” is

displayed in Figure 5.6. Each time “receive” occurred, it trailing co-occurred with

“send”, hence, there is a “1” in every row. Sometimes there was a delay, e.g. be-

tween “10:00:23 send” and “10:00:24 receive”, but no intermediate event. “10:00:45

send” is not considered as leading co-occurring with “10:00:55 receive” because

there were intermediate events. In the context of TIOAs, it means that automaton

B was not in a state with an outgoing transition labeled by the input and another

transition was needed to reach such state.

5.2.3 Combining discretization and synchronization discovery

Given two event sequences, an input event is an event that always trailing co-

occurs with an event of the other variable, the output event. Given a multivariate

segmented time series whose segments were associated to events according to their

similarity, this entails a particular alignment for the segments associated to an input

or an output event. We recall that when a segment is associated to an event, the start

of the segment corresponds to the event’s occurrence, and no new event happens

during the segment period. Contrarily to events, segments have a duration, we can

use the Allen’s interval relations (Allen 1983), presented in Figure 3.7, to characterize

this particular alignment. The segments s ∈ Si associated to an input should respect

one of the following relation with one of the segments s′ ∈ So associated with the

corresponding output, without intermediate segment:

— s is-overlapped-by s′;

— s finishes s′;

— s during s′;
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A
B

A after B

A is-met-by B

A is-overlapped-by B

A finishes B

A during B

A is-started-by B

A equals B
A starts B

A contains B
A is-finished-by B

A overlaps B

A meets B

A before B

B before A

B meets A

B overlaps A

B is-finished-by A

B contains A

B starts A

B equals A
B is-started-by A

B finishes A

B is-overlapped-by A
B is-met-by A

B after A

B during A

time

Figure 3.7 – Allen temporal relations (from Höppner (2001)). (repeated from page 93)

— s is-started-by s′ (equivalent to s starts s′);

— s equals s′.

To associate segments of a segmented multivariate time series to input and output

events, we need to identify subsets of similar segments for which this specific align-

ment is respected. The segments’ similarity within a variable can be obtained via ag-

glomerative hierarchical clustering, which will give the possible clusters in a dendro-

gram. To investigate the segment alignment across variables, we can associate all the

segments to a distinct event and construct a global co-occurrence matrix where the

rows correspond to the segments of one variable, which will potentially contain input

events, and the columns to the segments of the other variable, which will potentially

contain corresponding output events. To determine whether to place a variable in

rows or columns, we can use background knowledge or test both options. Note that

this matrix will initially typically look like a diagonal matrix if the segments are put in

order of occurrence, the first segment of the first variable starting at the same time as

the first segment of the second variable and so on.

We propose a data structure that combines both similarity and co-occurrence in-

formation (Figure 5.7b). In this figure, a1, a2 etc. are the segments of the first variable

and b1, b2 etc. are the segments of the second variable (Figure 5.7a). The clustering
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(b) Data structure.

Figure 5.7 – Data structure for synchronization discovery in time series.

dendrograms are placed alongside the global co-occurrence matrix, and the leaves,

which correspond to segments, are mapped to the corresponding row or column.

This involves reordering matrix rows and columns as the order of the leaves is con-

strained by segment similarity in the dendrograms. This data structure will allow us

to look for the subsets of similar segments that respect the temporal alignment con-

dition by examining subparts of the matrix.

It is important to note that despite the visual similarity with biclustering matrix

representations, the problem and the encoded information are different. Biclustering

is the identification of subsets of rows which exhibit similar behavior across subsets

of columns, or vice versa, without additional information than the matrix content.

The dendrograms that are often represented alongside the matrix represent the sim-

ilarity between the matrix rows and column. Here, the information contained in the

matrix and in the dendrograms is different and the identification of subsets of rows

and columns is performed from the matrix content constrained by the dendrograms.

5.2.4 Identifying synchronizations in the data structure

In the data structure previously defined, we can identify pairs of input and output

by finding the submatrices with one “1” per row and whose rows and columns form

a cluster in the dendrogram. For instance, in Figure 5.8, the submatrix in yellow has
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one “1” per row, meaning that the row segments always respected one of the Allen’s

relation selected in the previous section with one of the column segments, and the

set of segments {b2, b4, b6} and {a2, a5, a3} both form a cluster, meaning that they

are similar. Hence, if we associate these segments with an input i and an output o,

respectively, iwill always trailing co-occurs with owhile the segments associated to a

same event will be similar.
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Figure 5.8 – Maximal p-diagonal c-submatrix (in yellow).

We now formalize the conditions a submatrix must satisfy for its row and column

segments to be associated with an input and an output. First of all, these submatrices

are characterized by the configuration in the dendrograms.

Definition: Cluster-submatrix

A cluster-submatrix (c-submatrix) is a submatrix whose rows and columns form a

cluster in the dendrograms.

There exist many c-submatrices, from 1×1 submatrices to the entire initial matrix,

these matrices being nested within each other, i.e. contained in a larger c-submatrix.

Example: c-submatrices

In Figure 5.8, the submatrix formed by rows {b2, b4} and by columns {a1, a4} is a

c-submatrix, as well as the submatrix formed by rows {b2, b4, b6} and by columns

{a1, a4}. The submatrix formed by rows {b2, b4} and by columns {a1, a4, a2} is not a
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c-submatrix, because {a1, a4, a2} is not a cluster.

These submatrices are also characterized by their cell content.

Definition: p-diagonal c-submatrix

A permuted-diagonal c-submatrix (p-diagonal c-submatrix) is a c-submatrix with

one “1” per row and “0” in the other cells. If the c-submatrix is squared, the identity

matrix can be retrieved by permutation of the rows and columns.

Example: p-diagonal c-submatrix

In Figure 5.8, the submatrix in yellow formed by rows {b2, b4, b6} and by columns

{a2, a5, a3} is a p-diagonal c-submatrix, there is exactly one “1” per row and its rows

and columns form clusters. If rows b4 and b6 are permuted, its diagonal is filled with

“1”s while the other cells are filled with “0”s: it is an identity matrix.

Finally, we want the p-diagonal c-submatrices to be as large as possible and not to

be 1×1 submatrices. However, it is important to ensure that they do not contain all the

rows or columns, because otherwise, for any time series with the same segmentation

applied to both variables, all segments would be associated with a unique input or

output.

Definition: Maximal p-diagonal c-submatrix

A maximal p-diagonal c-submatrix is the largest p-diagonal c-submatrix in a nested

set of c-submatrices that have 1 < r < m rows and 1 < c < n columns with m × n
the size of the full matrix.

Example: Maximal p-diagonal c-submatrix

In Figure 5.8, the submatrix in yellow formed by rows {b2, b4, b6} and columns {a2, a5, a3}
is a maximal p-diagonal c-submatrix. None of the submatrices in which it is nested,

namely those formed by rows {b2, b4, b6, b1} and columns {a2, a5, a3}, rows {b2, b4, b6, b1, b3, b5}
and columns {a2, a5, a3}, rows {b2, b4, b6, b1} and columns {a1, a4, a2, a5, a3}, is a p-

diagonal c-submatrix. It is nested in the c-submatrix formed by rows {b2, b4, b6}
and columns {a1, a4, a2, a5, a3} which also have one “1” per row, but this matrix is

formed by all the columns of the full matrix, so the condition is not respected.

Note that it is possible to have multiple (not nested) maximal p-diagonal c-submatrices
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in the global co-occurrence matrix. These will constitute distinct pairs of input and

output events.

5.3 Algorithm

To automatically identify the maximal p-diagonal c-submatrices, we propose an

enumeration algorithm with pruning strategies that aim to reduce the enumeration

time.

5.3.1 Enumeration problem

The c-submatrices nested within a p-diagonal c-submatrices are not necessarily

p-diagonal. For instance, the c-submatrix formed by {b2, b4} and {a2, a5} in Figure 5.8

is nested in the maximal p-diagonal c-submatrix, but is not p-diagonal. There is no

reason to expect that the segments co-occurring with the most similar segments of

the input cluster are also the most similar within the output cluster. Therefore, the

immediate idea of starting from the smallest p-diagonal c-submatrices and enlarging

them until they are maximal is not possible. We can still exploit the property that the

c-submatrices are nested due to the hierarchical clustering at their origin. Since we

want the maximal p-diagonal c-submatrices, the enumeration of the c-submatrices

starts from the full matrix. Then, the exploration of the nested c-submatrices is re-

alized in a lexicographic order (row clusters, column clusters), the row and column

clusters being ordered from the root to the leaves. In other words, the enumeration

of the submatrices is realized by following the dendrograms, starting from the root,

and exploring the column dendrogram for each node of the row dendrogram.

To avoid enumerating all c-submatrices, we can use pruning strategies, i.e. stop

exploring a branch if some criterion is true. Two criteria allow pruning a branch:

(1) Fewer columns than row in the current submatrix (r < c): It will be impossible

to get one “1” per row because there is at most one “1” per column, hence we

can stop exploring this branch of the column dendrogram, as it will only lead to

submatrices with a decreasing number of columns;

(2) A p-diagonal c-submatrix was already found for the rows of the current subma-

trix: There can be only one “1” per row, hence we can stop exploring this branch

of the row dendrogram.
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Algorithms 12, 13, and 14 describe the enumeration with the pruning.

Algorithm 12 Maximal p-diagonal c-submatrices identification

Require: A co-occurence matrice C, two dendrograms roots nr and nc
Return: The maximal p-diagonal c-submatrices contained in C

1: S = ∅
2: S = explore_row_submatrices(C, nr, nc, S)
3: return S

Algorithm 13 explore_row_submatrices

Require: A co-occurence matrice C, two dendrograms nodes nr and nc, a set of sub-
matrices S

Return: The maximal p-diagonal c-submatrices previously found and the one con-
tained in the submatrix formed by nr and nc

1: if nr or nc are leaves then return S
2: S = explore_col_submatrices(C, nr, nc, S)
3: if nr form a submatrix s ∈ S then return S . pruning 2
4: nr,left, nr,right = get_children(nr)
5: S = explore_row_submatrices(C, nr,left, nc, S)
6: S = explore_row_submatrices(C, nr,right, nc, S)
7: return S

The algorithm starts from the root of each dendrogram, then explores the subma-

trices via a depth-first search (DFS) in the row dendrogram, with a nested depth-first

search (DFS) in the column dendrogram. For a better comprehension, let’s focus on

the DFS in the row dendrogram. When the enumeration reaches a node of the row

dendrogram nc (entering in Algorithm 13), the column dendrogram is explored from

the root (line 2 in Algorithm 13, which corresponds to Algorithm 14) to evaluate the

submatrices formed by rows (leaves) of nc and the different combination of columns.

If no p-diagonal c-submatrix was found, the left children of nc (a cluster formed by

a subset of nc leaves) becomes the current node (line 5 of Algorithm 13) and we en-

ter back in Algorithm 13. Once nc,left and its children have been explored, the cluster

formed by the other subset of nc leaves, nc,right, is explored in the same manner (line

6).
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Algorithm 14 explore_col_submatrices

Require: A co-occurence matrice C, two dendrograms nodes nr and nc, a set of sub-
matrices S

Return: The maximal p-diagonal c-submatrices previously found and the one con-
tained in the submatrix formed by nr and nc

1: if nr or nc are leaves then return S
2: candidate = the submatrix formed by nr and nc
3: if candidate has more rows than columns then return S . pruning 1
4: if candidate is a p-diagonal c-submatrix then
5: S = S ∪ candidate
6: return S
7: end if
8: nc,left, nc,right = get_children(nc)
9: S = explore_col_submatrices(C, nr, nc,left, S)

10: if nr form a submatrix s ∈ S then return S . pruning 2
11: S = explore_col_submatrices(C, nr, nc,right, S)
12: return S

5.3.2 Handling noise

Due to the noise, or due to the imperfection of the chosen similarity measure or

segmentation method, a segment corresponding to a synchronizing event could be

considered closer to another event cluster, as well as the contrary. Without strategy

to handle the noise, the algorithm can miss whole p-diagonal c-submatrices.

Ideally, the maximal p-diagonal c-submatrices must be square and with one “1”

per row (and therefore per column). We propose five tolerance policies, which we

describe below:

(1) No tolerance;

(2) The submatrix can be not square and have more columns than rows, has one

“1” per row, but there is a limit on the size ratio;

(3) The submatrix can be not square and have more columns than rows as long as

it has and one “1” per row (default);

(4) The submatrix must be square, with a limited allowed percentage of row with-

out “1”;

(5) The submatrix can be not square with either more columns or more rows, but

with a limit on the size ratio.
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The first policy requires that the output systematically co-occurs with the input, which

is more strict than required by the TIOA formalism. The second and third policies en-

sure that the input systematically co-occurs with the output, and some outputs can

occur without the corresponding input, as in the TIOA formalism. The amount of

output without co-occurring input is limited in the second policy. The fourth and

fifth policies allow the occurrence of inputs without output, which is not allowed in

the TIOA formalism. These strategies prevent entire p-diagonal c-submatrices from

being unrecognized due to misclustered segments in noisy data.

5.3.3 Synchronization-preserving discretization

The previously presented algorithm enables the identification of segments in a

bivariate time series that correspond to input or output events. We recall that the

goal is to learn interacting TIOAs, which requires event sequences. The remainder

of the time series segments still have to be associated to an (internal) event in the

discretized version of the time series. These events are not synchronizing, there is

no need to consider co-occurrence across variables. We only consider the segment

similarity within variables, which is given in the dendrograms. However, the cluster

should be formed while respecting the clusters formed by the previously found syn-

chronizing events.

We can use any classical dendrogram cut method, which will return a cut level (red

lines in Figure 5.9). Then, the dendrogram branches can be cut according to this cut

level, as long as none of their leaves form a maximal p-diagonal c-submatrix in the

co-occurrence matrix. Otherwise, the branch is cut above the node corresponding

to the maximal p-diagonal c-submatrix (blue lines). This ensures that the discretiza-

tion does not hide the synchronizations between the variables. Finally, each of these

clusters is associated with internal events to obtain the discrete event sequences.

Example: Synchronization-preserving discretization

In Figure 5.9a, a p-diagonal c-submatrix was found (in yellow). Consequently, seg-

ments b6, b4, b2 (set Si) should stay in the same cluster associated to an input event,

s?, and segments a3, a5, a2 (set Si) should stay in the same cluster associated to

an output event, s!. To cluster the remaining segments, we utilize a conventional

agglomerative hierarchical clustering method, cutting here at 0.7 of the maximum

cluster distance. This method returns the cut levels indicated by the red lines. If we
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Figure 5.9 – The red lines over the dendrograms correspond to the cut level proposed
by the classical clustering algorithm. The blue lines correspond to cuts necessary
to preserve the synchronizations, obtained by the synchronization-preserving dis-
cretization algorithm. The clusters are associated to an internal event (h1, h2, h3), or
to an input (s?) or output (s!).

respect this cut level for the rows, the segments from Si would be associated to b1,

and b3, b5 would form a second cluster. However, since Si is included in the leaves

of the first branch, we don’t follow the red cut level for the branch: we need to dis-

tinguish synchronizing events and internal events event if they appear in the same

cluster. Instead, we cut the branch above the node of the cluster formed by Si (blue

lines), which separates b1 from the segments of Si. The second branch can be cut

using the red cut level. This forms three clusters, the previously identified cluster

associated to s?, and two new clusters associated to internal events, h2 and h3. The

same logic is applied for the columns, forming two clusters: s! and h1.

Then, the time series can be discretized by replacing the segments by the events

(Figure 5.9b).
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5.3.4 Timed I/O Automata learning

Once the time series are discretized using the synchronization-preserving method,

any classical passive TA learner can be used. The model of each component is learned

individually, and the input and output events will be considered as normal events by

the learner. The TIOAs can then be monitored by tools such as UPPAAL that will han-

dle the synchronizations.

5.4 Experiment on synthetic data

To validate the synchronization-preserving discretization method, we conducted

an experiment on synthetic data. Starting from simulated time series with synchro-

nized segments, the objective was to identify and preserve the synchronizations in

the discretized versions of the time series. To assess the gain in jointly performing the

discretization and the synchronization search, we also performed them sequentially.

5.4.1 Data generation

The first step was to generate two event sequences of length n = 250, with two

pairs of synchronization input and output events (synchro1[?/!] and synchro2[?/!])
within their events. The first generated sequence, a, contains the outputs synchro1!
and synchro2!, and two internal events eventa,1 and eventa,2. Each event had a fixed

probability to be chosen (p), and probability to not be replaced (pr) over the next time

step (Table 5.1a). Then, we generated the second variable, b, containing the input

Table 5.1 – Generation parameters.

(a) Variable a.

Event Value p pr

eventa,1 0 0.40 0.80
synchro1! 1 0.25 0.89
eventa,2 1.5 0.10 0.90
synchro2! 2 0.25 0.84

(b) Variable b.

Event Value p pr

eventb,1 0 0.5 0.73
synchro2? 0.25 0 0.80
eventb,2 1 0.5 0.76
synchro1? 2 0 0.75

events synchro1? and synchro2?, and two internal events eventb,1 and eventb,2, while

taking into account the first one. One can observe in Table 5.1b that the probabilities
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of occurrence for the input events (synchro1? and synchro2?) are null, as their occur-

rence is constrained by the occurrence of the corresponding output. Therefore, event

sequence for variable b was generated based on p and pr, except for the data point

where the first variable had an output generated and consequently the correspond-

ing input was automatically selected.

Next, the event sequences were converted into time series, by replacing each event

by a fixed value (value column in Table 5.1). For instance, from the first sequence:

〈eventa,1, synchro2!, ..., eventa,1, ..., synchro1!...〉

We obtain the following numerical data:

〈0, 2, ..., 0, ..., 1...〉

Finally, a random normal noise (mean of 0, standard deviation of 0.1) was applied

to the time series. We selected a small standard deviation because two events are as-

sociated with a close value (eventb,1 corresponds to 0 and synchro2? to 0.25) to make

them difficult to separate, but we do not want their resulting data points in the time

series to have an overlapping range of values since we are not using any noise han-

dling strategy in this first experiment.

5.4.2 Discretization

To only evaluate the proposed method and have no influence from the time series

segmentation method, the segments were directly created from the event changes.

For the clustering, we chose the Euclidean distance between the segments mean

values as similarity measure, since the data were generated using a mean value per

segment. The cluster similarity was evaluated using an average linkage. The dendro-

grams default cut level was set to 0.6 of the maximal cluster distance. For the syn-

chronization discovery part, the default tolerance policy was applied.

5.4.3 Results

Using the proposed synchronization-preserving discretization approach, i.e., by

performing jointly the segment clustering and the synchronization search, we iden-

tified two pairs of synchronizing events (s1! and s1?, and s2! and s2?), two internal
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events in variable a (a1, and a2), and two internal events in variable b (b1, and b2). Fig-

ure 5.10 displays the result of the discretization. The colored lines correspond to the
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(a) Variable a.
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s2?

h4
s1?

(b) Variable b.

Figure 5.10 – Result of the discretization using the synchronization-preserving dis-
cretization method. The original time series are in gray. Each color corresponds to an
event obtained via the discretization.

mean value of the time series segment and the color indicates the cluster and thus

the event.

Figure 5.11 presents the discretization obtained using the same elements of the

synchronization-preserving method, but sequentially. Firstly, the time series segments
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2.5 s1! h1

(a) Variable a.
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h3
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(b) Variable b.

Figure 5.11 – Result of the discretization and the synchronization discovery per-
formed sequentially. The original time series are in gray. Each color corresponds to
an event obtained via the discretization.

were clustered with the agglomerative hierarchical clustering using the Euclidean
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distance on segment mean values, the dendrograms were cut using the same crite-

rion (without specific cut for branches containing inputs or outputs), and finally, syn-

chronizing pairs of input and output were searched in the resulting event sequences.

Two events were created for variable a, and three for variable b. A synchronization was

discovered, where the output occurs frequently without co-occurring with the input

(which is allowed by the default tolerance policy but may not be ideal).

Figure 5.12 presents how the events found by the two methods match the true

events. A line indicates that some (or all) of the segments labeled by the event in

h1 s1!Sequentially

eventa,1 eventa,2 synchro1! synchro2!Groundtruth

h2 h1 s1! s2!SPD (jointly)

Internal Output

(a) Variable a.

h2 h3 s1?Sequentially

eventb,1 eventb,2 synchro1? synchro2?Groundtruth

h3 h4 s1! s2!SPD (jointly)

Internal Input

(b) Variable b.

Figure 5.12 – Input, output, and internal event matching with the groundtruth (SPD:
Synchronization-Preserving Discretization).

the resulting discretized version correspond to the linked groundtruth event. There

is a perfect match between the result of the synchronization-preserving discretiza-
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tion method and the ground truth. When performing the tasks sequentially, the seg-

ments from a corresponding to the two outputs were associated altogether with the

segments of an internal event (resulting event: s1!). In variable b, the segments cor-

responding to the input synchro1? were associated to a single event (s1?). A synchro-

nization was found between these two events s1! and s1? because when s1? (the in-

put) occurs, s1! (the output) always leading co-occurs. More precisely, s1? trailing

co-occurs with s1! when it corresponds to the true output event synchro1!. While a

synchronization was found, it is not as fine as one could hope. The second synchro-

nization was not found at all.

These results demonstrate the relevance of the method proposed in this chapter,

since using the same clustering method and the same default dendrogram cutting

criterion, all the synchronizations were preserved by our method.

5.5 Conclusion

In this chapter, we introduced the problem of identifying synchronizations in mul-

tivariate time series in order to learn interacting Timed I/O Automata (TIOAs), a syn-

chronization being a rule of the following form: if i occurs in one variable, then o is

occurring in another variable, where i and o are particular shapes, trends, or values,

and correspond to the input and output, respectively. We proposed a discretization

method that identifies and preserves potential pairs of input and output events. To

the best of our knowledge, our approach is the first to tackle this problem. In this

work, we make several assumptions. We consider that the synchronizing events are

shared between two variables only. Furthermore, we assume that all the input events

are contained exclusively in one variable, and all the output events are exclusively

in the second variable. Finally, we assume that the time series segmentation and the

segment similarity measures were appropriate. Further work will be devoted to re-

ducing of these assumptions. Additionally, our early experiment highlighted the need

to explore different tolerance strategies and to investigate how to properly evaluate

the results of discretization and synchronization identification.
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Summary of the contributions

This thesis addressed the problem of learning a behavior model of a system from

observational data, in the form of TA. We had identified three main challenges related

to this subject. The first one was to learn a TA from event sequences that was repre-

senting the learning data without overfitting, in order to also represent the system at

the origin of the data. The second challenge was to enable the inference of TAs, which

are labeled with discrete events, from numerical time series. The last challenge was to

learn interacting TAs with synchronized events from multivariate time series without

further information about the synchronizations.

We addressed the first challenge by proposing a new TA learning algorithm, TAG,

to passively learn TAs from event sequences. TAG is the first contribution of this the-

sis. More precisely, it learns a TA subclass called DRTA, which means that the au-

tomaton has a single clock reset at each transition, and that there is a single state

sequence for a given timed event sequence. The learned DRTA accepts all the input

sequences. Additionally, TAG incorporates a parameter, k, that controls the general-

ization level of the learned model. TAG starts with a model that is an almost exact

representation of the input sequences, and then has a state merging strategy based

on the short-term possible behaviors (event sequences) that each state offers. The

parameter k corresponds to the length of the paths used to assess whether two states

should be merged. The larger k is, the more closely the model will match the learn-

ing data. TAG also has a transition splitting procedure that distinguishes paths for a

same event from the state when the temporal value is determining for the future be-

havior. Experiments on synthetic data have shown that this new algorithm globally

achieves a significantly higher precision in terms of accepted sequences compared

to the state-of-the-art algorithms without loss of recall, resulting in a better overall

balance. Finally, an experiment on real data has demonstrated that even when the

learned model is too complex to be readable by a human, it is possible to query the

model to obtain useful information thanks to the existing tools dedicated to TAs.
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For the second challenge, we investigated which attributes of discretized event se-

quences are useful for learning TAs. Initially, we proposed a first contribution where

we studied and adapted an existing discretization algorithm, Persist, which aims to

create persisting symbols or events, i.e., more likely to repeat themselves than to ap-

pear. This criterion seemed interesting to us, since it tends to limit the event changes,

and thus leads to transitions with meaningful timed guards. However, we also con-

sidered it crucial to have a small dispersion of values in the time series corresponding

to a same event. Finally, we also wanted to limit the number of different events to re-

duce the complexity of the TA learning process and of the learned model. To combine

all these criteria, we proposed the use of a genetic algorithm to simultaneously opti-

mize the conflicting objectives. This approach is named MOODES and is the second

main contribution of this thesis. Since the genetic algorithm produces an ensemble

of discretization solutions that make different trade-offs between the objectives, we

also suggested keeping all the solutions and to learn a TA for each of them. Therefore,

the behavior model takes the form of an ensemble of TAs, each one modeling the be-

havior at a different scale and perspective. We applied this discretization technique,

along with TAG, to a dataset for detecting anomalies in time series called BATADAL.

By using TA ensembles as normal behavior models, we were able to detect and ex-

plain the attacks in the time series of the test dataset.

The third challenge was also related to time series, but included the additional

task of identifying synchronizing events. As this problem is, to the author’s best knowl-

edge, being raised for the first time, we revert to a simpler discretization method,

and combine it with a synchronization preserving strategy. In this fourth contribu-

tion, we identify input and output synchronizing events in segmented bivariate time

series along the discretization. We implement a hierarchical clustering of the seg-

ments within the variables, where the cluster corresponds to events, and constrain

the cluster formation with a matrix containing the segment co-occurrence informa-

tion across variables. The resulting events are either classical or internal events, or

input and output events, which correspond to similar segments of a variable (input)

that always co-occur with similar segments of another variable (output). This algo-

rithm was tested using small synthetic data. This contribution is an ongoing work

and has still to be tested on real data.
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Perspectives

The various contributions of this thesis offer multiple perspectives.

There are several potential developments for TAG. It currently learns DRTAs, which

are TAs with a single clock reset at each transition. Investigating strategies to improve

the comprehension of the timing dynamics of the underlying system constitutes an

interesting and substantial work, e.g., by resetting the clock only at certain transitions

or by identifying additional clocks. A danger of this potential evolution is to obtain a

model that is too complex to be well interpreted by a human user. Another possible

evolution for the formalism learned by TAG would be to consider the probabilities.

At this time, they are purely indicative in order to use a classical and well-studied for-

malism. Yet, the probabilities could be very useful both during the learning process,

and for further uses of the learned model. For instance, real-world observational data

often contain noise that can affect the accuracy of the learned models. Using the tran-

sition probabilities to filter the outlying ones during the learning process may be of

great interest.

The other possible change for TAG is its learning setting. It is a passive algorithm,

meaning that it learns a model from timed event sequences only, without interaction

with the system. Further work could be devoted to making TAG an active algorithm.

In this setting, it would be possible to provide sequences from the learned model (or

the learned model directly) to an oracle (possibly by testing the system itself), and

this oracle would confirm the correctness or provide a counterexample. In such case,

TAG should also be able to process negative sequences, i.e., sequences that should

not be accepted by the learned automaton. TAG should also be able to cancel a merge

or a split without going back to the initialized automaton. Another research direction

related to the training data is to accept expert knowledge in the input sample in ad-

dition to the timed event sequences. This could involve expert rules, constraints, or

prior (sub-)models to guide the learning algorithm.

Regarding MOODES, the discretization method specifically dedicated to TA learn-

ing from time series, the main perspective is to further investigate desirable qualities

for the resulting discrete sequences. Although the genetic algorithm has the interest-

ing characteristic of producing multiple solutions, its outcome is not deterministic

and the search space to be explored can be too large to ensure good convergence.

Further work is needed to identify a more efficient optimization strategy.
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The anomaly detection approach based on TA ensemble may be improved in two

ways. When an anomaly is raised because there is no transition corresponding to the

occurring event, the true anomaly may have actually occurred earlier. To illustrate

this, let’s consider the TA in Figure 5.13. The event a occurs with a delay of 3, followed

S0
S1 S2

S3 S4

a [0, 5]
p=0.2

b [0, 10]
p=1.0

a [6, 10]
p=0.8

c [0, 10]
p=1.0

Figure 5.13 – A Timed Automaton.

by c with a delay of 5. This sequence is not accepted by the automaton, an anomaly

would be raised while being on S1 when c occurs. However, the true anomaly could be

the duration of a, which would make the following of the event sequence correct. In-

vestigating this problem could improve the anomaly explanations. On another note,

the transition probabilities learned by TAG are not yet leveraged for the anomaly de-

tection, although they are a rich source of information. Computing the probability of

the paths is a promising approach to enhance the anomaly detection performance.

The last contribution of this thesis, related to the synchronizations, is an ongoing

work, therefore, the perspectives are numerous. In the first place, experiments on real

data need to be conducted, particularly to evaluate the noise handling strategies and

the scalability of the approach. Then, the algorithm has several points for improve-

ment. Currently, the direction of the synchronizations, i.e., which variable contains

the inputs and which variable contains the outputs, must be known and constant for

all the events. The algorithm should be able to identify the synchronization direc-

tion for each pair of synchronized events. Furthermore, to date, the algorithm can

only handle bivariate time series. The method should be extended to more variables.

Finally, the synchronization-preserving discretization algorithm is based on the clus-

tering of similar segments and is totally disconnected from the work on discretization

specifically adapted for TA learning. It could be interesting to study how to combine

the synchronization-preserving aspect with the identified objectives.
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APPENDIX A

TAG IMPLEMENTATION IN PYTHON

An implementation of TAG in Python is available here: https://gitlab.inria.
fr/lcornang/tag/. The version described here is correspond to commit a8990c52.

A.1 Input sample syntax

The input sequences must be provide in a text file with one sequence per line, the

tuples event delay separated by a space and the event and the corresponding delay

separated by a colon as follows:

event:delay event:delay ... event:delay

...

event:delay event:delay ... event:delay

The events can be letters, words, or numbers. The delays must be integers.

A.2 Usage

A.2.1 Example

1 from TAG. TALearner import TALearner
2

3 learner = TALearner ( filename )
4 learner .ta.show ()
5 learner .ta.print ()

A.2.2 Arguments

— tss_path (str): path of the file containing the timed event sequences
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TAG implementation in Python

— k (int, default=2): number of transitions to consider for the merging process, 2

by default

— res_path (str, optional): if an export is required, path to the file where to export

the learned automaton

— debug (boolean, default=False): true for verbose mode

— splits (boolean, default=True): true if splits are allowed

— merges (boolean, default=True): true if merges are allowed

— order (str, default=breadth-first): ordering method for the operations (breadth-

first/depth-first/random/bottom-up)

A.3 Output

A DRTA in DOT format, which can be render online 1 or in a terminal with Graphviz 2.

A.4 Requirements

TAG is implemented in Python (version: 3.8.3).

It requires the following modules for a graphical representation of the automata:

— graphviz (0.16)

— IPython (7.21.0)

1. https://dreampuf.github.io/GraphvizOnline
2. https://graphviz.org
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APPENDIX B

COMPARISON OF THE TAS LEARNING

ALGORITHMS ON THE SCALABILITY

EXPERIMENT
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Figure B.1 – Impact of the alphabet size.
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Figure B.2 – Impact of the outdegree.
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B.3 State number
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Figure B.3 – Impact of the state number.
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Figure B.4 – Impact of the proportion of twinned transitions.
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B.5 Timed event sequences number
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Figure B.5 – Impact of the number of timed event sequences.

181





RÉSUMÉ EN FRANÇAIS

Contexte et motivation

Cette thèse traite de l’apprentissage automatique de modèles de comportement

de systèmes à partir de données d’observations, et plus particulièrement à partir de

séries temporelles. Le formalisme choisi pour le modèle de comportement est l’au-

tomate temporisé (ALUR et DILL 1994), un automate fini doté de variables mesurant

le temps qui passe, nommées horloges. La Figure 1 présente un automate temporisé

modélisant le fonctionnement d’une lampe à intensité lumineuse variable. Un auto-

OFF light bright

press
c := 0

press
c ∈ [0, 2]

press
c ∈ [3,+∞]

press

FIGURE 1 – Un automate temporisé représentant une lampe à intensité lumineuse
variable.

mate temporisé a un ensemble d’états pouvant correspondre aux état d’un système,

ici OFF pour «éteinte», light pour «allumée à intensité moyenne», et bright pour «al-

lumée à forte intensité». La transition d’un état à un autre est provoquée par l’occur-

rence d’un évènement, ici press signifiant que l’interrupteur est pressé, satisfaisant

des contraintes temporelles sur les valeurs des horloges, ici c. Par exemple, la tran-

sition de l’état light à l’état bright ne peut s’effectuer si la valeur de l’horloge c est

comprise entre 0 et 2. Cette horloge mesure le temps écoulé depuis sa dernière réini-

tialisation effectuée sur la transition de l’état OFF à l’état light (c := 0). La contrainte

temporelle sur la transition s’interprète donc comme un délai de 2 secondes au maxi-

mum entre les deux évènements press. Au-delà, l’évènement press provoquera l’ex-

tinction de la lampe par la transition entre light et OFF.

Par sa modélisation explicite de l’impact du temps sur les changements d’états,

l’automate temporisé est particulièrement adapté pour modéliser des systèmes dans

lesquels le temps est critique. En outre, ce formalisme compte parmi ses avantages
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Résumé en français

la possibilité de le représenter graphiquement, une riche littérature théorique ex-

plorant ses propriétés, quelques algorithmes permettant son apprentissage automa-

tique à partir de séquences d’évènements, et la possibilité de décomposer des sys-

tèmes complexes en considérant plusieurs modèles en interaction.

De plus en plus, les données disponibles relatives aux systèmes d’intérêt pro-

viennent de capteurs et prennent la forme de séries de valeur numériques mesurées

au cours du temps, appelées séries temporelles. Dans leur forme brute, ces données

ne sont pas utilisables pour la modélisation de système en s’appuyant sur un forma-

lisme à la sémantique discrète tel que l’automate temporisé. Il existe de nombreuses

méthodes numériques développées ces deux dernières décennies permettant de les

exploiter pour une tâche précise telle que la prédiction ou la détection d’anomalie.

Cependant, ces méthodes ont tendance à nécessiter beaucoup de données d’entraî-

nement ou encore à manquer d’interprétabilité concernant leur fonctionnement ou

le résultat de la tâche.

Dans cette thèse, l’objectif est d’utiliser ces données d’observation numériques

pour apprendre automatiquement un modèle de comportement du système d’inté-

rêt en utilisant le formalisme de l’automate temporisé. Pour ce faire, une première

partie est dédiée à l’amélioration de l’état de l’art en matière d’apprentissage auto-

matique d’automates temporisés à partir de données discrètes. La suite de ce tra-

vail est axée sur la discrétisation de séries temporelles, ce qui consiste en la trans-

formation d’une série temporelle quantitative en une séquence de points discrets

(Figure 2a). La discrétisation d’une série temporelle permet de la rendre utilisable

pour la création d’un automate temporisé (Figure 2b) ou autre modèle de système à

évènement discret, les valeurs discrètes étant alors considérées comme des évène-

ments. Nous souhaitons particulièrement insister sur l’importance de cette étape de

discrétisation qui peut trop souvent être vue comme une simple étape de prépara-

tion des données sans grand impact sur la suite. Dans notre contexte, la méthode de

discrétisation choisie aura un très grand impact sur l’automate résultant. Pour cette

raison, la seconde partie de ce travail est dédiée à la recherche de caractéristiques

des séquences discrétisées favorisant l’apprentissage d’un automate interprétable et

exploitable pour d’autres applications, menant à une nouvelle méthode de discréti-

sation spécialement développée pour ce but.

L’objectif de la troisième partie de cette thèse est toujours d’apprendre un modèle

de comportement d’un système à partir de séries temporelles, mais avec la contrainte
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0 5 10 15 20 25
0

1

2

3

4

5

Bas (B)

Moyen (M)

Haut (H)

MHHHHHMMBBBMMMMMMHHHHHHHHMMBB

(a)

M

H

B

Haut
c ∈ [1, 6]
c := 0

Moyen
c ∈ [5, 8]
c := 0

Bas
c ∈ [2, 2]
c := 0

Moyen
c ∈ [3, 3]
c := 0

(b)

FIGURE 2 – De la série temporelle à l’automate temporisé. Ici, la série temporelle
est discrétisée en partitionnant sa plage de valeurs. Les valeurs discrètes résultantes
(Bas (B), Moyen (M) and Haut (H)) sont interprétées comme des évènements pour la
construction de l’automate.

supplémentaire sur le système qui est alors constitué d’un ensemble de composants

en interaction. Le formalisme de l’automate temporisé permet de synchroniser les

transitions de plusieurs automates grâce à des évènements partagés. Étant donné

A0 A1 A2

activateP1
c1 < 10 activateP1

c1 > 2

endP1!
c1 < 24 r(c1)

endP1! c1 < 24 r(c1)

activateP1 c1 > 11

B0

B1

B2
endP1 ?
c2 > 10
r(c2)

activateP2
c2 < 3

endP2 9 < c2 < 16

FIGURE 3 – Deux automates temporisés en interaction synchronisés par l’évènement
endP1[?/ !].

une série temporelle multivariée où chaque variable correspond à un composant

du système, l’identification de ces évènements partagés est un défi supplémentaire

puisqu’une mauvaise discrétisation de chaque variable pourrait les cacher. Il est donc

nécessaire de considérer les autres variables lors de la discrétisation de chacune.
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Résumé des contributions

TAG : Apprentissage d’automates temporisés à partir de séquences

d’évènements (Chapitre 2)

La première contribution de cette thèse est TAG (CORNANGUER 2021; CORNANGUER,

LARGOUËT et al. 2022), un nouvel algorithme permettant d’apprendre un automate

temporisé à partir de séquences d’évènements correspondant à des exécutions du

système modélisé. C’est un algorithme d’apprentissage passif, signifiant qu’il ne né-

cessite pas d’interaction avec le système. L’apport de cet algorithme relativement à

l’état de l’art est un meilleur compromis entre généralisation et précision en termes

de séquences d’évènements reconnues non issues de l’échantillon d’apprentissage,

mais venant du même système. La qualité de ce compromis a été démontrée par une

vaste comparaison expérimentale sur données synthétiques.

L’automate produit par TAG appartient à une sous-classe des automates tempo-

risés : l’automate déterministe temps-réel. Cet automate est déterministe, ce qui si-

gnifie qu’il n’existe qu’un seul chemin dans l’automate pour une séquence d’évène-

ments donnée. Par ailleurs, il ne possède d’une seule horloge qui est réinitialisée à

chaque transition, elle mesure donc le délai entre deux évènements. Cette restriction

du nombre d’horloges est à ce jour encore nécessaire en apprentissage passif, l’iden-

tification des paramètres temporels étant la plus grande difficulté.

TAG a un unique paramètre, k, contrôlant le niveau de généralisation du modèle

vis-à-vis des données, avec une valeur par défaut suggérée. Lors de son déroulement,

TAG commence par construire un automate correspondant presque exactement aux

séquences d’apprentissage (avec une légère généralisation au niveau des contraintes

d’horloge). Ensuite, la généralisation est permise par la fusion des états offrant à court

terme les mêmes séquences d’évènement possibles. Ces ensembles de séquences

sont nommés le k-futur d’un état. Le paramètre k contrôle la longueur des séquences

à considérer. Par exemple, le k-futur de l’état A0 de la Figure 3 avec k = 2 est l’en-

semble suivant :

{〈activateP1, endP1!〉, 〈activateP1, activateP1〉}

Plus k est grand, plus les séquences à considérer seront longues et moins l’auto-
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mate sera factorisé. En conséquence, l’automate final sera plus proche des données

d’apprentissage. Cette opération de fusion d’états ne considère pas le temps. TAG a

donc une opération supplémentaire, la division de transition, qui a pour but d’iden-

tifier des transitions où le temps est déterminant pour le comportement du système.

Cette opération créée un déterminisme temporel, il est alors nécessaire de regarder

la valeur temporelle associée à l’évènement pour choisir une transition unique parmi

toutes celles partant de l’état courant et portant le même évènement.

MOODES : Discrétisation de séries temporelles par optimisation mulit-

objectifs pour l’apprentissage d’automates temporisés (Chapitre 4)

La seconde contribution de cette thèse est MOODES, une méthode de discrétisa-

tion de séries temporelle spécialement dédiée à l’apprentissage d’automates tempo-

risés. Cette méthode repose sur l’optimisation de trois critères que nous avons iden-

tifiés comme étant favorable pour des séquences discrétisées destinées à apprendre

un automate temporisé.

Le premier critère retenu est le nombre d’évènements différents créés dans la sé-

quence. Un grand nombre d’évènements mènera à un automate plus grand et plus

complexe, ce qui peut nuire à l’interprétabilité du modèle. On cherchera donc à mi-

nimiser ce nombre d’évènements. Le risque à trop le réduire est cependant d’avoir

un modèle trop simple, avec le cas extrême où tous les points de la série temporelle

sont remplacés par un même évènement. Le second critère vise donc à contrebalan-

cer le premier, il s’agit de minimiser la dispersion de valeurs dans la série temporelle

correspondant à un même évènement dans la séquence discrétisée. Le dernier cri-

tère est la persistance des événements dans la séquence. Un évènement persistant

a une probabilité de se répéter sur deux pas de temps consécutifs plus élevée que sa

probabilité d’occurrence à n’importe quel pas de temps. Cette notion et un moyen de

l’évaluer ont été proposés par MÖRCHEN et ULTSCH (2005), et nous avons amélioré

la manière de calculer ce score (CORNANGUER, LARGOUËT et al. 2023).

L’optimisation simultanée de ces trois critères contradictoires est réalisée au moyen

d’un algorithme génétique. L’objectif est d’associer des intervalles de valeurs dans la

série temporelle à des évènements. Les meilleures limites pour ces intervalles sont

celles qui optimisent les trois objectifs. Le résultat de l’algorithme génétique est un

ensemble des meilleures solutions faisant des compromis différents entre les objec-
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tifs établis. Chaque solution va mener à une séquence différente et donc à un au-

tomate temporisé différent. Il est possible de choisir une unique solution, aléatoire-

ment ou en fixant une préférence sur l’un des critères. Cependant, nous suggérons

de conserver toutes les solutions et d’apprendre un ensemble d’automates tempo-

risés au lieu d’un unique automate. Le modèle de comportement du système prend

alors la forme d’un ensemble de modèles représentant le système sous différentes

perspectives et à différentes échelles.

Suite à la présentation de cette méthode de discrétisation, nous proposons une

application en détection d’anomalies dans les séries temporelles sur un jeu de don-

nées de système cyberphysique soumis à des attaques. Les données d’apprentissage

sans attaque sont discrétisées avec MOODES et des ensembles d’automates sont ap-

pris avec TAG pour chaque composant du système. Ensuite, les données de test conte-

nant des attaques sont discrétisées et injectées dans les automates. Cette méthode de

détection d’anomalie n’atteint pas les meilleures performances observées à ce jour,

notamment obtenues en utilisant une méthode spécifique à ce problème qui uti-

lise des notions hydroliques (HOUSH et OHAR 2018) avec un score F1 de 0.970 contre

0.772 pour notre approche (Figure 4). Cependant, l’avantage des automates tempo-

01-1
1

01-2
1

01-3
1

02-1
0

02-2
0

03-0
2

03-1
2

03-2
2

04-0
1

Pas
d’at-
taque

Attaque
Détectée Réelle

FIGURE 4 – Périodes d’attaque réelles et détectées par notre approche.

risés est qu’ils permettent d’expliquer la nature de l’incohérence entre le modèle et

la donnée lorsqu’il y en a une, et notre approche est celle permettant d’obtenir le

meilleur score F1 parmi les méthodes interprétables.
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Discrétisation de séries temporelles multivariées pour l’apprentis-

sage d’automates synchronisés (Chapitre 5)

La dernière contribution de cette thèse est une méthode de discrétisation de sé-

ries temporelles multivariées préservant les synchronisations. Ici, la prise en compte

des autres variables lors de la discrétisation d’une variable est primordiale, car cer-

tains évènements dits synchronisés seront partagés par les automates de chaque va-

riable.

La recherche d’évènements de synchronisation dans une série temporelle multi-

variée étant un nouveau problème, nous l’avons abordé par une méthode de discré-

tisation plus classique. Notre méthode repose sur un partitionnement hiérarchique

agglomératif des segments de la série temporelle, basé sur une mesure de similarité

laissée au choix de l’utilisateur. Ce type de partitionnement est souvent visualisé sous

la forme d’un dendrogramme qui peut ensuite être découpé pour obtenir les groupes

définitifs. Ce partitionnement est effectué indépendamment pour chaque variable,

et il sera ainsi possible d’associer chaque groupe de segments similaires à un évène-

ment qui va remplacer les segments dans la version discrétisée. Cependant, ici, nous

souhaitons contraindre la création des groupes de segments en fonction du résultat

du partitionnement pour les autres variables.

Un évènement de synchronisation entre deux variables est un évènement qui sur-

vient simultanément dans les variables. Chercher des évènements synchronisés dans

une série temporelle multivariée revient à chercher les groupes de segments simi-

laires dans chaque variable qui surviennent simultanément. Il faut donc étudier la

cooccurrence des segments des différentes variables, tout en regardant la similarité

des segments au sein de chaque variable. Nous proposons une structure de don-

nées permettant d’étudier ces deux facteurs simultanément (Figure 5a). Étant donné

une série temporelle multivariée segmentée (segments a1, a2, ... sur la Figure 5b), la

structure de données rassemble les informations sur la cooccurrence des segments

entre deux variables dans une matrice (1 pour cooccurrence, 0 sinon). La similarité

entre les segments d’une même variable est donnée dans les dendrogrammes dont

les feuilles sont associées aux colonnes et lignes de la matrice et donc aux segments.

L’exploration de cette structure de données permet l’identification d’évènement de

synchronisation (en jaune), et permet par la suite la création des groupes de seg-

ments en tant qu’évènement classique ou de synchronisation.
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(a) Matrice de co-occurrence.
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(b) Série temporelle multivariée.

FIGURE 5 – Les lignes rouges au-dessus des dendrogrammes correspondent à un ni-
veau de coupe proposé par un algorithme de partitionnement classique. Les lignes
bleues correspondent à un niveau de coupe nécessaire pour préserver les synchro-
nisations, obtenues par notre algorithme. Les groupes de segments sont ensuite as-
sociés à un évènement classique (h1, h2, h3) ou a un évènement de synchronisation
(s[?/!]).

Les premières expériences sur données synthétiques montrent que l’approche

permet bien de retrouver des synchronisations, y compris dans des données brui-

tées.
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Titre : Apprentissage d’automates temporisés à partir de séries temporelles

Mot clés : apprentissage d’automates, automates temporisés, système à évènements dis-

crets, séries temporelles, discrétisation, détection d’anomalies

Résumé : Cette thèse explore le développe-
ment de nouvelles techniques pour exploiter
les données d’observation de système afin
d’apprendre automatiquement des modèles
de comportement. Nous utilisons le forma-
lisme de l’automate temporisé, un automate
fini dont les changements d’état sont déclen-
chés par des événements et contraints par
le temps. Trois enjeux principaux sont abor-
dés : (1) l’apprentissage d’automates tempo-
risés à partir de séquences d’événements ;
(2) la discrétisation de séries temporelles pour
permettre l’apprentissage d’automates tempo-
risés à partir de données numériques ; et (3)
l’apprentissage d’automates temporisés en in-
teraction à partir de séries temporelles. Tout
d’abord, nous présentons TAG, un algorithme

d’apprentissage d’automates temporisés. Une
experience sur des données synthétiques dé-
montre qu’il atteint un meilleur équilibre entre
sur-ajustement et généralisation que les algo-
rithmes de l’état de l’art. Ensuite, nous propo-
sons MOODES, une méthode de discrétisa-
tion de séries temporelles basée sur l’optimi-
sation de critères favorables à l’apprentissage
d’automates temporisés. TAG et MOODES
sont appliqués sur un défi de détection d’ano-
malies dans les séries temporelles avec une
approche basée sur des ensembles d’auto-
mates. Enfin, nous présentons une nouvelle
approche de discrétisation pour séries tem-
porelles multivariées qui identifie et préserve
les synchronisations afin d’apprendre des au-
tomates en interaction.

Title: Timed automata learning from time series

Keywords: automata learning, timed automata, discrete event systems, time series, discretiza-

tion, anomaly detection

Abstract: This thesis explores the develop-
ment of new techniques for using the obser-
vational data of a system to automatically in-
fer behavior models. We adopt the Timed Au-
tomata formalism, a finite-state machine in
which state changes are triggered by events
and are constrained by time. Three main chal-
lenges are addressed: (1) learning a Timed
Automaton from event sequences; (2) dis-
cretizing time series to enable the learning
of Timed Automata from numerical data; and
(3) learning interacting Timed Automata from
time series. First, we introduce TAG, a Timed
Automata learning algorithm. Experiment on

synthetic data demonstrates that it achieves a
better balance between overfitting and gener-
alization than the State-of-the-Art algorithms.
Then, we propose MOODES, a discretiza-
tion method based on optimizing criteria favor-
able for learning Timed Automata, which pro-
duces multiple solutions. TAG and MOODES
are applied to a time series anomaly detec-
tion challenge where we use ensembles of
Timed Automata and provide explanations for
the anomalies. Finally, we present discretiza-
tion approach for multivariate time series that
identifies and preserves the synchronizations
with the aim of learning interacting automata.
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