Titre : Étude théorique des collisions entre un atome d'hydrogène et une surface de graphène Mots clés : dynamique quantique de haute dimension, graphène, collision, simulation moléculaire Résumé : Cette thèse de recherche se concentre sur le développement de simulations de dynamique moléculaire classique et quantique, plus précisément sur la diffusion des atomes d'hydrogène à partir d'une surface en graphène. Le graphène, un cristal bidimensionnel composé d'atomes de carbone, est un matériau prometteur pour diverses applications en astrophysique, pour le stockage d'hydrogène et la fabrication de semi-conducteurs.

La thèse se concentre sur l'étude du graphène hydrogéné, connu sous le nom de graphane, qui présente une bande interdite ajustable, adaptée aux applications électroniques. Des études expérimentales et des simulations ont été menées pour comprendre l'adsorption des atomes d'hydrogène sur la surface en graphène, la formation de liaisons chimiques C-H et le transfert d'énergie lors des collisions entre les atomes d'hydrogène et le graphène.

Pour étudier les effets quantiques inhérents à ce système, des simulations de dynamique quantique (QD) pour les molécules sont proposées sur la base d'études antérieures (classiques) sur la diffusion des atomes d'H à partir de la surface en graphène. Ces simulations prennent en compte la nature quantique des particules en utilisant des fonctions d'onde probabilistes. Cependant, les simulations QD posent des défis numériques majeurs en raison de la haute dimensionnalité.

La thèse introduit la méthode Multi-Configuration Time-Depdent Hartree (MCTDH), une approche puissante pour simuler des systèmes quantiques complexes. Elle présente ensuite la formulation multicouche de MCTDH (ML-MCTDH), qui permet d'étendre le nombre de degrés de liberté pouvant être traités. Les étapes pour la transformation de la surface d'énergie potentielle (PES) en une forme de somme de produits (SOP) sont décrites, réduisant ainsi les coûts numériques.

La thèse décrit les stratégies mises en oeuvre pour surmonter la difficulté de réaliser des simulations de dynamique quantique en 75 dimensions. Un nouvel opérateur de flux de quantité de mouvement est mis en place et la thèse présente une référence pour vérifier la validité des simulations de dynamique moléculaire classique (cMD). La thèse part de systèmes en dimensions réduites vers le système en dimensions complètes et présente une description complète des simulations de dynamique moléculaire classique et quantique.

Title : Theoretical Study of the Hydrogen atom Scattering from a Graphene Surface Keywords : High dimensional quantum dynamic, graphene, collision, molecular simulation Abstract : This research thesis focuses on classical and quantum molecular dynamics simulations, specifically investigating the scattering of hydrogen atoms from a graphene surface. Graphene, a two-dimensional crystal composed of carbon atoms, holds great promise for diverse applications in astrophysics, hydrogen storage, and semiconductor manufacturing.

The thesis delves into the study of graphene, a hydrogenated form of graphene that possesses a tunable bandgap suitable for electronic applications. Through experimental studies and simulations, the thesis explores the adsorption of hydrogen atoms on the graphene surface, the formation of C-H chemical bonds, and the energy transfer occurring during collisions between hydrogen atoms and graphene.

To unravel the quantum effects inherent in this system, the thesis proposes quantum dynamics (QD) simulations based on prior research on H atom scattering from graphene surfaces. These simulations incorporate the probabilistic wave functions that characterize the quantummechanical nature of particles. However, QD simulations present computational challenges due to their high-dimensional nature and complex calculations.

To address these challenges, the thesis introduces the Multi-Configuration Time-Dependent Hartree (MCTDH) method, an influential approach for simulating complex quantum systems. It highlights the multilayer formulation of MCTDH (ML-MCTDH), which extends the number of degrees of freedom that can be handled. The computational complexities of QD simulations are mitigated by transforming the Potential Energy Surface (PES) into a Sum of Products (SOP) form, thereby reducing the computational demands.

The thesis outlines the strategies employed to overcome the computational complexity and memory requirements of the 75-dimensional QD simulations. It discusses the implementation of a newly devised flux momentum operator and presents a novel benchmark of classical molecular dynamics (cMD) simulations. Furthermore, it demonstrates the progression from dimensionreduced systems to the full-dimensional system, providing a comprehensive examination and exploration of classical and quantum molecular dynamics simulations.
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-Introduction

Graphene is a two-dimensional crystal, made up of carbon atoms, arranged in a hexagonal lattice [1][2][3][4]. Since its discovery in 2014, graphene continues to attract a lot of research attention due to its unique characteristics. These properties make graphene a promising material for a wide range of applications, such as in electronics, energy, materials science, and biomedicine. Some of the most notable properties of graphene include :

1. High mechanical strength [5] : The C atoms in the graphene are linked by covalent chemical bonds with a bond length equal to 1.42 Å [6] while the bond length in diamond is 1.52 Å. Graphene is considered as the world's thinnest and strongest material, with a tensile strength of 130 GigaPascals (GPa), while that of A36 structural steel, which is widely used in building construction is 0.4 GPa.

2. High electrical conductivity [2] : Graphene is an excellent conductor of electricity, with high electron mobility, because of its zero bandgap. Its electrical conductivity is twice as large as that of copper.

3. High thermal conductivity : Graphene exhibits a remarkable thermal conductivity of approximately 5000 W/mK [7], surpassing that of graphite films (1950 W/mK) commonly employed for heat dissipation and spreading in mobile phones and other power devices.

4. High optical transmittance [8] : Graphene is transparent, making it useful for applications such as display screens and solar cells.

5. Large surface area [9] : Graphene has a large surface area, up to 2630 m 2 /g, making it useful for applications such as water purification and energy storage [10].

6. Biocompatibility [11] : Graphene is non-toxic and biocompatible, making it a promising material for biomedical applications.

On the other hand, chemical modification of graphene can introduce new properties and potential applications : for example, the hydrogenation of graphene [12][13][14]. Hydrogenated graphene, also known as graphane, is a form of graphene in which hydrogen atoms are covalently bonded to the carbon atoms of the graphene lattice. Hydrogenation of graphene changes its electronic properties and can make it a semiconductor with a bandgap, which is a fundamental property that is important for electronic applications such as transistors and solar cells [15,16]. The bandgap of hydrogenated graphene can be tuned by controlling the coverage rate of the H atom [17]. In addition, the hydrogenation of graphene is also a promising model system for studying intramolecular vibrational energy redistribution reactions which plays a central role in chemical reaction. Recently, the scattering of the H atom from the graphene surface was successfully realized [18]. This experiment provides valuable insights into multiple aspects, including the adsorption of hydrogen atoms on the graphene surface, the formation mechanism of the C-H chemical bond, and the energy transfer occurring during collision events.

In this respect, an accurate full-dimensional neural network Potential Energy Surface (PES) with a cell of 24 carbon atoms of graphene surface and one free hydrogen atom was reported [19]. The graphene cell is depicted in figure 1.1. A Behler-type neural network calculation was employed to generate this PES. It was trained with 75,945 reference geometries. The energies corresponding to these geometries were determined through Density Functional Theory (DFT) calculations by using The Vienna ab initio simulation package (VASP) [20][21][22][23][24][25] version 5.3.5 at the Generalized Gradient Approximation (GGA) level, utilizing the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional [26]. Then the classical molecular dynamics (cMD) simulations of hydrogen atom scattering on graphene surface with incidence energies of 1.9 eV and 1.0 eV on this PES were performed by the program md_tian2 [START_REF] Auerbach | Molecular Dynamics Tian Xia 2 (MDT2) ; program for simulating the scattering of atoms and molecules from a surface[END_REF] and compared with the scattering experiment in order to validate this PES. The latter can predict H atom sticking probabilities in agreement with experience as well as reproduce the energy-loss spectra [19]. These results demonstrate the high precision of this PES. However, there are still some differences between the experimental results and the simulations in some situations for example when the incident angle is 0 o . These differences may be explained by the presence of quantum effects. Indeed, the H atom with graphene surface system is often considered as a quantum system [START_REF] Bonfanti | [END_REF][29][30], in particular, due to the presence of a light H atom, thus quantum effects may be observed in this system, or may be due to the problem of the PES. The quantum effects are not considered in the cMD simulations. Therefore, quantum dynamics (QD) simulations are necessary to investigate the possible existing quantum effects.

QD simulations are similar to cMD simulations in that they are used to study the dynamics of a system of interacting particles, but they take into account the quantum-mechanical nature of the particles. The main difference between QD and cMD is that in QD, the probability wave function, rather than the position and velocity, of each particle is used to calculate the dynamics of the system. Because QD simulations involve solving the time-dependent Schrödinger equation (TDSE) equation, the computational cost of a QD simulation increases exponentially with the number of degrees of freedom of the system [START_REF] Gatti | Molecular Quantum Dynamics[END_REF]. This means that QD simulations can become extremely computationally expensive for systems with a large number of particles and/or for systems that are highly complex. For example, the so-called 'standard' method is limited to a system with 6-9 DOFs [START_REF] Gatti | Applications of Quantum Dynamics in Chemistry[END_REF][START_REF] Fried | Computational chemistry and molecular simulation[END_REF]. Therefore, QD simulations are often used to study small systems that exhibit specific quantum mechanical properties. Thus, it is a tremendous challenge to realize QD simulations for this 75-dimensional system (72 for the 24 Carbon atoms and 3 for the Hydrogen atom).

The Multi-Configuration Time-Dependent Hartree (MCTDH) method was proposed by Meyer, Manthe, and Cederbaum in 1990, and it is a powerful method for simulating the dynamics of complex quantum systems quantum mechanically [START_REF] Meyer | [END_REF]. The original MCTDH method was limited to systems with typically a maximum of 25 degrees of freedom. However, in 2003, Wang and Thoss proposed a multilayer formulation of MCTDH (ML-MCTDH) that significantly increased the limit of the number of degrees of freedom that can be treated [35]. This ML-MCTDH makes it possible to perform QD simulations for systems with up to 300,000 DOFs.

However, the ML-MCTDH method is still limited in its ability to handle real complex systems, for which PES is a high-dimensional array, also known as a tensor. This tensor does not have a form adapted to MCTDH. The . The elements of the tensor represent the potential energy of the system at different geometries, and the indices of the tensor correspond to the coordinates of the system. When we perform the QD simulation directly with a PES, the high-dimensional integrals required to evaluate the dynamics of the system can be computationally demanding and even impossible to solve for our 75-dimensional system. One way to reduce the computational cost of the highdimensional integrations required in QD simulations with the ab initio PES is to transform the PES into a Sum of Products (SOP) form. In this form, the PES is represented as a sum of products of one-dimensional arrays, each of which depends on a small group of coordinates to describe the system. By expressing the PES in this form, the high-dimensional integrations required in the QD simulation can be reduced to a series of products of one-dimensional integrations, which are computationally less demanding. This transformation is called PES refitting and is a particular case of tensor decomposition within mathematical terminology. There are several methods to perform this refit-ting implemented in the Heidelberg MCTDH Package [START_REF] Worth | The MCTDH Package[END_REF][START_REF] Worth | The MCTDH Package[END_REF], such as the Potfit program, which is based on Tucker decomposition [38] and the socalled Monte-Carlo Canonical Polyadic Decomposition (MCCP). As already said, realizing 75-dimensional quantum dynamics (QD) simulations for a molecular system is a significant challenge, and no one has realized this before due to the high computational complexity and memory requirements.

The objective of this work is to overcome this challenge, realizing the 75dimensional QD simulation for H atom scattering from a graphene surface and trying to highlight the quantum effects in order to identify the cause of the differences between the experimental results and the cMD simulations.

We devised various strategies to accomplish this goal, and we pieced them together by obtaining some preliminary research and validating those approaches. We began the QD simulations with dimension-reduced systems and then increased the simulation dimension. The 75D simulation is extremely expensive, and validating the strategies with a lower dimensional system is more feasible. We began with a 6-dimensional system (6D), then a 15-dimensional system (15D), and finally the full-dimensional system (75D). This Ph.D. thesis presents a comprehensive examination and in-depth exploration of cMD and QD simulations. The thesis begins by introducing the necessary background information and theoretical framework, while also highlighting the development of novel methods specific to this system. It then delves into the intricate details of the simulations, including the employed parameters and methods utilized. The thesis concludes with a thorough analysis of the results, as well as a discussion of the findings and their implications. Furthermore, the thesis concludes with a forward-looking perspective, offering valuable insights into potential future directions and areas for further research exploration. This final chapter serves as a guide for researchers and practitioners, outlining promising avenues that can expand upon the current knowledge and foster continued advancement in the field.

-Background

In this chapter, we provide a comprehensive introduction to the background information relevant to this study. We begin by discussing the background of the scattering experiments, followed by an exploration of the NN-PES (Neural Network Potential Energy Surfaces) utilized in this research. Subsequently, we delve into the theories underlying both cMD (Classical Molecular Dynamics) simulations and QD (Quantum Dynamics) simulations, providing a solid theoretical foundation for the subsequent analyses. By presenting a well-rounded overview, this chapter establishes the necessary context for the subsequent discussions and analyses to follow.

. H atom scattering from graphene surface experiment

The experiments are carried out by the group led by A. WODTKE [18]. They first prepared a single-layer, no-coverage graphene surface on a Pt(111) substrate. The Pt surface was cleaned by Ar + ion sputtering and annealing, and the cleanliness was verified by Auger electron spectroscopy (AES) and low energy electron diffraction (LEED). The graphene sample was prepared by dosing ethylene on the clean Pt(111) substrate at 700 • C for a quarter. The quality of single-layer graphene was confirmed by AES, LEED, and a comparison between the scattering results from the pristine Pt(111) surface and the graphene sample [39]. The H atom beams with a very narrow range of energies are generated from the dissociation of HI or HBr supersonic molecular beams using ultraviolet light from ArF or ArF or KrF lasers. The incident energy of hydrogen atoms is adjustable through the manipulation of laser wavelength, with an uncertainty of only 0.1%. Only hydrogen atoms moving perpendicular to the molecular beams can successfully traverse a skimmer, which serves to collimate the beam before it engages the graphene surface. The incident angle is subject to adjustment via a manipulator, with an uncertainty of 0.3 o .

The outgoing H atoms are detected by the Rydberg atom tagging time-offlight (TOF) method [40,41]. The H atoms will be first excited to a long-lived Rydberg state using a two-pulse laser. The first laser pulse excites the 1s-2p transition at 121.57 nm, and the second laser pulse excites the 2p-n=34 transition at around 365 nm. Once the atoms are excited to this state, they will travel a distance of 250 mm where they can be field-ionized and detected by a microchannel plate detector (MCP). The arrival time is recorded to obtain the TOF map.

Figure 2.1 illustrates the experiment. As shown, the incident kinetic energy and the incident angle are well defined. The uncertainty of the incident kinetic energy is usually smaller than 20 meV and is influenced only by the size and bandwidth of the photolysis laser and the rotational temperature of the molecular beams. The uncertainty of the incident angle is negligible, it is defined by the manipulator of the graphene support [39]. After the collision, the outgoing kinetic energy and scattering angle of the H atoms are distributions, rather than precise values with small uncertainty.

Figure 2.2 presents a 2D cut of the Potential Energy Surface (PES) viewed from the Z direction of the H atom and one C atom, illustrating the arrangement of the H atom positioned above the C atom. There are three possible scenarios for the scattering behavior of the H atom from the graphene surface :

1. When the initial kinetic energy of the H atom is insufficient to overcome the chemisorption barrier, it leads to an elastic collision, as indicated by the red trajectory.

2. In cases where the initial kinetic energy is inadequate for overcoming the chemisorption barrier, the H atom may adhere to the graphene surface, forming a C-H chemical bond. This is illustrated by the yellow trajectory.

3. Alternatively, with sufficient initial kinetic energy, the H atom may also be scattered back, imparting energy to the graphene surface. This results in an inelastic collision, depicted by the black trajectory.

In this analysis, we focused exclusively on these three behaviors, and certain other potential processes are omitted from the representation in Figure 2.2. For instance, despite an initial kinetic energy lower than the chemisorption threshold, the hydrogen atom might overcome the barrier through tunneling effects. Moreover, inelastic collisions could involve multiple collision events rather than In experiments, the outgoing kinetic energies and scattering angles of hydrogen atoms are measured to obtain a scattering distribution diagram and to understand the details of their collisions with graphene surfaces. By analyzing the data, they calculated the fraction of outgoing kinetic energy relative to the initial kinetic energy of the hydrogen atom to identify the nature of the collision(E f /E i ) [18]. If this fraction is close to 1, the collision is considered quasi-elastic, which means that there is little or no energy transfer from the hydrogen atom to the graphene surface. This typically occurs when the initial kinetic energy of the hydrogen atom is low or when the incident angle is large. In these cases, the energy perpendicular to the graphene surface, which is required for chemisorption, is smaller than the barrier required for chemisorption. If this fraction is less than 1, the collision is inelastic, meaning that the hydrogen atom's outgoing kinetic energy is smaller than its initial kinetic energy, and its kinetic energy is transferred to the graphene surface. Some of the hydrogen atoms that collide with the graphene surface may be trapped and form a chemical bond with the carbon atoms on the surface, creating C-H bonds. These atoms will not be detected in the scattering diagram, as they are not scattered and will not contribute to the outgoing kinetic energy. However, their presence can be observed by measuring the difference of the quantity of the H atoms going to and returning from the surface.

. Molecular Hamiltonian

Theoretical studies have been conducted to enhance our understanding of the experimental results and elucidate the interactions between the H atom and the graphene surface in this system.

The molecular Hamiltonian, denoted as Ĥmol , depends on the positions of both the nuclei (R) and the electrons (r), and is represented by Equation 2.1. It is composed of two main components : the kinetic energy of the nuclei, denoted as Tnu (R), and the electronic Hamiltonian, denoted as Ĥel (r, R). The electronic Hamiltonian encapsulates the electronic kinetic energy ( Tel (r)), the potential energy arising from interactions between electrons and nuclei ( Vnu-el (r, R)), the repulsive interactions between electrons ( Vel-el (r)), and the repulsive interactions between nuclei ( Vnu-nu (R)).

Ĥmol (r, R) = Tnu (R) + Ĥel (r, R) = Tnu (R) + Tel (r) + Vnu-el (r, R) + Vel-el (r) + Vnu-nu (R). (2.1)
The time-dependent molecular wave function can be expressed as the combination of nuclear functions ϕ nu i (R) and electronic functions Φ el j (r; R), both of which form orthonormal basis sets :

Ψ mol (r, R, t) = i j c ij (t)ϕ nu i (R)Φ el j (r; R) (2.2)
Since the electronic basis functions are dependent on the nuclear coordinates, the wave function can be alternatively expressed as :

Ψ mol (r, R, t) = i ψ nu i (R, t)Φ el i (r; R) (2.3) 
In this approach, the time-dependent molecular wave function is delineated in terms of the evolving nuclear wave function and its corresponding electronic wave functions.

Applying the time-dependent Schrödinger equation and the molecular Hamiltonian in equation 2.1, we obtain [START_REF] Gatti | Applications of Quantum Dynamics in Chemistry[END_REF] :

i (T ij (R) + V ij (R))ψ i (R, t) = i ∂ψ j (R, t) ∂t , (2.4) 
where

T ij (R) = ϕ el i (r; R) T nu (R) ϕ el j (r; R) r ψ i (R, t), (2.5) 
the kinetic energy part, and

V ij (R) = ϕ el i (r; R) T nu (R) ϕ el j (r; R) r . (2.6) 
the potential energy part. With the adiabatic basis set which are the eigenfunctions of the electronic Hamiltonian in the equation 2.1 for the electronic basis the potential energy part changes to

V ad ij = ϕ el/ad i (r; R) T nu (R) ϕ el/ad j (r; R) r δ ij E el ij (R).
(2.7)

E el i (R
) is a function of the nuclear coordinates, it is known as the potential energy surface (PES) mentioned before. The PES is the precondition for dynamics simulations. Many methods exist to find the eigenvalues of the electronic Hamiltonian, such as the density functional theory (DFT).

. DFT

In the DFT method, the behaviors of electrons in a system can be described by a continuous electron density rather than the wave functions of individual electrons. The electron density for a system with N electrons is defined by the equation 2.8, it is the probability of finding an electron in an element space [42,43] :

ρ(r) = N i=1 ⟨Ψ|δ(r -r i )|Ψ⟩ .
(2.8)

The Hohenberg-Kohn Theorem is a cornerstone of the DFT method. It proves that, for a given Hamiltonian, there is a unique electron density that corresponds to the ground state of the system and that this density uniquely determines all the observable properties of the system [44]. DFT is precise in theory, whereas it is actually implemented according to the Kohn-Sham theorem, a simplified approach in which the many-electron system can be approximated as the description of non-interacting electrons moving in local effective potentials created by the nucleus and other electrons [45]. The total energy of the molecule which depends on the electron density in the theorem is expressed as the equation 2.9 :

E[ρ] = T KS [ρ] + E H [ρ] + E nu [ρ] + E xc [ρ]. (2.9)
It is the sum of the Kohn-Sham kinetic energy, the Hartree energy or the electrons-electrons energy, the nucleus-electrons energy, and the exchange-correlation energy. The exchange-correlation energy is the difference between the real energy and the Kohn-Sham theorem, its expression is unknown, and the actual calculations are performed using approximate forms of the exchange-correlation energy.

In this HDNN-PES calculation, they used the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional at the Generalized Gradient Approximation (GGA) level, the plane-wave basis, and the projector-augmented wave (PAW) to simulate electrons [46].

. HDNN-PES

As mentioned in the introduction, we used a high-dimensional neural network potential energy surface (HDNN-PES) for our simulations. We will delve into the details of this technique in this section.

The Born-Oppenheimer approximation separates the motion of the nuclei and electrons in a molecule, treating the nuclei as fixed in space while the electrons move around them [47,[START_REF] Sutcliffe | Conical Intersections -Electronic Structure, Dynamics and Spectroscopy[END_REF]. This allows for the calculation of the electronic structure and potential energy of a molecule as a function of the nuclear coordinates, which can then be used to construct a PES [START_REF] Mcnaught | potential-energy (reaction) surface[END_REF]. Electronic structure methods such as Hartree-Fock [START_REF] Fischer | [END_REF], density functional theory (DFT) [42], and configuration interaction [51] can be used to calculate the electronic energy of a system for a given set of nuclear coordinates, and thus determine the PES of a system. Calculating the potential energy surface of a large system, such as our graphene system, can be computationally expensive and time consuming. The electronic structure methods that are used to calculate the PES, such as post-Hartree-Fock and density functional theory, scale as O(N 4 ) and O(N 3 ) respectively, with the number of electrons in the system, making them impractical for large systems. Additionally, the PES is a highdimensional surface, and it can be challenging to explore its entire landscape.

In order to construct a potential energy surface, one needs to calculate the potential energy for a large number of molecular configurations, and the number of configurations increases exponentially with the number of atoms in the molecule because each atom can occupy a different position in space, resulting in a large number of possible configurations. This makes it computationally infeasible to calculate the PES for large systems using traditional electronic structure methods. As a result, various computational approaches have been developed in recent years to address this challenge.

Recently, machine learning (ML) potentials have become a promising approach to constructing first-principles quality PESs [52,53]. This is due to the ability of ML models to learn complex relationships between the atomic coordinates and the corresponding energy values from a smaller set of reference calculations, making it possible to predict the PES of a system at a much lower computational cost. There are various types of ML potentials, such as artificial neural networks (NN), Gaussian process regression, and decision trees, which have been applied to construct PESs for a wide range of systems, including molecules, clusters, and materials. These ML potentials have been shown to be Among those ML methods, the NN method is usually used for large systems. The high-dimensional neural network (HDNN) model proposed by J. Behler and M. Parrinello in 2007 has been used to study a wide range of materials and has been shown to be accurate and efficient [54]. In this method, the potential energy of the molecule is the sum of the potential energies of all its atoms, as in equation 2.10. Those local atomic energies depend on the chemical environment of the atoms, which is described by the atom centered symmetry functions (ACSF) [55]. These functions take into account the positions and types of neighboring atoms, as well as their distances and angles, and are used as input features for the NN model. The neighbor atoms are chosen according to a cutoff distance, it should be large in order to ensure that all relevant interactions between atoms are considered, it is usually 6-10 Å [19]. These functional forms are based on the radial and angular distributions of the atoms in the system and are thought of as fingerprints of distances between 2 atoms and angles between 3 atoms, respectively. It is used to ensure that the PES of a system is invariant to translations and rotations of the system, as well as permutations of atoms.

E pot = Natoms n E n .
(2.10) Figure 2.3 shows the HDNN-PES process [56]. They calculate the ACSFs based on the Cartesian coordinates of atoms and use these vectors as input for sub-NNs, which is also known as atomic neural networks, to calculate the 

E out = f 3 { 15 j=1 w jo f 2 [ 15 m=1 w mj f 1 ( n k=1 w km S k + b m ) + b j ] + b o }.
(2.11)

S k is the input ACSFs. w km , w mj and w jo are the weight parameters to connect the nodes of the input layer to the nodes of the first hidden layer, the nodes of the first hidden layer to the nodes of second hidden layer and the nodes of second hidden layer to the output, respectively. b m , b j and b o are the bias parameters. f 1 , f 2 , and f 3 are activation functions, the hyperbolic tangent is used for the hidden layers, and a linear function for the output layer. The sub-NNs have a significant number of biases and weights parameters that need to be optimized to accurately model the potential energy of each atom in the system. The optimization process involves minimizing the differences between the output of the sub-NNs and the training data. During this process, the total potential energy and the atomic force, or the first derivative of the potential energy are compared. They used 75,945 samplings to build the NN. ab initio molecular dynamics (AIMD) simulations yield approximately 60,000 configurations, while cMD simulations yield approximately 15,000 configurations with some extreme initial conditions to improve sampling. 90% of them are randomly chosen to train the NN, the rest are used to validate the NN.

. cMD simulation

In the cMD calculation, the nuclei of the system are considered as classical particles and are driven by Newton's laws of motion as the equation 2.12 :

ẋ = dx dt = v, ẍ = m dv dt = F (x) = - ∇V (x) m .
(2.12)

The particles move in a force field which is the negative gradient of the PES [57]. Obviously, for a complex system whose PES does not have analytical expression, these equations of motion can only be solved numerically. By solving the equations of motion, the positions and velocities of the nuclei can be obtained at each timestep, allowing us to track the system's dynamics as well as its properties.

There are many integration methods to solve the equations of motion, usually, we use time-symmetric integration methods such as the Verlet algorithm [58]. The Taylor series of the position of a particle at the moment t 0 ± δt is shown in equation 2.13 :

x(t 0 -δt) = x(t 0 ) -ẋ(t 0 )δt + 1 2 ẍ(t 0 )δt 2 - 1 6 
... x (t 0 )δt 3 + ϵ(O 4 ),

x(t 0 + δt) = x(t 0 ) + ẋ(t 0 )δt + 1 2 ẍ(t 0 )δt 2 + 1 6

... x (t 0 )δt 3 + ϵ(O 4 ).

(2.13)

The sum of these two gives us the result with the error of the fourth order of the propagation as equation 2.14 :

x(t 0 + δt) = 2x(t 0 ) -x(t 0 -δt) + ẍ(t 0 )δt 2 + ϵ(O 4 ). (2.14) 
In conducting a cMD simulation, it is essential to define the thermodynamic ensemble of the system based on its properties and the specific calculations intended. The thermodynamic ensemble, distinguished by its statistical equilibrium and a range of properties, functions as a specialized category within statistical ensembles. This ensemble is utilized to infer the characteristics of thermodynamic systems in accordance with classical mechanics principles.

For instance, in our simulations, we induce thermalization of the graphene surface using the N V T canonical ensemble. In this ensemble, the absolute temperature (T ), the number of particles (N ), and the volume (V ) of the system remain constant throughout the simulation, facilitating the determination of the statistical equilibrium distribution at the chosen temperature. Conversely, for collision simulations, we opt for the N V E microcanonical ensemble. In this microcanonical ensemble, the total energy of the system (E), instead of the temperature, remains constant as the simulation system is isolated.

. QD simulation

The QD simulation approach differs from the cMD approach in the way it treats the nuclei. In QD, nuclei are represented by wave functions and driven by the Schrödinger time-dependent equation 2.15 in atomic units. This allows for a more accurate description of the interactions, and QD simulations can include quantum effects such as the tunneling effect, which are not possible to study with cMD :

i ∂ ∂t Ψ(t, x) = Ĥ(t)Ψ(t, x). (2.15)
Ĥ is the molecular Hamiltonian of the system, it contains the kinetic energy operator T and the potential energy operator V . The solution of this equation ψ(x, t) is the wave function. This equation is resolved via the Dirac-Frenkel variational principle as the equation 2.16 [59] :

δΨ Ĥ -i ∂ ∂t Ψ = 0. (2.16) 
This principle states that the most probable behavior of a quantum system can be found by minimizing the function, known as the action integral, with respect to the parameters of the system. δΨ is the possible variation of Ψ according to the parameters, for example, a parameterized wave function as

Ψ(α 1 , α 2 , ...α n ).
The δΨ is :

δΨ = n i=1 ( ∂Ψ ∂α i )δα i .
(2.17)

It corresponds to the parameter variation α i → α i + δα i .

. Finite Basis Representations (FBR) and Discrete Variable Representations (DVR)

Although the variational principle provides some insight to solve the Schrödinger time-dependent equation, it is still a challenging problem to solve the equation analytically due to the intricate nature of its wave function. Ultimately, for complex systems, numerical computations are the best way to go. Thus, we have to represent the wave functions and operators in a numerical way. Grid representation or spectrum discretization are two methods widely used to represent a function numerically.

In the grid representation, a function is represented by a set of points and its values on those points. In this approach, the dimensionality of the function determines the number of points used. A one-dimensional function can be represented as a vector, where each element of the vector corresponds to the value of the function at a specific point. A two-dimensional function can be represented as a matrix, where each element of the matrix corresponds to the value of the function at a specific point in the two-dimensional space. A high-dimensional function can be represented as a high-dimensional tensor, where each element of the tensor corresponds to the value of the function at a specific point in the high-dimensional space. To simplify, we can consider a one-dimensional wave function which is represented by a set of points {q f n } and its values one those points Ψ({q f n }). The big advantage of using grid representation in the dynamic simulation of a wave function is that the potential operator is a diagonal matrix (V = V (x α )δ αβ ), thus the calculation of the potential energy of the system can be easily found V ({q f n })Ψ({q f n }), it is simple and attractive. However, the number of points required to discretize the function increases exponentially with the dimension of the function, leading to a corresponding increase in the amount of data needed to represent the function. This can quickly become computationally expensive in memory and time and even infeasible for high-dimensional functions.

Grid representation is a powerful tool for obtaining numerical solutions for the derivative and integration of a function. However, to achieve high accuracy, the grid steps must be small, which can make numerical simulations computationally expensive. To mitigate this issue, we often use basis functions to represent the function on the grid. This approach reduces the number of grid points needed for the simulation while still maintaining accuracy, making it a more efficient method for numerical approximation.

In the spectrum discretization, we used a set of orthogonal normalized basis functions {χ i (q)} n i=1 which is called FBR because the number of basis n is finite, and a set of grid points {q j } n j=1 which is called DVR, because the grid points are discrete. In the aspect of FBR, the wave function is represented as :

Ψ(q) = n i aχ i (q), (2.18) 
in this case, the calculation of the kinetic energy can be calculated analytically (< χ i | T |χ l >) since the basis functions have analytical expressions [START_REF] Corey | Numerical Grid Methods and Their Application to Schrödinger's Equation, sous la dir[END_REF].

However, the calculation of potential energy is not evident. In the aspect of DVR, the wave function is assumed to be represented by a set of its values on the grid Ψ(q j ). As mentioned above, the calculation of the potential energy for the wave function at the grid points is simple, the potential energy operator is diagonal. However, the application of the kinetic energy operator is more complicated.

In practice, it is very nice that we can work with them together at the same time by using DVR functions [START_REF] Light | [END_REF][62][START_REF] Light | Time-Dependent Quantum Molecular Dynamics, sous la dir[END_REF][START_REF] Light | [END_REF][65]. We often diagonalize the matrix < χ i (q)|q|χ l (q) > to get the eigenvector matrix U , the DVR-functions are obtained by the equation 2.19. The idea is to transform the FBR functions into another set of functions which diagonal at grid points. The DVR function has some good characteristics, they are orthogonal (< φ j |φ k >= δ jk ) because of the unitary transformation, and they have only value at one grid point and zeros else (φ j (q k ) = δ jk ).

φ j (q) = n i U ij χ i (q) (2.19)
According to the properties of the simulated system, we can choose a lot of types of FBR basis functions, like sine functions, harmonic oscillator functions, etc. We detail the sine function as an example to show how the DVR functions will work. The sine basis functions in FBR are shown in the equation 2.20, they are eigenfunctions of a particle in 1D box with the length of L, where L = x 0 -x N +1 with N grid points [START_REF] Gatti | Applications of Quantum Dynamics in Chemistry[END_REF].

χ i (q) = 2 L sin( iπ(x-x 0 ) L ) for x 0 ≤ x ≤ x N +1 0 else (2.20)
Then we can calculate and diagonalize the matrix < χ i (x)|f (x)|χ l (x) > where f (x) is a coordinate transformation to ensure the matrix is tri-diagonal. From the diagonalization, we can get the transformation matrix U , and thus get the DVR-functions by using equation 2.19. The result can be calculated analytically, it is equation 2.21. Obviously, only φ j has a value at the grid point x j and other functions are zero at this grid point. This largely simplifies the calculation of the potential energy of the system. Meanwhile, we can always transform back to the FBR functions using the unitary matrix U to get the kinetic energy of the system easily.

φ j (x) = 1 2 L (N + 1)   sin π 2 (2N +1)(x-x j ) L sin π 2 (x-x j ) L - sin π 2 (2n+1)(x+x j ) L sin π 2 (x+x j ) L   (2.21)
While the example presented above offers simplicity, real-world simulations often entail significantly greater complexity. Numerous factors come into play, including considerations such as boundary conditions, singularities in the nuclear kinetic energy operator, system symmetries, and more. Consequently, it becomes essential to carefully select appropriate DVR functions according to the specific characteristics of the system under study. This careful selection not only contributes to faster calculations but also improves the convergence of results. 

. Standard method

By using a set of time-independent basis functions, the wave function can be represented as a sum of products (SOP) of the basis functions. In the standard method, the wave function ansatz is written as the sum of products of a set of time-independent basis as the equation 2.22 [66].

Ψ(q 1 , q 2 , ..., q f , t) = N 1 j 1 =1 ... N f j f =1 C j 1 ,..j f (t) f i=1 χ j i (q i ) = N J C J (t)Φ J (q 1 , q 2 , ..., q f ) (2.22)
Where q i corresponds to the ith DOF of the system, and χ j i (q i ) are the timeindependent orthogonal basis functions chosen specifically for the ith DOF, these basis functions will explain in the following section. C j 1 ,..j f (t) are the time-dependent expansion coefficients. The index J corresponds to a set of index [j 1 , ..j f ]. N 1 , .., N f are the number of grid points used for each DOF. The variation of Ψ is :

δΨ(q 1 , q 2 , ..., q f , t) = J δC J (t)Φ J (q 1 , q 2 , ..., q f )
Because only the expansion coefficients need to be optimized. And the time derivative of the wave function is :

∂ ∂t Ψ(q 1 , q 2 , ..., q f , t) = J ĊJ (t)Φ J (q 1 , q 2 , ..., q f )
Because the basis functions are time-independent. The δC J (t) are independent from each other, we can define δC J (t) = δ JL . It is 1 only if J = L, otherwise, it is 0. Applying the variational principle, we can get :

C L (t)Φ L Ĥ -i ∂ ∂t N J C J (t)Φ J = 0
the basis functions for each degree of freedom are usually chosen to be orthonormal, so ⟨Φ L |Φ J ⟩ = δ JL . We can then obtain the equation of motion, which is also the working equation to propagate the system for the standard method as the equation 2.23.

i ĊL = J ⟨Φ L | Ĥ |Φ J ⟩ C J (2.23)
This method is easy to use, but it is limited by the dimensionality of the degrees of freedom. For a system that has f DOF and N functions used for each DOF, there are N f basis functions and coefficients required. The number of basis functions and coefficients required grows exponentially with the number of DOF and the number of functions used for each DOF, resulting in a corresponding increase in the time required for calculation and the amount of memory needed. This limits the standard method to systems with 6-9 DOF or less. For larger systems, approximations or other techniques must be used to reduce the computational cost and make the simulation feasible.

. Time-Dependent Hartree (TDH)

As in the standard method, only the time-independent basis functions are used, they do not change during the propagation and thus do not well adapt along the propagation and make it difficult to simulate a high-dimensional system. One of the simplest approximated propagation methods is TDH [67,68]. In the method, the ansatz of the wave function is the product of a set of time-dependent basis functions as the equation 2.24.

Ψ(q 1 , q 2 , ..., q f , t) = C(t)Φ(q 1 , q 2 , ..., q f , t) = C(t) f i=1 ϕ i (q i , t) (2.24)
The wave function Ψ is also called the Hartree product or a molecular configuration. ϕ i (q i , t) is called signal particle function (SPF), they are constructed by the time-dependent expansion coefficients and the primitive bases which are time-independent :

ϕ i (q i , t) = N i j=1 c i j (t)χ i j (q i ) (2.25)
The SPFs used in the equation 2.24 are not unique because the phase and amplitude can shift between the SPFs and even to the coefficient C(t). Due to the term C(t), we can freely fix the constraints of the SPFs. To simplify the equation of motion, we fixed the constraint shown by equation 2.26.

ϕ k (q k ) φk (q k ) = 0 (2.26)
Similarly, as the standard method, we can apply the variational principle to get the equation of motion. Whereas, in this method, we need not only to propagate the coefficient C(t) but also the basis functions ϕ k (q k , t), they can be solved independently as shown in the equation 2.27.

i Ċ = EC (2.27) i φk (q k ) = (H (k) -E)ϕ k (q k )
The E is the expected value of the Hamiltonian, E =

f i ϕ i | Ĥ| f i ϕ i . The H (k) is called mean field of single-hole function for kth DOF, H (k) = f i̸ =k ϕ i | Ĥ| f i̸ =k ϕ i .
Compared with the standard method, the parameters need to be optimized during the simulation reduced to N * f , instead of N f . This largely decreases the time and memory for propagation. Because SPFs are time-dependent, they adapt well along the time evolution. This method is successfully applied in some studies such as the dissociation of I 2 He [69]. However, there are too few coefficients used to describe the system, and only one configuration used in the approach cannot describe correctly most systems, thus it can indeed suffer from poor performance when studying complex many-body systems.

. Multiconfiguration time-dependent Hartree (MCTDH)

One way to address the issue of the poor performance of the TDH method is to take more configurations into account, as the configuration interaction method improves the quality of the Hartree-Fock method calculation in quantum chemistry for electronic energy calculation. This is the basic idea of the MCTDH approach. The wave function ansatz is shown in equation 2.28, it is a linear combination of several Hartree products [START_REF] Meyer | [END_REF]66,[START_REF] Meyer | The Encyclopedia of Computational Chemistry[END_REF][START_REF] Meyer | [END_REF][72][START_REF]Multidimensional Quantum Dynamics : MCTDH Theory and Applications[END_REF][START_REF] Meyer | [END_REF][75][76][77][78][79][START_REF] Meyer | Numerical Grid Methods and their Application to Schrödinger's Equation, sous la dir[END_REF][START_REF] Jansen | [END_REF][82][83][84][85][86]. If n 1 = n 2 = ... = n f = 1, the wave function of MCTDH then is mathematically identical to the wave function of the TDH method.

Ψ(q 1 , q 2 , ..., q f , t) = n 1 j 1 =1 ... n f j f =1 C j 1 ,...,j f (t) f k=1 ϕ k j (q k , t) = J C J Φ J (2.28)
The ϕ i (q i , t) is also SPFs, whereas in MCTDH we can usually combine several DOFs to form a logical coordinate which is also called combined mode. In this way, we can decrease the number of coefficients needed to be optimized and also better consider the correlation between DOFs during the simulation. The wave function is written as equation 2.29.

Ψ(Q 1 , Q 2 , ..., Q l , t) = n 1 j 1 =1
...

n l j l =1 C j 1 ,...,j l (t) l k=1 ϕ k j (Q k , t) (2.29) 
In this mode combined wave function, the SPF is the equation 2.30. It shows a SPF for a combined mode of m DOFs.

ϕ k j (Q k , t) = N 1 i=1 ... Nm i=1 c i 1 ,...,im (t)χ k j 1 (q 1 )...χ k jm (q m ) (2.30)
If the number of SPFs for the kth mode n k is equal to the product of the number of primitive basis functions (n k = m i=1 N i ) of all combined DOFs, the MCTDH ansatz wave function is identical to that of the standard method. Whereas the number of SPFs is normally much smaller than the product of the number of primitive basis functions, this is why the MCTDH calculation is much more efficient than the standard method. In the MCTDH calculation, there are n l coefficients and l * N m SPFs to optimize, we can change the mode combination to optimize the calculation time for the coefficients and the basis functions.

As mentioned in the TDH method, the SPFs in MCTDH are not unique. we fixed the constraints shown in the equation 2.31.

ϕ k j (Q k , t = 0) ϕ k l (Q k , t = 0) = 0 (2.31) ϕ k j (Q k ) φk j (Q k ) = 0 Ψ (k) j = n 1 j 1 =1
...

n k-1 j k-1 =1 n k+1 j k+1 =1 ... n f j f =1 C j 1 ,...,j k-1 ,j,j k+1 ,...,j f (t) f i̸ =k ϕ i j (q i , t) (2.32)
By applying the equation 2.15, the equation 2.17 and MCTDH single-hole functions as the equation 2.32, we can get the equation of motion for the MCTDH method as shown in the following equation :

i ĊL = J C J ⟨Φ L | Ĥ |Φ J ⟩ = ⟨Φ L | Ĥ |Ψ⟩ i φ φ φk = (1 -P k )(ρ ρ ρ (k) ) -1 H H H (k) ϕ ϕ ϕ k (2.33)
Where,ϕ ϕ ϕ is the transpose of the SPF vector [ϕ k 1 , ϕ k 2 , ..., ϕ k n k ] for the mode kth, P k is the SPFs projector for the kth DOF, ρ ρ ρ (k) is the density matrix, and H H H (k) is the mean field matrix. The projector is :

P k = n k j k =1 ϕ k j ϕ k j (2.34)
And the density matrix is :

ρ ρ ρ (k) ij = Ψ (k) i Ψ (k) j (2.35)
And the mean-field matrix is :

H H H (k) ij = Ψ (k) i Ĥ Ψ (k) j (2.36)
As mentioned above, MCTDH is the case between the standard method and the TDH method. It is faster than the Standard method and more precise than TDH. However, the calculation resources requested still increase exponentially with the number of combined modes, and the MCTDH method is still limited for a system with 12-25 DOFs.

. Multilayer MCTDH (ML-MCTDH)

In order to comeover the limit, the multilayer formulation is proposed [35,[87][88][89][90][91][92][93][94][95][96]. In the ML-MCTDH, the SPFs in the standard MCTDH can be considered as a subspace of the full-dimensional wave function, they can be expressed by a set of lower layer time-dependent basis functions instead of directly by primitive basis functions. In other words, the full-dimensional wave function tensor is divided into some lower-dimensional subtensor, and each subtensor can then be described in the MCTDH way.

As shown in figure 2.6, both the standard method and the MCTDH method can be represented by the multilayer formulation in special situations. The standard method has 0 layer and the MCTDH method has one layer. The equation 2.37 shows the construction of one (l -1)th layer time-dependent basis function by the lth layer functions. It is similar to the MCTDH wave function ansatz, the equation of motion for ML-MCTDH is similar to the MCTDH, but it should be solved layer by layer in the ML-MCTDH case.

ϕ l-1;k j k = n l 1 j 1 =1 ... n l p jp=1 C l j 1 ,...,jp (t) p s=1 ϕ l js (Q l s , t).
(2.37) ML-MCTDH is an incredibly powerful method that enables us to conduct QD simulations for systems with up to 300,000 DOFs. However, the construction of the ML-tree is a delicate challenge. The number of potential ML-tree structures is vast, making it impractical to test calculations with every possible configuration. We will introduce some methods of helping the construction of ML-tree in the following section 3.5

2.6.6 . PES refitting From the equation of motion of the MCTDH in the section 2.6.4, we have to calculate the mean field matrix for every time scale, there are many high dimensional integrals that are impossible to be realized. One way to solve this problem is to write the Hamiltonian also in the form of Sum of Products (SOP), as the equation 2.38.

Ĥ(q 1 , q 2 , ..., q f ) = R r=1 c r h 1 r (q 1 )h 2 r (q 2 )...h f r (q f ) (2.38)
This formulation is not complicated for the nuclei kinetic energy part, because it is already in this form as the equation 2.39 in our simulations. Whereas for the potential energy part, it is much more complicated.

T = f i=1 - 1 2m i ∂ 2 ∂q 2 i (2.39)
The PES is a high dimensional tensor, it can be transformed to the form of SOP by tensor decomposition, this is also called PES refitting. There are several methods for tensor decomposition, such as Tucker decomposition and canonical polyadic decomposition.

POTFIT

POTFIT is a widely used program implemented in the MCTDH-package that offers an effective approach for representing PES through the Tucker decomposition. This decomposition allows a high-dimensional tensor, such as the PES, to be approximated by a compact form. The key idea is to express the tensor in the form of SOP, reducing the number of parameters required to represent the PES.

In the Tucker decomposition, the PES tensor, denoted as

V of size N 1 × N 2 × ... × N f , is approximated by V app ,
which is given by :

V ≈ V app = C × U 1 × U 2 ... × U f = m 1 j 1 m 2 j 2 ... m f j f C j 1 ,j 2 ,...,j f v Q 1 j 1 ⊗ v Q 2 j 2 ... ⊗ v Q f j f = J Ω J C J . (2.40)
Here, C represents the core tensor or expansion coefficients (C ∈ R m 1 ×m 2 ×...×m f ), which is much smaller in size compared to the original PES tensor, however their dimensionality are same, both are f . The matrices U i are the unitary transformation matrices (U i ∈ R N k ×m k ), and Ω J is the outer product of the transformed vectors v Q k j associated with each mode k. The POTFIT program offers a methodology to approximate the potential energy surface (PES) through the Tucker decomposition. This approach involves determining the core tensor and transformation matrix, enabling the representation of the PES in a compact form.

To begin, the program calculates the density matrix defined as [97,98] :

ρ (k) mn = N 1 i 1 ... N k-1 i k-1 N k+1 i k+1 ... N f i f V i 1 ,...,i k-1 ,m,i k+1 ,...,i f V i 1 ,...,i k-1 ,n,i k+1 ,...,i f , (2.41)
for each DOF. The density matrix is diagonalized. The eigenvalues are the expansion coefficients, forming the core tensor. The eigenvectors correspond Because of the orthogonality of the SPPs, the approximated potential will be identical to the original PES at the grid points when the expansion order equals the number of grids (m k = N k ). However, in practical calculations, the expansion order is typically smaller than the number of grids to benefit from expressing the PES in the Tucker decomposition form. To approximate the PES, the eigenvalues are ordered in descending order, and the small eigenvalues and their corresponding eigenvectors are neglected. This approximation introduces an error between the refitted PES and the original PES, quantified as the sum of neglected eigenvalues as shown :

∆ 2 = N I (V I -V app I ) 2 = N 1 j 1 =m 1 +1
...

N f j f =m f +1 |C j 1 ,...,j f | 2 , (2.42) 
where the eigenvalues or expansion coefficients are the overlap between the original PES and the outer product of the SPPs :

C j 1 ,j 2 ,...,jm = N 1 i 1 N 2 i 2 ... N f i f V i 1 ,i 2 ,...,i f v i 1 j 1 ⊗ v i 2 j 2 ... ⊗ v i f j f = Ω T J V. (2.43)
To reduce the approximation error, POTFIT employs an iterative process to improve the refitting quality. The refitting is realized DOF by DOF. After diagonalization of the density matrix, we calculate the coefficients using equation 2.43, preserving all available information of the original PES. Then we calculated a modified potential density ρ(k) with the expansion order (1 ≤ j, l ≤ N k ) according to the equation 2.44 :

ρ(k) jl = N 1 j 1 ... N k-1 j k-1 N k+1 j k+1 ... N f j f C j 1 ,...,j k-1 ,j,j k+1 ,...,i f C j 1 ,...,j k-1 ,l,j k+1 ,...,j f . (2.44)
This modified density matrix is diagonalized, and the resulting eigenvectors yield the improved SPPs. Using these improved SPPs, the program recalculates the expansion coefficients, modified potential density matrix, and repeats the iteration. As this process continues, the small eigenvalues decrease, leading to reduced refitting errors. Iterations are performed until the desired precision is achieved, often evaluated using the Root Mean Square Error (RMSE) defined as :

RM SE = N (V f it -V org ) 2 N . (2.45)
Typically, a chemical precision refitted PES with an RMSE smaller than 1 kcal/mol can be obtained.

Additionally, the POTFIT program allows mode contraction to decrease the number of expansion terms by setting m k = N k for a specific mode. Then the new expansion coefficients can be obtained using Equation :

D j 1 ,...,j k-1 ,j k+1 ,...,i f = N k j k =1 C j 1 ,...,j k-1 ,j k ,j k+1 ,...,i f v Q k j k . (2.46) 
Furthermore, in many cases, high precision is unnecessary for the entire PES, especially in regions where the energy is very high and the wave function is unlikely to explore. To address this, the POTFIT program supports the use of a weight function, which improves accuracy in relatively important regions for simulation and enhances optimization speed. The optimization loss function is modified to :

∆ 2 = N I (V I -V app I ) 2 W I , (2.47) 
incorporate the weight function, resulting in better precision refitting in the relatively important regions.

It is worth noting that the original PES typically consists of a large number of data points, specifically f N f points for a f -dimensional system. To simplify the explanation, let's assume equal grid points (N ) for each DOF, resulting in a total of N f grid points for the system. By utilizing Equation 2.40 and the Tucker decomposition, the number of parameters required to represent the PES is significantly reduced to m (f -1) N + (f -1)N m. This reduction in parameters decreases the memory requested for simulation and also accelerates the simulation by avoiding too much high-dimensional integration of the meanfield matrix calculation during the simulation. However, the POTFIT program is limited to studying systems with no more than 4 × 10 9 grid points because of the limit of Fortran or equivalently more than 6 dimensions.

Multigrid Potfit (MGPF)

Although POTFIT has demonstrated success in numerous calculations, its current applicability in our situation is impossible due to a major challenge. This challenge arises from the requirement of calculating the potential energy for all configurations and then determining the density in POTFIT. The number of configurations increases exponentially with the degrees of freedom (DOFs), making it impractical for our purposes.

To better illustrate this issue, let's consider the NN-PES mentioned earlier, which takes approximately 0.025 seconds to calculate the potential energy for a single geometry. If we have 10 grid points per DOF (which is relatively small for simulations), we would need to evaluate an astronomical number of 10 75 nuclear configurations. Completing such a calculation would take around 8 × 10 65 years, even with parallelization. Consequently, it is unfeasible to perform such calculations. In practice, POTFIT cannot handle systems with more than 2.14 × 10 9 grid points due to the limit of the largest integer in Fortran.

To overcome this limitation, we can employ two effective techniques. The first approach is known as multigrid POTFIT (MGPF), which involves using a reduced number of grid points to create a coarse-refitted PES [99]. Subsequently, this downsized PES is transformed to align with the original grid size used by the system.

Consider a system that requires an extensive product grid, denoted as the fine grid ( Ĩ), consisting of N f points for comprehensive representation. We can choose a set of n grid points for each DOF and construct a system described by n f coarse grids (I). The objective of MGPF is to first perform a POTFIT for the full representation (expansion order equals the number of grid points) using the coarse grid and then map the refitted PES to the fine grids. This approach reduces the number of times the PES routine needs to be used.

The selected points for the kth DOF with the fine grid can be obtained using the following equation :

ṽk ĩkm k = i k , l k n k ρ (k) ′ ĩk ,i k ρ (k) i k ,l k v k i k l k , (2.48) 
Here, ρ (k) represents the density matrix defined by equation 2.41 for the coarse grids, and ρ (k) ′ is a semi-extended density matrix defined as :

ρ (k) ′ ĩk , i k = i 1 n 1 ... n k-1 i k-1 n k+1 i k+1 ... n f i f V i 1 ,...,i k-1 , ĩk,ik+1,...,i f V i 1 ,...,i k-1 ,i k ,i k+1 ,...,i f .
(2.49) In this MGPF calculation, the PES routine will be called f N n f times, which is fewer than the number of times POTFIT would call the PES routine (N f times). Thus, MGPF is more efficient than POTFIT and can handle larger systems up to 12 dimensions.

Monte-Carlo Potfit (MCPotfit)

MCPotfit is an alternative approach to refitting the Potential Energy Surface (PES) through strategic sampling, rather than attempting to construct the entire PES. Constructing the complete PES can be prohibitively costly, especially for high-dimensional systems. To illustrate, in a 75-dimensional system, there would be a staggering 10 75 grid points if each DOF is represented by only 10 grids. This would necessitate an impractical 6 × 10 65 years to compute all potential energies, rendering the task insurmountable. Hence, employing sampling techniques to refit the PES offers a substantial advantage. In the MCPOTFIT program, a method of Tucker decomposition with the incorporation of strategic samplings is employed[100].

As mentioned in the last section, the POTFIT usually works with a weight function, and the weight is defined by thread numbers in POTFIT. For example, in POTFIT we can require the program to improve the refitting quality in a region. This can be realized by checking if the potential energy of a configuration is in the region. However, in MCPOTFIT, we will not calculate the potential energy for all configurations of PES, and thus we cannot define the relatively important region as in POTFIT. In MCPOTFIT, we calculate the sampling points that can represent the relative region.

With the weight function the potential density of equation 2.41 changes to the equation 2.50. The integration to calculate the density matrix can then be replaced by Monte Carlo integration using sampling points. The density matrix is calculated by using the samplings instead of the whole PES changes to the equation 2.51, where N s is the number of samplings. Obviously, the weight function is replaced by the distribution of samplings, thus, we should be careful when we choose the samplings. The technicalities for sampling generation will be explained in the following section 2.7.

ρ (k) mn = N (k) I (k) V km I W k V kn I (2.50) ρ (k) mn = Ns V km I V kn I (2.51)
The MCPOTFIT approach builds upon the fundamental concept of POTFIT, but introduces an innovative enhancement. By using sampling points, MC-POTFIT minimizes the necessity for frequent invocation of the PES routines, thus significantly expediting our calculations. Furthermore, it recognizes the lack of significance in calculating the potential energy for configurations exhibiting high energy levels. 

MCCPD

POTFIT, MGPG, and MCPOTFIT provide the feasibility and good quality of transforming the natural PES into the form of SOP, however, they are still limited by the number of DOFs in the system. MGPF and MCPOTFIT cannot work for a system with more than 15 DOFs. As shown in the equation 2.40, the expansion coefficient is still a tensor that has the same dimension as the PES, even with the contracted mode, which can decrease only one dimension, it is still an exponentially increasing problem. There are still too many parameters for 75D. The refitted PES calculated with those methods will take at least 3 × 10 14 GB memory, rendering them unviable for simulations.

The Canonical Polyadic (CP) decomposition provides a way to solve this problem. In CP decomposition, the high-dimensional tensor is written as [101] :

V ≈ V CP D = R r=1 c r v Q 1 r ⊗ v Q 2 r ...v Q f r = r i=1 c r Ω r , (2.52) 
where v r κ are basis functions with expansion coefficient c r , and R is the expansion order (the rank of the decomposition). It should be noted here that, in general, no restrictions are enforced on the orthogonality of the basis functions v r κ and normalization can be arbitrary (coefficient c r could be absorbed into any of the basis functions). However, the basis functions are often restricted to be normalized to reduce ambiguity, so we adopted this restriction in this work.

Compared with equation 2.40, the expansion coefficients are an array instead of a core tensor as shown in figure 2.8, thus CP decomposition needs much less memory than Tucker decomposition, the exponential memory-consuming changes to a linear memory-consuming with the increasing of the rank and the dimension of PES.

The task of MCCPD is to find the coefficients and basis functions also known ad SPP functions by using samplings. The alternative least squares (ALS) algorithm is used in this program to minimize the refitting error defined as :

J = I W I V I -V CPD I 2 + ϵ I,r W I c 2 r f κ=1 v r κ,iκ 2 , (2.53) 
where W is a positive weight function depending on all coordinates q, which imposes more weights on the relative regions of the PES that should be fitted with elevated accuracy. The second term in the equation 2.53 proportional to ϵ serves as a regularization with ϵ being a small parameter. It preserves the linear independence of the basis functions v r κ during the optimization process. A functional derivative of the loss function J defined by equation 2.53 with respect to basis functions c r v r κ,iκ produces a system of linear equations which, in principle, can be solved.

In practice, solving these equations is simplified by replacing the weight function W with a factorized approximation for every DOF q κ :

W I ≈ w κ iκ W κ I κ , (2.54) 
and considering a set of the functionals J κ instead of J :

J κ = I w κ iκ W κ I κ V I -V CPD I + ϵ I,r w κ iκ W κ I κ f κ=1 v r κ,iκ 2 . (2.55) 
Then calculating the functional derivative of equation 2.55 with respect to c r v r κ and setting them to zero leads to a system of linear equations for c r v r κ :

r ′ S κ r,r ′ c r ′ v r ′ κ,iκ = B κ r,iκ (2.56) 
with

S κ r,r ′ = I κ W κ I κ   κ ′ ̸ =κ v r κ,iκ v r ′ κ,iκ 1 + ϵδ r,r ′   , (2.57) 
B κ r,iκ = I κ W κ I κ V I κ ′ ̸ =κ v r κ,iκ . (2.58) 
The standard linear algebra tools can now be used to solve equation 2.56. Note, that equation 2.57 and 2.58 imply that the solution for mode κ depends on all other modes. So, one has to start with an initial guess for the CP decomposition and to get a solution for all modes consecutively, then to update the CPD tensor after solving equation 2.56, and finally, once all modes are updated, to iterate until either a convergence criterion is met. This procedure is known as the alternating least squares (ALS) algorithm. A very efficient way to accelerate convergence is to start with a small rank R, perform a number of iterations and subsequently increase R, where the new coefficients c r are set to zero and the new basis functions v r κ are filled with random numbers.

The ALS iterations defined by equation 2.56-2.58 are computationally feasible only when the number of points I to be processed is not larger than 10 9 -10 10 , so that the matrices S κ and B κ can actually be computed. To tackle the system considered in this work the total number of points has to be of order of 10 75 , so we evaluate the sums in equation 2.57 and 2.58 using a Monte-Carlo sampling as discussed in the MCPOTFIT section with the distribution functions defined by W κ weights.

The MCCPD calculation is realized in three steps, the first step is the calculation of sampling points with the methods mentioned in section 2.7, the second step is the calculation of the one-dimensional cut of the original PES for sampling points of each mode, and this step is aimed to calculate V i k ,s (k) , the third step is the optimization by iteration mention above. The most expensive step is the second step, in this step, the PES routine will be called S × N × M times, where S is the number of samplings, N is the grid points for each mode, and M is the number of modes for the system. Whereas this step is very well parallelized by using OpenMPI, which can distribute the samplings to each CPU, and the calculation accelerates linearly with 10,000 CPUs.

The MCCPD reduces not only significantly the time of calculation but also the memory of calculation. For example, for the 75D system, if there are 10 grid points for each DOF, for a MCPOTFIT calculation, the PES will take 3×10 14 GB with the rank equal 2 for each DOF. However, the PES for MCCPD calculation will take only 0.02GB. Obviously, only MCCPD is possible for our large system.

. wave function analysis

After performing a propagation simulation, the wave function is typically in a superposition of possible states. To obtain meaningful results, we need to extract information from the wave function that describes the behaviors of the particles in the system.

Expectation value calculation

The probability density function (PDF) of finding a particle in a given region of space is given by the squared modulus of the wave function integrated over that region as shown in equation 2.59. Thus the expectation value of an observable such as the position, momenta or energy, etc. is calculated by the equation 2.60.

P (x, t)dx = |Ψ(x, t)| 2 dx = Ψ(x, t) * Ψ(x, t)dx
(2.59)

⟨O⟩ (t) = Ψ Ô Ψ ⟨Ψ|Ψ⟩ = Ψ * (x, t) ÔΨ(x, t)dx Ψ * (x, t)Ψ(x, t)dx (2.60)

Quantum flux analysis

In quantum mechanical simulations, it is necessary to define boundaries or domains for each DOF in the system being studied. However, this can lead to issues if the wave function extends beyond the defined boundary, resulting in unphysical reflections or artifacts at the boundary. This is known as the "boundary problem" and can be a serious limitation in certain situations, like our scattering simulation after the collision.

To avoid the use of very large domains and/or any reflection, we usually use Complex Absorbing Potential (CAP) that absorbs the wavepacket after the collision. The CAP is a negative imaginary potential shown in the equation 2.61 [102][103][104][105][106][107][108]. η is a strength parameter, W (x) is a positive real function which is the product of a monomial function with the order of n and a Heaviside's step function θ(x -x c ), x c is the position of CAP, it can be the beginning or the end of CAP. The Hamiltonian with CAP can absorb the wave function that enters the step function. For example, in our situation, we can set a CAP for the H atom in the direction perpendicular to the graphene surface and activate it after the collision to absorb the scattered back wave function to prevent this part achieve the end of the grid.

CAP = -iηW (x) = -iη(x -x c ) n θ(x -x c ) (2.61) 
The parameters of the CAP must be chosen with great care to have an efficient absorption and to avoid artificial reflections on the CAP for low kinetic energies.

On the other hand, we need to obtain physical information from this scattered back wave function. For example, we want to know the kinetic energy of the outgoing H atom, in order to get the information of the energy transferred to the surface, and also the density of this going back wave function as a function of energy to obtain by deduction the value of the sticking probability as a function of energy. To extract that information, we can calculate the occupation of the scattered back region which is defined by the step function used in the CAP according to the equation [102, 109-112]

d dt ⟨Ψ|θ|Ψ⟩ = i ⟨Ψ|[H, θ]|Ψ⟩ , (2.62) 
where H is the system Hamiltonian, due to the presence of CAP, the Hamiltonian that we used for simulation H has the following relationship with the system Hamiltonian

H = H -iηW (x), (2.63) 
Since the step function commutes with the potential energy operator, we can define the flux operator as

F = i[H, θ] = iHθ -iθH = 2ηW + i H † θ -iθ H (2.64)
Therefore, the flux operator F measures the quantum flux through a hyperplane defined by the step function θ. In general, we are interested in computing energy-resolved quantities because the initial total energy of the system is usually a distribution in the QD simulations. Thus, we calculate the quantum flux function for a given initial situation as

F (E, Ψ 0 ) = 1 2π +∞ -∞ +∞ -∞ Ψ 0 e -i( H † -E)t ′ F e -i( H † -E)t Ψ 0 dtdt ′ = 1 2π +∞ 0 +∞ 0 ⟨Ψ(t)|2ηW |Ψ(t)⟩ dtdt ′ + ⟨Ψ(t)|θ|Ψ(t)⟩ e -iE(t-t ′ ) ( d dt + d dt ′ ), (2.65) 
where we set the integral to begin from 0 because the wave function will not enter the CAP at that moment. In general, the time of propagation will not be set to infinity, there is an upper limit of time T , and we can largely simplify the equation 2.65.

F (E, Ψ 0 ) = 2 π Re T 0 ( T -τ 0 ⟨Ψ(t)|ηW |Ψ(t + τ )⟩ dt + 1 2 ⟨Ψ(T -τ )|θ|Ψ(T )⟩)e iEτ dτ = 2 π Re T 0 g(τ )e iEτ dτ, (2.66) 
where τ = T -t, and g(τ ) is a defined the auxiliary function. Thus, the quantum flux resolved in total energy can be calculated using the Fourier integral.

In our simulations, the flux calculation enables us to determine the sticking probability S(E) = 1 -F (E)/|∆E| 2 , where

|∆E| 2 = ⟨Ψ 0 |δ(H -E)|Ψ 0 ⟩ = 1 π Re ∞ 0 e iEt ⟨Ψ 0 |Ψ(t)⟩dt (2.67) 
We can also apply a projector on the flux calculation to obtain more information for the DOFs different than the CAP mode replacing ηW and θ by P ηW P and P θP in the equation 2.66.

. Sampling method

In our simulations, we used several different sampling methods for the MCCPD calculations, the construction of ML tree, and the simulation of quantum wave function using classical trajectories. We will detail here the methods that we used to obtain these sampling points.

. Metropolis-Hastings

The Metropolis method is a powerful technique for obtaining samples from a probability distribution based on the Markov chain Monte Carlo [113,114].

In practice, the PES is ambiguous because we can not obtain the potential energy for all possible geometries. Instead, we need to make decisions about whether a given geometry should be accepted as a sampling for further analysis based solely on its potential energy without comparing it to all other points. In addition, the samplings should be generated more intelligently rather than randomly to prevent calculating too many useless samplings.

To accomplish this, the Metropolis method employs the Boltzmann distribution probability as the equation 2.68 [100, 101],

p(x) = Ce E(x) kT , (2.68 
)

where E is the potential energy , k is Boltzmann constant, C is normalization coefficient which is difficult to be calculated and T is temperature. It will be great if we can generate samplings fulfilling this distribution because it allows us to obtain samples with distribution at any energy level simply by adjusting the temperature. However, generating samplings directly from this distribution is complicated because of the unknown coefficient. This problem can be solved using the Metropolis algorithm. The Markov chain is a random propagation process for which the new position (x 2 ) of samplings depends only on the previous samplings (x 1 ). In the Markov chain, we can propose a transition probability T (x 2 |x 1 ), representing the probability that the samplings move from x 1 to x 2 . The transition probability has the following properties :

1. T (x 2 |x 1 ) ≥ 0, the probability is always nonnegative.

2. T (x 2 |x 1 )dx 2 = 1, it can be normalized, which means we can always find x 2 from x 1 .

The target probability distribution p(x) is sampled by constructing a Markov chain that converges to it by imposing the more restrictive detailed balance condition, which permits the samplings to move both forward and backward, as demonstrated in equation 2.69.

p(x 1 )T (x 2 |x 1 ) = p(x 2 )T (x 1 |x 2 ) (2.69)
The steps for obtaining samplings for the target probability p(x) are the following :

1. Generate random samplings x 1 and a random transition probability, which is normally a Gaussian distribution G(x 2 |x 1 ) centered at x 1 .

2. Generate next-step samplings according to the probability G(x 2 |x 1 ).

3. The generated samplings x ′ can be accepted with some probability P acc (x 2 |x 1 ) or rejected with probability 1 -P acc (x 2 |x 1 ), thus the probability of mo-ving from x 1 to x 2 changes to :

P (x 2 |x 1 ) =P acc (x 2 |x 1 )G(x 2 |x 1 )
(2.70)

+ [1 -P acc (x 2 |x 1 )G(x 2 |x 1 )dx 2 ]δ(x 2 -x 1 ).
According to the detailed balance condition (2.69), we can get the acceptance probability P acc (x 2 |x 1 ) = min 1, T (x 1 |x 2 )p(x 2 ) T (x 2 |x 1 )p(x 1 ) . 4. Generate a random number u between 0 and 1 5. Compare u and α. If u ≤ α,x ′ will be accepted, x 0 will be replaced by

x ′ , else x ′ will be rejected.

6. Repeat step 2 to step 5 until the calculation is finished.

As shown in the steps, only the fraction of p(x 2 )/p(x 1 ) is investigated, thus we do not need to calculate the normalization coefficient. Finally, we will get sampling obeying the Boltzmann distribution on the given PES. However, Metropolis-Hasting converges very slowly when the dimension is high, and it can be complicated to decide the temperature of the distribution.

. Diffusion Monte Carlos (DMC)

DMC is a method used in cMD to simulate the vibrational ground state of the system [115][116][117][118]. In our work, we used this method to generate samplings with potential energy around the ground state where the collision will take place. Thus, we don't need to change the temperature and then check if the samplings are usable. This method is based on the negative imaginary time propagation.

The time-dependent Schrödinger equation for a time-independent Hamiltonian gives the solution :

Ψ(x, t) = ∞ n c n ψ n (x)e -iEnt/ℏ , (2.71) 
where ψ n are the eigenfunctions of the eigenstates and E n are the eigenenergies of the eigenstates. We replace the propagation time t by τ = it and apply a trivial energy shift, we got

Ψ(x, τ ) = ∞ n c n ψ n (x)e -(En-E ref )τ /ℏ , (2.72) 
The minimum E n is the energy of the ground state E 0 . Obviously, only E ref = E 0 , the exponential term will remain at 1, otherwise, it will diverge if

E ref > E 0 or vanish if E ref < E 0 .
The Schrödinger equation for imaginary time can be written as equation 2.73 by using path integration.

Ψ(x, τ ) = lim n→∞ ( n-1 i dx i ) n n=1 W (x n )P (x n , x n-1 )Ψ(x 0 , 0), (2.73) 
where

P (x n , x n-1 ) = ( m 2πℏδτ ) 1/2 exp (- m(x n -x n-1 ) 2 2ℏδτ ), (2.74) 
it corresponds to the kinetic energy part, it is also very similar to the transition probability mentioned in the Metropolis method. And

W (x n ) = exp (- (V (x n ) -E ref )δτ ℏ ), (2.75) 
it corresponds to the the potential energy part, and it is similar to the target probability mentioned before. Thus, the steps to get samplings in DMC are similar to the Metropolis, they are following :

1. Generate random samplings near the ground state of the system and give a E ref .

The initial E ref can be whatever it is, and will eventually converge to E 0 .

2. Propagate the samplings according to the equation 2.74, which is a Gaussian function.

3. Calculate 'birth' rate m = min{int(W (x) + u), 3}, where u is a random number between 0 and 1. This step is similar to the acceptance step in Metropolis. If m = 0, this sampling will be delete, which is also called the 'death' of this sampling. It signify the vanish of wave function and also means the E ref is too small. If m > 1, the calculation will regenerate a new serial (m = 2) or 2 new serials (m = 3) for this sampling, It corresponds to the diverge of the wave function and also means E ref is too large. The maximum 'birth' is limited to 2 in order to prevent too many new serials generated at once and numerical instabilities.

4. Update E ref =< V > + ℏ δτ (1 -N 1 N 0 )
, where < V > is the average potential energy of all the samplings, N 1 is the number of samplings after propagation and N 0 is the number of samplings before the propagation. If N 1 > N 0 , it means the E ref will be decreased, if N 1 < N 0 , the E ref will be increased, and finally the system will converge to a stationary wave function which corresponds to the ground state.

It is a big advantage that we can directly get samplings with potential energy around the ground state. It is very useful for MCCPD calculation to get samplings for relatively important regions. However, as we can notice that the kinetic energy is not considered for those samplings, the distribution of samplings can not really reproduce the ground state wave function. For example, the ground state energy of a harmonic oscillator is E 0 =< T > + < V >= 2 < V >= 0.5ℏω, while the samplings generated by DMC have < V >= E 0 . We will introduce another method to generate samplings to better mimic the ground state.

. Parallelization

As mentioned before, MCCPD and ML-MCTDH can use several processors at the same time for one calculation, which means run a calculation in parallel, can largely shorten the time for simulation. OpenMP (Open Multi-Processing) and OpenMPI (Open Message Passing Interface) are two popular parallel computing frameworks used to develop and run applications on multicore processors and distributed computing environments, respectively. Both frameworks provide a set of APIs (Application Programming Interfaces) that allow developers to parallelize their code and distribute the workload across multiple processors, improving application performance and reducing execution time.

OpenMP is a shared-memory parallel programming API that is primarily used for parallelizing code on multi-core processors. It is used for parallelizing code on a single machine with multiple cores. OpenMP programs execute on a single computer, and the different threads communicate through shared memory. It provides a set of compiler directives, library routines, and environment variables that enable developers to parallelize loops, functions, and entire programs in a relatively easy and efficient manner. OpenMP is supported by many compilers, including GCC, Clang, and Intel compilers, and is available on various operating systems, including Windows, Linux, and macOS.

OpenMPI is a message-passing parallel programming API that is used for developing parallel applications that run on a distributed computing environment, such as a cluster or a grid. OpenMPI programs execute on multiple computers, and the different processes communicate through message passing. It provides a set of library routines and environment variables that allow developers to exchange messages between processes running on different processors. OpenMPI supports a range of communication protocols, including TCP/IP, InfiniBand, and shared memory, and is available on various operating systems.

In summary, OpenMP is a shared-memory parallel programming API used for parallelizing code on multi-core processors, while OpenMPI is a messagepassing parallel programming API used for developing parallel applications that run on distributed computing environments. Both frameworks can greatly improve application performance by allowing developers to harness the power of multiple processors and distribute the workload across them. OpenMPI is more complicated to use than OpenMP, while it allows more processors to work at the same time than OpenMP.

-Method

In this chapter, we will provide a comprehensive overview of the innovative methods that have been developed throughout this Ph.D. research to effectively address the challenges encountered during the simulations.

As mentioned in the introduction, we studied this system step by step. For the studies with dimensionality lower than 75D, we can not compare the QD simulation results with the experiment result directly, due to the differences of the experimental and theoretical conditions. We could compare the cMD and QD simulation results. However, these two types of simulation are essentially different. In order to have comparable results, they should have as same initial conditions as possible. We used some methods which will be discussed in detail in the following section to ensure the results of these two types of simulation are comparable.

. Normal modes

In molecular systems, the normal modes refer to the collective vibrational motions that the atoms within the molecule can undergo. These vibrations can be described as harmonic oscillations around the molecule's equilibrium positions [119]. A molecular system composed of N atoms possesses a total of 3N displacement modes, accounting for the three-dimensional freedom of motion for each atom. Conventionally, we eliminate 6 or 5 modes associated with global translation and rotation to establish the system's center of mass, resulting in 3N -6 or 3N -5 normal modes for the molecular system. Each normal mode corresponds to a specific frequency and pattern of motion. These normal modes can be ascribed to various types of atomic motions, such as stretching (changes in the internuclear distances along bond axes), bending (changes in valence bond angles), and torsion (rotations around bond axes). The frequencies of the normal modes are influenced by the masses of the atoms, the strength of the chemical bonds, and the molecular geometry. Understanding the normal modes of a molecule is useful for studying its vibrational spectroscopy, energy transfer processes, and other dynamic properties.

In our QD simulations, we employed the normal mode coordinates specifically for the carbon atoms. This choice was made due to the fact that graphene displays harmonic behavior within a low-energy regime as in the following simulations. The use of normal modes coordinates proves to be more suitable for capturing the system's behavior compared to Cartesian coordinates for the C atoms. This choice allows us to effectively model the dynamics of the graphene surface and obtain more accurate results in our simulation.

In the Cartesian system, we can use Taylor's theorem for the potential energy at the equilibrium position, we obtain :

Ĥ(x) = f i - ℏ 2 2m ∂ 2 ∂x 2 i + V 0 (x 0 ) + f i ∂V ∂x i (x i -x i0 ) + f i,j ∂ 2 V 2∂x i ∂x j (x i -x i0 )(x j -x j0 ) + ϵ(O 3 ), (3.1) 
where V 0 is the potential energy at the equilibrium position and ϵ(O 3 ) is the error of the third error for Taylor's development. Obviously, at the equilibrium position, the first order of development vanishes, thus the Hamiltonian in Cartesian coordinates system changes to

Ĥ(x) = f i - ℏ 2 2 ∂ 2 ∂ x2 i + V 0 ( x0 ) + f i,j 1 2 F xi xj , (3.2) 
where xi = √ m i (x i -x i0 ) is mass-weighted Cartesian coordinates, and F is the mass-weighted Hessian matrix of the potential energy at the equilibrium position. The normal mode coordinates are defined by an orthonormal transformation as

q α = ω 1/2 α f i (x i -x i0 )L iα , (3.3) 
where ω α are the eigenvalues of the diagonalization of F and L iα are the eigenvectors correspondent. The ω α is also the vibration frequency for the normal mode correspondent. Because of the orthogonality of the eigenvectors [120],

f i ∂ 2 ∂ x2 i = f α ∂ 2 ∂q 2 α . (3.4) 
Thus the Hamiltonian for normal mode coordinates system is written as

Ĥ(q) = f α - ℏ 2 2 ∂ 2 ∂q 2 α + V 0 (q 0 ) + f α 1 2 ω α q 2 α . (3.5) 

. Complex Gaussian wave function

For the QD simulations, the initial condition cannot be defined by one precise position and momentum because of the uncertainty principle. Consequently, we used a Gaussian wave function to describe these initial conditions for the H atom. The actual expression is given in equation 3.6, where N is a normalization factor, α 0 is the width of the function, x 0 is the center position and p 0 is the initial momentum. Ψ(x, t = 0) = N exp(-α 0 (x -x 0 ) 2 ) exp(ip 0 (x -x 0 )).

(3.6)

For a free particle the Hamiltonian operator does not contain the potential energy operator. As a result, one can easily find its eigenfunctions and eigenvalues :

ϕ(x) = e ±ikx ; E = ℏ 2 k 2 2m . (3.7) 
The TDSE solution for the free particle which is in the case of the continua spectrum is :

Ψ(x, t) = +∞ -∞ a(k)e ikx e -i(ℏk 2 t)/(2m) dk, (3.8) 
where a(k) is a normalization factor. We can find its value at t = 0 when equation 3.8 turns into (3.12)

Ψ(x, t = 0) = +∞ -∞ a(k)e ikx dk, (3.9 
We define

α(t) = α 0 1 + 2α 0 it m , γ(t) = iℏ 2 ln(1 + 2iℏα 0 t m ), (3.13) 
equation 3.12 changes to

Ψ(x, t) = N e -α(t)x 2 +iγ(t)/ℏ , (3.14) 
thus the Gaussian wave function remains the Gaussian form for the free particle during the propagation. The width or the standard deviation of the Gaussian wave function is

∆x(t) = ⟨x 2 ⟩ -⟨x⟩ 2 = 1 4 * Re[α(t)] = 1 + 4α 2 0 m 2 t 2 4α 0 . (3.15)
As it can be observed, the width of the Gaussian function will increase during the propagation. As a consequence, it becomes challenging to precisely control the impact region of the H atom on the surface. For instance, if our intention is to have the H atom interact exclusively with only one C atom on the surface, the broadening effect of this Gaussian function may extend its influence to neighboring C atoms, inducing some artifact errors. One obvious solution is to modulate the width of the Gaussian wave function during the propagation. This can be realized by replacing the real α 0 parameter with a complex parameter (α 0 = a + ib) [121]. The width during the propagation will thus change following the equation :

∆x(t) = a 2 + ( 2t(a 2 +b 2 ) m -b) 2 4a(a 2 + b 2 ) . ( 3.16) 
The width can now decrease during the propagation, one can thus change the parameters a and b to ensure that the wave function achieves its minimum width at a desired instant according to equation 3.17 and the corresponding width reads 3.18.

t min = mb 2(a 2 + b 2 ) , (3.17 
)

∆x(t min ) = a 4(a 2 + b 2 ) . (3.18)
This allows us to ensure that the H atom wave function will impinge on an exact position. For example, figure 3.1 shows the Gaussian wave function with a real and a complex number parameter during the propagation. For the real Gaussian function, the wave function is narrow at the beginning, but it broadens after 10 fs as shown from panel 1 to panel 2. However, for the complex Gaussian function, it is the opposite, the wave function narrows down. We delve into the intricate influence of the complex parameterization on the Gaussian wave function. The Gaussian wave function of a free particle extends into its eigenstates e ikx and eigenvalues E k from equation 3.7 through the substitution of equation 3.11 into equation 3.8 :

Ψ(x, t) = N 2π π α 0 ∞ -∞ e -k 2 /4α 0 e i(kx-E k t) dk. (3.19) 
The parameter α 0 influences on both the term π α 0 and the term e -k 2 /4α 0 . The influence of the first term will be absorbed by the factor N for the normalization of the function, which preserves the wave function's density. Therefore, the complex parameterized α 0 impacts the Gaussian wave function primarily through the latter term. The imaginary component of k 2 /4α 0 , introduced by the complex number of α 0 , amalgamates with the term i(kx -E k t), thereby altering the phase of the Gaussian function compared to when α 0 is a real number. This transformation subsequently affects the width of the Gaussian function.

Nevertheless, there is a prerequisite for employing the complex Gaussian function. As evident from Equation 3.16, the wave function continues to exhibit broadening after attaining its minimal width. In our simulations, this proves unproblematic due to the constraining of the potential energy of the graphene surface, which naturally restrains the extent of broadening. Our primary concern lies in ensuring that the wave function reaches its minimum width when the H atom achieves the surface.

. Surface Internal Energy

As mentioned in section 2.6.7, the flux calculation allows us to get an outgoing wave function distribution resolved in the initial kinetic energy of the H atom, however, in the experiment and the cMD simulations the outgoing H atom distribution is resolved in both its outgoing energy and the scattering angle. This novel surface internal energy calculation method aims to get the outgoing wave function distribution resolved in its outgoing energy for a chosen initial kinetic energy from the initial kinetic energy resolved flux calculation.

For this method, we perform the following calculations :

1. Firstly, perform a propagation with an extended grid in H z direction and stop the calculation when the outgoing wavepacket leaves the surface and before it reaches the edge of the grid. The second restart calculation uses another Hamiltonian, in which all the kinetic energy part for the graphene surface is removed. We get a new flux result which is resolved in a new total energy that doesn't contain the kinetic energy of the graphene surface F ( Ẽ) The difference between these two results of flux calculations is the kinetic energy of the surface. We can then express F ( Ẽ) by F (E) analytically.

Firstly, we introduce an energy transfer distribution G which represents the energy transferred from the H atom to the graphene surface. It is only defined by the initial kinetic energy of the H atom and the energy transfer, thus G(E i -E f ; E i ), where E i is the initial kinetic energy of H atom, E f is the kinetic energy of H atom after the collision, we can get the flux resolved on finial kinetic energy below :

F (E f ) = G(E i -E f ; E i )F (E i )dE i , (3.20) 
The function G should satisfy the condition

G(E i -E f ; E i )dE i = 1. We can replace G(E i -E f ; E i ) by G( E i -E f
Ei ) in order to simplify the calculation. Then we get

F (E f ) = G( E i -E f Ei )F (E i ) 1 E i dx, (3.21) 
where x =

E i -E f E i .
Because the initial state of the graphene surface is on the ground state, for the calculation without the modification of Hamiltonian, we have

E = E i + E GS = E i + (⟨T ⟩ GS + ⟨V ⟩ GS + V 0 ), (3.22) 
where E GS is the ground state energy of the graphene surface, it is equal to the sum of the kinetic energy of the ground state (⟨T ⟩ GS ), the potential energy of the ground state (< V > GS ) and the minimum of the potential energy surface of graphene surface when the H atom is far away (V 0 ) which is zero according to the choice of the zero point reference of the PES. With the harmonic approximation for the graphene surface, ⟨T ⟩ = ⟨V ⟩.

For the calculation with the Hamiltonian, which doesn't contain the kinetic energy of the graphene surface, the new ground state energy is

ẼGS = E GS -⟨T ⟩ GS = 1 2 E GS . (3.23) 
E i -E f is the energy transfer from the H atom to the graphene surface, thus

E i -E f = ⟨T ⟩ + ⟨V ⟩ -(⟨T ⟩ GS + ⟨V ⟩ GS ) = 2(⟨T ⟩ -⟨T ⟩ GS ). (3.24) 
Because we remove the kinetic energy of the graphene surface from the Hamiltonian, then

Ẽ = E -⟨T ⟩ (3.25) 
= E i + 2 ⟨T ⟩ GS - 1 2 (E i -E f ) -⟨T ⟩ GS = 1 2 (E i + E f ) + ⟨T ⟩ GS = 1 2 (E i + E f ) + ẼGS .
We can also get

E -Ẽ = E i + E GS - 1 2 (E i + E f ) -ẼGS (3.26) = 1 2 (E i -E f ) + E GS -ẼGS .
The quantum flux should always be conserved even though the Hamiltonian is changed because the norm of the outgoing wave function is fixed when I stop the first calculation. Thus we can get

F ( Ẽ) = G(2 E -Ẽ -E GS + ẼGS E i )F (E i ) 2 E i dE i . (3.27)
Replacing Ẽ by equation 3.26, we get

1 2 F ( 1 2 (E i + E f ) + ẼGS ) = G( 2E -2E GS -(E i + E f ) E i )F (E i ) 1 E i dE i = F f (E f ). (3.28) 
It can be easily calculated if the initial kinetic energy is just a value, but E i is a distribution and E f , so it isn't easy to realize this equation technically. we can use

E 0 ≈ E i E 0 = ∞ E f +Ee E i F (E i )dE i ∞ E f +Ee F (E i )dE i , (3.29) 
where E e is the energy needed for the H atom escapes from the graphene surface, in other words, it is the desorption barrier. E 0 is the average value of all H atoms with initial kinetic energy larger than E f + E e . Otherwise, there is no physical sense. Then equation 3.28 turns to

1 2 F ( 1 2 (E 0 + E f ) + ẼGS ) = G( 2E -2E GS -(E 0 + E f ) E i )F (E i ) 1 E i dE i (3.30) = G( 2E i -E 0 -E f E i )F (E i ) 1 E i dE i = F f (E f ) + [G( E i -E f E i + E i -E 0 E i ) -G( E i -E f E i )]F (E i ) 1 E i dE i .
If our initial kinetic energy distribution is very narrow, then E i -E 0 ≈ 0, the second term will be zero, so finally, we get our working equation :

F f (E f ) = 1 2 F ( 1 2 (E 0 + E f ) + ẼGS ), (3.31) 
with

E 0 = ∞ E f +Ee E i F (E i )dE i ∞ E f +Ee F (E i )dE i . (3.32)
Then E 0 will be a function of E f , then equation 3.31 turns to be

F f (E f ) = 1 2 (1 + dE 0 dE f ) F ( 1 2 (E 0 (E f ) + E f ) + ẼGS ), (3.33) 
where

dE 0 dE f = (E 0 (E f ) -E f -E e ) F (E f + E e ) E f +Ee F (E i )dE i . (3.34) 
We can calculate the final energy distribution according to the equation 3.33 with two flux calculations mentioned. The advantage of this method is that we can investigate the influence of the desorption barrier on the distribution. However, there are still some limitations :

1. The harmonic approximation is used, it is a good approximation for graphene surface [122] in low-temperature regions, but not in general.

2. The grid for the dissociative DOF should be very large because the CAP is not used before the dissociation is finished. It may not thus apply in those situations where the dissociation is very slow and the wave function leaves the surface with a very long tail.

3. The initial energy distribution should be very narrow in order to validate the approximation E 0 ≈ E i .

. Flux Momenta Projector

As discussed in Section 2.6.7, the use of flux calculations enables us to determine the outgoing distribution of hydrogen atoms, resolving them according to their initial kinetic energy. However, to effectively compare these results with the experimental data, we also need information on the flux at a fixed final kinetic energy and a specific scattering angle. To address this requirement, we can incorporate a projector into the quantum flux calculation. By employing the H atom momentum projector for each direction, we can accurately evaluate the contribution of each momentum component and calculate the quantum flux.

In order to extract the final kinetic energy distribution of the H atoms, the final kinetic energy resolved flux is to be determined. To this end, we introduce an operated flux operator

FO = 1 2 ( F Ô + Ô F ), (3.35) 
where the Hermitian operator Ô is here chosen as a projector onto a momentum state |p⟩ of the H atom. Ô = |p⟩⟨p|.

(3.36)

The desired energy-resolved flux is obtained by substituting the operator F in equation (2.66) with FO defined by equation3. 35, where p is p X , p Y , or p Z . The transformation from momenta to the corresponding kinetic energies is straightforward.

As we work with grids of finite length, the momentum is discretized and its eigenfunctions read

⟨x|p n ⟩ = L -1/2 exp(ik n x) (3.37)
where L is the length of the grid, k n = 2nπ/L with -N/2 < n < N/2, and N is the number of grid points (we use the equidistant FFT grid). The momentum resolution is thus limited by the length of the grid. Note that the Z-grid in Z direction is longer than the X-and Y -grids.

. Correlation analysis

As mentioned in the last section, in both MCCPD 2.6.6 and ML-MCTDH 2.6.5 calculations, we can combine several physical DOFs into a logical mode. How and which modes to combine is a delicate task. The DOFs with strong correlations during the propagation should be combined together to facilitate the calculation. When strongly correlated DOFs are combined, the combined mode allows for a more accurate representation of the system's behavior. This is because it aligns with the physical reality that certain coordinates in a system often influence each other significantly. By treating them as a unified entity, we can better capture the intricate interplay between these DOFs, thus leading to more efficient and faster simulations. However, without performing the dynamic simulation, it is complicated to estimate the correlation between the different DOFs. Besides it is even tougher to construct the ML-tree for high-dimensional simulation. We employed statistical methods to identify correlations between DOFs using samplings obtained from both cMD simulations and DMC calculations. These DMC samplings were derived for scenarios involving the adsorption of the H atom on the surface and its distance away from the surface. Analyzing these samplings provides valuable insights into the dynamics of the system.

From DMC and cMD simulations one can obtain geometries samplings for the product of simulation. These samplings contain information on the correlation for the product and during the propagation. We can extract the information from those samplings. In order to quantify the correlation, we calculate the correlation matrix :

Corr(X, Y ) = < (X-< X >)(Y -< Y >) > σ X σ Y , (3.38) 
where X, Y are the samplings for the DOF X and the DOF Y , the <> represent average values, and σ is a standard deviation. The correlation coefficient number is a value between 1 and -1. Obviously, if a correlation coefficient is close to 0, the correlation between the corresponding 2 DOFs is weak. Figure 3.2 shows the samplings with the correlation coefficient correspondent. The simplest way is to class the absolute value of the correlation matrix to class the correlation between the DOFs. In order to have better results, we can also perform a Principal Component Analysis (PCA) or a Hierarchical Clustering (HC) [123].

The PCA is an application of the diagonalization of the square correlation matrix, resulting in the following expression :

Corr = U ΣU T , (3.39)
where Σ is a diagonal matrix containing the eigenvalues, U is composed of the associated eigenvectors. The larger the eigenvalue, the eigenvector correspondent is more important. This insight guides the combination of degrees of freedom (DOFs) according to the most impactful eigenvectors.

[123] However, PCA is very cumbersome for a high number of dimensions, because there are many DOF to be analyzed. We used instead HC to facilitate the choice of combination.Hierarchical Clustering (HC) is a powerful method employed in various fields, including data analysis, biology, and machine learning. It operates by iteratively merging or splitting clusters to form a hierarchical tree-like structure, known as a dendrogram. This tree provides a visual representation of the data's hierarchical relationships, revealing both broad groupings and finer distinctions among the objects. HC which forms clusters in such a way that objects within a group are alike while being distinct from those in other groups. These clusters are depicted in a dendrogram, a hierarchical tree-like structure. The first step of HC is to construct a proximity matrix which is often a distance matrix. This distance matrix can be obtained by the transformation of the correlation matrix in our case. We used a cosine similarity (equation 3.40) and distance matrix (equation3.41) correspondent in order to take into account the global system. The similarity matrix calculates the cosine of the angle formed by a pair of rows in the correlation matrix. The angular distance can then be calculated according to the equation 3.41. c is a coefficient to normalize the distance matrix, it is equal to 2 if there are no negative values in the correlation matrix, otherwise, it is 1.

After obtaining the distance matrix, we can then decide the combination mode by linkage. There are many linkage criteria to build the hierarchical clustering dendrogram automatically, such as 1. Single linkage : This method joins clusters based on the minimum distance between any two points in the clusters.

Complete linkage :

This method joins clusters based on the maximum distance between any two points in the clusters.

3. Average linkage : This method joins clusters based on the average distance between all pairs of points in the clusters.

4. Ward linkage : This method minimizes the variance of the distances between all points in the clusters being joined.

The choice of linkage criterion can have a significant impact on the resulting dendrogram. In general, the choice of linkage criterion depends on the nature of the data and the goals of the analysis. For example, single linkage tends to produce long, branching dendrograms, while complete linkage tends to produce compact, spherical clusters. Average linkage can be a good compromise between these extremes, and ward linkage is often used when the goal is to identify groups of points with similar variances. This correlation analysis is helpful in building the ML-tree as shown in the script of Appendix .4. As mentioned in the introduction, we compared the results of QD and cMD simulations with initial conditions as same as possible, including the initial condition of the graphene surface, which is the vibrational ground state in the QD simulations, thus we need to use classical trajectories to reproduce the vibrational ground state wave function in cMD simulations.

. Samplings for Normal Modes

Although with the DMC calculations, one can obtain samplings with average potential energy around the ground state energy, the kinetic energies of the samplings are zero thus the distribution of samplings from DMC calculations cannot reproduce the ground state wave function whose expectation value of kinetic energy is not zeros. We proposed another method, similar to the Wigner sampling method [124], to produce the samplings to mimic the ground state wave function for the graphene surface.

We generated samplings in normal modes. Since the normal modes by definition decouple the DOFs, the samplings can be generated independently for each DOF. We first generated half-Gaussian distributions of positive values E, their average equal to the ground state energy 1 2 ℏω. Then we generated uniformly a set of angles θ from 0 to 2π. The positions of those samplings are given by q = 2E/ℏω cosθ, and the corresponding momenta is p = √ 2Em sinθ. Thus the samplings are correlated both in the positions and momenta, whereas we used harmonic approximation to generate samplings, the total energy of samplings for each DOF E = p 2 2m + 1 2 ℏωq 2 . Figure 3.3 provides an illustrative example employing this method with 1,000 trajectories. The sampling distribution aligns closely with the probability density of the quantum wave function. In the case of the full-dimensional system, the average ground state energy for the generated samplings is 4.0 eV, exhibiting remarkable consistency with the ground state energy obtained through the MCTDH calculation (4.06 eV).

This approach serves as a robust benchmark for cMD simulations, allowing for the generation of samplings that faithfully mimic the ground state quantum wave function with high precision and minimal computational overhead. It is important to note, however, that this method is applicable primarily to independent harmonic oscillator-based systems, where the ground state energy can be determined analytically.

-Simulations and results

In this chapter, we will show the simulations realized and the results corresponding. The projectile will be sent to the surface perpendicularly (θ i = 0 o ) for all the simulations.

. 3D simulations

The 3D simulation is realized by fixing all the C atoms at their equilibrium position at 0 K, only the H atom can move. This system is only studied in the QD simulations. These simulations are aimed to validate the flux with momentum projector.

. PES refitting

The 3 DOFs are described by the primitive basis functions in the table 4.1. Because the range of definition for the H atom in all the X,Y and Z directions is very large, we have to use many primitive basis functions, we chose the FFT DVR to accelerate the calculation for a large basis. The PES is refitted by POTFIT program into the Tucker form. The calculation takes 5 hours. The most costly part is the calculation of the potential energy for all the 589,824 configurations, it takes almost the whole computation time. The original PES takes around 4 MB of memories, while refitted PES takes around 1 MB of memories. The RMS error of refitting is 0.004 cm -1 for all the configurations, and the maximum absolute difference between the refitted PES and the original PES is 0.11 cm -1 for all the configurations. The refitting quality is very good, the refitted PES is almost the same as the original PES. As mentioned in the section 2.6.6, with Tucker decomposition, the refitted PES can be calculated without error, if we need.

. QD simulation

Then with this refitted PES, we performed the MCTDH calculation. For 3D system, we don't need to use ML- The calculation is very well converged for using 15 SPFs for each DOF. It takes 6 hours with 24 processors and 72 MB of memories in total. Briefly, the calculation is every efficient.

. Results

In this 3D simulation, the H atom will not stick on the graphene surface nor transfer energy to the surface, so in the flux calculation, we observe a quantum flux distribution identical to the initial energy distribution as figure 4.3.

Then we tried to apply the H atom momentum projector in the X, Y, and Z direction for a chosen initial kinetic energy which is 1.96 eV . The H atom outgoing distribution in the X and Z direction is shown by the blue curves in figure 4.4. The red lines are the initial H atom kinetic energy in the direction corresponding. The outgoing distribution is well coherent with the initial kinetic energy, however, the outgoing distribution still has some width instead of a precise value as the initial kinetic energy. This width is linked with the definition of the grid because the outgoing momenta of the H atom are discrete, and the steps size between two momenta is ∆p = 2π L , where L is the length of the definition domain, in our case, it is 11.5 Bohr for H atom in the Z direction. In QD simulation, the length can not be infinitely long, so the step size cannot be infinitely small.

We calculated the scattered wave function distribution along the X and Y direction to obtain the diffraction pattern as figure 4.5 which is plotted in 'k-space' (k = p/ℏ). We indicate the crystal parameters in the figure with blue lines. There are two directions in the graphene crystal, one is called 'armchair' is the X direction in our situation, and another is called 'zigzag' is the Y direction in our situation, as shown in figure 4.6. The parameters correspondent are

3 2 a = 2.13 Åand √ 3 2 a = 1.23 Å,
where a is the C-C bond length and the position in reciprocal space is K x = 2π 2.13 = 2.95 Å -1 and K y = 2π 1.23 = 5.11 Å -1 , respectively. Expect the signal at (0,0), we can also observe 6 significant signals at (K x ,K y ), (2K x ,0),(K x ,-K y ), (-K x ,-K y ), (-2K x ,0), (-K x ,K y ). Obviously, the spot (K x ,K y ) is the first diffraction order in the armchair and the zigzag direction. The 5 others are of the same nature because of the symmetry of the graphene surface. The spots at (2K x ,0) and (-2K x ,0) look like the second diffraction order in the armchair direction, but they are not. Because there is no signal at (K x ,0) the diffraction signal is very weak in only the armchair direction. We can also observe weak signals in only the zigzag (0,K y ) and 5 spots with symmetry. This diffraction pattern indicates that one can easier get a diffraction signal from the zigzag direction than the armchair direction. On the other hand, this result validates the operated flux method explained in section 3.4 and also demonstrates that the resolution of momenta projectors is good enough for the study. Otherwise, we will not observe such clear diffraction patterns.

. 6D simulations

The 6D simulation is realized by fixing all the C atoms except one at their equilibrium position at 0K, thus there are one H atom and one C atom that can move. This study aims to investigate the differences between different PES refitting programs.

. PES refitting

We tried the programs POTFIT, MCPOTFIT, and MCCPD for this 6D system. The 6 DOFs are defined by the primitive basis in the table There are in total 1.12 × 10 8 configurations, it takes 30 hours to calculate the potential energy for the whole system and the PES takes 118 MB of memory.

POTFIT

We first used the POTFIT program. The RMS error of refitting is 18.7 cm -1 for the configurations with energy smaller than 3 eV , 53.1 cm -1 for all configurations. The refitted PES is around 5.8MB. The compression of PES by POTFIT is efficient and accurate. It greatly decreases the memory required to store the PES without losing much information. 

MCPOTFIT

Then we used the MCPOTFIT program. We used 100,000 uniform samplings, 100,000 metropolis samplings with a temperature of 1000 cm -1 , and 100,000 metropolis samplings with a temperature of 5000 cm -1 . Figure 4.7 is the histogram of the potential energy of the metropolis samplings. Obviously, the samplings generated with the temperature of 5000 cm -1 have more samplings with high energy, while the samplings generated with the temperature of 1000 cm -1 are concentrated between 0 and 1 eV , and are more localized. Meanwhile, they have samplings with potential energy below 0 eV , which are when the H atom is on the C atom. We used more samplings with low energy to get better refitting quality in this region because it is an important region for following simulations. The uniform samplings and samplings with higher energy are used in order to generate a correct PES form and prevent generating holes during the refitting because of a lack of information. We regenerated some samplings in the same region to test the refitting quality. The refitting RMS error is 68.5 cm -1 obtained by statistical analysis with 100,000 samplings created by the Metropolis algorithm with the temperature of 1000 cm -1 , and 300 cm -1 obtained by statistical analysis with 10000 sampling points created by the Metropolis algorithm with the temperature of 5000 cm -1 . The refitting quality is good in the region below 1eV and less good for high energy region, however, the wave function in the simulation will not explore the high-energy region.

The MCPOTFIT program is well parallelized by OpenMPI. It takes around , of 1500 cm -1 , and of 3000 cm -1 for 6D system.

3 hours with 32 CPUs for refitting. The refitted PES takes almost the same memory as the program POTFIT, because the PES is reformulated into the same form in these two programs. Compared with POTFIT, MCPOTFIT is faster thanks to the parallelization, however, the refitting quality is less good but good enough for the simulation in the relative region because it works by using the samplings and can not get the information of all configurations, thus the quality of refitting is strongly relative with the quality of the samplings chosen.

MCCPD

According to the calculation of MCPOTFIT, we found the temperature used in the metropolis is not very appropriate for this PES, we need to decrease the temperature to obtain more samplings for the H atom on the graphene surface. Thus in MCCPD calculation, we changed the samplings used for the refitting. We used 20,000 metropolis samplings with a temperature of 500 cm -1 , 20,000 metropolis samplings with a temperature of 1500 cm -1 , and 20,000 metropolis samplings with a temperature of 3000 cm -1 . The energy distribution of the samplings is shown in figure 4.8. We increased the weight of the samplings with low energy and removed the samplings with very high energy. We increased the rank from 100 to 550 during the ALS optimization. Every 10 iterations, we increased 75 ranks until 100 iterations. As shown in figure 4.9, the refitting error decreases fast with the increase of rank and finally the refitting error is 9.2 cm -1 calculated with the samplings used for optimization. Similarly, as MCPOTFIT, we regenerated samplings in the same regions to test the quality of refitting. The refitting RMS error is 70.6 cm -1 with 200,000 metropolis samplings with the temperature of 500 cm -1 , is 62.2 cm -1 with 200,000 metropolis samplings with the temperature of 1500 cm -1 and is 168.7 cm -1 with 200,000 metropolis samplings with the temperature of 3000 cm -1 . We used fewer samplings in MCCPD than in the MCPOTFIT calculation, but the refitting quality is still good.

The MCCPD program is parallelized by OpenMPI, it takes less than 1 hour with 400 CPUs for refitting. The refitted PES takes only 2.1 MB of memory, thanks to the more compact formulation of CPD.

Comparing those 3 programs, the POTFIT can give the best refitting quality but it takes the most time. MCPOTFIT can accelerate the calculation, however, the refitted PES is as large as that in the POTFIT program. MC-POTFIT is fast and the refitted PES takes the smallest memory. Even though the refitting quality of MCPOTFIT and MCCPD is worse than that of POT-FIT, but they are good enough for dynamic simulation.

. QD simulations

Then we performed the MCTDH calculation. The initial condition for the H atom is the same as the 3D simulation except that the initial energy distribution is centered at 2 eV because our refitting is concentrated in the region below 2 eV . The initial condition for the C atom is represented by a product of Gaussian functions centered at its equilibrium position.

We realized the simulations with those 3 refitted PES until 300 fs, all of them give us the same results. There is no H atom that sticks on the graphene surface and forms a C-H chemical bond even though the experimental sticking probability for the H atom with 1 eV initial kinetic energy is very high. It is reasonable, all the other C atoms are fixed, thus there is no way to disperse the energy brought by the H atom.

The evolution of the wave function in the Z direction of the C atom and the H atom is shown in figure 4.10. We can clearly observe the approaching of the H atom and the scattering back, however during all the collisions, the wave function of the Z direction of the C atom keeps at 0.0 which is the initial equilibrium position of the C atom, the C atom does not change too much position in the Z direction. Meanwhile, the wave function does not reach the minimum potential energy of chemisorption. This is coherent with the observation of zero sticking probability. Then we allowed the first shell C atoms to move as shown in figure 4.11, the others are still fixed at their equilibrium position at 0K. Thus, the energy can be dispersed only by the first shell C atoms, and we should see more interesting results. To accurately compare QD simulations with experimental results, it is important to consider that fixing C atoms introduces differences between the two. Therefore, direct comparisons between QD simulations and experiments may not yield meaningful results due to the distinct conditions. However, by conducting cMD simulations that closely replicate experimental conditions and identifying differences between the QD and cMD simulations, we can effectively capture quantum effects. This approach enables us to study and understand the disparities between cMD and QD simulations.

. 15D simulations

For meaningful and comparable results, it is crucial to ensure that both QD and cMD simulations begin with the closest possible initial conditions. By aligning the initial conditions, we can establish a reliable situation for comparison. Without this alignment, the significance of the findings may be compromised.

. QD simulation

In QD simulations the H atom is described by Cartesian coordinates, and the 4 movable C atoms are described by the normal modes by using the method explained in 3.1 and realized by Python script attached in the Appendix .1. The frequency and mass used for HO basis function in Table 4.3 are equal to 1.0, because the normal modes calculated with the mentioned method are dimensionless, the mass and frequency are included into the coordinates. It's important to note that the normal modes of graphene were calculated when the H atom was far from the surface. However, when the hydrogen atom approaches, it strongly alters the harmonic behavior of the graphene structure, rendering the initially calculated normal modes less optimal for the system. HO 35 0.0 1.0 1.0 q 2 HO 13 0.0 1.0 1.0 q 3 HO 13 0.0 1.0 1.0 q 4 HO 30 0.0 1.0 1.0 q 5 HO 13 0.0 1.0 1.0 q 6 HO 13 0.0 1.0 1.0 q 7 HO 13 0.0 1.0 1.0 q 8 HO 13 0.0 1.0 1.0 q 9 HO 13 0.0 1.0 1.0 q 10 HO 23 0.0 1.0 1.0 q 11 HO 13 0.0 1.0 1.0 q 12 HO 13 0.0 1.0 1.0 Table 4.3 -The parameters for the definition of primitive basis functions. The second column indicates the kind of DVR, the third column gives the number of grid points, and further parameters give more details about the DVR. In the case of FFT, they correspond to the coordinates of the first P1 and last P2 grid points and if it is periodic, it is written in the column (P3). In the case of HO, they correspond to the equilibrium position (P1), frequency (P2) and mass (P3) of harmonic oscillator basis functions.

Consequently, more primitive basis functions are required to achieve a converged calculation. This explains the larger number of basis functions necessary for q 1 , q 4 , and q 10 , as they exhibit a higher degree of correlation with the hydrogen atom.

PES refitting

We used the MCCPD program to realize the PES refitting for the system described by the primitive basis shown in table 4.3. The three parameters for the FFT basis function are the beginning position, the end position, and the periodicity. The there parameters for the harmonic oscillator basis function are the center position, frequency, and mass.

In order to get the refitting samplings, we performed DMC calculation mentioned in 2. ground state for the system when the H atom is far from the slab and when the H atom is on the surface. 250,291 samplings are calculated in these regions with potential energy varying from the minimum of the PES to around 3.5 eV , while the region performing the following dynamic simulations is smaller than 3 eV . The zero point energy (ZPE) for the graphene surface of this 15D system is 0.710 eV , the incident energy of the H atom is around 2.0 eV . The optimization of refitting began with a rank equal to 128, then for every 10 iterations, the rank increased 64 until it is 512. Figure 4.12 shows the RMS error of the fitting process throughout the iteration calculated with the fitting samplings. The refitting RMS error after optimization is 74.9 cm -1 . Then we used 401,758 samplings generated by another DMC calculation to test and validate the refitted PES, the quality of refitting is presented in figure 4. 13. The refitting quality is very good compared with the original PES.

Initial states

We conducted QD simulations employing various initial conditions for the H atom. Specifically, we investigated simulations with initial kinetic energies of 1.96 eV and 0.96 eV , both with an incident angle of 0 o . Similarly, we also examined the corresponding simulations for the D atom. By exploring these different scenarios, we aimed to gather a comprehensive understanding of the system's behavior and capture any significant variations arising from the diverse initial conditions.

We want C atoms in a well-defined state, thus we can subtract the energy of the graphene surface in the flux calculations to obtain a quantum flux resolved in the initial kinetic energy of the H atom. A good choice is to begin the propagation with their vibrational ground state. To construct the vibrational ground state wave function for four flexible carbon atoms, we carried out relaxation calculations. The ground state energy is found to be 0.710 eV For the H atom or D atom, we used complex Gaussian functions in the X and Y directions and a Gaussian function in the Z direction. The average momenta for them are zero in the X and Y directions. We have chosen the parameters of the complex Gaussian carefully so that the H atom will attack only the center C atom. The variance of the Gaussian function for the H atom in the X or Y direction is around 0.37 Bohr when hitting the graphene surface. The wave function is, thus, well localized to the attacked C atom as shown in figure 4.14 They will be sent perpendicularly on the top of the C atom with number 1 in figure 4.11.

We performed the simulations by ML-MCTDH with the ML-tree shown in figure 4.15. The number on the line that connects the square and the circle is the number of primitive basis, the number on the line which two circles is the number of SPF basis. The numbers shown in figure 4.15 is an example for the H atom scattering with initial condition of 1.96 eV . We adjusted the number of SPFs basis for each initial condition to obtain good converged simulations.

. cMD simulation

In the cMD simulation, all the atoms are described in Cartesian coordinates. Unlike the QD simulation, in which the wavefunction is propagated, in the cMD simulation, each atom is considered as a particle that obeys the Newton equations. We need to perform several thousands of different trajectories calculations to have statistically converged results. As mentioned, the initial condition for the C-atoms is prepared by a relaxation calculation, which means that the slab temperature is equal to 0 K. However, in a full classical molecular dynamic simulation, 0 K means the C atoms are at their equilibrium position, and there is only one geometry. The result of the corresponding simulation leads to very different results from the QD simulations. In order to have comparable results with the QD simulations, the cMD initial conditions should be as similar as possible to those of the QD simulation. We thus introduce a "quantum mechanical character" in the cMD initial condition for the C atoms to mimic the vibrational ground state of the graphene surface by using the method mentioned in section 3.6 and realized by Python script in Appendix .3 to generated 1,000 trajectories for 4 C atoms to mimic the vibrational ground state wave function. The average energy of those 1,000 samplings are 0.69 eV coherent with the zero point energy calculated in QD. For the H atom, we generated 20,000 trajectories with the Gaussian function when H atom achieves the graphene surface, then we calculated the H atom initial position by a reversed propagation.

. Results comparison

We compared the movement of C atoms, the sticking probability and scattering diagram for QD and cMD simulation.

Surface C atom movement

We followed the movement of the C atom during the collision. We found that there are 3 normal modes of 12 are strongly interact with the arriving of the H atom. These 3 modes are mode q 1 ,q 4 and q 10 shown in figure 4. 16. The normal mode q 1 and q 4 are the movement of C atoms in the Z direction, and the normal mode q 1 0 is the movement of C atoms in the surface. The combination of the modes q 1 and q 4 allows the center C atom and the first shell C atoms to move separately in the Z direction. The mode q 1 0 is the breathing mode in the plane for the first shell C atoms.

Figure 4.17 shows the expectation value of the normal modes during the collision for the H atom with the initial kinetic energy of 1.96 eV . Evidently, except for the modes q1,q4, and q10, all the other modes keep at around their equilibrium position. Modes q 1 and q 4 allow the formation of the C-H chemical bond while the mode q 1 0 allows the dispersion of energy from the center C atom to the first shell C atoms.

We then followed the kinetic energy of the normal modes during the collision for the initial kinetic energy of 1.96 eV in both QD simulation and cMD simulation. The results of QD and cMD are coherent as shown in figure 4.18. Even though the modes q 1 and q 4 move far to their equilibrium position, they do not absorb much energy due to their low frequency. Mode q 10 absorbs most part of the energy transferred from the H atom. Thus, the breathing vibration mode plays a really important role in the collision, and it is the channel of the energy dispersion.

Sticking Probability

We calculated the sticking probability in QD and cMD simulations for all the initial conditions. In QD, we calculated the sticking probability by using flux calculation, and in cMD the sticking probability is the number of trajectories on the surface at the end of the simulation divided by the number of total trajectories which is 20,000 in our simulations. The results are shown in table 4.4. The sticking probability is larger for the D atom and for the projectile with lower initial kinetic energy. The chemisorption barrier 172 meV is much smaller than the initial kinetic energy of the projectile. The projectiles with 1.96 eV are too large that even the C-H chemical bonds are formed, they can be easily broken by excess energy. The projectiles with 0.96 eV can form a C-H chemical bond with much less extra energy. Thus, it is reasonable that the sticking probability for the initial kinetic energy of 1.96 eV is much smaller than that of 0.96 eV . Besides, the sticking probability is smaller for the H atom than the D atom with the same initial kinetic energy. Because with the same initial kinetic energy, the D atom is slower than the H atom because of its larger mass. The D atom has more time to interact with the graphene surface and the excess energy has more time to be dispersed.

The results are similar in the cMD and QD simulations, however, we noticed that the sticking probability is always higher in the QD simulation than in the cMD simulation. We calculated the fraction of the sticking probability in QD simulations on that in cMD simulations. We found the fraction is smaller for D atoms than the H atoms. Thus, the differences in sticking probability may be due to the quantum effect which usually has an isotropic influence.

We followed the sticking probability during the simulation for QD simulation and cMD simulation for the initial kinetic energy of 0.96 eV as shown in figure 4. 19 At the beginning of collision, all the projectile atoms are on the surface, thus the sticking probability decreases from 1. The sticking probability decreases from 1 rapidly at around 30 fs for the H atom and around 45 fs for the D atom, it is coherent with the explanation mentioned before of a higher sticking probability for the D atom. We can also observe several shoulders of decrease during the simulation before the sticking probability is stable and arrives at the minimum, it is more evidence for the H atom. In QD simulation of the H atom, we can clearly observe them at around 110 fs and 170 fs in the QD simulation, however, these shoulders are much less evident for the D atom.

The projectiles leave the surface wave after wave, as shown in figure 4.20 which is the evolution of the wave function during the simulation of the H atom with an initial kinetic energy of 0.96 eV . The behavior of the wave function in the 15D system differs significantly from that in the previous 6D simulation. Unlike in the 6D simulation, where the wave function was directly scattered back, in the 15D system, a different phenomenon takes place. The wave function is no longer scattered back directly but instead moves towards the minimum chemisorption well. This behavior is crucial for the formation of the C-H chemical bond. Some of the surface normal modes, like q 1 , undergo significant changes to accommodate the formation of the C-H chemical bond. These changes are necessary for the wave function to transition from its initial state to the chemisorption well, where the bond can be established. An additional noteworthy observation is the presence of two nodes in the H z DOF for the wave function, which remains on the surface. These two nodes persist for approximately 70 fs, indicating a possible vibrational excited state associated with the stretching mode of the formed C-H chemical bond. Some parts of the wave function leave the surface rapidly. However, some other parts of the wave function leave the surface later, and this behavior is different in cMD calculation. This is the sign of quantum resonance. This finding suggests that the C-H bond undergoes vibrational motion during the simulation period. Thus the quantum resonance may explain this difference in sticking probability.

Outgoing kinetic energy distribution

We first tried the surface internal energy mentioned in section 3.3 for the H atom with the initial kinetic energy of 1.96 eV . We calculated two quantum flux with and without the kinetic energy of the graphene surface, then we calculated the outgoing kinetic energy according to the equation 3.33 with different chemical desorption barriers, the results are shown in figure 4.21. The velocity distribution of the outgoing H atom experiences a shift towards lower energies as the barrier energy increases. This can be attributed to the definition of E 0 in equation 3.29. In this calculation, we assume that E 0 ≥ E f + E e to ensure that the H atom can overcome the barrier. Essentially, this means that the H atom must possess sufficient energy to surpass the barrier height.

As the barrier height increases, the H atom needs to provide even more energy to surmount the obstacle. Consequently, the final kinetic energy of the H atom is smaller in these cases. The decrease in kinetic energy corresponds to a shift toward lower energies in the peak of the outgoing velocity distribution. This behavior is expected because a higher barrier necessitates a greater expenditure of energy by the H atom, resulting in reduced kinetic energy after passing over the barrier. However, the propagation is realized with only one PES, which means the barrier is fixed, thus this is only a qualitative analysis to determine the tendency of the influence of the barrier.

Due to the inconvenience of the surface internal energy calculation mentioned in section 3.3, we used the flux calculation with a momentum projector to calculate the H atom's scattering distribution.

The results are presented in These results highlight two significant aspects : Firstly, our approach for generating the initial conditions in cMD accurately reproduces the ground state wave function otherwise we will not observe such similar results. Secondly, the method employed for calculating the scattering distribution in QD simulations precisely aligns with our desired outcome.

We also realized the simulations of the H atom attacking other positions of the graphene surface, figure 4.24 is the H atom outgoing kinetic energy distribution of attacking the center of C-C chemical bond and the center of the carbon ring. Compared with the mentioned result, the H atom transfers the most energy to the graphene surface in the case of attacking the top and the least on the center of the ring. The collision of the H atom with the initial kinetic energy of 0.96 eV at the center of the ring is quasi-elastic. Closer to the top of the C atom, more energy is transfered.

In the simulations of attacking the center of the carbon ring, the sticking probability consistently registers as zero, regardless of the varied initial kinetic energies. This is attributed to the absence of a chemisorption site at the central point of the ring. When directing the attack towards the center of the C-C bond with an initial kinetic energy of 1.96 eV , the sticking probability is found to be less than 0.1% in both cMD and QD simulations. However, when the initial kinetic energy is 0.96 eV , the cMD simulation yields a 12.5% sticking probability, while the QD simulation records a 15% sticking probability. This non-zero sticking probability arises from the close proximity of the chemical bond center to the C atom, facilitating diffusion and attachment of the H atom to form the C-H chemical bond. It's worth noting, however, that this probability remains lower than that observed when targeting the top of the C atom, where the H atom demonstrates a higher probability of forming a C-H chemical bond.

. 75D simulations

Subsequently, unrestricted movement was enabled for all C atoms, ensuring that no atom remained fixed. Consequently, the simulations closely resemble the experimental conditions. We conducted two types of simulations : in the first, the H atom exclusively targets a single C atom, akin to the 15D simulations ; in the second, the H atom attacks the entire surface, mimicking conditions that more closely align with the experimental condition. This simulation is realized for only the H atom with the initial kinetic energy of 1.96 eV and the incident angle 0 o . It aims to study the energy transfer in the graphene surface.

. Simulation details

Similarly to the 15D simulation, we first used MCCPD to perform the PES refitting for the system defined by the primitive basis shown in table 4.5. There are 69 normal modes for the graphene surface which contain 24 C atoms, there translation normal modes that have zero frequency are removed. Thus the calculation is 72 dimensions.

As we expanded the dimensionality, the samplings computed in the 15D system are not applicable for reuse in the new MCCPD calculation. The ZPE for the graphene in this full-dimensional system is 4.05 eV , exceeding the range covered by the 15D samplings. A total of 223,770 samples were utilized in our study, comprising 100,890 samples obtained from a DMC calculation when the H atom resided on the graphene surface, 61,440 samples acquired from a DMC calculation when the H atom was positioned far from the graphene surface, and 40,960 samples obtained from a classical molecular dynamics (cMD) simulation with an initial kinetic energy of 1.0 eV. The optimization process commenced with a rank of 256 and progressively increased by 256 after every 30 iterations until reaching a final rank of 3072. We tested the refitted PES with other 499,974 samplings, containing 99,974 samplings from another DMC calculation when the H atom is on the surface, 200,000 samplings from another DMC calculation when the H is far from the graphene surface, and 200,000 samples obtained from a cMD simulation with an initial kinetic energy of 1.0 eV . Figure 4.25 shows the original PES versus the refitted PES for this MCCPD calculation.

It is less good than the PES refitting in the 15D system because the samplings used for refitting are not enough for the 72D. For the samplings from DMC calculation when the H atom is on the surface, we should run 24 DMC calculations to obtain samplings for the H atom on each C atom, and we used only around 4,200 samplings for each DMC calculation, which is much fewer than that used in 15D simulation. Even though it is less good, it is enough for qualitative simulations.

The graphene surface consists of 24 C atoms, resulting in a total of 72 normal modes. However, three translation normal modes with zero frequency were removed, thus 69 normal modes were left for calculation.

In our study, a comprehensive data set of 223,770 samples was employed. This included 100,890 samples obtained from a DMC calculation when the H atom resided on the graphene surface, 61,440 samples acquired from a DMC calculation when the H atom was positioned far from the graphene surface, and 40,960 samples obtained from a classical molecular dynamics (cMD) simulation with an initial kinetic energy of 1.0 eV . The optimization process initiated with a rank of 256 and incrementally increased by 256 after every 30 iterations until achieving a final rank of 3072. The calculation is very difficult to be converged, even with the rank of 3072, the RMS error is 487 cm -1 after optimization.

We evaluated the refitted PES using an additional set of 499,974 samples. These samples consisted of 99,974 samples from another DMC calculation with the H atom on the surface, 200,000 samples from another DMC calculation when the H atom was far from the graphene surface, and 200,000 samples obtained from a cMD simulation with an initial kinetic energy of 1.0 eV . Figure 4.25 illustrates the comparison between the original PES and the refitted PES for this MCCPD calculation.

It is worth noting that the PES refitting for the 72D system is not as accurate as the 15D system due to the limited number of samples used. To obtain samplings for the H atom on each C atom from the DMC calculation when it is on the surface, 24 separate DMC calculations would be required. However, we were only able to utilize approximately 4,200 samplings for each DMC calculation, which is considerably fewer than those used in the 15D simulation. Despite this limitation, the achieved level of accuracy is sufficient for qualitative simulations.

Then we performed the simulation similar to the 15D simulations. We used a complex Gaussian function for the H atom in the X and Y directions to ensure that it attacks only the C atom with the number 12 in figure 4.30. We used ML-MCTDH with a tree shown in figure 4.26. The calculation takes 26 hours with 40 CPUs, it is very fast for a such large dimensional QD simulation.

In the cMD simulation, we used the same method as the 15D simulations to generate initial trajectories for the C atoms and the H atom.

. Results

We calculated the average value of the kinetic energy of the attacked C atom, the first shell C atoms, and the second shell C atoms in the Z direction and in XY plane during the collision for QD simulations and cMD simulations. The results, depicted in Figure 4.27, demonstrate a strong coherence between the calculations of cMD and QD. Specifically, the absorption of energy by the center C atom predominantly occurs in the Z direction, whereas the first and second shell C atoms absorb more energy in the XY plane. Notably, there exists a noticeable delay in the kinetic energy increase between the first and second shell C atoms. This delay can be attributed to the time required for energy transfer within the graphene surface.

We also calculated the H atom outgoing kinetic energy distribution (figure 4.29) and the 2D scattering diagram (figure 4.33), and there are not many differences from the calculation of 15D. The results have recently been featured as an editor's pick in a published article [126].

. 75D simulation with plane wave

While the quality of the refitted PES suffices for the previous simulation, it falls short of the requirements for the upcoming calculation. Achieving a high level of accuracy and precision is crucial as we intend to calculate the sticking probability for the H atom interacting with the entire surface. However, improving the refitting quality for the last system poses a challenge due to the extensive utilization of computational resources with that amount of samplings. Consequently, we have decided to modify the coordinates employed for the H atom in the X and Y directions.

In the previous calculations, the H atom was defined as periodic within the domain indicated by the red rectangle in Figure 4.30. Now, we have made a change so that the H atom is periodic within the domain represented by the blue rhombus, which corresponds to the unit cell of the graphene surface. This 

and the kinetic operator changes to :

T = - 1 2m ∂ 2 ∂x 2 - 1 2m ∂ 2 ∂y 2 = - 1 2m 1 4 cos( π 6 ) 2 sin( π 6 ) 2 ∂ 2 ∂a 2 - 1 2m 1 4 cos( π 6 ) 2 sin( π 6 ) 2 ∂ 2 ∂b 2 - 1 2m sin( π 6 ) 2 -cos( π 6 ) 2 2 cos( π 6 ) 2 sin( π 6 ) 2 ∂ 2 ∂a∂b (4.2)
where x and y represent the original Cartesian coordinates, while a and b correspond to the new coordinates and m is the mass of the H atom. By utilizing these new coordinates for the H atom in the XY plane, we can focus solely on selecting samplings from the DMC calculation for the H atom on C atoms numbered 12 and 13 in Figure 4.30. This approach allows us to enrich samplings for the H atom on a single C atom keeping the total number of samplings, thus the accuracy of the PES for H atom on the C atom is improved. The primitive basis used for the H atom in the X and Y direction changes to the basis in table 4.6, and the others remain the same.

Using the new coordinate system, we applied MCCPD to refit the PES as before. A total of 368,640 samples were generated for this purpose, involving 81,920 samplings calculated by DMC calculation targeting the hydrogen atom located on carbon atoms with the numbers 12 and 13 in figure 4 samplings calculated by DMC calculation with the hydrogen atom positioned far from the graphene surface, 102,400 samplings chosen from a cMD simulation when the initial kinetic energy is 1 eV , and 61,440 samplings chosen from a cMD simulation when the initial kinetic energy is 2 eV . The optimization process initiated with a rank of 256 and incrementally increased by 256 after every 30 iterations until achieving a final rank of 1792. The calculation is much better converged than before, the RMS error is 223 cm -1 after optimization. It is already at chemical precision, smaller than 1 kcal/mol. Similarly, we tested the refitted PES with samplings calculated with samplings from new calculations with the same conditions and methods. The original PES versus the refitted PES is with the test samplings as shown in figure 4.31, obviously, the refitting quality for this 75D with an H atom moving in the element cell is much better than the last calculation compared with figure 4.25. Nevertheless, there is room for improvement in the refitting quality around the 4 eV region. Increasing the number of samplings and elevating the rank could enhance refitting quality, but this comes at the cost of increased computational expense.

We then performed dynamic simulations with different initial conditions. We used a plane wave with zero momentum for the H atom in the X and Y direction in QD simulations, which means the H atom wave function will attack everywhere of the graphene surface perpendicularly. As the simulations before, we generated 1,000 trajectories for C atoms to mimic the ground state wave function, and 20,000 trajectories of the projectile with random initial position and incident angle of 0 o are calculated in cMD simulations.

H atom

Results

The sticking probabilities calculated with different initial conditions are presented in table 4.7. Compared to the results of 15D simulations, the results of 75D simulation with plane wave are also closely aligned between the cMD and QD simulations, with a slight elevation in the QD results. Notably, in the 75D system, the sticking probability is slightly higher than that in 15D simulations, owing to the presence of more normal modes capable of absorbing more excess energy from the newly formed C-H chemical bond.

Subsequently, we calculated the H atom scattering distribution. Figure 4.32 displays the outgoing kinetic energy distribution of the projectile, and figure 4.33 depicts the scattering distribution of simulations. The results from QD simulations maintain coherence with those of cMD simulations. Simulations with an initial kinetic energy of 1.96 eV closely resemble the results of previous 15D simulations. However, for simulations with an initial kinetic energy of 0.96 eV , we observe two distinct peaks in both outgoing kinetic energy distributions and scattering distributions. One peak represents a significant loss of energy, signifying a collision at the top of the C atoms, while the other indicates a quasi-elastic collision occurring at the center of the C ring.

These results exhibit strong consistency with the experimental data depicted in Appendix .5, Figure 1, and Appendix .6, Figure 2, specifically for the initial kinetic energy of 1.96 eV . The simulated position of the outgoing distribution peak aligns with a previous classical molecular dynamics (cMD) simulation predating this PhD research. Nevertheless, in comparison to the experimental findings, the simulated kinetic energy of the peak is marginally higher. This divergence could be attributed to an approximate 200 meV underestimation of the chemisorption barrier in the potential energy surface (PES) used in our simulations. Our previous exploration utilizing the surface internal energy method indicated that increasing the chemisorption barrier would lead to a downward shift in the peak outgoing kinetic energy distribution. When contrasting our simulation with the earlier cMD simulation (Figure 2), our results reveal a broader outgoing kinetic energy distribution, closely resembling the experimental outcome. This divergence is attributed to variations in the initial distribution of C atoms. In the previous cMD calculation, graphene was thermalized to 300 K using an NVT canonical ensemble calculation.

For the case of an initial kinetic energy of 0.96 eV , the experimental data lacks a discernible peak in the low-energy region. This absence may be attributed to the inherent challenge of detecting low kinetic energy in their experimental setup, given the relatively low energy of the particles involved.

We additionally tracked the phonon behavior of the graphene surface during the scattering event involving the H atom with an initial kinetic energy of 1.96 eV . This specific condition was chosen due to the very low sticking probability in this situation. Consequently, the impact of the formation of the C-H chemical bond on the graphene phonon is expected to be minimal. The graphene phonon density was computed using a harmonic approximation with 2600 C atoms (formed by 25 cells shown in figure 4.30). The trajectory of the H atom is depicted in the red curve of figure 4.34, reaching its closest proximity to the graphene surface at approximately 25 fs. Several key observations can be made :

1. Phonons begin to populate before the H atom reaches its nearest position, albeit not simultaneously, with some phonons appearing earlier than others.

2. Multiple phonons are involved in the collision at the onset of interaction between the H atom and the C atom.

3. The population of phonons undergoes dynamic changes during the simulation. For example, the population of the phonon at around 250 cm -1 decreases at approximately 50 fs, while the population of the phonon at around 510 cm -1 increases. This might suggest an energy transfer mechanism such as the Fermi resonance between the phonons.

It's noteworthy that the collision between the H atom and the graphene surface deviates from a typical collision. In a general collision, the impacted atom usually recoils towards the projectile, transferring back some energy. However, this feature is not observed in this simulation. Furthermore, it is worth noting that in numerous prior studies [START_REF] Bonfanti | [END_REF]29], our attention has primarily been directed towards the out-of-plane phonons with frequencies below 800 cm -1 . This focus stems from the clear involvement of out-of-plane phonons in the collision dynamics and the formation of the C-H chemical bond. They play a role similar to the normal mode q 1 and q 4 in the 15D system study. However, our current investigations highlight the significant role played by certain in-plane phonons in the dispersion of energy during the collision. They play a role similar to the normal mode q 10 in the 15D system study. The normal modes with a population larger than 0.1 are shown in Appendix .7. There are 19 normal modes are involved in this collision, 10 out-of-plane modes (figures in 3), and 9 in-plane modes 4.

-Conclusion and perspectives

In this thesis, the main goal was to discern the reasons behind the disparities observed between classical molecular dynamics (cMD) simulations and experimental outcomes. Additionally, the study aimed to explore and analyze the quantum effects inherent in hydrogen atom scattering from a graphene surface. We aimed to explore various initial conditions of the projectile for scattering, comparing classical molecular dynamics (cMD) simulations with quantum dynamics (QD) simulations, and ultimately comparing them with experimental results. By applying newly developed methods, we successfully achieved a full quantum description of H atom scattering from the graphene surface. This study significantly contributes to the understanding of the collision between H atoms and the graphene surface, as well as the energy transfer during this collision.

One of the major achievements of this research was the realization of a 75-dimensional natural potential complex system for quantum dynamics simulations. We introduced a new flux projector, allowing us to obtain more information from the scattering wave function. Additionally, we proposed a new benchmark in cMD simulations to consider the vibrational ground state. The findings of this research indicate comparable results in high incident energies, such as 1.96 eV , demonstrating the promise of the proposed methods and the absence of quantum effects in these initial conditions. However, at lower incident energies, differences between QD and cMD simulations were observed, indicating the quantum enhancement in the sticking probability.

The research questions posed at the beginning of this thesis have been successfully addressed. We have provided evidence of existing quantum effects, which is exemplified by the isotropic effect observed in scattering at an incident energy of 1 eV . This research significantly contributes to the field of molecular simulation. The study provides a comprehensive overview of high-dimensional quantum dynamic simulations, demonstrating the feasibility of using the MCTDH-Heidelberg package for simulating high-dimensional systems. The findings offer valuable insights into the energy transfer during H atom scattering from the graphene surface.

While this research has made significant progress in comparing QD and cMD simulations, certain limitations should be acknowledged. Identifying the quantum effect, particularly in high-dimensional systems, is challenging. We hypothesize that quantum resonance plays a role in quantum enhancement but lack conclusive evidence because the initial kinetic energy in our simulation is relatively too large compared with the chemisorption barrier. To further compare with experimental results, future studies should explore different initial kinetic energy, incident angles and surface temperatures, which were beyond the scope of this research due to time constraints.

In conclusion, this thesis has successfully demonstrated the existence of quantum effects in H atom scattering from the graphene surface. Through comprehensive simulations and comparisons, we have shed light on the energy transfer dynamics in this system.

Throughout this research journey, I encountered various challenges and obstacles. However, these challenges provided valuable learning opportunities and fostered personal growth. I developed a deeper appreciation for the interdisciplinary nature of studying H atom scattering from the graphene surface and the importance of collaboration among scientists. This research experience has enriched my understanding of quantum dynamics and its potential to address the pressing issues in quantum effect studies.

I would like to express my sincere gratitude to my supervisor, Dr. Fabien Gatti, for his guidance, support, and valuable insights throughout this thesis. I am also thankful to all the participants who provided their expertise and shared their knowledge, contributing to the successful completion of this research. f r e q=np . s q r t ( eigenw ) #C a l c u l a t e t h e f r e q u e n c y f o r t h e normal mode np . s a v e t x t ( ' f r e q . t x t ' , f r e q , fmt= ' %.8 e ' ) np . s a v e t x t ( ' e i g e n v . t x t ' , e i g e n v , fmt= ' %.8 e ' ) #Save d a t a 
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 11 Figure 1.1 -The graphene cell constructed by 24 C atoms.
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 21 Figure 2.1 -Illustration of the H atom scattering experiments.

Figure 2 . 2 -

 22 Figure 2.2 -Illustration of 3 possible collision phenomena on the PES 2D cut (colormap in eV ), cutting from the Z direction of the H atom and targeted C atom. The chemical adsorption (⋆) is -657 meV , and the chemisorption barrier (+) is 172 meV . The reference point of 0 meV is defined at the 0 K and H atom is far away.
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 23 Figure 2.3 -Benchmark of HDNN-PES
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 24 Figure 2.4 -Structure of sub-NN

Figure 2 .

 2 Figure 2.5 shows an example for L = 5 and N = 4 with grid points {1, 2, 3, 4}.Obviously, only φ j has a value at the grid point x j and other functions are zero at this grid point. This largely simplifies the calculation of the potential energy of the system. Meanwhile, we can always transform back to the FBR functions using the unitary matrix U to get the kinetic energy of the system easily.While the example presented above offers simplicity, real-world simulations often entail significantly greater complexity. Numerous factors come into play, including considerations such as boundary conditions, singularities in the nuclear kinetic energy operator, system symmetries, and more. Consequently, it becomes essential to carefully select appropriate DVR functions according to the specific characteristics of the system under study. This careful selection not only contributes to faster calculations but also improves the convergence of results.
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 25 Figure 2.5 -Illustration of sine DVR functions with L = 5 and N = 4.
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 26 Figure 2.6 -Illustration of the wave function ansatz for the Standard method (a), the MCTDH method (b) and the ML-MCTDH (c).The squares represent the primitive basis functions, the circles represent the time-dependent basis functions.
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 27 Figure 2.7 -Illustration of Tucker decomposition for a 3D tensor
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 28 Figure 2.8 -Illustration of CP decomposition for a 3D tensor

  , t = 0)e -ikx dx. (3.10) Using equation 3.6 as initial wavefunction with p 0 = 0, we can get
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 31 Figure 3.1 -H atom 1D density in X direction for a Gaussian wave function with real number parameter (1,2) and complex number parameter (3,4) at 0fs (1,3) and 10fs (2,4).

2 .

 2 Then, restart the calculations twice with a CAP located at the end of the wave function in the H z DOF in order to absorb the outgoing wavepacket and with 2 different Hamiltonians. (a) The first restart calculation uses the original Hamiltonian without any modification. This allows us to get a flux resolved in total energy F (E) (b)
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 32 Figure 3.2 -Illustration of samplings and their correlation coefficient correspondent.

  sim(x, y) = Corr(x, :) • Corr(y, :) |Corr(x, :)||Corr(y, :)| = cosθ, (3.40) dis(x, y) = c × arccos(sim(x, y)) π . (3.41)
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 33 Figure 3.3 -The histogram of 1000 samplings generated for one normal mode (blue bars) and the density of the corresponding quantum wave function(orange curve).
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 41 Figure 4.1 -The H atom initial kinetic energy distribution for the simulation with initial kinetic energy of 1.96 eV .
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 42 Figure 4.2 -The norm of the wave function during the simulation in 3D simulation.
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 4344 Figure 4.3 -Quantum flux distribution compared with the initial energy distribution in 3D simulation.
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 45 Figure 4.5 -Scattered wave function in X and Y direction of the H atom in 'k-space'.
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 46 Figure 4.6 -Illustration of crystal parameters of graphene along the armchair direction and zigzag direction.
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 47 Figure 4.7 -The potential energy of metropolis samplings histogram of Metropolis samplings for the temperature of 1000 cm -1 and of 5000 cm -1 for 6D system.
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 48 Figure 4.8 -The potential energy of metropolis samplings histogram of Metropolis samplings for the temperature of 500 cm -1 , of 1500 cm -1 , and of 3000 cm -1 for 6D system.
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 49 Figure 4.9 -The refitting RMS error during 100 iterations. The red vertical line indicates when the rank of CPD increases, the number of rank is labeled at the top of the figure for 6D system.

Figure 4 .

 4 Figure 4.10 -The 2D reduced density wave function (contour lines) at 0 fs, 25 fs, 35 fs, 45 fs, 55 fs, and 65 fs during the simulation for 6D system attacking on the top of one C atom, on the PES (colormap in eV )cut from the Z direction of the H atom (X-axis) and the C atom (Y-axis).
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 411 Figure 4.11 -The graphene surface with 4 numbered flexible C atoms for 15D system simulation.

  7.2 realized by a by Python script attached in the Appendix .2 in order to obtain sampling configurations distributions around the vibrational
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 412 Figure 4.12 -The refitting RMS error during 100 iterations for 15D system MCCPD refitting.
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 4 Figure 4.13 -Orignial PES (X-axis) versus the refitted PES of 15D system with MCCPD (Y-axis).
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 414 Figure 4.14 -Reduced density of H atom wave function in the X and Y direction when hitting the surface. The coordinates of 4 numbered C atoms are indicated in figure 4.11.

13 Figure 4 . 15 -

 13415 Figure 4.15 -ML tree for 15D dynamic simulations.
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 416 Figure 4.16 -Three most important normal modes participating in the energy transfer during the H atom collision with graphene : mode q 1 (a), mode q 4 (b) and mode q 10 (c).
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 417418 Figure 4.17 -The expectation value of the normal modes during the collision for 15D system attacking on the top of one C atom with H atom initial kinetic energy of 1.96 eV .
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 419 Figure 4.19 -Sticking probability after the collision for the initial kinetic energy of 0.96 eV for H atom (top) and D atom (bottom), the red curves are the results QD simulations the black curves are the results of cMD simulations for 15D system attacking on the top of one C atom.

Figure 4 .

 4 Figure4.20 -The 2D reduced density wave function at 10fs, 38fs, 46fs, 58fs, 78fs, 82fs, 120fs, and 260fs during the simulation on the PES cut from the Z direction of the H atom (x-axis) and the q 1 normal mode (y-axis) for 15D system attacking on the top of one C atom with H atom initial kinetic energy of 0.96 eV .

Figure 4 .

 4 Figure 4.21 -The H atom's outgoing velocity distribution with different adsorption barriers (E e ).The X axis is the outgoing velocity of the H atom, and the Y axis is the intensity of distribution.

Figure 4 .

 4 22 and Figure 4.23, demonstrating strong agreement between the QD simulations and the cMD simulations. The D atom transfers more energy to the graphene surface than the H atom, because with the same initial kinetic energy, the velocity of the D atom is smaller than that of the H atom, and the D atom has more time to interact with the C atoms and then transfers more energy to the C atoms. Besides, with the Baule model for elastic binary collision, the final projectile's outgoing kinetic energy isE f = [(M -m)/(M + m)] 2 E i [125], considering the C atom's initial velocity is zero. M is the mass of the C atom, and m is the projectile's mass. The final kinetic energy is smaller for the D atom than for the H atom.
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 422 Figure 4.22 -Outgoing kinetic energy distribution for the H atom (A and C) and the D atom (B and D) with the initial kinetic energy of 1.96 eV (A and B) and 0.96 eV (C and D) for cMD simulations (black curves) and for QD simulations (red curves) for 15D system attacking on the top of one C atom.
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 4 Figure 4.23 -2D scattering distribution diagrams for QD simulations (A, B, C, D) and for cMD simulations (E, F, G, H) for the H atom (A, C, E, F) and the D atom (B, D, F, H) with the initial kinetic energy of 1.96 eV (A, B, E, F) and 0.96 eV (B, D, F, H) for 15D system attacking on the top of one C atom.
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 424 Figure 4.24 -Outgoing kinetic energy distribution for H atom with initial kinetic energy of 1.96 eV (A and B) and of 0.96 eV (C and D) attacking the center of C-C chemical bond (A and C) and then the center of carbon ring cycle (B and D) in the MCTDH calculations (red curves) and the cMD calculations (black curves) for 15D simulations.
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 4 Figure 4.25 -Orignial PES versus the refitted PES of 75D big cell system.
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 4 Figure 4.26 -ML-tree for this 75D calculation, the construction of node 2, node 21, and node 48 are shown in the 3 below figures.
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 427 Figure 4.27 -Kinetic energy per C atom during the collision for QD simulation (A and B) and cMD simulation (C and D) for the center C atom (purple curve), the first shell C atoms (green curve) and the second shell C atoms (blue curve) in the Z direction (A and C, out-of-plane) and in the XY plane (B and D, in-plane). The z-coordinate of the H-atom (ordinate on the left-hand side) is indicated by the dashed black curve. 75D calculation attacking on the top of one C atom.
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 4 Figure 4.28 -2D scattering distribution for QD simulation (left) and cMD simulation (right) for 75D simulations with initial kinetic energy of 1.96 eV .
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 429 Figure 4.29 -Outgoing kinetic energy distribution for the H atom in cMD simulation (black curve) and QD simulation (red curve) for 75D simulations with initial kinetic energy of 1.96 eV .
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 430 Figure 4.30 -Graphene surface cell
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 431 Figure 4.31 -Orignial PES versus the refitted PES of 75D small cell system.
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 432 Figure 4.32 -Outgoing kinetic energy distribution for the H atom (A and C) and the D atom (B and D) with the initial kinetic energy of 1.96 eV (A and B) and 0.96 eV (C and D) for cMD simulations (black curves) and for QD simulations (red curves) for 75D simulation with plane wave.

Figure 4 .

 4 Figure 4.33 -2D scattering distribution diagrams for QD simulations (A, C, E, G) and for cMD simulations (B, D, F, H) for the H atom (A, B, E, F) and the D atom (C, D, F, H) with the initial kinetic energy of 1.96 eV (A, B, C, D) and 0.96 eV (E, F, G, H) for 75D simulation with plane wave.
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 434 Figure 4.34 -Population of graphene phonon with the H atom collision with the initial kinetic energy of 1.96 eV . The position of the H atom during the simulation is represented by the red curve on the left, and the phonon density of stats is represented by the blue curve on top. The colormap represented the fraction of the excited phonon. The excited out-of-plane and in-plane modes are separated by the pink dashed line.
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 23412617 Figure 1 -Scattering distribution of experimental results for the H atom scattering from graphene surface at 300K
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 3 Figure 3 -10 graphene out-of-plane normal modes which play important roles in the collision.
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 4 Figure 4 -9 graphene out-of-plane normal modes which play important roles in the collision.
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Table 4 .

 4 MCTDH, MCTDH can well carry out the

	DOF	Type	Number Beginning	End posi-	Periodicity
				position	tion(a.u.)	
				(a.u.)		
	H x	fft	64	0.0	16.1526143 Periodic
	H y	fft	64	0.0	13.9885738 Periodic
	H z	fft	144	0.5	12.0	no

1 -Primitive basis definition for 3D system.

Table 4 .

 4 2 -Primitive basis definition for 6D system.

	DOF	Type	Number Beginning	End posi-	Periodicity
				position	tion(a.u.)	
				(a.u.)		
	H x	fft	12	0.0	16.19687	periodic
	H y	fft	15	0.0	13.98858	periodic
	H z	fft	72	-1	11	
	C x	HO	12	6.2	7.2	
	C y	HO	15	6.5	7.5	
	C z	sin	48	0.75	1.5	

Table 4 .

 4 4 -Sticking probability for 4 different conditions in QD and cMD simulation for 15D system attacking on the top of one C atom.

	Conditions	H atom 1.96 eV 0.96 eV 1.96 eV 0.96 eV D atom
	cMD	0.1%	19%	0.9%	31%
	QD	0.2%	29%	1.6%	39%

Table 4 .

 4 5 -Primitive basis definition for 75D system.

	90

Table 4 .

 4 6 -Primitive basis definition for 75D system.
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