7.3 Comparison of NS Zak's phase with Zak's phase in the case of an SSH4 without mirror symmetry. While Zak's phase is not quantized, NS Zak's is quantized and predicts correctly the number of edge states that each band contributes. The spectral diagram corresponds to a finite chain with 4N (where N = 20) sites. Due to that, the NS Zak's corresponding to the first sublattice has been utilized. The bulk invariants for the first and second band are presented. The results for the rest of the bands are identical due to chiral symmetry. . . . . . . . .
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Higher Order Coordinate (HOC) topological metamaterials. Contrary to typical topological metamaterials, where topological properties are probed in the usual displacement coordinates, the topological nature of HOC topological metamaterials is revealed only in higher order coordinates (e.g strains in mechanical systems, flux field in acoustics etc) and for different boundaries. These metamaterials exhibit all the desired features for their characterization as topological: robust edge states, topological phase transitions and bulk-boundary correspondence. Our main focus will be 1D HOC metamaterials. We begin by presenting some preliminary models, like the mass dimer or an acoustic Su-Schrieffer-Heeger (SSH) model, which exhibit a phenomenology similar to topological systems -for example, edge states emerge after a gap closing of the spectrum -but which seem to either violate bulk-boundary correspondence or they do not possess necessary symmetries for a topological classification when examined in displacement coordinates. We proceed by demonstrating with three examples -the mass dimer, a mechanical Kitaev chain and an acoustic analog of the SSH model -that HOC coordinates enable us to unveil topology protecting symmetries and establish bulk-boundary correspondence for boundaries that break the protecting symmetries in lower order coordinates. Furthermore, we examine two HOC metamaterials which cannot be classified in the tenfold way, but exhibit edge states which can be predicted from bulk invariants due to the presence of other symmetries (inversion symmetry, point chirality): an acoustic SSH3 and a quasi-1D mechanical chain which utilizes displacement and rotation degrees of freedom. Last but not least, a duality seems to exist between HOC topological metamaterials and typical topological metamaterials. For the case of mechanical topological metamaterials, we show that strain topological metamaterials are supersymmetric (SUSY) partners of the typical displacement metamaterials. This may be a starting point for a general proof of this duality in the future. Our findings suggest that higher order coordinates constitute a necessary tool to the already established methods of probing topological properties. They open up new research opportunities such as the possibility of 2D HOC topological metamaterials, and demand a general investigation of the interplay between boundary conditions and coordinate transformations. i ABSTRACT Dans cette thèse, nous présentons une nouvelle famille de métamatériaux topologiques, appelés: Métamatériaux topologiques à coordonnées d'ordre supérieur (HOC). Contrairement aux métamatériaux topologiques typiques, où les propriétés topologiques sont décrites dans les coordonnées de déplacement habituelles, la nature topologique des métamatériaux topologiques HOC n'est révélée que dans les coordonnées d'ordre supérieur (par exemple, les déformations dans les systèmes mécaniques, le champ de flux en acoustique, etc). Ces métamatériaux présentent toutes les caractéristiques souhaitées pour être caractérisés comme topologiques : états de bord robustes, transitions de phase topologiques et correspondance "bulk-boundary". Nous nous concentrons principalement sur les métamatériaux 1D HOC. Nous commençons par présenter quelques modèles préliminaires, comme le dimère de masse ou un système dit de Su-Schrieffer-Heeger (SSH) en acoustique, qui présentent une phénoménologie similaire aux systèmes topologiques -par exemple, les états de bord émergent après une fermeture du spectre -mais qui semblent soit violer la correspondance "bulk-boundary", soit ne pas posséder les symétries nécessaires à une classification topologique lorsqu'ils sont examinés en coordonnées de déplacement. Nous démontrons à l'aide de trois exemples -le dimère de masse, une chaîne mécanique de Kitaev et un analogue acoustique du modèle SSH -que les coordonnées HOC nous permettent de dévoiler les symétries protectrices de la topologie et d'établir une correspondance entre les frontières et le volume pour les frontières qui brisent les symétries protectrices dans les coordonnées d'ordre inférieur. En outre, nous examinons deux métamatériaux HOC qui n'appartiennent à aucune des dix classes établies des isolants topologiques, mais qui présentent des états de bord qui peuvent être prédits à partir d'invariants du volume en raison de la présence d'autres symétries (symétrie d'inversion, chiralité ponctuelle) : Un SSH3 acoustique et une chaîne mécanique quasi-1D qui utilise les degrés de liberté de déplacement et de rotation. Enfin, une dualité semble exister entre les métamatériaux topologiques HOC et les métamatériaux topologiques typiques. Dans le cas des métamatériaux topologiques mécaniques, nous montrons que les métamatériaux topologiques de contrainte sont des partenaires supersymétriques (SUSY) des métamatériaux de déplacement typiques. Cela pourrait être le point de départ d'une preuve générale de cette dualité à l'avenir. Nos résultats suggèrent que les coordonnées d'ordre supérieur constituent un outil nécessaire aux méthodes déjà établies pour sonder les propriétés topologiques. Ils ouvrent de nouvelles perspectives de recherche telles que la possibilité de métamatériaux topologiques HOC 2D, et exigent une étude générale de l'interaction entre les conditions aux limites et les transformations de coordonnées. Indeed we observe the emergence of two gap modes approximately around the point k 1 = k 2 as expected. The slight deviation is due to finite size effects and can be analytically calculated. In (b), everything is the same as in (a), except for the boundaries. We see that the violation of chiral symmetry at the boundaries totally breaks BBC and no edge states appear for any value of k 1 . In (c) we present the spectrum of the chain in the topological phase. The spectrum is normalized with respect to the mid-gap frequency. In (d) we present the profile of the two edge states. The SSH edge states have support on only one of the two sublattices and this profile is apparent at each side of the chain. However the modes presented here, are superposition of chiral modes. This is due to the finite size of the chain (hybridization). 22 ily of strain topological metamaterials (STM) to the typical case. In the top row, we present "mass-spring" schematics, which are powerful tools to model topological systems across a spectrum of physical settings, from mechanics, to optics, electronic circuits and acoustics.
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In the middle row, we denote the appropriate boundary conditions for the existence of BBC. In the bottom row, we show how the spectrum of each system evolves while a parameter changes adiabatically. This is compared to the predictions of the bulk winding. The orange denotes trivial winding (w = 0), and the doughnut non-trivial (w = 1).

(a) The stiffness dimer can be mapped to the finite-frequency SSH model and is a typical case. Only fixed boundaries preserve the chiral symmetry of the displacement bulk dynamical matrix D u,bulk . Edge states appear according to the prediction of the latter's winding number. (b) The mass dimer is an STM. As a result, its chiral symmetry is revealed only in strain coordinates, and edge states can exist only for free boundaries according to the winding number of the bulk dynamical matrix in strain coordinates D s,bulk . (c) The new mechanical Kitaev chain behaves both like an STM and a typical case, depending on the applied boundaries. (i) For free boundaries, it behaves like an STM, and the winding of D s,bulk predicts the emergence of edge states correctly. (ii) For fixed boundaries, it behaves like a typical case, and the winding of D u,bulk predicts the emergence of edge states correctly.

Remarkably, the topological phases of this system are interchanged 

-Galileo Galilei

From its infancy, physics was nurtured by algebra and geometry to later pass to calculus, complex analysis, differential geometry, group theory etc. Almost every time the domain of physics was expanded significantly -being a better understanding of smaller or bigger scale physical phenomena -new mathematical nutrients were needed for its growth. The last decades are characterised by another such expansion with the incorporation of topology as an essential mathematical addition to the armory of physics.

The first hint of physical quantities with a topological origin comes from a paper of Dirac [START_REF] Dirac | Quantised singularities in the electromagnetic field[END_REF]. Dirac conjectured the existence of magnetic monopoles -not yet observed, and his construction gave a natural explanation of the quantization of electric charge through topology. Topology has also emerged as a proper tool for the description of other exotic objects, like black holes [START_REF] Hawking | Black holes in general relativity[END_REF]. Nevertheless, the undisputed relevance of topology in physics came after the discovery of the quantum Hall effect [START_REF] Klitzing | New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance[END_REF]. A natural explanation for the quantized Hall conductivity came through the theory of topological order [START_REF] Thouless | Quantized Hall conductance in a two-dimensional periodic potential[END_REF][START_REF] Wen | Topological orders and edge excitations in fractional quantum hall states[END_REF][START_REF] Kohmoto | Topological invariant and the quantization of the hall conductance[END_REF]. In the calculation of the Hall conductance through
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the Kubo formula [START_REF] Kubo | Statistical-mechanical theory of irreversible processes. i. general theory and simple applications to magnetic and conduction problems[END_REF], the phases of the Bloch wavefunctions [START_REF] Bloch | Über die quantenmechanik der elektronen in kristallgittern[END_REF] play a central role. Berry highlighted the relevance of the phase of a wavefunction when a system undergoes an adiabatic cyclic evolution of its parameters [START_REF] Berry | Quantal phase factors accompanying adiabatic changes[END_REF]. Berry curvature is a gauge invariant -and thus measurable -quantity that utilizes the change in phase of a wavefunction after a cycle. It turns out that, the phases of the eigenfunctions of some initial Hamiltonian, codify information about the topology of the space of Hamiltonians that are connected by a continuous change of their parameters. The difference between the phase of the eigenfunctions at the start and the end of the cycle, dictates the value of physically measurable quantities. Zak [START_REF] Zak | Berry's phase for energy bands in solids[END_REF] proposed an extension of the Berry phase for 1D crystals. Zak's phase is defined as:

Z ∶= i ∮ dk ⟨u λ (k)|∂ k u λ (k)⟩ , (1.1) 
where the integration is carried out on the first Brillouin zone, |u λ (k)⟩ is the eigenvector of the Bloch Hamiltonian that corresponds to band λ and k is the crystal momentum. Zak's phase is a central physical quantity for this thesis since all the systems that we are going to examine are 1D periodic structures. Zak's phase probes the evolution of the phase of the wavefunction as the crystal momentum undergoes a continuous change in the first Brilloun zone. If the system possesses inversion symmetry, Zak's phase is quantized [START_REF] Asbóth | A short course on topological insulators[END_REF] and it's value determines the presence of localised edge states at the boundaries of a finite 1D sample. It is also worth noting that Zak's phase has played a major role in the formulation of the modern theory of polarization [START_REF] Resta | Macroscopic electric polarization as a geometric quantum phase[END_REF][START_REF] Resta | Macroscopic polarization in crystalline dielectrics: the geometric phase approach[END_REF][START_REF] Resta | Manifestations of berry's phase in molecules and condensed matter[END_REF][START_REF] Resta | Theory of polarization: a modern approach[END_REF].

The introduction of topology has revolutionized condensed matter physics with the discovery of topological insulators and superconductors [START_REF] Hasan | Colloquium: Topological insulators[END_REF][START_REF] Kane | Quantum spin hall effect in graphene[END_REF][START_REF] Fu | Probing neutral majorana fermion edge modes with charge transport[END_REF][START_REF] Fu | Topological insulators in three dimensions[END_REF]. Topological
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insulators are materials that host robust boundary modes 1 . These modes can be found inside the gaps between the Bloch bands. Their existence is closely related to the topology of the bulk and the later is encoded in the value of topological invariants (like the Chern number [START_REF] Thouless | Quantized Hall conductance in a two-dimensional periodic potential[END_REF][START_REF] Kohmoto | Topological invariant and the quantization of the hall conductance[END_REF], the winding number [START_REF] Maffei | Topological characterization of chiral models through their long time dynamics[END_REF] etc). Topological insulators and superconductors have been classified in a periodic table 2 [51, 89, 2, 122, 44] which determines what kind of topological invariants can be defined for each system, based on the presence of specific symmetries (chiral symmetry, particle-hole symmetry and time reversal) and the system's dimension. We will call these symmetries topology Protecting Symmetries (PS). The derivation of the periodic table requires a deep knowledge of K-theory and is beyond the scope of this thesis. Nevertheless, we should state that most of the systems that we will examine fall in the BDI class of topological insulators, i.e. they possess all the topology protecting symmetries.

A central concept that connects the value of the topological invariant to the presence (or not) of robust boundary modes is Bulk Boundary Correspondence (BBC).

Concerning the topological insulators and superconductors in the periodic table, BBC states that a change in value of the topological invariant (defined in the bulk3 of the system) is accompanied by a change in the number of boundary modes in a finite system. For BBC to hold, it is necessary that the bulk topology protecting symmetries are not broken at the boundaries of a finite sample [START_REF] Ryu | Topological insulators and superconductors: tenfold way and dimensional hierarchy[END_REF][START_REF] Ryu | Topological origin of zero-energy edge states in particle-hole symmetric systems[END_REF]. BBC is crucial to this work. In Chapter 4 we will expand it for two models that do not fall in the tenfold classification -The SSH3 [START_REF] Alvarez | Edge states in trimer lattices[END_REF][START_REF] Anastasiadis | Bulk-edge correspondence in the trimer su-schrieffer-heeger model[END_REF] where BBC can be established through an extension of Zak's phase, termed: Normalised Sublattice Zak's phase (NS Zak's phase) and a

1 Robustness is defined as the property of these modes to not be affected by the presence of defects or disorder in the material. Due to topology protecting symmetries, these modes remain "pinned" at a specific frequency even if the rest of the spectrum is significantly altered due to disorder.

2 often referred to as "the tenfold classification".

1.1. MECHANICAL TOPOLOGICAL METAMATERIALS 1. INTRODUCTION mechanical chain which utilizes both displacement and rotation degrees of freedom.

In the later, the usual Zak's phase is quantized due to inversion symmetry and it can be used to probe topological phase transitions. We will call these two examples weak topological insulators because although BBC can be established -in the sense of well-defined, quantized bulk invariants that dictate the presence or not of boundary modes -they do not fall into the tenfold classification.

Beyond topological insulators and superconductors -where the topology can be probed through the phase of the electron wavefunction -a wider range of topological systems emerged. Topological properties where discoverd in any domain of wave physics. Photonic topological crystals [START_REF] Ozawa | Topological photonics[END_REF][START_REF] Khanikaev | Photonic topological insulators[END_REF][START_REF] Khanikaev | Two-dimensional topological photonics[END_REF][START_REF] Wang | Higher-order topological phases in tunable c 3 symmetric photonic crystals[END_REF], mechanical topological metamaterials [START_REF] Huber | Topological mechanics[END_REF][START_REF] Serra-Garcia | Observation of a phononic quadrupole topological insulator[END_REF][START_REF] Kane | Topological boundary modes in isostatic lattices[END_REF][START_REF] Süsstrunk | Classification of topological phonons in linear mechanical metamaterials[END_REF][START_REF] Prodan | Dynamical majorana edge modes in a broad class of topological mechanical systems[END_REF][START_REF] Köpfler | Topologically protected twist edge states for a resonant mechanical laser-beam scanner[END_REF][START_REF] Berg | Topological phonon modes in filamentary structures[END_REF][START_REF] Nash | Topological mechanics of gyroscopic metamaterials[END_REF][START_REF] Ma | Topological phases in acoustic and mechanical systems[END_REF][START_REF] Paulose | Topological modes bound to dislocations in mechanical metamaterials[END_REF][START_REF] Barlas | Topological classification table implemented with classical passive metamaterials[END_REF][START_REF] Bertoldi | Flexible mechanical metamaterials[END_REF][START_REF] Fang | Valley hall elastic edge states in locally resonant metamaterials[END_REF] and acoustic topological metamaterials [START_REF] Zhang | Topological sound[END_REF][START_REF] Ni | Topologically protected one-way edge mode in networks of acoustic resonators with circulating air flow[END_REF][START_REF] Ma | Topological phases in acoustic and mechanical systems[END_REF][START_REF] Xiao | Geometric phase and band inversion in periodic acoustic systems[END_REF][START_REF] Ni | Demonstration of a quantized acoustic octupole topological insulator[END_REF][START_REF] Zhang | Deep-subwavelength holey acoustic second-order topological insulators[END_REF][START_REF] Chen | Acoustic realization of a four-dimensional higher-order chern insulator and boundary-modes engineering[END_REF][START_REF] Zhang | Dimensional hierarchy of higher-order topology in threedimensional sonic crystals[END_REF][START_REF] Deng | Observation of degenerate zero-energy topological states at disclinations in an acoustic lattice[END_REF][START_REF] Coutant | Acoustic su-schrieffer-heeger lattice: Direct mapping of acoustic waveguides to the su-schrieffer-heeger model[END_REF][START_REF] Coutant | Subwavelength su-schrieffer-heeger topological modes in acoustic waveguides[END_REF] have emerged as platforms that give an easy access to experiment and are ideal for manipulating and testing topological properties. In this thesis we are focused on the last two categories of topological metamaterials (mechanical and acoustic) and thus, we deem appropriate to delve deeper in some aspects of these two domains of topological physics.

Mechanical topological metamaterials

All the systems treated in this thesis are reciprocal passive topological mechanical metamaterials [START_REF] Barlas | Topological classification table implemented with classical passive metamaterials[END_REF]. According to the existing literature, two kinds of reciprocal topological mechanical metamaterials exist: Zero frequency and Finite frequency [START_REF] Süsstrunk | Classification of topological phonons in linear mechanical metamaterials[END_REF][START_REF] Huber | Topological mechanics[END_REF].

This distinction is based on whether the topological boundary modes are exhibited at zero or at a finite frequency. Zero frequency mechanical topological metamaterials are isostatic lattices. Isostatic lattices (also called Maxwell lattices) are lattices on the verge of mechanical instability because they possess an equal number of degrees of freedom per site and bonds connecting them. This can be formalized by the Maxwell condition [START_REF] Mao | Maxwell lattices and topological mechanics[END_REF]:

kN -N B = 0, (1.2) 
where k are the degrees of freedom per site, N is the number of sites and N B the number of bonds, with each bond connecting two sites. If the number of bonds and sites is not "balanced" (kN -N B ≠ 0), isostatic lattices can exhibit zero frequency topological surface or interface modes [START_REF] Lubensky | Phonons and elasticity in critically coordinated lattices[END_REF][START_REF] Kane | Topological boundary modes in isostatic lattices[END_REF][START_REF] Mao | Maxwell lattices and topological mechanics[END_REF]. The number ν = kN -N B is called Maxwell index. In Chapter 2 we will present a mechanical analog of the archetypal Su-Schrieffer-Heeger model (SSH) [START_REF] Su | Solitons in polyacetylene[END_REF] which was proposed by Kane and Lubensky [START_REF] Kane | Topological boundary modes in isostatic lattices[END_REF].

Kane and Lubensky probed the topological invariant defined upon the compatibility matrix which connects displacement degrees of freedom to bond elongations (strains) and established BBC. In Chapter 5 of this thesis we propose a generalization of the Kane-Lubensky SSH.

Finite frequency topological metamaterials

A second class of reciprocal topological mechanical metamaterials are the ones that exhibit topological edge states at finite (non-zero) frequency. The topological invariants for these metamaterials can be probed through the eigenvectors of the dynamical matrix D [START_REF] Süsstrunk | Topology in Linear Mechanical Metamaterials[END_REF]. Although one could, in principle, investigate the topology through a square root matrix √ D, which obeys a Shcrödinger-like equation (first order in time), there is no need for that, since the two matrices share the same eigenvectors 1.2. ACOUSTIC TOPOLOGICAL METAMATERIALS
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4 and thus, the cumulative geometrical phases of their eigenvectors around closed parametric curves (used for the definition of the topological indices) will be the same.

Furthermore, topological band properties remain unaltered under simultaneous shifts of the entire spectrum [START_REF] Fruchart | An introduction to topological insulators[END_REF][START_REF] Barlas | Topological classification table implemented with classical passive metamaterials[END_REF][START_REF] Huber | Topological mechanics[END_REF]. However, one should take into account this shift when defining the topology-protecting symmetries (like chiral, particle hole etc.). A finite frequency analog of the SSH model has been proposed [START_REF] Brouzos | Fast, robust, and amplified transfer of topological edge modes on a time-varying mechanical chain[END_REF][START_REF] Shi | Disorder-induced topological phase transition in a one-dimensional mechanical system[END_REF] as a dimer chain of alternating springs (stiffness) that connect equal masses. We will present a thorough analysis of the stiffness dimer in Chapter 2. Furthermore, finite frequency topological systems that can host dynamical Majorana modes have been proposed [START_REF] Prodan | Dynamical majorana edge modes in a broad class of topological mechanical systems[END_REF]. We will also investigate a novel design of a mechanical Kitaev chain [START_REF] Kitaev | Unpaired majorana fermions in quantum wires[END_REF] at Chapter 3 of this thesis.

Acoustic topological metamaterials

Simlar to mechanical topological metamaterials, acoustic topological metamaterials give a big freedom for modeling topological phenomena [START_REF] Zhang | Topological sound[END_REF][START_REF] Ni | Topologically protected one-way edge mode in networks of acoustic resonators with circulating air flow[END_REF][START_REF] Ma | Topological phases in acoustic and mechanical systems[END_REF]. Exotic systems, like acoustic octupole topological insulators [START_REF] Zhang | Topological sound[END_REF], or even four dimensional higher order Chern insulators [START_REF] Chen | Acoustic realization of a four-dimensional higher-order chern insulator and boundary-modes engineering[END_REF] have been realized using acoustic setups. In this thesis we will consider the acoustic SSH model proposed in [START_REF] Coutant | Acoustic su-schrieffer-heeger lattice: Direct mapping of acoustic waveguides to the su-schrieffer-heeger model[END_REF] where a periodic array of waveguides with alternating cross-sections is used for mapping the amplitudes of the pressure field at each change of cross-section to the wavefunction of the discrete SSH model. We will use a similar mapping to achieve the extension to the SSH3 Our main endeavour will be to expand the family of mechanical and acoustic metamaterials through the introduction of Higher Order Coordinates (HOC). In Chapter 2, we present some classical systems that exhibit a phenomenology similar to topological systems (localised edge states emerge after the gap closing), but where BBC seems to break, either due to lack of topology protecting symmetries or due to the application of a "wrong" boundary. Higher Order Coordinates give an extra tool to understand the interplay of boundary conditions and topology protecting symmetries. We term these coordinates "Higher Order" because they are defined as finite differences of the displacement degrees of freedom for the case of discrete systems and as a derivative for continuous. For example, in the case of mechanical systems, HOC coordinates are the bond elongations that connect particles (which we term "strains"). As a result, one can have a description of the system either in displacement or in strain coordinates. Nevertheless, these descriptions become in-equivalent when different boundary conditions are applied (e.g fixed or free, for the case of mechanical systems). A central result is, that, given the boundary conditions, one should choose the appropriate coordinate system for topology protecting symmetries to become uncovered and to We will demonstrate in Chapters 3 and 4, that new topological metamaterials can be uncovered through HOC, which probably constitute a new family of metamaterials next to the known ones. Specifically in Chapter 3 we will demonstrate that the mass dimer -a system known for its ability to host localized edge states [START_REF] Wallis | Effect of free ends on the vibration frequencies of one-dimensional lattices[END_REF] but not linked to topology -is a strain topological metamaterial. We will show that strain coordinates unveil the topology protecting symmetries of the bulk and allow us to establish BBC. After that, we will investigate a new mechanical analog of the Kitaev chain [START_REF] Kitaev | Unpaired majorana fermions in quantum wires[END_REF] which utilizes displacement and rotational degrees of freedom. We will show that this structure can host topological edge states and undergo topological phase transitions. Furthermore, this system can host edge states for both free and fixed boundary conditions but for different values of its parameters. When fixed boundary conditions are applied, BBC can be established in the usual displacement coordinates but when free boundary conditions are applied instead, BBC seemingly breaks, and strain coordinates are necessary to re-establish BBC. For the case of the Acoustic SSH, the HOC coordinates are defined through the flux field (instead of the pressure field which is the analogue of displacements). The flux field is the appropriate choice for the description of the system, when Neumann boundary conditions are applied (instead of Dirichlet where the pressure field should be utilized). All systems in Chapter 3 fall into the BDI class of topological insulators and superconductors (they posses all PS -chiral, particle-hole and time reversal).

In Chapter 4 we will investigate whether the HOC coordinates can be helpful for systems that although not in the tenfold way, can have BBC due to other symmetries (like mirror symmetry). First, we will investigate a mechanical chain which is a generalization of the one studied in Chapter 3. This chain exhibits a quantized Zak's phase due to the presence of mirror symmetry. Although BBC can be established for fixed boundaries, the topological phases seem to be inverted when free instead of fixed BCs are applied. Again if strain coordinates are used, BBC is restored. We will investigate the SSH3 model [START_REF] Alvarez | Edge states in trimer lattices[END_REF][START_REF] Anastasiadis | Bulk-edge correspondence in the trimer su-schrieffer-heeger model[END_REF] which is a generalization of the SSH model. We will give an analytical proof of BBC for that model. Although edge states emerge without a gap closing, a well-defined bulk invariant exists, and BBC can be established. This system exhibits a rich phase diagram with the possibility of hosting 0, 1 or 2 edge states in each band gap. Afterwards, we will examine an acoustic system that maps to the SSH3. Again, the interplay of different BCs (Dirichlet vs Neumann) and the bulk invariant will be relevant. We will show that when Dirichlet BCs are applied, the phase diagram can be acquired by the investigation of the pressure field, but when Neuman BCs are applied, the use of HOC (flux field) is necessary for obtaining the correct phase diagram.

Lastly, in Chapter 5 we will demonstrate that systematic dualities [START_REF] Kramers | Statistics of the two-dimensional ferromagnet. part i[END_REF][START_REF] Savit | Duality in field theory and statistical systems[END_REF][START_REF] Maldacena | The large-n limit of superconformal field theories and supergravity[END_REF][START_REF] Senthil | Deconfined quantum critical points[END_REF][START_REF] Fruchart | Dualities and non-abelian mechanics[END_REF] between systems with different parameter dependence arise through HOC.

According to the existing literature, dual systems are different systems that share the same band structure [START_REF] Fruchart | Dualities and non-abelian mechanics[END_REF]. We will show that, at least for the case of mechanics, strain metamaterials are superpartners of displacement metamaterials. The presence of SUSY [START_REF] Gendenshteȋn | Supersymmetry in quantum mechanics[END_REF][START_REF] Sohnius | Introducing supersymmetry[END_REF] between strains and displacements gives an explanation for the systematic appearance of duality and will also help us in extending the notion of duality to that of isospectrality up to zero modes for finite systems under different BCs. Concluding this thesis, SUSY will give us the necessary insight for introducing a generalized Kane-Lubensky SSH which can simultaneously host topological edge states at both zero and finite frequencies. 9

BASIC MODELS

The goal of this introductory section is threefold: The first is to familiarize the reader with some basic notions of topological 1D models -like the role of symmetry, bulk-boundary correspondence, and the most used topological invariants for 1D systems -the winding number and Zak's phase [START_REF] Zak | Berry's phase for energy bands in solids[END_REF][START_REF] Resta | Macroscopic polarization in crystalline dielectrics: the geometric phase approach[END_REF][START_REF] King-Smith | Theory of polarization of crystalline solids[END_REF][START_REF] Resta | Manifestations of berry's phase in molecules and condensed matter[END_REF][START_REF] Cooper | Topological bands for ultracold atoms[END_REF]. In that respect we will give a brief presentation of the celebrated Su-Schrieffer-Heeger model (SSH)

[103] -an archetype 1D topological insulator in the BDI class -which embodies many of these characteristics in a compact way. The second goal is to give examples of classical metamaterials (from mechanics and acoustics) that map to this toy model, in order to highlight subtle nuances that come into play when topological models are mapped to classical systems. The third goal is to highlight some "problems" that arise for specific classical systems which exhibit a topology-like behaviour (e.g exhibit robust edge states which emerge after a gap closing) but seem to break bulk-edge correspondence and have no apparent topology-protecting symmetries. The third goal is what essentially motivated this research project. In the following chapters we will demonstrate how the introduction of higher order coordinates solves these apparent

paradoxes but also open the way for the discovery of a new family of topological metamaterials.

The SSH model

Let us note that this is by no means an extensive investigation of the SSH model, which has already been thoroughly examined [START_REF] Su | Solitons in polyacetylene[END_REF][START_REF] Delplace | Zak phase and the existence of edge states in graphene[END_REF][START_REF] Asbóth | The Su-Schrieffer-Heeger (SSH) model[END_REF][START_REF] Cooper | Topological bands for ultracold atoms[END_REF][START_REF] Maffei | Topological characterization of chiral models through their long time dynamics[END_REF][START_REF] Shapiro | Is the continuum ssh model topological?[END_REF][START_REF] Zirnbauer | Particle-hole symmetries in condensed matter[END_REF] but rather a brief exposition of the main points.

SSH is a 1D periodic chain with two alternating couplings within its unit cell. The Hamiltonian of such a system, consisting of N unit cells, has the following form:

Ĥ = v N ∑ m=1 |m, B⟩ ⟨m, A| + w N -1 ∑ m=1 |m + 1, A⟩ ⟨m, B| + c.c. (2.1) 
In this notation, m counts the unite cells, a = A, B the two internal degrees of freedom (sublattices) and u, w are the couplings that connect the lattice sites.

If we impose periodic boundary conditions to this chain, we can get the Bloch

Hamiltonian by assuming solutions of the form:

|Ψ n (q)⟩ = |q⟩ ⊗ |u n (q)⟩ , (2.2) 
where |u n (q)⟩ is an eigenstate of the Bloch Hamiltonian that corresponds to the n th band and:

|q⟩ = 1 √ N N ∑ m=1 e iqm |m⟩ , (2.3) 
where q = πl N , l = 0, ±1, ±2, ... ± N is the crystal momentum. Choosing a random q, we can seek the form of the "internal" subspace Hamiltonian, H(q) = ⟨q| H |q⟩. This calculation gives the following result:

H(q) = ⟨q| H |q⟩ = ⎛ ⎜ ⎜ ⎝ 0 v + we -iq v + we iq 0 ⎞ ⎟ ⎟ ⎠ . (2.4)
This two by two Hermitian matrix can be decomposed on the basis of Pauli matrices 1 in the following manner:

1 The Pauli matrices are:

σ 0 = ( 1 0 0 1 ) , σ x = ( 0 1 1 0 ) , σ y = ( 0 -i i 0 ) , σ z = ( 1 0 0 -1
) .

(2.5)

H(q) = ⃗ d(q) ⋅ ⃗ σ = d x (q)σ x + d y (q)σ y , (2.6) 
where: ⃗ d(q) = (v + w cos q, w sin q, 0). From the properties of the Pauli matrices, it follows that the Hamiltonian will anti-commute with σ z : σ z H(q)σ z = -H(q). Also one can easily see that σ 2 z = I. These two properties allow us to identify σ z as a chiral operator for this Hamiltonian as defined in [START_REF] Asbóth | A short course on topological insulators[END_REF]. Generally, we say that a Hamiltonian is chiral if an operator γ exists, such that:

γHγ † = -H. (2.7)
Furthermore, the chiral operator should be unitary and Hermitian: γ † = γ and γ 2 = 1. Another property of the chiral operator is that it is local. This means that matrix elements of γ connecting sites between different unit cells should vanish. An immediate consequence of chiral symmetry is that the Hamiltonian, seen as a vector in the vector space of two by two Hermitian matrices, will be confined in the 2D complex plane defined by the operators σ x and σ y . We will call this the d xd y plane by the corresponding components. Furthermore, due to the spatial periodicity of this chain, the crystal momentum corresponding to different vibrational modes is confined in the first Brillouin Zone (BZ): q ∈ [-π, π] (the length of the unit cell is normalized to 1). Taking into account the crystal (periodic) structure and chirality, we can probe the path of the Hamiltonian vector on the d xd y plane as we adiabatically alter the values of the crystal momentum from -π to π. Since the starting and end points can be identified, the path will be a closed loop with a well defined Winding Number (W) [START_REF] Maffei | Topological characterization of chiral models through their long time dynamics[END_REF]. Actually, for the SSH model, due to the presence of Time Reversal (TR) symmetry, we only need to probe the path in the Reduced Brillouin Zone (RBZ): Our goal is to unravel the physical meaning of this change in the value of the winding number. Chiral Hamiltonians as the one in (2.4), have the form:

H(q) = ⎛ ⎜ ⎜ ⎝ 0 q † q 0 ⎞ ⎟ ⎟ ⎠ , (2.8) 
and for the SSH: q = d x (q) + id y (q) = | ⃗ d(q)|e iϕ(q) , where ϕ(q) = arctan dy(q) dx(q) . Now, ϕ(q) is a circle function, i.e ϕ ∶ S 1 → S 1 , whose domain is the first BZ. The degree [START_REF] Stahl | Introduction to topology and geometry[END_REF] of this circle function is a topological invariant for the case of the SSH. It is easy to understand that the degree of ϕ(q) is the same for a family of different Bloch Hamiltonians, as long as w < v and it changes after the "singularity" w = v (for these value of the parameters there is a band crossing), only to remain the same for the family of Bloch Hamiltonians with w > v. The change in the value of a topological invariant after the band crossing is called topological phase transition [START_REF] Kitaev | Periodic table for topological insulators and superconductors[END_REF][START_REF] Ryu | Topological insulators and superconductors: tenfold way and dimensional hierarchy[END_REF]. In our case, the main interest is not in the mathematical construction, but rather in the physical interpretation of these topological properties. Specifically, the function ϕ(q) for TR 1D models acquires a second meaning when we investigate the connection of the bulk topological index defined upon an infinite (equivalently periodic) system to the emergence of localised edge states in a finite chain with open boundary conditions (i.e bulk-edge correspondence). As was shown in [START_REF] Delplace | Zak phase and the existence of edge states in graphene[END_REF], the degree of ϕ(q) (deg(ϕ(q)) determines the number of eigenstates of the finite chain that can be expressed as superposition of eigenstates of the periodic chain. Through a detailed mathematical treatment in [START_REF] Marques | Analytical solution of open crystalline linear 1D tight-binding models[END_REF], it was shown for all SSHn models (models with n sublattices within the unit cell) that ϕ(q) can be treated as a momentum "shift" of the superimposed travelling waves that constitute the standing wave solutions of the finite chain. If deg(ϕ(q)) ≠ 0, solutions of the finite chain exist which cannot be expressed as superimposed travelling waves with a real crystal momentum. These solutions have a complex crystal momentum and are localized waves. One can find a very elaborate treatment of this matter in Chapter 4, where we use this method to prove BBC for the SSH3 model.

Let us note that for the SSH model, an alternative way to extract the degree of ϕ(q) is through the well-known Zak's phase. However, for Zak's phase to be well defined, the system needs to exhibit inversion symmetry [START_REF] Longhi | Probing topological phases in waveguide superlattices[END_REF][START_REF] Alvarez | Edge states in trimer lattices[END_REF][START_REF] Asbóth | The Su-Schrieffer-Heeger (SSH) model[END_REF], while the degree of momentum shift can be used as a bulk index even in the absence of these symmetries, as we showed in [START_REF] Anastasiadis | Bulk-edge correspondence in the trimer su-schrieffer-heeger model[END_REF] for the case of SSH3, and we will come back to it in the following sections. For the specific case of the SSH Bloch Hamiltonian (2.4), the inversion operator should exchange sublattices A and B while taking the crystal momentum q to -q. This action can be represented by the operator Π = σ x K, where σ x is the Pauli matrix and K is the conjugation operator. One can verify that [H, Π] = 0.

We will now demonstrate how the topology of the bulk dictates the existence or not of edge states in a finite sample. Instead of doing so in an abstract lattice model, we will give examples of physically realizable classical systems which map to the SSH. This will also allow us to investigate different ways to do the mapping.

Mechanical SSH

As was mentioned in the introduction, two kinds of reciprocal topological mechanical metamaterials exist: Zero frequency and Finite frequency [START_REF] Süsstrunk | Classification of topological phonons in linear mechanical metamaterials[END_REF][START_REF] Huber | Topological mechanics[END_REF]. We will now present mappings of the SSH to both zero and finite frequency topological mechanical metamaterials.

Lubensky dimer -zero frequency mechanical SSH

Kane and Lubensky, presented a way to map topological insulators to mechanical isostatic lattices in their seminal paper [START_REF] Kane | Topological boundary modes in isostatic lattices[END_REF]. Kane-Lubensky wanted to map topological insulators to mechanical systems which exhibit exact zero frequency topologically protected modes, thus providing a very precise analogy. In that manner, they sought a construction similar to the first order Schrödinger equation but in classical mechanics. Specifically, for the case of Maxwell isostatic lattices2 with all masses (m) and stiffnesses (k) equal (in that case we can set k/m = 1 in appropriate units), the dynamical matrix D can be written as D = C † C, where C is the compatibility matrix that connects the vector of lattice site displacements from their equilibrium position (U ) to the elongations of bonds connecting them (S), through: S = CU . Due to this form of the dynamical matrix, it is straightforward to write a "square root" matrix

H: H = ⎛ ⎜ ⎜ ⎝ 0 C † C 0 ⎞ ⎟ ⎟ ⎠ , H 2 = ⎛ ⎜ ⎜ ⎝ C † C 0 0 CC † ⎞ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎝ D u 0 0 D s ⎞ ⎟ ⎟ ⎠ , (2.9) 
which gives the dynamical matrix when it is squared. In (2.9), we have added the subscripts u and s to the two dynamical matrices appearing in H 2 . In their construction, Kane-Lubensky doubled the degrees of freedom (DOFs) describing the system, and as a result H 2 contains two dynamical matrices which we denote as D u and D s .

As we will see in detail later, D u is the dynamical matrix when expressed in displacement coordinates (the usual coordinates that describe the movement of particles), while D s is the dynamical matrix in strain (or bond elongation) coordinates. This distinction between the two dynamical matrices is not necessary for the case of isostatic Maxwell lattices, because the different coordinates do not play any significant role, since the bulk index is defined upon C. Specifically, H, has the chiral structure discussed previously [START_REF] Maffei | Topological characterization of chiral models through their long time dynamics[END_REF], and thus a well-defined winding number exists. However, in this thesis, we will provide evidence that the choice of displacement or strain coordinates gives distinct topological predictions when we break the condition of all masses Kane and Lubensky proposed a chain of linked rotors, similar to the one shown in Fig. 2.2. Identical masses (m) are linked via springs (k), while supported by rods of given length r, fixed at one end and allowed to rotate. If the mean position of the i th mass is at < θ i >= θ, then the Fourier transformed compatibility matrix in the linear regime is given by: C(q) = q 1 + q 2 e iq , where: q 1,(2) = r cos θ(r sin θ ± 1)/ √ 4r 2 cos 2 θ + 1 [START_REF] Kane | Topological boundary modes in isostatic lattices[END_REF]. As a result:

H = ⎛ ⎜ ⎜ ⎝ 0 q 1 + q 2 e -iq q 1 + q 2 e iq 0 ⎞ ⎟ ⎟ ⎠ , (2.10) 
which is identical to the SSH Hamiltonian (eq. (2.4)) and one can see that q 1 maps to u and q 2 to w. When q 1 ≠ q 2 , this Hamiltonian will exhibit a band gap around zero frequency. By altering the values of q 1 and q 2 we can induce topological phase transitions. Localised zero frequency modes emerge at the interface of two chains at different topological phases, connected by a defect.

Stiffness dimer -finite frequency

Let us now investigate a finite frequency topological mechanical metamaterial which imitates the SSH model -the stiffness dimer [START_REF] Brouzos | Fast, robust, and amplified transfer of topological edge modes on a time-varying mechanical chain[END_REF]. The stiffness dimer is a 1D chain of alternating springs (stiffness) and masses.

The springs that connect the masses have alternating values k 1 and k 2 . The unit cell of this periodic structure contains two masses (m A , m B ) which we set equal to m for the specific case we investigate here. Later we will examine cases, where we have alternating masses instead of springs, or both alternating masses and springs. In Fig.

2.3, we present a finite stiffness dimer with fixed Boundary Conditions (BCs). As we will show, this system maps to the SSH only when fixed BCs are applied.

Dynamical equations of the stiffness dimer

The n th unit cell contains two particles. If we denote their displacement from their resting position as u n,A(B) , we get the following Newtonian equations for these particles:

mü n,A = k 1 (u n-1,B -u n,A ) + k 2 (u n,B -u n,A ) (2.11) mü n,B = k 2 (u n,A -u n,B ) + k 1 (u n+1,A -u n,B ).
(2.12)

If we impose periodic boundary conditions (we will come back to the finite case3 in a moment), we can assume plane wave solutions of the form: ψ(t) = u(q)e i(ωt-qn) , where u(q) = [u A (q), u B (q)] T . Dividing both sides of (2.11) and (2.12) by m and inserting the plane wave solutions, we get the following matrix equation:

ω 2 ⎛ ⎜ ⎜ ⎝ u A u B ⎞ ⎟ ⎟ ⎠ = 1 m ⎛ ⎜ ⎜ ⎝ k 1 + k 2 -(k 2 + k 1 e -iq ) -(k 2 + k 1 e iq ) k 1 + k 2 ⎞ ⎟ ⎟ ⎠ D(q) ⎛ ⎜ ⎜ ⎝ u A u B ⎞ ⎟ ⎟ ⎠ , (2.13) 
where the matrix D(q) is the dynamical matrix. By comparing this matrix to the SSH Hamiltonian (2.4), one can see that they have the same form, apart from the constant diagonal term k 1 +k 2 m which "shifts" the spectrum of the dynamical matrix to be centered around a finite frequency (and not zero as in the case of the SSH). However, the "shifted" dynamical matrix: D(q) = D(q) -k 1 +k 2 m Î will be chiral:

σ z D(q)σ -1 z = -D(q)
and thus it has a well-defined winding number. We see that the SSH couplings v and w map to the ratios k 2 m and k 1 m , respectively. Thus, we expect a topological phase transition when k 1 > k 2 and a trivial one for k 1 < k 2 .

As we already discussed, the topological phase transition of the bulk dynamical matrix, takes a concrete physical meaning through BBC. Specifically, in the finite chain, localised edge states will emerge at its boundaries when deg(ϕ(q)) ≠ 0. For BBC to hold, it is necessary, that the applied BCs will respect the topology-protecting bulk symmetries [START_REF] Ryu | Topological origin of zero-energy edge states in particle-hole symmetric systems[END_REF][START_REF] Ryu | Topological insulators and superconductors: tenfold way and dimensional hierarchy[END_REF]. The dynamical matrix of the finite chain takes a different form if different BCs are applied. What we mean by saying BCs that respect the bulk symmetries, is that the finite matrix will obey the same commutation or anticommutation relations as the Bloch dynamical matrix with the respective symmetry operators, properly defined for the finite case.

Finite stiffness dimer and BBC

In order to see if the applied BCs conserve the topology-protecting symmetries, we use the following chiral operator for the finite sample: Γ = σ z ⊕ σ z ... ⊕ σ z . The finite dynamical matrix for fixed BCs (u 0,B = u N +1,A = 0), takes the form:

D fix. = 1 m ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ k 1 + k 2 -k 2 0 ... 0 -k 2 k 1 + k 2 -k 1 ... 0 0 -k 1 k 1 + k 2 -k 2 .. 0 ⋮ ⋱ ⋮ 0 . . . -k 1 k 1 + k 2 -k 2 0 . . . -k 2 k 1 + k 2 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ . (2.14)
It is easy to see that the shifted dynamical matrix: Dfix. ∶= D fix.

k 1 +k 2 m Î, anti-commutes with Γ. However, if we impose free (u 0,B = u 1,A , u N,B = u N +1,A ) instead of fixed BCs, the resulting dynamical matrix:

D free = 1 m ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ k 2 -k 2 0 ... 0 -k 2 k 1 + k 2 -k 1 ... 0 0 -k 1 k 1 + k 2 -k 2 .. 0 ⋮ ⋱ ⋮ 0 . . . -k 1 k 1 + k 2 -k 2 0 . . . -k 2 k 2 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ , (2.15) 
will no more anti-commute with Γ after the shift. The fact that the topology preserving symmetry is lost -despite the fact that D free and D fix. look almost identical, apart from two elements -has a big impact on BBC. Specifically, no edge states appear for free boundaries.

In Fig. 2.4 we present the way in which topological properties manifest in a finite sample of N = 20 particles. In Fig. 2.4(a) we give a characteristic topological phase The slight deviation is due to finite size effects and can be analytically calculated. In (b), everything is the same as in (a), except for the boundaries. We see that the violation of chiral symmetry at the boundaries totally breaks BBC and no edge states appear for any value of k 1 . In (c) we present the spectrum of the chain in the topological phase. The spectrum is normalized with respect to the mid-gap frequency.

In (d) we present the profile of the two edge states. The SSH edge states have support on only one of the two sublattices and this profile is apparent at each side of the chain. However the modes presented here, are superposition of chiral modes. This is due to the finite size of the chain (hybridization).

transition. We know from the bulk topological invariant that the system is non-trivial for k 1 > k 2 and indeed we see that after the gap closing of the spectrum for k 1 = k 2 , localised in-gap modes emerge. To highlight the importance of BCs, we also give Fig.

2.4(b)

where we only change the BCs from fixed to free. The applied BCs break chirality and as a result no BBC can be established. No edge states appear. In Fig.

2.4(c) we give the spectrum of a chain

where

k 1 = 5k 2 .
The chain is in the non-trivial regime, and one can see that two gap modes are located at the mid-gap frequency.

Here, we have used the normalized frequency: ω = Ω Ω 0 , where Ω 0 = k 1 +k 2 m , and thus, the mid-gap frequency appears at 1. We will frequently use the normalization with respect to the mid-gap frequency. Lastly, in Fig. 2.4(d) we give the profile of the edge states. These edge states have an interesting profile: they have zero support on a sublattice (every second particle has zero amplitude). This is no coincidence, but rather another consequence of chirality. Let's see why.

Since Γ 2 = 1, Γ -the chiral operator for the finite sample, can be decomposed into two projectors:

P A = 1 2 (1 + Γ), P B = 1 2 (1 -Γ), (2.16) 
and Γ = P A -P B . P A and P B correspond to sublattice projectors [START_REF] Asbóth | The Su-Schrieffer-Heeger (SSH) model[END_REF]. Furthermore, the action of chirality on an eigenstate of the Hamiltonian with energy E, takes it to a corresponding eigenstate with energy -E.

As a result, if a zero energy eigenstate |ψ⟩ of the chiral Hamiltonian exists, then P A/B |ψ⟩ will also be a zero energy eigenstate of the Hamiltonian:

H |ψ⟩ = 0 → HP A |ψ⟩ = H(|ψ⟩ + Γ |ψ⟩) = 0.
(2.17)

The fact that we observe this chiral profile but for a finite frequency, indicates that the shifted dynamical matrix inherits topological properties of the non-shifted one.

Let us note that, the presence of chirality is also important when we take into account disorder. Indeed, if the induced disorder keeps the diagonal constant (does not break chirality), the edge states are pinned on the mid-gap frequency and exhibit remarkable robustness [START_REF] Shi | Disorder-induced topological phase transition in a one-dimensional mechanical system[END_REF].

We have now seen that bulk topology becomes apparent on finite samples through BBC, as long as, the topology-protecting symmetries are preserved. Specifically, the topological phase transition translates into the emergence of localised modes in a finite sample, after the gap closing. Before proceeding to a different platform (acoustics), let us highlight an interesting, and also well studied model: the mass dimer (contrary to the stiffness dimer). As we will show in chapter 3, this model is actually topological but higher order coordinates are needed, in order to reveal the topology-protecting symmetries. It turns out that, well-defined topological invariants exist, and BBC can be established for suitable, symmetry-protecting BCs. But more on that later.

Mass dimer

The mass dimer is a 1D chain comprised of springs and masses, where two alternating masses m 1 and m 2 are connected with springs of stiffness k as one can see in Fig. 2.5. It is known that the mass dimer can host localized edge states but for free boundaries [START_REF] Wallis | Effect of free ends on the vibration frequencies of one-dimensional lattices[END_REF][START_REF] Allen | Surface phonons and other localized excitations[END_REF]. Furthermore, as we will demonstrate, the edge states emerge after a gap closing. As we have seen, this is a signature of an underlying bulk topology. Nevertheless, an interesting paradox emerges for the mass dimer: It does not posses the necessary topology-protecting symmetries (chiral, particle-hole)

and no good topological index or BBC has been established for this model. Let's investigate the "problem" of the mass dimer as a motivation for what will follow. The equations of motion for this 1D system in the usual displacement coordinates are given by:

m 1 ün,A = k(u n,B -u n,A ) -k(u n,A -u n-1,B ) m 2 ün,B = k(u n+1,A -u n,B ) -k(u n,B -u n,A ), (2.18) 
where the first subscript denotes the n th unit cell and the second subscript deonotes sublattices A and B within the unit cell. For the infinite system, we seek the plane wave solutions of the form ψ n (t) = u(q)e iΩt-iqn from the equations of motion. This leads to the eigenvalue problem:

D(q)u(q) = ω 2 u(q) with D(q) = 1 (1 + P ) ⎛ ⎜ ⎜ ⎝ 2 -(1 + e -iq ) -P (1 + e iq ) 2P ⎞ ⎟ ⎟ ⎠ . (2.19)
Here D(q) is the bulk dynamical matrix, q is the normalized wave number, u(q) = [u A (q), u B (q)] T , and P ∶= m 1 /m 2 . Ω is the angular frequency and ω = Ω/Ω 0 is the normalized frequency with respect to the mid-gap frequency

Ω 2 0 = k(1/m 1 +1/m 2 )
. The dynamical matrix is not Hermitian. However, we can redefine û = [ √ P u A (q), u B (q)] T to make the matrix Hermitian of the form:

D(q) = 1 (1 + P ) ⎛ ⎜ ⎜ ⎝ 2 - √ P (1 + e -iq ) - √ P (1 + e iq ) 2P ⎞ ⎟ ⎟ ⎠ .
(2.20) D(q) can now be written in terms of the complex Pauli matrices σ x , σ y and σ z such that D(q) = I +d x σ x +d y σ y +d z σ z with d x = √ P (1+cos q)/(1+P ), d y = √ P sin q/(1+P ), and d z = (1 -P )/(1 + P ). The presence of all the σ i indicates that the D(q) (up to a constant shift in the diagonal) does not anti-commute with any of these matrices. This implies the absence of chiral symmetry contrary to the standard SSH model [START_REF] Su | Solitons in polyacetylene[END_REF][START_REF] Shi | Disorder-induced topological phase transition in a one-dimensional mechanical system[END_REF].

Lack of chiral symmetry in the finite chain

A finite mass dimer chain with even number of particles results in a dynamical matrix D with even dimensions. The matrix is said to be chiral if it obeys: Γ( D -

I)Γ -1 = -( D -I).
For the case of the mass dimer with fixed boundaries (u 0,B = u N +1,A = 0), the eigenvalue problem is expressed as:

1 (1 + P ) ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 2 - √ P 0 ... 0 - √ P 2P - √ P ... 0 0 - √ P 2 - √ P .. 0 ⋮ ⋱ ⋮ 0 . . . - √ P 2 - √ P 0 . . . - √ P 2P ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 2N ×2N Dfix. ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ûA,1 ûB,1 ûA,2 ⋮ ûA,N ûB,N ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ω 2 ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ûA,1 ûB,1 ûA,2 ⋮ ûA,N ûB,N ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ , (2.21) 
while for the case of free boundaries (u 0,B = u 1,A , u N,B = u N +1,A ), it takes the form:

1 (1 + P ) ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 1 - √ P 0 ... 0 - √ P 2P - √ P ... 0 0 - √ P 2 - √ P .. 0 ⋮ ⋱ ⋮ 0 . . . - √ P 2 - √ P 0 . . . - √ P P ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 2N ×2N Dfree ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ûA,1 ûB,1 ûA,2 ⋮ ûA,N ûB,N ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ω 2 ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ûA,1 ûB,1 ûA,2 ⋮ ûA,N ûB,N ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ . (2.22)
Both dynamical matrices in Eqs. (2.21) and (2.22) do not anti-commute with Γ after a constant shift in the diagonal. Therefore, it is not obvious if the mass dimer shows any topological features or bulk-boundary correspondence.

Phenomenology of mass dimer

Although no topology protecting symmetries are present and the possibility of establishing BBC seems futile, we are tempted to investigate the phenomenology of a finite mass dimer. This is due to two reasons: First, as we already mentioned it is known that the mass dimer exhibits localized edge states. Second, this model is also a 1D chain with two degrees of freedom per unit cell and intuitively we expect a similar behaviour to the stiffness dimer. Indeed, as we show in Fig. 2.6, the finite mass dimer resembles the stiffness dimer (for example it also exhibits localised edge states after the gap closing). However, some notable differences exist: i) The edge states appear for free instead of fixed boundaries (Fig. 2.6(a)-(b)), ii) For the doublet of the edge state to emerge, an odd number of particles is needed -contrary to the stiffness dimer where an even number is needed, iii) The spectrum of the mass dimer exhibits an exact zero mode (Fig. 2.6(c)), iv) The edge states do not have the chiral profile In (c) we present the spectrum for m 2 > m 1 . The spectrum is normalized with respect to the mid-gap frequency. Again edge states appear at the mid-gap frequency. The mass dimer with free boundaries exhibits a zero mode which corresponds to a global translation of the chain. In (d) we present the profile of the two edge states. They do not exhibit the chiral pattern of the SSH modes (support on a sublattice), but they have an interesting profile which may hint to an underlying "hidden" symmetry.

(Fig. 2.6(d)). We also note that adjacent particles4 exhibit the same amplitude and phase, inter-mediated by a particle with an opposite phase and a different amplitude.

As one can see by comparing Fig. 2.6 to Fig. 2.4, the mass dimer shows a remarkable similarity to the stiffness dimer. As the old saying goes:

If it looks like a duck, walks like a duck and quacks like a duck, then it just may be a duck .

Before providing the answer to the riddle of the mass dimer, let's take a detour to acoustics. The acoustic SSH will give us an extra intuition, crucial for the unravelling of the topological origin of the mass dimer edge states.

Acoustic SSH

The SSH model has been mapped to acoustic systems, either with the utilization of coupled resonators [START_REF] Li | Suschrieffer-heeger model inspired acoustic interface states and edge states[END_REF], or with alternating waveguides of different cross-sections [START_REF] Coutant | Acoustic su-schrieffer-heeger lattice: Direct mapping of acoustic waveguides to the su-schrieffer-heeger model[END_REF][START_REF] Meng | Designing topological interface states in phononic crystals based on the full phase diagrams[END_REF]. The combination of these techniques (alternating waveguides with Helmholtz resonators on top [START_REF] Coutant | Subwavelength su-schrieffer-heeger topological modes in acoustic waveguides[END_REF]) allows one, to have extra control over the frequency of the topological edge state.

In this section we will present a very brief exposition of the mapping followed in [START_REF] Coutant | Acoustic su-schrieffer-heeger lattice: Direct mapping of acoustic waveguides to the su-schrieffer-heeger model[END_REF]. Specifically the system of alternating waveguides with cross-sections S A and S B , presented in Fig. 2.7(a) can be mapped to the SSH model in the following way: The pressure amplitudes at the "jump" points (points where the cross-sections change), map to the SSH wavefunction. 

The mapping

For the case of a lossless fluid in the linear regime, the acoustic pressure p(x, y, z) is governed by the Helmholtz equation:

∂ 2 p ∂x 2 + ∂ 2 p ∂y 2 + ∂ 2 p ∂z 2 + k 2 p = 0, (2.23) 
where k = ω/c. It has been theoretically and experimentally demonstrated for this model [START_REF] Li | Suschrieffer-heeger model inspired acoustic interface states and edge states[END_REF][START_REF] Coutant | Acoustic su-schrieffer-heeger lattice: Direct mapping of acoustic waveguides to the su-schrieffer-heeger model[END_REF], that for sufficiently low frequencies, the system can be accurately described by an 1D approximation of the Helmholtz equation:

∂ 2 p ∂x 2 + k 2 p = 0. (2.24)
This is called the monomodal approximation. Using this approximation and the continuity conditions at each change of cross-section:

p - i,n = p + i,n , ϕ - i,n = ϕ + i,n , (2.25) 
where ϕ = S dp dx is the flux velocity, i = A, B and n enumerates the unit cells, one can map the pressure amplitudes at these points to the amplitudes of the wave-function describing the discrete SSH model.

As was shown in [START_REF] Coutant | Acoustic su-schrieffer-heeger lattice: Direct mapping of acoustic waveguides to the su-schrieffer-heeger model[END_REF], by solving piece-wise the Helmholtz equation and taking into account the continuity conditions, this system can be mapped to an SSH model with couplings v and w given by:

v = S A S A + S B (2.26) w = S B S A + S B . (2.27) 
By assuming Bloch solutions p A,n = p A e iqn , p B,n = p B e iqn for the pressure pseudovector and for an infinite (periodic) waveguide, we arrive at:

⎛ ⎜ ⎜ ⎝ 0 v + we -iq v + we iq 0 ⎞ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎝ p A p B ⎞ ⎟ ⎟ ⎠ = E(k) ⎛ ⎜ ⎜ ⎝ p A p B ⎞ ⎟ ⎟ ⎠ , (2.28) 
where E p (k) = cos kL is a pseudo-energy and L is the length of each waveguide segment. On the left hand side, the matrix acting on the pressure pseudo-vector is the familiar SSH Hamiltonian. As one can find in the Appendix 7.1, this pseudoenergy can also be obtained through the transfer matrix method. In Fig. 2.7(b) we present both the pseudo-dispersion that maps to the dispersion relation of the SSH The Hamiltonian for a finite system with open boundaries and an even number of cross-section changes takes the form:

H = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 0 v 0 . . . 0 0 v 0 w . . . 0 0 0 w 0 . . . 0 0 ⋮ ⋮ ⋱ ⋱ ⋱ v 0 0 . . . 0 v 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ (2.29)
As long as S A < S B -which implies v < w for the SSH model -the system with open boundary conditions will exhibit gaped chiral edge states as is shown in Fig. 2.8. This is in accord with BBC, since the edge modes emerge at the parameter regime, predicted by the bulk invariant. 

Closed BCs

Let's examine now the case of closed BCs. The motivation to examine this model with closed BCs comes also from experiment. Specifically, for boundary modes to be observed, the closed boundaries are much more suitable candidates since they are less "leaky". As one can find in [START_REF] Coutant | Acoustic su-schrieffer-heeger lattice: Direct mapping of acoustic waveguides to the su-schrieffer-heeger model[END_REF], the effective acoustic Hamiltonian is not much affected except for the two couplings near the boundary. Specifically, the Hamiltonian will take the form:

H = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 0 1 0 . . . 0 0 v 0 w . . . 0 0 0 w 0 . . . 0 0 ⋮ ⋮ ⋱ ⋱ ⋱ w 0 0 . . . w 0 v 0 0 . . . 0 1 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ . (2.30)
However, the interplay of topology and BCs is far from trivial. As one can see in Fig.

2.9, the topological phases in a system with closed BCs seem to be inverted (compare with Fig. 2.8). Edge states are still present but for a different parameter regime! Now, the bulk of the system is the same and we have only altered the BCs. As a result, BBC seems to break: The edge states emerge for the parameter regime, which is trivial according to the bulk topological index. One could overcome this obstacle for the closed boundary by redefining the unit cell in an appropriate manner. By choosing a unit cell that is shifted with respect to the original (so that the couplings v and w become exchanged) the phases can be made to match the values of the bulk invariant. Nevertheless, in this thesis we will give an alternative way to tackle the problem of different boundary conditions. The advantage of this new method is that it provides additional insight with respect to other properties of the systems (like isospectralities between systems with closed and open boundaries) and can also provide connections between acoustic and mechanical topological systems.

Discussion of the paradoxes and the road to a solution

We have examined two "peculiar" cases: The mass dimer, and the acoustic SSH with closed boundaries. In both cases, BBC seems to break, but the phenomenology of the finite samples indicates an underlying topology. However, the two examples have also some differences: In the mass dimer we cannot find a topology-protecting symmetry, while the acoustic SSH with closed BCs remains chiral and BBC can be restored by a redefiniton of the unit cell. A close investigation of BBC is needed to understand why this happens:

As already mentioned, when investigating the SSH model, bulk-edge correspondence can be established through seeking solutions of the finite chain which are superposition of Bloch waves of the infinite (periodic) chain. As one can find in detailed derivations [START_REF] Delplace | Zak phase and the existence of edge states in graphene[END_REF][START_REF] Marques | Analytical solution of open crystalline linear 1D tight-binding models[END_REF][START_REF] Anastasiadis | Bulk-edge correspondence in the trimer su-schrieffer-heeger model[END_REF], in order for this to happen, the imposed BCs are always assumed open -the field is assumed zero at the boundary (this correspond to fixed BCs for mechanical systems -the displacement of the ancilla boundary particles is zero -Dirichlet for the acoustic -the pressure field at the boundary is zero etc.). In order to establish BBC in the same manner, but for different BCs, we should ask ourselves: Is there a field which "sees" the new BCs as open? If the answer is yes, then, we could follow the same procedure for BBC and use the geometrical phase of this field as a topological index. E.g. for the acoustic SSH we know that a closed boundary condition (Neumann) means that instead of the pressure field, the flux field is zero at the boundary. Thus, we could investigate the bulk properties of the flux field and see if we could re-establish BBC for that case. In an analogous manner, for the mechanical mass-springs system, we could investigate strains instead of displacements. Strains (bond elongations) are defined as finite differences of displacements, thus being the discrete analog of the derivative. For the case of a fixed boundary the displacement of the ancillary boundary particle is set to zero, which is the analog of the Dirichlet boundary condition, while for the case of a free boundary, the difference of the displacement of the ancillary particle to the next is set to zero, thus giving a zero strain at the boundary. Mathematically, a free boundary in strain coordinates is equivalent to a fixed boundary in displacement coordinates. In both cases, higher order coordinates (higher order in the sense of a derivative -continuous (flux) or discrete (strains)) are needed to investigate the problem. Let us note that HOC coordinates do not give an equivalent description of the system, because the number of degrees of freedom is different when a specific boundary condition is applied. Nevertheless the resulting dynamical matrix (mechanics) or effective Hamiltonian (acoustics) in HOC coordinates is isospectral up to zero modes with the one in displacement/pressure coordinates. In the last Chapter of this thesis we provide evidence that this isop-sectrality stems from an underlying SUSY between strains and displacements for the case of mechanical systems.

Let us now proceed with the proper introduction to the higher order coordinate formalism. We will show that not only the aforementioned paradoxes are solved, but new topological systems can also be uncovered.

HIGHER ORDER COORDINATE TOPOLOGICAL METAMATERIALS IN THE BDI CLASS

In the previous chapter, we provided some examples of systems with "peculiar behaviour", which seems to indicate an underlying topology but cannot be explained when displacement or pressure degrees of freedom are utilised for the description of the system. In this chapter we will argue that these systems belong to a new family of metamaterials that we term as: Higher Order Coordinate (HOC) topological metamaterials. For the case of mechanical topological metamaterials, HOC is applied through strains (or bond elongations/extensions [START_REF] Mao | Maxwell lattices and topological mechanics[END_REF][START_REF] Kane | Topological boundary modes in isostatic lattices[END_REF]). Thus, when we refer to HOC mechanical metamaterials, we will call them strain topological metamaterials.

The results presented in this chapter pertain to strain topological metamaterials which belong to the BDI class [START_REF] Ryu | Topological insulators and superconductors: tenfold way and dimensional hierarchy[END_REF] of topological insulators. Specifically we will revisit the mass dimer and show that, when investigated on strain coordinates, it maps to the SSH model. We will also give a novel mechanical analog of the Kitaev chain, which exhibits topological edge states for both fixed and free boundaries. The topological edge states of the mechanical Kitaev chain emerge in different parameter regimes for the different boundaries (a behaviour similar to the acoustic SSH with closed and open BCs that we examined in chapter 2). We will show that the edge states for the free boundary can be predicted only via the strain formalism. This family of topological systems exhibits topological properties (edge states, topological phase transitions, bulk-edge correspondence, robustness against disorder) for diverse boundaries, while these properties remain unexplainable when they are investigated in the usual displacement coordinates.

Strain topological metamaterials

We will show that for finite frequency mechanical metamaterials, the topological properties of strain topological metamaterials should be probed through the dynamical matrix D s instead of D u (the subscripts s and u denote the strain and displacement basis respectively). Let's see first how we can express the dynamics in the strain basis:

Transformation of the dynamical matrix in strain coordinates

Strains S = (s 1 , s 2 , ...s N B ) are related to displacements through the compatibility matrix C [START_REF] Kane | Topological boundary modes in isostatic lattices[END_REF]:

S = CU, (3.1) 
where U is the vector of generalised displacements U = (u 1 , u 2 , ...u kN ). Now, in the case of a Maxwell lattice [START_REF] Mao | Maxwell lattices and topological mechanics[END_REF], kN -N B = 0, where k are the degrees of freedom per site, N is the number of sites and N B the number of bonds, with each bond connecting two sites. C for such a lattice is a square matrix and is invertible. In the strain basis the potential energy can be written as:

V s = S T K s S, (3.2) 
where K s is the stiffness matrix and in these coordinates is diagonal. Contrary to that, the mass matrix M s is not diagonal in strain coordinates but the mass matrix M u is diagonal in the usual displacement coordinates (subscripts s and u denote the strain and displacement coordinates respectively). The fact that for a periodic Maxwell lattice 1 C is invertible, tempts us to to try and express the Lagrangian in strains coordinates.

Beginning with:

L = 1 2 U T M u U - 1 2 U T K u U, (3.3) 
we substitute the expression for the potential energy from (3.2) and attempt to rewritte the mass term utilising relation (3.1). We get:

L el = 1 2 U T C T (C T ) -1 M u C -1 C U - 1 2 S T K s S = 1 2 ṠT (C T ) -1 M u C -1 Ṡ - 1 2 S T K s S = 1 2 ṠT M s Ṡ - 1 2 S T K s S, (3.4) 
where

M s = (C T ) -1 M u C -1
is the mass matrix in the strain coordinates. By applying the Euler-Lagrange equations, one arrives at the equations of motion of the strains:

M s S = K s S ⇔ S = M -1 s K s S. (3.5) 
Thus, one can define the elongations dynamical matrix as:

D s = M -1 s K s . Com-
paring this relation with Newtons equations in the displacement coordinates:

M u Ü = K u U ⇔ Ü = M -1 u K u U, (3.6) 
one can use (3.1) to derive immediately the relation that connects D s with D u for a periodic lattice:

C -1 D s C = D u , (3.7) 
which can also be written in Bloch form: C -1 (q)D s (q)C(q) = D u (q) due to lattice periodicity. By using (3.7), one can verify that if D u = C † C, then D s = CC † , as we claimed in chapter 2 (of course for (3.7) to hold we need the Maxwell condition so that C is invertible), when investigating the Kane -Lubensky SSH.

As a result we have two different ways of describing the "bulk" (periodic) system, related by a similarity transform which is given by C. The reason we need the strain lattice is that in order to establish bulk-edge correspondence, one should be able to transfer the symmetries of the bulk to the finite system -to its boundaries also -so that it still lies in the same topological class [START_REF] Barlas | Topological classification table implemented with classical passive metamaterials[END_REF].

For a complete topological characterization of a finite frequency system, it is necessary to compare this new approach to the traditional one, where topological edge states are probed via the dynamical matrix D u defined in terms of lattice displacements where ü = -D u u. For the set of fixed and free boundaries, three possibilities exist for finite-frequency topological mechanical systems, as outlined in Fig. 3.1. The first possibility is systems that exhibit edge states only for fixed boundaries, where their topology is encoded in the winding number of the bulk D u,bulk . We will call this the typical case. An example of this is the mechanical Su-Schrieffer-Heeger (SSH) model [START_REF] Süsstrunk | Classification of topological phonons in linear mechanical metamaterials[END_REF][START_REF] Huber | Topological mechanics[END_REF][START_REF] Chaunsali | Demonstrating an in situ topological band transition in cylindrical granular chains[END_REF][START_REF] Chaunsali | Stability of topological edge states under strong nonlinear effects[END_REF] shown in Fig. 3.1 (a). The second is systems that exhibit edge states only for free boundaries, where their topology is encoded in the winding number of D s,bulk . We use the mass dimer to demonstrate this case [START_REF] Wallis | Effect of free ends on the vibration frequencies of one-dimensional lattices[END_REF][START_REF] Allen | Surface phonons and other localized excitations[END_REF]. The winding number of D u,bulk is not well-defined in displacement coordinates due to the absence of chiral symmetry as we showed in great detail in Chapter 2. Yet, remarkably, D s,bulk restores chiral symmetry, and the value of its winding corresponds to the emergence of edge states as we show in Fig. 3.1(b). Finally, the third possibility is systems that exhibit edge states for both free and fixed boundaries, such that their topology is encoded in both D u,bulk and D s,bulk , shown in Fig. 3.1(c). The model we In the top row, we present "mass-spring" schematics, which are powerful tools to model topological systems across a spectrum of physical settings, from mechanics, to optics, electronic circuits and acoustics. In the middle row, we denote the appropriate boundary conditions for the existence of BBC. In the bottom row, we show how the spectrum of each system evolves while a parameter changes adiabatically. This is compared to the predictions of the bulk winding. The orange denotes trivial winding (w = 0), and the doughnut non-trivial (w = 1). (a) The stiffness dimer can be mapped to the finitefrequency SSH model and is a typical case. Only fixed boundaries preserve the chiral symmetry of the displacement bulk dynamical matrix D u,bulk . Edge states appear according to the prediction of the latter's winding number. (b) The mass dimer is an STM. As a result, its chiral symmetry is revealed only in strain coordinates, and edge states can exist only for free boundaries according to the winding number of the bulk dynamical matrix in strain coordinates D s,bulk . (c) The new mechanical Kitaev chain behaves both like an STM and a typical case, depending on the applied boundaries. (i) For free boundaries, it behaves like an STM, and the winding of D s,bulk predicts the emergence of edge states correctly. (ii) For fixed boundaries, it behaves like a typical case, and the winding of D u,bulk predicts the emergence of edge states correctly. Remarkably, the topological phases of this system are interchanged when different boundaries are applied.

use to demonstrate this is a mechanical analog of the Kitaev chain. The Kitaev chain has drawn particular interest for its support of Majorana modes, which have been suggested as promising candidates for quantum computing [START_REF] Kitaev | Unpaired majorana fermions in quantum wires[END_REF][START_REF] Leumer | Exact eigenvectors and eigenvalues of the finite kitaev chain and its topological properties[END_REF]. We introduce a new mechanical analog, which facilitates the topological transition between trivial and nontrivial regimes. This system exhibits edge states for both free (Fig. 3.1(c)(i))

and fixed boundaries (Fig. 3.1(c)(ii)), but for different values of its parameters. Our experimental results verify the "double BBC" predicted for this model, wherein we observe edge states for both fixed and free boundaries associated with the parameter values predicted by the winding of D u,bulk and D s,bulk , respectively.

While in this chapter we examine one-dimensional systems belonging to the BDI class, in the next chapter we will show that this formalism can extend BBC for models that do not fall in the tenfold classification. Specifically we will show in chapter 4, that we can establish BBC for a mechanical chain with free boundaries,which only posses inversion symmetry. Furthermore, an extension of BBC for the acoustic SSH3

with Neumann BCs can be accomplished by the investigation of the flux field -instead of the pressure field. This is another example of a higher order coordinate system which is continuous.

Mass Dimer -Revisited

We extensively investigated the mass dimer in displacement coordinates in chapter 2. We saw that the emergence of the edge states could not be linked to the bulk topology when D u was investigated. We argue that the edge states in this model have a topological origin that can be revealed using strain coordinates. The strain coordinates for the n th unit cell are s A,n = u n,Bu n,A and s B,n = u n+1,Au n,B . We can then rearrange Eqs. (2.18), to get the following equations of motion in strain coordinates:

sA,n = k m 2 (s B,n -s A,n ) - k m 1 (s A,n -s B,n-1 ) (3.8) sB,n = k m 1 (s A,n+1 -s B,n ) - k m 2 (s B,n -s A,n ). (3.9)
Assuming plane wave solutions, we arrive at the following eigenvalue problem: D s,bulk (q)s(q) = ω 2 s(q), where s(q) = [s A (q), s B (q)] T , and D s,bulk (q) is the Bloch dynamical matrix in strain coordinates:

D s,bulk (q) = 1 (1 + P ) ⎛ ⎜ ⎜ ⎝ 1 + P -(P + e -iq ) -(P + e iq ) 1 + P ⎞ ⎟ ⎟ ⎠ . (3.10)
The matrix D s,bulk (q) can be written in terms of Pauli matrices σ x , σ y and σ z , such that D s,bulk (q) = I + d x σ x + d y σ y with d x = (P + cos q)/(1 + P ) and d y = sin q/(1 + P ).

As a result, the matrix anti-commutes with σ z after a constant shift in the diagonal:

σ z (D s,bulk (q) -I)σ -1 z = -(D s,bulk (q) -I).
In other words, the shifted D s,bulk (q) is chiral. Thus, the system has a well-defined winding number in the d xd y plane, as is shown in Fig. 3.2(a). The winding number predicts a topological phase transition at P = 1, with P > 1 and P < 1 corresponding to trivial and non-trivial phases, respectively. Therefore, we expect BBC for the mass dimer -but in strain coordinates. as expected by the strain winding number. We note that BBC dictates that the finite dynamical matrix, D s , should also preserve the underlying chiral symmetry. A finite chain in strain coordinates, with an even number of entries, preserves chiral symmetry for the following boundary conditions: s B,0 = s A,N +1 = 0. In other words, the finite

dynamical matrix, D s , follows: Γ(D s -I)Γ -1 = -(D s -I) where Γ = σ z ⊕ σ z ⊕ ... ⊕ σ z .
Such boundary conditions in strain coordinates resemble a chain with free boundaries, i.e., u A,N +1u B,N = 0, u A,1u B,0 = 0. After setting P = m 1 /m 2 and normalizing with respect to the mid-gap frequency, the eigenvalue problem reads as follows:

1 (1 + P ) ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 1 + P -P 0 ... 0 -P 1 + P -1 ... 0 0 -1 1 + P -P .. 0 ⋮ ⋱ ⋮ 0 . . . -1 1 + P -P 0 . . . -P 1 + P ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 2N ×2N D s,free ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ s A,1 s B,1 s A,2 ⋮ s A,N s B,N ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ω 2 ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ s A,1 s B,1 s A,2 ⋮ s A,N s B,N ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ . (3.11)
Clearly, strain coordinates reveal the chiral symmetry of a finite chain with free boundaries, which is absent in the displacement coordinates, as we showed in chapter 2.

We contrast these findings with the description of the chain in the typical displacement coordinates. In displacement coordinates, the chain has a zero-frequency mode, which corresponds to the rigid body motion of the free chain and breaks chirality.

The strain description predicts all the nonzero eigenvalues of the system as is shown in Fig. 3.2(c). We observe the chiral symmetry of these non-zero eigenfrequencies with respect to the mid-gap frequency ω 2 = 1. Furthermore, in Fig. 3.2(d), we show the profiles of the edge states at P = 0.25 in both displacement and strain coordinates. Once again, strain coordinates reveal the chiral nature of the chain, where the vanishing amplitude of the topological edge states at alternating bonds is akin to the mechanical SSH (stiffness dimer) [START_REF] Shi | Disorder-induced topological phase transition in a one-dimensional mechanical system[END_REF].

Building on the idea of BBC for strain coordinates and revealing new topological modes, we construct a mechanical analog of the Kitaev chain (the prototypical model for a topological superconductor) with two degrees of freedom per site. These degrees of freedom, specifically particle displacement and rotation, lead us to choose generalized strain coordinates involving both DOFs and probe the topological nature of the Kitaev chain. For the first time, we demonstrate that this design not only obeys BBC for fixed boundaries (right column of Fig. 3.1(c)), but also shows a topological edge mode for free boundaries that can be explained by BBC in strain coordinates (left column of Fig. 3.1(c)).

Mechanical Kitaev chain

In Fig. 3.3(a), we show a mechanical structure whose dynamics are governed by two in-plane degrees of freedom (DOFs) at each site (transverse displacement u and rotation Φ). Each site is connected with the next via two bonds corresponding to bending and shear stiffness (K B and K S , respectively). We set P = md 2 /I, the ratio of the generalized masses (particle mass m, lattice constant d, and particle mass moment of inertia I) and η = K B K S , the ratio of generalized stiffnesses (with K B and K S the bending and shear stiffnesses, respectively).

We will analytically show that if we impose the fine-tuning: η = 1 -(1/P ), the dynamical matrix on displacement coordinates Du maps to a Kitaev chain [START_REF] Kitaev | Unpaired majorana fermions in quantum wires[END_REF] (quantities over-braced with a tilde "∼" refer to the fine-tuned system).

Mechanical Kitaev equations of motion on displacement coordinates and fine-tuning.

The equations of motion governing the linear dynamics of the mechanical chain, concerning the transverse-rotational waves are derived using the Lagrangian formalism [START_REF] Suiker | Dynamic behaviour of a layer of discrete particles, part 1: Analysis of body waves and eigenmodes[END_REF][START_REF] Zheng | Zerofrequency and slow elastic modes in phononic monolayer granular membranes[END_REF] and are described by the following set of differential equations:

m n ün = K S,n (u n-1 -u n ) -K S,n+1 (u n -u n+1 ) + dK S,n (ϕ n + ϕ n-1 ) -dK S,n+1 (ϕ n + ϕ n+1 ) , (3.12 
)

I n φn = dK S,n (u n -u n-1 -d (ϕ n-1 + ϕ n )) + dK S,n+1 (u n+1 -u n -d (ϕ n + ϕ n+1 )) + d 2 K B,n (ϕ n-1 -ϕ n ) -d 2 K B,n+1 (ϕ n -ϕ n+1 ) (3.13)
where n is the particle index along the x axis, m is the mass, I is the moment of inertia, and u n and ϕ n are the transverse displacement (along y-axis) and rotation (around zaxis), respectively, from the equilibrium position of the nth particle. Substituting the plane wave solutions of the form ψ n (t) = v(q)e iΩt-iqn into the set of Eqs. (3.12)-(3.13) leads to the eigenvalue problem:

D u,bulk (q)v(q) = ω 2 v(q), (3.14) 
where v(q) = [u(q), Φ(q)/ √ P ] T is a column eigenvectors with Φ(q)/ √ P = dϕ(q)/ √ P and P = md 2 /I. The superscript T denotes the transposed vector and D u,bulk (q) is the dynamical matrix on displacement coordinates. Ω is the angular frequency, and ω = Ω/Ω 0 is the normalized frequency with Ω 2 0 = 2P K S /m. The dynamical matrix D u,bulk can be read as:

D u,bulk (q) = 1 2P ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 4 sin 2 (q/2) -2i √ P sin(q) 2i √ P sin(q) 4P [cos 2 (q/2) + η sin 2 (q/2)] ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ , (3.15) 
where η = K B /K S . Under the condition:

η = 1 -(1/P ), (3.16) 
this matrix can be fine-tuned to a new form of the dynamical matrix:

Du,bulk (q) = 1 2P ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 2P + [-2(P -1) -2 cos(q)] -2i √ P sin(q) 2i √ P sin(q) 2P + [2(P -1) + 2 cos(q)] ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ , (3.17) 
which resembles to the BdG Hamiltonian when taking out the constant term 2P of the diagonal. Comparing with the BdG Hamiltonian [START_REF] Leumer | Exact eigenvectors and eigenvalues of the finite kitaev chain and its topological properties[END_REF], we find that ∆ → √ P , τ → 1, µ → 2(P -1). The matrix Du,bulk can be written in terms of the complex Pauli matrices σ x , σ y and σ z such that:

Du,bulk (q) = I + 1 2P [(2 √ P sin(q)) σ y + (-2 cos(q) -2(P -1)) σ z ] . (3.18)
Since the BdG Hamiltonian acts on the basis of particles and holes [START_REF] Leumer | Exact eigenvectors and eigenvalues of the finite kitaev chain and its topological properties[END_REF], transverse displacements u and the normalized rotations Φ/ √ P can be seen as analogues of particle and hole DOFs (Fig. 3.3(a)). i.e., u and Φ, per mass. We also observe that the entire spectrum (ω2 ) is symmetric about a mid-axis, which is ω 2 = 1. This is due to the particle-hole symmetry, such that σ x ( Du,bulk (q) -I) σ T x = -( Du,bulk (q) -I). Since Du,bulk (q) maps to the Kitaev chain BdG Hamiltonian, a finite chain with boundaries that preserve the symmetry of the bulk (i.e., a chain with fixed boundaries) will exhibit topological edge states.

In Fig. 3.3(d), we plot the winding of the Bloch vector of the shifted Du,bulk (q)

in the σ y -σ z plane. This suggests the existence of edge states for P < 2. Indeed, for a fixed chain consisting of 200 particles, two localized states emerge in the band gap for P < 2 as one can see in Fig. 3.3(e). In Fig. 3.3(f ), we plot these two eigenstates, which are localized on the left and the right end of the chain. The particle-hole symmetry of the model dictates that the particle and hole DOFs of the edge mode eigenstates either exactly match (symmetric) or have opposite phase (antisymmetric) [START_REF] Leumer | Exact eigenvectors and eigenvalues of the finite kitaev chain and its topological properties[END_REF]. In contrast to the edge states appearing in the SSH model [START_REF] Chaunsali | Stability of topological edge states under strong nonlinear effects[END_REF], these topologically-protected edge states have mixed polarization in terms of displacement and rotation. Their profiles appear distorted.

Mechanical Kitaev chain as a strain topological metamaterial

We now investigate the Kitaev system in strain coordinates, which now have a more complex form due to the coupling of rotational degrees of freedom with the transverse displacements. By applying the strain coordinate transformation, we obtain the bulk strain dynamical matrix Ds,bulk (q), which surprisingly maps again to a Kitaev chain (as long as the fine-tuning is preserved) but with a different parameter dependence.

We are interested in the in-plane degrees of freedom that are decoupled from the longitudinal displacements. Strains are related to the transverse displacement u n and rotation ϕ n DOFs in the following manner :

s n = u n+1 -u n -d(ϕ n+1 + ϕ n ) (3.19) b n = d(ϕ n+1 -ϕ n ), (3.20) 
where s n and b n stand for the nth shear and bending strain respectively. In order to express the dynamical matrix in these coordinates, we utilize Newton's equation for transverse displacements and rotations:

mü n = K S s n -K S s n-1 (3.21) 
I φn = d (K S s n + K S s n-1 + K B b n -K B b n-1 ) . (3.22)
We take the second derivative with respect to time in Eqs. (3.19) and (3.20), and substitute the corresponding expressions from Eqs. (3.21) and (3.22). The resulting dynamical equations for the strains are:

sn = K S m (s n+1 + s n-1 -2s n - md 2 I (s n+1 + s n-1 + 2s n ) - md 2 I K B K S (b n+1 -b n-1 )), (3.23 
) bn = K S m ( md 2 I (s n+1 -s n-1 ) + md 2 I K B K S (b n+1 + b n-1 -2b n )). (3.24) 51 
We then define: s(q) = [s(q), b(q)/ √ P P -1 ] T , and assume solutions of the form ψ n (t) = s(q)e i(Ωt-qn) to arrive at the eigenvalue problem: D s,bulk (q)s(q) = ω 2 s(q).

(3.25)

where D s,bulk (q) denotes the "strain" dynamical matrix and ω is again the normalised frequency Ω/Ω 0 with Ω 2 0 = 2P K s /m. Since we keep the constraint η = 1 -1/P , the strain dynamical matrix reads as:

Ds,bulk (q) = P -1 2P ⎛ ⎜ ⎜ ⎝ 2P P -1 + 2 P -1 + 2 cos(q) 2i √ P P -1 sin(q) -2i √ P P -1 sin(q) 2P P -1 -2 P -1 -2 cos(q) ⎞ ⎟ ⎟ ⎠ , (3.26) 
We verify that apart from a constant shift 2P P -1 in the diagonal, the matrix possesses particle-hole symmetry.

In strain coordinates, P is replaced by P /(P -1). In Fig. 3.4(a), we show the winding of Ds,bulk (q). It predicts a topological phase in a region of the parameter space P which is inverse to that predicted by the winding number of Du,bulk (q). While a finite chain with fixed boundaries preserves particle-hole symmetry in displacement coordinates, we need a finite chain with free boundaries in order to preserve particlehole in strain coordinates. As a result, we expect the emergence of edge states for a Kitaev chain with free boundaries and for a different parameter regime compared to the system with fixed boundaries (topologically nontrivial regime becomes trivial and vice versa).

In Fig. 3 . The initial masses where chosen in a way, such that: P = 1 2 and similarly for the stiffness dimer η = 1 2 . One can see, that in both cases the edge states "split" and are not "pinned" at the mid-gap frequency due to the absence of any protecting symmetry. In Fig. 3.5(b), we present the averaged spectrum for both stiffness and mass dimer under disorder that preserves inversion symmetry. This means that the induced disorder on masses (stiffnesses) in positions symmetric with respect to the center of the finite chain is the same.

We observe that inversion symmetry gives a partial protection in both mass and stiffness dimer: Although the edge states are not exactly pinned at the mid-gap frequency, they don't split as much as in the case of no protecting symmetry. In 3.5(c), we present the spectra of mass and stiffness dimer under chiral disorder. This is disorder that keeps constant the diagonal of D u in the case of the stiffness and of D s in the case of the mass dimer. In order to apply chiral disorder for the case of the stiffness dimer, we have "fine-tuned" the masses, such that the diagonal of D u remains constant:

k 1,n +k 2,n mn = η = 1 2
. Specifically, we allow m n = m + ρ n where m is the initial mass (same for all the particles in the case of the stiffness dimer), and fine tune ρ n , such that:

ρ n = k 1,n +k 2,n η -m.
Respectively, for the mass dimer, we fined-tuned the springs that connect the masses, so that the diagonal of D s remains constant:

k n ( 1 m 1,n + 1 m 2,n ) = P = 1
2 (again we allow k n = k+τ n and fine tune:

τ n = P /( 1 m 1,n + 1 m 2,n )-k
where k is the initial stiffness). We see that both chains exhibit remarkable robustness under chiral disorder.

We have demonstrated that the mass dimer has the same response as the stiffness with respect to disorder. Furthermore, the way to preserve chirality for the mass dimer was obtained from the diagonal of D s , providing extra evidence that strain topological metamaterials are topological and their topology (bulk index and protecting symmetries) can only be uncovered in strain coordinates.

Disorder in Mechanical Kitaev chain

We turn now to the Mechanical Kitaev chain. As we have shown, this system behaves as both displacement and strain topological metamaterial when different boundary conditions are applied. We will show that, when in the topological regime for the respective boundary, it exhibits an identical behaviour under disorder.

As we have already mentioned, the equations of motion for the Kitaev have the 

ün = K S,n m n (u n-1 -u n ) - K S,n+1 m n (u n -u n+1 ) + K S,n m n (Φ n + Φ n-1 ) - K S,n+1 m n (Φ n + Φ n+1 ) , (3.27a) 
Φn = P n K S,n m n (u n -u n-1 -(Φ n-1 + Φ n )) +P n K S,n+1 m n (u n+1 -u n -(Φ n + Φ n+1 )) +P n K B,n m n (Φ n-1 -Φ n ) -P n K B,n+1 m n (Φ n -Φ n+1 ) , (3.27b) 
where

P n = m n d 2 n I n .
The geometric disorder analyses are performed by introducing two kinds of disor-der: 1) a disorder in the mass/inertia (leading to a disorder in values of P n ) and 2) a disorder in K B (leading to a disorder in the values of η n = K B,n /K S ). Each disorder is implemented by conserving or not the inversion symmetry of the dynamical matrix for fixed-fixed and free-free boundary conditions. The disorders are constrained to realistic physical quantities (insuring a possible building of these structures). The initial conditions, are: N f ixed = 14 particles with P = 1.5, and N f ree = 15 particles with P → P /(P -1). Spectra of the mechanical chain as a function of disorder strength are presented in Fig. 3.6.

When inversion symmetry is not conserved (Fig. 3.6(a,c,e,g)) the edge states are not "pinned" in the mid-gap frequency and they "split" as the disorder strength grows. On the other hand, when inversion symmetry is preserved, (Fig. 3.6 (b,d,f,g)),

the edges states are partially protected and do not split. Again we observe that inversion symmetry adds "extra" protection to both Fixed-fixed and free-free boundary conditions. Furthermore, the edge states for both kinds of BC have a similar response to disorder.

For the case of the mechanical Kitaev chain there is no way to apply a particle-hole preserving symmetry (for both fixed and free BCs) without adding extra elements as was done for the stiffness dimer in [START_REF] Shi | Disorder-induced topological phase transition in a one-dimensional mechanical system[END_REF]. This is because we have already imposed a constraint (η = 1 -1/P ) between effective stiffnesses and masses for the fine tuning and thus we don't have the same freedom for extra fine tuning in order to preserve particle hole as in the case of the mass-stiffness dimer. Nevertheless, we have enough evidence that strain finite-frequency topological metamaterials have the exact same response with respect to disorder as the already known ones.

Experimental results

For completeness we present the experimental verification of the double BBC for the Kitaev chain. The experiments and the analysis of the experimental results was carried out by Florian Allein3 .

To experimentally verify our predictions, we prepare a test setup to probe the Kitaev system with fixed-free boundary conditions so that both types of edge states can be observed in the system without changing the mounting. For a large chain with a negligible interaction between two boundaries, we expect the emergence of an edge state at the fixed end, as dictated by the BBC of the fixed-fixed chain. Similarly, we expect an edge state at the free end as well, albeit for different P values than the fixed chain. As such, the fixed-free chain should always have an edge state at one edge for all values of P except P = 2 (where the band gap closes). For systems with P < 2 and P > 2, they would support an edge state on the fixed and free ends, respectively.

We fabricate chains of 13 masses (large cuboids) through additive manufacturing and suspend them vertically by mounting the first particle (particle ♯ 1) as shown in Fig. 3.7(a). Therefore, the system represents a fixed-free chain. We consider two chains with different P and excite them with an automatic modal hammer by striking the particle ♯ 2 or ♯ 13 corresponding to the fixed or free sides. By using a laser Doppler vibrometer, we then measure the velocity at multiple points along the chain. Three points are probed on each particle to characterize the transverse displacement and rotation. (b) Measured frequency response at particle ♯7 when the chains with P = 1.5 and P = 2.5 are excited at the fixed end (at particle ♯2) or at the free end (particle ♯13). The blue area corresponds to the band gap. Measured amplitudes of the edge state (displayed in displacement coordinates) (c) localized at the fixed boundary for P = 1.5, and (d) at the free boundary for P = 2.5. theoretically predicted.

To verify that these modes are indeed localized at different edges, we reconstruct the mode shapes from the experimental data in Figs. 3.7(c,d). We observe excellent agreement between predictions and experiments, where amplitude decay can be seen as one departs from the boundaries. We also note that the edge state localized at the free end [Fig. 3.7(d)] is different in its shape compared to its counterpart for the fixed edge, as discussed earlier, corroborating the inversion of topological phases predicted for our mechanical system.

Flux topological metamaterials

We have seen how the idea of HOC topological metamaterials can be applied to mechanical systems. However, we argue that the HOC have a more general applicability. For that reason we present now their application in a different framework, that of acoustics.

Acoustic SSH

In Chapter 2, we established a mapping of the SSH to the pressure field inside a waveguide with alternating cross-sections. We saw that BBC can be established for open (Dirichlet) BCs. We also demonstrated that when closed (Neumann) BCs are applied, a redefinition of the unit cell is needed so that one can re-establish BBC.

Nevertheless, in this section we will show that BBC can also be restored when the flux field is investigated. The flux field is nullified at the closed boundaries, allowing for a derivation of BBC for these boundaries in an exact same manner as the case of open boundaries and the pressure field [START_REF] Coutant | Acoustic su-schrieffer-heeger lattice: Direct mapping of acoustic waveguides to the su-schrieffer-heeger model[END_REF].

The pressure and the flux velocity between points A n and B n , separated by a distance L are connected with the following transfer matrix:

T j = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ cos (kL) iZ j sin (kL) i Z j sin (kL) cos (kL) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ , (3.28) 
where Z j = ρ 0 c 0 /S j is the waveguide impedance and kL is the dimensionless wavenumber. The top row of this matrix gives the propagation of pressure from each change of cross section to the next, while the bottom row gives the propagation of flux. In order to find the flux description of the system we will use the second row. At each change of cross-sections, we consider the conservation of pressure and flux respectively (continuity conditions), i.e

p(x i+ n ) = p(x i- n ), ϕ(x i+ n ) = ϕ(x i- n ), (3.29) 
By taking the left and right propagation of flux to the point A n , we arrive at the following system of equations:

ϕ(x B n ) = ϕ(x A n ) cos (kL) + i Z A sin (kL)p(x A + n ), (3.30) 
ϕ(x B n-1 ) = ϕ(x A n ) cos (kL) - i Z B sin (kL)p(x A - n ). (3.31) 
Multiplying eq. (3.30) by Z A and (3.31) by Z B and summing the two, we arrive at:

Z A ϕ(x B n ) + Z B ϕ(x B n-1 ) = (Z A + Z B )ϕ(x A n ) cos kL ↔ Z A Z A + Z B ϕ(x B n ) + Z B Z A + Z B ϕ(x B n-1 ) = ϕ(x A n ) cos kL. (3.32)
Following the exact same steps around point B n , we arrive at:

Z A Z A + Z B ϕ(x A n ) + Z B Z A + Z B ϕ(x A n+1 ) = ϕ(x B n ) cos kL. (3.33) 
Casting (3.32) and (3.33) in matrix form and applying Bloch's theorem we get:

⎛ ⎜ ⎜ ⎝ 0 u ′ + w ′ e -iq u ′ + w ′ e iq 0 ⎞ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎝ ϕ A ϕ B ⎞ ⎟ ⎟ ⎠ = E(k) ⎛ ⎜ ⎜ ⎝ ϕ A ϕ B ⎞ ⎟ ⎟ ⎠ , (3.34) 
where

u ′ = Z A Z A +Z B and w ′ = Z B Z A +Z B .
Comparing these effective couplings with the ones derived for the mapping to the pressure field ((2.26), (2.27)), we observe that in the flux description, the effective couplings have the same form as in the pressure description but with inverted cross-sections (S A → 1 S A and S B → 1 S B ). Furthermore, we know that the Neumann BCs imply zero flux at the boundaries. Thus, as in the case of the mechanical system, the mathematical descriptions of inverse boundaries are mathematically equivalent in the two different coordinate systems As a result, the finite system with closed boundaries will obey bulk-edge correspondence and exhibit the topological characteristics predicted by the winding number/Zak's phase in the flux coordinates. This is numerically verified in Fig. 2.9. We see that, for the case of closed boundaries, edge states emerge for S B < S A -contrary to the open case (Fig. 2.8) where they emerge for S B > S A -according to the predictions of the effective couplings in the flux coordinates.

BBC IN HOC METAMATERIALS NOT IN THE TENFOLD WAY

Higher order coordinates have given interesting and novel results for systems in the BDI class. The aim of this chapter is to investigate whether this formalism can extend for metamaterials that don't fall in any class of the tenfold way, but have well-defined quantized bulk invariants due to the presence of other symmetries (like inversion or point chirality). In this chapter we will investigate systems in which HOC are applied a posteriori, in the sense that we apply them after we observe that in displacement coordinates BBC fails. In the next Chapter (Chapter 5) we will give the criterion for choosing the right coordinates for BBC a priori (beforehand), given the applied BCs.

Rotation-Displacement Mechanical chain without the fine tuning

The first system to consider, is the mechanical chain that we mapped to the Kitaev chain in chapter 3, by applying the fine tuning η = 1 -1/P (Fig. 3.3). We will now investigate the general case, i.e without the fine tuning. By assuming Bloch solutions in equations (3.12) and (3.13), we obtain the Bloch dynamical matrix in displacement coordinates:

D u (P, η, q) = K s m ⎛ ⎜ ⎜ ⎝ 2 -2 cos q -2i sin q 2iP sin q 2P (η + 1) + 2P (1 -η) cos q ⎞ ⎟ ⎟ ⎠ . (4.1)
Although particle-hole symmetry is not present for the general case, the system still exhibits inversion symmetry. This comes from the fact that the system is a monomer (Fig. 3.3(a)). Since inverson symmetry is necessary for the quantization of Zak's phase let us elaborate on this symmetry for this chain.

Inversion symmetry of the rotation-dislpacement mechanical chain

One can easily check that the dynamical matrices of a finite chain with either fixed, or free boundaries, commutes with the matrix S z = J N ⊗ σ z , where J N is the N × N exchange matrix and σ z is the usual Pauli matrix. This is true regardless of the fine tuning. Assuming that an eigenstate can be represented by (a 1 , a 2 , . . . , a 2N ) T , where the odd components, a 2i-1 = u i , correspond to the transverse translational degrees of freedom and the even, a 2i = Φ i to the rotational ones. The action of S z on such a state leads to u i → u N +1-i and Φ i → -Φ N +1-i , namely the rotational degrees of freedom change sign, while the transverse ones do not 1 . This corresponds to an inversion operation around the central point of the structure. Indeed the mechanical chain is symmetric relative to inversion and this is reflected by the matrix S z . As a consequence of this symmetry, the eigenstates of the dynamical matrix, which are also eigenstates of S z , will have even and odd parity, namely symmetric and antisymmetric profiles. One can verify this for the edge states of the fine tuned model presented in Figures 3.3(f ) and 3.4(c-d). As we will see, this is also the case for the chain without the fine tuning. For the case of the Bloch dynamical matrix of equation (4.1), the corresponding operator is Π = σ z K, where K is the conjugation operator.

The dynamical matrix commutes with this operator: [D u (P, η, q), Π] = 0. As a result, we expect a quantized Zak's phase (Z ) (1.1) [START_REF] Asbóth | A short course on topological insulators[END_REF].

Topological phases and edge states

By setting q = π in (4.1), we can find the parameter values for which the gap closes.

The gap closing occurs for P = 1 η . By calculating Zak's phase for P < 1 η and P > 1 We observe that in-gap modes emerge for P < 2, as predicted by the bulk topological index. Of course, since particle-hole symmetry is now absent, the in-gap modes are no more "pinned" in the mid-gap frequency. In Fig. 4.1(c) we present the profiles of the edge states. Although they do not exhibit the profile expected by particle-hole We now want to investigate whether the double BBC still holds for the model without the fine-tuning. Thus, we apply free boundaries and do the continuation of the spectrum again. In Fig. 4.2(a) we observe again an inversion of the topological phases.

Localized edge states (Fig. 4.2(b)) which exhibit the profile dictated by inversion symmetry, again emerge but for P > 1 η , contrary to the bulk index prediction. Let's see if the strain coordinates will restore BBC once again.

The strain bulk dynamical matrix obtained by (3.23) and (3.24), takes the form:

D s (P, η, q) = K s m ⎛ ⎜ ⎜ ⎝ 2(P + 1) + 2(P -1) cos q 2iηP sin q -2iP sin q 2ηP (1 -cos q) ⎞ ⎟ ⎟ ⎠ . ( 4.2) 
This dynamical matrix also exhibits a gap closing for P = 1 η . The next step is to In the next two panels we present the real and imaginary part of Zak's phase. We observe that Real(Z ) = 1 and Im(Z ) = 0 in displacement coordinates, making this phase non-trivial for a chain with fixed boundary conditions. Contrary to that, as we see in (b), Zak's phase predicts a trivial phase for these values of P and η in strain coordinates. calculate Zak's phase and see if the topological index gives a different prediction for this case. In Fig. 4.3, we compare the Zak phases obtained from the eigenvectors of D u (P, η, q) and D s (P, η, q) respectively for P < 1 η . We observe that, according to Zak's phase, we expect topological edge states for the fixed boundary, as predicted by the displacement coordinates, while the free boundary in this parameter regime is not expected to give edge states.

In Fig. 4.4, we present the prediction of Zak's phase but for the regime P > 1 η . Here the strain coordinates (finite chain with free boundary) give a non trivial Zak's phase, while the displacement coordinates give a trivial Zak's phase.

We conclude that the strain formalism can extend BBC even for metamaterials outside the tenfold classification. Although Zak's phase gives the correct prediction for the case of fixed boundaries when we utilize displacement coordinates, it cannot accommodate the case of free boundaries. For the later case, Zak's phase should be calculated via the strain dynamical matrix in order to give a correct result and restore BBC. The rotation-displacement chain that we investigated in this section does not possess chiral or particle-hole symmetry but it possesses inversion symmetry, allowing for a well defined Zak's phase. We will now try to see whether HOC coordinates can also be applied to a system that does not posses any of these symmetries. We proceed with the investigation of HOC coordinates in an acoustic analog of SSH3. SSH3 in the more general case does not posses neither chiral or particle hole symmetry, nor inversion symmetry. Furthermore it has a more complex phase diagram. We will show that HOC coordinates (flux in that case) can properly predict the different phases and establish BBC for that model too.

SSH3

SSH3 [START_REF] Alvarez | Edge states in trimer lattices[END_REF][START_REF] Guo | Kaleidoscope of symmetry-protected topological phases in one-dimensional periodically modulated lattices[END_REF][START_REF] Su | Fractionally charged excitations in charge-densitywave systems with commensurability 3[END_REF] is an extended version of the Su-Schrieffer-Heeger (SSH) model [START_REF] Su | Solitons in polyacetylene[END_REF][START_REF] Asbóth | The Su-Schrieffer-Heeger (SSH) model[END_REF]. While the SSH3 at first glance is the simplest extension of SSH, many difficulties arise concerning the investigation of the emergence of edge states and the possibility of establishing BBC. The main reason is that the 1D topological invariants which are defined in the case of SSH (e.g., Zak's phase [START_REF] Zak | Berry's phase for energy bands in solids[END_REF][START_REF] Berry | Quantal phase factors accompanying adiabatic changes[END_REF] and winding number [START_REF] Maffei | Topological characterization of chiral models through their long time dynamics[END_REF]) require specific symmetries [START_REF] Rhim | Bulk-boundary correspondence from the intercellular Zak phase[END_REF] (such as chiral and inversion) in order to be quantized and to be useful in establishing an easily interpretable BBC. However, these symmetries are not present in the more general case of SSH3, e.g, in the generic case when all three couplings within the unit cell are different. Moreover, in the absence of symmetries, regimes with a different total number of edge states can be adiabatically connected without necessarily being accompanied by a phase transition, in the sense of the band gap closing. Due to that, the topological invariant predicted by the ten-fold way classification of topological insulators and superconductors [START_REF] Kitaev | Periodic table for topological insulators and superconductors[END_REF][START_REF] Ryu | Topological insulators and superconductors: tenfold way and dimensional hierarchy[END_REF] cannot always correspond to the total number of edge states present in the system. However, at the same time, SSH3 is known to exhibit robust, localized edge states [START_REF] Alvarez | Edge states in trimer lattices[END_REF], even in the absence of symmetries, which motivates the need for an establishment of BBC. However, the difficulty in defining a bulk invariant that takes integer values for 1D systems without specific symmetries can lead to the conclusion that nonzero edge states are not always topological [START_REF] Longhi | Probing topological phases in waveguide superlattices[END_REF][START_REF] Zhu | Topological Floquet edge states in periodically curved waveguides[END_REF][START_REF] Midya | Topological multiband photonic superlattices[END_REF]. In order to overcome the difficulties concerning defining a 1D topological invariant, a Chern number has been introduced [START_REF] Streda | Theory of quantised Hall conductivity in two dimensions[END_REF][START_REF] Hatsugai | Chern number and edge states in the integer quantum Hall effect[END_REF][START_REF] Thouless | Quantized Hall conductance in a two-dimensional periodic potential[END_REF] through the extension to a synthetic dimension [START_REF] Alvarez | Edge states in trimer lattices[END_REF][START_REF] Zilberberg | Topology in quasicrystals[END_REF].

Other attempts for establishing BBC implement Green's function [START_REF] Rhim | Unified bulk-boundary correspondence for band insulators[END_REF][START_REF] Peng | Boundary Green functions of topological insulators and superconductors[END_REF] for 1D systems.

Our aim is to define a 1D bulk quantity in the infinite chain that will establish BBC. The key insight is that the phases of the sublattice components of the eigenvectors of the bulk Hamiltonian contain all the necessary information for establishing BBC. We will combine elements of the works done in [START_REF] Marques | Analytical solution of open crystalline linear 1D tight-binding models[END_REF][START_REF] Guzmán | Geometry and topology tango in chiral materials[END_REF][START_REF] Pletyukhov | Surface charge theorem and topological constraints for edge states: Analytical study of one-dimensional nearest-neighbor tight-binding models[END_REF][START_REF] Pletyukhov | Topological invariants to characterize universality of boundary charge in onedimensional insulators beyond symmetry constraints[END_REF]. This procedure will allow us to elaborate the statement that we did in Chapter 2: That the bulk invariant for 1D TR systems can be seen as the degree of the momentum shift of the super-imposed travelling waves that constitute the solutions of the finite chain. This quantity can be identified by a sublattice Zak's phase for SSH3. The novelty in what we present here is that we establish BBC for the case of a finite open system with either integer or noninteger number of unit cells and we calculate finite-size corrections. Furthermore, the technique we use is easily generalized to larger unit cells (the case of SSHm). Another important aspect is that our derivation does not require any knowledge of the modern theory of polarization [START_REF] Spaldin | A beginner's guide to the modern theory of polarization[END_REF][START_REF] King-Smith | Theory of polarization of crystalline solids[END_REF][START_REF] Resta | Macroscopic electric polarization as a geometric quantum phase[END_REF][START_REF] Resta | Macroscopic polarization in crystalline dielectrics: the geometric phase approach[END_REF] which is needed in works that have used the same invariant for semi-infinite chains [START_REF] Pletyukhov | Surface charge theorem and topological constraints for edge states: Analytical study of one-dimensional nearest-neighbor tight-binding models[END_REF][START_REF] Pletyukhov | Topological invariants to characterize universality of boundary charge in onedimensional insulators beyond symmetry constraints[END_REF]. Lastly, we report that this system possesses a chiral-like symmetry that we call point chirality. This symmetry can be seen as a member of the family of particle-hole symmetries in the context of many-body physics, formulated in [START_REF] Zirnbauer | Particle-hole symmetries in condensed matter[END_REF]. These symmetries reduce to chiral symmetries when treating one-body Hamiltonians. Furthermore, it has been reported that point-like chiral symmetries can be linked to topological properties of a system [START_REF] Li | Hidden-symmetry-protected topological phases on a onedimensional lattice[END_REF][START_REF] Dias | Long-range hopping and indexing assumption in onedimensional topological insulators[END_REF]. This symmetry also exists in SSHm with m odd and has important consequences for the behavior of the system and the profile of the edge states, similar to the ones of ordinary chirality.

After investigating SSH3, we will see how this system can be mapped to an acoustic system in straight analogy to what we have demonstrated for the SSH in Chapter 2.

We will see that the application of the different BCs seem to alter the phase diagram and again HOC are needed to restore BBC for the closed (Neumann) BCs. The eigenstates of the periodic chain, due to translation invariance, can be constructed in terms of Bloch solutions. These solutions are of the form 

|ψ λ (k)⟩ = |k⟩ ⊗ |u λ (k)⟩ , (4.4 
H bulk (k) = - ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 0 u we -ik u 0 v we ik v 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ . (4.5)
The spectrum of the bulk Hamiltonian is not symmetric around zero, implying that the system does not possess chiral symmetry3 (Figure 4.5b). Nevertheless, the bulk Hamiltonian of SSH3 possesses generalized chirality [START_REF] Ni | Observation of higher-order topological acoustic states protected by generalized chiral symmetry[END_REF] (see Appendix 7.3

for a brief exposition), which relies on the fact that the system has uniform on-site potentials (i.e., the diagonal part of the Hamiltonian vanishes). Apart from that, the bulk Hamiltonian has an additional symmetry which we call point chirality. This symmetry is a result of the equivalence of the bulk Hamiltonian of SSH3 with the bulk Hamiltonian of a degenerate SSH6 super-lattice which consists of two consecutive SSH3 unit cells [START_REF] He | Non-hermitian generalizations of extended Su-Schrieffer-Heeger models[END_REF]. SSH6 exhibits chiral symmetry and as a result it has a symmetric spectrum with respect to zero energy. We will show in the next section that the existence of point chirality for SSH3 gives rise to similar properties of the two systems either for the finite or for the infinite (bulk) case (i.e., for each positive eigenvalue there exists a corresponding negative eigenvalue with the same absolute value).

Furthermore, SSH3 exhibits edge states for certain values of the couplings. Edge states can appear in the case of a mirror-symmetric SSH3 (i.e., when two out of three couplings are equal) and they emerge at the point where the gap closes (Figure 4.6a).

In general, the Hamiltonian exhibits a band gap closing only when u = v = w (fully degenerate case). However, edge states can also be present in the case of an SSH3 that does not possess mirror symmetry (all couplings different) and their emergence is not related to a gap closing (Figure 4.6b). In the mirror-symmetric case it is obvious that the appearance of edge states is accompanied by the gap closing since the point where u = v = w is unavoidable, while in a chain without mirror symmetry this point can be avoided. However, in the latter case, edge states appear after the passing of mirror-symmetric points, i.e., when w = u and w = v. The aim of this work is to establish a bulk-edge correspondence that will predict the emergence of all these edge states and to explore the impact of symmetries on their profile.

Point chiral symmetry and edge states

As it is evident in Figure 4.5b, the spectrum of the Hamiltonian exhibits an interesting symmetry: For every energy E(k) there exists a corresponding point at πk with opposite energy, possibly belonging to a different band. This observation can be formalized by noticing that 4

Γ p H bulk (k)Γ † p = -H bulk (π + k) (4.6)
where

Γ p = (1, -1, 1) (4.7) 
is unitary and hermitian. The similarity with the (ordinary) chiral symmetry is obvious, except from the fact that here the symmetry relates energy eigenstates corresponding to different k. This symmetry, also reported in [START_REF] Li | Hidden-symmetry-protected topological phases on a onedimensional lattice[END_REF][START_REF] Dias | Long-range hopping and indexing assumption in onedimensional topological insulators[END_REF], combined with

4 Special care should be taken for the case of a finite periodic chain. In order for k +π to be a valid wavenumber, the chain should have an even number of unit cells (though in the thermodynamic limit this condition becomes unimportant). If a finite periodic chain has an odd number of unit cells, (exact) point chiral symmetry breaks. However, a finite open chain always possesses point chiral symmetry because it can also be viewed as embedded in an infinite chain upon which specific boundary conditions have been imposed (see section 4.2.2).

time-reversal symmetry, can give a shifted particle hole symmetry [START_REF] Upreti | Periodically driven photonic topological gapless systems[END_REF]. A consequence of symmetry (4.6) are the relations

E 2 (π -k) = -E 0 (k) (4.8a) E 1 (π -k) = -E 1 (k) , (4.8b) 
where the bands λ = 0, 1, 2 are enumerated from bottom to top. That is, the spectrum is symmetric with respect to the point (k = π/2, E = 0) within the Reduced Brillouin 

Zone (RBZ) k ∈ [0, π] (analogously for k ∈ [-π, 0)),
Γ p H bulk (k)Γ † p = Γ p H * bulk (-k)Γ † p = -H * bulk (π -k) ,
and thus H bulk (k) and -H bulk (πk) have the same spectrum.

For the SSHm models with m odd, although a chiral operator for the bulk Hamiltonian cannot be established, one can define a chiral operator for the corresponding finite open chain as Γ f = diag(1, -1, 1, -1, 1, . . . ). In light of this observation, point chirality can be understood as a manifestation of chiral symmetry of the finite chain on the level of the bulk Hamiltonian. This becomes evident by noticing that the extension of the point chirality operator acting on the finite chain is

Γ p,f = ∑ m (-1) m |m⟩ ⟨m| ⊗ ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 1 0 0 0 -1 0 0 0 1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = diag(1, -1, 1, -1, 1, . . . ) = Γ f (4.9)
where the alternating sign factor (-1) m comes from the shift k → k + π, as prescribed by Eq. (4.6).

Since the symmetry (4.6) is closely related to chiral symmetry (in the above sense), the former also implies well-established consequences [START_REF] Asbóth | The Su-Schrieffer-Heeger (SSH) model[END_REF] for the profile of the eigenstates of the Hamiltonians (4.3). Specifically, eigenstates with nonvanishing energy satisfy the following5 :

(i) They always come in pairs with opposite energies, (ii) The partner eigenstates can be obtained from one another by the action of Γ f , (iii) They have equal support over even and odd sites.

For additional details and derivation of the above properties, see Appendix 7.3.2.

Edge states, if they exist, can be understood as corresponding to a complex wavenumber [START_REF] Marques | Analytical solution of open crystalline linear 1D tight-binding models[END_REF][START_REF] Delplace | Zak phase and the existence of edge states in graphene[END_REF]. Thus properties (i) -(iii) also apply to them, yielding the same features. Edge state pairs with opposite energies are localized on the same side of the chain. This follows since, by the action of a point chiral symmetry, the imaginary part of the wavenumber does not change sign. In Figure 4.7 we plot the spatial profile of the four edge states (two in each gap) that occur for w > u, v in this SSH3 chain when no mirror symmetry is present. One can observe properties (ii) and (iii) in this figure.

As mentioned previously, we aim to a BBC for the SSH3 model. In practice we search for a quantized bulk quantity, which takes integer values corresponding to the number of edge states that appear in the associated open finite chain. Notice that the emergence of the edge states does not occur exactly at w = 6 which would be the case in the thermodynamics limit; this is due to the finite size of the system. The exact way to calculate the finite size corrections is presented later in section 4.2.2. b) A chain with all couplings different (u = 3 and v = 6) -no mirror symmetry is present.

BBC for SSH3: Integer number of cells

For the case of the (dimer) SSH model, the presence of inversion and chiral symmetry guarantee that Zak's phase, defined as

Z ∶= i ∮ dk ⟨u λ (k)|∂ k u λ (k)⟩ (4.10)
where the integration is carried out on the first Brillouin zone, can be a well-defined bulk quantity which takes integer values. This quantity can be used to predict the existence of edge states in each phase [START_REF] Delplace | Zak phase and the existence of edge states in graphene[END_REF][START_REF] Asbóth | The Su-Schrieffer-Heeger (SSH) model[END_REF][START_REF] Maffei | Topological characterization of chiral models through their long time dynamics[END_REF]. The presence of these symmetries is a necessary prerequisite for the quantization of Zak's phase [START_REF] Guzmán | Geometry and topology tango in chiral materials[END_REF][START_REF] Rhim | Unified bulk-boundary correspondence for band insulators[END_REF]. For the case of SSH3 with u = v (mirror-symmetric case) and an integer number of unit cells Zak's phase gives a correct BBC [START_REF] Alvarez | Edge states in trimer lattices[END_REF]. In the absence of this constraint however, Zak's phase does not take integer values and thus cannot be directly used in order to establish BBC.

Despite the absence of the aforementioned symmetries, in the following sections One can observe that pairs of edge states localized on the same edge (corresponding to opposite energies) are related by a sign change of the amplitude over half of the sites. Moreover, all four edge states do not have support over one out of the three sublattices.

we will establish BBC for SSH3 for the general case. The key ingredient will turn out to be a generalization of Zak's phase for the different sublattices, and will emerge as the natural generalization of the usual bulk invariant of the dimer SSH.

Phases of bulk eigenvectors and normalized sublattice Zak's phase

We begin with the case of a finite open chain, with an integer number of cells N . We seek to express the eigenstates of this Hamiltonian in terms of the solutions of the periodic problem, which take the form

|ψ λ (k)⟩ = Λ M ∑ j=1 e ikj |j⟩ ⊗ ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ a A λ (k)e -iθ A λ (k) a B λ (k)e -iθ B λ (k) a C λ (k) ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ , (4.11)
where Λ is a normalization constant to be determined after the imposition of the boundary conditions, M is the number of cells of the periodic chain and λ enumerates the band. We assume M ≫ N so that k can be handled as a continuous variable in k ∈ [-π, π). Similarly to [START_REF] Delplace | Zak phase and the existence of edge states in graphene[END_REF][START_REF] Marques | Analytical solution of open crystalline linear 1D tight-binding models[END_REF], one considers the open chain as embedded within this longer periodic one, and imposes appropriate boundary conditions (see Figure 4.5a), which read

⟨0, C|ψ λ (k)⟩ = 0 , (4.12a) ⟨N + 1, A|ψ λ (k)⟩ = 0 . (4.12b)
The imposition of the boundary condition (4.12a) can be satisfied by a superposition of Bloch states in the form:

| ψλ (k)⟩ = 1 √ 2 (|ψ λ (k)⟩ -|ψ λ (-k)⟩)
which can be compactly written as:

| ψλ (k)⟩ = Λ N ∑ j=1 |j⟩ ⊗ ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ a A λ (k) sin(kj -θ A λ (k)) a B λ (k) sin(kj -θ B λ (k)) a C λ (k) sin(kj) ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ . ( 4 

.13)

Here we kept only the part of the finite chain we are interested in and therefore the normalization constant Λ is appropriately adapted. To get the above form, we have also used the time-reversal symmetry, i.e, θ s λ (k) = -θ s λ (-k) and a s λ (k) = a s λ (-k) where s = A, B, C and as a convenient gauge choice we fix the C-sublattice component to be real (θ C λ (k) = 0). Now, by imposing the second boundary condition (4.12b), one gets

θ A λ (k) = (N + 1)k -n λ π, n λ ∈ Z (4.14)
where n λ counts the allowed real k solutions. The finite problem will have exactly 3N eigenvectors, i.e., N for each band. If condition (4.14) yields less than N distinct eigenstates for each band, the missing solutions can be expressed in terms of complex wavenumbers and turn out to be the edge states [START_REF] Delplace | Zak phase and the existence of edge states in graphene[END_REF][START_REF] Alvarez | Edge states in trimer lattices[END_REF].

In turn, since the number of allowed solutions is dictated by (4.14), it is natural to assume that for the case of SSH3 with an integer number of unit cells, the condition that determines the number of Bloch solutions -and thus, also the number of localized solutions -for each band is encoded in a bulk quantity, namely the phase θ A λ of the first sublattice. The above reasoning dictates that this information can be extracted through the winding of a sublattice. This winding was defined in [START_REF] Pletyukhov | Surface charge theorem and topological constraints for edge states: Analytical study of one-dimensional nearest-neighbor tight-binding models[END_REF] and we will call it normalized sublattice Zak's phase (NS Zak's phase) because it can be also viewed as a quantity similar to the one defined in [START_REF] Guzmán | Geometry and topology tango in chiral materials[END_REF], but with an extra normalization 6 :

Z λ A,C ∶= i 2 ∮ dk ⟨ũ λ (k)|∂ k ũλ (k)⟩ = ∫ π 0 dk ∂θ A λ (k) dk . (4.15) 
Above we defined |ũ λ (k)⟩ ∶=

P A |u λ (k)⟩ √ ⟨u λ (k)|P A |u λ (k)⟩ = e -iθ A λ (k)
|A⟩ and P A ∶= |A⟩⟨A| is the sublattice projector. The first subscript denotes the projected sublattice, the second subscript denotes the gauge condition θ C λ = 0, while λ denotes the corresponding band. We also used the fact that θ A λ (k) is an odd function of k due to time-reversal symmetry in order to integrate in the RBZ.

Normalized sublattice Zak's phase: Z or Z 2 invariant? Zak's phase, as defined in Eq. (4.10), is interpreted by many authors as a Z 2 invariant [START_REF] Maffei | Topological characterization of chiral models through their long time dynamics[END_REF][START_REF] Longhi | Probing topological phases in waveguide superlattices[END_REF][START_REF] Midya | Topological multiband photonic superlattices[END_REF] especially in the context of super-lattices and many bands. This 6 The formula of NS Zak's phase given in (4.15) can be evaluated by treating the variable θ A λ (k) over the real line instead of choosing a branch of range 2π. This is because, if a specific branch is chosen, then Eq. (4.15) should be altered and contribution π must be added for each jump that happens when the angle changes branch. On the other hand, H bulk (k) has a smooth dependence on the wavenumber k, which is inherited to its eigenvectors (apart from the degenerate point u = v = w). As such, the variables {θ s λ (k)} s=A,B,C always admit a unique (smooth) extension over the real line, up to an additive constant which drops out of Eq. (4.15). We will henceforth adopt this convention, and hence evaluate

Z λ A,C = θ A λ (π) -θ A λ (0).
means that Zak's phase can take only two integer values that correspond to two phases (trivial or topological). In this framework, Zak's phase is defined mod(2π), the quantization is achieved via chiral or inversion symmetry [START_REF] Zak | Berry's phase for energy bands in solids[END_REF] and it is used to characterize band gaps as trivial or topological (if they contain edge states or not) in the following manner: In a multi-band system, one calculates the sum of Zak's phases corresponding to all the bands below the gap to be probed. The number of edge states in the desired gap is the outcome of the summation mod(2π). On the contrary, here we aim to probe bands instead of gaps. This means that instead of the question "how many edge states are in a given gap?", we are going to answer the question "how many states are missing from a given band?". It is then clear that the bulk quantity should be defined as a Z invariant (as is the case with Eq. (4.15)), i.e., an invariant that can take all integer values, and not as a Z 2 invariant, because some bands can contribute two edge states (see Figure 4.6).

In order to achieve gauge invariance, we will employ differences of NS Zak's phases.

Apart from being mathematically helpful [START_REF] Cooper | Topological bands for ultracold atoms[END_REF], this way of defining the invariant also corresponds to an experimentally measurable quantity [START_REF] Atala | Direct measurement of the zak phase in topological bloch bands[END_REF]. Specifically, we will assign physical meaning only to a difference of NS Zak's phases with respect to an (arbitrary, but conveniently chosen) reference Hamiltonian. The NS Zak's phase for this

Hamiltonian will be denoted as Z λ,ref A,C and it will be defined in a specific gauge. As we will momentarily show, the gauge-invariant quantity

(Z λ A,C -Z λ,ref A,C
)/π will be equal to difference in the number of edge states (in band λ) between the target Hamiltonian and the reference one.

BBC for a chain with an integer number of unit cells

We are now ready to state the main result of this section: An (open) SSH3 chain with 3N sites, in the thermodynamic limit N → ∞, has exactly

(Z λ A,C -Z λ,ref A,C )/π
edge states which have emerged from band λ. Z λ,ref A,C denotes the NS Zak's phase of the "reference" coupling regime that has no edge states, which here can be any chain with w < u, v.

Although we will henceforth work for convenience with the specific gauge prescribed earlier, the above statement is independent of this choice. In fact, our derivation will yield a stronger result, allowing us to predict analytically the phase diagram as a function of the hopping parameters for any finite size.

Derivation of BBC for a chain with an integer number of unit cells

As discussed previously, the number of the delocalized eigenstates of the Hamiltonian (4.3a) is dictated by the quantization condition (4.14). We now turn to investigate analytically the dependence of the number of distinct solutions of this equation as a function of the hopping parameters of the Hamiltonian.

We will follow the approach of Ref. [START_REF] Banchi | Spectral problem for quasi-uniform nearest-neighbor chains[END_REF], that is, parametrize the eigenvalues of the finite problem in terms of the eigenvalues of the bulk Hamiltonian. This can be achieved via recursive relations for the characteristic polynomials involving subdeterminants of the finite Hamiltonian. By implementing this technique, one arrives at a complete set of conditions that, when satisfied, yield the non-edge state solutions of the finite problem. A derivation for SSHm (m ∈ N) can be found in [START_REF] Marques | Analytical solution of open crystalline linear 1D tight-binding models[END_REF]. The specific condition for the case of SSH3 is derived for convenience in Appendix 7.4 and reads:

cot(ϕ λ (k)) = cot[(N + 1)k] = 1 a A λ (k) sin(k) + cot(k) (4.16a) a A λ (k) ∶= - w uv E λ (k) , (4.16b)
where the angular variable ϕ λ (k) is known as the momentum shift [START_REF] Marques | Analytical solution of open crystalline linear 1D tight-binding models[END_REF] and E λ (k) is the energy eigenvalue of the band λ. For the case of an integer number of cells and gauge θ C λ (k) = 0, one can in addition take

ϕ λ (k) = θ A λ (k) . (4.16c)
We are now able to deduce (i) the value of the NS Zak's phase and (ii) the number of edge states over the hopping parameter space.

Normalized sublattice Zak's phase

By combining Eqs. (4.15) and (4.16) it immediately follows that NS Zak's phase is

quantized, i.e., Z λ A,C = n λ π with n λ ∈ Z. This is because cot[θ A λ (k)] = 1 -w uv E λ (k) cos(k) -w uv E λ (k) sin(k) (4.17)
and, since the eigenenergies E λ (k) are continuous and bounded functions of k, Eq. (4.17)

diverges when k → 0 + , π -.
Our next task is to deduce the values Z λ A,C as a function of the Hamiltonian parameters. For that, we will first determine the hypersurfaces in the parameter space that separate regions with different values of Z λ A,C . In Appendix 7.5 we show that all such separating hypersurfaces are determined by the equation g λ (k) = 0, where g λ (k) ∶= 1 -w uv E λ (k) cos(k) is the numerator in Eq. (4.17). The values of the hopping parameters satisfying the equation g λ (k) = 0 can be obtained analytically via invoking the fact that the eigenvalues of the bulk Hamiltonian satisfy the characteristic polynomial. The latter reads 

E 3 λ (k) -(u 2 + v 2 + w 2 )E λ (k) + 2uvw cos(k) = 0 . ( 4 
Z λ A,C -Z λ,ref A,C Z λ A,C -Z λ,ref A,C Z λ A,C -Z λ,ref A,C Band λ a, b > 1 a < 1, b > 1 a, b < 1 a > 1, b < 1 0 0 π π 1 0 0 2π 2 0 π π Table 4.1: Table of the different values of Z λ A,C -Z λ,ref A,C
for the case of integer number of unit cells in different coupling regimes. Here the reference chain is any chain with a, b > 1.

independently of the band λ.

We have therefore shown that all possible changes of the quantized Z λ A,C can occur on the lines a = 0, ±1 and b = 0, ±1 of the a-b real plane, i.e., when w = ±u and w = ±v.

The parameter space is divided by the above surfaces into regions over which NS Zak's phase, for all of the bands, cannot change value. It is hence now straightforward to deduce the actual value of Z λ A,C for each band, and for each of the few resulting regions of the parameter space. This can now be done easily (see Appendix 7.5), and the resulting values for NS Zak's phase are summarized in Table 4.1.

Counting edge states

The last piece remaining is to show how one can systematically count the number of edge states as a function of the hopping parameters, also taking into account finite-size effects. For that, we will follow an approach similar to Ref. [START_REF] Delplace | Zak phase and the existence of edge states in graphene[END_REF].

Effectively, this task reduces to counting the number of distinct eigenstates yielded by θ λ (k) when Eq. (4.14) is taken into account. Graphically, one can equivalently investigate the number of intersections of ϕ λ (k) with the lines {F n (k)} n , where

F n (k) ∶= (N + 1)k -nπ, n ∈ Z in the open interval k ∈ (0, π).
The reason that one should take the RBZ is that due to time-reversal symmetry, only half of the Brillouin zone produces distinct eigenstates. Furthermore, one has to exclude the endpoints of the interval because the eigenstates are identically zero at 0 and π again due to time-reversal symmetry. Therefore, in the trivial regime -where the system does not exhibit edge states -the number of intersections between ϕ λ (k) and the lines {F n (k)} n in the RBZ should be exactly N , i.e., equal to the number of unit cells of the finite system we are investigating. On the other hand, if the system exhibits edge states, this means that there are less than N intersections within the RBZ. This is demonstrated in Figure 4.8 for the middle band (λ = 1). Due to the continuity of θ A λ (k), each band cannot contribute with more than two edge states, i.e., missing solutions always correspond to endpoint lines. Moreover, the number of edge states (for an arbitrary finite size N ) does not only depend on the values at the endpoints, but also on the shape of the curve near the endpoints. In fact, the relevant feature is the slope (see Figure 4.8), and the corresponding condition is analogous to the one stated by Delplace et al. [START_REF] Delplace | Zak phase and the existence of edge states in graphene[END_REF]. Specifically, the slope condition takes the form

0 ≤ ∂ k θ A λ (k)| k=π ≤ ∂ k F n (k)| k=π (4.20a) which reduces to 1 ≥ 1 a A λ (π) ≥ 1 - 1 N + 1 (4.20b)
where λ = 1, 2 denotes the middle or the top band, respectively. The above condition is satisfied if and only if a) there is a double edge state contribution from the middle band (case λ = 1) and b) there is a single edge state contribution from the top band and a single one from the bottom bands (case λ = 2).

It is important to note that due to point chiral symmetry, the behavior of the bottom band can be deduced from the top band, hence there is no need to examine the case λ = 0 separately.

Point chiral symmetry imposes the following constraints on the momentum shift:

a) The momentum shift of the middle band is symmetric around (k, E) = (π/2, 0).

Thus, the fact that the middle band necessarily contributes with pairs of edge states can be understood as a consequence of the above unitary symmetry. b) The momentum shift of the bottom band is symmetric to the one of the topmost band with respect to (k, E) = (π/2, 0). As a result, when the condition for the existence of an edge state is satisfied for either the top or the bottom band, a corresponding relation will be satisfied for the other one as well.

It is easy to see that in the thermodynamic limit

N → ∞, ∂ k F n (k)| k=π → ∞.
This means that condition (4.20b) will be always satisfied as long as momentum shift is a smooth function with a positive finite value at k = π. In that case, only the values of the momentum shift at the edges of the RBZ are relevant and the derivative conditions can be dropped. As a result, the values of Z λ A,C are sufficient to determine alone the number of edge states in the thermodynamic limit. Now, coming back to (4.20b), one can investigate the limiting case where:

1 a A λ (π) = 1 - 1 N + 1 . (4.21) 
This defines size-dependent curves in the (a, b)-parameter space separating regions where a different number of edge states are exhibited, see Figure 4.9. In the thermodynamic limit, one recovers the phase diagram predicted by the NS Zak's phase, since the above equation reduces to g λ (π) = 0, concluding the derivation of the bulk-edge correspondence for an integer number of unit cells.

In In Appendix 7.5.1, one can find a detailed derivation of BBC for chains with 3N + 1 and 3N + 2 particles. Furthermore, NS Zak's phase can be applied to other SSHm models (like SSH 4 ) -see Appendix 7.5.2 even when mirror symmetry is absent and establish BBC. We will turn now to a realization of this system as an acoustic waveguide. This will give us the opportunity to test the predictions of sublattice Zak's phase in a real platform but also to test if HOC coordinates (specifically the flux field), can be used to establish BBC for diverse boundaries in the case of SSH3, which exhibits a complex phase diagram and edge states emerge without a band gap closing.

Acoustic SSH3

We will proceed now with the demonstration of an acoustic system that can be mapped to the SSH3 model. We will demonstrate that an air-filled acoustic waveguide composed of periodically arranged segments of length L and three different cross sections S A , S B and S C , as depicted in Fig. 4.11(a) is a good platform to test the theoretical predictions for this model. We begin by demonstrating how low frequency sound wave propagation in this network can be modelled by a a discrete set of equations through the transfer matrix method.

Mapping of wavefunction to pressure amplitudes at jump points

As in the case of the acoustic SSH that we investigated in Chapter 2, the sublattices of the SSH3 are mapped to the points where the cross sections of the waveguide change as is depicted in Fig. 4.11(a-b). The amplitude of the pressure field at these points is mapped to the amplitude of the discrete wavefunction of the SSH3. We denote as A, B, C the points points of the waveguide where the cross-section changes occur and as p n,j with j = A, B, C the pressure amplitude at these points at the n th unit cell. The cross-section of the segment CA is denoted as S A , of AB as S B and of BC as S C . By solving piece-wise the Helmholtz equation at each segment and taking the left and right contribution at each change of cross-section -taking into account the "jump" conditions:

p n,j+ = p n,j-, ϕ n,j+ = ϕ n,j-, (4.22) 
where ϕ n,j ∶= S j dp n,j dx is the flux velocity at the change of cross section, one can get a system of equations for the pressure field at these points. Following the same technique as in [START_REF] Coutant | Acoustic su-schrieffer-heeger lattice: Direct mapping of acoustic waveguides to the su-schrieffer-heeger model[END_REF] we arrive at:

w pn-1,C + up n,B = pn,A E(k), (4.23) 
up n,A + ν pn,C = pn,B E(k), (4.24) 
ν pn,B + w pn+1,A = pn,C E(k), (4.25) 
where pn,j are renormalized pressure amplitudes, E(k) = cos kL, and: 

u = S A √ (S C + S A ) (S A + S B ) (4.26) ν = S B √ (S B + S C ) (S A + S B ) , (4.27) 
w = S C √ (S C + S A ) (S C + S B ) . (4.28) 
Equations (4.23) -(4.25) describe the SSH3 model. Furthermore, by using Bloch's theorem, i.e assuming periodic boundary conditions (equivalently an infinite system) and: pn,A = pA e iqn , pn,B = pB e iqn , pn,C = pC e iqn one can recover the following eigenvalue problem:

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 0 u we -iq u 0 ν we iq ν 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ pA pB pC ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = E(k) ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ pA pB pC ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ , (4.29) 
where E(k) = cos kL is a "pseudo-energy". By comparing (4.29) with (4.5) we see that the the matrix in (4.29) has the same form as the SSH3 Hamiltonian of equation (4.5). Thus, as long as the monomodal assumption holds, the acoustic analog is an ideal ground to test experimentally predictions derived by bulk-edge correspondence for the case of the SSH3. In Figure 4.11(b) we present the dispersion for the acoustic model obtained via the transfer matrix method.

Different boundary conditions demand different mappings

In order to establish bulk-edge correspondence for the SSH3, the BCs imposed on the finite (non-periodic) structure should be Dirichlet in accordance to our derivation of BBC through the sublattice Zak's phase -i.e the amplitude of the wavefunction should be zero at the boundary. In the aforementioned mapping, a waveguide with open boundaries maps exactly to the Dirichlet BCs and the finite version of the Hamiltonian analog of (4.29) has the exact same form as in the case of a finite SSH3.

As a result, we expect that for given values of the cross-sections we will observe the number of edge states predicted by Z λ B,C if we want to establish BBC for a waveguide with 3N + 1 changes of cross-section. However, our aim is the experiment where the open boundaries are "leaky" and don't give good precision. Ideally we would like to do the experiment with closed boundaries (Neumann b.cs). As we have seen from the case of the simple SSH, the use of HOC can re-establish BBC in analogous situations. We will demonstrate now how one can obtain the phase diagram for Neumann BCs through the utilization of the flux field.

Acoustic SSH3 as a flux topological metamaterial

In the flux coordinates, the wavefunction amplitude at each site of the SSH3 is mapped to the flux velocity amplitude at each change of cross-section instead of the pressure amplitude at these points. We will demonstrate how this mapping gives an equivalent description for closed boundaries but the mapping of the u, ν, w couplings to the cross sections changes when investigating the same bulk -interchanging the phases of the system. Thus, the effective Hamiltonian is different and although bulkedge correspondence is restored, it gives different predictions. We will show that this new mapping is equivalent to changing the cross sections in the following manner:

S 1 → 1 S 1 , S 2 → 1 S 2 , S 3 → 1 S 3
and bulk-edge correspondence changes accordingly. Let us note, that the predictions made here have been verified numerically and experimentally by Ioannis Ioannou Sougleridis7 .

Derivation

We start again from the 1D Helmholtz equation. The transfer matrix for each segment with a constant cross setion is:

T l = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ cos (kL) iZ l sin (kL) i Z l sin (kL) cos (kL) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ , (4.30) 
where Z l = ρ 0 c 0 /S l is the waveguide impedance, ρ 0 is the density of air and the subscript l = CA, AB, BC denotes the corresponding waveguide segments. Taking the left and right propagation of flux at each change of cross section and applying the jump conditions (4.22), we get the following relations for the pressure-flux amplitudes at for the segments AB and BC:

ϕ n,B = ϕ n,A cos (kL) + i Z A sin (kL)p n,A , (4.31) 
ϕ n-1,C = ϕ n,A cos (kL) - i Z C sin (kL)p n,A . (4.32) 
Next we multiply (4.31) by Z A and (4.32) by Z C and add them up. By dividing the resulting equation with 1 Z C +Z A , we get:

Z C Z C + Z A ϕ n-1,C + Z A Z C + Z A ϕ n,B = ϕ n,A cos (kL). (4.33) 
By repeating the same procedure with the rest of the segments, we arrive at the following system of equations that describe a discrete SSH3 model:

w φn-1,C + u φn,B = φn,A E(k), (4.34) 
u φn,A + ν φn,C = φn,B E(k), (4.35) 
ν φn,B + w φn+1,A = φn,C E(k), (4.36) 
where: φn

,A = √ Z C + Z A ϕ n,A , φn,B = √ Z A + Z B ϕ n,B , φn,C = √ Z B + Z C ϕ n,C
, and:

u ′ = Z A √ (Z C + Z A ) (Z A + Z B ) = √ S B S C (S C + S A ) (S A + S B ) (4.37) 
ν ′ = Z B √ (Z B + S C ) (Z A + Z B ) = √ S A S C (S B + S A ) (S B + S A ) , (4.38) 
w ′ = Z C √ (Z C + Z A ) (Z C + Z B ) = √ S A S B (S C + S A ) (S C + S B ) . (4.39) 
Furthermore, by using Bloch's theorem, i.e assuming periodic boundary conditions (equivalently an infinite system) and: φn,A = φA e iqn , φn,B = φB e iqn , φn,C = φC e iqn one can recover the following eigenvalue problem: We also present a grid with lines were either u = const. or w = const. and different colours for each region. We do this to highlight in b) and c) how this grid will be "distorted" under the mappings to the acoustic systems. b) The phase diagram of the acoustic analog in pressure mapping and Dirichlet b.cs. One can observe that the the grid now acquires some curvature but interestingly the "mirror symmetric lines" remain intact under the mapping. c). The phase diagram of the acoustic analog in flux mapping and Neumann b.cs. The regions are inverted with respect to the pressure mapping.

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 0 u ′ w ′ e -iq u ′ 0 ν ′ w ′ e iq ν ′ 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ φA φB φC ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = E(k) ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ φA φB φC ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ , (4.40) 
where E(k) = cos kL is again the "pseudo-energy". By comparing (4.37)-(4.39) with (4.26)-(4.28) one can see that the new couplings (of the flux mapping) can be obtained from the pressure ones by the substitution:

S 1 → 1 S 1 , S 2 → 1 S 2 , S 3 → 1 S 3 .
The finite version of this matrix when closed BCs are applied to the waveguide (Nuemann), has the exact same form as the SSH3 finite Hamiltonian with Dirichlet b.cs. Thus bulkedge correspondence is restored but the couplings are mapped to the inverse cross sections with respect to the ones of the open waveguide case. Indeed the number of observed edge states matches with the values of the bulk invariant but for these new couplings.

In Figure 4.12 we demonstrate how the phase diagram of SSH3 is mapped in each case (acoustic system with open vs closed boundaries). In Figure 4.12(a) we present the phase diagram for an SSH3 with 3N+1 sites as predicted by Z λ B,C . Four different parametric regions can be identified: one region with no edge states (when ν > u, w), two regions with one edge state (w > ν > u or u > ν > w) and one with two edge states (ν < u, w). For the acoustic system (Figure 4.12(b-c)), the relations between the couplings is translated to relations between the cross-sections as indicated by (4.26)-(4.28) and (4.37)-(4.39). As one can observe, the phases are interchanged between the different mappings. As it turns out, HOC are an invaluable tool for establishing BBC for different boundary conditions even in the case of models that do not fall in the tenfold classification and exhibit a more complex phase diagram.

SUPERSYMMETRY, DUALITY, ISOSPECTRALITY

Our previous investigations have demonstrated that there are two ways to describe the bulk of each system, which correspond to coordinates of different order.

The bulk symmetries are affected by the choice of description. Furthermore, the different coordinate systems are suitable for establishing BBC for different boundary conditions.

In this chapter we will shift our attention to a another question: Why do HOC coordinates become relevant when different boundary conditions are chosen? Is there a deeper justification for the apparent success of these coordinates in unveiling topological properties in all the aforementioned systems? We will try to answer this question.

We will show, for the case of mechanical systems, that strain (HOC) and typical displacement coordinates are related via supersymmetry (SUSY) [START_REF] Gendenshteȋn | Supersymmetry in quantum mechanics[END_REF][START_REF] Sohnius | Introducing supersymmetry[END_REF][START_REF] Grover | Emergent space-time supersymmetry at the boundary of a topological phase[END_REF][START_REF] Cooper | Supersymmetry and quantum mechanics[END_REF]. The natural occurrence of SUSY between typical and HOC topological metamaterials will have far reaching consequences. Specifically, an important consequence of SUSY is the isospectrality of superpartner systems up to zero modes. This technique has been used in supersymmetric quantum mechanics to unveil shape invariant potentials, i.e potentials that result in the same spectrum but with a different parameter dependence [START_REF] Cooper | Supersymmetry and quantum mechanics[END_REF].

We will demonstrate that displacement and strain dynamical matrices (D u and D s ) can be seen as parts of an extended dynamical matrix (D e = D u ⊕D s ) defined in a superspace that contains both displacement and strain degrees of freedom and obeys a SUSY algebra. Due to that, D u and D s can be seen as superpartners and they will be isospectral up to zero modes according to SUSY. Furthermore, we will show that unitary transformations in this extended superspace lead to different systems

(UD e U † = D ′ e = D ′ u ⊕ D ′ s )
in which the number of generalized masses1 and bonds becomes interchanged but they exhibit the same spectrum. This notion of different systems, connected by unitary transformations and thus possessing the same spectrum, resembles the concept of duality [START_REF] Kramers | Statistics of the two-dimensional ferromagnet. part i[END_REF][START_REF] Savit | Duality in field theory and statistical systems[END_REF][START_REF] Maldacena | The large-n limit of superconformal field theories and supergravity[END_REF][START_REF] Senthil | Deconfined quantum critical points[END_REF][START_REF] Fruchart | Dualities and non-abelian mechanics[END_REF]. In the new system, the displacement matrix (D ′ u ) will be isospectral to the old strain dynamical matrix (D s ).

Furthermore, since D s is isospectral to D u up to zero modes, D ′ u will also be isospectral to D u up to zero modes. We will show that the application of different boundary conditions alters the number of bonds and generalized masses and can be seen as rotations (unitary transformations) in this extended space. As a result, systems with different boundary conditions may exhibit the same spectrum up to zero modes. In the special case where the number of bonds is equal to that of the generalized masses (for example in the bulk/periodic case where the Maxwell index is zero) we will have an exact isospectrality. Lastly, we will present an example of how strain-displacement SUSY can be harnessed in order to create novel topological metamaterials.

SUSY between strains and displacements

Recently, attempts have been made to connect topological insulators and superconductors to supersymmetry [START_REF] Grover | Emergent space-time supersymmetry at the boundary of a topological phase[END_REF] and use it for topological state engineering [START_REF] Queraltó | Topological state engineering via supersymmetric transformations[END_REF].

Furthermore, links have been uncovered between mechanical bosonic systems and their fermionic partners (for example the Kane-Lubensky SSH can be seen as a Kitaev chain super partner [START_REF] Attig | Topological mechanics from supersymmetry[END_REF]) and also SUSY has been applied to connect mechanical lattices to magnon systems [START_REF] Lawler | Supersymmetry protected topological phases of isostatic lattices and kagome antiferromagnets[END_REF]. Our endeavour will be to formulate the displacement and strain descriptions in a unified framework related to SUSY.

Basic concepts of SUSY

Supersymmetry is interpreted as a transformation which transforms bosons to fermions and vice versa. Furthermore, it demands the introduction of a superalgebra,

i.e an algebra that includes both commutation and anti-commutation relations [START_REF] Gendenshteȋn | Supersymmetry in quantum mechanics[END_REF].

In SUSY, the standard procedure is to introduce an extended Hilbert space H (superspace) which is the direct sum of two Hilbert spaces: a space called the bosonic Hilbert space H B and a space called fermionic Hilbert space H F . The full space will be H = H B ⊕ H F and one can define the operator:

Z = ⎛ ⎜ ⎜ ⎝ I boson 0 0 -I fermion ⎞ ⎟ ⎟ ⎠ , (5.1) 
where I boson/fermion is the identity matrix in the corresponding sub-spaces. In this space, states that are eigenvectors of Z with a positive eigenvalue correspond to bosons (even states), and states with a negative eigenvalue correspond to fermions (odd states). The next step is to introduce two operators (the supercharges: Q -, Q + ) that transform bosons to fermions and vice versa. These operators need to be nilpotent:

Q 2 -= Q 2 + = 0,
because by construction they include fermionic operators2 . A SUSY Hamiltonian in the most simple case can be written as: H SUSY = {Q -, Q + }, where the brackets stand for the anti-commutator. The most simple super-algebra is:

{Q i , Q j } = δ ik H SUSY , i, k = -, + (5.2) 
[Q i , H SUSY ] = 0. (5.3)
ment degrees of freedom is related to the number of generalized masses, and the number of strain degrees of freedom is related to the number of bonds, this SUSY can be interpreted as a symmetry between generalized masses and bonds. In the systems that we examine, this interpretation is exact. In higher dimensions, although the construction holds, the interpretation is not exact because more displacement degrees of freedom correspond to each mass 3 . We will first show that SUSY holds for systems with all masses and bonds equal. This is the case of the isostatic lattices (where the number of displacement degrees of freedom is equal to the number of strain degrees of freedom) that were examined by Kane and Lubensky [START_REF] Kane | Topological boundary modes in isostatic lattices[END_REF].

Let's see now how the Kane-Lubensky construction (2.9) can be identified with SUSY. Kane and Lubensky introduced a Hamiltonian given by:

H KL = ⎛ ⎜ ⎜ ⎝ 0 C † C 0 ⎞ ⎟ ⎟ ⎠ , (5.6) 
which upon squaring gave:

H 2 KL = D e = ⎛ ⎜ ⎜ ⎝ C † C 0 0 CC † ⎞ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎝ D u 0 0 D s ⎞ ⎟ ⎟ ⎠ . (5.7) 
One can see that if we do the following identifications:

3 Nevertheless it could be generalized if we assumed one mass for each degree of freedom. This can easily be done if we take into account the form of Newtons equations for a particle in higher dimensions:

m ⃗ u = ⃗ F ↔ ⎛ ⎝ m x üx m y üy m z üz ⎞ ⎠ = ⃗ F , (5.5) 
and with the constrain m x = m y = m z = m. The same can be applied to generalized masses (like the moment of inertia if we include rotations) and for bonds.

Q +,KL = ⎛ ⎜ ⎜ ⎝ 0 C † 0 0 ⎞ ⎟ ⎟ ⎠ , Q -,KL = ⎛ ⎜ ⎜ ⎝ 0 0 C 0 ⎞ ⎟ ⎟ ⎠ , Q KL = Q -,KL + Q +,KL = H KL , H SUSY = H 2 KL = D e , (5.8) 
where C is the compatibility matrix, then we can find a SUSY algebra (relations (5.2)-(5.3)) involving the extended dynamical matrix D e = D u ⊕ D s and the supercharges constructed via the compatibility matrix:

{Q i,KL , Q j,KL } = δ ik D e , i, k = -, + (5.9) 
[Q i,KL , D e ] = 0.

(5.10)

The extended dynamical matrix is defined in the superspace E = U ⊕ S which is the tensor sum of the displacement (U) and strain (S) vector spaces. One can verify that the eigenvectors of D u (phonons) will be even with respect to the operator Z (relation (5.1)) and thus correspond to bosons, while the eigenvectors of D s will be odd, corresponding to fermions in this extended scheme 4 . As a result, D u and D s are superpartners and they are isospectral up to zero modes, as dictated by SUSY.

As already mentioned, this construction, introduced by Kane and Lubensky [START_REF] Kane | Topological boundary modes in isostatic lattices[END_REF], assumes that all masses and springs (bonds) are equal. We show here that even in the case of different springs and masses there is still a SUSY between displacements and strains.

To do that, one should use the relation: F = C † T , which relates the net force exerted to each particle (F = f 1 , f 2 , ...f N ), to the tensions of the springs connecting

D s = CM -1 u C † K s . (5.14) 
By comparing (5.12) to (5.14), we observe that D u = AB and D s = BA, where

A = M -1 u C † K s and B = C.
Let us also note that for a system with N displacement degrees of freedom and M strain degrees of freedom, the dimension of M u will be N ×N and the dimension of K s will be M ×M . This means that A will have dimension N ×M and B, M × N . As a result, in the general case, the degrees of freedom of D u and D s

will not be the same (D u having dimension N × N and D s M × M ). This implies a SUSY algebra in a superspace with dimension (M + N ) × (M + N ) for a system with N particles and M bonds, with the following structure:

Q + = ⎛ ⎜ ⎜ ⎝ 0 (N ×N ) A (N ×M ) 0 (M ×N ) 0 (M ×M ) ⎞ ⎟ ⎟ ⎠ , Q -= ⎛ ⎜ ⎜ ⎝ 0 (N ×N ) 0 (N ×M ) B (M ×N ) 0 (M ×M ) ⎞ ⎟ ⎟ ⎠ , (5.15 
)

D e = ⎛ ⎜ ⎜ ⎝ (AB) (N ×N ) 0 (N ×M ) 0 (M ×N ) (BA) (M ×M ) ⎞ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎝ (D u ) (N ×N ) 0 (N ×M ) 0 (M ×N ) (D s ) (M ×M ) ⎞ ⎟ ⎟ ⎠ . ( 5.16) 
Due to SUSY, D u and D s will be isospectral up to zero modes. Note that this derivation is general and holds for both the finite and the periodic/infinite case.

Nevertheless, in (5.16), both the bosonic and the fermionic parts are different descriptions of the same system. We will now take an extra step in order to see if we can harness SUSY to unravel new connections between different systems.

Rotations in superspace -a form of duality?

We will introduce a unitary operator in the superspace:

U = ⎛ ⎜ ⎜ ⎝ 0 (M ×N ) U (M ×M ) U † (N ×N ) 0 (N ×M ) ⎞ ⎟ ⎟ ⎠ .
(5.17)

and as a result if we transform D e by it, it will conserve the spectrum. Let's investigate what is the result of such a rotation in the superspace:

UD e U † = D ′ e = ⎛ ⎜ ⎜ ⎝ (U D s U † ) (M ×M ) 0 (M ×N ) 0 (N ×M ) (U † D u U ) (N ×N ) ⎞ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎝ D ′ u(M ×M ) 0 (M ×N ) 0 (N ×M ) D ′ s(N ×N ) ⎞ ⎟ ⎟ ⎠ . (5.18)
By comparing (5.18) to (5.16), we observe that the effect of the unitary transformation in the superspace is to arrive at a different system. In (5.16) we had a system with N generalized masses and M bonds , but in (5.18) we have a system with M gen.

masses and N bonds. This transformation can be identified with a duality [START_REF] Fruchart | Dualities and non-abelian mechanics[END_REF][START_REF] Fruchart | Systematic generation of hamiltonian families with dualities[END_REF].

Specifically, according to [START_REF] Fruchart | Systematic generation of hamiltonian families with dualities[END_REF], if a Hamiltonian H depends on a parameter P , then a duality is defined as:

U H(f (P ))U † = H(P ), (5.19) 
where f (P ) is a function of the initial parameter. We can see that if we define a parameter parameter vector P = (m 1 , m 2 , ....m N , k 1 , k 2 ...k M ) transformation (5.18), takes us to a system that depends on

f (P ) = (m ′ 1 , m ′ 2 , ....m ′ M , k ′ 1 , k ′ 2 ...k ′ N ).
We can thus identify the rotation in the superspace as a duality transformation: UD e (P )U † = D e (f (P )), (5.20) which we will call superspace duality.

What will interest us is how this superspace duality is translated in the subspaces.

We observe by comparing (5.16) and (5.18) that D ′ u of the new system will be equal to U D s U † of the old system6 , and thus isospectral to D u up to zero modes (we remind that D s and D u of the initial system are isospectral since they are SUSY partners).

As a result, the superspace duality will lead to two different systems described by D u and D ′ u which will be isospectral up to zero modes.

Zero modes and Witten index

As we showed, in SUSY theories, all the non zero energies are doubly degeneratethat is: bosonic and fermionic states come in pairs with the same energy [START_REF] Cooper | Supersymmetry and quantum mechanics[END_REF]. The difference in the number of boson and fermion zero energy states is a topological invariant and it can be used to determine if the SUSY is broken or not. This is codified by the Witten index: ∆ W = n 0 bn 0 f , where n 0 b is the number of bosonic zero energy states and n 0 f is the number of fermionic zero energy states [START_REF] Catterall | Exact lattice supersymmetry[END_REF]. A necessary but not sufficient condition for broken SUSY is ∆ W = 0 [START_REF] Witten | Constraints on supersymmetry breaking[END_REF]. If ∆ W ≠ 0, then there exists at least one exact zero mode and the SUSY is exact. For the case of Mechanical SUSY, we observe that ∆ W is identified by the Maxwell index: ∆ W = N u -N s , i.e the difference between displacement DOFs (N u ) and bonds (N s ). Of course, the number of bonds is equal to the number of strain DOFs. The identification of the Maxwell index with the Witten index has already been made in [START_REF] Lawler | Supersymmetry protected topological phases of isostatic lattices and kagome antiferromagnets[END_REF] but following a slightly different path for introducing supersymmetry. In our case -and for the 1D systems we investigated, we can see that the Maxwell index (value of the Witten index) is closely related to the imposed BCs. Specifically, for periodic BCs, there will be no difference in the number of zero modes (because N u = N s ). Nevertheless, for the case of mechanical systems, ∆ W = 0 does not imply a breaking of SUSY 7 .

For the case of finite chains (broken translation invariance), the imposed BCs (fixed/free), lead to a non-zero Maxwell (Witten) index. For fixed boundaries we have more displacement than strain degrees of freedom while for free boundaries we have more strain degrees of freedom. In all the 1D chains that we have examined in this thesis we can observe something more: The application of different BCs keeps the absolute value of ∆ W the same but changes the sign. For example in the mass dimer, for fixed boundaries we have one extra spring, while for free boundaries we have an extra mass. As a result for fixed boundaries we will have ∆ W = -1 and for free ∆ W = 1. For the Kitaev chain, if we consider the generalized masses (mass (m) of each particle and moment of inertia (I)) and springs (bending stiffness (K B ) and shear stiffness (K s )), we will have ∆ W = -2 for fixed boundaries and ∆ W = 2 for free.

The application of different boundary conditions seems to exchange the number of bonds and generalized masses and this is reflected in the change of sign of ∆ W . We will now pose the question: Could the systems with different boundary conditions that exchange the number of bonds with the number of generalized masses be related by a rotation in the extended space of the form given by (5.17)? If the answer to this question is yes, then we can find isospectral systems (up to zero modes), with different boundary conditions.

Systematic isospectralities

Let us recapitulate what we have done up to now: We have showed that the displacement and strain dynamical matrices (D u and D s respectively) that describe one and the same system can be seen as parts of an extended dynamical matrix D e that obeys a SUSY algebra (eq. (5.16)). Furthermore, we have showed that one can 7 As we mentioned ∆ W = 0 is a necessary but not sufficient condition for SUSY breaking.

define rotations (unitary transformations) in the superspace (eq. (5.17)) which lead to systems with exchanged number of displacement and strain degrees of freedom (eq.

(5.18)). These systems are dual partners in the superspace and when we examine the subspaces, the corresponding systems are isospectral up to zero modes. Specifically, in the "rotated" system, the new displacement dynamical matrix can be identified with the strain dynamical matrix of the initial system under a unitary transformation

(D ′ u = U D s U † )
. Lastly, we have argued that in the 1D chains that we examine, the application of different boundary conditions lead to an exchange in the number of springs and masses which is reflected to the sign of the Witten index. Combining all the above we will now try to see if we can use D s as an intermediate step to find a D ′ u which will be isospectral to D u but it will describe a different system. In the case where ∆ W = 0, D ′ u and D u will be exactly isospectral, while if ∆ W ≠ 0, they will be isospectral up to zero modes.

We begin with the mechanical Kitaev chain (fine-tuned), which we investigated in Chapter 3, and for the case of periodic BCs where the chain consists of an equal number of generalized masses and bonds (∆ W = 0). Let's re-write the displacement and strain bulk dynamical matrices in Bloch form:

D u,bulk (P, q) = 1 2P ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 2P + [-2(P -1) -2 cos(q)] -2i √ P sin(q) 2i √ P sin(q) 2P + [2(P -1) + 2 cos(q)] ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ , (5.21) 
D s,bulk (P, q) = P -1 2P ⎛ ⎜ ⎜ ⎝ 2P P -1 + 2 P -1 + 2 cos(q) 2i √ P P -1 sin(q) -2i √ P P -1 sin(q) 2P P -1 -2 P -1 -2 cos(q) ⎞ ⎟ ⎟ ⎠ . (5.22)
The dynamical matrices in this form, are normalized with respect to the mid-gap frequency Ω 2 0 = 2P Ks M . As we have shown in the previous section, these two matrices will constitute the two parts of the SUSY dynamical matrix: D e,bulk (P, q) = D u,bulk (P, q) ⊕ D s,bulk (P, q). We now know that the two matrices (D u,bulk (P, q) and D s,bulk (P, q)) are isospectral. Furthermore, we observe that: σ x D s,bulk (P, q)σ x = D ′ u,bulk (P, q) = D u,bulk ( P P -1 , -q). We can identify the unitary operation of the composite space as:

U = ⎛ ⎜ ⎜ ⎝ 0 σ x σ x 0 ⎞ ⎟ ⎟ ⎠ .
(5.23)

As a result, if we construct a system where the parameter P is replaced by P /(P -1), it will exhibit the same spectrum as the one with P .

Let's see what happens for the case of the finite system where ∆ W ≠ 0. As we already mentioned for the case of the mechanical Kitaev chain, each particle corresponds to 2 DOFs (transverse displacement and rotation) related to 2 generalized masses (m and I). For a free chain, we will have N u -N s = 2, i.e 2 extra zero displacement modes corresponding to a rigid motions -a translation and a rotation of the whole chain. These two DOFs will be absent in strain coordinates. As a result, due to SUSY we will have: σ(D s,2N,f ree (P )) = σ(D u,2N +2,f ree (P ))zero modes. (5.24) where σ denotes the spectrum and the dynamical matrices are those of the finite system.

Furthermore, by analytically calculating the finite matrices for fixed and free boundaries (see Appendix 7.6), one can see that: σ(D s,2N,f ree (P )) = σ(D u,2N,f ixed ( P P -1

)).

(5.25) )) = σ(D u,2N +2,f ree (P ))zero modes.

(5.26)

In Fig. 5.1, we present the spectra of two chains: One consisting of 10 particles and 9 bonds (free boundary) and one consisting of 10 bonds and 9 particles (fixed boundary), for the parameter values P and P P -1 respectively, for which we anticipate isospectrality. We observe that indeed the two chains are isospectral up to zero modes.

Isospectrality in the mechanical chain without fine-tuning

We have seen with the example of the Kitaev chain that the superspace duality can be utilized in order to unravel the isopsectrality of the bulk and between systems with different boundary conditions. Let's see as another first, how this is applied to the mechanical chain without the fine tuning:

The dynamical matrices in displacement and strain coordinates are given by:

D u (P, η, q) = K s m ⎛ ⎜ ⎜ ⎝ 2 -2 cos q -2i sin q 2iP sin q 2P (η + 1) + 2P (1 -η) cos q ⎞ ⎟ ⎟ ⎠ , (5.27) 
D s (P, η, q) = K s m ⎛ ⎜ ⎜ ⎝ 2(P + 1) + 2(P -1) cos q 2iηP sin q -2iP sin q 2ηP (1 -cos q) ⎞ ⎟ ⎟ ⎠ . (5.28) 
We can see that:

σ x D s (-q, η, P, K s m )σ x = D u (q, η ′ , P ′ , K ′ s m ′ ) = D u (q, 1 P , 1 η , ηP K s m ) (5.29) 
In Fig. 5.2, we present the spectra of two finite chains with the predicted parameter values P and η and the corresponding BCs. We observe again a precise isospectrality. Notice, that the edge states are not any more pinned to the mid-gap frequency, due to the absence of particle-hole symmetry.

Topological aspects of strain-displacement SUSY

Apart from isospectrality and the zero modes, we can notice another aspect that relates SUSY to the topology of the finite frequency edge modes. The value of the Maxwell index, seems to have implications for the topology protecting symmetries of the finite frequency edge modes. Specifically: if the applied BCs are such that the number of displacement degrees of freedom is bigger than the number of strain degrees of freedom: N u > N s (for example free BCs for the mass dimer), extra zero modes will be present in displacement coordinates. In all the examples that we investigated, these zero modes seem to break chirality with respect to the mid-gap finite frequency (i.e. the shifted dynamical matrix is not chiral). However, in strain coordinates, the zero modes are not present, thus restoring protecting symmetries and BBC. Conversely, when strain degrees of freedom are more than the displacement degrees of freedom N u < N s (fixed BCs), BBC seems to hold on displacements and not on strains (now there will be extra strain zero modes that will break chirality in strain coordinates but they won't be present in displacement coordinates). These observations, together with the special role of zero modes in SUSY theories [START_REF] Gendenshteȋn | Supersymmetry in quantum mechanics[END_REF], motivate us to make the following conjecture:

Conjecture

Topology protecting symmetries and bulk-boundary correspondence for finite frequency topological edge modes should be probed in the coordinate system with no exact zero modes of the finite dynamical matrix.

We will now put this conjecture into test by presenting a new topological metamaterial which can host both zero and finite frequency topological edge states.

Mixed frequency topological mechanical metamaterials

As we have mentioned in Chapter 2, topological mechanical metamaterials are divided into two classes: zero frequency or finite frequency [START_REF] Süsstrunk | Topology in Linear Mechanical Metamaterials[END_REF][START_REF] Serra-Garcia | Observation of a phononic quadrupole topological insulator[END_REF]. Nevertheless, hints of topological metamaterials that do not fall exactly in these categories have been presented [START_REF] Danawe | Finite-frequency topological maxwell modes in mechanical self-dual kagome lattices[END_REF]. In this work, the authors demonstrated that finite frequency topological corner modes can be characterized by an effective compatibility matrix as in the case of Maxwell lattices which hosts zero frequency topological edge modes. In this last section we will explore a different approach, taking into account the SUSY between strains and displacements. As we showed, the Maxwell index can be interpreted as the Witten index in the context of supersymmetry. The imposed boundary conditions determine the value of the Witten index and thus, the number of zero modes (either strain or displacement). The Witten index is a topological invariant and its value won't change -given the BCs. Furthermore, we saw that the presence of zero modes in a given coordinate system, makes the shifted dynamical matrix non-chiral and prohibits us from establishing BBC for finite frequency edge modes.

Nevertheless, we concluded that in the SUSY partner system the zero modes are absent, and thus, we may be able to uncover topology protecting symmetries and have BBC for finite frequency edge modes also. Combining the above we will demonstrate the possibility to create mixed frequency topological mechanical metamaterials: mechanical metamaterials that exhibit both zero and finite frequency topological edge states. For this reason we will use simultaneously two topological indices: One for the zero frequency edge modes and one for the finite frequency edge modes. Specifically, if a system exhibits a non zero Witten index, zero modes will be present. Additionally, if a gap opens around zero frequency, these modes will be localised and protected by the Witten index. Furthermore, if the system exhibits a band gap for a finite frequency, we can use the dynamical matrix in the coordinates where the zero modes are absent, to characterise topologically this band gap. If the spectrum is gaped around zero and finite frequencies and both the Witten index and the winding number of the dynamical matrix are non zero, then both zero and finite frequency edge states will be present.

Stiffness-mass Kane Lubensky SSH

We will demonstrate that a 1D system similar to the one proposed by Kane and Lubensky, but with different masses and stiffnesses (like the one shown in Fig. 5.3), can be a mixed frequency topological mechanical metamaterial.

The reason for choosing this structure, is that we know that its geometry allows for a band gap around zero frequency. We remind that the geometrical parameters for this system are given by: q 1,(2) = r cos θ(r sin θ ± 1)/ √ 4r 2 cos 2 θ + 1 where r is length of the rods in Fig. 5.3 and θ is the mean position of each particle [START_REF] Kane | Topological boundary modes in isostatic lattices[END_REF]. Furthermore, we know that by having different springs and masses in the unit cell, we can have finite frequency band gaps with the possibility of hosting edge modes.

If we want one zero frequency edge mode in displacement coordinates, we should impose free BCs at both ends of this chain. As a result we will have:

N u -N s = 1.
Furthermore, the relation between parameters q 1 and q 2 needs to be q 1 ≠ q 2 for a band change, the zero mode will be protected. Furthermore, the introduction of different masses and stiffnesses will generate a gap around a finite frequency. To characterize this gap, we should use the strain dynamical matrix (D s ). For the case of the displacement dynamical matrix (D u ), we know that there will be a zero mode. Therefore, following our conjecture, we should choose the strain coordinates description where zero modes are absent. We will use (5.14) to construct the strain dynamical matrix.

We will first employ periodic BCs to construct the Bloch strain dynamical matrix (D s (q)) and find the condition for chirality. We will calculate the bulk topological invariant and then examine if bulk-boundary correspondence holds. The Bloch compatibility matrix for this system will have the form:

C(q) = ⎛ ⎜ ⎜ ⎝ q 1 q 2 q 2 q -iq 1 ⎞ ⎟ ⎟ ⎠ .
(5.30) By (5.14), D s (q) will be:

D s (q) = k 1 q 1 q 2 m 1 ⎛ ⎜ ⎜ ⎝ q 1
q 2 + q 2 q 1 P η(1 + P e -iq ) 1 + P e -iq η( q 1 q 2 P + q 2 q 1 ) ⎞ ⎟ ⎟ ⎠ .

(5.31)

where P = m 1 m 2 and η = k 2 k 1 . This matrix will obey:

D s (q)s(q) = Ω 2 D s (q), (5.32) 
where s(q) = [s a (q), s b (q)] † and Ω is the not normalised eigenfrequency. By redefining s(q) = [s a (q), s b (q) √ η] † , the dynamical matrix takes the Hermitian form:

Ds (q) = k 1 q 1 q 2 m 1 ⎛ ⎜ ⎜ ⎝ q 1 q 2 + q 2 q 1 P √ η(1 + P e -iq ) √ η(1 + P e -iq ) η( q 1 q 2 P + q 2 q 1 ) ⎞ ⎟ ⎟ ⎠ . (5.33) 
In that form, it is easy to find the chirality condition: η = ( q 1 q 2 + q 2 q 1 P )/( q 1 q 2 P + q 2 q 1 ). In other words, we can fine-tune the stiffnesses for given q 1 , q 2 , m 1 , m 2 , so that the resulting shifted Ds (q) will be chiral. If we do that, we see from the off-diagonal terms, that the winding number is determined solely by P . Specifically, for P > 1 we expect a topological and for P < 1 a trivial phase.

In Fig. 5.4(a), we present the continuation of the spectrum of D u for a finite chain. Here the normalized frequency ω 2 = Ω 2 /( q 1 q 2 + q 2 q 1 P ) has been used. One can observe that a zero mode is always present according to the prediction of the Witten index, while in-gap finite frequency edge modes emerge after the gap closing and for P > 1, according to the prediction of the winding number of D s (q). In Fig. 5.4(b), we present the profile of all the edge states (the two finite frequency and the one at zero frequency) that co-exist in this model. We observe that SUSY between strains and displacements provides a new approach in constructing topological systems. The evolution of the spectrum of the displacement dynamical matrix D u of a finite chain, consisting of N = 61 particles and free-free BCs, as we adiabatically alter P . We observe an ever present zero mode according to the prediction of the Witten index. Furthermore an edge state emerges at the mid-gap frequency after the gap closing at P = 1, according to the prediction of the winding number of D s (q). Except for the zero mode, the rest of the spectrum is symmetric with respect to the mid-gap frequency. (b). The profile of the edge states. The top two panels depict the profile of the chiral edge states that appear at the mid-gap frequency, while the last panel depicts the profile of the localised zero mode.

CONCLUSION

We have demonstrated in several 1D models from mechanics and acoustics that higher order coordinates can unravel a wide family of topological systems. We showed that the mass dimer can be treated as a mechanical SSH when strain coordinates are applied -similar to the stiffness dimer for displacement coordinates -but for different boundary conditions (fixed for the stiffness dimer and free for the mass). Furthermore the two systems (stiffness-mass) have the same response with respect to disorder if appropriate symmetries are preserved (inversion, chiral). We also examined a mechanical chain which utilizes displacement and rotation degrees of freedom and can map to the Kitaev chain under a fine tuning. We showed that this chain exhibits edge states for fixed and free boundaries but for different parameter regimes. This behaviour can be predicted from the bulk topology but in order to establish BBC, displacement coordinates should be utilized for the fixed boundary and strain coordinates for the free boundary. The mechanical chain was also investigated in the general case when there is no fine tuning. Zak's phase was used as a bulk invariant in this case due to the presence of inversion symmetry. Nevertheless, for bulk boundary correspondence to hold for both fixed and free boundaries, again the corresponding coordinate system should be chosen (displacement for fixed and strain for free).

Apart from the mechanical systems, we also investigated acoustic topological metamaterials with diverse boundaries. We showed that HOC coordinates (the flux field which is defined through the spatial derivative of the pressure field) establish BBC for the case of Neumann BCs. We used as examples the Acoustic SSH and the Acoustic SSH3. For the case of SSH3 we also gave a general derivation of BBC through the application of NS Zak's phase which probes the evolution of the phase of a sublattice as one alters the wavenumber in the reduced Brillouin zone. In the last Chapter we showed that through HOC coordinates, systematic dualities are unraveled through a displacement-strain SUSY, and these translate to scaled isospectralities (up to zero modes) of finite systems with different applied BCs. SUSY gave us a framework for a better understanding of the interplay between zero frequency and finite frequency topological edge modes. By using a complementary description in strains and displacements we achieved the construction of a mixed frequency mechanical topological metamaterial which exhibits topologically protected edge modes simultaneously at zero and at a finite frequency. The zero frequency topological mode is protected by the mechanical analog of the Witten index and the finite frequency topological modes are protected by the winding number of the dynamical matrix.

A very interesting aspect of the above is that SUSY can be seen as a symmetry between mechanical systems with different boundary conditions. Furthermore, since SUSY links bosons to fermions and the usual displacement degrees of freedom are known to be bosonic, an interesting question that comes to mind is: Could HOC be a path for a classical representation of fermions? Furthermore, our belief is that SUSY could also be unraveled for the acoustic systems but this SUSY should be examined at the level of the Helmholtz equation and not at the level of the effective Hamiltonians because it concerns the continuum fields (pressure -flux) and not discrete coordinates as in the case of the mechanical systems.

In Fig. 6.1 we present the isospectrality between an acoustic SSH with open (Dirichlet) BCs and cross sections S a and S b and an acoustic SSH with closed (Neumann) BCs and cross sections 1 Sa and 1 S b . Although this is not a mechanical system, again we observe the same phenomenon. This hints towards a SUSY that stems from the Helmholtz equation. Although we don't give here a proof for the acoustic system, it seems like these properties are a general feature of HOC coordinates.

Another interesting question that arises is: as in the case of fixed-free boundaries, could there be appropriate coordinate transformations that could allow for an extension of BBC for any boundary? This would give the framework for significantly enlarging the domain of topological systems and of possible applications.

Our results imply that HOC topological metamaterials probably exist in other classes of the tenfold way (apart from the BDI which we investigated in this dissertation) and for higher spatial dimensions. Last but not least, HOC coordinates could in principle be applied for non-Hermitian topological systems as well. 

T l = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ cos (kL) iZ l sin (kL) i Z l sin (kL) cos (kL) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ , (7.1) 
where Z l = ρ 0 c 0 /S l is the waveguide impedance, ρ 0 is the density of air and the subscript l = AB, BA denotes the corresponding waveguide segments. Thus, the pressure and the flux velocity between the sites A n and A n-1 inside the waveguide, separated by a distance d = 3L, are connected with the following the transfer matrix

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ p n-1,A ϕ n-1,A ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ = T ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ p n,A ϕ n,A ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ , = T C T B T A ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ p n,A ϕ n,A ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ , (7.2) 
Assuming an infinite waveguide (or equivalently periodic), we can assume Bloch solutions of the form:

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ p n,A ϕ n,A ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ = Ae -iqdn , (7.3) 
where A is a column eigenvector. Substituting this expression into equation ((7. The discrete formulation of Zak's phase begins by observing that the relative phase of two states is given by:

e iγ 12 = ⟨Ψ 1 |Ψ 2 ⟩ | ⟨Ψ 1 |Ψ 2 ⟩ | . ( 7.8) 
What interests us, is the cumulative phase upon completing a closed loop. As a final step we want to extract the phase angle. This is given by [START_REF] Asbóth | A short course on topological insulators[END_REF]:

γ b = -arg( ⟨Ψ 1 |Ψ 2 ⟩ ⟨Ψ 2 |Ψ 3 ⟩ .... ⟨Ψ n |Ψ 1 ⟩ | ⟨Ψ 1 |Ψ 2 ⟩ || ⟨Ψ 2 |Ψ 3 ⟩ |...| ⟨Ψ n |Ψ 1 ⟩ | ). (7.9)
This is the formula that has been used for all the numerical calculations.

the phases according to (4.15).

Generalised Chirality and Point Chirality in SSH3

Generalised Chirality

Generalized chirality comes as a generalization of chiral symmetry -instead of an operator that anticommutes with the Hamiltonian, one can find an operator that obeys generalized anticommutation relations. Specifically for the case of SSH3, in analogy to the chiral operator, a unitary operator Γ g having the following properties can be defined:

Γ 3 g = 1 , (7.10a) 
H 0 + H 1 + H 2 = 0 , (7.10b) 
where, by denoting the initial bulk Hamiltonian as H 0 ,

H 1 ∶= Γ g H 0 Γ -1 g H 2 ∶= Γ g H 1 Γ -1 g (7.11)
For the case of SSH3, and the bulk Hamiltonian of (7.25), it is easy to verify that an operator that obeys these relations exists, and is

Γ g = (1, ω, ω 2 ) , (7.12) 
where ω ∶= e 2πi/3 .

Using generalized chirality, one can define projectors over the sublattices of the unit cell Relations (7.15) reflect the fact that the probability of a transition from one site to another one within the same sublattice is zero.

P A = 1 3 (I + Γ g + Γ 2 g ) (7.13a) P B = 1 3 (I + ω 2 Γ g + ωΓ 2 g ) (7.13b) P C = 1 3 (I + ωΓ g + ω 2 Γ 2 g ) . ( 7 

Point Chirality

As was already mentioned in the main text, SSH3 can be viewed as a degenerate SSH6 [START_REF] He | Non-hermitian generalizations of extended Su-Schrieffer-Heeger models[END_REF]. This means that instead of using (4.5) in order to describe the system, one could use

H(k) = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 0 u 0 0 0 we -ik u 0 v 0 0 0 0 v 0 w 0 0 0 0 w 0 u 0 0 0 0 u 0 v we ik 0 0 0 v 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ (7.16)
which possesses chirality, i.e., a unitary and hermitian operator Γ exists with ΓH(k)Γ -1 = -H(k). The bulk spectrum of this Hamiltonian is essentially the zone folded spectrum of the SSH3 Hamiltonian.

The degenerate points of SSH6 at the edges of the folded Brillouin zone correspond to the same points for SSH3 but for k = π 2 . This means that these points will inherit some properties from SSH6 when one unfolds the spectrum in order to go to the SSH3. More specifically, since SSH6 posses chiral symmetry, SSH3 will have a point chiral symmetry at k = π 2 . This was formulated in Eq. (4.6). We proceed now with the derivation of the consequences of point chirality for SSH3, which is exactly analogous to the case of ordinary chiral symmetry.

• Eigenstates always come in pairs with opposite energies.

Assume |u(k)⟩ is an eigenvector of H bulk (k) with nonvanishing energy. Then,

H bulk (k) |u(k)⟩ = E(k) |u(k)⟩ ⇒ Γ p H bulk (k)Γ † p Γ p |u(k)⟩ = Γ p E(k) |u(k)⟩ ⇒ H bulk (π + k)(Γ p |u(k)⟩) = -E(k)(Γ p |u(k)⟩) (7.17) which means that Γ p |u(k)⟩ is eigenvector of H bulk (π + k) with eigenvalue -E(k).
The above derivation is also inherited to i) finite periodic chains with even sites (since k + π is an allowed wavenumber and hence point chirality is an exact symmetry in that case), and ii) finite open chains, since the latter can be considered as embedded within an infinite chain with appropriate boundary conditions.

• The partner eigenstates can be obtained from one another by the action of Γ.

It follows directly from Eq. (4.9).

• Eigenstates have equal support on even and odd sites.

As is obvious from Eq. (4.9), for the extended chain, point chirality takes the form of the familiar chiral operator. This means that two sub-lattice operators can be defined in the following manner: 

P odd = 1 2 (I + Γ f ) (7.18a) P even = 1 2 (I -Γ f ) , (7.18b 
H = - ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 0 v 0 0 0 . . . v 0 u 0 0 . . . 0 u 0 w 0 . . . ⋮ ⋮ ⋱ ⋱ ⋱ . . . 0 . . . 0 0 0 0 w 0 0 0 . . . 0 0 0 w 0 v 0 0 . . . 0 0 0 0 v 0 u 0 . . . 0 0 0 0 0 u 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ (7.20) 
for the case of SSH3. Our derivation is for a system with open boundary conditions and an integer number of unit cells. For later convenience, the (ordered) basis upon which (7.20) is written is (|3N ⟩ , |3N -1⟩ , . . . |2⟩ , |1⟩) with |j⟩ being the jth site of the chain. Our aim is to solve the eigenvalue-eigenvector problem for this Hamiltonian.

The characteristic polynomial of this problem is denoted as

x 1∶3N (E λ ) = det(E λ I -H) , (7.21) 
where we use a bottom up notation for the determinant (i.e., x 1∶1 is the determinant of a chain with a single particle at position 3N and x 1∶3N is the determinant of a complete chain with all 3N sites). From the form of the Hamiltonian (7.20), it follows that we can expand

x 1∶3N (E λ ) = E λ x 1∶3N -1 -u 2 x 1∶3N -2 . (7.22)
We observe that if we would like to write a corresponding relation for x 1∶3N -1 , v would appear on the r.h.s instead of u. For x 1∶3N -2 , w would appear instead of u or v and for x 1∶3N -3 we would return to the initial relation. This motivates us to introduce the following notation: We define x i n (E λ ) ∶= x 1∶3n+1-i (E λ ), where i = 1, 2, 3

and n = 0, 1, 2, . . . , N where x i 0 is to be determined by the boundary conditions. Let us note that we can identify the values of index i with the corresponding sublattices of the model by 1 → A, 2 → B, 3 → C.

By using this notation, we can rewrite (7.22) as a set of coupled equations:

x 1 n (E λ ) = E λ x 2 n -u 2 x 3 n x 2 n (E λ ) = E λ x 3 n -v 2 x 1 n-1 x 3 n (E λ ) = E λ x 1 n-1 -w 2 x 2 n-2 (7.23) 
By doing a little bit of algebra, we arrive at

x 1 n (E λ ) = (E 3 λ -E λ (u 2 + v 2 + w 2 )) x 1 n-1 (E λ ) -(uvw) 2 x 1 n-2 (E λ ) . (7.24)
The next step is to utilize the bulk solutions for E λ (k) and use this as a parameter in (7.24). The bulk Hamiltonian reads

H bulk (k) = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 0 u we -ik u 0 v w ik v 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ (7.25) yielding the eigenvalue problem det (E λ I -H bulk (k)) = 0 E 3 λ -E λ (u 2 + v 2 + w 2 ) + 2uvw cos(k) = 0 . (7.26) 
By comparing (7.26) and (7.24) we see that we can get

x 1 n (E λ ) = -2uvw cos(k)x 1 n-1 -(uvw) 2 x 1 n-2 (7.27)
from which, all x 1 n≥2 (E λ ) can be obtained if x 1 0 and x 1 1 (E λ ) are known. We set as a boundary condition x 1 0 (E λ ) = 1 and thus

x 1 1 (E λ ) = x 1∶3 (E λ ) = det ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ E λ u 0 u E λ v 0 v E λ ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = E λ (E 2 λ -v 2 ) -u 2 E λ = E 3 λ -E λ (u 2 + v 2 ) (7.28)
where we can use again (7.26) and arrive at

x 1 1 (λ) = -2uvw cos(k) + E λ w 2 . (7.29) 
If we set T = -uvw, then (7.27) takes the form

x 1 n (E λ ) = 2T cos(k)x 1 n-1 (E λ ) -T 2 x 1 n-2 (E λ ) (7.30) and if we redefine W 1 n (E λ , cos(k)) = T N -n x 1 n (E λ ), then (7.30) becomes W 1 n = 2 cos(k)W 1 n-1 -W 1 n-2 (7.31)
which is the recurrence relation of the Chebyshev polynomials of second kind. Specifically the Chebyshev polynomials of the second kind are defined in the following manner:

U 0 (x) = 1 (7.32) U 1 (x) = 2x (7.33) U n+1 = 2xU n (x) -U n-1 (x) (7.34)
This is the relevant case for our purposes with U n = U n (cos(k)) and an extra boundary condition U -1 = 0. From the definition of W 1 n (E λ , cos(k)) we have

W 1 0 = T N (1 + 0) = T N (U 0 + U -1 ) (7.35) W 1 1 = T N (2 cos(k) + a 1 λ (k)) = T N (U 1 + a 1 λ (k)U 0 ) (7.36)
where a 1 λ (k) = -w uv E λ (k). So we arrive at the recursive relation:

W 1 n = T N (U n (cos(k)) + a 1 λ (k)U n-1 (cos(k))) . (7.37) 
Now, our initial aim was to solve x 1 N (E λ ) = 0 which translates to W 1 N (E λ , cos(k)) = 0. Using (7.37) and the known identity

U n (cos(k)) = sin[(n+1)k] sin(k) one gets sin[(N + 1)k] sin(k) + a 1 λ (k) sin(N k) sin(k) = 0 (7.38)
which, with some trigonometry transforms to cot

[(N + 1)k] = 1 a 1 λ (k) sin(k) + cot(k) (7.39) 
As a result, we arrive at condition (4.16a). The quantity a 1 λ (k) can also be expressed in the sublattice notation as a A λ (k). One may find the general way to extract the corresponding relations for the general SSHm model and also for the case with non-integer unit cells in Ref. [START_REF] Marques | Analytical solution of open crystalline linear 1D tight-binding models[END_REF].

Analytical expressions for θ

A λ (k), θ B λ (k) and the equation g λ (k) = 0
Here, we first derive an explicit expression for θ A λ (k) and θ B λ (k) as a function of the hopping parameters. The characteristic polynomial of the bulk Hamiltonian reads

E 3 λ -E λ (u 2 + v 2 + w 2 ) + 2uvw cos(k) = 0 . (7.40)
This is the form of a depressed cubic, i.e., a polynomial of the third degree in the form

t 3 + pt + q = 0 . (7.41) 
If all three roots are real (which are in the case we are interested in since our Hamiltonian is hermitian) the solutions can be written in the trigonometric form

t k = 2 √ - p 3 cos ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 1 3 arccos ⎛ ⎝ 3q 2p √ -3 p ⎞ ⎠ - 2πk 3 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ for k = 0, 1, 2. (7.42)
By comparing (7.40) and (7.41) we see that p = -(u 2 + v 2 + w 2 ) and q = 2uvw cos(k).

Thus the expression for a 1 λ = -w uv E λ (k) is given by

a 1 λ = - √ 4 3 √ 1 + a 2 + b 2 ab cos ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 1 3 arccos ⎛ ⎜ ⎝ - ab cos k ( a 2 +b 2 +1 3 ) 3/2 ⎞ ⎟ ⎠ - 2πλ 3 
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ , (7.43) 
where λ = 0, 1, 2 enumerates the bands from bottom to top and also we have expressed

a ∶= u w , b ∶= v w .
As a result, is it easy to check that the following choice makes the angles θ A λ (k) continuous (and differentiable) in (0, π):

θ A λ (k) = ( 1 a 1 λ sin k + cot k) , λ = 0, 2 (7.44a) and θ 
A λ (k) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ( 1 a 1 λ sin k + cot k) k ∈ (0, π/2] ( 1 a 1 λ sin k + cot k) + π k ∈ (π/2, π] , λ = 1 (7.44b)
where takes values in (0, π).

Let us now explain why the equation g λ (k) = 0 determines all hyperspaces which separate regions with (possibly) different values of Z λ A,C . First of all recall that, due to the divergence of Eq. (4.17) for k → 0 + , π -, we concluded that θ A λ (k) is an integer multiple of π at these two points. Moreover, the sign of the divergence of Eq. (4.17) as k → 0 + has to agree with the sign of the derivative dθ A λ (k)/dk as k → 0, while the two signs have to be opposite at k → π. In turn, from Eqs. (7.44) above one can read that, for each band, there are at most two differences (Z λ i,C -Z λ,ref i,C )/π with i = A, B, C can be utilized to establish bulk-edge correspondence for different case of non-commensurate chains.

In the following we show that, indeed, a similar procedure leads to a correct bulkedge correspondence for the case of 3N + 1 sites. With the appropriate modifications, the derivation is exactly analogous to the case of 3N sites. On the other hand, the case of 3N + 2 sites needs individual treatment, a fact that has also been observed in more general context [START_REF] Marques | Analytical solution of open crystalline linear 1D tight-binding models[END_REF][START_REF] He | Topology, edge states, and zero-energy states of ultracold atoms in one-dimensional optical superlattices with alternating on-site potentials or hopping coefficients[END_REF].

Bulk-edge correspondence for a chain with 3N + 1 sites

When adding an extra site to the right of a chain with an integer number of cells, the boundary conditions (4.12) are modified as (see Figure 7.1)

⟨0, C|ψ λ (k)⟩ = 0 , (7.45a 
) ⟨N + 1, B|ψ λ (k)⟩ = 0 . (7.45b) 
By following exactly the same logic as in the integer case, we arrive at the quantization condition: .46) This implies that the proper bulk quantity in this case is Z λ B,C and not Z λ A,C , as this NS Zak's phase extracts the relevant angle in the case of 3N + 1 sites. If one chooses the gauge

θ B λ (k) = (N + 1)k -nπ, n ∈ Z . ( 7 
θ C λ (k) = 0 , (7.47) 
then the additional relation 

θ B λ (k) = ϕ λ (k) (7.48)
(ϕ λ (k)) = cot[(N + 1)k] = 1 a 2 λ (k) sin(k) + cot(k) (7.49a) a 2 λ (k) ∶= - uw v 1 E λ (k) . (7.49b)
For a thorough investigation of the momentum shift for non-integer unit cells, see [START_REF] Marques | Analytical solution of open crystalline linear 1D tight-binding models[END_REF].

Similarly to the approach in 4. 

The case of 3N + 2 sites

We turn now to the final case of 3N +2 sites. In the chosen gauge, it is easy to observe that the phase of the sublattice C is always zero. Nevertheless, the bulk-edge correspondence we have established also works for this case. That is, the corresponding (gauge-invariant) quantity Z λ C,C -Z λ,ref C,C , which trivially vanishes, should also here be interpreted as the difference in the number of edge states between the corresponding Hamiltonians. Indeed, for the case of 3N + 2 sites, the open chain always exhibits a constant number of edge states (i.e., two of the eigenstates are always edge states [START_REF] He | Topology, edge states, and zero-energy states of ultracold atoms in one-dimensional optical superlattices with alternating on-site potentials or hopping coefficients[END_REF]), . Clearly, the (nonvanishing) actual number of edge states present needs to be specified via a separate analysis, as was the case for 3N and 3N + 1 sites.

Other SSHm models

Last but not least, we point out that the introduced bulk quantity along with our interpretation of bulk-edge correspondence, works for the SSH model as well.

Furthermore, NS Zak's phase turns out to be useful also for the SSH4 model, where it can be utilized to establish a bulk-edge correspondence even when mirror symmetry is absent.

In SSH (two sublattices) one can have two realizations of finite chains. One with even and one with odd number of sites (2N and 2N+1). In the gauge where:

|u λ (k)⟩ SSH = 1 √ 2 ⎛ ⎜ ⎜ ⎝ a A λ (k)e -iθ A λ (k) a B λ (k) ⎞ ⎟ ⎟ ⎠ (7.51)
one can see that NS Zak's phase of the first sublattice is identical with Zak's phase for this model. In fact, we have demonstrated that the phase of the first sublattice can establish a bulk-edge correspondence only for the case of an integer number of unit cells. That is the reason that the usual Zak's phase gives a well-defined bulk-edge correspondence only for the case of a chain with 2N sites. For the case of a chain with 2N + 1 sites, one should use the second sublattice according to our treatment.

However, the phase of this sublattice vanishes since there is always an edge state present [START_REF] Sirker | Boundary fidelity and entanglement in the symmetry protected topological phase of the SSH model[END_REF] and thus there is no difference in the number of edge states for different regimes of the parameters of the Hamiltonian.

As a last demonstration of the power of our approach we present some results for an SSH4, with an integer number of unit cells, that does not possess mirror symmetry.

Specifically, Figure 7.3 strongly suggests that NS Zak's phase can establish a bulkedge correspondence even in regimes where the usual Zak's phase does not take integer values. In the same figure one can verify that NS Zak's phase correctly predicts the emergence of edge states for an SSH4 chain that does not possesses mirror symmetry.

This suggests that NS Zak's phase is more general than the ordinary Zak's phase because it gives the correct results both in the presence and in the absence of mirror symmetry. Furthermore, it seems easily extendable for the general SSHm model.

Isospectrality of chains with fixed boundaries on displacement and free boundaries on strain coordinates

In this section we will show that if one describes both fixed and free chains in one coordinate system (either displacements or strains), the two chains are isospectral after a change of the parameter of the system, except for two modes. Specifically, we will begin with the proof of isospectrality of the two chains on the displacement coordinates. We will show that in this coordinate system, a free chain that is described by 2N generalised displacement DOFs and parameter P (which seems to break particle-hole symmetry) is isospectral to a fixed chain with 2N -2 DOFs and parameter P /(P -1). Subsequently we will move to the strain coordinates and we will show that a fixed chain that is described by 2N strain DOFs and parameter P is isospectral to a free chain with 2N -2 degrees of freedom and parameter P /(P -1).

A combination of these results indicates that the fixed chain on displacement coordinates and parameter P has the exact same description as a free chain on strain coordinates and parameter P /(P -1) proving thus the finite version of duality.

Isospectrality on displacement coordinates

In general, using the basis U = [u 1 , Φ 1 / √ P , ..., u N , Φ N / √ P ] T , the 2N × 2N dynamical matrix describing the modes of the mechanical chain has a block tridiagonal form expressed by the N × N matrix: where O is the 2 × 2 zero matrix while A 1bc , A bc , A Nbc , B bc are also 2 × 2 matrices having a form which depends on the boundary conditions of the chain. This is indicated by the index "bc". After the normalization described in the previous section and the fixing of the parameter η to the value η = 1 -1 P , for a chain fixed at both ends we have:

D bc (N ) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ A 1bc B
B f ixed = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ -1 2P 1 2 √ P -1 2 √ P 1 2P ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ , A 1f ixed = A Nf ixed = A f ixed = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 1 P 0 0 2 -1 P ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ . (7.53) 
When both ends of the chain are free we find:

B f ree = B f ixed ; A f ree = A f ixed A 1f ree = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 1 2P 1 2 √ P 1 2 √ P 1 -1 2P ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ; A Nf ree = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 1 2P -1 2 √ P -1 2 √ P 1 -1 2P ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ , (7.54) 
There is an interesting relation between the dynamical matrices D f ree (N ) and D f ixed (N -1) that provides the basis for the duality presented in the current work (see Fig. 5.1). To establish this relation one has first to introduce the parameter change P f ree → P f ixed P f ixed -1 . To simplify the notation we will use P f ixed ≡ P in the following. After the aforementioned transformation the equalities B f ree = B f ixed , A f ree = A f ixed cease to be valid. Nevertheless, it exists a similarity transform connecting B f ree , A 1 and A N with B f ixed and A f ixed :

VB f ree V -1 = B f ixed VA 1 V -1 = 1 2 A f ixed + P 2 [B T f ixed , B f ixed ] VB f ree A N B -1 f ree V -1 = 1 2 A f ixed - P 2 [B T f ixed , B f ixed ] , (7.55) 
where the notation A 1f ree = A 1 , A Nf ree = A N for the block matrices occurring in D f ree (N ) after the replacement P f ree → P P -1 is used, and [B T f ixed , B f ixed ] is the commutation of B T f ixed and B f ixed and is defined as

B T f ixed B f ixed -B f ixed B T f ixed .
The transformation matrix V is given by:

V = ⎛ ⎜ ⎜ ⎝ √ P - √ P -1 1 0 ⎞ ⎟ ⎟ ⎠
.

Then, it is straightforward to show that the transformed block matrices in D f ree (N ) obey the relation:

A N B -1 f ree A 1 = B T f ree . (7.56) 
One can proceed further utilizing the recurrence relations in Ref. [START_REF] Sandryhaila | Eigendecomposition of block tridiagonal matrices[END_REF] to construct sequences of matrix polynomials with respect to the spectral parameter x from the building blocks of the symmetric block tridiagonal matrices D f ixed , D f ree . Let us denote by P n (x), Q n (x) the sequences generated from D f ree and D f ixed respectively.

We find:

P n+1 (x) = B -1 n [(xI 2 -A n )P n (x) -B T n P n-1 (x)] Q n+1 (x) = B -1 f ixed [(xI 2 -A f ixed )Q n (x) -B T f ixed Q n-1 (x)] , (7.57) 
with n = 0, . . . , N -1, P -1 (x) = Q -1 (x) = O, P 0 (x) = Q 0 (x) = I 2 where I n is the n × n identity matrix for integer n. For the matrix coefficients in the sequence P n (x) it holds

A n = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ A 1 for n = 0 A f ree for 1 ≤ n ≤ N -2.
A N for n = N -1 (7.58)

Using the above recurrence relations one can prove by induction the following equality:

VP N (x)V -1 = xB -1 f ixed Q N-1 (x).
As stated in Ref. [START_REF] Sandryhaila | Eigendecomposition of block tridiagonal matrices[END_REF], the determinant of P N (x) [or Q N (x)] coincides up to a constant factor with the characteristic polynomial of the original matrix D f ree (or D f ixed , respectively), providing an alternative way to determine the spectrum of block tridiagonal matrices. This leads to the relation:

det[P N (x)] = 4P 2 x 2 P -1 det[Q N-1 (x)], (7.59) 
which reveals the connection between the spectral properties of the mechanical chain with N -1 particles, parameter P and fixed ends with a similar chain consisting of N particles with P P -1 and free ends.

Isospectrality on strain coordinates

We begin from equations (3.23) and (3.24). The application of the boundary conditions for the case of free boundaries will just be ∆s| 0 = ∆b| 0 = ∆s| N +1 = ∆b| N +1 = 0, where by 0 and N +1 we denote the ancillary sites at the left and right of the chain.

So, the finite D s that will result by the application of Free boundaries will have the exact same form as the finite dynamical matrix Du for Fixed boundaries with the only difference being the change of parameter P → P /(P -1).

Beginning again from (3.23) and (3.24), we will now describe a fixed chain on strain coordinates. In order to formulate the fixed boundary condition in strain coordinates we begin from Newton's equations: As a result, for a fixed chain, the form of the strain dynamical matrix becomes: When both ends of the chain are fixed we find:

D el,f ixed bc (N ) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ A 1bc B
A bulk,f ree = A bulk,f ixed

A 1f ixed = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ -1 2 -1 2P 1 2 √ P 1 2 √ P -1 2 P ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ; A Nf ixed = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ -1 2 -1 2P -1 2 √ P -1 2 √ P -1 2 P ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ , (7.68) 
We observe that the form of the strain dynamical matrix for fixed boundaries is exactly the same as the form of the displacement dynamical matrix but for the free boundaries and P → P /(P -1) (apart from a shift in the diagonal). As a result the proof of isospectrality will be exactly the same as in the case of the displacement coordinates. Furthermore, this is a demonstration of the finite version of duality.

Title: Higher order coordinate topological metamaterials

Keywords : Topological metamaterials, Topological insulators and superconductors, Supersymmetry, Mechanical metamaterials, Bulk-boundary correspondence, Acoustic metamaterials Abstract :In this thesis, we present a new family of topological metamaterials, termed: Higher Order Coordinate (HOC) topological metamaterials. Contrary to typical topological metamaterials, where topological properties are probed in the usual displacement coordinates, the topological nature of HOC topological metamaterials is revealed only in higher order coordinates (e.g strains in mechanical systems, flux field in acoustics etc) and for different boundaries. These metamaterials exhibit all the desired features for their characterization as topological: robust edge states, topological phase transitions and bulk-boundary correspondence. Our main focus will be 1D HOC metamaterials. We begin by presenting some preliminary models, like the mass dimer or an acoustic Su-Schrieffer-Heeger (SSH) model, which exhibit a phenomenology similar to topological systems -for example, edge states emerge after a gap closing of the spectrum -but which seem to either violate bulk-boundary correspondence or they do not possess necessary symmetries for a topological classification when examined in displacement coordinates. We proceed by demonstrating with three examples -the mass dimer, a mechanical Kitaev chain and an acoustic analog of the SSH model -that HOC coordinates enable us to unveil topology protecting symmetries and establish bulk-boundary correspondence for boundaries that break the protecting symmetries in lower order coordinates. Furthermore, we examine two HOC metamaterials which cannot be classified in the tenfold way, but exhibit edge states which can be predicted from bulk invariants due to the presence of other symmetries (inversion symmetry, point chirality): An acoustic SSH3 and a quasi-1D mechanical chain which utilizes displacement and rotation degrees of freedom. Last but not least, a duality seems to exist between HOC topological metamaterials and typical topological metamaterials. For the case of mechanical topological metamaterials, we show that strain topological metamaterials are supersymmetric (SUSY) partners of the typical displacement metamaterials. This may be a starting point for a general proof of this duality in the future. Our findings suggest that higher order coordinates constitute a necessary tool to the already established methods of probing topological properties. They open up new research opportunities such as the possibility of 2D HOC topological metamaterials, and demand a general investigation of the interplay between boundary conditions and coordinate transformations. 
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 3 THE MAIN OBJECTIVE OF THIS THESIS 1. INTRODUCTION establish BBC.

q 1 (

 1 ∈ [0, π]. That is because TR induces an extra degeneracy between eigenvectors corresponding to opposite crystal momenta. As one can see in Fig. 2.1, there are three possible cases for the winding number: W = 0 (Fig. 2.1(a)) for w < v, W = Fig. 2.1(b)) for w > v, and a "singular" case when w = v (Fig. 2.1(c)). In the bottom row of panels (a) -(c) we present the corresponding Bloch bands obtained from (2.4). One can observe that a change in W occurs after the bands touch.

Figure 2 . 1 :

 21 Figure 2.1: Trajectories of ⃗ d for the three possible relations of w to v and the corresponding dispersion relations of the Bloch SSH Hamiltonian. (a) Here, v = 2 and w = 1. The winding number is zero since the trajectory of ⃗ d does not encircle the axis origin as we alter the crystal momentum q. (b) For w = v = 1, the trajectory of ⃗ d "touches" the axis origin and thus the winding number is undefined. For this case, as one can see in the bottom row, the Bloch bands also touch. (c) Finally, one can observe that for w = 2, v = 1 the trajectory of ⃗ d encircles the axis origin. The Bloch bands are again seperated by a gap as one can see in the bottom row. We observe that the two gaped Hamiltonians, characterized by a different value of W, cannot be adiabatically connected by altering the values of v and w without passing from a gapless Hamiltonian.

Figure 2 . 2 :

 22 Figure 2.2: Kane-Lubensky SSH. This mechaincal chain consists of equal masses and springs which are allowed to move around an equilibrium position, determined by the angles of the mass-supporting rods.

Figure 2 . 3 :

 23 Figure 2.3: A stiffness dimer is a 1D chain of alternating springs (stiffness) and masses. Here we show a finite chain with an integer number of unit cells and fixed boundary conditions.

Figure 2 . 4 :

 24 Figure 2.4: Manifestation of topology. In (a) we present the evolution of the spectrum of a finite chain with N = 20 particles and fixed boundaries, as we alter continuously the value of k 1 (we keep a constant k 2 = 1). Indeed we observe the emergence of two gap modes approximately around the point k 1 = k 2 as expected.The slight deviation is due to finite size effects and can be analytically calculated. In (b), everything is the same as in (a), except for the boundaries. We see that the violation of chiral symmetry at the boundaries totally breaks BBC and no edge states appear for any value of k 1 . In (c) we present the spectrum of the chain in the topological phase. The spectrum is normalized with respect to the mid-gap frequency. In (d) we present the profile of the two edge states. The SSH edge states have support on only one of the two sublattices and this profile is apparent at each side of the chain. However the modes presented here, are superposition of chiral modes. This is due to the finite size of the chain (hybridization).
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 25 Figure 2.5: The mass dimer consists of alternating masses m 1 and m 2 connected by springs of stiffness k. The figure depicts a finite chain with open BCs.

Figure 2 . 6 :

 26 Figure 2.6: Mass dimer phenomenology.In (a) we present the evolution of the spectrum of a finite chain with N = 21 particles and fixed boundaries, as we alter continuously the value of m 2 (we keep a constant m 1 = 1). Contrary to the stiffness dimer, no edge states appear for this boundary. In (b), everything is the same as in (a), except for the boundaries. Edge states appear after the gap closing in that case. In (c) we present the spectrum for m 2 > m 1 . The spectrum is normalized with respect to the mid-gap frequency. Again edge states appear at the mid-gap frequency. The mass dimer with free boundaries exhibits a zero mode which corresponds to a global translation of the chain. In (d) we present the profile of the two edge states. They do not exhibit the chiral pattern of the SSH modes (support on a sublattice), but they have an interesting profile which may hint to an underlying "hidden" symmetry.

Figure 2 . 7 :

 27 Figure 2.7: (a) A waveguide consisting of alternating segments of cross-sections S A and S B can be mapped to the SSH model.(b) In the left panel, we present the plot of the trace of the transfer matrix divided by two, for different values of the Bloch wavenumber. We call this: pseudo-dispersion and it maps to the dispersion relation of the SSH model. In the right panel, one can see the actual dispersion relation for this model. Since this is a continuum model it will actually have infinite bands. We plot the first two repetitions which is the frequency domain where a 1D approximation of the Helmholtz equation inside the waveguide is valid.

Figure 2 . 8 :

 28 Figure 2.8: Again the characteristic signature of a topological phase transition. Chiral edge states appear after the gap closing (S a = 0.4), in accordance to the predictions of the bulk winding.

Figure 2 . 9 :

 29 Figure 2.9: When closed BCs are applied, the topological phases are inverted, breaking BBC.

Figure 3 . 1 :

 31 Figure 3.1: Strain topological metamaterials.A comparison of the new family of strain topological metamaterials (STM) to the typical case. In the top row, we present "mass-spring" schematics, which are powerful tools to model topological systems across a spectrum of physical settings, from mechanics, to optics, electronic circuits and acoustics. In the middle row, we denote the appropriate boundary conditions for the existence of BBC. In the bottom row, we show how the spectrum of each system evolves while a parameter changes adiabatically. This is compared to the predictions of the bulk winding. The orange denotes trivial winding (w = 0), and the doughnut non-trivial (w = 1). (a) The stiffness dimer can be mapped to the finitefrequency SSH model and is a typical case. Only fixed boundaries preserve the chiral symmetry of the displacement bulk dynamical matrix D u,bulk . Edge states appear according to the prediction of the latter's winding number. (b) The mass dimer is an STM. As a result, its chiral symmetry is revealed only in strain coordinates, and edge states can exist only for free boundaries according to the winding number of the bulk dynamical matrix in strain coordinates D s,bulk . (c) The new mechanical Kitaev chain behaves both like an STM and a typical case, depending on the applied boundaries. (i) For free boundaries, it behaves like an STM, and the winding of D s,bulk predicts the emergence of edge states correctly. (ii) For fixed boundaries, it behaves like a typical case, and the winding of D u,bulk predicts the emergence of edge states correctly. Remarkably, the topological phases of this system are interchanged when different boundaries are applied.

LocalizationFigure 3 . 2 :

 32 Figure 3.2: Mass dimer. (a)The chiral symmetry of mass dimer -revealed on strain coordinates -leads to a well-defined winding number. The nonzero winding number makes the configurations with P < 1 topologically nontrivial. (b) Evolution of the spectrum of a finite chain with an odd number of particles[START_REF] Cooper | Topological bands for ultracold atoms[END_REF] and free boundaries as we change the parameter P . Edge states emerge for P < 1. Colormap confirms localization of states inside the band gap. (c) Spectrum of a finite chain in displacement and strain coordinates at P = 0.25. Except for the zero mode, the spectrum is the same in both coordinates and shows chiral symmetry about the normalized midgap frequency ω 2 = 1. (d) Profiles of the edge states in (c). Their chiral nature is revealed in strain coordinates.

Figure 3 .

 3 Figure 3.2(b) shows the spectrum of a finite chain with free boundaries and an odd number of particles (which means an even number of bonds). Edge states emerge inside the band gap for P < 1 (corresponding to the lighter mass on the boundaries),

Figure 3 . 3 :

 33 Figure 3.3: Mechanical Kitaev chain. (a) A mechanical monomer chain with transverse and rotational degrees of freedom maps to the Kitaev chain after finetuning. (b) Topological phase diagram of the Kitaev chain. The path of the finetuned mechanical chain follows the curved solid yellow line. Two cases experimentally tested herein (P = 1.5 and P = 2.5) are marked with triangles. (c) Dispersion diagrams for P = 1.5 and P = 2.5 are obtained in two ways: Analytically, via the lumped-mass model, and numerically, using the finite element method. H and s are the varying dimensions. The colorbar denotes modal dominance. The finite element method was applied by Florian Allein -Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia, UMR 8520-IEMN, F-59000 Lille, France. (d) The winding number of Du,bulk suggests a topologically non-trivial phase for P < 2. (e) Evolution of the spectrum of finite chain with an even number of particles (200) and fixed boundaries as we change P . Edge states emerge for P < 2. (f ) Profiles of the edge states in (e) for P = 1.5. Due to particle-hole symmetry, the profiles of effective particles u and holes Φ/ √ P are either identical or differ by a phase.

Figure 3 . 4 :

 34 Figure 3.4: Analysis of the Kitaev chain with free boundaries. (a) The winding number of Ds,bulk predicts a non trivial phase for P > 2 contrary to the winding of Du,bulk which predicted a non trivial phase for P < 2 (see Fig. 4.12(d) for comparison). (b) Spectrum of a finite chain (N = 200) with both boundaries free as a function of P . Localized edge states emerge in the band gap for P > 2. (c) Profiles of the localized states on the free edges on strain coordinates. The bending (b) and shear (s) strain coordinates follow the pattern dictated by particle-hole symmetry. (d) Profiles of the localized states on the free edges on displacement coordinates. Their profiles appear distorted.

Figure 3 . 5 :

 35 Figure 3.5: Disorder analysis of mass vs stiffness dimer Spectra of the stiffness and mass dimer as a function of disorder on masses (P ) and stiffnesses η. Three ways to implement disorder are presented. (a) The response to totally random disorder (no PS) for both cases stiffness and mass dimer. (b) The response of both chains to disorder that preserves only inversion symmetry. (c) The response of both chains to chiral disorder.

Figure 3 . 6 :

 36 Figure 3.6: Disorder analysis: spectra of the mechanical chain as a function of the disorder strength for disorder on P (mass/inertia) or on η (stiffness). Disorders are displayed as the percentage of the standard deviation from the mean value of the parameter. Top Panels (a-b, e-f) and bottom panels (c-d, g-h) refer to fixed-fixed and free-free boundary conditions, respectively. The first and third columns present the results when the inversion symmetry is not conserved while the second and fourth columns show the results with inversion symmetry conserved. The insets in panels (e-h) correspond to a zoom around the edge mode frequency. The results are averaged over 1500 realizations for each disorder strength.

Figure 3 .

 3 Figure 3.7(b) shows the experimentally measured frequency response at particle ♯ 7 when the chains with P = 2.5 and P = 1.5 are excited from different ends. We observe a band gap (highlighted region) and a peak inside it, which appears for a given chain and side of excitation, corresponding to the edge state. The state inside the band gap exists at the fixed end for P = 1.5 and at the free end for P = 2.5, as

Figure 3 . 7 :

 37 Figure 3.7: Experimental observation of edge states in the Kitaev chain.(a) Schematic of the experimental setup, suspended vertically by fixing particle ♯1. Three points are probed on each particle to characterize the transverse displacement and rotation. (b) Measured frequency response at particle ♯7 when the chains with P = 1.5 and P = 2.5 are excited at the fixed end (at particle ♯2) or at the free end (particle ♯13). The blue area corresponds to the band gap. Measured amplitudes of the edge state (displayed in displacement coordinates) (c) localized at the fixed boundary for P = 1.5, and (d) at the free boundary for P = 2.5.
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  boundary in displacements ↔ Free boundary in strains Dirichlet boundary in pressure ↔ Neumann boundary in flux.

η 1

 1 Intuitively we can understand this by thinking the image of a rotating object on a mirror.

Figure 4 . 1 :

 41 Figure 4.1: Topological edge states in the Mechanical chain without fine tuning. (a) The phase diagram of this chain. The gap closes for P = 1 η . The two regions seperated by this curve give a different Zak's phase (Z = 0 for P > 1 η and Z = 1 for P < 1 η ) and as result we expect a topological phase transition. (b) Continuation of the spectrum of the dynamical matrix D u for a chain consisting of N = 50 particles and fixed BCs as we alter P . The parameter η has been set equal to 0.5 . We observe that edge states emerge for P < 1 η as predicted by Zak's phase. (c) The profile of the edge states for a chain consisting of 40 particles and for P = 0.8, η = 0.5.The profiles of the edge states do not exhibit the profile demanded by particle-hole symmetry as in the case of the fine tuned model. Nevertheless we observe that the edge states are combination of symmetric and anti-symmetric states as dictated by inversion symmetry.

Figure 4 . 2 :

 42 Figure 4.2: Mechanical chain with Free BCs (a) Continuation of the spectrum of D u for a similar chain (η = 0.5 and N = 40 particles) but for free BCs. We observe that in-gap modes emerge for P > 1 η , contrary to the prediction of the bulk invariant, breaking BBC. (b) The profile of the in-gap localised modes for P = 5 and η = 0.5.

Figure 4 . 3 :

 43 Figure 4.3: Comparison of Zak's phase in displacement vs strain coordinates. (a) In the first panel we present the band structure for P = 1.5, η = 0.5.In the next two panels we present the real and imaginary part of Zak's phase. We observe that Real(Z ) = 1 and Im(Z ) = 0 in displacement coordinates, making this phase non-trivial for a chain with fixed boundary conditions. Contrary to that, as we see in (b), Zak's phase predicts a trivial phase for these values of P and η in strain coordinates.

Figure 4 . 4 :

 44 Figure 4.4: Comparison of Zak's phase on displacement vs strains for other parameters. Here we have P > 1 η . Specifically P = 2.5 and η = 0.5. The value of Z now is interchanged. It is trivial in displacement coordinates (a) and non trivial in strain coordinates (b).

Figure 4 .

 4 Figure 4.5: a) The unit cell of an SSH3 tight-binding model with couplings u, v (intracell) and w (intercell). A, B, and C denote the three sublattices while the length of the unit cell is d, which we set to d = 1. b) The spectrum of the bulk Hamiltonian of SSH3 in the first Brillouin zone. Here, all hoppings are different (no degeneracies present). The spectrum is symmetric with respect to the point (k = π/2, E = 0), as indicated.
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 211 The model SSH3 is an extended SSH model with a unit cell that consists of three sites. The hopping between the sites is controlled by the couplings u and v, while the different unit cells are coupled with the intercell coupling w (Figure 4.5a). The system is governed by the Hamiltonian , A⟩ ⟨n, B| + v |n, B⟩ ⟨n, C| ) -N -n=1 |n, C⟩ ⟨n + 1, A| + h.c. , A⟩ ⟨n, B| + v |n, B⟩ ⟨n, C|)w |n, C⟩ ⟨n mod(N ) + 1, A| + h.c. (4.3b) for a periodic chain. Here |n, a⟩ is the lattice basis, where n = 1, 2, . . . , N denotes the unit cell and a = A, B, C denotes the sublattice. Without loss of generality, we will henceforth assume that the hopping parameters are real and nonnegative 2 .

  )

2

  It is easy to verify that with a simple change of basis one can always get real and positive couplings.Assumeu = |u|e -iϕu , v = |v|e -iϕv , w = |w|e -iϕw .Then mapping |m, A⟩ ↦ e -i(m-1)(ϕu+ϕv+ϕw) |m, A⟩, |m, B⟩ ↦ e -iϕu e -i(m-1)(ϕu+ϕv+ϕw) |m, B⟩, and |m, C⟩ ↦ e -i(ϕu+ϕv) e -i(m-1)(ϕu+ϕv+ϕw) |m, C⟩ one recovers the original form of the Hamiltonian with real and positive couplings.

  |m⟩ is defined over unit cells indexed by m and k takes values k = 2πn/N with n = 1, 2, . . . , N . The cell-periodic part |u λ (k)⟩, where λ denotes the energy band, is an eigenvector of the reduced bulk Hamiltonian

Figure 4 . 6 :

 46 Figure 4.6: Continuation of energy spectrum with respect to the intercell hopping coupling, w for a chain of 30 sites (n = 10 unit cells). a) A mirror-symmetric chain (u = v = 6). Notice that the emergence of the edge states does not occur exactly at w = 6 which would be the case in the thermodynamics limit; this is due to the finite size of the system. The exact way to calculate the finite size corrections is presented later in section 4.2.2. b) A chain with all couplings different (u = 3 and v = 6) -no mirror symmetry is present.

Figure 4 . 7 :

 47 Figure 4.7: The spatial profile of the four edge states exhibited by an SSH3 lattice. One can observe that pairs of edge states localized on the same edge (corresponding to opposite energies) are related by a sign change of the amplitude over half of the sites. Moreover, all four edge states do not have support over one out of the three sublattices.

. 18 )

 18 With this equation at hand, the condition g λ (k) = 0 then immediately reduces toa(a + 1)(a -1)b(b + 1)(b -1) = 0,where (4.19a) a ∶= u w , and b ∶= v w , (4.19b)

Figure 4 . 8 :

 48 Figure 4.8: Plot of the momentum shift ϕ λ (k) (red dashed line) from its analytical expression (see Appendix 7.5) for the middle band in two different coupling regimes for a finite chain with N = 10 unit cells. a) In the trivial regime, one can observe that this bulk quantity intersects with the {F n (k)} lines (blue) 10 times in the Reduced Brillouin zone k ∈ (0, π). b) When in the edge states regime, momentum shift intersects 8 times with the possible solutions of the finite problem. Two states have left the band. c) Finite size effect, where NS Zak's phase is nonzero but the same number of intersections occurs as in the trivial regime. This kind of finite size effect vanishes in the thermodynamic limit (N → ∞).

Figure 4 .

 4 10 the parameter regimes with different number of edge states as predicted by the introduced bulk quantity are presented. Only the number of edge states below zero energy (first band gap) are shown. The number of edge states above zero energy will be the same due to point chiral symmetry. As one can observe, the closing of the gap happens only at the single point (a = 1, b = 1). Thus, it is not necessary for the path of an adiabatic change of the Hamiltonian to pass through (1, 1) when the number of edge states changes. The agreement of the size-dependent curves of Figure 4.9 at the thermodynamic limit with the borderlines in Figure 4.10 verifies the bulk-edge correspondence introduced in the present work.

Figure 4 . 9 :

 49 Figure 4.9: Plot of the limiting lines from relation (4.21) where the transition happens for the finite system, in the parametric space of a and b, for the bottom and middle band. Chains have N = 2, 10, 1000 (dashed line, dotted line, and solid line respectively) unit cells. Notice how, at the thermodynamic limit, the curves approach the lines predicted by (4.19a). Comparing the current figure with Fig. 4.10 it becomes evident that the number of edge states matches with the values predicted analytically by NS Zak's phase.

Figure 4 . 10 :

 410 Figure 4.10: Parameter regimes with a different number of edge states for an SSH3 chain with 3N sites, as predicted by the introduced bulk quantity. Dashed lines represent the mirror-symmetric paths while the path with the dotted lines is not constrained by mirror symmetry.

Figure 4 . 11 :

 411 Figure 4.11: The acoustic SSH3 analoga) The acoustic analog of the SSH3 is a periodic waveguide with three alternating cross sections S A , S B and S C . b) Pseudodispersion and dispersion relation of the waveguide obtained by the transfer matrix method.

Figure 4 . 12 :

 412 Figure 4.12: Phase diagram of SSH3 a) Phase diagram of an SSH3 according to NS Zak's phase. One can observe regions with 0,1 and 2 edge states. The bold black lines u = w, w = ν and u = ν represent mirror symmetric realizations of the system.We also present a grid with lines were either u = const. or w = const. and different colours for each region. We do this to highlight in b) and c) how this grid will be "distorted" under the mappings to the acoustic systems. b) The phase diagram of the acoustic analog in pressure mapping and Dirichlet b.cs. One can observe that the the grid now acquires some curvature but interestingly the "mirror symmetric lines" remain intact under the mapping. c). The phase diagram of the acoustic analog in flux mapping and Neumann b.cs. The regions are inverted with respect to the pressure mapping.
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 51 Figure 5.1: Comparison of a free-free chain of N = 10 particles (2N DOFS) with parameter P to a fixed-fixed chain of N -1 particles with parameter P /(P -1). Note that two cases have identical eigen-frequencies except two zero modes for the free chain.
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 52 Figure 5.2: Comparison of a free-free mechanical chain consisting of N = 30 particles (2N DOFS) with parameters P , and η to a fixed-fixed mechanical chain consisting of N -1 particles and parameters 1/P, 1/η. The spectrum is normalized with respect to the frequency ω 2 0 = Ks m . The two chains have identical spectrum except for the two exact zero modes of the free chain.
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 53 Figure 5.3: Dynamical Kane Lubensky SSH. We present a system that generalizes the proposed system by Kane and Lubensky. Here, the rotors are connected to different masses m 1 and m 2 , via alternating springs k 1 and k 2 .

Figure 5 . 4 :

 54 Figure 5.4: Mixed frequency topological metamaterial. (a)The evolution of the spectrum of the displacement dynamical matrix D u of a finite chain, consisting of N = 61 particles and free-free BCs, as we adiabatically alter P . We observe an ever present zero mode according to the prediction of the Witten index. Furthermore an edge state emerges at the mid-gap frequency after the gap closing at P = 1, according to the prediction of the winding number of D s (q). Except for the zero mode, the rest of the spectrum is symmetric with respect to the mid-gap frequency. (b). The profile of the edge states. The top two panels depict the profile of the chiral edge states that appear at the mid-gap frequency, while the last panel depicts the profile of the localised zero mode.

Figure 6 . 1 :

 61 Figure 6.1: Isospectral systems (a) The spectrum of an acoustic SSH with open BCs and alternating cross-sections S a and S b and N = 42 changes of cross-section is compared to the spectrum of an acoustic SSH with closed BCs and N = 40 alternating cross-sections 1/S a and 1/S b .
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 12112271 Dispersion relation of the Aoustic SSH through the transfer matrix method The pressure and the flux velocity between the sites A n , B n , and between the sites B n and A n+1 inside the waveguide, each separated by a distance L, are connected through the transfer matrix:

2

 2 2)) we arrive to the following eigenvalue equation for the unknown phase factor qd TA = e iqd IA. (7.4) 123 Hence, e iqd is an eigenvalue of the transfer matrix T. Due to time reversal, the determinant of the transfer matrix is equal to unity. As a result its eigenvalues λ 1,2 satisfy the following expression det(T) = λ 1 λ 2 = 1. (7.5) Then, one can identify that tr(T) = 2 cos (qd). (7.6) From the latter expression one can obtain the dispersion relation of the periodic acoustic waveguide through: qd = arccos ( Numerical calculation of Zak's phase for the rotation-displacement monomer without fine-tuning In order to calculate numerically Zak's phase we need a discrete version of (1.1).

  .13c) The Hamiltonian can be decomposed in the following manner H = P A HP B + P B HP C + P C HP A + h.c. (7.14) and the following holds P A HP A = P B HP B = P C HP C = 0 . (7.15)
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 71 Figure 7.1: The boundary conditions of an open chain for the cases of 3N and 3N +1 sites. Since they are not the same, a different NS Zak's phase should be utilized in each case.

2 . 2 , 1 a ′ > 1 ,Table 7 . 1 :Figure 7 . 2 :

 22117172 Figure 7.2: Continuation diagram for a finite SSH3 chain with 3N+1 sites.
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 73 Figure 7.3: Comparison of NS Zak's phase with Zak's phase in the case of an SSH4 without mirror symmetry. While Zak's phase is not quantized, NS Zak's is quantized and predicts correctly the number of edge states that each band contributes. The spectral diagram corresponds to a finite chain with 4N (where N = 20) sites. Due to that, the NS Zak's corresponding to the first sublattice has been utilized. The bulk invariants for the first and second band are presented. The results for the rest of the bands are identical due to chiral symmetry.

mü 1 = K s ∆s 1 -K s ∆s 0 ( 7 . 60 )

 110760 I φ1 = K s ∆s 1 + K s ∆s 0 + K b ∆b 1 -K b ∆b 0 (7.61)putting the conditions u 1 = 0 and ϕ 1 = 0, we get:∆s 1 = ∆s 0 (7.62) ∆b 1 = 2 P P -1 ∆s 1 + ∆b 1 (7.63)In the same manner we take for the other end of the chain:∆s N +1 = ∆s N (7.64) ∆b N +1 = ∆b N -2 P P -1 ∆s N (7.65) Plugging these in (3.23) and (3.24) we get the boundaries of the elongation dynamical matrix for the fixed chain. With (7.62),(7.63) and (7.64),(7.65) we achieve a description of the fixed boundaries purely with strains.
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Titre:

  Métamatériaux topologiques à coordonnées d'ordre supérieur Mots clés: Métamatériaux topologiques, Isolants topologiques et supraconducteurs, Supersymétrie, Métamatériaux mécaniques, Correspondance «bulk-boundary», Métamatériaux acoustiques Résumé: Dans cette thèse, nous présentons une nouvelle famille de métamatériaux topologiques, appelés: Métamatériaux topologiques à coordonnées d'ordre supérieur (HOC). Contrairement aux métamatériaux topologiques typiques, où les propriétés topologiques sont décrites dans les coordonnées de déplacement habituelles, la nature topologique des métamatériaux topologiques HOC n'est révélée que dans les coordonnées d'ordre supérieur (par exemple, les déformations dans les systèmes mécaniques, le champ de flux en acoustique, etc). Ces métamatériaux présentent toutes les caractéristiques souhaitées pour être caractérisés comme topologiques : états de bord robustes, transitions de phase topologiques et correspondance "bulk-boundary". Nous nous concentrons principalement sur les métamatériaux 1D HOC. Nous commençons par présenter quelques modèles préliminaires, comme le dimère de masse ou un système dit de Su-Schrieffer-Heeger (SSH) en acoustique, qui présentent une phénoménologie similaire aux systèmes topologiques -par exemple, les états de bord émergent après une fermeture du spectre -mais qui semblent soit violer la correspondance "bulk-boundary", soit ne pas posséder les symétries nécessaires à une classification topologique lorsqu'ils sont examinés en coordonnées de déplacement. Nous démontrons à l'aide de trois exemples -le dimère de masse, une chaîne mécanique de Kitaev et un analogue acoustique du modèle SSH -que les coordonnées HOC nous permettent de dévoiler les symétries protectrices de la topologie et d'établir une correspondance entre les frontières et le volume pour les frontières qui brisent les symétries protectrices dans les coordonnées d'ordre inférieur. En outre, nous examinons deux métamatériaux HOC qui n'appartiennent à aucune des dix classes établies des isolants topologiques, mais qui présentent des états de bord qui peuvent être prédits à partir d'invariants de masse en raison de la présence d'autres symétries (symétrie d'inversion, chiralité ponctuelle) : Un SSH3 acoustique et une chaîne mécanique quasi-1D qui utilise les degrés de liberté de déplacement et de rotation. Enfin, une dualité semble exister entre les métamatériaux topologiques HOC et les métamatériaux topologiques typiques. Dans le cas contrainte sont des partenaires supersymétriques (SUSY) des métamatériaux de déplacement typiques. Cela pourrait être le point de départ d'une preuve générale de cette dualité à l'avenir. Nos résultats suggèrent que les coordonnées d'ordre supérieur constituent un outil nécessaire aux méthodes déjà établies pour sonder les propriétés topologiques. Ils ouvrent de nouvelles perspectives de recherche telles que la possibilité de métamatériaux topologiques HOC 2D, et exigent une étude générale de l'interaction entre les conditions aux limites et les transformations de coordonnées.

  

  

  )and Γ f = P odd -P even . From the orthogonality of states of the finite Hamiltonian follows that ⟨Ψ|Γ p,f |Ψ⟩ = 0 ⇒ ⟨Ψ|P odd |Ψ⟩ = ⟨Ψ|P even |Ψ⟩ .

	(7.19)
	7.4 Derivation of the momentum shift equations
	Here we show in detail how one can derive Eq. (4.16a) following closely the ap-
	proach of Ref. [68]. Our starting point is the Hamiltonian

  bc O . . . . . . O B T bc A bc B bc O . . . . . .

	O . . . . . . O	. . . . . . . . . . . . . . . . . . . . . O B T bc A bc . . . . . . . . . . . . O B T bc A Nbc . . . O B bc	⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥	(7.52)

The "bulk" is the infinite version of the system or equivalently a system at the thermodynamic limit with periodic boundary conditions.

but not eigenvalues -the eigenvalues of √ D will be the square root of the eigenvalues of D.

We remind that isostatic lattices are lattices on the verge of mechanical instability and locally the Maxwell condition (relation (1.2)) holds.

By finite case we refer to systems with broken translation invariance.

In this thesis, when we refer to "particles" we mean classical macroscopic and localised particles, except if otherwise mentioned.

A periodic lattice of N particles is a lattice in which the (N + 1) th particle is identified with the first particle.

By lumped-mass model we mean the discrete approximation of a continuous elastic system which can be mapped to point particles connected by effective springs.

Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia, UMR 8520-IEMN, F-59000 Lille, France

In this context, a system is said to have chiral symmetry (also known as sublattice symmetry) when an operator Γ exists which is unitary and hermitian (thus Γ 2 = 1) and anticommutes with the bulk Hamiltonian, i.e, ΓH(k)Γ -1 = -H(k). If present, chiral symmetry dictates that the spectrum is symmetric with respect to zero energy[START_REF] Maffei | Topological characterization of chiral models through their long time dynamics[END_REF]. Thus SSH3, and generally SSHm models for m odd, do not possess chiral symmetry.

As remarked earlier, for a finite periodic Hamiltonian, the number of unit cells should be even, a restriction that can be dropped for the finite periodic chain.

Laboratoire d'Acoustique de l'Université du Mans (LAUM), UMR 6613, Institut d'Acoustique -Graduate School (IA-GS), CNRS, Le Mans Université, France

By generalized mass we mean physical quantities related to the inertia of the degrees of freedom with respect to the application of generalized forces. As a result, masses, moments of Inertia etc. can be incorporated in this concept.

If we note as f + the operator that creates a fermion when acting on the vacuum and b -the operator that annihilates a boson, then Q -that transforms a boson to a fermion should have a form similar to Q -= f + b -. The fermion-creation operator should be nilpotent ((f + ) 2 = 0) because there can't be two fermions occupying the same state due to Pauli's exclusion principle. As a result, and because b -and f + commute, Q + will also be nilpotent

Care should be taken with respect to the interpretation of "even" and "odd" states. The eigenvalues of operator Z determine whether a state is in the bosonic or in the fermionic subspace. This should not be confused with the parity operator (Π) which is defined in the subspaces. For example an eigenstate of Z with a positive eigenvalue (thus a phonon state) can either be odd or even with respect to Π.

Note that this is not a duality by our definition. In the subspace we should have U D u U † = D ′ u in order to have a duality. Nevertheless, the superspace duality translates into a relation between D ′ u and D s in the subspaces.

Acknowledgments

the band gap for P > 2, as predicted by the winding of the strain dynamical matrix Ds,bulk (q). These hidden topological edge states exhibit the profile dictated by particle-hole symmetry when expressed in the strain coordinate system (Fig. 3.4(c)), while their form appears distorted when expressed in displacement coordinates (Fig.

3.4(d))

. Building off our unique definition of generalized strain in the Kitaev chain may also open the door for establishing symmetries based on other coordinates paired with the appropriate boundaries.

Are strain topological metamaterials really topological? A disorder analysis

Disorder of mass vs stiffness dimer

Another characteristic of topology is the robustness of edge states against disorder.

It is known that if the topology Protecting Symmetries (PS) -time reversal, chiral, particle-hole -are preserved from the induced disorder, then the edge states are "pinned" at the mid-gap frequency. For finite-frequency topological mechanical metamaterials, chiral symmetry is preserved, if the diagonal of the dynamical matrix remains constant. We will provide here evidence, that finite-frequency strain topological metamaterials have the exact same response to disorder as the already known finite-frequency mechanical topological metamaterials.

In Fig. 3.5, we compare three cases of disorder for the stiffness and mass dimer.

In Fig. 3.5(a), we present the averaged spectrum (1000 realizations) under totally random disorder (no symmetry preserved). The chains have N = 50 particles for the case of the stiffness dimer and N = 51 particles for the mass dimer. For the case of the mass dimer, we have applied disorder on the masses in the following manner: m 1,n = m 1 + γλ n , m 2,n = m 2 + γϕ n and for the stiffness dimer:

γ is the disorder strength and λ n and ϕ n are random numbers that An important consequence of the SUSY algebra is that all non-zero energy states are doubly degenerate. This can be seen from the fact that H SUSY commutes with the supercharges (5.3) which transform fermionic to bosonic states and vice versa. Explicitly, if a bosonic state |u⟩ is an eigenstate of the SUSY Hamiltonian, then Q -|u⟩ will be a fermionic eigenstate of the SUSY Hamiltonian with the same eigenvalue be-

As a result two states (|u⟩ (bosonic) and Q -|u⟩ (fermionic)) will correspond to the eigenvalue λ and it will be doubly degenerate. With respect to zero eigenvalues, SUSY algebra dictates that both supercharges annihilate the states corresponding to them. That is because:

(

Due to this property of SUSY zero energy modes, the commutation relation (5.3) cannot guarantee that these modes will be degenerate. SUSY allows for extra (unpaired) bosonic or fermionic degrees of freedom, as long as they correspond to exactly zero energy. As a result, if we write the SUSY Hamiltonian as:

where H b is the bosonic Hamiltonian and H f the superparnter fermionic Hamiltonian, then, in the most general case, the two Hamiltonians will be isospectral up to zero modes. Furthermore, due to the SUSY algebra, one can introduce the operator

This operator will become relevant when investigating SUSY in Mechanical systems.

Mechanical SUSY

We will now argue that mass-spring systems possess an intrinsic SUSY that connects the displacement and strain degrees of freedom. Since the number of displace-them (T = T 1 , T 2 , ...T M ) 5 [START_REF] Kane | Topological boundary modes in isostatic lattices[END_REF]. Tensions are related to strains by: T = K s S. If we also take into account the relation between strains and displacements S = CU , Newtons equations can take the form:

where M u and K s are the mass and stiffness matrices and the subscripts u and s denote displacement and strain coordinates, respectively. We observe that the dynamical matrix in displacements D u takes the form

(5.12)

Let's examine the case of strains. Again we begin by:

We observe that:

5 Note that the number of tensions will not be equal to the number of forces in the general case. Their number depends on the applied boundaries as was the case for the relation of strains to displacements. The difference in their number will be reflected to the dimension of C which for N particles and M bonds will be M × N .

We give here the matlab code for calculating Zak's phase for the case of the rotation-displacement monomer without the fine tuning. Extracting the phase: Zakphase = -1i* log(prod(InnerProductnorm,2)) toc For the case of strains, the code is the same but instead of D u (q) that was used here, one shoud use D s (q) (relation (4.2)). Let us also note that, for the case of sublattice Zak's phase, a similar code is needed but instead of taking the inner products of the eigenvectors, one should first isolate their components and examine separately different values for θ A λ (k) at k = 0 and different values always come with a different sign in the derivative. A similar observation holds for k = π.

Combing these two last facts, we reach the conclusion that a change in the value of the NS Zak's phase Z λ A,C is necessarily associated with a change in the sign of the divergence of Eq. (4.17), either at k → 0 + or k → π -. In turn, this sign is determined by the numerator g λ (k) ∶= 1 -w uv E λ (k) cos(k). This is because the energy E λ (k) of each band has a fixed sign at k = 0, π. Finally, due to continuity, a sign changes can thus only occur when g λ (k) = 0.

For the case of 3N + 1 sites, instead of a λ 1 one needs the expression of a λ 2 . The corresponding formula will be given by a k) and one can extract it by following the method exhibited in Appendix 7.4 but by adding an extra site to the initial Hamiltonian. For a more detailed treatment of the momentum shift for non integer number of unit cells, see [START_REF] Marques | Analytical solution of open crystalline linear 1D tight-binding models[END_REF]. Then, in order to get θ B λ (k), one uses the relations given in (7.44) but with the substitution of a λ 1 with a λ 2 .

7.5.1 Bulk-edge correspondence for 3N + 1 and 3N + 2 sites

The key observation that allowed us to establish a bulk-edge correspondence in the case of 3N sites was that the phase of the first component of the Bloch eigenvectors (in the appropriate gauge) codified all the necessary information for the existence of the edge states. However, when extra sites are added the expression for the momentum shift is modified [START_REF] Marques | Analytical solution of open crystalline linear 1D tight-binding models[END_REF], as dictated by the corresponding boundary conditions. It is then natural to pursue a formulation of a bulk-boundary correspondence that is given in analogous terms, i.e., as a NS Zak's phase but over a different sublattice (see Figure 7.1). One would also expect that a gauge-invariant quantity can be constructed by taking the difference of the NS Zak's phases between the chain of interest and a reference chain, as in the case of 3N sites. Specifically we will show that all the