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Abstract

Phosphate ore slurry is a suspension of insoluble particles of phosphate rock,
the primary raw material for fertilizer and phosphoric acid, in a continuous
phase of water. This suspension has a non-Newtonian flow behavior and
exhibits yield stress as the shear rate tends toward zero, which can be de-
scribed as viscoplastic behavior. First, we proposed an innovative method-
ology to handle the numerical simulation of viscoplastic flows, based on
a multigrid initialization algorithm in conjunction with the SIMPLE pro-
cedure. Using the proposed solver in combination with the regularization
scheme of Papanastasiou, we chose the square lid-driven cavity flow and
pipe flow as test cases for validation and discussion. In doing so, we study
the influence of the Bingham number and the Reynolds number on the
development of rigid areas and the features of the vortices within the flow
domain. Regarding viscoplastic flows, our experiments demonstrate that
our approach based on using the multigrid method as an initialization pro-
cedure makes a significant contribution by outperforming the classic single
grid method. Afterwards, various grades and phosphate ore concentrations
were chosen for this rheological investigation. We created some experi-
mental protocols to determine the main characteristics of these complex
fluids and established relevant rheological models with a view to simulate
the numerical flow in a cylindrical pipeline. Rheograms of these slurries
were obtained using a rotational rheometer and were accurately modeled
with commonly used yield-pseudoplastic models. The results show that the
concentration of solids in a solid–liquid mixture could be increased while
maintaining a desired apparent viscosity. Then, a new rheological model
for the flow of phosphate-water suspensions is proposed and it is found to
be in good agreement with experimental data. The proposed model is then
incorporated into the OpenFoam numerical code. The results demonstrate
that the model is capable of reproducing the rheological behavior of phos-
phate suspensions at both low and high concentrations by comparing it
with suitable models for modeling the rheological behavior of phosphate
suspensions. The proposed model can provide a pathway for accurately
simulating and monitoring phosphate slurry flows. The overall contribu-
tions of this work address a significant gap in the current understanding
and simulation of phosphate ore slurry flow.

Keywords: Slurry - Rheology - Visco-plastic flows - Finite Volume
Method - Computational Fluid Dynamics.
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Résumé

La pulpe de minerai de phosphate est une suspension de particules insol-
ubles de roche de phosphate, matière première principale des engrais et de
l’acide phosphorique, dans une phase continue d’eau. Cette suspension a
un comportement d’écoulement non newtonien et manifeste une contrainte
seuil à l’approche d’une vitesse de cisaillement de zéro, ce qui peut être
défini comme un comportement viscoplastique. Premièrement, nous avons
proposé une méthodologie novatrice pour gérer la simulation numérique des
écoulements viscoplastiques, basée sur un algorithme d’initialisation multi-
grille conjointement avec la procédure SIMPLE. En employant le solveur
proposé en combinaison avec l’équation de régularisation de Papanasta-
siou, nous avons choisi le cas d’écoulement en cavité carrée entraînée par
le couvercle et l’écoulement en pipeline comme cas d’études pour valida-
tion et discussion. De ce fait, nous avons examiné l’influence du nombre
de Bingham et du nombre de Reynolds sur l’apparition des zones rigides
et les caractéristiques des vortex dans le domaine d’écoulement. En ce
qui concerne les écoulements viscoplastiques, nos expériences montrent que
notre approche basée sur l’utilisation de la méthode de multigrille comme
procédure d’initialisation apporte une contribution significative en surpas-
sant la méthode classique à grille unique. Par la suite, nous avons choisi
diverses teneurs et concentrations en minerai de phosphate pour cette étude
rhéologique. Nous avons établi des protocoles expérimentaux pour déter-
miner les caractéristiques principales de ces fluides complexes et avons établi
des modèles rhéologiques appropriés dans le but de simuler l’écoulement
numérique dans un pipeline cylindrique. Les rhéogrammes de ces boues ont
été obtenus à l’aide d’un rhéomètre rotatif et ont été modélisés avec préci-
sion en utilisant les modèles couramment employés pour le comportement
pseudo-plastique à seuil. Les résultats démontrent que la concentration
en solides d’un mélange solide-liquide peut être augmentée tout en conser-
vant une viscosité apparente souhaitée. Par la suite, un nouveau modèle
rhéologique pour l’écoulement des suspensions phosphate-eau a été proposé
et s’est révélé être en accord avec les données expérimentales. Le modèle
proposé a ensuite été intégré au code numérique OpenFoam. Les résul-
tats démontrent que le modèle est capable de reproduire le comportement
rhéologique des suspensions de phosphate à faibles et hautes concentrations
en le comparant avec des modèles adaptés pour la modélisation du com-
portement rhéologique des suspensions de phosphate. Le modèle proposé
peut offrir une voie pour la simulation précise et la gestion des écoulements
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de boue de phosphate. Les contributions globales de ce travail comblent
une lacune significative dans la compréhension et la simulation actuelles de
l’écoulement de la boue de minerai de phosphate.

Mots-clés: Suspensions - Rhéologie - Écoulements visco-plastiques -
Méthode des volumes finis - Dynamique numérique des fluides.
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Chapter 1

Introduction

Phosphate slurry pipelines have been shown to be an appropriate mode
of transport for phosphate ore in terms of energy use and the generated
emissions [1]. Since phosphate rock is known to be insoluble, it cannot be
used directly as a fertilizer. Consequently, it is normally processed in a
wet-process phosphoric acid (WPA) plant [2]. Transporting wet phosphate
from the washing plants over the pipeline is a more rational way to use
water and energy resources, as no drying at the mine is required and the
slurry can simply be driven down the pipeline by gravity.

Phosphate ore is found in sub-horizontal beds as sedimentary deposits
with high phosphorus (P) concentrations of up to 30% alongside limestone,
marls, and clays. In addition to potassium and nitrogen, phosphorus plays a
crucial role in biological processes and is an essential constituent of all living
matter, in both its animal and plant forms. Phosphate minerals are, there-
fore, raw materials for agricultural fertilizers [3]. Mining is accomplished by
removing the overburden, followed by the extraction of phosphate ore for
processing [4]. Right after excavation, the phosphate is separated from the
unwanted sand and clay minerals in a washing plant [5]. Then, the ore is
mixed with water, turned into pulp, and the resulting slurry is transported
through pipes to a chemical processing plant where it is mixed with sulfuric
acid to produce phosphoric acid [6].

The motivation for this rheological study was triggered by evidence that
indicates that the transport characteristics and processing of phosphate ore
slurry is heavily dependent on its rheological properties. Deep knowledge
of the rheological behavior is therefore essential, particularly when trans-
porting a large amount of slurry. It has been shown that when designing
a pipeline, prediction of the flow regime (laminar or turbulent) and the
head loss cannot be done properly without a rigorous understanding of the
rheology [7].

The rheology of a material is usually described using a constitutive
equation that relates the applied shear stress τ to the resulting shear rate

1



1. Introduction 2

.
γ. The main objective of such a study is to predict the flow that would
appear in a given piece of equipment under the action of applied forces. A
highly viscous liquid requires more power to be pumped than one with a
low viscosity. Knowledge of a material’s rheological behavior is therefore
useful when controlling pumping and piping systems [8, 9].

Obtaining suspensions of particles in a fluid matrix is challenging and
complex, and numerous investigations of particle rheology can be found
in the literature. As reported in prior studies, concentrated suspensions
may exhibit shear-thickening or shear-thinning behaviors (with or with-
out a yield point), irreversibility under oscillating shear, and many other
complex performances [10, 11]. At high solids loadings (>25% by volume),
observations of the rapid growth in the apparent viscosity, η = τ/

.
γ , and an

increase in the non-Newtonian behavior (particularly shear-thinning), with
Newtonian limiting behavior at both low and high shear rates, are reported
in several articles [10, 11, 12, 13, 14]. In piping systems, a shear-thinning
slurry is often desired since the viscosity of the mixture can be reduced by
increasing the shear rate, making the pumping more efficient. In most sus-
pensions, the important physical properties that affect the rheology include
a solid volume fraction, the particle size and shape, and the mechanical and
physical interactions between particles and the fluid matrix.

Understanding the flow behavior of materials with yield remains a chal-
lenging problem at both experimental and computational levels. Neverthe-
less, numerical resolution of visco-plastic flows has significantly improved
over the last few decades. Indeed, Computational Fluid Dynamics has
firmly established itself across a wide range of applications and research ar-
eas. Subsequently, it has spread throughout engineering industry. This has
gone hand in hand with major improvements in high-performance comput-
ing hardware and treatment of more sophisticated mathematical models.
Notably, numerical simulations of visco-plastic flows have assisted in better
understanding the behavior and fundamental properties of fluids exhibiting
a yield stress in different applications relevant of natural and engineering
sciences [15, 16, 17].

Visco-plastic fluid flows account for an important branch of non-Newtonian
fluid mechanics, as a considerable proportion of fluids flows occurring both
naturally and industrially are known to exhibit yield stress. Suspensions
of particles in a fluid matrix, such as slurries, gels, and nanocomposites,
typically display viscoplasticy and the study of their behavior has led to
a large literature. These fluids behave as solids as the shear rate tends
to zero, and as liquids beyond a certain critical shear stress level, i.e. the
yield stress. The fluid flow field is therefore divided into unyielded and
yielded fluid regions. A comprehensive review of Visco-plastic fluids has
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been carried out by Barnes [18]. The most widely known model for inelas-
tic visco-plastic fluids was first proposed by Bingham [19], which describes
a linear interrelation between shear stress and shear rate during flow. The
constant of proportionality of this linear relationship is often called the
plastic viscosity of the yielded fluid, µ. Thus, the Bingham model can be
expressed, in tensorial form, as follows:.

γ̇ = 0 if τ ≤ τy

τ =

(
µ+

τy
γ̇

)
γ̇ if τ > τy

(1.1)

where τ is the stress tensor and γ̇ is the shear rate tensor, γ̇ = ∇u +
(∇u)T , ∇u being the velocity gradient tensor. The magnitudes τ and γ̇
are evaluated based on the second invariants of the stress and the rate of
strain tensors respectively, as :

τ =

[
1

2
τ : τ

]1/2
(1.2)

γ̇ =

[
1

2
γ̇ : γ̇

]1/2
(1.3)

Later, more general forms of Bingham model were adopted in an at-
tempt to capture the non-linear flow behavior beyond the critical shear
stress. These slighlty more complex empirical models include, among oth-
ers, Herschel and Bulkley, Casson and Robertson–Stiff models. The result-
ing constitutive equations combine the behavior of solids in the so-called
’rigid’ regions and of non-Newtonian liquids in the ’flow’ regions through
discontinuous equations. Thus, simulating visco-plastic flows is likely to en-
counter many difficulties due to the non-differentiability of the constitutive
equations and the indeterminacy of the stress tensor below the yield stress.
In most cases, it is necessary to determine the location and the shape of
the interface between the yielded and unyielded regions at which the flow
must switches from one branch of the constitutive law to the other. In Eq.
5.1, the yield surface is represented by the locus of points where τ = τy.

Since performing numerical simulations of a yield stress material flow is
not a straightforward task, two main families of solution approaches were
suggested over the past decades, the regularization method and augmented
Lagrangian algorithm. The former approach includes methods which ap-
proximate Eq. 5.1 by one regularised and smooth constitutive equation
which is well determined regardless of the shear rate magnitude. The regu-
larised equation treats the whole material domain as a fluid of variable vis-
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cosity and locally assigns a large but finite value of viscosity to the unyielded
regions. The most popular regularisation methods in the literature are pro-
posed by Bercovier and Engelman [20], and that by Papanastasiou [21].
Many authors have extensively studied viscosity regularisation methods for
a range of different problems including the following list [22, 23, 24, 25, 26].
The other solution method in solving visco-plastic flows consists of using
variational inequalities whose solutions are equivalent to the solutions of
original problems. The underlying problem is solved as the minimization
of shear rate or maximization of shear stress, which form the basis of the
Augmented Lagrangian Method. The method also involves using Lagrange
multipliers and the corresponding solution algorithm is of the Uzawa type.
The development of this approach is due to Duvaut and Lions [27], to-
gether with Glowinski [28]. Numerically solving visco-plastic flows using
regularization methods is typically faster and easier to implement than the
augmented Lagrangian algorithm, and therefore it has been common to use
the first strategy [29].

Several numerical methods were proposed for flow analysis of such ma-
terials in various bounded domains. The governing equation set of incom-
pressible flows provides, along with momentum equations, a coupled con-
tinuity equation that should be satisfied. While every velocity component
appears in each momentum equation and in the continuity equation, there
is evidently no equation for the pressure which makes the formulation of
an equation for pressure based on the governing flow equations non-trivial.
The pressure-velocity coupling gives rise to a constraint in the solution: the
applied pressure field in the momentum equations should verify continuity.
Both issues associated with the pressure-velocity linkage and the further
appearance of non-linearities in the set of equations have lead to a variety
of iterative solution algorithms [30, 31].

Historically, pressure and velocity were coupled using a staggered vari-
able arrangement, in early works by Harlow and Welch [32] and Chorin [33],
with velocity typically defined at the cell faces, while other scalar variables
including pressure were evaluated at the cell centres. However, iterative so-
lution strategies were widely adopted for incompressible flows in the 1970s,
notably through the development of the well-known segregated SIMPLE
algorithm (semi-implicit method for pressure linked equations) [34]. Since
its formulation, the SIMPLE algorithm has provided the basis for the de-
velopment of a number of SIMPLE-like algorithms devoted to algorithm
improvements, a review of which is reported in [35] whereas detailed de-
scriptions are available in [36]. besides, the work of Rhie and Chow [37]
expanded the application area of the SIMPLE-like algorithms by enabling
the use of a collocated variable arrangement and setting the ground for a
geometric flexibility similar to that of the finite element method (FEM)
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[38]. The main issue arising from solving Navier-Stokes equations in prim-
itive variables on collocated grid is the well known checkerboard pressure
effect. The oscillation is caused by decoupling of pressure and velocity
in discretised equations [39], and it is necessary to use special face veloc-
ity interpolation techniques for the calculation of mass flux through the
control volume faces. In the early 1980s, Rhie and Chow [40] adopted a
modified momentum interpolation to eliminate the irrational pressure field
in co-located grid. Since then, the momentum interpolation of Rhie and
Chow [40] has been widely used to approximate face velocity for SIMPLE
based algorithms. Although SIMPLE is an old algorithm, it is still very
popular and it has been used successfully in numerous studies to solve com-
plex flow phenomena, [26] being a recent example involving non-Newtonian
flow. However, it has been reported that some limitations of this method
may arise when dealing with visco-plastic flows. Reported results of simple
iterative techniques to solve flows of fluids with yield show low conver-
gence rates and significant computational costs for the solutions in some
cases. SIMPLE is a slowly converging algorithm, but its performance can
be greatly enhanced by using it in a multigrid (MG) context [41, 42].

Multigrid techniques are implemented in conjunction with a linear solver
using a sequence of coarsening and refining grids. The method is motivated
by its capability to offer fast convergence by allowing all wavelengths of the
algebraic error to decay uniformly fast [43]. The multigrid method was first
adopted in the context of the finite volume methods by Sivaloganathan and
Shaw [44] and Peric et al. [45] to solve recirculating Newtonian flows on
staggered and co-located grids, respectively. These studies have shown
that the efficiency of calculating incompressible flows using implicit meth-
ods based on SIMPLE algorithm can be substantially improved using the
multigrid method for outer iterations. However, implementing a multigrid
algorithm is a non-trivial task that requires considerable thought and care.
One of the challenges involves inter-grid transfers, which may be dependent
on a dynamic criterion based on the residuals. However, an initial solution
can be obtained with relative ease and lower computational cost. While
some methods are well defined and classified in a mathematical sense, they
can still be a source of new insight and of unexpected new practical appli-
cations.

This thesis expects to contribute in a number of ways to the literature
of slurry-related rheology and numerical simulations and especially their
understanding. The major contributions are:

1. First contribution relates to an innovative methodology for handling
the numerical simulation of viscoplastic flows using a multigrid ini-
tialization algorithm in conjunction with the SIMPLE procedure.
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2. Second contribution concerns a study of rheological properties of phos-
phate suspensions. Based on experimental data collected from a series
of rheometric tests, we investigated the effect of particles concentra-
tion and size, and shear rate on the viscosity and flow behavior of
these suspensions.

3. Third contribution relates to a new rheological model that accurately
reproduces the rheological behavior of phosphate suspensions at low
and high concentrations, making it suitable for industrial simulations.

The remaining part of this Ph.D. dissertation is structured as follows:

Chapter 2: General Aspects of Rheology and Fluid Dynamics

In this introductory chapter we provide simple physical explanations
of the phenomena under study, including fluid, flow, viscosity, and forces.
We then present the various tools that may be useful for a mathemati-
cal treatment of viscous flows under the continuum hypothesis and in the
absence of thermal changes, including forces and stresses, mass and flow
equations, and the constitutive equation. While our goal is not to provide
a comprehensive presentation of fluid mechanics and rheology, we review
the basic knowledge required to understand the developments presented in
the following chapters.

Chapter 3: Numerical Study Of Viscoplastic Flows

In this chapter, we propose an innovative methodology for handling
the numerical simulation of viscoplastic flows using a multigrid initializa-
tion algorithm in conjunction with the SIMPLE procedure. We solve the
governing equations for incompressible flow on a collocated grid using fi-
nite volume discretization and Rhie and Chow interpolation for pressure-
velocity coupling. Using the square lid-driven cavity flow and pipe flow as
test cases, we validate our approach and demonstrate that it outperforms
the classic single grid method, achieving a computation speed-up ratio of
6.45 for the finest grid size (320 × 320). Our experiments also show that
the representation of the yield surface and the plug zone is influenced by
the chosen stress growth parameter values, which have implications for the
development of rigid areas and the features of the vortices within the flow
domain.
Chapter 4: Rheological Characterization of Phosphate Slurry
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In this chapter, we investigated the rheological properties of phosphate
ore slurries, which are commonly used in fertilizer and phosphoric acid
production. We developed experimental protocols to determine the main
characteristics of these complex fluids and established relevant rheologi-
cal models to simulate the numerical flow in a cylindrical pipeline. Our
findings suggest that increasing the concentration of solids in these slurries
can be achieved without affecting their desired viscosity, which could have
practical implications for their processing and transport.

Chapter 5: A New Rheological Model for Phosphate Slurry Flows

In this chapter, we propose a new rheological model for the flow of
phosphate-water suspensions and evaluate its ability to replicate their rhe-
ological characteristics using rheometric tests. We present a comprehensive
methodology for obtaining the model parameters and incorporate it into
the OpenFoam numerical code. Our results show that the proposed model
can accurately reproduce the rheological behavior of phosphate suspensions
at both low and high concentrations, which makes it suitable for simulating
and monitoring phosphate slurry flows in industrial applications.

Chapter 6: Concluding remarks and perspectives

The conclusion highlights the main findings of this Ph.D. thesis. More-
over, several future research directions are discussed.



Chapter 2

General Aspects of Rheology and
Fluid Dynamics

In this chapter, we shall present the basic tools for a mathematical approach
to phosphate slurry rheology and dynamics. Within a certain range of solid
concentrations, phosphate slurry or phosphate suspensions flow materials
undergo very large, approximately continuous deformations. As a result,
the most immediate way of describing these phenomena is to consider them
within the frame of fluid mechanics. However, the materials under consider-
ation generally offer resistance (viscosity) to shear, and thus to flow, which
is much larger than water flow resistance and is a priori unknown. Conse-
quently, we must start by studying the mechanical behaviour of this kind
of material in greater detail. Indeed, this is the aim of rheology. Relation-
ships between stresses and deformations are the fundamental concepts of
continuum mechanics, which are discussed in this chapter.

In the following pages, we shall start by providing some simple physical
explanations of the phenomena under study: fluid, flow, viscosity, forces,
etc. Then we shall present the various tools that may be useful for a math-
ematical treatment of viscous flows under the continuum hypothesis and in
the absence of thermal changes: forces and stresses, mass and flow equa-
tions, and the constitutive equation. It is not our aim to provide a complete
presentation of fluid mechanics and rheology. We shall restrict ourselves
to reviewing the basic knowledge required to understand the developments
presented in the following chapters. Readers wishing to explore these fields
in greater depth should consult various references such as the one written
by [46], [10] and [11] for rheology, and [30], [31] for both aspects in con-
junction with an overview of the flow behaviour and solution of all types
of materials.

8
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2.1 Generalities

2.1.1 Stress Tensor

It is possible to classify the applied forces on a fluid element of volume dV
in two categories according to their ranges:

– Volume forces that are long range forces (gravity, electrical or mag-
netic forces). These forces when applied on a volume element are
proportional to its volume.

– Surface forces that are short-range forces. These short-range interac-
tions will only involve a thin outer layer on a given volume element.
The overall force applied by these interactions is proportional to the
area of the surface limiting the fluid element and is independent of its
volume.

Surface forces act on the surface of the fluid element and arise by virtue
of contact. In general, the orientation of the contact area may be such that
the outward normal to the contact area does not coincide with the direction
of the exerted force. Since two vectors (the outward normal vector and
the force vector) are involved, a complete description of the surface force
exerted on a fluid element requires the definition of the stress tensor (or
the stress matrix). Stress is of course, force divided by the area. For
an arbitrary macroscopic volume element, the forces acting on its surface
element dS, of normal unit n, are due to pressure and viscous stresses which
can be expressed in term of the total stress tensor σ, as follow:

dF = σ · ndS (2.1)

The Stress is the quantity that represents applied forces on the surfaces
of a volume, which will be the cause of any resulting deformation in that
volume. The force vector has three components and the area of contact
can be projected onto three planes each normal to a coordinate direction.
In the 3D cartesian coordinate system (x, y, z), the Stress σ is a 2nd rank
tensor (i.e. 3 × 3 Matrix) which has 9 components σij as you can see in
Figure 2.2. The coefficient σij of the tensor represents the component in
the i-direction of the stress exerted on a surface with normal oriented in
the j–direction. Accordingly:

– σyx is the y-component of the force exerted on a unit area with normal
pointing in the x–direction. This is a tangential or shear stress.
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Figure 2.1: The surface forces acting on a differential surface element expressed
in terms of the stress tensor

– σxx is the x-component of the force exerted on a surface perpendicular
to the same x–direction. It is a normal stress.

The stress tensor σ (or σij) is symmetric, thus σij = σji. Hence in
cartesian coordinates, the stress tensor at a point can be written as:

σ =

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

 (2.2)

In a fluid at rest, the force exerted by the fluid element, located on one
side of this element, on the fluid located on the other side is normal to
the surface elements and its magnitude is independent of the orientation
of these elements. Since this stress is isotropic, a single value is sufficient
to define it at each point; this is the hydrostatic pressure. Thus, the stress
tensor is :

σij = −pδij (2.3)

where p is the pressure and the negative sign associated with it indicates
that a fluid at rest is usually under compression, and thus the stress is acting
opposite to the outward normal n. δij is the Kronecker delta defined as:

δij =

{
1 if i = j

0 if i ̸= j
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Figure 2.2: Stress components on three faces of fluid element

If the fluid is in motion, there appear additional stresses tangential to
the element of surface dS. The latter, indicative of the frictional forces
between layers of fluid sliding one relative to the other, are due to the
viscosity of the fluid. To determine these forces, we must know:

– the orientation of the surface dS in space, defined by means of the
unit vector n normal to the surface;

– the values of the three components of the force per unit area in the x-,
y-, and z-directions for the three orientations of unit surfaces normal
to these respective axes.

It is generally very convenient to separate out of the stress tensor σ the
part which corresponds to the pressure stresses, which are the only ones
acting in the absence of velocity gradients, for a fluid at rest or in uniform
translational motion. In practice the stress tensor is split into two terms
such that:

σij = −pδij + τij (2.4)

Where τ is deviatoric component known as the deviatoric stress tensor,
which tends to distort it. It is also called the shear stress or viscous stress
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tensor, which is a function of the fluid velocity. The crucial question is
then: How is this tensor is related to the deformation (and its history)
for a given fluid? The model describing this relationship is termed the
stress constitutive equation. Obtaining this relationship is one of the main
objectives in rheology.

2.1.2 Strain Rate Tensor

The strain can be seen as the quantity that represents the amount of trans-
formation (deformation) of a body from a reference configuration to a cur-
rent configuration after a time interval ∆t. The shape, location and orien-
tation of the fluid element at time t + ∆t are determined by the outcome
of the following:

– pure translation

– pure rotation

– shear

– volume dilatation.

For the sake of simplicity, and without any loss of generality, we will
consider the deformation of the face marked ABCD, see Fig. 2.3. After a
time interval ∆t, the position of these vertices is marked as A’, B’, C’ and
D’. Fig. 2.3 illustrates the changes in the positions of the vertices resulted
from of (a) motion without any deformation and (b) deformation of the
fluid element.

It can be seen from Fig. 2.3 that both translation and rotation of the
fluid element does not result in a deformation of the fluid element. On the
other hand, the fluid element undergoes a deformation under a shear or
dilatation. As seen in Fig. 2.3, a pure shearing of the fluid element causes
a distortion of the fluid element. It is important to note that this distortion
occurs without any net rotation, as the diagonals AC and A’C’ coincide.
However, the edges A’D’ and A’B’, which were initially perpendicular, are
no longer so. Such a shearing strain would result from the action of the σxy
and σyx components of the stress tensor (see Fig. 2.2) on the fluid element.

Dilatational strain of the fluid element is illustrated in Fig. 2.3 as a an
elongation in the x-direction and a compression in the y-direction, resulting
in a variation of the volume. It can easily be seen that such a strain would
arise from the action of either the σxx or σyy (or both) components of the
stress tensor. The off-diagonal components of the stress tensor, in general,
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Figure 2.3: Illustration of the motion and straining of a fluid element

are the cause of shear strains (which are also the off-diagonal components
of the strain rate tensor) and the diagonal components are the cause of
dilatational strains (which again are the diagonal components of the strain
rate tensor). The quantitative evaluation of these strains is carried out
below.

If we consider the face ABCD of the fluid element illustrated again in
Fig. 2.4. At time instant t, the velocity components at vertex A are u and
v along the x and y coordinate directions respectively. Thus, if we ignore
terms of order ∆x2 and ∆y2, the velocity components at the vertices B’,
C’ and D’ can be written as:

At point B’:
(
u+

∂u

∂x
∆x, v +

∂v

∂x
∆x

)
At point C’:

(
u+

∂u

∂x
∆x+

∂u

∂y
∆y, v +

∂v

∂x
∆x+

∂v

∂y
∆y

)
At point D’:

(
u+

∂u

∂y
∆y, v +

∂v

∂y
∆y

)
After a time interval of ∆t, vertex A is displaced to a location A’ by

an amount u∆t and v∆t along the x- and y-directions respectively. Other
vertices locations relative to A’ are shown in Fig. 2.4. Rotation of the
fluid element can be evaluated by the angular velocity with respect to each
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coordinate axis. With regard to Fig. 2.4, the angular velocity of the fluid
element directed along the z-axis can be quantified as the arithmetic mean
of the rates of rotation of edges AD and AB. Thus,

Ωz =
1

2

(
dα

dt
− dβ

dt

)
(2.5)

where the sign convention for angular displacement in the anti-clockwise
direction is positive. For small angular motions, we can write:

∆α =

∂v

∂x
∆x∆t

∆x
=
∂v

∂x
∆t

and

∆β =

∂u

∂y
∆y∆t

∆y
=
∂u

∂y
∆t

Thus,

Ωz =
1

2

(
∂v

∂x
− ∂u

∂y

)
=
ωz

2

The given expression demonstrates the correlation between a fluid el-
ement’s vorticity and its angular velocity. Analogous expressions can be
established for the Ωx and Ωy components.

Strain rate tensor is the variation of the strain tensor with respect to
time denoted as γ̇ or, equivalently, as the symmetric part of the gradient
(derivative with respect to space) of the flow velocity vector.The shear
strain rate of the fluid element can be defined as the average rate of decrease
of the angle between two initially perpendicular lines, such as lines AB and
AD. Hence:

γ̇xy =
1

2

(
dα

dt
− dβ

dt

)
(2.6)

Replacing dα/dt and dβ/dt with their expressions in Eq. 2.6 yields:
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γ̇xy =
1

2

(
∂v

∂x
+
∂u

∂y

)
(2.7)

It is to be noted that γ̇xy = γ̇yx. Similarly, we have:

γ̇yz =
1

2

(
∂ω

∂y
+
∂v

∂z

)
(2.8)

and

γ̇zx =
1

2

(
∂u

∂z
+
∂ω

∂x

)
(2.9)

Strains, like stresses, have normal strain and shear strain components
(i.e. perpendicular to or along the face of an element respectively). Normal
strain components are γ̇xx, γ̇yy, and γ̇zz in the direction of the axes x, y,
and z respectively. The dilatational strain of a fluid element is determined
by calculating the rate of change in length along each coordinate direction
and dividing it by the original length. Taking edge AB in Figure 2.4 as an
example, the dilatational strain in the x-direction is represented as follows:

γ̇xx =
1

∆t

∆x+
∂u

∂x
∆x∆t−∆x

∆x
=
∂u

∂x

If we consider edge A’D’, the dilatational strain along the y-direction,
γ̇yy, is written as ∂v/∂y. Demonstrating that γ̇zz = ∂ω/∂z is a straightfor-
ward extension.

In the 3D cartesian coordinate system (x, y, z) the strain rate γ̇ is also
a 2nd rank tensor which has 9 components and can be finally written as :

γ̇ =

γ̇xx γ̇xy γ̇xz
γ̇yx γ̇yy γ̇yz
γ̇zx γ̇zy γ̇zz



=


∂u
∂x

1
2

(
∂v
∂x

+ ∂u
∂y

)
1
2

(
∂u
∂z

+ ∂ω
∂x

)
1
2

(
∂v
∂x

+ ∂u
∂y

)
∂v
∂y

1
2

(
∂ω
∂y

+ ∂v
∂z

)
1
2

(
∂u
∂z

+ ∂ω
∂x

)
1
2

(
∂ω
∂y

+ ∂v
∂z

)
∂ω
∂z


(2.10)
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Figure 2.4: Illustration of the deformation of the fluid element

The rate of strain tensor can be summarized as:

γ̇ij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
(2.11)

Where v is the velocity vector, x is coordinate, and the two indices i
and j can range over the three coordinates (x, y, z) in three dimensional
space. We note in passing that the strain rate tensor is also symmetric, as
otherwise, it cannot be related to the stress tensor, which is symmetric.

2.1.3 Relation between the deviatoric stress tensor and the strain
rate tensor

Stokes postulates the following with regards to the relationship between
the components of the deviatoric stress tensor and the strain rate tensor:

– A linear relationship exists between the components of the deviatoric
stress tensor and the components of the strain rate tensor, similar to
the Hooke’s law in solid mechanics.
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– The relationship is unchanged under rotations or exchanges in the
coordinate system.

– The deviatoric stress tensor and the strain rate tensor have congruent
principal axes.

The last two items in the above list ensure isotropy of fluid deformation
in all directions. These postulates lead to the result:.

τ = 2ηγ̇ + λ(∇ · u)I (2.12)

In this expression, η represents the well-known dynamic viscosity co-
efficient. I is the identity matrix (or, the Kronecker delta tensor). It is
important to note that the first term in Eq. 2.12 signifies deformation
without a change in volume, whereas the second term represents isotropic
dilation. This latter term is equal to zero for an incompressible fluid. The
second coefficient λ which appears in Eq. 2.12 is commonly referred to as
the second viscosity or bulk viscosity. The associated stresses, represented
by the diagonal components of the tensor τ in the form λ(∇ · u), are asso-
ciated with variations in the fluid volume as a result of compression effects.
This term becomes insignificant in the analysis of incompressible fluids, as
the divergence of velocity ∇ · u becomes equal to zero in that case.

For a Newtonian fluid, we make the assumption that the stress is a
linear function of the velocity gradient. In general, the linear relation can
be written as:

τ = 2ηγ̇ (2.13)

where η is the coefficient of viscosity of the fluid and γ̇ is the symmetric
traceless part of the rate of deformation tensor. However, the stress could be
a non-linear function of the strain rate in complex fluids such as phosphate
slurry.

τ = 2η(γ̇)γ̇ (2.14)

2.1.4 Concept of viscosity

Viscosity is a measure of the fluid friction or the resistance to flow of a
liquid or a gas. This can be illustrated by considering an experiment where
the gap between two infinite parallel plates and separated by a distance a in
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Figure 2.5: Illustration of simple shear flow: The bottom plate is fixed, while the
upper plate is moving at a steady speed of V

the normal direction y, is filled with a fluid. A typical situation envisaged
might be as shown in Figure 2.5. The upper plate is moving with a velocity
V0 relative to the second stationary plate, in the x-direction. It is of interest
to determine the force required to move the upper plate at this constant
velocity, as a function of the area, the velocity and the separation of the two
plates. The two plates are kept initially at rest, and the fluid is also at rest.
The top plate is set into motion at time t = 0 with a velocity V . At the
initial instant, only the fluid very close to the top plate will be in motion,
while the rest of the fluid is at rest. Under stationary conditions (i.e., after
enough time has passed since the upper plate was set in motion), we observe
that the fluid velocity has become a linear function of the distance across
the gap according to the relationship:

vx = V0
y

a
(2.15)

The resulting flow is commonly referred to as simple shear flow or plane
Couette flow. It is of interest to determine the proportional relationship
between the frictional force, F , acting on an area S of the plate and op-
posing the relative motion of the plates, and the velocity gradient between
them. The direction of the frictional force F is along the negative x-axis.

Fx

S
= η

V0
L

= −η∂vx
∂y

(2.16)

The ratio of Fx/S is referred to as the shear stress, which has the di-
mensions of pressure. The constant η is reffered to as the dynamic viscosity
of the fluid, reflecting its association with a force, or simply as viscosity.
Its dimensional form is, according to the following:
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[η] =
[M ][L][T ]−2[L]−2

[L][T ]−1[L]−1
= [M ][L]−1[T ]−1 (2.17)

In the SI system, the unit of dynamic viscosity is the Pascal-second
(Pa.s) (1Pa.s = 1kg/(m.s)).

In many applications it is convenient to employ the combination viscos-
ity/density, denoted ν, which depends on the properties of the fluid, and is
known as the kinematic viscosity; it obeys the relationship:

ν =
η

ρ
(2.18)

and has dimensions [L]2/[T ]. The kinematic viscosity ν represents a
diffusion coefficient for momentum.

The shear rate dependence of fluids is an important consideration, since
many fluids have complex shear rate dependence. It is first important to
make a distinction between simple ‘Newtonian’ fluids and ‘non - Newtonian’
fluids. Newtonian fluids are characterised by the following behaviour:

– Viscosity is independent of shear rate.

– Viscosity is independent of time of shear at a constant shear rate.

– The normal stress differences are zero.

– Viscosities measured by different types of deformations, such as uni-
axial and biaxial extension, are proportional to each other.

Any fluid showing a deviation from this behaviour is a non-Newtonian
fluid. All gases, as well as simple liquids like water, are Newtonian liq-
uids. Non-Newtonian liquids include all materials which have a complex
microstructure such as gels, suspensions, phosphate slurry, etc.

2.1.5 Non-Newtonian fluids

Thus far, we have limited our discussion to the case of Newtonian fluids,
characterized by a straightforward proportionality between stress and strain
rates. However, it is now imperative to discuss the case of non-Newtonian
fluids, in which this correlation is no longer linear and may vary based on
the fluid’s flow history. These unique properties are often a result of the
presence of macroscopic objects within the fluid, which are considerable in
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size compared to the atomic scale but still comparatively small in relation
to the overall flow scale. Examples of such objects include macro-molecules
in polymer solutions, particles in suspensions, droplets or vesicles in emul-
sions, and biological fluids. Furthermore, these entities may aggregate to
form larger structures that have a significant impact on fluid flow, such as
aggregates of platelets in clays, clumps of particles, or entangled macro-
molecules. Non-Newtonian fluids can be commonly encountered in both
natural environments (such as snow, mud, blood, and cream) and in daily
life (such as paints, shaving cream, mayonnaise, yoghurt, cosmetics, etc.)
as well as in industrial contexts (e.g. phosphate slurry). In order to under-
stand the flow behavior of non-Newtonian fluids, it is crucial to understand
their response to an imposed stress. This is the aim of the field of rhe-
ology, which was established in the 1920s and named by E.C. Bingham,
who is considered, along with M. Reiner, as a founding figure in the disci-
pline. We might recall the statement attributed to Heraclitus: “panta rhei”
(everything flows).

As previously stated, a non-Newtonian fluid is characterized by its non-
linear flow curve, which represents the relationship between shear stress and
shear rate. This relationship deviates from the linear relationship described
by Newtonian fluids and is dependent on a variety of factors, including flow
conditions such as flow geometry and shear rate, as well as the kinematic
history of the fluid element being considered. Non-Newtonian fluids can be
conveniently grouped into three general categories:

– Time-independent or purely viscous fluids, also known as inelastic or
generalized Newtonian fluids, for which the rate of shear at any point
is determined only by the value of the shear stress at that point at a
given instant.

– Time-dependent fluids, for which the relationship between shear stress
and shear rate depends, in addition, upon the duration of shearing and
their kinematic history.

– Visco-plastic fluids, which exhibit characteristics of both ideal fluids
and elastic solids and show partial elastic recovery after deformation.

Among these three general classes of Non-Newtonian fluids, the time-
independent group is the most popular and easiest to analyze. Hereafter,
we will exclusively focus on this specific classification of Non-Newtonian
fluids.

The rheological properties of a material are typically described by the
manner in which the shear stress τ varies with the shear rate γ̇ (γ̇ = ∂vx/∂y
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for a simple shear flow). Depending upon the form of this relationship,
these fluids may be further subdivided into three types: shear-thinning or
pseudoplastic, shear-thickening or dilatant and visco-plastic. Figure 2.6
presents a graphical representation of this relationship for various non-
Newtonian fluids on a linear scale. It should be noted that the illustration
assumes that the dependence of τ on γ̇ is constant over time or time-
independent.

Figure 2.6: Schematic flow curves for basic types of time-independent fluids.
Reproduced from [46].

Shear thinning fluids

Fluids that exhibit a reduction in apparent viscosity ηapp = τ/γ̇ with an
increase in shear rate are referred to as shear-thinning fluids or pseudo-
plastic fluids (the subscript app is omitted in the following). This behavior
is commonly observed in dilute solutions of high molecular mass polymers
and is attributed to the progressive separation and alignment of entangled
macro-molecules as a result of the shear. A considerable number of dilute
suspensions of solid particles also exhibit shear thinning behavior, which
is the result of the disruption of structures established by interparticle at-
traction due to flow. Other instances of such suspensions include shampoos
and fruit juice concentrates. Similarly, phosphate slurries, which consist of
solid particles suspended in liquid matrix, demonstrate comparable char-
acteristics.

Many mathematical expressions of differing complexity have been pro-
posed in the literature to model shear-thinning behaviour. Some of these
expressions are simplistic attempts at curve fitting, providing empirical re-
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lationships between the apparent viscosity (or shear stress) and shear rate,
while others are based on theoretical foundations, as the extension of ki-
netic theory to the liquid state or the theory of rate processes, as informed
by statistical mechanics. A selection of the more widely used rheological
models is given in the next chapter.

For small values of the shear rate γ̇, the viscosity of shear thinning fluids,
particularly slurries, demonstrates a tendency towards a constant value,
referred to as the "Newtonian plateau," denoted as η0. As the concentration
of suspended particles increases, η0 increases accordingly and can be several
thousand times greater than the viscosity of the suspending liquid, such as
water. The relationship between shear stress and shear rate for this type
of fluid can be mathematically expressed as follows:

τ = Kγ̇n (2.19)

So the apparent viscosity for the so-called power-law fluid is thus given
by:

η = Kγ̇n−1 (2.20)

In these equations, k and n serve as empirical curve-fitting parameters
and are referred to as the fluid consistency coefficient and the flow behavior
index, respectively. It is worth noting that for a fluid exhibiting shear-
thinning behavior, the flow behavior index may range from 0 to 1. The
degree of shear-thinning increases as the value of n decreases. Conversely,
if the fluid displays shear-thickening behavior, the value of the flow behavior
index n will be greater than 1. It is noteworthy that when n = 1, Eq. 2.19
transforms into the constitutive equation of a Newtonian fluid. While the
power-law model provides a basic representation of shear-thinning behavior,
it is important to acknowledge its limitations. Specifically, it is typically
valid only within a restricted range of shear rates, which results in the fitted
values of K and n being dependent on the chosen range of shear rates.
Additionally, the power-law model fails to predict the zero and infinite
shear viscosities.

Shear thickening fluids

The shear thickening fluids don’t have a flow threshold and are referred to
as dilatant fluids since their viscosity increases with applied stress. This
type of fluid behavior was first observed in concentrated suspensions, and
a possible explanation for their dilatant behavior is as follows: when at
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rest, the void space is minimal, and the available liquid is sufficient to fill
it. At low shear rates, the liquid functions as a lubricant, allowing each
particle to move past others with minimal stress. At high shear rates, how-
ever, the material expands or dilates slightly (as seen in the transport of
sand dunes), causing the available liquid to be insufficient to fill the newly-
created voids. This leads to direct solid-to-solid contact, which results in
increased friction and higher shear stresses. This mechanism causes the
apparent viscosity to rise quickly with increasing shear rate. This behavior
can also be observed in certain polymer solutions where the initial entangle-
ment of macro-molecules can be unwound into longer chains by the stresses
induced by fluid flow, leading to a higher effective viscosity. Additionally,
some fluids exhibit shear thinning followed by shear thickening regimes as
the shear rate is increased. This can be explained as polymer chains un-
winding and aligning, thereby reducing the apparent viscosity η, until the
chains begin to interact and cause an increase in η.

Although the changes in viscosity due to the observed trends can be
incorporated into a model for apparent viscosity (η), the generalized con-
stitutive law (Eq. 2.20) is strictly a phenomenological model that attempts
to replicate the impact of applied flow on a fluid’s internal structure by ad-
justing the viscosity in response to shear. When a material displays both
shear-thinning and shear-thickening, it suggests that multiple mechanisms
for stress creation and relaxation are competing with each other. As a re-
sult, a simple model like Eq. 2.20 would likely fail to accurately describe
even basic flows of these fluids. Consequently, generalized Newtonian mod-
els should be reserved for use in complex fluid flows, where it is reasonably
believed that the primary dynamics are caused by the changes in viscosity
induced by shear, and only in the simplest of flows.

Viscoplastic fluid behaviour

This type of fluid behavior is defined by the presence of a flow threshold
(τ0), often called the yield stress, that must be exceeded before the fluid
will start to deform or flow. In contrast, the material will elastically deform
when the externally applied stress is lower than the yield stress. Once the
magnitude of the external stress has exceeded the value of the yield stress,
the flow curve may follow a linear or non-linear pattern, but it will not
pass through the origin (see Figure 2.6). As a result, in the absence of
surface tension effects, such a material will not settle under gravity to form
a completely flat free surface. This type of fluid behavior can be explained
by the theory that the material at rest is composed of three-dimensional
structures that are rigid enough to resist any external stress below a certain
threshold value τ0. However, when the applied stress exceeds this threshold
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value, the structure breaks down and the material behaves like a viscous
fluid. In some cases, the formation and breakdown of the structure are
reversible, meaning that the material can regain its initial yield stress value.

A Bingham plastic fluid is a type of fluid that has a linear flow curve
when the applied stress |τyx| > |τ0| and is characterized by having a con-
stant plastic viscosity (the slope of the shear stress versus shear rate curve)
and a yield stress. On the other hand, a substance that exhibits a yield
stress and a non-linear flow curve on linear coordinates (for |τyx| > |τ0|)
is referred to as a yield pseudoplastic material. A notable observation is
that a viscoplastic material exhibits a decreasing apparent viscosity as the
shear rate increases. When the shear rate is very low, the apparent vis-
cosity is virtually infinite just before the substance yields and starts to
flow. Therefore, these materials can be considered to have a specific type
of shear-thinning behavior. Figure 2.7 illustrates, in semi-log coordinates,
the relationship between shear rate and stress for a mixture of phosphate
and water, which represents a phosphate particle suspension. As the stress
gradually increases from zero, the material does not flow until the stress
reaches a threshold value around 10 Pa.

Figure 2.7: Dependence of the shear rate on the stress (in semi-log coordinates)
for a water–phosphate mixture. The solid triangles represent experimental data.

Some concentrated suspensions of solids in a liquid, as well as some
polymer solutions, exhibit a flow threshold. If an increasing pressure head
is applied to such a fluid in a cylindrical tube, immediately above the yield
stress, we observe a solid-like flow of almost all the fluid with a velocity
independent of the distance from the walls, resulting in localized velocity
gradients near the walls, where the stress required for shear flow is achieved.
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This is called plug flow. As the stress is further increased, the velocity
gradient becomes progressively non-zero throughout the volume. In Section
2.3.3, we provide a quantitative calculation of such profiles.

Over the years, several empirical equations have been suggested through
simple curve-fitting methods, but a theory-based model has not yet been
established. We discuss the frequently used models for viscoplastic fluids in
Section 4.1.2. Figure 4.10 displays the relation between the stress and the
shear rate in semi-log coordinates for a mixture of kaolin and water which
corresponds to a suspension of clay particles: as the stress is gradually
increased from zero, we observe no flow until a threshold value of the order
of 10 Pa is reached.

2.2 Rheology of suspensions

Rheological behavior of solid–liquid suspensions are dependent on the in-
teractions between the dispersed particles and the fluid matrix which cause
the diversion of the shear stress versus shear rate relation from the linearity
observed in Newtonian fluids. The type and extent of this diversion will
again depend on the strength of the attractive and repulsive forces, and
the ratio of the time for reorientation of the components to their original
configuration to the timescale of measurement.

The mechanics of dilute and semi-dilute suspensions have been exten-
sively studied and are well understood. However, constitutive equations
that describe the relationship between stress and the rate of strain for con-
centrated suspensions are generally unknown. Consequently, their rheol-
ogy remains a topic of much research, despite a significant amount of work
conducted over the past century. The rheological behavior of fluid suspen-
sions, including shear-thinning and thixotropy, shear-thickening, and yield
stresses, has been identified through experimentation [47]. This type of ma-
terial constitutes a substantial portion of non-Newtonian fluids, and will be
further discussed in this section.

2.2.1 Dimensional analysis

The dimensional analysis presented here is based on the approach of Krieger
(1963, 1972) and, more recently, Jomha et al. (1991). This analysis takes
into account the suspension’s viscosity, which is considered a function of
various system parameters:

η = f(a, ρp, n, η0, ρ0, kT, γ̇ or τ, t) (2.21)
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In this equation, we have a set of particle properties including radius
a, density ρp, and number concentration n. Additionally, there are several
suspending medium properties such as viscosity η0 and density ρ0, as well
as thermal energy kT . The shear variable can be expressed as either shear
rate γ̇ or shear stress τ , and time t is also considered. In suspensions
with multiple particle sizes, the average radius should be used for a, and
one or more additional terms are required to account for the particle-size
distribution. All of the terms in Eq. 2.21 can be expressed in units of mass,
length, and time. By creating dimensionless groups, this equation can be
simplified to 6 variables, which is obtained by subtracting 3 from the total
number of terms (9) as:

ηr = f(ϕ, ρr, P eγ̇, Reγ̇, kT, tr) (2.22)

where

ηr =
η

η0
, ϕ =

4π

3
na3, (2.23)

ρr =
ρp
ρ0
, P eγ̇ =

6πη0a
3γ̇

kT
, (2.24)

Reγ̇ =
ρ0a

2γ̇

η0
, tr =

tkT

η0a3
(2.25)

We selected the shear rate γ̇ instead of the shear stress τ as the shear
variable. Equation 2.22 can be further simplified in various significant
scenarios. In steady-state, neutrally buoyant systems, the variables ρr and
tr can be disregarded:

ηr = f(ϕ, Peγ̇, Reγ̇) (2.26)

Krieger made the assumption that the Reynolds number was negligi-
ble (Reγ̇ → 0) for his systems with particle radii of around 1µm, and he
proposed a semi-empirical equation for ηr = f(ϕ, Peγ̇). An alternative ap-
proach is to consider non-Brownian systems in which the Peclet number is
very large (Peγ̇ → ∞) and use the equation ηr = f(ϕ,Reγ̇). Some authors,
such as Chang and Powell (2002), have assumed that both Peγ̇ and Reγ̇
can be neglected and assumed that:

ηr = f(ϕ) (2.27)

This implies that the viscosity is a unique value at every concentration
and hence the suspensions are Newtonian. Both Peγ̇ and Reγ̇ can be ne-
glected, i.e., Reγ̇ ≲ 103 and Peγ̇ ≳ 103 , for only a relatively narrow window
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of shear rates, given values of a, η0, and ρ0. The size of this “window” scales
according to the Schmidt number, Sc = Peγ̇/Reγ̇. A suspension may be
expected to behave as a Newtonian fluid for greater ranges of shear rate as
particle size and fluid viscosity increase, such that Sc≫ 1 (Figure 2.8).

Figure 2.8: “Phase diagram” for suspension rheology, based solely on a dimen-
sional analysis. Reproduced from [47].

This indicates that the viscosity is a unique constant value for every
concentration, and therefore the suspensions exhibit Newtonian behavior.
Neglecting both Peγ̇ and Reγ̇, specifically when Reγ̇ ≲ 103 and Peγ̇ ≳ 103,
is applicable only within a relatively narrow range of shear rates, provided
that a, η0, and ρ0 are given. The width of this range, referred to as the
"window," scales based on the Schmidt number:

Sc =
Peγ̇
Reγ̇

. (2.28)

As the particle size and fluid viscosity increase, a suspension is expected
to behave like a Newtonian fluid over a greater range of shear rate, such
that Sc≫ 1 (refer to Figure 2.8).

2.2.2 Suspension viscosity

There is a large body of data available in the scientific literature regarding
the relationship between viscosity and either shear rate or shear stress in
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fluid-particle suspensions. When the solids concentration exceeds 0.4 by
volume, it is common to observe non-Newtonian behavior. Previous stud-
ies have suggested that concentrated suspensions exhibit shear-thinning
behavior, with Newtonian limiting behavior at both low and high shear
rates, as a convenient assumption. However, it should be noted that this
assumption may not hold true in all cases.

Yield stress is also a common rheological property exhibited by many
types of suspensions, including colloidal suspensions and emulsions. The
determination of a yield stress and its empirical quantification has been a
topic of considerable controversy and discussion, as documented in Barnes
(1999)[18] and Coussot (2013)[48]. Nevertheless, a visible yield stress has
been clearly observed in suspensions, which is signified by a non-zero shear
stress without any accompanying deformation over extended experimental
time frames or, alternatively, by a viscosity that increases towards infinity
as shear rates approach zero. Yield stresses are predominantly evident at
extremely high concentrations (ϕ > 0.5). Yield stress behavior in suspen-
sions has been linked to a solid-liquid phase transition by certain authors,
as reported in Heymann et al. (2002)[49].

In order to obtain a deeper understanding of the non-Newtonian rheol-
ogy of suspensions, examining the microstructure of the suspension can be
a helpful approach. The microstructure of suspensions containing spherical
particles is characterized by the relative positions of the suspended parti-
cles with respect to each other. Several types of configurations are possible,
including strings, sheets, clumps, and semicrystalline groups. It is widely
acknowledged that alterations in the microstructure due to shear forces are
responsible for the non-Newtonian behavior of dense suspensions. Based on
the analysis of dimensions outlined in the previous section (Section 2.2.1), it
can be reasonably inferred that suspensions exhibit shear-thinning behavior
when the Peclet number for shear rate (Peγ̇) is significant, shear-thickening
behavior when the Reynolds number for shear rate (Reγ̇) dominates, and
behave as Newtonian fluids when both can be neglected (as illustrated in
Figure 2.8). This conclusion is reinforced by the findings of microstructural
analyses, which suggest that suspensions demonstrate an ordered structure
at low shear rates and a disordered structure at high shear rates. However,
it is important to note that neither the Peclet number nor the Reynolds
number can fully account for suspension rheology. The influence of particle
polydispersity, particle roughness, electrostatic forces, and van der Waals
forces must be considered in addition to the Peclet and Reynolds numbers
when examining the structure of suspensions. While laboratory experi-
ments may attempt to minimize the impact of these non-hydrodynamic
factors, even minor effects can significantly alter microstructure (Brady
Morris, 1997 [50]).
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Several researchers have attempted to establish a correlation between
relative suspension viscosity and solids volume concentration. However,
early studies did not adequately consider the shear rates and particle poly-
dispersity, leading to a significant amount of variation in these correlations
[51]. Some researchers, such as Storms et al. 1990 [52], exclusively con-
ducted experiments in what they considered the low shear rate Newtonian
limit, while others, such as Chang and Powell 2002 [53], focused on the high
shear rate Newtonian limit. Based on intuition, one may observe that the
relative viscosity of a suspension will tend towards an infinite value when
the volume fraction (ϕ) approaches a maximum value (ϕm):

lim
ϕ→ϕm

ηr = ∞ (2.29)

Physically, the maximum value of the volume fraction (ϕm) corresponds
to the highest possible packing fraction for a given suspension composition
and arrangement. Nevertheless, in viscosity models of the form, ϕm is
frequently used as a variable parameter as:

ηr = f

(
ϕ

ϕm

)
(2.30)

In this context, the maximum packing fraction serves as a scalar mea-
sure of the microstructure of a suspension. As it is dependent on the various
parameters affecting suspension microstructure, it is not considered an inde-
pendent system variable and was therefore not included in the dimensional
analysis presented in the previous section. By plotting the relative viscos-
ity (ηr) against the ratio of volume fraction to maximum packing fraction
(ϕ/ϕm) and using appropriate values for ϕm, viscosity-concentration plots
collapse onto a single curve [53].

To model the correlation between viscosity and concentration for sus-
pensions, it is crucial to take into account non-Newtonian characteristics.
To achieve this, an approach that can be adopted is the inclusion of a term
that is dependent on the shear rate in the model. In the case of a New-
tonian fluid with a dilute suspension of monodisperse particles (ϕ → 0),
Einstein (1956)[54] demonstrated:

ηr = 1 + [η]ϕ (2.31)

where the constant [η] is variously referred to as the ‘Einstein coefficient’
or the ‘intrinsic viscosity’, and takes the value [η] = 2.5 in Eq. (2.31) for
spherical particles.
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Batchelor (1977)[55] expanded this relationship to the second order,
given by,

ηr = 1 + [η]ϕ+Bϕ2 (2.32)

In Eq 2.32, B = 6.2 for Brownian suspensions in any flow, and B = 7.6
for non-Brownian suspensions. Their formulas are adapted for monodis-
perse particles for maximum solid fractions of 0.15 to 0.25 and link the
increase of the bulk viscosity of the suspension η to the viscosity of the
liquid η0, and the solid fraction in the suspension [56]. However, linear-
ity is restricted to low solid fractions ϕ. For dense or highly concentrated
suspensions, the apparent relative viscosity (ηr = η/η0) increases rapidly
and without bound with ϕ. At large solid fraction, small changes in con-
centration will lead to large changes in viscosity. If non-hydrodynamic
inter-particle forces are absent, suspensions with high solid fraction can be
described with the satisfactory model of Kriege (1959) [57] , valid for low
and high shear rates,

ηr =

(
1 +

ϕ

ϕm

)−[η]ϕm

(2.33)

One additional input parameter, defined as the maximum packing frac-
tion of particles ϕm and related to particles properties, is required in this
model. Many other functions have been proposed and provide excellent
fits to experimental data [58, 59, 60]. As the solid volume fraction ϕ in-
creases, the apparent viscosity η also increases. However, this increase is
not uniform across different maximum packing fraction ϕm values. The
rate of viscosity increase is dependent on the ϕ/ϕm ratio. The maximum
packing fraction ϕm is significantly influenced by particle shape and size
distribution since smaller particles can fill the gaps between larger parti-
cles. The maximum packing fraction of polydisperse particle systems is
higher than that of monodisperse particle systems [77, 78]. Many experi-
mental studies have been conducted to establish a relationship between ϕm

and suspension viscosity, particularly for bidisperse and polydisperse sus-
pensions [60, 47]. Generally, these studies demonstrate that the apparent
viscosity η decreases with an increasing maximum packing fraction ϕm at
a constant volume fraction ϕ.

Another form for the relationship between suspension viscosity and
shear rate is due to [57] and [61]:

ηr = η0 +
η0 − η∞
1 + aDn

(2.34)
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where D = τ for [57], and D = γ̇ for [61]. This model can generally be
used to fit a shear-thinning viscosity.

2.2.3 Maximum Packing Fraction

Recent research has shown that the maximum packing fraction (ϕm) of
suspend particles is a crucial parameter that influences the rheological be-
havior of suspensions (e.g., [47]). When the volume fraction is below ϕm,
the deformation of the suspension primarily involves the flow of liquid be-
tween particles. However, as the volume fraction (ϕ) increases, the average
inter-particle distance decreases, leading to greater gradients in the velocity
of the interstitial liquid and a higher viscosity of the bulk suspension. De-
spite considerable research, the a priori prediction of the maximum packing
fraction (ϕm) for a system of particles remains an open question. By con-
sidering various geometric arrangements of monomodal spheres, a range of
theoretical values for ϕm can be calculated, ranging from the simple cubic
value of 0.524 to the hexagonal close-packed value of 0.740 [77]. However,
in practice, a well-mixed suspension does not self-assemble into one of these
theoretical arrangements but instead forms a so-called random close-packed
(RCP) arrangement. The value of ϕm for RCP was determined to be 0.64
using settling experiments [77].

For multimodal systems, it is more difficult to arrive at a theoretical
value of ϕm. Qualitatively, small spheres may fit into the spaces between
packed large spheres. Experiments of bimodal systems bear this out: ϕm

increases with size ratio up to about 10:1, at which point the small spheres
can completely fit into the empty spaces of the packed large spheres [77].
The volume fraction ratio between large and small spheres is also impor-
tant, with maximum packing obtained at about 60%–75% large particles
[77, 62]. Trimodal, multimodal, and polydisperse systems can obtain even
higher packing fractions. Rheological experiments with bimodal, multi-
modal, and polydisperse systems emphasize the relation between ϕm and
suspension viscosity. As expected, suspensions with multimodal distribu-
tions exhibit lower viscosities than their monodisperse counterparts at equal
total particle volume fractions [63, 60].

Wildemuth and Williams (1984) [64] put forward a formula that explic-
itly links the maximum packing fraction, ϕm, to the applied shear stress.
They derived an equation in which ϕm varies from an initial value of ϕm0

at zero shear stress to a maximum value of ϕm∞ as the shear stress tends
to infinity. The proposed relationship between ϕm and shear stress is an
explicit flow-dependent expression and is given by:
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Figure 2.9: Effect of particle size distribution on the maximum packing density
for spheres. Polydisperse suspensions have a higher maximum packing density
ϕmax compared to monodisperse suspensions

ϕm =

[
1

ϕm0

−
(

1

ϕm0

− 1

ϕm∞

)(
1

1 + τ−m

)]−1

(2.35)

Once substituted into an appropriate ηr versus ϕ
ϕm

correlation, this re-
sults in a model that expresses the viscosity as a function of particle concen-
tration and shear rate. Eq. 2.35 for ϕm(τ) predicts shear-thinning behavior
and a yield stress. If the concentration of a suspension exceeds ϕm0 but is
lower than ϕm∞ , such as ϕ0, it will not undergo deformation unless sub-
jected to a shear stress greater than that needed for ϕm(τ) to reach ϕ0.
This critical stress is known as the yield stress and is clearly dependent on
the concentration of the suspension.

2.3 The Equations of fluid motion

In this section, the equations that govern the motion of an incompressible
fluid, also known as Navier-Stokes equations, are derived. The governing
equations of incompressible fluid flow represent mathematical statements
of the conservation laws of physics:

– The mass of a fluid is conserved

– The rate of change of momentum equals the sum of the forces on a
fluid particle (Newton’s second law)
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2.3.1 Conservation of mass

The principale of conserving mass states that if there are no sources or
sinks of mass present, a given area will maintain its mass at a local level
. When we express the overall balance of fluid mass inside a fixed volume,
we derive a local equation for the conservation of mass in that particular
region. This equation is commonly referred to as the continuity equation.

Figure 2.10: Conservation of mass for a material volume of a fluid of mass m

Considering the material volume of fluid shown in Fig. 2.10 of mass m,
density ρ, and velocity u. At each instant of time, a fluid flows into and
out of a particular volume, resulting in a change in the mass (m) contained
within that volume. The rate of change of the mass m contained within the
volume is the opposite of the flux leaving through the boundary surface.
Thus, we have:

dm

dt
=

d

dt

∫∫∫
V

(ρdV ) =

∫∫∫
V

∂ρ

∂t
dV = −

∫∫
S

ρu · ndS (2.36)

The vector unit n, normal to the enclosed surface S, is directed outward
from the contained volume V . As V is constant, the order of integration
and differentiation with respect to time can be exchanged. Furthermore,
through the application of Gauss’ divergence theorem to the final term of
Equation 2.36, we arrive at the following result:∫∫∫

V

(
∂ρ

∂t
+∇ · (ρu)

)
dV = 0 (2.37)
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Given that this equation is applicable to any arbitrary volume V , it
follows that the integral must be identically zero, resulting in the equation
of continuity:

∂ρ

∂t
+∇ · (ρu) = 0 (2.38)

One can write the ∇ · (ρu) term of Eq. 2.38 as:(
∂ρ

∂t
+ u∇ρ

)
+ ρ∇ · u = 0 (2.39)

It is important to acknowledge that the quantity enclosed in the paren-
theses denotes the variation (dρ/dt) of the fluid density over time for an
element of fluid that is tracked along with the flow (the convective deriva-
tive that corresponds to the Lagrangian description). Consequently, it is
possible to reformulate Eq. 2.38 in the following form:

dρ

dt
+ ρ∇ · u = 0 (2.40)

When there are no considerable variations in absolute pressure or tem-
perature, it is reasonable to assume that the flow of the fluid is incompress-
ible. This means that changes in pressure do not significantly affect density.
While this is generally true for liquids, it can also be a good approximation
for gases traveling at speeds significantly lower than the speed of sound.
It is worth noting that sound waves are compressible. As a result, the ap-
plication of the mass conservation (continuity) equation in fluid dynamics
cannot be used to determine the density in such scenarios.

The condition of incompressibility implies that the density (ρ) of the
fluid does not vary with the flow, and this can be represented mathemat-
ically as dρ/dt = 0. In accordance with the mass conservation equation
provided in Eq. 2.41, it can be inferred that the continuity equation for
incompressible flow can be expressed as follows:

∇ · u = 0 (2.41)

It is noteworthy that although dρ/dt = 0 does not necessarily signify
that the density ρ of the fluid is uniform throughout (although it may be
the case in several hydraulic applications), it does imply that the density
does not vary along a streamline. To be more precise, the incompressibility
assumption dictates that each fluid element maintains its initial density as
it moves.
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2.3.2 Conservation of momentum

The principle of the conservation of momentum asserts that when an ex-
ternal force is absent, an body maintains its total momentum, defined as
the product of its mass and velocity vector. Because momentum is a vector
quantity, the conservation of its components holds in all directions.

The dynamics of a fluid volume, represented by V , can be analyzed using
Newton’s second law of motion. This involves equating the time derivative
of momentum with the net forces exerted on the volume, including those
from its surface and volume. The matter within V moves with the fluid
and remains confined within it as:

d

dt

∫∫∫
V

ρudV =

∫∫∫
V

ρfdV +

∫∫
S

σ · ndS (2.42)

σ is the tensor of all the forces, namely pressure and viscosity, applied
on the differential surface element dS. Conversely, the volume force per
unit mass of fluid f may comprise a range of physical effects, including
gravitational or electrostatic forces on charged fluids, Coriolis forces in ro-
tating reference systems, or magnetic forces exerted upon fluids containing
suspended magnetic particles, known as ferrofluids.

It is worth noting that the derivative (d/dt) refers to the Lagrangian
derivative, calculated within a reference system that moves with the fluid.
Within this reference frame, the product ρdV , denoting the mass of a small
fluid element, remains constant. This occurs because any fluid element,
by definition, has the same molecules as they traverse through the local
velocity field of the flow. Therefore, it becomes possible to derive the
factor u in the first term of Eq. 2.42 with respect to time. The resulting
expression can be represented as follows:

d

dt

∫∫∫
V

ρudV =

∫∫∫
V

ρ
du

dt
dV (2.43)

The last term in Eq. 2.42 can be transformed into a volume integral by
means of Gauss’ divergence theorem. Eq. 2.42 can therefore be written as:∫∫∫

V

ρ
du

dt
dV =

∫∫∫
V

ρfdV +

∫∫∫
V

∇ · σdV (2.44)

In this context, the term ∇ · σ denotes a vector consisting of compo-
nents ∂σij/∂xj. It is also worth noting that in Eq. 2.44, the integrals are
computed across a volume V that moves concurrently with the fluid. By
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taking the limit as this volume approaches zero and dividing by the value
of the volume element, we obtain the local equation of motion for a fluid
particle:

ρ
du

dt
= ρf +∇ · σ (2.45)

rmal stresses. We then have:

We can now proceed to partition the tensor σ into two components: one
corresponding to pressure and the other to viscous forces. This separation
mirrors the procedure outlined in Eq. 2.4, where we stated: σij = −pδij +
τij; this expression is a reminder that pressure only contributes to normal
stresses. Thus, Eq. 2.45 becomes:

ρ
du

dt
= ρf −∇p+∇ · τ (2.46)

This equation is applicable to any fluid, as we have made no assumption
about the form of the stress tensor τ . Most often, the acceleration of the
fluid particle is be expressed as :

du

dt
=
∂u

∂t
+ (u · ∇)u (2.47)

Thus, Eq. 2.48 becomes:

∂u

∂t
+ (u · ∇)u = ρf −∇p+∇ · τ (2.48)

2.3.3 One-dimensional flow of viscous fluids

This subsection reviews mathematical models of the flow of time-independent,
non-Newtonian, viscous fluids through a straight pipe in laminar flow regime.
The fluid will be regarded as homogeneous. The equations of particular
relevance are given in borders, and the other equations provide useful ana-
lytical solutions to which numerical approximations can be compared later.
Consider the flow of fluid through a straight pipe as illustrated by the figure
below.

Steady-incompressible Navier-Stokes Equations

We begin with a statement of the governing equations, the steady, incom-
pressible Navier-Stokes equations in polar coordinates, in the absence of
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Figure 2.11: Pipe and flow parameters

body-force terms. We list these here as :

∂u

∂z
+

1

r

∂

∂r
(rv) = 0, (2.49a)

ρ(u
∂u

∂z
+ v

∂u

∂r
) = −∂p

∂z
+ [

∂

∂z
(µ
∂u

∂z
) +

1

r

∂

∂r
r(µ

∂u

∂r
)] (2.49b)

ρ(u
∂v

∂z
+ v

∂v

∂r
) = −∂p

∂r
+ [

∂

∂z
(µ
∂v

∂z
) +

1

r

∂

∂r
r(µ

∂v

∂r
)] (2.49c)

Note that there are no θ-direction derivative terms due to the axisym-
metric assumption. If we invoke the fully-developed flow assumption so
that uz = 0 and v = 0, these equations can be readily reduced to:

∂u

∂z
= 0, (2.50a)

1

r

∂

∂r
r(µ

∂u

∂r
)] =

∂p

∂z
(2.50b)

∂p

∂r
= 0 (2.50c)

we observe from Eq.(2.50c) that pressure does not depend on the radial
coordinate, or more formally,

p = C(z)

In particular, pressure can depend only on the z direction. Differentia-
tion of the above with respect to z gives
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∂p

∂z
=
dC

dz

indicating that the z component of the pressure gradient can depend
only on z.

Now from the fact that the flow is fully developed it follows that u can
be a function only of r, implying that the left-hand side of Eq. (2.50b) can
depend only on r. But we have just seen that the right-hand side, ∂p/∂z,
depends only on z. Thus, this pressure gradient must be a constant, and
we set

∂p

∂z
=

∆p

L
(2.51)

Substitution of Eq 2.51 into Eq. (2.50b) yields

1

r

∂

∂r
r(µ

∂u

∂r
) =

1

r

∂

∂r
rτ =

∆p

L
(2.52)

Using the initial condition τ = 0 at r = 0, the expression above inte-
grates to give

τ =
r

2

∆p

L
(2.53)

At r = R, this gives the following relationship between wall stress and
pressure gradient:

τw =
R

2

∆p

L
(2.54)

The above equation pair can be combined to give a linear relationship
between shear stress and radial distance, which is

τrz
τw

=
r

R
(2.55)

Since Equations 2.50 are in terms of shear stress, the equations so far
make no assumptions about the rheology of the fluid being used. These
equations are valid for any fluid, and will often be referred to in the following
discussion of laminar, critical and turbulent flow.
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Dimensionless Forms

Flow equations can be expressed as relationships between dimensionless
groups that are useful for defining graphical or empirical relationships of
a given flow situation. Dimensionless groups are more than just a conve-
nient way of expressing flow relations as they can, for instance, be used
to identify the critical point that divides the laminar flow regime from the
transitional/turbulent flow regime.

The first step in this process is identification of independent and depen-
dent variables, and parameters, that fully describe the system. Once this
has been done, we introduce “typical values” of independent and depen-
dent variables in such a way as to render the system dimensionless. Then,
after some rearrangement of the equations, the dimensionless parameters
that characterize solutions will be evident, and it is these that must be
matched between flows about two geometrically similar objects to guaran-
tee dynamic similarity. We will demonstrate this scaling procedure using
the 2D incompressible continuity and Navier-Stockes equations:

∂u

∂x
+
∂v

∂y
= 0, (2.56a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+
µ

ρ
(
∂2u

∂x2
+
∂2u

∂y2
) (2.56b)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+
µ

ρ
(
∂2v

∂x2
+
∂2v

∂y2
)− g (2.56c)

The independent variables of this system are x, y and t; the dependent
variables are u, v and p, and the parameters are g, the gravitational ac-
celeration in the y direction (taken as constant), density ρ and viscosity µ,
also both assumed to be constant.

We next introduce “typical” values of independent and dependent vari-
ables needed to make the equations dimensionless. These values must be
chosen by the analyst, and experience is often important in arriving at a
good scaling of the equations. Here we will demonstrate the approach with
a simple flow in a pipe as depicted in Fig. 2.12. In this case we have
indicated a typical length scale to be the height H of the duct, and we
have taken the velocity scale to be the centerline speed Uc (which is the
maximum for these types of flows).

It is often the case that the correct time scale can be obtained the length
and velocity scales:
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Figure 2.12: 2D flow in a pipe

u L
T
=⇒ ts =

H
Uc

where ts is the time scale for this flow situation. We introduce the notation
Ps for the pressure scale. We can now formally scale all independent and
dependent variables:

x∗ = x/H, y∗ = y/H, t∗ = t/ts,

and

u∗ = u/Uc, v∗ = v/Uc, p∗ = p/Ps,

Notice that the “ ” quantities are all dimensionless.

Substitution of the dependent variables into Eq. (2.56a) and noting that
U c is constant yields

∂u∗

∂x∗
+
∂v∗

∂y∗
= 0 (2.57)

We can now apply the same procedure to the x-momentum equation.
Analogous to what we have just done with some rearrangements, we can
write,

∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
+ v∗

∂u∗

∂y∗
= − Ps

ρU2
c

∂p∗

∂x∗
+

µ

ρUcH
(
∂2u∗

∂x∗2
+
∂2u∗

∂y∗2
) (2.58)

We set Ps = ρU2
c the coefficient on the pressure gradient term in Eq.

(2.58). The quantity ρU2
c occurs widely in fluid dynamics; it is two times

what is termed the dynamic pressure, denoted pd : that is,
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pd =
1

2
ρU2

c

the reciprocal of the term µ/ρUcH is called the Reynolds number after
Osbourne Reynolds who identified it as a key parameter in his studies of
transition to turbulence. In general we express the Reynolds number for a
Newtonian fluid as:

Re =
ρUH

µ
(2.59)

and it is a measure of the ratio of inertial forces, ρU2/D, to viscous
forces, µU/D2. In 1883,Reynolds conducted some classical experiments of
Newtonian fluid flow through pipes, and showed that fluid flow may either
exhibit laminar or turbulent motion. For low Reynolds numbers of less than
about 2 100, the viscous forces dominate the inertial forces, and laminar
flow prevails. However, for high Reynolds numbers greater than about
4000, the inertial forces dominate the viscous forces and turbulent flow
prevails. For intermediate Reynolds numbers, fluid flows in a transitional
state between laminar and turbulent flow.

If we now suppress the “ ” notation we can express Eqs. (2.58) in
dimensionless form as

∂u

∂x
+
∂v

∂y
= 0, (2.60a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+

1

Re
(
∂2u

∂x2
+
∂2u

∂y2
) (2.60b)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+

1

Re
(
∂2v

∂x2
+
∂2v

∂y2
)− 1

Fr2
(2.60c)

where r is the Froude number, defined as

Fr =
U√
gH

(2.61)

We shall now introduce the Fanning friction factor is a dimensionless
group defined as the following ratio between frictional forces to inertial
forces:

f =
τw
ρU2

2

(2.62)
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Notice that this ratio is indicative of the relative importance of the wall
stress with respect to the kinetic energy per unit volume of fluid.

Pressure Loss through Straight Circular Pipe

For steady slurry flows in a piping system with straight conduit of uniform
cross section, the total pressure change, ∆p, in general comprises,

∆p = pf + pft + ρg∆z (2.63)

where pf is the frictional pressure loss in the pipe, pft is the frictional
pressure loss resulting from flow through fittings. The last term, ρg∆z, is
the pressure loss or gain resulting from elevation changes and is negative
for a reduction in static head and positive for an increase in static head z
is the net change in pipeline elevation, assuming that the pipeline is full of
slurry.

The frictional pressure loss over a straight pipe with a length L and an
internal diameter D is given by

pf = f

(
4L

D

)(
ρ
U2

2

)
(2.64)

where f is the friction factor of pipe flow. This equation shows that
the evaluation of f is the major task in the determination of the frictional
pressure loss. Note that the friction factor can also be defined in terms of
the shear stress at the pipe wall, τw, as shown in Eq. (2.62).

Flow rate

Consider a one-directional flow of fluid through a circular tube with ra-
dius R (or D/2), Figure 3.5. The volumetric flow rate through an annular
element of area perpendicular to the flow and of width δr is given by :

δQ = 2πrδru (2.65)

and, consequently, the flow rate through the whole tube is

Q = 2π

∫ R

0

rudr (2.66)

Integrating by parts yields
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Q = 2π

([
r2

2
u

]R
0

+

∫ R

0

r2

2

(
−du
dr

)
dr

)
(2.67)

If there is no slip at the pipe wall (u(R)=0), the first term in Eq. (2.67)
vanishes, then can be written as

Q = π

∫ R

0

r2(γ̇)dr (2.68)

Changing variables in Eq. (2.67), using Eq. (2.55), and dropping the
subscripts rz, Eq. (2.67) can be written as

Q = π

∫ τw

0

τ 2R2

τ 2w
γ̇
R

τw
dτ = π

R3

τ 3w

∫ τw

0

τ 2γ̇dτ

Multiplying both sides of the above equation with 4 and rearranging,
we get

4Q

πR3
= ϕ =

4

τ 3w

∫ τw

0

τ 2γ̇dτ (2.69)

The shear rate term, , can be eliminated from this equation with a
relevant rheological equation. This gives a relation, known as the pseudo-
shear flow function, between the pipe wall stress and the pseudo-shear
rate. The pseudo-shear flow function is a pipe flow equivalent of the true
shear flow function. For Newtonian fluids, using the equation (τ = µγ̇) to
eliminating γ̇ from Eq. (2.69) gives,

τw = µϕ

It therefore follows that ϕ = γ̇w for Newtonian fluids, though this is not
generally true for other fluids. Using Eq. (2.70) and (2.59), a well-known
relationship between f the friction factor and Re is revealed by the equation
above, and is given by

f =
16

Re
(2.70)

For any pseudoplastic fluid, the shear rate γ̇ can be obtained from Eq.
(2.69) to give the Mooney-Rabinowitsch equation by differentiating with
respect to τw. It is convenient first to multiply Eq. (2.69) by 3τw, then
differentiating with respect to τw, we get:
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3τ 2wϕ+ τ 3w
dϕ

dτw
= 4τ 2wγ̇w

or
γ̇w =

3

4
ϕ+

τw
4

dϕ

dτw
(2.71)

By rearranging Eq. (2.71) and making use of the relationship dx/x =
dlnx, Eq. (2.71) can be written as gives

γ̇w = ϕ
(3n′ + 1

4n′

)
(2.72)

where

n′ =
dlnτw
dlnϕ

This equation gives a relation between the wall shear rate and the
pseudo-shear rate where n′ can be estimated by plotting ln(ϕ) against
ln(τw) and measuring the gradient. Thus from a practical viewpoint, values
of n’ can be estimated from a log-log plot of the pipe flow data, and used to
estimate corresponding values of γ̇w.The measurements and the calculation
procedure are as follows:

• Measure Q at various values of ∆P/L.

• Calculate τw from the pressure drop measurements and the corre-
sponding values of the flow characteristic ϕ = 4Q

πR3 from the flow rate
measurements.

• Plot ln(ϕ) against ln(τw) and measure the gradient at different points
on the curve.

• Calculate the pseudo-shear rate at the wall from Eq. (2.71) with n’.

Calculation of flow rate for laminar flow using shear stress - shear rate
data

Depending on the flow information available, flow rate-pressure drop cal-
culations for laminar non-Newtonian flow in a pipe ca be performed in
different ways. When the flow data are in the form of flow rate and pres-
sure gradient measured in a tubular viscometer or in a pilot scale pipeline,
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direct scale-up can be done. When the data are in the form of shear stress-
shear rate values, the flow rate can be calculated directly using Eq. (2.69),
where D is the diameter of the pipe to be used and τw is the wall shear
stress corresponding to the specified pressure gradient. Whether obtained
with a rotational instrument or with a tubular viscometer, the data pro-
vide the relationship between τ and ˙gamma. Numerical evaluation of the
integral in Eq. (2.69) may be done using selected pairs of values of τ and
γ̇ ranging from 0 to τw.

When shear stress - shear rate data relationship can be accurately rep-
resented by a simple algebric expression, such as the Casson model or the
rheological model that we propose, over the required range then this may be
used to substitute for γ̇, in Eq. (2.69), allowing the integral to be evaluated
analytically.

At a given pressure drop, the wall shear stress is given by Eq. (2.54):

τw =
D

4

∆p

L
(2.73)

The equation above gives as a value of τw that is necessary to evaluate
the integral in Eq. (2.69) analytically,

4Q

πR3
=

4

τ 3w

∫ τw

0

τ 2γ̇dτ

For Newtonian slurries,

Q =
πD3τw
32µ

=
πD4∆p

128µL
(2.74)

For Bingham fluids,

Q =
πD3τw
32ηB

[
1− 4

3

τyB
τw

+
1

3

(
τyB
τw

)4
]

(2.75)

For Casson fluids,

Q =
πD3τw
32ηc

[
1 +

4

3

τyc
τw

− 16

7

(
τyc
τw

)1/2

− 1

21

(
τyc
τw

)4
]

(2.76)

For Herschel–Bulkley fluids,
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Q =
πD3

8τ 3w

(
1

K

)1/n [
n(τw − τyH)

(1+3n)/n

1 + 3n
+

2nτyH(τw − τyH)
(1+2n)/n

1 + 2n

+
nτ 2yH(τw − τyH)

(1+n)/n

1 + n
(2.77)

For Robertson-Stiff fluids,

Q = −π
3
γ̇0R

3 + π

(
∆p

2KL

)1/n [(
n

1 + 3n

)
R(1+3n)/n

]
(2.78)

Velocity distribution

In what follows, the velocity distribution u(r) -the distribution of axial
direction velocity against radial distance- will be given. The shear rate is
written as γ̇ = −du/dr. Assuming the no-slip condition u(R) = 0, this
integrates to give

u(r) =

∫ R

r

γ̇dr (2.79)

For the Newtonian case, substituting (τ = µγ̇) and Eq. (2.55) into Eq.
(2.79) gives the velocity distribution,

u(r) = 2U
[
1−

( r
R

)2]
(2.80)

Where U is the mean cross-sectional velocity.

Considering the linear relation between τ and r defined by Eq. (2.55)
and the rheological models, we obtain the following expressions :

For Bingham fluids,
u(r) =

1

ηB

[
R
(τw
2

− τ0

)
− r

(τwr
2R

− τ0

)]
if r > rp

u =
R

ηB

[
τ 20B
2τw

+
τw
2

− τ0

]
if r ≤ rp

Where rp = Rτy/τw is the radius of plug flow region, where the velocity
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is constant. For Casson fluids,

u(r) =
Rτw
4ηc

[
16

3

(
τ0
τw

)1/2(( r
R

)3/2
− 1

)
+ 4

(
τ0
τw

)(
1− r

R

)
+ 2

(
1−

(
r
R

)2) if r > rp

u =
Rτw
4ηc

[
2− 2

3

(
τ0
τw

)2

− 16

3

(
τ0
τw

)1/2

+ 4

(
τ0
τw

)]
if r ≤ rp

(2.81)

For Herschel–Bulkley fluids,


u(r) =

(
1

K

)1/n
R

τw

n

(n+ 1)

[
(τw − τ0)

(1+n)/n −
(τw
R
r − τ0B

)(1+n)/n
]

if r > rp

u =

(
1

K

)1/n
R

τw

n

(n+ 1)
(τw − τ0)

(1+n)/n if r ≤ rp

For Robertson-Stiff fluids,


u(r) =

[
1

2K

(
∆p

L

)]1/b
(

n

n+ 1
)
(
R(n+1)/n − r(n+1)/n

)
− γ̇0(R− r) if r > rp

u =

[
1

2K

(
∆p

L

)]1/b
(

n

n+ 1
)
(
R(n+1)/n − r(n+1)/n

p

)
− γ̇0(R− rp) if r ≤ rp

(2.82)

Where the plug region radius is rp =
2(Kγ̇n0 )

(∆p/L)
.



Chapter 3

Numerical Study Of Viscoplastic
Flows

3.1 Introduction

In light of the advantages of the finite volume method for solving fluid
flows, it has been employed within many Computational Fluid Dynamics
(CFD) solvers. The most attractive features of the method lie in its poten-
tial to produce highly accurate solutions with low computational cost and
the possibility to be applied to a variety of physical problems with relative
ease. The aim of this work is the development of numerical simulations
based on the finite volume method and multigrid initialization procedure,
with a view to solving viscoplastic flows. As the main novelty, we present
an easy to implement multigrid method that significantly improves the
convergence rate in terms of CPU time and number of iterations. To the
authors’s knowledge, this approach has not been addressed in previous re-
search on non-Newtonian flows. The pressure–velocity coupling lie on a
momentum weighted interpolation and a structured collocated grid. Multi-
grid is implemented with a cell-by-cell relaxation procedure. For solving
the flow and pressure field, the popular SIMPLE-like algorithm was chosen
as the non-linear solver. First, pressure–velocity coupling and multigrid
algorithms for steady-state simulations are described together with a sum-
mary of the iterative procedure followed in each of them. In what follows,
we examine the accuracy of the numerical solution for several different sit-
uations and verify the capability of the regularization approach to describe
the flow properties of a liquid with a yield stress. Our test examples can
be considered in two general categories. We first perform an accuracy test
for our present code using different parameters to establish the qualitative
credibility of the obtained results. Secondly, we examine the effect of the
growth stress parameter in determining the shape of the yielded surface
in a steady flow. Finally, the performance of the multigrid initialization

48
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algorithm in different situations is discussed.

3.2 Numerical methodology

3.2.1 Governing equations

We consider the steady-state, two-dimensional flow. Let ρ and η = η(γ̇)
denote the density and the viscosity of any generalized-Newtonian fluid.
Incompressible steady Navier Stokes equations are given by a pair of partial
differential equations:

∇.u = 0 (3.1)

ρu.∇u = −∇p+∇.τ + f (3.2)

Eq. (3.1) represents conservation of mass whereas Eq.(3.2) represents
conservation of momentum. The velocity field is defined as u(x, t), with
components u and v. The Cauchy stress tensor σ is introduced as the sum
of isotropic and deviatoric parts, σ = −pI + τ . Here, the pressure p(x, t)
is multiplied by the identity tensor, while the deviatoric part of the stress
tensor is denoted as τ (x, t). We have introduced f to describe external body
forces such as gravity acting on the fluid. Note that the mass conservation
equation is simplified to (3.1) due to incompressibility, i.e., constant density
within a fluid volume.

Newtonian flow is characterized by a dynamic coefficient of viscosity
µ > 0 which is independent of the strain, yielding a linear relationship
between rate-of-strain and stress in the rheological equation in a simple
shear flow,

τ = µγ̇ (3.3)

For fluids where the dependency of the stress on the shear rate tensor is
nonlinear, the apparent viscosity is a useful concept when considering rhe-
ological responses to strain. It is a generalization of the constant viscosity
for Newtonian flow, where we allow the viscosity to be a function of the
magnitude of the shear rate tensor. Denoting the apparent viscosity by η,
we thus have:

η =
τ

γ̇
(3.4)



3. Numerical Study Of Viscoplastic Flows 50

When considering viscoplastic fluids, Eq. (5.1) does not present any prob-
lems for yielded regions τ > τy, but the corresponding apparent viscosity
η = µ + τy/γ̇ has a singularity when the stress fall below the yield (and
τ → τy ). To help address this issue, we employ the popular Papanastasiou
regularization [21], which lies on an exponential relaxation according to:

1

γ̇
→ 1− e−mγ̇

γ̇
(3.5)

When (mγ̇) >> 1, it is a suitable approximation that provides a continuous
dependence between the shear and shear rate. While near the small shear
rate magnitude limit, we have:

lim
γ̇→0

1− e−mγ̇

γ̇
= lim

γ̇→0

(
1−

∞∑
n=1

(−mγ̇)
n!

)
= m (3.6)

Substitution of Eq. (3.5) into the apparent viscosity of Bingham model
yields the following regularized viscosity:

η = µp +
τy
γ̇
(1− e−mγ̇) (3.7)

Figure 3.1: Papanastasiou regularization for the Bingham model: stress magni-
tude (left) and apparent viscosity (right) as functions of the magnitude of the
shear rate tensor γ̇. For increasing m, we recover a closer approximation to the
actual Bingham model. Note that logarithmic axes are employed in order to
highlight the behavior in the low shear rate limit.

The effect ofm = 1/ϵ is related to the curves shown in Fig. 3.1. For two-
dimensional flow, the explicit form of the second invariant of rate-of-strain
tensor, γ̇ is given by:

γ̇ =

[
2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+

(
∂u

∂y
+
∂v

∂x

)2
]1/2

(3.8)
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Under these considerations, the conservation equation for a general flow
dependent variable ϕ in the steady laminar case described above, can be
written as:

∂

∂x
(ρuϕ) +

∂

∂y
(ρvϕ) =

∂

∂x

(
Γ
∂ϕ

∂x

)
+

∂

∂y

(
Γ
∂ϕ

∂y

)
+ Sϕ (3.9)

where u and v are the x and y components of the velocity field and Γ is
the diffusion coefficient. The terms on the left represent the net convection
flow. The two terms on the right represent the net diffusion and the last
term the source generation. The mass conservation equation is obtained by
setting:

ϕ = 1, Γ = 0, Sϕ = 0

Similarly, u-momentum and v-momentum equations can be obtained
from Eq. (3.9), respectively, by setting:

ϕ = u, Γ = η, Sϕ = −∂p
∂x

+ fx

and

ϕ = v, Γ = η, Sϕ = −∂p
∂y

+ fy

3.2.2 Discretization of the equations

The domain is divided into a number of control volumes (CVs) using a
Cartesian grid of equally spaced horizontal and vertical grid lines as shown
in Fig. 3.2. We denote the unit vectors in the x and y directions by i
and j, respectively. In finite volume method, a discrete approximation of
the continuity and momentum equations is obtained by integrating each
equation over every cell. The resulting algebraic expressions involve the
values of the unknowns u and p at the centroid of each cell and at the centers
of neighboring CVs. The surface flux integrals are evaluated separately on
each face using various interpolation schemes. Fig. 3.2 shows a control
volume P and its neighbors, S, E, N and W . The letters P, S, E, N and
W also denote the position vectors of the centers of the respective CVs.
Integrating Eq. (3.9) over the volume ∆V of the computational cell, in the
absence of any source term, yields the following form:
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Figure 3.2: Two-dimensional orthogonal grid. N , S , E and W correspond to
neighbor cells of cell P; n , s , e and w denote cell P faces; ∆x and ∆y are cell P
dimensions in the x and y spatial coordinates; δyn, δys, δxe and δxw correspond
to cell-center to cell-center distances from cell P to neighbor cells.

∮
∆V

∂

∂x
(ρuϕ)dV +

∮
∆V

∂

∂y
(ρvϕ)dV =

∮
∆V

∂

∂x

(
Γ
∂ϕ

∂x

)
dV

+

∮
∆V

∂

∂y

(
Γ
∂ϕ

∂y

)
dV (3.10)

By integrating the governing equation over a control volume and apply-
ing Green–Gauss theorem, the semi-discretized form of the equation, at its
nodal point P, can be written as follows :

(ρuAϕ)e − (ρuAϕ)w + (ρvAϕ)n − (ρvAϕ)s =

(
ΓA

dϕ

dx

)
e

−
(
ΓA

dϕ

dx

)
w

+

(
ΓA

dϕ

dy

)
n

−
(
ΓA

dϕ

dy

)
s

(3.11)

where A is the cross-sectional area of the control volume face. With the
aim of obtaining an useful form of the discretized equation, the diffusion
coefficients Γ, the mass fluxes ρu and ρv and the gradients dϕ/dx and
dϕ/dy at the cell faces e, w, n and s are required. At the control volume
faces an approximate distribution of properties between nodal points is
used. Following well-established practice, linear approximations seem to
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be the obvious and simplest way of calculating interface values and the
gradients. This practice is called central differencing. In a uniform grid
linearly interpolated values for mass fluxes at cell face ′e′ is given by:

(ρu)e =
(ρu)P + (ρu)E

2
(3.12)

Similarly, the coefficient Γ is obtained by:

Γe =
ΓP + ΓE

2
(3.13)

And the diffusive flux term is evaluated as:(
ΓA

dϕ

dx

)
e

= ΓeAe

(
ϕE − ϕP

δxe

)
(3.14)

It is convenient to define two variables F and D to represent the con-
vective mass flux per unit area and diffusion conductance at cell faces. For
x direction it is written as:

F = ρu (3.15a)

D =
Γ

δx
(3.15b)

Assuming that Ae = Aw = ∆x and An = As = ∆x and considering
Eqs. (3.12), (3.14) and (3.15), the integrated general conservation equation
(3.10) can now be written as :

∆y(Feϕe−Fwϕw)+∆x(Fnϕn−Fsϕs) = ∆y (De(ϕE − ϕP )−Dw(ϕP − ϕW ))

+ ∆x (Dn(ϕN − ϕP )−Ds(ϕP − ϕS)) (3.16)

We assume that the velocity field is known, which takes care of the mass
fluxes values F . To solve Eq. (3.16), we need to calculate the transported
property ϕ at each cell face using appropriate numerical schemes. In the
discretization of divergence terms, many schemes are available in litera-
ture (first-order upwind, second-order upwind, central differencing scheme,
QUICK, etc). Second and higher-order schemes have been widely used in
applications involving orthogonal and uniform meshes. However, the sta-
bility of higher-order schemes for applications involving complex flows in
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complex geometries is not guaranteed and convergence may be difficult to
achieve. A stable and fast converging variant of QUICK schemes can be
summerized as follows:

ϕw = ϕW +
1

8
(3ϕP − 2ϕW − ϕWW ) if Fw > 0

ϕe = ϕP +
1

8
(3ϕE − 2ϕP − ϕW ) if Fe > 0

ϕw = ϕP +
1

8
(3ϕW − 2ϕP − ϕE) if Fw < 0

ϕe = ϕE +
1

8
(3ϕP − 2ϕE − ϕEE) if Fe < 0

(3.17)

First or second-order methods are best suited for such applications. The
first order upwind differencing scheme takes into account the flow direction
when determining the value at a cell face: the convected value of ϕ at a cell
face is taken to be equal to the value at the upstream node.

For the sake of brevity, we make use of the upwind scheme and consider
an one dimensional general transport equation. We also assume that ∆x =
∆y. When the flow is in the positive direction, Fw > 0 and Fe > 0, the
upwind scheme sets

ϕe = ϕP , ϕw = ϕW (3.18)

and the discretized Eq. (3.16) becomes

FeϕP − FwϕW = De(ϕE − ϕP )−Dw(ϕP − ϕW )

which can be rearranged as

(Dw +De + Fe)ϕP = (Dw + Fw)ϕW +DeϕE

to give

[(Dw + Fw) +De + (Fe − Fw)]ϕP = (Dw + Fw)ϕW +DeϕE (3.19)

When the flow is in the negative direction, Fw < 0 and Fe < 0, the
scheme yields

[Dw + (De − Fe) + (Fe − Fw)]ϕP = DwϕW + (De − Fe)ϕE (3.20)
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Identifying the coefficients of ϕW and ϕE as aW and aE , Eq. (3.19) and
(3.20) can be written in the general form:

aPϕP = aWϕW + aEϕE (3.21)

with central coefficient

aP = aW + aE + (Fe − Fw) (3.22)

and neighbor coefficients

aW = Dw +max(Fw, 0)

aE = De +max(−Fe, 0)

Following the same methodology described above, the two-dimensional
discretized equation can be written in the following final discretized form:

aPϕP = aWϕW + aEϕE + aSϕS + aNϕN + bϕ (3.23)

Where bϕ is the source term and :

aP = aW + aE + aS + aN + (Fe − Fw) + (Fn − Fs)

aW = Dw +max(Fw, 0)

aE = De +max(−Fe, 0)

aS = Ds +max(Fs, 0)

aN = Dn +max(−Fn, 0)

In order to reach convergence, under-relaxation factors are typically ap-
plied to independent variables to limit the change in consecutive iterations.
From Eq. (3.24) we can write the final expression of ϕP as:

ϕP =
αϕ

aP
(aWϕW + aEϕE + aSϕS + aNϕN + bϕ) + (1− αϕ)ϕ

0 (3.24)

where superscript 0 is used for the quantities calculated at the previous
iteration and αϕ is the under-relaxation factor for variable ϕ.
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3.2.3 Pressure-velocity coupling

Rhie and chow’s interpolation

Since momentum equations are integrated over co-located control volumes,
checkerboard oscillations may appear if central difference is used to ap-
proximate face velocities in discretized continuity equation and pressure
gradient in momentum equations [65]. Indeed, in this case, the interpo-
lated expression for face velocity will not include a pressure gradient across
the faces of the control volume and the resulting solution can be oscillatory.
Rhie and Chow [40] interpolation is used to prevent spurious oscillations in
the solution by ensuring strong pressure-velocity coupling. Their procedure
has been extremely successful in co-located grids because of its inherent ad-
vantages, such as convenience in implementation on an unstructured grids
and economical storage of velocity and pressure data.

By taking out the pressure gradient from the source term in Eq. (3.24),
the final discretization equation for x-component of the velocity field uP
takes the following form, into which under-relaxation is incorporated:

uP =

∑
nb

anbunb + bu

aP
−∆y

(pe − pw)

aP
(3.25)

The two terms pw and pe are linearly interpolated from the neighboring
nodes as:

(pw)P = f+
w pP + (1− f+

w )pW

(pe)P = f+
e pE + (1− f+

e )pP

where f+
e and f+

w are weighting factors that can be determined, respec-
tively, as f+

e = ∆x/2δxe and f+
w = ∆x/2δxw for the structured mesh shown

in Fig. 3.2. A similar procedure can be applied for velocity component vp
and the related terms ps and pn, and the corresponding interpolation coef-
ficients f+

s and f+
n . vp is written as:

vP =

∑
nb

anbvnb + bv

aP
−∆x

(ps − ps)

aP
(3.26)

Eq. (3.25) can also be expressed in general form:

uP = HP −DP (∇P )P (3.27)
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where

Hp =

∑
nb

anbunb + bp

aP

and,

Dp =
V

ap

For the sake of brevity, interface velocity interpolation is shown only for
face e. From Eq. (3.25), we could write the following equations for two
adjacent cells E and P:

uP =


∑
nb

anbunb + bu

aP


P

−∆y
(pe − pw)P

(aP )P
(3.28)

uE =


∑
nb

anbunb + bu

aP


E

−∆y
(pe − pw)E

(aP )E
(3.29)

Following the formulation for uE and uP , Rhie and Chow [40] proposed
similar equation for the interface velocity ue :

ue =


∑
nb

anbunb + bu

aP


e

−∆y
(pE − pP )

(aP )e
(3.30)

As in the staggered grid, Eq. (3.30) includes the difference of pressure
(pE − pP ). As it is, if a checkerboard pressure distribution occurs, pressure
will not be properly represented in the discretized momentum equations
and the continuity equation will reject it as an acceptable solution. Hence,
special treatment is needed. Eq. (3.30) can also be expressed as:

ue = He −De(∇P )e (3.31)

where De = (δxe∆y)/(ap)e and (∇P )e represents the pressure gradient
in face e along the x-axis. According to Rhie and Chow interpolation,
He and 1/(aP )e are obtained by a weighted averaging of the values at the
neighboring cells as follows:
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∑
nb

anbunb + bu

aP


e

= fe+


∑
nb

anbunb + bu

aP


E

+(1−fe+)


∑
nb

anbunb + bu

aP


P

(3.32)(
1

aP

)
e

= fe+
(

1

aP

)
E

+ (1− fe+)

(
1

aP

)
P

(3.33)

Therefore, Eq. (3.31) becomes:

ue = He −
(

1

aP

)
e

∆y(pE − pP ) (3.34)

where the over-bar refers to linear interpolation. Similar expressions can
be formulated for remaining face velocities of cell P . By substituting Eq.
(3.32) into Eq. (3.30) and considering Eqs. (3.28) and (3.29), Eq. (3.30)
can be reformulated as:

ue = [f+
e uE + (1− f+

e )uP ]−∆y
(pE − pP )

(aP )e
+

(
f+
e ∆y

(pe − pw)E
(aP )E

+ (1− f+
e )∆y

(pe − pw)P
(aP )P

)
(3.35)

The term [f+
e uE + (1 − f+

e )uP ] corresponds to the linear interpolation
of cell velocity values. The remaining two terms incorporate the additional
correction term that smooths the pressure field, and prevents the undesired
checkerboard behavior. Assuming,

De ≈ De and (D∆p)e ≈ De∆pe, and considering Eqs. (3.31) and (3.27),
Eq. (3.35) can be re-written as:

ue = ue −De((∇P )e − (∇P )e) (3.36)

yielding the classical expression of Rhie–Chow momentum interpolation,
which does not include the under-relaxation factor of velocity. However, in
general under-relaxation is required for the momentum equations. When
considering under-relaxation, Eq. (3.37) becomes:
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ue = αu

[
He −

(
1

aP

)
e

∆y(pE − pP )

]
+ (1− αu)[fe

+u0E + (1− fe+)u0P ]

(3.37)

In this way, Rhie and Chow’s special pressure–velocity coupling involves
the addition of a higher order pressure gradient term. The restored linkage
between the pressure differences across the control volume faces and the
face velocities provides damping of the spurious oscillations in the solution
due to the co-located arrangement.

3.2.4 Incompressible flow solver : SIMPLE algorithm

Due to the ease of their implementation and the lower peak memory require-
ments, segregated pressure–velocity coupling algorithms are commonly used
for solving incompressible flow equations written in terms of the primitive
variables velocity and pressure. The basic idea of SIMPLE-like algorithms
is to develop an iterative procedure which constructs and solves a number
of linear systems within each iteration. Both velocity and pressure fields are
updated during each iteration so that the continuity equation is always sat-
isfied, and velocity equations converge progressively to their final solution.
The common characteristic of these algorithms is that a pressure-correction
equation is constructed by combining discretized continuity equation and
approximate forms of the momentum equations. The approximate pressure
correction linear system is used afterwards to improve the current pressure
estimate and the intermediate velocity solved from the momentum equation
so as to force the modified velocity to satisfy the continuity condition for
each control volume at each iteration level. The method is illustrated by
considering the two-dimensional laminar steady flow equations in Cartesian
co-ordinates.

In the first step of the SIMPLE calculation process, the so-called pre-
dictor step, a pressure field p∗ is guessed. Then, intermediate solutions
u∗ and v∗ are obtained by solving discretized momentum equations of the
x-momentum and y-momentum equations, respectively, using the guessed
pressure field. The improved velocities can be expressed as:

u∗P =


∑
nb

anbu
∗
nb + bu

aP


P

−∆y
(p∗e − p∗w)P

(aP )P
(3.38)
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v∗P =


∑
nb

anbv
∗
nb + bv

aP


P

−∆x
(p∗n − p∗s)P
(aP )P

(3.39)

Following the predictor step, the calculated velocities, denoted as u∗P
and v∗P , are based on the guessed pressure p∗ or from previous iterations.
Now, let us introduce the correction p′ as the difference between correct
pressure field p and the guessed pressure field p∗, so that

p = p∗ + p′ (3.40)

Substitution of the correct pressure field p into the momentum equations
yields the correct velocity field u. Since u∗P and v∗P do not satisfy continuity
yet, similar procedure is applied to velocity components by introducing the
corrections u′ and v′ as:

u = u∗ + u′ (3.41)

v = v∗ + v′ (3.42)

The equations for the velocity correction terms, u′ and v′ , can be derived
by subtraction of equations (3.38) and (3.39) from (3.25) and (3.26) and
considering correction equations (3.40), (3.41) and (3.42) as:

u′P =


∑
nb

anbu
′
nb

aP


P

−∆y
(p′e − p′w)P

(aP )P
(3.43)

v′P =


∑
nb

anbv
′
nb

aP


P

−∆x
(p′n − p′s)P
(aP )P

(3.44)

The main approximation of the SIMPLE method lies in neglecting the
terms

∑
nb

anbu
′
nb and

∑
nb

anbv
′
nb in Eqs (3.43) and (3.44). Thus, velocity cor-

rection becomes:

u′P = −∆y
(p′e − p′w)P

(aP )P
(3.45)
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v′P = −∆x
(p′n − p′s)P
(aP )P

(3.46)

Since a collocated grid is employed, a special interpolation scheme needs
to be applied in order to avoid oscillating distribution of pressure. By
adopting Rhie and chow interface interpolation, the cell face velocity cor-
rections for faces e and n take the following form:

u′e = −∆y
(p′E − p′P )

(aP )e
(3.47)

v′n = −∆x
(p′N − p′P )

(aP )n
(3.48)

Then the corrections are applied to face velocities to yield the following
expressions:

ue = u∗e − de(p
′
E − p′P ) (3.49)

vn = v∗n − dn(p
′
N − p′P ) (3.50)

where

de =
∆y

(aP )e
, dn =

∆x

(aP )n
,

With known cell-face velocity corrections u∗e and v∗n, and following the
same procedure for the rest of the faces, continuity equation is used to
derive an equation for pressure correction p′. Eq. (3.1) can be integrated
in the cell volume by using Green–Gauss theorem leading to:

(ρuA)e − (ρuA)w + (ρvA)n − (ρvA)s = 0 (3.51)

Introduction of face velocities from Eqs. (3.49) and (3.50) into the
discretized continuity equation, Eq. (3.51) yields the pressure-correction
equation:

app
′
P =

∑
nb

anbp
′
nb + bp (3.52)
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where

aP = aW + aE + aS + aN

bp = (ρu∗A)w − (ρu∗A)e + (ρv∗A)s − (ρv∗A)n

By applying Eq. (3.52) on all control volumes of the domain, the pres-
sure corrections can be obtained at all nodes. These are used afterwards
to correct the velocity field, which will now satisfy the continuity condi-
tion. However, since velocity components may not satisfy the momentum
equations, another iteration must be performed using the solutions from
the previous iteration as initial guesses and so forth with the iteration pro-
cedure until convergence is achieved.

In the solution procedure, the apparent viscosity η can be obtained from
the guessed or intermediate velocity field and then be used to perform the
current iteration. In this way, the discretization method of convective and
diffusive terms described above can refer to both methods for Newtonian
and non-Newtonian flows.

The sequence of operations in a solution procedure which employs the
SIMPLE algorithm on co-located grid is summarized below:

1. An initial velocity field u0 and v0 is assumed

2. Apparent viscosity η is evaluated using regularization approach with
Eq. (3.7)

3. The coefficients in the discretized momentum equations and the veloc-
ity components u∗ and v∗ are computed with a guessed or intermediate
pressure field p∗ using Eqs. (3.38) and (3.39)

4. The interface velocity is calculated with a momentum interpolation
method using Eq. (3.37) based on u∗, v∗ and p∗ to determine the
source term of the pressure-correction equation, deduced from the
continuity equation

5. The coefficients for the p′ equation (3.52) are computed

6. The discretized p′ equation (Eq. (3.52)) is solved

7. The pressure and velocities are corrected using equations (3.43), (3.44),
(3.40), (3.41) and (3.42)

8. Other discretized transport equations are solved if necessary
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9. Steps 2-8 are repeated until convergence condition is satisfied.

It is to be noted that, typically, all changes are under-relaxed to obtain
numerical stability. Improved pressures p are obtained with:

p = p∗ + αpp
′ (3.53)

where αp is the pressure under-relaxation factor. The iteratively im-
proved velocity components are also under-relaxed and would be computed
as:

u = αuu
(m) + (1− αu)u

(m−1) (3.54)

and ,
v = αvv

(m) + (1− αv)v
(m−1) (3.55)

where αu and αv represent velocity under-relaxation factors, u(m) and
v(m) are corrected velocity components in the current iteration, and u(m−1)

and v(m−1) represent their values determined by the previous iteration. Ad-
equate values of under-relaxation factors α are essential to stabilize the it-
erative procedure. Unfortunately, the optimum values of under-relaxation
factors are flow dependent and should be determined on a case-by-case
basis.

3.2.5 Multigrid procedure

Two-grid algorithm

Iterative techniques are attractive because of their low storage overheads,
specially for the solution of large systems of equations resulting from re-
fined grids. In a CFD simulation, the efficiency of a solution technique is
measured in particular by the computational cost put into achieving the
desired accuracy. It is common knowledge that the discretization error is
drastically reduced with highly refined meshes. However, the convergence
rate towards the exact numerical solution of iterative methods, such as the
Jacobi and Gauss–Seidel, rapidly gets worse as the mesh spacing is reduced.
The application of the multigrid idea results in an approximately linear in-
crease of computing time with grid refinement, allowing much finer grids
to be used and therefore more accurate solutions to be obtained.

In what follows, we provide an overview of FAS Multigrid concept ap-
plied to a two-grid system. A two grid algorithm consists of performing
a few smoothing iterations on the fine grid, approximation of the required
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correction on the coarse grid, prolongation of the coarse grid correction to
the fine grid and again smoothing on the fine grid.

Consider a linear system of equations, whose exact solution for any
variable on grid h, ϕh, satisfies the following equation :

Ahϕh = Sh (3.56)

Here, ϕ is the exact solution at all CV centers of the grid with spacing
h, A is the coefficient matrix and S is the source term. After few SIMPLE
iterations, the unconverged equation, having residual Rh, can be expressed
as:

A∗
hϕ

∗
h = S∗

h +Rh (3.57)

where A∗
h and S∗

h are evaluated using the approximate solution ϕ∗
h. Sub-

tracting (3.56) from (3.57) yields

Ahϕh = Sh + A∗
hϕ

∗
h − S∗

h −Rh (3.58)

The obtained equation is used as the basis for multigrid coupling. The
algebraic system (3.58) is then restricted on a coarser grid of spacing 2h,
as follows:

Â2hϕ̂2h = Ŝ2h + Ã2h[I
2h
h ϕ̃h]− S̃2h − [I2hh R̃h] (3.59)

The restriction of variable values from fine h to coarse 2h grid has to
be performed by interpolation denoted by the operator I2hh as ϕ̃2h = I2hh ϕ̃h.
In this way, the coarse grid equations are derived. Variables and operators
on grid 2h based on the restricted approximate solution on the finer grid h
are denoted by (∼), while those being modified in the course of iterations
on the coarser grid 2h by (∧). The underlined terms are kept unchanged
during the coarse grid iteration and can be considered as an extra source
term in Eq. (3.59). If the residual is zero (R̃ = 0), the above equation is
satisfied, i.e. (ϕ̂ = ϕ̃). For consistency reasons, Ã2h and S̃2h are evaluated
on the coarse grid in the same way as Â2h and Ŝ2h using the restricted
values [I2hh ϕ̃h].

It is noted that pressure operator is linear and therefore, no restriction of
pressure from fine to coarse grid is needed. At each coarse grid iteration, the
pressure is initialized as zero and the corrected pressure is then transferred
to the fine grid to adjust the fine grid solutions. In contrast, the values ϕ̂2h
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will in the course of coarse grid iterations depart from their initial values
[I2hh ϕ̃h]. After certain number of SIMPLE iterations, the system (3.59)
can be solved to obtain ϕ̂2h. Then, the coarse grid corrections for the full
approximation velocity variables can be computed as:

δϕ2h = ϕ̂2h − I2hh ϕ̃h (3.60)

The corrections obtained on the coarsest grid are transferred back to
the fine grid through prolongation process denoted by Ih2hδϕ2h, yielding a
better estimate of the fine grid solution:

ϕnew
h = ϕold

h + αMG[I
h
2hδϕ2h] = ϕold

h + αMG[I
h
2h(ϕ̂2h − I2hh ϕ̃h)] (3.61)

where αMG represents the under-relaxation factor for coarse grid cor-
rections. Then, few smoothing iterations are performed on the fine grid to
eliminate any high frequency error components introduced by the prolon-
gation process. A two-grid correction scheme is carried out according to
the following sequence of instructions :

1. Initialize the set of primitive variables and impose boundary condi-
tions

2. At the finer multigrid level, execute few Simple iterations on the sys-
tem (3.56)

3. Restrict the approximate solutions ϕ∗
h and the correponding residuals

Rh

4. Compute the coarse grid correction using Eq. (3.59)

5. Check for convergence. If the solution is converged, prolongate back
the velocities and pressures into the fine level

6. The algorithm returns to step 2 to perform few smothing iterations
on the fine grid

7. If the solution is not converged yet at the fine multigrid level, repeat
steps 2-6.

Given (3.59), we assemble the equations for u-momentum and v-momentum
on the coarse grid, whose solutions are û , v̂ , as follows:
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âpûp =
∑
nb

ânbûnb −∆y(p′e − p′w) + Ŝu+ãpũp −
∑
nb

anbũp − S̃u − R̃u (3.62)

âpv̂p =
∑
nb

ânbv̂nb −∆x(p′n − p′s) + Ŝv+ãpṽp −
∑
nb

anbṽp − S̃v − R̃v (3.63)

The SIMPLE procedure applied to the coarse grid equations involves
the following steps:

1. The primitive variables are initialized as:

ûp = ũp, v̂p = ṽp, p′ = 0

2. Few relaxation sweeps on the momentum equations are performed to
get approximate solutions û∗p and û∗p

3. The cell-face velocities are computed according to the momentum
interpolation method. For the east interface of the volume cell, we
can write:

ûe =


∑
nb

anbûnb + Ŝu + f̃u

aP


e

−∆y
(p′E − p′P )

(aP )e
(3.64)

v̂n =


∑
nb

anbv̂nb + Ŝv + f̃v

aP


n

−∆x
(p′N − p′P )

(aP )n
(3.65)

where f̃u and f̃v denote the underlying terms in (3.62) and (3.63),
respectively. Analogous expressions for the other face velocities ûw
and v̂s can be derived in a similar manner

4. The face velocities are substituted into the mass continuity equation
to derive the coarse-grid pressure correction equation. The pressure
correction equation is p′′, given by :

app
′′
P =

∑
nb

anbp
′′
nb + bp (3.66)
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where

bp = ρ[(ûw − ũw)− (ûe − ũe)]∆y + ρ[(v̂s − ṽs)− (v̂n − ṽn)]∆x

5. Pressure equation (3.66) is solved, and the related pressure and ve-
locity corrections are updated through p′′

6. The algorithm returns to step 2 to perform additional SIMPLE iter-
ations.

In practice, it is necessary to perform the above two-grid cycle contin-
uously until desired accuracy is achieved. The coarse grid problem (3.59)
can be solved using an even coarser grid 4h and so on. This whole process
of going down from grid h to some coarsest grid and then back again up
to grid h constitutes a multigrid cycle. In general, a number of multigrid
cycles will be required to reduce the residuals by a given amount. Different
kinds of cycles have been suggested and used.

The MG initialization method used in the present study and summa-
rized in Algorithm 1 consists of constructing the desirable number of geo-
metric grid levels using the procedure outlined above. To begin the process,
the initial solution is restricted all the way down to the coarsest level. The
FAS multigrid cycle is then applied until a given order of residual reduction
is obtained or the maximum number of cycles is reached. The obtained so-
lution is then prolonged to the finer grid where the solution of the problem
is required, see Algorithm 2. The coarsest grid used in the cycles was the
40 × 40 grid.

Algorithm 1: MG_cycle()
1 Smooth solution;
2 Compute residual;
3 Restrict solution;
4 Restrict residual;
5 if not yet coarsest grid then
6 MG_cycle();
7 end
8 else
9 Coarse grid corrections;

10 end
11 Prolongate solution;
12 Smooth solution;
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Algorithm 2: Main algorithm
1 Initialize u, v, p
2 while not yet converged do
3 MG_cycle()
4 end
5 Prolongate initial solution;
6 Solve;

Multigrid cycles

Figure 3.3: Illustration of different multigrid cycle strategies: (a) V-cycle, (b)
W-cycle.

In our simple example we have illustrated the main concepts of the
multigrid methods. In practical CFD calculations, the multigrid transfer
process is more sophisticated and different cycles of coarsening and refine-
ment are used with special schedules of restriction and prolongation at
different refinement levels. Common choices of multigrid cycles are the
so-called V- and W-cycles, which are illustrated in Figure 3.3.

The simple V-cycle shown in Figure 3.3a consists of two legs. The calcu-
lation starts at the finer level. Iterations at any level are called relaxation.
After a few relaxation sweeps on the finer level, the residuals are restricted
to the next coarse level, and after relaxation on that level, the residuals
are passed on to the next coarse level and so on until the coarsest level
is reached. After final relaxation on the coarsest level, the prolongation
steps are performed on the upward leg of the V-cycle until the finer level
is reached. In the W-cycle, additional restriction and prolongation sweeps
are used at coarser levels to obtain a better reduction of long-wavelength
errors. A typical pattern is illustrated in Figure 3.3b.

In general, the multigrid idea requires more than two grids, otherwise its



3. Numerical Study Of Viscoplastic Flows 69

remarkable power would be missed. The lowest frequency errors need to be
reduced on a very coarse grid (8 h spacing or higher ) to decay quickly. The
two-grid v-cycle can be extended in a natural way to more grids, going down
to coarser grids (2 h, 4 h, 8 h, . . . ). As the coarse grid iterations are much
faster than fine grid iterations, efficiency may be improved by the decision
to switch from one grid to another on the rate of convergence through the
combination of V-W cycles. Therefore, the W-cycle, which stays on coarse
grids longer, is generally superior to a V-cycle and is used in the present
work. Let it be noted that the optimum choice of parameters remains
problem-dependent, but their effect on performance is not as dramatic as
for the single-grid method.

3.2.6 Convergence criteria

Once the solver iteration is completed and the primitive variables corrected,
convergence may be monitored by either the relative change of a variable
or the residual for each of the discretization equations. The details on
convergence criteria can be found in [70]. The discretized equation for
general flow variable ϕ at control volume i can be expressed as follows:

(aPϕP )i =

(∑
nb

anbϕnb

)
i

+ (bϕ)i (3.67)

The relative changes of the primitive variables over two consecutive
iterations can be computed to check the following convergence criteria:

max(|(ϕP )
(k)
i − (ϕP )

(k−1)
i |) < ϵ (3.68)

where ϵ is a specified small number. The final solution will not satisfy
Eq. (3.67) exactly at all cells in the mesh, but after k iterations there will
be a difference between the left and right hand sides. The absolute value
of this difference at mesh cell i is termed the local residual (Rϕ)

(k)
i :

(Rϕ)
(k)
i =

∣∣∣∣∣∣(aPϕP )
(k)
i −

(∑
nb

anbϕnb

)(k)

i

− (bϕ)
(k)
i

∣∣∣∣∣∣ (3.69)

To get an indication of the convergence behavior across the whole flow
field, we define the global residual R(k)

ϕ , which is the sum of the local
residuals over all N control volumes within the computational domain.
After k iterations we have:
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R
(k)
ϕ =

N∑
i=1

(Rϕ)
(k)
i =

N∑
i=1

∣∣∣∣∣∣(aPϕP )
(k)
i −

(∑
nb

anbϕnb

)(k)

i

− (bϕ)
(k)
i

∣∣∣∣∣∣ (3.70)

Inspection of equation (3.70) shows that the magnitude of the global
residual Rϕ decreases as we get closer to the final solution, since the size
of the local residuals should decrease in a converging sequence. Thus, it
would seem that Rϕ might be a satisfactory single number indicator of
convergence. However, the global residual will be larger in simulations
where the flow variable ϕ has a larger magnitude, so we would need to
specify different truncation values for Rϕ . This can be resolved if we use
a global residual that is scaled to take out the magnitude of ϕ. Thus, we
define the normalized global residual Rϕ for flow variable ϕ after k iterations
as follows:

Rϕ
(k)

= R
(k)
ϕ /F ϕ

R (3.71)

The normalisation factor F ϕ
R is a reference level of the residuals for flow

variable ϕ. Two common normalization methods are given below:

F ϕ
R = R

(k0)
ϕ (3.72)

F ϕ
R =

N∑
i=1

|(aPϕP )
(k)
i | (3.73)

3.2.7 Test cases

The lid-driven cavity flow is considered by many researchers when testing
computational fluid dynamics codes due to the wide range of fluid flow phe-
nomena that can be observed in this simple flow configuration. Thereupon,
the effectiveness of the solution procedure developed in this work are first
demonstrated for flow in a square cavity of side L, where the top boundary
(lid) moves horizontally towards the right with a uniform velocity U , while
the remaining sides are fixed. The moving lid in conjunction with the shear
properties of the fluid lead to a recirculation of the flow in the cavity, see
Fig. 3.4.

Next, we assess the method described above on a steady pipe flow test
as shown in the schematic diagram of the domain in Figure 3.5. For this
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Figure 3.4: Geometry of a cavity with moving lid

Figure 3.5: Geometry of a two-dimensional pipe of circular cross section. Dimen-
sions are height H and length L.

case, the boundary conditions are steady velocity uniform profile at the
inlet and standard no-slip condition at the walls are implemented. The
pressure is derived by extrapolation from the inner nodes. Test cases are
solved for Reynolds numbers up to Re = 103, and for Bingham numbers
up to 200. The flow configuration and the system of coordinates in both
cases are shown in Figs. 3.4-3.5.

3.3 Numerical Results

All the numerical steady-state solutions presented in this section are ob-
tained on Cartesian grids consisting of square control volumes. The Pa-
panastasiou model is employed for the evaluation of viscosity and the stress
growth parameter (m) is fixed to 200, a sufficiently high value that allows
the ideal Bingham behavior to be approximated with satisfactory accuracy.
The approximation of the convection terms in the momentum equations is
carried out using the Quadratic Upwind Interpolation for the Convective
Kinematics (QUICK) scheme.

In the present study, Reynolds number (Re) and Bingham number (Bn)
are taken as independent parameters. These two numbers are defined as
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follows:

Re =
ρUL

µp

(3.74)

Bn =
τyL

µpU
(3.75)

with zero yield stress (Bn = 0) in case of Newtonian fluid. The Bingham
number standing for the ratio of yield stress to viscous force is a crucial
dimensionless number to describe viscoplastic materials.

3.3.1 Verification of the Numerical Method: Lid Driven Cavity

We now turn our attention to validating the numerical results obtained
using the Simple/regularization procedure of our code. To this end, we
consider the test case of lid-cavity flow, which is the prototypical recir-
culation flow and has long been used as a standard problem for testing
and evaluating Navier–Stokes solvers. Many authors provided high quality
benchmark results for this particular problem, most famous of which are
Ghia et al. [71] who used a coupled strongly implicit multigrid (CSI-MG)
in a uniform mesh of 257 × 257. They presented a second-order accurate
results that have served as “The” result for Newtonian flows to compare
against ever since.

All the results presented in this section are obtained on Cartesian grids
consisting of 320 × 320 square control volumes. To validate the present
algorithm, first, a Newtonian flow (Bn = 0) in the Re = 103 case is cal-
culated. Figure 3.7aa,b show the evolution of the horizontal and vertical
velocities along the mid-planes x = 0.5 and y = 0.5, with the correspond-
ing numerical result of Ghia et al. [71]. The present results are in good
agreement with those numerical data.

Now we consider the steady viscoplastic flow at various Bingham num-
bers (Bn) in the case of Re = 103. For this particular flow, many of the
previous studies (Mitsoulis et al. [25]; Vola et al. [73]; Prashant et al. [72];
Syrakos et al. [41]) formulated the main quantitative results in terms of
the features of the flow vortices. To this end, we need to calculate the
stream function on the whole domain through integration of the veloc-
ity field (u = ∂ψ/∂y, v = −∂ψ/∂x). The location of the primary vortex
formed in lid-driven cavity flow is significantly influenced by both Bingham
and Reynolds numbers. This shifting of location is easily noticeable, which
allows us to further assess the qualitative aspect of the simulation results.
The evolution of the center position of the principal vortex is compared to
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(a) x-component velocity (b) y-component velocity

Figure 3.6: Sections of velocity along the vertical (a) and horizontal (b) mid-
planes, Re = 103

the results of the predictions performed by Vola et al. [73] and Prashant
et al. [72], with a regularized constitutive law on Figure 3.7. The obtained
values once again compare fairly well with the literature, indicating that
the treatment of the shear stress and viscosity in the non-Newtonian flow
prediction is feasible and the steady SIMPLE solver for Bingham fluid is
correct.

(a) x-location (b) y-location

Figure 3.7: Principal vortex position for various Bn numbers at Re = 103. Ref-
erence results retrieved from Vola et al. [73] and Prashant et al. [72].

The evolution of the principal vortex location as a function of the yield
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stress drawn in Figure 3.7 shows that the primary vortex goes up toward
the moving lid as Bn increases. Increasing the yield stress leads to re-
stricting the flow region closer to the upper moving boundary due to the
resistance to lid motion, which gets higher. In viscoplastic flows, rigid zones
are located at the bottom of the cavity where the shear stresses are very
low as the fluid in contact is motionless due to the no-slip boundary con-
dition. These unyielded regions expand significantly with the increase of
the Bingham number, leading the main vortex to move toward the upper
boundary as there is less space for flow to happen. The streamline contour
evolution shown in Figures 3.8–3.10 highlights the progressive growth of
the unyielded zones. At constant Re number, as the value of the Bingham
number increases, the main vortex center gets closer to the upper cavity
side and the zone sheared by the upper boundary becomes thinner.

Figures 3.8–3.10 display the flow field as the bingham number increases,
for Re = 10 and Re = 103, respectively. When Re = 10, the streamline
contours are symmetric for all Bingham numbers, 2, 10, and 100. However,
the unyielded zone is proportional to the yield stress magnitude. At Re =
103, the primary vortex shifts slightly to the right for the case of Bn = 100,
and moves further in the same direction for Bn = 10, then towards the
center of the cavity for Bn = 2. We see that increasing the Reynolds
number moves the vortex first toward the right, and then downwards and
left to the center depending on the value of the Bingham number. This
trend can be observed for higher Bingham numbers if the Reynolds number
is large enough as greater stresses are required in order to make the material
flow. In the works of [41, 72], similar conclusions were drawn, the flow field
at high Bn numbers follow the same trend of any lower Bn number if the
Re number is also sufficiently decreased.

(a) Re = 10 (b) Re = 103

Figure 3.8: Streamline contours in Bingham flow for Bn = 2
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(a) Re = 10 (b) Re = 103

Figure 3.9: Streamline contours in Bingham flow for Bn = 10

(a) Re = 10 (b) Re = 103

Figure 3.10: Streamline contours in Bingham flow for Bn = 100

3.3.2 Influence of the Stress Growth Parameter: Pipe Flow

The results of Equation (3.7) are plotted in Figure 3.1 with dashed lines,
along with the the actual Bingham constitutive equation, τ = (µ+ τy/γ̇)γ̇.
It is clear that with an increasing exponent m, we can achieve quick stress
growth at very low shear rates, which is consistent with the behavior of the
material in its unyielded region. In fact, regularized models yield results
that do not contain truly unyielded or solid zones and hence the solution
may, in some cases, be sensitive to the chosen stress growth exponent.
Previous studies, including [23], found that different values of 100, 200, and
400 for m do not influence the location of the yield surface significantly,
for the particular case of cavity flow. However, very large values of the
exponent parameter may be needed if the region where the stress close to
the yield stress is relatively large.

Regarding the viscoplastic flows though pipes, two distinct unyielded
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regions can possibly occur. First, in the layer adjacent to no-slip bound-
ary where the velocity of the fluid is set to zero, it is called the stagnant
zone. Then, a second unyielded region with non-zero fluid velocity is re-
ferred to as the plug zone, see Figure 3.11. One result of importance in
a range of applications is the location of the plug zone, where γ̇ tends to
zero, as previously stated. In Figure 3.12, we present a comparison of the
velocity profiles for different values of m: 100, 200, 400, and 800. As m is
increased, the location of the unyielded region would be slightly affected.
The difference especially vanished between m = 400 and m = 800 for both
cases. Figure 3.12 shows velocity profiles, which deviate slightly from the
reference result considered here in red dotted lines (m = 800) and plug
zones which get flatter as m is increased. Indeed, beyond a certain value
of stress growth exponent, yield lines (τ = τy) are less sensitive to its vari-
ation. This verifies the assumption that the yield areas calculated using a
regularization approach will converge to the true yield areas as m→ ∞. It
should be pointed out that, unlike the velocity field, there is no theoretical
proof that yield surfaces converge to the exact solution [24].

Figure 3.11: Numerical results: the developing velocity profile of a Bingham fluid
entering the pipe, Re = 102 and Bn = 10.

In Figure 3.13, we compare the simulated results of the apparent vis-
cosity profiles along the circular cross-section of the pipe calculated with
m = 100 and m = 800. It is shown that using a high value of the exponent
m leads to fast growing apparent viscosity as the shear rates are decreas-
ing, meaning that the larger the value of m, the larger the region of the
solid-like behavior of the Bingham model is reproduced. Figure 3.13 also
shows that, with regularized models, the unyielded material (plug zone)
is no longer a rigid solid but a highly viscous fluid that approximates the
ideal viscoplastic behavior. The degree of approximation depends on the
adequate choice of the stress growth parameter in order to satisfy the von
Mises criterion.
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(a) (b)

Figure 3.12: Velocity profiles at x = 0.5L calculated with m = 100 (solid lines),
m = 200 (dashed lines), m = 400 (dotted lines), and m = 800 ( red dotted lines).
For Re = 102, (a) Bn = 1, and (b) Bn = 10.

An important issue when using the Papanastasiou regularization is that
the degree of non linearity increass sharply with higher values of m that
ensure better approximations. Therefore, as a matter of practicality, the
choice of exponent m has to be reasonably reduced depending on the prob-
lem under study. In this work, we limited our study to the comparisons
showing the influence of m on the quality of the results. The reader may
refer to the interesting assessments provided by Syrakos et al. [23] and
Frigaard et al. [24] on the issues of feasibility and the computational ef-
fort required as a function of the stress growth exponent. They suggested
that, in some cases, to achieve a fully-converged solution with a high value
of m, one can start with a very low value of m as an initial guess, and
progressively increase it every certain number of SIMPLE iterations.

3.3.3 Algebraic Convergence of the SIMPLE/Regularization Pro-
cedure

In viscoplastic flows, derivatives of the flow variables take significantly
higher values across the yield surfaces in the limit between the unyielded
and yielded regions. This disparity is due to the fact that these derivatives
are zero inside the rigid zones and non-zero outside. In addition, increasing
the Bingham number and growth stress parameter would further widen this
gap. As a result, solution errors are found to be much larger there than the
rest of the domain, causing inefficiencies and deterioration in convergence
rates of iterative solvers. In such cases, using fine grids can considerably
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Figure 3.13: Apparent viscosity profiles along the vertical section x = 0.5L cal-
culated with m = 100 (solid lines) and m = 800 ( red dotted lines), Re = 102

and Bn = 10.

reduce the numerical errors and address more efficiently the high values of
the derivatives. However, it is well known that the number of iterations re-
quired for convergence increases almost linearly with the number of control
volumes for the single grid set [31, 45]. To address this limitation, one may
notice that using an appropriate initial solution is very important for fine
grids and contributes to the enhancement of the convergence of iterative
solvers. To this end, a steady lid driven cavity flow simulation is carried out
for different Bingham numbers 0, 1, and 10 at Re = 102 using single-grid
(SG) and multi-grid (MG) initialization methods.

Figure 3.14 demonstrates the convergence of the L∞ norm of u and
v residuals as a function of the number of SIMPLE iterations on the finer
grids. It shows that the performance of SIMPLE, as a single-grid solver, de-
teriorates, and more iterations are needed as the number of control volumes
increases for all cases. In contrast, computations with MG initialization ex-
hibit near constant number for both 160 × 160 and 320 × 320 grids. In
all cases, the number of iterations has drastically been reduced compared
to the single grid computation. One may also observe that convergence
becomes faster in the case of Bn = 10, but it also becomes more unsta-
ble and oscillatory. It should be noted that for higher Bingham numbers,
convergence difficulties may be encountered. In order to overcome this dif-
ficulty, low under-relaxation factors for pressure and velocity field, denoted
by αp, αu, and αv can be considered within the numerical solver [23]. This
technique was found to be efficient in making the solver more robust, but
we observed that it leads to a slow down in convergence rate. Another
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(a) Grid 160 x 160 (b) Grid 320 x 320

(c) Grid 160 x 160 (d) Grid 320 x 320

(e) Grid 160 x 160 (f) Grid 320 x 320

Figure 3.14: The L∞ norm of u and v residuals as a function of the number of
SIMPLE iterations on the fine grid, for Bn = 0, 1, and 10 (Re = 102). Results
are shown for simulations with single grid (SG) in red lines and multigrid (MG)
initialization in blue lines.

remedy to this problem could be the suggestion of Ferziger and Peric [31]
in a multigrid context. They recommend updating the viscosity on the
finer grid only and holding its value constant on coarse grids within the
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multigrid cycle.

Table 3.1: MG Initialization performance for different Bingham numbers: CPU
time and speed-up ratio.

Bingham number Number of cells CPU time (sec) Speed-up ratio
Single Grid MG Initialization

0 160 x 160 88.2 35.8 2.46
320 x 320 872.9 143.7 6.07

1 160 x 160 109.9 32.4 3.39
320 x 320 990.1 153.4 6.45

10 160 x 160 81.6 29.8 2.73
320 x 320 797.3 141.5 5.63

Table 3.2: MG Initialization performance for different Bingham numbers: Num-
ber of iterations.

Bingham number Number of cells Number of Iterations

Single Grid MG Initialization

0 160 x 160 6076 1910
320 x 320 14272 1964

1 160 x 160 7643 1670
320 x 320 16337 1956

10 160 x 160 5424 1569
320 x 320 13033 1856

The performance of multi-grid (MG) initialization is based on the speedup
characteristics, and a comparison between the number of iterations and
computation times, as summarized in Tables 3.1 and 3.2. In all cases, CPU
time is recorded until the convergence of residuals is achieved. In the case of
MG Initialization, the total simulation time includes computation time on
both multilevel grids during initialization, and the finer grid, which is the
true representation of the simulation time. The simulations are performed
on a Core i7-6700HQ CPU @ 2.60GHz × 8, 8 GB RAM-based computer.
According to our numerical experiments, the speed-up ratio between single
grid and multigrid initialization methods is around 6 for 320 × 320 grids
and up to 3 for 160 × 160 grids. This confirms the potential of multigrid ini-
tialization technique for improving the convergence over single-grid method
by significantly reducing CPU time and number of iterations. Since MG
initialization does most of the computations on coarse grids, this initial-
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ization procedure is computationally inexpensive and, for very dense grids,
a good initial solution can be obtained in a fraction of the time spent to
converge on a final solution. The computational effort can be further re-
duced when parallel algorithms and high performance computing machines
are used [42].

3.4 Conclusions

This chapter introduced the idea of multigrid initialization to overcome the
drawbacks of solvers using single grids for viscoplastic flows. The proposed
solver is easy to implement and significantly improves the convergence rate
by reducing CPU time and number of iterations. The computational pro-
cedure employed in this work is based on the finite volume / SIMPLE
algorithm in conjunction with the regularization scheme of Papanastasiou
and is applied for the solution of the lid-driven cavity and pipe flow prob-
lems. The convection terms are discretized using the QUICK scheme in
order to avoid any artificial diffusion that may be caused by interpolation
schemes of low order of accuracy. The capability of the algorithm for solv-
ing viscoplastic flows was verified against a number of benchmark solutions
for a range of Bingham numbers in the case of lid-driven cavity flow. A
qualitative assessment was also conducted by monitoring the positioning
of the principal vortex with regard to Bingham and Reynolds numbers.
Results from the current study were accurate and compare favorably with
the published results. In order to analyze the influence of the growth stress
parameter m of the regularization model on fluid motion, pipe flow tests
for different values of m and Bn were considered. Numerical simulations
confirmed that a large value of m reproduced a large threshold-like region.
The result also showed that as m increases, the yield surface converges to
the true yield region, with no significant influence beyond a value of 400
in this particular case. Furthermore, the results clearly reveal that intro-
ducing the multigrid method as an initialization procedure yields better
convergence for Navier–Stokes equations for viscoplastic flows compared to
the single-grid method. A multi-grid initialization speed-up ratio as high
as 6.45 was achieved for the finest grid size (320 × 320).

The present study can be extended to the numerical solution of non-
Newtonian problems with a different definition of effective viscosity and ac-
counting for complex geometries encountered in many industrial processes.
This part is the subject of an ongoing investigation that is to be published
in our future works.



Chapter 4

Rheological Characterization of
Phosphate Slurry

4.1 The assessment of the rheological characteristics
of Phosphate Slurry

4.1.1 Introduction

Particles in a liquid matrix can be considered as obstacles, hindering the
liquid’s flow and, therefore, increasing the flow resistance, i.e., the vis-
cosity. The mechanics of dilute and semi-dilute suspensions representing
very low particle concentrations (volume fraction ϕ < 25%) are well un-
derstood. Simple models for describing the increased viscosity at a given
shear rate (or apparent viscosity) have been proposed by Einstein [75] and
Batchelor [55]. Their formulas were adapted to monodisperse particles for
maximum solid volume fractions of 0.15 to 0.25 and link the increase in
bulk viscosity of the suspension η to the viscosity of the liquid η0, as well
as the solid fraction in the suspension. However, linearity is restricted to
low solid fractions ϕ. For dense or highly concentrated suspensions, the ap-
parent relative viscosity (ηr = η/η0) increases rapidly and without bound
with ϕ. At a large solid fraction, small changes in concentration lead to
large variations in viscosity. If nonhydrodynamic interparticle forces are
absent, suspensions with a high solid fraction can be described with the
satisfactory model of Krieger and Dougherty [76], which is valid for low
and high shear rates. This model requires an additional input parameter,
defined as the maximum packing fraction of particles ϕm, which is related
to the particles’ properties. Physically, ϕm refers to the maximum solid
fraction possible in suspension for a given particle size distribution and
packing arrangement [77, 78]. Many other functions have been proposed
and provide excellent fits to experimental data [11, 79, 80].

Dense particulate suspensions often display a variety of non-Newtonian
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flow properties, including shear thinning, shear thickening, and reversible,
shear-induced solidification called shear jamming. Recently, it has been
shown that interparticle friction drastically influences this behavior. Shear
jamming (SJ) is a phenomenon where a suspension is fluid-like at low
stresses and jams into a solid-like state at high shear. This shear-induced
solidification occurs at particle concentrations below the traditional, fric-
tionless jamming packing fraction [81, 82, 83, 84, 85].

With an increased solid volume fraction ϕ, the apparent viscosity η in-
creases but this increase is not the same for different maximum packing
fractions ϕm. In fact, the rate of the viscosity increase depends on the ratio
ϕ/ϕm. The most important factors affecting the maximum packing fraction
ϕm are the shape and size distribution of the particles. Since smaller par-
ticles can fit into the voids created by larger ones, the maximum packing
fraction of polydispersed particles is significantly higher than in monodis-
persed particle systems [77, 78, 86]. Many experiments with bidisperse and
polydisperse suspensions have been conducted to establish a relationship
between ϕm and the suspension viscosity [11, 12, 87, 88]. In general, these
studies showed that the apparent viscosity η tends to decrease when in-
creasing the maximum packing fraction ϕm at a constant volume fraction
ϕ. This indicates that the concentration of solids in a solid–liquid mixture
can be raised markedly while maintaining a desired apparent viscosity.

At a constant solid fraction, a reduction in particle size leads to an in-
crease in apparent viscosity. With smaller particle sizes, the total surface
area becomes larger, which binds to water molecules and results in a higher
number of particles in a given volume. When the volume fraction increases,
interactions between particles become significant, particularly for very small
particles, thus substantially raising the applied force required to shear the
sample. For larger particles that are fewer in number, the effect of particle–
particle interactions is considerably reduced [89, 90]. However, for most real
suspensions used in industry and mineral processing, the particle size is not
uniform and is more conveniently described as a particle size distribution.
Under small shear stress, Brownian motion dominates the behavior of the
finest particles, while for coarse particles, frictional contacts or hydrody-
namic forces tend to dominate [11, 91]. In this study, we seek to investigate
the rheological behavior of phosphate suspension with the aim of optimizing
their dispersity and stability throughout future research works. Regarding
this concern, a few studies on phosphate composites have been conducted
for diverse applications. An early study by Bujake [92] investigated the
effect of additives on the rheological and sedimentation behavior of a phos-
phate slurry. He suggested that particle–particle interactions play an im-
portant role in the flow of these systems. Benretem et al. [93] stated that
the rheological characteristics of water–phosphate slurries strongly depend
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on the solids concentration and increase markedly with decreasing particle
size. In a comparable study, Belbsir et al. [94] drew similar conclusions and
showed that viscosity tends to decrease with increasing temperatures and
can also be reduced using appropriate additives. In a more recent study,
Shaikh [95] reported the fabrication of a geopolymer of phosphate ore and
polypropylene. He found that the composites of smaller phosphate ore par-
ticles displayed a highly complex viscosity. Since the transported slurry
has a continuous particle size distribution, it is important to discriminate
the role of this distribution in the process. Thus, in this work, we put our
attention toward the influence of the D-value ratio on apparent viscosity, as
well as the solid concentrations. The following sections present some basic
information about the experimental work and the methodology carried out
to provide a description of the non-Newtonian behavior that is typically
exhibited by concentrated phosphate slurries. The main objective of this
study was to evaluate the predictive or fitting capabilities of commonly
used yield-pseudoplastic models for the rheological data description of con-
centrated phosphate slurries. The rheological parameters for the Bingham,
Casson, Herschel–Bulkley, and Robertson–Stiff models were computed for
six samples. A variety of samples with phosphate ore concentrations rang-
ing from 51 to 56 wt.% in water, i.e., 29 to 33% v/v, were employed for
this rheological study. These slurries with relatively coarse particles are a
representation of what is typically found in phosphate rock processing. The
rheological models were used to obtain analytical expressions relating the
mean flow velocity to the pressure drop and to determine velocity profiles
in the laminar regime.

4.1.2 Materials and Methods

Concentrated Phosphate Slurry Samples

Phosphate rock is mined at different locations and then processed to be
stored in agitated tanks at the main slurry pipeline head station. The
solid particles in the present study were provided by OCP (Khouribga,
Morocco). The samples prepared at our laboratory were a mixture con-
taining rigid randomly shaped solid particles with an equivalent spherical
diameter ranging from 1 to 500 µm. The particle density was 2.4t/m3 when
the pores were filled with air and 2.6t/m3 when the pores were filled with
water and stabilized by a specific soluble polymer, such as PEG. Various
grades and phosphate ore concentrations of 51, 54, and 56 wt.% in water
were used for this rheological study. These samples, labeled S1 through S6,
differed mainly in their solids concentrations and particle size distributions.

The main ingredients of the concentrated phosphate slurry (CPS) sam-



4. Rheological Characterization of Phosphate Slurry 85

ples were CaO and P2O5, even though they also contained other elements,
such as SiO2, CO2, Fe, MgO, SO3, and Al2O3. The phosphate content of
phosphorite P2O5 is often expressed as a percentage of bone phosphate of
lime (BPL) [96]. Table. 4.1 summarizes the elemental concentrations of
each sample. The samples have a similar composition that can be consid-
ered a representation of what is specifically mined in Morocco. Phosphorite
deposit compositions may differ from one location to another.

Table 4.1: The elemental composition of CPS samples

Element Concentration wt.%

S1 S2 S3 S4 S5 S6

Bone phosphate of lime (BPL) 64.5 64.7 64.4 64.8 66.0 65.0
CO2 7.6 7.6 7.0 7.7 7.8 7.7
SiO2 3.23 3.35 3.62 3.16 3.34 3.71
MgO 0.80 0.74 0.96 0.83 0.66 0.62
Al2O3 0.46 0.41 0.46 0.44 0.40 0.47
Reactive SiO2 1.43 1.24 1.19 1.29 1.27 1.06

The analysis of the particle size distribution provides essential data for
forecasting the slurry behavior in the transport process or its physical prop-
erties. Measurements were carried out for each sample using a Mastersizer
3000 granulometer from Malvern (Worcestershire, UK). The analysis of the
particles’ size distribution allowed us to define the percentage of the total
volume in each sample containing particles with diameters less than the fol-
lowing values: 500 µm, 400 µm, 315 µm, 250 µm, 150 µm, 74 µm, 44 µm,
40 µm, and 37 µm. The most commonly used metrics when describing
particle size distributions are the D-values: D20, D50, and D80, which are
the intercepts for, respectively, 20%, 50%, and 80% of the cumulative mass.
Although a comparison of D50 and D80 values indicated little difference be-
tween the samples, the D20 values were dissimilar. The particle sizes in the
CPS samples ranged from around 1 µm to 500 µm, where the cumulative
particle size distribution of all CPS samples is shown in Fig. 4.1.

Suspension Characteristics

The suspended particles in the present study were assumed to be non-
colloidal, which means that Brownian motion in the suspensions could be
neglected. The interaction of the forces describing the rheophysical proper-
ties of the suspensions can be defined using nondimensional numbers that
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Figure 4.1: Cumulative particle size distribution of the concentrated phosphate
slurry (CPS) samples in terms of the percentage of cumulative volume versus
particle size. S1–S6 signify the sample labels.

were first defined by Krieger (1959). In particular, the impact of Brownian
motion is governed by the Peclet number, Pe, which is defined as the ratio
of the hydrodynamic force and the Brownian force [10, 80]:

Pe =
6πη0a

3 .
γ

kT
, (1)

where η0 is the suspending fluid viscosity, a is the average radius of particles,
.
γ is the shear rate, k = 1.38 × 10−23 J K−1 is the Boltzmann constant,
and T is the absolute temperature. For Pe > 103, hydrodynamic forces
dominate [10, 80]. The relative importance of inertial forces at the particle
scale is governed by the particles’ Reynolds number Rep, which is given by:

Rep =
ρ0a

2 .
γ

µ0

, (2)

where ρ0 is the density of the suspending liquid. For Rep > 10−3, inertial
forces cannot be neglected [10, 11]. Thus, for low shear rates in this work,
the suspended particles were strongly influenced by inertial forces.

Experimental Data

The shear rheology of the slurry was measured using a RheolabQC rota-
tional rheometer from Anton Paar (Ostfildern, Germany) with a concentric
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cylinder geometry, where the inner and outer cylinders represented, respec-
tively, the test bob and cup (see Fig .4.2). This device uses the Searle
principle with a rotating inner cylinder and stationary outer cylinder and
can measure the dynamic viscosity of low-viscosity samples up to semi-solid
specimens [97, 98]. The Searle system is the most commonly used system for
mineral pulps. Coaxial (or concentric) cylinder systems are absolute mea-
suring systems that conform to “Deutsches Institut für Normung” (DIN)
and the international standards organization (ISO) standards. Measuring
the rotational speed Ω of the electronically communicated (EC) motor and
produced torque M allowed us to calculate the shear stress and the shear
rate according to the following relationships (standard: ISO 3219 [99] (δ ≤
1.2)):

.
γ =

1 + δ2

δ2 − 1
Ω, (3)

τ =
1 + δ2

2δ2
M

2πLR2
iCL

, (4)

where δ = Re/Ri is the ratio of the outer cylinder and inner cylinder radii
(Re and Ri, respectively), L is the bob length, and CL = 1.28 is an end
effect correction factor. The rheological behavior of the CPS samples was
determined by measuring the shear stress at various applied shear rates.
The shear stresses were measured at each point while decreasing the shear
rate from 1000 s−1 to 112 s−1 using a coaxial geometry with a rotating
cylinder and a cylindrical cup, with diameters of 38.713 mm and 44 mm,
respectively. The estimated shear rate range occurring during the trans-
port process was 200 to 600 s−1, which is well within the shear rate range
tested. The fixed distance between the two measuring cylinders was 2.644
mm. The experiments were conducted at controlled shear rates in the same
range as those expected in pipe flows. The experimental data of the CPS
samples were obtained at room temperature. For each measurement, the
suspensions were vigorously mixed in a container beforehand. A pre-shear
is required to erase material memory and to have similar initial conditions
for all samples. Then, after prolonged mixing (>30 s), the necessary volume
was quickly poured into the outer cylinder. The inner cylinder was subse-
quently immersed into the slurry. The stress τ exerted on this cylinder was
recorded as a function of the shear rate .

γ. The rotational tests were carried
out in a preset shear rate ramp mode, descending in steps, while recording
the shear stress for each set shear rate. In order to allow the sample to
adapt itself to each shear rate step, a duration of three seconds was main-
tained for each measuring point. It is important to note that the chosen
Couette geometry (Fig. 4.2) with the adapted gap allowed us to assume
that we would not observe common sudden changes in the rheogram plots
at high shear rates and in the ranges of the yield-stress calculations. We
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intended for the applied pre-shear and the preset shear rate ramp mode
to allow for homogenized suspensions and, hence, we could assume their
homogeneity. Furthermore, we had other work in progress using a helical
geometry and our calculated yield stress seemed to corroborate with those
obtained using our adapted geometry and procedure.

Figure 4.2: Searle principle: the instrument’s motor rotates the measuring bob
inside an immovable cup filled with slurry (αcyl.cone = 120◦).

Figure 4.3: Representative rheograms showing (a) the shear stress as a function
of the shear rate of CPS samples at various solids concentrations and a fixed
temperature of 25 ◦C and (b) the apparent viscosity as a function of the shear
rate under the same conditions.
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The density of the solid particles was higher than that of water, and
the settling experiments performed on a mixture of water with 10 vol.% of
particles with sizes between 100 and 500 m revealed small settling velocities.
As a result, the effects of the particle settling on the sample concentration
were negligible during the performed experiments (less than one minute).

Rheological Models

Phosphate ore slurry is a suspension of insoluble particles in a continuous
phase of water. This suspension displays non-Newtonian flow behavior and
exhibits yield stress as the shear rate tends toward zero. These materials
only flow due to a certain constraint called the yield stress τy. Below this
stress, they behave like solids, while above this stress, they may flow like
a Newtonian fluid or exhibit shear-thinning. Knowledge about the yield
stress is essential for transporting suspensions, especially for resuspending
particles after they have settled in a pipeline or channel. This property
is found in certain polymer solutions and very concentrated suspensions,
and in everyday life with toothpaste, yogurt, ketchup, clays (laponite and
bentonite, for example), and drilling muds. This behavior can be inter-
preted as a presence of aggregates in the material that remains up to the
yield stress. However, some authors find the idea of yield stress controver-
sial [100] and doubt whether true yield stress actually exists. The main
reason for this debate and discussion in the literature is that no equipment
has so far allowed researchers to measure the shear stress at very low shear
rates without being affected by wall-slip or end effects. For further reading,
we refer to the work by Coussot et al. [101].

For Newtonian fluids, most pure liquids, and gases, shear stress is a
linear relation with respect to the shear rate:

τ = µ
.
γ, (5)

where the constant of proportionality µ is known as the viscosity of the fluid.
Non-Newtonian materials, suspensions of solids, polymer solutions, and
polymer melts exhibit a different response, for which an apparent viscosity
η is often assigned:

τ = η(
.

γ)
.
γ. (6)

The simplest representation of such complex fluids is the Bingham
model, which gives the following relationship between the shear stress and
shear rate:

τ = τyB + ηB
.
γ, (7)



4. Rheological Characterization of Phosphate Slurry 90

where τyB is the yield stress and ηB is the constant plastic viscosity. This
model has the advantage of giving a linear relationship after an initial yield
and defining the minimum stress value at which the material starts to flow,
which is also referred to as the Bingham yield point τB. However, recent
studies show that this model fails to conform to complex fluid behavior
at low shear rates [102] and may result in unrealistically high values of
τyB [103].

A general form of the Bingham model, proposed by Herschel and Bulk-
ley [104], is used to describe the flow of pseudoplastic fluids, which require
yield stress to initiate the flow and then exhibit a nonlinear flow curve.
The Herschel–Bulkley model can describe the rheological behavior of min-
eral slurries [105, 106]. Other investigations have shown that this model
can also describe sludge behavior and is most commonly used to character-
ize concentrated sludge [75, 107], as well as most drilling fluids or cement
slurries [14, 108]. The Herschel–Bulkley model can be used with the con-
stitutive equation:

τ = τyH +K
.
γ
n
, (8)

where the yield stress τyH in this equation represents the intercept of the
line fitting the yield stress region, K is the consistency index, and n is the
flow index. With the use of the third parameter, this model often provides
a better fit to experimental data.

Another commonly used rheological model for yield-pseudoplastic fluids
is the so-called Casson model, which was initially generated to describe ink
and paint behavior. However, it has demonstrated a good approximation
for non-Newtonian mineral suspensions [105, 106] and complex fluids in the
petroleum industry [14, 108]. The Casson model is given by the following
equation: √

τ =
√
τyc +

√
kc
√ .
γ. (9)

The Robertson–Stiff model is a three-parameter model that was devel-
oped in 1976 by Robertson and Stiff to describe the rheology of drilling
fluids in the petroleum industry and cement slurries, though it can also be
used for fluids as diverse as maize flour pastes [55] and gels. It is expressed
as:

τ = K(
.
γ +

.
γ0)

n
. (10)

The parameters K and n can be considered similar to the parameters
(K and n) of the Herschel–Bulkley model. However, the parameter .

γ0
has a different implication than the yield stress of the Herschel–Bulkley or
Bingham models. In the Robertson–Stiff model, .

γ0 appears as a correction
to the shear rate rather than the shear stress and the yield stress is defined
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as:
τyRS = K

.
γ
n
0 . (11)

For Equations (7)–(9) and (11), the following condition can be applied:
.
γ = 0, |τ | < |τy| . (12)

Determination of Model Parameters

When comparing the measuring data, it is not useful to compare all values
of one test with those of another mostly due to the large number of individ-
ual measuring points. Mathematical model functions for curve fitting are
therefore used to characterize complete flow or viscosity curves, resulting in
only a small number of curve parameters. This simplifies the comparison
of measuring curves since there are only a few model parameters left to
compare. Fitting is also called approximation and the corresponding func-
tions are often referred to as regression models. Not every model function
can be used for each kind of flow behavior. If the correlation value (e.g., in
%) indicates insufficient agreement between the measuring data and model
function, it is useful to try another model function. It is also important
to keep in mind that both model-specific coefficients and exponents are
purely mathematical variables and do not represent real measuring data in
principle.

Here, with a controlled shear rate (CSR), the rotational speeds (or shear
rates) are preset in the form of steps. However, when using this kind of
testing, a yield point cannot be determined directly. It is instead calculated
using a fitting function, which is adapted to the available measuring points
of the flow curve. Curve fitting is carried out using one of the various
model functions. For all approximation models, the dynamic yield stress
value τy is determined via extrapolation of the flow curve toward the shear
rate value .

γ = 0 or at the point of intersection of the fitting function and
the τ -axis. The obtained value of the τy method strongly depends on the
chosen rheological model and the accuracy of the measurements.

To determine the rheological coefficients of each model, curve fitting is
performed. Curved relationships between variables are not as straightfor-
ward to fit and interpret as linear relationships, but there are standard ways
for dealing with this problem [14, 109]. In total, six sets of rheometer data
for the shear stress τi and shear rate .

γ were analyzed. Three statistical
indicators were computed and reported: the correlation coefficient R2, the
sum of square errors SSE, and the root mean square error RMSE. The SSE
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was calculated according to:

SSE =
m∑
i=0

(τi − τ̂i)
2 , (13)

where τ̂i is the predicted or modeled shear stress value. The root-mean-
square error is given as:

RMSE =

√∑m
i=0 (τi − τ̂i)

2

Nm

, (14)

where Nm is the number of measurements.

4.1.3 Results and Discussions

Rheological and Statistical Evaluation

For each test, the Anton Paar RheolabQC rotational rheometer provided
the variation of the shear stress with the shear rate. Figs. 4.4, 4.5 and 4.6
show the rheograms obtained for the six samples at solids concentrations
ranging from 51 to 58 wt.%. In all cases, the flow curves appeared to
exhibit non-Newtonian behavior with a nonzero intercept on the stress axis
and could be described as yield pseudoplastic. It was also observed that
the shear-thinning was accentuated and the dynamic yield stress increased
as the solids concentrations were increased for all cases.

Figure 4.4: Comparison of rheological model fits for (a) S1 and (b) S2.

In this study, a statistical model fitting analysis was performed on all
five models previously discussed to determine the model that was best
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Figure 4.5: Comparison of rheological model fits for (a) S3 and (b) S4.

Figure 4.6: Comparison of rheological model fits for (a) S5 and (b) S6.

able to predict the rheological behavior of the CPS samples. 4.2 lists the
measured shear stresses of the fluids at different rotational speeds. The
raw data obtained were analyzed using several models to determine the
various rheological parameters, such as the yield value, consistency, and
shear-thinning index. For discussion purposes and in order to limit the size
of this chapter, only six samples of the total number of experimental runs
are presented.
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Table 4.2: Shear stress data.

Rotational Speed Shear Stress
(rpm) τ (Pa)

Measuring Points S1 S2 S3 S4 S5 S6

776.5 24.47 27.66 47.42 40.55 72.63 66.39
713.8 23.26 26.48 46.19 39.94 70.31 65.07
656.2 22.2 25.39 44.44 38.4 67.79 63.13
603.2 20.47 24.58 42.74 37.07 65.63 61.48
554.5 19.52 23.66 41.17 35.69 63.71 59.79
509.7 18.78 22.71 39.77 34.42 61.9 58.22
468.5 18.01 21.79 38.54 33.25 60.09 56.79
430.7 17.27 20.91 37.35 32.21 58.39 55.35
395.9 16.51 20.1 36.24 31.2 56.83 54.02
364 15.79 19.35 35.13 30.24 55.3 52.66

334.6 15.09 18.65 34.03 29.32 53.73 51.27
307.6 14.39 18.02 32.87 28.5 52.21 49.9
282.7 13.71 17.43 31.74 27.67 50.65 48.4
259.9 13.09 16.89 30.54 26.84 48.95 46.86
238.9 12.49 16.35 29.31 26.02 47.27 45.31
219.6 12.17 15.84 28.12 25.15 45.69 43.69
201.9 11.55 15.32 26.92 24.28 43.89 42.08
185.6 11.18 14.8 25.74 23.41 42.34 40.48
170.6 10.82 14.31 24.59 22.49 40.5 39.03
156.8 10.39 13.83 23.5 21.63 38.56 37.13
144.1 9.797 13.32 22.32 20.7 36.79 36.19
132.5 9.117 12.85 21.34 19.79 34.93 33.85
121.8 8.646 12.29 20.27 18.92 33.16 32.14
112 8.036 11.84 19.12 18.09 31.42 30.41

102.9 7.567 11.42 17.97 17.3 29.63 28.74
94.61 7.102 10.99 16.9 16.52 27.83 27.02
86.97 6.586 10.51 15.87 15.63 26.04 25.2

The plots of experimental data and shear stress predicted by each model
versus the shear rate for all samples are shown in Fig. 4.4, 4.5 and 4.6. 4.3
and 4.4 summarize, respectively, the rheological parameters and statistical
indicators obtained after the fitting processes. It can be seen that all the
models fit the general trend well but the Bingham model failed to match
the experimental stress as closely as the other models. All the models had
high R2 values ranging from 0.90 to 0.99 and the highest value was from the
Robertson–Stiff fit. The same procedure was applied to the data from all
the tests and similar results were obtained; the Robertson–Stiff fit model
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appeared to fit the data better than the other models tested.

Table 4.3: Constant parameters for rheological models.

Model Rheological Test samples

Parameters S1 S2 S3 S4 S5 S6

Bingham τyB (Pa) 5.54 3.81 6.75 4.47 16.8 18.92
ηB (Pa·s) 0.024 0.02 0.037 0.03 0.051 0.061

Casson τyc (Pa) 4.42 2.56 5.29 3.27 12.86 14.8
ηc (Pa.s) 0.01 0.012 0.017 0.017 0.019 0.022

Herschel–Bulkley
τyH (Pa) 1.36 0.89 1.32 0.82 3.21 3.7
K (Pa·sn) 0.75 0.395 1.032 0.6 2.98 3.56
n 0.51 0.6 0.52 0.58 0.42 0.42

Robertson–Stiff
K (Pa·sn) 0.99 0.5 1.28 0.72 3.87 4.56
n 0.47 0.56 0.49 0.56 0.39 0.39
.
γ0 (s−1) 6.63 3.84 1.32 0.82 3.22 3.7
τyRS (Pa) 2.40 1.06 1.66 0.65 6.1 7.5

The plots show that increasing viscosity or decreasing size ratios re-
sulted in shear-thinning (curved line) for intermediate shear rates. The
data fit to the Bingham and Casson equations resulted in better correla-
tion coefficients for samples with weak shear-thinning: S1, S2, S3, and S4.
Thus, for the diluted phosphate slurry, the Bingham and Casson models
gave a fair description of the rheological behavior.

However, the Robertson–Stiff and Herschel–Bulkley models provided a
better fit for all samples, with the correlation coefficients R2 ranging from
0.97 to 0.99, thus reflecting the accuracy of these models. The sum of
the square errors was also lower in comparison with the other models and
ranged from 0.48 to 93.80. These indicators were significantly lower than for
the Bingham and Casson models, perhaps indicating that three-parameter
models were more adequate to describe the rheological behavior of phos-
phate slurries. Furthermore, the shear-thinning behavior was satisfactorily
captured by these models.

Effect of Particles Concentration

The rheology of a particle suspension is a complex function of its physical
properties and of processes that occur at the scale of the dispersed particles.
The most important factors are the particle volume fraction ϕ, the particle
shape, the interactions between the particles, and the spatial arrangement
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Table 4.4: Statistical indicators.

Model Statistical Test samples

Indicators S1 S2 S3 S4 S5 S6

Bingham
R2 0.97 0.98 0.96 0.95 0.92 0.9
SSE 12.16 9.58 51.11 36.01 210.14 356.49
RMSE 0.67 0.59 1.37 1.15 2.79 3.63

Casson
R2 0.99 0.99 0.98 0.98 0.95 0.93
SSE 3.94 3.87 29.94 21.22 137.33 252.25
RMSE 0.38 0.37 1.053 0.88 2.25 3.05

Herschel–Bulkley
R2 0.99 0.99 0.99 0.99 0.98 0.97
SSE 0.48 0.93 6.28 5.41 44.9 93.8
RMSE 0.13 0.18 0.48 0.44 1.28 1.86

Robertson–Stiff
R2 0.99 0.99 0.99 0.99 0.98 0.97
SSE 0.52 0.97 5.25 4.79 40.4 86.74
RMSE 0.14 0.19 0.44 0.42 1.22 1.79

of the particles. The results in Fig .4.3 and Table. 4.3 describe the rheo-
logical behavior of phosphate slurries with three solids concentrations at a
temperature of 25 ◦C.

Clearly, at a solids concentration of 51 wt.% (29% by volume), the
behavior appeared to involve weak shear-thinning at shear rates less than
300 s−1 that tended to be considerably reduced at shear rates larger than
300 s−1. At even higher particle concentrations, the flow curve became
more convex upward, indicating shear-thinning in a wider range of shear
rates (<400 s−1). This was due to large interparticle distances between the
solid particles in a dilute slurry such that attractive forces existing between
them had no effect. A larger concentration fraction of particles implied
a higher concentration of particle–particle bonds wherefore greater shear
energy was required to disrupt them. The higher energy dissipation was
reflected by a higher viscosity and yield stress.

Effect of Particle Size Distribution

The particle size distribution is an important factor that needs to be taken
into account to understand the rheology of certain industrial suspensions.
During mineral processing, phosphate rock is subjected to various grinding
operations that result in a wide particle size range, from nearly one to
few hundreds of micrometers. Thus, to better understand the effect of
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particle size distribution changes on the viscosity of the CPS samples and
to keep the size of this chapter reasonable, additional polydisperse systems
were used alongside the six samples discussed previously. The total solids
concentrations ranged from 51 to 56 wt.%. The values presented in Fig.
4.7 were obtained using the same methodology described previously in this
work.

Figure 4.7: Apparent viscosity at a constant shear rate of 400 s−1 as a function
of the D-value ratio of the large (dL) and small (dS) particles.

The correlation of the apparent viscosity at a shear rate of 400 s−1,
η400 = τ400/

.
γ400, with particle size distribution is provided in Fig. 4.7. The

dL/ds ratio is the particle size ratio (d80/d20) and is expected to correlate
with the apparent viscosity η. This seems to be borne out by the data:
η decreased as the particle size expanded. This can be predicted using
the theory of Farris when applied to suspensions of single-sized fractions
of spherical particles [87]. For a given solids concentration, a wide particle
size distribution will decrease the apparent viscosity of the mixture. The
maximum packing fraction of a monomodal suspension is not influenced by
the particle size. However, the maximum packing fraction increases when
the particle size distribution (PSD) gets wider because the small particles
can fill the void between the large particles. This relation between ϕm with
the PSD can be used to predict the Krieger–Dougherty equation, and hence,
to predict a slurry’s apparent viscosity. This justifies further research on the
viscosity of multimodal suspensions to better understand the role of particle
size distributions. From an industrial perspective, finding the best size
proportions would be useful to optimize the transport process by reducing
the resistance to the flow. In this context, air classification might be used
before mixing the solids with water in the primary classification of mineral
processing.
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Laminar Pipe Flow

In the mineral-processing industry, it is essential to know the rheological
properties of pumped slurries over extended distances in order to evalu-
ate the key design parameters (flow rates, pressure gradients, etc.). In
this subsection, mathematical models of the flow of time-independent and
non-Newtonian fluids through a straight pipe in steady-state laminar flow
regimes are described in order to highlight the influence of rheological pa-
rameters on flow behavior. In the following, it was assumed that the liquid–
solid mixture was homogeneous and that there was no slippage between the
suspension and the pipe wall.

When considering a unidirectional and axisymmetric flow of a fluid
through a circular tube with radius R, the relation between the volumetric
flow rate Q and the pressure gradient ∆p/L is obtained via integration of
the Rabinowitsch–Mooney equation:

Q

πR3
=

1

τ 3w

∫ τw

0

τ 2
.
γ dτ, (15)

where Q is the total volumetric flow rate and τw is the wall shear stress. At
r = R, the relationship between the wall stress and the pressure gradient
is as follows:

τw =
R

2

∆p

L
. (16)

When the relationship between the shear stress and the shear rate raw
data from the rheometer can be accurately modeled using explicit algebraic
expressions, such as the rheological models that we proposed in Section
4.1.2, we can use them as a substitute for .

γ in Equation (16), allowing
the integral to be evaluated analytically. Similarly, cross-sectional velocity
profiles for a given pressure drop can be found. The shear rate is expressed
as .
γ = du/dr. Assuming a no-slip condition u(R) = 0, this integrates to

give the flow velocity distribution in the axial direction u(r) with respect
to the radial distance:

u (r) =

∫ R

r

.
γ dr. (17)

In Fig. 4.8, the Herschel–Bulkley model was used to plot the flow curves
of samples 4 and 6 in the laminar regime. As can be seen, S6 required a
greater pressure gradient (or equivalently, τw) in order to reach the same
mean flow velocity as S4 through a cross-section. For a mean velocity of 0.8
m/s, sample 6 theoretically needed nearly three times more pressure per
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unit length for a given transfer duty. The required pressure gradients per
length for S4 and S6 were 336.84 Pa·s/m and 1107.26 Pa·s/m, respectively.
Indeed, as seen in Table. 4.3, the curve fitting indicated that sample 6
had a higher value of dynamic yield stress. Moreover, Fig. 4.3 revealed a
higher value of apparent viscosity over the range of shear rates where the
Herschel–Bulkley model was applied. Thus, the design of slurry pipelines
relies heavily on the rheological behavior of the transported suspensions,
which needs to be optimally controlled.

Figure 4.8: Pipe pressure loss analysis of the Herschel–Bulkley model for S4 and
S6.

Fig. 4.9 shows the velocity distributions for different rheological models
during the laminar flow of phosphate ore slurry through a 0.1 m pipe eval-
uated at a constant pressure gradient ∆p/L. The rheological parameters
obtained via curve fitting using the raw data of sample 4 served as the basis
to illustrate the effect of different rheological models on the velocity profile.
In these plots, the value of the pressure gradient was adjusted to maintain
a laminar flow regime [103, 110, 111, 112].

As shown in Fig. 4.9, the velocity profile of a yield stress fluid presented
a plug core flowing in the center of the pipe. In this zone, the applied
stress was less than the yield stress. When the threshold was exceeded,
the sheared fluid presented a curved velocity profile. For the Bingham and
Casson models, the flat region occupied a major part of the pipe section.
This could be explained by the fact that the curve fitting based on these
two models resulted in high values of yield stress in comparison with the
Robertson–Stiff and Herschel–Bulkley models, which enlarged the zone of
the plug flow. Lower values of yield stress imply a reduction in the size
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Figure 4.9: Axial laminar velocity profiles that were calculated based on different
rheological models.

of the plug core and a higher velocity magnitude [109]. Fig. 4.9 clearly
demonstrates that using different models to describe fluid flow may lead to
completely dissimilar outputs. The accuracy of the mean velocity or pres-
sure loss prediction is then closely related to the accuracy of the data and
the closeness with which the slurry flow properties fit any chosen model.
Performing a benchmark test with pipe flow experiments is crucial for val-
idating the obtained results.

4.1.4 Conclusions

As a starting point, we proposed an experimental protocol for measuring
the shear rheology of a concentrated phosphate slurry. The flow curves
appeared to be non-Newtonian and exhibited shear-thinning behavior in
all cases and could be described as yield pseudoplastics. Then, well-known
rheological models were considered for the modeling. These equations were
more suitable for describing the behavior of our mixture over the range of
shear rates. Based on the results of this work, the following conclusions
were reached. The Robertson–Stiff model was found to give the best de-
scription of the flow curves, yielding a value of R2 higher than 0.97 in all
cases. The Casson model, as a two-parameter model, offered a good alter-
native for this suspension. The apparent viscosity increased as the particle
concentration increased. It was also observed that an expanded particle
size distribution yielded a lower apparent viscosity for all cases. The re-
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sults show that apparent viscosity can be reduced at a constant loading by
up to 20%. Later, it was found that the accuracy of the pressure loss predic-
tion relied on the accuracy of the rheological model. Despite the fact that
a significant amount of rheological data for the concentrated phosphate
slurry were evaluated in this study, the data did not cover the complete
range of the shear rates. Hence, we are aware that some conclusions are
limited to the range of the data considered in this study.

These findings can be exploited for better control of phosphate disper-
sion in biocomposites polymeric-based systems, which allow for better con-
trol of the filler dispersity and avoid harmful aggregation. Overall, shear
rheology seems to be a suitable tool for controlling the phosphate filler
properties and especially their polydispersities upstream of their process-
ing. This part is the subject of an ongoing investigation that is to be
published in our future works.

4.2 Shear Rheometry of Phosphate suspensions

4.2.1 Introduction

The objective of this study is to conduct a thorough analysis of the rheolog-
ical characteristics of phosphate suspensions. The understanding of these
properties is crucial for several industrial applications and the optimiza-
tion of various processes. To achieve this goal, it is essential to establish
an appropriate rheometry protocol that accurately reflects the real-world
conditions of these suspensions. One important aspect of the rheometry
protocol is to ensure that the suspensions are properly agitated either be-
fore or during the tests. This is necessary to avoid any potential settling
or formation of clusters that could affect the test results and lead to inac-
curate conclusions. Another crucial aspect is to perform the measurements
over brief time intervals, as phosphate suspensions often exhibit rheological
changes that need to be captured in the analysis. Finally, the geometry of
the rheometer must be adapted to suit the specific requirements of phos-
phate suspensions.

The present section aims to provide a comprehensive understanding of
the rheological properties of phosphate suspensions and to establish an
effective rheometry protocol for their analysis.
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4.2.2 Physical stability of phosphate suspensions

Materials and methods

Two types of materials were considered for testing:

• Suspensions collected directly during the industrial process.

• Extracted dry phosphate powders, allowing to prepare reconstituted
suspensions.

These materials correspond to extractions in 3 different locations (F1 -
F2 - F3)

The aim here is to describe the behavior of homogeneous water-solid
mixtures. Given these conditions, to prepare the collected samples, we
shake the container several times so that the supernatant water mixes well
with the paste formed at the bottom due to sedimentation. To prepare the
reconstituted suspensions, we mix a certain volume of water with a volume
of powder in order to homogenize the suspension. Thus, the concentration
of the prepared mixture is the ratio between the solid mass and the total
mass of the material. It is to be noted that sedimentation is a major
problem: reconstituted suspensions sediment quickly at rest. However,
sampled suspensions sediment much less quickly than collected ones.

The shear rheology is measured using a couette geometry (coaxial cylin-
ders) with an inner diameter of 25 mm and an outer diameter of 34 mm,
i.e. a wide gap of 4.5 mm, which is about 15 times greater than the maxi-
mum grain size, which allows us to verify the assumption of the continuous
medium. The surfaces of both inner and outer cylinders are roughened in
order to avoid the wall-slip effects (roughness of about half a millimeter).
A large gap (about 25 mm) is left between the bottom of the inner cylinder
and the bottom of the outer cylinder to avoid the effects of sedimentation
that may block the rotation of the cylinder.

In view of the problem of sedimentation, the rotational tests are carried
out rapidly after pouring the homogenized suspensions into the geometry.
To determine the behavior of the reconstituted suspensions, we imposed an
increasing shear rate ramp followed by a decreasing shear rate ramp. For
the collected suspensions, this protocol was refined and we finally settled
on imposing a fairly fast stress ramp, typically 1 min 30s, so as to cover
quickly enough a wide range of velocity gradients, before sedimentation or
migration effects are too important.

It should be noted that it will be possible to study these effects in greater
detail in the future, and/or to develop even more effective experimental
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procedures. For example, one can consider imposing creep at different
stresses, using a sample renewed between each measurement, to be sure to
have a homogeneous sample at each stress level, at least at the beginning
of the test. We can also consider quantifying the migration by crossing the
data obtained over time at different velocity levels. Finally, one can consider
MRI tests to directly measure the local concentration and the local velocity
gradient during the flow. In this context, it is important to characterize
migration and sedimentation, as these are effects that are likely to occur
significantly within the real flow. However, all these aspects are left aside
in the present study which aimed at determining the main characteristics
of the behavior of phosphate suspensions.

4.2.3 Assessment of rheometry tests

Reconstituted suspensions

Figure 4.10: Flow curves obtained during ramps of increasing then decreasing
shear rate, with suspensions reconstituted at different solid concentrations.

The reconstituted suspensions sediment very quickly, which makes it
very difficult to assess the behavior of such a suspension in a homogeneous
state. Using the above measurement procedure, we obtain a first global
overview of the behavior of this material as a function of its concentration,



4. Rheological Characterization of Phosphate Slurry 104

illustrated by Figure 4.10. We can observe that, at low solid concentration,
the measurements are not conclusive at low speed as the applied constraints
are weak. On the other hand, at higher speed, the material exhibits a New-
tonian behavior, as expected with a diluted suspension of non-colloidal par-
ticles. As the concentration increases, a threshold appears, but this is most
likely due to the effects of sedimentation. Indeed, in this case, the particles
seem to disappear from the upper layers very quickly during the flow, and
at the end of the test, we see that the concentration of the suspension is
very high at the bottom of the Couette apparatus. As the inner cylinder
is in contact with this compact area, it gives the impression that the sus-
pension has a stress threshold. This effect is particularly noticeable when
the concentration is increased, as the thickness of this concentrated paste
increases. Then, at very high concentration (>65 wt.%), another effect
appears: the suspension can no longer sediment as the particles are im-
mediately in contact with each other. The behavior of this suspension is
then that of a granular paste, which gives rise to shear localization. This
induces a higher yield stress at the start of the test compared to the real
flow threshold.

These measurements give us a glimpse of all the possible behaviors and
experimental problems. Taking into account these challenges, it would be
necessary to set up adapted procedures in order to determine the exact
behavior of these suspensions in a homogeneous state. However, one may
wonder what the interest of this would be with respect to the real industrial
processes, since under real flow conditions these artefacts should be widely
developed.

Collected samples

The collected suspensions also sediment significantly at rest, but much more
slowly than the reconstituted samples. It is therefore possible to prepare
a suspension that remains homogeneous for a period of time sufficient to
accurately measure its rheological behavior. It is to be noted that, given the
sedimentation effect, the obtained behavior does not describe all aspects
of the real mixture behavior (sedimentation, migration, aggregation) and
their impact on the flow characteristics in real conditions.

In Figure 4.11, the observed behavior is essentially that of a yield stress
fluid. However, various problems (migration - sedimentation) tend to be
developed during the tests, which affect more or less quickly the material,
and thus its apparent behavior. These effects can be underlined during
repeatability tests: by keeping the same sample, one can see that the ap-
parent behavior of the material evolves in an unexpected way (see Figure
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Figure 4.11: Repeatability tests (up-down ramps) using collected samples (F2).
Successive tests on the same sample (left in place) show artifacts evolving with
time (migration - sedimentation).

4.11). The main effect in this case is a reduction in concentration along
the inner cylinder. Again, further studies would be needed to understand
the origin of these effects and their impact on the behavior. In this study,
we have limited ourselves to a first assessment of the behavior by applying
a ramp of increasing stress on a freshly prepared (homogenized) material,
considering that this material remains sufficiently homogeneous during a
single measurement. As shown in Figure 4.12., the apparent behavior of
the collected samples is very different from that of the reconstructed ones.
Thus, regardless of the different artifacts, the yield stress of the collected
mixtures is much higher than that of the reconstructed mixtures. This
explains why sedimentation is much slower in the present case.

Questions may arise about to the origin of such difference in response to
the applied stresses. Presumably, in collected sample, there is a network of
interactions (in the form of "links") between the particles, resulting from
the presence of the additive. This network is at the origin of the exhibited
yield stress, and allows to reduce sedimentation. But it is also apparently
very fragile: As soon as the bonds have been broken, the particles are simply
dispersed in the liquid, which gives this simple viscous (Newtonian) behav-
ior with a low viscosity (when compared to the high yield stress value).
The addition of the additive is therefore particularly successful, as it slows
down sedimentation, while leaving the material very liquid during the flow.
However, it is still necessary to be able to impose sufficient pressure to
exceed the threshold, and it is necessary to manage the migration or sed-
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Figure 4.12: Ramp of increasing then decreasing shear stress using collected
samples and reconstituted samples at the same solid concentration (55 wt.%).

imentation tendencies, which will be developed more and more as soon as
the threshold is exceeded.

4.2.4 Improving the rheometry of phosphate suspensions

The above observations suggest that a more adequate rheometry protocol
may be considered for the rheological characterization of phosphate suspen-
sions, which would take into account sedimentation and migration effects.
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For this purpose, we have tested the "vane" geometry, i.e. formed by a
number of blades. In a first attempt to evaluate the rheological measure-
ments obtained using this geometry, the tests were carried out with a vane
consisting of 6 blades of 5 cm in height and 25 mm in diameter, and an
outer rough cylinder of 37 mm diameter. This geometry has the advantage
of having a high roughness, which prevent any wall slip effects along the
moving geometry. Additionally, for a yield stress fluid, the generated flow
is very close to that generated by the standard rough Couette geometry.
This has been demonstrated by MRI (cf. Ovarlez et al, J. Rheology, 2011),
and stems from the fact that the yield stress fluid is essentially "stuck"
between the blades during the flow, whereas the material outside the blade
envelope is sheared due to its friction with this trapped material.

Figure 4.13: Different tests performed on the two collected phosphate suspensions
with a rough surface Couette geometry (described above) and a vane geometry
(25 - 37 mm). In all cases, increasing and then decreasing stress ramps are
applied. The dotted curve has a slope of 2.

Experiments using the vane geometry with incressing and then decreas-
ing stress ramps were performed, and the flow curves were compared to
those obtained with the usual rough geometry. It can be seen from figure
4.13 that, contrary to all our previous tests, the downward and upward
ramps overlap. This is a major result, which proves in principle that there
is no significant evolution of the material during the flow. In addition, these
results are repeatable with the same sample; and they are reproducible with
different samples. This further confirms the absence of development of het-
erogeneities within the material. The plots in Figure 4.13 also show the
apparent yield stress observed with the simple couette gemetry was indeed
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underestimating the actual threshold, which is, in turn, more accurately
given by the stress plateau observed with the vane.

However, it is also observed that, at a certain high shear rate value,
the slope of the apparent flow curve is close to 2 in logarithmic scale.
At a sufficiently high speed, the level of the suspension in the annular
space between two coaxial cylinders increases abruptly. It is difficult to
capture the flow characteristics in this case. However, we can think that
this phenomenon is related to the Taylor-Couette instability, which leads
to the formation of vortices. The Taylor-Couette instability criterion is
expressed as:

ρ

µ
Ωr0.51 (r2 − r1)

1.5 < 41 (4.1)

by introducing the apparent shear rate (γ̇ = Ωr1/(r2 − r1)), we obtain:

ρ

µ
γ̇r−0.5

1 (r2 − r1)
2.5 < 41 (4.2)

In the present case, we found that this instability occurs at an apparent
shear rate of 160s−1, and the apparent viscosity deduced from the flow
curve in figure 4.14 is 0.135Pa.s. Thus, the left term of this equation is 44,
which is almost exactly the expected theoretical critical value. In practice,
we wish to be able to control the flow by varying the velocity. This seems to
be more suitable for systematic industrial measurements, as stress control
requires to have an idea of the value of the yield stress, otherwise there is
a risk of shearing the material too quickly, which can then be ejected from
the geometry. However, when a decreasing shear rate ramp is applied, the
obtained results are similar to the increasing stress ramp curves (see Figure
4.14), but the apparent flow curve no longer seems to have a threshold and
is offset from the stress ramp curve. This phenomenon is attributed to a
migration effect when very low velocities are imposed for too long.

In order to explain the difference between the obtained flow curves, it
must be borne in mind that the behavior of our material is that of an
unstable yield stress fluid : when the mixture is initially homogeneous at
rest, we must apply a sufficiently high stress to make it flow, i.e. its yield
stress value, but when it is slightly exceeded the material starts to flow
and liquefies very quickly. On the other hand, if a very low shear rate is
applied, which leads in theory to a shear rate value lower than the critical
value reached at the yield stress, the fluid can not flow homogeneously. In
this case, usually, the deformation is localized, so that the sheared zone is
at the critical shear rate, while the rest of the material is not sheared.
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Figure 4.14: Ramp of increasing then decreasing stress, and ramp of decreasing
shear rate.

When the applied shear rate is lowered, only a part of the material
within the couette gap is sheared, and this zone’s thickness is reduced as
the threshold is approached. At decreasing stress ramp, when the yield
stress value is reached, the material stops flowing, which gives the observed
stress plateau, similar to the plateau obtained throughout the increasing
stress ramp. During a shear rate ramp test, rotation is sustained, even if the
stress has reached the threshold, at apparent shear rates below the critical
value. This implies that the deformation is localized. But we recall that
as the stress was near the threshold shortly before, the sheared zone was
already relatively thin. As a result, the localization becomes catastrophic,
and the sheared layer of the material has a thickness of the order of the
size of the particles. Finally, a slight migration effect leads to shearing
just a very thin layer of liquid along the solid wall. This explains the drop
in applied stress well below the threshold when the imposed shear rate is
further lowered.

In view of these challenges, the measurement procedure may be im-
proved by reducing the adverse effects. On one hand, in order for the
Taylor-Couette instability to occur at the highest possible rotational speed,
we can reduce the gap to 2.5 mm. Indeed, according to the above criterion,
the Couette gap plays a critical role in this phenomenon. This value seems
to be the smallest that can reasonably be used while preserving the validity
of the continuity assumption. On the other hand, as the localization effect
is mainly due to particles migration which is caused by the high velocities
during the decreasing ramp (see Figure 4.14), it is preferable to impose an



4. Rheological Characterization of Phosphate Slurry 110

increasing shear rate ramp.

Figure 4.15: Comparaison between ramps of increasing stress and shear rate.

By applying the above adjustments to the measurement protocol, we ob-
tain a curve which is sufficiently close to the curve in increasing stress ramp,
in which we have confidence as the disturbing effects have not had enough
time to develop significantly (See Figure 4.15). In addition, The Taylor-
Couette instability now seems to occur at much higher velocity gradients,
above 1300 s−1. We can therefore fit adequate models on the obtained
curve.

Reproducibility of rheometry tests

Here, we assess the reproducibility of results for samples collected from
different locations. The results are shown in Figure 4.16. We note a neg-
ligible variation of the results from one location to another. The apparent
flow curves overlap reasonably well considering the usual uncertainty on
rheometry measurements due to variation, from one test to another, of
the boundary conditions, of the volume of material, etc. We can there-
fore extrapolate this inference to all the samples, and conclude that a good
reproducibility of the results can be achieved using this protocol.

From Figure 4.16, we can take note of a certain "ageing" of the sus-
pensions on a scale of several months: the flow curve observed, after about
6 months, has significantly higher stress values than the measurements on
the new samples. Also, we observe that the lower the threshold, the earlier
the Taylor-Couette instability occurs. This underlines a problem that we
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Figure 4.16: Apparent flow curves for 4 different samples obtained by imposing
a ramp of increasing shear rate, with a Vane geometry of 6 blades, 5 cm height
immersed in a cylinder of 11 cm height and a Couette gap of 2.5 mm.

will have to take into account, as it limits the range of exploitable shear
rates.

Impact of the height of submerged vane

Figure 4.17: Apparent flow curves for different submerged vane heights.

For the present measurements, we use a 6 blades vane of 5 cm height im-
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mersed in an outer cylinder of 6 cm with different submerged vane heights.
The stress is calculated based on the measured torque according to the
standard formula resulting from the conservation of momentum:

τ =
C

2πhr2i
(4.3)

It can be seen that the flow curve is slightly influenced by the chosen
height, and no particular trend is observed with this parameter. Therefore,
as long as the submerged height is largely superior to the Couette gap, there
is no impact of this height. However, from a practical point of view, there
is a significant uncertainty about the actual submerged height because it is
difficult to inject the exact volume of slurry to reach that height, or to clean
accurately afterwards to set the level at a particular height, or to measure
that height.

Impact of the bottom gap

These measurements are performed by immersing the 5 cm long vane more
or less high in the outer cylinder. We observe a slight tendency for the stress
to increase when the sheared height is reduced, but no real divergence as
long as we remain at a distance of more than 1 mm from the bottom, and as
long as the standard protocol is used (fast increasing ramp). We conclude
that the impact of the bottom gap is negligible.

Figure 4.18: Apparent flow curves obtained by imposing a ramp of increasing
shear rates, with a Vane geometry 6 blades - 5 cm high immersed in a outer
cylinder located at different heights from the bottom.
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Impact of rest time prior to the test

Figure 4.19: Apparent flow curves (vane 5 cm - 5 mm from the bottom - 2.5 mm
couette gap) obtained for different rest times prior to the tests.

For these tests, the material must be prepared very carefully. First,
the sample bottle is shaken strongly enough to resuspend the sedimented
particles and obtain a homogeneous material. This constitutes a reference
condition. Then the sample is quickly placed in the outer cylinder and
the vane is quickly immersed as well in order to minimize the duration of
this procedure (about 15 seconds). The end of the immersion corresponds
to the "zero-time". From this point on, the usual shear rate ramp is im-
posed. For this particular experience, we wait for different durations "t"
before starting the ramp. For some measurements, we observe a jamming
of coarse particles (of more than 1 mm), which results in stress jumps (see
Figure 4.19). However, the general trend is not significantly influenced. As
shown in Figure 4.19, there was no observable effect of the resting time,
no particular trend and notably no increase in threshold stress with "t"
as what would be obtained with a thixotropic fluid. There is therefore no
major impact of the rest time from the rheological point of view. But, it
must be noted that a longer resting time leads to potentially significant
sedimentation effects.

Impact of the imposed shear rate range

For this study, rheological tests are performed by imposing different ranges
of shear rate over the same duration of 40s. In Figure 4.20, we observe ap-
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Figure 4.20: Apparent flow curves (vane 5 cm - 5 mm from the bottom - 2.5 mm
couette gap) obtained for different ranges shear rate imposed during a increasing
40 s ramp.

parent flow curves with similar trends, exhibiting a first phase of decreasing
stress, then a plateau stress region and finally a significant rise at high shear
rate values. It is also shown that the stress value determined at the plateau
does not vary as the range of shear rates varies. However, the obtained flow
curves indicate that starting the shear rate ramp at lower values leads to
a growing difference between the initial yield stress and the plateau yield
stress (up to 30%). The particle size distribution at the sheared zone is
probably responsible for this phenomenon. This suggests that the yield
stress determined at the plateau does not necessarily provide a perfectly
representative value, as the migration during the increasing ramp may have
disturbed the result. Thus, it seems preferable to start the test at a rela-
tively high shear stress value, between 20 and 50 s−1. This obviously has
the disadvantage of reducing the observed range, but it reduces the gap be-
tween the first yield stress value and the minimum value reached afterwards
and ensures that the fluid remains homogeneous. Note that this adverse
effect disappears when starting directly at 50 s−1 (see Figure 4.20).

Impact of the gap width

Experiments following an identical procedure were performed with a vane
using different gap widths. For all the measurements, the stress applied
along the inner cylinder was plotted as a function of the apparent shear
rate calculated by dividing the rotational velocity by a fixed fictitious gap
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width of 2.5 mm. It is worth saying that a gap of 1.5 mm seems too thin
considering that there are some particles of the same size (1 mm) within
the material. In these conditions, we can have at some moments jamming
of these particles in the gap which yields important stress jumps.

Figure 4.21: Apparent flow curves (vane 5 cm - 5 mm from the bottom) obtained
for different gap widths.

As shown in Figure 4.21, the obtained flow curves are almost perfectly
overlapped. Obviously, under these conditions, if we had drawn the curve
as a function of the apparent shear rate, assuming that the entire gap is
sheared, we would have obtained curves that are significantly offset from
each other. For example, the flow curve of a 1.5 mm gap would be offset
horizontally by a factor of almost 4 compared to the flow curve of a 6.5
mm gap). This is an interesting result since it suggests that the gap width
has no significant influence on the yield stress measured according to our
approach, as the level of the threshold does not change when the gap width
varies. On the other hand, the superposition of all the flow curves, even in
the region where the stress increases significantly with the shear rate, is very
surprising. In fact, one would expect a superposition as long as the material
present within the gap is not completely sheared, as the stress increases.
Indeed, in this case, the flow is identical for the different geometries, since
the flowing suspension does not yet make contact with the outer wall, and
the sheared thickness is the same for the different gap widths. Thus, the
characteristics of the flowing zone of the material are the same for the
different gaps as long as the sheared thickness is smaller than the smallest
gap width tested. This phase eventually ends when the shear stress reaches
the yield stress value at the outer wall, which corresponds to the case where
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the whole gap is sheared. It must be emphasised that, at higher shear rates,
we can also notice a Taylor-Couette instability effect, which would as well
prevent the curves from being offset even when the gap width is totally
sheared.

4.2.5 Conclusions

In conclusion, the rheological characterization of phosphate suspensions
presents several challenges due to sedimentation, migration effects, and the
unstable nature of the yield stress fluid. To overcome these challenges,
a vane geometry was employed, and various parameters were optimized
to minimize adverse effects and ensure the accuracy of rheometry tests.
The use of vane geometry with increasing stress ramps led to overlapping
upward and downward ramps, demonstrating the absence of significant ma-
terial evolution during flow. The apparent yield stress measured using this
method was more accurate than with a simple Couette geometry. Adjust-
ments to the measurement protocol, such as reducing the gap size and using
an increasing shear rate ramp, further improved the results. Reproducibil-
ity of the rheometry tests was assessed, and the results showed negligible
variation among samples collected from different locations. However, some
aging of the suspensions was observed over time. Several other factors were
investigated, including the submerged vane height, bottom gap, rest time
prior to testing, imposed shear rate range, and gap width. The impact of
these factors was found to be minimal, as long as certain conditions were
met. Overall, this study demonstrates that the rheometry of phosphate sus-
pensions can be improved by employing a vane geometry and optimizing
the experimental protocol. This ensures the accuracy and reproducibility of
the rheological measurements, which is essential for industrial applications.



Chapter 5

A New Rheological Model for
Phosphate Slurry Flows

5.1 Introduction

Numerical modeling of multiphase flows along with complex rheology has
particularly drew considerable attention during the last two decades and
the study of their behavior has led to a large literature. Such complex phe-
nomena are encountered in many industrial and engineering applications,
including evaporation and condensation [113], flooding events [114, 115],
chemical and nuclear reactors [116], fluidized bed [117], combustion and
fuel atomization [118, 119]. Recently, researchers have devoted a consid-
erable amount of research efforts into developing and implementing so-
phisticated mathematical techniques, relevant in the whole range of multi-
fluid and multiphase flow problems. Being the two main families of so-
lution methods, Level-Set (LS) and Volume-Of-Fluid (VOF) proposed re-
spectively by Sussman et al. [120] and Hirt et al. [121] are the two most
commonly employed approaches which have assisted in better understand-
ing of the underlying physics governing the multiphase flows in different
fields. Given the particularities of each model, VOF and LS have been
widely used to investigate a broad range of engineering problems such as
Rayleigh–Taylor Instability [122], dam failure phenomena [123, 124, 125],
bubble rising/nucleation [126, 127, 128], droplet impact on both dry and
wet surfaces [129, 130, 131, 132], metallurgical engineering [133], to men-
tion only a few. In this study, we use the VOF method to investigate
water-slurry modeling in a horizontal pipeline.

Viscoplastic or yield-stress fluids are materials which behave as solids as
the shear rate tends to zero, and as liquids beyond a certain critical shear
stress level (τ0). In particular, simple yield-stress fluids are materials that
are both non-thixotropic and inelastic, and characterized by a shear stress
that depends only on the applied shear rate, and materials [134]. The most

117
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popular simple viscoplastic model was first proposed by Bingham [135] and
is defined by a yield stress value and a constant plastic viscosity represent-
ing the slope of the shear stress versus shear rate curve. The Bingham
constitutive equation can be expressed as follows:

γ̇ = 0 if τ ≤ τy

τ =

(
µ+

τy
γ̇

)
γ̇ if τ > τy

(5.1)

where τ and γ̇ are the stress tensor and the shear rate tensor respectively.
While the terms τ0, and µ indicate the yield stress and the plastic vis-
cosity scalar values. τ =

√
1
2
τ : τ and γ̇ =

√
1
2
γ̇ : γ̇ denote the second

invariants of τ and γ̇, respectively. The strain rate tensor γ̇ is defined
as γ̇ = ∇u + (∇u)T , u being the velocity vector. The flow domain of a
yield stress fluid is divided into a yielded region (τ > τ0) and an unyielded
(τ ≤ τ0) region, separated by the yield surfaces where τ = τ0. Two well
known generalizations of the Bingham fluid model have been proposed by
Herschel–Bulkley [136], and Casson [137], formulated respectively as:

Herschel-Bulkley: τ =

(
Kγ̇(n−1) +

τ0
γ̇

)
γ̇ if τ > τ0 (5.2)

Casson: τ =
(√

µγ̇ +
√
τ0

)2 γ̇
γ̇

if τ > τ0 (5.3)

where K is the consistency and n is the power-law index. The flexibility
of the Herschel–Bulkley model to fitting various experimental data makes
it very popular among other yield stress models. Moreover, the Herschel–
Bulkley model can be reduced to power-law and Casson models when set-
ting the yield stress to zero τ0= and the power-law index to n = 1, respec-
tively. According to [138], the power law, the Bingham plastic, the Casson
and the Herschel–Bulkley models remain the four widely used models for
describing the viscous properties of suspensions.

Various research works have studied slurry flows as a continuum non-
Newtonian fluid based on the equivalence assumption and have made use of
either Bingham model or Herschel–[-35]Bulkley (H–B) model to represent
the rheological properties [139, 140]. Hamza et al. (2018) [141] have inves-
tigated in their work the rheological behavior of the phosphate-water slurry
in an attempt to determine a model capable of describing its flow behavior.
They came to the conclusion that the Herschel–Bulkley model is a suitable
model for representing the rheological behavior of the phosphate slurry for
low concentrations (less than 38.45 wt%). For higher concentrations in the
range of 34.24–46.03 wt%, the Bingham model was more adequat. Finally,
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the Casson model was the best fitting model for calculating viscosity and
yield stress for the range of concentrations (46.03–57.27 wt%). In addition,
based on the experimental results, they conclude that the phosphate slurry
rheological behavior tends to be a dilatant behavior beyond a concentration
of 38.45 wt%.

The aim of this work is to develop a model that could describe the
rheological behavior of the phosphate slurry over a wide range of con-
centrations. We will show that the model is capable of reproducing the
rheological behavior that phosphate suspensions may exhibit in both low
and high concentrations. This is achieved by comparing the output of
the model with those of the models suitable for modeling the rheologi-
cal behavior of phosphate slurry. A methodology for obtaining the model’s
parameters is presented in details. Whilst the term “multi-phase flows” cov-
ers the whole spectrum of gas–liquid, liquid–liquid, gas–solid, liquid–solid,
gas–liquid–solid and gas–liquid–liquid systems, our concern in this work is
to investigate the simultaneous co-current flow of a simple liquid and a non-
Newtonian suspension of solid particles. The new model presented in this
chapter should be of interest to broad and diverse areas of application. Fur-
thermore, the subject may be relevant both to theoretical mathematicians
and practising engineers with a wide range of backgrounds.

5.2 Materials and Methods

The flow behavior of the materials encountered in many chemical and pro-
cess engineering applications is highly influenced by the characteristics of
their components, including their non-Newtonian properties, shape, size
and concentration of the suspended particulates, the applied shear rate and
the geometry of the system. In general, the flow behavior of such systems
is so complex that theoretical treatments, which tend to apply to highly
idealized problems, have proved to be of little practical utility. Therefore,
flow investigations rely heavily on analyses of the behavior of such systems
in practice based on experimental work and well established assumptions.

5.2.1 The New Rheological Model

Over the years, to model the stress-deformation behavior, several empirical
expressions have been proposed as a result of straightforward curve-fitting
exercises and different yield criteria have been used. The majority of the
available literature is empirical and still need to be developed, partially due
to the difficulty of obtaining accurate, reliable data on yield stress materials
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over a wide range of shear rates.

In this study, we seek to investigate the rheological behavior of the
Phosphate slurry, which is a mixture of insoluble particles and a contin-
uous phase of water. The obtained rheograms of this material show a
non-Newtonian flow behavior exhibiting a yield stress as the shear rate
tends to zero. A two-branch model equation is presented to embrace the
non-linear flow of phosphate slurry over a very large range of shear rates.
In one dimensional steady shearing motion, it is written as:

τ =

{
a(γ̇ + γ̇0)

b if γ̇ < γ̇c
τc + γ̇η∞ if γ̇c ≤ γ̇

(5.4)

where the parameters a and b can be considered similar to the the consis-
tency and the power-law index of the Herschel–Bulkley model, respectively.
On the other hand, the parameter γ̇0 has a different interpretation than
the model parameters of both Herschel–Bulkley or Bingham model. In this
model, γ̇0 can be regarded as a correction to the shear rate rather than the
shear stress and the yield stress is defined as τy = aγ̇b0. The linear part of
the curve is described using the parameters η∞ and τc, which represent re-
spectively the consistency index [Pa·s], the yield stress [Pa]. The transition
from one branch to the other depends on the critical value of shear rate
which is experimentally defined as γ̇c = 400 s−1 in the particular case of
phosphate slurries considered in this work.

To determine the rheological coefficients of each model equation, we per-
form a curve fitting based on the least square method. Curved relationships
between variables are not as straightforward to fit and interpret as linear
relationships. Given M data pairs (γ̇m, τm) where m ∈ {1, ...,M}, the pa-
rameters of Equation (5.4) need to be determined. We consider the general
case where the model can be formulated as τ = f(θ, γ̇) where θ is a vector
of p parameters. In what follows, the least squares approach is applied to
determine the parameters which to minimise the following expression:

min
θ

M∑
m=1

[τm − f(θ, γ̇m)]
2 (5.5)

where the pairs (γ̇m, τm) are observed. Given the observed data pairs
{(γ̇1, τ1), ..., (γ̇M , τM)}, we may define the error associated to the second
branch of Equation (5.4), τ = τc + γ̇η∞, by:

E(η∞, τc) =
M∑

m=1

(τm − (τc + γ̇mη∞))2 (5.6)
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Our goal is to define the values of η∞ and τc that minimize the error
function. Following the least-squares method, we should find the values of
(η∞, τc) such that:

∂E

∂η∞
= 0,

∂E

∂τc
= 0 (5.7)

It is to be noted that, in this case, we do not have to worry about bound-
ary points: as |η∞| and |τc| become large, the fit will clearly deteriorate.
Thus we do not need to check on the boundary. Differentiating E(η∞, τc)
yields:

∂E

∂η∞
=

M∑
m=1

2(τm − (τc + γ̇mη∞))(−γ̇m) (5.8)

∂E

∂τc
=

M∑
m=1

2(τm − (τc + γ̇mη∞)) (5.9)

Setting ∂E/∂η∞ = ∂E/∂τc = 0 and dividing by 2 yields:

M∑
m=1

(τm − (τc + γ̇mη∞))γ̇m = 0 (5.10)

M∑
m=1

(τm − (τc + γ̇mη∞)) = 0 (5.11)

We may rewrite these equations as:(
M∑

m=1

γ̇2m

)
η∞ +

(
M∑

m=1

γ̇m

)
τc =

M∑
m=1

τmγ̇m (5.12)

(
M∑

m=1

γ̇m

)
η∞ +

(
M∑

m=1

1

)
τc =

M∑
m=1

τm (5.13)

We have obtained that the values of η∞ and τc which minimize the error
(defined in Equation (5.6)) satisfy the following matrix equation:(∑M

m=1 γ̇
2
m

∑M
m=1 γ̇m∑M

m=1 γ̇m
∑M

m=1 1

)(
η∞
τc

)
=

(∑M
m=1 τmγ̇m∑M
m=1 τm

)
(5.14)

We will show the matrix is invertible, which implies(
η∞
τc

)
=

(∑M
m=1 γ̇

2
m

∑M
m=1 γ̇m∑M

m=1 γ̇m
∑M

m=1 1

)−1(∑M
m=1 τmγ̇m∑M
m=1 τm

)
(5.15)
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We denote the matrix by A. The determinant of A is

detA =
M∑

m=1

γ̇2m.

M∑
m=1

1−
M∑

m=1

γ̇m.

M∑
m=1

γ̇m (5.16)

As

γ̇m =
1

M

M∑
m=1

γ̇m (5.17)

we find that,

detA =M
M∑

m=1

γ̇2m − (Mγ̇m)
2

=M2

(
1

M

M∑
m=1

γ̇2m − γ̇m
2

) (5.18)

where the last equality is derived from simple algebra. Hence, while γ̇m are
not all equal, detA will be nonzero and A will be invertible. Therefore, we
note that as long as γ̇m are not all equal, the best-fit values of η∞ and τc
are achieved by solving a system of linear equations in the Equation (5.15).
As for the first branch of Equation (5.4), it requires an initial estimate
for one of the three parameters. We can use the following procedure for
the estimation of these parameters. γ̇0 can be estimated first using the
following equation:

γ̇0 =
γ̇minγ̇max − γ̇∗2

2γ̇∗ − γ̇min − γ̇max

(5.19)

where γ̇∗ is the shear rate corresponding to the geometric mean of the
maximum and minimum shear stresses:

τ ∗ = (τminτmax)
1/2 (5.20)

Then, taking the logarithm of the first branch of Equation (5.4):

log(τ) = log(a) + b log(γ̇ + γ̇0) (5.21)

and using the same methodology described above, one can obtains the two
remaining parameters by change of variables then calculation.

The proposed model, which is based on the formulation described ear-
lier, has been implemented using the OpenFoam numerical code. This
powerful open-source framework offers a wide range of options for mod-
eling the behavior of fluids, including a library of viscosity models such
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as Bingham, Herschel–Bulkley, and Casson. These models are defined in
terms of strain rate and can be easily customized by the user to suit the
specific requirements of their application. Additionally, the transportProp-
erties dictionary allows for further flexibility in defining the rheological
properties of the fluids being modeled. The implementation of the pro-
posed model using the OpenFoam framework thus enables a more accurate
and comprehensive simulation of multiphase flows and complex rheology in
various industrial and engineering applications.

5.2.2 Numerical Modelling

The new model is applied to multiphase flow to account for the true behav-
ior of phosphate slurry and its deformations that occur during this engi-
neering instance. The simplest way to solve a two-fluid flow is to track the
interface between the two fluid phases with a simple α indicator, often re-
ferred to in the literature as a concentration function. This method is called
VOF (Volume-Of-Fluid) method, other approaches include Level-Set, Front
Tracking, etc. twoLiquidMixingFoam [142, 143] is a well-established solver
for the simulation of flows in which two incompressible fluids are present.
A separate surface interface can be defined based on the VOF method in
OpenFOAM, which is a free and open-source parallel processing software
supported by a large user community [144, 139]. The different phases are
represented in the domain by their phase fractions using the VOF [121, 145].
This method allows to reduce considerably the computational costs.

An algebraic VOF method is used in the twoLiquidMixingFoam solver,
which is a modified version of the VOF method of Hirt and Nichols (1981) [121]
by adding a diffusion term. The phosphate slurry consists of solid parti-
cles and water. Hereafter, we considered the homogenenous regime of the
slurry with constant density and viscosity across the pipe. Therefore the
two-phase system is the slurry phase and the water batch.

Governing Equations

The sum of the volume fractions of all phases in a cell is equal to unity and
is given by the Equation (5.22) below

αs + αw = 1 (5.22)

where αs and αw denote the volume fraction of the slurry and water phases
respectively. Both phases are assumed to be incompressible. The continuity
equation is given as follows

∇ · v⃗ = 0 (5.23)
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where v⃗ represent the velocity. The momentum equation solved for both
phases during the simulation is given by,

ρ
∂v⃗

∂t
+ ρv⃗(∇ · v⃗) = −∇P +∇ · τ + ρg⃗ + F⃗cs (5.24)

where P and g are the pressure and acceleration due to gravity, respectively.
τ represents the shear stress tensor; for Newtonian fluids, it is a linear
function of the shear rate given by

τ = µγ̇ = µ

[(
∇v⃗ + (v⃗)T

)
− 2

3
∇ · v⃗I

]
(5.25)

where µ is the dynamic viscosity of the Newtonian fluid. For non-Newtonian
materials, a different relation is available in which µap is the apparent vis-
cosity of the non-Newtonian fluid

τ = µapγ̇ (5.26)

Several rheological models have been developed in the literature to de-
scribe the behaviour of these materials. In this work, the models used
to describe the behaviour of the phosphate slurry are Herschel-Bulkley
(Equation (5.2)), Casson (Equation (5.3)) and the proposed model (Equa-
tion (5.4)).

F⃗cs represents the surface tension force which is modeled as a volumetric
force by the continuum surface force (CSF) model of Brackbill et al. [146].
For two-phase system, the value of F⃗cs is expressed by Equation (5.27)

F⃗cs = σ
ρk∇αs

0.5(ρw + ρs)
(5.27)

where σ represents the surface tension coefficient and k the interface curva-
ture, which is further expressed by Equations (5.28) and (5.29) respectively

k = ∇ · n̂ (5.28)

n̂ =
∇αs

|αs|
(5.29)

The interface between the two phases progresses thanks to the volume
fraction Equation (5.30)

∂αs

∂t
+∇ · (v⃗αs) = ∇ · (Γt∇αs) (5.30)

Γt = DAB +
νt
Sct

(5.31)
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where αs is the cell fraction of the slurry phase, Γt is the effective diffusivity,
DAB represents the coefficient of molecular diffusion, νt is the turbulent
viscosity, and Sct denotes the turbulent Schmidt number. The coefficient of
diffusion DAB and the turbulent Schmidt number Sct were set to 1.0×10−6

m2/s and 1.0, respectively. The phase fraction in a cell is related to the
RANS model by density as follows

ρ = αsρs + αwρw = αsρs + (1− αs)ρw (5.32)

where ρs represents the density of the slurry that corresponds to the αs

phase fraction, while ρw is the density that corresponds to the water phase
with the αw phase fraction. The calculated density ρ in the Equation (5.32)
should not be considered as a real density of the fluid but as a density of
the phase mixture that occupies a cell in the finite volume framework.
The RANS model uses the density ρ in the conservation of momentum
equation. When αs is equal to 1, the represented phase is the slurry while
the water phase αw is defined as 0, and vice versa. Any value between 1
and 0 describes a mixture and can also be interpreted as a percentage of
the amount of this or that fluid present in a cell. The Equation (5.30) can
be interpreted as an advection–diffusion equation for the αs phase.

Turbulence Equations

However, we should mention that all the constants and wall function of the
k − ωSST model have been derived experimentally by measurements on
Newtonian fluids [147]. Moreover, they are not adapted to non–Newtonian
fluids. In the present work, we have used k− ωSST model to simulate the
flow of water pushing the slurry batch, thus the turbulence is applied to
the water batch.

The transport equations of the turbulent kinetic energy k and the spe-
cific dissipation rate ω are

∂k

∂t
+
∂(kvi)

∂zi
=

1

ρ

∂

∂zj

[
Γk

∂k

∂zj

]
+ G̃k − Yk + Sk (5.33)

∂ω

∂t
+
∂(ωvi)

∂zi
=

1

ρ

∂

∂zj

[
Γkω

∂ω

∂zj

]
+ G̃ω + Yω +Dω + Sω (5.34)

where G̃k is the generation of turbulence kinetic energy due to the mean
velocity gradients. G̃ω denotes the generation of the specific dissipation
rate. Γk and Γω are the effective diffusivity of k and ω respectively. Yk and
Yω represent the dissipation of k and ω due to turbulence. Dω is the cross-
diffusion term. Sk and Sω represent source terms set to be zero in this study.
All the above terms are calculated and specified in [148, 149, 150, 151].



5. A New Rheological Model for Phosphate Slurry Flows 126

5.3 Results and Discussions

5.3.1 Rheological Evaluation of the New Model

In the present study, we used phosphate ore samples of different grades and
concentrations of 51, 54, and 56 wt% in water. These samples were labeled
S1 to S6 and different primarily in their solids concentrations. The details
on the rheological data and samples characteristics can be found in [152].
The rheograms of phosphate slurries were obtained, at room temperature,
by applying a ramp of predefined shear rate decreasing from 1000 s−1 to
112 s−1, and measuring the corresponding shear stress. The diameters of
the rotating bob and the cylindrical cup are respectively 38.713 mm and 44
mm. Prior to each measurement, the suspensions were stirred carefully in a
vessel to wipe out material memory and obtain the same initial conditions
for both samples and then rapidly filled into the external cylinder. The
effects of wall slip were not completely prevented using this geometry, so
any reproduction of the resulting rheograms should be carried out with
caution. The experimental data are shown in Figure 5.1.

Figure 5.1: Comparison of experimental (red circles) and predicted (blue cross)
values of shear stress as a function of shear rate for six phosphate slurry test
samples.

The accuracy of the New model is checked by fitting the phosphate
slurry data. Figure 5.1 shows a good agreement with the experimental
data for six samples of the phosphate slurry.



5. A New Rheological Model for Phosphate Slurry Flows 127

5.3.2 Numerical Results

OpenFoam 9.0, the open source CFD framework was used to solve the flow
equations, turbulence models and transport equations. It is a very flexible
CFD code where each component can be personalized to meet the user’s
needs. In single-phase flow calculations, the SIMPLE algorithm is used to
couple pressure with velocity, whereas the PIMPLE algorithm is used in
bi-phase simulations. In the single-phase simulations, the relaxation factors
used are 0.5 for U , k and ϵ and 0.3 for the pressure. While, in the two-phase
flow case, the relaxation factor for all variables is 1. GAMG is the linear
solver used for pressure, and the smooth solver was adopted for U , k, ϵ and
α.

Model Implementation

The new model is implemented in the OpenFoam 9.0 source code. The test
case “lock-Exchange”, implemented in OpenFoam library, is used to test the
new model. Since performing numerical simulations of a yield stress mate-
rial flow is not a straightforward task, the regularization method was widely
used in the last decades, see [153, 154] and references therein. The regu-
larization approach includes methods which approximate viscosity value by
one regularized and smooth constitutive equation, which is well determined
regardless of the shear rate magnitude. The regularized equation treats the
whole material domain as a fluid of variable viscosity and locally assigns
a large but finite value of viscosity to the unyielded regions. Similary, In
OpenFoam, the material is modelled for low strain rates as a very viscous
fluid with a high viscosity µ0 defined by the user. Beyond a threshold in
strain-rate corresponding to threshold stress, the viscosity is described by
a the constitutive equations. Thus the implementation is formulated as:
µ = min(µ0, µ(γ̇)). The physical characteristics of the two phases used
water and sludge are represented in Table 5.1. The multiphase solver used
twoLiquidMixingFoam is described in Table 5.2.

Table 5.1: The two-phase system characteristics.

Material Density Kinematic Viscosity Rheological Model(kg/m3) (m2/s)

Water 990 1.00× 10−6 Newtonian

Sludge 1000
6.00× 10−6 Newtonian
non-constant Herschel–Bulkley, Casson and New Model
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Table 5.2: Specification of the multi-phase solver.

Term Details

Name of solver twoLiquidMixingFoam

Type of solver Density-based, segregated solver

Time dependency Transient

Pressure-velocity coupling Pimple

nCorrectors 3

nNonOrthogonalCorrector 0

For the purpose of comparison, three rheological models already present
in the OpenFOAM library were employed—the Newtonian, Casson, and
Herschel–Bulkley models. The S1 pulp sample was used in this comparison,
with the values defined in Table 5.3 being assigned to the variables ‘a’ and
‘b’ respectively.

Table 5.3: Constant parameters of the new model.

Model Phosphate Slurry Samples

Parameters S1 S2 S3 S4 S5 S6

a (Pa·sb) 0.93 0.44 0.72 0.57 1.60 1.56
η∞ (mPa·s) 16.77 18.33 23.26 23.6 27.45 30.8
b (-) 0.49 0.59 0.60 0.57 0.56 0.59
τc (Pa) 10.20 7.51 15.38 11.03 31.16 37.39
γ̇0 [1/s] 12.54 6.22 2.42 22.78 18.46 15.26

An examination of Figures 5.2–5.5 reveals significant differences in the
distribution of sludge concentration within the column when using the pro-
posed new model in comparison to other models such as the Newtonian,
Casson, and Herschel–Bulkley models. While the latter models tend to
result in the mixing and formation of eddies between the water and sludge,
the new model maintains a clear physical interface between the two fluids.
This prevents mixing over time and instead results in a clear layering of
the denser sludge at the bottom of the pipe and the less dense water at
the top. This behavior can be clearly observed in the figures and highlights
the potential advantages and unique properties of the new model in the
simulation of multiphase flows and complex rheology in various industrial
and engineering applications.
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Figure 5.2: Slurry concentration distribution inside an inviscid walls column,
Newtonian Model.
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Figure 5.3: Slurry concentration distribution inside an inviscid walls column,
Herschel-Bulkley Model.
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Figure 5.4: Slurry concentration distribution inside an inviscid walls column,
Casson Model.
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t = 1 s
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Figure 5.5: Slurry concentration distribution inside an inviscid walls column,
New Model, a = 0.93 Pa·s, b = 0.49.
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Two-Phase Pipe Flow

We recall that the configuration of interest in our work consists of a water-
slurry batch flow, represented by Figure 5.6. A three-dimensional (3D)
horizontal pipes are established to investigate the New rheological model
of the particulate slurry flow using OpenFOAM simulations. Internal di-
ameters D = 5.49 cm and D = 90 cm are used with corresponding pipe
lengths L = 3.3 m and L = 50 m > 60 D respectively. The lengths of the
slurry batch are respectively l = 0.54 m and l = 8.9 m. Table 5.4 represents
physical characteristics of the two-phase system water-slurry. According to
results in [141], the Herschel–Bulkley model is suitable for concentrations
lower than 38.45 wt%, where the phosphate suspension rheological behav-
ior is dilatant. The Casson model is used to model the rheological behavior
of the suspension and to calculate the viscosity and yield strength for the
concentration range (46.03 to 57.27 wt%). Therefore, the new model is
compared to the Herschel–Bulkley model for the concentration C = 38.45
wt% by mass, and to the Casson model in the range of concentrations C =
46.03–57.27 wt%.

Figure 5.6: Flow configuration in the horizontal pipeline.

Table 5.4: Ranges of parametric values.

Parameters Ranges Unit

Pipe diameter 0.054–0.9 m
Pipe Length 3.3–50 m
Solid concentration by mass 38–56 wt%
Water density 1000 kg/m3

Water viscosity 10−3 Pa·s
Velocity 2–5 m/s
Water Reynolds Number >106 -

In order to validate our new model for phosphate slurry flow visual-
ization, we compared it to the well-established Newtonian model using
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high mesh resolution (2 million cells), due to the limited experimental data
available on this subject. The simulations were performed in a pipe with a
diameter of D = 0.9 m and a length of L = 50 m, with a mean flow velocity
of U = 5 m/s to achieve high turbulent flow. This was carried out in order
to replicate the conditions often found in industrial settings where phos-
phate slurry is transported. Using the least squares method, we obtained
consistency index of 1.56 and flow index of 0.01, which correspond to a
concentration of 56 wt%. These results demonstrate that our new model is
a reliable and accurate representation of the rheology of phosphate slurry
flow and can be used in industrial settings to better predict and control the
flow of this fluid.

Figure 5.7 illustrates a detailed comparison of the distribution of slurry
concentration between the Newtonian and new models, along a horizontal
pipe. The Newtonian model is used as a reference solution for validation,
as it is a well-established model and there is currently no other reference
solution available in literature to validate the new model.

Upon examination of the figure, it is clear that the new model provides
significantly improved results in comparison to the Newtonian model. One
of the most notable differences is the absence of mixing at the interface
between water and slurry in the case of the new model. This indicates that
the new model is able to capture the behavior of the slurry more accurately
and can be used to make more accurate predictions about the behavior of
the slurry in industrial settings.

Additionally, the new model has the ability to predict the slurry con-
centration distribution at different sections of the pipe, which can be used
to optimize the design and operation of industrial systems that transport
phosphate slurry. The new model can also be used to improve the control
of the flow of the slurry in real-world applications.

In conclusion, the new model for phosphate slurry flow visualization has
been validated and compared to the Newtonian model with high accuracy.
The results of the simulation demonstrate that this new model can be used
to better predict and control the flow of phosphate slurry in industrial
settings.
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t = 0 s

t = 2 s

t = 4 s

t = 6 s

t = 7 s

Figure 5.7: Slurry concentration distribution along the pipe for D = 0.9 m, U = 5
m/s, C = 56 wt%, a = 1.56 Pa·s, b = 0.01, Newtonian model (left) and the New
model (right).

The Figures 5.8 and 5.9 provide a comprehensive comparison of the
distribution of slurry concentration along a horizontal pipe between the
Herschel–Bulkley model, the Casson model, and the new model. The new
model uses parameters a and b that are specific to the concentration of
the slurry. For a concentration of 38.45 wt%, the values of a and b are
respectively 0.4 Pa·s and 0.2, and for C = 56 wt%, the values are a = 1.56
Pa·s and b = 0.6. Upon examination of the figures, it can be seen that
the new model is able to maintain the slurry batch compact until it exits
the pipe, regardless of the concentration of the slurry. In contrast, the
Herschel–Bulkley and Casson models exhibit mixing at the water-slurry
interface and sedimentation of the slurry batch towards the bottom of the
pipe. This suggests that the new model captures the rheological behavior of
the phosphate suspension more accurately than the other models, especially
for both low and high concentrations. In summary, the new model for
phosphate slurry flow visualization has been compared to the Herschel–
Bulkley model and Casson model and it has been found that it is able
to reproduce well the rheological behavior of phosphate suspensions for
both low and high concentrations. The new model can be used to improve
predictions and control of the flow of phosphate slurry in industrial settings.
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t = 0 s

t = 0.2 s

t = 0.4 s

t = 0.6 s

t = 0.8 s

t = 1 s

Figure 5.8: Slurry concentration distribution across the pipe for D = 54.9 mm,
U = 2 m/s, C = 38.45 wt%, a = 0.4 Pa·s, b = 0.2, Herschel–Bulkley model (left)
and the New model (right).

t = 0 s

t = 0.2 s

t = 0.4 s

t = 0.6 s

t = 0.8 s

t = 1 s

Figure 5.9: Slurry concentration distribution across the pipe for D = 54.9 mm,
U = 2 m/s, C = 56 wt%, a = 1.56 Pa·s, b = 0.01, Casson model (left) and the
New model (right).

5.4 Conclusions

A new rheological constitutive relation for modeling the phosphate slurry
flows was presented in this study. This model is based on five constant pa-
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rameters, which were determined through rheological measurements. The
validity of the model was assessed by comparing its outputs with data de-
rived from stress test measurements. It was found that there was a good fit
between the model and the measurements in the stress versus strain rate
curves.

Furthermore, it was shown that the new model gives good numerical re-
sults when implemented in the OpenFoam software, version 9.0, and tested
with an existing tutorial case model. The model was also validated nu-
merically by comparing its concentration distribution results with those
of the Newtonian model for high mesh resolution. It was found that the
new model provides improved results compared to the Newtonian model.
Additionally, the new model was compared to the Herschel–Bulkley model
for a low concentration of C = 38.45 wt% and to the Casson model for
C = 56 wt%. It was found that the new model was able to simulate the
rheological behavior of phosphate slurry flows accurately for both low and
high concentrations.

The main advantages of this new model are that it can produce im-
proved fits of the rheological data compared to other existing models, and
that it provides a description of the rheological behavior of the phosphate
suspension for a wide range of concentrations. This makes it a valuable tool
for understanding and predicting the behavior of phosphate slurry flows in
industrial settings and for optimizing the design and operation of systems
that transport phosphate slurry.



Chapter 6

Concluding remarks and
perspectives

This doctoral thesis, through an in-depth exploration of the rheology of
phosphate slurry and the development of innovative numerical solutions,
has contributed significantly to our understanding of non-Newtonian vis-
coplastic flows in the context of industrial applications.

The incorporation of the multigrid initialization algorithm into numer-
ical solvers has enhanced the convergence rate, efficiency, and overall com-
putational performance. This contribution can help overcoming the limita-
tions of single-grid methods and providing a firm foundation for future stud-
ies exploring other non-Newtonian problems and complex geometries. The
proposed experimental protocol for measuring the shear rheology of con-
centrated phosphate slurries is an equally substantial contribution, yielding
important insights into the behavior of these mixtures and pointing toward
more accurate, efficient solutions for their management.

The use of a vane geometry and subsequent optimization of rheometry
tests further refined our understanding of phosphate suspensions and shed
light on achieving more precise measurements of rheological characteris-
tics. The robustness of our methodologies is clearly demonstrated in our
rheological model, which not only aligns well with experimental findings
and outperforms existing models in terms of predictive accuracy, but also
successfully reproduces the flow dynamics of batches in a pipeline system.

Undeniably, the methodologies proposed in this thesis for addressing the
intricacies of viscoplastic flows and rheology of phosphate ore slurry have
yielded substantial and noteworthy outcomes. Nonetheless, the pursuit of
knowledge is relentless, and so the research continues! As we look to the
future, we envisage several potential extensions of the work presented here.

Future work may focus on extending the range of shear rates examined,
with a particular focus on extremely low and high shear rates. Investiga-
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tions may also be expanded to other suspensions to verify further the advan-
tages of the proposed rheological model. Additionally, with the increasing
drive towards sustainable industrial processes, an interesting perspective
could be the exploration of phosphate slurry interactions with environmen-
tally friendly, biocomposite polymeric-based systems. This could pave the
way for new strategies to improve filler dispersity and avoid harmful aggre-
gation, advancing the utility and sustainability of phosphate ore processing
and application.

Finally, this research encourages the continual adaptation and optimiza-
tion of the rheological model proposed here to keep pace with evolving
industrial needs and advancements in technology. Further computational
enhancements and innovative algorithmic solutions may also be sought, im-
proving the efficiency and the accuracy in the prediction and management
of phosphate slurry flows.

In closing, this research has laid the groundwork for an innovative and
constructive path in the study of phosphate slurry flows and viscoplastic
behavior. The tools and methods we’ve developed hold promising potential
to guide and shape ongoing and future research in this field.
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