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Chapter 1

Introduction

Contents
1.1 General context . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Transients phenomena in electrical networks . . . . . . 3
1.3 Mathematical modeling of electrical networks . . . . . 5
1.4 Optimization and acceleration efforts . . . . . . . . . . 8

1.4.1 Parallelization of computations . . . . . . . . . . . . . . 8
1.4.2 Hybridization of EMT models and low level of detail

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 State of the art on EMT-TS co-simulation . . . . . . . 10

1.5.1 The partitioning . . . . . . . . . . . . . . . . . . . . . . 10
1.5.2 The interaction protocol . . . . . . . . . . . . . . . . . . 15
1.5.3 Exchanging Values . . . . . . . . . . . . . . . . . . . . . 16

1.6 Outline of the thesis & Contributions . . . . . . . . . . 19

1.1 General context
At a time when ecology is at the heart of concerns, the integration of renewable
energies into the network is increasing. Moreover, the share of these energies should
increase further, at least in Europe, over the next decade in order to reach the
European Union’s objective of 45% renewable energies in its energy consumption
by 2030 (revision of the Renewable Energy Directive (RED) voted on September
14, 2022 by the European Parliament).
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2 CHAPTER 1. INTRODUCTION

In addition, networks are increasingly interconnected. In Europe, for example, it
was recently voted that each member country must have at least two cross-border
projects. Thus, High Voltage Direct Current (HVDC) lines are created to connect
unsynchronized electrical systems, or electrical systems connected over very long
distances, Celtic Interconnector, linking France and Ireland is an example of this
type of project in progress. HVDC lines are also being created to transmit power
generated in new renewable energy resource parks located in the least populated
areas (example: Sahara wind project). Power systems are mainly Alternating cur-
rent (AC), the HVDC lines are connected to the networks through power electronic
converters.
This development of renewable energies and HVDC links therefore leads to the
presence of more and more power electronics components in the networks. This
type of component implies faster transients than those implied by the historical
infrastructure. However, in a world where most things run on electricity, the secu-
rity and reliability of the power grid is a priority. Proper modeling and simulation
of these systems is essential to ensure their safety and sustainability. Indeed the
simulation allows to predict the situations which can occur in the future without
spending a lot of money in non-virtual tests. This also makes it possible to check
the correct calibration of the components and thus to have more durable networks
over time.

SuperGrid Institute
This PhD was carried out within the SuperGrid Institute. SuperGrid Institute is
a French institute for the energy transition (ITE). This independent research and
innovation center combines industrial expertise and public research and relies on
private and public shareholders.
The research and innovation work carried out within the SuperGrid Institute is
dedicated to the development of the electricity transmission network of the future,
indeed SuperGrid Institute intends to be an important player in the transforma-
tions of the network aimed at including more renewable energy resources.
The production of renewable energies being, in most cases, located far from the
places of consumption, the development and improvment of High Voltage Direct
Current and Medium Voltage Direct Current lines allowing the transport of a large
quantity of energies over long distances is an important issue in the transformation
of networks. This is why research on this type of technology is a major activity at
SuperGrid Institute.
Thanks to the presence of different expertise profiles,
SuperGrid presents a multidisciplinary approach offering a wide range of services
and solutions for the development of electrical systems, equipment and compo-
nents. SuperGrid Institute’s test platforms also allow it to offer large-scale studies
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and simulations.
SuperGrid Institute is made up of several research programs:

• Supergrid Architecture & Systems, in this program, the focus is on high and
medium voltage direct current control and protection strategies.

• Hight Voltage Substation Equipment, in this program substation technolo-
gies that meet the constraints of future DC networks and those of current
AC networks are developed.

• Power Electronics & Converters, in this program, power transmission solu-
tions networks are developed, research in this program also covers AC/DC
and DC/DC converters.

• HVDC Cable systems & Junctions, in this program, high-performance insu-
lation materials meeting the constraints of HVDC are developed.

• Power Storage & Balancing, in this program, hydraulic storage technologies
are adapted and developed to support the integration of renewable energies
within the European electricity network.

This PhD was carried out within the Architecture and Systems program, in fact,
research on the improvement of the simulation of electrical systems, necessary for
research in the field of power transmission systems is one of the activities of this
program. More precisely, this thesis took place in the Modeling and Simulation
team, whose objective is to develop models and simulation platforms for the study
of HVDC networks.
The expectations of the SuperGrid Institute regarding this thesis were first of all
to co-simulate the EMT and TS models in order to improve the simulation of
networks but also to bring a mathematical point of view on this subject. Another
objective was to develop skills on the Modelica language and to get a deeper insight
on the OpenModelica tool suite.

The following section will present the main categories of network transient and
their modelisation.

1.2 Transients phenomena in electrical networks
As introduced previously, the different types of equipment present on a network in-
volve more or less rapid transients. There are several main categories of transients
in power systems [72]:
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• Electromechanical transient: predominant transient in the network, the
system is assumed to remain in quasi-steady state. This type of transient is
simulated using a Transient Stability (TS) type modelisation. This type of
simulation can simulate low frequency disturbances and be used to simulate
millisecond scale events. Based on the observation that the fast transients
attenuate and then quickly disappear, the Phasor type simulation simply
ignores them. Transient stability simulation captures dynamics down to 5
Hz. PSS/E software allows simulating networks with this type of simulation.

• Electromagnetic transient: these are the fastest transients (of the order
of a microsecond) and which require the finest modeling: modeling of the
electromagnetic transient type (EMT). This type of modeling consists in
keeping the complete DAE system and solving it. This makes it possible
to capture all the transients and to obtain the most detailed simulation
possible of the electrical network and to monitor all of its dynamics. an EMT
time step size is a few tens of microseconds (unless there is faster dynamics
that requires smaller time steps). Emt-type simulation is generally used
to simulate small networks in which fast dynamics occur because the big
disadvantage of this type of simulation is that it requires a lot of resources
and more calculation time. Examples of software allowing simulation with
this type of modeling are: EMTP, PSCAD, RTDS and Hypersim.

Figure 1.1: Time frame of power system transients [93]

We also compute the operating point in Steady-state by methods of the load-
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flow type. These methods are generally used to simulate balanced transmission
systems. They are useful for the initialization of simulations in order to start from
equilibrium conditions. Figure 1.1 shows how power system phenomena are stud-
ied based on the time scale at which they occur.

For large electrical systems, EMT simulation appears to be limited in terms of
simulation time because very small time steps must be used to capture highly
oscillatory phenomena. For example, the comparison between fixed and variable
time steps solvers on an ieee118 test case with 118 Buses in the article by Masoom
& al for highly oscillatory phenomena shows that this type of simulation is quite
expensive when the required time steps are very small [75]. Commercial and non-
commercial tools exist to model power systems. Some tools allow you to create
components from the equations that govern its behavior and then connect these
components together to create a network. The tool then takes care of creating the
DAE system corresponding to the network. For this thesis, the choice fell on the
OpenModelica suite of tools. This choice was made for the transparency of these
tools, the fact that it is based on components and that they use the Modelica
language which is increasingly used in the electrical industry and finally this tool
is opensource. In this way, investigating what is possible to do with this tool is an
integral part of the objectives of this thesis.

1.3 Mathematical modeling of electrical networks

The electrical network can be viewed as a graph connecting electrical components
through their connecting pins. The vertices or nodes of this graph are the pins of
electrical components and its edges are the link between vertices of two connected
components. Some physical quantities are defined on this pins such as currents and
voltages. The common principle of different mathematical modeling is based on
the application of Kirshoff’s laws, which establish the mathematical relationships
between the different physical quantities of an electrical network. Kirshoff’s laws
are as follows:

• Kirchhoff’s current law: The sum of the currents entering a node is equal to
the sum of the currents leaving this node.

• Kirchhoff’s voltage law: The sum of the voltages around any closed loop is
zero.

The nodal analysis express the potential at each node using Kirshkoff’s laws and
the component properties of the branches connected to that node. It creates
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an admitance matrix linking the sum of the current entering each node and the
voltages. However, the nodal formulation does not allow to directly represent
certain devices as current-dependent circuit element [53].
The Modified Nodal Analysis, introduced by [53], widely used in network model-
ing since [114], then the Modified Augmented Nodal Analysis presented in [72],
improved especially for modeling electromagnetic transients [71], allows one to
overcome those dificulties. This way the complete network is written in the form

ANtzNt = bNt ,

where ANt is the linearized matrix at time t, if there are nonlinear devices, the
admittance matrix of the nodal analysis is included in the matrix ANt . The
zNt are the current and voltages unknowns and bNt contains the knowns current
and voltages at time t. Notes that in this formulation the time discretization has
already been performed.
Another method often used to obtain the system representing the dynamics of the
network is the state space analysis, it is a method widely used in physics. The
general form of state space system is :

v̇(t) = Av + Bu
w = Cv + Du

(1.1)

where v are the state variables, u the inputs and w the outputs. The state matrices
A,B,C,D are linear matrices or some linearizing around a time t of the components
behavior in the electrical network and must be recomputed if nonlinear components
are involved or if there are topology changes in the network.
The more general mathematical formulation of the electrical network considers the
construction of the differential algebraic equations system induced by the Kirshoff’s
laws and the electrical network’s components modeled using differential equations:

F (t, x(t), ẋ(t), y(t)) = 0 (1.2)

where x(t) ∈ R
n are the differential unknowns, ẋ(t) ∈ R

n are the derivatives of x
with respect to time and y(t) ∈ R

m are the algebraic unknowns. Some tools based
on Modelica language generate such DAE system.
To find a form of DAE system more similar to the state space system, one can
separate in the DAE system the purely algebraic equations from the others. This
way the general DAE system (1.2) can be rewritten as:{

ẋ(t) = f(t, x(t), y(t))
0 = g(t, x(t), y(t)) (1.3)

The mathematical modeling of the electrical network depends also on the nature
of transient phenomena that must be catched. Certain assumptions made or not
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made about the shape of the unknowns can lead to different levels of mathematical
modeling.
If no hypothesis is made on the shape of unkwnowns, then the DAE system formu-
lated by system (1.2) will be solved to adress some EMT stability. The presence
of fast dynamics strongly constrains the time step length of the DAE numerical
solver.
A strong hyppothesis on the shape of the unknowns can simplify the system (1.2).
The phasor modeling considers the electrical unkowns as sinusoidal signal with a
given constant frequency ω0 and a phase θ and can be represented by a complex
constant amplitude A. The time derivative is then applied to the sinusoidal part
of the phase vector. It results on a simplification of system (1.2) in a linear system.
If steady-state solutions are searched, the time derivatives in system (1.2) can be
omitted.
Lately another type of simulation which is a compromise between phasor simula-
tion and EMT simulation has been eveloped: simulation using dynamic phasors. A
dynamic phasor is a phasor whose magnitude A(t) and phase angle θ(t) are time-
dependent values. Dynamic phasors for electric network simulation construction
is presented below, using the notations of [16], [61]:
Due to the Fourier transform, a periodic waveform x(τ) can be written on the
interval τ ∈ [t − T, t] where T is the observation period considered, as

x(τ) =
+∞∑

k=−∞
Xkejkω0τ

. Now consider that our waveform is not strictly periodic (in an almost periodic
state), so the Fourier coefficients would be time-varying:

Xk(t) = 1
T

∫ t

t−T
x(τ)e−jkw0τ dτ = 〈x〉k.

We have this following properties:

• 〈dx
dt

〉k = d〈x〉k

dt
+ jkω0〈x〉k

• 〈xy〉k = ∑
i〈x〉k−i〈yi〉

In power electric it’s this Fourier coefficient Xk(t) which is conventionally called
Dynamic phasor. The DAE system (1.2) is transformed into another DAE system
with putting each unknown as a sum of dynamic phasors. The sum range depends
on the harmonic kept. As harmonics are computed separately there is a multipli-
cation of variables. Despite this enlargement of the DAE system, as time varying
Fourier coefficients are slower than the original values, it allows time step much
bigger than EMT (2 to 30 times larger). Demiray [28] discusses on the feasability
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of using Dynamic phasor to simulate large networks, dynamic phasor simulations
type allow to catch dynamics up to 60Hz with a computation time reasonable for
large networks. Hassani & al [51] tested dynamic phasors and the results they
obtained are that this type of simulation has no advantage over a simulation in
the time domain.
Table 1.1 is a summary of the modeling of the three previously presented simulation
type for the basic components.

EMT dynamic Phasor Phasor
system F (t, x(t), ẋ(t), y(t)) = 0 〈F (t, 〈x〉(t), ˙〈x〉(t), 〈y〉(t)) = 0 F̃ (t, X(t), Y(t)) = 0
variable free shape 〈x〉(t) =

∑m
k=0 x̄k(t)ejωkt+φk(t) X(t) =

∑m
k=0 X̄kejωkt+φk

resistance u = Ri ũk = Rĩk ũ = Rĩ

inductor u = L di
dt 〈u〉k = L〈 ˙ik〉 + L〈i〉kkjωo ũ = Lĩjωo

capacitor i = C du
dt 〈i〉k = C ˙〈uk〉 + C〈u〉kkjωo ĩ = Cũjωo

Table 1.1: EMT, phasor and Dynamic phasor representation

1.4 Electrical network simulation optimization
and acceleration efforts

Several axes have been explored to speed up the simulation and/or bring more
precision:

1.4.1 Parallelization of computations
A lot of work has been done to propose the possibility of executing several parts
of the electrical network simulation in parallel. Platforms have been developed,
based on the Functional Mock Up (FMI) interface standard [21], like Daccosim [34]
which is a platform on which a lot of effort is made for the sharing of tasks, or like
the MasterSim platform [89] which is based on an iterative process and which thus
increases the stability of the simulation coupled, or like the InSystemLab (ISL)
platform which allows running several co-simulation sessions in parallel.
Some others are using Domain Decomposition Method to perform homogeneous
Co-simulation. Domain decomposition methods are methods where a problem
is divided into several sub-problems and the resolution of the global problem is
done in two stages, the first being the local and independent resolution of each
sub-problem and the second step being the resolution boundary problems between
each "neighbor" subproblem. Aristidou & Al [4, 9, 10, 7] developed two parallel
algorithms based on the Schur complement. He integrated these methods into the
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platform RAMSES [5, 6, 8] which makes it possible to launch a Phasor-Phasor
type co-simulation in parallel in an efficient manner.
Waveform relaxation type methods are also used for solving electrical circuits since
Lelarasmee did [65]. Waveform relaxation methods are iterative methods consist-
ing in cutting a system into subsystems, and, starting from an initial estimate of
the solution over the complete time interval, an approximation is obtained at each
iteration closer and closer to the real solution.
In each subdomain, the coupling terms are given in the form of signals obtained
from neighboring subdomains at the previous iteration. Magoules & al studied
the use of this type of method on large power systems [98], they concluded that
the convergence of the method is particularly slow, especially if there are many
subsystems. They therefore proposed an initialization method and a precondition-
ing method which make it possible to drastically reduce the number of iterations
necessary. In his PhD Khumbar studied the use of Optimized Waveform Relax-
ation (OWR) methods on electrical systems, and worked on the back-substitution
method, a method based on Schur’s complement, which allows to reduce large
circuits to smaller ones [41]. A more in-depth state of the art on these methods
and their use in electrical systems has been carried out in chapter 4.

1.4.2 Hybridization of EMT models and low level of detail
models

To add detail in the simulation without adding too much computational weight,
EMT-TS hybridization was explored. For example, Cossart [26] deletes the differ-
ential part of the corresponding equations at the place where he considers not to
need a high level of detail. E-TRAN [27] is a tool that was developed to "trans-
late" a TS model into a dynamic equivalent for inclusion in an EMT simulation.
Therefore, the objective of these hybridizations is to take advantage of both the
level of detail of the EMT and the computational efficiency of the less detailed
model. With this type of hybridization, the system is not split and the TS and
EMT parts are solved together in a global problem. We speak of co-simulation
when the problems are solved separately, then interfaced.
EMT-TS hybrid co-simulation was also studied, and the difficulties were noted by
Jalili-Marandi& al [55]:

• The partitioning: with a good detail/efficiency compromise, in fact the EMT
system, located in areas requiring a high level of detail, must be quite small.
The cutting must be far enough from potential disturbances both to capture
possible disturbances with the EMT modeling and for the stability of the
method, indeed if the interface is too close to the disturbance, this can cause
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problems in the data transmission. The decomposition must also allows the
method to converge.

• The interaction protocol: the protocol can be serial or parallel. The updates
of the sub-models with the data retrieved from the other sub-model which
can be synchronized or not and more or less frequent. The protocol can be
iterative or not. The choice of exchange times must take into account the
difficulty of the fact that the two types of models do not use the same time
steps.

• The translation from one type of model to another: indeed, the TS and
EMT variables not having the same form, they must be transformed for the
exchange of information.
These transformations should not be too computationally expensive and as
accurate as possible. In some cases, we cannot pass only discrete values, so
a full or partial representation of the other submodel is created in each sub-
model. These representations are in the form of dynamic equivalents. They
are especially useful for those using component-based tools where discrete
values, on its own, cannot be passed.

The main objective of this thesis being the EMT-TS co-simulation, the following
section will then be a state of the art dealing with the various locks related to the
co-simulation mentioned above.

1.5 State of the art on EMT-TS co-simulation

1.5.1 The partitioning
One of the first steps to perform EMT-TS co-simulation is network partitioning.
The location of the interface has an impact on accuracy and performance. In-
deed, the EMT type simulation requires much heavier calculations than the TS
simulation, it is therefore necessary to try to minimize the part of the network
simulated in EMT, but also to try to take into account the principles of parallel
calculation to take advantage of the architecture of the machine. To guarantee
accuracy, it is necessary to identify precisely the parts to be simulated in detail
but also to pay attention to the location of the interface in relation to the location
of the disturbance. The first idea in the literature was to minimize the EMT part
as much as possible, as in [52] which modeled an HVDC link in an AC system
and which naturally located the interface buses to the terminal converters. This
idea has in fact the big advantage not only of minimizing as much as possible the
part simulated in EMT but also the number of interface buses. On the other hand
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this idea does not take into account the phenomena of harmonic distortion and
the asymmetric defects which when are located near the interface generates im-
balances. To overcome this problem, it was proposed to widen the area calculated
in EMT, the challenge being to know how far it is optimal to extend the detailed
area so that the hybridization remains advantageous in terms of cost of calculation
and that imbalance phenomena disappears [55].

1.5.1.1 Based on line

A common way to spit the power grid is to cut transmission lines. One can obtain a
rapid and quite efficient network partitioning based on the natural delay induced
by the transmission lines and the network connectivity (the subnetworks must
have as few interactions as possible between themselves) [36]. when the network
is cut at transmission lines, then, thanks to the natural delay the current and
voltage informations to exchange from one susbsystem to another, will only count
as "history current" in the nodal equations of the receiving subsystem [82].
As the delay allows the information to be consider as "history current", the delay
must necessary be at least as long as a time step. In [82] the crossing time of the
transmission line must be equal to the time step of TS subsystem (which must also
be a multiple of the EMT solver’s time step ); Thus, time-steps of the two solvers
are necessary time-invariant, but, in addition it is chosen taking the length of the
transmission line into acount rather than dynamics present in the networks.
Le-Huy & al [63] go even deeper in exploiting transmission lines properties: they
still used tansmission lines to partition but also as real "interfaces" between the
susbsytems and the two (EMT and TS) types of simulation. Indeed, real trans-
mission lines are modelise as "hybrid lines" which will contain the representation
translator.
The two most positive points in this modelisation, is fisrtly that its hybrid line
allows informations to directly pass from EMT subsystem to TS subsystem, with-
out the need of equivalent systems, and secondly that the location of the fault
has no impact on the location of the interface, indeed in generally the fault must
happens far enough from the interface [55]. One of the downsides being that as
the natural decoupling of the wave which occurs in transmission lines is used to
separate the harmonics in order to choose the one to keep for the phasor repre-
sentation, the TS subsystem can only be on the receiving side of the line. It adds
another geographic constraint for partitioning. The partitioning according to the
transmission lines takes advantage of a physical phenomenon which will be present
and need to be taken into account in power system modeling. Despite this, it has
the disadvantage of posing a geographical strong constraint. This constraint is not
so inconvenient when the subsystem are simulated with the same simulation type
[36]. But as soon as this constraint is not based on the dynamics distribution in
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the networks, if the aim is to simulate subsystem with different simulation type
explicitly to catch differents transients, it’s becoming quite incomfortable. There is
as well a strong correlation between the length of the transmission line interfacing
two subsystems and the time steps used by the two solvers [82, 63].

1.5.1.2 Coherency based partitioning

Some methods that have been developed for network partitioning consist of iden-
tifying and separating the oscillation modes of dynamics, these methods are based
on modal analysis and coherency methods [3]. These two methods types were first
designed to build low frequency equivalents. They are based on the analysis of
eigenvalues of the linearized state space equation of a network:

v̇l(t) = Alvl + Blul

wl = Clvl + Dlul
(1.4)

The eigenvalues of Al furthest from the origin are related to the most damped
quantities, the events in the parts of the network represented by these equations
therefore disappear more quickly. In the modal methods, the less damped modes
are extracted. Coherency methods consist of keeping only the swing equations,
then reconstructing a state space system with these equations. Identifying in
this system the degree of dependence between the different eigenvalues makes it
possible to identify and group the machines into coherent groups (to construct a
low-frequency equivalent, replace each group by a large equivalent machine). This
method makes it possible to group together the strongly coupled machines in the
same subsystem and that way, to cut on the weakest links. These two types of
methods are also called two-time scales methods because they are based on the
separation of the system dynamics into slow dynamics and fast dynamics.
Many partitioning methods are inspired by coherency or modal methods. Znidi
& al [116] developed a coherency bus method by considering that the dynamic
response of a generator after a disturbance directly influences the variation of the
phase angle of neighboring buses. A PPCC (Pearson Product -moment Correlation
Coefficient) is implemented to quantify the degree of consistency between each pair
of buses. The problem is then transposed into a graph partitioning problem by
placing the buses as vertices and the PPCC between two buses as the weight of
the connection between these two buses (vertices). The graph is partitioned using
HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications with
Noise) [24]. Raak & al [100] also partitions the network using bus coherency based
on voltage angle dynamics, the main difference is that the calculation is based
on koopman modes and can therefore be performed on a non-linear system. The
major drawback of these methods is that to calculate the tension angle dynamics
either the network has been previously fully simulated or all the data has already
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been measured on the real network (and therefore the disturbance has already
produced on the real network).
The Modal method was used by Cossart in his PhD [26] to identify the state
variables which participate the most in each pole (eigenvalue of Al). The state
variables will be grouped by group of poles in which they participate. The state
variables participating in poles that one has chosen to neglect will be residualized,
that is to say that a diagonal matrix E called residualization matrix is built and
is going to be applied to v̇. E(i, i) = 1 if the differential part of the equations
associated with the variable v(i) is to be kept, if E(i, i) = 0 , v(i) is residualized
(the differential part of the equation is neglected, v(i) is no longer differential but
algebraic variables), which amounts to applying the approximation of phasor to
the poles to be neglected. Choosing the pole to preserve is choosing the dynamic
to preserve, and for this Cossart developed three strategies.
The first strategy consists in simulating with details only the least depreciated
modes. Therefore neglect the variables associated with the poles whose real parts
are the farthest from the origin. This method has the advantage of being easy
to implement, fast (once all the eigenvalues are computed) and direct. On the
other hand, this strategy proposes to neglect the fastest dynamics, which can also
cause damage on the networks. In addition, these fast dynamics, unlike the slower
ones, cannot be catch with a Phasor simulation but can be with an EMT type
simulation. The second strategy consists in calculating, using Hankel Singular
Values (HSV), the most reachable states in the balanced realization, once these
states identified, it remains to identify which poles are linked to these states using
participation factors and finally to group the state variables participating in these
poles (residualizing the others). Therefore, it is necessary to calculate beforehand
the HSV and the balanced realization in order to identify the most observable
states, the calculation of these elements is not very heavy in computing time, for
that raison, the method is quite straightforward. On the other hand if the system
is not very decoupled the model will not be very reduced (the EMT part can be
too large). To calculate the participation factors, it is not necessary to linearize
the network, indeed, Netto & al [87] set up the calculation of the participation
factors using the koopman modes.
Finally, the third strategy consists in minimizing an error criterion. Error criterion
obtained by applying the Fourier transform to the linearized system of equations
and to the system of equations to which a residualization matrix (a diagonal matrix
whose coefficients are 0 if the associated state variable is to be residualized and
1 otherwise) is applied. The main disadvantage of these method is that to apply
these strategies, all the eigenvalues of the system must be obtained before the
simulation, whereas the calculation of all eigenvalues of a system can be very
heavy for large networks.
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Partitioning can also be linked to the method used, this is the case of Tsuji & al
who developed a partitioning method base on the analysis of eigenvalues and with
the aim of improving the performance of the relaxation method [112]. Khumbar
[41] worked on the impact of two types of partitioning according to the method:
partitioning on Voltage node or partitioning on Current node. He shows that it
has no impact in the classical waveform relaxation method whereas the optimized
waveform relaxation converges faster with the partitioning on Voltage node.

1.5.1.3 Graph based partitioning

We have seen a physical point of view of partitioning, a point of view which will
be essential in the precision of an EMT-TS co-simulation, but let us remember
that one of the objectives of this co-simulation is to save time and therefore ideally
to simulate in parallel. A good partitioning is essential for parallel computation,
indeed the quality of partitioning has an impact on the speed of computation (for
load balance considerations) but also on the good convergence of the algorithm
of parallel computation as we will see in the next chapters. The bases of this
partitioning must be a balance of the loads allocated to each processor as well as
a minimization of the communication costs.
The electrical network can be seen as a graph (by perceiving the components as
vertices and the lines connecting these components as edges) and therefore a graph
partitioning tool can be used to fairly share the computational loads between the
processors. An example of a graph partitioning tool is ParMETIS [90, 59], which
is a library for partitioning an unstructured graph, minimizing as much as possible
the number of edges of the graph cut by partitioning. This tool is therefore based
on the network connectivity.
Aristidou [4] pointed out that the partitioning of the electrical network depends on
multiple factors such as the size and type of the network considered, communica-
tion costs, and even the intrinsic dynamics of the system. For example, it is better
not to cut in a too dense place (for example not to cut a component) to avoid this,
a dependence matrix D can be constructed, if the system has N equations and N
unknown, the size D will be N × N and D(i, j) = 1 if the j-th variable plays a role
in the i-th equation, 0 otherwise.
Falcao & al [36] performed a partitioning based on the lines in order to take advan-
tage of the delay induced by them, but then taking into account the load balance.
They underlined the fact that a physical partitioning of the system may not be op-
timal. Hence, by cutting with respect to the line, there will certainly be processors
whose computational load will be much heavier than the others, and therefore the
least loaded will have to idle while waiting for the others to finish their calcula-
tions, which is not optimal since the capacity of the machine is not fully mobilized.
The Falcao & al ’s technique is once the network is cut on the lines, the lines are



1.5. STATE OF THE ART ON EMT-TS CO-SIMULATION 15

prioritized, so the importance of the connections is evaluated, the subnets with
the weakest connections are redistributed between the less loaded processors (this
technique is effective especially where there is more sub-domain than processors).
Shu & al [107] built a partitioning algorithm whose main objective is to maintain
an equal calculation weight between the sub-parts and to minimize the connec-
tions between the different sub-networks. First, network partitioning is treated
as a graph partitioning problem. A function for evaluating the design weight to
be minimized is constructed. Computation-weight-to-be-minimized = Computa-
tion weight of the heaviest sub-network (in computation weight) + Total weight
of communications between sub-networks. In a second step, the entire network
is considered to be an assembly of different regions (whose communication be-
tween regions is less close than within a region) or province or station depending
on the size wanted for the subnetworks. What was previously obtained with the
partitioning of the graph will be refined by putting the weights in relation to
the strength of the connections observed. At each refinement the Computation-
weight-to-be-minimized function is re-evaluated and when the result exceeds that
initially obtained (after the first partitioning considering the problem only as a
graph partitioning), then the algorithm stops and the preserved partitioning is the
penultimate (the one before the initial weight is exceeded).
We have seen that it is important that in addition to the physical aspect, a more
practical aspect, concerning the machines used, is taken into account to be effec-
tive. These approaches allow these two partitioning points of view to be linked.
However, it should not be forgotten that they are used on a domain using only one
type of simulation, so the calculation weights of the sub-networks can be compa-
rable, and there are no constraints related to the components to be simulated in
more detail than the others.

1.5.2 The interaction protocol
To co-simule several simulation types, it is necessary to orchestrate datas exchange
and define each simulation executed time. This orchestration is called iteration
protocol, it can be implemented different ways, an architecture master/slave type
is possible or the two simulations can run independently. The iteration protocol
plays a key role in the accuracy and speed of the simulation. There are then two
possibilities: serial protocols or parallel protocols, although the architecture of the
computing machine must be taken into account in the choice, we will limit ourselves
to cases where we use machines using MIMD type architectures. During serial
protocols, one simulator operates while the other one is idle, waiting to retrieve
information from the one running, in order to update and/or make new predictions.
A good point of this type of simulation protocol is that, if the partitioning allows
the co-simulation to be convergent, the EMT part often requires only one iteration
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thanks to the small size of its time-steps (unless there are non-linearities) [55]. An
example of a serial protocol will be a multiplicative schwarz used by Plumier & al
[95]. One of the main objectives of co-simulation is to gain speed, which is why
parallel protocols will be preferred.
In the case of heterogeneous EMT-TS co-simulation, the protocol must also take
into account the difference in time step, most often the EMT time step is chosen
so that Δtemt = m ∗ Δtts with m inN, and the macro time step is often chosen
to be the TS time step. The EMT subsystem can then be updated at each EMT
time step with interpolated values.
During a parallel protocol, the two simulators operate at the same time and ex-
change data during the appointment time (which is often chosen at the end of the
TS simulation time step). The same time step is replayed until the convergence
of exchanged datas. The protocol can also adapt itself to the state of the circuit,
during a disturbance, the EMT system can, for example, be updated by the TS
subsystem to scheduled appointments, but does not transmit information to the
TS subsystem until the disturbance is smoothed, it’s also possible to iterate only
on certain parts and give the information to TS system only at the end of the
process [113].
The protocol can change practically at each stage of the simulation. Shu & al [106]
set up a mathematical index taking into account the evolution of the current at
the interface between the two simulations from one time step to the next. If the
current has changed a lot during this period, it considers that the dynamics are
fast, then for the next time step, a serial protocol will be preferred, because the
serial protocol seems more precise, otherwise a parallel protocol will be preferred.
In co-simulation algorithms such as non-iterative Jacobi, zero-order hold iterative
co-simulation and non-iterative algorithm improving variables smoothing, the de-
lay of one co-simulation step (i.e. TS time step delay) between the given inputs
and the retrieved outputs of the TS and EMT systems can lead to instabilities.
Some iterative techniques such as the fixed point method [31] or the Newton-
like method [95, 1] can, even with a high order smoothing constraints, solve the
so-called "constraint function" corresponding to the interface of the systems [32].

1.5.3 Exchanging Values
During a co-simulation, an important axis is the choice of the values to be ex-
changed. A classic choice is the VI method where one model sends voltages and
receives currents and the other model sends currents and receives voltages. An ac-
ceptable choice is the power-conjugate interface (exchanging values whose product
gives power, the VI method is so a power-conjugate interface), this choice allows
to have more stable and more precise results in the presence of delays. Thus, Ri-
morov & al focused on proposing power-conjugate interface that combines current
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and voltage through an "impedence" parameter resulting from non-physical related
boundary conditions [102].

1.5.3.1 Transformation of the values

For EMT-TS co-simulation, whether it is an EMT-Phasor or EMT-Dynamique
Phasor co-simulation, the datas to be exchanges must be transformed so that it
respects the representation of the values in the other subdomain.
To extract the phasor signal from an EMT signal, a commonly used method is
to extract the amplitude using the root mean square (RMS) of the waveform
and the angle is obtained using the fundamental value of the waveform [15],[92].
To perform this extraction, a window the size of one cycle of the fundamental
period of the signal is necessary. This is the major drawback of using a method
based on the Fourier transform. Another difficulty when transforming values from
EMT to dynamic phasors is that all harmonics must be extracted independently,
Mudunkotuwa & al [83] proposed a method to extract dynamic phasor without
computing all harmonics. A commonly used method that does not introduce any
delay is referential switching, Plumier & al [96] supplements this approach with
a low pass filter. Other commonly used methods are the curve fitting techniques
[94]. For phasor transformation to EMT, linear interpolation is often used [92],[96].
Finally, some co-simulate EMT models with phasor models using a dynamic phasor
region as a buffer region, and thus perform EMT-Dynamic Phasor transformation
and dynamic Phasor-Phasor transformation [60].
A more developed state of the art on the methods used in this thesis is written in
chapter 3.

1.5.3.2 Dynamic equivalent

Often the models need to access an equivalent representation of the other model.
In this case, representations updated with information coming from the subsystem
that it represents, are created: dynamic equivalents.
Build a dynamic equivalent consists in replacing certain elements or element sets of
the complete network with another element in order to simplify the simulation of
the network while keeping a great fidelity of the physical behavior of the network
(or the piece of network) concerned. The type of equivalent system used depends on
the type of phenomenon to be observed. Annakkage [3] classifies the equivalents
into three kinds: High frequency equivalent (HFE); Low frequency equivalent;
and Wideband equivalent when both low and high frequency transient must be
adequatly represented.
Two kinds of high frequency equivalent are available: Two Layer Network Equiv-
alent (TLNE) and Frequency Dependent Network Equivalent (FDNE) which is
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the HFE the most used in co-simulation EMT-TS. Annakkage reminds that, for
HFEs, the subsystems to be modeled are assumed to be linear [3].
To obtain the FDNE of a subsystem, the first step is to obtain the admittance
matrix using nodal analysis. The only preserved values of the matrix are those
involved in the terminal ports (the ports that interface with the other subsystem),
a "teminal" admittance matrix is obtained. Subsequently, a method is used to
fit the frequency admittance characteristics in a rational function[97]. The most
used methods to construct this rational function are vector fitting, Matrix-Pencil-
Method and Loewner Matrix techniques. Of these three methods, the one that
gives the most accurate results is the vector fitting method [80]. These three
methods have been combined by Morales & al in order to preserve high accuracy
of the vector fitting technique while accelerating its convergence [79]. To build the
TLNE, the subsystem is divided into two layers: a low order frequecy transmission
lines model and an FDNE.
Although much effort has gone into finding other equivalent models for EMT-TS
co-simulation, most of them are still based on Norton and Thevenin equivalents.
The fact that most equivalents are based on Norton and Thevenin equivalents is a
major drawback, since this type of equivalent is only valid for linear networks. [55]
and [95] provide an overview of the equivalents used in the EMT-TS co-simulation
context.
In EMT-TS co-simulation, equivalents are used so that each subsystem has a full
representation of the other subsystem. So instead of updating the other simulator
directly with boundaries values, a subsystem will update its full representation in
the other simulator.
The subsystem modeled in EMT will be represented with an equivalent of low
frequency type equivalent in the TS system and The TS system will be represented
with an equivalent of high frequency type (such as an FDNE admittance in parallel
with an ideal current source [95]) within the EMT simulator (because of frequency
which is of interest for the EMT part are the high frequency).
Although most studies on EMT-TS co-simulation are carried out with equivalent
models and their usefulness in this type of co-simulation is defended by
Jalili-Marandi & al [55], who consider that each simulator requires knowing the
characteristics of the other zone. It is legitimate to ask whether this knowledge
is necessary or whether it is sufficient for each subsystem to have information on
what is happening at its border. For instance, Le-Huy & al [63], do not have
an equivalent model in its co-simulation, so equivalent model, in co-simulation
EMT-TS, are not a necessity. Indeed, the use of equivalent models requires an
additional simulation, as well as additional calculations and new calculations to
be carried out in case, for example, of a topology change in a subsystem (moreover
this recalculation must be taken into account in the protocol iteration).
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1.6 Outline of the thesis & Contributions
In order to obtain an EMT-TS co-simulation using domain decomposition meth-
ods, it was a question, initially, of working on the domain decomposition methods
applied to the electrical circuit, to choose those which seemed to us the more
relevant and check that they are working properly within the framework of the
electrical networks. Then to gradually modify these methods in order to apply
them in a heterogeneous way, it was necessary, among other things, to choose and
improve accurate transformation operators, with the constraint that these oper-
ators do not modify the properties of the networks allowing to use the domain
decomposition methods previously chosen. At each stage, it was checked that the
co-simulation combined the advantages of the two types of modeling. Then, it
was proven that the chosen domain decomposition method was part of a larger
framework, which allowed us to develop different simulation strategies. Finally, a
simulation platform based on the methods developed throughout this thesis has
been designed and is under development.
This PhD is presented of five separate chapters, the content of each chapter is as
follows:

• The first chapter contain the introduction, an explanation of how DAE sys-
tems representing electrical circuits are constructed and a state of the art
concerning EMT-TS co-simulation.

• The second chapter contains a summary of the Schwarz domain decomposi-
tion method. This method is then applied in the case of a homogeneous
decomposition of an electric circuit. The convergence of this type of method
is studied and Aitken’s convergence acceleration method is explained and
applied to the electrical circuit. This work was presented at the DD26 con-
ference.

• Chapter three contains the EMT-TS heterogeneous domain decomposition
method. To carry out this co-simulation, a modeling using dynamic phasors
was chosen for the TS part, this choice is motivated by the fact that the
dynamic phasor makes it possible to recover oscillations invisible to the con-
ventional phasor, which can allows one to reduce the part simulated in EMT.
The method used in chapter one is modified to be used in the heterogeneous
case. Work on the passage of data is carried out. We then show that if the
translation operators between models are linear, Aitken’s convergence accel-
eration method still applies. However, the differences in representations and
the difference in time step length are a difficulty for the algebraic calculation
of the error operator, which is therefore computed numerically. The error
operator is calculated only on the TS part of the interface values to overcome
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the difficulty of too many values brought into play by the EMT part and thus
limit the weight of the computations. This method then makes it possible to
accelerate convergence towards the true solution and this even in the cases
where the method diverges. Consequently this allows one to ignore the con-
straint of a contracting error operator in the partitioning. Therefore, the
developed method is not sensitive to the partitioning. This makes it possible
to address the partitioning problem for EMT-TS co-simulation, a problem
that has been widely studied (cf section 1.5.1). This work was presented at
the Numdiff16 conference.

• In chapter four, the dynamic iteration method is presented. It is then shown
that the method used in previous chapters is a special case of Dynamic It-
eration. We proved that the Dynamic Iteration can also be accelerated with
Aitken’s convergence acceleration method. Two strategies are then presented
for using this method: a sequential strategy and a pipelined strategy. The
pipelined strategy makes it possible to use the Dynamic Iteration method
coupled with the Aitken acceleration technique in circuits comprising non-
linear components as well as with variable step simulations. Hence, we show
that it is possible to accelerate the convergence of several successive time
steps at the same time using the Aitken technique, the development of this
pipelined strategy allows to simulate networks including nonlinear compo-
nents without having to perform more iterations. This work was presented
at the DD27 conference.

• Chapter five contains a review of the OpenModelica suite of tools. The use
of these tools is explored and its current status with its advantages as well
as its drawbacks and limitations are discussed. The steps to follow to use
the FMI standard with models developed in the OpenModelica tool suite are
detailed. Finally, a platform based on the work of the previous chapters and
under development is presented. This part was presented at the Electrimacs
conference.
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2.1 Introduction
As presented in the previous chapter the modeling of an electrical circuit can be
represented mathematically by a system of differential and algebraical equations
where the differential part comes from the different components used to model
inductance and capacitance phenomena, the algebraic part comes from Kirchhoff’s
laws of current (Kirchhoff’s point rule) and of voltage ( Kirchhoff’s loop rule).
Let us consider the DAE system that follows where, for all t ∈ [0, T ], x(t) ∈ R

n1

are the differential unknowns and y(t) ∈ R
n2 the algebraic ones:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F (t, ẋ, x, y) = 0
g(t, x, y) = 0
x(0) = x0 ∈ R

n1

y(0) = y0 ∈ R
n2

(2.1)

The variables x and y can represent voltage or current depending on the electrical
components involved in the electrical circuit. x0 (respectivelly y0) is the initial
value of x at time t = 0 (respectivelly y). The function F : R×R

n1 ×R
n1 ×R

n2 →
R

n1 gathers the equations of the DAE system involving some derivates of unknowns
x and the function g : R × R

n1 × R
n2 → R

n1 gathers the equations of the DAE
without derivate of unknowns and correspond to the algebraical constraints as for
example the Kirchhoff’s laws of current.
Our goal is to solve this DAE system by splitting it into several parts (at least two),
i.e. splitting the set of unknowns into several subsets by gathering the differential
or algebraic equations associated with the unknowns belonging to the same subset.
For example, if we consider two subsets the orginal DAE system will be split into
two DAE systems to be solved on the time interval [T +

n , T −
n+1]:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
F1(t, ẋ1, x1, y1, x̃2, ỹ2) = 0
g1(t, x1, y1, x̃2, ỹ2) = 0
x1(T +

n ) = xn
1

y1(T +
n ) = yn

1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F2(t, ẋ2, x2, y2, x̃1, ỹ1) = 0
g2(t, x2, y2, x̃1, ỹ1) = 0
x2(T +

n ) = xn
2

y2(T +
n ) = yn

2

(2.2)

Where x̃2 and ỹ2 in the DAE subsystem 1 (respectivelly x̃1 and ỹ1 in the DAE
subsystem 2) are representations of the solutions x2 and y2 in the DAE subsystem
2 (respectivelly x1 and y1 in the DAE subsystem 1). They can be considered as
inputs for the current DAE subsystem and must be updated at some rendez-vous
time point T +

n during the time simulation.
If x̃2 = x2 and ỹ2 = y2 (respectivelly x̃1 = x1 and ỹ1 = y1 ), the two DAE
subsytems are said to be strongly coupled and can not be solved separately. Co-
simulation techniques consist in having approximations for x̃ and ỹ such as Zero
Order Hold (ZOH), where the x̃ and ỹ are frozen at their values at the time of the
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previous rendez-vous point. Some other polynomial approximations for x̃ and ỹ
such as linear approximations from the values at previous rendez-vous point (First
Order Hold) or with polynomials with higher degree (Second Order Hold or Third
order Hold) can be used. Some extrapolaton techniques with delay such as the
C(p, q, j) scheme of [44] where the input values are extrapolated to order jth from
the solution’s values taken at p regular rendez-vous points in the past also exist.
The major drawback of such approaches, is the difference of the value of the
solution of one subsystem and its representation in the other subsytem at the
next rendez-vous time point and it also limits the size of the macro time step
separating two rendez-vous points times. One solution to avoid this delay at the
next rendez-vous point is to consider iterative algorithms. These algorithms consist
in iteratively updating the inputs x̃ and ỹ in order to have at the end of the macro-
time step the same values of the components x and y that they represent in the
subsystems which provide them. This update needs to integrate the subsystems
on the macro-time step at each iterate.
Schematically the iterative algorithm on the time interval [T +

n , T −
n+1] is written as

follows: starting from initial inputs x̃(0) , ỹ(0), the algorithm iterates over these
values until they no longer change:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F1(t, ẋ1, x1, y1, x̃
(k)
2 , ỹ

(k)
2 ) = 0

g1(t, x1, y1, x̃2, ỹ2) = 0
x1(T +

n ) = xn
1

y1(T +
n ) = yn

1

,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F2(t, ẋ2, x2, y2, x̃
(k)
1 , ỹ

(k)
1 ) = 0

g2(t, x2, y2, x̃1, ỹ1) = 0
x2(T +

n ) = xn
2

y2(T +
n ) = yn

2

,(2.3)

H1(x̃(k+1)
1 , ỹ

(k+1)
1 , xn+1

1 , yn+1
1 ) = 0, H2(x̃(k+1)

2 , ỹ
(k+1)
2 , xn+1

2 , yn+1
2 ) = 0. (2.4)

Where functions H1 and H2 are constraint functions on the inputs in order to guar-
antee the same values of the inputs as the values that they represent in the other
subsystem at the end of the macro step simulation. The way these constraint func-
tions are satisfied can lead to Newton type algorithms such as IFOSMONDI-JFM
[32] or IFOSMONDI fixed-point type algorithm [31]. Each of them has advantages
and drawbacks, the most important drawback for the fixed point algorithm is its
non-contractant property leading in some cases to a non-convergent algorithm.
We focus in this thesis on the special choice of a fixed point algorithm to satisfy
the inputs constraint functions, namely the Schwarz type domain decomposition
method [105]. We first recall the Schwarz algorithm and some of its variants [33]
[23] and then we apply it to the system of DAE arising from electrical circuit
simulation.
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2.2 The Schwarz domain decomposition method

2.2.1 Generalized Schwarz alternating method
The continuous Schwarz method was introduced by the german analyst Hermann
Schwarz at the end of the 19th century [105]. He first invented this method to solve
the Poisson problem with Dirichlet boundary conditions on a complex geometry
of a rectangle covering a disk in its middle. For this geometry, there is no ana-
lytical solution unlike the cases of the rectangle and the disk. Then he proposed
and proved the convergence of the algorithm consisting in solving the problem
alternately on the disk then on the rectangle by taking the values of the other
domain as new boundary conditions for the local problem to be solved. Then,
the algorithm iterates until the boundary conditions no longer move. Boundary
conditions act like the x̃ and ỹ variables in our DAE subsystems.

Schwarz domain decomposition method in space applied to system of partial
derivative equations with some elliptic terms has been widely studied during
the past years. Especially with the developpement of large parallel computing
ressources, it shows to be a well-adapted algorithm for such architecture. It ap-
pears that the choice of boundary conditions can impact strongly the convergence
of the Schwarz type algorithm [33] [43] [40].
The generalized alternating Schwarz method proposed by Engquist and Zao [33]
allows to generalize several Schwarz techniques [99] to solve a uniformly elliptic
second order scalar boundary problem on a domain Ω with Dirichlet boundary
conditions on Γ = ∂Ω:{

Ł(z)u(z) = f(z), for z ∈ Ω,
γ0u(z) = g(z), for; z ∈ Γ,

(2.5)

Where f ∈ H−1(Ω), g ∈ H1/2(Γ), γ0 is the trace operator and the partial derivative
operator L(z), z ∈ Ω is given by L(z)u(z) = −Σn

i=1Σn
j=1

∂

∂xj

[aji(z) ∂

∂zi

u(z)]

with aji = aij ∈ L∞(Ω), i, j = 1, . . . , n. L(.) is assumed to be uniformly elliptic
i.e.: ∃ c0 > 0, independent of z such that, ∀z ∈ Ω :
Σn

j=1Σn
i=1aji(z)ξjξl ≥ c0.|ξ|2, ∀ξ ∈ R

n

For simplicity, let us consider the case where Ω is decomposed into two subdomains
Ω1 and Ω2, overlapping or not and generating two artificial boundaries Γ1, Γ2.
We define ī = mod(i, 2) + 1 and Ω11 = Ω1\Ω2, Ω22 = Ω2\Ω1, Ω12 = Ω1 ∩ Ω2,
Ω11 = Ω1\Ω12, Ω22 = Ω2\Ω12 if there is overlap. The GSAM method solves until
convergence the problem (2.5) restricted to the subdomain Ω1 (respectively Ω2)
with boundary conditions on ∂Ω1 (respectively ∂Ω2) and generalized boundary
conditions Λ1u1 + λ1

∂u1

n1
= μ2 on Γ1 (respectively Λ2u2 + λ2

∂u2

n2
= μ1), where Λi
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are operators and λi are constants.
The value μ2 = Λ1u2 + λ1

∂u2

∂n1
(respectively μ1 = Λ2u1 + λ2

∂u1

∂n2
) is defined with

respect to the solution u2 in Ω2 (respectively u1 in Ω1). As the solution on the
subdomains Ωi are unknown, we iterate the resolution, taking the values of the
generalized boundary conditions μi from the solution obtained at the previous
iteration in Ωi.

Algorithm 1 GSAM: Multiplicative (M1 = N2 = (2k + 1), M2 = (2k + 2), N1 =
(2k)), Additive (M1 = M2 = (k + 1) N1 = N2 = (k))

1: DO until convergence
2: Solve

L(z)uM1
1 (z) = f(z), ∀z ∈ Ω1, (2.6)

uM1
1 (z) = g(z), ∀z ∈ ∂Ω1\Γ1, (2.7)

Λ1uM1
1 + λ1

∂uM1
1 (z)
∂n1

= Λ1uN1
2 + λ1

∂uN1
2 (z)
∂n1

, ∀z ∈ Γ1 (2.8)

3: Solve

L(z)uM2
2 (z) = f(z), ∀z ∈ Ω2, (2.9)

uM2
2 (z) = g(z), ∀z ∈ ∂Ω2\Γ2, (2.10)

Λ2uM2
2 + λ2

∂uM2
2 (z)
∂n2

= Λ2uN2
1 + λ2

∂uN2
1 (z)
∂n2

, ∀x ∈ Γ2. (2.11)

4: End DO

The additive version of GSAM consists in solving the problems on the subdomains
simultaneously during an iteration whereas for the multiplicative version, the prob-
lems on the subdomains are solved successively one after the other to update the
μi values.
Depending on the specific choice of the operators Λi and the values of the scalars
λi, we obtain in the table 2.1 the families of Schwarz domain decomposition tech-
niques. If Λ1 = Λ2 = Id and λ1 = λ2 = 0 then the multiplicative version is
the classical version on multiplicative Schwarz. If Λ1 = Λ2 = constant > 0 and
λ1 = λ2 = 1 then it is the modified Schwarz method proposed by P.-L. Lions in
[67].
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Overlap Λ1 Λ2 λ1 λ2 Method
yes Id Id 0 0 Schwarz
yes Id Id α α ORAS [109]
No Id 0 0 1 Neumann-Dirichlet [73]
No Id Id 1 1 Modified Schwarz [66]

Table 2.1: Derived methods [109, 73, 66] obtained from the specific choice of
operators Λi and scalar values λi in the GSAM method.

Engquist and Zao [33] show that If Λ1 (or Λ2) is the Dirichlet to Neumann op-
erator mapping in correspondence of the artificial interface Γ1 (or Γ2) for the
homogeneous partial differential equation (or Γ2) for the homogeneous partial dif-
ferential equation in Ω2 (or Ω1) with edge conditions homogeneous on ∂Ω2 ∩ ∂Ω
(or ∂Ω1 ∩ ∂Ω), then the generalized Schwarz Alternate method converges in two
steps. These operators are global operators (linking all subdomains together). In
practice, algebraic approximations of these operators are used (see [108] [85] [84]
[42] [47]).

2.2.2 Connection between the Steklov-Poincaré operators
and the Schur complement

As we see, the Dirichlet to Neumann mapping operator plays an essential role in
the convergence of the Schwarz type method. In the electrical circuit simulation
context, it can be difficult to exhibit some co-normal derivative to a boundary, as
the boundaries are usualy limited to isolated connecting points. Nevertheless, we
can consider at the discrete level a connection between the Schur complement and
the Steklov-Poincaré operator.
For simplicity, we consider two subdomains without overlap. Then the discretiza-
tion of Eq (2.5), with finite elements, finite volumes or finite differences, leads to
the following matrix system:

Au =

⎛
⎜⎝ A11 0 A13

0 A22 A23

A31 A32 A
(1)
33 + A

(2)
33

⎞
⎟⎠
⎛
⎜⎝ u1

u2
u3

⎞
⎟⎠ =

⎛
⎜⎝ f1

f2

f
(1)
3 + f

(2)
3

⎞
⎟⎠ (2.12)

Where u1 and u2 are the vectors of the interior unknowns in the subdomains Ω1
and Ω2, respectively, and u3 representing the vector of the remaining unknowns
defined on Γ. The internal unknowns can be formally eliminated from Eq (2.12)
by writing:

u1 = A−1
11 (f1 − A13u3),

u2 = A−1
22 (f2 − A23u3),

(2.13)
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and by noting

S1 = A
(1)
33 − A31A−1

11 A13, g1 = f
(1)
3 − A31A−1

11 f1,

S2 = A
(2)
33 − A32A−1

22 A23, g2 = f
(2)
3 − A32A−1

22 f2,
(2.14)

We obtain the Schur complement system

Su3 = (S1 + S2)u3 = g1 + g2 = g (2.15)

We have the following identity (see [86]):

Â−1
11

(
0

S1x3

)
=
(

A11 A13

A31 A
(1)
33

)−1 ( 0
S1u3

)
=
(

A11 A13
0 I

)−1 ( 0
u3

)
(2.16)

The matrix Â11 corresponds to the discretization matrix of the problem on the
subdomain Ω1 with homogeneous Dirichlet boundary conditions on ∂Ω1\Γ and
Neumann boundary conditions on the interface Γ. Thus, the matrix-vector product
S1x3 is simply the discrete co-normal derivative on Γ associated to the Eq(2.5)
problem on the subdomain Ω1 with homogeneous Dirichlet conditions on ∂Ω1\Γ
and Dirichlet conditions prescribed by u3 on Γ (i.e. for S2u3). These matrix-
vector products are the discrete equivalent of the Steklov-Poincaré operator on
their respective domain.

2.3 Schwarz method for electrical circuit DAE
For the DAE (2.1) problem resulting from a linear electrical circuit, the domain is
composed of the voltage and current unknowns which are linked by the properties
of the components and Kirshoff’s law.
Two strategies can be performed to split (2.1). The first one is to consider the dis-
cretizationg of (2.1), then to split the unknowns with respect to the dependancies
of the data in the discrete equations, in this case certain unknowns belonging to the
same component can be dispatched on different subdomains. The second strategy
consists in dividing the domain into components, with this strategy the unknowns
of the same component all belong to the same subdomain. In this chapter, we
consider the first strategy. We consider a linear electrical circuit in the following,
non linear electrical circuits could be linearized with a state space representation
and treated as a linear circuit over the time step. Let us rewrite the linear DAE
(2.1) in its state space representation:

{
Iẋ(t) + Ax(t) + By(t) = G1(t), x(0) = x0,

Cx(t) + Dy(t) = G2(t), t ∈ [0, T ]. (2.17)
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Where x(t) ∈ R
n1 and y(t) ∈ R

n2 for all t ∈ [0, T ], D is a n2 × n2 nonsingular
matrix, A and I are n1×n1 matrix , I matrix can be the identity or matrix composed
of 1s and 0s depending on whether the x variables contain voltages or potentials.
B is an n1 × n2 matrix, C is an n2 × n1 matrix, G1(t) ∈ R

n1 and G2(t) ∈ R
n2 are

known input functions, as the DAE system is representing an electrical network,
G1(t) and G2(t) are sources vector. Finally, x0 ∈ R

n1 is a consistent initial value.
Let n = n1 + n2.
We will condense this system of equations to obtain the form that we will used

throughout this work. First, we define the matrix A =
(

A B
C D

)
corresponding

to the linear operator of the DAE and we define z(t) = [x(t), y(t)]T ,

G(t) = [G1(t), G2(t)]T and Id =
(

In1 0n1×n2

0n2×n1 0n2×n2

)
.

Then we can rewrite Eq (2.17)as:

Idż(t) + Az(t) = G(t), x(0) = x0, t ∈ [0, T ]. (2.18)

2.3.1 Time discretizing of linear electrical circuit
We use a backward Euler for time discretization for (2.1), other backward differ-
ences formula (BDF) schemes would give similar results with more complicated
formula. Let us notice that the trapezoidal rule integration is more often used
with the CDA method [30, 74] and variants [103] using two halved time-step Eu-
ler backward integrations from the discontinuity detection time-point in case of
presence of switches in the network. The important point here is that we have an
implicit time integration method.
In the EMT case:(

Iemt − ΔtemtAemt ΔtemtBemt

Cemt Demt

)
︸ ︷︷ ︸

Aemt

(
xn+1

emt

yn+1
emt

)
︸ ︷︷ ︸

zn+1
emt

=
(

Iemt 0
0 0

)
︸ ︷︷ ︸

Θemt

(
xn

emt

yn
emt

)
︸ ︷︷ ︸

zn
emt

+
(

ΔtemtG
n+1
1,emt

Gn+1
2,emt

)
.(2.19)

In the Dynamic Phasor case, the equations must first be adapted to the shape
of the dynamic phasor: take into account the differentiation property of dynamic
phasors (see section 1.3 of introduction) and multiply the number of equations by
the number of harmonics that we have chosen to keep. We have also chosen to
solve the real and imaginary parts separately. Thus a form of discretized state
space for the dynamic phasor is:(

Its − ΔttsAts ΔttsBts

Cts Dts

)
︸ ︷︷ ︸

Ats

(
xN+1

ts

yN+1
ts

)
︸ ︷︷ ︸

zN+1
ts

=
(

Its 0
0 0

)
︸ ︷︷ ︸

Θts

(
xN

ts

yN
ts

)
︸ ︷︷ ︸

zN
ts

+
(

ΔttsG
N+1
1,ts

GN+1
2,ts

)
.(2.20)
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EMT and TS cases are quite similar and need to solve a linear system for each
time step. In the the following, we drop the superscripts emt or ts as we treat
partitions with homogeneous modeling.

2.3.2 RAS splitting in Detail
We consider the matrix A ∈ R

n×n having a non-zero pattern and the associated
graph G = (W, F ), where the set of vertices W = {1, . . . , n} represents the n un-
knowns and the set of edges F = {(i, j)|(Ai,j) �= 0} represents the pairs of vertices
that are coupled by a non-zero element in A. Then, we assume that a graph par-
titioning was applied and that resulted in N non-overlapping subsets W 0

i whose
union is W . Let W p

i be the p-overlap partition of W , obtained by including all
the vertices immediately neighboring the vertices of W p−1

i . Let W p
i,e = W p+1

i \W p
i .

Then let Rp
i ∈ R

ni×n ( Rp
i,e ∈ R

ni,e×n and R̃0
i ∈ R

ni×n respectively) be the op-
erator which restricts w ∈ R

n to the components of w belonging to W p
i (W p

i,e

and W 0
i respectively, and the operator R̃0

i ∈ R
ni×n puts 0 to the unknowns be-

longing to W p
i \W 0

i ). Then we defined the local operators Ai,emt = Rp
iARpT

i and
Eie,emt = Rp

iARpT
ie .

The DAE system is for a domain W p
i , integrated between tn to tn+1:(

Ii − ΔtAi ΔtBi

Ci Di

)
︸ ︷︷ ︸

Ai

(
xn+1

i

yn+1
i

)
︸ ︷︷ ︸

zn+1
i

=
(

Ii 0
0 0

)
︸ ︷︷ ︸

Id,i

(
xn

i

yn
i

)
︸ ︷︷ ︸

zn
i

+

(
Iie 0
0 0

)
︸ ︷︷ ︸

Id,ie

(
xn

ie

yn
ie

)
︸ ︷︷ ︸

zn
ie

−
(

EA
ie EB

ie

EC
ie ED

ie

)
︸ ︷︷ ︸

Eie

(
xn+1

i,e

yn+1
i,e

)
︸ ︷︷ ︸

zn+1
i,e

+
(

ΔtGn+1
1i

Gn+1
2i

)
︸ ︷︷ ︸

Gn+1
i

. (2.21)

The term Id,iez
n
ie is coming from the fact that differential terms on the interface

unknowns can be involved due to the splitting. The terms at time tn and the
source term Gn+1

i can be gather in a term bn+1
i independent of the solution zn+1

i .
Then the DAE system for the domain W p

i integrated between tn and tn+1:

Aiz
n+1
i = bn+1

i − Eiez
n+1
i,e (2.22)

2.3.3 RAS algorithm
The Eq (2.22) can not be directly solved as it needs the value of the solution at
n + 1 from the others partitions.
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Definition 1. The (k+1)th iteration of the Restrictive Additive Schwarz algorithm
in the discrete case is written localy for the W p

i partition and with integrating
between tn and tn+1, if Ai inversible, as:

z
n+1,(k+1)
i = A

−1
i (bn+1

i − Eiez
n+1,(k)
i,e ) (2.23)

Remark 1. The term z
n+1,(k)
i,e can be considered analogous to the Dirichlet condi-

tions, indeed if a differentiated part of the interface conditions exists, it is passed
into the term bn+1

i and it is independent of the Schwarz iterations and has no
impact on the interface conditions sought at time tn+1.

The Eq (2.23) considers the additive version of the RAS algorithm, where all the
partitions iterate the (k +1)th iteration with interface condition taken in the other
partition at the (k)th iteration . One can also consider the multiplicative version of
the RAS where one partition is solved one by one taking the latest (k +1)th values
of the interface available. Algorithm 2 summarizes theses two versions of RAS to
integrate the DAE from tn to tn+1 for the domain W splitted into two partitions:

Algorithm 2 RAS: Multiplicative (M1 = N2 = (2k + 1), M2 = (2k + 2), N1 =
(2k)), Additive (M1 = M2 = (k + 1) N1 = N2 = (k))

1: DO until convergence
2: Solve

zn+1,M1
1 = A

−1
1 (bn+1

1 − E1e zn+1,N1
1,e )

3: Solve

zn+1,M2
2 = A

−1
2 (bn+1

2 − E2e zn+1,N2
2,e )

4: Enddo

2.4 Error operator and Acceleration of conver-
gence

As the Schwarz method can be considered as a fixed-point algorithm, its conver-
gence is not guaranted. In the PDE with elliptic part case, we have the benefit
that the convergence increases with the size of the overlap. We are going to ex-
hibits the RAS matrix operator error on the interface values. Then, in the case of
a linear electric circuit, we will take advantage of the non-dependence of the error
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operator on the RAS iteration to accelerate the RAS algorithm towards the true
solution, whether the RAS is convergent or divergent.

2.4.1 The RAS error operator
We will expose the matrix error operator for the RAS. For this, we first show that
the RAS can be seen as a preconditioned iterative Richardson method

Definition 2 (The RAS preconditioning matrix ). With the notation of the RAS
method introduced in section 2.3.2, we define the RAS preconditioning matrix
M−1

RAS as:

M−1
RAS

def=
N−1∑
i=0

R̃0T
i A

−1
i Rp

i (2.24)

Proposition 1 (RAS as a preconditioned Richardson iterative method [39] ). The
RAS method can be seen as a preconditioned Richardson iterative method with the
preconditioning matrix M−1

RAS

zn+1,(k+1) = zn+1,(k) + M−1
RAS(b̃n+1 − Azn+1,(k)). (2.25)

Proof. Starting from Eq (2.23), the RAS iteration on the partition W p
i and the

definition of Rp
i and Rp

ie :

z
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p
iez
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Then we add the contribution of each partition W p
i and we use the definition of

Eie = Rp
iARpT
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RAS(b̃n+1 − Azn+1,(k)).
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Definition 3 (The RAS global interface and its restriction operator). We define
the RAS global interface Γ as the concatenation of the W p

i,e, i.e Γ =
{
W p

0,e, . . . , W p
N−1,e

}
of size nΓ = ∑N−1

i=0 ni,e. We define the restriction operator RΓ associated to the RAS
global interface as RΓ = (Rp

0,e, . . . , Rp
N−1,e)T ∈ R

nΓ×n.
We note z

n+1,(k+1)
Γ = RΓzn+1,(k+1)

Proposition 2 (The RAS written on the global interface). The RAS iterative
method can be written as an iterative method involving only the value of iterations
on the global interface Γ, i.e there exists an operator PΓ = RΓ

(
I − M−1

RASA

)
RT

Γ ∈
R

nΓ×nΓ such that:

z
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Γ + cn+1. (2.26)

Proof. We have the property that RpT
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ieR
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2.4.2 The Aitken’s acceleration of convergence of the RAS
The operator PΓ involved in Eq (2.26) does not depend on the iteration (k). Then
it is possible to accelerate the convergence of the RAS to the true solution.

Proposition 3 (The Aitken acceleration of the RAS). If there is no eigenvalue
equal to 1 in the error operator P of the RAS (i.e the RAS is convergent or
divergent) then The RAS iterative method can be accelerated to the true solution
z

n+1,(∞)
Γ on the interface Γ by the Aitken technique for accelerating the convergence

with two consecutive RAS iterations:

z
n+1,(∞)
Γ = (I − PΓ)−1(zn+1,(k)

Γ − PΓz
n+1,(k−1)
Γ ), ∀k ≥ 1 (2.27)
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Proof. The true solution satisfies the preconditioned Richardson iterative method:

zn+1,(∞) = zn+1,(∞) + M−1
RAS(b̃n+1 − Azn+1,(∞)). (2.28)

consequently it also satisfies Eq (2.26):

z
n+1,(∞)
Γ = PΓz

n+1,(∞)
Γ + cn+1,

then we can write:

z
n+1,(k)
Γ − z

n+1,(∞)
Γ = PΓ(zn+1,(k−1)

Γ − zn+1,(∞))

if 1 is not an eigenvalue of PΓ then (I − PΓ)−1 exists and we obtain:

z
n+1,(∞)
Γ = (I − PΓ)−1(zn+1,(k)

Γ − PΓz
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Γ ), ∀k ≥ 1

Remark 2. Once the true solution z
n+1,(∞)
Γ is obtained on interface Γ, another

local resolution is needed to obtain the true solution zn+1,(∞) on W .

Remark 3. We focused on the acceleration by the Aitken’s acceleration of the
convergence technique for the RAS but we can proceed in the same way for the
multiplicative version of the restricted Schwarz.

Remark 4. Contrary to other domain decomposition acceleration method where
some approximation of the local Steklov-Poincaré operator are used, in the Aitken
acceleration of the Schwarz method this is the effect of all local Steklov-Poincaré
operators on the convergence that is taken into account. The efficiency of the RAS
method accelerated by the Aitken process depends on the cost for computing the
operator P which is of the size of nΓ

In particular, for two partitions that will use in numerical test, the operator P
exhibts a sparse structure linking the errors for each local interface to the error on
the local interface of the other partition.

Definition 4 (error on the local interface W p
i,e). Let us define e

n+1,(k)
i,e ∈ W p

i,e the
error between the true solution and the RAS iteration on the local interface:

e
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i,e = Ri,eR

T
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i,e − z
n+1,(∞)
i,e ) (2.29)

Proposition 4. For two partitions case the operator P has a sparse structure with
local operators Pi acting on the error on the other local interface such that:(

e
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0,e

e
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)
=
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0 P0
P1 0

)(
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e
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)
(2.30)



34CHAPTER 2. SCHWARZ METHOD IN THE HOMOGENEOUS EMT OR TS CASE

where

P0 = −Rp
0,eR̃

0T
1 A

−1
1 E1e (2.31)

P1 = −Rp
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0T
0 A

−1
0 E0e (2.32)

Proof. From Eq (2.23) one can write:
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Using the properties of R̃0T
i and Rp

i,e for the two partitions case:

Rp
i,eR̃

0T
i z = 0, ∀z ∈ W p

i (2.33)
Rp

j,eR̃
0T
i ei = ej,e, i �= j, ∀ei ∈ W p
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We obtain the P0 and P1 matrices of the P operator:

e
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2.4.3 Acceleration of the RAS in the electrical circuit con-
text

As part of the time simulation of an electrical circuit, the acceleration of the RAS
method can benefit from certain opportunities:
If the circuit is linear and the time integrator uses a constant time step size, the
state space matrix does not change. Therefore, the error operator P is the same
for all time steps and it suffices to calculate the error operator for the first time
step. It will suffice to carry out one single RAS iteration at each time step to
obtain the converged solution using the P operator calculated at the first time
step, the initial value zn+1,(0) and the iteration zn+1,(1).
If the state space matrix change due to a nonlinearity or the reconfiguration of the
network for example, then it is necessary to recalculate P .
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Remark 5. For small circuits, the additional local resolution after speeding up
RAS convergence on solution interfaces can be avoided by constructing the global
error operator Pg working on the entire partitions. For example for the case of the
two partitions the global error operator Pg is written (see Eq. (2.33) in proposition
4):

Pg = −R̃0T
0 A

−1
0 E0eR

p
0,e − R̃0T

1 A
−1
1 E1eR

p
1,e (2.35)

Proposition 5. Let Λ(P ) (respectivelly Λ(Pg)) the set of non zero eigenvalues of
the error operator P (respectivelly Pg). We have the property:

Λ(P ) = Λ(Pg) (2.36)

Proof. Let w ∈ W an eigenvector associated to the eigenvalue λ of Pg. Then

Pgw = −R̃0T
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)
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(2.37)

Conversely, Let
(

w0,e

w1,e

)
∈ Γ an eigenvector of P associated to the eigenvalue λ.

P1w1,e = λw0,e = −Rp
0,eR̃

0T
1 A
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1 E1ew1,e

P0w0,e = λw1,e = −Rp
1,eR̃
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0 E0ew0,e

(2.38)

Then, we can define w = R̃0T
1 Rp

1RpT
0,ew0,e + R̃0T

0 RP
0 RpT

1,ew1,e such that:

Rp
0,ew = w1,e and Rp

1,ew = w0,e

Rp
0,ePgw = λRp

0,ew

Rp
1,ePgw = λRp

1,ew

As w has non-nul components only on the components belonging to Γ, we conclude
that:

Pgw = λw, λ ∈ Λ(P ) ⇒ λ ∈ Λ(Pg)
Λ(Pg) = Λ(P )



36CHAPTER 2. SCHWARZ METHOD IN THE HOMOGENEOUS EMT OR TS CASE

Remark 6. It is therefore possible to establish the divergence of the method using
the spectral radius of P or Pg. As long as the method does not stagnate, and even
if the method diverges, we can obtain the converged solution thanks to the formula
Eq. (2.27). The indication of the convergence of the method can be useful if one
has to recalculate the error operator before recalculating the converged solution,
indeed if the method diverges, one will have any interest to use in the equation
Eq. (2.27) the first calculated iterations, whereas if the method converges it will be
preferable to use the last ones.

Several different strategies to compute P or Pg can be adopted depending on the
problem to be solved. Indeed if the domain is small, then one can compute the
global error operator Pg on the whole domain and accelerate the convergence of
all the values of a blow.
On the other hand if the field to be solved is more consequent, to compute the error
operator on the whole domain can require too many iterations of Schwarz if we
compute the operator Pg numerically as it will be detailed in the next chapter. In
this case, it is preferable to accelerate only the solution at the interfaces (the Wi,e)
with the operator P and then to calculate the converged solution on the whole
domain by carrying out a local resolution on each subdomain with the converged
interface values.
In the next section we illustrate the numerical result on the RAS applied to two
partitions with an homogeneous modeling that can be EMT or TS modeling.

2.5 Numerical results
We consider a linear RLC circuit of Figure 2.1. This is a single-loop circuit, so
the different sub-domains will necessarily be strongly coupled. It contains the
basic components used in the electrical field to model most phenomena. The DAE
associated with the small circuit is written component by component. We do not
make any simplification usually done when there are several resistors or inductors
in series, to keep more equations. Instead of considering the single loop current,
we will consider that there is one current per component, which will allow us to
observe more phenomena like error propagation. In order to keep the right number
of equations and variables, and to be able to put two inductors in series, we add
a degree of freedom (that is, we remove one of the current equality equations).
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Figure 2.1: Linear RLC circuit and its associated EMT modeling DAE system
with
x = {v1, i23, v4, v5, i67, v7} and y = {v2, i12, v3, i34, i45, i56, v6, i71}. L1 = L2 = 0.7,
C1 = C2 = 1.10−6, R1 = R2 = 77, Zs = 1.10−6, ω0 = 2π 50.

Figure 2.2 is an example of this cutting for a small RLC circuit. The small linear
system associated with the RLC circuit is partitioned into two subdomains using
non-overlapping graph partitioning (Figure 2.2 on top) and with an overlap of 6
components (Figure 2.2 bottom). This use of graph partitioning aims to have an
equivalent computational load for each subdomain in a homogeneous case (the two
subdomains are modeled in the same EMT or TS way).
As this decomposition is graph-based, it does not prejudge the convergence or di-
vergence of the resulting Schwarz method. In this example the domain W is cut
into two non-overlaping partitions W 0

1 = {v1, v2, i12, i71, v3, v7, i23, i34} and W 0
2 =

{v4, i67, v5, v6, i56},or two overlaping partitions W 1
1 = {v1, v2, i12, i71, v3, v7, i23, i34, i71

, v4, i67} and W 1
2 = {v3, v7, i34, v4, i67, v5, v6, i56} obtained with including the un-

knowns not belonging to W 0
i that correspond to the data-dependancies in the

equations involving the unknowns of W 0
i .

There are two interesting things to notice about this distribution:
The first is that the equation used to calculate v7 is calculated in the equations of
the domain W1, this equation is L2

di67
dt

+ v6 = v7, which then is rewritten after a
Backard Euler discretization as: L2

in+1
67 −in

67
Δt

+ vn+1
6 = vn+1

7 . However, in+1
67 and in

67
are values computed by the equation of the second domain W2, we see in this case
the impact of the choice of the division before or after discretization. The second
point to note here is that the physical components (the inductor here for example)



38CHAPTER 2. SCHWARZ METHOD IN THE HOMOGENEOUS EMT OR TS CASE

can be partitioned between several subdomains with this kind of division, which
can cause problems in the use of certain tools, as we will see in chapter 5.
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Figure 2.2: Graph partitioning of the RLC circuit in two subdomains and the
associated matrix partioning without overlap (top) and with overlap of 1 (bottom).
EMT case

Figure 2.2 represents, on the left the cut circuit with and without recovery, and
on the right their associated state space matrix A, with only the representation of
the load (there is a point on i, j if A(i, j) �= 0) these state space matrices are split
into two parts corresponding to the two sub-domains. We can observe that in both
cases (with and without overlap) each sub-matrix needs two values calculated by
the other part (these values are represented by circled points).
Let us detail the build of the matrix A: the backward Euler discretizing of the
RLC circuit DAE system leads to the following discrete equations:
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The time integration from tn to tn+1 thus requires to solve a linear system Azn+1 =
b. The partitioning of the graph of the matrix A obtained by replacing its non-
zero coefficients by 1’s, allows to separate the system of discrete equations into
two subsystems of equations and provides the partitioning of the unknowns into
two partitions: W 0

1 = {v1, v2, i12, i71, v3, v7, i23, i34} and W 0
2 = {v4, i67, v5, v6, i56}.

The unknowns involved in a subsystem of equations but not in the partition of
this subsystem are the inputs of this subsystem.
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In the EMT case, each subdomain needs two values from the other to solve its
equations. In the TS case, as we choose to solve harmonics 0 and 1 and to solve
real and imaginary part apart (the imaginary par of the harmonic 0 is always 0),
each subdomain needs six values from the other to solve its own equations.

Figures 2.3 and 2.4 represent the linear divergence or convergence of RAS for
EMT-EMT and TS-TS co-simulation. In the case RAS it is necessary to take an
error out of two to see the linear convergence (and all in the case RMS). It can be
observed that the size of the time step greatly influences the convergence of the
method. Here the method diverges more slowly for the EMT and TS by taking a
large time step, which seems counter-intuitive. These results are supported by the
calculation of the error operator spectral radius value in Table 2.2.
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Figure 2.3: Error between two consecutive RAS iterations for EMT-EMT case
with top Δtemt = 10−4, bottom Δtemt = 10−4. By taking all the errors for the two
on the right and taking only one out of two for the two on the left.
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Table 2.2 gives the larger eigenvalue in modulus for the P RAS error operator
for the EMT modeling and for the TS modeling main harmonic k = 1 applied to
the RLC circuit. In both cases EMT and TS modeling the eigenvalue modulus is
greater than one, so the method diverges.
We can observe that, contrary to what one might expect, the overlap does not
impact the divergence of the method.
The time step increasing from Δt = 2.10−4 to Δt = 2.10−2 has a beneficial effect
on the TS-TS DDM divergence. Nevertheless, the divergence is purely linear and
the Aitken’s acceleration (2.27) can be performed after the first iteration for each
time step.
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λ(P ) without
overlap

with
overlap Schwarz Δt

EMT ± 11.94i ± 11.94i RAS 2.10−4

EMT ±1.0146i ±1.0146i RAS 2.10−2

TS k=0 0.3704±11.939i 0.3704±11.939i RAS 2.10−4

TS k=1 ± 11.94i ± 11.94i RAS 2.10−4

TS k=0 0.0720±0.9468i 0.0720±0.9468i RAS 2.10−2

TS k=1 ±1.0146i ±1.0146i RAS 2.10−2

Table 2.2: Larger eigenvalue for P error operator for RAS and EMT modeling
(Δtemt = 2.10−4, Δtemt = 2.10−3), and for RAS and TS k = 0, 1 (Δtts = 2.10−4,
Δtts = 2.10−3) modeling.

Figure 2.5 and Figure 2.6 show the results of accelerated RAS with the Aitken
acceleration technique, compared in each case with the monolithic reference. Co-
simulation gives results similar to monolithic. As we can observe on 2.5, as long as
the time step is small enough, the simulation of the EMT and the dynamic phasor
gives really similar levels of precision, and, at equal time steps, the computational
load of dynamic phasors is heavier than that of EMT. The advantage of the dy-
namic phasor is that we can take larger time steps and as can be seen in figure 2.6
by taking a larger time step, the EMT cannot give realistic results, whereas the
dynamic phasor can even if the level of detail is reduced.

2.6 Conclusion
In this section, we presented the Restricted Additive Schwarz method in its general
application. We have adapted the method to the DAE system discretized in time.
We have shown that the linear convergence property of the RAS still remains for
the discrete DAE system. The way we will cut the DAE system for this thesis work
has been introduced. The numerical results showed that the same behavior cannot
be expected for the RAS method applied to linear circuit DAE systems as for the
spatial division of PDEs with elliptical term systems. In particular, the size of the
overlap does not improve convergence. In particular, whatever the homogeneous
modeling of the partitions, the RAS turns out to be a divergent method. Never-
theless, as this divergence remains linear, we derive an efficient method of RAS
acceleration. This method makes it possible to accelerate the calculated solution
towards the true solution thanks to the technique of acceleration of the conver-
gence of Aitken. One also benefits from an integration with constant time step,
which makes it possible by calculating the operator of error associated with the
first step of time and by reusing it for the following time steps, to carry out only
one iteration RAS by time step.
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Figure 2.5: Homogeneous DDM results comparison with DAE monodomain: (Top)
RAS for EMT modeling with Δtemt = 1.10−4 and (Bottom) RAS for TS modeling
with Δtts = 2.10−4.
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Figure 2.6: Homogeneous DDM results comparison with DAE monodomain: (Top)
RAS for EMT modeling with Δtemt = 1.10−2 and (Bottom) RAS for TS modeling
with Δtts = 2.10−2.
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3.1 Introduction
In this chapter, we are going to set up the method that we are going to use to
simulate a network with a part in EMT and a part in TS. Indeed, the goal is to

45
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take advantage of both the accuracy of the EMT and the computational efficiency
of the TS. We will adapt the Schwarz-Aitken method introduced in chapter 2 to
the heterogeneous case. To co-simulate EMT-TS, additional difficulties related to
the presence of two different types of modeling must be managed.

• The first difficulty to take into account is the transfer of information, more
precisely the translation of values from one type of modeling to another.
This translation must be as faithful as possible to the starting value in order
to convey the information with great precision, it must be able to adapt to
macro time steps and finally it must not call into question the pure linear
convergence of the method, so the convergence can be accelerated using the
Aitken’s method.

• A second difficulty would be the difference in time step duration between
TS and EMT, this must be taken into account for the exchange protocol.
Most often it is proposed to choose time steps Δtts and Δtemt such that
Δtts = mΔtemt with m ∈ N

∗ and taking as macro time step the time step
of the TS part (Δtts). This approach limits the fact of having variable time
steps, however this is what we are going to do for the moment to facilitate
the implementation of the method.

• Finally, the choice of partitioning can raise questions. Thanks to Aitken
acceleration of the convergence technique, one is freed from the condition of
partitioning which makes it possible the method to converge. However, the
size of the EMT part must be a good compromise between detail and speed.
It is also better to have subdomains with the same computational weight
in order to get the most out of parallelization. This difficulty to be taken
into account for EMT-TS co-simulation will also be dealt with in another
chapter.

In this chapter we will focus on the adaptation of the Aitken-Schwarz method to
a heterogeneous EMT-TS case, only the first difficulty is really essential to solve
for this adaptation. First, we will rewrite the systems of equations associated with
each subdomain with boundary conditions coming from another type of subdo-
main. First, in the case of a TS subdomain, we will introduce the EMT to TS
translation operator. Next, we will apply the same approach in the case of an
EMT subdomain and also introduce the translation operator from TS to EMT.
Afterwards, we will talk about initialization, and finally, all this work will be as-
sembled in order to obtain a heterogeneous Schwarz method.
In a second time, we will present a method making it possible to numerically cal-
culate the operator of error. Subsequently, the impact of the heterogeneity of the
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method on the computation of the error operator and on the acceleration strategy
of Aitken will be studied. Specifically, the impact of translation operators on error
will be discussed.
This chapter will be illustrated with numerical results. For this we will use the
RLC circuit from chapter 2. Finally we will conclude.

3.2 Schwarz method for heterogeneous EMT-TS
In order to build the co-simulation, we will first take the representation of the
discrete state space back and rewrite it for each of the representations in order to
fix the notations. We choose to separate the differential variables (which we will
denote x) from the purely algebraic variables (which we will denote y), assuming
that Δtts = mΔtemt. We will assume that we have the TS representation of a do-
main W as well as the EMT representation of the same domain. In simulations, it
will not always be possible to have both TS and EMT representations on common
parts of the network, but when it is possible, that makes it possible to define an
overlap and thus to compare the solutions obtained with the two solvers. We will
split as in 2.3.2, we get subdomains Wi. Let us rewrite the systems on a Wi sub-
domain assuming that the values at the artificial interfaces retrieved by an EMT
subdomain (respectively TS) necessarily come from a TS subdomain (respectively
EMT).

3.2.1 TS side
We take back the discret state space system 2.20, we need to add the boundary
conditions.
For an Wi TS subdomain integrated from T N to T N+1:(

Iits − ΔtitsAits Bits

Cits Dits

)
︸ ︷︷ ︸
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. (3.1)

We take back all notations from the homogoneous case (cf 2.3.2) ). In order to
introduce the operators used in (3.1) we need to introduce additional notations
specific to the heterogeneous case. We recall that a signal s(x) is said to be periodic
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if there is a constant T > 0, known as the period, for which:

s(x + T ) = s(x), ∀x ∈ D(s) (3.2)

The frequency of this signal s is then given by: f = 1
T

, in electrical networks this
frequency is normally 50Hz or 60Hz. And the pulsation is given by ω = 2πf , the
pulsation is expressed in radians/second.
We will call here the original pulsation (the one without frequency disturbance) of
our signals ω0 and the the associated period T0, this period is expressed in seconds.
First denote m̃ = T0

Δtemt
the number of emt time steps performed during a period

and let K be the number of harmonics we choose to keep for the dynamic phasor
modeling.

Zi,eemt
= Rp

i,eZemt, we note nie the size of the dependencies of domain Wi with
others domain, Zi,eemt

∈ R
(m̃×ie)×1.

As the representations are not the same in EMT and in TS, the boundary condi-
tions resulting from an EMT subdomain must be transformed so as to be of the
TS form. For this, we define the translation operator from EMT to TS :
T

emt
ts : R(m̃×ie)×1 �−→ R

(2K×ie)×1. More details on this transformation are explained
later in this chapter (see section3.2.1.1).
We define the operator Eemt

iets
= Rp

iAemtR
pT
i,e︸ ︷︷ ︸

Eie

T
emt
ts , with Eie defined the same way as

in the homogeneous case. As in the homogeneous case, Id,iets
T

emt
ts ZN

i,eemt
is due to

the fact that differential terms on the interface unknowns may be involved due to
the splitting.

ZN
i,eemt

is a much larger vector than T
emt
ts ZN

i,eemt
. Moreover the ZN

i,eemt
has already

been transformed into a TS form at the previous time step. Rather than keeping
a large vector and recomputing the translation, we will keep T

emt
ts ZN

i,eemt
calculated

during the previous time step. Therefore, one can gather all the terms of the
preceding time step in the same vector: wN

i,ie = wN
i + T

emt
ts ZN

ieemt
, we rewrite the

equation (3.1).
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Definition 5. The p + 1 iteration of the Restrictive Additive Schwarz algorithm
in the discrete case is written localy for the W p

i,ts partition from the TS type and
with integrating between T N and T N+1, if Aitsinversible, as:

wN+1,p+1
its

= A
−1
its

(Ii,iets
wN,∞

i,ie − E
emt
iets

ZN+1,p
i,eemt

+ GN+1
its

) (3.4)

3.2.1.1 Translation from EMT to Dynamic Phasor

The three most common types of techniques used to translate EMT information
into TS are:

• Curve fitting techniques as the least-sqares curve fitting technique used by
Plumier[94].

• Methods of changing referential frames such as the α, β method used by
Konara [81] and by Zamroni [115], or as the direct-quadrature-zero transfor-
mation method (dq0)[94].

• Methods based on the Fast Fourier Transform (FFT), as performed by Ku-
mara in[82].

Each of these techniques has advantages and disadvantages, for the curve fitting
technique it is the least precise of the 3 techniques, moreover it is not necessarily a
linear operator (although often it is linear because it is often a linear interpolation).
The methods of changing referential frame has the merit of being instantaneous,
on the other hand it assumes that the three-phase current is necessarily balanced,
which already induces a loss of information, moreover we cannot hope to recover
the slightest information on what has happened during the EMT intermediate time
steps. This way of doing things will therefore be the best if what happens in the
EMT part does not have too strong an impact on the TS part. The FFT is the
most precise of the 3 transformations, and is linear, its disadvantage being that it
is necessary to wait for a period to be able to apply it, which strongly restricts the
choice of macro time steps.
The two methods which are going to be used in this work are the DQ0 transfor-
mation and, in this chapter, an FFT-based method, slightly modified in order to
get rid of the period restriction. We will therefore provide more details on these
methods.

• DQ0-transformation: It is an instantaneous transformation that conserves
power. Consider a balanced three-phase signal semt = (sa, sb, sc)t, we obtain
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after transformation DQ0 sts = (s̃re, s̃im, s̃0)t.

The transformation takes the form: sts = Mdq0semt

with Mdq0 =
√

2
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⎡
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3 )√
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√
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√
2

2
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The inverse transformation is given by semt = M−1
dq0sts

with M−1
dq0 =

√
2
3

⎡
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2
2
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3 )
√

2
2

⎤
⎥⎥⎦

Remark 7. The DQ0 transform must be applied for each harmonic that has
been chosen to be kept for the TS. The above matrix is used to obtain the
fundamental harmonic.

• The FFT: It is an algorithm which makes it possible to obtain the Discrete
Fourier Transform (DFT) of a signal in an inexpensive way. The Fourier
transform makes it possible, thanks to a spectral decomposition, to decom-
pose a periodic signal into a sequence of harmonics.
The Fourier transform of a signal s is given by S̃(k) =

∫
∞ s(τ)ejkw0τ dτ . If

s is periodic with period T then the Fourier transform can be related to an
observation window τ ∈ [t − T, t]: S̃(k) = 1

T

∫ t
t−T s(τ)e−jkw0τ dτ .

The DFT of a signal s is an approximation of the Fourier transform of this
signal, it’s defined as S(k) = 1

N

∑N−1
n=0 s(n)e−2iπk n

N with 0 < k ≤ N . The
sampling N must cover a period T of s.

To translate from the EMT to the dynamic phasor, we apply a fast Fourier trans-
form on a history of the size of a period, T0, containing the values taken by the
part calculated by the EMT at the intermediate time steps. We can then recover
all the modes corresponding to the frequencies that we have chosen to keep in the
dynamic phasor representation.
As previously explained, to perform an FFT on a signal, the history must cover
a period of this signal. We can therefore take a macro time step of size T0, the
period and fill the history with the m = m̃ intermediate time steps. Since we
decided that the macro time steps would be the TS time steps, we take Δtts = T0
the size of a Period.

However, it is preferable to be able to take smaller TS time steps. We therefore
take a Δtts shorter than one period, however to perform the FFT, a history of
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the size of a period is always necessary, a “sliding” history will be produced. To
do this, we will delete the m (reminder Δtts = mΔtemt) oldest values from the
beginning of the history and put the m new values at the end of the history. This
operation is repeated at each instant of passage of information, i.e. after each TS
time step (and therefore after m time steps EMT).

Definition 6. We recall that m = Δtts

Δtemt
and m̃ = T0

Δtemt
, let’s also denote M = m̃

m

the number of Δtts during a period. The history of the integration of tN to tN+1,
for the pth Schwarz iteration ZN+1,p

ieemt
is defined as follows:
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]t

However, an FFT on a moving story is also moving. See Figure 3.1 where we
compare the harmonic 1st of a cos signal calculated with a dynamic phasor and
with an FFT (applied to the EMT signal), we can observe, on the top Figure, that
the FFT and the dynamic phasor meet only once per full period.
Indeed, for the equation (3.2.1.1) the observation window will no longer be [t−T0, t]
but [t − T0 + αΔtts, t + αΔtts], applying the appropriate change of variable in the
Fourier transform formula, one can observe a ejkw0αΔtts gap: Indeed lets take back
the 3.2.1.1 formula on the [t − T0 + αΔtts, t + αΔtts] observation window :
S̃(k) = 1

T

∫ t+αΔtts
t−T0+αΔtts

s(τ)ejkw0τ dτ , by setting X = τ − αΔttst

S̃(k) = 1
T

∫ t
t−T0 s(X)ejkw0(X+αΔtts)dX

There is therefore a gap that appears:
S̃(k) = ejkw0αΔtts 1

T

∫ t
t−T0 s(X)ejkw0XdX, that we will compensate by applying a

e−jkw0αΔtts gap to the FFT.
See the bottom figure of Figure 3.1 where we again compare the harmonic 1st of a
cos signal calculated with the a dynamic phasor and with an FFT, and apply the
appropriate correction at the FFT, it can be observed that the FFT of the EMT
signal correspond to the dynamic phasor.

Definition 7. The translation operator T
emt
ts consists of:

• Apply an FFT with a selection of the K mods corresponding to the K selected
harmonics.

• Next apply a compensation e−jw0αΔtts.

• Finally separate the real and imaginary part of the obtained values.
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Figure 3.1: 1st Harmonic of a moving history, computed with PhasorDynamic
and an FFT. Top: without applying any correction, Bottom: with applying a
correction

Proposition 6. The conditions imposed at the boundaries of a TS domain W p
i,ts

can be considered as analogous to the Dirichlet conditions, in fact the differentiated
part of the boundary conditions having passed into wN, ∞

i,iets
they are fixed on the

iterations of Schwarz and have no impact on the conditions at the interfaces.

3.2.2 EMT side
As for the TS sub-domains, for an EMT sub-domain, we use the discrete state
space system Eq. (2.21), we have to adapt the data dependencies since the data
comes from TS sub-domains.
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For an Wiemt EMT subdomain integrated from tn to tn+1 = tn + Δtemt

and tn, tn+1 ∈ [T N , T N+1] is written:(
Iiemt − ΔtemtAiemt Biemt

Ciemt Diemt

)
︸ ︷︷ ︸

Aiemt

(
xn+1

iemt

yn+1
iemt

)
︸ ︷︷ ︸

wn+1
i,emt

=
(

Iiemt 0
0 0

)
︸ ︷︷ ︸

Id,iemt

(
xn

iemt

yn
iemt

)
︸ ︷︷ ︸

wn
i,emt

+
(

EA
iemt

EB
iemt

EC
iemt

ED
iemt

)
︸ ︷︷ ︸

Ets
iemt

T
ts
emt(tn+1)

(
xN+1

i,ets

yN+1
i,ets

)N+1

︸ ︷︷ ︸
W N+1

i,ets

+
(

Id,ieemt 0
0 0

)
︸ ︷︷ ︸

Iieemt

T
ts
emt(tn)

(
xN+1

i,ets

yN+1
i,ets

)
︸ ︷︷ ︸

W N+1
i,ets

+Gn+1
iemt

.(3.5)

The operators are similar to that of the homogeneous Schwarz domain decompo-
sition method. We define the operator Id,ieemt = Rp

iemt
IdemtR

pT
i,eemt

. As EMT and
TS data do not have the same shape, we introduce a translation operator from
TS to EMT at time tq: T

ts
emt(tq) : (2K × ie) × 1 �−→ R

ie×1, (with K the number
of harmonics that we choose to keep). More details on this transformation are
explained later in this chapter (see section 3.2.2.1).
IieemtT

ts
emt(tn)W N+1

i,ets
is the part due to the fact that differential terms of the inter-

face unknowns may be involved due to splitting.

In a subdomain modeled by EMT, as the time steps Δtemt are shorter than the
macro time steps, the part due to the discretization of the interface values must
therefore be calculated at each EMT micro time steps, it is therefore necessary to
add the term IiemtT

ts
emt(tn)W N+1

i,ets
. Let us consider the m micro time steps realized

by the EMT and by considering tn = T N , we can rewrite the behavior of the EMT
on the whole time step of T N to T N+1 as:⎛

⎜⎜⎜⎜⎜⎜⎝

I
−Iiemt Aiemt

. . . . . .
−Iiemt Aiemt

−Iiemt Aiemt

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Hiemt

⎛
⎜⎜⎜⎜⎜⎜⎝

wn
iemt

wn+1
iemt...

wn+m−1
iemt

wn+m
iemt

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
W

N+1
iemt

=

⎛
⎜⎜⎜⎜⎜⎜⎝

I
−Id,ieemt Ets

iemt

. . .
−Id,ieemt Ets

iemt

−Id,ieemt Ets
iemt

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Ets

iemt

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(xn, yn)t

W N+1
i,ets

(tn+1)
...

W N+1
i,ets

(tn+m−1)
W N+1

i,ets
(tn+m)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
W

N+1
i,ets

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0
Gn+1

iemt...
Gn+m−1

iemt

Gn+m
iemt

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
G

N+1
iemt

.(3.6)
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With W N+1
i,ets

(tn+1) = T
ts
emt(tn+1)W N+1

i,ets

Definition 8. The p + 1 iteration of the Restrictive Additive Schwarz algorithm
in the discrete case is written localy for the W p

i,ts partition from the EMT type and
with integrating between T N and T N+1, if Hiemt inversible, as:

W
N+1,p+1
iemt

= H
−1
iemt

(Ets
iemt

W
N+1,p
i,ets

+ G
N+1
iemt

) (3.7)
3.2.2.1 Translation from Dynamic Phasor to EMT

To rebuild an EMT signal from the coefficients of the dynamic phasor, there are
two main possibilities:

• apply the inverse DQ0 ransformation (on each harmonic), this method is
explained in subsection 3.2.1.1.

• respect the way the dynamic phasor is built and recombine the harmonics.

In this thesis, when the translation from EMT to TS is the DQ0 transform, we
will use the inverse DQ0 transform to translate from TS to EMT. In this chapter,
we have chosen to use a Fourier transform to translate from EMT to TS, so to be
consistent, we will use harmonic recombination to translate from TS to EMT. We
therefore choose to apply the (3.2.2.1) to the K chosen harmonics at each EMT
time step.

We will use the Fourier series theorem which states that a periodic signal s

of period T can be approximated by: s(t) ≈ ∑∞
k=−∞ ck(s)e2 kjπt

T with ck(s) =
1
T

∫
T s(τ)e−2 kjπτ

T dτ is the kth harmonic of the signal s.
We choose to keep only K harmonics, I is the set of harmonics chosen. The pre-
vious approximation is symmetric, so if the harmonic a is in I, the harmonic −a
(which is the complex conjugate of a) is also in I.
So the recombination of a periodic signal s of period T will be given by
s(t) ≈ ∑

k∈I ck(s)e2 kjπt
T .

However, when translating from EMT to dynamic phasor (3.2.1.1), a rolling history
is used. With this moving history, an event has repercussions long after it ends.
Indeed, as the figure 3.2 shows, an EMT event may still be in the history long
after the event has ended, and may therefore still have an effect on the translation
of EMT to TS.

t

T0ΔtT S

event

t

T0ΔtT S

event

t

T0ΔtT S

event

t

T0ΔtT S

event

Figure 3.2: Impact of an EMT event in the History
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Figure 3.3: TS-EMT hybrid simulation of the test of section 2.5 with a jump in
the voltage source at t = 0.2s that last less than ΔtT S: without (top) and with
(bottom) linear interpolation of WN+1

T S

Due to the jump between the first two rows of WN+1
i,ets

in the equation 3.6, and the
repercussions of an event remained in the history of the EMT, there are leaps in the
solution on the side of the EMT. Indeed, these repercussions have almost no impact
on the dynamic phasor part, but they have a significant impact on the EMT part.
The fact that it is visible on the EMT part is due to the Gibbs phenomenon. Indeed
when there is a discontinuity jump, the Fourier sums (on which the translation
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of TS into EMT is based) reveal the Gibbs phenomenon which is expressed in
the form of an overshoot at this jump then of swings. Gottlieb and Shu [48]
provide insight into this phenomenon as well as a way to obtain accurate function
approximations, despite the presence of Gibbs’ phenomenon, using filters. On this
work the choice is made to smooth the first jump (the one between (xn, yn)t and
W N+1

i,ets
(tn+1)) which is not a physical jump but a digital jump, in order not to have

the appearance of this phenomenon.
As can be seen in the figure 3.3 there is, for the values calculated in EMT, an
imitation of the phenomena of the event with an attenuation at each period, and
this until the event is out of the history.
To smooth out these repercussions, the (3.2.2.1) is applied to a linear interpolation
of two successive time steps of TS. α the number of EMT time steps over which
the TS values are smoothed, α ∈ [1, m] with m the number of EMT time steps
during a TS time step, and n as T N = tn.
Definition 9. T

ts
emt, the translation operator from TS to EMT is defined as:

T
ts
emt(tl)W N+1

i,ets
=
{ ∑

k∈I(n+α−l
α−1 wN

k;i,ets
+ n+1−l

1−α
wN+1

k;i,ets
)ejkω0tl

. if l ∈ [n + 1, n + α]∑
k∈I wN+1

k;i,ets
ejkω0tl

. if l ∈ [n + α, n + m]

3.2.3 Initialization
Correct initialization is important in our method, first of all, because if we start
from a solution that is too far from the true solution, more iterations will be
needed to obtain the true solution (if we do not use the acceleration method of the
Aitken convergence). Bad initial conditions can also be considered as an event, an
undesirable physical disturbance.
The difference with the usual methods is that in this heterogeneous method, the
initial conditions do not impact only the terms due to the discretization. Indeed,
this correct initialization is particularly important in our heterogeneous case be-
cause of the translation operators used.

• For the EMT to TS translation operator: in order to be able to start the
translation from the EMT to TS, a history of the size of an already pre-filled
period is necessary. It is therefore necessary to initialize over a period in time
step EMT. With the moving history, the initial conditions can be present in
the history on several macro time steps, thus these initial conditions have a
diffuse impact on several time steps and not only on the initial moment of
the simulation.

• For the operator of translation of TS towards EMT: A linear interpolation
is used between two successive macro time steps, for the first time step the
impact of the initial condition is thus very strong.
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However, it is recalled that one of the motivations of this co-simulation is to
gain in computational efficiency, which is why it would make no sense to have an
initialization that is costly in terms of computation time.
To meet these requirements, two choices are available to us: the first is to calculate
the monolithic steady-state simulation over a full period with a time step equal
to the EMT time step. One recovers the real part of the solution in steady state
at each step of time to fill the history. The second possibility is to calculate the
monolithic steady-state simulation over a complete period with a time step equal
to the time step TS and to apply a linear extrapolation for each time step EMT
to fill the history.
For a TS domain Wi,ts the EMT history initialization condition is given by:
Z0,ieemt

= [�(ziesteadystate
(0)), . . . , �(ziesteadystate

(m̃Δtemt))]t.
To be coherent the TS domain Wi,ts is initialize as w0,its = T

emt
ts Z0,iemt

For an EMT subdomain Wd,emt, only the first value of W1
demt

needs to be initialized,
and this initialization is given by: w0,demt = �(zdsteadystate

(m̃Δtemt)). We also
initialize Wdets : W0,dets

(tl) = ∑
k∈I w0,k;d,ets

ejkω0tl for l ∈ [0, m]

3.2.4 Heterogeneous EMT-TS RAS formulation
We have a local writing of the Schwarz algorithm for the different EMT and TS
subsystems. We also have the initialization of the problem. We can therefore write
the RAS:
Definition 10. The p+1 iteration of the RAS can be written for two subdomains
as globally as follows:{

wN+1,p+1
1ts

= A
−1
1ts

(I1;1ets
wN,∞

1,1e − E
emt
1ets

ZN+1,p
1eemt

+ GN+1
1ts

),
W

N+1,p+1
2emt

= H
−1
2emt

(Ets
2emt

W
N+1,p
2,ets

+ G
N+1
2emt

) (3.8)

Remark 8. It can be observed that the system obtained is very similar to the
one obtained in the homogeneous case, and that in order for the error operator to
remain linear, the operators T

emt
ts and T

ts
emt must be linear.

3.3 Heterogeneous EMT-TS RAS error operator
and Acceleration of convergence

The system (3.8) is iterated at each time step until the error between two succes-
sive iterations reaches the tolerance. In this section we will discuss the impact of
the heterogeneity of the co-simulation on the convergence of the method and on
the acceleration strategy.
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3.3.1 Acceleration strategy

There are several way to use the Aitken’s acceleration technique. As seen in the
chapter 2 we can or compute the error operator in the whole domain and accel-
erate the whole solution at once, or compute the error operator only on artificial
boundaries accelerate only the interface values and use this converged values to
obtain the whole solution with local resolutions. In the chapter 2 we computed
the error algebraically but this operator can also be computed numerically. In-
deed, Tromeur-Dervout [110, 111] developed a completely algebraic formulation of
this Aitken’s technique for accelerating convergence as a fonction of the trace of
the Schwarz’s iterations on the domain decomposition interface. To construct the
error operator corresponding to n values, it is necessary to perform n + 1 Schwarz
iterations. For this reason, most of the time, the error operator will be built only
to speed up the values of the artificial boundaries. The way to compute the error
operator numerically is as follow:

3.3.1.1 Numerical Computation of the error Operator

We define the global interface Γ as the concatenation of the W p
i,e, i.e Γ =

{
W p

0,e, . . . , W p
N−1,e

}
of size nΓ = ∑N−1

i=0 ni,e.

Proposition 7. The operator P ∈ R
nΓ×nΓ can be computed algebraically after

nΓ + 1 iteration, if the matrix [enΓ , . . . , e1] is non-singular as:

P = [enΓ+1, . . . , e2][enΓ , . . . , e1]−1. (3.9)

with ek+1 the error between two consecutive RAS iterations ek+1 = zk+1
Γ − zk

Γ.

Proof. The error between two RAS iterations. As P does not depend on the RAS
iteration:

e1 = Pe0

e2 = Pe1

e3 = Pe2

...
ep+1 = Pep

By concatenating the successive equations we have the result.

This operator can be used to speed up convergence. This error operator should
only be calculated for the first time step. Unless the topology changes or there is
a non-linearity in which case the operator must be recomputed.
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3.3.1.2 Impact of heterogeneity in the choice of acceleration strategy

In the homogeneous case of the chapter 2 the error operator was computed nu-
merically, but it is more complicated to compute the error operator analytically in
the heterogeneous case, due to the translation operators. We will then numerically
calculate this error operator.
We seek to accelerate convergence at the interfaces between two subdomains, a TS
W1tsand an EMT W2emt . We will therefore first accelerate the convergence of the
interfaces: Z1eemt and W2ets .
Let’s calculate the size of the interface values, note ni,e the size of interface i, e:
First let’s calculate for Z1eemt we just need to speed up the values taken at the last
macro time step, the "Active Boundary Conditions": Z1eemt so the sample size to
be accelerated is n1,e × m (with Δtts = mΔtemt).

Then let’s calculate the size of the interface W2ets , 2K × n2,e, (with K the number
of harmonics that we chose to keep).

So the whole interface between these two sub-domains is of size n1,e×m+2K×n2,e,
so to speed up this interface it will be necessary to realize n1,e × m + 2K × n2,e + 1
Schwarz iteration, which can be huge. Indeed, m is often around a hundred, K is
rarely greater than 2. We cannot afford to do so many iterations of Schwarz. Two
solutions are available to us:

• Accelerate the values coming from the EMT after translation, in this way,
the size of the whole interface to be accelerated will be 2K ×n1,e +2K ×n2,e.

• One can choose to accelerate only the interface values coming from the TS
side, i.e to compute the error operator P linked only to the W2ets values.
Like so, an error operator of size 2K × n2,e will be computed by performing
2K ×n2,e +1 iterations. Once the true values of W2ets are obtained, they are
used to compute the local resolution of the EMT part W2emt . These EMT
values are in turn used for the local resolution of the TS part wN+1,p+1

1ts
.

We’ll prefer the second option because it further limits the number of Schwarz
iterations needed.

3.3.2 Error: a multifactorial resultant
As seen in the homogeneous case the RAS error depends on the value of com-
ponents (above all the inductance and capacitance values), but also depends on
the topology and the size of the time steps. We can wonder the impact of the
heterogeneity on the convergence. There are some more factor possible: the ratio
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between EMT and TS time steps, the localization of some components (in an EMT
or in a TS subdomain), and finally the impact of the translation operator in the
convergence.

3.3.2.1 Impact of the translation operator from EMT to TS

As we choose to keep some harmonics and therefore remove some information, we
can expect the translation to decrease the error. Let’s calculate the error on the
TS side to see the impact of rolling history on the error:

wN+1,p+1
1ts

− wN+1,∞
1ts

= A
−1
1ts

(−E
emt
1ets

(ZN+1,p
1eemt

− ZN+1,∞−1
1eemt

)),
wN+1,p+1

1ts
− wN+1,∞

1ts
= A

−1
1ts

(−E
emt
1ets

[0, . . . , 0, zm×N+1,p
ieemt

, . . . , z
m×(N+1),p
ieemt︸ ︷︷ ︸

W
p
1eemt

−W
∞−1
1eemt

]t),

Since only active boundary conditions will have an impact, therefore having a
moving history also has an impact on the error operator.

Remark 9. In the numerical results, it will be difficult to quantify the impact
of mobile history on the error. Indeed, the impact of the mobile history will be
inseparable from the impact of the reduction of the macro time steps Δtts which
already greatly reduces the error.

3.3.2.2 Impact of the translation operator from TS to EMT

When recombining harmonics, there is no change in the level of information, so
the recombination itself will not change the error. On the other hand, smoothing
can have an impact.
Let’s calculate the EMT rated error to see the impact of smoothing on the error:

W
N+1,p+1
2emt

− W
N+1,∞
2emt

= H
−1
2emt

E
ts
2emt

(WN+1,p
2,ets

− W
N+1,∞−1
2,ets

).

For l ∈ [n + 1, n + α] we can write:

W N+1,p
2,ets

(tl) − W N+1,∞−1
2,ets

(tl) =
∑
k∈I

(n + α − l

α − 1 wN
k;2,ets

+ n + 1 − l

1 − α
wN+1,p

k;2,ets
)ejkω0tl

−∑
k∈I

(n + α − l

α − 1 wN
k;2,ets

+ n + 1 − l

1 − α
wN+1,∞

k;2,ets
)ejkω0tl

W N+1,p
2,ets

(tl) − W N+1,∞−1
2,ets

(tl) =
∑
k∈I

n + 1 − l

1 − α
(wN+1,p

k;2,ets
− wN+1,∞

k;2,ets
)ejkω0tl

.
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We will therefore have

W
N+1,p+1
2emt

− W
N+1,∞
2emt

= H
−1
2emt

E
ts
2emt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

1−α...
1−α
1−α

1
...
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(WN+1,p
2,ets

− W
N+1,∞−1
2,ets

).

So there is a smoothing of n+1−l
1−α

∈ [0, 1] on the first α values of each macro step,
we expect a behavior of reduction of the radius of convergence, ie the method will
converge less quickly or will diverge less quickly. It is expected that the translation
operator from TS to EMT has no impact on the linearity of the error, indeed this
operator being a combination of two linear operators is linear.

3.4 Heterogeneous EMT-TS Numerical Results

For these numerical results, we use the same framework as in the homogeneous
case (cf chapter 2). The same circuit is therefore used, with the same cutouts (see
Figure 2.2). First, we study numerically the convergence of the method. As the
RAS method diverged in the homogeneous case we can expect the same kind of
results. Secondly, we study the results obtained by the heterogeneous co-simulation
in order to see the gain of the EMT-TS modeling over the TS modeling.

3.4.1 Heterogeneous EMT-TS RAS convergence results

3.4.1.1 Effect of circuit topology on the convergence

In order to see only the effect of the circuit topology (i.e the effect of the circuit
components values) on the convergence, we use the classic FFT to translate from
EMT to TS keeping Δtts to be a period. We also do not smooth the TS to EMT
translation either,but simply recombine the harmonics (ie α = 0). The impact on
the convergence of the method of these modifications to the translation operators
will be given in a second time.
We know that the value of the components influences the convergence of the
method ([91]), and more particularly the inductance and the capacitance have
a very strong impact.
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Figure 3.4: Convergence of the heterogeneous EMT-TS RAS error between two
consecutive iterations with voltage source in the TS subsystem and with C1 =
C2 = 1.10−6, R1 = R2 = 7,L1 = 0.07 and we have L2 = 1 at the top and L2 = 0.07
at the bottom.

Figure 3.4 shows the error between two heterogeneous EMT-TS RAS iterations by
changing the value of the inductance L2 in the circuit. It exhibits a convergent
method for L2 = 1 while the method diverges for L2 = 0.07 the other components
being set. Figure 3.5 shows the error between two heterogeneous EMT-TS RAS
iterations by changing the values of the capacitances C1 and C2 in the circuit. It
exhibits a convergent method for C1 = C2 = 1.10−6 while the method strongly
diverges for C1 = C2 = 1.10−4 the other components being set.
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Figure 3.5: Convergence of the heterogeneous EMT-TS RAS error between two
consecutive iterations with voltage source in the TS subsystem and with, R1 =
R2 = 7,L1 = L2 = 0.4 and we have C1 = C2 = 1.10−6 at the top and C1 = C2 =
1.10−4 at the bottom.

The choice of the part that is simulated with the TS or with the EMT also has an
impact and more particularly the place where the voltage source is located has an
impact in the convergence of the method.

Figure 3.6, gives the error between two consecutive heterogeneous EMT-TS RAS
iterations according to whether the voltage source is modeled within the EMT
(left) or within the TS (right). It exhibits a divergent method when the source is
in the EMT part while the method is convergent if it is located in the TS part.



64 CHAPTER 3. HETEROGENEOUS EMT-TS RAS

0 5 10 15 20 25 30 35 40 45 50
RAS iteration k

-5

-4

-3

-2

-1

0

1

2

3

4

5

lo
g

10
(|

|z
 1

k+
1 -z

 1
k

||
)

RAS error

EMT side
TS side

0 5 10 15 20 25 30 35 40 45 50
RAS iteration k

-7

-6

-5

-4

-3

-2

-1

0

lo
g

10
(|

|z
 1

k+
1 -z

 1
k

||
)

RAS error

EMT side
TS side

Figure 3.6: Convergence of the heterogeneous EMT-TS RAS error between two
consecutive iterations with, R1 = R2 = 7,L1 = L2 = 0.5 ,C1 = C2 = 1.10−6. At
the top the source is in the EMT subsystem and at the bottom the source is in
the TS subsystem.

These results clearly demonstrate the need for the heterogeneous EMT-TS RAS
method to have the Aitken’s acceleration technique like in the homogeneous RAS
case to be independent of the circuit topology.

3.4.1.2 Effect of the EMT Time steps Δtemt on the convergence

We have seen with Figure 3.6 that the convergence depends on the subsystem in
which the source is located. However, the impact of the localization of the voltage
source is coupled to the size of the EMT time steps. Indeed, a modification of
the size of the EMT time steps does not have the same impact depending on the
location of the voltage source.
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Figure 3.7: Convergence of the heterogeneous EMT-TS RAS error between two
consecutive iterations with voltage source in the TS subsystem and with, R1 =
R2 = 7,L1 = L2 = 0.5 ,C1 = C2 = 1.10−6 at the top Δtemt = 2.10−3 and at the
bottom Δtemt = 2.10−5.

Figure 3.7 gives the error between two consecutive heterogeneous RAS iterations
with respect of the value of Δtemt for the circuit problem while the source is
modeled in TS. It exhibits that the method diverges with Δtemt = 2.10−3 (left)
while the method converges for Δtemt = 2.10−5 (right).
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Figure 3.8: Convergence of the heterogeneous EMT-TS RAS error between two
consecutive iterations with voltage source in the EMT subsystem and with, R1 =
R2 = 7,L1 = L2 = 0.5 ,C1 = C2 = 1.10−6 at the top Δtemt = 2.10−3 and at the
bottom Δtemt = 2.10−5.

Figure 3.8 gives the error between two consecutive heterogeneous RAS iterations
with respect of the value of Δtemt for the circuit problem when the source is
modeled in EMT. It exhibits that the method diverges for both cases Δtemt =
2.10−3 (top) and Δtemt = 2.10−5 (bottom).Indeed the more Δtemt decreases the
more the error increases.

These results clearly demonstrate the need for the heterogeneous EMT-TS RAS
method to have the Aitken’s acceleration technique as in the homogeneous RAS
case to be independent of the time step size choice.
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3.4.1.3 Effect of the translation operators on the convergence

Let us study the influence on the convergence of the percentage α in the smoothing
during the translation from TS to EMT. We recall that it represents the number of
EMT time steps on which the interpolation of TS interface values are performed.
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Figure 3.9: Convergence of the heterogeneous EMT-TS RAS error between two
consecutive iterations with respect to the α parameter in the smoothing and with
voltage source in the EMT subsystem. R1 = R2 = 7,L1 = 0.3, L2 = 0.7 ,C1 =
C2 = 1.10−6. With top left α = 0%, top right α = 25% , bottom left α = 50% and
bottom right α = 75%

Figure 3.9 shows the error between two consecutive heterogeneous EMT-TS RAS
iterations for α = {0%, 25%, 50%, 75%}. It exhibits that the α as a strong effect
on the convergence as the method diverges when α = 0% (no smoothing) while
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it converges in other cases. It also shows that the larger is α, the better is the
convergence.
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Figure 3.10: Convergence of the heterogeneous EMT-TS RAS error between two
consecutive iterations with respect to the α parameter in the smoothing and with
voltage source in the TS subsystem. With, R1 = R2 = 7,L1 = 0.3, L2 = 0.7
,C1 = C2 = 1.10−6. With top left α = 0, top right α = 25 , bottom left α = 50
and bottom right α = 75

As the increase in α has a beneficial effect on convergence in the case where the
voltage source is in the EMT part, we investigated whether this will also be the
case for the case where the voltage source is in the TS part which was convergent
without smoothing. Figure 3.10 shows the error between two heterogeneous EMT-
TS RAS iterations by varying α when the source is in the TS part. It exhibits
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that the convergence deteriorates when α becomes larger than 0% until α reaches
a threshold (about 50%). Once this threshold is exceeded, the error decreases
with the increase of α. We notice that the convergence improves faster than it has
deteriorated.
In conclusion, smoothing has a beneficial impact on the convergence of the het-
erogeneous EMT-TS RAS method as we found α values that make the method
convergent regardless of the source voltage location. Nevertheless, the convergence
behaviour is not a monotonic function with respect to α.

3.4.1.4 Effect of the reduction of Δts and moving history on the con-
vergence

Finally, let us study the effect of the reduction of the time steps Δts with respect
to the period T and the moving history on the convergence.
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Figure 3.11: Convergence of the heterogeneous EMT-TS RAS error between two
consecutive iterations with respect to the Δtts = 10−2 less than a the period T
and rolling history, with the source voltage in EMT and α = 0% (top), α = 25%
(bottom), R1 = R2 = 7,L1 = 0.3, L2 = 0.7 ,C1 = C2 = 1.10−6.



70 CHAPTER 3. HETEROGENEOUS EMT-TS RAS

Figure 3.11 shows the error between two consecutive heterogeneous EMT-TS RAS
iterations for Δts = 1/(2T ) , α = {0%, 25%} and the voltage source in EMT.
It exhibits that the decrease of Δts = 1/(2T ) and moving history lead to a con-
vergent method in comparison of Figure 3.9 (top left) with Δts = 1/(T ) which
was divergent. The decrease of Δts as also a beneficial impact on the convergence
associated to α = 25% with an error nearby 10−12 for 50 iterations for Δts = 10−2

instead of 10−6 for Δts = 2. 10−2 (Figure 3.11 (right) in comparison of Figure 3.9
(top right)).
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Figure 3.12: Convergence of the heterogeneous EMT-TS RAS error between two
consecutive iterations with respect to the Δts=Δtts=10−2 less than a the period T
and rolling history, with the source voltage in TS and α = 0% (top), α = 25%
(bottom), R1 = R2 = 7,L1 = 0.3, L2 = 0.7 ,C1 = C2 = 1.10−6.

Figure 3.12 shows the error between two consecutive heterogeneous EMT-TS RAS
iterations for Δts = 1

2T
, α = {0%, 25%} and the voltage source in TS. It also

exhibits the beneficial effect of the decrease of Δts = 1
2T

and moving history as the
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method converge for α = 25% that was not the case for Δts = 1
T

in Figure 3.10
(top right). The convergence is also greatly improved for the α = 0% case with an
error of 10−15 in 40 iterations versus and error of 10−6 for Δts = 1

T
in Figure 3.10

(top left).
In conclusion, decreasing the Δtts time step associated with the moving history
has greatly improved the convergence of the heterogeneous EMT-TS RAS, and
made it less dependent on the source voltage location. Nevertheless, the decrease
in Δtts also decreases the ratio of Δtts to Δtemt and thus the potential performance
of the heterogeneous EMT-TS RAS.

3.4.1.5 Largest eingenvalue of the heterogeneous EMT-TS RAS error
operator

In order to confirm the convergence behaviour of the heterogeneous EMT-TS RAS,
we numerically calculated the error operator P of the method and its largest
eigenvalue.

Source in the EMT subsystem

α
Δtts 2.10−2 1.5 10−2 1. 10−2 2. 10−3

0% λ(P ) = −1.3882 λ(P ) = −0.735 ± 0.015i λ(P ) = −0.7068 λ(P ) = −0.2537

25% λ(P ) = −0.884 ± 0.407i λ(P ) = −0.7231 λ(P ) = −0.6050 λ(P ) = −0.2538

50% λ(P ) = −0.876 ± 0.427i λ(P ) = −0.6447 λ(P ) = −0.4592 λ(P ) = −0.2523

75% λ(P ) = −0.812 ± 0.197i λ(P ) = −0.4938 λ(P ) = 0.3633 λ(P ) = −0.2503

Source in the TS subsystem

α
Δtts 2. 10−2 1.5 10−2 1. 10−2 2. 10−3

0% λ(P ) = −1.010 ± 0.290i λ(P ) = −1.0953 λ(P ) = −0.5383 λ(P ) = −0.1716

25% λ(P ) = −1.1430 λ(P ) = −1.0417 λ(P ) = −0.4478 λ(P ) = −0.1413

50% λ(P ) = −1.1789 λ(P ) = −0.8259 λ(P ) = −0.282 ± 0.053i λ(P ) = −0.1033

75% λ(P ) = −0.8930 λ(P ) = −0.503 ± 0.043i λ(P ) = −0.209 ± 0.083i λ(P ) = −0.0831

Table 3.1: Largest eigenvalue of the error operator PΓts , with, R1 = R2 = 7,L1 =
L2 = 0.07 ,C1 = C2 = 1.10−6 and Δtemt = 2.10−4. At top with the source in the
EMT subsystem and at bottom in the TS subsystem

Table 3.1 gives the combined impact of smoothing and moving history on the
convergence of the method by showing the value of the largest eigenvalue of the
error operator P for source voltage in EMT and TS. It exhibits that except when
we are in the particular case where the source of tension is in TS and that Δts =
1/T , the increase of α always improves the convergence. The decrease of Δts,
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possible thanks to the moving history always improves the convergence too. The
combination of the two makes it possible to obtain fairly rapid convergences but
still to much from an operational point of view. This is why we need to accelerate
its convergence.

3.4.1.6 Aitken’s acceleration of the heterogeneous EMT-TS RAS con-
vergence

For all the studies of convergences of the previous sub-section, we see that the
convergence/divergence is purely linear, we will therefore use the method of accel-
eration of convergence of Aitken to obtain the solution after nΓ + 1 iterations.

Figure 3.13: Heterogeneous EMT-TS RAS convergence error for for each subdo-
main, for the time step t = 0.02 and its Aitken’s acceleration applied on the TS
partition interface with Δtts = 2.10−2 and Δtemt = 2.10−4) and with parameters
L1 = 0.07, C1 = 1.10−6R1 = 7, L2 = 0.07, C2 = 1.10−6, R2 = 7, Zs = 0.000001,
with the voltage source in the TS part

Figure 3.13 gives the log10 of the error between two consecutive RAS iterations at
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time t = 0.02. It shows a linear convergence behavior and can therefore be accel-
erated by the Aitken acceleration of the convergence technique after 9 iterations
needed to numerically construct the error operator PΓ. In this case the method is
convergent and it is shown that after the local resolutions, the accelerated method
has converged on each subdomain.

Figure 3.14: Heterogeneous EMT-TS RAS convergence error for the TS boundary
for the time step t = 0.02 and its Aitken’s acceleration applied to the TS partition
interface with Δtts = 2.10−3 and Δtemt = 2.10−5) and with parameters L1 =
0.07, C1 = 1.10−6, R1 = 7, L2 = 0.07, C2 = 1.10−6, R2 = 7, Zs = 0.000001, with
the voltage source in the EMT part

Figure 3.14 shows the log10 of the error between two successive heterogeneous
EMT-TS RAS iterations with and without the use of the Aitken acceleration
method with the voltage source in the EMT part with Δtts = 2.10−3 and Δtemt =
2.10−5). It exhibits that the method diverges but as the divergence is purely linear
the Aitken’s acceleration of the convergence technique sucesses to retrieve the true
solution after 9 iterations as the acceleration is performed on the interface solution
of the TS part. Figure 3.15 shows the solution after using the Aitken acceleration
technique in a divergent case. The result is compared to the monolithic EMT case
showing that the true solution is obtained.
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Figure 3.15: Heterogeneous EMT-TS RAS solution comparison with the monolitic
EMT case on a time intervalle with Δtts = 2.10−3 and Δtemt = 2.10−5) and with
parameters L1 = 0.07, C1 = 1.10−6, R1 = 7, L2 = 0.07, C2 = 1.10−6, R2 = 7, Zs =
0.000001, with the voltage source in the EMT part
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3.4.2 Qualitative results on the heterogeneous EMT-TS
RAS

The numerical tests that follow focus on the qualitative advantage of the EMT-TS
model over the TS model. The problem is that of the circuit of figure 2.2.

3.4.2.1 The advantage of the EMT part
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Figure 3.16: Comparison of the behavior, with respect to time, of the variables
i34 (top left) and v3 (bottom left) (the figures on the right are their zoom on
the disturbances) computed using the heterogeneous EMT-TS RAS splitting with
the Aitken’s technique for accelerating convergence (Δtts = 2.10−3 and Δtemt =
2.10−5), the reference is the monolithic EMT. An amplitude perturbation on the
voltage source starting at t = 0.02s and ending at t = 0.021s, therefore lasting less
than one Δtts is applied. Parameters are L1 = 0.07, C1 = 1.10−5, R1 = 7, L2 =
0.07, C2 = 1.10−7, R2 = 7, Zs = 0.000001.
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The purpose of having a part of the circuit simulated in the EMT modelling is to
capture events that are not visible with the dynamic phasor modeling. In order
to verify that the EMT-TS modeling can capture this advantage, we will create a
disturbance that lasts less than a TS time step and therefore cannot be seen by
the TS modeling.
Figure 3.16 compares the EMT monolithic reference values for the variables v3
and i34 with the EMT-TS heterogeneous RAS splitting where a perturbation on
the source voltage that starts at t = 0.02s and ends at t = 0.021s is applied. It
exhibits that the heterogeneous EMT-TS RAS succeeds in capturing part of the
perturbation on the v3. It shows a good agreement between the monolithic and the
heterogeneous EMT-TS RAS for the variable v3. The variable i34 in the EMT DDM
part captures certain oscillations due to the perturbation. These results show that
heterogeneous EMT-TS RAS can capture disturbances that last less than one TS
time step and therefore would not have been captured by a monolithic TS model.

Remark 10. These results are visible because we chose a dynamic phasor rather
than a simple phasor modeling for the TS part.

3.4.2.2 The impact of the cutting and passing of information
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Figure 3.17: Comparison of the behavior, with respect to time, of the variables
v3 (left) and v7 (right) computed using the heterogeneous EMT-TS RAS split-
ting with the Aitken’s technique for accelerating convergence (Δtts = 2.10−3 and
Δtemt = 2.10−5), the reference is the monolithic EMT. An amplitude perturba-
tion on the voltage source. Parameters are L1 = 0.07, C1 = 1.10−5, R1 = 7, L2 =
0.07, C2 = 1.10−7, R2 = 7, Zs = 0.000001.
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For the figure 3.17 a short event at the voltage source is created. Two potentials
equidistant from the voltage source are compared v3 and v7, it is noted that the
solutions found by the EMT subdomain during the cosimulation capture the dis-
turbance much better and are closer to the monolithic solution for the potential
v3 compared to the potential v7. Note that v3 is close to the transition from EMT
to TS, while v7 is close to a boundary where information is transmitted only from
TS to EMT. This gives us an indication of the loss of information implied by the
TS part.

3.5 Conclusions
In this chapter, we have set up a co-simulation between two types of models:
Transient Electromagnetics and Dynamic Phasors. To do this, we used a Schwarz
method. We have also implemented translation operators between the two types
of models. The linearity of these translation operators makes it possible to keep
the pure convergence of the method. This pure linear convergence/divergence
of the method allows us to accelerate the convergence to the true solution using
Aitken’s convergence acceleration method. We have numerically constructed the
error operator associated with the interface from the RAS iterations. We used an
RLC circuit to obtain numerical results, we could observe that the part calculated
in EMT has results very close to the monolytic EMT reference. We have also been
able to see that disturbances which would have been invisible by a monolytic TS
simulation are slightly perceived by the TS part of the heterogeneous simulation.
There is therefore a gain between level of precision and calculation time. These
results open perspectives on the representation of two models on the overlap,
we have in the numerical results an overlap but a larger model would allow a
better comparison of the results given by the two different models on the overlap.
Indeed, it will allow to give more details on the loss of information during the
transition from EMT to TS and thus to work on the boundary conditions and on
the partitioning.
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4.1 Introduction

4.1.1 Motivations
The purpose of this chapter is to exhibit the link between the domain decompo-
sition method we developed in the previous chapters with the class of methods
named waveform relaxation or dynamic iteration methods. We are going to show
that our domain decomposition belongs to this class by considering a special split-
ting based on the restricted additive Schwarz. We can then apply the theory de-
veloped for dynamic iteration and adapt some theoretical results with our specific
splitting. As the dynamic iteration is mainly viewed as a fixed point method its
convergence depends on the spectral radius of the error operator depending itself
on the splitting used. We will thus be able to show that purely linear convergence
or divergence results can be reused in the context of the linear DAE system, thus
allowing us to accelerate convergence towards the true solution with the Aitken
technique to accelerate convergence. Using the context of dynamic iteration, we
develop two different strategies (step by step acceleration and multisteps accel-
eration) for applying the Aitken’s acceleration of the convergence technique. We
show the link between the two strategies and we will discuss the cases where each
strategy is the most optimal. Numerical results confirm the advantages of the
dynamic iteration accelerated with Aitken’s acceleration even in some nonlinear
and non-uniform time steps cases.

4.1.2 Previous works for accelerating Dynamic iteration
Since the pioneering work of Lelarasme & al [65] that analyze in time domain
large-scale problems arising from the modeling of integrated circuits, waveform re-
laxation methods (WR) [68] also known as dynamic iteration methods, a term first
introduced by Miekkala and Nevanlinna [78, Eq (2.2)] and generally used in pub-
lications [77, 11, 17, 19, 49] arouses more and more interest with the development
of parallel computers [101] and more generally in the co-simulation framework
[19, 104].
In such methods applied to Ordinary Differential Equations (ODE) systems or to
Differential Algebraic Equations (DAE) systems, the system is decomposed into
several subsystems with many internal variables and few external variables. For
initial value problems with linear ODEs, the method consists in carrying out some
splitting of the linear operator A = M − N [78] such as Jacobi, relaxed Jacobi,
Gauss-Seidel or SOR. Nevertheless this fixed-point process must be contractant
to converge. The analysis of the convergence of the method, using the Laplace
transform, occurs when the spectral radius maxξ∈R ρ((iξI + M)−1N) < 1 [78, Eq
2.13]. For initial value problems with linear DAE systems Bẋ + Ax = f , like
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those arising in RLC circuits, Miekkala [77, Theorem 2] extented her previous
convergence analysis result with the splitting of B = Mb − Nb and A = MA − NA,
maxξ∈R ρ((iξMB + MA)−1(iξNB + NA)) < 1. Reichel & al combined the waveform
SOR with the multistep integration method and showed that the SOR relaxation
optimal parameter is dependent on Fourier frequencies [101, Eq 19]. Jiang and
Wing determined the expressions of the spectrum and pseudospectrum of the
waveform relaxation operators for linear differential-algebraic equations systems
which occur especially in circuit simulation [58, Eqs (3) & (4)] and Jiang extended
these results to a general class of nonlinear differential-algebraic equations [57]
of index one, these extended resuts generalize the expressions of Lumsdaine and
Wu[69]. Several techniques to precondition the fixed point problem were proposed
by Arnold & Gunther [12]. Hout has established convergence results that are
relevant in applications to nonlinear, nonautonomous, stiff initial value problems
[54].
Some convergence acceleration techniques for the WR have been proposed. Some
waveform successive overrelaxation (SOR) techniques have been proposed by Janssen
and Vandewalle [56] to accelerate the standard waveform method. Leimkuhler pro-
posed to accelerate the WR by solving the defect equations with a larger timestep,
or by using a recursive procedure based on a succession of increasing timesteps
[64]. Lumdaisne & Wu proposed to accelerate the WR by Krylov subspace tech-
niques (WGMRES) [70] to solve time-dependent problems. Botchev & al [22]
compared WR-Krylov with Krylov’s methods combined with the shift and invert
(SAI) technique to obtain parallelism in time. Ladics [62] combined the WR with
convergent numerical methods to solve semi-linear PDEs, he showed the effect of
applying time windows. Recent developments in the dynamic iteration method for
the co-simulation of electrical circuits have been carried out by Bartel & al [18, 17]
and by Ali & al [2]. Gausling & al [46] analyzed the contraction and the rate of
convergence of the co-simulation process for a test circuit subjected to uncertain-
ties on the parameters of its components. Morever, the rate of convergence or
divergence of the dynamic iteration depends on the interface coupling [45]. Pade
and Tischendorf [91] presented topological criteria for the coupling of networks
which are easy to check and which are sufficient to ensure the convergence of the
WR which is related to the DAE index.

4.2 Dynamic Iteration

Let us recall the method of dynamic iteration applied to the DAE as it was de-
scribed by Miekkala[77]:
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Consider the initial linear problem (4.1) to find a function x : [0, T ] → C
n

{
Bẋ(t) + Ax(t) = f(t), t ∈]0, T ]
x(0) = x0.

(4.1)

with B and A being C
n×n matrices, B can be singular (so this system would be a

system of differential algebraic equations), and f : [0 : T ] → C
n is a known input

function.
The dynamic iteration is an iterative scheme to solve Eq. (4.1) based on the
splitting of operators A = MA − NA and B = MB − NB, where MB is assumed to
be invertible.

Definition 11 (Dynamic iteration). The dynamic iteration scheme at iteration k
to solve Eq. (4.1) with the splitting A = MA − NA and B = MB − NB and starting
from an initial guess x(0) satisfying x(0)(0) = x0 is written as follows:{

MBẋ(k)(t) + MAx(k)(t) = NBẋ(k−1)(t) + NAx(k−1)(t) + f(t), t ∈]0, T ]
x(k)(0) = x0.

(4.2)

Proposition 8 (Miekkala). If MB is chosen invertible then there exist a linear
operator P independant of iteration k such as

x(k)(t) = Ptx
(k−1)(t) + φ(t) (4.3)

where

Pu(t) = M−1
B NBu(t) +

∫ t

0
e−M−1

B MA(s−t)M−1
B (NA − MAM−1

B NB)u(s)ds(4.4)

φ(t) = e−M−1
B MAt(I − M−1

B NB)x0 +
∫ t

0
e−M−1

B MA(s−t)M−1
B f(s)ds (4.5)

Let us retrieve the proof of Eq. (4.3) not detailled in [77].

Proof. As MB is considered invertible, we can write Eq. from (4.2)

ẋ(k) − M−1
B NBẋ(k−1) = −M−1

B MA(x(k) − M−1
B NBx(k−1))

+M−1
B (NA − MAM−1

B NB)x(k−1) + M−1
B f (4.6)

By proceeding to a change of variable z = x(k) − M−1
B NBx(k−1), the solution of the

homogeneous equation associated to Eq. (4.6),

zh(t) = e−M−1
B MAt (4.7)

The general solution is written z(t) = zh(t)ψ(t). By putting z(t) in Eq. (4.6)

−M−1
B MAe−M−1

B MAtψ(t) + e−M−1
B MAtψ̇(t) = −M−1

B MAe−M−1
B MAtψ(t)

+M−1
B (NA − MAM−1

B NB)x(k−1)(t) + M−1
B f(t)
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we find that:

ψ̇(t) = eM−1
B MAt(M−1

B (NA − MAM−1
B NB)x(k−1)(t) + M−1

B f(t)) (4.8)

Then by integrating ψ̇(t)

ψ(t) =
∫ t

0
eM−1

B MAs(M−1
B (NA − MAM−1

B NB)x(k−1)(s) + M−1
B f(s))ds + Cst

The Cst is defined such that x(k)(0) = x(k−1)(0) = x0 i.e. z(0) = (I − M−1
B NB)x0.

We obtain the solution z(t) to be:

z(t) = e−M−1
B MAt

∫ t

0
eM−1

B MAs(M−1
B (NA − MAM−1

B NB)x(k−1)(s)ds

+e−M−1
B MAt(

∫ t

0
eM−1

B MAsM−1
B f(s))ds + (I − M−1

B NB)x0)

x(k)(t) − M−1
B NBx(k−1)(t) =

∫ t

0
eM−1

B MA(s−t)(M−1
B (NA − MAM−1

B NB)x(k−1)(s)ds

+
∫ t

0
eM−1

B MA(s−t)M−1
B f(s))ds + e−M−1

B MAt(I − M−1
B NB)x0

finally, we obtain the result with the linear operator P acting on x(k−1) and the
function φ(t) independant of x(k−1):

x(k) = M−1
B NBx(k−1)(t) +

∫ t

0
eM−1

B MA(s−t)(M−1
B (NA − MAM−1

B NB)x(k−1)(s)ds︸ ︷︷ ︸
Ptx(k−1)

+ e−M−1
B MAt(I − M−1

B NB)x0 +
∫ t

0
eM−1

B MA(s−t)M−1
B f(s))ds︸ ︷︷ ︸

φ(t)

Remark 11. The linear operator Pt depends on the time t. It is also the error
operator of the DI as φ(t) depends uniquely on x0 and f(t) and does not depend
on the iteration k. The dynamic iteration defined by 4.2 converges if the spectral
radius of Pt is such as : ρ(Pt) < 1. This is the drawback of the method as the
operator Pt depends on the time t we need that the ρ(Pt) < 1 for all t ∈]0, T ].

The extension of the dynamic iteration to DAE system have been conducted. Jiang
& Wing [58], obtained the same type of results for linear DAE systems written in
the state space form. Let M ∈ C

n1×n1 , A ∈ C
n1×n1 , B ∈ C

n1×na , C ∈ C
na×n1 ,
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D ∈ C
na×na matrices and f1 :]0, T ] → C

n1 , f2 :]0, T ] → C
na functions, x0 ∈ C

n1

initial state value defining the DAE system in state-space form Eq. (2.17):

⎧⎪⎨
⎪⎩

Mẋ(t) + Ax(t) + By(t) = f1(t), t ∈ [0, T ],
Cx(t) + Ny(t) = f2(t), t ∈ [0, T ],

x(0) = x0,
(4.9)

Where x :]0, T ] → C
n1 are the n1 searched state solutions and y :]0, T ] → C

na are
the na searched algebrical solutions.

Definition 12 (Dynamic Iteration for linear DAE). The Dynamic Iteration scheme
for Eq. (4.9) considers the splitting of matrices M, A, B, C, N as M = M1 −
M2, A = A1 − A2, B = B1 − B2, C = C1 − C2, N = N1 − N2, where matrices M1
and N1 are assumed non-singular ( which implies that the DAE system has index
one)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

M1ẋ(k)(t) + A1x(k)(t) + B1y(k)(t) = M2ẋ(k−1)(t) + A2x(k−1)(t) + B2y(k−1)(t)
+f1(t), t ∈ [0, T ]

C1x(k)(t) + N1y(k)(t) = C2x(k−1)(t) + N2y(k−1)(t)
+f2(t), t ∈ [0, T ],

x(k)(0) = x0,

(4.10)

Afterwards, Jiang & Wing defined an iteration operator for Dynamic Iteration
applied to DAE system similar to the iteration operator Pt of Miekkala for ODE
system:

Theorem 1 (Jiang & Wing [58]). By grouping the differential and algebraic
variables in the same vector z = [x, y]t, the system 4.10 can be written with
φ(t) = [φ1(t), φ2(t)]t as:

z(k)(t) = Ptz
(k−1)(t) + φ(t) (4.11)

Pt =
(

M−1
1 M2 0,

N−1
1 S N−1

1 N2

)
+
( Rc

1 Rc
2

−N−1
1 C1Rc

1 −N−1
1 C1Rc

2

)
.
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With

(Rc
1u)(t) =

∫ t

0
e−M1D1(t−s)M−1

1 (D2 − D1M−1
1 M2)u(s)ds, ∀u ∈ L2([0, T ],Cn1),(4.12)

(Rc
2v)(t) =

∫ t

0
e−M−1

1 D1(t−s)M−1
1 (B2 − B1N−1

1 N2)v(s)ds, ∀v ∈ L2([0, T ],Cna),(4.13)

D1 = A1 − B1N−1
1 C1, (4.14)

D2 = A2 − B1N−1
1 C2, (4.15)

S = (C2 − C1M−1
1 M2), (4.16)

φ1(t) = e−M−1
1 D1t(I − M−1

1 M2)x0

+
∫ t

0
e−M−1

1 D1(t−s)M−1
1 (f1(s) − B1N−1

1 f2(s))ds, (4.17)

φ2(t) = −N−1
1 C1φ1(t) + N−1

1 f2(t). (4.18)

Proof. Let us retrieve the proof of Theorem 1 not detailled in [58].
The idea is to eliminate the variable y(k) from the algebraical equation and to
substitute its expression in the differential equation:

y(k) = N−1
1 (C2x(k−1) − C1x(k) + N2y(k−1) + f2) (4.19)

M1ẋ(k) + (A1 − B1N−1
1 C1)︸ ︷︷ ︸

D1

x(k) = M2ẋ(k) + (A2 − B1N−1
1 C2)︸ ︷︷ ︸

D2

x(k−1)

+(B2 − B1N−1
1 N2)y(k−1) + f1 − B1N−1

1 f2

Then we apply the same technique as for the Dynamic Iteration for ODE sys-
tem with MB = M1, NB = M2, MA = D1 and NA = D2 and f(t) = (B2 −
B1N−1

1 N2)y(k−1)(t) + f1(t) − B1N−1
1 f2(t) to obtain:

x(k) = M−1
1 M2x(k−1) +

∫ t

0
eM−1

1 D1(s−t)M−1
1 (D2 − D1M−1

1 M2)x(k−1)(s)ds︸ ︷︷ ︸
(Rc

1x(k−1))(t)

+
∫ t

0
eM1D1(s−t)M−1

1 (B2 − B1N−1
1 N2)y(k−1)(s) ds︸ ︷︷ ︸

(Rc
2y(k−1))(t)

+ e−M−1
1 D1(I − M−1

1 M2)x0 +
∫ t

0
eM1D1(s−t)M−1

1 (f1(s) − B1N−1
1 f2(s)) ds︸ ︷︷ ︸

φ1(t)
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Then we substitute x(k) = (M−1
1 M2 + (Rc

1))x(k−1) + Rc
2y(k−1) + φ1 in Eq. (4.19):

y(k)(t) = N−1
1 (C2 − C1M−1

1 M2)x(k−1)(t) − (N−1
1 C1Rc

1x(k−1))(t)
+N−1

1 N2y(k−1)(t) − (N−1
1 C1Rc

2y(k−1))(t)
−N−1

1 C1φ1(t) + N−1
1 f2(t)︸ ︷︷ ︸

φ2(t)

This result is interesting because it shows the linear convergence of the dynamic
iteration applied to DAE systems and therefore the possibility of accelerating its
convergence using Aitken’s method to accelerate convergence.

Remark 12. Let us notice that the error operator Pt depends again on the time
t ∈]0, T ] and it acts on the n1 + n1 components. We are going to show in the next
section that the RAS method developed in the previous chapter 2 can be considered
as a dynamic iteration with a specific splitting of the operators A, B, C, N

4.3 Dynamic Iteration with RAS splitting
Let us consider the system of DAE (4.9) coming from the modeling of an electrical
network where we choose M = I. This choice corresponds to a change of variables
on the voltage terms in order to get rid of the I matrix present in the DAE systems
of the chapters 2 and 3.

4.3.1 DI with RAS splitting in the continuous case
The kth iteration of the restrictive additive Schwarz is written locally for the W p

i

partition as:
{

żi
(k)(t) + Aiz

(k)
i (t) = Gi(t) − Eiz

(k−1)
i,e (t), t ∈ [0, T ],

x
(k)
i (0) = Rp,d

i x0.
(4.20)

Our goal is to put this RAS iteration in the form of the Dynamic Iteration with
a specific splitting of operators A, B, C, D. For this purpose, we separate the
differential and algebraic variables belonging to the partition W p

i . Then the kth

RAS iteration is written:⎧⎪⎪⎨
⎪⎪⎩

ẋ
(k)
i (t) + Aix

(k)
i (t) + Biy

(k)
i (t) = bb

i(t) − Ed
i,dx

(k−1)
ie (t) − Ea

i,dy
(k−1)
ie (t),

Cix
(k)
i (t) + Diy

(k)
i (t) = ba

i (t) − Ed
i,ax

(k−1)
ie (t) − Ea

i,ay
(k−1)
ie (t),

x
(k)
i (0) = Rp,d

i x0, t ∈ [0, T ].
(4.21)
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Where

(
Ai Bi

Ci Di

)
=

(
Rp,d

i 0ni1 ×n2

0ni2 ×n1 Rp,a
i

)
A

(
(Rp,d

i )T 0n1×ni2
0n2×ni1

(Rp,a
i )T

)
, (4.22)

(
Ed

i,d Ea
i,d

Ed
i,a Ea

i,a

)
=

(
Rp,d

i 0ni1 ×n2

0ni2 ×n1 Rp,a
i

)
A

(
(Rp,d

i,e )T 0n1×nie2
0n2×nie1

(Rp,a
i,e )T

)
. (4.23)

Operator Rp,d
i (respectively Rp,a

i ) is the restriction to the differential variables
(respectivelly algebraical variables) of Rp

i . We define also R̃0,d
i and R̃0,a

i such that

R̃0
i =

(
R̃0,d

i 0ni1 ×n2

0ni2 ×n1 R̃0,a
i

)
.

Proposition 9. The kth RAS iteration to solve Eq. (4.9) (with M = I) is a
Dynamic Iteration as defined in Eq. (4.10) associated to the following splitting of
the operators A = Ad

1 − Ad
2, B = Bd

1 − Bd
2 , C = Ca

1 − Ca
2 , D = Da

1 − Da
2 :

⎧⎪⎨
⎪⎩

ẋ(k)(t) + Ad
1x(k)(t) + Bd

1y(k)(t) = bd(t) + Ad
2x(k−1)(t) + Bd

2y(k−1)(t),
Ca

1 x(k)(t) + Da
1y(k)(t) = ba(t) + Ca

2 x(k−1)(t) + Da
2y(k−1)(t),

x(k)(0) = x0, t ∈ [0, T ].
(4.24)

with

Ad
1 =

N−1∑
i=0

R̃0,d
i AiR

p,d
i , Ad

2 = −
N−1∑
i=0

R̃0,d
i Ed

i,dRp,d
ie , bd(t) =

N−1∑
i=0

R̃0,d
i Rp,d

i bd(t),

Bd
1 =

N−1∑
i=0

R̃0,d
i BiR

p,a
i , Bd

2 = −
N−1∑
i=0

R̃0,d
i Ea

i,dRp,a
ie ,

Ca
1 =

N−1∑
i=0

R̃0,a
i CiR

p,d
i , Ca

2 = −
N−1∑
i=0

R̃0,a
i Ed

i,aRp,d
ie ,

Da
1 =

N−1∑
i=0

R̃0,a
i DiR

p,a
i , Da

2 = −
N−1∑
i=0

R̃0,a
i Ea

i,aRp,a
ie , ba(t) =

N−1∑
i=0

R̃0,d
i Rp,a

i ba(t).

Proof. By applying the operator R̃0
i to Eq (4.21) and by summing the contribution

of each partition W p
i , we obtain:
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N−1∑
i=0

R̃0,d
i ẋ

(k)
i (t) +

N−1∑
i=0

R̃0,d
i Aix

(k)
i (t) +

N−1∑
i=0

R̃0,d
i Biy

(k)
i (t) =

N−1∑
i=0

R̃0,d
i bi,d(t)

−
N−1∑
i=0

R̃0,d
i Ed

i,dx
(k−1)
ie (t) −

N−1∑
i=0

R̃0,d
i Ea

i,dy
(k−1)
ie (t),

N−1∑
i=0

R̃0,a
i Cix

(k)
i (t) +

N−1∑
i=0

R̃0,a
i Diy

(k)
i (t) =

N−1∑
i=0

R̃0,a
i bi,a(t)

−
N−1∑
i=0

R̃0,a
i Ed

i,ax
(k−1)
ie (t) −

N−1∑
i=0

R̃0,a
i Ea

i,ay
(k−1)
ie (t).

Hence, by using the definitions xi(t) = Rp,d
i x(t) , yi(t) = Rp,a

i y(t), and the proper-
ties ∑N−1

i=0 R̃0,d
i ẋ(t) = ẋ(t), ∑N−1

i=0 R̃0,d
i bd

i (t) = bd(t)
and ∑N−1

i=0 R̃0,a
i ba

i (t) = ba(t), we obtain Eq (4.24).
Finally, we need to show that A = Ad

1 − Ad
2, B = Bd

1 − Bd
2 , C = Ca

1 − Ca
2 , N =

Na
1 − Na

2 . By using the definition of Ai = Rp,d
i A(Rp,d

i )T and Ed
i,d = Rp,d

i A(Rp,d
i,e )T ,

we have:

Ad
1 − Ad

2 =
N−1∑
i=0

R̃0,d
i AiR

p,d
i +

N−1∑
i=0

R̃0,d
i Ed

i,dRp,d
ie ,

=
N−1∑
i=0

R̃0,d
i Rp,d

i A((Rp,d
i )T Rp,d

i + (Rp,d
i,e )T Rp,d

ie )

The definitions of Rp,d
i and Rp,d

i,e make that Rp,d
i A((Rp,d

i )T Rp,d
i + (Rp,d

i,e )T Rp,d
ie ) =

Rp,d
i A. So, we have:

Ad
1 − Ad

2 =
N−1∑
i=0

R̃0,d
i Rp,d

i A = A

The same calculation is done for Bb
1−Bd

2 = B and the property Rp,a
i C((Rp,a

i )T Rp,a
i +

(Rp,a
i,e )T Rp,a

ie ) = Rp,a
i C leads to Ca

1 − Ca
2 = C and so on for Da

1 − Da
2 = D.

Thus the RAS method applied to DAE system belongs to the Dynamic Iteration
methods with a specific splitting of the operators. Therefore, we can apply the
Theorem 1 if the matrix Da

1 is invertible (which implies that the DAE system 2.17
is a DAE system of index 1) showing the pure linear convergence or divergence of
the DI with RAS splitting in the continuous case. The peculiarity of the DI with
RAS splitting compared to the DI with a general splitting of Eq. (4.10) is that we
only work on the interfaces W p

i,e.
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By noting W p,d
i,e and W p,a

i,e the differential and algebraical components of W p
i,e.

Then we can define Γd = {W p,d
0,e , . . . , W p,d

N−1,e}, Γa = {W p,a
0,e , . . . , W p,a

N−1,e} and Γ =

{Γd, Γa} and RΓ the restriction to the global interface RΓ =
(

Rd
Γ 0

0 Ra
Γ

)
with

Rd
Γ = (Rp,d

0,ie, . . . , Rp,d
N−1,ie)T , Ra

Γ = (Rp,a
0,ie, . . . , Rp,a

N−1,ie)T .
Then, we can extend the Theorem 1 for the DI with RAS splitting, which extends
the proposition 2 of chapter 2 to the continuous case (i.e. ∀t ∈]0, T ]).

Proposition 10. The Dynamic Iteration with RAS splitting defined by Eq. (4.24)
applied to a linear DAE system with Da

1 invertible has an error operator Pt,Γ which
does not depend on the iteration number, such that the restriction of the iteration
to the global interface (i.e z

(k)
Γ = RΓz(k)) satisfies:

z
(k)
Γ = Pt,Γz

(k−1)
Γ + c (4.25)

The interest of Eq. (4.25) is to show the pure linear convergence of the DI and
the possibility of accelerating the convergence to the true solution z(∞) with the
Aitken’s technique for accelerating convergence, if 1 is not an eigenvalue of Pt,Γ,
as follows:

z
(∞)
Γ = (I − Pt,Γ)−1(z(1)

Γ + Pt,Γz
(0)
Γ ) (4.26)

The Pt,Γ error operator is valid over the entire time interval of interest t ∈]0, T ].

Remark 13. Let us notice that the eigenvalues of Pt,Γ are continuous in t.
Consequently, there may exist a t∗ ∈]0, T ] such that ρ(Pt∗−,Γ) < 1 and ρ(Pt∗+,Γ) >
1, i.e the DI method converges on a time interval of limited size ]0, t∗−] and then
diverges. Nevertheless, thanks to the Aitken’s convergence acceleration technique,
we do not need to worry about the convergence or the divergence, we just need to
not choose the time interval ]0, t∗].

In the next section, we are going to consider the discrete version of the DI, i.e. we
discretize the time derivative with an approximation scheme that can be equivalent
to applying the continuous DI method over a time interval ]0, Δt] repeatedly, start-
ing with an initial condition consisting of the converged solution of the previous
time step or starting with an initial condition consisting of the iterated solution
of the previous time step.

4.3.2 Discrete counterpart of the DI with RAS splitting
The discrete counterpart of the DI with RAS splitting is obtained by using a
backward Euler for time discretization, other backward differences formula (BDF)
schemes would give similar results with more complicated formula.
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The discrete DI with RAS splitting using backward Euler discretizing is written:⎧⎪⎨
⎪⎩

Ãd
1xn+1,(k+1) + B̃d

1yn+1,(k+1) = b̃n+1,d + Ãd
2xn+1,(k) + B̃d

2yn+1,(k),
Ca

1 xn+1,(k+1) + Da
1yn+1,(k+1) = bn+1,a + Ca

2 xn+1,(k) + Da
2yn+1,(k),

x0,(k+1) = x0.
(4.27)

with Ãd
1 = Id

n,1 + Δt Ad
1, B̃d

1 = Δt Bd
1 , Ãd

2 = Δt Ad
2, B̃d

2 = Δt Bd
2 , b̃n+1,d =

xn,∗ + Δt bn+1,d where xn,∗ will be defined later.

Locally, it is written with x
0,(k+1)
i = Rp,d

i x0:(
x

n+1,(k+1)
i

y
n+1,(k+1)
i

)
︸ ︷︷ ︸

z
n+1,(k+1)
i

=
(

Ãi B̃i

Ci Di

)−1

︸ ︷︷ ︸
Ã

−1
i

((
b̃n+1

i,d

bn+1
i,a

)
︸ ︷︷ ︸

b̃n+1
i

−
(

Ẽd
i,d Ẽa

i,d

Ed
i,a Ea

i,a

)
︸ ︷︷ ︸

Ẽi

(
x

n+1,(k)
i,e

y
n+1,(k)
i,e

))
︸ ︷︷ ︸

z
n+1,(k)
i,e

(4.28)

We have recovered the formulation of the RAS method from the chapter 2,
nevertheless putting it back in the framework of the dynamic iteration method
allows us to extend the method when it is applied to time evolution problems. We
have two possibilities for the term xn,∗ with xn,∗ = xn,(k+1) or xn,∗ = xn,(∞), which
will have an impact on the Aitken acceleration of convergence. This choice will
lead to two implementation strategies described in the next section.

4.4 Time stepping strategies for DI
This section describes the implementation of the DI with RAS splitting splitting
accelerated by the Aitken technique for convergence acceleration, applied over a
time interval [t0, tF ] with a constant time step Δt satisfying tF − t0 = ΞΔt with
Ξ ∈ N

∗.

4.4.1 Sequential DI strategy
The sequential DI strategy consists in iterating the DI method until convergence on
one time step before applying it to the next time step. This strategy corresponds
to the one which was applied in the two previous chapters and corresponds to the
choice xn,∗ = xn,(∞) in Eq. (4.27).
In this sequential DI strategy, we can apply the Aitken’s technique for accelerating
convergence, after nΓ + 1 DI iterations for the first regular time step, in order to
numerically build the P operator. Then, if we use the same time step size for
the following time steps, and if there is no non-linearity and no change in the
topology, we can perform the Aitken’s convergence acceleration technique after
one DI iteration. The algorithm 3 describes the sequential DI strategy.
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Algorithm 3 Sequential DI strategy
1: n=1 (first time step)
2: Perform nΓ + 1 DI with RAS splitting with algorithm 2 to obtain

[z1,(0)
Γ , . . . , z

1,(nΓ+1)
Γ ]

3: Compute PΔt,Γ = [e(2)
Γ , . . . , e

(nΓ+1)
Γ ][e(1)

Γ , . . . , e
(nΓ)
Γ ]−1 with e

(i)
Γ = z

1,(i)
Γ − z

1,(i−1)
Γ .

4: Perform the Aitken’s formula to obtain:

z
1,(∞)
Γ = (I − PΔt,Γ)−1(z1,(nΓ+1)

Γ − PΔt,Γz
1,(nΓ)
Γ )

followed by one local solve to obtain z1,(∞)

5: for n = 1 to Ξ − 1 do
6: Perform 1 DI with RAS splitting with algorithm 2 starting from the initial

guess z
n,(0)
Γ = z

n−1,(∞)
Γ to obtain z

n,(1)
Γ

7: Perform the Aitken’s formula to obtain:

z
n,(∞)
Γ = (I − PΔt,Γ)−1(zn,(1)

Γ − PΔt,Γz
n,(0)
Γ )

followed by one local solve to obtain zn,(∞)

8: end for

4.4.2 Pipelined DI strategy

In the pipelined DI strategy, each DI iteration is performed over several time steps,
these iterations are repeated until convergence. This strategy corresponds to the
choice xn,∗ = xn,(k) in Eq. (4.27).
We adopt the convention z0,(k) = z0, ∀k, The algorithm 4 summarizes the pipelined
DI strategy (without Aitken’s acceleration technique) for a period from t0 to tF

with tF − t0 = ΞΔt. There are Ξ consecutive time steps that are pipelined.

Algorithm 4 pipelined DI strategy without acceleration
1: for k = 1 . . . until convergence do
2: for n = 0 . . . Ξ − 1 do
3: Perform one DI with RAS splitting with algorithm 2 starting with initial

condition zn,(k−1) for the time step n.
4: end for
5: end for

Remark 14. By comparing the sequential algorithm 3 and the pipelined algorithm
4, we can highlight two differences, the most obvious is the difference in the equa-
tions to be solved. However, there is also a difference in the order of the time loop
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and that of Schwarz. Indeed, in the sequential case the Schwarz loop is included in
the time loop whereas in the pipelined case it is the other way around.

We want to perform an Aitken’s acceleration of the convergence also with the
pipelined strategy. For this purpose, we are going to write the pipelined DI itera-
tion as a sequential DI iteration putting the iterated solutions on time steps in a
vector form.

Definition 13. We note Z
(k)
i ∈ C

Ξn the (k)th DI iteration corresponding to the
concatenation over the Ξ time steps of the ith partition W p

i of the (k+1)th pipelined
DI iteration:

Z
(k)
i = ((z1,(k)

i )T , . . . , (zΞ,(k)
i )T )T (4.29)

Similarly we define Z
(k)
i,e such that:

Z
(k)
i,e = ((z1,(k)

i,e )T , . . . , (zΞ,(k)
i,e )T )T (4.30)

We also define the operator Id,i such that:

Id,iz
n,(k)
i =

(
Δt x

n,(k)
i

0ni,a

)
(4.31)

Proposition 11. With Z
(k)
i defined by Eq. (4.29), the kth pipelined DI iteration

applied on to Ξ time steps Δt is written locally on partition W p
i :

AiZ
(k)
i = Bi − EiZ

(k−1)
i,e (4.32)

with

Ai =

⎛
⎜⎜⎜⎜⎝

Ãi

−Id,i Ãi

. . . . . .
−Id,i Ãi

⎞
⎟⎟⎟⎟⎠ (4.33)

Bi =

⎛
⎜⎜⎜⎜⎝

b1
i + Id,iz

0
i

b2
i
...

bΞ
i

⎞
⎟⎟⎟⎟⎠ (4.34)

Ei,e =

⎛
⎜⎜⎜⎜⎝

Ẽi

Ẽi

. . .
Ẽi

⎞
⎟⎟⎟⎟⎠ (4.35)
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Proof. By starting with the pipelined DI iteration k on the partition W p
i on the

nth time step and using the definition of xn−1,∗ = xn−1,(k), we have:(
Ãi B̃i

Ci Di

)
︸ ︷︷ ︸

Ãi

(
x

n,(k)
i

y
n,(k)
i

)
︸ ︷︷ ︸

z
n,(k)
i

=
((

bn
i,d + Δt x

n−1,(k)
i

bn
i,a

)
︸ ︷︷ ︸

b̃n
i

−
(

Ẽd
i,d Ẽa

i,d

Ed
i,a Ea

i,a

)
︸ ︷︷ ︸

Ẽi

(
x

n,(k−1)
i,e

y
n,(k−1)
i,e

))
︸ ︷︷ ︸

z
n,(k−1)
i,e

−Id,iz
n−1,(k)
i + Ãiz

n,(k)
i = bn

i − Ẽiz
n,(k−1)
i,e , n = 1, . . . Ξ (4.36)

by writting Eq. (4.36) in matrix form we obtain Eq. (4.32).

Remark 15. Equation (4.32) has the same form (and the same properties) than
the sequential DI. We can then apply the same methodology as in the sequential
case. That is to say: as the convergence is purely linear one can thus build an
operator of error and use the Aitken acceleration of the convergence method.

We can then calculate an error operator PΓ of the pipelined DI either algebraically
or numerically. It will be of size ΞnΓ × ΞnΓ and we will need ΞnΓ RAS iterations
to calculate it numerically. Nevertheless, we can take advantage of the structure
of PΓ for linear DAE with regular time stepping as the PΓ operator and the PΓ
operator are linked as shown in the next subsection.

4.4.3 Link between the error operators of sequential DI
and pipelined DI

The sequential DI and the pipelined DI are linked when we consider linear DAE
problem with regular time stepping. We are going to show that it is possible to
calculate the error operator PΓ of the sequential DI for the first time step and then
to use it to build the error operator PΓ corresponding to the pipelined strategy.
As for the sequential DI, we can restrict the iteration to the global interface values
on Γ of Eq. (4.26) of all the Ξ time steps.

Definition 14. Let Z
(k)
Γ ∈ C

Ξnγ denote the kth pipelined DI iterations of the global
interface values of the Ξ time steps:

Z
(k)
Γ = ((z1,(k)

Γ )T , . . . , (zΞ,(k)
Γ )T )T (4.37)

let Id be the operator that follows:

Id = (IT
d,1, . . . , IT

d,Ξ)T (4.38)

By noting M−1
n,RAS the RAS operator and Pn,Γ the error operator associated to

the nth time step. Then we can restrict the pipelined DI iteration to the global
interface of all the Ξ time steps:
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Proposition 12. The kth iteration of the pipelined DI can write on the global
interface of the Ξ time steps:

Z
(k)
Γ = PΓZ

(k−1)
Γ + C (4.39)

Where

PΓ =

⎛
⎜⎜⎝

I

M−1
2 I

. . .
. . .

M−1
Ξ I

⎞
⎟⎟⎠

−1 ⎛
⎜⎝

P1,Γ
P2,Γ

. . .
PΞ,Γ

⎞
⎟⎠ (4.40)

M−1
i = RΓM−1

i,RASIdRT
Γ , i = 2 . . . Ξ (4.41)

C =

⎛
⎜⎜⎜⎜⎝

RΓM−1
1,RASIdz0 + c1

c2
...

cm

⎞
⎟⎟⎟⎟⎠ (4.42)

Proof. By starting with the Eq. (2.25) on the time step n and the associated
M−1

n,RAS RAS operator associated to the global matrix A
n, we adapt with the

choice of x∗,(k) (i.e. Idzn−1,(k−1)) to define the kth pipelined DI iteration:

zn,(k) = zn,(k−1) + M−1
n,RAS(bn + Idzn−1,(k) − A

nzn,(k−1))
zn,(k) − M−1

n,RASIdzn−1,(k) = zn,(k−1) + M−1
n,RAS(bn − A

nzn,(k−1))

By restricting to the Γ boundary the last equation and remembering that Pn,Γ =
RΓ

(
I − M−1

n,RASA
n
)

RT
Γ , it gives:

RΓ(zn,(k) − M−1
n,RASIdzn−1,(k)) = Pn,ΓRΓzn,(k−1) + RΓM−1

n,RASbn

as we have:

M−1
n,RASIdzn−1,(k) = M−1

n,RASIdRT
Γ RΓzn−1,(k)

we can write with cn = RΓM−1
n,RASbn:

(I − RΓM−1
n,RASIdRT

Γ ) z
n,(k)
Γ = Pn,Γ z

n,(k−1)
Γ + cn

(I − M−1
n ) z

n,(k)
Γ = Pn,Γ z

n,(k−1)
Γ + cn

Putting the last equation in matrix form gives the result.

The proposition 12 allows to optimize the pipelined DI in the case we solved a
linear DAE with regular time stepping as then Pi,Γ = P1,Γ, ∀i and M−1

i,Γ = M−1
1,Γ, ∀i.
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Consequently, only nΓ + 1 sequential DI on the first step are needed to obtain P1,Γ
numerically and then we can construct the PΓ error operator of the pipelined DI.
Only one iteration of the pipelined DI is needed to obtain the interface solution
on all time steps, then a local resolution on each time step gives the solution.
Algorithm 5 describes this pipelined DI strategy with acceleration for linear DAE
with regular time stepping:

Algorithm 5 pipelined DI strategy with acceleration for linear DAE with regular
time stepping

1: n=1 (first time step)
2: Perform nΓ + 1 DI with RAS splitting with algorithm 2 to obtain

[z1,(0)
Γ , . . . , z

1,(nΓ+1)
Γ ]

3: Compute P1,Γ = [e(2)
Γ , . . . , e

(nΓ+1)
Γ ][e(1)

Γ , . . . , e
(nΓ)
Γ ]−1 with e

(i)
Γ = z

1,(i)
Γ − z

1,(i−1)
Γ .

4: Compute PΓ from M−1
1 and P1,Γ

5: k = 1 perform one pipelined DI iterate over the Ξ time steps.
6: Perform the Aitken’s formula to obtain:

Z
(∞)
Γ = (I − PΓ)−1(Z(1)

Γ − PΓZ
0)
Γ )

followed by one local solve on each time step to obtain Z(∞).

4.4.4 Comparison between Sequential and pipelined strat-
egy

In this subsection we study the advantage and disadvantage of each of the two
strategies depending on the situation, and more specifically the number of itera-
tions needed to use the Aitken convergence acceleration method.

The error operator can be calculated in two ways algebraically Eq. 2.30 or numer-
ically Eq. 3.9. We recall that the global interface Γ is defined as the concatenation
of W p

i,e, that is Γ =
{
W p

0,e, . . . , W p
N−1,e

}
of size nΓ = ∑N−1

i=0 ni,e. It is pointed out
that to numerically calculate the error operator, it is necessary to perform one
more iteration than the size of the vector to be accelerated.

Consider the case of a period ΞΔt during which there will be no change in network
topology, no nonlinearity and no change in time step size:

• sequential strategy: It would take nΓ + 1 iterations to calculate the error
operator, and then PΓ would be the same for each time step and therefore it
would suffice to perform one DI iteration per time step. So to compute the
simulation over the whole period, we would need Ξ + nΓ iterations.
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• first sequential time step and the rest with the pipelined strategy: it would
still take nΓ + 1 to calculate the error operator PΓ, then deduce PΓ . Then,
since we don’t have the previous converged time step, we would need two
DI iterations of the whole period. So to compute the whole simulation we
would need 2(Ξ − 1) + nΓ + 1 iterations.

• pipelined strategy: it would take Ξ×nΓ +1 to numerically compute the error
operator PΓ and accelerate convergence to the true solution.

Now consider the case of a period ΞΔt during which there will be j changes in
network topology, or j nonlinearities or j changes in time step size. It is necessary
to recalculate the error operator PΓ at each change of topology or at each change
of time step. Indeed the matrices A and E which have an impact in the PΓ are
modified with the changes of topology or with the change of time step (because
of the discretization). Let’s compute the number of iterations needed for each
strategy:

• sequential strategy: it would take nΓ + 1 iterations to compute the error
operator PΓ each time needed (j occurrences), then it would be the same
for each time step between changes and therefore it would suffice to carry
out one DI iteration per time step during these periods. So to calculate the
simulation over the whole period, it would take Ξ−j +j ×(nΓ +1) iterations.

• first sequential time step after each change and the rest with the pipeline
strategy: it would still take nΓ+1 to calculate the error operator PΓ, then de-
duce PΓ after each change. Then, since we don’t have the previous converged
time step, we would need two DI iterations of the set of pipelined periods.
So to compute the whole simulation we would need 2(Ξ − j) + j × (nΓ + 1)
iterations.

• pipelined strategy: it would still take only Ξ×nΓ +1 to numerically compute
the error operator PΓ and accelerate convergence to the true solution.

Remark 16. The strategy of computing the error operator using the sequential
strategy and then computing the rest of the simulation with the pipelined strategy
is never optimal. Indeed, it has the disadvantages of the other two strategies.

Remark 17. The pipelined strategy is a more planned strategy, in fact no rollback
can be performed during the period ΞΔt. Thus, for example, changes in the size of
the time steps must be planned before launching the simulation, which is not the
case in the sequential strategy.
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Remark 18. The pipelined strategy is particularly useful in cases where there are
nonlinear components in the network being studied. Indeed in this case we know
before launching the simulation that there will be changes in the matrices at each
time step. To carry out the simulation one linearizes with each step of time, the
operator of error thus changes for the sequential case with each step of time. It
will therefore take Ξ × (nΓ + 1) for the simulation over the period ΞΔt with the
sequential strategy while it will always be Ξ × nΓ + 1 for the pipelined strategy.

Table 4.1: Summary of strategies
DI Strategy Sequential Pipelined

no non-linearity& fixed and equidistant time steps
MORE EFFICIENT VALID

fixed variable time step distribution
VALID MORE EFFICIENT

non-fixed variable time step distribution
VALID NOT VALID

presence of non-linear components
VALID MORE EFFICIENT

some rare non-linearity events
MORE EFFICIENT VALID
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4.5 Numerical Results on DI with RAS splitting
strategies

The RLC circuit example was taken in [91], the circuit splitting is as follows:

n1 nr

n3

n2

L1

L2

C

Ev Ei

G

e1 − e2 − L1
di1

dt
= 0,

er = 0,

e1 − e3 − Ev(t) − Zsi5 = 0,

G(e1 − e2) − i2 = 0,

e2 − er − L2
di3

dt
= 0,

C(de3

dt
− de2

dt
) − i4 = 0,

Ei(t) − i6 = 0,

−i1 − i2 + i3 − i4 = 0,

i1 + i2 + i5 = 0,

−i5 + i4 + i6 = 0.

In this example, the pink part needs the values e1 and e2 computed in the blue
part, while the blue part needs the value i1 calculated in the pink part.

4.5.1 Sequential strategy
In the sequential strategy, the error operator PΓ and it’s eigenvalues are calculated
following the method presented in section 2.4.1:

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −Δt
L1

Δt
L1

− L2

Δt
+

L2C
Δt2 + L2G

Δt
+ 1

C
Δt

+ G
0 0

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

λ1 0
λ2 −i

√
Δt

L1( C
Δt

+G)

λ3 i
√

Δt
L1( C

Δt
+G)

The method diverges if |ρ(PΓ)| > 1. L1, C, G and L2 are fixed so the convergence
of the method depends on Δt. For Δt0

def= L1G+
√

(L1G)2+4L1C

2 , we have |ρ(P )| = 1.
The method converges with choosing a Δt ∈]0; Δt0[, stagnates if Δt = Δt0 and
diverges otherwise.
Figure 4.1 (left) shows the convergence of the sequential DI with the RAS splitting
method with respect to the iterations and according to the Δt for one time step.
The stagnation of the algorithm is numerically confirmed for Δt = Δt0 (black
line). The blue curve shows the divergence of the method for Δt > Δt0 while
the red curve exhibits the slow convergence when Δt < Δt0. For both cases the
Aitken’s acceleration of the convergence allows to find the true solution. Figure
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4.1 (right) shows the comparison of the e3 solution obtained with the sequential DI
with the RAS splitting accelerated by the Aitken’s acceleration of the convergence
technique on the time intervalle [0, 0.1] with Δt = 1.210−3 (divergent case) and
the monolitic solution reference.

0 0.02 0.04 0.06 0.08 0.1
-6

-4

-2

0

2

4

6
e3

RAS
reference solution

Figure 4.1: (top)Sequential DI with the RAS splitting convergence behavior with
and without Aitken’s acceleration ( log10(||z(2k) − zref ||∞) ) with respect to the
iterations for different values of Δt and one time step. (bottom) Comparison
between the sequential DI with the RAS splitting with the Aitken’s technique for
accelerating convergence and the DAE monolithic reference for the e3 variable with
Δt = 1.2 10−3, with parameters: L1 = 0.4, L2 = 0.5, C = 1. 10−6, G = 2. 10−3.
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Figure 4.2: Comparison between the DI with the RAS splitting with the Aitken’s
technique for accelerating convergence and the DAE monolithic reference for the
i1 variable computed with a sequential strategy with a non linear component, with
L1 = 7, L2 = 0.7, C = 1.10−6, G0 = 0.07, α = 605

The next numerical test considers a nonlinear component in the RLC circuit by
taking the G component depending on the variable i2 with G = G0 + αi2. In this
case, at each time step the system is linearized and PΓ must be recalculated.
Figure 4.2 shows the evolution with respect to the time of i1 of the RLC circuit
with the nonlinear component G (with α = 605 and G0 = 0.07) for the mono-
lithic computation and the sequential DI with RAS splitting. It exhibits that the
sequential DI with RAS splitting find the monolithic solution reference.

4.5.2 Pipelined DI with RAS splitting strategy
Now we consider the pipelined DI with RAS splitting strategy applied to the RLC
circuit. First we look on the effect on the convergence of the number of time steps
involved in the pipeline. For this we compute numerically the PΓ operator for
different number of pipelined time step and compute its spectral radius.
Figure 4.3 shows the evolution of the spectral radius of the error operator PΓ with a
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time step Δt = 1, 1.10−3 on the left and Δt=1, 1.10−4 on the right. It exhibits that
the convergence of the pipelined DI with RAS splitting deteriorates with a number
of pipelined time steps. For the regular time step Δt = 1.1 10−3 the method is
convergent up to 10 pipelined time steps and then diverges. Reducing the time
step to Δt = 1.1 10−4 allows to inrease the number of pipelined time steps to
120 before the method diverges. The size of the time interval where the pipelined
method can be applied then increases from 1.1 10−2 to 1.32 10−2. Nevertheless,
Figure 4.3 (right) shows that after 100 pipelined time steps for Δt = 1.1 10−4 the
spectral radius increases less monotonously.
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Figure 4.3: Evolution of the spectral radius of the error operator depending on
the number of pipelined regular time steps of size Δt = 1.1 10−3 (left, Ξ = 14) and
Δt = 1.1 10−4 (right, Ξ = 120), with L1 = 0.4, L2 = 0.7, C = 1.10−6, G = 2.10−3

Next we set the number of pipelined time step to be Ξ = 14 and we study how
the error with the true solution and the pipelined DI with RAS splitting solution
behaves over each of this Ξ time steps with respect to the number of iterations.
Figure 4.4 (left), shows the pipelined DI with RAS splitting error with the true
solution with respect to number of iterations. Each curve represents the error over
one time step of the pipelined time steps. We are in the case where the spectral
radius of PΓ is greater than one. Nevertheless, Figure 4.4 (left) exhibits that the
error over time steps does not behave in the same way. The first two time steps
are convergent while the others diverge. The more the time step is far from the
first one, the more the divergence is great.
Although we are in the divergent case as we can compute numerically the PΓ
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Figure 4.4: (Left) DI with the RAS splitting convergence behavior ( log10(||z(2k) −
zref ||∞) ) on each of the pipelined time steps with respect to the iterates and
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for the e3 variable with Δt = 1, 1.10−3, Ξ = 14, with parameters : L1 = 0.4, L2 =
0.5, C = 1.10−6, G = 2.10−3

operator associated to the Ξ pipelined time steps, we can perform the Aitken’s
acceleration of the convergence. Figure 4.4 (right), shows the behaviour of the
e3 on the time intervalle [0, 0.015] for the pipelined DI with RAS splitting with
(top) and without (bottom) Aitken’s acceleration of the convergence technique and
compares it to the monolithic solution. It exhibits that pipelined DI with RAS
splitting fails to recover the true solution, unlike when acceleration is performed.

As mentioned in the comparison between the sequential and the pipelined DI with
RAS splitting strategies, an advantage of the latter is that it can compute the PΓ
associated with a problem with non-linear components and variable size time steps
in the pipeline.

Figure 4.5 shows the results with the pipelined DI with RAS splitting strategy
using Aitken’s convergence acceleration method for the circuit problem with the
nonlinear component G = G0 + αi2. αi2 is chosen very large compared to G0,
which is not very physical but which makes it possible to appreciate the impact
of the nonlinearity. We consider a pipeline of Ξ = 100 time steps of regular size
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Δt = 1.1 10−4. The system is linearized at each time step, these changes are
taken into account in the numerical computation of PΓ. The results exhibit a
good agreement between thde DI with RAS splitting solutions and the monolithic
solution.
Figure 4.6 shows the results with the pipelined DI with RAS splitting using
Aitken’s convergence acceleration method where the time steps distribution in
the pipeline changes twice: Δt = 1.1 10−3 on interval [0, 0.008] (8 time steps),
Δt = 1.1 10−4 on interval[0.0081, 0.0101] (20 time steps) and Δt = 1.1 10−4 on in-
terval [0.0111, 0.03] (20 time steps) for a total of Ξ = 48 time steps in the pipeline.
The PΓ error operator is computed numerically and the Aitken’s acceleration of
the convergence is then performed. Figure 4.6 exhibits the good agreement of the
pipelined DI with RAS splitting accelerated solutions with the monolithic DAE
solution.

4.6 Conclusion
In this chapter, the Dynamic Iteration method has been introduced. The DI
method with RAS splitting as an iterative process involving the interface unknowns
resulting from the partitioning of the system of differential algebraic equations has
been formulated. It has thus been shown that the RAS method was part of a
case of DI with a particular splitting making it possible to work only on the
interfaces of the subdomains. Results from general DI can then be used to show
the purely linear convergence of DI with RAS splitting in the continuous case. It
was then shown that thanks to the method of acceleration of the convergence of
Aitken one can get rid of the constraint of contractance of the error operator. Two
strategies for using the DI scheme have been presented: a sequential strategy and
a pipelined strategy. These strategies play on the use of macro time steps. The
link between these two strategies was presented. Finally, the optimal use cases of
these strategies were discussed. Numerical results show also the non dependance
to the contraction of the error operator of the DI with RAS splitting accelerated
by the Aitken’s aceleration of the convergence technique. Moreover, the pipelined
DI with RAS splitting succeeds to apply the Aitken’s acceleration on nonlinear
problem and pipelined steps with different sizes.
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5.1 Introduction
One of the advantages of EMT-TS co-simulation is to reduce the computation time
compared to an all-EMT simulation, for this reduction in computation time to have
an impact, the circuit to be simulated must be large enough. We would therefore
like to be able to simulate large electrical networks. Indeed the mathematical
methods that we wish to use have been set up (in chapter 3) as well as the strategy

107



108 CHAPTER 5. ARCHITECTURE

for using these methods (in chapter 4), however we still have studies to carry out
which are only possible on major networks:

• to be able to compare the two representations on a substantial overlap in
order to know the lost information and to rework on the passage of informa-
tion,

• study the partitioning in more detail, thus making it possible to see up to
what distance from a fault in the network, the impact of the fault remains
relevant to study. As well as the size of the sub-domains so that their calcu-
lation weights are similar (despite the fact that they are not modeled in the
same way) so that the parallelization is optimal,

• being able to confirm thanks to a larger overlap that the size of the overlap
does not influence the convergence of the method.

To be able to use large networks, it was decided to use the OpenModelica tool.
Indeed this tool being more and more used, we wanted to know its potential and
its limits. This will have allowed us to know if we were going to generalize its use
within the institute. One of the objectives of the thesis was therefore to develop
skills and knowledge on the use of this tool. This chapter is organized as follows:
First, we will present OpenModelica its advantages as well as its disadvantages.
Then we will present another tool: FMI as well as its link with OpenModelica.
Finally we will talk about the structure put in place to use these tools as well as
the models used.

5.2 OpenModelica
OpenModelica is a suite of open source tools for modeling, simulation, and model-
based development. It’s development is supported by the the Open Source Model-
ica Consortium. This open source tool suite is composed among other things: the
Open Modelica Compiler OMC, OMshell the modelica scripting tool and OMedit
the OpenModelica Graphic Model Editor and Simulator GUI. OpenModelica is
structured in several layers which make the models pass through the following
stages: equation of the models; optimization; transition to an intermediate lan-
guage: Meta Modelica; then generated in the target language, C or C++ then
compiled by OMC. The OpenModelica tools are based on the Modelica language
which we will present first. We will then discuss the interest of using OpenModel-
ica, followed by the blocking points of the use of OpenModelica in our project and
we will conclude on the exclusive use of this tool for our EMT TS Co-simulation.
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5.2.1 Modelica language

Modelica is a declarative language used to describe mathematical behavior. Their
main characteristics are explained by Fritzon in [38, 37]. This language is in con-
stant evolution, the specifications are available on the site dedicated to Modelica
[14]. The particularly interesting characteristics of this language, for the work
presented in this thesis, are:

• Modelica is an object-oriented language that allows the reuse of template
classes. Classes allow the modeling of components that can be reused in more
complex models, providing hierarchical structuring. Additionally, Modelica
defines class types, which allows libraries to be more structured. The most
relevant of these types of classes are the connectors which make it possible
to specify the exchanges of information between two Modelica classes, these
connectors can have a physical representation like a pin in the electrical
circuit.

• Modelica is an equation-based and acausal language. Acausality means that
the order in which the equations are written has no impact and that the "="
operator is not an assignment but an equality. In this way, the components
are described by their mathematical behavior. These components can then
be combined causally or acausally to obtain complex physical systems.

• The Modelica language allows to mix continuous and discrete modeling. This
enables to introduce discret events into the simulation or to model an engi-
neering system and its control in the same environment.

• Modelica allows the use of annotations to graphically represent systems.

This language is increasingly used in the electrical community, and some energy
players are pushing for it to be used more and more as a unified language. Dymola
and Dynawo [50]. are two examples of modeling and simulation software based on
the Modelica language.
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Figure 5.1: The Modelica Li-
brary

Several open-source libraries of electrical compo-
nents are available, written in Modelica language:

• The Modelica library: it is developed by the
Modelica Association. It offers many com-
ponents from many physical domains. The
figure 5.1 is a screenshot of the electrical sec-
tion of the Modelica library open in OMEdit.

• The OpenIpsl library (Open-Instance Power
System Library): a library of power system
component models develloped by Luigi Van-
fretti’s research group ALSETLab at Rens-
selaer Polytechnic Institute [20].

• The ModPowerSystems library: a library
which contains models of electrical sys-
tems developed in several different model-
ing types: static phasors, dynamic phasors
as well as EMT. It is developed by the Insti-
tute of Automation of Complex Power Sys-
tem, in the E.ON Energy Research Center
from RWTH University Aachen. [29].

5.2.2 OpenModelica Advantages

The advantages of using OpenModelica is first of all that it is free, which promotes
collaboration between the different actors. Moreover, it is used more and more,
we can cite for example a part of the Architecture program of SuperGrid Institute
in which OpenModelica is used a lot, or the Dynaωo tool developed within RTE
which partly based on OpenModelica.
OMEdit has a user-friendly and intuitive graphical interface, a person who does not
know how to code at all can click and drag the components under their graphical
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representation, as can be seen in the figure 5.2 where we reconstruct the circuit of
chapter 2 using click-and-drag components from the Modelica library (top image).
The tool instantly converts the model thus created into a model written in Modelica
language using the objects defined in the library (bottom image). Finally, figure
5.3 shows the instanciation of this class, during this intantiation we obtain the class
with all the parameters and equations given to the same level. This instantiation
has these advantages and disadvantages, the main advantage being that there is
no additional work for the user, the main disadvantages already being that a very
small circuit turns into a whole page of value and equations, the second drawback
being that everything is put back to the same level in the class, which we will see
later prevents doing a co-simulation in the tool.
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Figure 5.2: Different representations of the same class "circuit" under OpenMod-
elica
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...

...

Figure 5.3: Instantiation of the class "PetitCircuit" on OpenModelica , a part has
been cut, the complete instantiation is composed of 131 lines
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Another advantage of OpenModelica are the flags that allow one to specify in the
model the methods or modes to use to simulate this model. For example, there is
a DAE mode and different index reduction methods for DAE systems. The goal
being to reduce the system to an index 1, so that it can be simulated with common
solvers. A simulation without index reduction is also possible, but less reliable.
Several different definitions exist for the index of a DAE system, the most common
definition is: The differential index of a system of algebraic differential equations
is defined as the maximum number of differentiations of all equations such that
all unknowns of the system can be solved by integrating only ordinary differential
equations. In the case of electrical circuits, the index of the DAE system repre-
senting this electrical circuit is correlated to the topology of the circuit. Indeed, an
inductor-like component connected to a circuit containing a loop with only capaci-
tors or voltage sources will have index 2, or an inductor-like component connected
to a circuit having a cutset with only inductors and current sources will be of index
2. Cortes Garcia & al demonstrated the correlation between the index of a DAE
system and the circuit topology in [25]. This type of configuration is rare in the
world of electricity, however they must be able to be taken into account in the
simulation.
Thus several methods are proposed in OpenModelica such as the index reduction
algorithm with dummy-states, described by Söderlind and Mattsson [76].

5.2.3 OpenModelica disadvantages
The first point to mention is that despite the efforts made to diversify the meth-
ods, the reduction of the DAE index regularly generates errors or failures. The
calculations of the number of equations and variables are not intuitive and it is
sometimes necessary to add "ghost" equations to pass the first check. These points
are points which can delay the implementation of the co-simulation but which are
not necessarily blocking because they can be circumvented. On the other hand,
there are certain points which prevent us from setting up our co-simulation on the
OpenModelica tool. These three main problems being:

• When instantiating a model, all equations and variables are put on the same
level, to work around this we tried to make point connections between sub-
models using the modelica language’s ability to mix continuous time and
discrete time.

• The connection between two subsets cannot be punctual, indeed a keyword
"connect" results in a continuous connection when we want to fix certain
variables on the edges of our sub-models. Without using a connector type
class and the "connect" keyword, and using discrete events with the event
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keyword "when", we get issues with the number of equations related to the
number of variables or the variables are forced to zero.

• To implement the chosen method (see chapters 2 and 3), it is necessary to be
able to replay the same time step several times. We can’t manipulate time
to our liking on OpenModelica, and among other things, we can’t rollback;
Indeed, in spite of the possibility of mixing discrete events with continuous
simulation, one cannot restore the whole of the system such as it was at the
beginning of the step of time. This fact definitely prevents us from applying a
RAS method within OpenModelica. However, this does not prevent us from
creating a hybrid by integrating a transformation of type DQ0 and inverse
DQ0 in the sub-models. Which brings us to the last point that prevents our
EMT-TS simulation.

• If we have an EMT model and a TS model (with proper translation like the
DQ0 one) in OpenModelica and we connect them, the hybrid obtained is
solved as a single whole model. Indeed this is again due to the fact that dur-
ing the instantiation everything is put back to the same level. And therefore
the time step used is the smallest necessary, that is to say, the one used to
solve the EMT part. As a result, the advantage of the TS: its computational
efficiency, is lost. We can therefore make a hybrid model on OpenModelica
but which has less interest than a monolithic EMT simulation.

5.2.4 Conclusion about OpenModelica
OpenModelica is a tool with great potential, and user friendly, however it is not
mature on a lot of points. The four blocking points mentioned above prevent us
from implementing the RAS method and the EMT-TS Co-simulation in Open-
Modelica. Even if it is possible to create a hybrid under OpenModelia, we lose
the advantages of the TS part. As the use of this tool is really one of the fixed
objectives of this thesis, we want to explore all the avenues offered by this tool.
We turned to the FMI, a tool that allows to use the models created under Open-
Modelica.
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5.3 Functional Mockup Interface
The Functional Mockup Interface (FMI) is an open source tool developed and
maintained as a Modelica Association project. It is an independent standard
which defines an interface with functions allowing exchanges between several dy-
namic models.
This standard makes it possible to describe dynamic models using standardized
XML files. These models are described in containers exported from the simula-
tion environment as a compressed file. They are called Functional Mock-up Unit
(FMU),
these FMUs contain: the model description in an xml file called modeldescription,
binary files and C code files. Binaries are only compatible with one operating
system, so FMUs can only be used on one operating system. This standardization
is supported by more than 170 tools. See figure 5.4 which is part of the list of tools
supporting this standardization. This list is taken directly from the FMI website.

Remark 19. Although standardization in FMU is coded, it is not always possible
to exchange models between tools. For example, a Dymola license is required on
the machine on which an FMU exported from Dymola is used, unless an additional
license has been paid for.

Name
Adams 1.0 2.0 1.0 2.0 1.0 2.0

Dymola 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0

DS - FMU Ex… 1.0 2.0 1.0 2.0

EMTP-RV 2.0 1.0 2.0 2.0

Easy5 1.0 2.0 2.0 1.0 2.0 1.0 2.0

General Energy Systems (GES 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0

JModelica.org 1.0 2.0 1.0 2.0 1.0 2.0 1.0

MATLAB® Simulink® 2.0 1.0 2.0 1.0 2.0

OpenModelica 2.0 1.0 2.0 2.0 1.0 2.0

Simcenter Amesim 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0
SystemModeler 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0

Planned Supported Cross-Check  passed

FMU Export FMU Import
Co-Simulation Model Exchange Model ExchangeCo-Simulation

Figure 5.4: The modelica Library

Two types of FMU export are accessible, These two types of FMU have functions
in common and additional functions to use the particularities of these two types
of FMU, these two types are:
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• Model Exchange (ME): These FMUs contain the description of the model
dynamics but do not contain a solver. It is therefore necessary to provide an
external solver which will allow each time step to solve the system, thanks to
an approximation, calculated by the FMU, of the states and their derivatives.

• Co-Simulation (CS): These FMUs contain their own numerical solver (solver
of the tool from which the FMU was exported). the user must define the
inputs and outputs and manage the exchanges between the models.

Remark 20. In OpenModelica you can export FMUs that are both Co-simulation
and Model Exchange

5.3.1 OpenModelica FMU’s export
We will create our model under OpenModelica then export them in FMU format.
We can notice in the 5.4 table, that the OpenModelica tool has no Cross-check
passed for any of the 2 types of FMU, neither for export nor for import. Basing
our simulations on it may therefore seem risky, however as knowing the state of
the OpenModelica tool is one of the objectives of the thesis, we decided to deepen
the subject as much as possible.
We have several Modelica models at SuperGrid Institute. For each of these circuits
two equivalent copies were created: an EMT model and a TS model, they were
created with the OpenModelica OMEdit tool. This allows us to be able to cut at
will and create an overlap. The first thing to do is of course to cut the chosen
model into a sub-model. Remember that OpenModelica is based on physics. When
cutting a model, we end up with a circuit considered as open, it will therefore be
necessary to add components which will allow both the recovery of information
from another sub-domain, to select the information calculated in this sub-domain
to send to other submodels and finally close the circuit.

5.3.1.1 Interface components

The Modelica library has two components used for this:
GeneralVoltageToCurrentAdaptor and GeneralCurrentToVoltageAdaptor which al-
low for the first to recover the voltage coming from another submodel and to
transmit a calculated current in this sub- model, and for the second component it
recover the currents of another sub-model and provide the voltage that the sub-
model has calculated. Each of these interface components retrieves discrete data
and inputs a continuous signal into the model via zero-order hold recomposition.
We created our own components (suitable for our three-phase EMT models or
our Phasor models) by taking the example of the two components present in the
Modelica library. So we get two components suitable for EMT or TS. However,
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these two components do not necessarily allow the creation of overlapping submod-
els. We therefore also create additional components for this kind of configuration,
these components would be for example sensors and circuit closures. Indeed, an
unconnected pin is perceived by the tool as an open circuit.
These different interface components must respect the following constraints:

Figure 5.5: The modelica
Library

• Respect for physics, indeed these fictitious com-
ponents are perceived as components by Open-
Modelica but are not present in reality and
should therefore not have any impact on the
simulation. So, for example, current sensors
must be able to be connected in series and volt-
age sensors in parallel with a current forced to
zero.

• Reconstruction of an input signal for currents.
Indeed, in Modelica the pins of the components
are connectors whose current is annotated with
the keyword "flow", in this way the sum of the
currents of the pins connected between them is
zero, in order to respect the law of the nodes.
However, this property can cause problems be-
cause the inputs are not variables and therefore
when deriving a value which is a combination
of other streams and this input. This is prob-
lematic because this part cannot be derived by
the tool, which creates an error.

Remark 21. We did not have to face this prob-
lem in the previous chapters because we had pre-
viously discretized the system, and when an in-
put was derived we had simply passed the values
and that of the previous time step.

For this constraint, there are functions in the
Modelica library called state1 and state2 which
take as input the value, the first derivative of
the value (and the second derivative for state2 )
and return only the value. This way a signal
is not actually reconstructed, but it does make
the constant a variable that can be derived by
the tool.
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After creating these components, we tested them on OpenModelica. To do this,
we cut the connections where we wanted to partition the model and placed the
appropriate interface components there that we connected to each other. The
interface components have been validated as having no impact in physics if the
simulation results obtained are the same results as those obtained with the original
model.
Figure 5.6 is obtained by exporting the graphical representation of a model from
OMEdit. The model shown is a three bus model that we have in TS version
and EMT version. it consists of 3 lines, an infinite Bus and a generator, the repre-
sentation here is the TS version one. Interface components are tested in this model.

in niteBus

g2

line12

line13

line23

bus1 bus3
bus2

500 MW+j1…

load

Figure 5.6: Three Buses monoblock model chosen to test the interface component
under OMEdit

Figure 5.7 is an example of one of these tests. For this example, the connection
between bus 2 and the generator is deleted. An interface component that has an
input current and an output potential is connected via its pin to Bus2. Similarly,
an interface component which has an output potential and an input current is
connected to the generator. Then the inputs of one interface component are con-
nected to the outputs of the other and vice versa. The 5.7 figure also zooms in on
how the interface component is constructed, with a pin or plug to connect with
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other components, and the inputs and outputs to receive and send information, as
well as the derivatives as output/input to reconstruct the signal.

infi…

li…

li…

li…

bus1 bus3

bus2

5…

load

fMUOn… fMUOn…

• One pin, or Plug
• Inputs and 

outputs : Im and 
Real Part, or 
vectors

• All derivatives to 
rebuild the signal

Figure 5.7: Three Buses model with interface components under OMEdit

Only the TS components passed this test, indeed the same results are obtained
with the one-piece TS model (Figure 5.6) and that with the interfaces component
(Figure 5.7). The results obtained with the interface components on the EMT
model are not the same as those monoblock EMT. The components of the EMT
interface as is are therefore not correct.
After investigation, one can realize that the artificial reconstruction of the signal
proposed in the modelica library is not precise enough for EMT type models.
This need for more precise reconstruction of the signal is due to the fact that
the construction of OpenModelica only allows cutting before discretization. So
when in the chapter 2 we could also pass what constituted the information at the
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previous moment, here it is not possible to do it directly, we therefore choose to do
it in a roundabout way by using a Taylor development The changes in the interface
components that have been made to overcome this problem are as follows:

• The signal is reconstructed more precisely, indeed a reconstruction of the
signal for the inputs using a Taylor development of the first or second order
is proposed.

• This reconstruction performed inside the interface component must be in-
formed of the macro time step size. This macro time step will be chosen
outside of the FMU by the user, it will be the meeting point between two
sub-models. For more flexibility, we do not put a "parameter" character on
this input, this leaves the possibility of using this model using variable macro
time steps. A causal input Real called ΔT , corresponding to the macro time
step has therefore been added to the component.

Remark 22. As this reconstruction of the signal using the Taylor method is only
used for the EMT interface component, the presence of the variable ΔT in the
modelDescription.XML file is sufficient to indicate whether the model used is of
the EMT type or TS type.

The test in figure 5.7 is performed again with the new interface components. To
test the Taylor reconstruction, the OpenModelica solver is forced to use chosen
fixed time steps which are given as input as the macro time step. The results
obtained with the monoblock EMT model (Figure 5.6) and that with the interface
components (Figure 5.7) are the same. The EMT interface components are at this
stage validated as not modifying the physics.

5.3.1.2 Causality of interface data

The sub-models thus obtained with validated interface components are exported as
FMU. The zipped FMU folder is uncompressed to examine the modelDescription
file. Indeed the modelDescription.XML needs to be consistant with the submodel,
that is to say if the variables are all there, and if the causalities are well respected.
Indeed, there are several possible causalities attributed to the variables of the
model (local, parameter, input, output). Some FMI functions can only be used
with variables having certain causality. For example the fmi2SetReal function
can only be called (outside the initialization) with variables having an input type
causality as arguments. The fact that causalities are correctly attributed is there-
fore a key element for the proper functioning of co-simulation.
It was noticed that the inputs and outputs of our submodels did not have the
causality expected in the XML. Indeed, it turns out that an input or an output
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is an input or an output of a model only if it is on the last layer of the model
(i.e. not in a component). The inputs and outputs of our interface components
are therefore not sufficient
Consequently, it is necessary to add external inputs and outputs to the sub-model.
These new inputs and outputs are of the connector type and will be connected
to the inputs and outputs of the interface components (the inputs and outputs of
the interface components are also of the connector type). It is therefore necessary
to add an input (resp. output) outside of any component for each input (resp.
output) of the interfaces component. Then connect each input (resp. output) out-
side of any component to the corresponding input (resp. output) in the interface
component.
Figure 5.8 shows on the left, a part of the modelDescription.xml of the FMU
exported from the sub-model on the right. It can be seen that inputs and outputs
have the expected causality.

infiniteBus

g2

line12

line13

line23

bus1 bus3

bus2

500 MW+…

load

Figure 5.8: Test on the causality of values
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Finally, the architecture of a model to be exported in FMU will be the one de-
scribed in the class diagram 5.9. As can be seen, each subdomain is complemented
by a number of interface components (m here) depending on the topology. Each
interface component has a certain number k of inputs and n of outputs. Each
input and output must be linked to an input (respectively to an output) which
is on the last layer of the model. These inputs and outputs are connector type
classes. so the model here has m.n input on the last layer and m.k outputs on the
last layer. This architecture allows both the physics of the circuit to be correct
and the causality to be correct in the ModelDescription.XML of the model.

Real OutputReal Input

Subdomain
Model to be exported

Interfaces Component

11

m.n

1

m.k
n k

1

m

1

1*1*

Figure 5.9: Class Diagram of a model to be exported

5.3.1.3 Other problems encountered

Despite our improvements to get usable FMUs exported from OpenModelica, we
encountered many other problems related to the FMU export from OpenModelica,
or the way the models were made. Here are some examples:

• As we wanted to use OpenModelica as much as possible, we wanted to use
the Co-simulation type export. Indeed this would have allowed us to use
the solvers proposed by OpenModelica. Unfortunately, the possibility of
saving the state of an FMU proposed in the FMI standard in the form of the
function fmi2GetState and the possibility of restarting the FMU from the
state it was in at the start of the time step with the function fmi2SetState
are only available (in its experimental version) for FMUs exported from
OpenModelica since March 2022 for the unofficial version of OpenModelica
and in June 2022 for the official version of OpenModelica. This ability to
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store the state of the FMU is essential for performing a rollback, and is
therefore essential for using the Schwarz method. We could therefore not
use Co-simulation type FMUs for our Co-simulation until very recently.

• For export in Co-simulation the only solver available in non-experimental ver-
sion is explicit Euler (CVODE is available in experimental version). Which
might be a little skimpy for an EMT-like simulation.

• In the modelDescription.XML of an FMU, a valueReference is assigned to
each variable. This valueReference is a key, only equal variables in the model
can have the same valueReference. These keys are what are given as argu-
ments to the fmi2Get**** and fmi2Set**** functions to indicate that these
are the values to retrieve or which value to assign a value to. It is therefore
essential that these valueReference are correctly assigned.

Figure 5.10: Modeldescription variable with the same reference value
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Figure 5.10 shows a selected part of the FMU file modeldescription.xml ex-
ported from the model submodel 5.7 containing the generator. This FMU is
exported from version 1.17 of OpenModelica installed under linux Ubuntu
20.041 LTS. As we can see, all the variables present in the figure carry the
value Reference 1, except that the first four variables of the model are indeed
equal, but not the last two. This defect renders this FMU unusable. To try
to recover a usable FMU, we will try to export the model in FMU from
another version of OpenModelica.

• To overcome the previous problem, we tried to export the same model to
FMU from another version of OpenModelica. The Linux virtual machine
with OpenModelica version 1.20.0 was chosen. This machine can be found
ready to use on the OpenModelica website.
The modelDescription.XML exported from this OpenModelica version is cor-
rect: the valueReference are well assigned. The previous problem has there-
fore been corrected in this version of OpenModelica, however .JSON files
are missing in the resource folder of the FMUs thus exported. These FMUs
cannot therefore be instantiated with the fmi2instanciate function. This also
renders FMUs exported from this version of OpenModelica unusable.

• We had various other problems that made this stage of the work last for sev-
eral months. Many OpenModelica errors return an "index reduction failed"
error even when the error has nothing to do with it. Problems of transition
from acausal to causal which have been solved by modifying the basic mod-
els. Problems of choice of input, indeed certain variables cannot be chosen
as inputs because there are hidden constraints in the models, and having an
input bound to this constraint may put too many constraints on a value.
This list of problems encountered is not exhaustive.

Remark 23. At the time of writing this thesis, FMI 3 has just been made avail-
able. However, all the work done in this thesis has been done with FMI 2. Most
tools allowing FMU export/import can currently only support FMI 1 and FMI 2
versions.

5.3.1.4 Conclusions about FMI

FMI is a very practical tool. There are many tools that offer to export their
models in FMU. Nevertheless, although the FMI interface is free, many paying
tools do not allow the use of FMUs generated from their models elsewhere than in
their tool (except against additional payment).
FMI is a tool that is constantly improving, Moreover, FMI3 was recently released
with new possibilities such as easier export of virtual electronic control units, and
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improved management of discrete events. The representation of the models thanks
to the FMI standard is very clear and easily understandable, and the handling of
this tool is quite instinctive.
In order to export a sub-model in FMU, for a Co-simulation, it is necessary to
rework the sub-model, to add components specially designed for this purpose.
This work was carried out under OpenModelica, a library meeting these needs for
the TS models and for the EMT models was created.
We are less enthusiastic with the OpenModelica FMU export.
Indeed, the OpenModelica FMU export seems quite experimental. It seems that
there is still work to be done before the use of FMUs exported from OpenModelica
can be done serenely.

5.4 Orchestrator
In the previous section, it was explained how to create from OpenModelica units
to be simulated: the FMUs. To use these standardized models, there are two main
possibilities:

• Re-import the FMUs into a tool that allows it: several tools offer to re-import
FMUs possibly generated from other tools, such as Dymola or OpenModelica
(experimentally), the FMUs are then transformed back into a modelica model
and can be simulated as a standard model. A multi-FMU structure and its
parametrization can also be re-imported into many tools, using the System
Structure and Parameterization (SSP) standard developed by the modelica
association [13]. This way of doing things does not allow us to implement
our method for the reasons mentioned in 5.2.

• Use the functions proposed by FMI and exported in an FMU (via .dll) to
use the FMUs as a black box and orchestrate the simulation: This way of
using the FMUs is used for co-simulation on an industrial scale, in particular
by DACCOSIM [35] , a co-simulation tool developed by EDF and central-
supelec. This tool, which is very efficient in terms of task placement, uses
a Newton-Raphson method for co-initialization and during co-simulation, if
the error is too large, the tool performs a roll back by reducing the size
of its macro time steps. This tool demonstrates that it is possible to do
large-scale co-simulation using FMI. However, this very powerful tool with
software FMUs like Dymola will encounter the problem of not being able to
perform roll back with a CS FMU that would be exported from OpenMod-
elica. Indeed, Daccosim is created to co-simulate CS-type FMUs, moreover
the time step reduction method aims to make the error operator contractant
(cf chapter 4).
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We have chosen to apply another method which gets rid of the contractance
constraint of the error operator, moreover we absolutely wish to use the free
tools of OpenModelica.

We are going to use the FMUs in a second step, for that we are going to create an
orchestrator containing the methods presented previously. We are therefore going
to develop a simulation platform whose heart will be our numerical method. For
this we center its implementation on a Master/Slave architecture where the Master
will be an orchestrator in charge of asking the slaves to simulate their system and in
charge of providing the interfaces to each one. We will first talk about the general
structure of the platform and explain the communication process. Secondly, we
will present the specificities related to FMUs.

5.4.1 General Structure
In view of all the difficulties encountered when exporting FMU with OpenModelica,
we wanted to create an Orchestrator that is as general and flexible as possible.
That is, it must be able to co-simulate CS FMU, ME FMU and DAE models
written in C++ in case the user does not have access to the correct FMUs.

MPI

MPI

EMT

Slaves

Class 
FMU 

object

FMI: Model Exchange

Domain 
Decomposition

Method

Aitken

MasterSlaves

MPITS
Class 
FMU 

object

TS

FMI: Co Simulation

MPI

Class 
FMU 

object

Class 
FMU 

object

EMTMPI

FMI: Co Simulation

EMTMPI

FMI: Model Exchange

MPI

DAE 
C++

TS

SUNDIALS

SUNDIALS

SUNDIALS

Class 
FMU 

object DAE 
C++

Class 
FMU 

object
SUNDIALS

Figure 5.11: Co-simulation platform architecture with MPI Master-Slaves com-
munications and using local solver in the FMI standard or C++ DAE functions.
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Figure 5.11 pesent this platform: The platform is designed in a Master-Slave ap-
proach. The Master is in charge of the co-simulation algorithm: the RAS method,
as well as the Aitken convergence acceleration method. The Master is also re-
sponsible for orchestrating the simulation. Indeed it must call the EMT and TS
slave models, give orders concerning the time steps to play: the start time and the
duration of this macro time step. The Master also has the role of recovering the
information calculated in the various slave models, as well as transforming this
information if necessary (EMT-TS translation, see chapter 3), then the master is
responsible for redistributing these information. Finally, the master is the one who
indicates that the simulation is over.
There is a homogenization of the external representation of the slave models. In-
deed, each sub-domain is represented by a slave in the form of a black box, the
interest being to have a similar external representation for all the sub-domains
even if they are not coded in the same way. Local resolutions are performed on
the slave side via an instance of the FMUobject architecture. Each slave contains
an instance of a C++ FMUobject class that embeds a local DAE solver such as
IDA of Sundials or the embedded FMU solver if the C++ FMU object contains a
CS FMU. The slave is also responsible for instantiating the FMU when it applies.
To summarize the general operation of the platform represented by the figure 5.11:
each slave instance only receives commands from the master, reacts internally to
these commands by carrying out the tasks that this implies according to its internal
operating coding, and the only information they can send back to the master is
the interface values they have calculated internally or their status.

These command exchanges are issued using point-to-point MPI communication
routines. Communication is described below.

5.4.1.1 Communication protocol for the platform

Communication between the slaves and the master is initiated as an MPI (Mes-
sage Passing Interface) process. MPI is a standard for efficiently communicating
between multiple processes, it contains a library of functions and is really efficient
for performing parallel simulations. The master and slaves communicate using a
point-to-point communication routine.
In this architecture, one MPI process is used per calculation unit. Each subdomain
(slave) is a computing unit and the master is one too. The use of MPI makes it
possible to simplify the management of exchanges, in fact each process has an
identifier. The master has the identifier 0.
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slave.h

daeSlave.h fmuCSslave.h fmuMEslave.h masterDDM.h

CircuitSansOvrlDroite.h CircuitSansOvrlGauche.h

Figure 5.12: Class Diagram of the Architecture

The different classes are created in C++. We can thus use the object side of this
language (Figure 5.12). Indeed, an abstract parent class named “slave” is created
and all the slave instances as well as the master instance inherit from this class.
This type of architecture not only makes it possible to reuse a type of class rather
than recreating each time a basic structure, but also to use polymorphism. Indeed
our final structure will thus be able to have a certain number of class derived from
the "slave" class without having to specify what type of class it is exactly and by
designating them only by its MPI process identifier.

Figure 5.13 gives more details on this architecture. As can be seen, all classes
derive from a "slave" class having certain attributes and functions needed by all
classes. Then each class has new attributes depending on its type. The Master
will therefore have the Schwarz and Aitken methods as well as the "sendCom-
mandFmu()" function which will allow him to orchestrate the simulation. The dif-
ferent slaves will have methods allowing them to receive these instructions given
by the orchestrator as well as functions allowing internal resolution such as "doA-
CosimulationStep()" which is a method specific to each type of slave.
The final subdomains represented here by the “CircuitSansOvrlDroite” and
“CircuitSansOvrlGauche” classes are final slave classes. Here, these classes inherit
from the "daeSlave" class. Each of these classes has, in addition to all the at-
tributes and functions of the "daeSlave" class, a system of algebraic differential
equations written in C++ which is specific to it and which represents the part
of the circuit which it is supposed to simulate. In this example, an instance of
the "masterDDM" class will have an MPI process with identifier 0, an instance of
the "CircuitSansOvrlDroite" class will have an MPI process with identifier 1 and
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an instance of the "CircuitSansOvrlGauche" class will have a MPI process with
identifier 2.

slave

# name
# rank
# size
# comm
# sizeInputs
# Inputs
# sizeOutputs
# Outputs

+ slave()
+ slave()
+ slave()
+ ~slave()
+ affiche()
+ InitMemoryInput()
+ InitMemoryOutput()
+ initialConditions()
+ RecvInput()
+ SendOutput()
and 9 more...

daeSlave

+ daeSlave()
+ daeSlave()
+ operator=()
+ daeSlave()
+ ~daeSlave()
+ affiche()
+ slaveReact()
+ doACosimulationStep()
+ initialConditions()

fmuCSslave

+ fmuCSslave()
+ fmuCSslave()
+ operator=()
+ fmuCSslave()
+ ~fmuCSslave()
+ affiche()
+ doACosimulationStep()
+ initialConditions()

fmuMEslave

+ fmuMEslave()
+ fmuMEslave()
+ operator=()
+ fmuMEslave()
+ ~fmuMEslave()
+ affiche()
+ doACosimulationStep()
+ initialConditions()

masterDDM

+ SlavesInterfacesInputs
+ SlavesInterfacesOutputs
+ connect

+ masterDDM()
+ masterDDM()
+ operator=()
+ masterDDM()
+ ~masterDDM()
+ schwarz()
+ aitken()
+ recvInterface()
+ sendInterface()
+ sendCommandFmu()
and 7 more...

CircuitSansOvrlDroite

+ CircuitSansOvrlDroite()
+ CircuitSansOvrlDroite()
+ operator=()
+ ~CircuitSansOvrlDroite()
+ affiche()
+ doACosimulationStep()
+ validateTheStep()
+ doAStep()
+ initialConditions()
+ RecvInput()
+ SendOutput()
+ CircuitSansOvrlDroiteDAE()

CircuitSansOvrlGauche

+ CircuitSansOvrlGauche()
+ CircuitSansOvrlGauche()
+ operator=()
+ ~CircuitSansOvrlGauche()
+ affiche()
+ doACosimulationStep()
+ validateTheStep()
+ doAStep()
+ initialConditions()
+ RecvInput()
+ SendOutput()
+ CircuitSansOvrlGaucheDAE()

Figure 5.13: Detailed Class Diagram of the Architecture.
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5.4.2 FMU type slave
To use FMU functions as well as the types (fmi2Real, fmi2char...) defined by the
FMU standard, one must also retrieve 3 Headers available on the site dedicated to
the FMI standard: fmi2FunctionTypes.h, fmi2Functions.h, fmi2TypesPlatform.h.
The fmuCSslave and fmuMEslave classes are based on information retrievable
in the modelDescription.XML (retrieved during export see previous section 5.3).
They also contain an FMU component (type fmi2Component ) that functions as
a black box within the slave class itself as well as functions that are used to interact
with this FMU component. To instantiate an FMU component fmu2Component,
you must call the fmi2instanciate function which requires information extracted
from modelDescription.XML as an argument. The first step therefore consists in
recovering the functions of the DLL libraries (exported in the .FMU zip folder) .
It is then necessary to retrieve the various information via the
modelDescription.XML. To do this, the libXML library was used. We seek causal-
ity to find the inputs and outputs that we store in a map using the name of the
variables as a key. Indeed, we have chosen to automatically link the inputs and
outputs rather than letting the user do it. The reference value assigned to a value
being specific to an FMU export, the only indication that can be used to identify
the variables is their name.
At the end of this process we obtain a class instance having:

• a map containing the ValueReference of each input and their names: the
name is useful to identify the inputs necessary for this sub-model and to
inform the master during the initialization of the co-simulation.
The ValueReference serve as arguments for the fmi2SetReal function. The
variable’s name is a general key and its ValueReference is a local key.

• a map containing the ValueReference of each output and their names. The
name serves as a global key during initialization to inform the master of the
calculated outputs in this slave class. The name serves as the local key and
is supplied as an argument to the fmi2GetReal function.

• a map containing the ValueReference of all the model values and their names
in order to retrieve all the results, useful to call the fmi2GetReal function at
the end of a time step (after convergence) to get the results. The name lets
the user know what the value stands for.

• an instance of an fmi2Component. This black box is the heart of the class,
it contains the DAE of the model (not accessible).

• the functions which are necessary to communicate with the fmi2Component,
there are functions common to FMU CS and FMU ME, and many specific
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functions which can only be used with one type of FMU. Figure 5.14 is a
table taken from the FMI 2 specification, it gives a list of common available
functions for FMU CS and FMU ME.

Figure 5.14: FMI 2 functions
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FMU Co Simulation

The fmi2Component can call its
own intern solver. So the main im-
portant function proper to an FMU
CS is fmi2DoStep. Figure 5.15 is a
table available in the FMI 2 speci-
fications, it gives the functions spe-
cific to the FMU CS.

Figure 5.15: FMI 2 functions for Cosimulation

FMU Model Exchange

The fmi2Component can not call
an internal solver. To simulate
the system, one must retrieve an
estimate of the states and deriva-
tives using the fmi2GetDerivatives
function and simulate the system
using a solution external to the
fmi2Component . Figure 5.16 is
a table available in the FMI 2 spec-
ifications, it gives the functions spe-
cific to the FMU ME.

Figure 5.16: FMI 2 functions for Model Exchange
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5.4.2.1 FMU slave Management

Figure 5.17 is a pseudo code representing the co-simulation between two FMU
slave types, the left slave is an FMU ModelExchange and the right one is an
FMU CoSimulation slave. The reaction of the FMUs to the master command
doACosimulationStep is not the same. Indeed when the FMUCSslave needs to
reset its FMUcomponent and can call its intern solver, the FMUMEslave estimates
a derivative and the simulation is performed with an chosen external solver.

For t=t_0 to t_end
Rollback=false

While it <  it_Aitken
If (needed)

{translate inputs}

SendInterface

sendCommandFMU(receiveInput)

sendCommandFMU(DoACosimulationStep
(Rollback,t,dt))

sendCommandFMU(sendOutput)
RecvInterface

Error(it)=v-v_old
V_old=v

Rollback=false

end While

Compute error Operator
Compute v1_exact
Compute v2_exact

End For
sendCommandFMU(terminate)

If (rollBack)
modelCS.fmi2SetFMUstate(modelCS.fmi2Component, 

modelCS.FMUstate)
else

modelCS.fmi2GetFMUstate(modelCS. 
fmi2Component, modelCS.FMUstate)

modelCS.fmi2SetReal(modelCS.core,modelCS.nbinput, 
v1)

modelCS.fmi2DoStep(modelCS. 
fmi2Component,t,dt,fmi2true)

v1=received Input

modelCS.fmi2GetReal(modelCS.core,modelCS.
nbinput, v2)

modelCS.fmi2Terminate(modelCS.core)

v2=received Input

modelME.fmi2GetReal(modelCS.core,modelCS.
nbinput, v1)

modelME.fmi2Terminate(modelCS.core)

If (rollBack==false)
modelME.yy= modelME.ystate

modelME.fmi2SetReal(modelME.fmi2Component,model
ME.nbinput, v2)

modelME.fmi2GetDerivatives(modelME.fmi2Componen
t, modelME.yder , modelME.nx)

modelME.yState=chosenSolver.solve(modelME.yy, dt , 
modelME.yder)

modelME.fmi2SetContinuousStates(modelME.fmi2Com
ponent, modelME.yState , modelME.nx)

MASTERDDM
FMUCSSLAVE:modelCSFMUMESLAVE:modelME

Figure 5.17: Pseudo Code representing the Co simulation of two FMU slave
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5.4.2.2 C++ wrapping test

In the platform test steps, one of the first is to test the C++ wrapper, that is
to say that we recover the information from the modelDescription.XML, that we
recover the functions of the DLLs and that the call to these functions is correct.

For this, a known ODE system as small as possible is chosen. Indeed, it helps
focus on the wrapper and minimizes the possibility that an error is not related to
the C++ wrapper.

The chosen system is the Lokta Volterra, a system with two equations and two
unknowns which models the evolution of populations of prey and predators. This
model was also used to test the MasterSim platform[88]. By noting x the popula-
tion of preys and y the population of predators, α, β, δ, γ are constants representing
the mortality, the reproduction of the preys and predators. This system is defined
as:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ(t) = x(t)(α − βy(t))
ẏ(t) = y(t)(δx(t) − γ)

x(t0) = x0
y(t0) = y0

(5.1)

We place the first equation in a model with x calculated in this model and y as
input. The second model consists of the second equation and has x as input. We
thus obtain two FMUs which are tested in Co-simulation and in Model-Exchange.

Figure 5.18 shows the results of the cosimulation of the two FMUs CS (the one in
the middle) and the two FMUs ME (the one at the bottom) using the platform.
these results are compared to the simulation performed with the entire model in
OMEdit (top). The C++ wrapper works correcty.
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5.4.3 Conclusion About the Orchestrator
The platform under development is based on a master/slave architecture, it was
designed to be adapted to the use of FMU. Indeed, the fundamental concept of
the method is to post-process the sequence of interface solutions generated by
the domain decomposition solver. It can use different boundary conditions for
acceleration as long as they are linear in the variables (i.e. Dirichlet, Neumann,
Robin, [102],...). This post-processing is particularly interesting here because the
process can be used in a non-intrusive way, which is particularly suitable when
the models used are, like the FMUs, in the form of a black box. To exchange
information, the point-to-point communication routine of the MPI is used. The
designed architecture is very general because it can use FMUs Model Exchange,
FMUs Co Simulation or DAE written in C++ as slaves. However, all these slaves
are perceived by the master as having the same form and are treated the same
way, so the differentiation is only made within the slave instance.



Chapter 6

Conclusions and perspectives

With the integration into the Power Grid of power electronic type technologies,
faster dynamics than before are appearing in the network. This evolution of the
network must be accompanied by an evolution of the methods used to simulate
it. In this perspective, EMT-TS co-simulation is a promising method that is
regularly explored. Indeed, as the different technologies present in the network
involve several types of transients, simulating it with several types of simulation
seems logical. In this co-simulation method, limited parts of the network involving
fast transients are simulated with EMT-like simulation and the rest of the network,
is simulated with TS-like simulation. Thus, the goal of the maneuver is to take
advantage of both the level of detail offered by the EMT-type simulation and both
the calculation speed of the TS-type simulation.
In this PhD, the practicality of domain decomposition methods has been put at the
service of this subject of co-simulation. Firstly, the Restrictive Additive Schwarz
type method was applied to electrical circuits. The convergence of these methods
has been studied for linear RLC circuits or if there are nonlinear components, for
linearized systems around each time step. In the homogeneous case, convergence
or divergence is purely linear, which allowed us to apply Aitken’s convergence
acceleration technique. Thanks to this acceleration, the results of the simulation
are obtained in a limited number of iterations, whether the method converges or
diverges. Since, thanks to Aitken’s convergence acceleration technique, we obtain
the converged solution even in the case of a divergent method, taking into account
the splitting constraint to have a convergent method is no longer relevant.
In a second step, the method was modified to be able to be used in the hetero-
geneous case. The protocol was adapted to the time step difference between the
EMT simulation and the TS simulation. Translation operators were chosen and
improved to meet our requirements: these translations had to be as precise as pos-
sible, these translations should not be too expensive, translations that do not add
additional constraints on the time steps used and therefore on the protocol and
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finally linear translations in order to be able to keep the convergence/divergence
linear and therefore the advantage of being able to use the Aitken’s acceleration
of the convergence technique. The strategy of using the Aitken technique to ac-
celerate convergence was designed to best adapt to the protocol induced by the
heterogeneity of the co-simulation. Hence, a heterogenous EMT-TS RAS method
accelerated by Aitken’s convergence acceleration technique was obtained.
Afterwards, It was shown that the Restrictive Additive Schwarz method is a special
case of a general method called Dynamic Iteration. We then demonstrate that
dynamic iteration with the RAS splitting method can be accelerated using the
Aitken’s convergence acceleration technique and in particular multiple time steps
can be accelerated at the same time. This other protocol is then compared to
the protocol used in this PhD so far and we see that it is particularly interesting
when a nonlinear component is in the circuit or when programmed variable time
steps are used. Indeed this protocol makes it possible to obtain in these cases the
converged solution without needing to make more iterations in order to manage
the nonlinear components or variable time steps.
Throughout this thesis, we have explored OpenModelica tools, a suite of tools that
has potential and whose future developments should overcome the difficulties we
encountered.
Finally, a platform based on the previously developed methods has been designated
and is being developed at SuperGrid Institute. This platform is intended to be
as general as possible, using either models in the form of functional mock-up unit
(FMU) co-simulation (using the export tool’s solver) or model exchange (resolution
with an external solver such as those offered by SUNDIALS) or DAE coded in
C++. This platform is designed in a master/slave approach and uses the point-
to-point communication routine offered by mpi.

Perspectives
It would be interesting to study large overlap.
Indeed, this would make it possible to deepen the study of the impact of the
overlap on the convergence of the method but also to compare the two different
representations on the overlap and thus to estimate the information which was lost
during the passage of the data. .
In this thesis the quantities exchanged were either potentials or currents, and those
measures were exchanged using Dirichlet type conditions. These conditions could
be improved, one idea would be to impose that a quantity be invariant, for example
the power.
The study of a significant overlap could also give indications on the relevance of
the partitioning, for example if the solution given by the EMT simulation is the
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same at a point of the network as that given by the TS simulation, one could
conclude that the use of EMT simulation in this location is not essential and the
EMT sub domain can be reduced.
The partitioning could also be reworked from different points of view. In particu-
lar, the methods presented in the thesis make it possible to overcome the constraint
that the error operator of the method is contractant (i.e. that the method con-
verges), which leaves greater freedom in the choice of partitioning.
In this way, a point of view could be a partitioning based on a partitioning study
of heterogeneous graphs, in order to minimize the computational costs as much as
possible.
One could also use a dynamic partitioning which would make it possible to enlarge
the EMT part when an event would have been detected or on the contrary to reduce
this part when no fast dynamic is detected. The constraint of this idea being that
it is necessary to have large models in TS version and in EMT version and not to
work with fixed models. Indeed, by using for example FMUs, it would certainly
be necessary to export too many of them and in addition to instantiate two new
models with each evolution of the partitioning, which seems quite irrational.
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Introduction de la problématique
et résumé de la thèse

Actuellement, l’écologie est au cœur des préoccupations, l’intégration des énergies
renouvelables dans le réseau se développe. L’interconnexion entre des zones
géographique de plus en plus éloignées se développe. Pour ce faire, des lignes
Haute Tension Courant Continu (HVDC) sont créées. Or, les lignes HVDC sont
connectées aux réseaux via des convertisseurs électroniques de puissance.
Ce développement des énergies renouvelables et des liaisons HVDC conduit donc
une présence grandissante de composants d’électronique de puissance dans les
réseaux. Par ailleurs, ce type de technologie rend plus courant dans le réseau
des phénomènes impliquant des transitoires plus rapides que les transitoires mises
en jeu jusqu’alors. Cette évolution du réseau doit s’accompagner d’une évolution
des méthodes utilisées pour le simuler.
Dans cette perspective, la co-simulation EMT-TS est envisagée comme une des
solutions pour adapter les simulations aux réseaux actuels. En effet, les simulations
de type électromagnétiques transitoires (EMT) peuvent simuler un vaste éventail
de fréquence avec des événements de l’ordre de la micro-seconde. Cependant, les
pas de temps effectués sont forcément plus petits que la durée des événements à
simuler et sont donc très petits ce qui rend la simulation très coûteuse en temps de
calcul. Les simulations de type stabilité transitoire sont le plus souvent réalisées en
utilisant des phaseurs, il y a donc une hypothèse forte qui est faite sur la forme des
solutions, la plupart des oscillations sont lissées. Cette représentation est suffisante
pour les événements allant jusqu’à la milli-seconde elle n’est donc pas suffisamment
précise pour simuler les transitoires induites par les composants d’électronique de
puissance. En revanche, ce type de simulation à l’avantage d’être peu coûteuse en
temps de calcul et demande peu de ressources.
L’idée de la co-simulation EMT-TS est donc de découper le réseau et de simuler une
petite partie choisie comme étant un domaine d’intérêt en utilisant la simulation
EMT et le reste du réseau en utilisant une simulation de type TS, et ainsi de tirer
parti à la fois du niveau de détail de la simulation de type EMT et à la fois de
l’efficacité de calcul du TS.
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Pour mettre en place une co-simulation EMT-TS, plusieurs verrous doivent être
levés, Jalili-Marandi& al [55] les exposent :

• Le partitionnement : avec un bon compromis détail/efficacité, il faut donc
limiter autant que possible la taille du domaine EMT. Le découpage doit
être suffisamment éloigné des perturbations potentielles à la fois pour capter
les perturbations éventuelles avec la modélisation EMT et pour la stabilité
de la méthode, en effet si l’interface est trop proche de la source de la per-
turbation, cela peut poser des problèmes dans la transmission des données.
La décomposition doit également permettre à la méthode de converger, ef-
fectivement beaucoup de partitionnements sont choisis de sorte à rendre
l’opérateur d’erreur de a méthode de Co-simulation contractant.

• Le protocole d’interaction : une difficulté particulière à la co-simulation
EMT-TS dans le choix du protocole est le fait que les simulations EMT
et les simulations TS n’utilisent pas du tout les mêmes pas de temps. Dans
la plupart des co-simulations EMT-TS, les pas de temps sont choisis de sorte
à ce que Δtts = nΔtemt avec n ∈ N

∗. Le macro-pas de temps de la méthode
est souvent choisi comme étant le pas de temps TS Δts.
Plus généralement, le protocole peut être en série ou en parallèle, les mises
à jour des sous-modèles avec les données récupérées de l’autre sous-modèle
peuvent être synchronisées ou non et plus ou moins fréquentes. Le protocole
peut être itératif ou non.

• La traduction d’un type de modèle à un autre : en effet, lors de la simulation
EMT, on ne fait pas d’hypothèse sur la forme des variables, alors que dans le
cas TS, on suppose que les variables sont de forme phaseur. Par conséquent,
les variables doivent être transformées pour l’échange d’informations afin
d’être compréhensibles par chacun des sous-domaines. Ces transformations
ne doivent pas être trop coûteuses en calcul et aussi précises que possible.

Dans cette thèse, l’accent est mis sur l’utilisation de méthode de décomposition
de domaine au service de ce sujet de co-simulation hétérogène, la thèse est écrite
comme suit :
Dans un premier temps, le sujet et la problématique sont introduits. Un état de
l’art concernant les différents verrous cités plus haut est exposé. Une méthode
pour obtenir le système d’équations algébrique différentiel représentant le réseau
est introduite.
Ensuite, les méthodes de décomposition de domaine de type Schwarz qui seront
utilisées tout au long de la thèse sont résumés. L’application de ce type de méthode
sur les circuits, dans des cas homogène est détaillée. La convergence de ces méth-
odes est étudiée et est purement linéaire. Cette propriété nous permet d’utiliser la
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méthode d’accélération de la convergence d’Aitken pour accélérer la convergence
vers la vraie solution et ceci que la méthode converge ou diverge.
Puis, la méthode utilisée est adaptée au cas hétérogène. Ainsi, le protocole est
modifié pour répondre à la différence de pas de temps utilisé par chacun des
sous-domaines. Des opérateurs de traductions entre l’EMT et le TS sont choi-
sis et améliorés pour répondre à nos exigences. On voit alors que tant que ces
opérateurs sont linéaires la convergence/divergence reste linéaire et la technique
d’accélération de la convergence d’Aitken peut être appliquée. Une stratégie adap-
tée aux contraintes liée à l’hétérogénéité EMT-TS est mise en place afin d’utiliser
la technique d’accélération d’Aitken de façon optimale.
Dans un quatrième temps, la méthode de Schwarz est replacée dans le contexte plus
général de la dynamique itération avec un découpage particulier. Il est alors montré
que la technique d’accélération de la convergence d’Aitken peut être utilisée pour
accélérer plusieurs pas de temps à la fois. Ce protocole se révèle particulièrement
intéressant dans le cas où il y aurait des composants non-linéaires dans le circuit.
Enfin, dans un dernier chapitre, un retour d’utilisation de la suite d’outils
OpenModelica est présenté. Une plateforme en cours de développement désigné
dans une architecture master/slave est présentée. Le cœur du master est basé sur
les méthodes développées dans cette thèse.





Abstract
The integration of renewable energies in the electrical network leads to an increasing
presence of power electronic components, which makes phenomena involving electromag-
netic transients (EMT), faster than electromechanical transients, more frequent than until
recently. This evolution of the network must be accompanied by an evolution of the sim-
ulation methods. This thesis focuses on the development of numerical methods for EMT-
TS co-simulation, taking advantage of the detailed but time-consuming EMT simulation
and the computationally efficient TS simulation, which captures only smooth oscillations,
to simulate different parts of the network. Several numerical difficulties appear in such
a coupling to solve systems of differential algebraic equations (DAE): the partitioning
can have an impact on the contraction of the error operator of the numerical method,
the difference in solver time step between EMT-TS simulations requires an interaction
protocol to avoid any delay in data exchange, the difference in mathematical modeling
requires a specific translation of the data to be exchanged. We develop a restrictive ad-
ditive Schwarz domain decomposition method to simulate linear RLC circuits or their
linearization around each time step if there are non-linear components. Convergence or
divergence studies in the EMT-EMT or TS-TS homogeneous modeling cases show that
they depend on the partitioning, the time step size, the values of the components circuits.
Nevertheless, we take advantage of their purely linear behavior in order to apply the
Aitken convergence acceleration technique and thus obtain simulation results in a limited
number of iterations even in the case of a divergent method. The constraint imposed on
the fractionation to have a convergent method is then no longer relevant. Heterogeneous
EMT-TS splitting requires that the RAS take into account the difference in time step
between the two simulations. We develop translation operators, as accurate as possible,
not too expensive, without additional constraints on the time steps used, and finally linear
in order to keep the linear convergence/divergence and thus the advantage of being able
to use the Aitken convergence acceleration technique. Then, we show that our domain
decomposition method applied to the DAE system is a special case of a general method
called dynamic iteration. We then show that dynamic iteration with the domain decom-
position method can be accelerated using Aitken’s convergence acceleration technique and
in particular that several time steps can be accelerated at the same time even if they have
variable sizes programmed in advance, and in the presence of nonlinear components in
the circuit. Finally, we study the advantages and disadvantages of Modelica-based tools
such as OpenModelica to implement our domain decomposition. These tools allow us to
produce the DAE system from the mathematical description of the network components.
The result is the development of a platform using a master/slave implementation of our
domain decomposition method, through the MPI (Message Passing Interface) library.
This platform is intended to be as general as possible, using either models (part of the
network) in the form of a functional mockup unit (FMU) from industrial modeling tools,
or a DAE system coded in C++.
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